NCERT Solutions Class 6 Mathematics Chapter 12 Ratio and Proportion

NCERT Solutions Class 6 Mathematics Chapter 12 Ratio and Proportion have been provided below and is also available in Pdf for free download. The NCERT solutions for Class 6 Mathematics have been prepared as per the latest syllabus, NCERT books and examination pattern suggested in Class 6 by CBSE, NCERT and KVS. Questions given in NCERT book for Class 6 Mathematics are an important part of exams for Class 6 Mathematics and if answered properly can help you to get higher marks. Refer to more Chapter-wise answers for NCERT Class 6 Mathematics and also download more latest study material for all subjects. Chapter 12 Ratio and Proportion is an important topic in Class 6, please refer to answers provided below to help you score better in exams

Chapter 12 Ratio and Proportion Class 6 Mathematics NCERT Solutions

Class 6 Mathematics students should refer to the following NCERT questions with answers for Chapter 12 Ratio and Proportion in Class 6. These NCERT Solutions with answers for Class 6 Mathematics will come in exams and help you to score good marks

Chapter 12 Ratio and Proportion NCERT Solutions Class 6 Mathematics

Ratio and Proportion

Exercise: 12.1

Q.1) There are 20 girls and 15 boys in a class.
(a) What is the ratio of number of girls to the number of boys?
(b) What is the ratio of number of girls to the total number of students in the class?
Sol.1) a) Number of girls: number of boys = 20: 15 = 20/15 = 4/3 = 4: 3
b) Number of girls = 20
Number of boys = 15
Total number of students in the class = 35
Number of girls: total number of students in the class = 20: 35 = 20/35 = 4: 7

Q.2) Out of 30 students in a class, 6 like football, 12 like cricket and remaining like tennis.
Find the ratio of
(a) Number of students liking football to number of students liking tennis.
(b) Number of students liking cricket to total number of students.
Sol.2) Given
Total number of students in the class = 30
Number of students who like football = 6
Number of students who like cricket = 12
So, Number of students who like tennis = Total number of students in the class – (Sum of
students who like football and cricket) =30 – (6 + 12) = 12
a) Number of students who like football: number of students who like tennis = 6: 12 = 6/12 = 1: 2
b) Number of students who like cricket: total number of students = 12: 30 = 12/30 = 2: 5

Q.3) See the figure and find the ratio of
(a) Number of triangles to the number of circles inside the rectangle.
(b) Number of squares to all the figures inside the rectangle.
(c) Number of circles to all the figures inside the rectangle.

""NCERT-Solution-Class-6-Maths-Ratio-and-Proportion
Sol.3) (a) The ratio of triangles to the number of circles inside the rectangle = 3/2 = 3 ∶ 2
(b)The ratio of Number of squares to all the figures inside the rectangle. = 2/7 = 2: 7
(c)The ratio of Number of circles to all the figures inside the rectangle. = 2/7 = 2: 7

Q.4) Distances travelled by Hamid and Akhtar in an hour are 9 km and 12 km. Find the ratio of speed of Hamid to the speed of Akhtar.
Sol.4) We know that, 𝑆𝑝𝑒𝑒𝑑 = 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒/𝑇𝑖𝑚𝑒
Distance travelled by Hamid in 1 ℎ𝑜𝑢𝑟 = 9 𝑘𝑚
Speed of Hamid = distance/time = 9 𝑘𝑚/ℎ𝑟
Distance travelled by Akhtar in 1 ℎ𝑜𝑢𝑟 = 12 𝑘𝑚
Speed of Hamid = 12 𝑘𝑚/ℎ𝑟
Ratio of speed of Hamid : Akhtar = 9 ∶ 12 = 3 ∶ 4

Q .5) Fill in the following blanks:

""NCERT-Solution-Class-6-Maths-Ratio-and-Proportion-1

Q.7) Find the ratio of the following:
(a) 30 minutes to 1.5 hours
(b) 40 cm to 1.5 m
(c) 55 paisa to Re 1
(d) 500 ml to 2 litres
Sol.7) The two quantities are not in the same unit. So, We can only find ratio here by converting them in same units.
It is always easy to convert into smaller of unit
(a) 30 𝑚𝑖𝑛𝑢𝑡𝑒𝑠 𝑡𝑜 1.5 ℎ𝑜𝑢𝑟
1.5 ℎ𝑜𝑢𝑟𝑠 = 1.5 × 60 = 90 𝑚𝑖𝑛𝑢𝑡𝑒𝑠                     [∵ 1 hour = 60 minutes]
Now, ratio of 30 𝑚𝑖𝑛𝑢𝑡𝑒𝑠 𝑡𝑜 1.5 ℎ𝑜𝑢𝑟 = 30 𝑚𝑖𝑛𝑢𝑡𝑒𝑠 ∶ 1.5 ℎ𝑜𝑢𝑟
⇒ 30 𝑚𝑖𝑛𝑢𝑡𝑒𝑠 ∶ 90 𝑚𝑖𝑛𝑢𝑡𝑒𝑠 = 1 ∶ 3

(b) 40 𝑐𝑚 𝑡𝑜 1.5 𝑚
1.5 𝑚 = 1.5 × 100 𝑐𝑚 = 150 𝑐𝑚                   [∵ 1 m = 100 cm]
Now, ratio of 40 𝑐𝑚 𝑡𝑜 1.5 𝑚 = 40 𝑐𝑚 ∶ 1.5 𝑚
⇒ 40 𝑐𝑚 ∶ 150 𝑐𝑚 = 4 ∶ 15

(c) 55 𝑝𝑎𝑖𝑠𝑎 𝑡𝑜 𝑅𝑒. 1
𝑅𝑒. 1 = 100 𝑝𝑎𝑖𝑠𝑎
Now, ratio of 55 𝑝𝑎𝑖𝑠𝑎 𝑡𝑜 𝑅𝑒. 1 = 55 𝑝𝑎𝑖𝑠𝑎 ∶ 100 𝑝𝑎𝑖𝑠𝑎
⇒ 11 ∶ 20

(d) 500 𝑚𝑙 𝑡𝑜 2 𝑙𝑖𝑡𝑟𝑒𝑠
2 𝑙𝑖𝑡𝑒𝑟𝑠 = 2 × 1000 𝑚𝑙 = 2000 𝑚𝑙                 [∵ 1 litre = 1000 ml]
Now, ratio of 500 𝑚𝑙 𝑡𝑜 2 𝑙𝑖𝑡𝑟𝑒𝑠 = 500 𝑚𝑙 ∶ 2 𝑙𝑖𝑡𝑟𝑒𝑠
⇒ 500 𝑚𝑙 ∶ 2000 𝑚𝑙 = 1 ∶ 4

Q.8) In a year, Seema earns 𝑅𝑠 1,50,000 and saves 𝑅𝑠 50,000. Find the ratio of
(a) Money that Seema earns to the money she saves.
(b) Money that she saves to the money she spends.
Sol.8) Amount earned by Seema = 𝑅𝑠 1,50,000
Amount saved = 𝑅𝑠. 50,000
Amount spent = 1,50,000 – 50,000 = 1,00,000
a) Money Seema earns : money she saves =1,50,000 : 50,000
= 150000/50000 = 15/5 = 3/1 = 3: 1
b) Money saved : money spent = 50,000 : 1,00,000
= 50000/100000 = 5/10 = 1/2 = 1: 2

Q.9) There are 102 teachers in a school of 3300 students. Find the ratio of the number of teachers to the number of students.
Sol.9) Number of teachers in the school = 102
Number of students in the school = 3300
Number of teachers : number of students = 102 ∶ 3300
= 102/3300 = 102 ÷ 3/3300 ÷ 3 
= 34/1100 = 17/550 = 17: 550

Q.10) In a college, out of 4320 students, 2300 are girls. Find the ratio of
(a) Number of girls to the total number of students.
(b) Number of boys to the number of girls.
(c) Number of boys to the total number of students.
Sol.10) Total number of students in the school = 4320
Number of girls = 2300
(a) The ratio of Number of girls to the total number of students = 2300/4320 = 115/216 = 115: 216
(b) The Numbers of boys= 4320 − 2300 = 2020
The ratio of Number of boys to the number of girls = 2020/2300 = 101/115 = 101: 115
(c) The ratio of Number of boys to the total number of students = 2020/4320 = 101/216 = 101: 216

Q.11) Out of 1800 students in a school, 750 opted basketball, 800 opted cricket and remaining opted table tennis. If a student can opt only one game, find the ratio of
(a) Number of students who opted basketball to the number of students who opted table tennis.
(b) Number of students who opted cricket to the number of students opting basketball.
(c) Number of students who opted basketball to the total number of students.
Sol.11) (
a) The number of students who opted table tennis = 1800 − 750 − 800 = 250
The ratio of Number of students who opted basketball to the number of students who opted table tennis = 750/250 = 3/1 = 3: 1
(b) The ratio of Number of students who opted cricket to the number of students opting basketball. = 800/750 = 16/15 = 16 ∶ 15
(c) The ratio of Number of students who opted basketball to the total number of students = 750/1800 = 5/12 = 5: 12

Q.12) Cost of a dozen pens is Rs.180 and cost of 8 ball pens is Rs.56. Find the ratio of the cost of a pen to the cost of a ball pen.
Sol.12)
The Cost of a dozen pens is 𝑅𝑠. 180 and
∴ cost of 1 pen is = 180/12 = 𝑅𝑠 15
The cost of 8 ball pens is = 𝑅𝑠. 56
∴ cost of 1 ball pen is = 56/8 = 𝑅𝑠. 7
The ratio of cost of a pen to the cost of a ball pen = 15/7 = 15 ∶ 7

Q.13) Consider the statement : Ratio of breadth and length of a hall is 2 : 5. Complete the following table that shows some possible breadths and lengths of the hall

""NCERT-Solutions-Class-5-Mathematics-Chapter-11-Area-and-its-Boundary-13

Q.14) Divide 20 pens between Sheela and Sangeeta in the ratio of 3: 2.
Sol.14) The two parts are 3 and 2. Sum of the parts is 5.
So, Sheela gets 3 parts and Sangeeta gets 2 parts out of every 5 parts.
                                        OR
Sheela gets 3/5 of the total pens and Sangeeta gets 2/5 of the total pens
Number of pens Sheela gets = (3/5) × 20 = 12
Number of pens Sangeeta gets = (2/5) × 20 = 8
So, Sheela gets 12 pens and Sangeeta gets 8 pens.

Q.15) Mother wants to divide Rs.36 between her daughters Shreya and Bhoomika in the ratio of their ages. If age of Shreya is 15 years and age of Bhoomika is 12 years, find how much Shreya and Bhoomika will get.
Sol.15) Ratio of the age of Shreya to that of Bhoomika = 5 ∶ 4
Thus, Rs. 36 divide between Shreya and Bhoomika in the ratio of 5 ∶ 4.
Shreya gets = 5/9
𝑜𝑓 𝑅𝑠. 36 = 𝑅𝑠. 20
Bhoomika gets = 4/9
𝑜𝑓 𝑅𝑠. 36 = 𝑅𝑠. 16
Shreya gets Rs. 20 and Bhoomika gets Rs. 16

Q.16) Present age of father is 42 years and that of his son is 14 years. Find the ratio of
(a) Present age of father to the present age of son.
(b) Age of the father to the age of son, when son was 12 years old.
(c) Age of father after 10 years to the age of son after 10 years.
(d) Age of father to the age of son when father was 30 years old.
Sol.16)
Given
Present age of father = 42 𝑦𝑒𝑎𝑟𝑠
Present age of his son = 14 𝑦𝑒𝑎𝑟𝑠
a) Age of father: age of son = 42: 14 = 42/14 
                                                          = 3/1 = 3: 1

b) When the son was 12 = (14 – 2) years old
Then father would have been 40 = (42 – 2) years old.
Age of father: Age of son = 40: 12 = 10: 3

c) Age of father after 10 𝑦𝑒𝑎𝑟𝑠 = Present age + 10 = 42 + 10 = 52 𝑦𝑒𝑎𝑟𝑠
Age of son after 10 𝑦𝑒𝑎𝑟𝑠 = 14 + 10 = 24 𝑦𝑒𝑎𝑟𝑠
Age of father: Age of son = 52: 24 = 13: 6

d) When was the father 30 years old?
Since, 42 – 30 = 12, we know that 12 years back, the father was 30 years old.
So Age of son 12 years back was = present age – 12 = 14 − 2 = 2 𝑦𝑒𝑎𝑟
Ratio of father: Age of son = 30: 2 = 15: 1

Exercise 12.2

Q.1) Determine if the following are in proportion.
(a) 15, 45, 40, 120      (b) 33, 121, 9,96    (c) 24, 28, 36, 48
(d) 32, 48, 70, 210      (e) 4, 6, 8, 12          (f) 33, 44, 75, 100
Sol.1) If two ratios are equal, we say that they are in proportion.
a) Ratio of 15 and 45 = 15/45 = 3/9 
                                            = 1/3 = 1: 3
Ratio of 40 and 120 = 40/120 = 4/12 
                                            = 1/3 = 1: 3
Since 15 ∶ 45 and 40 ∶ 120 are equal, we say that they are in proportion.
15 ∶ 45 ∶ : 40 ∶ 120

b) Ratio of 33 and 121 = 33/121 = 3/11 = 3: 11
Ratio of 9 and 96 = 9/96 = 3/32 = 3: 32
Since 33 ∶ 121 and 9 ∶ 96 are unequal, we say that they are not in proportion.

c) Ratio of 24 and 28 = 24/28 = 12/14 
                                            = 6/7 = 6: 7
Ratio of 36 and 48 = 36/48 = 3/4 = 3: 4
Since 24 ∶ 28 and 36 ∶ 48 are unequal, we say that they are not in proportion.

d) Ratio of 32 and 48 = 32/48 = 16/24 
                               = 8/12 = 2/3 = 2: 3
Ratio of 70 and 210 = 70/210 = 7/21 
                              = 1/3 = 1: 3
Since 32 ∶ 48 and 70 ∶ 210 are unequal, we say that they are not in proportion.

e) Ratio of 4 and 6 = 4/6 = 2/3 = 2: 3
Ratio of 8 and 12 = 8/12 = 2/3 = 2: 3
Since 4 ∶ 6 and 8 ∶ 12 are equal, we say that they are in proportion.
4 ∶ 6 ∶ : 8 ∶ 12

f) Ratio of 33 and 44 = 33/44 = 3/4 = 3: 4
Ratio of 75 and 100 =
75/100 = 15/20 = 3/4 = 3: 4
Since 33 ∶ 44 and 75 ∶ 100 are equal, we say that they are in proportion.
33 ∶ 44 ∶ : 75 ∶ 100

Q.2) Write True (T) or False (F) against each of the following statements:
(a) 16 : 24 :: 20 : 30 (b) 21: 6 :: 35 : 10 (c) 12 : 18 :: 28 : 12
(d) 8 : 9 :: 24 : 27 (e) 5.2 : 3.9 :: 3 : 4 (f) 0.9 : 0.36 :: 10 : 4
Sol.2) (a) 16 : 25 : : 20 : 30
16: 25 ⇒ 4/6 = 2/3 = 2: 3 
20/30 ⇒ 2/3 = 2: 3
Hence, it is True.

(b) 21 : 6 : : 35 : 10
21: 6 ⇒ 7/2 = 7: 2
35: 10 ⇒ 7/2 = 7: 2
Hence, it is True.

(c) 12 : 18 : : 28 : 12
12: 18 ⇒ 6/9 = 2/3
28: 22 ⇒ 14/16 = 7/3 = 7: 3
The ratios are unequal. Hence False.

(d) 8 : 9 : : 24 : 27
8: 9 ⇒ 8: 9
24: 27 ⇒ 8/9 = 8: 9
Hence, it is True.

(e) 5.2 : 3.9 : : 3 : 4
5.2 ∶ 3.9 ⇒ 52/39 = 4/3 = 4: 3
3: 4 ⇒ 3: 4
Hence, it is False.

(f) 0.9 : 0.36 : : 10 : 4
0.9 ∶ 0.36 ⇒ 90/36 = 10/4 = 5/2 = 5: 2
10: 4 ⇒ 5/2 = 5: 2
Hence the ratios are equal it is True.

Q.3) Are the following statements true?
(a) 40 persons: 200 persons = Rs 15: Rs 75
(b) 7.5 litres: 15 litres = 5 kg: 10 kg
(c) 99 kg: 45 kg = Rs 44: Rs 20
(d) 32 m: 64 m = 6 sec: 12 sec
(e) 45 km: 60 km = 12 hours: 15 hours

""NCERT-Solutions-Class-5-Mathematics-Chapter-11-Area-and-its-Boundary-9

Q.4) Determine if the following ratios form a proportion. Also, write the middle terms and extreme terms where the ratios form a proportion.
(a) 25 cm: 1 m and Rs 40: Rs 160 (b) 39 litres: 65 litres and 6 bottles: 10 bottles
(c) 2 kg: 80 kg and 25 g: 625 g (d) 200 mL: 2.5 litre and Rs 4: Rs 50
Sol.4) (a) 25 𝑐𝑚 ∶ 1 𝑚
= 25 𝑐𝑚 ∶ (1 𝑥 100) 𝑐𝑚 = 25 𝑐𝑚 ∶ 100 𝑐𝑚 = 1 ∶ 4
𝑅𝑠. 40 ∶ 𝑅𝑠. 160 = 1 ∶ 4
Since the ratios are equal, therefore these are in proportion.
Middle terms = 1 𝑚, 𝑅𝑠. 40 and Extreme terms = 25 𝑐𝑚, 𝑅𝑠. 160
(b) 39 𝑙𝑖𝑡𝑒𝑟𝑠 ∶ 65 𝑙𝑖𝑡𝑒𝑟𝑠 =
6 𝑏𝑜𝑡𝑡𝑙𝑒𝑠 ∶ 10 𝑏𝑜𝑡𝑡𝑙𝑒𝑠 = 3 ∶ 5
Since the ratios are equal, therefore these are in proportion.
Middle terms = 65 𝑙𝑖𝑡𝑒𝑟𝑠, 6 𝑏𝑜𝑡𝑡𝑙𝑒𝑠 and Extreme terms = 39 𝑙𝑖𝑡𝑒𝑟𝑠, 10 𝑏𝑜𝑡𝑡𝑙𝑒𝑠
(c) 2 𝑘𝑔 ∶ 80 𝑘𝑔 = 1 ∶ 40
25 𝑔 ∶ 625 𝑔 = 1 ∶ 25
Since the ratios are not equal, therefore these are not in proportion.
(d) 200 𝑚𝑙 ∶ 2.5 𝑙𝑖𝑡𝑒𝑟𝑠
= 200 𝑚𝑙 ∶ (25 𝑥 1000) 𝑙𝑖𝑡𝑒𝑟𝑠 = 200 𝑚𝑙 ∶ 2500 𝑚𝑙 = 2 ∶ 25
𝑅𝑠. 4 ∶ 𝑅𝑠. 50 = 2 ∶ 25
Since the ratios are equal, therefore these are in proportion.
Middle terms = 2.5 𝑙𝑖𝑡𝑒𝑟𝑠, 𝑅𝑠. 4 and Extreme terms = 200 𝑚𝑙, 𝑅𝑠. 50

Exercise 12.3

Q.1) If the cost of 7 𝑚 of cloth is 𝑅𝑠. 294, find the cost of 5 𝑚 of cloth.
Sol.1) Cost of 7 𝑚 of cloth = 𝑅𝑠. 294
∴ Cost of 1 𝑚 of cloth = 𝑅𝑠. 42
∴ Cost of 5 𝑚 of cloth = 42 × 5 = 𝑅𝑠. 210
Thus, the cost of 5 𝑚 of cloth is 𝑅𝑠. 210.

Q.2) Ekta earns Rs 1500 in 10 days. How much will she earn in 30 days?
Sol.2) Amount Ekta earns in 10 days = 𝑅𝑠. 1500
So, amount earned in 1 day = 𝑅𝑠 1500 ÷ 10 = 𝑅𝑠. 150
Amount she will earn in 30 days = 𝑅𝑠. 150 × 30 = 𝑅𝑠. 4500

Q.3) If it has rained 276 𝑚𝑚 in the last 3 days, how many 𝑐𝑚 of rain will fall in one full week (7 days)? Assume that the rain continues to fall at the same rate.
Sol.3) Measure of rain in 3 𝑑𝑎𝑦𝑠 = 276 𝑚𝑚 = 27.6 𝑐𝑚
So, measure of rain in 1 𝑑𝑎𝑦 = 27.6 ÷ 3 = 9.2 𝑐𝑚
We know that one week has 7 days.
So, measure of rain in 7 𝑑𝑎𝑦𝑠 = 9.2 × 7 = 64.4 𝑐𝑚

Q.4) Cost of 5 kg of wheat is 𝑅𝑠. 30.50.
(a) What will be the cost of 8 𝑘𝑔 of wheat?
(b) What quantity of wheat can be purchased in 𝑅𝑠. 61?
Sol.4) Cost of 5 𝑘𝑔 of wheat = 𝑅𝑠. 30.50
Cost of 1 𝑘𝑔 = 𝑅𝑠. 30.50 ÷ 5 = 𝑅𝑠. 6.10
a) Cost of 8 kg of wheat = 8 × 𝑅𝑠. 6.10 = 𝑅𝑠. 48.80
b) Amount of wheat purchased for 𝑅𝑠. 6.10 = 1 𝑘𝑔
Amount of wheat purchased for 𝑅𝑠. 61 = 61 ÷ 6.10 = 6100 ÷ 610 = 10 𝑘𝑔

Q.5) The temperature dropped 15 degrees Celsius in the last 30 days. If the rate of temperature drop remains the same, how many degrees will the temperature drop in the next ten days?
Sol.5) Temperature drop in 30 days = 15°𝐶
Temperature drop in 1 day = 15 ÷ 30 = (1/2)°𝐶
Temperature drop in 10 days = (1/2)°𝐶 × 10 = 5°𝐶
Thus, 5 degree Celsius temperature dropped in 10 days.

Q.6) Shaina pays Rs.7500 as rent for 3 months. How much does she has to pay for a whole year, if the rent per month remains same?
Sol.6) Rent paid by Shaina for 3 months = 𝑅𝑠 7500
Rent paid by Shaina per month = 7500 ÷ 3 = 𝑅𝑠 2500
We know that in a year, there are 12 𝑚𝑜𝑛𝑡ℎ𝑠.
So, the rent paid by Shaina for a year = 𝑅𝑠. 2500 × 12 = 𝑅𝑠 30,000

Q.7) Cost of 4 dozen bananas is Rs.60. How many bananas can be purchased for Rs.12.50?
Sol.7) We know that
1 dozen = 12
So, 4 dozen = 48
The cost of 48 bananas = 𝑅𝑠. 60
Cost of 1 banana= 60 ÷ 48 = 5 ÷ 4 = 𝑅𝑠 1.25
For 𝑅𝑠. 1.25, number of bananas that can be purchased = 1
For 𝑅𝑠. 12.50, number of bananas that can be purchased = 12.50 × 1 ÷ 1.25
= 12.50 ÷ 1.25 = 1250 ÷ 125 = 10
So, 10 bananas can be purchased.

Q.8) The weight of 72 books is 9 𝑘𝑔. What is the weight of 40 such books?
Sol.8) Given, Weight of 72 books = 9 𝑘𝑔
Weight of 1 𝑏𝑜𝑜𝑘 = 9 ÷ 72 = 1/8 𝑘𝑔
Weight of 40 𝑏𝑜𝑜𝑘𝑠 = 40 × 1/8 = 5 𝑘𝑔
∴ the weight of 40 books is 5 kg.

Q.9) A truck requires 108 litres of diesel for covering a distance of 594 km. How much diesel will be required by the truck to cover a distance of 1650 km?
Sol.9) Amount of Diesel required by truck for covering a distance for 594 𝑘𝑚 = 108𝑙
Amount of Diesel required by truck for covering a distance for 1 𝑘𝑚 = 108 ÷ 594 = (2/11)𝑙
So Amount of diesel required by truck for covering a distance for 1650 𝑘𝑚 = 1650 × (2/11) = 300 𝑙𝑖𝑡𝑟𝑒

Q.10) Raju purchases 10 pens for 𝑅𝑠. 150 and Manish buys 7 pens for 𝑅𝑠 84. Can you say who got the pens cheaper?
Sol.10) Amount paid by Raju for 10 𝑝𝑒𝑛𝑠 = 𝑅𝑠. 150
Amount paid for 1 𝑝𝑒𝑛 = 150 ÷ 10 = 𝑅𝑠 15
Amount paid by Manish for 7 𝑝𝑒𝑛𝑠 = 𝑅𝑠. 84
Amount paid for 1 𝑝𝑒𝑛 = 84 ÷ 7 = 𝑅𝑠 12
Raju paid 𝑅𝑠. 15 for 1 pen but Manish paid 𝑅𝑠. 12
So, Manish got the pens cheaper.

Q.11) Anish made 42 runs in 6 overs and Anup made 63 runs in 7 overs. Who made more runs per over?
Sol.11) Runs made by Anish in 6 𝑜𝑣𝑒𝑟𝑠 = 42
Runs made in 1 𝑜𝑣𝑒𝑟 = 42 ÷ 6 = 7
Runs made by Anup in 7 𝑜𝑣𝑒𝑟𝑠 = 63
Runs made in 1 𝑜𝑣𝑒𝑟 = 63 ÷ 7 = 9
In one over, Anup made 9 runs but Anish made 7 runs. So, Anup made more runs in an over than Anish.

 

Question. Robin scored 5 goals from 20 shots that he took during hockey practice one day. His friend Gagan's success rate was twice as Robin. In all, if they took 50 shots between them equally, how many goals did Gagan score?
(a) 8
(b) 12
(c) 15
(d) 20

Answer : A

Question. 2 identical objects X are weighed as shown below.
Which of the following weighings with object X is correct-

""NCERT-Solutions-Class-6-Mathematics-Chapter-12-Ratio-and-Proportion

Answer : D

Question. Prashant cuts a watermelon into 12 equal slices and eats 4 of them. If he was to have the same portion of the watermelon for himself with the minimum number of cuts, he should have made
(a) three equal slices and taken one.
(b) four equal slices and taken one.
(c) six equal slices and taken two.
(d) five equal slices and taken two.

Answer : A

Question. Look carefully at the figures below. If figure X represents 0.1, figure Y will represent

""NCERT-Solutions-Class-6-Mathematics-Chapter-12-Ratio-and-Proportion-1

(a) 0.002
(b) 0.02
(c) 0.2
(d) 2.1

Answer : A

Question. About how much nail polish would a regular sized bottle of nail polish hold when full?
(a) 2 ml
(b) 12 ml
(c) 50 ml
(d) 1/4  litre

Answer : B

Question. A part of a recipe from a cookbook is shown below. Study it and answer the question. 
To make 'Capsicum Raita' for 1 person according to this recipe, how much oil should be used?

""NCERT-Solutions-Class-6-Mathematics-Chapter-12-Ratio-and-Proportion-2

(a) 1 tablespoon
(b) 4 tablespoon
(c) 2 tablespoon
(d) ¼ tablespoon

Answer : D

Question. A part of a recipe from a cookbook is shown below. Study it and answer question. If Kumar uses this recipe to make 'Capsicum Raita' with 8 capsicums, how many cups of curd should he use?

""NCERT-Solutions-Class-6-Mathematics-Chapter-12-Ratio-and-Proportion-3

(a) 3
(b) 4
(c) 5
(d) 6

Answer : D

NCERT Solutions Class 6 Mathematics Chapter 12 Ratio and Proportion

The above provided NCERT Solutions Class 6 Mathematics Chapter 12 Ratio and Proportion is available on our website www.studiestoday.com for free download in Pdf. You can read the solutions to all questions given in your Class 6 Mathematics textbook online or you can easily download them in pdf. The answers to each question in Chapter 12 Ratio and Proportion of Mathematics Class 6 has been designed based on the latest syllabus released for the current year. We have also provided detailed explanations for all difficult topics in Chapter 12 Ratio and Proportion Class 6 chapter of Mathematics so that it can be easier for students to understand all answers. These solutions of Chapter 12 Ratio and Proportion NCERT Questions given in your textbook for Class 6 Mathematics have been designed to help students understand the difficult topics of Mathematics in an easy manner. These will also help to build a strong foundation in the Mathematics. There is a combination of theoretical and practical questions relating to all chapters in Mathematics to check the overall learning of the students of Class 6.

 

Where can I download latest NCERT Solutions for Class 6 Mathematics Chapter 12 Ratio and Proportion

You can download the NCERT Solutions for Class 6 Mathematics Chapter 12 Ratio and Proportion for latest session from StudiesToday.com

Are the Class 6 Mathematics Chapter 12 Ratio and Proportion NCERT Solutions available for the latest session

Yes, the NCERT Solutions issued for Class 6 Mathematics Chapter 12 Ratio and Proportion have been made available here for latest academic session

How can I improve my scores by reading NCERT Solutions in Class 6 Mathematics Chapter 12 Ratio and Proportion

Regular revision of NCERT Solutions given on studiestoday for Class 6 subject Mathematics Chapter 12 Ratio and Proportion can help you to score better marks in exams

Are there any websites that offer free NCERT solutions for Chapter 12 Ratio and Proportion Class 6 Mathematics

Yes, studiestoday.com provides all latest NCERT Chapter 12 Ratio and Proportion Class 6 Mathematics solutions based on the latest books for the current academic session

Are NCERT solutions for Class 6 Chapter 12 Ratio and Proportion Mathematics available in multiple languages

Yes, NCERT solutions for Class 6 Chapter 12 Ratio and Proportion Mathematics are available in multiple languages, including English, Hindi

What questions are covered in NCERT Solutions for Chapter 12 Ratio and Proportion?

All questions given in the end of the chapter Chapter 12 Ratio and Proportion have been answered by our teachers