NCERT Class 11 Biology Respiration in Plants Important Notes

Read and download free pdf of NCERT Class 11 Biology Respiration in Plants Important Notes. Students and teachers of Class 11 Biology can get free advanced study material, revision notes, sure shot questions and answers for Class 11 Biology prepared as per the latest syllabus and examination guidelines in your school. Class 11 students should download this study material which will give them more knowledge for all chapters in Biology and all important topics which are scoring and can get you more marks. Students should also download free pdf of Chapter wise Notes for Class 11 Biology prepared by school teachers as per the latest NCERT, CBSE, KVS books and syllabus issued this year and also download free worksheets and question papers available here to get higher scores in school exams and tests, also click here for more Study Material for Class 11 Biology

Study Material for Class 11 Biology Chapter 14 Respiration in Plants

Class 11 Biology students should refer to the following Pdf for Chapter 14 Respiration in Plants in Class 11. These notes and test paper with questions and answers for Class 11 Biology will be very useful for exams and help you to score good marks

Class 11 Biology Chapter 14 Respiration in Plants

Exchange of Gases in Plants:

Plants do not have great demands for gaseous exchange. The rate of respiration in plants is much lower than in animals. Large amounts of gases are exchanged only during photosynthesis, and leaves are well equipped for that. The distance travelled by gases in plants is not much and hence diffusion is enough to meet the need. Hence, plants do not have specialized organs for exchange of gases. Lenticels and stomata serve as the openings through which exchange of gases takes place in plants.

Respiration:

The complete combustion of glucose yields energy during respiration. Most of the energy produced during respiration is given out as heat. CO2 and H2O are the end products of respiration.

NCERT Class 11 Biology Respiration in Plants Important Notes5

The energy produced during respiration is also used for synthesizing other molecules. To ensure the adequate supply of energy for synthesis of different molecules; plants catabolise the glucose molecule in such a way that not all the liberated energy goes out as heat. Glucose is oxidized in several small steps. Some steps are large enough to ensure that the released energy can be coupled with ATP synthesis.

Steps of Respiration:

Respiration happens in two main steps in all living beings, viz. glycolysis and processing of pyruvate. Glycolysis involves breaking down glucose into pyruvate. This is common in all living beings. Further processing of pyruvate depends on the aerobic or anaerobic nature of an organism. In anaerobic respiration, pyruvate is further processed to produce either lactic acid or ethyl alcohol. There is incomplete oxidation of glucose in anaerobic respiration. In aerobic respiration, pyruvate is further processed to produce carbon dioxide and water; alongwith energy. There is complete oxidation of glucose in case of aerobic respiration.

GLYCOLYSIS

The scheme of glycolysis was given by Gustav Embden, Otto Meyerhof and J Parnas. Due to this, it is also called the EMP Pathway. Glycolysis takes place in the cytoplasm.

Glucose undergoes partial oxidation in glycolysis; to form two molecules of pyruvic acid. Four molecules of pyruvic acid are formed after partial oxidation of one molecule of glucose during this process.

• First of all, glucose and fructose undergo phosphorylation to produce glucose-6-phosphate. The enzyme hexokinase facilitates this process. Two molecules of ATP are utilised during phosphorylation of one molecule of glucose. Two molecules of fructose-6-phosphate are formed at the end of this step.

• Fructose-6-phosphate is then converted into PGAL (Phosphoglyceraldehyde). Each molecule of PGAL then undergoes various steps to finally produce Pyruvic Acid. Four molecules of ATP are produced during this conversion. Since two molecules of ATP were utilised during phosphorylation of glucose, hence net production of ATP at the end of glycolysis is two for each molecule of glucose.

NCERT Class 11 Biology Respiration in Plants Important Notes4

Fate of Pyruvic Acid: Pyurvic acid further undergoes subsequent processes which are different for anaerobic and aerobic conditions.

FERMENTATION:-

Endogenous electron acceptors are used for oxidation of organic compounds during fermentation. This is in contrast to aerobic respiration in which exogenous electron acceptors are used. Anaerobic does not necessarily mean absence of oxygen, rather it can also take place even in the presence of oxygen.

Sugar is the most common substrate of fermentation. Ethanol, lactic acid and hydrogen are the common fermentation products. However, other compounds can also be produced by fermentation, e.g. butyric acid and acetone. Apart from taking place in yeast and many other anaerobes, fermentation also takes place in mammalian muscles. In our muscle cells, fermentation takes place during intense exercise; to meet out the excess demand of oxygen.

AEROBIC RESPIRATION

Aerobic respiration takes place within the mitochondria. Following are the main steps in aerobic respiration:

• Stepwise removal of all the hydrogen atoms leads to complete oxidation of pyruvate. This leaves three molecules of CO2. This step takes place in the matrix of mitochondria.

• Electrons removed from hydrogen atoms are passed on to molecular O2. This happens with simultaneous synthesis of ATP. This step takes place in the inner membrane of mitochondria.

• Pyruvate enters the mitochondira matrix and undergoes oxidative decarboxylation. This involves a complex set of reactions which are catalysed by pyruvic dehydrogenase.

 NCERT Class 11 Biology Respiration in Plants Important Notes3 

During this process, two molecules of NADH are produced from the metabolism of two molecules of pyruvic acid (produced from one glucose molecule during glycolysis).

After this, acetyl CoA enters a cyclic pathway. This pathway is called tricarboxylic acid cycle or Citric Acid Cycle or Krebs’ Cycle. This was first explained by Hans Krebs.

NCERT Class 11 Biology Respiration in Plants Important Notes2

Kreb's Cycle

• The TCA cycle starts with the condensation of acetyl group with oxaloacetic acid (OAA) and water to yield citric acid. This reaction is catalysed by the enzyme citrate synthase and a molecule of CoA is released. Citrate is then isomerised to isocitrate.

• It is followed by two successive steps of decarboxylation. These steps of decarboxylation lead to the formation of α-ketoglutaric acid and then succinyl-CoA.

• After that, succinyl-CoA is oxidised to OAA allowing the cycle to continue. During this step, a molecule of GTP is synthesised. This is a substrate level phosphorylation.

• In a coupled reaction GTP is converted to GDP with the simultaneous synthesis of ATP from ADP. Moreover, there are three points in the cycle where NAD+ is reduced to NADH+H+ and one point where FAD+ is reduced to FADH2.

• The continued oxidation of acetic acid via the TCA cycle requires the continued replenishment of oxaloacetic acid. It also requires regeneration of NAD+ and FAD+from NADH and FADH2 respectively.

 Electron Transport System (ETS) and Oxidative Phosphorylation

The next steps are to release and utilize the energy stored in NADH+H+ and FADH2. This is accomplished when they are oxidised through the electron transport system and the electrons are passed on to O2 resulting in the formation of H2O.

The metabolic pathway through which the electron passes from one carrier to another, is called the electron transport system (ETS). This pathway is present in the inner mitochondrial membrane. 

 

• Electrons from NADH (produced in the mitochondria matrix) are oxidized by an NADH dehydrogenase (Complex I). After that, electrons are transferred to ubiquinone which is located within the inner membrane.

• Ubiquinone also receives reducing equivalents via FADH2 (Complex II). FADH2 is generated during oxidation of succinate in the citric acid cycle.

• The reduced ubiquinone (ubiquinol) is then oxidised with the transfer of electrons to cytochrome c via cytochrome bc1 complex (complex III).

• Cytochrome c is a small protein attached to the outer surface of the inner membrane and acts as a

• mobile carrier for transfer of electrons between complex III and IV.

• Complex IV refers to cytochrome c oxidase complex containing cytochromes a and a3, and two copper centres.

• When the electrons pass from one carrier to another via complex I to IV in the electron transport chain, they are coupled to ATP synthase (complex V). This coupling is necessary for the production of ATP from ADP and inorganic phosphate. The nature of the electron donor decides the number of ATP molecules synthesized. 

Oxidation of one molecule of NADH gives rise to 3 molecules of ATP, while oxidation of one molecule of FADH2 produces 2 molecules of ATP.

Although the aerobic process of respiration takes place only in the presence of oxygen, the role of oxygen is limited to the terminal stage of the process. But since oxygen drives the whole process by removing hydrogen from the system, the presence of oxygen is vital.

Yet, the presence of oxygen is vital, since it drives the whole process by removing hydrogen from the system. Oxygen acts as the final hydrogen acceptor.

During photophosphorylation, light energy is utilised for the production of proton gradient. But in respiration, the energy of oxidation-reduction is utilised for the production of proton gradient. Hence, this process is called oxidative phosphorylation.

The energy released during the electron transport system is utilised in synthesizing ATP with the help of ATP synthase (Complex V). This complex is composed of two major components, viz. F1 and F0. The F1 headpiece is a peripheral membrane protein complex. It contains the site for synthesis of ATP. F0 is an integral membrane protein complex which forms the channel through which protons cross the inner membrane. The passage of protons through the channel is accompanied by catalytic site of the F1 component for the production of ATP. For each ATP produced, 2H+passed through F0 down the electrochemical proton gradient.

The Respiratory Balance Sheet

The respiratory balance sheet gives theoretical value about net gain of ATP for every glucose molecule oxidized. The calculations for respiratory balance sheet are based on some assumptions which are as follows:

• There is a sequential and orderly pathway in which one substrate makes the next substrate. Glycolysis, TCA cycle and ETS pathway follow one after another.  

• NADH is synthesized in glycolysis and is transferred into the mitochondria. The NADH undergoes oxidative phosphorylation within the mitochondria.

• None of the intermediates in the pathway are utilised to synthesise any other compound.

• Glucose is the only substrate undergoing respiration. No other alternative substrates are entering in the pathway at any stage. 

But these assumptions may not be valid in a living system because all pathways work simultaneously. There can be a net gain of 36 ATP molecules during aerobic respiration of one molecule of glucose.

Amphibolic Pathway

Glucose is the most favoured substrate for respiration. Other substrates can also be respired but they do not enter the respiratory pathway at the first step. Respiratory process involves both catabolism and anabolism; because breakdown and synthesis of substrates are involved. Hence, respiratory pathway is considered as an amphibolic pathway rather than a catabolic one.

Respiratory Quotient

The ratio of the volume of CO2 evolved to the volume of O2 consumed during respiration is called the respiratory quotient (RQ) or respiratory ratio. The RQ for carbohydrates is 1. The RQ for fat and protein is less than 1.

NCERT Class 11 Biology Respiration in Plants Important Notes1

NCERT Solution for Class 11 Biology Respiration in Plants

 

Question – 1- Differentiate between

(a) Respiration and Combustion

Answer: Respiration is a type of combustion. But while combustion is an uncontrolled process, respiration is controlled with high precision. Respiration takes place inside the cells of living beings, while combustion can take place anywhere.

(b) Glycolysis and Krebs’ cycle

Answer: Breakdown of glucose into pyruvic acid is called glycolysis, while further processing of pyruvic acid through aerobic route is called Krebs’ cycle. Glycolysis happens in all living beings, while Krebs’ cycle happens in aerobes only. Glycolysis happens in cytoplasm, while Krebs’ cycle happens in mitochondria.

(c) Aerobic respiration and Fermentation 

Answer: Anaerobic respiration is also called fermentation. Ethanol and lactic acid are the major products of fermentation.

Question – 2 - What are respiratory substrates? Name the most common respiratory substrate.

Answer: A compound which is oxidized during respiration is called respiratory substrate. Glucose is the most common respiratory substrate.

Question – 3 - Give the schematic representation of glycolysis?

Answer: Refer to the chapter notes

Question – 4 - What are the main steps in aerobic respiration? Where does it take place?

Answer: Aerobic respiration takes place within the mitochondria. Following are the main steps in aerobic respiration:

• Stepwise removal of all the hydrogen atoms leads to complete oxidation of pyruvate. This leaves three molecules of CO2. This step takes place in the matrix of mitochondria.

• Electrons removed from hydrogen atoms are passed on to molecular O2. This happens with simultaneous synthesis of ATP. This step takes place in the inner membrane of mitochondria. 

Pyruvate enters the mitochondira matrix and undergoes oxidative decarboxylation. This involves a complex set of reactions which are catalysed by pyruvic dehydrogenase.

Question – 5- Give the schematic representation of an overall view of Krebs’ cycle. Answer: Refer to chapter notes

Question – 6 - Explain ETS.

Answer: The metabolic pathway through which the electron passes from one carrier to another, is called the electron transport system (ETS). This pathway is present in the inner mitochondrial membrane.

• Electrons from NADH (produced in the mitochondria matrix) are oxidized by an NADH dehydrogenase (Complex I). After that, electrons are transferred to ubiquinone which is located within the inner membrane.

• Ubiquinone also receives reducing equivalents via FADH2 (Complex II). FADH2 is generated during oxidation of succinate in the citric acid cycle.

• The reduced ubiquinone (ubiquinol) is then oxidised with the transfer of electrons to cytochrome c via cytochrome bc1 complex (complex III).

• Cytochrome c is a small protein attached to the outer surface of the inner membrane and acts as a mobile carrier for transfer of electrons between complex III and IV.

• Complex IV refers to cytochrome c oxidase complex containing cytochromes a and a3, and two copper centres.

• When the electrons pass from one carrier to another via complex I to IV in the electron transport chain, they are coupled to ATP synthase (complex V). This coupling is necessary for the production of ATP from ADP and inorganic phosphate. The nature of the electron donor decides the number of ATP molecules synthesized. 

Question – 7 - Distinguish between the following: 

(a) Aerobic respiration and Anaerobic respiration

Answer: Aerobic respiration needs oxygen, while anaerobic respiration does not need oxygen. There is complete oxidation of glucose in aerobic respiration, while it is incomplete in anaerobic respiration. Lactic acid and ethanol are the main products of anaerobic respiration, while carbon dioxide is the end product of aerobic respiration.

(b) Glycolysis and Fermentation

Answer: Breakdown of glucose into pyruvic acid is called glycolysis, while further processing of pyruvic acid in anaerobes is called fermentation.

(c) Glycolysis and Citric acid Cycle

Answer: Breakdown of glucose into pyruvic acid is called glycolysis, while further processing of pyruvic acid through aerobic route is called Citric acid cycle. Glycolysis happens in all living beings, while Citric acid cycle happens in aerobes only. Glycolysis happens in cytoplasm, while Citric acid cycle happens in mitochondria.

Question – 8 - What are the assumptions made during the calculation of net gain of ATP?

Answer: The calculations for respiratory balance sheet are based on some assumptions which are as follows:

• There is a sequential and orderly pathway in which one substrate makes the next substrate. Glycolysis, TCA cycle and ETS pathway follow one after another.

• NADH is synthesized in glycolysis and is transferred into the mitochondria. The NADH undergoes oxidative phosphorylation within the mitochondria.

• None of the intermediates in the pathway are utilised to synthesise any other compound.

• Glucose is the only substrate undergoing respiration. No other alternative substrates are entering in the pathway at any stage. 

Question – 9 - Discuss “The respiratory pathway is an amphibolic pathway.”

Answer: Respiratory process involves both catabolism and anabolism; because breakdown and synthesis of substrates are involved. Hence, respiratory pathway is considered as an amphibolic pathway rather than a catabolic one.

Question – 10 - Define RQ. What is its value for fats?

Answer: The ratio of the volume of CO2 evolved to the volume of O2 consumed during respiration is called the respiratory quotient (RQ) or respiratory ratio. The RQ for carbohydrates is 1. The RQ for fat and protein is less than 1. 

NCERT Class 11 Biology Respiration in Plants Important Notes

Question – 11 - What is oxidative phosphorylation?

Answer: During photophosphorylation, light energy is utilised for the production of proton gradient. But in respiration, the energy of oxidation-reduction is utilised for the production of proton gradient. Hence, this process is called oxidative phosphorylation.

Question – 12 - What is the significance of step-wise release of energy in respiration? 

Answer: The energy produced during respiration is also used for synthesizing other molecules. To ensure the adequate supply of energy for synthesis of different molecules; plants catabolise the glucose molecule in such a way that not all the liberated energy goes out as heat. Glucose is oxidized in several small steps. Some steps are large enough to ensure that the released energy can be coupled with ATP synthesis.

CBSE Class 11 Biology Chapter 14 Respiration in Plants Study Material

We hope students liked the above Study Material for Chapter 14 Respiration in Plants designed as per the latest syllabus for Class 11 Biology released by CBSE. Students of Class 11 should download the Study Material in Pdf format, read the notes and related questions and solutions given in above Class 11 Biology Study Material on daily basis. All latest Study Material have been developed for Biology by referring to the most important and regularly asked topics which the students should learn and practice to get better score in school tests and examinations. Expert teachers of studiestoday have referred to NCERT book for Class 11 Biology to develop the Biology Class 11 Study Material. After solving the questions given in the Study Material which have been developed as per latest course books also refer to the NCERT solutions for Class 11 Biology designed by our teachers. Also download Class 11 Biology Sample Papers given on studiestoday. After solving these you should also refer to Class 11 Biology MCQ Test for the same chapter.

 

How to download CBSE Class 11 Biology Chapter 14 Respiration in Plants study material

You can download free study material for Class 11 Biology Chapter 14 Respiration in Plants for latest academic session from StudiesToday.com

Is the study material for Chapter 14 Respiration in Plants Class 11 Biology for the latest CBSE academic session

Yes, the study material given here for Class 11 Biology Chapter 14 Respiration in Plants is for current CBSE session

Is there any charge for Class 11 Biology Chapter 14 Respiration in Plants concepts and study material

All study maetrial for CBSE Class 11 Biology Chapter 14 Respiration in Plants is free