Read and download free pdf of NCERT Class 11 Biology Cell The Unit of Life Important Notes. Students and teachers of Class 11 Biology can get free advanced study material, revision notes, sure shot questions and answers for Class 11 Biology prepared as per the latest syllabus and examination guidelines in your school. Class 11 students should download this study material which will give them more knowledge for all chapters in Biology and all important topics which are scoring and can get you more marks. Students should also download free pdf of Chapter wise Notes for Class 11 Biology prepared by school teachers as per the latest NCERT, CBSE, KVS books and syllabus issued this year and also download free worksheets and question papers available here to get higher scores in school exams and tests, also click here for more Study Material for Class 11 Biology
Study Material for Class 11 Biology Chapter 8 Cell The Unit of Life
Class 11 Biology students should refer to the following Pdf for Chapter 8 Cell The Unit of Life in Class 11. These notes and test paper with questions and answers for Class 11 Biology will be very useful for exams and help you to score good marks
Class 11 Biology Chapter 8 Cell The Unit of Life
Unicellular organisms are capable of independent existence and they can perform the essential functions of life. Anything less than a complete cell does not ensure independent living. Hence, cell is called the fundamental structural and functional unit of life.
CELL THEORY
The cell theory was first proposed by Matthias Schleiden (1838) and Theodore Schwann (1839). Rudolf Virchow (1855) later added the concept of formation of cells; to this theory. The cell theory is as follows:
a. All living organisms are composed of cells and products of cells.
b. All cells arise from pre-existing cells.
AN OVERVIEW OF CELL
A typical animal cell is bound by a plasma membrane, while cell wall is also present in a typical plant cell. A dense membrane bound structure is present inside a typical cell. This structure is called nucleus. The nucleus contains the chromosomes. Chromosomes contain the genetic material DNA.
Prokaryotic Cell: Membrane bound nucleus is absent in prokaryotic cell. Moreover, membrane bound organelles are also absent in prokaryotic cells. Bacteria are examples of prokaryotic cell.
Eukaryotic Cell: Membrane bound nucleus is present in eukaryotic cell. Moreover, membrane bound organelles are present in eukaryotic cells. Cells of protista, fungi, plantae and animalia are eukaryotic cells.
Structure of Prokaryotic Cell
Prokaryotic cells are usually smaller than eukaryotic cells. They multiply more rapidly than eukaryotic cells. The four basic shapes of bacteria are bacillus (rod-like), coccus (spherical), vibrio (comma shaped) and spirillum (spiral).
Fig: Prokaryotic Cell
Cell wall is present in all prokaryotic cells. The genetic material is naked, i.e. not enveloped by a nuclear membrane. Genomic DNA (single chromosome/circular DNA) mark the nuclear material. Additionally there may be small circular DNA outside the genomic DNA in some bacteria. These smaller DNA are called plasmids. The plasmid DNA confers some unique phenotypic characters to such bacteria. Resistance to antibiotics is one of those characters.
Cell Envelope: The cell envelope is chemically complex in most of the prokaryotes. The cell envelope is composed of three layers which are tightly bound. The outermost layer is glycocalyx, the middle layer is the cell wall and the innermost layer is the plasma membrane.
Gram Positive and Gram Negative Bacteria:
On the basis of differences in the cell envelopes and their response to Gram stain; bacteria are divided into two categories, viz. gram positive and gram negative. The bacteria which take up the Gram stain are called gram positive bacteria. The bacteria which do not take up the Gram stain are called gram negative bacteria.
Different bacteria have different types of glycocalyx; in terms of composition and thickness. It could be a loose sheath or could be thick and tough. The cell wall prevents the bacterium from bursting or collapsing. Plasma membrane in prokaryotes is similar as in eukaryotes.
Mesosomes:
A special membranous structure is formed by the extensions of plasma membrane into the cell. This is called the mesosome. These extensions are in the form of vesicles, tubules and lamellae. The mesosomes help in cell wall formation, DNA replication and distribution to daughter cells. They also help in respiration, secretion process, to increase the surface area of the plasma membrane and enzymatic content.
In some prokaryotes, there are other membranous extensions into the cytoplasm. These are called chromatophores and contain pigments, e.g. in cyanobacteria.
Flagella: Bacterial cells can be motile or non-motile. Thin filamentous extensions from cell wall are present in motile bacteria. These extensions are called flagella. The bacterial flagellum is composed of three parts; filament, hook and basal body.
Pili and fimbriae are also present on the surface of bacteria. Pili are elongated tubular structures made of special protein. Fimbriae are small bristle like fibres sprouting out of the cell. In some bacteria, they help attach the bacteria to rocks in streams and also to the host tissues.
Ribosomes: Ribosomes are associated with the plasma membrane in prokaryotes. They are about 15 nm by 20 nm in size. They are made of two subunits; 50S and 30S. These two subunits together form 70S prokaryotic ribosomes. Ribosomes are the site of protein synthesis.
Inclusion bodies: Reserve materials in prokaryotic cells are stored in the cytoplasm in the form of inclusion bodies. They lie free in cytoplasm, e.g. phosphate granules, cyanophycean granules and glycogen granules.
EUKARYOTIC CELLS
Following cell organelles are present in eukaryotic cells:
Cell Membrane
The cell membrane is composed of lipids which are arranged in a bilayer. The polar heads of lipids are towards the outer side and the hydrophobic ends are towards the inner side. This ensures protection of the non-polar tail of saturated hydrocarbons from the aqueous environment. Additionally, proteins and carbohydrates are also present in plasma membrane. The ratio of protein and lipids varies considerable in different types of cells. The peripheral proteins lie on the surface of the membrane, while the integral proteins lie partially of completely buried in the membrane.
Fig: Plasma Membrane
Image Ref: Wikicommons
Fluid Mosaic Model: This model was proposed by Singer and Nicolson (1972) and is the most widely accepted model of plasma membrane. According to this model, lipids are present as quasi-fluid. Lateral movement of proteins within the bilayer is possible because of the quasi-fluid nature of the lipid bilayer. The fluid nature of the membrane is also important from many aspects; like cell growth, formation of intercellular junctions, secretion, endocytosis, cell division, etc.
Functions of Plasma Membrane: Transport of molecules across it is one of the most important functions of plasma membrane. Plasma membrane is selectively permeable. Many molecules can move across the membrane without any requirement of energy. The movement without the expense of energy is called passive transport. Passive transport takes place through diffusion and osmosis. Polar molecules need a carrier protein of the membrane to be transported across against concentration gradient. This type of transport is dependent on energy and is called active transport.
Cell Wall
The cell wall is a non-living rigid structure and forms an outer covering for the plasma membrane of fungi and plants. The cell wall in algae is made up of cellulose, galactans, mannans and minerals; like calcium carbonate. The cell wall of plants is made up of cellulose, hemicelluloses, pectins and proteins. The cell wall of a young plant cell is called the primary wall and is capable of growth. When the cell matures, this capability diminishes and a secondary wall is formed on the inner side of the cell.
The middle lamella is a layer mainly composed of calcium pectate. This holds or glues the different neighbouring cells together. The cell wall and middle lamellae may be traversed by plasmodesmata. Plasmodesmata connect the cytoplasm of neighbouring cells.
Endomembrane System
The endomembrane system is composed of endoplasmic reticulum, golgi complex, lysosomes and vacuoles. Functions of these cell organelles are coordinated with each other and hence they form the endomembrane system. Mitochondria, chloroplast and peroxisomes are not a part of the endomembrane system.
The Endoplasmic Reticulum (ER)
The Endoplasmic Reticulum is a network of tiny tubular structures which are scattered in the cytoplasm. The ER divides the intracellular space into two distinct compartments, viz. luminal and extra-luminal. The compartment inside the ER is called luminal compartment, while the compartment in the cytoplasm is called extra-luminal compartment.
Smooth ER: Ribosomes are absent on the surface of smooth ER. Smooth ER are the major sites of lipid synthesis.
Rough ER: Ribosomes are present on the surface of rough ER. Rough ER is quite common in those cells which are actively involved in protein synthesis. They are extensive and continuous with the outer membrane of the nucleus.
Golgi apparatus
Camillo Golgi (1898) was the first to observe densely stained reticular structures near the nucleus. These structures were later named after him. The Golgi Complex consists of many flat, disc-shaped sacs or cisternae. The cisternae are 0.5μm to 1.0μm in diameter. The cisternae are stacked parallel to each other and are concentrically arranged near the nucleus. The convex face of cisternae is called cis and it is the forming face. The concave face of cisternae is called trans and is the maturing face. The cis and trans faces are interconnected.
Functions of Golgi Complex: Packaging of materials is the main function of Golgi Complex. The materials are then delivered to the intracellular targets or secreted outside the cell. The materials come from the ER; in the form of vesicles; and fuse with the cis face. Then they move towards the trans face.
Lysosomes
The membrane bound vesicles formed by the process of packaging in the Golgi apparatus are called lysosomes. Lysosomes usually contain various hydrolytic enzymes. These enzymes are capable of digesting carbohydrates, proteins, lipids and nucleic acids.
Vacuoles
Membrane bound space found in the cytoplasm is called vacuole. A vacuole contains water, sap, excretory product and other useless materials. The vacuole is bound by a single membrane; called tonoplast. The vacuole can occupy up to 90% of the volume in a plant cell. In plant cells, the tonoplast facilitates the transport of a number of ions and other materials against concentration gradient into the vacuole. Hence, their concentration is significantly higher in the vacuole than in the cytoplasm.
Mitochondria
Mitochondrion is sausage-shaped or cylindrical structure. The diameter of mitochondria is 0.2-1.0μm (average 0.5μm) and length is 1.0-4.1μm. A mitochondrion is bound by two membranes. The two membranes divide the lumen of mitochondria into outer and inner compartments. The inner compartment is called the matrix. The inner membrane forms numerous finger-like infoldings; called cristae. The cristae increase the surface area.
Functions of Mitochondria: Aerobic respiration takes place in mitochondria. Energy is produced in the form of ATP and stored in the mitochondria. The matrix of mitochondria also has single circular DNA molecule, a few RNA molecules, ribosomes and the components needed for the synthesis of proteins. Mitochondria can replicate itself by fission.
Plastids
Plastids are found in all plant cells and in euglenoides. Plastids bear some specific pigments and hence impart characteristic colours. Based on the type of pigments, plastids can be classified into chloroplasts, chromoplasts and leucoplasts.
a. Chloroplast: They contain chlorophyll and carotenoid pigments. These pigments are responsible for trapping light energy which is required for photosynthesis.
b. Chromoplast: They contain fat soluble carotenoid pigments; like carotene, xanthophylls and others. Different plant parts get bright colours; like yellow, orange or red; because of the pigments in chromoplast.
c. Leucoplast: These are colourless plastids. They store various nutrients. The leucoplast which stores carbohydrates is called amyloplast. The leucoplast which stores oil and fats is called elaioplast. The leucoplast which stores proteins is called aleuroplast.
Structure of Chloroplast
Chloroplasts are lens-shaped, oval, spherical, discoid or even ribbon-like. Their number can vary from 1 per cell (as in Chlamydomonas) to 20 – 40 (as in the mesophyll of leaves).
Chloroplast is bound by two membranes. The inner membrane of chloroplast is less permeable. The space within the inner membrane of chloroplast is called the stroma. A number of organized flattened membranous sacs are present in the stroma. These flattened sacs are called thylakoids. The thylakoids are arranged in stacks called grana. There are flat membranous tubules connecting the thylakoids of the different grana. The membrane of the thylakoids encloses a space called a lumen.
The stroma contains enzymes required for the synthesis of carbohydrates and proteins. The stroma of chloroplast also contains double stranded DNA molecules and ribosomes. The ribosomes of the chloroplasts are smaller (70S) than the cytoplasmic ribosomes (80S).
Ribosomes
Ribosomes were first observed under electron microscope by George Palade (1953). Ribosomes are composed of RNA and proteins. The eukoryotic ribosomes are 80S, while the prokaryotic ribosomes are 70S. In this case, ‘S’ stands for sedimentation coefficient or Svedberg’s Unit. It is an indirect measure of density and size of ribosome. Both 70S and 80S ribosomes are composed of two subunits.
Cytoskeleton
The cytoskeleton is composed of an elaborate network of filamentous proteinaceous structures in cytoplasm. Cytoskeleton is involved in many functions; like mechanical support, motility, maintenance of the shape, etc.
Cilia and Flagella
Cilia and flagella are hair-like outgrowths of the cell membrane. Cilia are smaller than flagella. Cilia work like oars and facilitate movement of either the cell or the surrounding fluid. Flagella are responsible for cell movement. Flagella in prokaryotes are structurally different from those in eukaryotes.
A flagellum or a cilium is covered with plasma membrane. Their core is called the axoneme. The axoneme has a number of microtubules running parallel to the long axis. There are usually nine pairs of radially arranged peripheral microtubules and a pair of centrally located microtubules. Such an arrangement of microtubules is called the 9 + 2 array. The central tubules are connected by bridges and are also enclosed by a central sheath. The central sheath is connected to one of the tubules of each peripheral doublets by a radial spoke. Thus, there are nine radial spokes. The peripheral doublets are also interconnected by linkers. Cilium and flagellum emerge from basal bodies; which are centriole-like structures.
Centrosome and Centrioles
Centrosome usually contains two cylindrical structures which are called centrioles. They are surrounded by amorphous pericentriolar materials. Both the centrioles in a centrosome lie perpendicular to each other. They are made up of nine evenly spaced peripheral fibrins of tubulin protein. Each peripheral fibril is a triplet. Each is linked to the adjacent triplets. The central part of the proximal region of the centriole is also made up of protein. The central part is called the hub. The hub is connected with tubules of the peripheral triplets by radial spokes. The radial spokes are made up of protein. Centrioles form the basal bodies of cilia and flagella and spindle fibres. The centrioles give rise to spindle apparatus during cell division in animal cells.
Nucleus
Nucleus was first described by Robert Brown in 1831. Nucleus is enclosed by a double-membrane nuclear envelope. The space between the two membranes is called the perinuclear space. The perinuclear space forms a barrier between the nucleic materials and cytoplasmic materials. The outer membrane is usually continuous with the endoplasmic reticulum. Ribosomes are present on the outer membrane of nuclear envelope.
The nuclear membrane is interrupted by minute pores at various places. These pores provide passage to RNA and protein molecules. Usually, there is only one nucleus in a cell, but some variations can also be observed. Some mature cells even lack nucleus.
The fluid inside the nucleus is called nucleoplasm or nuclear matrix. The nucleoplasm contains nucleolus and chromatin. The nucleoli are spherical structures. Nucleolus is not a membrane bound structure. Synthesis of ribosomal RNA takes place in the nucleolus.
Nucleus also contains chromatin fibres; which are distinct during some stages of cell division. The chromatin contains DNA and some basic proteins; called histones; some non-histones and also RNA.
Chromosome: A chromosome has a primary constriction called centromere. Disc-shaped structures; called kinetochores; are present on the sides of the centromere. On the basis of position of the centromere, chromosomes can of four types, viz. metacentric, sub-metacentric, acrocentric and telocentric.
When the centromere divides the chromosomes into two identical arms, it is called metacentric chromosome. When the centromere is slightly away from the middle, it is called sub-metacentric chromosome. When the centromere divides the chromosome into a smaller and another much larger arm, it is called acrocentric chromosome. When the centromere is at the tail, it is called telocentric chromosome.
Microbodies
Many membrane bound minute vesicles are present in both plant and animal cells. They contain various enzymes and are called microbodies.
NCERT Solution for Class 11 Biology Cell The Unit of Life
Question – 1 - Which of the following is not correct?
a. Robert Brown discovered the cell.
b. Schleiden and Schwann formulated the cell theory.
c. Virchow explained that cells are formed from pre-existing cells.
d. A unicellular organism carries out its life activities within a single cell.
Answer: (a) Robert Brown discovered the cell.
Question – 2 - New cells generate from
a. Bacterial fermentation
b. Regeneration of old cells
c. Pre-existing cells
d. Abiotic materials
Answer: (c) Pre-existing cells
Question – 3 - Match the following
Question – 4 - Which of the following is correct:
a. Cells of all living organisms have a nucleus.
b. Both animal and plant cells have a well defined cell wall.
c. In prokaryotes, there are no membrane bound organelles.
d. Cells are formed de novo from abiotic materials.
Answer: (c) In prokaryotes, there are no membrane bound organelles
Question – 5 - What is a mesosome in a prokaryotic cell? Mention the functions that it performs.
Answer: A special membranous structure is formed by the extensions of plasma membrane into the cell. This is called the mesosome. These extensions are in the form of vesicles, tubules and lamellae. The mesosomes help in cell wall formation, DNA replication and distribution to daughter cells. They also help in respiration, secretion process, to increase the surface area of the plasma membrane and enzymatic content.
Question – 6 - How do neutral solutes move across the plasma membrane? Can the polar molecules also move across it in the same way? If not, then how are these transported across the membrane?
Answer: Neutral solutes move across the plasma membrane through passive transport, i.e. by diffusion and osmosis. But polar molecules need a carrier protein of the membrane to be transported across against concentration gradient. This type of transport is dependent on energy and is called active transport.
Question – 7 - Name two cell-organelles that are double membrane bound. What are the characteristics of these two organelles? State their functions and draw labeled diagrams of both.
Answer: Mitochondria and chloroplast are two examples of double-membrane bound cell organelles. These two organelles have self-replicating capabilities. Mitochondria are the site of aerobic respiration. Chloroplasts are the site of photosynthesis.
Question – 8 - What are the characteristics of prokaryotic cells?
Answer: Membrane bound nucleus is absent in prokaryotic cell. Moreover, membrane bound organelles are also absent in prokaryotic cells. Bacteria are examples of prokaryotic cell.
Question – 9 - Multicellular organisms have division of labour. Explain.
Answer: In a unicellular organism, a single cell is responsible for all the life processes. This is called cellular level of organization. This can be seen in some simple multicellular organisms as well. But in most of the multicellular organism, there are different groups of cells to carry different functions. Thus, formation of tissues paves the way for division of labour in multicellular organisms.
Question – 10 - Cell is the basic unit of life. Discuss in brief.
Answer: Unicellular organisms are capable of independent existence and they can perform the essential functions of life. Anything less than a complete cell does not ensure independent living. Hence, cell is called the fundamental structural and functional unit of life.
Question – 11 - What are nuclear pores? State their function.
Answer: The nuclear membrane is interrupted by minute pores at various places. These are called nuclear pores. These pores provide passage to RNA and protein molecules.
Question – 12 - Both lysosomes and vacuoles are endomembrane structures, yet they differ in terms of their functions. Comment.
Answer: The functions of lysosomes and vacuoles are coordinated with the functions of other members of the endomembrane system. Hence, they are part of the endomembrane system. As they are different organelles, so their functions are also different. Lysosomes digest various substances, while vacuoles facilitate expulsion of waste products from the cell.
Question – 13 - Describe the structure of the following with the help of labelled diagrams: (i) Nucleus (ii) Centrosome
Answer: Nucleus: Nucleus is enclosed by a double-membrane nuclear envelope. The space between the two membranes is called the perinuclear space. The perinuclear space forms a barrier between the nucleic materials and cytoplasmic materials. The outer membrane is usually continuous with the endoplasmic reticulum. Ribosomes are present on the outer membrane of nuclear envelope.
Centrosome: Centrosome usually contains two cylindrical structures which are called centrioles. They are surrounded by amorphous pericentriolar materials.
Question – 14 - What is a centromere? How does the position of centromere form the basis of classification of chromosomes? Support your answer with a diagram showing the position of centromere on different types of chromosomes.
Answer: A chromosome has a primary constriction called centromere. On the basis of position of the centromere, chromosomes can of four types, viz. metacentric, sub-metacentric, acrocentric and telocentric.
When the centromere divides the chromosomes into two identical arms, it is called metacentric chromosome. When the centromere is slightly away from the middle, it is called sub-metacentric chromosome. When the centromere divides the chromosome into a smaller and another much larger arm, it is called acrocentric chromosome. When the centromere is at the tail, it is called telocentric chromosome.
Important Questions for NCERT Class 11 Biology Cell-The Unit of Life
Ques. Which one of the following has its own DNA?
(a) Mitochondria (b) Dictyosome
(c) Lysosome (d) Peroxisome
Answer: A
Ques. Which one of the following structures between two adjacent cells is an effective transport pathway?
(a) Plasmodesmata (b) Plastoquinones
(c) Endoplasmic reticulum
(d) Plasmalemma
Answer: A
Ques. An elaborate network of filamentous proteinaceous structures present in the cytoplasm which helps in the maintenance of cell shape is called
(a) thylakoid
(b) endoplasmic reticulum
(c) plasmalemma
(d) cytoskeleton.
Answer: D
Ques. Middle lamella is composed mainly of
(a) muramic acid (b) calcium pectate
(c) phosphoglycerides (d) hemicellulose.
Answer: B
Ques. Cytoskeleton is made up of
(a) callose deposits (b) cellulosic microfibrils
(c) proteinaceous filaments
(d) calcium carbonate granules.
Answer: C
Ques. Plasmodesmata are
(a) locomotory structures
(b) membranes connecting the nucleus with plasmalemma
(c) connections between adjacent cells
(d) lignified cemented layers between cells.
Answer: C
Ques. In germinating seeds, fatty acids are degraded exclusively in the
(a) peroxisomes (b) mitochondria
(c) proplastids (d) glyoxysomes.
Answer: D
Ques. Vacuole in a plant cell
(a) lacks membrane and contains air
(b) lacks membrane and contains water and excretory substances
(c) is membrane-bound and contains storage proteins and lipids
(d) is membrane-bound and contains water and excretory substances.
Answer: D
Ques. Keeping in view the ‘fluid mosaic model’ for the structure of cell membrane, which one of the following statement is correct with respect to the movements of lipids and proteins from one lipid monolayer to the other (described as flip-flop movement)?
(a) While proteins can flip-flop, lipids can not
(b) Neither lipids, nor proteins can flip-flop
(c) Both lipids and proteins can flip-flop
(d) While lipids can rarely flip-flop, proteins cannot.
Answer: D
Ques. Which one of the following is not a constituent of cell membrane?
(a) Glycolipids (b) Proline
(c) Phospholipids (d) Cholesterol
Answer: B
Ques. Select the wrong statement from the following.
(a) Both chloroplasts and mitochondria have an internal compartment, the thylakoid space bounded by the thylakoid membrane.
(b) Both chloroplasts and mitochondria contain DNA.
(c) The chloroplasts are generally much larger than mitochondria.
(d) Both chloroplasts and mitochondria contain an inner and an outer membrane.
Answer: A
Ques. Which of the following statements regarding mitochondrial membrane is not correct ?
(a) The outer membrane resembles a sieve.
(b) The outer membrane is permeable to all kinds of molecules.
(c) The enzymes of the electron transfer chain are embedded in the outer membrane.
(d) The inner membrane is highly convoluted forming a series of infoldings.
Answer: C
Ques. Which of the following statements regarding cilia is not correct ?
(a) Cilia contain an outer ring of nine doublet microtubules surrounding two singlet microtubules.
(b) The organised beating of cilia is controlled by fluxes of Ca2+ across the membrane.
(c) Cilia are hair-like cellular appendages.
(d) Microtubules of cilia are composed of tubulin.
Answer: B
Ques. Chlorophyll in chloroplasts is located in
(a) grana (b) pyrenoid
(c) stroma
(d) both grana and stroma.
Answer: A
Ques. According to widely accepted “fluid mosaic model” cell membranes are semi-fluid, where lipids and integral proteins can diffuse randomly. In recent years, this model has been modified in several respects. In this regard, which of the following statements is incorrect?
(a) Proteins in cell membranes can travel within the lipid bilayer.
(b) Proteins can also undergo flip-flop movements in the lipid bilayer.
(c) Proteins can remain confined within certain domains of the membrane.
(d) Many proteins remain completely embedded within the lipid bilayer.
Answer: B
Ques. Centromere is required for
(a) movement of chromosomes towards poles
(b) cytoplasmic cleavage
(c) crossing over (d) transcription.
Answer: A
Ques. The main organelle involved in modification and outing of newly synthesized proteins to their destinations is
(a) chloroplast (b) mitochondria
(c) lysosome
(d) endoplasmic reticulum.
Answer: D
Ques. The telomeres of eukaryotic chromosomes consist of short sequences of
(a) thymine rich repeats (b) cytosine rich repeats
(c) adenine rich repeats (d) guanine rich repeats.
Answer: D
Ques. In chloroplasts, chlorophyll is present in the
(a) outer membrane (b) inner membrane
(c) thylakoids (d) stroma.
Answer: C
Ques. Ribosomes are produced in
(a) nucleolus (b) cytoplasm
(c) mitochondria (d) Golgi body.
Answer: A
Ques. In fluid mosaic model of plasma membrane
(a) upper layer is non-polar and hydrophilic
(b) upper layer is polar and hydrophobic
(c) phospholipids form a bimolecular layer in middle part
(d) proteins form a middle layer.
Answer: C
Ques. Element necessary for the middle lamella is
(a) Ca (b) Zn
(c) K (d) Cu.
Answer: A
Ques. Microtubules are absent in
(a) mitochondria (b) flagella
(c) spindle fibres (d) centrioles.
Answer: A
Ques. Lysosome contains
(a) oxidative enzymes (b) hydrolytic enzymes
(c) reductive enzymes (d) anabolic enzymes.
Answer: B
Ques. Which of the following ribosomes are engaged in protein synthesis in animal cell?
(a) Ribosomes which occur on nuclear membrane and ER
(b) Ribosomes of only cytosol
(c) Ribosomes of only nucleolus and cytosol
(d) Ribosomes of only mitochondria and cytosol
Answer: A
Ques. Function of telomeres in nucleus is
(a) poleward movement
(b) to initiate the RNA synthesis
(c) to seal the ends of chromosome
(d) to recognise the homologous chromosome.
Answer: C
Ques. Which cell organelle is concerned with glycosylation of protein?
(a) Ribosome (b) Peroxisome
(c) Endoplasmic reticulum
(d) Mitochondria
Answer: C
Ques. Which of the following organelles has single membrane?
(a) Mitochondria (b) Spherosomes
(c) Nucleus (d) Cell wall
Answer: B
Ques. The proteins are synthesised at
(a) centrosomes (b) Golgi bodies
(c) ribosomes (d) mitochondria.
Answer: C
Ques. Lysosomes are rich in
(a) nucleic acids (b) hydrolytic enzymes
(c) carbohydrates (d) hormones.
Answer: B
Ques. The desmosomes are concerned with
(a) cell division (b) cell adherence
(c) cytolysis (d) cellular excretion.
Answer: B
NCERT Class 11 Biology The living World Important Notes |
NCERT Class 11 Biology Biological Classification Important Notes |
NCERT Class 11 Biology Plant Kingdom Important Notes |
NCERT Class 11 Biology Animal Kingdom Important Notes |
NCERT Class 11 Biology Morphology of Flowering Plants Important Notes |
NCERT Class 11 Biology Anatomy of Flowering Plants Important Notes |
NCERT Class 11 Biology Structural Organization In Animals Important Notes |
NCERT Class 11 Biology Cell The Unit of Life Important Notes |
NCERT Class 11 Biology Biomolecules Important Notes |
NCERT Class 11 Biology Cell Cycle and Cell Division Important Notes |
NCERT Class 11 Biology Transport in Plants Important Notes |
NCERT Class 11 Biology Mineral Nutrition Important Notes |
NCERT Class 11 Biology Photosynthesis in Higher Plants Important Notes |
NCERT Class 11 Biology Respiration in Plants Important Notes |
NCERT Class 11 Biology Plant Growth and Development Important Notes |
NCERT Class 11 Biology Digestion and Absorption Important Notes |
NCERT Class 11 Biology Breathing and Exchange of Gases Important Notes |
NCERT Class 11 Biology Body Fluids and Circulartion Important Notes |
NCERT Class 11 Biology Excretory Products and their Elimination Important Notes |
NCERT Class 11 Biology Locomotion and Movement Important Notes |
NCERT Class 11 Biology Nervous Control and Coordination Important Notes |
NCERT Class 11 Biology Chemical Coordination and Integration Important Notes |
CBSE Class 11 Biology Chapter 8 Cell The Unit of Life Study Material
We hope students liked the above Study Material for Chapter 8 Cell The Unit of Life designed as per the latest syllabus for Class 11 Biology released by CBSE. Students of Class 11 should download the Study Material in Pdf format, read the notes and related questions and solutions given in above Class 11 Biology Study Material on daily basis. All latest Study Material have been developed for Biology by referring to the most important and regularly asked topics which the students should learn and practice to get better score in school tests and examinations. Expert teachers of studiestoday have referred to NCERT book for Class 11 Biology to develop the Biology Class 11 Study Material. After solving the questions given in the Study Material which have been developed as per latest course books also refer to the NCERT solutions for Class 11 Biology designed by our teachers. Also download Class 11 Biology Sample Papers given on studiestoday. After solving these you should also refer to Class 11 Biology MCQ Test for the same chapter.
You can download free study material for Class 11 Biology Chapter 8 Cell The Unit of Life for latest academic session from StudiesToday.com
Yes, the study material given here for Class 11 Biology Chapter 8 Cell The Unit of Life is for current CBSE session
All study maetrial for CBSE Class 11 Biology Chapter 8 Cell The Unit of Life is free