NCERT Solutions Class 8 Mathematics Chapter 14 Factorisation

NCERT Solutions Class 8 Mathematics Chapter 14 Factorisation have been provided below and is also available in Pdf for free download. The NCERT solutions for Class 8 Mathematics have been prepared as per the latest syllabus, NCERT books and examination pattern suggested in Class 8 by CBSE, NCERT and KVS. Questions given in NCERT book for Class 8 Mathematics are an important part of exams for Class 8 Mathematics and if answered properly can help you to get higher marks. Refer to more Chapter-wise answers for NCERT Class 8 Mathematics and also download more latest study material for all subjects. Chapter 14 Factorisation is an important topic in Class 8, please refer to answers provided below to help you score better in exams

Chapter 14 Factorisation Class 8 Mathematics NCERT Solutions

Class 8 Mathematics students should refer to the following NCERT questions with answers for Chapter 14 Factorisation in Class 8. These NCERT Solutions with answers for Class 8 Mathematics will come in exams and help you to score good marks

Chapter 14 Factorisation NCERT Solutions Class 8 Mathematics

Exercise 14.1

Q.1) Find the common factors of the given terms.
(i) 12π‘₯, 36 (ii) 2𝑦, 22π‘₯𝑦 (iii) 14π‘π‘ž, 28𝑝2π‘ž2
(iv) 2π‘₯, 3π‘₯2, 4 (v) 6π‘Žπ‘π‘, 24π‘Žπ‘2, 12π‘Ž2𝑏 (vi) 16π‘₯3, βˆ’4π‘₯2, 32π‘₯
(vii) 10π‘π‘ž, 20π‘žπ‘Ÿ, 30π‘Ÿπ‘ (viii) 3π‘₯2𝑦3, 10π‘₯3𝑦2, 6π‘₯2𝑦2𝑧
Sol.1) (i) 12π‘₯ = 2 Γ— 2 Γ— 3 Γ— π‘₯
36 = 2 Γ— 2 Γ— 3 Γ— 3
Hence, the common factors are 2, 2 and 3 = 2 Γ— 2 Γ— 3 = 12

(ii) 2𝑦 = 2 Γ— 𝑦
22π‘₯𝑦 = 2 Γ— 11 Γ— π‘₯
Hence, the common factors are 2 and 𝑦 = 2 Γ— 𝑦 = 2𝑦

(iii) 14π‘π‘ž = 2 Γ— 7 Γ— 𝑝 Γ— π‘ž
28𝑝2π‘ž2 = 2 Γ— 2 Γ— 7 Γ— 𝑝 Γ— 𝑝 Γ— π‘ž Γ— π‘ž
Hence, the common factors are 2 Γ— 7 Γ— 𝑝 Γ— π‘ž = 14π‘π‘ž

(iv) 2π‘₯ = 2 Γ— π‘₯ Γ— 1
3π‘₯2 = 3 Γ— π‘₯ Γ— π‘₯ Γ— 1
4 = 2 Γ— 2 Γ— 1
Hence, the common factor is 1.

(v) 6π‘Žπ‘π‘ = 2 Γ— 3 Γ— π‘Ž Γ— 𝑏 Γ— 𝑐
24π‘Žπ‘2 = 2 Γ— 2 Γ— 2 Γ— 3 Γ— π‘Ž Γ— 𝑏 Γ— 𝑏
12π‘Ž2𝑏 = 2 Γ— 2 Γ— 3 Γ— π‘Ž Γ— π‘Ž Γ— 𝑏
Hence, the common factors are 2 Γ— 3 Γ— π‘Ž Γ— 𝑏 Γ— 𝑐 = 6π‘Žπ‘π‘

(vi) 16π‘₯3 = 2 Γ— 2 Γ— 2 Γ— 2 Γ— π‘₯ Γ— π‘₯ Γ— π‘₯
βˆ’4π‘₯2 = (βˆ’1) Γ— 2 Γ— 2 Γ— π‘₯ Γ— π‘₯
32π‘₯ = 2 Γ— 2 Γ— 2 Γ— 2 Γ— 2 Γ— π‘₯
Hence, the common factors are 2 Γ— 2 Γ— π‘₯ = 4π‘₯

(vii) 10π‘π‘ž = 2 Γ— 5 Γ— 𝑝 Γ— π‘ž
20π‘žπ‘Ÿ = 2 Γ— 2 Γ— 5 Γ— π‘ž Γ— π‘Ÿ
30π‘Ÿπ‘ = 2 Γ— 3 Γ— 5 Γ— π‘Ÿ Γ— 𝑝
Hence, the common factors are 2 Γ— 5 = 10

(viii) 3π‘₯2𝑦3 = 3 Γ— π‘₯ Γ— π‘₯ Γ— 𝑦 Γ— 𝑦 Γ— 𝑦
10π‘₯3𝑦2 = 2 Γ— 5 Γ— π‘₯ Γ— π‘₯ Γ— π‘₯ Γ— 𝑦 Γ— 𝑦
6π‘₯2𝑦2𝑧 = 2 Γ— 3 Γ— π‘₯ Γ— π‘₯ Γ— 𝑦 Γ— 𝑦 Γ— 𝑧
Hence, the common factors are π‘₯ Γ— π‘₯ Γ— 𝑦 Γ— 𝑦 = π‘₯2𝑦2

Q.2) Factorise the following expressions
(i) 7π‘₯ – 42 (ii) 6𝑝 βˆ’ 12π‘ž (iii) 7π‘Ž2 + 14π‘Ž

(iv) βˆ’16𝑧 + 20𝑧3 (v) 20𝑙2π‘š + 30 π‘Žπ‘™π‘š (vi) 5π‘₯2𝑦 βˆ’ 15π‘₯𝑦2
(vii) 10π‘Ž2 βˆ’ 15𝑏2 + 20𝑐2 (viii) βˆ’4π‘Ž2 + 4π‘Žπ‘ βˆ’ 4π‘π‘Ž (ix) π‘₯2𝑦𝑧 + π‘₯𝑦2𝑧 + π‘₯𝑦𝑧2
(x) π‘Žπ‘₯2𝑦 + 𝑏π‘₯𝑦2 + 𝑐π‘₯𝑦𝑧
Sol.2) (i) 7π‘₯ = 7 Γ— π‘₯
42 = 2 Γ— 3 Γ— 7
The common factor is 7.
∴ 7π‘₯ βˆ’ 42 = (7 Γ— π‘₯) βˆ’ (2 Γ— 3 Γ— 7) = 7 (π‘₯ βˆ’ 6)

(ii) 6𝑝 = 2 Γ— 3 Γ— 𝑝
12π‘ž = 2 Γ— 2 Γ— 3 Γ— π‘ž
The common factors are 2 and 3.
∴ 6𝑝 βˆ’ 12π‘ž = (2 Γ— 3 Γ— 𝑝) βˆ’ (2 Γ— 2 Γ— 3 Γ— π‘ž)
= 2 Γ— 3 [𝑝 βˆ’ (2 Γ— π‘ž)]
= 6 (𝑝 βˆ’ 2π‘ž)

(iii) 7π‘Ž2 = 7 Γ— π‘Ž Γ— π‘Ž
14π‘Ž = 2 Γ— 7 Γ— π‘Ž
The common factors are 7 and a.
∴ 7π‘Ž2 + 14π‘Ž = (7 Γ— π‘Ž Γ— π‘Ž) + (2 Γ— 7 Γ— π‘Ž)
= 7 Γ— π‘Ž [π‘Ž + 2] = 7π‘Ž (π‘Ž + 2)

(iv) 16𝑧 = 2 Γ— 2 Γ— 2 Γ— 2 Γ— 𝑧
20𝑧3 = 2 Γ— 2 Γ— 5 Γ— 𝑧 Γ— 𝑧 Γ— 𝑧
The common factors are 2, 2, and 𝑧.
∴ βˆ’16𝑧 + 20𝑧3 = βˆ’ (2 Γ— 2 Γ— 2 Γ— 2 Γ— 𝑧) + (2 Γ— 2 Γ— 5 Γ— 𝑧 Γ— 𝑧 Γ— 𝑧)
= (2 Γ— 2 Γ— 𝑧) [βˆ’ (2 Γ— 2) + (5 Γ— 𝑧 Γ— 𝑧)]
= 4𝑧 (βˆ’ 4 + 5𝑧2)
(v) 20𝑙2π‘š = 2 Γ— 2 Γ— 5 Γ— 𝑙 Γ— 𝑙 Γ— π‘š
30π‘Žπ‘™π‘š = 2 Γ— 3 Γ— 5 Γ— π‘Ž Γ— 𝑙 Γ— π‘š
The common factors are 2, 5, 𝑙, and π‘š.
∴ 20𝑙2π‘š + 30π‘Žπ‘™π‘š = (2 Γ— 2 Γ— 5 Γ— 𝑙 Γ— 𝑙 Γ— π‘š) + (2 Γ— 3 Γ— 5 Γ— π‘Ž Γ— 𝑙 Γ— π‘š)
= (2 Γ— 5 Γ— 𝑙 Γ— π‘š) [(2 Γ— 𝑙) + (3 Γ— π‘Ž)]
= 10π‘™π‘š (2𝑙 + 3π‘Ž)

(vi) 5π‘₯2𝑦 = 5 Γ— π‘₯ Γ— π‘₯ Γ— 𝑦
15π‘₯𝑦2 = 3 Γ— 5 Γ— π‘₯ Γ— 𝑦 Γ— 𝑦
The common factors are 5, π‘₯, and 𝑦.
∴ 5π‘₯2𝑦 βˆ’ 15π‘₯𝑦2 = (5 Γ— π‘₯ Γ— π‘₯ Γ— 𝑦) βˆ’ (3 Γ— 5 Γ— π‘₯ Γ— 𝑦 Γ— 𝑦)
= 5 Γ— π‘₯ Γ— 𝑦 [π‘₯ βˆ’ (3 Γ— 𝑦)]
= 5π‘₯𝑦 (π‘₯ βˆ’ 3𝑦)

(vii) 10π‘Ž2 = 2 Γ— 5 Γ— π‘Ž Γ— π‘Ž
15𝑏2 = 3 Γ— 5 Γ— 𝑏 Γ— 𝑏
20𝑐2 = 2 Γ— 2 Γ— 5 Γ— 𝑐 Γ— 𝑐
The common factor is 5.
10π‘Ž2 βˆ’ 15𝑏2 + 20𝑐2
= (2 Γ— 5 Γ— π‘Ž Γ— π‘Ž) βˆ’ (3 Γ— 5 Γ— 𝑏 Γ— 𝑏) + (2 Γ— 2 Γ— 5 Γ— 𝑐 Γ— 𝑐)
= 5 [(2 Γ— π‘Ž Γ— π‘Ž) βˆ’ (3 Γ— 𝑏 Γ— 𝑏) + (2 Γ— 2 Γ— 𝑐 Γ— 𝑐)]
= 5 (2π‘Ž2 βˆ’ 3𝑏2 + 4𝑐2)

(viii) 4π‘Ž2 = 2 Γ— 2 Γ— π‘Ž Γ— π‘Ž
4π‘Žπ‘ = 2 Γ— 2 Γ— π‘Ž Γ— 𝑏
4π‘π‘Ž = 2 Γ— 2 Γ— 𝑐 Γ— π‘Ž
The common factors are 2, 2, and π‘Ž.
∴ βˆ’4π‘Ž2 + 4π‘Žπ‘ βˆ’ 4π‘π‘Ž = βˆ’(2 Γ— 2 Γ— π‘Ž Γ— π‘Ž) + (2 Γ— 2 Γ— π‘Ž Γ— 𝑏) βˆ’ (2 Γ— 2 Γ— 𝑐 Γ— π‘Ž)
= 2 Γ— 2 Γ— π‘Ž [βˆ’ (π‘Ž) + 𝑏 βˆ’ 𝑐]
= 4π‘Ž (βˆ’π‘Ž + 𝑏 βˆ’ 𝑐)

(ix) π‘₯2𝑦𝑧 = π‘₯ Γ— π‘₯ Γ— 𝑦 Γ— 𝑧
π‘₯𝑦2𝑧 = π‘₯ Γ— 𝑦 Γ— 𝑦 Γ— 𝑧
π‘₯𝑦𝑧2 = π‘₯ Γ— 𝑦 Γ— 𝑧 Γ— 𝑧
The common factors are x, y, and z.
∴ π‘₯2𝑦𝑧 + π‘₯𝑦2𝑧 + π‘₯𝑦𝑧2
= (π‘₯ Γ— π‘₯ Γ— 𝑦 Γ— 𝑧) + (π‘₯ Γ— 𝑦 Γ— 𝑦 Γ— 𝑧) + (π‘₯ Γ— 𝑦 Γ— 𝑧 Γ— 𝑧)
= π‘₯ Γ— 𝑦 Γ— 𝑧 [π‘₯ + 𝑦 + 𝑧]
= π‘₯𝑦𝑧 (π‘₯ + 𝑦 + 𝑧)

(x) π‘Žπ‘₯2𝑦 = π‘Ž Γ— π‘₯ Γ— π‘₯ Γ— 𝑦
𝑏π‘₯𝑦2 = 𝑏 Γ— π‘₯ Γ— 𝑦 Γ— 𝑦
𝑐π‘₯𝑦𝑧 = 𝑐 Γ— π‘₯ Γ— 𝑦 Γ— 𝑧
The common factors are x and y.
π‘Žπ‘₯2𝑦 + 𝑏π‘₯𝑦2 + 𝑐π‘₯𝑦𝑧
= (π‘Ž Γ— π‘₯ Γ— π‘₯ Γ— 𝑦) + (𝑏 Γ— π‘₯ Γ— 𝑦 Γ— 𝑦) + (𝑐 Γ— π‘₯ Γ— 𝑦 Γ— 𝑧)
= (π‘₯ Γ— 𝑦) [(π‘Ž Γ— π‘₯) + (𝑏 Γ— 𝑦) + (𝑐 Γ— 𝑧)]
= π‘₯𝑦 (π‘Žπ‘₯ + 𝑏𝑦 + 𝑐𝑧)

Q.3) Factorise
(i) π‘₯2 + π‘₯𝑦 + 8π‘₯ + 8𝑦 (ii) 15π‘₯𝑦 βˆ’ 6π‘₯ + 5𝑦 – 2 (iii) π‘Žπ‘₯ + 𝑏π‘₯ βˆ’ π‘Žπ‘¦ βˆ’ 𝑏𝑦
(iv) 15π‘π‘ž + 15 + 9π‘ž + 25𝑝 (v) 𝑧 βˆ’ 7 + 7π‘₯𝑦 – π‘₯𝑦𝑧
Sol.3) (i) π‘₯2 + π‘₯𝑦 + 8π‘₯ + 8𝑦
= π‘₯ Γ— π‘₯ + π‘₯ Γ— 𝑦 + 8 Γ— π‘₯ + 8 Γ— 𝑦
= π‘₯ (π‘₯ + 𝑦) + 8 (π‘₯ + 𝑦)
= (π‘₯ + 𝑦) (π‘₯ + 8)

(ii) 15π‘₯𝑦 – 6π‘₯ + 5𝑦 – 2
= 3 Γ— 5 Γ— π‘₯ Γ— 𝑦 βˆ’ 3 Γ— 2 Γ— π‘₯ + 5 Γ— 𝑦 – 2
= 3π‘₯ (5𝑦 βˆ’ 2) + 1 (5𝑦 βˆ’ 2)
= (5𝑦 βˆ’ 2) (3π‘₯ + 1)

(iii) π‘Žπ‘₯ + 𝑏π‘₯ – π‘Žπ‘¦ – 𝑏𝑦
= π‘Ž Γ— π‘₯ + 𝑏 Γ— π‘₯ βˆ’ π‘Ž Γ— 𝑦 βˆ’ 𝑏 Γ— 𝑦
= π‘₯ (π‘Ž + 𝑏) βˆ’ 𝑦 (π‘Ž + 𝑏)
= (π‘Ž + 𝑏) (π‘₯ βˆ’ 𝑦)

(iv) 15π‘π‘ž + 15 + 9π‘ž + 25𝑝
= 15π‘π‘ž + 9π‘ž + 25𝑝 + 15
= 3 Γ— 5 Γ— 𝑝 Γ— π‘ž + 3 Γ— 3 Γ— π‘ž + 5 Γ— 5 Γ— 𝑝 + 3 Γ— 5
= 3π‘ž (5𝑝 + 3) + 5 (5𝑝 + 3)
= (5𝑝 + 3) (3π‘ž + 5)

(v) 𝑧 βˆ’ 7 + 7π‘₯𝑦 βˆ’ π‘₯𝑦𝑧
= 𝑧 βˆ’ π‘₯ Γ— 𝑦 Γ— 𝑧 βˆ’ 7 + 7 Γ— π‘₯ Γ— 𝑦
= 𝑧 (1 βˆ’ π‘₯𝑦) βˆ’ 7 (1 βˆ’ π‘₯𝑦)
= (1 βˆ’ π‘₯𝑦) (𝑧 βˆ’ 7)

Exercise 14.2

Q.1) Factorise the following expressions.
(i) π‘Ž2 + 8π‘Ž + 16 (ii) 𝑝2 βˆ’ 10𝑝 + 25 (iii) 25π‘š2 + 30π‘š + 9
(iv) 49𝑦2 + 84𝑦𝑧 + 36𝑧2 (v) 4π‘₯2 βˆ’ 8π‘₯ + 4 (vi) 121𝑏2 βˆ’ 88𝑏𝑐 + 16𝑐2
(vii) (𝑙 + π‘š)2βˆ’ 4π‘™π‘š (Hint: Expand (𝑙 + π‘š)2 first)
(viii) π‘Ž4 + 2π‘Ž2𝑏2 + 𝑏4
Sol.1) (i) π‘Ž2 + 8π‘Ž + 16
This equation can be factorised by using the identity;
π‘₯2 + (π‘Ž + 𝑏)π‘₯ + π‘Žπ‘ = (π‘₯ + π‘Ž)(π‘₯ + 𝑏)
Here π‘₯ = π‘Ž, π‘Ž = 4 and 𝑏 = 4
= (π‘Ž)2 + 2 Γ— π‘Ž Γ— 4 + (4)2
= (π‘Ž + 4)2
Factors = (π‘Ž + 4)2 = (π‘Ž + 4)(π‘Ž + 4)

(ii) 𝑝2 βˆ’ 10𝑝 + 25
This equation can be factorised by using the identity;
π‘₯2 + (π‘Ž + 𝑏)π‘₯ + π‘Žπ‘ = (π‘₯ + π‘Ž)(π‘₯ + 𝑏)
Here π‘₯ = 𝑝, π‘Ž = βˆ’5, and 𝑏 = βˆ’5
= (𝑝)2 βˆ’ 2 Γ— 𝑝 Γ— 5 + (5)2
Factors = (𝑝 – 5)2

(iii) 25π‘š2 + 30π‘š + 9
This equation can be factorised by using the identity;
(π‘Ž – 𝑏)2 = π‘Ž2 β€“ 2π‘Žπ‘ + π‘2
Here π‘Ž = 5π‘š, 𝑏 = 3
= (5π‘š)2 + 2 Γ— 5π‘š Γ— 3 + (3)2
Factors = (5π‘š + 3)2

(iv) 49𝑦2 + 84𝑦𝑧 + 36𝑧2
This equation can be factorised by using the identity;
(π‘Ž – 𝑏)2 = π‘Ž2 β€“ 2π‘Žπ‘ + π‘2
Here π‘Ž = 7𝑦, 𝑏 = 6𝑧
= (7𝑦)2 + 2 Γ— (7𝑦) Γ— (6𝑧) + (6𝑧)2
Factors = (7𝑦 + 6𝑧)2

(v) 4π‘₯2 βˆ’ 8π‘₯ + 4
This equation can be factorised by using the identity;
(π‘Ž – 𝑏)2 = π‘Ž2 β€“ 2π‘Žπ‘ + π‘2
Here π‘Ž = 2π‘₯, 𝑏 = 2
= (2π‘₯)2 βˆ’ 2 (2π‘₯) (2) + (2)2
= (2π‘₯ βˆ’ 2)2
= [(2)(π‘₯ βˆ’ 1)]2
= 4(π‘₯ βˆ’ 1)2

(vi) 121𝑏2 βˆ’ 88𝑏𝑐 + 16𝑐2
This equation can be factorised by using the identity;
(π‘Ž – 𝑏)2 = π‘Ž2 β€“ 2π‘Žπ‘ + π‘2
Here π‘Ž = 11𝑏, 𝑏 = 4𝑐
= (11𝑏)2 βˆ’ 2 (11𝑏) (4𝑐) + (4𝑐)2
= (11𝑏 βˆ’ 4𝑐) 2

(vii) (𝑙 + π‘š)2
βˆ’ 4π‘™π‘š (Hint: Expand (𝑙 + π‘š)2 first)
This equation can be factorised by using the identity;
(π‘Ž – 𝑏)2 = π‘Ž2 β€“ 2π‘Žπ‘ + π‘2
= 𝑙2 + 2π‘™π‘š + π‘š2 βˆ’ 4π‘™π‘š
= 𝑙2 βˆ’ 2π‘™π‘š + π‘š2
= (𝑙 βˆ’ π‘š)2

(viii) π‘Ž4 + 2π‘Ž2𝑏2 + 𝑏4
This equation can be factorised by using the identity;
(π‘Ž + 𝑏)2 = π‘Ž2 + 2π‘Žπ‘ + π‘2
= (π‘Ž2)2 + 2 (π‘Ž2) (𝑏2) + (𝑏2)2
= (π‘Ž2 + π‘2)2

Q.2) Factorise
(i) 4𝑝2 βˆ’ 9π‘ž2 (ii) 63π‘Ž2 βˆ’ 112𝑏2 (iii) 49π‘₯2– 36
(iv) 16π‘₯5 βˆ’ 144π‘₯3 (v) (𝑙 + π‘š)2βˆ’ (𝑙 βˆ’ π‘š)2
(vi) 9π‘₯2𝑦2 βˆ’ 16
(vii) (π‘₯2 βˆ’ 2π‘₯𝑦 + π‘¦2) βˆ’ π‘§2 (viii) 25π‘Ž2 βˆ’ 4𝑏2 + 28𝑏𝑐 βˆ’ 49𝑐2
Sol.2) (i) 4𝑝2 β€“ 9π‘ž2
= (2𝑝)βˆ’ (3π‘ž)2
= (2𝑝 + 3π‘ž) (2𝑝 βˆ’ 3π‘ž) [π‘Ž2 βˆ’ π‘2 = (π‘Ž βˆ’ 𝑏) (π‘Ž + 𝑏)]
(ii) 63π‘Ž2 βˆ’ 112𝑏2
= 7(9π‘Ž2 βˆ’ 16𝑏2)
= 7[(3π‘Ž2 βˆ’ (4𝑏)2]

= 7(3π‘Ž + 4𝑏) (3π‘Ž βˆ’ 4𝑏) [π‘Ž2 βˆ’ 𝑏2 = (π‘Ž βˆ’ 𝑏) (π‘Ž + 𝑏)]

(iii) 49π‘₯2– 36
= (7π‘₯)2 βˆ’ (6)2
= (7π‘₯ βˆ’ 6) (7π‘₯ + 6) [π‘Ž2 βˆ’ 𝑏2 = (π‘Ž βˆ’ 𝑏) (π‘Ž + 𝑏)]

(iv) 16π‘₯5 βˆ’ 144π‘₯3
= 16π‘₯3(π‘₯2 βˆ’ 9)
= 16 π‘₯3 [(π‘₯)2 βˆ’ (3)2]
= 16 π‘₯3(π‘₯ βˆ’ 3) (π‘₯ + 3) [π‘Ž2 βˆ’ 𝑏2 = (π‘Ž βˆ’ 𝑏) (π‘Ž + 𝑏)]

(v) (𝑙 + π‘š) 2 βˆ’ (𝑙 – π‘š)2
= [(𝑙 + π‘š) βˆ’ (𝑙 βˆ’ π‘š)] [(𝑙 + π‘š) + (𝑙 βˆ’ π‘š)]
[Using identity: π‘Ž2 βˆ’ 𝑏2 = (π‘Ž βˆ’ 𝑏) (π‘Ž + 𝑏)]
= (𝑙 + π‘š βˆ’ 𝑙 + π‘š) (𝑙 + π‘š + 𝑙 βˆ’ π‘š)
= 2π‘š Γ— 2𝑙
= 4π‘šπ‘™ = 4π‘™π‘š

(vi) 9π‘₯2𝑦2 βˆ’ 16
= (3π‘₯𝑦)2 βˆ’ (4)2
= (3π‘₯𝑦 βˆ’ 4) (3π‘₯𝑦 + 4) [π‘Ž2 βˆ’ 𝑏2 = (π‘Ž βˆ’ 𝑏) (π‘Ž + 𝑏)]

(vii) (π‘₯2 βˆ’ 2π‘₯𝑦 + 𝑦2) βˆ’ 𝑧2
= (π‘₯ βˆ’ 𝑦)2 βˆ’ (𝑧)2 [(π‘Ž βˆ’ 𝑏)2
= π‘Ž2 βˆ’ 2π‘Žπ‘ + 𝑏2]
= (π‘₯ βˆ’ 𝑦 βˆ’ 𝑧) (π‘₯ βˆ’ 𝑦 + 𝑧) [π‘Ž2 βˆ’ 𝑏2 = (π‘Ž βˆ’ 𝑏) (π‘Ž + 𝑏)]

(viii) 25π‘Ž2 β€“ 4𝑏2 + 28𝑏𝑐 – 49𝑐2
= 25π‘Ž2 βˆ’ (4π‘βˆ’ 28𝑏𝑐 + 49𝑐2)
= (5π‘Ž)2 βˆ’ [(2𝑏)2 βˆ’ 2 Γ— 2𝑏 Γ— 7𝑐 + (7𝑐)2]
= (5π‘Ž)2 βˆ’ [(2𝑏 βˆ’ 7𝑐)2] [Using identity (π‘Ž βˆ’ 𝑏)2
= π‘Ž2 βˆ’ 2π‘Žπ‘ + 𝑏2]
= [5π‘Ž + (2𝑏 βˆ’ 7𝑐)] [5π‘Ž βˆ’ (2𝑏 βˆ’ 7𝑐)]
[Using identity π‘Ž2 βˆ’ 𝑏2 = (π‘Ž βˆ’ 𝑏) (π‘Ž + 𝑏)]
= (5π‘Ž + 2𝑏 βˆ’ 7𝑐)(5π‘Ž βˆ’ 2𝑏 + 7𝑐)

Q.3) Factorise the expressions
(i) π‘Žπ‘₯2 + 𝑏π‘₯ (ii) 7𝑝2 + 21π‘ž2 (iii) 2π‘₯3 + 2π‘₯𝑦2 + 2π‘₯𝑧2
(iv) π‘Žπ‘š2 + π‘π‘š2 + 𝑏𝑛2 + π‘Žπ‘›2 (v) (π‘™π‘š + 𝑙) + π‘š + 1
(vi) 𝑦(𝑦 + 𝑧) + 9(𝑦 + 𝑧) (vii) 5𝑦2 βˆ’ 20𝑦 βˆ’ 8𝑧 + 2𝑦𝑧
(viii) 10π‘Žπ‘ + 4π‘Ž + 5𝑏 + 2 (ix) 6π‘₯𝑦 βˆ’ 4𝑦 + 6 βˆ’ 9π‘₯
Sol.3) (i) π‘Žπ‘₯2 + 𝑏π‘₯
= π‘Ž Γ— π‘₯ Γ— π‘₯ + 𝑏 Γ— π‘₯ = π‘₯(π‘Žπ‘₯ + 𝑏)

(ii) 7𝑝2 + 21π‘ž2
= 7 Γ— 𝑝 Γ— 𝑝 + 3 Γ— 7 Γ— π‘ž Γ— π‘ž = 7(𝑝2 + 3π‘ž2)

(iii) 2π‘₯3 + 2π‘₯𝑦2 + 2π‘₯𝑧2
= 2π‘₯(π‘₯2 + 𝑦2 + 𝑧2)

(iv) π‘Žπ‘š2 + π‘π‘š2 + 𝑏𝑛2 + π‘Žπ‘›2
= π‘Žπ‘š2 + π‘π‘š2 + π‘Žπ‘›2 + 𝑏𝑛2
= π‘š2(π‘Ž + 𝑏) + 𝑛2(π‘Ž + 𝑏)
= (π‘Ž + 𝑏) (π‘š2 + 𝑛2)

(v) (π‘™π‘š + 𝑙) + π‘š + 1
= π‘™π‘š + π‘š + 𝑙 + 1
= π‘š(𝑙 + 1) + 1(𝑙 + 1)
= (𝑙 + 𝑙) (π‘š + 1)

(vi) 𝑦 (𝑦 + 𝑧) + 9 (𝑦 + 𝑧)
= (𝑦 + 𝑧) (𝑦 + 9)

(vii) 5𝑦2 βˆ’ 20𝑦 βˆ’ 8𝑧 + 2𝑦𝑧
= 5𝑦2 βˆ’ 20𝑦 + 2𝑦𝑧 βˆ’ 8𝑧
= 5𝑦(𝑦 βˆ’ 4) + 2𝑧(𝑦 βˆ’ 4)
= (𝑦 βˆ’ 4) (5𝑦 + 2𝑧)

(viii) 10π‘Žπ‘ + 4π‘Ž + 5𝑏 + 2
= 10π‘Žπ‘ + 5𝑏 + 4π‘Ž + 2
= 5𝑏(2π‘Ž + 1) + 2(2π‘Ž + 1)
= (2π‘Ž + 1) (5𝑏 + 2)

(ix) 6π‘₯𝑦 βˆ’ 4𝑦 + 6 βˆ’ 9π‘₯
= 6π‘₯𝑦 βˆ’ 9π‘₯ βˆ’ 4𝑦 + 6
= 3π‘₯(2𝑦 βˆ’ 3) βˆ’ 2(2𝑦 βˆ’ 3)
= (2𝑦 βˆ’ 3)(3π‘₯ βˆ’ 2)

Q.4) Factorise
(i) π‘Ž4 βˆ’ 𝑏4 (ii) 𝑝4 β€“ 81 (iii) π‘₯4 βˆ’ (𝑦 + 𝑧)4
(iv) π‘₯4 βˆ’ (π‘₯ βˆ’ 𝑧)4
(v) π‘Ž4 βˆ’ 2π‘Žπ‘2 + 𝑏4
Sol.4) (i) π‘Ž4 βˆ’ 𝑏4
= (π‘Ž2)2 βˆ’ (𝑏2)2
= (π‘Ž2 βˆ’ 𝑏2) (π‘Ž2 + 𝑏2)
= (π‘Ž βˆ’ 𝑏) (π‘Ž + 𝑏) (π‘Ž2 + 𝑏2)

(ii) 𝑝4 β€“ 81
= (𝑝2)2 βˆ’ (9)2
= (𝑝2 βˆ’ 9) (𝑝2 + 9)
= [(𝑝)2 βˆ’ (3)2] (𝑝2 + 9)
= (𝑝 βˆ’ 3) (𝑝 + 3) (𝑝2 + 9)

(iii) π‘₯4 βˆ’ (𝑦 + 𝑧)4
= (π‘₯2)2 βˆ’ [(𝑦 + 𝑧)2]2
= [π‘₯2 βˆ’ (𝑦 + 𝑧)2] [π‘₯2 + (𝑦 + 𝑧)2]
= [π‘₯ βˆ’ (𝑦 + 𝑧)][ π‘₯ + (𝑦 + 𝑧)] [π‘₯2 + (𝑦 + 𝑧)2]
= (π‘₯ βˆ’ 𝑦 βˆ’ 𝑧) (π‘₯ + 𝑦 + 𝑧) [π‘₯2 + (𝑦 + 𝑧)2]

(iv) π‘₯4 βˆ’ (π‘₯ βˆ’ 𝑧)4
= (π‘₯2)2 βˆ’ [(π‘₯ βˆ’ 𝑧)2]2
= [π‘₯2 βˆ’ (π‘₯ βˆ’ 𝑧)2] [π‘₯2 + (π‘₯ βˆ’ 𝑧)2]
= [π‘₯ βˆ’ (π‘₯ βˆ’ 𝑧)] [π‘₯ + (π‘₯ βˆ’ 𝑧)] [π‘₯2 + (π‘₯ βˆ’ 𝑧)2]
= 𝑧(2π‘₯ βˆ’ 𝑧) [π‘₯2 + π‘₯2 βˆ’ 2π‘₯𝑧 + 𝑧2]
= 𝑧(2π‘₯ βˆ’ 𝑧) (2π‘₯2 βˆ’ 2π‘₯𝑧 + 𝑧2)

(v) π‘Ž4 βˆ’ 2π‘Ž2𝑏2 + 𝑏4
= (π‘Ž2)2 βˆ’ 2 (π‘Ž2) (𝑏2) + (𝑏2)2
= (π‘Ž2 βˆ’ 𝑏2)2
= [(π‘Ž βˆ’ 𝑏)(π‘Ž + 𝑏)]2
= (π‘Ž βˆ’ 𝑏)2
(π‘Ž + 𝑏)2

Q.5) Factorise the following expressions
(i) 𝑝2 + 6𝑝 + 8 (ii) π‘ž2 βˆ’ 10π‘ž + 21 (iii) 𝑝2 + 6𝑝 βˆ’ 16
Sol.5) (i) 𝑝2 + 6𝑝 + 8
It can be observed that, 8 = 4 Γ— 2 and 4 + 2 = 6
∴ 𝑝2 + 2𝑝 + 4𝑝 + 8
= 𝑝(𝑝 + 2) + 4(𝑝 + 2)
= (𝑝 + 2) (𝑝 + 4)

(ii) π‘ž2 βˆ’ 10π‘ž + 21
It can be observed that, 21 = (βˆ’7) Γ— (βˆ’3) and (βˆ’7) + (βˆ’3) = βˆ’ 10
∴ π‘ž2 βˆ’ 10π‘ž + 21 = π‘ž2 βˆ’ 7π‘ž βˆ’ 3π‘ž + 21
= π‘ž(π‘ž βˆ’ 7) βˆ’ 3(π‘ž βˆ’ 7)
= (π‘ž βˆ’ 7) (π‘ž βˆ’ 3)

(iii) 𝑝2 + 6𝑝 βˆ’ 16
It can be observed that, 16 = (βˆ’2) Γ— 8 and 8 + (βˆ’2) = 6
𝑝2 + 6𝑝 βˆ’ 16 = 𝑝2 + 8𝑝 βˆ’ 2𝑝 βˆ’ 16
= 𝑝(𝑝 + 8) βˆ’ 2(𝑝 + 8)
= (𝑝 + 8) (𝑝 βˆ’ 2)

Exercise 14.3

Q.1) Carry out the following divisions.
(i) 28π‘₯4 Γ· 56π‘₯ (ii) βˆ’36𝑦3 Γ· 9𝑦2 (iii) 66π‘π‘ž2π‘Ÿ3 Γ· 11π‘žπ‘Ÿ2
(iv) 34π‘₯3𝑦3𝑧3 Γ· 51π‘₯𝑦2𝑧3 (v) 12π‘Ž8𝑏8 Γ· (βˆ’6π‘Ž6𝑏4)

""NCERT-Solutions-Class-8-Mathematics-Factorisation-5

Q.2) Divide the given polynomial by the given monomial:
(i) (5π‘₯2 βˆ’ 6π‘₯) Γ· 3π‘₯
(ii) (3𝑦8 βˆ’ 4𝑦6 + 5𝑦4) Γ· 𝑦4
(iii) 8(π‘₯3𝑦2𝑧2 + π‘₯2𝑦3𝑧2 + π‘₯2𝑦2𝑧3) Γ· 4π‘₯2𝑦2𝑧2
(iv) (π‘₯3 + 2π‘₯2 + 3π‘₯) Γ· 2π‘₯
(v) (𝑝3π‘ž6 βˆ’ 𝑝6π‘ž3) Γ· 𝑝3π‘ž3
Sol.2)

""NCERT-Solutions-Class-8-Mathematics-Factorisation-4

Q.3) Work out the following divisions.
(i) (10π‘₯ βˆ’ 25) Γ· 5
(ii) (10π‘₯ βˆ’ 25) Γ· (2π‘₯ βˆ’ 5)
(iii) 10𝑦(6𝑦 + 21) Γ· 5(2𝑦 + 7)
(iv) 9π‘₯2𝑦2(3𝑧 βˆ’ 24) Γ· 27π‘₯𝑦(𝑧 βˆ’ 8)
(v) 96π‘Žπ‘π‘(3π‘Ž βˆ’ 12)(5𝑏 βˆ’ 30) Γ· 144(π‘Ž βˆ’ 4) (𝑏 βˆ’ 6)
Sol.3)

""NCERT-Solutions-Class-8-Mathematics-Factorisation-3

Q.4) Divide as directed.
(i) 5(2π‘₯ + 1) (3π‘₯ + 5) Γ· (2π‘₯ + 1)
(ii) 26π‘₯𝑦(π‘₯ + 5) (𝑦 βˆ’ 4) Γ· 13π‘₯(𝑦 βˆ’ 4)
(iii) 52π‘π‘žπ‘Ÿ (𝑝 + π‘ž) (π‘ž + π‘Ÿ) (π‘Ÿ + 𝑝) Γ· 104π‘π‘ž(π‘ž + π‘Ÿ) (π‘Ÿ + 𝑝)
(iv) 20(𝑦 + 4) (𝑦2 + 5𝑦 + 3) Γ· 5(𝑦 + 4)
(v) π‘₯(π‘₯ + 1) (π‘₯ + 2) (π‘₯ + 3) Γ· π‘₯(π‘₯ + 1)
Sol.4)

""NCERT-Solutions-Class-8-Mathematics-Factorisation-2

Q.5) Factorise the expressions and divide them as directed.
(i) (y2 + 7y + 10) Γ· (y + 5)
(ii) (m2 βˆ’ 14m βˆ’ 32) Γ· (m + 2)
(iii) (5p2 βˆ’ 25p + 20) Γ· (p βˆ’ 1)
(iv) 4yz(z2 + 6z βˆ’ 16) Γ· 2y(z + 8)
(v) 5pq(p2 βˆ’ q2) Γ· 2p(p + q)
(vi) 12xy(9x2 βˆ’ 16y2) Γ· 4xy(3x + 4y)
(vii) 39y3(50y2 βˆ’ 98) Γ· 26y2(5y + 7)
Sol.5)

""NCERT-Solutions-Class-8-Mathematics-Factorisation-1

""NCERT-Solutions-Class-8-Mathematics-Factorisation

Exercise 14.4

Q.1) Find and correct the errors in the statement: 4(π‘₯ – 5) = 4π‘₯ – 5
Sol.1) L.H.S. = 4(π‘₯ βˆ’ 5) = 4π‘₯ βˆ’ 20 β‰  R.H.S.
Hence, the correct mathematical statements is 4(π‘₯ βˆ’ 5) = 4π‘₯ βˆ’ 20.

Q.2) Find and correct the errors in the statement: π‘₯(3π‘₯ + 2) = 3π‘₯2 + 2
Sol.2) L.H.S. = π‘₯(3π‘₯ + 2) = π‘₯ Γ— 3π‘₯ + π‘₯ Γ— 2 = 3π‘₯2 + 2π‘₯ β‰  R.H.S.
Hence, the correct mathematical statements is π‘₯(3π‘₯ + 2) = 3π‘₯2 + 2π‘₯

Q.3) Find and correct the errors in the statement: 2π‘₯ + 3𝑦 = 5π‘₯𝑦
Sol.3) L.H.S = 2π‘₯ + 3𝑦 β‰  R.H.S.
Hence, the correct mathematical statements is 2π‘₯ + 3𝑦 = 2π‘₯ + 3𝑦

Q.4) Find and correct the errors in the statement: π‘₯ + 2π‘₯ + 3π‘₯ = 5π‘₯
Sol.4) L.H.S = π‘₯ + 2π‘₯ + 3π‘₯ = 1π‘₯ + 2π‘₯ + 3π‘₯ = π‘₯ (1 + 2 + 3) = 6π‘₯ β‰  R.H.S.
Hence, the correct mathematical statements is π‘₯ + 2π‘₯ + 3π‘₯ = 6π‘₯.

Q.5) Find and correct the errors in the statement: 5𝑦 + 2𝑦 + 𝑦 βˆ’ 7𝑦 = 0
Sol.5) L.H.S. = 5𝑦 + 2𝑦 + 𝑦 βˆ’ 7𝑦 = 8𝑦 βˆ’ 7𝑦 = 𝑦 β‰  R.H.S
Hence, the correct mathematical statements is 5𝑦 + 2𝑦 + 𝑦 βˆ’ 7𝑦 = 𝑦.

Q.6) Find and correct the errors in the statement: 3π‘₯ + 2π‘₯ = 5π‘₯2
Sol.6) L.H.S. = 3π‘₯ + 2π‘₯ = 5π‘₯ β‰  R.H.S
Hence, the correct mathematical statements is 3π‘₯ + 2π‘₯ = 5π‘₯.

Q.7) Find and correct the errors in the statement: (2π‘₯)2 + 4(2π‘₯) + 7 = 4π‘₯2 + 8π‘₯ + 7
Sol.7) L.H.S = (2π‘₯)2 + 4(2π‘₯) + 7 = 4π‘₯2 + 8π‘₯ + 7 β‰  R.H.S
Hence, the correct mathematical statements is (2π‘₯)2 + 4(2π‘₯) + 7 = 4π‘₯2 + 8π‘₯ + 7.

Q.8) Find and correct the errors in the statement: (2π‘₯)2 + 5π‘₯ = 4π‘₯ + 5π‘₯ = 9π‘₯
Sol.8) L.H.S = (2π‘₯)2 + 5π‘₯ = 4π‘₯2 + 5π‘₯ β‰  R.H.S.
Hence, the correct mathematical statements is (2π‘₯)2 + 5π‘₯ = 4π‘₯2 + 5π‘₯.

Q.9) Find and correct the errors in the statement: (3π‘₯ + 2)2 = 9π‘₯2 + 12π‘₯ + 4
Sol.9) L.H.S. = (3π‘₯ + 2)2
= (3π‘₯)2 + 2(3π‘₯)(2) + (2)2[(π‘Ž + 𝑏) 2
= π‘Ž2 + 2π‘Žπ‘ + 𝑏2]
= 9π‘₯2 + 12π‘₯ + 4 β‰  R.H.S
The correct statement is (3π‘₯ + 2) 2
= 9π‘₯2 + 12π‘₯ + 4

Q.10) Find and correct the errors in the following mathematical statement.
Substituting x = βˆ’3 in
(a) π‘₯2 + 5x + 4 gives (βˆ’3)2 + 5 (βˆ’3) + 4 = 9 + 2 + 4 = 15
(b) π‘₯2 βˆ’ 5x + 4 gives (βˆ’3)2 βˆ’ 5 (βˆ’3) + 4 = 9 βˆ’ 15 + 4 = βˆ’2
(c) π‘₯2 + 5x gives (βˆ’3)2 + 5 (βˆ’3) = βˆ’9 βˆ’ 15 = βˆ’24
Sol.10) (a) L.H.S. = π‘₯2 + 5π‘₯ + 4
Putting π‘₯ =-3 in given expression
= (βˆ’3)2 + 5(βˆ’3) + 4 = 9 βˆ’ 15 + 4 = βˆ’2 β‰  R.H.S.
Hence, π‘₯2 + 5π‘₯ + 4 gives (βˆ’3)2 + 5(βˆ’3) + 4 = 9 βˆ’ 15 + 4 = βˆ’2
(b) L.H.S. = π‘₯2 βˆ’ 5π‘₯ + 4
Putting π‘₯ =-3 in given expression
= (βˆ’3)2 βˆ’ 5(βˆ’3) + 4 = 9 + 15 + 4 = 28 β‰  R.H.S.
Hence, π‘₯2 βˆ’ 5π‘₯ + 4 gives (βˆ’3)2 βˆ’ 5(βˆ’3) + 4 = 9 + 15 + 4 = 28
(c) L.H.S. = π‘₯2 + 5π‘₯
Putting π‘₯ =-3 in given expression
= (βˆ’3)2 + 5(βˆ’3) = 9 βˆ’ 15 = βˆ’6 β‰  R.H.S.
Hence, π‘₯2 + 5π‘₯ gives (βˆ’3)2 + 5(βˆ’3) = 9 βˆ’ 15 = βˆ’6.

Q.11) Find and correct the errors in the following mathematical statement: (𝑦 βˆ’ 3)2 = 𝑦2 βˆ’ 9
Sol.11) L.H.S = (y βˆ’ 3)2 = (y)2 βˆ’ 2(y)(3) + (3)2 [(a βˆ’ b)2 = π‘Ž2 βˆ’ 2ab + π‘2]
= y2 βˆ’ 6y + 9 β‰  R.H.S
The correct statement is (y βˆ’ 3)2 = y2 βˆ’ 6y + 9

Q.12) Find and correct the errors in the statement: (𝑧 + 5) = 𝑧2 + 25
Sol.12) L.H.S = (𝑧 + 5)2
= (𝑧)2 + 2(𝑧)(5) + (5)2 [(π‘Ž + 𝑏)2
= π‘Ž2 + 2π‘Žπ‘ + π‘2]
= 𝑧2 + 10𝑧 + 25 β‰  R.H.S
Hence, the correct statement is (𝑧 + 5)2 = 𝑧2 + 10𝑧 + 25

Q.13) Find and correct the errors in the statement: (2π‘Ž + 3𝑏)(π‘Ž – 𝑏) = 2π‘Ž2 β€“ 3𝑏2
Sol.13) L.H.S. = (2π‘Ž + 3𝑏) (π‘Ž βˆ’ 𝑏) = 2π‘Ž Γ— π‘Ž + 3𝑏 Γ— π‘Ž βˆ’ 2π‘Ž Γ— 𝑏 βˆ’ 3𝑏 Γ— 𝑏
= 2π‘Ž2 + 3π‘Žπ‘ βˆ’ 2π‘Žπ‘ βˆ’ 3𝑏2 = 2π‘Ž2 + π‘Žπ‘ βˆ’ 3𝑏2 β‰  R.H.S.
Hence, the correct statement is (2π‘Ž + 3𝑏)(π‘Ž βˆ’ 𝑏) = 2π‘Ž2 + π‘Žπ‘ βˆ’ 3𝑏2

Q.14) Find and correct the errors in the statement: (π‘Ž + 4) (π‘Ž + 2) = π‘Ž2 + 8
Sol.14) L.H.S. = (π‘Ž + 4) (π‘Ž + 2) = (π‘Ž)2 + (4 + 2) (π‘Ž) + 4 Γ— 2
= π‘Ž2 + 6π‘Ž + 8 β‰  R.H.S
The correct statement is (π‘Ž + 4) (π‘Ž + 2) = π‘Ž2 + 6π‘Ž + 8

Q.15) Find and correct the errors in the statement: (π‘Ž – 4)(π‘Ž – 2) = π‘Ž2 βˆ’ 8
Sol.15) L.H.S. = (π‘Ž βˆ’ 4) (π‘Ž βˆ’ 2) = (π‘Ž)2 + [(βˆ’ 4) + (βˆ’ 2)] (π‘Ž) + (βˆ’ 4) (βˆ’ 2)
= π‘Ž2 βˆ’ 6π‘Ž + 8 β‰  R.H.S.
The correct statement is (π‘Ž βˆ’ 4) (π‘Ž βˆ’ 2) = π‘Ž2 βˆ’ 6π‘Ž + 8

Q.16) Find and correct the errors in the statement: 3π‘₯2/3π‘₯2 = 0.
Sol.16) L.H.S. = 3π‘₯2/3π‘₯2 = 1/1 = 1 β‰  R.H.S.
Hence, the correct statement is 3π‘₯2/3π‘₯2 = 1.

Q.17) Find and correct the errors in the following mathematical statement: 3π‘₯2+1/3π‘₯2 = 1 + 1 = 2.
Sol.17) L.H.S. = 3π‘₯2+1/3π‘₯2 = 3π‘₯2/3π‘₯2 + 1/3π‘₯2
= 1 + 1/3π‘₯2 β‰  R.H.S.
Hence, the correct statement is 3π‘₯2+1/3π‘₯2 = 1 + 1/3π‘₯2.

Q.18) Find and correct the errors in the following mathematical statement: 3π‘₯/3π‘₯+2 = 1/2
Sol.18) L.H.S. = 3π‘₯/3π‘₯+2 β‰  R.H.S.
Hence, the correct statement is 3π‘₯/3π‘₯+2 = 3π‘₯/3π‘₯+2

Q.19) Find and correct the errors in the following mathematical statement: 3/4π‘₯+3 = 1/4π‘₯
Sol.19) L.H.S. = 3/4π‘₯+3 β‰ R.H.S.
Hence, the correct statement is 3/4π‘₯+3 = 3/4π‘₯+3

Q.20) Find and correct the errors in the following mathematical statement: 4π‘₯+5/4π‘₯ = 5
Sol.20) L.H.S. = 4π‘₯+5/4π‘₯ = 4π‘₯/4π‘₯ + 5/4π‘₯ = 1 + 5/4π‘₯ β‰ R.H.S.
Hence, the correct statement is 4π‘₯+5/4π‘₯ = 1 + 5/4π‘₯
.
Q.21) Find and correct the errors in the following mathematical statement: 7π‘₯+5/5 = 7π‘₯
Sol.21) L.H.S. = 7π‘₯+5/5 = 7π‘₯/5 + 5/5 = 7π‘₯/5 + 1 β‰  R.H.S.
Hence, the correct statement is 7π‘₯+5/5 = 7π‘₯/5 + 1.

NCERT Solutions Class 8 Mathematics Chapter 14 Factorisation

The above provided NCERT Solutions Class 8 Mathematics Chapter 14 Factorisation is available on our website www.studiestoday.com for free download in Pdf. You can read the solutions to all questions given in your Class 8 Mathematics textbook online or you can easily download them in pdf.Β The answers to each question in Chapter 14 Factorisation of Mathematics Class 8 has been designed based on the latest syllabus released for the current year. We have also provided detailed explanations for all difficult topics in Chapter 14 Factorisation Class 8 chapter of Mathematics so that it can be easier for students to understand all answers.Β These solutions of Chapter 14 Factorisation NCERT Questions given in your textbook for Class 8 Mathematics have been designed to help students understand the difficult topics of Mathematics in an easy manner. These will also help to build a strong foundation in the Mathematics. There is a combination of theoretical and practical questions relating to all chapters in Mathematics to check the overall learning of the students of Class 8.

Β 

Where can I download latest NCERT Solutions for Class 8 Mathematics Chapter 14 Factorisation

You can download the NCERT Solutions for Class 8 Mathematics Chapter 14 Factorisation for latest session from StudiesToday.com

Are the Class 8 Mathematics Chapter 14 Factorisation NCERT Solutions available for the latest session

Yes, the NCERT Solutions issued for Class 8 Mathematics Chapter 14 Factorisation have been made available here for latest academic session

How can I improve my scores by reading NCERT Solutions in Class 8 Mathematics Chapter 14 Factorisation

Regular revision of NCERT Solutions given on studiestoday for Class 8 subject Mathematics Chapter 14 Factorisation can help you to score better marks in exams

Are there any websites that offer free NCERT solutions for Chapter 14 Factorisation Class 8 Mathematics

Yes, studiestoday.com provides all latest NCERT Chapter 14 Factorisation Class 8 Mathematics solutions based on the latest books for the current academic session

Are NCERT solutions for Class 8 Chapter 14 Factorisation Mathematics available in multiple languages

Yes, NCERT solutions for Class 8 Chapter 14 Factorisation Mathematics are available in multiple languages, including English, Hindi

What questions are covered in NCERT Solutions for Chapter 14 Factorisation?

All questions given in the end of the chapter Chapter 14 Factorisation have been answered by our teachers