NCERT Solutions Class 8 Mathematics Chapter 9 Algebraic expressions and identities

NCERT Solutions Class 8 Mathematics Chapter 9 Algebraic expressions and identities have been provided below and is also available in Pdf for free download. The NCERT solutions for Class 8 Mathematics have been prepared as per the latest syllabus, NCERT books and examination pattern suggested in Class 8 by CBSE, NCERT and KVS. Questions given in NCERT book for Class 8 Mathematics are an important part of exams for Class 8 Mathematics and if answered properly can help you to get higher marks. Refer to more Chapter-wise answers for NCERT Class 8 Mathematics and also download more latest study material for all subjects. Chapter 9 Algebraic expressions and identities is an important topic in Class 8, please refer to answers provided below to help you score better in exams

Chapter 9 Algebraic expressions and identities Class 8 Mathematics NCERT Solutions

Class 8 Mathematics students should refer to the following NCERT questions with answers for Chapter 9 Algebraic expressions and identities in Class 8. These NCERT Solutions with answers for Class 8 Mathematics will come in exams and help you to score good marks

Chapter 9 Algebraic expressions and identities NCERT Solutions Class 8 Mathematics

Exercise 9.1

Q.1) Identify the terms, their coefficients for each of the following expressions:
i) 5π‘₯𝑦𝑧2 βˆ’ 3𝑧𝑦 ii) 1 + π‘₯ + π‘₯2 iii) 4π‘₯2𝑦2 βˆ’ 4π‘₯2𝑦2𝑧2 + 𝑧2
iv) 3 βˆ’ π‘π‘ž + π‘žπ‘Ÿ βˆ’ π‘Ÿπ‘   v) π‘₯/2 + π‘¦/2 βˆ’ π‘₯𝑦 vi) 0.3π‘Ž βˆ’ 06π‘Žπ‘ + 0.5𝑏
Sol.1) I) Terms : 5π‘₯𝑦𝑧2 And βˆ’3𝑧𝑦
Coefficient in 5π‘₯𝑦𝑧2 Is 5 and in βˆ’3𝑧𝑦 is βˆ’3.
ii) terms : 1, π‘₯ and π‘₯2
Coefficient of π‘₯ and coefficient of π‘₯2 in 1.
iii) terms : 4π‘₯2𝑦2, βˆ’4π‘₯2𝑦2𝑧2 and 𝑧2
Coefficient in 4π‘₯2𝑦2 is 4, coefficient of βˆ’4π‘₯2𝑦2𝑧2 is βˆ’4 and coefficient of 𝑧2 is 1.
iv) terms : 3, βˆ’π‘π‘ž, π‘žπ‘Ÿ, βˆ’π‘Ÿπ‘
Coefficient of – π‘π‘ž is βˆ’1, coeficient of π‘žπ‘Ÿ is 1 and coefficient of – π‘Ÿπ‘ is βˆ’1.
v) terms: π‘₯/2, π‘¦/2 and – π‘₯𝑦 
coefficient of π‘₯/2 is 1/2, coefficient of π‘¦/2 is βˆ’1 and coefficient of – π‘₯𝑦 is βˆ’1
vi) Terms: 0.3π‘Ž, βˆ’06π‘Žπ‘ and 0.5𝑏
coefficient of 0.3π‘Ž is 0.3, coeficient of βˆ’0.6π‘Žπ‘ is βˆ’0.6 and coefficient of 0.5𝑏 is 0.5.

Q.2) Classify the following polynomials as monomials, binomials, trinomials. Which polynomials do not fit in any of these three categories:
i) π‘₯ + 𝑦 ii) 1000 iii) π‘₯ + π‘₯2 + π‘₯3 + π‘₯4 iv) 7 + 𝑦 + 5π‘₯
v) 2𝑦 – 3𝑦2 vi) 2𝑦 – 3𝑦2 + 4𝑦3 vii) 5π‘₯ – 4𝑦 + 3π‘₯𝑦 viii) 4𝑧 – 15𝑧2
ix) π‘Žπ‘ + 𝑏𝑐 + 𝑐𝑑 + π‘‘π‘Ž x) π‘π‘žπ‘Ÿ xi) 𝑝2π‘ž + π‘π‘ž2 xii) 2𝑝 + 2π‘ž
Sol.2) (i) Since π‘₯ + 𝑦 contains two terms. Therefore it is binomial.
(ii) Since 1000 contains one term. Therefore it is monomial.
(iii) Since π‘₯ + π‘₯2 + π‘₯3 + π‘₯4 contains four terms. Therefore it is a polynomial and it does not fit in above three categories.
(iv) Since 7 + 𝑦 + 5π‘₯ contains three terms. Therefore it is trinomial.
(v) Since 2𝑦 – 3𝑦2 contains two terms. Therefore it is binomial.
(vi) Since 2𝑦 – 3𝑦2 + 4𝑦3 contains three terms. Therefore it is trinomial.
(vii) Since 5π‘₯ – 4𝑦 + 3π‘₯𝑦 contains three terms. Therefore it is trinomial.
(viii) Since 4𝑧 – 15𝑧2 contains two terms. Therefore it is binomial. -415 x z
(ix) Since π‘Žπ‘ + 𝑏𝑐 + 𝑐𝑑 + π‘‘π‘Ž contains four terms. Therefore it is a polynomial and it does not fit in above three categories.
(x) Since π‘π‘žπ‘Ÿ contains one term. Therefore it is monomial.
(xi) Since 𝑝2π‘ž + π‘π‘ž2 contains two terms. Therefore it is binomial.
(xii) Since 2𝑝 + 2π‘ž contains two terms. Therefore it is binomial.

Q.3) Add the following.
(i) π‘Žπ‘ – 𝑏𝑐, 𝑏𝑐 – π‘π‘Ž, π‘π‘Ž – π‘Žπ‘ (ii) π‘Ž – 𝑏 + π‘Žπ‘, 𝑏 – 𝑐 + 𝑏𝑐, 𝑐 – π‘Ž + π‘Žπ‘

(iii) 2𝑝 π‘ž – 3π‘π‘ž + 4, 5 + 7π‘π‘ž – 3𝑝 π‘ž (iv) 𝑙 + π‘š , π‘š + 𝑛 , 𝑛 + 𝑙 , 2π‘™π‘š + 2π‘šπ‘› + 2𝑛𝑙
Sol.3) (i) π‘Žπ‘ – 𝑏𝑐, 𝑏𝑐 – π‘π‘Ž, π‘π‘Ž – π‘Žπ‘
π‘Žπ‘ βˆ’ 𝑏𝑐
+𝑏𝑐 βˆ’ π‘π‘Ž
βˆ’π‘Žπ‘ + π‘π‘Ž
0 + 0 + 0
Hence, the sum is 0.

""NCERT-Solutions-Class-8-Mathematics-Algebraic-expressions-and-identities-2

Q.4) (a) Subtract 4π‘Ž βˆ’ 7π‘Žπ‘ + 3𝑏 + 12 from 12π‘Ž βˆ’ 9π‘Žπ‘ + 5𝑏 βˆ’ 3
(b) Subtract 3π‘₯𝑦 + 5𝑦𝑧 βˆ’ 7𝑧π‘₯ from 5π‘₯𝑦 βˆ’ 2𝑦𝑧 βˆ’ 2𝑧π‘₯ + 10π‘₯𝑦𝑧
(c) Subtract 4𝑝2π‘ž βˆ’ 3π‘π‘ž + 5π‘π‘ž2 βˆ’ 8𝑝 + 7π‘ž βˆ’ 10 from 18 βˆ’ 3𝑝 βˆ’ 11π‘ž + 5π‘π‘ž βˆ’ 2π‘π‘ž2 + 5𝑝2π‘ž
Sol.4)

""NCERT-Solutions-Class-8-Mathematics-Algebraic-expressions-and-identities-3

Exercise 9.2

Q.1) Find the product of the following pairs of monomials:
(i) 4 , 7𝑝 (ii) – 4𝑝, 7𝑝 (iii) βˆ’4𝑝, 7π‘π‘ž (iv) 4𝑝3, βˆ’3𝑝 (v) 4𝑝, 0
Sol.1) (i) 4 , 7𝑝
4 Γ— 7 𝑝 = 28𝑝
(ii) – 4𝑝, 7𝑝
4𝑝 Γ— 7𝑝 = βˆ’28𝑝2
(iii) βˆ’4𝑝, 7π‘π‘ž
4𝑝 Γ— 7π‘π‘ž = βˆ’28𝑝2π‘ž
(iv) 4𝑝3, βˆ’3𝑝
4𝑝3π‘ž Γ— βˆ’ 3𝑝 = βˆ’12𝑝4π‘ž
(v) 4𝑝, 0
4𝑝 Γ— 0 = 0

Q.2) Find the areas of rectangles with the following pairs of monomials as their lengths and breadths respectively: 
(𝑝, π‘ž); (10π‘š, 5𝑛); (20π‘₯2, 5𝑦2); (4π‘₯, 3π‘₯2); (3π‘šπ‘›, 4𝑛𝑝)
Sol.2) Area = Length Γ— breadth
(i) 𝑝 Γ— π‘ž = π‘π‘ž
(ii) 10π‘š Γ— 5𝑛 = 50π‘šπ‘›
(iii) 20π‘₯2 Γ— 5𝑦2 = 100π‘₯2𝑦2
(iv) 4π‘₯ Γ— 3π‘₯2 = 12π‘₯3
(v) 3π‘šπ‘› Γ— 4𝑛𝑝 = 12π‘šπ‘›2𝑝

Q.3) Complete the following table of products:

""NCERT-Solutions-Class-8-Mathematics-Algebraic-expressions-and-identities-4

Q.4) Obtain the volume of rectangular boxes with the following length, breadth and height respectively.
(i) 5π‘Ž, 3π‘Ž2, 7π‘Ž4 (ii) 2𝑝, 4π‘ž, 8π‘Ÿ (iii) π‘₯𝑦, 2π‘₯2𝑦, 2π‘₯𝑦2 (iv) π‘Ž, 2𝑏, 3𝑐
Sol.4) We know that,
Volume = Length Γ— Breadth Γ— Height
(i) Volume = 5π‘Ž Γ— 3π‘Ž2 Γ— 7π‘Ž4 = 5 Γ— 3 Γ— 7 Γ— π‘Ž Γ— π‘Ž2 Γ— π‘Ž4 = 105 π‘Ž7
(ii) Volume = 2𝑝 Γ— 4π‘ž Γ— 8π‘Ÿ = 2 Γ— 4 Γ— 8 Γ— 𝑝 Γ— π‘ž Γ— π‘Ÿ = 64π‘π‘žπ‘Ÿ
(iii) Volume = π‘₯𝑦 Γ— 2π‘₯2𝑦 Γ— 2π‘₯𝑦2 = 2 Γ— 2 Γ— π‘₯𝑦 Γ— π‘₯2𝑦 Γ— π‘₯𝑦2 = 4π‘₯4𝑦4
(iv) Volume = π‘Ž Γ— 2𝑏 Γ— 3𝑐 = 2 Γ— 3 Γ— π‘Ž Γ— 𝑏 Γ— 𝑐 = 6π‘Žπ‘π‘

Q.5) Obtain the product of
(i) π‘₯𝑦, 𝑦𝑧, 𝑧π‘₯ (ii) π‘Ž, βˆ’ π‘Ž2, π‘Ž3 (iii) 2, 4𝑦, 8𝑦2, 16𝑦3
(iv) π‘Ž, 2𝑏, 3𝑐, 6π‘Žπ‘π‘ (v) π‘š, βˆ’ π‘šπ‘›, π‘šπ‘›π‘
Sol.5) (i) π‘₯𝑦 Γ— 𝑦𝑧 Γ— 𝑧π‘₯ = π‘₯2𝑦2𝑧2
(ii) π‘Ž Γ— (βˆ’ π‘Ž2) Γ— π‘Ž3 = βˆ’ π‘Ž6
(iii) 2 Γ— 4𝑦 Γ— 8𝑦× 16𝑦3 = 2 Γ— 4 Γ— 8 Γ— 16 Γ— 𝑦 Γ— π‘¦2 Γ— 𝑦3 = 1024 𝑦6
(iv) π‘Ž Γ— 2𝑏 Γ— 3𝑐 Γ— 6π‘Žπ‘π‘ = 2 Γ— 3 Γ— 6 Γ— π‘Ž Γ— 𝑏 Γ— 𝑐 Γ— π‘Žπ‘π‘ = 36π‘Ž2 π‘2𝑐2
(v) π‘š Γ— (βˆ’ π‘šπ‘›) Γ— π‘šπ‘›π‘ = βˆ’ π‘š3𝑛2𝑝

Exercise 9.3

Q.1) Carry out the multiplication of the expressions in each of the following pairs.
(i) 4𝑝, π‘ž + π‘Ÿ (ii) π‘Žπ‘, π‘Ž βˆ’ 𝑏 (iii) π‘Ž + 𝑏, 7π‘Ž2𝑏2
(iv) π‘Ž2 β€“ 9, 4π‘Ž (v) π‘π‘ž + π‘žπ‘Ÿ + π‘Ÿπ‘, 0
Sol.1) (i) (4𝑝) Γ— (π‘ž + π‘Ÿ) = (4𝑝 Γ— π‘ž) + (4𝑝 Γ— π‘Ÿ) = 4π‘π‘ž + 4π‘π‘Ÿ
(ii) (π‘Žπ‘) Γ— (π‘Ž βˆ’ 𝑏) = (π‘Žπ‘ Γ— π‘Ž) + [π‘Žπ‘ Γ— (βˆ’ 𝑏)] = π‘Ž2𝑏 βˆ’ π‘Žπ‘2
(iii) (π‘Ž + 𝑏) Γ— (7π‘Ž2 π‘2) = (π‘Ž Γ— 7π‘Ž2 π‘2) + (𝑏 Γ— 7π‘Ž2 π‘2) = 7π‘Ž3𝑏2 + 7π‘Ž2𝑏3
(iv) (π‘Ž2 βˆ’ 9) Γ— (4π‘Ž) = (π‘Ž2 Γ— 4π‘Ž) + (βˆ’ 9) Γ— (4π‘Ž) = 4π‘Ž3 βˆ’ 36π‘Ž
(v) (π‘π‘ž + π‘žπ‘Ÿ + π‘Ÿπ‘) Γ— 0 = (π‘π‘ž Γ— 0) + (π‘žπ‘Ÿ Γ— 0) + (π‘Ÿπ‘ Γ— 0) = 0

Q.2) Complete the table

""NCERT-Solutions-Class-8-Mathematics-Algebraic-expressions-and-identities-5

""NCERT-Solutions-Class-8-Mathematics-Algebraic-expressions-and-identities-6

""NCERT-Solutions-Class-8-Mathematics-Algebraic-expressions-and-identities-7

Q.4) (a) Simplify 3π‘₯ (4π‘₯ βˆ’ 5) + 3 and find its values for (i) π‘₯ = 3, (ii) π‘₯ = 1/2
(b) π‘Ž (π‘Ž2 + π‘Ž + 1) + 5 and find its values for (i) π‘Ž = 0, (ii) π‘Ž = 1, (iii) π‘Ž = βˆ’ 1.
Sol.4) (a) 3π‘₯ (4π‘₯ βˆ’ 5) + 3 = 12π‘₯2 βˆ’ 15π‘₯ + 3
(i) For π‘₯ = 3, 12π‘₯2 βˆ’ 15π‘₯ + 3 = 12 (3)2 βˆ’ 15(3) + 3
= 108 βˆ’ 45 + 3
= 66
(ii) For π‘₯ = 1/2, 12π‘₯2 βˆ’ 15π‘₯ + 3 = 12 (1/2)2 βˆ’ 15 (1/2) + 3 
= 6 βˆ’ 15/2
= 12 βˆ’ 15/2 = βˆ’3/2

(b) π‘Ž (π‘Ž2 + π‘Ž + 1) + 5 = π‘Ž3 + π‘Ž2 + π‘Ž + 5
(i) For π‘Ž = 0, π‘Ž3 + π‘Ž2 + π‘Ž + 5 = 0 + 0 + 0 + 5 = 5
(ii) For π‘Ž = 1, π‘Ž3 + π‘Ž2 + π‘Ž + 5 = (1)3 + (1)2 + 1 + 5
= 1 + 1 + 1 + 5 = 8
(iii) For π‘Ž = βˆ’1, π‘Ž3 + π‘Ž2 + π‘Ž + 5 = (βˆ’1)3 + (βˆ’1)2 + (βˆ’1) + 5
= βˆ’ 1 + 1 βˆ’ 1 + 5 = 4

Q.5) (a) Add: 𝑝 (𝑝 βˆ’ π‘ž), π‘ž (π‘ž βˆ’ π‘Ÿ) and π‘Ÿ (π‘Ÿ βˆ’ 𝑝)
(b) Add: 2π‘₯ (𝑧 βˆ’ π‘₯ βˆ’ 𝑦) and 2𝑦 (𝑧 βˆ’ 𝑦 βˆ’ π‘₯)
(c) Subtract: 3𝑙 (𝑙 βˆ’ 4π‘š + 5𝑛) from 4𝑙 (10𝑛 βˆ’ 3π‘š + 2𝑙)
(d) Subtract: 3π‘Ž (π‘Ž + 𝑏 + 𝑐) βˆ’ 2𝑏 (π‘Ž βˆ’ 𝑏 + 𝑐) from 4𝑐 (βˆ’ π‘Ž + 𝑏 + 𝑐)
Sol.5) a) 𝑝(𝑝 βˆ’ π‘ž) + π‘ž(π‘ž βˆ’ π‘Ÿ) + π‘Ÿ(π‘Ÿ βˆ’ 𝑝)
= 𝑝2 βˆ’ π‘π‘ž + π‘ž2 βˆ’ π‘žπ‘Ÿ + π‘Ÿ2 βˆ’ π‘Ÿπ‘
= π‘2 + π‘ž2 + π‘Ÿ2 βˆ’ π‘π‘ž βˆ’ π‘žπ‘Ÿ βˆ’ π‘Ÿπ‘

b) 2π‘₯(𝑧 βˆ’ π‘₯ βˆ’ 𝑦) + 2𝑦(𝑧 βˆ’ 𝑦 βˆ’ π‘₯)
= 2π‘₯𝑧 βˆ’ 2π‘₯2 βˆ’ 2π‘₯𝑦 + 2𝑦𝑧 βˆ’ 2𝑦2 βˆ’ 2π‘₯𝑦
= 2π‘₯𝑧 βˆ’ 2π‘₯𝑦 βˆ’ 2π‘₯𝑦 + 2𝑦𝑧 βˆ’ 2π‘₯2 βˆ’ 2𝑦2
= βˆ’2π‘₯2 βˆ’ 2𝑦2 βˆ’ 4π‘₯𝑦 + 2𝑦𝑧 + 2𝑧π‘₯

c) 4𝑙 (10𝑛 βˆ’ 3π‘š + 2𝑙) βˆ’ 3𝑙 (𝑙 – 4π‘š + 5𝑛)
= 40𝑙𝑛 βˆ’ 12π‘™π‘š + 8𝑙2 βˆ’ 3𝑙2 + 12π‘™π‘š βˆ’ 15𝑙𝑛
= 8𝑙2 βˆ’ 3𝑙2 βˆ’ 12π‘™π‘š + 12π‘™π‘š + 40𝑙𝑛 βˆ’ 15𝑙𝑛
= 5𝑙2 + 25𝑙𝑛

d) 4𝑐(βˆ’π‘Ž + 𝑏 + 𝑐) βˆ’ [3π‘Ž(π‘Ž + 𝑏 + 𝑐) βˆ’ 2𝑏(π‘Ž βˆ’ 𝑏 + 𝑐)]
= βˆ’4π‘Žπ‘ + 4𝑏𝑐 + 4𝑐2 βˆ’ [3π‘Ž2 + 3π‘Žπ‘ + 3π‘Žπ‘ βˆ’ 2π‘Žπ‘ + 2𝑏2 βˆ’ 2𝑏𝑐
= βˆ’4π‘Žπ‘ + 4𝑏𝑐 + 4𝑐2 βˆ’ [3π‘Ž2 + 2𝑏2 + 3π‘Žπ‘ βˆ’ 2𝑏𝑐 + 3π‘Žπ‘ βˆ’ 2π‘Žπ‘]
= βˆ’4π‘Žπ‘ + 4𝑏𝑐 + 4𝑐2 βˆ’ [3π‘Ž2 + 2𝑏2 + π‘Žπ‘ + 3π‘Žπ‘ βˆ’ 2𝑏𝑐]
= βˆ’4π‘Žπ‘ + 4𝑏𝑐 + 4𝑐2 βˆ’ 3π‘Ž2 βˆ’ 2𝑏2 βˆ’ π‘Žπ‘ βˆ’ 3π‘Žπ‘ + 2𝑏𝑐
= βˆ’3π‘Ž2 βˆ’ 2𝑏2 + 4𝑐2 βˆ’ π‘Žπ‘ + 4𝑏𝑐 + 2𝑏𝑐 βˆ’ 4π‘Žπ‘ βˆ’ 3π‘Žπ‘
= βˆ’3π‘Ž2 βˆ’ 2𝑏2 + 4𝑐2 βˆ’ π‘Žπ‘ + 6𝑏𝑐 βˆ’ 7π‘Žπ‘

Exercise 9.4

Q.1) Multiply the binomials.
(i) (2π‘₯ + 5) and (4π‘₯ βˆ’ 3) (ii) (𝑦 βˆ’ 8) and (3𝑦 βˆ’ 4)
(iii) (2.5𝑙 βˆ’ 0.5π‘š) and (2.5𝑙 + 0.5π‘š) (iv) (π‘Ž + 3𝑏) and (π‘₯ + 5)
(v) (2π‘π‘ž + 3π‘ž2)and (3π‘π‘ž βˆ’ 2π‘ž2) (vi) (3/4 π‘Ž2 + 3𝑏2) and 4 (π‘Ž2 βˆ’2/3 𝑏2)
Sol.1) (i) (2π‘₯ + 5) Γ— (4π‘₯ βˆ’ 3)
= 2π‘₯ Γ— (4π‘₯ βˆ’ 3) + 5 Γ— (4π‘₯ βˆ’ 3)
= 8π‘₯2 βˆ’ 6π‘₯ + 20π‘₯ βˆ’ 15
= 8π‘₯2 + 14π‘₯ βˆ’ 15                 (By adding like terms)

(ii) (𝑦 βˆ’ 8) Γ— (3𝑦 βˆ’ 4)
= 𝑦 Γ— (3𝑦 βˆ’ 4) βˆ’ 8 Γ— (3𝑦 βˆ’ 4)
= 3𝑦2 βˆ’ 4𝑦 βˆ’ 24𝑦 + 32
= 3𝑦2 βˆ’ 28𝑦 + 32                  (By adding like terms)

(iii) (2.5𝑙 βˆ’ 0.5π‘š) Γ— (2.5𝑙 + 0.5π‘š)
= 2.5𝑙 Γ— (2.5𝑙 + 0.5π‘š) βˆ’ 0.5π‘š (2.5𝑙 + 0.5π‘š)
= 6.25𝑙2 + 1.25π‘™π‘š βˆ’ 1.25π‘™π‘š βˆ’ 0.25π‘š2
= 6.25π‘™βˆ’ 0.25π‘š2

(iv) (π‘Ž + 3𝑏) Γ— (π‘₯ + 5)
= π‘Ž Γ— (π‘₯ + 5) + 3𝑏 Γ— (π‘₯ + 5)
= π‘Žπ‘₯ + 5π‘Ž + 3𝑏π‘₯ + 15𝑏

(v) (2π‘π‘ž + 3π‘ž2) Γ— (3π‘π‘ž βˆ’ 2π‘ž2)
= 2π‘π‘ž Γ— (3π‘π‘ž βˆ’ 2π‘ž2) + 3π‘ž2 Γ— (3π‘π‘ž βˆ’ 2π‘ž2)
= 6𝑝2π‘ž2 βˆ’ 4π‘π‘ž3 + 9π‘π‘ž3 βˆ’ 6π‘ž4
= 6𝑝2π‘ž2 + 5π‘π‘ž2 βˆ’ 6π‘ž4

Q.2) Find the product.
(i) (5 βˆ’ 2π‘₯) (3 + π‘₯) (ii) (π‘₯ + 7𝑦) (7π‘₯ βˆ’ 𝑦)
(iii) (π‘Ž2 + 𝑏) (π‘Ž + 𝑏2) (iv) (𝑝2 βˆ’ π‘ž2) (2𝑝 + π‘ž)
Sol.2) (i) (5 βˆ’ 2π‘₯) (3 + π‘₯)
= 5 (3 + π‘₯) βˆ’ 2π‘₯ (3 + π‘₯)
= 15 + 5π‘₯ βˆ’ 6π‘₯ βˆ’ 2π‘₯2
= 15 βˆ’ π‘₯ βˆ’ 2π‘₯2

(ii) (π‘₯ + 7𝑦) (7π‘₯ βˆ’ 𝑦)
= π‘₯ (7π‘₯ βˆ’ 𝑦) + 7𝑦 (7π‘₯ βˆ’ 𝑦)
= 7π‘₯2 βˆ’ π‘₯𝑦 + 49π‘₯𝑦 βˆ’ 7𝑦2
= 7π‘₯2 + 48π‘₯𝑦 βˆ’ 7𝑦2

(iii) (π‘Ž2 + 𝑏) (π‘Ž + 𝑏2)
= π‘Ž2(π‘Ž + 𝑏2) + 𝑏 (π‘Ž + 𝑏2)
= π‘Ž3 + π‘Ž2𝑏2 + π‘Žπ‘ + 𝑏3

(iv) (𝑝2 βˆ’ π‘ž2) (2𝑝 + π‘ž)
= 𝑝2(2𝑝 + π‘ž) βˆ’ π‘ž2(2𝑝 + π‘ž)
= 2𝑝3 + 𝑝2π‘ž βˆ’ 2π‘π‘ž2 βˆ’ π‘ž3

Q.3) Simplify.
(i) (π‘₯2 βˆ’ 5) (π‘₯ + 5) + 25
(ii) (π‘Ž2 + 5) (𝑏3 + 3) + 5
(iii) (𝑑 + 𝑠2) (𝑑2 βˆ’ 𝑠)
(iv) (π‘Ž + 𝑏) (𝑐 βˆ’ 𝑑) + (π‘Ž βˆ’ 𝑏) (𝑐 + 𝑑) + 2 (π‘Žπ‘ + 𝑏𝑑)
(v) (π‘₯ + 𝑦) (2π‘₯ + 𝑦) + (π‘₯ + 2𝑦) (π‘₯ βˆ’ 𝑦)
(vi) (π‘₯ + 𝑦) (π‘₯2 βˆ’ π‘₯𝑦 + π‘¦2)
(vii) (1.5π‘₯ βˆ’ 4𝑦) (1.5π‘₯ + 4𝑦 + 3) βˆ’ 4.5π‘₯ + 12𝑦
(viii) (π‘Ž + 𝑏 + 𝑐) (π‘Ž + 𝑏 βˆ’ 𝑐)
Sol.3) (i) (π‘₯2 βˆ’ 5) (π‘₯ + 5) + 25
= π‘₯2 (π‘₯ + 5) βˆ’ 5 (π‘₯ + 5) + 25
= π‘₯3 + 5π‘₯2 βˆ’ 5π‘₯ βˆ’ 25 + 25
= π‘₯3 + 5π‘₯2 βˆ’ 5π‘₯

(ii) (π‘Ž2 + 5) (𝑏3 + 3) + 5
= π‘Ž2(𝑏3 + 3) + 5 (𝑏3 + 3) + 5
= π‘Ž2𝑏3 + 3π‘Ž2 + 5𝑏3 + 15 + 5
= π‘Ž2𝑏3 + 3π‘Ž2 + 5𝑏3 + 20

(iii) (𝑑 + π‘ 2) (𝑑2 βˆ’ 𝑠)
= 𝑑 (𝑑2 βˆ’ 𝑠) + 𝑠2 (𝑑2 βˆ’ 𝑠)
= 𝑑3 βˆ’ 𝑠𝑑 + π‘ 2𝑑2 βˆ’ 𝑠3

(iv) (π‘Ž + 𝑏) (𝑐 βˆ’ 𝑑) + (π‘Ž βˆ’ 𝑏) (𝑐 + 𝑑) + 2 (π‘Žπ‘ + 𝑏𝑑)
= π‘Ž (𝑐 βˆ’ 𝑑) + 𝑏 (𝑐 βˆ’ 𝑑) + π‘Ž (𝑐 + 𝑑) βˆ’ 𝑏 (𝑐 + 𝑑) + 2 (π‘Žπ‘ + 𝑏𝑑)
= π‘Žπ‘ βˆ’ π‘Žπ‘‘ + 𝑏𝑐 βˆ’ 𝑏𝑑 + π‘Žπ‘ + π‘Žπ‘‘ βˆ’ 𝑏𝑐 βˆ’ 𝑏𝑑 + 2π‘Žπ‘ + 2𝑏𝑑
= (π‘Žπ‘ + π‘Žπ‘ + 2π‘Žπ‘) + (π‘Žπ‘‘ βˆ’ π‘Žπ‘‘) + (𝑏𝑐 βˆ’ 𝑏𝑐) + (2𝑏𝑑 βˆ’ 𝑏𝑑 βˆ’ 𝑏𝑑)
= 4π‘Žπ‘

(v) (π‘₯ + 𝑦) (2π‘₯ + 𝑦) + (π‘₯ + 2𝑦) (π‘₯ βˆ’ 𝑦)
= π‘₯ (2π‘₯ + 𝑦) + 𝑦 (2π‘₯ + 𝑦) + π‘₯ (π‘₯ βˆ’ 𝑦) + 2𝑦 (π‘₯ βˆ’ 𝑦)
= 2π‘₯2 + π‘₯𝑦 + 2π‘₯𝑦 + π‘¦2 + π‘₯2 βˆ’ π‘₯𝑦 + 2π‘₯𝑦 βˆ’ 2𝑦2
= (2π‘₯2 + π‘₯2) + (𝑦2 βˆ’ 2𝑦2) + (π‘₯𝑦 + 2π‘₯𝑦 βˆ’ π‘₯𝑦 + 2π‘₯𝑦)
= 3π‘₯2 βˆ’ π‘¦2 + 4π‘₯𝑦

(vi) (π‘₯ + 𝑦) (π‘₯2 βˆ’ π‘₯𝑦 + π‘¦2)
= π‘₯ (π‘₯2 βˆ’ π‘₯𝑦 + π‘¦2) + 𝑦 (π‘₯2 βˆ’ π‘₯𝑦 + π‘¦2)
= π‘₯3 βˆ’ π‘₯2𝑦 + π‘₯𝑦2 + π‘₯2𝑦 βˆ’ π‘₯𝑦2 + 𝑦3
= π‘₯3 + π‘¦3 + (π‘₯𝑦2 βˆ’ π‘₯𝑦2) + (π‘₯2𝑦 βˆ’ π‘₯2𝑦)
= π‘₯3 + π‘¦3

(vii) (1.5π‘₯ βˆ’ 4𝑦) (1.5π‘₯ + 4𝑦 + 3) βˆ’ 4.5π‘₯ + 12𝑦
= 1.5π‘₯ (1.5π‘₯ + 4𝑦 + 3) βˆ’ 4𝑦 (1.5π‘₯ + 4𝑦 + 3) βˆ’ 4.5π‘₯ + 12𝑦
= 2.25 π‘₯2 + 6π‘₯𝑦 + 4.5π‘₯ βˆ’ 6π‘₯𝑦 βˆ’ 16𝑦2 βˆ’ 12𝑦 βˆ’ 4.5π‘₯ + 12𝑦
= 2.25 π‘₯2 + (6π‘₯𝑦 βˆ’ 6π‘₯𝑦) + (4.5π‘₯ βˆ’ 4.5π‘₯) βˆ’ 16𝑦2 + (12𝑦 βˆ’ 12𝑦)
= 2.25π‘₯2 βˆ’ 16𝑦2

(viii) (π‘Ž + 𝑏 + 𝑐) (π‘Ž + 𝑏 βˆ’ 𝑐)
= π‘Ž (π‘Ž + 𝑏 βˆ’ 𝑐) + 𝑏 (π‘Ž + 𝑏 βˆ’ 𝑐) + 𝑐 (π‘Ž + 𝑏 βˆ’ 𝑐)
= π‘Ž2 + π‘Žπ‘ βˆ’ π‘Žπ‘ + π‘Žπ‘ + 𝑏2 βˆ’ 𝑏𝑐 + π‘π‘Ž + 𝑏𝑐 βˆ’ π‘2
= π‘Ž2 + 𝑏2 βˆ’ 𝑐2 + (π‘Žπ‘ + π‘Žπ‘) + (𝑏𝑐 βˆ’ 𝑏𝑐) + (π‘π‘Ž βˆ’ π‘π‘Ž)
= π‘Ž22 + π‘2 βˆ’ π‘2 + 2π‘Žπ‘

Exercise 9.5

Q.1) Use a suitable identity to get each of the following products.
(i) (π‘₯ + 3) (π‘₯ + 3) (ii) (2𝑦 + 5) (2𝑦 + 5) (iii) (2π‘Ž βˆ’ 7) (2π‘Ž βˆ’ 7)
(iv) (3π‘Ž βˆ’1/2) (3π‘Ž βˆ’ 1/2) (v) (1.1π‘š βˆ’ 0.4) (1.1 π‘š + 0.4) (vi) (π‘Ž2 + 𝑏2) (βˆ’ π‘Ž2 + 𝑏2)
(vii) (6π‘₯ βˆ’ 7) (6π‘₯ + 7) (viii) (βˆ’ π‘Ž + 𝑐) (βˆ’ π‘Ž + 𝑐) (ix) (π‘₯/2 + 3𝑦/4) (π‘₯/2 + 3𝑦/4)
(x) (7π‘Ž βˆ’ 9𝑏) (7π‘Ž βˆ’ 9𝑏)
Sol.1) The products will be as follows.
(i) (π‘₯ + 3) (π‘₯ + 3)
= (π‘₯ + 3)2
= (π‘₯)2 + 2(π‘₯) (3) + (3)2 [(π‘Ž + 𝑏)2
= π‘Ž2 + 2π‘Žπ‘ + 𝑏2]
= π‘₯2 + 6π‘₯ + 9

(ii) (2𝑦 + 5) (2𝑦 + 5) = (2𝑦 + 5)2
= (2𝑦)2 + 2(2𝑦) (5) + (5)2 [(π‘Ž + 𝑏)2
= π‘Ž2 + 2π‘Žπ‘ + 𝑏2]
= 4𝑦+ 20𝑦 + 25

(iii) (2π‘Ž βˆ’ 7) (2π‘Ž βˆ’ 7) = (2π‘Ž βˆ’ 7)2
= (2π‘Ž)2 βˆ’ 2(2π‘Ž) (7) + (7)2 [(π‘Ž βˆ’ 𝑏)2
= π‘Ž2 βˆ’ 2π‘Žπ‘ + 𝑏2]
= 4π‘Ž2 βˆ’ 28π‘Ž + 49

(iv) (3π‘Ž βˆ’1/2) (3π‘Ž βˆ’ 1/2)
= (3π‘Ž βˆ’ 12)2
= (3π‘Ž)2 βˆ’ 2 Γ— 3π‘Ž Γ— 1/2 + (1/2)2
[(π‘Ž βˆ’ 𝑏)2
= π‘Ž2 βˆ’ 2π‘Žπ‘ + π‘2]
= 9π‘Ž2 βˆ’ 3π‘Ž + 14

(v) (1.1π‘š βˆ’ 0.4) (1.1 π‘š + 0.4)
= (1.1π‘š)2 βˆ’ (0.4)2 [(π‘Ž + 𝑏) (π‘Ž βˆ’ 𝑏) = π‘Ž2 βˆ’ π‘22]
= 1.21π‘š2 βˆ’ 0.16

(vi) (π‘Ž2 + 𝑏2) (βˆ’ π‘Ž2 + π‘2)
= (𝑏2 + π‘Ž2) (𝑏2 βˆ’ π‘Ž2)
= (𝑏2)2 βˆ’ (π‘Ž2)2 [(π‘Ž + 𝑏) (π‘Ž βˆ’ 𝑏) = π‘Žβˆ’ π‘2]
= 𝑏4 βˆ’ π‘Ž4

(vii) (6π‘₯ βˆ’ 7) (6π‘₯ + 7)
= (6π‘₯)2 βˆ’ (7)2 [(π‘Ž + 𝑏) (π‘Ž βˆ’ 𝑏) = π‘Ž2 βˆ’ π‘2]
= 36π‘₯2 β€“ 49

(viii) (βˆ’ π‘Ž + 𝑐) (βˆ’ π‘Ž + 𝑐)
= (βˆ’ π‘Ž + 𝑐)2
= (βˆ’ π‘Ž)2 + 2(βˆ’ π‘Ž) (𝑐) + (𝑐)2            [(π‘Ž + 𝑏)2= π‘Ž2 + 2π‘Žπ‘ + 𝑏2]
= π‘Ž2 βˆ’ 2π‘Žπ‘ + 𝑐2

""NCERT-Solutions-Class-8-Mathematics-Algebraic-expressions-and-identities-9

(x) (7π‘Ž βˆ’ 9𝑏) (7π‘Ž βˆ’ 9𝑏)
= (7π‘Ž βˆ’ 9𝑏)2
= (7π‘Ž)2 βˆ’ 2(7π‘Ž)(9𝑏) + (9𝑏)2 [(π‘Ž βˆ’ 𝑏)2
= π‘Ž2 βˆ’ 2π‘Žπ‘ + π‘2]
= 49π‘Ž2 βˆ’ 126π‘Žπ‘ + 81𝑏2

Q.2) Use the identity (π‘₯ + π‘Ž) (π‘₯ + 𝑏) = π‘₯2 + (π‘Ž + 𝑏)π‘₯ + π‘Žπ‘ to find the following products.
(i) (π‘₯ + 3) (π‘₯ + 7) (ii) (4π‘₯ + 5) (4π‘₯ + 1) (iii) (4π‘₯ βˆ’ 5) (4π‘₯ βˆ’ 1)
(iv) (4π‘₯ + 5) (4π‘₯ βˆ’ 1) (v) (2π‘₯ + 5𝑦) (2π‘₯ + 3𝑦) (vi) (2π‘Ž2 + 9) (2π‘Ž2 + 5)
(vii) (π‘₯𝑦𝑧 βˆ’ 4) (π‘₯𝑦𝑧 βˆ’ 2)
Sol.2) The products will be as follows.
(i) (π‘₯ + 3) (π‘₯ + 7)
= π‘₯2 + (3 + 7) π‘₯ + (3) (7)
= π‘₯2 + 10π‘₯ + 21

(ii) (4π‘₯ + 5) (4π‘₯ + 1)
= (4π‘₯)2 + (5 + 1) (4π‘₯) + (5) (1)
= 16π‘₯2 + 24π‘₯ + 5

(iii) (4π‘₯ – 5)(4π‘₯ – 1)
= (4π‘₯)2 + (βˆ’5 βˆ’ 1)4π‘₯ + (βˆ’5) Γ— (βˆ’1)
= 16π‘₯2 + (βˆ’6) Γ— 4π‘₯ + 5 = 16π‘₯2 βˆ’ 24π‘₯ + 5

(iv) (4π‘₯ + 5)(4π‘₯ – 1)
= (4π‘₯)2 + {5 Γ— (βˆ’1)} Γ— 4π‘₯ + 5 Γ— (βˆ’1)
= 16π‘₯2 + (5 βˆ’ 1) Γ— 4π‘₯ βˆ’ 5
= 16π‘₯2 + 4 Γ— 4π‘₯ βˆ’ 5
= 16π‘₯2 + 16π‘₯ βˆ’ 5

(v) (2π‘₯ + 5𝑦) (2π‘₯ + 3𝑦)
= (2π‘₯)2 + (5𝑦 + 3𝑦) (2π‘₯) + (5𝑦) (3𝑦)
= 4π‘₯2 + 16π‘₯𝑦 + 15𝑦2

(vi) (2π‘Ž2 + 9) (2π‘Ž2 + 5)
= (2π‘Ž2)2 + (9 + 5) (2π‘Ž2) + (9) (5)
= 4π‘Ž4 + 28π‘Ž2 + 45

(vii) (π‘₯𝑦𝑧 βˆ’ 4) (π‘₯𝑦𝑧 βˆ’ 2)
= (π‘₯𝑦𝑧)2 + (βˆ’4 βˆ’ 2) Γ— π‘₯𝑦𝑧 + (βˆ’4) Γ— (βˆ’2)
= π‘₯2𝑦2𝑧2 βˆ’ 6π‘₯𝑦𝑧 + 8

Q.3) Find the following squares by suing the identities.
(i) (𝑏 βˆ’ 7)2
(ii) (π‘₯𝑦 + 3𝑧)2
(iii) (6π‘₯2 βˆ’ 5𝑦)2 (iv) (2/3 π‘š + 3/2 𝑛)2
(v) (0.4𝑝 βˆ’ 0.5π‘ž)2
(vi) (2π‘₯𝑦 + 5𝑦)2
Sol.3) (i) (𝑏 βˆ’ 7)22
= (𝑏)2 βˆ’ 2(𝑏) (7) + (7)2 [(π‘Ž βˆ’ 𝑏)2
= π‘Ž2 βˆ’ 2π‘Žπ‘ + 𝑏2
= 𝑏2 βˆ’ 14𝑏 + 49

(ii) (π‘₯𝑦 + 3𝑧)22
= (π‘₯𝑦)2 + 2(π‘₯𝑦) (3𝑧) + (3𝑧)2 [(π‘Ž + 𝑏)2
= π‘Ž2 + 2π‘Žπ‘ + 𝑏2]
= π‘₯2𝑦2 + 6π‘₯𝑦𝑧 + 9𝑧2

(iii) (6π‘₯2 βˆ’ 5𝑦)2
= (6π‘₯2)2 βˆ’ 2(6π‘₯2) (5𝑦) + (5𝑦)2 [(π‘Ž βˆ’ 𝑏)2
= π‘Ž2 βˆ’ 2π‘Žπ‘ + 𝑏2]
= 36π‘₯2 βˆ’ 60π‘₯2𝑦 + 25𝑦2

""NCERT-Solutions-Class-8-Mathematics-Algebraic-expressions-and-identities-8

(v) (0.4𝑝 βˆ’ 0.5π‘ž)2
= (0.4𝑝)2 βˆ’ 2 (0.4𝑝) (0.5π‘ž) + (0.5π‘ž)2[(π‘Ž βˆ’ 𝑏)2
= π‘Ž2 βˆ’ 2π‘Žπ‘ + b2]
= 0.16𝑝2 βˆ’ 0.4π‘π‘ž + 0.25q2
(vi) (2π‘₯𝑦 + 5𝑦)2
= (2π‘₯𝑦)2 + 2(2π‘₯𝑦) (5𝑦) + (5𝑦)2 [(π‘Ž + 𝑏)2
= π‘Ž2 + 2π‘Žπ‘ + b2]
= 4x2𝑦2 + 20π‘₯𝑦2 + 25𝑦2

Q.4) Simplify.
(i) (π‘Ž2 βˆ’ b2)2
(ii) (2π‘₯ + 5)2 βˆ’ (2π‘₯ βˆ’ 5)2
(iii) (7π‘š βˆ’ 8𝑛)2 + (7π‘š + 8𝑛)2
(iv) (4π‘š + 5𝑛)2 + (5π‘š + 4𝑛)2
(v) (2.5𝑝 βˆ’ 1.5π‘ž)2 βˆ’ (1.5𝑝 βˆ’ 2.5π‘ž)2 (vi) (π‘Žπ‘ + 𝑏𝑐)2 βˆ’ 2π‘Žb2𝑐
(vii) (m2 βˆ’ 𝑛2π‘š)2 + 2π‘š3𝑛2
Sol.4) (i) (π‘Ž2 βˆ’ b2)2
= (π‘Ž2)2 βˆ’ 2(π‘Ž2) (b2) + (b2)2                                                     [(a βˆ’ b)2 = π‘Ž2 βˆ’ 2ab + b2 ]
= a4 βˆ’ π‘Ž2b2 + b4
(ii) (2x +5)2 βˆ’ (2x βˆ’ 5)2
= (2x)2 + 2(2x) (5) + (5)2 βˆ’ [(2x)2 βˆ’ 2(2x) (5) + (5)2]              [(a βˆ’ b)2 = π‘Ž2 βˆ’ 2ab + b2]
[(a + b)2 = π‘Ž2 + 2ab + b2]
= 4x2 + 20x + 25 βˆ’ [4x2 βˆ’ 20x + 25]
= 4x2 + 20x + 25 βˆ’ 4x2 + 20x βˆ’ 25 = 40x

(iii) (7m βˆ’ 8n)2 + (7m + 8n)2
= (7m)2 βˆ’ 2(7m) (8n) + (8n)2 + (7m)2 + 2(7m) (8n) + (8n)2       [(a βˆ’ b)2 = π‘Ž2 βˆ’ 2ab + b2 and
(a + b)2 = π‘Ž2 + 2ab + b2]
= 49m2 βˆ’ 112mn + 64𝑛2 + 49m2 + 112mn + 64𝑛2
= 98m2 + 128𝑛2

(iv) (4m + 5n)2 + (5m + 4n)2
= (4m)2 + 2(4m) (5n) + (5n)2 + (5m)2 + 2(5m) (4n) + (4n)2        [(a + b)2 = π‘Ž2 + 2ab + b2]
= 16m2 + 40mn + 25𝑛2 + 25m2 + 40mn + 16𝑛2
= 41m2 + 80mn + 41𝑛2

(v) (2.5p βˆ’ 1.5q)2 βˆ’ (1.5p βˆ’ 2.5q)2
= (2.5p)2 βˆ’ 2(2.5p) (1.5q) + (1.5q)2 βˆ’ [(1.5p)2 βˆ’ 2(1.5p)(2.5q) + (2.5q)2]              [(a βˆ’ b)2 = π‘Ž2 βˆ’ 2ab + b2 ]
= 6.25𝑝2 βˆ’ 7.5pq + 2.25q2 βˆ’ [2.25𝑝2 βˆ’ 7.5pq + 6.25q2]
= 6.25𝑝2 βˆ’ 7.5pq + 2.25q2 βˆ’ 2.25𝑝2 + 7.5pq βˆ’ 6.25q2]
= 4𝑝2 βˆ’ 4q2

(vi) (ab + bc)2 βˆ’ 2ab2c
= (ab)2 + 2(ab)(bc) + (bc)2 βˆ’ 2ab2c                         [(a + b)2 = π‘Ž2 + 2ab + b2 ]
= π‘Ž2b2 + 2ab2c + b2c2 βˆ’ 2ab2c
= π‘Ž2b2 + b2c2

(vii) (m2 βˆ’ 𝑛2m)2 + 2π‘š3𝑛2
= (m2)2 βˆ’ 2(m2) (𝑛2m) + (𝑛2m)2 + 2π‘š3𝑛2              [(a βˆ’ b)2 = π‘Ž2 βˆ’ 2ab + b2 ]
= m4 βˆ’ 2π‘š3𝑛2 + n4m2 + 2π‘š3𝑛2
= m4 + n4m2

Q.5) `Show that
(i) (3π‘₯ + 7)2 βˆ’ 84π‘₯ = (3π‘₯ βˆ’ 7)2
(ii) (9𝑝 βˆ’ 5π‘ž)2 + 180π‘π‘ž = (9𝑝 + 5π‘ž)2

(iv) (4π‘π‘ž + 3π‘ž)2 βˆ’ (4π‘π‘ž βˆ’ 3π‘ž)2 = 48𝑝q2
(v) (π‘Ž βˆ’ 𝑏) (π‘Ž + 𝑏) + (𝑏 βˆ’ 𝑐) (𝑏 + 𝑐) + (𝑐 βˆ’ π‘Ž) (𝑐 + π‘Ž) = 0
Sol.5)
(i) L.H.S = (3x + 7)2 βˆ’ 84x
= (3x)2 + 2(3x)(7) + (7)2 βˆ’ 84x
= 9x2 + 42x + 49 βˆ’ 84x
= 9x2 βˆ’ 42x + 49
R.H.S = (3x βˆ’ 7)2 = (3x)2 βˆ’ 2(3x)(7) +(7)2
= 9x2 βˆ’ 42x + 49
L.H.S = R.H.S
(ii) L.H.S = (9p βˆ’ 5q)2 + 180pq
= (9p)2 βˆ’ 2(9p)(5q) + (5q)2 βˆ’ 180pq
= 81p2 βˆ’ 90pq + 25q2 + 180pq
= 81p2 + 90pq + 25q2
R.H.S = (9p + 5q)2
= (9p)2 + 2(9p)(5q) + (5q)2
= 81p2 + 90pq + 25q2q2
L.H.S = R.H.S

""NCERT-Solutions-Class-8-Mathematics-Algebraic-expressions-and-identities

(iv) L.H.S = (4pq + 3q)2 βˆ’ (4pq βˆ’ 3q)2
= (4pq)2 + 2(4pq)(3q) + (3q)2 βˆ’ [(4pq)2 βˆ’ 2(4pq) (3q) + (3q)2]
= 16p2q2 + 24pq2 + 9q2 βˆ’ [16p2q2 βˆ’ 24pq2 + 9q2]
= 16p2q2 + 24pq2 + 9q2 βˆ’16p2q2 + 24pq2 βˆ’ 9q2
= 48pq2 = R.H.S

(v) L.H.S = (a βˆ’ b) (a + b) + (b βˆ’ c) (b + c) + (c βˆ’ a) (c + a)
= (a2 βˆ’ b2) + (b2 βˆ’ c2) + (c2 βˆ’ a2) = 0 = R.H.S

Q.6) Using identities, evaluate.
(i) 712 (ii) 992 (iii) 1022 (iv) 9982 (v) (5.2)2 (vi) 297 Γ— 303
(vii) 78 Γ— 82 (viii) 8.92 (ix) 1.05 Γ— 9.5
Sol.6) (i) 712 = (70 + 1)2
= (70)2 + 2(70) (1) + (1)2              [(π‘Ž + 𝑏)2= a2 + 2π‘Žπ‘ + b2 ]
= 4900 + 140 + 1 = 5041

(ii) 992 = (100 βˆ’ 1)2
= (100)2 βˆ’ 2(100) (1) + (1)2           [(π‘Ž βˆ’ 𝑏)= π‘Ž2 βˆ’ 2π‘Žπ‘ + b2 ]
= 10000 βˆ’ 200 + 1 = 9801

(𝑖𝑖𝑖)1022 = (100 + 2)2
= (100)2 + 2(100)(2) + (2)2             [(π‘Ž + 𝑏)= a2 + 2π‘Žπ‘ + b2 ]
= 10000 + 400 + 4 = 10404

(𝑖𝑣)9982 = (1000 βˆ’ 2)2
= (1000)2 βˆ’ 2(1000)(2) + (2)2           [(π‘Ž βˆ’ 𝑏)= a2 βˆ’ 2π‘Žπ‘ + b2 ]
= 1000000 βˆ’ 4000 + 4 = 996004

(𝑣) (5.2)2 = (5.0 + 0.2)2
= (5.0)2 + 2(5.0) (0.2) + (0.2)2         [(π‘Ž + 𝑏)2 = a2 + 2π‘Žπ‘ + b2 ]
= 25 + 2 + 0.04 = 27.04

(𝑣𝑖) 297 Γ— 303 = (300 βˆ’ 3) Γ— (300 + 3)
= (300)2 βˆ’ (3)2                                  [(π‘Ž + 𝑏) (π‘Ž βˆ’ 𝑏) = a2 βˆ’ b2
= 90000 βˆ’ 9 = 89991

(𝑣𝑖𝑖) 78 Γ— 82 = (80 βˆ’ 2) (80 + 2)
= (80)2 βˆ’ (2)2                                    [(π‘Ž + 𝑏) (π‘Ž βˆ’ 𝑏) = a2 βˆ’ b2]
= 6400 βˆ’ 4 = 6396

(𝑣𝑖𝑖𝑖) 8.92 = (9.0 βˆ’ 0.1)2
= (9.0)2 βˆ’ 2(9.0) (0.1) + (0.1)2         [(π‘Ž βˆ’ 𝑏)2 = a2 βˆ’ 2π‘Žπ‘ + b2]
= 81 βˆ’ 1.8 + 0.01 = 79.21

(𝑖π‘₯) 1.05 Γ— 9.5 = 1.05 Γ— 0.95 Γ— 10
= (1 + 0.05) (1 βˆ’ 0.05) Γ— 10
= [(1)2 βˆ’ (0.05)2] Γ— 10
= [1 βˆ’ 0.0025] Γ— 10                         [(π‘Ž + 𝑏) (π‘Ž βˆ’ 𝑏) = a2 βˆ’ b2]
= 0.9975 Γ— 10 = 9.975

Q.7) Using a2 βˆ’ b2 = (π‘Ž + 𝑏) (π‘Ž βˆ’ 𝑏), find
(i) 512 β€“ 492 (ii) (1.02)2 β€“ (0.98)2 (iii) 1532 βˆ’ 1472 (iv) 12.12 βˆ’ 7.92
Sol.7) (𝑖) 512 βˆ’ 492
= (51 + 49) (51 βˆ’ 49)
= (100) (2) = 200

(𝑖𝑖)(1.02)2 βˆ’ (0.98)2
= (1.02 + 0.98) (1.02 βˆ’ 0.98)
= (2) (0.04) = 0.08

(𝑖𝑖𝑖)1532 βˆ’ 1472
= (153 + 147) (153 βˆ’ 147)
= (300) (6) = 1800

(𝑖𝑣)12.12 βˆ’ 7.92
= (12.1 + 7.9) (12.1 βˆ’ 7.9)
= (20.0) (4.2) = 84

Q.8) Using (π‘₯ + π‘Ž) (π‘₯ + 𝑏) = π‘₯2 + (π‘Ž + 𝑏) π‘₯ + π‘Žπ‘, find
(i) 103 Γ— 104 (ii) 5.1 Γ— 5.2 (iii) 103 Γ— 98 (iv) 9.7 Γ— 9.8
Sol.8) (𝑖) 103 Γ— 104
= (100 + 3) (100 + 4)
= (100)2 + (3 + 4) (100) + (3) (4)
= 10000 + 700 + 12 = 10712

(𝑖𝑖) 5.1 Γ— 5.2
= (5 + 0.1) (5 + 0.2)
= (5)2 + (0.1 + 0.2) (5) + (0.1) (0.2)
= 25 + 1.5 + 0.02 = 26.52

(𝑖𝑖𝑖) 103 Γ— 98
= (100 + 3) (100 βˆ’ 2)
= (100)2 + [3 + (βˆ’ 2)] (100) + (3) (βˆ’ 2)
= 10000 + 100 βˆ’ 6
= 10094

(𝑖𝑣) 9.7 Γ— 9.8
= (10 βˆ’ 0.3) (10 βˆ’ 0.2)
= (10)2 + [(βˆ’ 0.3) + (βˆ’ 0.2)] (10) + (βˆ’ 0.3) (βˆ’ 0.2)
= 100 + (βˆ’ 0.5)10 + 0.06 = 100.06 βˆ’ 5 = 95.06

 

NCERT Solutions Class 8 Mathematics Chapter 9 Algebraic expressions and identities

NCERT Solutions Class 8 Mathematics Chapter 9 Algebraic expressions and identities is available on our website www.studiestoday.com for free download in Pdf. You can read the solutions to all questions given in your Class 8 Mathematics textbook online or you can easily download them in pdf.

Chapter 9 Algebraic expressions and identities Class 8 Mathematics NCERT Solutions

The Class 8 Mathematics NCERT Solutions Chapter 9 Algebraic expressions and identities are designed in a way that will help to improve the overall understanding of students. The answers to each question in Chapter 9 Algebraic expressions and identities of Mathematics Class 8 has been designed based on the latest syllabus released for the current year. We have also provided detailed explanations for all difficult topics in Chapter 9 Algebraic expressions and identities Class 8 chapter of Mathematics so that it can be easier for students to understand all answers.

NCERT Solutions Chapter 9 Algebraic expressions and identities Class 8 Mathematics

Class 8 Mathematics NCERT Solutions Chapter 9 Algebraic expressions and identities is a really good source using which the students can get more marks in exams. The same questions will be coming in your Class 8 Mathematics exam. Learn the Chapter 9 Algebraic expressions and identities questions and answers daily to get a higher score. Chapter 9 Algebraic expressions and identities of your Mathematics textbook has a lot of questions at the end of chapter to test the students understanding of the concepts taught in the chapter. Students have to solve the questions and refer to the step-by-step solutions provided by Mathematics teachers on studiestoday to get better problem-solving skills.

Chapter 9 Algebraic expressions and identities Class 8 NCERT Solution Mathematics

These solutions of Chapter 9 Algebraic expressions and identities NCERT Questions given in your textbook for Class 8 Mathematics have been designed to help students understand the difficult topics of Mathematics in an easy manner. These will also help to build a strong foundation in the Mathematics. There is a combination of theoretical and practical questions relating to all chapters in Mathematics to check the overall learning of the students of Class 8.

Class 8 NCERT Solution Mathematics Chapter 9 Algebraic expressions and identities

NCERT Solutions Class 8 Mathematics Chapter 9 Algebraic expressions and identities detailed answers are given with the objective of helping students compare their answers with the example. NCERT solutions for Class 8 Mathematics provide a strong foundation for every chapter. They ensure a smooth and easy knowledge of Revision notes for Class 8 Mathematics. As suggested by the HRD ministry, they will perform a major role in JEE. Students can easily download these solutions and use them to prepare for upcoming exams and also go through the Question Papers for Class 8 Mathematics to clarify all doubts

Where can I download latest NCERT Solutions for Class 8 Mathematics Chapter 9 Algebraic expressions and identities

You can download the NCERT Solutions for Class 8 Mathematics Chapter 9 Algebraic expressions and identities for latest session from StudiesToday.com

Can I download the NCERT Solutions of Class 8 Mathematics Chapter 9 Algebraic expressions and identities in Pdf

Yes, you can click on the link above and download NCERT Solutions in PDFs for Class 8 for Mathematics Chapter 9 Algebraic expressions and identities

Are the Class 8 Mathematics Chapter 9 Algebraic expressions and identities NCERT Solutions available for the latest session

Yes, the NCERT Solutions issued for Class 8 Mathematics Chapter 9 Algebraic expressions and identities have been made available here for latest academic session

How can I download the Chapter 9 Algebraic expressions and identities Class 8 Mathematics NCERT Solutions

You can easily access the links above and download the Chapter 9 Algebraic expressions and identities Class 8 NCERT Solutions Mathematics for each chapter

Is there any charge for the NCERT Solutions for Class 8 Mathematics Chapter 9 Algebraic expressions and identities

There is no charge for the NCERT Solutions for Class 8 Mathematics Chapter 9 Algebraic expressions and identities you can download everything free

How can I improve my scores by reading NCERT Solutions in Class 8 Mathematics Chapter 9 Algebraic expressions and identities

Regular revision of NCERT Solutions given on studiestoday for Class 8 subject Mathematics Chapter 9 Algebraic expressions and identities can help you to score better marks in exams

Are there any websites that offer free NCERT solutions for Chapter 9 Algebraic expressions and identities Class 8 Mathematics

Yes, studiestoday.com provides all latest NCERT Chapter 9 Algebraic expressions and identities Class 8 Mathematics solutions based on the latest books for the current academic session

Can NCERT solutions for Class 8 Mathematics Chapter 9 Algebraic expressions and identities be accessed on mobile devices

Yes, studiestoday provides NCERT solutions for Chapter 9 Algebraic expressions and identities Class 8 Mathematics in mobile-friendly format and can be accessed on smartphones and tablets.

Are NCERT solutions for Class 8 Chapter 9 Algebraic expressions and identities Mathematics available in multiple languages

Yes, NCERT solutions for Class 8 Chapter 9 Algebraic expressions and identities Mathematics are available in multiple languages, including English, Hindi

What questions are covered in NCERT Solutions for Chapter 9 Algebraic expressions and identities?

All questions given in the end of the chapter Chapter 9 Algebraic expressions and identities have been answered by our teachers

Are NCERT Solutions enough to score well in Mathematics Class 8 exams?

NCERT solutions for Mathematics Class 8 can help you to build a strong foundation, also access free study material for Class 8 provided on our website.

How can I improve my problem-solving skills in Class 8 Mathematics using NCERT Solutions?

Carefully read the solutions for Class 8 Mathematics, understand the concept and the steps involved in each solution and then practice more by using other questions and solutions provided by us