NCERT Solutions Class 8 Mathematics Chapter 9 Algebraic expressions and identities

NCERT Solutions Class 8 Mathematics Chapter 9 Algebraic expressions and identities have been provided below and is also available in Pdf for free download. The NCERT solutions for Class 8 Mathematics have been prepared as per the latest syllabus, NCERT books and examination pattern suggested in Class 8 by CBSE, NCERT and KVS. Questions given in NCERT book for Class 8 Mathematics are an important part of exams for Class 8 Mathematics and if answered properly can help you to get higher marks. Refer to more Chapter-wise answers for NCERT Class 8 Mathematics and also download more latest study material for all subjects. Chapter 9 Algebraic expressions and identities is an important topic in Class 8, please refer to answers provided below to help you score better in exams

Chapter 9 Algebraic expressions and identities Class 8 Mathematics NCERT Solutions

Class 8 Mathematics students should refer to the following NCERT questions with answers for Chapter 9 Algebraic expressions and identities in Class 8. These NCERT Solutions with answers for Class 8 Mathematics will come in exams and help you to score good marks

Chapter 9 Algebraic expressions and identities NCERT Solutions Class 8 Mathematics

Exercise 9.1

Q.1) Identify the terms, their coefficients for each of the following expressions:
i) 5π‘₯𝑦𝑧2 βˆ’ 3𝑧𝑦 ii) 1 + π‘₯ + π‘₯2 iii) 4π‘₯2𝑦2 βˆ’ 4π‘₯2𝑦2𝑧2 + 𝑧2
iv) 3 βˆ’ π‘π‘ž + π‘žπ‘Ÿ βˆ’ π‘Ÿπ‘   v) π‘₯/2 + π‘¦/2 βˆ’ π‘₯𝑦 vi) 0.3π‘Ž βˆ’ 06π‘Žπ‘ + 0.5𝑏
Sol.1) I) Terms : 5π‘₯𝑦𝑧2 And βˆ’3𝑧𝑦
Coefficient in 5π‘₯𝑦𝑧2 Is 5 and in βˆ’3𝑧𝑦 is βˆ’3.
ii) terms : 1, π‘₯ and π‘₯2
Coefficient of π‘₯ and coefficient of π‘₯2 in 1.
iii) terms : 4π‘₯2𝑦2, βˆ’4π‘₯2𝑦2𝑧2 and 𝑧2
Coefficient in 4π‘₯2𝑦2 is 4, coefficient of βˆ’4π‘₯2𝑦2𝑧2 is βˆ’4 and coefficient of 𝑧2 is 1.
iv) terms : 3, βˆ’π‘π‘ž, π‘žπ‘Ÿ, βˆ’π‘Ÿπ‘
Coefficient of – π‘π‘ž is βˆ’1, coeficient of π‘žπ‘Ÿ is 1 and coefficient of – π‘Ÿπ‘ is βˆ’1.
v) terms: π‘₯/2, π‘¦/2 and – π‘₯𝑦 
coefficient of π‘₯/2 is 1/2, coefficient of π‘¦/2 is βˆ’1 and coefficient of – π‘₯𝑦 is βˆ’1
vi) Terms: 0.3π‘Ž, βˆ’06π‘Žπ‘ and 0.5𝑏
coefficient of 0.3π‘Ž is 0.3, coeficient of βˆ’0.6π‘Žπ‘ is βˆ’0.6 and coefficient of 0.5𝑏 is 0.5.

Q.2) Classify the following polynomials as monomials, binomials, trinomials. Which polynomials do not fit in any of these three categories:
i) π‘₯ + 𝑦 ii) 1000 iii) π‘₯ + π‘₯2 + π‘₯3 + π‘₯4 iv) 7 + 𝑦 + 5π‘₯
v) 2𝑦 – 3𝑦2 vi) 2𝑦 – 3𝑦2 + 4𝑦3 vii) 5π‘₯ – 4𝑦 + 3π‘₯𝑦 viii) 4𝑧 – 15𝑧2
ix) π‘Žπ‘ + 𝑏𝑐 + 𝑐𝑑 + π‘‘π‘Ž x) π‘π‘žπ‘Ÿ xi) 𝑝2π‘ž + π‘π‘ž2 xii) 2𝑝 + 2π‘ž
Sol.2) (i) Since π‘₯ + 𝑦 contains two terms. Therefore it is binomial.
(ii) Since 1000 contains one term. Therefore it is monomial.
(iii) Since π‘₯ + π‘₯2 + π‘₯3 + π‘₯4 contains four terms. Therefore it is a polynomial and it does not fit in above three categories.
(iv) Since 7 + 𝑦 + 5π‘₯ contains three terms. Therefore it is trinomial.
(v) Since 2𝑦 – 3𝑦2 contains two terms. Therefore it is binomial.
(vi) Since 2𝑦 – 3𝑦2 + 4𝑦3 contains three terms. Therefore it is trinomial.
(vii) Since 5π‘₯ – 4𝑦 + 3π‘₯𝑦 contains three terms. Therefore it is trinomial.
(viii) Since 4𝑧 – 15𝑧2 contains two terms. Therefore it is binomial. -415 x z
(ix) Since π‘Žπ‘ + 𝑏𝑐 + 𝑐𝑑 + π‘‘π‘Ž contains four terms. Therefore it is a polynomial and it does not fit in above three categories.
(x) Since π‘π‘žπ‘Ÿ contains one term. Therefore it is monomial.
(xi) Since 𝑝2π‘ž + π‘π‘ž2 contains two terms. Therefore it is binomial.
(xii) Since 2𝑝 + 2π‘ž contains two terms. Therefore it is binomial.

Q.3) Add the following.
(i) π‘Žπ‘ – 𝑏𝑐, 𝑏𝑐 – π‘π‘Ž, π‘π‘Ž – π‘Žπ‘ (ii) π‘Ž – 𝑏 + π‘Žπ‘, 𝑏 – 𝑐 + 𝑏𝑐, 𝑐 – π‘Ž + π‘Žπ‘

(iii) 2𝑝 π‘ž – 3π‘π‘ž + 4, 5 + 7π‘π‘ž – 3𝑝 π‘ž (iv) 𝑙 + π‘š , π‘š + 𝑛 , 𝑛 + 𝑙 , 2π‘™π‘š + 2π‘šπ‘› + 2𝑛𝑙
Sol.3) (i) π‘Žπ‘ – 𝑏𝑐, 𝑏𝑐 – π‘π‘Ž, π‘π‘Ž – π‘Žπ‘
π‘Žπ‘ βˆ’ 𝑏𝑐
+𝑏𝑐 βˆ’ π‘π‘Ž
βˆ’π‘Žπ‘ + π‘π‘Ž
0 + 0 + 0
Hence, the sum is 0.

""NCERT-Solutions-Class-8-Mathematics-Algebraic-expressions-and-identities-2

Q.4) (a) Subtract 4π‘Ž βˆ’ 7π‘Žπ‘ + 3𝑏 + 12 from 12π‘Ž βˆ’ 9π‘Žπ‘ + 5𝑏 βˆ’ 3
(b) Subtract 3π‘₯𝑦 + 5𝑦𝑧 βˆ’ 7𝑧π‘₯ from 5π‘₯𝑦 βˆ’ 2𝑦𝑧 βˆ’ 2𝑧π‘₯ + 10π‘₯𝑦𝑧
(c) Subtract 4𝑝2π‘ž βˆ’ 3π‘π‘ž + 5π‘π‘ž2 βˆ’ 8𝑝 + 7π‘ž βˆ’ 10 from 18 βˆ’ 3𝑝 βˆ’ 11π‘ž + 5π‘π‘ž βˆ’ 2π‘π‘ž2 + 5𝑝2π‘ž
Sol.4)

""NCERT-Solutions-Class-8-Mathematics-Algebraic-expressions-and-identities-3

Exercise 9.2

Q.1) Find the product of the following pairs of monomials:
(i) 4 , 7𝑝 (ii) – 4𝑝, 7𝑝 (iii) βˆ’4𝑝, 7π‘π‘ž (iv) 4𝑝3, βˆ’3𝑝 (v) 4𝑝, 0
Sol.1) (i) 4 , 7𝑝
4 Γ— 7 𝑝 = 28𝑝
(ii) – 4𝑝, 7𝑝
4𝑝 Γ— 7𝑝 = βˆ’28𝑝2
(iii) βˆ’4𝑝, 7π‘π‘ž
4𝑝 Γ— 7π‘π‘ž = βˆ’28𝑝2π‘ž
(iv) 4𝑝3, βˆ’3𝑝
4𝑝3π‘ž Γ— βˆ’ 3𝑝 = βˆ’12𝑝4π‘ž
(v) 4𝑝, 0
4𝑝 Γ— 0 = 0

Q.2) Find the areas of rectangles with the following pairs of monomials as their lengths and breadths respectively: 
(𝑝, π‘ž); (10π‘š, 5𝑛); (20π‘₯2, 5𝑦2); (4π‘₯, 3π‘₯2); (3π‘šπ‘›, 4𝑛𝑝)
Sol.2) Area = Length Γ— breadth
(i) 𝑝 Γ— π‘ž = π‘π‘ž
(ii) 10π‘š Γ— 5𝑛 = 50π‘šπ‘›
(iii) 20π‘₯2 Γ— 5𝑦2 = 100π‘₯2𝑦2
(iv) 4π‘₯ Γ— 3π‘₯2 = 12π‘₯3
(v) 3π‘šπ‘› Γ— 4𝑛𝑝 = 12π‘šπ‘›2𝑝

Q.3) Complete the following table of products:

""NCERT-Solutions-Class-8-Mathematics-Algebraic-expressions-and-identities-4

Q.4) Obtain the volume of rectangular boxes with the following length, breadth and height respectively.
(i) 5π‘Ž, 3π‘Ž2, 7π‘Ž4 (ii) 2𝑝, 4π‘ž, 8π‘Ÿ (iii) π‘₯𝑦, 2π‘₯2𝑦, 2π‘₯𝑦2 (iv) π‘Ž, 2𝑏, 3𝑐
Sol.4) We know that,
Volume = Length Γ— Breadth Γ— Height
(i) Volume = 5π‘Ž Γ— 3π‘Ž2 Γ— 7π‘Ž4 = 5 Γ— 3 Γ— 7 Γ— π‘Ž Γ— π‘Ž2 Γ— π‘Ž4 = 105 π‘Ž7
(ii) Volume = 2𝑝 Γ— 4π‘ž Γ— 8π‘Ÿ = 2 Γ— 4 Γ— 8 Γ— 𝑝 Γ— π‘ž Γ— π‘Ÿ = 64π‘π‘žπ‘Ÿ
(iii) Volume = π‘₯𝑦 Γ— 2π‘₯2𝑦 Γ— 2π‘₯𝑦2 = 2 Γ— 2 Γ— π‘₯𝑦 Γ— π‘₯2𝑦 Γ— π‘₯𝑦2 = 4π‘₯4𝑦4
(iv) Volume = π‘Ž Γ— 2𝑏 Γ— 3𝑐 = 2 Γ— 3 Γ— π‘Ž Γ— 𝑏 Γ— 𝑐 = 6π‘Žπ‘π‘

Q.5) Obtain the product of
(i) π‘₯𝑦, 𝑦𝑧, 𝑧π‘₯ (ii) π‘Ž, βˆ’ π‘Ž2, π‘Ž3 (iii) 2, 4𝑦, 8𝑦2, 16𝑦3
(iv) π‘Ž, 2𝑏, 3𝑐, 6π‘Žπ‘π‘ (v) π‘š, βˆ’ π‘šπ‘›, π‘šπ‘›π‘
Sol.5) (i) π‘₯𝑦 Γ— 𝑦𝑧 Γ— 𝑧π‘₯ = π‘₯2𝑦2𝑧2
(ii) π‘Ž Γ— (βˆ’ π‘Ž2) Γ— π‘Ž3 = βˆ’ π‘Ž6
(iii) 2 Γ— 4𝑦 Γ— 8𝑦× 16𝑦3 = 2 Γ— 4 Γ— 8 Γ— 16 Γ— 𝑦 Γ— π‘¦2 Γ— 𝑦3 = 1024 𝑦6
(iv) π‘Ž Γ— 2𝑏 Γ— 3𝑐 Γ— 6π‘Žπ‘π‘ = 2 Γ— 3 Γ— 6 Γ— π‘Ž Γ— 𝑏 Γ— 𝑐 Γ— π‘Žπ‘π‘ = 36π‘Ž2 π‘2𝑐2
(v) π‘š Γ— (βˆ’ π‘šπ‘›) Γ— π‘šπ‘›π‘ = βˆ’ π‘š3𝑛2𝑝

Exercise 9.3

Q.1) Carry out the multiplication of the expressions in each of the following pairs.
(i) 4𝑝, π‘ž + π‘Ÿ (ii) π‘Žπ‘, π‘Ž βˆ’ 𝑏 (iii) π‘Ž + 𝑏, 7π‘Ž2𝑏2
(iv) π‘Ž2 β€“ 9, 4π‘Ž (v) π‘π‘ž + π‘žπ‘Ÿ + π‘Ÿπ‘, 0
Sol.1) (i) (4𝑝) Γ— (π‘ž + π‘Ÿ) = (4𝑝 Γ— π‘ž) + (4𝑝 Γ— π‘Ÿ) = 4π‘π‘ž + 4π‘π‘Ÿ
(ii) (π‘Žπ‘) Γ— (π‘Ž βˆ’ 𝑏) = (π‘Žπ‘ Γ— π‘Ž) + [π‘Žπ‘ Γ— (βˆ’ 𝑏)] = π‘Ž2𝑏 βˆ’ π‘Žπ‘2
(iii) (π‘Ž + 𝑏) Γ— (7π‘Ž2 π‘2) = (π‘Ž Γ— 7π‘Ž2 π‘2) + (𝑏 Γ— 7π‘Ž2 π‘2) = 7π‘Ž3𝑏2 + 7π‘Ž2𝑏3
(iv) (π‘Ž2 βˆ’ 9) Γ— (4π‘Ž) = (π‘Ž2 Γ— 4π‘Ž) + (βˆ’ 9) Γ— (4π‘Ž) = 4π‘Ž3 βˆ’ 36π‘Ž
(v) (π‘π‘ž + π‘žπ‘Ÿ + π‘Ÿπ‘) Γ— 0 = (π‘π‘ž Γ— 0) + (π‘žπ‘Ÿ Γ— 0) + (π‘Ÿπ‘ Γ— 0) = 0

Q.2) Complete the table

""NCERT-Solutions-Class-8-Mathematics-Algebraic-expressions-and-identities-5

""NCERT-Solutions-Class-8-Mathematics-Algebraic-expressions-and-identities-6

""NCERT-Solutions-Class-8-Mathematics-Algebraic-expressions-and-identities-7

Q.4) (a) Simplify 3π‘₯ (4π‘₯ βˆ’ 5) + 3 and find its values for (i) π‘₯ = 3, (ii) π‘₯ = 1/2
(b) π‘Ž (π‘Ž2 + π‘Ž + 1) + 5 and find its values for (i) π‘Ž = 0, (ii) π‘Ž = 1, (iii) π‘Ž = βˆ’ 1.
Sol.4) (a) 3π‘₯ (4π‘₯ βˆ’ 5) + 3 = 12π‘₯2 βˆ’ 15π‘₯ + 3
(i) For π‘₯ = 3, 12π‘₯2 βˆ’ 15π‘₯ + 3 = 12 (3)2 βˆ’ 15(3) + 3
= 108 βˆ’ 45 + 3
= 66
(ii) For π‘₯ = 1/2, 12π‘₯2 βˆ’ 15π‘₯ + 3 = 12 (1/2)2 βˆ’ 15 (1/2) + 3 
= 6 βˆ’ 15/2
= 12 βˆ’ 15/2 = βˆ’3/2

(b) π‘Ž (π‘Ž2 + π‘Ž + 1) + 5 = π‘Ž3 + π‘Ž2 + π‘Ž + 5
(i) For π‘Ž = 0, π‘Ž3 + π‘Ž2 + π‘Ž + 5 = 0 + 0 + 0 + 5 = 5
(ii) For π‘Ž = 1, π‘Ž3 + π‘Ž2 + π‘Ž + 5 = (1)3 + (1)2 + 1 + 5
= 1 + 1 + 1 + 5 = 8
(iii) For π‘Ž = βˆ’1, π‘Ž3 + π‘Ž2 + π‘Ž + 5 = (βˆ’1)3 + (βˆ’1)2 + (βˆ’1) + 5
= βˆ’ 1 + 1 βˆ’ 1 + 5 = 4

Q.5) (a) Add: 𝑝 (𝑝 βˆ’ π‘ž), π‘ž (π‘ž βˆ’ π‘Ÿ) and π‘Ÿ (π‘Ÿ βˆ’ 𝑝)
(b) Add: 2π‘₯ (𝑧 βˆ’ π‘₯ βˆ’ 𝑦) and 2𝑦 (𝑧 βˆ’ 𝑦 βˆ’ π‘₯)
(c) Subtract: 3𝑙 (𝑙 βˆ’ 4π‘š + 5𝑛) from 4𝑙 (10𝑛 βˆ’ 3π‘š + 2𝑙)
(d) Subtract: 3π‘Ž (π‘Ž + 𝑏 + 𝑐) βˆ’ 2𝑏 (π‘Ž βˆ’ 𝑏 + 𝑐) from 4𝑐 (βˆ’ π‘Ž + 𝑏 + 𝑐)
Sol.5) a) 𝑝(𝑝 βˆ’ π‘ž) + π‘ž(π‘ž βˆ’ π‘Ÿ) + π‘Ÿ(π‘Ÿ βˆ’ 𝑝)
= 𝑝2 βˆ’ π‘π‘ž + π‘ž2 βˆ’ π‘žπ‘Ÿ + π‘Ÿ2 βˆ’ π‘Ÿπ‘
= π‘2 + π‘ž2 + π‘Ÿ2 βˆ’ π‘π‘ž βˆ’ π‘žπ‘Ÿ βˆ’ π‘Ÿπ‘

b) 2π‘₯(𝑧 βˆ’ π‘₯ βˆ’ 𝑦) + 2𝑦(𝑧 βˆ’ 𝑦 βˆ’ π‘₯)
= 2π‘₯𝑧 βˆ’ 2π‘₯2 βˆ’ 2π‘₯𝑦 + 2𝑦𝑧 βˆ’ 2𝑦2 βˆ’ 2π‘₯𝑦
= 2π‘₯𝑧 βˆ’ 2π‘₯𝑦 βˆ’ 2π‘₯𝑦 + 2𝑦𝑧 βˆ’ 2π‘₯2 βˆ’ 2𝑦2
= βˆ’2π‘₯2 βˆ’ 2𝑦2 βˆ’ 4π‘₯𝑦 + 2𝑦𝑧 + 2𝑧π‘₯

c) 4𝑙 (10𝑛 βˆ’ 3π‘š + 2𝑙) βˆ’ 3𝑙 (𝑙 – 4π‘š + 5𝑛)
= 40𝑙𝑛 βˆ’ 12π‘™π‘š + 8𝑙2 βˆ’ 3𝑙2 + 12π‘™π‘š βˆ’ 15𝑙𝑛
= 8𝑙2 βˆ’ 3𝑙2 βˆ’ 12π‘™π‘š + 12π‘™π‘š + 40𝑙𝑛 βˆ’ 15𝑙𝑛
= 5𝑙2 + 25𝑙𝑛

d) 4𝑐(βˆ’π‘Ž + 𝑏 + 𝑐) βˆ’ [3π‘Ž(π‘Ž + 𝑏 + 𝑐) βˆ’ 2𝑏(π‘Ž βˆ’ 𝑏 + 𝑐)]
= βˆ’4π‘Žπ‘ + 4𝑏𝑐 + 4𝑐2 βˆ’ [3π‘Ž2 + 3π‘Žπ‘ + 3π‘Žπ‘ βˆ’ 2π‘Žπ‘ + 2𝑏2 βˆ’ 2𝑏𝑐
= βˆ’4π‘Žπ‘ + 4𝑏𝑐 + 4𝑐2 βˆ’ [3π‘Ž2 + 2𝑏2 + 3π‘Žπ‘ βˆ’ 2𝑏𝑐 + 3π‘Žπ‘ βˆ’ 2π‘Žπ‘]
= βˆ’4π‘Žπ‘ + 4𝑏𝑐 + 4𝑐2 βˆ’ [3π‘Ž2 + 2𝑏2 + π‘Žπ‘ + 3π‘Žπ‘ βˆ’ 2𝑏𝑐]
= βˆ’4π‘Žπ‘ + 4𝑏𝑐 + 4𝑐2 βˆ’ 3π‘Ž2 βˆ’ 2𝑏2 βˆ’ π‘Žπ‘ βˆ’ 3π‘Žπ‘ + 2𝑏𝑐
= βˆ’3π‘Ž2 βˆ’ 2𝑏2 + 4𝑐2 βˆ’ π‘Žπ‘ + 4𝑏𝑐 + 2𝑏𝑐 βˆ’ 4π‘Žπ‘ βˆ’ 3π‘Žπ‘
= βˆ’3π‘Ž2 βˆ’ 2𝑏2 + 4𝑐2 βˆ’ π‘Žπ‘ + 6𝑏𝑐 βˆ’ 7π‘Žπ‘

Exercise 9.4

Q.1) Multiply the binomials.
(i) (2π‘₯ + 5) and (4π‘₯ βˆ’ 3) (ii) (𝑦 βˆ’ 8) and (3𝑦 βˆ’ 4)
(iii) (2.5𝑙 βˆ’ 0.5π‘š) and (2.5𝑙 + 0.5π‘š) (iv) (π‘Ž + 3𝑏) and (π‘₯ + 5)
(v) (2π‘π‘ž + 3π‘ž2)and (3π‘π‘ž βˆ’ 2π‘ž2) (vi) (3/4 π‘Ž2 + 3𝑏2) and 4 (π‘Ž2 βˆ’2/3 𝑏2)
Sol.1) (i) (2π‘₯ + 5) Γ— (4π‘₯ βˆ’ 3)
= 2π‘₯ Γ— (4π‘₯ βˆ’ 3) + 5 Γ— (4π‘₯ βˆ’ 3)
= 8π‘₯2 βˆ’ 6π‘₯ + 20π‘₯ βˆ’ 15
= 8π‘₯2 + 14π‘₯ βˆ’ 15                 (By adding like terms)

(ii) (𝑦 βˆ’ 8) Γ— (3𝑦 βˆ’ 4)
= 𝑦 Γ— (3𝑦 βˆ’ 4) βˆ’ 8 Γ— (3𝑦 βˆ’ 4)
= 3𝑦2 βˆ’ 4𝑦 βˆ’ 24𝑦 + 32
= 3𝑦2 βˆ’ 28𝑦 + 32                  (By adding like terms)

(iii) (2.5𝑙 βˆ’ 0.5π‘š) Γ— (2.5𝑙 + 0.5π‘š)
= 2.5𝑙 Γ— (2.5𝑙 + 0.5π‘š) βˆ’ 0.5π‘š (2.5𝑙 + 0.5π‘š)
= 6.25𝑙2 + 1.25π‘™π‘š βˆ’ 1.25π‘™π‘š βˆ’ 0.25π‘š2
= 6.25π‘™βˆ’ 0.25π‘š2

(iv) (π‘Ž + 3𝑏) Γ— (π‘₯ + 5)
= π‘Ž Γ— (π‘₯ + 5) + 3𝑏 Γ— (π‘₯ + 5)
= π‘Žπ‘₯ + 5π‘Ž + 3𝑏π‘₯ + 15𝑏

(v) (2π‘π‘ž + 3π‘ž2) Γ— (3π‘π‘ž βˆ’ 2π‘ž2)
= 2π‘π‘ž Γ— (3π‘π‘ž βˆ’ 2π‘ž2) + 3π‘ž2 Γ— (3π‘π‘ž βˆ’ 2π‘ž2)
= 6𝑝2π‘ž2 βˆ’ 4π‘π‘ž3 + 9π‘π‘ž3 βˆ’ 6π‘ž4
= 6𝑝2π‘ž2 + 5π‘π‘ž2 βˆ’ 6π‘ž4

Q.2) Find the product.
(i) (5 βˆ’ 2π‘₯) (3 + π‘₯) (ii) (π‘₯ + 7𝑦) (7π‘₯ βˆ’ 𝑦)
(iii) (π‘Ž2 + 𝑏) (π‘Ž + 𝑏2) (iv) (𝑝2 βˆ’ π‘ž2) (2𝑝 + π‘ž)
Sol.2) (i) (5 βˆ’ 2π‘₯) (3 + π‘₯)
= 5 (3 + π‘₯) βˆ’ 2π‘₯ (3 + π‘₯)
= 15 + 5π‘₯ βˆ’ 6π‘₯ βˆ’ 2π‘₯2
= 15 βˆ’ π‘₯ βˆ’ 2π‘₯2

(ii) (π‘₯ + 7𝑦) (7π‘₯ βˆ’ 𝑦)
= π‘₯ (7π‘₯ βˆ’ 𝑦) + 7𝑦 (7π‘₯ βˆ’ 𝑦)
= 7π‘₯2 βˆ’ π‘₯𝑦 + 49π‘₯𝑦 βˆ’ 7𝑦2
= 7π‘₯2 + 48π‘₯𝑦 βˆ’ 7𝑦2

(iii) (π‘Ž2 + 𝑏) (π‘Ž + 𝑏2)
= π‘Ž2(π‘Ž + 𝑏2) + 𝑏 (π‘Ž + 𝑏2)
= π‘Ž3 + π‘Ž2𝑏2 + π‘Žπ‘ + 𝑏3

(iv) (𝑝2 βˆ’ π‘ž2) (2𝑝 + π‘ž)
= 𝑝2(2𝑝 + π‘ž) βˆ’ π‘ž2(2𝑝 + π‘ž)
= 2𝑝3 + 𝑝2π‘ž βˆ’ 2π‘π‘ž2 βˆ’ π‘ž3

Q.3) Simplify.
(i) (π‘₯2 βˆ’ 5) (π‘₯ + 5) + 25
(ii) (π‘Ž2 + 5) (𝑏3 + 3) + 5
(iii) (𝑑 + 𝑠2) (𝑑2 βˆ’ 𝑠)
(iv) (π‘Ž + 𝑏) (𝑐 βˆ’ 𝑑) + (π‘Ž βˆ’ 𝑏) (𝑐 + 𝑑) + 2 (π‘Žπ‘ + 𝑏𝑑)
(v) (π‘₯ + 𝑦) (2π‘₯ + 𝑦) + (π‘₯ + 2𝑦) (π‘₯ βˆ’ 𝑦)
(vi) (π‘₯ + 𝑦) (π‘₯2 βˆ’ π‘₯𝑦 + π‘¦2)
(vii) (1.5π‘₯ βˆ’ 4𝑦) (1.5π‘₯ + 4𝑦 + 3) βˆ’ 4.5π‘₯ + 12𝑦
(viii) (π‘Ž + 𝑏 + 𝑐) (π‘Ž + 𝑏 βˆ’ 𝑐)
Sol.3) (i) (π‘₯2 βˆ’ 5) (π‘₯ + 5) + 25
= π‘₯2 (π‘₯ + 5) βˆ’ 5 (π‘₯ + 5) + 25
= π‘₯3 + 5π‘₯2 βˆ’ 5π‘₯ βˆ’ 25 + 25
= π‘₯3 + 5π‘₯2 βˆ’ 5π‘₯

(ii) (π‘Ž2 + 5) (𝑏3 + 3) + 5
= π‘Ž2(𝑏3 + 3) + 5 (𝑏3 + 3) + 5
= π‘Ž2𝑏3 + 3π‘Ž2 + 5𝑏3 + 15 + 5
= π‘Ž2𝑏3 + 3π‘Ž2 + 5𝑏3 + 20

(iii) (𝑑 + π‘ 2) (𝑑2 βˆ’ 𝑠)
= 𝑑 (𝑑2 βˆ’ 𝑠) + 𝑠2 (𝑑2 βˆ’ 𝑠)
= 𝑑3 βˆ’ 𝑠𝑑 + π‘ 2𝑑2 βˆ’ 𝑠3

(iv) (π‘Ž + 𝑏) (𝑐 βˆ’ 𝑑) + (π‘Ž βˆ’ 𝑏) (𝑐 + 𝑑) + 2 (π‘Žπ‘ + 𝑏𝑑)
= π‘Ž (𝑐 βˆ’ 𝑑) + 𝑏 (𝑐 βˆ’ 𝑑) + π‘Ž (𝑐 + 𝑑) βˆ’ 𝑏 (𝑐 + 𝑑) + 2 (π‘Žπ‘ + 𝑏𝑑)
= π‘Žπ‘ βˆ’ π‘Žπ‘‘ + 𝑏𝑐 βˆ’ 𝑏𝑑 + π‘Žπ‘ + π‘Žπ‘‘ βˆ’ 𝑏𝑐 βˆ’ 𝑏𝑑 + 2π‘Žπ‘ + 2𝑏𝑑
= (π‘Žπ‘ + π‘Žπ‘ + 2π‘Žπ‘) + (π‘Žπ‘‘ βˆ’ π‘Žπ‘‘) + (𝑏𝑐 βˆ’ 𝑏𝑐) + (2𝑏𝑑 βˆ’ 𝑏𝑑 βˆ’ 𝑏𝑑)
= 4π‘Žπ‘

(v) (π‘₯ + 𝑦) (2π‘₯ + 𝑦) + (π‘₯ + 2𝑦) (π‘₯ βˆ’ 𝑦)
= π‘₯ (2π‘₯ + 𝑦) + 𝑦 (2π‘₯ + 𝑦) + π‘₯ (π‘₯ βˆ’ 𝑦) + 2𝑦 (π‘₯ βˆ’ 𝑦)
= 2π‘₯2 + π‘₯𝑦 + 2π‘₯𝑦 + π‘¦2 + π‘₯2 βˆ’ π‘₯𝑦 + 2π‘₯𝑦 βˆ’ 2𝑦2
= (2π‘₯2 + π‘₯2) + (𝑦2 βˆ’ 2𝑦2) + (π‘₯𝑦 + 2π‘₯𝑦 βˆ’ π‘₯𝑦 + 2π‘₯𝑦)
= 3π‘₯2 βˆ’ π‘¦2 + 4π‘₯𝑦

(vi) (π‘₯ + 𝑦) (π‘₯2 βˆ’ π‘₯𝑦 + π‘¦2)
= π‘₯ (π‘₯2 βˆ’ π‘₯𝑦 + π‘¦2) + 𝑦 (π‘₯2 βˆ’ π‘₯𝑦 + π‘¦2)
= π‘₯3 βˆ’ π‘₯2𝑦 + π‘₯𝑦2 + π‘₯2𝑦 βˆ’ π‘₯𝑦2 + 𝑦3
= π‘₯3 + π‘¦3 + (π‘₯𝑦2 βˆ’ π‘₯𝑦2) + (π‘₯2𝑦 βˆ’ π‘₯2𝑦)
= π‘₯3 + π‘¦3

(vii) (1.5π‘₯ βˆ’ 4𝑦) (1.5π‘₯ + 4𝑦 + 3) βˆ’ 4.5π‘₯ + 12𝑦
= 1.5π‘₯ (1.5π‘₯ + 4𝑦 + 3) βˆ’ 4𝑦 (1.5π‘₯ + 4𝑦 + 3) βˆ’ 4.5π‘₯ + 12𝑦
= 2.25 π‘₯2 + 6π‘₯𝑦 + 4.5π‘₯ βˆ’ 6π‘₯𝑦 βˆ’ 16𝑦2 βˆ’ 12𝑦 βˆ’ 4.5π‘₯ + 12𝑦
= 2.25 π‘₯2 + (6π‘₯𝑦 βˆ’ 6π‘₯𝑦) + (4.5π‘₯ βˆ’ 4.5π‘₯) βˆ’ 16𝑦2 + (12𝑦 βˆ’ 12𝑦)
= 2.25π‘₯2 βˆ’ 16𝑦2

(viii) (π‘Ž + 𝑏 + 𝑐) (π‘Ž + 𝑏 βˆ’ 𝑐)
= π‘Ž (π‘Ž + 𝑏 βˆ’ 𝑐) + 𝑏 (π‘Ž + 𝑏 βˆ’ 𝑐) + 𝑐 (π‘Ž + 𝑏 βˆ’ 𝑐)
= π‘Ž2 + π‘Žπ‘ βˆ’ π‘Žπ‘ + π‘Žπ‘ + 𝑏2 βˆ’ 𝑏𝑐 + π‘π‘Ž + 𝑏𝑐 βˆ’ π‘2
= π‘Ž2 + 𝑏2 βˆ’ 𝑐2 + (π‘Žπ‘ + π‘Žπ‘) + (𝑏𝑐 βˆ’ 𝑏𝑐) + (π‘π‘Ž βˆ’ π‘π‘Ž)
= π‘Ž22 + π‘2 βˆ’ π‘2 + 2π‘Žπ‘

Exercise 9.5

Q.1) Use a suitable identity to get each of the following products.
(i) (π‘₯ + 3) (π‘₯ + 3) (ii) (2𝑦 + 5) (2𝑦 + 5) (iii) (2π‘Ž βˆ’ 7) (2π‘Ž βˆ’ 7)
(iv) (3π‘Ž βˆ’1/2) (3π‘Ž βˆ’ 1/2) (v) (1.1π‘š βˆ’ 0.4) (1.1 π‘š + 0.4) (vi) (π‘Ž2 + 𝑏2) (βˆ’ π‘Ž2 + 𝑏2)
(vii) (6π‘₯ βˆ’ 7) (6π‘₯ + 7) (viii) (βˆ’ π‘Ž + 𝑐) (βˆ’ π‘Ž + 𝑐) (ix) (π‘₯/2 + 3𝑦/4) (π‘₯/2 + 3𝑦/4)
(x) (7π‘Ž βˆ’ 9𝑏) (7π‘Ž βˆ’ 9𝑏)
Sol.1) The products will be as follows.
(i) (π‘₯ + 3) (π‘₯ + 3)
= (π‘₯ + 3)2
= (π‘₯)2 + 2(π‘₯) (3) + (3)2 [(π‘Ž + 𝑏)2
= π‘Ž2 + 2π‘Žπ‘ + 𝑏2]
= π‘₯2 + 6π‘₯ + 9

(ii) (2𝑦 + 5) (2𝑦 + 5) = (2𝑦 + 5)2
= (2𝑦)2 + 2(2𝑦) (5) + (5)2 [(π‘Ž + 𝑏)2
= π‘Ž2 + 2π‘Žπ‘ + 𝑏2]
= 4𝑦+ 20𝑦 + 25

(iii) (2π‘Ž βˆ’ 7) (2π‘Ž βˆ’ 7) = (2π‘Ž βˆ’ 7)2
= (2π‘Ž)2 βˆ’ 2(2π‘Ž) (7) + (7)2 [(π‘Ž βˆ’ 𝑏)2
= π‘Ž2 βˆ’ 2π‘Žπ‘ + 𝑏2]
= 4π‘Ž2 βˆ’ 28π‘Ž + 49

(iv) (3π‘Ž βˆ’1/2) (3π‘Ž βˆ’ 1/2)
= (3π‘Ž βˆ’ 12)2
= (3π‘Ž)2 βˆ’ 2 Γ— 3π‘Ž Γ— 1/2 + (1/2)2
[(π‘Ž βˆ’ 𝑏)2
= π‘Ž2 βˆ’ 2π‘Žπ‘ + π‘2]
= 9π‘Ž2 βˆ’ 3π‘Ž + 14

(v) (1.1π‘š βˆ’ 0.4) (1.1 π‘š + 0.4)
= (1.1π‘š)2 βˆ’ (0.4)2 [(π‘Ž + 𝑏) (π‘Ž βˆ’ 𝑏) = π‘Ž2 βˆ’ π‘22]
= 1.21π‘š2 βˆ’ 0.16

(vi) (π‘Ž2 + 𝑏2) (βˆ’ π‘Ž2 + π‘2)
= (𝑏2 + π‘Ž2) (𝑏2 βˆ’ π‘Ž2)
= (𝑏2)2 βˆ’ (π‘Ž2)2 [(π‘Ž + 𝑏) (π‘Ž βˆ’ 𝑏) = π‘Žβˆ’ π‘2]
= 𝑏4 βˆ’ π‘Ž4

(vii) (6π‘₯ βˆ’ 7) (6π‘₯ + 7)
= (6π‘₯)2 βˆ’ (7)2 [(π‘Ž + 𝑏) (π‘Ž βˆ’ 𝑏) = π‘Ž2 βˆ’ π‘2]
= 36π‘₯2 β€“ 49

(viii) (βˆ’ π‘Ž + 𝑐) (βˆ’ π‘Ž + 𝑐)
= (βˆ’ π‘Ž + 𝑐)2
= (βˆ’ π‘Ž)2 + 2(βˆ’ π‘Ž) (𝑐) + (𝑐)2            [(π‘Ž + 𝑏)2= π‘Ž2 + 2π‘Žπ‘ + 𝑏2]
= π‘Ž2 βˆ’ 2π‘Žπ‘ + 𝑐2

""NCERT-Solutions-Class-8-Mathematics-Algebraic-expressions-and-identities-9

(x) (7π‘Ž βˆ’ 9𝑏) (7π‘Ž βˆ’ 9𝑏)
= (7π‘Ž βˆ’ 9𝑏)2
= (7π‘Ž)2 βˆ’ 2(7π‘Ž)(9𝑏) + (9𝑏)2 [(π‘Ž βˆ’ 𝑏)2
= π‘Ž2 βˆ’ 2π‘Žπ‘ + π‘2]
= 49π‘Ž2 βˆ’ 126π‘Žπ‘ + 81𝑏2

Q.2) Use the identity (π‘₯ + π‘Ž) (π‘₯ + 𝑏) = π‘₯2 + (π‘Ž + 𝑏)π‘₯ + π‘Žπ‘ to find the following products.
(i) (π‘₯ + 3) (π‘₯ + 7) (ii) (4π‘₯ + 5) (4π‘₯ + 1) (iii) (4π‘₯ βˆ’ 5) (4π‘₯ βˆ’ 1)
(iv) (4π‘₯ + 5) (4π‘₯ βˆ’ 1) (v) (2π‘₯ + 5𝑦) (2π‘₯ + 3𝑦) (vi) (2π‘Ž2 + 9) (2π‘Ž2 + 5)
(vii) (π‘₯𝑦𝑧 βˆ’ 4) (π‘₯𝑦𝑧 βˆ’ 2)
Sol.2) The products will be as follows.
(i) (π‘₯ + 3) (π‘₯ + 7)
= π‘₯2 + (3 + 7) π‘₯ + (3) (7)
= π‘₯2 + 10π‘₯ + 21

(ii) (4π‘₯ + 5) (4π‘₯ + 1)
= (4π‘₯)2 + (5 + 1) (4π‘₯) + (5) (1)
= 16π‘₯2 + 24π‘₯ + 5

(iii) (4π‘₯ – 5)(4π‘₯ – 1)
= (4π‘₯)2 + (βˆ’5 βˆ’ 1)4π‘₯ + (βˆ’5) Γ— (βˆ’1)
= 16π‘₯2 + (βˆ’6) Γ— 4π‘₯ + 5 = 16π‘₯2 βˆ’ 24π‘₯ + 5

(iv) (4π‘₯ + 5)(4π‘₯ – 1)
= (4π‘₯)2 + {5 Γ— (βˆ’1)} Γ— 4π‘₯ + 5 Γ— (βˆ’1)
= 16π‘₯2 + (5 βˆ’ 1) Γ— 4π‘₯ βˆ’ 5
= 16π‘₯2 + 4 Γ— 4π‘₯ βˆ’ 5
= 16π‘₯2 + 16π‘₯ βˆ’ 5

(v) (2π‘₯ + 5𝑦) (2π‘₯ + 3𝑦)
= (2π‘₯)2 + (5𝑦 + 3𝑦) (2π‘₯) + (5𝑦) (3𝑦)
= 4π‘₯2 + 16π‘₯𝑦 + 15𝑦2

(vi) (2π‘Ž2 + 9) (2π‘Ž2 + 5)
= (2π‘Ž2)2 + (9 + 5) (2π‘Ž2) + (9) (5)
= 4π‘Ž4 + 28π‘Ž2 + 45

(vii) (π‘₯𝑦𝑧 βˆ’ 4) (π‘₯𝑦𝑧 βˆ’ 2)
= (π‘₯𝑦𝑧)2 + (βˆ’4 βˆ’ 2) Γ— π‘₯𝑦𝑧 + (βˆ’4) Γ— (βˆ’2)
= π‘₯2𝑦2𝑧2 βˆ’ 6π‘₯𝑦𝑧 + 8

Q.3) Find the following squares by suing the identities.
(i) (𝑏 βˆ’ 7)2
(ii) (π‘₯𝑦 + 3𝑧)2
(iii) (6π‘₯2 βˆ’ 5𝑦)2 (iv) (2/3 π‘š + 3/2 𝑛)2
(v) (0.4𝑝 βˆ’ 0.5π‘ž)2
(vi) (2π‘₯𝑦 + 5𝑦)2
Sol.3) (i) (𝑏 βˆ’ 7)22
= (𝑏)2 βˆ’ 2(𝑏) (7) + (7)2 [(π‘Ž βˆ’ 𝑏)2
= π‘Ž2 βˆ’ 2π‘Žπ‘ + 𝑏2
= 𝑏2 βˆ’ 14𝑏 + 49

(ii) (π‘₯𝑦 + 3𝑧)22
= (π‘₯𝑦)2 + 2(π‘₯𝑦) (3𝑧) + (3𝑧)2 [(π‘Ž + 𝑏)2
= π‘Ž2 + 2π‘Žπ‘ + 𝑏2]
= π‘₯2𝑦2 + 6π‘₯𝑦𝑧 + 9𝑧2

(iii) (6π‘₯2 βˆ’ 5𝑦)2
= (6π‘₯2)2 βˆ’ 2(6π‘₯2) (5𝑦) + (5𝑦)2 [(π‘Ž βˆ’ 𝑏)2
= π‘Ž2 βˆ’ 2π‘Žπ‘ + 𝑏2]
= 36π‘₯2 βˆ’ 60π‘₯2𝑦 + 25𝑦2

""NCERT-Solutions-Class-8-Mathematics-Algebraic-expressions-and-identities-8

(v) (0.4𝑝 βˆ’ 0.5π‘ž)2
= (0.4𝑝)2 βˆ’ 2 (0.4𝑝) (0.5π‘ž) + (0.5π‘ž)2[(π‘Ž βˆ’ 𝑏)2
= π‘Ž2 βˆ’ 2π‘Žπ‘ + b2]
= 0.16𝑝2 βˆ’ 0.4π‘π‘ž + 0.25q2
(vi) (2π‘₯𝑦 + 5𝑦)2
= (2π‘₯𝑦)2 + 2(2π‘₯𝑦) (5𝑦) + (5𝑦)2 [(π‘Ž + 𝑏)2
= π‘Ž2 + 2π‘Žπ‘ + b2]
= 4x2𝑦2 + 20π‘₯𝑦2 + 25𝑦2

Q.4) Simplify.
(i) (π‘Ž2 βˆ’ b2)2
(ii) (2π‘₯ + 5)2 βˆ’ (2π‘₯ βˆ’ 5)2
(iii) (7π‘š βˆ’ 8𝑛)2 + (7π‘š + 8𝑛)2
(iv) (4π‘š + 5𝑛)2 + (5π‘š + 4𝑛)2
(v) (2.5𝑝 βˆ’ 1.5π‘ž)2 βˆ’ (1.5𝑝 βˆ’ 2.5π‘ž)2 (vi) (π‘Žπ‘ + 𝑏𝑐)2 βˆ’ 2π‘Žb2𝑐
(vii) (m2 βˆ’ 𝑛2π‘š)2 + 2π‘š3𝑛2
Sol.4) (i) (π‘Ž2 βˆ’ b2)2
= (π‘Ž2)2 βˆ’ 2(π‘Ž2) (b2) + (b2)2                                                     [(a βˆ’ b)2 = π‘Ž2 βˆ’ 2ab + b2 ]
= a4 βˆ’ π‘Ž2b2 + b4
(ii) (2x +5)2 βˆ’ (2x βˆ’ 5)2
= (2x)2 + 2(2x) (5) + (5)2 βˆ’ [(2x)2 βˆ’ 2(2x) (5) + (5)2]              [(a βˆ’ b)2 = π‘Ž2 βˆ’ 2ab + b2]
[(a + b)2 = π‘Ž2 + 2ab + b2]
= 4x2 + 20x + 25 βˆ’ [4x2 βˆ’ 20x + 25]
= 4x2 + 20x + 25 βˆ’ 4x2 + 20x βˆ’ 25 = 40x

(iii) (7m βˆ’ 8n)2 + (7m + 8n)2
= (7m)2 βˆ’ 2(7m) (8n) + (8n)2 + (7m)2 + 2(7m) (8n) + (8n)2       [(a βˆ’ b)2 = π‘Ž2 βˆ’ 2ab + b2 and
(a + b)2 = π‘Ž2 + 2ab + b2]
= 49m2 βˆ’ 112mn + 64𝑛2 + 49m2 + 112mn + 64𝑛2
= 98m2 + 128𝑛2

(iv) (4m + 5n)2 + (5m + 4n)2
= (4m)2 + 2(4m) (5n) + (5n)2 + (5m)2 + 2(5m) (4n) + (4n)2        [(a + b)2 = π‘Ž2 + 2ab + b2]
= 16m2 + 40mn + 25𝑛2 + 25m2 + 40mn + 16𝑛2
= 41m2 + 80mn + 41𝑛2

(v) (2.5p βˆ’ 1.5q)2 βˆ’ (1.5p βˆ’ 2.5q)2
= (2.5p)2 βˆ’ 2(2.5p) (1.5q) + (1.5q)2 βˆ’ [(1.5p)2 βˆ’ 2(1.5p)(2.5q) + (2.5q)2]              [(a βˆ’ b)2 = π‘Ž2 βˆ’ 2ab + b2 ]
= 6.25𝑝2 βˆ’ 7.5pq + 2.25q2 βˆ’ [2.25𝑝2 βˆ’ 7.5pq + 6.25q2]
= 6.25𝑝2 βˆ’ 7.5pq + 2.25q2 βˆ’ 2.25𝑝2 + 7.5pq βˆ’ 6.25q2]
= 4𝑝2 βˆ’ 4q2

(vi) (ab + bc)2 βˆ’ 2ab2c
= (ab)2 + 2(ab)(bc) + (bc)2 βˆ’ 2ab2c                         [(a + b)2 = π‘Ž2 + 2ab + b2 ]
= π‘Ž2b2 + 2ab2c + b2c2 βˆ’ 2ab2c
= π‘Ž2b2 + b2c2

(vii) (m2 βˆ’ 𝑛2m)2 + 2π‘š3𝑛2
= (m2)2 βˆ’ 2(m2) (𝑛2m) + (𝑛2m)2 + 2π‘š3𝑛2              [(a βˆ’ b)2 = π‘Ž2 βˆ’ 2ab + b2 ]
= m4 βˆ’ 2π‘š3𝑛2 + n4m2 + 2π‘š3𝑛2
= m4 + n4m2

Q.5) `Show that
(i) (3π‘₯ + 7)2 βˆ’ 84π‘₯ = (3π‘₯ βˆ’ 7)2
(ii) (9𝑝 βˆ’ 5π‘ž)2 + 180π‘π‘ž = (9𝑝 + 5π‘ž)2

(iv) (4π‘π‘ž + 3π‘ž)2 βˆ’ (4π‘π‘ž βˆ’ 3π‘ž)2 = 48𝑝q2
(v) (π‘Ž βˆ’ 𝑏) (π‘Ž + 𝑏) + (𝑏 βˆ’ 𝑐) (𝑏 + 𝑐) + (𝑐 βˆ’ π‘Ž) (𝑐 + π‘Ž) = 0
Sol.5)
(i) L.H.S = (3x + 7)2 βˆ’ 84x
= (3x)2 + 2(3x)(7) + (7)2 βˆ’ 84x
= 9x2 + 42x + 49 βˆ’ 84x
= 9x2 βˆ’ 42x + 49
R.H.S = (3x βˆ’ 7)2 = (3x)2 βˆ’ 2(3x)(7) +(7)2
= 9x2 βˆ’ 42x + 49
L.H.S = R.H.S
(ii) L.H.S = (9p βˆ’ 5q)2 + 180pq
= (9p)2 βˆ’ 2(9p)(5q) + (5q)2 βˆ’ 180pq
= 81p2 βˆ’ 90pq + 25q2 + 180pq
= 81p2 + 90pq + 25q2
R.H.S = (9p + 5q)2
= (9p)2 + 2(9p)(5q) + (5q)2
= 81p2 + 90pq + 25q2q2
L.H.S = R.H.S

""NCERT-Solutions-Class-8-Mathematics-Algebraic-expressions-and-identities

(iv) L.H.S = (4pq + 3q)2 βˆ’ (4pq βˆ’ 3q)2
= (4pq)2 + 2(4pq)(3q) + (3q)2 βˆ’ [(4pq)2 βˆ’ 2(4pq) (3q) + (3q)2]
= 16p2q2 + 24pq2 + 9q2 βˆ’ [16p2q2 βˆ’ 24pq2 + 9q2]
= 16p2q2 + 24pq2 + 9q2 βˆ’16p2q2 + 24pq2 βˆ’ 9q2
= 48pq2 = R.H.S

(v) L.H.S = (a βˆ’ b) (a + b) + (b βˆ’ c) (b + c) + (c βˆ’ a) (c + a)
= (a2 βˆ’ b2) + (b2 βˆ’ c2) + (c2 βˆ’ a2) = 0 = R.H.S

Q.6) Using identities, evaluate.
(i) 712 (ii) 992 (iii) 1022 (iv) 9982 (v) (5.2)2 (vi) 297 Γ— 303
(vii) 78 Γ— 82 (viii) 8.92 (ix) 1.05 Γ— 9.5
Sol.6) (i) 712 = (70 + 1)2
= (70)2 + 2(70) (1) + (1)2              [(π‘Ž + 𝑏)2= a2 + 2π‘Žπ‘ + b2 ]
= 4900 + 140 + 1 = 5041

(ii) 992 = (100 βˆ’ 1)2
= (100)2 βˆ’ 2(100) (1) + (1)2           [(π‘Ž βˆ’ 𝑏)= π‘Ž2 βˆ’ 2π‘Žπ‘ + b2 ]
= 10000 βˆ’ 200 + 1 = 9801

(𝑖𝑖𝑖)1022 = (100 + 2)2
= (100)2 + 2(100)(2) + (2)2             [(π‘Ž + 𝑏)= a2 + 2π‘Žπ‘ + b2 ]
= 10000 + 400 + 4 = 10404

(𝑖𝑣)9982 = (1000 βˆ’ 2)2
= (1000)2 βˆ’ 2(1000)(2) + (2)2           [(π‘Ž βˆ’ 𝑏)= a2 βˆ’ 2π‘Žπ‘ + b2 ]
= 1000000 βˆ’ 4000 + 4 = 996004

(𝑣) (5.2)2 = (5.0 + 0.2)2
= (5.0)2 + 2(5.0) (0.2) + (0.2)2         [(π‘Ž + 𝑏)2 = a2 + 2π‘Žπ‘ + b2 ]
= 25 + 2 + 0.04 = 27.04

(𝑣𝑖) 297 Γ— 303 = (300 βˆ’ 3) Γ— (300 + 3)
= (300)2 βˆ’ (3)2                                  [(π‘Ž + 𝑏) (π‘Ž βˆ’ 𝑏) = a2 βˆ’ b2
= 90000 βˆ’ 9 = 89991

(𝑣𝑖𝑖) 78 Γ— 82 = (80 βˆ’ 2) (80 + 2)
= (80)2 βˆ’ (2)2                                    [(π‘Ž + 𝑏) (π‘Ž βˆ’ 𝑏) = a2 βˆ’ b2]
= 6400 βˆ’ 4 = 6396

(𝑣𝑖𝑖𝑖) 8.92 = (9.0 βˆ’ 0.1)2
= (9.0)2 βˆ’ 2(9.0) (0.1) + (0.1)2         [(π‘Ž βˆ’ 𝑏)2 = a2 βˆ’ 2π‘Žπ‘ + b2]
= 81 βˆ’ 1.8 + 0.01 = 79.21

(𝑖π‘₯) 1.05 Γ— 9.5 = 1.05 Γ— 0.95 Γ— 10
= (1 + 0.05) (1 βˆ’ 0.05) Γ— 10
= [(1)2 βˆ’ (0.05)2] Γ— 10
= [1 βˆ’ 0.0025] Γ— 10                         [(π‘Ž + 𝑏) (π‘Ž βˆ’ 𝑏) = a2 βˆ’ b2]
= 0.9975 Γ— 10 = 9.975

Q.7) Using a2 βˆ’ b2 = (π‘Ž + 𝑏) (π‘Ž βˆ’ 𝑏), find
(i) 512 β€“ 492 (ii) (1.02)2 β€“ (0.98)2 (iii) 1532 βˆ’ 1472 (iv) 12.12 βˆ’ 7.92
Sol.7) (𝑖) 512 βˆ’ 492
= (51 + 49) (51 βˆ’ 49)
= (100) (2) = 200

(𝑖𝑖)(1.02)2 βˆ’ (0.98)2
= (1.02 + 0.98) (1.02 βˆ’ 0.98)
= (2) (0.04) = 0.08

(𝑖𝑖𝑖)1532 βˆ’ 1472
= (153 + 147) (153 βˆ’ 147)
= (300) (6) = 1800

(𝑖𝑣)12.12 βˆ’ 7.92
= (12.1 + 7.9) (12.1 βˆ’ 7.9)
= (20.0) (4.2) = 84

Q.8) Using (π‘₯ + π‘Ž) (π‘₯ + 𝑏) = π‘₯2 + (π‘Ž + 𝑏) π‘₯ + π‘Žπ‘, find
(i) 103 Γ— 104 (ii) 5.1 Γ— 5.2 (iii) 103 Γ— 98 (iv) 9.7 Γ— 9.8
Sol.8) (𝑖) 103 Γ— 104
= (100 + 3) (100 + 4)
= (100)2 + (3 + 4) (100) + (3) (4)
= 10000 + 700 + 12 = 10712

(𝑖𝑖) 5.1 Γ— 5.2
= (5 + 0.1) (5 + 0.2)
= (5)2 + (0.1 + 0.2) (5) + (0.1) (0.2)
= 25 + 1.5 + 0.02 = 26.52

(𝑖𝑖𝑖) 103 Γ— 98
= (100 + 3) (100 βˆ’ 2)
= (100)2 + [3 + (βˆ’ 2)] (100) + (3) (βˆ’ 2)
= 10000 + 100 βˆ’ 6
= 10094

(𝑖𝑣) 9.7 Γ— 9.8
= (10 βˆ’ 0.3) (10 βˆ’ 0.2)
= (10)2 + [(βˆ’ 0.3) + (βˆ’ 0.2)] (10) + (βˆ’ 0.3) (βˆ’ 0.2)
= 100 + (βˆ’ 0.5)10 + 0.06 = 100.06 βˆ’ 5 = 95.06

 

NCERT Solutions Class 8 Mathematics Chapter 9 Algebraic expressions and identities

The above provided NCERT Solutions Class 8 Mathematics Chapter 9 Algebraic expressions and identities is available on our website www.studiestoday.com for free download in Pdf. You can read the solutions to all questions given in your Class 8 Mathematics textbook online or you can easily download them in pdf.Β The answers to each question in Chapter 9 Algebraic expressions and identities of Mathematics Class 8 has been designed based on the latest syllabus released for the current year. We have also provided detailed explanations for all difficult topics in Chapter 9 Algebraic expressions and identities Class 8 chapter of Mathematics so that it can be easier for students to understand all answers.Β These solutions of Chapter 9 Algebraic expressions and identities NCERT Questions given in your textbook for Class 8 Mathematics have been designed to help students understand the difficult topics of Mathematics in an easy manner. These will also help to build a strong foundation in the Mathematics. There is a combination of theoretical and practical questions relating to all chapters in Mathematics to check the overall learning of the students of Class 8.

Β 

Where can I download latest NCERT Solutions for Class 8 Mathematics Chapter 9 Algebraic expressions and identities

You can download the NCERT Solutions for Class 8 Mathematics Chapter 9 Algebraic expressions and identities for latest session from StudiesToday.com

Are the Class 8 Mathematics Chapter 9 Algebraic expressions and identities NCERT Solutions available for the latest session

Yes, the NCERT Solutions issued for Class 8 Mathematics Chapter 9 Algebraic expressions and identities have been made available here for latest academic session

How can I improve my scores by reading NCERT Solutions in Class 8 Mathematics Chapter 9 Algebraic expressions and identities

Regular revision of NCERT Solutions given on studiestoday for Class 8 subject Mathematics Chapter 9 Algebraic expressions and identities can help you to score better marks in exams

Are there any websites that offer free NCERT solutions for Chapter 9 Algebraic expressions and identities Class 8 Mathematics

Yes, studiestoday.com provides all latest NCERT Chapter 9 Algebraic expressions and identities Class 8 Mathematics solutions based on the latest books for the current academic session

Are NCERT solutions for Class 8 Chapter 9 Algebraic expressions and identities Mathematics available in multiple languages

Yes, NCERT solutions for Class 8 Chapter 9 Algebraic expressions and identities Mathematics are available in multiple languages, including English, Hindi

What questions are covered in NCERT Solutions for Chapter 9 Algebraic expressions and identities?

All questions given in the end of the chapter Chapter 9 Algebraic expressions and identities have been answered by our teachers