NCERT Solutions Class 12 Physics Chapter 10 Wave Optics have been provided below and is also available in Pdf for free download. The NCERT solutions for Class 12 Physics have been prepared as per the latest syllabus, NCERT books and examination pattern suggested in Class 12 by CBSE, NCERT and KVS. Questions given in NCERT book for Class 12 Physics are an important part of exams for Class 12 Physics and if answered properly can help you to get higher marks. Refer to more Chapter-wise answers for NCERT Class 12 Physics and also download more latest study material for all subjects. Chapter 10 Wave Optics is an important topic in Class 12, please refer to answers provided below to help you score better in exams
Chapter 10 Wave Optics Class 12 Physics NCERT Solutions
Class 12 Physics students should refer to the following NCERT questions with answers for Chapter 10 Wave Optics in Class 12. These NCERT Solutions with answers for Class 12 Physics will come in exams and help you to score good marks
Chapter 10 Wave Optics NCERT Solutions Class 12 Physics
Question : Monochromatic light having a wavelength of 589nm from the air is incident on a water surface. Find the frequency, wavelength and speed of (i) reflected and (ii) refracted light? [1.33 is the Refractive index of water]
Answer : Monochromatic light incident having wavelength, λ = 589 nm = 589 x 10-9 m
Speed of light in air, c = 3 x 108 m s-1
Refractive index of water, μ = 1.33
(i) In the same medium through which incident ray passed the ray will be reflected back.
Therefore the wavelength, speed, and frequency of the reflected ray will be the same as that of the incident ray.
Frequency of light can be found from the relation:
v = c / λ
= 3 x 108 / 589 x 10-9
= 5.09 x 1014 Hz
Hence, the speed, frequency, and wavelength of the reflected light are:
c = 3 x 108 m s-1, 5.09 × 1014 Hz, and 589 nm respectively.
(b) The frequency of light which is travelling never depends upon the property of the medium. Therefore, the frequency of the refracted ray in water will be equal to the frequency of the incident or reflected light in air.
Refracted frequency, v = 5.09 x 1014 Hz
Speed of light in water Is related to the refractive Index of water as:
v = c / μ
v = 3 x 108 / 1.33 = 2.26 x 108 m/s
Wavelength of light in water is given by the relation,
λ = v / v
V = 2.26 x 108 / 5.09 x 1014 = 444.007 x 10-9 m
= 444.01nm
Hence the speed, frequency and wavelength of refracted light are: 444.007 × 10-9 m, 444.01nm, and 5.09 × 1014 Hz respectively.
Question : What is the shape of the wavefront in each of the following cases:
(a) Light diverging from a point source.
(b) Light emerging out of a convex lens when a point source is placed at its focus.
(c) The portion of the wavefront of light from a distant star intercepted by the Earth.
Answer : (a) The shape of the wavefront in case of a light diverging from a point source is spherical. The wavefront emanating from a point source is shown in the given figure.
(b) The shape of the wavefront in case of a light emerging out of a convex lens when a point source is placed at its focus is a parallel grid. This is shown in the given figure.
(c) The portion of the wavefront of light from a distant star intercepted by the Earth is a plane.
Question : (a) The refractive index of glass is 1.5. What is the speed of light in glass? Speed of light in vacuum is 3.0 × 108 m s−1)
(b) Is the speed of light in glass independent of the colour of light? If not, which of the two colours red and violet travels slower in a glass prism?
Answer : (a) Refractive index of glass, μ = 1.5
Speed of light, c = 3 × 108 m/s
Speed of light in glass is given by the relation
V = C/μ
= 3 x 108 / 1.5 = 2 x 108 m/s
Hence, the speed of light in glass is 2 × 108 m/s.
(b) The speed of light in glass is not independent of the colour of light.
The refractive index of a violet component of white light is greater than the refractive index of a red component. Hence, the speed of violet light is less than the speed of red light in glass. Hence, violet light travels slower than red light in a glass prism.'
Question : In a Young’s double-slit experiment, the slits are separated by 0.28 mm and the screen is placed 1.4 m away. The distance between the central bright fringe and the fourth bright fringe is measured to be 1.2 cm. Determine the wavelength of light used in the experiment.
Answer : Distance between the slits, d = 0.28 mm = 0.28 × 10−3 m
Distance between the slits and the screen, D = 1.4 m
Distance between the central fringe and the fourth (n = 4) fringe,
u = 1.2 cm = 1.2 × 10−2 m
In case of a constructive interference, we have the relation for the distance between the two fringes as:
Hence, the wavelength of the light is 600 nm.
Question : In Young’s double-slit experiment using monochromatic light of wavelengthλ, the intensity of light at a point on the screen where path difference is λ, is K units. What is the intensity of light at a point where path difference is λ /3?
Answer : Let I1 and I2 be the intensity of the two light waves. Their resultant intensities can be obtained as:
Question : A beam of light consisting of two wavelengths, 650 nm and 520 nm, is used to obtain interference fringes in a Young’s double-slit experiment.
(a) Find the distance of the third bright fringe on the screen from the central maximum for wavelength 650 nm.
(b) What is the least distance from the central maximum where the bright fringes due to both the wavelengths coincide?
Answer : Wavelength of the light beam, λ1 = 650 nm
Wavelength of another light beam, λ2 = 520 nm
Distance of the slits from the screen = D
Distance between the two slits = d
(a) Distance of the nth bright fringe on the screen from the central maximum is given by the relation,
Note: The value of d and D are not given in the question.
Question : In a double-slit experiment the angular width of a fringe is found to be 0.2° on a screen placed 1 m away. The wavelength of light used is 600 nm. What will be the angular width of the fringe if the entire experimental apparatus is immersed in water? Take refractive index of water to be 4/3.
Answer : Distance of the screen from the slits, D = 1 m
Therefore, the angular width of the fringe in water will reduce to 0.15°.
Question : What is the Brewster angle for air to glass transition? (Refractive index of glass = 1.5.)
Answer : Refractive index of glass, μ = 1.5
Brewster angle = θ
Brewster angle is related to refractive index as:
tanθ = μ
θ = tan-1 (1.5) = 56.31o
Therefore, the Brewster angle for air to glass transition is 56.31°.
Question : Light of wavelength 5000 Å falls on a plane reflecting surface. What are the wavelength and frequency of the reflected light? For what angle of incidence is the reflected ray
normal to the incident ray?
Answer
Wavelength of incident light, λ = 5000 Å = 5000 × 10−10 m
Speed of light, c = 3 × 108 m
Frequency of incident light is given by the relation,
The wavelength and frequency of incident light is the same as that of reflected ray.
Hence, the wavelength of reflected light is 5000 Å and its frequency is 6 × 1014 Hz.
When reflected ray is normal to incident ray, the sum of the angle of incidence, ∠i and angle of reflection, ∠r is 90°.
According to the law of reflection, the angle of incidence is always equal to the angle of reflection. Hence, we can write the sum as:
∠i + ∠r = 90
∠i + ∠i = 90
∠i = 90/2 = 45o
Therefore, the angle of incidence for the given condition is 45°.
Question : Estimate the distance for which ray optics is good approximation for an aperture of 4mm and wavelength 400 nm.
Answer : Fresnel’s distance (ZF) is the distance for which the ray optics is a good approximation. It is given by the relation,
Question : The 6563 Å Hα line emitted by hydrogen in a star is found to be red shifted by 15 Å.
Estimate the speed with which the star is receding from the Earth.
Answer : Wavelength of Hα line emitted by hydrogen,
λ = 6563 Å
= 6563 × 10−10 m.
Question : Explain how Corpuscular theory predicts the speed of light in a medium, say, water, to be greater than the speed of light in vacuum. Is the prediction confirmed by experimental determination of the speed of light in water? If not, which alternative picture of light is consistent with experiment?
Answer : No; Wave theory
Newton’s corpuscular theory of light states that when light corpuscles strike the interface of two media from a rarer (air) to a denser (water) medium, the particles experience forces of attraction normal to the surface. Hence, the normal component of velocity increases while the component along the surface remains unchanged.
Hence, we can write the expression:
c sin i = vsin r ..... (i)
Where,
i = Angle of incidence
r = Angle of reflection
c = Velocity of light in air
v = Velocity of light in water
We have the relation for relative refractive index of water with respect to air as:
Hence, it can be inferred from equation (ii) that v > c. This is not possible since this prediction is opposite to the experimental results of c > v.
The wave picture of light is consistent with the experimental results.
Question : You have learnt in the text how Huygens’ principle leads to the laws of reflection and refraction. Use the same principle to deduce directly that a point object placed in front of a plane mirror produces a virtual image whose distance from the mirror is equal to the object distance from the mirror.
Answer : Let an object at O be placed in front of a plane mirror MO’ at a distance r (as shown in the given figure).
A circle is drawn from the centre (O) such that it just touches the plane mirror at point O’. According to Huygens’ Principle, XY is the wavefront of incident light. If the mirror is absent, then a similar wavefront X’Y’ (as XY) would form behind O’ at distance r (as shown in the given figure).
X:Y: can be considered as a virtual reflected ray for the plane mirror. Hence, a point object placed in front of the plane mirror produces a virtual image whose distance from the mirror is equal to the object distance (r).
Question : Let us list some of the factors, which could possibly influence the speed of wave propagation:
(i) Nature of the source.
(ii) Direction of propagation.
(iii) Motion of the source and/or observer.
(iv) Wave length.
(v) Intensity of the wave.
On which of these factors, if any, does
(a) The speed of light in vacuum,
(b) The speed of light in a medium (say, glass or water), depend?
Answer : (a) Thespeed of light in a vacuum i.e., 3 × 108 m/s (approximately) is a universal constant. It is not affected by the motion of the source, the observer, or both. Hence, the given factor does not affect the speed of light in a vacuum.
(b) Out of the listed factors, the speed of light in a medium depends on the wavelength of light in that medium.
Question : For sound waves, the Doppler formula for frequency shift differs slightly between the two situations: (i) source at rest; observer moving, and (ii) source moving; observer at rest. The exact Doppler formulas for the case of light waves in vacuum are, however, strictly identical for these situations. Explain why this should be so. Would you expect the formulas to be strictly identical for the two situations in case of light travelling in a medium?
Answer : No Sound waves can propagate only through a medium. The two given situations are not scientifically identical because the motion of an observer relative to a medium is different in the two situations. Hence, the Doppler formulas for the two situations cannot be the same.
In case of light waves, sound can travel in a vacuum. In a vacuum, the above two cases are identical because the speed of light is independent of the motion of the observer and the motion of the source. When light travels in a medium, the above two cases are not identical because the speed of light depends on the wavelength of the medium.
Question : In double-slit experiment using light of wavelength 600 nm, the angular width of a fringe formed on a distant screen is 0.1º. What is the spacing between the two slits?
Answer : Wavelength of light used, λ = 6000 nm = 600 × 10−9 m
Question : Answer the following questions:
(a) In a single slit diffraction experiment, the width of the slit is made double the original width. How does this affect the size and intensity of the central diffraction band?
(b) In what way is diffraction from each slit related to the interference pattern in a double-slit experiment?
(c) When a tiny circular obstacle is placed in the path of light from a distant source, a bright spot is seen at the centre of the shadow of the obstacle. Explain why?
(d) Two students are separated by a 7 m partition wall in a room 10 m high. If both light and sound waves can bend around obstacles, how is it that the students are unable to see each other even though they can converse easily.
(e) Ray optics is based on the assumption that light travels in a straight line. Diffraction effects (observed when light propagates through small apertures/slits or around small obstacles) disprove this assumption. Yet the ray optics assumption is so commonly used in understanding location and several other properties of images in optical instruments.
What is the justification?
Answer : (a) In a single slit diffraction experiment, if the width of the slit is made double the original width, then the size of the central diffraction band reduces to half and the intensity of the central diffraction band increases up to four times.
(b) The interference pattern in a double-slit experiment is modulated by diffraction from each slit. The pattern is the result of the interference of the diffracted wave from each slit.
(c) When a tiny circular obstacle is placed in the path of light from a distant source, a bright spot is seen at the centre of the shadow of the obstacle. This is because light waves are diffracted from the edge of the circular obstacle, which interferes constructively at the centre of the shadow. This constructive interference produces a bright spot.
(d) Bending of waves by obstacles by a large angle is possible when the size of the obstacle is comparable to the wavelength of the waves.
On the one hand, the wavelength of the light waves is too small in comparison to the size of the obstacle. Thus, the diffraction angle will be very small. Hence, the students are unable to see each other. On the other hand, the size of the wall is comparable to the wavelength of the sound waves. Thus, the bending of the waves takes place at a large angle. Hence, the students are able to hear each other.
(e) The justification is that in ordinary optical instruments, the size of the aperture involved is much larger than the wavelength of the light used.
Question : Two towers on top of two hills are 40 km apart. The line joining them passes 50 m above a hill halfway between the towers. What is the longest wavelength of radio waves, which can be sent between the towers without appreciable diffraction effects?
Answer : Distance between the towers, d = 40 km
Height of the line joining the hills, d = 50 m.
Thus, the radial spread of the radio waves should not exceed 50 km.
Since the hill is located halfway between the towers, Fresnel’s distance can be obtained as:
ZP = 20 km = 2 × 104 m
Aperture can be taken as:
a = d = 50 m
Fresnel’s distance is given by the relation
Therefore, the wavelength of the radio waves is 12.5 cm.
Question : A parallel beam of light of wavelength 500 nm falls on a narrow slit and the resulting diffraction pattern is observed on a screen 1 m away. It is observed that the first minimum is at a distance of 2.5 mm from the centre of the screen. Find the width of the slit.
Answer : Wavelength of light beam, λ = 500 nm = 500 × 10−9 m
Distance of the screen from the slit, D = 1 m
For first minima, n = 1
Distance between the slits = d
Distance of the first minimum from the centre of the screen can be obtained as:
x = 2.5 mm = 2.5 × 10−3 m
It is related to the order of minima as:
nλ = x d/D
Therefore, the width of the slits is 0.2 mm.
Question : Answer the following questions:
(a) When a low flying aircraft passes overhead, we sometimes notice
a slight shaking of the picture on our TV screen. Suggest a possible explanation.
(b) As you have learnt in the text, the principle of linear superposition of wave displacement is basic to understanding intensity distributions in diffraction and interference patterns. What is the justification of this principle?
Answer : (a) Weak radar signals sent by a low flying aircraft can interfere with the TV signals received by the antenna. As a result, the TV signals may get distorted. Hence, when a low flying aircraft passes overhead, we sometimes notice a slight shaking of the picture on our TV screen.
(b) The principle of linear superposition of wave displacement is essential to our understanding of intensity distributions and interference patterns. This is because superposition follows from the linear character of a differential equation that governs wave motion. If y1 and y2 are the solutions of the second order wave equation, then any linear combination of y1 and y2 will also be the solution of the wave equation.
Question : In deriving the single slit diffraction pattern, it was stated that the intensity is zero at angles of nλ/a. Justify this by suitably dividing the slit to bring out the cancellation.
Answer : Consider that a single slit of width d is divided into n smaller slits.
∴ Width of each slit, d' = d/n
Angle of diffraction is given by the relation,
Now, each of these infinitesimally small slit sends zero intensity in directionθ. Hence, the combination of these slits will give zero intensity.
NCERT Solutions Class 12 Physics Chapter 1 Electric Charges And Fields |
NCERT Solutions Class 12 Physics Chapter 2 Electrostatic Potential And Capacitance |
NCERT Solutions Class 12 Physics Chapter 3 Current Electricity |
NCERT Solutions Class 12 Physics Chapter 4 Moving Charges And Magnetism |
NCERT Solutions Class 12 Physics Chapter 5 Magnetism And Matter |
NCERT Solutions Class 12 Physics Chapter 6 Electromagnetic Induction |
NCERT Solutions Class 12 Physics Chapter 7 Alternating Current |
NCERT Solutions Class 12 Physics Chapter 8 Electromagnetic Waves |
NCERT Solutions Class 12 Physics Chapter 9 Ray Optics And Optical Instruments |
NCERT Solutions Class 12 Physics Chapter 10 Wave Optics |
NCERT Solutions Class 12 Physics Chapter 12 Atoms |
NCERT Solutions Class 12 Physics Chapter 13 Nuclei |
NCERT Solutions Class 12 Physics Chapter 14 Semiconductor Electronics Materials Devices And Simple Circuits |
NCERT Solutions Class 12 Physics Chapter 15 Communication Systems |
NCERT Solutions Class 12 Physics Chapter 10 Wave Optics
The above provided NCERT Solutions Class 12 Physics Chapter 10 Wave Optics is available on our website www.studiestoday.com for free download in Pdf. You can read the solutions to all questions given in your Class 12 Physics textbook online or you can easily download them in pdf. The answers to each question in Chapter 10 Wave Optics of Physics Class 12 has been designed based on the latest syllabus released for the current year. We have also provided detailed explanations for all difficult topics in Chapter 10 Wave Optics Class 12 chapter of Physics so that it can be easier for students to understand all answers. These solutions of Chapter 10 Wave Optics NCERT Questions given in your textbook for Class 12 Physics have been designed to help students understand the difficult topics of Physics in an easy manner. These will also help to build a strong foundation in the Physics. There is a combination of theoretical and practical questions relating to all chapters in Physics to check the overall learning of the students of Class 12.
You can download the NCERT Solutions for Class 12 Physics Chapter 10 Wave Optics for latest session from StudiesToday.com
Yes, the NCERT Solutions issued for Class 12 Physics Chapter 10 Wave Optics have been made available here for latest academic session
Regular revision of NCERT Solutions given on studiestoday for Class 12 subject Physics Chapter 10 Wave Optics can help you to score better marks in exams
Yes, studiestoday.com provides all latest NCERT Chapter 10 Wave Optics Class 12 Physics solutions based on the latest books for the current academic session
Yes, NCERT solutions for Class 12 Chapter 10 Wave Optics Physics are available in multiple languages, including English, Hindi
All questions given in the end of the chapter Chapter 10 Wave Optics have been answered by our teachers