(i) (3x + 2y)(9x2 – 6xy + 4y2)
= (3x + 2y)[(3x)2 – (3x)(2y) + (2y)2]
By using identity of a3 + b3 = (a + b)(a2 + b2 – ab)
Here a = 3x and b = 2y
= (3x)3 + (2y)3
= 27x3 + 8y3
Hence, the product of (3x + 2y)(9x2 – 6xy + 4y2) is 27x3 + 8y3.
(ii) (4x – 5y)(16x2 + 20xy + 25y2)
= (4x – 5y)[(4x)2 + (4x)(5y) + (5y)2)]
By using identity of a3 – b3 = (a – b)(a2 + b2 + ab)
Here a = 4x and b = 5y
= (4x)3 – (5y)3
= 64x3 – 125y3
Hence, the product of (4x – 5y)(16x2 + 20xy + 25y2) is 64x3 – 125y3.
(iii) (7p4 + q)(49p8 – 7p4q + q2)
= (7p4 + q)[(7p4)2 – (7p4)(q) + (q)2)]
By using identity of a3 + b3 = (a + b)(a2 + b2 – ab)
Here a=7p2 and b=q
= (7p4)3 + (q)3
= 343 p12 + q3
Hence, the product of (7p4 + q)(49p8 – 7p4q + q2) is 343 p12 + q3.
(ix) (1 – x)(1 + x + x2)
By Using identity a3 – b3 = (a – b)(a2 + b2 + ab)
(1 – x)(1 + x + x2)
(1 – x)[(12 + (1)(x)+ x2)]
(1)3 – (x)3
1 – x3
Hence, the product of (1 – x)(1 + x + x2) is 1 – x3.
(x) (1 + x)(1 – x + x2)
By Using identity a3 + b3 = (a + b)(a2 + b2 – ab)
(1 + x)(1 – x + x2)
(1 + x)[(12 – (1)(x) + x2)]
(1)3 + (x)3
1 + x3
Hence, the product of (1 + x)(1 – x + x2) is 1 + x3
(xi) (x2 – 1)(x4 + x2 +1)
By Using identity a3 – b3 = (a – b)(a2 + b2 + ab)
(x2 – 1)[(x2)2 – (1)2 + (x2)(1)]
(x2 – 1)[(x2)2 – (1)2 + x2]
(x2)3 – (1)3
x6 – 1
Hence, the product of (x2 – 1)(x4 + x2 +1) is x6 – 1.
(xii) (x3 + 1)(x6 – x3 + 1)
By Using identity a3 + b3 = (a + b)(a2 + b2 – ab)
(x3 + 1)[(x3)2 – (x3)(1) + 12]
(x3 + 1)[(x3)2 – x3 + 12]
(x3)3 + 13
x9 + 1
Hence, the product of (x3 + 1)(x6 – x3 + 1) is x9 + 1.
Question 3: If a + b = 10 and ab = 16, find the value of a2 – ab + b2 and a2 + ab + b2.
Solution:
It is given that,
a + b = 10 …………………..(i)
ab = 16 …………………..(ii)
By squaring both the sides of Equation (i)
(a + b)2 = (10)2
By using identity (a + b)2 = a2 + b2 + 2ab
a2 + b2 + 2ab = 100
The value of ab is 16
a2 + b2 + 2 x 16 = 100
a2 + b2 + 32 = 100
a2 + b2 = 100 – 32 = 68
a2 + b2 = 68
So the value of a2 – ab + b2 is
a2 + b2 – ab
= 68 – 16
= 52
And the value of a2 + ab + b2
a2 + b2 + ab
= 68 + 16
= 84
Hence, the value of a2 – ab + b2 is 52 and a2 + ab + b2 is 84.
Question 4: If a + b = 8 and ab = 6, find the value of a3 + b3.
Solution:
It is given that,
a + b = 8……………………(i)
ab = 6………………….(ii)
By cubing both the sides of Equation (i)
(a + b)3 = (8)3
By Using identity (a + b)3 = a3 + b3 + 3ab (a + b)
a3 + b3 + 3ab (a + b) = 512
It is given that the value of a + b = 8 and ab = 6
Value of x and y put in above equation
a3 + b3 + 3 x 6 x 8 = 512
a3 + b3 + 144 = 512
a3 + b3 = 512 – 144 = 368
a3 + b3 = 368
Hence, the value of a3 + b3 is 368.
Exercise 4.5
Question 1: Find the following products:
(i) (3x + 2y + 2z) (9x2 + 4y2 + 4z2 – 6xy – 4yz – 6zx)
(ii) (4x – 3y + 2z) (16x2 + 9y2 + 4z2 + 12xy + 6yz – 8zx)
(iii) (2a – 3b – 2c) (4a2 + 9b2 + 4c2 + 6ab – 6bc + 4ca)
(iv) (3x -4y + 5z) (9x2 + 16y2 + 25z2 + 12xy- 15zx + 20yz)
Solution:
(i) It is given that,
(3x + 2y + 2z) (9x2 + 4y2 + 4z2 – 6xy – 4yz – 6zx)
(3x+ 2y + 2z) [(3x)2 + (2y)2 + (2z)2 – 3x x 2y – 2y x 2z – 2z x 3x]
By using identity of a3 + b3 + c3 - 3abc = (a + b + c)(a2 + b2 + c2 - ab - bc - ca)
(3x)3 + (2y)3 + (2z)3 – 3 x 3x x 2y x 2z
27x3 + 8y3 + 8z3 – 36xyz
Hence, the value of (3x + 2y + 2z) (9x2 + 4y2 + 4z2 –6xy–4yz –6zx) is 27x3 + 8y3 + 8z3 – 36xyz
(ii) It is given that,
(4x – 3y + 2z) (16x2 + 9y2 + 4z2 + 12xy + 6yz – 8zx)
(4x -3y + 2z) [(4x)2 + (-3y)2 + (2z)2 – 4x x (-3y) – (-3y) x (2z) – (2z x 4x)]
By using identity of a3 + b3 + c3 - 3abc = (a + b + c)(a2 + b2 + c2 - ab - bc - ca)
(4x)3 + (-3y)3 + (2z)3 – 3 x 4x x (-3y) x (2z)
64x3 – 27y3 + 8z3 + 72xyz
Hence, the value of (4x – 3y + 2z) (16x2 + 9y2 + 4z2 + 12xy + 6yz – 8zx) is 64x3 – 27y3 + 8z3 + 72xyz.
(iii) It is given that,
(2a – 3b – 2c) (4a2 + 9b2 + 4c2 + 6ab – 6bc + 4ca)
(2a -3b- 2c) [(2a)2 + (-3b)2 + (-2c)2 – 2a x (-3b) – (-3b) x (-2c) – (-2c) x 2a]
By using identity of a3 + b3 + c3 - 3abc = (a + b + c)(a2 + b2 + c2 - ab - bc - ca)
(2a)3 + (-3b)3 + (-2c)3 -3x 2a x (-3 b) (-2c)
8a3 – 21b3 – 8c3 – 36abc
Hence, the value of (2a -3b- 2c) (4a2 + 9b2 + 4c2 + 6ab – 6bc + 4ca) is 8a3 – 21b3 – 8c3 – 36abc.
(iv) It is given that,
((3x -4y + 5z) (9x2 + 16y2 + 25z2 + 12xy- 15zx + 20yz)
[3x + (-4y) + 5z] [(3x)2 + (-4y)2 + (5z)2 – 3x x (-4y) -(-4y) (5z) – 5z x 3x]
By using identity of a3 + b3 + c3 - 3abc = (a + b + c)(a2 + b2 + c2 - ab - bc - ca)
(3x)3 + (-4y)3 + (5z)3 – 3 x 3x x (-4y) (5z)
27x3 – 64y3 + 125z3 + 180xyz
Hence, the value of (3x – 4y + 5z) (9x2 + 16y2 + 25z2 + 12xy – 15zx + 20yz) is 27x3 – 64y3 + 125z3 + 180xyz.
Question 2: If x + y + z = 8 and xy + yz+ zx = 20, find the value of x3 + y3 + z3 – 3xyz.
Solution:
It is given that,
x+y+z=8………………(i)
xy+yz+zx=20………………….(ii)
By squaring both the sides of Equation (i)
By using identity of (a+b+c)2 = a2+b2+c2+2(ab+bc+ca)
(x + y + z)2 = (8)2
x2 + y2 + z2 + 2(xy + yz + zx) = 64
x2 + y2 + z2 + 2 x 20 = 64
x2 + y2 + z2 + 40 = 64
x2 + y2 + z2 = 24
By using identity of a3 + b3 + c3 - 3abc = (a + b + c)(a2 + b2 + c2 - ab - bc - ca)
x3 + y3 + z3 – 3xyz
(x + y + z) [x2 + y2 + z2 – (xy + yz + zx)]
8(24 – 20)
8 x 4
32
Hence, the value of x3 + y3 + z3 – 3xyz is 32.
Question 3: If a +b + c = 9 and ab + bc + ca = 26, find the value of a3 + b3 + c3 – 3abc.
Solution:
It is given that,
a + b + c = 9……………..(i)
ab + bc + ca = 26……………..(ii)
Squaring, a + b + c = 9 both sides, we get
By squaring both the sides of Equation (i)
By using identity of (a+b+c)2 = a2+b2+c2+2(ab+bc+ca)
(a + b + c)2 = (9)2
a2 + b2 + c2 + 2 (ab + bc + ca) = 81
a2 + b2 + c2 + 2 x 26 = 81
a2 + b2 + c2 + 52 = 81
a2 + b2 + c2 = 29
By using identity of a3 + b3 + c3 - 3abc = (a + b + c)(a2 + b2 + c2 - ab - bc - ca)a3 + b3 + c3 - 3abc
(a + b + c)(a2 + b2 + c2 - ab - bc - ca) ………………..(iii)
Put the value of a + b + c = 9 and ab + bc + ca = 26 in equation (iii)
9 [29 – 26]
9 x 3
27
Hence, the value of a3 + b3 + c3 – 3abc is 27