NCERT Solutions Class 11 Mathematics Chapter 2 Relations and Functions have been provided below and is also available in Pdf for free download. The NCERT solutions for Class 11 Mathematics have been prepared as per the latest syllabus, NCERT books and examination pattern suggested in Class 11 by CBSE, NCERT and KVS. Questions given in NCERT book for Class 11 Mathematics are an important part of exams for Class 11 Mathematics and if answered properly can help you to get higher marks. Refer to more Chapter-wise answers for NCERT Class 11 Mathematics and also download more latest study material for all subjects. Chapter 2 Relations and Functions is an important topic in Class 11, please refer to answers provided below to help you score better in exams
Chapter 2 Relations and Functions Class 11 Mathematics NCERT Solutions
Class 11 Mathematics students should refer to the following NCERT questions with answers for Chapter 2 Relations and Functions in Class 11. These NCERT Solutions with answers for Class 11 Mathematics will come in exams and help you to score good marks
Chapter 2 Relations and Functions NCERT Solutions Class 11 Mathematics
Exercise 2.1
Question 1. If (x/3 + 1, y - 2/3) = (5/3 1/3) , find the values of x and y.
Answer :
It is given that (x/3 + 1, y - 2/3) = (5/3, 1/3).
Since the ordered pairs are equal, the corresponding elements will also be equal.
Therefore, x/3 + 1= 5/3 and y - 2/3 = 1/3.
Question 2. If the set A has 3 elements and the set B = {3, 4, 5}, then find the number of elements in (A × B)?
Answer :
It is given that set A has 3 elements and the elements of set B are 3, 4, and 5.
⇒ Number of elements in set B = 3
Number of elements in (A × B)
= (Number of elements in A) × (Number of elements in B)
= 3 × 3 = 9
Thus, the number of elements in (A × B) is 9.
Question 3. If G = {7, 8} and H = {5, 4, 2}, find G × H and H × G.
Answer :
G = {7, 8} and H = {5, 4, 2}
We know that the Cartesian product P × Q of two non-empty sets P and Q is defined as
P × Q = {(p, q): p∈ P, q ∈ Q}
∴G × H = {(7, 5), (7, 4), (7, 2), (8, 5), (8, 4), (8, 2)}
H × G = {(5, 7), (5, 8), (4, 7), (4, 8), (2, 7), (2, 8)}
Question 4. State whether each of the following statement are true or false. If the statement is false, rewrite the given statement correctly.
(i) If P = {m, n} and Q = {n, m}, then P × Q = {(m, n), (n, m)}.
(ii) If A and B are non-empty sets, then A × B is a non-empty set of ordered pairs (x, y) such that x ∈ A and y ∈ B.
(iii) If A = {1, 2}, B = {3, 4}, then A × (B ∩ Φ) = Φ.
Answer :
(i) False
If P = {m, n} and Q = {n, m}, then
P × Q = {(m, m), (m, n), (n, m), (n, n)}
(ii) True
(iii) True
Question 5. If A = {–1, 1}, find A × A × A.
Answer :
It is known that for any non-empty set A, A × A × A is defined as
A × A × A = {(a, b, c): a, b, c ∈ A}
It is given that A = {–1, 1}
∴ A × A × A = {(–1, –1, –1), (–1, –1, 1), (–1, 1, –1), (–1, 1, 1),
(1, –1, –1), (1, –1, 1), (1, 1, –1), (1, 1, 1)}
Question 6. If A × B = {(a, x), (a, y), (b, x), (b, y)}. Find A and B.
Answer :
It is given that A × B = {(a, x), (a, y), (b, x), (b, y)}
We know that the Cartesian product of two non-empty sets P and Q is defined as P × Q {(p, q): p ∈ P, q ∈ Q}
∴ A is the set of all first elements and B is the set of all second elements.
Thus, A = {a, b} and B = {x, y}
Question 7. Let A = {1, 2}, B = {1, 2, 3, 4}, C = {5, 6} and D = {5, 6, 7, 8}. Verify that
(i) A × (B ∩ C) = (A × B) ∩ (A × C)
(ii) A × C is a subset of B × D
Answer :
(i) To verify: A × (B ∩ C) = (A × B) ∩ (A × C)
We have B ∩ C = {1, 2, 3, 4} ∩ {5, 6} = Φ
∴L.H.S. = A × (B ∩ C) = A × Φ = Φ
A × B = {(1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (2, 3), (2, 4)}
A × C = {(1, 5), (1, 6), (2, 5), (2, 6)}
∴ R.H.S. = (A × B) ∩ (A × C) = Φ
∴L.H.S. = R.H.S
Hence, A × (B ∩ C) = (A × B) ∩ (A × C)
(ii) To verify: A × C is a subset of B × D
A × C = {(1, 5), (1, 6), (2, 5), (2, 6)}
B × D = {(1, 5), (1, 6), (1, 7), (1, 8), (2, 5), (2, 6), (2, 7), (2, 8), (3, 5), (3, 6), (3, 7), (3, 8), (4, 5), (4, 6), (4, 7), (4, 8)}
We can observe that all the elements of set A × C are the elements of set B × D.
Therefore, A × C is a subset of B × D.
Question 8. Let A = {1, 2} and B = {3, 4}. Write A × B. How many subsets will A × B have? List them.
Answer :
A = {1, 2} and B = {3, 4}
∴A × B = {(1, 3), (1, 4), (2, 3), (2, 4)}
⇒ n(A × B) = 4
We know that if C is a set with n(C) = m, then n[P(C)] = 2m.
Therefore, the set A × B has 24 = 16 subsets. These are
Φ, {(1, 3)}, {(1, 4)}, {(2, 3)}, {(2, 4)}, {(1, 3), (1, 4)}, {(1, 3), (2, 3)},
{(1, 3), (2, 4)}, {(1, 4), (2, 3)}, {(1, 4), (2, 4)}, {(2, 3), (2, 4)},
{(1, 3), (1, 4), (2, 3)}, {(1, 3), (1, 4), (2, 4)}, {(1, 3), (2, 3), (2, 4)},
{(1, 4), (2, 3), (2, 4)}, {(1, 3), (1, 4), (2, 3), (2, 4)}
Question 9. Let A and B be two sets such that n(A) = 3 and n (B) = 2. If (x, 1), (y, 2), (z, 1) are in A × B, find A and B, where x, y and z are distinct elements.
Answer :
It is given that n(A) = 3 and n(B) = 2; and (x, 1), (y, 2), (z, 1) are in A × B.
We know that A = Set of first elements of the ordered pair elements of A × B
B = Set of second elements of the ordered pair elements of A × B.
∴ x, y, and z are the elements of A; and 1 and 2 are the elements of B.
Since n(A) = 3 and n(B) = 2, it is clear that A = {x, y, z} and B = {1, 2}.
Question 10. The Cartesian product A × A has 9 elements among which are found (–1, 0) and (0, 1). Find the set A and the remaining elements of A × A.
Answer :
We know that if n(A) = p and n(B) = q, then n(A × B) = pq.
∴ n(A × A) = n(A) × n(A)
It is given that n(A × A) = 9
∴ n(A) × n(A) = 9
⇒ n(A) = 3
The ordered pairs (–1, 0) and (0, 1) are two of the nine elements of A × A.
We know that A × A = {(a, a): a ∈ A}. Therefore, –1, 0, and 1 are elements of A.
Since n(A) = 3, it is clear that A = {–1, 0, 1}.
The remaining elements of set A × A are (–1, –1), (–1, 1), (0, –1), (0, 0),
(1, –1), (1, 0), and (1, 1)
Exercise 2.2
Question 1. Let A = {1, 2, 3,...,14}. Define a relation R from A to A by R = {(x, y) : 3x – y = 0, where x, y ∈ A}. Write down its domain, codomain and range.
Answer :
Given: A = {1, 2, 3, ……….., 14}
The ordered pairs which satisfy 3x – y=0 are (1, 3), (2, 6), (3, 9) and (4, 12).
∴ R = {(1, 3), (2, 6), (3, 9), (4, 12)}
Domain = {1, 2, 3, 4}
Range = {3, 6, 9, 12}
Co-domain = {1, 2, 3, ……….., 14}
Question 2. Define a relation R on the set N of natural numbers by R = {(x, y) : y = x + 5, x is a natural number less than 4; x, y ∈N}. Depict this relationship using roster form. Write down the domain and the range.
Answer :
R = {(x, y): y = x + 5, x is a natural number less than 4, x, y∈ N}
The natural numbers less than 4 are 1, 2, and 3.
∴R = {(1, 6), (2, 7), (3, 8)}
The domain of R is the set of all first elements of the ordered pairs in the relation.
∴ Domain of R = {1, 2, 3}
The range of R is the set of all second elements of the ordered pairs in the relation.
∴ Range of R = {6, 7, 8}
Question 3. A = {1, 2, 3, 5} and B = {4, 6, 9}. Define a relation R from A to B by R = {(x, y): the difference between x and y is odd; x ∈ A, y ∈ B}. Write R in roster form.
Answer :
A = {1, 2, 3, 5} and B = {4, 6, 9}
R = {(x, y): the difference between x and y is odd; x ∈ A, y ∈ B}
∴R = {(1, 4), (1, 6), (2, 9), (3, 4), (3, 6), (5, 4), (5, 6)}
Question 4. Figure shows a relationship between the sets P and Q. Write this relation:
(i) in set-builder form
(ii) roster form
What is its domain and range?
Answer :
According to the given figure, P = {5, 6, 7}, Q = {3, 4, 5}
(i) R = {(x, y): y = x – 2; x ∈ P} or R = {(x, y): y = x – 2 for x = 5, 6, 7}
(ii) R = {(5, 3), (6, 4), (7, 5)}
Domain of R = {5, 6, 7}
Range of R = {3, 4, 5}
Question 5. Let A = {1, 2, 3, 4, 6}. Let R be the relation on A defined by {(a, b): a , b ∈A, b is exactly divisible by a}.
(i) Write R in roster form
(ii) Find the domain of R
(iii) Find the range of R.
Answer :
A = {1, 2, 3, 4, 6}, R = {(a, b): a, b ∈ A, b is exactly divisible by a}
(i) R = {(1, 1), (1, 2), (1, 3), (1, 4), (1, 6), (2, 2), (2, 4), (2, 6), (3, 3), (3, 6), (4, 4), (6, 6)}
(ii) Domain of R = {1, 2, 3, 4, 6}
(iii) Range of R = {1, 2, 3, 4, 6}
Question 6. Determine the domain and range of the relation R defined by R = {(x, x + 5) : x ∈ {0, 1, 2, 3, 4, 5}}.
Answer :
R = {(x, x + 5): x ∈ {0, 1, 2, 3, 4, 5}}
∴ R = {(0, 5), (1, 6), (2, 7), (3, 8), (4, 9), (5, 10)}
∴Domain of R = {0, 1, 2, 3, 4, 5}
Range of R = {5, 6, 7, 8, 9, 10}
Question 7: Write the relation R = {(x, x3) : x is a prime number less than 10} in roster form.
Answer :
R = {(x, x3) : x is a prime number less than 10}
The prime numbers less than 10 are 2, 3, 5, and 7.
∴R = {(2, 8), (3, 27), (5, 125), (7, 343)}
Question 8. Let A = {x, y, z} and B = {1, 2}. Find the number of relations from A to B.
Answer :
It is given that A = {x, y, z} and B = {1, 2}.
∴ A × B = {(x, 1), (x, 2), (y, 1), (y, 2), (z, 1), (z, 2)}
Since n(A × B) = 6, the number of subsets of A × B is 26.
Therefore, the number of relations from A to B is 26.
Question 9. Let R be the relation on Z defined by R = {(a,b): a, b ∈ Z, a – b is an integer}. Find the domain and range of R.
Answer :
R = {(a, b): a, b ∈ Z, a – b is an integer}
It is known that the difference between any two integers is always an integer.
∴Domain of R = Z
Range of R = Z
Exercise 2.3
Question 1. Which of the following relations are functions? Give reasons. If it is a function, determine its domain and range.
(i) {(2, 1), (5, 1), (8, 1), (11, 1), (14, 1), (17, 1)}
(ii) {(2, 1), (4, 2), (6, 3), (8, 4), (10, 5), (12, 6), (14, 7)}
(iii) {(1, 3), (1, 5), (2, 5)}
Answer :
(i) {(2, 1), (5, 1), (8, 1), (11, 1), (14, 1), (17, 1)}
Since 2, 5, 8, 11, 14, and 17 are the elements of the domain of the given relation having their unique images, this relation is a function.
Here, domain = {2, 5, 8, 11, 14, 17} and range = {1}
(ii) {(2, 1), (4, 2), (6, 3), (8, 4), (10, 5), (12, 6), (14, 7)}
Since 2, 4, 6, 8, 10, 12, and 14 are the elements of the domain of the given relation having their unique images, this relation is a function.
Here, domain = {2, 4, 6, 8, 10, 12, 14} and range = {1, 2, 3, 4, 5, 6, 7}
(iii) {(1, 3), (1, 5), (2, 5)}
Since the same first element i.e., 1 corresponds to two different images i.e., 3 and 5, this relation is not a function.
Question 2. Find the domain and range of the following real function:
(i) f(x) = –|x|
(ii) f(x) = √(9 – x2)
Answer :
(i) f(x) = - |x| , x ∈ R
Since f(x) is defined for x ∈ R, the domain of f is R.
It can be observed that the range of f(x) = –|x| is all real numbers except positive real numbers.
∴The range of f is (–∞, 0].
(ii) f(x) = √(9 – x2)
Since √(9 – x2) is defined for all real numbers that are greater than or equal to -3 and less than or equal to 3, the domain of f(x) is { x : -3 ≤ x ≤ 3} or [-3, 3].
For any value of x such that –3 ≤ x ≤ 3, the value of f(x) will lie between 0 and 3.
∴The range of f(x) is {x: 0 ≤ x ≤ 3} or [0, 3].
Question 3. A function f is defined by f(x) = 2x – 5. Write down the values of
(i) f(0),
(ii) f(7),
(iii) f(–3)
Answer :
The given function is f(x) = 2x – 5.
Therefore,
(i) f(0) = 2 × 0 – 5 = 0 – 5 = –5
(ii) f(7) = 2 × 7 – 5 = 14 – 5 = 9
(iii) f(–3) = 2 × (–3) – 5 = – 6 – 5 = –11
Question 4. The function ‘t’ which maps temperature in degree Celsius into temperature in degree Fahrenheit is defined by t(C)=9C/5 + 32
Find
(i) t(0)
(ii) t(28)
(iii) t(–10)
(iv) The value of C, when t(C) = 212.
Answer :
The given function is t(C) = 9C/5 + 32 .
Therefore,
Question 5. Find the range of each of the following functions.
(i) f(x) = 2 – 3x, x ∈ R, x > 0.
(ii) f(x) = x2 + 2, x, is a real number.
(iii) f(x) = x, x is a real number
Answer :
(i) f(x) = 2 – 3x, x ∈ R, x > 0
The values of f(x) for various values of real numbers x > 0 can be written in the tabular form as
Thus, it can be clearly observed that the range of f is the set of all real numbers less than 2.
i.e., range of f = (–∞, 2)
Alter:
Let x > 0
⇒ 3x > 0
⇒ 2 –3x < 2
⇒ f(x) < 2
∴Range of f = (–∞, 2)
(ii) f(x) = x2 + 2, x, is a real number
The values of f(x) for various values of real numbers x can be written in the tabular form as
Thus, it can be clearly observed that the range of f is the set of all real numbers greater than 2.'
i.e., range of f = [2, ∞)
Alter:
Let x be any real number.
Accordingly,
x2 ≥ 0
⇒ x2 + 2 ≥ 0 + 2
⇒ x2 + 2 ≥ 2
⇒ f(x) ≥ 2
∴ Range of f = [2,)
(iii) f(x) = x, x is a real number
It is clear that the range of f is the set of all real numbers.
∴ Range of f = R
Miscellaneous Exercise
Question 1. The relation f is defined by
Show that f is a function and g is not a function.
Answer :
The relation f is defined as
It is observed that for
0 ≤ x < 3, f(x) = x2
3 < x ≤ 10, f(x) = 3x
Also, at x = 3, f(x) = 32 = 9 or f(x) = 3×3 = 9
i.e., at x = 3, f(x) = 9
Therefore, for 0 ≤ x ≤ 10, the images of f(x) are unique.
Thus, the given relation is a function.
The relation g is defined as
It can be observed that for x = 2, g(x) = 22 = 4 and g(x) = 3 × 2 = 6
Hence, element 2 of the domain of the relation g corresponds to two different images i.e., 4 and 6.
Hence, this relation is not a function.
Question 2. If f(x) = x2, find [f(1.1) - f(1)]/(1.1 - 1)
Answer :
Question 3. Find the domain of the function f(x) = (x2 + 2x + 1)/(x2 - 8x + 12)
Answer :
The given function is f(x) = (x2 + 2x + 1)/(x2 - 8x + 12)
It can be seen that function f is defined for all real numbers except at x = 6 and x = 2
Hence, the domain of f is R = {2, 6}.
Question 4. Find the domain and the range of the real function f defined by f(x) = √(x - 1) .
Answer :
The given real function is f(x) = √(x - 1) .
It can be seen that √(x - 1) is defined for (x - 1) ≥ 0.
i.e., f(x) = √(x - 1) is defined for x ≥ 1.
Therefore, the domain of f is the set of all real numbers greater than or equal to 1 i.e., the domain of f = (1, ∞)
As x ≥ 1 ⇒ (x - 1) ≥ 0 ⇒ √(x - 1) ≥ 0
Therefore, the range of f is the set of all real numbers greater than or equal to 0 i.e., the range of f = [0,∞).
Question 5. Find the domain and the range of the real function f defined by f (x) = |x – 1|.
Answer :
The given real function is f (x) = |x – 1|.
It is clear that |x – 1| is defined for all real numbers.
∴Domain of f = R
Also, for x ∈ R, |x – 1| assumes all real numbers.
Hence, the range of f is the set of all non-negative real numbers.
Question 6. Let f = [{x , x2 /(1 + x2 )} : x ∈ R] be a function from R into R. Determine the range of f.
Answer :
The range of f is the set of all second elements. It can be observed that all these elements are greater than or equal to 0 but less than 1.
Denominator is greater numerator]
Thus, range of f = [0, 1)
Question 7. Let f, g: R → R be defined, respectively by f(x) = x + 1, g(x) = 2x – 3. Find f + g, f – g and f/g.
Answer :
f, g: R → Ris defined as f(x) = x + 1, g(x) = 2x – 3
(f + g) (x) = f(x) + g(x) = (x + 1) + (2x – 3) = 3x – 2
∴(f + g) (x) = 3x – 2
(f – g) (x) = f(x) – g(x) = (x + 1) – (2x – 3) = x + 1 – 2x + 3 = – x + 4
∴ (f – g) (x) = –x + 4
Question 8. Let f = {(1, 1), (2, 3), (0, –1), (–1, –3)} be a function from Z to Z defined by f(x) = ax + b, for some integers a, b. Determine a, b.
Answer :
f = {(1, 1), (2, 3), (0, –1), (–1, –3)}
f(x) = ax + b
(1, 1) ∈ f
⇒ f(1) = 1
⇒ a × 1 + b = 1
⇒ a + b = 1
(0, –1) ∈ f
⇒ f(0) = –1
⇒ a × 0 + b = –1
⇒ b = –1
On substituting b = –1 in a + b = 1,
we obtain a + (–1) = 1
⇒ a = 1 + 1 = 2.
Thus, the respective values of a and b are 2 and –1.
Question 9. Let R be a relation from N to N defined by R = {(a, b): a, b ∈ N and a = b2}. Are the following true?
(i) (a, a) ∈ R, for all a ∈ N
(ii) (a, b) ∈ R, implies (b, a) ∈ R
(iii) (a, b) ∈ R, (b, c) ∈ R implies (a, c) ∈ R.
Justify your answer in each case.
Answer :
R = {(a, b): a, b ∈ N and a = b2}
(i) It can be seen that 2 ∈ N;however, 2 ≠ 22 = 4.
Therefore, the statement “(a, a) ∈ R, for all a ∈ N” is not true.
(ii) It can be seen that (9, 3) ∈ N because 9, 3 ∈ N and 9 = 32.
Now, 3 ≠ 92 = 81; therefore, (3, 9) ∉ N
Therefore, the statement “(a, b) ∈ R, implies (b, a) ∈ R” is not true.
(iii) It can be seen that (16, 4) ∈ R, (4, 2) ∈ R because 16, 4, 2 ∈ N and 16 = 42 and 4 = 22.
Now, 16 ≠ 22 = 4; therefore, (16, 2) ∉ N
Therefore, the statement “(a, b) ∈ R, (b, c) ∈ R implies (a, c) ∈ R” is not true.
Question 10. Let A = {1, 2, 3, 4}, B = {1, 5, 9, 11, 15, 16} and f = {(1, 5), (2, 9), (3, 1), (4, 5), (2, 11)}. Are the following true?
(i) f is a relation from A to B (ii) f is a function from A to B.
Justify your answer in each case.
Answer :
A = {1, 2, 3, 4} and B = {1, 5, 9, 11, 15, 16}
∴ A × B = {(1, 1), (1, 5), (1, 9), (1, 11), (1, 15), (1, 16), (2, 1), (2, 5), (2, 9), (2, 11), (2, 15), (2, 16), (3, 1), (3, 5), (3, 9), (3, 11), (3, 15), (3, 16), (4, 1), (4, 5), (4, 9), (4, 11), (4, 15), (4, 16)}
It is given that f = {(1, 5), (2, 9), (3, 1), (4, 5), (2, 11)}
(i) A relation from a non-empty set A to a non-empty set B is a subset of the Cartesian product A × B.
It is observed that f is a subset of A × B.
Thus, f is a relation from A to B.
(ii) Since the same first element i.e., 2 corresponds to two different images i.e., 9 and 11, relation f is not a function.
Question 11. Let f be the subset of Z × Z defined by f = {(ab, a + b): a, b ∈ Z}. Is f a function from Z to Z: justify your answer.
Answer :
The relation f is defined as f = {(ab, a + b): a, b ∈ Z}
We know that a relation f from a set A to a set B is said to be a function if every element of set A has unique images in set B.
Since 2, 6, –2, –6 ∈ Z, (2 × 6, 2 + 6), (–2 × –6, –2 + (–6)) ∈ f
i.e., (12, 8), (12, –8) ∈ f
It can be seen that the same first element i.e., 12 corresponds to two different images i.e., 8 and –8. Thus, relation f is not a function.
Question 12. Let A = {9, 10, 11, 12, 13} and let f: A → N be defined by f(n) = the highest prime factor of n. Find the range of f.
Answer :
A = {9, 10, 11, 12, 13}
f: A → N is defined as
f(n) = The highest prime factor of n
Prime factor of 9 = 3
Prime factors of 10 = 2, 5
Prime factor of 11 = 11
Prime factors of 12 = 2, 3
Prime factor of 13 = 13
∴f(9) = The highest prime factor of 9 = 3
f(10) = The highest prime factor of 10 = 5
f(11) = The highest prime factor of 11 = 11
f(12) = The highest prime factor of 12 = 3
f(13) = The highest prime factor of 13 = 13
The range of f is the set of all f(n), where n ∈ A.
∴Range of f = {3, 5, 11, 13}
NCERT Solutions Class 11 Mathematics Chapter 1 Sets |
NCERT Solutions Class 11 Mathematics Chapter 2 Relations and Functions |
NCERT Solutions Class 11 Mathematics Chapter 3 Trigonometric Functions |
NCERT Solutions Class 11 Mathematics Chapter 4 Principle of Mathematical Induction |
NCERT Solutions Class 11 Mathematics Chapter 5 Complex Numbers and Quadratic Equations |
NCERT Solutions Class 11 Mathematics Chapter 6 Linear Inequalities |
NCERT Solutions Class 11 Mathematics Chapter 7 Permutations and Combinations |
NCERT Solutions Class 11 Mathematics Chapter 8 Binomial Theorem |
NCERT Solutions Class 11 Mathematics Chapter 9 Sequences and Series |
NCERT Solutions Class 11 Mathematics Chapter 10 Straight Lines |
NCERT Solutions Class 11 Mathematics Chapter 11 Conic Sections |
NCERT Solutions Class 11 Mathematics Chapter 12 Introduction to Three Dimensional Geometry |
NCERT Solutions Class 11 Mathematics Chapter 13 Limits and Derivatives |
NCERT Solutions Class 11 Mathematics Chapter 14 Mathematical Reasoning |
NCERT Solutions Class 11 Mathematics Chapter 15 Statistics |
NCERT Solutions Class 11 Mathematics Chapter 16 Probability |
NCERT Solutions Class 11 Mathematics Chapter 2 Relations and Functions
The above provided NCERT Solutions Class 11 Mathematics Chapter 2 Relations and Functions is available on our website www.studiestoday.com for free download in Pdf. You can read the solutions to all questions given in your Class 11 Mathematics textbook online or you can easily download them in pdf. The answers to each question in Chapter 2 Relations and Functions of Mathematics Class 11 has been designed based on the latest syllabus released for the current year. We have also provided detailed explanations for all difficult topics in Chapter 2 Relations and Functions Class 11 chapter of Mathematics so that it can be easier for students to understand all answers. These solutions of Chapter 2 Relations and Functions NCERT Questions given in your textbook for Class 11 Mathematics have been designed to help students understand the difficult topics of Mathematics in an easy manner. These will also help to build a strong foundation in the Mathematics. There is a combination of theoretical and practical questions relating to all chapters in Mathematics to check the overall learning of the students of Class 11.
You can download the NCERT Solutions for Class 11 Mathematics Chapter 2 Relations and Functions for latest session from StudiesToday.com
Yes, the NCERT Solutions issued for Class 11 Mathematics Chapter 2 Relations and Functions have been made available here for latest academic session
Regular revision of NCERT Solutions given on studiestoday for Class 11 subject Mathematics Chapter 2 Relations and Functions can help you to score better marks in exams
Yes, studiestoday.com provides all latest NCERT Chapter 2 Relations and Functions Class 11 Mathematics solutions based on the latest books for the current academic session
Yes, NCERT solutions for Class 11 Chapter 2 Relations and Functions Mathematics are available in multiple languages, including English, Hindi
All questions given in the end of the chapter Chapter 2 Relations and Functions have been answered by our teachers