संस्कृत शिक्षा विषय-विज्ञान (कक्षा-11 उपाध्याय) (माध्यमिक शिक्षा बोर्ड राजस्थान, अजमेर द्वारा कक्षा 11 के लिए नवीन पाठ्यक्रमानुसार संस्कृत शिक्षा विषय विज्ञान (कक्षा—11 उपाध्याय) की अधिकृत पाठ्य पुस्तक) माध्यमिक शिक्षा बोर्ड, राजस्थान द्वारा प्रकाशित Downloaded from https://www.studiestoday.com # पाठ्यक्रम समिति संस्कृत शिक्षा विज्ञान (कक्षा–11 उपाध्याय) #### संयोजक ## डॉ. एस. एस. कटेवा पूर्व आचार्य एवं विभागाध्यक्ष, वनस्पति विज्ञान विभाग मोहनलाल सुखाड़िया विश्वविद्यालय, उदयपुर #### लेखकगण ## डॉ. के. बी. जोशी आचार्य, भौतिक विज्ञान विभाग मोहनलाल सुखाड़िया विश्वविद्यालय, उदयपुर ## डॉ. जी. एस. देवड़ा सह आचार्य, वनस्पति विज्ञान विभाग जय नारायण व्यास विश्वविद्यालय, जोधपुर #### डॉ. आरती प्रसाद आचार्य एवं विभागाध्यक्ष, प्राणी विज्ञान विभाग मोहनलाल सुखाड़िया विश्वविद्यालय, उदयपुर ## डॉ. ज्योति चौधरी सहायक आचार्य, रसायन विज्ञान विभाग मोहनलाल सुखाड़िया विश्वविद्यालय, उदयपुर ## मनोज कुमार पाठक व्याख्याता, भौतिक विज्ञान राजकीय उच्च माध्यमिक विद्यालय, सलुम्बर #### प्रस्तावना यह पुस्तक माध्यमिक शिक्षा बोर्ड, अजमेर द्वारा स्वीकृत नए पाठ्यक्रम अनुसार संस्कृत शिक्षा के लिए कक्षा ग्यारह (उपाध्याय) के लिए विज्ञान विषय के लिए सरल भाषा में लिखी गयी है। विषय सामग्री को सुरूचि पूर्ण एवं बोधगम्य बनाने के लिए यथा संभव चित्रों तथा सारिणियों का समायोजन किया गया है। इस पुस्तक में कक्षा के स्तर, विषय की आवश्यकताएँ तथा समान स्तर की प्रतियोगिता परीक्षाओं को ध्यान में रखते हुए विषय सामग्री समायोजित की गई है। यथा संभव तकनीकी शब्दों का अंग्रेजी रूपांतरण भी दिया गया है। जहाँ आवश्यकता हुई संबंधित वैज्ञानिक नाम भी देने का प्रयास किया गया है। विषय जानकारी की दृष्टि से महत्वपूर्ण बिन्दु, वस्तुनिष्ठ, अतिलघूत्तरात्मक, लघूत्तरात्मक एवं निबन्धात्मक प्रश्नों का समावेश अध्यायों के अन्त में किया गया है। इस पुस्तक में पाठ्यक्रम से सम्बन्धित विषयवस्तु लिखते समय यह ध्यान रखा गया है कि पाठ्य सामग्री नवीनतम एवं पाठ्यक्रम के अनुरूप हो। इसे अधिक उपयोगी एवं समग्र बनाने के लिए यथास्थान नई जानकारी अन्य पुस्तकों से उपलब्ध करायी गयी है। इसका प्रमुख उद्देश्य बालकों को सरल एवं सुग्राही विषयवस्तु प्रदान करने का रहा है। इन समस्त पुस्तकों का उल्लेख करना संभव नहीं है तथापि लेखकगण उनके प्रति अपना आभार व्यक्त करते हैं। लेखकगण, माध्यमिक शिक्षा बोर्ड के अध्यक्ष तथा निदेशक महोदय के आभारी हैं कि उन्होंने हमें इस पुस्तक के लेखन का अवसर दिया। हम एपेक्स पब्लिशिंग हाऊस, उदयपुर का डी.टी.पी. कार्य के लिए हृदय से आभार प्रकट करते हैं। हमें विश्वास है कि यह पुस्तक विद्यार्थियों, अध्यापकों तथा पाठकों के लिए उपयोगी साबित होगी। भरसक प्रयासों के बावजूद विषय—वस्तु में कुछ त्रुटियाँ अवश्य रह गयी होगी जिनके निवारण के लिए हम पाठकों से अनुरोध करते है कि आपके सुझाव हमें तथा बोर्ड को भेजें जिससे कि भविष्य में इस पुस्तक में सुधार कर इसे और अधिक उपयोगी बनाया जा सकें। - संयोजक एवं लेखकगण # विषय-सूची | इकाई / अध्याय | र्हा / अध्याय विषय | | |---------------|---|---------| | | खण्ड (क) – भौतिक विज्ञान | | | | इकाई – 1 | | | अध्याय 1. | मापन एवं सदिश | 1—17 | | | इकाई – 2 | | | अध्याय २. | दृढ़ पिण्ड गतिकी | 18—28 | | | इकाई — 3 | | | अध्याय ३. | संरक्षण नियम एवं टक्करें | 29—36 | | | इकाई — 4 | | | अध्याय ४. | पृष्ठ तनाव | 37—43 | | | इकाई — 5 | | | अध्याय 5. | गैसों का गत्यात्मक सिद्धान्त | 44—52 | | | इकाई – 6 | | | अध्याय ६. | प्रकाश एवं तरंगों की प्रकृति | 53—75 | | | खण्ड (ख) – रसायन विज्ञान | | | 0.70.777.7 | इकाई — 7 | 70.00 | | अध्याय ७. | परमाणु की संरचना | 76—86 | | 2177171 0 | इकाई – 8
तत्वों का वर्गीकरण और गुणों में आवर्तिता | 07 07 | | अध्याय ८. | · · | 87—97 | | अध्याय ९. | इकाई — 9
अम्ल व क्षार | 98—111 | | जन्माप ५. | | 90-111 | | 21021121 40 | इकाई — 10
ऑक्सीकरण — अपचयन | 140 446 | | अध्याय १०. | जापतापर्य – जपपपप | 112—116 | # Downloaded from https:// www.studiestoday.com | खण्ड (ग) — जीव विज्ञान | | | | |------------------------|--|---------|--| | | इकाई — 11 | | | | अध्याय 11. | मुख्य पादप समूहों के लाक्षणिक लक्षण
एवं वनस्पति विज्ञान की विभिन्न शाखाएँ | 117—125 | | | अध्याय 12. | ब्रायोफाइटा, टेरिडोफाइटा एवं स्पर्मेटाफाइटा
(जिम्नोस्पर्म व ऐन्जिओस्पर्म) | 126—134 | | | | इकाई – 12 | | | | अध्याय १३. | विषाणु एवं माइकोप्लाज्मा | 135—142 | | | अध्याय १४. | जीवाणु | 143—149 | | | अध्याय 15. | शैवाल — यूलोश्चिक्स
कवक — एलब्यूगो | 150—157 | | | अध्याय 16. | ब्रायोफाइटा — <i>रिविसया</i>
टेरिडोफाइटा — टेरिडियम | 158—170 | | | अध्याय 17. | ऐन्जियोस्पर्म – केप्सेला | 171—174 | | | | इकाई — 13 | | | | अध्याय 18. | पारिस्थितिक तंत्र | 175—183 | | | अध्याय 19. | पादपों के पारिस्थितिक अनुकूलन | 184—191 | | | | इकाई — 14 | | | | अध्याय २०. | मेण्डलवाद | 192—197 | | | | इकाई — 15 | | | | अध्याय २१. | कोशिका, कोशिकांग एवं कार्य | 198—207 | | | अध्याय 22. | कोशिका विभाजन | 208-216 | | # खण्ड (क) – भौतिक विज्ञान इकाई – 1 अध्याय - 1 ## मापन एवं सदिश (Measurements and Vectors) #### प्रस्तावना (Introduction) भौतिकी, विज्ञान की वह शाखा है, जिसमें प्रकृति और प्राकृतिक परिवर्तनों के मूल नियमों का अध्ययन किया जाता है। भौतिक विज्ञान विषय अपने आप में विशालता लिए हुए है। भौतिक जगत में घटित होने वाली घटनाओं का प्रकृति के सन्निकट मूल स्वरूप में अध्ययन भौतिक विज्ञान में किया जाता है। घटनाओं को निर्धारित करने वाले कारणों को जानने के लिए वैज्ञानिक दृष्टिकोण अपनाया जाता है जिसके मापन, विश्लेषण एवं प्रायोगिक सत्यापन मूल स्तम्भ है। भौतिकीय व्याख्या के लिए भौतिकीय राशियां परिभाषित की जाती है एवं उनका अध ययन करते हैं। इसे मुख्यतः दो भागों में विभाजित किया गया है (1) चिरसम्मत भौतिकी जिसमें यांत्रिकी, उष्मागतिकी, तरंग यांत्रिकी, ध्वनि, प्रकाशिकी एवं विद्युत चुम्बकिकी सम्मिलित हैं तथा (2) आधुनिक भौतिकी जिसमें आपेक्षिकता, नाभिकीय भौतिकी, परमाणु भौतिकी, कण भौतिकी, ठोस अवस्था भौतिकी, प्लाज्मा भौतिकी, खगोलिकी एवं क्वाण्टम यांत्रिकी सम्मिलित हैं। भौतिक विज्ञान का उपयोग मानव जीवन को बेहतर बनाने में भी किया जाता है। गत दशकों में चिकित्सा, कम्प्यूटर, इन्टरनेट, मोबाइल, ई-व्यापार ने भौतिकी के महत्व को और बढ़ा दिया है, जिसमें भौतिक राशियों का अध्ययन किया जाता है। ### भौतिक राशियां (Physical Quantities) वे राशियां जिनका मापन हो सके, भौतिक राशियां कहलाती हैं। ये दो प्रकार की होती हैं— - मूल राशियां वे भौतिक राशियां जो स्व परिभाषित होती हैं किसी भी अन्य राशि पर निर्भर नहीं करती हैं। जैसे — द्रव्यमान, लम्बाई एवं समय। - व्युत्पन्न राशियां वे भौतिक राशियां जो मूल राशियों पर निर्भर करती हैं तथा उनसे व्युत्पन्न की जा सके। जैसे — वेग, बल, कार्य आदि। ### मापन के लिये मात्रक (Units for Measurements) किसी भी भौतिक राशि का उपयुक्त मापन उस राशि के नियत एवं निश्चित मानक मान से तुलना करके प्राप्त किया जाता है। अभिष्ट भौतिक राशि के नियत एवं निश्चित निर्देश मानक को मात्रक कहते हैं। किसी भी भौतिक राशि के परिणाम को उसके आंकिक मान तथा मात्रक के रूप में प्रदर्शित किया जाता है। उदाहरण के लिये जब हम किसी वस्तु का द्रव्यमान मापते हैं तो उस वस्तु के प्रमाणिक या मानक किलोग्राम से तुलना करते हैं। अर्थात् वस्तु का द्रव्यमान एक किलोग्राम के किसी गुणज में है। किसी भी भौतिक राशि का मात्रक जितना छोटा होता है, उसका आंकिक मान उतना बढ़ जाता है। अर्थात् भौतिक राशि का मात्रक उसके आंकिक मान के व्युत्क्रमानुपाती होता है। यदि किसी भौतिक राशि के मात्रक व आंकिक मान क्रमशः u तथा n हो तो $$u \alpha 1/n$$ (1.1) या $$un = नियतांक$$ (1.2) या $$n_1 u_1 = n_2 u_2$$ (1.3) जहाँ मापन की एक पद्धित में भौतिक राशि का मात्रक \mathbf{u}_1 तथा आंकिक मान \mathbf{n}_1 है एवं उसी भौतिक राशि का मापन की दूसरी पद्धित में मात्रक \mathbf{u}_2 तथा आंकिक मान \mathbf{n}_2 हैं। भौतिक राशियों के मात्रकों को दो भागों में विभाजित किया जा सकता है — - (1) मूल मात्रक - (2) व्युत्पन्न मात्रक #### 1.4 मूल एवं व्युत्पन्न मात्रक (Basic and Derived Units) मूल भौतिक राशियों के मात्रक मूल मात्रक कहलाते हैं। # Downloaded from https://www.studiestoday.com अर्थात वे मात्रक जिन्हें किसी अन्य मात्रक से व्युत्पन्न नहीं किया जा सकता है, मूल मात्रक कहलाते हैं। यांत्रिकी में सभी भौतिक राशियां लम्बाई, द्रव्यमान एवं समय के मात्रकों में व्यक्त की जाती हैं। इन भौतिक राशियों को मूल भौतिक राशियां एवं संगत मात्रकों मीटर, किलोग्राम एवं सैकण्ड को मूल मात्रक कहते हैं। #### व्युत्पन्न मात्रक (Derived Units) भौतिक विज्ञान में प्रयुक्त होने वाली कतिपय सरल व्युत्पन्न भौतिक राशियां एवं उनके मात्रक को निम्न सारणी में प्रदर्शित किया गया है। सारणी 1.1 : कतिपय व्युत्पन्न भौतिक राशियां, सूत्र, मात्रक एवं प्रतीक चिन्ह | व्युत्पन्न भौतिक राशि | सूत्र | व्युत्पन्न मात्रक | प्रतीक चिन्ह | |-----------------------|-------------------------|--------------------------|--------------| | क्षेत्रफल | लम्बाई × चौड़ाई | वर्ग मीटर | m^2 | | आयतन | लम्बाई × चौड़ाई × ऊँचाई | घन मीटर | m^3 | | घनत्व | द्रव्यमान / आयतन | किग्रा / मी ³ | kg/m³ | | वेग | विस्थापन / समय | मीटर / से | m/s | | त्वरण | वेग / समय | मीटर / से² | m/s^2 | इसी प्रकार वे मात्रक जिन्हें मूल मात्रकों के उपयोग से ज्ञात किया जाता है, उन्हें व्यूत्पन्न मात्रक कहते हैं। जैसे चाल = दूरी / समय = मीटर / सैकण्ड या मी / से #### मात्रक पद्धतियां एवं मूल मात्रक (Systems of Units and Basic Units) मापन में प्रयुक्त मात्रक पद्धतियां चार प्रकार की होती हैं- - मीटर-किलोग्राम-सैकण्ड या M.K.S. पद्धति इस पद्धति में लम्बाई का मात्रक मीटर, द्रव्यमान का मात्रक किलोग्राम एवं समय का मात्रक सैकण्ड होता है। - 2. सेन्टीमीटर-ग्राम-सेकण्ड या C.G.S. पद्धित इस पद्धित में लम्बाई का मात्रक सेन्टीमीटर, द्रव्यमान का मात्रक ग्राम एवं समय का मात्रक सैकण्ड होता है। - फुट-पाउण्ड-सैकण्ड या F.P.S. पद्धित इस पद्धित में लम्बाई का मात्रक फुट, द्रव्यमान का मात्रक पाउण्ड एवं समय का मात्रक सैकण्ड होता है। - अन्तर्राष्ट्रीय पद्धति या S.I. - यह मीटर-किलोग्राम-सैकण्ड (M.K.S.) पद्धति का विस्तृत रूप है। मीटर, किलोग्राम, सैकण्ड के अलावा इसमें ताप, विद्युत धारा, प्रकाश की प्रदीपन तीव्रता एवं पदार्थ की मात्रा जिनके मात्रक क्रमशः केल्विन (K), एम्पीयर (A), केण्डला (cd) एवं मोल (mol) को मूल मात्रकों के रूप में सम्मिलित किया गया है। इन सात मूल मात्रकों के अलावा समतल कोण जिसका मात्रक रेडियन (rad) तथा ठोस या घन कोण जिसका मात्रक स्टेरेडियन (sr) को पूरक मात्रकों के रूप में सम्मिलित किया गया है। सन् 1960 में अन्तर्राष्ट्रीय माप एवं बाट की साधारण सभा में मात्रकों की इन अन्तर्राष्ट्रीय पद्धति का नामकरण S.I. (System International) किया गया तथा पद्धति को विश्व के सभी देशों ने स्वीकार किया। #### भौतिक राशियों की विमा (Dimensions of Physical Quantities) यांत्रिकी में भौतिक राशियों के व्युत्पन्न मात्रकों को द्रव्यमान (M) लम्बाई (L) व समय (T) के मूल मात्रकों में व्यक्त किया
जा सकता है। उदाहरणार्थ आयतन का व्युत्पन्न मात्रक आयतन $$(V) = लम्बाई \times चौड़ाई \times ऊँचाई$$ $$= L \times L \times L = L^3 हैं |$$ अर्थात् आयतन को (L) पर 3 घात लगाकर व्यक्त किया जाता है। इसी प्रकार: वेग $$(v) =$$ विस्थापन $/$ समय $= L / T = L^1 T^{-1}$ यहां द्रव्यमान M नहीं है तो इस पर घात शूल्य होगी अर्थात् $M^0=1,$ इस प्रकार वेग $(v)=M^0\,L^1T^1$ यदि किसी मात्रक पद्धित में किसी भौतिक राशि का मात्रक ज्ञात करना हो तो उपर्युक्त सूत्र में M, L व T से संबंधित मूल मात्रकों के नाम प्रतिस्थापित करने होंगे। जैसे मीटर—िकग्रा—सैकण्ड पद्धित में M^0 L^1T^{-1} का अर्थ है मीटर / सैकण्ड होगा। इसी प्रकार सेन्टीमीटर—ग्राम—सैकण्ड में M^0 L^1T^{-1} का अर्थ है सेमी / सैकण्ड होगा। इस प्रकार किसी भौतिक राशि को M, L व T से संबंधित मूल मात्रकों में उन पर घात लगाकर व्यक्त किया जा सकता है। अभिष्ट किसी भौतिक राशि को M, L तथा T के रूप में व्यक्त करने के लिये उन पर लगाई गई घात को उसकी विमा कहते हैं। त्वरण = वेग / समय = $L^1T^{-1}/T = L^1T^{-2}$ यहां लम्बाई की विमा 1 तथा समय की विमा -2 है। बल = द्रव्यमान \times त्वरण = $M^1 \times [L^1T^{-2}] = M^1L^1T^{-2}$ किसी भौतिक राशि को इस रूप में लिखने के लिये प्रत्येक मूल मात्रक को अंग्रेजी के बड़े अक्षर से व्यक्त कर बड़े कोष्टक में लिखते हैं। अतः किसी भौतिक राशि Q को विमीय समीकरण के रूप में M, L तथा T के मूल मात्रकों को निम्न प्रकार से लिखा जाता है— $Q = [M^0L^bT^c]$ यहां $[M^0L^bT^c]$ को विमीय सूत्र कहते हैं। a, b व c भौतिक राशि Q की विमायें कहलाती हैं अर्थात् a द्रव्यमान की, b लम्बाई की तथा c समय की विमा। भौतिक राशियां, उनके अन्य राशियों से संबंध तथा उनके विमीय सूत्र निम्न सारणी में दिये गये हैं। हम जानते हैं कि किसी भी भौतिक राशि को पूर्ण रूप से व्यक्त करने के लिए उसकी मात्रा (परिमाण) तथा मात्रक की आवश्यकता पड़ती है, अर्थात् $$Q = n_1 u_1 = n_2 u_2 \tag{1.4}$$ जहां भौतिक राशि \mathbf{Q} का किसी एक पद्धित में परिमाण \mathbf{n}_1 तथा मात्रक \mathbf{u}_1 है तथा दूसरी पद्धित में परिमाण \mathbf{n}_2 तथा मात्रक \mathbf{u}_2 है चूंकि भौतिक राशि एक ही है अतः अलग पद्धितयां होते हुए भी विमा वही रहती है। यदि प्रथम पद्धति में द्रव्यमान M_1 , लम्बाई L_1 तथा समय T_1 है तथा इनकी विमाएं क्रमशः a,b व c है तो सारणी 1.2 : भौतिक राशियां, उनके अन्य राशियों से संबंध तथा उनके विमीय सूत्र | | | | · | |-----------------------|-------------------------|--------------------------|---------------------------------------| | व्युत्पन्न भौतिक राशि | सूत्र | व्युत्पन्न मात्रक | विमीय सूत्र | | क्षेत्रफल | लम्बाई × चौड़ाई | वर्ग मीटर | m^2 $M^0L^2T^0$ | | आयतन | लम्बाई × चौड़ाई × ऊँचाई | घन मीटर | m^3 $M^0L^3T^0$ | | घनत्व | द्रव्यमान / आयतन | किग्रा / मी ³ | kg/m^3 $M^1L^{-3}T^0$ | | वेग | विस्थापन / समय | मीटर / से | m/s M^0LT^{-1} | | त्वरण | वेग / समय | मीटर / से² | m/s^2 M^0LT^{-2} | | बल | द्रव्यमान × त्वरण | किग्रा. मीटर / से² | kg m/s ² MLT ⁻² | **उदाहरण 1.1** — कार्य (W) एवं गुरुत्वीय नियतांक (G) के विमीय सूत्र ज्ञात करो। - 1. कार्य $W = बल \times$ विस्थापन $= F.S = [M^1L^1T^{-2}][L^1] = [M^1L^2T^{-2}]$ - 2. गुरुत्वीय नियतांक (G) गुरुत्वाकर्षण के नियम से $$F = Gm_{1}m_{2}/r^{2}$$ $$G = F r^2 / m_1 m_2$$ $$G = [M^1L^1T^{-2}][L^2] / [M^2]$$ $$G = [M^{-1}L^3T^{-2}]$$ #### 1.6 विमीय समीकरण के उपयोग (Uses of Dimensional Equations) किसी भौतिक राशि Q को विमीय समीकरण के रूप में निम्न प्रकार से लिखा जाता है— $$Q = \lceil M^a L^b T^c \rceil$$ अर्थात् भौतिक राशि को मूल मात्रकों की विमा के रूप में समीकरण द्वारा लिखा जाता है, उदाहरण के लिये बल $$F = [M^1L^1T^{-2}]$$ विमीय समीकरण के उपयोग निम्न है- 1. किसी भौतिक राशि के परिमाण को एक मात्रक पद्धति से, अन्य मात्रक पद्धति में परिवर्तित करना — $$\mathbf{u}_{1} = \left[\mathbf{M}_{1}^{\mathbf{a}} \, \mathbf{L}_{1}^{\mathbf{b}} \, \mathbf{T}_{1}^{\mathbf{c}} \right] \tag{1.5}$$ इसी प्रकार दूसरी मात्रक पद्धति में $$\mathbf{u}_2 = \left[\mathbf{M}_2^{\mathbf{a}} \, \mathbf{L}_2^{\mathbf{b}} \, \mathbf{T}_2^{\mathbf{c}} \right] \tag{1.6}$$ $\mathbf{u}_{_{1}}$ व $\mathbf{u}_{_{2}}$ के मान समीकरण (1.4) में रखने पर $$n_{\scriptscriptstyle 1} \left\lceil \, M_{\scriptscriptstyle 1}^{\scriptscriptstyle a} \, \, L_{\scriptscriptstyle 1}^{\scriptscriptstyle b} \, T_{\scriptscriptstyle 1}^{\scriptscriptstyle c} \, \, \right\rceil = n_{\scriptscriptstyle 2} \left\lceil \, M_{\scriptscriptstyle 2}^{\scriptscriptstyle a} \, L_{\scriptscriptstyle 2}^{\scriptscriptstyle b} \, T_{\scriptscriptstyle 2}^{\scriptscriptstyle c} \, \, \right\rceil$$ $$n_2 = n_1 \left[\frac{M_1}{M_2} \right]^a \left[\frac{L_1}{L_2} \right]^b \left[\frac{T_1}{T_2} \right]^c$$...(1.7) समीकरण 1.7 की सहायता से किसी भी भौतिक राशि के परिमाण को एक मात्रक पद्धित से दूसरी मात्रक पद्धित में बदल सकते है। **उदाहरण 1.2** — गुरुत्वीय त्वरण (g) का मान M.K.S. पद्धति में 9.8 मी / से² है इसका मान विमा की सहायता से C.G.S. में बदलो। $$n_2 = n_1 \left[\frac{L_1}{L_2} \right]^a \left[\frac{T_1}{T_2} \right]^b$$ $$\begin{split} n_1 &= 9.8 \ \vec{\Pi} \ / \ \vec{\Re}^2 \\ a &= 1, \ b = -2 \\ \\ n_2 &= 9.8 \left[\frac{1 \ \vec{H}}{1 \ \vec{\Re} \vec{H}} \right]^l \left[\frac{1 \ \vec{\Re}}{1 \ \vec{\Re}} \right]^{-2} \\ &= 9.8 \left[\frac{100}{1} \right]^l \left[1 \right]^{-2} \qquad \because \ 1 \ \vec{H} = \ 100 \ \vec{\Re} \vec{H} \\ &= 9.8 \times 100 \times 1 \\ \\ \vec{S}\vec{\Pi} : \ g &= 980 \ \vec{\Re} \vec{H} \ / \ \vec{\Re}^2 \end{split}$$ 2. भौतिक राशि के सूत्र की सत्यता की जांच -विमीय समागता सिद्धांत के अनुसार किसी भी भौतिक राशि के विमीय समीकरण के लिए - बायीं ओर स्थित राशियों की विमा = दायीं ओर स्थित राशियों की विमा इस प्रकार यदि गणना द्वारा दोनों पक्षों की विमा समान हो तो सूत्र यथार्थ होता है। उदाहरण 1.3 - सरल लोलक के आवर्तकाल का सूत्र $T = 2\pi \sqrt{1/g}$ की सत्यता की जांच विमा से करो जहां ℓ लम्बाई तथा g गुरुत्वीय त्वरण है। हल $$-$$ सूत्र $T = 2\pi \sqrt{\frac{1}{g}}$ बायें पक्ष में स्थित T की विमा $= M^0L^0T^1$ बाय पक्ष म स्थित T का विमा = $$M^0L^0$$ दायें पक्ष की विमा = $2\pi \sqrt{\frac{1}{g}}$ की विमा $(2\pi$ विमाहीन है) = $\sqrt{\left[\frac{M^0L^1T^0}{M^0L^1T^2}\right]}$ = $\sqrt{M^0L^0T^2}$ = $[M^0L^0T^1]$ चूंकि सूत्र के बांये पक्ष की विमा, दांये पक्ष की विमा के बराबर है अतः सूत्र विमीय दृष्टि से सत्य है। **उदाहरण 1.4** - सूत्र $v^2 = u^2 + 2$ as की यथार्थता की जांच, कीजिये यहां u = प्रारम्भिक वेग, v = अन्तिम वेग, a = त्वरण तथा s = दूरी है। हल - दी गई समीकरण में v^2 , u^2 तथा 2 as तीनों की विमाएं समान होनी चाहिये। $$v^2$$ की विमा $=$ (वेग की विमा) 2 $=$ $\left[M^0L^1T^{-1}\right]^2$ $=$ $\left[L^2T^{-2}\right]$ u^2 की विमा $=$ $\left[M^0L^1T^{-1}\right]^2$ $=$ $\left[L^2T^{-2}\right]$ तथा $=$ 2 as की विमा $=$ $\left[L^1T^{-2}\right]$ $\left[L^1\right]$ (2 विमाहीन है) यहां तीनों राशियों की विमा समान है अतः विमीय दृष्टि से यह सूत्र यथार्थ है। $= \left\lceil L^2 T^{-2} \right\rceil$ 3. विभिन्न भौतिक राशियों के बीच संबंध स्थापित करना - विमीय समांगता के नियम का उपयोग करते हुए, एक भौतिक राशि का संबंध, दूसरी भौतिक राशियों से है तो उसे व्युत्पन्न किया जा सकता है। बायें पक्ष और दायें पक्ष की विमा की तुलना कर संबंध प्राप्त कर सकते हैं। उदाहरण 1.5 – किसी वृत्तीय पथ पर एक समान वेग से गतिमान कण पर लगने वाला अभिकेन्द्रीय बल (F) का मान उस कण के द्रव्यमान (m), वेग (v) तथा पथ की त्रिज्या पर निर्भर करता है, संबंधित सूत्र ज्ञात कीजिए। हल — प्रश्न से $$F \alpha m^x v^y r^z$$ या $F = Km^x v^y r^z$ यहां K विमाहीन समानुपाती स्थिरांक है बायें पक्ष की विमा $=$ बल की विमा $=$ $\left[M^1L^1T^{-2}\right]$ दायें पक्ष की विमा $=$ $\left[M^1\right]^x \left[L^1T^{-1}\right]^y \left[L^1\right]^z$ $=$ $\left[M^xL^{y+z}T^{-y}\right]$ विमीय समांगता नियम से $$\begin{bmatrix} M^1L^1T^{-2} \end{bmatrix} = \begin{bmatrix} M^xL^{y+z}T^{-y} \end{bmatrix}$$ दोनों पक्षों में M,L व T के घातों की तुलना करने पर $x=1$ $y+z=1$ $$-y = -2$$ $x = 1, y = 2, z = -1$ अतः $F = Km^1 v^2 r^{-1}$ $F = K \cdot \frac{mv^2}{r}$ प्रयोगों द्वारा K = 1 $$F = \frac{mv^2}{r}$$ यह अभिकेन्द्रीय बल का सूत्र है। #### 1.7 विमीय समीकरण की सीमाएं - 2. भौतिक राशि के सूत्र में संख्यात्मक मान, विमाहीन नियंताकों की सूचना विमीय विधि से नहीं प्राप्त कर सकते है। - इस विधि से उन सूत्रों को व्युत्पन्न नहीं किया जा सकता जिसमें लघुगुणकीय, चरघातांकी तथा त्रिकोणमितीय फलनों का उपयोग होता है। - यदि दो राशियों की विमा समान है तो यह हमेशा आवश्यक नहीं कि दोनों राशियां भौतिकीय रूप से समान है जैसे – दाब एवं यंग का प्रत्यास्थता गुणांक। ## सदिश (Vectors) #### प्रस्तावना (Introduction) किसी भी भौतिक राशि को पूर्णतः व्यक्त करने के लिए परिमाण व मात्रक के अलावा दिशा बोध की भी आवश्यकता पड़ती है। कोई व्यक्ति 5 कि.मी. प्रति घण्टे की चाल से चल रहा है, इसमें परिमाण व मात्रक तो है परन्तु दिशा बोध नहीं है। वेग को पूर्ण रूप से तभी व्यक्त कर सकते है जब यह मालूम हो कि वस्तु किस दिशा में अग्रसर है। इस आधार पर भौतिक राशियों को तीन भागों में बांटा गया है— - 1. अदिश राशि 2. सदिश राशि 3. प्रदिश राशि - 1. अदिश राशियाँ (Scalar quantities) वह भौतिक राशि जिसे परिमाण व मात्रक से ही पूर्ण रूप से व्यक्त कर सकते हैं, दिशा की आवश्यकता न पड़े उसे अदिश राशि कहते हैं जैसे समय, द्रव्यमान, घनत्व, आयतन, कार्य, ऊर्जा, आवेश, चाल, ताप इत्यादि। अदिश राशियों के जोड़, बाकी, गुणा भाग इत्यादि के लिए साधारण बीजगणित का उपयोग करते हैं। - 2. सदिश राशियाँ (Vector quantities) ऐसी भौतिक राशियाँ जिन्हें पूर्ण रूप से व्यक्त करने के लिए परिमाण व मात्रक के साथ—साथ दिशा का उल्लेख भी आवश्यक होता है, सदिश राशियाँ कहलाती है, जैसे विस्थापन, वेग, त्वरण, बल, संवेग आदि। इन राशियों के जोड़, बाकी, गुणा आदि के लिए सदिश बीजगणित के नियमों की आवश्यकता होती है। सदिश राशियों को दो वर्गों में विभाजित कर सकते हैं- - ध्रुवीय सिंदश (Polar vectors) जिन सिंदश राशियों का संबंध रेखीय गिंत से होता है ध्रुवीय सिंदश कहलाते हैं जैसे – विस्थापन, रेखीय–त्वरण, रेखीय–वेग आदि। - अक्षीय सदिश (Axial vectors) जिन सदिश राशियों का संबंध किसी अक्ष के प्रति घूर्णन से संबंधित हो, अक्षीय सदिश कहलाती है जैसे — कोणीय वेग, कोणीय त्वरण, बल आघूर्ण आदि। - 3. प्रदिश राशियाँ (Tensors) कुछ भौतिक राशियाँ विषमदैशिक व्यवहार दर्शाती है अर्थात् इन राशियों के परिमाण विभिन्न दिशाओं में अलग—अलग होते हैं इन्हें प्रदिश राशियाँ कहते हैं। जैसे जड़त्व आघूर्ण, चुम्बकशीलता, चालकता आदि। उल्लेखनीय है कि अदिश एवं सदिश राशियाँ प्रदिश राशियों के विशिष्ट गणितीय रूप है। #### सदिश संकेतन या ग्राफीय निरूपण (Vector Notations and Graphical Representation) यदि स्थिति A से B में परिवर्तन को $A \longrightarrow B$ से निरूपित किया जाय तो विस्थापन सदिश AB को \overline{AB} से
व्यक्त करते हैं। यहां सरल रेखा की लम्बाई विस्थापन के परिमाण व तीर की दिशा सदिश राशि की दिशा को प्रदर्शित करती है। #### स्थिति सदिश (Position Vector) यदि कोई कण त्रिविम या समतल में गतिमान है तो भिन्न—भिन्न समय पर इसकी स्थिति भिन्न—भिन्न होगी, इसकी स्थितियों को सदिशों द्वारा व्यक्त किया जाता है, इन सदिशों को स्थिति सदिश कहते हैं। त्रिविमीय तंत्र में मूल बिन्दु को 'O' से व्यक्त करे तो XY तल में किसी कण की t समय पर स्थिति A बिन्दु पर एवं t^1 समय पर इसकी स्थिति B हो जाती $\stackrel{\text{y}}{\uparrow}$ है, बिन्दु O को A से सरल रेखा द्वारा मिलाते है तीर द्वारा A की ओर दिशा बताते है तो \overrightarrow{OA} का t समय पर तथा इसी प्रकार \overrightarrow{OB} को t^1 समय पर रथा स्थित सदिश कहते हैं। चित्र 1.2 यहां (t¹-t) समयान्तराल में AB विस्थापन सदिश कहलाता है। #### सदिशों के प्रकार (Types of Vectors) - असमान सदिश (Unequal vector) यदि दो या दो से अधिक सदिश परिमाण व दिशा में असमान हो या परिमाण में समान परन्तु दिशा भिन्न हो या दिशा में समान परन्तु परिमाण में भिन्न हो ऐसे सदिशों को असमान सदिश कहते हैं। - तुल्य सदिश (Equivalent vector) दो या दो से अधिक सदिश परिमाण व दिशा में समान हो तो तुल्य सदिश कहलाते हैं। चित्र 1.3 में P, Q व R परस्पर समान्तर एवं समान परिमाण के है अतः तुल्य सदिश है। एकांक सदिश (Unit vector) - इकाई परिमाण वाले सदिश को एकांक सदिश कहते हैं। यदि \overrightarrow{A} कोई सदिश है, उसका परिमाण $|\vec{\mathbf{A}}|$ है तो एकांक सदिश $\hat{\mathbf{a}}$ का मान होगा: $$\hat{a} = \frac{\overrightarrow{A}}{|\overrightarrow{A}|}$$ या $\frac{\overrightarrow{A}}{A}$ अर्थात् एकांक सदिश का परिमाण तो इकाई होता है ये सदिश की दिशा को बताता है - सदिश = परिमाण × एकांक सदिश $$\vec{A} = \hat{a} A$$ त्रिविम निर्देश तंत्र में x, y व z दिशा में एकांक सदिश क्रमशः - \hat{i},\hat{j} व \hat{k} से दर्शाये जाते हैं। - विपरीत सदिश (Opposite vector) यदि दो सदिश परिमाण में बराबर परन्तु दिशा विपरीत हो विपरीत सदिश कहलाते हैं। चित्र 1.4 में सदिश P व Q विपरीत सदिश है इन्हें निम्न प्रकार से लिखा जाता है $-\vec{P} = \vec{Q}$ । विपरीत सदिश को ऋणात्मक सदिश भी कहा जाता है। चित्र 1.4 ## सदिशों का योग (Addition of Vectors) सदिशों के संयोजन से एक परिणामी सदिश राशि ही प्राप्त होती है। सदिशों का संयोजन निम्न नियमों के आधार पर किया जाता है– - सदिश संयोजन का त्रिभुज नियम - समान्तर चतुर्भुज नियम - बह्भुज नियम योग कहते हैं; यहां AB व BC भ्जाएं 1. **सदिश योग का त्रिभुज नियम** — इस नियम के अनुसार दो सदिशों को एक ही क्रम में त्रिभुज की दो भुजाओं से व्यक्त करे तो इनके योग का परिणामी सदिश विपरीत क्रम में तीसरी भुजा से निरूपित करते हैं। अतः चित्र 1.5 से $\vec{R} = \vec{P} + \vec{Q}$ इसे ज्यामितीय विधि से सदिशों का एक ही क्रम में क्रमशः सदिश \vec{p} व \vec{Q} को निरूपित करती है। चित्रानुसार AC भुजा परिणामी सदिश \vec{R} को निरूपित करती है। इसी प्रकार त्रिभुज विधि का उपयोग कर विश्लेषण विधि इसी प्रकार त्रिभुज विधि का उपयोग कर विश्लेषण विधि से परिणामी सदिश का परिमाण व दिशा दोनों ज्ञात कर सकते हैं। विश्लेषण विधि - चित्र 1.6 में त्रिभुज की भुजा AB व BC को सदिश \vec{P} व \vec{Q} से एक ही क्रम में निरूपित किया गया है। परिणामी सिदश \vec{R} को भुजा AC से निरूपित किया गया है \vec{P} व \vec{Q} के मध्य कोण θ है। सिदश \vec{P} व परिणामी सिदश \vec{R} के मध्य कोण α है जो परिणामी सदिश \vec{R} की दिशा व्यक्त करेगा। परिणामी सदिश \vec{R} व उसकी दिशा ज्ञात करने के लिए \vec{B} को \vec{D} तक बढ़ाया \vec{C} से $\vec{A}\vec{B}$ पर लम्ब डाला। चित्र 1.6 के समकोण Δ ADC में $$AC^2 = AD^2 + CD^2$$ $$AD = AB + BD$$ तो $$AC^2 = (AB + BD)^2 + CD^2$$ $$AC^2 = AB^2 + 2 AB BD + BD^2 + CD^2$$ (1.8) अब ∆ BDC में $$\cos \theta = \frac{BD}{BC} \Rightarrow BD = BC \cos \theta$$ (1.9) इसी प्रकार $$\sin \theta = \frac{\text{CD}}{\text{BC}} \Rightarrow \text{CD} = \text{BC Sin } \theta$$...(1.10) समीकरण (1.9) व (1.10) के मान 1.8 में रखने पर $$AC^2 = AB^2 + 2AB \quad BC \cos\theta + (BC \cos\theta)^2 + (BC \sin\theta)^2$$ $$AC^2 = AB^2 + 2AB$$ BC $Cos\theta + BC^2 (Cos^2\theta + Sin^2\theta)$ चित्रानुसार $$AC = R, AB = P, BC = Q$$ (1.11) तथा $\cos^2\theta + \sin^2\theta = 1$ है तो $R^2 = P^2 + 2 PQ \cos \theta + Q^2$ $$R^2 = P^2 + Q^2 + 2 PQ Cos \theta$$ $$R = \sqrt{P^2 + Q^2 + 2PQ\cos\theta}$$ (1.12) पुनः Δ ADC में $$\tan \alpha = \frac{CD}{AD}$$ $$\tan \alpha = \frac{\text{CD}}{\text{AB} + \text{BD}} \tag{1.13}$$ समीकरण (1.9) व (1.10) से मान रखने पर $$\tan \alpha = \frac{BC \sin \theta}{P + BC \cos \theta}$$ समीकरण (1.11) से $$\tan \alpha = \frac{Q \sin \theta}{P + Q \cos \theta}$$ $$\alpha = \tan^{-1} \left[\frac{Q \sin \theta}{P + Q \cos \theta} \right]$$ (1.14) समीकरण (1.12) परिणामी सदिश के परिमाण R को तथा समीकरण (1.14) इसकी दिशा को व्यक्त करती है। अब हम विशेष परिस्थितियों पर विचार करते हैं- (i) जब $\theta = 0^\circ$ अर्थात् दोनों सदिश \vec{p} व \vec{Q} एक ही दिशा में हो तो $\cos \theta = 1$ तथा $\sin \theta = 0$ तो परिणामी सदिश का परिमाण समीकरण (1.11) से $$R = \sqrt{P^2 + Q^2 + 2PQ \cos 0^\circ}$$ $$R = \sqrt{P^2 + Q^2 + 2PQ \times 1}$$ $$R = \sqrt{(P+Q)^2}$$ $$R = P + Q$$ तथा समीकरण (1.14) से $$\alpha = \tan^{-1} \left[\frac{0}{P + Q} \right]$$ $\alpha = \tan^{-1} 0$ इस परिस्थिति में परिणामी सदिश \overline{R} का परिमाण दोनों सदिशों की दिशा में होगा तथा दोनों के परिमाणों के योग के बराबर होगा। (ii) जब $\theta = 90^\circ$ अर्थात् दोनों सिंदश \vec{P} व \vec{Q} परस्पर लम्बवत हो $\cos \theta = 0$, $\sin \theta = 1$ तो समीकरण (1.11) व (1.14) के अनुसार $$R = \sqrt{P^2 + Q^2}$$ $$\alpha = \tan^{-1} \left(\frac{Q}{P} \right)$$ (iii) यदि $\theta=180^\circ$ अर्थात् \vec{P} व \vec{Q} विपरीत सदिश हो तो $\cos\theta=-1, \ \sin\theta=0$ समीकरण (1.11) से $$R = \sqrt{P^2 + Q^2 - 2PQ}$$ $$R = \sqrt{(P - Q)^2}$$ $$R = P - Q$$ एवं $\alpha = 0$ यदि Q को पहले लिखा जाय अर्थात् $$R = Q - P$$ हो तो $α = π$ होगा। 2. सिदश संयोजन का समान्तर चतुर्भुज नियम — यदि दो सिदशों के मध्य कोण दिया हुआ है तो इनकस संयोजन समान्तर चतुर्भुज के नियम से ज्ञात करते हैं। इस नियम के अनुसार यदि दो सिदशों को समान्तर चतुर्भुज के दो आसन्न भुजाओं द्वारा निरूपित किया जाता है तो संयोजन का परिणामी सिदश एवं दिशा भुजाओं के कटान बिन्दु से गुजरने वाली विकर्ण से व्यक्त किया जाता है। चित्र 1.7 में सिदश p व Q को क्रमशः समान्तर चतुर्भुज की आसन्न भुजाओं AB व AD द्वारा निरूपित किया गया है। विकर्ण AC परिणामी सदिश \overrightarrow{R} के परिमाण व दिशा को व्यक्त करती है। \overrightarrow{P} व \overrightarrow{Q} के मध्य कोण θ है, परिणामी सदिश की दिशा को α कोण से व्यक्त किया जा सकता है। सदिश \vec{R} का परिमाण व दिशा सदिश संयोजन की त्रिभुज विश्लेषण विधि से निम्न प्रकार दी जा सकती है— $$R = \sqrt{P^2 + Q^2 + 2PQ\cos\theta}$$ $$\alpha = \tan^{-1} \left(\frac{Q \sin \theta}{P + Q \cos \theta} \right)$$ 3. **सदिश संयोजन का बहुभुज नियम** — यदि दो से अधिक सदिशों का योग ज्ञात करना हो तो बहुभुज नियम का उपयोग किया जाता है। इस नियम के अनुसार यदि दो से अधिक सदिशों के परिमाण व दिशा किसी बहुभुज की भुजाओं द्वारा क्रम में निरूपित करे तो बहुभुज को बन्द करने वाली अन्तिम भुजा विपरीत क्रम में, परिमाण चित्र 1.8 व दिशा में परिणामी सदिश को निरूपित करती है अर्थात् $$\vec{R} = \vec{A} + \vec{B} + \vec{C} + \vec{D}$$ बहुभुज के विभिन्न भागों के लिए त्रिभुज नियम का उपयोग कर परिणामी सदिश का परिमाण व दिशा ज्ञात कर सकते हैं। 4. सिंदश संयोजन का क्रम विनिमय नियम — इस नियम के अनुसार दो सिंदशों के योग प्राप्त परिणामी सिंदश पर इस बात का प्रभाव नहीं पड़ता कि योग में पहले किस सिंदश का चयन किया गया है। अर्थात् $$\vec{A} + \vec{B} = \vec{B} + \vec{A} \tag{1.15}$$ अतः सदिशों का योग क्रम विनिमय होता है। चित्र 1.9 में समान्तर चतुर्भुज में सदिश \overline{A} व \overline{B} को आसन्न भुजाओं से व्यक्त किया है। आमने—सामने भुजाओं को तुल्य सिदशों से व्यक्त किया है। त्रिभुज नियम से सिद्ध किया जा सकता है कि $\overline{A} + \overline{B} = \overline{B} + \overline{A} = \overline{R}$ चित्र 1.9 5. **साहचर्य नियम** — दो से अधिक सदिशों के योग में इस बात का प्रभाव नहीं पड़ता कि पहले किस सदिश का चयन किया गया है तथा अन्य किसी क्रम में लिये गये है। अर्थात् $$(\overrightarrow{A} + \overrightarrow{B}) + \overrightarrow{C} = \overrightarrow{A} + (\overrightarrow{B} + \overrightarrow{C})$$ अतः सदिशों का योग साहचर्य नियम का पालन करता है। चित्र 1.10 में दर्शाये चतुर्भुज में तीन सिंदश \overrightarrow{A} , \overrightarrow{B} व \overrightarrow{C} को तीन भुजाओं से निरूपित किया गया है। सिंदश संयोजन के त्रिभुज नियम से सिद्ध किया जा सकता है कि परिणामी सिंदश $$\overrightarrow{R} = (\overrightarrow{A} + \overrightarrow{B}) + \overrightarrow{C} = \overrightarrow{A} + (\overrightarrow{B} + \overrightarrow{C})$$ (1.16) उदाहरण 1.5 — दो समान बल किसी समबाहु त्रिभुज की भुजाओं के अनुदिश कार्यरत है। बल की दिशाएं चित्र 1.11 में दर्शायी गयी है। इन परिस्थितियों में बिन्दु A पर परिणामी बल ज्ञात करो। चित्र 1.12 (a) में कार्यरत बलों का दिशानुरूप वियोजन दर्शाया है अतः परिणामी सदिश $$F_{A1} = \sqrt{F^2 + F^2 + 2F \cdot F \cos 60^{\circ}}$$ $$\therefore R = \sqrt{P^2 + Q^2 + 2PQ \cos \theta}$$ $$F_{A1} = \sqrt{F^2 + F^2 + 2F^2 \times \frac{1}{2}} \qquad \cos 60 = \frac{1}{2}$$ $$= \sqrt{3F^2}$$ $$F_{A1} = \sqrt{3}F$$ चित्र 1.12 (b) में दर्शाये गये विभाजन के अनुसार परिणामी सदिश का परिमाण $$F_{A2} = \sqrt{F^2 + F^2 + 2F \cdot F \cos 120^{\circ}}$$ $$F_{A2} = \sqrt{F^2 + F^2 + 2F^2 \times \left(-\frac{1}{2}\right)} \quad \because \quad \cos 120^{\circ} = \frac{1}{2}$$ $$= \sqrt{F^2 + F^2 - F^2}$$ $$= \sqrt{F^2}$$ $$F_{A2} = F$$ अर्थात् इस स्थिति में परिणामी बल किसी एक भुजा के अनुदेश लगने वाले बल के परिमाण के बराबर होता है। #### सदिशों का व्यवकलन (Subtraction of Vectors) विशेष अवस्था में सदिशों के बीजगणितीय योग से सदिशों का व्यवकलन कर सकते हैं। इसमें मूलतः एक सदिश से दूसरे को घटाते हैं। चित्र 1.13(a) पहले वाले सदिश \overrightarrow{A} में दूसरे सदिश को विपरीत सदिश \overrightarrow{B} को सदिश संयोजन विधि से जोड़ा जाता है पहले \overrightarrow{A} सदिश \overrightarrow{B} के समान्तर लेकिन विपरीत दिशा में उसी परिमाण का सदिश खिंचते हैं जैसा कि 1.13(b) में दर्शाया गया चित्र 1.13 है अब सदिश संयोजन की त्रिभुज विधि से परिणामी सदिश $\stackrel{ ightarrow}{R}$ प्राप्त करते हैं जैसा कि 1.13(c) में दर्शाया गया है अर्थात् त्रिभुज नियम से $$\vec{R} = \vec{A} + (-\vec{B}) = \vec{A} - \vec{B}$$ सदिशों के योग व व्यवकलन में अदिश राशि के गुणन इस बंटन नियम का पालन करता हो। सदिश \vec{P} व \vec{Q} को c अदिश राशि से गुणा करने पर $$c(\vec{P} + \vec{Q}) = c\vec{P} + C\vec{Q}$$
(1.17) $$c(\vec{P} + \vec{Q}) = c\vec{P} - C\vec{Q}$$ (1.18) अर्थात् दोनों राशियों के अलग—अलग गुणनफल के योग व अन्तर के बराबर होता है। #### शून्य सदिश (Zero Vector) यदि दो तुल्य सदिशों के व्यवकलन से जो सदिश प्राप्त हो तो उसे शून्य सदिश \overrightarrow{O} कहते हैं। यदि $$\vec{A} = \vec{B}$$ तो $\vec{A} - \vec{B} = \vec{O}$ अतः ऐसा सदिश जिसका परिमाण शून्य है तथा इसकी कोई विशेष दिशा नहीं होती शून्य सदिश कहलाता है यदि किसी सदिश में शून्य सदिश जोड़ा या घटाया जाय तो परिणामी सदिश स्वयं सदिश ही होता है अर्थात् $\overrightarrow{A} \pm O = \overrightarrow{A}$...(1.19) इसी प्रकार शून्य सिंदश से अदिश राशि का गुणा करे तो शून्य सिंदश प्राप्त होता है अर्थात् $\vec{kO} = \vec{O}$...(1.20) #### कार्तीय निर्देशांक पद्धति (Cartesian Coordinate System) भौतिकी में विभिन्न निकायों के अध्ययन के लिए एक निर्देशाकाश की आवश्यकता होती है निर्देशाकाश में किसी बिन्दु को व्यक्त करने के लिए सिंदशों की आवश्यकता होती है। ये सामान्यतः इकाई सिंदश होते हैं तथा परस्पर लम्बवत् होते हैं अतः किसी निर्देश तंत्र का निरूपण परस्पर लम्बवत् मूल घटकों से किया जाता है। सिंदशों की व्याख्या के लिए त्रिआयामी निर्देशाकाश का उपयोग होता है। इसमें मूल बिन्दु O तथा OX, OY व OZ तीन परस्पर लम्बवत अक्ष होते हैं जैसा कि चित्र 1.14 में दिखाया गया है। ### कार्तीय निर्देशाकाश में स्थिति सदिश का निरूपण चित्र 1.14 में मूल बिन्दु O के सापेक्ष किसी कण (P) की स्थिति व्यक्त करने वाले निर्देशांक यदि (x,y,z) है तो स्थिति सिदश \overline{OP} को \hat{r} से व्यक्त करते हैं। इसका स्थिति सिदश $\hat{r}=x\hat{i}+y\hat{j}+z\hat{k}$ इसका परिमाण $|\vec{r}|=\sqrt{\left(x^2-y^2+z^2\right)}$ है। चित्र 1.14 OX, OY व OZ के अनुदिश एकांक सदिश क्रमशः \hat{i} , \hat{j} व \hat{k} है, जिनका इकाई परिमाण है तथा दिशा क्रमशः OX, OY व OZ के समानान्तर है। यदि किसी कण का विस्थापन $7\hat{i}$ मीटर है तो वह 7 मीटर (परिमाण) X अक्ष की दिशा में धनात्मक विस्थापित हुआ। ## सदिशों का वियोजन (Resolution of Vectors) चित्र 1.15 में एक भारी संदूक को F_1 बल लगाकर खींचते हुए संदूक का विस्थापन \overline{OR} है। क्योंकि यह वस्तु परिणामी बल की दिशा में गित करती है। इस प्रकार यदि संदूक पर कई बल कार्यरत है \overline{Mg} तो सभी बलों का योग परिणामी बल के बराबर होगा। चित्र में विस्थापन \overrightarrow{OR} के लिए F_1 बल का \overrightarrow{OR} के समानान्तर घटक F ही मुख्य कारक होगा। अतः बल के अनेक घटक सम्भव है, इसी प्रकार किसी भी सदिश को उसके अनेक घटकों में विभाजित किया जा सकता है। यहां हम किसी सदिश के दो समकोणीय घटकों का विस्तृत अध्ययन करेंगे। तद्नुरूप तीन समकोणीय घटकों का अध्ययन सुगमता से कर सकेंगे। जिस प्रकार दो सदिशों को संयोजित कर एक परिणामी सदिश प्राप्त होता है उसी प्रकार एक सदिश को उसके घटकों में विभाजित कर सकते हैं। #### सदिश का द्विविमीय वियोजन (Two Dimensional Resolution of Vectors) किसी सदिश को उसके समकोणिक सदिशों में वियोजित करना उपयोगी होता है। जैसा चित्र 1.16 में दर्शाया गया है। माना X-Y तल में सदिश \overrightarrow{A} स्थित है जो अक्ष OX के साथ θ कोण बना रहा है। सदिश \overrightarrow{A} के शीर्ष से X - अक्ष पर PM तथा Y- अक्ष पर PN लम्ब डालते हैं। यहां \overrightarrow{A}_x सदिश \overrightarrow{A} का X - अक्ष की दिशा में घटक तथा \overrightarrow{A}_y सदिश \overrightarrow{A} का Y चित्र 1.16 अक्ष की दिशा में घटक से प्रदर्शित करते हैं। सदिश संयोजन के त्रिभुज नियम से ΔOPM में - $$\overrightarrow{OP} = \overrightarrow{OM} + \overrightarrow{MP}$$ $$\overrightarrow{OP} = \overrightarrow{OM} + \overrightarrow{ON} \quad (\because \overrightarrow{MP} = \overrightarrow{ON})$$ $$\overrightarrow{A} = \overrightarrow{A}_x + \overrightarrow{A}_y \qquad (1.21)$$ यदि x व y दिशा में परिमाण A_x व A_y के एकांक सदिश क्रमशः \hat{i} व \hat{j} है तो $$\vec{A}_x = \hat{i}A_x$$ ः सदिश = एकांक सदिश × परिमाण $$A_{y} = \hat{j}A_{y}$$ अतः समीकरण (1.21) से $$\vec{A} = \hat{i} A_x + \hat{j} A_y$$ पुनः ΔOPM में $$\frac{A_x}{A} = \cos \theta$$ $\therefore \cos \theta = \text{आधार} / \sigma \text{ of } = \frac{OM}{OP}$ या $$A_x = A \cos \theta$$ (1.22) इसी प्रकार $$\frac{A_y}{A} = \sin \theta$$ या $A_y = A \sin \theta$ (1.23) $$:: Sin \theta = \text{ लम्ब} / \text{ कर्ण } = \frac{ON}{OP} = \frac{PN}{OP}$$ पुनः $$OP^2 = ON^2 + PN^2$$ $$A^2 = A_x^2 + A_y^2 (1.24)$$ $$A = \sqrt{A_x^2 + A_y^2} \tag{1.25}$$ समीकरण (1.24) को समीकरण (1.22) व समीकरण (1.23) के वर्गों के योग कर भी प्राप्त कर सकते हैं अर्थात् सिदश \overrightarrow{A} का परिमाण उसके घटकों के वर्गों के योग के मूल के बराबर होता है। इसी प्रकार \overrightarrow{A} की दिशा ज्ञात करने के लिए समीकरण (1.23) में समीकरण (1.22) का भाग देने पर $$\frac{A \sin \theta}{A \cos \theta} = \frac{A_y / A}{A_x / A} = \frac{A_y}{A_x}$$ $$\tan \theta = \frac{A_y}{A_x}$$ $$\theta = \tan^{-1} \left(\frac{A_y}{A_x} \right) \tag{1.26}$$ इस संबंध से सदिश \overrightarrow{A} क्षैतिज के साथ कितना कोण (दिशा) बना रहा है ज्ञात कर सकते हैं। #### सदिश त्रिविमीय वियोजन (Three Dimensional Resolution of Vectors) किसी सदिश का तीन समकोणीय घटकों OX, OY व OZ में वियोजन त्रिविमीय वियोजन कहलाता है। सदिश \overrightarrow{A} है को उसके तीन घटकों \overrightarrow{A}_x , \overrightarrow{A}_y व \overrightarrow{A}_2 में वियोजित कर सकते हैं। एक त्रिविमीय वियोजन की व्याख्या चित्र 1.17 से की जा सकती है। इसमें बिन्दु P का स्थिति सदिश $\overrightarrow{OP} = \overrightarrow{A}$ है। यहां सदिश \overrightarrow{A} , \overrightarrow{A}_x के साथ α , \overrightarrow{A}_y के साथ β तथा \overrightarrow{A}_2 के साथ γ कोण बना रहा है। द्विविमीय वियोजन की तरह ही त्रिविमीय वियोजन में निम्न परिमाण प्राप्त होते हैं। $$\vec{A} = A_x \hat{i} + A_y \hat{j} + A_2 \hat{k}$$ $$A = \sqrt{A_x^2 + A_y^2 + A_2^2}$$ $$A_{x} = A \cos \alpha$$ 12 चित्र 1.17 $$A_y = A \cos \beta$$ $A_z = A \cos \gamma$ द्विविमीय या त्रिविमीय निर्देश तंत्र से किसी स्थित सदिश को ज्ञात किया जा सकता है। यदि किसी बिन्दु के निर्देशांक P(x,y,z) है, मूल बिन्दु O से P को मिलाने वाली रेखा को स्थिति सदिश (\bar{r}) से व्यक्त किया जाता है। स्पष्ट है चित्र से स्थिति सदिश $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$ होगा। चित्र 1.18 (यहां (x, y, z) बिन्दु P के निर्देशांक है) इसी प्रकार द्विविमीय वियोजन में x y तल में ज्ञात कर सकते है $\vec{r} = x\hat{i} + y\hat{j}$ **उदाहरण 1.6** — यदि $\vec{A} = 2\hat{i} - 3\hat{j} + 7\hat{k}$ है तो सदिश का एकांक सदिश ज्ञात करो। $$A = \frac{\overrightarrow{A}}{\left|\overrightarrow{A}\right|}$$ एवं $\left|\overrightarrow{A}\right| = \sqrt{A_x^2 + A_y^2 + A_2^2}$ $$=\frac{2\hat{i}-3\hat{j}+7\hat{k}}{\sqrt{(2)^2+(-3)^2+(7)^2}}$$ $$A = \frac{2\hat{i} - 3\hat{j} + 7k}{\sqrt{62}}$$ ## सदिशों का गुणनफल (Product of Vectors) अदिश राशियों का गुणनफल साधारण बीजगणितीय नियमों से कर सकते हैं। परन्तु सदिश में परिमाण के साथ—साथ दिशा बोध भी होता है, अतः साधारण गुणनफल के नियम सदिशों में सन्निहित बोध को निरूपित नहीं करता है। सदिशों का गुणनफल दो प्रकार से होता है— - अदिश या बिन्दु गुणनफल - 2. सदिश या व्रजीय गुणनफल ## अदिश या बिन्दु गुणनफल (Scalar or Dot Product) यदि दो सदिशों के गुणन के परिणामस्वरूप एक अदिश राशि प्राप्त होती है तो इसे अदिश गुणनफल कहते हैं। इसे दो सदिशों के मध्य बिन्दु () लगाकर प्रदर्शित करते हैं। अदिश गुणनफल दो सदिशों के परिमाण एवं उनके मध्य कोण की कोज्या का गुणनफल होता है। माना दो सिंदश \vec{A} व \vec{B} है इनके मध्य कोण θ तथा परिमाण क्रमशः A व B है तो अदिश गुणनफल $$\vec{A} \cdot \vec{B} = |\vec{A}| |\vec{B}| \cos \theta \quad \forall \vec{A} \cdot \vec{B} = AB \cos \theta \quad (1.27)$$ अदिश गुणनफल को समझने के लिए निम्न उदाहरण लेते हैं। एक संदूक पर \vec{F} बल लगाया जा रहा है जिससे वह X दिशा में विस्थापित होता है जैसा — चित्र 1.19 में दर्शाया गया है। . तो चित्र 1.19(a) के अनुसार $$\vec{F} \quad \vec{X} = (F \cos \theta) x$$ $$\vec{F}$$ $\vec{X} = Fx \cos \theta$ इसी प्रकार $$\vec{F}$$ $\vec{X} = F(x \cos \theta)$ $$\vec{F}$$ $\vec{X} = Fx \cos \theta$ इस प्रकार किसी सदिश का परिमाण, दूसरे सदिश का Cos θ प्रथम सदिश की दिशा में गुणनफल अदिश गुणनफल कहलाता है। अदिश गुणनफल क्रमविनिमय के कुछ विशिष्ट गुणनिम्न हैं— (i) अदिश गुणनफल क्रमविनिमय होता है अर्थात् चित्र से स्पष्ट है। $$\vec{F} \vec{X} = Fx \cos \theta$$ $$\vec{X}$$ $\vec{F} = Fx \cos \theta$ $$\vec{F}$$ $\vec{X} = \vec{X}$ \vec{F} अतः अदिश गुणनफल क्रमविनिमय होता है। (ii) दो सदिश \overline{A} व \overline{B} एक दूसरे के लम्बवत् हों अर्थात् $\theta = 90^\circ$ तो $$\vec{A}$$ \vec{B} = AB Cos θ $$\vec{A}$$ $\vec{B} = AB \cos 90 = 0$ ($\cos 90 = 0$) $$\vec{A}$$ $\vec{B} = 0$ अतः समकोणिक सदिशों का अदिश गुणनफल सदैव शून्य होता है। यहां हम एकांक सदिश \hat{i} , \hat{j} व \hat{k} लेवें तो वे एक दूसरे के लम्बवत होते हैं। अतः $$\hat{i}$$ $\hat{j} = 0 = \hat{j}$ \hat{i} $$\hat{j}$$ $\hat{k} = 0 = \hat{k}$ \hat{j} $$\hat{k}$$ $\hat{l} = 0 = \hat{k}$ \hat{k} $$(1.28)$$ (iii) दो सदिश एक दूसरे के समान्तर हो अर्थात् इनके मध्य कोण $$\theta = 0^{\circ}, \ \overrightarrow{A} \quad \overrightarrow{B} = AB \ Cos \ \theta = AB \ Cos \ 0 = AB$$ $$:: Cos 0 = 1$$ अर्थात् प्राप्त परिणाम दोनों सिदशों के परिमाणों के गुणनफल के बराबर होता है। यदि दो सिदश तुल्य हो तो उनके परिमाण का वर्ग प्राप्त होगा। अर्थात् $$\vec{A}$$ $\vec{A} = AA \cos \theta = A^2 :: \theta = 0^\circ$ इसी प्रकार एकांक सदिशों के लिए $$\hat{i} \ \hat{l} = \hat{j} \ \hat{j} = \hat{k} \ \hat{k} = 1$$ (1.29) **उदाहरण 1.7** - सदिश $\overrightarrow{A} = A_x \hat{i} + A_y \hat{i} + A_2 \hat{k}$ तथा सदिश $\vec{B} = B_x \hat{i} + B_y \hat{j} + B_2 \hat{k}$ का अदिश गुणनफल ज्ञात करो। हल – $$\vec{A}$$ $\vec{B} = (A_x \hat{i} + A_y \hat{j} + A_z \hat{k})$ $(B_x \hat{i} + B_y \hat{j} + B_z \hat{k})$ $$= A_x \hat{i} \left(B_x \hat{i} + B_y \hat{j} + B_z \hat{k} \right) + A_y \hat{j} \left(B_x \hat{i} + B_y \hat{j} + B_z \hat{k} \right)$$ $$+ A_z \hat{k} \left(B_x \hat{i} + B_y \hat{j} + B_z \hat{k} \right)$$ $$= A_x B_z \hat{i} \hat{i} + A_y B_y \hat{j} \hat{j} + A_z B_j \hat{k} \hat{k}$$ $$\therefore$$ \hat{i} $\hat{j} = \hat{j}$ $\hat{k} = \hat{k}$ $\hat{i} = 0$ $\forall \vec{a}$ \hat{i} $\hat{i} = \hat{j}$ $\hat{j} = \hat{k}$ $\hat{k} = 1$ $$\therefore \vec{A} \vec{B} = A_x B_x + A_y B_y + A_z B_z$$ **उदाहरण 1.8** $-\vec{A} = 2\hat{i} - 4\hat{j} + \hat{k}$ तथा $\vec{B} = 3\hat{i} + \hat{j} - 2\hat{k}$ का अदिश गुणनफल ज्ञात करो, परिणाम से आप क्या निष्कर्ष निकालेंगे। $$2\hat{i} + 2\hat{j} - 2\hat{k}$$ $\vec{B} = 3i - 4j + k$ हल – $$\vec{A}$$ $\vec{B} = (2\hat{i} -
4\hat{j} + \hat{k}) (3\hat{i} - \hat{j} - 2\hat{k})$ = 2 × 3 + 1 × (-4) + (-2) × 1 = 6 - 4 - 2 = 0 $$\vec{A} \vec{B} = 0$$ अर्थात् सदिश \overline{A} एवं \overline{B} परस्पर लम्बवत् है। **उदाहरण 1.9** — एक वस्तु पर बल $\vec{F} = \hat{i} + 2\hat{j} + \hat{k}$ लगाने पर y- अक्ष की दिशा में उर्ध्वाधर 3 मीटर विस्थापित होती है, कार्य ज्ञात करो। $$\vec{F} = \hat{i} + 2\hat{i} + 3\hat{k}$$ $$\vec{S} = +3\hat{i}$$ (y – अक्ष की दिशा में) $$W = \vec{F} \cdot \vec{S}$$ = $(\hat{i} + 2\hat{j} + 3\hat{k})(+3\hat{j})$ $W = 6$ ਯੂਕ ## सदिश या वज गुणनफल (Vector or Cross Product) जब दो सदिशों के गुणनफल के परिणाम से एक सदिश राशि प्राप्त होती है तो इसे सदिश गुणनफल कहते हैं। इसे दोनों सदिशों के मध्य काटी (x) का चिह्न लगाकर लिखते हैं। सदिश गुणनफल, दो सदिशों के परिमाण व उनके मध्य कोण (θ) की त्रिज्या $(\sin\theta)$ के गुणनफल के तुल्य होता है, तथा परिणामी दिशा उस तल के लम्बवत होती है जिसमें दोनों सदिश विद्यमान होते हैं। यदि \overrightarrow{A} व \overrightarrow{B} के मध्य कोण (θ) हो तो इनका सदिश गुणनफल $$\vec{R} = \vec{A} \times \vec{B} = A B S in \theta \hat{n}$$ (1.30) यहां \hat{n} परिणामी सदिश की दिशा में एकांक सदिश है अर्थात् इसकी दिशा \overrightarrow{A} व \overrightarrow{B} के तल के लम्बवत् होगी। परिणामी सदिश \overrightarrow{R} (माना) की दिशा को निम्न नियमों से ज्ञात कर सकते है। (i) दक्षिणावर्ती पेच नियम — यदि पेच की अक्ष को \overrightarrow{A} व \overrightarrow{B} के लम्बवत रखकर पेच को चित्रानुसार (A से B की तरफ) घुमाया जाय तो जिस दिशा में पेच आगे बढ़ता है वह परिणामी सदिश की दिशा होगी। (ii) दांये हाथ का नियम — दांये हाथ की अंगुलियों को दिशा \overrightarrow{A} से \overrightarrow{B} की ओर मोड़े तो सीधा अंगूठा परिणामी सदिश की दिशा को प्रदर्शित करता है। सदिश गुणनफल क्रमविनिमय नहीं होता है। नहीं होता है। $$\overrightarrow{A} \times \overrightarrow{B} \neq \overrightarrow{B} \times \overrightarrow{A}$$ $\overrightarrow{A} \times \overrightarrow{B}$ एवं $\overrightarrow{B} \times \overrightarrow{A}$ के \overrightarrow{A} मान तो बराबर होते हैं लेकिन दिशा विपरीत होती है। 2. दो समान्तर सिंदशों का सिंदश गुणनफल — माना सिंदश ${\bf A}$ व ${\bf B}$ समान्तर सिंदश है अर्थात् उनके मध्य का कोण ${\bf \theta}=0$ है तो परिणामी सिंदश $\overrightarrow{\bf R}$ $$\vec{R} = \vec{A} \times \vec{B} = AB \sin \theta \hat{n}$$ $$=ABSin 0^{\circ} \hat{n}$$ $$R = \overrightarrow{A} \times B = 0$$ (:: Sin $0 = 0$) तुल्य सदिश की स्थिति में सदिशों का सदिश गुणनफल शून्य होता है। $$\vec{A} \times \vec{A} = 0$$ 3. परस्पर लम्बवत् सदिशों का परिणामी सदिश गुणनफल $$\vec{R} = \vec{A} \times \vec{B} = AB \sin \theta \hat{n}$$ $$\vec{R} = \vec{A} \times \vec{B} = AB \sin 90 \hat{n}$$ $$\vec{R} = \vec{A} \times \vec{B} = AB\hat{n}$$ (::Sin 90=1) \hat{n} परिणामी सदिश की दिशा जो \overrightarrow{A} व \overrightarrow{B} के लम्बवत है । अतः त्रिविमिय आकाश में दक्षिणावर्ती पेच या दायें हाथ के नियम से दर्शा सकते हैं कि - $$\hat{\mathbf{i}} \times \hat{\mathbf{j}} = \hat{\mathbf{k}} \qquad \hat{\mathbf{j}} \times \hat{\mathbf{i}} = -\hat{\mathbf{k}}$$ $$\hat{\mathbf{j}} \times \hat{\mathbf{k}} = \hat{\mathbf{i}} \qquad \hat{\mathbf{k}} \times \hat{\mathbf{j}} = -\hat{\mathbf{i}}$$ $$\hat{\mathbf{k}} \times \hat{\mathbf{i}} = \hat{\mathbf{j}} \qquad \hat{\mathbf{i}} \times \hat{\mathbf{k}} = -\hat{\mathbf{j}}$$ (1.31) 4. सदिश गुणनफल वितरण नियम का पालन करता है $$A \times (\vec{B} + \vec{C}) = \vec{A} \times \vec{B} + \vec{A} \times \vec{C}$$ **उदाहरण 1.10** - दो सदिश $\vec{A} = A_x \hat{i} + A_y \hat{j} + A_z \hat{k}$ तथा $\vec{B} = B_x \hat{i} + B_y \hat{j} + B_z \hat{k}$ का सदिश गुणनफल ज्ञात करो। $$\vec{\mathbf{A}} \times \vec{\mathbf{B}} = \left(\mathbf{A}_{x} \hat{\mathbf{i}} + \mathbf{A}_{y} \hat{\mathbf{j}} + \mathbf{A}_{z} \hat{\mathbf{k}} \right) \times \left(\mathbf{B}_{x} \hat{\mathbf{i}} + \mathbf{B}_{y} \hat{\mathbf{j}} + \mathbf{B}_{z} \hat{\mathbf{k}} \right)$$ $$= \mathbf{A}_{\mathbf{x}}\hat{\mathbf{i}} \times \left(\mathbf{B}_{\mathbf{x}}\hat{\mathbf{i}} + \mathbf{B}_{\mathbf{y}}\hat{\mathbf{j}} + \mathbf{B}_{\mathbf{z}}\hat{\mathbf{k}}\right) + \mathbf{A}_{\mathbf{y}}\hat{\mathbf{j}}\left(\mathbf{B}_{\mathbf{x}}\hat{\mathbf{i}} + \mathbf{B}_{\mathbf{y}}\hat{\mathbf{j}} + \mathbf{B}_{\mathbf{z}}\hat{\mathbf{k}}\right)$$ $$+ A_z \hat{k} \times (B_x \hat{i} + B_y \hat{j} + B_z \hat{k})$$ $$= A_x B_x \left(\hat{i} \times \hat{i} \right) + A_x B_y \hat{i} \times \hat{j} + A_x B_z \left(\hat{i} \times \hat{k} \right)$$ $$+ \left. A_y B_x \left(\hat{j} {\times} \hat{i} \right) + A_y B_y \left(\hat{j} {\times} \hat{j} \right) + A_y B_z \left(\hat{j} {\times} \hat{k} \right) \right.$$ $$+ \left. A_z B_x \left(\hat{k} \! \times \! \hat{i} \right) \! + A_z B_y \! \left(\hat{k} \! \times \! \hat{j} \right) \! + \! A_z B_z \! \left(\hat{k} \! \times \! \hat{k} \right)$$ $$= A_x B_y \hat{k} - A_x B_z \hat{j} - A_y B_x \hat{k} + A_y B_z \hat{i}$$ $$\begin{split} &+A_zB_x\,\hat{\mathbf{j}}-A_zB_y\hat{\mathbf{i}}\\ &=\left(A_yB_z-A_zB_y\right)\,\hat{\mathbf{i}}+\left(A_zB_x-A_xB_z\right)\hat{\mathbf{j}}\\ &+\left(A_xB_y-A_yB_x\right)\hat{\mathbf{k}}\\ &\overrightarrow{A}\times\overrightarrow{B}=\left(A_yB_z-A_zB_y\right)\hat{\mathbf{i}}-\left(A_xB_z-A_zB_x\right)\mathbf{j}\\ &+\left(A_xB_y-A_yB_x\right)\hat{\mathbf{k}}\\ &\rightleftharpoons\left(A_yB_y-A_yB_y\right)\hat{\mathbf{k}}\\ &\rightleftharpoons\left(A_yB_y-A_yB_y\right)\hat{\mathbf{k}}\\ &\rightleftharpoons\left(A_yB_y-A_yB_y\right)\hat{\mathbf{k}} \end{split}$$ इसे सारणिक रूप में निम्न प्रकार लिखा जाता है— $$\vec{A} \times \vec{B} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ A_x & A_y & A_z \\ B_x & B_y & B_z \end{vmatrix}$$ उदाहरण 1.11 — एक बल $\vec{F}=2\hat{i}-\hat{j}+3\hat{k}$ किसी बिन्दु $\vec{r}=\left(\hat{i}+2\hat{j}+3\hat{k}\right)$ पर कार्य कर रहा है। मूल बिन्दु के प्रति बलाघूर्ण का मान ज्ञात करिये। हल – $$\vec{F} = 2\hat{i} - \hat{j} + 5\hat{k}$$ $$\vec{r} = \hat{i} + 2\hat{j} + 5\hat{k}$$ $$\vec{\tau} = \vec{r} \times \vec{F}$$ $$\tau = \hat{\mathbf{r}} \times \vec{\mathbf{F}} = \begin{vmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ 2 & -1 & 3 \\ 1 & 2 & 5 \end{vmatrix}$$ $$\tau = \hat{i} [(-1) (+5) - (2) (3)] - \hat{j} [(2)(5) - (1)(3)]$$ $$+ \hat{k} [(2) (2) - (1) (-1)]$$ $$= \hat{i} [-5 - 6] - \hat{j} [10 - 3] + k [4 + 1]$$ $$\tau = -11 \hat{i} - 7\hat{j} + 5\hat{k} \quad \overline{3} \overline{d} \overline{d}$$ $$\overline{\tau} = -11 \hat{i} - 7\hat{j} + 5\hat{k} \quad \overline{3} \overline{d} \overline{d}$$ $$\overline{\tau} = -11 \hat{i} - 7\hat{j} + 5\hat{k} \quad \overline{3} \overline{d} \overline{d}$$ $$\overline{\tau} = -11 \hat{i} - 7\hat{j} + 5\hat{k} \quad \overline{3} \overline{d} \overline{d}$$ $$\overline{\tau} = -11 \hat{i} - 7\hat{j} + 5\hat{k} \quad \overline{3} \overline{d} \overline{d}$$ $$\overline{\tau} = -11 \hat{i} - 7\hat{j} + 5\hat{k} \quad \overline{3} \overline{d} \overline{d}$$ $$\overline{\tau} = -11 \hat{i} - 7\hat{j} + 5\hat{k} \quad \overline{3} \overline{d} \overline{d}$$ $$\overline{\tau} = -11 \hat{i} - 7\hat{j} + 5\hat{k} \quad \overline{3} \overline{d} \overline{d}$$ $$\overline{\tau} = -11 \hat{i} - 7\hat{j} + 5\hat{k} \quad \overline{3} \overline{d} \overline{d}$$ $$\overline{\tau} = -11 \hat{i} - 7\hat{j} + 5\hat{k} \quad \overline{3} \overline{d} \overline{d}$$ $$\overline{\tau} = -11 \hat{i} - 7\hat{j} + 5\hat{k} \quad \overline{3} \overline{d} \overline{d}$$ $$\overline{\tau} = -11 \hat{i} - 7\hat{j} + 5\hat{k} \quad \overline{3} \overline{d} \overline{d}$$ $$\overline{\tau} = -11 \hat{i} - 7\hat{j} + 5\hat{k} \quad \overline{3} \overline{d} \overline{d}$$ $$\overline{\tau} = -11 \hat{i} - 7\hat{j} + 5\hat{k} \quad \overline{3} \overline{d} \overline{d}$$ $$\overline{\tau} = -11 \hat{i} - 7\hat{j} + 5\hat{k} \quad \overline{3} \overline{d} \overline{d}$$ $$\overline{\tau} = -11 \hat{i} - 7\hat{j} + 5\hat{k} \quad \overline{3} \overline{d} \overline{d}$$ $$\overline{\tau} = -11 \hat{i} - 7\hat{j} + 5\hat{k} \quad \overline{3} \overline{d} \overline{d}$$ $$\overline{\tau} = -11 \hat{i} - 7\hat{j} + 5\hat{k} \quad \overline{3} \overline{d} \overline{d}$$ $$\overline{\tau} = -11 \hat{i} - 7\hat{j} + 5\hat{k} \quad \overline{3} \overline{d} \overline{d}$$ ## भौतिकी में सदिश गुणनफल के प्रयोग भौतिकी की विभिन्न शाखाओं में सदिश गुणनफल का व्यापक उपयोग है तथापि यहां हम कतिपय प्रारम्भिक अवधारणाओं में इसके अनुप्रयोग के कुछ दृष्टांत पर विचार करते हैं— - 1. रेखीय वेग तथा रेखीय त्वरण किसी अक्ष के सापेक्ष \vec{r} त्रिज्या के वृत्त में \vec{w} कोणीय वेग से परिक्रमण करने वाले कण का रेखीय वेग \vec{v} का मान $\vec{v} = \vec{w} \times \vec{r}$ से देते हैं रेखीय वेग की दिशा त्रिज्या एवं कोणीय वेग के तल के लम्बवत् होती है। - 2. अभिष्ट आवेश q चुम्बकीय क्षेत्र \vec{B} में \vec{v} वेग गतिशील है तो आवेश पर कार्यरत लॉरेन्ज बल का मान $\vec{F} = q \left(\vec{v} \times \vec{B} \right) = q \left| \vec{v} \right| . |\vec{B}| . \sin \theta \ \hat{n} \ \hat{n}$ में होगा। यहां \vec{v} एवं \vec{B} द्वारा निमित्त तल के लम्बवत् इकाई सदिश \hat{n} है तथा \vec{v} एवं \vec{B} के मध्य कोण θ है। ## महत्वपूर्ण बिन्दु - मूल मात्रक वे मात्रक जो पूर्णरूप से स्वतंत्र हो, जो अन्य मात्रकों से प्राप्त नहीं किये जा सकते मूल मात्रक कहलाते हैं। - व्युत्पन्न मात्रक जो मात्रक मूल मात्रकों से व्युत्पन्न किये जाते है व्युत्पन्न मात्रक कहलाते हैं। जैसे आयतन, घनत्व, वेग, बल इत्यादि। - 3. मात्रक पद्धतियाँ एम.के.एस. को मीटर—किलोग्राम—सैकण्ड, सी.जी.एस. को सेन्टीमीटर—ग्राम—सैकण्ड तथा एफ.पी.एस को फुट—पाउण्ड—सैकण्ड से व्यक्त करते हैं। अन्तर्राष्ट्रीय मात्रक पद्धति एम.के.एस. मात्रक पद्धति का परिवर्धित रूप है इसमें सात मूल मात्रक तथा दो पूरक मात्रकों को सम्मिलित किया गया है। - 4. विमा यांत्रिकी में किसी भौतिक राशि को मूल मात्रकों (M, L, T) पर लगाई गई घाते विमा कहलाती है जैसे $M^aL^bT^c$ में a,b,c विमायें हैं। - 5. विमीय समीकरण के उपयोग - - (i) किसी भौतिक राशि के परिमाण को एक मात्रक पद्धति की मात्रक पद्धति में बदलना। - (ii) भौतिकी के सूत्रों की सत्यता की जाँच करना। - (iii)भौतिक राशि के बीच के संबंध का सूत्र व्युत्पन्न करना। - अदिश राशियां पूर्णतः व्यक्त करने के लिए केवल परिमाण की आवश्यकता हो, अदिश राशियां कहलाती हैं उदाहरण दूरी, चाल,
कार्य आदि। - 7. सिदश राशियां वे भौतिक राशियां जिन्हें पूर्णतः व्यक्त करने के लिए पिरमाण के साथ—साथ दिशा की भी आवश्यकता होती है सिदश राशियां कहलाती है। उदाहरण वेग, बल, संवेग आदि। 8. एकांक सदिश = सदिश अर्थात सदिश जिसका सदिश का परिमाण परिमाण 1 होता है। एकांक सदिश कहलाता है। $\hat{i},\,\hat{j}$ व \hat{k} क्रमशः x,y व z अक्षों की दिशा में एकांक सदिश है। सिदशों का संयोजन – सिदशों का संयोजन (i) त्रिभुज (ii) समान्तर चतुर्भुज तथा (iii) बहुभुज विधि से होता है। यदि P व Q सिदश है तो परिणामी सिदश $R = \sqrt{P^2 + Q^2 + 2PQ\cos\theta}$ तथा सदिश \vec{R} व \vec{P} के मध्य कोण (या दिशा) $$\alpha = \tan^{-1} \left(\frac{Q \sin \theta}{P + Q \cos \theta} \right)$$ - 10. सदिशों का वियोजन द्विविमीय एवं त्रिविमीय वियोजन से सदिश व परिमाण को व्यक्त कर सकते है। - (i) द्विविमीय में = $\vec{A} = A_x \hat{1} + A_y \hat{j}$ $$A = \sqrt{A_x^2 + A_y^2}$$ (ii) त्रिविमीय में $\vec{A} = A_x \hat{i} + A_y \hat{j} + A_2 \hat{k}$ $$A = \sqrt{A_{x}^{2} + A_{y}^{2} + A_{z}^{2}}$$ 11. सदिश गुणनफल — दो प्रकार का होता है। अदिश गुणनफल या बिन्दु गुणनफल तथा सदिश गुणनफल या वज्र गुणनफल। ## अभ्यासार्थ प्रश्न ## वस्तुनिष्ठ प्रश्न - 1. निम्न में कौनसा मूल मात्रक नहीं है? - (अ) चाल - (ब) मीटर - (स) किग्रा - (द) सैकण्ड - 2. कौनसी विमा त्वरण की है? - (왕) M⁰L⁰T⁻¹ - (a) MLT⁻² - (स) M⁰LT⁻² - (द) MLT⁻¹ - 3. सिंदशों के त्रिविमीय आकाश में इकाई सिंदश \hat{i} व \hat{j} के मध्य कोण है - (अ) 0° - (ब) 180° - (स) 90° - (द) 360° - 4. सिंदश \overrightarrow{A} एवं \overrightarrow{B} के लिए $\overrightarrow{A} \cdot \overrightarrow{B} = 0$ है तो कौनसा कथन सत्य है - - (31) $\vec{A} = 0, \vec{B} \neq 0$ - (\vec{a}) $\vec{A} \neq 0$; $\vec{B} = 0$ - (स) \overrightarrow{A} एवं B लम्बवत् है। - (द) उपरोक्त सभी है। - 5. यदि $\hat{i} \times \hat{j} = \hat{k}$ है तो $\hat{j} \times i$ का मान है - (अ) -k̂ - (ब) k - (स) î - (द) î ## अतिलघुत्तरात्मक प्रश्न - 1. व्युत्पन्न मात्रक की परिभाषा दीजिये। - प्लांक नियतांक की इकाई जूल सैकण्ड है। विमा ज्ञात कीजिये। - 3. दो सदिश परस्पर समानान्तर है तो उनका अदिश व सदिश गुणनफल ज्ञात कीजिये। #### लघुत्तरात्मक प्रश्न 1. $\mathbf{M_1}$ एवं $\mathbf{M_2}$ द्रव्यमान के दो पिण्डों के मध्य गुरुत्वाकर्षण बल का मान निम्न है - $$F = G \cdot \frac{M_1 M_2}{r^2}$$ जहां G गुरुत्वाकर्षण नियतांक एवं r दोनों पिण्डों के मध्य दूरी है। G की विमा ज्ञात कीजिये। - 2. सदिश वियोजन से क्या अभिप्राय है? द्विविमीय सदिश वियोजन को समझाइये। - 3. M.K.S. एवं S.I. पद्धति में अन्तर स्पष्ट कीजिये। - 4. किसी कण द्वारा t समय में तय की गयी दूरी $S=At+Bt^2$ है तो A एवं B की विमा क्या होगी? - 5. अदिश एवं सदिश गुणनफल में क्या अन्तर है? उदाहरण सहित समझाइये। #### निबन्धात्मक प्रश्न - 1. सदिशों के संयोजन का समानान्तर चतुर्भुज नियम लिखिये। नामांकित चित्र बनाकर परिणामी सदिश \overline{R} का व्यंजक प्राप्त कीजिये। - 2. सदिश संयोजन का बहुभुज नियम लिखिये। 17 - 3. विमिय समीकरणों के क्या उपयोग हैं? उदाहरण सहित समझाइये। इनकी क्या सीमाएं हैं? - 4. दर्शा इये कि सिदश $\vec{A}=2\hat{i}-3\hat{j}-\hat{k}$ एव $B=-6i+9j+3\hat{k}$ परस्पर समानान्तर है। - 5. यदि $\vec{A} = 5i + 2\hat{j} 4\hat{k}$ तथा $\vec{B} = 4i + xj + 5k$ परस्पर लम्बवत् हैं तो x का मान ज्ञात कीजिये। उत्तरमालाः 1 (अ) 2 (स) 3 (स) 4 (द) 5 (अ) # इकाई – 2 अध्याय – 2 # दृढ़ पिण्ड गतिकी (Dynamics of Rigid Body) यांत्रिकी में सामान्यतः पिण्डों को बिन्दुवत् कण मानकर गणितीय व्याख्या प्रस्तुत की जाती है। वस्तुतः भौतिकीय निकाय बिन्दुवत् कण रूप में न होकर कणों का समूह होता है। इस अध्याय में दृढ़ पिण्डों की गतिकी का अध्ययन करेंगे। जिस पिण्ड के दो कणों के मध्य दूरी बाह्य बल की उपस्थिति में भी अपरिवर्तित रहती है उसे दृढ़ पिण्ड कहते हैं। एक दृढ़ पिण्ड स्थानान्तरित एवं घूर्णन गति करता है। पिण्ड के प्रत्येक कण की गति से पिण्ड की समग्र गति को समझना कठिन होता है। यदि हमें पिण्ड की गति का अध्ययन करना हो तो द्रव्यमान केन्द्र की अवधारणा सहायक सिद्ध होती है। ## द्रव्यमान केन्द्र (Centre of Mass) किसी पिण्ड या निकाय का द्रव्यमान केन्द्र वह बिन्दु होता है जहां पिण्ड का सम्पूर्ण द्रव्यमान केन्द्रित माना जा सकता है। द्रव्यमान केन्द्र की गित, पिण्ड की गित के तुल्य होती है। समांगी वस्तु, जिसका द्रव्यमान एक समान रूप से वितरित है, का द्रव्यमान केन्द्र, उनका ज्यामितीय केन्द्र ही होता है इसे C से व्यक्त करते हैं एवं मूल बिन्दु से इसकी स्थिति सदिश को r_{cm} से व्यक्त करते हैं। #### द्विकण तंत्र का द्रव्यमान केन्द्र (Centre of Mass of a Two Paticle System) चित्र 2.1 के अनुसार दो कण A व B के द्रव्यमान M_1 व M_2 है, मूल बिन्दु O से इनके स्थिति सदिश क्रमशः \vec{r}_1 व \vec{r}_2 है। द्रव्यमान केन्द्र का स्थिति सदिश है। माना कण \mathbf{A} व \mathbf{B} पर बाह्य बल क्रमशः \vec{F}_1 व \vec{F}_2 कार्यरत है तथा द्रव्यमान $\mathbf{M}_1, \mathbf{M}_2$ के कारण एक दूसरे पर कार्यरत आन्तरिक बल क्रमशः \vec{F}_{12} व \vec{F}_{21} है यहां \mathbf{F}_{12} , कण \mathbf{B} के कारण कण \mathbf{A} पर लगने वाला बल है तथा \mathbf{F}_{21} कण \mathbf{A} के कारण \mathbf{B} पर लगने वाला बल है इस प्रकार कुल कार्यरत बल - $$F = F_1 + F_2 + \vec{F}_{12} + \vec{F}_{21}$$ (2.1) परन्तु न्यूटन की गति के तृतीय नियम के अनुसार दो कणों के मध्य लगने वाले बल एक दूसरे के बराबर एवं विपरीत दिशा में कार्य करते है फलतः निकाय की गति में योगदान शून्य होगा। $$\vec{F}_{_{12}}=-\vec{F}_{_{21}} \Longrightarrow \vec{F}_{_{12}}+\vec{F}_{_{21}}=0$$ अतः $F=\vec{F}_{_1}+\vec{F}_{_2}$ (2.2) परिभाषानुसार संवेग परिवर्तन को बल कहते हैं। यदि क्षणिक समयान्तराल dt में संवेग में परिवर्तन \overline{dp} है तो $\vec{F}=\frac{d\vec{p}}{dt}$ एवं $$\vec{F}_1 = \frac{\vec{dp}_1}{dt}, \vec{F}_2 = \frac{\vec{dp}_2}{dt}$$ परन्तु $$p_1 = M_1 \overrightarrow{V}_2$$, $p_2 = M_1 \overrightarrow{V}_2$ লথা $$p_1 = M_1 \frac{\overrightarrow{dr_1}}{dt}, p_2 = M_2 \frac{\overrightarrow{dr_2}}{dt}$$ हम जानते हैं कि विस्थापन में परिवर्तन की दर को वेग कहते हैं $$\vec{\Pi} \quad \vec{F}_1 = \frac{d}{dt} \left(M_1 \frac{d\vec{r}_1}{dt} \right), \vec{F}_2 = \frac{d}{dt} \left(M_2 \frac{d\vec{r}_2}{dt} \right)$$ # Downloaded from https://www.studiestoday.com या $$F_1 = M_1 \frac{d^2}{dt^2} \vec{r}_1$$, $F_2 = M_2 \frac{d^2}{dt^2} \vec{r}_2$ परिभाषानुसार एक पिण्ड का सम्पूर्ण द्रव्यमान, यदि द्रव्यमान केन्द्र पर केन्द्रित है तो $$\vec{F} = (M_1 + M_2) \frac{d^2}{dt^2} \vec{r}_{cm}$$ मान सभी (2.2) में रखने पर $$(M_1 + M_2) \frac{d^2 \vec{r} cm}{dt^2} = \frac{d^2}{dt^2} (M_1 \vec{r}_1 + M_2 \vec{r}_2)$$ दोनों ओर से $\frac{d^2}{dt^2}$ हटाने पर $$\vec{r}_{cm} = \frac{\vec{M}_1 \vec{r}_1 + \vec{M}_2 \vec{r}_2}{(\vec{M}_1 + \vec{M}_2)}$$ (2.3) यह सूत्र द्रव्यमान केन्द्र की मूल बिन्दु से स्थिति को दर्शाता है। यदि निर्देशाकाश का चयन इस प्रकार किया जाय कि द्रव्यमान केन्द्र मूल बिन्दु को संपातित करे तो $${\bf r}_{\rm cm} = 0 = {\bf M}_1 \vec{\bf r}_1 + {\bf M}_2 \vec{\bf r}_2$$ अर्थात् $\sum {\bf M}_1 \vec{\bf r}_1 = 0$ (2.4) अतः द्रव्यमान केन्द्र के परितः दृढ़ पिण्ड के समस्त कणों के द्रव्यमान आघूर्णों का योग शून्य होता है। चित्र 2.2 में एक n कण वाला दृढ़ पिण्ड दर्शाया गया है। विभिन्न कणों की मूल बिन्दु के सापेक्ष, निर्देशांक एवं द्रव्यमान भी कुछ कणों के दर्शाये गये हैं। इस दृढ़ पिण्ड के लिए $$\vec{r}_{cm} = \frac{M_1 \vec{r}_1 + M_2 \vec{r}_2 + \dots + M_n \vec{r}_n}{(M_1 + M_2 + \dots + M_n)}$$ होगा। (2.5) X- अक्ष की दिशा में घटक $$X_{cm} = \frac{M_1 X_1 + M_2 X_2 + \dots + M_n X_n}{(M_1 + M_2 + \dots + M_n)}$$ (2.6) Y – अक्ष की दिशा में घटक $$Y_{cm} = \frac{M_1 Y_1 + M_2 Y_2 + \dots + M_n Y_n}{(M_1 + M_2 + \dots + M_n)}$$ (2.7) इसी प्रकार Z अक्ष की दिशा में घटक $$Z_{cm} = \frac{M_1 Z_1 + M_2 Z_2 + \dots + M_n Z_n}{(M_1 + M_2 + \dots + M_n)}$$ (2.8) द्रव्यमान केन्द्र का वेग (Velocity of Centre of Mass) समीकरण (2.5) के दोनों पक्षों का अवलोकन करने से द्रव्यमान केन्द्र का वेग प्राप्त होता है। $$\frac{d}{dt}(\vec{r}_{cm}) = \frac{d}{dt} \left[\frac{\vec{M_1}\vec{r}_1 + \vec{M_c}\vec{r}_2 + \dots + \vec{M_n}\vec{r}_n}{\vec{M}_1 + \vec{M}_2 + \dots + \vec{M}_n} \right]$$ (नोट :- अध्यापक अवकलन व समाकलन का साधारण ज्ञान विद्यार्थियों को देवें।) $$\vec{V}_{cm} = \frac{M_1 \frac{d\vec{r}_1}{dt} + M_2 \frac{d\vec{r}_2}{dt} + \dots M_n \frac{d\vec{r}_n}{dt}}{(M_1 + M_1 + \dots + M_n)}$$ (2.9) $$\vec{V}_{cm} = \frac{M_1 \vec{V}_1 + M_c \vec{V}_2 + \dots + M_n \vec{V}_n}{(M_1 + M_c + \dots + M_n)}$$ (2.10) इसी प्रकार त्वरण $$\vec{a}_{cm} = \frac{\vec{M_1 a_1} + \vec{M_c a_2} + \dots + \vec{M_n a_n}}{\vec{M_1} + \vec{M_c} + \dots + \vec{M_n}}$$ (2.11) समीकरण (2.10) व (2.11) द्रव्यमान केन्द्र की गति की व्याख्या में अति महत्वपूर्ण भूमिका अदा करते हैं। **उदाहरण 2.1** - 5 व 3 द्रव्यमान इकाई के दो द्रव्यमानों की स्थितियां क्रमशः $\left(2\hat{i}-5\hat{j}+\hat{k}\right)$ तथा $\left(3\hat{i}+7j\right)$ है, द्रव्यमान केन्द्र की स्थिति ज्ञात करो। हल $$-\vec{r}_1 = (2\hat{i} - 5\hat{j} + \hat{k})$$ $\vec{r}_2 = (3\hat{i} + 7\hat{j})$ द्रव्यमान केन्द्र का स्थिति सदिश दो कणों के लिए $$\vec{r}_{cm} = \frac{\vec{M_1 r_1} + \vec{M_2 r_2}}{(M_1 + M_2)}$$ $$= \frac{5(2\hat{i} - 5\hat{j} + \hat{k}) + 3(3\hat{i} + 7\hat{j})}{(5+3)}$$ $$= \frac{10\hat{i} - 25\hat{j} + 5\hat{k} + 9\hat{i} + 21\hat{j}}{8}$$ $$\vec{r}_{cm} = \frac{19\hat{i} - 4\hat{j} + 5\hat{k}}{8}$$ ## द्रव्यमान-केन्द्र के संदर्भ में मुख्य तथ्य (Main Features of Centre of Mass) - द्रव्यमान-केन्द्र पर भौतिक रूप से कोई द्रव्यमान उपस्थित होना आवश्यक नहीं है। - 2. द्रव्यमान—केन्द्र की स्थिति वस्तु की आकृति, आकार तथा द्रव्यमान वितरण पर निर्भर करती है अतः द्रव्यमान—केन्द्र वस्तु के अंदर अथवा बाहर हो सकता है। - नियमित आकार की वस्तुएं जिनका द्रव्यमान वितरण एक समान हो, का द्रव्यमान—केन्द्र वस्तु के ज्यामितीय केन्द्र या समिति केन्द्र पर होता है। - 4. द्रव्यमान-केन्द्र की गति हमेशा स्थानान्तरीय होती है। - 5. दी गई आकृति की वस्तु के लिये द्रव्यमान—केन्द्र की स्थिति द्रव्यमान वितरण पर निर्भर करती है तथा अधिक द्रव्यमान वाले भाग की ओर होती है। - 6. द्रव्यमान—केन्द्र की स्थिति निर्देश तंत्र की स्थिति पर निर्भर नहीं करती। उदाहरण के लिये वलय का द्रव्यमान—केन्द्र उसके ज्यामितिय केन्द्र पर ही होगा चाहे निर्देश तंत्र कहीं भी स्थित हो। - 7. द्रव्यमान—केन्द्र की स्थिति अथवा वेग आंतरिक बलों के कारण परिवर्तित नहीं होता है। यह सिर्फ बाह्य बलों द्वारा ही संभव है। उदाहरण के लिये m तथा 2m द्रव्यमान के दो कण जो कि r दूरी पर स्थित है के लिये द्रव्यमान—केन्द्र 2m द्रव्यमान वाले कण से r/3 दूरी पर स्थित होगा। यदि दोनों कण पारस्परिक अन्योन्य क्रिया के कारण एक दूसरे की ओर चलें तो भी द्रव्यमान—केन्द्र की स्थिति में कोई परिवर्तन
नहीं होगा। - द्रव्यमान—केन्द्र बिन्दु के सापेक्ष कण तंत्र के समस्त कणों का कुल द्रव्यमान आघूर्ण हमेशा शून्य होता है— $$\sum \vec{m_i} \vec{r}_1 = 0$$ जहां $\vec{r}_{_1}$ \vec{i} \vec{a} कण का द्रव्यमान—केन्द्र के सापेक्ष स्थिति सिंदश है। 9. द्रव्यमान-केन्द्र बिन्दु के सापेक्ष कण तंत्र के समस्त कणों का कुल रेखीय संवेग हमेशा शून्य होता है। अर्थात् $\sum m_i v_1 = 0$ जहां v_i , i वे कण का द्रव्यमान—केन्द्र के सापेक्ष वेग सिदश है। इसी कारण से द्रव्यमान केन्द्र को शून्य संवेग निर्देश तंत्र भी कहा जाता है। ## दृढ़ पिण्ड गतिकी (Rigid Body Dynamics) यदि किसी पिण्ड पर बाह्य बल लगाये तो उसके कण एक दूसरे के सापेक्ष समान विस्थापित हो, तो ऐसे पिण्ड को दृढ़ पिण्ड कहते हैं। प्रकृति में कोई भी दृढ़ पिण्ड नहीं है। साधारण ठोस पिण्ड को ही दृढ़ पिण्ड या पिण्ड माने जा सकते हैं। सामान्य रूप से दृढ़ पिण्ड तीन प्रकार से गति कर सकता है – (i) स्थानान्तरीय गति (ii) घूर्णन गति (iii) लौटनी गति। - (i) स्थानान्तरीय गित (Translational motion) यदि पिण्ड का प्रत्येक कण समान चाल से, समान्तर सीधी रेखा में विस्थापित होते हो, पिण्ड की गित स्थानान्तरीय या रेखीय कहलाती है। - (ii) **घूर्णन गित** (Rotational motion) घूर्णन गित में पिण्ड अपने किसी स्थिर अक्ष के चारों ओर इस प्रकार गित करता है कि इसके समस्त कण अलग—अलग त्रिज्या के वृत्तीय मार्गों पर चलते हैं, जैसा कि चित्र 2.3 में दर्शाया गया है। इस प्रकार इस गित में कण संकेन्द्रीय वृत्तों में घूमते हैं, वे कण जो घूर्णन अक्ष पर स्थित होते हैं वे स्थिर होते हैं जैसे चित्र 2.3 लट्टू का घूमना, रेलगाड़ी के पहिये का घूमना इत्यादि। चित्र में उर्ध्वाधर सरल रेखा घूर्णन अक्ष दर्शाती है। (iii) लौटनी गति (Rolling motion) — घूर्णन के साथ—साथ स्थानान्तरीय गति भी हो तो लौटनी गति कहलाती है जैसे किसी पिण्ड का नत तल पर लुढ़कना। #### कोणीय विस्थापन एवं कोणीय वेग चित्र 2.4 के अनुसार एक पिण्ड अपने अक्ष के परित घूर्णन गति कर रहा है, प्रत्येक कण वृत्ताकार पथ पर गति कर रहा है चित्र 2.4 अर्थात् प्रत्येक कण की कोणीय स्थिति में समान रूप से परिवर्तन हो रहा है, इस परिवर्तन को कोणीय विस्थापन कहते हैं, सभी कणों का रेखीय वेग भिन्न-भिन्न है। यहां $$\Delta \theta = \frac{\Delta S}{r}$$ रेडियन, \because कोण = चाप / त्रिज्या कोणीय विस्थापन में परिवर्तन की दर कोणीय वेग कहलाती है, इसे ω (आमेगा) से व्यक्त करते हैं। यदि कोणीय विस्थापन में परिवर्तन $\Delta\theta=\theta_2-\theta_1$ तथा समय में परिवर्तन $=\Delta t=t_2-t_1$ तो कोणीय वेग $$\omega = \frac{\theta_2 - \theta_1}{t_2 - t_1} = \frac{\Delta \theta}{\Delta t}$$ पिण्ड का तात्क्षणिक कोणीय वेग $\omega,\;\Delta t \to 0$ पर कोणीय वेग के सीमान्त मान के बराबर होता है $$\omega = \frac{\lim}{\Delta \to 0} \quad \frac{\Delta \theta}{\Delta t} = \frac{d\theta}{dt} \quad (2.12)$$ किसी पिण्ड का आवर्तकाल T है तथा कोणीय विस्थापन 2π है तो नियत कोणीय वेग $ω = \frac{2\pi}{T}$ होता है। ### कोणीय वेग ω तथा रेखीय वेग u में संबंध चित्र 2.5 के अनुसार माना एक पिण्ड ω कोणीय वेग व ν रेखीय वेग से OO' अक्ष के परितः गतिशील है । P पर स्थित कण का स्थिति सदिश \overrightarrow{R} है, यदि \angle O'OP = θ है तो P पर स्थित कण का वेग $$v = \frac{2\pi r}{T} = r\omega$$ परन्तु $r = R \sin \theta$ $\therefore v = (R \sin \theta) \omega$ $v = \omega R \sin \theta$ $\vec{v} = \vec{\omega} \times \vec{R}$ यह सिदश गुणनफल है अतः \vec{v} की दिशा $\vec{\omega}$ व \vec{R} के तल के लम्बवत होगी। जो दक्षिणावर्ती पेच नियम से ज्ञात होती है। #### कोणीय त्वरण कोणीय वेग में परिवर्तन की दर को कोणीय त्वरण कहते gæl sox से व्यक्त करते हैं $$\alpha = \frac{\Delta \omega}{\Delta t}$$ इसी प्रकार तात्क्षणिक त्वरण $\alpha = \Delta t \xrightarrow{lim} 0 \; \frac{\Delta \omega}{\Delta t} = \frac{d\omega}{dt}$ $$\therefore \qquad \alpha = \frac{d\omega}{dt} \tag{2.13}$$ $$\alpha = \frac{d}{dt} \left(\frac{d\theta}{dt} \right) \qquad \because \omega = \frac{d\theta}{dt}$$ $$\alpha = \frac{d^2\theta}{dt^2} \qquad (2.14)$$ #### कोणीय एवं रेखीय त्वरण में संबंध हम जानते हैं कि $$v = \frac{2\pi r}{T} = r\omega$$ दोनों ओर का अवकलन करने पर दृढ़ पिण्ड के लिए $$\frac{dv}{dt} = r \frac{d\omega}{dt}$$; $\alpha = \frac{d\omega}{dt}$ $$\therefore a = r\alpha \qquad \therefore a = \frac{dv}{dt}$$ सदिश रूप में $$\vec{a} = \vec{\alpha} \times \vec{R} \tag{2.15}$$ ## दृढ़ पिण्ड की घूर्णन गति के समीकरण माना किसी दृढ़ पिण्ड का प्रारम्भिक कोणीय वेग ω_0 है। यदि अन्तिम कोणीय वेग ω , नियत कोणीय त्वरण α तथा समय α पश्चात् कोणीय विस्थापन α है तो कोणीय गित के नियमानुसार $$\omega = \omega_0 + \alpha t \tag{2.16}$$ $$\theta = \omega_0 t + \frac{1}{2} \alpha t^2 \tag{2.17}$$ লখা $$\omega^2 = \omega_0^2 + 2\alpha\theta$$ (2.18) ## बल का आघूर्ण या बल आघूर्ण (Torque) घूर्णन गित में घूर्णन अक्ष के सापेक्ष किसी कण पर कार्यरत बल का आघूर्ण ही बल आघूर्ण कहलाता है। इसे τ (Tau) से व्यक्त करते हैं। जिस प्रकार रेखीय त्वरण उत्पन्न करने के लिए बल की आवश्यकता होती है इसी प्रकार घूर्णन गित में कोणीय त्वरण उत्पन्न करने के लिए बल आघूर्ण की आवश्यकता पड़ती है। चित्र 2.6 के अनुसार एक पिण्ड O से गुजरने वाले घूर्णन अक्ष (कागज के लम्बवत) के सापेक्ष घूर्णन गित कर रहा है। एक कण P पर बल \vec{F} कार्य कर रहा है। चित्र 2.6 बल आघूर्ण $(\tau) =$ बल का परिमाण \times आघूर्ण भुजा $= F (OM) \qquad \because \sin \theta = \frac{OM}{OP}$ $= F (r \sin \theta)$ $$\tau = r F \sin \theta$$ $$\vec{\tau} = \vec{r} \times \vec{F}$$ $$\vec{\tau} = rF \sin \theta \hat{n}$$ (2.19) यहां OM- आघूर्ण भुजा, घूर्णन अक्ष से बल की क्रिया रेखा के बीच की लम्बवत दूरी है। $\frac{1}{\tau}$ की दिशा दक्षिणावर्ती पेच नियम से ज्ञात की जाती है इसका मात्रक न्यूटन-मीटर तथा विमा ML^2T^{-2} विशेष परिस्थितियां यदि $\theta=0^\circ$ तो $\tau=rF\,\sin\,0^\circ=0\,\,(\text{--यूनतम मान})\,\sin\,0^\circ=0$ यदि (ii) $\theta=90^\circ$ $\tau=rF\,\sin\,90=rF\,\,(\text{अधिकतम मान})\,\,\because\,\sin\,90=1$ ## कण निकायों पर आरोपित बल आघूर्ण (Torque on a System of Particles) यदि किसी दृढ़ वस्तु पर कई बल कार्यरत है तो परिणामी बल आघूर्ण, सभी बल आघूर्णों के सरिश योग के बराबर होता है $$\vec{\tau} = \vec{\tau}_1 + \vec{\tau}_2 + \dots + \vec{\tau}_n$$ किसी दृढ़ पिण्ड की घूर्णन गति में यदि आघूर्ण भुजा की लम्बाई अधिक हो तो बल कम लगाना पड़ेगा। दैनिक जीवन में ऐसे कई उदाहरण हैं जो इस अभिधारणा पर आधारित है जैसे — - (i) पेच को घुमाने के लिए पेचकस का हत्था चौड़ा बनाया जाता है। - (ii) खिड़की व दरवाजों में हेण्डिल (हत्था) कब्जों से दूर लगाये जाते हैं। - (iii) पानी निकालने के लिए हेडपम्प का हत्था अधिक लम्बा लिया जाता है। #### कोणीय संवेग (Angular Momentum) किसी पिण्ड के रेखीय संवेग के घूर्णन अक्ष के सापेक्ष आघूर्ण को कोणीय संवेग कहते हैं। इसे (L) या (J) से व्यक्त करते हैं। रेखीय गित में संवेग का जितना महत्व होता है उतना घूर्णन गित में कोणीय संवेग का होता है। चित्र 2.7 में M द्रव्यमान का एक कण P बिन्दु पर स्थित है उसका स्थित सरेश ं है तो कोणीय संवेग (L)=रेखीय संवेग × आघूर्ण भुजा चित्र 2.7 $$= p (OM)$$ $$= p (r Sin \theta)$$ $$= rp Sin \theta$$ $$\vec{L} = \vec{r} \times \vec{p}$$ $$\vec{L} = rp Sin \theta \hat{n}$$ (2.20) यहां $\hat{\mathbf{n}}$, $\hat{\mathbf{r}}$ एवं $\hat{\mathbf{p}}$ के तल के लम्बवत् एकांक सिदश हैं । संवेग का मात्रक — किग्रा मी² / सैकण्ड एवं विमा — $\left\lceil \mathbf{M}^1 \mathbf{L}^2 \mathbf{T}^{-1} \right\rceil$ होती है । अब हम कतिपय विशेष परिस्थितियों की कल्पना करते हैं- (i) यदि $$\theta = 0$$ या 180° तो :: $$Sin0 = Sin 180^\circ = 0$$ $$\therefore$$ L = rp Sin 0 = 0 (मान) (ii) यदि $$\theta = 90$$ #### कण निकाय का कोणीय संवेग (Angular Momentuj of System of Particles) यदि वस्तु के विभिन्न कणों का कोणीय संवेग \vec{L}_1 \vec{L}_2 ,... \vec{L}_n है तो वस्तु का कुल कोणीय संवेग, विभिन्न कणों के कोणीय संवेग का सदिश योग होता है। अर्थात् $$\vec{L} = \vec{L}_1 + \vec{L}_2 + ... + \vec{L}_n$$ (2.21) हम जानते हैं कि $-$ $$\vec{L} = \vec{r} \times \vec{P}$$ समय के सापेक्ष अवकलन करने पर $$\frac{dL}{dt} = \frac{d}{dt} (\vec{r} \times \vec{p})$$ $$= \vec{r} \times \frac{\vec{dp}}{dt} + \frac{\vec{dr}}{dt} \times \vec{P}$$ (दो चरों के गुणनफल का अवलकन = प्रथम चर × दूसरे का अवकलन + द्वितीय चर × प्रथम का अवकलन) $$= \vec{r} \times \vec{F} + \vec{v} \times M \vec{v} \qquad \because \quad \frac{d\vec{r}}{dt} = \vec{v} \quad \forall \vec{q} \quad \because \quad \frac{d\vec{P}}{dt} = \vec{F}$$ $$\therefore \frac{dL}{dt} = \vec{r} \times \vec{F}$$ या $$\frac{\overrightarrow{dL}}{dt} = \vec{\tau}$$ यहां, $\overrightarrow{V} \times \overrightarrow{V} = 0$ d $\overrightarrow{r} \times \overrightarrow{F} = \vec{\tau}$ अतः कोणीय संवेग में परिवर्तन की दर उस पर आरोपित बल आघूर्ण के बराबर होती है। यह न्यूटन के द्वितीय नियम के तुल्य है। #### जड़त्व आघूर्ण (Moment of Inertia) घूर्णन गित में वस्तु का वह गुण जिसके कारण वह किसी अक्ष के परितः अपनी घूर्णन अवस्था का विरोध करता है तो उस अक्ष के सापेक्ष जड़त्व आघूर्ण कहलाता है। इसे I से व्यक्त करते हैं। घूर्णन गित में जड़त्व आघूर्ण का उतना ही महत्व है जितना रेखीय गित में द्रव्यमान का। चित्र 2.8 यदि पिण्ड के किसी कण का द्रव्यमान M है, तथा घूर्णन अक्ष से लम्बवत दूरी r है तो उस कण का घूर्णन अक्ष के सापेक्ष जड़त्व आघूर्ण द्रव्यमान M तथा दूसरी r के वर्ग के गुणनफल के बराबर होता है $I=Mr^2$ । किसी भी पिण्ड का जड़त्व आघूर्ण पिण्ड के अन्दर द्रव्य के वितरण की व्यवस्था पर निर्भर करता है। सामान्यतः पिण्डों में द्रव्य का वितरण सतत् एवं समांगी होता है। अगर असतत् एवं विषमांगी है तो इसका प्रभाव जड़त्व आघूर्ण पर पड़ता है। इसके अतिरिक्त जड़त्व आघूर्ण पिण्ड के आकार एवं घूर्णभ अक्ष पर भी निर्भर करता है एक ही वस्तु का जड़त्व आघूर्ण अलग—अलग अक्षों के सापेक्ष घूर्णन करने पर असमान रहता है। सारणी 2.1 में विभिन्न आकार के कतिपय पिण्डों के जड़त्व आघूर्ण का मान दिया गया है। यह स्पष्ट है कि घूर्णों अक्षों के सापेक्ष जड़त्व आघूर्ण का मान अलग—अलग है। सारणी 2.1 : कुछ दृढ़ पिण्ड निकायों के जड़त्व आघूर्ण | | आकृति का नाम | अक्ष एवं जड़त्व आघूर्ण | ज्यामितिय आकृति | |----|--|--|--------------------| | 1. | वृत्ताकार वलय (Circular Ring) | I=MR², ज्यामितिय अक्ष | 0 | | 2. | समरूप वृत्ताकार चकती (Uniform Circular Disc) | $I = \frac{MR^2}{2}$, ज्यामितिय अक्ष | 0 | | 3. | टोस गोला (Solid Sphere) | $I = \frac{2}{5}MR^2$,व्यास के सापेक्ष | 0 | | 4. | ठोस बेलन (Solid Cylinder) | $I = \frac{MR^2}{2}$,ज्यामितिय अक्ष | 0 L | | 5. | टोस बेलन (Solid Cylinder) | $I = M \left(\frac{L^2}{12} + \frac{R^2}{4} \right), \text{ लम्बाई के
लम्बव}$ द्रव्यमान के केन्द्र के सापेक्ष | गत् एवं <u>। 0</u> | | 6. | समरूप पतली छड़ (Thin Uniform Rod) | $I = rac{ML^2}{12}$ लम्बाई के लम्बवत् एवं
द्रव्यमान केन्द्र के सापेक्ष | | ## जड़त्व आघूर्ण के मुख्य तथ्य (Main Features of Moment of Inertia) - 1. जड़त्व आघूर्ण, घूर्णन गति में वस्तु के घूर्णन जड़त्व की माप है। - 2. घूर्णन गित में जड़त्व आघूर्ण, रेखीय गित में द्रव्यमान के तुल्य होता है। अर्थात् जिस प्रकार वस्तु का द्रव्यमान रेखीय गित में अपनी अवस्था परिवर्तन का विरोध करता है उसी प्रकार जड़त्व—आघूर्ण घूर्णन गित में अवस्था परिवर्तन का विरोध करता है। - 3. जड़त्व आघूर्ण का विमीय सूत्र [M¹L²T⁰] है। - 4. जड़ आघूर्ण का S.I. मात्रक किग्रा-मीटर² है। - 5. जड़त्व आघूर्ण प्रदिश राशि (Tensor) है लेकिन किसी निश्चित घूर्णन अक्ष के लिये यह एक सदिश राशि के रूप में प्रदर्शित होती है। - 6. दी गई वस्तु या पिण्ड के लिये जड़त्व आघूर्ण का मान घूर्णन अक्ष पर निर्भर करता है अर्थात् घूर्णन अक्ष परिवर्तित होने पर जड़त्व आघूर्ण परिवर्तित हो जाता है। - 7. किसी निश्चित अक्ष के लिये पिण्ड के जड़त्व आघूर्ण का मान उसके द्रव्यमान, आकृति एवं आकार पर निर्भर करता है। - 8. दी गई आकृति, आकार, द्रव्यमान तथा घूर्णन अक्ष के लिये जड़त्व आघूर्ण का मान पिण्ड के द्रव्यमान वितरण पर निर्भर करता है। पिण्ड का घूर्णन अक्ष से जितना अधिक द्रव्यमान का वितरण होगा, उतना ही अधिक जड़त्व आघूर्ण का मान होगा। उदाहरणार्थ एक व्यक्ति जिसके हाथों में भारी डम्बल है एवं भुजायें तथा टांगे फैली हुई है। यदि व्यक्ति अपनी भुजाओं तथा टांगो को सिकोड़ लेता है तो डम्बल तथा टांगो की घूर्णन अक्ष से दूरी कम हो जाने पर निकाय का जड़त्व आघूर्ण कम हो जाता है। - समान द्रव्यमान, त्रिज्या तथा आकृति की खोखली तथा ठोस वस्तुओं में से खोखली वस्तु का जड़त्व आघूर्ण ठोस वस्तु से अधिक होगा। - 10. जड़त्व आघूर्ण का मान कोणीय वेग (ω) , कोणीय त्वरण (α) , बल आघूर्ण (τ) तथा कोणीय संवेग (J) पर निर्भर नहीं करता है। ## कोणीय संवेग, जड़त्व आघूर्ण एवं कोणीय वेग में सम्बन्ध (Relation between Angular Momentum, Moment of Inertia and Angular Velocity) चित्र 2.9 में माना X-Y तल में कोई पिण्ड अपने तल के लम्बवत् तथा मूल बिन्दु O से गुजरने वाले लिखर z-अक्ष के सापेक्ष एक समान कोणीय चाल ω से घूर्णन गति कर रहा है। पिण्ड के बिन्दु P पर स्थित i वे Z d . kd kæ eku m_1 , रेखीय वेग v_1 तथा घूर्णन अक्ष से लम्बवत् दूरी r_i है । कण का रेखीय संवेग $\vec{P}=m_i\vec{v}_1$ है । तब i वे कण का घूर्णन अक्ष के सापेक्ष कोणीय संवेग - $$J_i=m_i u_i r_i$$ या $J_i=m_i \; (r_i \omega) r_i$ या $J_i=m_i r_i^2.\omega$ घूर्णन अक्ष के परितः पिण्ड का कुल कोणीयसंवेग पिण्ड के समस्त कणों का घूर्णन अक्ष के परितः कोणीय संवेगों के सदिश योग के तुल्य होता है। अतः — $$J = \sum_{i=1}^{i=n} m_i r_i^2 .\omega$$ या $$J = \omega \sum_{i=1}^{i=n} m_i r_i^2$$ यहां $\sum_{i=1}^{i=n} m_i r_i^2 = I$ या $$\vec{J} = \vec{I}\vec{\omega}$$ (2.22) अर्थात् किसी पिण्ड का किसी घूर्णन अक्ष के सापेक्ष कोणीय संवेग उसके उसी अक्ष के सापेक्ष जड़त्व आघूर्ण एवं उसके कोणीय वेग के गुणनफल के बराबर होती है। ## घूर्णन गतिज ऊर्जा (Rotational Kinetic Energy) चित्र 2.10 के अनुसार माना X-Y तब में स्थित कोई दृढ़ पिण्ड अपने तल के लम्बवत् तथा मूल 'O' बिन्दु से गुजरने वाले स्थिर अक्ष Z के परितः एक समान कोणीय वेग ω से घूर्णन गित कर रहा है। पिण्ड के किसी i वे कण का द्रव्यमान m_i वेग v_i तथा बिन्दु O के सापेक्ष स्थिति सदिश \dot{r}_i है। प्रत्येक दृढ़ पिण्ड छोटे कणों से मिलकर बना होता है तथा प्रत्येक कण अपने द्रव्यमान तथा रेखीय चाल के कारण रेखीय गतिज ऊर्जा रखता है। पिण्ड की कुल घूर्णन गतिज ऊर्जा इन सभी कणों की गतिज ऊजाओं के योग के तुल्य होती है। अतः $$K_R = \sum_{i=1}^{i=n} \frac{1}{2} m_i v_i^2$$ जहां $\frac{1}{2}m_i v_i^2$ किसी i वे कण की रेखीय गतिज ऊर्जा है। या $$K_R = \sum_{i=1}^{i=n} \frac{I}{2} m_i r_i^2 \omega^2$$ यहां $$(v_i = r_i \omega)$$ या $$K_R = \frac{1}{2}\omega^2 \sum_{i=1}^{i=n} m_i r_i^2$$ यहां $\sum_{i=1}^{i=n} m_i r_i^2 = I$ या $$K_R = \frac{1}{2}I\omega^2$$ (2.23) अतः कोणीय वेग ω से घूर्णन कर रहे पिण्ड का अभीष्ठ घूर्णन अक्ष के सापेक्ष घूर्णन गतिज ऊर्जा $(K_{_{\!R}})$ $$K_{R} = \frac{1}{2}I\omega^{2}$$ ## घूर्णन त्रिज्या (Radius of Gyration) किसी घूर्णन अक्ष के परितः किसी पिण्ड की घूर्णन त्रिज्या (K) घूर्णन अक्ष से वह लम्बवत् दूरी जिसके वर्ग (K^2) को पिण्ड के द्रव्य मान से गुणा करने पर जड़त्व आघूर्ण का वही मान होता है जो कि पिण्ड के द्रव्यमान के वास्तविक वितरण के लिये उस घूर्णन अक्ष के परितः है अर्थात् — $$(\sum m_i)K^2 = \sum_{i=1}^{i=n} m_i r_i^2$$ (2.24) घूर्णन त्रिज्या की संकल्पना का महत्व इस कारण से है कि किसी पिण्ड का किसी अक्ष के परितः जड़त्व आघूर्ण निकालने के लिये हमें पिण्ड के समस्त बिन्दु कणों का जड़त्व आघूर्ण निकालकर उनका योग करना पड़ता है जो कि व्यावहारिक नहीं होता। समी. 2.24 से - $$K = \sqrt{\frac{m_1 r_1^2 + m_2 r_2^2 + \dots + m_n r_n^2}{m_1 + m_2 + \dots + m_n}}$$ यदि वस्तु संमागी (Homogeneous) है तथा समान द्रव्यमान के n कणों से मिलकर बनी है, तो वस्तु का कुल द्रव्यमान $\sum m_i = M = m.n$, अतः $$K = \sqrt{(r_1^2 + \dots + r_n^2)/n}$$ $$K = \sqrt{(r_1^2 + r_2^2 + \dots + r_n^2)/n}$$ (2.25) अर्थात् संमागी वस्तु जिसके कण समान द्रव्यमान के हो, की घूर्णन त्रिज्या समस्त कणों की घूर्णन अक्ष से वर्ग माध्य मूल दूरी के तुल्य होती है। घूर्णन त्रिज्या (K) घूर्णन अक्ष की स्थिति एवं इसके सापेक्ष द्रव्यमान वितरण पर निर्भर करती है, लेकिन वस्तु के द्रव्यमान पर निर्भर नहीं करती। यह सभी कोणीय भौतिक राशियों पर भी निर्भर नहीं करती है। ## लम्बवत् अक्षों की प्रमेय (Theorem of Perpendicular Axes) कथन — "लम्बवत् अक्षों की प्रमेय के अनुसार किसी समतल पटल का उसके तल के लम्बवत् अक्ष के सापेक्ष जड़त्व आघूर्ण का मान तल में ही उपस्थित अन्य दो परस्पर लम्बवत् अक्षों के सापेक्ष जड़त्व आघूर्णों के योग के तुल्य होता है जबिक अभीष्ट लम्बवत् अक्ष तल में स्थित दोनों परस्पर लम्बवत् अक्षों के कटान बिन्दु से गुजरती है।" चित्र 2.11 के अनुसार चित्र 2.11 यदि समतल पटल X-Y तल में है तथा I_x , I_y एवं I_z क्रमशः X,Y एवं Z के सापेक्ष पटल के जड़त्व आघूर्ण हैं तो लम्बवत् अक्षों की प्रमेय के अनुसार $$I_{z} = I_{x} + I_{y}$$ #### उपपत्ति (Proof) माना समतल पटल में n कण है जिनके द्रव्यमान क्रमशः m_1 , m_2 ,..... m_n ,..... m_n हैं। कणों की Z से लम्बवत् दूरियां क्रमशः r_1 , r_2 ,..... r_n , हैं तथा X व Y अक्षों से लम्बवत् दूरियां क्रमशः y_1 , y_2 y_n ,..... y_n था x_1 , x_2 ,..... x_n ,..... x_n है। X अक्ष के सापेक्ष समतल पटल का कुल जड़त्व आघूर्ण (I_x) अलग—अलग कणों के X अक्ष के सापेक्ष जड़त्व आघूर्णों के योग के तुल्य होगा अर्थात् — $$I_{X} = \sum_{i=1}^{i=n} m_{i} y_{i}^{2}$$ (2.26) $$I_{y} = \sum_{i=1}^{i=n} m_{i} x_{i}^{2}$$ (2.27) तथा Z अक्ष के सापेक्ष समतल पटल का जड़त्व आघूर्ण (I_{ν}) – $$I_{z} = \sum_{i=1}^{i=n} m_{i} r_{i}^{2}$$ (2.28) समी. 2.26 व समी. 2.27 को जोड़ने पर – $$I_{x} + I_{y} = \sum_{i=1}^{i=n} m_{i} (x_{i}^{2} + y_{i}^{2})$$ चित्र 2.11 की ज्यामिति से $x_i^2 + y_i^2 = r_i^2$ या $$I_X + I_y = \sum_{i=1}^{i=n} m_i r_i^2$$ (2.29) अतः $I_x + I_y = I_z$ यही लम्बवत् अक्षों की प्रमेय है। (ध्यान रखें कि लम्बवत् अक्षों की प्रमेय का उपरोक्त व्यंजक सिर्फ द्विविमीय वस्तुओं के लिये ही सत्य है।) #### समान्तर अक्षों की प्रमेय (Theorem of Parallel Axes) कथन — ''समान्तर अक्षों की प्रमेय के अनुसार किसी पिण्ड का दी हुई घूर्णन अक्ष (AB) के परितः जड़त्व आघूर्ण का मान, उस पिण्ड के द्रव्यमान—केन्द्र से गुजरने वाली तथा AB के समान्तर अक्ष के परितः पिण्ड के जड़त्व आघूर्ण के मान तथा पिण्ड के द्रव्यमान और दोनों समान्तर अक्षों के बीच लम्बवत् दूरी के वर्ग के गुणनफल के योग के तुल्य होता है।" अर्थात् — $$I_{AB} = I_{CM} + Md^2$$ #### उपपत्ति (Proof) चित्र 2.12 के अनुसार अभीष्ठ पिण्ड n कणों से मिलकर बना है जिनके द्रव्यमान क्रमशः $m_1,\,m_2,....\,m_l,\,....\,m_l$ हैं तथा जिनकी द्रव्यमान—केन्द्र से गुजरने वाली अक्ष MN से लम्बवत् दूरियां क्रमशः \mathbf{r}_1 , \mathbf{r}_2 ,.... \mathbf{r}_n हैं। पिण्ड के बिन्दु \mathbf{P} पर स्थित \mathbf{i} वें कण का द्रव्यमान \mathbf{m}_1 तथा इसकी MN से लम्बवत् दूरी \mathbf{r}_i हो तो इस कण का अक्ष MN के सापेक्ष जड़त्व आधूर्ण $\mathbf{m}_i\mathbf{r}_i^2$ होगा। चित्र 2.12 अतः सम्पूर्ण पिण्ड का MN अक्ष के सापेक्ष जड़त्व आघूर्ण — $$I_{CM} = \sum_{i=1}^{i=n} m_i r_i^2$$ i वे कण की AB अक्ष से लम्बवत् दूरी = $r_i + d$ आधूर्ण पिण्ड का अक्ष AB के सापेक्ष जड़त्व आधूर्ण $$I_{AB} = \sum_{i=1}^{i=n} m_i (r_i + d)^2$$ या $$I_{AB} = \sum_{i=1}^{i=n} m_i \left(r_i^2 + d^2 + 2r_i d \right)$$ यहां d नियत है। अतः $$I_{AB} = \sum_{i=1}^{i=n} m_i r_i^2 + d^2 \sum_{i=1}^{i=n} m_i + 2d \sum_{i=1}^{i=n} m_i r_i$$ (2.30) चूंकि पिण्ड द्रव्यमान—केन्द्र के सापेक्ष संतुलित रहता है, द्रव्यमान—केन्द्र से गुजरने वाली अक्ष के सापेक्ष पिण्ड के समस्त कणों के आघूर्णों का बीजगणितीय योग (Algebric Sum) हमेशा शून्य होता है। अतः $$\sum_{i=1}^{i=n} m_i r_i = 0$$ अतः समी. 2.30 से $$I_{AB} = I_{CM} + d^2 \sum_{i=1}^{i=n} m_i$$ या $$I_{AB} = I_{CM} + Md^2$$, $\sum_{i=1}^{i=n} m_i = M$ या $$I_{AB} = I_{CM} + Md^2$$ (2.31) यही समान्तर अक्षों की प्रमेय है। ध्यान रहे कि समान्तर अक्षों की प्रमेय द्विविमीय तथा त्रिविमीय सभी प्रकार के पिण्डों के लिये सत्य होती है। # महत्वपूर्ण बिन्दु - द्रव्यमान केन्द्र किसी भौतिक निकाय से सम्बद्ध ऐसा बिन्दु जिस पर कण तंत्र का सम्पूर्ण द्रव्यमान केन्द्रित होता है। पिण्ड की स्थानान्तरीय गति के लिए प्रभावी रूप से सम्पूर्ण द्रव्यमान को इस बिन्दु पर केन्द्रित माना जा सकता है। - 2. द्रव्यमान केन्द्र के सापेक्ष कण निकाय के सभी कणों का कुल द्रव्यमान आघूर्ण तथा कुल रेखीय संवेग शून्य होता है। - द्रव्यमान केन्द्र की स्थिति निकाय के कणों के सापेक्ष स्थितियों, द्रव्यमानों एवं द्रव्यमान वितरण पर निर्भर करती है। - 4. द्रव्यमान केन्द्र की गति हमेशा स्थानान्तरीय होती है। - 5. घूर्णन अक्ष के सापेक्ष कण पर कार्यरत बल के आघूर्ण को बल-आघूर्ण कहते हैं अर्थात् $\vec{\tau} = \vec{r} \times \vec{F}$ - घूर्णन गति के जड़त्व को जड़त्व आघूर्ण कहते हैं। - घूर्णन त्रिज्या (k) घूर्णन अक्ष से वह लम्बवत् दूरी जिसके वर्ग को वस्तु के द्रव्यमान से गुणा करने पर वस्तु का वही जड़त्व आघूर्ण प्राप्त होता है जो कि उसे वितरित द्रव्यमान को मानने पर प्राप्त होता है। ## अभ्यासार्थ प्रश्न ## वस्तुनिष्ठ प्रश्न - 1. द्रव्यमान केन्द्र का वेग बाह्य बल की अनुपस्थिति में - (अ) नियत है। - (ब) शून्य है। - (स) बढ़ता है। - (द) घटता है। - 2. द्रव्यमान केन्द्र की गति का मुख्य कारण है - (अ) पारस्परिक बल - (ब) बाह्य बल - (स) नाभिकीय बल - (द) उपरोक्त सभी - किसी गोले का व्यास के सापेक्ष जड़त्व आघूर्ण I है तो उसकी स्पर्श रेखा के सापेक्ष जड़त्व आघूर्ण होगा — $$(34) I + \frac{1}{2}MR^2$$ (ब) I (स) $$I + MR^2$$ (द) $I + 2 MR^2$ 4. घूणीं गति में न्यूटन का समरूप नियम है
- (a) $$\Gamma = I \omega$$ $(\vec{a}) \quad \vec{v} = \vec{w} \times \vec{r}$ $$(\vec{\forall}\vec{\tau}) \quad \vec{\vec{\tau}} = \vec{r} \times \vec{F}$$ (\vec{a}) $\vec{\tau} = I\vec{\alpha}$ 5. मूल बिन्दु से $\left(3\hat{i}+4\hat{j}-5\hat{k}\right)$ मी. की दूरी पर बल F= $5i+6\hat{j}-8k$ न्यूटन कार्यरत है। बल आघूर्ण का मान है— (ब) 3 न्यूटन मी. (द) 5 न्यूटन मी. ## अतिलघुत्तरात्मक प्रश्न 1. क्या द्रव्यमान केन्द्र की गति स्थानान्तरीय होती है? 2. घड़ी के मिनट की सूई का कोणीय वेग क्या होता है? 3. क्या एक ही पिण्ड का दो अलग अक्षों के सापेक्ष जड़त्व आघूर्ण अलग हो सकता है? 4. एक पहिये के व्यास में 2% वृद्धि की जाती है तो पहिये के अक्ष के परितः जड़त्व आघूर्ण में प्रतिशत वृद्धि कितनी होगी? 5. क्या पिण्ड का जड़त्व आघूर्ण उसके कोणीय वेग पर निर्भर करता है? #### लघुत्तरात्मक प्रश्न - सिद्ध करो कि द्रव्यमान केन्द्र के सापेक्ष कण तंत्र के कणों का कुल द्रव्यमान आघूर्ण शून्य होता है। - 2. कोणीय संवेग एवं जड़त्व आघूर्ण में सम्बन्ध स्थापित कीजिये। - सिद्ध करो कि भिन्न-भिन्न घनत्व लेकिन समान द्रव्यमान M व मोटाई t की दो चकतियों के जड़त्व आघूर्ण एवं घनत्व में सम्बन्ध $$\frac{I_1}{I_2} = \frac{d_2}{d_1}$$ होगा। #### निबन्धात्मक प्रश्न - जड़त्व आघूर्ण की परिभाषा दीजिये। इसका भौतिक महत्व समझाइये। - 2. बल आघूर्ण एवं कोणीय स्वरण में सम्बन्ध स्थापित कीजिये। - लम्बवत् अक्षों के प्रमेय लिखिये एवं परिणामी जड़त्व आघूर्ण का सूत्र स्थापित कीजिये। - 4. यदि पृथ्वी की त्रिज्या को आधा कर दिया जाय एवं द्रव्यमान अपरिवर्तित रहे तो दिन की लम्बाई कितनी हो जाएगी? उत्तरमालाः 1 (अ) 2 (ब) 3 (स) 4 (द) 5 (ब) # इकाई – 3 अध्याय - 3 ## संरक्षण नियम एवं टक्करें (Conservation Laws and Collisions) हमारे चारों ओर जितने भी भौतिक प्रक्रम है, वे विभिन्न प्रकार के नियमों से नियंत्रित होते हैं। कुछ भौतिक राशियां निश्चित शर्तों के अधीन नियत अर्थात् संरक्षित रहती हैं ये संरक्षित राशियां कहलाती हैं। प्रत्येक संरक्षित राशि के संगत एक नियम (कथन) बन जाता है उसे संरक्षण नियम कहते हैं। समय व काल की समांगता एवं समदेशिकता के संगत भी कुछ संरक्षण नियम है ये नियम अभी तक कालजयी माने जाते हैं। ऐसी मान्यता है कि आकाश व काल से सम्बन्धित संरक्षण नियम प्रकृति में होने वाली घटनाओं की व्याख्या करने के लिए भौतिकी के सिद्धान्तों को प्रकृति प्रदत्त नियमों के सन्निकट ला देती है। अतः व्यापक रूप से प्रत्येक भौतिक प्रक्रम संरक्षण नियमों की पालना करता है। प्रारम्भिक तौर पर हम कुछ संक्षिप्त भौतिक राशियों के बारे में अध्ययन करते हैं। #### संरक्षी बल (Conservative Forces) बल द्वारा यदि किसी वस्तु की स्थिति में परिवर्तन करने में किया गया कार्य, वस्तु द्वारा तये किये गये वास्तविक पथ पर निर्भर न कर वस्तु की प्रारम्भिक एवं अन्तिम स्थिति पर निर्भर करें तो बल संरक्षी बल कहलाता है। अर्थात् दो बिन्दुओं के मध्य किया गया कार्य एक समान होगा चाहे वस्तु किसी भी पथ को अपनाये। बल एवं विस्थापन के गुणनफल को कार्य कहते हैं; $W = F \times d$ (3.1) चित्र 3.1 में एक प्रक्रम की प्रारम्भिक एवं अन्तिम अवस्थाएं क्रमशः A एवं B हैं। प्रक्रम उद्गम स्थल A से मार्ग C, D एवं E से किसी पर भी अग्रसर होकर B पर समाप्त होता है। अतः विभिन्न मार्गों पर अग्रसर होने पर कार्य का मान $$W_{ACB} = W_{ADB} = W_{AEB}$$ ∵ C,D,E मार्गों के लिए विस्थापन समान है। अब यदि वस्तु एक चक्र में A से B व B से A तक लाया जाय तो $$W_{AB} = -W_{BA}$$ $$W_{AB} + W_{BA} = 0$$ (3.2) अर्थात् एक चक्र में किया गया कुल कार्य शून्य होता है तो बल, संरक्षी बल कहलाता है। गुरुत्वीय बल, प्रत्यास्थ बल संरक्षी बल होते है, यदि अन्य प्रतिरोधी बल जैसे – घर्षण, हवा द्वारा आरोपित श्यान बल आदि अनुपस्थित हो। #### असंरक्षी बल (Non-Conservative Forces) यदि किसी वस्तु की स्थिति परिवर्तित करे तो बल के विरूद्ध किया गया कार्य दोनों स्थितियों के मध्य अपनाये गये पथ पर निर्भर करता है तो कार्यरत बल असंरक्षी बल कहलाता है। घर्षण बल (प्रतिरोधी बल) असंरक्षी बल है। स्पष्टतः एक चक्र में किया गया कार्य शून्य नहीं होता है। #### ऊर्जा (Energy) किसी वस्तु द्वारा कार्य करने की कुल क्षमता को ऊर्जा कहते हैं, किसी भी वस्तु में ऊर्जा का मापन उस कुल कार्य से किया जाता है जिसे वस्तु अपनी वर्तमान अवस्था से उस विशेष अवस्था तक आने में कर सकती है। इस प्रकार किया गया कार्य ही ऊर्जा का माप है इसीलिए कार्य और ऊर्जा का मात्रक जूल है प्रत्येक कार्य करने वाली वस्तु में कुछ न कुछ ऊर्जा अवश्य होती है जैसे किसी वस्तु को ऊपर उठाते हैं या स्प्रिंग को खींचते हैं उसमें ऊर्जा जितना कार्य करते हैं उतनी संचित होती है। ऊर्जा के विभिन्न रूप होते हैं – (1) यांत्रिक ऊर्जा (2) आंतरिक ऊर्जा (3) विद्युत ऊर्जा (4) रसायनिक ऊर्जा (5) उष्मीय या तापीय ऊर्जा (6) नाभिकीय ऊर्जा (7) प्रकाश ऊर्जा (8) सौर ऊर्जा (9) ध्विन ऊर्जा आदि। #### ऊर्जा संरक्षण (Conservation of Energy) किसी विलगित निकाय की कुल ऊर्जा का योग सर्वदा नियत रहता है अर्थात् ऊर्जा को न तो उत्पन्न किया जा सकता है न ही उसका विनाश किया जा सकता है। केवल एक प्रकार की ऊर्जा का दूसरे प्रकार की ऊर्जा में रूपान्तरण हो सकता है। ऊर्जा रूपान्तरण के कुछ उदाहरण — - 1. यांत्रिक ऊर्जा का विद्युत ऊर्जा में परिवर्तन जैसे टर्बाइन और डायनामों के उपयोग से विद्युत प्राप्त करना, रसोईघर में जैसे प्रज्वलन में काम आने वाले चकमक में ज्वाला का उत्पन्न होना। - विद्युत ऊर्जा का यांत्रिक ऊर्जा में पिरवर्तन जैसे बिजली से चलने वाला पंखा, सफाई करने वाला निर्वात पम्प। - गतिज ऊर्जा का उष्मा ऊर्जा में परिवर्तन जैसे दो पत्थरों के टकराने से उष्मा उत्पन्न होती है। - विद्युत ऊर्जा का उष्मा एवं प्रकाश ऊर्जा में परिवर्तन जैसे विद्युत लेम्प का जलना, विद्युत हीटर (ऊष्मा), प्रकाश उत्सर्जन। - प्रकाश ऊर्जा का विद्युत ऊर्जा में परिवर्तन जैसे प्रकाश विद्युत सेल, सोलर सेल। - रासायनिक ऊर्जा का विद्युत ऊर्जा में परिवर्तन जैसे विद्युत सेल। इसी प्रकार एक ऊर्जा को दूसरी ऊर्जा में परिवर्तित कर ऊर्जा का कुछ भाग ऐसे रूप में बदल जाता है जिससे लाभकारी कार्य नहीं होता है, यह ऊर्जा तो है पर ऊर्जा का क्षय कहलाता है। यह हास ध्वनि, उष्मा किसी भी रूप में हो सकता है। #### यांत्रिक ऊर्जा संरक्षण का नियम (Law of Conservation of Mechanical Energy) किसी वस्तु की संरक्षी बलों की उपस्थिति में यांत्रिक ऊर्जा अर्थात् उसकी गतिज ऊर्जा एवं स्थितिज ऊर्जा का कुल योग नियत रहता है। यदि K को गतिज ऊर्जा एवं U को स्थितिज ऊर्जा से दर्शाया जाय तो $$K + U = final article Figure 1.5 1.$$ $$\Delta K + \Delta U = 0$$ $$\therefore \Delta K = -\Delta U \tag{3.3}$$ अर्थात् एक ऊर्जा (गतिज ऊर्जा) में वृद्धि होगी तो दूसरी ऊर्जा (स्थितिज ऊर्जा) में कमी आयेगी लेकिन कुल योग नियत रहेगा। **उदाहरण 3.1** सिद्ध करो मुक्त रूप से गिरती हुई वस्तु की कुल ऊर्जा नियत होती है। #### हल चित्र 3.2 में एक मुक्त रूप से गिरती हुई वस्तु की व्यवस्था दर्शायी गयी है। माना m द्रव्यमान की एक वस्तु को पृथ्वी तल से h ऊँचाई पर स्थित बिन्दु A से विरामावस्था से गिरायी जाती है। माना वस्तु A बिन्दु से x दूरी तय कर B पर h आती है, अन्त में पृथ्वी पर स्थित C बिन्दु पर आती है। माना B व C बिन्दु औं पर वेग क्रमशः V_B व V_C है। सर्वप्रथम हम A, B व C बिन्दु पर कुल यांत्रिक ऊर्जा ज्ञात करेंगे। चित्र 3.2 बिन्दु A पर वस्तु विराम अवस्था में है अतः गतिज ऊर्जा $$K = \frac{1}{2} m v_A^2 = 0$$ यहाँ U - पृथ्वी से h ऊँचाई तक पिण्ड को ले जाने में बल mg के विरुद्ध किया गया कार्य स्थितिज ऊर्जा के बराबर है। $$= mg \times h$$ U = mgh अतः स्थितिज ऊर्जा = mgh. ∴ यांत्रिक ऊर्जा = गतिज ऊर्जा + स्थितिज ऊर्जा $$E_{\Delta} = 0 + mgh$$ $$E_A = mgh$$ बिन्दु B पर गतिज ऊर्जा : $$K = \frac{1}{2}mv_B^2$$ परन्तु न्यूटन की गति के तीसरे समीकरण से $$v_{\rm B}^2 = u^2 + 2g(x)$$ $$varphi u = 0 \therefore v_B^2 = 2g(x)$$ $$K = \frac{1}{2} m 2g x$$ स्थितिज ऊर्जा: $$U = mg (h - x)$$ $$= mgh - mgx$$ ∴ यांत्रिक ऊर्जा = गतिज ऊर्जा + स्थितिज ऊर्जा $$E_B = mgx + mgh - mgx$$ $E_B = mgh$ इसी प्रकार C बिन्दु पर गतिज ऊर्जा = $K = \frac{1}{2} mV_c^2$ परन्तु $$V_c^2 = 2gh$$: $u = 0$ $$\therefore K = \frac{1}{2}m(2gh)$$ या K = mgh एवं स्थितिज ऊर्जा = mgh = 0 : h = 0 तो यांत्रिक ऊर्जा = K + U $$E_C = mgh + 0$$ $E_{\rm C} = mgh$ यहां $E_A = E_B = E_C$ है अतः यांत्रिक ऊर्जा संरक्षित है। ### संवेग एवं संरक्षण नियम (Momentum and Conservation Law) संवेग — किसी गतिशील वस्तु का संवेग उस वस्तु के रेखीय वेग \vec{V} तथा द्रव्यमान m के गुणनफल के बराबर होता है। इसे p से व्यक्त करते हैं। संवेग का मात्रक किग्रा — मीटर प्रति सैकण्ड है इसकी विमा $\left\lceil M^{1}L^{1}T^{-1}\right\rceil$ है। #### संवेग संरक्षण नियम किसी निकाय पर कुल बाह्य बल शून्य हो तो निकाय का परिणामी संवेग नियत रहता है। अर्थात् $\vec{p}=$ नियंताक या $$\vec{p}_1 + \vec{p}_2 + + \vec{p}_n =$$ नियंताक न्यूटन के द्वितीय नियम से किसी निकाय के रेखीय संवेग में परिवर्तन की दर उस पर लग रहे कुल आरोपित बल के बराबर होती है। संवेग परिवर्तन की दिशा सदैव बल की दिशा में होती है। अर्थात् $$\vec{F} = \frac{\overrightarrow{dp}}{dt}$$ (3.4) बाह्य बल अनुपस्थित हो तो $\vec{F} = 0$ $\frac{\overrightarrow{dp}}{dt} = 0$ $\overrightarrow{p} = - - \overrightarrow{p}$ नियंताक किसी राशि का अवकलन शून्य है अर्थात् वह नियत होती है। यदि दो कणों का निकाय हो तो बाह्य बलों की अनुपस्थिति में संवेग नियत होता है अर्थात् $\vec{p}_1 + \vec{p}_2$ नियंताक संवेग संरक्षण नियम के उदाहरण (i) बंदूक से दागी गई गोली — बंदूक व गोली का प्रारम्भिक वेग शून्य है। अतः प्रारम्भ में कुल संवेग शून्य होगा। माना बंदूक दागने के बाद m द्रव्यमान की गोली का वेग √ तथा M द्रव्यमान की बंदूक का प्रतिक्षेप वेग √ है तो संवेग संरक्षण के नियम से $$0 = M\vec{V} + m\vec{v}$$ $$\vec{V} = -\frac{m}{M}\vec{v}$$ (ii) दो पिण्डों की टक्कर — माना m_1 व m_2 द्रव्यमान के दो पिण्डों का टक्कर के पूर्व वेग \vec{u}_1 व \vec{u}_2 तथा टक्कर के पश्चात् वेग \vec{v}_1 व \vec{v}_2 हो तो संवेग संरक्षण के नियम से टक्कर के पूर्व का कुल संवेग = पश्चात का कुल संवेग $m_1\vec{u}_1 + m_2\vec{u}_2 = m_1\vec{v}_1 + m_2\vec{v}_2$ #### कोणीय संवेग संरक्षण नियम (Conservation of Angular Momentum) यदि किसी घूर्णन अक्ष के परित घूर्णन करते हुए पिण्ड पर बाह्य बलाघूर्ण का मान शून्य हो तो उस पिण्ड का कोणीय संवेग नियत रहता है। हम जानते हैं $$\vec{\tau} = \frac{d\vec{L}}{dt}$$ यदि $\vec{\tau} = 0$, यदि किसी राशि का अवकलन शून्य है अर्थात् वह अचर राशि है। $$\frac{d\vec{L}}{dt} = 0 ag{3.5}$$ 1 = नियंताक पिण्ड की दो घूर्णन स्थितियों के लिए $$\vec{\mathbf{L}}_1 = \mathbf{I}_1 \vec{\boldsymbol{\omega}}_1, \vec{\mathbf{L}}_2 = \mathbf{I}_2 \vec{\boldsymbol{\omega}}_2$$ यदि $$\vec{L}_1 = \vec{L}_2$$ तो $$I_1\omega_1 = I_2\omega_2$$ $$\begin{split} m_1 r_1^2 \omega_1 &= m_2 r_2^2 \omega_2 \\ &\text{ यदि } m_1 = m_2 = m \text{ तो } \\ &r_1^2 \omega_1 = r_2^2 \omega_2 = \text{ नियंताक } = r^2 \omega \\ &\omega \propto \frac{1}{r^2} \end{split} \tag{3.6}$$ अर्थात् घूर्णन बढ़ाना (कोणीय वेग) है तो घूर्णन अक्ष से लम्बवत दूरी कम करना पड़ेगा। यही कारण है कि जब कोई गोताखोर ऊपर से पानी में कूदता है तो शरीर को मोड़ते हुए
कूदता है जिससे जड़त्व आघूर्ण का मान कम हो जाता है (r कम हो जाता है) वह हवा में घूर्णन को बढ़ा लेगा (ω बढ़ता है) पानी के पास जाकर अपने आप को फैला देता है जिससे I का मान बढ़ने से ω घट जाता है और अधिक गहराई तक पानी में जाता है। इसे सांकेतिक रूप से चित्र 3.3 में बताया गया है। #### सरल रेखीय या एक विमीय टक्कर दो पिण्ड जब एक ही सरल रेखा में गति करते हुए टकराते हैं एवं टक्कर के पश्चात् समान दिशा में गति करें तो एक विमीय या सम्मुख टक्कर कहलाती है, जैसा कि चित्र 3.4 में दर्शाया है। चित्र 3.4 माना $\mathbf{m_1}$ व $\mathbf{m_2}$ द्रव्यमान के दो कण एक ही दिशा में प्रारम्भिक वेग \mathbf{u} व $\mathbf{u_2}$ ($\mathbf{u_1} > \mathbf{u_2}$) से गतिमान है टक्कर के पश्चात् उसी दिशा में उनके वेग क्रमशः $\mathbf{v_1}$ व $\mathbf{v_2}$ हो जाते है तो संवेग संरक्षण के नियम से टक्कर के पूर्व कुल संवेग = टक्कर के पश्चात् कुल संवेग $$m_1 \vec{u}_1 + m_2 \vec{u}_2 = m_1 \vec{v}_1 + m_2 \vec{v}_2$$ $m_1 (\vec{u}_1 - \vec{v}_1) = m_2 (\vec{v}_2 - \vec{u}_2)$ चूंकि एक ही सरल रेखा में गति है अतः $m_1 (u_1 - v_1) = m_2 (u_2 - v_2)$ (3.7) इसी प्रकार (ऊर्जा संरक्षण के नियम से) टक्कर के पूर्व गतिज ऊर्जा = टक्कर के पश्चात् गतिज ऊर्जा $$\frac{1}{2} m_{1} (u_{1} - v_{1}) (u_{1} + v_{1}) = \frac{1}{2} m_{2} (v_{2} - u_{2}) (v_{2} + u_{2})$$ (3.9) समी. (3.9) में (3.7) का भाग देने पर $$\frac{\left(u_{l}-v_{l}\right)\left(u_{l}+v_{l}\right)}{\left(u_{l}-v_{l}\right)} = \frac{\left(v_{2}-u_{2}\right)\left(v_{2}+u_{2}\right)}{\left(v_{2}-u_{2}\right)}$$ या $$u_{1}+v_{1}=v_{2}+u_{2} \tag{3.10}$$ या $$u_{1}-u_{2}=v_{2}-v_{1} \tag{3.11}$$ अर्थात् पूर्ण प्रत्यास्थ टक्कर में पिण्डों के सापेक्ष वेग परिमाण में अपरिवर्तित परन्तु दिशा में विपरीत हो जाते है। यह न्यूटन का प्रत्यास्थ नियम कहलाता है। उपरोक्त विवेचना को टक्कर के पश्चात् वेगों का परिकलन करने में उपयोग कर सकते हैं — प्रथम पिण्ड का वेग समी. (3.11) से $$v_2 = u_1 + v_1 - u_2$$ $$v_2$$ का मान समी. (3.7) में रखकर हल करने पर $$m_1 u_1 + m_2 u_2 = m_1 v_1 + m_2 \left(u_1 + v_1 - u_2\right)$$ $$m_1 u_1 + m_2 u_2 = m_1 v_1 + m_2 u_1 + m_2 v_1 - m_2 u_2$$ $$\left(m_1 - m_2\right) u_1 + 2m_2 u_2 = \left(m_1 + m_2\right) v_1$$ $$v_1 = \left(\frac{m_1 - m_2}{m_1 + m_2}\right) u_1 + \left(\frac{2m_2}{m_1 + m_2}\right) u_2$$ (3.12) इसी प्रकार समी. (3.11) से v_1 का मान समी. (3.11) में रखकर द्वितीय पिण्ड का वेग ज्ञात कर सकते हैं। $$v_2 = \left(\frac{2m_1}{m_1 + m_2}\right)u_1 + \left(\frac{m_2 - m_1}{m_1 + m_2}\right)u_2$$ (3.13) ### विशेष परिस्थितियां - 1. यदि दोनों पिण्ड समान द्रव्यमान के हैं अर्थात् $\mathbf{m_1} = \mathbf{m_2} = \mathbf{m}$ समी. (3.12) व (3.13) से $\mathbf{v_1} = \mathbf{u_2}$ तथा $\mathbf{v_2} = \mathbf{u_1}$ इस स्थिति में पिण्ड अपने वेगों को परस्पर बदल लेते हैं। - 2. यदि $\mathbf{m}_{_{\! 2}}$ द्रव्यमान वाला पिण्ड विरामावस्था में है अर्थात् $\mathbf{u}_{_{\! 2}}\!\!=\!\!0$ तो समी. (3.12) व (3.13) से $$\mathbf{v}_{1} = \left(\frac{\mathbf{m}_{1} - \mathbf{m}_{2}}{\mathbf{m}_{1} + \mathbf{m}_{2}}\right) \mathbf{u}_{1} \tag{3.14}$$ $$\frac{\nabla \vec{q}}{\nabla q} V_2 = \left(\frac{2m_1}{m_1 + m_2}\right) u_1 \tag{3.15}$$ पुनः यदि इस स्थिति में $m_1 = m_2$ हो तो $$\mathbf{v}_{_{1}}=\mathbf{0}$$ तथा $\mathbf{v}_{_{2}}=\mathbf{u}_{_{1}}$ अर्थात् इस स्थिति में टक्कर के पश्चात् पहला पिण्ड स्थिर हो जाता है एवं दूसरा पिण्ड, पहले पिण्ड के वेग \mathbf{u}_1 से चलने लगता है। यह सम्पूर्ण संवेग स्थानान्तरण का अनुपम उदाहरण है। नाभिकीय संयंत्रों में शृंखला अभिक्रिया में न्यूट्रान की बौछार को नियंत्रित करने में काम आने वाले मंदक का चुनाव करने में इसका महत्वपूर्ण योगदान है। #### प्रत्यवस्थान गुणांक न्यूटन ने यह ज्ञात किया है कि टक्कर के पश्चात् व टक्कर के पूर्व कणों के आपेक्षित वेगों का अनुपात नियत होता है इसे (-e) से व्यक्त करते हैं तथा प्रत्यावस्थान गुणांक कहते हैं : $$-e = \frac{\overrightarrow{v_1} - \overrightarrow{v_2}}{\overrightarrow{u_1} - \overrightarrow{u_2}} \tag{3.16}$$ यदि e=1 तो टक्कर पूर्ण प्रत्यास्थ टक्कर होती है, यदि e=0 तो टक्कर पूर्ण अप्रत्यास्थ टक्कर होती है इस स्थिति में $\mathbf{v}_1=\mathbf{v}_2=\mathbf{v}$ पिण्ड सटकर एक ही वेग से गति करते हैं। सभी अप्रत्यास्थ टक्करों के लिए 0<e<1. #### अप्रत्यास्थ टक्कर इस टक्कर में गतिज ऊर्जा का संरक्षण नहीं होता है परन्तु संवेग का संरक्षण होता है। टक्कर के पश्चात् वस्तुएं समान चाल से सट कर साथ—साथ चलती है। माना $\mathbf{m_1}$ व $\mathbf{m_2}$ द्रव्यमान का टक्कर के पूर्व वेग क्रमशः $\mathbf{u_1}$ व $\mathbf{u_2}$ है तथा टक्कर के पश्चात् उनका समान वेग \mathbf{v} हो जाता है। इसका रेखिक चित्रण चित्र 3.5 में दर्शाया गया है। संवेग संरक्षण के नियम से - चित्र 3.5 $$\vec{m}_1 \vec{u}_1 + \vec{m}_2 \vec{u}_2 = (\vec{m}_1 + \vec{m}_2) \vec{v}$$ $$v = \frac{m_1 \vec{u}_1 + m_2 \vec{u}_2}{m_1 + m_2}$$ (3.17) यदि m, द्रव्यमान वाली वस्तु स्थिर हो तो $u_2 = 0$ एवं $$\vec{v} = \left(\frac{m_1}{m_1 + m_2}\right) \vec{u}_1 \tag{3.18}$$ टक्कर के पूर्व गतिज ऊर्जा $$K_1 = \frac{1}{2}m_1u_1^2 \tag{3.19}$$ टक्कर के पश्चात् गतिज ऊर्जा $$K_2 = \frac{1}{2} (m_1 + m_2) v^2$$ v का मान समी. (3.18) से रखने पर $$K_2 = \frac{1}{2} (m_1 + m_2) \left[\frac{m_1^2}{(m_1 + m_2)^2} \right] u_1^2$$ $$K_2 = \frac{1}{2} \frac{m_1^2}{(m_1 + m_2)} u_1^2$$ (3.20) समी. (3.20) में (3.19) का भाग देने पर $$\frac{K_2}{K_1} = \frac{\frac{1}{2} \left(\frac{m_1^2}{m_1 + m_2} \right) u_1^2}{\frac{1}{2} m_1 u_1^2}$$ $$\frac{K_2}{K_1} = \frac{m_1}{(m_1 + m_2)}; \quad \frac{K_2}{K_1} < 1;$$ $$K_2 < K_1$$ (3.21) स्पष्ट है टक्कर के पश्चात् अप्रत्यास्थ टक्कर में गतिज ऊर्जा का मान कम हो जाता है। अर्थात् गतिज ऊर्जा का संरक्षण नहीं होता है। #### द्विविमीय टक्कर या तिर्यक टक्कर जब टक्कर करने वाली वस्तुओं के वेग एक सरल रेखा के अनुदिश नहीं होते है तो टक्कर के पश्चात् वे वस्तुओं के केन्द्रों को जोड़ने वाली रेखा की दिशा में न चले तो टक्कर द्विविमीय या तिर्यक टक्कर कहलाते हैं। चित्र 3.6 में $m_{_{1}}$ व $m_{_{2}}$ द्रव्यमान की दो वस्तुएं टक्कर के पूर्व x—y तल में x अक्ष के साथ α_1 व α_2 कोण बनाते हुए क्रमशः v_1 व m_2 v_2 वेग से गतिमान है। टक्कर के पश्चात् ये वस्तुएं xy तल में xअक्ष से क्रमशः β_1 व β_2 कोण बनाते हुए क्रमशः v_1 व v_2 वेग से गतिमान है तो संवेग संरक्षण के सिद्धांत से कुल रेखीय संवेग x- अक्ष की दिशा चित्र 3.6 में संवेगों के वियोजित भागों का योग नियत रहेगा अर्थात् $m_1 u_1 cos \alpha_1 + \ m_2 u_2 cos \alpha_2 = m_1 v_1 cos \beta_1 + \ m_2 v_2 cos \beta_2 \eqno(3.22)$ इसी प्रकार y अक्ष की दिशा संवेग संरक्षण के सिद्धांत से $m_1 u_1 sin\alpha_1 + m_2 u_2 sin\alpha_2 = m_1 v_1 sin\beta_1 + m_2 v_2 sin\beta_2 \tag{3.23}$ प्रत्यास्थ टक्कर में गतिज ऊर्जा संरक्षित होती है। अतः $$\frac{1}{2}m_1u_1^2 + \frac{1}{2}m_2u_2^2 = \frac{1}{2}m_1v_1^2 + \frac{1}{2}m_2v_2^2$$ (3.24) समी. (3.22), (3.23) व (3.24) को हल कर तिर्यक टक्कर की व्याख्या की जा सकती है, जो कि चित्र 3.7 में दर्शायी गयी है। सरलता की दृष्टि से हम एक विशेष स्थिति का अध्ययन करते हैं। चित्र 3.7 माना $\mathbf{m}_{_{1}}$ द्रव्यमान की वस्तु $\mathbf{u}_{_{1}}$ वेग से स्थिर वस्तु $\mathbf{m}_{_{2}}$ से तिर्यक टक्कर करती है। $$\begin{split} &\alpha_{_{1}}\!=0,\;\;\beta_{_{1}}\!=\theta_{_{1}}\;\text{and}\;\beta_{_{2}}\!=\theta_{_{2}}\\ &\vec{\Pi}\;\;\vec{\Pi}\!,\;(3.22),\,(3.23)\;\vec{\Pi}\;\;(3.24)\;\vec{\Pi}\;\;v_{_{2}}\!\!=0\;\;\vec{\Pi}\;\;\vec{\Pi}\;\;\vec{\Pi}\;\;v_{_{1}}\!\!=m_{_{1}}\!\!v_{_{1}}\!\!\cos\!\theta_{_{1}}\!\!+m_{_{2}}\!\!=v_{_{2}}\!\!\cos\!\theta_{_{2}} &(3.25)\\
&4_{_{2}}\!\!=0\;\vec{\Pi}\;\;\alpha_{_{1}}\!\!=0_{_{1}},\;\;\beta_{_{1}}\!\!=\theta_{_{1}}\;\;\text{and}\;\beta_{_{2}}\!\!=\theta_{_{2}}\;\;\vec{\Pi}\;\;\vec{$$ $$\frac{1}{2}m_{1}u_{1}^{2} = \frac{1}{2}m_{1}v_{1}^{2} + \frac{1}{2}m_{1}u_{2}^{2}$$ (3.27) विशेष स्थिति $m_1 = m_2 = m$ हो तो $$u_1 = v_1 \cos \theta_1 + v_2 \cos \theta_2 \tag{3.28}$$ $$0 = \mathbf{v}_1 \sin \theta_1 + \mathbf{v}_2 \sin \theta_2 \tag{3.29}$$ $$u_1^2 = v_1^2 + v_2^2 (3.30)$$ समी. (3.28) व (3.29) का वर्ग कर जोड़ने पर $u_1^2 = v_2^2 + 2v_1v_2(\cos\theta_1\cos\theta_2 + \sin\theta_1\sin\theta_2) + v_1^2$ परन्तु (3.30) के उपयोग से $$2 v_1 v_2 [\cos (\theta_1 + \theta_2)] = 0$$ $$v_1 \neq 0 \neq v_2; \cos(\theta_1 + \theta_2) = 0$$ $$\theta_1 + \theta_2 = 90^{\circ}$$ इस स्थिति में वस्तुएं परस्पर लम्बवत दिशाओं में गति करेगी। #### संघट्ट या टक्करें जब पिण्ड अथवा आवेशित सूक्ष्म कण एक दूसरे के निकट आते हैं तो उनकी टक्कर अथवा अन्योन्य क्रिया के कारण उनकी गति, दिशा या संवेग या ऊर्जा में परिवर्तन होता है। इसे अन्योन्य क्रिया को टक्कर या संघात या संघट्ट कहते हैं। टक्कर के लिए आवश्यक नहीं है कि वस्तुएं आपस में स्पर्श करें। टक्कर में निकाय के विभिन्न पिण्डों के बीच संवेग एवं ऊर्जा का आदान—प्रदान अथवा पुनः वितरण होता है। टक्कर का समय अत्यल्प होता है जैसे — कैरम बोर्ड में प्रहारक से गोटियों को बिखेरना, बिलियर्ड्स में मेज पर स्थित गेदों के मध्य टक्करें आदि। अत्यल्प से अभिप्राय है कि कैरम बोर्ड पर प्रहारक द्वारा एक प्रहार में लगाये गये कुल समय (विराम से विराम तक) के सापेक्ष दो गोटियों के सम्पर्क का समय अत्यल्प होता है। टक्करों के भौतिकीय विश्लेषण के लिए वेग, संवेग, गतिज ऊर्जा एवं कुल ऊर्जा का उपयोग होता है। इन्हीं के आधार पर टक्करों का विभेदीकरण करते हैं। टक्करें मूलतः दो प्रकार की होती हैं — (i) प्रत्यास्थ टक्कर (ii) अप्रत्यास्थ टक्कर। - (i) प्रत्यास्थ टक्कर ऐसी टक्कर जिसमें निकाय क संवेग तथा गतिज ऊर्जा दोनों ही संरक्षित रहे, पूर्ण प्रत्यास्थ टक्कर कहलाती है। परमाणुओं, अणुओं, मूल कणों के बीच टक्कर लगभग पूर्ण प्रत्यास्थ टक्कर होती है, व्यवहारिक रूप में कोई भी टक्कर पूर्ण प्रत्यास्थ टक्कर सम्भव नहीं है। - (ii) अप्रत्यास्थ टक्कर यदि दो पिण्ड टक्कर के पश्चात् एक दूसरे से चिपक कर एक ही पिण्ड की तरह गति करते है तो ऐसी टक्कर पूर्णतः अप्रत्यास्थ टक्कर कहलाती है। इस टक्कर में संवेग संरक्षित रहता है, परन्तु गतिज ऊर्जा में अधिकतम हानि होती है जैसे बंदूक की गोली लकड़ी में धस जाय। यह पूर्ण अप्रत्यास्थ टक्कर है। # महत्वपूर्ण बिन्दु - 1. वस्तु द्वारा कार्य करने की क्षमता को ऊर्जा कहते हैं। - सामान्यतः गतिज ऊर्जा एवं स्थितिज ऊर्जा को यांत्रिक ऊर्जा कहते हैं। - आंतरिक संरक्षी बलों की उपस्थिति में निकाय की यांत्रिक ऊर्जा संरक्षित रहती है। - किसी पिण्ड पर गति के दौरान कार्यरत बाह्य बलाघूर्ण का मान शून्य है तो उसका कोणीय संवेग नियत रहता है। - 5. प्रत्यास्थ टक्कर जिस टक्कर में रेखीय संवेग संरक्षित रहता है तथा गतिज ऊर्जा भी संरक्षित रहती है प्रत्यास्थ टक्कर कहलाती है। - 6. अप्रत्यास्थ टक्कर जिस टक्कर में गतिज ऊर्जा संरक्षित नहीं रहती है। गतिज ऊर्जा में आयी कमी किसी और प्रक्रिया में खर्च होती है। इन्हें अप्रत्यास्थ टक्कर कहते हैं। # अभ्यासार्थ प्रश्न # वस्तुनिष्ठ प्रश्न दो पिण्डों की गतिज ऊर्जा समान है एवं द्रव्यमानों का अनुपात 1: 3 है तो रेखीय संवेगों का अनुपात होगा — - $(\mathfrak{F}) \quad \frac{1}{\sqrt{3}} \qquad \qquad (\mathfrak{F}) \quad \sqrt{3}$ - (स) 3 (a) √2 - 2. निम्न में से कौनसा मात्रक ऊर्जा का नहीं है - - (अ) जूल (ब) किलोवाट - (स) अर्ग (द) इलेक्ट्रॉन वोल्ट - 3. पूर्णतः अप्रत्यास्थ टक्कर के लिए e का मान होता है— - (3f) 1 (a) 1/₂ - (स) 0 (द) $^{1}/_{3}$ - 4. एक अश्वशक्ति का मान वॉट में कितना होता है - - (왕) 100 (평) 10 (전) 286 (로) 746 #### अतिलघूत्तरात्मक प्रश्न - एक बस एवं कार समान गतिज ऊर्जा से सड़क पर गतिशील है। एक साथ ईंजन (ट्रक) बन्द करने पर कौन कम दूरी पर रूकेगा। समझाइये। - घड़ी में चाबी भरने पर वापस चालु हो जाती है। ऊर्जा रूपान्तरण के आधार पर समझाइये। - 5 किग्रा का एक पिण्ड पृथ्वी की सतह से 10 मीटर की ऊँचाई से स्वतंत्रापूर्वक गिरती है तो पृथ्वी पर टकराते समय चाल क्या होगी? #### लघुत्तरात्मक प्रश्न - 1. यांत्रिक ऊर्जा संरक्षण का नियम लिखिये। - 2. टक्कर के लिए न्यूटन के नियम लिखिये। - 3. प्रत्यास्थ एवं अप्रत्यास्थ टक्कर में अन्तर बताइये। - 4. यदि किसी पिण्ड का वेग 100 प्रतिशत बढ़ा दिया जाय तो गतिज ऊर्जा में प्रतिशत वृद्धि ज्ञात कीजिये। - 5. 10 किग्रा का रेत से भरा थैला भारहीन डोरी से लटका हुआ है। इसमें 100 ग्राम की गोली 15 मी/से की चार से दागी जाती है जो कि थैले में धंस जाती है। थैले की चाल ज्ञात कीजिये। #### निबन्धात्मक प्रश्न दो समान द्रव्यमान सरल रेखा में शक्तिमान पिण्ड प्रत्यास्थ टक्कर करते हैं। सिद्ध कीजिये कि टक्कर के पश्चात् इनके वेग परस्पर बदल जाते हैं। 36 - दो समान द्रव्यमान के पिण्ड तिर्यक टक्कर करते हैं। टक्कर में गतिज ऊर्जा संरक्षित रहती है तो दर्शाइये कि टक्कर के पश्चात् दोनों पिण्ड परस्पर लम्बवत् दिशा में गति करते हैं। - सिद्ध कीजिये कि स्वतंत्रतापूर्वक नीचे गिरती हुई वस्तु में यांत्रिक ऊर्जा संरक्षित रहती है। उत्तरमालाः 1 (अ) 2 (ब) 3 (स) 4 (द) # Downloaded from https://www.studiestoday.com # इकाई – 4 इकाई - 4 # पृष्ठ तनाव (Surface Tension) #### पृष्ठ तनाव (Surface Tension) यह देखा गया है कि किसी द्रव के मुक्त पृष्ठ तथा तनी हुई प्रत्यास्थ झिल्ली के गुणों में समानता पायी जाती है जिस प्रकार प्रत्यास्थ झिल्ली सिकुड़कर अपना क्षेत्रफल कम करना चाहती है। उसी प्रकार द्रव पृष्ठ भी सिकुड़ने का प्रयास करता है अर्थात् द्रव के पृष्ठ पर तनाव होता है। दैनिक जीवन में ऐसे अनेक उदाहरण देखते हैं जिसमें द्रव के पृष्ठ पर तनाव होता है। उदाहरण के लिए वर्षा की छोटी बूंदें, ओस की बूंदें, साबुन के बुलबुले पूर्ण गोलाकार आकृति लिये होते हैं इसी प्रकार पानी के बाहर निकालने पर चित्र बनाने वाले ब्रुश के बालों का चिपकना, पानी की सतह पर चिकनाई लगी हुई सुई का तैरना आदि ऐसी अनेक घटनाएं हैं जिनकी सरल व्याख्या पृष्ठ तनाव के गुणों से की जा सकती है। इसके अनुसार द्रव के पृष्ठ पर एक तरह का तनाव बल कार्य करता है जो द्रव के पृष्ठ के क्षेत्रफल को न्यूनतम करने का प्रयास करता है अर्थात् द्रव की मुक्त सतह में हम एक रेखा की कल्पना करें तो रेखा की लम्बाई के लम्बवत् एक बल कार्यरत है जो पृष्ठ पर तनाव उत्पन्न करता है। ### पृष्ठ तनाव की परिभाषा (Definition of Surface Tension) द्रव की मुक्त सतह पर किसी रेखा की कल्पना करें तो इस रेखा की लम्बाई के लम्बवत् तथा द्रव तल में रेखा की प्रति एकांक लम्बाई पर कार्यरत बल को पृष्ठ तनाव बल कहते हैं। चित्र 4.1 के अनुसार मान लीजिए L मीटर लम्बाई की रेखा PQ के लम्बवत् व तल में कार्यरत बल F न्यूटन है तो पृष्ठ तनाव $$S = \frac{F}{L}$$ (4.1) इसकी इकाई न्यूटन प्रति मीटर या किग्रा प्रति वर्ग सैकण्ड होती है। समी. (4.1) में यदि L=1 तो, S=F अर्थात् द्रव के किसी पृष्ठ पर इकाई लम्बाई की रेखा के लम्बवत् कार्यकारी बल पृष्ठ
तनाव कहलाता है। पृष्ठ तनाव की विमा $$= \frac{\text{बल की विमा}}{\text{लम्बाई की विमा}} = \frac{\text{MLT}^{-2}}{\text{L}}$$ $= \text{MT}^{-2}$ (4.2) पृष्ठ तनाव के अध्ययन के दौरान सामान्यतः पृष्ठ या सतह का उल्लेख किया जाता है। आणविक स्तर पर एक ऐसी परत जिसका आकार लगभग 10–15 आणविक व्यास की कोटि का हो उसे पृष्ठ या सतह कहते हैं। दो अणुओं के मध्य कार्यरत अन्तरआणविक बल सतह से परे नगण्य होता है। चित्र 4.1 में \overrightarrow{PQ} रेखा दो पृष्ठों का निर्माण करती है। एक को हम \overrightarrow{PQ} के ऊपर का तथा दूसरे को \overrightarrow{PQ} के नीचे का पृष्ठ कह सकते हैं। पृष्ठ के यह दोनों भाग परस्पर निश्चित बल से खिंचते हैं जो कि लम्बाई \overrightarrow{PQ} के समानुपाती होता है साथ ही यह खिंचाव \overrightarrow{PQ} के लम्बवत् तथा पृष्ठ के स्पर्श रेखीय होता है। इन स्थितियों में द्रव का पृष्ठ तन्य झिल्ली की तरह कार्य करता है। कोई भी झिल्ली जिसे समस्त दिशाओं में खिंचा जाता है तनाव की दशा में होती है तथा इसका प्रत्येक अंश आसन्न भाग को अपनी तरफ खेंचता है। पृष्ठ तनाव को पृष्ठ ऊर्जा के रूप में भी परिभाषित कर सकते हैं। किसी द्रव पृष्ठ के क्षेत्रफल में वृद्धि करने के लिए पृष्ठ तनाव के विरूद्ध कार्य करना पड़ता है, यह कार्य पृष्ठीय ऊर्जा के रूप में संग्रहित हो जाता है। पृष्ठ तनाव एवं पृष्ठ ऊर्जा में सम्बन्ध ज्ञात करने के लिए चित्र 4.2 के अनुसार किसी तार के फ्रेम पर एक तार पर विचार करते हैं। तार AB फ्रेम पर बिना घर्षण के फिसल सकता है। इस फ्रेम को साबुन के पानी के पतले घोल में डुबो कर एक फिल्म बना लेते हैं। अब AB तार Δx दूरी तक खिसक कर नयी स्थिति A'B' तक लाया जाता है। नयी स्थिति तक लाने में बल के विरूद्ध कार्य करना होगा तो कार्य $$W = F \Delta x$$ परन्तु $F = SL + SL$ (दो पृष्ठ होने से) $F = 2SL$ तो $\therefore W = 2SL \cdot \Delta x$ (4.3) $= S2L\Delta x$ बाह्य बल द्वारा किया गया कार्य स्थितिज ऊर्जा के रूप में संरक्षित हो जाता है। अतः पृष्ठ ऊर्जा में वृद्धि $U=W=S(2L\cdot \Delta x)$ ∴ $$S = \frac{W}{2L\Delta x} = \frac{W}{\Delta A}$$ ਧहਾੱਂ $\Delta A = 2L \cdot \Delta x$ $$\Delta A = 1$$ मी² तो $S=W$ यहां मात्रक $=\frac{\sqrt{M}}{4}$ होगा अतः किसी द्रव का पृष्ठ तनाव उस बल के बराबर है जो नियत ताप पर द्रव के पृष्ठ के क्षेत्रफल में एकांक वृद्धि कर दे। **उदाहरण 4.1** — साबुन के विलयन का पृष्ठ तनाव 2.1×10^{-2} न्यूटन / मीटर है तो 1.0 सेमी व्यास वाले बुलबुले को फूंककर बनाने में कितना कार्य करना पड़ेगा। हल - $$S = 2.1 \times 10^{-2}$$ न्यूटन / मीटर $$R = \frac{1 \times 10^{-3}}{2} \text{ मीटर}$$ $$= 0.5 \times 10^{-3} \text{ मीटर}$$ $$W = T\Delta A$$ $$= S \times 8\pi R^2 \text{ यहां } \Delta A = 2 \times 4\pi R^2 \text{ (दो पृष्ठ)}$$ $= 8 \times 3.14 \times (0.5 \times 10^{-3})^2 \times 2.1 \times 10^{-2}$ #### प्रयोग द्वारा पृष्ठ तनाव का प्रदर्शन (Demonstration of Surface Tension by Experiment) = 1.32 × 10⁻⁵ जूल एक तार की वलय बनाकर साबुन के घोल में डुबोकर बाहर निकालते हैं। बाहर लाने पर पाते हैं कि वलय का भीतरी भाग साबुन की पतली झिल्ली से आबद्ध होता है। अब हम पतले धागे का एक पाश बनाते हैं। इस भिगोकर सावधानीपूर्वक झिल्ली पर रख देते हैं। धागे का पाश अनिश्चित आकार में झिल्ली पर उहर जाता है। धागे से बद्ध वलय के केन्द्र के परितः पृष्ठ पर सुगमता से आलपिन चुभोते हैं। हम पाते हैं कि धागे द्वारा बनायी गयी अनिश्चित आकार की बद्ध आकृति भी वलयाकार में बदल जाती है। जैसा कि चित्र 4.3 (ब) में बताया गया है। चित्र 4.3 इस प्रयोग में धागे का लूप बनने के पश्चात् इसके परितः बाह्य एवं अन्तः पृष्ठ बनते हैं। दोनों ही पृष्ठ धागे पर बल लगाते हैं। अतः परिणामी बल शून्य होता है एवं लूप एक अनिश्चित आकार निर्धारित कर लेता है। जैसे ही वलय केन्द्र को घेरने वाले पृष्ठ को पंक्चर करते हैं तो बाह्य पृष्ठ का बल धागे को खिंचता है तथा धागा वर्तुलाकार प्राप्त कर लेता है। द्रव की निम्नतम पृष्ठीय क्षेत्रफल प्राप्त करने की प्रवृत्ति भी पृष्ठ तनाव का परिणाम है। उपरोक्त प्रयोग में पंक्चर के बाद शेष क्षेत्रफल पुर्नव्यवस्थित होकर वर्तुलाकार प्राप्त करता है। निश्चित आयतन की आकृति विभिन्न आकार ले सकती है। लेकिन गोलों का पृष्ठीय क्षेत्रफल इन सबमें से न्यूनतम होता अतः यह वर्तुलाकार हो जाता है। यही कारण है कि द्रव बूंद भी गोलाकार होती हैं। गुरुत्वाकर्षण के कारण गोलीय आकृति में कुछ विकृति आ सकती है लेकिन छोटी बूंदों में इसका प्रभाव नगण्य होता है। पृष्ठ तनाव की आणविक बलों के आधार पर व्याख्या (Explanation of Surface Tension on the Basis of Molecular Forces) पृष्ठ तनाव की व्याख्या अन्तराणिवक बलों के आधार पर की जा सकती है। इसके लिए द्रव सतह में प्रत्येक अणु को केन्द्र मानकर आणिवक परास के तुल्य त्रिज्या के आणिवक प्रभाव के गोलों की कल्पना करते हैं। इस गोले के अन्दर के सभी अणु केन्द्रीय अणु को अपनी ओर ससंजक बल (Cohesive force) से आकर्षित करते हैं। चित्र 4.4 में आणिवक प्रभाव विभिन्न गोले दर्शाये गये हैं। माना कि इकाई पृष्ठ पर पानी द्वारा कार्यरत बल वायु की तुलना में अधिक है। A आणविक प्रभाव का गोला पूर्णतः द्रव के भीतर है अतः इस पर सभी ओर से कार्यरत अन्तराणविक बलों के कारण परिणामी बल शून्य होगा। B गोले को नीचे की ओर खींचने वाला बल ऊपर की ओर खींचने वाले बल से अधिक होगा। C गोला आधा द्रव के अन्दर और आधा बाहर है अतः नीचे की ओर लगने वाला परिणामी बल B से अधिक है; इसी प्रकार D गोले पर नीचे की ओर परिणामी बल अधिकतम होगा। यदि ये समस्त गोले कम से कम 10—15 आणविक व्यास से ज्यादा गहराई पर हो। इस प्रकार द्रव सतह के अणुओं पर नीचे की ओर लम्बवत् बल कार्यरत होता है इससे सतह के क्षेत्रफल का परिमाण कम होता है जिससे सतह खींची हुई रबड़ की झिल्ली की तरह व्यवहार करती है। इस प्रकार यदि किसी अन्दर के अणु को सतह पर लाया जाता है तो उसे अन्दर की ओर लगने वाले आकर्षण बल के विरूद्ध कार्य करना पड़ता है। यह कार्य अणु की स्थितिज ऊर्जा के रूप में सतह पर संचित होता है चूंकि प्रत्येक अणु न्यूनतम स्थितिज ऊर्जा प्राप्त करने का प्रयास कर द्रव के अन्दर की ओर जाने का प्रयास करता है जिससे द्रव सतह के सिकुड़ने को समझा सकते है, अतः द्रव सतह पर पृष्ठ तनाव होता है। #### ससंजक तथा आसंजक बल अन्तराणविक बलों को निम्न दो भागों में वर्गीकृत कर सकते हैं – (अ) ससंजक बल (Cohesive force) – एक ही द्रव के अणुओं - के मध्य लगने वाले आकर्षण बल को ससंजक बल कहते हैं जैसे पानी के अणुओं के मध्य लगने वाला बला। - (ब) आसंजक बल (Adhesive force) दो विभिन्न द्रव्यों के अणुओं के मध्य लगने वाले आकर्षण बल को आसंजक बल कहते हैं जैसे पारा (Hg) और कांच के अणुओं के मध्य लगने वाला बल। **उदाहरण 4.2** — कांच की पट्टिका पर जल चिपक जाता है पारा नहीं। क्यों? हल — जल के अणुओं के मध्य लगने वाला ससंजक बल जल व कांच के अणुओं के मध्य लगने वाले आसंजक बल से कम होता है जिससे कांच पट्टिका पर जल चिपक जाता है जबिक पारे के अणुओं के मध्य लगने वाला ससंजक बल, पारा और कांच के कांच सतह अणुओं के मध्य लगने वाले चित्र 4.5 आसंजक बल से अधिक होता है। इसलिए पारा, पट्टिका से चिपकता नहीं है बल्कि छोटी—छोटी नव चन्द्रकार रूप धारण कर लेता है, यदि बूंद छोटी हो तो वृत्ताकार रूप धारण कर लेती है। ### स्पर्श कोण या सम्पर्क कोण (Contact Angle) जब ठोस सतह (कांच) पर द्रव (पानी, पारा) डाला जाता है, तो सम्पर्क के स्थान पर द्रव की सतह वक्राकार हो जाती है। उदाहरण के लिए यदि पानी कांच के सम्पर्क में आता है तो पानी की सतह अवतल (Concave) तथा पारा कांच के सम्पर्क में आता है तो पारे की सतह उत्तल (Convex) हो जाती है। स्पर्श कोण का मान ठोस ओर उसके सम्पर्क में आने वाले द्रव की प्रकृति पर निर्भर करता है इसका मान 0° से 180° के बीच हो सकता है। जब द्रव, ठोस के सम्पर्क में आता है तो द्रव के वक्र भाग पर खींची गई स्पर्श रेखा तथा ठोस के स्पर्शीय पृष्ठ पर खींची स्पर्श रेखा के बीच बने कोण को सम्पर्क या स्पर्श कोण (θ) कहते हैं। सम्पर्क कोण का मान न्यून या अधिक कोण हो सकता है। ये स्थितियां चित्र 4.6 (अ) एवं (ब) में दर्शायी गयी है। अवतल सतह तब बनती है जब आसंजक बल का मान ससंजक बल से अधिक हो। ऐसे में सम्पर्क कोण का मान 90° से कम होता है (θ < 90) जैसे पानी—कांच उत्तल सतह तब बनती है जब ससंजक बल का मान आसंजक बल से कम हो। ऐसे में सम्पर्क कोण का मान 90° से अधिक तथा 180° से कम रहता है (θ 0 < θ <180°) द्रव सतह की यह प्रकृति होती है कि आसंजक व ससंजक बल के परिणामी बल के लम्बवत् होती है। यह स्थिति पारे, कांच एवं पानी—मोम के मध्य बनती है। # Downloaded from https://www.studiestoday.com #### द्रव के वक्र का दाब आधिक्य द्रव सतह पृष्ठ तनाव के कारण खींची हुई झिल्ली की तरह होती है। मुक्त सतह समतल हो तो सतह पर स्थित प्रत्येक अणु दूसरे अणुओं द्वारा सभी दिशाओं में समान बलों द्वारा आकर्षित होता है, अतः पृष्ठ तनाव के कारण परिणामी बल शून्य होता है जैसा चित्र (4.7) में दर्शाया है। अब यदि द्रव पृष्ठ वक्रीय होता है तो पृष्ठ के किसी अणु पर पृष्ठ तनाव के कारण लगने वाला बल शून्य नहीं होता है द्रव पृष्ठ उत्तल होने पर परिणामी बल पृष्ठ के लम्बवत् नीचे (अन्दर) की ओर चित्र (4.7 अ) तथा द्रव पृष्ठ के अवतल होने पर यह पृष्ठ के लम्बवत् ऊपर (बाहर) की ओर (चित्र 4.7 ब) लगता है। वक्र पृष्ठ के सन्तुलन के लिए आवश्यक है कि कोई अन्य विपरीत बल भी द्रव पृष्ठ पर लगे। यह बल वक्रीय द्रव पृष्ठ के दोनों ओर के दाबान्तर के कारण उत्पन्न होता है। द्रव पृष्ठ के अवतल पृष्ठ पर दाब उत्तल पृष्ठ से अधिक होता है। यह दाबान्तर $\frac{2S}{R}$ जहां S-पृष्ठ तनाव तथा R वक्र तल की वक्रता त्रिज्या है। # द्रव की गोल बूंद तथा बुलबुले के अन्दर दाब आधिक्य (Excess Pressure in a Soap Bubble) किसी गोद बूंद का पृष्ठ उत्तल होता है अतः प्रत्येक अणु द्वारा अन्दर की ओर बल अनुभव किया जाता है। जैसा कि चित्र 4.8 में दर्शाया गया है। साम्यावस्था के लिए अवतल पृष्ठ की ओर एक अतिरिक्त दाब के कारण बल लगाना आवश्यक होता है। यहां बाह्य दाब एवं पृष्ठ तनाव के कारण उत्पन्न दाब, दोनों को, अन्दर का दाब सन्तुलित करता है। अतः अन्दर का दाब बाह्य दाब से अधिक होता है तथा $P_a + P - P_a = \frac{2S}{r}$ द्रव बूंद में एक ही पृष्ठ होता है। अब हम आधी बूंद के सन्तुलन पर विचार करते हैं जो कि चित्र 4.9 में दर्शायी गयी है। 1. समतल पृष्ठ AB की परिधि (लम्बाई) पर पृष्ठ तनाव के कारण बल F=S $\times 2\pi R$ 2. चूंकि दाब आधिक्य p है जो तीर की **चित्र 4.9** ओर कार्य करता है तो बूंद के काट क्षेत्र π R^2 होने से कार्यरत बल $F_1 = p \times \pi R^2$ अतएव बूंद को सन्तुलन में रखने के लिए $$T p = \frac{2S}{R} (4.5)$$ यदि बूंद के स्थान पर साबुन के घोल के बुलबुले पर विचार करें तो इसके अन्दर व बाहर दो तल होंगे। दोनों तल अन्दर की ओर होंगे तो पृष्ठ तनाव S के कारण बल $S \times 2 \times 2\pi R$ होगा एवं $$p\pi R^2 = S \times 2 \times 2\pi R$$ $p\pi R^2 = S \times 2\pi R$ या $$p = \frac{4S}{R}$$ Downloaded from https://www.studiestoday.com उदाहरण 4.3 — पानी की 10^{-2} मी. त्रिज्या की एक बूंद 1000 समान बूंदों में टूट जाती है। पृष्ठ ऊर्जा में वृद्धि ज्ञात कीजिये। पानी का पृष्ठ तनाव $0.075~\mathrm{N/m^2}$ है। हल – मूल बूंद का आयतन $$V = \frac{4}{3}\pi R^{3} = \frac{4}{3} \times \pi \times (10^{-2})^{3}$$ $$=\frac{4}{3}\pi\cdot10^{-6}$$ एवं $$A_1 = 4\pi R^2 = 10^{-4} \cdot 4\pi$$ 1000 छोटी बूंदों का आयतन भी $V = 1000 \times
\frac{4}{3} \pi r^3$; (प्रत्येक छोटी बूंद की त्रिज्या r) $$10^{-9} = r^3$$ $$\Rightarrow r = 10^{-3} \text{ m}$$ 1000 छोटी बूंदों का पृष्ठीय क्षेत्रफल $A_2 = 1000 \times 4\pi~r^2$ $$= 1000 \times 4\pi \left(10^{-3}\right)^2$$ $=4\pi\cdot10^{-3}$ पृष्ठीय क्षेत्रफल में वृद्धि $$\Delta A = A_2 - A_1 = 4\pi \times 10^{-3} - 4\pi \times 10^{-4}$$ $$=4\pi\times10^{-3}(1-.1)$$ $=3.6\pi\times10^{-3}$ पृष्ठ ऊर्जा में वृद्धि = $\Delta U = S\Delta A$ $$=0.075 \times 3.6\pi \times 10^{-3}$$ $=8.5 \times 10^{-4}$ जूल **उदाहरण 4.4** — पारे की 1.5 मी.मी. की बूंद के अन्दर दाब आधिक्य ज्ञात कीजिये। पारे का पृष्ठ तनाव S=0.464 न्यूटन प्रति मीटर² हल $$-$$ दाब आधिक्य $\Delta \rho = \frac{2S}{R}$ $$= \frac{2 \times 0.464}{1.5 \times 10^{-3}} = 0.619 \text{ न्यूटन प्रति मी}^2$$ #### केशिका नली एवं केशिकात्व (Capillary and Capillary Action) केश के समान बारीक छिद्र वाली नली को केशिका या केश नली कहते हैं। जब कांच की केश नली को किसी द्रव में सीधी खड़ी करें तो पृष्ठ तनाव के कारण द्रव उसमें ऊपर चढ़ जाता है या नीचे गिर जाता है। केश नली का सुराख जितना बारीक होगा यह क्रिया उतनी अधिक प्रभावी होगी। विभिन्न स्थितियों को चित्र 4.10 में दर्शाया गया है। चित्र 4.10 जो द्रव केश नलिका को भिगोते हैं अर्थात् सम्पर्क कोण $\theta < 90^{\circ}$ (आसंजक बल > ससंजक बल) वे कांच की केश नली में ऊपर चढ़ते है जैसा चित्र 4.10 (अ) में दर्शाया है दूसरी ओर वे द्रव जो केश नलिका को नहीं भिगोते हैं जैसे पारा, सम्पर्क को अधिक कोण (आसंजक बल > आसंजक बल) हो वे केश नलिका में नीचे गिरते हैं जैसा चित्र 4.10 (ब) में दर्शाया है। केश नलिका में द्रव के ऊपर चढ़ने या नीचे उतरने की घटना को केशिकात्व कहते हैं। ### केशिकात्व का कारण (Causes of Capillary Action) केशिकात्व का मूल कारण पृष्ठ तनाव है जब केश नली को द्रव में डुबोया जाता है तो नली के अन्दर द्रव की सतह वक्रीय होती है (जल की अवतल व पारे की उत्तल होती है)। माना कि केशिका नली की त्रिज्या r, द्रव का पृष्ठ तनाव S एवं P है। केशिका नली की त्रिज्या अतिन्यून एवं इसमें द्रव पृष्ठ लगभग गोलाकार है। यह स्थिति चित्र 4.11 में दर्शायी गयी है। चित्र में वक्र की त्रिज्या R है। अवतल सतह के ठीक नीचे जल में दाब, सतह के ऊपरी दाब से कम होता है। यह R वक्र तल की त्रिज्या तथा S पृष्ठ तनाव है। इस कारण यदि पृष्ठ के ऊपर दाब ρ (वायुमण्डलीय दाब) है तो नीचे द्रव में दाब चित्र 4.11 $$\frac{2S}{R} = \rho g h \tag{4.7}$$ यहां $\rho=$ द्रव का घनत्व एवं g= गुरुत्वीय त्वरण है। माना केशनलिका की त्रिज्या r है, जल व कांच के बीच सम्पर्क कोण θ है। r के न्यूनमान के लिए : $$\cos \theta = \frac{r}{R}$$ $$\operatorname{T} R = \frac{r}{\operatorname{Cos} \theta} \tag{4.8}$$ समी. (4.8) का मान (4.7) में रखने पर $$\rho gh = \frac{2S}{\frac{r}{\cos \theta}}$$ $$=\frac{2S\cos\theta}{r}$$ $$h = \frac{2S \cos \theta}{r \rho g} \tag{4.9}$$ या $$h \propto \frac{1}{r}$$ सूत्र से स्पष्ट है r का मान जितना कम होगा h का मान उतना ही अधिक होगा। $$S = \frac{hr\rho g}{2\cos\theta} \text{ से पृष्ठ तनाव ज्ञात कर सकते हैं। (4.10)}$$ इसमें यदि नवचन्द्रक (द्रव की सबसे उपरी सतह का आकार) में स्थित द्रव के कारण त्रुटि संशोधन करते हैं तो $$h = \frac{2S}{\rho gr} - \frac{r}{3} \tag{4.11}$$ यह मान रखकर S का मान ज्ञात किया जा सकता है। समी. (4.9) एवं (4.11) से यह समझाया जा सकता है कि यदि नली की लम्बाई, h से कम हो तो द्रव बाहर नहीं आयेगा। इसी तरह द्रव के नीचे उतरने को भी समझाया जा सकता है। # पृष्ठ तनाव पर विभिन्न कारकों का प्रभाव (Effect of Various Factors on Surface Tension) (i) ताप का प्रभाव — ताप बढ़ाने पर अणुओं के मध्य दूरी बढ़ती है जिससे इनमें लगने वाला ससंजक बल कम हो जाता है अतः ताप बढ़ाने पर पृष्ठ तनाव घटता है एक निश्चित ताप - (क्रान्तिक ताप) पर इसका मान शून्य हो जाता है। इसीलिए ठण्डा सूप के स्थान पर गरम सूप अच्छा लगता है, पृष्ठ तनाव कम होने से हमारी जिव्हा में फैलता है। - (ii) विलेय का प्रभाव यदि विलेय घुलनशील हो (जैसे पानी में नमक, चीनी) तो द्रव का पृष्ठ तनाव बढ़ जाता है यदि विलेय कम घुलनशील पदार्थ (जैसे पानी में, मिट्टी का तेल, साबुन, फिनोल) डालने पर पृष्ठ तनाव घट जाता है, पानी में मिट्टी का तेल डालने से पृष्ठ तनाव कम हो जाता है मच्छर पानी की सतह पर तैर नहीं पाते हैं तथा मरने लगते हैं। - (iii) संदूषण का प्रभाव किसी द्रव की सतह पर कोई चिकनाई जैसे कि ग्रीस, तेल आदि हो तो पृष्ठ तनाव घट जाता है, इसी प्रकार अपमार्जक पानी में मिलाया जाता है तो पृष्ठ तनाव कम होता है जिससे अपमार्जक युक्त पानी कपड़े को आसानी से गिला कर आसानी से कपड़ों के छिद्रों तक पहुंचता है जिससे कपड़ों की अच्छी सफाई हो जाती है। # महत्वपूर्ण बिन्दु - 1. द्रव का वह गुण जिसके कारण द्रव की सतह खींची हुई झिल्ली की तरह व्यवहार करती है अर्थात् द्रव अपनी सतह को न्यूनतम करना चाहता है पृष्ठ तनाव कहलाता है। - द्रव की मुक्त सतह में खींची गई काल्पनिक रेखा पर प्रति एकांक लम्बाई पर लगने वाला बल को पृष्ठ तनाव कहते हैं अथवा द्रव की मुक्त सतह में एकांक क्षेत्रफल की वृद्धि करने के लिए आवश्यक कार्य द्रव के पृष्ठ तनाव के बराबर होता है। - 3. ससंजक बल समान द्रव के अणुओं के बीच लगने वाला बल। - आसंजक बल विभिन्न द्रवों के अणुओं के मध्य लगने वाला बल। - 5. स्पर्श कोण किसी द्रव सतह पर खींची गई स्पर्श रेखा तथा द्रव के भीतर की ठोस सतह के मध्य के कोण को स्पर्श कोण कहते हैं। - 6. किसी द्रव बूंद के अन्दर का दाब आधिक्य $\frac{2S}{r}$ होता है। साबुन के बुलबले का दाब आधिक्य $\frac{4S}{r}$ होता है। 7. यदि S पृष्ठ तनाव के द्रव में r त्रिज्या की केश नली को डुबोया जाता है। उसमें पानी h ऊँचाई तक चढ़ता है तथा $$S = \frac{hr\rho g}{2Cos\theta}$$ 8. पृष्ठ तनाव द्रव की प्रकृति, ताप व विलेय पर निर्भर करता है ताप बढ़ने से पृष्ठ तनाव कम होता है, अशुद्धि (साबुन) मिलाने पर भी कम होता है। ### वस्तुनिष्ठ प्रश्न - 1. पृष्ठ तनाव का मात्रक है - (अ) न्यूटन-मीटर - (ब) जूल - (स) न्यूटन - (द) न्यूटन / मीटर - 2. एक द्रव के अणुओं के मध्य लगने वाले बल को कहते हैं- - (अ) आसंजक तथा ससंजक बलों का योग - (ब) केवल आसंजक बल - (स) केवल ससंजक बल - (द) गुरुत्वीय तथा आसंजक बलों का योग - एक साबुन के बुलबुले की त्रिज्या 0.2 cm है यदि पृष्ठ तनाव S डाइन/सेमी है तो बुलबुले के अन्दर का दाब आधिक्य होगा — - (अ) T - (ৰ) 10 T - (स) T/2 - (द) 4T - 4. पारा कांच की छड़ के साथ कोण बनाता है - - (अ) समकोण - (ब) न्यून कोण - (स) अधिक कोण - (द) ऋजु कोण - 5. अशुद्धि मिलाने पर द्रव का पृष्ठ तनाव - (अ) घटता है। - (ब) बढ़ता है। - (स) स्थिर होकर बढ़ता है। - (द) अपरिवर्तित रहता है। - दो द्रव बूंदों की त्रिज्याओं का अनुपात 1 : 2 है, दाब आधिक्यों का अनुपात होगा — - (अ) 1:2 - (ब) 2:1 - (स) 1:4 - (द) 4:1 # अतिलघुत्तरात्मक प्रश्न - 1. पृष्ठ तनाव व पृष्ठ ऊर्जा में क्या सम्बन्ध है? - 2. आसंजक बल को परिभाषित कीजिये। - पारे की छोटी—छोटी बूंदों को पास लाने पर वे मिलकर बड़ी बूंद क्यों बना देती है? - 4. खेतों में बरसात के तुरन्त बाद जुताई कर दी जाती है क्यों? - चाँदी की केशनली में जल का नवचन्द्रक समतल होता है क्यों? - 6. जल का ताप बढ़ाने पर उसके पृष्ठ तनाव पर क्या प्रभाव पड़ता है? #### लघुत्तरात्मक प्रश्न - पृष्ठ तनाव किसे कहते हैं? इसे आणविक बलों के आधार पर स्पष्ट करो। - 2. सम्पर्क कोण किसे कहते हैं? समझाइये। - 3. साबुन का घोल शुद्ध जल के सापेक्ष कपड़ों की अच्छी धुलाई करता है, समझाइये। - 4. पृष्ठ तनाव को प्रभावित करने वाले कारक लिखिये। - 5. पारे की छोटी बूंद गोल परन्तु बड़ी बूंद चपटी क्यों होती है? - 6. केशिकात्व का क्या कारण है, समझाइये। #### निबन्धात्मक प्रश्न - 1. सिद्ध कीजिये साबुन के बुलबुले में दाब आधिक्य $\frac{4S}{r}$ होता है। यदि S साबुन के घोल का पृष्ठ तनाव है व r बुलबुले की त्रिज्या है। - केशिकात्व क्या है? केशनली में चढ़े जल स्तम्भ की ऊँचाई का सूत्र स्थापित कीजिये। - 3. पृष्ठ तनाव पर आधारित कुछ दैनिक घटनाओं का वर्णन कीजिये। - 4. केशिकात्व पर आधारित कुछ व्यवहारिक उदाहरणों का उल्लेख कीजिये। - 5. पानी पर तैरती हुई सुई की लम्बाई 2.5 सेमी है। सुई को पानी के तल के ऊपर उठाने के लिए सुई भार के अतिरिक्त कम से कम कितना बल लगाना पड़ेगा? पानी का पृष्ठ तनाव 7.2 न्यूटन / सेमी है। - 6. किसी द्रव की एक आयताकार फिलम 5 सेमी लम्बी तथा 3 सेमी चौड़ी है। यदि उसका आकार 6 सेमी × 5 सेमी करने के लिए 3 × 10⁻⁴ जूल कार्य करना पड़े तो द्रव का पृष्ठ तनाव ज्ञात कीजिये। - 7. सिद्ध करो R त्रिज्या की पानी की बड़ी बूंद को r त्रिज्या की छोटी बूंदों में फुहारने पर पृष्ठ ऊर्जा में वृद्धि $$S \cdot 4\pi R^2 \left(rac{1}{r} - rac{1}{R} ight)$$ होगी T पृष्ठ तनाव है। - 2 × 10⁻³ मीटर त्रिज्या के साबुन क बुलबुले के दाब आधिक्य का परिकलन करो। साबुन के घोल का पृष्ठ तनाव 0.04 न्यूटन/मी है। - 9. दो केशनलियां जिनके व्यास क्रमशः 5.0 व 4.0 मिमी है, एक—एक करके जल में खड़ी की जाती है। प्रत्येक नली में जल कितनी ऊँचाई तक चढ़ेगा? उत्तरमालाः 1 (द) 2 (स) 3 (ब) 4 (स) 5 (अ) 6 (ब) # Downloaded from https://www.studiestoday.com # इकाई – 5 अध्याय – 5 # गैसों का गत्यात्मक सिद्धान्त (Kinetic Theory of Gases) गैसों के अणुगति सिद्धान्त की व्याख्या का अध्ययन करने से पहले यह आवश्यक है कि हम तीन महत्वपूर्ण चरों ताप, दाब एवं आयतन के बारे में जानकारी प्राप्त करें। #### ताप अवधारणा, मानक एवं पैमाना (Concept of Temperature, Standard and Scale) जब हम हाथों को रगड़ते हैं तो कुछ क्षण पश्चात् वे गर्म हो जाते हैं। किसी पत्थर पर चाकू या उस्तरे की धार को तीव्र गति से उल्टा—सीधा चलाने पर चाकू एवं उस्तरा गर्म हो जाते हैं। एक आयताकार पिण्ड किसी नत समतल पर फिसलता है तो सम्पर्क क्षेत्र गर्म हो जाता है। अंतरिक्ष यान जब पृथ्वी के वायुमण्डल में प्रवेश करता है तो घर्षण के कारण यान की बाह्य सतह अत्यन्त गर्म हो जाती है। उपरोक्त सभी घटनाओं में यांत्रिक ऊर्जा की हानि होती है एवं संबंधित वस्तुएं गर्म हो जाती है। यांत्रिक ऊर्जा में होने वाली कमी आन्तरिक ऊर्जा में समाहित हो जाती है। फलस्वरूप वस्तु में उष्णता आ जाती है। अतएव यह कह सकते हैं कि उष्ण पिण्ड की आन्तरिक ऊर्जा अन्यथा सर्वसम शीत पिण्ड से अधिक होती है। अब हम एक उष्ण एवं एक शीत पिण्ड पर विचार करते हैं। जब इन्हें परस्पर सम्पर्क में लाते हैं तो शीतल पिण्ड गर्म होता है एवं गर्म पिण्ड शीतल होता जाता है। अतः शीतल पिण्ड की आन्तरिक ऊर्जा बढ़ती जाती है एवं गर्म पिण्ड की कम होती जाती है। सम्पर्क में स्थित पिण्डों में परस्पर ऊर्जा का विनिमय होता रहता है एवं इस प्रक्रिया में, पिण्डों में आयतन परिवर्तन शून्य होने की स्थिति में, कोई यांत्रिक कार्य नहीं होता है। गर्म से ठण्डी वस्तु की तरफ ऊर्जा स्थानान्तरण अयांत्रिक प्रक्रिया है। वह ऊर्जा जो एक वस्तु से दूसरी वस्तु को बिना यांत्रिक कार्य किये हुए, स्थानान्तरित होती है उसे ऊष्मा कहते हैं। यह ऊर्जा का एक रूप है जो कि मौलिक रूप से बेतरतीब होती है। ऊर्जा के इस मौलिक स्वरूप का भौतिकी में महत्वपूर्ण स्थान है एवं ऊष्मागतिकी, ठोस अवस्था भौतिकी, सांख्यिकीय भौतिकी, खगोलीय भौतिकी आदि में प्रमुख राशि के रूप में प्रयुक्त होती है। अतः ऊष्मा का मापन एवं पैमाना, मात्रात्मक विश्लेषण के लिए अति आवश्यक है। सर्वप्रथम शून्यांकी नियम द्वारा ताप को ऊष्मा के मापन के लिए निरूपित किया गया। इस नियम का कथन इस प्रकार है – "यदि दो वस्तुएं A एवं B
ऊष्मागतिकीय साम्य में हैं तथा B एवं C भी ऊष्मागतिकीय साम्य में हैं तो A एवं C भी ऊष्मागतिकीय साम्य में होंगी।" वे सभी वस्तुएं जो परस्पर ऊष्मीय साम्य में है उनका ताप भी समान होता है। ताप को परिभाषित करने के बाद यह जानना आवश्यक है कि ताप का आंकिक मान कैसे निर्धारित किया जाय। इसके लिए ताप का मानकीकरण एवं पैमाना आवश्यक है। तापमान ज्ञात करने के लिए पारे का तापमापी या प्रतिरोध तापमापियों का प्रयोग किया जाता है। सामान्यतः पारे के तापमापी का उपयोग दैनिक जीवन में किया जाता है जिसे चित्र 5.1 में यह दर्शाया गया है। जब तापमापी का पैंदा, जिसमें पारा भरा हुआ है, किसी गर्म वस्तु के सम्पर्क में आता है तो पारा घुण्डी में ऊपर की तरफ बढ़ता है। तापमान के अनुरूप यह एक विशिष्ट माप पर जाकर बढ़ना बन्द हो जाता है। आंख द्वारा इसे पढ़ करके ताप ज्ञात कर सकते हैं। पारे के तापमापी द्वारा माप की इकाई को °C (डिग्री सेल्सियस) कहते हैं। सेल्सियस प्रणाली में 1 वायुमण्डलीय दाब पर पानी का जमाव बिन्दु 0°C एवं वाष्प बिन्दु 100°C माना गया है। यदाकदा सेल्सियस एवं सेन्टीग्रेड को समान रूप से ताप की इकाई के रूप में काम में लिया जाता है। तापमान अदिश राशि है जिसके अन्य पैमाने भी प्रचलित हैं। फारेनहाइट प्रणाली में इकाई वायुमण्डलीय दाब पर पानी का जमाव बिन्दु 32°F एवं वाष्प बिन्दु 212°F होता है। अतः फारेनहाइट पैमाने में इकाई बढ़ोतरी सेल्सियस पैमाने में $\frac{180}{100} = \frac{9}{5}$ C के तुल्य है। इस आधार पर एवं यह ध्यान रखते हुए कि पानी के जमाव बिन्दु 32°F या 0°C पर ऊष्मा तुल्य होगी इन दोनों के मध्य संबंध निर्धारित किया जा सकता है— $$F = 32 + \frac{9}{5}C$$ या $$\frac{F - 32}{9} = \frac{C}{5}$$ (5.1) उपरोक्त सूत्र से देखा जा सकता है कि दोनों पैमाने – 40 पर बराबर होते हैं (चित्र 5.1)। सामान्य तौर पर हमारे शरीर का तापमान लगभग 98.6°F होता है जो कि 37°C के तुल्य है। तापमान ज्ञात करने के लिए अन्य तापमापियों का प्रयोग भी किया जाता है जैसे प्रकाशिक तापमापी, प्लेटिनम प्रतिरोध तापमापी, नियत आयतन गैस तापमापी आदि। इनकी सुग्राहिता, परास एवं कार्यप्रणाली अलग—अलग सिद्धान्तों पर आधारित होती है। इनके बारे में आप आगे अध्ययन करेंगे। यहां ध्यान देने योग्य है कि सेल्सियस एवं फारेनहाइट तापमापियों पर ताप के अलग—अलग मान विभिन्न भौतिक एवं रासायनिक अवस्थाओं को दर्शाते हैं। सामान्यतः पैमाना, उसकी चित्र 5.1 सुग्राहिता, परास, तापमीति में प्रयुक्त पदार्थ के तापीय गुणों से निर्धारित होता है। **उदाहरण 5.1** — सामान्य स्थितियों मे लिथियम का क्वथनांक 1347°C है। इसे फारेनहाइट में परिवर्तित कीजिये। **हल** — हम जानते हैं कि $$F = 32 + \frac{9}{5}C$$ यह दिया है कि $C = 1347^{\circ}C$ ∴ $F = 32 + \frac{9}{5} \times 1345$ $= 37 + 9 \times 269$ $= 37 + 2421$ $= 2458$ अतः लिथियम का क्वथनांक $= 2458^{\circ}F$ #### दाब (Pressure) क्या आपने कभी विचार किया कि सुई के द्वारा नाड़ियों में दवाई प्रवाहित करने के लिए सुई पर हल्का सा (बहुत कम) बल लगाना पड़ता है। इसके विपरीत शरीर पर किसी बड़े लेकिन नुकीले पदार्थ (जैसे कि पेंच) से शल्य क्रिया करने के लिए अपेक्षाकृत ज्यादा बल लगाना पड़ता है। आपको जानकर आश्चर्य होगा कि सुई के द्वारा डाला गया दाब दूसरे उदाहरण की तुलना में ज्यादा है अतः लगाया गया बल कितने अनुप्रस्थ काट पर समरूप से लग रहा है, यह एक विशिष्ट भौतिक राशि से व्यक्त किया जाता है जिसे दाब कहते हैं। दाब वह बल है जो कि किसी ठोस, द्रव या गैस द्वारा इकाई क्षेत्र पर लगाया जाता है। यदि ने बल में अनुप्रस्थ काट के लम्बवत् लग रहा है तो $$P = \frac{F}{A} \tag{5.2}$$ दाब अदिश लेकिन विषमदैशिक राशि है, उच्च कक्षाओं में आप अन्तर्निहित विभिन्न अवधारणाओं का अध्ययन करेंगे। ठोसों के विपरीत द्रव एवं गैसों में प्रवाह होता है एवं विराम अवस्था में द्रव एवं गैस स्पर्शीय बल को संभाल नहीं पाते अतः आरोपित बल द्रव तल के लम्बवत् होता है तथापि जलीय स्थैतिक अवस्था में दाब सभी दिशाओं में समरूप से पारगमित होता है। द्रव में किसी स्तर पर दाब सभी दिशाओं में समान रूप से आरोपित होता है जो दर्शाता है कि स्थिर द्रव के कारण दाब, या जल स्थैतिक अवस्था में दाब, से संबद्ध कोई दिशा नहीं होती है। दाब के विभिन्न मात्रक प्रयुक्त होते हैं। मी. कि. से. में इसका मात्रक न्यूटन / मी² है जिसको पास्कल (Pa) भी कहते हैं। सेमी. ग्रा. से. में दाब का मात्रक डाइन / सेमी² होता है। वायुमण्डलीय दाब (atm), बार (Bar) एवं टॉर (Torr) भी दाब की प्रचलित इकाइयां हैं। क्योंकि दाब से संबंधित घटनाओं का अध्ययन क्षेत्र अति व्यापक है अतः विभिन्न क्षेत्रों में अलग—अलग मात्रक प्रयुक्त होते हैं। अब हम प्रमुख दाब इकाइयों के मध्य संबंध ज्ञात करते हैं। # वायुमण्डलीय दाब (Atmospheric Pressure) चित्र 5.2 में बेलनाकार पात्र का अनुप्रस्थ काट (पैंदे का क्षेत्रफल) मान Aहै। इसे ρ घनत्व के द्रव से h ऊँचाई तक भरा गया है। द्रव पात्र के पैंदे पर नीचे की तरफ गुरुत्वाकर्षण बल लगाता है। चित्र 5.2 गुरुत्वाकर्षण बल $$F=mg$$ $$= (\rho \times V) \times g = \rho \times A \times h \times g$$ एवं दाब $$P = \frac{F}{A} = \frac{\rho A h g}{A} = \rho g h$$ $$\therefore P = \rho g h \qquad (5.3)$$ वायुमण्डलीय दाब को मापने के लिए प्रयुक्त दाबमापी में सामान्यतः पारे का प्रयोग होता है। सामान्य वायुमण्डलीय स्थितियों में पारे का स्तर 76 cm या 760 mm होता है। इसके संगत दाब को इकाई वायुमण्डलीय दाब कहते हैं। अतः वायुमण्डलीय दाब – $$= 13.6 \frac{\text{gm}}{\text{cm}^3} \times 980 \frac{\text{cm}}{\text{sec}^2} \times 76 \text{cm}$$ $$= 1.013 \times \frac{\text{gm}}{\text{cm sec}^2} \times 10^6$$ $$= 1.013 \times 10^5 \text{ Pa}$$ $$\therefore 1 \text{ Pa} = 10 \frac{\text{gm}}{\text{cm sec}^2}$$ (5.4) इसी प्रकार $1 \text{ Bar} = 10^5 \text{ Pa}$ एवं 1 टॉर = पारे का 1 मि. मी. कॉलम स्तर के तुल्य होता है। अतः 1 टॉर = $$13.6 \frac{gm}{cm^{2}} \times 980 \frac{cm}{sec^{2}} \times 0.1 \text{ cm}$$ $$= 1.33 \times 10^{4} \frac{gm}{cm \text{ sec}^{2}}$$ $$= 1.33 \times \frac{10^{4}}{10} \quad Pa = 1.33 \times 10^{3} \text{ Pa}$$ \therefore 1 टॉर = $1.33 \times 10^3 \, Pa$ (5.5) समीकरण 5.3 से यह स्पष्ट है कि दाब गहराई के साथ रेखीय रूप से बढ़ता है। यदि किसी द्रव की सतह पर दाब P_o है तो गहराई के साथ दाब का मान निम्न सूत्र से व्यक्त किया जाता है : $P = P_0 + \rho gh$ (5.6) # दाब से संबंधित कुछ रोचक तथ्य (Interesting Facts Related to Pressure) 1. सुई द्वारा हाथ से कढ़ाई एवं तिरपन करने के लिए बहुत कम बल लगाना पड़ता है क्योंकि $P = \frac{F}{A}$ एवं सुई की नोक का क्षेत्रफल न्यून होता है अतः कम बल भी अधिक दाब आरोपित करता है। - यदि आप माही बजाज सागर, जयसमंद या राणा प्रताप सागर बांध का निरीक्षण करें तो पायेंगे कि पानी को रोकने के लिए बनायी गयी कंक्रीट की दीवार का क्षेत्रफल ऊपर कम होता है तथा बांध के तल तक क्रमशः बढ़ता जाता है। क्योंकि निचले तल का पानी अधिक गहराई तक है समीकरण 5.3 के अनुसार गहराई पर पानी का दबाव अधिक होता है। जैसे—जैसे हम सतह की तरफ ऊपर जायेंगे गहराई कम होती जायेगी अतः दाब का मान भी कम होता जायेगा। अधिक दाब लगाने वाले पानी को रोकने के लिए बांध की दीवार को नीचे से ज्यादा क्षेत्रफल वाली अतुल्यलम्बक (Trapezium) के आकार का बनाया जाता है। - 3. सेना के टेंकों के चौड़े स्टिल पट्टे हम जानते हैं कि सेना के टेंकों के पिहये स्टिल के बने पट्टों पर चलते हैं। बिना पट्टें के यदि पिहये चलते हैं तो संपर्क क्षेत्रफल का मान कम होता है एवं दाब ज्यादा लगता है। ऊबड़—खाबड़ जगहों पर ज्यादा दाब अलग—अलग बिनुओं पर लगने से टेंकों का संतुलन बिगड़ता है, चलाना मुश्किल हो जाता है। पट्टों को लगाने पर संपर्क क्षेत्र बढ़ जाता है एवं अपेक्षाकृत समतल मार्ग बन जाता है। जिससे असंतुलन की स्थिति घट जाती है एवं संचालन आसान हो जाता है। - 4. ट्रेक्टर के बड़े पहिये खेतों की ज़मीनें समतल नहीं होती है। बुवाई के समय उर्वरा क्षमता बनाये रखने के लिए मिट्टी को बार—बार उलट—पलट किया जाता है। इसमें ट्रेक्टर का प्रयोग होता है। ट्रेक्टर के पहिये बड़े होते हैं फलस्वरूप संपर्क क्षेत्र का मान अधिक होता है एवं दाब कम लगता है फलतः ट्रेक्टर आसानी से खेतों में चल पाते हैं। #### गैसों में दाब (Pressure in Gases) गैसों में दाब की अवधारणा को स्पष्ट करने के लिए उपरोक्त विवेचना के अतिरिक्त कुछ अन्य मूल तत्वों का समावेश करना आवश्यक है। गैसों में अणु यादृच्छिक रूप से गित करते हैं। अणु आपस में टक्करें करते हैं जिन्हें प्रत्यास्थ माना जा सकता है। टक्करों के माध्यम से एक अणु दूसरे अणु को ऊर्जा स्थानान्तरित करता है जो पूर्ण रूप से गितज ऊर्जा मानी जा सकती है। फलस्वरूप एक अणु के वेग में कमी तथा दूसरे के वेग में वृद्धि होती है एवं प्रित सेकण्ड वेग एतदर्थ संवेग के मान में परिवर्तन होता है। हम जानते हैं कि संवेग में परिवर्तन की दर को बल कहते हैं। अतः गैसों में एक काल्पनिक इकाई क्षेत्रफल के अनुप्रस्थ काट पर विचार करें तो इस पर आपतित अणुओं द्वारा लगाया गया लम्बवत् बल, आरोपित दाब के तुल्य होता है। अगर प्रित सेकण्ड होने वाली टक्करों की संख्या बढ़ती है और संवेग में परिवर्तन की दर भी यदि बढ़ती है तो दाब का मान बढ़ेगा। यदि अणुओं की संख्या बढ़ा दी जाती है तो संवेग में परिवर्तन की दर तेज हो जाती है अतः दाब बढ़ जायेगा। यह दाब की अणु गति सिद्धान्त पर आधारित व्याख्या है। **उदाहरण 5.2** — समुद्र तल से कितनी गहराई पर दाब वायुमण्डलीय दाब का दुगुना होता है। पानी का घनत्व 1000 किग्रा / मी 3 है एवं गुरुत्वीय त्वरण g = 9.8 मी / से 2 हल - हम जानते हैं कि $P=P_0+\rho gh$ $$h = \frac{P - P_0}{\rho g}$$ दिया हुआ है कि $P_0 = 1.013 \times 10^5 \, Pa$ $P = 2 \times 1.013 \times 10^5 \, Pa$, $\rho = 1000 \, kg/m^3$ तों $$h = \frac{(2-1) \times 1.013 \times 10^5}{1000 \times 9.8} = \frac{1.013 \times 10^2}{9.8}$$ $$=\frac{101.3}{9.8}=10.34 \text{ ft}.$$ #### आयतन (Volume) प्रत्येक परमाणु एवं अणु का आकार त्रिविमीय होता है अतः वे स्थान घेरते हैं जिसे आयतन कहते हैं। ठोसों का आयतन सुनिश्चित होता है। द्रव जिस पात्र में रखा जाता है उसके अनुरूप दैहिक आकृति में ढल जाता है लेकिन उसके आयतन में परिवर्तन नहीं आता है। इनके विपरीत गैसों का आयतन परिमित लेकिन अनिश्चित होता है। पात्र के अनुरूप गैस का आयतन बदल सकता है। इसकी इकाई मी³ या सेमी³ होती है। गैस एक मूल इकाई (entity) से बनी होती है। ये इकाई समान अथवा असमान परमाणु या उनका समूह हो सकते हैं। इस मौलिक इकाई में गैस के समस्त रासायनिक गुण मौजूद होते हैं एवं गैस में मौलिक इकाइयों के मध्य दूरी उनके आकार की तुलना में अत्यधिक होती है। # गैसों के गति सिद्धान्त के अभिगृहित (Postulates of Kinetic Theory of Gases) सर्वप्रथम गत्यात्मक सिद्धान्त से गैस के व्यवहार की व्याख्या की गयी। क्योंकि गैसों के वास्तविक व्यवहार का विश्लेषण जटिल कार्य है अतः प्रारम्भ में गैस के सरल प्रतिरूप की कल्पना करते हैं जो कि कतिपय अभिगृहितों पर आधारित है। जो गैस इस प्रतिरूप के समतुल्य है उसे आदर्श गैस कहते हैं। गैसों के गत्यात्मक सिद्धान्त के मुख्य अभिगृहित निम्न हैं – 1. सभी गैसों में अणु विभिन्न दिशाओं में यादृच्छिक गति करते हैं। अणु सामान्यतः एक, द्वि, त्रिक या बहु परमाण्विक होते हैं तथा परमाणु समान या असमान हो सकते हैं। - अणुओं का आकार उनके मध्य स्थित औसत दूरी के सापेक्ष बहुत कम होता है। - 3. अणुओं के मध्य एवं अणुओं एवं पात्र की दीवारों के बीच कोई बल नहीं लगता है। - 4. परस्पर अणुओं एवं अणु व पात्र की दीवारों
के मध्य होने वाली टक्करें पूर्णतया प्रत्यास्थ होती है। अतः गतिज ऊर्जा संरक्षित रहती है। टक्कर अत्यल्प समय के लिए होती है। - 5. सभी अणु न्यूटन के गति समीकरण का पालन करते हैं। - 6. साम्यावस्था में गैस का घनत्व, अणुओं का वेग वितरण आदि समय, स्थिति तथा दिशा भर निर्भर नहीं करते हैं। सामान्यतः यह अभिगृहित कम घनत्व की स्थिति में लागू होता है। - 7. सामान्य स्थितियों में गैस का घनत्व पूरे पात्र में समान है। - 8. सभी अणु एक समान है जिन्हें ठोस गोले के तुल्य मानते हैं। #### आदर्श गैस में दाब की गणना (Calculation of Pressure in Ideal Gas) चित्र 5.3 में आदर्श गैस एक घनाकार पात्र में भरी है। घन की प्रत्येक भुजा माना L है। पात्र का कोना O मूल बिन्दु है तथा X,Y एवं Z भुजाओं के समानान्तर अक्ष है। A_1 एवं A_2 घन के दो समानान्तर तल है जो कि XZ तल के लम्बवत् हैं। चित्र 5.3 माना कि $\frac{1}{V}$ वेग से गतिशील एक अणु के X, Y, Z दिशा में घटक क्रमवार v_x , v_y एवं v_z है। गतिशील अणु दीवार A_1 से टकराने के पश्चात् वापस लौटता है। उसका दीवार से टक्कर के पश्चात् वेग का X दिशा में घटक $-v_x$ हो जाता है लेकिन v_y एवं v_z के मान अपरिवर्तित रहते हैं। क्योंकि टक्करें पूर्णतया प्रत्यस्थ मानी गयी हैं, अतः अणु के संवेग (p) में परिवर्तन $$\Delta p = mv_x - (-mv_x) = 2mv_x \qquad (5.7)$$ संवेग संरक्षण के कारण दीवार के संवेग में परिवर्तन $\Delta p = -2 m v_x$ यदि ${\bf A_1}$ एवं ${\bf A_2}$ तलों के मध्य गुजरने के दौरान अणु कोई टक्कर नहीं करता है तब ${\bf A_1}$ से ${\bf A_2}$ तक जाने में लगा समय $=\frac{{\bf L}}{{\bf v}}$ यदि अणु $\mathbf{A_2}$ पर टक्कर के पश्चात् लौटकर $\mathbf{A_1}$ की तरफ जाता है तथा $\dfrac{L}{\mathbf{v_x}}$ समय पश्चात् पुनः तल $\mathbf{A_1}$ से टकरायेगा । अतः दो लगातार टक्करों के मध्य लगने वाला समय $\Delta t = \frac{2L}{v_x}$ एवं इकाई समय में $A_{_1}$ तल से होने वाली टक्करों की संख्या $$n = \frac{1}{\Delta t} = \frac{v_x}{2L} \tag{5.8}$$ अतएव इकाई समय में तल को स्थानान्तरित संवेग का मान $= n \Delta p$ होगा। हम जानते हैं कि प्रति सेकण्ड संवेग में होने वाले परिवर्तन को बल कहते हैं अतः तल पर लगाया बल : $\Delta F = n\Delta p$ $$= -\frac{v_x}{2L} 2mv_x = -\frac{m}{L} v_x^2$$ (5.9) प्रभावी रूप से यही बल दीवार द्वारा अणु पर लगाया जाता है फलतः A, पर आरोपित बल का मान $$F = \sum \frac{m}{L} v_x^2$$ $$= \frac{\mathrm{m}}{\mathrm{I}} \sum \mathrm{v}_{\mathrm{x}}^{2} \tag{5.10}$$ आदर्श गैस के अणुओं की गति सभी दिशाओं में समान रूप से संभावित है अर्थात् किसी विशेष दिशा में गति की पहल का कोई कारण नहीं है, इन स्थितियों में — $$\sum v_x^2 = \sum v_y^2 = \sum v_z^2 \tag{5.11}$$ $$\therefore \sum v_x^2 = \frac{1}{3} \left(\sum v_x^2 + \sum v_y^2 + \sum v_z^2 \right)$$ $$=\frac{1}{3}\sum v^2\tag{5.12}$$ $$\therefore F = \frac{1}{3} \frac{m}{L} \sum v^2 \qquad ...(5.13)$$ अगर कुल अणुओं की संख्या N है तब $F = \frac{mN}{3L} \frac{\sum v^2}{N}$ एवं दाब $$P = \frac{F}{L^2} = \frac{1}{3} \frac{mN}{L^3} \cdot \frac{\sum v^2}{N}$$ $$= \frac{1}{3} \frac{M}{L^3} \cdot \frac{\sum v^2}{N} = \frac{1}{3} \rho \cdot \frac{\sum v^2}{N}$$ यहां M कुल द्रव्यमान, ρ घनत्व एवं $\dfrac{\sum v^2}{N}$ वेग के वर्ग का औसत मान है जिसे $\dfrac{1}{v^2}$ से व्यक्त करते हैं। $$\therefore P = \frac{1}{3}\rho \overline{v^2}$$ (5.14) या $$P = \frac{1}{3} \frac{M}{V} \overline{v^2}$$ यदि $\sqrt{\frac{\sum v^2}{N}}$ को वेग का वर्ग माध्य मूल मान कहते हैं अर्थात् $$V_{rms} = \sqrt{\frac{\sum v^2}{N}}$$ अब $$PV = \frac{1}{3}M\overline{v^2}$$ ਧਾ $$PV = \frac{1}{3} \text{ mN } \overline{v^2} = \frac{1}{3} \text{ mNv}_{\text{rms}}^2$$ (5.15) यही अणुगति सिद्धान्त से आदर्श गैस के लिए दाब एवं आयतन के मध्य संबंध है। अणुगति सिद्धान्त से विभिन्न परिस्थितियों में गैसों के व्यवहार की व्याख्या की जा सकती है। #### डाल्टन का आंशिक दाब का नियम (Dalton's Law of Partial Pressure) यदि एक पात्र में गैसों का मिश्रण है तो अणुगति सिद्धान्त में मिश्रण की गैसों के लक्षणों के कारण विभिन्न चरों पर होने वाले प्रभाव की गणना करना आवश्यक है। मिश्रण की गैसों के अणुओं का द्रव्यमान अलग होता है अतः दीवार पर लगाया बल विभिन्न अणुओं द्वारा लगाये गये बल का बीजगणितीय योग होता है। ∴ कुल बल F = गैस 1 के N, अणुओं द्वारा आरोपित बल $$+$$ गैस 2 के $N_2 ...$ $+$ गैस 3 के $N_3 ...$ $$P = \frac{F_1}{A} + \frac{F_2}{A} + \frac{F_3}{A} + \frac{F_4}{A} + \dots$$ यदि $\dfrac{F_{_{1}}}{A}$ को आंशिक दाब $P_{_{1}}$ से व्यक्त करें तो $$P = P_1 + P_2 + P_3 + \dots {(5.16)}$$ यही डाल्टन का आंशिक दाब का नियम है। इसके अनुसार गैसों के मिश्रण द्वारा आरोपित दाब का मान प्रत्येक गैस द्वारा मिश्रण के कुल आयतन पर आरोपित दाबों के योग के बराबर होता है। #### बॉयल का नियम (Boyle's Law) समीकरण (5.15) से $$PV = \frac{1}{3} \text{ mNv}_{rms}^2$$ आदर्श गैसों के लिये यह ज्ञात किया जा सकता है कि $v_{ms}^2 = {}^{3kT}\!\!/_m$ अतः नियत ताप पर v_{rms}^2 स्थिरांक है एवं गैस की निश्चित मात्रा के लिए m एवं N भी स्थिरांक है अतः $P_1V_1 = P_2V_2 = P_2V_3$ या PV = रिथरांक इस आधार पर कह सकते हैं कि नियत ताप पर निश्चित मात्रा की गैस का दाब आयतन के व्युत्क्रमानुपाती होता है : $$P \alpha \frac{1}{V} \tag{5.17}$$ यह बॉयल का नियम है। चूंकि वास्तविक गैसें, अणुगति सिद्धान्त में मानी गयी परिस्थितियों का संपूर्ण रूपेण पालन नहीं करती हैं तथापि निश्चित परिस्थितियों में प्रत्येक गैस समीकरण (5.15) का पालन करती है। बॉयल के प्रयोगों में ताप स्थिर रखते हैं अतः विभिन्न तापों पर प्राप्त दाब—आयतन वक्र को समतापी वक्र कहते हैं। दाब P एवं आयतन V के मध्य ग्राफ चित्र 5.4 में दर्शाया गया है। समतापी वक्र समकोणिक अतिपरवलय होते हैं। #### चार्ल्स का नियम (Charle's Law) यदि ताप के बजाय गैस का दाब स्थिर हो तो समीकरण (5.15) से $$V \alpha v_{rms}^2$$ हम जानते हैं कि $v_{rms}^2 \alpha T$ अतः नियत दाब पर निश्चित मात्रा की गैस का आयतन, ताप के अनुक्रमानुपाती होता है। यह चार्ल्स का नियम है। इसके अनुसार नियत दाब पर गैस का आयतन ताप के साथ रेखीय रूप से बदलता है। यह सरल रेखीय परिवर्तन चित्र 5.5 में दर्शाया गया है। इसकी सहायता से हम ताप के अन्य पैमानों की आवश्यकता की विवेचना आगे करेंगे। #### गैलुसाक का नियम (Gailusac's Law) यदि समीकरण (5.15) में गैस का आयतन नियत कर देते हैं तो $P \; \alpha \; v_{rms}^2$ हम जानते हैं कि $$v_{rms}^2$$ α T अतः $P \alpha$ T (5.19) अतः नियत आयतन पर निश्चित मात्रा की गैस का दाब, ताप के समानुपाती होता है। यह गैलुसाक का नियम या चार्ल्स का दाब नियम भी कहलाता है। #### आवोगाद्रो का नियम (Avogadro's Law) हम दो गैसों पर विचार करते हैं जिनके दाब, ताप एवं आयतन समान हैं। दोनों के लिए $$PV = \frac{1}{3}m_1 N_1 v_{1rms}^2$$ एवं $$PV = \frac{1}{3} m_2 N_2 v_{2\text{rms}}^2$$ $$\therefore m_1 N_1 v_{1\text{rms}}^2 = m_2 N_2 v_{2\text{rms}}^2$$ क्योंकि गैसों का ताप समान है अतः औसत गतिज ऊर्जा के मानों के लिए $$\frac{1}{2}m_{l}v_{lrms}^{2} = \frac{1}{2}m_{2}v_{2rms}^{2}$$ $$\Rightarrow m_1 v_{1rms}^2 = m_2 v_{2rms}^2$$ $$\therefore N_1 = N_2 \tag{5.20}$$ अतः समान ताप, दाब एवं आयतन पर समस्त गैसों में अणुओं की संख्या समान होती है। इसे आवोगाद्रो का नियम कहते हैं। #### परम ताप (Absolute Temperature) चित्र 5.5 में दर्शाये गये चार्ल्स के नियम के रेखीय निरूपण से यह स्पष्ट है कि °C पर भी गैस का निश्चित आयतन V_0 है। यदि सरल रेखा को ताप के ऋणात्मक मानो (°C) के लिए बढ़ाया जाय तो निश्चित ताप पर गैस का आयतन शून्य हो जाता है। यह काल्पनिक अवस्था है। जिस ताप पर गैस का आयतन काल्पनिक रूप से शून्य हो जाता है वह परम शून्य ताप के आसपास होता है जिसका प्रमाणिक मान -273.16°C है। इस परम शून्य ताप की अवधारणा से अणु गतिज सिद्धान्त एवं विभिन्न परिस्थितियों में गैसों के व्यवहार की व्याख्या की जा सकती है। अत्यधिक कम ताप का प्रभाव द्रव, गैस और ठोसों के अन्य गुणों में भी परिलक्षित होता है अतः ताप के अन्य पैमाने का उद्भव हुआ जिसे परम ताप कहते हैं। आधुनिक विज्ञान की समस्त शाखाओं में परम ताप पैमाने का ही उपयोग होता है। परम ताप की इकाई K (Kelvin) होती है। जो कि लॉर्ड केल्विन के नाम पर रखी गई है। केल्विन (K) एवं सेन्टीग्रेड ($^{\circ}$ C) के मध्य संबंध T(K) = 273.16 + t ($^{\circ}$ C) से दर्शाया जाता है। सुविधा के लिए कमरे के ताप एवं उससे परे 273.16 को 273 के बराबर लिया जाता है लेकिन निम्न ताप भौतिकी में इसका परिशुद्ध मान ही लिया जाता है -273.16° C को परम शून्य ताप कहते हैं। इसकी परिभाषा विभिन्न मानकों द्वारा तय की गई है। #### आदर्श गैस समीकरण (Ideal Gas Equation) जेम्स क्लार्क मेक्सवेल ने बताया कि अणु गति सिद्धान्त के अभिगृहितों का पालन करने वाली गैस के अणुओं के वेग का मान प्रत्यास्थ टक्करों के कारण लगातार बदलता रहता है। मेक्सवेल एवं बोल्ट्ज़मान ने नियत ताप पर गैसों के निकाय के लिए वेग—वितरण नियम प्रतिपादित किया। इस नियम को गैसों के अणुगति सिद्धान्त में लागू करने पर P, V, एवं T में संबंध प्राप्त होता है जिसे आदर्श गैस का अवस्था समीकरण करते है। मेक्सवेल के वेग वितरण नियम से यह दर्शाया जा सकता है कि $\frac{-2}{v_{ m rms}} = \frac{3kT}{m}$ जहाँ T ताप, m द्रव्यमान एवं k बौल्ट्ज़मान नियतांक $(1.38 \times 10^{-23} \, \text{जूल प्रति केल्विन}) है।$ ${ m v}_{ m rms}^2$ का मान समीकरण (5.15) में रखने पर $$PV = \frac{1}{3} \text{ m N } \frac{3 \text{ kT}}{\text{m}}$$ या $$PV = NkT$$ (5.21) यदि 1 ग्राम—मोल गैस की मात्रा ली जाय तो $N=N_0=6.023\times 10^{23}\, \mathrm{y}$ प्रितमोल अत: PV = N_okT चूंकि $$R = N_0 k$$ अतः $PV = RT$ (5.22) यदि $$n$$ ग्राम मोल गैस है तो $PV = nRT$ (5.23) किसी भी यांत्रिकी एवं ऊष्मागतिकी निकाय का उसके मूल चर यथा P, V एवं T के मध्य संबंध अवस्था समीकरण कहलाता है। अतः संबंध (5.23) आदर्श गैस का अवस्था समीकरण है जहाँ R गैस नियतांक है जिसका मान 8.314 जूल मोल प्रति केल्विन होता है। **उदाहरण 5.3** — सामान्य अवस्था में T = 0°C एवं P = 1.013 × $10^5 Pa$ है तो 1 मोल आदर्श गैस का आयतन कितना होगा। हल - आदर्श गैस का समीकरण PV = nRT यहां पर $n=1, T=0+273=273; P=1.013\times 10^5~Pa$ तथा R=8.314 जूल मोल प्रति केल्विन समीकरण में यथोचित मान रखने पर $$V = \frac{n\,RT}{P} = \frac{1\,\,\text{मो.}}{1.013 \times 10^5} \, \frac{\text{जूल}}{\hat{\sigma}_{\text{c}}} \, \, \text{मोल} \, \, 273 \, \, \hat{\sigma}_{\text{c}}.$$ $= 2240.594 \times 10^{-5} \, \text{H}^{3}$ $= 22406 \times 10^{-3}$ मी 3 = 22.4 लीटर (चूंकि 1 लीटर $= 1000 \text{ cm}^3 = 10^{-3} \text{m}^3$) उल्लेखनीय है कि यह परिणाम किसी भी आदर्श गैस के लिए सत्य है। गैसें एक परमाण्विक अथवा बहुपरमाण्विक भी हो सकती है। #### वास्तविक गैसें व्यवहार में समस्त गैसें अणुगति सिद्धान्त के अभिगृहितों का पालन नहीं करती है। कम घनत्व, कम दाब एवं अधिक ताप की अवस्था में गैसों के अणु के मध्य दूरी अधिक होती है अतः इन परिस्थितियों में गैसें आदर्श गैस की तरह व्यवहार करती है। बॉयल नियमानुसार नियत ताप पर गैस के दाब एवं आयतन का गुणनफल स्थिरांक होता है लेकिन यह पाया गया कि अलग—अलग ताप पर दाब एवं आयतन का गुणनफल स्थिरांक नहीं होता है। प्रत्येक गैस के लिए एक विशिष्ट ताप होता
है जिस पर दाब एवं आयतन के मध्य गुणनफल लगभग स्थिर रहता है। इस ताप को बॉयल ताप कहते हैं। अतः प्रत्येक गैस बॉयल ताप पर आदर्श गैस समीकरण का पालन करती है। ### अणुओं की माध्य गतिज ऊर्जा एक अणु की माध्य गतिज ऊर्जा $= \frac{1}{2} m_{V}^{-2}$ सभी अणुओं की माध्य गतिज ऊर्जा $=\frac{1}{2} \, \text{mN} \, \overset{-2}{v}$ एकांक आयतन में स्थित अणुओं के कारण गैस की माध्य गतिज ऊर्जा = $$\frac{1}{2} \frac{mNv^2}{V}$$ = $\frac{1}{2} \rho v^2$ जहां $\rho = \frac{mN}{V}$ ∴ $$mN = M$$ अतः $P = \frac{1}{3} \frac{M}{V} v^{-2}$ ਧਾ $$P = \frac{2}{3} \frac{1}{2} \frac{M}{V} = \frac{2}{3} \frac{\overline{E}}{V}$$ यदि $$E = \frac{1}{2} M v^{-2}$$ (5.24) $$\overrightarrow{\text{al}} \ PV = \frac{2}{3} \overline{E}$$ (5.25) उदाहरण 5.4 — कमरे के ताप (27°C) पर वायु में स्थित अणुओं की औसत गतिज ऊर्जा ज्ञात कीजिये। हल — औसत गतिज ऊर्जा $\overline{K} = \frac{1}{2} \text{ m } \overline{v}^2 = \frac{3}{2} \text{ kT}$ जहां K बोल्ट्जमान नियतांक है। ∴ $$\overline{K} = \frac{3}{2} \times 1.38 \times 10^{-23} \times (27 + 273)$$ = $\frac{3}{2} \times 1.38 \times 10^{-23} \times 300$ = 6.21×10^{-21} जुल $\therefore 1.6 \times 10^{-19}$ जूल = 1 इलेक्ट्रॉन वोल्ट വत∙ $$\overline{K} = \frac{6.21 \times 10^{-21}}{1.6 \times 10^{-19}} = 3.86 \times 10^{-2} = 0.0386$$ इलेक्ट्रॉन वोल्ट # महत्वपूर्ण बिन्दु - 1. यदि किसी गैस की सम्पूर्ण ऊर्जा गतिज ऊर्जा के रूप में है तथा स्थितिज ऊर्जा का मान शून्य है तो इसे आदर्श गैस कहते हैं। - 2. गत्यात्मक सिद्धान्त के अनुसार आदर्श गैस का दाब $$P = \frac{1}{3} mNv^{-2}$$ - 3. परम ताप (T) एवं सेण्टीग्रेट (°C) में निम्न सम्बन्ध होता है। T (केल्विन, K) = 273.16 + t (°C) - PV = nRT को गैस का अवस्था समीकरण कहते हैं। जहां n मोल संख्या एवं R गैस नियतांक है। - 5. गैसों के नियम - (a) PV = नियतांक, यदि T नियत है, इसे बॉयल का नियम कहते हैं। - (b) V α T यदि P नियत है, इसे चार्ल्स का नियम कहते हैं। - (c) P α T यदि V नियत है, इसे गेलूसाक का नियम कहते हैं। - 6. आवोगाद्रो का नियम समान दाब व ताप पर गैसों के समान आयतनों में अणुओं की संख्या बराबर होता है। प्रत्येक पदार्थ के एक मोल में अणुओं की संख्या 6.023 × 10²³ होती है जिसे आवोगाद्रो संख्या कहते हैं। # अभ्यासार्थ प्रश्न # वस्तुनिष्ठ प्रश्न - 1. अणु गति सिद्धान्त के आधार पर कौनसा नियम ज्ञात नहीं कर सकते हैं — - (अ) चार्ल्स का नियम (ब) बॉयल का नियम - (स) जूल का नियम (द) ग्राहम का नियम - बॉयल नियम का पालन करने वाले वक्र कहलाते हैं - - (अ) समतापी - (ब) समदाबी - (स) समआयतनिक - (द) उपरोक्त में से कोई नहीं - ताप के किस मान पर फेरेनहाइट एवं सेण्टीग्रेड पैमाने समान होते हैं - - (31) 40 - (ब) 98.6 - (स) 100 - (द) -40 - चार्ल्स के नियम का पालन करने वाली गैस का आयतन (V) एवं ताप (T, केल्विन में) के मध्य आरेख होता है - - (अ) मूल बिन्दु से परे सरल रेखा - (ब) मूल बिन्दु से पारित सरल रेखा - (स) परवलय - (द) अतिपरवलय - PV एवं माध्य गतिज ऊर्जा $\overline{\mathrm{E}}$ में सम्बद्ध है - - (3) $PV = \frac{1}{3}\overline{E}$ - $\overline{(a)}$ $PV = \overline{E}$ - $(\forall I)$ $PV = \frac{1}{2}\overline{E}$ $(\forall I)$ $PV = \frac{2}{3}\overline{E}$ # अतिलघारात्मक प्रश्न - यदि कमरे का बाहर का ताप 10°C बढ जाता है तो फारेनहाइट पैमाने पर इसके तुल्य वृद्धि कितनी होगी? - नाइट्रोजन का क्वथनांक 77.3 K है। इसे सेल्सियस एवं फारेनहाइट में ज्ञात कीजिये। - ताप की ऊष्मागतिकी परिभाषा दीजिये। - परम ताप एवं परम शून्य ताप में अन्तर लिखिये। #### लघारात्मक प्रश्न - जब दाब 180 kPa है तो 350 K पर 8.5 लीटर आदर्श गैस में अणुओं की संख्या ज्ञात कीजिये। - मंगल ग्रह पर वायुमण्डलीय दाब पृथ्वी पर वायुमण्डलीय दाब का 1% है एवं औसत ताप लगभग 215 केल्विन है। मंगल के वायुमण्डल में 1 मोल आदर्श गैस का आयतन ज्ञात - आदर्श गैस समीकरण से डाल्टन के आंशिक दाब के नियम को समझाइये। - आवोगाद्रो नियम की व्याख्या आदर्श गैस समीकरण के आधार पर कीजिये। - गैसों के गत्यात्मक सिद्धान्त से दाब की व्याख्या कीजिये। #### निबन्धात्मक प्रश्न - आदर्श गैस समीकरण की स्थापना कीजिये। - आदर्श गैस समीकरण से बॉयल, चार्ल्स व गैलुसाक का नियम निगमित कीजिये। - गैसों के अणुगति सिद्धान्त की सहायता से सिद्ध कीजिये - आदर्श गैस द्वारा डाले गये दाब की गणना कीजिये। - गैसें के अणुगति सिद्धान्त के प्रमुख अभिगृहित लिखिये। **जारमालाः** 1 (स) 2 (अ) 3 (द) 4 (ब) 5 (द) # Downloaded from https://www.studiestoday.com # इकाई – 6 #### अध्याय — ६ # प्रकाश एवं तरंगों की प्रकृति (Nature of Light and Waves) प्रकाशिकी भौतिकी की वह शाखा है जिसमें प्रकाश के व्यवहार, प्रकृति, स्वरूप एवं गुणों की व्याख्या की जाती है। जब कभी प्रकाश तरंगें किसी ऐसी वस्तु अथवा पिण्ड से अनुक्रिया करती हैं जिनका आकार प्रकाश तरंगदैध्य से ज्यादा है, तो वे तरंगें सामान्यतः ऋजुरेखा में गित करती हैं जिन्हें किरण कहते हैं। किरण सीमान्त में प्रकाश के व्यवहार की व्याख्या करने वाली शाखा को ज्यामितीय प्रकाशिकी कहते हैं। यहां पर हम ज्यामितीय प्रकाशिकी के द्वारा विभिन्न पदार्थों के सम्पर्क पृष्ठ पर प्रकाश के व्यवहार का अध्ययन करंगे। #### परावर्तन (Reflection) सामान्यतः प्रकाश किसी घूसरित अथवा समतल पर पड़ता है। घूसरित तल पर आपितत प्रकाश तल के खुरदरेपन के कारण विभिन्न दिशाओं में वापस लौटता है। यद्यपि प्रत्येक प्रकाश तरंग परावर्तन के सामान्य नियमों, जिनका उल्लेख आगे किया जाना है, का पालन करती है तथापि समग्र रूप से घूसरित परावर्तन दृष्टिगोचर होता है। दृष्टांततः श्वेत कागज घूसरित परावर्तक है। खुरदरे पृष्ठ से घूसरित परावर्तन चित्र 6.1 में दर्शाया गया चित्र 6. है। प्रकाश जब समतल पृष्ठ पर आपितत होता है तो पृष्ठ पर गिरने के पश्चात् वापस उसी माध्यम में परावर्तित हो जाता है। समतल पृष्ठ से परावर्तित होने वाला प्रकाश कितपय नियमों का पालन करता है जिन्हें परावर्तन के नियम कहते हैं। चित्र 6.2 में समतल पृष्ठ से परावर्तन को दर्शाया गया है। चूंकि परावर्तित किरण की दिशा एवं कोण विशिष्ट गुणों का पालन करते हैं अतएव इन्हें निर्धारित करने के लिए एक मानक की जरूरत होती है जिसे अभिलम्ब कहते हैं। आपतित किरण, परावर्तित किरण एवं अभिलम्ब द्वारा पालन किये जाने वाले नियमों को परावर्तन के नियम कहते हैं। जो निम्नानुसार है: - समतल पृष्ठ के किसी बिन्दु पर आपितत किरण, परावर्तित किरण एवं पृष्ठ पर अभिलम्ब एक तल में होते हैं। - 2. यदि आपितत किरण एवं अभिलम्ब मध्य कोण θ_1 है तथा परावर्तित किरण एवं अभिलम्ब के मध्य कोण θ_2 है तो $\theta_1 = \theta_2$ अर्थात् आपतन कोण एवं परावर्तन कोण समान है। उल्लेखनीय है कि दर्शनीय परावर्तन में समान्तर किरणों का समूह स्नेहक तल से बिना किसी विकृति के परावर्तित हो जाता है। #### आंशिक परावर्तन (Partial Reflection) जब भी प्रकाश दूसरे माध्यम के प्रथम पृष्ठ पर गिरने के पश्चात् उस माध्यम में अग्रसर नहीं हो पाता तब पहले माध्यम में वापस लौटता है। यदाकदा प्रकाश किसी पारदर्शी पदार्थ के तल पर गिरता है तो उसके पृष्ठ से भी परावर्तित होता है। इन परिस्थितियों में लम्बवत् आपतन पर निम्नतम परावर्तन होता है, कांच में लम्बवत् आपतित किरणों का 4% परावर्तन होता है आपतन कोण अधिक होने पर परावर्तन ज्यादा मात्रा में दृष्टिगोचर होता है। #### परावर्तन के नियमों का प्रायोगिक सत्यापन (Experimental Verification of the Laws of Reflection) - हम 15 cm × 10 cm का एक समतल दर्पण लेते हैं। इसके अलावा श्वेत कागज का गत्ता एवं कुछ आलिपनों को इकट्ठा करते हैं। - सर्वप्रथम श्वेत गत्ते पर 20 सेमी की रेखा खिंचते हैं। इस रेखा के मध्य बिन्दु पर एक लम्ब का निर्माण करते हैं। तत्पश्चात् लम्ब के सापेक्ष किसी नियत कोण पर एक आपतित किरण बनाते हैं। - 3. 20 सेमी लम्बी रेखा पर समतल दर्पण रखते है एवं निर्मित आपतित किरण पर तीन आलिपनों को कागज के तल के लम्बवत् इस प्रकार रखते है कि दर्पण में आपतित किरण से देखने पर तीनों आलिपनें एक ही दिखें। यह व्यवस्था तीनों आलिपनों के एक ही लम्बवत् तल में एवं संरेखी होने की पृष्टि करती है। - 4. अब हम लम्ब की दूसरी तरफ अर्थात् दायें भाग में आलिपनों का प्रतिबिम्ब देखते हैं तथा दृष्टिगत पिनों को लुप्त करते हुए पिन लगाते है। इसी दिशा में दो ओर पिनों को इसी प्रकार लगा दिया जाता है। - 5. अब दर्पण को हटा लेते है और पिनों के परावर्तित बिम्बों के आधारों को जोड़ने वाली सरल रेखा बनाते हैं जो कि परावर्तित किरण कहलाती है। - 6. परावर्तन कोण का मापन करते है। - 7. हम पाते है कि $\angle i = \angle r$ #### अपवर्तन (Refraction) किसी प्रकाशिक तरंगाग्र या तरंग की गति माध्यम पर निर्भर करती है। अलग—अलग माध्यम में प्रकाश या अन्य किसी तरंगाग्र का वेग भिन्न—भिन्न होता है। किसी भी पारदर्शी माध्यम में प्रकाश का वेग निर्वात में वेग के सापेक्ष कम होता है। अतः प्रकाश के किसी माध्यम में वेग एवं निर्वात के मध्य निष्पत्ति को अपवर्तनांक कहते हैं। अतः $=\frac{c}{v}$ जहां c निर्वात में प्रकाश का वेग तथा v माध्यम में वेग है। भौतिकी में अधिकांशतः अपवर्तनांक को यूनानी लिपि के अक्षर म्यु () द्वारा व्यक्त किया जाता है। उल्लेखनीय है कि प्रकाश जब एक से दूसरे माध्यम में प्रवेश करता है तो उसकी चाल परिवर्तित होती है। लेकिन दोनों ही माध्यमों में निश्चित समयान्तराल में गुजरने वाले शृंगों एवं गर्तों की संख्या समान होती है अतः आवृत्ति दोनों ही माध्यमों में अपरिवर्तित रहती है। तरंग के वेग में परिवर्तन तरंग वेग संबंध के अनुसार तरंगदैर्ध्य में परिवर्तन के रूप में परिलक्षित होता है। प्रकाश जब पारदर्शी पदार्थ पर किसी कोण से आपतित होता है तो पारगमित प्रकाश की चाल एवं गति की दिशा में परिवर्तन हो जाता है जिसे अपवर्तन कहते हैं। चित्र 6.3 में रेखाचित्र द्वारा अपवर्तन को स्पष्ट किया गया है। इस चित्र में AO एवं OB माध्यम 1 में क्रमशः आपतित एवं परावर्तित किरणें हैं। NOM अभिलम्ब है अतः 🛭 एवं 🗗 आपतन एवं परावर्तन कोण है। माध्यम 2 में आपतित किरण OC पथ पर अग्रसर होती है। यह किरण अभिलम्ब MON से 0, कोण बनाती है। जब माध्यम 1, माध्यम 2 से विरल है $\begin{pmatrix} 1 & 2 \end{pmatrix}$ तो AO किरण अपवर्तन के दौरान OM की तरफ आ जाती है एवं कोण θ , का मान θ_1 से कम हो जाता है। यदि माध्यम 1, माध्यम 2 से सघन ्र) है तो आपतित किरण AO अपवर्तन के दौरान अभिलम्ब OM से दूर जाकर पारगमित होती है एवं कोण θ_2 का मान θ_1 से अधिक होता है। अतः माध्यम 2 की माध्यम 1 के सापेक्ष सघनता या विरलता θ_1 की तुलना में θ_2 को कम या अधिक होने को निर्धारित करता है। प्रकाश के एक माध्यम से दूसरे माध्यम में पारगमन के कारण होने वाले परिवर्तन को अपवर्तन कहते हैं। अपवर्तन में होने वाले परिवर्तनों का गणितीय निरूपण सर्वप्रथम 1621 में रोयन रनेल ने ज्यामिती की सहायता से व्यक्त किया जिसे रनेल का नियम कहते हैं। इसके अनुसार - $$\sin \theta_1 = \sin \theta_2 \tag{6.1}$$ जहां $_1$ आपितत किरण के माध्यम का अपवर्तनांक, θ_1 आपतन कोण, $_2$ अपवर्तित किरण के माध्यम का अपवर्तनांक एवं θ_2 अपवर्तन कोण है। यह जानना आवश्यक है कि प्रकाश का किसी माध्यम में अपवर्तनांक पदार्थ के घनत्व पर निर्भर करता है तथा प्रकाश की भिन्न—भिन्न तरंगदैर्ध्य के लिए एक ही पदार्थ का अपवर्तनांक भिन्न—भिन्न होता है। ### अपवर्तन के नियमों प्रायोगिक सत्यापन एवं अपवर्तनांक ज्ञात करना (Experimental Verification of the Laws of Refraction and to Determine Index of
Refraction) 1. कांच की $10 \times 7 \times 3.5$ cm की एक पट्टिका लेते हैं। इसके अलावा श्वेत कागज का गत्ता एवं कुछ आलिपनों को प्रयोग स्थल पर एकत्रित करते हैं। - 2. सर्वप्रथम श्वेत गत्ते पर कांच की पट्टिका स्थापित करते हैं एवं पेंसिल द्वारा आयताकार आकृति खिंची जाती है। आयत की लम्बाई के मध्य बिन्दु पर अभिलम्ब बनाया जाता है तथा किसी एक निर्धारित मान के आपतन कोण पर आपतित रेखापथ बनाया जाता है। - 3. आपितत रेखापथ पर तीन आलिपनों को सुव्यवस्थित रूप संरेखी स्थिति में खड़ा किया जाता है जिन्हें पिट्टका की लम्बाई के सहारे दूसरे तल से देखने पर केवल एक ही आलिपन दृष्टिगत हो। - अब निगमन पृष्ठ पर आलिपनों के अपवर्तित बिम्ब को देखते हैं तथा तीन आलिपनों को एक ही रेखा के तीन अलग बिन्दुओं पर खड़ा करते हैं। - अन्तिम आलिपन को देखने पर आपितत पृष्ठ की तीन एवं निगमन पृष्ठ की 2 आलिपनें अतिव्यापन के कारण दृष्टिगोचर नहीं होती है। - 6. अब निगमन पृष्ठ की तरफ तीनों आलिपनों के गत्ते पर निर्मित दाब बिन्दुओं को पटरी की सहायता से मिला देते हैं तथा अभिलम्ब का दूसरे पृष्ठ तक विस्तारण करते हैं। - 7. आपतन पृष्ठ पर अभिलम्ब एवं आपतित किरण के उभयनिष्ठ बिन्दु एवं निगमन पृष्ठ पर पारगमित किरण एवं अभिलम्ब के उभयनिष्ठ बिन्दु को पटरी द्वारा मिलाकर अपवर्तित किरण का पथ बनाया जाता है। अपवर्तित किरण का अभिलम्ब के सापेक्ष बनाया गया कोण चांदे से नाप लिया जाता है। यह व्यवस्था चित्र 6.4 में दर्शायी गयी है। - 8. हम पाते हैं कि $$\frac{\mu_1}{\mu_2} = \frac{\sin \theta_r}{\sin \theta_1}$$ एवं $\theta_1 = \theta_2$ (6.2) #### दैनिक जीवन में अपवर्तन के उदाहरण (Examples of Refraction in Daily Life) - पानी में गिरे सिक्के पानी से भरे किसी बर्तन में गिरा हुआ सिक्का हमें उपर उठा हुआ प्रतीत होता है। सिक्के की वास्तविक गहराई एवं आभासी गहराई में अन्तर अपवर्तन के कारण होता है। - 2. रात में तारों का टिमटिमाना रात में दिखने वाले असंख्य तारों की रोशनी विभिन्न माध्यमों से गुजरती है अतः दो तरंगाग्रो के प्रेक्षक तक पहुंचने में अपवर्तन के कारण लगने वाले समयान्तराल के कारण तारे टिमटिमाते हुए नजर आते हैं। - कम्प्यूटर में लेसर किरणों द्वारा सीडी से आंकड़ों को पढ़ना भी अपवर्तन का परिणाम है। # तरंगें या तरंगाग्र (Waves or Wave Fronts) पानी की शांत सतह पर जब कंकड़ फेंकते हैं तो सम्पर्क बिन्दु पर विक्षोभ उत्पन्न होता है। मानव एवं कुछ जानवर ध्विन तरंगों के द्वारा संवाद करते हैं। प्रकाश एवं उससे संबंधित तरंगों के द्वारा हमारे आसपास पायी जाने वाली संरचनायें दिखाई देती हैं। हमारे शरीर के आन्तरिक भागों के बारे में पराश्रव्य तरंगों से पता लगाते हैं। रेडियो तरंगें कम्प्यूटर को इंटरनेट से जोड़ती है। उपरोक्त सभी उदाहरणों में एक विक्षोभ या हलचल आकाश में गित करता है। यह विक्षोभ अपने साथ ऊर्जा संचरण करता है लेकिन द्रव्य नहीं अर्थात् माध्यम के कण अपनी माध्य स्थिति के इर्दिगिर्द ही कम्पन्न करते है। यथा जब हम संगीत सुनते है तो ध्विन ऊर्जा हमारे कान की तरफ स्थानान्तरित होती है न कि वायु। इसी प्रकार समुद्र में पानी सागर के पार नहीं जाता है लेकिन ध्विन तरंगें ऊर्जा पार होती हैं। अतः तरंग एक प्रगामी विक्षोभ है जो कि ऊर्जा का स्थानान्तरण करता है परन्तु द्रव्य का नहीं। यह विक्षोभ संचरण की विधि ही तरंग गित कहलाती है। इसमें द्रव्य के कण स्वयं ऊर्जा लेकर एक स्थान से दूसरे स्थान पर नहीं जाते हैं। ऊर्जा का संचरण माध्यम के एक कण से दूसरे कण व दूसरे से तीसरे कण इत्यादि में होता है जब तक कि ऊर्जा अंतिम कण तक नहीं पहुंच जाती। माध्यम में संचरण के आधार पर तरंगों को मुख्यतः दो भागों में वर्गीकृत किया गया है - (a) यांत्रिक तरंगें (Mechanical waves) (b) विद्युत चुम्बकीय तरंगें (Electromagnetic waves) | यांत्रिक तरंगों के लिए माध्यम आवश्यक है तथा माध्यम जिस द्रव्य का बना है वही विक्षोभ को आकाश में स्थानान्तरित करता है इन्हें प्रत्यास्थ तरंगें भी कहते हैं। जैसे कि ध्विन तरंगें, जल तरंगें, वायलिन की डोरी, छड़ में तरंगें तथा पृथ्वी के गर्भ में इत्यादि। यह ध्यान देने योग्य है कि तरंगें ऊर्जा स्थानान्तरित करती हैं लेकिन माध्यम नहीं इसका अभिप्राय यह नहीं है कि माध्यम की द्रव्यजनित तरंगें गित नहीं करती है। द्रव्यजनित तरंगें या माध्यम के कण अपनी माध्य स्थिति के इर्दिगिर्द आवर्ती गित करती हैं जब तरंग गुजर जाती है माध्यम के कण या द्रव्यजनित तरंग अपनी माध्य स्थिति में लौट आती हैं। अतः माध्यम के कण द्रव्यजनित तरंग स्थानीय तरंग में विलुप्त हो जाती है एवं प्रधान तरंग ही ऊर्जा स्थानान्तरित करती है। यदि हम एक पिण्ड को स्प्रिंग की लम्बाई की दिशा में विस्थापित करते हैं तो यह दोलनी गित करता है चूंकि सभी पिण्ड स्प्रिंग द्वारा जुड़े हैं अतः आसन्त पिण्ड भी दोलनी गित करने लगते हैं। परिणामस्वरूप विस्थापन के कारण उत्पन्न विक्षोभ अन्तिम पिण्ड तक पहुंच जाता है। जैसे कि चित्र 6.5 में दर्शाया गया है। #### चित्र 6.5 प्रथम पंक्ति में विक्षोभ \leftrightarrow से दर्शाया गया है जबिक गतिज ऊर्जा का संचरण अगले पिण्ड को हो रहा है। तरंग \leftrightarrow संचरित हो रही है लेकिन पिण्ड साम्यावस्था में आ जाता है। यांत्रिक तरंगें दो प्रकार की होती है— अनुदैर्ध्य एवं अनुप्रस्थ तरंगें। - 1. अनुदैर्ध्य तरंगें (Longitudinal waves) जब तरंगों में माध्यम के कण तरंग संचरण की दिशा में कम्पन्न करते हों तो इसे अनुदैर्ध्य तरंग कहते हैं। ध्विन तरंगें अनुदैर्ध्य तरंगें हैं जिसका निरूपण चित्र 6.5 में किया गया है। - 2. अनुप्रस्थ तरंगें (Transverse waves) जैसा कि चित्र 6.5 में दर्शाया गया है उसके विपरीत पिण्ड तरंग गति की दिशा के लम्बवत् भी कम्पन्न कर सकते हैं जैसा कि चित्र 6.6 में दर्शाया गया है। इस तरंग में पिण्ड 2 में विक्षोभ ऊपर—नीचे कम्पन्न करता है तथा कुछ समय बाद पिण्ड 3 भी इसी प्रकार कम्पन्न करता है। अतः तरंग, पिण्डों के गति की दिशा के लम्बवत कम्पन्न करने के परिणामस्वरूप उत्पन्न हो रही है। इसे अनुप्रस्थ तरंग कहते हैं। उदाहरण तनी हुई डोरी में उत्पन्न तरंगें, जल के पृष्ट पर उत्पन्न तरंगें इत्यादि। जल तरंग — कुछ तरंगों में अनुदैर्ध्य एवं अनुप्रस्थ गति का समावेश परिलक्षित होता है। जल पृष्ठ पर बनने वाली तरंग को चित्र 6.7 में दर्शाया गया है। चित्र 6.7 उपरोक्त विवेचना से यह स्पष्ट है कि तरंग गति, ऊर्जा स्थानान्तरण की सशक्त विधा है भौतिकी में विभिन्न घटनाओं के विश्लेषण में तरंग गति का उपयोग किया जाता है अतः यह आवश्यक है कि तरंग गति का गणितीय स्वरूप विकसित किया जाए एतदर्थ हम विभिन्न तरंगों के लिए विशिष्ट लक्षण एवं उनकी परिभाषाओं का अध्ययन करते हैं: - 1. तरंग स्वरूप (Wave form) विभिन्न आकृति के विक्षोभ तरंग रूप में गित करते हैं जिससे अलग—अलग आकार की तरंगें बनती है जिन्हें तरंग स्वरूप कहते हैं। इकलौते एवं विलगित गितशील विक्षोभ से उत्पन्न तरंग को नाड़ी तरंग(Pulse) कहते हैं। यदि विक्षोभ की अविरल पुनरावृति होती है उसे सतत् तरंग (Continuous wave) कहते हैं। इन दो स्थितियों के मध्य यदि कोई आवृति विक्षोभ निश्चित समय के पश्चात् विलुप्त हो जाता है उसे तरंगरेल (Wave train) कहते हैं। दैनिक जीवन में लम्बे समय तक विलुप्त नहीं होने वाली तरंगरेलों से हमारा सामना होता है। सैद्धांतिक विश्लेषण, सतत् तरंग को आधार मानकर विकसित किया जाता है एवं सामान्यतः इसे ही तरंग कहते हैं। इसे चित्र 6.8 (a) में दर्शाया गया है। किसी तरंग के तीन प्रमुख लाक्षणिक अवयव होते है (a) तरंग आयाम (b) आवृत्ति एवं आवर्तकाल (c) तरंगदैर्ध्य। - (a) तरंग आयाम (Wave amplitude) तरंग विक्षोभ के माध्य स्थिति से अधिकतम मान को तरंग आयाम कहते हैं। इसे 'A' से प्रदर्शित किया गया है। (b) तरंग आवृत्ति एवं आवर्तकाल (Wave frequency and Time period) — एक तरंग की आकाश एवं समयाकाश में पुनरावर्ति होती है। आवृत्ति चक्र पूर्ण करने में लगा समय तरंग का आवर्तकाल (T) कहलाता है। इसका मात्रक सैकण्ड होता है। तद्नुसार तरंग द्वारा एक सैकण्ड में पूर्ण किये गये चक्रों की संख्या तरंग आवृत्ति कहलाती है। यह किसी कण द्वारा एक सैकण्ड में किये गये कम्पन्नों की संख्या भी बतलाता है। S.I. पद्धति में इसका मात्रक हर्टज होता है। इसे N से प्रदर्शित करते हैं स्पष्ट है कि परिभाषानुसार: $$T = \frac{1}{N} \tag{6.3}$$ - (c) तरंगदैर्ध्य (Wave length) तरंगों के आकाश में पुनरावर्तन का मात्रात्मक निरूपण तरंगदैर्ध्य से किया जाता है। यह वह दूरी है जिसमें तरंग का आकार एवं सम्पूर्ण लक्षण समाहित होते हैं तथा आकाश में इसके स्थानान्तरण से सतत् तरंग निर्मित की जाती है। एतदर्थ एक ही कला में कम्पन्न करने वाले दो निकटतम कणों के बीच की दूरी को तरंगदैर्ध्य कहते हैं। इसे प्रायः लैटिन अक्षर λ (लेम्ड़ा) से प्रदर्शित करते हैं एवं S.I. पद्धित में इसका मात्रक मीटर होता है। उपरोक्त मूल लक्षणों से संबंधित कितपय अनुलक्षण भी तरंगों के गणितीय विश्लेषण में उपयोग में लिये जाते हैं। - 1. कला कोण (Phase angle) जैसा कि चित्र 6.8 (b) में दर्शाया गया है एक अन्य तरंग जिसका प्रारंभ में उठाव (Displacement) तरंग से अलग है तथा क्षण T पर विस्थापन की स्थिति अलग—अलग है। अतएव दोनों कणों के संगत तरंगों अलग है तथा समय T पर कला भी अलग है। अतः किसी क्षण पर कम्पित कण का कला कोण उस क्षण की गति की अवस्था को व्यक्त करता है इसे ϕ से प्रदर्शित करते हैं। चित्र 6.8 (b) में $\phi = 0$, $-\pi/4$ तथा $-\pi/2$ की तरंगें दर्शायी गयी है। 2. कोणीय आवृत्ति (Angular frequency) — एक सम्पूर्ण तरंगदैर्ध्य की दूरी पर स्थित दो कणों के मध्य कलान्तर 2π होता है। दूसरे शब्दों में दोनों ही कण समान कला में है। यदि समय के साथ कला में परिवर्तन को व्यक्त करना हो तो कोणीय आवृत्ति का उपयोग होता है अतः तरंग संचरण की दिशा में समान कला के कणों को प्राप्त करने की आवृत्ति कोणीय आवृत्ति कहलाती है। इसे ω से व्यक्त करते हैं तथा S.I. पद्धित में इसका मात्रक रेडियन से होता है। परिभाषानुसार $\omega = \frac{2\pi}{T}$ जहां T आवर्तकाल है। 3. तरंग संख्या (Wave number) — एक तरंग, λ तरंगदैर्ध्य के पश्चात् दोहराती है। इसके संगत कला आवर्त 2π होता है। इसलिए Kx, x दूरी पर कम्पित कणों की कला होती है जहां K- आकाशीय आवृत्ति का मापक है तथा $\mathrm{K}\lambda=2\pi$, या $\mathrm{K}=\frac{2\pi}{\lambda}$ जिसे तरंग संख्या, संचरण नियतांक अथवा तरंग सदिश भी कहा जाता है। यह एकांक दूरी पर स्थित कम्पनशील कणों के मध्य कलान्तर का निरूपण करता है। उदाहरण 6.1 — चित्र 6.9 में समान चाल से गतिशील दो तरंगें (a) एवं (b) दर्शायी गयी है किस तरंग के लिए (i) आयाम (ii) तरंदैर्ध्य (iii) आवर्तकाल (iv) तरंग संख्या (v) आवृत्ति का मान अधिक है। हल — दोनों तरंगें समान चाल से गतिशील है।(i) तरंग (a) में दो चरम बिन्दुओं के बीच की दूरी तरंग (b) के सापेक्ष कम है। अतः तरंग (a) का आयाम अधिक है। (ii) दो क्रमागत उच्चिष्ठों या निम्निष्ठों के बीच की दूरी तरंगदैर्ध्य कहलाती है। चित्र (b) में यह दूरी अधिक है। अतः तरंग (b) की तरंगदैर्ध्य (a) से अधिक है। (iii) एक तरंग को पूर्ण करने में लिया गया समय आवर्तकाल कहलाता है। चूंकि तरंग (a) जितने समय में तीन तरंगदैर्ध्य पूर्ण कर लेती हैं, तरंग (b) उतने समय में करीब 3/2 तरंगदैर्ध्य पूर्ण करती है अतः तरंग (b) का आवर्तकाल अधिक है। (iv) चूंकि (a) में इकाई लम्बाई में अधिक तरंगें समाहित हो जाती है अतः इसके लिए तरंग संख्या का मान अधिक है। (v) इकाई समय में तरंग (a) का अधिक अंश गति कर लेता है। साथ ही इसका आवर्तकाल कम है इसलिए आवृत्ति अधिक होगी। तरंग वेग (Wave velocity) — विक्षोभ द्वारा एक सैकण्ड में तय की दूरी को तरंग वेग कहते हैं। ∵ तरंग द्वारा आवर्तकाल (T) में तय की
गई दूरी तरंगदैध्यं के बराबर होती है। ∴ तरंग वेग $$V = \frac{\lambda}{T}$$ या $V = n\lambda$ (6.4) या $$V = \frac{2\pi}{k} \times \frac{\omega}{2\pi} = \frac{\omega}{k} + \hat{H} / \hat{H}$$. (6.5) तरंग शक्ति (Waver power) — तरंगें ऊर्जा की संवाहक है। किसी डोरी में उत्पन्न तरंग से संबद्ध औसत शक्ति निम्न व्यंजक द्वारा दी जाती है। $$\overline{P} = \frac{1}{2} m\omega^2 A^2 v \tag{6.6}$$ जहां, ν , आवृत्ति, m डोरी की इकाई लम्बाई का द्रव्यमान, ω कोणीय आवृत्ति, A अधिकतम आयाम है। इसकी S.I. में ईकाई वाट है। **ऊर्जा अभिवाह** (Energy flux) — इसे सामान्यतः ऊर्जा धारा या फ्लक्स कहते हैं। तरंग की गति की दिशा के लम्बवत् एकांक क्षेत्रफल में प्रति सैकण्ड प्रवाहित होने वाली ऊर्जा को ऊर्जा अभिवाह कहते हैं। यह ऊर्जा प्रवाह का मापक है। तरंग तीव्रता (Wave intensity) — सीमित संरचनाओं जैसे डोरी, प्रकाशिक, तागा आदि में सुगमता से कुल शक्ति को परिभाषित किया जा सकता है। परन्तु अप्रगामी तरंगों में तीव्रता का निर्धारण करना ज्यादा प्रभावी होता है। किसी तरंग द्वारा ईकाई क्षेत्रफल में ले जाने वाली ऊर्जा को तरंग तीव्रता कहते हैं। इसका मात्रक S.I. में वाट / मी² है। किसी तरंग की तीव्रता उसके आयाम के वर्ग के अनुक्रमानुपाती होती है। तरंगाग्र (Wave front) — तरंग संचरण को प्रभावी रूप से व्यक्त करने के लिए एक तल की कल्पना करते हैं। इस तल पर कम्पन्न करने वाले सभी कण एक ही कला में होते हैं, इस तल को तरंगाग्र कहते हैं। उदाहरणार्थ, किसी बिन्दु पर तरंग गित की दिशा के लम्बवत् तल, समतल हो तो इन्हें समतल तरंगें कहते हैं। समतल तरंगें आकाश में विस्तिर्ण नहीं होती है तथा तीव्रता नियत रहती है। यदि तरंगें एक बिन्दु स्रोत से उत्पन्न होती है तो सभी दिशाओं में फैलती हैं। ये तरंगें गोलीय तरंगाग्र का निर्माण करती हैं। किसी बिन्दु पर गोलीय तरंगाग्र की तीव्रता स्रोत से बिन्दु के मध्य दूरी के वर्ग के व्युत्क्रमानुपाती होती है। $$I α \frac{1}{r^2}$$ या $I = \frac{C}{4\pi r^2}$ जहां C एक नियतांक है। (6.7) उदाहरण 6.2 — पृथ्वी से दो तुल्य तारे निश्चित दूरियों पर स्थित हैं। अधिक दूरी पर स्थित तारे से आने वाले प्रकाश की तीव्रता निकट तारे से आने वाले प्रकाश की तीव्रता का 1% है तो निकटस्थ तारे की पृथ्वी से दूरी की तुलना में सुदूर तारे की दूरी कितनी हैं? हल – तीव्रता $$I = \frac{C}{4\pi r^2}$$ \because दोनों तारे तुल्य है अतः दोनों के लिए C का मान बराबर होगा। प्रथम तारे के लिए तीव्रता $I_{_{1}}$ एवं दूरी $r_{_{1}}$ तथा सुदूर तारे के लिए यदि $$I_2$$ एवं r_2 है तो $\frac{I_1}{I_2} = \frac{{r_2}^2}{{r_1}^2}$ $$I_2 = .01 I_1$$ $$\therefore \frac{I_1}{I_2} = \frac{1}{0.01} = 100$$ अब $$100 = \frac{{r_2}^2}{{r_1}^2} \implies r_2 = 10 \, r_1$$ $\Rightarrow rac{ extbf{r}_{_{\! 1}}}{ extbf{r}_{_{\! 1}}}$ = 10 अतः कम तीव्रता वाला तारा प्रथम की पृथ्वी से दूरी से दस गुना दूरी पर स्थित है। समतल तरंगाग्र (Plane wave front) — समतल तरंगाग्र को चित्र 6.10 में दर्शाया गया है। एक ही कला में अग्रसर समस्त बिन्दुओं का बिन्दुपथ एक समतल द्वारा दर्शाया जाता है एवं यह चित्र 6.10 समतल समय के साथ आकाश में चित्रानुसार गतिशील रहता है इसे समतल तरंगाग्र कहते हैं। उल्लेखनीय है कि सम्पूर्ण ऊर्जा प्रवाह भी तरंगाग्र की गति की दिशा में होता है अतः गति के दौरान क्षय रहित माध्यम में तरंग की तीव्रता तथा ऊर्जा में कमी नहीं होती है। गोलीय तरंगाग्र (Spherical wave front) — गोलीय तरंगाग्र किसी बिन्दुवत् स्रोत से उत्पन्न होता है तथा आकाश में सभी दिशाओं में अग्रसर होता है। अतः $I \, \alpha \, \frac{1}{r^2} \,$ उल्लेखनीय है कि बिन्दु स्रोत से अनन्त दूरी पर गोलीय तरंगाग्र, समतल तरंगाग्र की तरह व्यवहार करता है - प्रयोग — एक गुब्बारा लेते है जिसे फुलाने पर लगभग 10—15 सेमी के व्यास का एक गोला बन जाय। गोले के वक्रीय तल पर कागज की 1 सेमी² के क्षेत्रफल की पन्नियां चिपका दी जाती है। अब यदि गुब्बारे में और हवा भरकर उसको फुलाया जाय तो हम पाते हैं कि वक्रीय तल पर चिपकाई गयी पन्नियां अब वक्रीय न होकर समतल रूप में दृष्टिगोचर होती है। अतः गोलीय तरंगाग्र बिन्दु स्रोत के सापेक्ष त्रिज्या के बढ़ने पर समतल तरंगाग्र में परिवर्तित हो जाता है। इस तथ्य की गणितीय व्याख्या आगे की कक्षाओं में पढ़ेंगे। तरंग का गणितीय रूप (Mathematical form of wave front) – किसी समतल प्रगामी तरंग को निम्न समीकरण द्वारा व्यक्त करते हैं – $$f(x \pm vt) \tag{6.8}$$ जहां पर y, x एवं t का फलन है अर्थात् y को x, t एवं v के निश्चित गणितीय रूप में व्यक्त किया जाता है। फलन f का दर्शाता है कि गणितीय रूप कुछ भी हो सकता है लेकिन निकाय पर निर्भर करता है। यहां ऋणात्मक चिन्ह +x दिशा में तथा धनात्मक चिन्ह -x दिशा में v वेग से गतिशील तरंग को दर्शाता है। तरंग गति की विवेचना में प्रायः ज्यातरंगों (Sinusoidal waves) पर विचार करते हैं। समीकरण (6.8) में f यदि ज्याफलन है तो इस तरंग को ज्यातरंग (Sinusoidal wave) कहते हैं। इसका व्यंजक निम्न होता है - $$y(x,t) = A \sin(Kx - \omega t)$$...(6.9) यहां A तरंग का आयाम है, K तरंग संख्या एवं कोणीय आवृत्ति है। उदाहरण 6.3 - 2 यदि एक तरंग का समीकरण $y(x,t) = 1.8 \sin{(0.5x - 2t)}$ है तो इसका अधिकतम आयाम, आवर्तकाल एवं तरंगदैर्ध्य ज्ञात कीजिये। यहां y एवं x की इकाई मी. एवं t की इकाई से. है। $${\bf E}{\bf e}{\bf f} - {\bf y} = 1.8 \sin (0.5{\bf x} - 2{\bf t})$$ सामान्य व्यंजक $y = A \sin(Kx - wt)$ से तुलना करने पर अधिकतम आयाम A = 1.8 मी. एवं $$K = \frac{2\pi}{\lambda} = 0.5$$ $$\therefore \lambda = \frac{2\pi}{0.5} = 4\pi = 12.57 \text{ मी.}$$ अब कोणीय आवृत्ति w = 2 लेकिन $$w = \frac{2\pi}{T}$$ ∴ $$T = \frac{2\pi}{w} = \frac{2\pi}{2} = \pi = 3.14$$ सो. तरंगें जब आकाश में अग्रसर होती है तो विभिन्न परिस्थितियों से होकर गुजरती है। दो या अधिक तरंगें आपस में मिलती हैं या तरंगें किसी बाधा से टकराकर अपना पथ निर्धारित करती हैं। विभिन्न परिस्थितियों में तरंगों द्वारा दर्शाया जाने वाले व्यवहार के अध्ययन से दैनिक जीवन में होने वाली घटनाओं की व्यापक व्याख्या कर सकते हैं। सामान्य व्यवहार में तरंगें अध्यारोपण, व्यतिकरण एवं विवर्तन दर्शाती हैं। आइये अब हम इनका अध्ययन करते हैं। #### अध्यारोपण (Superposition) जब दो यो दो से अधिक तरंगें एक साथ माध्यम के किसी कण को एक साथ प्रभावित करें तो प्रत्येक तरंग उस कण पर अपना अलग—अलग विस्थापन उत्पन्न करेगी। फलतः उस कण का परिणामी विस्थापन तरंगों के अलग—अलग विस्थापनों का बीजगतिणतीय योग या सिदश योग होता है। इसे अध्यारोपण का सिद्धान्त कहते हैं। हाइगेन्स ने यह सिद्धांत सर्वप्रथम प्रकाश तरंगों के लिए प्रतिपादित किया लेकिन यह सभी तरंगों के लिए लागू होता है। यदि y_1 बिन्दु x एवं समय t पर तरंग का विस्थापन है जिसे y_1 (x, t) से व्यक्त करते हैं तथा y_2 उसी बिन्दु x एवं t पर दूसरी तरंग का विस्थापन है जिसे t0 (t1) से व्यक्त करते हैं तो परिणामी विस्थापन t2 (t3) होगा। #### अध्यारोपण सिद्धांत की सीमा (Limit of the Principle of Superposition) अध्यारोपण का सिद्धांत केवल रेखिक गित के लिए सही है, जो कि हूक के नियम का पालन करती है यह आघात तरंगों (Shock waves), विस्फोट से उत्पन्न तरंगों एवं जल तरंगों के लिए लागू नहीं होता है। डोरी में सूक्ष्म विक्षोभ से उत्पन्न तरंगें अध्यारोपण के सिद्धांत का पालन करती हैं। स्थूल विक्षोभ में कण के विस्थापन का रेखिक योग नहीं होता है एवं इसे अरैखिक तरंगें भी कहते हैं जो कि अध्यारोपण के सिद्धांत का पालन नहीं करती है। अध्यारोपण से निम्नलिखित परिघटनाएं दृष्टिगोचर होती है— (i) व्यतिकरण (ii) विवर्तन। व्यतिकरण (Interference) — जब दो या दो से अधिक तरंगें आकाश में एक ही समय में परस्पर अध्यारोपित होती है तो व्यतिकरण की घटना होती है। जब समान आवृत्ति की दो तरंगें जिनके मध्य नियत कला संबंध है, एक ही माध्यम में समकालिक संचरण करती है तो किसी बिन्दु पर परिणामी तरंग की तीव्रता अध्यारोपित होने वाली तरंगों की तीव्रता से भिन्न होती है। तीव्रताओं में अन्तर अध्यारोपित तरंगों के मध्य कलान्तर (या तुल्य पथान्तर) पर निर्भर करता है। परिणामी आयाम एवं एतदर्थ तीव्रता, का मान अध्यारोपित तरंगों के आयाम से अधिक या कम हो सकता है। संपोषी व्यतिकरण (Constructive Interference) — जब अध्यारोपित तरंगें माध्यम के किसी बिन्दु पर एक ही कला में $(0, 2\pi, 4\pi, 6\pi)$ में मिलती है तो उस बिन्दु पर परिणामी आयाम अधिकतम एवं तीव्रता अधिकतम हो जाती है। इसे संपोषी व्यतिकरण (Constructive Interference) कहते हैं। चित्र 6.11 में दो तरंगें जिनके आयाम $\mathbf{a_1}$ एवं $\mathbf{a_2}$ है एक ही कला में अग्रसर हो रही है। अतः संपोषी व्यतिकरण की वजह से परिणामी तरंग का आयाम $\mathbf{a_1}$ + $\mathbf{a_2}$ हो जाता है। चित्र 6.11 विनाशी व्यतिकरण (Destructive Interference) — जब अध्यारोपित तरंगें माध्यम के किसी बिन्दु पर विपरीत कला में $(\pi, 3\pi, 5\pi)$ में मिलती है तो उस बिन्दु पर परिणामी आयाम न्यूनतम होने से तीव्रता भी न्यूनतम हो जाती है। चित्र 6.12 में दर्शायी गयी दो तरंगें विपरीत कला में है। इनका परिणामी आयाम $A = a_1 - a_2$ है। यह विनाशी व्यतिकरण कहलाता है। चित्र 6.12 सामान्यतः किसी बिन्दु पर दो तरंगें यदि अध्यारोपित होती है तो सिद्धान्ततः व्यतिकरण की घटना उत्पन्न हो सकती है। तथापि स्थायी व्यतिकरण की घटना के लिए कुछ आवश्यक शर्तें हैं। यह शर्तें निम्न हैं— - (i) किसी बिन्दु पर दोनों तरंगों के मध्य कलांतर (या पथांतर) स्थिर रहना चाहिये। - (ii) दोनों तरंगों की आवृत्ति और तरंगदैर्ध्य समान होने चाहिये - क्योंकि असमान आवृत्ति अथवा तरंगदैर्ध्य वाली दो तरंगों का कलांतर सदैव किसी बिन्दु पर परिवर्तित होता रहेगा जिससे व्यतिकरण स्थायी रूप से नहीं दृष्टिगोचर होगा। - (iii) दोनों तरंगों का आयाम लगभग बराबर होना चाहिये। - (iv) दोनों तरंगों द्वारा एक ही सरल रेखा पर विस्थापन उत्पन्न होना चाहिये। संपोषी एवं विनाशी व्यतिकरण की गणितीय व्याख्या (Mathematical Treatment of Constructive and Destructive Interference) – माना कि दो तरंगें धनात्मक x - दिशा में v वेग से संचारित होती है एवं अध्यारोपित होती हैं। दोनों के मध्य कलान्तर ϕ है— $$y_1 = a_1 \sin(wt - kx)$$ (6.10) $$y_2 = a_2 \sin(wt - kx - \phi)$$ (6.11) अध्यारोपित तरंग का परिणामी विस्थापन $y = y_1 + y_2$ $$y = R \sin (wt - kx - \theta)$$ (6.12) ਯहाਂ $$R = \sqrt{a_1^2 + a_2^2 + 2a_1a_2 \cos \phi}$$ (6.13) $$\nabla \vec{a} \tan \theta = \frac{a_2}{a_1 + a_2 \cos \phi} \tag{6.14}$$ एवं परिणामी तीव्रता $I = I_1 + I_2 + 2\sqrt{I_1I_2} \cdot \text{Cos } \phi$ (6.15) जहां $I_1 = Ka_1^2$ तथा $I_2 = Ka_2^2$ संपोषी व्यतिकरण में कलान्तर $\phi=0,\,2\pi,\,4\pi$... होता है अतः परिणामी आयाम $$R = a_1 + a_2$$ एवं तीव्रता $I = \left(\sqrt{I_1} + \sqrt{I_2}\right)^2$ यदि दोनों तरंगों के आयाम समान हैं तो $R_{\text{max}} \! = \! 2a$ तथा $I_{_1} \! = I_{_2} = I_{_0} = a^2$ $$I_{\text{max}} = (2a)^2 = (a+a)^2 = 4a^2 = 4I_0$$ (6.16) विनाशी व्यतिकरण में कलान्तर $\phi=\pi, 3\pi, 5\pi$... होता है अतः $\cos\phi=-1$ $$\therefore R = (a_1 - a_2)$$ तथा परिणामी तीव्रता $I = I_1 + I_2 - 2\sqrt{I_1, I_2}$ यदि दोनों तरंगों के आयाम समान है तो $a_1 = a_2 = a$ एवं $I_1 = I_2 = I_0 = a^2$ इसलिए $$R_{\min} = 0;$$ $I_{\min} = \left(\sqrt{I_1} - \sqrt{I_2}\right)^2$ $$= \left(\sqrt{I_0} - \sqrt{I_0}\right)^2 = 0$$ (6.17) व्यतिकरण में औसत तीव्रता दोनों तरंगों की
तीव्रताओं के योग के बराबर होती है। अर्थात् $ar{I}=I_1+I_2$ इस विवेचना से यह ज्ञात होता है कि व्यतिकरण प्रतिरूप में संपोषी व्यतिकरण होने पर उच्चिष्ठ पर अधिकतम ऊर्जा होती है तथा निम्निष्ठ पर ऊर्जा विलुप्त हो जाती है। अतः इस प्रक्रिया में ऊर्जा का क्षय नहीं होता है वरन् ऊर्जा का पुनर्वितरण होता है। कला संबद्ध स्रोत (Coherent Sources) — दो स्रोतों से उत्पन्न तरंगों के मध्य कलान्तर अलग—अलग समय पर भी समान रहता है तो इन्हें कला संबद्ध स्रोत कहते हैं। दो नगाड़ों को स्वतंत्र रूप से बजाने पर उत्पन्न ध्विन तरंगें कला असंबद्ध स्रोत है। सूर्य, मोमबत्ती, बल्ब द्वारा उत्सर्जित प्रकाश भी कला असंबद्ध या स्वतंत्र कला में होता है। अतः सामान्यतः प्रकाश एवं ध्विन तरंगों के स्रोत स्वतंत्र कला वाले होते हैं। एकवर्णी प्रकाश स्रोतों को प्रयोगशाला में कार्य करने के लिए कला संबद्ध स्रोतों के नजदीक माना जा सकता है। यद्यिप इन स्रोतों से उत्पन्न तरंगमाला काफी लम्बी लेकिन सीमित होती है। आदर्श कला संबद्ध स्रोत से उत्पन्न तरंगमाला का विस्तार अपिनित होता है। यथार्थ में प्रत्येक कला संबद्ध स्रोत से उत्पन्न तरंगमाला का विस्तार परिमित लेकिन काफी अधिक होता है। उदाहरणार्थ सोडियम प्रकाश स्रोत से उत्पन्न एकवर्णी तरंगमाला का विस्तार, लेसर से उत्पन्न तरंगमाला के विस्तार से कम होता है यद्यिप दोनों ही कला संबद्ध स्रोत है। उल्लेखनीय है कि कला संबद्धता की व्याख्या सामयिक एवं स्थैतिक आधार पर भी की जाती है इसका अध्ययन आप आगे की कक्षाओं में करेंगे। #### व्यतिकरण का प्रायोगिक सत्यापन (Experimental Verification of Interference) व्यतिकरण को यंग के द्विस्लिट एवं क्विंके नली वाले प्रयोगों से समझा जा सकता है। यहां पर हम क्विंके नली के प्रयोग का अध्ययन करेंगे। क्विंके नली के प्रयोग में क्विंके ने एक विशेष प्रकार की नली बनाकर व्यतिकरण को समझाया। जैसा कि चित्र 6.13 में दर्शाया गया है। लगभग 4 सेमी व्यास की दो नलियों A एवं B को एक दूसरे में समायोजित किया जा सकता है। A को B के अन्दर खिसकाया जा सकता है। खिसकाने से उत्पन्न विस्थापन स्केल की सहायता से मापा जा सकता है। P एवं Q दो खुले हुए भाग हैं। P पर उच्च आवृत्ति की ध्वनि उत्पन्न की जाती है। यह ध्वनि दो भागों में विभक्त हो जाती है। यह ध्वनि मार्ग PAQ या PBQ तय करके बिन्दु Q पर स्थित द्वार से बाहर निकलती है। बिन्दु Q पर सुग्राही ज्वाला रखी जाती है। जब दोनों भाग PAQ एवं PBQ की लम्बाई बराबर है तो विभक्त तरंगों में पथान्तर nλ होता है। फलस्वरूप दोनों तरंगें संपोषी व्यतिकरण की अवस्था उत्पन्न करती हैं इस दशा में ज्वाला बड़ी चित्र 6.13 तेजी से कम्पित होती है। अब यदि A को बाहर की इस प्रकार सरकाते हैं कि दोनों निलयों में पथान्तर $x=\frac{\lambda}{2},\frac{3\lambda}{2},\frac{5\lambda}{2}...$ $(2+n)\frac{\lambda}{2}$ हो जाता है। इस दशा में विनाशी व्यतिकरण की स्थिति उत्पन्न होती है तो ज्वाला में कोई हलचल उत्पन्न नहीं होती है। दो क्रमागत संपोषी या विनाशी व्यतिकरण की स्थितियों के लिए नली \mathbf{B} की स्थिति स्केल से ज्ञात करके विस्थापन को दोगुना करके तरंगदैर्ध्य λ ज्ञात कर लेते हैं। इससे आवृत्ति \mathbf{v}/λ भी ज्ञात की जा सकती है जहां \mathbf{v} ध्विन का वायु में वेग है। विस्पन्द (Beats) — जब दो लगभग समान आवृत्ति और आयाम की प्रगामी तरंगें एक ही दिशा में चलकर अध्यारोपित होती हैं तो किसी निश्चित बिन्दु पर ध्विन की तीव्रता क्रमानुसार कम या अधिक होती है इस घटना को विस्पंद कहते हैं। यह व्यतिकरण की विशेष अवस्था है। विस्पंदकाल (T) – दो क्रमागत विस्पन्दों के मध्य समयान्तराल को विस्पन्दकाल कहते हैं एवं प्रतिसैकण्ड विस्पन्दों की संख्या को विस्पन्द आवृत्ति (N) कहते हैं। # विस्पंद आवृत्ति का परिकलन (Calculation of Beats Frequency) माना कि दो लगभग समान आवृत्ति वाले स्विरत्र द्विभुजों को एक साथ बजाया जाता है। परिणामी प्रभाव ज्ञात करने के लिए अध्यारोपण के सिद्धान्त की सहायता लेते हैं। चित्र 6.14(a) में दो तरंगें जिनकी आवृत्तियां लगभग बराबर है, को प्रदर्शित किया गया है। एक तरंग को बिन्दुवत रेखा एवं दूसरी को सतत रेखा से दर्शाया गया है। 6.14 (b) में अध्यारोपित तरंग दर्शायी गयी है। अध्यारोपित तरंग को मॉडुलित तरंग भी कहा जाता है। चित्र से यह स्पष्ट है कि मॉडुलित तरंग की आवृत्ति परिवर्तित हो गयी है। माना ध्विन उत्पादक स्रोत A की आवृत्ति n_i एवं B की n_i है। एवं $n_1 > n_2$ है । यदि t समय में B स्रोत x कम्पन्न उत्पन्न करता है A इतने ही समय में (x+1) कम्पन्न उत्पन्न करेगा । अतः विस्पन्द का आवर्तकाल $$T = \frac{x+1}{n_1} = \frac{x}{n_2} \tag{6.18}$$ $\therefore n_2(x+1) = n_1x$ या $n_2 = (n_1 - n_2)x$ अतः कुल कम्पन्न $$x = \frac{n_2}{n_1 - n_2}$$ (6.19) तथा विस्पंदों का आवर्तकालः $$T = \frac{x}{n_2} = \frac{n_2}{(n_1 - n_2) \times n_2} = \frac{1}{(n_1 - n_2)}$$ (6.20) $$\overline{\mathbf{q}} \quad \mathbf{T} = \frac{\mathbf{x} + \mathbf{1}}{\mathbf{n}_1} = \frac{1}{\mathbf{n}_1} \left(\frac{\mathbf{n}_2}{\mathbf{n}_1 - \mathbf{n}_2} + 1 \right) = \frac{1}{\mathbf{n}_1} \left(\frac{\mathbf{n}_2 + \mathbf{n}_1 - \mathbf{n}_2}{\mathbf{n}_1 - \mathbf{n}_2} \right)$$ $$T = \frac{1}{n_1 - n_2}$$ (6.21) इसी प्रकार विस्पंद आवृत्ति $n = \frac{1}{T} = n_1 - n_2$ उदाहरण 6.4 — दो ध्वनि स्रोत जिनकी आवृत्तियां 512 हर्टज एवं 516 हर्टज है। दोनों को एक साथ कम्पित किया जाता है तो दो विस्पंदों के मध्य समयान्तराल ज्ञात कीजिये। $$T = \frac{1}{n_1 - n_2} = \frac{1}{516 - 512} = \frac{1}{4} = 0.25 \ \overrightarrow{t}$$. विस्पंदों का गणितीय विश्लेषण करने पर हम पाते है कि यदि स्रोतों से उत्पन्न तरंगों के विस्थापन यदि $y_1=a \sin 2\pi \, n_1 t$ तथा $y_2=a \sin 2\pi \, n_2 t$ से व्यक्त किये जाये तो परिणामी विस्थापन $$y = R \sin [2\pi n_2 t + \theta]$$ होता है। जहां $R = \sqrt{a^2 + b^2 + 2ab \cos \{2\pi\Delta n.t\}}$ (6.22) है तथा $$\theta = \tan^{-1} \left(\frac{a \cos 2\pi \Delta n t + b}{a \sin 2\pi \Delta n t} \right)$$ (6.23) यहाँ Δn दोनों आवृतियों का अन्तर है। फलस्वरूप परिणामी तीव्रता का मान $I_1=Ka^2, I_2=Kb^2$ तथा $I=I_1+I_2+2\sqrt{1}_1\sqrt{1}_2 \, Cos \, (2\pi\Delta n.t)$ (6.24) विस्पंदों की तीव्रता की व्याख्या इन सूत्रों से आसानी से की जा सकती है— जब $$t=0$$; $R=a+b$ एवं $I=\left(\sqrt{I_1}+\sqrt{I_2}\right)^2$ (अधिकतम) $$(6.25)$$ $$t = \frac{1}{2\Delta n}; R = a - b \text{ एवं } I = \left(\sqrt{I_1} - \sqrt{I_2}\right)^2 \text{ (न्यूनतम)}$$ (6.26 $$t = \frac{2}{2\Delta n} R = a + b \ \forall \vec{q} \ I = \left(\sqrt{I_1} + \sqrt{I_2}\right)^2 (3)$$ (अधिकतम) $$(6.27)$$ $$t = \frac{3}{2\Delta n} R = a - b \ \text{एवं} \ I = \left(\sqrt{I_1} + \sqrt{I_2}\right)^2 \left(\text{न्यूनतम}\right)$$ (6.28) अर्थात् $$t=0,\frac{2}{2\Delta n},\;\frac{4}{2\Delta n},\frac{6}{2\Delta n}$$... पर आयाम एवं तीव्रता अधिकतम तथा $t=\frac{1}{2\Delta n},\, \frac{3}{2\Delta n},\, \frac{5}{2\Delta n}$... पर आयाम एवं तीव्रता न्यूनतम होती है। दो क्रमागत उच्चिष्ठों एवं निम्ष्ठों के मध्य अन्तराल $\frac{1}{\Delta n}$ होगा। #### अप्रगामी तरंगें (Stationary Waves) जब किसी माध्यम में समान आवृत्ति एवं आयाम की दो तरंगें परस्पर विपरीत दिशा में समान गति से एक ही पथ पर संचरित होकर अध्यारोपित है तो परिणामस्वरूप नवीन तरंग का निर्माण होता है। इस नवीन तरंग द्वारा विक्षोभ तथा ऊर्जा का किसी भी दिशा में संचरण नहीं होता है। इस प्रकार की तरंग को अप्रगामी तरंग कहते हैं। अप्रगामी तरंगें दो प्रकार की होती हैं— (i) अनुदेध्य अप्रगामी तरंगें (Longitudinal stationary waves)। अनुदैर्ध्य अप्रगामी तरंगें — जब दो समान आवृत्ति एवं समान आयाम की अनुदैर्ध्य तरंगें एक ही सरल रेखा पर विपरीत दिशा में गति करती हुई अध्यारोपित होती हैं तो माध्यम में इनके अध्यारोपण से अनुदैर्ध्य अप्रगामी तरंगें बनती हैं। उदाहरणार्ध, वायुस्तम्भों में बनने वाली अप्रगामी तरंगें। अनुप्रस्थ अप्रगामी तरंगें — जब दो समान आवृत्ति एवं समान आयाम की अनुप्रस्थ तरंगें एक ही सरल रेखा पर विपरीत दिशा में गित करती हुई अध्यारोपित होती हैं तो माध्यम में इनके अध्यारोपण से अनुप्रस्थ अप्रगामी तरंगें बनती हैं। उदाहरणार्थ स्वरमापी तार वाले वाद्य यंत्र, मेल्डीज प्रयोग, इत्यादि में बनने वाली तरंगें। #### अप्रगामी तरंगों का निर्माण (Formation of Stationary Waves) माना (चित्र 6.15 के अनुसार) किसी बद्ध माध्यम में एक प्रगामी तरंग बांयी ओर से दांयी ओर संचरित हो रही है तथा दूसरी परावर्तित तरंग दांयी ओर से बांयी ओर संचरित हो रही है। इन्हें क्रमशः टूटी रेखा एवं सतत रेखा से दर्शाया गया है। अधिकतम आयाम की सतत रेखा से दर्शायी तरंगें परिणामी तरंगों को दर्शाती हैं। गरम्भ में t = 0 स्थिति में (चित्र अ) दोनों तरंगें प्रत्येक बिन्दु पर समान कला में है अर्थात् दोनों तरंगों के शृंग एवं गर्त समान स्थिति में है। परिणामी तरंग का विस्थापन दोनों तरंगों द्वारा उत्पन्न अलग—अलग विस्थापनों के योग के बराबर होगा। परिणामी तरंग अधिकतम आयाम वाली मोटी रेखा द्वारा प्रदर्शित की गई है। बिन्दु N_1 , N_2 , N_3 पर विस्थापन शून्य होता है, ये निस्पन्द कहलाते हैं। बिन्दु A_1 , A_2 पर विस्थापन अधिकतम होता है, ये प्रस्पन्द कहलाते हैं। प्रत्येक तरंग का आवर्तकाल T एवं तरंगदैर्ध्य λ समान है। - 2. जब $t=\frac{T}{4}$, दोनों तरंगें $\frac{\lambda}{4}$ दूरी पर अपनी—अपनी दिशाओं में बढ़ जाती है। इस क्षण पर तरंगों के प्रत्येक बिन्दु पर विस्थापन बराबर एवं विपरीत दिशा में है अतः परिणामी विस्थापन एक सीधी (गाढ़ी) रेखा होगी (चित्र 6.15 (ब))। - 3. जब $t=\frac{T}{2}$, दोनों तरंगें $\frac{\lambda}{2}$ दूरी पर अपनी—अपनी दिशाओं में बढ़ जाती है तथा दोनों तरंगों के शृंग एवं गर्त समान दिशा में है (चित्र 6.15 (स)। - 4. जब $t=\frac{3T}{4}$, दोनों तरंगें (i) की स्थिति से $\frac{3\lambda}{4}$ दूरी पर अपनी—अपनी दिशाओं में बढ़ती है तथा प्रत्येक बिन्दु पर विस्थापन बराबर एवं विपरीत होने के कारण परिणाम सीधी (मोटी) रेखा है। परन्तु यह स्थिति की स्थिति $\frac{T}{4}$ से विपरीत है (चित्र 6.15 (द))। - 5. जब t=T, प्रत्येक तरंग λ दूरी विस्थापित होती है तथा यह स्थिति t=0 के तुल्य है। इसी क्रम की बार—बार पुनरावृत्ति होती है। अप्रगामी तरंग की तरंगदैध्य में कोई परिवर्तन नहीं होता है। # अप्रगामी तरंगों के गुणधर्म (Properties of Stationary Waves) 1. माध्यम के कुछ कण सदैव माध्य स्थिति में होते हैं अर्थात् उनमें स्पन्दन नहीं होता है जैसे N_1, N_2 व N_3 इत्यादि । ऐसे बिन्दुओं को निस्पन्द कहते हैं (चित्र 6.16(a)) । - 2. इन निस्पन्दों की स्थितियों के मध्य कणों के कम्पनों का आयाम अधिकतम होता है। अर्थात् स्पन्दन अधिकतम होता है जैसे \mathbf{A}_1 एवं \mathbf{A}_2 । ऐसे बिन्दुओं को प्रस्पन्द कहते हैं (चित्र 6.16(b))। - 3. दो क्रमागत प्रस्पन्दों एवं दो क्रमागत निस्पन्दों के बीच की दूरी $\lambda/2$ तथा एक प्रस्पन्द एवं क्रमागत निस्पन्द के बीच की दूरी $\lambda/4$ होती है। - निस्पन्दों की स्थिति के अतिरिक्त सभी बिन्दुओं पर कण सरल आवर्त कम्पन करते हैं। - दो क्रमागत निस्पन्दों के बीच सभी कण समान कला में परन्तु भिन्न-भिन्न आयामों से कम्पन करते हैं। - 6. निस्पन्दों के दोनों ओर के निकटतम कण विपरीत कला में होते हैं। - 7. सभी कण अपनी माध्य स्थिति से एक साथ कम्पन प्रारम्भ करते हैं परन्तु उनके वेग भिन्न होते हैं। - 8.
अप्रगामी तरंगों में विक्षोभ संचरण नहीं होने के कारण ऊर्जा का स्थानान्तरण नहीं होता है। - निस्पन्दों पर माध्यम के घनत्व एवं दाब में परिवर्तन महत्तम होते हैं। तथा तरंग वक्र का ढाल अधिकतम होता है। - 10. प्रस्पन्दों पर घनत्व एवं दाब परिवर्तन शून्य होती है तथा प्रस्पन्दों पर तरंग वक्र का ढाल शून्य होता है। ### अप्रगामी तरंगों की गणितीय व्याख्या # (Mathematical Treatment of Stationary Waves) माना कोई तरंग धनात्मक x-अक्ष की अनुदिश v वेग से संचिरत हो रही है। तरंग का अधिकतम आयाम a, तरंगदैर्ध्य λ एवं आवर्तकाल T है। इसे गणितीय रूप में निम्न व्यंजक से लिखते हैं : $y_1 = a \sin{(wt - kx)}$ (6.29) यदि तरंग का परावर्तन किसी सघन माध्यम से होता है तो आपितत एवं परावर्तित तरंग के मध्य π कलान्तर हो जाता है। परावर्तित तरंग का व्यंजक होगा : $$y_2 = a \sin(wt + kx)$$ (6.30) यदि तरंग का किसी विरल माध्यम से परावर्तन होता है तो यह x-अक्ष के अनुदिश ऋणात्मक दिशा में संचरित होने लगती है। तब तरंग का व्यंजक होगा: $$y_2 = a \sin(wt - kx)$$ (6.31) यहां हम मानते हैं कि परावर्तन के ऊर्जा हानि नगण्य होती है अतः माध्यम की परिसीमा पर समान आयाम की तरंगें परावर्तित होती हैं। अध्यारोपण से उत्पन्न तरंग का परिणामी आयाम : $$y = y_1 + y_2$$ \therefore y = a sin (wt - kx) + a sin (wt + kx) हल करने पर $y = R \cos wt$ जहां $R = -2a \sin kx$ (6.32) अब हम परिणामी आयाम की विभिन्न परिस्थितियों में व्याख्या करते हैं। #### कण की स्थिति के सापेक्ष परितर्वन - (i) यदि $x = 0, \frac{\lambda}{2}, \frac{2\lambda}{2}, \frac{3\lambda}{2} ... \frac{n\lambda}{2}$ जहां n = 0, 1, 2, 3... तब $kx = n\pi$ अतः इन बिन्दुओं पर कण का विस्थापन एवं आयाम शून्य होते हैं। - (ii) यदि E आयतन प्रत्यास्थता गुणांक है तो इन बिन्दुओं पर दाब $\Delta P = -2a \, \text{Ek} \cos wt \cos kx$ में परिवर्तन अधिकतम होता है। इन बिन्दुओं को निस्पंद कहते हैं तथा दो क्रमागत निस्पंदों के बीच की दूरी $=\frac{\lambda}{2}$ होती है। (iii) यदि $$x=\frac{\lambda}{4},\frac{3\lambda}{4},\frac{5\lambda}{4}...(2n+1)\,\frac{\lambda}{4}\,$$ जहां $n=0,\,1,\,2,\,3$ तब $kx=\frac{2\pi}{\lambda}\,x=(2n+1)\,\frac{\pi}{2}$ इन मानों के लिए $\sin kx = \sin \frac{2n+\pi}{2} = \pm 1$ एवं $\cos kx$ = 0 होता है। इन बिन्दुओं पर कण का विस्थापन, आयाम एवं वेग महत्तम होता है तथा दाब में परिवर्तन न्यून होता है। इन्हें प्रस्पन्द कहते हैं। अतः दो क्रमागत प्रस्पंदों के बीच की दूरी $= \lambda/2$ तथा एक निस्पंद एवं प्रस्पंद के बीच की दूरी $\lambda/4$ कण की अवस्था में #### समय के सापेक्ष परिवर्तन - (i) यदि $\omega t = 0, \pi, 2\pi, ... n\pi$ अतः $t = \frac{n\pi}{\omega} = \frac{nT}{2}$ तो $\sin \omega t$ = 0 एवं $\cos \omega t = \pm 1$ अतः कण का परिणामी विस्थापन एवं विकृति में परिवर्तन अधिकतम तथा कण का वेग शून्य होता है अतः इस समय सम्पूर्ण ऊर्जा स्थितिज ऊर्जा के रूप में होती है तथा गतिज ऊर्जा शून्य होती है। - (ii) यदि $\omega t = \frac{\pi}{2}, \ \frac{3\pi}{2}, \frac{5\pi}{2} \dots \ (2n+1)\frac{\pi}{2}$ या $t = \frac{(2n+1)\pi}{\omega} = (2n+1) \frac{T}{4} \quad \text{तो} \quad \therefore \sin \omega t = \pm 1 \, \forall \vec{a}$ $\cos \omega t = 0$ । इन बिन्दुओं पर परिणामी विस्थापन, दाब एवं विकृति में परिवर्तन शून्य होता है जबिक वेग v अधिकतम होता है इसिलए इस समय पर सम्पूर्ण ऊर्जा गतिज ऊर्जा के रूप में होती है। यह ध्यान देने योग्य है कि क्रमागत निस्पंदों या प्रस्पंदों के बीच की दूरी $\lambda/2$ है। निस्पंद पर गतिज ऊर्जा शून्य एवं प्रस्पंदों पर गतिज ऊर्जा अधिकतम है अतः निस्पंद पर कण गति नहीं करते हैं। अतः ऊर्जा स्थानान्तरित नहीं हो सकती है। ### तनी हुई डोरी में अप्रगामी तरंगें (Stationary Waves in Stretched String) चित्र 6.17 के अनुसार, डोरी के दोनों सिरे बंधे होने पर डोरी को मध्य से लम्बवत् दिशा में कुछ खींच कर छोड़ दिया जाता है तो इसके सिरों की ओर — Mg अनुप्रस्थ प्रगामी तरंगें चित्र 6.17 चलने लगती हैं। इन तरंगों का वेग - $$v = \sqrt{\frac{T}{m}} \tag{6.33}$$ जहां T = Mg तनाव तथा m तार की एकांक लम्बाई का द्रव्यमान है। ये तरंगें डोरी के दृढ़ सिरों से परावर्तित होती है परिणामस्वरूप आपितत एवं परावर्तित तरंगों के अध्यारोपण से डोरी में अनुप्रस्थ अप्रगामी तरंगें बनती हैं। डोरी के दोनों सिरे कसे हुए होने के कारण वे सदैव निस्पंद होते हैं तथा मध्य में प्रस्पंद होता है। इस अवस्था में डोरी न्यूनतम आवृत्ति का स्वर उत्पन्न करती है, जिसे मूल स्वर कहते हैं। दृढ़ सिरे दो सरकने वाले पैने क्षुरधारों पर लगाकर प्राप्त करते हैं। अतः $$l = \frac{\lambda}{2}$$ या $\lambda = 2l$ (6.34) ∴ मूल स्वर की आवृत्ति $$N = \frac{v}{\lambda} = \frac{v}{2l}$$ (6.35) समीकरण (6.33) से, $$N = \frac{1}{2l} \sqrt{\frac{T}{m}}$$ (6.36) यदि डोरी के पदार्थ का घनत्व d तथा डोरी की त्रिज्या r हो तो, $m = \pi r^2 d$ तथा T = Mg का मान समीकरण (6.36) में रखने पर, $$N = \frac{1}{2l} \sqrt{\frac{Mg}{\pi r^2 d}}$$ उदाहरण 6.5 — एक तनी हुई डोरी 256 हर्ट्ज की आवृत्ति से कम्पन करती है। यदि डोरी में तनाव एक चौथाई, लम्बाई आधी और व्यास दोगुना कर दिया जाये तो डोरी की आवृत्ति क्या होगी? **हल** — प्रश्नानुसार, तनी हुई डोरी की आवृत्ति N=256 हर्ट्ज, डोरी में तनाव $T^{'}=\frac{T}{4}$, डोरी की लम्बाई $l^{'}=\frac{l}{2}$ एवं डोरी का व्यास D'=2D या डोरी की त्रिज्या r'=2r हम जानते हैं कि किसी डोरी में कम्पनों की आवृत्ति $$N = \frac{1}{2lr} \sqrt{\frac{T}{\pi d}}$$ माना नयी आवृत्ति N' है, तो $$N' = \frac{1}{2l'r'} \sqrt{\frac{T'}{\pi d}}$$ या $N' = \frac{1}{2(l/2) \times 2r} \sqrt{\frac{T}{4\pi d}}$ ਧਾ N' = $$\frac{1}{2 \times 2l.r} \sqrt{\frac{T}{\pi d}}$$ या $$N' = \frac{N}{2}$$ या $N' = \frac{256}{2}$ अतः $N' = 128$ हर्ट्ज # तनी हुई डोरी के मूल स्वरक एवं अधिस्वरक चित्र 6.18(i) के अनुसार, यिद सिरों पर निस्पन्दों N_1 एवं N_2 के बीच एक प्रस्पन्द बनता है। तब डोरी के कम्पनों की यह विधा 'मूल विधा' कहलाती है, इस विधा में आवृत्ति 'मूल आवृत्ति' कहलाती है। यह न्यूनतम आवृत्ति होती है, इसे 'प्रथम संनादी' (First harmonic) कहते हैं। डोरी में उत्पन्न इस स्वरक को 'मूल स्वरक' (Fundamental tone) भी कहते हैं। इस स्थिति में, $$l = \frac{\lambda_1}{2}$$ $$1T \lambda_1 = 2l$$ अतः आवृत्ति $$N_1 = \frac{v}{\lambda_1}$$ या $$N_1 = \frac{1}{2l} \sqrt{\frac{T}{m}}$$ (6.37) जब डोरी के मध्य बिन्दु को हल्का स्पर्श करते हुए इसके एक सिरे से 1/4 दूरी पर थोड़ा खींच कर छोड़ दें तो डोरी दो भागों में कम्पन करती है (चित्र 6.18(ii))। डोरी के कम्पनों की इस विधा को 'द्वितीय संनादी' (second harmonic) या 'प्रथम अधिस्वरक' (First overtone) कहते हैं। इस स्थिति में, $$l = \frac{\lambda_2}{2} + \frac{\lambda_2}{2} = \frac{2\lambda_2}{2}$$ या $\lambda_2 = \frac{2l}{2}$ अतः आवृत्ति $N_2 = \frac{v}{\lambda_2}$ या $N_2 = \frac{2}{2l}\sqrt{\frac{T}{m}} = 2N_1$ इस दशा में उत्पन्न स्वरक की आवृत्ति मूल स्वरक की आवृत्ति से दोगुनी होती है। जब डोरी तीन भागों (चित्र 6.18(iii)) में कम्पन्न करती है तब उसके कम्पन्नों की यह विधा 'तृतीय संनादी' (third harmonic) या 'द्वितीय अधिस्वरक' (second overtone) कहलाती है। इस स्थिति में, $$l = \frac{\lambda_3}{2} + \frac{\lambda_3}{2} + \frac{\lambda_3}{2} = \frac{3\lambda_3}{2}$$ या $\lambda_3 = \frac{2l}{3}$ (6.39) अतः आवृत्ति $$N_3 = \frac{v}{\lambda_3}$$ या $N_3 = \frac{3}{2l} \sqrt{\frac{T}{m}} = 3N_1$ (6.40) इस दशा में उत्पन्न स्वरक की आवृत्ति मूल आवृत्ति की तीन गुनी होती है। इसी प्रकार यदि डोरी को चार, पाँच खण्डों में कम्पित कराया जाये तो उच्च अधिस्वरक प्राप्त किये जा सकते हैं। $$N_1:N_2:N_3:.....:Np=1:2:3.....:P$$ (6.41) अर्थात् तनी हुई डोरी में सम एवं विषम दोनों प्रकार के संनादी, उत्पन्न होते हैं। यदि डोरी P खण्डों में कम्पन्न करे तो डोरी की आवृत्ति, $$N_{P} = \frac{P}{2l} \sqrt{\frac{T}{m}} \tag{6.42}$$ यदि डोरी के पदार्थ को घनत्व d एवं त्रिज्या r है तो $$N_{P} = \frac{P}{2l} \sqrt{\frac{T}{\pi r^{2} d}} \text{ at } N_{P} = \frac{P}{2l r} \sqrt{\frac{T}{\pi r d}}$$ (6.43) #### डोरी में अनुप्रस्थ कम्पन्नों के नियम (Laws of Transverse Vibrations in a String) डोरी के अनुप्रस्थ कम्पनों के निम्न तीन नियम होते हैं। लम्बाई का नियम — यदि डोरी में तनाव T एवं एकांक लम्बाई का द्रव्यमान m स्थिर रहे तो कम्पित डोरी की आवृत्ति उसकी लम्बाई के व्युत्क्रमनुपाती होती है अर्थात् N $$\alpha \frac{1}{l}$$ (6.44) या $N_1 =$ नियतांक या $N_1 I_1 = N_2 I_2 = N_3 I_3 =$ नियतांक तनाव का नियम — यिद डोरी की लम्बाई 1 तथा एकांक लम्बाई का द्रव्यमान m स्थिर रहे तो कम्पित डोरी की आवृत्ति तनाव T के वर्गमूल के समानुपाती होती हैं। अर्थात् Nα√T या $$\frac{N}{\sqrt{T}} =$$ नियतांक या $\frac{N_1}{\sqrt{T_1}} = \frac{N_2}{\sqrt{T_2}} = \frac{N_3}{\sqrt{T_3}} =$ नियतांक 3. द्रव्यमान का नियम — यदि डोरी की लम्बाई L तथा तनाव T स्थिर रहे तो कम्पित डोरी की आवृत्ति उसके एकांक द्रव्यमान के वर्गमूल के व्युत्क्रमानुपाती होती है: अर्थात् N $$\alpha \frac{1}{\sqrt{m}}$$ (6.45) या $$N\sqrt{m} =$$ नियतांक (6.46) या $$N_1 \sqrt{m_1} = N_2 \sqrt{m_2} = N_3 \sqrt{m_3} =$$ नियतांक (6.47) 4. त्रिज्या का नियम – यिद डोरी की लम्बाई L, तनाव T एवं घनत्व स्थिर रहे तो कम्पित डोरी की आवृत्ति उसकी त्रिज्या के व्युत्क्रमानुपाती होती है: अर्थात् $$N\alpha \frac{1}{r}$$ (6.48) या $$N_r =$$ नियतांक या $N_1 r_1 = N_2 r_2 = N_3 r_3 =$ नियतांक ...(6.49 5. घनत्व का नियम – यदि डोरी की लम्बाई I, तनाव T एवं त्रिज्या r स्थिर रहे तो कम्पित डोरी की आवृत्ति उसके घनत्व d के वर्गमूल के व्युक्रमानुपाती होती है : अर्थात् N $$\alpha \frac{1}{\sqrt{d}}$$ (6.50) या $$N\sqrt{d} =$$ नियतांक (6.51) या $$N_1 \sqrt{d_1} = N_2 \sqrt{d_2} = N_3 \sqrt{d_3} =$$ नियतांक (6.52) 6. मेल्डी (Melde's) का नियम – नियत लम्बाई की कम्पन्न करती हुई डोरी के कम्पन्न के पाशों (लूपों) की संख्या तथा डोरी के तनाव के वर्गमूल का गुणनफल नियत रहता है। अर्थात $$P\sqrt{T} =$$ नियतांक (6.53) तनी हुई डोरी के अनुप्रस्थ कम्पनों का प्रायोगिक सत्यापन (Experimental Verification of Transverse Vibrations in a Stretched String) स्वरमापी एवं मेल्डी का प्रयोग किसी तनी हुई डोरी में उत्पन्न अनुप्रस्थ तरंगों के प्रदर्शन की सक्षम विधियाँ हैं। इनसे अज्ञात स्वरित्र की आवृत्ति ज्ञात की जा सकती है। यहां हम स्वरमापी एवं मेल्डी के प्रयोग का अध्ययन करेंगे। ### स्वरमापी (Sonometer) चित्र 6.19 के अनुसार, इस युक्ति में लकड़ी का एक खोखला बक्सा होता है। जिसके एक किनारे पर खूंटी (Peg) तथा दूसरे किनारे पर घर्षण रहित घिरनी लगी होती है। स्टील के पतले तार को एक ओर खूंटी से कस देते हैं तथा दूसरी ओर घिरनी पर होकर लटका देते हैं। इस दूसरे सिरे पर हैंगर लटका कर उस पर बाट रखकर तार में तनाव उत्पन्न किया जाता है। \mathbf{B}_1 एवं \mathbf{B}_2 दो सेतु होते हैं जिनके ऊपरी धार पर तार टिक जाता है। बाक्स की दीवार में कुछ छेद बने होते हैं जिनके द्वारा अन्दर की वायु का संबंध बाहर के वायुमण्डल से रहता है। तार को किम्पत कराने पर \mathbf{B}_1 एवं \mathbf{B}_2 बिन्दु पर हमेशा निस्पन्द बनते हैं तथा इन्हों के बीच अनुप्रस्थ अप्रगामी तरंगों का निर्माण होता है। सेतुओं को
खिसकाया जा सकता है जिससे किम्पत तार की लम्बाई बदली जा सकती है। सेतुओं के बीच की लम्बाई प्रभावी लम्बाई मानी जाती है जिसे बाक्स की लम्बाई के सहारे लगे मीटर पैमाने की सहायता से ज्ञात किया जा सकता है। ### स्वरमापी द्वारा किसी स्वरित्र की आवृत्ति ज्ञात करना (To Determine Frequency of Tuning Fix Using Sonometer) सर्वप्रथम स्वरमापी के हैंगर पर कुछ बाट रखकर एक कम्पित स्वरित्र स्वरमापी के पास लाते हैं जिससे तार में प्रणोदित कम्पन उत्पन्न होते हैं। अब सेतुओं के बीच की दूरी बदलते जाते हैं जिससे कम्पित तार की लम्बाई बदलती जाती है एवं तार की प्राकृतिक आवृत्ति बदल जाती है। जब तार की प्राकृतिक आवृत्ति स्वरित्र की आवृत्ति के बराबर हो जाती है तब तार में अधिकतम आयाम के कम्पन उत्पन्न होते हैं। इस स्थिति में स्वरमापी में तीव्रतम आवाज उत्पन्न होती है तथा सेतुओं के बीच तार पर रखा राइडर (कागज का टुकड़ा) R गिर जाता है। यही अनुनाद की स्थिति है। यदि अनुनाद की अवस्था में तार पर लटके बाटों का द्रव्यमान M, सेतु B_1 एवं B_2 के बीच की दूरी I, तार की त्रिज्या I एवं तार के पदार्थ के घनत्व I ज्ञात हो तो स्विरत्र की आवृत्ति $$N = \frac{1}{2l} \sqrt{\frac{Mg}{\pi r^2 d}}$$ (6.54) उपयुक्त मान रखकर N का मान ज्ञात किया जाता है। ### मेल्डी का प्रयोग चित्र 6.20 के अनुसार, मेल्डी के उपकरण में एक विद्युत पोषित स्विरेत्र होता है। स्विरेत्र की भुजाओं के बीच में एक विद्युत चुम्बक लगा रहता है जिसमें एक बैटरी द्वारा धारा प्रवाहित करते हैं। एक पेच तथा प्रत्यास्थ पत्ती की सहायता से विद्युत परिपथ को एक निश्चित आवृत्ति से खोला तथा बन्द किया जाता है जिससे स्विरेत्र कम्पन करने चित्र 6.20 लगता है। धारा प्रवाह से कुण्डली के अन्दर की क्रोड चुम्बिकत हो जाती है जिससे यह स्वरित्र की भुजाओं को आकर्षित करती है। भुजाओं के अन्दर की ओर विस्थापन से पत्ती और पेच में संबंध टूट जाता है जिससे धारा प्रवाह बन्द हो जाता है। अब क्रोड में विचुम्बकन से स्विरंत्र की भुजाएं अपनी स्थिति की ओर लौटती हैं। पुनः पत्ती पेच के सम्पर्क में आती है जिससे धारा प्रवाहित होने लगती है यह क्रिया बार—बार चलती रहती है जिसके कारण स्विरंत्र की भुजायें सतत् रूप से नियत आयाम से कम्पन करती हैं। स्विरंत्र की भुजायें सतत् रूप से नियत आयाम से कम्पन करती हैं। स्विरंत्र की भुजा से 2 मीटर लम्बी डोरी बंधी होती है जिसका दूसरा सिरा घर्षण रहित घिरनी के ऊपर से गुजरता है तथा इस सिरे से पलड़ा बंधा रहता है, जिसमें भार रखकर तनाव उत्पन्न किया जाता है। स्विरंत्र के कम्पन्न के कारण डोरी में तरंगें उत्पन्न होती हैं जो घिरनी से परावर्तित होती हैं। आपतित तथा परावर्तित तरंगों से डोरी में अप्रगामी तरंगें उत्पन्न हो जाती हैं और हमें स्पष्ट रूप से खण्ड बने हुए दिखाई देते हैं। विद्युत पोषित स्वरित्र द्वारा डोरी में कम्पन्न की दो व्यवस्थाएं संभव होती हैं: 1. अनुप्रस्थ व्यवस्था (Transverse arrangement) – इस व्यवस्था में स्वरित्र की कम्पनशील भुजाओं के विस्थापन डोरी के लम्बवत् होते हैं। डोरी में उत्पन्न कम्पन्नों की आवृत्ति स्वरित्र की आवृत्ति N के बराबर होती है (चित्र 6.21)। माना डोरी की लम्बाई *l*, डोरी का एकांक लम्बाई का द्रव्यमान m तनाव बल T और कम्पित अवस्था में यह P खण्डों में कम्पन कर रही हैं। यदि उत्पन्न तरंगों की तरंगदैध्र्य λ हो तो $$l = \frac{P\lambda_P}{2}$$ या $\lambda_P = \frac{2l}{P}$ (6.55) डोरी में अनुप्रस्थ तरंगों का वेग $v = \sqrt{\frac{T}{m}}$ \therefore डोरी के कम्पन्न की आवृत्ति N'= $\frac{P}{2l}\sqrt{\frac{T}{m}}$ चूंकि N=N' अतः आवृत्ति $N = \frac{P}{2l} \sqrt{\frac{T}{m}}$ अतः $$P\sqrt{T} = 2 N l \sqrt{m} =$$ नियतांक (6.56) यही मेल्डी का नियम है। 2. अनुदैर्घ्य व्यवस्था (Longitudinal arrangement) — चित्र 6.22 के अनुसार, इस व्यवस्था में डोरी के सापेक्ष स्वरित्र को इस प्रकार व्यवस्थित करते हैं कि कम्पनशील भुजाओं का विस्थापन डोरी के अनुदिश हो। इस व्यवस्था में आवृत्ति स्वरित्र की आवृत्ति की आधी रह जाती है। अर्थात् आवृत्ति $$N' = \frac{N}{2}$$ T mg चित्र 6.22 - (i) जब स्वरित्र की भुजायें, बाहर की ओर अधिकतम विस्थापन की स्थिति में हैं तो मूल विधा के मध्य बिन्दु पर अधिकतम विस्थापन एवं सिरों पर न्यूनतम विस्थापन होता है। - (ii) जब स्वरित्र की भुजायें अन्दर की ओर विस्थापित होती हैं तो डोरी तन कर सीधी हो जाती है। - (iii) स्वरित्र की भुजाओं के पुनः बाहर की ओर विस्थापन में डोरी ढीली हो जाती है। परन्तु अपने प्रारम्भिक वेग के कारण ऊपर की ओर विस्थापित हो जाती है। स्वरित्र की भुजाओं में अधिकतम विस्थापन अवस्था में मूल विधा में मध्य बिन्दु पर अधिकतम विस्थापन, अवस्था (i) के विपरीत दिशा में प्राप्त होती हैं। इस प्रकार स्वरित्र के एक कम्पन में डोरी केवल आधा कम्पन करती है। अर्थात् डोरी की आवृत्ति N', स्वरित्र की आवृत्ति, N, की आधी होती है। यदि T, / एवं m समान हो तथा डोरी P खण्डों में कम्पनन कर रही है तो डोरी पर अनुप्रस्थ तरंगों की आवृत्ति $N' = \frac{P'}{2l} \sqrt{\frac{T}{m}} = \frac{N}{2}$ अतः $$N = \frac{P'}{l} \sqrt{\frac{T}{m}}$$ या $P'\sqrt{T} = Nl\sqrt{m} =$ नियतांक उदाहरण 6.6 — मेल्डीज के प्रयोग में एक तार 3 खण्डों में कम्पन करता है जब उस पर 8 ग्राम भार का तनाव लगा होता है। उस पर कितना तनाव लगाया जाये जिससे वह 5 पाशों में कम्पन करें? **हल** — प्रश्नानुसार, P_1 = 3 खण्ड (पाश), T_1 = 8 ग्राम एवं P_2 = 5 खण्ड। हम जानते हैं कि मेल्डीज के नियम से P^2T = नियंताक। जहां पर P खण्डों की संख्या एवं T तनाव है। अतः $$P_1^2T_1=P_2^2T_2$$ या $T_2=\frac{P_1^2T_1}{P_2^2}$ या $T_2=\frac{3{ imes}3{ imes}8}{5{ imes}5}$ या $$T_2 = \frac{72}{25}$$ अतः T₂ = 2.88 ग्राम भार # वायुस्तम्भ में अप्रगामी तरंग (Stationary Waves in Air Column) जब कोई ध्विन का स्त्रोत वायुस्तम्भ के पास लाया जाता है तब वायुस्तम्भ में सम्पीड़न तथा विरलन उत्पन्न होते हैं। ये तरंगें वायुस्तम्भ के दूसरे सिरे से परावर्तित होती हैं। आपतित तरंगों एवं परावर्तित तरंगों के अध्यारोपण से अनुदैर्ध्य अप्रगामी तरंगों का निर्माण होता है। पाईप के बन्द सिरे पर वायु के कणों के कम्पन नहीं हो सकते हैं अतः इस सिरे पर सदैव निस्पन्द ही होना चाहिये। पाईप का खुला सिरा वायुमण्डल के सम्पर्क में रहता है। इसलिए इस सिरे के घनत्व में परिवर्तन लगभग शून्य होता है। अर्थात् यहां विकृति शून्य होनी चाहिये और पाईप के खुले सिरे पर प्रस्पन्द होना चाहिये दो निस्पन्दों के मध्य प्रस्पन्द तथा दो प्रस्पन्दों के मध्य निस्पन्द होना चाहिये। ### बन्द वायु स्तम्भ में अप्रगामी तरंगें (Stationary Waves in Closed Air Column) यदि पाईप का एक सिरा बन्द तथा दूसरा सिरा खुला हुआ है, तो उसे बन्द आर्गन पाईप कहते हैं तथा उसके वायु स्तम्भ को बन्द वायुस्तम्भ कहते हैं। इसमें सदैव बन्द सिरे पर निस्पन्द तथा खुले सिरे पर प्रस्पन्द बनता है। चित्र 6.23(i) के अनुसार, जब बन्द पाईप के खुले सिरे पर एक प्रस्पन्द तथा बन्द सिरे पर एक निस्पन्द बनता हैं, तो इस विधा को मूल विधा कहते हैं। इस विधा में कम्पनों की आवृत्ति पाईप की मूल आवृत्ति (Fundamental frequency) या प्रथम संनादी (First harmonic) कहते हैं। इस स्थिति में, $$l=\frac{\lambda_1}{4}$$ या $\lambda_1=4l$ (6.57) अतः आवृत्ति $$N_1 = \frac{v}{\lambda_1}$$ या आवृत्ति $N_1 = \frac{v}{4l}$ (6.58) (ii) जब बन्द सिरे पर निस्पन्द तथा खुले सिरे पर प्रस्पन्द के बीच में एक प्रस्पन्द एवं एक निस्पन्द और बनते हैं तो इस स्वरक को प्रथम अधिस्वरक कहते हैं (चित्र 6.23 (ii))। इस स्थिति में, $$l = \frac{\lambda_2}{4} + \frac{\lambda_2}{2} = \frac{3\lambda_2}{4}$$ या $\lambda_2 = \frac{4l}{3}$ अतः आवृत्ति $$N_2 = \frac{v}{\lambda_2}$$ या आवृत्ति $N_2 = \frac{3v}{4l}$ (6.59) यह आवृत्ति मूल आवृत्ति की तीन गुणा होती है अतः इसे तृतीय संनादी या प्रथम अधिस्वरक कहते हैं। द्वितीय अधिस्वरक स्थिति में (चित्र 6.23 (iii)), $$l = \frac{\lambda_3}{4} + \frac{\lambda_3}{2} + \frac{\lambda_3}{4} = \frac{5\lambda_3}{4} \quad \text{an } \lambda_3 = \frac{4l}{5}$$ अतः आवृत्ति $$N_3 = \frac{v}{\lambda_3}$$ या आवृत्ति $N_3 = \frac{5v}{4l}$ (6.60) यह आवृत्ति मूल आवृत्ति की पांच गुणा होती है। अतः इसे पंचम संनादी या द्वितीय अधिस्वरक कहते हैं। इस प्रकार अन्य अधिस्वरकों की आवृत्तियां ज्ञात करते हैं। अतः बन्द आर्गन पाईप या बन्द वायुस्तम्भ में उत्पन्न कम्पन्नों की आवृत्तियों का अनुपात $$N_1: N_2: N_3: ... = 1: 3: 5$$ (6.61) अर्थात् बन्द आर्गन पाईप या बन्द वायुस्तम्भ में केवल विषम संनादी ही उत्पन्न हो सकते हैं। ### खुले वायु स्तम्भ में अप्रगामी तरंग यदि पाईप के दोनों सिरे खुले हुए हैं तो उसे खुला आर्गन पाईप या खुला वायुस्तम्भ कहते हैं। चित्र 6.24 (i) के अनुसार, (i) खुले आर्गन पाईप के दोनों सिरों पर प्रस्पन्द तथा इनके मध्य में निस्पन्द बनता है। तब इस स्थिति में कम्पन्नों की विधा मूल विधा या प्रथम संनादी कहलाती है। चित्र 6.24 इस स्थिति में, $$l = \frac{\lambda_1}{2}$$ या $\lambda_1 = 2l$ अतः आवृत्ति $$N_1 = \frac{v}{\lambda_1}$$ या आवृत्ति $N_1 = \frac{v}{2l}$ (ii) जब दोनों खुले सिरों के प्रस्पन्दों के बीच में दो निस्पन्द तथा एक प्रस्पन्द बनता है तो इस स्थिति में कम्पन्नों की विधा को प्रथम अधिस्वरक कहते हैं। इस स्थिति में, $$l = \frac{\lambda_2}{2} + \frac{\lambda_2}{2} = \frac{2\lambda_2}{2}$$ या $\lambda_2 = \frac{2l}{2}$ अतः आवृत्ति $$N_2 = \frac{v}{\lambda_2}$$ या आवृत्ति $N_2 = \frac{2v}{2l}$ यह आवृत्ति मूल आवृत्ति की दोगुना है। अतः इसे द्वितीय संनादी या प्रथम अधिस्वरक कहते हैं। द्वितीय अधिस्वरक की स्थिति में $$l = \frac{\lambda_3}{2} + \frac{\lambda_3}{2} + \frac{\lambda_3}{2} = \frac{3\lambda_3}{2} \quad \text{an } \lambda_3 = \frac{2l}{3}$$ अतः आवृत्ति $$N_3 = \frac{v}{\lambda_3}$$ या आवृत्ति $N_3 = \frac{3v}{2l}$ यह आवृत्ति मूल आवृत्ति की तीन गुणा होती है। अतः इसे तृतीय संनादी या द्वितीय अधिस्वरक कहते हैं। इसी प्रकार अन्य अधिस्वरकों की आवृत्तियां ज्ञात करते हैं। अतः खुले आर्गन पाईप या खुले वायुस्तम्भ में उत्पन्न कम्पनों की आवृत्तियों का अनुपात $$N_1: N_2: N_3: ... = 1:2:3:.....$$ अर्थात् खुले आर्गन पाईप या खुले वायुस्तम्भ में सम एवं विषम दोनों प्रकार के संनादी उत्पन्न हो सकते हैं। ### विवर्तन (Diffraction) किसी कम्पन्न करने वाले स्त्रोत से जब तरंगें उत्पन्न होती हैं तो वे माध्यम में फैलती हैं। यदि माध्यम समांगी एवं समदैशिक (सभी दिशाओं में एक समान) है तो बिन्दु स्त्रोत से उत्पन्न तरंगें गोलीय तरंगाग्र बनाती हैं जो कि सभी दिशाओं में समरूप से गतिमान होता है। पहले यह उदाहरण के द्वारा समझाया गया है कि स्त्रोत से अत्यधिक दूरी पर यह तरंगाग्र समतल तरंगाग्र का रूप ले लेता है। इन परिस्थितियों में यदि तरंगाग्र के मार्ग में कोई अवरोधक (छिद्र युक्त पर्दा या स्लिट) आ जाता है तो तरंग अवरोधक, छिद्र या स्लिट के किनारों पर मुड़कर आगे बढ़ने का प्रयास करती है। अतः तरंगों का किसी अवरोधक, छिद्र या स्लिट के किनारों पर मुड़कर जांगे का लाक्षणिक गुण है अतः प्रत्येक प्रकार की तरंगें विवर्तन प्रदर्शित करती हैं। किसी तरंग के सापेक्ष किस युक्ति को अवरोधक, छिद्र या स्लिट कहा जाय यह विचारणीय बिन्दु है। अवरोधक, छिद्र एवं स्लिट की आकृति अलग—अलग होती है एवं इनके माप अलग हो सकते है। विवर्तन के संदर्भ में यदि किसी युक्ति के आकार का माप यथा लम्बाई, चौड़ाई, त्रिज्या इत्यादि आपतित तरंग के तरंगदैर्ध्य की कोटि का होता है तब यह एक अवरोधक का कार्य करता है एवं परिणाम स्वरूप
विवर्तन हो पाता है। ### दैनिक जीवन में विवर्तन का उदाहरण (Examples of Diffraction in Daily Life) हम जानते हैं कि किसी दूसरे कक्ष में यदि कोई छात्र संगीत गा रहा है या वाद्य बजाता है तो हम उसे सुन सकते हैं लेकिन हम उसे देख नहीं सकते हैं। इसका कारण यह है कि देखने के लिए हमारी आंखें जिन तरंगों के प्रति संवेदनशील है एवं चित्र उत्पन्न करती है, उनकी तरंगदैर्ध्य की कोटि लगभग $3600\ \mathring{A}$ से 7800 Å के मध्य होती है। इसके विपरीत हमारे कान जिन तरंगों के प्रति संवेदनशील या सुन सकते हैं उनकी तरंगदैर्ध्य का परास लगभग 1.5 सेमी से 15 मी होता है। दरवाजों, खिड़िकयों एवं रोशनदानों की आकृति का माप भी इसी कोटि का होता है अतः ध्विन तरंगें आसानी से विवर्तित होती है। किनारों पर मुड़कर श्रोता तक पहुंचती है जबिक दृश्य तरंगें मुड़ती नहीं है अतः वादक हमें दिखाई नहीं देता है। ### विवर्तन सीमा एवं विभेदन क्षमता (Diffraction Limit and Resolving Power) विवर्तन की उपरोक्त विवेचना से यह स्पष्ट है कि यदि प्रकाश किरणों को विवर्तित करने के लिए अवरोधक का आकार लगभग 0.1 से 1 cm की कोटि का होना चाहिये। इस शर्त के आधार पर सूक्ष्म आकार के दो अवरोधकों में विभेद करने की क्षमता भी ज्ञात की जा सकती है। विभेदन की कसौटी एवं विवर्तन सीमा में संबंध को समझाने के लिए विभिन्न परिस्थितियों में विवर्तन के प्रभाव का अध्ययन करते हैं— चित्र 6.25 में दो स्त्रोत 1 एवं 2 से उद्गमित प्रकाश एक स्लिट से गुजरता है। स्त्रोतों के मध्य दूरी इतनी है कि आपतित तरंगाग्र एक समतल तरंगाग्र की तरह व्यवहार करता है जो कि स्लिट पर अलग—अलग कोण से आ रहे हैं। स्त्रोतों में कला 1 संबद्धता नहीं है अतः सतत् व्यतिकरण प्रारूप प्रदर्शित 2 नहीं करते हैं। परिणामस्वरूप पर्दे XY पर अलग—अलग बिन्दुओं पर दो केन्द्रीय उच्चिष्ठ प्राप्त होते हैं। दो उच्चिष्ठ स्पष्ट दृष्टिगोचर होते हैं जब दोनों स्त्रोतों के मध्य कोणीय दूरी पर्याप्त है। कुल तीव्रता का मान प्रत्येक स्त्रोत की तीव्रता के योग के तुल्य है। क्योंकि स्त्रोत में कला संबद्धता नहीं है। प्रकाशिकी में दो समीपस्थ उच्चिष्ठों में विभेदन किया जा सकता है। चित्र 6.26 (a) में स्पष्ट विभेदन की स्थिति दर्शायी गयी है। यदि पहले उच्चिष्ठ का मध्य बिन्दु समीपस्थ उच्चिष्ठ के निम्नतम बिन्दु से मिल जाता है। इस स्थिति को चित्र 6.26 (b) में दर्शाया गया है। इस अवस्था में भी दो समीपस्थ उच्चिष्ठों में विभेद किया जा सकता है। विभेदन की इस दशा को रेले की कसौटी कहते हैं। चित्र 6.27 में दर्शाये गये विवर्तन के प्रयोग में अब दो स्त्रोतों के मध्य कोणीय दूरी कम करते हैं जो कि पास लाने पर हो जाती है। कोणीय दूरी कम करने पर दोनों उच्चिष्ठ निकट आने लगते है। विवर्तन की गणितीय व्याख्या करके हम पाते हैं कि जिस कोणीय 1 स्थित में रेले कसौटी संतुष्ट 2 होती है तब $\sin \theta = \frac{\lambda}{a}$ जहां a स्लिट की चौड़ाई, λ तरंगदैर्ध्य एवं θ से दोनों स्त्रोतों के मध्य कोण है। $$\therefore \sin \theta = \frac{\lambda}{a}$$ $$\therefore \theta = \frac{\lambda}{a} \theta$$ के बहुत कम मान के लिए $\sin \theta = \theta$ (6.62) अतः दो उच्चिष्ठों को अलग—अलग देखने के लिए आवश्यक है कि $\theta=\frac{\lambda}{a}$ । यदि अवरोध, आयताकार, स्लिटनुमा नहीं होकर वर्तुलाकार है तो इस स्थिति में $\theta_{min}=\frac{1.22~\lambda}{D}$ जहां D, वतुर्लाकार अवरोधक का व्यास है। ### प्रकाश तरंगें (Light Waves) इस अध्याय में पूर्व में हमने तरंगों की परिभाषा, लक्षण एवं उनसे संबद्ध कतिपय मौलिक लक्षणों को समझाया है। इन्हें अब हम विशेष रूप से प्रकाश तरंगों के संदर्भ में समझने का प्रयास करेंगे। प्रकाश तरंगें को गित करने के लिए माध्यम की आवश्यकता नहीं होती है। अतः यह निर्वात में भी गितमान रहती है। प्रकाश तरंगों का निर्वात में वेग $c=3\times 10^8$ मी/से. होता है। इन्हें विद्युत चुम्बकीय तरंगें भी कहा जाता है। इनके गुण निम्न होते हैं— 1. प्रकाश तरंगों का निर्वात में वेग $$c = \frac{1}{\sqrt{\mu_0 \epsilon_0}} = 3 \times 10^8 \; \text{मी} / \; \text{से. होता है जहां} \; _0 \, \text{vai} \; \epsilon_0$$ क्रमशः निर्वात की चुम्बकशीलता एवं वैद्युत पारगाम्यता है। चूंकि प्रकाश तरंग विद्युत चुम्बकीय तरंगें है। अतः इनकी उत्पत्ति का कारण चुम्बकीय या विद्युत क्षेत्र जनित विक्षोभ होता है। फलस्वरूप विद्युत चुम्बकीय तरंगों का आयाम संबद्घ विद्युत क्षेत्र या चुम्बकीय क्षेत्र की मात्रा पर निर्भर करता है लेकिन प्रचलन में केवल विद्युत क्षेत्र से संबद्ध आयाम ही लिखा जाता है। संबद्ध चुम्बकीय क्षेत्र का मान निम्न सूत्र से ज्ञात किया जा सकता है। $\vec{E} = c\vec{B}$ यह संबद्ध केवल निर्वात के लिए सत्य है। जहां E एवं B, किसी विशेष स्थिति के संगत विद्युत एवं चुम्बकीय क्षेत्र का मान है। - 3. प्रकाश तरंगों में \vec{E} एवं \vec{B} समयाकाश में एक ही कला में होते हैं। लेकिन स्थिति आकाश में परस्पर लम्बवत् होते हैं। \vec{E} एवं \vec{B} दोनों ही गति की दिशा के लम्बवत् होते हैं अतएव इनकी प्रकृति अनुप्रस्थ होती है। चित्र 6.28 में x दिशा में अग्रसर विद्युत चुम्बकीय तरंग को दर्शाया गया है। यह स्पष्ट है कि \vec{E} एवं \vec{B} परस्पर लम्बवत् है। - 4. चूंकि E एवं B घटक तरंगों की गित की दिशा के लम्बवत् कम्पन करते हैं अतः E या B के कम्पन्न की दिशा, गित के लम्बवत् स्थित समतल में कहीं भी हो सकती है। तरंग को सम्पूर्ण विवरण के लिए E के कम्पन्न की दिशा निर्देशित करना आवश्यक है। इस निर्देशन को ध्रुवण के माध्यम के करते हैं। अतः ध्रुवण विद्युत चुम्बकीय तरंगों की अनुप्रस्थ प्रकृति का पिरेणाम है। यदि हम E निर्देशित कर लेते हैं तो B की दिशा स्वतः ही E एवं गित की दिशा के लम्बवत् होती है। पुनश्च ध्रुवण का निर्धारण E के कम्पन्न की दिशा के अनुदिश लिया जाता है। चूंकि चित्र 6.28 में \vec{E} की दिशा y अक्ष की तरफ है अतः दर्शायी गयी विद्युत चुम्बकीय तरंग की ध्रुवण की दिशा भी y अक्ष ही होगी। यह सम्पूर्ण भौतिकी समुदाय का प्रचलन है जो कि भौतिकी की मानक अन्तर्राष्ट्रीय संस्थाओं द्वारा निर्धारित किये जाते हैं। रेडियो, दूरदर्शन एवं संचार के अन्य साधनों में संकेतों का आदान—प्रदान विद्युत चुम्बकीय तरंगों के द्वारा ही होता है। इन तरंगों का एक निश्चित ध्रुवण होता है जिसका निर्धारण भौतिकी के सिद्धांत एवं एन्टीना की विभूषा पर निर्भर करता है। इससे परे, सूर्य, बल्ब, ट्यूबलाइट से प्राप्त प्रकाश अध्रुवित होता है। अध्रुवित से तात्पर्य है कि उत्सर्जित प्रकाश तरंगों के ध्रुवण की दिशा कोई विशेष न होकर यादृच्छिक होती है। ऐसी स्थिति में ध्रुवण की विशेष दिशा प्रदान नहीं की जा सकती है। विद्युत चुम्बकीय तरंगों को उनकी आवृत्ति या तरंगदैर्ध्य के आधार पर विभिन्न क्षेत्रों में बांटा गया है। हर क्षेत्र की तरंगों का विशेष महत्व होता है फलतः उपयोगिता का प्रभाव क्षेत्र भी अलग —अलग है। विद्युत चुम्बकीय तरंगों के सभी क्षेत्रों के समूह को विद्युत चुम्बकीय वर्णक्रम कहते हैं। तरंगदैर्ध्य एवं आवृत्ति के आधार पर वर्गीकृत किया जा सकता है। चित्र 6.29 में विद्युत चुम्बकीय तरंगों का वर्णक्रम दर्शाया गया है। चित्र से स्पष्ट है कि $1\,{\rm H}_z - 3 \times 10^{11} {\rm H}_z$ की आवृत्ति की तरंगों को रेडियो तरंगें कहते हैं क्योंकि इन का उपयोग रेडियो में प्रयुक्त संकेतों के संचरण में किया जाता है। आप अपने गांव या शहर में रेडियो के निकटस्थ आकाशवाणी केन्द्र को प्रदान विशिष्ट तरंगदैर्ध्य या आवृत्ति की जानकारी प्राप्त कर सकते हैं। आयाम मोडुलित केन्द्रों की आवृत्ति लगभग $10^6{\rm H}_z$ तथा आवृत्ति मोडुलित केन्द्र की आवृत्ति लगभग $10^6{\rm H}_z$ तथा आवृत्ति मोडुलित केन्द्र की आवृत्ति लगभग $10^6{\rm H}_z$ होती है। रसोईघर में प्रयुक्त माइक्रोवेव भट्टी, राडार, चित्र 6.29 सेलफोन एवं उपग्रह संचरण में प्रयुक्त तरंगों की आवृत्ति लगभग 10°H से अधिक होती है जिन्हें सूक्ष्मतरंगें कहते हैं। सूक्ष्म तरंगों से परे एवं दृश्य तरंगों के मध्य लगभग $10^{12}-10^{15}\mathrm{H}_{_{_{\!\!2}}}$ के परास की तरंगों को अवरक्त क्षेत्र कहते हैं। सामान्यतः गर्म वस्तुएं जिस विकिरण तरंगों को उत्सर्जित करती है वह इस वर्ग में आती है। चिकित्सीय अन्वेषण, भवन निर्माण, तारों के अभ्युदय आदि में अवरक्त कैमरों के उपयोग पर तापीय प्रतिबिम्बों का विश्लेषण कर महत्वपूर्ण जानकारी प्राप्त की जाती है। अवरक्त कैमरों द्वारा रात में विचरण करने वाले व्यक्तियों एवं जानवरों की तापीय प्रतिबिम्बों के आधार पर जानकारी प्राप्त की जा सकती है। लगभग 1015 H₂ की तरंगें तरंगदैर्ध्य 700 nm से 400 nm की परास में होती है, इन्हें दृश्य तरंगें कहते हैं। मनुष्य की आंखें इन तरंगों को संसूचित कर सकती है तथा अलग—अलग तरंगदैर्ध्य के आधार पर विभेदित भी कर सकती है। विभिन्न तरंगदैर्ध्यों की तरंगें जिन्हें आंख विभेदित कर सकती है। विभिन्न तरंगदैर्ध्यों की तरंगें जिन्हें आंख विभेदित कर सकती है उसे रंग कहते हैं अतः प्रत्येक रंग से संबद्ध एक तरंगदैर्ध्य होती है। दृश्य क्षेत्र में अधिकतम आवृत्ति की दृश्य तरंग का रंग बैंगनी एवं न्यूनतम आवृत्ति की तरंग का रंग लाल होता है। आवृत्ति पैमाने पर दृश्य तरंगों से परे पराबैंगनी किरणें आती है। इन्हीं किरणों से त्वचा जलती है एवं विशेष परिस्थितियों में त्वचा कैंसर का कारण बनती है। ये हमारे शरीर को नुकसान पहुंचाती है। प्रकृति ने हमें सूर्य से आने वाली पराबैंगनी किरणों से बचाने के लिए ओजोन गैस का आवरण प्रदान किया है जो कि इन किरणों को अवशोषित कर लेता है। इनसे आगे उच्च विभेदन क्षमता वाली X-किरणें एवं v-किरणों का उपयोग चिकित्सीय अन्वेषण में सर्वज्ञात है। v-किरणों के भौतिक उद्गम के स्त्रोत रेडियोधर्मी पदार्थ होते हैं। इनकी विभेदन क्षमता अत्यधिक होती है जिसका उपयोग शोध एवं अनुसंधान में किया जाता है। उपरोक्त सभी तरंगें मौलिक रूप से समान हैं। विद्युत तरंगों की आवृत्ति में एतदर्थ तरंगदैर्ध्य मात्र में अंतर है। सभी प्रकाश वेग से गति करती है यथार्थ प्रकाश वेग दृश्य तरंगों का ही निर्वात में वेग है। सभी तरंगों में विद्युत एवं चुम्बकीय घटक होते हैं। इनका वर्गीकरण एवं नामकरण केवल सुविधा के लिए किया गया है। विभिन्न वर्गों के मध्य किसी प्रकार का आवृत्ति अंतराल नहीं है एवं संपूर्ण वर्णक्रम सतत् आवृत्ति या सतत् तरंगदैर्ध्य से आंका जाता है, क्योंकि विभिन्न वर्ग की तरंगों की विधाओं में अंतर होता है अतः प्रायोगिक तौर पर यह विभिन्न तरीकों का व्यवहार दर्शाती है। # महत्वपूर्ण बिन्दु - प्रकाश किसी समतल पर आपितत होता है एवं वापस उसी माध्यम में लौट आता है उसे परावर्तन कहते हैं। परावर्तन के दो महत्वपूर्ण नियम है। - प्रकाश जब एक माध्यम से दूसरे माध्यम में प्रवेश करता है तो आपितत किरण दूसरे माध्यम अभिलम्ब से परे या अभिलम्ब की तरफ मुड़ जाती है। इस घटना को अपवर्तन कहते हैं तथा दूसरे माध्यम में किरण को अपवर्तित किरण कहते हैं। - उ. प्रकाश के निर्वात में एवं किसी माध्यम में वेग के अनुपात को अपवर्तनांक कहते हैं। इसकी इकाई नहीं होती है। यह पदार्थ के घनत्व पर निर्भर करता है। एक ही पदार्थ का प्रकाश की विभिन्न तरंगदैध्यों के लिए अपवर्तनांक भिन्न—भिन्न होता है। - 4. अपवर्तन के स्नेल के नियमानुसार $_{_{1}}\sin\theta_{_{1}}=_{_{2}}\sin\theta_{_{2}}$ - 5. तरंग गित : जब किसी स्थान पर किसी समय उत्पन्न विक्षोभ या कोई भौतिकीय घटना दूसरे स्थान पर निश्चित समय के पश्चात् प्रेक्षित हो और यह समयान्तराल इन स्थितियों के मध्य दूरी के समानुपाती हो तो विक्षोभ संचरण की विधि 'तरंग गित' कहलाती है। - प्रगामी तरंगें : इन तरंगों द्वारा ऊर्जा का संचरण होता है तथा ये माध्यम में गतिमान होती हैं। - यांत्रिक तरंगें : ये वे तरंगें
हैं जिन्हें संचरण करने के लिये माध्यम की आवश्यकता होती है। इन तरंगों को 'प्रत्यास्थ तरंगें' भी कहते हैं। - 8. अनुदैर्ध्य तरंगें : इस प्रकार की तरंगों में माध्यम के कण तरंग संचरण की दिशा के अनुदिश कम्पन्न करते हैं। - अनुप्रस्थ तरंगें : यदि माध्यम के कण तरंग संचरण की दिशा के लम्बवत् कम्पन्न करते हैं तो ऐसी तरंगों को 'अनुप्रस्थ तरंगें' कहते हैं। - 10. विद्युत चुम्बकीय तरंगें : जिन तरंगों के संचरण के लिये माध्यम की आवश्यकता नहीं होती है अर्थात् ये तरंगें निर्वात में भी संचरण करती है, 'विद्युत चुम्बकीय तरंगें' कहलाती हैं। यह अनुप्रस्थ प्रकृति की होती हैं। - 11. तरंग वेग : माध्यम में विक्षोभ जिस वेग से गित करता है उसे 'तरंग वेग' कहते हैं। अर्थात् तरंग वेग $v= rac{\lambda}{T}$ एवं $v= rac{\omega}{k}$ - 12. ध्विन तरंगें : जिन तरंगों के कम्पन्नों के द्वारा हमारा कर्ण—पटल कम्पित होता है एवं कम्पन्न संकेत मस्तिष्क में संचरित होकर हमें ध्विन का आभास कराते हैं, 'ध्विन तरंगें' कहलाती - हैं। मनुष्य के कान का श्रवण परास 20 Hz से 20 KHz तक है। अतः इस परास की आवृत्तियों को 'श्रव्य आवृत्ति' कहते हैं। - 13. अध्यारोपण का सिद्धान्त : जब दो या दो से अधिक तरंगें एक साथ किसी माध्यम में संचरण करती हैं तो माध्यम के प्रत्येक कण का किसी क्षण विस्थापन दोनों तरंगों के पृथक—पृथक विस्थापनों के सिद्धा योग के बराबर होता है, इसे 'अध्यारोपण का सिद्धान्त' कहते हैं। अध्यारोपण के सिद्धान्त से परिणामी विस्थापन $y = y_1 \pm y_2 \pm y_3 \pm \dots \pm y_n$ अध्यारोपण के फलस्वरूप प्राप्त परिणामी तरंग की आकृति तथा विस्थापन तरंगों की आवृत्ति, आयाम, तरंगों के मध्य कलान्तर एवं तरंगों के संचरण की दिशा पर निर्भर करता है। - 14. दो तरंगों के अध्यारोपण के प्रभाव : (i) व्यतिकरण (ii) विस्पन्द (iii) अप्रगामी तरंगें एवं (iv) लिसाजू की आकृतियाँ। - 15. तरंगों का व्यतिकरण: समान आवृत्ति की दो तरंगों के एक ही दिशा में एक ही सरल रेखा पर गति करते हुए परस्पर अध्यारोपण के द्वारा तरंग ऊर्जा के पुनर्वितरण की घटना 'व्यतिकरण' कहलाती है। - 16. विस्पन्द: माध्यम के किसी बिन्दु पर एक ही दिशा में चलने वाली दो लगभग समान आवृत्ति की तरंगों के अध्यारोपण के कारण ध्विन की तीव्रता में आवर्ती रूप से उतार चढ़ाव की घटना को 'विस्पन्द' कहते हैं। - 17. अप्रगामी तरंगें : जब किसी माध्यम में समान आवृत्ति एवं समान आयाम की दो तरंगें परस्पर विपरीत दिशा में समान चाल से एक ही मार्ग पर संचरित होकर अध्यारोपित होती हैं तो इस प्रकार से उत्पन्न परिणामी तरंग को 'अप्रगामी तरंग' कहते हैं। अप्रगामी तरंगें दो प्रकार की होती है। (i) अनुदैर्ध्य अप्रगामी (ii) अनुप्रस्थ अप्रगामी तरंगें। - 18. निस्पन्द : अप्रगामी तरंग में कुछ कण अपने स्थान पर सदैव स्थिर रहते हैं तथा इन बिन्दुओं पर कण का आयाम सदैव शून्य रहता है, इन्हें 'निस्पन्द' कहते हैं। - 19. प्रस्पन्द : अप्रगामी तरंग में कुछ बिन्दु ऐसे होते हैं, जहाँ माध्यम के कण अधिकतम आयाम से कम्पन्न करते हैं, 'प्रस्पन्द' कहलाते हैं। - 20. तनी हुई डोरी में अप्रगामी तरंगें : तरंगों की चाल $V = \sqrt{\frac{T}{m}}$ मूल स्वर की आवृत्ति $N = \frac{1}{2l} \sqrt{\frac{T}{m}}$ - 21. वायुस्तम्भों के कम्पन की विधा : बन्द आर्गन पाईप या बन्द वायुस्तम्भ में उत्पन्न कम्पन्नों की आवृत्तियों का अनुपात N, : N, : N, = 1:3:5 खुले आर्गन पाईप या खुले वायुस्तम्भ में उत्पन्न कम्पन्नों की आवृत्तियों का अनुपात N₁: N₂: N₃..... = 1:2:3...... खुले आर्गन पाईप की मूल आवृत्ति समान लम्बाई के बन्द आर्गन पाईप की मूल आवृत्ति की दो गुनी होती है। समान आवृत्ति का मूल स्वर उत्पन्न करने के लिए खुले पाईप की लम्बाई बन्द पाईप की लम्बाई की दोगुनी होनी चाहिए। - 22. तरंगें जब तरंगदैर्ध्य की कोटि के किसी अवरोधक से गुजरती है तो अवरोधक के किनारों से मुड़ जाती है जिसे विवर्तन कहते हैं। - 23. रेले की कसौटी के अनुसार दो विवर्तित प्रतिबिम्बों विभेद किया जा सकता है। यदि $\theta = \frac{\lambda}{a}$ जहां a स्लिट की आकार है। वर्तुलाकार अवरोधक के लिए $\theta = \frac{1.22\lambda}{D}$ जहां D अवरोधक का व्यास है। - 24. प्रकाश तरंगों की प्रकृति अनुप्रस्थ होती है तथा $\vec{\mathrm{E}}$ एवं $\vec{\mathrm{B}}$ इसके अविभाज्य अवयव होते हैं। विद्युत सदिश 🛱 के कम्पन्न करने की दिशा की ध्रुवण कहते हैं। $\vec{\mathrm{E}}$ एवं $\vec{\mathrm{B}}$ परस्पर लम्बवत् होते हैं। - 25. विद्युत चुम्बकीय तरंगों को तरंगदैध्य या आवृत्ति के आधार पर वर्गीकृत किया जाता है। दृश्य तरंगों की तरंगदैर्ध्य 400 nm से 700 nm तक होती है। # अभ्यासार्थ प्रश्न # वस्तुनिष्ठ प्रश्न - दो तरंगों के आयाम 1 : 3 के अनुपात में है । अध्यारोपण से अधिकतम एवं न्यूनतम तीव्रताओं का अनुपात होगा – - (अ) 4:1 - (ৰ) 2:1 - (स) 3:1 - (年) 2:3 - दो स्वरित्र द्विभुजों को बजाने पर 4 विस्पन्द उत्पन्न होते हैं। एक की आवृत्ति 256 H, है। दूसरे द्विभुज की मोम से भारित करने पर विस्पंद की संख्या 6 हो जाती है। दूसरे द्विभुज की आवृत्ति क्या होगी – - (अ) 262 Hz - (ৰ) 260 Hz - (स) 250 Hz - (द) 252 Hz - खुले आर्गन पाइप में तीसरी संनादी आवृत्ति को क्या कहते ぎ — - (अ) प्रथम अधिस्वरक (ब) द्वितीय अधिस्वरक - (स) तृतीय अधिस्वरक (द) मूल अधिस्वरक - कोणीय आवृत्ति, तरंग संचरण नियतांक एवं तरंग वेग में सम्बद्ध है – - (3) $\omega = \frac{K}{V}$ (\overline{q}) $\omega = \frac{V}{K}$ - (स) $\omega = K_V$ (द) उपरोक्त में से कोई नहीं - दो तरंगों के मध्य प्रथान्तर $(2n+1)\frac{\lambda}{2}$ है तो व्यतिकरण का स्वरूप होगा – - (अ) विनाशी - (ब) संपोषी - (स) विनाशी एवं संपोषी का मिश्रण - (द) सभी गलत है। - विवर्तन की आवश्यक शर्तानुसार अवरोधक के आकार की कोटि होनी चाहिये - - (अ) तरंग आयाम के लगभग - (ब) तरंगदैध्यं के लगभग - (स) आवृत्ति के लगभग - (द) उपरोक्त सभी - अप्रगामी तरंग के प्रस्पन्द एवं निस्पन्द के बीच की दूरी होती - (अ) λ - $(\forall i) \quad \lambda_4'$ $(\exists i) \quad \lambda_8'$ - कलान्तर एवं पथान्तर के मध्य सम्बन्ध है - - (3) $\phi = \frac{2\pi}{\lambda} \cdot x$ (a) $\phi = \frac{\lambda}{2\pi} \cdot x$ - (स) $\phi = \frac{x}{2\pi\lambda}$ (द) $\phi = \frac{\lambda}{2\pi x}$ # अतिलघुत्तरात्मक प्रश्न - रनेल का नियम लिखिये। - पानी में गिरा सिक्का ऊपर उठा हुआ दिखने का क्या कारण है? - 3. अनुदैर्ध्य एवं अनुप्रस्थ तरंगों में क्या अन्तर है? - 4. तरंग संख्या किसे कहते हैं? - 5. आकाश में गतिशील समतल तरंगाग्र की ऊर्जा में क्षय नहीं होता है क्यों? - संपोषी व्यतिकरण में दो तरंगों के मध्य पथान्तर कितना होना चाहिये? - निस्पन्द के दोनों ओर स्थित कणों के बीच कलान्तर कितना होता है? - 8. स्वरमापी में उत्पन्न तरंगों की प्रकृति कैसी होती है? - 9. ध्वनि तरंगों में ध्रवण क्यों नहीं परिभाषित कर सकते हैं? - 10. दृश्य तरंगों की परास क्या है? ### लघुत्तरात्मक प्रश्न - तरंग से क्या अभिप्राय है। चित्र बनाकर इसके समस्त लक्षणों को परिभाषित कीजिये। - 2. व्यतिकरण किसे कहते हैं? व्यतिकरण प्रारूप प्राप्त करने की क्या शर्ते हैं? - 3. तरंग वेग समीकरण व्युत्पन्न कीजिए। - 4. अध्यारोपण सिद्धान्त को समझाइये। - 5. विस्पंद एवं विस्पंदकाल को समझाइये। - 6. डोरी में अनुप्रस्थ तरंगों के नियम लिखिये। - 7. अप्रगामी तरंगों की परिभाषा एवं लक्षण लिखिये। - 8. ध्रवण किसे कहते हैं? समझाइये। - 9. विवर्तन की परिभाषा दीजिये। आवश्यक शर्ते भी लिखिये। - 10. रेले कसौटी से क्या अभिप्राय है? #### निबन्धात्मक प्रश्न - 1. अपवर्तन के नियमों की प्रायोगिक सत्यापन की विधि का वर्णन करो। - 2. संपोषी एवं विनाशी व्यतिकरण की गणितीय व्याख्या कीजिये। - 3. विस्पंद आवृत्ति की गणना कैसे करते हैं? आवश्यक पद लिखकर वर्णन कीजिये। - 4. अप्रगामी तरंगों के गुणधर्म लिखिये। - 5. प्रकाश तरंगों के विशिष्ट गुणों को समझाइये। - स्वरमापी द्वारा स्विरत्र द्विभुज की आवृत्ति कैसे ज्ञात करते हैं? प्रयोग का वर्णन कीजिये। - विवर्तन एवं ध्रुवण में अन्तर स्पष्ट कीजिये। ध्विन एवं प्रकाश तरंगों के विवर्तन एवं ध्रुवण की व्याख्या कैसे की जा सकती है? समझाइये। उत्तरमालाः 1 (अ) 2 (द) 3 (ब) 4 (स) 5 (अ) 6 (ब) 7 (स) 8 (अ) # Downloaded from https://www.studiestoday.com # खण्ड (ख) – रसायन विज्ञान इकाई – 7 अध्याय - 7 # परमाणु की संरचना (Structure of Atom) ### प्रस्तावना (Introduction) किसी तत्त्व का सबसे छोटा भाग जिसमें उस तत्त्व के रासायनिक गुण निहित होते हैं, परमाणु (Atom) कहलाता है। ('tom' का अर्थ होता है विभाजित करना और Atom यानि अविभाज्य अर्थात् ऐसा कण जिसे और अधिक विभाजित नहीं किया जा सकता)। परमाणु का यह वर्तमान अंग्रेजी नाम "Atom" डेमोक्रीट्स ने दिया था। उसके अनुसार पदार्थ विभिन्न प्रकार के परमाणुओं के बड़ी मात्रा में एक साथ जमा होने से बनता है। # डॉल्टन का परमाणु सिद्धान्त ब्रिटिश वैज्ञानिक जॉन डॉल्टन ने 1803 में परमाणुवाद का सिद्धान्त प्रतिपादित किया। उन्होंने परमाणु सिद्धान्त से यह समझाने का प्रयास किया कि तत्त्व हमेशा छोटी पूर्ण संख्याओं के अनुपात में मिलाने पर प्रतिक्रिया क्यों करते हैं। डॉल्टन के अनुसार परमाणु द्रव्य का एक सूक्ष्म कण है, जो अविभाज्य होता है तथा जो रासायनिक क्रियाओं की इकाई होता है। किन्तु उन्नीसवी सदी के अंत तक परमाणु के अविभाज्य होने पर शंकायें उत्पन्न हो चुकी थी और बाद में अनेक वैज्ञानिकों द्वारा की गई खोजों से यह सिद्ध हो गया कि परमाणु अविभाज्य नहीं है। इसे इलेक्ट्रॉन, प्रोटॉन और न्यूट्रॉन में विभाजित किया जा सकता है। ### परमाण्वीय कणों का अध्ययन (Study of Atomic Particles) - 1. इलेक्ट्रॉन (Electron): - (i) इलेक्ट्रॉन की खोज सर जे.जे. थॉमसन (J.J. Jhomson) ने 1897 में की थी। - (ii) इलेक्ट्रॉन पर ऋण आवेश होता है। आवेश की मात्रा = -1.602×10^{-19} कूलॉम। - (iii) इलेक्ट्रॉन का द्रव्यमान 9.1×10^{-31} कि.ग्रा. होता है। - 2. प्रोटॉन (Proton): - (i) प्रोटॉन की खोज सन् 1886 में गोल्डस्टीन ने की थी। प्रोटॉन (Proton) ग्रीक शब्द है जिसका अर्थ है 'First'। - (ii) प्रोटॉन एक धनावेशित कण होता है। आवेश की मात्रा = 1.602×10^{-19} कूलॉम। - (iii) प्रोटॉन का द्रव्यमान 1.672 × 10⁻²⁷ कि.ग्रा. होता है। - (iv) प्रोटॉन के द्रव्यमान का मान हाइड्रोजन परमाणु के द्रव्यमान के लगभग बराबर तथा इलेक्ट्रान के द्रव्यमान से 1837 गुना अधिक होता है। - 3. न्यूट्रॉन (Neutron): - (i) न्यूट्रॉन की खोज सर जेम्स चैडविक(Sir James Chadwick) ने 1932 में की थी। - (ii) न्यूट्रॉन एक उदासीन कण होता है। - (iii) न्यूट्रॉन का द्रव्यमान 1.675 × 10⁻²⁷ कि.ग्रा. होता है। - (iv) न्यूट्रॉन का द्रव्यमान प्रोटॉन से कुछ अधिक होता है। इस प्रकार परमाणु में इलेक्ट्रान, प्रोटॉन और न्यूट्रॉन तीन प्रकार के मौलिक कण होते हैं। कुछ अन्य परमाण्वीय कण भी है। - 4. पोजिट्टॉन (Positron): - (i) पोजिट्रॉन की खोज 1932 में सी.डी. एन्डरसन (C.D. Anderson) ने की थी। - (ii) इन पर इकाई धन आवेश होता है तथा द्रव्यमान नगण्य होता है। - 5. मेसॉन (Meson): - (i) मेसॉन की खोज हीडेकी युकावा (Hideki Yukawa) ने 1935 में की थी। - (ii) इन पर धन, ऋण तथा शून्य आवेश हो सकता है तथा द्रव्यमान इलेक्ट्रॉन का लगभग 200 गुना होता है। - 6. न्यूद्रिनो (Neutrino): - (i) न्यूट्रिनो की खोज पॉलिंग (Pauling) ने 1930 में की थी। - (ii) इन पर कोई आवेश नहीं होता है तथा इनका द्रव्यमान निश्चित नहीं होता है परन्तु इलेक्ट्रॉन से कम होता है। - (iii) न्यूट्रिनो तीन प्रकार (Three types) के होते हैं—(i) इलेक्ट्रॉन न्यूट्रिनो (Electron neutrino), (ii) म्योन न्यूट्रिनो (Muon neutrino) और (iii) टॉउ
न्यूट्रिनो (Tau neutrino)। - 7. एन्टीप्रोटॉन (Antiproton): - (i) एन्टीप्रोटॉन की खोज एमिलियो सैगरे (Emilio Segre) और ओवेन चेम्बरलिन (Owen Chamberlein) ने 1955 में की। - (ii) इन पर इकाई ऋण आवेश होता है तथा द्रव्यमान प्रोटॉन के बराबर होता है। ### परमाणु मॉडल : ### परमाणु का थॉमसन मॉडल (Thomson's Model of the Atom) थॉमसन का परमाणु मॉडल जे.जे. थॉमसन ने 1904 में दिया। इसे प्लम पूडिंग मॉडल (Plum Pudding Model) भी कहते हैं। प्लम पूडिंग एक खाद्य पदार्थ का नाम है जो केक के समान होता है। थॉमसन के प्लम पूडिंग मॉडल के अनुसार परमाणु एक धन आवेशित गोला होता है जिसमें ऋण आवेशित इलेक्ट्रान जगह—जगह उसी प्रकार से धंसे रहते हैं जैसे पूडिंग में प्लम या तरबूज में बीज। # रदरफोर्ड का परमाणु मॉडल (Rutherford's Model of the Atom) रदरफोर्ड का प्रकीर्णन प्रयोग (Rutherford's scattering experiment) — सन् 1911 में अंग्रेज भौतिकशास्त्री रदरफोर्ड ने सोने कीएक बहुत पतली (0.0004 सेमी.) पर्णिका पर α —कणों (द्वि धनात्मक हीलियम आयन He^{2+}) की बौछार करवाई । बौछार के पश्चात् α —कणों की दिशा जानने के लिए धातु पर्णिका के चारों ओर जिंक सल्फाइड लेपित पर्दे को रख दिया तथा घूमने वाले सूक्ष्मदर्शी की सहायता से निम्नलिखित प्रेक्षण प्राप्त किये (चित्र 7.1) — (i) अधिकांश α—कण (लगभग 99%) अपने मार्ग से विचलित हुए बिना ही सीधी रेखा में निकल जाते हैं। चित्र 7.1 : रदरफोर्ड का प्रकीर्णन प्रयोग - (ii) कुछ α—कण (लगभग 2000 कणों में से एक) विभिन्न कोणों पर अपने मार्ग से विक्षेपित हो जाते हैं। - (iii) बहुत कम कण (लगभग 20,000 कणों में से एक) ऐसे थे, जो 180° के कोण यानि पुनः अपने पथ पर लौट आए जैसे कि वे किसी अत्यन्त प्रतिकर्षी पदार्थ से टकराकर लौटे हों। रदरफोर्ड ने और भी इस प्रकार के कई अन्य प्रयोग किये और प्राप्त प्रेक्षणों के आधार पर निम्नलिखित निष्कर्ष निकाले– - (i) परमाणु का अधिकांश भाग रिक्त है क्योंकि α—कण उसमें से सीधे निकल जाते है। - (ii) कुछ α—कण अपने मार्ग से विक्षेपित हो जाते हैं, अतः प्रत्येक परमाणु के केन्द्र में भारी धनावेशित भाग उपस्थित है जिसे नाभिक (Nucleus) कहते हैं। - (iii) बहुत कम कण वापस अपने पथ पर लौटते हैं, अतः नाभिक बहुत ही सघन और परमाणु के आकार की तुलना में बहुत ही सूक्ष्म आकार का होता है। ### परमाणु का रदरफोर्ड मॉडल (Rutherford's Model of the Atom) अपने प्रयोगों के आधार पर रदरफोर्ड ने परमाणु मॉडल दिया उसके अनुसार— - (i) नाभिक का व्यास लगभग 10^{-15} मीटर जबिक परमाणु का व्यास लगभग 10^{-10} मीटर होता है। - (ii) नाभिक का कुल धनावेश इलेक्ट्रॉनों के कुल ऋणावेश के बराबर होता है जिससे आवेश परस्पर संतुलित हो जाते है। यही कारण है कि परमाणु उदासीन होता है। - (iii) इलेक्ट्रॉन नाभिक के चारों ओर रिक्त भाग में वितरित होते हैं। ये इलेक्ट्रॉन स्थिर नहीं होते हैं। यदि स्थिर होते तो नाभिकीय आकर्षण के कारण नाभिक में गिर जाते। - (iv) इलेक्ट्रॉन नाभिक के चारों ओर बन्द कक्षाओं अर्थात् गोलाकार कक्षाओं में परिक्रमा करते है। ऐसी स्थिति में इलेक्ट्रॉन पर नाभिकीय आकर्षण बल (जो नाभिक की ओर होता है), अपकेन्द्रण बल (जो इलेक्ट्रॉन की गति के फलस्वरूप उत्पन्न होता है तथा बाहर की ओर होता है) से प्रति सन्तुलित हो जाता है। इसके परिणामस्वरूप इलेक्ट्रॉन नाभिक के समीप नहीं आते। रदरफोर्ड के इस परमाणु मॉडल में इलेक्ट्रॉन नाभिक के चारों ओर उसी प्रकार घूमते हैं जिस प्रकार विभिन्न ग्रह सूर्य के चारों ओर घूमते हैं (चित्र 7.2)। चित्र 7.2 : इलेक्ट्रॉन का नाभिक के चारों ओर घूर्णन रदरफोर्ड परमाणु मॉडल में निम्नलिखित कमियां पायी गई - - (i) क्लार्क मेक्सवेल (Clark Maxwell) के विद्युत् चुम्बकीय विकिरण सिद्धान्त (Electro Magnetic Radiation) के अनुसार प्रत्येक आवेशित कण घूमते समय विकिरणों के रूप में कुछ ऊर्जा मुक्त करता है। अतः नाभिक के चारों ओर इलेक्ट्रॉन कक्षीय गति करेंगे तो वे भी कुछ ऊर्जा विकिरणों के रूप में मुक्त करेंगे। - (ii) यदि इलेक्ट्रॉन द्वारा ऊर्जा का हास लगातार हो तो परमाणुओं का विद्युत् चुम्बकीय स्पेक्ट्रम रेखीय (Line) नहीं होकर सतत् (Continuous) होना चाहिये और इलेक्ट्रॉन को नाभिक के नजदीक आते—आते अन्ततः उसमें समा जाना चाहिये (चित्र 7.3)। - (iii) रदरफोर्ड के परमाणु मॉडल में कक्षाओं में घूमने वाले इलेक्ट्रॉनों की संख्या निश्चित नहीं की गई थी। #### बोर का परमाणु मॉडल (Bohr's Model of the Atom) रदरफोर्ड मॉडल की किमयों को दूर करने के लिए नील्स बोर (Niels Bohr) ने सन् 1913 में स्पेक्ट्रमी अध्ययन और क्वाण्टम सिद्धान्त (Quantum theory) का सहारा लेकर परमाणु संबंधी एक नया सरलतम प्रतिरूप दिया। नील्स बोर ने सुझाया कि रूढ़ यांत्रिकी (Conventional mechanics) और विद्युतगतिकी चित्र 7.3 : रदरफोर्ड मॉडल दोष (Electrodynamics) के नियम परमाणु और उसके भीतर परिक्रमा करने वाले इलेक्ट्रॉनों पर लागू नहीं होते। बोर मॉडल (चित्र 7.4) निम्नलिखित अभिगृहितों (Postulates) पर आधारित है— चित्र 7.4 : बोर परमाणु मॉडल - (i) इलेक्ट्रॉन नाभिक के चारों ओर कुछ निश्चित गोलाकार पथ्र पर ही घूमते हैं जिन्हें कक्ष (Orbit) या कोश (Shell) या ऊर्जा स्तर (Energy level) कहते हैं और इन्हें n द्वारा प्रदर्शित करते हैं। n = 1, 2, 3, 4 ... यानी n का मान पूर्णांक होता है और इन्हें K, L, M, N ... भी कहा जाता है। - (ii) स्थायी कक्षा में घूमते समय इलेक्ट्रॉन विद्युत चुम्बकीय विकिरण उत्सर्जित नहीं करता जिससे उसकी ऊर्जा का कोई ह्रास नहीं होता है। लेकिन यदि कोई इलेक्ट्रॉन निम्न ऊर्जा स्तर से उच्च ऊर्जा स्तर में जाता है तो ऊर्जा का अवशोषण करता है तथा यदि उच्च ऊर्जा स्तर से निम्न ऊर्जा स्तर में आता है तो कुछ ऊर्जा का उत्सर्जन होगा। इस ऊर्जा का मान दोनों ऊर्जा स्तरों के अंतर के बराबर होता है। $$\Delta E = E_2 - E_1$$ ${\bf E_2} = {\bf 3}$ च्च ऊर्जा स्तर में इलेक्ट्रॉन की ऊर्जा ${\bf E_1} = {\bf f}$ म्म ऊर्जा स्तर में इलेक्ट्रॉन की ऊर्जा (iii) ऊर्जा का अवशोषण या उत्सर्जन hv की निश्चित इकाइयों में होता है जिन्हें क्वाण्टा (Quanta) कहते हैं। $$\Delta E = h\nu = \frac{hc}{\lambda} \left[\nu = \frac{C}{\lambda} \right]$$ यहाँ $\Delta E = उत्सर्जित या अवशोषित ऊर्जा$ h = प्लांक नियतांक या प्लांक का स्थिरांक (6.62×10⁻²⁷ अर्ग सेकण्ड) v = प्रकाश की आवृत्ति C = yकाश का वेग $(3 \times 10^8 \, \text{Hl.} / \, \text{सेकण्ड})$ λ = विकिरणों की तरंगदैध्यी (iv) एक कक्ष में इलेक्ट्रॉन स्थायी रूप से घूमता रहता है क्योंकि घूमते हुए इलेक्ट्रॉन पर दो विपरीत बल कार्य करते हैं। अपकेन्द्र बल (Centrifugal force) जो उसे केन्द्र से दूर धकेलता है। अपकेन्द्र बल $$= rac{mv^2}{r}$$ दूसरा नाभिक का अभिकेन्द्री बल (Centripetal force) या आकर्षण बल (Force of attraction) जो उसे केन्द्र की ओर आकर्षित करता है। अभिकेन्द्री बल = $$\frac{Ze^2}{r^2}$$ ये दोनों बल एक—दूसरे को संतुलित कर देते हैं जिससे इलेक्ट्रॉन उसी कक्ष में स्थायी रूप से घूमता रहता है। $$\frac{mv^2}{r} = \frac{Ze^2}{r^2} \quad \text{या} \quad mv^2 = \frac{ze^2}{r}$$ (v) इलेक्ट्रॉन जिसका द्रव्यमान (m) हो वह उन्हीं त्रिज्या (r) वाली गोलाकार कक्षाओं में वेग (v) से घूम सकता है जिसमें इलेक्ट्रॉन का कोणीय संवेग (Angular Momentum) mvr का मान $\frac{h}{2\pi}$ का पूर्ण गुणांक (Integral multiple) हो । अर्थात् $$mvr = \frac{nh}{2\pi}$$ यहाँ h = प्लांक नियतांक या स्थिरांक $$n = 1, 2, 3, 4, 5 \dots$$ परमाणु में नाभिक के बाहर अलग—अलग त्रिज्या के कई स्थायी गोलाकार कक्ष होते हैं जिनकी ऊर्जा नाभिक से दूरी बढ़ने के साथ बढ़ती है तथा इन्हें n द्वारा प्रदर्शित करते हैं। n=1,2, 3, 4 ऊर्जा स्तरों को K,L,M,N कोशों द्वारा दर्शाते हैं। बोर को अपने कार्य के लिए नोबल प्रस्कार दिया गया था। ### बोर मॉडल की कमियाँ (Drawbacks of the Bohr's Model) - (i) उनका मॉडल हाइड्रोजन स्पेक्ट्रम तथा उसमें पायी जाने वाली समस्त रेखाओं की सफलतापूर्वक व्याख्या कर सकता है। इस मॉडल से सभी बोर कक्षाओं की त्रिज्या तथा ऊर्जा आसानी से ज्ञात की जा सकती है। किन्तु बोर मॉडल उन परमाणुओं की व्याख्या करने में असफल रहा जिनमें इलेक्ट्रॉनों की संख्या अधिक हो जाती है। - (ii) बोर के अनुसार उच्च ऊर्जा स्तर से निम्न ऊर्जा स्तर में इलेक्ट्रॉनों के संक्रमण पर एक स्पेक्ट्रमी रेखा बनती है लेकिन उच्च भेदन क्षमता वाले स्पेक्ट्रोस्कोप से स्पेक्ट्रम लेने पर ज्ञात हुआ कि यह रेखा बहुत सी समीपवर्ती रेखाओं का समूह होती है। बोर मॉडल इनकी व्याख्या करने में असफल रहा। - (iii) चुम्बकीय क्षेत्र में स्पेक्ट्रम लेने पर प्रत्येक स्पेक्ट्रमी रेखा विभाजित हो जाती है इसे जीमन प्रभाव (Zeeman's effect) कहते हैं। इसी प्रकार विद्युत् क्षेत्र में रखने पर भी स्पेक्ट्रमी रेखाएं विभाजित हो जाती है इसे स्टार्क—प्रभाव (Stark effect) कहते हैं। बोर मॉडल इन दोनों प्रभावों की व्याख्या नहीं कर सका। (iv) बोर मॉडल द्वारा अणुओं की ज्यामिती तथा आकृति को नहीं समझाया जा सकता। बोर का मॉडल आंशिक रूप से सफल है। यह कुछ प्रायोगिक परिणामों को समझाने में सफल रहा परन्तु कई अन्य गुणों को समझाने में असफल रहा है। # कक्षक और क्वांटम संख्याएं (Orbital and Quantum Numbers) क्वांटम संख्यायें (Quantum number) परमाणु में प्रत्येक इलेक्ट्रॉन की स्थिति, प्रकृति और ऊर्जा ज्ञात करने के लिए चार नियतांकों की आवश्यकता होती है जिन्हें क्वाण्टम संख्याएं कहते हैं। ये निम्नलिखित हैं— 1. मुख्य क्वाण्टम संख्या (Principle quantum number) n- इसे 'n' द्वारा प्रदर्शित करते है। यह क्वाण्टम संख्या इलेक्ट्रॉन की नाभिक से दूरी अर्थात् इलेक्ट्रॉन के कक्ष (Orbit) या कोश (Shell) का आकार बताती है अर्थात् परमाणु के आकार (Size) के बारे में बताती है। यह इलेक्ट्रॉन के मुख्य ऊर्जा स्तर(Principle energy level) को बताती है। ऊर्जा स्तरों के संभावित मान $n=1,2,3,4\dots$ होते हैं इन्हें $K,L,M,N,O\dots$ आदि अक्षरों (बोर द्वारा प्रयुक्त) से भी संबोधित करते हैं । n का मान कभी शून्य नहीं होता है । एक कोश में अधिकतम $2n^2$ इलेक्ट्रॉन रह सकते हैं (सारणी 7.1) । सारणी 7.1: मुख्य क्वाण्टम संख्या n | . | | | | | | | | | |---------------------------|---|---|----|----|--|--|--|--| | n | 1 | 2 | 3 | 4 | | | | | | कोश | K | L | M | N | | | | | | इलेक्ट्रॉनों
की संख्या | 2 | 8 | 18 | 32 | | | | | n=1 (कक्ष K) अधिकतम इलेक्ट्रॉनों की संख्या $2\times 1^2=2$ इलेक्ट्रॉन इसी प्रकार यदि - n=2 (कक्ष L) में अधिकतम इलेक्ट्रॉनों की संख्या = $2\times 2^2=8$ इलेक्ट्रॉन n=3 (कक्ष M) में अधिकतम इलेक्ट्रॉनों की संख्या = $2\times 3^2=18$ इलेक्ट्रॉन n=4 (कक्ष N) में अधिकतम इलेक्ट्रॉनों की संख्या = $2\times4^2=32$ इलेक्ट्रॉन 2. दिगंशी क्वाण्टम संख्या (Azimuthal quantum number) ℓ – इसे ' ℓ ' द्वारा प्रदर्शित करते हैं। यह क्वाण्टम संख्या इलेक्ट्रॉन अभ्र अथवा इलेक्ट्रॉन के उपकक्ष (Subshell) की आकृति तथा उसके कोणीय संवेग (Angular momentum) का निर्धारण करती है। यह कक्षक (Orbital) की आकृति के बारे में भी बताती है। मात्र \mathbf{n} के विभिन्न मान से प्राप्त ऊर्जा स्तरों से सूक्ष्म स्पेक्ट्रम की व्याख्या नहीं की जा सकती है। मुख्य ऊर्जा स्तर विभिन्न उपस्तरों में विभाजित होता है जिसे ℓ मान द्वारा बताया जा सकता है। ℓ के मान 0 से (n-1) तक होते हैं | ℓ के प्रत्येक मान को एक अक्षर पदनाम भी दिया गया है | $\ell=0,1,2,3$ मान के लिए क्रमशः s,p,d,f पदनाम है (सारणी 7.2) | जिन्हें स्पेक्ट्रम की s=Sharp, p=Principle, d=diffused, f=fundamental लाइनों के प्रथम अक्षरों से लिया गया है |
' ℓ ' का मान 4 से अधिक होने पर अंग्रेजी वर्णमाला के क्रम का पालन होता है (केवल वर्ण J के अतिरिक्त) जैसे $\ell=4$ (g) आदि | किसी भी उपकोश में अधि कतम इलेक्ट्रॉनों की संख्या $2(2\ell+1)$ होती है तथा कक्षकों (Orbitals) की संख्या $(2 \ell + 1)$ होती है। यानि s उपकोश में एक, p में तीन, d उपकोश में f तथा f उपकोश में f कक्षक होते हैं। कक्षक में उपस्थित इलेक्ट्रॉन की ऊर्जा उनके कक्षीय कोणीय संवेग पर निर्भर करती है। कक्षीय कोणीय संवेग = $$\frac{h\sqrt{\ell (\ell + 1)}}{2\pi}$$ इस आधार पर एक ही कोश के विभिन्न उपकोशों में इलेक्ट्रॉन की ऊर्जा का क्रम निम्नानुसार होगा— $$s$$ कक्षकों की आकृति : s=गोलाकार, p=डम्बेल जैसी, d=द्विडम्बेल, लौंगाकार तथा f की आकृति जटिल होती है। 3. चुम्बकीय क्वाण्टम संख्या (Magnetic quantum number) $m - \xi \hat{\pi}$ 'm' द्वारा प्रदर्शित करते हैं। यह क्वाण्टम संख्या किसी कक्षक के त्रिविमीय आकाश में अभिविन्यास (Orientation) के बारे में बताती है। एक उपकोश के विभिन्न कक्षकों में विभेद चुम्बकीय क्वाण्टम संख्या के विभिन्न मान द्वारा किया जाता है। ℓ के प्रत्येक मान के लिए m के मान $(2\ell+1)$ होते हैं (0 भी शामिल है)। ये मान $-\ell$ से $+\ell$ तक होते हैं। m का प्रत्येक मान एक कक्षक को दर्शाता है जिसमें अधिकतम दो इलेक्ट्रॉन रह सकते है। (* m के मान ℓ से प्राप्त होते है तथा ℓ के मान n से प्राप्त होते है। कुल कक्षक n^2 के बराबर भी होते है।) $\ell=0$ के लिए m के संभावित मान को संख्या =1 एवं m का मान =0 $\ell = 1$ के लिए m के संभावित मान की संख्या = $(2 \times 1 + 1) = 3$, m का मान = -1, 0, +1, +2 (p_v , p_v , p_v कक्षक) ℓ =2 के लिए m के संभावित मान की संख्या (2×2+1) = 5, m का मान = $-2, -1, 0, +1, +2 (p_{xy}, p_{yz}, p_{xz})$ 4. चक्रण क्वाण्टम संख्या (Spin quantum number) $S - \xi \hat{\pi}$'s' द्वारा प्रदर्शित करते है। यह क्वाण्टम संख्या किसी इलेक्ट्रॉन के चक्रण की दिशा के बारे में बताती है। 1925 में गाऊमिट (Goudmit) और यूलेनबेक (Unlenbeck) ने बताया कि इलेक्ट्रॉन सारणी 7.2: n तथा ℓ के मान | n | 1 | 2 | | | 3 | | | 4 | | | |------------------------|---|---|---|---|---|----|---|---|----|----| | ℓ | 0 | 0 | 1 | 0 | 1 | 2 | 0 | 1 | 2 | 3 | | पदनाम | s | S | p | S | p | d | s | p | d | f | | इलेक्ट्रॉनों की संख्या | 2 | 2 | 6 | 2 | 6 | 10 | 2 | 6 | 10 | 14 | नाभिक के चारों ओर कक्षीय गति करने के साथ ही अपने अक्ष पर भी ठीक उसी प्रकार चक्रण करते है जिस प्रकार हमारी पृथ्वी सूर्य के चारों ओर कक्षीय गति के साथ—साथ अपनी धुरी पर घूमती है। इलेक्ट्रॉन का चक्रण दो दिशाओं में ही संभव है — दक्षिणावर्त (Clockwise) अथवा वामावर्त (Anti-Clockwise)। चूंकि इलेक्ट्रॉन ऋणावेशित होता है इसकी चक्रण गति से भी चुम्बकत्व उत्पन्न होता है। इलेक्ट्रॉन के वामावर्त अथवा दक्षिणावर्त दिशा में उत्पन्न चुम्बकीय क्षेत्र समान लेकिन विपरीत दिशा में अभिविन्यासित होते है अर्थात् चक्रण क्वाण्टम संख्या के मान $+\frac{1}{2}$ तथा $-\frac{1}{2}$ दिये जा सकते हैं क्योंकि इनके मान के कारण ही इनके ऊर्जा मान में एक इकाई ऊर्जा का अंतर पाया जाता है। इन्हें तीरों \uparrow (दक्षिणावर्त चक्रण व \downarrow (वामावर्त चक्रण) द्वारा भी प्रदर्शित किया जाता है (चित्र 7.5)। चित्र 7.5 : चक्रण क्वान्टम संख्या # परमाणु कक्षकों की आकृति (Shape of Atomic Orbitals) (1) s- कक्षक = 's' कक्षक गोलाकार आकृति के होते हैं। इनमें नाभिक के चारों ओर इलेक्ट्रॉन पाये जाने की प्रायिकता प्रत्येक दिशा में होती है। नोडल तल (Nodal surface) – वह सतह जहाँ इलेक्ट्रॉन के पाये जाने की प्रायिकता लगभग शून्य होती है (चित्र 7.6)। चित्र 7.6 : s-कक्षकों की आकृति कक्षक का आकार मुख्य क्वाण्टम संख्या (n) के मान पर निर्भर करता है। मुख्य क्वाण्टम संख्या n के लिए नोडल तलों की संख्या (n-1) होती है। यानी n=2 के लिए अर्थात 2s कक्षक के लिए नोडल तलों की संख्या एक होती है। (2) p- कक्षक = 'p' कक्षकों की आकृति डम्बेल (Dumbbell) जैसी होती है जिसमें दो पालियाँ (Lobes) होती हैं। दोनों पालियों में इलेक्ट्रॉन पाये जाने की प्रायिकता बराबर होती है तथा नोडल तल पालियों के बीच होता है। 'p' कक्षक दिशात्मक होते हैं, ये x,y तथा z अक्ष पर अभिविन्यासित होते हैं। एक ही कोश के तीनों p- कक्षक (p_x,p_y) तथा p_z) ऊर्जा, आकार तथा आकृति में समान होते हैं, इनमें मात्र दिशात्मकता का अंतर होता है अतः ये समभ्रंश कक्षक (Degenerate orbital) कहलाते हैं (चित्र 7.7)। चित्र 7.7 : p-कक्षकों की आकृति (3) d- कक्षक = 'd' कक्षकों की आकृति द्विडम्बलाकार एवं लौंगाकार होती है। कुल पांच d- कक्षकों में से तीन कक्षकों (d_{xy}, d_{yz}) तथा d_{xz}) की पालियाँ अक्षों के मध्य होती है। शेष दोनों d- कक्षकों की पालियाँ अक्षों की ओर अभिविन्यासित होती है। $d_{x^2-y^2}$ कक्षक की पालियाँ x व y अक्षों की दिशा में तथा d_{z^2} की पालियाँ z- अक्ष की ओर अभिविन्यासित होती है। पांचों d- कक्षक ऊर्जा में समान होते हैं (चित्र 7.8)। चित्र 7.8 : d-कक्षकों की आकृतियाँ (4) f- कक्षक = 'f' कक्षकों में पालियों की संख्या अधिक होने के कारण इनकी आकृति d- कक्षकों से भी जटिल होती है। सारणी 7.3: ℓ तथा \mathbf{m} के मान | • | t | t | t | |----------|-------------------|---------------------------|-----------------------------| | L का मान | कक्षकों की संख्या | m का मान | इलेक्ट्रॉन की अधिकतम संख्या | | | $(2 \ell + 1)$ | | | | 0 | 1 | 0 | 2 | | 1 | 3 | -1, 0, +1 | 6 | | 2 | 5 | -2, -1, 0, +1, +2 | 10 | | 3 | 7 | -3, -2, -1, 0, +1, +2, +3 | 14 | ### ऑफबाऊ नियम/ऑफबाऊ सिद्धांत #### (Aufbau Principle) ऑफबाऊ एक जर्मन शब्द है जिसका अर्थ होता है "निर्माण करना" (aufbau = building up)। परमाणुओं अथवा आयनों के इलेक्ट्रॉनिक विन्यास बनाने में जिन नियमों का पालन किया जाता है, वे संयुक्त रूप से ऑफबाऊ सिद्धांत कहलाते हैं। ऑफबाऊ सिद्धांत के अनुसार "किसी भी परमाणु में इलेक्ट्रॉन, कक्षकों की ऊर्जा के बढ़ते क्रम में भरते हैं।" न्यूनतम ऊर्जा के तंत्र सर्वाधिक स्थायी होते हैं। अतः सबसे कम ऊर्जा के कक्षक में इलेक्ट्रॉन सबसे पहले प्रवेश करते हैं, इस कक्षक के भर जाने के बाद ऊर्जा के बढ़ते क्रम में कक्षक भरे जाते हैं। जिन नियमों को सम्मिलत रूप से ऑफबाऊ सिद्धांत कहते हैं। ये नियम निम्नलिखित हैं— 1. पाउली का अपवर्जन सिद्धांत (Pauli's exclusion principle) – 1925 में पाउली ने अपवर्जन सिद्धांत दिया। इस नियम के अनुसार "किन्हीं दो इलेक्ट्रॉनों की चारों क्वाण्टम संख्याएं एक जैसी नहीं हो सकती अर्थात् किन्हीं दो इलेक्ट्रॉनों के लिये यदि n,l तथा m के मान समान है तो उनके s के मान निश्चित ही भिन्न होंगे। यानि एक कक्षक के दोनों इलेक्ट्रॉन का चक्रण सदैव विपरीत होता है, समानान्तर नहीं।" 2. हुंड का अधिकतम बहुकता का नियम (Hund's rule of maximum multiplicity) — समान ऊर्जा के कक्षकों उदाहरणार्थ समभ्रंश p— व d— कक्षकों में इलेक्ट्रॉनों के वितरण की जानकारी इस नियम से प्राप्त होती है। यदि समान ऊर्जा वाले रिक्त कक्षक उपलब्ध हो तो इलेक्ट्रॉन पहले रिक्त कक्षक में जाएगा और तब तक युग्मित नहीं होते जब तक सभी कक्षकों में एक—एक इलेक्ट्रॉन नहीं चला जाता। उदाहरण – ऑक्सीजन का इलेक्ट्रॉनिक विन्यास जिसका परमाणु क्रमांक 8 होता है निम्नलिखित है– $$O(8) = 1s^2, 2s^2, 2p_x^2 2p_y^1, 2p_z^1$$ 3. $(n+\ell)$ नियम — इस नियम की सहायता से उपस्तरों के भरने के क्रम को निकाला जा सकता है। इस नियम के अनुसार जिस कक्षक के लिए $(n+\ell)$ का मान निम्न होगा वही कक्षक पहले भरा जायेगा और यदि दो या दो से अधिक कक्षकों के लिए $(n+\ell)$ का योग समान है तो वह कक्षक पहले भरा जायेगा जिसके लिए n का मान कम हो। कक्षकों के $(n+\ell)$ मान से कक्षकों का बढ़ता हुआ ऊर्जा क्रम निम्नानुसार है (चित्र 7.9) - 1s < 2s < 2p < 3s < 3p < 4s < 3d < 4p < 5s < 4d < 5p< 6s < 4f < 5d < 6p ... चित्र 7.9 : उपस्तरों का ऊर्जा स्तर आरेख | n | L | m | S | 2 (2L + 1)
उपकोश में
अधिकतम
इलेक्ट्रॉन संख्या | 2n²
मुख्य कोश
में अधिकतम
इलेक्ट्रॉन संख्य | |-------|-------------------------|--------------------------------------|------------------------------|--|--| | 1 (K) | L = 0, s–उपकोश | m = 0 | $+\frac{1}{2}, -\frac{1}{2}$ | 2 | 2 | | 2 (L) | L = 0, s–उपकोश | m = 0 | $+\frac{1}{2}, -\frac{1}{2}$ | 2 | | | | L = 1, p–उपकोश | $m = -1 p_y$ कक्षक | $+\frac{1}{2}, -\frac{1}{2}$ | 6 | 8 | | | | $m = 0 p_Z$ कक्षक | $+\frac{1}{2}, -\frac{1}{2}$ | | | | | | $m = + 1 p_X $ कक्षक | $+\frac{1}{2}, -\frac{1}{2}$ | | | | 3 (M) | $L=0~\mathrm{s}$ —उपकोश | m = 0 | $+\frac{1}{2},-\frac{1}{2}$ | 2 | | | | L = 1 p–उपकोश | $m = -1$, p_y कक्षक | $+\frac{1}{2},-\frac{1}{2}$ | | | | | | $m = 0, p_Z$ कक्षक | $+\frac{1}{2}, -\frac{1}{2}$ | 6 | 18 | | | | m = + 1, $p_{_{\mathrm{X}}}$ कक्षक | $+\frac{1}{2}, -\frac{1}{2}$ | | | | | L = 2 d–उपकोश | $m = -2$, d_{xy} कक्षक | $+\frac{1}{2}, -\frac{1}{2}$ | | | | | | $m = -1$, d_{yZ} कक्षक | $+\frac{1}{2}, -\frac{1}{2}$ | 10 | | | | | $m = 0.1, d_Z^2$ कक्षक | $+\frac{1}{2}, -\frac{1}{2}$ | | | | | | m = + 1, d _{xz} কঞ্চক | $+\frac{1}{2}, -\frac{1}{2}$ | | | | | | $m = +2, d_{x^2-y^2}$ कक्षक | $+\frac{1}{2},-\frac{1}{2}$ | | | # Downloaded from https:// www.studiestoday.com 84 | 4 (N) | L = 0, s–उपकोश | m = 0 | $+\frac{1}{2}, -\frac{1}{2}$ | 2 | | |-------|----------------|--------|------------------------------|----|----| | | L = 1, p–उपकोश | m = -1 | $+\frac{1}{2},-\frac{1}{2}$ | | | | | | m = 0 | $+\frac{1}{2}, -\frac{1}{2}$ | 6 | | | | | m = +1 | $+\frac{1}{2}, -\frac{1}{2}$ | | | | | L = 2, d–उपकोश | m = -2 | $+\frac{1}{2}, -\frac{1}{2}$ | | | | | | m = -1 | $+\frac{1}{2},-\frac{1}{2}$ | | 32 | | | | m = 0 | $+\frac{1}{2}, -\frac{1}{2}$ | 10 | | | | | m = +1 | $+\frac{1}{2},-\frac{1}{2}$ | | | | | | m = +2 | $+\frac{1}{2}, -\frac{1}{2}$ | | | | | L = 3, f-उपकोश | m = -3 | $+\frac{1}{2}, -\frac{1}{2}$ | | | | | | m = -2 | $+\frac{1}{2}, -\frac{1}{2}$ | | | | | | m = -1 | $+\frac{1}{2}, -\frac{1}{2}$ | 14 | | | | | m = 0 | $+\frac{1}{2},-\frac{1}{2}$ | | | | | | m = +1 | $+\frac{1}{2}, -\frac{1}{2}$ | | | | | | m = +2 | $+\frac{1}{2}, -\frac{1}{2}$ | | | | | | m = +3 | $+\frac{1}{2},-\frac{1}{2}$ | | | ^{*} कक्षकों की संख्या = n^2 या (2L+1) # 4. अर्द्धपूरित एवं पूर्णपूरित कक्षकों का स्थायित्व (Stability of half filled and full filled orbitals) — एक ही उपकोश के अर्द्धपूर्ण कक्षक (p^3 , d^5 , f^7) तथा पूर्ण भरे कक्षक (p^6 , d^{10} , f^{14}) का स्थायित्व अन्य कक्षकों (p^4 , d^6 , f^8) से अधिक होता है। अतः एक या दो इलेक्ट्रॉनों के संक्रमण से कभी—कभी ऊर्जा स्तर अर्द्धपूरित या पूर्णपूरित होने का प्रयत्न करते हैं। उदाहरण — (i) Cr का परमाणु क्रमांक 24 है। ऑफबाऊ सिद्धांत अनुसार इलेक्ट्रॉनिक विन्यास = 1S² 2S² 2P⁶ 3S² 3P⁶ 4S² 3d⁴ लेकिन वास्तविक बाह्य इलेक्ट्रॉनिक विन्यास = $1S^2 2S^2 2P^6 3S^2 3P^6 4S^1 3d^5 होगा ।$ इसी तरह - $Cu \left(\text{परमाणु क्रमांक} \right) 29 - (\ln^2 2
\text{s}^2 2 \text{p}^6 35^2 3 \text{p}^6 4 \text{S}^2 3 \text{d}^9 =$ ऑफबाऊ सिद्धान्तानुसार लेकिन वास्तविक इलेक्ट्रॉन विन्यास $= 3d^{10}4s^1$ होगा। # महत्वपूर्ण बिन्दु - डॉल्टन के अनुसार परमाणु द्रव्य का एक सूक्ष्म कण है, जो अविभाज्य होता है। - 2. इलेक्ट्रॉन की खोज सर जे. जे. थॉमसन ने, प्रोटॉन की गोल्डस्टोन ने तथा न्यूट्रॉन की खोज सर जेम्स चेडविक ने की है। - 3. थॉमसन ने परमाणु का प्लम पूडिंग मॉडल दिया। - 4. परमाणु के रदरफोर्ड मॉडल के अनुसार परमाणु का अधिकांश भार नाभिक में होता है, नाभिक बहुत सूक्ष्म तथा धनावेशित होता है। परमाणु का अधिकांश भाग रिक्त होता है जहां इलेक्ट्रॉन वितरित होते हैं। - रदरफोर्ड परमाणु मॉडल की किमयों को बोर मॉडल द्वारा दूर करने का प्रयास किया गया। परमाणु के बोर मॉडल की अवधारणाएं— - (i) इलेक्ट्रॉन नाभिक के चारों ओर कुछ निश्चित पथ पर ही घूमते हैं जिन्हें कक्ष या कोश कहते हैं। - (ii) घूमते हुए इलेक्ट्रॉन की ऊर्जा अपरिवर्तित रहती है। लेकिन इलेक्ट्रॉन की कक्षा परिवर्तन होने पर ऊर्जा का उत्सर्जन या अवशोषण होता है। - (iii) ऊर्जा का उत्सर्जन या अवशोषण hv की निश्चित इकाईयों में होता है जिन्हें क्वाण्टा कहते हैं। - (iv) इलेक्ट्रॉन का कोणीय संवेग $\frac{h}{2\pi}$ का सरल गुणक है। - 6. परमाणु में इलेक्ट्रॉन की स्थिति, प्रकृति और ऊर्जा ज्ञात करने के लिये चार नियतांकों की आवश्यकता होती है जिन्हें क्वाण्टम संख्याएं कहते हैं। - ऑफबाऊ नियमानुसार किसी भी परमाणु के इलेक्ट्रॉन कक्षकों की ऊर्जा के बढ़ते क्रम में भरते है। यह निम्नलिखित नियमों का समूह है— - (अ) पाउली का अपवर्जन सिद्धान्त - (ब) हुण्ड का नियम - (स) (n+1) नियम - (द) अर्द्धपूरित तथा पूर्णपूरित कोशों का स्थायित्व ### अभ्यासार्थ प्रश्न ### वस्तुनिष्ठ प्रश्न - 1. रदरफोर्ड ने एक बहुत पतली स्वर्ण पत्री पर इनकी बौछार कराई थी— - (अ) प्रोटॉन - (ब) न्यूट्रॉन - (स) इलेक्ट्रॉन - (द) α-कण - बोर के सिद्धान्तानुसार कक्षों में गतिशील इलेक्ट्रॉन की ऊर्जा होती है— - (अ) इकाई - (ब) निरंतर परिवर्तनशील - (स) क्वाण्टीकृत - (द) यादृच्छिक मान की - 3. चतुर्थ ऊर्जा स्तर (n=4) की कुल इलेक्ट्रॉन क्षमता है— - (अ) 32 - (ब) 16 - (स) 8 - (द) 4 - 4. अंतरिक्ष में कक्षक का अभिविन्यास निम्नलिखित में से किस क्वाण्टम संख्या द्वारा जाता है— - (अ) n - (ৰ) ℓ - (स) m - (द) s - 5. एक 'd' उपकोश में कक्षकों की संख्या होती है— - (अ) 5 - (ब) 4 - (स) 3 - (द) 2 ### अतिलघुत्तरात्मक प्रश्न - 6. डॉल्टन का परमाणु सिद्धान्त बताइये। - 7. परमाणु के मौलिक कणों के नाम तथा आवेश बताइये। - निम्नलिखित में से कौनसे उपकोश संभव नहीं है – 1p, 2s, 3d, 3f - 9. n कोश में अधिक इलेक्ट्रॉनों की संख्या का मान क्या होता है? # Downloaded from https://www.studiestoday.com 86 ### लघुत्तरात्मक प्रश्न - 10. परमाणु रदरफोर्ड मॉडल की कमियां बताइये। - 11. n+1 नियम क्या है? 1s, 2s, 2p, 3s, 3p, 3d, 4s, 4p, 4d, तथा 4f कक्षकों को बढ़ते हुए ऊर्जा क्रम में लिखिये। - 12. परमाणु क्रमांक 24 के लिए इलेक्ट्रॉनिक विन्यास लिखिये तथा समझाइये। #### निबन्धात्मक प्रश्न - 13. परमाणु के बोर मॉडल की अवधारणायें लिखिये तथा इसकी किमयां बताइये। - क्वाण्टम संख्याएं किसे कहते हैं? ये कितने प्रकार की होती है। समझाइये। उत्तरमालाः 1 (द) 2 (स) 3 (अ) 4 (स) 5 (अ) # Downloaded from https://www.studiestoday.com # इकाई – 8 अध्याय – १ # तत्त्वों का वर्गीकरण और गुणों में आवर्तिता (Classification of Elements and Periodicity in Properties) # तत्त्वों का वर्गीकरण (Classification of Elements) प्रस्तावना (Introduction) उन्नीसवीं शताब्दी के प्रारम्भ तक बहुत कम संख्या में तत्त्व ज्ञात थे। लेकिन जब काफी संख्या में तत्त्वों की खोज हो चुकी तब उनके गुणों का अलग—अलग अध्ययन करने में वैज्ञानिकों को कठिनाई महसूस होने लगी और तब उनके वर्गीकरण की आवश्यकता महसूस हुई। तत्त्वों के वर्गीकरण का मुख्य उद्देश्य ''तत्त्वों तथा उनके यौगिकों के गुणों का व्यवस्थित अध्ययन कम समय तथा कम से कम प्रयास द्वारा किया जा सके।'' प्रथम तथा सरल वर्गीकरण में वैज्ञानिकों ने तत्त्वों को दो भागों में बांटा — (i) धातु (ii) अधातु। परन्तु इस वर्गीकरण को सफलता नहीं मिली क्योंकि कुछ तत्त्व ऐसे भी थे जिनके गुण धातु तथा अधातु दोनों से मिलते थे तथा ज्ञात तत्त्वों के भौतिक एवं रासायनिक गुणों के अध्ययन के आधार पर यह वर्गीकरण आवश्यकता के अनुरूप नहीं पाया गया। बाद में प्राऊट (Prout), डॉबेराइनर (Dobereiner), न्यूलैंड (Newland), लोथर मेयर (Lother Mayer) और मेंडलीव (Mendeleev's) ने परमाणु भार के आधार पर तत्त्वों के वर्गीकरण का प्रयास किया। - (i) प्राउट ने 1815 में एक परिकल्पना दी जिसके अनुसार सभी तत्त्व हाइड्रोजन परमाणुओं से मिलकर बने है क्योंकि तत्त्वों के परमाणु भार हाइड्रोजन के परमाणु भार के सरल गुणांक है। जैसे — कार्बन, नाइट्रोजन व ऑक्सीजन का परमाणु भार क्रमशः 12, 14 व 16 है। लेकिन तत्त्वों के परमाणु भारों का सही निर्धारण करने पर यह पाया गया कि कई तत्त्वों के परमाणु भार भिन्नांक में होते है। - (ii) 1829 में जर्मन वैज्ञानिक डॉबेराइनर ने समान गुणों वाले तत्त्वों को तीन—तीन के समूहों में व्यवस्थित किया। इन समूहों को त्रिक (Triads) कहते हैं। उसने बताया कि त्रिक - में उपस्थित तत्त्वों में से मध्य वाले तत्त्व का परमाणु भार, दूसरे दोनों तत्त्वों के परमाणु भारों का लगभग माध्य होता है। इसे डॉबेराइनर का त्रिक नियम (Dobereiner's law of triads) कहते हैं। लेकिन कुछ ही तत्त्वों को ऐसे त्रिकों में विभक्त किया जा सका। - (iii) सन् 1864 में रसायनज्ञ न्यूलैण्ड ने तत्त्वों को उनके परमाणु भार के बढ़ते हुए क्रम में व्यवस्थित किया तथा एक नियम दिया जिसे न्यूलैण्ड का अष्टक नियम (Newlands law of octaves) कहते हैं। इस नियम के अनुसार तत्त्वों को उनके परमाणु भार के बढ़ते क्रम में व्यवस्थित करने पर प्रत्येक आठवें तत्त्व के गुणधर्म पहले तत्त्व के गुणधर्म से समान होते है। लेकिन यह नियम भी अधिक सफल नहीं हुआ क्योंकि कैल्शियम के बाद यह नियम लागू नहीं होता है तथा बाद में जब उत्कृष्ट गैसों की खोज हुई और इन गैसों को भी स्थान मिला तो इस नियम का महत्त्व नहीं रहा। - (iv) सन् 1869 में लोथर मेयर के वक्र (Lother Mayer's Curve) में जर्मन वैज्ञानिक लोथर मेयर ने तत्त्वों के भौतिक गुणों को उनके परमाणु भार से संबंधित करने का प्रयास किया और तत्त्वों के परमाणु भार तथा परमाणु आयतन के मध्य वक्र खींचा। उन्होंने पाया कि समान गुणों वाले तत्त्व वक्र में समान स्थिति प्राप्त करते हैं। - (v) मेंडेलीव का आवर्त नियम (Mendeleev's periodic law) रूसी रसायनज्ञ ने 1869 में तत्त्वों के भौतिक गुणों के साथ—साथ उनके रासायनिक गुणों को भी परमाणु भार से संबंधित किया और अपना आवर्त नियम दिया। इस नियम के अनुसार "तत्त्वों के भौतिक एवं रासायनिक गुण उनके परमाणु भारों के आवर्ती फलन (Periodic function) होते हैं।" लेकिन मेंडलीव की आवर्त सारणी हाइड्रोजन, # Downloaded from https://www.studiestoday.com समस्थानिकों तथा लैन्थैनॉइड व ऐक्टिनॉयड की स्थिति स्पष्ट नहीं कर सकी। साथ ही समान गुणों वाले कुछ तत्त्वों को एक ही वर्ग में स्थान नहीं दिया गया तथा भिन्न गुणों वाले तत्त्वों को एक ही वर्ग में रखा गया। कुछ स्थानों पर परमाणु भार के आरोही क्रम का पालन नहीं किया गया। (vi) मोज़ले (Moseley) ने 1912 में मेंडलीव के आवर्त नियम में संशोधन कर आधुनिक आवर्त नियम (Modern periodic law) दिया। ### आधुनिक आवर्त नियम या आवर्त सारणी का आधुनिक स्वरूप (Modern Periodic Law or Modern form of Periodic Table) सन् 1912 में मोज़ले (Moseley) ने बताया कि परमाणु क्रमांक परमाणु भार की तुलना में तत्त्व का अधिक उत्तम मौलिक गुण है। परमाणु क्रमांक (Atomic number) परमाणु के नाभिक में उपस्थित प्रोटॉन की संख्या को कहते हैं तथा किसी उदासीन परमाणु में प्रोटॉन की संख्या = इलेक्ट्रॉन की संख्या। किसी भी तत्त्व के भौतिक व रासायनिक गुण उसमें उपस्थित इलेक्ट्रॉनों की संख्या जो परमाणु क्रमांक के बराबर होती है पर निर्भर करते हैं। मोज़ले ने परमाणु क्रमांक को तत्त्वों का मौलिक गुण मानते हुए मेंडलीव के आवर्त नियम में संशोधन करके नया आवर्त नियम — आधुनिक आवर्त नियम दिया। यह आवर्त सारणी के दीर्घ स्वरूप का आधार है। इस नियम के अनुसार तत्त्वों के भौतिक एवं रासायनिक गुण उनके परमाणु क्रमांकों के आवर्ती फलन(Periodic function) होते है। परमाणु क्रमांकों के बढ़ते हुए क्रम में तत्त्वों को व्यवस्थित करने पर जो सारणी प्राप्त होती है, उसे आधुनिक आवर्त सारणी (Modern periodic table) कहते हैं। चूंकि यह आवर्त सारणी मेंडलीव की आवर्त सारणी की तुलना में ज्यादा विस्तृत है, अतः इसे आवर्त सारणी का दीर्घ स्वरूप या आवर्त सारणी का लम्बा रूप (Extended form of periodic table or long form of periodic table) भी कहते हैं। इस आवर्त सारणी की निम्नलिखित विशेषताएँ हैं— - इस आवर्त सारणी में तत्त्वों को उनके परमाणु क्रमांकों के बढते क्रम में व्यवस्थित किया गया है। - आवर्त सारणी में अठारह उर्ध्वाधर स्तम्म(Vertical columns) होते हैं, जिन्हें वर्ग (Groups) कहते हैं तथा सात क्षेतिज पंक्तियां होती हैं, जिन्हें आवर्त (Periods) कहते हैं। - 3. वर्ग (Groups): - (i) I A, II A, III A, IV A, V A, VI A और VII A वर्गों में सामान्य तत्त्व (Normal elements) या प्रतिनिधि तत्त्व (Representative elements) है। - (ii) I B, II B, IV B, V B, VI B, VII B और VIII वर्गों में संक्रमण तत्त्व (Transition elements) है। लेकिन संक्रमण तत्त्वों की आधुनिक परिभाषा के अनुसार Zn, Cd, Hg (IIB) तत्त्वों को संक्रमण तत्त्व नहीं माना गया है। - (iii) III B वर्ग में संक्रमण तथा अन्तः संक्रमण (Inner transition elements) दोनों ही प्रकार के तत्त्व है। - (iv) शून्य वर्ग में उत्कृष्ट गैसें हैं। - 4. **आवर्त** (Periods) : - (i) प्रथम आवर्त में दो तत्त्व H(1) तथा He(2) है। - (ii) द्वितीय आवर्त में Li (3) से Ne (10) तक आठ तत्त्व है। - (iii) तृतीय आवर्त में भी आठ तत्त्व Na (11) से Ar (18) तक है। - (iv) चतुर्थ आवर्त में अठारह, K (19) से Kr (36) तत्त्व है। - (v) पंचम आवर्त में अठारह, Rb (37) से Xe (54) तत्त्व है। - (vi) षष्ठम आवर्त में बत्तीस Cs (55) से Rn (86) तत्त्व है। इनमें लेन्थैनॉयड [Ce(58) से Lu (71)] भी सम्मिलित है। - (vii) सप्तम आवर्त अपूर्ण है, इनमें Fr (87) से आगे अब तक ज्ञात (118) तत्त्व है। शुरूआती 94 तत्त्व प्राकृतिक रूप से विद्यमान है। परमाणु क्रमांक 95 से 118 तक के तत्त्वों को प्रयोगशाला में बनाया (Synthesis) गया है। - (viii) विभिन्न विवादों को दूर करने के लिए Ha (105) के बाद वाले तत्त्वों का संकेत तथा नामकरण IUPAC प्रणाली के अनुसार है। [IUPAC = International Union of Pure and Applied Chemistry] ### दीर्घ स्वरूप आवर्त सारणी की उपयोगिता एवं दोष (Utility and Defects of Extended Form of Periodic Table) उपयोगिताएँ (Utilities) - 1. दीर्घ स्वरूप आवर्त सारणी में तत्त्वों को उनके मौलिक गुण अर्थात् परमाणु क्रमांक के बढ़ते क्रम में व्यवस्थित किया गया है। किसी परमाणु का परमाणु क्रमांक उसमें उपस्थिति इलेक्ट्रॉन की संख्या के बराबर होता है। अतः यह कहा जा सकता है कि तत्त्व की आवर्त सारणी में स्थिति उसके इलेक्ट्रॉनिक विन्यास से संबंधित है। - इस आवर्त सारणी में धात्विक तत्त्वों को बांयी ओर तथा अधात्विक तत्त्वों को दांयी ओर रखा गया है अर्थात् धातुओं और अधातुओं को पूर्ण रूप से अलग किया गया है। - 3. बोरॉन (B), सिलिकॉन (Si), आर्सेनिक (As), टेल्यूरियम (Te), और ऐस्टैटीन (At) के नीचे खींची गई विकर्ण रेखा (Diagonal line) धातुओं और अधातुओं को अलग—अलग
दर्शाती है। - एक ही वर्ग में उपवर्गों बनाने से भिन्न–भिन्न गुणों वाले तत्त्वों को विभेदित किया जा सकता है। - इस आवर्त सारणी में लेन्थैनॉयड व ऐक्टिनॉयड श्रेणी अधिक स्पष्ट है। क्योंकि इन्हें III B से संबंधित कर आवर्त सारणी के नीचे स्थान दिया गया है। - उत्कृष्ट गैसों को सारणी के अन्त में रखा गया है क्योंकि इनमें पूर्ण उपकोश होते है। - यह सारणी परमाणु क्रमांक के आधार पर है। इससे समस्थानिकों और समभारिकों की स्थिति की समस्या समाप्त हो गई। - तत्त्वों के इलेक्ट्रॉनिक विन्यास आसानी से समझे जा सकते हैं। दोष (Defects) आधुनिक आवर्त नियम या दीर्घ रूप आवर्त सारणी में कुछ दोष भी हैं जैसे — - 1. हाइड्रोजन की स्थिति स्पष्ट नहीं है। - लेन्थैनॉयडों व ऐक्टिनॉयडों को मूल आवर्त सारणी में समायोजित करना संभव नहीं है। - कुछ तत्त्व जैसे Ba (बेरियम) व Pb (लैड) तथा Cu (कॉपर) व Hg (मर्करी) के गुणों में समानता होने पर भी इन्हें अलग—अलग वर्गों में रखा गया है। ### दीर्घ रूप आवर्त सारणी का आधुनिक स्वरूप (Modern Form of Long Form of Periodic Table) IUPAC द्वारा दिये गए सुझावों के अनुसार सन् 1984 में दीर्घ रूप आवर्त सारणी में कुछ बदलाव किया गया। जो आवर्त सारणी का आधुनिक स्वरूप है। इसमें वर्गों का A और B उपवर्गों में विभाजन समाप्त कर दिया गया तथा VIII वर्ग को तीन पृथक् वर्गों में विभाजित किया गया। अर्थात् आधुनिक स्वरूप में वर्गों का क्रमांकन 1 से 18 तक है (सारणी 8 में दीर्घ रूप आवर्त सारणी तथा इसका आधुनिक स्वरूप प्रदर्शित है)। # तत्त्वों के इलेक्ट्रॉनिक विन्यास तथा आवर्त सारणी (Electronic Configuration of Elements and Periodic Table) बोर द्वारा तत्त्वों को उनमें उपस्थित अपूर्ण इलेक्ट्रॉनीय कोशों की संख्या के आधार पर चार भागों में विभाजित किया गया— - 1. उत्कृष्ट गैसें (Nobel gases) आवर्त सारणी के शून्य वर्ग में इन्हें सम्मिलित किया गया है। इन तत्त्वों के परमाणुओं में बाह्यतम कोश के उपकोश पूर्णतया भरे होते हैं। He (इलेक्ट्रॉनिक विन्यास 1S²) को छोड़कर बाकी सभी उत्कृष्ट गैसों के बाह्य कोश का इलेक्ट्रॉनिक विन्यास ns² np6 होता है। - 2. सामान्य तत्त्व या प्रतिनिधि तत्त्व (Normal elements or representative elements) इन तत्त्वों को s—ब्लॉक तत्त्व (s-block elements) तथा p—ब्लॉक तत्त्व (p-block elements) दो भागों में बांटा जा सकता है। इन तत्त्वों में परमाणुओं के आन्तरिक कोश भरे हुए होते हैं तथा बाह्यतम कोश अपूर्ण होते हैं। - s-ब्लॉक तत्त्व इनमें अंतिम इलेक्ट्रॉन s—उपकोश या ns कक्षक में भरा जाता है, इसलिए इन्हें s—ब्लॉक तत्व कहते हैं। n=परमाणु के संयोजकता कोश अथवा आवर्त संख्या। इनका सामान्य इलेक्ट्रॉनिक विन्यास ns^1 या ns^2 होता है। s= ब्लॉक तत्त्व आवर्त सारणी में एकदम बायें ओर होते हैं तथा वर्ग संख्या 1 तथा 2 में उपस्थित क्षार और क्षारीय मृदा धात्एं इस ब्लॉक में सम्मिलत है (सारणी 8.1)। सारणी 8.1 : s-ब्लॉक तत्त्व | | क्षार धातुएं | | क्षार मृदा धातुएं | |--------|--------------------------|--------|--------------------------| | | (वर्ग 1) ns ¹ | | (वर्ग 2) ns ² | | तत्त्व | इलेक्ट्रॉनिक विन्यास | तत्त्व | इलेक्ट्रॉनिक विन्यास | | Li | [He] 2s ¹ | Be | [He] 2s ² | | Na | [Ne] 3s ¹ | Mg | [Ne] $3s^2$ | | K | [Ar] 4s ¹ | Ca | $[Ar] 4s^2$ | | Rb | [Kr] 5s ¹ | Sr | $[Kr] 5s^2$ | | Cs | [Xe] 6s ¹ | Ba | [Xe] $6s^2$ | | Fr | [Rn] 7s ¹ | Ra | [Rn] 7s ² | (ii) **p-ब्लॉक तत्त्व** — इनमें अंतिम इलेक्ट्रॉन p—उपकोश या np कक्षक में भरे जाते हैं, इसलिए इन्हें p-ब्लॉक तत्त्व कहते हैं। इनका सामान्य इलेक्ट्रॉनिक विन्यास ns² p¹-6 होता है यहां (n = 2 से 6 तक)। p—ब्लॉक तत्त्व आवर्त सारणी में दायें भाग में होते हैं तथा वर्ग 13 से 18 इनमें सम्मिलित है। इन तत्त्वों के सबसे बाहरी कोश के s—उपकोश में दो इलेक्ट्रॉन होते हैं तथा p—उपकोश में 1 से 6 इलेक्ट्रॉन भरे जाते हैं, जैसे—जैसे 13 वर्ग से 18 वर्ग की ओर बढ़ते हैं। वर्ग 18 उत्कृष्ट गैसों का है जिसमें p—उपकोश पूर्ण भरा होता है। He का इलेक्ट्रॉनिक विन्यास 1s² होते हुए भी गुणों के आधार पर इसे p—ब्लॉक तत्त्व में सम्मिलित किया गया है (सारणी 8.2)। - 3. **d**—**ब्लॉक** तत्त्व या संक्रमण तत्त्व (d-block elements or transition elements) इनमें अंतिम इलेक्ट्रॉन (n-1) d उपकोश में भरा जाता है, इसलिए इन्हें d—ब्लॉक तत्त्व कहते हैं। इनका सामान्य इलेक्ट्रॉनिक विन्यास (n-1)d¹⁻¹⁰ ns⁰⁻² होता है। इनमें बाह्यतम दो कोश अपूर्ण रहते है। d—ब्लॉक तत्त्व आवर्त सारणी के मध्य में s a p ब्लॉक तत्त्वों के मध्य में स्थित होते है, इसीलिए इन्हें संक्रमण तत्त्व भी कहा जाता है। ये तत्त्व धात्विक प्रकृति के होते है तथा इनके आयन प्रायः रंगीन होते है। d—ब्लॉक तत्त्वों में 3 से 12 तक के दस वर्ग आते है। वर्ग 12 के Zn, Cd व Hg संक्रमण तत्त्व नहीं है क्योंकि इनमें d—कक्षक पूर्ण भरे होते हैं (सारणी 8.3)। - 4. **f**—**ब्लॉक** तत्त्व या आन्तिरक संक्रमण तत्त्व (f-block elements or inner transition elements) इनमें इलेक्ट्रॉन (n-2) f उपकोश में भरने के क्रम में होते हैं, इसलिए इन्हें f—ब्लॉक तत्त्व कहते हैं | इनका सामान्य इलेक्ट्रॉनिक विन्यास (n-2) f¹⁻¹⁴ (n-1)d⁰⁻² ns² होता है | इनमें बाह्यतम तीन कोश संयोजकता कोश(Valence shell), उपान्त्य कोश (Penultimale shell) तथा पूर्व उपान्त्य shell), उपान्त्य कोश (Penultimale shell) तथा पूर्व उपान्त्य कोश (Prepenultimate shell) अपूर्ण होते है। इन तत्त्वों को आन्तरिक संक्रमण तत्त्व भी कहते हैं तथा इनकी दो श्रेणियां होती हैं— - (i) 4 f श्रेणी (लेन्थैनॉयड) - (ii) 5 f श्रेणी (ऐक्टिनॉयड) इन दोनों श्रेणियों में 14 – 14 तत्त्व होते हैं तथा इन्हें आवर्त सारणी के नीचे अलग रखा गया है (सारणी 8.4)। सारणी 8.2 : p- ब्लॉक तत्त्व | वर्ग | 13 | 14 | 15 | 16 | 17 | 18 | |-------|--|--|---|--|--|--| | आवर्त | | | | | | | | 1 | | | | | | He(1s ²) | | 2 | $\frac{\mathrm{B}}{(2\mathrm{s}^2 2\mathrm{p}^1)}$ | $C \\ (2s^22p^2)$ | $N \ (2s^22p^3)$ | O $(2s^22p^4)$ | F (2s ² 2p ⁵) | Ne
(2s ² 2p ⁶) | | 3 | $Al (3s^2p^1)$ | $Si \\ (3s^2p^2)$ | P
(3s ² 3p ³) | S
(3s ² 3p ⁴) | Cl
(3s ² 3p ⁵) | $Ar (3s^23p^6)$ | | 4 | Ga
(4s ² 4p ¹) | Ge
(4s ² 4p ²) | As (4s ² 4p ³) | Se
(4s ² 4p ⁴) | Br
(4s ² 4p ⁵) | Kr
(4s ² 4p ⁶) | | 5 | In (5s ² 5p ¹) | Sn
(5s ² 5p ²) | Sb (5s ² 5p ³) | Te (5s ² 5p ⁴) | $I (5s^25p^5)$ | Xe (5s ² 5p ⁶) | | 6 | Ti
(6s ² 6p ¹) | Pb (6s ² 6p ²) | Bi (6s ² 6p ³) | Po
(6s ² 6p ⁴) | At (6s ² 6p ⁵) | Rn
(6s ² 6p ⁶) | सारणी 8.3 : d-ब्लॉक तत्त्व | वर्ग | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |-------|------------|-------------------|------------|---------------------------------|------------|------------|------------|------------|-----------------|---------------| | आवर्त | | | | | | | | | | | | 4 | Sc | Ti | V | Cr | Mn | Fe | Со | Ni | Cu | Zn | | | $3d^14s^2$ | $3d^24s^2$ | $3d^34s^2$ | 3d ⁵ 4s ¹ | $3d^54s^2$ | $3d^64s^2$ | $3d^74s^2$ | $3d^84s^2$ | $3d^{10}4s^{1}$ | $3d^{10}4s^2$ | | 5 | Y | Zr | Nb | Mo | Тс | Ru | Rh | Pd | Ag | Cd | | | $4d^15s^2$ | $4d^25s^2$ | $4d^45s^1$ | $4d^55s^1$ | $4d^55s^2$ | $4d^75s^1$ | $4d^85s^1$ | $4d^{10}$ | $4d^{10}5s^{1}$ | $4d^{10}5s^2$ | | 6 | La | Hf | Ta | W | Re | Os | Lr | Pt | Au | Hg | | | $5d^16s^2$ | $4f^{14}5d^26s^2$ | $5d^36s^2$ | $5d^46s^2$ | $5d^56s^2$ | $5d^66s^2$ | $5d^76s^2$ | $5d^96s^1$ | $5d^{10}6s^{1}$ | $5d^{10}6s^2$ | | 7 | Ac | Unq | Unp | Unh | Uns | | | | | | | - | $6d^17s^2$ | | | | | | | | | | सारणी 8.4 : f-ब्लॉक तत्त्व | | लेन्थेनॉन श्रेणी | ऐक्टिनॉन श्रेणी | | | |--------|----------------------------|-----------------|---|--| | प्रतीक | इलेक्ट्रॉनिक विन्यास | प्रतीक | इलेक्ट्रॉनिक विन्यास | | | Се | [Xe] 4f¹5d¹6s² | Th | [Rn] 6d ² 7s ² | | | Pr | [Xe] $4f^35d^06s^2$ | Pa | [Rn] $5f^26d^17s^2$ | | | Nd | [Xe] $4f^45d^06s^2$ | U | [Rn] $5f^36d^17s^2$ | | | Pm | [Xe] $4f^55d^06s^2$ | NP | [Rn] 5f ⁴ 6d ¹ 7s ² | | | Sm | [Xe] $4f^65d^06s^2$ | Pu | [Rn] 5f ⁶ 6d ⁰ 7s ² | | | Eu | [Xe] $4f^75d^06s^2$ | Am | [Rn] $5f^76d^07s^2$ | | | Gd | [Xe] $4f^75d^16s^2$ | Cm | [Rn] $5f^76d^17s^2$ | | | Tb | [Xe] $4f^95d^06s^2$ | Bk | [Rn] $5f^96d^07s^2$ | | | Y | [Xe] $4f^{10}5d^{0}6s^{2}$ | Cf | [Rn] $5f^{10}6d^07s^2$ | | | Но | [Xe] $4f^{11}5d^{0}6s^{2}$ | Es | [Rn] $5f^{11}6d^07s^2$ | | | Er | [Xe] $4f^{12}5d^{0}6s^{2}$ | Fm | [Rn] $5f^{12}6d^07s^2$ | | | Tm | [Xe] $4f^{13}5d^{0}6s^{2}$ | Md | [Rn] $5f^{13}6d^07s^2$ | | | Yb | [Xe] $4f^{14}5d^{0}6s^{2}$ | No | [Rn] $5f^{14}6d^07s^2$ | | | Lu | [Xe] $4f^{14}5d^{1}6s^{2}$ | Lr | [Rn] 5f ¹⁴ 6d ¹ 7s ² | | ### तत्त्वों के गुणधर्मों में आवर्तिता (Periodicity in Properties of Elements) परमाणुओं के गुण जैसे परमाण्वीय त्रिज्या, आयनिक त्रिज्या, आयनन विभव, विद्युतऋणात्मकता, इलेक्ट्रॉन लिख्य एन्थेलेल्पी आदि परमाणुओं के इलेक्ट्रॉनिक विन्यास पर निर्भर रहते है। आवर्त सारणी में आवर्तों में बांए से दांए जाने पर तथा वर्गों में ऊपर से नीचे जाने पर, तत्त्वों के इलेक्ट्रॉनिक विन्यास में क्रमिक परिवर्तन होता है, इससे वे गुण जो इलेक्ट्रॉनिक विन्यास पर निर्भर करते है, वे भी क्रमिक रूप से परिवर्तित होते है, इन्हें आवर्ती गुण (Periodic properties) कहते हैं और गुणों के इस क्रमिक परिवर्तन को ही गुणधर्मों में आवर्तिता (Periodicity in properties) कहते हैं। कुछ प्रमुख गुणों में आवर्तिता का वर्णन निम्नलिखित प्रकार है— ### परमाणु त्रिज्या या परमाण्वीय त्रिज्या तथा आयनिक त्रिज्या (Atomic Radius and Ionic Radius) #### परमाणु त्रिज्या परमाणु के नाभिक के केन्द्र तथा बाह्यतम इलेक्ट्रॉन के बीच की दूरी परमाणु त्रिज्या कहलाती है। परन्तु परमाणु की त्रिज्या आसानी से ज्ञात नहीं की जा सकती क्योंकि तरंग यांत्रिकी के अनुसार किसी भी निश्चित समय पर इलेक्ट्रॉन की स्थिति निश्चित नहीं होती। ### बंध लम्बाई या बंध दूरी परमाणु त्रिज्या निकालने के लिए प्रयोगों द्वारा अन्तरनाभिकीय दूरी निकाल ली जाती है, जिसे बंध लम्बाई कहते हैं। फिर बंध लम्बाई तथा परमाणु त्रिज्या के मध्य सैद्धांतिक संबंध स्थापित कर परमाणु त्रिज्या की गणना की जाती है। चूंकि बंध को धात्विक, सहसंयोजक, आयनिक आदि बंधों में विभाजित किया जाता है, अतः संबंधित त्रिज्या को धात्विक त्रिज्या, सहसंयोजक त्रिज्या, वान्डरवाल्स तथा आयनिक त्रिज्या कहते हैं। परमाण्वीय त्रिज्या को तीन कार्यकारी संकल्पनाओं द्वारा प्रदर्शित करते हैं – (i) धात्विक त्रिज्या (ii) सहसंयोजक त्रिज्या (iii) वान्डरवाल त्रिज्या। (i) **धात्विक त्रिज्या** — धातुओं के परमाणुओं की त्रिज्या को धात्विक त्रिज्या कहते हैं। - (ii) **सहसंयोजक त्रिज्या** सहसंयोजक बंध से बंधित परमाणुओं के नाभिकों के बीच की दूरी (बंध लम्बाई) का आधा, उस तत्त्व के परमाणु की सहसंयोजक त्रिज्या होती है। इनमें तीन संभावनाएं हैं— - (अ) अणु में दोनों परमाणु (A-A) जब एक ही
तत्त्व के हो तब- $$r_{_{\! A}} = rac{d_{_{\! A-A}}}{2}$$ $r_{_{\! A}} =$ परमाणु A की सहसंयोजक त्रिज्या $$d_{_{\! A-A}} =$$ परमाणु $A\!-\!A$ की बंध लम्बाई $d_{A-A}=2r_A$ (ब) अणु के परमाणु (A–B) जब असमान तत्त्वों से हो पर विद्युतऋणात्मकता लगभग समान हो— $X_{_{\rm A}} \quad X_{_{\rm B}} \qquad X_{_{\rm A}}$ तथा $X_{_{\rm B}}$ क्रमशः परमाणु A तथा B की विद्युतऋणात्मकता है। $d_{A-B} = r_A + r_B$ d_{A-B} = परमाणु A-B की बंध लम्बाई $\mathbf{r}_{_{\mathrm{A}}} = \mathbf{u}$ रमाणु \mathbf{A} की सहसंयोजक त्रिज्या $r_{_{\mathrm{B}}} =$ परमाणु B की सहसंयोजक त्रिज्या (स) अणु के परमाणु (A–B) असमान तत्त्वों से हो तथा दोनों परमाणुओं की विद्युतऋणात्मकता भी असमान हो— $$d_{A-B} = r_A + r_B - 0.09 (X_A - X_B)$$ उपरोक्त सूत्र शूमाकर एवं स्टीवेंसन (Schomaker and Stevenson) सूत्र कहलाता है। (iii) वान्डरवाल्स त्रिज्या (Vanderwaals radius) – एक ही तत्त्व के दो अणुओं के अबंधित समीपस्थ परमाणुओं के नाभिक के मध्य की दूरी का आधा वान्डरवाल्स त्रिज्या कहलाता है। #### आयनिक त्रिज्या आयनिक क्रिस्टलों में आयनों की त्रिज्या को आयनिक त्रिज्या कहते हैं। परमाणु एक या एक से अधिक इलेक्ट्रॉन त्याग कर धनायन बनता है, अतः धनायन का आकार सदैव उदासीन परमाणु से छोटा होता तथा इसके विपरीत ऋणायन परमाणु एक या एक से अधिक इलेक्ट्रॉन ग्रहण करने पर बनता है, इसलिए ऋणायन का आकार उदासीन परमाणु से बड़ा होता है। ### आवर्तिता (Periodicity) एक ही आवर्त में बांए से दाएं जाने पर परमाण्वीय तथा आयनिक दोनों त्रिज्याओं के मान में कमी होती है। आवर्त में बाएं से दाएं जाने इलेक्ट्रॉन उसी कोश में भरते है, जिससे बाह्यतम कोश तो वही रहता है जबिक इलेक्ट्रॉनों पर नामिकीय आकर्षण बल अर्थात् नामिकीय आवेश बढ़ता - है। फलस्वरूप परमाण्वीय व आयनिक त्रिज्या का मान भी कम होता जाता है। - 2. संक्रमण तथा आन्तिरिक संक्रमण तत्वों की श्रेणी में बांए से दांए जाने पर तत्त्वों की परमाण्वीय त्रिज्याओं के मान में अधिक अंतर नहीं होता है। संक्रमण तत्त्वों में इलेक्ट्रॉन आन्तिरिक (n-1) d कक्षकों में तथा आन्तिरिक संक्रमण तत्त्वों में इलेक्ट्रॉन (n-2) f कक्षकों में भरे जाते हैं। यहां दो प्रभाव कार्य करते हैं — इन तत्त्वों के विन्यास में आने वाले नए इलेक्ट्रॉन भीतर के कोशों में भरते हैं, जिससे परिधि के इलेक्ट्रॉनों पर नाभिक का आकर्षण बल कम हो जाता है, यह प्रभाव आकार को बढ़ाता है इसे परिरक्षण प्रभाव अथवा आवरणी प्रभाव कहते हैं। दूसरा प्रभावी नाभिकीय आवेश भी लगातार बढ़ता रहता है जो इलेक्ट्रॉनों को नाभिक के करीब लाता है। इस प्रकार परिरक्षण प्रभाव तथा नाभिकीय आवेश के कारण नाभिकीय आकर्षण बल एक—दूसरे को लगभग संतुलित कर देते हैं और इसलिए इन तत्त्वों की त्रिज्याओं के मान में अधिक अंतर नहीं होता। विशेष: लेन्थैनॉयडों का कुल संकुचन लेन्थैनॉयड संकुचन कहलाता है। - वर्ग में ऊपर से नीचे जाने पर परमाण्वीय तथा आयनिक दोनों त्रिज्याओं के मान में वृद्धि होती है। क्योंकि वर्ग में ऊपर से नीचे जाने पर एक-एक मुख्य कोश बढ़ता जाता है। - 4. एक वर्ग में दूसरी संक्रमण श्रेणी (4 d) तथा तीसरी संक्रमण श्रेणी (5 d) के सदस्यों का परमाण्वीय आकार लगभग समान होता है। क्योंकि बाह्यतम कोश की वृद्धि तो परमाणु आकार बढ़ाने का प्रयत्न करती है, दूसरी ओर नाभिकीय आकर्षण बल में बहुत अधिक वृद्धि परमाणु आकार कम करने का प्रयास करती है फलस्वरूप दूसरी संक्रमण श्रेणी (4 d) तथा तीसरी संक्रमण श्रेणी (5 d) के तत्त्वों के आकार समान होते हैं। उदाहरण Zr और Hf तथा Nb और Ta परमाणुओं की त्रिज्याएं लगभग समान होती है। - 5. उत्कृष्ट गैसों की सहसंयोजक त्रिज्या ज्ञात नहीं की जा सकती क्योंकि ये यौगिक नहीं बनाती है, इसलिए इनके लिए वान्डरवाल्स त्रिज्या ज्ञात की जाती है। ### आयनन विभव (Ionisation Potential) परिभाषा : किसी तत्त्व के विलगित (Isolated), गैसीय (Gaseous), उदासीन (Neutral) परमाणु में से सबसे अधिक ढीले बंधे इलेक्ट्रॉन को नाभिक के प्रभाव से मुक्त करने अर्थात् परमाणु से पूर्ण रूप से हटाने के लिए आवश्यक ऊर्जा को उस तत्त्व की आयनन ऊर्जा (Ionisation energy) या आयनन विभव कहते हैं (सारणी 8.5)। इसी तरह ${\rm IP}_3$, ${\rm IP}_4$ होता है। आयनन विभव के मान का क्रम $-{\rm IP}_1\!<\!{\rm IP}_2\!<\!{\rm IP}_3$ आदि। सारणी 8.5 : आयनन विभव (kJ mol-1 में) | | | | | | | Не | |--------|--|---|--|--|---|--| | | | | | | | 2372.3 | | Be | В | С | N | O | F | Ne | | 899.4 | 800.6 | 1086.2 | 1402.3 | 1313.9 | 1681 | 2080.6 | | 1757.1 | 2427 | 2352 | 2856.1 | 3388.2 | 3374 | 3952.2 | | Mg | Al | Si | P | S | C1 | Ar | | 737.7 | 577.4 | 786.5 | 1011.7 | 999.6 | 1251.1 | 1520.4 | | 1450.7 | 1816.6 | 1577.1 | 1903.2 | 2251 | 2297 | 2665.2 | | | 2744.6 | | 2912 | | | | | Ca | Ga | Ge | As | Se | Br | Kr | | 589.7 | 578.8 | 762.1 | 947.0 | 940.0 | 1139.9 | 1350.7 | | 1145 | 1979 | 1537 | 1798 | 2044 | 2104 | 2350 | | | 2963 | 2735 | | | | | | Sr | In | Sn | Sb | Те | I | Xe | | 549.5 | 558.3 | 708.6 | 833.7 | 869.2 | 1008.4 | 1170.4 | | 1064.2 | 1820.6 | 1411.8 | 1794 | 1795 | 1845.9 | 1170.4 | | | 2704 | 29430.0 | 2443 | | | | | Ba | T1 | Pb | Bi | Po | At | Rn | | 502.8 | 589.3 | 715.5 | 703.2 | 812 | 930 | 1037 | | 965.1 | 1971.0 | 1450.4 | 1610 | | | | | | 2878 | 3081.5 | 2466 | | | | | | 899.4
1757.1
Mg
737.7
1450.7
Ca
589.7
1145
Sr
549.5
1064.2 | 899.4 800.6
1757.1 2427
Mg Al
737.7 577.4
1450.7 1816.6
2744.6
Ca Ga
589.7 578.8
1145 1979
2963
Sr In
549.5 558.3
1064.2 1820.6
2704
Ba Tl
502.8 589.3
965.1 1971.0 | 899.4 800.6 1086.2 1757.1 2427 2352 Mg Al Si 737.7 577.4 786.5 1450.7 1816.6 1577.1 2744.6 Ge 589.7 578.8 762.1 1145 1979 1537 2963 2735 Sr In Sn 549.5 558.3 708.6 1064.2 1820.6 1411.8 2704 29430.0 Ba Tl Pb 502.8 589.3 715.5 965.1 1971.0 1450.4 | 899.4 800.6 1086.2 1402.3 1757.1 2427 2352 2856.1 Mg Al Si P 737.7 577.4 786.5 1011.7 1450.7 1816.6 1577.1 1903.2 2744.6 2912 Ca Ga Ge As 589.7 578.8 762.1 947.0 1145 1979 1537 1798 2963 2735 Sr In Sn Sb 549.5 558.3 708.6 833.7 1064.2 1820.6 1411.8 1794 2704 29430.0 2443 Ba Tl Pb Bi 502.8 589.3 715.5 703.2 965.1 1971.0 1450.4 1610 | 899.4 800.6 1086.2 1402.3 1313.9 1757.1 2427 2352 2856.1 3388.2 Mg Al Si P S 737.7 577.4 786.5 1011.7 999.6 1450.7 1816.6 1577.1 1903.2 2251 2744.6 2912 2912 Ca Ga Ge As Se 589.7 578.8 762.1 947.0 940.0 1145 1979 1537 1798 2044 2963 2735 Sr In Sn Sb Te 549.5 558.3 708.6 833.7 869.2 1064.2 1820.6 1411.8 1794 1795 2704 29430.0 2443 Po 502.8 589.3 715.5 703.2 812 965.1 1971.0 1450.4 1610 | 899.4 800.6 1086.2 1402.3 1313.9 1681 1757.1 2427 2352 2856.1 3388.2 3374 Mg Al Si P S Cl 737.7 577.4 786.5 1011.7 999.6 1251.1 1450.7 1816.6 1577.1 1903.2 2251 2297 Ca Ga Ge As Se Br 589.7 578.8 762.1 947.0 940.0 1139.9 1145 1979 1537 1798 2044 2104 2963 2735 2735 2044 2104 549.5 558.3 708.6 833.7 869.2 1008.4 1064.2 1820.6 1411.8 1794 1795 1845.9 Ba Tl Pb Bi Po At 502.8 589.3 715.5 703.2 812 930 965.1 1971.0 1450.4 | संकेत : तत्त्व के नाम के नीचे क्रमशः प्रथम, द्वितीय, तृतीय आयनन विभव दिये गये हैं। किसी भी उदासीन परमाणु से एक से
अधिक इलेक्ट्रॉन भी निकाले जा सकते है। प्रथम इलेक्ट्रॉन निकालने के लिए आवश्यक ऊर्जा प्रथम आयनन विभव कहलाती है। उसके बाद क्रमशः द्वितीय, तृतीय आयनन विभव कहलाती है। द्वितीय आयनन विभव का मान प्रथम से हमेशा अधिक होता है क्योंिक एक इलेक्ट्रॉन निकलने के पश्चात् उदासीन परमाणु धनायन बन जाता है और धनायन से इलेक्ट्रॉन निकालने में अधिक ऊर्जा की आवश्यकता होती है। धनायन का आकार उदासीन परमाणु से छोटा होता है अतः नाभिकीय आकर्षण बल अधिक होता है। $$M$$ (गैसीय उदासीन परमाणु) $\stackrel{IP_1}{\longrightarrow} M^+ + e^-$ (IP, = द्वितीय आयनन विभव) $$M^+$$ (एक संयोजी परमाणु) $\stackrel{IP}{\longrightarrow} M^{2^+} + e^-$ #### आयनन विभव को प्रभावित करने वाले कारक 1. परमाणु आकार जितना बड़ा होगा, नाभिक का आकर्षण बल कम होता जाएगा इससे इलेक्ट्रॉन निकालना आसान होगा अर्थात् आयनन विभव का मान कम होगा। नाभिकीय आकर्षण lpha आयनन विभव किसी भी इलेक्ट्रॉन पर अंदर के इलेक्ट्रॉनों द्वारा डाला गया परिरक्षण प्रभाव जितना अधिक होगा नाभिकीय आकर्षण बल उतना ही कम होगा उससे इलेक्ट्रॉन निकालना आसान होगा अर्थात् आयनन विभव का मान कम होगा। परिरक्षण प्रभाव $$lpha = \frac{1}{}$$ आयनन विभव - 3. किसी भी कोश के s-इलेक्ट्रॉन उसी कोश के p, d, f इलेक्ट्रॉनों की अपेक्षा नाभिक से अधिक निकट होते हैं तथा मजबूती से जुड़े होते हैं अर्थात् s-कक्षकों की भेदन क्षमता अन्य कक्षकों की अपेक्षा अधिकतम होती है। अतः यदि अन्य कारक समान हो तो s-कक्षकों के इलेक्ट्रॉन का आयनन विभव अन्य कक्षकों से अधिक होगा। - ns > np > nd > nf - 4. इसी तरह पूर्ण रूप से भरे कक्षक अथवा अर्द्ध पूर्ण भरे कक्षक का आयनन विभव भी अपेक्षाकृत अधिक होता है। #### आवर्तिता - एक ही आवर्त में बांए से दांए जाने पर, परमाणु क्रमांक बढ़ने के साथ परमाणु का बाह्यतम कोश वही रहता है लेकिन नाभिकीय आवेश में वृद्धि होती है इसके फलस्वरूप बाह्यतम इलेक्ट्रॉन को निकालने में अधिक ऊर्जा की आवश्यकता होती है। अतः आवर्त में बांए से दांए जाने पर आयनन विभव के मान में वृद्धि होती है। आवर्त में आयनन विभव से संबंधित मुख्य बिन्दु निम्नलिखित हैं— - (i) उत्कृष्ट गैसों का आयनन विभव का मान उस आवर्त में उच्चतम होता है क्योंकि इन गैसों का विन्यास सबसे स्थायी होता है इसलिए उत्कृष्ट गैसें अत्यन्त अक्रिय है। - (ii) क्षार धातुओं का आयनन विभव का मान उस आवर्त में न्यूनतम होता है क्योंकि एक इलेक्ट्रॉन त्याग कर ये धातुएं उत्कृष्ट गैसों का विन्यास ग्रहण कर लेती है। इसलिए बाह्यतम इलेक्ट्रॉन कम ऊर्जा देने पर ही आसानी से निकल जाता है। इसलिए क्षार धातुएँ अत्यन्त क्रियाशील भी होती है। - (iii) संक्रमण श्रेणी के सदस्यों के आकार तथा बाह्यतम विन्यास लगभग समान होते हैं, इसलिए इनके आयनन विभव भी लगभग समान होते हैं। - (iv) सारणी 9.5 को देखने पर आवर्त में आयनन विभव के क्रम में अपवाद है जो निम्नानुसार है— - (अ) N का आयनन विभव O से तथा P का आयनन विभव S से अधिक है क्योंकि N तथा P दोनों में ही अर्द्ध पूर्ण भरे कक्षक (n p³) होते हैं जिनका स्थायित्व अधिक होता है तथा इनसे इलेक्ट्रॉन पृथक् करने के ज्यादा ऊर्जा चाहिए। वही O तथा s में (np⁴) कक्षक होते हैं जो एक इलेक्ट्रॉन आसानी से त्याग कर अर्द्धपूरित विन्यास प्राप्त करना चाहते हैं। - (ब) Be का आयनन विभव B से और Mg का आयनन विभव Al से अधिक होता है क्योंकि Be और Mg में बाह्यतम इलेक्ट्रॉन - (ns) कक्षक में होते है जिनकी भेदन क्षमता np से अधिक होती है साथ ही इनमें s-उपकोश में इलेक्ट्रॉन भी युग्मित होते हैं। - 2. एक ही वर्ग में ऊपर से नीचे जाने पर परमाणु के आकार में वृद्धि होती है, जिससे बाह्यतम इलेक्ट्रॉन पर नाभिकीय आकर्षण बल कम होता जाता है फलस्वरूप इलेक्ट्रॉन fu"d k"kr djusd sfy, Åt kZd sekukse अ khd ehv kr h g vr % ox Ze Å ij I suhpst kusij vk, uu folko ds ekukse d eh gks h g ox Ze vk, uu folko I sl ब्रद्धि kr e न; fc bhqfu Eu g - (i) सारणी 9.5 को देखने पर आयनन विभव के क्रम में अपवाद है जो निम्नानुसार है: Ga का आयनन विभव Al से थोड़ा सा अधिक है क्योंकि Al तथा Ga के मध्य संक्रमण तत्त्व होते हैं। संक्रमण तत्त्वों का आकार परमाणु क्रमांक में वृद्धि होने के साथ ही कम होता है। इसलिए Ga के परमाणु आकार में वृद्धि की बजाय कुछ कमी हो जाती है इसलिए Ga का आयनन विभव Al से थोड़ा सा अधिक या लगभग बराबर होता है। - (ब) संक्रमण धातुओं की श्रेणी में तृतीय श्रेणी के सदस्यों के आयनन विभव का मान द्वितीय श्रेणी के सदस्यों के आयनन विभव से अधिक होता है क्योंकि तत्त्वों में परमाणु क्रमांक में वृद्धि के साथ आकार में कमी होती है जिसे लेन्थैनॉयड संकुचन कहते हैं इसी कारण नाभिकीय आवेश बढ़ने से आयनन विभव का मान भी बढ़ जाता है। #### विद्युतऋणात्मकता (Electronegativity) जब दो समान परमाणु संयुक्त होकर सहसंयोजी बंध बनाते हैं तो बंधी इलेक्ट्रॉन युग्म की स्थिति दोनों परमाणुओं के मध्य होती है। उदाहरण (H–H, Cl – Cl आदि) लेकिन सहसंयोजी बंध जब दो असमान परमाणुओं के मध्य बनता है तों बंधी इलेक्ट्रॉन युग्म एक परमाणु की अपेक्षा दूसरे के अधिक निकट होगा। अर्थात् प्रत्येक परमाणु के इलेक्ट्रॉन को अपनी ओर आकर्षित करने की प्रवृत्ति में अंतर होता है। किसी भी यौगिक में किसी परमाणु द्वारा साझे के इलेक्ट्रॉन युग्म को अपनी ओर आकर्षित करने की प्रवृत्ति को परमाणु की विद्युतऋणात्मकता कहते हैं (सारणी 8.6)। विद्युतऋणात्मकता की उपरोक्त परिभाषा पॉलिंग नामक वैज्ञानिक द्वारा दी गई है। ### विद्युतऋणात्मकता को प्रभावित करने वाले कारक - 1. किसी भी तत्त्व / परमाणु की विद्युतऋणात्मकता उसके नाभिकीय आवेश बढ़ने के साथ बढ़ती है। - 2. परमाणु का आकार बढ़ने पर नाभिक संयोजी इलेक्ट्रॉन को कम बल से अपनी ओर आकर्षित कर पाएगा। अतः परमाणु | सारप | सारणी 8.6 : पॉलिंग की विद्युत ऋणात्मकताओं के मान | | | | | | | | | |------|--|------|------|------|------|------|--|--|--| | Н | | | | | | | | | | | 2.20 | | | | | | | | | | | Li | Ве | В | С | N | О | F | | | | | 0.98 | 1.57 | 2.04 | 2.55 | 3.04 | 3.44 | 3.98 | | | | | Na | Mg | Al | Si | P | S | Cl | | | | | 0.93 | 1.31 | 1.61 | 1.90 | 2.19 | 2.58 | 3.16 | | | | | K | Ca | Ga | Ge | As | Se | Br | | | | | 0.82 | 1.00 | 1.81 | 2.01 | 2.18 | 2.55 | 2.99 | | | | | Rb | Sr | ln | Sn | Sb | Те | I | | | | | 0.82 | 0.95 | 1.78 | 196 | 2.05 | 2.10 | 2.06 | | | | | Cs | Ba | T1 | Pb | Bi | Po | At | | | | | 0.79 | 0.89 | 2.05 | 2.33 | 2.02 | | | | | | का आकार बढ़ने पर विद्युत विद्युतऋणात्मकता कम हो जाएगी और परमाणु आकार कम होने पर विद्युतऋणात्मकता बढती है। परमाणु पर धनावेश बढ़ने पर बढ़ती है तथा ऋणावेश बढ़ने पर विद्युत ऋणता घटती है अर्थात् ऑक्सीकरण अवस्था बढ़ने से विद्युतऋणात्मकता बढ़ती है तथा निम्न ऑक्सीकरण अवस्था में विद्युतऋणात्मकता कम होती है। ### आवर्तिता - 1. s तथा p वर्गों में ऊपर से नीचे जाने पर परमाणु त्रिज्या तथा नाभिकीय आवेश सामान्यतः बढ़ते है। ये दोनों परस्पर विपरीत प्रभाव वाले कारक है, लेकिन यहां परमाणु त्रिज्या का प्रभाव नाभिकीय आवेश की तुलना में अधिक होता है। अतः s a p वर्गों में ऊपर से नीचे जाने पर विद्युतऋणात्मकता घटती है। s a p खण्डों के मध्य संक्रमण तत्व आने के कारण उनके पश्चात् आने वाले 13वें तथा 14वें वर्ग के सदस्यों की विद्युतऋणात्मकता अपेक्षा से अधिक होती है। और इसी कारण Al की विद्युतऋणात्मकता B से कम होती है लेकिन Ga की विद्युत ऋणता Al से अधिक हो जाती है। - संक्रमण तत्त्व के वर्गों में सामान्यतः द्वितीय सदस्य की विद्युतऋणात्मकता पहले से अधिक होती है तथा तीसरे व अंतिम सदस्य की विद्युतऋणात्मकताएं लगभग समान होती हैं। - 3. आवर्त में बांए से दांए जाने पर प्रभावी नाभिकीय आवेश बढ़ता है तथा परमाणु आकार कम होता है। अतः आवर्त में बांए से दांए जाने पर विद्युतऋणात्मकता का मान बढ़ता है। - 4. दूसरे व तीसरे आवर्तों में विद्युतऋणात्मकता में परिवर्तन में लगभग नियमितता दिखती है लेकिन चौथे, पांचवे व छठे आवर्तों में यह परिवर्तन अनियमित हो जाता है। संक्रमण तत्त्वों के विद्युतऋणात्मकता के मान में बाएं से दाएं जाने पर बहुत कम बढ़ोतरी होती है। लेन्थैनॉयडों की विद्युतऋणात्मकताएं उनके समान परमाण्वीय आकार होने से लगभग अपरिवर्तनीय रहती है। ### इलेक्ट्रॉन लिध्य एंथैल्पी (Electron Gain Enthalpy) किसी तत्त्व के विलगित (Isolated), गैसीय (Gaseous), उदासीन (Neutral) परमाणु की निम्नतम अवस्था में उसके संयोजकता कोश में एक इलेक्ट्रॉन जोड़ने पर जो ऊर्जा मुक्त होती है उसे उस परमाणु की इलेक्ट्रॉन लिख्य एंथेल्पी कहते हैं। किसी भी उदासीन परमाणु में एक इलेक्ट्रॉन जोड़ने पर ऊर्जा मुक्त होती है तथा ऋणायन बनता है। इसे प्रथम इलेक्ट्रॉन लिख्य एंथेल्पी (EA_1) कहते हैं इसी तरह दूसरे, तीसरे इलेक्ट्रॉन जुड़ने पर क्रमशः द्वितीय इलेक्ट्रॉन लिख्य एंथेल्पी (EA_2), तृतीय इलेक्ट्रॉन लिख्य एंथेल्पी (EA_3) के मान प्राप्त होते हैं। आयनन विभव में इलेक्ट्रॉन त्यागे जाते है तथा धनायन बनते है। आयनन विभवों के मान का क्रम IP_1 , $< IP_2 < IP_3$ आदि होता है। इसके विपरीत इलेक्ट्रॉन लिध्य एंथेल्पी में उदासीन परमाणु में पहला इलेक्ट्रॉन जोड़ने में तो ऊर्जा मुक्त होती है लेकिन उसके बाद इलेक्ट्रॉन जोड़ने पर ऊर्जा का अवशोषण होता है। क्योंकि एक इलेक्ट्रॉन जोड़ने पर ऋणायन बनता है जो दूसरे इलेक्ट्रॉन को प्रतिकर्षित करेगा अतः ऊर्जा देने पर ही दूसरा इलेक्ट्रॉन जुड़ेगा। $$X(g) + e^- \longrightarrow X^{\Theta} - EA_1$$ $$X^{\Theta} + e^{-} \longrightarrow X^{2-} + EA$$ इलेक्ट्रॉन बंधुता की ईकाई इलेक्ट्रॉन वाल्ट (ev) या किलो जूल प्रति मोल (kJmol⁻¹) होती है (सारणी 8.7)। सारणी 8.7 : इलेक्ट्रॉन लिब्ध एंथैल्पी kJ mol-1 | \\\\\ | · 11 0. | ′ | ייאריי | VIIII | 2-10 11 | 110 1110 | ,, | |--------------------------|---------|----|--------|-------|---------|----------|-----------| | H
72.8 | | | | | | | He
-21 | | $\frac{72.0}{\text{Li}}$ | D.o. | В | С | N | 0 | F | Ne | | Ll | Ве | D | | 11 | | Г | Ne | | 59.8 | ≤0 | 23 | 122.5 | -31 | 141 | 322 | -29 | | Na | Mg | Al | Si | P | S | Cl | Ar | | 52.9 | ≤0 | 44 | 133.6 | 71.7 | 200.4 | 348.7 | -35 | | | | | | | -532 | | | | K | Ca | Ga | Ge | As | Se | Br | Kr | | 48.3 | 2.37 | 36 | 116 | 77 | 195.0 | 324.5 | -39 | | Rb | Sr | In | Sn | Sb | Te | I | Xe | | 46.9 | 5.03 | 34 | 121 | 101 | 190.2 | 295.3 | -41 | | Cs | Ba | T1 | Pb | Bi | Po | At | Rn | | 45.5 | 13.95 | 30 | 35.2 | 101 | 186 | 270 | -41 | ### इलेक्ट्रॉन लिख्य एंथैल्पी को प्रभावित करने वाले कारक - परमाणु आकार बढ़ने पर इलेक्ट्रॉन लिख्य एंथैल्पी का मान कम होता है तथा प्रभावी नाभिकीय आवेश बढ़ने पर इलेक्ट्रॉन लिख्य एंथैल्पी का मान बढ़ता है। - अर्द्ध तथा पूर्ण भरे कक्षकों के लिए भी इलेक्ट्रॉन लिख्य एंथैल्पी का मान अपेक्षाकृत अधिक होता है। - यदि आन्तरिक कोशों के इलेक्ट्रॉन का पिरक्षिण प्रभाव कम होगा तो नाभिक तथा नए जुड़ने वाले इलेक्ट्रॉन में मध्य आकर्षण बढ़ता है, इससे इलेक्ट्रॉन लिख्ध एंथेल्पी का मान भी बढता है। #### आवर्तिता - अावर्त में बांये से दांये जाने पर नाभिकीय आवेश का मान बढ़ने से परमाणु का आकार कम होता जाता है फलस्वरूप जुड़ने वाले इलेक्ट्रॉन और परमाणु के नाभिक में मध्य आकर्षण बढ़ जाता है जिससे इलेक्ट्रॉन जुड़ने पर अधिक ऊर्जा मुक्त होती है अतः आवर्त में बांये से दांये जाने पर इलेक्ट्रॉन लिख्य एंथेल्पी का मान बढता है। - 2. वर्ग में ऊपर से नीचे जाने पर परमाण्वीय
आकार में वृद्धि होती है। जिससे जुड़ने वाला इलेक्ट्रॉन नाभिक से दूर होता है तथा उसके और परमाणु के नाभिक के मध्य आकर्षण कम होने से, कम ऊर्जा मुक्त होती है। अतः वर्ग में ऊपर से नीचे जाने पर इलेक्ट्रॉन लिख्य एंथेल्पी के मान कम होते है। - 3. उत्कृष्ट गैसों में स्थायी विन्यास होने के कारण इनमें इलेक्ट्रॉन ग्रहण करने की प्रवृत्ति नहीं होती है। - 4. बेरिलियम (Be) तथा मैग्नीशियम (Mg) की इलेक्ट्रॉन लिख्य एंथैल्पी के मान ऋणात्मक होते हैं क्योंकि इनमें ns² विन्यास होता है। तथा आने वाला इलेक्ट्रॉन उच्च ऊर्जा कक्षक (np) में जाता है फलस्वरूप इलेक्ट्रॉन जोड़ने के लिए ऊर्जा का अवशोषण होता है। - 5. क्षारीय धातुओं की इलेक्ट्रॉन लिख्य एंथेल्पी के मान कम होते हैं क्योंकि ये धातुएं उच्च धनविद्युती होती है। - सभी तत्त्वों में क्लोरीन की इलेक्ट्रॉन लिख्य एंथेल्पी अधिकतम होती है। - 7. नाइट्रोजन, फास्फोरस व आर्सेनिक कीइलेक्ट्रॉन लिख्य एंथेल्पी के मान, स्थायी अर्द्धपूर्ण विन्यास np³ होने के कारण आवर्त में इनके पूर्ववर्ती तत्त्वों की अपेक्षा कम होते है। # महत्त्वपूर्ण बिन्दु सबसे प्रथम तथा सरल वर्गीकरण में वैज्ञानिकों ने तत्त्वों को धातु तथा अधातु दो भागों में विभाजित किया, परन्तु इस वर्गीकरण को अधिक सफलता नहीं मिली। - प्राऊट, डॉबरीनर, न्यूलैड, लोथर मेयर, मेंडलीव, मोज़ले आदि वैज्ञानिकों ने तत्त्वों के वर्गीकरण के विकास में अपना योगदान दिया। - मेंडलीव ने तत्त्वों के भौतिक तथा रासायनिक गुणों को परमाणु भार के साथ संबंधित किया गया तथा आवर्त नियम दिया। - 4. मोज़ले ने मेंडलीव के आवर्त नियम में संशोधन किया तथा परमाणु क्रमांक को तत्त्वों का मौलिक गुण मानते हुए आधुनिक आवर्त नियम दिया तथा मेंडलीव की आवर्त सारणी को आधुनिक रूप दिया जिसे आवर्त सारणी का दीर्घ स्वरूप कहा गया। - 5. आवर्त सारणी के दीर्घ स्वरूप में तत्वों को उनके परमाणु क्रमांक के बढ़ते क्रम में व्यवस्थित किया गया। - 6. दीर्घ रूप आवर्त सारणी या आधुनिक आवर्त सारणी में अठारह ऊर्ध्वाकार स्तम्भ होते हैं, जिन्हें वर्ग कहते हैं तथा सात क्षैतिज पंक्तियां होती है, जिन्हें आवर्त कहते हैं। - 7. IUPAC द्वारा दीर्घ रूप आवर्त सारणी का आधुनिकीकरण किया गया। इससे वर्गों का A तथा B उपवर्गों में विभाजन समाप्त कर दिया गया तथा वर्गों का क्रमांकन 1 से 18 तक किया गया। वर्ग VIII को तीन पृथक् वर्गों में विभाजित किया गया। - 8. सामान्यतः आवर्त में बांए से दांए जाने पर - (i) परमाण्वीय तथा आयनिक त्रिज्या में कमी होती है। - (ii) आयनन विभव के मान में वृद्धि होती है। - (iii) विद्युतऋणात्मकता के मान में वृद्धि होती है। - (iv) इलेक्ट्रॉन लिध्य एंथैल्पी के मान में वृद्धि होती है। - 9. इसी तरह सामान्यतः वर्ग में ऊपर से नीचे जाने पर परमाण्वीय तथा आयनिक त्रिज्या के मानो में वृद्धि होती है तथा आयनन विभव, विद्युतऋणात्मकता तथा इलेक्ट्रॉन लिख्य एंथैल्पी के मानो में कमी होती है। ### अभ्यासार्थ प्रश्न # वस्तुनिष्ठ प्रश्न - 1. त्रिक नियम किसने दिया— - (अ) लोथर मेयर - (ब) मोजले - (स) डॉबेराइनर - (द) प्राउट - 2. आवर्त सारणी के दीर्घ रूप में तत्त्वों को व्यवस्थित किया गया है— # Downloaded from https://www.studiestoday.com - 97 - (अ) परमाणु संख्या के आरोही क्रम में - (ब) परमाणु भार के आरोही क्रम में - (स) परमाणु आयतन के आरोही क्रम में - (द) परमाणु संख्या के अवरोही क्रम में - 3. s-ब्लॉक धातुओं की संख्या है- - (अ) 12 - (ब) 14 - (स) 15 - (ব) 24 - 4. निम्नलिखित में से किस परमाणु / आयन का आकार सबसे बड़ा होता है— - (34) Li+ - (ৰ) Ne - (刊) O²⁻ - (द) H - 5. तृतीय आवर्त में बांए से दांए जाने पर आयनन विभव का मान— - (अ) लगातार बढ़ता है। - (ब) लगातार घटता है। - (स) अनियमित तरीके से बढ़ता है। - (द) अनियमित तरीके से घटता है। - 6. किसी इलेक्ट्रॉन पर परिरक्षण प्रभाव में वृद्धि के साथ आयनन विभव का मान— - (अ) घटता है - (ब) बढ़ता है - (स) न घटता है न बढ़ता है - (द) कोई परिवर्तन नहीं होता #### अतिलघुत्तरात्मक प्रश्न - मेंडलीव का आवर्त नियम क्या है? - उत्कृष्ट गैसों के बाह्यतम कोश का इलेक्ट्रॉनिक विन्यास लिखिये। - आन्तरिक संक्रमण तत्त्वों में अन्तिम इलेक्ट्रॉन किस उपकोश में भरता है। - 10. आयनिक त्रिज्या को परिभाषित कीजिये। ### लघुत्तरात्मक प्रश्न - 11. एक वर्ग में दूसरी तथा तीसरी संक्रमण श्रेणी के सदस्यों का परमाण्वीय आकार समान होता है, क्यों? - 12. Al का प्रथम आयनन विभव Mg के प्रथम आयनन विभव से कम है, क्यों? - 13. समझाइये – - (i) N का आयनन विभव O से अधिक है तथा P का आयनन विभव S से अधिक है। - (ii) बेरिलियम तथा मैग्नीशियम की इलेक्ट्रॉन लिख्य एंथैल्पी के मान ऋणात्मक होते है। - (iii) आवर्त में उत्कृष्ट गैसों की परमाण्वीय त्रिज्या अधिक होती है। - (iv) Al तथा Ga का प्रथम आयनन विभव लगभग समान है। #### निबन्धात्मक प्रश्न - आधुनिक आवर्त नियम समझाइये तथा आवर्त सारणी के दीर्घ स्वरूप का वर्णन कीजिये। - आयनन विभव को प्रभावित करने वाले कारक बताइये तथा इसकी आवर्तिता समझाइये। - 16 परिभाषित कीजिये— - (i) वान्डरवाल्स त्रिज्या - (ii) आयनन विभव - (iii) इलेक्ट्रॉन लिध्य एंथैल्पी - (iv) विद्युतऋणात्मकता उत्तरमाला: 1 (स) 2 (अ) 3 (अ) 4 (स) 5 (स) 6 (अ) # Downloaded from https://www.studiestoday.com # इकाई – 9 अध्याय - 9 ### अम्ल व क्षार (Acid and Base) अम्ल व क्षार को समझाने के लिये कई परिभाषाएँ समय-समय पर प्रस्तावित की गई। उनमें से प्रमुख निम्नलिखित हैं- I. आरेनियस अवधारणा — आरेनियस प्रथम वैज्ञानिक थे जिन्होंने अम्ल व क्षार को परिभाषित किया। उनके द्वारा दी गई अवधारणा को जल आयन प्रणाली भी कहते हैं। इसके अनुसार अम्ल वे हैं जो जलीय विलयन में H⁺ आयन देते हैं। $$HA$$ ਯਾਗ $H^+ + A^-$ अम्ल उदाहरण : (i) $$HCl$$ जल $H^+ + Cl^-$ (ii) $$H_2SO_4$$ \overline{VOO}_4 $2H^+ + SO_4^{2-}$ वे पदार्थ जो जलीय विलयन में हाइड्रॉक्सिल आयन $\left(OH^{-}\right)$ देते हैं उन्हें क्षार कहा जाता है। (ii) KOH $$K^+ + OH^-$$ II. **ब्रॉन्स्टेड—लॉरी अवधारणा** — वे पदार्थ जो प्रोटॉन देते हैं अम्ल कहलाते हैं। $$HA$$ H^+ $+$ A^- अम्ल प्रोटॉन क्षार वे पदार्थ जो प्रोटॉन ग्रहण करते हैं क्षार कहलाते हैं। इस प्रकार अम्ल के प्रोटॉन देने से क्षार प्राप्त होता है। इसे संयुग्मी क्षार कहते हैं तथा क्षार के प्रोटॉन ग्रहण करने से अम्ल प्राप्त होता है जिसे संयुग्मी अम्ल कहते हैं। इन्हें संयुग्मी अम्ल क्षार युग्म भी कहा जाता है। इस अवधारणा से यह विदित होता है कि अम्ल व क्षार क्रिया करके क्रमशः क्षार व अम्ल बनाते हैं। एक प्रबल अम्ल का संयुग्मी क्षार दुर्बल होता है तथा दुर्बल अम्ल का संयुग्मी क्षार प्रबल होता है। इसी प्रकार प्रबल क्षार का संयुग्मी अम्ल दुर्बल तथा दुर्बल क्षार का संयुग्मी अम्ल प्रबल होता है। ब्रॉन्स्टेड लॉरी सिद्धान्त के द्वारा जलीय व अजलीय विलायकों में पदार्थों के अम्लीय व क्षारीय व्यवहार को समझाया जा सकता है। III. लुईस की अम्ल—क्षार अवधारणा — सन् 1923 में जी.एन. लुईस (G.N. Lewis) ने अम्ल व क्षार के लिये नई अवधारणा प्रस्तुत की। इसके अनुसार अम्ल वे पदार्थ है जो इलेक्ट्रॉन युग्म ग्रहण करते है अर्थात् इलेक्ट्रॉन युग्म ग्राही होते हैं। क्षार वे पदार्थ हैं जो इलेक्ट्रॉन युग्म दान करते हैं अर्थात् क्षार इलेक्ट्रॉन युग्म दाता है। # Downloaded from https://www.studiestoday.com लुईस अम्ल — इलेक्ट्रॉन न्यून यौगिक जैसे $BeCl_2$, BF_3 , BCl_3 आदि तथा ऐसे अणु जिनके केन्द्रीय परमाणु में रिक्त कक्षक उपलब्ध हो जैसे SiX_4 , PX_3 , SF_4 , GeX_4 आदि तथा बहुआबन्ध युक्त अणु जैसे CO_2 , SO_3 , NO_2 , SO_2 आदि लुईस अम्ल की भांति कार्य करते हैं। (iii) $$Na_2SO_3 + S \longrightarrow Na - O - S \longrightarrow O - Na$$ लुईस क्षार — वे अणु या आयन जिनमें एकाकी इलेक्ट्रॉन युग्म होता है वे लुईस क्षार की तरह कार्य करते हैं। उदासीन अणु जिनके पास एकाकी इलेक्ट्रॉन युग्म होता है, के उदाहरण हैं:— $\overset{\cdot \cdot \cdot}{N}H_3$, $\overset{\cdot \cdot \cdot}{R}\overset{\cdot \cdot \cdot}{N}H_2$, $\overset{\cdot \cdot \cdot}{R}\overset{\cdot \cdot}{N}$, $\overset{\cdot \cdot \cdot}{R}-\overset{\cdot \cdot \cdot}{O}$ -H, $\overset{\cdot \cdot \cdot}{H}_2\overset{\cdot \cdot \cdot}{O}$ $R - \ddot{O} - R$, आदि । इसी प्रकार ऋणायन जैसे कि $F^-, Cl^-, OH^-, CN^-, SCN^- RO^-$ आदि जिनमें एकाकी इलेक्ट्रॉन युग्म होता है लुईस क्षार की तरह कार्य करते हैं। ### अम्ल–क्षार वियोजन अम्ल वियोजन — जब किसी दुर्बल अम्ल को जल में विलेय किया जाता है तो यह H^+ तथा A^- में वियोजित हो जाता है। वियोजन के पश्चात् प्राप्त आयनों व अवियोजित अम्ल के मध्य साम्य स्थापित हो जाता है। $$HA \qquad H^+ + A^-$$ द्रव्य अनुपाती क्रिया के नियमानुसार, $$K = \frac{[H^+][A^-]}{[HA]}$$ यहाँ साम्यावस्था स्थिरांक K को वियोजन स्थिरांक कहते हैं तथा अम्ल के वियोजन के लिये इसे $K_{_{3}}$ से व्यक्त करते हैं। $$K_{a} = \frac{[H^{+}][A^{-}]}{[HA]}$$ दुर्बल अम्ल वियोजन स्थिरांक को सांद्रता पदों में व्यक्त करना — साम्यावस्था स्थिरांक = अत्पाद की सान्द्रता पदों का गुणनफल (साम्यावस्था पर) अभिकारकों की सान्द्रता पदों का गुणनफल (साम्यावस्था पर) $$K_{a} = \frac{[H^{+}][A^{-}]}{[HA]}$$ $$= \frac{C\alpha \times C\alpha}{C(1-\alpha)}$$ $$= \frac{C^{2}\alpha^{2}}{C(1-\alpha)}$$ $$= \frac{C\alpha^{2}}{(1-\alpha)}$$ दुर्बल अम्लों के लिये α का मान एक से बहुत कम होता है अतः $1-\alpha\cong 1$ $$K_{a} = C \alpha^{2}$$ $$\alpha^{2} = \frac{K_{a}}{C}$$ $$\alpha = \sqrt{\frac{K_{a}}{C}}$$ साम्यावस्था पर हाइड्रोजन आयनों की सांद्रता $[H^+] = C\alpha =$ $$C\sqrt{\frac{K_a}{C}} = \sqrt{K_a \times C}$$ इस प्रकार एक दुर्बल अम्ल की हाइड्रोजन आयन सान्द्रता उसके वियोजन स्थिरांक के वर्गमूल के समानुपाती होती है। **दुर्बल अम्लों की आपेक्षिक सामर्थ्य** — यदि दो अम्ल HA_1 व HA_2 के किसी समान सान्द्रता पर वियोजन स्थिरांक क्रमशः K_{a_1} व K_{a_2} है तथा वियोजन की मात्रा क्रमशः α_1 व α_2 है तो, # Downloaded from https://www.studiestoday.com 100 $$\alpha_{_1} = \sqrt{\frac{K_{_{a_{_1}}}}{C}}$$ লখা $\alpha_{_2} = \sqrt{\frac{K_{_{a_{_2}}}}{C}}$ $$\therefore \quad \frac{\alpha_1}{\alpha_2} = \sqrt{\frac{K_{a_1}}{K_{a_2}}}$$ क्षार का वियोजन — जब एक दुर्बल क्षार BOH आयनों में विभाजित होता है तो वियोजन के पश्चात् प्राप्त आयन तथा अवियोजित क्षार के मध्य साम्य स्थापित हो जाता है। BOH $$B^+ + OH^-$$ द्रव्य अनुपाती क्रिया नियम के अनुसार, $$K = \frac{\left[B^{+}\right]\left[OH^{-}\right]}{\left[BOH\right]}$$ यहां साम्यावस्था स्थिरांक \mathbf{K} को क्षार का वियोजन स्थिरांक $\mathbf{K}_{_{b}}$ कहते हैं। $$K_{b} = \frac{\left[B^{+}\right]\left[\overline{O}H\right]}{\left[BOH\right]}$$ दुर्बल क्षार के वियोजन स्थिरांक को सान्द्रता पदों में व्यक्त करना — | | ВОН | $\mathbf{B}^{\scriptscriptstyle +}$ + | ŌН | |----------------------|------------|---------------------------------------|-----------| | प्रारम्भ मोल | 1 | 0 | 0 | | साम्य पर | $1-\alpha$ | α | α | | यदि प्रारंभिक | | | | | सांद्रता 'C' हो तो | | | | | साम्य सांद्रता | C (1–α) | $C\alpha$ | $C\alpha$ | | α= वियोजन की मात्रा, | | C= मोलर सान्द्रता | | साम्यावस्था = रिथरांक अभिकारकों की सान्द्रताओं का गुणनफल (साम्यावस्था पर) $$= \frac{\begin{bmatrix} B^{+} \end{bmatrix} \begin{bmatrix} OH^{-} \end{bmatrix}}{\begin{bmatrix} BOH
\end{bmatrix}}$$ $$= \frac{C\alpha \times C\alpha}{C(1-\alpha)}$$ $$K_{b} = \frac{C^{2} \alpha^{2}}{C(1-\alpha)}$$ $$K_b = \frac{C\alpha^2}{(1-\alpha)}$$ दुर्बल क्षार के लिए किसी सांद्रता पर वियोजन की मात्रा $\alpha <<$ । अतः $$K_{b} = C\alpha^{2}$$ $$\alpha = \sqrt{\frac{K_{b}}{C}}$$ हाइड्रॉक्सिल आयनों की सांद्रता $\left[OH^{-}\right]$ = $C\alpha$ $$= C\sqrt{\frac{K_b}{C}} = \sqrt{K_b \times C}$$ दुर्बल क्षारों की आपेक्षिक सामर्थ्य : यदि किसी सांद्रता पर दो दुर्बल क्षारों के वियोजन स्थिरांक क्रमशः $K_{\mbox{\tiny b}_1}$ व $K_{\mbox{\tiny b}_2}$ हो तथा वियोजन की मात्रा $\alpha_{_1}$ व $\alpha_{_2}$ हो तो, $\alpha_{_1}=\sqrt{\frac{K_{_{b_{_1}}}}{C}}$, $\alpha_{_2}=\sqrt{\frac{K_{_{b_{_2}}}}{C}}$ $$\frac{\alpha_1}{\alpha_2} = \sqrt{\frac{K_{b_1}}{K_{b_2}}}$$ वियोजन की मात्रा α क्षार द्वारा OH^- देने की प्रवृत्ति का माप है अतः $$rac{mpganture{a}}{mpganture{a}} = \sqrt{ rac{K_{b_1}}{K_{b_2}}}$$ $K_{_{a}}$ तथा $K_{_{b}}$ के ऋणात्मक लघुगुणक को $pK_{_{a}}$ तथा $pK_{_{b}}$ कहते हैं । $$pK_a = -\log K_a$$ $$pK_b = -\log K_b$$ $K_{_{a}}$ या $K_{_{b}}$ का मान अधिक हो तो क्रमशः $pK_{_{a}}$ व $pK_{_{b}}$ का मान कम होगा। इसका विलोम भी सत्य है। # जल का आयनिक गुणनफल जल एक दुर्बल विद्युत अपघट्य है। यह बहुत कम मात्रा में आयनित होता है। इसका विभाजन निम्नानुसार होता है— $$H_2O$$ $H^+ + OH^-$ द्रव्य अनुपाती क्रिया नियम के अनुसार, $$K = \frac{\left[H^{+}\right]\left[OH^{-}\right]}{\left[H_{2}O\right]}$$ या, $$K[H_2O] = [H^+][OH^-]$$ चूँिक जल का आयनन अल्प मात्रा में होता है अतः जल की सांद्रता के पद $[H_2O]$ को नियत माना जा सकता है। K $[H_2O]$ पद इसिलए एक नियतांक होगा। इसे एक अन्य स्थिरांक $K_{_w}$ से व्यक्त किया जाता है जिसे जल का आयनिक गुणनफल कहते हैं। $$K_{w} = \boxed{H^{+}} \boxed{OH^{-}}$$ अर्थात् एक निश्चित तापक्रम पर जल में $\left[H^{+}\right]$ एवं $\left[OH^{-}\right]$ आयनों की सांद्रताओं के गुणनफल को जल का आयनिक गुणनफल कहते हैं। K_{w} का मान तापमान पर निर्भर करता है। तापक्रम बढ़ने पर K_{w} का मान की बढ़ता है। क्योंकि तापमान में वृद्धि से $\left[H^{+}\right]$ तथा $\left[OH^{-}\right]$ सांद्रताओं में वृद्धि होती है। 25° C पर अति शुद्ध जल की विद्युत चालकता के मापन के अनुसार, $$\left[\text{OH}^{-} \right] = 1 \times 10^{-7} \, \text{मोल} / \, \text{लीटर}$$ $$Kw = [H^+][O\overline{H}]$$ = $(1 \times 10^{-7}) (1 \times 10^{-7}) = 10^{-14}$ इस प्रकार 25° C पर जल के आयनिक गुणनफल का मान 1×10^{-14} होता है। $K_{_{w}}$ के ऋणात्मक लॉगेरिथम को $pK_{_{w}}$ से व्यक्त किया जाता है। $$pK_{w}=-\log_{10}K_{w}$$ 25 °C ਧਰ, $pK_{w}=-\log_{10}K_{w}=-\log_{10}\left[1 imes10^{-14} ight]$ यदि जलीय विलयन में हाइड्रोजन आयन की सांद्रता 10^{-7} मोल/लीटर से अधिक हो जाती है (अर्थात् यदि जल में अम्ल मिलाया जाय) तो क्योंकि जल का आयनिक गुणनफल नियत 1×10^{-14} रहना चाहिए अतः $\left[OH^{-}\right]$ की सांद्रता 10^{-7} मोल/लीटर से कम होगी। इस प्रकार का विलयन अम्लीय होगा। इसके विपरीत यदि जल में $\left[OH^{-}\right]$ की सांद्रता 10^{-7} मोल/लीटर से अधिक हो जाय तो (अर्थात् यदि जल में क्षार मिलाया जाय) जल का आयनिक गुणनफल नियत 1×10^{-14} रखने के लिए H^{+} आयनों की सांद्रता 10^{-7} मोल/लीटर से कम होगी और ऐसा विलयन क्षारीय होगा। ### pH स्केल ऊपर की गई विवेचना से स्पष्ट होता है कि किसी विलयन की अम्लीय, क्षारीय या उदासीन प्रकृति को [H⁺] तथा $\left[ext{OH}^{-} \right]$ आयन के सांद्रता के रूप में व्यक्त किया जा सकता है। सन् 1909 में सोरेन्सन नामक वैज्ञानिक ने सर्वप्रथम pH मान की अवधारणा दी। p का अर्थ है phorenz (या power) तथा H का अर्थ H⁺ आयनों की सांद्रता से है। हाइड्रोजन आयन सांद्रता के ऋणात्मक लघुगुणक को pH कहते हैं। $$pH = -log_{10} [H^+]$$ $$pH = \frac{1}{\log_{10} [H^+]}$$ $$[H^{+}] = 10^{- pH}$$ शुद्ध जल में $\left[OH^{+} \right]$ आयनों की सांद्रता 10^{-7} होती है अतः pH का मान 7 होता है। इसी प्रकार हाइड्रॉक्सिन आयन की सांद्रता के ऋणात्मक लघुगुणक को p^{OH} से व्यक्त करते हैं। $$\mathbf{p}^{\mathrm{OH}} = -\log_{10} \left[\mathbf{OH}^{-} \right]$$ $$p^{OH} = \frac{1}{\log_{10} \left[OH^{-} \right]}$$ $$\left[OH^{-}\right] = 10^{-^{pOH}}$$ pH मानों के आधार पर जिसमें pH के मान 0 से 14 तक परिवर्तित होते हैं एक स्केल बनाया गया। जिसे pH स्केल कहते हैं। एक अम्लीय विलयन के लिए : pH o 7 से कम $p^{OH} \rightarrow 7$ से अधिक एक क्षारीय विलयन के लिए : $pH \rightarrow 7$ से अधिक $p^{OH} \rightarrow 7$ से कम उदासीन विलयन के लिए : pH तथा $p^{OH}=7$ $pH,\,p^{OH}\,$ तथा p^Kw में सम्बन्ध : जल का आयनिक गुणनफल $$K_{W} = [H^{+}][\overline{O}H]$$ दोनों ओर लघुगुणक लेने पर, $$\log K_{w} = \log \left[H^{+} \right] + \log \left[OH^{-} \right]$$ $$-\log K_{W} = -\log \left[H^{+}\right] + \log \left[OH^{-}\right]$$ $$p^{K}_{W} = pH + p^{OH}$$ या $$pH + p^{OH} = 14$$ ## लवणों का जल अपघटन परिभाषा — वह प्रक्रम जिसमें एक लवण जल से अभिक्रिया करके अम्ल व क्षार बनता है, लवण का जल अपघटन कहलाता है। उदासीनीकरण अभिक्रिया में अम्ल व क्षार क्रिया करके लवण व जल बनाते हैं। अतः लवण का जल अपघटन, उदासीनीकरण अभिक्रिया की विपरीत अभिक्रिया है। अन्य शब्दों में लवण का जल अपघटन वह अभिक्रिया है जिसमें लवण के धनायन तथा ऋणायन जल से क्रिया करके हाइड्रोजन आयन सांद्रता में परिवर्तन लाते हैं। BA + $$H_2O$$ \Longrightarrow HA + BOH लवण जल अम्ल क्षार B^+ + H_2O \Longrightarrow BOH + H^+ A- + H_2O \Longrightarrow HA + OH- लवण के जल अपघटन से प्राप्त अम्ल यदि प्रबल है तो वह पूर्ण आयनित होगा व H^+ आयनों की सांद्रता अधिक होगी। ऐसा लवण अम्लीय लवण कहलाएगा। इसके विपरीत यदि लवण के जल अपघटन से प्राप्त अम्ल व क्षार में से क्षार अधिक प्रबल है तो OH^- आयनों की सांद्रता अधिक होगी व ऐसा लवण क्षारीय लवण कहलाएगा। यदि लवण के जल अपघटन से प्राप्त अम्ल व क्षार समान सामर्थ्य के हैं तो H^+ व OH^- आयनों की सांद्रता समान होगी व ऐसा लवण उदासीन लवण कहलाएगा। अर्थात् $$\begin{bmatrix} H^+ \end{bmatrix} > \begin{bmatrix} OH^- \end{bmatrix} \longrightarrow$$ लवण अम्लीय $$\begin{bmatrix} H^+ \end{bmatrix} < \begin{bmatrix} OH^- \end{bmatrix} \longrightarrow$$ लवण क्षारीय $$\begin{bmatrix} H^+ \end{bmatrix} = \begin{bmatrix} OH^- \end{bmatrix} \longrightarrow$$ लवण उदासीन इस आधार पर लवण चार प्रकार के होते हैं – - प्रबल अम्ल व प्रबल क्षार का लवण - 2. प्रबल अम्ल व दुर्बल क्षार का लवण - 3. दुर्बल अम्ल व प्रबल क्षार का लवण - 4. दुर्बल अम्ल व दुर्बल क्षार का लवण ### I. प्रबल अम्ल व प्रबल क्षार के लवण का जल अपघटन प्रबल अम्ल व प्रबल क्षार से बने लवण का जल अपघटन करने पर प्रबल अम्ल व प्रबल क्षार प्राप्त होते हैं। वे पूर्णतः वियोजित होते हैं अतः विलयन में H^+ व OH^- आयनों की सांद्रताएं लगभग बराबर होती है। इस कारण इस प्रकार के लवणों के जलीय विलयन उदासीन होते हैं। अन्य शब्दों में इस प्रकार के लवणों के जल अपघटन से H^+ या OH^- आयनों की सांद्रता जल अपघटन से H^+ या OH^- आयनों की सांद्रता में परिवर्तन नहीं आता है और हम यह कह सकते हैं कि ये लवण जल अपघटित नहीं होते हैं। उदाहरण : $NaCl, KCl, Na_2SO_4, KNO_3$ आदि। NaCl जल अपघटित होकर HCl व NaOH देता है। HCl प्रबल अम्ल है व NaOH प्रबल क्षार है। ये दोनों विलयन में पूर्णतः आयनित हो जाते हैं और विलयन में H^+ व OH^- आयनों का संतुलन अपरिवर्तित रहता है। $$NaCl + H2O \longrightarrow HCl + NaOH$$ $$Na^{+} + Cl^{-} + H2O \longrightarrow H^{+} + Cl^{-} + Na^{+} + OH^{-}$$ $$H2O \longrightarrow H^{+} + OH^{-}$$ ## II. प्रबल अम्ल व दुर्बल क्षार के लवण का जल _ अपघटन इस प्रकार के लवण जल अपघटित होते हैं तो प्रबल अम्ल व दुर्बल क्षार प्राप्त होते हैं। प्रबल अम्ल पूर्णतः आयनित है अतः विलयन में H^+ आयनों की सांद्रता OH^- आयनों की सांद्रता से अधिक होती है। इस जल अपघटन को धनायन जल अपघटन भी कहते हैं। उदाहरण $-\mathrm{NH_4Cl}$, $\mathrm{FeCl_3}$, $\mathrm{CuSO_4}$, Ca ($\mathrm{NO_3}$)2, $\mathrm{ZnCl_3}$, आदि। ${ m NH_4Cl}$ के जल अपघटन से प्रबल अम्ल HCl तथा दुर्बल क्षार ${ m NH_4OH}$ बनता है। HCl पूर्णतः वियोजित होता है तथा ${ m NH_4OH}$ अल्प वियोजित होता है। H $^+$ आयनों की मात्रा ${ m OH}^-$ आयनों से अधिक होते हैं। इस कारण विलयन अम्लीय होता है। ## III. प्रबल क्षार व दुर्बल अम्ल के लवण का जल अपघटन इस प्रकार के लवण का जल अपघटन होकर दुर्बल अम्ल तथा प्रबल क्षार बनता है। प्रबल क्षार चूँकि पूर्णतः आयनित होता है जबिक दुर्बल अम्ल अल्प आयनित होता है अतः विलयन में OH^- आयनों की सान्द्रता H^+ की सांद्रता से अधिक होगी और विलयन क्षारीय होगा। उदाहरण — CH_3COONa , Na_2CO_3 , NaCN, KCN, Na_2S आदि। इस जल अपघटन को ऋणायन जल अपघटन भी कहते हैं। ### IV. दुर्बल अम्ल व दुर्बल क्षार के लवण का जल अपघटन इस प्रकार के लवण के जल अपघटन से प्राप्त विलयन की प्रकृति जल अपघटन के पश्चात् प्राप्त दुर्बल अम्ल व दुर्बल क्षार की वियोजन स्थिरांक पर निर्भर करती है। यदि अम्ल का वियोजन स्थिरांक $\mathbf{K}_{\!_{a}}$ तथा क्षार का वियोजन स्थिरांक $\mathbf{K}_{\!_{b}}$ हो तो - यदि $$egin{array}{lll} K_a &=& K_b & & \mbox{लवण उदासीन} \ K_a &>& K_b & & \mbox{लवण अम्लीय} \ K_a &<& K_b & & \mbox{लवण क्षारीय} \ \end{array}$$ उदाहरण — CH_3COONH_4 , $(NH_4)_2$ CO_3 , NH_4CN आदि | (i) CH_3COONH_4 का जल अपघटन : CH_3COONH_4 +HOH $\begin{tabular}{l} CH_3COOH+NH_4OH \end{tabular}$ $$K_{\text{CH}_3\text{COOH}} = K_{\text{NH}_4\text{OH}} = 1.8 \times 10^{-5}$$ अतः विलयन उदासीन रहता है। (ii) (NH₄), CO₃ का जल अपघटन : $${\rm (NH_4)_2~CO_3} + 2~{\rm HOH} \Longrightarrow 2{\rm NH_4OH} + {\rm H_2CO_3}$$ दुर्बल क्षार दुर्बल अम्ल $$:: K_{\text{NH}_4\text{OH}} > K_{\text{H}_2\text{CO}_3}$$ अतः विलयन दुर्बल क्षारीय होता है। (iii) $C_6H_5NH_3OOCCH_3$ का जल अपघटन : C,II,NII,OOCCII, + IIOII ← C,II,NII,OII + CII,COOII ऐनीलिनियम ऐसीटेट ऐनीलिनियम हाइड्रॉक्साइड लवण दुर्बल क्षार दुर्बल अम्ल $$:: K_{CH_3COOH} > K_{C_6H_5NH_3\overline{O}H}$$ ### जल अपघटन स्थिरांक लवण के जल अपघटन की उत्क्रमणीय अभिक्रिया के लिए साम्यावस्था स्थिरांक जल अपघटन स्थिरांक कहलाता है। इसे $\mathbf{K}_{_{\! h}}$ से व्यक्त करते हैं। लवण के जल अपघटन की अभिक्रिया को निम्नलिखित प्रकार प्रदर्शित कर सकते हैं – $$BA + H_2O$$ $HA + BOH$ लवण अम्ल क्षार द्रव्य अनुपाती क्रिया नियम के अनुसार, $$K = \frac{[HA][BOH]}{[BA][H_2O]}$$ जल अपघटन अभिक्रिया के दौरान जल की सांद्रता में परिवर्तन नगण्य होता है। अतः जल की सांद्रता को नियत माना जा सकता है। $$K[H_2O] = \frac{[HA][BOH]}{[BA]}$$ $K\left[H_2O\right]$ पद एक नियतांक होगा। इसे एक अन्य पद $K_{_h}$ से व्यक्त करते हैं। $$K_h = \frac{[HA][BOH]}{[BA]}$$ $K_h =$ जल अपघटन स्थिरांक जल अपघटन की मात्रा — लवण की कुल मात्रा का वह अंश जो साम्यावस्था पर जल अपघटित होता है उसे जल अपघटन की मात्रा (h) कहते हैं। जल अपघटन स्थिरांक, जल अपघटन की मात्रा, जल का आयनी
गुणनफल तथा वियोजन स्थिरांक में सम्बन्ध व विलयन के pH के लिए सूत्र ज्ञात करना — ## I. प्रबल अम्ल व दुर्बल क्षार के लवण का जल अपघटन इस प्रकार के लवण का जल अपघटन निम्नलिखित प्रकार से होता है – $$B^+ + H_2O$$ BOH + H^+ यदि लवण की सांद्रता C मोल प्रति लीटर तथा जल अपघटन की मात्रा h हो तो — | | $B^+ + H_2O$ | | BOH + | H^{+} | |----------------|--------------|--------|-------|---------| | प्रारम्भ में, | 1 | आधिक्य | 0 | 0 | | साम्य पर | 1-h | | h | h | | यदि प्रारंभिक | | | | | | सांद्रता हो तो | | | | | | साम्य सांद्रता | C (1-h) | | Ch | Ch | # Downloaded from https://www.studiestoday.com 104 परिभाषा के अनुसार : जल अपघटन स्थिरांक $$K_h = \frac{\left[\mathrm{BOH} \right] \left[\mathrm{H}^+ \right]}{\left[\mathrm{B}^+ \right]} \dots$$ (1) साम्य सांद्रताओं के मान रखने पर, $$K_{h} = \frac{Ch \times Ch}{C(1-h)}$$ $$=\frac{Ch^2}{1-h}$$... (2) यदि h < < 1 तो 1−h ≅ 1 $$\therefore$$ $K_h = Ch^2$ $$h^2 = \frac{K_h}{C}$$ $$h = \sqrt{\frac{K_h}{C}} \qquad \dots (3)$$ या $$h = \sqrt{V \times K_h}$$ चूंकि $\frac{1}{C} \alpha V$ एक प्रबल अम्ल व दुर्बल क्षार के लवण की जल अपघटन मात्रा सांद्रता के वर्गमूल के व्युत्क्रमानुपाती होती है। K_h , K_w व K_h में सम्बन्ध — जल अपघटन से प्राप्त BOH अल्प वियोजित होता है अतः BOH के वियोजन के लिये निम्नलिखित साम्य होगा — BOH $$B^+ + OH^-$$ $$K_{b} = \frac{\left[B^{+}\right]\left[OH^{-}\right]}{\left[BOH\right]} \qquad ...(4)$$ जल का आयनी गुणनफल $Kw = [H^+][OH^-]$...(5) समीकरण (5) में (4) का भाग देने पर - $$\frac{K_{w}}{K_{b}} = \frac{\left[H^{+}\right]\left[OH^{-}\right]\left[BOH\right]}{\left[B^{+}\right]\left[OH^{-}\right]}$$ $$\frac{K_{w}}{K_{b}} = \frac{\left[H^{+}\right]\left[BOH\right]}{\left[B^{+}\right]}$$ $$\frac{K_{w}}{K_{h}} = K_{h} \qquad ...(6)$$ {∵ समीकरण (1) से } K, का यह मान समीकरण (3) में रखने पर, $$h = \sqrt{\frac{K_h}{C}}$$ $$h = \sqrt{\frac{K_w}{K_h \times C}}$$...(7) विलयन के pH के लिये सूत्र — H⁺ आयनों की साम्य सांद्रता Ch है। $$[H^+] = Ch$$ $$[H^+] = C \times \sqrt{\frac{K_w}{K_b \times C}}$$ {समीकरण (7) से मान रखने पर} $$[H^+] = \sqrt{\frac{K_w \times C}{K_b}}$$ दोनों ओर लघुगुणक लेने पर, $$\log [H^+] = \frac{1}{2} \log K_w + \frac{1}{2} \log C - \frac{1}{2} \log K_b$$ $$-\log{[{\rm H}^{^{+}}]} = -\frac{1}{2}\log{\rm K_{_{\rm w}}} - \frac{1}{2}\log{\rm C} + \frac{1}{2}\log{\rm K_{_{\rm b}}}$$ $$pH = \frac{1}{2} PK_w - \frac{1}{2} PK_b - \frac{1}{2} \log C$$ $[:: PK_w = 14]$ $$pH = 7 - \frac{1}{2}PK_b - \frac{1}{2}\log C$$...(8) समीकरण (8) से स्पष्ट होता है कि प्रबल अम्ल व दुर्बल क्षार के लवण का जल अपघटन होने पर विलयन का pH=7 से कम होता है अतः विलयन अम्लीय होता है। ### II. दुर्बल अम्ल व प्रबल क्षार के लवण का जल अपघटन इस प्रकार के लवण का जल अपघटन निम्नलिखित प्रकार से होता है— प्रारंभिक सांद्रता 1 'O O साम्य पर 1–h h h यदि प्रारंभिक सांद्रता हो तो साम्य सांद्रता C(1–h) Ch Ch जल अपघटन स्थिरांक $$K_h = \frac{[HA][OH^-]}{[A^-]}$$... (9) साम्य सांद्रताओं के मान रखने पर, $$K_{h} = \frac{Ch \times Ch}{C(1-h)}$$ $$= \frac{C^{2}h^{2}}{C(1-h)}$$ $$K_{h} = \frac{Ch^{2}}{(1-h)} \qquad ...(10)$$ यदि h < < 1 तो 1−h ≅ 1 $$K_{n} = Ch^{2}$$ $$h^{2} = \frac{K_{h}}{C}$$ $$h = \sqrt{\frac{K_{h}}{C}} \qquad ...(11)$$ दुर्बल अम्ल व प्रबल क्षार के लवण के जल अपघटन की मात्रा सांद्रता के वर्गमूल के व्युत्क्रमानुपाती होती है। $$v = \frac{1}{c}$$ $$h = \sqrt{K_h \times v}$$ अर्थात् तनुकरण करने पर जल अपघटन की मात्रा में वृद्धि होती है। $\mathbf{K_h}, \mathbf{K_w}$ व $\mathbf{K_a}$ में सम्बन्ध — प्रबलक्षार व दुर्बल अम्ल से बने लवण की जल अपघटन अभिक्रिया निम्नलिखित है — $$A^- + H_2O$$ $HA + OH^-$ परिभाषानुसार, $$K_{h} = \frac{[HA][OH^{-}]}{A^{-}} \qquad ...(12)$$ जल का आयनी गुणनफल $K_w = \left[H^+\right] \left[OH^-\right]$...(13) जल अपघटन से प्राप्त दुर्बल अम्ल अल्प मात्रा में वियोजित होता है - HA $$\longrightarrow$$ H⁺ + A⁻ वियोजन स्थिरांक $K_a = \frac{\left[H^+\right]\left[A^-\right]}{\left[HA\right]}$...(14) समीकरण (13) में (14) का भाग देने पर, $$\begin{split} \frac{K_{_{w}}}{K_{_{a}}} = & \frac{\left[H^{+}\right]\left[OH^{-}\right]\left[HA\right]}{\left[H^{+}\right]\left[A^{-}\right]} \\ = & \frac{\left[OH^{-}\right]\left[HA\right]}{\left[A^{-}\right]} \end{split}$$ $$\frac{K_{\mathrm{W}}}{K_{\mathrm{a}}} = K_{\mathrm{h}}$$ {समीकरण (12) से} $K_{_{h}}$ का यह मान समीकरण (11) में रखने पर, $$h = \sqrt{\frac{K_h}{C}}$$ $$h = \sqrt{\frac{K_w}{K_a \times C}} \qquad ...(15)$$ विलयन के pH के लिये सूत्र — प्रबल क्षार तथा दुर्बल अम्ल के लवण की जल अपघटन अभिक्रिया में OH^- आयनों की साम्य सांद्रता Ch है। $$\begin{bmatrix} OH^- \end{bmatrix} = Ch$$ $$= C \sqrt{\frac{K_w}{K_a \times C}} \qquad \qquad \{ समीकरण (15) \ \dot{t} \}$$ $$\begin{bmatrix} OH^- \end{bmatrix} = \sqrt{\frac{K_w \times C}{K_a}} \qquad \qquad ...(16)$$ हम जानते हैं कि $-$ $K_{w} = \lceil H^{+} \rceil \lceil OH^{-} \rceil$ $$\left[H^{+}\right] = \frac{K_{w}}{\left[OH^{-}\right]} \qquad ...(17)$$ समीकरण (17) में OH का मान समीकरण (16) में रखने पर $$[H^{+}] = K_{w} \times \sqrt{\frac{K_{a}}{K_{w} \times C}}$$ $$[H^{+}] = \sqrt{\frac{K_{w} \times K_{a}}{C}}$$ # Downloaded from https:// www.studiestoday.com 106 दोनों ओर लघुगुणक लेने पर, $$\log \left[H^{+} \right] = \frac{1}{2} \log K_{w} + \frac{1}{2} \log K_{a} - \frac{1}{2} \log C$$ $$-\log \left[H^{+}\right] = -\frac{1}{2}\log K_{w} - \frac{1}{2}\log K_{a} + \frac{1}{2}\log C$$ $$pH = \frac{1}{2} PK_w + \frac{1}{2} PK_a + \frac{1}{2} log C$$ $$\therefore pH = 7 + \frac{1}{2} PK_a + \frac{1}{2} log C \qquad ...(18)$$ समीकरण (18) से स्पष्ट है कि दुर्बल अम्ल तथा प्रबल क्षार से बने लवण के विलयन का pH=7 से अधिक होता है अतः विलयन क्षारीय होता है। ## III. दुर्बल अम्ल व दुर्बल क्षार के लवण का जल अपघटन $$B^+ + A^- + H_2O$$ HA + BOH यदि लवण BA के एक ग्राम मोल को V लीटर आयतन में विलेय किया जाय तथा जल अपघटन की मात्रा h हो तो - $$B^+ + A^- + H_2O$$ \longrightarrow HA + BOH प्रारंभ में 1 1 आधिक्य O O साम्य पर 1-h 1-h h h यदि प्रारंभिक सांद्रता 'C' हो तो साम्य $C(1-h)$ $C(1-h)$ Ch Ch सांद्रता जहाँ C=सांद्रता (मोल/लीटर) h = जल अपघटन मात्रा परिभाषानुसार, जलअपघटन स्थिरांक $$K_h = \frac{[HA][BOH]}{[B^+][A^-]}$$...(19) समीकरण (19) में साम्य सांद्रताओं के मान रखने पर – $$K_{h} = \frac{Ch \times Ch}{C(1-h) \times C(1-h)}$$ $$= \frac{C^{2}h^{2}}{C^{2}(1-h)^{2}}$$ $$K_{h} = \frac{h^{2}}{(1-h)^{2}} \qquad ...(20)$$ दुर्बल अम्ल व दुर्बल क्षार के लवण की जल अपघटन मात्रा सांद्रता पर निर्भर नहीं करती है। $$K_{b}, K_{w}, K_{s}, K_{b}$$ में सम्बन्ध – $$K_{w} = \left[H^{+} \right] \left[OH^{-} \right]$$...(21) दुर्बल अम्ल HA के वियोजन के लिए, $$HA \longrightarrow H^+ + A^-$$ वियोजन स्थिरांक $$K_a = \frac{\left[H^+\right]\left[A^-\right]}{\left[HA\right]}$$...(22) दुर्बल क्षार BOH का वियोजन स्थिरांक निम्नलिखित होगा – BOH $$B^+ + OH^-$$ $$K_{b} = \frac{\left[B^{+}\right]\left[OH^{-}\right]}{\left[BOH\right]} \qquad ...(23)$$ समीकरण (21) को समीकरण (22) व (23) से भाग देने पर — $$\frac{K_{w}}{K_{a} \times K_{b}} = \frac{[HA][H^{+}][OH^{-}][BOH]}{[H^{+}][A^{-}][B^{+}][OH^{-}]}$$ $$= \frac{[HA][BOH]}{[A^{-}][B^{+}]}$$ $$\frac{K_{w}}{K_{a} \times K_{b}} = K_{h} \qquad ... (24)$$ समीकरण (19) से $$K_h = \frac{[HA][BOH]}{[A^-][B^+]}$$ K, का यह मान समीकरण (20) में रखने पर, $$K_{h} = \left\lfloor \frac{h}{(1-h)} \right\rfloor^{2}$$ $$\frac{h^{2}}{(1-h)^{2}} = \frac{K_{w}}{K_{a} \times K_{b}}$$ $$\frac{h}{1-h} = \sqrt{\frac{K_{w}}{K_{a} \times K_{b}}} \qquad ...(25)$$ विलयन का pH — दुर्बल अम्ल व दुर्बल क्षार के लवण के जल अपघटन द्वारा दुर्बल अम्ल प्राप्त होता है। विलयन में H^+ आयनों की सांद्रता दुर्बल अम्ल के वियोजन से प्राप्त होती है। $$HA = H^{+} + A^{-}$$ $$K_{a} = \frac{\left[H^{+}\right]\left[A^{-}\right]}{\left[HA\right]}$$ $$\left[H^{+}\right] = \frac{K_{a} \times \left[HA\right]}{\left[A^{-}\right]} \qquad ...(26)$$ लवण के जल अपघटन साम्य में $[A^-]$ व [HA] की साम्य सांद्रताओं के मान जो कि क्रमशः C(1-h) तथा Ch है, समीकरण (26) में रखने पर, $$[H^{+}] = \frac{K_a \times Ch}{C(1-h)}$$ $$[H^{+}] = \frac{K_a \times h}{(1-h)}$$...(27) समीकरण (25) से $\frac{h}{(1-h)} = \sqrt{\frac{K_w}{K_a \times K_b}}$ यह मान समीकरण (27) में रखने पर, $$\left[H^{+}\right] = K_{a} \times \sqrt{\frac{K_{w}}{K_{a} \times K_{b}}}$$ $$\left[H^{+}\right] = \sqrt{\frac{K_{a} \times K_{w}}{K_{b}}}$$ दोनों ओर लघुगुणक लेने पर, $$\log \left[H^{+} \right] = \frac{1}{2} \log K_{a} + \frac{1}{2} \log K_{w} - \frac{1}{2} \log K_{b}$$ या, $$-\log\left[H^{+}\right] = -\frac{1}{2}\log K_{a} - \frac{1}{2}\log K_{w} + \frac{1}{2}\log K_{b}$$ $$pH = \frac{1}{2} PK_a + \frac{1}{2} PK_w - \frac{1}{2} PK_b$$...(28) 25°C ਧਰ $K_w = 10^{-14}$:: $PK_w = 14$ $$pH = \frac{1}{2} PK_a - \frac{1}{2} PK_b + 7$$...(29) समीकरण (29) से यह इंगित होता है कि यदि – - (i) $PK_a = PK_b$ तो pH = 7 विलयन उदासीन है - (ii) यदि $PK_a > PK_b$ तो pH > 7 विलयन क्षारीय है - (iii) यदि $PK_a < PK_b$ तो pH < 7 विलयन अम्लीय है #### आयनन विद्युत धारा के प्रति व्यवहार के आधार पर पदार्थों को दो वर्गों में वर्गीकृत किया जा सकता है – 1- विद्युत अपघट्य — वे रासायनिक यौगिक जिन्हें जब ध्रुवीय विलायकों में विलेय किया जाता है या पिघलाया जाता है तो वे धनायनों तथा ऋणायनों में वियोजित हो जाते हैं तथा विद्युत का संचालन करते हैं, विद्युत अपघट्य कहलाते हैं। ये आयनिक अथवा ध्रुवीय सहसंयोजक प्रकृति के होते हैं। इनके दो प्रकार हैं — (i) प्रबल विद्युत अपघट्य वे विद्युत अपघट्य जेनका पूर्ण वियोजन होता है। जैसे — H₂CO₃, उदा. NaCl, KCl, NaOH आदि। H,SO₂ आदि। आयनन सिद्धान्त — आरेनियस ने सन् 1887 में वैद्युत अपघट्यों के जलीय विलयन अथवा उनकी गलित अवस्था में विद्युत धारा चालन की घटना का अध्ययन किया और एक सिद्धान्त प्रस्तुत किया जिसे आरेनियस का विद्युत अपघटनी वियोजन सिद्धान्त कहते हैं। इस सिद्धान्त के मुख्य अभिग्रहीत हैं— - 1. जब किसी विद्युत अपघट्य को जल में घोला जाता है तो यह आवेश युक्त कणों में विभाजित हो जाता है। जिन्हें आयन कहते हैं। यह प्रक्रिया आयनन कहलाती है। ग्रीक भाषा के अनुसार आयन शब्द का अर्थ है 'भटकने वाला या चलने वाला'। धनावेशित कण को धनायन तथा ऋणावेशित कण को ऋणायन कहते हैं। - 2. धनायन तथा ऋणायन पुनः संयोजित होकर अनायनित अणु बनाते हैं। इस प्रकार आयनित तथा अन—आयनित वैद्युत अपघट्य के बीच एक गतिक साम्य उपस्थित रहता है। - विलयन में उपस्थित धनायनों का कुल धनावेश, ऋणायनों के कुल ऋणावेश के बराबर होता है। इस प्रकार विलयन विद्युत उदासीन होता है। - आयनित तथा अनायनित अणुओं के मध्य उपस्थित साम्य को आयनिक साम्य
कहते हैं। इस आयनिक साम्य पर द्रव्य अनुपाती क्रिया नियम लागू होता है। $$AB \rightleftharpoons A^+ + B^-$$ $$K = \frac{\left[A^{+}\right]\left[B^{-}\right]}{\left[AB\right]}$$ $K =$ वियोजन / आयनन स्थिरांक विद्युत अपघट्य की कुल मात्रा का वह अंश जो आयिनत होता है आयनन की मात्रा (α) कहलाती है। $$\alpha = \frac{ \text{ विद्युत अपघट्य का वियोजित अंश}}{ \text{ विद्युत अपघट्य के कुल मोल}}$$ पदार्थों की आयनन मात्रा में भिन्नता पाई जाती है। प्रबल विद्युत अपघट्य पूर्ण रूप से वियोजित हो जाते हैं जबिक दुर्बल विद्युत अपघट्य कम मात्रा में आयनित होते हैं। - 6. विद्युत अपघट्य विलयन में विद्युत धारा का प्रवाह आयनों के माध्यम से होता है। जब विद्युत धारा प्रवाहित की जाती है तो धनायन कैथोड़ की ओर तथा ऋणायन ऐनोड़ की ओर गमन करते हैं। - 7. किसी विद्युत अपघट्य के विलयन की चालकता आयनों की संख्या तथा प्रकृति पर निर्भर करती है। जैसे $-\text{CuSO}_4$ का नीला रंग Cu^{2+} आयनों के कारण होता है। - 8. विद्युत धारा प्रवाहित करने पर आयन अपने विपरीत आवेश के इलेक्ट्रोड की ओर गतिशील होते हैं। इस प्रकार विद्युत धारा आयनों को उत्पन्न नहीं करती है वह केवल आयनों की गति की दिशा निर्धारित करती है। ## वियोजन की मात्रा (α) वैद्युत अपघट्य AB के वियोजन / आयनन पर विचार करते हैं : $$AB \longrightarrow A^+ + B^-$$ द्रव्य अनुपाती क्रिया नियम लगाने पर, $$K = \frac{\left[A^{+}\right]\left[B^{-}\right]}{\left[AB\right]}$$... (1) $K = 3$ आयनन स्थिरांक माना कि V लीटर आयतन में वैद्युत अपघट्य का एक मोल उपस्थित है तथा इसकी आयनन मात्रा αहै। प्रारम्भ में, 1 0 0 0 $$^{\circ}$$ यदि प्रारंभिक सांद्रता 'C' हो तो $^{\circ}$ साम्य सांद्रता $^{\circ}$ С $^{\circ}$ साम्य सांद्रताओं के मान समीकरण (1) में रखने पर, $$K = \frac{C\alpha \times C\alpha}{C(1-\alpha)}$$ $$K = \frac{C\alpha^2}{(1-\alpha)} ... (2)$$ इस व्यंजक को सर्वप्रथम ओस्टवाल्ड ने ज्ञात किया था अतः इसे ओस्टवाल्ड का तनुता नियम कहते हैं। यदि α का मान बहुत कम है। $$\alpha < <1$$ तो $K = C\alpha^2$ $$C\alpha^2 = K$$ $$\alpha^2 = \frac{K}{C}$$ $$\alpha = \sqrt{\frac{K}{C}}$$ या $\alpha = \sqrt{KxV}$ आयनन की मात्रा α सांद्रता के वर्गमूल के व्युत्क्रमानुपाती होती है तथा तनुता के वर्गमूल के समानुपाती होती है। ### आयनन की मात्रा को प्रभावित करने वाले कारक 1. सांद्रता – $$\alpha = \sqrt{\frac{K}{C}} \Rightarrow \alpha \approx \frac{1}{\sqrt{C}}$$ अतः विलयन में वैद्युत अपघट्य की सांद्रता में वृद्धि करने पर आयनन की मात्रा कम होती है। 2. तनुता – $$\alpha = \sqrt{KV}$$ $\Rightarrow \alpha \propto \sqrt{V}$ अतः तनुता बढ़ाने पर आयनन की मात्रा बढ़ती है। अनन्त तनुता पर वैद्युत अपघट्य पूर्णतः वियोजित हो जाते हैं। - 3. ताप तापमान में वृद्धि करने पर आयनन की मात्रा बढ़ती है। जैसे–जैसे ताप बढ़ता है तापीय संघटों की संख्या बढ़ती है तथा आयनों के मध्य वैद्युत आकर्षण बल दुर्बल होते जाते हैं जिससे स्वतंत्र आयनों की संख्या में वृद्धि होती है। - 4. विलायक की प्रकृति वे विलायक जिनके परावैद्युतांक उच्च होते हैं उनमें वैद्युत अपघट्य की वियोजन की मात्रा अधिक होती है। विलायक का परावैद्युतांक अधिक होने पर आयनों के मध्य आकर्षण बल दुर्बल हो जाते हैं। उदाहरण के लिए जल का परावैद्युतांक बेन्जीन की तुलना में अधिक होता है अतः NaCl की आयनन मात्रा जल में अधिक होती है। - 5. वैद्युत अपघट्य की प्रकृति प्रबल वैद्युत अपघट्यों में ध्रुवीय सहसंयोजक या आयिनक बंध उपस्थित होते हैं। इनका आयनन अधिक होता है तथा आयनन की मात्रा α≅1 होती है। इसके विपरीत वे विद्युत अपघट्य जिनमें सहसंयोजक प्रकृति के बंध पाये जाते हैं अल्प मात्रा में आयिनत होते हैं। - 6. अन्य आयनों की उपस्थिति किसी दुर्बल वैद्युत अपघट्य का आयनन समान आयन युक्त अन्य प्रबल विद्युत अपघट्य की उपस्थिति में कम हो जाता है। इसे समआयन प्रभाव कहते हैं। उदाहरण के लिये NH_4Cl की उपस्थिति में NH_4OH का आयनन कम हो जाता है। # महत्वपूर्ण बिन्दु - पदार्थ दो प्रकार के होते हैं (i) विद्युत अनअपघट्य (ii) विद्युत अपघट्य। - वे पदार्थ जो गलित अवस्था तथा जलीय विलयन में विद्युत का चालन करते हैं उन्हें विद्युत अपघट्य कहते हैं। जैसे — अम्ल, क्षार, लवण। - प्रबल विद्युत अपघट्यों का वियोजन पूर्ण होता है। दुर्बल विद्युत अपघट्य अल्प आयनित होते हैं। - विद्युत अपघट्य का वह अंश जो साम्य पर आयनित होता है उसे आयनन की मात्रा कहते हैं। - लुईस अम्ल वे हैं जो इलेक्ट्रॉन युग्म ग्रहण करते हैं तथा क्षार इलेक्ट्रॉन युग्म दाता कहते हैं। - 6. जल का आयनिक गुणनफल $Kw = [H^+][OH^-]$ $PK_{w} = pH + p^{OH}$ - 7. $pH = -\log_{10} [H^+]$ - 8. शुद्ध जल की मोलरता 55.55 M होती है। - 9. ओस्टवाल्ड तनुता नियम किसी दुर्बल विद्युत अपघट्य के आयनन की मात्रा आयतन के वर्गमूल के समानुपाती होता है। $$K = \frac{C\alpha^2}{1-\alpha}$$ $\alpha = \sqrt{\frac{K}{C}} \implies \alpha = \sqrt{KxV}$ - 10. किसी लवण की जल में क्रिया करने पर विलयन की pH में परिवर्तन होने को लवण जल अपघटन कहते हैं। - 11. लवण के प्रकार (i) प्रबल अम्ल व प्रबल क्षार से बना लवण : pH = 7, उदासीन - (ii) दुर्बल अम्ल व प्रबल क्षार से बना लवण : pH > 7, क्षारीय (a) $$K_h = \frac{K_w}{K_a}$$ (b) $$h = \sqrt{\frac{K_h}{C}}$$ (c) $$pH = 7 - \frac{1}{2} PK_a - \frac{1}{2} log C$$ (iii) प्रबल अम्ल व दुर्बल क्षार से बना लवण : pH < 7, अम्लीय (a) $$K_h = \frac{K_w}{K_b}$$ (b) $$h = \sqrt{\frac{K_h}{C}}$$ (c) $$pH = 7 + \frac{1}{2} PK_b + \frac{1}{2} log C$$ (iv) दुर्बल अम्ल व दुर्बल क्षार से बना लवण : $$pH = 7$$ विलयन उदासीन (यदि $K_a = K_b$) $pH < 7$ अम्लीय दुर्बल $(K_a > K_b)$ $$(a) K_n = \frac{K_w}{K_a \times K_b}$$ (b) $$h = \sqrt{K_h}$$ (c) $$pH = 7 - \frac{1}{2} PK_b - \frac{1}{2} \log C$$ ### अभ्यासार्थ प्रश्न # वस्तुनिष् प्रश्न एक एकल-एकलसंयोजी विद्युत अपघट्य जिसके आयनन dhek-kα तथा सांद्रता C है के लिए ओस्टवाल्ड तनुता नियम है- (a) $$K = \frac{(1-\alpha)C}{\alpha}$$ (a) $K = \frac{C\alpha^2}{(1-\alpha)}$ $$(\forall I) \quad K = \frac{(1-\alpha)C}{\alpha^2} \qquad (\exists) \quad K = \frac{\alpha^2}{(1-\alpha)C}$$ - ओस्टवाल्ड तनुता नियम का अनुप्रयोग होता है- - (अ) दुर्बल विद्युत अपघट्य के लिए - (ब) प्रबल विद्युत अपघट्य के लिए - (स) विद्युत अनपघट्य के लिए - (द) प्रबल तथा दुर्बल दोनों विद्युत अपघट्यों के लिए - कुल अणुओं की वह मात्रा जो विद्युत अपघट्य विलयन में आयनित होती है कहलाती है- - (अ) आण्विक वेग - (ब) अभिक्रिया की कोटि - (स) आयनन मात्रा - (द) मोल भिन्न - एक दुर्बल विद्युत अपघट्य का वियोजन बढ़ता है- - (अ) दाब बढ़ाने पर - (ब) तनुता घटाने पर - (स) तनुता बढ़ाने पर - (द) सांद्रता बढ़ाने पर - निम्नलिखित में से कौनसा लवण पानी में घोलने पर जल अपघटित होगा- - (अ) NaCl - (ৰ) KC1 - (स) NH₄Cl - (द) Na₂SO₄ - मानव रक्त का pH होता है- - (अ) 5.2 - (ब) 6.3 - (स) 7.4 - (द) 8.3 - अम्ल HA, HB, HC, HD के वियोजन स्थिरांक क्रमशः 2.6×10^{-3} , 5.3×10^{-9} , 1.1×10^{-2} व 7.5×10^{-5} है । इनमें से दुर्बलतम है- - (अ) HA - (ब) HB - (स) HC - (द) HD - - (अ) क्षार - (ब) अम्ल - (स) लवण - (द) कोई नहीं - आयनन मात्रा किस कारक पर निर्भर नहीं करती है- - (ब) पदार्थ की प्रकृति - (स) पदार्थ का अणुभार (द) विलायक की प्रकृति - 10. निम्नलिखित में से किस लवण का जलीय विलयन लाल लिटमस पत्र को नीला करेगा- - (अ) Na₄Cl - (ৰ) CH₃COONa - (स) NaCl - (द) CH,COONH - 11. जल अपघटन की मात्रा h, बल अपघटन स्थिरांक K तथा लवण की सांद्रता C (मोल प्रति लीटर) में सम्बन्ध है- - (31) $K_h = \frac{h}{C}$ (31) $h = \sqrt{\frac{K_h}{C}}$ - $(\forall l) \quad h = \frac{\sqrt{K_h}}{C} \qquad (\vec{q}) \quad K_h = \frac{h^2}{C}$ - 12. अमोनियम ऐसीटेट की जल अपघटन मात्रा- - (अ) सांद्रता के बढाने पर बढती है। - (ब) सांद्रता घटाने पर बढ़ती है। - (स) सांद्रता पर निर्भर नहीं करती। - (द) सांद्रता बढ़ाने पर घटती है। - 13. दुर्बल अम्ल HA के वियोजन स्थिरांक K का व्यंजक - (31) $\frac{1}{K_a} = \frac{[HA]}{[H^+][A^-]}$ (4) $K_a = \frac{[HA]}{[H^+][A^-]}$ - $(H) \quad K_{a} = \frac{\left[H^{+}\right]\left[A^{-}\right]}{\left[HA\right]^{2}} (G) \quad K_{a} = \frac{\left[HA\right]^{2}}{\left[H^{+}\right]\left[A^{-}\right]}$ - 14. सोडियम ऐसीटेट का जलीय विलयन क्षारीय होता है क्योंकि- - (अ) इसका pH का मान 7 से अधिक होता है। - (ब) ऐसीटिक अम्ल एक दुर्बल अम्ल है। - (स) वह लाल लिटमस पत्र को नीला करता है। - (द) ऐसीटेट आयन जल से क्रिया करके दुर्बल ऐसीटिक अम्ल और हाइड्रॉक्सिल आयन बनाता है। - 15. एक दुर्बल अम्ल व दुर्बल क्षार के लवण का जल अपघटन स्थिरांक K_h का मान होता है— - $(3) \quad \frac{K_{w}}{K_{a} K_{b}} \qquad (4) \quad \frac{K_{w}}{K_{a} + K_{b}}$ - $(\vec{\mathbf{H}}) \quad \frac{\mathbf{K}_{_{\mathbf{W}}}}{\mathbf{K}_{_{\mathbf{A}}} \times \mathbf{K}_{_{\mathbf{b}}}} \qquad \qquad (\vec{\mathbf{G}}) \quad \frac{\mathbf{K}_{_{\mathbf{A}}} \times \mathbf{K}_{_{\mathbf{b}}}}{\mathbf{K}}$ ## अतिलघुत्तरात्मक प्रश्न - 16. ब्रॉन्स्टेड-लोरी अवधारणा समझाइए। - 17. संयुग्मी अम्ल-क्षार युग्म किसे कहते हैं? - 18. दुर्बल वैद्युत अपघट्य उदाहरण सहित परिभाषित कीजिए। # Downloaded from https:// www.studiestoday.com ### **M** #### लघुत्तरात्मक प्रश्न - 19. pH में p तथा H का क्या अर्थ है? - 20. ओस्टवाल्ड तनुता नियम क्या है? - 21. दो प्रबल वैद्युत अपघट्यों के नाम बताइये। #### निबंधात्मक प्रश्न - 22. दुर्बल अम्ल तथा प्रबल क्षार के लवण का विलयन क्षारीय क्यों होता है, समझाइए? - 23. आयनन की मात्रा को प्रभावित करने वाले चार कारकों का संक्षिप्त में वर्णन कीजिए। उत्तरमालाः 1 (ब) 2 (अ) 3 (स) 4 (स) 5 (स) 6 (स) 7 (ब) 8 (ब) 9 (स) 10 (ब) 11 (ब) 12 (स) 13 (अ) 14 (द) 15 (स) # Downloaded from https://www.studiestoday.com # इकाई – 10 अध्याय – 10 # ऑक्सीकरण — अपचयन (Oxidation – Reduction) ### परिभाषा (Definition) #### ऑक्सीकरण (Oxidation) ऑक्सीकरण उन अभिक्रियाओं को कहते हैं, जिनमें किसी तत्त्व या यौगिक या पदार्थ से (i) ऑक्सीजन का संयोग हो या (ii) किसी ऋणविद्युती तत्त्व या मूलक का संयोग हो, या (iii) हाइड्रोजन का निष्कासन हो, या (iv) किसी धनविद्युती तत्त्व या मूलक का निष्कासन हो। ऑक्सीकरण को उपचयन अभिक्रिया भी कहते हैं। उदाहरणार्थ — - (i) ऑक्सीजन का संयोग यह दो प्रकार से हो सकता है- - (31) $2 \text{ Mg} + \text{O}_2 \rightarrow 2 \text{ MgO}$ $C + \text{O}_2 \rightarrow C\text{O}_2$ $S + \text{O}_2 \rightarrow S\text{O}_2$ उपरोक्त उदाहरणों में तत्त्वों को ऑक्सीजन (वायु) की उपस्थिति में जलाने पर उनके ऑक्साइड बनते है। (ब) $CHCl_3 + [0] \rightarrow COCl_2 + HCl$ क्लोरोफॉर्म फास्जीन $CH_3CHO + [0] \rightarrow CH_3COOH$ एथेनोल एथेनोइक अम्ल उपरोक्त ऑक्सीकरण अभिक्रियाओं में वायुमण्डलीय ऑक्सीजन का अवशोषण हो रहा है। (ii) ऋणविद्युती तत्त्व या मूलक का संयोग - $SnCl_2 + Cl_2 \longrightarrow SnCl_4$ स्टेनस क्लोराइड स्टेनिक क्लोराइड $2FeCl_2 + Cl_2 \longrightarrow 2FeCl_3$ फैरस क्लोराइड फेरिक क्लोराइड - (iii) हाइड्रोजन का निष्कासन $H_2S+CI_2 \longrightarrow 2HCI+S(H_2S \ \vec{H} \ H_2 \ \text{विस्थापन})$ $2HI+H_2O_2 \longrightarrow I_2+2H_2O$ - (iv) धन विद्युती तत्व या मूलक का निष्कासन $2KI + Cl_2
\longrightarrow I_2 + 2KCl$ $Hg_2Cl_2 + Cl_2 \longrightarrow 2HgCl_2$ $(Hg_2Cl_2 \rightleftarrows Hg$ का निष्कासन) #### अपचयन (Reduction) अपचयन उन अभिक्रियाओं को कहते हैं, जिनमें किसी तत्त्व या यौगिक या पदार्थ से (i) हाइड्रोजन का संयोग होता है या (ii) धनविद्युती तत्त्व अथवा मूलक का संयोग होता है, या (iii) ऑक्सीजन का निष्कासन होता है, या (iv) ऋणविद्युती तत्त्व अथवा मूलक बाहर निकलता है। उदाहरणार्थ – - (i) हाइड्रोजन का संयोग - $2 \text{ Na} + \text{H}_2 \longrightarrow 2 \text{ NaH}$ $\text{N}_2 + 3\text{H}_2 \longrightarrow 2 \text{NH}_3$ - (ii) धनविद्युती तत्त्व अथवा मूलक का संयोग $I_2 + Hg \longrightarrow Hg I_2$ $I_2 + 2Na \longrightarrow 2NaI$ - (iii) ऑक्सीजन का निष्कासन $ZnO + H_2 \longrightarrow Zn + H_2O$ $ZnO + C \longrightarrow Zn + CO$ - (iv) ऋणविद्युती तत्त्व या मूलक का निष्कासन $CuSO_4 + Fe \longrightarrow Cu + FeSO_4$ 2 $FeCl_3 + H_2S \longrightarrow 2 FeCl_2 + 2 HCl + S$ # Downloaded from https://www.studiestoday.com अगर उपरोक्त सभी ऑक्सीकरण तथा अपचयन के उदाहरणों को देखा जाए तो उपरोक्त सभी अभिक्रियाओं में जहाँ एक पदार्थ या तत्त्व का ऑक्सीकरण होता है वही दूसरे क्रियाशील पदार्थ का अपचयन होता है। क्योंकि यदि किसी भी अभिक्रिया में जब एक पदार्थ में किसी तत्त्व या आयन की कमी या वृद्धि होती है तो दूसरे पदार्थ में उसी तत्त्व या आयन की वृद्धि या कमी अवश्य होगी। ऑक्सीकरण तथा अपचयन अभिक्रियाएं एक साथ सम्पन्न होती है अतः इन्हें रेडाक्स अभिक्रियाएं (Redox = Reduction + Oxidation) कहते हैं। # ऑक्सीकरण, अपचयन की आयन इलेक्ट्रॉन अवधारणा (Electronic Concept of Oxidation and Reduction) ऑक्सीकरण व अपचयन की उपरोक्त सभी धारणाएँ या परिभाषाएँ, परम्परागत धारणाएँ है जो आज भी सत्य और स्वीकार्य है। लेकिन ऑक्सीकरण—अपचयन की आधुनिक धारणा इन अभिक्रियाओं को क्रमशः इलेक्ट्रॉन त्यागने तथा ग्रहण करने के रूप में परिभाषित करती है। ऑक्सीकरण—अपचयन की दो आधुनिक धारणाएँ हैं— - (i) ऑक्सीकरण अंक संकल्पना (Oxidation number concept) - (ii) इलेक्ट्रॉन संकल्पना (Electron concept) #### ऑक्सीकरण (Oxidation) ऑक्सीकरण—अपचयन की आयन इलेक्ट्रॉन संकल्पना (अवधारणा) के अनुसार ऑक्सीकरण वह अभिक्रिया है जिसमें कोई अणु या परमाणु या आयन एक या एक से अधिक इलेक्ट्रॉनों का त्याग करता है। यानी ऑक्सीकरण में इलेक्ट्रॉनों का निष्कासन होता है। जिससे उस अणु या परमाणु या आयन के धनावेश में वृद्धि या ऋणावेश में कमी हो जाती है। #### उदाहरणार्थ - (i) $$H_2O_2 \longrightarrow 2H^+ + O_2 + 2e^-$$ (अणु द्वारा इलेक्ट्रॉन निष्कासन) $H_2S \longrightarrow 2H^+ + S + 2e^-$ (iii) $$Mg - 2e^- \longrightarrow Mg^{2+}$$ $Cu - 2e^- \longrightarrow Cu^{2+}$ परमाणु द्वारा इलेक्ट्रॉन निष्कासन $Zn - 2e^- \longrightarrow Zn^{2+}$ (iv) $$Fe^{2+} \longrightarrow Fe^{3+} + e^{-}$$ (फेरस) (फेरिक) $Pb^{2+} \longrightarrow Pb^{4+} + 2e^{-}$ (प्लम्बस) (प्लम्बिक) $Sn^{2+} \longrightarrow Sn^{4+} + 2e^{-}$ (स्टेनस) (स्टेनिक) (v) $$2 \text{ Br} \longrightarrow \text{Br}_2 + 2e^ 2 \text{ Cl}^- \longrightarrow \text{Cl}_2 + 2e^ S^{2-} \longrightarrow S + 2e^ MnO_4^{2-} \longrightarrow MnO_4^{-+} e^ \gcd$$ इलेक्ट्रॉन निष्कासन #### अपचयन (Reduction) ऑक्सीकरण अपचयन की आयन इलेक्ट्रॉन अवधारणा के अनुसार अपचयन वह अभिक्रिया है जिसमें कोई अणु या परमाणु या आयन एक या एक से अधिक इलेक्ट्रॉन ग्रहण करता है। अपचयन में उस अणु या परमाणु या आयन के ऋणावेश में वृद्धि या धनावेश में कमी हो जाती है। उदाहरणार्थ – (i) $$2 \text{ H}_2\text{O} + 2\text{e}^- \longrightarrow \text{H}_2 + 2 \text{ OH}^-$$ अणु द्वारा $I_2 + 2\text{e}^- \longrightarrow 2 \text{ I}^-$ इलेक्ट्रॉन ग्रहण (ii) $$S + 2e^- \longrightarrow S^{2-}$$ $O + 2e^- \longrightarrow O^{2-}$ $Cl + e^- \longrightarrow Cl^ N + 3e^- \longrightarrow N^{3-}$ U परमाणु द्वारा इलेक्ट्रॉन ग्रहण (iii) $$Pb^{4+} + 2e^- \longrightarrow Pb^{2+}$$ $= 2H^+ + 2e^- \longrightarrow H_2$ धनायन द्वारा इलेक्ट्रॉन ग्रहण (iv) $$[Fe(CN)_{_{6}}]^{3-} + e^{-} \longrightarrow [Fe\ (CN)_{_{6}}]^{4-} \left(\begin{array}{c}$$ ऋणायन द्वारा इलेक्ट्रॉन ग्रहण ### ऑक्सीकरण-अपचयन अभिक्रिया या रेडाक्स अभिक्रिया (Oxidation-Reduction Reaction or Redox Reaction) इलेक्ट्रॉन अवधारणा के अनुसार ऑक्सीकरण प्रक्रिया में इलेक्ट्रॉन त्यागे जाते हैं तथा अपचयन में इलेक्ट्रॉन ग्रहण किये जाते हैं। ऐसी अभिक्रिया जिसमें एक पदार्थ से दूसरे पदार्थ में इलेक्ट्रॉन का स्थानान्तरण (Electron transfer) होता है, रेडॉक्स अभिक्रिया कहलाती है। ऑक्सीकरण—अपचयन अभिक्रियाएं साथ—साथ होती है तथा एक—दूसरे की पूरक होती है। रेडॉक्स अभिक्रिया या ऑक्सीकरण अपचयन अभिक्रिया दो अर्द्ध अभिक्रियाओं (i) ऑक्सीकरण अर्द्ध अभिक्रिया तथा (ii) अपचयन अर्द्ध अभिक्रिया का योग होती है। उदाहरणार्थ – कॉपर सल्फेट $(CuSO_4)$ के विलयन में जिंक / जस्ता (Zn) डालने पर जिंक सल्फेट $(ZnSO_4)$ तथा कॉपर (Cu) बनता है। $$CuSO_4 + Zn \longrightarrow ZnSO_4 + Cu$$ इस अभिक्रिया में दो अर्द्ध अभिक्रियाएं निम्नलिखित है- #### ऑक्सीकरण अर्द्ध अभिक्रिया $$Zn - 2e^- \longrightarrow Zn^{2+}$$ ### 114 ### अपचयन अर्द्ध अभिक्रिया $CuSO_4$ में Cu^{2+} तथा $SO_4^{\ 2-}$ आयन है। $Cu^{2+} + 2e^- \longrightarrow Cu$ (ये दो इलेक्ट्रॉन Zn द्वारा त्यागे जाते है) इसी प्रकार – ${\rm FeSO_4} + {\rm Zn} \longrightarrow {\rm ZnSO_4} + {\rm Fe}$ (फेरस सल्फेट) (जिंक) (जिंक सल्फेट) (लोहा) $Zn - 2e^- \longrightarrow Zn^{2+}$ (ऑक्सीकरण अर्द्ध अभिक्रिया) $Fe^{2+} + 2e \longrightarrow Fe$ (अपचयन अर्द्ध अभिक्रिया) ## ऑक्सीकारक तथा अपचायक पदार्थ (Oxidant and Reductant) **ऑक्सीकारक** — ऑक्सीकरण में इलेक्ट्रॉन त्यागे जाते हैं। अर्थात् कोई भी अणु, परमाणु या आयन जो रेडॉक्स अभिक्रिया में इलेक्ट्रॉन ग्रहण करता है ऑक्सीकारक कहलाता है। ऑक्सीकारक इलेक्ट्रॉन ग्रहण कर अपचयित हो जाता है। उपरोक्त उदाहरणों में $-\mathrm{Cu^{2+}(CuSO_4)}$ तथा $\mathrm{Fe^{2+}(FeSO_4)}$ ऑक्सीकारक है । अपचायक — ऑक्सीकरण अभिक्रिया की पूरक अपचयन अभिक्रिया में इलेक्ट्रॉन ग्रहण किये जाते है। अर्थात् कोई भी अणु, परमाणु या आयन जो इलेक्ट्रॉन परित्याग करता है अपचायक कहलाता है। अपचायक इलेक्ट्रॉन परित्याग करके ऑक्सीकृत हो जाते है। उपरोक्त उदाहरणों में - Zn (जस्ता) अपचायक है। कुछ अन्य ऑक्सीकारक तथा अपचायक पदार्थ - **ऑक्सीकारक पदार्थ** — ऑक्सीजन (O_2) , क्लोरीन (Cl_2) , ब्रोमीन (Br_2) , आयोडीन (I), पोटेशियम डाइक्रोमेट $(K_2Cr_2O_7)$, मैग्नीज डाइ ऑक्साइड (MnO_7) , नाइट्रिक अम्ल (HNO_3) आदि । अपचायक पदार्थ — सोडियम (Na), पोटेशियम (K), एल्यूमिनियम (Al) आदि धातुएं, कार्बन (C), हाइड्रोजन सल्फाइड (H_2S), हाइड्रोआयोडिक अम्ल (HI), हाइड्रोब्रोमिक अम्ल (HBr) आदि। ## उभय गुण वाले पदार्थ कुछ पदार्थ परिस्थितियों के अनुसार ऑक्सीकारक या अपचायक दोनों की तरह व्यवहार करते हैं। ये ऑक्सीकारक एवं अपचायक उभय गुण वाले पदार्थ कहलाते हैं। उदाहरणार्थ – (i) $H_2S + 2HNO_2 \longrightarrow S + 2H_2O + 2NO$ (यहां HNO_2 ऑक्सीकारक है जिसका NO में अपचयन हो रहा है।) - (ii) $2 \operatorname{Br}_2 + 2 \operatorname{HNO}_2 + 2 \operatorname{H}_2 O \longrightarrow 2 \operatorname{HNO}_3 + 4 \operatorname{HBr}$ (यहां HNO_2 अपचायक है, जिसका HNO_3 में ऑक्सीकरण हो रहा है।) - (ii) $2 \text{ KI} + \text{H}_2\text{O}_2 \longrightarrow 2 \text{ KOH} + \text{I}_2$ (यहां H_2O_2 ऑक्सीकारक जिसका KOH में अपचयन) $\text{Ag}_2\text{O} + \text{H}_2\text{O}_2 \longrightarrow 2 \text{ Ag} + \text{H}_2\text{O} + \text{O}_2$ (H_2O_2 अपचायक है जिसका O_2 में ऑक्सीकरण) ## ऑक्सीकरण—अपचयन की आयन इलेक्ट्रॉन विधि से समीकरण संतुलित करना ऑक्सीकरण—अपचयन अभिक्रियाओं को संतुलित करने की दो विधियां प्रचलित हैं —(i) आयन इलेक्ट्रॉन विधि (ii) ऑक्सीकरण अंक विधि। यहां आयन इलेक्ट्रॉन विधि से समीकरण संतुलन के विभिन्न पद निम्नलिखित हैं— पद—1 = सबसे पहले अभिक्रिया के ऑक्सीकारक तथा अपचायक पता किये जाते हैं। पद-2 = अभिक्रिया के अभिकारक तथा क्रियाफलों को निश्चित कर ऑक्सीकारक तथा अपचायक के लिए अर्द्ध अभिक्रिया लिखते हैं। पद-3 = अर्द्ध अभिक्रियाओं को निम्नलिखित प्रकार से संतुलित करते हैं- - (अ) प्रत्येक अर्द्ध अभिक्रिया में सर्वप्रथम ऑक्सीजन व हाइड्रोजन के अतिरिक्त अन्य सभी तत्वों के परमाणुओं को गुणांकों द्वारा संतुलित किया जाता है। - (ब) समीकरण में फिर ऑक्सीजन संतुलित करने के लिए जिस ओर जितनी ऑक्सीजन की कमी हो उतने ही H₂O जोड़ देते हैं। उसी तरह हाइड्रोजन परमाणुओं का संतुलन करने के लिए जिस ओर जितने हाइड्रोजन परमाणु कम हो, उधर उतने ही हाइड्रोजन आयन (H⁺) जोड़ते हैं। - (स) रेडॉक्स अभिक्रिया तीनों माध्यम यानी अम्लीय, क्षारीय या उदासीन में से किसी में भी हो सकती है। यदि समीकरण के किसी भी ओर (H+) हाइड्रोजन आयन प्रकट हो तो अभिक्रिया अम्लीय माध्यम में होती है तथा (OH-) आयन प्रकट हो तो क्षारीय माध्यम में सम्पन्न होती है। H+ या OH- की अनुपस्थिति अभिक्रिया के उदासीन माध्यम में सम्पन्न होना दर्शाता है। अर्द्ध अभिक्रिया में इन्हें भी संतुलित करते है। H+ तथा OH- को संयुक्त कर जल बनाते है। समीकरण में जल दो स्थानों पर नहीं आना चाहिए। - (द) समीकरण के दोनों ओर विद्युत आवेश बराबर करने के लिए इलेक्ट्रॉन जोड़ते या घटाते है। ऑक्सीकरण अर्द्ध अभिक्रिया या अपचायक की अर्द्ध अभिक्रिया में बांयी ओर इलेक्ट्रॉन घटाते हैं या दांयी ओर इलेक्ट्रॉन जोड़ते है। उसी तरह अपचयन अर्द्ध अभिक्रिया या ऑक्सीकारक की अर्द्ध अभिक्रिया में बांयी ओर इलेक्ट्रॉन जोड़ते है या दांयी ओर इलेक्ट्रॉन घटाते है। पद-4 = दोनों अर्द्ध अभिक्रियाओं को जोड़ा जाता है तथा प्रत्येक अर्द्ध अभिक्रिया को ऐसी उचित संख्या से गुणा करते हैं जिससे दोनों अर्द्ध अभिक्रियाओं के इलेक्ट्रॉन बराबर हो जाए। पद-5 = प्राप्त समीकरण के दोनों ओर के समान इलेक्ट्रॉनों या अन्य भी कोई सार्व उभयनिष्ठ पद हो तो उसे भी काट देते हैं। पद-6 = अंत में यह जांच लेते हैं कि समीकरण में दोनों ओर विभिन्न तत्वों के परमाणुओं की संख्या तथा आवेश समान है। #### उदाहरण-1 $$Br_2 + H_2O_2 \longrightarrow BrO_3^- + H_2O$$ पद-1 = 3पचायक $= Br_2$ ऑक्सीकारक = H2O2 पद $-2 = ऑक्सीकरण अर्द्ध अभिक्रिया <math>-Br_2 \longrightarrow BrO_3^-$ पद-3 = 3पचयन अर्द्ध अभिक्रिया $-H_2O_2 \longrightarrow H_2O$ #### ऑक्सीकरण अर्द्ध अभिक्रिया $Br_2 \longrightarrow BrO_3^-$ (अ) Br₂ को संतुलित करना $Br_2 \longrightarrow 2 BrO_3^-$ (ब) ऑक्सीजन संतुलित करना $$Br_2 + 6 H_2O \longrightarrow 2 BrO_3^-$$ (स) हाइड्रोजन संतुलित करना $$Br_2 + 6 H_2O \longrightarrow 2 BrO_3^- + 12H^+$$ (द) आवेश संतुलित करना (दांयी तरफ इलेक्ट्रॉन जोड़ते है) $Br_2 + 6 H_2O \longrightarrow 2 BrO_3^- + 12H^+ + 10e^- ... (1)$ #### अपचयन अर्द्ध अभिक्रिया $(\mathfrak{A}) \quad H_2O_2 \longrightarrow H_2O$ (ब) यहां H व O के अतिरिक्त कोई अन्य परमाणु उपस्थित नहीं है अतः ऑक्सीजन को संतुलित करने H,O जोड़ते है। $$H_2O_2 \longrightarrow H_2O + H_2O$$ या $$H_2O_2 \longrightarrow 2H_2O$$ (स) हाइड्रोजन संतुलित करना $$H_2O_2 + 2H^+ \longrightarrow 2H_2O$$ (द) आवेश संतुलित करना (बांयी तरफ इलेक्ट्रॉन जोड़ते है)। $$H_2O_2 + 2H^+
+ 2e \longrightarrow 2H_2O \dots (2)$$ समीकरण (1) व (2) आंशिक संतुलित है। पद-4 = समीकरण (1) व (2) में इलेक्ट्रॉनों की संख्या बराबर करने के लिए समीकरण (1) को 1 से तथा समीकरण (2) को 5 से गुणा करते हैं। $$Br_2 + 6 H_2O \longrightarrow 2 BrO_3^- + 12 H^+ + 10e^-$$ $$5 \text{ H}_2\text{O}_2 + 10 \text{ H}^+ + 10\text{e}^- \longrightarrow 10 \text{ H}_2\text{O}$$ उपरोक्त दोनों समीकरण जोड़ने पर- $$Br_2 + 5H_2O_2 + 6H_2O + 10H^+ + 10e^- \longrightarrow 2 BrO_3^- +$$ $$12H^+ + 10 H_2O + 10e^-$$ पद-5 = $\mathrm{Br_2} + 5\mathrm{H_2O_2} \longrightarrow 2~\mathrm{BrO_3}^- + 4~\mathrm{H_2O} + 2\mathrm{H}^+$ पद-6 = यह समीकरण परमाणुओं तथा आवेश दोनों ही दृष्टियों से संतुलित है। #### उदाहरण-2 $$Cr_2O_7^{2-} + Fe^{2+} + H^+ \longrightarrow Cr^{3+} + Fe^{3+} + H_2O$$ 1. ऑक्सीकारक — $Cr_2O_7^{-2-}$ अपचायक - Fe²⁺ 2. ऑक्सीकरण अर्द्ध अभिक्रिया संतुलित करना – $$Fe^{2+} \longrightarrow Fe^{3+}$$ $$Fe^{2+} \longrightarrow Fe^{3+} + e^{-} \dots (1)$$ 3. अपचयन अर्द्ध अभिक्रिया संतुलित करना – $$Cr_2O_7^{2-} \longrightarrow Cr^{3+}$$ $\operatorname{Cr_2O_7^{2-}} \longrightarrow 2 \operatorname{Cr^{3+}}[$ परमाणु गुणांक संतुलित] $\mathrm{Cr_2O_7^{2-}}{\longrightarrow}\,2\,\mathrm{Cr^{3+}}{+}\,7\,\mathrm{H_2O}\,[$ ऑक्सीजन संतुलित] $$\text{Cr}_2\text{O}_7^{2-} + 14 \text{ H}^+ \longrightarrow 2\text{Cr}^{3+} + 7 \text{ H}_2\text{O}$$ [हाइड्रोजन संतुलित] $$Cr_2O_7^{2-} + 14 H^+ + 6e^- \longrightarrow 2Cr^{3+} + 7 H_2O ... (2)$$ [विद्युत आवेश संतुलित] समीकरण (1) को 6 से तथा (2) को 1 से गुणा करने पर- $$6 \text{ Fe}^{2+} \longrightarrow 6 \text{ Fe}^{3+} + 6 \text{e}^{-}$$ 4. दोनों अर्द्ध अभिक्रिया जोड़ने पर $$6 \text{ Fe}^{2+} + \text{Cr}_2\text{O}_7^{2-} + 14 \text{ H}^+ + 6\text{e}^- \longrightarrow 6 \text{ Fe}^{3+} + 2\text{Cr}^{3+}$$ $$+ 7 \text{ H}_2\text{O} + 6\text{e}^-$$ 116 या $$6 \text{ Fe}^{2+} + \text{Cr}_2\text{O}_7^{2-} + 14 \text{ H}^+ \longrightarrow 6 \text{ Fe}^{3+} + 2\text{Cr}^{3+}$$ $$+ 7 \text{ H}_2\text{O}$$ यह समीकरण परमाणुओं तथा आवेश दोनों ही दृष्टियों से संतुलित है। # महत्वपूर्ण बिन्दु - ऑक्सीकरण–अपचयन आयन इलेक्ट्रॉन अवधारणा के अनुसार – - (अ) वह प्रक्रिया जिसमें एक या एक से अधिक इलेक्ट्रॉन त्यागे जाते हैं, ऑक्सीकरण कहलाती है। - (ब) वह प्रक्रिया जिसमें एक या एक से अधिक इलेक्ट्रॉन ग्रहण किये जाते हैं, अपचयन कहलाती है। - (स) वह पदार्थ जो इलेक्ट्रॉन ग्रहण कर स्वयं अपचयित होता है, ऑक्सीकारक कहलाता है। - (द) वह पदार्थ जो इलेक्ट्रॉन त्याग कर स्वयं ऑक्सीकृत होता है, अपचायक कहलाता है। - ऑक्सीकरण तथा अपचयन अभिक्रियाएं साथ—साथ होती है तथा एक—दूसरे की पूरक होती है। ## अभ्यासार्थ प्रश्न ## वस्तुनिष्ठ प्रश्न - 1. ऑक्सीकरण वह प्रक्रिया है- - (अ) जिसमें इलेक्ट्रॉन त्यागे जाते हैं। - (ब) जिसमें इलेक्ट्रॉन ग्रहण किये जाते हैं। - (स) जिसमें हाइड्रोजन का संयोग होता है। - (द) जिसमें ऑक्सीजन का निष्कासन होता है। - 2. निम्नलिखित में अपचायक पदार्थ नहीं है- - (अ) O, - (ৰ) Na - (स) K - (द) Al - 3. पूर्णतया संतुलित रासायनिक अभिक्रिया है- - (34) $\operatorname{Fe_3O_4} + \operatorname{H_2O} + 2\operatorname{OH}^- \longrightarrow \operatorname{Fe_2O_3} + \operatorname{H_2O} + 2\operatorname{e}$ - (a) $2 \text{ Fe}_3 O_4 + \text{H}_2 O + 2 O \text{H}^- \rightarrow 3 \text{ Fe}_2 O_3 + 2 \text{H}_2 O + 2 \text{e}$ - (₹I) $2 \text{ Fe}_3\text{O}_4 + \text{H}_2\text{O} + 2\text{OH}^- \rightarrow 3 \text{ Fe}_2\text{O}_3 + 2 \text{ H}_2\text{O} 2\text{e}$ - $(\overline{\varsigma})$ 2 Fe₃O₄ + H₂O + 2OH \rightarrow Fe₂O₃ + 2 H₂O - 4. संतुलित अर्द्ध अभिक्रिया कौनसी है- - (34) $2 S_2 O_3^{2-} \rightarrow S_4 O_6^{2-} 2e$ - (a) $P_4 + 8 H_2O \rightarrow 4 H_3PO_2 + 4H^+$ - (Ħ) $MNO_4^- + 2 H_2O \rightarrow MNO_2 + 4 OH^- + 3e$ - (a) $C_2O_4^{2-} \rightarrow 2 CO_2 + 2e$ #### अतिलघुत्तरात्मक प्रश्न - 5. उभयधर्मी गुण वाले पदार्थ का एक उदाहरण दीजिये। - 6. ऑक्सीकारक को परिभाषित कीजिये। - FeSO₄ + Zn → ZnSO₄ + Fe अभिक्रिया में अपचयन अर्द्ध अभिक्रिया लिखिये। - ऑक्सीकारक तथा अपचायक पदार्थ के एक-एक उदाहरण दीजिये। #### लघुत्तरात्मक प्रश्न - 9. अपचयन अभिक्रिया किसे कहते हैं, उदाहरण सहित समझाये। - 10. रेडॉक्स अभिक्रिया किसे कहते हैं? $CuSO_4 + Zn \rightarrow ZnSO_4 + Cu$, अभिक्रिया में ऑक्सीकरण तथा अपचयन अर्द्ध अभिक्रिया लिखिये। - 11. निम्नलिखित अभिक्रिया में ऑक्सीकारक तथा अपचायक बताइये— - (3) $H_2O_2 + Br_2 \rightarrow 2 \text{ H BrO}_3 + 4 H_2O_3$ - $(\overline{4}) H_2O_2 + O_3 \rightarrow 2 H_2O + 2O_2$ #### निबन्धात्मक प्रश्न 12. आयन इलेक्ट्रॉन विधि से निम्नलिखित अभिक्रिया संतुलित कीजिये— $$Cr_{2}O_{7}^{2-} + Fe^{2+} + H^{+} \longrightarrow Cr^{3+} + Fe^{3+} + H_{2}O$$ उत्तरमालाः 1 (अ) 2 (अ) 3 (ब) 4 (द) # खण्ड (ग) – जीव विज्ञान इकाई – 11 अध्याय - 11 मुख्य पादप समूहों के लाक्षणिक लक्षण एवं वनस्पति विज्ञान की विभिन्न शाखाँ (Diagnostic Features of Main Plant Groups and Different Branches of Botany) #### प्रोकैरियोटा (Prokaryota) इन जीवों की शारीरिक संरचना प्रोकैरियोटिक कोशिकाओं से बनी होती है। प्रोकैरियोटिक कोशिकीय संरचना आद्य व अपूर्ण होती है, क्योंकि इनके केन्द्रक पर केन्द्रक झिल्ली का अभाव होता है। इस प्रकार के केन्द्रक को प्रारम्भिक केन्द्रक (Incipient nucleus) या केन्द्रकाम (Nucleoid) कहते हैं। इन कोशिकाओं में आनुवांशिक पदार्थ कोशिका द्रव्य में बिखरा पड़ा रहता है। कोशिका के अन्य कोशिकांग सुविकसित एवं झिल्ली आबद्ध नहीं होते हैं। प्रोकैरियोट्स में एक कोशिकीय जीव जैसे जीवाणु, नील हरित शैवाल, माइकोप्लाज्मा को सम्मिलत किया गया है। #### प्रोकैरियोटिक सजीवों के लाक्षणिक लक्षण - प्रोकैरियोटिक सजीवों की कोशिकाओं का आकार सूक्ष्म तथा 1.0 से 5 मि.मी. व्यास का होता है। - 2. इनकी प्लाज्मा झिल्ली कोशिका की बाह्यतम सजीव स्तर का कार्य करती है। - इन जीवों की कोशिका भित्ति म्यूकोपेप्टाइड्स, लिपिड्स, अमीनो अम्लों जैसे पदार्थों से बनी होती है। माइकोप्लाज्मा में कोशिका भित्ति अनुपस्थित होती है। - 4. इनमें सुविकिसत कोशिकांग जैसे अन्तःप्रद्रव्यी जालिका, गोल्जीकायें, माइटोकॉन्ड्रिया, हिरत लवक, राइबोसोम्स, लाइसों सो म्स, पराक्सी सो म्स, माइक्रोट् युब्युल, माइक्रोफाइब्रिल्स, केन्द्रक झिल्ली व केन्द्रिका अनुपस्थित होते हैं। - इन सजीवों की कोशिकाओं में कोशिकाद्रव्यीय प्रवाह विरल प्रकार का या अनपुस्थित होता है। - 6. आनुवांशिक पदार्थ कोशिका द्रव्य में बिखरा पड़ा रहता है। डी.एन.ए. में हिस्टोन प्रोटीन का अभाव होता है तथा डी.एन. ए. की मात्रा भी कम होती है। इनका डी.एन.ए. सदैव - अगुणित प्रकार का होता है। केन्द्रक झिल्ली रहित इस प्रकार का डी.एन.ए. केन्द्रकाभ कहलाता है। - इनके कोशिकाओं की कशाभिकाएं परासूक्ष्म एक तन्तुक से निर्मित होती है। - 8. प्रकाश संश्लेषण की क्रिया केवल साइनोबेक्टिरिया तथा प्रकाश संश्लेषी बैक्टिरिया में ही होती है। - 9. कोशिकाओं का विभाजन सरल द्विविभाजन (Binary fission) द्वारा होता है। समसूत्री व अर्धसूत्री विभाजन अनुपस्थित होता है। - 10. सत्य लैंगिक जनन अनुपस्थित होता है। - 11. इन सजीवों में वायवीय श्वसन के एंजाइम प्लाज्मा झिल्ली पर उपस्थित होते हैं। प्रायः अवायवीय श्वसन होता है। - 12. रसधानियां छोटी व विरल रूप में उपस्थित होती हैं। चित्र 11.1 : एक प्रोकैरियोटिक कोशिका की संरचना - 13. स्टैराल्स कलायें अनुपस्थित होती हैं। - 14. मुख्य आनुवांशिक पदार्थ डी.एन.ए. होता है (चित्र 11.1)। ### यूकैरियोट्स (Eukaryotes) इन सजीवों की शारीरिक संरचना यूकैरियोटिक कोशिकाओं से बनी होती है। यूकैरियोटिक (Eu = सत्य या विकसित, Karyon = केन्द्रक) कोशिकाओं में सुस्पष्ट व विकसित केन्द्रक पाया जाता है। इन कोशिकाओं का केन्द्रक दोहरी केन्द्रक झिल्ली से घिरा रहता है। अन्य कोशिकांग जैसे माइटोकॉन्ड्रिया, हरितलवक, गोल्जीकायें, अन्तःप्रद्रव्यी जालिका, राइबोसोम आदि सुविकसित व दोहरी झिल्ली से घिरे होते हैं। उदाहरण के लिये यूकैरियोट्स में एक कोशिकीय जीव यीस्ट, प्रोटोजोआ कुछ शैवाल व विभिन्न बहुकोशिकीय पादप व जन्तुओं को रखा गया है (चित्र 11.2 अ,ब)। चित्र 11.2 : एक यूकैरियोटिक कोशिका की संरचना (अ) जन्तु कोशिका (ब) पादप कोशिका ## यूकैरियोट्स के लाक्षणिक लक्षण यूकैरियोट्स के लाक्षणिक लक्षण निम्नलिखित होते हैं- - यूकैरियोट्स सजीवों की कोशिका का आकार तुलनात्मक दृष्टि से बड़ा, 5-20 मि.मी. व्यास का होता है। - प्लाज्मा झिल्ली प्रोकैरियोट्स के समान कोशिका की बाह्यतम सजीव स्तर का कार्य करती है। - उ. इनकी कोशिका भित्ति सेल्यूलोज, हेमीसेल्यूयोज, पेक्टिन जैसे रासायनिक पदार्थों से निर्मित होती है जबिक जन्तु कोशिकाओं में कोशिका भित्ति अनुपस्थित होती है। - 4. सुविकसित व कोशिकांग जैसे माइटोकॉन्ड्रिया, अन्तःप्रद्रव्यी जालिका, गोल्जीकायें, हरितलवक, लाइसोसोम, पराक्सीसोम, राइबोसोम, माइक्रोट्यूब्यूल माइक्रोफाइब्रिल उपस्थित होते हैं। - 5. कोशिकाद्रव्यीय प्रवाह उपस्थित होता है। - केन्द्रक, दोहरी केन्द्रक झिल्ली या आवरण से परिबद्ध होता है। - 7. केन्द्रिका उपस्थित व rआर.एन.ए. (rRNA) का संश्लेषण का कार्य करती है। - 8. आनुवांशिक पदार्थ केन्द्रक झिल्ली द्वारा परिबद्ध रहता है तथा डी.एन.ए. में हिस्टोन प्रोटीन होते हैं। डी.एन.ए. की मात्रा भी अधिक होती है। यह अगुणित व द्विगुणित अवस्थाओं में एकान्तरित होता है। इस प्रकार के केन्द्रक कलायुक्त आनुवांशिक पदार्थ को केन्द्रक कहते हैं। - 9. कोशिका की कशाभिकाएं सूक्ष्म तथा 20 तन्तुकों अर्थात् 2 × 9 + 2 की संरचना में होती है। - 10. सभी हरे पादप प्रकाश संश्लेषण करते हैं क्योंकि इनकी कोशिकाओं में पर्णहरित पाया जाता है। - 11. इन सजीवों में कोशिका विभाजन समसूत्री तथा अर्धसूत्री दोनों ही प्रकार से होता है। तन्तुओं द्वारा गुणसूत्रों की स्पष्ट गति होती है। - 12. लैंगिक जनन विकसित प्रकार का होता है। - 13. इन सजीवों की कोशिकाओं के माइटोकॉन्ड्रिया में वायवीय श्वसन होता है। - 14. रसधानियां प्रायः उपस्थित होती हैं। पादप कोशिकाओं में ये रसधानियां जन्तु कोशिकाओं की तुलना में बड़ी होती है। - 15. स्टैरॉल्स कलायें उपस्थित होती हैं। - 16. मुख्य आनुवांशिका पदार्थ डी.एन.ए. होता है। आर.एन.ए. प्रोटीन संश्लेषण का कार्य करता है। ## थैलोफाइटा – कवक ### (Thallophyta - Fungi) कवक (Fungi) मूलतः लैटिन भाषा का शब्द है, जिसका अर्थ होता है मशरूम या छत्रकनुमा। प्रारम्भ में संभवतया इसके अन्तर्गत केवल छत्रकनुमा कवक प्रजातियों को ही रखा गया होगा लेकिन बाद में अन्य परपोषी या पर्णहरित रहित पादपकाय युक्त प्रजातियों को भी कवक समूह में सम्मिलित कर लिया गया। इन समूहों के जीवों का अध्ययन वनस्पतिशास्त्र की एक विशेष शाखा के अन्तर्गत किया जाता है जिसे कवक विज्ञान(Mycology) कहते हैं। माइकोलोजी शब्द का गठन ग्रीक भाषा के दो शब्दों क्रमशः Mykos = छत्रक या मशरूम एवं Logos = अध्ययन से मिलकर बना है। इसके शाब्दिक अर्थ के अनुसार छत्रक प्रजातियों अथवा ऐसे ही समान लक्षणों वाली कवक प्रजातियों का अध्ययन कवक विज्ञान (Mycology) के अन्तर्गत किया जाता है। #### कवकों के लाक्षणिक लक्षण कवकों के लाक्षणिक लक्षण निम्नलिखित होते हैं- - 1. कवक सर्वव्यापी होते हैं। - 2. कवक पादपकाय शाखित व तन्तुमय अर्थात् कवक तन्तुओं का बना होता है। यीस्ट एककोशिकीय कवक का उदाहरण है।
सभी कवक तन्तु मिलकर एक सघन जाल सी संरचना बनाते हैं, इसे कवकजाल कहते हैं। यदि कवक तन्तु किसी जीव की कोशिका के अन्दर प्रवेश न करके परपोषी की दो कोशिकाओं के बीच में वृद्धि करते हैं तो इन्हें अन्तरकोशिक कहते हैं। यदि कवक तन्तु परपोषी कोशिकाओं के अन्दर प्रवेश कर जाये तथा उन कोशिकाओं के अन्दर ही वृद्धि करते हैं उन्हें अन्तःकोशिक कहते हैं। - कवक तन्तु पटहीन व संकोशिकीय (उदाहरण फाइकोमाइसीटिज में) अथवा पटयुक्त व एक, द्वि केन्द्रकी (उदाहरण एस्कोमाइसीटिज, बेसीडियोमाइसीटिज व ड्यूटेरोमाइसीटिज) में होते हैं। - 4. कवकों के पट प्रायः छिद्रयुक्त होते हैं। बेसीडियोमाइसीटिज के अतिरिक्त सभी वर्गों में पटछिद्र सरल जबिक बेसीडियोमाइसीटिज में डोलपट छिद्र पाये जाते हैं। ऐसे छिद्रों के दोनों तरफ एक दोहरी कलामय संरचना होती है (चित्र 11.3)। चित्र 11.3 : अ-ब पर छिद्र (अ) सरल (ब) डोल छिद्री - 5. सभी कवकों का जीवद्रव्य एक सुस्पष्ट झिल्ली से घिरा होता है। इन कवकों की कोशिका भित्ति का मुख्य घटक कवक सेल्यूलोज अर्थात् काइटिन होता है। निम्न श्रेणी के कवकों जैसे ऊमाइसीटिज की कोशिका भित्ति सेल्यूलोज से बनी होती है। कोशिका भित्ति के अन्दर कोशिका झिल्ली होती है, यह झिल्ली कोशिका के घुलनशील पदार्थों के आवागमन को नियंत्रित करती है। - 6. कवक तन्तुओं का कोशिकाद्रव्य रंगहीन व धानीयुक्त होता है। इसमें कोशिकांग जैसे माइटोकॉन्ड्रिया, गोल्जीकाय, अन्तःप्रद्रव्यी जालिका व राइबोसोम के अतिरिक्त अजैविक पदार्थ पाये जाते हैं। कवक तन्तु की कोशिका में एक बड़ी अथवा अनेक छोटी—छोटी रसधानियां पायी जाती हैं। प्रत्येक रसधानी एक पतली झिल्ली से घिरी रहती है इसे टोनोप्लास्ट कहते हैं (चित्र 11.4)। चित्र 11.4 : कवक तन्तु की कोशिकीय संरचना - 7. कवकों में पर्णहरित का अभाव होता है लेकिन कैरीटोनाइड्स पाये जाते हैं। कवकों में भोजन का संचय ग्लाइकोजन के रूप में होता है। - 8. कवकों का केन्द्रक यूकैरियोटिक प्रकार का होता है। इनकी संख्या प्रत्येक कोशिका में एक या एक से अधिक हो सकती है। प्रत्येक केन्द्रक में एक सुगठित केन्द्रिका पायी जाती है। - उच्च श्रेणी के कवक अचल होते हैं अर्थात् इनके जीवन चक्र की किसी भी अवस्था में चल कोशिकायें नहीं पायी जाती है। उदाहरण – एस्कोमाइसीटिज, बेसीडियोमाइसीटिज व ड्यूटेरोमाइसीटिज आदि। जबकि निम्न श्रेणी के कवकों की जनन कोशिकायें चल व एक या द्विकशाभिकीय होती हैं। उदाहरण – फाइकोमाइसीटिज। - 10. ये कशाभिकायें प्रतोद व कुर्च दो प्रकार की होती है। इन कशाभिकाओं की सतह पर अनेक सूक्ष्म रोम के समान पार्श्वसूत्र (Mastigonemes) पाये जाते हैं (चित्र 11.5)। चित्र 11.5 : कशाभिकाएं (अ) प्रतोद (ब) कूर्च कशाभिका - 11. कवकों के कवकजाल अधिकांशतः अक्रिस्टलीय फेल्ट सदृश समूह बनाते हैं लेकिन कुछ उच्च श्रेणी के कवकों के कवक तन्तु रूपान्तरित होकर या आपस में उलझ कर दीर्घ ऊतक (Prosenchyma) या आभासी ऊतक (Pseodoparenchyma), तन्तुजटा (Rhizomorph), स्क्लैरोशिया (Sclerotia), आसंगांग (Appressorium), चूषकांग (Haustorium) जैसी संरचनायें बनाते हैं। ये विशिष्ट संरचनायें इन्हें जीवित रहने या विशेष कार्यों में सहायक होती है। यद्यपि ये संरचनायें बनने के बाद इनका मूलस्वरूप (Individuality) खत्म हो जाता है। - 12. कवकों में पर्णहरित नहीं होता है अतः ये पूर्णतया परपोषी होते हैं। पोषण के आधार पर कवक निम्नलिखित प्रकार के होते हैं— - (i) परजीवी (Parasites) ये कवक अपना भोजन दूसरे जीवित पादपों अथवा जन्तु कोशिकाओं से प्राप्त करते हैं। - (ii) मृतोपजीवी (Saprophytes) ऐसे कवक जो अपना पोषण मृत, सड़े—गले जीवों से प्राप्त करते हैं, उन्हें मृतोपजीवी कहते हैं। - (iii) सहजीवी (Symbionts) ऐसे कवक जो जीवित प्राणियों अथवा पौधों पर उगते हैं तथा दोनों परस्पर एक—दूसरे के लिये लाभकारी होते हैं। उदाहरण लाइकेन व कवकमूल। लाइकेन शैवाल व कवकों से मिलकर बनते हैं। इस सहजीवन में शैवाल प्रकाश संश्लेषण से भोजन बनाते हैं जो कवकों को मिलता है तथा कवक बदले में शैवालों को खनिज तत्व प्रदान करते हैं। इसी प्रकार कवकमूल में परपोषी कवक को खाद्य पदार्थ उपलब्ध कराता है बदले में कवक पौधे को खनिज लवणों को अवशोषित करने में सहायता करता है। - 13. कवकों के अधिकांश वंशों में कायिक कवकजाल का केवल एक ही भाग अथवा अंश ही जनन ईकाई बनाता है जबिक शेष कवकजाल कायिक ही रहता है। ऐसे कवक अंशकाय फलिक (Eucarpic) कहलाते हैं, जबिक एककोशिकीय कवक वंशों में सम्पूर्ण कोशिका जनन इकाई के रूप में भाग लेती है अर्थात् जनन के समय सम्पूर्ण कोशिका जनन ईकाई में परिवर्तित हो जाती है, ऐसे कवक पूर्णकायफलिक (Holocarpic) कहलाते हैं। - कवकों में जनन तीन प्रकार का होता है— (i) कायिक जनन (ii) अलैंगिक जनन (iii) लैंगिक जनन - (i) **कायिन जनन** कवकों में कायिक जनन निम्न प्रकार से होता है— - (अ) खण्डन (उदाहरण म्यूकर, राइजोपस) - (ब) विखण्डन (यीस्ट) - (स) कोनिडिया द्वारा पेनीसिलियम, एल्ब्यूगों आदि - (द) मुकुलन द्वारा यीस्ट, अस्टिलेगो आदि। - (ii) अलैंगिक जनन कवकों में अलैंगिक जनन अनुकूल परिस्थितियों में कोनिडिया अथवा बीजाणुओं द्वारा होता है। ये बीजाणु एककोशिकीय (पेनीसिलियम), अथवा बहुकोशिकीय (अल्टरनेरिया) होते हैं। अलैंगिक बीजाणु चल (पाइथियम), क्लैमाइडोबीजाणु (अस्टिलेगो), आइडिया (राइजोपस) आदि जबिक अचलबीजाणु द्वारा अलैंगिक जनन म्युकर व राइजोपस में होता है (चित्र 11.6)। चित्र 11.6 : (अ) चलबीजाणु (ब) कोनिडिया (स) आइडिया (द) क्लेमाइडो बीजाणु - (iii) **लैंगिक जनन** ड्यूटेरोमाइसीटिज के अतिरिक्त लगभग सभी कवकों में लैंगिक जनन पाया जाता है। इनके लैंगिक प्रक्रम में तीन स्पष्ट प्रक्रिया होती है। ये क्रमशः(i) प्लैज्मोगेमी (ii) केन्द्रक संलयन अथवा केरियोगेमी व (iii) अर्धसूत्रण के अन्तर्गत पूर्ण होती है। - 15. लैंगिक निषेचता के आधार पर स्थलीय कवकों को दो वर्गों क्रमशः समजालिक एवं विषमजालिक कवकों के रूप में बांटा गया है। - 16. कवकों के जीवन चक्र में बहुत अधिक विविधतायें पायी जाती हैं। समस्त कवकों में मुख्यतया आधारभूत रूप से तीन प्रकार के जीवन चक्र पाये जाते हैं जो क्रमशः एकल प्ररूपी, अगुणित, एकल प्ररूपी द्विगुणित एवं द्विरूपी हैं। ## थैलोफाइटा — शैवाल (Thallophyta - Algae) शैवाल (Algae) के लिये ग्रीक शब्द फाइकोस (Phycos) का उपयोग किया जाता है जिसका अर्थ समुद्री खरपतवार से है। शैवालों के अध्ययन की शाखा को फाइकोलोजी (Phycology) कहते हैं। शैवाल पर्णहरित युक्त थैलाभ पादपों का समूह है जिनमें लैंगिक अंग एककोशिक अथवा बहुकोशिक होते हैं तथा इनके जननांगों में बंध्य आवरण का अभाव होता है। थैलस की प्रत्येक कोशिका युग्मकों का निर्माण करती है। इन लक्षणों के आधार पर शैवाल अन्य पादप वर्गों से भिन्न है। यद्यपि अधिकांश शैवाल स्वपोषी (Autotrophic) होते हैं परन्तु कुछ शैवाल परपोषी (Heterotrophic), परजीवी (Parasites) अथवा प्राणीसमभोजी (Holozoic) भी होते हैं। #### शैवालों के लाक्षणिक लक्षण - शैवाल सामान्यतः जल में पाये जाते हैं। बहुतायत रूप से ये अलवणीय जल तथा खारे समुद्री जल में भी पाये जाते हैं। - शैवालों का थैलस स्त्रीधानीयुक्त पादपों की भांति जड़, तना व पत्तियों में विभेदित नहीं होता है। इस सरल पादप संरचना को थैलस कहते हैं। - 3. थैलास प्रायः एककोशिकी अथवा बहुकोशिकी होते हैं। तथा थैलास में कार्यिकी श्रम विभाजन नहीं पाया जाता है। - 4. थैलास में संवहनी ऊत्तकों का पूर्णतया अभाव होता है। - 5. सभी शैवाल पर्णहरित युक्त तथा स्वपोषी होते हैं। - 6. शैवालों की कोशिका भित्ति सेल्यूलोज की बनी होती है। - कुछ शैवालों में हरितलवक के अतिरिक्त अन्य वर्णक भी पाये जाते हैं, जैसे – नीले रंग का वर्णक फायकोसाइनिन (Phycocyanin), भूरे रंग का वर्णक फ्यूकोजैन्थीन (Fucoxanthin), लाल रंग का वर्णक, फाइकोइरिश्चिन (Phycoerythrin) आदि। - शैवाल कोशिकाओं में संचित भोजन मुख्यतया स्टार्च के रूप में होता है। कुछ में यह वसा व तेल के रूप में भी पाया जाता है। - कुछ अपवादों को छोड़कर प्रायः सभी शैवालों में जननांग एककोशिक होते हैं तथ ये बन्ध्य आवरण से ढके हुए नहीं होते हैं। बहुकोशिका स्थिति में समस्त कोशिकायें जननक्षम (Fertile) होती है। - 10. जनन कायिक, अलैंगिक तथा लैंगिक विधियों द्वारा होता है। - 11. अलैंगिक जनन चलबीजाणु, अचलबीजाणु, सुप्त बीजाणु, जननकाय बीजाणु, निशिष्ट बीजाणु तथा चतुष्की बीजाणुओं द्वारा होता है। - 12. शैवालों में लैंगिक जनन समयुग्मकी (Isogamous), असमयुग्मकी (Anisogamous) व विषमयुग्मकी (Oogamous) प्रकार का होता है। - 13. शैवालों में युग्मकी संलयन के पश्चात् भ्रूण (Embryo) का निर्माण नहीं होता है। संलयन के पश्चात् युग्मनज अर्धसूत्री विभाजन द्वारा सीधे ही नव पादप का निर्माण करता है। - 14. जीवन चक्र की अगुणित तथा द्विगुणित प्रावस्थायें एक—दूसरे पर आधारित नहीं होती है बिल्क पूर्ण रूप से स्वतंत्र होती है। - 15. जीवन चक्र में स्पष्ट पीढ़ी एकान्तरण का अभाव होता है तथा जीवन चक्र सामान्यतः हेपलोबायोन्टिक(Haplobiontic) प्रकार का होता है। - जीवन चक्र की प्रभावी प्रावस्था युग्मकोद्भिद् होती है। बीजाण्द्भिद् प्रावस्था गौण अवस्था में होती है। - 17. स्वभाव तथा आवास :-- - 1. जलीय आवास अधिकांश शैवाल जलीय होते हैं। जलीय आवास क्रमशः स्वच्छ जलीय, लवणीय जल व समुद्री आवासों में विभक्त किये जा सकते हैं। - (i) स्वच्छ जलीय आवास यह स्थिर अथवा प्रवाही प्रकार का जल होता है। - (a) **स्थिर जल** पोखर, तालाब, झील, गड्ढों आदि का जल। इसमें *वालवॉक्स, कोलियोकीट, कारा* आदि पाये जाते हैं। - (b) प्रवाही जलीय आवास नदियों, नहरों, नालों व कस्बों का बहता जल। इसमें यूलोश्रिक्स, ऊडोगोनियम, क्लेडोफोरा आदि शैवाल पाये जाते हैं। - (ii) **लवणीय जल आवास** खारे पानी की झीलों का जल। इसमें *ऑसीलेटोरिया, सेनेडेस्मस, पेडिएस्ट्रम* आदि शैवाल पाये जाते हैं। इन्हें लवणोदिभिद पादप कहते हैं। - (iii) समुद्री जलीय आवास समुद्र के खारे पानी में फिओफाइसी व रोडोफाइसी वर्ग के अधिकांश शैवाल पाये जाते हैं जैसे एक्टोकार्पस, लेमिनेरिया, सारगासम, पोलीसाइफोनिया आदि। - मृदीय आवास कुछ शैवाल अस्थाई अथवा दीर्घकालिक शुष्क अवस्थाओं को सहन करने में सक्षम होते हैं। इन्हें स्थलीय शैवाल कहते हैं। ये दो प्रकार के होते हैं– - (i) सेपोफाइट्स ये शैवाल मृदा की सतह पर होते हैं। उदाहरण – बोट्रीडियम व शिचएला । - (ii) क्रिप्टोफाइट्स ये शैवाल भूमिगत होते हैं। उदाहरण नॉस्टॉक, एनाबीना, क्लोरेला आदि। - लिथोफाइट्स ये शैवाल नम चट्टानों व दीवारों पर उगती है। उदाहरण – नॉस्टॉक, वाउचेरिया आदि। - 4. असामान्य आवास ऐसे आवास जो पादप के सामान्य जीवन के लिये उपयुक्त नहीं होते हैं असामान्य आवास कहलाते हैं। - (i) **क्रायोफाइट्स** ये शैवाल बर्फ पर पायी जाती है जिसके कारण बर्फ का रंग लाल, हरा, पीला या बैंगनी हो जाता है। ## 122 उदाहरण — क्लेमाइडोमोनास येलोस्टोनेन्सिस बर्फ को हरा, क्ले. निवेलिस लाल, व नॉस्टॉक तथा प्ल्यूरोकोकस बर्फ को पीला या पीला हरा रंग देता है। - (ii) सहजीवी कुछ शैवाल दूसरे पादपों के साथ रहकर दोनों के लिये लाभकारी जीवनयापन करते हैं। जैसे लाइकेन में शैवाल कवक के साथ रहकर सहजीवन करते हैं। उदाहरण नॉस्टॉक, साइटोनीमा, क्लोरेला आदि - (iii) परजीवी कुछ शैवाल अन्य पादपों पर परजीवी के रूप में पाये जाते हैं। उदाहरण के लिये सिफेल्यूरोस वाइरेसेन्स चाय व कॉफी की पत्तियों पर लाल किट्ट (Red rust) नामक रोग उत्पन्न करता है। - 18. शैवालों की कायिक संरचना में अनेक भिन्नताएं पायी जाती है। ये एककोशिक, समण्डलीय, तन्तुनुमा अथवा मृद्उत्तकीय रूप में पाये जाते हैं। शैवाल थैलस साधारण सूक्ष्मदर्शीय से लेकर अत्यन्त विशाल व जटिल संरचना प्रदर्शित करते हैं। - 19. शैवालों के लवकों में क्लोरोफिल, केरोटिनाइड्स तथा बायलोप्रोटीन वर्णक उपस्थित होते हैं। शैवालों में क्लोरोफिल वर्णक पाँच
प्रकार के होते हैं। क्लोरोफिल ए. बी. सी. डी. तथा ई.। क्लोरोफिल ए. सभी वर्गों में मिलता है (चित्र11.7)। ### वनस्पति विज्ञान की विभिन्न शाखाएँ - 1. फाइकोलोजी (Phycology) शैवालों का अध्ययन। - 2. कवक विज्ञान (Mycology) कवकों का अध्ययन। - 3. सूक्ष्मजीव विज्ञान (Microbiology) सूक्ष्मजीवों का अध्ययन। - 4. जीवाणु विज्ञान (Bacteriology) जीवाणुओं का अध्ययन। - 5. ब्रायोलोजी (Bryology) ब्रायोफाइटा का अध्ययन। - 6. पारिस्थितिकी (Ecology) जीवों का वातावरण के साथ सम्बन्धों का अध्ययन। - 7. टेरिडोलोजी (Pteridology) टेरिडोफाइटा का अध्ययन। - 8. आवर्तबीजीकी (Angiosperms) पुष्पीय पादपों का अध्ययन। - 9. आन्तरिकी या शरीर (Anatomy) जीवों की आन्तरिक संरचना का अध्ययन। - 10. कोशिका विज्ञान (Cytology) कोशिकाओं का अध्ययन। - 11. वृक्षायुर्विज्ञान (Dendrochronology) वृक्षों की आयु का अध्ययन। - 12. आर्थिक वनस्पति विज्ञान (Economic botany) आर्थिक महत्व के पौधों का अध्ययन। चित्र 11.7 : शैवालों में विभिन्न प्रकार के थैलस - 13. भ्रौणिकी (Embryology) युग्मक निर्माण, निषेचन व भ्रूण परिवर्धन का अध्ययन। - आदिम वनस्पति विज्ञान (Ethnobotany) आदिवासियों द्वारा पादपों के उपयोग का अध्ययन। - फ्लोरीकल्चर (Floriculture) सजावटी पुष्पों सम्बन्धी अध्ययन। - आनुवंशिक अभियांत्रिकी (Genetic engineering) कृत्रिम जीनों का निर्माण व अन्य जीवों में स्थानान्तरण का अध्ययन। - 17. आनुवंशिकी (Genetics) आनुवंशिकी सम्बन्धी अध्ययन। - आनुवंशिकता (Heredity) पैतृक लक्षणों का संतित में पहुंचने सम्बन्धी अध्ययन। - 19. शैकविज्ञान (Lichenology) लाइकेन्स का अध्ययन। - 20. सरोवर विज्ञान (Limnology) स्वच्छ / शुद्ध पानी में उपस्थित जीवों का अध्ययन। - 21. आकारिकी (Morphology) जीवों की आकारिकीय संरचना का अध्ययन। - 22. सूत्रकृमि विज्ञान (Nematology) सूत्रकृमियों का पादपों के साथ सम्बन्धों का अध्ययन। - 23. पुरावनस्पति विज्ञान (Palaeobotany) पादपों के जीवाश्मों का अध्ययन। - 24. परागकण विज्ञान, परागाणु विज्ञान (Palynology) परागकणों का अध्ययन। - 25. मृदा विज्ञान (Pedology) मृदा निर्माण, संरचना, अपक्षरण व संरक्षण सम्बन्धी अध्ययन। - 26. पादप रोग विज्ञान (Plant pathology) पादप रोगों के लक्षण, कारण व निदान सम्बन्धी अध्ययन। - 27. पादप कार्यिकी (Plant physiology) पादप शरीर क्रियाओं या उपापचयी क्रिया का अध्ययन। - 28. फल विज्ञान (Pomology) फलों का अध्ययन। - 29. पादप वर्गिकी (Plant taxonomy) पादप वर्गीकरण का अध्ययन। - 30. विषाणु विज्ञान (Virology) विषाणुओं का अध्ययन। - पादप भूगोल (Phytogeography) पौधों के भौगोलिक वितरण का अध्ययन। - 32. विकिरण जीवविज्ञान (Radiation biology) विभिन्न विकिरणों का जीवों पर होने वाले प्रभावों का अध्ययन। - 33. सस्य विज्ञान (Agronomy) फसली पादपों का अध्ययन। - जैवतकनीकी (Biotechnology) प्रोटोप्लास्ट का पृथक्करण व संवर्धन का अध्ययन। - 35. बागवानी (Horticulture) फल व उद्यानी पादपों का अध्ययन। - 36. फार्माकोग्नोसी (Pharmacognosy) पादप औषधियों की पहचान, पृथक्करण व उपयोग सम्बन्धी अध्ययन। - 37. पादप प्रजनन विज्ञान (Plant breeding) उपयोगी पादपों की किस्म सुधारने का अध्ययन। - 38. सिल्वीकल्चर (Silviculture) वन के वृक्षों एवं उनके उत्पादों का अध्ययन। - 39. ऊतक संवर्धन (Tissue culture) कृत्रिम माध्यमों पर ऊतकों के संवर्धन का अध्ययन। - 40. जैव रसायन विज्ञान (Biochemistry) जीवों में उपस्थित रासायनिक घटकों तथा रासायनिक क्रियाओं का अध्ययन। - 41. जैव सांख्यिकी (Biometrics) जैविक क्रियाओं तथा उनके परिणामों का गणित तथा सांख्यिकी द्वारा विश्लेषण। - 42. जैव भौतिकी (Biophysics) भौतिक सिद्धान्तों व विधियों का जैविक समस्याओं के सम्बन्ध में अध्ययन। # महत्वपूर्ण बिन्दु - प्रोकैरियोटिक कोशिकीय संरचना आद्य व अपूर्ण होती है, क्योंकि इनके केन्द्रक पर केन्द्रक झिल्ली का अभाव होता है। इस प्रकार के केन्द्रक को प्रारम्भिक केन्द्रक या केन्द्राभ कहते हैं। - 2. प्रोकैरियोटिक कोशिका में सुविकसित कोशिकांग जैसे अन्तःप्रद्रव्यी जालिका, गॉल्जीकाय, माइटोकॉन्ड्रिया, हरित लवक, राइबोसोम्स, केन्द्रक झिल्ली व केन्द्रिका का अभाव होता है। - यूकैरियोटिक कोशिका में सुस्पष्ट व विकसित केन्द्रक पाया जाता है। इन कोशिकाओं का केन्द्रक दोहरी केन्द्रक झिल्ली से परिबद्ध रहता है। इनमें सुविकसित कोशिकांग पाये जाते हैं। - कवक सर्वव्यापी होते हैं, ये सामान्यतया जल, थल व वायु में पाये जाते हैं। - 5. सभी कवकों का जीवद्रव्य एक सुस्पष्ट झिल्ली से घिरा रहता है। इन कवकों की कोशिका भित्ति का मुख्य घटक कवक सेल्यूलोज अर्थात् काइटिन होता है। - 6. कवकों का केन्द्रक यूकैरियोटिक प्रकार का होता है। इनकी संख्या प्रत्येक कोशिका में एक या एक से अधिक हो सकती है। - 7. पोषण के आधार पर कवक परजीवी, मृतोपजीवी एवं सहजीवी प्रकार के होते हैं। - 8. कवकों में जनन तीन प्रकार का होता है —(i) कायिक जनन (ii) अलैंगिक जनन (iii) लैंगिक जनन । - 9. शैवाल पर्णहरित युक्त थैलाभ पादपों का समूह है जिनमें लैंगिक अंग एककोशिक अथवा बहुकोशिक होते हैं। इन जननांगों में बंध्य आवरण का अभाव होता है। - 10. शैवाल कोशिकाओं में संचित भोजन मुख्यतया स्टार्च के रूप में होता है। कुछ में यह वसा व तेल बूंदों के रूप में भी पाया जाता है। - 11. शैवालों में अलैंगिक जनन चलबीजाणु, अचल बीजाणु, सुसुप्त बीजाणु व विशिष्ट बीजाणुओं द्वारा होता है। - 12. शैवालों में लैंगिक जनन समयुग्मकी, असमयुग्मकी व विषमयुग्मकी प्रकार का होता है। - 13. शैवालों में निषेचन के पश्चात् भ्रूण नहीं बनता है तथा निषेचन के पश्चात् युग्मनज अर्धसूत्री विभाजन से विभाजित होकर सीधे ही नव पादप बनाता है। - 14. कुछ शैवाल परजीवी के रूप में अन्य पादपों पर पाये जाते हैं। जैसे *सिफेल्यूरोस वायरेन्स* चाय व कॉफी की पत्तियों पर लाल रस्ट नामक रोग उत्पन्न करता है। #### अभ्यासार्थ प्रश्न ## वस्तुनिष्ठ प्रश्न - वे सजीव जिनमें सुस्पष्ट कोशिकांगों का अभाव होता है, कहलाते हैं— - (अ) यूकैरियोट्स - (ब) अगुणित - (स) प्रोकैरियोट्स - (द) द्विगुणित - 2. एक प्रोकैरियोटिक कोशिका में- - (अ) केन्द्रक उपस्थित - (ब) केन्द्रिका उपस्थित - (स) केन्द्राभ पाया जाता है। - (द) सुस्पष्ट केन्द्रक उपस्थित - 3. डी.एन.ए. मुख्य आनुवांशिक पदार्थ है— - (अ) यूकैरियोट्स - (ब) प्रोकैरियोट्स - (स) दोनों का - (द) उपरोक्त में से कोई नहीं - 4. यूकैरियोटिक पादप कोशिका की कोशिका भित्ति बनी होती है— - (अ) सेल्यूलोज की - (ब) हेमीसेल्यूलोज की - (स) पेक्टिन की - (द) उपरोक्त सभी - 5. वनस्पति शास्त्र की वह शाखा जिसके अन्तर्गत कवकों का अध्ययन किया जाता है— - (अ) फाइकोलोजी - (ब) माइकोलोजी - (स) माइक्रोबायोलोजी - (द) बेक्टिरियोलोजी - 6. समस्त कवक होते हैं- - (अ) परजीवी - (ब) मृतोपजीवी - (स) परपोषी - (द) उपरोक्त सभी - 7. कवक की कोशिका भित्ति बनी होती है— - (अ) हेमीसेल्यूलोज - (ब) सेल्यूलोज - (स) प्रोटीन - (द) काइटिन की - वे कवक जो अपना पोषण दूसरे जीवित पादपों अथवा जन्तुओं से प्राप्त करते हैं, कहलाते हैं— - (अ) परजीवी - (ब) मृतोपजीवी - (स) सहजीवी - (द) उपरोक्त सभी - 9. सामान्यतः शैवाल होते हैं- - (अ) परजीवी - (ब) स्वपोषी - (स) परपोषी - (द) मृतोपजीवी - 10. परजीवी शैवाल है- - (अ) *पोलीसाइफोनिया* (ब) नॉस्टॉक - (स) ऊडोगोनियम - (द) सिफेल्यूरोस - 11. वनस्पति विज्ञान की वह शाखा जिसके अन्तर्गत शैवालों का अध्ययन किया जाता है कहते हैं— - (अ) फाइकोलोजी - (ब) माइकोलोजी - (स) बेक्टिरियोलोजी - (द) ब्रायोलोजी - 12. सभी शैवालों में सामान्य रूप से पाया जाने वाला क्लोरोफिल है— - (अ) क्लोरोफिल ए. - (ब) क्लोरोफिल बी. - (स) क्लोरोफिल सी. - (द) क्लोरोफिल डी. ## अतिलघुत्तरात्मक प्रश्न - 1. प्रोकैरियोट्स को परिभाषित कीजिये। - 2. यूकैरियोट्स क्या है? - 3. प्रोकैरियोट्स की कोशिका भित्ति किसकी बनी होती है? - 4. केन्द्रकाभ क्या है? - 5. मृतोपजीवी कवक क्या होते हैं? - 6. पूर्णकायफलिक कवक किसे कहते हैं? - कोनिडिया द्वारा जनन करने वाले दो कवकों के उदाहरण लिखिये। - 8. कवकों का लैंगिक जनन कितने चरणों में पूर्ण होता है? नाम लिखिये। - 9. फाइकोलोजी क्या है? - 10. शैवालों को परिभाषित कीजिये। # Downloaded from https://www.studiestoday.com ## 125 - 11. शैवालों में पाये जाने वाले क्लोरोफिल के नाम लिखिये। - 12. शैवालों में थैलस को परिभाषित कीजिये। #### लघुत्तरात्मक प्रश्न - 1. प्रोकैरियोट्स व यूकैरियोट्स में चार मुख्य अन्तर बताइये। - प्रोकैरियोट्स के आनुवांशिक पदार्थ पर संक्षिप्त टिप्पणी लिखिये। - यूकैरियोट्स के कोई चार मुख्य लाक्षणिक लक्षण लिखिये। कोई दो उदाहरण दीजिये। - अन्तः कोशिकीय व अन्तर कोशिकीय कवकों में अन्तर बताइये। - 5. कवक पर संक्षिप्त टिप्पणी लिखिये। - 6. कवकों के कवक जाल पर संक्षिप्त टिप्पणी लिखिये। - 7. सहजीवी कवक क्या होते हैं? संक्षिप्त में समझाइये। - जलीय आवासों में पाये जाने वाले शैवालों का संक्षिप्त विवरण लिखिये। - 9. विशेष आवासीय शैवालों पर संक्षिप्त टिप्पणी लिखिये। - 10. शैवालों के चार प्रमुख लक्षण लिखिये। #### निबंधात्मक प्रश्न - 1. प्रोकैरियोट्स के लाक्षणिक लक्षण लिखिये। - 2. यूकैरियोट्स के मुख्य लाक्षणिक लक्षण लिखिये। - 3. प्रोकैरियोट्स व यूकैरियोट्स में अन्तर बताइये। - 4. कवकों की पोषण विधियों का वर्णन कीजिये। - 5. कवकों के सामान्य लक्षण लिखिये। - 6. कवकों के जनन का विस्तृत वर्णन कीजिये। - 7. शैवालों के स्वभाव एवं आवास की विस्तृत व्याख्या कीजिये। - 8. शैवालों के प्रमुख लाक्षणिक लक्षण लिखिये। उत्तरमालाः 1 (स) 2 (स) 3 (स) 4 (द) 5 (ब) 6 (द) 7 (द) 8 (अ) 9 (ब) 10 (द) 11(अ) 12 (अ) #### अध्याय 12 # ब्रायोफाइटा, टेरिडोफाइटा एवं स्पर्मेटोफाइटा (जिम्नोस्पर्म व ऐन्जियोस्पर्म) Bryophyta, Pteridophyta and Spermatophyta (Gymnosperm and Angiosperm) ## ब्रायोफाइटा #### (Bryophyta) ब्रायोफाइटा एक ग्रीक शद है जो Bryos = मास तथा Phyton = लान्ट से मिलकर बना है जिसके अन्तर्गत सरल एवं आ पादपों को सम्मिलित किया गया है ब्रायोफाइटा शद का सर्वप्रथम प्रयोग ब्राउन (Braun, 1864) ने किया बाद में इस प्रभाग में सरल, आ, प्रथम स्थलीय, असंवहनी व भ्रूणीय पादपों को सम्मिलित किया गया इन पादपों को जीवित रहने के लिये अधिक जल व नमी की आवश्यकता है अतः इन्हें उभयचर पादप भी कहा जाता है इस वर्ग में लगभग 6 वंश तथा 24, से अधिक प्रजातिया सम्मिलित हैं ## ब्रायोफाइटा के लाक्षणिक लक्षण ब्रायोफाइटा के लाक्षणिक लक्षण निम्नलिखित हैं - वितरण यपि ब्रायोफाइट्स प्रथम स्थलीय पादप माने जाते हैं परन्तु ये वातावरण की सीमित जगहों पर ही पाये जाते हैं जहां पर नमी अधिक हो ये पादप विश्वयापी है तथा उष्ण प्रदेशों से हिमाादित ध्रुवों तक मिलते हैं - 2. स्वभाव व आवास ब्रायोफाइट्स सामान्यतया नम व । यादार स्थानों पर, अःस्तरों जैसे शिलाखण्डों, दीवारों, वक्षों के तनों व ।ल पर पाये जाते हैं इसके अतिरि कु जातियां जैसे रिसिया लूटेन्स , रिसियोकार्पस नेटेन्स जलीय, टोरूला डेजर्टीरम, टोरूटुला मुरेलीस शुष्क आवासों, तथा कु मास व डेन्डोसिरोस की अनेक जातियां वक्षों पर अधिपादपों के रूप में पायी जाती हैं बसबाउमिया एक मतोपजीवी ब्रायोफाइट है - ब्रायोफाइट पादप आकार में ोटे तथा स्वरूप में विभिन्नता प्रदर्शित करते हैं इनका आकार 1 मि.मी. से लेकर 3 से 5 सेमी. तक हो सकता है - 4. ब्रायोफाइटा का मुख्य पादपकाय युमकोद्भिद् होता है यह युमकोद्भिद् दो प्रकार के स्वरूप में होता है (i) थैलाभ तथा (ii) पर्णिल स्वरूप - (i) थैलाभ स्वरूप इसमें पादप सुकायक, पष्ठाधारी, द्विभाजी शाखित व चपटा होता है तथा आधार पर श्यान वि करते हैं (चित्र 12.1) थैलस की परी सतह पर मध्य खांच उपस्थित होती है उदाहरण रिसिया, मार्केन्शिया आदि इन्हीं थैलस की
परी सतहों पर जननांग बनते हैं थैलस चित्र 12.1 : ब्रायोफाइट्स के विभिन्न थैलाभ स्वरूप (अ) *रिसिया* थैलस (ब) *पोरेला* थैलस (स) *मार्केन्शिया* थैलस (द) गेमा कप # Downloaded from https://www.studiestoday.com की अभ्यक्ष अथवा निचली सतह पर मूलाभास व शक उपस्थित होते हैं मार्केन्शिएलीज गण के सदस्यों में मूलाभास दो प्रकार के होते हैं चिकनी भित्ति यु व गुलिकीय जबिक गण जंगरमेनिएलीज व एन्थोसिरोटेलीज में केवल चिकनी भित्ति यु मूलाभास होते हैं इनमें शकों का भी अभाव होता है गण मार्केन्शिएलीज का थैलस आंतरिक रूप से परी प्रकाश संश्लेषी तथा आधारीय संचयी क्षेत्रों में विभेदित होता है जबिक गण एन्थोसिरोटेलीज में इस प्रकार का विभेदन नहीं होता है थैलस में यांत्रिक व संवहन उत्तकों का पूर्णतया अभाव होता है - (ii) **पर्णिल स्वरूप** इस प्रकार के पादप स्वरूप में मुख्य पादपकाय श्यान या उर्ध्व होता है इसके केनेय अक्ष पर - पत्तीनुमा उपांग विन्यासित होते हैं (चित्र 12.2) पोरेला के श्यान अक्ष की परी सतह पर एककोशिक मूलाभास जबिक मसाई वर्ग के सदस्यों में बहुकोशिक व शाखित मूलाभास होते हैं - 5. जनन ब्रायोफाइट्स में कायिक व लेंगिक दोनों प्रकार का जनन मिलता है इनमें अलेंगिक बीजाणुओं का पूर्णतया अभाव होता है इन पादपों में कायिक जनन विखण्डन (रिसिया, मार्केन्शिया), चित्र 12.2 : पर्णिल स्वरूप - जेमा द्वारा (मार्केन्शिया, लुनूलेरिया), अपस्थानिक शाखाओं द्वारा (रिसिया, रिबाउलिया, टारजिओनिया), कन्द द्वारा (रिसिया, एन्थोसिरोस), प्रोटोनिमा द्वारा (मास), चिरस्थाई शीर्ष द्वारा (रिसिया साइथोडियम) व पुनदभवन द्वारा (रिसिया, मार्केन्शिया) होता है (चित्र 12.3) - 6. लैंगिक जनन ब्रायोफाइटा में लैंगिक जनन विषमयुमकी प्रकार का होता है युमकों का निर्माण जिटल युमकानियों में होता है ये युमकधानियां बहुकोशिक होती हैं तथा बन्य आवरण से घिरी रहती हैं नर जननांग पुंधानी तथा मादा जननांग स्त्रीधानी कहलाती हैं पुंधानी में नर जनन कोशिका पुमणु तथा स्त्रीधानी में मादा जनन कोशिका अण्डा बनता है (चित्र 12.4) चित्र 12.3 : (अ) अपस्थानिक शाखाओं व (ब) कन्द द्वारा कायिक जनन चित्र 12.4 : (अ) पुंधानी (ब) स्त्रीधानी - इन पादपों में निषेचन के लिये जल आवश्यक होता है परिपव स्त्रीधानी की ग्रीवा नाल कोशिकायें व अण्डधा नाल कोशिकायें विघटित होकर श्लेष्म का निर्माण करती है यह श्लेष्म जल अवशोषण कर फूल जाता है जिसके दबाव से कन कोशिकायें खुल जाती है तथा श्लेष्म स्त्रीाानी के मुख पर आ जाता है अब यह श्लेष्म पुमणुओं को अपनी ओर आकर्षित करता है ये पुमणु रासायनिक अनुचलन िया द्वारा तैरते हुए स्त्रीधानी में प्रवेश करते हैं इनमें से एक पुमणु, अण्डे से संलियत होकर युमनज बनाता है - बीजाणुद्भिद् युमनज बीजाणुद्भिद् पी की प्रथम कोशिका है जो विामावस्था के बाद विभाजन व विभेदन के बाद एक बीजाणुद्भिद संरचना स्पोरोगोनियम बनाता है यह युमोद्भिद् पादप से संलन रहता है परन्तु इसका जीवनकाल सीमित अवधि के लिये होता है # Downloaded from https://www.studiestoday.com चित्र 12.5 : ब्रायोफाइटा पादपों के बीजाणुद्भिद् (अ) *मार्केन्सिया* (ब) स्फैगनम (स) रिसिया एक स्पोरोगोनियम (i) पाद (ii) वन्त या सीटा व (iii) संपुटिका (कैसूल) तीन भागों में विभ होता है कैसूल स्पोरोगोनियम का उर्वर भाग होता है इसमें अर्धसूत्री विभाजन द्वारा बीजाणुओं का निर्माण होता है (चित्र 12.5) कैसूल भित्ति फटने से ये परिपव बीजाणु बाहर निकलते हैं तथा अनुकूल परिस्थितियां उचित स्थान पर अंकुरित होकर सीधे ही नवोद्भिद् पादप का निर्माण करते हैं लेकिन मसाई समूह में बीजाणु अंकुरित होकर एक तन्तुनुमा प्रोटोनिमा को जन्म देते हैं इस प्रोटोनिमा में कई परिवर्तन होने के बाद इन पर कई कलिकायें उत्पन्न होती हैं तत्पश्चात् ये कलियां नवपादप को जन्म देती है ब्रायोफाइट के जीवन च में दो प्रावस्थायें होती हैं (i) अगुणित युमकोद्भिद् प्रावस्था तथा (ii) द्विगुणित बीजाणुद्भिद् प्रावस्था युमकोद्भिद् से युमक बनते हैं जिनके संलयन से द्विगुणित युमन का निर्माण होता है यह युमनज विभाजन व विभेदन से स्पोरोगोनियम बनाता है इस स्पोरोगोनियम की द्विगुणित बीजाणुजन कोशिकायें आंसूत्री विभाजन द्वारा अगुणित बीजाणुओं का निर्माण करती है जो अंकुरित होकर पुनः युमकोद्भिद् का निर्माण करते हैं इस प्रकार दो संतितयां अगुणित युमकोद्भिद् व द्विगुणित बीजाणुद्भिद् जीवन च में एकान्तरित होती है इस प्रया को पी एकान्तरण कहते हैं चूंकि अगुणित व द्विगुणित पादप आकारिकी में भिन्न होते हैं अतः इसे विषमरूपी पी एकान्तरण कहते हैं # टेरिडोफाइटा (Pteridophyta) टेरिडोफाइटा पादपों में सुविकसित संवहन तंत्र पाया जाता है अतः इन्हें संवहनी टिोगेम्स कहते हैं इनमें जल व खा पदार्थों के संवहन के लिये सुविकसित जायलम व लोएम उत्तक पाये जाते हैं इसके कारण ही इन्हें टेकिओफाइटा डिवीजन में रखा गया है इस समूह में उन आ जीवित व जीवाश्मी संवहनी पादपों को भी सम्मिलित किया गया है जो बीजाणुओं द्वारा जनन करते हैं इनकी उत्पत्ति पेलियोजोइक महाकप (Palaeozoic era) के सेयूरियन काल (Silurian period) में हुई तथा ये डिवोनियन काल (Devonian period) में बहुतायत से पाये जाते थे #### टेरिडोफाइटा के लाक्षणिक लक्षण टेरिडोफाइटा के लाक्षणिक लक्षण निम्नलिखित होते हैं - 1. स्वभाव व आवास ये पादप वार्षिक जैसे अजोला, सावीनिया अथवा बहुवर्षीय जैसे ऐडियन्टम होते हैं अिकांश स्थलीय जातियां नम व ायादार स्थानों पर पाई जाती हैं कु जातियां जैसे मार्सीलिया, अजोला आदि जलीय हैं जो स्थिर जल में पाई जाती हैं इसके अतिरि कु जातियां जैसे सिलेजिनेला रूपेस्टीस, इवीसिटम आर्वेन्स, मार्सीलिया राजस्थानेन्सिस आदि मरूद्भिद् आवासों में भी पायी जाती हैं - 2. टेरिडोफाइट्स स्वरूप व आमाप में विविधता दर्शाते हैं तथा स्वरूप के आधार पर इन्हें दो वर्गों में बांटा जा सकता है - (i) गुरूपर्णी टेरिडोफाइट्स इनमें स्तम्भोटा तथा पत्तियां बडे आकार की होती हैं उदाहरण टेरिस व ऐडियन्टम - (ii) लघुपर्णी टेरिडोफाइट्स इन पादपों का स्तम्भ तुलनात्मक दष्टि से बडा व अधिक शाखित तथा पत्तियों का आकार ोटा होता है उदाहरण सिलेजिनेला, इवीसिटम आदि - इन पादपों का मुख्य पादप बीजाणुद्भिद् होता है इस बीजाणुद्भिद् की (i) बाह्य व (ii) आन्तरित संरचना में अन्तर होता है - (i) बाह्य संरचना सुविकिसत बीजाणुद्भिद् पूर्णतया जड, तना व पत्तियों में विभेदित होता है इनकी प्राथमिक जड अपकालिक तथा शीघ्र ही अपस्थानिक जडों द्वारा प्रतिस्थापित हो जाती है जडे शाखित व कोमल होती है स्तम्भ शाखित तथा शाखायें एकलाक्षी अथवा द्विभाजी शाखित होती हैं पत्तियां शकी, ोटी तथा अवन्त अथवा बडी संवन्त व संयु होती हैं - (ii) टेरिडोफाइट्स के मूल व स्तम्भ में सुविकसित संवहनी तंत्र पाया जाता है जो जायलम व लोएम से मिलकर बना होता है यह संवहनी सिलेण्डर रंभ कहलाता है इन पादपों में कई प्रकार के रंभ पाये जाते हैं जैसे ठोस रंभ (ह्राइकोपोडियम, सिलेजिनेला), नाल रंभ (मार्सीलिया, इवीसीटम), जाल रंभ (टेरिस), बहुचीय रंभ (टेरिडियम) आदि जायलम केवल वाहिनिकाओं का बना होता है इनमें वाहिकायें अनुपस्थित होती हैं इसी प्रकार लोएम चालनी नलिका या कोशिकाओं का बना होता है तथा सहकोशिकायें इनमें अनुपस्थित होती हैं - जनन टेरिडोफाइट्स पादपों में जनन बीजाणुओं द्वारा होता है ये बीजाणु बीजाणुधानियों में बनते हैं पादप समबीजाण्विक अर्थात् इनके सभी बीजाणु एक समान होते लाइकोपोडियम, इवीसिटम आदि अथवा हैं, उदाहरण विषमबीजाण्विक अर्थात् इनमें दो प्रकार के बीजाणु बनते हैं लघुबीजाणु व गुबीजाणु उदाहरण सिलेजिनेला, मार्सीलिया आदि लघुबीजाणु, लघुबीजाणुधानियों में तथा गुबीजाणु, गुबीजाणुधानियों में बनते हैं बीजाणुधानिया जिन पत्तियों पर विकसित होती है उन्हें बीजाणुपर्ण कहते हैं गुबीजाणुधानियों यु पर्ण गुबीजाणु पर्ण तथा लघुबीजाणुगानियों यु पर्ण लघुबीजाणुपर्ण कहलाती हैं बीजाण्धानियों का परिवर्धन दो प्रकार का होता है लेटोस्पोरेन्जिएट परिवर्धन (ii) यूस्पोरेन्जिएट परिवर्धन लेटोस्पोरेन्जिएट प्रकार के परिवर्धन में केवल एक सतही कोशिका बीजाणुधानी प्रारम्भिका का कार्य करती है तथा इसी कोशिका के विभाजन व विभेदन से बीजाणुधानी बनती है, उदाहरण *ऐडियन्टम व मार्सीलिया* जबकि यूस्पोरेन्जिएट प्रकार के परिवर्धन में सतही कोशिकाओं का - समूह बीजाणुधानी प्रारम्भिका का कार्य करती है इन्हीं कोशिकाओं के विभाजन व विभेदन से बीजाणुधानी बनती है, उदाहरण लाइकोपोडियम व सिलेजिनेला लेटोस्पोरेन्जिएट प्रकार की बीजाणुधानी में यूस्पोरेन्जिएट बीजाणुधानी की तुलना में बीजाणुओं की संख्या कम होती है - 5. बीजाणु, युमकोद्भिद् पीं की प्रथम कोशिका होती है इन बीजाणुओं के अंकुरण से प्रौथेलस बनता है जो लैंगिक जनन का कार्य करता है समबीजाण्विक वंशों में प्रौथेलस वायवीय तथा पर्णहरित यु होता है लेकिन कु वंशों में यह भूमिगत तथा पर्णहरित रहित भी होता है, उदाहरण लाइकोपोडियम समबीजाण्विक जातियों के युमकोद्भिद् द्विलिंगायी होते हैं अर्थात् पुंधानी तथा स्त्रीधानी एक ही प्रौथेलस पर विकसित होते हैं - विषमबीजाण्विक वंशों में लघुबीजाणु के अंकुरण से नर युमकोद्भिद् तथा गुबीजाणु के अंकुरण से मादा युमकोद्भिद् विकसित होते हैं अर्थात् युमकोद्भिद् एकलिंगायी होता है नर युमकोद्भिद् पर पुंधानी तथा मादा युमकोद्भिद् पर स्त्रीधानियां विकसित होती हैं - 6. पुंधानियों में पुमणु द्विकशाभिकी होते हैं उदाहरण लाइकोपोडियम व सिलेजिनेला तथा बहुकशाभिकी उदाहरण इवीसिटम में बनते हैं स्त्रीधानियों में जनन बनता है - . टेरिडोफाइट्स में भी निषेचन की या ब्रायोफाइट्स की तरह ही होती है निषेचन से बना युमनज शीघ्र ही भित्ति निर्माण द्वारा निषिताण्ड (Oospore) में परिवर्तित हो जाता है - . युमनज या निषिताण्ड विभाजनों तथा विभेदनों द्वारा भ्रूण का निर्माण करता है जो आगे जाकर बीजाणुद्भिद् पादप में विकसित हो जाता है - . टेरिडोफाइट्स में युमकोद्भिद् अंश कालिक जबिक बीजाणुद्भिद् दीर्घकालिक प्रावस्था है अतः इन पादपों में बीजाणुद्भिद् जीवन च की प्रभावी प्रावस्था है - सभी टेरिडोफाइट्स पादपों में सुस्पष्ट पीं एकान्तरण मिलता है ## स्पर्मेटोफाइटा (Spermatophyta) ## जिम्नोस्पर्म (Gymnosperm) समस्त बीजधारी पादपों को स्पर्मेटोफाइटा में सिम्मिलित किया गया है स्पर्मेटोफाइटा (Spermatophyta; Sperma = बीज, Phyton = पादप) को जिम्नोस्पर्म एवं एन्जिओस्पर्म नामक दो उपविभागों में बांटा गया है जिम्नोस्पर्म को अनावतबीजी तथा एन्जिओस्पर्म को आवतबीजी भी कहा जाता है योंकि एन्जिओस्पर्म पादपों के बीज फलिमत्ति द्वारा के रहते हैं जबिक जिम्नोस्पर्म में अण्डाशय की अनुपस्थिति के कारण बीजाण्ड के हुए नहीं होते हैं अतः फलिमति नहीं बनती है परिणामस्वरूप जिम्नोस्पर्म के बीज नन होते हैं जिम्नोस्पर्म शद का सर्वप्रथम प्रयोग अरस्तु के शिष्य थियोस्ट्स ने किया ये अत्यन्त पुरातन बीजधारी पादप है इनकी उत्पत्ति पेलिओजोइक महाकाल में हुई है जिम्नोस्पर्म में जीवित एवं जीवाश्म दोनों प्रकार के सदस्यों को समावेश किया गया है जिम्नोस्पर्म के कु प्राचीनतम सदस्य वर्तमान में लुत हो गये है जैसे साइकेडोफिलिकेलीज व बेनीटाइटेलीज गण आदि अतः ये जीवाश्म के रूप में पाये जाते हैं इन लुत सदस्यों के समान गुण वाले साइकस जैसे कु सदस्य वर्तमान में भी मौजूद है अतः इन्हें जीवित जीवाश्म कहते हैं #### जिम्नोस्पर्म पादपों के लाक्षणिक लक्षण इन पादपों के लाक्षणिक लक्षण निम्न प्रकार हैं - जिम्नोस्पर्म सदाहरित वक्ष जैसे साइकस, पाइनस अथवा क्षूप जैसे इिफडा हैं ये पादप मरूद्भिदी अनुकूलन भी दर्शाते हैं - 2. ये पादप शीतोष्ण उष्ण कटिबंधीय प्रदेशों में मिलते हैं तथा विश्व के शीतोष्ण वन का महत्वपूर्ण भाग हैं (चित्र 12.6) - उ. जिम्नोस्पर्म आकार में विविधता दर्शाते हैं जैसे 1 मीटर अथवा अधिक चाई वाले पादप (सिकोइया सैंपरवाइरेंस) तथा अपवादस्वरूप 4 या 5 सेमी.
चे पादप (जेमिया पिगमिया) भी मिलते हैं - 4. इन पादपों का तना शाखित अथवा अशाखित, काष्ठीय व उर्ध्व होता है - 5. संवहनी तंत्र जायलम व लोएम उत्तक मिलकर बनाते हैं जिम्नोस्पर्म के जायलम में वाहिनका होती है इसमें वाहिका का अभाव होता है अपवादस्वरूप नीटेलीज गण में वाहिका उपस्थित होती है इसी प्रकार जिम्नोस्पर्म का लोएम चालनी कोशिकाओं से बना होता है सहकोशिकाओं का इनमें अभाव होता है - 6. जिम्नोस्पर्म का काष्ठ दो प्रकार का होता है (i) विरलदारूक (Manoxylic) जो थोडा ीला, मुलायम व चौडी मजा किरण यु होता है तथा (ii) सघनदारूक (Pycnoxylic) जो मजबूत, ठोस तथा पासपास सटा होता है साइकस में विरलदारूक व पाइनस में सघनदारूक काष्ठ पाया जाता है - . जिम्नोस्पर्म में एधा की उपस्थिति के कारण द्वितीयक वि भी पाई जाती है चित्र 12.6 : विभिन्न जिम्नोस्पर्म पादप - इन सदस्यों में पत्तियां प्रायः एक या द्विरूपी मिलती हैं सामान्य पत्तियां हरी, सरल, सूयाकार अथवा पिाकार संयु होती हैं शकीय पत्तियां प्रायः सूक्ष्म तथा पर्णपाती होती हैं *इफेडा* में केवल शकीय पत्तियां पाई जाती हैं - . इनमें मूसला जड़े पाई जाती हैं कु वंशों की (साइकस) जड़े नील हरित शैवाल एवं मूल पर (*पाइनस*) बाह्यपोषी कवक से सहजीविता दर्शाते हैं - पत्तियों की बाह्यत्वचा पर मोटी यूटीकल की परत होती है इसमें रंघ्न धंसे हुए होते हैं पर्णमध्योतक स्पंजी एवं खंभ उत्तक कोशिकाओं में विभेदित (साइकस) अथवा अविभेदित (पाइनस) होता है - 11. जिम्नोस्पर्म समूह के पादप विषमबीजाण्विक होते हैं गु एवं लघुबीजाणुधानियां मशः गु एवं लघुबीजाणुपर्णो पर पाई जाती हैं जो सधन शंकु या विरल स्टोबीलस बनाते हैं - 12. अधिकांशतः शंकु एकबीजाणुधानीय अर्थात् एकलिंगी होते हैं लेकिन कु जातियों में द्विबीजाणुधानीय शंकु (Bisporangiate cone) भी पाये जाते हैं जैसे इफेडा की कु जातियां - 13. नर शंकु लघुबीजाणुपर्णों से तथा मादा शंकु गुबीजाणुपर्णों से निर्मित होते हैं लघुबीजाणुधानियां इन बीजाणुपर्णों की अपाक्ष अर्थात् निचली सतह पर उपस्थित होती हैं विभिन्न वंशों में बीजाणुधानियों की संख्या अनिश्चित (साइकस) अथवा निश्चित (पाइनस में दो) होती हैं - 14. मादा शंकु गुबीजाणुपर्णों से बनते हैं ये प्रायः कई वर्षों तक मात पादप पर ही लगे रहते हैं गुबीजाणुपर्णों की संरचना सामान्य पर्णों की तरह (साइकस) अथवा काष्ठीय (पाइनस) होती है गुबीजाणुधानियां अथवा बीजाण्ड बीजाणुपर्णों पर नन पाये जाते हैं योंकि इनमें अण्डाशय नहीं होता है - 15. बीजाणुधानियों का विकास यूस्पोरेन्जिएट प्रकार का होता है - 16. लघुबीजाणु नर युमकोद्भिद् तथा गुबीजाणु मादा युमकोद्भिद् बनाते हैं मादा युमकोद्भिद् पर स्त्रीधानियां बनती हैं - जिम्नोस्पर्म पादप समूह वायु परागित होते हैं परागकण बीजाण्ड पर उपस्थित विशेष संरचना पराग कोष्ठ पर एकत्रित होते हैं तथा नर युमक या परागकण परागनली द्वारा स्त्रीधानी में प्रवेश करता है इसे नाल युमन कहते हैं - निषेचन के समय एक नर युमक स्त्रीधानी के अण्ड से संलयन कर द्विगुणित युमनज बनाता है - निषेचन के पश्चात् बने युमनज के विभाजन द्वारा एक या अधिक भ्रूण बनते है अतः इनमें विदलन बहुभ्रूणिता पाई जाती है - 2. इन पादपों में भ्रूणपोष (Endosperm) का निर्माण निषेचन से पूर्व होता है भ्रूणपोष अगुणित (n) प्रकार का होता है - 21. इन पादपों में अण्डाशय (Ovary) जैसी कोई संरचना नहीं पाई जाती है अतः बीज के अन्दर फल नहीं होते हैं तथा नन बीजाण्ड ही निषेचन के पश्चात् बीज में विकसित होते हैं बीजाण्ड के अध्यावरण निषेचन पश्चात् बीज चोल का कार्य करते हैं - 22. बीजों में बीजपत्रों की संख्या में विविधता पाई जाती है - 23. जिम्नोस्पर्म के बीज तीन पीयों को प्रदर्शित करते हैं (i) अध्यावरण तथा बीजाण्डकाय मात बीजाणुद्भिद् प्रावस्था अर्थात् पहली बीजाणुद्भिद् प्रावस्था(ii) भ्रूणपोष युमकोद्भिद् प्रावस्था से निर्मित भाग तथा (iii) भ्रूण अगली बीजाणुद्भिद् प्रावस्था को दर्शाता है योंकि इसका विकास युमनज के विभाजन से होता है - 24. इन पादपों में सुस्पष्ट पीी एकान्तरण पाया जाता है तथा द्विगुणित बीजाणुद्भिद् जीवन च की प्रमुख व प्रभावी प्रावस्था होती है जबिक अगुणित युमकोद्भिद् प्रावस्था अत्यन्त ासित होती है यह प्रावस्था बीजाणुद्भिद् पर आति रहती है #### एन्जियोस्पर्म (Angiosperm) एन्जियोस्पर्म (Angiosperm) को आवतबीजी पादप भी कहते हैं यह स्पर्मेटोफाइटा का उपप्रभाग है इसके अन्तर्गत आने वाले पादपों में बीज फलिभित्ति द्वारा घिरे रहते हैं तथा ये नन अर्थात् खुले नहीं होते हैं अतः इन्हें आवतबीजी पादप कहते हैं ये पुष्पीय पादप नाम से भी विख्यात हैं इस प्रभाग में उन पादपों का समावेश किया गया है जिनमें वितरण की दिष्ट से बीज महत्वपूर्ण अंग है वर्तमान समय में ये बीजधारी पादप सम्पूर्ण पादप जगत में न केवल विश्व में प्रभावी वनस्पति है बिक संख्या की दिष्ट से भी सर्वाधिक है अतः इनका अध्ययन महत्वपूर्ण है ### एन्जियोस्पर्म के लाक्षणिक लक्षण इन पादपों के मुख्य लाक्षणिक लक्षण निम्नलिखित हैं - 1. एन्जियोस्पर्म पादप पूर्णतया जड, तना व पत्तियों में विभेदित है तथा ये वक्ष, क्षूप तथा शाकीय रूप में पाये जाते हैं - इन पादपों में मूसला मूल, कडा मूल तथा अपस्थानिक मूल पाई जाती हैं कई पादपों की मूल रूपान्तरित होकर खा पदार्थों का संचय करती हैं - उ. पत्तियों में विविधता पाई जाती है सामान्य पत्तियां हरी, सरल, सूयाकार संयु हस्ताकार या पिाकार, सवन्त या अवन्त होती हैं कई पादपों की पत्तियां ोटी व कांटों में रूपान्तरित हो जाती हैं यह मरूद्भिद पादपों का लक्षण है - 4. तना उर्ध्व, या श्यान, कोमल या ठोस तथा पर्व व पर्वसंिियों में रूपान्तिरत होता है पर्वसंिधयों से पर्ण तथा पर्ण के कक्ष में कक्षस्थ कलिका उत्पन्न होती है यह कक्षस्थ किका कायिक या पुष्पीय किलका हो सकती है तरूण तने पर बहुकोशिय स्तम्भ रोम पाये जाते हैं कई तने कोमल होते हैं उन्हें लताएं कहते हैं - 5. इन पादपों की पत्तियों में समानान्तर (एकबीजपत्री) तथा जालिकावत (द्विबीजपत्री) शिराविन्यास पाया जाता है - 6. पित्तयों की आन्तिरिक संरचना में विभेदन पाया जाता है द्विबीजपत्री पादपों में पष्टाधारी पित्तयां होती हैं इन पित्तयों में पर्णमध्योत्तक खंभ तक व स्पंजी तक में विभेदित होता है तथा रन्ध्र केवल निचली सतह पर पाये जाते हैं जबिक एकबीजपत्री पादपों में समद्विपार्श्विक पित्तयां पाई जाती हैं इन पित्तयों का पर्णमध्योत्तक तथा रन्ध्र का वितरण निचली तथा परी दोनों ही सतहों पर समान रूप से होता है - . संवहनी तक विकसित प्रकार का होता है जायलम वाहिका, वाहिनिका, जालम मदुतक तथा जायलम रेशों से मिलकर बना होता है इसी तरह लोएम, चालनी निलका, सहकोशिका, लोएम मदुतक तथा लोएम फाइबर से मिलकर बना होता है संवहन पूल अरीय (मूल) व संयु (स्तम्भ) में होते हैं संवहन पूल संयु, समपार्श्विक, खुला व अन्तः आदिदारू (द्विबीजपत्री) तथा संयु, समपार्श्विक तथा बन्द (एकबीजपत्री) प्रकार का होता है एकबीजपत्री पादपों में स्तंभ के संवहन पूल भरण तक में बिखरे पड़े रहते हैं जबिक द्विबीजपत्री पादपों के स्तम्भ संवहन पूल एक वलय के रूप में केन के स्थित रहते हैं - एन्जियोस्पर्म पादपों में सामान्य प्राथमिक, सामान्य त्रियक विप्रदर्शित होती हैं - एन्जियोस्पर्म पादपों का मुख्य लक्षण है पुष्प बनना ये पुष्प विभिन्न रंगों के तथा एकलिंगी अथवा उभयलिंगी प्रकार के होते हैं ये पुष्प सामान्यतया बाह्य दलपुंज, दलपुंज, पुंकेसर तथा स्त्रीकेसर सहित होते हैं - एन्जियोस्पर्म में अण्डाशयी भित्ति जो अण्डपों (Carpels) से बनी होती है से बीजाण्ड के रहते हैं - 11. एन्जियोस्पर्म में अण्डप संयु रूप से अथवा अलगअलग जायांग बनाते हैं जो अण्डाशय, वर्तिका तथा वर्तिकाग्र में विभेदित होता है - 12. एन्जियोस्पर्म की नर जनन कोशिका परागकण में तथा मादा जननांग अण्ड होता है जो कि मशः लघुबीजाणु जनन तथा गुबीजाणु जनन से बनते हैं - 13. एन्जियोस्पर्म में परागण कीटों, वायु, जल तथा जन्तुओं द्वारा होता है - एन्जियोस्पर्म में द्विनिषेचन तथा त्रिसंलयन होता है अतः इसका भ्रूणपोष त्रिगुणित होता है - 15. एन्जियोस्पर्म में निषेचन के पश्चात् निषेचित परिपव अण्डाशय फल में तथा निषेचित परिपव बीजाण्ड बीज में परिवर्तित होते हैं - 16. एकबीजपत्री पादपों के बीज में एकबीजपत्र तथा द्विबीजपत्री पादपों के बीज में दो बीजपत्र होते हैं यह एकबीजपत्री तथा द्विबीजपत्री पादपों के वर्गीकरण का एक आधार भी है # महत्वपूर्ण बिन्दु ब्रायोफाइटा शद का सर्वप्रथम प्रयोग ब्राउन (164) ने किया था बाद में इस प्रभाग में सरल, आ, प्रथम स्थलीय असंवहनी व भ्रूणीय पादपों को सम्मिलित किया गया - ब्रायोफाइट्स सामान्यतया नम व ायादार स्थानों पर आःस्तरों जैसे शिलाखण्डों, दीवारों, वक्षों के तनों व ाल पर पाये जाते हैं - ब्रायोफाइटा का मुख्य पादपकाय युमकोद्भिद् होता है यह दो प्रकार के स्वरूप में होता है (i) थैलाभ तथा (ii) पर्णिल - 4. पादप सुकायक, पष्ठाधारी, द्विभाजी, शाखित व चपटा होता है - 5. गण मार्केन्शिएलीज का थैलस आन्तरिक रूप से परी प्रकाश संश्लेषी तथा आधारीय संचयी क्षेत्र में विभेदित होता है जबिक गण ऐन्थोसिरोटेलीज में इस प्रकार का विभेदन नहीं होता है - 6. ब्रायोफाइटा में जनन कायिक व लैंगिक प्रकार का होता है - . एक पूर्ण विकसित स्पोरोगोनियम पाद, सीटा व कैसूल तीन भागों में विभ होता है - . इनमें विषमरूपी पीी एकान्तरण पाया जाता है - . टेरिडोफाइटा पादपों में सुविकसित संवहन तंत्र पाया जाता है अतः इन्हें संवहनी टिोगेम्स कहते हैं - 1. स्वरूप के आधार पर टेरिडोफाइटा को गुपर्णी व लघुपर्णी दो वर्गों में बांटा जा सकता है - 11. टेरिडोफाइटा के मूल व स्तम्भ में कई प्रकार रंभ पाई जाती है - 12. टेरिडोफाइटा में बीजाणुधानियों का परिवर्धन दो प्रकार का होता है (i) लेटोस्पोरोन्जिएट तथा (ii) यूस्पोरेन्जिएट - 13. टेरिडोफाइट्स समबीजाण्विक व विषमबीजाण्विक दो प्रकार के होते हैं - समबीजाण्विक वंशों में प्रौथेलस वायवीय तथा पर्णहिरत रहित भी होता है - 15. विषमबीजाण्विक वंशों में लघुबीजाणु के अंकुरण से नर युमकोद्भिद् तथा गुबीजाणु के अंकुरण से मादा युमकोद्भिद् विकसित होते हैं - 16. टेरिडोफाइट्स में युमकोद्भिद अंशकालिक जबिक बीजाणुउद्भिद् दीर्घकालिक प्रावस्था है - जिम्नोस्पर्म में अण्डाशय की अनुपिश्थित के कारण बीजाण्ड के हुए नहीं होते हैं अतः फलिमित्ति नहीं बनती है अतः इनके बीज नन होते हैं - 1. जिम्नोस्पर्म के जायलय में वाहिकाओं तथा लोएम में सहकोशिकाओं का अभाव होता है - जिम्नोस्पर्म पादप विषमबीजाण्विक होते हैं गु एवं लघुबीजाणुधानिया मशः गु एवं लघुबीजाणुपर्णों पर सघन शंकु या विरल स्टोबिलस बनाती है - 2. इन पादपों में सुस्पष्ट पीी एकान्तरण पाया जाता है तथा द्विगुणित बीजाणुद्भिद् जीवन की प्रमुख व प्रभावी प्रावस्था होती है - 21. ऐन्जिओस्पर्म को आवतबीजी पादप कहते हैं योंकि इनके बीज फलभित्ति से घिरे रहते हैं - 22. ऐन्जियोस्पर्म पादपों का मुख्य लक्षण है पुष्प बनना ये पुष्प विभिन्न रंगों के तथा एकलिंगी अथवा उभयलिंगी प्रकार के होते हैं - 23. ऐन्जियोस्पर्म में द्विनिषेचन तथा त्रिसंलयन होता है अतः इनका भ्रूणपोष त्रिगुणित होता है - 24. एकबीजपत्री पादपों में बीज में एक बीजपत्र तथा द्विबीजपत्री पादपों में बीज में दो बीजपत्र होते हैं ## अभ्यासार्थ प्रश्न #### वस्तुनिष्ठ प्रश्न - 1. ब्रायोफाइटा नाम का सर्वप्रथम उपयोग किसने किया - (अ) ब्राउन ने - (ब) ऐंलर ने - (स) स्मिथ - (द) केवर्स ने - 2. ब्रायोफाइट में प्रभावी पीी होती है - (अ) बीजाणुद्भिद् - (ब) बीजाण् - (स) युमकोद्भिद् - (द) स्पोरोगोनियम - 3. ब्रायोफाइट सामान्यतया पाये जाते हैं - (अ) लवणीय आवासों में (ब) नम व ायादार आवासों में - (स) शुष्क आवासों में - (द) जलीय आवासों में - 4. मतोपजीवी ब्रायोफाइट है - (अ) मार्केन्शिया - (ब) एन्थोसिरोस - (स) बसबाउमिया - (द)
रिसिया - 5. निम्न में से कौनसे पादप संवहनी टिोगेम्स कहलाते हैं - (अ) थैलोफाइटा - (ब) ब्रायोफाइटा - (स) टेरिडोफाइटा - (द) उपरो सभी - 6. निम्नलिखित में से जलीय टेरिडोफाइटा है - (अ) *इवीसिटम* - (ब) सिलेजिनेला - (स) *मार्सीलिया* - (द) लाइकोपोडियम - . अश्वपु कहलाता है - (अ) इवीसिटम - (ब) *ऐडियन्टम* - (स) मार्सीलिया - (द) टेरिस - . जिम्नोस्पर्म की उत्पत्ति हुई है - (अ) पेलियोजोइक महाकाल (ब) सीनोजोइक महाकाल - (स) मीसोजोइक महाकाल (द) प्रोटेरोजोइक - सबसे बडा जिम्नोस्पर्म है - (अ) टेसस ब्रकेटा - (ब) जेमिया पिगमिया - (स) सिकोइया सैंपरवाइरेंस - (द) पाइनस रासबर्घाई - 1. विरलदारूक काष्ठ पाया जाता है - (अ) पाइनस - (ब) साइकस - (स) *इफेडा* - (द) नीटम - 11. नील हरित शैवाल किसकी मूल में सहजीवी के रूप में मिलते हैं - (अ) साइकस - (ब) पाइनस - (स) *इफेडा* - (द) जिंगो - 12. आवतबीजी पादप है - (अ) एन्जियोस्पर्म - (ब) जिम्नोस्पर्म - (स) टेरिडोफाइटा - (द) ब्रायोफाइटा - 13. संयु समपार्श्विक, खुला व अन्तःआदिदारूक संवहन पूल पाया जाता है - (अ) एकबीजपत्री - (ब) द्विबीजपत्री - (स) दोनों में - (द) उपरो में से कोई नहीं - 14. पादप के जीवन में पुष्प बनना लक्षण है - (अ) जिम्नोस्पर्म का - (ब) एन्जियोस्पर्म का - (स) दोनों का - (द) टेरिडोफाइटा का - 15. एन्जियोस्पर्म का भ्रूणपोष होता है - (अ) अगुणित (n) - (ब) द्विगुणित (2n) - (स) त्रिगुणित (3n) - (द) बहुगुणित ## अतिलघुत्तरात्मक प्रश्न - 1. एक जलीय ब्रायोफाइट पादप जाति का नाम बताइये - 2. ब्रायोफाइटा नाम सर्वप्रथम किसने उपयोग में लिया - ब्रायोफाइटा के नर व मादा जननांग के नाम लिखिये - एक ब्रायोफाइटा का बीजाणुद्भिद् कितने भागों में विभ होता है नाम लिखिये - 5. दो विषमबीजाण्विक टेरिडोफाइट्स के नाम बताइये - 6. एक लेटोस्पोरेन्जिएट टेरिडोफाइट्स का नाम लिखिये - . एक जलीय टेरिडोफाइट्स का नाम लिखिये - . टेरिडोफाइटा को परिभाषित कीजिये - . जिम्नोस्पर्म को परिभाषित कीजिये - 1. जीवित जीवाश्म या होते हैं - 11. सघनदारूक काष्ठ या है - 12. जिम्नोस्पर्म का भ्रूणपोष प्रति में कैसा होता है तथा कब बनता है - 13. एन्जियोस्पर्म बीज की विशेषता बताइये - एकबीजपत्री पादपों की पत्तियों का शिराविन्यास कैसा होता है - 15. द्विबीजपत्री पौधों की पत्तियों की विशेषता बताइये - 16. द्विबीजपत्री स्तम्भों के संवहन पूल की विशेषता बताइये #### लघुत्तरात्मक प्रश्न - 1. ब्रायोफाइटा पादपों को उभयचरी यों कहते हैं - ब्रायोफाइटा में कायिक जनन की विधियों के नाम उदाहरण सिहत बताइये - 3. ब्रायोफाइट्स के आवास पर संक्षित टिपणी लिखिये - 4. ब्रायोफाइटा में निषेचन को समाइये - लेटोस्पोरेन्जिएट व यूस्पोरेन्जिएट बीजाणुधानी परिवर्धन में अन्तर बताइये - गुबीजाणुपर्णी तथा लघुबीजाणुपर्णी टेरिडोफाइटा में अन्तर बताइये - . टेरिडोफाइटा में पाई जाने वाली रंभ के नाम उदाहरण सहित बताइये - . टेरिडोफाइटा के आवास पर संक्षित टिपणी लिखिये - . विरलदारूक काष्ठ व सघनदारूक काष्ठ में अन्तर बताइये - 1. जिम्नोस्पर्म में परागण व निषेचन की विशेषता बताइये - 11. जिम्नोस्पर्म पर्ण पर संक्षित टिपणी लिखिये - 12. जिम्नोस्पर्म के बीज की विशेषता बताइये - 13. एन्जियोस्पर्म के स्तम्भ की आन्तरिक संरचना लिखिये - एकबीजपत्री एवं द्विबीजपत्री पादपों की पत्तियों में अन्तर बताइये - एकबीजपत्री व द्विबीजपत्री पादपों के स्तम्भों की आन्तरिक संरचना में अन्तर बताइये - 16. एन्जियोस्पर्म को आवतबीजी पादप यों कहते हैं #### निबन्धात्मक प्रश्न - 1. ब्रायोफाइटा पादपों के लाक्षणिक लक्षणों की याख्या कीजिये - 2. ब्रायोफाइटा में जनन को समाइये - 3. टेरिडोफाइटा के मुख्य लाक्षणिक लक्षण बताइये - 4. टेरिडोफाइटा के जनन संबंधित लक्षणों का वर्णन कीजिये - 5. जिम्नोस्पर्म के प्रमुख लाक्षणिक लक्षण लिखिये - 6. जिम्नोस्पर्म की बाह्य व आन्तरिक आकारिकी का वर्णन कीजिये - जिम्नोस्पर्म के जनन अंगों व जनन प्रयाि का वर्णन कीजिये - एन्जियोस्पर्म के लाक्षणिक लक्षण लिखिये - एन्जियोस्पर्म पादपों की बाह्य एवं आन्तरिक संरचना की विस्तत याख्या कीजिये उत्तरमालाः 1 (अ) 2 (स) 3 (ब) 4 (स) 5 (स) 6 (स) (अ) (अ) (स) 1 (ब) 11 (अ) 12 (अ) 13 (ब) 14 (ब) 15 (स) # Downloaded from https://www.studiestoday.com # इकाई – 12 अध्याय – 13 # विषाणु एवं माइकोप्लाज्मा (Virus and Mycoplasma) विषाणु शब्द की उत्पत्ति लैटिन शब्द वायरस (Viros = poisonous fluid) से हुई है जिसका शाब्दिक अर्थ है विष अणु । इन्हें जीवाणुज फिल्टर से पृथक नहीं किया जा सकता है। क्योंकि ये आमाप में जीवाणुओं से भी छोटे कण है। रासायनिक दृष्टि से ये प्रोटीन के आवरण से घिरे न्यूक्लिक अम्ल के खण्ड होते हैं। लुरिया व डार्नेल (1968) के अनुसार ये ऐसे एकक है जिनका जीनोम एक न्यूक्लिक अम्ल होता है, जो परपोषी की सजीव कोशिका के अन्दर उसकी अन्तर्वस्तुओं का उपभोग कर पुनरावृत्ति द्वारा विशिष्ट कणों का संश्लेषण करते हैं। ये संश्लेषित कण वायरोन्स (Virons) कहलाते हैं तथा ये कण वायरस जीनोम का स्थानान्तरण दूसरी कोशिकाओं में कर सकते हैं। ## वायरस की प्रकृति विषाणुओं की प्रकृति के बारे में अनेक मत दिये गये हैं। इनमें से विषाणुवाद सबसे मान्य व प्रचलित मत है इसके अनुसार — - विषाणु कणीय संरचना है जिन्हें साधारण सूक्ष्मदर्शी द्वारा नहीं देखा जा सकता है। इन्हें जीवाण्विक फिल्टर से भी पृथक नहीं किया जा सकता है। - 2. इनका संवर्धन कृत्रिम माध्यम में नहीं किया जा सकता है। - ये अपने विशिष्ट परपोषी में लाक्षणिक लक्षण उत्पन्न करते हैं तथा ताप व आर्द्रता के प्रति अनुक्रिया प्रकट करते हैं। - इन्हें रसायन तथा ताप उपचार द्वारा निष्क्रिय किया जा सकता है। - 5. वायरस में स्वयं के स्तर पर स्वतंत्र रूप से वृद्धि करने की क्षमता नहीं होती है अतः इन्हें सजीव ईकाई नहीं कहा जा सकता है परन्तु ये अकोशिकीय कण परपोषी कोशिकाओं का उपयोग स्वयं के जनन के लिये करते हैं। अर्थात् ये कण सजीव परपोषी के बाहर निर्जीव या निष्क्रिय तथा सजीव परपोषी के अन्दर जीवित जीव की तरह व्यवहार करते हैं। अतः वायरस न सजीव है और न ही निर्जीव यह सजीवों एवं निर्जीवों के बीच की योजक कड़ी है। क्योंकि इनमें सजीव इकाइयों एवं निर्जीव पदार्थों दोनों के गुण समान रूप से पाये जाते हैं जो निम्न प्रकार हैं— ### I. विषाणुओं के जैविक गुण - विषाणुओं में आनुवंशिक पदार्थ (DNA या RNA) की पुनरावृत्ति होती है। - 2. इनमें उत्परिवर्तन होते हैं। - विषाणु रासायनिक पदार्थों, विकिरण, ताप आदि के प्रति अनुक्रिया प्रदर्शित करते हैं। - 4. इनमें प्रतिजनिक (Antigenic) गुण होते हैं। - 5. इनमें आनुवंशिक पदार्थ डी.एन.ए. या आर.एन.ए. पाया जाता है। - इनका गुणन (Multiplication) केवल जीवित परपोषी कोशिकाओं में ही सम्भव है। - 7. इनमें भी संक्रमण क्षमता होती है तथा ये परपोषी विशिष्टता दर्शाते हैं। ## II. विषाणुओं के निर्जीव पदार्थों के समान गुण - इनका आसानी से क्रिस्टलीकरण किया जा सकता है। - 2. विषाणुओं में उपापचयी क्रियाएं नहीं होती हैं। - 3. इनमें श्वसन क्रिया नहीं होती है। - 4. इनमें एन्जाइम्स नहीं होते हैं। - 5. इनकी विशिष्ट कोशिकीय संरचना भी नहीं होती है। - 6. इनमें कार्यशीलता स्वायत्तता भी नहीं होती है अर्थात् कोशिका के बाहर वातावरण में अक्रिय रहते हैं। # Downloaded from https://www.studiestoday.com विषाणु कण रासायनिक दृष्टि से अक्रियाशील होते हैं अतः इनकी आभासी संरचना को लम्बे समय तक बिना किसी परिवर्तन के रखा जा सकता है। #### विषाणुओं की संरचना विषाणु अत्यन्त सूक्ष्म जीव है अतः इनका अध्ययन इलेक्ट्रॉन सूक्ष्मदर्शी से ही सम्भव है। - आमाप एक सामान्य विषाणु कण का आमाप 10-200 nm तक होता है जबिक सबसे बड़े विषाणु 300 m तक हो सकते हैं। पादप विषाणु आमाप में जन्तु विषाणु से छोटे होते हैं। - 2. **आकार** विषाणु आकार में कुण्डलित दंडिका (मम्प वायरस), घनाभ (हरपीज), जटिल (इन्फ्लूएन्जा वायरस) आदि होते हैं। कुछ विषाणु सूत्रवत भी होते हैं (चित्र 13.1)। चित्र 13.1 : प्रमुख विषाणुओं की संरचना 3. **रासायनिक संगठन** — सभी प्रकार के विषाणुओं की मूल रासायनिक संरचना समान होती है। प्रत्येक विषाणु में आनुवंशिक पदार्थ आर.एन.ए. अथवा डी.एन.ए. का एक केन्द्रीय कोड होता है जो कि बाहर से एक प्रोटीन आवरण से ढका रहता है। प्रत्येक विषाणु में आनुवंशिक पदार्थ का केवल एक अणु होता है इसमें न्यूक्लिओटाइड युगलों की संख्या 1000 से 2,50,000 तक होती है किन्तु किसी एक प्रकार के विषाणु में इनकी संख्या निश्चित होती है। अर्थात् न्यूक्लिओटाइडों की संख्या विषाणु का एक विशिष्ट लाक्षणिक लक्षण है। #### विषाण् नामकरण द्विनाम पद्धित विषाणुओं के नामकरण के लिये अधिक उपयुक्त न होने के कारण विषाणुओं के नाम पद्धित की अन्तर्राष्ट्रीय सिमिति ने 1968 में एक नई प्रणाली दी। इस प्रणाली के अनुसार विषाणु के नाम के दो भाग हैं जिसमें प्रथम नाम वायरस का प्रचलित नाम तथा द्वितीय नाम में वायरस की कुट संरचनाओं का उल्लेख किया जाता है। वायरस के नाम का प्रथम भाग अर्थात् प्रचलित नाम परिवर्तित नहीं होता है लेकिन दूसरे भाग को जिसे क्रिप्टोग्राम कहते हैं परिवर्तनीय है। इसके बदलने से दूसरा भाग परिवर्तित हो जाता है। विषाणु के नाम के दूसरे भाग अर्थात् क्रिप्टोग्राम में चार युग्म कुट संरचनाएं होती हैं जो निम्नलिखित प्रकार से है— - प्रथम युग्म न्यूक्लिक अम्लों के प्रकार एवं रज्जुकों की संख्या। - द्वितीय युग्म न्यूक्लिक अम्ल का अणुभार तथा विषाणु में न्यूक्लिक अम्ल की प्रतिशत मात्रा। - 3. **तृतीय युग्म** विषाणु का आकार तथा न्यूक्लिओं प्रोटीनों का आकार। जैसे गोल S, दीर्घित E, अन्य X/S, E, X - 4. चतुर्थ युग्म परपोषी का प्रकार तथा संचरण वाहक। ## विषाणुओं में बहुगुणन अथवा जनन विषाणुओं में बहुगुणन अथवा जनन इनके न्यूक्लिक अम्लों में प्रतिकृतिकरण (Replication) के कारण होता है। गुणन की प्रक्रिया में विषाणु कण, परपोषी कोशिका की उपापचयी सुविधा का उपयोग कर अपने कणों की संख्या में वृद्धि करता है। कुछ विषाणुओं को छोड़कर सभी विषाणुओं में गुणन की प्रक्रिया लगभग जीवाणुभोजी (Bacteriophage) विषाणुओं के समान ही होती है। अतः विषाणुओं के गुणन या जनन की प्रक्रिया को समझने के लिये जीवाणुभोजियों के जीवन चक्र को समझना आवश्यक है। ध्यात्मव है कि जीवाणुभोजी वाइरसें वे वाइरसें होती हैं जो जीवाणुओं (Bacteria) को संक्रमित करती है। इनमें जनन चक्र दो प्रकार का होता है- 1. लयनकारी चक्र तथा 2. लयकारी चक्र #### 1. लयनकारी चक्र (Lytic Cycle) इसमें उग्र (Virulent), लयनकारी (Lytic) जीवाणुभोजी, परपोषी जीवाणु कोशिकाओं को संक्रमित कर नष्ट कर देते हैं तथा इन मृत परपोषी कोशिकाओं में विभोजी अर्थात् विषाणु के डी.एन.ए. का प्रतिकृतन होता है तथा नये विभोजीकण बनते है, जो परपोषी कोशिका के फटने से बाहर आ जाते हैं (चित्र 13.2)। यह चक्र निम्न चरणों में पूर्ण होता है— - (i) अधिशोषण अवस्था परपोषी जीवाणु कोशिका की सतह पर परभोजी विषाणु कणों का संलग्न होना। - (ii) विभोजी न्यूक्लिक अम्ल का परपोषी कोशिका में प्रवेश। चित्र 13.2 : विषाणुओं का लयनकारी चक्र - (iii) परपोषी कोशिका का विभोजी उत्पादक कोशिका में बदलाव – इसमें संक्रमित कोशिका में विभोजी के घटकों का संश्लेषण होता है। इसमें विभोजी के न्यूक्लिक अम्ल व प्रोटीनों का संश्लेषण होता है। - (iv) विभोजी कोशिका का परपोषी कोशिका से विमोचन विभोजी निर्माण की क्रिया 30—90 मिनट में पूरी हो जाती है तथा इस अवधि में प्रत्येक संक्रमित जीवाणु कोशिका में लगभग 200 तक विभोजी बन जाते हैं। इसके बाद विभोजी का डी.एन.ए. लाइसोजाइम एन्जाइम स्रावित करते हैं जिससे परपोषी की कोशिका का लयन हो जाता है। कोशिका भित्ति के लयन के कारण विभोजी मुक्त होकर बाहर निकल जाते हैं। #### 2. लयकारी चक्र (Lysogenic Cycle) इसमें अनउग्र (Nonvirulent) लयकारी जीवाणुमोजी
परपोषी जीवाणु कोशिकाओं को नष्ट नहीं करते हैं, तथा इनका डी.एन.ए. खण्ड जीवाणु कोशिका के जीनोम के साथ समाकलित (Integrate) हो जाता है अर्थात् जुड़ जाता है। जीवाणु के जीनोम के साथ जुड़ा हुआ यह डी.एन.ए. जीवाणु की अनेक पीढ़ियों तक प्रतिकृतिकरण (Replication) करता है। इसमें परपोषी कोशिका (जीवाणु) का लयन (Lysis) नहीं होता है इस प्रक्रिया को लयजनकता (Lysogeny) कहते हैं (चित्र 13.3)। ## विषाणुओं का संचरण विषाणुओं के संचरण का अर्थ है रोगी पादप या जन्तु से स्वस्थ परपोषी तक इनका अभिगमन। यह अभिगमन या संचरण निम्नलिखित प्रमुख विधियों द्वारा होता है— चित्र 13.3 : विषाणुओं का लयकारी चक्र - कायिक प्रवर्धन द्वारा बहुवर्षी पादपों के कायिक अंगों द्वारा। - मृदा द्वारा रोगी पौधों के मलबे या अवशेष से मिट्टी में पाये जाने वाले विषाणु स्वस्थ पादप के मूलतंत्र तक पहुंच जाते हैं तथा इसे संक्रमित करते हैं। - स्पर्श द्वारा तेज हवाओं के कारण रोगी पादपों का स्वस्थ पादपों में स्पर्श। - 4. बीजों द्वारा अनेक बीजाणु निष्क्रिय अवस्था में स्वस्थ बीजों में मौजूद रहते हैं। लेकिन अनुकूल परिस्थितियों में ये पादप को संक्रमित करते हैं। - परागकणों द्वारा अनेक विषाणु रोगी पादप के परागकणों में उपस्थित होते हैं तथा निषेचन के साथ परिवर्धित बीज तक पहुंच जाते हैं। - 6. हवा व जल द्वारा अनेक विषाणु हवा व जल द्वारा मिट्टी में पहुंच जाते हैं। तथा पादप के क्षतिग्रस्त भागों से प्रवेश कर पादप को संक्रमित कर देते हैं। ## विषाणुजनित प्रमुख रोग - I. विषाणुजनित प्रमुख मानव रोग व उनके कारक - 1. चेचक पॉक्स वायरस। - 2. इन्फ्लूएन्जा आर्थोमिक्सो वायरस। - 3. खसरा मिक्सो वायरस। - 4. पोलियो पोलियो वायरस। - 5. रेबीज रैब्डो वायरस। - 6. हेपेटाइटिस हेपेटाइटिस वायरस। - 7. जुकाम राइनो वायरस। - 8. एड्स ह्यूमन टी. लिम्फोट्रोफिक वायरस III (HLV III) या एड्स सम्बन्धित स्ट्रोवायरस (ARU) या लिम्फाडीनोपेथी सम्बन्धित वायरस (CLAV) ### II. विषाणुजनित प्रमुख पादप रोग - 1. टमाटर का कुंचिताग्र रोग - 2. तम्बाकू मोजेक - 3. केले का मोजेक - 4. भिण्डी का पीला शिरा मोजेक - 5. आलू का मोजेक - 6. पपीते का मोजेक - 7. मक्का का घाटी रोग - 8. चावल का वामन रोग। ### जीवाणुभोजी जीवाणुभोजी अविकल्पी परजीवी (Obligate parasites) वाइरस होते हैं जो जीवाणु कोशिकाओं को संक्रमित करते हैं। ये सामान्यतया मृदा, मलयुक्त जल, फलों, दूध व सब्जियों आदि में पाये जाते हैं। विशिष्ट जीवाणुभोजी जन्तुओं व पक्षियों में भी मिलते हैं। ये मनुष्य की आंतों, थूक, लार, रक्त व पस (Pus) आदि में भी पाये जाते हैं। ये जीवाणुभोजी जीवाणुओं के अतिरिक्त यीस्ट तथा नीलहरित शैवालों पर भी परजीवी के रूप में पाये जाते हैं। इन्हें क्रमशः जाइमोफेज व साइनोफेज कहते हैं। ## जीवाणुभोजी की संरचना ये अत्यन्त सूक्ष्म होते हैं तथा इन्हें जीवाण्विक फिल्टर से पृथक नहीं किया जा सकता है। एक प्रारूपिक जीवाणुभोजी टेडपोल के समान (i) सिर (ii) पूंछ में विभेदित होता है (चित्र 13.4)। अधिकांश जीवाणुभोजियों का सिर प्रिज्म की आकृति का होता है जैसे $-T_1, T_2, T_6$ आदि लेकिन T_3 व T_4 में यह षटकोणीय चित्र 13.4 : जीवाणुभोजी (अ) इलेक्ट्रॉन सूक्ष्मदर्शी चित्र (ब) जीवाणुभोजी के विभिन्न घटक होता है। कुछ में यह तन्तुमय होते हैं, अतः ये सिर व पूंछ में विमेदित नहीं होते हैं। T_2 जीवाणुमोजी का सिर $950~\text{Å} \times 650~\text{Å}$ होता है। सिर व पूंछ के बीच का भाग कॉलर कहलाता है। पूंछ व सिर की लम्बाई लगभग बराबर होती है। इसका व्यास 80Å होता है तथा यह प्रोटीन की परत से ढका रहता है। पूंछ के पास एक षटकोणीय प्लेट होती है जिसे **पूंछ प्लेट** कहते हैं। इसकी मोटाई 200Å होती है। इस प्लेट की निचली सतह पर छः पुच्छ तन्तु (Tail fibrils) लगे रहते हैं। प्रत्येक पूंछ तन्तु की लम्बाई 1500Å होती है। पूंछ तन्तु दो कार्य करता है — (i) जीवाणुभोजी को जीवाणु की सतह पर चिपकाने में सहायता करते हैं तथा (ii) इनसे स्नावित एन्जाइम जीवाणु की भिति के लयन (Lysis) में सहायक है। जीवाणुभोजी का सिर न्यूक्लियोकैप्सिड का बना होता है। इस कवच या आवरण का निर्माण करने वाले सभी प्रोटीन अणु एक समान होते हैं। यह जीवाणुभोजी का एक लाक्षणिक गुण है। सिर के केन्द्र में डी.एन.ए. का एककेन्द्रीय क्रोड होता है। जो प्रोटीन के आवरणों से ढका रहता है। आन्तरिक कवच का निर्माण करने वाली प्रोटीन उप—इकाइयाँ केप्सोमियर्स (Capsomeres) कहलाती है। कोलीफाज तथा $\phi \times 174$ में डी.एन.ए. एकरज्जुकी (SS DNA) होता है, अधिकांश जीवाणुभोजियों में डी.एन.ए. द्विरज्जुकी (DS DNA) होता है। डी.एन.ए. जीवाणुभोजी का आनुवंशिक पदार्थ है। इसके मुख्य दो कार्य होते हैं — (i) इसमें जीवाणुभोजी के आनुवंशिक लक्षण निहित होते हैं। तथा (ii) यह संक्रमण का मुख्य वाहक है। यह परपोषी कोशिका को अधिक से अधिक विषाणु बनाने के लिये प्रेरित करता है। ## माइकोप्लाज्मा ## (Mycoplasma) माइकोप्लाज्मा जीवाणुओं से भी छोटे आकार की सजीव इकाइयां हैं। वस्तुतः ये सजीव जगत में सूक्ष्मतम जीव जाने जाते हैं। सर्वप्रथम लुईस पास्चर ने पशुओं के प्लूरोनीमोनिया रोग के रोगकारक के रूप में इनकी उपस्थिति व्यक्त की थी। उनके अनुसार यह पशु रोग सम्भवतः माइकोप्लाज्मा के संक्रमण के कारण होता है। परन्तु वे माइकोप्लाज्मा को वियुक्त (Isolate) करने तथा प्रयोगशाला में कृत्रिम पोषण माध्यम पर संवर्धन करने में असमर्थ रहे। बाद में दो फ्रांसीसी वैज्ञानिकों नौकार्ड एवं रौक्स (1898) ने इन्हें संवर्धन माध्यम पर उगाने में सफलता प्राप्त की। उनके अनुसार ऐसे कृत्रिम संवर्धन माध्यम जिनमें कार्बनिक पदार्थों की प्रचुरता हो ये जीव गोलाभ, तंतुल, ताराकार आदि विभिन्न रूपों में मिलते हैं। प्रारम्भ में नौकार्ड एवं रौक्स ने इनका नामकरण प्यूरोन्यूमोनिया जैसे जीवधारियों (Pleuropneumonia like organism या PPLO) के रूप में किया। बाद में इनका नाम माइकोप्लाज्मा दिया गया। ### माइकोप्लाज्मा के प्रमुख लक्षण - माइकोप्लाज्मा एककोशिक, अचल, प्रौकेरियोटिक, सूक्ष्मतम जीवधारी जीव है जो तले हुए अण्डे के समान निवह (Colony) में पाये जाते हैं। - ये गोलाकार या अण्डाकार कोशिकीय समूह बनाते हैं तथा सड़े–गले पदार्थों, वाहित मल, मिट्टी तथा पेड़ों एवं प्राणियों में पाये जाते हैं। - 3. कोशिका भित्ति की अनुपस्थिति के कारण इनकी आकृति अनिश्चित होती है। अतः ये बहुआकृतिक या बहुरूपी (Pleomorphic) जीव होते हैं। ये गोलाभ, तन्तुल, ताराकार या अनियमित पिंड के रूप में पाये जाते हैं (चित्र 13.5)। इसी कारण माइकोप्लाज्मा का जीव जगत के जोकर कहा जाता है। चित्र 13.5 : माइकोप्लाज्मा की विभिन्न आकृतियाँ - 4. ये परजीवी अथवा मृतजीवी जीव होते हैं। - 5. इनमें आर.एन.ए. तथा डी.एन.ए. दोनों प्रकार के न्यूक्लिक अम्ल पाये जाते हैं। लेकिन डी.एन.ए. की मात्रा आर.एन.ए. से कम होती है। - 6. माइकोप्लाज्मा को स्वतंत्र कोशिका रहित संवर्धन माध्यम पर आसानी से संवर्धित किया जा सकता है लेकिन इनकी वृद्धि के लिये स्टेरोल्स की उपस्थिति आवश्यक है। - माइकोप्लाज्मा ग्राम अभिरंजन के प्रति अनुक्रिया नहीं करते हैं अतः ये ग्राम—ऋणात्मक (Gram-negative) होते हैं। - 8. माइकोप्लाज्मा किसी भी एन्जाइम के प्रति संवेदनशील नहीं होते हैं क्योंकि इनमें कोशिका भित्ति अनुपस्थित होती है। अतः कोशिका भित्ति पर क्रिया करने वाले प्रतिजैविक औषधियों जैसे पेनीसिलिन, वेनकोमाइसिन एवं सिफेलोरीडीन आदि का इन पर कोई प्रभाव नहीं होता है। #### वर्गीकरण वर्ग - मोलीक्यूट्स गण – माइकोप्लाज्मेटेलीज कुल – माइकोप्लाज्मेटेसी वंश – माइकोप्लाज्मा #### माइकोप्लाज्मा की संरचना माइकोप्लाज्मा कोशिका भित्ति रहित प्रोकेरियोटिक, एककोशिक सूक्ष्मजीव है। यह बाह्य एकक प्लाज्मा झिल्ली के रूप में होती है जो त्रिस्तरीय व लाइपोप्रोटीन की बनी होती है। इसमें फास्फोलिपिड्स एवं कोलेस्ट्राल होता है तथा कोशिका झिल्ली की मोटाई 80Å से 100Å तक होती है। यह चयनात्मक पारगम्य होती है। प्लाज्मा झिल्ली से परिबद्ध कोशिकाद्रव्य होता है जिसमें झिल्ली युक्त कोशिका उपांगों का अभाव होता है। कोशिका के मध्य में केन्द्रकाभ (Nucleoid) पाया जाता है। यह प्रारम्भिक केन्द्रक की तरह कार्य करता है। कोशिकाद्रव्य में कभी—कभी छोटी रिक्तिकाएं भी पाई जाती है। राइबोसोम 70s प्रकार के होते हैं। केन्द्रकाभ में एक नग्न द्विकुण्डलित वृत्ताकार रेशेदार डी.एन.ए. (DNA) पाया जाता है। इसके अतिरिक्त एकल कुण्डलित आर.एन.ए. (RNA), वसा, घुलनशील प्रोटीन, एन्जाइम्स एवं अन्य उपापचर्यी पदार्थ भी पाये जाते हैं (चित्र 13.6)। चित्र 13.6 : माइकोप्लाज्मा कोशिका की संरचना माइकोप्लाज्मा में लैंगिक व अलैंगिक जनन नहीं पाया जाता है परन्तु इनमें जनन की क्रिया (i) विखण्डन (ii) मुकुलन (iii) तरूण प्रारम्भिक संरचनाओं द्वारा होती है। तरूण प्रारम्भिक संरचनाओं (Elementary bodies) द्वारा जनन माइकोप्लाज्मा में महत्वपूर्ण है। इस जनन के समय माइकोप्लाज्मा में कोशिका में अनेक छोटी एवं गोलाकार संरचनाएं बनती हैं इनको प्रारम्भिक संरचना कहते हैं। जैसे—जैसे इनकी आकृति व आकार में वृद्धि होने लगती है तो वृद्धि के अनुरूप इन्हें द्वितीयक या तृतीयक संरचनाएं भी कहा जाता है। जब ये संरचनाएं परिपक्व होकर माइकोप्लाज्मा की मातृ कोशिका से मुक्त हो जाती है तब इन्हें चतुर्थ संरचना कहते हैं। यह संरचना ही एक नव एवं पूर्ण माइकोप्लाज्मा में विकसित होती है (चित्र 13.7)। चित्र 13.7 : माइकोप्लाज्मा में जनन #### रोग संचरण - माइकोप्लाज्मा जिनत पादप रोगों का संचरण एक विशेष प्रकार के कीट पातफुटक (Leaf hopper) द्वारा ही होता है। - 2. पौध रोपण या कलम बांधने से भी इसका संचरण होता है। - 3. अमरबेल के द्वारा यह रोग एक पौधे से दूसरे पौधे में होता है। ## माइकोप्लाज्माजन्य प्रमुख रोग - I. पादप रोग - (i) गन्ने का धारिया रोग - (ii) बैंगन का लघुपर्णी रोग - (iii) पपीते का गुच्छित शीर्ष रोग - (iv) कपास का हरीतिमागम रोग - (v) मक्का का बौना रोग - (vi) आलू का कुर्चीसम रोग - II. मानव रोग - (i) अप्रारूपिक न्यूमोनिया एवं श्वसन तंत्र रोग - (ii) श्वसन नाल संक्रमण - (iii) मनुष्यों में बन्ध्यता - (iv) जननांग शोथ रोग #### III. जन्तु रोग - (i) पशुओं का शोथ रोग - (ii) भेड़ बकरी का ऐगेलेक्ट्या रोग - (iii) मुर्गो में शिरा नाल शोथ आदि ## महत्वपूर्ण बिन्दु - विषाणु शब्द की उत्पत्ति लैटिन शब्द वायरस से हुई है, जिसका शाब्दिक अर्थ है विष अणु। इन्हें जीवाणुज फिल्टर से पृथक नहीं किया जा सकता है। - लुरिया व डार्नेल (1968) के अनुसार विषाणु ऐसे एकक है जिनका जीनोम एक न्यूक्लिक अम्ल होता है। - विषाणु कणीय संरचना है। इनका संवर्धन कृत्रिम माध्यम में नहीं किया जा सकता है। - आनुवांशिक पदार्थों की पुनरावृति, उत्परिवर्तन के समान परिवर्तन, रासायनिक पदार्थों, विकिरण, ताप आदि के प्रति अनुक्रिया, आनुवांशिक पदार्थ डी.एन.ए. या आर.एन.ए. व केवल जीवित कोशिकाओं में ही गुणन आदि जैसे विषाणुओं के जैविक गुण होते हैं। - विषाणुओं में कई गुण निर्जीव पदार्थों के समान भी पाये जाते हैं। - विषाणु अत्यन्त सूक्ष्म जीव है। ये आमाप व आकार में भिन्नता दर्शाते हैं। - आधुनिक वर्गीकरण के अनुसार एन्ड्रलाफ, हार्नी व टोर्नियर 7. (1962) ने विषाणुओं का व्यवस्थित वर्गीकरण दिया। इसे एल.एच.टी. वर्गीकरण भी कहा जाता है। - विषाणुओं में बहुगुणन अथवा जनन इनके न्यूक्लिक अम्लों में प्रतिकृतिकरण के कारण होता है। - विषाणुओं में जनन चक्र लयनकारी व लयकारी प्रकार का - 10. विषाणुओं का संचरण कायिक प्रवर्धन, मृदा, स्पर्श, बीजों, परागकणों, हवा तथा जल द्वारा होता है। - 11. कई विषाणु लाभदायक होते हैं, लेकिन अनेक विषाणु मानव व पादपों में कई प्रकार के रोग उत्पन्न करते हैं। - 12. जीवाणुभोजी अविकल्पी परजीवी होते हैं जो जीवाणु कोशिकाओं को संक्रमित करते हैं। ये सामान्यतया मृदा, मलयुक्त जल,
फलों, दूध व सिब्जियों आदि में पाये जाते हैं। - 13. कोशिका भित्ति की अनुपस्थिति के कारण माइकोप्लाज्मा की आकृति अनिश्चित होती है। अतः ये बहुआकृतिक या बहुरूपी होते हैं। - 14. माइकोप्लाज्मा की वृद्धि के लिये स्टेरॉल्स की उपस्थिति आवश्यक है। - 15. आधुनिक वर्गीकरण के अनुसार माइकोप्लाज्मा को वर्ग मोलीक्यूट्स में रखा गया है। - 16. माइकोप्लाज्मा में अलैंगिक व लैंगिक जनन नहीं पाया जाता है परन्तु इनमें जनन की क्रिया विखण्डन, मुकुलन एवं तरूण प्रारम्भिक संरचनाओं द्वारा होता है। ### अभ्यासार्थ प्रश्न ### वस्तुनिष्ठ प्रश्न - वायरस होते हैं– - (अ) कणिकामय - (ब) एककोशिक - (स) बहुकोशिक - (द) तंतुमय - जीवाणुभोजी बने होते हैं- - (अ) न्यूक्लिक अम्ल के - (ब) केवल प्रोटीन के - (स) न्यूक्लिओ प्रोटीन के - (द) कार्बोहाइड्रेट के - वायरस कण के आवरण को कहते हैं- - (अ) कोशिका झिल्ली - (ब) कोशिका भित्ति - (स) क्यूटिकल - (द) केप्सिड - निम्न में से वायरस जनित रोग है- - (अ) टाइफाइड - (ब) टी.बी. - (स) पोलियो - (द) डिप्थीरिया - आधुनिक वर्गीकरण के अनुसार माइकोप्लाज्मा सम्मिलित किये गये हैं- - (अ) साइनोबेक्टिरिया में (ब) यूबेक्टिरिया में - (स) मॉलीक्यूट्स में - (द) स्पाइरोकीट्स में - बैंगन का लघुपर्णी रोग होता है- - (अ) शैवाल से - (ब) वायरस से - (स) माइकोप्लाज्मा से (द) बेक्टिरिया से - कोशिका जगत का जोकर किसे कहा जाता है- - (अ) वायरस - (ब) बेक्टिरिया - (स) माइकोप्लाज्मा - (द) साइनोबेक्टिरिया - माइकोप्लाज्मा की वृद्धि के लिये आवश्यक है- - (अ) वसा - (ब) स्टेरोल - (स) प्रोटीन - (द) कार्बोहाइड्रेट ## 142 ### अतिलघुत्तरात्मक प्रश्न - उस विषाणु का नाम लिखिये जिसमें एकल रज्जुकी डी.एन.ए. पाया जाता है। - उस विषाणु का नाम लिखिये जिसमें द्विरज्जुकी आर.एन.ए. पाया जाता है। - 3. टी.एम.वी. (TMV) का पूरा नाम लिखिये। - 4. दो विषाणु जनित प्राणि रोगों के नाम बताइये। - 5. PPLO का पूरा नाम लिखिये। - 6. माइकोप्लाज्मा को बहुआकृतिक क्यों कहते हैं? - 7. माइकोप्लाज्मा जनित दो मानव रोग बताइये। #### लघूत्तरात्मक प्रश्न - 1. विषाणु सजीव या निर्जीव है, स्पष्ट कीजिये। - 2. पादप व जन्तु विषाणु में क्या अन्तर है। - 3. जीवाणुभोजी की संरचना समझाइये। - 4. माइकोप्लाज्मा की कोशिका संरचना बताइये। - 5. माइकोप्लाज्मा का संचरण किस प्रकार होता है। - 6. माइकोप्लाज्मा के सामान्य लक्षण लिखिये। - 7. माइकोप्लाज्मा में जनन पर संक्षिप्त टिप्पणी लिखिये। #### निबन्धात्मक प्रश्न - 1. विषाणुओं की प्रकृति एवं लक्षण का वर्णन कीजिये। - 2. विषाणु की संरचना एवं रासायनिक संगठन का वर्णन कीजिये। - 3. विषाणु / जीवाणुभोजी के जनन को समझाइये। - 4. विषाणुओं के वर्गीकरण के बारे में लिखिये। - 5. माइकोप्लाज्मा की संरचना एवं जनन का वर्णन कीजिये। - 6. माइकोप्लाज्मा की प्रकृति एवं लक्षणों का वर्णन कीजिये। - 7. माइकोप्लाज्मा जनित रोगों पर लेख लिखिये। **उत्तरमालाः** 1 (अ) 2 (स) 3 (द) 4 (स) 5 (स) 6 (स) 7 (स) 8 (ब) #### अध्याय - 14 ## जीवाणु (Bacteria) जीवाणु एककोशिक एवं प्रोकेरियोटिक सूक्ष्मजीव होते हैं। इनकी सर्वप्रथम खोज हॉलैण्ड के वैज्ञानिक एन्टोनी वान ल्यूवेनहाक (Antony Von Leeuwenhock) ने 1676 में की। इन्होंने वर्षों तक रखे हुए जल, लार व दांतों के खुरचे हुए मैल में सूक्ष्मदर्शी से विभिन्न प्रकार के छोटे—छोटे जीव देखे जिनको उन्होंने जन्तुक या एनिमलक्यूल (Animalcule) नाम दिया। उनकी इस खोज के लिये उन्हें जीवाणु विज्ञान का जनक (Father of Bacteriology) कहा जाता है। ## जीवाणु आवास जीवाणु सर्वव्यापी है। ये भूमि, मृदा, वायु, जल, भोजन व जन्तु आदि सभी में मिलते हैं। यहां तक कि मानव की आंत में भी ई. कोलाई नामक जीवाणु मिलते हैं। ये न्यूनतम (–190°C) से उच्चतम (78°C) तापमान में भी पाये जाते हैं। ये हवा में हजारों फीट ऊँचाई तक व जमीन के नीचे लगभग 16 फीट की गहराई तक मिलते हैं। जीवाणु वर्षा जल, आसुत जल, कुएं के गहरे पानी तथा ज्वालामुखी की राख में नहीं मिलते हैं। इनकी उपलब्धता मल पदार्थों, फल, दूध, सब्जी आदि में अधिक होती है। ## जीवाणुओं का वर्गीकरण प्रारम्भ से ही जीवाणुओं का वर्गीकरण वैज्ञानिकों के लिये विवादास्पद विषय रहा है। सर्वप्रथम लीनियस ने अपनी पुस्तक सिस्टेमा नेचुरी (Systema Naturae) में जीवाणुओं को श्रेणी कोआस एवं वर्ग वर्मीज में रखा। वर्तमान में सभी जीवाणुओं का वर्गीकरण लीनियस की द्विनाम पद्धति के आधार पर किया जाता है, एवं इनकी जातियों का नामकरण भी अन्तर्राष्ट्रीय नामकरण नियमों के आधार पर ही सुनिश्चित किया जाता है। जीवाणुओं का वर्गीकरण सूक्ष्मदर्शी परीक्षणों के आधार पर आकृति, परिमाप (Size) व अभिरंजन क्रियाओं को ध्यान में रखकर किया जाता है। लेकिन कभी—कभी ये आधारभूत तथ्य भी वर्गीकरण प्रणाली की आवश्यकताओं को पूरा नहीं कर पाते हैं अतः कॉलोनी की आकारिकी विशेषता, कशाभिकाओं की उपस्थिति, पोषण विधियां, जैव रासायनिक लक्षण, डी.एन.ए. संकरण, आर.एन.ए. सूचीकरण द्वारा क्षारक शृंखलाओं का तुलनात्मक विश्लेषण, रोग जनकता, एन्जाइम्स एवं सहएन्जाइम्स की कार्य प्रणाली आदि विशेषताओं के आधार पर भी जीवाणुओं का वर्गीकरण किया गया है। इस पुस्तक में डेविड बरजेस (David Bergey, 1901) द्वारा दिये गये जीवाणुओं के वर्गीकरण का उल्लेख किया जा रहा है, जो कि जीवाणुओं की आकारिकी, कार्यिकी लक्षण, वृद्धि, जैव रासायनिक विशेषताओं, पोषण विशिष्टताओं तथा आनुवांशिक लक्षणों पर आधारित है। यह वर्गीकरण मेनुअल ऑफ डेटरमिनेटिव बैक्टीरियोलोजी (Manual of Determinative Bacteriology, 1901) नामक पुस्तक में कुछ संशोधनों के साथ बरजेस मेनुअल ऑफ डेटरमिनेटिव बेक्टिरियोलोजी (Bergey's Manual of Determinative Bacteriology, 1923) नामक पुस्तक में प्रकाशित किया गया है। इस पुस्तक का सातवां संस्करण 1957 में प्रकाशित हुआ जिसमें उपरोक्त आधार पर जीवाणुओं का वर्गीकरण दिया गया। इस वर्गीकरण के आधार पर बरजेस ने जीवाणुओं को फाइलम प्रोटोजोआ में रखा जिसके दो वर्ग गठित किये — वर्ग 1 शाइजोफाइसी — नील हरित शैवाल तथा वर्ग 2 शाइजोमाइसिटीज — इसमें जीवाणुओं को रखा। ## जीवाणुओं की संरचना जीवाणुओं की संरचना का वर्णन निम्न बिन्दुओं के आधार पर किया जाता है— आमाप (Size) – जीवाणु अत्यधिक सूक्ष्म आमाप के होते हैं। सामान्यतया जीवाणुओं का व्यास 0.2-1.5 m तथा लम्बाई 2-10 m तक होती है। कोकाई या गोलाभ जीवाणुओं का व्यास ## Downloaded from https://www.studiestoday.com 0.5-2.5 mतक होता है जबिक दण्डाणु की लम्बाई 0.3-15 m तक होती है। सबसे बड़ा जीवाणु बेगियाटोआ मिराबिलिस है जिसका व्यास 16 से 45 m एवं लम्बाई 80 m या इससे अधिक होती है। आकार (Shape) – प्रमुख जीवाणुओं की आकृतियों का विवरण निम्न प्रकार है— (चित्र 5.1) - 1. कोकस या गोलाकार जीवाणु (Coccus or spherical bacteria) ये जीवाणु गोलाकार होते हैं। इनका व्यास 0.5 से 1.25 m होता है। इनमें कशाभिकाएं अनुपस्थित होती है। ये जीवाणु निम्न प्रकार के होते हैं— - (i) **माइक्रोकोकाई** ये अकेले मिलते हैं, उदाहरण माइक्रोकोकस ऐगीलिस व म. ऑरियस। - (ii) **डिप्लोकोकस** संख्या में दो तथा कशाभिकाएं युग्म में जैसे *डिप्लोकोकस निमोनी*। - (iii) टेट्राकोकस चार गोलाकार कोशिकाओं के रूप में, उदाहरण *माइक्रोकोकस टेट्राजिनस* व नाइसिरिया। - (iv) स्ट्रेप्टोकोकस जंजीर के समान एक शृंखला के रूप में मिलते हैं, जैसे स्ट्रेप्टोकोकस लेक्टिस। - (v) स्टेफाइलोकोकाई ये जीवाणु असामान्य एवं अनियमित विभाजित होकर अंगूर के गुच्छों के समान समूह बनाते हैं, उदाहरण स्टेफाइलोकोकस आरियस। - (vi) **सरिसनी** ये जीवाणु एक घनाकार या पैकेट के रूप में नियमित आकृतियों में पाये जाते हैं, उदाहरण *सार्सिना* लुटिया। - 2. बेसिलस या छड़ाकार जीवाणु (Bacillus or rodshaped bacteria) — इन जीवाणुओं की आकृति एक छड़ या डण्डे के समान होती है। इनके सिरे गोल, चपटे या नुकीले होते हैं। ये कशाभिकायुक्त या कशाभिकारहित होते हैं। ये जीवाणु निम्न प्रकार के होते हैं— - (i) एकल दण्डाणु या मोनोबेसिलस एक छड़नुमा जीवाणु एकल रूप में पाये जाते हैं जैसे बेसिलस। - (ii) **डिप्लोकोकस** जब दण्डाणु दो छड़ों के एक युग्म के रूप में मिलते हैं, उदाहरण *डिप्लोकोकस न्यूमोनी*। - (iii) स्ट्रेप्टोबेसिलस जब दण्डाणु जीवाणु एक शृंखला के रूप में पाये जाते हैं, उदाहरण बेसिलस ट्यूबरकुलोसिस। - 3. सर्पिलाकार या कुण्डलित जीवाणु (Spiral or coiled bacteria) ये जीवाणु सर्पिलाकार या कुण्डलित होते हैं। ये प्रायः एकल कोशिकीय स्वतंत्र इकाइयों के रूप में पाये जाते हैं तथा कशाभिकायुक्त होते हैं, उदाहरण स्पाइरिलम माइनस, स्पाइरिलम वोलूटेन्स आदि। - **4. विब्रियो या कोमा** (Vibrio or Coma) ये जीवाणु छोटी घुमावदार या कोमा आकृति के होते हैं। इनके एक सिरे पर कशाभिका पाई जाती है, उदाहरण *विब्रियो कोलेराई*। - 5. तन्तुमय (Filamentous) ये एक बेसिलस जीवाणु है जो एक लम्बी शृखला के रूप में वृद्धि करते हैं एवं नलिकाकार आवरण से ढके रहते हैं। ये सामान्यतया लोह युक्त जल में पाये जाते हैं, उदाहरण लेटरोथिक्स, क्लेडोथिक्स, बेगियाटोआ आदि। - 6. बहुरूपी (Pleomorphic) इन जीवाणुओं में वातावरणीय परिवर्तनों के अनुसार अपने आकार व आकृति में अस्थाई परिवर्तन करने की क्षमता होती है। अतः ये एक से अधिक रूपों में पाये जाते हैं, उदाहरण एसिटोबेक्टर। सूक्ष्म अथवा दीर्घ छड़ (बेसिलस) अथवा सूक्ष्म छड़ों की शृंखला (स्ट्रेप्टोबेसिलस) जैसे रूपों में पाया जाता है (चित्र 14.1)। चित्र 14.1 : जीवाणुओं के विभिन्न प्रकार ### जीवाणु कोशिका संरचना जीवाणु कोशिकाएं संरचना में सरल एवं आद्य लक्षणों वाली होती हैं। साथ ही इनमें सामान्य पादप कोशिकाओं से कुछ भिन्न अथवा अविकसित संरचनाएं मिलती हैं। इलेक्ट्रॉन सूक्ष्मदर्शी तथा विभिन्न अभिरंजन विधियों के द्वारा अध्ययन करने से इनकी कोशिकाओं में निम्नलिखित संरचनाएं दिखाई देती हैं— - 1. कोशिका भित्ति तथा कैप्सूल प्रत्येक जीवाणु एक कोशिका भित्ति से ढका रहता है। यह कोशिका भित्ति कीटों में पाये जाने वाले बाह्य कंकाल के समान होती है। अधिकांश जीवाणुओं में कोशिका भित्ति के बाहर जैली के समान एक अतिरिक्त पर्त होती है इसे स्लाइम स्तर कहते हैं। कुछ जीवाणुओं में यह पर्त काफी मोटी होती है तब इसे कैप्सूल कहते हैं। इस स्लाइम स्तर में जटिल कार्बोहाइड्रेट्स, अमीनो अम्ल तथा गोंद पाये जाते हैं। जीवाणु की कोशिका भित्ति म्यूरेमिक अम्ल तथा डाइएमीनोपिमेलिक अम्ल जैसे विशेष प्रकार के रासायनिक पदार्थों की बनी होती है। - जीवद्रव्य यह एक कोशिका झिल्ली के द्वारा ढका रहता है। जीवाणु कोशिका का कोशिकाद्रव्य समांगी होता है जिसमें पोषण पदार्थों जैसे वसा पिण्ड तथा ग्लाइकोजन कणिकाएं पाई जाती हैं। जीवाणु कोशिका में सुविकसित केन्द्रक का अभाव होता है। इनमें केन्द्रकीय पदार्थ अर्थात आनुवंशिक पदार्थ (डी.एन.ए.) कोशिकाद्रव्य में विसरित पड़ा रहता है। ऐसे केन्द्रक को आद्य या आदिम केन्द्रक कहते हैं। कोशिकाद्रव्य में रिक्तिकाएं तथा राइबोसोम पाये जाते हैं। लेकिन लवकों, माइटोकॉन्ड्रिया व अन्य झिल्लीयुक्त कोशिकांगों का अभाव होता है। जीवाणु की कुछ जातियों में एक विशेष प्रकार का पर्णहरित पाया जाता है जिसे जीवाण्विक पर्णहरित (Bacterio-chlorophyll) कहते हैं। इसी कारण इन जीवाणुओं की जातियों में प्रकाश संश्लेषण की क्रिया होती है। कोशिका झिल्ली कहीं-कहीं पर अन्दर की ओर धंसी हुई होती है। इन संरचनाओं को मध्यकाय या मीसोसोम्स (Mesosomes) कहते हैं। ऐसा समझा जाता है यहां उपस्थित एन्जाइम्स श्वसन जैसी क्रियाओं से संबंधित है (चित्र 14.2)। चलजीवाणुओं में कशाभिकाएं संख्या तथा स्थिति में भिन्न—भिन्न होती हैं। इसके अनुसार जीवाणुओं को निम्नलिखित वर्गों में विभाजित किया गया है— - अकशाभी, एट्राइकस (Atrichous) इनमें कशाभिकाएं नहीं होती हैं, उदाहरण माइक्रोकोकस। - 2. **एककशाभी,
मोनोट्राइकस** (Monotrichous) एक सिरे पर केवल एक कशाभिका, उदाहरण *विब्रिओ*। - 3. **सिफेलोट्राइकस** (Cephalotrichous) एक सिरे पर एक से अधिक कशाभिकाएं जैसे *थायोस्पाइरिलम*। - उभयकशाभी, एम्फीट्राइकस (Amphitrichous) कोशिका का दोनों सिरों पर एक—एक कशाभिका, उदाहरण नाइट्रोसोमोनास। चित्र 14.2 : जीवाणु कोशिका की परासंरचना - 5. **परिकशाभी, पेरिट्राइकम** (Peritrichous) जब जीवाणु कोशिका के चारों ओर कशाभिकाएं होती है, उदाहरण बेसिलस टाइफस। - 6. **गुच्छकशाभिक, लोफोट्राइकस** (Lophotrichous) दोनों सिरों पर कशाभिकाओं की संख्या एक से अधिक, उदाहरण स्याइरिलम। #### पोषण अन्य जीवों की भांति पोषण के आधार पर जीवाणु दो प्रकार के होते हैं— 1. स्वपोषी (Autotrophic) तथा 2. परपोषी (Heterotrophic) | - 1. स्वपोषी जीवाणु (Autotrophic bacteria) जीवाणुओं की बहुत कम जातियां स्वपोषित होती हैं। फिर भी कई प्रकार के जीवाणु कुछ रासायनिक क्रियाओं से ऊर्जा प्राप्त करके भोज्य पदार्थों का निर्माण करते हैं। कुछ उच्च पौधों की तरह प्रकाश—संश्लेषण भी करते हैं। इस आधार पर स्वपोषित जीवाणु मुख्यतया दो प्रकार के होते हैं— (क) प्रकाश संश्लेषी (ख) रसायनी संश्लेषी। - (क) प्रकाश संश्लेषी जीवाणु कुछ जीवाणु जातियों में एक विशेष प्रकार का बैक्टीरियो क्लोरोफिल पाया जाता है। इसके अतिरिक्त कोशिकाओं में बैक्टीरियोविरिडिन (Bacterioviridin) या क्लोरोबियम क्लोरोफिल (Chlorobium chlorophyll) भी पाया जाता है। यह क्लोरोफिल उच्च श्रेणी में पाये जाने वाले क्लोरोफिल की 146 तरह ही मैग्नीशियम के यौगिक है किन्तु ये लवकों(Plastids) में नहीं होते हैं वरन् क्रोमेटोफोर्स (Chromatophores) में मिलते हैं। प्रकाश संश्लेषी जीवाणु हरे पौधों की तरह कार्बनडाइऑक्साइड से कार्बोहाइड्रेट्स का निर्माण करते हैं। प्रकाश संश्लेषण की यह क्रिया अधिकतर गंधक के यौगिक की उपस्थिति में ही संभव है H_2O के विपरीत यहाँ प्रमुखतः H_2S , हाइड्रोजन (H_2) का स्रोत है तथा उत्पाद के रूप में यहां ऑक्सीजन के स्थान पर गंधक (Sulphur) होता है। $CO_2 + 2H_2S$ — प्रकाश $\rightarrow CH_2O + 2S + H_2O + 3 \sigma$ उदाहरण — क्रोमेटियम, क्लोरोबियम, क्लोरोबेक्टीरियम्झादि । - (ख) रसायनी संश्लेषी (Chemosyntheic) कुछ जीवाणु कार्बनडाईऑक्साइड को कार्बोहाइड्रेट्स में परिवर्तित करने के लिये विभिन्न प्रकार की रासायनिक क्रियाओं से प्राप्त ऊर्जा का उपयोग करते हैं क्योंकि इनमें पर्णहरित नहीं होता है अतः ये सूर्य के प्रकाश की ऊर्जा का उपयोग नहीं कर सकते है। इनके द्वारा ऊर्जा प्राप्त करने के लिये कुछ पदार्थों का ऑक्सीकरण किया जाता है। इस प्रकार के कुछ पदार्थों जनका ऑक्सीकरण जीवाणुओं द्वारा किया जाता है जैसे गंधक व उसके यौगिक, अमोनिया, नाइट्राइट्स, लोहा, हाइड्रोजन, कार्बन मोनोक्साइड, मीथेन आदि। इन जीवाणुओं के नाम भी इसी प्रकार हैं जैसे गंधक जीवाणु, लोह जीवाण आदि। - (i) गंधक जीवाणु कई गंधक जीवाणु जैसे बिगियाटोआ, थायोबेसिलसआदि गंधक या गंधक यौगिकों को आक्सीकृत करके उनसे ऊर्जा प्राप्त करते हैं। $2\,\mathrm{H}_2\mathrm{S}+\mathrm{O}_2 \to 2\,\mathrm{S}+2\,\mathrm{H}_2\mathrm{O}+122.2~\mathrm{K.cal}$ (ऊर्जा) यह गंधक जीवाणु के अंदर एकत्रित हो जाता है जो आवश्यकता पड़ने पर सल्फेट में बदल दिया जाता है— $2\,\mathrm{S} + 2\,\mathrm{H}_2\,\mathrm{O} + 3\,\mathrm{O}_2 \rightarrow 2\,\mathrm{H}_2\,\mathrm{SO}_4 + 2\,8\,4.4\,\mathrm{K}.\mathrm{cal}$ (ऊर्ज़ा) (ii) लोह जीवाणु — ये जीवाणु फेरस यौगिकों को फेरिक यौगिकों में ऑक्सीकृत करके उनसे ऊर्जा प्राप्त करते हैं— $$4 \text{FeCO}_3 + \text{O}_2 + 6 \text{H}_2 \text{O} \rightarrow 4 \text{FeCOH}_2 + 4 \text{CO}_2 + 81 \text{ K.cal (জর্জা)}$$ लोह जीवाणुओं के कुछ उदाहरण — गैलियोनैला, लैप्टोथ्रिक्स, फैरोबेसिलस आदि। (iii) **हाइड्रोजन जीवाणु** — ये जीवाणु आणविक हाइड्रोजन को जल में बदल देते हैं तथा इससे प्राप्त ऊर्जा का उपयोग रासायनिक संश्लेषण में करते हैं। उदाहरण *बेसिलस* पेन्टाट्रोफस कार्बोहाइड्रेट का संश्लेषण करता है। $$2H_2 + O_2 \rightarrow 2H_2O + 137 \text{ K.cal (ऊर्जा)}$$ $$2H_2 + CO_2 + 115 \text{ K.cal} \rightarrow C_6H_{12}O_6 + H_2O$$ - (iv) नाइट्रीकारी जीवाणु ये जीवाणु नाइट्रोजन के यौगिकों से ऊर्जा प्राप्त करते हैं। उदाहरण (अ) अमोनिया को नाइट्रेट्स में ऑक्सीकृत करने वाले जीवाणु जैसे नाइट्रोसोमोनास व नाइट्रोसोकोकस तथा (ब) नाइट्राइट्स को नाइट्रेट में बदलने वाले जीवाणु जैसे नाइट्रोबेक्टर तथा नाइट्रोसिस्टिस आदि। - (ঝ) 2 NH3+3O₂ → 2 HNO₂ + 2 H₂O +158 K.cal (ক্যর্জা) - (ৰ) 2HNO₂+O₂ → 2HNO₃ +38K.cal (ऊर्जा) - (v) **कार्बन जीवाणु** कुछ जीवाणु कार्बन मोनोऑक्साइड को ऑक्सीकृत करके ऊर्जा प्राप्त करते हैं। उदाहरण — बेसिलस ऑलीगोकार्बोफिलस। (vi) **मीथेन जीवाणु** — ये जीवाणु मीथेन को ऑक्सीकृत करके ऊर्जा प्राप्त करते हैं। उदाहरण — मीथेनोमोनास। $$CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O + \overline{s}$$ \overline{s} - 2. परपोषित जीवाणु (Heterotrophic bacteria) अधिकांश जीवाणु परपोषित होते हैं। इस प्रकार के जीवाणु जटिल कार्बनिक यौगिकों को एन्जाइम्स की सहायता से घुलनशील बनाकर अवशोषित करते हैं। ऐसे जीवाणु तीन प्रकार के होते हैं— - (क) मृतजीवी (Saprophytes) ये जीवाणु मृत कार्बनिक पदार्थों पर अपना जीवनयापन करते हैं। मृत जीवों के शरीर को सड़ाने गलाने वाले ये ही जीवाणु होते हैं। ये जीवाणु एन्जाइम्स की सहायता से जटिल अघुलनशील कार्बनिक पदार्थों को सरल घुलनशील पदार्थों में बदल लेते हैं फिर इन पदार्थों को आवश्यकतानुसार अवशोषित कर लेते हैं। - (ख) सहजीवी (Symbionts) ये जीवाणु दूसरे जन्तु या पौधे के साथ रहते हैं तथा उसे नुकसान नहीं पहुंचाते हैं वरन् कुछ फायदा ही देते हैं जिसके ये साथ रहते हैं। ये जीवाणु अपने लिये उनसे पोषण प्राप्त करते हैं बदले में उन परपोषी को नाइट्रोजन यौगिक प्रदान करते हैं। उदाहरणराइजीबियम जीवाणु की जातियां जो लैग्यूमिनस पौधों की जड़ों में ग्रंथियों के अन्दर पाये जाते हैं। ये जीवाणु वातावरण से युक्त नाइट्रोजन को नाइट्रेट में बदल देते हैं। इस नाइट्रेट का उपयोग पौधे करते हैं। (ग) परजीवी (Parasitic) — ये जीवाणु पौधों या जन्तुओं के शरीर पर या भीतर रहते हैं तथा उन्हीं से अपना भोजन प्राप्त करते हैं। ये जीवों के शरीर में रहकर तरह—तरह की बीमारियां उत्पन्न करते हैं। ### जीवाणुओं में श्वसन जीवाणुओं में दो प्रकार का श्वसन होता है- - 1. ऑक्सीश्वसन 2. अनॉक्सीश्वसन - ऑक्सीश्वसन (Aerobic respiration) कुछ जीवाणु ऑक्सीजन का उपयोग करते हुए उच्च श्रेणी के जीवों की तरह श्वसन करते हैं। - अनॉक्सीश्वसन (Anaerobic respiration) कुछ जीवाणु ऑक्सीजन का उपयोग नहीं करते हुए श्वसन क्रिया करते हैं। ### जीवाणुओं में जनन जीवाणुओं में जनन अनेक विधियों द्वारा होता है किन्तु यह अधिकतर (i) कायिक व (ii) अलैंगिक प्रकार का होता है। (iii) लैंगिक जनन भी कुछ जीवाणुओं में बताया गया है। यद्यपि जीवाणुओं में सत्य लैंगिक जनन नहीं पाया जाता है। - 1. कायिक जनन यह मुख्यतया दो प्रकार से होता है— (i) द्विखण्डन व (ii) मुकुलन द्वारा। - (i) दिखण्डन द्वारा (Binary fission) इसमें अनुकूल परिस्थितियों में एक कोशिका दो बराबर पुत्री कोशिकाओं में बंट जाती है। यह क्रिया कोशिका के बीच उत्पन्न होने वाले दबाव के कारण होती है। इसमें आनुवंशिक पदार्थ (DNA) असूत्री (Amitosis) विभाजन द्वारा दो बराबर भागों में बंटकर दोनों संतति कोशिकाओं में चला जाता है (चित्र 14.3)। - (ii) मुकुलन (Budding) कुछ जीवाणुओं की कोशिका में एक ओर अतिवृद्धि बनती है तथा इसमें कोशिकाद्रव्य असमान भागों में विभक्त होता है। साथ ही आनुवंशिक पदार्थ भी बंट जाता है। कोशिकाद्रव्य के इस असमान विभाजन के कारण दो असमान संतति कोशिकाएं बनती हैं। बनने वाली छोटी संतति कोशिका कलिका या मुकुल (Bud) कहलाती है। यह कुछ समय तक मातृ कोशिका से लगी रहती है। 2. अलैंगिक जनन – यह कई प्रकार के बीजाणुओं के - (i) कोनिडिया द्वारा (By Conidia) जीवाणुओं में गोल या छड़ के आकार के कोनिडिया शाखाओं के सिरों पर निर्मित होते हैं। परिपक्व होने के बाद मुख्य शाखाओं से अलग हो जाते हैं। ये तलाभिसारी क्रम में होते हैं। उदाहरण स्ट्रेप्टोमाइसीज। द्वारा होता है। ये सभी बीजाणु अचल होते हैं। चित्र 14.3 : जीवाणु कोशिका में द्विखण्डन द्वारा जनन - (ii) अन्तःबीजाणु या एण्डोस्पोर (Endospore) ये बीजाणु प्रतिकूल परिस्थितियों में बनते हैं। इसमें जीवाणु कोशिका का जीवद्रव्य जल छोड़कर सिकुड़ जाता है तथा केन्द्र में एकत्रित हो जाता है तथा शीघ्र ही इसके चारों ओर एक मोटी भित्ति बन जाती है। यही अवस्था अन्तःबीजाणु है। ये अन्तःबीजाणु अत्यन्त प्रतिकूल परिस्थितियों को भी सहन करने में सक्षम होते हैं। उदाहरण बेसिलाई। - 3. तैंगिक पुर्नयोजन जीवाणुओं में लैंगिक जनन सामान्य रूप से होने वाला जनन नहीं है। संवर्धन प्रयोगों एवं अन्य अनुसंधानों के आधार पर जीवाणुओं में निम्नलिखित प्रकार का जनन पाया जाता है— - (i) संयुग्मन (Conjugation) इस प्रकार का प्रक्रम दो छोटे आमाप (Size) के जीवाणुओं के बीच होता है। यह क्रिया दो विभिन्न विभेदों (Strains) के बीच होती है। इसमें नर कोशिका, दाता तथा मादा कोशिका ग्राही कोशिका या विभेद (Strain) कहलाती है। संयुग्मन के समय दाता तथा ग्राही कोशिकाएं निकट आती हैं तथा इनके सम्पर्क स्थान पर छोटी अतिवृद्धि उत्पन्न होती है। बाद में दोनों विभेद की अतिवृद्धि थोड़ी लम्बाई में बढ़कर आपस में जुड़ जाती है। इसे संयुग्मन नलिका कहते हैं। यह संयुग्मन नलिका दोनों कोशिकाओं (+ व – विभेद) के बीच एक सेतु या ब्रिज का कार्य करती है। इसी संयुग्मन नलिका से नर यानि दाता का कोशिकाद्रव्य अपने आनुवंशिक पदार्थ सहित मादा अर्थात् ग्राही जीवाणु कोशिका में चला जाता है। कुछ समय के लिये मादा जीवाणु अपूर्ण द्विगुणित (Incomplete diploid) की तरह रहता है। अब इस जीवाणु कोशिका के गुण दाता और ग्राही दोनों से भिन्न होते हैं। इस प्रकार एक म्यूटेन्ट जीवाणु (Mutant bacteria) की उत्पत्ति होती है। अर्धसूत्री विभाजन नहीं होता है। अधिकांश म्यूटेन्ट जीवाणुओं में जो संयुग्मन से बने होते हैं एक सम्पूर्ण मादा गुणसूत्र तथा नर गुणसूत्र का केवल कुछ ही भाग होता है। ऐसा इसलिये होता है कि सूक्ष्म विक्षोभ (Disturbance) भी संयुग्मन के समय दोनों को अलग कर देता है। इस प्रकार से बनी म्यूटेन्ट कोशिका अपने जनकों की अपेक्षा अधिक प्रतिकूल परिस्थितियों में जीवित रहने में समर्थ होती है। यह जीवाणुओं का अत्यन्त साधारण एवं प्रारम्भिक प्रकार का लैंगिक जनन है जिसमें कोशिका गुणन (Multiplication) भी नहीं होता है (चित्र 14.4)। चित्र 14.4 : जीवाणु कोशिकाओं में संयुग्मन की प्रावस्थाएं (ii) रूपान्तरण (Transformation) – संवर्धन माध्यम (Culture medium) से आनुवंशिक पदार्थों का अवशोषण करके नई जीवाणु कोशिकाओं का निर्माण इस क्रिया के द्वारा होता है। एक विभेद (Strain) की मृत कोशिकाओं का निलम्बन दूसरे विभेद की कोशिकाओं के संवर्धन माध्यम में मिला दिया जाये तो ग्राही जीवित जीवाणु कोशिकाएं मृत कोशिकाओं के आनुवंशिक पदार्थ डी.एन.ए. का अवशोषण कर लेती है। ऐसा भी देखा गया है कि उपर्युक्त मृत कोशिकाओं के निष्कर्षण (Extraction) को प्रयोग में लाने से ही म्यूटेन्ट कोशिकाओं का निर्माण हो जाता है। इस क्रिया को रूपान्तरण कहते हैं (चित्र 14.5)। चित्र 14.5 : जीवाणुओं में रूपान्तरण की प्रक्रिया (iii) पारक्रमण (Transduction) – कुछ जीवाणुओं में जीन स्थानान्तरण की यह एक महत्वपूर्ण क्रिया है जिसको जीवाणु परजीवी विषाणु जीवाणुभोजी के द्वारा सम्पन्न करते हैं। संक्रमण के समय जीवाणुभोजी तथा संक्रमित जीवाणु के बीच आनुवंशिक पदार्थों की अदला—बदली होती है। जीवाणु कोशिका के अन्दर ही विषाणु
अपनी संख्या बढ़ाता है। इस प्रकार बनने वाले नये विषाणु कणों में जीवाणु के न्यूक्लिक अम्ल का कुछ भाग भी संलग्न हो जाता है। इस प्रकार का जीवाणुभोजी जब किसी दूसरी जीवाणु कोशिका को संक्रमित करता है तो पूर्व जीवाणु का लाया गया आनुवंशिक पदार्थ इस कोशिका में छोड़ दिया जाता है। इस प्रकार एक म्यूटेन्ट (Mutant) कोशिका का निर्माण होता है। इस प्रकार विषाणु के माध्यम से होने वाली यह क्रिया ट्रान्सडक्शन कहलाती है (चित्र 14.6)। ## ग्राम पोजिटिव एवं ग्राम नेगेटिव जीवाणु डेनमार्क के प्रसिद्ध चिकित्सक क्रिश्चियन ग्राम (Christian Gram, 1884) ने अपनी प्रसिद्ध एवं सर्वमान्य अभिरंजन विधि द्वारा जीवाणुओं को दो समूहों में विभेदित किया — ## चित्र 14.6 : जीवाणुओं में पराक्रमण की क्रिया - (i) वे जीवाणु जो ग्राम अभिरंजन (क्रिस्टल वायोलेट) से अभिरंजित कर देने तथा बाद में ऐल्कोहॉल से धोने पर भी अभिरंजित बने रहते हैं इन्हें ग्राम धनात्मक या ग्राम ग्राही या ग्राम पोजिटिव (G⁺) कहा जाता है। उदाहरण — माइक्रोकोकस, स्ट्रेप्टोकोकस, लेप्टोबेसिलस, क्लोस्ट्राडियम आदि। - (ii) ग्राम नेगेटिव वे जीवाणु जो उपरोक्त प्रक्रिया के अंत में अभिरंजन छोड़ देते हैं। उन्हें ग्राम णात्मक या ग्राम अग्राही या ग्राम नेगेटिव (G-) जीवाणु कहते हैं। उदाहरण — राइजोबियम, सूडोमोनास, साल्मोनेला, विब्रियो आदि। ## महत्वपूर्ण बिन्दु - 1. जीवाणु एककोशिक एवं प्रोकैरियोटिक सूक्ष्म जीव है, इनकी खोज एन्टोनी वान ल्यूवेनहॉक (1676) ने की। - जीवाणु सर्वव्यापी है। ये भूमि, मृदा, वायु, जल, भोजन व जन्तु आदि सभी में मिलते हैं। - बरजेस मेनुअल ऑफ डेटरिमनेटिव बेक्टीरियोलोजी का आठवां संस्करण सन् 1774 में बुचान एवं गिबन्स द्वारा प्रकाशित किया गया जिसमें जीवाणुओं को 19 भागों में बांटा गया। - संरचनात्मक दृष्टि से जीवाणु आमाप व आकार में भिन्नता दर्शाते हैं। - जीवाणु कोशिकाएं संरचना में सरल एवं आद्य लक्षणों वाली होती हैं। - 6. पोषण के आधार पर जीवाणु दो प्रकार के होते हैं- - (i) स्वपोषी तथा (ii) परपोषी - 7. जीवाणुओं में श्वसन दो प्रकार का होता है- - (i) ऑक्सीश्वसन व (ii) अनॉक्सीश्वसन - जीवाणुओं में जनन अनेक विधियों द्वारा होता है जैसे कायिक, अलैंगिक व कुछ जीवाणुओं में लैंगिक जनन। - जीवाणु लाभदायक व हानि पहुंचाने वाले दोनों प्रकार के होते हैं। - 10. क्रिश्चियन ग्राम (1884) ने अपनी प्रसिद्ध एवं सर्वमान्य अभिरंजन विधि द्वारा जीवाणुओं को ग्राम पोजिटिव तथा ग्राम नेगेटिव दो वर्गों में वर्गीकृत किया। ### अभ्यासार्थ प्रश्न ### वस्तुनिष्ठ प्रश्न - 1. सर्वप्रथम जीवाणु की खोज की थी- - (अ) कोच - (ब) पाश्चर - (स) ल्यूवेनहॉक - (द) जेनर ने - 2. म्यूकोपेप्टाइड कोशिका भित्ति लक्षण है- - (अ) जीवाणु का - (ब) नीलहरित शैवाल का - (स) हरित शैवाल का - (द) यीस्ट का - जीवाणुओं में श्वसन स्थल है— - (अ) राइबोसोम - (ब) मीसोसोम - (स) कार्बोक्सिसोम - (द) एपीसोम - 4. रसायन संश्लेषी जीवाणु- - (अ) प्रकाश संश्लेषण नहीं करते - (ब) प्रकाश में भोजन बनाते हैं - (स) रासायनिक क्रिया नहीं करते - (द) रासायनिक ऊर्जा का उपयोग कर भोजन बनाते हैं। ## अतिलघूत्तरात्मक प्रश्न - 1. जीवाणु विज्ञान का पिता किसे कहा जाता है? - 2. लेग्यूम की मूल ग्रंथियों में कौनसा जीवाणु पाया जाता है? - 3. ग्राम पोजिटिव जीवाणु क्या है? - 4. ग्राम नेगेटिव जीवाणु क्या है? ## लघूत्तरात्मक प्रश्न - 1. जीवाणुओं का वितरण बताइये। - 2. संपुटिका क्या है? इसके कार्य समझाइये। - 3. ग्राम नेगेटिव व ग्राम पोजिटिव में अन्तर बताइये। - 4. जीवाणु कोशिका का नामांकित चित्र बनाइये। #### निबन्धात्मक प्रश्न - 1. जीवाणुओं के वर्गीकरण का संक्षिप्त विवरण दीजिये। - 2. जीवाणुओं की संरचना एवं पोषण विधियों पर लेख लिखिये। - 3. जीवाणु में अलैंगिक जनन समझाइये। - जीवाणुओं में लैंगिक जनन का सचित्र वर्णन कीजिये। उत्तरमालाः 1 (स) 2 (अ) 3 (ब) 4 (द) #### अध्याय - 15 # शैवाल – यूलोथ्रिक्स एवं कवक – ऐल्ब्यूगो (Algae – *Ulothrix* and Fungi – *Albugo*) #### वर्गीकरण स्थिति जगत पादप जगत थैलोफाइटा उपजगत संघ क्लोरोफाइटा क्लोरोफाइसी वर्ग यूलोट्राइकेल्स गण यूलोट्टाइकिनी उपगण यूलोट्राइकेसी कुल वंश यूलोथ्रिक्स #### आवास व स्वभाव स्वच्छ व उण्डे जल के जलाशयों में जैसे तालाब, गड्ढें आदि में पाये जाते हैं या जहाँ पर पानी धीरे—धीरे बहता है जैसे झरनों, नालों आदि में पत्थरों पर लगा रहता है। यूलोथिक्स लेका (Ulothrix flacca) समुद्र के खारे पानी में भी पाया जाता हैं। इसकी लगभग 30 जातियां हैं। भारत में पाई जाने वाली प्रमुख जातियों में यूलोथिक्स जोनेटा (Ulothrix zonata) सामान्य है। #### आकार तथा संरचना यह शैवाल अशाखित तथा सूत्रवत (Filamentous) होते हैं। प्रत्येक सूत्र चमकदार, हरी व अनेक कोशिकाओं के सिरे से सिरा जुड़ने से बनती है। इस प्रकार सूत्र परिधि में केवल एक कोशिका ही होती है जिसका व्यास लगभग 1/4 मिमी होता है। सूत्र की सभी कोशिकाएं संरचना में एक समान होती है किन्तु सबसे नीचे की कोशिका जो आधार से चिपकी रहती है अलग प्रकार संरचना की होती है। यह कोशिका रंगहीन अर्थात् इसमें पर्णहरित नहीं होता है, लम्बी तथा निचले भाग में अनियमित आकार वाली होती है इसे आधारीय कोशिका या होल्डफास्ट कहते हैं। यह आधारीय कोशिका सम्पूर्ण सूत्र को किसी आधार (Substratum) से चिपकाए रखती है। सूत्र की प्रत्येक कोशिका आयताकार दिखाई देती है अर्थात् इसकी चौड़ाई (व्यास) लम्बाई की अपेक्षा अधिक होती है। इसकी कोशिका भित्ति सेल्यूलोज जिसमें कभी—कभी पेक्टिन भी होता है की बनी होती है। कोशिका के केन्द्र में एक केन्द्रीय रिक्तिका होती है। इस प्रकार जीवद्रव्य भित्ति से लगा होता है तथा कोशिका दृति (Primordial uticle) बनाता है। इसी कोशिका दृति में केन्द्रक तथा बड़ा कॉलर या मेखला के आकार (Collor or girdle shaped) का हरितलवक पाया जाता है। इसी कारण कोशिका हरी दिखाई देती है (ज्ञात रहे हरितलवक होल्डफास्ट में नहीं होता है)। हरितलवक में एक या अधिक पायरेनाइड्स पाये जाते हैं। पायरेनाइड्स प्रोटीन से बनी संरचना है जो स्टार्च से ढके रहते हैं तथा अतिरिक्त कार्बनिक भोज्य पदार्थों (स्टार्च) का संग्रहण करते हैं (चित्र 15.1 अ, ब, स)। #### जनन यूलोथ्रिक्स में जनन तीन प्रकार का होता हैं — (1) कायिक जनन (2) अलैंगिक जनन (3) लैंगिक - 1. कायिक जनन (Vegetative reproduction) यूलोशिक्स की आधारीय कोशिका के अलावा सभी कोशिकाएं एक जैसी होती हैं अतः यदि किसी प्रकार कोशिकाएं अलग भी हो जाये तो प्रत्येक कोशिका विभाजन द्वारा पादप बनता है। कभी—कभी किसी कारणवश सूत्र टुकड़ों में टूट जाते हैं तथा प्रत्येक टुकड़ा नये पादप में परिवर्धित होता है। इस क्रिया को विखण्डन (Fragmentation) कहते हैं। यह क्रिया केवल अनुकूल वातावरण में ही सम्भव होती है। - 2. अलैंगिक जनन (Asexual reproduction) जनन की यह क्रिया केवल प्रतिकूल परिस्थितियों में होती है। किन्तु कभी—कभी यह जनन अनुकूल वातावरण में भी होता है— - (अ) अनुकूल वातावरण में अलैंगिक जनन अनुकूल वातावरण में अलैंगिक जनन चलबीजाणुओं द्वारा होता है। शीतकाल ## Downloaded from https://www.studiestoday.com चित्र 15.1 : यूलोथिक्स (अ) यूलोथिक्स सूत्र (ब) कोशिका संरचना (स) कोशिका अनुप्रस्थ काट से पूर्व जब पोषण पर्याप्त मात्रा में होता है तो तन्तु की कोशिका चलबीजाणु बनाती है। तन्तु की जिस कोशिका में चलबीजाणु बनते हैं उसे चलबीजाणुधानी कहते हैं। एक चलबीजाणुधानी में 1—32 चलबीजाणु बन सकते हैं (चित्र 15.2 अ—र)। चित्र 15.2 : *यूलोथिक्स* में अलैंगिक जनन। - (अ), (ब) लघुबीजाणुधानियों का निर्माण - (स) गुरुबीजाणुधानी (द) चलबीजाणुधानी का विमोचन - (य) लघुबीजाणु (र) गुरुबीजाणु यूलोशिक्स की उन जातियों में जिनमें कोशिका की चौड़ाई अधिक होती है इनमें तीन प्रकार के चलबीजाणु बनते हैं— - गुरुचलबीजाणु (Macrozoospores) चलबीजाणुधानी में इनकी संख्या कम होती है तथा ये चतुष्कशाभिकीय होते हैं। - (ii) चतुष्कशाभिकीय लघुचलबीजाणु (Quadriflagellate microzoospores) ये अपेक्षाकृत छोटे चलबीजाणु होते हैं इनकी संख्या चलबीजाणुधानी में अधिक होती है। ये भी चतुष्कशाभिकीय होती है। - (iii) **द्विकशाभिकीय लघुबीजाणु** (Biflagellate microspores) ये भी संख्या में अधिक तथा द्विकशाभिकीय होते हैं। लघु व गुरुबीजाणु आकार, परिमाम (Size) नेत्र बिन्दु (Eye spot) की रिथति और तैरने के समय में भिन्न होते हैं। एक गुरुचलबीजाणु अण्डाकार रचना है। इसका पश्च सिरा नुकीला होता है। लाल रंग का एक नेत्र बिन्दु (Red eye spot) इसके अग्र सिरे के पास होता है जो प्रकाशग्राही होता है तथा इसी सिरे पर कशाभिकाएं होती हैं। एक लघुचलबीजाणु अण्डाकार संरचना है जिसका अग्रसिरा नुकीला होता है जिस पर दो या चार कशाभिकाएं होती हैं। पश्च सिरा गोल होता है। प्रत्येक चलबीजाणु एक नग्न संरचना है। इसमें एक केन्द्रक, एक पर्णहरित तथा एक पायरेनाइड पाया जाता है। साथ ही एक या दो कुंचनशीलधानी (Contractile vacuoles) की होती हैं। पर्णहरित पश्च सिरे के अन्दर केन्द्रक बीच में तथा संकुचनशील रिक्तिकायें अग्र सिरे के स्पष्ट कोशिका द्रव्य में होती हैं। ## चलबीजाणुओं में अंकुरण चलबीजाणु अपनी चलबीजाणुधानियों से सूर्योदय के समय निकलते हैं तथा तेज प्रकाश से दूर पानी में कुछ समय तक तैरते हैं। थकने पर ये अपने नुकीले सिरे से जलीय वस्तु जैसे आधार से चिपक जाते हैं। ध्यान रहे गुरुचलबीजाणु अपने पश्च सिरे से तथा लघुचलबीजाणु अपने अग्र सिरे से आधारीय वस्तु से चिपक जाते हैं। अब कशाभिकाएं नष्ट हो जाती हैं तथा नग्न बीजाणु अपने चारों ओर एक मोटी भित्ति बना लेता हैं। इस समय यह कुछ लम्बा होकर विभाजित हो जाता है। इस प्रकार से बनी निचली कोशिका होल्डफास्ट तथा ऊपरी कोशिका शीर्ष कोशिका के रूप में कार्य करती हैं। शीर्ष कोशिका बार—बार विभाजित होकर एक लम्बा अशाखित तन्तु बनाती है (चित्र 15.3 अ—द)। ### (आ) प्रतिकूल परिस्थितियों में अलैंगिक जनन (Asexual reproduction in unfavourable conditions) (i) चलबीजाणुओं द्वारा (By aplanospores) – जब चित्र 15.3 : यूलोश्चिक्स बीजाणुओं में अंकुरण। अ—य—गुरुबीजाणु में अंकुरण। अ—द, लघुबीजाणु का अंकुरण वातावरणीय परिस्थितियाँ चलबीजाणु बनने के अनुकूल नहीं होती हैं तब यूलोथिक्स की कोशिकाओं में कशाभिका रहित मोटी भित्तियुक्त अचलबीजाणु बनते हैं। अनुकूल वातावरण में ये बीजाणु अंकुरित होकर नया पादप बनाते हैं। - (ii) निश्चेष्ठ बीजाणु (Hypnospores) कभी कभी प्रतिकूल परिस्थितियों में कोशिकाद्रव्य सिकुड़कर और संगठित होकर अपने चारों ओर एक मोटी भित्ति बना लेता है। यह भित्ति कोशिका भित्ति से पृथक रहती है। इस प्रकार स्वरक्षित जीवद्रव्य निश्चेष्ठ बीजाणु कहलाते हैं। अनुकूल परिस्थितियों में अंकुरित होकर अचलबीजाणु की तरह नव पादप बनाते हैं। - (iii) एकाइनेट्स (Akinetes) अधिक प्रतिकूल परिस्थितियों में कोशिका का जीवद्रव्य सिकुड़कर अपने चारों ओर अपनी कोशिका भित्ति सिहत एक मोटी भित्ति बना लेता है। जिसमें कोशिका भित्ति तथा जीवद्रव्य के चारों ओर बने मोटे आवरण को पृथक नहीं किया जा सकता है। इस प्रकार सम्पूर्ण जीवद्रव्य एक बीजाणु बन जाता है। इसे एकाइनेट्स कहते हैं। ये एकाइनेट्स भी अनुकूल परिस्थितियों में अंकुरित होकर नया पादप बनाते हैं। - (iv) **पाल्मेला अवस्था** (Palmella stage) जिन स्थानों पर पानी किनारों पर सूखने लगता है। जल के उतरने पर नम भूमि पर पड़े यूलोशिक्स के तन्तु की कोशिकाएं अनियमित रूप से विभाजित होकर कोशिकाओं का समूह बना लेती हैं। इन कोशिकाओं की भित्तियाँ श्लेष्म (Mucilage) का निर्माण कर लेती है। इस प्रकार अन्त में अनेक कोशिकाएं श्लेष्म में फंसी दिखाई देती हैं। अनुकूल परिस्थितियाँ आने तक श्लेष्म इनकी रक्षा करती और सूखने से बचाती है। पाल्मेला अवस्था की कोशिकाएं छोटे—छोटे समूह के रूप में दिखाई दे सकती है। इस अवस्था की
प्रत्येक कोशिका अचलबीजाणु की तरह होती है। ये अनुकूल परिस्थितियों में अंकुरित होकर नव पादप को जन्म देती है। 3. लैंगिक जनन (Sexual reproduction) — यूलोशिक्स में लैंगिक जनन समयुग्मकी (Isogamous) प्रकार का होता है। यह समयुग्मकों के संलयन के कारण होता है। इसमें यूलोशिक्स तन्तु की आधारीय व शीर्षस्थ कोशिका को छोड़कर कोई भी कोशिका युग्मक बना सकती है। ये युग्मक आकार, आकृति व संरचना में समान होते हैं लेकिन इनका कार्यिकी व्यवहार अलग—अलग होता है। ये युग्मक द्विकशाभिक चलबीजाणुओं के समान होते हैं। इनका निर्माण चलबीजाणुधानियों में होता है। इनकी संख्या 16 से 64 तक हो सकती है। चलयुग्मकधानी की पार्श्व भित्ति में छिद्र से एक कोमल पुटिका में ही चलबीजाणु की तरह स्वतंत्र होते हैं तथा अंत में अपने कशाभिकाओं की सहायता से जल में मुक्त रूप से तैरते रहते हैं। प्रत्येक युग्मक एक नाशपाती के आकार की नग्न कोशिका है। इसके संकरे सिरे पर दो कशाभिकाएं होती हैं तथा एक स्पष्ट केन्द्रक व एक पायरीनॉइड, एक हरितलवक व लाल नेत्र बिन्दु भी होते हैं। जल में स्वतंत्र रूप से तैरते हुए दो अलग—अलग या एक ही तन्तु की दो युग्मकधानियों से आने वाले दो युग्मक सम्पर्क में आते हैं तथा अपनी कशाभिकाओं द्वारा आपस में उलझ जाते हैं। शीघ्र ही इसके नुकीले सिरे पास आकर जुड़ जाते हैं। यह संयुग्मन धीरे—धीरे चौड़े पश्च भागों की तरफ बढ़ता है तथा अंत में एक चतुष्क कशाभिकीय आकार बन जाता है। इसमें दो हिरतलवक, दो लाल दृकबिन्दु तथा एक द्विगुणित केन्द्रक होते हैं। अतः इसमें गुणसूत्रों की संख्या द्विगुणित या 2x होती है। इस प्रकार बना द्विगुणित अवस्था का केन्द्रक युग्मनज कहलाता है, जो कि दो युग्मकों के संलयन से बनता है। यह युग्मनज कुछ समय के लिये चतुष्कशाभिक होता है तथा पानी पर तैरता रहता है लेकिन शीघ्र ही थककर निष्क्रिय हो जाता है। कशाभिकाएं नष्ट हो जाती है। अब यह अचलबीजाणु की तरह व्यवहार करता है। इसके चारों ओर एक मोटी भित्त बन जाती है। इस भित्त के अन्दर युग्मनज सुरक्षित रहकर प्रतिकूल परिस्थिति को आसानी से जीवित रहता है। इसे विश्रामी युग्मनज कहते हैं। यह विश्रामी युग्मनज अनुकूल वातावरण में अंकूरित होता है। युग्माणु जल अवशोषित कर सक्रिय हो जाता है। अब इसका केन्द्रक अर्धसूत्री विभाजन द्वारा चार अगुणित केन्द्रक बनाता है। साथ ही युग्माणु का कोशिकाद्रव्य भी विदलन के द्वारा विभाजित होकर चारों केन्द्रकों के चारों ओर अलग-अलग घिर जाता है। इन्हें मीओस्पार्स या अचल मीओस्पोर्स कहते हैं। बाद में इनमें कशाभिकाएं उत्पन्न होने के कारण इन्हें चल मीओस्पार्स कहते हैं। ये चल मीओस्पोर्स कुछ समय तक पानी में तैरते रहते हैं। उसके बाद निष्क्रिय होकर किसी आधार पर चिपक जाते हैं। अंत में अर्धसूत्री विभाजन से विभाजित होकर एक आधारीय कोशिका व एक शीर्ष कोशिका बनती है। आधारीय कोशिका में आगे विभाजन नहीं होता है तथा यह होल्डफास्ट का कार्य कर नव यूलोथिक्स को आधार से चिपकाने का कार्य करती है। शीर्ष कोशिका में बार-बार समसूत्री विभाजन होता है। ये समस्त कोशिकाएं एक पंक्ति में स्थित रहती है अतः एक अशाखित तन्तु बनता है (चित्र 15.4)। ## कवक — ऐल्ब्यूगो (Fungi – Albugo) #### वर्गीकरण स्थिति प्रभाग – यूमाइकोटा उपप्रभाग – मैस्टिगोमाइकोटिना वर्ग – उमाइसीटिज गण – पेरेनोस्पोरेल्स कुल – ऐल्ब्यूजिनसी उपगण – यूलोट्राइकिनी वंश – ऐल्ब्यूगो ### वितरण एवं प्राप्ति स्थान ऐल्ब्यूगो कुल ऐल्ब्यूजिनेसी का एकमात्र वंश है। विश्व में इसकी लगभग 30 तथा भारत में 17 प्रजातियाँ पाई जाती हैं। अधिकांश प्रजातियाँ समशीतोष्ण या उष्णकिटबंधीय प्रदेशों में उच्चवर्गीय पादपों शाक आदि पर अविकल्पी अन्तःपरजीवी के रूप में पाई जाती हैं। ये पादपों पर श्वेत किट्ट (White rust) रोग उत्पन्न करती है। ऐल्ब्यूगो की विभिन्न प्रजातियों में ऐ. केन्डिडा (A. candida) सर्वाधिक सामान्य प्रजाति है। जो क्रुसीफेरी कुल के विभिन्न पौधों जैसे सरसों, मूली, गोभी आदि पर गंभीर संक्रमण कर श्वेत किट्ट नामक रोग उत्पन्न करता है (चित्र 15.5)। चित्र 15.4 : यूलोश्चिक्स में लैंगिक जनन। ऊपर अ—ल तक चलयुग्मकों का निर्माण एवं स्वतंत्र होना। नीचे अ—द तक समयुग्मकों का संलयन एवं युग्मनज बनना। य—क्ष तक युग्माणु का अंकुरण एवं नव तंतु बनना। चित्र 15.5 : *ऐल्ब्यूगो*। (अ) संक्रमित पत्ती (ब) संक्रमित पुष्पक्रम ### थैलस संरचना (Thallus Structure) एेल्ब्यूगो सुकाय, अंशकाय, फलिक, शाखित संकोशिकी व पटरहित कवकजाल है। यह परपोषी पादपों के ऊत्तकों के बीच उपस्थित अन्तरकोशिकीय स्थलों में वृद्धि करता है। इसका कवकजाल अनेक कवक सूत्रों से मिलकर बना होता है। ये अन्तरकोशिकीय कवकसूत्र परपोषी ऊत्तकों से चूषकांगों द्वारा पोषण प्राप्त करते हैं। ये चूषकांग कवक सूत्रों की घुंडीनुमा अतिवृद्धियां होती हैं। कवकजाल का कोशिका द्रव्य बहुकेन्द्रकी एवं कणिकामय होता है इसमें संचित खाद्य पदार्थ ग्लाइकोजन एवं तेल बूंदों के रूप में पाया जाता है। #### जनन (Reproduction) *ऐल्ब्यूगो* में जनन अलैंगिक एवं लैंगिक दो विधियों द्वारा होता है— 1. अलैंगिक जनन (Asexual reproduction) – ऐल्ब्यूगो में अलैंगिक जनन अनुकूल परिस्थितियों में परपोषी में संक्रमण के पश्चात् होता है। अलैंगिक जनन विशेष प्रकार की बीजाणुधानियों के द्वारा होता है। ये बीजाणुधानियां असीमित वृद्धि वाले बीजाणुधानीधरों पर विकसित होती है। संक्रमण के पश्चात् इसका कवक सूत्र वृद्धि कर कवकजाल बनाता है। ये असंख्य कवक सूत्र परपोषी की बाह्य त्वचा के नीचे सघन रूप से एकत्रित होते हैं। इन कवक सूत्रों से अनेक, उर्ध्व, छोटी गुम्बदाकार अतिवृद्धियां उत्पन्न होती हैं जो एक दूसरे के समानान्तर व पास-पास बाह्य त्वचा के नीचे व्यवस्थित हो जाती हैं। इन संरचनाओं को बीजाणुधानीधर कहा जाता है। इन बीजाणुधानीधरों का ऊपरी सिरा पतली व निचला भाग मोटी कोशिका भित्ति युक्त होता है। इसके ऊपरी सिरे पर संकीर्णन प्रक्रिया द्वारा एक छोटी पतली भित्ति युक्त, गोलाकार, बहुकेन्द्रकी बीजाणुधानी बनती है। इस नवबीजाणुधानी के नीचे स्थित बीजाणुधानीधर फिर से दूसरी बीजाणुधानी का निर्माण करता है। इस प्रकार तलाभिसारी क्रम में निरंतर बीजाण्धानियां बनती जाती है। फलस्वरूप प्रत्येक बीजाणुधानीधर के ऊपरी सिरे पर असंख्य बीजाणुधानियों की एक शृंखला बन जाती है। पास–पास की दो बीजाणुधानियां एक वियोजक पैड (Disjunctor pad) से आपस में जुड़ी रहती है। इस वियोजक पैड के गलने के कारण संलग्न बीजाणुधानियां अलग हो जाती है। इन बीजाणुधानियों के दबाव के कारण परपोषी की बाह्य त्वचा ऊपर उठ जाती है तथा अंत में दबाव के चित्र 15.6 : ऐल्ब्यूगो : संक्रमित पत्ती का अनुप्रस्थ काट कारण फट जाती है तथा परपोषी की अधोत्वचा अनावृत हो जाती है। इस अनावृत भाग में अनेक सफेद, महीन चूर्ण के रूप में बीजाणुधानियां दिखाई देती है। बीजाणुधानियों की इस सफेद संहति के कारण ही *ऐल्ब्यूगो* संक्रमित इस रोग को श्वेत किष्ट कहा जाता है। सफेद चूर्ण के रूप में इन बीजाणुधानियों का जल, वायु या अन्य साधनों द्वारा प्रकीर्णन होता है (चित्र 15.6)। अनुकूल वातावरण में प्रत्येक बीजाणुधानी विभाजित होकर लगभग 8 एककेन्द्रकी खण्ड बनाते हैं इस प्रकार बने प्रत्येक खण्ड से कायांतरण द्वारा एक वृक्काकार, द्विकशाभिकीय चलबीजाणु बनता है। बीजाणुधानी की भित्ति फटने के कारण अब ये चलबीजाणु पुटिका के रूप में बाहर आते हैं। बाहर निकलने के पश्चात् कुछ समय बाद पुटिका विलीन हो जाती है। जल में कुछ समय तैरने के पश्चात् ये चलबीजाणु परपोषी के ऊत्तकों पर स्थिर हो जाते हैं। इनकी कशाभिकाएं विलुप्त हो जाती हैं। अब ये गोलाकार आकृति ग्रहण कर एक नई बाहरी भित्ति का निर्माण कर लेते हैं। ये चलबीजाणु एक जनन निका द्वारा अंकुरित होकर पुनः परपोषी का संक्रमित करते हैं (चित्र 15.7)। चित्र 15.7 : ऐल्ब्यूगो अलैंगिक जनन : अ—ज्ञ ऐल्ब्यूगो का परपोषी पर संक्रमण बीजाणुओं का निर्माण एवं अंकुरण 2. लैंगिक जनन (Sexual reproduction) – ऐल्ब्यूगो में लेंगिक जनन विषमयुग्मकी प्रकार का होता है तथा यह जनन परपोषी के वृद्धिकाल की अंतिम अवस्था में सम्पन्न होता है। इसमें नर व मादा जननांग क्रमशः पुंधानी एवं अण्डधानी कहलाती है। ये जननांग परपोषी अन्तरकोशिकीय स्थलों में उपस्थित चित्र 15.8 : ऐल्ब्यूगो : अ-त्र - लैंगिक जनन की विभिन्न प्रावस्थाएं अलग—अलग कवक सूत्रों से अन्तर्जात के रूप में विकसित होते हैं। इसके कारण परपोषी में अतिवृद्धियां (Hypertrophy) एवं विकृति उत्पन्न होती है। जनन संरचनाओं का विकास एवं संरचना निम्न प्रकार होती है— (i) पुंधानी (Antheridium) — पुंधानी एक सुदीर्घित एवं गुम्बदाकार संरचना होती है। यह अण्डधानी के समीप के कवक सूत्र के ऊपरी सिरे पर विकसित होती है। नर कवक सूत्र का ऊपरी सिरा फूली कर गुम्बदाकार हो जाता है तथा एक अनुप्रस्थ भित्ति बनने के कारण यह शेष कवक सूत्र से अलग दिखाई देता है। परिपक्व पुंधानी में 6—12 केन्द्रक पाये जाते हैं। इसमें से एक केन्द्रक नर के रूप में कार्य करता है शेष सभी केन्द्रक नष्ट हो जाते हैं। यह पुंधानी अण्डधानी के ठीक पास में विकसित होती है। इस स्थिति को जायांगी (Perigynous) कहते हैं। अण्डधानी (Oogonium) – अण्डधानी के निर्माण के समय किसी भी कवक सूत्र का शीर्ष भाग अधिक मात्रा में कोशिका द्रव्य व केन्द्रक एकत्रित हो जाने से फूल कर गोलाकार हो जाता है तथा एक अनुप्रस्थ भित्ति बनने के कारण यह शेष कवक सूत्र से अलग दिखाई देता है। यह फूली हुई गोलाकार संरचना अण्डधानी कहलाती है। अण्डधानी विकास के साथ–साथ इसका कोशिका द्रव्य बाहरी भाग में रिक्तिकामय परिद्रव्य (Periplasm) एवं भीतरी अण्डद्रव्य (Ooplasm) के रूप में विभेदित हो जाता है। दोनों हिस्सों में केन्द्रकों की संख्या बराबर होती है। इसके बाद परिद्रव्य के केन्द्रक समसूत्री विभाजन से विभाजित होते हैं तथा इनमें से आधे केन्द्रक अण्डद्रव्य में चले जाते हैं। अण्डधानी विकास के अंतिम चरण में अण्डधानी में केवल एक केन्द्रक शेष रहता है जो मादा युग्मक का कार्य करता है। शेष बचे हुए केन्द्रक या तो नष्ट हो जाते हैं या फिर पुनः परिद्रव्य में चले जाते हैं। # Downloaded from https://www.studiestoday.com - (iii) निषेचन (Fertilization) निषेचन के समय अण्डधानी में उभरा हुआ पैपिला या ग्राही उभार उत्पन्न होता है जो पुंधानी की तरफ अग्रसर होता है। यह पुंधानी में उद्दीपन उत्पन्न कर नष्ट हो जाता है। इसी समय पुंधानी भी एक निका के समान संरचना उत्पन्न करती है, जिसे निषेचन निका कहते हैं। यह निका अण्डधानी की भित्ति एवं परिद्रव्य को भेदकर अण्डद्रव्य तक पहुंचती है। अण्डद्रव्य में निषेचन के प्रवेश से पूर्व अण्डद्रव्य का किणकामय कोशिका द्रव्य एक विशेष संहति बनाता है, इसे सीनोसेन्ट्रम कहते हैं। निषेचन निका इस सीनोसेन्ट्रम के पास जाकर फट जाती है तथा नर केन्द्रक मादा युग्मक से संलयित होकर एक द्विगुणित (2n) युग्मनज बनाता है। कुछ समय पश्चात् इस युग्मनज के चारों ओर एक मोटी भित्ति बनती है। इस मोटी मित्तियुक्त अब इस संरचना को निषिक्ताण्ड (Oospore) कहते हैं। - (iv) निषिक्ताण्ड का अंकुरण (Germination of oospore) अंकुरण के समय निषिक्ताण्ड का द्विगुणित केन्द्रक अर्धसूत्री विभाजन से विभाजित होकर 32 केन्द्रक बनाता है। इसी समय निषिक्ताण्ड के चारों ओर दो, तीन स्तरीय एक मोटी भित्ति का निर्माण होता है। इसे बाह्यचोल व मध्यचोल कहते हैं। एक परिपक्व निषिक्ताण्ड लम्बे समय तक सुषुप्तावस्था में पड़ा रहता है एवं परपोषी ऊत्तकों के नष्ट होने पर स्वतंत्र होकर मिट्टी में निष्क्रिय अवस्था में पड़ा रहता है। अनुकूल परिस्थितियों में निषिक्ताण्ड सक्रिय होता है तथा इसके केन्द्रक विभाजित होते हैं तथा इनकी संख्या लगभग 100 तक पहुंच जाती हैं, साथ ही कोशिका द्रव्य भी विदलित होकर विभाजित केन्द्रकों के चारों ओर एकत्रित हो जाता है। इस प्रकार समस्त जीवद्रव्य 100 एककेन्द्रकीय खण्डों
में विभक्त हो जाता है। प्रत्येक जीवद्रव्य खण्ड एक वृक्काकार द्विकशाभिकीय चलबीजाणु में कायांतिरत हो जाते हैं। इन्हें मीओचलबीजाणु कहते हैं। जल अवशोषित कर निषिक्ताण्ड की भित्ति फट जाती है तथा चलबीजाणु एक संहति के रूप में बाहर आकर जल में तैरने लगते हैं। कुछ समय बाद इनकी कशाभिकाएं विलुप्त हो जाती हैं तथा ये स्थिर होकर एक गोलाकार संरचना बनाते हैं। इसके चारों ओर एक आवरण बन जाता है। अंकुरण के समय प्रत्येक गोलाकार संरचना से एक जनन नलिका बनती है। यह जनन नलिका रन्ध्रों द्वारा परपोषी के ऊत्तकों में प्रवेश कर परपोषी को संक्रमित कर देती है (चित्र 15.8)। ## महत्वपूर्ण बिन्दु - 1. यूलोथिक्स शैवाल अशाखित तथा सूत्रवत होते हैं। - 2. इसकी प्रत्येक कोशिका दृति में एक केन्द्रक तथा बड़ा कॉलर या हंसली के आकार का हरित लवक पाया जाता है। - यूलोथिक्स में कायिक, अलैंगिक व लैंगिक प्रकार का जनन पाया जाता है। - 4. अनुकूल परिस्थितियों में अलैंगिक जनन चलबीजाणुओं द्वारा होता है। ये चलबीजाणु द्वि या चतुष्कशाभिकीय होते हैं। - 5. प्रतिकूल परिस्थितियों में अलेंगिक जनन अचलबीजाणुओं जैसे विशिष्ट बीजाणु, एकाइनेट्स व पाल्मेला बीजाणुओं द्वारा होता है। - यूलोथिक्स में लैंगिक जनन समयुग्मकी प्रकार का होता है। - 7. यूलोथ्रिक्स की आधारीय कोशिका में पर्णहरित नहीं पाया जाता है। - 8. एेल्ब्यूगो पादपों पर श्वेत किट्ट रोग उत्पन्न करता है। - 9. *ऐल्ब्यूगो* का सुकाय, अंशकायफलिक, शाखित, संकोशिकी व पटरहित कवकजाल है। - 10. *ऐल्ब्यूगो* में जनन अलैंगिक व लैंगिक दो विधियों द्वारा होता है। - 11. अलैंगिक जनन अनुकूल परिस्थितियों में परपोषी में संक्रमण के पश्चात् होता है। - 12. एेल्ब्यूगो में लैंगिक जनन विषमयुग्मकी प्रकार का होता है। - 13. एेल्ब्यूगो में लैंगिक जनन विषमयुग्मकी प्रकार का होता है तथा यह जनन परपोषी के वृद्धिकाल की अन्तिम अवस्था में होता है। ## अभ्यासार्थ प्रश्न ## वस्तुनिष्ठ प्रश्न - 1. *यूलोथ्रिक्स* एक शैवाल है— - (अ) शाखित व सूत्रवत (ब) अशाखित व सूत्रवत - (स) बहुशाखित सूत्रवत (द) उपरोक्त सभी - 2. यूलोथ्रिक्स की वह कोशिका जिसमें पर्णहरित नहीं होता है— - (अ) आधारीय कोशिका (ब) शीर्ष कोशिका - (स) मध्य कोशिका - (द) उपरोक्त सभी - 3. यूलोथिक्स की एक चलबीजाणुधानी में चलबीजाणुओं की संख्या होती है— - (अ) 1-32 - (ब) 1-40 - (स) 1-45 - (द) 1—50 तक - 4. यूलोथिक्स का वह बीजाणु जो प्रतिकूल परिस्थितियाँ अपने जीवद्रव्य के चारों ओर कोशिका भित्ति सहित एक मोटा आवरण बना लेता है कहलाता है— - (अ) चलबीजाणु - (ब) अचलबीजाणु - (स) पाल्मेला - (द) एकाइनेट्स 157 - पौधों में श्वेत किट्ट रोग होता है— - (अ) *पक्सीनिया* द्वारा - (ब) *ऐल्ब्यूगो* द्वारा - (स) *अस्टिलागों* द्वारा - (द) *फाइटोथोरा* द्वारा - 6. एेल्ब्यूगो में अलेंगिक जनन होता है- - (अ) अचलबीजाणुओं द्वारा - (ब) चलबीजाणुओं द्वारा - (स) सुसुप्त बीजाणुओं द्वारा - (द) उपरोक्त सभी द्वारा - एेल्ब्यूगो की अण्डधानी विभेदित होती है— - (अ) अण्ड व अण्डगोल में - (ब) अण्डगोल व परिद्रव्य में - (स) अण्डद्रव्य व परिद्रव्य - (द) उपरोक्त में से कोई नहीं - एल्ब्यूगो में संचित भोज्य पदार्थ होता है— - (अ) ग्लूकोज - (ब) ग्लाइकोजन - (स) तेल बूंदें - (द) ग्लाइकोजन व तेल बूंदें ### अतिलघुत्तरात्मक प्रश्न - 1. होल्डफास्ट क्या है? - 2. निश्चेष्ठ बीजाणु क्या है? - 3. यूलोथिक्स में लैंगिक जनन किस प्रकार का होता है? - 4. यूलोथ्रिक्स के चलयुग्मन में कितनी कशाभिकाएं पाई जाती है? - 5. ऐल्ब्यूगो मुख्यतः किन पादपों को संक्रमित करता है? - 6. एेल्ब्यूगो पादपों में कौनसा रोग फैलाता है। - 7. सीनेसेन्ट्रम क्या है? - 3. *ऐल्ब्यूगो* कैसा परजीवी है? ### लघुत्तरात्मक प्रश्न - 1. यूलोथ्रिक्स का वर्गीकरण लिखिए। - 2. यूलोथ्रिक्स के आवास व स्वभाव के बारे में बताइये। - 3. पाल्मेला अवस्था क्या है? - 4. यूलोथ्रिक्स की कायिक संरचना बताइये। - 5. ऐल्ब्यूगो के कवकजाल को सचित्र बताइये। - 6. क्रुसीफेरी पादपों में श्वेत किट्ट रोग पर संक्षिप्त टिप्पणी लिखिए। - 7. ऐल्ब्यूगो की पुंधानी की संरचना बताइये। - 8. *ऐल्ब्यूगो* की अण्डधानी की संरचना बताइये। #### निबंधात्मक प्रश्न - यूलोथिक्स में अलैंगिक जनन का सचित्र वर्णन कीजिए। - 2. यूलोथिक्स में लैंगिक जनन का सचित्र वर्णन कीजिए। - 3. एेल्ब्यूगो में लैंगिक जनन का सचित्र वर्णन कीजिए। - ऐल्ब्यूगो में अलैंगिक जनन एवं श्वेत किट्ट रोग का वर्णन कीजिए। उत्तरमालाः 1 (ब) 2 (अ) 3 (अ) 4 (द) 5 (ब) 6 (ब) 7 (स) 8 (द) #### अध्याय - 16 ## ब्रायोफाइटा — रिक्सिया एवं टेरिडोफाइटा — टेरिडियम (Bryophyta — Riccia and Pteridophyta — Pteridium) | | C | Δ | \sim | |----|------|------|--------| | वग | किरण | स्थि | ात | प्रभाग – ब्रायोफाइटा वर्ग – हिपेटिकोप्सिडा गण – मार्केन्शिएलीज कुल – मार्केन्शिएसी वंश – *रिक्सिया* #### वितरण व स्वभाव रिक्सिया विश्वव्यापी है। इस वंश में लगभग 140 जातियाँ मिलती हैं। इनमें से 31 जातियाँ भारत में पाई जाती हैं। राजस्थान में इसकी 14 जातियाँ मिलती हैं जिसमें रि. डिसकलर (R. discolor), रि. क्रिस्टेलाइना (R. crystalina) प्रमुख हैं। इसके अतिरिक्त रि. आबूएन्सिस (R. abuensis), रि. फ्लूटेन्स (R. fluitans) जलीय जातियाँ हैं। रिक्सिया अधिकतर स्थलीय आवासों में पाया जाता है। यह मुख्यतः नम व छायादार, मैदानी व निचले पहाड़ी क्षेत्रों में पाया जाता है। रिक्सिया के जीवन चक्र में दो प्रावस्थाएं मिलती हैं— (1) युग्मकोद्भिद् व (2) बीजाणुद्भिद् प्रावस्था ## 1. युग्मकोद्भिद् प्रावस्था (Gametophytic phase) #### बाह्य संरचना (External structure) रिक्सिया का मुख्य पादप शरीर युग्मकोद्भिद् थैलस होता है। थैलस प्रायः श्यान, चपटा, पृष्ठाधारी व द्विभाजी शाखित होता है। थैलस आकृति के आधार पर यह पादप हृदयाकार, पेजाकार या फीतेनुमा हो सकते हैं (चित्र 16.1)। थैलस की प्रत्येक शाखा के शीर्ष पर एक खांच होती है, जिसमें वृद्धि बिन्दु स्थित होता है। प्रत्येक शाखा की अपाक्ष सतह पर मध्यशिरा क्षेत्र में एक अनुदैध्यं खांच (Median longitudinal groove) होता है। इस मध्य खांच में जननांगों का निर्माण होता है। प्रत्येक थैलस की अभ्यक्ष सतह पर दो प्रकार के मूलाभास (i) चिकनी भित्तियुक्त तथा (ii) गुलिकीय पाये जाते हैं। इसी सतह पर शल्क भी पाये जाते हैं। शल्क बहुकोशिकीय, बैंगनी रंग चित्र 16.1 : अ—द : *रिविसया* की बाह्य आकृति। (अ) पादप स्वभाव, (ब)—(स) थैलस की निचली सतह, (द) चिकनी भित्ति युक्त मूलाभास, (य) गुलिकीय मूलाभास (र) शल्क। के मोटाई में एककोशिय, प्लेटनुमा होते हैं। नम स्थानों में उगने वाली जातियों में शल्क प्रायः छोटे व अल्पकालिक होते हैं जबिक शुष्क आवासों में उगने वाली जातियों में शल्क बड़े व दीर्घकालिक होते हैं। ### आंतरिक संरचना (Internal structure) परिपक्व *रिक्सिया* थैलस की आंतरिक संरचना दो स्पष्ट क्षेत्रों में विभक्त होती हैं— (i) ऊपरी प्रकाशसंश्लेषी क्षेत्र व नीचे की ओर (ii) संचयी क्षेत्र (चित्र 16.2)। रिक्सिया थैलस की वृद्धि, शीर्ष खांच (Apical notch) में स्थित 3–5 शीर्ष कोशिकाओं द्वारा होती है। #### जनन (Reproduction) रिक्सिया में जनन कायिक तथा लेंगिक विधियों द्वारा होता है। **1. कायिक जनन** (Vegetative reproduction) – रिकिसया में कायिक जनन अनुकूल वृद्धिकाल में निम विधियों द्वारा होता हैं— चित्र 16.2 : रिक्सिया : थैलस का अनुप्रस्थ काट, (अ) आरेकित चित्र, (ब) कोशिकीय चित्र। - (i) प्रकाशसंश्लेषी क्षेत्र (Photosynthetic region) यह क्षेत्र अशाखित उदग्र कोशिका पंक्तियों का बना होता है। ये पंक्तियां प्रकाशसंश्लेषी तन्तु कहलाती हैं। प्रत्येक तन्तु की शीर्षस्थ कोशिका तुलनात्मक रूप से बड़ी, काचाभ(Hyaline) व हरितलवक रहित होती है। प्रकाशसंश्लेषी तन्तुओं के बीच संकीर्ण अथवा चौड़े वायुकोष्ठक (Air chambers) पाये जाते हैं। यह थैलस की अपाक्ष सतह पर वायुछिद्र (Air pore) द्वारा खुलता है। इन वायुछिद्रों के द्वारा प्रकाश संश्लेषण के समय गैसों का आदान—प्रदान होता है। - (ii) संचयी क्षेत्र (Storage region) यह क्षेत्र प्रकाशसंश्लेषी क्षेत्र के नीचे सघन, रंगहीन, मृदुत्तक कोशिकाओं का बना होता है। इस क्षेत्र की कोशिकाओं में हरितलवक नहीं पाया जाता है तथा अन्तरकोशिकीय अवकाश (Intercellular space) की अनुपस्थित होते हैं। ये कोशिकाएं स्टार्च के रूप में भोज्य पदार्थों का संचय करती हैं। इस क्षेत्र की सबसे निचली परत निचली अधिचर्म का कार्य करती है। इस निचली अधिचर्म से ही मूलाभास व शल्क विकसित होते हैं। - (अ) विखण्डन पुराने थैलस के धीरे—धीरे मृत होने के कारण दोनों द्विभाजीशाखा की शाखाएं अलग हो जाती हैं तथा प्रत्येक पृथक हुई शाखा एक स्वतंत्र थैलस के रूप में विकसित होती हैं। - (ब) अपस्थानिक शाखाओं द्वारा रिक्सिया की कुछ जातियों के थैलस की अभ्यक्ष सतह पर अपस्थानिक शाखाएं विकसित होती हैं। ये शाखाएं मातृ पादप से अलग होकर नया थैलस बनाती है। - (स) चिरस्थायी शीर्ष द्वारा शुष्क क्षेत्र में उगने वाली जातियों में प्रतिकूल परिस्थितियों में शीर्ष भाग के अतिरिक्त सम्पूर्ण थैलस नष्ट हो जाता है। जबिक शीर्ष भाग मृदा में दबा रहता है। इसे चिरस्थायी शीर्ष कहते हैं। यह चिरस्थायी शीर्ष अनुकूल परिस्थितियों में वृद्धि कर नया थैलस बनाते हैं, उदाहरण रि. डिस्कलर। - (द) **कंद द्वारा** रिक्सिया की कुछ जातियों में वृद्धिकाल की समाप्ति पर बहुकोशिक, गोलाकार चिरकालिक संरचनाएं बनती हैं जिन्हें कंद कहते हैं। ये कंद प्रतिकूल परिस्थितियों में सुसुप्त अवस्था में रहते हैं। अनुकूल परिस्थितियों में मातृ पादप से पृथक होकर नये थैलस में विकसित होते हैं, उदाहरण रि. डिस्कलर व रि. बल्बीफेरा। - (य) मूलाभास द्वारा कई जातियों में मूलाभास के शीर्ष भाग पर एक विशिष्ट बहुकोशिक संहति (Multicellular mass) का निर्माण होता है इसे भूमिगत जेमा (Underground gemma) कहते हैं। ये जेमा अनुकूल परिस्थितियों में नव पादप को जन्म देती है। - 2. लैंगिक जनन (Sexual reproduction) रिक्सिया में लैंगिक जनन प्रायः विषमयुग्मकी प्रकार का होता है। नर जननांग पुंधानी (Antheridium) व मादा जननांग स्त्रीधानी (Archegonium) कहलाते हैं। रिक्सिया की अधिकांश जातियाँ उभयलिंगाश्रयी (Monoecious) होती है अर्थात् नर व स्त्री जननांग एक ही थैलस पर विकसित होते हैं। लेकिन कुछ जातियाँ जैसे रि. गेन्गेटिका (R. gangatica), रि. डिस्कलर (R. discolor) एकलिंगाश्रयी (Dioecious) होती है अर्थात् नर व मादा जननांग अलग–अलग थैलस पर विकसित होते हैं। #### पुंधानी (Antheridium) पुंधानी थैलस की अपाक्ष सतह पर मध्यशिरा क्षेत्र में एकल रूप से अग्राभिसारी क्रम में विकसित होती है अर्थात् नई पुंधानी थैलस के शीर्ष भाग की तरफ तथा पुरानी पुंधानी थैलस के निचले भाग पर स्थित होती है। प्रत्येक पुंधानी, पुंधानी प्रकोष्ठ में विकसित होती है। ### पुंधानी का परिवर्धन (Development of antheridium) पुंधानी का परिवर्धन थैलस की अपाक्ष सतह पर, शीर्ष कोशिका से 2-3 कोशिका पीछे मध्य खांच की सतही कोशिका (Superficial cell) से होता है। इसे पुंधानी प्रारम्भिक कोशिका चित्र 16.3 : रिक्सिया : अ-न : पुंधानी परिवर्धन की विभिन्न प्रावस्थाएँ (Antheridial initial) कहते हैं। यह कोशिका अन्य कोशिकाओं से बड़ी व सघन कोशिका द्रव्य युक्त होती है। इसमें एक अनुप्रस्थ विभाजन द्वारा ऊपरी बाह्य कोशिका (Outer cell) व निचली आधारीय कोशिका (Basal cell) बनती है। आधारी कोशिका से पुंधानी वृन्त व शेष भाग बाह्य कोशिका से बनता है। बाह्य कोशिका उत्तरोत्तर अनुप्रस्थ विभाजन द्वारा चार कोशिका तन्तु का निर्माण करती है। इस तन्तु की ऊपरी दो कोशिकाएं प्राथमिक पुंधानी कोशिका तथा निचली दो कोशिकाएं प्राथमिक वृन्त कोशिकाएं कहलाती हैं। प्राथमिक वृन्त कोशिकाएं विभाजन द्वारा दो कोशिकीय मोटाई युक्त बहुकोशिक वृन्त
बनाती है। प्राथमिक पुंधानी कोशिकाओं में दो उदग्र विभाजन एक दूसरे के समकोण पर होते हैं। जिससे चार—चार कोशिकाओं के दो सोपान (Tiers) बनते हैं। इन आठों कोशिकाओं में परिनत विभाजन द्वारा आठ बाह्य प्राथमिक जैकेट कोशिकाएं तथा आठ भीतरी प्राथमिक पुंजनक कोशिकाएं बनती हैं। प्राथमिक जैकेट कोशिकाएं अपनत विभाजनों द्वारा एक स्तरीय पुंधानी जैकेट का निर्माण करती है। जबिक प्राथमिक पुंजनक कोशिकाएं उत्तरोत्तर विभाजनों द्वारा अनेक कोशिकाएं बनती है। इन्हें पुमणु मातृ कोशिकाएं कहते हैं। प्रत्येक पुमणु मातृ कोशिका अर्धसूत्री विभाजन द्वारा चार शुक्राणु मातृ कोशिकाएं बनाती है। प्रत्येक शुक्राणु मातृ कोशिका या पुंकोशिका कायान्तरण (Metamorphosis) द्वारा एक द्विकशाभिकी पुमणु (Biflagellate antherozoid) का निर्माण करती है। #### परिपक्व पुंधानी (Mature antheridium) रिक्सिया की प्रत्येक परिपक्व पुंधानी गोलाकार, अण्डाकार या गुम्बदाकार संरचना होती है (चित्र 16.4)। प्रत्येक पुंधानी एक छोटे, बहुकोशिक, द्विकोशिक मोटाई युक्त वृन्त द्वारा पुंधानी प्रकोष्ठ के आधार पर लगी रहती है। प्रत्येक पुंधानी प्रकोष्ठ (Antheridial chamber) की अपाक्ष सतह पर एक संकीर्ण छिद्र द्वारा बाहर खुलता है। पुंधानी का जैकेट पुमणु मातृ कोशिकाओं चित्र 16.4 : रिक्सिया : परिपक्व पुंधानी की संरचना को ढके रहता है। एक पुंधानी में अनेक पुमणु विकसित होते हैं। प्रत्येक पुमणु कुण्डलित व द्विशाभिकीय होते हैं। ### पुंधानी का स्फूटन (Dehiscence of antheridium) पुंधानी स्फूटन के लिये जल आवश्यक है। पुंधानी जैकंट की शीर्ष कोशिकाएं जल अवशोषित कर जिलेटीनीकरण द्वारा विघटित हो जाती है। साथ ही पुंधानी का भीतरी श्लेष्म जल अवशोषित कर लेता है अतः इनके फूलने के कारण आन्तरिक दबाव बढ़ता है। अतः पुंधानी का शीर्ष भाग फट जाता है तथा छिद्र से पुमणु श्लेष्म के साथ समूह में थैलस की सतह पर आ जाते हैं व जल के सम्पर्क में आकर तैरने लगते हैं। #### स्त्रीधानी (Archegonium) पुंधानियों के समान स्त्रीधानियाँ भी थैलस की अपाक्ष सतह पर स्त्रीधानी प्रकोष्ठ में विकसित होती है। इनका विकास भी अग्राभिसारी क्रम में होता है। #### स्त्रीधानी का परिपक्व (Development of archegonium) स्त्रीधानी का परिवर्धन थैलस की सतही कोशिका से होता है इसे स्त्रीधानी प्रारम्भिक कोशिका कहते हैं। यह कोशिका अनुप्रस्थ विभाजन द्वारा ऊपरी बाह्य कोशिका तथा निचली आधारीय कोशिका बनाती है। आधारी कोशिका से स्त्रीधानी का अन्तः स्थापित भाग तथा बाह्य कोशिका स्त्रीधानी मातृ कोशिका के रूप में कार्य करती है। स्त्रीधानी मातृ कोशिका तीन उदग्र तिर्यक विभाजन से एक केन्द्रीय प्राथमिक अक्षीय कोशिका तथा तीन परिधीय कोशिकाओं का निर्माण करती है। अब प्रत्येक परिधीय कोशिका अरीय अनुदेध्य्य विभाजन द्वारा विभाजित होकर छः जैकेट प्रारम्भिक कोशिकाएं बनाती है। ये कोशिकाएं अनुप्रस्थ विभाजन द्वारा दो सोपान बनाती हैं। ऊपरी सोपान की कोशिकाएं ग्रीवा प्रारम्भिक (Neck initials) व निचले सोपान की कोशिकाएं अण्डधा प्रारम्भिक कहलाती हैं। ग्रीवा प्रारम्भिक कोशिकाओं में अनुप्रस्थ विभाजनों से ग्रीवा का निर्माण होता है। ये छः उदग्र पंक्तियों की 6–9 कोशिका ऊँचाई की बनी होती है। अण्डधा प्रारम्भिक कोशिकाएं अनुप्रस्थ विभाजनों द्वारा एक स्तरीय अण्डधा भित्ति बनाती हैं। अक्षीय कोशिका अनुप्रस्थ विभाजन द्वारा ऊपरी प्राथमिक आवरण कोशिका तथा निचली केन्द्रीय कोशिका बनाती है। आवरण कोशिका एक दूसरे के समकोण पर दो उदग्र विभाजनों से चार आवरण कोशिकाएं तथा निचली अण्डधा कोशिका बनाती है। प्रारम्भिक ग्रीवा नाल कोशिका अनुप्रस्थ विभाजनों द्वारा 4—6 ग्रीवा नाल कोशिकाएं बनाती है। ये एक पंक्ति में स्थित होती है। अण्डधा कोशिका एक अनुप्रस्थ विभाजन द्वारा दो असमानकोशिकाएं बनाती हैं, ऊपरी छोटी अण्डधा नाल कोशिका व आधारीय बड़ी, गोलाकार अण्ड कोशिका (Egg cell) कहलाती है। स्त्रीधानी परिवर्धन के समय इसके चारों ओर की कायिक कोशिकाएं भी सक्रिय होकर विभाजनों द्वारा स्त्रीधानी प्रकोष्ठ बनाती है। स्त्रीधानी ग्रीवा का कुछ भाग थैलस की ऊपरी सतह पर प्रकोष्ठ से बाहर निकला रहता है (चित्र 7.5)। #### परिपक्व स्त्रीधानी की संरचना (Structrue of mature archegonium) एक परिपक्व स्त्रीधानी फ्लास्कनुमा होती है, जो स्त्रीधानी प्रकोष्ठ के आधार पर छोटे वृन्त से लगी रहती है। एक परिपक्व स्त्रीधानी गोलाकार अण्डधा आधार तथा संकीर्ण लम्बी ग्रीवा ऊपरी भाग में विभेदित होती है। ग्रीवा जैकेट छः उदग्र पंक्तियों की बनी होती है जिसकी ऊँचाई 6–9 कोशिकीय होती है। ग्रीवा के शीर्ष पर आच्छद कोशिकाएं (Cover cells) होती हैं। ग्रीवा नाल 4–6 ग्रीवा नाल कोशिकाओं की बनी होती है। ये कोशिकाएं एक पंक्ति में लगी रहती हैं। अण्डधा के चारों ओर एक स्तरीय कोशिकीय जैकेट होता है। अण्डधा गुहा में एक बड़ा गोलाकार अण्ड (Egg) तथा ऊपरी एक अण्डधा नाल कोशिका होती है (चित्र 16.5)। ### निषेचन (Fertilization) निषेचन के लिये जल आवश्यक है। निषेचन से पूर्व परिपक्व स्त्रीधानी की ग्रीवा नाल कोशिकाएं तथा अण्डधा नाल कोशिका अपघटित होकर एक श्लेष्मी पदार्थ बनाती है जो कि जक अवशोषित कर फुल जाता है। इसके दबाव के कारण ग्रीवा के शीर्ष पर स्थित आवरण कोशिकाएं पृथक हो जाती हैं अतः श्लेष्मी पदार्थ बाहर आ जाता है, जो पुमणुओं को अपनी ओर आकर्षित करता है। इस श्लेष्मी में प्रोटीन, मैलिक अम्ल व पोटेशियम लवण होते हैं। ये पुमणु रसायन अनुचलनी क्रिया द्वारा स्त्रीनाल में प्रवेश करते हैं। अन्ततः इनमें से एक पुमणु अण्ड से संलयित होकर द्विगुणित युग्मनज बनाता है। निषेचन के पश्चात् शेष पुमणु नष्ट हो जाते हैं तथा अण्डधा का ऊपरी भाग श्लेष्म से बन्द हो जाता है। इसके पश्चात् युग्मनज अपने चारों ओर सेल्यूलोज की एक भित्ति स्त्रावित कर निषिक्ताण्ड (Oospore) में परिवर्तित हो जाता है। ## 2. बीजाणुद्भिद् प्रावस्था (Sporophytic phase) युग्मनज (Zygote) बीजाणुद्भिद् पीढ़ी की प्रथम कोशिका है। इसमें विश्रामावस्था का अभाव होता है। यह विभाजनों द्वारा बीजाणुद्भिद् का निर्माण करता है। स्त्रीधानी अण्डधा की जैकेट कोशिकाएं निषेचन क्रिया से उद्दीपित होकर सक्रिय हो जाती हैं। यह परिनत तथा अपनत विभाजनों द्वारा विभाजित होकर एक द्विस्तरीय संरक्षण आवरण गोपक या कैलीप्ट्रा बनाती हैं। गोपक चित्र 16.5 : रिक्सिया : अ-ल : स्त्रीधानी परिवर्धन की विभिन्न प्रावस्थाएं एवं एक परिपक्व स्त्रीधानी परिवर्धित होते हुए बीजाणुद्भिद् को घेरे रहता है क्योंकि इसकी वृद्धि स्पोरोगोनियम के साथ—साथ समान दर से होती है। जाते हैं। जैसे—जैसे बीजाणु चतुष्क का निर्माण होता है, साथ ही जैकेट तथा गोपक की भीतरी परत की कोशिकाएं भी नष्ट होती जाती है तथा परिपक्व अवस्था में केवल बाह्य गोपक परत बची रहती है (चित्र 16.6)। चित्र 16.6 : रिक्सिया : अ-य : बीजाणुद्भिद् की विभिन्न प्रावस्थाएं #### बीजाणुद्भिद् का परिवर्धन (Development of sporogonium) युग्मनज एक अनुप्रस्थ विभाजन से विभाजित होकर दो समान आकार की कोशिकाएं बनाता है। ऊपरी कोशिका अध्याधर (Epibasal) तथा निचली अधराधर कोशिका कहलाती हैं। दूसरा विभाजन उदग्रतल में होने से चार कोशिकीय चतुष्क बनता है। तीसरा विभाजन उदग्र भित्ति द्वारा होता है यह विभाजन पहले उदग्र विभाजन के समकोण पर होता है फलस्वरूप आठ कोशिकीय अष्टांक भ्रूण का निर्माण होता है। इस अष्टांक की सभी कोशिकाएं अनियमित रूप से विभाजित होकर 20-40 कोशिकाओं की एक गोलाकार संरचना बनाता है। इस समूह की सतही कोशिकाओं में एक परिनत विभाजन होता है फलस्वरूप एक बाह्य स्तर बहिस्थीसियम (Amphithecium) तथा केन्द्रीय समूह अन्तरथीसियम (Endothecium) बनता है। बहिरथीसियम की कोशिकाओं में केवल अपनत विभाजन होते हैं जिससे बन्ध्य संरक्षी एक स्तरीय जैकेट बनता है। अन्तरथीसियम की कोशिकाएं प्रसूतक (Archesporium) के रूप में कार्य करती हैं। ये कोशिकाएं उत्तरोत्तर विभाजित होकर बीजाणुजनक ऊत्तक (Sporogenous tissue) बनाती है। इसकी प्रत्येक कोशिका बीजाणुजन मातृ कोशिका कहलाती है। बीजाणुजन मातृ कोशिका एक दूसरे से पृथक होकर एक गोलाकार संरचना बनाती है। इनमें से कुछ कोशिकाएं रूद्धवृद्धि (Abortive) होकर अपघटित हो जाती हैं। ये अपघटित कोशिकाएं पोषक कोशिकाओं का कार्य करती है। प्रत्येक बीजाणु मातृ कोशिका अर्धसूत्री विभाजन द्वारा एक बीजाणु चतुष्क का निर्माण करती है। यह चतुष्क बीजाणु मातृ कोशिका के भित्ति से घिरे रहते हैं। कुछ समय बाद बीजाणु मातृ कोशिका भित्ति के लुप्त होने के कारण चतुष्क के चारों बीजाणु पृथक हो ### परिपक्व बीजाणुद्भिद् की संरचना (Structure of mature sporogonium) रिक्सिया का बीजाणुद्भिद् एक सरल संरचना है, जो कि केवल कैप्सूल द्वारा निरूपित होता है। इसमें पाद (Foot) व सीटा (Seta) अनुपस्थित होते हैं। यह बीजाणुद्भिद् एक स्तरीय जैकेट तथा द्विस्तरीय गोपक द्वारा परिबद्ध रहता है। परिपक्व होने तक जैकेट तथा भीतरी गोपक परत अपघटित हो जाते हैं। अतः परिपक्व कैप्सूल केवल बाह्य गोपक स्तर द्वारा ही घिरा रहता है। इसमें अनेक बीजाणु चतुष्क व बीजाणु परिबद्ध रहते हैं। यह बीजाणुद्भिद् पोषण के लिये पूर्ण रूप से युग्मकोद्भिद् थैलस पर निर्भर रहता है (चित्र 16.7)। चित्र 16.7 : रिक्सिया : परिपक्व बीजाणुद्भिद् की संरचना चित्र 16.8 : रिक्सिया : अ-र : बीजाणु अंकुरण की विभिन्न प्रावस्थाएं #### कैप्सूल का स्फूटन (Dehiscence of capsule) रिक्सिया कैप्सूल के कैलीप्ट्रा की बाह्य स्तर तथा इसके चारों ओर के थैलस ऊत्तकों के मृत होकर क्षय हो जाने पर बीजाणु मुक्त हो जाते हैं। ये मुक्त बीजाणु वायु द्वारा प्रकीर्णित होते हैं। #### तरूण युग्मकोद्भिद् (Young gametophyte) बीजाणु (Spore) युग्मकोद्भिद् पीढ़ी की प्रथम कोशिका है। ये बीजाणु सामान्यतया चतुष्फलकीय अथवा पिरामिड आकार के होते हैं। इनकी बीजाणु भित्ति स्पोरोडर्म कहलाती है। जो तीन स्तरों क्रमशः बाह्यचोल, मध्यचोल तथा अन्तःचोल से बनी होती है। अनुकूल परिस्थितियों में बीजाणु अंकुरित होकर नव पादप को जन्म देते हैं (चित्र 16.8)। ## टेरिडाफाइटा – टेरिडियम (Pteridophyta – Pteridium) #### वर्गीकरण स्थिति प्रभाग – टेरिडोफाइटा उपप्रभाग – टेरोप्सीडा वर्ग – लेप्टोस्पोरेन्जिएटी गण – फिलीकेलीज कुल – डेन्स्टेडोटिएसी वंश – टेरिडियम #### वितरण व स्वभाव *टेरिडियम* एक व्यापक रूप से पाया जाने वाला फर्न है। यह नम व छायादार स्थानों में पाया जाता है। इसकी विभिन्न जातियाँ पहाड़ी व मैदानी भागों में पाई जाती है। यह भूमिगत प्रकंद से वृद्धि करता है। भारत में इसकी छः जातियाँ पाई जाती हैं जिसमें टे. लेटिसक्यूलम व टे. ऐक्विलिनमप्रमुख है। टेरिडियम के जीवन चक्र में बीजाणुद्भिद् व युग्मकोद्भिद् दो प्रमुख प्रावस्थाएं पाई जाती हैं जिसमें बीजाणुद्भिद् जीवन की प्रभावी प्रावस्था है। #### बाह्य संरचना (External structure) टेरिडियम का बीजाणुद्भिद् पूर्णरूप से जड़, प्रकन्द व पित्तयों में विभेदित होता है। प्राथमिक, मूसलामूल, अल्पकालिक जड़ों तथा प्रकन्द से स्थाई अपस्थानिक जड़ें निकलती हैं। ये प्रायः छोटी व शाखित होती हैं। प्रकन्द बेलनाकार द्विभाजी शाखित व भूमिगत होता है। यह पर्व व पर्वसंधियों में विभेदित होता है। इस पर बहुकोशिकीय रोम होते हैं। पित्तयाँ पर्वसंधियों से ऊपर की ओर एकान्तर क्रम में विकसित होती है। तरूण पित्तयों में कुण्डलित किसलाय विन्यास (Circinate venation) पाया जाता है अर्थात् ये सर्पिलाकार रूप से कुण्डलित होती है। एक परिपक्व पत्ती द्विपिच्छकी संयुक्त (Bipinnately compound) होती है। ये आकार में शंक्वाकार होती है। इन्हें प्रपर्ण (Frond) कहते हैं। पित्तयों का रेकिस हल्के भूरे रंग के शक्लों से ढका रहता है (चित्र 16.9)। #### आन्तरिक संरचना (Internal structure) 1. मूल (Root) – अनुप्रस्थ काट में मूल के तीन स्पष्ट क्षेत्र दिखाई देते हैं। ये क्षेत्र मूलीयत्वचा, भरण
ऊत्तक व संवहन तंत्र होते हैं। मूलीय त्वचा बाह्य एक स्तरीय परत के रूप में होती है। इसकी कुछ कोशिकाएं एककोशिय मूल रोम बनाती है। भरण ## Downloaded from https://www.studiestoday.com चित्र 16.9 : टेरिडियम : बाह्य संरचना ऊत्तक बहुस्तरीय होता है। भरण ऊत्तक की अन्तस्थ त्वचा परिरंभ बनाती है। मूल के केन्द्र में केन्द्रीय संवहन तंत्र पाया जाता है। इसमें केन्द्रीय मेटाजाइलम के दोनों ओर प्रोटोजाइलम के छोटे—छोटे समूह पाये जाते हैं। इस जालइम पट्टी के दोनों तरफ फ्लोएम का एक—एक समूह उपस्थित होता है (चित्र 16.10)। 2. प्रकन्द (Rhizome) – प्रकन्द के अनुप्रस्थ काट में सबसे बाहरी एक स्तरीय परत बाह्यत्वचा (Epidermis) होती है। यह क्यूटीकल से ढकी रहती है। इस परत के नीचे दृढ़ोत्तक की बनी अधःत्वचा (Hypodermis) होती है। प्रकन्द का शेष भाग मृदुत्तक का बना भरण ऊत्तक होता है तथा केन्द्र में केन्द्रीय संवहन तंत्र पाया जाता है। युवा प्रकन्द में नाल रंभ (Siphonostele) जबकि परिपक्व प्रकन्द में बहुचक्रिक रंभ (Polycyclic) रंभ पाया जाता है। इसमें संवहनपूल दो चक्रों में व्यवस्थित होते हैं। इन संवहनपूलों चित्र 16.10 : टेरिडियम : मूल का अनुप्रस्थ काट को मेरिस्टिल कहते हैं। प्रत्येक मेरिस्टिल के चारों ओर एक एकस्तरीय अन्तःत्वचा (Endodermis) व एक या दो परिरंभ से घिरा रहता है। यह अपने आप में एक रंभ को निरूपित करता है। इसमें संवहनपूल ठोस प्रकार का पाया जाता है अर्थात् केन्द्रीय जायलम चारों ओर से फ्लोएम से घिरा रहता है। - 3. पर्णवृन्त (Rachis) पर्णवृन्त अनुप्रस्थ काट में अर्धचन्द्राकार दिखाई देता है। इसकी बाह्यत्वचा एक स्तरीय होती है। इसके नीचे 2—3 स्तरीय दृढ़ोत्तकी अधःस्त्वचा होती है। अन्दर की ओर मृदुत्तकों से बना बहुस्तरीय भरण ऊत्तक होता है। युवा पर्णवृन्त के भरण ऊत्तक में एक "U" आकृति का रंभ पाया जाता है। परन्तु प्रौढ़ पर्णवृन्त में यह दो मेरिस्टीलो में विभाजित हो जाता है। प्रत्येक मेरिस्टील की संरचना इसके प्रकन्द के समान होती है (चित्र 16.11)। - 4. पर्णक (Pinna) पर्णक एक चपटी पृष्ठाधार संरचना है। पर्णक आन्तरिक रूप से ऊपरी व निचली अधिचर्म में विभेदित रहती है। इन दोनों अधिचर्मों के बीच पर्णमध्योत्तक पाया जाता है जो खंभाकार व स्पंजी ऊत्तकों का बना होता है। निचली अधिचर्म में रंध्र पाये जाते हैं। पर्णक के केन्द्र में एक संकेन्द्रकी संवहनपूल पाया जाता है। इसमें केन्द्रीय जायलम के चारों ओर फ्लोएम कोशिकाएं होती हैं। यह संवहनपूल एक पुलाच्छाद से घिरा रहता है (चित्र 16.12)। #### जनन (Reproduction) *टेरिडियम* में जनन कायिक, अलैंगिक बीजाणुओं तथा लैंगिक विधियों द्वारा होता है। 1. कायिक जनन – यह जनन टेरिडियम के कायिक भाग प्रकन्द द्वारा होता है। प्रकन्द के गलन एवं मृत्यु के कारण इसकी द्विभाजी शाखाएं अलग होकर प्रत्येक शाखा नव बीजाणुद्भिद् बनाता है। चित्र 16.11 : टेरिडियम : पर्णवृन्त का अनुप्रस्थ काट चित्र 16.12 : टेरिडियम पर्णक का उदग्र काट 2. बीजाणुओं द्वारा अलैंगिक जनन – टेरिडियम में सभी बीजाणु एक समान होते हैं अतः यह समबीजाणुक (Homosporous) टेरिडोफाइट का उदाहरण है। ये बीजाणु प्रपर्णी (Fronds) की निचली सतह पर बनने वाली बीजाणुधानियों में बनते हैं। अतः इन्हें प्रपर्ण बीजाणुपर्ण भी कहते हैं। इन बीजाणुपर्णों की निचली सतह पर बनने वाली बीजाणुधानियों को सोराई (Sori) कहते हैं। ये सोराई एक सतत् रेखिक क्रम में लगातार विकसित होती है फलस्वरूप एक रेखिक सोरस बनाती है। प्रत्येक सोरस दो पतले कपाट संदृश उद्धर्धों से ढके रहते हैं। ऊपरी कपाट आभासी इंडुशियम बनाता है जबिक भीतरी इंडुशियम कम विकसित होता है। यह पतली एक स्तरीय कोशिकाओं का बना होता है इसे सत्य इंडुशियम कहते हैं। ये दोनों इंडुशियम युवावस्था में सोरस को ढके रहते हैं। प्रत्येक बीजाणुधानी या सोरस एक वृन्त व कैप्सूल में विभेदित होती है। परिपक्व कैप्सूल का जैकेट एक ओर कुछ संकरी व पतली भित्तियुक्त कोशिकाओं की एक पट्टी होती है जिसे रंध्रक (Stomium) कहते हैं। कैप्सूल का स्फुटन इसी रंध्रक से होता है। इसके अतिरिक्त सम्पूर्ण कैप्सूल कुछ विशिष्ट कोशिकाओं द्वारा बने एक वलय (Annulus) से ढका रहता है। चित्र 16.13 : टेरिडियम : (अ) बीजाणुधानी पर्ण, (ब) बीजाणुधानी बीजाणुधानी के अन्दर की शेष समस्त कोशिकाएं प्राथमिक बीजाणुजन कोशिकाएं कहलाती है। ये कोशिकाएं समसूत्री विभाजन से विभाजित होकर 16 बीजाणु मातृ कोशिकाएं बनाती है। प्रत्येक बीजाणु मातृ कोशिकाएं अर्धसूत्री विभाजन द्वारा चार अगुणित बीजाणुओं का एक चतुष्क बनाती है। इस प्रकार प्रत्येक बीजाणुधानी में 64 अगुणित बीजाणु बनते हैं। ये सभी बीजाणु आकार व आकृति में समान होते हैं। प्रत्येक बीजाणु एक बाह्य, मोटी व गहरे रंग की बाह्यचोल व भीतरी पतली व चिकनी अन्तःचोल से घिरा रहता है (चित्र 16.13)। शुष्क वातावरण में वलय कोशिकाओं की बाहरी पतली भित्ति से वाष्पन होता है फलस्वरूप इनका स्फीत दाब (Turgor pressure) कम हो जाता है तथा बाहरी भित्ति अन्दर दब जाती है। इसके कारण वलय की मोटी अरीय भित्तियाँ पीछे की ओर खिंचने लगती हैं। इस खिंचाव के कारण बीजाणुधानी रंधक से अलग हो जाती है तथा वलय पीछे की ओर मुड़ जाती है। इसके बाद इसकी कोशिकाएं लगातार सुखकर सीधी हो जाती है और सभी बीजाणु मुक्त होकर बाहर सूखकर निकल जाते हैं। ## युग्मकोद्भिद् ### (Gametophyte) अगुणित बीजाणु युग्मकोद्भिद् प्रावस्था की प्रथम कोशिका है। अनुकूल वातावरण में प्रकीर्णन के बाद बीजाणुओं में अंकुरण प्रारम्भ होता है। अंकुरण के समय जल अवशोषण कर बीजाणु का बाह्यचोल फट जाता है तथा अन्तःचोल एक जनन निलका के रूप में बाहर निकलता है। इस निलका के विभाजन से एक छोटा तन्तु बनता है। इस तन्तु की आधारीय कोशिका से अनेक मूलाभास विकसित होते हैं जिससे नव पादप मिट्टी में चिपका रहता है। ऊपरी कोशिका में हरितलवक पाया जाता है यह कोशिका विभाजित होकर एक हरी, चपटी, हृदयाकार संरचना बनाती है जिसे प्रौथेलस कहते हैं। यह एक स्वपोषी संरचना है। जनन अंग इसी प्रौथेलस पर उत्पन्न होते हैं (चित्र 16.14)। चित्र 16.14 : टेरिडियम प्रौथेलस #### लैंगिक जनन (Sexual reproduction) टेरिडियम में लैंगिक जनन विषमयुग्मकी प्रकार का होता है। नर व मादा जननांग क्रमशः पुंधानियाँ व स्त्रीधानियाँ एक ही प्रौथेलस पर विकसित होती है। #### पुंधानी (Antheridium) पुंधानियाँ हृदयाकार प्रौथेलस के आधारीय क्षेत्र में विकसित होती है। प्रौथेलस के अभ्यक्ष सतह की पृष्ठीय कोशिका पुंधानी प्रारम्भिका का कार्य करती है। इसके अनुप्रस्थ विभाजन से एक बाह्य ऊपरी कोशिका व निचली प्रथम वलय कोशिका बनती है। ऊपरी कोशिका पुनः एक अनुप्रस्थ विभाजन से विभाजित होकर एक बाहरी गुम्बद कोशिका व भीतरी प्राथमिक पुंजनक कोशिका बनाती है। गुम्बद कोशिका से एक बाह्य आवरण कोशिका व भीतरी वलय कोशिका बनती है। प्रथम व द्वितीय वलय कोशिकाओं एवं आवरण कोशिकाओं में अपनत विभाजन से पुंधानी का जैकेट बनता है। जबिक प्राथमिक पुंजनक कोशिका अनेक विभाजनों के फलस्वरूप 30–40 पूर्व पुमणु कोशिकाएं बनाती है। प्रत्येक पूर्व पुमणु कोशिका कायान्तरित होकर एक बहुकशाभिक पुमणु बनाती है (चित्र 16.15)। #### स्त्रीधानी (Archegonium) टेरिडियम में स्त्रीधानियाँ प्रौथेलस पर शीर्षस्थ कांच के पास विकसित होती है। प्रौथेलस के अभ्यक्ष सतह की पृष्ठीय कोशिका स्त्रीधानी प्रारम्भिका का कार्य करती है। यह प्रारम्भिका एक अनुप्रस्थ विभाजन द्वारा एक ऊपरी प्राथमिक आवरण कोशिका तथा एक निचली केन्द्रीय कोशिका बनाती है। प्राथमिक आवरण कोशिका से ग्रीवा व केन्द्रीय कोशिका के विभाजन से प्राथमिक नाल कोशिका, अण्डधानाल कोशिका व एक अण्ड बनता है। #### निषेचन (Fertilization) टेरिडियम में निषेचन के लिये जल आवश्यक है। जल अवशोषित कर परिपक्व पुंधानी फूल जाती है। जिससे आवरण कोशिका पर दबाव पड़ता है और वह खुल जाती है। फलस्वरूप पुमणु मुक्त हो जाते हैं। ये मुक्त पुमणु प्रोथेलस पर उपस्थित जल की पतली परत पर तैरते हैं। इसी समय स्त्रीधानियों की ग्रीवा नाल कोशिकाएं व अण्डधानाल कोशिका के विघटन से एक विस्कस पदार्थ बनता है। यह पदार्थ पुमणुओं को अपनी ओर आकर्षित करता है। इन पुमणुओं में से केवल एक पुमणु अण्ड से निषेचित होकर युग्मनज बनाता है। कुछ समय पश्चात् इस द्विगुणित युग्मनज के चारों ओर एक मोटी भित्ति स्त्रवित होती है। अब इस युग्मनज को निषिक्ताण्ड कहते हैं (चित्र 16.16)। ## नव बीजाणुद्भिद् का परिवर्धन (Development of young sporophyte) निषेचन के तुरंत बाद स्त्रीधानी में उपस्थित विस्कस पदार्थ चित्र 16.15 : टेरिडियम : अ-क्ष : पुंधानी परिवर्धन की विभिन्न प्रावस्थाएं एवं पुमणुओं का विमोचन चित्र 16.16 : टेरिडियम : अ-र : स्त्रीधानी परिवर्धन की विभिन्न प्रावस्थाएं सूख जाता है फलस्वरूप निषेचित स्त्रीधानी का मुंह बन्द हो जाता है। इसके पश्चात् निषिक्ताण्ड दो उदग्र विभाजन द्वारा एक चतुष्क कोशिकीय भ्रूण बनाता है। अब एक अनुप्रस्थ विभाजन से यह भ्रूण आठ कोशिकाओं में विभाजित हो जाता है। जिसमें ऊपरी सोपान की चार कोशिकाएं प्ररोह शीर्ष व बीजपत्र प्रारम्भिका बनाती है तथा निचले सोपान की चार कोशिकाएं मूल व पाद ## Downloaded from https:// www.studiestoday.com (Foot) बनाती है। पाद का प्रारम्भिक कार्य नवोदित बीजाणुद्भिद् को प्रौथेलस से भोजन प्रदान कराना है। लेकिन कुछ समय पश्चात् बीजाणुद्भिद् अपना भोजन स्वयं बनाता है। जब बीजाणुद्भिद् अपना भोजन स्वयं बनाना प्रारम्भ कर देता है तब पाद व प्रौथेलस लुप्त हो जाते हैं (चित्र 16.17)। चित्र 16.17 : *टेरिडियम* : स्त्रीधानी परिवर्धन की विभिन्न प्रावस्थाएं ## महत्वपूर्ण बिन्दु - 1. रिक्सिया अधिकतर स्थलीय आवासों में पाया जाता है। यह मुख्यतया नम व छायादार स्थानों में पाया जाता है। - 2. इसका थैलस प्रायः श्यान, चपटा, पृष्ठाधारी व द्विभाजी शाखित होता है। - 3. प्रत्येक थैलस की अभ्यक्ष सतह पर दो प्रकार के मूलाभास— चिकनी भित्तियुक्त तथा गुलिकीय पाये जाते हैं। - 4. परिपक्व *रिविसया* थैलस की आन्तरिक संरचना दो स्पष्ट क्षेत्रों में विभक्त होती हैं — (i) ऊपरी प्रकाश संश्लेषी क्षेत्र तथा नीचे की ओर (ii) संचयी क्षेत्र। - 5. प्रकाश संश्लेषी क्षेत्र अशाखित उदग्र कोशिका पंक्तियों का बना होता है। - 6. रिक्सिया में जनन कायिक व लैंगिक विधियों द्वारा होता है। - 7. लैंगिक जनन विषमयुग्मकी प्रकार का होता है। - स्पोरोगोनियम एक सरल संरचना है जो कि केवल कैप्सूल द्वारा निरूपित होता है। पाद व सीटा अनुपस्थित होते हैं। - 9. *टेरिडियम* एक व्यापक रूप से पाया जाने वाला फर्न है। - इसका बीजाणुद्भिद् पूर्ण रूप से जड़, प्रकन्द व पत्तियों में विभेदित होता है। - 11. इसकी तक्तण पत्तियों में कुण्डलित किसलाय विन्यास पाया जाता है। - 12. *टेरिडियम* में जनन कायिक, अलैंगिक बीजाणुओं तथा लैंगिक विधियों द्वारा होता है। - 13. टेरिडियम में सभी बीजाणु एक समान होते हैं अतः यह समबीजाण्विक टेरिडोफाइट का उदाहरण है। 14. टेरिडियम में लैंगिक जनन विषमयुग्मकी प्रकार का होता है। नर व मादा जननांग क्रमशः पुंधानियाँ व स्त्रीधानियाँ एक ही प्रौथेलस पर विकसित होती है। ### अभ्यासार्थ प्रश्न ### वस्तुनिष्ठ प्रश्न - 1. *रिक्सिया* की जलीय जाति है— - (अ) रि. डिस्कलर - (ब) रि. गेंगेटिका - (स) रि. फ्लूटेन्स - (द) रि. क्रिस्टेलाइना - 2. रिक्सिया में युग्मकोद्भिद् की अन्तिम संरचना है— - (अ) बीजाणु - (ब) युग्मक - (स) बीजाणु मातृ कोशिका - (द) युग्मनज - 3. रिक्सिया में बीजाणुद्भिद् की प्रथम कोशिका है- - (अ) बीजाणु मातृ कोशिका - (ब) बीजाण् - (स) युग्मक - (द) युग्मनज - 4. रिक्सिया का बीजाणुद्भिद् निरूपित होता है- - (अ) फूट - (ब) सीटा - (स) फूट, सीटा व कैप्सूल - (द) केवल कैप्सूल - 5. *टेरिडियम* के जीवन चक्र की प्रभावी प्रावस्था है— - (अ) बीजाणुद्भिद् - (ब) युग्मकोद्भिद् - (स) दोनों - (द) दोनों में से कोई नहीं - 6. एक
परिपक्व *टेरिडियम* की पत्ती होती है— - (अ) सरल - (ब) एकपिच्छकी संयुक्त - (स) द्विपिच्छकी - (द) द्विपिच्छकी संयुक्त - 7. *टेरिडियम* की परिपक्व मूल की रंभ होती है– - (अ) नाल रंभ - (ब) बहुचक्रिक रंभ - (स) ठोस रंभ - (द) पट्टिका रंभ - 8. *टेरिडियम* का संवहनपूल एक पुलाच्छाद से घिरा रहता है— - (अ) मूल में - (ब) प्रकन्द में - (स) पर्णक में - (द) पर्णवृन्त में #### अतिलघुत्तरात्मक प्रश्न रिक्सिया की दो जलीय जातियों के नाम लिखो। ### **170** - 2. रिक्सिया किस गण से संबंधित है? - 3. *रिक्सिया* की स्त्रीधानी में कितनी ग्रीवा नाल कोशिकाएं पाई जाती हैं? - 4. स्पोरोडर्म क्या है? - 5. *टेरिडियम* में लैंगिक जनन किस प्रकार का होता है? - 6. *टेरिडियम* में किस प्रकार के बीजाणु पाये जाते हैं? - 7. पत्तियों का किसलाय विन्यास क्या है? - 8 निषिक्ताण्ड क्या है? ### लघुत्तरात्मक प्रश्न - 1. रिक्सिया में कायिक जनन की विधियां बताइये। - 2. रिक्सिया के परिपक्व पुंधानी की संरचना बताइये। - रिक्सिया में निषेचन के बारे में बताइये। - 4. *रिक्सिया* के परिपक्व बीजाणुद्भिद् का नामांकित चित्र बनाइये। - 5. *टेरिडियम* की वर्गीकृत स्थिति बताइये। - 6. *टेरिडियम* के आवास व वितरण के बारे में लिखिए। - 7. *टेरिडियम* के निषेचन पर संक्षिप्त टिप्पणी लिखिए। - 8. *टेरिडियम* के प्रकन्द की आन्तरिक संरचना का केवल नामांकित चित्र बनाइये। #### निबन्धात्मक प्रश्न - रिक्सिया की बाह्य व आंतरिक संरचना का सचित्र वर्णन कीजिए। - 2. रिक्सिया में पुंधानी व स्त्रीधानी परिवर्धन का सचित्र वर्णन कीजिए। - रिक्सिया में बीजाणुद्भिद् परिवर्धन व परिपक्व बीजाणुद्भिद् की संरचना का सचित्र वर्णन कीजिए। - टेरिडियम की मूल व पर्णवृन्त की आन्तरिक संरचना का वर्णन कीजिए। - 5. *टेरिडियम* में बीजाणुओं द्वारा जनन का सचित्र वर्णन कीजिए। - टेरिडियम में लैंगिक जनन का सचित्र वर्णन कीजिए। उत्तरमालाः 1 (अ) 2 (ब) 3 (द) 4 (द) 5 (अ) 6 (द) 7 (स) 8 (स) #### अध्याय - 17 # ऐन्जिओस्पर्म : कैप्सेला (Angiosperm: Capsella) ## सामान्य नाम – शैफर्ड्स पर्स पादप (Shepherd purse plant) ### वर्गीकरण स्थिति (Systematic position) जगत – प्लाण्टी प्रभाग – आवृतबीजी वर्ग – द्विबीजपत्री श्रेणी – थेलेमीफ्लोरी गण – पेराइटेल्स कुल – ब्रेसीकेसी (क्रसीफेरी) वंश – कैप्सेला जाति – बर्सा – पेस्टोरिस ### आवास व आकृति कैप्सेला पादप एकवर्षीय शाक है। यह शरद ऋतु में खरपतवार के रूप में उगता है। पादप, मूल, तना व पत्तियों में पूर्ण चित्र 17.1 : कैप्सेला पादप रूप से विभेदित होता है। इसका मुख्य पादप बीजाणुद्भिद्, द्विगुणित (2n) एवं विषमबीजाण्विक होता है। इसमें लघु तथा गुरु, दो तरह के बीजाणु क्रमशः लघु व गुरुबीजाणुधानियों में बनते है। पादप की लम्बाई 2—3 फीट तक हो सकती है। यह पादप एक प्राकृतिक आवृतबीजी के समस्त लक्षण प्रदर्शित करता है (चित्र 17.1)। #### पत्ती पत्तियाँ सरल, एकान्तर अथवा स्तम्भिक होती हैं। ये सवृंत व अनुपर्णी होती है। इनमें शिराविन्यास जालिकावत होता है। #### पुष्पक्रम कैप्सेला में पुष्पक्रम असीमाक्षी होता है। #### पुष्प कैप्सेला का पादप उभयलिंगी होता है अर्थात् नर व मादा जननांग एक ही पादप पर, एक ही पुष्पपुंज में स्थित होते हैं। पुष्प, पुष्पासन पर लगे रहते हैं। प्रत्येक पुष्प असंपत्री, सवृन्त, पूर्ण, द्विलिंगी, त्रिज्यात समित, जायांगधर एवं नियमित होता है। पुष्प के बाहरी दो चक्र क्रमशः बाह्यदलपुंज एवं दलपुंज कहलाते हैं। ये पुष्प के सहायक चक्र हैं क्योंकि इनकी जनन में कोई भूमिका नहीं होती है। अन्दर के दो चक्र क्रमशः पुमंग व जायांग कहलाते हैं। ये पुष्प के आवश्यक चक्र कहलाते हैं, जो जनन में भाग लेते हैं (चित्र 17.2)। कैप्सेला पुष्प के निम्नलिखित भाग होते हैं— - बाह्यदलपुंज यह पुष्प का बाह्य चक्र होता है जिसे बाह्यदलपुंज कहते हैं। इसकी प्रत्येक इकाई दल कहलाती है। इसमें दो बाह्य व दो अन्तः मिलाकर कुल चार बाह्यदल होते हैं। इनमें कोरछादी विन्यास पाया जाता है। - 2. दलपुंज यह पुष्प का दूसरा चक्र होता है। इसकी प्रत्येक इकाई दल कहलाती है। यह पुष्प का रंगीन व आकर्षक भाग होता है। जो परागण के लिये कीटों को आकर्षित चित्र 17.2 : पुष्प का अनुदैर्ध्य काट करता है। कैप्सेला में चार रंगीन व स्वतंत्र दल होते हैं। ये क्रुसीफार्म रूप में व्यवस्थित होते हैं (चित्र 17.3)। इनके दल नख (Claw) एवं फलक (Limb) में विभेदित होते हैं (चित्र 17.4)। चित्र 17.3 : क्रुसीफार्म व्यवस्थापन चित्र 17.4 : नख व फलक उ. नर जननांग — पुमंग, पुष्प का नर जननांग होता है। इसकी प्रत्येक इकाई पुंकेसर कहलाती है। कैप्सेला में छः पुंकेसर होते हैं। ये दो चक्रों (2+4) में व्यवस्थित होते हैं। बाहर की ओर दो छोटे तथा अन्दर की ओर चार बड़े पुंकेसर होते हैं। इसे चतुर्दीर्घी अवस्था कहते हैं। प्रत्येक पुंकेसर द्विओष्ठी एवं अन्तर्मुखी होता है। ये पुंकेसर दलाभ(Petaloid) होते हैं। प्रत्येक पुंकेसर तीन भागों पुतंतु, परागकोष व चित्र 17.5 : पुमंग व जायांग योजी ऊत्तकों में विभेदित होता है (चित्र 17.5)। परागकोषों को लघुबीजाणुपर्ण भी कहते हैं। प्रत्येक पुंकेसर द्विपालित होता है। इसमें चार लघुबीजाणुधानियाँ होती हैं तथा इन बीजाणुधानियों का विकास यूस्पोरेन्जिएट प्रकार का होता है। प्रत्येक परागकोष बाह्यत्वचा, ऐन्डोथिसियम, मध्य परत व टेपेटम आदि चार परतों में आन्तरिक रूप से विभेदित होता है। टेपेटम सबसे अन्दर की परत होती है जो परागकणों को पोषण प्रदान करती है (चित्र 17.6)। चित्र 17.6 : परागकोष का अनुप्रस्थ काट लघुबीजाणुधानी में लघुबीजाणु मातृ कोशिका के अर्धसूत्री विभाजन द्वारा लघुबीजाणु या परागकण बनते हैं। लघुबीजाणु बनने की यह प्रक्रिया लघुबीजाणुजनन कहलाती है (चित्र 17.7)। चित्र 17.7 : लघुबीजाणुजनन कैप्सेला में परागण कीटों द्वारा होता है। ये परागकण नर युग्मकोद्भिद् परिवर्धन द्वारा नरयुग्मकोद्भिद् बनाते हैं। इस नर युग्मकोद्भिद् में दो नर युग्मक होते हैं (चित्र 17.8)। चित्र 17.8 : नरयुग्मोद्भिद् 4. जायांग या स्त्रीकेसर — कैप्सेला के पुष्प का सबसे अन्दर का चक्र मादा जननांग जायांग या स्त्रीकेसर कहलाता है। प्रत्येक जायांग वर्तिकाग्र, वर्तिका एवं अण्डाशय आदि तीन भागों में विभेदित होता है (चित्र 17.9)। वर्तिकाग्र चित्र 17.9 : जायांग जायांग का शीर्षस्थ भाग होता है जबिक वर्तिका लघु बेलनाकार संरचना होती है। अण्डाशय जायांग का फुला हुआ आधारीय भाग होता है। यह अण्डपों से मिलकर बनता है। अण्डपों में बीजाण्ड होते हैं। कैप्सेला का जायांग द्विअण्डपी, युक्ताण्डपी, अण्डाशय ऊर्ध्ववर्ती होता है लेकिन आभासीपट्ट के कारण यह द्विओष्ठी दिखाई देता है। प्रत्येक कोष्ठ में अनेक बीजाण्ड होते हैं। इसमें बीजाण्डान्यास भित्तिय प्रकार का होता है। 5. निषेचन — कैप्लेला में निषेचन के पूर्व परागनली दो नर युग्मकों सिहत भ्रूणकोष में प्रवेश करती है तथा दोनों नर युग्मक स्वतंत्र रूप से भ्रूणकोष में छोड़ देती है। इसके पश्चात् निषेचन की क्रिया होती है। निषेचन के समय एक नर युग्मक अण्ड कोशिका से संलयन करता है जिससे द्विगुणित युग्मनज बनता है। इसे सत्य निषेचन कहते हैं। दूसरा नर युग्मक ध्रुवीय केन्द्रक या द्वितीयक केन्द्रक (2n) से संलयन करता है जिससे प्राथमिक भ्रूणपोष केन्द्रक (3n) बनता है। यह क्रिया त्रिसंलयन कहलाती है। युग्मक संलयन (सत्य निषेचन) एवं त्रिसंलयन को मिलाकर द्विनिषेचन कहते हैं (चित्र 17.10)। आगे के परिवर्धन में द्विगुणित युग्मनज के विभाजन से भ्रूण एवं प्राथमिक भ्रूणपोष केन्द्रक के विभाजन से त्रिगुणित भ्रूणपोष बनता है। #### बीज व फल का निर्माण कैप्सेला में निषेचन के पश्चात् परिपक्व निषेचित अण्डाशय फल एवं परिपक्व निषेचित बीजाण्ड बीज में परिवर्तित होते हैं। बीजाण्ड के अध्यावरण बीजचोल बनाते हैं। इसमें बीजाण्ड का चित्र 17.10 : निषेचन : सत्य निषेचन व व्रिसंलयन बाह्य अध्यावरण सूखकर कठोर हो जाता है तथा बाह्य बीजचोल टेस्टा व आन्तरिक अध्यावरण पतली झिल्ली के समान आन्तरिक बीजचोल टेग्मा का निर्माण करते हैं। कैप्सेला का फल स्फूटनशील सिलिकुआ होता है। बीज अभ्रूणपोषी होते हैं। ## महत्वपूर्ण बिन्दु - 1. *कैप्सेला* को शैफर्डस पर्स पादप भी कहते हैं। - 2. इसका मुख्य पादप बीजाणुद्भिद् एवं विषमबीजाण्विक होता है। - 3. *कैप्सेला* का पुष्पक्रम असीमाक्षी होता है। - 4. कैप्सेला में चार रंगीन व स्वतंत्र दल होते हैं। ये क्रूसीफार्म रूप में व्यवस्थित होते हैं। - इसके पुष्प में छः पुंकेसर होते हैं। ये दो चक्रों (2 + 4) में व्यवस्थित होते हैं। ये चतुर्दीर्घी होते हैं। - 6. *कैप्सेला* में परागण कीटों द्वारा होता है। - 7. कैप्सेला का फल स्फूटनशील सिलिकुआ होता है। - 8. इसके बीज अभ्रूणपोषी होते हैं। #### अभ्यासार्थ प्रश्न ### वस्तुनिष्ठ प्रश्न - 1. कैप्सेला में पुंकेसर होते हैं- - (अ) 5 - (ब) 6 - (स) 4 - (द) 2 174 - 2. कैप्सेला के परागकोष की सबसे अन्दर की परत कहलाती है— - (अ) अधिचर्म - (ब) ऐन्डोथिसियम - (स) मध्यपरत - (द) टेपेटम - 3. *कैप्सेला* में परागण होता है— - (अ) वायु द्वारा - (ब) कीटों द्वारा - (स) जल द्वारा - (द) जन्तुओं द्वारा - कैप्सेला के नर युग्मकोद्भिद् की परागनली में नरयुग्मकों की संख्या होती है— - (अ) दो - (ब) चार - (स) छः - (द) एक ### अतिलघुत्तरात्मक प्रश्न - कैप्सेला के दलपुंज किस रूप में व्यवस्थित रहते हैं। - 2. सत्य निषेचन क्या है? - 3. लघुबीजाणुजनन से आप क्या समझते हैं? - 4. कैप्सेला का अण्डाशय आभासीपट्ट के कारण कैसा दिखाई देता है? ### लघुत्तरात्मक प्रश्न - 1. कैप्सेला के पत्ती की संरचना बताइये। - कैप्सेला के परागकोष के अनुप्रस्थ काट का नामांकित चित्र बनाइये। - 3. द्विनिषेचन से आप क्या समझते हैं? - 4. कैप्सेला के पश्च निषेचन परिवर्धन के बारे में बताइये। #### निबंधात्मक प्रश्न - कैप्सेला के पुष्प एवं इसके विभिन्न भागों का सचित्र वर्णन कीजिए। - 2. *कैप्सेला* के नर एवं मादा जनानांगों का सचित्र वर्णन कीजिए। उत्तरमालाः 1 (ब) 2 (द) 3 (ब) 4 (अ) # इकाई – 13 अध्याय - 18 # पारिस्थितिक तंत्र (Ecosystem) पारिस्थितिक तंत्र शब्द का सर्वप्रथम उपयोग ए.जी. टेन्सले (A.G. Tansely) ने 1935 में किया। पारिस्थितिक तंत्र एक कार्यशील इकाई के रूप में निरूपित होता है। इसे प्रकृति का एक ऐसा तंत्र माना जाता है जिसमें जैविक एवं अजैविक घटकों की संरचना व कार्यप्रणाली का पारिस्थितिक संबंध कुछ निश्चित नियमों के अनुसार गतिज संतुलन में रहता है। साथ ही ऊर्जा एवं विभिन्न पदार्थों का प्रवाह निश्चित पथों में होता है। ओडम (Odum 1971) के अनुसार ऐसी इकाई जिसमें किसी विशेष क्षेत्र के सजीव सम्मिलित हो व अपने भौतिक वातावरण से पारस्परिक क्रिया करते हों, जिसमें नियमित ऊर्जा का प्रवाह, स्पष्ट पोषण संरचना, पदार्थों का परिचक्रण एवं जैव विविधता पाई जाती है, उसे पारिस्थितिक तंत्र कहते हैं। सामान्य परिभाषा के अनुसार पारिस्थितिक तंत्र जैव मण्डल का एक ऐसा स्वतंत्र तंत्र है जिसमें खाद्य पदार्थों एवं ऊर्जा का प्रवाह एक पोषक स्तर से दूसरे पोषक स्तरों तक विशेष नियमों के अनुसार होता है। ### पारिस्थितिक तंत्र की संरचना ### (Structure of ecosystem) ओडम (Odum 1971) के अनुसार एक पारिस्थितिक तंत्र की संरचना 6 घटकों से मिलकर बनती है। ये घटक निम्नलिखित होते हैं— - 1. अकार्बनिक पदार्थ - 2. कार्बनिक पदार्थ - 3. जलवायु - 4. उत्पादक - 5. गुरुउपभोक्ता एवं - सूक्ष्म उपभोक्ता इनमें से प्रथम तीन अजैविक घटक (Abiotic components) कहलाते हैं जबिक शेष तीन जैविक घटक कहलाते हैं। पारिस्थितिक तंत्र के कार्यों का अर्थ इसके जैविक एवं अजैविक घटकों की पारस्परिक क्रियाओं, ऊर्जा प्रवाह एवं पोषक पदार्थों का परिसंचरण है। इस प्रकार एक पारिस्थितिक तंत्र में दो घटक होते हैं— - 1. अजैविक घटक (Abiotic components) - 2. जैविक घटक (Biotic components) - 1. अजैविक घटक
(Abiotic components) किसी पारिस्थितिक तंत्र के भौतिक वातावरणीय कारक जैसे प्रकाश तीव्रता, आर्द्रता, अकार्बनिक एवं कार्बनिक पदार्थ आदि अजैविक घटक कहलाते हैं। - (i) जलवायु कारक (Climatic factor) पारिस्थितिक तंत्र में जलवायु कारकों जैसे तापक्रम, प्रकाश, वर्षा, हवा की गति आदि अजैविक घटकों का प्रमुख योगदान होता है। इसमें प्रकाश के अन्तर्गत सूर्य की विकिरण ऊर्जा पारिस्थितिक तंत्र का प्रमुख ऊर्जा स्त्रोत है। - (ii) अकार्बनिक पदार्थ (Inorganic substances) विभिन्न अकार्बनिक पदार्थ एवं कारक जैसे जल, मृदा, ऑक्सीजन, नाइट्रोजन, कार्बन, कैल्शियम कार्बोनेट, फॉस्फेट व कार्बनडाइऑक्साइड आदि पारिस्थितिक तंत्र के महत्वपूर्ण घटक है। ये घटक विभिन्न चक्रीय पथों में अभिगमन करते हैं। - (iii) कार्बनिक पदार्थ (Organic substances) कार्बनिक पदार्थों में वसा, कार्बोहाइड्रेट, ह्यूमस, पर्णहरित व लिपिड पारिस्थितिक तंत्र के मुख्य कार्बनिक घटक होते हैं। ये पारिस्थितिक तंत्र में जैविक व अजैविक घटकों को जोड़ने का कार्य करते हैं। - 2. जैविक घटक (Biotic components) पारिस्थितिक तंत्र के समस्त सजीवों (पादप व जन्तु) को इस घटक में सम्मिलित किया जाता है। इस तंत्र में विभिन्न जीवों द्वारा पोषण प्राप्त करने की प्रक्रिया के आधार पर जैविक घटकों को प्रमुख दो वर्गों में बांटा जा सकता है— - (i) स्वपोषी या उत्पादक (Autotrophs or producers) पारिस्थितिक तंत्र में उपस्थित सजीव जैसे हरे पादप व रसायन संश्लेषी जीवाणु सूर्य के प्रकाश की उपस्थिति में प्रकाश संश्लेषण की क्रिया द्वारा सरल अकार्बनिक पदार्थों को जटिल कार्बनिक पदार्थों में परिवर्तित करते हैं। जीवाणु रसायन संश्लेषण द्वारा सरल अकार्बनिक पदार्थों को जटिल कार्बनिक पदार्थों में बदलते हैं इन्हें उत्पादक (Producers) कहते हैं। इसमें ज़मीन पर उगने वाले वे समस्त पादप जैसे जलोद्भिद, शैवाल, सूक्ष्म प्लावकों को भी उत्पादक की श्रेणी में रखा जाता है। - (ii) विषमपोषी या उपभोक्ता (Heterotrophs or consumers) पारिस्थितिक तंत्र के सजीव सदस्य जो पोषण के लिये उत्पादकों पर निर्भर रहते हैं, क्योंकि इन सजीवों में हरितलवकों का अभाव होता है अतः अपने पोषण को बनाने की क्षमता इनमें नहीं होती है। इन्हें उपभोक्ता कहते हैं। उपभोक्ता को दो श्रेणियों में विभाजित किया गया है - (अ) गुरुउपभोक्ता (Macro consumers) वे उपभोक्ता जो अपना भोजन जीवित पादपों या जीवों से प्राप्त करते हैं, इन्हें भक्षक पोषी भी कहते हैं। उदाहरण हिरण व खरगोश प्रत्यक्ष रूप से पौधों पर निर्भर रहते हैं तथा जंगल में रहने वाला शेर अपने भोजन के लिये हिरण का शिकार करता है। यहाँ पर हिरण व शेर दोनों ही उपभोक्ता हैं परन्तु इनकी श्रेणियाँ अलग—अलग हैं। अतः गुरुउपभोक्ताओं को तीन श्रेणियों में बांटा जा सकता है— - (i) प्राथिमक उपभोक्ता (Primary consumers) ये शाकाहारी जीव होते हैं जो अपने भोजन के लिये प्रत्यक्ष रूप से हरे पादपों अर्थात् उत्पादकों पर निर्भर रहते हैं। उदाहरण खरगोश, चूहा, हिरण, कीट, बकरी, गाय, घोड़ा, भैंस आदि। इसी प्रकार जलीय पारिस्थितिक तंत्र के प्रोटोजोआ, मोलस्क व क्रस्टेशियन्स आदि अपने पोषण के लिये उत्पादकों पर निर्भर रहते हैं। - (ii) द्वितीयक उपभोक्ता (Secondary consumers) ये जन्तु अपना भोजन प्रथम श्रेणी के शाकाहारी प्राणियों से प्राप्त करते हैं। ये प्रायः मांसाहारी या सर्वभक्षी होते हैं। उदाहरण सर्प, बिल्ली, मेंढक, कुत्ता, लोमड़ी आदि। - (iii) तृतीयक उपभोक्ता (Tertiary consumers) इस प्रकार के उपभोक्ता प्राणी अपना भोजन द्वितीय श्रेणी के मांसाहारी उपभोक्ता जन्तुओं से प्राप्त करते हैं। इसके अतिरिक्त ये उपभोक्ता सर्वाहारी व शाकाहारी प्राणियों का भी भक्षण करते हैं। लेकिन इन तृतीयक उपभोक्ता को कोई अन्य - प्राणी नहीं खा सकता है। इस प्रकार इन्हें उच्चवर्गीय उपभोक्ता या उच्च मांसाहारी भी कहते हैं जैसे शेर, बाघ, चीता, बाज व गिद्ध आदि। - (ब) सूक्ष्म उपभोक्ता (Micro consumers) ये उपभोक्ता अपने पोषण के समय अपने एन्जाइम्स की सहायता से जटिल कार्बनिक पदार्थों को सरल अकार्बनिक पदार्थों में अपघटित करते हैं। इसके पश्चात् इन अपघटित सरल तत्वों का अवशोषण करते हैं अतः इन्हें अपघटक या मृतभक्षी भी कहते हैं। उदाहरण कवक, जीवाणु, एक्टिनोमाइसीटिज व अन्य मृतोपजीवी सजीवों को इस वर्ग में सम्मिलित किया गया है। उत्पादक (Producers), उपभोक्ता (Consumers), तथा अपघटकों (Decomposers) को मिलाकर जैवभार (Biomass) कहते हैं। इस प्रकार अजैविक घटक, उत्पादकों में जीवीय भोजन के रूप में एकत्रित होते हैं। उपभोक्ता इसी भोजन को प्राप्त कर प्रथम श्रेणी के उपभोक्ता कहलाते हैं। ये शाकाहारी जन्तु होते हैं। द्वितीयक श्रेणी के उपभोक्ता मांसाहारी होते हैं जो कि इन शाकाहारी जन्तुओं से भोजन प्राप्त करते हैं। यह क्रम अब मांसाहारी जन्तुओं में एक के बाद दूसरे में चलता रहता है। इस प्रकार सूर्य के प्रकाश की ऊर्जा का उपयोग कर सरल अकार्बनिक पदार्थों से उत्पादक भोजन का निर्माण करते हैं। यह भोजन एक जन्तु से दूसरे में, दूसरे से तीसरे में चलता रहता है। अंत में जन्तुओं और पादपों के मर जाने से अपघटकों द्वारा इन्हें अपघटित करके अजीवीय पदार्थों के रूप में वापस उत्पादकों के लिये उपलब्ध हो जाता है। ## खाद्य शृंखला (Food chain) पारिस्थितिक तंत्र में एक जीव से दूसरे जीव में खाद्य पदार्थों तथा ऊर्जा का प्रवाह एक पोषक स्तर से दूसरे पोषक स्तर तक एक शृंखला रूप में होता है इसे खाद्य शृंखला कहते हैं। एक पारिस्थितिक तंत्र में कई खाद्य शृंखलाएं होती हैं। ये खाद्य शृंखलाएं आपस में एक दूसरे से संबंधित होती है तथा यह संबंध किसी भी स्तर पर हो सकता है। खाद्य शृंखला के प्रत्येक स्तर को ऊर्जा स्तर या पोषक स्तर (Energy level or trophic level) कहते हैं। एक घास स्थलीय पारिस्थितिक तंत्र में एक खाद्य शृंखला, घास \rightarrow टिड्डे \rightarrow मेंढक \rightarrow सर्प \rightarrow उल्लू के बीच हो सकती है। टिड्डे जैसे जन्तुओं से यह खाद्य शृंखला छिपकितयों के क्रम से पक्षियों तक पहुंच सकती है अथवा यह शाकाहारी के रूप में चूहे या खरगोश तक पहुंच सकती है। ### खाद्य जाल (Food Web) किसी भी पारिस्थितिक तंत्र में सभी खाद्य शृंखलाएं आपस में मिलकर एक खाद्य जाल बनाते हैं। वास्तव में एक पारिस्थितिक चित्र 18.1 : खाद्य जाल का आरेखित चित्र तंत्र में सभी खाद्य शृंखलाएं कहीं न कहीं आपस में संबंधित होती हैं। इस प्रकार एक जटिल खाद्य जाल बन जाता है जो एक सम्पूर्ण समुदाय के सभी जीवित जीवों में संबंध स्थापित करता है। इस प्रकार खाद्य जाल में ऊर्जा का प्रवाह एकदिशीय होते हुए भी विभिन्न पथों में होकर होता है, तथा प्रत्येक ऊर्जा स्तर पर बहुत सी ऊर्जा का हास होता है। अतः खाद्य जाल में एक पोषक स्तर से दूसरे पोषक स्तर तक ऊर्जा कम होती जाती है (चित्र 18.1)। # पारिस्थितिक तंत्र : संतुलन (Ecosystem : Balance) किसी भी पारिस्थितिक तंत्र में खाद्य जाल जितना जटिल व विशाल होता है तंत्र उतना ही स्थायी होता है। जटिल खाद्य जाल में किसी भी उपभोक्ता के लिये अधिक तरह के जीव उपभोग के लिये उपलब्ध होते हैं। अतः एक जीव के किसी कारण से नष्ट होने या कम होने से खाद्य जाल की स्थिरता पर अधिक प्रभाव नहीं पड़ता है, क्योंकि उसकी पूर्ति उसी स्तर का कोई अन्य जीव कर लेता है। उदाहरण के लिये एक घास स्थलीय पारिस्थितिक तंत्र में खरगोश की संख्या कम होने लगती है तो चूहे अधिक संख्या में उत्पन्न होकर खाद्य जाल की अस्थिरता को कम कर देते हैं। यदि ऐसा न हो तो उत्पादकों की संख्या तो बढ़ जायेगी क्योंकि उनको खाने वालों की संख्या कम हो जायेगी किन्तु बाज जैसे पक्षी भूखे मर जायेंगे। अतः अधिक संख्या में वैकल्पिक पथ होने के कारण खाद्य जाल अधिक स्थिर व संतुलित पारिस्थितिक तंत्र बनता है। पारिस्थितिक तंत्र का संतुलन इसलिए भी बना रहता है कि किसी भी स्तर के जीवों की संख्या अत्यधिक होने पर वे स्वयं ही नष्ट होने लगते हैं। ### पारिस्थितिक तंत्र : अजैविक घटकों का जैविक घटकों के रूप में प्रवाह विभिन्न प्रकार के अजैविक पदार्थों को उत्पादक (हरे पादप) सूर्य के प्रकाश की उपस्थिति में विभिन्न प्रकार के जटिल कार्बनिक पदार्थों में बदल देते हैं। यद्यपि ये पदार्थ भी अजैविक ही होते हैं, किन्तु इनकी जटिल अवस्थाएं उत्पादकों तथा उनको खाने वाले जन्तुओं के जीवद्रव्य के साथ आत्मसात् या स्वांगीकृत होकर जीवों की वृद्धि में सहयोग करती है। अपघटक विभिन्न जीवों के मृत शरीरों तथा उनके द्वारा निकाले गये व्यर्थ पदार्थों पर अपघटन क्रिया कर उन्हें प्रारम्भ की अजैविक स्थिति में बदल देते हैं। इस प्रकार जीवों के अंदर प्रवाह के बाद ये पदार्थ वातावरण में वापस लौट जाते हैं। प्रकृति में इस प्रकार के अनेक चक्र चलते रहते हैं। इन सबको खाद्य प्रवाह चक्र कहते हैं। इस प्रकार के चक्रों में जैविक व अजैविक दोनों ही प्रकार के घटक निरंतर क्रियाशील रहते हैं अतः इन्हें जैव—भू—रासायनिक चक्र (Bio-geo-chemical cycle) कहते हैं। प्रकृति में चलने वाले प्रमुख जैव—भू—रासायनिक चक्र निम्नलिखित हैं— 1. कार्बन चक्र (Carbon cycle) – समस्त जीवों का शरीर जीवद्रव्य से बना होता है। इस जीवद्रव्य में कार्बन एक प्रमुख तत्व है। अतः जीवद्रव्य की मात्रा बढ़ाने के लिये कार्बन का स्वांगीकरण होना आवश्यक है। कार्बन का स्त्रोत प्रकृति में जीवों के अतिरिक्त \mathbf{CO}_2 है, जो वायु में मिलती है। हरे पादप इस कार्बनडाइऑक्साइड का उपयोग प्रकाश संश्लेषण में करके इसे जिटल कार्बनिक पदार्थ में बदल देते हैं। यह एक कार्बनिक खाद्य पदार्थ है। उत्पादकों द्वारा उत्पादित इस कार्बनिक खाद्य पदार्थ को ही अन्य जीव अपने शरीर निर्माण एवं वृद्धि के लिये उपयोग में लाते हैं। यह सम्पूर्ण कार्बनिक पदार्थ सजीवों की श्वसन क्रिया, ऑक्सीकरण, जलने अथवा अपघटन के द्वारा पुनः कार्बनडाइऑक्साइड में बदल जाता है। कोयला, खनिज तेल आदि भी इन्हीं क्रियाओं द्वारा बने भूमि के अंदर दबे पदार्थ है जो जलने पर प्रमुखतः कार्बनडाइऑक्साइड में बदल जाते हैं। कार्बनडाइऑक्साइड की कुछ मात्रा जल में भी घुली होती है। यह अन्य तत्वों के साथ संयुक्त होकर अनेक खनिज पदार्थों का निर्माण करती है। इनमें सोडियम, कैल्शियम आदि के कार्बोनेट्स का विघटन होता रहता है जिससे CO_2 मुक्त होती है। जलीय हरे पादप अपने प्रकाश संश्लेषण के लिये जल में घुलित कार्बनडाइऑक्साइड का ही प्रयोग करते हैं (चित्र 18.2)। चित्र 18.2 : प्रकृति में कार्बन चक्र 2. जल चक्र (Water cycle) – समस्त जीवों के शरीर में जल का अत्यधिक महत्व है। पृथ्वी पर जल का प्रमुख भण्डार समुद्र है। समुद्र तल से जल वाष्पित होकर वायुमण्डल में मिलता रहता है। अन्य स्थानों, जैसे जल का खुला तल तथा जीवों के पसीने से भी जल वाष्प बनकर वायुमण्डल में मिलता रहता है। वायुमण्डल में उपस्थित यह वाष्प, धूल कणों से मिलकर बादलों में बदलकर पृथ्वी पर वर्षा, कोहरा, ओस, हिम आदि के रूप में पृथ्वी पर वापस लौटती है। वर्षा, हिम आदि के द्वारा जल पृथ्वी पर गिरने के बाद अथवा बीच में ही कुछ मात्रा में वापस वाष्पीकृत होकर वायुमण्डल में समा जाता है। अधिकतर भाग हिम के रूप में अस्थायी रूप से एकत्रित हो जाता है अथवा पृथ्वी पर बहकर नदी, नालों आदि में बदल जाता है। इस जल का कुछ भाग गुरुत्वाकर्षण के कारण मुदा के निचले भागों में चला जाता है तथा कठोर भागों में चित्र 18.3 : प्रकृति में जल चक्र एकत्रित हो जाता है। नदी का जल बहकर समुद्र में मिल जाता है साथ ही वर्षा का कुछ जल झील, तालाब, पोखरों आदि के रूप में पृथ्वी के अन्य भागों में अस्थायी रूप से एकत्रित रहता है। पृथ्वी पर उपस्थित यह जल विभिन्न जीव, विभिन्न तरीकों से, जैसे जन्तु मुख, पादप जड़, जलीय पादप विशेष अंगों द्वारा ग्रहण करते हैं। जीवों के शरीर में यह जल अनेक उपापचयी क्रियाओं में भाग लेता है। उदाहरण के लिये प्रकाश संश्लेषण में यह
आवश्यक कच्चे पदार्थ के रूप में कार्य करता है जबिक श्वसन में यह उत्पन्न होता है। जल जीवों के जीवद्रव्य का प्रमुख घटक है (चित्र 18.3)। 3. नाइट्रोजन चक्र (Nitrogen cycle) – नाइट्रोजन एक निष्क्रिय गैस है तथा पृथ्वी के वायुमण्डल में पाई जाने वाली अन्य गैसों की तुलना में इसकी मात्रा अधिक है। पादप भूमि से नाइट्रोजन को उसके यौगिकों के रूप में जल तथा अन्य खनिज लवणों के साथ जड़ों द्वारा ग्रहण करते हैं। जीवों में नाइट्रोजन प्रोटीन्स को संश्लेषित करने वाले अमीनो अम्ल बनाने के लिये आवश्यक है। नाइट्रोजन विभिन्न जैविक व जैविक क्रियाओं द्वारा इनके यौगिकों जैसे नाइट्रेट्स व नाइट्राइट्स आदि के रूप में परिवर्तित होती है। पादप इन यौगिकों का उर्वरक के रूप में उपयोग करते हैं। इन सब क्रियाओं में जीवाणुओं का महत्वपूर्ण योगदान होता है। भूमि से वायु तक पौधे, जन्तु, जीवाणु, प्राकृतिक क्रियायें आदि नाइट्रोजन के संतुलन को बनाये रखते हैं। यह नाइट्रोजन चक्र के द्वारा ही संभव है। नाइट्रोजन स्थिरीकरण जीवाणुओं का नाइट्रोजन चक्र में अत्यंत महत्वपूर्ण योगदान है। कुछ नाइट्रोजन यौगिकीकरण जीवाणु वायुमण्डल की मुक्त नाइट्रोजन को स्थिर करके उसके यौगिकों में बदल देते हैं ये जीवाणु मिट्टी में पाये जाते हैं जैसे एजो टो बैक्टर (Azotobacter), साइनो बैक्टीरिया (Cyanobacteria), मटरकुलीय पादपों (Leguminous plants) की मूल ग्रंथियों में पाये जाने वाले राइजोबियम आदि। मिट्टी में इन जीवाणुओं के द्वारा छोड़े गये नाइट्रोजन के घुलनशील यौगिक पौधों द्वारा ग्रहण किये जाते हैं। दूसरी ओर कुछ जीवाणु अपघटन करते हैं। ये नाइट्रोजनी कार्बनिक पदार्थों को तोड़कर अमोनिया (NH_3) में बदल देते हैं। अमोनिया को नाइट्रीकारी जीवाणु जैसे नाइट्रोसोमोनास, नाइट्रोबेक्टर आदि नाइट्रेट्स (NO_3^-) व नाइट्राइट्स (NO_2^-) में बदल देते हैं। पौधे नाइट्रोजन के इसी रूप को अवशोषित करते हैं। वायुमण्डल की स्वतंत्र नाइट्रोजन कुछ मात्रा में घर्षण विद्युत (तिड़त) की उपस्थिति में ऑक्सीजन के साथ संयोग करके ऑक्साइड्स बनाती है। ये ऑक्साइड्स वर्षा के जल के साथ भूमि को प्राप्त होते हैं। नाइट्रोजन को वापस वायुमण्डल में भेजने का काम विनाइट्रीकारी जीवाणु करते हैं। इसे विनाइट्रीकरण कहते हैं। ये जीवाणु नाइट्रोजन के यौगिकों को तोड़कर पुनः नाइट्रोजन गैस में परिवर्तित कर देते हैं। उदाहरण माइक्रोकोकस, स्यूडोमोनास डिनाइट्रीफिकेंस आदि (चित्र 18.4)। ## पारिस्थितिक तंत्र के प्रकार (Types of ecosystem) जैवमण्डल में प्रमुख पारिस्थितिक तंत्र निम्नलिखित प्रकार के होते हैं— - अलवणीय जल पारिस्थितिक तंत्र (Fresh water ecosystem) - 2. लवणीय जल पारिस्थितिक तंत्र (Marine water ecosystem) - 3. स्थलीय पारिस्थितिक तंत्र (Terrestrial ecosystem) इन पारिस्थितिक तंत्रों को कई उपतंत्रों में विभाजित किया जा सकता है जैसे अलवणीय जल पारिस्थितिक तंत्र, उदाहरण तालाब, नदी व झील के रूप में। स्थलीय पारिस्थितिक तंत्र, # अलवणीय जल या तालाब पारिस्थितिक तंत्र (Fresh water or pond ecosystem) मरूस्थल, घास के मैदान आदि। तालाब का पारिस्थितिक तंत्र एक पूर्ण एवं स्वनियंत्रित पारिस्थितिक तंत्र है इसमें निम्नलिखित घटक होते हैं— 1. अजैविक पदार्थ एवं ऊर्जा — इसमें ऊर्जा का प्रमुख स्त्रोत सूर्य का प्रकाश है। खनिज पदार्थ तथा विभिन्न प्रकार की गैसें जैसे कार्बनडाइऑक्साइड व ऑक्सीजन तालाब के जल में घुलित अवस्था में होती है। कुछ अजैविक पदार्थ जल के धरातल पर भी मिलते हैं। इन स्थानों से जल में घुलकर आने वाले पदार्थों की मात्रा गैसों के आदान—प्रदान, सूर्य के प्रकाश की उपस्थिति तथा अवधि आदि के आधार पर ही तालाब का पारिस्थितिक तंत्र नियंत्रित रहता है। - 2. जैविक घटक तालाब के निम्नलिखित जैविक घटक होते हैं— - (i) उत्पादक (Producers) इनमें विभिन्न प्रकार के शैवाल, अनेक जल पर तैरने वाले, जल निमग्न तथा जल के किनारे पर उगे हुए पादप आदि जैविक घटक के रूप में होते हैं। ये पादप सूर्य के प्रकाश से ऊर्जा प्राप्त कर प्रकाश संश्लेषण के द्वारा खाद्य पदार्थों का निर्माण करते हैं तथा उनका संचय करते हैं। - (ii) प्रथम उपभोक्ता (Primary consumers) छोटे छोटे जलीय कीट, कीटों के लार्वा, एनीलिंड्स एवं मोलस्का इस श्रेणी में आते हैं। ये शैवालों व जलीय पादपों की पत्तियों को भोजन के रूप में ग्रहण करते हैं। - (iii) द्वितीयक उपभोक्ता (Secondary consumers) ये कीट मांसाहारी होते हैं, जो शाकाहारी उपभोक्ताओं का भोजन के लिये शिकार करते हैं जैसे भृंग (Beetles) आदि। - (iv) तृतीयक उपभोक्ता (Tertiary consumers) ये मांसाहारी मछलियाँ होती हैं, जो विभिन्न प्रकार के उपभोक्ताओं को अपना भोजन बनाती है। तालाब पारिस्थितिक तंत्र में ये मछलियाँ ही उच्चतम उपभोक्ता (Top consumers) होते हैं। - (v) अपघटक (Decomposers) ये सूक्ष्म जीव होते हैं। तालाब पारिस्थितिक तंत्र के सभी जीवों के मरने पर उनके मृत शरीरों या शरीर के अवशेषों का अपघटन करते हैं तथा ये अपघटित सरल पदार्थ पुनः जल में मिल जाते हैं। उदाहरण सूक्ष्मजीव व जीवाणु। इन अपघटित सरल पदार्थों में कार्बन, नाइट्रोजन, फास्फोरस आदि खनिज तत्व होते हैं जो जल में मिल जाते हैं तथा ये पुनः जल में खनिज प्रवाह बनाते हैं। ### वन पारिस्थितिक तंत्र (Forest ecosystem) वन पारिस्थितिक तंत्र भी जैविक व अजैविक घटकों से मिलकर बना होता है। इसमें उत्पादक एवं उपभोक्ता सभी अपने उच्चतम विकास की स्थिति में मिलते हैं। एक वन पारिस्थितिक तंत्र को निम्न प्रकार समझा जा सकता है— 1. अजैविक घटक - उस क्षेत्र विशेष के जलवायु के आधार विभिन्न प्रकार के अजैविक घटक वायुमण्डल तथा मृदा में मिलते हैं। उत्पादक वायुमण्डल से कार्बनडाइऑक्साइड लेकर सूर्य के प्रकाश का ऊर्जा के रूप में उपयोग कर भोजन बनाते हैं। इसी वायुमण्डल में उपस्थित ऑक्सीजन श्वसन में काम आती है। इस प्रकार \mathbf{CO}_2 व \mathbf{O}_2 गैसें इसके मुख्य अजैविक घटक है। चित्र 18.4 : प्रकृति में नाइट्रोजन चक्र - 2. जैविक घटक तालाब के पारिस्थितिक तंत्र की तरह इसमें भी उत्पादक, उपभोक्ता व अपघटक प्रमुख जैविक घटक होते हैं जो निम्न प्रकार कार्य करते हैं– - (i) उत्पादक यहाँ उत्पादकों के रूप में अनेक हरे पादप जो वृक्ष, झाड़ी या शाक के रूप में वनों में पाये जाते हैं। ये ही पादप वन पारिस्थितिक तंत्र में उत्पादक का कार्य करते हैं। ये पादप सूर्य के प्रकाश का ऊर्जा के रूप में उपयोग कर प्रकाश संश्लेषण द्वारा खाद्य पदार्थ बनाते हैं तथा उसका संचय भी करते हैं। जलवायु, ताप, प्रकाश एवं मृदा के आधार पर विभिन्न स्थानों पर पाई जाने वाली वनस्पति भी भिन्न होती है। उदाहरण के लिये उष्णकटिबंधीय प्रदेशों में जहाँ वर्षा अधिक व वर्ष के अधिकांश समय में होती है, वहाँ पर घने व सदाबहार वृक्षों के वन होते हैं। इन घने वृक्षों के कारण सूर्य का प्रकाश बहुत कम मात्रा में भूमि पर पहुँच पाता है अतः इन वनों में अधिपादप (Epiphytes) तथा आरोही पादप अत्यधिक संख्या में या भूमि पर छायाप्रिय पादप उगते हैं। उदाहरण — फर्न, मॉस आदि। इसी प्रकार समशीतोष्ण जलवायु में पर्णपाती वन मिलते हैं, क्योंकि यहाँ पर ग्रीष्म एवं शरद ऋतु के तापमान में अत्यधिक अंतर होता है। इन वनों में सागवान, साल, शीशम, चीड़ व देवदार के वृक्ष के प्रमुख रूप में मिलते हैं। इसके अतिरिक्त कई प्रकार की लताएं व फर्न भी मिलते हैं। - (ii) प्रथम उपभोक्ता इस श्रेणी में अनेक शाकाहारी जीव जैसे खरगोश, बन्दर, लंगूर, हिरण, गिलहरी, गाय, घोड़े, कीड़े—मकोड़े व चूहे आदि सम्मिलित हैं। ये जीव हरे पादपों से अपना भोजन प्राप्त करते हैं। - (iii) दितीयक उपभोक्ता शाकाहारी जन्तुओं का शिकार कर अपना भोजन बनाने वाले अनेक जन्तु जैसे भेड़िये, तेंदुए, बिल्लियाँ, लकड़बग्धे, सांप, बाज, चील आदि द्वितीयक उपभोक्ता की श्रेणी में आते हैं। - (iv) तृतीयक उपभोक्ता या उच्चतम उपभोक्ता वन पारिस्थितिक तंत्र में इनकी संख्या कम होती है जैसे शेर, चीता, अजगर, विशेष प्रकार के सर्प आदि। ये जन्तु सभी प्रकार के जन्तुओं को खा जाते हैं। ये शुद्धतः मांसाहारी होते हैं। - (v) अपघटक ये वे सूक्ष्म जीवाणु होते हैं जो पारिस्थितिक तंत्र में मृत जीवों का अपघटन कर उन्हें सरल अकार्बनिक पदार्थों में परिवर्तित करते हैं। ये अकार्बनिक पदार्थ पुनः मृदा में मिलकर पादपों की जड़ों द्वारा प्रमुख खनिज लवणों के रूप में अवशोषित करते हैं (चित्र 18.5)। चित्र 18.5 : पारिस्थितिक तंत्र में पोषक स्तर ### पारिस्थितिक पिरामिड या स्तूप (Ecological Pyramids) पारिस्थितिक तंत्र में उत्पादक, प्राथिमक, द्वितीय, तृतीयक उपभोक्ता या उच्च उपभोक्ता एवं अपघटकों को या समस्त खाद्य जाल को रेखाचित्रों द्वारा प्रदर्शित करने पर एक पिरामिड या स्तूप का रूप दर्शांते हैं, इन्हें ही पारिस्थितिक पिरामिड या स्तूप या खाद्य पिरामिड कहते हैं। किसी भी पारिस्थितिक तंत्र में तीन प्रकार के पिरामिड दर्शाये जा सकते हैं— - 1. ऊर्जा का पिरामिड (Pyramid of energy) - 2. जीव संख्या का पिरामिड (Pyramid of numbers) - 3. जीव भार का पिरामिड (Pyramid of biomass) - 1. ऊर्जा का पिरामिड पारिस्थितिक तंत्र में ऊर्जा का एक पोषक स्तर या ऊर्जा स्तर से दूसरे ऊर्जा स्तर में एक निश्चित क्रम में प्रवाह होता है, लेकिन प्रत्येक ऊर्जा स्तर पर निश्चित रूप से ऊर्जा कम होती जाती है। किसी एक स्तर पर संचित ऊर्जा का लगभग दस प्रतिशत ऊर्जा भाग ही दूसरे स्तर में जीव—भार के रूप में स्थानान्तरित होता है। अतः उत्पादकों को ऊर्जा सबसे अधिक मिलती है, जबिक प्रथम, द्वितीयक तथा तृतीयक या उच्चतम उपभोक्ताओं में क्रमशः यह ऊर्जा कम होती जाती है। अतः इनके द्वारा बना हुआ खाद्य पिरामिड सदैव सीधा (Upright) होता है। ध्यान रहे एक इकाई समय में तथा क्षेत्र के आधार पर ही इस प्रकार के पिरामिड बनाया जा सकता है। - 2. जीव—संख्या का पिरामिड पारिस्थितिक तंत्र में उत्पादक से उच्चतम उपभोक्ता तक प्रत्येक स्तर में जीवों की संख्या क्रमशः कम होती जाती है। अतः इन स्तरों के द्वारा जो पिरामिड जीवों की संख्या का बनेगा उसमें उत्पादकों की संख्या सबसे अधिक जबिक प्रथम, द्वितीय व तृतीय श्रेणी के उपभोक्ताओं की संख्या क्रमशः कम तथा उच्चतम उपभोक्ता की संख्या सबसे कम होगी। इस प्रकार का पिरामिड सीधा पिरामिड कहलाता है। - 3. जीव—भार का पिरामिड एक पारिस्थितिक तंत्र के जीवों का इकाई क्षेत्र में सम्पूर्ण शुष्क भार जीव—भार (Biomass) कहलाता है। एक पारिस्थितिक तंत्र के प्रत्येक ट्राफिक स्तर में उपस्थित जीवों के जीव—भार की गणना की जाये तो सामान्यतः उत्पादक स्तर का जीव—भार सबसे अधिक होता है तथा इसके बाद प्रत्येक स्तर पर जीव—भार सबसे कम होता जाता है तथा उच्चतम उपभोक्ता का जीव—भार कम होता है। अतः इनसे बनने वाले पिरामिड सदैव सीधे होते हैं। एक वृक्ष पारिस्थितिक तंत्र का खाद्य पिरामिड जीव संख्या के आधार पर उल्टा होता है। इसी प्रकार जलीय पारिस्थितिक तंत्र में जीव—भार का पिरामिड प्रायः उल्टा होता है क्योंकि इसमें उत्पादकों जैसे शैवालों, डायटम्स का जीव—भार कम होता है। चित्र 18.6 : विभिन्न प्रकार के पारिस्थितिक स्तूप : (अ) घास स्थलीय पारिस्थितिक तंत्र (ब) वन पारिस्थितिक तंत्र (स) वृक्ष पारिस्थितिक तंत्र स्तूप यह जीव—भार प्रथम, द्वितीय व उच्चतम उपभोक्ता तक क्रमशः अधिक होता जाता है। यहाँ पर उच्चतम उपभोक्ता बड़ी मछलियों का जैव—भार बढ़ता जाता है (चित्र 18.6)। # महत्वपूर्ण बिन्दु - पारिस्थितिक तंत्र शब्द का सर्वप्रथम उपयोग ए.जी. टेन्सले (1935) ने किया। - पारिस्थितिक तंत्र जैव मण्डल का एक ऐसा तंत्र है जिसमें खाद्य पदार्थों एवं ऊर्जा का प्रवाह पोषक स्तर से दूसरे पोषक स्तरों तक विशेष नियमों के अनुसार होता है। - पारिस्थितिक तंत्र की संरचना अजैविक व जैविक घटकों से मिलकर बनती है। - पारिस्थितिक तंत्र में एक जीव से दूसरे जीव में खाद्य पदार्थों तथा ऊर्जा का प्रवाह एक
पोषक स्तर से दूसरे - पोषक स्तर तक एक शृंखला के रूप में होता है इसे खाद्य शृंखला कहते हैं। - 5. सभी खाद्य शृंखलाएं आपस में मिलकर खाद्य जाल बनाती है। - 6. प्रकृति में अजैविक व जैविक घटकों का प्रवाह निरन्तर चलता रहता है इन्हें जैव-भू-रासायनिक चक्र कहते हैं। - 7. जैव मण्डल में अलवणीय जल, लवणीय जल तथा स्थलीय पारिस्थितिक तंत्र पाये जाते हैं। - 8. पारिस्थितिक तंत्र में उत्पादक, प्राथिमक, द्वितीयक, तृतीयक उपभोक्ता या उच्च उपभोक्ता एवं अपघटकों को या समस्त खाद्य जाल को रेखाचित्रों द्वारा प्रदर्शित करने पर एक पिरामिड या स्तूप का रूप दर्शाते हैं इन्हें पारिस्थितिक पिराडिम या स्तूप या खाद्य पिरामिड कहते हैं। - एक वृक्ष पारिस्थितिक तंत्र का खाद्य पिरामिड जीव संख्या के आधार पर उल्टा होता है। ## अभ्यासार्थ प्रश्न ## वस्तुनिष्ठ प्रश्न - 1. पारिस्थितिक तंत्र के मुख्य घटक होते हैं- - (अ) जैविक घटक - (ब) अजैविक घटक - (स) दोनों - (द) इनमें से कोई नहीं - 2. खाद्य शृंखला में एक पोषक स्तर से दूसरे पोषक स्तर तक पहुंचने वाली ऊर्जा का प्रतिशत होता है— - (अ) 10 - (ब) 20 - (स) 25 - (द) 30 - 3. पारिस्थितिक तंत्र में खनिज तत्वों का जीवों से भूमि में भूमि से पुनः जीवों में परिसंचरण कहलाता है— - (अ) भू-चक्रण - (ब) जैव-चक्रण - (स) जैव-भूरासायनिक चक्र - (द) जल चक्रण - 4. वन किस पारिस्थितिक तंत्र का उदाहरण है- - (अ) जलीय पारिस्थितिक तंत्र - (ब) स्थलीय पारिस्थितिक तंत्र - (स) समुद्री पारिस्थितिक तंत्र - (द) उपरोक्त में से कोई नहीं ### अतिलघुत्तरात्मक प्रश्न - 1. पारिस्थितिक तंत्र को परिभाषित कीजिए। - 2. पारिस्थितिक तंत्र के प्रमुख घटकों के नाम लिखिए। - 3. उत्पादक क्या होते हैं? - 4. उच्चतम उपभोक्ता से आप क्या समझते हैं? #### लघुत्तरात्मक प्रश्न - 1. खाद्य शृंखला क्या है? समझाइये। - 2. खाद्य जाल के बारे में संक्षिप्त टिप्पणी लिखिए। - 3. ऊर्जा पिरामिड से आप क्या समझते हैं? #### निबन्धात्मक प्रश्न - 1. पारिस्थितिक पिरामिडों का सचित्र वर्णन कीजिए। - पारिस्थितिक तंत्र में नाइट्रोजन चक्र का सचित्र वर्णन कीजिए। - आपके द्वारा अध्ययन किये गये किसी एक पारिस्थितिक तंत्र का उदाहरण सहित वर्णन कीजिए। **उत्तरमालाः** 1 (स) 2 (अ) 3 (स) 4 (ब) #### अध्याय - 19 # पादपों के पारिस्थितिक अनुकूलन (Ecological Adaptations of Plants) हम जानते हैं कि पेड़—पोधे, पृथ्वी के विभिन्न भागों में आवास करते हैं तथा हम यह भी जानते हैं कि पृथ्वी के विभिन्न भागों का पर्यावरण एक समान नहीं होता है अतः किसी क्षेत्र विशेष में पाये जाने वाले पादप वहाँ के पर्यावरण के अनुसार अपने आपको ढालने का प्रयास करते हैं। इसके फलस्वरूप उन पादपों में उस वातावरण के अनुरूप विशेष प्रकार के अनुकूल लक्षण उत्पन्न होते हैं ताकि वे उस वातावरण विशेष में जीवित रह सके। इस प्रकार वातावरण विशेष में जीवनयापन करने के लिये उत्पन्न अनुकूल लक्षणों को पादप अनुकूलन (Plant adaptation) कहते हैं। वार्मिंग (Warming 1895) ने जल की उपलब्धता, आवश्यकता एवं पौधों के उगने वाली मिट्टी के आधार पर पादपों को निम्नलिखित श्रेणियों में बांटा— - 1. जलोदभिद् (Hydrophytes) जलीय आवासों में पाये जाने वाले पादप। - 2. समोदिभिद (Mesophytes) सामान्य परिस्थितियों में पाये जाने वाले पादप। न अधिक शुष्क न अधिक जल बहुलता युक्त आवासों में। - 3. मरुद्भिद् (Xerophytes) शुष्क आवासों वाले पादप। - 4. **अम्लोद्भिद्** (Oxylophytes) निम्न pH या अम्लीय मृदा में उगने वाले पादप। - 5. **लवणोद्भिद्** (Halophytes) लवणयुक्त मृदा में उगने वाले पादप। - 6. **बालुकोद्भिद्** (Psammophytes) बालुई मृदा या रेत या बजरी में उगने वाले पादप। ये पादप सामान्यतः मरु प्रदेशों में उगते हैं। ## जलोद्भिद् के अनुकूलन (Adaptations of hydrophytes) जलीय आवासों में पाये जाने वाले पादपों के अनुकूल लक्षणों को संरचना एवं कार्य के आधार पर निम्न प्रकार से समझा जा सकता है— ## (अ) आकारिकीय अनुकूलन (Morphological adaptations) - 1. जड़ (Root) - (i) इन पादपों की जड़े अल्पविकसित या अनुपस्थित (सिरेटोफिल्लम), छोटी, रेशेदार अपस्थानिक एवं अशाखित होती है। - (ii) जड़े अनुपस्थित *साल्विनिया*, (चित्र 19.1 अ) केवल एक जड़ *लेम्ना* (चित्र 19.1 ब) आदि। चित्र 19.1 अ : साल्विनिया (iii) जलीय पादपों में मूल गोप के स्थान पर मूल कोटरिकाएं (Root pockets) पाये जाते हैं, उदाहरण *पिस्टिया,* आइकोर्निया, सिंघाड़ा (चित्र 19.1 स, द, य) आदि। 185 (iv) अनेक जलीय पादपों जैसे निम्फिया व लेम्ना की जड़ों में मूल रोम अनुपस्थित होते हैं। ऐसी स्थिति में अवशोषण का कार्य जड़े ही करती है। चित्र 19.1 ब : लेम्ना तना जल स्घनिट तन्ना चित्र 19.1 स : पिस्टिया - (vi) ट्रापा की जड़े हरी होती है ये प्रकाश संश्लेषण द्वारा अपना भोजन बनाती है इन्हें स्वांगीकारी मूल (Assimilatory root) कहते हैं। - 2. स्तम्भ (Stem) जलीय पादपों के स्तम्भ के निम्नलिखित अनुकूलन होते हैं— - (i) स्तम्भ प्रायः कोमल, पतले, लचीले, कमजोर, हल्के हरे या पीले होते हैं। चित्र 19.1 द : आइकोर्निया (जलकुम्भी) चित्र 19.1 य : सिंघाड़ा (ट्रापा) - (v) जूसिया रेपेन्स (Jussiaea repans) में दो प्रकार की मूल पायी जाती है अपस्थानिक एवं गैसों के विनिमय के लिये श्वसन मूल। - (ii) पूर्णतया जल निमग्न पादप जैसे *हाइड्रिला,* (चित्र 19.1र) *इलोडिया* एवं *पोटामोजीटोन* (चित्र 19.1 ल) के तने स्पंजी होते हैं अतः जल की लहरों को आसानी से सहन कर सकते हैं। चित्र 19.1 र : *हाइड्रिला* - (iii) कुछ जलीय पादपों में तने प्रकन्द या भूस्तारी में रूपांतरित होकर पादप को मृदा में स्थिरता प्रदान करते हैं, उदाहरण कमल। - (iv) कुछ जलीय पादपों के तने भूमिगत रूपांतरित होकर चिरकालिक संरचनाएं बनाते हैं जो पादप को लम्बे समय तक जल में जीवित रखने में सहायक होती है। - 3. पर्ण में अनुकूलन (Adaptation in leaf) जलीय पादपों की पर्ण में निम्नलिखित अनुकूलन पाये जाते हैं— - (i) जल निमग्न पादपों की पत्तियाँ पतली, छोटी या कटी—फटी होती हैं अतः जल की धाराओं या लहरों को सहन कर सकती है, उदाहरण सिरेटोफिल्लम आदि। - (ii) जल प्लावी पादप, जड़ों द्वारा कीचड़ में स्थिर रहते हैं इनकी पत्तियाँ बड़ी व सुविकसित होती हैं। इनकी ऊपरी परत पर मोम व निचली सतह पर श्लेष्म की परत होती है अतः ये पानी में नहीं गलती है तथा आसानी से पानी पर तैर सकती है, उदाहरण कमल। - (iii) स्थिर प्लावी पादपों का पर्णवृंत लम्बा व लचीला होता है तथा इसकी वृद्धि असीमित होती है अतः जल स्तर बढ़ जाने पर पत्तियाँ जल की सतह पर तैरती रहती हैं। - (iv) स्वतंत्र प्लावी पादपों में पत्तियाँ समूहों में पाई जाती है। इनका पर्णवृंत भी फुला हुआ व स्पंजी होता है जो जल पर तैरने में सहायता करता है, उदाहरण सिंघाड़ा व जलकुंभी। चित्र 19.1 ल : पोटामोजीटोन (v) कुछ जलीय पादपों में दो प्रकार की पत्तियाँ पाई जाती है— (अ) जल के अंदर रहने वाली पत्तियाँ छोटी व पतली होती है तथा (ब) जल के बाहर की पत्तियाँ बड़ी व कटी—फटी होती हैं। ये प्रकाश संश्लेषण करती है। इस गुण को विषमपर्णिता (Heterophily) कहते हैं, उदाहरण लिम्नोफिला हेटेरोफिल्लम। # (ब) जलोद्भिद् के आंतरिक अनुकूलन (Internal adaptations of hydrophytes) जलोद्भिद् पादपों में निम्नलिखित आंतरिक अनुकूलन पाये जाते हैं– - जलिनगन पादपों में क्यूटिकल अनुपिश्थित, प्लावी पादपों में यह एक पतली परत के रूप में तथा उभचयरी पादपों (टाइफा) में सुविकिसत क्यूटिल पाई जाती है। अधिचर्म की कोशिकाएं एक पंक्ति में होती है। यह परत जल, खिनज पदार्थों एवं गैसों के विनिमय का कार्य करती है। हाइड्रिला की अधिचर्म में हिरतलवक पाये जाते हैं जो प्रकाश संश्लेषण का कार्य करते हैं। इस अधिचर्म पर रोम नहीं पाये जाते हैं। साथ ही अधःचर्म अल्प विकिसत या अनुपिश्थित होती है। - 2. जलीय पादपों में वायु प्रकोष्ठों की बहुलता होती है। जो पादपों को प्लावता का गुण प्रदान करती है। - उ. जलोद्भिद् पादपों में यांत्रिक ऊत्तकों का पूर्णतया अभाव होता है। क्योंकि ये चारों ओर से जल से घिरे रहते हैं अतः इन्हें यांत्रिक ऊत्तकों की आवश्यकता नहीं होती है। कुछ पादपों में कैल्शियम ऑक्जेलेट के बने ताराकार आकृति के स्फीरोक्रिस्टल व कंटक (Sclerids) पाये जाते हैं जो पादपों में यांत्रिक शक्ति उत्पन्न करते हैं, उदाहरण निम्फिया। - 4. जलोद्भिद् पादपों में जल एवं खनिज लवणों का अवशोषण पादप की सम्पूर्ण सतह से होता है अतः इनमें विकसित संवहन ऊत्तकों जैसे जायलम एवं फ्लोएम का अभाव होता है या अल्पविकसित होते हैं। उभयचरी पादपों जैसे टाइफा व रेननकुलस (चित्र 19.1 व) में संवहन ऊत्तक अपेक्षाकृत विकसित एवं सुस्पष्ट होते हैं। इन पादपों में द्वितीयक वृद्धि भी नहीं होती है। चित्र 19.1 व ः *रेननकुलस* मरूद्भिद् पादपों में पारिस्थितिक अनुकूलन (Ecological adaptations in xerophytes) मरूद्भिद् पादपों के आकारिकीय व आंतरिक अनुकूलन लक्षणों को निम्न प्रकार समझा जा सकता है— - (अ) आकारिकीय अनुकूलन (Morphological adaptations) - मूल (Root) मरूद्भिद् पादप प्रायः शुष्क आवासों में पाये जाते हैं अतः इनका मूलतंत्र जल अवशोषण के लिये अत्यधिक विकसित होता है। - (i) इनकी जड़े प्रायः मूसला मूल प्रकार की होती है जो शाखित एवं विस्तृत रूप से फैली होती है तथा मृदा में गहराई तक जाती है। - (ii) इनकी मूल पर मूल रोम व मूल गोप सुविकसित होते हैं जड़े अधिक मात्रा में जल का अवशोषण करने में सक्षम होती हैं। - 2. स्तम्भ (Stem) - (i) मरूद्भिद् पादपों के अधिकांश स्तम्भ काष्ठीय व मोटे व छोटे होते हैं। ये बहुवर्षीय शाक, झाड़ियों व वृक्षों के रूप में होते हैं। कुछ तने भूमिगत भी होते हैं जैसे *ऐलोय*, (चित्र 19.2 अ) *अगेव*, सेकरम आदि। चित्र 19.2 अ : ऐलोय - (ii) स्तम्भ पर बहुकोशिकीय स्तम्भ रोम पाये जाते हैं। - (iii) कुछ मरूद्भिद् पादपों में तने की शाखाओं पर कंटक (Spines) पाये जाते हैं जैसे यूफोरबिया (चित्र 19.2 ब) स्प्लेन्डेन्स, सोलेनम जैंथोकारपम, ड्यूरेन्टा आदि। - (iv) कुछ मरूद्भिद् पादपों का स्तम्भ रूपांतरित होकर पत्ती के समान चपटा व हरा हो जाता है। इसे पर्णाभस्तम्भ (Phylloeladle) कहते हैं, उदाहरण कोकोलोबा। इसी प्रकार कुछ पादपों के तने की कक्षस्थ शाखाएं रूपांतरित होकर हरे रंग की एवं सूच्याकार संरचनाएं बनाती हैं इन्हें पर्णाभ पर्व (Cladode) कहते हैं, उदाहरण ऐस्पेरेगस। चित्र 19.2 ब : यूफोरबिया - 3. पर्ण (Leaves) - (i) मरूद्भिद् पादपों की पत्तियाँ प्रायः छोटी होती है या कुछ समय बाद विलुप्त हो जाती है। ऐसे पादपों को आशुपाती कहा जाता है जैसे लेप्टािंडिनिया। कुछ पादपों में पत्तियाँ पूर्णतया अनुपस्थित होती है, उदाहरण कैर (Capparis) (चित्र 19.2 स) जबिक नागफनी में पत्तियाँ कंटकों में रूपांतरित हो जाती है। रसकस, ऐस्पेरेगस, केजूराइना में पितायाँ शालकी (Scaly) व अपहासित हो जाती है। इन सभी पादपों की पितयों में रूपान्तरण का कारण वाष्पोत्सर्जन दर को कम करना है। (ii) जिन मरूद्भिद् पादपों की पत्तियाँ बड़ी होती है उन पत्तियों की सतह चमकीली व चिकनी होती है जिससे तेज प्रकाश परावर्तित हो जाता है अतः पत्ती का तापमान कम हो जाता है, इसके चित्र 19.2 स : फलस्वरूप वाष्पोत्सर्जन की दर कम हो जाती है। अनेक पत्तियों पर मोम व सिलिका का आवरण पाया जाता है, जैसे आक (Calotropis) (चित्र 19.2 द)। चित्र 19.2 द : आक - (iii) कुछ पादपों की पत्तियों की सतह पर बहुकोशिकीय रोम पाये जाते हैं। ये रोम अधिचर्म व पर्णरंधों को आवरित कर वाष्पोत्सर्जन दर को कम करते हैं। इन्हें रोमपर्णी पादप कहते हैं। - (iv) कुछ पादपों में शरीर से जल की हानि को रोकने के लिये पितयाँ सुखकर शीघ्र गिर जाती हैं लेकिन इनका पर्णवृंत पत्ती के समान चपटा व हरा हो जाता है तथा प्रकाश संश्लेषण करता है। इस प्रकार रूपांतरित पर्णवृंत संरचना पर्णाभवृंत (Phyllode) कहलाती है। इससे वाष्पोत्सर्जन दर
कम होती है, उदाहरण आस्ट्रेलियन बबूल (Acacia melanoxylon) (चित्र 19.2 य)। - (v) कुछ पादप जैस बेर (Ziziphus), केपेरिस डेसीडुआ (Capparis decidua) एवं खेजड़ी इत्यादि में पत्तियों के अनुपर्ण (Stipules), कांटों (Spines) में रूपांतरित हो जाते हैं। - (vi) कुछ एकबीजपत्री मरूद्भिद् पादपों में जलाभाव या शुष्कता के समय पत्तियाँ मुड़कर गोलाकार या नलिकाकार रूप धारण कर लेती हैं, उदाहरण *पोआ* (Poa) व ऐमीफिला। चित्र 19.2 य : बबूल - (ब) मरूद्भिद् के आंतरिक अनुकूलन (Internal adaptations of xerophytes) मरूद्भिद् पादपों की जड़ों, तने व पत्तियों में निम्नलिखित अनुकूलन लक्षण दिखाई देते हैं— - इन पादपों की अधिचर्म लिग्निन व क्यूटीन युक्त मोटी भित्ति से आविरत होती है। इस बाह्य परत पर बहुकोशिकीय रोम होते हैं तथा ऊपरी सतह चमकीली होती है जो उन पर पड़ने वाले सूर्य के प्रकाश को परावर्तित करती है। - अधिचर्म की कोशिकाएं छोटी व पास—पास सटी हुई होती हैं। इन कोशिकाओं की बाहरी भित्तियाँ लिग्निन युक्त होती हैं। ये वाष्पोत्सर्जन की दर को कम करती है। कई मरूद्भिद् पादपों में द्वितीयक वृद्धि के कारण कार्क व छाल बनती है। ये अधिचर्म के बाहर विकसित होती है जो अधिचर्म के लिये एक आवरण का कार्य करती है। - 3. कुछ मरूद्भिद् पादपों जैसे केजूराइना व इफिड्रा के तने का बाह्य भाग उभारों व गर्तों (Ridges and Grooves) में विभेदित रहता है। इन गर्तीय स्थलों में धंसे हुए रंध्र पाये जाते हैं। कई पादपों के रंध्रों पर बहुकोशिकीय रोम भी पाये जाते हैं। यह एक महत्वपूर्ण मरूद्भिद् अनुकूलन है जो वाष्पोत्सर्जन को कम करता है। - 4. कुछ घास कुल के मरूद्भिद् पौधों की ऊपरी अधिचर्म में बुलीफॉर्म कोशिकाएं (Bulliform cells) पाई जाती है जिससे - पत्तियाँ लिपटकर गोलाकार या नलिकाकार हो जाती हैं इससे तेज धूप से सुरक्षा एवं वाष्पोत्सर्जन कम होता है। - 5. इन पादपों में हाइपोडरिमस सुविकसित होती है। इनकी कोशिकाओं में टेनिन व रेजिन भी पाया जाता है। - 6. इन पादपों में वल्कुट ऊत्तक सुविकसित होता है तथा इसकी कोशिकाओं में भी रेजिन लेटेक्स वाहिकाएं पाई जाती हैं। - कुछ मरूद्भिद् पादप मांसल व गूदेदार होते हैं जिनमें जल का संचय होता है जैसे नागफनी, ग्वारपाठा व डंडाथोर इन्हें मृदुपर्णी पादप (Malacophyllous) भी कहा जाता है। - 8. पत्तियों के पर्णमध्योत्तक (Leaf mesophyll) में खंभ ऊत्तक एवं स्पंजी ऊत्तक सुविभेदित होते हैं। स्पंजी ऊत्तकों की अपेक्षा खंभ ऊत्तक अधिक विकसित होते हैं। - मरूद्भिद् पादपों के संवहन ऊत्तक सुविकसित होते हैं। लेकिन जायलम, फ्लोएम की तुलना में अधिक विकसित होता है। संवहन बंडलों की संख्या भी अधिक होती है। - 10. मरूद्भिद् पादपों में द्वितीयक वृद्धि के कारण सुविकसित वार्षिक वलयें (Annual rings), कॉर्क एवं छाल पाई जाती है। # लवणोद्भिद् के अनुकूलन (Adaptations of halophytes) लवणोद्भिद् पादपों में पाये जाने वाले आकारिकी एवं आंतरिकी अनुकूलन निम्नलिखित हैं— - (अ) आकारिकीय अनुकूलन (Morphological adaptations) इस प्रकार के आवासीय क्षेत्रों की मृदा में लवणों की मात्रा अधिक होती है अतः जल की अधिकता होने के बाद भी ये पादप इसका अवशोषण नहीं कर पाते हैं अतः इसके लिये पादपों में निम्नलिखित आकारिकीय अनुकूलन मिलते हैं— - अधिकांश लवणोद्भिद झाड़ियों या छोटे वृक्षों के रूप में मिलते हैं। वृक्ष व क्षुपों में ससीमाक्षी शाखन (Cymose brancing) के कारण इनकी आकृति गुम्बदाकार दिखाई देती है। - 2. जड़े (Roots) – - (i) इन पादपों की जड़े मृदा में अत्यधिक फैली हुई तथा कम गहराई तक जाती है। इन जड़ों के अतिरिक्त वायवीय शाखाओं से स्तम्भ मूल (Prop root) व अवस्कंध मूल (Stilt root) भी विकसित होती है। जड़े पादप को दलदल युक्त बालुई मिट्टी में स्थिर रखती है, उदाहरण राइजोफोरा। - (ii) मेन्ग्रोव मृदा (Water logged soil) में ऑक्सीजन की मात्रा कम होती है अतः इन पौधों की जड़ों को श्वसन के लिये पर्याप्त ऑक्सीजन नहीं मिल पाती है। अतः इन पादपों की जड़ों की कुछ शाखाएं उर्ध्व दिशा में वृद्धि करके, खूंटे या शंकुनुमा आकृति ग्रहण कर दलदली भूमि से बाहर निकल आती है। इनके ऊपरी सिरों पर तथा थोड़े नीचे तक अनेक सूक्ष्म छिद्र पाये जाते हैं जिन्हें वातरंध्र या न्यूमेटोड्स (Pneumatodes) कहते हैं। जड़े इन छिद्रों से ऑक्सीजन अवशोषित करती है। इन्हें न्यूमेटोफोर (Pneumatophore) कहते हैं। - 3. स्तम्भ (Stem) - - (i) मेन्ग्रोव पादपों की अधिकांश जातियों के तने मांसल व गूदेदार होते हैं। इन तनों के मांसलता का कारण इनमें क्लोराइड आयन्स का संग्रह है। - (ii) इन पादपों के तनों में ससीमाक्षी शाखन पाया जाता है अतः ये पादप झाड़ीनुमा, छोटे व टेढ़े—मेड़े हो जाते हैं। - 4. पित्तयाँ (Leaves) अधिकांश लवणोद्भिद् पादपों में पित्तयाँ मोटी, मांसल व छोटी आकृति की होती है। इन पित्तयों की सतह चमकीली एवं चिकनी होती है। - 5. इन पादपों के बीज मातृ पादप पर लगे फल में ही अंकुरित होते हैं। इसे विविपेरस अंकुरण(Viviparous germination) कहते हैं। विविपेरी दलदली मृदा में उगने वाले पादपों का महत्वपूर्ण लक्षण है। इस प्रकार के पादपों में राइजोफेरा प्रमुख पादप है। # समोद्भिद् (Mesophytes) इस श्रेणी के पादपों की संख्या संभवतया पृथ्वी पर सबसे अधिक हैं। ये पादप वातावरण की सामान्य परिस्थितियों में पाये जाते हैं। अनुकूल तापमान, नमी व जल की पर्याप्त उपलब्धता में सदाबहार वन विकसित होते हैं। उष्णकिटबंधीय वर्षा वन समोद्भिद् पादपों का सर्वश्रेष्ठ उदाहरण है। यदि किसी स्थान का तापमान सामान्य से उच्च एवं औसत वर्षा 100 से.मी. से कम हो तो समोद्भिद् पादप घास स्थल को विकसित करते हैं। सामान्यतया बगीचों, तालाबों, झीलों एवं निदयों के किनारों पर उगने वाले पादप समोद्भिद ही होते हैं। समोद्भिद् पादपों में जलोद्भिद् एवं मरूद्भिद्ों के बीच के पर्यावरणीय अनुकूलन पाये जाते हैं। इन पादपों में पाये जाने वाले आकारिकीय एवं आंतरिक पर्यावरणीय अनुकूलनों को निम्न प्रकार समझा जा सकता है— - इन पादपों का मूल तंत्र स्पष्ट व सुविकसित होता है। जड़े शाखित व इन पर असंख्य मूल रोम उपस्थित होते हैं। मूल के अग्र सिरे पर मूलगोप (Root cap) पाई जाती है। - तना वायवीय, काष्ठीय, सामान्यतया ऊर्ध्व, मोटा एवं शाखित होता है। - इन पादपों की पत्तियाँ बड़ी, चौड़ी, पतली या मोटी व गहरे रंग की होती है। इन पत्तियों की आकृति में विविधता पाई जाती है। - 4. पत्तियों पर पतली या मोटी क्यूटिकल उपस्थित होती है। पत्तियों के दोनों सतहों पर रंध्र पाये जाते हैं। पर्णमध्योत्तक विकसित, स्पष्ट व खम्भ व स्पंजी ऊत्तकों में विभेदित होता है। इनमें वायु ऊत्तक अनुपस्थित होते हैं। पर्ण की सतह पर रोम व मोम की परत नहीं पाई जाती है। - इन पादपों में यांत्रिक ऊत्तक व संवहन ऊत्तक स्पष्ट व सुविकसित होते हैं, उदाहरण नीम, शीशम, जामुन, आम, पीपल आदि। # महत्वपूर्ण बिन्दु - 1. किसी क्षेत्र विशेष में पाये जाने वाले पादप उस वातावरण के अनुरूप विशेष प्रकार के अनुकूल लक्षण उत्पन्न करते हैं ताकि उस वातावरण विशेष में जीवित रह सके। इन अनुकूल लक्षणों को पादप अनुकूलन कहते हैं। - 2. वार्मिंग (1895) ने जल की उपलब्धता, आवश्यकता एवं पौधे के उगने वाली मिट्टी के आधार पर छः श्रेणियों में बांटा। - 3. जलीय पादपों में मूल अल्पविकसित या अनुपस्थित, तना कोमल व पतला, पत्तियाँ पतली, छोटी या कटी—फटी होती हैं। - जलीय पादपों में वायु प्रकोष्ठों की बहुलता होती है। - 5. मरुद्भिद् पादपों का मूलतंत्र विकसित तथा स्तम्भ काष्ठीय, मोटे व छोटे होते हैं। - 6. इन पादपों की पत्तियाँ प्रायः छोटी होती हैं या कुछ समय बाद गिर जाती है। - लवणोद्भिद् पादपों की जड़ें मृदा में अत्यधिक फैली हुई तथा कम गहराई तक जाती है। - 8. मेन्ग्रोव पादपों में ऑक्सीजन ग्रहण करने के लिये जड़ों पर न्यूमेटोफोर पाये जाते हैं। - समोद्भिद् पादपों में जलोद्भिद् एवं मरुद्भिद् के बीच के पर्यावरणीय अनुकूलन पाये जाते हैं। # अभ्यासार्थ प्रश्न # वस्तुनिष्ठ प्रश्न - 1. पौधों का विपरीत परिस्थितियों में जीवनयापन करने के लिये अपने आपको पर्यावरण के अनुकूल ढालने का गुण कहलाता है— - (अ) पादप पारिस्थितिकी (ब) पादप समायोजन - (स) पादप अनुकूलन (द) पादप अनुकूलन 191 - 2. वे पादप जो निम्न pH या अम्लीय मृदा में पाये जाते हैं- - (अ) लवणोद्भिद् - (ब) अम्लोद्भिद् - (स) समोद्भिद् - (द) जलोद्भिद् - 3. वातावरण की सामान्य परिस्थितियों में पाये जाने वाले पादप कहलाते हैं— - (अ) समोद्भिद् - (ब) मरुद्भिद् - (स) जलोद्भिद् - (द) बालुकोद्भिद् - 4. मेन्ग्रोव पादप होते हैं- - (अ) समोद्भिद् - (ब) बालुकोद्भिद् - (स) लवणोद्भिद् - (द) मरूद्भिद् ### अतिलघुत्तरात्मक प्रश्न - 1. मरूद्भिद् पादप मांसल क्यों होते हैं? - 2. मेन्ग्रोव पादपों की मूल की विशेषता बताइये। - 3. विषमपर्णिता क्या है? - 4. मूलकोटर किस प्रकार के पादपों में पाई जाती है? ### लघुत्तरात्मक प्रश्न - 1. जलोद्भिद् पादपों की मूल के अनुकूलन लिखिए। - 2. मरूद्भिद् पादपों के तने के अनुकूलन लिखिए। - 3. मेन्ग्रोव वनस्पति से आप क्या समझते हैं? - पर्णास्तम्भ क्या है? उदाहरण सिहत समझाइये। #### निबन्धात्मक प्रश्न - मरूद्भिद् पादप क्या है? मरूद्भिद् पादपों के आकारिकीय अनुकूलन का वर्णन कीजिए। - 2. लवणोद्भिद् पादपों को परिभाषित कीजिए। इनके विभिन्न अनुकूलनों का संक्षिप्त विवरण दीजिये। - 3. जलोद्भिद् के वर्गीकरण व उनके अनुकूलन का वर्णन कीजिए। - पादप अनुकूलन क्या है? मरूद्भिद् पादपों में उनके उद्देश्यों की विस्तृत व्याख्या कीजिए। उत्तरमालाः 1 (द) 2 (ब) 3 (अ) 4 (स) # इकाई – 14 अध्याय - 20 # मेण्डलवाद (Mendelism) आनुवांशिकी पर मेण्डल द्वारा किये गए प्रयोग एवं लक्षणों की वंशागित में निहित क्रियाविधि की व्याख्या करने वाले नियमों का प्रतिपादन मेण्डलवाद (Mendelism) के नाम से जाना जाता है। ### ग्रेगर जोहन मेण्डल (Gregor Johann Mendel) - मेण्डल का जन्म 22 जुलाई 1822 को आस्ट्रिया के एक कृषक परिवार में हुआ था। - मेण्डल ने 1843 में आगस्टीनियन मठ (Augustinian monastery) में पादरी का पद ग्रहण किया। - उन्होंने मटर / Garden Pea (Pisum sativum) पर कार्य किया। - 1866 में मेण्डल ने अपना शोधपत्र "The Annual Proceedings of the National History Society of Brunn" नामक पत्रिका में "पादप संकरण पर प्रयोग" (Experiments on Plant Hybridisation) नामक शीर्षक से प्रकाशित किया। - मेण्डल की मृत्यु 6 जनवरी 1884 को हुई और उनका कार्य अज्ञात एवं अप्रशंसित रहा। ## मेण्डल के कार्यों की अज्ञातता एवं अप्रशंसितता के कारण - उनके विचार समकालीन समय की सोच एवं समझ से परे थे। - जिस समय मेण्डल ने अपने निष्कर्ष प्रकाशित किये उस समय वैज्ञानिक डार्विन (Darwin) की पुस्तक "Origin of Species" की चर्चा में उलझे थे। - मेण्डल के निष्कर्ष सांख्यिकी व अनुपात आधारित थे जो काफी जटिल थे। 4. कार्ल नेगेली (Carl Nageli) के *हाइरारकम* (*Heirarchum*) पादप पर मेण्डल के प्रयोग असफल रहे। 35 वर्ष पश्चात् सन् 1900 में Hugo de Vries, Karl Correns और Eric Von Tschermark द्वारा इवनिंग प्रिमरोज (Evening Primrose), मक्का व अन्य पौधों पर वंशागित के अध्ययन द्वारा मेण्डल के द्वारा प्रस्तावित नियमों को मान्यता एवं सफलता मिली। अतः मेण्डल को "आनुवांशिकी का जनक एवं संस्थापक" (Father and Founder of Genetics) माना गया। # मटर के पौधे के चुनाव के कारण - मटर का पौधा एक वर्षीय पादप है और इसका जीवन चक्र अल्पकालीन होने के कारण कम समय में अनेक पीढ़ियों का अध्ययन किया जा सकता है। - मटर का पौधा अपने छोटे आकार के कारण उद्यानों में आसानी से उगाया जा सकता है। - द्विलिंगी होने के कारण स्व-परागण (Self-pollination) एवं पर-परागण (Cross pollination) आसानी से संभव है। - 4. मटर में अनेक विपर्यासी (Contrasting) लक्षण पाए जाते हैं। ## मेण्डल द्वारा चयनित विशेषक
(Selection of Trait) मेण्डल ने मटर के पौधे में सात लक्षणों का चयन किया जिसमें हर लक्षण में एक प्रभावी (Dominant) और दूसरा अप्रभावी (Recessive) था। प्रबल / प्रभावी लक्षण स्वयं को समयुग्मजी (Homozygous) तथा विषमयुग्मजी (Heterozygous) दोनों अवस्थाओं में प्रदर्शित करता है। #### मेण्डल द्वारा चयनित विपर्यासी लक्षण | 1 oct granta in the first the | | | | | |-------------------------------|----------------------|--------------|----------------|--| | क्रमांक | लक्षण | प्रबल | अप्रबल | | | 1. | बीज की आकृति | गोल 'R' | झुरींदार 'r' | | | | (Seed shape) | (Round) | (Wrinkled) | | | 2. | बीज का रंग | पीला 'Y' | हरा 'y' | | | | (Seed color) | (Yellow) | (Green) | | | 3. | पौधे की लम्बाई | लम्बा 'T' | बौना 't' | | | | (Height of plant) | (Tall) | (Dwarf) | | | 4. | फूल/पुष्प का रंग | बैंगनी 'W' | सफेद 'w' | | | | (Flower color) | (Purple) | (White) | | | 5. | पुष्प की स्थिति | अक्षीय 'A' | अंतस्थ 'a' | | | | (Position of flower) | (Axial) | (Terminal) | | | 6. | फली की आकृति | फूली हुई 'I' | सिकुड़ी हुई'i' | | | | (Pod shape) | (Inflated) | (Constricted) | | | 7. | फली का रंग | हरा 'G' | पीला 'g' | | | | (Pod color) | (Green) | (Yellow) | | | | | | | | ### मेण्डल की तकनीक पादपों में संकरण (Hybridisation) करवाने के लिए मेण्डल ने विपुंसन एवं थैलीकरण तकनीक(Emasculation and Bagging Technique) का प्रयोग किया। मटर का पौधा द्विलिंगी होता है और स्व—परागण रोकने के लिए एक पादप को नर और एक को मादा की तरह प्रयुक्त किया गया। अपरिपक्व अवस्था में एक पादप के पुतंतुओं (Stamens) को काट दिया जाता है, यह प्रक्रिया विपुंसन (Emasculation) कहलाती है। अवांछित पर—परागण को रोकने हेतु विपुंसित पादपों को थैली से बांधा गया, यह प्रक्रिया थैलीकरण (Bagging) है। मेण्डल ने F_1 पीढ़ी की प्राप्ति पर—परागण द्वारा की और उसके बाद की सभी पीढ़ियां स्व—परागण (Self-pollination) से प्राप्त की। # मेण्डलवाद से संबंधित आनुवांशिक शब्द - 1. कारक (Factors) वंशागति की इकाई जो किसी भी लक्षण को प्रकट करने के लिए तथा उसकी वंशागति के लिए जिम्मेदार है। आधुनिक आनुवांशिकी में इन कारकों को जीन (Gene) कहा जाता है। जीन शब्द जोहनसन (Johannsen) द्वारा दिया गया था। जीन आनुवांशिकी की क्रियात्मक इकाई होती है। - युग्मविकल्पी (Allele) किसी जीन के एकान्तरित स्वरूपों को जो समजात गुणसूत्रों (Homologous) पर समान स्थान पर पाए जाते हैं उन्हें युग्मविकल्पी कहते हैं। अतः एक ही - विपर्यासी (Opposite) लक्षण के दोनों विकल्पों को नियंत्रित करने वाले जीन के युग्म को युग्मविकल्पी (Alleles) कहते हैं। - 3. **लोकस** (Locus) समजात गुणसूत्रों का वह स्थल जहाँ पर विपर्यासी लक्षणों को नियंत्रित करने वाले जीन उपस्थित होते हैं। - 4. समयुग्मजी (Homozygous) जब एक विपर्यासी लक्षण को नियंत्रित करने वाले दोनों युग्मविकल्पी एक समान होते हैं तो उसे समयुग्मजी (Homozygous) कहते हैं। समयुग्मजी प्रभावी / प्रबल 'RR' या अप्रभावी / अप्रबल 'rr' हो सकता है। समयुग्मजी से केवल एक ही प्रकार के युग्मकों का निर्माण होता है। - 5. विषमयुग्मजी (Heterozygous) जब एक विपर्यासी लक्षण को नियंत्रित करने वाले दोनों युग्मविकल्पी अलग होते हैं तो उसे विषमयुग्मजी कहते हैं। यह हमेशा प्रभावी (Dominant) होते हैं जैसे Rr, Tt इत्यादि और ये दो प्रकार के युग्मकों का निर्माण करते हैं। - 6. प्रभावी / प्रबल (Dominant) और प्रभावी / अप्रबल Recessive) विषमयुग्मजी अवस्था में उपस्थित दोनों युग्मविकल्पी (Allele) का प्रदर्शन नहीं होता। जिस लक्षण का प्रदर्शन होता है वह एलिल प्रभावी / प्रबल कहलाता है और दूसरा सुप्त या अप्रभावी / अप्रबल होता है। जैसे एक विषमयुग्मजी लम्बा पौधा (Tt) में 'T' एलिल का प्रदर्शन होता है और 't' सुप्त है। अतः 'T' एलिल प्रबल (Dominant) और 't' अप्रबल (Recessive) है। - 7. लक्षण प्रारूप (Phenotype) और जीन प्रारूप (Genotype) किसी लक्षण का बाहरी या भौतिक स्वरूप जो दिखाई देता है वह लक्षण प्रारूप (Phenotype) है। किसी लक्षण का आनुवांशिक संगठन उसका जीन प्रारूप (Genotype) कहलाता है। - उदाहरणतः सभी लम्बे पौधों की लक्षण समष्टि एक समान है यह पौधे का लक्षण प्रारूप है। लम्बे पौधे के लिए उत्तरदायी जीन समष्टि TT या Tt हो सकती है। अर्थात् सभी समयुग्मजी लम्बे पौधों का जीन प्रारूप 'TT' है और विषमयुग्मजी लम्बे पौधों का जीन प्रारूप 'Tt' है। - शुद्ध किस्म (Pure breed) ऐसे समयुग्मजी जो किसी लक्षण विशेष के लिए अनेक पीढ़ियों तक समान लक्षण वाली संतान / जीव उत्पन्न करें, वह शुद्ध किस्म कहलाती है। - 9. **संकरण** (Hybridisation) दो भिन्न गुणों वाले जन्तुओं या पादपों के मध्य क्रास (Cross) कराने की प्रक्रिया को संकरण कहते हैं। - 10. एकल संकर संकरण (Monohybrid cross) जब संकरण प्रयोग एक जोड़ी विपर्यासी लक्षणों को नियंत्रित करने वाले युग्मविकल्पी के मध्य करवाया जाता है तो उसे एकल संकर संकरण कहते हैं। जैसे लाल और सफेद पुष्प वाले पौधों के मध्य। - 11. दिसंकर संकरण (Dihybrid cross) जब संकरण प्रयोग दो जोड़ी युग्मविकल्पी के मध्य करवाया जाता है तो उसे द्विसंकर संकरण कहते हैं। जैसे लम्बे और लाल पुष्प वाले पौधों का संकरण बौने और सफेंद्र पुष्प वाले पौधों के मध्य। - 12. संकर पूर्वज संकरण (Back cross) जब प्रथम संतानीय पीढ़ी F₁ पीढ़ी से प्राप्त संतित का संकरण P₁ पीढ़ी के किसी भी जनक के साथ करवाया जाता है तो उसे संकर पूर्वज संकरण कहते हैं। - 13. परीक्षण संकरण (Test cross) जब F₁ पीढ़ी के विषमयुग्मजी संतित का संकरण समयुग्मजी अप्रभावी जनक से कराया जाए तो उसे परीक्षण संकरण कहते हैं। - 14. P तथा F संतति मेण्डल ने किसी संकरण के मूल जनकों को P (Parent) संतित तथा उनकी संतान को प्रथम सन्तानीय पीढ़ी (First filial generation) या F₁ पीढ़ी कहा। इसी प्रकार F₂, F₃ संतित नामकरण किया। ### एक संकर संकरण (Monohybrid Cross) इस प्रकार का संकरण एक जोड़ी युग्मविकल्पी के मध्य कराया जाता है। उदाहरण (चित्र 20.1) — जब एक जोड़ी युग्मिवकल्पी शुद्ध लम्बे (TT) तथा बौने (tt) पौधों / पादपों के मध्य संकरण करवाया गया तब F_1 पीढ़ी में सभी लम्बे पौधे प्राप्त हुए। इन संतितयों को संकर (Hybrid) कहा गया क्योंकि सभी पौधों का जीनप्रारूप विषमयुग्मजी (Tt) था। जब इन F_1 पीढ़ी के पौधों में स्व—परागण (Self-pollination) करवाया जाता है तो F_2 पीढ़ी में लम्बे व बौने दोनों प्रकार के पौधे प्राप्त होते हैं। इस संकरण की F_2 पीढ़ी में लक्षणप्रारूपी अनुपात (Phenotypic ratio) 3:1 प्राप्त होता है अर्थात् 3 लम्बे :1 बौना (या 75% लम्बे एवं 25% बौने पौधे तथा जीनप्रारूपी अनुपात (Genotypic ratio) 1:2:1 अर्थात् TT:2 Tt:tt | 2 समयुग्मजी लम्बा, 2 विषमयुग्मजी लम्बे और 1 समयुग्मजी बौना पौधा 1 एकल संकरण में 10 पीढ़ी में 12 प्रकार के लक्षण प्रारूप तथा 13 प्रकार के जीन प्रारूप (11, 11, 11, 12, 13, 13, 14, 15, 17, 18, 19, 19, 19, 11, 19, 11 ## द्विसंकर संकरण (Dihybrid Cross) यह संकरण दो जोड़ी युग्मविकल्पी के मध्य कराया जाता है। उदाहरण (चित्र 20.2) — चित्र 20.1 : एक संकर संकरण चित्र 20.2 : द्विसंकर संकरण द्विसंकर संकरण के लिए मेण्डल ने पीले और गोल बीज वाले पौधों का संकरण हरे व झुर्रीदार बीज वाले पौधों से कराया। F_1 पीढ़ी में प्राप्त सभी पौधे पीले और गोल बीज वाले उत्पन्न हुए अर्थात् बीज का पीला रंग और गोल आकार क्रमशः हरे रंग और झुर्रीदार आकार पर प्रभावी है। F_1 पीढ़ी के स्व परागण से प्राप्त F_2 पीढ़ी में चार विभिन्न प्रकार के बीजों वाले पौधे प्राप्त हुए— - (i) पीले व गोल बीज (9) - (ii) पीले व झुर्रीदार बीज (3) - (iii) हरे व गोल बीज (3) - (iv) हरे व झुर्रीदार बीज (1) $F_2 \, \text{पीढ़ी का लक्षणप्ररूपी अनुपात } 9:3:3:1 \, \text{और जीनप्रारूपी अनुपात } 1:2:2:4:1:2:1 \, \text{है | द्विसंकर संकरण की } F_2 \, \text{पीढ़ी में 4 प्रकार के लक्षणप्रारूप और 9 प्रकार के जीनप्रारूप प्राप्त होते हैं |$ ## मेण्डल के आनुवांशिकी नियम मेण्डल ने 3 आनुवांशिकी के नियम दिये – - 1. प्रभाविता का नियम (Law of Dominance) - विसंयोजन का नियम या युग्मकों की शुद्धता का नियम (Law of Segregation or Law of Purity of Gametes) - 3. स्वतंत्र प्रतिसम्मिश्रण या स्वतंत्र अपव्यूहन का नियम (Law of Independent Assortment) - 1. प्रभाविता का नियम (Law of Dominance) इस नियम के अनुसार "विषमयुग्मजी अवस्था में एक जीन दूसरे जीन की अभिव्यक्ति को दबा सकता है।" यह प्रभावी जीन F_1 पीढ़ी में भी प्रदर्शित होता है। प्रभावी लक्षण को आसानी से पहचाना जा सकता है क्योंकि यह समयुग्मजी और विषमयुग्मजी दोनों अवस्थाओं में प्रदर्शित होता है। अप्रभावी जीन केवल समयुग्मजी अवस्था में ही अपना लक्षण दर्शाता है। उदाहरण के लिए 'T' जीन 't' के ऊपर प्रभावी है अर्थात् TT, Tt प्रभावी लक्षण "लम्बे पौधे" को दर्शाते हैं और 'tt' बौने पौधे को प्रदर्शित करते हैं। प्रभाविता का नियम अत्यंत महत्वपूर्ण है। इस नियम के कारण संकर जीवों में हानिकारक लक्षण प्रकट नहीं हो पाते हैं। - 2. विसंयोजन का नियम या युग्मकों की शुद्धता का नियम (Law of Segregation or Law of Purity of Gametes) इसे पृथक्करण का नियम भी कहते हैं। इस नियम के अनुसार विषमयुग्मजी का संकर अवस्था में युग्मविकल्पी (Allele) के दोनों कारक पास—पास रहते हुए भी एक दूसरे से मिश्रित नहीं होते तथा युग्मक निर्माण के समय दोनों कारक एक दूसरे से पृथक हो जाते हैं तथा प्रत्येक युग्मक में केवल एक ही जीन होता है। ## पृथक्करण के नियम का महत्व - 1. प्रत्येक लक्षण एक जीन द्वारा नियंत्रित होता है। - 2. प्रत्येक जीन में दो युग्मविकल्पी (Allele) पाए जाते हैं जो एक जोड़ी विपर्यासी लक्षणों को नियंत्रित करते हैं। - जीन के युग्मविकल्पी का एक ही लोकस (Locus) होने पर भी इनमें सम्मिश्रण नहीं होता है। - युग्मक निर्माण के समय युग्मविकल्पी पृथक होकर अलग—अलग युग्मकों में आ जाते हैं। प्रत्येक युग्मक केवल एक कारक के लिए शुद्ध होता है। - 5. युग्मकों के संगलन (Fusion) से पुनः द्विगुणित अवस्था प्राप्त होती है और इस प्रकार जीन वंशागति की इकाई है जो एक पीढ़ी से दूसरी पीढ़ी में गमन करते हैं। - 3. स्वतंत्र अपव्यूहन का नियम (Law of Independent Assortment) इस नियम के अनुसार विभिन्न लक्षणों की वंशागित एक दूसरे से स्वतंत्र होती है अर्थात् एक लक्षण दूसरे लक्षण से प्रभावित हुए बिना संतितयों में वंशागित
होता है। स्वतंत्र अपव्यूहन के नियमानुसार एक आनुवांशिक लक्षण के दो विपर्यासी युग्मविकल्पी पृथक्करण के समय एक—दूसरे से अलग होकर किसी अन्य लक्षण के किसी भी विपर्यासी कारक से मिल सकते है। एक आनुवांशिक लक्षण का कोई प्रभावी कारक किसी अन्य लक्षण के प्रभावी कारक या अप्रभावी कारक से संयोजित हो सकता है। इसके उदाहरण के रूप में मेण्डल के द्विसंकर संकरण का अध्ययन किया जा सकता है। इसमें प्रयुक्त पीले व गोल बीजों तथा हरे व झुर्रीदार बीजों से प्राप्त F_2 पीढ़ी में इन दोनों प्रकार के अतिरिक्त दो नए लक्षणप्रारूप (Phenotypes) उत्पन्न हुए। हरे व गोल बीज तथा पीले व झुर्रीदार बीज नए लक्षणप्रारूप के रूप में प्रकट हुए और इन्हें प्रतिसम्मिश्रण लक्षणप्रारूप (Recombinant phenotypes) कहा गया। # पूर्ण प्रभाविता (Complete Dominance) जब किसी प्रभावी विकल्पी द्वारा विषमयुग्मज अवस्था में उत्पन्न लक्षण उसके द्वारा समयुग्मज अवस्था में उत्पन्न लक्षण के समान हो तो उसे पूर्ण प्रभाविता कहते हैं। उदाहरणार्थ — मटर के पौधे के गोल व झुर्रीदार बीज के विपर्यासी लक्षण एवं लम्बे व बौने पौधों में गोल व लम्बे लक्षण पूर्ण प्रभावी लक्षण है। # अपूर्ण प्रभाविता (Incomplete Dominance) कार्ल कोरेन्स (Carl Correns) ने 1903 में मिराबिलिस जलापा (*Mirabilis jalapa* / 4'O Clock Plant) में अपूर्ण प्रभाविता (Incomplete dominance) का अध्ययन किया। जब मिराबिलिस जलापा के लाल पुष्प (RR) वाले पौधों का संकरण सफेद पुष्प (\mathbf{rr}) वाले पौधों से कराया गया तो $\mathbf{F_1}$ पीढ़ी के सभी पौधों के पुष्प गुलाबी (\mathbf{Rr}) प्राप्त हुए । जब इन गुलाबी पुष्प वाले $\mathbf{F_1}$ पीढ़ी के पौधों में स्व परागण कराया तो $\mathbf{F_2}$ पीढ़ी में एक लाल, दो गुलाबी और एक सफेद पुष्पों वाली संतित प्राप्त हुई । $\mathbf{F_2}$ पीढ़ी में फिनोटाइप (1:2:1) और जीनोटाइप (1:2:1) अनुपात समान प्राप्त होता है । जब F_1 पीढ़ी में कोई पैतृक लक्षणप्रारूप पूर्ण रूप से प्रदर्शित नहीं होता है तो उसे अपूर्ण प्रभावी कहते हैं। अपूर्ण प्रभाविता में कारकों का सम्मिश्रण नहीं होता है (चित्र 20.3)। चित्र 20.3 : मिराबिलिस जलापा में अपूर्ण प्रभाविता अन्य उदाहरण - - 1. स्नेपड्रेगन (Antirrhinum majus) पादप में पत्तियों का आकार - 2. एन्डेलुसियन मुर्गे में पंखों का रंग आदि। ## संकर पूर्वज संकरण (Back Cross) - इस संकरण में F₁ पीढ़ी की संतित का संकरण किसी भी जनक के साथ किया जाता है। - जब F₁ पीढ़ी के संकर पादप का संकरण प्रभावी जनक से कराया जाता है तो उसे आउट क्रॉस (Out cross) कहते हैं। इस क्रॉस से प्राप्त सभी संततियाँ प्रभावी लक्षणों वाली होती है। - संकर पूर्वज संकरण द्वारा पौधे की शुद्धता अथवा अवस्था को ज्ञात नहीं कर सकते है। ### परीक्षण संकरण (Test Cross) - 1. इस संकरण में F_1 पीढ़ी के संकर पादप का संकरण समयुग्मजी अप्रभावी जनक के साथ करवाया जाता है। - 2. इससे प्राप्त संततियों में 50% प्रभावी लक्षणों वाली तथा 50% अप्रभावी लक्षणों वाली होती है। - 3. इस क्रॉस द्वारा पौधे की शुद्धता और जीनप्रारूप को ज्ञात कर सकते है इसलिए इसे परीक्षण संकरण कहते हैं (चित्र20.4)। चित्र 20.4 : संकर पूर्वज संकरण एवं परीक्षण संकरण # महत्वपूर्ण बिन्दु - 1. मेण्डल को आनुवंशिकता का जनक कहा जाता है। - 2. X तथा Y गुणसूत्रों से जुड़े हुए जीन को सहलग्नी जीन कहते हैं। - मानव गुणसूत्रों को उनकी लम्बाई व गुणसूत्र बिन्दु की स्थिति के आधार पर 7 समूहों में बांटा है। - जीव विज्ञान की वह शाखा जिसमें जीवों की वंशागित और विभिन्नता का अध्ययन किया जाता है उसे आनुवंशिकी कहते हैं। - 5. मेण्डल ने अपने प्रयोगों के लिये मटर (Pisum sativum) पादप को चुना। - 6. F, पीढ़ी में सदैव प्रभावी जीन प्रदर्शित होते हैं। - 7. किसी पादप का जीन प्रारूप तथा शुद्धता जानने के लिये परीक्षण संकरण किया जाता है। - 8. कार्ल कोरेन्स ने अपूर्ण प्रभाविकता का अध्ययन मिराबिलिस जलापा में किया। ### अभ्यासार्थ प्रश्न ### वस्तुनिष्ठ प्रश्न - 1. कौनसा परीक्षण संकरण (Test cross) है- - (31) TT×TT - (ৰ) Tt × tt - (स) tt × tt - (द) Tt × Tt - 2. F_2 पीढ़ी में एक गुण प्रसंकरण (Monohybrid cross) का जीन प्रारूप (Genotype) अनुपात होता है— - (अ) 1:2 - (ৰ) 1:2:1 - (स) 1:1 - (年) 3:1 - विपरीत लक्षणों के एक जोड़े को कहते हैं— - (अ) होमाजाइगस - (ब) हेटरोजाइगस - (स) एलीलोमार्फ - (द) पॉलीमार्फ - 4. ग्रीगोर मेण्डल प्रसिद्ध हैं प्रतिपादन के लिए- - (अ) कोशिका सिद्धान्त - (ब) उपार्जित लक्षणों की वंशागति - (स) उत्परिवर्तन के सिद्धान्त - (द) आनुवंशिकता के नियमों ### अतिलात्तरात्मक प्रश्न - 1. मेण्डल ने अपने प्रयोगों के लिए कौनसे पादप को चुना? - 2. परीक्षण संकरण (Test cross) का मान क्या होता है? - 3. मनुष्य के शुक्राणु में ऑटोसोम्स (Autosoms) की संख्या कितनी होती है? - 4. एक जन्तु में भौतिक रूप से प्रकट होने वाले लक्षण को क्या कहते हैं? ### लात्तरात्मक प्रश्न - 1. विसंयोजन (Segregation) के नियम को समझाइए। - 2. अपूर्ण प्रभावित (Incomplete dominance) को समझाइए। - पूर्वज संकरण (Baub cross) एवं परीक्षण संकरण (Test cross) में क्या अन्तर है? - 4. एक संकर संकरण (Monohybride cross) को उदाहरण सहित समझाओ। #### निबन्धात्मक प्रश्न - 1. संक्षिप्त टिप्पणी करे - (i) संकर पूर्वज संकरण (Back cross) - (ii) परीक्षण संकरण (Test cross) - (iii) स्वतंत्र अपव्यूहन का नियम (Independent assortment) - 2. संक्षिप्त टिप्पणी करे - - (i) युग्मविकल्पी (Allele) - (ii) लक्षण प्रारूप (Phenotype) एवं जीन प्रारूप (Genotype) - (iii) विषमयुग्मजी (Heterozygous) एवं समयुग्मजी (Homozygous) उत्तरमालाः 1 (ब) 2 (ब) 3 (स) 4 (द) # इकाई – 15 अध्याय - 21 # कोशिका, कोशिकांग एवं कार्य (Cell, Cell organelles and Functions) कोशिका (Cell) जीवों के शरीर की रचनात्मक (Structural) और क्रियात्मक (Functional) इकाई है और प्रायः स्वतः जनन (Self reproduction) का सामर्थ्य रखती है। 'कोशिका' या अंग्रेजी शब्द सेल (Cell) लैटिन भाषा के 'शेलुला' 'Cellula' शब्द से लिया गया है जिसका अर्थ है 'एक छोटा कमरा'। कुछ सजीव जैसे जीवाणुओं (Bacteria), अमीबा (Amoeba) के शरीर एक ही कोशिका से बने होते हैं, उन्हें एककोशिकीय जीव(Unicellular organisms) कहते हैं जबिक कुछ जीव जैसे मनुष्य का शरीर अनेक कोशिकाओं से मिलकर बना होता है उन्हें बहुकोशिकीय जीव (Multicellular organisms) कहते हैं। कोशिका की खोज रॉबर्ट हूक (Robert Hooke) ने 1665 ई. में किया था। कोशिकाओं का विधिवत अध्ययन कोशिका विज्ञान (Cytology) या 'कोशिका जैविकी' (Cell Biology) कहलाता है। कोशिकाएँ दो प्रकार की होती हैं— - असीमकेन्द्रकीय या प्रोकैरियोटिक कोशिका (Prokaryotic cell) - ये प्रायः स्वतंत्र होती हैं। - इनमें कोई स्पष्ट केन्द्रक नहीं होता है। - केन्द्रकीय पदार्थ (Nucleoid) कोशिका द्रव में बिखरे होते हैं। - राइबोसोम 70S (50S और 30S) प्रकार के होते हैं। - डीएनए आमतौर पर वर्तुल (Circular) होता है। - एकल गुणसूत्र पाए जाते हैं। - इस प्रकार की कोशिका जीवाणु तथा नीली हरी शैवाल (Blue green algae) में पायी जाती है। - 2. ससीमकेन्द्रीय या यूकैरियोटिक कोशिका (Eukaryotic cell) - यह बहुकोशिकीय प्राणियों (Multi cellular) में पायी जाती हैं। जिन्हें ससीमकेन्द्रीय (Eukaryotic) कोशिका कहते हैं। - सभी उच्च श्रेणी के पौधों और जन्तुओं में यूकैरियोटिक प्रकार की कोशिकाएं पाई जाती हैं। - सभी यूकैरियोटिक कोशिकाओं में संगठित केन्द्रक पाया जाता है जो एक आवरण से ढका होता है। - राइबोसोम 80S (60S और 40S) प्रकार के होते हैं। - डीएनए रेखीय अणु (Linear) के रूप में होता है। यह हिस्टोन प्रोटीन के साथ जुड़कर गुणसूत्र का निर्माण करता है। - एक से अधिक गुणसूत्र पाए जाते हैं। ### कोशिका सिद्धांत (Cell Theory) कोशिकाएं जीवन की आधारभूत इकाई है। 1839 में श्लाइडेन तथा श्वान (Schleiden and Schwann) ने कोशिका सिद्धांत प्रस्तुत किया जिसके अनुसार— - सभी जीवों का शरीर एक या एकाधिक कोशिकाओं से मिलकर बना होता है। - सभी कोशिकाओं की उत्पत्ति पहले से उपस्थित किसी कोशिका से ही होती है। नई कोशिकाएं कोशिका विभाजन की प्रक्रिया द्वारा अन्य जीवित कोशिकाओं से ही उत्पन्न होती हैं। ### कोशिका संरचना - कोशिकाएं सजीव होती हैं तथा वे सभी कार्य करती हैं, जिन्हें सजीव प्राणी करते हैं। - इनका आकार अतिसूक्ष्म तथा आकृति गोलाकार (Circular), अण्डाकार (Oval), स्तंभाकार (Columnar), कशाभिकायुक्त (Flagellar), बहुभुजीय (Polygonal) आदि प्रकार की होती है। - ये जैली जैसी एक आवरण द्वारा घिरी होती है इसको कोशिकावरण (Cell envelope) या कोशिका झिल्ली (Cell membrane) कहते हैं। 199 इसके भीतर निम्नलिखित संरचनाएं या कोशिकांग पाये जाते हैं— - केन्द्रक (Nucleus) - केन्द्रिका (Nucleolous) - जीवद्रव्य (Protoplasm) - गोल्गी सम्मिश्र या गोल्गी यंत्र (Golgi body) - कणाभ सूत्र (Mitochondria) - अंतर्प्रद्रव्य जालिका (Endoplasmic reticulum) - गुणसूत्र (पितृसूत्र) (Chromosomes) - जीन (Gene) - राइबोसोम (Ribosome) - सेन्ट्रोसोम (Centrosome) - लवक (Plastids) कुछ खास भिन्नताओं को छोड़ पादप एवं जन्तु कोशिका की संरचना लगभग एक जैसी होती है। ये सजीव और निर्जीव दोनों तरह की इकाइयों से मिलकर बनी होती हैं। एक सामान्य कोशिका या प्रारूपिक कोशिका के मुख्य तीन भाग हैं, कोशिकावरण (Cell envelope), कोशिका द्रव्य (Cytoplasm) एवं केन्द्रक (Nucleus)। कोशिकावरण कोशिका का सबसे बाहर का आवरण या घेरा है। पादप कोशिका में कोशिका भित्ति (Cell wall) और कोशिका झिल्ली (Cell membrane) मिलकर कोशिकावरण (Cell envelope) का निर्माण करते हैं। जन्तु कोशिका में कोशिका भित्ति नहीं पाई जाती अतः कोशिका झिल्ली ही सबसे बाहरी आवरण है। कोशिका झिल्ली एवं केन्द्रक के बीच के भाग को कोशिका द्रव्य कहा जाता है, इसमें विभिन्न कोशिकांग होते हैं। पादप और जन्तु कोशिकाओं में कई मतभेद और समानताएं हैं। उदाहरण के लिए, जन्तु कोशिकाओं में कोशिका भित्ति या क्लोरोप्लास्ट नहीं है, लेकिन पादप कोशिकाओं में हैं। पादप कोशिकाओं का आकार नियमित है, जबिक जन्तु कोशिकाओं का आकार अनियमित हैं, ये आयताकार, गोल आदि प्रकार की होती है (सारणी 21.1)। ## कोशिका भित्ति (Cell Wall) कोशिका भित्ति मुख्य रूप से सेल्यूलोज (Cellulose), हे मी से ल्यू लो ज (Hemicellulose), ग्लाइको प्रोटीन (Glycoproteins), पेक्टिन्स (Pectins) और लिग्निन (Lignin) से बनी होती है। यह केवल पादप कोशिकाओं में पाई जाती है। #### कोशिका भित्ति के कार्य - कोशिका को एक निश्चित आकार और संरचना देती है। - संरचनात्मक समर्थन देती है। - संक्रमण और यांत्रिक तनाव के खिलाफ संरक्षण प्रदान करती है। - बाहरी वातावरण से कोशिका के आंतरिक वातावरण को अलग करती है। - कोशिका को बाहर और अन्दर से पदार्थों और जानकारी के परिवहन के लिए सक्षम बनाती है। - इसके अलावा परासरण—नियमन (Osmotic equilibrium) में मदद करती है। - पानी की कमी को रोकती है। - कोशिका भित्ति की शारीरिक और जैव रासायनिक गतिविधि कोशिका—कोशिका संचार में मदद करती है। - यह स्फीत दाब (Turgor pressure) दबाव के कारण कोशिका को फटने से रोकती है। - कोशिका के अन्दर और बाहर से गैसों के प्रसार में मदद करती है। - इसके अलावा कीड़े और रोगजनकों से यांत्रिक सुरक्षा प्रदान करती है। # प्लाज्मा झिल्ली / कोशिका झिल्ली ### (Plasma Membrane) प्लाज्मा झिल्ली एक जैविक झिल्ली है। यह प्रोटीन और कार्बोहाइड्रेट से बनी एक द्विस्तरीय वंशीय संरचना है अर्थात् यह फॉस्फोलिपिड की दो परतों से बनी है। इसमें कई प्रोटीन अंतर्निहित है। कोशिका झिल्ली मुख्य रूप से प्रोटीन और लिपिड से बनी है। लिपिड झिल्ली को लचीलापन देने के लिए और प्रोटीन निगरानी और अणुओं के
हस्तांतरण में सहायता करते हैं और इसी कारण कोशिका की रासायनिक जलवायु बनी रहती है। प्लाज्मा झिल्ली में जलस्नेही सिर और जलविरोधी पूंछ दोनों शामिल हैं इसलिए यह उभयग्राही (Amphipathic) है। इसे कभी—कभी 'जीवद्रव्य कला' (Plasma membrane) भी कहा जाता है। #### कार्य - कोशिका झिल्ली कोशिका को उसके बाहरी वातावरण से अलग करती है। - प्लाज्मा झिल्ली कोशिका में केवल चयनित पदार्थों की इजाजत देती है और अन्य पदार्थों को बाहर रखने से कोशिका की आंतरिकता की अखंडता की रक्षा करने में एक महत्वपूर्ण भूमिका निभाती है। # 200 सारणी 21.1 : जन्तु एवं पादप कोशिका में अन्तर | संरचना | जन्तु कोशिका (चित्र 21.1) | पादप कोशिका (चित्र 21.2) | |---|---|--| | कोशिका भित्ति (Cell wall) | अनुपस्थित। यह केवल एक पतली
झिल्ली से घिरी है अतः एक जन्तु कोशिका
अक्सर अपने आकार को बदल सकती है। | यह प्लाज्मा झिल्ली के अलावा एक कठोर
सेलुलोज (Cellulose) की बनी कोशिका भित्ति
से घिरी होती है। इसके कारण कोशिका अपने
आकार को बदल नहीं सकती है। | | कोशिका आकार (Cell shape) | एक जन्तु कोशिका आकार में
अपेक्षाकृत छोटी होती है। | एक पादप कोशिका आकार में आमतौर पर बड़ी
होती है। | | केन्द्रक (Nucleus) | केन्द्रक आमतौर पर केन्द्र में निहित
होता है। | केन्द्रक परिधीय कोशिकाद्रव्य (Peripheral
(cytoplasm) में एक ओर स्थित होता है। | | लाइसोसोम (Lysosome) | लाइसोसोम हमेशा पशु कोशिकाओं में | लाइसोसोम दुर्लभ है। | | ग्लायीऑक्सीसोम्स (Glyoxysomes) | मौजूद होते हैं।
अनुपस्थित होते हैं। | मौजूद हो सकते हैं। | | सेन्द्रीओल्स (Centrioles) | तारककाय (Centrioles) पशु कोशिकाओं
में व्यावहारिक रूप से मौजूद होते हैं। | तारककाय (Centrioles) पौधों की गतिशील
कोशिकाओं को छोड़कर आमतौर पर
अनुपस्थित होते है। | | লবক (Plastids) | लवक (Plastids) आमतौर पर
अनुपस्थित होते हैं। | लवक (Plastids) मौजूद होते हैं। सूरज की
रोशनी के सम्पर्क में पादप कोशिकाओं में
क्लोरोप्लास्ट होते हैं। | | रिक्तिकाएं (Vacoules) | एक जन्तु कोशिका में अक्सर कई छोटी
रिक्तिकाएं पायी जाती हैं। | एक परिपक्व पादप कोशिका में एक बड़ी
केन्द्रीय रिक्तिका पायी जाती है। | | संचित भोजन (Reserve food) | संचित भोजन आमतौर पर ग्लाइकोजन
(Glycogen) है। | संचित भोजन स्टार्च (Starch) के रूप में
होता है। | | क्लोरोप्लास्ट (Chloroplasts) | जन्तु कोशिकाओं को क्लोरोप्लास्ट की
जरूरत नहीं है। | पादप कोशिकाओं में हरितलवक (Chloroplast)
होते हैं क्योंकि वे अपना भोजन स्वयं बनाते हैं। | | विटामिन एवं एन्जाइम संश्लेषण
(Vitamin and enzyme
synthesis) | जन्तु कोशिका उनके द्वारा आवश्यक
एन्जाइमों और विटामिन सहित सभी
एमिनो एसिड का संश्लेषण नहीं कर
सकते हैं। | पादप कोशिका सभी एमिनो एसिड, कोएंजाइम
और उनके द्वारा आवश्यक विटामिन का संश्लेषण
कर सकती है। | | कोशिका विभाजन
(Cell division) | तर्कु तन्तुओं के निर्माण में तारक (Asters)
उपस्थित होते है अर्थात् तारकीय विभाजन
(Astral division) होता है। | तर्कु तन्तुओं का निर्माण अतारिकीय
(Anastral) होता है। | | कोशिका द्रव्य विभाजन | कोशिका द्रव्य विभाजन खांच | कोशिका द्रव्य विभाजन प्लेट निर्माण (Plate | | (Cytoplasm division) | (Furrowing) निर्माण से होता है। | formation) से होता है। | | परासरण (Osmosis) | अल्पतनावी घोल (Hypotonic solution) में
कोशिका फूल जाती है और अतितनावी
घोल (Hypertonic solution) में कोशिका
सिकुड़ जाती है। | कोशिका भित्ति के कारण कोशिका अतितनावी
घोल (Hypertonic solution) में फटती नहीं है। | चित्र 21.1 : जन्तु कोशिका चित्र 21.2 : पादप कोशिका - यह कुछ जीवों में कोशिका कंकाल (Cytoskeleton) और दूसरों में एक आधार के रूप में कार्य करती है। इस प्रकार कोशिका झिल्ली कोशिका को समर्थन प्रदान करती है और कोशिका के आकार को बनाए रखने में मदद करती है। - प्लाज्मा झिल्ली कोशिका के प्रवेश और निकास को नियंत्रित करती है। कई अणु परासरण एवं विसरण द्वारा कोशिका झिल्ली को पार करते हैं। - इसमें मौजूद प्रोटीन, पंप, चैनलों, ग्राही (Receptors), एंजाइम या संरचनात्मक घटकों के रूप में काम करते हैं। - यह झिल्ली अवकलीय पारगम्य (Selectively permeable) होती है जिसका अर्थ है कि यह झिल्ली किसी पदार्थ (अणु या ऑयन) को मुक्त रूप से पार होने देती है, सीमित मात्रा में पार होने देती है या बिल्कुल रोक देती है। ### केन्द्रक (Nucleus) - केन्द्रक कोशिका के अन्दर पाये जाने वाली एक गोल एवं सघन रचना है। - केन्द्रक कोशिका के भीतर कोशिका द्रव्य (Cytoplasm) में प्रायः तैरता रहता है। - एक कोशिका में सामान्यतः एक ही केन्द्रक होता है, किन्तु कभी—कभी एक से अधिक केन्द्रक भी पाए जाते हैं। - जब कोशिका विभाजित होती है तो इसका भी विभाजन हो जाता है। - इसका यद्यपि कोई निश्चित स्थान नहीं होता, तथापि यह अधिकतर लगभग मध्यभाग में ही स्थित होता है। कुछ कोशिकाओं में इसकी स्थिति आधारीय (Basal) और कुछ में सीमांतीय (Peripheral) भी होती है। - केन्द्रक की आकृति गोलाकार, वर्तुलाकार या अण्डाकार होती है। तथापि, कभी—कभी यह बेलनाकार, दीर्घवृत्ताकार, सपाट, शाखान्वित, नाशपाती जैसा, भालाकार आदि स्वरूपों का भी हो सकता है। - केन्द्रक एक दोहरी झिल्ली से सुरक्षित रहता है। केन्द्रक के आवरण को केन्द्रककला (Nuclear membrane or nucleolemma) कहते हैं। - केन्द्रक की बाहरी झिल्ली खुरदरी सतह वाली जालिका की झिल्ली के साथ सतत होती है। - इन परतों के बीच की जगह को परिकेन्द्रकीय(Perinuclear) स्थान के रूप में जाना जाता है। - यह झिल्ली कोशिका द्रव्य और कोशिका की आनुवांशिक सामग्री को अलग करती है। - यह स्वंतत्र रूप से केन्द्रक द्रव्य (Nuclear sap) और कोशिका द्रव्य के बीच वृहद अणुओं के पारित होने को रोकने के लिए एक बाधा के रूप में कार्य करता है। - केन्द्रक के भीतर केन्द्रक—रस (Nuclear sap), केन्द्रिका (Nucleolus) तथा गुणसूत्र (Chromosomes) पाए जाते हैं। ### कार्य - कोशिका के समस्त कार्यों का यह संचालन केन्द्र होता है। केन्द्रक को कोशिका का 'मस्तिष्क' भी कहा जाता है। जिस प्रकार शरीर की सारी क्रियाओं का नियंत्रण मस्तिष्क करता है ठीक उसी प्रकार कोशिका के सारे कार्यों का नियंत्रण भी केन्द्रक द्वारा होता है। - केन्द्रक में गुणसूत्रों (Chromosomes) और लगभग सभी डीएनए प्रतिकृति (DNA replication) और आरएनए संश्लेषण (RNA synthesis) होते हैं। - यह एक जीव की आनुवांशिक विशेषताओं को नियंत्रित करता है। - यह प्रोटीन संश्लेषण, कोशिका विभाजन और विकास के लिए भी जिम्मेदार है। - यह डीएनए के रूप में आनुवांशिक सामग्री का भण्डारण करता है। - इसके अलावा प्रोटीन और RNA को संग्रहीत करता है। - यह मैसेंजर आरएनए (mRNA) और प्रोटीन संश्लेषण की प्रक्रिया का स्थान है। - केन्द्रक कोशिका के बाकी हिस्सों के बीच डीएनए और आरएनए (आनुवांशिकता सामग्री) के आदान—प्रदान में भी सहायता करता है। - केन्द्रिका (Nucleolus) राइबोसोम पैदा करता है और प्रोटीन कारखानों के रूप में जाना जाता है। - यह जीन और जीन अभिव्यक्ति की अखंडता को नियंत्रित करता है। ### केन्द्रिका (Nucleolus) - प्रत्येक केन्द्रक में एक या अधिक केन्द्रिकाएं पाई जाती हैं। - कोशिका विभाजन की कुछ विशेष अवस्था में केन्द्रिका लुप्त हो जाती है, किन्त्र बाद में पुनः प्रकट हो जाती है। - केन्द्रिका के भीतर रिबोन्यूक्लीइक अम्ल (Ribonucleic acid) तथा कुछ विशेष प्रकार के एंजाइम अधिक मात्रा में पाए जाते हैं। • केन्द्रिका समसूत्रण (Mitosis) या अर्धसूत्री (Meiosis) विभाजन में महत्वपूर्ण भूमिका अदा करती है। ### जीवद्रव्य (Protoplasm) - जीव वैज्ञानिक इसे 'जीवन का भौतिक आधार' (Physical basis of life) के नाम से संबोधित करते हैं। - यह एक गाढ़ा तरल पदार्थ (Gel like substance) होता है जो स्थानविशेष पर विशेष नामों द्वारा जाना जाता है; जैसे, - i. कोशिकाद्रव्य (Cytoplasm) द्रव्यकला (Plasma membrane) तथा केन्द्रक (Nucleus) के मध्यवर्ती स्थान में पाए जाने वाले जीवद्रव्य को कोशिकाद्रव्य(Cytoplasm) कहते हैं तथा यह मुख्य रूप से पानी से बना है और कोशिका झिल्ली और केन्द्रक के बीच पाया जाने वाले पदार्थ जैसा है। - ii. केन्द्रकद्रव्य (Nucleoplasm) केन्द्रक झिल्ली (Nuclear membrane) के भीतर पाए जाने वाले जीवद्रव्य को केन्द्रक द्रव्य कहते हैं। - इसे 'सजीव' (Living) कहा जाता है क्योंकि कोशिका का यह भाग अत्यंत चैतन्य और कोशिका की समस्त जैवीय प्रक्रियाओं का केन्द्र होता है। - जीवद्रव्य का निर्माण - i. कार्बन (Carbon), - ii. हाइड्रोजन (Hydrogen), - iii. ऑक्सीजन (Oxygen) तथा - iv. कार्बनिक (Organic) तथा - v. अकार्बनिक (Inorganic) पदार्थों द्वारा होता है। - इसमें पाये जाने वाले विभिन्न घटकों की मात्राओं में जल लगभग 80%, प्रोटीन 15%, वसा 3%, कार्बोहाइड्रेट 1% और अकार्बनिक लवण 1% होता है। - जीवद्रव्यों के कई प्रकार होते हैं, जैसे कोलाइड (Colloid), कणाभ (Granular), तंतुमय (Fibrillar), जालीदार (Reticular), कूपिकाकार (Alveolar), आदि। #### कार्य - कोशिका द्रव्य जीवन को बनाए रखने के लिए महत्वपूर्ण है। - यह कई महत्वपूर्ण जैव रासायनिक क्रियाओं को माध्यम प्रदान करता है। - यह कोशिका द्रव्य कोशिकांगो को रहने के लिए एक माध्यम देता है। - यह कोशिका को आकार (Shape) और गति (Movement) की सुविधा प्रदान करता है। - कोशिका द्रव्य आनुवांशिक सामग्री के लिए परिवहन का एक साधन है। - यह कोशिकीय श्वसन के उत्पादों का परिवहन करता है। - यह विभिन्न कोशिकीय तत्वों की आवाजाही में मददगार होता है। - कोशिका द्रव्य एक बफर के रूप में कार्य करता है और कोशिका की आनुवांशिक सामग्री और अन्य कोशिकाओं के साथ गति और टक्कर के कारण उत्पन्न ऊर्जा से कोशिकांगों की रक्षा करता है। - कोशिका द्रव्य गुरुत्वाकर्षण के कारण कोशिकांगो के समूह बनने से रोकता है जो उनके कार्य में बाधा उत्पन्न कर सकते हैं। ### गोल्गी सम्मिश्र या यंत्र ### (Golgi Complex or Apparatus) - कोशिकाओं का एक प्रमुख कोशिकांग है। - इस अंग का यह नाम इसके खोजकर्ता कैमिलियो गोल्गी (Camellio Golgi) के नाम पर पड़ा है, जिन्होंने 1898 में सर्वप्रथम इसकी खोज की। - ये कोशिका द्रव्य में पाए जाते हैं। - यह एक प्रकार के जाल (Network) जैसा दिखायी देता है। - यह अंग साधारणतः केन्द्रक के समीप, अकेले या समूहों में पाया जाता है। #### संरचना - ये झिल्ली बाध्य है जो थैली की तरह प्रतीत होते हैं। - इसकी रचना तीन तत्वों (Elements) या घटकों (Components) द्वारा होती है - i. चपटी नलिकाएं (Flattened sacs Cisternae), - ii. बड़ी रिक्तिकाएँ (Large vacuoles) तथा - iii. आशय (Vesicles) - नलिकाएं (Cisternae) के एक व्यक्तिगत ढेर (Stack) को डिक्टीयोसाम (Dictyosome) के रूप में जाना जाता है। - एक कोशिका में करीब 40 से 100 के ढेर दिखते हैं। एक ढेर में 4-8 नलिकाएं (Cisternae) होती हैं। - नलिकाएं (Cisternae) एक चपटी थैलियां की तरह होती हैं और आकार में तुला और अर्धवृत्ताकार होती हैं। - गॉल्जी प्रकृति में ध्रवीय है। - ढेर के एक छोर की झिल्ली की संरचना और मोटाई दूसरे छोर की झिल्ली से अलग होती हैं। जिन्हें सीस (Cis) और ट्रांस (Trans) छोर कहा जाता है। ### कार्य - यह कोशिकीय स्रवण (Cellular secretion) में महत्वपूर्ण भूमिका निभाता है। -
यह प्रोटीनों, वसाओं तथा कतिपय एन्जाइमों (Enzymes) का भंडारण (Storage) करना है। - यह मुख्य रूप से खुरदरी सतह वाली जालिका द्वारा तैयार प्रोटीन को संशोधित करता है। - कोशिका के आस—पास लिपिड अणुओं के परिवहन में मदद करता है। - यह लाइसोसोम भी पैदा करते हैं। - प्रोटियोग्लाईकैन्स (Proteoglycans) के उत्पादन में एक महत्वपूर्ण भूमिका निभाता है। - नलिकाएं (Cisternae) में मौजूद एंजाइम कार्बोहाइड्रेट और प्रोटीन को क्रमशः ग्लाइकोसाइलेशन (Glycosylation) और फोस्फोराइलेशन (Phoshphorylation) की प्रक्रिया द्वारा संशोधित करते है। - यह कार्बोहाइड्रेट के संश्लेषण का एक प्रमुख स्थल है। - कोशिकाओं द्वारा संश्लेषित प्रोटीन और लिपिड जैसे बड़े अणुओं की पैकेजिंग और परिवहन में मदद करता है। - गॉल्जी कुछ अणुओं के सल्फोनिकरण (Sulfation) प्रक्रिया में भी शामिल होता है। - अणुओं के फास्फोरिलीकरण की प्रक्रिया का स्थान है। # कणाभसूत्र (माइटोकॉन्ड्रिया) (Mitochondria) - माइटोकॉन्ड्रिया एक डबल झिल्ली बाध्य कोशिकीय संरचना है और कोशिकाओं के अधिकांश भाग में पाया जाता है। - यह रासायनिक ऊर्जा के स्रोत है |Adenosine triphosphate (एटीपी / ATP) के रूप में कोशिका की ऊर्जा पैदा करते हैं इसलिए इन्हें कोशिका का 'पावर प्लांट' (Power plant) कहा जाता है | - ये कणिकाओं (Granules) या शलाकाओं (Rods) की आकृति वाले होते हैं। - ये अंगक (Organelle) कोशिकाद्रव्य (Cytoplasm) में स्थिर होते हैं। - ये स्वतंत्र अंग है क्योंकि इनके पास अपने स्वयं के डीएनए की एक छोटी इकाई है। #### संरचना माइटोकॉन्ड्रिया एक द्वि झिल्ली बाध्य संरचना है। यह बाहरी झिल्ली और भीतर की झिल्ली है। झिल्ली फॉस्फोलिपिड और प्रोटीन से बनी होती है। बाहरी झिल्ली चिकनी है तथा फॉस्फोलिपिड और प्रोटीन की बराबर मात्रा से बनी है। यह पोषक तत्व अणुओं, आयनों, ऊर्जा एटीपी और एडीपी अणुओं के लिए स्वतंत्र रूप से पारगम्य है। भीतरी झिल्ली संरचना में अधिक जटिल है। यह कई परतों की संख्या में है जिनको क्रिस्टी (Cristae) के रूप में जाना जाता है। इसके कारण अंदर की सतह का क्षेत्रफल बढ़ जाता है। बाहरी झिल्ली के विपरीत, भीतर की झिल्ली सख्ती से पारगम्य है और केवल ऑक्सीजन, एटीपी (ATP) के लिए पारगम्य है। यह झिल्ली चयापचयों के हस्तांतरण को विनियमित करने में मदद करती है। एटीपी (ATP) अणुओं के उत्पादन में भीतर की झिल्ली के प्रोटीन मदद करते है। विभिन्न रासायनिक प्रतिक्रियाएं माइटोकॉन्ड्रिया की भीतरी झिल्ली में होती है। अन्तरकाय कोष — यह माइटोकॉन्ड्रिया के बाहरी और भीतरी झिल्ली के बीच की जगह है। इसकी रचना कोशिका द्रव्य के समान होती है। मैट्रिक्स — माइटोकॉन्ड्रिया के मैट्रिक्स प्रोटीन और एंजाइम का एक जटिल मिश्रण है। एंजाइमों एटीपी अणु, माइटोकॉन्ड्रियल राइबोसोम, tRNAs और माइटोकॉन्ड्रियल डीएनए के संश्लेषण के लिए महत्वपूर्ण हैं। ### कार्य - माइटोकॉन्ड्रिया का सबसे प्रमुख कार्य ऑक्सीकरणीय श्वसन प्रक्रिया के माध्यम से एटीपी के रूप में कोशिकीय कार्यों के लिए ऊर्जा का उत्पादन होता है। - एटीपी उत्पादन की प्रतिक्रियाओं को टीसीए (TCA cycle; tricarboxylic acid cycle), या साइट्रिक एसिड चक्र (Citric acid cycle) या क्रेब चक्र (Kreb's cycle) के रूप में जाना जाता है। - यह भी कोशिका की चयापचय क्रिया को नियंत्रित करता है। इनका मुख्य कार्य कोशिकीय श्वसन है। इनसे आवश्यक ऊर्जा (Energy) की आपूर्ति ATP के रूप में होती रहती है। ### अंतर्प्रद्रव्य जालिका (Endoplasmic Reticulum) यह जालिका कोशिकाद्रव्य (Cytoplasm) में आशयों (Vesicles) और नलिकाओं (Tubules) के रूप में फैली रहती है। इसकी स्थिति सामान्यतः केन्द्रकीय झिल्ली (Nuclear membrane) तथा द्रव्यकला (Plasma membrane) के बीच होती है, किन्तु यह अक्सर सम्पूर्ण कोशिका में फैली रहती है। यह जालिका दो प्रकार की होती है: चिकनी सतह वाली (Smooth endoplasmic reticulum, SER) और खुरदुरी सतह वाली(Rough endoplasmic reticulum, RER)। इसकी सतह खुरदुरी इसलिए होती है कि इस पर राइबोसोम (Ribosomes) के कण बिखरे रहते हैं। ### कार्य - इनके अनेक कार्य बतलाए गए हैं, जैसे यांत्रिक आधारण (Mechanical support), द्रव्यों का प्रत्यावर्तन (Exchange of materials), अंतः कोशिकीय अभिगमन (Intracellular transport), प्रोटोन संश्लेषण (Protein synthesis) इत्यादि। - यह लाइसोसोम, गॉल्जी उपकरण, प्लाज्मा झिल्ली की तरह प्रोटीन और अन्य कार्बोहाइड्रेट की ढुलाई के लिए मुख्य रूप से जिम्मेदार है। - ये कंकाल ढांचे के गठन में महत्वपूर्ण भूमिका निभाते हैं। - ये कोशिकीय प्रतिक्रियाओं के लिए वृहत क्षेत्रफल प्रदान करते हैं। - कोशिका विभाजन के दौरान केन्द्रक झिल्ली के गठन में मदद करते हैं। - ये कोलेस्ट्रॉल, प्रोजेस्टेरोन, टेस्टोस्टेरोन, प्रोटीन, वसा, ग्लाइकोजन और अन्य स्टेरॉयड के संश्लेषण में एक महत्वपूर्ण भूमिका निभाते हैं। - चिकनी जालिका लिपिड और स्टेरॉयड संश्लेषण और खुरदरी जालिका प्रोटीन संश्लेषण का कार्य करती है। - यह कार्बोहाइड्रेट उपापचय कोशिका में कैल्शियम आयन का संग्रहण एवं स्त्रावण, विषहरण और कोशिका झिल्ली पर प्रोटीन रिसेप्टर्स के निर्माण को नियंत्रित करता है। ### राइबोसोम (Ribosomes) सूक्ष्म गुलिकाओं के रूप में प्राप्त इन संरचनाओं को केवल इलेक्ट्रॉन माइक्रोस्कोप के द्वारा ही देखा जा सकता है। इनकी रचना 50% प्रोटीन तथा 50% आर.एन.ए. द्वारा हुई होती है। एक कोशिका में राइबोसोम कोशिका द्रव्य के दो क्षेत्रों में स्थित हैं। वे कोशिका द्रव्य में बिखरे हुए पाए जाते हैं और कुछ जालिका से जुड़े होते हैं। ये विशेषकर अंतर्प्रद्रव्य जालिका के ऊपर पाए जाते हैं। बाध्य और मुक्त राइबोसोम संरचना में समान हैं और प्रोटीन संश्लेषण में सहायक रहते हैं। राइबोसोम आरएनए और प्रोटीन दोनों से बने हैं। राइबोसोम दो इकाइयों से बना है एक छोटी और एक बड़ी उपइकाइयाँ। बड़ी उपइकाई अमीनो अम्ल को Polypeptides की एक शृंखला के रूप में बनाते है, जबिक छोटा सबयूनिट mRNA पढ़ता है। Ribosomal उपइकाइयाँ एक या एक से अधिक rRNA (राइबोसोमल आरएनए) अणुओं और विभिन्न प्रोटीन के बने होते हैं। राइबोसोम की इकाइयाँ जिनका नाम स्वेदबर्ग (Svedberg) इकाई है एक विशेष जेल (Gel) पर अवसादन की उनकी क्षमता के अनुसार नामित हैं। इनमें प्रोटीनों का संश्लेषण होता है। #### कार्य - विशिष्ट प्रोटीन के संश्लेषण हेतु अमीनो अम्लों की एकत्रण, प्रोटीन सेलुलर गतिविधियों को ले जाने के लिए आवश्यक है। - डिऑक्सीराइबोन्यूक्लिक एसिड (डीएनए) प्रतिलेखन की प्रक्रिया द्वारा mRNA पैदा करता है जो प्रोटीन के उत्पादन की प्रक्रिया की पहली कडी है। - डीएनए के आनुवांशिक संदेश को mRNA और प्रोटीन में अनुवाद करता है। - केन्द्रक में संश्लेषित mRNA को आगे की प्रक्रिया के लिए कोशिका द्रव्य में ले जाया जाता है जहाँ कोशिका द्रव्य में, राइबोसोम की दो यूनिट, mRNA से प्रोटीन को संश्लेषित करते हैं। - कोशिका द्रव्य में मौजूद राइबोसोम द्वारा संश्लेषित प्रोटीन कोशिका द्रव्य में ही इस्तेमाल किया जाता है। बाध्य राइबोसोम द्वारा उत्पादित प्रोटीन कोशिका के बाहर ले जाया जाता है। ## गुणसूत्र या पितृसूत्र (Chromosomes) और जीन (Gene) यह शब्द क्रोम (Chrom) तथा सोमा (Soma) शब्दों से मिलकर बना है, जिसका अर्थ होता है : रंगीन पिंड (Colour bodies)। गुणसूत्र केन्द्रकों के भीतर जोड़ों (Pairs) में पाए जाते हैं और कोशिका विभाजन के समय केन्द्रक सहित विभाजित हो जाते हैं। इनमें स्थित जीनों को पूर्वजों के पैत्रिक गुणों का वाहक कहा जाता है। इनकी संख्या जीवों में निश्चित होती है, जो एक दो जोड़ों से लेकर कई सौ जोड़ों तक हो सकती है। इनका आकार 1 माइक्रॉन से 30 माइक्रॉन तक लम्बा होता है। इनकी आकृति साधारणतः अंग्रेजी भाषा के अक्षर S जैसी होती हैं। इनमें न्यूक्लओ—प्रोटीन (Nucleoprotein) मुख्य रूप से पाए जाते हैं। पितृसूत्रों के कुछ विशेष प्रकार भी पाए जाते हैं, जिन्हें लेंपब्रश पितृसूत्र (Lampbrush chromosomes) और पोलोटीन क्रोमोसोम (Polytene chromosomes) की संज्ञा दी गई है। इन्हें W, X, Y, Z, आदि नामों से संबोधित किया जाता है। जीनों को पैत्रिक गुणों का वाहक (Carriers of hereditary characters) माना जाता है। क्रोमोसोम या पितृसूत्रों का निर्माण हिस्टोन प्रोटीन तथा डिऑक्सीराइबोन्यूक्लिक एसिड (DNA) तथा राइबोन्यूक्लिक एसिड (RNA) से मिलकर हुआ होता है। जीन का निर्माण इन्हीं में से एक डी.एन.ए. द्वारा होता है। कोशिका विभाजनों के फलस्वरूप जब नए जीव के जीवन का सूत्रपात होता है, तो यही जीन पैतृक एवं शारीरिक गुणों के साथ माता–पिता से निकलकर संततियों में चले जाते हैं। यह आदान—प्रदान माता के डिंब (Ovum) तथा पिता के शुक्राणु (Sperms) में स्थित जीनों के द्वारा सम्पन्न होता है। गुणसूत्र 'आनुवांशिक वाहन' (Hereditary vehicles) हैं जो जीन (Gene) या 'आनुवांशिक कारक' (Hereditary units) को एक पीढ़ी से दूसरी पीढ़ी में ले जाते हैं। सन् 1970 के जून मास में अमरीका स्थित भारतीय वैज्ञानिक श्री हरगोविंद खुराना को कृत्रिम जीन उत्पन्न करने में अभूतपूर्व सफलता मिली थी। इन्हें सन् 1978 में नोबेल पुरस्कार मिला था। #### लवक (Plastids) लवक अधिकतर पौधों में ही पाए जाते हैं। ये एक प्रकार के रंजक कण (Pigment granules) हैं, जो जीवद्रव्य (Protoplasm) में यत्र—तत्र बिखरे रहते हैं। क्लोरोफिल (Chlorophyll)धारक वर्ण के लवक को हरित लवक(Chloroplast) कहा जाता है। इसी के कारण वृक्षों में हरापन दिखलाई देता है। क्लोरोफिल के ही कारण पेड़ पौधे प्रकाश संश्लेषण (Photosynthesis) करते हैं। कुछ वैज्ञानिकों के मतानुसार लवक कोशिकाद्रव्यीय वंशानुगति (Cytoplasmic inheritance) के रूप में कोशिका विभाजन के समय संतति कोशिकाओं में सीधे—सीधे स्थानांतरित हो जाते हैं। ## क्लोरोप्लास्ट (Chloroplast) क्लोरोप्लास्ट प्रकाश संश्लेषण के लिए जिम्मेदार हैं, जो केवल पौधों की कोशिकाओं में पाये जाते हैं। क्लोरोप्लास्ट तीन झिल्ली की एक प्रणाली है। बाहरी झिल्ली, भीतर की झिल्ली और थाइलेकाइड (Thylakoid) प्रणाली। बाहरी और क्लोरोप्लास्ट की भीतरी झिल्ली के मध्य एक जेल नुमा पदार्थ (Gel like substance) पाया जाता है जिसे स्ट्रोमा कहते हैं। थाइलेकाइड्स(Thylakoids) सिस्टम स्ट्रोमा में तैरता है। बाहरी झिल्ली – यह एक अर्ध—झरझरा झिल्ली है जो छोटे अणुओं और आयनों के लिए पारगम्य है। बाहरी झिल्ली बड़े प्रोटीनों को प्रवेश नहीं करने देती है। भीतरी झिल्ली — क्लोरोप्लास्ट की भीतरी झिल्ली स्ट्रोमा के लिए एक सीमा के रूप में कार्य करती है। क्लोरोप्लास्ट की भीतरी झिल्ली को थाइलेकाइड्स (Thylakoids) कहा जाता है। थाइलेकाइड्स (Thylakoids) अक्सर सिक्के के ढेर के रूप में मौजूद होते हैं। यह क्लोरोप्लास्ट के अंदर और बाहर पदार्थों के पारित होने को नियंत्रित करती है। ### कार्य क्लोरोप्लास्ट का सबसे महत्वपूर्ण कार्य प्रकाश संश्लेषण की प्रक्रिया से खाना बनाने का है। खाद्य शर्करा के रूप में तैयार किया जाता है। प्रकाश संश्लेषण (Photosynthesis) की प्रक्रिया के दौरान प्रकाश, ऊर्जा, पानी और कार्बन - डाइऑक्साइड का उपयोग करके ग्लूकोज $+ O_2$ का निर्माण किया जाता है। - प्रकाश संश्लेषण की प्रकाश अभिक्रिया (Light reaction) के लिए प्रोटीन थाइलेकाइड्स (Thylakoids) की झिल्ली में पाये जाते हैं। प्रकाश अभिक्रिया (Light reaction) थाइलेकाइड्स (Thylakoids) की झिल्ली पर होती है। - केल्विन चक्र (Calvin cycle) क्लोरोप्लास्ट की स्ट्रोमा में होता है जिसे अंधेरी अभिक्रियाओं (Dark reactions) के नाम से भी जाना जाता है। - NADPH का उत्पादन पानी की Photolysis के एक परिणाम के रूप में यहाँ होता है। - विनियमन गतिविधि के अलावा, फैटी एसिड, लिपिड और केरोटिनोइड्स भीतरी क्लोरोप्लास्ट झिल्ली में संश्लेषित होती है। ### लाइसोसोम (Lysosome) लाइसोसोम एक ही झिल्ली से घिरा होता
है जो मजबूत पाचन एंजाइमों युक्त छोटी सी थैली संरचनाओं की तरह होते हैं। लाइसोसोम को कोशिका की आत्मघाती थैली के रूप में भी जाना जाता है। ### सेन्द्रोसोम (Centrosomes) ये केन्द्रक के समीप पाए जाते हैं। इनके एक विशेष भाग को सेन्द्रोस्फीयर (Centrosphere) कहते हैं, जिसके भीतर तारकाकायों (Centrioles) का एक जोड़ा पाया जाता है। कोशिका विभाजन के समय ये विभाजक कोशिका के ध्रुव (Pole) का निर्धारण और कुछ कोशिकाओं में कशाभिका(Flagella) जैसी संरचनाओं को भी उत्पन्न करते हैं। # महत्वपूर्ण बिन्दु - 1. कोशिका के अध्ययन को सायटोलोजी कहते हैं। - 2. श्लीडेन तथा श्वान ने 'कोशिका मत' प्रस्तूत किया। - 3. पादप कोशिका की बाह्य परत को कोशिका भित्ति कहते हैं। - 4. माइटोकॉण्डिया को 'कोशिका का ऊर्जा घर' भी कहते हैं। - 5. लाइसोसोम में अम्लीय जल विश्लेषी एन्जाइम पाए जाते हैं। - 6. केन्द्रक की खोज राबर्ट ब्राऊन ने की थी। - 7. गुणसूत्र पैतृक गुणों के वाहक होते हैं। - 8. राइबोसोम r-RNA एवं प्रोटीन से बनते हैं। - गोल्गीकाय में फास्फोरीकरण एवं ग्लाइकोसाइलेशन से सम्बन्धित एन्जाइम पाये जाते हैं। - 10. लाइसोसोम को आत्मघाती थैलियाँ भी कहा जाता है। ### अभ्यासार्थ प्रश्न ### वस्तुनिष्ठ प्रश्न - 1. माइटोकॉण्ड्रिया केन्द्र होते हैं- - (अ) ऊर्जा मुक्ति के - (ब) जल संग्रहण के - (स) प्रोटीन संश्लेषण - (द) वसा संश्लेषण - 2. लाइसोसोम आशय होते हैं- - (अ) आर.एन.ए. - (ब) स्त्रावी लाइपोप्राटीन्स के - (स) जल अपघटक एन्जाइम के - (द) वसा के - 3. सभी सजीव कोशिकाओं की क्रियाएँ नियोजित होती है- - (अ) केन्द्रक द्वारा - (ब) आक्सिन्स द्वारा - (स) टोनेप्लास्ट द्वारा - (द) हरित लवक द्वारा - प्राणी कोशिका एवं पादप कोशिका के बीच मुख्य अंतर होता है— - (अ) श्वसन में - (ब) पोषण में - (स) वृद्धि में - (द) गति में ### अतिलघुत्तरात्मक प्रश्न - 1. कोशिका सिद्धांत किसने दिया था? - 2. यूकेरियोटिक कोशिका में किस प्रकार के राइबोसोम पाये जाते हैं? - सेण्ट्रोसोम का क्या कार्य होता है? - 4. राइबोसोम की खोज किसने की? ### लघुत्तरात्मक प्रश्न - 1. कोशिका झिल्ली के क्या कार्य होते हैं? - 2. माइटोकॉन्ड्रिया की संरचना समझाइये। - 3. कोशिका भित्ति के कार्य समझाइये। - 4. लायसोसोम को आत्मघाती थैलियाँ क्यों कहते हैं? ### निबन्धात्मक - 1. प्राकैरियोटिक कोशिका एवं यूकैरियोटिक कोशिका में अंतर बताइये। - 2. केन्द्रक की संरचना व कार्य को विस्तृत में समझाइये। उत्तरमालाः 1 (अ) 2 (स) 3 (अ) 4 (ब) ### अध्याय - 22 # कोशिका विभाजन (Cell Division) ### कोशिका विभाजन सजीव के शरीर के परिवर्धन के लिए तथा जनन के लिए कोशिका विभाजन एक आवश्यक प्रक्रिया है। कोशिका विभाजन वह प्रक्रिया है जिसके द्वारा एक कोशिका (मातृ कोशिका) विभाजित होकर दो या दो से अधिक कोशिकाएं (पुत्री कोशिकाएं) उत्पन्न करती है। वस्तुतः कोशिका विभाजन, कोशिका चक्र का एक चरण है। ### कोशिका विभाजन का महत्व - 1. जीवों के शरीर के परिवर्धन के लिए उपयोगी। - भ्रूण के परिवर्धन में :- द्विगुणित युग्मनज (Zygote) से कोशिका विभाजन द्वारा ही बहुकोशिकीय भ्रूण बनता है। - 3. इसके द्वारा ही जीवों की वृद्धि और विकास होता है। - 4. घाव भरने की प्रक्रिया भी कोशिका विभाजन द्वारा ही होती है। - प्रजनन एवं क्रम विकास के लिए भी कोशिका विभाजन की क्रिया आवश्यक है। # कोशिका विभाजन के मुख्य प्रकार कोशिका विभाजन मुख्य रूप से दो प्रकार का होता है- - 1. समसूत्रण या समसूत्री कोशिका विभाजन (Mitosis) - 2. अर्धसूत्रण या अर्धसूत्री कोशिका विभाजन (Meiosis) ### समसूत्रण या समसूत्री विभाजन (Mitosis) यह प्रक्रिया जीवों की कायिक कोशिकाओं (Somatic cells) में होती है। इसलिए इसे कायिक कोशिका विभाजन भी कहा जाता है (चित्र 22.1) समसूत्री विभाजन के दौरान गुणसूत्र संख्या समान रहती है अर्थात् संतित कोशिकाओं (Daughter cells) की गुणसूत्र संख्या जनक कोशिका (मातृ कोशिका) जितनी ही रहती है, इसलिए इसे समसूत्री विभाजन (Equational division) कहते हैं। समसूत्री विभाजन की सम्पूर्ण प्रक्रिया दो चरणों में होती है- - 1. प्रथम चरण केन्द्रक का विभाजन या कैरियोकाइनेसिस - 2. द्वितीय चरण कोश्का द्रव्य का विभाजन या साइटोकाइनेसिस दो विभाजनों के बीच का अन्तराल विभाजनान्तराल (Interphase) कहलाता है। जिसमें पुनः विभाजन की तैयारी होती है। # I. केन्द्रक विभाजन या कैरियोकाइनेसिस (Karyokinesis) प्रत्येक कोशिका विभाजन के पूर्व उसके केन्द्रक का विभाजन होता है। सम्पूर्ण समसूत्री विभाजन चार चरण में पूरा होता है। चित्र 22.1 1. पूर्वावस्था या प्रोफेज (Prophase) – कोशिका के केन्द्रक में क्रोमेटिन जाल का संघनन होने के कारण प्रत्येक सूत्र में डी.एन.ए. की लम्बाई कम हो जाती है और स्पष्ट धागे जैसे गुणसूत्र दिखाई देते हैं। डी.एन.ए. में सर्पिलीकरण(Spiralization) के कारण गुणसूत्र छोटे और मोटे हो जाते हैं और मध्यावस्था तक ये काफी आसानी से गिने जा सकते हैं। केन्द्रक का आवरण (Nuclear envelope) नष्ट हो जाता है और उसके स्थान पर एक तर्कुवत् आवरण (Spindle apparatus) उत्पन्न हो जाता है। प्रत्येक गुणसूत्र में इस समय दो क्रोमेटिड्स स्पष्ट दिखाई देते हैं। यह दो क्रोमेटिड्स गुणसूत्र के मध्य भाग में एक बिन्दु पर जुड़े रहते हैं, जिसे सेन्ट्रोमीयर (Centromere) कहते हैं। इस अवस्था के अंत तक केन्द्रिका लुप्त हो जाती है और केन्द्रक झिल्ली भी विलुप्त हो जाती है। जन्तु कोशिका के केन्द्रक के पास सेन्द्रियोल (Centriole) और सेन्ट्रोसोम (Centrosome) पाया जाता है। सेन्ट्रोसोम दो भागों में टूटकर विपरीत दिशा में स्थित होकर विभाजन के समय तारककाय बनाते है। 2. मध्यावस्था या मेटाफेज (Metaphase) – इस अवस्था का प्रारम्भ केन्द्रक झिल्ली के लुप्त होने के साथ होता है। कोशिकाद्रव्य और केन्द्रकद्रव्य के सम्मिश्रण से पतले—पतले तन्तुओं का एक तुर्क (Spindle) बन जाता है। तुर्क तन्तुओं पर गति करते हुए सभी गुणसूत्र तुर्क के मध्य रेखा के समतल पर एकत्रित हो जाते है। इस मध्य भाग को मध्यपटलिका (Metaphase plate) कहते हैं। प्रत्येक गुणसूत्र में एक विशेष स्थान होता है जहाँ तुर्क का केन्द्रीयसूत्रीय तंतु (Chromosomal spindle fibers) जुड़ा होता है। यह विशेष स्थान सेन्ट्रोमीयर कहलाता है। मेटाफेज अवस्था में गुणसूत्र की आकृति J, L या V जैसी दिखाई देती है। तुर्क के दो स्पष्ट ध्रुव होने के कारण गुणसूत्रों को कोशिका के मध्य में आसानी से देखा जा सकता है। इस अवस्था के अंत में सेन्ट्रोमीयर का अनुदैर्ध्य विभाजन हो जाता है और प्रत्येक गुणसूत्र के दो क्रोमेटिड विपरीत ध्रुवों की तरफ अभिमुख रहती है। 3. पश्चावस्था या एनाफेज (Anaphase) – इस अवस्था में प्रत्येक क्रोमेटिड एक दूसरे से पृथक होकर विकर्षण द्वारा विपरीत धुर्वों की ओर गमन प्रारम्भ करते हैं। इस प्रक्रिया के दौरान तर्कु के तंतु दिशानिर्देश करते हैं, क्योंकि सेन्ट्रोमीयर उन से जुड़े रहते हैं। ऐसा माना जाता है कि तर्कु के तन्तुओं के मध्य भाग से दो धुर्वों की विपरीत दिशा में संकुचन होने से क्रोमेटिड की गित विपरीत दिशा में होती है। इस प्रक्रिया के अंत तक प्रत्येक गुणसूत्र का आधा भाग (अर्थात् क्रोमेटिड) एक ध्रुव पर तथा दूसरा आधा भाग दूसरे ध्रुव पर पहुंच जाता है। इस प्रकार दोनों ध्रुवों पर मातृ कोशिका के गुणसूत्र संख्या के बराबर क्रोमेटिड होते हैं। 4. अंत्यावस्था या टिलोफेज (Telophase) – इस अवस्था के दौरान विपरीत ध्रुवों पर एकत्रित क्रोमेटिड में विकुण्डल की प्रक्रिया होती है जिसके फलस्वरूप क्रोमेटिड पुनः पतले होने लगते है। इन क्रोमेटिड के चारों ओर केन्द्रावरण उत्पन्न होता है अर्थात् केन्द्रक बनाने वाली झिल्ली बन जाती है। केन्द्रिका भी पुनः प्रकट होकर स्पष्ट हो जाती है। तर्कु के तंतु भी विलुप्त हो जाते हैं। इस अवस्था के अंत तक दोनों ध्रुवों पर एक—एक पुत्री केन्द्रक जिनमें समान प्रकृति, प्रकार एवं संख्या के क्रोमेटिड विद्यमान होते हैं, का निर्माण पूर्ण हो जाता है। इसके साथ ही कोशिकाद्रव्य विभाजन की प्रक्रिया प्रारम्भ हो जाती है। ## II. कोशिका द्रव्य विभाजन या साइटोकाइनेसिस (Cytokinesis) अंत्यावस्था के बाद दो पुत्री केन्द्रक का निर्माण हो जाता है और साथ ही कोशिका द्रव्य विभाजन भी प्रारम्भ हो जाता है। पादप और जन्तु कोशिकाओं में यह प्रक्रिया भिन्न होती है। पादप कोशिकाओं में मध्यपटलिका के स्थान पर कुछ सूक्ष्मकण निक्षेपित होने लगते है जो धीरे—धीरे प्राथमिक कोशिका भित्त के रूप में परिवर्तित हो जाते है और अन्ततः कोशिका द्रव्य दो भागों में विभाजित हो जाता है। जन्तु कोशिकाओं में कोशिका भित्ति के मध्य में दोनों तरफ से खांच (Depression) का निर्माण होता है जो धीरे—धीरे एक—दूसरे की ओर बढ़ते हुए अंत में कोशिका द्रव्य का पूर्ण विभाजन कर देते है। इस अवस्था के अंत में दो पुत्री कोशिकाओं का निर्माण होता है जिनके केन्द्रकों में क्रोमेटिड की संख्या व प्रकृति मातृ कोशिका के समान होती है (चित्र 22.2)। ### विभाजनान्तराल प्रावस्था या इंटरफेज (Interphase) कोशिका द्रव्य विभाजन के द्वारा बनी दो पुत्री कोशिकाओं के केन्द्रक में केवल गुणसूत्रों के क्रोमेटिड पाए जाते है। प्रत्येक क्रोमेटिड अपना प्रतिरूप तैयार करता है और पूर्ण गुणसूत्र में परिवर्तित होता है। यह प्रक्रिया क्रोमेटिड के डी.एन.ए. में द्विगुणन (Duplication) के कारण पूर्ण होती है। अतः प्रत्येक कोशिका विभाजन के पश्चात् एक अन्तराल आवश्यक होता है क्योंकि इस प्रक्रिया के बिना कोशिका दूसरी विभाजन क्रिया को आरम्भ नहीं कर सकती। इस प्रक्रिया को इंटरफेज या विभाजनान्तराल प्रावस्था (Interphase) कहते है। इंटरफेज के दौरान कोशिका को स्वांगीकृत खाद्य या ऊर्जा की आवश्यकता होती है। 210 ### पादप एवं जन्तु कोशिका के समसूत्री विभाजन में अन्तर चित्र 22.2 # समसूत्री विभाजन का महत्व - जन्तुओं एवं पादपों की वृद्धि में समसूत्री विभाजन अत्यन्त आवश्यक है। - बहुकोशिकीय जीवों की संरचना एककोशिका युग्मनज (Zygote) से शुरू होती है और समसूत्रण की प्रक्रिया द्वारा ही कोशिका संख्या में वृद्धि होती है। - एककोशिकी प्राणियों व पादपों में जनन प्रक्रिया समसूत्री विभाजन द्वारा होती है। - 4. इस विभाजन के फलस्वरूप सभी कोशिकाओं में गुणसूत्र संख्या समान रहती है और वे समरूपी गुणों को धारण करती है। # अर्धसूत्रण या अर्धसूत्री कोशिका विभाजन (Meiosis) अर्धसूत्री कोशिका विभाजन एक विशेष प्रकार का कोशिका विभाजन है जो लैंगिक जनन के लिए आवश्यक है। अर्धसूत्रण द्वारा युग्मक (Gametes) कोशिकाएं पैदा होती है। युग्मक के संयुग्मन से युग्मनज (Zygote) का निर्माण होता है और केन्द्रक द्विगुणित हो जाता है (चित्र 22.3)। अर्धसूत्री विभाजन दो महत्वपूर्ण पक्षों में समसूत्री विभाजन से भिन्न है— (i) अर्धसूत्रण के परिणामस्वरूप चार पुत्री कोशिकाएं बनती हैं जिनकी गुणसूत्र संख्या मातृ कोशिका की आधी होती है अर्थात् यह अनन्य अगुणित (Haploid) होती है। - (ii) अर्धसूत्री विभाजन में गुणसूत्रों का पुनर्सयोजन (Recombination) होता है और सभीं जीनों का पुनर्वितरण हो जाता है। - अर्धसूत्री विभाजन को दो भागों में बांटा गया है— - 1. अर्धसूत्री विभाजन I या न्यूनकारी विभाजन (Reductional Division) - 2. अर्धसूत्री विभाजन II या समसूत्री विभाजन (Equational Division) #### चित्र 22.3 # अर्धसूत्री विभाजन प्रथम (Meiosis I) नर युग्मक तथा मादा युग्मक के गुणसूत्रों की संख्यात होती है और इनके योग से एक द्विगुणित युग्मनज (Zygote) का निर्माण होता है जिसके गुणसूत्रों की संख्या 2n होती है। किसी भी द्विगुणित कोशिका में गुणसूत्रों के युग्म होते है जिन्हें समजात गुणसूत्र (Homologous chromosomes) कहते हैं। समजात गुणसूत्रों के युग्म में एक गुणसूत्र नर से तथा दूसरा गुणसूत्र मादा से प्राप्त होता है। अर्धसूत्री विभाजन प्रथम में द्विगुणित कोशिका का केन्द्रक
विभाजित होकर दो अगुणित कोशिकाओं का निर्माण करता है। अर्थात् विभाजन के फलस्वरूप बनने वाली दोनों पुत्री कोशिकाओं में गुणसूत्रों की संख्या 'n' होती है जो मातृ कोशिका (2n) की आधी संख्या है। इसी कारण अर्धसूत्री विभाजन को न्यूनकारी विभाजन भी कहते है। अर्धसूत्रण को विषम विभाजन (Heterotypic division) भी कहा जाता है। अर्धसूत्री विभाजन प्रथम को निम्नलिखित भागों में बांटा गया है (चित्र 22.4) — - 1. पूर्वावस्था I / प्रोफेज I (Prophase I) - 2. मध्यावस्था I / मेटोफेज I (Metaphase I) - 3. पश्चावस्था I / एनाफेज I (Anaphase I) - 4. अंत्यावस्था I / टिलोफेज I (Telophase I) ## 1. पूर्वावस्था I या प्रोफेज I यह एक लम्बी एवं जटिल प्रक्रिया वाली अवस्था है। पूर्वावस्था प्रथम अर्धसूत्री विभाजन की सबसे लम्बी अवस्था होती है। इसे निम्न 5 भागों या पांच उपअवस्थाओं में बांटा गया है— - (अ) लेप्टोटीन (Leptotene) या लेप्टोनीमा (Leptonema) - (ब) जाइगोटीन (Zygotene) या जाइगोनीमा (Zygonema) - (स) पैकीटीन (Pachytene) या पैकीनीमा (Pachynema) - (द) डिप्लोटीन (Diplotene) या डिप्लोनीमा (Diplonema) - (य) डाईकाइनेसिस (Diakinesis) ### (अ) लेप्टोटीन - (i) यह प्रोफेज I की पहली अवस्था है। - (ii) इस अवस्था में केन्द्रक आवरण (Nuclear envelope) पाया जाता है। - (iii) इस अवस्था में केन्द्रक (Nucleus) बड़ा होता है। - (iv) इस अवस्था में न्यूक्लिओलस भी स्पष्ट होता है और हर प्रजाति के जीव में यह एक विशिष्ट गुणसूत्र से जुड़ा रहता है, जिसको केन्द्रकीय संगठन (Nucleolar organiser) कहते हैं। - (v) इस अवस्था में गुणसूत्र पतले, लम्बे एवं अकुण्डलित होने के कारण धागे जैसे प्रतीत होते हैं; इसलिए इस अवस्था को लेप्टोटीन (Leptos = thread-like) कहा जाता है। - (vi) इस अवस्था में गुणसूत्र मनकेदार (beaded) प्रतीत होते हैं। इन मनकों को क्रोमोमीयर (Chromomere) कहते हैं। यह क्रोमोमीयर स्थानीय कुण्डलन के क्षेत्र (Areas of localised coiling) होते हैं। इन मनकों या क्रोमोमीयर के कारण गुणसूत्रों को "मनकों की माला" या "मोतियों की माला" (Beads on string) कहा जाता है। ### (ब) जाइगोटीन - (i) इस अवस्था में गुणसूत्र पैरानीमिक कुण्डलन (Paranemic coiling) द्वारा सिकुड़ना प्रारम्भ करते हैं। - (ii) इस अवस्था में होमोलोगस या समजात गुणसूत्रों के युग्म बनते हैं। इस युग्मन (Pairing) की प्रक्रिया को सिनेप्पिस (Synapsis) कहते है और समजात गुणसूत्रों के युग्मों को युगली या बाइवेलेन्ट (Bivalent) कहते है। - (iii) इस अवस्था में गुणसूत्रों में युग्मन नियत स्थानों पर प्रारम्भ होता है और जाइगोटिन के अंत में युग्मन क्रिया पूर्ण हो जाती है। - (iv) केन्द्रक आवरण (Nuclear envelope) एवं केन्द्रिका (Nucleolus) अभी भी दिखाई देते हैं। चित्र 22.4 : अर्धसूत्री विभाजन । ## (स) पैकीटीन - (i) गुणसूत्र छोटे तथा मोटे और छड़ समान (Rod-like) प्रतीत होते हैं। - (ii) बाइवेलेन्ट / युगली अधिक नजदीक हो जाते है और कोशिका अगुणित प्रतीत होती है। - (iii) प्रत्येक गुणसूत्र में एक अनुदैर्ध्य विभाजन (Logitudinal division) होता है और दो क्रोमेटिड बन जाते है। इस प्रकार हर बाइवेलेन्ट में चार क्रोमेटिड हो जाते है और इन्हें टेट्राड (Tetrad) कहते हैं। - (iv) पैकीटीन अवस्था का सबसे प्रमुख लक्षण क्रॉसिंग ओवर (Crossing over) और किएज्मेटा (Chiasmata) का बनना होता है। किएज्मेटा समजात गुणसूत्रों के वह बिन्दु होते हैं जहां से बाइवेलेंट जुड़े रहते है। इन्हें क्रॉसिंग ओवर या जीन विनियम का स्थान माना जाता है। - (v) केन्द्रकीय आवरण और केन्द्रिका (Nucleolus) अभी भी उपस्थित होते है। ## (द) डिप्लोटीन (i) किएज्मेटा को आसानी से देखा जा सकता है। - (ii) गुणसूत्रों में संघनन(Condensation) एवं कुण्डलन (Coiling) की प्रक्रिया जारी रहती है। - (iii) किएज्मेटा के स्थानों को छोड़कर शेष स्थानों पर विकर्षण (Repulsion) बढ़ता है और गुणसूत्रों को दो तंतुओं के रूप में देखा जाता है। इसलिए इस अवस्था को डिप्लोटीन (Diplotene = Double thread) कहते हैं। - (iv) बाइवेलेन्ट की आकृति विकर्षण और किएज्मेटा की संख्या के आधार पर X समान (एक किएज्मेटा होने पर); लूप समान (दो किएज्मेटा होने पर) या लूपों की शृंखला (दो से अधिक होने पर) की तरह दिखाई देते हैं। ### (य) डायकाइनेसिस - (i) डिप्लोटीन के अंत एवं डायकाइनेसिस के प्रारम्भ में किएज्मेटा की संख्या टर्मिनलाइजेशन से घट जाती है। - (ii) किएज्मेटा की संख्या कम होने के साथ—साथ गुणसूत्र अधिक छोटे और मोटे हो जाते है। इस अवस्था में गुणसूत्रों को स्ट्रेप्सीनीम (Strepsineme) या कुंचित सूत्र भी कहते हैं। - (iii) युगली या बाइवेलेन्ट केन्द्रक की परिधि की ओर गति करते हैं। किएज्मेटा समाप्ति के कारण समजात गुणसूत्र एक—दूसरे से पृथक हो जाते हैं। - (iv) न्यूक्लियोलस लुप्त हो जाता है। - (v) केन्द्रक झिल्ली / आवरण टूट कर विलीन हो जाता है। इसके साथ ही प्रोफेज प्रथम अवस्था का अन्त हो जाता है और कोशिका मध्यावस्था प्रथम में प्रवेश कर जाती है। #### 2. मध्यावस्था I या मेटाफेज I - (i) सारे बाइवेलेन्ट / युगली स्वयं को मध्यपटलिका या मेटाफेज प्लेट (Metaphase plate) पर व्यवस्थित करते है। - (ii) गुणसूत्रों के बाहु (Arms) एक—दूसरे के सम्पर्क में मध्य रेखा पर रहते है और दोनों सेन्ट्रोमीयर्स एक—दूसरे से दूर ध्रुवों की ओर रहते है। - (iii) तर्कु तन्तु ध्रुवों से निकलकर गुणसूत्रों के सेन्ट्रोमीयर पर जुड़ जाते है। सेन्ट्रोमीयर गति के लिए स्वतंत्र होता है। #### 3. पश्चावस्था I या एनाफेज I - (i) क्रोमोसोम / गुणसूत्र तर्कु तन्तुओं के कारण ध्रुवों की ओर गति प्रारम्भ करते हैं। - (ii) मेटाफेज पहिका पर उपस्थित बाइवेलेन्ट जिसके प्रत्येक गुणसूत्र में दो क्रोमेटिड होते है जो टेट्राड कहलाते थे अब दो क्रोमेटिड वाले गुणसूत्र में बंट जाते है और डाएड (Diad) या द्विक कहलाते है। (iii) ध्रुवों पर अब अगुणित गुणसूत्रों के दो समूह बन जाते हैं। ### 4. अन्त्यावस्था I या टिलोफेज I - (i) समजात गुणसूत्र पृथक हो जाते हैं तथा विपरीत ध्रुवों पर एकत्र हो जाते हैं। - (ii) गुणसूत्रों में अकुण्डलन (Uncoiling) की प्रक्रिया होती है जिससे वे पुनः लम्बे (Elongate) हो जाते हैं। - (iii) गुणसूत्रों के चारों ओर केन्द्रक झिल्ली का निर्माण होता है। - (iv) न्यूक्लिओलस भी पुनः बन जाता है। - (v) तर्कु तन्तु लुप्त हो जाते हैं। - (vi) अंत में दो पुत्री केन्द्रकों की उत्पत्ति होती है जिनमें गुणसूत्रों की संख्या अगुणित अर्थात् मातृ कोशिका के गुणसूत्रों की संख्या की आधी होती है। इसी कारण अर्धसूत्री विभाजन I को न्यूनकारी विभाजन कहा जाता है। ### अर्धसूत्री विभाजन द्वितीय (Meiosis II) - 1. अर्धसूत्री विभाजन II एक सामान्य समसूत्री विभाजन के समान होता है। इसे समविभाजन भी कहते है (चित्र 22.5)। - 2. इस प्रक्रिया में अर्धसूत्री विभाजन प्रथम के विषम विभाजन (Unequal division) के द्वारा प्राप्त दो पुत्री कोशिकाओं या दो पुत्री केन्द्रकों में साथ—साथ विभाजन होता है। - द्वितीय विभाजन प्रथम विभाजन के समकोण (Right angle) पर होता है। - द्वितीय विभाजन को चार अवस्थाओं में बांटा गया है— - (i) प्रोफेज II - (ii) मेटाफेज II - (iii) एनाफेज II - (iv) टिलोफेज II - कई बार प्रथम विभाजन द्वितीय में मिल जाता है और टिलोफेज I, इंटरफेज व प्रोफेज II अवस्थाएं स्पष्ट दिखाई नहीं देती हैं। ### 1. प्रोफेज II (Prophase II) - (i) इस अवस्था में क्रोमेटिड एक—दूसरे से विकर्षित होते हैं और वे सिर्फ सेन्ट्रोमीयर के स्थान से जुड़े रहते है। - (ii) क्रोमेटिड पूर्ण रूप से संकुचित होते हैं। - (iii) न्यूक्लिओलस लुप्त होने लगता है। - (iv) तर्क् तन्तुओं का निर्माण प्रारम्भ होता है। - (v) केन्द्रक झिल्ली लुप्त होने लगती है। - 2. मेटाफेज II (Metaphase II) - (i) मेटाफेज II केन्द्रक झिल्ली एवं न्यूक्लिओलस लुप्त हो जाते हैं। - (ii) अगुणित गुणसूत्र मध्यपटलिका / मध्य रेखा या मेटाफेज प्लेट (Metaphase plate) पर व्यवस्थित हो जाते हैं। चित्र 22.5 : अर्धसूत्री विभाजन ।। - (iii) सेन्ट्रोमीयर (Centromere) मध्य रेखा पर तथा गुणसूत्रों (क्रोमेटिड) के बाहु (Arms) विपरीत धुवों की ओर होते हैं। प्रथम मेटाफेज में यह व्यवस्था उल्टी हो जाती है क्योंकि वहां बाहु मध्य रेखा तथा सेन्ट्रोमीयर धुवों की ओर होते हैं। - (iv) तर्कु ध्रुवों से सेन्ट्रोमीयर तक जुड़े रहते हैं। - 3. एनाफेज II (Anaphase II) - (i) इस अवस्था में प्रत्येक गुणसूत्र के क्रोमेटिड तथा सेन्ट्रोमीयर पृथक होकर एक—एक गुणसूत्र बनाते है और ध्रुवों की तरफ गति करते है। - (ii) यह गति तर्कुओं (Fibres) के कारण होती है। - (iii) इस अवस्था के अंत तक गुणसूत्र के दो समूह विपरीत ध्रुवों पर पहुंच जाते है। - (iv) प्रत्येक गुणसूत्र के दो क्रोमेटिड से दो गुणसूत्रों का निर्माण होता है और गुणसूत्रों की संख्या प्रोफेज II में पाए गुणसूत्रों जितनी होती है। - 4. टिलोफेज II (Telophase II) - (i) ध्रुवों पर पहुंचे गुणसूत्रों के चारों ओर केन्द्रकीय आवरण बन जाता है। - (ii) केन्द्रिका (Nucleolus) का निर्माण हो जाता है। - (iii) गुणसूत्र अकुण्डलन से क्रोमेटिन में बदल जाते है। - (iv) चार पुत्री कोशिकाओं का निर्माण होता है और प्रत्येक के केन्द्रक में गुणसूत्रों की संख्या मातृ कोशिका से आधी होती है। ## द्वितीय अर्धसूत्री विभाजन व समसूत्री विभाजन में अंतर - द्वितीय विभाजन में गुणसूत्र अगुणित 'n' (Haploid) होते है और समसूत्री विभाजन में गुणित '2n' (Diploid) होते है। - द्वितीय विभाजन में समसूत्री विभाजन की तरह DNA संश्लेषण का काल नहीं होता है। - द्वितीय विभाजन में क्रोमेटिड एक—दूसरे से पृथक होते है। - 4. द्वितीय विभाजन में क्रोमेटिडों में क्रॉसिंग ओवर की प्रक्रिया होने से वे मातृ क्रोमेटिडों से आनुवांशिक रूप से भिन्न होते हैं। समसूत्री विभाजन में क्रोमेटिड भिन्न नहीं होते क्योंकि क्रॉसिंग ओवर की प्रक्रिया नहीं होती है (क्रॉसिंग ओवर से जीन बदल जाते हैं)। ### अर्धसूत्री विभाजन का महत्व - लैंगिक जनन में युग्मकों के जुड़ने से युग्मनज का निर्माण होता है। अतः लैंगिक जनन के बाद गुणसूत्रों की संख्या निश्चित रखने के लिए अर्धसूत्री विभाजन आवश्यक है, अन्यथा हर अगली संतित में जनकों (Parents) से दुगने गुणसूत्र हो जाएंगे। - 2. क्रॉसिंग ओवर की प्रक्रिया के फलस्वरूप जीन विनिमय होता है और गुणसूत्रों की जीन संरचना में परिवर्तन हो जाता है। इस प्रकार नई संतित में नए गुणों का विकास होता है जिससे परिवर्तनशील वातावरण में उनकी सफलता की अधिक संभावनाएं होती हैं और यह किसी भी जाति के विकास का आधार बनता है। # महत्वपूर्ण बिन्दु - कोशिका चक्र में मध्य प्रावस्था तथा समसूत्री प्रावस्था होती है। - पैकाइटिन अवस्था में जीन विनिमय (Crossing over) होता है। - पूर्वावस्था या प्रोफेज में केन्द्रक आवरण एवं केन्द्रकाभ नष्ट हो जाते हैं। - 4. जन्तुओं एवं पादपों की वृद्धि में समसूत्री विभाजन का महत्व है। - कोशिका विभाजन जीवों में वृद्धि एवं विकास के साथ ही घाव भरने जैसी महत्वपूर्ण प्रक्रिया में सहयोग देता है। - दो कोशिका विभाजन के बीच का समय महत्वपूर्ण होता है जिसमें अगली कोशिका विभाजन की सारी तैयारी होती है। - 7. समसूत्री विभाजन के अंत में दो पुत्री कोशिकाएं बनती हैं जिसमें समान संख्या के क्रोमेटिड विद्यमान रहते हैं तथा दोनों पुत्री कोशिकाओं में गुणसूत्रों की संख्या समान होती हैं। - 8. अर्धसूत्री विभाजन से चार पुत्री कोशिकाएं बनती हैं जिनमें गुणसूत्रों की संख्या मातृ कोशिका की आधी होती है। यह विभाजन ही जाति के विकास का आधार है। - प्रथम पूर्वावस्था, प्रथम अर्धसूत्री विभाजन की सबसे लम्बी अवस्था है। ### अभ्यासार्थ प्रश्न ## वस्तुनिष्ठ प्रश्न - 1. गुणसूत्रों का पृथक्कन होता है- - (अ) प्रोफेज में - (ब) टीलोफेज में - (स) एनाफेज में - (द)
मेटाफेज में - सूत्री विभाजन (Mitosis) के अन्तर्गत केन्द्रक कला (Nuclear membrane) अदृश्य हो जाती है— - (अ) प्रारम्भिक प्रोफेज में - (ब) पश्चावस्था में - (स) अन्तयावस्था में - (द) अन्तिम प्रोफेज में - समसूत्री विभाजन का प्रमुख महत्व यह होता है - (अ) कोशिका के जलीय घटकों को बढाता है। - (ब) कोशिकाओं की आनुवंशिक समानता बनाए रखता है। - (स) गुणसूत्री संख्या को घटाकर आधी कर देता है। - (द) डी.एन.ए. का आर.एन.ए. में स्थानान्तरण करता है। - 4. तर्कु तंतु (Spindle fibre) बनता है— - (अ) सूत्री तथा अर्द्धसूत्री विभाजन दोनों में - (ब) केवल अर्द्धसूत्री विभाजनों में - (स) केवल सूत्री विभाजनों में - (द) केवल असूत्री विभाजनों में # अतिलघुत्तरात्मक प्रश्न - न्यूनकारी विभाजन की पूर्वावस्था की कितनी अवस्थाएँ होती हैं। नाम बताइए। - 2. अर्द्धसूत्री विभाजन में विनिमय कौनसी अवस्था में होता है? - 3. प्रोफेज के अन्तर्गत गुणसूत्र कैसे आकार के होते हैं? - सूत्री कोशिका विभाजन के अन्तर्गत किस अवस्था में गुणसूत्र विपरीत धुवों पर गति करते हैं? ### लघुत्तरात्मक प्रश्न - अर्द्धसूत्री विभाजन का महत्व बताइए। - 2. द्वितीय अर्द्धसूत्री विभाजन व समसूत्री विभाजन में अन्तर बताइए। 216 - कोशिका विभाजन का क्या महत्व है? - 4. पादप व जन्तु के कोशिकाद्रव्य विभाजन या साइटोकाइनेसिस में क्या अन्तर होता है? ### निबन्धात्मक प्रश्न - समसूत्री विभाजन की विभिन्न अवस्थाओं को चित्र सहित समझाइए। - अर्द्ध सूत्री विभाजन प्रथम (Meiosis I) की विभिन्न अवस्थाओं को चित्र सिहत समझाइए। उत्तरमालाः 1 (स) 2 (द) 3 (ब) 4 (अ)