

भौतिक भूगोल के मूल सिद्धांत

कक्षा 11 के लिए पाठ्यपुस्तक

साभार

राष्ट्रीय शैक्षिक अनुसंघान और प्रशिक्षण परिषद्, नई दिल्ली

माध्यमिक शिक्षा बोर्ड राजस्थान, अजमेर

^{प्रकाशक} राजस्थान राज्य पाठ्यपुस्तक मण्डल, जयपुर

十

विषय-सूची आमुख iii इकाई I : भूगोल एक विषय के रूप में 1-12 1. भूगोल एक विषय के रूप में इकाई II : पृथ्वी 13-40 2. पृथ्वी की उत्पत्ति एवं विकास 14 3. पृथ्वी की आंतरिक संरचना 21 4. महासागरों और महाद्वीपों का वितरण 31 इकाई III : भू-आकृतियाँ 41-79 5. खनिज एवं शैल 42 6. भू-आकृतिक प्रक्रियाएँ 47 7. भू-आकृतियाँ तथा उनका विकास 62 इकाई IV : जलवायु 80-116 8. वायुमंडल का संघटन तथा संरचना 81 9. सौर विकिरण, ऊष्मा संतुलन एवं तापमान 84 10. वायुमंडलीय परिसंचरण तथा मौसम प्रणालियाँ 93 11. वायुमंडल में जल 103 12. विश्व की जलवायु एवं जलवायु परिवर्तन 108 इकाई 🗸 : जल (महासागर) 117-133 13. महासागरीय जल 118 14. महासागरीय जल संचलन 127 इकाई VI : पृथ्वी पर जीवन 134-149 15. पृथ्वी पर जीवन 16. जैव-विविधता एवं संरक्षण 144 शब्दावली 150-153

Downloaded from https:// www.studiestoday.com

अध्याय

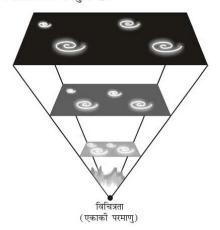
+

पृथ्वी की उत्पत्ति एवं विकास

या आपको वह किवता याद है जो आपने अपनी नर्सरी की कक्षा में पढ़ी थी? "ट्विंकल-ट्विंकल लिटिल स्टार......" बचपन से ही तारों भरी रातों ने हमें हमेशा आकर्षित किया है। आपने भी इन तारों के बारे में सोचा होगा और असंख्य प्रश्न आपके दिमाग में आए होंगे। कुछ इस प्रकार के प्रश्न जैसे-आकाश में कितने तारे हैं? ये तारे कैसे बने? क्या कोई आकाश के अंत तक पहुँच सकता है? इन प्रश्नों के अतिरिक्त भी कई प्रश्न आपके दिमाग में आए होंगे। इस अध्याय में आप जानेंगे कि 'ये टिमटिमाते छोटे तारे' कैसे बनें? इसके साथ ही आप पृथ्वी की उत्पत्ति व विकास की कहानी भी पढेंगे।

आरंभिक सिद्धांत पृथ्वी की उत्पत्ति

पृथ्वी की उत्पत्ति के संबंध में विभिन्न दार्शनिकों व वैज्ञानिकों ने अनेक परिकल्पनाएँ प्रस्तुत की हैं। इनमें से एक प्रारंभिक एवं लोकप्रिय मत जर्मन दार्शनिक इमैनुअल कान्ट (Immanuel Kant) का है। 1796 ई॰ में गणितज्ञ लाप्लेस (Laplace) ने इसका संशोधन प्रस्तुत किया जो नीहारिका परिकल्पना (Nebular hypothesis) के नाम से जाना जाता है। इस परिकल्पना के अनुसार ग्रहों का निर्माण धीमी गति से घूमते हुए पदार्थों के बादल से हुआ जो कि सूर्य की युवा अवस्था से संबद्ध थे। बाद में 1900 ई॰ में चेम्बरलेन और मोल्टन (Chamberlain & Moulton) ने कहा कि ब्रह्मांड में एक अन्य भ्रमणशील तारा सूर्य के नजदीक से गुजरा। इसके परिणाम स्वरूप तारे के गुरूत्वाकर्षण से सूर्य-सतह से सिगार के


आकार का कुछ पदार्थ निकलकर अलग हो गया। यह तारा जब सूर्य से दूर चला गया तो सूर्य-सतह से बाहर निकला हुआ यह पदार्थ सूर्य के चारों तरफ घूमने लगा और यही धीरे-धीरे संघनित होकर ग्रहों के रूप में परिवर्तित हो गया। पहले सर जेम्स जींस (Sir James Jeans) और बाद में सर हॅरोल्ड जैफरी (Sir Harold Jeffrey) ने इस मत का समर्थन किया। यद्यपि कुछ समय बाद के तर्क सूर्य के साथ एक और साथी तारे के होने की बात मानते हैं। ये तर्क ''द्वैतारक सिद्धांत'' (Binary theories) के नाम से जाने जाते हैं। 1950 ई॰ में रूस के ऑटो शिमिड (Otto schmidt) व जर्मनी के कार्ल वाइजास्कर (Carl weizascar) ने नीहारिका परिकल्पना (Nebular hypothesis) में कुछ संशोधन किया, जिसमें विवरण भिन्न था। उनके विचार से सूर्य एक सौर नीहारिका से घिरा हुआ था जो मुख्यत: हाइड्रोजन, हीलीयम और धृलिकणों की बनी थी। इन कणों के घर्षण व टकराने (Collision) से एक चपटी तश्तरी की आकृति के बादल का निर्माण हुआ और अभिवृद्धि (Accretion) प्रक्रम द्वारा ही ग्रहों का निर्माण हुआ। अंततोगत्वा, वैज्ञानिकों ने पृथ्वी या अन्य ग्रहों की ही नहीं वरन् पूरे ब्रह्मांड की उत्पत्ति संबंधी समस्याओं को समझने का प्रयास किया।

आधुनिक सिद्धांत ब्रह्मांड की उत्पत्ति

आधुनिक समय में ब्रह्मांड की उत्पत्ति संबंधी सर्वमान्य सिद्धांत विग वेंग सिद्धांत (Big bang theory) है। इसे विस्तरित ब्रह्मांड परिकल्पना (Expanding universe hypothesis) भी कहा जाता है। 1920 ई पृथ्वी की उत्पत्ति एवं विकास

में एडविन हब्बल (Edwin Hubble) ने प्रमाण दिये कि ब्रह्मांड का विस्तार हो रहा है। समय बीतने के साथ आकाशगंगाएँ एक दूसरे से दूर हो रही हैं। आप प्रयोग कर जान सकते हैं कि ब्रह्मांड विस्तार का क्या अर्थ है। एक गुब्बारा लें और उसपर कुछ निशान लगाएँ जिनको आकाशगंगायें मान लें। जब आप इस गुब्बारे को फुलाएँगे. गुब्बारे पर लगे ये निशान गुब्बारे के फैलने के साथ-साथ एक दूसरे से दूर जाते प्रतीत होंगे। इसी प्रकार आकाशगंगाओं के बीच की दूरी भी बढ़ रही है और परिणामस्वरूप ब्रह्मांड विस्तारित हो रहा है। यद्यपि आप यह पाएँगे कि गुब्बारे पर लगे चिह्नों के बीच की दूरी के अतिरिक्त, चिह्न स्वयं भी बढ रहे हैं। जबिक यह तथ्य के अनुरूप नहीं है। वैज्ञानिक मानते हैं कि आकाशगंगाओं के बीच की दूरी बढ़ रही है, परंतु प्रेक्षण आकाशगंगाओं के विस्तार को नहीं सिद्ध करते। अत: गुब्बारे का उदाहरण आंशिक रूप से ही मान्य है।

बिग बैंग सिद्धांत के अनुसार ब्रह्मांड का विस्तार निम्न अवस्थाओं में हुआ है:

चित्र 2.1 : बिग बैंग

- (i) आरम्भ में वे सभी पदार्थ, जिनसे ब्रह्मांड बना है, अति छोटे गोलक (एकाकी परमाणु) के रूप में एक ही स्थान पर स्थित थे। जिसका आयतन अत्यधिक सुक्ष्म एवं तापमान तथा घनत्व अनंत था।
- (ii) बिग बैंग की प्रक्रिया में इस अति छोटे गोलक में भीषण विस्फोट हुआ। इस प्रकार की विस्फोट

प्रक्रिया से वृहत् विस्तार हुआ। वैज्ञानिकों का विश्वास है कि बिग बैंग की घटना आज से 13.7 अरब वर्षों पहले हुई थी। ब्रह्मांड का विस्तार आज भी जारी है। विस्तार के कारण कुछ ऊर्जा पदार्थ में परिवर्तित हो गई। विस्फोट (Bang) के बाद एक सैकेंड के अल्पांश के अंतर्गत ही वृहत् विस्तार हुआ। इसके बाद विस्तार की गित धीमी पड़ गई। बिग बैंग होने के आरंभिक तीन मिनट के अंतंगत ही पहले परमाण् का निर्माण हुआ।

(iii) बिग बैंग से 3 लाख वर्षों के दौरान, तापमान 4500° केल्विन तक गिर गया और परमाणवीय पदार्थ का निर्माण हुआ। ब्रह्मांड पारदर्शी हो गया।

ब्रह्मांड के विस्तार का अर्थ है आकाशगंगाओं के बीच की दूरी में विस्तार का होना। हॉयल (Hoyle) ने इसका विकल्प 'स्थिर अवस्था संकल्पना' (Steady state concept) के नाम से प्रस्तुत किया। इस संकल्पना के अनुसार ब्रह्मांड किसी भी समय में एक ही जैसा रहा है। यद्यपि ब्रह्मांड के विस्तार संबंधी अनेक प्रमाणों के मिलने पर वैज्ञानिक समुदाय अब ब्रह्मांड विस्तार सिद्धांत के ही पक्षधर हैं।

तारों का निर्माण

प्रारंभिक ब्रह्मांड में ऊर्जा व पदार्थ का वितरण समान नहीं था। घनत्व में आरंभिक भिन्नता से गुरुत्वाकर्षण बलों में भिन्तता आई, जिसके परिणामस्वरूप पदार्थ का एकत्रण हुआ। यही एकत्रण आकाशगंगाओं के विकास का आधार बना। एक आकाशगंगा असंख्य तारों का समृह है। आकाशगंगाओं का विस्तार इतना अधिक होता है कि उनकी दूरी हजारों प्रकाश वर्षों में (Light years) मापी जाती है। एक अकेली आकाशगंगा का व्यास 80 हजार से 1 लाख 50 हजार प्रकाश वर्ष के बीच हो सकता है। एक आकाशगंगा के निर्माण की शुरूआत हाइड्रोजन गैस से बने विशाल बादल के संचयन से होती है जिसे नीहारिका (Nebula) कहा गया। क्रमश: इस बढ्ती हुई नीहारिका में गैस के झुंड विकसित हुए। ये झुंड बढते-बढते घने गैसीय पिंड बने, जिनसे तारों का निर्माण आरंभ हुआ। ऐसा विश्वास किया जाता है कि तारों का निर्माण लगभग 5 से 6 अरब वर्षों पहले हुआ।

15

+

भौतिक भूगोल के मूल सिद्धांत

प्रकाश वर्ष (Light year) समय का नहीं वरन् दूरी का माप है। प्रकाश की गित 3 लाख कि0 मी0 प्रति सैकंड है। विचारणीय है कि एक साल में प्रकाश जितनी दूरी तय करेगा, वह एक प्रकाश वर्ष होगा। यह 9.461×1012 कि॰ मी॰ के बराबर है। पृथ्वी व सूर्य की औसत दूरी 14 करोड़ 95 लाख, 98 हजार किलोमीटर है। प्रकाश वर्ष के संदर्भ में यह प्रकाश वर्ष का केवल 8.311 है।

ग्रहों का निर्माण

ग्रहों के विकास की निम्नलिखित अवस्थाएँ मानी जाती हैं:

- (i) तारे नीहारिका के अंदर गैस के गुंथित झुंड हैं। इन गुंथित झुंडों में गुरुत्वाकर्षण बल से गैसीय बादल में क्रोड का निर्माण हुआ और इस गैसीय क्रोड के चारों तरफ गैस व धूलकणों की घूमती हुई तश्तरी (Rotating disc) विकसित हुई।
- (ii) अगली अवस्था में गैसीय बादल का संघनन आरंभ हुआ और क्रोड को ढकने वाला पदार्थ छोटे गोलों के रूप में विकसित हुआ। ये छोटे गोले संसंजन (अणुओं में पारस्परिक आकर्षण) प्रक्रिया द्वारा ग्रहाणुओं (Planetesimals) में विकसित हुए। संघट्टन (Collision) की क्रिया द्वारा बड़े पिंड बनने शुरू हुए और गुरुत्वाकर्षण बल के परिणामस्वरूप ये आपस में जुड़ गए। छोटे पिंडों की अधिक संख्या ही ग्रहाणु है।
- (iii) अंतिम अवस्था में इन अनेक छोटे ग्रहाणुओं के सहवर्धित होने पर कुछ बड़े पिंड ग्रहों के रूप में बने।

सौरमंडल

हमारे सौरमंडल में आठ ग्रह हैं। नीहारिका को सौरमंडल का जनक माना जाता है उसके ध्वस्त होने व क्रोड के बनने की शुरूआत लगभग 5 से 5.6 अरब वर्षों पहले हुई व ग्रह लगभग 4.6 से 4.56 अरब वर्षों पहले बने। हमारे सौरमंडल में सूर्य (तारा), 8 ग्रह, 63 उपग्रह, लाखों छोटे पिंड जैसे—क्षुद्र ग्रह (ग्रहों के टुकड़े) (Asteroids), धूमकेतु (Comets) एवं वृहत् मात्रा में धूलिकण व गैस हैं।

इन आठ ग्रहों में बुध, शुक्र, पृथ्वी व मंगल भीतरी ग्रह (Inner planets) कहलाते हैं, क्योंकि ये सूर्य व छुद्रग्रहों की पृट्टी, के बीच स्थित हैं। अन्य चार ग्रह बाहरी ग्रह (Outer planets) कहलाते हैं। पहले चार ग्रह पार्थिव (Terrestrial) ग्रह भी कहे जाते हैं। इसका अर्थ है कि ये ग्रह पृथ्वी की भाँति ही शैलों और धातुओं से बने हैं और अपेक्षाकृत अधिक घनत्व वाले ग्रह हैं। अन्य चार ग्रह गैस से बने विशाल ग्रह या जोवियन (Jovian) ग्रह कहलाते हैं। जोवियन का अर्थ है बृहस्पति (Jupiter) की तरह। इनमें से अधिकतर पार्थिव ग्रहों से विशाल हैं और हाइड्रोजन व हीलीयम से बना सघन वायुमंडल है। सभी ग्रहों का निर्माण लगभग 4.6 अरब वर्षों पहले एक ही समय में हुआ।

अभी तक प्लूटो को भी एक ग्रह माना जाता था। परन्तु अंतर्राष्ट्रीय खगोलिकी संगठन ने अपनी बैठक (अगस्त 2006) में यह निर्णय लिया कि कुछ समय पहले खोजे गए अन्य खगोलीय पिण्ड (2003 UB₃₁₃) तथा प्लूटो 'बोने ग्रह' कहे जा सकते हैं। हमारे सौरमंडल से संबंधित कुछ तथ्य सारणीय 2.1 में दिए गए हैं।

भीतरी ग्रह पार्थिव हैं जबिक दूसरे ज्यादातर ग्रह गैसीय हैं। ऐसा क्यों है?

पार्थिव व जोवियन ग्रहों में अंतर निम्न परिस्थितियों के फलस्वरूप हो सकता है:

सारणी 2.1 : सौरमंडल

	बुध	शुक्र	पृथ्वी	मंगल	बृहस्पति	शनि	यूरेनस	नेप्च्यून
दूरी *	0.387	0.723	1.000	1.524	5.203	9.539	19.182	30.058
घनत्व @	5.44	5.245	5.517	3.945	1.33	0.70	1.17	1.66
अर्धव्यास #	0.383	0.949	1.000	0.533	11.19	9.460	4.11	3.88
उपग्रह	0	0	1	2	16	30 से अधिक	लगभग 17	8

सूर्य से दूरी खगोलीय एकक में हैं। अर्थात् अगर पृथ्वी की मध्यमान दूरी 14 करोड़ 95 लाख 98 हजार कि0मी0 एक एकक के बराबर है।

[@] घनत्व ग्राम प्रति घन सेंटीमीटर (gm/Cm³)

[#] अर्धव्यास : अगर भूमध्यरेखीय अर्धव्यास 6378.137 कि0 मी0=1 है।

पृथ्वी की उत्पत्ति एवं विकास

- (i) पार्थिव ग्रह जनक तारे के बहुत समीप बनें जहाँ अत्यधिक तापमान के कारण गैसें संघनित नहीं हो पाई और घनीभूत भी न हो सकीं। जोवियन ग्रहों की रचना अपेक्षाकृत अधिक दूरी पर हुई।
- (ii) सौर वायु सूर्य के नज़दीक ज्यादा शिक्तिशाली थी। अत: पार्थिव ग्रहों से ज्यादा मात्रा में गैस व धूलकण उड़ा ले गई। सौर पवन इतनी शिक्तिशाली न होने के कारण जोवियन ग्रहों से गैसों को नहीं हटा पाई।
- (iii) पार्थिव ग्रहों के छोटे होने से इनकी गुरुत्वाकर्षण शिक्त भी कम रही जिसके परिणामस्वरूप इनसे निकली हुई गैस इनपर रुकी नहीं रह सकी।

चंद्रमा

चंद्रमा पृथ्वी का अकेला प्राकृतिक उपग्रह है। पृथ्वी की तरह चंद्रमा की उत्पत्ति संबंधी मत प्रस्तुत किए गए हैं। सन् 1838 ई॰ में, सर जार्ज डार्विन (Sir George Darwin) ने सुझाया कि प्रारंभ में पृथ्वी व चंद्रमा तेजी से घूमते एक ही पिंड थे। यह पूरा पिंड डंबल (बीच से पतला व किनारों से मोटा) की आकृति में परिवर्तित हुआ और अंततोगत्वा टूट गया। उनके अनुसार चंद्रमा का निमार्ण उसी पदार्थ से हुआ है जहाँ आज प्रशांत महासागर एक गर्त के रूप में मौजूद है।

यद्यपि वतर्मान समय के वैज्ञानिक इनमें से किसी भी व्याख्या को स्वीकार नहीं करते। ऐसा विश्वास किया जाता है कि पृथ्वी के उपग्रह के रूप में चंद्रमा की उत्पत्ति एक बड़े टकराव (Giant impact) का नतीजा है जिसे 'द बिग स्प्लैट' (The big splat) कहा गया है। ऐसा मानना है कि पृथ्वी के बनने के कुछ समय बाद ही मंगल ग्रह के 1 से 3 गुणा बड़े आकार का पिंड पृथ्वी से टकराया। इस टकराव से पृथ्वी का एक हिस्सा टूटकर अंतरिक्ष में बिखर गया। टकराव से अलग हुआ यह पदार्थ फिर पृथ्वी के कक्ष में घूमने लगा और क्रमश: आज का चंद्रमा बना। यह घटना या चंद्रमा की उत्पत्ति लगभग 4.44 अरब वर्षो पहले हुई।

पृथ्वी का उद्भव

क्या आप जानते हैं कि प्रारंभ में पृथ्वी चट्टानी, गर्म और वीरान ग्रह थी, जिसका वायुमंडल विरल था जो हाइड्रोजन व हीलीयम से बना था। यह आज की पृथ्वी के वायुमंडल से बहुत अलग था। अत: कुछ ऐसी घटनाएँ एवं क्रियाएँ अवश्य हुई होंगी जिनके कारण चट्टानी, वीरान और गर्म पृथ्वी एक ऐसे सुंदर ग्रह में परिवर्तित हुई जहाँ बहुत सा पानी, तथा जीवन के लिए अनुकूल वातावरण उपलब्ध हुआ। अगले कुछ भागों में आप पहेंगे कि आज से 460 करोड़ सालों के दौरान इस ग्रह पर जीवन का विकास कैसे हुआ।

पृथ्वी की संरचना परतदार है। वायुमंडल के बाहरी छोर से पृथ्वी के क्रोड तक जो पदार्थ हैं वे एक समान नहीं हैं। वायुमंडलीय पदार्थ का घनत्व सबसे कम है। पृथ्वी की सतह से इसके भीतरी भाग तक अनेक मंडल हैं और हर एक भाग के पदार्थ की अलग विशेषताएँ हैं।

पृथ्वी की परतदार संरचना कैसे विकसित हुई?

स्थलमंडल का विकास

ग्रहाणु व दूसरे खगोलीय पिंड ज्यादातर एक जैसे ही घने और हल्के पदार्थों के मिश्रण से बने हैं। उल्काओं के अध्ययन से हमें इस बात का पता चलता है। बहुत से ग्रहाणुओं के इकट्टा होने से ग्रह बनें। पृथ्वी की रचना भी इसी प्रकम के अनुरूप हुई है। जब पदार्थ गुरुत्वबल के कारण संहत हो रहा था, तो उन इकट्ठा होते पिंडों ने पदार्थ को प्रभावित किया। इससे अत्यधिक ऊष्मा उत्पन्न हुई। यह क्रिया जारी रही और उत्पन्न ताप से पदार्थ पिघलने/गलने लगा। ऐसा पृथ्वी की उत्पत्ति के दौरान और उत्पत्ति के तुरंत बाद हुआ। अत्यधिक ताप के कारण, पृथ्वी आंशिक रूप से द्रव अवस्था में रह गई और तापमान की अधिकता के कारण ही हल्के और भारी घनत्व के मिश्रण वाले पदार्थ घनत्व के अंतर के कारण अलग होना शुरू हो गए। इसी अलगाव से भारी पदार्थ (जैसे लोहा), पृथ्वी के केन्द्र में चले गए और हल्के पदार्थ पृथ्वी की सतह या ऊपरी भाग की तरफ आ गए। समय के साथ यह और ठंडे हुए और ठोस रूप में परिवर्तित होकर छोटे आकार के हो गए। अंततोगत्वा यह पृथ्वी की भूपर्पटी के रूप में विकसित हो गए। हल्के व भारी घनत्व वाले पदार्थों के पृथक होने की इस प्रक्रिया को विभेदन (Differentiation) कहा जाता है। चंद्रमा की उत्पत्ति के दौरान, भीषण संघट्ट

Downloaded from https://www.studiestoday.com

17

+

भौतिक भूगोल के मूल सिद्धांत

इयान (Eons)	महाकल्प (Era)	कल्प (Period)	युग (Epoch)	आयु/आधुनिक वर्ष पहले (Age/Years before present)	जीवन/मुख्य घटनाएँ (Life/Major Events)
		चतुर्थ कल्प	अभिनव	0 से 10,000	आधुनिक मानव
		(Quaternary)	अत्यन्त नूतन	10,000 से 20 लाख वर्ष	आदिमानव (Homosapiens)
	नवजीवन		अतिनूतन	20 लाख से 50 लाख	आरम्भिक मनुष्य के पूर्वज
	(cenzozoic)		अल्पनूतन	50 लाख से 2.4 करोड़	वनमानुष, फूल वाले पौधे और वृ
	(आज से 6.3	तृतीय कल्प	अधिनूतन	2.4 करोड़ से 3.7 करोड़	मनुष्य से मिलता-जुलता वनमानुष जं
	करोड़ वर्ष	(Tertiary)	अदिनूतन	3.7 करोड़ से 5.8 करोड़	खरगोश (Rabbits and hare)
	पहले)		पुरानूतन	5.7 करोड़ से 6.5 करोड़	छोटे स्तनपायी : चूहे, आदि।
	मध्यजीवी (Mesozoic)	क्रीटेशियस		6.5 करोड़ से 14.4 करोड़	डायनोसोर का विलुप्त होना।
	6.5 करोड़ से	जुरेसिक		14.4 से 20.8 करोड़	डायनासोर का युग।
	24.5 करोड़ वर्ष पहले स्तनपायी	ट्रियासिक		20.8 से 24.5 करोड़ वर्ष	मेंढक व समुद्री कछुआ।
		परमियन		24.5 करोड़ से 28.6 वर्ष	रेंगने वाले जीवों की अधिकता जलस्थलचर।
	पुराजीव(24.5	कार्बोनिफेरस		28.6 से 36.0 करोड़ वर्ष	पहले रेंगने वाले जंतु-रीढ़ की हड्डी वाले पहले जीव
	करोड़ वर्ष से	डेवोनियन		36.0 से 40.8 करोड़	स्थल व जल पर रहने वाले जीव
	57.0 करोड़ वर्ष	प्रवालवदि/सिलरियन		40.8 करोड़ से 43.8 करोड़	स्थल पर जीवन के प्रथम चिह्न: पौ
	पहले)	ओर्डोविसयन		43.8 से 50.5 करोड़	पहली मछली
		कैम्ब्रियन		50.5 से 57.0 करोड़ वर्ष	स्थल पर कोई जीवन नहीं: जल बिना रीढ़ की हड़ी वाले जीव।
प्रागजीव Proterezoic				57 करोड़ से 2 अरब 50 करोड़ वर्ष	कई जोड़ो वाले जीव
आद्य महाकल्प	पूर्व-कैम्ब्रियन			2.5 अरब से 3.8 अरब वर्ष पहले	ब्लू-ग्रीन शैवाल: एक कोशीय जीवाण
	4 अरब 80			3.8 अरब से	महाद्वीप व महासागरों का निर्माण
हेडियन	करोड़ वर्ष			4.8 अरब वर्ष	महासागरों व वायुमंडल में
	पहले			पहले	कार्बनडाई आक्साइड की अधिक
ारों की उत्पत्ति	र 5 अरब से			5 अरब वर्ष पहले	सूर्य की उत्पत्ति
सुपरनोवा	13.7 वर्ष			12 अरब वर्ष पहले	ब्रह्मांड की उत्पत्ति
बिग बैंग	– पहले			13.7 अरब वर्ष पहले	

(Giant impact) के कारण, पृथ्वी का तापमान पुन: बढ़ा या फिर ऊर्जा उत्पन्न हुई और यह विभेदन का दूसरा चरण था। विभेदन की इस प्रक्रिया द्वारा पृथ्वी का पदार्थ अनेक परतों में अलग हो गया। पृथ्वी के धरातल से क्रोड तक कई परतें पाई जाती हैं। जैसे-पर्पटी

(Crust), प्रावार (Mantle), बाह्य क्रोड (Outer core) और आंतरिक क्रोड (Inner core)। पृथ्वी के ऊपरी भाग से आंतरिक भाग तक पदार्थ का घनत्व बढ़ता है। हर परत की विशेषताओं का विस्तारपूर्वक अध्ययन हम अगले अध्याय में करेंगे।

पृथ्वी की उत्पत्ति एवं विकास

वायुमंडल व जलमंडल का विकास

पृथ्वी के वायुमंडल की वर्तमान संरचना में नाइट्रोजन एवं ऑक्सीजन का प्रमुख योगदान है। वायुमंडल की संरचना व संगठन आठवें अध्याय में बतायी गयी है।

वर्तमान वायुमंडल के विकास की तीन अवस्थाएँ हैं। इसकी पहली अवस्था में आदिकालिक वायुमंडलीय गैसों का हास है। दूसरी अवस्था में, पृथ्वी के भीतर से निकली भाप एवं जलवाष्प ने वायुमंडल के विकास में सहयोग किया। अंत में वायुमंडल की संरचना को जैव मंडल के प्रकाश संश्लेषण प्रक्रिया (Photosynthesis) ने संशोधित किया।

प्रारंभिक वायुमंडल जिसमें हाइड्रोजन व हीलियम की अधिकता थी, सौर पवन के कारण पृथ्वी से दूर हो गया। ऐसा केवल पृथ्वी पर ही नहीं, वरन् सभी पार्थिव ग्रहों पर हुआ। अर्थात् सभी पार्थिव ग्रहों से, सौर पवन के प्रभाव के कारण, आदिकालिक वायुमंडल या तो दूर धकेल दिया गया या समाप्त हो गया। यह वायुमंडल के विकास की पहली अवस्था थी।

पृथ्वी के ठंडा होने और विभेदन के दौरान, पृथ्वी के अंदरूनी भाग से बहुत सी गैसें व जलवाष्य बाहर निकले। इसी से आज के वायुमंडल का उद्भव हुआ। आरंभ में वायुमंडल में जलवाष्य, नाइट्रोजन, कार्बन डाई ऑक्साइड, मीथेन व अमोनिया अधिक मात्रा में, और स्वतंत्र ऑक्सीजन बहुत कम थी। वह प्रक्रिया जिससे पृथ्वी के भीतरी भाग से गैसें धरती पर आई, इसे गैस उत्सर्जन (Degassing) कहा जाता है। लगातार ज्वालामुखी विस्फोट से वायुमंडल में जलवाष्य व गैस बढ़ने लगी। पृथ्वी के ठंडा होने के साथ-साथ जलवाष्य का संघनन शुरू हो गया। वायुमंडल में उपस्थित कार्बन डाई ऑक्साइड के वर्षा के पानी में घुलने से तापमान में और अधिक गिरावट आई। फलस्वरूप अधिक संघनन व अत्यधिक वर्षा हुई। पृथ्वी के धरातल पर वर्षा का जल गर्तों में इकट्ठा होने लगा, जिससे महासागर बनें। पृथ्वी पर उपस्थित महासागर पृथ्वी की

उत्पत्ति से लगभग 50 करोड़ सालों के अंतर्गत बनें। इससे हमें पता चलता है कि महासागर 400 करोड़ साल पुराने हैं। लगभग 380 करोड़ साल पहले जीवन का विकास आरंभ हुआ। यद्यपि लगभर 250 से 300 करोड़ साल पहले प्रकाश संश्लेषण प्रक्रिया विकसित हुई। लंबे समय तक जीवन केवल महासागरों तक सीमित रहा। प्रकाश संश्लेषण की प्रक्रिया द्वारा ऑक्सीजन में बढ़ोतरी महासागरों की देन है। धीरे-धीरे महासागर ऑक्सीजन से संतृप्त हो गए और वायुमंडल में ऑक्सीजन की मात्रा 200 करोड़ वर्ष पूर्व पूर्ण रूप से भर गई।

जीवन की उत्पत्ति

पथ्वी की उत्पत्ति का अंतिम चरण जीवन की उत्पत्ति व विकास से संबंधित है। नि:संदेह पृथ्वी का आरंभिक वायुमंडल जीवन के विकास के लिए अनुकूल नहीं था। आधुनिक वैज्ञानिक, जीवन की उत्पत्ति को एक तरह की रासायनिक प्रतिक्रिया बताते हैं, जिससे पहले जटिल जैव (कार्बनिक) अणु (Complex organic molecules) बने और उनका समूहन हुआ। यह समृहन ऐसा था जो अपने आपको दोहराता था। (पुन: बनने में सक्षम था), और निर्जीव पदार्थ को जीवित तत्त्व में परिवर्तित कर सका। हमारे ग्रह पर जीवन के चिह्न अलग-अलग समय की चट्टानों में पाए जाने वाले जीवाश्म के रूप में हैं। 300 करोड़ साल पुरानी भूगर्भिक शैलों में पाई जाने वाली सूक्ष्मदर्शी संरचना आज की शैवाल (Blue green algae) की संरचना से मिलती जुलती है। यह कल्पना की जा सकती है कि इससे पहले समय में साधारण संरचना वाली शैवाल रही होगी। यह माना जाता है कि जीवन का विकास लगभग 380 करोड़ वर्ष पहले आरंभ हुआ। एक कोशीय जीवाणु से आज के मनुष्य तक जीवन के विकास का सार भूवैज्ञानिक काल मापक्रम से प्राप्त किया जा सकता है। जो भूवैज्ञानिक काल मापक्रम (पृष्ठ 18) में दर्शाया गया है।

अभ्यास.

1. बहुवैकल्पिक प्रश्न :

- (i) निम्नलिखित में से कौन सी संख्या पृथ्वी की आयु को प्रदर्शित करती है?
 - (क) 46 लाख वर्ष
- (ख) 4600 करोड वर्ष
- (ग) 13.7 अरब वर्ष
- (घ) 13.7 खरब वर्ष

Downloaded from https://www.studiestoday.com

19

十

20 भौतिक भूगोल के मूल सिद्धांत (ii) निम्न में कौन सी अवधि सबसे लंबी है: (क) इओन (Eons) (ख) महाकल्प (Era) (ग) कल्प (Period) (घ) युग (Epoch) (iii) निम्न में कौन सा तत्व वर्तमान वायुमंडल के निर्माण व संशोधन में सहायक नहीं है? (क) सौर पवन (ख) गैस उत्सर्जन (ग) विभेदन (घ) प्रकाश संश्लेषण (iv) निम्नलिखित में से भीतरी ग्रह कौन से हैं: (क) पृथ्वी व सूर्य के बीच पाए जाने वाले ग्रह (ख) सूर्य व छुद्र ग्रहों की पट्टी के बीच पाए जाने वाले ग्रह (ग) वे ग्रह जो गैसीय हैं। (घ) बिना उपग्रह वाले ग्रह (v) पृथ्वी पर जीवन निम्नलिखित में से लगभग कितने वर्षों पहले आरंभ हुआ। (क) 1अरब 37 करोड़ वर्ष पहले (ख) 460 करोड़ वर्ष पहले (ग) 38 लाख वर्ष पहले (घ) 3 अरब, 80 करोड़ वर्ष पहले निम्नलिखित प्रश्नों के उत्तर लगभग 30 शब्दों में दीजिए : (i) पार्थिव ग्रह चट्टानी क्यों हैं? (ii) पृथ्वी की उत्पत्ति संबंधित दिये गए तर्कों में निम्न वैज्ञानिकों के मूलभूत अंतर बताएँ : (क) कान्ट व लाप्लेस (ख) चैम्बरलेन व मोल्टन (iii) विभेदन प्रक्रिया से आप क्या समक्षते हैं। (iv) प्रारम्भिक काल में पृथ्वी के धरातल का स्वरूप क्या था? (v) पृथ्वी के वायुमंडल को निर्मित करने वाली प्रारंभिक गैसें कौन सी थीं? निम्नलिखित प्रश्नों के उत्तर लगभग 150 शब्दों में दीजिए : (i) बिग बैंग सिद्धांत का विस्तार से वर्णन करें। (ii) पृथ्वी के विकास संबंधी अवस्थाओं को बताते हुए हर अवस्था/चरण को संक्षेप में वर्णित करें। परियोजना कार्य 'स्टार डस्ट' परियोजना के बारे में निम्नलिखित पक्षों पर वेबसाइट से सूचना एकत्रित कीजिए : (www.sci.edu/public.html and www.nasm.edu) (अ) इस परियोजना को किस एजेंसी ने शुरू किया था? (ब) स्टार डस्ट को एकत्रित करने में वैज्ञानिक इतनी रूचि क्यों दिखा रहे हैं? (स) स्टार डस्ट कहाँ से एकत्र की गई है?

पृथ्वी की आंतरिक संरचना

थ्वी की प्रकृति के बारे में आप किस प्रकार का अनुमान लगाते हैं? क्या आपके अनुमान के अनुसार पृथ्वी क्रिकेट की गेंद की तरह एक टोस गेंद है, या यह एक खोखली गेंद है, जिसपर चट्टानों की मोटी परत स्थलमंडल है। क्या आपने कभी टेलीविजन पर ज्वालामुखी उद्गार दिखाते हुए चित्रों को देखा है? क्या आपको ज्वालामुखी से निकलते हुए गर्म लावा, मिट्टी, धुआँ, आग तथा मैग्मा याद है? पृथ्वी के आंतरिक भाग को अप्रत्यक्ष प्रमाणों के आधार पर समझा जा सकता है, क्योंकि पृथ्वी के आंतरिक भाग में न तो कोई पहुँच सकता है और न पहुँच सकता है।

पृथ्वी के धरातल का विन्यास मुख्यत: भूगर्भ में होने वाली प्रक्रियाओं का परिणाम है। बहिर्जात व अंतर्जात प्रक्रियाएँ लगातार भुदुश्य को आकार देती रहती हैं। अंतर्जात प्रक्रियाओं के प्रभाव को अनदेखा कर किसी भी क्षेत्र की भुआकृति की प्रकृति को समझना अधुरा होगा। (अर्थात् किसी भी प्रदेश की भूआकृति को समझने के लिए भूगर्भिक क्रियाओं के प्रभाव को जानना आवश्यक है।) मानव जीवन मुख्यत: अपनी क्षेत्रीय भूआकृति से प्रभावित होता है। इसलिए भूदृश्य के विकास को प्रभावित करने वाले सभी कारकों के विषय में जानना आवश्यक है। यह समझने के लिए कि पृथ्वी में कंपन क्यों होता है, या सुनामी लहरें कैसे पैदा होती हैं, यह जरूरी है कि हमें पृथ्वी की आंतरिक संरचना का विस्तृत ज्ञान हो। पिछले अध्याय में आपने पढ़ा कि पृथ्वी का निर्माण करने वाली, भू-पर्पटी (Crust) से क्रोड (Core) तक सभी पदार्थ परतों के रूप में विभाजित हैं। यह जानना भी अत्यंत

रोचक है कि वैज्ञानिकों ने कैसे इन परतों के संबंध में जानकारी प्राप्त की और प्रत्येक परत की विशेषताओं के बारे में अनुमान लगाया। यह अध्याय इसी विषय से संबंधित है।

भूगर्भ की जानकारी के साधन

पृथ्वी की त्रिज्या 6.370 कि0मी0 है। पृथ्वी की आंतरिक परिस्थितियों के कारण यह संभव नहीं है कि कोई पृथ्वी के केंद्र तक पहुँचकर उसका निरीक्षण कर सके या वहाँ के पदार्थ का कुछ नमूना प्राप्त कर सके। यह आश्चर्य की बात है कि ऐसी परिस्थितियों में भी वैज्ञानिक हमें यह बताने में सक्षम हुए कि भूगर्म की संरचना कैसी है और इतनी गहराई पर किस प्रकार के पदार्थ पाए जाते हैं? पृथ्वी की आंतरिक संरचना के विषय में हमारी अधिकतर जानकारी परोक्ष रूप से प्राप्त अनुमानों पर आधारित है। तथापि इस जानकारी का कुछ भाग प्रत्यक्ष प्रेक्षणों और पदार्थ के विश्लेषण पर भी आधारित है।

प्रत्यक्ष स्त्रोत

पृथ्वी से सबसे आसानी से उपलब्ध टोस पदार्थ धरातलीय चट्टानें हैं, अथवा वे चट्टानें हैं, जो हम खनन क्षेत्रों से प्राप्त करते हैं। दक्षिणी अफ्रीका की सोने की खानें 3 से 4 कि0मी0 तक गहरी हैं। इससे अधिक गहराई में जा पाना असंभव है, क्योंकि उतनी गहराई पर तापमान बहुत अधिक होता है। खनन के अतिरिक्त वैज्ञानिक, विभिन्न परियोजनाओं के अंतर्गत पृथ्वी की आंतरिक स्थिति को जानने के लिए पर्पटी में गहराई तक छानबीन कर रहे हैं। संसार भर के वैज्ञानिक दो मुख्य

Downloaded from https://www.studiestoday.com

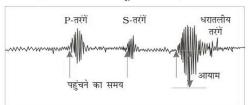
1

भौतिक भूगोल के मूल सिद्धांत

परियोजनाओं पर काम कर रहे हैं। ये हैं गहरे समुद्र में प्रवेधन परियोजना (Deep ocean drilling project) व समन्वित महासागरीय प्रवेधन परियोजना (Integrated ocean drilling project)। आज तक सबसे गहरा प्रवेधन (Drill) आर्कटिक महासागर में कोला (Kola) क्षेत्र में 12 कि0मी0 की गहराई तक किया गया है। इन परियोजनाओं तथा बहुत सी अन्य गहरी खुदाई परियोजनाओं के अंतर्गत, विभिन्न गहराई से प्राप्त पदार्थों के विश्लेषण से हमें पृथ्वी की आंतरिक संरचना से संबंधित असाधारण जानकारी प्राप्त हुई है।

ज्वालामुखी उद्गार प्रत्यक्ष जानकारी का एक अन्य स्रोत है। जब कभी भी ज्वालामुखी उद्गार से लावा पृथ्वी के धरातल पर आता है, यह प्रयोगशाला अन्वेषण के लिए उपलब्ध होता है। यद्यपि इस बात का निश्चय कर पाना कठिन होता है कि यह मैग्मा कितनी गहराई से निकला है।

अप्रत्यक्ष स्त्रोत


पदार्थ के गुणधर्म के विश्लेषण से पृथ्वी के आंतरिक भाग की अप्रत्यक्ष जानकारी प्राप्त होती है। खनन क्रिया से हमें पता चलता है कि पृथ्वी के धरातल में गहराई बढ़ने के साथ-साथ तापमान एवं दबाव में वृद्धि होती है। इतना ही नहीं, हमें यह भी पता चलता है कि गहराई बढ़ने के साथ-साथ पदार्थ का घनत्व भी बढ़ता है। तापमान, दबाव व घनत्व में इस परिवर्तन की दर को आँका जा सकता है। पृथ्वी की कुल मोटाई को ध्यान में रखते हुए, वैज्ञानिकों ने विभिन्न गहराइयों पर पदार्थ के तापमान, दबाव एवं घनत्व के मान को अनुमानित किया है। प्रत्येक परत के संदर्भ में इन लक्षणों का सविस्तार वर्णन इसी अध्याय में आगे किया गया है।

पृथ्वी की आंतरिक जानकारी का दूसरा अप्रत्यक्ष स्रोत उल्काएँ हैं, जो कभी-कभी धरती तक पहुँचती हैं। हाँलािक, हमें यह भी ध्यान रखना चािहए कि उल्काओं के विश्लेषण के लिए उपलब्ध पदार्थ पृथ्वी के आंतरिक भाग से प्राप्त नहीं होते हैं। परंतु उल्काओं से प्राप्त पदार्थ और उनकी संरचना पृथ्वी से मिलती-जुलती है। ये (उल्काएँ) वैसे ही पदार्थ के बने ठोस पिंड हैं, जिनसे हमारा ग्रह (पृथ्वी) बना है। अत: पृथ्वी की आंतरिक जानकारी के लिए उल्काओं का अध्ययन एक अन्य महत्वपूर्ण स्रोत है।

अन्य अप्रत्यक्ष स्रोतों में गुरुत्वाकर्षण, चुंबकीय क्षेत्र, व भूकंप संबंधी क्रियाएँ शामिल हैं। पृथ्वी के धरातल पर भी विभिन्न अक्षांशों पर गुरुत्वाकर्षण बल एक समान नहीं होता है। यह (गुरुत्वाकर्षण बल) ध्रुवों पर अधिक एवं भूमध्यरेखा पर कम होता है। पृथ्वी के केंद्र से दूरी के कारण गुरुत्वाकर्षण बल ध्रुवों पर अधिक और भूमध्यरेखा पर कम होता है। गुरुत्व का मान पदार्थ के द्रव्यमान के अनुसार भी बदलता है। पृथ्वी के भीतर पदार्थों का असमान वितरण भी इस भिन्नता को प्रभावित करता है। अलग-अलग स्थानों पर गुरुत्वाकर्षण की भिन्नता अनेक अन्य कारकों से भी प्रभावित होती है। इस भिन्नता को गुरुत्व विसंगति (Gravity anomaly) कहा जाता है। गुरुत्व विसंगति हमें भूपर्पटी में पदार्थ के द्रव्यमान के वितरण की जानकारी देती है। चुंबकीय सर्वेक्षण भी भूपर्पटी में चुंबकीय पदार्थ के वितरण की जानकारी देते हैं। भुकंपीय गतिविधियाँ भी पृथ्वी की आंतरिक जानकारी का एक महत्वपूर्ण स्रोत है। अत: हम कुछ विस्तार से इस पर चर्चा करेंगे।

भूकंप

भूकंपीय तरंगों का अध्ययन, पृथ्वी की आंतरिक परतों का संपूर्ण चित्र प्रस्तुत करता है। साधारण भाषा में भूकंप का अर्थ है— पृथ्वी का कंपन। यह एक प्राकृतिक घटना है। ऊर्जा के निकलने के कारण तरंगें उत्पन्न होती हैं, जो सभी दिशाओं में फैलकर भूकंप लाती हैं।

चित्र 3.1 : भूकंप-अभिलेख

पृथ्वी में कंपन क्यों होता है?

प्राय: भ्रंश के किनारे-किनारे ही ऊर्जा निकलती है। भूपर्पटी की शैलों में गहन दरारें ही भ्रंश होती हैं। भ्रंश के दोनों तरफ शैलें विपरीत दिशा में गित करती हैं। जहाँ ऊपर के शैलखंड दबाव डालते हैं, उनके आपस का घर्षण उन्हें परस्पर बाँधे रहता है। फिर भी, अलग होने पृथ्वी की आंतरिक संरचना

23

की प्रवृत्ति के कारण एक समय पर घर्षण का प्रभाव कम हो जाता है जिसके परिणामस्वरूप शैलखंड विकृत होकर अचानक एक दूसरे के विपरीत दिशा में सरक जाते हैं। इसके परिणामस्वरूप ऊर्जा निकलती है और ऊर्जा तरंगें सभी दिशाओं में गतिमान होती हैं। वह स्थान जहाँ से ऊर्जा निकलती है, भूकंप का उद्गम केन्द्र (Focus) कहलाता है। इसे अवकेंद्र (Hypocentre) भी कहा जाता है। ऊर्जा तरंगें अलग-अलग दिशाओं में चलती हुई पृथ्वी की सतह तक पहुँचती हैं। भूतल पर वह बिंदु जो उद्गम केंद्र के समीपतम होता है, अधिकेंद्र (Epicentre) कहलाता है। अधिकेंद्र पर ही सबसे पहले तरंगों को महसूस किया जाता है। अधिकेंद्र उद्गम केंद्र के ठीक ऊपर (90॰ के कोण पर) होता है।

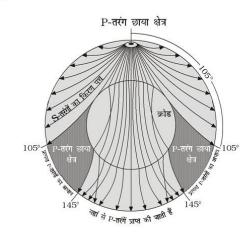
भूकंपीय तरंगें (Earthquake waves)

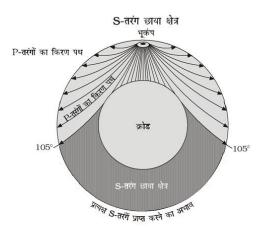
सभी प्राकृतिक भूकंप स्थलमंडल (Lithosphere) में ही आते हैं। इसी अध्याय में आगे आप पृथ्वी की विभिन्न परतों के बारे में पढेंगे। अभी इतना समझ लेना पर्याप्त है कि स्थलमंडल पृथ्वी के धरातल से 200 कि0मी0 तक की गहराई वाले भाग को कहते हैं। भूकंपमापी यंत्र (Seismograph) सतह पर पहुँचने वाली भूकंपतरंगों को अभिलेखित करता हैं। चित्र 3.1 भूकंपीय तंरगों का अभिलेखीय वक्र (Curve) दिखाता है। यह वक्र तीन अलग बनावट वाली तरंगों को प्रदर्शित करता है। बुनियादी तौर पर भुकंपीय तरंगें दो प्रकार की हैं - भूगर्भिक तरंगें (Body waves) व धरातलीय तरंगें (Surface waves)। भूगर्भिक तरंगें उद्गम केंद्र से ऊर्जा के मुक्त होने के दौरान पैदा होती हैं और पृथ्वी के अंदरूनी भाग से होकर सभी दिशाओं में आगे बढती हैं। इसलिए इन्हें भूगर्भिक तरंगें कहा जाता है। भूगर्भिक तरंगों एवं धरातलीय शैलों के मध्य अन्योन्य क्रिया के कारण नई तरंगें उत्पन्न होती हैं जिन्हें धरातलीय तरंगें कहा जाता है। ये तरंगें धरातल के साथ-साथ चलती हैं। तरंगों का वेग अलग-अलग घनत्व वाले पदार्थों से गुजरने पर परिवर्तित हो जाता है। अधिक घनत्व वाले पदार्थों में तरंगों का वेग अधिक होता है। पदार्थों के घनत्व में भिन्नताएँ होने के कारण परावर्तन (Reflection) एवं आवर्तन (Refraction) होता है. जिससे इन तरंगों की दिशा भी बदलती है।

भूगर्भीय तरंगें भी दो प्रकार की होती हैं। इन्हें 'P'

तरंगें व 'S' तरंगें कहा जाता है। 'P' तरंगें तीव्र गति से चलने वाली तरंगें हैं और धरातल पर सबसे पहले पहुँचती हैं। इन्हें 'प्राथमिक तरंगें' भी कहा जाता है। 'P' तरंगें ध्विन तरंगों जैसी होती हैं। ये गैस. तरल व ठोस-तीनों प्रकार के पदार्थों से गुजर सकती हैं। 'S' तरंगें धरातल पर कुछ समय अंतराल के बाद पहुँचती हैं। ये 'द्वितीयक तरंगें' कहलाती हैं। 'S' तरंगों के विषय में एक महत्वपूर्ण तथ्य यह है कि ये केवल ठोस पदार्थों के ही माध्यम से चलती हैं। 'S' तरंगों की यह एक महत्वपूर्ण विशेषता है। इसी विशेषता ने वैज्ञानिकों को भूगर्भीय संरचना समझने में मदद की। परावर्तन (Reflection) से तरंगें प्रतिध्वनित होकर वापस लौट आती हैं, जबिक आवर्तन (Refrection) से तरंगें कई दिशाओं में चलती हैं। भूकंपलेखी पर बने आरेख से तरंगों की दिशा-भिन्नता का अनुमान लगाया जाता है। धरातलीय तरंगें भूकंपलेखी पर अंत में अभिलेखित होती हैं। ये तरंगें ज्यादा विनाशकारी होती हैं। इनसे शैल विस्थापित होती हैं और इमारतें गिर जाती हैं।

भकंपीय तरंगों का संचरण


भिन्न-भिन्न प्रकार की भूकंपीय तरंगों के संचरित होने की प्रणाली भिन्न-भिन्न होती है। जैसे ही ये संचरित होती हैं तो शैलों में कंपन पैदा होती है। 'P' तरंगों से कंपन की दिशा तरंगों की दिशा के समानांतर ही होती है। यह संचरण गित की दिशा में ही पदार्थ पर दबाव डालती है। इसके (दबाव) के फलस्वरूप पदार्थ के घनत्व में भिन्नता आती है और शैलों में संकुचन व फैलाव की प्रक्रिया पैदा होती है। अन्य तीन तरह की तरंगें संचरण गित के समकोण दिशा में कंपन पैदा करती हैं। 'S' तरंगें ऊर्ध्वाधर तल में, तरंगों की दिशा के समकोण पर कंपन पैदा करती हैं। अत: ये जिस पदार्थ से गुजरती हैं उसमें उभार व गर्त बनाती हैं। धरातलीय तरंगें सबसे अधिक विनाशकारी समझी जाती हैं।


छाया क्षेत्र का उद्भव

भूकंपलेखी यंत्र (Seismograph) पर दूरस्थ स्थानों से आने वाली भूकंपीय तरंगें अभिलेखित होती हैं। यद्यपि कुछ ऐसे क्षेत्र भी हैं जहाँ कोई भी भूकंपीय तरंग

+

भौतिक भूगोल के मूल सिद्धांत

चित्र 3,2 (अ) और (ब) भूकंपीय छाया क्षेत्र (Earthquake shadow zones)

अभिलेखित नहीं होती। ऐसे क्षेत्र को भूकंपीय छाया क्षेत्र (Shadow zone) कहा जाता है। विभिन्न भूकंपीय घटनाओं के अध्ययन से पता चलता है कि एक भूकंप का छाया क्षेत्र दूसरे भूकंप के छाया क्षेत्र से सर्वधा भिन्न होता है। चित्र 3.2 अ और ब में 'P' व 'S' तरंगों का छाया क्षेत्र प्रदर्शित किया गया है। यह देखा जाता है कि भूकंपलेखी भूकंप अधिकेंद्र से 105° के भीतर किसी भी दूरी पर 'P' व 'S' दोनों ही तरंगों का अभिलेखन करते हैं। भूकंपलेखी, अधिकेंद्र से 145° से परे केवल

'P' तरंगों के पहुँचने को ही दर्ज करते हैं और 'S' तरंगों को अभिलेखित नहीं करते। अत: वैज्ञानिकों का मानना है कि भुकंप अधिकेंद्र से 105° और 145° के बीच का क्षेत्र (जहाँ कोई भी भूकंपीय तरंग अभिलेखित नहीं होती) दोनों प्रकार की तरगों के लिए छाया क्षेत्र (Shadow zone) हैं। 105° के परे पूरे क्षेत्र में 'S' तरंगें नहीं पहुँचतीं। 'S' तरंगों का छाया क्षेत्र 'P' तरंगों के छाया क्षेत्र से अधिक विस्तृत है। भूकंप अधिकेंद्र के 105° से 145° तक 'P' तरंगों का छाया क्षेत्र एक पट्टी (Band) के रूप में पृथ्वी के चारों तरफ प्रतीत होता है। 'S' तरंगों का छाया क्षेत्र न केवल विस्तार में बडा है, वरन् यह पृथ्वी के 40 प्रतिशत भाग से भी अधिक है। अगर आपको भूकंप अधिकेंद्र का पता हो तो आप किसी भी भूकंप का छाया क्षेत्र रेखांकित कर सकते हैं। (किसी भूकंप अधिकेंद्र को जानने का विवरण बॉक्स में पृष्ठ 28 में दिया गया है।)

भूकंप प्रकार

- (i) सामान्यत: विवर्तनिक (Tectonic) भूकंप ही अधिक आते हैं। ये भूकंप भ्रंशतल के किनारे चट्टानों के सरक जाने के कारण उत्पन्न होते हैं।
- (ii) एक विशिष्ट वर्ग के विवर्तनिक भूकंप को ही ज्वालामुखीजन्य (Volcanic) भूकंप समझा जाता है। ये भूकंप अधिकांशत: सिक्रय ज्वालामुखी क्षेत्रों तक ही सीमित रहते हैं।
- (iii) खनन क्षेत्रों में कभी-कभी अत्यधिक खनन कार्य से भूमिगत खानों की छत ढह जाती है, जिससे हल्के झटके महसूस किए जाते हैं। इन्हें नियात (Collapse) भूकंप कहा जाता है।
- (iv) कभी-कभी परमाणु व रासायनिक विस्फोट से
 भी भूमि में कंपन होती है। इस तरह के झटकों
 को विस्फोट (Explosion) भूकंप कहते हैं।
- (v) जो भूकंप बड़े बाँघ वाले क्षेत्रों में आते हैं, उन्हें बाँध जनित (Reservoir induced) भूकंप कहा जाता है।

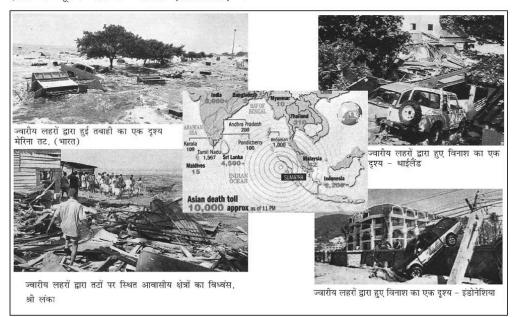
पृथ्वी की आंतरिक संरचना

भूकंपों की माप

भूकंपीय घटनाओं का मापन भूकंपीय तीव्रता के आधार पर अथवा आघात की तीव्रता के आधार पर किया जाता है। भूकंपीय तीव्रता की मापनी 'रिक्टर स्केल' (Richter scale) के नाम से जानी जाती है। भूकंपीय तीव्रता भूकंप के दौरान ऊर्जा मुक्त होने से संबंधित है। इस

भूकंप द्वारा हुए नुकसान का एक दृश्य - उरी (LOC) में स्थित अमन सेतु (भारत)

मापनी के अनुसार भूकंप की तीव्रता 0 से 10 तक होती है। आघात की तीव्रता/गहनता (Intensity scale) को इटली के भूकंप वैज्ञानिक मरकैली (Mercalli) के


नाम पर जाना जाता है। यह झटकों से हुई प्रत्यक्ष हानि द्वारा निर्धारित की जाती है। इसकी गहनता 1 से 12 तक होती है।

25

भुकंप के प्रभाव

भूकंप एक प्राकृतिक आपदा है। भूकंपीय आपदा से होने वाले प्रकोप निम्न हैं

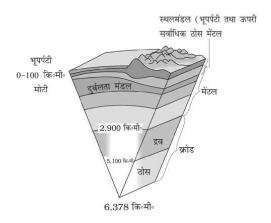
- (i) भूमि का हिलना
- (ii) धरातलीय विसंगति
- (iii) भू-स्खलन/पंकस्खलन
- (iv) मुदा द्रवण (Soil liquefaction)
- (v) धरातल का एक तरफ झुकना
- (vi) हिमस्खलन
- (vii) धरातलीय विस्थापन
- (viii) बाँघ व तटबंघ के टूटने से बाढ़
 - (ix) आग लगना
 - (x) इमारतों का टूटना तथा ढाँचों का ध्वस्त होना
 - (xi) वस्तुओं का गिरना
- (xii) सुनामी।

+

भौतिक भूगोल के मूल सिद्धांत

उपरोक्त सूचीबद्ध प्रभावों में से पहले छ: का प्रभाव स्थलरूपों पर देखा जा सकता है जबिक अन्य को उस क्षेत्र में होने वाले जन व धन की हानि से समझा जा सकता है। 'सुनामी' का प्रभाव तभी पड़ेगा जब भूकंप का अधिकेंद्र समुद्री अधस्तल पर हो और भूकंप की तीव्रता बहुत अधिक हो। 'सुनामी' अपने आप में भूकंप नहीं है, ये वास्तव में लहरें हैं जो भूकंपीय तरंगों से उत्पन्न होती हैं। यद्यपि मूल रूप से कंपन की क्रिया कुछ सेकेंड ही रहती है, फिर भी यदि भूकंप की तीव्रता रिकटर स्केल पर 5 से अधिक है तो इसके परिणाम अत्यधिक विनाशकारी होते हैं।

भूकंप की आवृत्ति


भूकंप एक प्राकृतिक आपदा है। तीव्र भूकंप के झटकों से जन व धन की अधिक हानि होती है। फिर भी ऐसा नहीं है कि विश्व के सभी भागों में तीव्र भूकंप ही आते हैं। केवल वहीं क्षेत्र जो भ्रंश के समीप हैं, ऐसे तीव्र झटके महसूस करते हैं। हम ज्वालामुखी व भूकंप के वितरण का वर्णन अगले अध्याय में पढेंगे।

प्राय: यह देखा गया है कि रिक्टर स्केल पर 8 से अधिक तीव्रता वाले भूकंप के आने की संभावना बहुत ही कम होती है जो 1-2 वर्षों में एक ही बार आते हैं। जबिक हल्के भूकंप लगभग हर मिनट पृथ्वी के किसी न किसी भाग में महसूस किए जाते हैं।

पृथ्वी की संरचना भूपर्पटी (The Crust)

यह टोस पृथ्वी का सबसे बाहरी भाग है। यह बहुत भंगुर (Brittle) भाग है जिसमें जल्दी टूट जाने की प्रवृत्ति पाई जाती है। भूपर्पटी की मोटाई महाद्वीपों व महासागरों के नीचे अलग-अलग है। महासागरों में भूपर्पटी की मोटाई महाद्वीपों को तुलना में कम है। महासागरों के नीचे इसकी औसत मोटाई 5 कि0 मी0 है, जबिक महाद्वीपों के नीचे यह 30 कि0 मी0 तक है। मुख्य पर्वतीय शृंखलाओं के क्षेत्र में यह मोटाई और भी अधिक है। हिमालय पर्वत श्रेणियों के नीचे भूपर्पटी की मोटाई लगभग 70 कि0मी0 तक है। भूपर्पटी भारी चट्टानों से बना है और इसका

घनत्व 3 ग्राम प्रति घन सेंटीमीटर है। महासागरों के नीचे भूपर्पटी की चट्टानें बेसाल्ट निर्मित हैं। महासागरों के नीचे इनका घनत्व 2.7 ग्राम प्रति घन से0मी0 है।

चित्र 3.3 : पृथ्वी का आंतरिक भाग

मैंटल (The Mantle)

भूगर्भ में पर्पटी के नीचे का भाग मैंटल कहलाता है। यह मोहो असांतत्य (Discontinuity) से आरंभ होकर 2,900 कि0 मी0 की गहराई तक पाया जाता है। मैंटल का ऊपरी भाग दुर्बलतामंडल (Asthenosphere) कहा जाता है। 'एस्थेनो' (Astheno) शब्द का अर्थ दुर्बलता से है। इसका विस्तार 400 कि0मी0 तक आँका गया है। ज्वालामुखी उद्गार के दौरान जो लावा धरातल पर पहुँचता है, उसका मुख्य स्रोत यही है। इसका घनत्व भूपर्पटी की चट्टानों से अधिक है। (अर्थात् 3.4 ग्राम प्रति घन से0मी0 से अधिक है। भूपर्पटी एवं मैंटल का ऊपरी भाग मिलकर स्थलमंडल (Lithosphere) कहलाते हैं। इसकी मोटाई 10 से 200 कि0 मी0 के बीच पाई जाती है। निचले मैंटल का विस्तार दुर्बलतामंडल के समाप्त हो जाने के बाद तक है। यह टोस अवस्था में है।

क्रोड (The Core)

जैसा कि पहले ही इंगित किया जा चुका है कि भूकंपीय तरंगों के वेग ने पृथ्वी के क्रोड को समझने में सहायता की पृथ्वी की आंतरिक संरचना

है। क्रोड व मैंटल की सीमा 2,900 कि0मी0 की गहराई पर है। बाह्य क्रोड (Outer core) तरल अवस्था में है जबिक आंतरिक क्रोड (Inner core) टोस अवस्था में है। मैंटल व क्रोड की सीमा पर चट्टानों का घनत्व लगभग 5 ग्राम प्रति घन से0 मी0 तथा केंद्र में 6,300 कि0मी0 की गहराई तक घनत्व लगभग 13 ग्राम प्रति घन से0मी0 तक हो जाता है। इससे यह पता चलता है कि क्रोड भारी पदार्थों मुख्यत: निकिल (Nickle) व लोहे (Ferrum) का बना है। इसे 'निफे' (Nife) परत के नाम से भी जाना जाता है।

ज्वालामुखी व ज्वालामुखी निर्मित स्थलरूप

आपने अनेक बार ज्वालामुखी के चित्र देखे होंगे। ज्वालामुखी वह स्थान है जहाँ से निकलकर गैसें, राख और तरल चट्टानी पदार्थ, लावा पृथ्वी के धरातल तक पहुँचता है। यदि यह पदार्थ कुछ समय पहले ही बाहर आया हो या अभी निकल रहा हो तो वह ज्वालामुखी सिक्रय ज्वालामुखी कहलाता है। तरल चट्टानी पदार्थ दुर्बलता मण्डल से निकल कर धरातल पर पहुँचता है। जब तक यह पदार्थ मेंटल के ऊपरी भाग में है, यह मैग्मा कहलाता है। जब यह भूपटल के ऊपर या धरातल पर पहुँचता है तो लावा कहा जाता है। वह पदार्थ जो धरातल पर पहुँचता है, उसमें लावा प्रवाह, लावा के जमे हुए टुकड़ों का मलवा (ज्वलखण्डाश्मि), (Pyroclastic debris) ज्वालामुखी बम, राख, धूलकण व गैसें जैसे— नाइट्रोजन यौगिक, सल्फर यौगिक और कुछ मात्रा में क्लोरीन, हाइड्रोजन व आर्गन शामिल होते हैं।

ज्वालामुखी उद्गार की प्रवृत्ति और धरातल पर विकसित आकृतियों के आधार पर ज्वालामुखियों को वर्गीकृत किया जाता है। कुछ मुख्य ज्वालामुखी निम्न प्रकार से हैं:

शील्ड ज्वालामुखी (Shield volcanoes)

बेसाल्ट प्रवाह को छोड़कर, पृथ्वी पर पाए जाने वाले सभी ज्वालामुखियों में शील्ड ज्वालामुखी सबसे विशाल है। हवाई द्वीप के ज्वालामुखी इसके सबसे अच्छे उदाहरण हैं। ये ज्वालामुखी मुख्यत: बेसाल्ट से निर्मित

शील्ड ज्वालामुखी

सिंडर शंकु

होते हैं जो तरल लावा के ठंडे होने से बनते हैं। यह लावा उद्गार के समय बहुत तरल होता है। इसी कारण इन ज्वालामुखियों का ढाल तीव्र नहीं होता। यदि किसी तरह निकास नालिका (Vent) से पानी भीतर चला जाए तो ये ज्वालामुखी विस्फोटक भी हो जाते हैं। अन्यथा कम विस्फोटक होना ही इनकी विशेषता है। इन ज्वालामुखियों से लावा फव्वारे के रूप में बाहर आता है और निकास पर एक शंकु (Cone) बनाता है, जो सिंडर शंकु (Cindar Cone) के रूप में विकसित होता है।

मिश्रित ज्वालामुखी (Composite volcanoes)

इन ज्वालामुखियों से बेसाल्ट की अपेक्षा अधिक ठंडे व श्यान (गाढ़ा या चिपचिपा) लावा उद्गार होते हैं। प्राय: ये ज्वालामुखी भीषण विस्फोटक होते हैं। इनसे लावा के साथ भारी मात्रा में ज्वलखण्डाश्मि (Pyroclastic) पदार्थ व राख भी धरातल पर पहुँचती हैं। यह पदार्थ निकास नली

Downloaded from https://www.studiestoday.com

27

भौतिक भूगोल के मूल सिद्धांत

मिश्रित ज्वालामुखी

के आस-पास परतों के रूप में जमा हो जाते हैं जिनके जमाव मिश्रित ज्वालामुखी के रूप में दिखते हैं।

ज्वालामुखी कुंड (Caldera)

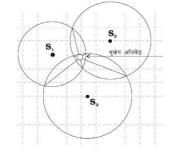
ये पृथ्वी पर पाए जाने वाले सबसे अधिक विस्फोटक ज्वालामुखी हैं। आमतौर पर ये इतने विस्फोटक होते हैं कि जब इनमें विस्फोट होता है तब वे ऊँचा ढाँचा बनाने के बजाय स्वयं नीचे धँस जाते हैं। धँसे हुए विध्वंस गर्त (लावा के गिरने से जो गड्ढे बनते हैं) ही ज्वालामुखी कुंड

क्रियाकलाप : भूकंप अधिकेंद्र का पता लगाना

इसके लिए आपको चाहिए:

तीन भूकंपलेखी स्थानों से 'P' तरंगों व 'S' तरंगों के पहुँचने के समय संबंधी आँकड़े।

- किसी भुकंप घटना का दिए गए तीन स्थानों से (जिसके आँकडे आपके पास हों), 'P' तरंगों के पहुँचने का समय व 'S' तरंगों के पहुँचने का समय लिखें।
- 2. अब 'P' व 'S' तरंगों के पहुँचने में समयांतर (Time lag) की गणना करें। ऐसा तीनों स्थानों के लिए करें। (यह ध्यान रहे कि यह अंतर उद्गम केंद्र व सिस्मोग्राफ केंद्र की दूरी से सीघे संबंधित है।)


एक साधारण नियम : 1 सेकेंड का समयांतर (Time lag) यह बताता है कि वहाँ से भूकंप लगभग 8 कि0 मी0 दूरी पर है।

- 3. उपरोक्त नियम का प्रयोग करते हुए समायांतर को दूरी में बदलें (अर्थात समयांतर (सेकेंड में) X 8). ऐसा हर स्थान के लिए अलग-अलग बार करें या दोहराएँ।
- 4. मानचित्र पर भुकंपलेखी/सिस्मोग्राफ स्थानों को अंकित करें।
- 5. सिस्मोग्राफ स्थानों को केंद्र-बिंदु मानते हुए वृत्त खींचें। वृत्त का अर्थव्यास (उपरोक्त 3 न0 पर बताए गए नियमानुसार) गणना की गई दूरी के बराबर लें। (दूरी को मानचित्र मापक के अनुसार बदलना न भूलें)
- 6. ये वृत्त आपस में एक बिंदु पर काटेंगे। यह बिंदु ही भूकंप अधिकेंद्र है। सामान्यत: भुकंप अधिकेंद्र की स्थिति कंप्युटर मॉडल की सहायता से जानी जाती है। ये मॉडल पृथ्वी के भुपटल की संरचना को भी ध्यान में रखते हैं। इससे त्रुटि रहित यथार्थ स्थिति का पता लगाया जा सकता है। जो कार्य प्रणाली यहाँ बताई गई है वह कंप्यूटर मॉडल का सरलीकरण है, यद्यपि सिद्धांत लगभग वही है।

दिए गए चित्र में, भूकंप अधिकेंद्र की स्थिति की जानकारी ऊपर बताए गए दिशा निर्देश के अनुसार है। एक तालिका

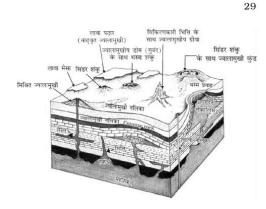
भी है जिसमें संबंधित आँकड़े हैं। आप इसे स्वयं भी कर सकते हैं।

		त	रंगों के प	हुँचने का	समय	
स्टेशन		'P' तरं		57.05	'S' तरं	<u>गें</u>
	घंटे	मिनट	सेकेंड	घंटे	मिनट	सेकेंड
S1	03	23	20	03	24	45
S2	03	22	17	03	23	57
S3	03	22	00	03	23	55

पृथ्वी की आंतरिक संरचना

(Caldera) कहलाते हैं। इनका यह विस्फोटक रूप बताता है कि इन्हें लावा प्रदान करने वाले मैग्मा के भंडार न केवल विशाल हैं, वरन् इनके बहुत पास स्थित हैं। इनके द्वारा निर्मित पहाड़ी मिश्रित ज्वालामुखी की तरह प्रतीत होती है।

बेसाल्ट प्रवाह क्षेत्र (Flood basalt provinces)


ये ज्वालामुखी अत्यधिक तरल लावा उगलते हैं जो बहुत दूर तक बह निकलता है। संसार के कुछ भाग हजारों वर्ग कि0मी0 घने लावा प्रवाह से ढके हैं। इनमें लावा प्रवाह क्रमानुसार होता है और कुछ प्रवाह 50 मीटर से भी अधिक मोटे हो जाते हैं। कई बार अकेला प्रवाह सैकड़ों कि0मी0 दूर तक फैल जाता है। भारत का दक्कन ट्रैप, जिस पर वर्तमान महाराष्ट्र पटार का ज्यादातर भाग पाया जाता है, वृहत् बेसाल्ट लावा प्रवाह क्षेत्र है। ऐसा विश्वास किया जाता है कि आज की अपेक्षा, आरंभ में एक अधिक वृहत् क्षेत्र इस प्रवाह से ढका था।

मध्य-महासागरीय कटक ज्वालामुखी

इन ज्वालामुखियों का उद्गार महासागरों में होता है। मध्य महासागरीय कटक एक शृंखला है जो 70,000 कि0मी0 से अधिक लंबी है और जो सभी महासागरीय बेसिनों में फैली है। इस कटक के मध्यवर्ती भाग में लगातार उद्गार होता रहता है। अगले अध्याय में हम इसे विस्तारपूर्वक पढेंगे।

ज्वालामुखी स्थलाकृतियाँ (Volcanic Landforms) अंतर्वेधी आकृतियाँ

ज्वालामुखी उद्गार से जो लावा निकलता है, उसके ठंडा होने से आग्नेय शैल बनती हैं। लावा का यह जमाव या तो धरातल पर पहुँच कर होता है या धरातल तक पहुँचने से पहले ही भूपटल के नीचे शैल परतों में ही हो जाता है। लावा के ठंडा होने के स्थान के आधार पर आग्नेय शैलों का वर्गीकरण किया जाता है – 1. ज्वालामुखी शैलों (जब लावा धरातल पर पहुँच कर ठंडा होता है) और 2. पातालीय (Plutonic) शैल (जब लावा धरातल के नीचे ही ठंडा होकर जम जाता है)। जब लावा भूपटल के

चित्र 3.4 : ज्वालामुखी स्थालाकृतियाँ

भीतर ही ठंडा हो जाता है तो कई आकृतियाँ बनती हैं। ये आकृतियाँ अंतर्वेधी आकृतियाँ (Intrusive forms) कहलाती हैं। इनमें से कुछ चित्र 3.4 में दिखाए गए हैं।

बैथोलिथ (Batholiths)

यदि मैग्मा का बड़ा पिंड भूपर्पटी में अधिक गहराई पर ठंडा हो जाए तो यह एक गुंबद के आकार में विकसित हो जाता है। अनाच्छादन प्रक्रियाओं के द्वारा ऊपरी पदार्थ के हट जाने पर ही यह धरातल पर प्रकट होते हैं। ये विशाल क्षेत्र में फैले होते हैं और कभी-कभी इनकी गहराई भी कई कि0मी0 तक होती है। ये ग्रेनाइट के बने पिंड हैं। इन्हें बैथोलिथ कहा जाता है जो मैग्मा भंडारों के जमे हुए भाग हैं।

लैकोलिथ (Lacoliths)

ये गुंबरनुमा विशाल अन्तर्वेधी चट्टानें हैं जिनका तल समतल व एक पाइपरूपी वाहक नली से नीचे से जुड़ा होता है। इनकी आकृति धरातल पर पाए जाने वाले मिश्रित ज्वालामुखी के गुंबर से मिलती है। अंतर केवल यह होता है कि लैकोलिथ गहराई में पाया जाता है। कर्नाटक के पटार में ग्रेनाइट चट्टानों की बनी ऐसी ही गुंबरनुमा पहाड़ियाँ हैं। इनमें से अधिकतर अब अपपित्रत (Exfoliated) हो चुकी हैं व धरातल पर देखी जा सकती हैं। ये लैकोलिथ व बैथोलिथ के अच्छे उदाहरण हैं।

Downloaded from https://www.studiestoday.com

30

十

भौतिक भूगोल के मूल सिद्धांत

लैपोलिथ, फैकोलिथ व सिल (Lapolith, phacolith and sills)

ऊपर उठते लावे का कुछ भाग क्षैतिज दिशा में पाए जाने वाले कमजोर धरातल में चला जाता है। यहाँ यह अलग-अलग आकृतियों में जम जाता है। यदि यह तश्तरी (Saucer) के आकार में जम जाए, तो यह लैपोलिथ कहलाता है। कई बार अन्तर्वेधी आग्नेय चट्टानों की मोड़दार अवस्था में अपनित (Anticline) के ऊपर व अभिनित (Syncline) के तल में लावा का जमाव पाया जाता है। ये परतनुमा/लहरदार चट्टानें एक निश्चित वाहक नली से मैग्मा भंडारों से जुड़ी होती हैं। (जो क्रमश: बैथोलिथ में विकसित होते हैं) यह ही फैकोलिथ कहलाते हैं।

अंतर्वेधी आग्नेय चट्टानों का क्षैतिज तल में एक चादर के रूप में ठंडा होना सिल या शीट कहलाता है। जमाव की मोटाई के आधार पर इन्हें विभाजित किया जाता है—कम मोटाई वाले जमाव को शीट व घने मोटाई वाले जमाव सिल कहलाते हैं।

डाइक

जब लावा का प्रवाह दरारों में धरातल के लगभग समकोण होता है और अगर यह इसी अवस्था में ठंडा हो जाए तो एक दीवार की भाँति संरचना बनाता है। यही संरचना डाइक कहलाती है। पश्चिम महाराष्ट्र क्षेत्र की अंतर्वेधी आग्नेय चट्टानों में यह आकृति बहुतायत में पाई जाती है। ज्वालामुखी उद्गार से बने दक्कन ट्रेप के विकास में डाइक उदगार की वाहक समझी जाती हैं।

अभ्यास

1. बहवैकल्पिक प्रश्न :

- (i) निम्नलिखित में से कौन भूगर्भ की जानकारी का प्रत्यक्ष साधन है:
 - (क) भूकंपीय तरगें
- (ख) गुरुत्वाकर्षण बल
- (ग) ज्वालामुखी

- (घ) पृथ्वी का चुंबकत्व
- (ii) दक्कन ट्रैप की शैल समूह किस प्रकार के ज्वालामुखी उद्गार का परिणाम है:
 - (क) शील्ड
- (ख) मिश्र
- (ग) प्रवाह
- (घ) कुंड
- (iii) निम्नलिखित में से कौन सा स्थलमंडल को वर्णित करता है?
 - (क) ऊपरी व निचले मैंटल
- (ख) भूपटल व क्रोड
- (ग) भूपटल व ऊपरी मैंटल
- (घ) मैंटल व क्रोड
- (iv) निम्न में भूकम्प तरंगें चट्टानों में संकुचन व फैलाव लाती हैं :
 - (क) 'P' तरंगें

- (ख) 'S' तरंगें
- (ग) धरातलीय तरंगें
- (घ) उपर्युक्त में से कोई नहीं

2. निम्नलिखित प्रश्नों के उत्तर लगभग 30 शब्दों में दीजिए :

- (i) भूगर्भीय तरंगें क्या हैं?
- (ii) भूगर्भ की जानकारी के लिए प्रत्यक्ष साधनों के नाम बताइए।
- (iii) भूकंपीय तरंगें छाया क्षेत्र कैसे बनाती हैं?
- (iv) भूकंपीय गतिविधियों के अतिरिक्त भूगर्भ की जानकारी संबंधी अप्रत्यक्ष साधनों का संक्षेप में वर्णन करें।

3. निम्नलिखित प्रश्नों के उत्तर लगभग 150 शब्दों में दीजिए :

- (i) भूकंपीय तरंगों के संचरण का उन चट्टानों पर प्रभाव बताएँ जिनसे होकर यह तरंगें गुजरती हैं।
- (ii) अंतर्वेधी आकृतियों से आप क्या समझते हैं? विभिन्न अंतर्वेधी आकृतियों का संक्षेप में वर्णन करें।

महासागरों और महाद्वीपों का वितरण

छले अध्याय में आपने भूगर्भ के विषय में पढ़ा। आप संसार के मानचित्र से भी परिचित हैं। आप जानते हैं कि पृथ्वी के 29 प्रतिशत भाग पर महाद्वीप और बाकी पर महासागर फैले हुए हैं। महाद्वीपों और महासागरों की अवस्थिति. जैसाकि आज मानचित्र पर दिखाई देती है, हमेशा से ऐसी नहीं रही है। इसके अतिरिक्त, यह भी एक तथ्य है कि आने वाले समय में भी महाद्वीप व महासागरों की स्थिति आज जैसी नहीं रहेगी। अगर ऐसा है तो प्रश्न यह है कि पुराकाल में इनकी अवस्थिति कैसी थी? इनकी अवस्थिति में परिवर्तन क्यों और कैसे होता है? यदि यह सच है कि महाद्वीपों और महासागरों की अवस्थिति में परिवर्तन हुआ है और अभी भी हो रहा है, तो आप यह जानकर आश्चर्यचिकत होंगे कि वैज्ञानिक यह सब कैसे जानते हैं? उन्होंने इन महाद्वीपों एवं महासागरों की पहले की स्थिति का निर्धारण कैसे किया होगा? इन्हीं प्रश्नों के उत्तर और इनसे संबंधित प्रश्न ही इस अध्याय का विषय हैं।

महाद्वीपीय प्रवाह (Continental drift)

अटलांटिक महासागरीय तटरेखा की आकृति को ध्यान से देखें। इस महासागर के दोनों तरफ की तटरेखा में आश्चर्यजनक समिनित (Symmetry) है। इसी समानता के कारण बहुत से वैज्ञानिकों ने दक्षिण व उत्तर अमेरिका तथा यूरोप व अफ्रीका के एक साथ जुड़े होने की संभावना को व्यक्त किया। विज्ञान के इतिहास के ज्ञात अभिलेखों से पता चलता है कि सन् 1596 में एक डच मानचित्रवेत्ता अब्राहम ऑरटेलियस (Abraham Ortelius) ने सर्वप्रथम इस संभावना को व्यक्त किया। एन्टोनियो पैलेग्रीनी (Antonio Pellegrini) ने

एक मानचित्र बनाया, जिसमें तीनों महाद्वीपों को इकट्ठा दिखाया गया था। जर्मन मौसमिवद अल्फ्रेड वेगनर (Alfred Wegener) ने "महाद्वीपीय विस्थापन सिद्धांत" सन् 1912 में प्रस्तावित किया। यह सिद्धांत महाद्वीप एवं महासागरों के वितरण से ही संबंधित था।

इस सिद्धांत की आधारभृत संकल्पना यह थी कि सभी महाद्वीप एक अकेले भूखंड में जुड़े हुए थे। वेगनर के अनुसार आज के सभी महाद्वीप इस भूखंड के भाग थे तथा यह एक बड़े महासागर से घिरा हुआ था। उन्होंने इस बड़े महाद्वीप को *पैंजिया* (Pangaea) का नाम दिया। पैंजिया का अर्थ है- संपूर्ण पृथ्वी। विशाल महासागर को *पैंथालासा* (Panthalassa) कहा, जिसका अर्थ है-जल ही जल। वेगनर के तर्क के अनुसार लगभग 20 करोड वर्ष पहले इस बडे महाद्वीप पैंजिया का विभाजन आरंभ हुआ। पैंजिया पहले दो बडे महाद्वीपीय पिंडों लारेशिया (Laurasia) और गोंडवानालैंड (Gondwanaland) क्रमश: उत्तरी व दक्षिणी भूखंडों के रूप में विभक्त हुआ। इसके बाद लारेशिया व गोडवानालैंड धीरे-धीरे अनेक छोटे हिस्सों में बँट गए, जो आज के महाद्वीप के रूप हैं। महाद्वीपीय विस्थापन के पक्ष में अनेक प्रमाण भी प्रस्तुत किए गए हैं, इनमें से कुछ इस प्रकार हैं।

महाद्वीपीय विस्थापन के पक्ष में प्रमाण (Evidences in support of continental drift)

महाद्वीपों में साम्य

दक्षिण अमेरिका व अफ्रीका के आमने-सामने की तटरेखाएँ अद्भुत व त्रुटिरहित साम्य दिखाती हैं। यह भी ध्यान देने योग्य है कि 1964 ई0 में बुलर्ड (Bullard) ने एक

Downloaded from https://www.studiestoday.com

+

भौतिक भूगोल के मूल सिद्धांत

कंप्यूटर प्रोग्राम की सहायता से अटलांटिक तटों को जोड़ते हुए एक मानचित्र तैयार किया था। तटों का यह साम्य बिल्कुल सही सिद्ध हुआ। साम्य बिठाने की यह कोशिश आज की तटरेखा की अपेक्षा 1,000 फैदम की गहराई की तटरेखा के साथ की गई थी।

महासागरों के पार चट्टानों की आयु में समानता

आधुनिक समय में विकसित की गई रेडियोमिट्रिक काल निर्धारण (Radiometric dating) विधि से महासागरों के पार महाद्वीपों की चट्टानों के निर्माण के समय को सरलता से जाना जा सकता है। 200 करोड़ वर्ष प्राचीन शैल समूहों की एक पट्टी ब्राजील तट और पश्चिमी अफ्रीका के तट पर मिलती हैं, जो आपस में मेल खाती है। दक्षिण अमेरिका व अफ्रीका की तटरेखा के साथ पाए जाने वाले आरंभिक समुद्री निक्षेप जुरेसिक काल (Jurassic age) के हैं। इससे यह पता चलता है कि इस समय से पहले महासागर की उपस्थित वहाँ नहीं थी।

टिलाइट (Tillite)

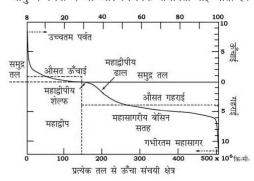
टिलाइट वे अवसादी चट्टानें हैं, जो हिमानी निक्षेपण से निर्मित होती हैं। भारत में पाए जाने वाले गोंडवाना श्रेणी के तलछटों के प्रतिरूप दक्षिण गोलार्ध के छ: विभिन्न स्थलखंडों में मिलते हैं। गोंडवाना श्रेणी के आधार तल में घने टिलाइट हैं, जो विस्तृत व लंबे समय तक हिमआवरण या हिमाच्छादन की ओर इंगित करते हैं। इसी क्रम के प्रतिरूप भारत के अतिरिक्त अफ्रीका, फॉकलैंड द्वीप, मैडागास्कर, अंटार्कटिक और आस्ट्रेलिया में मिलते हैं। गोंडवाना श्रेणी के तलछटों की यह समानता स्पष्ट करती है कि इन स्थलखंडों के इतिहास में भी समानता रही है। हिमानी निर्मित टिलाइट चट्टानें पुरातन जलवायु और महाद्वीपों के विस्थापन के स्पष्ट प्रमाण प्रस्तुत करते हैं।

प्लेसर निक्षेप (Placer deposits)

घाना तट पर सोने के बड़े निक्षेपों की उपस्थिति व उद्गम चट्टानों की अनुपस्थिति एक आश्चर्यजनक तथ्य है। सोनायुक्त शिराएँ (Gold bearing veins) ब्राजील में पाई जाती हैं। अत: यह स्पष्ट है कि घाना में मिलने वाले सोने के निक्षेप ब्राजील पठार से उस समय निकले होंगे, जब ये दोनों महाद्वीप एक दूसरे से जुड़े थे। जीवाश्मों का वितरण (Distribution of fossils)

यदि समुद्री अवरोधक के दोनों विपरीत किनारों पर जल व स्थल में पाए जाने वाले पौधों व जंतुओं की समान प्रजातियाँ पाई जाए, तो उनके वितरण की व्याख्या में समस्याएँ उत्पन्न होती हैं। इस प्रेक्षण से कि 'लैमूर' भारत, मैडागास्कर व अफ्रीका में मिलते हैं, कुछ वैज्ञानिकों ने इन तीनों स्थलखंडों को जोड़कर एक सतत् स्थलखंड 'लेमूरिया' (Lemuria) की उपस्थिति को स्वीकारा। मेसोसारस (Mesosaurus) नाम के छोटे रेंगने वाले जीव केवल उथले खारे पानी में ही रह सकते थे- इनकी अस्थियाँ केवल दक्षिण अफ्रीका के दक्षिणी केप प्रांत और ब्राजील में इरावर शैल समूह में ही मिलते हैं। ये दोनों स्थान आज एक दूसरे से 4,800 कि0मी0 की दूरी पर हैं और इनके बीच में एक महासागर विद्यमान है।

प्रवाह संबंधी बल (Force for drifting)


वेगनर के अनुसार महाद्वीपीय विस्थापन के दो कारण थे:
(1) पोलर या ध्रुवीय फ्लीइंग बल (Polar fleeing force) और (2) ज्वारीय बल (Tidal force)। ध्रुवीय फ्लीइंग बल पृथ्वी के घूर्णन से संबंधित है। आप जानते हैं कि पृथ्वी की आकृति एक संपूर्ण गोले जैसी नहीं है; वरन् यह भूमध्यरेखा पर उभरी हुई है। यह उभार पृथ्वी के घूर्णन के कारण है। दूसरा बल, जो वेगनर महोदय ने सुझाया- वह ज्वारीय बल है, जो सूर्य व चंद्रमा के आकर्षण से संबद्ध है, जिससे महासागरों में ज्वार पैदा होते हैं। वेगनर का मानना था कि करोड़ों वर्षों के दौरान ये बल प्रभावशाली होकर विस्थापन के लिए सक्षम हो गए। यद्यपि बहुत से वैज्ञानिक इन दोनों ही बलों को महाद्वीपीय विस्थापन के लिए सर्वथा अपर्याप्त समझते हैं।

संबहन-धारा सिद्धांत (Convectional current theory)

1930 के दशक में आर्थर होम्स (Arthur Holmes) ने मैंटल (Mantle) भाग में संवहन-धाराओं के प्रभाव की संभावना व्यक्त की। ये धाराएँ रेडियोएक्टिव तत्त्वों से उत्पन्न ताप भिन्नता से मैंटल भाग में उत्पन्न होती हैं। होम्स ने तर्क दिया कि पूरे मैंटल भाग में इस प्रकार की धाराओं का तंत्र विद्यमान है। यह उन प्रवाह बलों की व्याख्या प्रस्तुत करने का प्रयास था, जिसके आधार पर समकालीन वैज्ञानिकों ने महाद्वीपीय विस्थापन सिद्धांत को नकार दिया।

महासागरीय अधस्तल का मानचित्रण (Mapping of the ocean floor)

महासागरों की बनावट और आकार पर विस्तृत शोध, यह स्पष्ट करते हैं कि महासागरों का अधस्तल एक विस्तृत मैदान नहीं है, वरन् उनमें भी उच्चावच पाया जाता है। युद्धोत्तर काल (Post-war period) महासागरीय अधस्तल के निरूपण अभियान ने महासागरीय उच्चावच संबंधी विस्तृत जानकारी प्रस्तुत की और यह दिखाया कि इसके अधस्तली में जलमग्न पर्वतीय कटकें व गहरी खाइयाँ हैं, जो प्राय: महाद्वीपों के किनारों पर स्थित हैं। मध्य महासागरीय कटकें ज्वालामुखी उद्गार के रूप में सबसे अधिक सिक्रय पायी गई। महासागरीय पर्पटी की चट्टानों के काल निर्धारण (Dating) ने यह तथ्य स्पष्ट कर दिया कि महासागरों के नितल की चट्टानें महाद्वीपीय भागों में पाई जाने वाली चट्टानों की अपेक्षा नवीन हैं। महासागरीय कटक के दोनों तरफ की चट्टानें, जो कटक से बराबर दूरी पर स्थित हैं, उन की आयु व रचना में भी आश्चर्यजनक समानता पाई जाती है।

चित्र 4.1 : महासागरीय अधस्तल (Ocean floor)

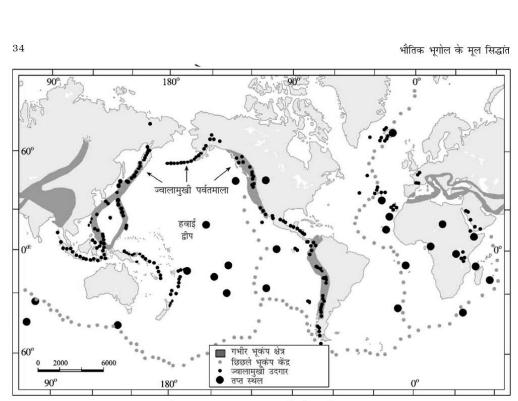
महासागरीय अधस्तल की बनावट (Ocean floor configuration)

इस भाग में हम महासागरीय तल की बनावट से संबंधित कुछ ऐसे तथ्यों का अध्ययन करेंगे, जो महासागर व महाद्वीपों के वितरण को समझने में मददगार होंगे। महासागरीय तल की आकृतियाँ अध्याय 13 में विस्तार से वर्णित हैं। गहराई व उच्चावच के प्रकार के आधार पर, महासागरीय तल को तीन प्रमुख भागों में विभाजित किया जा सकता है। ये भाग हैं : (1) महाद्वीपीय सीमा, (2) गहरे समुद्री बेसिन और (3) मध्य-महासागरीय कटक।

महाद्वीपीय सीमा (Continental margins)

ये महाद्वीपीय किनारों और गहरे समुद्री बेसिन के बीच का भाग है। इसमें महाद्वीपीय मग्नतट, महाद्वीपीय ढाल, महाद्वीपीय उभार और गहरी महासागरीय खाइयाँ आदि शामिल हैं। महासागरों व महाद्वीपों के वितरण को समझने के लिए गहरी-महासागरीय खाइयों के क्षेत्र विशेष महत्वपूर्ण और रोचक हैं।

वितलीय मैदान (Abyssal Plains)

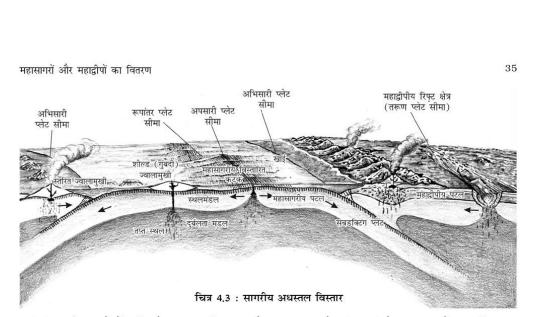

ये विस्तृत मैदान महाद्वीपीय तटों व मध्य महासागरीय कटकों के बीच पाए जाते हैं। वितलीय मैदान, वह क्षेत्र हैं, जहाँ महाद्वीपों से बहाकर लाए गए अवसाद इनके तटों से दुर निक्षेपित होते हैं।

मध्य महासागरीय कटक (Mid-oceanic ridges)

मध्य महासागरीय कटक आपस में जुड़े हुए पर्वतों की एकशृंखला बनाती है। महासागरीय जल में डूबी हुई, यह पृथ्वी के धरातल पर पाई जाने वाली संभवत: सबसे लंबी पर्वत शृंखला है। इन कटकों के मध्यवर्ती शिखर पर एक रिफ्ट, एक प्रभाजक पठार और इसकी लंबाई के साथ-साथ पार्श्व मंडल इसकी विशेषता है। मध्यवर्ती भाग में उपस्थित द्रोणी वास्तव में सिक्रय ज्वालामुखी क्षेत्र है। पिछले अध्याय में मध्य-महासागरीय ज्वालामुखी के रूप में ऐसे ज्वालामुखियों की जानकारी दी गई है।

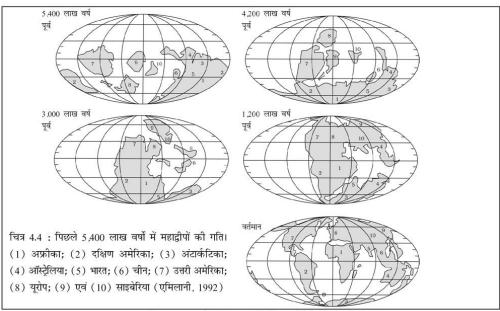
भूकंप व ज्वालामुखियों का वितरण (Distribution of earthquakes and volcanoes)

भूकंपीय गतिविधि और ज्वालामुखी वितरण का दिए गए मानिचत्र 4.5 (अ) और (ब) में अध्ययन करें। आप अटलांटिक महासागर के मध्यवर्ती भाग में, तट रेखा के लगभग समानांतर, एक बिंदु रेखा देखेंगे। यह आगे हिंद महासागर तक जाती है। भारतीय उपमहाद्वीप के थोड़ा दक्षिण में यह दो भागों में बँट जाती है, जिसकी एक शाखा पूर्वी अफ्रीका की ओर चली जाती है और दूसरी मयनमार से होती हुई न्यु गिनी पर एक ऐसी ही रेखा से मिल जाती


चित्र 4.2 : भूकंप व ज्वालामुखियों का वितरण

है। आप यह पाएँगे कि यह बिंदुरेखा मध्य-महासागरीय कटकों के समरूप है। भूकंपीय संकेन्द्रण का दूसरा क्षेत्र छायांकित मेखला (Shaded belt) के माध्यम से दिखाया गया है, जो अल्पाइन-हिमालय (Alpine-Himalayan) श्रेणियों के और प्रशांत महासागरीय किनारों के समरूप है। सामान्यत: मध्य महासागरीय कटकों के क्षेत्र में भूकंप के उद्गम केंद्र कम गहराई पर हैं जबिक अल्पाइन-हिमालय पृट्टी व प्रशांत महासागरीय किनारों पर ये केंद्र अधिक गहराई पर हैं। ज्वालामुखी मानचित्र भी इसी का अनुकरण करते हैं। प्रशांत महासागर के किनारों को सिक्रय ज्वालामुखी के क्षेत्र होने के कारण 'रिंग ऑफ फायर' (Ring of fire) भी कहा जाता है।

सागरीय अधस्तल का विस्तार

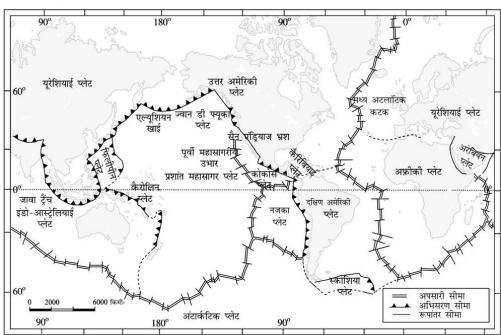

जैसा कि ऊपर वर्णन किया गया है, प्रवाह उपरांत अध्ययनों ने महत्वपूर्ण जानकारी प्रस्तुत की, जो वेगनर के महाद्वीपीय विस्थापन सिद्धांत के समय उपलब्ध नहीं थी। चट्टानों के पुरा चुंबकीय अध्ययन और महासागरीय तल के मानचित्रण ने विशेष रूप से निम्न तथ्यों को उजागर किया:

- (i) यह देखा गया कि मध्य महासागरीय कटकों के साथ-साथ ज्वालामुखी उद्गार सामान्य क्रिया है और ये उद्गार इस क्षेत्र में बड़ी मात्रा में लावा बाहर निकालते हैं।
- (ii) महासागरीय कटक के मध्य भाग के दोनों तरफ समान दूरी पर पाई जाने वाली चट्टानों के निर्माण का समय, संरचना, संघटन और चुंबकीय गुणों में समानता पाई जाती है। महासागरीय कटकों के समीप की चट्टानों में सामान्य चुंबकत्व ध्रुवण (Normal polarity) पाई जाती है तथा ये चट्टानें नवीनतम हैं। कटकों के शीर्ष से दूर चट्टानों की आयु भी अधिक है।
- (iii) महासागरीय पर्पटी की चट्टानें महाद्वीपीय पर्पटी की चट्टानों की अपेक्षा अधिक नई हैं। महासागरीय पर्पटी की चट्टानें कहीं भी 20 करोड़ वर्ष से अधिक पुरानी नहीं हैं।

(iv) गहरी खाइयों में भूकंप के उद्गम अधिक गहराई पर हैं। जबिक मध्य-महासागरीय कटकों के क्षेत्र में भूकंप उद्गम केंद्र (Foci) कम गहराई पर विद्यमान हैं।

इन तथ्यों और मध्य महासागरीय कटकों के दोनों तरफ की चट्टानों के चुंबकीय गुणों के विश्लेषण के आधार पर हेस (Hess) ने सन् 1961 में एक परिकल्पना प्रस्तुत की, जिसे 'सागरीय अधस्तल विस्तार' (Sea floor spreading) के नाम से जाना जाता है। हेस (Hess) के तर्कानुसार महासागरीय कटकों के शीर्ष पर लगातार ज्वालामुखी उद्भेदन से महासागरीय पर्पटी में विभेदन हुआ और नया लावा इस दरार को भरकर महासागरीय

चित्र 4.4 : भूवैज्ञानिक कालों में महाद्वीपों की स्थिति


36 भौतिक भूगोल के मूल सिद्धांत

पर्पटी को दोनों तरफ धकेल रहा है। इस प्रकार महासागरीय अधस्तल का विस्तार हो रहा है। महासागरीय पर्पटी का अपेक्षाकृत नवीनतम होना और इसके साथ ही एक महासागर में विस्तार से दूसरे महासागर के न सिकुड़ने पर, हेस (Hess) ने महासागरीय पर्पटी के क्षेपण की बात कही। हेस के अनुसार, यदि ज्वालामुखी पर्पटी से नई पर्पटी का निर्माण होता है, तो दूसरी तरफ महासागरीय गर्तों में इसका विनाश भी होता है। चित्र 4.3 में सागरीय तल विस्तार की मूलभूत संकल्पना को दिखाया गया है।

प्लेट विवर्तनिकी (Plate tectonics)

सागरीय तल विस्तार अवधारणा के पश्चात् विद्वानों की महाद्वीपों व महासागरों के वितरण के अध्ययन में फिर से रुचि पैदा हुई। सन् 1967 में मैक्कैन्ज़ी (Mckenzie), पारकर (Parker) और मोरगन (Morgan) ने स्वतंत्र रूप से उपलब्ध विचारों को समन्वित कर अवधारणा प्रस्तुत की, जिसे 'प्लेट विवर्तनिकी' (Plate tectonics) कहा गया। एक विवर्तनिक प्लेट (जिसे लिथोस्फेरिक

प्लेट भी कहा जाता है), ठोस चट्टान का विशाल व अनियमित आकार का खंड है, जो महाद्वीपीय व महासागरीय स्थलमंडलों से मिलकर बना है। ये प्लेटें दुर्बलतामंडल (Asthenosphere) पर एक दृढ़ इकाई के रूप में क्षैतिज अवस्था में चलायमान हैं। स्थलमंडल में पर्पटी एवं ऊपरी मैंटल को सम्मिलित किया जाता है, जिसकी मोटाई महासागरों में 5 से 100 कि0मी0 और महाद्वीपीय भागों में लगभग 200 कि0मी0 है। एक प्लेट को महाद्वीपीय या महासागरीय प्लेट भी कहा जा सकता है: जो इस बात पर निर्भर है कि उस प्लेट का अधिकतर भाग महासागर अथवा महाद्वीप से संबद्ध है। उदाहरणार्थ प्रशांत प्लेट मुख्यत: महासागरीय प्लेट है, जबकि यूरेशियन प्लेट को महाद्वीपीय प्लेट कहा जाता है। प्लेट विवर्तनिकी के सिद्धांत के अनुसार पृथ्वी का स्थलमंडल सात मुख्य प्लेटों व कुछ छोटी प्लेटों में विभक्त है। नवीन वलित पर्वत श्रेणियाँ, खाइयाँ और भ्रंश इन मुख्य प्लेटों को सीमांकित करते हैं। (चित्र 4.7)

चित्र 4.5 : संसार की प्रमुख बड़ी व छोटी प्लेट का वितरण

महासागरों और महाद्वीपों का वितरण

37

प्रमख प्लेट इस प्रकार हैं :

- (i) अंटार्कटिक प्लेट (जिसमें अंटार्कटिक और इसको चारों ओर से घेरती हुई महासागरीय प्लेट भी शामिल है)
- (ii) उत्तर अमेरिकी प्लेट (जिसमें पश्चिमी अटलांटिक तल सम्मिलित है तथा दक्षिणी अमेरिकन प्लेट व कैरेबियन द्वीप इसकी सीमा का निर्धारण करते हैं)
- (iii) दक्षिण अमेरिकी प्लेट (पश्चिमी अटलांटिक तल समेत और उत्तरी अमेरिकी प्लेट व कैरेबियन द्वीप इसे पृथक करते हैं)
- (iv) प्रशांत महासागरीय प्लेट।
- (v) इंडो-आस्टेलियन-न्यूज़ीलैंड प्लेट।
- (vi) अफ्रीकी प्लेट (जिसमें पूर्वी अटलांटिक तल शामिल है) और
- (vii) यूरेशियाई प्लेट (जिसमें पूर्वी अटलांटिक महासागरीय तल सम्मिलित है)

कुछ महत्वपूर्ण छोटी प्लेटें निम्नलिखित हैं:

- (i) कोकोस (Cocoas) प्लेट यह प्लेट मध्यवर्ती अमेरिका और प्रशांत महासागरीय प्लेट के बीच स्थित है।
- (ii) नज़का प्लेट (Nazca plate) यह दक्षिण अमेरिका व प्रशांत महासागरीय प्लेट के बीच स्थित है।
- (iii) अरेबियन प्लेट (Arabian plate) इसमें अधिकतर अरब प्रायद्वीप का भू-भाग सम्मिलित है।
- (iv) फिलिपीन प्लेट (Phillippine plate) -यह एशिया महाद्वीप और प्रशांत महासागरीय प्लेट के बीच स्थित है।
- (v) कैरोलिन प्लेट (Caroline plate) यह न्यू गिनी के उत्तर में फिलिपियन व इंडियन प्लेट के बीच स्थित है।
- (vi) फ्यूजी प्लेट (Fuji plate) यह आस्ट्रेलिया के उत्तर-पूर्व में स्थित है।

ग्लोब पर ये प्लेटें पृथ्वी के पूरे इतिहास काल में लगातार विचरण कर रही हैं। वेगनर की संकल्पना कि केवल महाद्वीप गतिमान हैं, सही नहीं है। महाद्वीप एक प्लेट का हिस्सा है और प्लेट चलायमान हैं। यह एक निर्विवाद तथ्य है कि भूबैज्ञानिक इतिहास में सभी प्लेट गतिमान रही हैं और

भविष्य में भी गितमान रहेंगी। चित्र 4.4 में विभिन्न कालों में महाद्वीपीय भागों की स्थिति को दर्शाया गया है। वेगनर के अनुसार आरंभ में, सभी महाद्वीपों से मिलकर बना एक सुपर महाद्वीप (Super continent) पैंजिया के रूप में विद्यमान था। यद्यिप बाद की खोजों ने यह स्पष्ट किया कि महाद्वीपीय पिंड, जो प्लेट के ऊपर स्थित हैं, भूवैज्ञानिक काल पर्यन्त चलायमान थे और पैंजिया अलग-अलग महाद्वीपीय खंडों के अभिसरण से बना था, जो कभी एक या किसी दूसरी प्लेट के हिस्से थे। पुराचुंबकीय (Palaeomagnetic) आँकड़ों के आधार पर वैज्ञानिकों ने विभिन्न भूकालों में प्रत्येक महाद्वीपीय खंड की अवस्थिति निर्धारित की है। भारतीय उपमहाद्वीप (अधिकांशत: प्रायद्वीपीय भारत) की अवस्थिति नागपुर क्षेत्र में पाई जाने वाली चट्टानों के विश्लेषण के आधार पर आँकी गई है।

प्लेट संचरण के फलस्वरूप तीन प्रकार की प्लेट सीमाएँ बनती हैं।

अपसारी सीमा (Divergent boundaries)

जब दो प्लेट एक दूसरे से विपरीत दिशा में अलग हटती हैं और नई पर्पटी का निर्माण होता है। उन्हें अपसारी प्लेट कहते हैं। वह स्थान जहाँ से प्लेट एक दूसरे से दूर हटती हैं, इन्हें प्रसारी स्थान (Spreading site) भी कहा जाता है। अपसारी सीमा का सबसे अच्छा उदाहरण मध्य-अटलांटिक कटक है। यहाँ से अमेरिकी प्लेटें (उत्तर अमेरिकी व दक्षिण अमेरिकी प्लेटें) तथा यूरेशियन व अफ्रीकी प्लेटें अलग हो रही हैं।

अभिसरण सीमा (Convergent boundaries)

जब एक प्लेट दूसरी प्लेट के नीचे धँसती है और जहाँ भूपर्पटी नष्ट होती है, वह अभिसरण सीमा है। वह स्थान जहाँ प्लेट धँसती हैं, इसे प्रविष्ठन क्षेत्र (Subduction zone) भी कहते हैं। अभिसरण तीन प्रकार से हो सकता है– (1) महासागरीय व महाद्वीपीय प्लेट के बीच (2) दो महासागरीय प्लेटों के बीच (3) दो महाद्वीपीय प्लेटों के बीच।

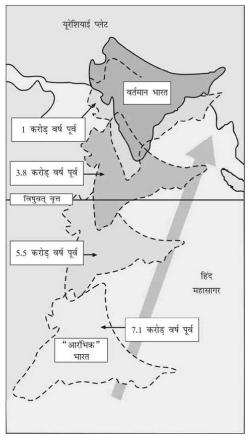
रूपांतर सीमा (Transform boundaries)

जहाँ न तो नई पर्पटी का निर्माण होता है और न ही पर्पटी का विनाश होता है, उन्हें रूपांतर सीमा कहते हैं। इसका

+

भौतिक भूगोल के मूल सिद्धांत

कारण है कि इस सीमा पर प्लेटें एक दूसरे के साथ-साथ क्षेतिज दिशा में सरक जाती हैं। रूपांतर भ्रंश (Transform faults) दो प्लेट को अलग करने वाले तल हैं जो सामान्यत: मध्य-महासागरीय कटकों से लंबवत स्थिति में पाए जाते हैं। क्योंकि कटकों के शीर्ष पर एक ही समय में सभी स्थानों पर ज्वालामुखी उद्गार नहीं होता, ऐसे में पृथ्वी के अक्ष से दूर प्लेट के हिस्से भिन्न प्रकार से गित करते हैं। इसके अतिरिक्त पृथ्वी के घूर्णन का भी प्लेट के अलग खंडों पर भिन्न प्रभाव पडता है।


प्लेट प्रवाह की दर कैसे निर्धारित होती है?

प्लेट प्रवाह दरें (Rates of plate movement)

सामान्य व उत्क्रमण चुंबकीय क्षेत्र की पट्टियाँ जो मध्य-महासागरीय कटक के सामानांतर हैं, प्लेट प्रवाह की दर समझने में वैज्ञानिक के लिए सहायक सिद्ध हुई हैं। प्रवाह की ये दरें बहुत भिन्न हैं। आर्कटिक कटक की प्रवाह दर सबसे कम है (2.5 सेंटोमीटर प्रति वर्ष से भी कम)। ईस्टर द्वीप के निकट पूर्वी प्रशांत महासागरीय उभार, जो चिली से 3,400 कि0मी0 पश्चिम की ओर दक्षिण प्रशांत महासागर में है, इसकी प्रवाह दर सर्वाधिक है (जो 5 से0मी0 प्रति वर्ष से भी अधिक है)।

प्लेट को संचलित करने वाले बल (Forces for the plate movement)

जिस समय वेगनर ने महाद्वीपीय विस्थापन सिद्धांत प्रस्तुत किया था, उस समय अधिकतर वैज्ञानिकों का विश्वास था कि पृथ्वी एक ठोस, गित रहित पिंड है। यद्यपि सागरीय अधस्तल विस्तार और प्लेट विवर्तनिक-दोनों सिद्धांतों ने इस बात पर बल दिया कि पृथ्वी का धरातल व भूगर्भ दोनों ही स्थिर न होकर गितमान हैं। प्लेट विचरण करती है-यह आज एक अकाट्य तथ्य है। ऐसा माना जाता है कि दृढ़ प्लेट के नीचे चलायमान चृटानें वृत्ताकार रूप में चल रही हैं। उष्ण पदार्थ धरातल पर पहुँचता है, फैलता है और धीरे-धीरे ठंडा होता है; फिर गहराई में जाकर नष्ट हो जाता है। यही चक्र बारंबार दोहराया जाता है और वैज्ञानिक इसे संवहन प्रवाह (Convection flow) कहते हैं। पृथ्वी के भीतर ताप उत्पत्ति के दो माध्यम हैं-रेडियोधर्मी तत्वों का क्षय और अवशिष्ट ताप। आर्थर

चित्र 4.6 : भारतीय प्लेट का प्रवाह (Movement of the Indian Plate)

होम्स ने सन् 1930 में इस विचार को प्रतिपादित किया। जिसने बाद में हैरी हेस की सागरीय तल विस्तार अवधारणा को प्रभावित किया। दृढ़ प्लेटों के नीचे दुर्बल व उष्ण मैंटल है, जो प्लेट को प्रवाहित करता है।

भारतीय प्लेट का संचलन (Movement of the Indian Plate)

भारतीय प्लेट में प्रायद्वीप भारत और आस्ट्रेलिया महाद्वीपीय भाग सम्मिलित हैं। हिमालय पर्वत श्रेणियों के साथ-साथ पाया जाने वाला प्रविष्ठन क्षेत्र (Subduction zone), इसकी उत्तरी सीमा निर्धारित करता है- जो महाद्वीपीय- महासागरों और महाद्वीपों का वितरण

39

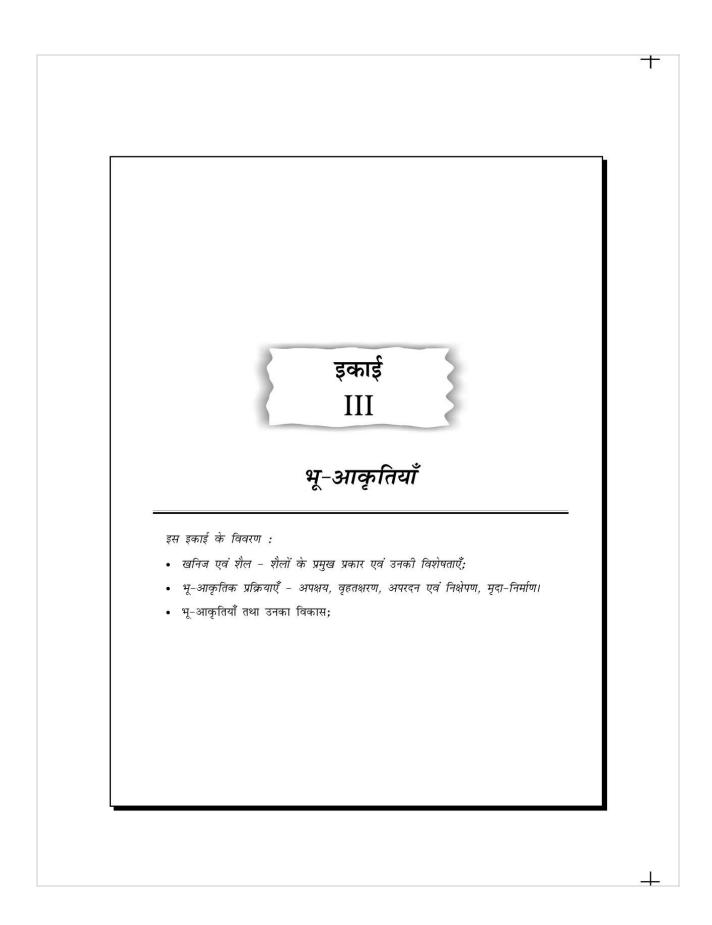
महाद्वीपीय अभिसरण (Continent-continent convergence) के रूप में हैं। (अर्थात् दो महाद्वीप प्लेटों की सीमा है) यह पूर्व दिशा में म्याँमार के राकिन्योमा पर्वत से होते हुए एक चाप के रूप में जावा खाई तक फैला हुआ है। इसकी पूर्वी सीमा एक विस्तारित तल (Spreading site) है, जो आस्ट्रेलिया के पूर्व में दक्षिणी पश्चिमी प्रशांत महासागर में महासागरीय कटक के रूप में है। इसकी पश्चिमी सीमा पाकिस्तान की किरथर श्रेणियों का अनुसरण करती है। यह आगे मकरान तट के साथ-साथ होती हुई दक्षिण-पूर्वी चागोस द्वीप समूह (Chagos archipelago) के साथ-साथ लाल सागर द्रोणी (जो विस्तारण तल है) में जा मिलती है। भारतीय तथा आर्कटिक प्लेट की सीमा भी महासागरीय कटक से निर्धारित होती है (जो एक अपसारी सीमा (Divergent boundary) है।) और यह लगभग पूर्व-पश्चिम दिशा में होती हुई न्यूजीलैंड के दक्षिण में विस्तारित तल में मिल जाती है।

भारत एक वृहत् द्वीप था, जो आस्ट्रेलियाई तट से दूर एक विशाल महासागर में स्थित था। लगभग 22.5 करोड़ वर्ष पहले तक टेथीस सागर इसे एशिया महाद्वीप से

अलग करता था। ऐसा माना जाता है कि लगभग 20 करोड वर्ष पहले. जब पैंजिया विभक्त हुआ तब भारत ने उत्तर दिशा की ओर खिसकना आरंभ किया। लगभग 4 से 5 करोड़ वर्ष पहले भारत एशिया से टकराया व परिणामस्वरूप हिमालय पर्वत का उत्थान हुआ। 7.1 करोड वर्ष पहले से आज तक की भारत की स्थिति मानचित्र 4.6 में दिखाई गई है। आरेख 4.6 भारतीय उपमहाद्वीप व यूरेशियन प्लेट की स्थिति भी दर्शाता है। आज से लगभग 14 करोड़ वर्ष पहले यह उपमहाद्वीप सुदूर दक्षिण में 50° दक्षिणी अक्षांश पर स्थित था। इन दो प्रमुख प्लेटों को टेथिस सागर अलग करता था और तिब्बतीय खंड, एशियाई स्थलखंड के करीब था। भारतीय प्लेट के एशियाई प्लेट की तरफ प्रवाह के दौरान एक प्रमुख घटना घटी-वह थी लावा प्रवाह से दक्कन ट्रेप का निर्माण होना। ऐसा लगभग 6 करोड़ वर्ष पहले आरंभ हुआ और एक लंबे समय तक यह जारी रहा। याद रहे कि यह उपमहाद्वीप तब भी भूमध्यरेखा के निकट था। लगभग 4 करोड़ वर्ष पहले और इसके पश्चात् हिमालय की उत्पत्ति आरम्भ हुई। वैज्ञानिकों का मानना है कि यह प्रक्रिया अभी भी जारी है और हिमालय की ऊँचाई अब भी बढ़ रही है।

अभ्यास.

1. बहुवैकल्पिक प्रश्न :


- (i) निम्न में से किसने सर्वप्रथम यूरोप, अफ्रीका व अमेरिका के साथ स्थित होने की संभावना व्यक्त की?
 - (क) अल्फ्रेड वेगनर
- (ख) अब्राहम आरटेलियस
- (ग) एनटोनियो पेलेग्रिनी
- (घ) एडमंड हैस
- (ii) पोलर फ्लीइंग बल (Polar fleeing force) निम्नलिखित में से किससे संबंधित है?
 - (क) पृथ्वी का परिक्रमण
- (ख) पृथ्वी का घूर्णन
- (ग) गुरुत्वाकर्षण
- (घ) ज्वारीय बल
- (iii) इनमें से कौन सी लघु (Minor) प्लेट नहीं है?
 - (क) नजका

(ख) फिलिपीन

(ग) अख

- (घ) अंटार्कटिक
- (iv) सागरीय अधस्तल विस्तार सिद्धांत की व्याख्या करते हुए हेस ने निम्न में से किस अवधारणा पर विचार नहीं किया?
 - (क) मध्य-महासागरीय कटकों के साथ ज्वालामुखी क्रियाएँ।
 - (ख) महासागरीय नितल की चट्टानों में सामान्य व उत्क्रमण चुंबकत्व क्षेत्र की पट्टियों का होना।
 - (ग) विभिन्न महाद्वीपों में जीवाश्मों का वितरण।
 - (घ) महासागरीय तल की चट्टानों की आयु।

+40 भौतिक भूगोल के मूल सिद्धांत (v) हिमालय पर्वतों के साथ भारतीय प्लेट की सीमा किस तरह की प्लेट सीमा है? (क) महासागरीय-महाद्वीपीय अभिसरण (ख) अपसारी सीमा (ग) रूपांतर सीमा (घ) महाद्वीपीय-महाद्वीपीय अभिसरण। 2. निम्नलिखित प्रश्नों के उत्तर लगभग 30 शब्दों में दीजिए : (i) महाद्वीपों के प्रवाह के लिए वेगनर ने निम्नलिखित में से किन बलों का उल्लेख किया? (ii) मैंटल में संवहन धाराओं के आरंभ होने और बने रहने के क्या कारण हैं? (iii) प्लेट की रूपांतर सीमा, अभिसरण सीमा और अपसारी सीमा में मुख्य अंतर क्या है? (iv) दक्कन ट्रेप के निर्माण के दौरान भारतीय स्थलखंड की स्थित क्या थी? 3. निम्नलिखित प्रश्नों के उत्तर लगभग 150 शब्दों में दीजिए : (i) महाद्वीपीय विस्थापन सिद्धांत के पक्ष में दिए गए प्रमाणों का वर्णन करें। (ii) महाद्वीपीय विस्थापन सिद्धांत व प्लेट विवर्तनिक सिद्धांत में मूलभूत अंतर बताइए। (iii) महाद्वीपीय प्रवाह सिद्धांत के उपरांत की प्रमुख खोज क्या है, जिससे वैज्ञानिकों ने महासागर व महाद्वीपीय वितरण के अध्ययन में पुन: रुचि ली? परियोजना कार्य भूकंप के कारण हुई क्षति से संबंधित एक कोलाज बनाइए।

अध्याय

+

खनिज एवं शैल

थ्वी विभिन्न तत्त्वों से बनी हुई है। इसकी बाहरी परत पर ये तत्त्व ठोस रूप में और आंतरिक परत में ये गर्म एवं पिघली हुई अवस्था में पाए जाते हैं। पृथ्वी के संपूर्ण पर्पटी का लगभग 98 प्रतिशत भाग आठ तत्त्वों, जैसे ऑक्सीजन, सिलिकन, एलुमिनियम, लौहा, कैल्शियम, सोडियम, पोटेशियम तथा मैगनीशियम से बना है (सारणी 5.1) तथा शेष भाग टायटेनियम, हाइड्रोजन, फॉस्फोरस, मैंगनीज, सल्फर, कार्बन, निकल एवं अन्य पदार्थों से बना है।

सारणी 5.1 : पृथ्वी के पर्पटी के प्रमुख तत्त्व

संख्या	पदार्थ	वज़न के अनुसार (%)
1.	ऑक्सीजन	46.60
2.	सिलिकन	27.72
3.	एलुमिनियम	8.13
4.	लौह	5.00
5.	कैलशियम	3.63
6.	सोडियम	2.83
7.	पोटैशियम	2.59
8.	मैगनेशियम	2.09
9.	अन्य	1.41

भूपर्पटी पर पाए जाने वाले तत्त्व प्राय: अलग-अलग नहीं मिलते, बल्कि सामान्यत: ये दूसरे तत्त्वों के साथ

इस प्रकार, खिनज एक ऐसा प्राकृतिक, कार्बनिक एवं अकार्बनिक तत्त्व है, जिसमें एक क्रमबद्ध परमाणिवक संरचना, निश्चित रासायिनक संघटन तथा भौतिक गुणधर्म होते हैं। खिनज का निर्माण दो या दो से अधिक तत्त्वों से मिलकर होता है। लेकिन, कभी-कभी सल्फ्र, ताँबा, चाँदी, स्वर्ण, ग्रेफाइट जैसे एक तत्त्वीय खिनज भी पाए जाते हैं। मिलकर विभिन्न पदार्थों का निर्माण करते हैं। इन पदार्थों को खनिजों का नाम दिया गया है।

यद्यपि स्थलमंडल का निर्माण करने वाले तत्त्वों की संख्या अत्यंत कम है, लेकिन आपस में उनका संयोजन विभिन्न तरीकों से होता है, जिससे खिनजों की अनेक किस्में बनती हैं। भूपर्पटी पर कम से कम 2000 प्रकार के खिनजों को पहचाना गया है, और उनको नाम दिया गया है। लेकिन इनमें से सामान्यत: उपलब्ध लगभग सभी पदार्थ, छह प्रमुख खिनज समूहों से संबंधित होते हैं, जिनको शैलों का निर्माण करने वाले प्रमुख खिनज माना गया है।

पृथ्वी के आंतरिक भाग में पाया जाने वाला मैग्मा ही सभी खिनजों का मूल स्रोत है। इस मैग्मा के ठंडे होने पर

भौतिक विशेषताओं और स्वभाव के आधार पर कुछ प्रमुख खनिजों की संक्षिप्त जानकारी यहाँ दी गई है।

भौतिक विशेषताएँ

- (i) क्रिस्टल का बाहरी रूप अणुओं की आंतरिक व्यवस्था द्वारा तय होती है- घनाकार, अष्टभुजाकार, षट्भुजाकार प्रिज्म आदि।
- (ii) विदलन सापेक्षिक रूप से समतल सतह बनाने के लिए निश्चित दिशा में टूटने की प्रवृत्ति; अणुओं की आंतरिक व्यवस्था का परिणाम; एक या कई दिशा में एक दूसरे से कोई भी कोण बनाकर टूट सकते हैं।
- (iii) विभंजन अणुओं की आंतरिक व्यवस्था इतनी जटिल होती है कि अणुओं का कोई तल नहीं होता है; क्रिस्टल विदलन तल के अनुसार नहीं बल्कि अनियमित रूप से टूटता है।

खनिज एवं शैल

- (iv) चमक रंग के बिना किसी पदार्थ की चमक; प्रत्येक खनिज की अपनी चमक होती है जैसे- मेटैलिक, रेशमी, ग्लॉसी आदि।
- (v) रंग कुछ खिनजों के रंग उन्ही परमाण्विक संरचना से निर्धारित होते हैं। जैसे- मैलाकाइट, एजूराइट, कैल्सोपाइराइट आदि तथा कुछ खिनजों में अशुद्धियों के कारण रंग आते हैं। उदाहरण के लिए अशुद्धियों के कारण क्वार्ट्ज का रंग श्वेत, हग, लाल या पीला हो सकता है।
- (vi) धारियाँ किसी भी खिनज के पिसने के बाद बने पाउडर का रंग खिनज के रंग का या किसी अन्य रंग का हो सकता है – मेलाकाइट का रंग हरा होता है और उसपर धारियाँ भी हरी होती हैं, फ़्लोराइट का रंग बैंगनी या हरा होता है, जबिक इसपर श्वेत धारियाँ होती हैं।
- (vii) पारदर्शिता पारदर्शी : प्रकाश किरणें इस प्रकार आरपार जाती हैं, कि वस्तु सीधी देखी जा सकती है; पारभासी : प्रकाश किरणें आरपार होती हैं, लेकिन उनके विसरित हो जाने के कारण वस्तु देखी नहीं जा सकती; अपारदर्शी: प्रकाश किरणें तनिक भी आरपार नहीं होंगी।
- (viii) संरचना प्रत्येक क्रिस्टल की विशेष व्यवस्था; महीन, मध्यम अथवा खुरदरे पिसे हुए; तंतुयुक्त - पृथक करने योग्य, अपसारी, विकरणकारी।
- (ix) कठोरता सापेक्षिक प्रतिरोध का चिह्नित होना; दस चुने हुए खनिजों में से दस तक की श्रेणी में कठोरता मापना। ये खनिज हैं -1. टैल्क, 2. जिप्सम, 3. कैल्साइट, 4. फ़्लोराइट, 5. ऐपेटाइट, 6. फ़ेल्डस्पर, 7. क्वार्ट्ज, 8. टोपाज, 9. कोरंडम, 10. हीरा। उदाहरण के लिए इस तुलना में नाखून 2.5 है तथा काँच या चाक की नोक 5.5 है।
- (x) आपेक्षिक भार दी गई वस्तु का भार तथा बराबर आयतन के पानी के भार का अनुपात; हवा एवं पानी में वस्तु का भार लेकर इन दोनों के अंतर से हवा में लिए गए भार से भाग दें।

खिनजों के क्रिस्टल बनने लगते हैं और इस प्रक्रिया में जैसे-जैसे मैग्मा ठंडा होकर ठोस शैल बनता है, खिनजों की क्रमबद्ध शृंखला का निर्माण होने लगता है। कोयला, पेट्रोलियम एवं प्राकृतिक गैस जैसे खनिज कार्बनिक पदार्थ हैं तथा ये क्रमश: ठोस, तरल एवं गैस रूप में पाए जाते हैं।

कुछ प्रमुख खनिज तथा उनकी विशेषताएँ

फेल्डस्पर

सिलिकन तथा ऑक्सीजन सभी फेल्डस्परों में उपस्थित होते हैं जबिक सोडियम, पोटैसियम, कैल्सियम, एलूमीनियम आदि तत्त्व भिन्न-भिन्न फैल्डस्पर में शामिल हैं। पृथ्वी की पर्पटी का आधा भाग फ़ेल्डस्पर से बना है। इसका रंग हल्का क्रीम से हल्का गुलाबी तक होता है। चीनी मिट्टी के बर्तन तथा काँच बनाने में इसका उपयोग होता है।

क्वार्ट्ज़

ये रेत एवं ग्रेनाइट का प्रमुख घटक है। इसमें सिलिका होता है। यह एक कठोर खनिज है तथा पानी में सर्वथा अघुलनशील होता है। यह श्वेत या रंगहीन होता है तथा इसका उपयोग रेडियो एवं रडार में होता है। ग्रेनाइट का यह एक महत्वपूर्ण घटक है।

पाइरॉक्सीन

कैल्सियम, एलूमीनियम, मैग्नेशियम, आयरन तथा सिलिका इसमें शामिल हैं। पृथ्वी की भूपृष्ठ का 10 प्रतिशत हिस्सा पाइरॉक्सीन से बना है। सामान्यत: यह उल्कापिंड में पाया जाता है। इसका रंग हरा अथवा काला होता है।

एम्फ़ीबोल

एम्फ़ीबोल के प्रमुख तत्व एलूमीनियम, कैल्शियम, सिलिका, लौह, मैग्नीशियम हैं। इनसे पृथ्वी के भूपृष्ठ का 7 प्रतिशत भाग निर्मित है। ये हरे एवं काले रंग का होता है, तथा इसका उपयोग एस्बेस्टस के उद्योग में होता है। हॉर्नब्लेन्ड भी एम्फ़ीबोल का एक प्रकार है।

माइका

इसमें पोटैशियम, एलूमिनियम, मैग्नेशियम, लौह, सिलिका आदि निहित होते हैं। पृथ्वी की पर्पटी में इसका 4 प्रतिशत अंश होता है। ये सामान्यत: आग्नेय एवं रूपांतरित शैलों में पाए जाते हैं। विद्युत उपकरणों में इनका उपयोग होता है।

+

भौतिक भूगोल के मूल सिद्धांत

ऑलिवीन

मैग्नीशियम, लौह तथा सिलिका ऑलिवीन के प्रमुख तत्त्व होते हैं। इनका उपयोग आभूषणों में होता है। यह सामान्यत: हरे रंग के क्रिस्टल होते हैं जो प्राय: बैसाल्टिक शैलों में पाए जाते हैं।

इन प्रमुख खनिजों के अतिरिक्त शैलों में क्लोराइट, कैलसाइट, मैग्नेटाइट, हेमेटाइट, बॉक्साइट तथा बैराइट जैसे अन्य खनिज भी कुछ मात्रा में उपस्थित होते हैं।

धात्विक खनिज

इनमें धातु तत्त्व होते हैं, तथा इनको तीन प्रकारों में विभाजित किया जा सकता है-

- (क) बहुमूल्य धातु : स्वर्ण, चाँदी, प्लैटिनम आदि।
- (ख) लौह धातु : लौह एवं स्टील के निर्माण के लिए लोहे में मिलाई जाने वाली अन्य धातुएँ।
- (ग) अलौहिक धातु : इनमें ताम्र, सीसा, जिंक,टिन, एलूमिनियम आदि धातु शामिल होते हैं।

अधात्विक खनिज

इनमें धातु के अंश उपस्थित नहीं होते हैं। गंधक, फ़ॉस्फ़ेट तथा नाइट्रेट अधात्विक खनिज हैं। सीमेंट अधात्विक खनिजों का मिश्रण है।

शैलें

पृथ्वी की पर्पटी शैलों से बनी है। शैल का निर्माण एक या एक से अधिक खनिजों से मिलकर होता है। शैल कठोर या नरम तथा विभिन्न रंगों की हो सकती है। जैसे, ग्रेनाइट कठोर तथा शैलखड़ी नरम है। गैब्रो काला तथा क्वार्टजाइट दूधिया श्वेत हो सकता है। शैलों में खनिज घटकों का कोई निश्चित संघटन नहीं होता है। शैलों में सामान्यत: पाए जाने वाले खनिज पदार्थ फ़ेल्डस्पर तथा क्वार्टज हैं।

शैलों एवं स्थलाकृतियों तथा शैलों एवं मृदा में निकट संबंध होने के कारण भूगोलशास्त्री को शैलों का मौलिक ज्ञान होना आवश्यक होता है। शैलों के विभिन्न प्रकार हैं,

पेट्रोलॉजी शैलों का विज्ञान है। एक पेट्रो-शास्त्री शैलों के विभिन्न स्वरूपों का अध्ययन करता है। जैसे-खिनज की संरचना, बनावट, गठन, स्रोत, प्राप्ति स्थान, परिवर्तन एवं दूसरी शैलों के साथ संबंध। जिनको उनकी निर्माण पद्धित के आधार पर तीन समूहों में विभाजित किया गया है- (i) आग्नेय शैल-मैगमा तथा लावा से घनीभूत, (ii) अवसादी शैल - बहिर्जनित प्रक्रियाओं के द्वारा शैलों के अंशों के निश्लेपण का परिणाम तथा (iii) कायांतरित शैल - उपस्थित शैलों में पुनर्क्रिस्टलीकरण की प्रक्रिया से निर्मित।

आग्नेय शैल

चूँकि, आग्नेय शैलों का निर्माण पृथ्वी के आंतरिक भाग के मैग्मा एवं लावा से होता है, अत: इनको प्राथमिक शैलें भी कहते हैं। मैग्मा के ठंडे होकर घनीभूत हो जाने पर आग्नेय शैलों का निर्माण होता है। (Igneous लैटिन भाषा के इग्निस शब्द से बना है जिसका अर्थ अग्नि होता है।) मैग्मा के विषय में तो आप पहले से ही जानते हैं। जब अपनी ऊपरगामी गित में मैग्मा ठंडा होकर ठोस बन जाता है, तो ये आग्नेय शैल कहलाता है। ठंडा तथा ठोस बनने की यह प्रक्रिया पृथ्वी की पर्पटी या पृथ्वी की सतह पर हो सकती है।

आग्नेय शैलों का वर्गीकरण इनकी बनावट के आधार पर किया गया है। इसकी बनावट इसके कणों के आकार एवं व्यवस्था अथवा पदार्थ की भौतिक अवस्था पर निर्भर करती है। यदि पिघले हुए पदार्थ धीरे-धीरे गहराई तक ठंडे होते हैं, तो खिनज के कण पर्याप्त बड़े हो सकते हैं। सतह पर हुई आकस्मिक शीतलता के कारण छोटे एवं चिकने कण बनते हैं। शीतलता की मध्यम परिस्थितियाँ होने पर आग्नेय शैल को बनाने वाले कण मध्यम आकार के हो सकते हैं। ग्रेनाइट, गैब्रो, पेग्मैटाइट, बैसाल्ट, ज्वालामुखीय ब्रेशिया तथा टफ़ आग्नेय शैलों के कुछ उदाहरण हैं।

अवसादी शैल

अवसादी अर्थात् (Sedimentary) शब्द की व्युत्पत्ति लैटिन भाषा के शब्द सेडिमेंटस से हुई है, जिसका अर्थ है, व्यवस्थित होना। पृथ्वी की सतह की शैलें (आग्नेय, अवसादी एवं कायांतरित) अपक्षयकारी कारकों के प्रति अनावृत्त होती हैं, जो विभिन्न आकार के विखंडों में विभाजित होती हैं। ऐसे उपखंडों का विभिन्न बहिर्जनित कारकों के द्वारा संबहन एवं निक्षेप होता है। सघनता के खनिज एवं शैल 45

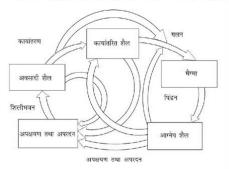
द्वारा ये संचित पदार्थ शैलों में परिणत हो जाते हैं। यह प्रक्रिया शिलीभवन (Lithification) कहलाती है। बहुत सी अवसादी शैलों में निक्षेपित परतें शिलीभवन के बाद भी अपनी विशेषताएँ बनाए रखती हैं। इसी कारणवश बालुकाश्म, शैल जैसी अवसादी शैलों में विविध सांद्रता वाली अनेक सतहें होती हैं।

निर्माण पद्धति के आधार पर अवसादी शैलों का वर्गीकरण तीन प्रमख समहों में किया गया है-

- (i) यांत्रिकी रूप से निर्मित उदाहरणार्थ, बालुकाश्म, पिंडशिला, चूना प्रस्तर, शेल, विमृदा आदि;
- (ii) कार्बनिक रूप से निर्मित उदाहरणार्थ, गीज़राइट, खड़िया, चूनापत्थर, कोयला, आदि तथा
- (iii) रासायनिक रूप से निर्मित उदाहरणार्थ, शृंग प्रस्तर, चुना पत्थर, हेलाइट, पोटाश आदि।

कायांतरित शैल

कायांतरित का अर्थ है, 'स्वरूप में परिवर्तन'। दाब, आयतन एवं तापमान में परिवर्तन की प्रक्रिया के फलस्वरूप इन शैलों का निर्माण होता है। यह शैलें दाब, आयतन तथा तापमान (पी.वी.टी.) में परिवर्तन के द्वारा निर्मित होती हैं। जब विवर्तनिक प्रक्रिया के कारण शैलें निचले स्तर की ओर बलपूर्वक खिसक जाती हैं, या जब भूपृष्ठ से उठता, पिघला हुआ मैग्मा भूपृष्ठीय शैलों के संपर्क में आता है, या जब ऊपरी शैलों के कारण निचली शैलों पर अत्यधिक दाब पड़ता है, तब कायांतरण होता है। कायांतरण वह प्रक्रिया है, जिसमें समेकित शैलों में पुन: क्रिस्टलीकरण होता है तथा वास्तविक शैलों में पदार्थ पुन: संगठित हो जाते हैं।


बिना किसी विशेष रसायनिक परिवर्तनों के, टूटने एवं पिसने के कारण वास्तविक शैलों में यांत्रिकी व्यवधान एवं उनका पुन: संगठित होना गतिशील कायांतरित कहलाता है। ऊष्मीय कायंतरण के कारण शैलों के पदार्थों में रसायनिक परिवर्तन एवं पुन: क्रिस्टलीकरण होता है। ऊष्मीय कायांतरण के दो प्रकार होते हैं – संपर्क कायांतरण एवं प्रादेशिक कायांतरण। संपर्क रूपांतरण में शैलें गर्म, ऊपर आते हुए मैग्मा एवं लावा के संपर्क में आती हैं, तथा उच्च तापमान में शैल के पदार्थों का पुन: क्रिस्टलीकरण होता है। अक्सर शैलों में मैग्मा अथवा लावा के योग से नए पदार्थ उत्पन्न होते हैं। प्रादेशिक कायांतरण में उच्च

तापमान अथवा दबाव अथवा इन दोनों के कारण शैलों में विवर्तनिक दबाव के कारण विकतियाँ होती हैं. जिससे शैलों में पुन: क्रिस्टलीकरण होता है। कायांतरण की प्रक्रिया में शैलों के कुछ कण या खनिज सतहों या रेखाओं के रूप में व्यवस्थित हो जाते हैं। कायांतरित शैलों में खनिज अथवा कणों की इस व्यवस्था को पत्रण (Foliation) या रेखांकन कहते हैं। कभी-कभी खनिज या विभिन्न समहों के कण पतली से मोटी सतह में इस प्रकार व्यवस्थित होते हैं, कि वे हल्के एवं गहरे रंगों में दिखाई देते हैं। कायांतरित शैलों में ऐसी संरचनाओं को बैंडिंग कहते हैं तथा बैंडिंग प्रदर्शित करने वाली शैलों को बैंडेड शैलें कहते हैं। कायांतरित होने वाली वास्तविक शैलों पर ही कायांतरित शैलों के प्रकार निर्भर करते हैं। कायांतरित शैलें दो प्रमुख भागों में वर्गीकृत की जा सकती हैं - पत्रित शैल अथवा अपत्रित शैल। पट्टिताश्मीय, ग्रेनाइट, सायनाइट, स्लेट, शिस्ट, संगमरमर, क्वार्ट्ज आदि रूपांतरित शैलों के कुछ उदाहरण हैं।

शैली चक्र

शैलों अपने मूल रूप में अधिक समय तक नहीं रहती हैं, बिल्क इनमें परिवर्तन होते रहते हैं। शैली चक्र एक सतत् प्रक्रिया होती है, जिसमें पुरानी शैलें परिवर्तित होकर नवीन रूप लेती हैं।

आग्नेय शैलें प्राथिमक शैलें हैं तथा अन्य (अवसादी

चित्र 5.1 : शैली चक्र

एवं कायांतरित) शैलें इन प्राथमिक शैलों से निर्मित होती हैं। आग्नये शैलों को कायांतरित शैलों में परिवर्तित किया जा सकता है। आग्नेय एवं कायांतरित शैलों से प्राप्त अंशों

46

十

भौतिक भूगोल के मूल सिद्धांत

से अवसादी शैलों का निर्माण होता है। अवसादी शैलें अपखंडों में परिवर्तित हो सकती हैं तथा ये अपखंड अवसादी शैलों के निर्माण का एक स्रोत हो सकते हैं। निर्मित भूपृष्ठीय शैलें (आग्नेय, कायांतरित एवं अवसादी) प्रत्यावर्तन के द्वारा पृथ्वी के आंतरिक भाग में नीचे की ओर जा सकती हैं, (भूपष्ठीय पत्रक के आंशिक अथवा

पूर्ण भाग संसकरण पत्रक (Plate convergence) के क्षेत्र में अन्य पत्रक के नीचे चले जाते हैं) तथा पृथ्वी के आंतरिक भाग में तापमान बढ़ने के कारण ये ही पिघलकर मैग्मा में परिवर्तित हो जाते हैं, जो आग्नेय शैलों के मूल स्रोत हैं (चित्र 5.1)।

अभ्यास.

बहुवैकिल्पक प्रश्न :

- (i) निम्न में से कौन ग्रेनाइट के दो प्रमुख घटक हैं?
 - (क) लौह एवं निकेल
 - (ख) सिलिका एवं एलूमिनियम
 - (ग) लौह एवं चाँदी
 - (घ) लौह ऑक्साइड एवं पोटैशियम
- (ii) निम्न में से कौन सा कायांतरित शैलों का प्रमुख लक्षण है?
 - (क) परिवर्तनीय
- (ख) क्रिस्टलीय
- (घ) पत्रण
- (iii) निम्न में से कौन सा एकमात्र तत्व वाला खनिज नहीं है?
- (ख) माइका
- (ग) चाँदी

(ग) शांत

(घ) ग्रेफ़ाइट

- (iv) निम्न में से कौन सा कठोरतम खनिज है?
 - (क) टोपाज
- (ख) क्वार्ट्ज
- (ग) हीरा
- (घ) फ़ेल्डस्पर

- (v) निम्न में से कौन सी शैल अवसादी नहीं है?
 - (क) टायलाइट
- (ख) ब्रेशिया
- (ग) बोरैक्स
- (घ) संगमरमर

निम्नलिखित प्रश्नों के उत्तर लगभग 30 शब्दों में दीजिए :

- (i) शैल से आप क्या समझते हैं? शैल के तीन प्रमुख वर्गों के नाम बताएँ।
- (ii) आग्नेय शैल क्या है? आग्नेय शैल के निर्माण की पद्धति एवं उनके लक्षण बताएँ।
- (iii) अवसादी शैल का क्या अर्थ है? अवसादी शैल के निर्माण की पद्धति बताएँ।
- (iv) शैली चक्र के अनुसार प्रमुख प्रकार की शैलों के मध्य क्या संबंध होता है?

3. निम्नलिखित प्रश्नों के उत्तर लगभग 150 शब्दों में दीजिए :

- (i) 'खिनज' शब्द को परिभाषित करें, एवं प्रमुख प्रकार के खिनजों के नाम लिखें।
- (ii) भूपष्ठीय शैलों में प्रमुख प्रकार की शैलों की प्रकृति एवं उनकी उत्पत्ति की पद्धित का वर्णन करें। आप उनमें अंतर स्थापित कैसे करेंगे?
- (iii) कायांतरित शैल क्या है? इनके प्रकार एवं निर्माण की पद्धति का वर्णन करें।

परियोजना कार्य

विभिन्न प्रकार की शैलों के नमूने एकत्र करें एवं उनके भौतिक गुणधर्म के आधार पर उनको पहचाने एवं उनके प्रकार सुनिश्चित करें।

भू-आकृतिक प्रक्रियाएँ

श्वी की उत्पत्ति कैसे हुई? इसकी पर्पटी एवं अन्य आंतरिक संस्तरों का क्रम-विकास कैसे हुआ? भूपर्पटी प्लेट्स का संचलन किस प्रकार हुआ एवं कैसे हो रहा है? भूकंप, ज्वालामुखी के प्रकार एवं भू-पर्पटी को निर्मित करने वाले शैलों और खनिजों के विषय में सूचनाओं की जानकारी के पश्चात् अब हम जिस धरातल पर रहते हैं, उसके विषय में भी विस्तार से जानने का प्रयास करेंगे। हम इस प्रश्न के साथ प्रारंभ करते हैं:

धरातल असमतल क्यों है?

सर्वप्रथम भू-पर्पटी गत्यात्मक है। आप अच्छी तरह जानते हैं कि यह क्षैतिज तथा ऊर्ध्वाधर दिशाओं में संचलित होती रहती है। निश्चित तौर पर यह भूतकाल में वर्तमान गति की अपेक्षा थोड़ी तीव्रतर संचलित होती थी। भू-पर्पटी का निर्माण करने वाले पृथ्वी के भीतर सिक्रय आंतरिक बलों में पाया जाने वाला अंतर ही पृथ्वी के बाह्य सतह में अंतर के लिए उत्तरदायी है। मूलत:, धरातल सूर्य से प्राप्त ऊर्जा द्वारा प्रेरित बाह्य बलों से अनवरत प्रभावित होता रहता है। निश्चित रूप से आंतरिक बल अभी भी सक्रिय हैं. यद्यपि उनकी तीव्रता में अंतर है। इसका तात्पर्य है कि धरातल पृथ्वी मंडल के अंतर्गत उत्पन्न हुए बाह्य बलों एवं पृथ्वी के अंदर उद्भृत आंतरिक बलों से अनवरत प्रभावित होता है तथा यह सर्वदा परिवर्तनशील है। बाह्य बलों को बहिर्जनिक (Exogenic) तथा आंतरिक बलों को अंतर्जनित (Endogenic) बल कहते हैं। बहिर्जनिक बलों की क्रियाओं का परिणाम होता है- उभरी हुई भू-आकृतियों का विघर्षण (Wearing down) तथा बेसिन/निम्न

क्षेत्रों/गतों का भराव (अधिवृद्धि/तल्लोचन)। धरातल पर अपरदन के माध्यम से उच्चावच के मध्य अंतर के कम होने को तल संतुलन (Gradation) कहते हैं। अंतर्जनित शक्तियाँ निरंतर धरातल के भागों को ऊपर उठाती हैं या उनका निर्माण करती हैं तथा इस प्रकार बहिर्जनिक प्रक्रियाएँ उच्चावच में भिन्नता को सम (बराबर) करने में असफल रहती हैं। अतएव भिन्नता तब तक बनी रहती है जब तक बहिर्जनिक एवं अन्तर्जनित बलों के विरोधात्मक कार्य चलते रहते हैं। सामान्यत: अंतर्जनित बल मूल रूप से भू-आकृति निर्माण करने वाले बल हैं तथा बहिर्जनिक प्रक्रियाएँ मुख्य रूप से भूमि विघर्षण बल होती हैं।

भू-तल संवेदनशील है। मानव अपने निर्वाह के लिए इस पर निर्भर करता है तथा इसका व्यापक एवं सघन उपयोग करता है। लगभग सभी जीवों का धरातल के पर्यावरण के अनुवाह (Sustain) में योगदान होता है। मनुष्यों ने संसाधनों का अत्यधिक दोहन किया है। हमें इनका उपयोग करना चाहिए, किंतु भविष्य में जीवन निर्वाह के लिए इसकी पर्याप्त संभाव्यता को बचाये रखना चाहिए। धरातल के अधिकांश भाग को बहुत लंबी अवधि (सैकड़ों-हज़ारों-वर्षों) में आकार प्राप्त हुआ है तथा मानव द्वारा इसके उपयोग, दुरुपयोग एवं कुप्रयोग के कारण इसकी संभाव्यता (विभव) में बहुत तीव्र गति से ह्रास हो रहा है। यदि उन प्रक्रियाओं, जिन्होंने धरातल को विभिन्न आकार दिया और अभी दे रही हैं, तथा उन पदार्थों की प्रकृति जिनसे यह निर्मित है, को समझ लिया जाए तो निश्चित रूप से मानव उपयोग जनित हानिकारक प्रभाव को कम करने एवं भविष्य के लिए इसके संरक्षण हेत् आवश्यक उपाय किए जा सकते हैं।

Downloaded from https://www.studiestoday.com

十

भौतिक भूगोल के मूल सिद्धांत

भू-आकृतिक प्रक्रियाएँ (Geomorphic Processes)

आप भू-आकृतिक प्रक्रियाएँ के अर्थ को समझना चाहेंगे। धरातल के पदार्थों पर अंतर्जनित एवं बहिर्जनिक बलों द्वारा भौतिक दबाव तथा रासायनिक क्रियाओं के कारण भूतल के विन्यास में परिवर्तन को भू-आकृतिक प्रक्रियाएँ कहते हैं। पटल विरूपण (Diastrophism) एवं ज्वालामुखीयता (Volcanism) अंतर्जनित भू-आकृतिक प्रक्रियाएँ हैं, जो इससे पहले की इकाई में संक्षेप में विवेचित हैं। अपक्षय, वृहत क्षरण (Mass wasting), अपरदन एवं निक्षेपण (Deposition) बहिर्जनिक भू-आकृतिक प्रक्रियाएँ हैं। इनका इस अध्याय में विस्तार से विवेचन किया गया है।

प्रकृति के किसी भी बहिर्जनिक तत्त्व (जैसे- जल, हिम, वायु इत्यादि), जो धरातल के पदार्थों का अधिग्रहण (Acquire) तथा परिवहन करने में सक्षम है, को भू-आकृतिक कारक कहा जा सकता है। जब प्रकृति के ये तत्त्व ढाल प्रवणता के कारण गतिशील हो जाते हैं तो पदार्थों को हटाकर ढाल के सहारे ले जाते हैं और निचले भागों में निक्षेपित कर देते हैं। भू-आकृतिक प्रक्रियाएँ तथा भू-आकृतिक कारक विशेषकर बहिर्जनिक, को यदि स्पष्ट रूप से अलग-अलग न कहा जाए तो इन्हें एक ही समझना होगा क्योंकि ये दोनों एक ही होते हैं।

एक प्रक्रिया एक बल होता है जो धरातल के पदार्थों के साथ अनुप्रयुक्त होने पर प्रभावी हो जाता है। एक कारक (Agent) एक गतिशील माध्यम (जैसे- प्रवाहित जल, हिमानी, हवा, लहरें एवं धाराएँ इत्यादि) है जो धरातल के पदार्थों को हटाता, ले जाता तथा निक्षेपित करता है। इस प्रकार प्रवाहयुक्त जल, भूमिगत जल, हिमानी, हवा, लहरों, धाराओं इत्यादि को भू-आकृतिक कारक कहा जा सकता है।

क्या आप समझते हैं भू-आकृतिक कारकों एवं भू-आकृतिक प्रक्रियाओं में अंतर करना आवश्यक है?

गुरुत्वाकर्षण, ढाल के सहारे सभी गतिशील पदार्थों को सिक्रय बनाने वाली दिशात्मक (Directional) बल होने के साथ-साथ धरातल के पदार्थों पर दबाव (Stress) डालता है। अप्रत्यक्ष गुरुत्वाकर्षक प्रतिबल (Stress) लहरों एवं ज्वार-भाटा जनित धाराओं को

क्रियाशील बनाता है। नि:संदेह गुरुत्वाकर्षण एवं ढाल प्रवणता के अभाव में गितशीलता संभव नहीं हैं अत: अपरदन, परिवहन एवं निक्षेपण भी नहीं होगा। गुरुत्वाकर्षण एक ऐसा बल है जिसके माध्यम से हम धरातल से संपर्क में रहते हैं। यह वह बल है जो भूतल के सभी पदार्थों के संचलन को प्रारंभ करता है। सभी संचलन, चाहे वे पृथ्वी के अंदर हों या सतह पर, प्रवणता के कारण ही घटित होते हैं, जैसे ऊँचे स्तर से नीचे स्तर की ओर, तथा उच्च वायु दाब क्षेत्र की ओर।

अंतर्जनित प्रक्रियाएँ (Endogenic processes)

पृथ्वी के अंदर से निकलने वाली ऊर्जा भू-आकृतिक प्रक्रियाओं के लिए प्रमुख बल स्रोत होती है। पृथ्वी के अंदर की ऊर्जा अधिकांशत: रेडियोधर्मी क्रियाओं, घूर्णन (Rotational) एवं ज्वारीय घर्षण तथा पृथ्वी की उत्पत्ति से जुड़ी ऊष्मा द्वारा उत्पन्न होती है। भू-तापीय प्रवणता एवं अंदर से निकले ऊष्मा प्रवाह से प्राप्त ऊर्जा पटल विरूपण (Disastrophism) एवं ज्वालामुखीयता को प्रेरित करती है। भू-तापीय प्रवणता एवं अंदर के ऊष्मा प्रवाह, भू-पर्पटी की मोटाई एवं दृढ़ता में अंतर के कारण अंतर्जनित बलों के कार्य समान नहीं होते हैं। अत: विवर्तनिक द्वारा नियंत्रित मूल भू-पर्पटी की सतह असमतल होती है।

पटल विरूपण (Diastrophism)

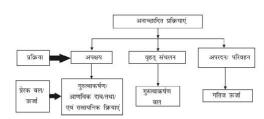
सभी प्रक्रियाएँ जो भू-पर्पटी को संचलित, उत्थापित तथा निर्मित करती हैं, पटल विरूपण के अंतर्गत आती हैं। इनमें निम्नलिखित सिम्मिलित हैं: (i) तीक्षण वलयन के माध्यम से पर्वत निर्माण तथा भू-पर्पटी की लंबी एवं संकीर्ण पट्टियों को प्रभावित करने वाली पर्वतनी प्रक्रियाएँ (ii) धरातल के बड़े भाग के उत्थापन या विकृति में संलग्न महाद्वीप रचना संबंधी प्रक्रियाएँ, (iii) अपेक्षाकृत छोटे स्थानीय संचलन के कारण उत्पन्न भूकंप, (iv) पर्पटी प्लेट के क्षैतिज संचलन करने में प्लेट विवर्तनिकी की भूमिका। प्लेट विवर्तनिक/पर्वतनी की प्रक्रिया में भू-पर्पटी वलयन के रूप में तीक्ष्णता से विकृत हो जाती है। महाद्वीप रचना के कारण साधारण विकृति हो सकती है।

भू-आकृतिक प्रक्रियाएँ

पर्वतनी पर्वत निर्माण प्रक्रिया है, जबिक महाद्वीप रचना महाद्वीप निर्माण-प्रक्रिया है। पर्वतनी, महाद्वीप रचना (Epeirogeny), भूकंप एवं प्लेट विवर्तनिक की प्रक्रियाओं से भू-पर्पटी में भ्रंश तथा विभंग हो सकता है। इन सभी प्रक्रियाओं के कारण दबाव, आयतन तथा तापक्रम में परिवर्तन होता है जिसके फलस्वरूप शैलों का कायांतरण प्रेरित होता है।

ज्वालामुखीयता (Volcanism)

ज्वालामुखीयता के अंतर्गत पिघली हुई शैलों या लावा (Magma) का भूतल की ओर संचलन एवं अनेक आंतरिक तथा बाह्य ज्वालामुखी स्वरूपों का निर्माण सम्मिलत होता है। इस पुस्तक की द्वितीय इकाई के ज्वालामुखी शीर्षक एवं पिछले अध्याय के आग्नेय शैलें शीर्षक के अंतर्गत ज्वालामुखीयता के बहुत से पक्षों का विस्तृत विवरण दिया जा चुका है।


ज्वालामुखीयता एवं ज्वालामुखी शब्दों में भेद बताइए।

बहिर्जनिक प्रक्रियाएँ (Exogenic processes)

बहिर्जनिक प्रक्रियाएँ अपनी ऊर्जा 'सूर्य द्वारा निर्धारित वायुमंडलीय ऊर्जा एवं अंतर्जनित शक्तियों से नियंत्रित विवर्तनिक (Tectonic) कारकों से उत्पन्न प्रवणता से प्राप्त करती हैं।

आप क्यों सोचते हैं कि ढाल या प्रवणता बहिर्जनिक बलों से नियंत्रित विवर्तनिक कारकों द्वारा निर्मित होते हैं?

गुरुत्वाकर्षण बल ढालयुक्त सतह वाले धरातल पर कार्यरत रहता है तथा ढाल की दिशा में पदार्थ को संचलित करता है। प्रति इकाई क्षेत्र पर अनुप्रयुक्त बल को प्रतिबल (Stress) कहते हैं। ठोस पदार्थ में प्रतिबल (Stress) धक्का एवं खिंचाव (Push and pull) से उत्पन्न होता है। इससे विकृति प्रेरित होती है। धरातल के पदार्थों के सहारे सिकृय बल अपरूपण प्रतिबल (Shear stresses) (विलगकारी बल) होते हैं। यही प्रतिबल शैलों एवं धरातल के पदार्थों को तोडता है। अपरूपण

49

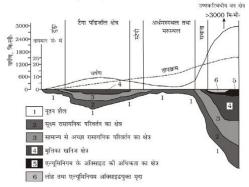
चित्र 6.1 : अनाच्छादित प्रक्रियाएं एवं उनका प्रेरक बल

प्रतिबल का परिणाम कोणीय विस्थापन (Angular displacement) या विसर्पण/फिसलन (Slippage) होता है। धरातल के पदार्थ गुरुत्वाकर्षण प्रतिबल के अतिरिक्त आण्विक प्रतिबलों से भी प्रभावित होते हैं, जो कई कारकों, जैसे- तापमान में परिवर्तन, क्रिस्टलन (Crystalisation) एवं पिघलन द्वारा उत्पन्न होते हैं। रासायनिक प्रक्रियाएँ सामान्यत: कणों (Grains) के बीच के बंधन को ढीला करते हैं तथा विलेय पदार्थों को घुला देते हैं। इस प्रकार, धरातल के पदार्थों के पिंड (Body) में प्रतिबल का विकास अपक्षय, वृहत् क्षरण संचलन, अपरदन एवं निक्षेपण का मूल कारण है।

चूँिक, धरातल पर विभिन्न प्रकार के जलवायु प्रदेश मिलते हैं इसिलए बहिर्जिनिक भू-आकृतिक प्रकियाएँ भी एक प्रदेश से दूसरे प्रदेश में भिन्न होती हैं। तापक्रम तथा वर्षण दो महत्त्वपूर्ण जलवायवीय तत्त्व हैं, जो विभिन्न प्रक्रियाओं को नियंत्रित करते हैं।

सभी बहिर्जिनिक भू-आकृतिक प्रक्रियाओं को एक सामान्य शब्दावली अनाच्छादन (Denudation) के अंतर्गत रखा जा सकता है। अनाच्छादन शब्द का अर्थ है निरावृत्त (Strip off) करना या आवरण हटाना। अपक्षय, वृहत् क्षरण, संचलन, अपरदन, परिवहन आदि सभी इसमें सिम्मिलित किये जाते हैं। प्रवाह चित्र (चित्र 6.1) अनाच्छादन प्रक्रियाओं तथा उनसे संबंधित प्रेरक बल को दर्शाता है। इससे यह स्पष्ट हो जाना चाहिए कि प्रत्येक प्रक्रिया के लिए एक विशिष्ट प्रेरक बल या ऊर्जा होती है।

बहिर्जनिक भू-आकृतिक प्रक्रियाएँ एक क्षेत्र से दूसरे क्षेत्र में भिन्न-भिन्न होती हैं। जैसा कि स्पष्ट है कि पृथ्वी के धरातल पर तापीय प्रवणता के कारण भिन्न-भिन्न जलवायु प्रदेश स्थित हैं जो कि अक्षांशीय, मौसमी एवं जल-थल विस्तार में भिन्नता के द्वारा उत्पन्न होते हैं। तापमान एवं वर्षण जलवायु के दो महत्त्वपूर्ण घटक हैं जो


+

भौतिक भूगोल के मूल सिद्धांत

कि विभिन्न भू-आकृतिक प्रक्रियाओं को नियंत्रित करते हैं। वनस्पित का घनत्व, प्रकार एवं वितरण, जो प्रमुखत: वर्षा एवं तापक्रम पर निर्भर करते हैं, बिहर्जनिक भू-आकृतिक प्रक्रियाओं पर अप्रत्यक्ष प्रभाव डालते हैं। विभिन्न जलवायु-प्रदेशों में विभिन्न जलवायवी तत्त्वों जैसे- ऊँचाई में अंतर, दक्षिणमुखी ढालों पर पूर्व एवं पश्चिममुखी ढालों की अपेक्षा अधिक सूर्यातप प्राप्ति आदि के कारण स्थानीय भिन्नता पायी जाती है। पुनश्च, वायु का वेग एवं दिशा, वर्षण की मात्रा एवं प्रकार, इसकी गहनता, वर्षण एवं वाष्पीकरण में संबंध, तापक्रम की दैनिक श्रेणी, हिमकरण एवं पिघलन की आवृत्ति, तुषार (Frost) व्यापन की गहराई इत्यादि में अंतर के कारण किसी भी जलवायु प्रदेश के अंदर भू-आकृतिक प्रक्रियाएँ भिन्न-भिन्न होती हैं।

सभी बहिर्जनिक प्रक्रियाओं के पीछे एकमात्र प्रेरक बल क्या होता है?

यदि जलवायवी कारक समान हों तो बहिर्जनिक भू-आकृतिक प्रक्रियाओं के कार्यों की गहनता शैलों के प्रकार एवं संरचना पर निर्भर करती है। संरचना में वलन, भ्रंश, संस्तर का पूर्वाभिमुखीकरण (Orientation), झुकाव, जोड़ों की उपस्थिति या अनुपस्थिति, संस्तरण तल, घटक खनिजों की कटोरता या कोमलता तथा उनकी रासायनिक संवेदनशीलता, पारगम्यता (Permeability) या अपारगम्यता इत्यादि सम्मिलित माने गये हैं।

चित्र 6.2 : जलवायु एवं अपक्षय मैंटल की गहराई (स्ट्रैकोव, 1967 से रूपांतरित एवं संशोधित)

विभिन्न प्रकार की शैलें अपनी संरचना में भिन्नता के कारण भू–आकृतिक प्रतिक्रियाओं के प्रति विभिन्न प्रतिरोध क्षमता प्रस्तुत करती हैं। एक विशेष शैल एक प्रक्रिया के प्रति प्रतिरोध पृति प्रतिरोध पृति प्रतिरोध रहित हो सकती हैं विभिन्न जलवायवी दशाओं में एक विशेष प्रकार की शैलें भू-आकृतिक प्रतिक्रियाओं के प्रति भिन्न-भिन्न अंशों का प्रतिरोध प्रस्तुत कर सकती हैं अतएव वे भिन्न दरों पर कार्यरत रहती हैं तथा स्थलाकृति में भिन्नता का कारण बन जाती हैं। अधिकांश बहिर्जनिक भू-आकृतिक प्रतिक्रियाओं का प्रभाव थोड़ा एव मंद होता है तथा अल्पाविध में अनवगम्य (Imperceptible) हो सकता है। दीर्घाविध में यह सतत श्रांति (Fatigue) के कारण शैलों को तीव्र रूप से प्रभावित करता है।

अंतत: यह तथ्य स्पष्ट हो जाता है कि धरातल पर विभिन्नता यद्यपि मूल रूप से भू-पर्पटी के उद्भव से संबंधित है, तथापि धरातल के पदार्थों के प्रकार एवं संरचना में अंतर, भू-आकृतिक प्रक्रियाओं एवं उनके सिक्रियता दर में अंतर आदि के कारण एक ना एक रूप में विद्यमान रहती है।

कुछ बहिर्जनिक भू-आकृतिक प्रक्रियाओं का यहाँ विस्तृत विवरण प्रस्तुत किया गया है।

अपक्षय (Weathering)

अपक्षय के अंतर्गत वायुमंडलीय तत्त्वों की धरातल के पदार्थों पर की गई क्रिया सम्मिलित होती है। अपक्षय के अंदर ही अनेक प्रक्रियाएँ हैं जो पृथक या (प्राय:) सामूहिक रूप से धरातल के पदार्थों को प्रभावित करती हैं।

अपक्षय को मौसम एवं जलवायु के कार्यों के माध्यम से शैलों के यांत्रिक विखंडन (Mechanical) एवं रासायनिक वियोजन/ अपघटन (Decomposition) के रूप में परिभाषित किया जा सकता है।

चूँिक, अपक्षय में पदार्थों का बहुत-थोड़ा अथवा नगण्य संचलन होता है यह एक स्वस्थाने (In situ) या तदस्थन (On-site) प्रक्रिया है।

क्या अपक्षय के कारण कभी-कभी होने वाली यह धीमी गति परिवहन का पर्याय है? यदि नहीं तो क्यों? भू-आकृतिक प्रक्रियाएँ

अपक्षय-प्रक्रियाएँ जटिल भौमिकी, जलवायवी, स्थलाकृतिक एवं वनस्पतिक कारकों द्वारा प्रानुकूलित (Conditioned) होती हैं। इन सबमें जलवायु का विशेष महत्त्व हैं। न केवल अपक्षय प्रक्रियाएँ अपितु अपक्षय मैंटल की गहराई भी एक जलवायु से दूसरे जलवायु में भिन्न-भिन्न होती है (चित्र 6.2)।

चित्र 6.2 में विभिन्न जलवायु प्रदेशों के अक्षांश को ऑकत कीजिए तथा उनसे प्राप्त विवरण की तुलना कीजिए।

अपक्षय प्रक्रियाओं के तीन प्रमुख प्रकार हैं: (1) रासायनिक (2) भौतिक या यांत्रिक एवं (3) जैविक। इनमें से कोई एक प्रक्रिया कतिपय ही अकेले काम करती है परंतु प्राय: किसी एक प्रक्रिया का अधिक महत्त्वपूर्ण योगदान देखा जा सकता है।

रासायनिक अपक्षय प्रक्रियाएँ (Chemical Weathering Processes)

अपक्षय प्रक्रियाओं का एक समूह जैसे कि विलयन, कार्बोनेटीकरण, जलयोजन, ऑक्सीकरण तथा न्यूनीकरण शैलों के अपघटन, विलयन अथवा न्यूनीकरण का कार्य करते हैं, जो कि रासायिनक क्रिया द्वारा सूक्ष्म (Clastic) अवस्था में परिवर्तित हो जाती हैं। ऑक्सीजन, धरातलीय जल, मृदा-जल एवं अन्य अम्लों की प्रक्रिया द्वारा चट्टानों का न्यूनीकरण होता है। इसमें ऊष्मा के साथ जल एवं वायु (ऑक्सीजन तथा कार्बन डाईऑक्साइड) की विद्यमानता सभी रासायिनक प्रतिक्रियाओं को तीव्र गित देने के लिए आवश्यक है। वायु में विद्यमान कार्बन डाईऑक्साइड के अतिरिक्त पौधों एवं पशुओं का अपघटन भूमिगत कार्बन डाईऑक्साइड की मात्रा को बढ़ा देता है। विभिन्न खिनजों पर रासायिनक प्रतिक्रियाएँ किसी अनुसंधानशाला में प्रतिक्रियाओं के समान ही होती हैं।

घोल/विलयन (Solution)

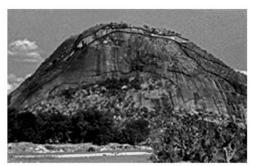
जब कोई वस्तु, जल या अम्ल (Acid) में घुल जाती है तो घुलित तत्त्वों के जल या अम्ल को घोल कहते हैं। इस प्रक्रिया में ठोस पदार्थों का घोल में मिलना सम्मिलित होता है जो जल या कम अम्ल में खनिज

की विलयता पर निर्भर करता है। जल से सम्पर्क में आने पर अनेक ठोस पदार्थ विघटित हो जाते हैं एवं जल में निलंबन (Suspension) के रूप में मिश्रित हो जाते हैं। घुलनशील शैल निर्माण करने वाले नाइट्रेट, सल्फेट एवं पोटेशियम जैसे खनिज इस प्रक्रिया से प्रभावित होते हैं। अत: यह खनिज अधिक वर्षा की जलवायु में बिना कोई अवशिष्ट छोड़े सुगमता से निक्षालित (Leached) हो जाते हैं और शुष्क प्रदेशों में वर्षा के कारण एकत्रित हो जाते हैं। चुना पत्थर में विद्यमान कैल्शियम कार्बोनेट, कैल्शियम मैग्नेशियम बाईकार्बोनेट जैसे खनिज, कार्बोनिक एसिड युक्त जल (जो जल में कार्बन डाईऑक्साइड मिलने से बनता है) में घलनशील होते हैं तथा जल में एक घोल के रूप में प्रवाहित होते हैं। क्षयोन्मुख जैव पदार्थों द्वारा जनित कार्बन डाईऑक्साइड मुदा जल के साथ मिलकर इस प्रक्रिया में बहुत सहायक होता है। साधारण (Common) लवण-सोडियम क्लोराइड भी एक शैल निर्माण करने वाला खनिज है जो कि घुलनशील

कार्बोनेशन (Carbonation)

कार्बोनेट एवं बाई कार्बोनेट की खनिजों से प्रतिक्रिया का प्रतिफल कार्बोनेशन कहलाता है। यह फेल्सपार तथा कार्बोनेट खनिज को पृथक करने में एक आम सहायक प्रक्रिया है। जल द्वारा वायुमंडल एवं मृदावायु से कार्बन डाईऑक्साइड, अवशोषित की जाती है। इससे कार्बोनिक अम्ल का निर्माण होता है जो कि एक कम सिक्रय अम्ल के रूप में कार्य करता है। कैल्शियम कार्बोनेट एवं मैग्नीशियम कार्बोनेट, कार्बनिक एसिड में घुल जाते हैं तथा कोई अवशेष नहीं छोड़ते। इसके परिणामस्वरूप भूमिगत गुफाओं का निर्माण होता है।

जलयोजन (Hydration)


जलयोजन जल का रासायनिक योग है। खनिज स्वयं जल धारण करके विस्तारित (Expanded) हो जाते हैं एवं यह विस्तार पदार्थ के आयतन (Volume) अथवा शैल में वृद्धि का कारण बनते हैं। कैल्शियम सल्फेट जल मिलने के बाद जिप्सम में परिवर्तित हो जाता है जो कैल्शियम सल्फेट की अपेक्षा अधिक अस्थायी होता है।

Downloaded from https://www.studiestoday.com

51

+

भौतिक भूगोल के मूल सिद्धांत

चित्र 6.3 : आंध्र प्रदेश में भंगीर (भुवनागिरी) के समीप ग्रेनाइट शैल में वृहत् अपशल्कन गुम्बद

यह प्रतिक्रिया उत्क्रमणीय एवं लंबी होती है तथा इसके सतत् पुनरावृत्ति से शैलों में श्रांति हो जाती है जिसके फलस्वरूप उनमें विघटन हो सकता है। अनेक क्ले खिनज शुष्क एवं आर्द्र होने की प्रक्रिया में फूलते एवं संकुचित होते हैं तथा इस प्रक्रिया की पुनरावृत्ति उपिरशायी (Overlying) पदार्थों में दरार का कारण बनती है। रंध्र क्षेत्र में समाहित लवण तीव्र एवं बार-बार जलयोजन से प्रभावित होकर शैल विभंग (Fracture) में सहायक होता है। जलयोजन के कारण खिनजों के आयतन में परिवर्तन अपशल्कन (Exfoliation) एवं कणीय विघटन द्वारा भौतिक अपक्षय में भी सहायता प्रदान करता है।

ऑक्सीकरण एवं न्यूनीकरण (Oxidation and Reduction)

अपक्षय में ऑक्सीकरण का तात्पर्य होता है ऑक्साइड या हाइड्रोऑक्साइड के निर्माण हेतु खनिज एवं ऑक्सीजन का संयोग। ऑक्सीकरण वहीं होता है जहाँ वायुमंडल एवं ऑक्सीजन युक्त जल मिलते हैं। इस प्रक्रिया में लौह, मैगनीज, गंधक (Sulphur) इत्यादि सर्वाधिक शामिल होते हैं। ऑक्सीकरण की प्रक्रिया में ऑक्सीजन के योग के कारण पैदा हुए व्यवधान से शैलों का टूटना जारी रहता है। ऑक्सीकरण एक महत्त्वपूर्ण प्रक्रिया है जो लौह धारक बायोटाइट, ओलीवाइन, एवं पाइरोक्सीन जैसे खनिजों को प्रभावित करती है। ऑक्सीकरण होने पर लौह का लाल रंग, भूरे या पीले रंग में परिवर्तित हो जाता है। जब ऑक्सीकृत खनिज ऐसे वातावरण में रखे जाते हैं जहाँ ऑक्सीजन का अभाव है तो एक दूसरी रासायनिक अपक्षय प्रक्रिया

प्रारंभ हो जाती है जिसे न्यूनीकरण क्रिया कहते हैं। ऐसी दशाएँ प्राय: भौम जलस्तर के नीचे, रूद्ध जल के क्षेत्र या जलप्लावित क्षेत्रों में पायी जाती हैं। न्यूनीकृत होने पर लौह का लाल रंग, हरे या आसमानी-धूसर (Bluish grey) रंग में बदल जाता है।

अपक्षय की ये प्रक्रियाएँ अंत:संबंधित हैं। जलयोजन, कार्बोनेशन एवं ऑक्सीकरण साथ-साथ चलते रहते हैं एवं अपक्षय प्रक्रिया को त्वरित बना देते हैं।

क्या हम लौह में जंग लगने को ऑक्सीकरण का उदाहरण मान सकते हैं? रासायनिक अपक्षय प्रक्रियाओं में जल कितना आवश्यक है? क्या रासायनिक अपक्षय प्रक्रिया जलाभाव (Water scarce) वाले उष्ण मरुस्थलों में प्रभावकारी हो सकती है?

भौतिक अपक्षय प्रक्रियाएँ (Physical Weathering Processes)

भौतिक या यांत्रिक अपक्षय-प्रक्रियाएँ कुछ अनुप्रयक्त बलों (Forces) पर निर्भर करती हैं। ये अनुप्रयुक्त बल निम्नलिखित हो सकते हैं: (i) गुरुत्वाकर्षक बल, जैसे अत्यधिक ऊपर भार दबाव, एवं अपरूपण प्रतिबल (Shear stress), (ii) तापक्रम में परिवर्तन, क्रिस्टल रवों में वृद्धि एवं पशुओं के क्रियाकलापों के कारण उत्पन्न विस्तारण (Expansion) बल, (iii) शुष्कन एवं आर्द्रन चक्रों से नियंत्रित जल का दबाव। इनमें से कई बल धरातल एवं विभिन्न धरातल पदार्थों के अंदर अनुप्रयुक्त होती हैं जिसका परिणाम शैलों का विभंग (Fracture) होता है। भौतिक अपक्षय प्रक्रियाओं में अधिकांश तापीय विस्तारण एवं दबाव के निर्मुक्त होने (Release) के कारण होता है। ये प्रक्रियाएँ लघु एवं मंद होती हैं परंतु कई बार संकुचन एवं विस्तारण के कारण शैलों के सतत् श्रांति (Fatigue) के फलस्वरूप ये शैलों को बड़ी हानि पहुँचा सकती हैं।

भारविहीनीकरण एवं विस्तारण (Unloading and expansion)

अनवरत अपरदन के कारण उपरिशायी शैलों के भार का अपनयन ऊर्ध्वाधर दबाव (Vertical pressure) के निर्मुक्ति का कारक होता है जिससे शैलों के ऊपरी संस्तर विस्तारित हो जाते हैं। इसके परिणामस्वरूप शैलों भू-आकृतिक प्रक्रियाएँ

कारण शैलों के अंदर प्रतिबल (Stress) उत्पन्न होता है, परिणामस्वरूप सतह के समानांतर अनुप्रस्थ विस्थापन एवं विभंग विकसित हो जाते हैं। गर्म तथा ठंडा होने में विभेद एवं भिन्नता होने के कारण सतह के संस्तर में होने वाले फैलाव तथा संकुचन और तत्पश्चात् धरातल से अपशल्कन के कारण शैलों में चिकनी, गोलाकार सतहों का निर्माण होता है। ग्रेनाइट शैलों में इस प्रक्रिया से चिकनी सतह के छोटे से लेकर बड़े गोलाश्मों का निर्माण होता है, जिसे टॉर कहते हैं।

53

का पातन एवं तत्स्वरूप विघटन होता है। विभंग (Fracture) मोटे तौर पर भूतल की सतह के समानांतर विकसित होता है। भूमि के वक्र सतह वाले क्षेत्रों में चाप विभंग द्वारा शैलों की भारी चादरें या अपशल्कन पट्टियाँ निर्मित करने की प्रवृत्ति पायी जाती है। भारविहीनीकरण (Unloading) एवं दबाव मुक्त होने के कारण विस्तारण से उत्पन्न अपशल्कन चादरों का क्षैतिज विस्तार सैकड़ों या यहाँ तक कि हजारों मीटर तक हो सकता है। बड़े, चिकने गोलाकार गुंबद को अपशल्कन गुंबद कहते हैं (चित्र 6.3) जो इस प्रक्रिया के द्वारा बनता है।

अपशिल्कित गुंबद एवं अपशिल्कित टॉर के मध्य क्या अंतर होता है?

तापक्रम में परिवर्तन एवं विस्तारण (Temperature changes and expansion)

हिमकरण, पिघलन एवं तुषार वेजिंग (Freezing thawing and frost wedging)

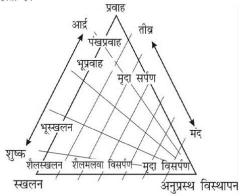
शैलों में विद्यमान विभिन्न प्रकार के खिनजों में स्वयं के विस्तारण एवं संकुचन की अपनी सीमाएँ होती हैं। तापक्रम बढ़ने के साथ प्रत्येक खिनज फैलता है एवं अपने निकटस्थ खिनज को दबाता है तथा तापक्रम गिरने के साथ उसमें तद्नुसार संकुचन होता है। तापक्रम में दैनिक परिवर्तन के कारण शैलों के छिछले संस्तरों के खिनज कणों में आंतरिक संचलन नियमित रूप से होता रहता है। यह प्रक्रिया शुष्क जलवायु एवं अधिक ऊँचे क्षेत्रों में,

शैलों के रंध्रों एवं दरारों में बार-बार हिमकरण एवं पिघलन के होने से हिम की वृद्धि के कारण तुषार अपक्षय घटित होता है। यह प्रक्रिया मध्य अक्षांशों में अधिक ऊँचाइयों, जहाँ हिमकरण एवं पिघलन की प्राय: पुनरावृत्ति होती है, में सर्वाधिक प्रभावशाली होती है। जल का तीव्रता से हिमकरण इसके अचानक फैलाव एवं उच्च दबाव का कारण बनता है। यह फैलाव संधियों (Joints) दरारों एवं छोटी-छोटी अंतर्कणीय (Intergranular) विभंगों को प्रभावित कर उन्हें तब तक चौड़ा करता जाता है जब तक शैलें ट्टकर अलग नहीं हो जातीं।

लवण अपक्षय (Salt weathering)

चित्र 6.4 : अपशल्कन एवं कणीय विघटन

शैलों में नमक तापीय क्रिया, जलयोजन एवं क्रिस्टलीकरण के कारण फैलता है। कैल्शियम, सोडियम, मैग्नेशियम, पोटैशियम एवं बोरियम जैसे कई लवणों में आयतिक फैलाव की प्रवृत्ति होती है। इन लवणों का फैलाव उनके तापक्रम एवं तापीय विशेषताओं पर निर्भर करता है। रेगिस्तानों में 30° से॰ से 50° से॰ तक का सतह पर उच्च तापक्रम लवण विस्तारण में सहायक होता है। सतह के निकटस्थ रंथ्रों में लवण के क्रिस्टल शैलों के पृथक कणों में विपाटन पैदा कर देते हैं जो अन्तत: गिर जाते हैं। पृथक कणों के गिरने की यह प्रक्रिया कणिक विघटन या कणिक शल्कन का कारण बन सकती है।


जहाँ दैनिक तापक्रमांतर बहुत अधिक होता है, सर्वाधिक प्रभावशाली होती है। जैसा कि पहले उल्लेख किया जा चुका है कि ये संचलन बहुत लघु होते हैं परंतु अनवरत श्रांति (Fatigue) से शैलों को बहुत कमजोर बना देते हैं। शैलों के सतही संस्तरों में उनकी गहराई के संस्तरों की अपेक्षा विस्तारण की प्रवृत्ति अधिक होती है, जिसके

सभी लवण विघटन प्रक्रियाओं में लवण क्रिस्टलन सर्वाधिक प्रभावकारी है। आर्द्रता एवं शुष्कन के एकांतर

+

भौतिक भूगोल के मूल सिद्धांत

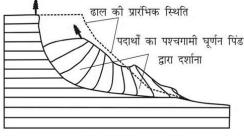
वाले क्षेत्रों में लवण क्रिस्टल की वृद्धि के लिए उपयुक्त दशाएँ होती हैं। इसमें निकटस्थ कण अलग हो जाते हैं। मरुस्थली क्षेत्रों में सोडियम क्लोराइड एवं जिप्सम क्रिस्टल अनुप्रस्थ-विस्थापित (Heaved up) हो जाते हैं जिसके फलस्वरूप पूरे अनुप्रस्थ-विस्थापित सतह पर दरारें विकसित हो जाती हैं। लवण क्रिस्टल की वृद्धि के साथ खड़िया बड़ी सुगमता से टूट जाती है। इसके बाद चूना पत्थर, बालू पत्थर, शेल, नीस, ग्रेनाइट की भी यही स्थिति होती है।

चित्र 6.5 : वृहद् संचलन के विभिन्न रूपों का सह-संबंध, उनकी सापेक्षित गति की दर एवं आर्द्रता की सीमा (व्हाइटहेड, 2001)

जैविक कार्य एवं अपक्षय (Biological activity and weathering)

जैविक अपक्षय, जीवों की वृद्धि या संचलन से उत्पन्न अपक्षय-वातावरण एवं भौतिक परिवर्तन से खनिजों एवं आयन (Ions) के स्थानांतरण की दिशा में एक योगदान है। केंचुओं, दीमकों, चूहों, कृंतकों इत्यादि जैसे जीवों द्वारा बिल खोदने एवं वेजिंग (फान) के द्वारा नयी सतहों (Surfaces) का निर्माण होता है जिससे रासायनिक प्रक्रिया के लिए अनावृत्त (Expose) सतह में नमी एवं हवा के वेधन में सहायता मिलती है। मानव भी वनस्पतियों को अस्त-व्यस्त कर, खेत जोतकर एवं मिट्टी में कृषि करके धरातलीय पदार्थों में वायु, जल एवं खनिजों के मिश्रण तथा उनमें नये संपर्क स्थापित करने में सहायक होता है। सड़ने वाले पौधों एवं पशुओं के

पदार्थ; ह्यूमिक, कार्बनिक एवं अन्य अम्ल जैसे तत्त्वों के उत्पादन में योगदान देते हैं जिससे कुछ तत्त्वों का सड़ना, क्षरण तथा घुलन बढ़ जाता है। पौधों की जड़ें धरातल के पदार्थों पर जबरदस्त दबाव डालती हैं तथा उन्हें यांत्रिक ढंग (Mechanically) से तोड़कर अलग-अलग कर देती हैं।


अपक्षय के विशेष प्रभाव (Special effects of weathering)

अपशल्कन

इसकी व्याख्या पहले ही भौतिक अपक्षय प्रक्रियाओं, तापीय संकुचन एवं फैलाव तथा लवण अपक्षय के अंतर्गत की जा चुकी है। अपशल्कन एक परिणाम है, प्रक्रिया नहीं। शैल या आधार शैल के ऊपर से मोटे तौर पर घुमावदार चादर के रूप में उत्खंडित या पत्रकन होता है जिसके परिणामस्वरूप चिकनी एवं गोल सतह का निर्माण होता है। (चित्र 6.3 तथा 6.4)। अपशल्कन अभारितकरण (Unloading) एवं तापक्रम परिवर्तन द्वारा प्रेरित फैलाव एवं संकुचन के कारण भी होता है। अपशल्कित गुंबद एवं टार्स क्रमश: अभारितकरण एवं तापीय संकुचन से उत्पन्न होते हैं।

अपक्षाय का महत्त्व (Significance of weathering)

अपक्षय प्रक्रियाएँ शैलों को छोटे-छोटे टुकड़ों में तोड़ने तथा न केवल आवरण प्रस्तर एवं मृदा निर्माण के लिए मार्ग प्रशस्त करते हैं अपितु अपरदन एवं वृहत संचलन (Mass movement) के लिए भी उत्तरदायी होते हैं। जैव मात्रा एवं जैव-विविधता प्रमुखत: वनों (वनस्पति) की देन है तथा वन, अपक्षयी प्रावार (Weathering

चित्र 6.6 : पश्चगामी घूर्णन के साथ मलबे का अवसर्पण

भू-आकृतिक प्रक्रियाएँ

पदार्थों का संचलन (गुरुत्वाकर्षण की सहायता से) एक स्थान से दूसरे स्थान को होता रहता है। ढाल पर पदार्थ बाधक बलों के प्रति अपना प्रतिरोध प्रस्तुत करते हैं एवं तभी असफल होते हैं जब बल पदार्थों के अपरूपण प्रतिरोध से महानतर होते हैं। असंबद्ध कमजोर पदार्थ, छिछले संस्तर वाली शैलें, भ्रंश, तीव्रता से झुके हुए संस्तर, खड़े भृगु या तीव्र ढाल, पर्याप्त वर्षा, मूसलाधार

वर्षा तथा वनस्पति का अभाव बृहत् संचलन में सहायक

होते हैं (चित्र 6.5)।

55

mantle) की गहराई पर निर्भर करता है। यदि शैलों का अपक्षय न हो तो अपरदन का कोई महत्त्व नहीं होता। इसका अर्थ है कि अपक्षय वृहत क्षरण, अपरदन, उच्चावच के लघुकरण में सहायक होता है एवं स्थलाकृतियाँ अपरदन का परिणाम हैं। शैलों का अपक्षय एवं निक्षेपण राष्ट्रीय अर्थव्यवस्था के लिए अतिमहत्त्वपूर्ण है, क्योंकि मूल्यवान खनिजों जैसे- लोहा, मैंगनीज, एल्यूमिनियम, ताँबा के अयस्कों के समृद्धीकरण (Enrichment) एवं संकेंद्रण (Concentration) में यह सहायक होता है। अपक्षय मुदा निर्माण की एक महत्त्वपूर्ण प्रक्रिया है।

बृहत् संचलन की सिक्रियता के कई कारक होते हैं। वे इस प्रकार हैं: (i) प्राकृतिक एवं कृत्रिम साधनों द्वारा ऊपर के पदार्थों के टिकने के आधार का हटाना। (ii) ढालों की प्रवणता एवं ऊँचाई में वृद्धि, (iii) पदार्थों के प्राकृतिक अथवा कृत्रिम भराव के कारण उत्पन्न अतिभार, (iv) अत्यधिक वर्षा, संतृप्ति एवं ढाल के पदार्थों के स्नेहन (Lubrication) द्वारा उत्पन्न अतिभार, (v) मूल ढाल की सतह पर से पदार्थ या भार का हटना, (vi) भूकंप आना, (vii) विस्फोट या मशीनों का कंपन (Vibration), (viii) अत्यधिक प्राकृतिक रिसाव, (ix) झीलों, जलाशयों एवं नदियों से भारी मात्रा में जल निष्कासन एवं परिणामस्वरूप ढालों एवं नदी तटों के नीचे से जल का मंद गति से बहना, (x) प्राकृतिक वनस्पति का अंधाधुंध विनाश। संचलन के निम्न तीन रूप होते हैं: (i) अनुप्रस्थ विस्थापन (तुषार वृद्धि या अन्य कारणों से मृदा का अनुप्रस्थ विस्थापन), (ii) प्रवाह एवं (iii) स्खलन। चित्र 6.5 बृहत संचलन विभिन्न प्रकारों; संचलन की सापेक्ष गति/दर एवं आर्द्रता की सीमाओं के संबंधों को दर्शाता है।

जब शैलों का अपक्षय होता है तो कुछ पदार्थ भूमिगत जल द्वारा रासायनिक तथा भौतिक निक्षालन के माध्यम से स्थानांतरित हो जाते हैं तथा शेष बहुमूल्य पदार्थों का संकेंद्रण हो जाता है। इस प्रकार के अपक्षय के हुए बिना बहुमूल्य पदार्थों का संकेंद्रण अपर्याप्त होगा तथा आर्थिक दृष्टि से उनका दोहन प्रक्रमण तथा शोधन के लिए व्यवहार्य नहीं होगा। इसीको समृद्धिकरण कहते हैं।

बृहत् संचलन को दो प्रमुख प्रकारों में वर्गीकृत किया जा सकता है :

बृहत् संचलन (Mass movement)

(i) मंद संचलन, (ii) तीव्र संचलन।

बृहत् संचलन के अंतर्गत वे सभी संचलन आते हैं, जिनमें शैलों का बृहत् मलवा (Debris) गुरुत्वाकर्षण के सीधे प्रभाव के कारण ढाल के अनुरूप स्थानांतरित होता है। इसका तात्पर्य है कि वायु, जल, हिम ही अपने साथ एक स्थान से दूसरे स्थान तक मलवा नहीं ढोते, अपितु मलवा भी अपने साथ वायु, जल या हिम ले जाते हैं। बृहत् मलबे की संचलन गित मंद से तीव्र हो सकती है जिसके फलस्वरूप पदार्थों के छिछले से गहरे स्तंभ प्रभावित होते हैं जिनके अंतर्गत विसर्पण, बहाव, स्खलन एवं पतन (Fall) सिम्मिलत होते हैं। गुरुत्वाकर्षण बल आधार शैलों एवं अपक्षय से पैदा सभी पदार्थों पर अपना प्रभाव डालता है। यद्यपि बृहत् संचलन के लिए अपक्षय अनिवार्य नहीं है, परंतु यह इसे बढ़ावा देता है। बृहत् संचलन अपक्षयित ढालों पर अनपक्षयित पदार्थों को अपेक्षा बहत अधिक सिक्रय रहता है।

मंद संचलन (Slow movements)

बृहत् संचलन में गुरुत्वाकर्षण शिक्त सहायक होती है तथा कोई भी भू-आकृतिक कारक जैसे- प्रवाहित जल, हिमानी, वायु, लहरें एवं धाराएँ बृहत् संचलन की प्रक्रिया में सीधे रूप से सम्मिलित नहीं होते इसका अर्थ है कि बृहत् संचलन अपरदन के अंदर नहीं आता है यद्यपि मंद विरूपण (Creep)- इस वर्ग का एक प्रकार हैं जोिंक मध्यम तीव्र (Moderately steep) एवं मृदा से आच्छादित ढाल पर घटित होता है। इसमें पदार्थों का संचलन इतना मंद होता है कि इसका आभास करना किटन होता है और दीर्घ कािलक पर्यवेक्षण से ही इसका पता चलता है। इसमें सिम्मिलित पदार्थ, मृदा एवं शैल का मलवा हो सकता है। क्या आपने कभी बाड़-स्तंभ, दूरभाष

+

भौतिक भूगोल के मूल सिद्धांत

स्तंभ (Telephone pole) को अपनी लंबवत् (Vertical) स्थिति से झुके हुए तथा संरेखण (Alignment) में देखा है? यदि देखा है तो वह मंद विरूपण का प्रभाव है- इसमें सम्मिलित पदार्थों के आधार पर अनेक प्रकार के मंद विरूपण जैसे- मिट्टी मंद विरूपण, टैलस मंद विरूपण, शैल हिमानी मंद विरूपण आदि की पहचान की जा सकती है। इस वर्ग में मुदा विरूपण भी सम्मिलित होता है जिसका संबंध ढाल के सहारे मंद गित से प्रवाहित मृदा के अंबार अथवा पानी से स्नेहित या संतुप्त सूक्ष्म कण वाले शैल मलवा से होता है। यह प्रक्रिया उन क्षेत्रों में आम होती है जहाँ परिहिमानीय एवं आर्द्र शीतोष्ण क्षेत्र होते हैं, जहाँ पर गहराई तक हिमकृत मैदान का सतही पिघलाव होता है तथा वहाँ लंबी लगातार वर्षा होती है। जब ऊपरी भाग संतुप्त (हो जाता है) एवं (जब) निम्न भाग जल के लिए अप्रवेश्य हो तो ऊपरी भागों में प्रवाह होता है।

तीव्र संचलन (Rapid movements)

ये संचलन आर्द्र जलवायु प्रदेशों में निम्न से लेकर तीब्र ढालों पर घटित होते हैं। संतृप्त चिकनी मिट्टी या गादी धरातल-पदार्थों का निम्न अंशों वाली वेदिकाओं या पहाड़ी ढालों (Sides) के सहारे निम्नान्मुख संचलन मृदा-प्रवाह (Earth flow) कहलाता है। प्राय: पदार्थ सीढ़ी के समान वेदिकाएँ बनाते हुए अवसर्प कर जाते हैं तथा अपने शीर्ष के पास चापाकार कगार तथा पदांगुलि के पास एकत्रित उभार छोड़ जाते हैं। जब ढाल तीव्रतर होते हैं तो आधार शैल, विशेषकर कोमल (Soft) परतदार शैल, जैसे शेल या गहराई से अपक्षयित आग्नेय शैल, भी ढाल के नीचे स्खिलत हो जाती हैं।

इस वर्ग में दूसरा प्रकार है कीचड़ प्रवाह (Mud flow)। वनस्पित आवरण के अभाव एवं भारी वर्षा के कारण अपक्षयित पदार्थों के मोटे संस्तर जल से संतृप्त हो जाते हैं एवं धीरे-धीरे अथवा तीव्रता से निश्चित वाहिकाओं (Channel) के सहारे नीचे की ओर प्रवाहित होने लगते हैं। यह एक घाटी के अंदर कीचड़ की नदी-सी दिखाई पड़ती है। जब कीचड़ प्रवाह वाहिकाओं से बाहर निकल कर गिरिपद (पीडमांट) या मैदान में आते हैं तो वे सड़कों, पुलों एवं मकानों को चपेट में लेते हुए बहुत विध्वंसकारक सिद्ध होते हैं। ऐसे कीचड़ प्रवाह उद्गारस्त या हाल में ही उद्गारित ज्वालामुखी के ढालों पर बहुधा पाये जाते हैं। ज्वालामुखीय राख, धूल एवं अन्य खंडित तत्त्व भारी वर्षा के कारण कीचड़ में परिवर्तित हो जाते हैं

एवं ढालों पर कीचड़ की नदी या जिह्वा (Tongue) के रूप में प्रवाहित होते हैं। इनसे मानव अधिवासों को बहत बडी क्षति पहँचती है।

इस प्रकार के संचलन में तीसरा प्रकार मलवा अवधाव (Avalanche), वनस्पति आवरणयुक्त या उससे वंचित आर्द्र प्रदेशों की विशेषता है। यह तीव्र ढालों पर संकीर्ण पथ के रूप में घटित होता है। मलवा अवधाव, कीचड़ प्रवाह से बहुत तीव्रतर होता है तथा हिम अवधाव के समान होता है।

दक्षिण अमेरिका के ऐंडीज पर्वतों एवं उत्तर अमेरिका के रॉकीज पर्वतों में कुछ ऐसे ज्वालामुखी हैं जिनमें पिछले दशक में उद्गार हुआ तथा उनके ढालों पर उद्गार की अविध में तथा उद्गार के पश्चात् बहुत विनाशकारी कीचड प्रवाह हुआ।

भूस्खलन (Landslides)

भूस्खलन अपेक्षाकृत तीव्र एवं अवगम्य संचलन है। इसमें स्खलित होने वाले पदार्थ अपेक्षतया शुष्क होते हैं। असंलग्न वृहत का आकार एवं आकृति शैल में अनिरंतरता की प्रकृत्ति, क्षरण का अंश तथा ढाल की ज्यामिति पर निर्भर करते हैं। इस वर्ग में पदार्थों के संचलन के प्रकार के आधार पर वर्ग में कई प्रकार के स्खलन पहचाने जा सकते हैं। (चित्र 6.6)।

ढाल, जिसपर संचलन होता है, के संदर्भ में पश्च-आवर्तन (Rotation) के साथ शैल-मलवा की एक या कई इकाइयों के फिसलन (Slipping) को अवसर्पण कहते हैं। (चित्र 6.6)। पृथ्वी के पिंड के पश्च-आवर्तन के बिना मलवा का तीव्र लोटन (Rolling)

चित्र 6.7 : भारत-नेपाल सीमा, उत्तर प्रदेश में शारदा नदी के निकट शिवालिक हिमालय शृंखलाओं में भूस्खलन स्कार

भू–आकृतिक प्रक्रियाएँ

या स्खलन मलवा स्खलन कहलाता है। मलवा स्खलन में खड़े (Vertical) या प्रलंबी फलक (Face) से मिट्टी मलवा का प्राय: स्वतंत्र पतन होता है। संस्तर जोड़ या भ्रंश के नीचे पृथक शैल बृहत् के स्खलन को शैल स्खलन कहते हैं। तीव्र ढालों पर शैल स्खलन बहुत तीव्र एवं विध्वंसक होता है। चित्र 6.7 तीव्र ढाल पर भू-स्खलन की खरोंच दर्शाता है। तीव्र नित संस्तरण तल जैसे अनिरंतरताओं के सहारे स्खलन एक समतलीय पात के रूप में घटित होता है। किसी तीव्र ढाल के सहारे शैल खंडों का ढाल से दूरी रखते हुए स्वतंत्र रूप से गिरना शैल पतन (Fall) कहलाता है। शैल पतन शैलों के फलक के उथले संस्तर से होता है जो इसे शैल स्खलन (जिसमें पदार्थ पर्याप्त गहराई तक प्रवाहित होते हैं) से अलग करता है।

बृहत् क्षरण एवं बृहत् संचलन में से आपके अनुसार कौन सी शब्दावली अधिक उपयुक्त है? एवं क्यों? क्यों मृदा सर्पण को तीव्र प्रवाह संचलन (Rapid flow movement) के अंतर्गत सिम्मिलत किया जा सकता है? ऐसा क्यों हो सकता है या क्यों नहीं?

हमारे देश में मलवा अवधाव एवं भूस्खलन हिमालय में प्राय: घटित होते हैं। इसके अनेक कारण हैं; पहला, हिमालय, विवर्तनिक दुष्टिकोण से सक्रिय है। यह अधिकांशत: परतदार शैलों एवं असंघटित एवं अर्ध-संघटित पदार्थों से बना हुआ है। इसकी ढाल मध्यम न होकर तीव्र है। हिमालय की तुलना में तमिलनाडु, कर्नाटक एवं केरल की सीमा बनाता हुआ नीलगिरि एवं पश्चिमी तट के किनारे पश्चिमी घाट अपेक्षाकृत विवर्तनिकी दुष्टि से अधिक स्थायी (Stable) है तथा बहुत कठोर शैलों से निर्मित है: परंतु अब भी इन पहाड़ियों में मलवा अवधाव एवं भूस्खलन होते रहते हैं, यद्यपि उनकी बारंबारता उतनी नहीं है जितनी हिमालय में। क्योंकि, पश्चिमी घाट एवं नीलगिरि में ढाल खड़े भृगु एवं कगार के साथ तीव्रतर हैं। तापक्रम में परिवर्तन एवं ताप परिसर (Ranges) के कारण यांत्रिक अपक्षय सुस्पष्ट होता है। वहाँ लघ अवधि में अधिक वर्षा होती है। अत: इन स्थानों में भुस्खलन एवं मलवा अवधाव के साथ प्राय: सीधे शैल पतन (Direct rock fall) होता है।

अपरदन एवं निक्षेपण (Erosion and Deposition)

अपरदन के अंतर्गत शैलों के मलवे की अवाप्ति (Acquistion) एवं उनके परिवहन को सम्मिलित किया जाता है। पिंडाकार शैलें जब अपक्षय एवं अन्य क्रियाओं के कारण छोटे-छोटे ट्कडों (Fragments) में ट्टती हैं तो अपरदन के भू-आकृतिक कारक जैसे कि प्रवाहित जल, भौमजल, हिमानी, वायु, लहरें एवं धाराएँ उनको एक स्थान से हटाकर दूसरे स्थानों को ले जाते हैं जो कि इन कारकों के गत्यात्मक स्वरूप पर निर्भर करते हैं। भ-आकृतिक कारकों द्वारा परिवहन किया जाने वाले चट्टानी-मलबे द्वारा अपघर्षण भी अपरदन में पर्याप्त योगदान देता है। अपरदन द्वारा उच्चावचन का निम्नीकरण होता है, अर्थात् भूदृश्य विघर्षित होते हैं। इसका तात्पर्य है कि अपक्षय अपरदन में सहायक होता है, लेकिन अपक्षय अपरदन के लिए अनिवार्य दशा नहीं है। अपक्षय, बहत क्षरण एवं अपरदन निम्नीकरण की प्रक्रियाएँ हैं। बृहत् संचलन एवं अपरदन में अंतर है। बृहत् संचलन में शैल मलवा, चाहे वह शुष्क हो अथवा नम, गुरुत्वाकर्षण के कारण स्वयं आधारतल पर जाते हैं: परंतु प्रवाहशील जल. हिमानी, लहरें एवं धाराएँ तथा वायु निलंबित मलवे को नहीं ढोते हैं। वस्तुत: यह अपरदन ही है जो धरातल में होने वाले अनवरत परिवर्तन के लिए उत्तरदायी है। जैसा कि चित्र संख्या 6.1 से स्पष्ट है कि अपरदन एवं परिवहन जैसी अनाच्छादन प्रक्रियाएँ गतिज ऊर्जा द्वारा नियंत्रित होती हैं। धरातल के पदार्थों का अपरदन एवं परिवहन वायु, प्रवाहशील जल, हिमानी, लहरों एवं धाराओं तथा भूमिगत जल द्वारा होता है। इनमें से प्रथम तीन कारक जलवायवी दशाओं द्वारा नियंत्रित होते हैं।

क्या आप जलवायु के इन तीन नियंत्रित कारकों की तुलना कर सकते हैं?

यह कारक पदार्थों की क्रमश: तीन अवस्थाओं-गैसीय (हवा), तरल (प्रवाहशील जल) एवं ठोस (हिमानी) का प्रतिनिधित्व करते हैं। अपरदन का अर्थ है "गतिज ऊर्जा का अनुप्रयोग जो भू-सतह के साथ संचलित कारकों से संबंधित होता है।" गतिज ऊर्जा निम्न प्रकार से ज्ञात की जा सकती है : KE (Kinetic Energy) = $\frac{1}{2}$ mv² जहाँ m = mass (बृहत्), v = velocity (वेग)

इस प्रकार के कार्य करने हेतु प्राप्त ऊर्जा पदार्थ के बृहत तथा उसकी संचलन वेग पर निर्भर करेगी। जैसे कि

Downloaded from https://www.studiestoday.com

57

+

भौतिक भूगोल के मूल सिद्धांत

विशालकाय हिमानी बृहत् बहुत मंद गित से संचलित होते हैं। एरंतु अपरदन की दृष्टि से ये बहुत प्रभावकारी होते हैं। दूसरी ओर हवा, जो कि गैसीय रूप में होती है, कम प्रभावी होती है। अपरदन के दो अन्य कारकों-लहरों एवं धाराओं तथा भूमिगत जल का कार्य जलवायु द्वारा नियंत्रित नहीं होता। लहरें थल एवं जलमंडल के अंतरापृष्ठ-तटीय प्रदेश में कार्य करती है, जबिक भूमिगत जल का कार्य प्रमुखत: किसी क्षेत्र की आश्मिक (Lithological) विशेषताओं द्वारा निर्धारित होता है। यदि शैलें पारगम्य युलनशील एवं जल प्राप्य हैं तो केवल कार्स्ट (चूनाकृत) आकृतियों का निर्माण होता है। अगले अध्याय में हम अपरदन के कारकों द्वारा निर्मित भूआकृतियों का विवरण प्रस्तत करेंगे।

निश्लेपण अपरदन का परिणाम होता है। ढाल में कमी के कारण जब अपरदन के कारकों के वेग में कमी आ जाती तो परिणामत: अवसादों का निश्लेपण प्रारंभ हो जाता है। दूसरे शब्दों में, निश्लेपण वस्तुत: किसी कारक का कार्य नहीं होता। पहले स्थूल तथा बाद में सूक्ष्म पदार्थ निश्लेपित (Deposited) होते हैं। निश्लेपण से निम्न भूभाग (Depressions) भर जाते हैं। वहीं अपरदन के कारक, जैसे- प्रवाहयुक्त जल, हिमानी, वायु, लहरें, धाराएँ एवं भूमिगत जल इत्यादि तल्लोचन अथवा निश्लेपण के कारक के रूप में भी कार्य करने लग जाते हैं।

अपरदन एवं निक्षेपण के कारण धरातल पर क्या होता है? इसका विवेचन अगले अध्याय: 'भू-आकृतियाँ एवं उनका उद्भव (Evolution)' में विस्तृत रूप से किया गया है।

बृहत् संचलन एवं अपरदन दोनों में पदार्थों का एक स्थान से दूसरे स्थान पर स्थानांतरण होता है। अत: दोनों एक ही माने जा सकते हैं या नहीं? यदि नहीं, तो क्यों? क्या शैलों के अपक्षय के बिना पर्याप्त अपरदन संभव हो सकता है?

मृदा निर्माण (Soil formation) मृदा एवं मृदा के तत्त्व (Soil and soil contents)

आप पौधों को मृदा में बढ़ते हुए देखते हैं। आप मैदान में खेलते हैं और मृदा के संपर्क में आते हैं। आप मृदा को छूते हैं, उसका अनुभव करते हैं और आपके कपड़ों पर भी मिट्टी लग जाती है। आपको कैसा अनुभव होता है? क्या आप बता सकते हैं?

मृदा वैज्ञानिकों के अनुसार मृदा धरातल पर प्राकृतिक तत्त्वों का समुच्चय है जिसमें जीवित पदार्थ तथा पौधों को पोषित करने की क्षमता होती है।

मृदा एक गत्यात्मक माध्यम है जिसमें बहुत सी रासायनिक, भौतिक एवं जैविक क्रियाएँ अनवरत चलती रहती हैं। मुदा अपक्षय अपकर्ष का परिणाम है, यह वृद्धि का माध्यम भी है। यह एक परिवर्तनशील एवं विकासोन्मुख तत्त्व है। इसकी बहुत सी विशेषताएँ मौसम के साथ बदलती रहती हैं। यह वैकल्पिक रूप से ठंडी और गर्म या शुष्क एवं आर्द्र हो सकती हैं। यदि मुदा बहुत अधिक ठंडी या बहुत अधिक शुष्क होती है तो जैविक क्रिया मंद या बंद हो जाती है। यदि इसमें पत्तियाँ गिरती हैं या घासें सूख जाती हैं तो जैव पदार्थ बढ़ जाते हैं। मृदा का रसायन, उसमें जैव पदार्थ की मात्रा, पेड-पौधे और प्राणिजात, तापक्रम और नमी, सभी मौसम के साथ तथा विस्तारित (निर्माण की) कालावधि के साथ परिवर्तित हो जाते हैं। इसका तात्पर्य है कि मदा जलवाय की दशाओं. भुआकृतियों एवं वनस्पतियों के साथ अनुकृलित होती रहती हैं और यदि उक्त नियंत्रक दशाओं में परिवर्तन हो जाए तो आंतरिक रूप से भी परिवर्तित हो सकती है।

मृदा निर्माण की प्रक्रियाएँ (Process of Soil formation)

मृदा निर्माण या मृदाजनन (Pedogenesis) सर्वप्रथम अपक्षय पर निर्भर करती है। यह अपक्षयी प्रावार (अपक्षयी पदार्थ की गहराई) ही मृदा निर्माण का मूल निवेश होता है। सर्वप्रथम अपक्षयित प्रावार या लाए गए पदार्थों के निक्षेप, बैक्टेरिया या अन्य निकृष्ट पौधे जैसे काई एवं लाइकेन द्वारा उपनिवेशित किए जाते हैं। प्रावार एवं निक्षेप के अंदर कई गौण जीव भी आश्रय प्राप्त कर लेते हैं। जीव एवं पौधों के मृत अवशेष ह्यूमस के एकत्रीकरण में सहायक होते हैं। प्रारंभ में गौण घास एवं फर्न्स की वृद्धि हो सकती है बाद में पिक्षयों एवं वायु द्वारा लाए गए बीजों से वृक्ष एवं झाड़ियों में वृद्धि होने लगती है। पौधों की जड़ें नीचे तक घुस जाती हैं। बिल बनाने वाले, जानवर कणों (Particles) को ऊपर लाते हैं, जिससे पदार्थों का पंज (अंबार) छिद्रमय

भू-आकृतिक प्रक्रियाएँ

पर्याप्त परिपक्व नहीं होती तो मुदाओं एवं मूल शैलों के प्रकार में घनिष्ट संबंध होता है। कुछ चूना क्षेत्रों (Lime stone areas) में भी, जहाँ अपक्षय प्रक्रियाएँ विशिष्ट एवं विचित्र (Peculiar) होती हैं, मिट्टियाँ मूल शैल से स्पष्ट संबंध दर्शाती हैं।

59

एवं स्पंज की तरह हो जाता है। इस प्रकार जल-धारण करने की क्षमता, वायु के प्रवेश आदि के कारण अंतत: परिपक्व, खनिज एवं जीव-उत्पाद युक्त मृदा का निर्माण होता है।

स्थलाकृति/उच्चावच (Topography)

क्या अपक्षय मिट्टी के निर्माण के लिए पूर्णरूप से उत्तरदायी है? यदि नहीं तो क्यों?

> मूल शैल की भाँति स्थलाकृति भी एक दूसरा निष्क्रिय नियंत्रक कारक है। स्थलाकृति मूल पदार्थ के आच्छादन अथवा अनावृत होने को सूर्य की किरणों के संबंध में प्रभावित करती हैं तथा स्थलाकृति धरातलीय एवं उप-सतही अप्रवाह की प्रक्रिया को मूल पदार्थ के संबंध में भी प्रभावित करती है। तीव्र ढालों पर मुदा छिछली (Thin) तथा सपाट उच्च क्षेत्रों में गहरी/मोटी (Thick) होती है। निम्न ढालों जहाँ अपरदन मंद तथा जल का परिश्रवण (Percolation) अच्छा रहता है मृदा निर्माण बहुत अनुकुल होता है। सपाट/समतल क्षेत्रों में चीका मिट्टी (Clay) के मोटे स्तर का विकास हो सकता है तथा जैव पदार्थ के अच्छे एकत्रीकरण के साथ मिट्टी/मृदा का रंग भी गहरा (काला) हो सकता है। मध्य अक्षांशों में दक्षिणोन्मुख सूर्य की किरणों से अनावृत ढालों की वनस्पति तथा मृदा की दशा भिन्न होती है एवं उत्तरोन्मुख ठंडे, नम दशाओं वाले ढालों पर अन्य प्रकार की मिट्टी एवं वनस्पति मिलती है।

पेडालॉजी मृदा विज्ञान है एवं पेडालॉजिस्ट एक मुदा वैज्ञानिक होता है।

मुदा निर्माण के कारक (Soil forming factors)

जैविक क्रियाएँ (Biological activities) वनस्पति आवरण एवं जीव जो मूल पदार्थों पर प्रारंभ तथा बाद में भी विद्यमान रहते हैं मुदा में जैव पदार्थ, नमी धारण की क्षमता तथा नाइट्रोजन इत्यादि जोडने में सहायक होते हैं। मृत पौधे मृदा को सूक्ष्म विभाजित जैव पदार्थ-ह्यमस प्रदान करते हैं। कुछ जैविक अम्ल जो ह्यमस बनने की अवधि में निर्मित होते हैं मुदा के मूल पदार्थों के खनिजों के विनियोजन में सहायता करते हैं। बैक्टीरियल कार्य की गहनता ठंडी एवं गर्म जलवायु की मिट्टियों में अंतर को दर्शाती है। ठंडी जलवायु में ह्यूमस एकत्रित हो जाता है, क्योंकि यहाँ बैक्टीरियल वृद्धि धीमी होती है। उप-आर्कटिक एवं टुंड्रा जलवायु में निम्न बैक्टेरियल क्रियाओं के कारण अवियोजित जैविक

पदार्थों के साथ पीट (Peat) के संस्तर विकसित हो

मृदा निर्माण पाँच मूल कारकों द्वारा नियंत्रित होता है। ये कारक है: (i) मूल पदार्थ (शैलें) (ii) स्थलाकृति (iii) जलवायु (iv) जैविक क्रियाएँ एवं (v) समय। वस्तुत: मुदा निर्माण कारक संयुक्त रूप से कार्यरत रहते हैं एवं एक दूसरे के कार्य को प्रभावित करते हैं। इनका संक्षिप्त विवरण अधोलिखित है।

जलवायु (Climate)

जलवायु मुदा निर्माण में एक महत्त्वपूर्ण सिक्रय कारक है। मुदा के विकास में संलग्न जलवायवी तत्त्वों में प्रमुख हैं: (i) प्रवणता, वर्षा एवं वाष्पीकरण की बारंबारता व अविध तथा आर्द्रता, (ii) तापक्रम में मौसमी एवं दैनिक भिन्नता।

मूल पदार्थ/शैल (Parent material)

मृदा निर्माण में मूल शैल एक निष्क्रिय नियंत्रक कारक है। मूल शैल कोई भी स्वस्थाने (In situ) या उसी स्थान पर अपक्षयित शैल मलवा (अवशिष्ट मुदा) या लाये गये निक्षेप (परिवहनकृत मृदा) हो सकती है। मृदा निर्माण गठन (मलवा के आकार) संरचना (एकल/पृथक कणों/मलवा के कणों का विन्यास) तथा शैल निक्षेप के खनिज एवं रासायनिक संयोजन पर निर्भर करता है।

मूल पदार्थ के अंतर्गत अपक्षय की प्रकृति एवं उसकी दर तथा आवरण की गहराई/मोटाई प्रमुख विचारणीय तत्त्व होते हैं। समान आधार शैल पर मुदाओं में अंतर हो सकता है तथा असमान आधार पर समान मृदाएँ मिल सकती हैं। परंतु जब मृदाएँ बहुत नूतन (Young) तथा

60

十

भौतिक भूगोल के मूल सिद्धांत

जाते हैं। आई, उष्ण एवं भूमध्य रेखीय जलवायु में बैक्टेरियल वृद्धि एवं क्रियाएँ सघन होती हैं तथा मृत वनस्पति शीघ्रता से ऑक्सीकृत हो जाती है जिससे मुदा में ह्यमस की मात्रा बहुत कम रह जाती है। बैक्टेरिया एवं मृदा के जीव हवा से गैसीय नाइट्रोजन प्राप्त कर उसे रासायनिक रूप में परिवर्तित कर देते हैं जिसका पौधों द्वारा उपयोग किया जा सकता है। इस प्रक्रिया को नाइट्रोजन निर्धारण (Nitrogen fixation) कहते हैं। राइजोबियम (Rhizobium), एक प्रकार का बैक्टेरिया जंत्वाले (Leguminous) पौधों के जड ग्रंथिका में रहता है तथा मेजबान (Host) पौधों के लिए लाभकारी नाइट्रोजन निर्धारित करता है। चींटी, दीमक, केंचुए, कृंतक (Rodents) इत्यादि कीटों का महत्त्व अभियांत्रिकी (Mechanical) सा होता है, परंतु मृदा निर्माण में ये महत्त्वपूर्ण होते हैं क्योंकि वे मृदा को बार-बार ऊपर नीचे करते रहते हैं। केंचुए मिट्टी खाते हैं, अत: उनके शरीर से निकलने वाली मिट्टी का गठन एवं रसायन परिवर्तित हो जाता है।

कालावधि (Time)

मृदा निर्माण में कालाविध तीसरा महत्त्वपूर्ण कारक है। मृदा निर्माण प्रक्रियाओं के प्रचलन में लगने वाले काल (समय) की अविध मृदा की परिपक्वता एवं उसके पार्श्विका (Profile) का विकास निर्धारण करती है। एक मृदा तभी परिपक्व होती है जब मृदा निर्माण की सभी प्रक्रियाएँ लंबे काल तक पार्श्विका विकास करते हुए कार्यरत रहती हैं। थोड़े समय पहले (Recently) निक्षेपित जलोढ़ मिट्टी या हिमानी टिल से विकसित मृदाएँ तरुण/युवा (Young) मानी जाती हैं तथा उनमें संस्तर (Horizon) का अभाव होता है अथवा कम विकसित संस्तर मिलता है। संपूर्ण परिप्रेक्ष्य में मिट्टी के विकास या उसकी परिपक्वता के लिए कोई विशिष्ट (Specific) कालाविध नहीं है।

क्या मृदा निर्माण प्रक्रिया एवं मृदा निर्माण नियंत्रक कारकों को अलग करना आवश्यक है? मृदा निर्माण-प्रक्रिया में कालाविध, स्थलाकृति एवं मूल पदार्थ निष्क्रिय नियंत्रक कारक क्यों माने जाते हैं?

__अभ्यास_

1. बहुवैकल्पिक प्रश्न :

- (i) निम्नलिखित में से कौन सी एक अनुक्रमिक प्रक्रिया है?
 - (क) निक्षेप

- (ख) ज्वालामुखीयता
- (ग) पटल-विरूपण
- (घ) अपरदन
- (ii) जलयोजन प्रक्रिया निम्नलिखित पदार्थों में से किसे प्रभावित करती है?
 - (क) ग्रेनाइट
- (ख) क्वार्ट्ज़
- (ग) चीका (क्ले) मिट्टी (घ) लवण
- (iii) मलवा अवधाव को किस श्रेणी में सम्मिलित किया जा सकता है?
 - (क) भूस्खलन
- (ख) तीव्र प्रवाही बृहत् संचलन
- (ग) मंद प्रवाही बृहत् संचलन
- (घ) अवतलन/धसकन

2. निम्नलिखित प्रश्नों के उत्तर लगभग 30 शब्दों में दीजिए :

- (i) अपक्षय पृथ्वी पर जैव विविधता के लिए उतरदायी है। कैसे?
- (ii) बृहत् संचलन जो वास्तविक, तीव्र एवं गोचर/अवगम्य (Perceptible) हैं, वे क्या हैं? सूचीबद्ध कीजिए।
- (iii) विभिन्न गतिशील एवं शक्तिशाली बिहर्जिनिक भू-आकृतिक कारक क्या हैं तथा वे क्या प्रधान कार्य संपन्न करते हैं?
- (iv) क्या मुदा निर्माण में अपक्षय एक आवश्यक अनिवार्यता है?

भू-आकृतिक प्रक्रियाएँ

3. निम्नलिखित प्रश्नों के उत्तर लगभग 150 शब्दों में दीजिए :

(i) "हमारी पृथ्वी भू-आकृतिक प्रक्रियाओं के दो विरोधात्मक (Opposing) वर्गों के खेल का

- मैदान है," विवेचना कीजिए।
 (ii) 'बहिर्जनिक भू-आकृतिक प्रक्रियाएँ अपनी अंतिम ऊर्जा सूर्य की गर्मी से प्राप्त करती हैं।' व्याख्या
- (ii) 'बाहजानक भू-आकृतिक प्राक्रयाए अपना आतम ऊजा सूर्य का गमा स प्राप्त करता है।' व्याख्या कीजिए।
- (iii) क्या भौतिक एवं रासायनिक अपक्षय प्रक्रियाएँ एक दूसरे से स्वतंत्र हैं? यदि नहीं तो क्यों? सोदाहरण व्याख्या कीजिए।
- (iv) आप किस प्रकार मृदा निर्माण प्रक्रियाओं तथा मृदा निर्माण कारकों के बीच अंतर ज्ञात करते हैं? जलवायु एवं जैविक क्रियाओं की मृदा निर्माण में दो महत्त्वपूर्ण कारकों के रूप में क्या भूमिका है?

परियोजना कार्य

अपने चतुर्दिक विद्यमान भूआकृति/उच्चावच एवं पदार्थों के आधार पर जलवायु, संभव अपक्षय प्रक्रियाओं एवं मृदा के तत्त्वों और विशेषताओं को परिखए एवं अंकित कीजिए।

अध्याय

भू-आकृतियाँ तथा उनका विकास

पृथ्वी के धरातल का निर्माण करने वाले पदार्थों पर अपक्षय की प्रक्रिया के पश्चात् भू-आकृतिक कारक जैसे- प्रवाहित जल, भूमिगत जल, वायु, हिमनद तथा तरंग अपरदन करते हैं। आप यह जानते ही हैं कि अपरदन धरातलीय स्वरूप को बदल देता है। निक्षेपण प्रक्रिया अपरदन प्रक्रिया का परिणाम है और निक्षेपण से भी धरातलीय स्वरूप में परिवर्तन आता है।

चूँिक, यह अध्याय भू-आकृतियों तथा उनके विकास से संबंधित है, अत: सबसे पहले यह जानें कि भू-आकृति क्या है? साधारण शब्दों में छोटे से मध्यम आकार के भूखंड भू-आकृति कहलाते हैं।

अगर पृथ्वी के छोटे से मध्यम आकार के स्थलखंड को भू-आकृति कहते हैं तो भृदृश्य क्या है?

बहुत सी संबंधित भू-आकृतियाँ मिलकर भूटूश्य बनाती हैं, जो भूतल के विस्तृत भाग हैं। प्रत्येक भू-आकृति की अपनी भौतिक आकृति, आकार व पदार्थ होते हैं जो कि कुछ भू-प्रक्रियाओं एवं उनके कारकों द्वारा निर्मित हैं। अधिकतर भू-आकृतिक प्रक्रियाएँ धीमी गति से कार्य करती हैं और इसी कारण उनके आकार बनने में लंबा समय लगता है। प्रत्येक भू-आकृति का एक प्रारंभ होता है। भू-आकृतियों के एक बार बनने के बाद उनके आकार, आकृति व प्रकृति में बदलाव आता है जो भू-आकृतिक प्रक्रियाओं व कार्यकर्त्ताओं के लगातार धीमे अथवा तेज गति के कारण होता है।

जलवायु संबंधी बदलाव तथा वायुराशियों के ऊर्ध्वाधर अथवा क्षैतिज संचलन के कारण, भू-आकृतिक प्रक्रियाओं की गहनता से या स्वयं ये प्रक्रियाएँ स्वयं परिवर्तित हो जाती हैं जिनसे भू-आकृतियाँ रूपांतरित होती हैं। विकास का यहाँ अर्थ भूतल के एक भाग में एक भू-आकृति का दूसरी भू-आकृति में या एक भू-आकृति के एक रूप से दूसरे रूप में परिवर्तित होने की अवस्थाओं से है। इसका अभिप्राय यह है कि प्रत्येक भू-आकृति के विकास का एक इतिहास है और समय के साथ उसका परिवर्तन हुआ है। एक स्थलरूप विकास की अवस्थाओं से गुजरता है जिसकी तुलना जीवन की अवस्थाओं -युवावस्था, प्रौढ़ावस्था तथा वृद्धावस्था से की जा सकती है।

भू-आकृतियों के विकास के दो महत्त्वपूर्ण पहलू क्या हैं?

भूतल के लगातार बदलते ऐतिहासिक विकास को समझना अत्यंत आवश्यक है ताकि इसे असंतुलित किए बिना और भविष्य में इसकी संभावनाओं को कम किए बिना इसका प्रभावशाली रूप में उपयोग किया जा सके। भ्-आकृतिक विज्ञान भूतल के इतिहास का पुनर्अध्ययन है जिसमें इसके आकार, पदार्थों व प्रक्रियाओं जिनसे यह भूतल निर्मित है, का अध्ययन किया जाता है। भूतल पर परिवर्तन अनेक भू-आकृतिक कारकों के द्वारा किए गये अपरदन से होता है। नि:संदेह निक्षेपण प्रक्रिया भी बेसिनों, घाटियों व निचले स्थलरूपों को भर कर धरातलीय स्वरूप को परिवर्तित करती है। अपरदन के पश्चात् निक्षेपण होता है और निक्षेपित तल भी फिर से अपरदित होते हैं। प्रवाहित जल, भूमिगत जल, हिमनद, पवनें व तरंगें प्रबल अपरनदकारी व निक्षेपणकारी कारक है जिनके साथ अपक्षय व बृहत् क्षरण भी सहायक होकर भूतल को आकार देते हैं और बदलते हैं। ये भू-आकृतिक कारक लंबे समय तक कार्य करते हुए क्रमबद्ध (Systematic) बदलाव लाते हैं जिसके परिणामस्वरूप

भ-आकृतियाँ तथा उनका विकास

63

स्थलरूपों का अनुक्रमिक (Sequential) विकास होता है। प्रत्येक भू-आकृतिक कारक एक विशेष प्रकार का स्थलरूप समुच्चय (Assemblage) बनाता है। यही नहीं, प्रत्येक प्रक्रिया व कारक अपने द्वारा बनाए गए स्थलरूपों पर अपनी एक अनोखी छाप छोड़ते हैं। आप जानते हैं कि अधिकतर भू-आकृतिक प्रक्रियाएँ बहुत धीरे-धीरे (जिन्हें महसूस न किया जाए) कार्य करती हैं और उन्हें उनके परिणाम द्वारा ही देखा या मापा जा सकता है। ये परिणाम क्या हैं? ये परिणाम कुछ और नहीं अपितु स्थलरूप और उनकी विशेषताएँ हैं। अत: इन स्थलरूपों का अध्ययन ही हमें इनकी प्रक्रियाओं और कारकों के विषय में बताएगा जिन्होंने इन्हें निर्मित किया है या कर रहे हैं।

अधिकतर भू-आकृतिक प्रक्रियाओं का बोध नहीं होता। ऐसी कुछ प्रक्रियाएँ बताएँ जो देखी जा सकती हैं तथा कुछ ऐसी जिन्हें देखा नहीं जा सकता।

चूँिक, भू-आकृतिक कारक अपरदन व निक्षेपण में सक्षम हैं, अत: अपरदित और निक्षेपित – दो प्रकार के स्थलरूपों का निर्माण होता है। प्रत्येक कारक द्वारा कई प्रकार के स्थलरूप विकसित होते हैं, जो चट्टानों की संरचना तथा प्रकार यथा मोड़, जोड़, विभंग, कठोरता, कोमलता, पारगम्यता तथा अपारगम्यता भ्रंश, दरार, जोड़ आदि पर निर्भर करते हैं। कुछ अन्य स्वतंत्र नियंत्रक भी हैं जैसे (i) समुद्र तल का स्थायित्व, (ii) भूतल का विवंतिनक स्वरूप (iii) जलवायु- जो स्थलरूपों के विकास को प्रभावित करते हैं। इन तीनों नियंत्रक कारकों में से किसी में व्यवधान आने के कारण भी स्थलरूपों का क्रमबद्ध एवं अनुक्रमिक विकास को बाधित कर सकता है।

इस अध्याय में आगे प्रत्येक भू-आकृतिक कारक जैसे-प्रवाहित जल, भौम जल, हिमनद, तरंग और पवनें आदि का संक्षिप्त विवरण प्रस्तुत है। यह भी प्रस्तुत है कि इन कारकों द्वारा भूतलीय अपरदन कैसे प्रभावित होता है। इसके साथ ही कुछ अपरदित व निक्षेपित स्थलरूपों का विकास भी प्रस्तुत किया जाता है।

प्रवाहित जल

आर्द्र प्रदेशों में, जहाँ अत्यधिक वर्षा होती है, प्रवाहित जल सबसे महत्त्वपूर्ण भू-आकृतिक कारक है जो धरातल का निम्नीकरण के लिए उत्तरदायी है। प्रवाहित जल के दो तत्त्व हैं। एक, धरातल पर परत के रूप में फैला हुआ प्रवाह है। दूसरा, रैखिक प्रवाह है जो घाटियों में निदयों, सरिताओं के रूप में बहता है। प्रवाहित जल द्वारा निर्मित अधिकतर अपरदित स्थलरूप ढाल प्रवणता के अनुरूप बहती हुई निदयों की आक्रामक युवावस्था से संबंधित हैं। कालांतर में, तेज ढाल लगातार अपरदन के कारण मंद ढाल में परिवर्तित हो जाते हैं और परिणामस्वरूप नदियों का वेग कम हो जाता है, जिससे निक्षेपण आरंभ होता है। तेज ढाल से बहती हुई सरिताएँ भी कुछ निक्षेपित भू-आकृतियाँ बनाती हैं, लेकिन ये नदियों के मध्यम तथा धीमे ढाल पर बने आकारों की अपेक्षा बहुत कम होते हैं। प्रवाहित जल का ढाल जितना मंद होगा, उतना ही अधिक निक्षेपण होगा। जब लगातार अपरदन के कारण नदी तल समतल हो जाए, तो अधोमुखी कटाव कम हो जाता है और तटों का पार्श्व अपरदन बढ़ जाता है और इसके फलस्वरूप पहाडियाँ और घाटियाँ समतल मैदानों में परिवर्तित हो जाते है।

क्या ऊँचे स्थलरूपों के उच्चावच का संपूर्ण निम्नीकरण संभव है?

स्थलगत प्रवाह (Overland flow) परत अपरदन का कारण है। परत प्रवाह धरातल की अनियमितताओं के आधार पर संकीर्ण व विस्तृत मार्गों पर हो सकता है। प्रवाहित जल के घर्षण के कारण बहते हुए जल द्वारा कम या अधिक मात्रा में बहाकर लाए गए तलछटों के कारण छोटी व तंग क्षुद्र सरिताएँ बनती हैं। ये क्षुद्र सरिताएँ धीरे-धीरे लंबी व विस्तृत अवनालिकाओं में विकसित होती हैं। इन अवनलिकाओं कालांतर में, अधिक गहरी. चौडी तथा लंबाई में विस्तृत होकर एक दूसरे में समाहित होकर घाटियों का जाल बनाती हैं। प्रारंभिक अवस्थाओं में अधोमुखी कटाव अधिक होता है जिससे अनियमितताएँ जैसे- जलप्रपात व सोपानी जलप्रपात आदि लुप्त हो जाते हैं। मध्यावस्था में, सरिताएँ नदी तल में धीमा कटाव करती हैं और घाटियों में पार्श्व अपरदन अधिक होता है। कालांतर में, घाटियों के किनारों की ढाल मंद होती जाती है। इसी प्रकार अपवाह बेसिन के मध्य विभाजक तब तक निम्न होते जाते हैं. जब तक ये पूर्णत: समतल नहीं हो जाते; और अंतत: एक धीमे

+

भौतिक भूगोल के मूल सिद्धांत

उच्चावच का निर्माण होता है जिसमें यत्र-तत्र अवरोधी चट्टानों के अवशेष दिखाई देते हैं जिन्हें मोनाडनोक (Monadanox) कहते हैं। नदी अपरदन के द्वारा बने इस प्रकार के मैदान, समप्राय मैदान या पेनीप्लेन (Peneplain) कहलाते हैं। प्रवाहित जल से निर्मित प्रत्येक अवस्था की स्थलरूप संबंधी विशेषताओं का संक्षिप्त वर्णन निम्न प्रकार है:

युवावस्था (Youth)

इस अवस्था में निदयों की संख्या बहुत कम होती है ये निदयाँ उथली V-आकार की घाटी बनाती हैं जिनमें बाढ़ के मैदान लगभग अनुपस्थित या संकरें बाढ़ मैदान मुख्य नदी के साथ-साथ पाए जाते हैं। जल विभाजक अत्यधिक विस्तृत (चौड़े) व समतल होते हैं, जिनमें दलदल व झीलें होती हैं। इन ऊँचे समतल धरातल पर नदी विसर्प विकसित हो जाते हैं। ये विसर्प अंतत: ऊँचे धरातलों में गभीरभूत हो जाते हैं। (अर्थात् विसर्प की तली में निम्न कटाव होता है और ये गहराई में बढ़ते हैं)। जहाँ अनाविरत कठोर चट्टानें पाई जाती है। वहाँ जलप्रपात व क्षिप्रिकाएँ बन जाते है।

प्रौढ़ावस्था (Mature)

इस अवस्था में निदयों में जल की मात्रा अधिक होती है और सहायक निदयाँ भी इसमें आकर मिलती हैं। नदी घाटियाँ V-आकार की होती हैं लेकिन गहरी होती हैं। मुख्य नदी के व्यापक और विस्तृत होने से विस्तृत बाढ़ के मैदान पाए जाते हैं जिसमें घाटी के भीतर ही नदी विसर्प बनाती हुई प्रवाहित होती है। युवावस्था में निर्मित समतल, विस्तृत व अंतर नदीय दलदली क्षेत्र लुप्त हो जाते हैं और नदी विभाजक स्पष्ट होते हैं। जलप्रपात व क्षिप्रिकाएँ लुप्त हो जाती हैं।

वृद्धावस्था (Old)

वृद्धावस्था में छोटी सहायक निदयाँ कम होती हैं और ढाल मंद होता है। निदयाँ स्वतंत्र रूप से विस्तृत बाढ़ के मैदानों में बहती हुई नदी विसर्प, प्राकृतिक तटबंध, गोखुर झील आदि बनाती हैं। विभाजक विस्तृत तथा समतल होते हैं जिनमें झील, दलदल पाये जाते हैं। अधिकतर भूद्रश्य समुद्रतल के बराबर या थोड़े ऊँचे होते हैं।

अपरदित स्थलरूप

घाटियाँ

घाटियों का प्रारंभ तंग व छोटी-छोटी क्षुद्र सरिताओं से होता है। ये क्षुद्र सरिताएँ धीरे-धीरे लंबी व विस्तृत

चित्र 7.1 : होगेनेकल (धर्मपुरी, तमिलनाडु) के समीप गॉर्ज के रूप में कावेरी नदी की घाटी

चित्र 7.2 : संयुक्त राज्य अमेरिका में कोलोरेडो का गभीरीभूत विसर्प लूप, जो इसकी घाटी के कैनियन जैसे सोपान सदृश्य पार्श्वीय ढाल दर्शाता है।

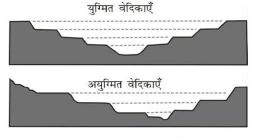
भू-आकृतियाँ तथा उनका विकास

65

अवनलिकाओं में विकसित हो जाती हैं। ये अवनालिकाएँ धीरे-धीरे और गहरी हो जाती हैं; ये चौडी व लंबी होकर घाटियों का रूप धारण करती हैं। लम्बाई, चौडाई एवं आकृति के आधार पर ये घाटियाँ - V-आकार घाटी. गॉर्ज, कैनियन आदि में वर्गीकृत की जा सकती हैं। गॉर्ज एक गहरी संकरी घाटी है जिसके दोनों पार्श्व तीव्र ढाल के होते हैं (चित्र 7.1)। एक कैनियन के किनारे भी खड़ी ढाल वाले होते हैं और यह भी गॉर्ज की ही भाँति गहरी होती है (चित्र 7.2)। गाँजी की चौडाई इसके तल व ऊपरी भाग में लगभग एक समान होती है। इसके विपरीत, एक कैनियन तल की अपेक्षा ऊपरी भाग अधिक चौडा होता है। वास्तव में कैनियन, गॉर्ज का ही एक दूसरा रूप है। चट्टानों के प्रकार और संरचना पर घाटी का प्रकार निर्भर होता है। उदाहरणार्थ कैनियन का निर्माण प्राय: अवसादी चट्टानों के क्षैतिज स्तरण में पाए जाने से होता है तथा गॉर्ज कठोर चट्टानों में बनता है।

जलगर्तिका तथा अवनमित कुंड (Potholes and plunge pools)

पहाडी क्षेत्रों में नदी तल में अपरिदत छोटे चट्टानी टुकडे छोटे गर्तों में फंसकर वृत्ताकार रूप में घूमते हैं जिन्हें जलगर्तिका कहते हैं। एक बार छोटे व उथले गर्तों के बन जाने पर कंकड, पत्थर व गोलाश्म इन गर्तों में एकत्रित हो जाते हैं और प्रवाहित जल के साथ घूमते हैं और धीरे-धीरे इन गर्तों का आकार बढ़ता जाता है। यह गर्त आपस में मिल जाते हैं और कालांतर में नदी-घाटी गहरी होती जाती है। जलप्रपात के तल में भी एक गहरे व बडे जलगर्तिका का निर्माण होता है जो जल के ऊँचाई से गिरने व उनमें शिलाखंडों के वृत्ताकार घूमने से निर्मित होते हैं। जलप्रपातों के तल में ऐसे विशाल व गहरे कुंड अवनमित कुंड (Plunge pools) कहलाते हैं। ये कुंड भी घाटियों को गहरा करने में सहायक होते हैं। अन्य स्थलरूपों की भाँति जलप्रपात भी बदलते स्वरूप हैं जो धीरे-धीरे पीछे हटते हैं और जलप्रपात का ऊपरी तल धीरे-धीरे आधार तल के बराबर हो जाता है।


अधःकर्तित विसर्प या गभीरीभूत विसर्प (Incised or Entrenched Meanders)

तीव्र ढालों में तीव्रता से बहती हुई निदयाँ सामान्यत: नदी तल पर अपरदन करती हैं। तीव्र नदी ढालों में भी पाश्वी अपरदन अधिक नहीं होता लेकिन मंद ढालों पर बहती हुई निदयाँ अधिक पार्श्व अपरदन करती हैं। क्षैतिज अपरदन अधिक होने के कारण, मंद ढालों पर बहती हुई निदयाँ विक्रत होकर बहती हैं या नदी विसर्प बनाती हैं। नदी विसर्पों का बाढ़ मैदानों और डेल्टा मैदानों पर पाया जाना एक सामान्य बात है क्योंकि यहाँ नदी का ढाल बहुत मंद होता है। कठोर चट्टानों में भी गहरे कटे हुए और विस्तृत विसर्प मिलते हैं। इन विसर्पों को अध:कर्तित विसर्प या गभीरभूत विसर्प कहा जाता है (चित्र 7.2)। नदी विकास की प्रारंभिक अवस्था में प्रारंभिक मंद ढाल पर विसर्प लूप विकसित होते हैं और ये लूप चट्टानों में गहराई तक होते हैं जो प्राय: नदी अपरदन या भूतल के धीमे व लगातार उत्थान के कारण बनते हैं। कालांतर में ये गहरे तथा विस्तृत हो जाते हैं और कठोर चट्टानी भागों में गहरे गॉर्ज व कैनियन के रूप में पाए जाते हैं। ये उन प्राचीन धरातलों के परिचायक हैं जिन पर निदयाँ विकसित हुई हैं।

बाढ़ व डेल्टा मैदानों पर बने विसर्प व अध:कर्तित विसर्प में क्या अंतर है?

नदी वेदिकाएँ (River terraces)

नदी वेदिकाएँ प्रारंभिक बाढ़ मैदानों या पुरानी नदी घाटियों के तलों के चिह्न हैं। ये जलोढ़ रहित मूलाधार चट्टानों के धरातल या निदयों के तल हैं जो निक्षेपित जलोढ़ वेदिकाओं के रूप में पाए जाते हैं। नदी वेदिकाएँ मुख्यत: अपरदित स्थलरूप हैं क्योंकि ये नदी निक्षेपित बाढ़ मैदानों के लंबवत् अपरदन से निर्मित होते हैं। विभिन्न ऊँचाइयों पर कई वेदिकाएँ हो सकती हैं जो आरंभिक नदी जल स्तर को दर्शाते हैं। नदी वेदिकाएँ

चित्र 7.3 : युग्मित एवं अयुग्मित वेदिकाएँ

+

भौतिक भूगोल के मूल सिद्धांत

नदी के दोनों तरफ समान ऊँचाई वाली हो सकती हैं और इनके इस स्वरूप को युग्म (Paired) वेदिकाएँ कहते हैं (चित्र 7.3)।

जब नदी के केवल एक तट या पार्श्व पर वेदिकाएँ पाई जाती हैं और दूसरी तरफ इनकी अनुपस्थिति या दूसरे किनारे पर इनकी ऊँचाई पहले पार्श्व से बिल्कुल भिन्न हो तो ऐसी वेदिकाओं को अयुग्मित (unpaired) वेदिकाएँ कहते हैं। अयुगमित वेदिकाएँ उन क्षेत्रों के धीमे भूउत्थान की द्योतक हैं। या उन क्षेत्रों के तट जलस्तर परिवर्तन की असंगति को दिखाते हैं। नदी वेदिकाओं की उत्पत्ति का कारण है: (i) जल प्रवाह का कम होना (ii) जलवायु परिवर्तन के कारण जलीय क्षेत्र में परिवर्तन; (iii) विवर्तनिक कारणों से भूउत्थान (iv) अगर नदियाँ तट के निकट हाती हैं तो समुद्र तल में बदलाव आदि।

निक्षेपित स्थलरूप

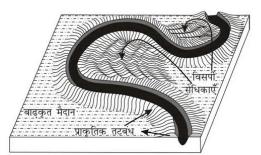
जलोढ़ पंख

जब नदी उच्च स्थलों से बहती हुई गिरिपद व मंद ढाल के मैदानों में प्रवेश करती है तो जलोढ़ पंख का निर्माण होता है (चित्र 7.4)। साधारणतया पर्वतीय क्षेत्रों में बहने वाली निदयाँ भारी व स्थूल आकार के नद्य-भार को वहन करती हैं। मंद ढालों पर निदयाँ यह भार वहन करने में असमर्थ होती हैं तो यह शंकु के आकार में निक्षेपित हो जाता है जिसे जलोढ़ पंख कहते हैं। जो निदयाँ जलोढ़ पंखों से बहती हैं, वे प्राय: अपने वास्तविक वाह-मार्ग को बहुत दूर तक नहीं बहतीं बिल्क अपना मार्ग बदल लेती हैं और कई शाखाओं में बँट जाती हैं जिन्हें जलवितरिकाएँ (Distributaries) कहते हैं। आई प्रदेशों में जलोढ पंख

चित्र 7.4 : अमरनाथ, जम्मू तथा कश्मीर के मार्ग में एक पहाड़ी सरिता द्वारा निक्षेपित जलोढ़ पंख

प्राय: निम्न शंकु की आकृति तथा शीर्ष से पाद तक मंद ढाल वाले होते हैं। शुष्क व अर्द्ध-शुष्क जलवायवी प्रदेशों में ये तीव्र ढाल वाले व उच्च शंकु बनाते हैं।

डेल्टा

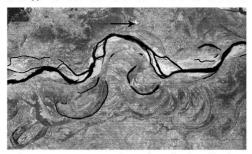

डेल्टा जलोढ़ पंखों की ही भाँति होते हैं, लेकिन इनके विकिसत होने का स्थान भिन्न होता है। नदी अपने लाये हुए पदार्थों को समुद्र में किनारे बिखेर देती हैं। अगर यह भार समुद्र में दूर तक नहीं ले जाया गया हो तो यह तट के साथ ही शंकु के रूप में एक साथ फैल जाता है। जलोढ़ पंखों के विपरीत, डेल्टा का निक्षेप व्यवस्थित होता है और इनका जलोढ़ स्तरित होता है। अर्थात् मोटे पदार्थ तट के निकट व बारीक कण जैसे – चीका मिट्टी, गाद आदि सागर में दूर तक जमा हो जाता है। जैसे-जैसे डेल्टा का आकार बढ़ता है, नदी वितरिकाओं की लंबाई बढ़ती जाती है और डेल्टा सागर के अंदर तक बढ़ता रहता है (चित्र 7.5)।

चित्र 7.5 : कृष्णा नदी डेल्टा (आंध्र प्रदेश) के भाग का उपग्रह द्वारा लिया गया एक चित्र

बाढ़-मैदान, प्राकृतिक तटबंध तथा विसर्पी रोधिका

जिस प्रकार अपरदन से घाटियाँ बनती हैं, उसी प्रकार निक्षेपण से बाढ़ के मैदान विकसित होते हैं। बाढ़ के मैदान नदी निक्षेपण के मुख्य स्थलरूप हैं। जब नदी तीव्र ढाल से मंद ढाल में प्रवेश करती है तो बड़े आकार के पदार्थ पहले ही निक्षेपित हो जाते हैं। इसी प्रकार बारीक पदार्थ जैसे रेत, चीका मिट्टी और गाद आदि अपेक्षाकृत मंद ढालों पर बहने वाली कम वेग वाली जल धाराओं में मिलते हैं और जब भू-आकृतियाँ तथा उनका विकास

चित्र 7.6 : प्राकृतिक तटबंध एवं विसर्पी रोधिकाओं का चित्रण


बाढ़ आने पर पानी तटों पर फैलता है तो ये उस तल पर जमा हो जाते हैं। नदी निक्षेप से बने ऐसे तल सिक्रय बाढ़ के मैदान कहलाते हैं। तलों से ऊँचाई पर बने तटों को असिक्रय बाढ़ के मैदान कहते हैं। असिक्रय बाढ़ के मैदान, जो तटों के ऊपर (ऊँचाई) होते हैं, मुख्यत: दो प्रकार के निक्षेपों से बने होते हैं- बाढ़ निक्षेप व सिरता निक्षेप। मैदानी भागों में निदयाँ प्राय: क्षैतिज दिशा में अपना मार्ग बदलती हैं और कटा हुआ मार्ग धीरे-धीरे भर जाता है। बाढ़ मैदानों के ऐसे क्षेत्र, जो निदयों के कटे हुए या छूटे हुए भाग हैं; उनमें स्थूल पदार्थों के जमाव होते हैं। ऐसे जमाव, जो बाढ़ के पानी के फैलने से बनते हैं अपेक्षाकृत महीन कणों- चिकनी मिट्टी, गाद आदि के होते हैं। ऐसे बाढ़ मैदान, जो डेल्टाओं में बनते हैं, उन्हें डेल्टा मैदान कहते हैं।

प्राकृतिक तटबंध और विसर्पी रोधिका आदि कुछ महत्त्वपूर्ण स्थलरूप हैं जो बाढ के मैदानों से संबंधित हैं। प्राकृतिक तटबंध बड़ी निदयों के किनारे पर पाए जाते हैं। ये तटबंध निदयों के पार्श्वों में स्थूल पदार्थों के रैखिक, निम्न व समानांतर कटक के रूप में पाये जाते हैं, जो कई स्थानों पर कटे हुए होते हैं। बाढ़ के दौरान जब जल तटों पर फैलता है, तो जल का वेग कम होने के कारण बड़े आकार का मलबा नदी के पार्श्व तटों पर लंबे कटकों के रूप में जमा हो जाता है। प्राकृतिक तटबंध नदी के साथ ऊँचे और नदी से दूर मंद ढाल वाले होते हैं। नदी चैनल के निकट तटबंधों पर निक्षेप, नदी के दूर के निक्षेपों की तुलना में अपेक्षाकृत मोटे पदार्थों के होते हैं। जब नदी का जल कम हो जाता है या नदी क्षैतिज अवस्था में अपना मार्ग बदलती है तो यह क्रमबद्ध प्राकृतिक तटबंध बनाती है। नदी रोधिकाएँ विसर्पी रोधिकाओं के नाम से भी जानी जाती हैं। नदी रोधिकाएँ (Point bars) या विसर्पी रोधिकाएँ (Meander bars), बड़ी नदी विसर्पों के उत्तल ढालों पर पाई जाती हैं और ये रोधिकाएँ प्रवाहित जल द्वारा लाए गए तलछटों के नदी किनारों पर निक्षेपण के कारण बनी हैं। इनकी चौड़ाई व परिच्छेदिका लगभग एक समान होती है और इनके अवसाद मिश्रित आकार के होते हैं। अगर नदी रोधिकाओं की कटक एक से अधिक हों तो वहाँ विसर्प अवरोधिकाओं के मध्य तंग व लंबे गर्त भी पाए जाते हैं। नदी में इनका क्रम प्रवाह की मात्रा तथा तलछट की आपूर्ति पर निर्भर करता है। चूँकि, नदी अवरोधिकाएँ उसके उत्तल तट पर बनती है; अत: नदी के अवतल तट पर अधिक अपरदन होता है।

प्राकृतिक तटबंध विसर्प अवरोधिकाओं से कैसे भिन्न हैं?

नदी विसर्प (Meanders)

विस्तृत बाढ़ व डेल्टा मैदानों में निदयाँ शायद ही सीधे मार्गों में बहती होंगी। बाढ़ व डेल्टाई मैदानों पर लूप जैसे चैनल प्रारूप विकसित होते हैं - जिन्हें विसर्प कहा जाता है। (चित्र 7.7) विसर्प एक स्थलरूप न होकर एक प्रकार का चैनल प्रारूप है। नदी विसर्प के निर्मित होने के कारण निम्नलिखित हैं: (i) मंद ढाल पर बहते जल में तटों पर क्षैतिज या

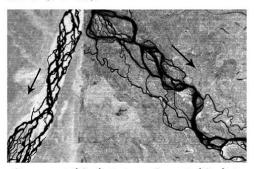
चित्र 7.7 : मुजफ्फ़रपुर, बिहार के समीप विसर्पी बूढ़ी गंडक नदी दर्शाने वाला उपग्रह से लिया गया चित्र जिसमें कई छाड़न झीलें दिखाई दे रही हैं।

पार्श्विक कटाव करने की प्रवृत्ति का होना (ii) तटों पर जलोढ़ का अनियमित व असंगठित जमाव जिससे जल के दबाव का नदी पाश्वों बढ़ना (iii) प्रवाहित जल का कोरिआलिस प्रभाव से विक्षेपण (ठीक उसी प्रकार जैसे कोरिआलिस बल से वायु प्रवाह विक्षेपित होता है)।

67

+

भौतिक भूगोल के मूल सिद्धांत



चित्र 7.8 : विसर्प वृद्धि एवं छाड़न लूप तथा स्कंध ढाल एवं अधोरदित तट

जब चैनल की ढाल प्रवणता अत्यधिक मंद हो जाती है तो नदी में पानी का प्रवाह धीमा हो जाता तथा पाश्वीं का कटाव अधिक होता है। नदी तटों पर थोड़ी सी अनियमितताएँ भी, धीरे-धीरे मोडों के रूप में परिवर्तित हो जाती हैं। यह मोड नदी के अंदरूनी भाग में जलोढ़ जमाव के कारण गहरे हो जाते हैं और बाहरी किनारा अपरदित होता रहता है। अगर अपरदन, निक्षेपण तथा निम्न कटाव न हो तो विसर्प की प्रवृत्ति कम हो जाती है। प्राय: बड़ी निदयों के विसर्प में उत्तल किनारों पर सिक्रय निक्षेपण होते हैं और अवतल किनारों पर अधोमुखी (Undercutting) कटाव होते हैं। अवतल किनारे कटाव किनारों के रूप में भी जाने जाते हैं; जो अधिक अपरदन से तीव्र कगार (Steep cliff) के रूप में परिवर्तित हो जाते हैं। उत्तल किनारों का ढाल मंद होता है और ये स्कंध ढाल (Slip-off-bank) कहलाते हैं (चित्र 7.8)। विसर्पों के गहरे छल्ले के आकार में विकसित हो जाने पर ये अंदरूनी भागों पर अपरदन के कारण कट जाते हैं और गोखुर झील (Ox-bow lake) बन जाती है।

गुम्फित नदी (Braided Channels)

यदि नदी द्वारा प्रवाहित नद्य भार का निक्षेपण उसके मध्य में लंबी रोधिका के रूप में हो जाता है तो नदी धारा दो शाखाओं में विभाजित हो जाती है और यह प्रवाह किनारों पर क्षैतिज अपरदन करता है। नदी घाटी की चौड़ाई बढ़ने पर और जल आयतन कम होने पर, प्रवाहित जलोढ अधिक मात्रा में एक क्षैतिज अवरोध के रूप में द्वीप की भाँति निक्षेपित हो जाते हैं तथा मुख्य जलधारा कई भागों में बँट जाती है। गुम्फित नदी प्रारूप के लिए तटों पर अपरदन व निक्षेप आवश्यक है। या जब नदी में जल की मात्रा कम तथा जलोढ अधिक हो जाएँ, तब चैनल में ही रेत, मिट्टी, बजरी आदि की लंबी अवरोधिकाओं का जमाव हो जाता है और नदी चैनल कई जल वितरिकाओं में बँट जाता है। जल प्रवाह की ये वितरिकाएँ आपस में मिल जाती हैं और फिर पतली-पतली उपधाराओं में बँट जाती हैं। इस प्रकार एक गुम्फित नदी प्रारूप का विकास होता है (चित्र 7.9)।

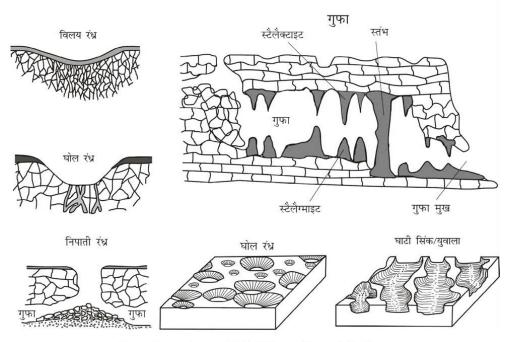
चित्र 7.9 : (बाँयी ओर) गंडक नदी तथा (दाँयी ओर) सोन नदी के गुंफित प्रणाली खंड दर्शाने वाला उपग्रही चित्र। तीर के चिह्न नदी प्रवाह की दिशा प्रकट करते हैं

भौम जल (GROUNDWATER)

भौम जल यहाँ एक संसाधन के रूप में वर्णित नहीं है। यहाँ भौम जल का अपरदन के कारक के रूप में और उसके द्वारा निर्मित स्थलरूपों का वर्णन किया गया है। जब चट्टानें पारगम्य, कम सघन, अत्यधिक जोड़ों/सन्धियों व दरारों वाली हों, तो धरातलीय जल का अन्त: स्रवण आसानी से होता है। लम्बवत् गहराई पर जाने के बाद जल धरातल के नीचे चट्टानों की संधियों, छिद्रों व संस्तरण तल से होकर क्षैतिज अवस्था में बहना प्रारंभ

भू-आकृतियाँ तथा उनका विकास

69


करता है। जल का यह क्षैतिज व ऊर्ध्वाधर प्रवाह ही चट्टानों के अपरदन का कारण है। भौम जल में पदार्थों के परिवहन द्वारा बने स्थलरूप महत्त्वहीन हैं। इसी कारण भूमिगत जल का कार्य सभी प्रकार की चट्टानों में नहीं देखा जा सकता। लेकिन ऐसी चट्टानें जैसे- चूना पत्थर या डोलोमाइट, जिनमें कैल्शियम कार्बोनेट की प्रधानता होती है, उनमें धरातलीय व भौम जल, रासायनिक प्रक्रिया द्वारा (घोलीकरण व अवक्षेपण) अनेक स्थल रूपों को विकसित करते हैं। ये दो प्रक्रियाएँ- घोलीकरण व अवक्षेपण- या तो चूना पत्थर व डोलामाइट चट्टानों में अलग से या अन्य चट्टानों के साथ अंतरासंस्तरित पाई जाती हैं। किसी भी चुनापत्थर (Limestone) या डोलोमाइट चट्टानों के क्षेत्र में भौम जल द्वारा घुलनप्रक्रिया और उसके निक्षेपण प्रक्रिया से बने ऐसे स्थलरूपों को कार्स्ट (Karst topography) स्थलाकृति का नाम दिया गया है। यह नाम एड्रियाटिक सागर के साथ बालकन कार्स्ट क्षेत्र में उपस्थित लाइमस्टोन चट्टानों पर विकसित स्थलाकृतियों पर आधारित है।

अपरदनात्मक तथा निक्षेपणात्मक- दोनों प्रकार के स्थलरूप कार्स्ट स्थलाकृतियों की विशेषताएँ हैं।

अपरदित स्थलरूप

कुंड (Pools), घोलरंध (Sinkholes), लैपीज (Lapies) और चूना-पत्थर चबूतरे (Limestone pavements)

चूना-पत्थर चट्टानों के तल पर घुलन क्रिया द्वारा छोटे व मध्यम आकार के छोटे घोल गर्तों का निर्माण होता है, जिनके विलय पर इन्हें विलयन रंध्र (Swallow holes) कहते हैं। घोलरंध्र कार्स्ट क्षेत्रों में बहुतायत में पाए जाते हैं। घोल रंध्र एक प्रकार के छिद्र होते हैं जो ऊपर से वृत्ताकार व नीचे कीप की आकृति के होते हैं और इनका क्षेत्रीय विस्तार कुछ वर्ग मीटर से हैक्टेयर तक तथा गहराई आधा मीटर से 30 मीटर या उससे अधिक होती है। इनमें से कुछ का निर्माण अकेले घुलन प्रक्रिया द्वारा ही होता है और कुछ अन्य पहले घुलन प्रक्रिया द्वारा

चित्र 7.10 : कार्स्ट स्थलाकृति के विभिन्न रूपों का परिच्छेद चित्रण

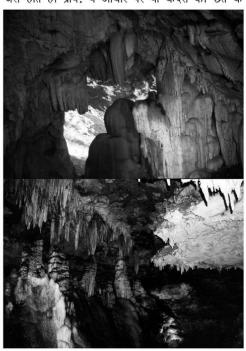
+

भौतिक भूगोल के मूल सिद्धांत

बनते हैं और अगर इन घोलरंध्रों के नीचे बनी कंदराओं की छत ध्वस्त हो जाए तो ये बड़े छिद्र ध्वस्त या निपात रंध्र (Collapse sinks) के नाम से जाने जाते हैं। अधिकतर घोलरंध्र ऊपर से अपरिदत पदार्थों के जमने से ढ़क जाते हैं और उथले जल कुंड जैसे प्रतीत होते हैं।

ध्वस्त घोल रंध्रों को डोलाइन (Dolines) भी कहा जाता है। ध्वस्त रंध्रों की अपेक्षा घोलरंध्र अधिक संख्या में पाए जाते हैं। सामान्यत: धरातलीय प्रवाहित जल घोल रंध्रों व विलयन रंध्रों से गुजरता हुआ अन्तभौमि नदी के रूप में विलीन हो जाता है और फिर कुछ दूरी के पश्चात् किसी कंदरा से भूमिगत नदी के रूप में फिर निकल आता है। जब घोलरंध्र व डोलाइन इन कंदराओं की छत के गिरने से या पदार्थों के स्खलन द्वारा आपस में मिल जाते हैं, तो लंबी, तंग तथा विस्तृत खाइयाँ बनती हैं जिन्हें घाटी रंध्र (Valley sinks) या युवाला (Uvalas) कहते हैं। धीरे-धीरे चूनायुक्त चट्टानों के अधिकतर भाग इन गर्तों व खाइयों के हवाले हो जाता है और पूरे क्षेत्र में अत्यधिक अनियमित, पतले व नुकीले कटक आदि रह जाते हैं, जिन्हें लेपीस (Lapies) कहते हैं। इन कटकों या लेपीस का निर्माण चट्टानों की संधियों में भिन्न घलन प्रक्रियाओं द्वारा होता है। कभी-कभी लेपीज़ के ये विस्तृत क्षेत्र समतल चुनायुक्त चब्तरों में परिवर्तित हो जाते हैं।

कंदराएँ (Caves)


ऐसे प्रदेश जहाँ चट्टानों के एकांतर संस्तर हों (शैल, बालू पत्थर व क्वांटजाइट) और इनके बीच में अगर चूनापत्थर व डोलोमाइट चट्टानें हों या जहाँ सघन चूना-पत्थर चट्टानों के संस्तर हों, वहाँ प्रमुखतया कंदराओं का निर्माण होता है। पानी दरारों व संधियों से रिसकर शैल संस्तरण के साथ क्षेतिज अवस्था में बहता है। इसी तल संस्तरण के सहारे चूना चट्टानें घुलती हैं और लंबे एवं तंग विस्तृत रिक्त स्थान बनते हैं जिन्हें कंदराएँ कहा जाता है। कभी-कभी विभिन्न स्तरों पर कंदराओं का एक जाल सा बन जाता है जो चूना-पत्थर चट्टानों के तल व उनके बीच संस्तरित चट्टानों पर निर्भर है। प्राय: कंदराओं का एक खुला मुख होता है जिससे कंदरा सरिताएँ बाहर निकलती हैं। ऐसी कंदराएँ जिनके दोनों सिरे खुले हों, उन्हें सुरंग (Tunnels) कहते हैं।

निक्षेपित स्थलरूप

अधिकतर निक्षेपित स्थलरूप कंदराओं के भीतर ही निर्मित होते हैं। चूना पत्थर चट्टानों में मुख्य रसायन कैल्शियम कार्बोनेट है जो कार्बनयुक्त जल (वर्षा जल में घुला हुआ कार्बन) में शीघ्रता से घुल जाता है। जब इस जल का वाष्पीकरण होता है तो घुले हुए कैल्शियम कार्बोनेट का निक्षेपण हो जाता है या जब चट्टानों की छत से जल वाष्पीकरण के साथ कार्बन डाईआक्साइड गैस मुक्त हो जाती है तो कैल्शियम कार्बोनेट के चट्टानी धरातल पर टपकने से निक्षेपण हो जाता है।

स्टैलेक्टाइट, स्टैलेग्माइट और स्तंभ

स्टैलेक्टाइट विभिन्न मोटाइयों के लटकते हुए हिमस्तंभ जैसे होते हैं। प्राय: ये आधार पर या कंदरा की छत के

चित्र 7.11 : चूना पत्थर गुफा में स्टैलैक्टाइट एवं स्टैलेग्माइट

पास मोटे होते हैं और अंत के छोर पर पतले होते जाते हैं। ये अनेक आकारों में दिखाई देते हैं। स्टैलेग्माइट कंदराओं के फर्श से ऊपर की तरफ बढते हैं। वास्तव में स्टैलेग्माइट भू-आकृतियाँ तथा उनका विकास

कंदराओं की छत से धरातल पर टपकने वाले चूनामिश्रित जल से बनते हैं या स्टेलेक्टाइट के ठीक नीचे पतले पाइप की आकृति में बनते हैं (चित्र 7.11)।

स्टैलेग्माइट एक स्तंभ के एक चपटी तश्तरीनुमा आकार में या समतल अथवा क्रेटरनुमा गड्ढे के आकार में विकसित हो जाते हैं। विभिन्न मोटाई के स्टैलेग्माइट तथा स्टैलेक्टाइट के मिलने से स्तंभ और कंदरा स्तंभ बनते हैं।

कार्स्ट प्रदेशों में कुछ अन्य अपेक्षाकृत छोटे स्थलरूप व आकृतियाँ भी पाई जाती हैं, जिन्हें स्थानीय नामों से पकारा जाता है।

हिमनद

पृथ्वी पर परत के रूप में हिम प्रवाह या पर्वतीय ढालों से घाटियों में रैखिक प्रवाह के रूप में बहते हिम संहति को हिमनद कहते हैं। महाद्वीपीय हिमनद या गिरिपद हिमनद वे हिमनद हैं जो वृहत् समतल क्षेत्र पर हिम परत के रूप में फैले हों तथा पर्वतीय या घाटी हिमनद वे हिमनद हैं जो पर्वतीय ढालों में बहते हैं (चित्र 7.12)। प्रवाहित जल के विपरीत हिमनद प्रवाह बहुत धीमा होता है। हिमनद प्रतिदिन कुछ सेंटीमीटर या इससे कम से

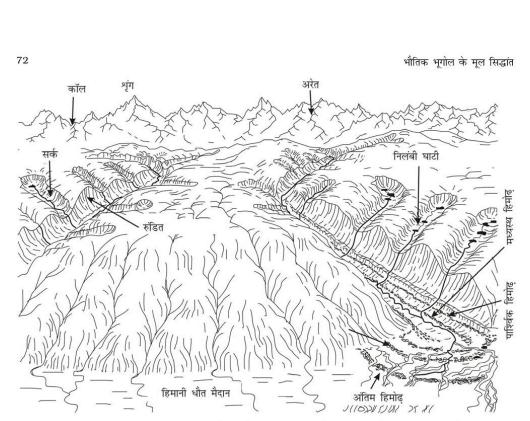
चित्र 7.12 : घाटी में हिमनद

लेकर कुछ मीटर तक प्रवाहित हो सकते हैं। हिमनद मुख्यत: गुरुत्वबल के कारण गतिमान होते हैं।

हमारे देश में भी अनेक हिमनद हैं जो हिमालय पर्वतीय ढालों से घाटी में बहते हैं। उत्तरांचल, हिमाचल प्रदेश और जम्मू कश्मीर के उच्च प्रदेशों में कुछ स्थानों पर इन्हें देखा जा सकता है। क्या आप जानते हैं कि भगीरथी नदी का उद्गम गंगोत्री हिमनद का अग्रभाग (गोमुख) है। वास्तव में अलकनंदा नदी का उद्गम अलकापुरी हिमनद से है। देवप्रयाग के निकट अलकनंदा व भगीरथी के मिलने पर यहाँ से इसे गंगा के नाम से जाना जाता है।

हिमनदों से प्रबल अपरदन होता है जिसका कारण इसके अपने भार से उत्पन्न घर्षण है। हिमनद द्वारा कर्षित चट्टानी पदार्थ (प्राय: बड़े गोलाश्म व शैलखंड) इसके तल में ही इसके साथ घसीटे जाते हैं या घाटी के किनारों पर अपघर्षण व घर्षण द्वारा अत्यधिक अपरदन करते हैं। हिमनद अपक्षय रहित चट्टानों का भी प्रभावशाली अपरदन करते हैं, जिससे ऊँचे पर्वत छोटी पहाड़ियों व मैदानों में परिवर्तित हो जाते हैं।

हिमनद के लगातार संचलित होने से हिमनद मलवा हटता होता है विभाजक नीचे हो जाता है और कालांतर में ढाल इतने निम्न हो जाते हैं कि हिमनद की संचलन शक्ति समाप्त हो जाती है तथा निम्न पहाड़ियों व अन्य निक्षेपित स्थलरूपों वाला एक हिमानी धौत (Outwash plain) रह जाता है। चित्र 7.13 तथा 7.14 हिमनद के अपरदन व निक्षेपण से निर्मित स्थलरूपों को दर्शाता है। जिसका वर्णन भी अगले अनुच्छेदों में किया गया है।


अपरदित स्थलरूप सर्क

हिमानीकृत पर्वतीय भागों में हिमनद द्वारा उत्पन्न स्थलरंध्रों में सर्क सर्वाधिक महत्त्वपूर्ण है। अधिकतर सर्क हिमनद घाटियों के शीर्ष पर पाए जाते हैं। एकत्रित हिम पर्वतीय क्षेत्रों से नीचे आती हुई सर्क को काटती है। सर्क गहरे, लंबे व चौड़े गर्त हैं जिनकी दीवार तीव्र ढाल वाली सीधी या अवतल होती है। हिमनद के पिघलने पर जल से भरी झील भी प्राय: इन गर्तों में देखने को मिलती है। इन झीलों को सर्क झील या टार्न झील कहते हैं। आपस में मिले हुए दो या दो से अधिक सर्क सीढ़ीनुमा क्रम में दिखाई देते हैं।

हॉर्न या गिरिशृंग और सिरेटेड कटक

सर्क के शीर्ष पर अपरदन होने से हॉर्न निर्मित होते हैं। यदि तीन या अधिक विकीर्णित हिमनद निरंतर शीर्ष पर

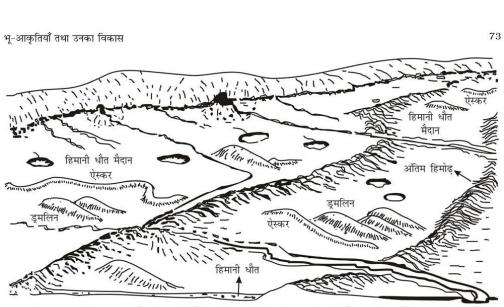
71

चित्र 7.13 : हिमनद द्वारा अपरदन एवं निक्षेपण के विभिन्न रूप (स्पेन्सर, 1962 से संकलित एवं संशोधित)

तब-तक अपरदन जारी रखें जब तक उनके तल आपस में मिल जाएँ तो एक तीव्र किनारों वाली नुकीली चोटी का निर्माण होता है जिन्हें हॉर्न कहते हैं। लगातार अपदरन से सर्क के दोनों तरफ की दीवारें तंग हो जाती हैं और इसका आकार कंघी या आरी के समान कटकों के रूप में हो जाता है, जिन्हें अरेत (Ar'ets) (तीक्ष्ण कटक) कहते हैं। इनका ऊपरी भाग नुकीला तथा बाहरी आकार टेढ़ा-मेढ़ा होता है। इन कटकों का चढ़ना प्राय: असंभव होता है।

आल्प्स पर्वत पर सबसे ऊँची चोटी मैटरहॉर्न तथा हिमालय पर्वत की सबसे ऊँची चोटी एवरेस्ट, वास्तव में, हॉर्न है जो सर्क के शीर्ष अपदरन से निर्मित है।

हिमनद घाटी/गर्त


+

हिमानीकृत घाटियाँ गर्त की भाँति होती हैं जो आकार में अंग्रेजी के अक्षर U जैसी होती हैं; जिनके तल चौड़े व किनारे चिकने तथा ढाल तीव्र होते हैं। घाटी में मलबा बिखरा होता है अथवा हिमोढ़ मलबा दलदली रूप में दिखाई देता है। चट्टानी धरातल पर झील भी उभरी होती है अथवा ये झीलें घाटी में उपस्थित हिमोढ़ मलबे से बनती हैं। मुख्य घाटी के एक तरफ या दोनों तरफ ऊँचाई पर लटकती घाटी (Hanging valley) भी होती हैं। इन लटकती घाटियों के तल, जो मुख्य घाटी में खुलते हैं, इनके विभाजक क्षेत्रों के कट जाने से ये त्रिकोण रूप में नजर आती हैं। बहुत गहरी हिमनद गर्तें जिनमें समुद्री जल भर जाता है तथा जो समुद्री तटरेखा पर होती हैं, उन्हें फियोर्ड कहते हैं।

नदी घाटियों तथा हिमनद घाटियों में आधारभूत अंतर क्या है?

निक्षेपित स्थलरूप

पिघलते हुए हिमनद के द्वारा मिश्रित रूप में भारी व महीन पदार्थों का निक्षेप-हिमोढ़ या हिमनद गोलाश्म के रूप में जाना जाता है। इन निक्षेप में अधिकतर चट्टानी टुकड़े नुकीले या कम नुकीले आकार के होते हैं।

चित्र 7.14 : हिमनदीय स्थलाकृति के विभिन्न निक्षेपित भू-आकृतियों का सुंदर चित्रण (स्पेन्सर, 1962 से संकलित एवं संशोधित)

हिमनदों के तल, किनारों या छोर पर बर्फ पिघलने से सिरताएँ बनती हैं। कुछ मात्रा में शैल मलबा इस पिघले जल से बनी सिरता में प्रवाहित होकर निक्षेपित होता है। ऐसे हिमनदी-जलोढ़ निक्षेप हिमानी धौत (Outwash) कहलाते हैं। हिमोढ़ निक्षेप के विपरीत हिमानी धौत (Outwash deposits) प्राय: स्तरीकृत व वर्गीकृत होते हैं। हिमनद अपक्षेप में चट्टानी टुकड़े गोल किनारों वाले होते हैं। चित्र 7.14 में हिमनद क्षेत्रों के मुख्य निक्षेपित स्थलरूप दर्शाये गये हैं।

हिमोढ

हिमोढ़, हिमनद टिल (Till) या गोलाश्मी मृत्तिका के जमाव की लंबी कटकें हैं। अंतस्थ हिमोढ़ (Terminal moraines) हिमनद के अंतिम भाग में मलबे के निक्षेप से बनी लंबी कटके हैं। पार्शिवक हिमोढ़ (Lateral moraines) हिमनद घाटी की दीवार के समानांतर निर्मित होते हैं। पार्शिवक हिमोढ़ अंतस्थ हिमोढ़ से मिलकर घोड़े की नाल या अर्धचंद्राकार कटक का निर्माण करते हैं (चित्र 7.13)। हिमनद घाटी के दोनों ओर अत्यधिक मात्रा में पार्शिवक हिमोढ़ पाए जाते हैं। इस हिमोढ़ की उत्पत्ति पूर्णतया आंशिक रूप से हिमानी-जल द्वारा होती है; जो इस जलोढ़ को हिमनद के किनारों पर धकेलती है। कुछ घाटी हिमनद तेजी से पिघलने पर घाटी तल पर हिमनद

टिल को एक परत के रूप में अव्यवस्थित रूप से छोड़ देते हैं। ऐसे अव्यवस्थित व भिन्न मोटाई के निक्षेप तलीय या तलस्थ (Ground) हिमोढ़ कहलाते हैं। घाटी के मध्य में पार्शिवक हिमोढ़ के साथ-साथ हिमोढ़ मिलते हैं जिन्हें मध्यस्थ (Medial) हिमोढ़ कहते हैं। ये पार्शिवक हिमोढ़ की अपेक्षा कम स्पष्ट होते हैं। कभी-कभी मध्यस्थ हिमोढ व तलस्थ के अंतर को पहचानना कठिन होता है।

एस्कर (Eskers)

ग्रीष्म ऋतु में हिमनद के पिघलने से जल हिमतल के ऊपर से प्रवाहित होता है अथवा इसके किनारों से रिसता है या बर्फ के छिद्रों से नीचे प्रवाहित होता है। यह जल हिमनद के नीचे एकत्रित होकर बर्फ के नीचे नदी धारा में प्रवाहित होता है। ऐसी नदियाँ नदी घाटी के ऊपर बर्फ के किनारों वाले तल में प्रवाहित होती हैं। यह जलधारा अपने साथ बड़े गोलाश्म, चट्टानी टुकड़े और छोटा चट्टानी मलबा मलबा बहाकर लाती है जो हिमनद के नीचे इस बर्फ की घाटी में जमा हो जाते हैं। ये बर्फ पिघलने के बाद एक वक्राकार कटक के रूप में मिलते हैं, जिन्हें एस्कर कहते हैं।

हिमानी धौत मैदान (Outwash plains)

हिमानी गिरिपद के मैदानों में अथवा महाद्वीपीय हिमनदों

十

भौतिक भूगोल के मूल सिद्धांत

से दूर हिमानी-जलोढ़ निक्षेपों से (जिसमें बजरी, रेत, चीका मिट्टी व मृत्तिका के विस्तृत समतल जलोढ़-पंख भी शामिल हैं), हिमानी धौत मैदान निर्मित होते हैं।

नदी के जलोढ़ मैदान व हिमानी धौत मैदानों में अंतर स्पष्ट करें।

इमलिन (Drumlins)

ड्रमिलन हिमनद मृत्तिका के अंडाकार समतल कटकनुमा स्थलरूप हैं जिसमें रेत व बजरी के ढेर होते हैं। ड्रमिलन के लंबे भाग हिमनद के प्रवाह की दिशा के समानांतर होते हैं। ये एक किलोमीटर लंबे व 30 मीटर तक ऊँचे होते हैं। ड्रमिलन का हिमनद सम्मुख भाग स्टॉस (Stoss) कहलाता है, जो पृच्छ (Tail) भागों की अपेक्षा तीखा तीव्र ढाल लिए होता है। ड्रमिलन का निर्माण हिमनद दरारों में भारी चट्टानी मलबे के भरने व उसके बर्फ के नीचे रहने से होता है। इसका अग्र भाग या स्टॉस भाग प्रवाहित हिमखंड के कारण तीव्र हो जाता है। ड्रमिलन हिमनद प्रवाह दिशा को बताते हैं।

गोलाश्मी मृत्तिका व जलोढ़ में क्या अन्तर है?

तरंग व धाराएँ

तटीय प्रक्रियाएँ सर्वाधिक क्रियाशील हैं और इसी कारण अत्यधिक विनाशकारी होती हैं। क्या आप नहीं सोचते कि तटीय प्रक्रियाओं तथा उनसे निर्मित स्थलरूपों को जानना अति महत्त्वपूर्ण है?

तट पर कुछ परिवर्तन बहुत शीघ्रता से होते हैं। एक ही स्थान पर एक मौसम में अपरदन व दूसरे मौसम में निक्षेपण हो सकता है। तटों के किनारों पर अधिकतर परिवर्तन तरंगों द्वारा संपन्न होते हैं। जब तरंगों का अवनमन होता है तो जल तट पर अत्यधिक दबाव डालता है और इसके साथ ही साथ सागरीय तल पर तलछटों में भी दोलन होता है। तरंगों के स्थायी अवनमन के प्रवाह से तटों पर अभूतपूर्व प्रवाह पड़ता है। सामान्य तरंग अवनमन की अपेक्षा सुनामी लहरें कम समय में अधिक परिवर्तन लाती हैं। तरंगों में परिवर्तन (उनकी आवृति आदि) होने से उनके अवनमन से उत्पन्न प्रभाव की गहनता भी परिवर्तित हो जाती है। क्या आप तरंग व धाराओं को उत्पन्न करने वाले बलों के विषय में जानते हैं? यदि नहीं तो महासागरीय जल का परिसंचरण, अध्याय पढ़ें।

तरंगों के कार्य के अतिरिक्त, तटीय स्थलरूप कुछ अन्य कारकों पर भी निर्भर हैं। ये हैं: (i) स्थल व समुद्री तल की बनावट, (ii) समुद्रोन्मुख उन्मग्न तट या जलमग्न तट। समुद्री जल स्तर को स्थिर या स्थायी मानते हुए, तटीय स्थलरूपों के विकास को समझने के लिए तटों को दो भागों में वर्गीकृत किया जाता है: (i) ऊँचे, चट्टानी तट (जलमग्न तट) (ii) निम्न, समतल व मंद ढाल के अवसादी तट (उन्मग्न तट)।

ऊँचे चट्टानी तट

ऊँचे चट्टानी तटों के सहारे तट रेखाएँ अनियमित होती हैं तथा निदयाँ जलमग्न प्रतीत होती हैं। तटरेखा का अत्यधिक अवनमन होने से किनारे के स्थल भाग जलमग्न हो जाते हैं और वहाँ फियोर्ड तट बनते हैं। पहाड़ी भाग सीधे जल में डूबे होते हैं। सागरीय किनारों पर प्रारंभिक निक्षेपित स्थलरूप नहीं होते। अपरिदत स्थलरूपों की बहुतायत होती है।

ऊँचे चट्टानी तटों के सहारे तरंगें अवनिमत होकर धरातल पर अत्यधिक बल के साथ प्रहार करती है जिससे पहाड़ी पार्श्व भृगु (Cliff) का आकार के लेते हैं। तरंगों के स्थायी प्रहार से भृगु शीघ्रता से पीछे हटते हैं और समुद्री भृगु (Cliff) के सम्मुख तरंग घर्षित चबूतरे बन जाते हैं तरंगें धीरे-धीरे सागरीय किनारों की अनियमितताओं को कम कर देती हैं।

समुद्री भृगु से गिरने वाला चट्टानी मलबा धीरे-धीरे छोटे टुकड़ों में टूट जाता है और लहरों के साथ घर्षित होता हुआ किनारों से दूर निक्षेपित हो जाता है। भृगु के विकास व उसके निवर्तन के वाँछनीय समय के बाद तट रेखा कुछ सम/चिकनी हो जाती है तथा कुछ अतिरिक्त मलबे के किनारों से दूर जमाव से तरंग घर्षित वेदिकाओं के सामने तरंग निर्मित वेदिकाएँ देखी जा सकती हैं। जैसे ही तटों के साथ अपरदन आरंभ होता है, वेलांचली प्रवाह (Longshore current) व तरंगें इस अपरदित पदार्थ को सागरीय किनारों पर पुलिन (Beaches) और रोधिकाओं के रूप में निक्षेपित करती हैं। रोधिकाएँ

भू-आकृतियाँ तथा उनका विकास

हमारे देश का पश्चिमी तट ऊँचा चट्टानी निवर्तन (Retreating) तट है। पश्चिमी तट पर अपरिदत आकृतियाँ बहुतायत में हैं। भारत के पूर्वी तट निचले अवसादी तट हैं। इन तटों पर निक्षेपित स्थलाकृतियाँ पाई जाती हैं। इन दोनों तटों की उत्पत्ति व प्रवृत्ति को जानने के लिए आप 'भारत-भौतिक पर्यावरण' पस्तक पढें।

75

(Bars) जलमग्न आकृतियाँ हैं और जब यही रोधिकाएँ जल के ऊपर दिखाई देती हैं तो इन्हें रोध (Barriers) कहा जाता है। ऐसी रोधिकाएँ जिनका एक भाग खाड़ी के शीर्षस्थल से जुड़ा हो तो इसे स्पिट (Spit) कहा जाता है। जब रोधिका तथा स्पिट किसी खाड़ी के मुख पर निर्मित होकर इसके मार्ग को अवरूद्ध कर देते हैं तब लैगून (Lagoon) निर्मित होते हैं। कालांतर में लैगून स्थल से बहाए गए तलछट से भर जाता है और तटीय मैदान की रचना होती है।

उच्च चट्टानी व निम्न अवसादी तटों की प्रक्रियाओं व स्थलाकृतियों के संदर्भ में विभिन्न अंतर क्या है?

निम्न अवसादी तट

अपरदित स्थलरूप भृगु (Cliff), वेदिकाएँ (Terraces), कंदराएँ (Caves) तथा स्टैक (Stack)

निचले अवसादी तटों के सहारे निदयाँ तटीय मैदान एवं डेल्टा बनाकर अपनी लंबाई बढ़ा लेती हैं। कहीं-कहीं लैगून व ज्वारीय सँकरी खाड़ी के रूप में जल भराव के अतिरिक्त तटरेखा सम/चिकनी होती है। सागरोन्मुख स्थल मंद ढाल लिए होता है। तटों के साथ समुद्री पंक व दलदल पाए जाते हैं। इन तटों पर निक्षेपित स्थलाकृतियों की बहुतायत होती है।

ऐसे तट जहाँ अपरदन प्रमुख प्रक्रिया है, वहाँ प्राय: दो मुख्य आकृतियाँ तरंग घर्षित भृग व वेदिकाएँ पाई जाती हैं। लगभग सभी समुद्र भृग की ढाल तीव्र होती है जो कुछ मीटर से लेकर 30 मीटर या उससे अधिक हो सकती है। इनकी तलहटी पर एक मंद ढाल वाला या समतल प्लेटफार्म होता है, जो समुद्री भृगु से प्राप्त शैल मलबे से ढका होता है। अगर ये प्लेटफॉर्म तरंग की औसत ऊँचाई से अधिक ऊँचाई पर मिलते हैं तो इन्हें तरंग घर्षित वेदिकाएँ कहते हैं। भृगु की कठोर चट्टान के विरूद्ध जब तरंगें टकराती हैं तो भृगु के आधार पर रिक्त स्थान बनाती हैं और इसे गहराई तक खोखला कर देती हैं जिससे समुद्री कंदराएँ बनती हैं। इन कंदराओं की छत ध्वस्त होने से समुद्री भृग् स्थल की ओर हटते हैं। भृगु के निवर्तन से चूटानों के कुछ अवशेष तटों पर अलग-थलग छूट जाते हैं। ऐसी अलग-थलग प्रतिरोधी चट्टानें जो कभी भृगु के भाग थे, समुद्री स्टैक कहलाते हैं। अन्य स्थलरूपों की भाँति समुद्री स्टैक भी अस्थायी आकृतियाँ हैं जो तरंग अपरदन द्वारा समुद्री पहाड़ियों व भुगु की भाँति धीरे-धीरे तंग समुद्री मैदानों में परिवर्तित हो जाती हैं और स्थल से प्रवाहित जलोढ़ से आच्छादित रेत व शिंगिल चौड़े पुलिन (Beach) में परिवर्तित हो जाते हैं।

जब मंद ढाल वाले अवसादी तटों पर तरंगें अवनिमत होती हैं तो तल के अवसाद भी दोलित होते हैं और इनके परिवहन से अवरोधिकाएँ, लैगून व स्पिट निर्मित होते हैं। लैगून कालांतर में दलदल में परिवर्तित हो जाते

निक्षेपित स्थलरूप पुलिन (Beaches) और टिब्बे (Dunes)

तटों की प्रमुख विशेषता पुलिन की उपस्थिति है; यद्यपि ऊबड़-खाबड़ तटों पर भी ये टुकड़ों में पाए जाते हैं। वे

चित्र 7.15 : उपग्रहीय चित्र-गोदावरी नदी डेल्टा का स्पिट

हैं जो बाद में तटीय मैदान बनते हैं। इन निक्षेपित स्थलाकृतियों का बना रहना अवसादी पदार्थों की स्थायी एवं लगातार आपूर्ति पर निर्भर करता है। अवसादों के अतिरिक्त तूफान व सुनामी लहरें इनमें अभूतपूर्व परिवर्तन लाती हैं। बड़ी निदयाँ जो अधिक नद्यभार लाती हैं, निचले अवसादी तटों के साथ डेल्टा बनाती हैं।

Downloaded from https://www.studiestoday.com

+

भौतिक भूगोल के मूल सिद्धांत

अवसाद जिनसे पुलिन निर्मित होते हैं, अधिकतर थल से निदयों व सरिताओं द्वारा अथवा तरंगों के अपरदन द्वारा बहाकर लाए गए पदार्थ होते हैं। पुलिन अस्थाई स्थलाकृतियाँ हैं। कुछ रेत पुलिन (Sand beaches) जो स्थायी प्रतीत होते हैं; किसी और मौसम में स्थूल कंकड़-पत्थरों की तंग पट्टी में परिवर्तित हो जाते हैं। अधिकतर पुलिन रेत के आकार के छोटे कणों से बने होते हैं। शिंगिल पुलिन में अत्यिधिक छोटी गुटिकाएँ तथा गोलाश्मिकाएँ होती हैं।

पुलिन के ठीक पीछे, पुलिन तल से उठाई गई रेत टिब्बे (Dunes) के रूप में निक्षेपित होती है। तटरेखा के समानांतर लंबाई में कटकों के रूप में बने रेत, टिब्बे निम्न तलछटी तटों पर अकसर देखे जा सकते हैं।

रोधिका (Bars), रोध (Barriers) तथा स्पिट (Spits)

समुद्री अपतट पर, तट के समांतर पाई जाने वाली रेत और शिंगिल की कटक अपतट समानांतर पाई जाने वाली रेत और शिंगिल की कटक को अपतट रोधिक (Offshore bar) कहलाती है। ऐसी अपतटीय रोधिका जो रेत के अधिक निक्षेपण से ऊपर दिखाई पड़ती है उसे रोध-रोधिका (Barrier bar) कहते हैं। अपतटीय रोध व रोधिकाएँ प्राय: या तो खाड़ी के प्रवेश पर या निदयों के मुहानों के सम्मुख बनती हैं। कई बार इन रोधिकाओं का एक सिरा खाड़ी से जुड़ जाता है तो इन्हें स्पिट कहते हैं (चित्र 7.15) शीर्षस्थल से एक सिरा जुड़ने पर भी स्पिट विकसित होती है। रोधिकाएँ, रोध व स्पिट धीरे-धीरे खाड़ी के मुख पर बढ़ते रहते हैं जिससे खाड़ी का समुद्र में खुलने वाला द्वार तंग हो जाता है तथा कालांतर में खाडी एक लैगुन में परिवर्तित हो जाती है। लैगून भी धीरे-धीरे स्थल से लाए गये तलछटों से या पुलिन से वायु द्वारा लाए गये तलछट से लैगून के स्थान पर एक चौडे व विस्तृत तटीय मैदान में विकसित हो जाते हैं।

क्या आप जानते हैं कि समुद्र के अपतट पर बनी रोधिकाएँ तूफान और सुनामी लहरों के आक्रमण के समय सबसे पहले बचाव करती हैं क्योंकि ये रोधिकाएँ इनकी प्रबलता को कम कर देती हैं। इसके बाद रोध, पुलिन, पुलिन स्तूप तथा मैंग्रोव हैं जो इनकी प्रबलता को झेलते हैं। अत: अगर हम तटों के किनारों पर पाए जाने वाले मैंग्रोव व तलछट (Sedimentary budget) से छेड़छाड़ करते हैं तो ये तटीय स्थलाकृतियाँ अपरिदत हो जाएँगी तथा मानव व मानवीय बस्तियों को तूफान व सुनामी लहरों के सीधे व प्रथम प्रहार झेलने होंगे।

पवनें (WINDS)

उष्ण मरुस्थलों के दो प्रभावशाली अनाच्छादनकर्ता कारकों में पवन एक महत्त्वपूर्ण अपरदन का कारक है। मरुस्थलीय धरातल शीघ्र गर्म और शीघ्र ठंडे हो जाते हैं। उष्ण धरातलों के ठीक ऊपर वायु गर्म हो जाती है जिससे हल्की गर्म हवा प्रक्षुब्धता के साथ ऊर्ध्वाधर गति करती है। इसके मार्ग में कोई रुकावट आने पर भँवर, वातावत्त बनते हैं तथा अनुवात एवं उत्त्वात प्रवाह उत्पन्न होता है। पवनें मरुस्थलीय धरातल के साथ-साथ भी तीव्र गति से चलती हैं और उनके मार्ग में रूकावटें पवनों में विक्षोभ उत्पन्न करते हैं। नि:संदेह तुफानी पवन अधिक विनाशकारी होता है। पवन अपवाहन, घर्षण आदि द्वारा अपरदन करती हैं। अपवाहन में पवन धरातल से चट्टानों के छोटे कण व धूल उठाती हैं। वाय की परिवहन की प्रक्रिया में रेत व बजरी आदि औजारों की तरह धरातलीय चट्टानों पर चोट पहुँचाकर घर्षण करती हैं। जब वाय में उपस्थित रेत के कण चट्टानों के तल से टकराते हैं तो इसका प्रभाव पवन के संवेग पर निर्भर करता है। यह प्रक्रिया बालू घर्षण (Sand blasting) जैसी है। मरुस्थलों में पवनें कई रोचक अपरदनात्मक व निक्षेपणात्मक स्थलरूप बनाती हैं।

वास्तव में मरुस्थलों में अधिकतर स्थलाकृतियों का निर्माण बृहत् क्षरण और प्रवाहित जल की चादर बाढ़ (Sheet flood) से होता है। यद्यपि मरुस्थलों में वर्षा बहुत कम होती है, लेकिन यह अल्प समय में मूसलाधार वर्षा (Torrential) के रूप में होती है। मरुस्थलीय चट्टानें अत्यधिक वनस्पित विहीन होने के कारण तथा दैनिक तापांतर के कारण यांत्रिक व रासायनिक अपक्षय से अधिक प्रभावित होती है। अतः इनका शीघ्र क्षय होता है और वेग प्रवाह इस अपक्षय जिनत मलबे को आसानी से बहा ले जाते हैं। अर्थात् मरुस्थलों में अपक्षय जिनत मलबा केवल पवन द्वारा ही नहीं, वरन वर्षा व वृष्टि धोवन (Sheet wash) से भी प्रवाहित होता है। पवन केवल महीन मलबे का ही अपवाहन कर सकती हैं और बृहत् अपरदन मुख्यतः परत बाढ या वृष्टि धोवन से ही

भू-आकृतियाँ तथा उनका विकास

प्लाया मैदान, जो लवणों से भरें हों, कल्लर भूमि या क्षारीय क्षेत्र (Alkali flats) कहलाते हैं।

77

संपन्न होता है। मरुस्थलों में निदयाँ चौड़ी, अनियमित तथा वर्षा के बाद अल्प समय तक ही प्रवाहित होती हैं।

अपरदनात्मक स्थलरूप

पेडीमेंट (Pediment) और पदस्थली (Pediplain)

मरुस्थलों में भृदूश्य का विकास मुख्यत: पेडीमेंट का निर्माण व उसका ही विकसित रूप है। पर्वतों के पाद पर मलबे रहित अथवा मलबे सहित मंद ढाल वाले चट्टानी तल *पेडीमेंट* कहलाते हैं। पेडीमेंट का निर्माण पर्वतीय अग्रभाग के अपरदन मुख्यत: सरिता के क्षैतिज अपरदन व चादर बाढ दोनों के संयुक्त अपरदन से होता है।

अपरदन भूसंहति के तीव्र ढाल वाले कोर के साथ-साथ प्रारंभ होता है या विवर्तनिकी द्वारा नियंत्रित कटावों के तीव्र ढाल वाले पार्श्व पर अपरदन प्रारंभ होता है। जब एक बार एक तीव्र मंद ढाल के साथ पेडीमेंट का निर्माण हो जाता है जिसके पीछे एक भृगु या मुक्त पार्श्व होता है तो कटाव के कारण मंद ढाल तथा मुक्त पार्श्व पीछे हटने लगता है। अपरदन की इस पद्धति को पृष्ठक्षरण (Backwasting) के द्वारा की गई ढाल की समानांतर निवर्तन क्रिया कहते हैं। अत: समानांतर ढाल निवर्तन द्वारा पर्वतों के अग्रभाग को अपरिदत करते हुए पेडीमेंट आगे बढ़ते हैं तथा पर्वत घिसते हुए पीछे हटते हैं और धीरे-धीरे पर्वतों का अपरदन हो जाता है और केवल इंसेलबर्ग (Inselberg) निर्मित होते हैं जो कि पर्वतों के अवशिष्ट रूप हैं। इस प्रकार मरुस्थलीय प्रदेशों में एक उच्च धरातल, आकृति विहीन, मैदान में परिवर्तित हो जाता है जिसे पेडीप्लेन/पदस्थली कहते हैं।

प्लाया (Playa)

मरुभूमियों में मैदान (Plains) प्रमुख स्थलरूप हैं। पर्वतों व पहाड़ियों से घिरे बेसिनों में अपवाह मुख्यत: बेसिन के मध्य में होता है तथा बेसिन के िकनारों से लगातार लाए हुए अवसाद जमाव के कारण बेसिन के मध्य में लगभग समतल मैदान की रचना हो जाती है। पर्याप्त जल उपलब्ध होने पर यह मैदान उथले जल क्षेत्र में परिवर्तित हो जाता है। इस प्रकार की उथली जल झीलें ही प्लाया (Playa) कहलाती हैं। प्लाया में वाष्पीकरण के कारण जल अल्प समय के लिए ही रहता है और अकसर प्लाया में लवणों के समृद्ध निक्षेप पाए जाते हैं। ऐसे

अपवाहन गर्त (Deflation hollows) तथा गुहा (Caves)

पवनों के एक ही दिशा में स्थायी प्रवाह से चट्टानों के अपक्षय जिनत पदार्थ या असंगठित मिट्टी का अपवाहन होता है। इस प्रक्रिया में उथले गर्त बनते हैं जिन्हें अपवाहन गर्त कहते हैं। अपवाहन प्रक्रिया से चट्टानी धरातल पर छोटे गड्ढे या गुहिकाएँ भी बनती हैं। तीव्र वेग पवन के साथ उड़ने वाले धूल कण अपघर्षण से चट्टानी तल पर पहले उथले गर्त जिन्हें वात-गर्त (blowouts) कहते हैं; बनाते हैं और इनमें से कुछ वात-गर्त गहरे और विस्तृत हो जाते हैं, जिन्हें गृहा (Caves) कहते हैं।

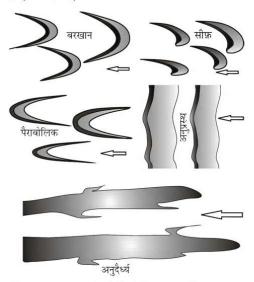
छत्रक (Mushroom), टेबल तथा पीठिका शैल

मरुस्थलों में अधिकतर चट्टानें पवन अपवाहन व अपघर्षण द्वारा शीम्रता से कट जाती हैं और कुछ प्रतिरोधी चट्टानों के घिसे हुए अवशेष जिनके आधार पतले व ऊपरी भाग विस्तृत और गोल, टोपी के आकार के होते हैं, छत्रक के आकार में पाए जाते हैं। कभी-कभी प्रतिरोधी चट्टानों का ऊपरी हिस्सा मेज की भाँति विस्तृत होता है और अधिकतर ऐसे अवशेष पीठिका की भाँति खड़े रहते हैं।

बाढ़ चादर व पवन के द्वारा बनाए गए अपरदनात्मक स्थलरूपों को वर्णित करें।

निक्षेपित स्थलरूप

पवन एक छँटाई करने वाला कारक (Sorting agent) भी है, अर्थात पवन द्वारा बारीक रेत का परिवहन अधिक ऊँचाई व अधिक दूरी तक होता है। पवनों के वेग के अनुरूप मोटे आकार के कण धरातल के साथ घर्षण करते हुए चले आते हैं और अपने टकराने से अन्य कणों को ढीला कर देते हैं, जिसे साल्टेशन कहते हैं। हवा में लटकते महीन कण अपेक्षाकृत अधिक दूरी तक उड़ा कर ले जाए जा सकते हैं। चूँकि, पवनों द्वारा कणों का परिवहन उनके आकार व भार के अनुरूप होता है, अत: पवनों की परिवहन प्रक्रिया में ही पदार्थों छँटाई का काम हो जाता है। जब पवन की गित घट जाती है या लगभग रुक जाती है तो कणों के आकार के आधार पर निक्षेपण प्रक्रिया


十

भौतिक भूगोल के मूल सिद्धांत

आरंभ होती है। अत: पवन के निक्षेपित स्थलरूपों में कणों की महीनता भी देखी जा सकती है। रेत की आपूर्ति व स्थायी पवन दिशा के आधार पर शुष्क प्रदेशों में पवन निक्षेपित स्थलरूप विकसित होते हैं।

बालू-टिब्बे (Sand dunes)

उष्ण शुष्क मरुस्थल बालू-टिब्बों के निर्माण के उपयुक्त स्थान हैं। इनके निर्माण के लिए अवरोध का होना भी अत्यंत आवश्यक है। बालू-टिब्बे विभिन्न प्रकार के होते हैं (चित्र 7.16)।

चित्र 7.16 : बालू-टिब्बों के विभिन्न रूप। तीर द्वारा वायु दिशा का चित्रण

नव चंद्राकार टिब्बे जिनकी भुजाएँ पवनों की दिशा में निकली होते हैं; बरखान कहलाते हैं। जहाँ रेतीले धरातल पर आंशिक रूप से वनस्पति भी पाई जाती हैं वहाँ परवलियक (Parabolic) बालुका-टिब्बों का निर्माण होता है, अर्थात् अगर पवनों की दिशा स्थायी रहे तो परवलयिक बालू-टिब्बे बरखान से भिन्न आकृति वाले होते हैं; सीफ़ (Seif) बरखान की ही भांति होते हैं। सीफ बालू-टिब्बों में केवल एक ही भूजा होती है। ऐसा पवनों की दिशा में बदलाव के कारण होता है। सीफ की यह भुजा ऊँची व अधिक लंबाई में विकसित हो सकती है। जब रेत की आपूर्ति कम तथा पवनों की दिशा स्थायी रहे तो अनुदैर्ध्य टिब्बे (Longitudinal dunes) बनते हैं। ये अत्यधिक लंबाई व कम ऊँचाई के लम्बायमान कटक प्रतीत होते हैं। अनुप्रस्थ टिब्बे (Transverse dunes) प्रचलित पवनों की दिशा के समकोण पर बनते हैं। इन टिब्बों के निर्माण में पवनों की दिशा निश्चित और रेत का स्रोत पवनों की दिशा के समकोण पर हों। ये अधिक लंबे व कम ऊँचाई वाले होते हैं। जब रेत की आपूर्ति अधिक हो तो अधिकतर नियमित बालू-टिब्बे एक-दूसरे में विलीन हो जाते हैं और उनकी वास्तविक आकृति व अनोखी विशेषताएँ नहीं रहतीं। मरुस्थलों में अधिकतर टिब्बों का स्थानांतरण होता रहता है और इनमें से कुछ विशोषकर मानव बस्तियों के निकट स्थित हो जाते हैं।

अभ्यास

1. बहुवैकल्पिक प्रश्न :

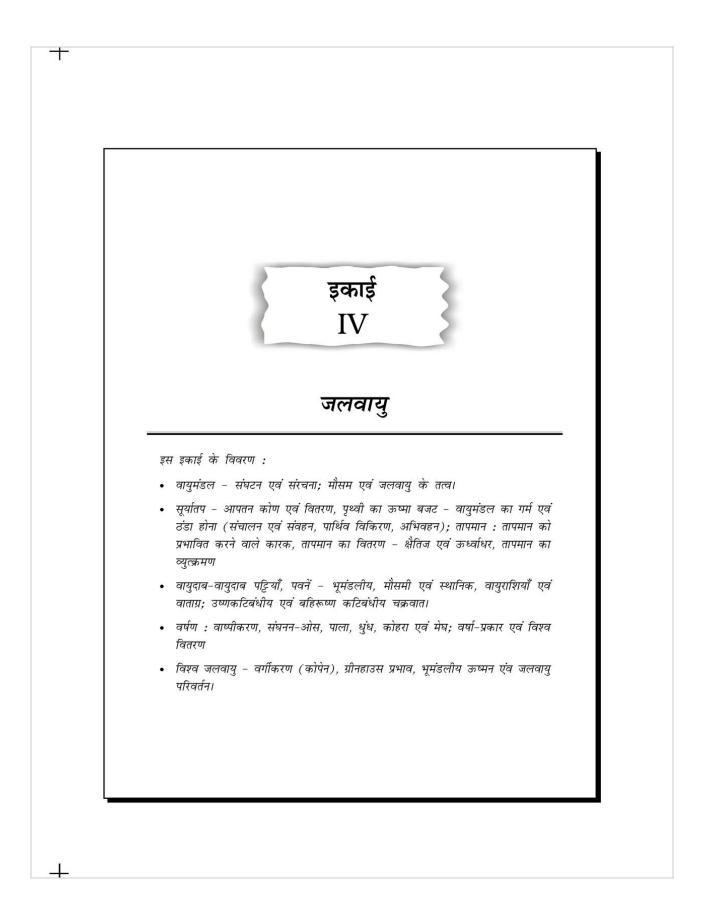
- (i) स्थलरूप विकास की किस अवस्था में अधोमुख कटाव प्रमुख होता है?
 - (क) तरुणावस्था
- (ख) प्रथम प्रौढा़वस्था
- (ग) अंतिम प्रौढावस्था
- (घ) वृद्धावस्था
- (ii) एक गहरी घाटी जिसकी विशेषता सीढ़ीनुमा खड़े ढाल होते हैं; किस नाम से जानी जाती है:
 - (क) U आकार घाटी
- (ख)अंधी घाटी
- (ग) गॉर्ज
- (घ) कैनियन

भू-आकृतियाँ तथा उनका विकास

79

- (iii) निम्न में से किन प्रदेशों में रासायनिक अपक्षय प्रक्रिया यांत्रिक अपक्षय प्रक्रिया की अपेक्षा अधिक शिक्तशाली होती है:
 - (क) आर्द्र प्रदेश
- (ख) शुष्क प्रदेश
- (ग) चूना-पत्थर प्रदेश
- (घ) हिमनद प्रदेश
- (iv) निम्न में से कौन सा वक्तव्य लेपीज (Lapies) शब्द को परिभाषित करता है :
 - (क) छोटे से मध्यम आकार के उथले गर्त
 - (ख) ऐसे स्थलरूप जिनके ऊपरी मुख वृत्ताकार व नीचे से कीप के आकार के होते हैं।
 - (ग) ऐसे स्थलरूप जो धरातल से जल के टपकने से बनते हैं।
 - (घ) अनियमित धरातल जिनके तीखे कटक व खाँच हों।
- (v) गहरे, लंबे व विस्तृत गर्त या बेसिन जिनके शीर्ष दीवार खड़े ढाल वाले व किनारे खड़े व अवतल होते हैं, उन्हें क्या कहते हैं?
 - (क)सर्क
- (ख) पार्श्वक हिमोढ
- (ग) घाटी हिमनद
- (घ) एस्कर

2. निम्नलिखित प्रश्नों के उत्तर लगभग 30 शब्दों में दीजिए :


- (i) चट्टानों में अध:कर्तित विसर्प और मैदानी भागों में जलोढ़ के सामान्य विसर्प क्या बताते हैं?
- (ii) घाटी रंध्र अथवा युवाला का विकास कैसे होता है?
- (iii) चूनायुक्त चट्टानी प्रदेशों में धरातलीय जल प्रवाह की अपेक्षा भौम जल प्रवाह अधिक पाया जाता है, क्यों?
- (iv) हिमनद घाटियों में कई रैखिक निक्षेपण स्थलरूप मिलते हैं। इनकी अवस्थिति व नाम बताएँ।
- (v) मरुस्थली क्षेत्रों में पवन कैसे अपना कार्य करती है? क्या मरुस्थलों में यही एक कारक अपरिदत स्थलरूपों का निर्माण करता है।

निम्नलिखित प्रश्नों के उत्तर लगभग 150 शब्दों में दीजिए :

- (i) आर्द्र व शुष्क जलवायु प्रदेशों में प्रवाहित जल ही सबसे महत्त्वपूर्ण भू-आकृतिक कारक है। विस्तार से वर्णन करें।
- (ii) चूना चट्टानें आर्द्र व शुष्क जलवायु में भिन्न व्यवहार करती हैं क्यों? चूना प्रदेशों में प्रमुख व मुख्य भू-आकृतिक प्रक्रिया कौन सी हैं और इसके क्या परिणाम हैं?
- (iii) हिमनद ऊँचे पर्वतीय क्षेत्रों को निम्न पहाड़ियों व मैदानों में कैसे परिवर्तित करते हैं या किस प्रक्रिया से यह कार्य सम्पन्न होता है बताएँ?

परियोजना कार्य

अपने क्षेत्र के आसपास के स्थलरूप, उनके पदार्थ तथा वह जिन प्रक्रियाओं से निर्मित है, पहचानें।

वायुमंडल का संघटन तथा संरचना

अध्याय

🟲 या कोई व्यक्ति वायु के बिना रह सकता है? हम लोग दिन में दो-तीन बार भोजन करते हैं तथा कई बार पानी पीते हैं, लेकिन साँस लगभग प्रत्येक सेकेंड लेते रहते हैं। जीवित रहने के लिए वायु सभी जीवों के लिए आवश्यक है। मनुष्य जैसे कुछ जीव बिना भोजन और पानी लिये कुछ समय तक जीवित रह सकते हैं. लेकिन साँस लिये बिना कुछ मिनट भी जीवित रहना सम्भव नहीं होता। यही कारण है कि हमें वायुमंडल का विस्तृत ज्ञान होना चाहिए। वायुमंडल विभिन्न प्रकार के गैसों का मिश्रण है और यह पृथ्वी को सभी ओर से ढके हुए है। इसमें मनुष्यों एवं जंतुओं के जीवन के लिए आवश्यक गैसें जैसे ऑक्सीजन तथा पौधों के जीवन के लिए कार्बन डाईऑक्साइड पाई जाती है। वायु पृथ्वी के द्रव्यमान का अभिन्न भाग है तथा इसके कुल द्रव्यमान का 99 प्रतिशत पृथ्वी की सतह से 32 कि॰मी॰ की ऊँचाई तक स्थित है। वायु रंगहीन तथा गंधहीन होती है तथा जब यह पवन की तरह बहती है, तभी हम इसे महसूस कर सकते हैं।

वायुमंडल का संघटन

वायुमंडल गैसों, जलवाष्प एवं धूल कणों से बना है। सारणी 8.1 में हवा में उपस्थित उन गैसों का विवरण है, जो वायुमंडल के निचले भाग में पाई जाती हैं। वायुमंडल की ऊपरी परतों में गैसों का अनुपात इस प्रकार बदलता है जैसे कि 120 कि॰मी॰ की ऊँचाई पर ऑक्सीजन की मात्रा नगण्य हो जाती है। इसी प्रकार, कार्बन डाईऑक्साइड एवम् जलवाष्प पृथ्वी की सतह से 90 कि॰मी॰ की ऊँचाई तक ही पाये जाते हैं।

गैस

कार्बन डाईऑक्साइड मौसम विज्ञान की दृष्टि से बहुत ही

तालिका 8.1 : वायुमंडल की स्थायी गैसें

घटक	सूत्र	द्रव्यमान प्रतिशत
नाइट्रोजन	N_2	78.8
ऑक्सीजन	O_2	20.95
आर्गन	Ar	0.93
कार्बन डाईऑक्साइड	CO ₂	0.036
नीऑन	Ne	0.002
हिलीयम	He	0.0005
क्रेप्टो	Kr	0.001
जेनन	Xe	0.00009
हाईड्रोजन	H_2	0.00005

महत्त्वपूर्ण गैस है, क्योंकि यह सौर विकिरण के लिए पारदर्शी है, लेकिन पार्थिव विकिरण के लिए अपारदर्शी है। यह सौर विकिरण के एक अंश को सोख लेती है तथा इसके कुछ भाग को पृथ्वी की सतह की ओर प्रतिबिंबित कर देती है। यह ग्रीन हाऊस प्रभाव के लिए पूरी तरह उत्तरदायी है। दूसरी गैसों का आयतन स्थिर है, जबिक पिछले कुछ दशकों में मुख्यत: जीवाश्म ईंधन को जलाये जाने के कारण कार्बन डाईऑक्साइड के आयतन में लगातार वृद्धि हो रही है। इसने हवा के ताप को भी बढ़ा दिया है। ओजोन वायुमंडल का दूसरा महत्त्वपूर्ण घटक है जो कि पृथ्वी की सतह से 10 से 50 किलोमीटर की ऊँचाई के बीच पाया जाता है। यह एक फिल्टर की तरह कार्य करता है तथा सूर्य से निकलने वाली पराबैंगनी किरणों को अवशोषित कर उनको पृथ्वी की सतह पर पहुँचने से रोकता है।

क्या आप कल्पना कर सकते हैं कि वायुमंडल में ओज़ोन कि अनुपस्थिति से हमारे ऊपर क्या प्रभाव होगा?

+

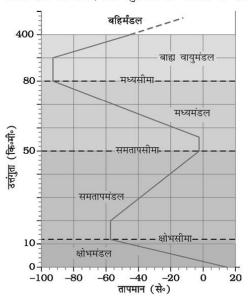
भौतिक भूगोल के मूल सिद्धांत

जलवाष्प

जलवाष्प वायुमंडल में उपस्थित ऐसी परिवर्तनीय गैस है, जो ऊँचाई के साथ घटती जाती है। गर्म तथा आर्द्र उष्ण किटबंध में यह हवा के आयतन का 4 प्रतिशत होती है, जबिक धुवों जैसे ठंडे तथा रेगिस्तानों जैसे शुष्क प्रदेशों में यह हवा के आयतन के 1 प्रतिशत भाग से भी कम होती है। विषुवत् वृत्त से धुव की तरफ जलवाष्प की मात्रा कम होती जाती है। यह सूर्य से निकलने वाले ताप के कुछ भाग को अवशोषित करती है तथा पृथ्वी से निकलने वाले ताप को संग्रहित करती है। इस प्रकार यह एक कंबल की तरह कार्य करती है तथा पृथ्वी को न तो अधिक गर्म तथा न ही अधिक ठंडा होने देती है। जलवाष्प वायु को स्थिर और अस्थिर होने में भी योगदान देती है।

धूलकण

वायुमंडल में छोटे-छोटे ठोस कणों को भी रखने की क्षमता होती है। ये छोटे कण विभिन्न स्रोतों जैसे- समुद्री नमक, महीन मिट्टी, धुएँ की कालिमा, राख, पराग, धूल तथा उल्काओं के टूटे हुए कण से निकलते हैं। धूलकण प्राय: वायुमंडल के निचले भाग में मौजूद होते हैं, फिर भी संवहनीय वायु प्रवाह इन्हें काफी ऊँचाई तक ले जा सकता है। धूलकणों का सबसे अधिक जमाव उपोष्ण और शीतोष्ण प्रदेशों में सूखी हवा के कारण होता है, जो विषुवत् और धुवीय प्रदेशों की तुलना में यहाँ अधिक मात्रा में होते हैं। धूल और नमक के कण आईताग्राही केंद्र की तरह कार्य करते हैं जिसके चारों ओर जलवाष्य संघनित होकर मेधों का निर्माण करती हैं।


वायमंडल की संरचना

वायुमंडल अलग-अलग घनत्व तथा तापमान वाली विभिन्न परतों का बना होता है। पृथ्वी की सतह के पास घनत्व अधिक होता है, जबिक ऊँचाई बढ़ने के साथ-साथ यह घटता जाता है। तापमान की स्थिति के अनुसार वायुमंडल को पाँच विभिन्न संस्तरों में बाँटा गया है। ये हैं: क्षोभमंडल, समतापमंडल, मध्यमंडल, बाह्य वायुमंडल तथा बहिर्मंडल।

क्षोभमंडल वायुमंडल का सबसे नीचे का संस्तर है। इसकी ऊँचाई सतह से लगभग 13 कि॰मी॰ है तथा यह ध्रव के निकट 8 कि॰मी॰ तथा विष्वत वृत्त पर 18 कि॰मी॰ को ऊँचाई तक है। क्षोभमंडल को मोटाई विषुवत् वृत्त पर सबसे अधिक है, क्योंकि तेज वायुप्रवाह के कारण ताप का अधिक ऊँचाई तक संवहन किया जाता है। इस संस्तर में धूलकण तथा जलवाष्प मौजूद होते हैं। मौसम में परिवर्तन इसी संस्तर में होता है। इस संस्तर में प्रत्येक 165 मी. की ऊँचाई पर तापमान 1° से॰ घटता जाता है। जैविक क्रिया के लिए यह सबसे महत्त्वपूर्ण संस्तर है।

क्षोभमंडल और समतापमंडल को अलग करने वाले भाग को क्षोभसीमा कहते हैं। विषुवत् वृत्त के ऊपर क्षोभ सीमा में हवा का तापमान –80° से॰ और ध्रुव के ऊपर –45° से॰ होता है। यहाँ पर तापमान स्थिर होने के कारण इसे क्षोभसीमा कहा जाता है। समतापमंडल इसके ऊपर 50 कि॰मी॰ की ऊँचाई तक पाया जाता है। समतापमंडल का एक महत्त्वपूर्ण लक्षण यह है कि इसमें ओज़ोन परत पायी जाती है। यह परत पराबैंगनी किरणों को अवशोषित कर पृथ्वी को ऊर्जा के तीव्र तथा हानिकारक तत्त्वों से बचाती है।

मध्यमंडल, समतापमंडल के ठीक ऊपर 80 कि॰मी॰ की ऊँचाई तक फैला होता है। इस संस्तर में भी ऊँचाई के साथ–साथ तापमान में कमी होने लगती है और 80 किलोमीटर की ऊँचाई तक पहुँचकर यह -100° से॰ हो

चित्र 8.1 : वायुमंडल की संरचना

वायुमंडल का संघटन तथा संरचना

83

जाता है। मध्यमंडल की ऊपरी परत को मध्यसीमा कहते हैं। आयनमंडल मध्यमंडल के ऊपर 80 से 400 किलोमीटर के बीच स्थित होता है। इसमें विद्युत आवेशित कण पाये जाते हैं, जिन्हें आयन कहते हैं तथा इसीलिए इसे आयनमंडल के नाम से जाना जाता है। पृथ्वी के द्वारा भेजी गई रेडियो तरंगें इस संस्तर के द्वारा वापस पृथ्वी पर लौट आती हैं। यहाँ पर ऊँचाई बढ़ने के साथ ही तापमान में वृद्धि शुरू हो जाती है। वायुमंडल का सबसे ऊपरी संस्तर, जो बाह्यमंडल के ऊपर स्थित होता है उसे बहिर्मंडल कहते हैं। यह सबसे ऊँचा संस्तर है तथा इसके बारे में बहुत कम जानकारी

उपलब्ध है। इस संस्तर में मौजूद सभी घटक विरल हैं, जो धीरे-धीरे बाहरी अंतरिक्ष में मिल जाते हैं। यद्यपि वायुमंडल के सभी संस्तर हमें प्रभावित करते हैं फिर भी भूगोलवेत्ता वायुमंडल के पहले दो संस्तरों का ही अध्ययन करते हैं।

मौसम और जलवाय के तत्त्व

ताप, दाब, हवा, आर्द्रता, बादल और वर्षण, वायुमंडल के महत्त्वपूर्ण तत्त्व हैं, जो पृथ्वी पर मनुष्य के जीवन को प्रभावित करते हैं। इन तत्त्वों के बारे में विस्तृत जानकारी अध्याय 9, 10 और 11 में दी गई है।

___अभ्यास_

1. बहुवैकल्पिक प्रश्न :

- (i) निम्नलिखित में से कौन-सी गैस वायुमंडल में सबसे अधिक मात्रा में मौजूद है?
 - (क) ऑक्सीजन
- (ख) आर्गन

(ग) नाइट्रोजन

- (घ) कार्बन डाईऑक्साइड
- (ii) वह वायुमंडलीय परत जो मानव जीवन के लिये महत्त्वपूर्ण है :
 - (क) समतापमंडल
- (ख) क्षोभमंडल

(ग) मध्यमंडल

- (घ) आयनमंडल
- (iii) समुद्री नमक, पराग, राख, धुएँ की कालिमा, महीन मिट्टी- किससे संबंधित हैं?
 - (क) गैस

(ख) जलवाष्प

(ग) धुलकण

- (घ) उल्कापात
- (iv) निम्नलिखित में से कितनी ऊँचाई पर ऑक्सीजन की मात्रा नगण्य हो जाती है?
 - (क) 90 कि॰मी॰
- (ख) 100 कि॰मी॰
- (ग) 120 कि॰मी॰
- (घ) 150 कि॰मी॰
- (v) निम्नलिखित में से कौन-सी गैस सौर विकिरण के लिए पारदर्शी है तथा पार्थिव विकिरण के लिए अपारदर्शी?
 - (क) ऑक्सीजन

(ख) नाइट्रोजन

(ग) हीलियम

(घ) कार्बन डाईऑक्साइड

2. निम्नलिखित प्रश्नों के उत्तर लगभग 30 शब्दों में दीजिए :

- (i) वायुमंडल से आप क्या समझते हैं?
- (ii) मौसम एवं जलवाय के तत्त्व कौन-कौन से हैं?
- (iii) वायुमंडल की संरचना के बारे में लिखें।
- (iv) वायुमंडल के सभी संस्तरों में क्षोभमंडल सबसे अधिक महत्त्वपूर्ण क्यों है?

3. निम्नलिखित प्रश्नों के उत्तर लगभग 150 शब्दों में दीजिए :

- (i) वायुमंडल के संघटन की व्याख्या करें।
- (ii) वायुमंडल की संरचना का चित्र खींचे और व्याख्या करें।

अध्याय

सौर विकिरण, ऊष्मा संतुलन एवं तापमान

या आप अपने चारों तरफ वायु को महसूस करते हैं? क्या आप जानते हैं कि हम वायु के एक बहुत भारी पुलिंदे (Pile) के तल में रहते हैं? हम वायु में साँस लेते हुए साँस द्वारा वायु को बाहर निकालते हैं, परंतु उसे महसूस तभी करते हैं, जब यह गतिमान होती है। इस का तात्पर्य यह है कि गतिमान वायु ही पवन है। आप जानते हैं कि पृथ्वी चारों ओर से वायु से घिरी हुई है। वायु का यह आवरण ही वायुमंडल है, जो बहुत-सी गैसों से बना है। इन्हीं गैसों के कारण ही पृथ्वी पर जीवन पाया जाता है।

पृथ्वी अपनी ऊर्जा का लगभग संपूर्ण भाग सूर्य से प्राप्त करती है। इसके बदले पृथ्वी सूर्य से प्राप्त ऊर्जा को अंतरिक्ष में वापस विकरित कर देती है। परिणामस्वरूप पृथ्वी न तो अधिक समय के लिए गर्म होती है ओर न ही अधिक ठंडी अत: हम यह पाते हैं कि पृथ्वी के अलग-अलग भागों में प्राप्त ताप की मात्रा समान नहीं होती। इसी भिन्नता के कारण वायुमंडल के दाब में भिन्नता होती है एवं इसी कारण पवनों के द्वारा ताप का स्थानांतरण एक स्थान से दूसरे स्थान पर होता है। इस अध्याय में वायुमंडल के गर्म तथा ठंडे होने की प्रक्रिया एवं परिणामस्वरूप पृथ्वी की सतह पर तापमान के वितरण को समझाया गया है।

सौर विकिरण

पृथ्वी के पृष्ठ पर प्राप्त होने वाली ऊर्जा का अधिकतम अंश लघु तरंगदैर्ध्य के रूप में आता है। पृथ्वी को प्राप्त होने वाली ऊर्जा को 'आगमी सौर विकिरण' या छोटे रूप में 'सूर्यातप' (Insolation) कहते हैं।

पृथ्वी भू-आभ (Geoid) है। सूर्य की किरणें वायुमंडल के ऊपरी भाग पर तिरछी पडती है, जिसके कारण पृथ्वी

सौर ऊर्जा के बहुत कम अंश को ही प्राप्त कर पाती है। पृथ्वी औसत रूप से वायुमंडल की ऊपरी सतह पर 1.94 कैलोरी/प्रति वर्ग सेंटीमीटर प्रतिमिनट ऊर्जा प्राप्त करती है। वायुमंडल की ऊपरी सतह पर प्राप्त होने वाली ऊर्जा में प्रतिवर्ष थोडा परिवर्तन होता है। यह परिवर्तन पृथ्वी एवं सूर्य के बीच की दूरी में अंतर के कारण होता है। सूर्य के चारों ओर परिक्रमण के दौरान पृथ्वी 4 जुलाई को सूर्य से सबसे दूर अर्थात् 15 करोड, 20 लाख किलोमीटर दूर होती है। पृथ्वी की इस स्थिति को अपसौर (Aphelion) कहा जाता है। 3 जनवरी को पृथ्वी सूर्य से सबसे निकट अर्थात् 14 करोड, 70 लाख किलोमीटर दूर होती है। इस स्थिति को 'उपसौर' (Perihelion) कहा जाता है। इसलिए पृथ्वी द्वारा प्राप्त वार्षिक सूर्यातप (insolation) 3 जनवरी को 4 जुलाई की अपेक्षा अधिक होता है फिर भी सूर्यातप की भिन्नता का यह प्रभाव दूसरे कारकों, जैसे स्थल एवं समुद्र का वितरण तथा वायुमंडल परिसंचरण के द्वारा कम हो जाता है। यही कारण है कि सूर्यातप की यह भिन्नता पृथ्वी की सतह पर होने वाले प्रतिदिन के मौसम परिवर्तन पर अधिक प्रभाव नहीं डाल पाती है।

पृथ्वी की सतह पर सूर्यातप में भिन्तता

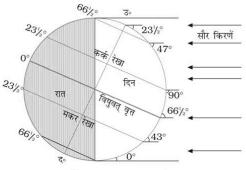
सूर्यातप की तीव्रता की मात्रा में प्रतिदिन, हर मौसम और प्रति वर्ष परिवर्तन होता रहता है। सूर्यातप में होने वाली विभिन्नता के कारक हैं: (i) पृथ्वी का अपने अक्ष पर घूमना (ii) सूर्य की किरणों का नित कोण (iii) दिन की अविध (iv) वायुमंडल की पारदर्शिता (v) स्थल विन्यास। परंतु अंतिम दो कारकों का प्रभाव कम पड़ता है।

यह तथ्य है कि पृथ्वी का अक्ष सूर्य के चारों ओर

सौर विकिरण, ऊष्मा संतुलन एवं तापमान

85

परिक्रमण की समतल कक्षा से $66\frac{1}{2}$ ° का कोण बनाता है, जो विभिन्न अक्षांशों पर प्राप्त होने वाले सूर्यातप की मात्रा को बहुत प्रभावित करता है।


निम्नलिखित सारणी में उत्तरी गोलार्ध में दिये गए अयनांतों पर विभिन्न अक्षांशों पर दिन की अवधि में होने क्षोभमंडल में मौजूद जलवाष्य, ओज़ोन तथा अन्य किरणें अवरक्त विकिरण (Infrared radiation) को अवशोषित कर लेती हैं। क्षोभमंडल में छोटे निलंबित कण दिखने वाले स्पेक्ट्रम को अंतरिक्ष एवं पृथ्वी की सतह की ओर विकीर्ण कर देते हैं। यही प्रक्रिया आकाश

सारणी 9.1 : उत्तरी गोलार्ध में उत्तर अयनांत एवं दक्षिण अयनांत (Summer & winter solstices)

अक्षांश	O°	20°	40°	60°	90°
22 दिसंबर	12घं∘00 मि∘	10घं∘48 मि॰	9घं∘ 8 मि॰	5घं∘ 33 मि॰	O
21 जून	12 घं∘	13घं∘12 मि∘	14घं∘52 मि॰	18घं∙27 मि॰	6 महीने

वाले परिवर्तनों पर ध्यान दें

सूर्यातप की मात्रा को प्रभावित करने वाला दूसरा कारक किरणों का नित कोण है। यह किसी स्थान के अक्षांश पर निर्भर करता है। अक्षांश जितना उच्च होगा (अर्थात् ध्रुवों की ओर) किरणों का नित कोण उतना ही कम होगा। अतएव सूर्य की किरणें तिरछी पड़ेगी। तिरछी किरणों की अपेक्षा सीधी किरणें कम स्थान पर पड़ती हैं।

चित्र 9.1 : उत्तर अयनांत

किरणों के अधिक क्षेत्र पर पड़ने के कारण ऊर्जा वितरण बड़े क्षेत्र पर होता है तथा प्रति इकाई क्षेत्र को कम ऊर्जा मिलती है। इसके अतिरिक्त तिरछी किरणों को वायुमंडल की अधिक गहराई से गुज़रना पड़ता है। अत: अधिक अवशोषण, प्रकीर्णन एवं विसरण के द्वारा ऊर्जा का अधिक हास होता है।

सौर विकिरण का वायुमंडल से होकर गुज़रना

लघु तरंगदैर्ध्य वाले सौर-विकिरण के लिए वायुमंडल अधिकांशत: पारदर्शी होता है। पृथ्वी की सतह पर पहुँचने से पहले सूर्य की किरणें वायुमंडल से होकर गुजरती हैं। में रंग के लिए उत्तरदायी है। इसी से उदय एवं अस्त होने के समय सूर्य लाल दिखता है तथा आकाश का रंग नीला दिखाई पड़ता है। ऐसा वायुमंडल में प्रकाश के प्रकीर्णन द्वारा संभव होता है।

सूर्यातप का पृथ्वी की सतह पर स्थानिक वितरण

धरातल पर प्राप्त सूर्यातप की मात्रा में उष्ण कटिबंध में 320 वाट/प्रति वर्गमीटर से लेकर धुवों पर 70 वाट/प्रति वर्गमीटर तक भिन्नता पाई जाती है। सबसे अधिक सूर्यातप उपोष्ण कटिबंधीय मरुस्थलों पर प्राप्त होता है, क्योंकि यहाँ मेघाच्छादन बहुत कम पाया जाता है। उष्ण कटिबंध की अपेक्षा विषुवत् वृत्त पर कम मात्रा में सूर्यातप प्राप्त होता है। सामान्यत: एक ही अक्षांश पर स्थित महाद्वीपीय भाग पर अधिक और महासागरीय भाग में अपेक्षतया कम मात्रा में सूर्यातप प्राप्त होता है। शीत ऋतु में मध्य एवं उच्च अक्षांशों पर ग्रीष्म ऋतु की अपेक्षा कम मात्रा में विकिरण प्राप्त होता है।

वायमंडल का तापन एवं शीतलन

वायुमंडल के गर्म और ठंडा होने के अनेक तरीके हैं। प्रवेशी सौर विकिरण से गर्म होने के बाद पृथ्वी सतह के निकट स्थित वायुमंडलीय परतों में दीर्घ तरंगों के रूप में ताप का संचरण करती है, पृथ्वी के संपर्क में आने वाली वायु धीरे-धीरे गर्म होती है। निचली परतों के संपर्क में आने वाली वायुमंडल की ऊपरी परतें भी गर्म हो जाती हैं। इस प्रक्रिया को चालन (Conduction) कहा जाता है। चालन तभी होता है जब असमान ताप वाले दो पिंड एक-दूसरे के संपर्क में आते हैं। गर्म पिंड से ठंडे पिंड की ओर ऊर्जा का प्रवाह चलता है। ऊर्जा

Downloaded from https://www.studiestoday.com

1

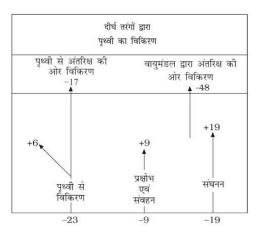
भौतिक भूगोल के मूल सिद्धांत

का स्थानांतरण तक तब होता रहता है जब तक दोनों पिंडों का तापमान एक समान नहीं हो जाता अथवा उनमें संपर्क टूट नहीं जाता। वायुमंडल की निचली परतों को गर्म करने में चालन (Conduction) महत्त्वपूर्ण है।

पृथ्वी के संपर्क में आई वायु गर्म होकर धाराओं के रूप में लंबवत् उठती है और वायुमंडल में ताप का संचरण करती है। वायुमंडल के लम्बवत् तापन की यह प्रक्रिया संवहन (Convection) कहलाती है, ऊर्जा के स्थानांतरण का यह प्रकार केवल क्षोभमंडल तक सीमित रहता है।

वायु के क्षैतिज संचलन से होने वाला ताप का स्थानांतरण अभिवहन (Advection) कहलाता है। लम्बवत् संचलन की अपेक्षा वायु का क्षैतिज संचलन सापेक्षिक रूप से अधिक महत्वपूर्ण होता है। मध्य अक्षांशों में दैनिक मौसम में आने वाली भिन्नताएँ केवल अभिवहन के कारण होती हैं। उष्ण कटिबंधीय प्रदेशों में, विशेषत: उत्तरी भाग में गर्मियों में चलने वाली स्थानीय पवन लू इसी अभिवहन का ही परिणाम है।

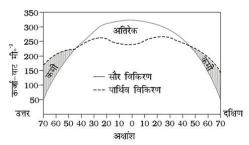
पृथ्वी द्वारा प्राप्त प्रवेशी सौर विकिरण, जो लघु तरंगों के रूप में होता है, पृथ्वी की सतह को गर्म करता है। पृथ्वी स्वयं गर्म होने के बाद एक विकिरण पिंड बन जाती है और वायुमंडल में दीर्घ तरंगों के रूप में ऊर्जा का विकिरण करने लगती है। यह ऊर्जा वायुमंडल को नीचे से गर्म करती है। इस प्रक्रिया को 'पार्थिव विकिरण' कहा जाता है।



दीर्घ तरंगदैर्ध्य विकिरण वायुमंडलीय गैसों, मुख्यत: कार्बन डाईऑक्साइड एवं अन्य ग्रीन हाऊस गैसों द्वारा अवशोषित कर लिया जाता है। इस प्रकार वायुमंडल पार्थिव विकिरण द्वारा अप्रत्यक्ष रूप से गर्म होता है न कि सीधे सूर्यातप से। तदुपरांत वायुमंडल विकीर्णन द्वारा ताप को अंतरिक्ष में संचरित कर देता है। इस प्रकार पृथ्वी की सतह एवं वायमंडल का तापमान स्थिर रहता है।

पृथ्वी का ऊष्मा बजट

चित्र 9.2 में पृथ्वी के ऊष्मा बजट को दर्शाया गया है। पृथ्वी ऊष्मा का न तो संचय करती है न ही हास करती है। यह अपने तापमान को स्थिर रखती है। ऐसा तभी सम्भव है, जब सूर्य विकिरण द्वारा सूर्यातप के रूप में प्राप्त ऊष्मा एवं पार्थिव विकिरण द्वारा अंतरिक्ष में संचिरत ताप बराबर हों।


मान लें कि वायुमंडल की ऊपरी सतह पर प्राप्त सूर्यातप 100 प्रतिशत है। वायुमंडल से गुज़रते हुए ऊर्जा का कुछ अंश परावर्तित, प्रकीर्णित एवं अवशोषित हो जाता है। केवल शेष भाग ही पृथ्वी की सतह तक पहुँचता है। 100 इकाई में से 35 इकाइयाँ पृथ्वी के धरातल पर पहुँचने से पहले ही अंतरिक्ष में परावर्तित हो जाती है। 27 इकाइयाँ बादलों के ऊपरी छोर से तथा 2 इकाइयाँ पृथ्वी के हिमाच्छादित क्षेत्रों द्वारा परावर्तित होकर

चित्र 9.2 : पृथ्वी का ऊष्मा बजट

लौट जाती हैं। सौर विकिरण की इस परावर्तित मात्रा को पृथ्वी का **एल्बिडो** कहते हैं।

प्रथम 35 इकाइयों को छोड़कर बाकी 65 इकाइयाँ अवशोषित होती है— 14 वायुमंडल में तथा 51 पृथ्वी के धरातल द्वारा। पृथ्वी द्वारा अवशोषित ये 51 इकाइयाँ पुन: पार्थिव विकरण के रूप में लौटा दी जाती हैं। इनमें से 17 इकाइयाँ तो सीधे अंतरिक्ष में चली जाती हैं। इनमें से 17 इकाइयाँ तो सीधे अंतरिक्ष में चली जाती हैं। और 34 इकाइयाँ वायुमंडल द्वारा अवशोषित होती है— 6 इकाइयाँ स्वयं वायुमंडल द्वारा, 9 इकाइयाँ संवहन के जिरए और 19 इकाइयाँ संघनन की गुप्त ऊष्मा के रूप में। वायुमंडल द्वारा 48 इकाइयों का अवशोषण होता है इनमें 14 इकाइयाँ सूर्यातप की और 34 इकाइयाँ पार्थिव विकरण की होती हैं। वायुमंडल विकिरण द्वारा इनको भी अंतरिक्ष में वापस लौटा देता है। अत: पृथ्वी के धरातल तथा वायुमंडल से अंतरिक्ष में वापस लौटने वाली विकरण की इकाइयाँ क्रमश: 17 और 48 हैं, जिनका योग 65

चित्र 9.3 : शुद्ध विकिरण संतुलन में अनुदैर्ध्य परिवर्तन

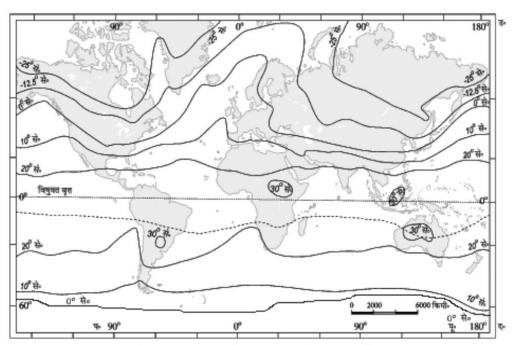
होता है। वापस लौटने वाली ये इकाइयाँ उन 65 इकाइयों का संतुलन कर देती हैं जो सूर्य से प्राप्त होती हैं। यही पृथ्वी का ऊष्मा बजट अथवा ऊष्मा संतुलन है।

यही कारण है कि ऊष्मा के इतनी बड़े स्थानांतरण के बावजूद भी पृथ्वी न तो बहुत गर्म होती है और न ही ठंडी होती है।

पृथ्वी की सतह पर कुल ऊष्मा बजट में भिन्नता जैसा कि पहले व्याख्या की जा चुकी है, पृथ्वी की सतह पर प्राप्त विकिरण की मात्रा में भिन्नता पाई जाती है। पृथ्वी के कुछ भागों में विकिरण संतुलन में अधिशेष (Surplus) पाया जाता है, परंतु कुछ भागों में ऋणात्मक संतुलन होता है। चित्र 9.3 में पृथ्वी वायुमंडल-तंत्र के शुद्ध विकिरण में अक्षांशीय भिन्नता को दर्शाया गया है। यह चित्र दर्शाता है कि शुद्ध विकिरण में अधिशेष 40° उत्तरी एवं दक्षिणी अक्षांशों में अधिक है, परंतु ध्रुवों के पास कमी (Deficit) पाई जाती है। उष्ण कटिबंधीय क्षेत्रों से ताप ऊर्जा ध्रुवों की ओर पुनर्वितरण होता है फलस्वरूप उष्णकटिबंध ताप संचयन के कारण बहुत अधिक गर्म नहीं हो और न ही उच्च अक्षांश अत्यधिक कमी के कारण पूरी तरह जमे हुए हैं।

तापमान

वायुमंडल एवं भू-पृष्ठ के साथ सूर्यातप की अन्योन्यक्रिया द्वारा जितत ऊष्मा तापमान के रूप में मापा जाता है। जहाँ ऊष्मा किसी पदार्थ कणों के अणुओं की गित को दर्शाती है, वहीं तापमान किसी पदार्थ या स्थान के गर्म या ठंडा होने का डिग्री में माप है।


तापमान के वितरण को नियंत्रित करने वाले कारक किसी भी स्थान पर वायु का तापमान निम्नलिखित कारकों द्वारा प्रभावित होता है:

(i) उस स्थान की अक्षांश रेखा (ii) समुद्र तल से उस स्थान की उत्तुंगता (iii) समुद्र से उसकी दूरी (iv) वायु संहति का परिसंचरण (v) कोष्ण तथा ठंडी महासागरीय धाराओं की उपस्थिति (vi) स्थानीय कारक।

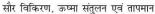
अक्षांश (Latitude): किसी भी स्थान का तापमान उस स्थान द्वारा प्राप्त सूर्यातप पर निर्भर करता है। यह पहले ही बताया जा चुका है कि सूर्यातप की मात्रा में अक्षांश के अनुसार भिन्नता पाई जाती है। अत: तद्नुसार तापमान में भी भिन्नता पाई जाती है।

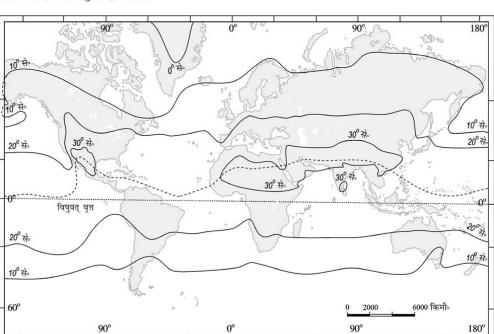
उत्तुंगता (Altitude): वायुमंडल पार्थिव विकिरण द्वारा नीचे की परतों में पहले गर्म होता है। यही कारण है कि समुद्र तल के पास के स्थानों पर तापमान अधिक तथा ऊँचे भाग में स्थित स्थानों पर तापमान कम होता है। अन्य शब्दों में तापमान सामान्यत: उत्तृंगता बढ़ने के साथ घटता

चित्र १.4 (अ): भूपृष्ठीय वायु तापक्रम वितरण (जनवरी)

है। उत्तुंगता के बढ़ने के साथ तापमान के घटने की दर को 'सामान्य हास दर' (Normal lapse rate) कहते हैं। सामान्य हास दर प्रति 1,000 मीटर की ऊँचाई बढ़ने पर 6.5° सेल्सियस है।

+


समुद्र से दूरी: किसी भी स्थान के तापमान को प्रभावित करने वाला दूसरा कारक समुद्र से उस स्थान की दूरी है। स्थल की अपेक्षा समुद्र धीरे-धीरे गर्म और धीरे-धीरे ठंडा होता है। स्थल जल्दी गर्म और जल्दी ठंडा होता है। इसलिए समुद्र के ऊपर स्थल की अपेक्षा तापमान में भिन्नता कम होती है। समुद्र के निकट स्थित क्षेत्रों पर समुद्र एवं स्थली समीर का सामान्य प्रभाव पड़ता है और तापमान सम रहता है।


वायुसंहित तथा महासागरीय धाराएं : स्थलीय एवं समुद्री समीरों की तरह वायु संहितयाँ भी तापमान को प्रभावित करती हैं। कोष्ण वायु संहितयों (Warm airmasses) से प्रभावित होने वाले स्थानों का तापमान अधिक एवं शीत वायुसंहितयों (Cold airmasses) से प्रभावित स्थानों का तापमान कम होता है। इसी प्रकार ठंडी महासागरीय धारा के प्रभाव के अंतर्गत आने वाले समुद्र तटों की अपेक्षा गर्म महासागरीय धारा के प्रभाव में आने वाले तटों का तापमान अधिक होता है।

तापमान का वितरण

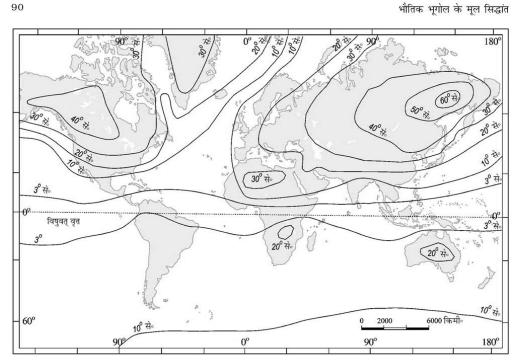
जनवरी और जुलाई के तापमान के वितरण का अध्ययन करके हम पूरे विश्व के तापमान वितरण के बारे में जान सकते हैं। मानचित्रों पर तापमान वितरण समान्यत: समताप रेखाओं की मदद से दर्शाया जाता है। यह वह रेखा है, जो समान तापमान वाले स्थानों को जोड़ती है। चित्र 9.4 (अ एवं ब) जनवरी तथा जुलाई में होने वाले धरातल पर वायु के तापमान के वितरण को दर्शाता है।

सामान्यत: तापमान पर अक्षांश के प्रभाव को मानचित्र में स्पष्ट रूप से देखा जा सकता है। क्योंकि, समताप रेखायें प्राय: अक्षांश के समानांतर होती हैं। इस सामान्य प्रवृत्ति में विचलन, विशेष रूप से उत्तरी गोलार्थ में जुलाई की

चित्र १.4 (ब) : भूपृष्ठीय वायु तापक्रम का वितरण (जुलाई)

अपेक्षा जनवरी में अधिक स्पष्ट होता हैं। दक्षिणी गोलार्ध की अपेक्षा उत्तरी गोलार्ध में स्थलीय भाग अधिक है। इसलिए भूसंहित और समुद्री धारा का प्रभाव वहाँ स्पष्ट होता है। जनवरी में समताप रेखायें महासागर के उत्तर और महाद्वीपों पर दिक्षण की ओर विचलित हो जाती हैं। इसे उत्तरी अटलांटिक महासागर पर देखा जा सकता है। कोष्ण महासागरीय धाराएं गल्फ स्ट्रीम तथा उत्तरी अटलांटिक महासागरीय ड्रिफ्ट की उपस्थित से उत्तरी अटलांटिक महासागर अधिक गर्म होता है तथा समताप रेखायें उत्तर की तरफ मुड़ जाती हैं। सतह के ऊपर तापमान तेजी से कम हो जाता है और समताप रेखायें यूरोप में दिक्षण की ओर मुड़ जाती हैं।

यह साईबेरिया के मैदान पर ज्यादा स्पष्ट होता है। 60° पूर्वी देशांतर के साथ-साथ 80° उत्तरी एवं 50° उत्तरी दोनों ही अक्षांशों पर जनवरी का माध्य तापमान 20° सेल्सियस पाया जाता है। इसी प्रकार जनवरी का माध्य मासिक तापक्रम विषुवत्रेखीय महासागरों पर 27° सेल्सियस से अधिक, उष्ण किटबंधों में 24° से॰ से अधिक, मध्य


अक्षांशों पर 20° से॰ से 0° से॰ तथा यूरेशिया के आंतरिक भाग में -18° से॰ से -48° से॰ तक दर्ज होता है।

दक्षिणी गोलार्ध में तापमान पर महासागरों का स्पष्ट प्रभाव देखा जाता है। यहाँ समताप रेखाएं लगभग अक्षांशों के समानांतर चलती हैं तथा उत्तरी गोलार्ध की अपेक्षा भिन्नता कम तीव्र होती है। 20° से $^\circ$, 10° से $^\circ$ एवं 0° से $^\circ$ की समताप रेखायें क्रमश: 35° द $^\circ$ 45° द $^\circ$ तथा 60° दक्षिण के समानांतर पाई जाती हैं।

जुलाई में समताप रेखायें प्राय: अक्षांशों के समानांतर चलती हैं। विषुवत्रेखीय महासागरों पर तापमान 27° से॰ से अधिक होता है। एशिया के उपोष्ण कटिबंधीय स्थलीय भागों में 30° उत्तरी अक्षांश के साथ-साथ तापमान 30° से॰ से अधिक पाया जाता है। 40° उत्तरी एवं 40° दक्षिणी अक्षांशों पर तापमान 10° से॰ दर्ज किया गया है।

चित्र 9.5 जनवरी एवं जुलाई के बीच तापांतर को प्रदर्शित करता है। सर्वाधिक तापांतर यूरेशिया महाद्वीप के उत्तरी पूर्वी क्षेत्र में पाया जाता है, जो लगभग 60° से॰ है।

 \top

चित्र 9.5 : जनवरी और जुलाई के मध्य तापांतर

इसका मुख्य कारण 'महाद्वीपीयता' (Continentality) है। सबसे कम 3° से॰ का तापांतर 20° दक्षिणी एवं 15° उत्तरी अक्षांशों के बीच पाया जाता है।

तापमान का व्युत्क्रमण

सामान्यत: तापमान ऊँचाई के साथ घटता जाता है, जिसे सामान्य ह्रास दर कहते हैं। पर कई बार स्थिति बदल जाती है और सामान्य ह्रास दर उलट जाती है। इसे तापमान का व्युत्क्रमण कहते हैं। अक्सर व्युत्क्रमण बहुत थोड़े समय के लिए होता है, पर यह काफी सामान्य घटना है। सर्दियों की मेघ विहीन लंबी रात तथा शांत वायु, व्युत्क्रमण के लिए आदर्श दशाएँ हैं। दिन में प्राप्त ऊष्मा रात के समय विकिरित कर दी जाती है और सुबह तक भूपृष्ठ अपने ऊपर की हवा से अधिक ठंडी हो जाती है। ध्रुवीय क्षेत्रों में वर्ष भर तापमान व्युत्क्रमण होना सामान्य है।

भृपृष्ठीय व्युत्क्रमण वायुमंडल के निचले स्तर में स्थिरता को बढ़ावा देता है। धुआँ तथा धूलकण व्युत्क्रमण स्तर से नीचे एकत्र होकर चारों ओर फैल जाते हैं, जिनसे वायुमंडल का निम्न स्तर भर जाता है। इससे सर्दियों में सुबह के समय घने कुहरे की रचना सामान्य घटना है। यह व्युत्क्रमण कुछ ही घंटों तक रहता है। सूर्य के ऊपर चढ़ने और पृथ्वी के गर्म होने के साथ यह समाप्त हो जाता है।

पहाड़ी और पर्वतीय क्षेत्रों में वायु अपवाह के कारण व्युत्क्रमण की उत्पत्ति होती है। पहाड़ियों तथा पर्वतों पर रात में ठंडी हुई हवा गुरुत्वाकर्षण बल के प्रभाव में भारी और घनी होने के कारण लगभग जल की तरह कार्य करती है और ढाल के साथ ऊपर से नीचे उतरती है। यह घाटी की तली में गर्म हवा के नीचे एकत्र हो जाती है। इसे वायु अपवाह कहते हैं। यह पाले से पौधों की रक्षा करती है।

- प्लैंक का नियम बताता है कि एक वस्तु जितनी गर्म होगी वह उतनी ही अधिक ऊर्जा का विकिरण करेगी और उसकी तरंग दैर्ध्य उतनी लघु होगी।
- एक ग्राम पदार्थ का तापमान एक अंश सेल्सियस बढ़ाने के लिए जितनी ऊर्जा की आवश्यकता है, वह विशिष्ट ऊष्मा कहलाती है।

Downloaded from https://www.studiestoday.com

सौर विकिरण, ऊष्मा संतुलन एवं तापमान

91

अभ्यास.

1. बहुवैकल्पिक प्रश्न :

- (i) निम्न में से किस अक्षांश पर 21 जून की दोपहर सूर्य की किरणें सीधी पड़ती हैं?
 - (क) विषवुत् वृत्त पर (ख) 23.5° उ॰ (ग) 66.5° द॰ (घ) 66.5° उ॰
- (ii) निम्न में से किन शहरों में दिन ज्यादा लंबा होता है?
 - (क) तिरुवनंतपुरम
- (ख) हैदराबाद
- (ग) चंडीगढ़
- (घ) नागपुर
- (iii) निम्नलिखित में से किस प्रक्रिया द्वारा वायुमंडल मुख्यत: गर्म होता है।
 - (क) लघु तरंगदैर्ध्य वाले सौर विकिरण से
 - (ख) लंबी तरंगदैर्ध्य वाले स्थलीय विकिरण से
 - (ग) परावर्तित सौर विकिरण से
 - (घ) प्रकीर्णित सौर विकिरण से
- (iv) निम्न पदों को उसके उचित विवरण के साथ मिलाएँ।
 - 1. सुर्यातप
- (अ) सबसे कोष्ण और सबसे शीत महीनों के माध्य तापमान का अंतर
- 2. एल्बिडो
- (ब) समान तापमान वाले स्थानों को जोड़ने वाली रेखा
- 3. समताप रेखा
- (स) आनेवाला सौर विकिरण
- 4. वार्षिक तापांतर
- (द) किसी वस्तु के द्वारा परावर्तित दृश्य प्रकाश का प्रतिशत
- (v) पृथ्वी के विषुवत् वृत्तीय क्षेत्रों की अपेक्षा उत्तरी गोलार्ध के उपोष्ण कटिबंधीय क्षेत्रों का तापमान अधिकतम होता है, इसका मुख्य कारण है
 - (क) विषुवतीय क्षेत्रों की अपेक्षा उपोष्ण कटिबंधीय क्षेत्रों में कम बादल होते हैं।
 - (ख) उपोष्ण कटिबंधीय क्षेत्रों में गर्मी के दिनों की लंबाई विष्वतीय क्षेत्रों से ज्यादा होती है।
 - (ग) उपोष्ण कटिबंधीय क्षेत्रों में 'ग्रीन हाऊस प्रभाव' विषुवतीय क्षेत्रों की अपेक्षा ज्यादा होता है।
 - (घ) उपोष्ण कटिबंधीय क्षेत्र विषुवतीय क्षेत्रों की अपेक्षा महासागरीय क्षेत्र के ज्यादा करीब है।

2. निम्नलिखित प्रश्नों के उत्तर लगभग 30 शब्दों में दीजिए :

- (i) पृथ्वी पर तापमान का असमान वितरण किस प्रकार जलवायु और मौसम को प्रभावित करता है?
- (ii) वे कौन से कारक है, जो पृथ्वी पर तापमान के वितरण को प्रभावित करते हैं?
- (iii) भारत में मई में तापमान सर्वाधिक होता है, लेकिन उत्तर अयनांत के बाद तापमान अधिकतम नहीं होता। क्यों?
- (iv) साइबेरिया के मैदान में वार्षिक तापांतर सर्वाधिक होता है। क्यों?

3. निम्नलिखित प्रश्नों के उत्तर लगभग 150 शब्दों में दीजिए :

- (i) अक्षांश और पृथ्वी के अक्ष का झुकाव किस प्रकार पृथ्वी की सतह पर प्राप्त होने वाली विकिरण की मात्रा को प्रभावित करते हैं?
- (ii) उन प्रक्रियाओं की व्याख्या करें जिनके द्वारा पृथ्वी तथा इसका वायुमंडल ऊष्मा संतुलन बनाए रखते हैं।
- (iii) जनवरी में पृथ्वी के उत्तरी और दक्षिणी गोलार्ध के बीच तापमान के विश्वव्यापी वितरण की तुलना करें।

परियोजना कार्य

अपने शहर या शहर के आस-पास के किसी वेधशाला का पता लगायें। वेधशाला की मौसम विज्ञान संबंधी सारणी में दिये गये तापमान को सारणीबद्ध करें। (i) वेधशाला कि तुंगता अक्षांश और उस समय को जिसके लिए माध्य निकाला गया है, लिखें। (ii) सारणी में तापमान के संबंध में दिये गये पदों को परिभाषित करें। (iii) एक महीने तक प्रतिदिन के तापमान के माध्य की गणना करें। (iv) ग्राफ द्वारा प्रतिदिन का अधिकतम माध्य तापमान, न्यूनतम माध्य तापमान तथा कुल माध्य तापमान दर्शायें। (v) वार्षिक तापांतर की गणना करें। (vi) पता लगायें कि किन महीनों के प्रतिदिन का माध्य तापमान सबसे अधिक और सबसे कम है। (vii) उन कारकों को लिखें, जो किसी स्थान के तापमान का निर्धारण करते हैं और जनवरी, मई, जुलाई और अक्तुबर में होने वाले तापमान में अंतर के कारणों को समझायें।

92

+

भौतिक भूगोल के मूल सिद्धांत

महीना	प्रतिदिन के अधिकतम तापमान का माध्य (°से॰)	प्रतिदिन के न्यूनतम तापमान का माध्य (°से॰)	उच्चतम तापमान (°से॰)	न्यूनतम तापमान (°से॰)
जनवरी	21.1	7.3	29.3	0.6
मई	39.6	25.9	47.2	17.5

उदाहरण

वेधशाला : सफदरजंग, नयी दिल्ली अक्षांश : 28° 35° उत्तरी अवलोकन वर्ष : 1951 से 1980 समुद्री सतह के माध्यम से तुंगता : 216 मी॰

एक महीने के प्रतिदिन का माध्य तापमान

जनवरी
$$\frac{21.1+7.3}{2}$$
= 14.2 °C

ਸ਼੍ਰੰ
$$\frac{39.6+25.9}{2}$$
 = 32.75 °C

वार्षिक तापांतर

वायुमंडलीय परिसंचरण तथा मौसम प्रणालियाँ

असामान्य वितरण विर्णत है। वायु गर्म होने पर फैलती है और ठंडी होने पर सिकुड़ती है। इससे वायुमंडलीय दाब में भिन्नता आती है। इसके परिणामस्वरूप वायु गतिमान होकर अधिक दाब वाले क्षेत्रों से न्यून दाब वाले क्षेत्रों में प्रवाहित होती है। आप जानते हैं कि क्षैतिज गतिमान वायु ही पवन है। वायुमंडलीय दाब यह भी निर्धारित करता है कि कब वायु ऊपर उठेगी व कब नीचे बैठेगी। पवनें पृथ्वी पर तापमान व आईता का पुनर्वितरण करती हैं, जिससे पूरी पृथ्वी का तापमान स्थिर बना रहता है। ऊपर उठती हुई आई वायु का तापमान कम होता जाता है, बादल बनते हैं और वर्षा होती है। इस अध्याय में वायुमंडलीय दाब भिन्नता के कारणों, वायुमंडलीय परिसंचरण सम्बन्धी बल, वायु विक्षोभ, वायुग्रिशयों का बनना, वायुराशियों के मिश्रण से मौसम संबंधी विक्षोभ व उष्णकटिबंधीय चक्रवातों के विवरण सिम्मिलत है।

वायुमंडलीय दाब

क्या आप जानते हैं कि हमारा शरीर भी वायुदाब से प्रभावित होता है? जैसे-जैसे आप ऊपर ऊँचाई पर चढ़ते जाते हैं, वायु विरल होती जाती है और साँस लेने में कठिनाई होती है।

माध्य समुद्रतल से वायुमंडल की अंतिम सीमा तक एक इकाई क्षेत्रफल के वायु स्तंभ के भार को वायुमंडलीय दाब कहते हैं। वायुदाब को मापने की इकाई मिलीबार है। समुद्र तल पर औसत वायुमंडलीय दाब 1,013.2 मिलीबार होता है। गुरुत्वाकर्षण के कारण धरातल के निकट वायु सघन होती है और इसी के कारण वायुदाब अधिक होता है। वायुदाब को मापने के लिए पारद वायुदाबमापी (Mercury barometer) अथवा निर्द्रव बैरोमीटर (Aneroid barometer) का प्रयोग किया जाता है। इन उपकरणों के विषय में जानने हेतु भूगोल में प्रयोगात्मक कार्य भाग-1, एन.सी.ई.आर.टी., 2006 देखें। वायुदाब ऊँचाई के साथ घटता है। ऊँचाई पर वायुदाब भिन्न स्थानों पर भिन्न-भिन्न होता है और यह विभिन्नता ही वायु में गित का मुख्य कारण है, अर्थात् पवनें उच्च वायुदाब क्षेत्रों से कम वायुदाब क्षेत्रों की तरफ चलती हैं।

वायुदाब में ऊर्ध्वाधर भिन्नता

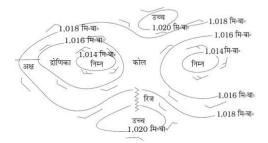
वायुमंडल के निचले भाग में वायुदाब ऊँचाई के साथ तीव्रता से घटता है। यह हास दर प्रत्येक 10 मीटर की ऊँचाई पर 1 मिलीबार होता है। वायुदाब सदैव एक ही दर से नहीं घटता। सारणी 10.1 निश्चित ऊँचाई पर

सारणी 10.1 : निश्चित ऊँचाई पर मानक तापमान व वायुदाब

स्तर	वायुदाब (मिलीबार में)	तापमान (°से॰ में)
समुद्रतल	1,013.25	15.2
1 कि∘मी∘	898.76	8.7
5 कि∘मी∘	540.48	-17.3
10 कि॰मी॰	265.00	-49.7

वायुमंडल में औसत वायुदाब और तापमान को प्रस्तुत करती है।

ऊर्ध्वाधर दाब प्रवणता क्षैतिज दाब प्रवणता की

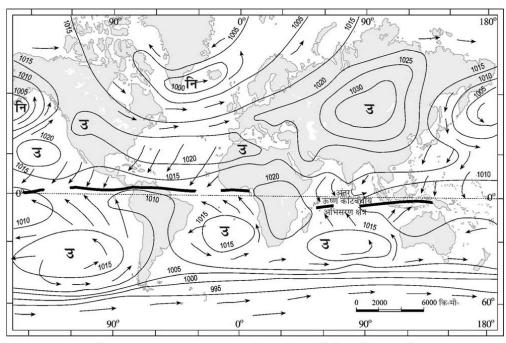

94

अपेक्षा अधिक होती है। लेकिन, इसके विपरीत दिशा में कार्यरत गुरुत्वाकर्षण बल से यह संतुलित हो जाती है अत: ऊर्ध्वाधर पवनें अधिक शक्तिशाली नहीं होती।

वायुदाब का क्षैतिज वितरण

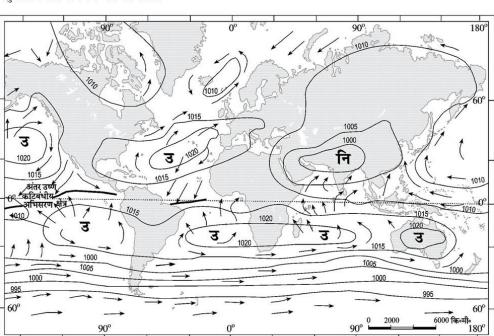
पवनों की दिशा व वेग के संदर्भ में वायुदाब में अल्प अंतर भी अत्यधिक महत्त्वपूर्ण है। वायुदाब के क्षैतिज वितरण का अध्ययन समान अंतराल पर खींची गयी समदाब रेखाओं द्वारा किया जाता है। समदाब रेखाएँ वे रेखाएँ हैं जो समुद्र तल से एक समान वायुदाब वाले स्थानों को मिलाती हैं। दाब पर ऊँचाई के प्रभाव को दूर करने और तुलनात्मक बनाने के लिए, वायुदाब मापने के बाद इसे समुद्र तल के स्तर पर घटा लिया जाता है। समुद्रतल पर वायुदाब वितरण मौसम मानचित्रों में दिखाया जाता है।

चित्र 10.1 विभिन्न वायुदाब परिस्थितियों में समदाब रेखाओं की आकृति दर्शाता है। निम्नदाब प्रणाली एक या अधिक समदाब रेखाओं से घिरी होती है जिसके केंद्र में भौतिक भूगोल के मूल सिद्धांत



चित्र 10.1 : उत्तरी गोलार्ध में समदाब रेखाएं, वायुदाब तथा पवन तंत्र

निम्न वायुदाब होता है। उच्च दाब प्रणाली में भी एक या अधिक समदाब रेखाएँ होती हैं जिनके केंद्र में उच्चतम वायुदाब होता है।


समुद्रतल वायुदाब का विश्व-वितरण

जनवरी व जुलाई महीने का समुद्रतल से वायुदाब का विश्व-वितरण चित्र 10.2 व 10.3 में दर्शाया गया है।

चित्र 10.2 : माध्य समुद्रतल वायु दाब (समदाब रेखाएं मिलीबार में) - जनवरी

वायुमंडलीय परिसंचरण तथा मौसम प्रणालियाँ

चित्र 10.3 : माध्य समुद्रतल वायु दाब (समदाब रेखाएं मिलीबार में) - जुलाई

विषुवत् वृत्त के निकट वायुदाब कम होता है और इसे विषुवतीय निम्न अवदाब क्षेत्र (Equatorial low) के नाम से जाना जाता है। 30° उत्तरी व 30° दक्षिणी अक्षांशों के साथ उच्च दाब क्षेत्र पाए जाते हैं, जिन्हें उपोष्ण उच्च वायुदाब क्षेत्र कहा जाता है। पुन: ध्रुवों की तरफ 60° उत्तरी व 60° दक्षिणी अक्षांशों पर निम्न दाब पेटियाँ हैं जिन्हें अधोधुवीय निम्नदाब पट्टियाँ कहते हैं। ध्रुवों के निकट वायुदाब अधिक होता है और इसे ध्रुवीय उच्च वायुदाब पट्टी कहते हैं। ये वायुदाब पट्टियाँ विस्थापित होती रहती हैं। उत्तरी गोलार्ध में शीत ऋतु में ये पट्टियाँ दक्षिण की ओर तथा ग्रीष्म ऋतु ये उत्तर दिशा की ओर खिसक जाती हैं।

पवनों की दिशा व वेग को प्रभावित करने वाले बल

आप यह जानते ही हैं कि (वायुमंडलीय दाब में) भिन्नता के कारण वायु गतिमान होती हैं। इस क्षैतिज गतिज वायु को पवन कहते हैं। पवनें उच्च दाब से कम दाब की तरफ प्रवाहित होती हैं। भूतल पर धरातलीय विषमताओं के कारण घर्षण पैदा होता है, जो पवनों की गित को प्रभावित करता है। इसके साथ पृथ्वी का घूर्णन भी पवनों के वेग को प्रभावित करता है। पृथ्वी के घूर्णन द्वारा लगने वाले बल को कोरिऑलिस बल कहा जाता है। अत: पृथ्वी के धरातल पर क्षैतिज पवनें तीन संयुक्त प्रभावों का परिणाम है:

दाब प्रवणता प्रभाव, घर्षण बल, तथा कोरिआलिस बला

इसके अतिरिक्त , गुरुत्वाकर्षण बल पवनों को नीचे प्रवाहित करता है।

दाब-प्रवणता बल

वायुमंडलीय दाब भिन्नता एक बल उत्पन्न करता है। दूरी के संदर्भ में दाब परिवर्तन की दर दाब प्रवणता है। जहाँ समदाब रेखाएँ पास-पास हों, वहाँ दाब प्रवणता अधिक व समदाब रेखाओं के दूर-दूर होने से दाब प्रवणता कम होती है।

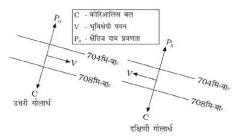
 \top

भौतिक भूगोल के मूल सिद्धांत

घर्षण बल

यह पवनों की गति को प्रभावित करता है। धरातल पर घर्षण सर्वाधिक होता है और इसका प्रभाव प्राय: धरातल से 1 से 3 कि॰मी॰ ऊँचाई तक होता है। समुद्र सतह पर घर्षण न्यूनतम होता है।

कोरिऑलिस बल


पृथ्वी का अपने अक्ष पर घूर्णन पवनों की दिशा को प्रभावित करता है। सन् 1844 में फ्रांसिसी वैज्ञानिक ने इसका विवरण प्रस्तुत किया और इसी पर इस बल को कोरिआलिस बल कहा जाता है। इस प्रभाव से पवनें उत्तरी गोलार्ध में अपनी मूल दिशा से दाहिने तरफ व दक्षिण गोलार्ध में बाईं तरफ विक्षेपित (deflect) हो जाती हैं। जब पवनों का वेग अधिक होता है, तब विक्षेपण भी अधिक होता है। कोरिऑलिस बल अक्षांशों के कोण के सीधा समानुपात में बढ़ता है। यह ध्रुवों पर सर्वाधिक और विषुवत् वृत्त पर अनुपस्थित होता है।

कोरिऑलिस बल दाब प्रवणता के समकोण पर कार्य करता है। दाब प्रवणता बल समदाब रेखाओं के समकोण पर होता है। जितनी दाब प्रवणता अधिक होगी, पवनों का वेग उतना ही अधिक होगा और पवनों की दिशा उतनी ही अधिक विक्षेपित होगी। इन दो बलों के एक दूसरे से समकोण पर होने के कारण निम्न दाब क्षेत्रों में पवनें इसी के इर्द-गिर्द बहती हैं। विषुवत् वृत्त पर कोरिऑलिस बल शून्य होता है और पवनें समदाब रेखाओं के समकोण पर बहती हैं। अत: निम्न दाब क्षेत्र और अधिक गहन होने की बजाय पूरित हो जाता है। यही कारण है कि विषुवत् वृत्त के निकट उष्णकटिबंधीय चक्रवात नहीं बनते।

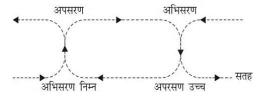
वायदाब व पवनें

पवनों का वेग व उनकी दिशा, पवनों को उत्पन्न करने

वाले बलों का परिणाम है। पृथ्वी की सतह से 2-3 कि.मी. की ऊँचाई पर ऊपरी वायुमंडल में पवनें धरातलीय घर्षण के प्रभाव से मुक्त होती हैं और मुख्यत: दाब प्रवणता तथा कोरिऑलिस बल से नियंत्रित होती हैं। जब समदाब रेखाएँ सीधी हों और घर्षण का प्रभाव न हो, तो दाब प्रवणता बल कोरिऑलिस बल से संतुलित हो जाता है और फलस्वरूप पवनें समदाब रेखाओं के समानांतर बहती हैं। ये पवनें भूविक्षेपी (Geostrophic) पवनों के नाम से जानी जाती हैं। (चित्र 10.4)

चित्र 10.4 : भूविक्षेपी पवन

निम्न दाब क्षेत्र के चारों तरफ पवनों का परिक्रमण चक्रवाती परिसंचरण कहलाता है। उच्च वायु दाब क्षेत्र के चारों तरफ ऐसा होना प्रतिचक्रवाती परिसंचरण कहा जाता है। इन प्रणालियों में पवनों की दिशा दोनों गोलार्धों में भिन्न होती है। (सारणी 10.2)

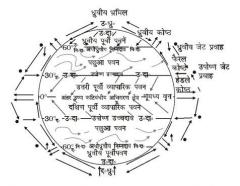

पृथ्वी की सतह पर कई बार निम्न व उच्च दाब के चारों ओर पवनों का परिसंचरण ऊँचाई पर होने वाले वायु परिसंचरण से संबंधित ही होता है। प्राय: निम्न दाब क्षेत्रों पर वायु अभिसरित होंगी और ऊपर उठेंगी। उच्च दाब क्षेत्रों में वायु का अवतलन होगा और धरातल पर अपसरित होंगी (चित्र 10.5)। अभिसरण के अतिरिक्त, वायु, भ्रमिल रूप में, संवहन धाराओं में, पर्वतों के

this left i an and the Milanette i an interest an animal				
दाब पद्धति	केन्द्र में दाब की दशा	पवन दिशा का प्रारूप		
		उत्तरी गोलार्ध	दक्षिणी गोलार्ध	
चक्रवात	निम्न	घड़ी की सुई की दिशा के विपरीत	घड़ी की सुई की दिशा के अनुरूप	
प्रतिचक्रवात	उच्च	घड़ी की सुई की दिशा के अनरूप	घड़ी की सुई की दिशा के विपरीत	

सारणी 10.2 : चक्रवात तथा प्रतिचक्रवात में पवनों की दिशा का प्रारूप

वायुमंडलीय परिसंचरण तथा मौसम प्रणालियाँ

साथ-साथ और वाताग्र के सहारे ऊपर उठती है, जो बादल बनने व वर्षण के लिए आवश्यक है।


चित्र 10.5 : पवनों का अभिसरण तथा अपसरण

वायुमंडल का सामान्य परिसंचरण

भूमंडलीय पवनों का प्रारूप मुख्यत: निम्न बातों पर निर्भर है: (i) वायुमंडलीय ताप में अक्षांशीय भिन्नता, (ii) वायुदाब पट्टियों की उपस्थिति, (iii) वायुदाब पट्टियों का सौर किरणों के साथ विस्थापन, (iv) महासागरों व महाद्वीपों का वितरण तथा (v) पृथ्वी का घूर्णन। वायुमंडलीय पवनों के प्रवाह प्रारूप को वायुमंडलीय सामान्य परिसंचरण भी कहा जाता है। यह वायुमंडलीय परिसंचरण महासागरीय जल को भी गतिमान करता है, जो पृथ्वी की जलवायु को प्रभावित करता है। सामान्य परिसंचरण का एक क्रमिक विवरण चित्र 10.6 में प्रस्तुत है।

उच्च सूर्यातप व निम्न वायुदाब होने से अंतर-उष्णकटिबंधीय अभिसरण क्षेत्र (ITCZ) पर वायु संवहन धाराओं के रूप में ऊपर उठती है। उष्णकटिबंधों से आने वाली पवनें इस निम्न दाब क्षेत्र में अभिसरण करती हैं। अभिसरित वायु संवहन कोष्ठों के साथ ऊपर उठती हैं। यह क्षोभमंडल के ऊपर 14 कि.मी. की ऊँचाई तक ऊपर चढ़ती है और फिर ध्रुवों की तरफ प्रवाहित होती हैं। इसके परिणामस्वरूप लगभग 30° उत्तर व 30° दक्षिण अक्षांश पर वायु एकत्रित हो जाती है। इस एकत्रित वायु का अवतलन होता है और यह उपोष्ण उच्चदाब बनाता है। अवतलन का एक कारण यह है कि जब वायू 30° उत्तरी व दक्षिणी अक्षांश पर पहुंचती है तो यह ठंडी हो जाती है। धरातल के निकट वायु का अपसरण होता है और यह विषुवत् वृत्त की ओर पूर्वी पवनों के रूप में बहती हैं। विषुवत् वृत्त के दोनों तरफ से प्रवाहित होने वाली पूर्वी पवनें अंतर उष्ण कटिबंधीय अभिसरण क्षेत्र (ITCZ) पर मिलती हैं। पृथ्वी की सतह से ऊपर की दिशा में होने वाले परिसंचरण और इसके विपरीत दिशा

में होने वाले परिसंचरण को कोष्ठ (Cell) कहते हैं। उष्णकटिबंधीय क्षेत्र में ऐसे कोष्ठ को हेडले कोष्ठ (Hadley cell) कहा जाता है। मध्य अक्षांशीय वायु परिसंचरण में ध्रुवों से प्रवाहित होती ठंडी पवनों का अवतलन होता है और उपोष्ण उच्चदाब कटिबंधीय क्षेत्रों

चित्र 10.6 : वायुमंडल का सरलतम सामान्य परिसंचरण

से आती गर्म हवा ऊपर उठती है। धरातल पर ये पवनें पछुआ पवनों के नाम से जानी जाती हैं और यह कोष्ठ फैरल कोष्ठ के नाम से जाने जाते हैं। ध्रुवीय अक्षाँशों पर ठंडी सघन वायु का ध्रुवों पर अवतलन होता है और मध्य अक्षांशों की ओर ध्रुवीय पवनों के रूप में प्रवाहित होती हैं। इस कोष्ठ को ध्रुवीय कोष्ठ कहा जाता है। ये तीन कोष्ठ वायुमंडल के सामान्य परिसंचरण का प्रारूप निर्धारित करते हैं। तापीय ऊर्जा का निम्न अक्षांशों से उच्च अक्षांशों में स्थानांतर सामान्य परिसंचरण को बनाये रखता है।

वायुमंडल का सामान्य परिसंचरण महासागरों को भी प्रभावित करता है। वायुमंडल में वृहत् पैमाने पर चलने वाली पवनें धीमी तथा अधिक गति की महासागरीय धाराओं को प्रवाहित करती हैं। महासागर वायु को ऊर्जा व जलवाष्य प्रदान करते हैं। ये अंतर्संबंध महासागरों के विस्तृत क्षेत्रों पर अपेक्षाकृत धीमे होते हैं।

मौसमी पवनें

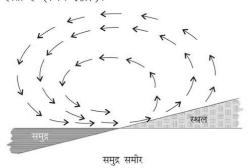
पवनों के प्रवाह के प्रारूप में विभिन्न मौसमों में बदलाव आता है। यह बदलाव अत्यधिक तापन, पवन व वायुदाब पट्टियों के विस्थापन आदि के कारण होता है। ऐसे विस्थापन का सबसे अधिक स्पष्ट प्रभाव विशेषकर दक्षिण पूर्व एशिया में मानसून पवनों के बदलाव में देखा

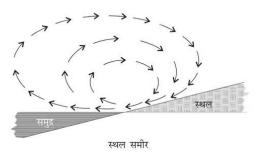
+

भौतिक भूगोल के मूल सिद्धांत

वायुमंडल का सामान्य परिसंचरण और उसका महासागरों पर प्रभाव

वायुमंडल के सामान्य परिसंचरण के संदर्भ में प्रशांत महासागर का गर्म या ठंडा होना अत्यधिक महत्वपूर्ण है। मध्य प्रशांत महासागर की गर्म जलधाराएं दक्षिणी अमेरिका के तट की ओर प्रवाहित होती हैं और पीरू की ठंडी धाराओं का स्थान ले लेती हैं। पीरू के तट पर इन गर्म धाराओं की उपस्थिति एल-निनो कहलाता है। एल-निनो घटना का मध्यप्रशांत महासागर और आस्ट्रेलिया के वायुदाब परिवर्तन से गहरा संबंध है। प्रशांत महासागर पर वायुदाब में यह परिवर्तन दक्षिणी दोलन कहलाता है। इन दोनों (दक्षिणी दोलन/बदलाव व एल निनो) की संयुक्त घटना को ईएनएसओ (ENSO) के नाम से जाना जाता है। जिन वर्षों में ईएनएसओ (ENSO) शक्तिशाली होता है, विश्व में वृहत् मौसम संबंधी भिन्नताएँ देखी जाती हैं। दक्षिण अमेरिका के पश्चिमी शुष्क तट पर भारी वर्षा होती है, आस्ट्रेलिया और कभी-कभी भारत अकालग्रस्त होते हैं तथा चीन में बाढ आती है। इन घटनाओं के ध्यानपूर्वक आकलन से संसार के अन्य भागों की मौसम संबंधी भविष्यवाणी के रूप में इनका प्रयोग किया जाता है।


जा सकता है। आप मानसून के विषय में विस्तारपूर्वक भारत: भौतिक पर्यावरण, कक्षा-11, एन.सी.ई.आर.टी., 2006 में पढ़ेंगे। सामान्य परिसंचरण प्रणाली से भिन्न अन्य स्थानीय विसंगतियाँ नीचे वर्णित हैं।


स्थानीय पवनें

भूतल के गर्म व ठंडे होने से भिन्नता तथा दैनिक व वार्षिक चक्रों के विकास से बहुत सी स्थानीय व क्षेत्रीय पवनें प्रवाहित होती हैं।

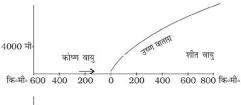
स्थल व समुद्र समीर

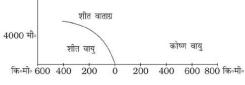
जैसािक पहले वर्णित है, ऊष्मा के अवशोषण तथा स्थानांतरण में स्थल व समुद्र में भिन्नता पायी जाती है। दिन के दौरान स्थल भाग समुद्र की अपेक्षा अधिक गर्म हो जाते हैं। अत: स्थल पर हवाएँ ऊपर उठती हैं और निम्न दाब क्षेत्र बनता है, जबिक समुद्र अपेक्षाकृत ठंडे रहते हैं और उन पर उच्च वायुदाब बना रहता है। इससे समुद्र से स्थल की ओर दाब प्रवणता उत्पन्न होती है और पवनें समुद्र से स्थल की तरफ समुद्र समीर के रूप में प्रवाहित होती हैं। रात्रि में इसके एकदम विपरीत प्रक्रिया होती है। स्थल समुद्र की अपेक्षा जल्दी ठंडा होता है। दाब प्रवणता स्थल से समुद्र की तरफ होने पर स्थल समीर प्रवाहित होती है (चित्र 10.7)।

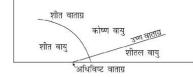
चित्र 10.7 : स्थल समीर तथा समुद्र समीर

पर्वत व घाटी पवनें

दिन के दौरान पर्वतीय प्रदेशों में ढाल गर्म हो जाते हैं और वायु ढाल के साथ-साथ ऊपर उठती है और इस स्थान को भरने के लिए वायु घाटी से बहती है। इन पवनों को घाटी समीर कहते हैं। रात्रि के समय पर्वतीय ढाल ठंडे हो जाते है और सघन वायु घाटी में नीचे उतरती है जिसे पर्वतीय पवनें कहते हैं। उच्च पठारों व हिम क्षेत्रों से घाटी में बहने वाली ठंडी वायु को अवरोही (Katabatic) पवनें कहते हैं। पर्वत श्रेणियों के पवनविमुख ढालों पर एक अन्य प्रकार की उष्ण पवनें प्रवाहित होती हैं।


वायुमंडलीय परिसंचरण तथा मौसम प्रणालियाँ


पर्वत-श्रेणियों को पार करते हुए ये आर्द्र पवनें संघितत हो जाती हैं और वर्षण करती हैं। जब ये पवनें पवनिवमुख ढालों पर नीचे उतरती हैं, तब यह शुष्क पवनें रूद्धोष्म (Adiabatic) प्रक्रिया से गर्म हो जाती हैं। ये शुष्क हवाएँ कम समय में बर्फ पिघला सकती हैं।


वायुराशियाँ (Air masses)

जब वायु किसी समांगी क्षेत्र पर पर्याप्त लंबे समय तक रहती है तो यह उस क्षेत्र के गुणों को धारण कर लेती है। यह समांग क्षेत्र विस्तृत महासागरीय सतह या विस्तृत मैदानी भाग हो सकता हैं। तापमान तथा आर्द्रता संबंधी विशिष्ट गुणों वाली यह वायु, वायुराशि कहलाती है। इसे यूँ भी परिभाषित किया जाता है – वायु का वह वृहत् भाग जिसमें तापमान व आर्द्रता संबंधी क्षेतिज भिन्नताएँ बहुत कम हैं। वह समांग धरातल जिन पर वायुराशियाँ बनती हैं उन्हें वायुराशियों का उद्गम क्षेत्र कहा जाता है।

वायुराशियों को उनके उद्गम क्षेत्र के आधार पर वर्गीकृत किया जाता है। इनके प्रमुख पाँच उद्गम क्षेत्र हैं। जो इस प्रकार हैं: 1. उष्ण व उपोष्ण कटिबंधीय महासागर 2. उपोष्णकटिबंधीय उष्ण मरुस्थल 3. उच्च

चित्र 10.8 : (अ) उष्ण वाताग्र,(ब) शीत वाताग्र तथा अधिविष्ट वाताग्र का खड़ा परिच्छेद

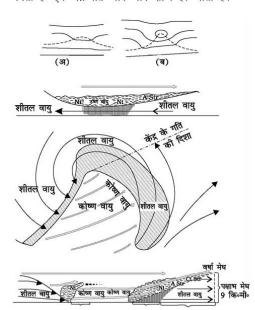
अक्षांशीय अपेक्षाकृत ठंडे महासागर 4. उच्च अक्षांशीय अति शीत बर्फ आच्छादित महाद्वीपीय क्षेत्र 5. स्थायी रूप से बर्फ आच्छादित महाद्वीप अंटार्कटिक तथा आर्कटिक। इसी के आधार पर निम्न प्रकार की वायुराशियाँ पायी

(i) उष्णकटिबंधीय महासागरीय वायुराशि (mT), (ii) उष्णकटिबंधीय महाद्वीपीय (cT), (iii) ध्रुवीय महासागीय (mP), (iv) ध्रुवीय महाद्वीपीय (cP), (v) महाद्वीपीय आर्कटिक (cA) उष्णकटिबंधीय वायुराशियाँ गर्म होती हैं तथा ध्रुवीय वायुराशियाँ ठंडी होती हैं।

वाताग्र (Fronts)

जब दो भिन्न प्रकार की वायुराशियाँ मिलती हैं तो उनके मध्य सीमा क्षेत्र को वाताग्र कहते हैं। वाताग्रों के बनने की प्रक्रिया को वाताग्र-जनन (Frontogenesis) कहते हैं। वाताग्र चार प्रकार के होते हैं : (i) शीत वाताग्र (ii) उष्ण वाताग्र (iii) अचर वाताग्र (iv) अधिविष्ट वाताग्र जब वाताग्र स्थिर हो जाए तो इन्हें अचर वाताग्र कहा जाता है (अर्थात् ऐसे वाताग्र जब कोई भी वायु ऊपर नहीं उठती)। जब शीतल व भारी वायु आक्रामक रूप में उष्ण वायुराशियों को ऊपर धकेलती हैं, इस संपर्क क्षेत्र को शीत वाताग्र कहते हैं। यदि गर्म वायुराशियाँ आक्रामक रूप में ठंडी वायुराशियों के ऊपर चढती हैं तो इस संपर्क क्षेत्र को उष्ण वाताग्र कहते हैं। यदि एक वायुराशि पूर्णत: धरातल के ऊपर उठ जाए तो ऐसे वाताग्र को अधिविष्ट वाताग्र कहते हैं। वाताग्र मध्य अक्षांशों में ही निर्मित होते हैं और तीव्र वायुदाब व तापमान प्रवणता इनकी विशेषता है। ये तापमान में अचानक बदलाव लाते हैं तथा इसी कारण वायु ऊपर उठती है, बादल बनते हैं तथा वर्षा होती है।

बहिरूष्ण कटिबंधीय चक्रवात (Extra tropical cyclones)


वे चक्रवातीय वायु प्रणालियाँ, जो उष्ण कटिबंध से दूर, मध्य व उच्च अक्षांशों में विकसित होती हैं, उन्हें बहिरूष्ण या शीतोष्ण कटिबंधीय चक्रवात कहते हैं। मध्य तथा उच्च अक्षांशों में जिस क्षेत्र से ये गुजरते हैं, वहाँ मौसम संबंधी अवस्थाओं में अचानक तेजी से बदलाव आते हैं।

बहिरूष्ण कटिबंधीय चक्रवात ध्रुवीय वाताग्र के साथ-साथ

 \top

भौतिक भूगोल के मूल सिद्धांत

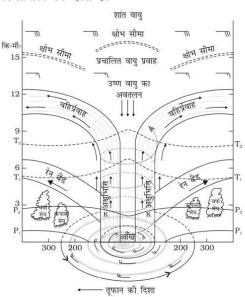
बनते है। आरम्भ में वाताग्र अचर होता है। उत्तरी गोलार्ध में वाताग्र के दक्षिण में कोष्ण व उत्तर दिशा से ठंडी हवा प्रवाहित होती है। जब वाताग्र के साथ वायुदाब कम हो जाता है, कोष्ण वायु उत्तर दिशा की ओर तथा ठंडी वायु दक्षिण दिशा में घड़ी की सुइयों के विपरीत चक्रवातीय परिसंचरण करती है। इस चक्रवातीय प्रवाह से बहिरूष्ण कटिबंधीय चक्रवात विकसित होता है जिसमें एक उष्ण वाताग्र तथा एक शीत वाताग्र होता है। चित्र 10.9 एक ऐसे ही विकसित चक्रवात को दर्शाता है। इस चक्रवात में कोष्ण वायु क्षेत्र या कोष्ण खंड ठंडे अग्रभाग व पिछले शीत खंड के बीच पाया जाता है। कोष्ण वायु आक्रामक रूप में ठंडी वायू के उपर चढती है और उष्ण वाताग्र के पहले भाग में स्तरी मेघ दिखाई देते हैं और वर्षा होती है। पीछे से आता शीत वाताग्र उष्ण वायु को ऊपर धकेलता है, जिसके परिणामस्वरूप शीत वाताग्र के साथ कपासी मेघ बनते हैं। शीत वाताग्र उष्ण वाताग्र की अपेक्षा तीव्र गति से चलते हैं और अंतत: उष्ण वाताग्रों को परी तरह ढक लेते हैं। यह कोष्ण वायु ऊपर उठती हैं और इस का भूतल से कोई संपर्क नहीं रहता तथा अधिविष्ट वाताग्र बनता है एवं चक्रवात धीरे-धीरे क्षीण हो जाता है।

चित्र 10.9 : बहिरूष्ण कटिबंधीय चक्रवात

धरातल तथा ऊँचाई पर वायु परिसंचरण की प्रक्रियाओं में निकट का अंतर्सबंध होता है। बहिरूष्ण कटिबंधीय चक्रवात उष्णकटिबंधीय चक्रवातों से कई प्रकार भिन्न है। बहिरूष्ण कटिबंधीय चक्रवातों में स्पष्ट वाताग्र प्रणालियाँ होती हैं, जो उष्ण कटिबंधीय चक्रवातों में नहीं होती। ये विस्तृत क्षेत्रफल पर फैले होते हैं तथा इनकी उत्पत्ति जल व स्थल दोनों पर होती है, जबिक उष्ण कटिबंधीय चक्रवात केवल समुद्रों में उत्पन्न होते हैं और स्थलीय भागों में पहुँचने पर नष्ट हो जाते हैं। बहिरूष्ण कटिबंधीय चक्रवात उष्ण कटिबंधीय चक्रवात की अपेक्षा विस्तृत क्षेत्र को प्रभावित करते हैं। उष्ण कटिबंधीय चक्रवात की अपेक्षा विस्तृत क्षेत्र को प्रभावित करते हैं। उष्ण कटिबंधीय चक्रवात प्रचिम को चलते हैं। उष्ण कटिबंधीय चक्रवात पूर्व से पश्चिम को चलते हैं जबिक बहिरूष्ण कटिबंधीय चक्रवात परिचम से पूर्व दिशा में चलते हैं।

उष्ण कटिबंधीय चक्रवात

उष्ण कटिबंधीय चक्रवात आक्रामक तूफान हैं जिनकी उत्पत्ति उष्ण कटिबंधीय क्षेत्रों के महासागरों पर होती है और ये तटीय क्षेत्रों की तरफ गतिमान होते हैं। ये चक्रवात आक्रामक पवनों के कारण विस्तृत विनाश, अत्यधिक वर्षा और तूफान लाते हैं। ये चक्रवात विध्वंसक प्राकृतिक आपदाओं में से एक हैं। हिंद महासागर में ये चक्रवात' अटलांटिक महासागर में 'हरीकेन' के नाम से, पश्चिम प्रशांत और दक्षिण चीन सागर में 'टाइफून' और पश्चिमी आस्ट्रेलिया में 'विली-विलीज' के नाम से जाने जाते हैं।


उष्ण कटिबंधीय चक्रवात, उष्ण कटिबंधीय महासागरों में उत्पन्न व विकसित होते हैं। इनकी उत्पत्ति व विकास के लिए अनुकूल स्थितियाँ हैं: (i) बृहत् समुद्री सतह; जहाँ तापमान 27° सेल्सियस से अधिक हो; (ii) कोरिऑलिस बल का होना (iii) ऊर्ध्वाधर पवनों की गित में अंतर कम होना; (iv) कमजोर निम्न दाब क्षेत्र या निम्न स्तर का चक्रवातीय परिसंचरण का होना (v) समुद्री तल तंत्र पर ऊपरी अपसरण।

चक्रवातों को और अधिक विध्वंसक करने वाली ऊर्जा संघनन प्रक्रिया द्वारा ऊँचे कपासी स्तरी मेघों से प्राप्त होती है जो इस तूफान के केंद्र को घेरे होती है। समुद्रों से लगातार आर्द्रता की आपूर्ति से ये तूफान अधिक प्रबल होते हैं। स्थल पर पहुँचकर आर्द्रता की वायुमंडलीय परिसंचरण तथा मौसम प्रणालियाँ

आपूर्ति रुक जाती है और ये क्षीण होकर समाप्त हो जाते हैं। वह स्थान जहाँ से उष्ण कटिबंधीय चक्रवात तट को पार करके जमीन पर पहुँचते हैं चक्रवात का लैंडफाल कहलाता है। वे चक्रवात जो प्राय: 20° उत्तरी अक्षांश से गुजरते हैं, उनकी दिशा अनिश्चित होती है और ये अधिक विध्वंसक होते हैं।

एक विकसित उष्ण कटिबंधीय चक्रवात की सरंचना का ऊर्ध्वाधर क्रमिक विवरण चित्र 10.10 में दर्शाया गया है।

एक विकसित उष्ण कटिबंधीय चक्रवात की विशेषता इसके केंद्र के चारो तरफ प्रबल सर्पिल (Spiral) पवनों का परिसंचरण है, जिसे इसकी आँख (Eye) कहा जाता है। इस परिसंचरण प्रणाली का व्यास 150 से 250 किलोमीटर तक होता है।

चित्र 10.10 : उष्ण कटिबंधीय चक्रवात का खड़ा परिच्छेद

इसका केंद्रीय (अक्षु) क्षेत्र शांत होता है, जहाँ पवनों का अवतलन होता है। अक्षु के चारों तरफ अक्षुभित्ति होती है जहाँ वायु का प्रबल व वृत्ताकार रूप में आरोहण होता है; यह आरोहण क्षोभसीमा की ऊँचाई तक पहुँचता है। इसी क्षेत्र में पवनों का वेग अधिकतम होता है जो 250 कि.मी. प्रति घंटा तक होता है। इन चक्रवातों से मूसलाधार वर्षा होती है। चक्रवात की आँख से रेनबैंड विकरित होते हैं तथा कपासी वर्षा बादलों की पंक्तियाँ बाहरी क्षेत्र की ओर विस्थापित हो सकती हैं। इनका व्यास बंगाल की खाड़ी, अरब सागर व हिंद महासागर पर 600 से 1,200 किलोमीटर के बीच होता है। यह परिसंचरण प्रणाली धीमी गित से 300 से 500 कि.मी. प्रति दिन की दर से आगे बढ़ते हैं। ये चक्रवात तूफान तरंग उत्पन्न करते हैं और तटीय निम्न इलाकों को जलप्लावित कर देते हैं। ये तूफान स्थल पर धीरे-धीरे क्षीण होकर खत्म हो जाते हैं।

तिङ्तझंझा व टोरनेडो (Thunderstorms and Tornadoes)

अन्य विध्वंसक स्थानीय तुफान तडितझंझा तथा टोरनेडो हैं। ये अल्प समय के लिए रहते हैं, अपेक्षाकृत कम क्षेत्रफल तक सीमित होते हैं, परंतु आक्रामक होते हैं। तिडतझंझा उष्ण आर्द्र दिनों में प्रबल संवहन के कारण उत्पन्न होते हैं। तडितझंझा एक पूर्ण विकसित कपासी वर्षी मेघ है जो गरज व बिजली उत्पन्न करते हैं। जब यह बादल अधिक ऊँचाई तक चले जाते हैं. जहाँ तापमान शुन्य से कम रहता हैं, तो इससे ओले बनते हैं और ओलावृष्टि होती है। आर्द्रता कम होने पर ये तिड्तझंझा धूल भरी आंधियाँ लाते हैं। तिड्तझंझा की विशेषता उष्ण वायु का प्रबल ऊर्ध्वप्रवाह है, जिसके कारण बादलों का आकार बढ़ता है और ये अधिक ऊँचाई तक पहुँचते हैं। इसके कारण वर्षण होता है। तत्पश्चात् नीचे की तरफ वात प्रवाह पृथ्वी पर ठंडी वायु व वर्षा लाते हैं। भयानक तिडतझंझा से कभी-कभी वायु आक्रामक रूप में हाथी की सूंड की तरह सर्पिल अवरोहण करती है। इसमें केंद्र पर अत्यंत कम वायुदाब होता है और यह व्यापक रूप से भयंकर विनाशकारी होते हैं। इस परिघटना को 'टोरनेडो' कहते हैं। टोरनेडो सामान्यत: मध्यअक्षांशों में उत्पन्न होते हैं। समुद्र पर टोरनेडो को जलस्तंभ (Water spouts) कहते हैं।

ये आक्रामक तूफान वायुमंडलीय ऊर्जा वितरण में भिन्नता (या अस्थिर वायु) के व्यवस्थित होने की अभिव्यक्ति है। इन तूफानों से स्थितिज व ताप ऊर्जा, गतिज ऊर्जा में परिवर्तित हो जाती है और अशांत वायुमंडलीय दशाएँ पुन: स्थिर स्थिति में लौट आती हैं।

102 भौतिक भूगोल के मूल सिद्धांत

_अभ्यास.

1. बहवैकल्पिक प्रश्न :

+

- (i) यदि धरातल पर वायुदाब 1,000 मिलीबार है तो धरातल से 1 कि॰मी॰ की ऊँचाई पर वायुदाब कितना होगा?
 - (क) 700 मिलीबार
- (ख) 900 मिलीबार
- (ग) 1,100 मिलीबार
- (घ) 1,300 मिलीबार
- (ii) अंतर उष्ण कटिबंधीय अभिसरण क्षेत्र प्राय: कहाँ होता है?
 - (क) विषुवत् वृत्त के निकट
- (ख) कर्क रेखा के निकट
- (ग) मकर रेखा के निकट
- (घ) आर्कटिक वृत्त के निकट
- (iii) उत्तरी गोलार्ध में निम्नवायुदाब के चारों तरफ पवनों की दिशा क्या होगी?
 - (क) घड़ी की सुइयों के चलने की दिशा के अनुरूप
 - (ख) घड़ी की सुइयों के चलने की दिशा के विपरीत
 - (ग) समदाब रेखाओं के समकोण पर
 - (घ) समदाब रेखाओं के समानांतर
- (iv) वायुराशियों के निर्माण के उद्गम क्षेत्र निम्नलिखित में से कौन-सा है :
 - (क) विषुवतीय वन
- (ख) साइबेरिया का मैदानी भाग
- (ग) हिमालय पर्वत
- (घ) दक्कन पठार

2. निम्नलिखित प्रश्नों के उत्तर लगभग 30 शब्दों में दीजिए :

- (i) वायुदाब मापने की इकाई क्या है? मौसम मानचित्र बनाते समय किसी स्थान के वायुदाब को समुद्र तल तक क्यों घटाया जाता है?
- (ii) जब दाब प्रवणता बल उत्तर से दक्षिण दिशा की तरफ हो अर्थात् उपोष्ण उच्च दाब से विषुवत वृत्त की ओर हो तो उत्तरी गोलार्ध में उष्णकटिबंध में पवनें उत्तरी पूर्वी क्यों होती हैं?
- (iii) भूविक्षेपी पवनें क्या हैं?
- (iv) समुद्र व स्थल समीर का वर्णन करें

3. निम्नलिखित प्रश्नों के उत्तर लगभग 150 शब्दों में दीजिए :

- (i) पवनों की दिशा व वेग को प्रभावित करने वाले कारक बताएँ?
- (ii) पृथ्वी पर वायुमंडलीय सामान्य परिसंचरण का वर्णन करते हुए चित्र बनाएँ। 30° उत्तरी व दक्षिण अक्षांशों पर उपोष्ण कटिबंधीय उच्च वायुदाब के संभव कारण बताएँ?
- (iii) उष्ण कटिबंधीय चक्रवातों की उत्पत्ति केवल समुद्रों पर ही क्यों होती है? उष्ण कटिबंधीय चक्रवात के किस भाग में मूसलाधार वर्षा होती है और उच्च वेग की पवनें चलती हैं और क्यों?

परियोजना कार्य

- (i) मौसम पद्धित को समझने के लिए मीडिया, अखबार, दूरदर्शन तथा रेडिया से मौसम संबंधी सूचना का एकत्र कीजिए।
- (ii) किसी अख़बार का मौसम संबंधी भाग, विशेषकर वह जिसमें उपग्रह से भेजा गया मानचित्र दिखाया गया है, पढ़ें। मेघाच्छादित क्षेत्र को रेखांकित करें। मेघों के वितरण से वायुमंडलीय परिसंचरण की व्याख्या करें। अख़बार व दूरदर्शन पर दिखाए गए पूर्वानुमान से तुलना करें। यह भी बताएं कि सप्ताह के कितने दिन पूर्वानुमान ठीक था।

Downloaded from https://www.studiestoday.com

वायुमंडल में जल

3 । पर चुके हैं कि हवा में जलवाष्प मौजूद होती है। इसमें वायुमंडल के आयतन में 0 से लेकर 4 प्रतिशत तक की भिन्नता पाई जाती है। मौसम की परिघटना में इसका महत्वपूर्ण योगदान होता है। जल वायुमंडल में तीन अवस्थाओं गैस, द्रव तथा ठोस के रूप में उपस्थित होता है। वायुमंडल में आर्द्रता, जलाशयों से वाष्पीकरण तथा पौधों में वाष्पोत्सर्जन से प्राप्त होती है। इस प्रकार वायुमंडल, महासागरों तथा महाद्वीपों के बीच जल का लगातार आदान-प्रदान वाष्पीकरण, वाष्पोत्सर्जन, संघनन एवं वर्षा की प्रक्रिया द्वारा होता रहता है।

हवा में मौजूद जलवाष्य को आर्द्रता कहते हैं। मात्रात्मक दृष्टि से इसे विभिन्न प्रकार से व्यक्त किया जाता है। वायुमंडल में मौजूद जलवाष्य की वास्तविक मात्रा को निरपेक्ष आर्द्रता कहा जाता है। यह हवा के प्रति इकाई आयतन में जलवाष्य का वजन है एवं इसे ग्राम प्रति घन मीटर के रूप में व्यक्त किया जाता है। हवा द्वारा जलवाष्य को ग्रहण करने की क्षमता पूरी तरह से तापमान पर निर्भर होती है। निरपेक्ष आर्द्रता पृथ्वी की सतह पर अलग-अलग स्थानों में अलग-अलग होती है। दिए गए तापमान पर अपनी पूरी क्षमता की तुलना में वायुमंडल में मौजूद आर्द्रता के प्रतिशत को सापेक्ष आर्द्रता कहा जाता है। हवा के तापमान के बदलने के साथ ही आर्द्रता को ग्रहण करने की क्षमता बढ़ती है तथा सापेक्ष आर्द्रता भी प्रभावित होती है। यह महासागरों के ऊपर सबसे अधिक तथा महाद्वीपों के ऊपर सबसे कम होती है।

एक निश्चित तापमान पर जलवाष्य से पूरी तरह पूरित हवा को संतृप्त कहा जाता है। इसका मतलब यह है कि हवा इस स्थिति में दिए गए तापमान पर और अधिक आर्द्रता को ग्रहण करने में सक्षम नहीं है। हवा के दिए गए प्रतिदर्श (Sample) में जिस तापमान पर संतुप्ता आती है उसे ओसांक कहते हैं।

वाष्पीकरण तथा संघनन

वायुमंडल में जलवाष्प की मात्रा वाष्पीकरण तथा संघनन के कारण क्रमश: घटती-बढ़ती रहती है। वाष्पीकरण वह क्रिया है जिसके द्वारा जल द्रव से गैसीय अवस्था में परिवर्तित होता है। वाष्पीकरण का मुख्य कारण ताप है। जिस तापमान पर जल वाष्पीकृत होना शुरु करता है उसे वाष्पीकरण की गुप्त कष्मा कहा जाता है।

दिए गए हवा के अंश में जल को अवशोषित करने एवं धारण रखने की क्षमता तापमान में वृद्धि के साथ बढ़ती है। उसी प्रकार, यदि आर्द्रता कम है तो हवा में नमी को अवशोषित करने तथा धारण करने की क्षमता होती है। हवा की गित संतृप्त परत को असंतृप्त परत के द्वारा हटा देती है। इस प्रकार, हवा की गित जितनी तीव्र होगी वाष्पीकरण उतना ही तीव्र होगा।

जलवाष्प का जल के रूप में बदलना संघनन कहलाता है। ऊष्मा का हास ही संघनन का कारण होता है। जब आई हवा ठंडी होती है, तब उसमें जलवाष्प को धारण रखने की क्षमता समाप्त हो जाती है। तब अतिरिक्त जलवाष्प द्रव में संघनित हो जाता है और जब यह सीधे ठोस रूप में परिवर्तित होते हैं तो इसे अध्वीपातन कहते हैं। स्वतंत्र हवा में, छोटे-छोटे कणों के चारों ओर ठंडा होने के कारण संघनन होता है तब इन छोटे-छोटे कणों को संघनन केंद्रक कहा जाता है। खासकर धूल, धुआं तथा महासागरों के नमक के कण अच्छे केंद्रक होते हैं क्योंकि वे पानी को अवशोषित करते हैं। संघनन उस अवस्था में भी होता है जब आई हवा कुछ ठंडी वस्तुओं

Downloaded from https://www.studiestoday.com

+

भौतिक भूगोल के मूल सिद्धांत

के संपर्क में आती है तथा यह उस समय भी हो सकता है जब तापमान ओसांक के नज़दीक हो। इस प्रकार संघनन ठंडा होने की मात्रा तथा हवा की सापेक्ष आर्द्रता पर निर्भर होता है। संघनन हवा के आयतन, ताप, दाब तथा आर्द्रता से प्रभावित होता है। संघनन तब होता है जब (i) वायु का आयतन नियत हो एवं तापमान ओसांक तक गिर जाए; (ii) वायु का आयतन तथा तापमान दोनों ही कम हो जाएँ; (iii) वाष्पीकरण द्वारा वायु में और अधिक जल वाष्प प्रविष्ट हो जाए। फिर भी, हवा के तापमान में कमी संघनन के लिए सबसे अच्छी अवस्था है।

संघनन के बाद, वायुमंडल की जलवाष्य या आर्द्रता निम्निलिखित में से एक रूप में परिवर्तित हो जाती है-ओस, कोहरा, तुषार एवं बादल। स्थिति एवं तापमान के आधार पर संघनन के प्रकारों को वर्गीकृत किया जा सकता है। संघनन तब होता है जब ओसांक जमाव बिंदु से नीचे होता है तथा तब भी संभव है जब ओसांक जमाव बिंदु से ऊपर होता है।

ओस

जब आर्द्रता धरातल के ऊपर हवा में संघनन केंद्रकों पर संघितत न होकर ठोस वस्तु जैसे पत्थर, घास, तथा पौधों की पत्तियों की ठंडी सतहों पर पानी की बूँदों के रूप में जमा होती है तब इसे ओस के नाम से जाना जाता है। इसके बनने के लिए सबसे उपयुक्त अवस्थाएँ साफ आकाश, शांत हवा, उच्च सापेक्ष आर्द्रता तथा ठंडी एवं लंबी रातें हैं। ओस के बनने के लिए यह आवश्यक है कि ओसांक जमाव बिंदु से ऊपर हो।

तुषार

तुषार ठंडी सतहों पर बनता है जब संघनन तापमान के जमाव बिंदु से नीचे (O°से.) चले जाने पर होता है, अर्थात् ओसांक जमाव बिंदु पर या उसके नीचे होता है। अर्तिरिक्त नमी पानी की बूँदों की बजाय छोटे-छोटे बर्फ के रवों के रूप में जमा होती हैं। उजले तुषार के बनने की सबसे उपयुक्त अवस्थाएँ, ओस के बनने की अवस्थाओं के समान हैं, केवल हवा का तापमान जमाव बिन्दु पर या उससे नीचे होना चाहिए।

कोहरा एवं कुहासा

जब बहुत अधिक मात्रा में जलवाष्य से भरी हुई वायु संहति अचानक नीचे की ओर गिरती है तब छोटे-छोटे धुल के कणों के ऊपर ही संघनन की प्रक्रिया होती है। इसलिए कोहरा एक बादल है जिसका आधार सतह पर या सतह के बहुत नज़दीक होता है। कोहरा तथा कुहासा के कारण दृश्यता कम से शून्य तक हो जाती है। नगरीय एवं औद्योगिक केंद्रों में धुएँ की अधिकता के कारण केंद्रकों की मात्रा की भी अधिकता होती है जो कोहरे और कुहासे के बनने में मदद देती हैं। ऐसी स्थिति को, जिसमें कोहरा तथा धुआँ सम्मिलित रूप से बनते हैं, 'धूम्र कोहरा' कहते हैं। कुहासे एवं कोहरे में केवल इतना अंतर होता है कि कहासे में कोहरे की अपेक्षा नमी अधिक होती है। कुहासा पहाड़ों पर अधिक पाया जाता है, क्योंकि ऊपर उठती हुई गर्म हवा ढाल पर ठंडी सतह के संपर्क में आती है। कोहरे कुहासे की अपेक्षा अधिक शुष्क होते हैं तथा जहाँ गर्म हवा की धारा ठंडी हवा के संपर्क में आती है वहाँ ये प्रबल होते हैं। कोहरे छोटे बादल होते हैं जिसमें धूलकण, धुएँ के कण तथा नमक के कण होते हैं। केंद्रकों के चारों ओर संघनन की क्रिया होती है।

बादल

बादल पानी की छोटी बूँदों या बर्फ के छोटे रवों की संहित होता है जो कि पर्याप्त ऊँचाई पर स्वतंत्र हवा में जलवाष्य के संघनन के कारण बनते हैं। चूँिक बादल का निर्माण पृथ्वी की सतह से कुछ ऊँचाई पर होता है इसलिए ये विभिन्न आकारों के होते हैं। इनकी ऊँचाई, विस्तार, घनत्व तथा पारदर्शिता या अपारदर्शिता के आधार पर बादलों को चार रूपों में वर्गीकृत किया जाता है—
(i) पक्षाभ मेघ; (ii) कपासी मेघ; (iii) स्तरी मेघ; (iv) वर्षा मेघ।

1. पक्षाभ मेघ

पक्षाभ मेघों का निर्माण 8,000-12,000 मी॰ की ऊँचाई पर होता है। ये पतले तथा बिखरे हुए बादल होते हैं, जो पंख के समान प्रतीत होते हैं। ये हमेशा सफेद रंग के होते हैं।

2. कपासी मेघ

कपासी मेघ रूई के समान दिखते हैं। ये प्राय: 4,000 से

4. वर्षा मेघ

वायुमंडल में जल

7,000 मीटर की ऊँचाई पर बनते हैं। ये छितरे तथा इधर-उधर बिखरे देखे जा सकते हैं। ये चपटे आधार वाले होते हैं।

3. स्तरी मेघ

जैसा कि नाम से प्रतीत होता है ये परतदार बादल होते हैं जो कि आकाश के बहुत बड़े भाग पर फैले रहते हैं। ये बादल सामान्यत: या तो ऊष्मा के हास या अलग-अलग तापमानों पर हवा के आपस में मिश्रित होने से बनते हैं।

ਜ਼ਿਕ 11 1

चित्र 11.2

चित्र 11.1 तथा 11.2 में दिखाए गए बादल किस प्रकार के हैं?

वर्षा मेघ काले या गहरे स्लेटी रंग के होते हैं। ये मध्य स्तरों या पृथ्वी के सतह के काफी नजदीक बनते हैं। ये सूर्य की किरणों के लिए बहुत ही अपारदर्शी होते हैं। कभी-कभी बादल इतनी कम ऊँचाई पर होते हैं कि ये सतह को छूते हुए प्रतीत होते हैं। वर्षा मेघ मोटे जलवाष्प

105

की आकृति विहीन संहति होते हैं।

ये चार मूल रूपों के बादल मिलकर निम्नलिखित रूपों के बादलों का निर्माण करते हैं-

ऊँचे बादल - पक्षाभ, पक्षाभ स्तरी, पक्षाभ कपासी, मध्य ऊँचाई के बादल - स्तरी मध्य तथा कपासी मध्य, कम ऊँचाई के बादल - स्तरी कपासी, स्तरी वर्षा मेघ एवं कपासी वर्षा मेघ।

वर्षण

स्वतंत्र हवा में लगातार संघनन की प्रक्रिया संघितत कणों के आकार को बड़ा करने में मदद करती है। जब हवा का प्रतिरोध गुरुत्वाकर्षण बल के विरुद्ध उनको रोकने में असफल हो जाता है तब ये पृथ्वी की सतह पर गिरते हैं। इसलिए जलवाष्प के संघनन के बाद नमी के मुक्त होने की अवस्था को वर्षण कहते हैं। यह द्रव या ठोस अवस्था में हो सकता है। वर्षण जब पानी के रूप में होता है उसे वर्षा कहता है। वर्षण जब पानी के रूप में होता है उसे वर्षा कहता है। जब तापमान 0°से० से कम होता है तब वर्षण हिमतूलों के रूप में होता है जिसे हिमपात कहते हैं। नमी घट्कोणीय खों के रूप में निर्मुक्त होती है। ये खे हिमतूलों का निर्माण करते हैं। वर्षा तथा हिमपात के अतिरिक्त वर्षण के दूसरे प्रकार सिहम वृष्टि तथा करकापात हैं, यद्यपि करकापात काफी सीमित मात्रा में होता है एवं समय तथा क्षेत्र की दृष्टि से यदाकदा ही होता है।

सहिम वृष्टि जमी हुई वर्षा की बूँदे हैं या पिघली हुई बर्फ के पानी की जमी हुई बूँदें हैं। जमाव बिंदु के तापमान के साथ जब वायु की एक परत सतह के नजदीक आधे जमे हुए परत पर गिरती है तब सहिम वृष्टि होती है। वर्षा की बूँदें जो गर्म हवा से निकलती हैं तथा नीचे की ओर ठंडी हवा से मिलती हैं। इसके परिणामस्वरूप, वे ठोस हो जाती हैं तथा सतह पर वर्षा की बूँदों से भी छोटे आकार में बर्फ के रूप में गिरती हैं।

十

भौतिक भूगोल के मूल सिद्धांत

कभी-कभी वर्षा की बूँदें बादल से मुक्त होने के बाद बर्फ के छोटे गोलाकार ठोस टुकड़ों में परिवर्तित हो जाती हैं तथा पृथ्वी की सतह पर पहुँचती हैं जिसे ओलापत्थर कहा जाता है। ये वर्षा के जल से बनती हैं जो कि ठंडी परतों से होकर गुजरती हैं। ये ओला पत्थर एक के ऊपर एक बर्फ की कई सकेंद्रीय परतों वाले होते हैं।

वर्षा के प्रकार

उत्पत्ति के आधार पर वर्षा को तीन प्रमुख प्रकारों में बाँटा जा सकता है- संवहनीय, पर्वतीय तथा चक्रवातीय या फ्रंटल

संवहनीय वर्षा

हवा गर्म हो जाने पर हल्की होकर संवहन धाराओं के रूप में ऊपर की ओर उठती है, वायुमंडल की ऊपरी परत में पहुँचने के बाद यह फैलती है तथा तापमान के कम होने से ठंडी होती है। परिणामस्वरूप संघनन की क्रिया होती है तथा कपासी मेघों का निर्माण होता है। गरज तथा बिजली कड़कने के साथ मूसलाधार वर्षा होती है, लेकिन यह बहुत लंबे समय तक नहीं रहती है। इस प्रकार की वर्षा गर्मियों में या दिन के गर्म समय में प्राय: होती है। यह विषुवतीय क्षेत्र तथा खासकर उत्तरी गोलार्ध के महाद्वीपों के भीतरी भागों में प्राय: होती है।

पर्वतीय वर्षा

जब संतृप्त वायु की संहित पर्वतीय ढाल पर आती है, तब यह ऊपर उठने के लिए बाध्य हो जाती है तथा जैसे ही यह ऊपर की ओर उठती है, यह फैलती है, तापमान गिर जाता है तथा आईता संघितत हो जाती है। इस प्रकार की वर्षा का मुख्य गुण है कि पवनाभिमुख ढाल पर सबसे अधिक वर्षा होती है। इस भाग में वर्षा होने के बाद ये हवाएँ दूसरे ढाल पर पहुँचती हैं, वे नीचे की ओर उतरती हैं तथा उनका तापमान बढ़ जाता है। तब उनकी आईता धारण करने की क्षमता बढ़ जाती है एवं इस प्रकार, प्रतिपवन ढाल सूखे तथा वर्षा विहीन रहते हैं। प्रतिपवन भाग में स्थित क्षेत्र, जिनमें कम वर्षा होती है उसे वृष्टि छाया क्षेत्र कहा जाता है। यह पर्वतीय वर्षा या स्थलकृत वर्षा के नाम से जानी जाती है।

चक्रवातीय वर्षा या फ्रंटल वर्षा

आप पहले ही इस पुस्तक के दसवें अध्याय में बहिरूष्ण किटबंधीय चक्रवातों तथा चक्रवाती वर्षा का अध्ययन कर चुके हैं, अत: चक्रवाती वर्षा समझने के लिए अध्याय दस को देखें।

संसार में वर्षा वितरण

एक साल में पृथ्वी की सतह पर अलग-अलग भागों में होने वाली वर्षा की मात्रा भिन्न-भिन्न होती है तथा यह अलग-अलग मौसमों में भी होती है।

सामान्य तौर पर जब हम विषुवत वृत्त से ध्रुव की तरफ जाते हैं, वर्षा की मात्रा धीरे-धीरे घटती जाती है। विश्व के तटीय क्षेत्रों में महाद्वीपों के भीतरी भागों की अपेक्षा अधिक वर्षा होती है। विश्व के स्थलीय भागों की अपेक्षा महासागरों के ऊपर वर्षा अधिक होती है, क्योंकि वहां पानी के स्रोत की अधिकता के कारण वाष्पीकरण की क्रिया लगातार होती रहती है। विषवत् वृत्त से 35° से 40° उ0 एवं द0 अक्षांशों के मध्य, पूर्वी तटों पर बहुत अधिक वर्षा होती है तथा पश्चिम की तरफ यह घटती जाती है। लेकिन विषुवत् वृत्त से 45° तथा 65° 30 एवं द0 के बीच पछुआ पवनों के कारण सबसे पहले महाद्वीपों के पश्चिमी किनारों पर वर्षा होती है तथा यह पूर्व की तरफ घटती जाती है। जहाँ भी पहाड तट के समानांतर हैं, वहां वर्षा की मात्रा पवनाभिमुख तटीय मैदान में अधिक होती है एवं यह प्रतिपवन दिशा की तरफ घटती जाती है।

वार्षिक वर्षण की कुल मात्रा के आधार पर विश्व की मुख्य वर्षण प्रवृति को निम्नलिखित रूपों में पहचाना

विषुवतीय पट्टी, शीतोष्ण प्रदेशों में पश्चिमी तटीय किनारों के पास के पर्वतों के वायु की ढाल पर तथा मानसून वाले क्षेत्रों के तटीय भागों में वर्ष बहुत अधिक होती है, जो प्रति वर्ष 200 से॰मी॰ से ऊपर होती है। महाद्वीपों के आंतरिक भागों में प्रतिवर्ष 100 से 200 से॰मी॰ वर्षा होती है। महाद्वीपों के तटीय क्षेत्रों में वर्षा की मात्रा मध्यम होती है। उष्ण कटिबंधीय क्षेत्र के केंद्रीय भाग तथा शीतोष्ण क्षेत्रों के पूर्वी एवं भीतरी भागों में वर्षा की मात्रा 50 से 100 से॰मी॰ प्रतिवर्ष तक होती है।

वायुमंडल में जल

महाद्वीप के भीतरी भाग के वृष्टि छाया क्षेत्रों में पड़ने वाले भाग तथा ऊँचे अक्षांशों वाले क्षेत्रों में प्रतिवर्ष 50 से॰मी॰ से भी कम वर्षा होती है। वर्षा का मौसमी वितरण

इसकी प्रभाविता को समझने का एक महत्वपूर्ण पहलू है। कुछ क्षेत्रों जैसे विषुवतीय पट्टी तथा ठंडे समशीतोष्ण प्रदेशों में वर्षा पूरे वर्ष होती रहती है।

अभ्यास

1. बहुवैकल्पिक प्रश्न :

- (i) मानव के लिए वायुमंडल का सबसे महत्वपूर्ण घटक निम्नलिखित में से कौन सा है-
 - (क) जलवाष्प
- (ख) धूलकण
- (ग) नाइट्रोजन
- (घ) ऑक्सीजन
- (ii) निम्नलिखित में से वह प्रक्रिया कौन सी है जिसके द्वारा जल, द्रव से गैस में बदल जाता है-
 - (क) संघनन
- (ख) वाष्पीकरण
- (ग) वाष्पोत्सर्जन
- (घ) अवक्षेपण
- (iii) निम्निलिखित में से कौन सा वायु की उस दशा को दर्शाता है जिसमें नमी उसकी पूरी क्षमता के अनुरूप होती है-
 - (क) सापेक्ष आर्द्रता
- (ख) निरपेक्ष आर्द्रता
- (ग) विशिष्ट आर्द्रता
- (घ) संतृप्त हवा
- (iv) निम्नलिखित प्रकार के बादलों में से आकाश में सबसे ऊँचा बादल कौन सा है?
 - (क) पक्षाभ
- (ख) वर्षा मेघ
- (ग) स्तरी
- (घ) कपासी

2. निम्नलिखित प्रश्नों के उत्तर लगभग 30 शब्दों में दीजिए :

- (i) वर्षण के तीन प्रकारों के नाम लिखें।
- (ii) सापेक्ष आर्द्रता की व्याख्या कीजिए।
- (iii) ऊँचाई के साथ जलवाष्प की मात्रा तेजी से क्यों घटती है?
- (iv) बादल कैसे बनते हैं? बादलों का वर्गीकरण कीजिए।

3. निम्नलिखित प्रश्नों के उत्तर लगभग 150 शब्दों में दीजिए :

- (i) विश्व के वर्षण वितरण के प्रमुख लक्षणों की व्याख्या कीजिए।
- (ii) संघनन के कौन-कौन से प्रकार हैं? ओस एवं तुषार के बनने की प्रक्रिया की व्याख्या कीजिए।

परियोजना कार्य

1 जून से 31 दिसंबर तक के समाचार पत्रों से सूचनाएँ एकत्र कीजिए कि देश के किन भागों में अत्यधिक वर्षा हुई।

अध्याय

विश्व की जलवायु एवं जलवायु परिवर्तन

श्व की जलवायु का अध्ययन जलवायु संबंधी आंकड़ों एवं जानकारियों को संगठित करके किया जा सकता है। इन आँकड़ों को आसानी से समझने व उनका वर्णन और विश्लेषण करने के लिए उन्हें अपेक्षाकृत छोटी इकाइयों में बाँटकर संश्लेषित किया जा सकता है। जलवायु का वर्गीकरण तीन वृहत् उपगमनों द्वारा किया गया है। वे हैं – आनुभविक, जननिक और अनुप्रयुक्त। आनुभविक वर्गीकरण प्रेक्षित किए गए विशेष रूप से तापमान एवं वर्णन से संबंधित आँकड़ों पर आधारित होता है। जननिक वर्गीकरण जलवायु को उनके कारणों के आधार पर संगठित करने का प्रयास है। जलवायु का अनुप्रयुक्त वर्गीकरण किसी विशिष्ट उद्देश्य के लिए किया जाता है।

कोपेन की जलवायु वर्गीकरण की पद्धति

वी. कोपेन द्वारा विकसित की गई जलवायु के वर्गीकरण की आनुभविक पद्धति का सबसे व्यापक उपयोग किया जाता है। कोपेन ने वनस्पित के वितरण और जलवायु के बीच एक घनिष्ठ संबंध की पहचान की। उन्होंने तापमान तथा वर्षण के कुछ निश्चित मानों का चयन करते हुए उनका वनस्पित के वितरण से संबंध स्थापित किया और इन मानों का उपयोग जलवायु के वर्गीकरण के लिए किया। वर्षा एवं तापमान के मध्यमान वार्षिक एवं मध्यमान मासिक आँकड़ों पर आधारित यह एक आनुभविक पद्धित है। उन्होंने जलवायु के समूहों एवं प्रकारों की पहचान करने के लिए बड़े तथा छोटे अक्षरों के प्रयोग का आरंभ किया। सन् 1918 में विकसित तथा समय के साथ संशोधित हुई कोपेन की यह पद्धित आज भी लोकप्रिय और प्रचलित है।

कोपेन ने पाँच प्रमुख जलवायु समूह निर्धारित किए जिनमें से चार तापमान पर और एक वर्षण पर आधारित है। कोपेन के जलवायु समूह एवं उनकी विशेषताओं को सारणी 12.1 में दिया गया है।

बड़े अक्षर A, C, D तथा E आई जलवायु को तथा

सारणी 12.1 कोपेन के अनुसार जलवायु समूह

समूह	लक्षण		
A. उष्णकटिबंधीय	सभी महीनों का औसत तापमान 18º सेल्सियस से अधिक।		
B. शुष्क जलवायु	वर्षण की तुलना में विभव वाष्पीकरण की अधिकता।		
C. कोष्ण शीतोष्ण	सर्वाधिक ठंडे महीने का औसत तापमान 3° सेल्सियस से अधिक किन्तु 18° सेल्सियस		
	से कम मध्य अक्षांशीय जलवायु।		
D. शीतल हिम-वन जलवायु	वर्ष के सर्वाधिक ठंडे महीने का औसत तापमान शून्य अंश तापमान से 3° नीचे।		
E. शीत	सभी महीनों का औसत तापमान 10° सेल्सियस से कम।		
H. उच्चभूमि	ऊँचाई के कारण शीत।		

विश्व की जलवायु एवं जलवायु परिवर्तन

109

B अक्षर शुष्क जलवायु को निरूपित करता है। जलवायु समूहों को तापक्रम एवं वर्षा की मौसमी विशेषताओं के आधार पर कई उप-प्रकारों में विभाजित किया गया है जिसको छोटे अक्षरों द्वारा अभिहित किया गया है। शुष्कता वाले मौसमों को छोटे अक्षरों f,m,w और s द्वारा इंगित किया गया है। इसमें f शुष्क मौसम के न होने को m मानसुन जलवायु को w शुष्क शीत ऋतु

कारण यहाँ की जलवायु ऊष्ण एवं आर्द्र रहती है। यहाँ वार्षिक तापांतर बहुत कम तथा वर्षा अधिक होती है। जलवायु के इस उष्णकटिबंधीय समूह को तीन प्रकारों में बाँटा जाता है, जिनके नाम हैं (i) Af उष्णकटिबंधीय आर्द्र जलवायु; (ii) Am उष्णकटिबंधीय मानसून जलवायु और (iii) Aw उष्णकटिबंधीय आर्द्र जलवायु जिसमें शीत ऋतु शुष्क होती है।

सारणी 12.2 : कोपेन के अनुसार जलवायु प्रकार

and the statement of th				
समूह	प्रकार	कूट अक्षर	लक्षण	
A उष्णकटिबंधीय आर्द्र जलवायु	उष्णकटिबंधीय आर्द्र	Af	कोई शुष्क ऋतु नहीं।	
	उष्णकटिबंधीय मानसून	Am	मानसून, लघु शुष्क ऋतु	
	उष्णकटिबंधीय आर्द्र एंव शुष्क	Aw	जाड़े की शुष्क ऋतु	
	उपोष्ण कटिबंधीय स्टैपी	BSh	निम्न अक्षांशीय अर्ध शुष्क एवं शुष्क	
	उपोष्ण कटिबंधीय मरूस्थल	BWh	निम्न अक्षांशीय शुष्क	
B शुष्क जलवायु	मध्य अक्षांशीय स्टैपी	BSk	मध्य अक्षांशीय अर्ध शुष्क अथवा शुष्क	
	मध्य अक्षांशीय मरूस्थल	BWk	मध्य अक्षांशीय शुष्क	
-) 0)	आर्द्र उपोष्ण कटिबंधीय	Cfa	मध्य अक्षांशीय अर्धशुष्क अथवा शुष्क	
C कोष्ण शीतोष्ण (मघ्य अक्षांशीय जलवायु)	भूमध्य सागरीय	Csa	शुष्क गर्म ग्रीष्म	
	समुद्री पश्चिम तटीय	Cfb	कोई शुष्क ऋतु नहीं, कोष्ण तथा शीतल ग्रीष्म	
D शीतल	आर्द्र महाद्वीपीय	Df	कोई शुष्क ऋतु नहीं, भीषण जाड़ा	
हिम-वन जलवायु	उप-उत्तर ध्रुवीय	Dw	जाड़ा शुष्क तथा अत्यंत भीषण	
E शीत जलवायु	टुंड्रा	ET	सही अर्थों में कोई ग्रीष्म नहीं	
	ध्रुवीय हिमटोपी	EF	सदैव हिमाच्छादित हिम	
F उच्च भूमि	उच्च भूमि	Н	हिमाच्छादित उच्च भूमियाँ	

को और s शुष्क ग्रीष्म ऋतु को इंगित करता है छोटे अक्षर a,b,c तथा d तापमान की उग्रता वाले भाग को दर्शाते हैं। B समूह की जलवायु को उपविभाजित करते हुए स्टेपी अथवा अर्ध-शुष्क के लिए S तथा मरुस्थल के लिए W जैसे बड़े अक्षरों का प्रयोग किया गया है। जलवायु प्रकारों को सारणी 12.2 में दिखाया गया है। जलवायु समूहों एवं प्रकारों का वितरण सारणी 12.1 में दर्शाया गया है।

समृह A उष्णकटिबंधीय जलवायु

उष्णकटिबंधीय आर्द्र जलवायु कर्क रेखा और मकर रेखा के बीच पाई जाती है। संपूर्ण वर्ष सूर्य के ऊर्ध्वस्थ तथा अंतर उष्णकटिबंधीय अभिसरण क्षेत्र की उपस्थिति के उष्णकटिबंधीय आर्द्र जलवायु (Af)

उष्णकिटबंधीय आई जलवायु विषुवत् वृत्त के निकट पाई जाती है। इस जलवायु के प्रमुख क्षेत्र दक्षिण अमेरिका का अमेजन बेसिन, पश्चिमी विषुवतीय अफ्रीका तथा दक्षिणी पूर्वी एशिया के द्वीप हैं। वर्ष के प्रत्येक माह में दोपहर के बाद गरज और बौछारों के साथ प्रचुर मात्रा में वर्षा होती है। तापमान समान रूप से ऊँचा और वार्षिक तापांतर नगण्य होता है। किसी भी दिन अधिकतम तापमान लगभग 30° सेल्सियस और न्यूनतम तापमान लगभग 20° सेल्सियस होता है। इस जलवायु में सघन वितान तथा व्यापक जैव-विविधता वाले उष्णकिटबंधीय सदाहरित वन पाए जाते हैं।

十

भौतिक भूगोल के मूल सिद्धांत

उष्णकटिबंधीय मानसून जलवायु (Am)

उष्णकटिबंधीय मानूसन जलवायु भारतीय उपमहाद्वीप, दक्षिण अमेरिका के उत्तर-पूर्वी भाग तथा उत्तरी आस्ट्रेलिया में पाई जाती है। भारी वर्षा अधिकतर गर्मियों में होती है। शीत ऋतु शुष्क होती है। जलवायु के इस प्रकार का विस्तृत जलवायवी विवरण 'भारत : भौतिक पर्यावरण', एन.सी.आर.टी., 2006 में दिया गया है।

उष्णकटिबंधीय आई एवं शुष्क जलवायु (Aw)

उष्णकिटबंधीय आर्द्र एवं शुष्क जलवायु Af प्रकार के जलवायु प्रदेशों के उत्तर एवं दक्षिण में पाई जाती है। इसकी सीमा महाद्वीपों के पश्चिमी भाग में शुष्क जलवायु के साथ और पूर्वी भाग में Cf तथा Cw प्रकार की जलवायु के साथ पाई जाती है। विस्तृत Aw जलवायु दक्षिण अमेरिका में स्थित ब्राजील के वनों के उत्तर और दक्षिण में बोलिविया और पैरागुए के निकटवर्ती भागों तथा सूडान और मध्य अफ्रीका के दक्षिण में पाई जाती है। इस जलवायु में वार्षिक वर्षा Af तथा Am जलवायु प्रकारों की अपेक्षा काफी कम तथा विचरणशील है। आर्द्र ऋतु छोटी और शुष्क ऋतु भीषण व लंबी होती है। तापमान वर्ष भर ऊँचा रहता है और शुष्क ऋतु में दैनिक तापांतर सर्वाधिक होते हैं। इस जलवायु में पर्णपाती वन और पेडों से ढकी घासभिमयाँ पाई जाती है।

शुष्क जलवायु-B

शुष्क जलवायु की विशेषता अत्यंत न्यून वर्षा है जो पादपों की वृद्धि के लिए पर्याप्त नहीं होती। यह जलवायु पृथ्वी के बहुत बड़े भाग पर पाई जाती है जो विषुवत् वृत्त से 15° से 60° उत्तर व दिक्षणी अक्षांशों के बीच विस्तृत है। 15° से 30° के निम्न अंक्षाशों में यह उपोष्ण किटबंधीय उच्च वायुदाब क्षेत्र में पाई जाती है। जहाँ तापमान का अवतलन और उत्क्रमण, वर्षा नहीं होने देते। महाद्वीपों के पश्चिमी सीमांतों पर, ठंडी धाराओं के आसन्न क्षेत्र, विशेषत: दिक्षण अमेरिका के पश्चिमी तट पर, यह जलवायु विषुवत् वृत्त की ओर अधिक विस्तृत है और तटीय भाग में पाई जाती है। मध्य अक्षांशों में विषुवत् वृत्त से 35° से 60° उत्तर व दिक्षण के बीच यह जलवायु महाद्वीपों के उन आंतरिक भागों तक परिरूद्ध होती है जहाँ पर्वतों से घिरे होने के कारण प्राय: समुद्री आई पवनें नहीं पहुँच पातीं।

शुष्क जलवायु को स्टेपी अथवा अर्थ-शुष्क जलवायु (BS) और मरूस्थल जलवायु (BW) में विभाजित किया जाता है। इसे आगे 15° से 35° अक्षांशों के बीच उपोष्ण किटबंधीय स्टेपी (BSh) और उपोष्ण किटबंधीय मरूस्थल (BWh) में बाँटा जाता है। 35° और 60° अंक्षाशों के बीच इसे मध्य अक्षांशीय स्टेपी (BSk) तथा मध्य अक्षांशीय मरूस्थल (BWk) में विभाजित किया जाता है।

उपोष्ण कटिबंधीय स्टेपी (BSh) एवं उपोष्ण कटिबंधीय मरूस्थल (BWh) जलवायु

उपोष्ण कटिबंधीय स्टेपी (BSh) एवं उपोष्ण कटिबंधीय मरूस्थल (BWh) जलवायु में वर्षण और तापमान के लक्षण एक समान होते हैं। आई एव शुष्क जलवायु के संक्रमण क्षेत्र में अवस्थित होने के कारण उपोष्ण कटिबंधीय स्टेपी जलवायु में मरूस्थल जलवायु की अपेक्षा वर्षा थोडी ज्यादा होती है जो विरल घासभूमियों के लिए पर्याप्त होती है। वर्षा दोनों ही जलवाय में परिवर्तनशीलता होती है। वर्षा की परिवर्तनशीलता मरूस्थल की अपेक्षा स्टेपी में जीवन को अधिक प्रभावित करती है। इससे कई बार अकाल की स्थिति पैदा हो जाती है। मरूस्थलों में वर्षा थोड़ी किंतु गरज के साथ तीव्र बौछारों के रूप में होती है, जो मुदा में नमी पैदा करने में अप्रभावी सिद्ध होती है। ठंडी धाराओं तापमान लगते तटीय मरूस्थलों में कोहरा एक आम बात है। ग्रीष्मऋतु में अधिकतम तापमान बहुत ऊँचा होता है। लीबिया के अल-अजीज़िया में 13 सितंबर 1922 को उच्चतम तापमान 58° सेल्सियस दर्ज किया गया था। इस जलवायु में वार्षिक और दैनिक तापांतर भी अधिक पाए जाते हैं।

कोष्ण शीतोष्ण (मध्य अक्षांशीय) जलवायु - C

कोष्ण शीतोष्ण (मध्य अक्षांशीय) जलवायु 30° से 50° अक्षांशों के मध्य मुख्यतः महाद्वीपों के पूर्वी और पश्चिमी सीमांतों पर विस्तृत है। इस जलवायु में सामान्यतः ग्रीष्म ऋतु कोष्ण और शीत ऋतु मृदुल होती है। इस जलवायु को चार प्रकारों में वर्गीकृत किया गया है: (i) आई उपोष्ण किटबंधीय, अर्थात सर्दियों में शुष्क और गर्मियों में उष्ण (Cwa) (ii) भूमध्यसागरीय (Cs) (iii) आई उपोष्ण किटबंधीय अर्थात् शुष्क ऋतु को अनुपस्थित तथा मृदु शीत ऋतु (Cfa) (iv) समुद्री पश्चिम तटीय जलवाय (Cfb)।

विश्व की जलवायु एवं जलवायु परिवर्तन

आर्द्र उपोष्ण कटिबंधीय जलवाय (Cwa) है। इस जलवाय के प्रमुख १

आर्द्र उपोष्ण कटिबंधीय जलवायु कर्क एवं मकर रेखा से धुवों की ओर मुख्यत: भारत के उत्तरी मैदान और दक्षिणी चीन के आंतरिक मैदानों में पाई जाती है। यह जलवायु Aw जलवायु जैसी ही है, केवल इतना अपवाद

है कि इसमे सर्दियों का तापमान कोष्ण होता है।

भूमध्यसागरीय जलवायु (Cs)

जैसा कि नाम से स्पष्ट है भूमध्य सागरीय जलवायु भूमध्य सागर के चारों ओर तथा उपोष्ण कटिबंध से 30° से 40° अक्षांशों के बीच महाद्वीपों के पश्चिमी तट के साथ-साथ पाई जाती है। मध्य केलिफोर्निया, मध्य चिली तथा आस्ट्रेलिया के दक्षिण-पूर्वी और दक्षिण-पश्चिमी तट इसके उदाहरण हैं। ये क्षेत्र ग्रीष्म ऋतु में उपोष्ण कटिबंधीय उच्च वायुदाब तथा शीत ऋतु में पछुआ पवनों के प्रभाव में आ जाते हैं। इस प्रकार उष्ण व शुष्क गर्मियाँ तथा मृदु एवं वर्षायुक्त सर्दियाँ इस जलवायु की विशेषताएँ हैं। ग्रीष्म ऋतु में औसत मासिक तापमान 25° सेल्सियस के आस-पास तथा शीत ऋतु में 10° सेल्सियस से कम रहता है। वार्षिक वर्षा 35 से 90 से.मी. के बीच होता है।

आर्द्र उपोष्ण कटिबंधीय जलवायु (Cfa)

आर्द्र उपोष्ण कटिबंधीय जलवायु उपोष्ण कटिबंधीय अक्षांशों में महाद्वीपों के पूर्वी भागों में पाई जाती है। इस प्रदेश में वायुराशियाँ प्राय: अस्थिर रहती हैं और पूरे वर्ष वर्षा करती हैं। यह जलवायु पूर्वी संयुक्त राज्य अमेरिका, दिक्षणी तथा पूर्वी चीन, दिक्षणी जापान, उत्तर-पूर्वी अर्जेंटीना, तटीय दिक्षण अफ्रीका और आस्ट्रेलिया के पूर्वी तट पर पाई जाती है। औसत वार्षिक वर्षा 75 से 150 से.मी. के बीच रहती है। ग्रीष्म ऋतु में तिड़तझझा और शीतऋतु में वाताग्री वर्षण सामान्य विशेषताएँ हैं। ग्रीष्म ऋतु में औसत मासिक तापमान लगभग 27° सेल्सियस होता है जबिक जाड़ों में यह 5° से 12° सेल्सियस के बीच रहता है। दैनिक तांपातर बहुत कम होता है।

समुद्री पश्चिम तटीय जलवायु (Cfb)

समुद्री पश्चिम तटीय जलवायु महाद्वीपों के पश्चिमी तटों पर भूमध्य सागरीय जलवायु से ध्रुवों की ओर पाई जाती है। इस जलवायु के प्रमुख क्षेत्र हैं - उत्तर-पश्चिमी यूरोप, उत्तरी अमेरिका का पश्चिमी तट, उत्तरी केलिफोर्निया, दिक्षण चिली, दिक्षण-पूर्वी आस्ट्रेलिया और न्यूजीलैंड। यहाँ समुद्री प्रभाव के कारण तापमान मध्यम होते हैं और शीत ऋतु में अपने अक्षांशों की तुलना में कोष्ण होते हैं। गर्मी के महीनों में औसत तापमान 15° से 20° सेल्सियस और सिर्दियों में 4° से 10° सेल्सियस के बीच रहता है। वार्षिक और दैनिक तापांतर कम पाया जाता हैं। वर्षण साल भर होती है लेकिन यह सिर्दियों में अधिक होती है। वर्षण रहती है।

शीत हिम-वन जलवायु (D)

शीत हिम-वन जलवायु उत्तरी गोलार्द्ध में 40° से 70° अक्षांशों के बीच यूरोप, एशिया और उत्तर अमेरिका के विस्तृत महाद्वीपीय क्षेत्रों में पाई जाती है। शीत हिम वन जलवायु को दो प्रकारों में विभक्त किया जाता है: (i) Df आई जाड़ों से युक्त ठंडी जलवायु और (ii) Dw शुष्क जाड़ों से युक्त ठंडी जलवायु उच्च अक्षांशों में सर्दी की उग्रता अधिक मुखर होती है।

आर्द्र जाड़ों से युक्त ठंडी जलवायु (Df)

आर्द्र जाड़ों से युक्त ठंडी जलवायु समुद्री पश्चिम तटीय जलवायु और मध्य अक्षांशीय स्टैपी जलवायु से ध्रुवों की ओर पाई जाती है। जाड़े ठंडे और बर्फीले होते हैं। तुषार-मुक्त ऋतु छोटी होती है। वार्षिक तापांतर अधिक होता है। मौसमी परिवर्तन आकस्मिक और अल्पकालिक होते हैं। ध्रुवों की ओर सर्दियाँ अधिक उग्र होती हैं।

शुष्क जाड़ों से युक्त ठंडी जलवायु (DW)

शुष्क जाड़ों से युक्त ठंडी जलवायु मुख्यत: उत्तर-पूर्वी एशिया में पाई जाती है। जाड़ों में प्रतिचक्रवात का स्पष्ट विकास तथा ग्रीष्म ऋतु में उसका कमजोर पड़ना इस क्षेत्र में पवनों के प्रत्यार्वन की मानसून जैसी दशाएँ उत्पन्न करते हैं। ध्रुवों की ओर गर्मियों में तापमान कम होते हैं और जाड़ों में तापमान अत्यंत न्यून होती है। कुछ स्थान तो ऐसे भी हैं, जहाँ वर्षा के सात महीने तक तापमान हिमांक बिंदु से कम रहता हैं। वार्षिक वर्षा कम होती है जो 12 से 15 से.मी. के बीच होती है।

+

भौतिक भूगोल के मूल सिद्धांत

ध्रुवीय जलवायु (E)

ध्रुवीय जलवायु 70° अक्षांश से परे ध्रुवों की ओर पाई जाती है। ध्रुवीय जलवायु दो प्रकार की होती है: (i) टुण्ड्रा (ET) (ii) हिम टोपी (EF)।

टुण्ड्रा जलवायु (ET)

टुण्ड्रा जलवायु का नाम काई, लाइकान तथा पुष्पी पादप जैसे छोटे वनस्पित प्रकारों के आधार पर रखा गया है। यह स्थायी तुषार का प्रदेश है जिसमें अधीभूमि स्थायी रूप से जमी रहती है। लघुवर्धन काल और जलाक्रांति छोटी वनस्पित का ही पोषण कर पाते हैं। ग्रीष्म ऋतु में टुण्ड्रा प्रदेशों में दिन के प्रकाश की अविध लंबी होती है।

हिमटोप जलवायु (EF)

हिमटोप जलवायु ग्रीनलैंड और अंटार्कटिका के आंतरिक भागों में पाई जाती है। गर्मियों में भी तापमान हिमांक से नीचे रहता है। इस क्षेत्र में वर्षा थोड़ी मात्रा में होती है। तुषार एवं हिम एकत्रित होती जाती है जिनका बढ़ता हुआ दबाव हिम परतों को विकृत कर देता है। हिम परतों के ये टुकड़े आर्कटिक एवं अंटार्कटिक जल में खिसक कर प्लावी हिम शैलों के रूप में तैरने लगते हैं। अंटार्कटिक में 79° दक्षिण अक्षांश पर ''प्लेट्यू स्टेशन'' पर भी यही जलवाय पाई जाती है।

उच्च भूमि जलवायु (F)

उच्च भूमि जलवायु भौम्याकृति द्वारा नियंत्रित होती है। ऊँचे पर्वतों में थोड़ी-थोड़ी दूरियों पर मध्यमान तापमान में भारी परिवर्तन पाए जाते हैं। उच्च भूमियों में वर्षण के प्रकारों व उनकी गहनता में भी स्थानिक अंतर पाए जाते हैं। पर्वतीय वातावरण में ऊँचाई के साथ जलवायु प्रदेशों के स्तरित ऊर्ध्वाधर कटिबंध पाए जाते हैं।

जलवायु परिवर्तन

जिस प्रकार की जलवायु का अनुभव हम अब कर रहे हैं वह थोड़े बहुत उतार चढ़ाव के साथ विगत 10 हजार वर्षों से अनुभव की जा रही है। अपने प्रादुर्भाव से ही पृथ्वी ने जलवायु में अनेक परिवर्तन देखे हैं। भूगिभंक अभिलेखों से हिमयुगों और अंतर-हिमयुगों में क्रमश: परिवर्तन की प्रक्रिया परिलक्षित होती है। भू-आकृतिक लक्षण, विशेषत: ऊँचाईयों तथा उच्च

अक्षांशों में हिमानियों के आगे बढ़ने व पीछे हटने के शेष चिह्न प्रदर्शित करते हैं। हिमानी निर्मित झीलों में अवसादों का निक्षेपण उष्ण एवं शीत युगों के होने को उजागर करता है। वृक्षों के तनों में पाए जाने वाले वलय भी आर्द्र एवं शुष्क युगों की उपस्थिति का संकेत देते हैं। ऐतिहासिक अभिलेख भी जलवायु की अनिश्चितता का वर्णन करते हैं। ये सभी साक्ष्य इंगित करते हैं कि जलवायु परिवर्तन एक प्राकृतिक एवं सतत प्रक्रिया है।

भारत में भी आई एवं शुष्क युग आते जाते रहे हैं। पुरातत्व खोजें दर्शाती हैं कि ईसा से लगभग 8,000 वर्ष पूर्व राजस्थान मरुस्थल की जलवायु आई एवं शीतल थी। ईसा से 3,000 से 1,700 वर्ष पूर्व यहाँ वर्षा अधिक होती थी। लगभग 2,000 से 1,700 वर्ष ईसा पूर्व यह क्षेत्र हड़प्पा संस्कृति का केंद्र था। शुष्क दशाएँ तभी से गहन हुई हैं।

लगभग 50 करोड़ से 30 करोड़ वर्ष पहले भू-वैज्ञानिक काल के कैंब्रियन, आर्डोविसियन तथा सिल्युरियन युगों में पृथ्वी गर्म थी। प्लीस्टोसीन युगांतर के दौरान हिमयुग और अंतर हिमयुग अविधयाँ रही हैं। अंतिम प्रमुख हिमयुग आज से 18,000 वर्ष पूर्व था। वर्तमान अंतर हिमयुग 10,000 वर्ष पूर्व आरंभ हुआ था।

अभिनव पूर्व काल में जलवायु

सभी कालों में जलवायु परिवर्तन होते रहे हैं। पिछली शताब्दी के 90 के दशक में चरम मौसमी घटनाएँ घटित हुई हैं। 1990 के दशक में शताब्दी का सबसे गर्म तापमान और विश्व में सबसे भयंकर बाढों को दर्ज किया है। सहारा मरुस्थल के दक्षिण में स्थित साहेल प्रदेश में 1967 से 1977 के दौरान आया विनाशकारी सुखा ऐसा ही एक परिवर्तन था। 1930 के दशक में संयुक्त राज्य अमेरिका के बृहत मैदान के दक्षिण-पश्चिमी भाग में, जिसे 'धूल का कटोरा' कहा जाता है, भीषण सुखा पडा। फसलों की उपज अथवा फसलों के विनाश, बाढों तथा लोगों के प्रवास संबंधी ऐतिहासिक अभिलेख परिवर्तनशील जलवायु के प्रभावों के बारे में बताते हैं। यूरोप अनेकों बार उष्ण, आई, शीत एवं शुष्क युगों से गुजरा है। इनमें से महत्त्वपूर्ण प्रसंग 10 वीं और 11 वीं शताब्दी की उष्ण एवं शुष्क दशाओं का है, जिनमें वाइकिंग कबीले ग्रीनलैंड में जा बसे थे। यरोप ने सन् 1550 से सन् 1850 के दौरान लघु हिम युग

विश्व की जलवायु एवं जलवायु परिवर्तन

दीर्घ तरंगों को अवशोषित कर लेता है। वे गैसें जो विकिरण की दीर्घ तरंगों का अवशोषण करती हैं, ग्रीनहाउस गैसें कहलाती हैं। वायुमंडल का तापन करने वाली प्रक्रियाओं को सामूहिक रूप से 'ग्रीनहाउस प्रभाव'

113

तापमान में वृद्धि की दर घटी है।

का अनुभव किया है। 1885 से 1940 तक विश्व के

तापमान में वृद्धि की प्रवृत्ति पाई गई है। 1940 के बाद

(Green house effect) कहा जाता है।

जलवायु परिवर्तन के कारण

ग्रीनहाउस शब्द का साम्यानुमान उस ग्रीनहाउस से लिया गया है। जिसका उपयोग ठंडे इलाकों में ऊष्मा का परिरक्षण करने के लिए किया जाता है। ग्रीनहाउस काँच का बना होता है। काँच प्रवेशी सौर विकिरण की लघु तरंगों के लिए पारदर्शी होता है मगर बहिर्गामी विकिरण की दीर्घ तरंगों के लिए अपारदर्शी। इस प्रकार काँच अधिकाधिक विकिरण को आने देता है और दीर्घ तरंगों वाले विकिरण को काँच घर से बाहर जाने से रोकता है। इससे ग्रीनहाउस इमारत के भीतर बाहर की अपेक्षा तापमान अधिक हो जाता है। जब आप गर्मियों में किसी बंद खिडिकियों वाली कार अथवा बस में प्रवेश करते हैं तो आप बाहर की अपेक्षा अधिक गर्मी अनुभव करते हैं। इसी प्रकार जाडों में बंद दरवाज़ों व खिड़िकयों वाला वाहन बाहर की अपेक्षा गर्म रहता है। यह ग्रीनहाउस प्रभाव का एक अन्य उदाहरण है।

जलवायु परिवर्तन के अनेक कारण हैं। इन्हें खगोलीय और पार्थिव कारणों में वर्गीकृत किया जा सकता है। खगोलीय कारणों का सबंध सौर कलंकों की गतिविधियों से उत्पन्न सौर्यिक निर्गत ऊर्जा में परिवर्तन से है। सौर कलंक सूर्य पर काले धब्बे होते हैं, जो एक चक्रीय, ढंग से घटते-बढते रहते हैं। कुछ मौसम वैज्ञानिकों के अनुसार सौर कंलकों की संख्या बढ्ने पर मौसम ठंडा और आर्द्र हो जाता है और तुफानों की संख्या बढ जाती है। सौर कलंकों की संख्या घटने से उष्ण एवं शुष्क दशाएँ उत्पन्न होती हैं यद्यपि ये खोजें आँकडों की दुष्टि से महत्त्वपूर्ण नहीं हैं।

ग्रीनहाउस गैसें (GHGs)

एक अन्य खगोलीय सिद्धांत 'मिलैंकोविच दोलन' है, जो सूर्य के चारों ओर पृथ्वी के कक्षीय लक्षणों में बदलाव के चक्रों, पृथ्वी की डगमगाहट तथा पृथ्वी के अक्षीय झुकाव में परिवर्तनों के बारे में अनुमान लगाता है। ये सभी कारक सूर्य से प्राप्त होने वाले सूर्यातप में परिवर्तन ला देते हैं। जिसका प्रभाव जलवाय पर पडता है।

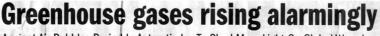
> वर्तमान में चिंता का कारण बनी मुख्य ग्रीनहाउस गैसें कार्बन डाईऑक्साइड (CO₂) क्लोरो-फ्लोरोकार्बन्स (CFCs), मीथेन (CH₄) नाइट्रस ऑक्साईड (N₂O) और ओज़ोन (O₂) हैं। कुछ अन्य गैसें जैसे नाइट्रिक ऑक्साइड (NO) और कार्बन मोनोक्साइड (CO) आसानी से ग्रीनहाउस गैसों से प्रतिक्रिया करती हैं और वायुमंडल में उनके सांद्रण को प्रभावित करती हैं। किसी भी ग्रीनहाउस गैस का प्रभाव इसके सांद्रण में वृद्धि के परिमाण, वायमंडल में इसके जीवन काल तथा इसके द्वारा अवशोषित विकिरण की तरंग लंबाई पर निर्भर करता है। क्लोरो-फुलोरोकार्बन अत्यधिक प्रभावी होते हैं। समताप मंडल में पराबैंगनी किरणों को अवशोषित करने वाली ओज़ोन जब निम्न समताप मंडल में उपस्थित होती है, तो वह पार्थिव विकिरण को अत्यंत प्रभावी ढंग से अवशोषित करती है। एक अन्य महत्त्वपूर्ण तथ्य यह है कि ग्रीनहाउस गैसों के अणु जितने लंबे समय तक बने रहते हैं इनके द्वारा लाए गए परिवर्तनों से पृथ्वी के

ज्वालामुखी क्रिया जलवाय परिवर्तन का एक अन्य कारण है। ज्वालामुखी उद्भेदन वायुमंडल में बड़ी मात्रा में एैरोसोल फेंक देता है। ये एैरोसोल लंबे समय तक वायुमंडल में विद्यमान रहते हैं और पृथ्वी की सतह पर पहुँचने वाले सौर्यिक विकिरण को कम कर देते हैं। हाल ही में हुए पिनाटोबा तथा एल सियोल ज्वालामुखी उद्भेदनों के बाद पृथ्वी का औसत तापमान कुछ हद तक गिर गया था।

जलवायु पर पड्ने वाला सबसे महत्त्वपूर्ण मानवोद्भवी कारण वायुमंडल में ग्रीन हाउस गैसों का बढता सांद्रण है। इससे भूमंडलीय ऊष्मन हो सकता है।

भूमंडलीय ऊष्मन

ग्रीन हाउस गैसों की उपस्थिति के कारण वायुमंडल एक ग्रीनहाउस की भांति व्यवहार करता है। वायुमंडल प्रवेशी सौर विकिरण का पारेषण भी करता है किंतु पृथ्वी की सतह से ऊपर की ओर उत्सर्जित होने वाली अधिकतम


भौतिक भूगोल के मूल सिद्धांत

वायुमंडलीय तंत्र को उबरने में उतना अधिक समय लगता है। वायमंडल में उपस्थित ग्रीनहाउस गैसों में सबसे अधिक सांद्रण कार्बन डाईऑक्साइड का है। CO का उत्सर्जन मुख्यत: जीवाश्मी ईंधनों (तेल, गैस एंव कोयला) के दहन से होता है। वन और महासागर कार्बन डाईऑक्साइड के कुंड होते हैं। वन अपनी वृद्धि के लिए CO का उपयोग करते हैं। अत: भूमि उपयोग में परिवर्तनों के कारण की गई जंगलों की कटाई भी CO की मात्रा बढ़ाती है। अपने स्रोतों में हुए परिवर्तनों से समंजित करने के लिए CO2 को 20 से 50 वर्ष लग जाते हैं। यह लगभग 0.5 प्रतिशत की वार्षिक दर से बढ़ रही है। जलवायवी मॉडलों में जलवायु में होने वाले परिवर्तनों का आंकलन CO की मात्रा को पूर्व औद्योगिक स्तर से दुगुना करके किया जाता है।

क्लोरो-फ्लोरोकार्बन मानवीय गतिविधियों से पैदा होते

है। ओज़ोन समताप मंडल में उपस्थित होती है, जहाँ पराबैंगनी किरणों ऑक्सीजन को ओज़ोन में बदल देती है। इससे पराबैंगनी किरणें पृथ्वी की सतह पर नहीं पहुँच पातीं। समताप मंडल में वाहित होने वाली ग्रीनहाउस गैसें भी ओज़ोन को नष्ट करती हैं। ओज़ोन का सबसे अधिक ह्रास अंटार्कटिका के ऊपर हुआ है। समताप मंडल में ओज़ोन के सांद्रण का ह्रास ओज़ोन छिद्र कहलाता है। यह छिद्र पराबैंगनी किरणों को क्षोभमंडल से गुज़रने देता है।

वायुमंडल में ग्रीनहाउस गैसों के उत्सर्जन को कम करने के लिए अंतर्राष्ट्रीय स्तर पर प्रयास किए गए हैं। इनमें से सबसे महत्त्वपूर्ण 'क्योटो प्रोटोकॉल' है जिसकी उद्घोषणा सन् 1997 में की गई थी। सन् 2005 में प्रभावी हुई इस उद्घोषणा का 141 देशों ने अनुमोदन किया है क्योटो प्रोटोकॉल ने 35 औद्योगिक राष्ट्रों को

Ancient Air Bubbles Buried In Antarctic Ice To Shed More Light On Global Warming

Gangotri is shrinking 23m every year


ogists are pre

भुमंडलीय ऊष्मन पर एक व्याख्यात्मक टिप्पणी लिखें।

Geneva: Himalayan glaciers, in-cluding the Gangotri, are receding at among the fastest rates in the world due to global warming, threatening water shortages for Air pollution biggest killer Southeast Asia, says WH and the pollution biggest killer Southeast Asia, says WH and the pollution of people in India, China and Nepal, a leading conservation groups add on Monday. The Worldwide Fund for Nature Associate the pollution of Krysanowski, an air guality porterly ided. The Worldwide Fund for Nature (WWF) said in a new study that History and the pollution of the pollution

(WWF) said in a new study that Hi-malayan glaciers were receding 10-15 metres per year on average and that the rate was accelerating as global warming increases. In India, the Gangotri glacier is receding at an average rate of 23 metres per year, the study said. "Himalayan glaciers are among the fastest retreating claciers glob-

"Himalayan glaciers are among the fastest retreating glaciers globally due to the effects of global dia. China and Nepal," it said. Warming," the WWF said in a statement. "This will eventually result in water shortages for hundered of millions of neonle who needs of millions of neonle who needs."

Downloaded from https://www.studiestoday.com

विश्व की जलवायु एवं जलवायु परिवर्तन

115

परिबद्ध किया कि वे सन् 1990 के उत्सर्जन स्तर में वर्ष 2012 तक 5 प्रतिशत की कमी लायें।

वायुमंडल में ग्रीनहाउस गैसों के सांद्रण में वृद्धि की प्रवृत्ति आगे चलकर पृथ्वी को गर्म कर सकती है। एक बार भूमंडलीय ऊष्मन के आरंभ हो जाने पर इसे उलटना बहुत मुश्किल होगा। भूमंडलीय ऊष्मन का प्रभाव हर जगह एक समान नहीं हो सकता। तथापि भुमंडलीय ऊष्मन के दुष्प्रभाव जीवन पोषक तंत्र को कुप्रभावित कर सकते हैं। हिमटोपियों व हिमनदियों के पिघलने से ऊँचा उठा समुद्री जल का स्तर और समुद्र का ऊष्मीय विस्तार तटीय क्षेत्र के विस्तृत भागों और द्वीपों को आप्लावित कर सकता है। इससे सामाजिक समस्याएँ उत्पन्न होंगी। विश्व समुदाय के लिए यह गहरी चिंता का एक और विषय है। ग्रीनहाउस गैसों के उत्सर्जन को नियंत्रित करने और भूमंडलीय ऊष्मन की प्रवृत्ति को रोकने के लिए प्रयास आरंभ हो चुके हैं। हमें आशा है कि विश्व समुदाय इस चुनौती का प्रत्युत्तर देगा और एक ऐसी जीवन शैली को अपनाएगा जिससे आने वाली पीढ़ियों के लिए यह संसार रहने के लायक रह सकेगा।

आज भूमंडलीय ऊष्मन विश्व की प्रमुख चिंताओं में से एक है, आइए देखें कि दर्ज तापमानों के आधार पर यह कितना गर्म हो चुका है।

तापमान के उपलब्ध आँकड़ें 19वीं शताब्दी के पश्चिमी यूरोप के हैं, इस अध्ययन की संदर्भित अविध 1961-80 है। इससे पहले व बाद की अवधियों की तापमान की अंसगतियों का अनुमान 1961-90 की अवधि के औसत तापमान से लगाया गया है। पृथ्वी के धरातल के निकट वायु का औसत वार्षिक तापमान लगभग 14° सैल्सियस है। काल श्रेणी 1961-90 के ग्लोब के सामान्य तापमान की तुलना मे 1856-2000 के दौरान पृथ्वी के धरातल के निकट वार्षिक तापमान में असंगति को दर्शाती है।

तापमान के बढ़ने की प्रवृत्ति 20वीं शताब्दी में दिखाई दी। 20वीं शताब्दी में सबसे अधिक तापन दो अवधियों में हुआ है-1901-44 और 1977-99। इन दोनों में से प्रत्येक अवधि में भूमंडलीय ऊष्मन 0.4° सेल्सियस बढा है। इन दोनों अवधियों के बीच थोडा शीतलन भी हुआ जो उत्तरी गोलार्ध में अधिक चिह्नित था।

20वीं शताब्दी के अंत में औसत वार्षिक तापमान का वैश्विक अध्ययन 19वीं शताब्दी में दर्ज किए गए तापमान में 0.6° सेल्सियस अधिक था। 1856-2000 के दौरान सबसे गर्म साल अंतिम दशक में दर्ज किया गया था। सन् 1998 संभवत: न केवल 20वीं शताब्दी का बल्कि पूरी सहस्राब्दि का सबसे गर्म वर्ष था।

(되) "Am"

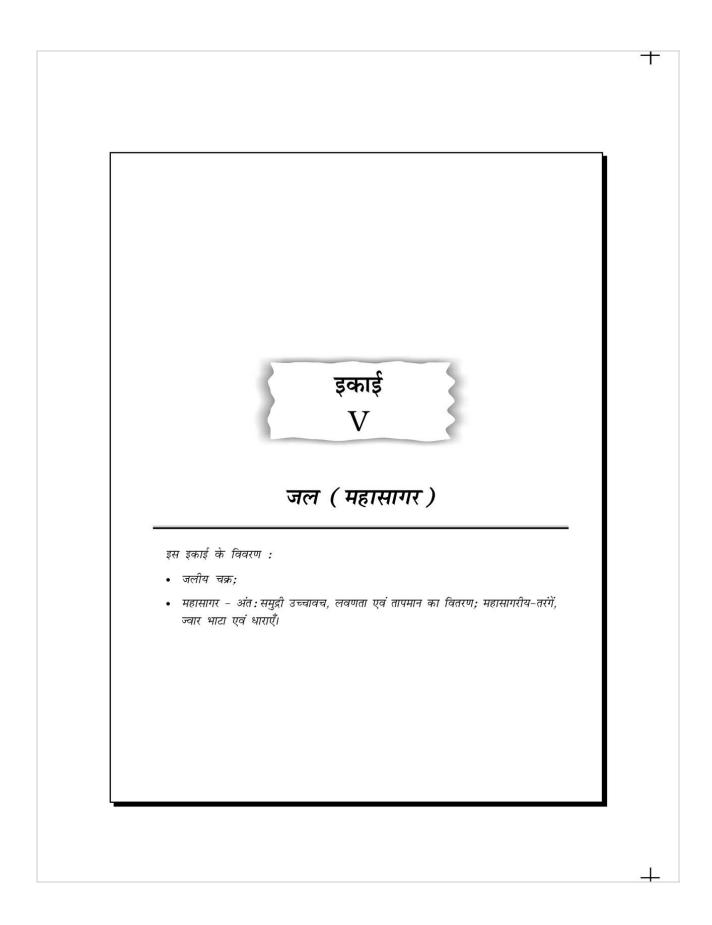
अभ्यास_

बहुवैकल्पिक प्रश्न :

(क) "Af"

- (i) कोपेन के A प्रकार की जलवायु के लिए निम्न में से कौन सी दशा अर्हक हैं?
 - (क) सभी महीनों में उच्च वर्षा
 - (ख) सबसे ठंडे महीने का औसत मासिक तापमान हिमांक बिंदु से अधिक
 - (ग) सभी महीनों का औसत मासिक तापमान 18° सेल्सियस से अधिक
 - (घ) सभी महीनों का औसत तापमान 10° सेल्सियस के नीचे

(ख) "BSh"


- (ii) जलवायु के वर्गीकरण से संबंधित कोपेन की पद्धित को व्यक्त किया जा सकता है-
 - (क) अनुप्रयुक्त (ख) व्यवस्थित (ग) जननिक (घ) आनुभविक
- (iii) भारतीय प्रायद्वीप के अधिकतर भागों को कोपेन की पद्धति के अनुसार वर्गीकृत किया जायेगा-

(刊) "Cfb"

- (iv) निम्नलिखित में से कौन सा साल विश्व का सबसे गर्म साल माना गया है-
 - (क) 1990 (ख) 1998 (刊) 1885 (되) 1950

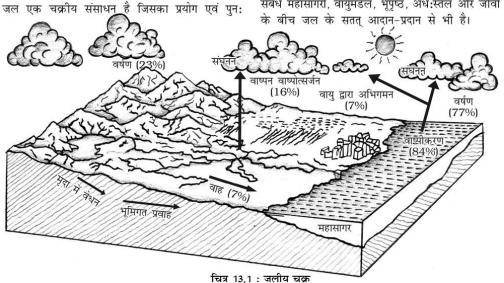
+

116 भौतिक भूगोल के मूल सिद्धांत (v) नीचे लिखे गए चार जलवायु के समूहों में से कौन आई दशाओं को प्रदर्शित करता हैं? (क) A-B-C-E (國) A-C-D-E (河) B-C-D-E (되) A-C-D-F 2. निम्नलिखित प्रश्नों के उत्तर लगभग 30 शब्दों में दीजिए : (i) जलवायु के वर्गीकरण के लिए कोपेन के द्वारा किन दो जलवायविक चरों का प्रयोग किया गया (ii) वर्गीकरण की जननिक प्रणाली आनुभविक प्रणाली से किस प्रकार भिन्न है? (iii) किस प्रकार की जलवायुओं में तापांतर बहुत कम होता है? (iv) सौर कलंकों में वृद्धि होने पर किस प्रकार की जलवायविक दशाएँ प्रचलित होंगी? 3. निम्नलिखित प्रश्नों के उत्तर लगभग 150 शब्दों में दीजिए : (i) A एवं B प्रकार की जलवायुओं की जलवायविक दशाओं की तुलना करें। (ii) C तथा A प्रकार के जलवायु में आप किस प्रकार की वनस्पति पाएँगे? (iii) ग्रीनहाउस गैसों से आप क्या समझते हैं? ग्रीनहाउस गैसों की एक सूची तैयार करें? परियोजना कार्य भूमंडलीय जलवायु परिवर्तनों से संबंधित 'क्योटो प्रोटोकॉल' से संबंधित जानकारियाँ एकत्रित कीजिए।

अध्याय

13

महासागरीय जल


या आप जल के बिना जीवन की कल्पना कर सकते हैं? कहा जाता है कि जल ही जीवन है। जल पृथ्वी पर रहने वाले सभी प्रकार के जीवों के लिए आवश्यक घटक है। पृथ्वी के जीव सौभाग्यशाली हैं कि यह एक जलीय ग्रह है। अन्यथा, हम लोगों का अस्तित्व ही नहीं होता। जल हमारे सौर मंडल का दुर्लभ पदार्थ है। सूर्य अथवा सौरमंडल में अन्यत्र कहीं भी जल नहीं है। सौभाग्य से पृथ्वी के धरातल पर जल की प्रचुर आपूर्ति है। हमारे ग्रह को 'नीला ग्रह' (Blue planet) भी कहा जाता है।

जलीय चक्र

जीवों के लिए पहुँचता है। जलीय चक्र, पृथ्वी पर, इसके नीचे व पृथ्वी भाग्यशाली हैं के ऊपर वायुमंडल में जल के संचलन की व्याख्या करता है। जलीय चक्र करोड़ों वर्षों से कार्यरत है और मंडल का पृथ्वी पर सभी प्रकार का जीवन इसी पर निर्भर करता है। वायु के बाद, जल पृथ्वी पर जीवन के अस्तित्त्व के लिए सबसे आवश्यक तत्त्व है। पृथ्वी पर जल का वितरण असमान है। बहुत से क्षेत्रों में, जल की प्रचुरता है, जबिक बहुत से क्षेत्रों में यह सीमित मात्रा में उपलब्ध है। जलीय चक्र पृथ्वी के जलमंडल में विभिन्न रूपों अर्थात् गैस, तरल व टोस में जल का परिसंचरण है। इसका संबंध महासागरों, वायुमंडल, भूपृष्ठ, अध:स्तल और जीवों के बीच जल के सतत आदान-प्रदान से भी है।

प्रयोग किया जा सकता है। जल एक चक्र के रूप में

महासागर से धरातल पर और धरातल से महासागर तक

सारणी 13.1 : पृथ्वी पर जल का वितरण

जलाशय	आयतन (दस लाख घन कि॰मी॰)	कुल का प्रतिशत
महासागर	1,370	97.25
हिमानियाँ एवं हिमटोपी	29	2.05
भूमिगत जल	9.5	0.68
झीलें	0.125	0.01
मृदा में नमी	0.065	0.005
वायुमंडल	0.013	0.001
नदी-नाले	0.0017	0.0001
जैवमंडल	0.0006	0.00004

सारणी 13.2 : जल चक्र के घटक एवं प्रक्रियाएँ

घटक	प्रक्रियाएँ
महासागरों में संग्रहित जल	वाष्पीकरण, वाष्पोत्सर्जन, ऊर्ध्वपातन
वायुमंडल में जल	संघनन, वर्षण
हिम एवं बर्फ में पानी का संग्रहण	हिम पिघलने पर नदी-नालों के रूप में बहना
धरातलीय जल बहाव	जलधारा के रूप में, ताजा जल संग्रहण व जल रिसाव
भौम जल संग्रहण	भौम जल का विसर्जन, झरनें

सारणी 13.1 पृथ्वी के धरातल पर जल के वितरण को दर्शाती है। पृथ्वी पर पाए जाने वाले जल का लगभग 71 प्रतिशत भाग महासागरों में पाया जाता है। शेष जल ताज़े जल के रूप में हिमानियों, हिमटोपी, भूमिगत जल, झीलों, मृदा में आर्द्रता वायुमंडल, सरिताओं और जीवों में संग्रहीत है। धरातल पर गिरने वाले जल का लगभग 59 प्रतिशत भाग महासागरों एवं अन्य स्थानों से वाष्पीकरण के द्वारा वायुमंडल में चला जाता है। शेष भाग धरातल पर बहता है; कुछ भूमि में रिस जाता है और कुछ भाग हिमनदी का रूप ले लेता है। (चित्र 13.1)।

उल्लेखनीय है कि पृथ्वी पर नवीकरण योग्य जल निश्चित मात्रा में है, जबिक माँग तेज़ी से बढ़ती जा रही है। इसके कारण विश्व के विभिन्न भागों में स्थानिक एवं कालिक दोनों रूपों में जल का संकट पैदा हो जाता है। नदी जल के प्रदूषण ने इस संकट को और अधिक बढ़ा दिया है। आप जल की गुणवत्ता को कैसे सुधार सकते हैं तथा जल की उपलब्ध मात्रा में वृद्धि कर सकते हैं?

महासागरीय अधस्तल का उच्चावच

महासागर पृथ्वी की बाहरी परत में वृहत गर्तों में स्थित है। इस खंड में, हम पृथ्वी के महासागरीय बेसिनों की प्रकृति एवं उनकी भू-आकृति का अध्ययन करेंगे। महाद्वीपों के विपरीत महासागर एक दूसरे में इतने स्वाभाविक ढंग से विलय हो जाते हैं कि उनका सीमांकन करना कठिन हो जाता है। भूगोलविदों ने पृथ्वी के महासागरीय भाग को पांच महासागरों में विभाजित किया है। उनके नाम हैं- प्रशांत, अटलांटिक, हिंद, दक्षिणी महासागर एवं आर्कटिक। अनेक समुद्र, खाड़ियाँ, गल्फ़ तथा अन्य निवेशिकाएँ इन पांच बड़े महासागरों के भाग हैं।

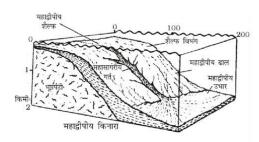
महासागरीय अधस्तल का प्रमुख भाग समुद्र तल के नीचे 3 से 6 कि॰मी॰ के बीच पाया जाता है। महासागरों के जल के नीचे की भूमि, अर्थात् महासागरीय अधस्तल, भूमि पर पाए जाने वाले लक्षणों की अपेक्षा जटिल तथा विभिन्न प्रकार के लक्षणों को प्रदर्शित करती है। (चित्र 13.2)। महासागरों की तली में, विश्व की सबसे बड़ी पर्वत शृंखलाएँ, सबसे गहरे गर्त एवं सबसे बड़े मैदान होने के कारण ये ऊबड़-खाबड़ होते हैं। महाद्वीपों पर पाए जाने वाले लक्षणों की तरह ये लक्षण भी विवंतनिक, ज्वालामुखीय एवं निक्षेपण की क्रियाओं से बनते हैं।

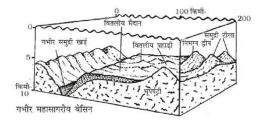
महासागरीय अधस्तल का विभाजन

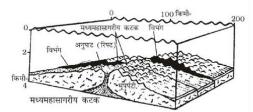
महासागरीय अधस्तल को चार प्रमुख भागों में बाँटा जा सकता है- (i) महाद्वीपीय शेल्फ़ (ii) महाद्वीपीय ढाल (iii) गहरे समुद्री मैदान तथा (iv) महासागरीय गभीर। इस विभाजन के अतिरिक्त महासागरीय तली पर कुछ बड़े तथा छोटे उच्चावच संबंधी लक्षण पाए जाते हैं, जैसे- कटकें, पहाड़ियाँ, समुद्री टीला, निमग्न द्वीप, खाइयाँ व खड़ आदि।

महाद्वीपीय शेल्फ

महाद्वीपीय शेल्फ़, प्रत्येक महाद्वीप का विस्तृत सीमांत होता है, जो अपेक्षाकृत उथले समुद्रों तथा खाड़ियों से घिरा होता है। यह महासागर का सबसे उथला भाग होता है, जिसकी औसत प्रवणता । डिग्री या उससे भी कम होती है। यह शेल्फ अत्यंत तीव्र ढाल पर समाप्त होता है


+


भौतिक भूगोल के मूल सिद्धांत


जिसे शेल्फ़ अवकाश कहा जाता है।

महाद्वीपीय शेल्फ़ों की चौड़ाई एक महासागर से दूसरे
महासागर में भिन्न होती है। महाद्वीपीय शेल्फ़ों की औसत
चौड़ाई 80 किलोमीटर होती है। कुछ सीमांतों के साथ
शेल्फ़ नहीं होते अथवा अत्यंत संकीर्ण होते हैं जैसे कि
चिली के तट तथा सुमात्रा के पश्चिमी तट इत्यादि पर।
इसके विपरीत आकर्टिक महासागर में साइबेरियन शेल्फ़
विश्व में सबसे बड़ा है जिसकी चौड़ाई 1,500 किलोमीटर
है। शेल्फ़ की गहराई भी भिन्न भिन्न होती है। कुछ क्षेत्रों
में यह 30 मीटर और कुछ क्षेत्रों में 600 मीटर गहरी
होती है।

महाद्वीपीय शेल्फ़ों पर अवसादों की मोटाई भी अलग-अलग होती है। ये अवसाद भूमि से नदियों, हिमनदियों तथा

चित्र 13.2 : महासागरीय अधस्तल के उच्चावच

पवन द्वारा लाए जाते हैं और तरंगों तथा धाराओं द्वारा वितरित किए जाते हैं। महाद्वीपीय शेल्फ़ों पर लंबे समय तक प्राप्त स्थूल तलछटी अवसाद जीवाश्मी ईंधनों के म्रोत बनते हैं।

महाद्वीपीय ढाल

महाद्वीपीय ढाल महासागरीय बेसिनों और महाद्वीपीय शेल्फ़ को जोड़ती है। इसकी शुरुआत वहाँ होती है, जहाँ महाद्वीपीय शेल्फ़ की तली तीव्र ढाल में परिवर्तित हो जाती है। ढाल वाले प्रदेश की प्रवणता 2 से 5 डिग्री के बीच होती है। ढाल वाले प्रदेश की गहराई 200 मीटर एवं 3,000 मीटर के बीच होती है। ढाल का किनारा महाद्वीपों के समाप्ति को इंगित करता है। इसी प्रदेश में कैनियन (गभीर खड्ड) एवं खाइयाँ दिखाई देते हैं।

गभीर सागरीय मैदान

गभीर सागरीय मैदान महासागरीय बेसिनों के मंद ढाल वाले क्षेत्र होते हैं। ये विश्व के सबसे चिकने तथा सबसे सपाट भाग हैं। इनकी गहराई 3,000 से 6,000 मीटर के बीच होती है। ये मैदान महीन कणों वाले अवसादों जैसे मृत्तिका एवं गाद से ढके होते हैं।

महासागरीय गर्त

ये महासागरों के सबसे गहरे भाग होते हैं। ये गर्त अपेक्षाकृत खड़े किनारों वाले संकीर्ण बेसिन होते हैं। अपने चारों ओर की महासागरीय तली की अपेक्षा ये 3 से 5 किमी॰ तक गहरे होते हैं। ये महाद्वीपीय ढाल के आधार तथा द्वीपीय चापों के पास स्थित होते हैं एवं सिक्रिय ज्वालामुखी तथा प्रबल भूकंप वाले क्षेत्रों से संबंधित होते हैं। यही कारण है कि ये प्लेटों के संचलन के अध्ययन के लिए काफ़ी महत्वपूर्ण हैं। अभी तक लगभग 57 गर्तों को खोजा गया है, जिनमें से 32 प्रशांत महासागर में, 19 अटलांटिक महासागर में एवं 6 हिंद महासागर में हैं।

उच्चावच की लघु आकृतियाँ

ऊपर बताए गए महासागरीय अधस्तल के प्रमुख उच्चावचों के अतिरिक्त कुछ लघु किंतु महत्वूपर्ण आकृतियाँ महासागरों के विभिन्न भागों में प्रमुखता से पाई जाती हैं। महासागरीय जल

मध्य-महासागरीय कटक

एक मध्य-महासागरीय कटक पर्वतों की दो शृंखलाओं से बना होता है, जो एक विशाल अवनमन द्वारा अलग किए गए होते हैं। इन पर्वत शृंखलाओं के शिखर की ऊँचाई 2,500 मीटर तक हो सकती है तथा इनमें से कुछ समुद्र की सतह तक भी पहुँच सकती हैं इसका उदाहरण आईसलैंड है जो मध्य अटलांटिक कटक का एक भाग है।

समुद्री टीला

यह नुकीले शिखरों वाला एक पर्वत है, जो समुद्री तली से ऊपर की ओर उठता है, किंतु महासागरों के सतह तक नहीं पहुँच पाता। समुद्री टीले ज्वालामुखी के द्वारा उत्पन्न होते हैं। ये 3,000 से 4,500 मीटर ऊँचे हो सकते हैं। एम्पेरर समुद्री टीला, जो प्रशांत महासागर में हवाई द्वीपसमूहों का विस्तार है इसका एक अच्छा उदाहरण है।

सबसे सपाट जलमग्न कैनियन

ये गहरी घाटियाँ होती हैं। जिनमें से कुछ की तुलना कोलोरेडो नदी की ग्रैण्ड कैनियन से की जा सकती है। कई बार ये बड़ी निदयों के मुहाने से आगे की ओर विस्तृत होकर महाद्वीपीय शेल्फ़ व ढालों को आर-पार काटती नजर आती है। हडसन कैनियन विश्व का सबसे अधिक जाना माना कैनियन है।

निमग्न द्वीप

यह चपटे शिखर वाले समुद्री टीले है। इन चपटे शिखर वाले जलमग्न पर्वतों के बनने की अवस्थाएँ क्रमिक अवतलन के साक्ष्यों द्वारा प्रदर्शित होती हैं। अकेले प्रशांत महासागर में अनुमानत: 10,000 से अधिक समुद्री टीले एवं निमग्न द्वीप उपस्थित हैं।

प्रवाल द्वीप

ये उष्ण कटिबंधीय महासागरों में पाए जाने वाले प्रवाल भित्तियों से युक्त निम्न आकार के द्वीप हैं जो कि गहरे अवनमन को चारों ओर से घेरे हुए होते हैं। यह समुद्र (अनूप) का एक भाग हो सकता है या कभी-कभी ये साफ, खारे या बहुत अधिक जल को चारों तरफ़ से घिरे रहते हैं।

महासागरीय जल का तापमान

इस खंड में विभिन्न महासागरों में तापमान की स्थानिक एवं ऊर्ध्वाधर भिन्नताओं के बारे में बताया गया है। महासागरीय जल भूमि की तरह सौर ऊर्जा के द्वारा गर्म होते हैं। स्थल की तुलना में जल के तापन व शीतलन की प्रक्रिया धीमी होती है।

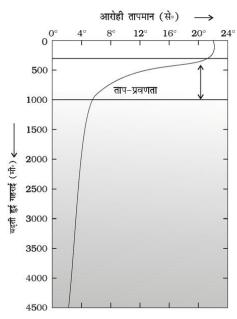
121

तापमान वितरण को प्रभावित करने वाले कारक

महासागरीय जल के तापमान वितरण को प्रभावित करने वाले कारक हैं-

- (i) अक्षांश ध्रुवों की ओर प्रवेशी सौर्य विकिरण की मात्रा घटने के कारण महासागरों के सतही जल का तापमान विषुवत् वृत्त से ध्रुवों की ओर घटता चला जाता है।
- (ii) स्थल एवं जल का असमान वितरण उत्तरी गोलार्ध के महासागर दक्षिणी गोलार्ध के महासागरों की अपेक्षा स्थल के बहुत बड़े भाग से जुड़े होने के कारण अधिक मात्रा में ऊष्मा प्राप्त करते हैं।
- (iii) सनातन पवनें स्थल से महासागरों की तरफ बहने वाली पवनें महासागरों के सतही गर्म जल को तट से दूर धकेल देती हैं, जिसके परिणामस्वरूप नीचे का ठंडा जल ऊपर की ओर आ जाता है। परिणामस्वरूप, तापमान में देशांतरीय अंतर आता है। इसके विपरीत, अभितटीय पवनें गर्म जल को तट पर जमा कर देती हैं और इससे तापमान बढ जाता है,
- (iv) महासागरीय धाराएँ गर्म महासागरीय धाराएँ ठंडे क्षेत्रों में तापमान को बढ़ा देती हैं, जबिक ठंडी धाराएँ गर्म महासागरीय क्षेत्रों में तापमान को घटा देती हैं। गल्फ स्ट्रीम (गर्म धारा) उत्तर अमरीका के पूर्वी तट तथा यूरोप के पश्चिमी तट के तापमान को बढ़ा देती है, जबिक लेब्नेडोर धारा (ठंडी धारा) उत्तर अमरीका के उत्तर-पूर्वी तट के नज़दीक के तापमान को कम कर देती हैं।

ये सभी कारक महासागरीय धाराओं के तापमान को स्थानिक रूप से प्रभावित करते हैं। निम्न अक्षांशों में स्थित परिवेष्टित समुद्रों का तापमान खुले समुद्रों की अपेक्षा अधिक होता है, जबिक उच्च अक्षांशों में स्थित परिवेष्टित समुद्रों का तापमान खुले समुद्रों की अपेक्षा कम होता है।


Downloaded from https://www.studiestoday.com

+

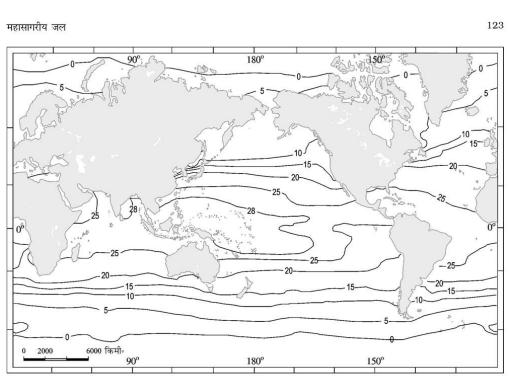
भौतिक भूगोल के मूल सिद्धांत

तापमान का ऊर्ध्वाधर तथा क्षेतिज वितरण

महासागरीय जल की तापीय-गहराई का पाश्वीचत्र यह दिखाता है कि बढ़ती हुई गहराई के साथ तापमान कैसे घटता है। पाश्वीचत्र महासागर के सतही जल एवं गहरी परतों के बीच सीमा क्षेत्र को दर्शाता है। यह सीमा समुद्री

चित्र 13.3 : ताप प्रवणता (थर्मोक्लाईन)

सतह से लगभग 100 से 400 मीटर नीचे प्रारंभ होती है एवं कई सौ मीटर नीचे तक जाती है (चित्र 13.3)। वह सीमा क्षेत्र जहाँ तापमान में तीव्र गिरावट आती है, ताप प्रवणता (थर्मोक्लाईन) कहा जाता है। जल के कुल आयतन का लगभग 90 प्रतिशत गहरे महासागर में ताप प्रवणता (थर्मोक्लाईन) के नीचे पाया जाता है। इस क्षेत्र में तापमान 0 डिग्री सेल्सियस पहुँच जाता है।


मध्य एवं निम्न अक्षांशों में महासागरों के तापमान की संरचना को सतह से तली की ओर तीन परतों वाली प्रणाली के रूप में समझाया जा सकता है।

पहली परत गर्म महासागरीय जल की सबसे ऊपरी परत होती है जो लगभग 500 मीटर मोटी होती है और इसका तापमान 20 डिग्री से॰ से 25 डिग्री से॰ के बीच होता है। उष्ण कटिबंधीय क्षेत्रों में, यह परत पूरे वर्ष उपस्थित होती है, जबिक मध्य अक्षांशों में यह केवल ग्रीष्म ऋतु में विकसित होती है। दूसरी परत जिसे ताप प्रवणता (थर्मोक्लाईन) परत कहा जाता है, पहली परत के नीचे स्थित होती है। इसमें गहराई के बढ़ने के साथ तापमान में तीव्र गिरावट आती है। यहाँ थर्मोक्लाईन की मोटाई 500 से 1,000 मीटर तक होती है।

तीसरी परत बहुत अधिक ठंडी होती है तथा गभीर महासागरीय तली तक विस्तृत होती है। आर्कटिक एवं अंटार्कटिक वृत्तों में, सतही जल का तापमान 0 डिग्री से॰ के निकट होता है, और इसलिए गहराई के साथ तापमान में बहुत कम परिवर्तन होता है। यहाँ ठंडे पानी की केवल एक ही परत पाई जाती है जो सतह से गभीर महासागरीय तली तक विस्तत होती है।

महासागरों की सतह के जल का औसत तापमान लगभग 27 डिग्री से॰ होता है, और यह विषवत् वृत्त से ध्रुवों की ओर क्रमिक ढंग से कम होता जाता है। बढ्ते हुए अक्षांशों के साथ तापमान के घटने की दर सामान्यत: प्रति अक्षांश 0.5 डिग्री से॰ होती है। औसत तापमान 20 डिग्री अक्षांश पर लगभग 22 डिग्री से॰, 40 डिग्री अक्षांश पर 14 डिग्री से॰ तथा ध्रुवों के नज़दीक 0 डिग्री से॰ होता है। उत्तरी गोलार्ध के महासागरों का तापमान दक्षिणी गोलार्ध की अपेक्षा अधिक होता है। उच्चतम तापमान विषवत् वृत्त पर नहीं बल्कि, इससे कुछ उत्तर की तरफ़ दर्ज किया जाता है। उत्तरी एवं दक्षिणी गोलार्ध का औसत वार्षिक तापमान क्रमश: 19 डिग्री से॰ तथा 16 डिग्री से॰ के आस-पास होता है। यह भिन्नता उत्तरी एवं दक्षिणी गोलाधों में स्थल एवं जल के असमान वितरण के कारण होती है। चित्र 13.4 में महासागरीय सतह के तापमान के स्थानिक प्रारूप को दिखाया गया है।

यह तथ्य भली भांति जाना जाता है कि महासागरों का उच्चतम तापमान सदैव उनकी ऊपरी सतहों पर होता है, क्योंकि वे सूर्य की ऊष्मा को प्रत्यक्ष रूप से प्राप्त करते हैं और यह ऊष्मा महासागरों के निचले भागों में संवहन की प्रक्रिया से पारेषित होती है। परिणामस्वरूप गहराई के साथ-साथ तापमान में कमी आने लगती है, लेकिन तापमान के घटने की यह दर सभी जगह समान नहीं होती। 200 मीटर की गहराई तक तापमान बहुत तीव्र गित से गिरता है तथा उसके बाद तापमान के घटने की दर कम होती जाती है।

चित्र 13.4 : महासागरों की सतह के तापमान (से॰) का स्थानिक प्रतिरूप

महासागरीय जल की लवणता

चाहे वर्षा का जल हो या महासागरों का, प्रकृति में उपस्थित सभी जलों में खनिज लवण घुले हुए होते हैं। लवणता वह शब्द है जिसका उपयोग समुद्री जल में घुले हुए नमक की मात्रा को निर्धारित करने में किया जाता है (सारणी 13.4)। इसका परिकलन 1,000 ग्राम॰ (एक किलोग्राम) समुद्री जल में घुले हुए नमक (ग्राम में) की मात्रा के द्वारा किया जाता है। इसे प्राय: प्रति 1,000 भाग (‰) या PPT के रूप में व्यक्त किया जाता है। लवणता समुद्री जल का महत्वपूर्ण गुण है। 24.7‰ की लवणता को खारे जल को सीमांकित करने का उच्च सीमा माना गया है।

महासागरीय लवणता को प्रभावित करने वाले कारक

(i) महासागरों की सतह के जल की लवणता मुख्यत: वाष्पीकरण एवं वर्षण पर निर्भर करती है। (ii) तटीय क्षेत्रों में सतह के जल की लवणता निदयों के द्वारा लाए

सारणी 13.4 समुद्री जल में घुले हुए नमक (प्रति किलोग्राम जल में नमक का ग्राम)

	1778.00 10 121.404.511 1100 15.512.1016.0
क्लोरीन	18.97
सोडियम	10.47
सल्फेट	2.65
मैग्नेशियम	1.28
कैल्शियम	0.41
पोटैशियम	0.38
बाईकार्बोनेट	0.14
ब्रोमीन	0.06
बोरेट	0.02
स्ट्रांटियम	0.01

गए ताजे जल के द्वारा तथा ध्रुवीय क्षेत्रों में बर्फ के जमने एवं पिघलने की क्रिया से सबसे अधिक प्रभावित होती है। (iii) पवन भी जल को एक क्षेत्र से दूसरे क्षेत्र में स्थानांतरित करके लवणता को प्रभावित करती है। (iv) महासागरीय धाराएँ भी लवणता में भिन्नता उत्पन्न करने में सहयोग करती हैं। जल की लवणता, तापमान एवं

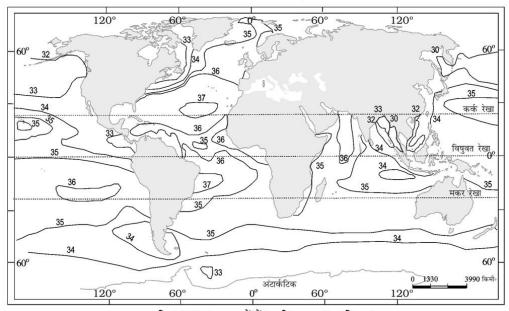
भौतिक भूगोल के मूल सिद्धांत

घनत्व परस्पर संबंधित होते हैं। इसलिए, तापमान अथवा घनत्व में किसी भी प्रकार का परिवर्तन किसी क्षेत्र की लवणता को प्रभावित करता है।

उच्चतम लवणता वाले क्षेत्र

- (i) मृत सागर में (238‰)
- (ii) टर्की की वॉन झील (330%)
- (iii) ग्रेट साल्ट झील (220‰)

लवणता का क्षैतिज वितरण


सामान्य खुले महासागर की लवणता 33‰ से 37‰ के बीच होती है। चारों तरफ़ स्थल से घिरे लाल सागर में यह 41‰ तक होती हैं, जबिक आर्कटिक एवं ज्वार नद मुख में मौसम के अनुसार लवणता 0 से 35‰ के बीच पाई जाती है। गर्म तथा शुष्क क्षेत्रों में, जहाँ वाष्पीकरण उच्च होता है कभी-कभी वहाँ की लवणता 70‰ तक पहुँच जाती है।

प्रशांत महासागर के लवणता में भिन्नता मुख्यत: इसके आकार एवं बहुत अधिक क्षेत्रीय विस्तार के कारण है। उत्तरी गोलार्ध के पश्चिमी भागों में लवणता 35‰ में से कम होकर 31‰ हो जाती है, क्योंकि आर्कटिक क्षेत्र का पिघला हुआ जल वहाँ पहुँचता है। इसी प्रकार 15° से 20° दक्षिण के बाद यह तक 33‰ तक घट जाती है।

अटलांटिक महासागर की औसत लवणता 36% के लगभग है। उच्चतम लवणता 15° से 20° अक्षांश के बीच दर्ज की गई है। अधिकतम लवणता 20°N एवं 30°N तथा 20°W से 60°W के बीच पाई जाती है। यह उत्तर की ओर क्रमिक रूप से घटती जाती है।

उच्च अक्षांश में स्थित होने के बावजूद उत्तरी सागर में उत्तरी अटलांटिक प्रवाह के द्वारा लाए गए अधिक लवणीय जल के कारण अधिक लवणता पाई जाती है। बाल्टिक समुद्र की लवणता कम होती है, क्योंकि इसमें बहुत अधिक मात्रा में निदयों का पानी प्रवेश करता है। भूमध्यसागर की लवणता उच्च वाष्पीकरण के कारण अधिक होती है। काले सागर की लवणता निदयों के द्वारा अधिक मात्रा में लाए जाने वाले ताजे जल के कारण कम होती है।

हिंद महासागर की औसत लवणता 35‰ है। बंगाल की खाड़ी में गंगा नदी के जल के मिलने से लवणता

चित्र 13.5 : महासागरों में सतही लवणता का वितरण

महासागरीय जल 125

की प्रवृत्ति कम पाई जाती है। इसके विपरीत, अरब सागर की लवणता उच्च वाष्पीकरण एवं ताज़े जल की कम प्राप्ति के कारण अधिक है। चित्र 13.5 विश्व के महासागरों की लवणता को दर्शाता है।

लवणता का ऊर्ध्वाधर वितरण

गहराई के साथ लवणता में परिवर्तन आता है, लेकिन इसमें परिवर्तन समुद्र की स्थिति पर निर्भर करता है। सतह की लवणता जल के बर्फ या वाष्प के रूप में परिवर्तित हो जाने के कारण बढ़ जाती है या ताज़े जल के मिल जाने से घटती है, जैसा कि नदियों के द्वारा होता है। गहराई में लवणता लगभग नियत होती है, क्योंकि वहाँ किसी प्रकार से पानी का 'हास' या नमक की मात्रा में 'वृद्धि' नहीं होती। महासागरों के सतही क्षेत्रों एवं गहरे क्षेत्रों के बीच लवणता में अंतर स्पष्ट होता है। कम लवणता वाला जल उच्च लवणता व घनत्व वाले जल के ऊपर स्थित होता है। लवणता साधारणत: गहराई के साथ बढ़ती है तथा एक स्पष्ट क्षेत्र, जिसे हैलोक्लाईन कहा जाता है, में यह तीव्रता से बढ़ती है। लवणता समुद्री जल के घनत्व को प्रभावित करती है तथा महासागरीय जल के स्तरीकरण को प्रभावित करता है। यदि अन्य कारक स्थिर रहें तो समुद्री जल की बढ़ती लवणता उसके घनत्व को बढ़ाती है। उच्च लवणता वाला समुद्री जल, प्राय: कम लवणता वाले जल के नीचे बैठ जाता है। इससे लवणता का स्तरीकरण हो जाता है।

अभ्यास_

1. बहुवैकल्पिक प्रश्न :

- (i) उस तत्त्व की पहचान करें जो जलीय चक्र का भाग नहीं है।
 - (क) वाष्पीकरण
- (ख) वर्षण

- (ग) जलयोजन
- (घ) संघनन
- (ii) महाद्वीपीय ढाल की औसत गहराई निम्नलिखित के बीच होती है।
 - (क) 2-20 मीटर
- (ख) 20-200 मीटर
- (ग) 200-2,000 मीटर
- (घ) 2,000-20,000 मीटर
- (iii) निम्नलिखित में से कौन सी लघु उच्चावच आकृति महासागरों में नहीं पाई जाती है?
 - (क) समुद्री टीला
- (ख) महासागरीय गभीर

- (ग) प्रवाल द्वीप
- (घ) निमग्न द्वीप
- (v) लवणता को प्रति समुद्री जल में घुले हुए नमक (ग्राम) की मात्रा से व्यक्त किया जाता है-
 - (क) 10 ग्राम

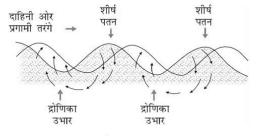
- (ख) 100 ग्राम
- (ग) 1,000 ग्राम
- (घ) 10,000 ग्राम
- (iv) निम्न में से कौन सा सबसे छोटा महासागर है?
 - (क) हिंद महासागर
- (ख) अटलांटिक महासागर
- (ग) आर्कटिक महासागर
- (घ) प्रशांत महासागर

2. निम्नलिखित प्रश्नों के उत्तर लगभग 30 शब्दों में दीजिए :

- (i) हम पृथ्वी को नीला ग्रह क्यों कहते हैं?
- (ii) महाद्वीपीय सीमांत क्या होता है?
- (iii) विभिन्न महासागरों के सबसे गहरे गर्तों की सूची बनाइये।
- (iv) तापप्रवणता क्या है?

+126 भौतिक भूगोल के मूल सिद्धांत (v) समुद्र में नीचे जाने पर आप ताप की किन परतों का सामना करेंगे? गहराई के साथ तापमान में भिन्नता क्यों आती है? (vi) समुद्री जल की लवणता क्या है? 3. निम्नलिखित प्रश्नों के उत्तर लगभग 150 शब्दों में दीजिए : (i) जलीय चक्र के विभिन्न तत्व किस प्रकार अंतर-संबंधित हैं? (ii) महासागरों के तापमान वितरण को प्रभावित करने वाले कारकों का परीक्षण कीजिए। परियोजना कार्य (i) विश्व की एटलस की सहायता से महासागरीय नितल के उच्चावचों को विश्व के मानचित्र पर (ii) एटलस की सहायता से हिंद महासागर में मध्य महासागरीय कटकों के क्षेत्रों को पहचानिए।

महासागरीय जल संचलन


हासागरीय जल स्थिर न होकर गतिमान है। इसकी भौतिक विशेषताएँ (जैसे- तापमान, खारापन, घनत्व) तथा बाह्य बल (जैसे- सूर्य, चंद्रमा तथा वाय) अपने प्रभाव से महासागरीय जल को गति प्रदान करते हैं। महासागरीय जल में क्षैतिज व ऊर्ध्वाधर दोनों प्रकार की गतियाँ होती हैं। महासागरीय धाराएँ व लहरें क्षैतिज गति से संबंधित हैं। ज्वारभाटा ऊर्ध्वाधर गति से संबंधित है। महासागरीय धाराएँ एक निश्चित दिशा में बहुत बडी मात्रा में जल का लगातार बहाव है। जबिक, तरंगें जल की क्षैतिज गति हैं। धाराओं में जल एक स्थान से दूसरे स्थान पर पहुँचता है, जबिक तरंगों में जल गित नहीं करता है। लेकिन, तरंग के आगे बढ़ने का क्रम जारी रहता है। ऊर्ध्वाधर गति महासागरों एवं समुद्रों में जल के ऊपर उठने तथा नीचे गिरने से संबंधित है। सूर्य एवं चंद्रमा के आकर्षण के कारण, महासागरीय जल एक दिन में दो बार ऊपर उठते एवं नीचे गिरते हैं। अध:स्तल से ठंडे जल का उत्प्रवाह एवं अवप्रवाह महासागरीय जल के ऊर्ध्वाधर गति के प्रकार हैं।

तरंगें

तरंगें वास्तव में ऊर्जा हैं, जल नहीं, जो कि महासागरीय सतह के आर-पार गित करते हैं। तरंगों में जल कण छोटे वृत्ताकार रूप में गित करते हैं। वायु जल को ऊर्जा प्रदान करती हैं, जिससे तरंगें उत्पन्न होती हैं। वायु के कारण तरंगें महासागर में गित करती हैं तथा ऊर्जा तटरेखा पर निर्मुक्त होती है। सतह जल की गित महासागरों के गहरे तल के स्थिर जल को कदाचित् ही प्रभावित करती है। जैसे ही एक तरंग महासागरीय तट पर पहुँचती है इसकी गित कम हो जाती है। ऐसा गत्यात्मक जल के मध्य

आपस में घर्षण होने के कारण होता है तथा जब जल की गहराई तरंग के तरंगदैर्ध्य के आधे से कम होती है तब तरंग टूट जाते हैं। बड़ी तरंगें खुले महासागरों में पायी जाती हैं। तरंगें जैसे ही आगे की ओर बढ़ती हैं बड़ी होती जाती हैं। तरंगें जैसे ही आगे की ओर बढ़ती हैं बड़ी होती जाती हैं तथा वायु से ऊर्जा को अवशोषित करती हैं। अधिकतर तरंगें वायु के जल की विपरीत दिशा में गित से उत्पन्न होती हैं। जब दो नॉट या उससे कम वाली समीर शांत जल पर बहती हैं, तब छोटी-छोटी उर्मिकाएँ (Ripples) बनती हैं तथा वायु की गित बढ़ने के साथ ही इनका आकार बढ़ता जाता है, जब तक इनके टूटने से सफेद बुलबुले नहीं बन जाते। तट के पास पहुँचने, टूटने तथा सफेद बुलबलों में सफ की भाँति घुलने से पहले तरंगें हजारों कि॰मी॰ की यात्रा करती हैं।

एक तरंग का आकार एवं आकृति उसकी उत्पत्ति को दर्शाता है। युवा तरंगें अपेक्षाकृत ढाल वाली होती हैं तथा संभवत: स्थानीय वायु के कारण बनी होती हैं। कम एवं नियमित गति वाली तरंगों की उत्पत्ति दूरस्थ स्थानों पर होती है, संभवत: दूसरे गोलार्ध में। तरंग के उच्चतम बिंदु का पता वायु की तीव्रता के द्वारा लगाया जाता है, यानि यह कितने समय तक प्रभावी है तथा उस क्षेत्र के

चित्र 14.1 : तरंगों की गति एवं जलीय-अण्

भौतिक भूगोल के मूल सिद्धांत

ऊपर कितने समय से एक ही दिशा में प्रवाहमान है? तरंगें गित करती हैं, क्योंिक वायु जल को प्रवाहित करती है जबिक गुरुत्वाकर्षण बल तरंगों के शिखरों को नीचे की ओर खींचता है। गिरता हुआ जल पहले वाले गर्त को ऊपर की ओर धकेलता है एवं तरंग नये स्थिति में गित करती हैं। तरंगों के नीचे जल की गित वृत्ताकार होती है। यह इंगित करता है कि आती हुई तरंग पर वस्तुओं का वहन आगे तथा ऊपर की ओर होता है एवं लौटती हुई तरंग पर नीचे तथा पीछे की ओर।

तरंगों की विशेषताएँ

तरंग शिखर एवं गर्त (Wave crest and trough)
एक तरंग के उच्चतम एवं निम्नतम बिंदुओं को क्रमश:
शिखर एवं गर्त कहा जाता है।

तरंग की ऊंचाई (Wave height)

यह एक तरंग के गर्त के अध:स्थल से शिखर के ऊपरी भाग तक की ऊर्ध्वाधर दूरी है।

तरंग आयाम (Amplitude)

यह तरंग की ऊँचाई का आधा होता है।

तरंग काल (Wave period)

तरंग काल एक निश्चित बिंदु से गुजरने वाले दो लगातार तरंग शिखरों या गर्तों के बीच का समयान्तराल है।

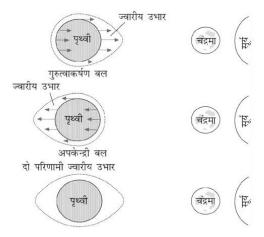
तरंगदैर्ध्य (Wavelength)

यह दो लगातार शिखरों या गर्तों के बीच की क्षैतिज दूरी है।

तरंग गति (Wave speed)

जल के माध्यम से तरंग के गति करने की दर को तरंग गति कहते हैं तथा इसे नॉट में मापा जाता है।

तरंग आवृत्ति


यह एक सेकेंड के समयान्तराल में दिए गए बिंदु से गुजरने वाली तरंगों की संख्या है।

ज्वार-भाटा

चंद्रमा एवं सूर्य के आकर्षण के कारण दिन में एक बार या दो बार समुद्र तल का नियतकालिक उठने या गिरने को ज्वारभाटा कहा जाता है। जलवायु संबंधी प्रभावों (वायु एवं वायुमंडलीय दाब में परिवर्तन) के कारण जल की गति को महोर्मि (Surge) कहा जाता है। महोर्मि ज्वारभाटाओं की तरह नियमित नहीं होते। ज्वारभाटाओं का स्थानिक एवं कालिक रूप से अध्ययन बहुत ही जटिल है, क्योंकि इसके आवृत्ति, परिमाण तथा ऊँचाई में बहुत अधिक भिन्नता होती है।

चंद्रमा के गुरुत्वाकर्षण के कारण तथा कुछ हद तक सूर्य के गुरुत्वाकर्षण द्वारा ज्वारभाटाओं की उत्पत्ति होती है। दूसरा कारक, अपकेंद्रीय बल है, जो कि गुरुत्वाकर्षण को संतुलित करता है। गुरुत्वाकर्षण बल तथा अपकेंद्रीय बल दोनों मिलकर पृथ्वी पर दो महत्वपूर्ण ज्वारभाटाओं को उत्पन्न करने के लिए उत्तरदायी है। चंद्रमा की तरफ वाले पृथ्वी के भाग पर, एक ज्वारभाटा उत्पन्न होता है, जब विपरीत भाग पर चंद्रमा का गुरुत्वीय आकर्षण बल उसकी दूरी के कारण कम होता है, तब अपकेंद्रीय बल दूसरी तरफ ज्वार उत्पन्न करता है। (चित्र 14.2)

ज्वार उत्पन्न करने वाले बल, इन दो बलों के बीच के अंतर है; यानि चंद्रमा का गुरुत्वीय आकर्षण तथा अपकेंद्र बल। पृथ्वी के धरातल पर, चंद्रमा के निकट

चित्र 14.2 : गुरुत्वाकर्षण बल और ज्वारभाटा के मध्य संबंध

महासागरीय जल संचलन

वाले भागों में अपकेंद्रीयकरण बल की अपेक्षा गुरुत्वाकर्षण बल अधिक होता है और इसिलए यह बल चंद्रमा की ओर ज्वारीय उभार का कारण है। चंद्रमा का गुरुत्वाकर्षण पृथ्वी के दूसरी तरफ कम होता है, क्योंकि यह भाग चंद्रमा से अधिकतम दूरी पर है तथा यहाँ अपकेंद्रीय बल प्रभावशाली होता है। अत: यह चंद्रमा से दूर दूसरा उभार पैदा करता है। पृथ्वी के धरातल पर, क्षैतिज ज्वार उत्पन्न करने वाले बल ऊर्ध्वाधर बलों से अधिक महत्वपूर्ण हैं जिनसे ज्वारीय उभार पैदा होते हैं।

कनाडा में फंडी खाडी के ज्वारभाटा

विश्व का सबसे ऊँचा ज्वारभाटा कनाडा के नवास्कोशिया में स्थित फंडी की खाड़ी में आता है। ज्वारीय उभार की ऊँचाई 15 से 16 मीटर के बीच होती है क्योंकि वहाँ पर दो उच्च ज्वार एवं दो निम्न ज्वार प्रतिदिन आते हैं (लगभग 24 घंटे का समय), अत: एक ज्वार 6 घंटे के भीतर जरूर आता है। अनुमानत: ज्वारीय उभार एक घंटे में लगभग 2.4 मीटर ऊपर उठता है। इसका मतलब यह हुआ कि ज्वार प्रति मिनट 4 से॰मी॰ ज्यादा ऊपर की ओर उठता है। अगर आप समुद्री बीच पर टहलते हुए समुद्री भृगु के किनारे पहुँचे (जो प्राय: वहाँ होते हैं), आप ज्वार देखना न भूलें। अगर आप एक घंटे तक वहाँ हैं, तब आप पाएँगे जहाँ से आपने शुरू किया था, वहाँ पहुँचने के पहले ही पानी आपके सिर के ऊपर होगा।

जहाँ महाद्वीपीय मग्नतट अपेक्षाकृत विस्तृत हैं, वहाँ ज्वारीय उभार अधिक ऊँचाई वाले होते हैं। जब ये ज्वारीय उभार मध्य महासागरीय द्वीपों से टकराते हैं, तो इनकी ऊँचाई में अन्तर आ जाता है। तटों के पास ज्वारनद व खाड़ियों की आकृतियाँ भी ज्वारभाटाओं के तीव्रता को प्रभावित करते हैं। शंक्वाकार खाड़ी ज्वार के परिमाण को आश्चर्यजनक तरीके से बदल देता है। जब ज्वारभाटा द्वीपों के बीच से या खाड़ियों तथा ज्वारनद मुखों में से गुज़रता है, तो उन्हें ज्वारीय धारा कहते हैं।

ज्वारभाटा के प्रकार

ज्वार की आवृत्ति, दिशा एवं गति में स्थानीय व सामयिक भिन्नता पाई जाती है। ज्वारभाटाओं को उनकी बारंबारता 5056.41

129

एक दिन में या 24 घंटे में या उनकी ऊँचाई के आधार पर विभिन्न प्रकारों में वर्गीकृत किया जा सकता है।

आवृत्ति पर आधारित ज्वार-भाटा : (Tides based on frequency)

अर्ध-दैनिक ज्वार (Semi-diurnal): यह सबसे सामान्य ज्वारीय प्रक्रिया है, जिसके अंतर्गत प्रत्येक दिन दो उच्च एवं दो निम्न ज्वार आते हैं। दो लगातार उच्च एवं निम्न ज्वार लगभग समान ऊँचाई की होती हैं।

दैनिक ज्वार (Diurnal tide) : इसमें प्रतिदिन केवल एक उच्च एवं एक निम्न ज्वार होता है। उच्च एवं निम्न ज्वारों की ऊँचाई समान होती है।

मिश्रित ज्वार (Mixed tide): ऐसे ज्वार-भाटा जिनकी ऊँचाई में भिन्नता होती है, उसे मिश्रित ज्वार-भाटा कहा जाता है। ये ज्वार-भाटा सामान्यत: उत्तर अमरीका के पश्चिमी तट एवं प्रशांत महासागर के बहुत से द्वीप समूहों पर उत्पन्न होते हैं।

सूर्य, चंद्रमा एवं पृथ्वी की स्थिति पर आधारित ज्वारभाटा (Spring tides) : उच्च ज्वार की ऊँचाई में भिन्नता पृथ्वी के सापेक्ष सूर्य एवं चंद्रमा के स्थिति पर निर्भर करती है। वृहत् ज्वार एवं निम्न ज्वार इसी वर्ग के अंतर्गत आते हैं।

वृहत् ज्वार (Spring tides) : पृथ्वी के संदर्भ में सूर्य एवं चंद्रमा की स्थिति ज्वार की ऊँचाई को प्रत्यक्ष रूप से प्रभावित करती है। जब तीनों एक सीधी रेखा में होते हैं, तब ज्वारीय उभार अधिकतम होगा। इनको वृहत् ज्वार-भाटा कहा जाता है तथा ऐसा महीने में दो बार होता है-पूर्णिमा के समय तथा दूसरा अमावस्या के समय।

निम्न ज्वार (Neap tides) : सामान्यत: वृहत् ज्वार एवं निम्न ज्वार के बीच सात दिन का अंतर होता है। इस समय चंद्रमा एवं सूर्य एक दूसरे के समकोण पर होते हैं तथा सूर्य एवं चंद्रमा के गुरुत्व बल एक दूसरे के विरूद्ध कार्य करते हैं। चंद्रमा का आकर्षण सूर्य के दोगुने से अधिक होते हुए भी, यह बल सूर्य के गुरुत्वाकर्षण के

+

भौतिक भूगोल के मूल सिद्धांत

समक्ष धूमिल हो जाता है। चंद्रमा का आकर्षण अधिक इसलिए है, क्योंकि वह पृथ्वी के अधिक निकट है।

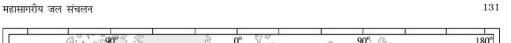
महीने में एक बार जब चंद्रमा पृथ्वी के सबसे नजदीक होता है (उपभू), असामान्य रूप से उच्च एवं निम्न ज्वार उत्पन्न होता है। इस दौरान ज्वारीय क्रम सामान्य से अधिक होता है। दो सप्ताह के बाद, जब चंद्रमा पृथ्वी से अधिकतम दूरी (अपभू) पर होता है, तब चंद्रमा का गुरुत्वाकर्षण बल सीमित होता है तथा ज्वार-भाटा के क्रम उनकी औसत ऊँचाई से कम होते हैं।

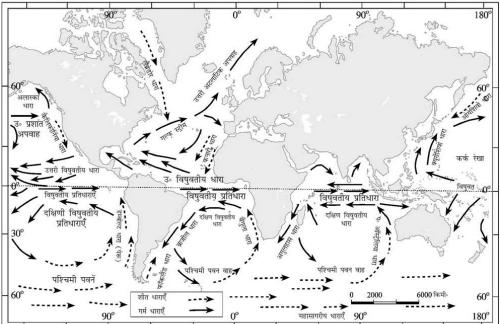
जब पृथ्वी सूर्य के निकटतम होती है, (उपसौर) प्रत्येक साल 3 जनवरी के आस-पास उच्च एवं निम्न ज्वारों के क्रम भी असामान्य रूप से अधिक न्यून होते हैं। जब पृथ्वी सूर्य से सबसे दूर होती है, (अपसौर) प्रत्येक वर्ष 4 जुलाई के आस-पास, ज्वार के क्रम औसत की अपेक्षा बहुत कम होते हैं। उच्च ज्वार व निम्न ज्वार के बीच का समय, जब जलस्तर गिरता है, 'भाटा' (Ebb) कहलाता है। उच्च ज्वार एवं निम्न ज्वार के बीच का समय जब ज्वार ऊपर चढ़ता है, उसे 'बहाव' या 'बाढ' कहा जाता है।

ज्वार-भाटा का महत्व

चूँकि, पृथ्वी, चंद्रमा व सूर्य की स्थिति ज्वार की उत्पत्ति का कारण है और इनकी स्थिति के सही ज्ञान से ज्वारों का पूर्वानुमान लगाया जा सकता है। यह नौसंचालकों व मछुआरों को उनके कार्य संबंधी योजनाओं में मदद करता है। नौसंचालन में ज्वारीय प्रवाह का अत्यधिक महत्व है। ज्वार की ऊँचाई बहुत अधिक महत्वपूर्ण है, खासकर निदयों के किनारे वाले पोताश्रय पर एवं ज्वारनदमुख के भीतर, जहाँ प्रवेश द्वार पर छिछले रोधिका होते हैं, जो कि नौकाओं एवं जहाजों को पोताश्रय में प्रवेश करने से रोकते हैं। ज्वार-भाटा तलछटों के डीसिल्टेशन (Desiltation) में भी मदद करती है तथा ज्वारनदमुख से प्रदूषित जल को बाहर निकालने में भी। ज्वारों का इस्तेमाल विद्युत शक्ति (कनाडा, फ्रांस, रूस एवं चीन में) उत्पन्न करने में भी किया जाता है। एक 3 मैगावाट शक्ति का विद्युत संयत्र पश्चिम बंगाल में संदरवन के दुर्गाद्वानी में लगाया जा रहा है।

महासागरीय धाराएँ


महासागरीय धाराएँ महासागरों में नदी प्रवाह के समान है। ये निश्चित मार्ग व दिशा में जल के नियमित प्रवाह को दर्शाते हैं। महासागरीय धाराएँ दो प्रकार के बलों के द्वारा प्रभावित होती हैं, वे हैं- (i) प्राथमिक बल, जो जल की गित को प्रारंभ करता है, तथा (ii) द्वितीयक बल, जो धाराओं के प्रवाह को नियंत्रित करता है।


प्राथमिक बल, जो धाराओं को प्रभावित करते हैं, वे हैं: (i) सौर ऊर्जा से जल का गर्म होना, (ii) वायु, (iii) गुरुत्वाकर्षण तथा (iv) कोरियोलिस बल (Coriolis force)। सौर ऊर्जा से गर्म होकर जल फैलता है। यही कारण है कि विषवत् वृत्त के पास महासागरीय जल का स्तर मध्य अक्षांशों की अपेक्षा 8 से॰मी॰ अधिक ऊँचा होता है। इसके कारण बहुत कम प्रवणता उत्पन्न होती है तथा जल का बहाव ढाल से नीचे की तरफ़ होता है। महासागर के सतह पर बहने वाली वायू जल को गतिमान करती है। इस क्रम में वायु एवं पानी की सतह के बीच उत्पन्न होने वाला घर्षण बल जल की गति को प्रभावित करता है। गुरुत्वाकर्षण के कारण जल नीचे बैठता है और यह एकत्रित जल दाब प्रवणता में भिन्नता लाता है। कोरियालिस बल के कारण उत्तरी गोलार्ध में जल की गति की दिशा के दाहिनी तरफ़ और दक्षिणी गोलार्ध में बायीं ओर प्रवाहित होता है तथा उनके चारों ओर बहाव को वलय (Gyres) कहा जाता है। इनके कारण सभी महासागरीय बेसिनों में वृहत् वृत्ताकार धाराएँ उत्पन्न होती हैं।

पानी के घनत्व में अंतर, महासागरीय जलधाराओं के कथ्वांधर गित को प्रभावित करता है। अधिक खारा जल निम्न खारे जल की अपेक्षा ज्यादा सघन होता है तथा इसी प्रकार ठंडा जल, गर्म जल की अपेक्षा अधिक सघन होता है। सघन जल नीचे बैठता है, जबिक हल्के जल की प्रवृत्ति उपर उठने की होती है। ठंडे जल वाली महासागरीय धाराएँ तब उत्पन्न होती हैं, जब ध्रुवों के पास वाले जल नीचे बैठते हैं एवं धीरे-धीरे विषुवत् वृत्त की ओर गित करते हैं। गर्म जलधाराएँ विषवत वत्त से सतह के साथ

महासागरीय धाराओं की विशेषताएँ

धाराओं की पहचान उनके प्रवाह से होती है। सामान्यत: धाराएँ सतह के निकट सर्वाधिक शिक्तशाली होती हैं व यहाँ इनकी गित 5 नॉट से अधिक होती है। गहराई में धाराओं की गित धीमी हो जाती है, जो 0.5 नॉट से भी कम होती है। हम किसी धारा की गित को उसके वाह (Drift) के रूप में जानते हैं। वाह को नॉट में मापा जाता है। धारा की शिक्त का संबंध उसकी गित से होता है।

चित्र 14.3 : महासागरों में प्रमुख धाराएँ

होते हुए ध्रुवों की ओर जाती हैं और ठंडे जल का स्थान लेती हैं।

महासागरीय धाराओं के प्रकार

महासागरीय धाराओं को उनकी गहराई के आधार पर ऊपरी या सतही जलधारा (Surface current) व गहरी जलधारा (Deep water currents) में वर्गीकृत किया जा सकता है- (i) ऊपरी जलधारा - महासागरीय जल का 10 प्रतिशत भाग सतही या ऊपरी जलधारा है। यह धाराएँ महासागरों में 400 मी॰ की गहराई तक उपस्थित हैं। (ii) गहरी जलधारा - महासागरीय जल का 90 प्रतिशत भाग गहरी जलधारा के रूप में है। ये जलधाराएँ महासागरों में घनत्व व गुरुत्व की भिन्नता के कारण बहती हैं। उच्च अक्षांशीय क्षेत्रों में, जहाँ तापमान कम होने के कारण घनत्व अधिक होता है, वहाँ गहरी जलधाराएँ बहती हैं, क्योंकि यहाँ अधिक घनत्व के कारण पानी नीचे की तरफ बैठता है।

महासागरीय धाराओं को तापमान के आधार पर गर्म

व ठंडी जलधाराओं में वर्गीकृत किया जाता है। (i) ठंडी जलधाराएँ, ठंडा जल, गर्म जल क्षेत्रों में लाती हैं। ये महाद्वीपों के पश्चिमी तट पर बहती हैं। (ऐसा दोनों गोलार्धों में निम्न व मध्य अक्षांशीय क्षेत्रों में होता है) और उत्तरी गोलार्ध के उच्च अक्षांशीय क्षेत्रों में ये जलधाराएँ महाद्वीपों के पूर्वी तट पर बहती हैं। (ii) गर्म जलधाराएँ गर्म जल को ठंडे जल क्षेत्रों में पहुँचाती हैं और प्राय: महाद्वीपों के पूर्वी तटों पर बहती हैं (दोनों गोलार्धों के निम्न व मध्य अक्षांशीय क्षेत्रों में)। उत्तरी गोलार्ध में, ये जलधाराएँ उच्च अक्षांशीय क्षेत्रों में महाद्वीपों के पश्चिमी तट पर बहती हैं।

प्रमुख महासागरीय धाराएँ

प्रमुख महासागरीय धाराएँ प्रचलित पवनों और कोरियालिस प्रभाव से अत्यधिक प्रभावित होती हैं। महासागरीय जलधाराओं का प्रवाह वायुमंडीय प्रवाह से मिलता-जुलता है। मध्य अक्षांशीय क्षेत्रों में, महासागरों पर वायु प्रतिचक्रवात के रूप में बहती है। दक्षिणी गोलार्ध में, यह प्रवाह उत्तरी

132

十

भौतिक भूगोल के मूल सिद्धांत

गोलार्ध की अपेक्षा अधिक स्पष्ट है। महासागरीय धाराएँ भी लगभग इसी के अनुरूप प्रवाहित होती हैं। उच्च अक्षांशीय क्षेत्रों में, वायु प्रवाह मुख्यत: चक्रवात के रूप में होता है और महासागरीय धाराएँ भी इसी का अनुकरण करती हैं। मानसून प्रधान क्षेत्रों में, मानसून पवनों का प्रवाह जलधाराओं के प्रवाह को प्रभावित करता है। निम्न अक्षांशों से बहने वाली गर्म जलधाराएँ कोरियोलिस प्रभाव के कारण, उत्तरी गोलार्ध में अपने बाईं तरफ़ और दक्षिणी गोलार्ध में अपने दायीं तरफ मुड़ जाती हैं।

महासागरीय जलधाराएँ भी वायुमंडलीय प्रवाह की भाँति गर्म अक्षांशों से ऊष्मा को स्थानांतरित करते हैं। आर्कटिक व अंटार्कटिक क्षेत्रों की ठंडी जलधाराएँ उष्ण कटिबंधीय व विषुवतीय क्षेत्रों की तरफ प्रवाहित होती हैं, जबिक यहाँ की गर्म जलधाराएँ ध्रुवों की तरफ जाती हैं। विभिन्न महासागरों की प्रमुख जलधाराओं को मानचित्र 14.3 में दर्शाया गया है।

प्रशांत, अटलांटिक और हिंद महासागर में बहने वाली धाराओं की सूची बनाइए। प्रचलित पवन धाराओं की गति को किस प्रकार प्रभावित करती है? चित्र 14.3 से कुछ उदाहरण दें। महासागरीय धाराओं के प्रभाव

महासागरीय धाराएँ मानवीय क्रियाओं को प्रत्यक्ष व अप्रत्यक्ष रूप से प्रभावित करती हैं। उष्ण व उपोष्ण कटिबंधीय क्षेत्रों में महाद्वीपों के पश्चिमी तटों पर ठंडी जलधाराएँ बहती हैं (विषुवतीय क्षेत्रों को छोड़कर) उनके औसत तापमान अपेक्षाकृत कम होते हैं व साथ ही दैनिक व वार्षिक तापांतर भी कम होता है। यहाँ कोहरा छा जाता है यद्यपि ये क्षेत्र प्राय: शुष्क हैं। मध्य व उच्च अक्षांशों में महाद्वीपों के पश्चिमी तटों पर गर्म जलधाराएँ बहती हैं जिसके कारण वहाँ एक अलग (अनुठी) जलवाय पाई जाती है। इन क्षेत्रों में ग्रीष्मऋतु अपेक्षाकृत कम गर्म और शीतऋतु अपेक्षाकृत मृदु होती है। यहाँ वार्षिक तापान्तर भी कम होता हैं उष्ण व उपोष्ण कटिबन्धीय क्षेत्रों में गर्म जलधाराएँ महाद्वीपों के पूर्वी तटों के सामान्तर बहती है। इसी कारण यहाँ जलवायु गर्म व आर्द्र (वर्षा कारक) होती हैं। ये क्षेत्र उपोष्ण कटिबन्ध के प्रतिचक्रवातीय क्षेत्रों के पश्चिमी किनारों पर स्थित हैं। जहाँ गर्म व ठंडी जलधाराएँ मिलती हैं वहाँ ऑक्सीजन की आपूर्ति प्लैंकटन बढोतरी में सहायक होती है जो मछलियों का प्रमुख भोजन है। संसार के प्रमुख मत्स्य क्षेत्र इन्हीं क्षेत्रों (जहाँ गर्म व ठंडी जलधाराएँ मिलती हैं) में पाए जाते हैं।

.अभ्यास.

बहवैकिल्पक प्रश्न :

- (i) महासागरीय जल की ऊपर एवं नीचे गति किससे संबंधित है?
 - (क) ज्वार

(ख) तरंग

(ग) धाराएँ

- (घ) ऊपर में से कोई नहीं
- (ii) वृहत ज्वार आने का क्या कारण है?
 - (क) सूर्य और चंद्रमा का पृथ्वी पर एक ही दिशा में गुरुत्वाकर्षण बल
 - (ख) सूर्य और चंद्रमा द्वारा एक दूसरे की विपरीत दिशा से पृथ्वी पर गुरुत्वाकर्षण बल
 - (ग) तटरेखा का दंतुरित होना
 - (घ) उपर्युक्त में से कोई नहीं
- (iii) पृथ्वी तथा चंद्रमा की न्यूनतम दूरी कब होती है?
 - (क) अपसौर

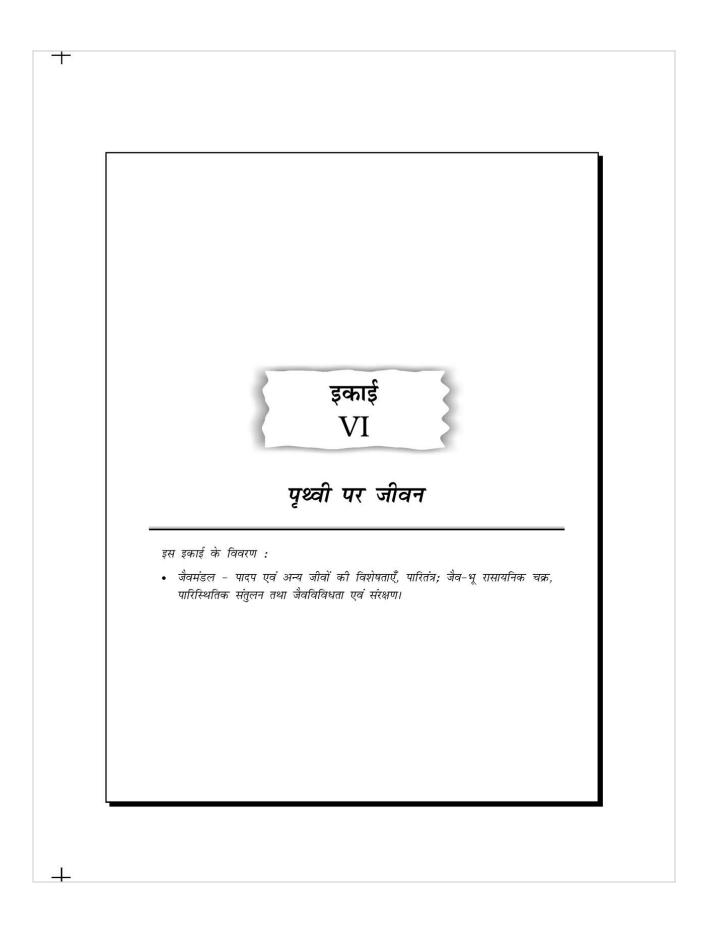
(ख) उपसौर

(ग) उपभू

- (घ) अपभू
- (iv) पृथ्वी उपसौर की स्थिति कब होती है?
 - (क) अक्टूबर

(ख) जुलाई

(ग) सितंबर


(घ) जनवरी

महासागरीय जल संचलन

- 2. निम्नलिखित प्रश्नों के उत्तर लगभग 30 शब्दों में दीजिए :
 - (i) तरंगें क्या हैं?
 - (ii) महासागरीय तरंगें ऊर्जा कहाँ से प्राप्त करती हैं?
 - (iii) ज्वार-भाटा क्या है?
 - (iv) ज्वार-भाटा उत्पन्न होने के क्या कारण हैं?
 - (v) ज्वार-भाटा नौसंचालन से कैसे संबंधित है?
- 3. निम्नलिखित प्रश्नों के उत्तर लगभग 150 शब्दों में दीजिए :
 - (i) जल धाराएँ तापमान को कैसे प्रभावित करती हैं? उत्तर पश्चिम यूरोप के तटीय क्षेत्रों के तापमान को ये किस प्रकार प्रभावित करते हैं?
 - (ii) जल धाराएँ कैसे उत्पन्न होती हैं?

परियोजना कार्य

- (i) किसी झील या तालाब के पास जाएँ तथा तरंगों की गति का अवलोकन करें। एक पत्थर फेंकें एवं देखें कि तरंगें कैसे उत्पन्न होती हैं।
- (ii) एक ग्लोब या मानचित्र लें, जिसमें महासागरीय धाराएँ दर्शाई गई हैं, यह भी बताएँ िक क्यों कुछ जलधाराएँ गर्म हैं व अन्य ठंडी। इसके साथ ही यह भी बताएँ िक निश्चित स्थानों पर यह क्यों विक्षेपित होती हैं। कारणों का विवेचन करें।

पृथ्वी पर जीवन

35 SERIE

स पुस्तक के विभिन्न अध्यायों से अब तक आप पर्यावरण के तीन मुख्य परिमंडल-स्थलमंडल, जलमंडल व वायुमंडल के विषय में जान चुके हैं। आप जानते हैं कि पृथ्वी पर रहने वाले सभी जीवधारी, जो मिलकर जैवमंडल (Biosphere) बनाते हैं – ये पर्यावरण के दूसरे मंडलों के साथ पारस्परिक क्रिया करते हैं। जैवमंडल में पृथ्वी पर पाए जाने वाले सभी जीवित घटक शामिल हैं। जैवमंडल सभी पौधों, जंतुओं, प्राणियों (जिसमें पृथ्वी पर रहने वाले सुक्ष्म जीव भी हैं) और उनके चारों

पृथ्वी पर जीवन लगभग हर जगह पाया जाता है। जीवधारी विषुवत् वृत्त से ध्रुवों तक, समुद्री तल से हवा में कई किलोमीटर तक, सूखी घाटियों में, बर्फीले जल में, जलमग्न भागों में, व हजारों मीटर गहरे धरातल के भौम जल तक में पाए जाते हैं।

तरफ के पर्यावरण के पारस्परिक अंतर्संबंध से बना है। अधिकतर जीव स्थलमंडल पर ही मिलते हैं परंतु कुछ जलमंडल और वायुमंडल में भी रहते हैं। बहुत से ऐसे जीव भी हैं, जो एक मंडल से दूसरे मंडल में स्वतंत्र रूप से विचरण करते हैं।

जैवमंडल और इसके घटक पर्यावरण के बहुत महत्त्वपूर्ण तत्त्व हैं। ये तत्त्व अन्य प्राकृतिक घटकों जैसे -भूमि, जल व मिट्टी के साथ पारस्परिक क्रिया करते हैं। ये वायुमंडल के तत्त्वों जैसे -तापमान, वर्षा, आर्द्रता व सूर्य के प्रकाश से भी प्रभावित होते हैं। जैविक घटकों का भूमि, वायु व जल के साथ पारस्परिक आदान-प्रदान जीवों के जीवित रहने, बढ़ने व विकसित होने में सहायक होता है।

पारिस्थितिकी (Ecology)

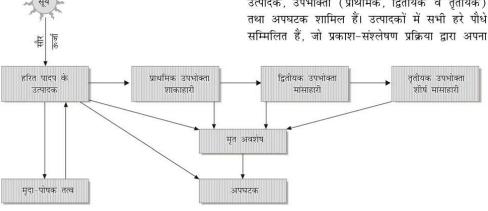
समाचार पत्रों व पत्रिकाओं में आप पारिस्थितिकी व पर्यावरण संबंधी समस्याओं के विषय में पढ़ते होंगे। क्या आपने कभी सोचा है कि 'इकोलॉजी' या पारिस्थितिकी क्या है? जैसािक आप जानते हैं, पर्यावरण- जैविक व अजैविक तत्त्वों के मेल से बना है। यह जानना अत्यंत रोचक है कि संतुलन के लिए विभिन्न जीवधारियों का होना और बने रहना क्यों आवश्यक है? इस संतुलन के बने रहने के लिए भी विविध प्राणियों/जीवधारियों का एक विशेष अनुपात में रहना आवश्यक है, जिससे जैविक व अजैव तत्त्वों में स्वस्थ अंतर्फिया जारी रहे।

पारिस्थितिकी प्रमुख रूप से जीवधारियों के जन्म, विकास, वितरण, प्रवृत्ति व उनके प्रतिकूल अवस्थाओं में भी जीवित रहने से संबंधित है। पारिस्थितिकी केवल जीवधारियों और उनके आपस में संबंध का ही अध्ययन नहीं है। किसी विशेष क्षेत्र में किसी विशेष समृह के जीवधारियों का भूमि, जल अथवा वाय (अजैविक तत्त्वों) से ऐसा अर्तंसंबंध जिसमें ऊर्जा प्रवाह व पोषण शृंखलाएं स्पष्ट रूप से समायोजित हों, उसे पारितंत्र (Ecological system) कहा जाता है। पारिस्थिति के संदर्भ में आवास (habitat) पर्यावरण के भौतिक व रासायनिक कारकों का योग है। विभिन्न प्रकार के पर्यावरण व विभिन्न परिस्थितियों में भिन्न प्रकार के पारितंत्र पाए जाते हैं. जहाँ अलग-अलग प्रकार के पौधे व जीव-जंत विकास क्रम द्वारा उस पर्यावरण के अभ्यस्त हो जाते हैं। इस प्रकरण को पारिस्थितिक अनुकूलन (Ecological adaptation) कहते हैं।

1

भौतिक भूगोल के मूल सिद्धांत

इकोलोजी (ecology) शब्द ग्रीक भाषा के दो शब्दों (Oikos) 'ओइकोस' और (logy) 'लोजी' से मिलकर बना है। ओइकोस का शाब्दिक अर्थ 'घर तथा 'लोजी' का अर्थ विज्ञान या अध्ययन से है। शाब्दिक अर्थानुसार इकोलोजी-पृथ्वी पर पौधों, मनष्यों, जतओं व सक्ष्म जीवाणओं के 'घर- के रूप में अध्ययन है, एक-दुसरे पर आश्रित होने के कारण ही ये एक साथ रहते हैं जर्मन प्राणीशास्त्री अर्नस्ट हैक्कल (Ernst Haeckel). जिन्होंने सर्वप्रथम सन् 1869 में ओइकोलोजी (Oekologie) शब्द का प्रयोग किया, पारिस्थितिकी के ज्ञाता के रूप में जाने जाते हैं। जीवधारियों (जैविक) व अजैविक (भौतिक पर्यावरण) घटकों के पारस्परिक संपर्क के अध्ययन को ही पारिस्थितिकी विज्ञान कहते हैं। अत: जीवधारियों का आपस में व उनका भौतिक पर्यावरण से अंतर्संबंधों का वैज्ञानिक अध्ययन ही पारिस्थितिकी है।


पारितंत्र के प्रकार (Types of Ecosystems)

पारितंत्र मुख्यत: दो प्रकार के हैं: स्थलीय (Terrestrial) पारितंत्र व जलीय (Aquatic) पारितंत्र। स्थलीय पारितंत्र को पुन: 'बायोम' (Biomes) में विभक्त किया जा सकता है। बायोम, पौधों व प्राणियों का एक समुदाय है, जो एक बडे भौगोलिक क्षेत्र में पाया जाता है। पृथ्वी पर

विभिन्न बायोम की सीमा का निर्धारण जलवायु व अपक्षय संबंधी तत्त्व करते हैं। अत: विशेष परिस्थितियों में पादप व जंतुओं के अंतर्सबंधो के कुल योग को 'बायोम' कहते हैं। इसमें वर्षा, तापमान, आर्द्रता व मिट्टी संबंधी अवयव भी शामिल हैं। संसार के कुछ प्रमुख पारितंत्र : वन, घास क्षेत्र, मरुस्थल और टुण्ड्रा (Tundra) पारितंत्र हैं। जलीय पारितंत्र को समुद्री पारितंत्र व ताजे जल के पारितंत्र में बाँटा जाता है। समुद्री पारितंत्र में महासागरीय, ज्वारनदमुख, प्रवाल भित्ति (Coral reef), पारितंत्र सम्मिलित हैं। ताजे जल के पारितंत्र में झीलें, तालाब, सरिताएँ, कच्छ व दलदल (Marshes and bogs) शामिल हैं।

पारितंत्र की कार्य प्रणाली व संरचना (Structure and functions of Ecosystems)

पारितंत्र की संरचना में वहाँ उपलब्ध पौधों व जंतुओं की प्रजातियों का वर्णन सम्मिलित है। यह उनके (प्राणियों व पौधों की प्रजातियों के) इतिहास, वितरण व उनकी संख्या को भी वर्णित करता है। संरचना की दृष्टि से, सभी पारितंत्र में जैविक व अजैविक कारक होते हैं। अजैविक या भौतिक (Abiotic factors) कारकों में तापमान, वर्षा, सूर्य का प्रकाश, आईता, मृदा की स्थिति व अजैविक या अकार्बनिक तत्त्व (कार्बन डाई आक्साइड, जल, नाइट्रोजन, कैल्शियम, फॉस्फोरस, पोटाशियम आदि) सम्मिलित हैं। जैविक कारकों (Biotic factors) में उत्पादक, उपभोक्ता (प्राथमिक, द्वितीयक व तृतीयक) तथा अपघटक शामिल हैं। उत्पादकों में सभी हरे पौधे सम्मिलत हैं जो प्रकाश-संश्लेषण प्रकिया दारा अपना

चित्र 15.1 : परितंत्र की कार्य प्रणाली व संरचना

पृथ्वी पर जीवन

भोजन बनाते हैं। प्रथम श्रेणी के उपभोक्ताओं में शाकाहारी जंतु जैसे- हिरण, बकरी, चूहे और सभी पौधों पर निर्भर जीव शामिल हैं। द्वितीयक श्रेणी के उपभोक्ताओं में सभी माँसाहारी जैसे- साँप, बाघ, शेर आदि शामिल हैं। कुछ माँसाहारी, जो दूसरे माँसाहारी जीवों पर निर्भर हैं, उन्हें चरम स्तर के माँसाहारी (Top carnivores) के रूप में जाना जाता है। जैसे- बाज़ और नेवला आदि। अपघटक, वे हैं, जो मृत जीवों पर निर्भर हैं (जैसे- कौवा और गिद्ध), तथा कुछ अन्य अपघटक, जैसे -बैक्टीरिया और अन्य सूक्ष्म जीवाणु मृतकों को अपघटित कर उन्हें सरल पदार्थों में परिवर्तित करते हैं।

प्राथमिक उपभोक्ता, उत्पादक पर निर्भर हैं, जबिक प्राथमिक उपभोक्ता, द्वितीयक उपभोक्ताओं के भोजन बनते हैं। द्वितीयक उपभोक्ता फिर तृतीयक उपभोक्ताओं के द्वारा खाए जाते हैं। अपघटक प्रत्येक स्तर पर मृतकों पर निर्भर होते हैं। ये अपघटक इन्हें (मृतकों को) विभिन्न पदार्थों, जैसे- कार्बनिक व अकार्बनिक अवयवों और मिट्टी की उर्वरता के लिए पोषक तत्त्वों में परिवर्तित कर देते हैं। पारितंत्र के जीवाणु एक खाद्य - शृंखला से परस्पर जुड़े हुए होते हैं। उदाहरण के लिए - पौधे पर जीवित रहने वाला एक कीड़ा (Beetle) एक मेंढक का भोजन है, जो मेढक साँप का भोजन है और साँप एक बाज द्वारा खा लिया जाता है। यह खाद्य क्रम और इस क्रम से एक स्तर से दूसरे स्तर पर ऊर्जा प्रवाह ही खाद्य शृंखला (Food chain) कहलाती है। खाद्य शृंखला की प्रक्रिया में एक स्तर से दूसरे स्तर पर ऊर्जा के रूपांतरण को ऊर्जा प्रवाह (Flow of energy) कहते हैं। खाद्य शृंखलाएँ पृथक अनुक्रम न होकर एक दूसरे से जुड़ी होती हैं। उदाहरणार्थ - एक चूहा, जो अन्न पर निर्भर है, वह अनेक द्वितीयक उपभोक्ताओं का भोजन है और तृतीयक माँसाहारी अनेक द्वितीयक जीवों से अपने भोजन की पूर्ति करते हैं। इस प्रकार प्रत्येक माँसाहारी जीव एक से अधिक प्रकार के शिकार पर निर्भर है। परिणामस्वरूप खाद्य शृंखलाएँ आसपास में एक-दूसरे से जुड़ी हुई हैं। प्रजातियों के इस प्रकार जुड़े होने (अर्थात् जीवों की खाद्य शृंखलाओं के विकल्प उपलब्ध होने पर) को खाद्य जाल (Food web) कहा जाता है।

सामान्यत: दो प्रकार की खाद्य शृंखलाएँ पाई जाती हैं— चराई खाद्य शृंखला (Grazing food-chain) और अपरद खाद्य शृंखला (Detritus food chain) चराई खाद्य शृंखला पौधों (उत्पादक) से आरंभ होकर माँसाहारी (तृतीयक उपभोक्ता) तक जाती है, जिसमें शाकाहारी मध्यम स्तर पर हैं। हर स्तर पर ऊर्जा का ह्वास होता है, जिसमें श्वसन, उत्सर्जन व विघटन प्रक्रियाएं सम्मिलत हैं। खाद्य शृंखला में तीन से पाँच स्तर होते हैं और हर स्तर पर ऊर्जा कम होती जाती है। अपरद खाद्य शृंखला चराई खाद्य शृंखला से प्राप्त मृत पदार्थों पर निर्भर है और इसमें कार्बनिक पदार्थ का अपघटन सम्मिलत हैं।

बायोम के प्रकार (Types of Biomes)

पिछले अध्ययन से आप जान गए हैं कि 'बायोम' का अर्थ क्या है? आओ, हम अब संसार के कुछ प्रमुख बायोम पहचानें और उन्हें रेखांकित करें। संसार के पाँच प्रमुख बायोम इस प्रकार हैं : वन बायोम, मरुस्थलीय बायोम, घासभूमि बायोम, जलीय बायोम और उच्च प्रदेशीय बायोम। इनकी विशेषताओं का विस्तारपूर्वक वर्णन सारणी 15.1 में वर्णित है।

जैव भू-रासायनिक चक्र (Biogeochemical Cycle)

सूर्य ऊर्जा का मूल म्रोत है। जिसपर सम्पूर्ण जीवन निर्भर है। यही ऊर्जा जैवमंडल में प्रकाश संश्लेषण-क्रिया द्वारा जीवन प्रक्रिया आरंभ करती है, जो हरे पौधों के लिए भोजन व ऊर्जा का मुख्य आधार है। प्रकाश संश्लेषण के दौरान कार्बन डाईऑक्साईड, ऑक्सीजन व कार्बनिक यौगिक में परिवर्तित हो जाती है। धरती पर पहुँचने वाले सूर्याताप का बहुत छोटा भाग (केवल 0.1 प्रतिशत) प्रकाशसंश्लेषण प्रक्रिया में काम आता है। इसका आधे से अधिक भाग पौधे की श्वसन-विसर्जन क्रिया में और शेष भाग अस्थाई रूप से पौधे के अन्य भागों में संचित हो जाता है।

पृथ्वी पर जीवन विविध प्रकार के जीवित जीवों के रूप में पाया जाता है। ये जीवधारी विविध प्रकार के पारिस्थितकीय अंतर्संबंधों पर जीवित हैं। जीवधारी बहलता

138

+

भौतिक भूगोल के मूल सिद्धांत

सारणी 15.1: संसार के बायोम

बायोम	उप-प्रकार	प्रदेश	जलवायु संबंधी विशेषताएँ	मृदा	वनस्पतिजात व प्राणी जात
वन (Forest)	A. उष्ण कटिबंधीय A1. भूमध्यरेखीय A2. पर्णपाती B. शीतोष्ण कटिबंधीय C. बोरियल	A1. भूमध्य रेखा से 10° उत्तर व दक्षिण अक्षांश A2. 10° से 25° उत्तर व दक्षिण अक्षांश B. पूर्वी उत्तरी अमेरिका, उत्तरी-पूर्वी एशिया, पश्चिमी व मध्य यूरोप C. यूरेशिया व उत्तर अमेरिका का उच्च अक्षांशीय भाग- साइबेरिया का कुछ भाग, अलास्का, कनाडा व स्केंडेनेवियन देश।	A1. तापमान 20° से 25° से॰ लगभग एक समान वितरण A2. तापमान 25° से 30° से॰ वर्षा - वार्षिक औसत 1,000 मि॰मी॰ एक ऋतु में B. तापमान 20° से 30° से॰ वर्षा - समान रूप से वितरित - 750 से 1,500 मि.मी. स्पष्ट ऋतुएं तथा असाधारण शीत। C. छोटी आई ऋतु व मध्यम रूप से गर्म ग्रीष्म ऋतु तथा लंबी (वर्षा रहित) शीत ऋतु। वर्षा:मुख्यत: हिमपात के रूप में 400 से 1,000 मि॰मी॰	तत्त्वों की कमी। A2. पोषक तत्त्वों में धनी B. उपजाऊ, अव- घटक जीवों (व व्रूड़ा कर्कट आदि पदार्थों) से भरपूर	A1. असंख्य वृक्षों के झुंड, लंबे व घने वृक्ष। A2. कम घने, मध्यम ऊँचाई के वृक्ष, अधिक प्रजातियों का एक साथ पाया जाना। दोनों में कीट-पतंगे, चमगादड़, पक्षी व स्तनधारी जंतुओं का पाया जाना। B. मध्यम घने चौड़े पत्ते वाले वृक्ष। पौधों की प्रजातियों में कम विविधता - ओक, बीच, मेण्पल आदि सामान्य प्रजातियाँ। गिलहरी, खरगोश, पक्षी, काले भालू, पहाड़ी शेर व स्कंक आदि। C. सदाबहार कोणधारी वन जैसे - पाइन, फर व स्म्रूस आदि। कठफोड़ा, चील, भालू, हिरण, खरगोश, भेंड्वियं व चमगादड़ आदि मुख्य प्राणी।
मरुस्थलीय	 गर्म व उष्ण मरुस्थल अर्धशुष्क मरुस्थल तटीय मरुस्थल शीत मरुस्थल 	मरुस्थली, रूब- एल-खाली। 2. गर्म मरुस्थल के	15 से 35° से॰। 2 से 25° से॰। वर्षा : A से D -50 मि॰मी॰	पोषक तत्त्वों से भरपूर व जैव पदार्थों का बहुत कम या न होना।	1 से 3 न्यून वनस्पति- कुछ बड़े स्तनधारी कीट पंतमें, रंगने वाले जीवधारी व पक्षी। 4. खरगोश, चूहे, हिरण व पृथ्वी पर रहने वाली गिलहरी।
घास भूमि	1. उष्ण कटिबंधीय 2. शीतोष्ण कटिबंधीय (स्टैपी)	क्षेत्र, आस्ट्रेलिया, दक्षिण अमेरिका व भारत	गर्म, उष्ण जलवायु, वर्षा 500 से 1,250 मि.मी.। उष्ण ग्रीष्म व शीत ऋतु। वर्षा : 500 से 900 मि.मी.।	सर्रिभ्रत मृदा व साथ ही ह्यूमस की पतली परत।	घास, पेड़ व लंबी झाड़ियों की अनुपस्थिति। जिराफ, जेबरा, भैंस, चीता, लक्कड़बग्घा, हाथी, चूहे, साँप व अन्य कीड़े आदि जीव। घास, कहीं - कहीं वृक्ष जैसे - ओक व मुलायम

पृथ्वी पर जीवन

बायोम	उप-प्रकार	प्रदेश	जलवायु संबंधी विशेषताएँ	मृदा	वनस्पतिजात व प्राणी जात
जलीय (Acquatic)	 ताजा जल के समुद्री जल के 	झीलें, नदियाँ, सरिताएँ व अन्य आर्द्र भूमि महासागर, प्रवाल- भिति, लैमून व ज्वारनद मुख (Estuaries)	तापमान में विविधता - वायुदाब व आर्द्रता अधिक	 जल : दलदल जल: समुद्री दलदल 	लकड़ी के वृक्ष - विलो आदि। गजेल जेबरा, गेंडे, जंगली घोड़े, शेर, तरह- तरह के पक्षी, कीड़े, साँप आदि जीव-जंतु शैवाल व अन्य जलीय व समुद्री पादप समुदाय व साथ ही पानी में रहने वाली जंतु व प्राणी।
पर्वतीय (Altitudinal)		ऊँची पर्वतीय श्रेणियों के ढाल जैसे - हिमालय एंडीज व रॉकी पर्वत क्षेत्र	तापमान व वषा म भिन्नता -	ढाल - रंगोलिथ से ढके हुए।	पर्णपाती से टुण्ड्रा प्रकार की वनस्पति, ऊँचाई के आधार पर भिन्नता।

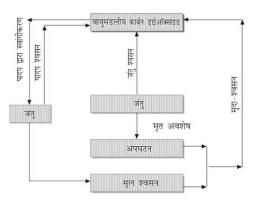
व विविधता में ही जिंदा रह सकते हैं। इसमें (अर्थात्, जीवित रहने की प्रक्रिया में) विधिवत प्रवाह जैसे-ऊर्जा, जल व पोषक तत्त्वों की उपस्थिति सम्मिलित है। इनकी उपलब्धता संसार के विभिन्न भागों में भिन्न है। यह भिन्नता क्षेत्रीय होने के साथ-साथ सामयिक (अर्थात् वर्ष के 12 महीनों में भी भिन्न है) भी है। विभिन्न अध्ययनों से पता चलता है कि पिछले 100 करोड़ वर्षों में वायुमंडल व जलमंडल की संरचना में रासायनिक घटकों का संतुलन लगभग एक जैसा अर्थात् बदलाव रहित रहा है। रासायनिक तत्त्वों का यह संतुलन पौधे व प्राणी ऊतकों से होने वाले चक्रीय प्रवाह के द्वारा बना रहता है। यह चक्र जीवों द्वारा रासायनिक तत्त्वों के अवशोषण से आरंभ होता है और उनके वायु, जल व मिट्टी में विघटन से पुन: आरंभ होता है। ये चक्र मुख्यत: सौर ताप से संचालित होते हैं। जैवमंडल में जीवधारी व पर्यावरण के बीच ये रासायनिक तत्त्वों के चक्रीय प्रवाह जैव भू-रासायनिक चक्र (Biogeochemical cycles) कहे जाते हैं। 'बायो' (Bio) का अर्थ है जीव तथा 'ज्यो' (Geo) का तात्पर्य पृथ्वी पर उपस्थित चट्टानें, मिट्टी, वायु व जल से है। जैव भू-रासायनिक चक्र दो प्रकार के हैं - एक गैसीय (Gaseous cycle) और दूसरा तलछटी चक्र (Sedimentary cycle), गैसीय चक्र

में पदार्थ का मुख्य भंडार/म्रोत वायुमंडल व महासागर हैं। तलछटी चक्र के प्रमुख भंडार पृथ्वी की भूपर्पटी पर पाई जाने वाली मिट्टी, तलछट व अन्य चट्टानें हैं।

जलचक्र (The water cycle)

सभी जीवधारी, वायुमंडल व स्थलमंडल में जल का एक चक्र बनाए रखते हैं, जो तरल, गैस व ठोस अवस्था में है-इसे ही जलीय चक्र कहा जाता है (जलचक्र के लिए अध्याय 13 देखें)।

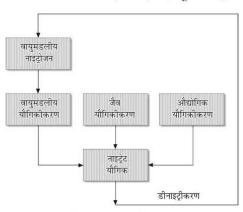
कार्बन चक्र (The carbon cycle)


सभी जीवधारियों में कार्बन पाया जाता है। यह सभी कार्बनिक यौगिक का मूल तत्त्व हैं। जैवमंडल में असंख्य कार्बन यौगिक के रूप में जीवों में विद्यमान हैं। कार्बन चक्र कार्बन डाइऑक्साइड का परिवर्तित रूप है। यह परिवर्तन पौधों में प्रकाश-संश्लेषण प्रक्रिया द्वारा कार्बन डाइ ऑक्साइड के यौगिकीकरण द्वारा आरंभ होता है। इस प्रक्रिया से कार्बोहाइड्रेट्स व ग्लूकोस बनता है, जो कार्बनिक यौगिक जैसे-स्टार्च, सेल्यूलोस, सक्रोज़ (Sucrose) के रूप में पौधों में संचित हो जाता है। कार्बोहाइड्रेट्स का कुछ भाग सीधे पौधों की जैविक क्रियाओं में प्रयोग हो जाता है। इस प्रक्रिया के दौरान

140

+

जल अणुओं (H_2O) के विघटन से ऑक्सीजन उत्पन्न होती है और पौधों की वाष्पोत्सर्जन प्रक्रिया के दौरान भी यह वायुमंडल में पहुंचती हैं।


भौतिक भूगोल के मूल सिद्धांत

नाइट्रोजन चक्र (The nitrogen cycle)

वायुमंडल की संरचना का प्रमुख घटक नाइट्रोजन, वायुमंडलीय गैसों का 79 प्रतिशत भाग है। विभिन्न कार्बनिक यौगिक जैसे- एमिनो एसिड, न्युक्लिक एसिड,

चित्र 15.2 : कार्बन चक्र

विघटन से पौधों के पत्तों व जड़ों द्वारा कार्बन डाईऑक्साइड गैस मुक्त होती है, शेष कार्बोहाइड्रेट्स, जो पौधों की जैविक क्रियाओं में प्रयुक्त नहीं होते, वे पौधों के ऊतकों में संचित हो जाते हैं। ये पौधे या तो शाकाहारियों के भोजन बनते हैं, अन्यथा सूक्ष्म जीवों द्वारा विघटित हो जाते हैं। शाकाहारी उपभोग किये गए कार्बोहाइड्रेटस को कार्बन डाइऑक्साइड में परिवर्तित करते हैं, और श्वसन क्रिया द्वारा वायुमंडल में छोड़ते हैं। इनमें शेष कार्बोहाइड्रेटस का जंतुओं के मरने पर, सूक्ष्म जीव अपघटन करते हैं। सूक्ष्म जीवाणुओं द्वारा कार्बोहाइड्रेट्स ऑक्सीजन प्रक्रिया द्वारा कार्बन डाइऑक्साइड में परिवर्तित होकर पुन: वायुमंडल में आ जाती है (चित्र 15.2)।

चित्र 15.3 : नाइट्रोजन चक्र

ऑक्सीजन चक्र (The oxygen cycle)

विटामिन व वर्णक (Pigment) आदि में यह एक महत्त्वपूर्ण घटक है। (वायु में स्वतंत्र रूप से पाई जाने वाली नाइट्रोजन को अधिकांश जीव प्रत्यक्ष रूप से ग्रहण करने में असमर्थ हैं) केवल कुछ विशिष्ट प्रकार के जीव जैसे- कुछ मृदा जीवाणु व ब्लू ग्रीन एल्गी (Blue green algae) ही इसे प्रत्यक्ष गैसीय रूप में ग्रहण करने में सक्षम हैं। सामान्यत: नाइट्रोजन यौगिकीकरण (Fixation) द्वारा ही प्रयोग में लाई जाती है। नाइट्रोजन का लगभग 90 प्रतिशत भाग जैविक (Biological) है, अर्थात् जीव ही ग्रहण कर सकते हैं। स्वतंत्र नाइट्रोजन का प्रमुख म्रोत मिट्टी के सूक्ष्म जीवाणुओं की क्रिया व संबंधित पौधों की जड़ें व रंध्र वाली मृदा है, जहाँ से यह वायुमंडल में पहुँचती है। वायुमंडल में भी बिजली चमकने (Lightening) व अंतरिक्ष विकरण (Cosmic radiation) द्वारा नाइट्रोजन का यौगिकीकरण होता है।

प्रकाश-संश्लेषण क्रिया का प्रमुख सह-परिणाम (By product) ऑक्सीजन है। यह कार्बोहाइड्रेट्स के ऑक्सीकरण में सिम्मिलित है जिससे ऊर्जा, कार्बन डाइऑक्साइड व जल विमुक्त होते हैं। ऑक्सीजन चक्र बहुत ही जिटल प्रक्रिया है। बहुत से रासायिनक तत्त्वों और सिम्मिश्रणों में ऑक्सीजन पाई जाती है। यह नाइट्रोजन के साथ मिलकर नाइट्रेट बनाती है तथा बहुत से अन्य खिनजों व तत्त्वों से मिलकर कई तरह के ऑक्साइड बनाती है जैसे- आयरन ऑक्साइड, एल्यूमिनियम ऑक्साइड आदि। सूर्यप्रकाश में प्रकाश-संश्लेषण प्रक्रिया के दौरान,

पृथ्वी पर जीवन

महासागरों में कुछ समुद्री जीव भी इसका यौगिकीकरण करते हैं। वायुमंडलीय नाइट्रोजन के इस तरह यौगिक रूप में उपलब्ध होने पर हरे पौधों में इसका स्वांगीकरण (Nitrogen assimilation) होता है। शाकाहारी जंतुओं द्वारा इन पौधों के खाने पर इसका (नाइट्रोजन) कुछ भाग उनमें चला जाता है। फिर मृत पौधों व जानवरों के नाइट्रोजनी अपशिष्ट (Excretion of nitrogenous wastes) मिट्टी, में उपस्थित बैक्टीरिया द्वारा नाइट्राइट में परिवर्तित हो जाते हैं। कुछ जीवाणु नाइट्राइट को नाइट्रेट में परिवर्तित करने में सक्षम होते हैं व पुनः हरे पौधों द्वारा नाइट्रोजन –यौगिकीकरण हो जाता है। कुछ अन्य प्रकार के जीवाणु इन नाइट्रेट को पुनः स्वतंत्र नाइट्रोजन में परिवर्तित करने में सक्षम होते हैं और इस प्रक्रिया को डी नाइट्रीकरण (De-nitrification) कहा जाता है (चित्र 15.3)।

अन्य खनिज चक्र (Other mineral cycles)

जैव मंडल में मुख्य भू-रासायनिक तत्त्वों-कार्बन, ऑक्सीजन, नाइट्रोजन और हाइड्रोजन के अतिरिक्त पौधों व प्राणी जीवन के लिए अत्यधिक महत्त्व के बहुत से अन्य खनिज मिलते हैं। जीवधारियों के लिए आवश्यक ये खनिज पदार्थ प्राथमिक तौर पर अकार्बनिक रूप में मिलते हैं, जैसे- फॉस्फोरस, सल्फर, कैल्शियम और पोटैशियम। प्राय: ये घुलनशील लवणों के रूप में मिट्टी, में या झील में अथवा निदयों व समुद्री जल में पाए जाते हैं। जब घुलनशील लवण जल चक्र में सम्मिलित हो जाते हैं, तब ये अपक्षय प्रक्रिया द्वारा पृथ्वी की पर्पटी पर और फिर बाद में समुद्र तक पहुँच जाते हैं। अन्य लवण तलछट के रूप में धरातल पर पहुँचते हैं और फिर अपक्षय से चक्र में शमिल हो जाते हैं। सभी जीवधारी अपने पर्यावरण में घुलनशील अवस्था में उपस्थित खनिज लवणों से ही अपनी खनिजों की आवश्यकता को पूरा करते हैं। कुछ अन्य जंतु पौधों व प्राणियों के भक्षण से इन खनिजों को प्राप्त करते हैं। जीवधारियों की मृत्य के बाद ये खनिज अपघटित व प्रवाहित होकर मिट्टी व जल में मिल जाते हैं।

पारिस्थितिक संतुलन (Ecological balance)

किसी पारितंत्र या आवास में जीवों के समुदाय में परस्पर गतिक साम्यता की अवस्था ही पारिस्थितिक संतुलन है। यह तभी संभव है, जब जीवधारियों की विविधता अपेक्षाकृत स्थायी रहे। क्रमश: परिवर्तन भी हो, लेकिन ऐसा प्राकृतिक अनुक्रमण (Natural succession) के द्वारा ही होता है। इसे पारितंत्र में हर प्रजाति की संख्या के एक स्थाई संतुलन के रूप में भी वर्णित किया जा सकता है। यह संतुलन निश्चित प्रजातियों में प्रतिस्पर्धा व आपसी सहयोग से होता है। कुछ प्रजातियों के जिंदा रहने के संघर्ष से भी पर्यावरण संतुलन प्राप्त किया जाता है। संतुलन इस बात पर भी निर्भर करता है कि कुछ प्रजातियाँ अपने भोजन व जीवित रहने के लिए दूसरी प्रजातियों पर निर्भर रहती हैं (जिससे प्रजातियों की संख्या निश्चित रहती है और संतुलन बना रहता है) इसके उदाहरण विशाल घास के मैदानों में मिलते हैं, जहाँ शाकाहारी जंतु (हिरण, जेबरा व भैंस आदि) अत्यधिक संख्या में होते हैं। दूसरी तरफ माँसाहारी (बाघ, शेर आदि) अधिक नहीं होते और शाकाहारियों के शिकार पर निर्भर होते हैं, अत: इनकी संख्या नियंत्रित रहती है। पौधों के पारिस्थितिक संतुलन में बदलाव के कारण हैं। जैसे- वनों की प्रारंभिक प्रजातियों में कोई व्यवधान जैसे- स्थानांतरी कृषि में वनों को साफ करने से प्रजातियों के वितरण में बदलाव आता है। यह परिवर्तन प्रतिस्पर्धा के कारण है, जहाँ द्वितीय वन-प्रजातियों जैसे- घास, बाँस और चीड़ आदि के वृक्ष प्रारंभिक प्रजातियों के स्थान पर उगते हैं और प्रारंभिक (Original) वनों की संरचना को बदल देते हैं। यही अनुक्रमण (Succession) कहलाता है।

पारिस्थितिक असंतुलन के कारण- नई प्रजातियों का आगमन, प्राकृतिक विपदाएं और मानव जनित कारक भी हैं। मनुष्य के हस्तक्षेप से पादप समुदाय का संतुलन प्रभावित होता है, जो अन्ततोगत्वा पूरे पारितंत्र के संतुलन को प्रभावित करता है। इस असंतुलन से कई अन्य द्वितीय अनुक्रमण आते हैं। प्राकृतिक संसाधनों पर जनसंख्या दबाव

142

十

भौतिक भूगोल के मूल सिद्धांत

से भी पारिस्थितिकी बहुत प्रभावित हुई है। इसने पर्यावरण के वास्तविक रूप को लगभग नष्ट कर दिया है और सामान्य पर्यावरण पर भी बुरा प्रभाव डाला है। पर्यावरण असंतुलन से ही प्राकृतिक आपदाएँ जैसे -बाढ़ भूकंप, बीमारियाँ और कई जलवायु सबंधी परिवर्तन होते हैं। विशेष आवास स्थानों में पौधों व प्राणी समुदायों में घिनष्ट अंतर्संबंध पाए जाते हैं। निश्चित स्थानों पर जीवों में विविधता वहाँ के पर्यावरणीय कारकों का संकेतक है। इन कारकों का समुचित ज्ञान व समझ ही पारितंत्र के संरक्षण व बचाव के प्रमुख आधार हैं।

अभ्यास

1. बहुवैकल्पिक प्रश्न :

- (i) निम्नलिखित में से कौन जैवमंडल में सम्मिलित हैं :
 - (क) केवल पौधे
- (ख) केवल प्राणी
- (ग) सभी जैव व अजैव जीव
- (घ) सभी जीवित जीव।
- (ii) उष्णकटिबंधीय घास के मैदान निम्न में से किस नाम से जाने जाते हैं?
 - (क) प्रेयरी

(ख) स्टैपी

(ग) सवाना

- (घ) इनमें से कोई नहीं
- (iii) चट्टानों में पाए जाने वाले लोहांश के साथ ऑक्सीजन मिलकर निम्नलिखित में से क्या बनाती है?
 - (क) आयरन कार्बोनेट
- (ख) आयरन ऑक्साइड
- (ग) आयरन नाइट्राइट
- (घ) आयरन सल्फेट
- (iv) प्रकाश-संश्लेषण प्रक्रिया के दौरान, प्रकाश की उपस्थिति में कार्बन डाईऑक्साइड जल के साथ मिलकर क्या बनाती है?
 - (क) प्रोटीन

- (ख) कार्बोहाइड्रेट्स
- (ग) एमिनोएसिड
- (घ) विटामिन

2. निम्नलिखित प्रश्नों के उत्तर लगभग 30 शब्दों में दीजिए :

- (i) पारिस्थितिकी से आप क्या समझते हैं ?
- (ii) पारितंत्र (Ecological system) क्या है? संसार के प्रमुख पारितंत्र प्रकारों को बताएं।
- (iii) खाद्य शृंखला क्या है? चराई खाद्य शृंखला का एक उदाहरण देते हुए इसके अनेक स्तर बताएं।
- (iv) खाद्य जाल (Food web) से आप क्या समझते है? उदाहरण सहित बताएं।
- (v) बायोम (Biome) क्या है?

3. निम्नलिखित प्रश्नों के उत्तर लगभग 150 शब्दों में दीजिए :

- (i) संसार के विभिन्न वन बायोम (Forest biomes) की महत्त्वपूर्ण विशेषताओं का वर्णन करें।
- (ii) जैव भू-रासायनिक चक्र (Biogeochemical cycle) क्या है? वायुमंडल में नाइट्रोजन का यौगिकीकरण (Fixation) कैसे होता है? वर्णन करें।
- (iii) पारिस्थितिक संतुलन (Ecological balance) क्या है? इसके असंतुलन को रोकने के महत्त्वपूर्ण उपायों की चर्चा करें।

		+
पृथ्वी पर जीवन		143
परियोजना कार्य		
(३) महोतः नामो	म की प्रमुख विशेषताओं को बताते हुए विश्व के मानचित्र पर विभिन्न बायोम के	
वितरण को		
(ii) अपने स्कूल	प्रांगण में पाए जाने वाले पेड़, झाड़ी व सदाबहार पौधों पर एक संक्षिप्त लेख लिखें	
	आधे दिन यह पर्यवेक्षण करें कि किस प्रकार के पक्षी इस वाटिका में आते हैं। क्या	
आप इन पी	क्षेयों की विविधता का भी उल्लेख कर सकते हैं?	
		20

эв**या**य

जैव-विविधता एवं संरक्षण

अप भू आकृतिक प्रक्रियाओं विशेषकर अपक्षय और विभिन्न जलवायवी क्षेत्रों में अपक्षय आदि के विषय में पहले ही पढ़ चुके हैं। यदि आपको स्मरण नहीं है, तो संक्षिप्त सार के लिए अध्याय 6 में चित्र 6.2 देखें। यह अपक्षय प्रावार (Weathering mantle) वनस्पति विविधता का आधार है, अत: इसे जैव-विविधता का आधार माना गया है। सौर ऊर्जा और जल ही अपक्षय में विविधता और इसके परिणामस्वरूप उत्पन्न जैव-विविधता का मुख्य कारण है। इसमें कोई आश्चर्य नहीं कि वे क्षेत्र, जहाँ ऊर्जा व जल की उपलब्धता अधिक है, वहीं जैव-विविधता भी व्यापक स्तर पर है।

आज जो जैव-विविधता हम देखते हैं, वह 2.5 से 3.5 अरब वर्षों के विकास का परिणाम है। मानव जीवन के प्रारंभ होने से पहले, पृथ्वी पर जैव-विविधता किसी भी अन्य काल से अधिक थी। मानव के आने से जैव-विविधता में तेजी से कमी आने लगी, क्योंकि किसी एक या अन्य प्रजाति का आवश्यकता से अधिक उपभोग होने के कारण, वह लुप्त होने लगी। अनुमान के अनुसार, संसार में कुल प्रजातियों की संख्या 20 लाख से 10 करोड़ तक है, लेकिन एक करोड़ ही इसका सही अनुमान है। नयी प्रजातियों की खोज लगातार जारी है और उनमें से अधिकांश का वर्गीकरण भी नहीं हुआ है। (एक अनुमान के अनुसार दिक्षण अमेरिका की ताजे पानी की लगभग 40 प्रतिशत मछलियों का वर्गीकरण नहीं हुआ)। उष्ण कटिबंधीय वनों में जैव-विविधता की अधिकता है।

प्रजातियों के दृष्टिकोण से और अकेले जीवधारी के दृष्टिकोण से जैव-विविधता सतत् विकास का तंत्र है। पृथ्वी पर किसी प्रजाति की औसत आयु 10 से 40 लाख वर्ष होने का अनुमान है। ऐसा भी माना जाता है कि लगभग 99 प्रतिशत प्रजातियाँ, जो कभी पृथ्वी पर रहती थी, आज लुप्त हो चुकी हैं। पृथ्वी पर जैव-विविधता एक जैसी नहीं है। जैव-विविधता उष्ण कटिबंधीय प्रदेशों में अधिक होती है। जैसे-जैसे हम ध्रुवीय प्रदेशों की तरफ बढ़ते हैं, प्रजातियों की विविधता तो कम होती जाती है, लेकिन जीवधारियों की संख्या अधिक होती जाती है।

जैव विविधता दो शब्दों के मेल से बना है, (Bio) 'बायो' का अर्थ है- जीव तथा डाइवर्सिटी (Diversity) का अर्थ है- विविधता। साधारण शब्दों में किसी निश्चित भौगोलिक क्षेत्र में पाए जाने वाले जीवों की संख्या और उनकी विविधता को जैव-विविधता कहते हैं। इसका संबंध पौधों के प्रकार, प्राणियों तथा सूक्ष्म जीवाणुओं से है। उनकी आनुर्वाशकी और उनके द्वारा निर्मित पारितंत्र से है। यह पृथ्वी पर पाए जाने वाले जीवधारियों की परिवर्तनशीलता, एक ही प्रजाति तथा विभिन्न प्रजातिवायों में परिवर्तनशीलता तथा विभिन्न पारितंत्रों में विविधता से संबंधित है। जैव-विविधता सजीव संपदा है। यह विकास के लाखों वर्षों के इतिहास का परिणाम है।

जैव-विविधता को तीन स्तरों पर समझा जा सकता है-(i) आनुवांशिक जैव-विविधता (Genetic diversity), (ii) प्रजातीय जैव-विविधता (Species diversity) तथा (iii) पारितंत्रीय जैव-विविधता (Ecosystem diversity)।

आनुवांशिक जैव-विविधता (Genetic biodiversity)

जीवन निर्माण के लिए जीन (Gene) एक मूलभूत इकाई है। किसी प्रजाति में जीन की विविधता ही जैव-विविधता एवं संरक्षण 145

आनुवंशिक जैव-विविधता है। समान भौतिक लक्षणों वाले जीवों के समूह को प्रजाति कहते हैं। मानव आनुवांशिक रूप से 'होमोसेपियन' (Homosapiens) प्रजाति से संबंधित है, जिसमें कद, रंग और अलग दिखावट जैसे शारीरिक लक्षणों में काफी भिन्नता है। इसका कारण आनुवांशिक विविधता है। विभिन्न प्रजातियों के विकास व फलने-फूलने के लिए आनुवांशिक विविधता अत्यधिक अनिवार्य है।

प्रजातीय विविधता (Species diversity)

यह प्रजातियों की अनेकरूपता को बताती है। यह किसी निर्धारित क्षेत्र में प्रजातियों की संख्या से संबंधित है। प्रजातियों की विविधता, उनकी समृद्धि, प्रकार तथा बहुलता से आँकी जा सकती है। कुछ क्षेत्रों में प्रजातियों की संख्या अधिक होती है और कुछ में कम। जिन क्षेत्रों में प्रजातीय विविधता अधिक होती है, उन्हें विविधता के 'हॉट-स्पॉट' (Hot spots) कहते हैं। (चित्र 16.1)

पारितंत्रीय विविधता (Ecosystem diversity)

आपने पिछले अध्याय में पारितंत्रों के प्रकारों में व्यापक भिन्नता और प्रत्येक प्रकार के पारितंत्रों में होने वाले पारितंत्रीय प्रक्रियाएँ तथा आवास स्थानों की भिन्नता ही पारितंत्रीय विविधता बनाते हैं। पारितंत्रीय विविधता का परिसीमन करना मुश्किल और जटिल है, क्योंकि समुदायों (प्रजातियों का समूह) और पारितंत्र की सीमाएँ निश्चित नहीं हैं।

इंदिरा गाँधी नेशनल पार्क में (अन्नामलाई पश्चिमी घाट) घास भूमि एवं उष्ण कटिबंधीय शोला वन -पारितंत्रीय विविधता का एक उदाहरण

जैव-विविधता का महत्त्व (Importance of biodiversity)

जैव-विविधता ने मानव संस्कृति के विकास में बहुत योगदान दिया है और इसी प्रकार, मानव समुदायों ने भी आनुवंशिक, प्रजातीय व पारिस्थितिक स्तरों पर प्राकृतिक विविधता को बनाए रखने में बड़ा योगदान दिया है। जैव-विविधता की पारिस्थितिक (Ecological), आर्थिक (Economic) और वैज्ञानिक (Scientific) भूमिकाएँ प्रमुख है।

जैव-विविधता की पारिस्थितिकीय भूमिका (Ecological role of biodiversity)

पारितंत्र में विभिन्न प्रजातियाँ कोई न कोई क्रिया करती हैं। पारितंत्र में कोई भी प्रजाति बिना कारण न तो विकसित हो सकती है और न ही बनी रह सकती है। अर्थात्, प्रत्येक जीव अपनी ज़रूरत पूरा करने के साथ-साथ दूसरे जीवों के पनपने में भी सहायक होता है। क्या आप बता सकते हैं कि मानव, पारितंत्रों के बने रहने में क्या योगदान देता है? जीव व प्रजातियाँ ऊर्जा ग्रहण कर उसका संग्रहण करती हैं, कार्बनिक पदार्थ उत्पन्न एवं विघटित करती हैं और पारितंत्र में जल व पोषक तत्त्वों के चक्र को बनाए रखने में सहायक होती हैं। इसके अतिरिक्त प्रजातियाँ वायुमंडलीय गैस को स्थिर करती हैं और जलवायु को नियंत्रित करने में सहायक होती हैं। ये पारितंत्री क्रियाएँ मानव जीवन के लिए महत्त्वपूर्ण क्रियाएँ हैं। पारितंत्र में जितनी अधिक विविधता होगी प्रजातियों के प्रतिकृल स्थितियों में भी रहने की संभावना और उनकी उत्पादकता भी उतनी ही अधिक होगी। प्रजातियों की क्षति से तंत्र के बने रहने की क्षमता भी कम हो जाएगी। अधिक आनुवंशिक विविधता वाली प्रजातियों की तरह अधिक जैव-विविधता वाले पारितंत्र में पर्यावरण के बदलावों को सहन करने की अधिक सक्षमता होती है। दूसरे शब्दों में, जिस पारितंत्र में जितनी प्रकार की प्रजातियाँ होंगी, वह पारितंत्र उतना ही अधिक स्थायी होगा।

+

भौतिक भूगोल के मूल सिद्धांत

जैव-विविधता की आर्थिक भूमिका (Ecological role of biodiversity)

सभी मनुष्यों के लिए दैनिक जीवन में जैव-विविधता एक महत्वपूर्ण संसाधन है। जैव-विविधता का एक महत्वपूर्ण भाग 'फसलों की विविधता' (Crop diversity) है, जिसे कृषि जैव-विविधता भी कहा जाता है। जैव-विविधता को संसाधनों के उन भंडारों के रूप में भी समझा जा सकता है, जिनकी उपयोगिता भोज्य पदार्थ, औषधियाँ और सौंदर्य प्रसाधन आदि बनाने में है। जैव संसाधनों की ये परिकल्पना जैव-विविधता के विनाश के लिए भी उत्तरदायी है। साथ ही यह संसाधनों के विभाजन और बँटवारे को लेकर उत्पन्न नये विवादों का भी जनक है। खाद्य फसलें, पशु, वन संसाधन, मत्स्य और दवा संसाधन आदि कुछ ऐसे प्रमुख आर्थिक महत्त्व के उत्पाद हैं, जो मानव को जैव-विविधता के फलस्वरूप उपलब्ध होते हैं।

जैव-विविधता की वैज्ञानिक भूमिका (Scientific role of biodiversity)

जैव-विविधता इसिलए महत्वपूर्ण है, क्योंकि प्रत्येक प्रजाति हमें यह संकेत दे सकती है कि जीवन का आरंभ कैसे हुआ और यह भविष्य में कैसे विकसित होगा। जीवन कैसे चलता है और पारितंत्र, जिसमें हम भी एक प्रजाति हैं, उसे बनाए रखने में प्रत्येक प्रजाति की क्या भूमिका है, इन्हें हम जैव-विविधता से समझ सकते हैं। हम सभी को यह तथ्य समझना चाहिए कि हम स्वयं जिएँ और दूसरी प्रजातियों को भी जीने दें।

यह समझना हमारी नैतिक जिम्मेदारी है कि हमारे साथ सभी प्रजातियों को जीवित रहने का अधिकार है। अत: कई प्रजातियों को स्वेच्छा से विलुप्त करना नैतिक रूप से गलत है। जैव-विविधता का स्तर अन्य जीवित प्रजातियों के साथ हमारे संबंध का एक अच्छा पैमाना है। वास्तव में, जैव-विविधता की अवधारणा कई मानव संस्कृतियों का अभिन्न अंग है।

जैव-विविधता का हास (Loss of biodiversity)

पिछले कुछ दशकों से, जनसंख्या वृद्धि के कारण, प्राकृतिक संसाधनों का उपभोग अधिक होने लगा है। इससे संसार के विभिन्न भागों में प्रजातियों तथा उनके आवास स्थानों में तेजी से कमी हुई है। उष्ण किटबंधीय क्षेत्र, जो विश्व के कुल क्षेत्र का मात्र एक चौथाई भाग है, यहाँ संसार की तीन चौथाई जनसंख्या रहती है। इस विशाल जनसंख्या की ज़रूरत को पूरा करने के लिए संसाधनों का दोहन और वनोन्मूलन अत्यधिक हुआ है। उष्णकिटबंधीय वर्षा वाले वनों में पृथ्वी की लगभग 50 प्रतिशत प्रजातियाँ पाई जाती हैं और प्राकृतिक आवासों का विनाश पूरे जैवमंडल के लिए हानिकारक सिद्ध हुआ है।

प्राकृतिक आपदाएँ- जैसे- भूकंप, बाढ़, ज्वालामुखी उदुगार, दावानल, सुखा आदि पृथ्वी पर पाई जाने वाली प्राणिजात और वनस्पति जात को क्षति पहुँचाते हैं और परिणामस्वरूप संबंधित प्रभावित प्रदेशों की जैव-विविधता में बदलाव आता है। कीटनाशक और अन्य प्रदूषक, जैसे- हाइड्रोकार्बन (Hydrocarbon) और विषैली भारी धातु (Toxic heavy metals), संवेदनशील और कमज़ोर प्रजातियों को नष्ट कर देते हैं। वे प्रजातियाँ, जो स्थानीय आवास की मूल जैव प्रजाति नहीं हैं, लेकिन उस तंत्र में स्थापित की गई हैं, उन्हें 'विदेशज प्रजातियाँ' (Exotic species) कहा जाता है। ऐसे कई उदाहरण हैं, जब विदेशज प्रजातियों के आगमन से पारितंत्र में प्राकृतिक या मूल जैव समुदाय को व्यापक नुकसान हुआ। पिछले कुछ दशकों के दौरान, कुछ जंतुओं, जैसे-बाघ, चीता, हाथी, गैंडा, मगरमच्छ, मिंक और पक्षियों का, उनके सींग, सुँड व खालों के लिए निदर्यतापूर्वक अवैध शिकार किया जा रहा है। इसके फलस्वरूप कुछ प्रजातियाँ लुप्त होने के कगार पर आ गई हैं।

प्राकृतिक संसाधनों व पर्यावरण संरक्षण की अंतर्राष्ट्रीय संस्था (IUCN) ने संकटापन्न पौधों व जीवों की प्रजातियों को उनके संरक्षण के उद्देश्य से तीन वर्गों में विभाजित किया है।

संकटापन प्रजातियाँ (Endangered species)

इसमें वे सभी प्रजातियाँ सिम्मिलित हैं, जिनके लुप्त हो जाने का खतरा है। इंटरनेशनल यूनियन फॉर द कंजरवेशन ऑफ नेचर एंड नेचुरल रिसोर्सेज (IUCN) विश्व की सभी संकटापन्न प्रजातियों के बारे में (Red list) रेड लिस्ट के नाम से सूचना प्रकाशित करता है। जैव-विविधता एवं संरक्षण

रेड पांडा - एक संकटापन प्रजाति

जेनकेरिया सेबसटिनी - एक अत्यंत संकटापन्न घास प्रजाति अगस्थियामलाई शिखर (भारत)

सुभेद्य प्रजातियाँ (Vulnerable species)

इसमें वे प्रजातियाँ सम्मिलित हैं, जिन्हें यदि संरक्षित नहीं, किया गया या उनके विलुप्त होने में सहयोगी कारक यदि जारी रहे तो निकट भविष्य में उनके विलुप्त होने का खतरा है। इनकी संख्या अत्यधिक कम होने के कारण, इनका जीवित रहना सुनिश्चित नहीं है।

दुर्लभ प्रजातियाँ (Rare species)

संसार में इन प्रजातियों की संख्या बहुत कम है। ये प्रजातियाँ कुछ ही स्थानों पर सीमित हैं या बड़े क्षेत्र में विरल रूप में बिखरी हुई हैं।

जैव-विविधता का संरक्षण (Conservation of biodiversity)

मानव के अस्तित्व के लिए जैव-विविधता अति आवश्यक

147

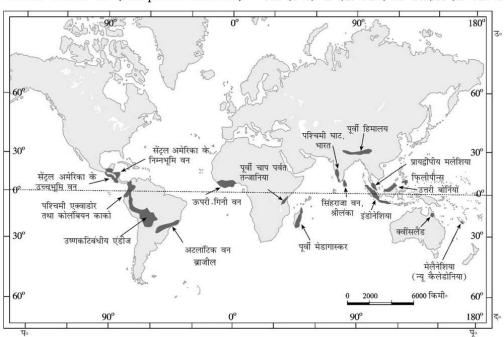
हमबोशिया डेकरेंस बेड- दक्षिण पश्चिमी घाट (भारत) की एक दुर्लभ प्रजाति

है। जीवन का हर रूप एक दूसरे पर इतना निर्भर है कि किसी एक प्रजाति पर संकट आने से दूसरों में असंतुलन की स्थिति पैदा हो जाती है। यदि पौधों और प्राणियों की प्रजातियाँ संकटापन्न होती हैं, तो इससे पर्यावरण में गिरावट उत्पन्न होती है और अन्ततोगत्वा मनुष्य का अपना अस्तित्व भी खतरे में पड़ सकता है।

आज यह अति अनिवार्य है कि मानव को पर्यावरण-मैत्री संबंधी पद्धतियों के प्रति जागरूक किया जाए और विकास की ऐसी व्यावहारिक गतिविधियाँ अपनाई जाएँ, जो दूसरे जीवों के साथ समन्वित हों और सतत् पोषणीय (Sustainable) हों। इस तथ्य के प्रति भी जागरूकता बढ़ रही है कि संरक्षण तभी संभव और दीर्घकालिक होगा, जब स्थानीय समुदायों व प्रत्येक व्यक्ति की इसमें भागीदारी होगी। इसके लिए स्थानीय स्तर पर संस्थागत संरचनाओं का विकास आवश्यक है। केवल प्रजातियों का संरक्षण और आवास स्थान की सुरक्षा ही अहम समस्या नहीं है, बल्कि संरक्षण की प्रक्रिया को जारी रखना भी उतना ही जरूरी है।

सन् 1992 में ब्राजील के रियो-डी-जेनेरो (Rio-de-Janeiro) में हुए जैव-विविधता के सम्मेलन (Earth summit) में लिए गए संकल्पों का भारत अन्य 155 देशों सहित हस्ताक्षरी है। विश्व संरक्षण कार्य योजना में जैव-विविधता संरक्षण के निम्न तरीके सुझाए गए हैं:

- (i) संकटापन्न प्रजातियों के संरक्षण के लिए प्रयास करने चाहिए।
- (ii) प्रजातियों को लुप्त होने से बचाने के लिए उचित योजनाएँ व प्रबंधन अपेक्षित हैं।


Downloaded from https://www.studiestoday.com

148 भौतिक भूगोल के मूल सिद्धांत

- (iii) खाद्यान्नों की किस्में, चारे संबंधी पौधों की किस्में, इमारती लकड़ी के पेड़, पशुधन, जंतु व उनकी वन्य प्रजातियों की किस्मों को संरक्षित करना चाहिए।
- (iv) प्रत्येक देश को वन्य जीवों के आवास को चिह्नित कर उनकी सुरक्षा को सुनिश्चित करना चाहिए।
- (v) प्रजातियों के पलने-बढ़ने तथा विकसित होने के स्थान सुरक्षित व संरक्षित हों।
- (vi) वन्य जीवों व पौधों का अंतर्राष्ट्रीय व्यापार, नियमों के अनुरूप हो।

भारत सरकार ने प्राकृतिक सीमाओं के भीतर विभिन्न प्रकार की प्रजातियों को बचाने, संरक्षित करने और विस्तार करने के लिए, वन्य जीव सुरक्षा अधिनियम 1972 (Wild life protection act, 1972), पारित किया है, जिसके अंतर्गत नेशनल पार्क (National parks), पशुविहार (Sanctuaries) स्थापित किये गए तथा जीवमंडल आरक्षित क्षेत्र (Biosphere reserves) घोषित किये गए। इन संरक्षित क्षेत्रों का विस्तारपूर्वक वर्णन 'भारत: भौतिक पर्यावरण' (एन.सी.ई.आर.टी., 2006) पुस्तक में किया गया है।

वह देश, जो उष्ण किटबंधीय क्षेत्र में स्थित हैं, उनमें संसार की सर्वाधिक प्रजातीय विविधता पाई जाती है। उन्हें 'महा विविधता केंद्र' (Mega diversity centres) कहा जाता है। इन देशों की संख्या 12 है और उनके नाम हैं : मैक्सिको, कोलंबिया, इक्वेडोर, पेरू, ब्राजील, डेमोक्रेटिक रिपब्लिक ऑफ कांगो, मेडागास्कर, चीन, भारत, मलेशिया, इंडोनेशिया और आस्ट्रेलिया। इन देशों में समृद्ध महा-विविधता के केंद्र स्थित हैं। ऐसे क्षेत्र, जो अधिक संकट में हैं, उनमें संसाधनों को उपलब्ध कराने के लिए अंतर्राष्ट्रीय संरक्षण संघ (IUCN) ने जैव-विविधता हॉट-स्पॉट (Hot spots) क्षेत्र के रूप में निर्धारित किया रिपायित किये गए हैं। पादप महत्वपूर्ण है, क्योंकि ये ही किसी पारितंत्र की प्राथमिक उत्पादकता को निर्धारित करते हैं। यह भी देखा गया है कि ज्यादातर हॉट-स्पॉट में

चित्र 16.1: पारिस्थितिक हॉट-स्पॉट (Ecological 'hotspots' in the world)

जैव-विविधता एवं संरक्षण 149

रहने वाले प्रजाति भोजन, जलाने के लिए लकड़ी, कृषि भूमि और इमारती लकड़ी आदि के लिए वहाँ पाई जाने वाली समृद्ध पारितंत्रों पर ही निर्भर है। उदाहरण के लिए मेडागास्कर में पाए जाने वाले कुल पौधों व जीवों में से 85 प्रतिशत पौधे व जीव संसार में अन्यत्र कहीं भी नहीं

पाए जाते हैं। अन्य हॉट स्पॉट, जो समृद्ध देशों में पाए जाते हैं, वहाँ कुछ अन्य प्रकार की समस्याएँ हैं। हवाई द्वीप जहाँ विशेष प्रकार की पादप व जंतु प्रजातियाँ मिलती हैं, वह विदेशज प्रजातियों के आगमन और भूमि विकास के कारण असुरक्षित हैं।

.अभ्यास.

1. बहुवैकल्पिक प्रश्न :

- (i) जैव-विविधता का संरक्षण निम्न में किसके लिए महत्वपूर्ण है
 - (क) जंतु

- (ख) पौधे
- (ग) पौधे और प्राणी
- (घ) सभी जीवधारी
- (ii) निम्नलिखित में से असुरक्षित प्रजातियाँ कौन सी हैं
 - (क) जो दूसरों को असुरक्षा दें
- (ख) बाघ व शेर
- (ग) जिनकी संख्या अत्यधिक हों
- (घ) जिन प्रजातियों के लुप्त होने का खतरा है।
- (iii) नेशनल पार्क (National parks) और पशुविहार (Sanctuaries) निम्न में से किस उद्देश्य के लिए बनाए गए हैं:
 - (क) मनोरंजन

- (ख) पालतू जीवों के लिए
- (ग) शिकार के लिए
- (घ) संरक्षण के लिए
- (iv) जैव-विविधता समृद्ध क्षेत्र हैं :
 - (क) उष्णकटिबंधीय क्षेत्र
- (ख) शीतोष्ण कटिबंधीय क्षेत्र

(ग) ध्रुवीय क्षेत्र

- (घ) महासागरीय क्षेत्र
- (v) निम्न में से किस देश में पृथ्वी सम्मेलन (Earth summit) हुआ था:
 - (क) यू.के. (U.K.)
- (ख) ब्राजील

(ग) मैक्सिको

(घ) चीन

2. निम्नलिखित प्रश्नों के उत्तर लगभग 30 शब्दों में दीजिए :

- (i) जैव-विविधता क्या हैं?
- (ii) जैव-विविधता के विभिन्न स्तर क्या हैं?
- (iii) हॉट-स्पॉट (Hot spots) से आप क्या समझते हैं?
- (iv) मानव जाति के लिए जंतुओं के महत्व का वर्णन संक्षेप में करें।
- (v) विदेशज प्रजातियों (Exotic species) से आप क्या समझते हैं?

3. निम्नलिखित प्रश्नों के उत्तर लगभग 150 शब्दों में दीजिए :

- (i) प्रकृति को बनाए रखने में जैव-विविधता की भूमिका का वर्णन करें।
- (ii) जैव-विविधता के ह्रास के लिए उत्तरदायी प्रमुख कारकों का वर्णन करें। इसे रोकने के उपाय भी बताएँ।

परियोजना कार्य

जिस राज्य में आपका स्कूल है, वहाँ के नेशनल पार्क (National parks) पशुविहार (Sanctuaries) और जीवमंडल आरक्षित क्षेत्र (Biosphere reserves) के नाम लिखें और उन्हें भारत के मानचित्र पर रेखांकित करें।