ਰਸਾਇਣ ਵਿਗਿਆਨ

ਗਿਆਰ੍ਹਵੀਂ ਭਾਗ-I

© ਪੰਜਾਬ ਸਰਕਾਰ

ਪਹਿਲਾ ਐਡੀਸ਼ਨ : 2016...... 10,000 ਕਾਪੀਆਂ

[This book has been adopted with the kind permission of the National Council of Educational Research and Training, New Delhi]
All rights including those of translation, reproduction and annotation etc.,
are reserved by the Punjab Government

ਸੰਯੋਜਕ: ਉਪਨੀਤ ਕੌਰ ਗਰੇਵਾਲ

(ਵਿਸ਼ਾ ਮਾਹਿਰ) ਪੰਜਾਬ ਸਕੂਲ ਸਿੱਖਿਆ ਬੋਰਡ

ਅਨੁਵਾਦਕ : ਸ਼੍ਰੀ ਸੱਤਪਾਲ ਸਿੰਘ

ਚਿੱਤਰਕਾਰ : ਮਨਜੀਤ ਸਿੰਘ ਢਿੱਲੋਂ ਪ.ਸ.ਸ.ਬ.

ਚੇਤਾਵਨੀ

- 1. ਕੋਈ ਵੀ ਏਜੰਸੀ-ਹੋਲਡਰ ਵਾਧੂ ਪੈਸੇ ਵਸੂਲਣ ਦੇ ਮੰਤਵ ਨਾਲ ਪਾਠ-ਪੁਸਤਕਾਂ 'ਤੇ ਜਿਲਦ-ਸਾਜ਼ੀ ਨਹੀਂ ਕਰ ਸਕਦਾ।(ਏਜੰਸੀ-ਹੋਲਡਰਾਂ ਨਾਲ ਹੋਏ ਸਮਝੌਤੇ ਦੀ ਧਾਰਾ ਨੰ.7 ਅਨੁਸਾਰ)
- 2. ਪੰਜਾਬ ਸਕੂਲ ਸਿੱਖਿਆ ਬੋਰਡ ਦੁਆਰਾ ਛਪਵਾਈਆਂ ਅਤੇ ਪ੍ਕਾਸ਼ਿਤ ਪਾਠ-ਪੁਸਤਕਾਂ ਦੇ ਜਾਅਲੀ ਨਕਲੀ ਪ੍ਕਾਸ਼ਨਾਂ (ਪਾਠ ਪੁਸਤਕਾਂ) ਦੀ ਛਪਾਈ,ਪ੍ਕਾਸ਼ਨ, ਸਟਾਕ ਕਰਨਾ, ਜਮ੍ਹਾਂ ਖੋਰੀ ਜਾਂ ਵਿਕਰੀ ਆਦਿ ਕਰਨਾ ਭਾਰਤੀ ਦੰਡ ਪ੍ਣਾਲੀ ਦੇ ਅੰਤਰਗਤ ਫ਼ੌਜਦਾਰੀ ਜੁਰਮ ਹੈ।
 (ਪੰਜਾਬ ਸਕੂਲ ਸਿੱਖਿਆ ਬੋਰਡ ਦੀਆਂ ਪਾਠ-ਪੁਸਤਕਾਂ ਬੋਰਡ ਦੇ 'ਵਾਟਰ ਮਾਰਕ' ਵਾਲੇ ਕਾਗਜ਼ ਉੱਪਰ ਹੀ ਛਪਵਾਈਆ ਜਾਂਦੀਆਂ ਹਨ।)

ਮੁੱਲ : 171/- ਰੁਪਏ

ਸਕੱਤਰ, ਪੰਜਾਬ ਸਕੂਲ ਸਿੱਖਿਆ ਬੋਰਡ, ਵਿੱਦਿਆ ਭਵਨ, ਫੇਜ਼–8 ਸਾਹਿਬਜ਼ਾਦਾ ਅਜੀਤ ਸਿੰਘ ਨਗਰ–160062 ਰਾਹੀਂ ਪ੍ਰਕਾਸ਼ਿਤ ਅਤੇ ਮੈਸ. ਕਨਵਿਨੀਏਂਟ ਪ੍ਰਿੰਟਰ, ਜਲੰਧਰ ਰਾਹੀਂ ਛਾਪੀ ਗਈ।

ਦੋ ਸ਼ਬਦ

ਪੰਜਾਬ ਸਕੂਲ ਸਿੱਖਿਆ ਬੋਰਡ ਪਾਠ-ਪੁਸਤਕਾਂ ਅਤੇ ਪਾਠ-ਕ੍ਰਮ ਨੂੰ ਸੋਧਣ ਅਤੇ ਤਿਆਰ ਕਰਨ ਦੇ ਕੰਮ ਵਿੱਚ ਜੁਟਿਆ ਹੋਇਆ ਹੈ। ਅੱਜ ਜਿਸ ਦੌਰ ਵਿੱਚੋਂ ਅਸੀਂ ਲੰਘ ਰਹੇ ਹਾਂ ਉਸ ਵਿੱਚ ਬੱਚਿਆਂ ਨੂੰ ਸਹੀ ਵਿੱਦਿਆ ਦੇਣਾ ਮਾਪਿਆਂ ਅਤੇ ਅਧਿਆਪਕਾਂ ਦੀ ਸਾਂਝੀ ਜ਼ਿੰਮੇਵਾਰੀ ਬਣਦੀ ਹੈ। ਇਸੇ ਜ਼ਿੰਮੇਵਾਰੀ ਅਤੇ ਵਿੱਦਿਅਕ ਜ਼ਰੂਰਤ ਨੂੰ ਸਮਝਦਿਆਂ ਵਿਗਿਆਨ ਵਿਸ਼ੇ ਦੀਆਂ ਪਾਠ-ਪੁਸਤਕਾਂ ਅਤੇ ਪਾਠ-ਕ੍ਰਮ ਵਿੱਚ ਨੈਸ਼ਨਲ ਕਰੀਕੁਲਮ ਫਰੇਮਵਾਰਕ 2005 ਅਨੁਸਾਰ ਕੁਝ ਮਹੱਤਵਪੂਰਨ ਪਰਿਵਰਤਨ ਕੀਤੇ ਗਏ ਹਨ।

ਸਕੂਲ ਕਰੀਕੁਲਮ ਵਿੱਚ ਵਿਗਿਆਨ ਵਿਸ਼ੇ ਦਾ ਯੋਗਦਾਨ ਬਹੁਤ ਮਹੱਤਵਪੂਰਨ ਹੈ ਅਤੇ ਇਸਦੇ ਲੋੜੀਂਦੇ ਨਤੀਜੇ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ ਚੰਗੀ ਪਾਠ-ਪੁਸਤਕ ਦਾ ਹੋਣਾ ਪਹਿਲੀ ਜ਼ਰੂਰਤ ਹੈ। ਇਸ ਲਈ ਇਸ ਪਾਠ-ਪੁਸਤਕ ਵਿੱਚ ਵਿਸ਼ਾ ਸਮੱਗਰੀ ਨੂੰ ਇਸ ਤਰ੍ਹਾਂ ਸਥਾਪਿਤ ਕੀਤਾ ਗਿਆ ਹੈ ਜਿਸ ਨਾਲ ਵਿਦਿਆਰਥੀਆਂ ਦੀ ਤਰਕ ਸ਼ਕਤੀ ਤਾਂ ਪ੍ਰਫ਼ੁਲਿਤ ਹੋਵੇਗੀ ਹੀ ਸਗੋਂ ਵਿਸ਼ੇ ਨੂੰ ਸਮਝਣ ਦੀ ਯੋਗਤਾ ਵਿੱਚ ਵੀ ਵਾਧਾ ਹੋਵੇਗਾ। ਅਭਿਆਸ ਦੇ ਪ੍ਰਸ਼ਨ ਵਿਦਿਆਰਥੀਆਂ ਦੇ ਮਾਨਸਿਕ ਪੱਧਰ ਦੇ ਅਨੁਸਾਰ ਤਿਆਰ ਕੀਤੇ ਗਏ ਹਨ। ਇਹ ਪੁਸਤਕ ਰਾਸ਼ਟਰੀ ਵਿਦਿਆ ਖੋਜ ਅਤੇ ਸਿਖਲਾਈ ਸੰਸਥਾ (ਐਨ.ਸੀ.ਈ.ਆਰ.ਟੀ.) ਵੱਲੋਂ ਗਿਆਰ੍ਹਵੀਂ ਸ਼੍ਰੇਣੀ ਲਈ ਤਿਆਰ ਕੀਤੀ ਗਈ ਰਸਾਇਣ ਵਿਗਿਆਨ ਵਿਸ਼ੇ ਦੀ ਪੁਸਤਕ ਦੀ ਅਨੁਸਾਰਤਾ ਕਰਦੀ ਹੈ। ਇਹ ਮਹੱਤਵਪੂਰਨ ਕਦਮ ਵਿਗਿਆਨ ਵਿਸ਼ੇ ਵਿੱਚ ਇਕਸਾਰਤਾ ਲਿਆਉਣ ਲਈ ਚੁੱਕਿਆ ਗਿਆ ਹੈ ਤਾਂ ਜੋ ਵਿਦਿਆਰਥੀਆਂ ਨੂੰ ਰਾਸ਼ਟਰੀ ਪੱਧਰ ਦੇ ਇਮਤਿਹਾਨ ਵਿੱਚ ਕਿਸੇ ਵੀ ਤਰ੍ਹਾਂ ਦੀ ਔਕੜ ਨਾ ਆਵੇ।

ਇਸ ਪਾਠ−ਪੁਸਤਕ ਨੂੰ ਵਿਦਿਆਰਥੀਆਂ ਅਤੇ ਅਧਿਆਪਕਾਂ ਦੇ ਲਈ ਵੱਧ ਤੋਂ ਵੱਧ ਉਪਯੋਗੀ ਬਣਾਉਣ ਦਾ ਭਰਪੂਰ ਯਤਨ ਕੀਤਾ ਗਿਆ ਹੈ। ਪੁਸਤਕ ਨੂੰ ਹੋਰ ਚੰਗੇਰਾ ਬਣਾਉਣ ਲਈ ਖੇਤਰ ਵਿੱਚੋਂ ਆਏ ਸੁਝਾਵਾਂ ਦਾ ਸਤਿਕਾਰ ਕੀਤਾ ਜਾਵੇਗਾ।

ਚੇਅਰਪਰਸਨ

ਪੰਜਾਬ ਸਕੂਲ ਸਿੱਖਿਆ ਬੋਰਡ

ਪਾਠ ਪੁਸਤਕ ਵਿਕਾਸ ਕਮੇਟੀ

ਪ੍ਰਧਾਨ, ਵਿਗਿਆਨ ਅਤੇ ਗਣਿਤ ਪਾਠ ਪੁਸਤਕ ਕਮੇਟੀ ਜਗਤ ਵਿਸ਼ਨੂੰ ਨਾਰਲੀਕਰ, ਪ੍ਰੋਫੈਸਰ, ਅੰਤਰ ਯੂਨੀਵਰਸਿਟੀ ਕੇਂਦਰ, ਖਗੋਲ ਵਿਗਿਆਨ ਅਤੇ ਖਗੋਲ ਭੌਤਿਕੀ, ਪੁਨਾ ਯੂਨੀਵਰਸਿਟੀ, ਪੁਨਾ

ਮੁੱਖ ਸਲਾਹਕਾਰ

ਬੀ.ਐਲ. ਖੰਡੇਲਵਾਲ, ਪ੍ਰੋਫੈਸਰ (ਰਿਟਾਇਰਡ), ਇੰਡੀਅਨ ਇੰਸਟੀਚਿਊਟ ਆਫ ਟੈਕਨੋਲੋਜੀ, ਨਵੀਂ ਦਿੱਲੀ।

ਮੈਂਬਰ

ਅਲਕ ਮਿਹਰੋਤਰਾ, ਰੀਡਰ, ਡੀ.ਈ. ਐਸ. ਐਮ. ਐਨ.ਸੀ. ਈ.ਆਰ.ਟੀ। ਅੰਜਨੀ ਕੌਲ (ਬੁਲਾਰਾ) ਡੀ.ਈ. ਐਸ. ਐਮ. ਐਨ. ਐਨ.ਸੀ, ਈ.ਆਰ.ਟੀ। ਆਈ.ਆਈ.ਪੀ ਅਗਰਵਾਲ, ਪ੍ਰੋਫੈਸਰ, ਖੇਤਰੀ ਸਿੱਖਿਆ ਸੰਸਥਾਨ, ਐਨ.ਸੀ.ਈ. ਆਰ.ਟੀ. ਭੋਪਾਲ। ਏ.ਐਸ. ਬਰਾੜ, ਪ੍ਰੋਫੈਸਰ, ਇੰਡੀਅਨ, ਇਸੰਟੀਚਿਊਟ ਆਫ ਟੈਕਨੋਲੋਜੀ, ਨਵੀਂ ਦਿੱਲੀ। ਐਚ.ਓ.ਗੁਪਤਾ, ਪ੍ਰੋਫੈਸਰ, ਡੀ.ਈ.ਐਸ.ਐਮ, ਐਨ.ਸੀ. ਈ.ਆਰ ਟੀ. ਨਵੀਂ ਦਿੱਲੀ। ਐਸ. ਕੇ ਗੁਪਤਾ, ਰੀਡਰ, ਸਕੂਲ ਆਫ ਸਟੱਡੀਜ਼ ਇਨ ਕੈਮਿਸਟਰੀ, ਸ਼ਿਵਾਜੀ ਯੂਨੀਵਰਸੀਟੀ, ਗਵਾਲੀਅਰ। ਐਸ. ਕੇ. ਡੋਗਰਾ, ਪ੍ਰੋਫੈਸਰ, ਡਾ. ਬੀ.ਆਰ. ਅੰਬੇਦਕਰ, ਸੈਂਟਰ ਫਾਰ ਬਾਇਓਮੈਡੀਕਲ ਰੀਸਰਚ ਦਿੱਲੀ ਯੂਨੀ. ਦਿੱਲੀ।

ਆਰ. ਕੇ. ਪਰਾਸ਼ਰ, ਬੁਲਾਰਾ, ਡੀ.ਈ. ਐਸ. ਐਮ. ਐਨ.ਸੀ.ਈ. ਆਰ ਟੀ, ਨਵੀਂ ਦਿੱਲੀ।

ਹਿੰਦੀ ਅਨੁਵਾਦ

ਆਰ.ਆਰ-ਗੋਇਲ, ਰੀਡਰ, ਰਸਾਇਣ ਵਿਗਿਆਨ ਵਿਭਾਗ, ਰਾਮਜੱਸ ਕਾਲਜ, ਦਿੱਲੀ ਯੂਨੀ, ਦਿੱਲੀ ਆਰ. ਕੇ ਉਪਾਧਿਆਇ, ਸੀਨੀ-ਬੁਲਾਰਾ, ਰਸਾਇਣ ਵਿਭਾਗ, ਰਾਜਕੀ ਮਹਾਂਵਿਦਿਆਲਾ, ਅਜਮੇਰ। ਆਲੋਕ ਚਤੁਰਵੇਦੀ, ਸੀਨੀ-ਬੁਲਾਰਾ, ਰਸਾਇਣ ਵਿਭਾਗ, ਰਾਜਕੀ ਮਹਾਂਵਿਦਿਆਲਾ, ਅਜਮੇਰ।

ਵਿਸ਼ਾ-ਵਸਤੂ

ਭਾਗ-II

ਪਾਠ ਨੰ	5.	ਪਨਾ ਨੂੰ.
1.	ਰਸਾਇਣਿਕ ਵਿਗਿਆਨ ਦੇ ਕੁੱਝ ਮੂਲ ਸੰਕਲਪ	1
	ਪਰਮਾਣੂ ਦੀ ਬਣਤਰ	26
3.	ਤੱਤਾਂ ਦਾ ਵਰਗੀਕਰਣ ਅਤੇ ਗੁਣਾਂ ਵਿੱਚ ਆਵਰਤਿਤਾ	70
4.	ਰਸਾਇਣਿਕ ਬੰਧਨ ਅਤੇ ਅਣਵੀਂ	96
5.	ਮਾਦੇ ਦੀਆਂ ਅਵਸਥਾਵਾਂ	132
6.	ਤਾਪ ਗਤਿਕੀ	154
7.	ਸੰਤੁਲਿਤ ਅਵਸਥਾ	185
	Appendix	231
	ਕੁਝ ਚੁਣੇ ਹੋਏ ਪ੍ਰਸ਼ਨਾਂ ਦੇ ਉੱਤਰ	245
	INDEX	251

ਪੰਜਾਬ ਸਕੂਲ ਸਿੱਖਿਆ ਦੀ ਪਾਠ-ਪੁਸਤਕ ਦੀ ਸੋਧ ਕਮੇਟੀ

- 1. ਸ੍ਰੀ ਗੁਰਬਖਸ਼ੀਸ ਸਿੰਘ, (ਲੈਕਚਰਰ ਕਮਿਸਟਰੀ), ਸਰਕਾਰੀ ਸੀਨੀਅਰ ਸੈਕੰਡਰੀ ਸਕੂਲ, ਸਹੋੜਾ, (ਐਸ.ਏ.ਐਸ ਨਗਰ)।
- 2. ਸ਼੍ਰੀਮਤੀ ਅਨੂ ਰੌਲੀ, (ਲੈਕਚਰਰ ਕਮਿਸਟਰੀ), ਸਰਕਾਰੀ ਸੀਨੀਅਰ ਸੈਕੰਡਰੀ ਸਕੂਲ, ਬਾਕਰਪੁਰ, (ਐਸ.ਏ.ਐਸ. ਨਗਰ)।
- 3. ਸ਼੍ਰੀ ਮਤੀ ਪੁਸ਼ਪਿੰਦਰ ਕੌਰ, (ਲੈਕਚਰਰ ਕਮਿਸਟਰੀ, ਸਰਕਾਰੀ ਸੀਨੀਅਰ ਸੈਕੰਡਰੀ ਸਕੂਲ, ਸੋਹਾਣਾ, (ਐਸ.ਏ.ਐਸ. ਨਗਰ)।

INDEX

A		Duranted Lawrenceids and horse	907
Absolute zero	139	Bronsted –Lowry acids and bases	207
Accuracy	9	Buffer solution	219
Actinide series	79	C	
Adiabatic	156	Canal rays	29
Alpha (α) particle scattering experime		Cathode rays	27 27
Anion	84	Cathode ray tube	27
Aqueous tension	142	Cation	84
Arrhenius acids and bases	207	Charles' law	138
Atom	1,3,12	Chalcogens	81
Atomic mass	13	Chemical equilibrium	186
Atomic mass unit	13	Chemical properties	4
Atomic models	29	Chemical reactivity	91
Atomic number	32	Combined gas law	141
Atomic orbitals	50	Common ion effect	217, 222
Atomic radius	82,83	Compound	3
Atomic spectra	41	Conjugate acid –base pair	208
Aufbau principle	57	Continuous spectrum	40
Average atomic mass	13	Covalent bond	98
Avogadro constant	15	Covalent radius	83
Avogadro Law	12, 140	Critical pressure	148
Azimuthal quantum number	51	Critical temperature	148
_		Critical volume	148
В		Closed system	155
Balmer series	42		
Base physical quantities	5	\mathbf{D}	
Bohr Model of atom	34	Dalton's Atomic theory	13, 26
Bohr radius	43	Dalton's law of partial pressure	142
Bond angle	104	Density	7
Bond dissociation energy	171	Deuterium	32
Bond enthalpy	104,114, 171	Deviation from ideal gas behaviour	144
Bond length	103,125	Diagonal relationship	90
Bond order	105, 125	Diatomic molecules	13
Born-Haber cycle	173	Dimensional analysis	10
Boundary surface diagrams	54	Dipole moment	107
Boyle's law	136	Dipole-dipole force	134
Boyle point	147	Dipole induced dipole forces	134
Boyle temperature	147	Dispersion force	133

252

Dual behaviour of matter	46	Gay-Lussac's law, pressure temperatu	re 139
Dynamic equilibrium	185,189	relationship	
-		Gibbs energy	178,179
\mathbf{E}		Ground state of atom	56
Effective nuclear charge	45		
Electron	28	H	
Element	3	Halogens	81
Electronegativity	87	Heisenberg's uncertainty principle	47
Electron gain enthalpy	86, 102	Hess's law	169
Electromagnetic radiations	34	Heterogeneous equilibria	197
Electromagnetic spectrum	34	Homogeneous equilibria	194
Electronic configuration	59,78	Hund's rule of maximum multiplicity	59
Elements d-block	81	Hybridisation	116
Elements <i>p</i> -block	81	Hydrogen bonding	127, 134
Elements f –block	81	Hydrogen spectrum	41
Elements s-block	79	Hydronium ion	207
Empirical formula	16		
Emission spectrum	40	I	
Enthalpy	161	Ideal gas equation	141
Enthalpy change during phase transfe	rmation 165	Intermolecular forces	133, 135
Enthalpy of atomization	171	Internal energy	156
Enthalpy of combustion	170	Intensive property	162
Enthalpy of solution	172	Ionic bond	102
Entropy	175	Ionic equilibrium	186, 205
Equation of state	141	Ionic product of water	210
Equilibrium constant	194	Ionic radius	84
Equilibrium equation	192		210, 212, 214
Equilibrium mixture	185	Ionization enthalpy	84
Equilibrium vapour pressure	149	Ionization of acids and bases	209
Exchange energy	61	Isobar	139
Excited state of atom	56	Isocore	139
Extensive property	162	Isoelectronic species	84
		Isolated system	156
F		Isotherm	137
Fajan's rule	108	Isotopes	32
First law of thermodynamics	158	1	
Formal charge	100		
Formula mass	14	K	
		Kelvin temperature scale	138
G		Kössel –Lewis approach	97
Gas	2	L	
Gas laws	136	Lanthanide series	78
Gay-Lussac's law of gaseous volume	12	Lattice enthalpy	103, 173

			253
Law of chemical equilibrium	191	Molecular formula	16
Law of conservation of mass	11	Molecular mass	14
Law of definite proportion	11	Molecular orbital theory	121
Law of multiple proportions	12	Molecule	1,3,12
Law of Octaves	71		_,_,_
Law of Triads	71		
Le Chatelier's principle	202	N	
Lewis acids and bases	209	National standards of measurements	6
Lewis dot structure	99	Neutron	29
Lewis symbols	97	Noble gases	81
Limiting reagent	18	Nodes	54
Line spectrum	41	Non-metals	82
Linear combination of atomic orbitals (LCAO) 122	Nucleons	32
Liquid	2	Nucleus	32
Liquid state	149		
Liquid–vapour equilibrium	186	0	
Liquifaction of gases	147	Octet rule	98
London force	133	Open system	155
		Orbit	32,42
M		Orbitals	51, 78
Magnetic orbital quantum number	52	Orbital overlap	114
Mass	6	Oxidation state	89
Mass number	32		
Mass per cent	19	P	
Matter	2	Particle nature	36
Measurement, English system	4	Pauli's exclusion principle	58
Measurement, Metric system	4	Percentage composition	15
Measurement, Volume	6	Periodic groups	75
Mendeleev's periodic law	75	Periodic table long form	75
Metallic radius	83	Periodic table periods	75
Metalloids	82	Periodicity of valence	89
Metals	82	pH scale	210
Mixture	3	Photoelectric effect	38
Mixture heterogeneous	3	Physical properties	4
Mixture homogeneous	3	pi bond	116
Modern periodic law	75	Planck's quantum theory	36
Molality	20	Polyatomic molecules	12, 171
Molar enthalpy of fusion	165	Precision	9
Molar enthalpy of vaporization	165	Principal quantum number	43,51
Molar mass	15	Protium	32
Molarity	20	Proton	29
Mole	15	Pure substance	3
Mole fraction	20		

254

Standard enthalpy of combustion 169 Standard enthalpy of formation 166 Quantum 37 Quantum mechanics 49 State functions 156 State variables 156 R Stoichiometry 17 Subatomic particles 27 Radioactive elements 30 30 Sublevel 51 Radioactivity Subshell 51 Reaction quotient 199 Surface tension 150 Reference standard 8 Surroundings 155 Representative elements 81 Resonance structures 105 System 155 Rutherford model of atom 31 Т 42 Rydberg constant 7 Temperature scales S Thermal energy 135 Schrödinger wave equation 50 Thermal interactions 135 Scientific notation 8 Thermochemical equations 168 Screening effect 86 Thermodynamic scale Semi-metals 82 138 Thermodynamic state 155 Shell 78 Thomson model 30 Shielding effect 86 57 Threshold frequency 38 Shielding of electrons Transition series 78 SI base units 5 Tritium 32 116 Sigma bond Significant figures 9 U SI system of units 4 Unified mass 13 SI system prefixes 6 Universal gas constant 7 141 SI unit of density SI unit of mass 6 \mathbf{V} 7 SI unit of temperature Valance bond theory 113 SI unit of volume 7 2 Valence electron 60,97 Solid Solid-gas equilibrium 187 van der Waals forces 133 149 Solid-liquid equilibrium 186 Vapour pressure Viscosity 151 Solubility product constant 220 Visible light Spectroscopy 40 35 VSEPR theory 108 Spectrum 40 35 Speed of light \mathbf{w} Spin quantum number 53 174 Wavenumber 35 Spontaneous process

Weight

140

Standard ambient temperature and pressure

6

जुिंट 1

ਰਸਾਇਣ ਵਿਗਿਆਨ ਦੇ ਕੁੱਝ ਮੂਲ ਸੰਕਲਪ

(SOME BASIC CONCEPTS OF CHEMISTRY)

ਉਦੇਸ਼

ਇਸ ਯੂਨਿਟ ਨੂੰ ਪੜ੍ਹਨ ਤੋਂ ਬਾਅਦ ਤੁਸੀਂ

- ਜੀਵਨ ਦੇ ਵੱਖ-ਵੱਖ ਖੇਤਰਾਂ ਵਿੱਚ ਰਸਾਇਣ ਵਿਗਿਆਨ ਦੀ ਮਹਤੱਤਾ ਨੂੰ ਸਮਝ ਸਕੋਗੇ।
- ਮਾਦਾ ਦੀਆਂ ਤਿੰਨ ਅਵਸਥਾਵਾਂ ਦੇ ਗੁਣਾਂ ਦੀ ਵਿਆਖਿਆ ਕਰ ਸਕੋਗੇ।
- ਪਦਾਰਥਾਂ ਨੂੰ ਤੱਤਾਂ, ਯੋਗਿਕਾਂ ਅਤੇ ਮਿਸ਼ਰਨਾਂ ਵਿੱਚ ਵਰਗੀਕ੍ਰਿਤ ਕਰ ਸਕੋਗੇ।
- SI ਅਧਾਰ ਮਾਤ੍ਰਕਾਂ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਕਰ ਸਕੋਗੇ ਅਤੇ ਕੁਝ ਆਮ ਵਰਤੇ ਜਾਂਦੇ ਅਗੇਤਰਾਂ ਨੂੰ ਸੂਚੀ ਬੱਧ ਕਰ ਸਕੋਗੇ।
- ਵਿਗਿਆਨਿਕ ਲਿੱਪੀ ਦੀ ਵਰਤੋਂ ਅਤੇ ਸੰਖਿਆਵਾਂ ਸਰਲ ਗਣਿਤਿਕ ਪ੍ਚਾਲਨ ਕਰ ਸਕੋਗੇ।
- ਸੁਨਿਸ਼ਚਤਾ ਅਤੇ ਅਚੂਕਤਾ ਵਿੱਚ ਅੰਤਰ ਸਪਸ਼ਟ ਕਰ ਸਕੋਗੇ।
- ਸਾਰਥਕ ਅੰਕ ਨਿਰਧਾਰਤ ਕਰ ਸਕੋਗੇ।
- ਭੌਤਿਕ ਰਾਸ਼ੀਆਂ ਦੇ ਮਾਤਰਕਾਂ ਨੂੰ ਇੱਕ ਪ੍ਣਾਲੀ ਤੋਂ ਦੂਜੀ ਪ੍ਣਾਲੀ ਵਿੱਚ ਰੂਪਾਂਤਰਿਤ ਕਰ ਸਕੋਗੇ।
- ਰਸਾਇਣਿਕ ਸੰਯੋਜਨ ਦੇ ਭਿੰਨ-ਭਿੰਨ ਨਿਯਮਾਂ ਦੀ ਵਿਆਖਿਆ ਕਰ ਸਕੋਗੇ।
- ਪਰਮਾਣੂ ਪੁੰਜ, ਔਸਤ ਪਰਮਾਣੂ ਪੁੰਜ, ਅਣੂ ਪੁੰਜ ਅਤੇ ਸੂਤਰ ਪੁੰਜ ਦੀ ਸਾਰਥਕਤਾ ਦੱਸ ਸਕੋਗੇ।
- ਮੋਲ ਅਤੇ ਮੋਲਰ ਪੁੰਜ ਟਰਮਾਂ ਦਾ ਵਰਣਨ ਕਰ ਸਕੋਗੇ।
- ਕਿਸੇ ਯੋਗਿਕ ਦੇ ਘਟਕ ਭਿੰਨ-ਭਿੰਨ ਤੱਤਾਂ ਦਾ ਪੁੰਜ ਪ੍ਰਤੀਸ਼ਤ ਪਰਿਕਲਨ ਕਰ ਸਕੋਗੇ।
- ਦਿੱਤੇ ਗਏ ਪ੍ਰਯੋਗਿਕ ਅੰਕੜਿਆਂ ਤੋਂ ਕਿਸੇ ਯੋਗਿਕ ਦੇ ਲਈ ਮੂਲ-ਅਨੁਪਾਤੀ ਫਾਰਮੂਲਾ ਅਤੇ ਅਣਵੀਂ ਫਾਰਮੂਲਾ ਨਿਰਧਾਰਿਤ ਕਰ ਸਕੋਗੇ।
- ਸਟੋਸ਼ਿਓਮੀਟਰੀ ਪਰਿਕਲਨ ਕਰ ਸਕੋਗੇ। ਸਟੋਸ਼ਿਓਮੀਟਰੀ ਪਰਿਕਲਨ ਕਰ ਸਕੋਗੇ।

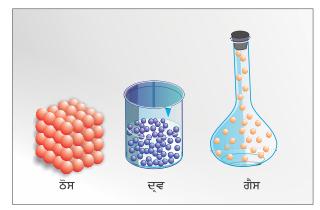
ਰਸਾਇਣ ਵਿਗਿਆਨ ਅਣੂਆਂ ਅਤੇ ਉਨ੍ਹਾਂ ਦੇ ਰੂਪਾਂਤਰਣ ਦਾ ਵਿਗਿਆਨ ਹੈ। ਇਹ ਨਾ ਸਿਰਫ ਇੱਕ ਸੌ ਅਠਾਹਰਾਂ ਤਤਾਂ ਦਾ ਵਿਗਿਆਨ ਹੈ, ਪਰੰਤੂ ਉਨ੍ਹਾਂ ਤੋਂ ਨਿਰਮਿਤ ਹੋਣ ਵਾਲੇ ਅਸੰਖਾਂ ਕਿਸਮਾਂ ਦੇ ਅਣੂਆਂ ਦਾ ਵੀ ਵਿਗਿਆਨ ਹੈ।...

ਰੋਅਲਡ ਹਾੱਫਮੈਨ

ਰਸਾਇਣ ਵਿਗਿਆਨ ਮਾਦਾ ਬਣਤਰ, ਰਚਨਾ ਅਤੇ ਗੁਣਾਂ ਨਾਲ ਸਬੰਧਿਤ ਹੈ ਜਿਨ੍ਹਾਂ ਨੂੰ ਮਾਦਾ ਦੇ ਮੂਲ ਘਟਕਾਂ-ਪਰਮਾਣੂਆਂ ਅਤੇ ਅਣੂਆਂ ਦੇ ਮਾਧਿਅਮ ਨਾਲ ਚੰਗੀ ਤਰ੍ਹਾਂ ਸਮਝਿਆ ਜਾ ਸਕਦਾ ਹੈ। ਇਹ ਹੀ ਕਾਰਣ ਹੈ ਰਸਾਇਣ ਵਿਗਿਆਨ 'ਪਰਮਾਣੂਆਂ ਅਤੇ ਅਣੂਆਂ ਦਾ ਵਿਗਿਆਨ' ਅਖਵਾਉਂਦਾ ਹੈ। ਕੀ ਅਸੀਂ ਇਨ੍ਹਾਂ ਕਣਾਂ ਨੂੰ ਵੇਖ ਸਕਦੇ ਹਾਂ, ਉਨ੍ਹਾਂ ਦਾ ਪੁੰਜ ਮਾਪ ਸਕਦੇ ਹਾਂ ਅਤੇ ਉਨ੍ਹਾਂ ਦੀ ਹੋਂਦ ਨੂੰ ਮਹਿਸੂਸ ਕਰ ਸਕਦੇ ਹਾਂ? ਕੀ ਕਿਸੇ ਪਦਾਰਥ ਦੀ ਨਿਸ਼ਚਿਤ ਮਾਤਰਾ ਵਿੱਚ ਪਰਮਾਣੂਆਂ ਅਤੇ ਅਣੂਆਂ ਦੀ ਸੰਖਿਆ ਪਤਾ ਕਰ ਸਕਦੇ ਹਾਂ ਅਤੇ ਕੀ ਇਨ੍ਹਾਂ ਕਣਾਂ (ਪਰਮਾਣੂਆਂ ਅਤੇ ਅਣੂਆਂ) ਦੀ ਸੰਖਿਆ ਅਤੇ ਉਨ੍ਹਾਂ ਦੇ ਪੁੰਜ ਦੇ ਵਿੱਚ ਮਾਤਰਾਤਮਕ ਸਬੰਧ ਦਰਸਾ ਸਕਦੇ ਹਾਂ? ਇਸ ਯੁਨਿਟ ਵਿੱਚ ਅਸੀਂ ਅਜਿਹੇ ਹੀ ਕੁੱਝ ਪ੍ਰਸ਼ਨਾਂ ਦੇ ਉੱਤਰ ਲਭਾਂਗੇ। ਇਸ ਦੇ ਨਾਲ ਅਸੀਂ ਇਹ ਵੀ ਵਰਣਨ ਕਰਾਂਗੇ ਕਿ ਕਿਸੇ ਪਦਾਰਥ ਦੇ ਭੌਤਿਕ ਗੁਣਾਂ ਨੂੰ ਢੁਕਵੀਆਂ ਇਕਾਈਆਂ ਦੀ ਸਹਾਇਤਾ ਨਾਲ ਮਾਤਰਾਤਮਕ ਰੂਪ ਵਿੱਚ ਕਿਸ ਤਰ੍ਹਾਂ ਦਰਸਾਇਆ ਜਾ ਸਕਦਾ ਹੈ।

1.1 ਰਸਾਇਣ ਵਿਗਿਆਨ ਦਾ ਮਹੱਤਵ

ਮਨੁੱਖ ਦੁਆਰਾ ਕੁਦਰਤ ਨੂੰ ਸਮਝਣ ਅਤੇ ਉਸ ਦਾ ਵਰਣਨ ਕਰਨ ਦੇ ਲਈ ਗਿਆਨ ਨੂੰ ਕ੍ਰਮ ਬਧ ਕਰਨ ਦੀ ਲਗਾਤਾਰ ਕੋਸ਼ਿਸ਼ ਹੀ 'ਵਿਗਿਆਨ' ਹੈ। ਸੁਵਿਧਾ ਦੇ ਲਈ ਵਿਗਿਆਨ ਨੂੰ ਭਿੰਨ-ਭਿੰਨ ਸ਼ਾਖਾਵਾਂ (ਜਿਵੇਂ ਰਸਾਇਣ ਵਿਗਿਆਨ, ਭੌਤਿਕ ਵਿਗਿਆਨ, ਜੀਵ ਵਿਗਿਆਨ, ਭੂ-ਵਿਗਿਆਨ ਆਦਿ) ਵਿੱਚ ਵਰਗੀਕ੍ਰਿਤ ਕੀਤਾ ਗਿਆ ਹੈ। ਰਸਾਇਣ ਵਿਗਿਆਨ, ਵਿਗਿਆਨ ਦੀ ਉਹ ਸ਼ਾਖਾ ਹੈ, ਜਿਸ ਵਿੱਚ ਮਾਦਾ ਦੀ ਰਚਨਾ, ਗੁਣਾਂ ਅਤੇ ਅੰਤਰ ਕਿਰਿਆਵਾਂ ਦਾ ਅਧਿਐਨ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਰਸਾਇਣ ਵਿਗਿਆਨੀ ਲਗਾਤਾਰ ਇਹ ਜਾਣਨ ਦੇ ਲਈ ਰੁਚੀ ਰੱਖਦੇ ਹਨ ਕਿ ਰਸਾਇਣਕ ਰੁਪਾਂਤਰਣ ਕਿਸ ਤਰ੍ਹਾਂ ਹੋ ਰਹੇ ਹਨ। ਵਿਗਿਆਨ ਵਿੱਚ ਰਸਾਇਣ ਵਿਗਿਆਨ ਦੀ ਮਹੱਤਵਪੂਰਣ ਭੂਮਿਕਾ ਹੈ, ਜੋ ਅਕਸਰ ਵਿਗਿਆਨ ਦੀਆਂ ਹੋਰ ਸ਼ਾਖਾਵਾਂ (ਜਿਵੇਂ, ਭੌਤਿਕ ਵਿਗਿਆਨ, ਜੀਵ ਵਿਗਿਆਨ, ਭੂ ਵਿਗਿਆਨ ਆਦਿ) ਦੇ ਨਾਲ ਅਟੁੱਟ ਰੂਪ ਵਿੱਚ ਜੁੜੀ ਹੋਈ ਹੈ। ਰੋਜਾਨਾ ਜੀਵਨ ਵਿੱਚ ਵੀ ਰਸਾਇਣ ਵਿਗਿਆਨ ਦੀ ਮਹੱਤਵਪੂਰਣ ਭੂਮਿਕਾ ਹੈ।


ਰਸਾਇਣ ਵਿਗਿਆਨ ਦੇ ਸਿਧਾਂਤਾ ਦਾ ਵਿਹਾਰਿਕ ਉਪਯੋਗ ਮੌਸਮ ਵਿਗਿਆਨ, ਦਿਮਾਗ ਦਾ ਕੰਮ ਕਰਨਾ ਅਤੇ ਕੰਪਿਊਟਰ ਦੀ ਕਿਰਿਆ ਵਰਗੇ ਅਨੇਕਾਂ ਖੇਤਰਾਂ ਵਿੱਚ ਹੁੰਦੀ ਹੈ। ਰਾਸ਼ਟਰੀ ਅਰਥਵਿਵਸਥਾ ਵਿੱਚ ਮਹੱਤਵਪੂਰਣ ਯੋਗਦਾਨ ਖਾਦਾਂ, ਖਾਰਾਂ, ਤੇਜਾਬਾਂ, ਲੂਣਾਂ, ਰੰਗਾਂ, ਪੋਲੀਮਰਾਂ, ਦਵਾਈਆਂ, ਮਿਸ਼ਰਤ ਧਾਤਾਂ ਅਤੇ ਹੋਰ ਕਰਾਬਨਿਕ ਅਤੇ ਅਕਾਰਬਨਿਕ ਰਸਾਇਣਾਂ ਸਹਿਤ ਨਵੀਂ ਸਮੱਗਰੀ ਦੇ ਨਿਰਮਾਣ ਵਿੱਚ ਲੱਗੇ ਰਸਾਇਣਿਕ ਉਦਯੋਗਾਂ ਦਾ ਹੈ।

ਮਨੁੱਖ ਦੇ ਜੀਵਨ ਪੱਧਰ ਨੂੰ ਉੱਚਾ ਚੁੱਕਣ ਦੇ ਲਈ ਭੋਜਨ, ਸਿਹਤ ਸੁਵਿਧਾ ਦੀਆਂ ਵਸਤਾਂ ਅਤੇ ਹੋਰ ਸੱਮਗਰੀ ਦੀਆਂ ਲੋੜਾਂ ਨੂੰ ਪੂਰਾ ਕਰਨ ਵਿੱਚ ਰਸਾਇਣ ਵਿਗਿਆਨ ਨੇ ਮਹੱਤਵਪੂਰਣ ਭੂਮਿਕਾ ਨਿਭਾਈ ਹੈ। ਭਿੰਨ-ਭਿੰਨ ਖਾਦਾਂ, ਜੀਵਾਣੂ ਨਾਸ਼ਕਾਂ ਅਤੇ ਕੀਟਨਾਸ਼ਕਾਂ ਦੀਆਂ ਉੱਤਮ ਕਿਸਮਾਂ ਦਾ ਉੱਚਾ ਪੱਧਰ ਤੇ ਉਤਪਾਦਨ ਇਸ ਦੀਆਂ ਪ੍ਰਮੁੱਖ ਉਦਾਹਰਣਾਂ ਹਨ। ਇਸ ਤਰ੍ਹਾਂ ਕੈਂਸਰ ਦੇ ਇਲਾਜ ਵਿੱਚ ਪ੍ਭਾਵੀ ਦਵਾਈਆਂ (ਜਿਵੇਂ—ਸਿਸਪਲਾਟਿਨ ਅਤੇ ਟ੍ਰੈਾਸੋਲ) ਅਤੇ ਏਡਜ਼ ਦੇ ਰੋਗੀਆਂ ਦੇ ਇਲਾਜ ਲਈ ਆਉਣ ਵਾਲੀ ਦਵਾਈ ਇਜਿਡੋਥਾਇਮਿਡਿਨ (AZT) ਵਰਗੀਆਂ ਅਨੇਕਾਂ ਜੀਵਨ ਰੱਖਿਅਕ ਦਵਾਈਆਂ ਪੋਦਿਆਂ ਅਤੇ ਪ੍ਰਾਣੀ-ਸਰੋਤਾਂ ਤੋਂ ਪ੍ਰਾਪਤ ਜਾਂ ਸੰਸ਼ਲਿਸਤ ਕੀਤੀਆਂ ਗਈਆਂ ਹਨ।

ਰਸਾਇਣਿਕ ਸਿਧਾਂਤਾਂ ਦੀ ਚੰਗੀ ਸਮਝ ਹੋਣ ਤੋਂ ਬਾਅਦ ਹੁਣ ਵਿਸ਼ਿਸ਼ਟ ਚੰਬਕੀ, ਬਿਜਲਈ ਅਤੇ ਪਕਾਸ਼ੀ ਗਣਾਂ ਵਾਲੇ ਪਦਾਰਥ ਸੰਸਲਿਸ਼ਤ ਕਰਨਾ ਸੰਭਵ ਹੈ ਗਿਆ ਹੈ, ਜਿਸ ਦੇ ਸਿੱਟੇ ਵਜੋਂ, ਅਤਿਚਾਲਕ ਸਿਰੇਮਿਕ, ਸੂਚਾਲਕ ਪਾੱਲੀਮਰ, ਪ੍ਰਕਾਸ਼ੀ ਫਾਈਬਰ ਵਰਗੇ ਪਦਾਰਥ ਸੰਸਲਿਸ਼ਤ ਕੀਤੇ ਜਾ ਸਕਦੇ ਹਨ ਅਤੇ ਠੋਸ ਅਵਸਥਾ ਵਿੱਚ ਪਦਾਰਥਾਂ ਨੂੰ ਛੋਟੇ ਰੂਪ ਵਿੱਚ ਵਿਕਸਿਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਪਿਛਲੇ ਕੁਝ ਸਾਲਾਂ ਵਿੱਚ ਰਸਾਇਣ ਵਿਗਾਨ ਦੀ ਸਹਾਇਤਾ ਨਾਲ ਵਾਤਾਵਰਨ ਪ੍ਰਦੂਸ਼ਣ ਨਾਲ ਸਬੰਧਿਤ ਕੁਝ ਗੰਭੀਰ ਸਮੱਸਿਆਵਾਂ ਨੂੰ ਕਾਫੀ ਹੱਦ ਤੱਕ ਨਿਯੰਤਰਿਤ ਕੀਤਾ ਜਾ ਸਕਿਆ ਹੈ।ਉਦਾਹਰਣ ਵਜੋਂ-ਸਮਤਾਪਮੰਡਲ (stratospher) ਵਿੱਚ ਓਜੋਨ ਸੱਖਣਾ ਕਰਨ (ozone depletion) ਪੈਦਾ ਕਰਨ ਵਾਲੇ ਅਤੇ ਵਾਤਾਵਰਣ-ਪਦਸ਼ਕ ਕਲੋਰੋਫਲੋਰੋਕਾਰਬਨ, ਭਾਵ ਸੀ ਐਫ ਸੀ (CFC) ਵਰਗੇ ਪਦਾਰਥਾਂ ਦੇ ਵਿਕਲਪ ਸਫਲਤਾਪੂਰਵ ਸੰਸਲਿਸ਼ਤ ਕਰ ਲਏ ਗਏ ਹਨ, ਪਰੰਤੂ ਅਜੇ ਵੀ ਵਾਤਾਵਰਣ ਦੀਆਂ ਅਨੇਕਾਂ ਸਮੱਸਿਆਵਾਂ ਰਸਾਇਣ ਵਿਗਿਆਨੀਆਂ ਲਈ ਗੰਭੀਰ ਚੁਨੌਤੀ ਬਣੀ ਹੋਈ ਹੈ। ਅਜਿਹੀ ਇੱਕ ਸਮੱਸਿਆ ਗਰੀਨ ਹਾਊਸ ਗੈਸਾਂ (ਜਿਵੇਂ ਮੀਥੇਨ, ਕਾਰਬਨਡਾਈਆਕਸਾਈਡ ਆਦਿ) ਦਾ ਪਬੰਧਨ ਹੈ। ਰਸਾਇਣ ਵਿਗਿਆਨੀਆਂ ਦੀ ਆਉਣ ਵਾਲੀ ਪੀੜ੍ਹੀ ਦੇ ਲਈ ਜੀਵ-ਰਸਾਇਣਿਕ ਪ੍ਰਕਿਰਿਆਵਾਂ ਦੀ ਸਮਝ, ਰਸਾਇਣ ਦੇ ਵਿਆਪਕ ਪੱਧਰ ਤੇ ਉਤਪਾਦਨ ਦੇ ਲਈ ਐਨਜਾਈਮਾਂ ਦੀ ਵਰਤੋਂ ਅਤੇ ਨਵੇਂ ਮੋਹਿਕ ਪਦਾਰਥਾਂ ਦਾ ਉਤਪਾਦਨ ਕੁੱਝ ਬੋਧਿਕ ਚੁਣੌਤੀਆਂ ਹਨ। ਅਜਿਹੀਆਂ ਚਣੌਤੀਆਂ ਦਾ ਸਾਹਮਣਾ ਕਰਨ ਦੇ ਲਈ ਸਾਡੇ ਦੇਸ਼ ਅਤੇ ਹੋਰ ਵਿਕਾਸਸ਼ੀਲ ਦੇਸ਼ਾਂ ਦੇ ਪ੍ਰਤਿਭਾਸ਼ੀਲ ਅਤੇ ਰਚਨਾਤਮਕ ਰਸਾਇਣ ਵਿਗਿਆਨੀਆਂ ਦੀ ਜਰੂਰਤ ਹੈ।

1.2 ਮਾਦਾ ਦੀ ਪ੍ਰਕਿਰਤੀ

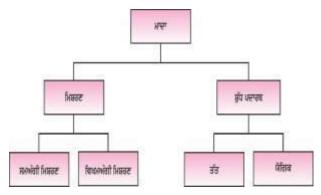
ਆਪਣੀਆਂ ਪਹਿਲੀਆਂ ਜਮਾਤਾਂ ਤੋਂ ਤੁਸੀਂ ਮਾਦਾ ਸ਼ਬਦ ਤੋਂ ਵਾਕਿਫ ਹੋ।ਕੋਈ ਵੀ ਵਸਤੂ, ਜਿਸ ਦਾ ਪੁੰਜ ਹੋਵੇ ਅਤੇ ਜੋ ਸਥਾਨ ਘੇਰਦੀ ਹੈ, ਮਾਦਾ ਅਖਵਾਉਂਦੀ ਹੈ। ਸਾਡੇ ਆਲੇ ਦੁਆਲੇ ਦੀਆਂ ਸਾਰੀਆਂ ਵਸਤੂਆਂ ਮਾਦਾ ਦੀਆਂ ਬਣੀਆਂ ਹੁੰਦੀਆਂ ਹਨ।ਉਦਾਹਰਣ ਵਜੋਂ– ਕਿਤਾਬ, ਪੈੱਨ, ਪੈਨਸਿਲ, ਪਾਣੀ ਹਵਾ ਸਾਰੇ ਜੀਵ ਆਦਿ ਮਾਦਾ

ਚਿੱਤਰ 1.1 ਠੋਸ, ਦਵ ਅਤੇ ਗੈਸ ਦੇ ਕਣਾਂ ਦੀ ਵਿਵਸਥਾ

ਦੀਆਂ ਬਣੀਆਂ ਹੁੰਦੀਆਂ ਹਨ। ਤੁਸੀਂ ਜਾਣਦੇ ਹੋ ਕਿ ਇਨ੍ਹਾਂ ਸਾਰੀਆਂ ਵਸਤੂਆਂ ਦਾ ਪੁੰਜ ਹੁੰਦਾ ਹੈ ਅਤੇ ਇਹ ਸਾਥਾਨ ਘੇਰਦੀਆਂ ਹਨ।

ਤੁਸੀਂ ਇਹ ਵੀ ਜਾਣਦੇ ਹੋ ਕਿ ਮਾਦਾ ਦੀਆਂ ਤਿੰਨ ਭੌਤਿਕ ਅਵਸਥਾਵਾਂ ਹੁੰਦੀਆਂ ਹਨ—ਨੋਸ, ਦ੍ਵ ਅਤੇ ਗੈਸ। ਇਨ੍ਹਾਂ ਤਿੰਨਾਂ ਅਵਸਥਾਵਾਂ ਵਿੱਚ ਮਾਦਾ ਦੇ ਘਟਕ–ਕਣਾਂ ਨੂੰ ਚਿੱਤਰ 1.1 ਵਿੱਚ ਦਰਸਾਇਆ ਗਿਆ ਹੈ।

ਠੋਸਾਂ ਵਿੱਚ ਇਹ ਕਣ ਇੱਕ-ਦੂਜੇ ਦੇ ਬਹੁਤ ਨਜਦੀਕ ਕ੍ਰਮ ਬੱਧ ਰੂਪ ਵਿੱਚ ਵਿਵਸਥਿਤ ਰਹਿੰਦੇ ਹਨ। ਇਹ ਬਹੁਤ ਗਤੀਸ਼ੀਲ ਨਹੀਂ ਹੁੰਦੇ। ਦ੍ਵਾਂ ਵਿੱਚ ਕਣ ਨੇੜੇ-ਨੇੜੇ ਹੁੰਦੇ ਹਨ, ਫਿਰ ਵੀ ਇਹ ਗਤੀ ਕਰ ਸਕਦੇ ਹਨ, ਪਰ ਠੋਸਾਂ ਜਾਂ ਦ੍ਵ ਦੀ ਤੁਲਨਾ ਵਿੱਚ ਗੈਸਾਂ ਵਿੱਚ ਕਣ ਬਹੁਤ ਦੂਰ ਦੂਰ ਹੁੰਦੇ ਹਨ। ਉਹ ਬਹੁਤ ਅਸਾਨੀ ਨਾਲ ਅਤੇ ਤੇਜ ਗਤੀ ਕਰ ਸਕਦੇ ਹਨ।ਕਣਾਂ ਦੀਆਂ ਇਨ੍ਹਾਂ ਵਿਵਸਥਾਵਾਂ ਦੇ ਕਾਰਣ ਮਾਦਾ ਦੀਆਂ ਭਿੰਨ ਭਿੰਨ ਅਵਸਥਾਵਾਂ ਦੇ ਹੇਠ ਲਿਖੇ ਲੱਛਣ ਹੁੰਦੇ ਹਨ—

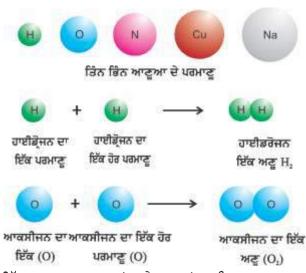

- (i) ਠੋਸ ਦਾ ਨਿਸ਼ਚਿਤ ਆਇਤਨ ਅਤੇ ਨਿਸ਼ਚਿਤ ਅਕਾਰ ਹੁੰਦਾ ਹੈ।
- (ii) ਦ੍ਵ ਦਾ ਨਿਸ਼ਚਿਤ ਆਇਤਨ ਹੁੰਦਾ ਹੈ, ਪਰੰਤੂ ਅਕਾਰ ਨਿਸ਼ਚਿਤ ਨਹੀਂ ਹੁੰਦਾ।ਉਹ ਉਸੇ ਬਰਤਨ ਦਾ ਅਕਾਰ ਲੈ ਲੈਂਦਾ ਹੈ ਜਿਸ ਵਿੱਚ ਉਸ ਨੂੰ ਰੱਖਿਆ ਜਾਂਦਾ ਹੈ।
- (iii) ਗੈਸਾਂ ਦਾ ਆਇਤਨ ਜਾਂ ਅਕਾਰ ਕੁੱਝ ਵੀ ਨਿਸ਼ਚਿਤ ਨਹੀਂ ਹੁੰਦਾ।ਉਹ ਉਸ ਬਰਤਨ ਦੇ ਆਇਤਨ ਵਿੱਚ ਪੂਰੀ ਤਰ੍ਹਾਂ ਫੈਲ ਜਾਂਦੀ ਹੈ ਜਿਸ ਵਿੱਚ ਉਸ ਨੂੰ ਰੱਖਿਆ ਜਾਂਦਾ ਹੈ।

ਤਾਪਮਾਨ ਅਤੇ ਦਾਬ ਦੀਆਂ ਪਰਿਸਥਿਤੀਆਂ ਦੇ ਪਰਿਵਰਤਨ ਦੁਆਰਾ ਮਾਦਾ ਦੀਆਂ ਇਨ੍ਹਾਂ ਤਿੰਨਾਂ ਅਵਸਥਾਵਾਂ ਨੂੰ ਇੱਕ ਦੂਜੇ ਵਿੱਚ ਪਰਿਵਰਤਿਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।

ਠੌਸ
$$\frac{\text{ਗਰਮ}}{\hat{\sigma}\hat{\sigma}\hat{\sigma}}$$
 ਦ੍ਰਵ $\frac{\text{ਗਰਮ}}{\hat{\sigma}\hat{\sigma}\hat{\sigma}}$ ਗੈਸ

ਆਮ ਤੌਰ ਤੇ ਇੱਕ ਠੋਸ ਨੂੰ ਗਰਮ ਕਰਨ ਨਾਲ ਉਹ ਦ੍ਵ ਵਿੱਚ ਪਰਿਵਰਤਿਤ ਹੋ ਜਾਂਦਾ ਹੈ ਅਤੇ ਦ੍ਵ ਨੂੰ ਗਰਮ ਕਰਨ ਨਾਲ ਉਹ ਗੈਸੀ (ਵਾਸ਼ਪ) ਵਿੱਚ ਪਰਿਵਰਤਿਤ ਹੋ ਜਾਂਦਾ ਹੈ। ਇਸ ਦੇ ਉਲਟ ਗੈਸ ਨੂੰ ਠੰਡਾ ਕਰਨ ਨਾਲ ਉਹ ਦ੍ਵਿਤ ਹੋ ਕੇ ਦ੍ਵ ਵਿੱਚ ਪਰਿਵਰਤਿਤ ਹੋ ਜਾਂਦੀ ਹੈ ਅਤੇ ਵਧੇਰੇ ਠੰਡਾ ਕਰਨ ਨਾਲ ਦ੍ਵ ਜੰਮ ਕੇ ਠੋਸ ਵਿੱਚ ਪਰਿਵਰਤਿਤ ਹੋ ਜਾਂਦਾ ਹੈ।

ਸਥੂਲ ਜਾਂ ਵੱਡੇ ਪੱਧਰ ਤੇ ਮਾਦਾ ਨੂੰ ਮਿਸ਼ਰਣ ਜਾਂ ਸ਼ੁਧ ਪਦਾਰਥ ਦੇ ਰੂਪ ਵਿੱਚ ਵਰਗੀਕ੍ਰਿਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਇਨ੍ਹਾਂ ਨੂੰ ਹੋਰ ਅੱਗੇ ਚਿੱਤਰ 1.2 ਦੇ ਅਨੁਸਾਰ ਉੱਪ–ਵਿਭਾਜਿਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।



ਚਿੱਤਰ 1.2 Classification of matter

ਤੁਹਾਡੇ ਆਲੇ-ਦੁਆਲੇ ਵਧੇਰੇ ਪਦਾਰਥ ਮਿਸ਼ਰਣ ਹਨ। ਉਦਾਹਰਣ ਵਜੋਂ-ਪਾਣੀ ਵਿੱਚ ਚੀਨੀ ਦਾ ਘੋਲ, ਹਵਾ, ਚਾਹ ਆਦਿ ਸਾਰੇ ਮਿਸ਼ਰਣ ਹਨ। ਕਿਸੇ ਮਿਸ਼ਰਣ ਵਿੱਚ ਦੋ ਜਾਂ ਵੱਧ ਪਦਾਰਥ ਜਾਂ ਘਟਕ ਕਿਸੇ ਵੀ ਅਨਪਾਤ ਵਿੱਚ ਉਪਸਥਿਤ ਹੋ ਸਕਦੇ ਹਨ। ਕੋਈ ਮਿਸ਼ਰਣ ਸਮਅੰਗੀ ਜਾਂ ਵਿਖਮਅੰਗੀ ਹੋ ਸਕਦਾ ਹੈ। ਕਿਸੇ ਸਮਅੰਗੀ ਮਿਸ਼ਰਣ ਵਿੱਚ ਘਟਕ ਇੱਕ ਦੂਜੇ ਵਿੱਚ ਪੂਰੀ ਤਰ੍ਹਾਂ ਮਿਸ਼ਰਤ ਹੁੰਦੇ ਹਨ ਅਤੇ ਪੂਰੇ ਮਿਸ਼ਰਣ ਦੀ ਰਚਨਾ ਇੱਕ ਸਮਾਨ ਹੁੰਦੀ ਹੈ। ਇਸ ਲਈ 'ਪਾਣੀ ਵਿੱਚ ਚੀਨੀ ਦਾ ਘੋਲ' ਅਤੇ 'ਹਵਾ' ਸਮਅੰਗੀ ਮਿਸ਼ਰਣ ਦੀਆਂ ਉਦਾਹਰਣਾਂ ਹਨ। ਇਸ ਦੇ ਉਲਟ ਵਿਖਮਅੰਗੀ ਮਿਸ਼ਰਣ ਵਿੱਚ ਰਚਨਾ ਪੂਰੇ ਮਿਸ਼ਰਣ ਵਿੱਚ ਇੱਕ ਸਮਾਨ ਨਹੀਂ ਹੁੰਦੀ। ਕਦੇ-ਕਦੇ ਤਾਂ ਭਿੰਨ ਭਿੰਨ ਘਟਕਾਂ ਨੂੰ ਵੱਖ ਵੱਖ ਵੇਖਿਆ ਜਾ ਸਕਦਾ ਹੈ। ਉਦਾਹਰਣ ਵਜੋਂ ਚੀਨੀ ਅਤੇ ਨਮਕ ਅਤੇ ਦਾਲ ਦੇ ਦਾਣਿਆਂ ਅਤੇ ਗੰਦਗੀ (ਆਮ ਤੌਰ ਤੇ ਰੋੜੀਆਂ) ਦੇ ਕਣਾਂ ਦੇ ਮਿਸ਼ਰਣ ਵਿਖਮ ਅੰਗੀ ਮਿਸ਼ਰਣ ਹਨ। ਤੁਸੀਂ ਆਪਣੇ ਰੋਜਾਨਾ ਜੀਵਨ ਵਿੱਚ ਵਰਤੇ ਜਾਂਦੇ ਮਿਸ਼ਰਣਾਂ ਦੀਆਂ ਕੋਈ ਹੋਰ ਉਦਾਹਰਣਾਂ ਦੇ ਬਾਰੇ ਸੋਚ ਸਕਦੇ ਹੋ। ਇੱਥੇ ਇਹ ਦਸਣਾ ਸਹੀ ਹੋਵੇਗਾ ਕਿ ਕਿਸੇ ਮਿਸ਼ਰਣ ਦੇ ਘਟਕਾਂ ਨੂੰ ਹੱਥ ਨਾਲ ਛਾਣਨ, ਕ੍ਰਿਸਟਲੀਕਰਨ, ਕਸ਼ੀਦਣ ਆਦਿ ਭੌਤਿਕ ਵਿਧੀਆਂ ਦੀ ਵਰਤੋਂ ਦੁਆਰਾ ਵੱਖ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।

ਸ਼ੁੱਧ ਪਦਾਰਥਾਂ ਦੇ ਲੱਛਣ ਮਿਸ਼ਰਣਾਂ ਨਾਲੋਂ ਭਿੰਨ ਹੁੰਦੇ ਹਨ। ਉਨ੍ਹਾਂ ਦੀ ਰਚਨਾ ਨਿਸ਼ਚਿਤ ਹੁੰਦੀ ਹੈ, ਜਦੋਂ ਕਿ ਮਿਸ਼ਰਣਾਂ ਵਿੱਚ ਘਟਕ ਕਿਸੇ ਵੀ ਅਨੁਪਾਤ ਵਿੱਚ ਹੋ ਸਕਦੇ ਹਨ ਅਤੇ ਉਸ ਦੀ ਰਚਨਾ ਭਿੰਨ ਹੋ ਸਕਦੀ ਹੈ। ਤਾਂਬਾ, ਚਾਂਦੀ, ਸੋਨਾ, ਪਾਣੀ, ਗੁਲੁਕੋਜ਼ ਆਦਿ ਸ਼ੁੱਧ ਪਦਾਰਥਾਂ ਦੀਆਂ ਕੁੱਝ ਉਦਾਹਰਣਾਂ ਹਨ।

ਗੁਲੂਕੋਜ ਵਿੱਚ ਕਾਰਬਨ, ਹਾਈਡੋਜਨ ਅਤੇ ਆੱਕਸੀਜਨ ਇੱਕ ਨਿਸ਼ਚਿਤ ਅਨੁਪਾਤ ਵਿੱਚ ਹੁੰਦੇ ਹਨ। ਇਸ ਵਿੱਚ ਹੋਰ ਸ਼ੁਧ ਪਦਾਰਥਾਂ ਵਾਂਗ ਨਿਸ਼ਚਿਤ ਸੰਰਚਨਾ ਹੁੰਦੀ ਹੈ। ਸ਼ੁੱਧ ਪਦਾਰਥਾਂ ਦੇ ਘਟਕਾਂ ਨੂੰ ਆਮ ਭੌਤਿਕ ਵਿਧੀਆਂ ਦੁਆਰਾ ਵੱਖ ਨਹੀਂ ਕੀਤਾ ਜਾ ਸਕਦਾ। ਸ਼ੂਧ ਪਦਾਰਥਾਂ ਨੂੰ ਅੱਗੇ ਤੱਤਾਂ ਅਤੇ ਯੋਗਿਕਾਂ ਵਿੱਚ ਵਰਗੀਕ੍ਰਿਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਕਿਸੇ ਤੱਤ ਵਿੱਚ ਇੱਕ ਹੀ ਕਿਸਮ ਦੇ ਕਣ ਹੁੰਦੇ ਹਨ। ਇਹ ਕਣ ਪਰਮਾਣੂ ਜਾਂ ਅਣੂ ਹੋ ਸਕਦੇ ਹਨ। ਤੁਸੀਂ ਆਪਣੀ ਪਿਛਲੀ ਜਮਾਤ ਤੋਂ ਪਰਮਾਣੂਆਂ ਅਤੇ ਅਣੂਆਂ ਤੋਂ ਜਾਣੂ ਹੋਵੋਗੇ, ਪਰੰਤੂ ਤੁਸੀਂ ਇਨ੍ਹਾਂ ਬਾਰੇ ਯਨਿਟ-2 ਵਿੱਚ ਵਿਸਥਾਰ ਸਹਿਤ ਪੜ੍ਹੋਗੇ। ਸੋਡੀਅਮ, ਹਾਈਡੋਜਨ, ਆੱਕਸੀਜਨ, ਤਾਂਬਾ, ਚਾਂਦੀ ਆਦਿ ਤੱਤਾਂ ਦੀਆਂ ਕੁਝ ਉਦਾਹਰਣਾਂ ਹਨ। ਇਨ੍ਹਾਂ ਸਾਰਿਆਂ ਵਿੱਚ ਇੱਕ ਹੀ ਕਿਸਮ ਦੇ ਪਰਮਾਣੂ ਹੁੰਦੇ ਹਨ, ਪਰੰਤੂ ਭਿੰਨ ਭਿੰਨ ਤੱਤਾਂ ਦੇ ਪਰਮਾਣੂ ਇੱਕ ਦੂਜੇ ਤੋਂ ਭਿੰਨ ਹੁੰਦੇ ਹਨ। ਸੋਡੀਅਮ ਅਤੇ ਤਾਂਬੇ ਵਰਗੇ ਕੁੱਝ ਤੱਤਾਂ ਵਿੱਚ ਇੱਕ ਪਰਮਾਣੂ ਘਟਕ ਕਣਾਂ ਦੇ ਰੂਪ ਵਿੱਚ ਮੌਜੂਦ ਹੁੰਦੇ ਹਨ, ਜਦ ਕਿ ਕੁੱਝ ਹੋਰ ਤੱਤਾਂ ਵਿੱਚ ਦੋ ਜਾਂ ਵੱਧ ਪਰਮਾਣੂ ਸੰਯੋਜਿਤ ਹੋ ਕੇ ਉਸ ਤੱਤ ਦੇ ਅਣੂ ਬਣਾਉਂਦੇ ਹਨ। ਇਸ ਲਈ ਹਾਈਡੋਜਨ, ਨਾਈਟੋਜਨ ਅਤੇ ਆੱਕਸੀਜਨ ਗੈਸਾਂ ਵਿੱਚ ਇਨ੍ਹਾਂ ਤੱਤਾਂ ਦੇ ਅਣੂ ਮੌਜੂਦ ਹੁੰਦੇ ਹਨ ਜੋ ਕ੍ਰਮਵਾਰ ਇਨ੍ਹਾਂ ਦੇ ਦੋ ਦੋ ਪਰਮਾਣੂਆਂ ਦੇ ਸੰਯੋਜਨ ਨਾਲ ਬਣਦੇ ਹਨ। ਇਸ ਨੂੰ ਚਿੱਤਰ 1.3 ਵਿੱਚ ਵਿਖਾਇਆ ਗਿਆ ਹੈ।

ਚਿੱਤਰ 1.3 ਪਰਮਾਣੂਆਂ ਅਤੇ ਅਣੂਆਂ ਦਾ ਨਿਰੂਪਣ

ਜਦੋਂ ਭਿੰਨ ਤੱਤਾਂ ਦੇ ਦੋ ਜਾਂ ਦੋ ਤੋਂ ਵੱਧ ਪਰਮਾਣੂ ਸੰਯੋਜਿਤ ਹੰਦੇ ਹਨ, ਤਾਂ ਯੋਗਿਕ ਦਾ ਇੱਕ ਅਣੂ ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ। ਪਾਣੀ, ਅਮੋਨੀਆ, ਕਾਰਬਨ ਡਾਈਆੱਕਸਾਈਡ ਚੀਨੀ ਆਦਿ ਯੋਗਿਕਾਂ ਦੀਆਂ ਕੁਝ ਉਦਾਹਰਣਾਂ ਹਨ। ਪਾਣੀ ਅਤੇ ਕਾਰਬਨ ਡਾਈਆੱਕਸਾਈਡ ਦੇ ਅਣੂਆਂ ਨੂੰ ਚਿੱਤਰ 1.4 ਵਿੱਚ ਨਿਰੂਪਿਤ ਕੀਤਾ ਗਿਆ ਹੈ। ਤੁਸੀਂ ਚਿੱਤਰ 1.4 ਵਿੱਚ ਵੇਖਿਆ ਹੈ ਕਿ ਪਾਣੀ ਦੇ ਇੱਕ ਅਣੂ ਵਿੱਚ ਦੋ ਹਾਈਡ੍ਰੋਜਨ ਪਰਮਾਣੂ ਅਤੇ ਇੱਕ ਆੱਕਸੀਜਨ

ਪਾਣੀ ਦਾ ਅਣੂ (H,O) ਕਾਰਬਨਡਾਈਆਂਕਸਾਈਡ ਦਾ ਆਣੂ (CO₃)

ਚਿੱਤਰ 1.4 ਪਾਣੀ ਅਤੇ ਕਾਰਬਨ ਡਾਈਆੱਕਸਾਈਡ ਦੇ ਅਣੂਆਂ ਦਾ ਨਿਰੁਪਣ

ਪਰਮਾਣੂ ਮੌਜੂਦ ਹੁੰਦੇ ਹਨ। ਇਸੇ ਤਰ੍ਹਾਂ ਕਾਰਬਨ ਡਾਈਆੱਕਸਾਈਡ ਦੇ ਅਣੂ ਵਿੱਚ ਆੱਕਸੀਜਨ ਦੇ ਦੋ ਪਰਮਾਣੂ ਕਾਰਬਨ ਦੇ ਇੱਕ ਪਰਮਾਣੂ ਨਾਲ ਸੰਯੋਜਿਤ ਹੁੰਦੇ ਹਨ। ਇਸ ਲਈ ਕਿਸੇ ਯੋਗਿਕ ਵਿੱਚ ਭਿੰਨ ਭਿੰਨ ਤੱਤਾਂ ਦੇ ਪਰਮਾਣੂ ਇੱਕ ਨਿਸ਼ਚਿਤ ਅਤੇ ਸਥਿਰ ਅਨੁਪਾਤ ਵਿੱਚ ਮੌਜੂਦ ਹੁੰਦੇ ਹਨ। ਇਹ ਅਨੁਪਾਤ ਕਿਸੇ ਯੋਗਿਕ ਦਾ ਵਿਸ਼ੇਸ਼ ਗੁਣ ਹੁੰਦਾ ਹੈ। ਇਸ ਦੇ ਨਾਲ ਹੀ ਕਿਸੇ ਯੋਗਿਕ ਦੇ ਗੁਣ ਉਸਦੇ ਘਟਕ ਤੱਤਾਂ ਦੇ ਗੁਣਾਂ ਤੋਂ ਭਿੰਨ ਹੁੰਦੇ ਹਨ। ਉਦਾਹਰਣ ਵਜੋਂ ਹਾਈਡ੍ਰੋਜਨ ਅਤੇ ਆੱਕਸੀਜਨ ਗੈਸਾਂ ਹਨ, ਪਰੰਤੂ ਉਨ੍ਹਾਂ ਦੇ ਸੰਯੋਜਨ ਤੋਂ ਬਣਿਆ ਯੋਗਿਕ ਪਾਣੀ ਇੱਕ ਦ੍ਵ ਹੈ। ਇਹ ਵੀ ਜਾਣਨਾ ਦਿਲਚਸਪ ਹੋਵੇਗਾ ਇੱਕ ਹਾਈਡ੍ਰੋਜਨ ਇੱਕ ਤੇਜ (POP) ਧੂਣੀ ਦੇਨ ਨਾਲ ਬਲਦੀ ਹੈ ਅਤੇ ਆੱਕਸੀਜਨ ਬਲਨ ਵਿੱਚ ਸਹਾਇਕ ਹੁੰਦੀ ਹੈ, ਪਰੰਤੂ ਜਲ ਦਾ ਉਪਯੋਗ ਅੱਗ ਬੁਝਾਉਣ ਲਈ ਕੀਤਾ ਜਾਂਦਾ ਹੈ।

ਇਸ ਦੇ ਇਲਾਵਾ ਕਿਸੇ ਯੋਗਿਕ ਦੇ ਘਟਕਾਂ ਨੂੰ ਭੌਤਿਕ ਵਿਧੀਆਂ ਦੁਆਰਾ ਸਰਲ ਪਦਾਰਥਾਂ ਵਿੱਚ ਵੱਖ ਨਹੀਂ ਕੀਤਾ ਜਾ ਸਕਦਾ।ਉਨ੍ਹਾਂ ਨੂੰ ਵੱਖ ਕਰਨ ਦੇ ਲਈ ਰਸਾਇਣਿਕ ਵਿਧੀਆਂ ਦਾ ਪਯੋਗ ਕਰਨਾ ਪੈਂਦਾ ਹੈ।

1.3 ਮਾਦਾ ਦੇ ਗੁਣ ਅਤੇ ਉਨ੍ਹਾਂ ਦਾ ਮਾਪਨ

ਹਰ ਇੱਕ ਪਦਾਰਥ ਦੇ ਵਿਸ਼ਿਸਟ ਜਾਂ ਅਨੋਖੇ ਗੁਣ ਹੁੰਦੇ ਹਨ। ਇਨ੍ਹਾਂ ਗੁਣਾਂ ਨੂੰ ਦੋ ਵਰਗਾਂ ਵਿੱਚ ਵਰਗੀਕ੍ਰਿਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ— ਭੌਤਿਕ ਗੁਣ ਅਤੇ ਰਸਾਇਣਿਕ ਗੁਣ।

ਭੌਤਿਕ ਗੁਣ ਉਹ ਗੁਣ ਹੁੰਦੇ ਹਨ, ਜਿਨ੍ਹਾਂ ਨੂੰ ਪਦਾਰਥ ਦੀ ਪਛਾਨ ਜਾਂ ਰਚਨਾ ਨੂੰ ਪਰਿਵਰਤਿਤ ਕਰੇ ਬਿਨਾ ਮਾਪਿਆ ਜਾਂ ਵੇਖਿਆ ਜਾ ਸਕਦਾ ਹੈ। ਭੌਤਿਕ ਗੁਣਾਂ ਦੀ ਕੁਝ ਉਦਾਹਰਣਾਂ ਰੰਗ, ਗੰਧ, ਪਿਘਲਣ-ਦਰਜਾ, ਉਬਾਲ ਦਰਜਾ, ਘਣਤਾ ਆਦਿ ਹਨ। ਰਸਾਇਣਿਕ ਗੁਣਾਂ ਨੂੰ ਮਾਪਨ ਜਾਂ ਵੇਖਣ ਦੇ ਲਈ ਰਸਾਇਣਿਕ ਪਰਿਵਰਤਨ ਦਾ ਹੋਣਾ ਜਰੂਰੀ ਹੁੰਦਾ ਹੈ। ਭਿੰਨ ਭਿੰਨ ਪਦਾਰਥਾਂ ਦੀਆਂ ਲਛਣਿਕ ਪ੍ਤੀਕਿਰਿਆਵਾਂ (ਜਿਵੇਂ ਤੇਜਾਬੀਪਨ, ਖਾਰਾਪਨ, ਬਲਨਸ਼ੀਲਤਾ ਆਦਿ) ਰਸਾਇਣਿਕ ਗੁਣਾਂ ਦੀਆਂ ਉਦਾਹਰਣਾਂ ਹਨ।

ਮਾਦਾ ਦੇ ਅਨੇਕ ਗੁਣ (ਜਿਵੇਂ-ਲੰਬਾਈ, ਖੇਤਰਫਲ,

ਆਇਤਨ ਆਦਿ) ਮਾਤਰਾਤਮਕ ਪ੍ਰਕਿਰਤੀ ਦੇ ਹੁੰਦੇ ਹਨ। ਕਿਸੇ ਮਾਤਰਾਮਤਕ ਪ੍ਰੇਖਣ ਜਾਂ ਮਾਪਨ ਨੂੰ ਕੋਈ ਸੰਖਿਆ ਅਤੇ ਉਸਦੇ ਬਾਅਦ ਉਹ ਇਕਾਈ ਲਿਖ ਕੇ ਨਿਰੂਪਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ, ਜਿਸ ਵਿੱਚ ਉਸਨੂੰ ਮਾਪਿਆ ਗਿਆ ਹੈ। ਉਦਾਹਰਣ ਵਜੋਂ-ਕਿਸੇ ਕਮਰੇ ਦੀ ਲੰਬਾਈ ਨੂੰ 6m ਲਿਖ ਕੇ ਦੱਸਿਆ ਜਾ ਸਕਦਾ ਹੈ, ਜਿਸ ਵਿੱਚ 6 ਇੱਕ ਸੰਖਿਆ ਹੈ ਅਤੇ m ਮੀਟਰ ਨੂੰ ਦਰਸਾਉਂਦਾ ਹੈ, ਜੋ ਉਹ ਇਕਾਈ ਹੈ ਜਿਸ ਵਿੱਚ ਲੰਬਾਈ ਮਾਪੀ ਗਈ ਹੈ।

ਵਿਸ਼ਵ ਦੇ ਭਿੰਨ ਭਿੰਨ ਭਾਗਾਂ ਵਿੱਚ ਮਾਪਨ ਦੀਆਂ ਦੋ ਭਿੰਨ-ਭਿੰਨ ਪੱਧਤੀਆਂ 'ਅੰਗੇਜੀ ਪੱਧਤੀ' (the English System) ਅਤੇ 'ਮੀਟਰਿਕ ਪੱਧਤੀ' (The Metric System) ਵਰਤੀ ਜਾਂਦੀ ਹੈ। ਮੀਟਰਿਕ ਪੱਧਤੀ ਜੋ ਫਰਾਂਸ ਵਿੱਚ ਅਠਾਹਰਵੀਂ ਸਦੀ ਦੇ ਅੰਤ ਨੇੜੇ ਵਿਕਸਿਤ ਹੋਈ, ਜਿਆਦਾ ਸੁਵਿਧਾਜਨਕ ਸੀ, ਕਿਉਂਕਿ ਉਹ ਦਸ਼ਮਲਵ ਪ੍ਣਾਲੀ ਸੀ। ਵਿਗਿਆਨਕਾਂ ਨੇ ਸਰਬ ਪ੍ਵਾਨ ਮਾਨਕ ਪੱਧਤੀ ਦੀ ਜਰੂਰਤ ਮਹਿਸੂਸ ਕੀਤੀ।ਅਜਿਹੀ ਇੱਕ ਪੱਧਤੀ ਸੰਨ 1960 ਵਿੱਚ ਪੇਸ਼ ਕੀਤੀ ਗਈ ਜਿਸ ਦੀ ਵਿਸਥਾਰਪੂਰਵਕ ਚਰਚਾ ਹੇਠਾਂ ਕੀਤੀ ਜਾ ਰਹੀ ਹੈ।

1.3.1 ਮਾਤਰਕਾਂ ਦੀ ਅੰਤਰਰਾਸ਼ਟਰੀ ਪੱਧਤੀ (SI)

ਮਾਤਰਕਾਂ ਦੀ ਅੰਤਰਰਾਸ਼ਟਰੀ ਪੱਧਤੀ (ਫਰਾਂਸਿਸੀ ਵਿੱਚ Le System International d' Units), ਜਿਸ ਨੂੰ ਸੰਖੇਪ ਵਿੱਚ S.I. (ਐਸ.ਆਈ.) ਕਿਹਾ ਜਾਂਦਾ ਹੈ, ਨੂੰ ਸੰਨ 1960 ਵਿੱਚ ਭਾਰਤ ਅਤੇ ਮਾਪ ਦੇ ਗਿਆਰਵੇਂ ਸਰਬ ਸੰਮੇਲਨ (Conference Generale des Poidset Measures, CGPM) ਵਿਚ ਸਵੀਕਾਰ ਕੀਤਾ ਗਿਆ ਸੀ। CGPM ਇੱਕ ਸਰਕਾਰੀ ਸੰਸਥਾ ਜਿਸਦੀ ਹੋਂਦ ਇੱਕ ਰਸਾਇਣਿਕ ਸਮਝੋਤੇ (ਜਿਸ ਨੂੰ ਮੀਟਰ ਪਰੰਪਰਾ ਕਹਿੰਦੇ ਹਨ ਅਤੇ ਜਿਸ ਤੇ ਸੰਨ 1875 ਵਿੱਚ ਪੈਰਿਸ ਵਿੱਚ ਹਸਤਾਖਰ ਕੀਤੇ ਗਏ) ਦੇ ਅੰਤਰਗਤ ਕੀਤੀ ਗਈ।

SI ਪੱਧਤੀ ਵਿੱਚ ਸੱਭ ਆਧਾਰ ਮਾਤਰਕ ਹਨ।ਇਨ੍ਹਾਂ ਨੂੰ ਸਾਰਣੀ 1.1 ਵਿੱਚ ਸੂਚੀਬੱਧ ਕੀਤਾ ਗਿਆ ਹੈ। ਇਹ ਮਾਤਰਕ ਸੱਭ ਅਧਾਰਭੂਤ ਰਾਸ਼ੀਆਂ ਨਾਲ ਸਬੰਧਤ ਹਨ। ਹੋਰ ਭੌਤਿਕ ਰਾਸ਼ੀਆਂ (ਜਿਵੇਂ-ਗਤੀ, ਆਇਤਨ, ਘਣਤਾ ਆਦਿ)

ਇਨ੍ਹਾਂ ਰਾਸ਼ੀਆਂ ਤੋਂ ਵਿਉਂਤਪੰਨ ਕੀਤੀਆਂ ਜਾ ਸਕਦੀਆਂ ਹਨ। SI ਅਧਾਰ ਮਾਤਰਕਾਂ ਦੀਆਂ ਪਰਿਭਾਸ਼ਾਵਾਂ ਸਾਰਣੀ 1.2 ਵਿੱਚ ਦਿੱਤੀਆਂ ਗਈਆਂ ਹਨ।

SI ਪੱਧਤੀ ਵਿੱਚ ਗੁਣਤਾ ਅਤੇ ਉਪਗੁਣਤਾ ਨੂੰ ਦਰਸਾਉਣ ਦੇ ਲਈ ਅੱਗੇਤਰਾਂ ਦੀ ਵਰਤੋਂ ਕੀਤੀ ਜਾਂਦੀ ਹੈ। ਇਨ੍ਹਾਂ ਨੂੰ ਸਾਰਣੀ 1.3 ਵਿੱਚ ਸੂਚੀਬੱਧ ਕੀਤਾ ਗਿਆ ਹੈ।

ਇਨ੍ਹਾਂ ਵਿੱਚੋਂ ਕੁੱਝ ਰਾਸ਼ੀਆਂ ਦਾ ਪ੍ਯੋਗ ਅਸੀਂ ਇਸ ਕਿਤਾਬ ਵਿੱਚ ਕਰਾਂਗੇ।

1.3.2 ਪੁੰਜ ਅਤੇ ਭਾਰ

ਕਿਸੇ ਪਦਾਰਥ ਦਾ ਪੁੰਜ ਉਸ ਵਿੱਚ ਮੌਜੂਦ ਮਾਦਾ ਦੀ ਮਾਤਰਾ ਹੈ, ਜਦਕਿ ਕਿਸੇ ਵਸਤੂ ਦਾ ਭਾਰ ਉਸ ਉੱਤੇ ਲੱਗਣ ਵਾਲਾ ਗੁਰੂਤਾ ਬਲ ਹੈ। ਕਿਸੇ ਪਦਾਰਥ ਦਾ ਪੁੰਜ ਸਥਿਰ ਹੁੰਦਾ ਹੈ, ਪਰੰਤੂ ਉਸ ਦਾ ਭਾਰ ਗੁਰੂਤਾ ਵਿੱਚ ਪਰਿਵਰਤਨ ਦੇ ਕਾਰਣ ਇੱਕ ਸਥਾਨ ਤੋਂ ਦੂਜੇ ਸਥਾਨ ਤੇ ਵੱਖ ਵੱਖ ਹੋ ਸਕਦਾ ਹੈ। ਤੁਹਾਨੂੰ ਇਨ੍ਹਾਂ ਦੋਵਾਂ ਸ਼ਬਦਾਂ ਦੀ ਵਰਤੋਂ ਤੇ ਵਿਸ਼ੇਸ਼ ਧਿਆਨ ਰੱਖਣਾ ਚਾਹੀਦਾ ਹੈ।

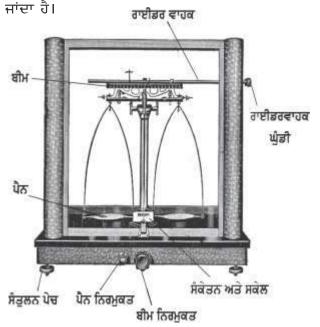
ਸਾਰਣੀ 1.1. ਅਧਾਰ ਭੌਤਿਕ ਰਾਸ਼ੀਆਂ ਅਤੇ ਉਨ੍ਹਾਂ ਦੇ ਮਾਤਰਕ

ਅਧਾਰ ਭੌਤਿਕ ਰਾਸ਼ੀ	ਰਾਸ਼ੀ ਦੇ ਲਈ	SI ਮਾਤਰਕ ਦਾ ਨਾਂ	SI ਮਾਤਰਕ ਦਾ
	ਪ੍ਰਤੀਕ		ਪ੍ਰਤੀਕ
ਲੰਬਾਈ	l	ਮੀਟਰ	m
ਪੁੰਜ	m	ਕਿਲੋਗ੍ਰਾਮ	kg
ਸਮਾਂ	t	ਸੈਕੰਡ	s
ਬਿਜਲਈ ਕਰੈਟ	I	ਐਮਪੀਅਰ	A
ਤਾਪਗਤਿਕ ਤਾਪਮਾਨ	T	ਕੈਲਵਿਨ	K
ਪਦਾਰਥ ਦੀ ਮਾਤਰਾ	n	ਮੋਲ	mol
ਦੀਪਤ-ਤੀਬਰਤਾ	I_{O}	ਕੈਨਡੇਲਾ	cd

ਸਾਰਣੀ 1.2. SI ਅਧਾਰ ਮਾਤਰਕਾਂ ਦੀ ਪਰਿਭਾਸ਼ਾਵਾਂ

ਲੰਬਾਈ ਦਾ ਮਾਤਰਕ	ਮੀਟਰ	ਪ੍ਰਕਾਸ਼ ਦੁਆਰਾ ਖਲਾਅ ਵਿੱਚ ਇੱਕ ਸ਼ੈਕੰਡ ਦੇ 1/299 792
		458 ਸਮੇਂ ਅੰਤਰਾਲ ਵਿੱਚ ਤੈਅ ਕੀਤੇ ਗਏ ਪੱਥ ਦੀ ਲੰਬਾਈ ਇੱਕ ਮੀਟਰ ਹੈ।
ਪੁੰਜ ਦਾ ਮਾਤਰਕ	ਕਿਲੋਗ੍ਰਾਮ	। ਇਕ ਮੀਟਰ ਹੈ। ਕਿਲੋਗ੍ਰਾਮ ਪੁੰਜ ਦਾ ਮਾਤਰਕ ਹੈ।ਇਹ ਅੰਤਰਰਾਸ਼ਟਰੀ ਮਾਨਕ
gn e 7.304	I INGOLA	ਕਿਲੋਗਾਮ ਪੁੰਜ ਦੇ ਬਰਾਬਰ ਹੈ।
ਸਮੇਂ ਦਾ ਮਾਤਰਕ	ਸੈਕੰਡ	ਇੱਕ ਸੈਕੰਡ ਸੀਜੀਅਮ -133 ਪ੍ਰਮਾਣੂ ਦੀ ਮੂਲ ਅਵਸਥਾ ਦੇ
		ਦੋ ਅਤਿਸੂਖਮ ਸਤਰਾਂ ਦੇ ਵਿੱਚ ਹੋਣ ਵਾਲੇ ਟਰਾਂਜੀਸ਼ਨ ਦੇ
		ਸੰਗਤ੍ਰ ਵਿਕੀਰਣਾਂ ਦੇ 9 192 631 770 ਆਵਰਤਾਂ ਦਾ
	2 2	ਸਮਾਂ ਹੈ।
ਬਿਜਲਈ ਕਰੰਟ ਦਾ ਮਾਪਕ	ਐਮਪੀਅਰ	ਇੱਕ ਐਮਪੀਅਰ ਉਹ ਸਥਿਰ ਬਿਜਲਈ ਕਰੰਟ ਹੈ ਜੋ ਖਲਾਅ
		ਵਿੱਚ ਇੱਕ ਮੀਟਰ ਦੂਰੀ ਤੇ ਸਥਿਤ ਦੋ ਅਨੰਤ ਲੰਬਾਈ ਵਾਲੇ ਸਮਾਨ ਅੰਤਰ ਅਤੇ ਨਾਮਾਤਰ ਗੋਲ ਪਰਿਖੇਤਰ ਕਾਟ ਵਾਲੇ
		ਚਾਲਕਾਂ ਦੇ ਵਿੱਚ ਪ੍ਰਵਾਹਿਤ ਹੋਣ ਤੇ 2 × 10-7 ਨਿਊਟਨ
		ਪਤੀ ਮੀਟਰ ਲੰਬਾਈ ਦਾ ਬਲ ਪੈਦਾ ਕਰਦੀ ਹੈ।
ਤਾਪਗਤਿਕ ਤਾਪਮਾਨ ਦਾ	ਕੈਲਵਿਨ	ਕੈਲਵਿਨ ਤਾਪਗਤਿਕ ਤਾਪਮਾਨ ਦਾ ਮਾਤਰਕ ਹੈ।ਪਾਣੀ
ਮਾਤਰਕ		ਦੇ ਟ੍ਰਿਪਲ ਪੁਆਇੰਟ ਦੇ ਤ੍ਰਾਪਗਤਿਕ ਤਾਪਮਾਨ ਦਾ
2	_	1/273.16 ਵਾਂ ਭਾਗ ਹੁੰਦਾ ਹੈ।
ਪਦਾਰਥ ਦੀ ਮਾਤਰਾ ਦਾ ਮਾਤਰਕ	ਮੋਲ	1. ਇੱਕ ਮੋਲ ਪਦਾਰਥ ਦੀ ਉਹ ਮਾਤਰਾ ਹੈ, ਜਿਸ ਵਿੱਚ
		ਮੂਲਕਣਾਂ (elementary entities) ਦੀ ਸੰਖਿਆ ਓਨੀ ਹੀ ਹੁੰਦੀ ਹੈ, ਜਿੰਨੀ 0∙012 kg ਕਾਰਬਨ−12 ਵਿੱਚ ਮੌਜੂਦ
		ਪਰਮਾਣੁਆਂ ਦੀ ਸੰਖਿਆ। ਇਸ ਦਾ ਸੰਕੇਤ ਮੋਲ (mol) ਹੈ।
		2. ਜਦੋਂ ਮੋਲ ਦੀ ਵਰਤੋਂ ਕੀਤੀ ਜਾਂਦੀ ਹੈ, ਤਾਂ ਮੂਲ ਕਣਾਂ ਨੂੰ
		ਸਪਸ਼ਟ (specify) ਕਰਨਾ ਚਾਹੀਦਾ ਹੈ ਕਿ ਇਹ ਪਰਮਾਣੂ,
		ਅਣੂ, ਆਇਨ, ਇਲੈਕਟਰਾੱਨ ਜਾਂ ਹੋਰ ਕਣਾਂ ਦੇ ਵਿਸ਼ਿਸ਼ਟ
	2 -	ਸਮੂੰਹ ਹੋ ਸਕਦੇ ਹਨ।
ਦੀਪਤ ਤੀਬਰਤਾ ਦਾ ਮਾਤਰਕ	ਕੈਨਡੇਲਾ	ਕੈਨਡੇਲਾ ਕਿਸੇ ਦਿੱਤੀ ਗਈ ਦਿਸ਼ਾ ਵਿੱਚ 540 × 10 ¹² ਹਰਟਜ਼
		ਆਵਿਰਤੀ ਵਾਲੇ ਸਰੋਤ ਦੀ ਦੀਪਤ ਤੀਬਰਤਾ ਹੈ, ਜੋ ਉਸ ਦਿਸ਼ਾ ਵਿੱਚ 1/683 ਵਾਟ ਪ੍ਰਤੀ ਸਟੀਰੇਡੀਅਨ ਦੀ ਵਿਕੀਰਣ–
		ਤੀਬਰਤਾ ਦਾ ਇੱਕ ਵਰਣੀ ਪ੍ਰਕਾਸ਼ ਪੈਦਾ ਕਰਦਾ ਹੈ।
		51455 5 104 COOT 44 11 40 400 01

ਸਾਰਣੀ 1.3 SI ਪੱਧਤੀ ਵਿੱਚ ਵਰਤੇ ਜਾਂਦੇ ਅਗੇਤਰ


ਗੁਣਕ	ਅਗੇਤਰ	ਸੰਕੇਤ
10-24	ਯੋਕਟੋ	У
10-21	ਜੇਪਟੋ	z
10-18	ਏਟੋ	a
10-15	ਫੈਮਟੋ	f
10-12	ਪਿਕੋ	p
10-9	ਨੈਨੋ	n
10-6	ਮਾਈਕਰ <u>ੋ</u>	μ
10-3	ਮਿਲੀ	m
10-2	ਸੈਂਟੀ	c
10^{-1}	ਡੈਸੀ	d
10	ਡੈਕਾ	da
10^{2}	ਹੈਕਟੋ	h
10^{3}	ਕਿਲੋ	k
10^6	ਮੈਗਾ	M
10^{9}	ਗੀਗਾ	G
10^{12}	ਟੈਰਾ	T
10^{15}	ਪੇਟਾ	P
1018	ਐਕਸਾ	E
10^{21}	ਜੇਟਾ	Z
10^{24}	ਯੋਟਾ	Y

ਪ੍ਰਯੋਗਸ਼ਾਲਾ ਵਿੱਚ ਕਿਸੇ ਪਦਾਰਥ ਦੇ ਪੁੰਜ ਨੂੰ ਜਿਆਦਾ ਸਹੀ ਮਾਪਨ ਦੇ ਲਈ ਵਿਸ਼ਲੇਸ਼ਿਕ ਤੁਲਾ (ਚਿੱਤਰ 1.5) ਦੀ ਵਰਤੋਂ ਕੀਤੀ ਜਾਂਦੀ ਹੈ।

ਜਿਵੇਂ ਸਾਰਣੀ 1.1 ਵਿੱਚ ਦਿੱਤਾ ਗਿਆ ਹੈ, ਪੁੰਜ ਦਾ SI ਮਾਤਰਕ 'ਕਿਲੋਗ੍ਰਾਮ' ਹੈ, ਪਰੰਤੂ ਪ੍ਰਯੋਗਸ਼ਾਲਾ ਵਿੱਚ ਇਸ ਦੇ ਛੋਟੇ ਮਾਤਰਕ 'ਗ੍ਰਾਮ' (1 ਕਿਲੋਗ੍ਰਾਮ = 1000 ਗ੍ਰਾਮ) ਦੀ ਵਰਤੋਂ ਕੀਤੀ ਜਾਂਦੀ ਹੈ, ਕਿਉਂਕਿ ਰਸਾਇਣਿਕ ਪ੍ਤੀਕਿਰਿਆਵਾਂ ਵਿੱਚ ਰਸਾਇਣਿਕ ਪਦਾਰਥਾਂ ਦੀ ਥੋੜੀ ਮਾਤਰਾ ਦੀ ਹੀ ਵਰਤੋਂ ਕੀਤੀ ਜਾਂਦੀ ਹੈ।

ਆਇਤਨ

ਆਇਤਨ ਦੇ ਮਾਤਰਕ ਲੰਬਾਈ ਦੇ ਮਾਤਰਕ ਹੁੰਦੇ ਹਨ। ਇਸ ਲਈ SI ਪਧੱਤੀ ਵਿਚ ਆਇਤਨ ਦਾ ਮਾਤਰਕ m³ ਹੁੰਦਾ ਹੈ, ਪਰੰਤੂ ਰਸਾਇਣਿਕ ਪ੍ਰਯੋਗਸ਼ਾਲਾਵਾਂ ਵਿੱਚ ਐਨੇ ਜਿਆਦਾ ਆਇਤਨਾਂ ਦੀ ਵਰਤੋਂ ਨਹੀਂ ਕੀਤੀ ਜਾਂਦੀ। ਇਸ ਲਈ ਆਇਤਨ ਨੂੰ ਆਮ ਤੌਰ ਤੇ ${
m cm^3}$ ਜਾਂ ${
m dm^3}$ ਦੇ ਮਾਤਰਕਾਂ ਵਿੱਚ ਦਰਸਾਇਆ

ਚਿੱਤਰ 1.5 ਵਿਸਲੇਸ਼ਿਕ ਤੁਲਾ

ਮਾਪਨ ਦੇ ਰਾਸ਼ਟਰੀ ਮਾਨਕਾਂ ਦੀ ਸੰਭਾਲ

ਜਿਵੇਂ ਉੱਤੇ ਦੱਸਿਆ ਜਾ ਚੁਕਿਆ ਹੈ, ਮਾਤਰਾ ਚਲਨ ਅਤੇ ਉਨ੍ਹਾਂ ਦੀਆਂ ਪਰਿਭਾਸ਼ਾਵਾਂ ਸਮੇਂ ਦੇ ਨਾਲ ਨਾਲ ਪਰਿਵਰਤਿਤ ਹੁੰਦੀਆਂ ਹਨ। ਜਦੋਂ ਵੀ ਨਵੇਂ ਸਿਧਾਂਤਾ ਨੂੰ ਅਪਨਾ ਕੇ ਕਿਸੇ ਵਿਸ਼ੇਸ਼ ਮਾਤਰਕ ਦੇ ਮਾਪਨ ਦੀ ਦਰਸਤੀ ਵਿੱਚ ਵਾਧਾ ਹੋਇਆ, ਮੀਟਰ ਸੰਧੀ (ਸੰਨ 1875 ਵਿੱਚ ਹਸਤਾਖਰਿਤ) ਦੇ ਮੈਂਬਰ ਦੇਸ਼ ਉਸ ਮਾਤਰਕ ਦੀ ਰਸਮੀ ਪਰਿਭਾਸ਼ਾ ਵਿੱਚ ਪਰਿਵਰਤਨ ਕਰਨ ਦੇ ਲਈ ਸਹਿਮਤ ਹੋ ਗਏ।ਭਾਰਤ ਸਹਿਤ ਹਰ ਇੱਕ ਆਧਨਿਕ ਉਦਯੋਗੀਕਿਤ ਦੇਸ਼ ਵਿੱਚ ਇੱਕ ਰਾਸ਼ਟਰੀ ਮਾਪਨ ਵਿਗਿਆਨ ਸੰਸਥਾਨ (NMI- ਨੈਸ਼ਨਲ ਮੀਟਰੋਲੋਜੀ ਇਨਸਟੀਚਯੂਟ) ਹੈ, ਜੋ ਮਾਪਨ ਦੇ ਮਾਨਕਾਂ ਦੀ ਦੇਖਭਾਲ ਕਰਦੀ ਹੈ। ਇਹ ਜ਼ਿੰਮੇਵਾਰੀ ਨਵੀਂ ਦਿੱਲੀ ਸਥਿਤ ਰਾਸ਼ਟਰੀ ਭੌਤਿਕ ਪਯੋਗਸ਼ਾਲਾ (NPL, ਨੈਸ਼ਨਲ ਫਿਜੀਕਲ ਲੈਬੋਰੇਟਰੀ) ਨੂੰ ਦਿੱਤੀ ਗਈ ਹੈ। ਇਸ ਪ੍ਰਯੋਗਸ਼ਾਲਾ ਵਿੱਚ ਮਾਤਰਕਾਂ ਦੇ ਅਧਾਰ ਅਤੇ ਵਿਉਤਪੰਨ ਮਾਤਰਾਂ ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਦੇ ਲਈ ਪਯੋਗ ਨਿਰਧਾਰਿਤ ਕੀਤੇ ਜਾਂਦੇ ਹਨ ਅਤੇ ਮਾਪਨ ਦੇ ਰਾਸ਼ਟਰੀ ਮਾਨਕਾਂ ਦੀ ਦੇਖਭਾਲ ਕੀਤੀ ਜਾਂਦੀ ਹੈ। ਨਿਸ਼ਚਿਤ ਸਮੇਂ ਤੋਂ ਬਾਅਦ ਇਨ੍ਹਾਂ ਮਾਤਰਕਾਂ ਦੀ ਤੁਲਨਾ ਵਿਸ਼ਵ ਦੀਆਂ ਹੋਰ ਰਾਸ਼ਟਰੀ ਮਾਨਕਾਂ ਦੇ ਅੰਤਰ ਰਾਸ਼ਟਰੀ ਬਿਓਰੋ ਵਿੱਚ ਪਤਿਸ਼ਫਿਤ ਮਾਨਕਾਂ ਦੇ ਨਾਲ ਕੀਤੀ ਜਾਂਦੀ ਹੈ।

ਦ੍ਵਾਂ ਦੇ ਆਇਤਨ ਨੂੰ ਮਾਪਨ ਦੇ ਲਈ ਆਮ ਤੌਰ ਤੇ (ਲਿਟਰ L) ਮਾਤਰਕ ਦੀ ਵਰਤੋਂ ਕੀਤੀ ਜਾਂਦੀ ਹੈ, ਲਿਟਰ SI ਮਾਤਰਕ ਨਹੀਂ ਹੈ।

1~L = 1000~mL , $1000~cm^3 = 1~dm^3$ ਚਿੱਤਰ 1.6 ਵਿੱਚ ਤੁਸੀਂ ਇਨ੍ਹਾਂ ਸਬੰਧਾਂ ਨੂੰ ਅਸਾਨੀ ਨਾਲ ਵੇਖ ਸਕਦੇ ਹੋ।

ਪ੍ਯੋਗਸ਼ਾਲਾ ਵਿੱਚ ਦ੍ਵਾਂ ਜਾਂ ਘੋਲਾਂ ਦੇ ਆਇਤਨ ਨੂੰ ਮਾਪਨ ਦੇ ਲਈ ਦਰਜੇਦਾਰ ਸਿਲੰਡਰ, ਬਿਊਰਟ, ਪਿਪੇਟ ਆਦਿ ਦੀ ਵਰਤੋਂ ਕੀਤੀ ਜਾਂਦੀ ਹੈ। ਆਇਤਨ ਮਾਪੀ ਫਲਾਸਕ ਦੀ ਵਰਤੋਂ ਗਿਆਤ ਆਇਤਨ ਦਾ ਘੋਲ ਬਨਾਉਣ ਲਈ ਕੀਤੀ ਜਾਂਦੀ ਹੈ। ਮਾਪਨ ਦੇ ਇਨ੍ਹਾਂ ਉਪਕਰਣਾਂ ਨੂੰ ਚਿੱਤਰ 1.7 ਵਿੱਚ ਵਿਖਾਇਆ ਗਿਆ ਹੈ।

ਘਣਤਾ

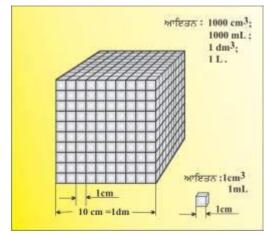
ਕਿਸੇ ਪਦਾਰਥ ਦੀ ਘਣਤਾ ਉਸਦੇ ਪ੍ਰਤੀ ਇਕਾਈ ਆਇਤਨ ਦਾ ਪੁੰਜ ਹੁੰਦੀ ਹੈ। ਇਸ ਲਈ ਘਣਤਾ ਦੇ SI ਮਾਤਰਕ ਇਸ ਤਰ੍ਹਾਂ ਪ੍ਰਾਪਤ ਕੀਤੇ ਜਾ ਸਕਦੇ ਹਨ-

ਘਣਤਾ ਦਾ SI ਮਾਤਰਕ =
$$\dfrac{\mathring{\text{ਪ}}_{\text{ਜ}}$$
 ਦਾ SI ਮਾਤਰਕ}{mਾਇਤਨ ਦਾ SI ਮਾਤਰਕ} = $\dfrac{\text{kg}}{\text{m}^3}$ ਜਾਂ kg m^{-3}

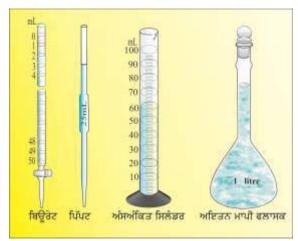
ਇਹ ਮਾਤਰਕ ਬਹੁਤ ਵੱਡਾ ਹੈ। ਰਸਾਇਣ ਵਿਗਿਆਨੀ ਆਮ ਤੌਰ ਤੇ ਘਣਤਾ ਨੂੰ g $\rm cm^{-3}$ ਵਿੱਚ ਵਿਅਕਤ ਕਰਦੇ ਹਨ, ਜਿੱਥੇ ਪੁੰਜ ਨੂੰ ਗ੍ਰਾਮ (g) ਵਿੱਚ ਅਤੇ ਆਇਤਨ ਨੂੰ $\rm cm^3$ ਵਿੱਚ ਵਿਅਕਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ।

ਤਾਪਮਾਨ

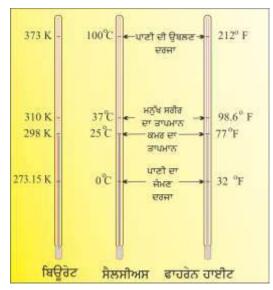
ਤਾਪਮਾਨ ਨੂੰ ਮਾਪਨ ਦੇ ਤਿੰਨ ਆਮ ਪੈਮੈਨੇ ਹਨ—°C (ਡਿਗਰੀ ਸੈਲਸਿਅਸ)°F (ਡਿਗਰੀ ਫਾਰੇਨਹਾਈਟ)ਅਤੇ K (ਕੈਲਵਿਨ) ਇੱਥੇ K (ਕੈਲਵਿਨ) SI ਮਾਤਰਕ ਹੈ। ਇਨ੍ਹਾਂ ਪੈਮਾਨਿਆਂ ਤੇ ਅਧਾਰਤ ਥਰਮਾਮੀਟਰਾਂ ਨੂੰ ਚਿੱਤਰ 1.8 ਵਿੱਚ ਵਿਖਾਇਆ ਗਿਆ ਹੈ।ਆਮ ਤੌਰ ਤੇ ਸੈਲਸਿਅਸ ਪੈਮਾਨੇ ਵਾਲੇ ਥਰਮਾਮੀਟਰਾਂ ਨੂੰ 0° ਤੋਂ 100° ਤੱਕ ਅੰਸ਼ ਅੰਕਿਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ, ਜਿੱਥੇ ਇਹ ਦੋਵੇਂ ਤਾਪਮਾਨ ਕਮਵਾਰ ਪਾਣੀ ਦੇ ਜੰਮਣ ਅੰਕ ਅਤੇ ਉਬਲਣ ਅੰਕ ਹਨ।


ਫਾਰੇਨਹੀਟ ਪੈਮਾਨੇ ਨੂੰ 32°F ਅਤੇ 212°F ਦੇ ਵਿੱਚ ਵਿਅਕਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ।ਇਨ੍ਹਾਂ ਦੋਵਾਂ ਪੈਮਾਨਿਆਂ ਵਿੱਚ ਤਾਪਮਾਨ ਇੱਕ ਦੂਜੇ ਨਾਲ ਹੇਠ ਲਿਖੇ ਰੂਪ ਵਿੱਚ ਸਬੰਧਿਤ ਹਨ—

$$^{\circ}$$
F = $\frac{9}{5}$ ($^{\circ}$ C) + 32


ਕੇਲਵਿਨ ਪੈਮਾਨਾ ਸੈਲਸਿਅਸ ਪੈਮਾਨੇ ਨਾਲ ਇਸ ਤਰ੍ਹਾਂ ਸਬੰਧਿਤ ਹੈ

$$K = {}^{\circ}C + 273.15$$


ਇਹ ਜਾਣਨਾ ਰੂਚੀ ਭਰਪੂਰ ਹੋਵੇਗਾ ਕਿ °C ਤੋਂ ਘੱਟ ਤਾਪਮਾਨ

ਚਿੱਤਰ 1.6 ਆਇਤਨ ਨੂੰ ਦਰਸਾਉਣ ਦੇ ਭਿੰਨ-ਭਿੰਨ ਮਾਤਰਕ

ਚਿੱਤਰ 1.7 ਆਇਤਨ ਮਾਪਨ ਦੇ ਭਿੰਨ-ਭਿੰਨ ਉਪਕਰਣ

ਚਿੱਤਰ 1.8 ਤਾਪਮਾਨ ਦੇ ਭਿੰਨ-ਭਿੰਨ ਪੈਮਾਨਿਆਂ ਵਾਲੇ ਥਰਮਾਮੀਟਰ

(ਭਾਵ ਰਿਣ ਤਾਪਮਾਨ) ਸੈਲਸਿਅਸ ਪੈਮਾਨੇ ਉੱਤੇ ਤਾਂ ਸੰਭਵ ਹੈ, ਪਰੰਤੂ ਕੈਲਵਿਨ ਪੈਮਾਨੇ ਉੱਤੇ ਤਾਪਮਾਨ ਦਾ ਰਿਣਾਤਮਕ ਮਾਨ ਸੰਭਵ ਨਹੀਂ ਹੈ।

ਮਿਆਰੀ ਮਾਨਕ

ਕਿਲੋਗਾਮ ਜਾਂ ਮੀਟਰ ਸਦਰਿਸ਼ ਮਾਪਨ ਦੇ ਮਾਤਰਕ ਦੀ ਪਰਿਭਾਸ਼ਾ ਨਿਸ਼ਚਿਤ ਕਰਨ ਦੇ ਬਾਅਦ ਵਿਗਿਆਨੀਆਂ ਨੇ ਮਿਆਰੀ ਮਾਤਰਕਾਂ ਦੀ ਜਰੂਰਤ ਅਨੁਭਵ ਕੀਤੀ, ਤਾਂ ਜੋ ਸਾਰੇ ਮਾਪਨ-ਉਪਕਰਣਾਂ ਨੂੰ ਅੰਸ਼ ਅੰਕਿਤ ਕੀਤਾ ਜਾ ਸਕੇ। ਮੀਟਰ-ਛੜਾਂ, ਵਿਸ਼ਲੇਸ਼ੀ ਤੁਲਾਵਾਂ ਆਦਿ ਉਪਕਰਣਾਂ ਨੂੰ ਉਨ੍ਹਾਂ ਦੇ ਨਿਰਮਾਤਾਵਾਂ ਦੁਆਰਾ ਅੰਸ਼ ਅੰਕਿਤ ਕੀਤਾ ਗਿਆ ਹੈ, ਤਾਂ ਕਿ ਉਹ ਵਿਸ਼ਵਾਸ ਯੋਗ ਮਾਪਨ ਦੇ ਸਕਣ, ਪਰੰਤੂ ਇਨ੍ਹਾਂ ਵਿੱਚੋਂ ਹਰ ਇੱਕ ਉਪਕਰਣ ਨੂੰ ਕਿਸੇ ਮਿਆਰੀ ਦੇ ਸਪੇਖ ਮਾਨਕੀ ਕ੍ਰਿਤ ਕੀਤਾ ਗਿਆ ਸੀ। ਸੰਨ 1889 ਤੋਂ ਪੰਜ ਦਾ ਮਾਨਕ ਕਿਲੋਗਾਮ ਹੈ, ਜੋ ਫਰਾਂਸ ਦੇ ਸੈਵਰਸ ਵਿੱਚ ਪਲੈਟੀਨਮ—ਇਰੀਡੀਅਮ (Pt-Ir) ਸਿਲੰਡਰ ਦੇ ਪੁੰਜ ਦੇ ਰੂਪ ਵਿੱਚ ਪਰਿਭਾਸ਼ਿਤ ਕੀਤਾ ਗਿਆ ਹੈ, ਜੋ ਭਾਰ ਅਤੇ ਮਾਪਨ ਦੇ ਅੰਤਰਰਾਸ਼ਟਰੀ ਬਿਓਰੋ ਵਿੱਚ ਇੱਕ ਹਵਾਬੰਦ ਡੱਬੇ ਵਿੱਚ ਰੱਖਿਆ ਹੋਇਆ ਹੈ। ਇਸ ਮਾਨਕ ਦੇ ਲਈ Pt-Ir ਦੀ ਮਿਸ਼ਰਤ ਧਾਤ ਦੀ ਚੋਣ ਕੀਤੀ ਗਈ ਹੈ, ਕਿਉਂਕਿ ਇਹ ਰਸਾਇਣਿਕ ਪਤੀਕਿਰਿਆ ਦੇ ਪਤੀ ਅਵਰੋਧੀ ਹੈ ਅਤੇ ਬੜੇ ਲੰਬੇ ਸਮੇਂ ਤੱਕ ਇਸਦੇ ਪੰਜ ਵਿੱਚ ਕੋਈ ਪਰਿਵਰਤਨ ਨਹੀਂ ਆਵੇਗਾ।

ਪੁੰਜ ਦੇ ਨਵੇਂ ਮਾਤਰਕ ਦੇ ਲਈ ਵਿਗਿਆਨੀ ਯਤਨ ਕਰ ਰਹੇ ਹਨ। ਇਸ ਦੇ ਲਈ ਐਵੋਗੈਡਰੋ-ਸੰਖਿਆ ਦਾ ਸਹੀ ਮਾਨ ਨਿਰਧਾਰਣ ਕੀਤਾ ਜਾ ਰਿਹਾ ਹੈ। ਇੱਕ ਸੈਂਪਲ ਦੇ ਬਿਲਕੁੱਲ ਨਿਸ਼ਚਿਤ ਪੁੰਜ ਵਿੱਚ ਪਰਮਾਣੂਆਂ ਦੀ ਸੰਖਿਆ ਦੇ ਸਹੀ ਮਾਪਨ ਤੇ ਇਸ ਨਵੇਂ ਸਟੈਂਡਰਡ ਉੱਤੇ ਕੰਮ ਕੇਂਦਰਿਤ ਹੈ।ਅਜਿਹੀ ਇੱਕ ਪੱਧਤੀ, ਜਿਸ ਵਿੱਚ ਅਤਿਸ਼ੁੱਧ ਸਿਲੀਕਾਨ ਦੇ ਕ੍ਰਿਸਟਲ ਦੇ ਪਰਮਾਣਵੀ ਘਣਤਾ ਨੂੰ ਐਕਸ-ਰੇ ਦੁਆਰਾ ਮਾਪਿਆ ਜਾਂਦਾ ਹੈ, ਦੀ ਸ਼ੁਧਤਾ 106 ਵਿੱਚ ਇੱਕ ਅੰਸ਼ ਹੈ। ਇਸ ਨੂੰ ਅਜੇ ਤੱਕ ਮਾਨਕ ਦੇ ਰੂਪ ਵਿੱਚ ਸਵੀਕਾਰ ਨਹੀਂ ਕੀਤਾ ਗਿਆ ਹੈ।ਹੋਰ ਵੀ ਪੱਧਤੀਆਂ ਹਨ, ਪਰੰਤੂ ਇਨ੍ਹਾਂ ਵਿੱਚੋਂ ਕੋਈ ਵੀ ਪੱਧਤੀ ਅਜੇ Pt-Ir ਛੜ ਦੇ ਵਿਕਲਪ ਦੇ ਰੂਪ ਵਿੱਚ ਸਮਰੱਥ ਨਹੀਂ ਹੈ।ਅਜਿਹੀ ਆਸ ਕੀਤੀ ਜਾ ਸਕਦੀ ਹੈ ਕਿ ਵਰਤਮਾਨ ਦਹਾਕੇ ਵਿੱਚ ਕੋਈ ਉਚਤ ਵਿਕਲਪ ਮਾਨਕ ਵਿਕਸਿਤ ਕੀਤਾ ਜਾ ਸਕੇਗਾ।

ਸ਼ੁਰੂ ਵਿੱਚ 0°C (273·15 K) ਤੇ ਰੱਖੀ ਇੱਕ Pt-Ir ਛੜ ਉੱਤੇ ਦੋ ਨਿਸ਼ਚਿਤ ਚਿਨ੍ਹਾਂ ਦੇ ਵਿੱਚ ਲੰਬਾਈ ਨੂੰ 'ਮੀਟਰ' ਪਰਿਭਾਸ਼ਿਤ ਕੀਤਾ ਗਿਆ ਸੀ। ਸੰਨ 1960 ਵਿੱਚ ਮੀਟਰ ਦੀ ਲੰਬਾਈ ਨੂੰ ਨ੍ਰਿਪਟਾੱਨ ਲੇਜ਼ਰ (Laser) ਤੋਂ ਉਤਸਰਜਿਤ ਪ੍ਰਕਾਸ਼ ਦੀ ਤਰੰਗ ਲੰਬਾਈ ਦਾ 1·6507637 3 × 106 ਗੁਣਾ ਮੰਨਿਆ ਗਿਆ। ਭਾਵੇਂ ਇਹ ਇੱਕ ਮੁਸ਼ਕਿਲ ਸੰਖਿਆ ਸੀ, ਕਿੰਤੂ ਇਹ ਮੀਟਰ ਦੀ ਪਹਿਲਾਂ ਸਹਿਮਤ ਲੰਬਾਈ ਨੂੰ ਸਹੀ ਰੂਪ ਵਿੱਚ ਦਰਸਾਉਂਦੀ ਹੈ। ਸੰਨ 1983 ਵਿੱਚ CGPM ਦੁਆਰਾ ਮੀਟਰ ਦੁਬਾਰਾ ਪ੍ਰਭਾਸ਼ਿਤ ਕੀਤਾ ਗਿਆ, ਜੋ ਖਲਾਅ ਵਿੱਚ ਪ੍ਰਕਾਸ਼ ਦੂਰਾ 1/299792458 ਸੈਕੰਡ ਵਿੱਚ ਤੈਅ ਕੀਤੀ ਗਈ ਦੂਰੀ ਹੈ। ਲੰਬਾਈ ਅਤੇ ਪੁੰਜ ਦੀ ਤਰ੍ਹਾਂ ਹੋਰ ਦੂਜੀਆਂ ਭੌਤਿਕ ਰਾਸ਼ੀਆਂ ਦੇ ਲਈ ਵੀਮਿਆਰੀ ਮਾਨਕ ਹਨ।

1.4 ਮਾਪਨ ਵਿੱਚ ਅਨਿਸ਼ਚਿਤਾ

ਰਸਾਇਣ ਦੇ ਅਧਿਐਨ ਵਿੱਚ ਅਨੇਕ ਵਾਰ ਅਸੀਂ ਪ੍ਰਯੋਗਿਕ ਅੰਕੜਿਆਂ ਦੇ ਨਾਲ ਨਾਲ ਸਿਧਾਂਤਕ ਗਣਨਾਵਾਂ ਉੱਤੇ ਵਿਚਾਰ ਕਰਨਾ ਹੁੰਦਾ ਹੈ।ਸੰਖਿਆਵਾਂ ਦਾ ਸਰਲਤਾ ਨਾਲ ਸੰਚਾਲਨ ਕਰਨਾ ਅਤੇ ਅੰਕੜਿਆਂ ਨੂੰ ਵੱਧ ਤੋਂ ਵੱਧ ਨਿਸ਼ਚਿਤਤਾ ਦੇ ਨਾਲ ਸਹੀ ਤੌਰ ਤੇ ਪੇਸ਼ ਕਰਨ ਦੇ ਅੱਧਪੂਰਣ ਤਰੀਕੇ ਵੀ ਹਨ। ਇਨ੍ਹਾਂ ਵਿਚਾਰਾਂ ਤੇ ਹੇਠਾਂ ਵਿਸਥਾਰ ਨਾਲ ਵਿਚਾਰ ਕੀਤਾ ਜਾ ਰਿਹਾ ਹੈ।

1.4.1 ਵਿਗਿਆਨਕ ਸੰਕੇਤ ਲਿਪੀ

ਰਸਾਇਣ ਵਿਗਿਆਨ ਪਰਮਾਣੂਆਂ ਅਤੇ ਅਣੂਆਂ ਨਾਲ ਸੰਬੰਧਿਤ ਹੈ, ਜਿਨ੍ਹਾਂ ਦੇ ਬਹੁਤ ਹੀ ਘੱਟ ਪੂੰਜ ਹੁੰਦੇ ਹਨ ਅਤੇ ਬਹੁਤ ਜ਼ਿਆਦਾ ਸੰਖਿਆ ਹੁੰਦੀ ਹੈ।ਇਸ ਲਈ ਕਿਸੇ ਰਸਾਇਣ ਵਿਗਿਆਨੀ ਨੂੰ 2g ਹਾਈਡ੍ਰੋਜਨ ਦੇ ਅਣੂਆਂ ਦੇ ਲਈ 662 200,000,000,000,000,000,000 ਵਰਗੀ ਵੱਡੀ ਸੰਖਿਆ ਜਾਂ ਹਾਈਡ੍ਰੋਜਨ ਪਰਮਾਣੂ ਦੇ ਪੂੰਜ ਦੇ ਲਈ 0.0000000000000000000000166 g ਵਰਗੀ ਛੋਟੀ ਸੰਖਿਆ ਨਾਲ ਕੰਮ ਕਰਨਾ ਪੈ ਸਕਦਾ ਹੈ।ਇਸੇ ਤਰ੍ਹਾਂ ਪਲਾਂਕ ਸਥਿਰ ਅੰਕ, ਪ੍ਰਕਾਸ਼ ਦਾ ਵੇਗ, ਕਣਾਂ ਉੱਤੇ ਚਾਰਜ ਆਦਿ ਵਿੱਚ ਵੀ ਉੱਤੇ ਦਿੱਤੇ ਗਏ ਪਰਿਮਾਣ ਵਾਲੀਆਂ ਸੰਖਿਆਵਾਂ ਹੁੰਦੀਆਂ ਹਨ। ਇੱਕ ਛਿਣ ਦੇ ਲਈ ਐਨੀਆਂ ਸਾਰੀਆਂ ਸਿਫਰਾਂ ਵਾਲੀਆਂ ਸੰਖਿਆਵਾਂ ਨੂੰ ਲਿਖਣਾ ਅਤੇ ਗਿਣਨਾ ਮਜੇਦਾਰ ਲੱਗ ਸਕਦਾ ਹੈ, ਪਰੰਤ ਇਨ੍ਹਾਂ ਸੰਖਿਆਵਾਂ ਦੇ ਨਾਲ ਸਰਲ ਗਿਣਤੀ ਪਰਿਕਰਨ (ਜਿਵੇਂ-ਜੋੜਨਾ, ਘਟਾਣਾ, ਗੁਣਾ ਕਰਨਾ ਜਾਂ ਭਾਗ ਦੇਣਾ) ਸੱਚਮੂਚ ਇਕ ਚੁਣੋਤੀ ਹੈ। ਉੱਤੇ ਦਿੱਤੀਆਂ ਗਈਆਂ ਕੋਈ ਦੋ ਕਿਸਮ ਦੀਆਂ ਸੰਖਿਆਵਾਂ ਨੂੰ ਤੁਸੀਂ ਲਿਖੋ ਅਤੇ ਉਨ੍ਹਾਂ ਉਤੇ ਕੋਈ ਵੀ ਗਿਣਤੀ ਪਰਿਕਲਨ ਕਰੋ, ਤਾਂਕਿ ਤੁਸੀਂ ਸਹੀ ਤਰ੍ਹਾਂ ਨਾਲ ਇਹ ਸਮਝ ਸਕੋ ਕਿ ਸੰਖਿਆਵਾਂ ਦੇ ਨਾਲ ਕਾਰਜ ਕਰਨਾ ਅਸਲ ਵਿੱਚ ਕਿੰਨਾ ਔਖਾ ਹੈ।

ਇਸ ਮੁਸ਼ਕਿਲ ਨੂੰ ਇਨ੍ਹਾਂ ਸੰਖਿਆਵਾਂ ਦੇ ਲਈ ਵਿਗਿਆਨਕ ਭਾਵ exponential ਲਿੱਪੀ ਦੀ ਵਰਤੋਂ ਦੁਆਰਾ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਇਸ ਸੰਕੇਤਨ ਵਿੱਚ ਕਿਸੇ ਵੀ ਸੰਖਿਆ ਨੂੰ $\rm N \times 10^n$ ਦੇ ਰੂਪ ਵਿੱਚ ਲਿਖਿਆ ਜਾਂਦਾ ਹੈ, ਜਿਸ ਵਿੱਚ n exponent ਹੈ। ਇਸ ਦਾ ਮਾਨ ਧਨਾਤਮਕ ਜਾਂ ਰਿਣਆਤਮਕ ਹੋ ਸਕਦਾ ਹੈ ਅਤੇ $\rm N$ ਦਾ ਮਾਨ $\rm 1.000$... ਅਤੇ $\rm 9.999$... ਦੇ ਵਿੱਚ ਕੋਈ ਵੀ ਸੰਖਿਆ ਹੋ ਸਕਦੀ ਹੈ। $\rm N$ ਨੂੰ ਡਿਜੀਟ ਟਰਮ ਕਹਿੰਦੇ ਹਨ। ਇਉਂ ਵਿਗਿਆਨਕ ਲਿੱਪੀ ਵਿੱਚ $\rm 232.508$ ਨੂੰ $\rm 2.32508 \times 10^2$ ਦੇ ਰੂਪ ਵਿੱਚ ਲਿਖਿਆ ਜਾਂਦਾ ਹੈ। ਧਿਆਨ ਦਿਓ ਕਿ ਅਜਿਹਾ ਲਿਖਦੇ ਸਮੇਂ ਦਸ਼ਮਲਵ ਨੂੰ ਦੋ ਸਥਾਨ ਖੱਬੇ ਪਾਸੇ ਲਿਜਾਇਆ ਗਿਆ ਹੈ ਅਤੇ ਵਿਗਿਆਨਕ ਸੰਕੇਤਨ ਵਿੱਚ ਉਹ (2) $\rm 10$ ਦਾ exponent।

ਇਸੇ ਤਰ੍ਹਾਂ 0.00016 ਨੂੰ 1.6×10^{-4} ਵਜੋਂ ਲਿਖਿਆ ਜਾ ਸਕਦਾ ਹੈ। ਇੱਥੇ ਅਜਿਹਾ ਕਰਦੇ ਸਮੇਂ ਦਸ਼ਮਲਵ ਨੂੰ ਚਾਰ ਸਥਾਨ ਸਾਜੇ ਪਾਸੇ ਲਿਜਾਇਆ ਗਿਆ ਹੈ ਅਤੇ ਵਿਗਿਆਨਕ ਲਿੱਪੀ (-4) exponent ਹੈ।

ਵਿਗਿਆਨਕ ਸੰਕੇਤਨ ਵਿੱਚ ਵਿਅਕਤ ਸੰਖਿਆਵਾਂ ਤੇ ਗਿਣਤੀ ਪਰਿਕਲਨ ਕਰਦੇ ਸਮੇਂ ਸਾਨੂੰ ਹੇਠ ਲਿਖੀਆਂ ਗੱਲਾਂ ਨੂੰ ਧਿਆਨ ਵਿੱਚ ਰੱਖਣਾ ਚਾਹੀਦਾ ਹੈ-

ਗਣਾ ਅਤੇ ਭਾਗ ਕਰਨਾ

ਇਨ੍ਹਾਂ ਦੋ ਕਾਰਜਾਂ ਦੇ ਲਈ exponents ਸੰਖਿਆ ਵਾਲੇ ਨਿਯਮ ਲਾਗੂ ਹੁੰਦੇ ਹਨ। ਜਿਵੇਂ—

$$(5.6 \times 10^5) \times (6.9 \times 10^8) = 5.6 \times 6.9 \times 10^5$$
 8
ਅਤੇ $= 5.6 \times 6.9 \times 10^{13}$
 $= 38.64 \times 10^{13}$
 $= 3.864 \times 10^{14}$
 $(9.8 \times 10^{-2}) \times (2.5 \times 10^{-6}) = 9.8 \times 2.5 \times 10^{-2-6}$
 $= 9.8 \times 2.5 \times 10^{-8}$
 $= 24.50 \times 10^{-8}$
 $= 2.450 \times 10^{-7}$

$$\frac{2.7 \times 10^{-3}}{5.5 \times 10^{4}} = (2.7 \div 5.5)(10^{-3-4}) = 0.4909 \times 10^{-7}$$

 $=4.909 \times 10^{-8}$

ਜੋੜ ਕਰਨਾ ਅਤੇ ਘਟਾਉਣਾ

ਇਨ੍ਹਾਂ ਦੋ ਕਾਰਜਾਂ ਨੂੰ ਕਰਨ ਦੇ ਲਈ ਪਹਿਲਾਂ ਸੰਖਿਆਵਾਂ ਨੂੰ ਇਸ ਤਰ੍ਹਾਂ ਲਿਖਣਾ ਪੈਂਦਾ ਹੈ ਕਿ ਉਨ੍ਹਾਂ ਦੇ exponents ਸਮਾਨ ਹੋਣ।ਉਸ ਤੋਂ ਬਾਅਦ ਸੰਖਿਆਵਾਂ ਨੂੰ ਜੋੜਿਆ ਜਾਂ ਘਟਾਇਆ ਜਾ ਸਕਦਾ ਹੈ।

ਇਉਂ 6.65×10^4 ਅਤੇ 8.95×10^3 ਦਾ ਜੋੜ ਕਰਨ ਦੇ ਲਈ ਪਹਿਲਾਂ ਉਨ੍ਹਾਂ ਦਾ exponents ਸਮਾਨ ਕਰਕੇ ਇਸ ਤਰ੍ਹਾਂ ਲਿਖਿਆ ਜਾਂਦਾ ਹੈਂ—

 $6.65 \times 10 + 0.895 \times 10^{4}$

ਇਸ ਤੋਂ ਬਾਅਦ ਸੰਖਿਆਵਾਂ ਨੂੰ ਇਸ ਤਰ੍ਹਾਂ ਜੋੜਿਆ ਜਾ ਸਕਦਾ ਹੈ—

 $(6.65 + 0.895) \times 10^4 = 7.545 \times 10^4$

ਇਸੇ ਤਰ੍ਹਾਂ ਦੋ ਸੰਖਿਆਵਾਂ ਨੂੰ ਇਸ ਪ੍ਰਕਾਰ ਘਟਾਇਆ ਜਾ ਸਕਦਾ ਹੈ— $2.5 \times 10^{-2} - 4.8 \times 10^{-3}$

=
$$(2.5 \times 10^{-2}) - (0.48 \times 10^{-2})10^{-7}$$

$$= (2.5 - 0.48) \times 10^{-2} = 2.02 \times 10^{-2}$$

1.4.2 ਸਾਰਥਕ ਅੰਕ

ਹਰ ਇੱਕ ਪ੍ਯੋਗਿਕ ਮਾਪਨ ਵਿੱਚ ਕੁੱਝ ਨਾ ਕੁੱਝ ਅਨਿਸ਼ਚਿਤਾ ਜਰੂਰ ਹੁੰਦੀ ਹੈ, ਪਰੰਤੂ ਪਰਿਣਾਮ ਹਮੇਸ਼ਾ ਸ਼ੁੱਧ ਅਤੇ ਯਥਾਰਥਕ ਹੋਣੇ ਚਾਹੀਦੇ ਹਨ। ਜਦ ਵੀ ਅਸੀਂ ਮਾਪਨ ਦੀ ਗੱਲ ਕਰਦੇ ਹਾਂ, ਤਾਂ ਸ਼ੁੱਧਤਾ ਅਤੇ ਯਥਾਰਥ ਨੂੰ ਵੀ ਧਿਆਨ ਵਿੱਚ ਰੱਖਿਆ ਜਾਂਦਾ ਹੈ।

ਯਥਾਰਥਕਤਾ ਕਿਸੇ ਵੀ ਰਾਸ਼ੀ ਦੇ ਭਿੰਨ ਭਿੰਨ ਮਾਪਨਾਂ ਦੀ ਨੇੜਤਾ ਨੂੰ ਵਿਅਕਤ ਕਰਦੀ ਹੈ। ਪਰੰਤੂ ਸੁਨਿਸ਼ਚਿਤਾ ਕਿਸੇ ਵਿਸ਼ਿਸਟ ਪ੍ਰਯੋਗਿਕ ਮਾਨ ਦੇ ਵਾਸਤਵਿਕ ਮਾਨ ਨਾਲ ਮੇਲ ਰੱਖਣ ਨੂੰ ਵਿਅਕਤ ਕਰਦੀ ਹੈ। ਉਦਾਹਰਣ ਵਜੋਂ-ਜੇ ਕਿਸੇ ਪਰਿਣਾਮ ਦਾ ਸਹੀ ਮਾਨ 2.00g ਹੈ ਅਤੇ ਇੱਕ ਵਿਦਿਆਰਥੀ 'ਕ' ਦੋਂ ਮਾਪਨ ਕਰਦਾ ਹੈ, ਉਸ ਨੂੰ 1.95g ਅਤੇ 1.93g ਪਰਿਣਾਮ ਪ੍ਰਾਪਤ ਹੁੰਦੇ ਹਨ। ਇੱਕ ਦੂਜੇ ਦੇ ਬਹੁਤ ਨੇੜੇ ਹੋਣ ਦੇ ਕਾਰਣ ਇਹ ਮਾਨ ਯਥਾਰਥ ਹਨ ਪਰੰਤੂ ਸ਼ੁੱਧ ਨਹੀਂ ਹਨ। ਦੂਜਾ ਵਿਦਿਆਰਥੀ 'ਖ' ਇਨ੍ਹਾਂ ਮਾਪਨਾਂ ਨੂੰ 1.94g ਅਤੇ 2.05g ਪਰਿਣਾਮ ਪ੍ਰਾਪਤ ਕਰਦਾ ਹੈ ਤਾਂ ਇਹ ਦੋਵੇਂ ਪਰਿਣਾਮ ਨਾ ਤਾਂ ਸ਼ੁੱਧ ਹਨ ਅਤੇ ਨਾ ਹੀ ਯਥਾਰਥਕ ਹਨ। ਤੀਜੇ ਵਿਦਿਆਰਥੀ 'ਗ' ਨੂੰ ਇਨ੍ਹਾਂ ਮਾਪਨਾਂ ਦੇ ਲਈ 2.01g ਅਤੇ 1.99g ਪਰਿਣਾਮ ਪ੍ਰਾਪਤ ਹੁੰਦੇ ਹਨ। ਇਹ ਮਾਨ ਸ਼ੁੱਧ ਵੀ ਹਨ ਅਤੇ ਯਥਾਰਥਕ ਵੀ ਹਨ। ਇਸ ਨੂੰ ਸਾਰਣੀ 1.4 ਵਿੱਚ ਵਿਖਾਏ ਗਏ ਰੂਪ ਵਿੱਚ ਹੋਰ ਵੀ ਅਸਾਨੀ ਨਾਲ ਸਮਝਿਆ ਜਾ ਸਕਦਾ ਹੈ।

ਸਾਰਣੀ 1.4 ਅੰਕੜਿਆਂ ਦੀ ਸ਼ੁੱਧਤਾ ਅਤੇ ਯਥਾਰਥਕਤਾ ਦਾ ਨਿਰੁਪਣ

ਮਾਪਨ/g				
1 2 ਔਸਤ (g)				
ਵਿਦਿਆਰਥੀ 'ਕ'	1.95	1.93	1.940	
ਵਿਦਿਆਰਥੀ 'ਖ'	1.94	2.05	1.995	
ਵਿਦਿਆਰਥੀ 'ਗ'	2.01	1.99	2.000	

ਪ੍ਯੋਗਿਕ ਜਾਂ ਪਰਿਕਲਿਤ ਮਾਨਾਂ ਵਿੱਚ ਅਨਿਸ਼ਚਿਤਾ ਨੂੰ ਸਾਰਥਕ ਅੰਕਾਂ ਦੀ ਸੰਖਿਆ ਦੁਆਰਾ ਵਿਅਕਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਸਾਰਥਕ ਅੰਕ ਉਹ ਅਰਥਪੂਰਣ ਅੰਕ ਹੁੰਦੇ ਹਨ, ਜੋ ਨਿਸ਼ਚਿਤ ਰੂਪ ਵਿੱਚ ਪਤਾ ਹੋਣ। ਅਨਿਸ਼ਚਿਤਾ ਨੂੰ ਵਿਅਕਤ ਕਰਨ ਦੇ ਲਈ ਪਹਿਲਾਂ ਨਿਸ਼ਚਿਤ ਅੰਕ ਲਿਖੇ ਜਾਂਦੇ ਹਨ ਅਤੇ ਅਨਿਸ਼ਚਿਤ ਅੰਕ ਨੂੰ ਅੰਤਿਮ ਅੰਕ ਰੂਪ ਵਿੱਚ ਲਿਖਿਆ ਜਾਂਦਾ ਹੈ ਇੰਜ ਜੇ ਅਸੀਂ ਪਰਿਣਾਮ ਨੂੰ $11\cdot2$ mL ਦੇ ਰੂਪ ਵਿੱਚ ਲਿਖੀਏ, ਤਾਂ ਅਸੀਂ ਇਹ ਸਮਝਦੇ ਹਾਂ ਕਿ 11 ਨਿਸ਼ਚਿਤ ਅੰਕ ਹੈ ਅਤੇ 2 ਅਨਿਸ਼ਚਿਤ ਹੈ ਅਤੇ ਅੰਤਿਮ ਅੰਕ ਵਿੱਚ ± 1 ਦੀ ਅਨਿਸ਼ਚਿਤਾ ਹੋਵੇਗੀ। ਜੇ ਕੁੱਝ ਹੋਰ ਨਾ ਦੱਸਿਆ ਹੋਵੇ ਤਾਂ ਅੰਤਿਮ ਅੰਕ ਵਿੱਚ ਦੀ ਅਨਿਸ਼ਚਿਤਾ ਹਮੇਸ਼ਾ ਮੰਨੀ ਜਾਂਦੀ ਹੈ।

ਸਾਰਥਕ ਅੰਕਾਂ ਨੂੰ ਨਿਰਧਾਰਿਤ ਕਰਨ ਦੇ ਲਈ ਕੁੱਝ ਨਿਯਮ ਹਨ। ਜੋ ਇੱਥੇ ਦਿੱਤੇ ਜਾ ਰਹੇ ਹਨ—

- (1) ਸਾਰੇ ਗੈਰ ਸਿਫਰ ਅੰਕ ਸਾਰਥਕ ਹੁੰਦੇ ਹਨ।ਉਦਾਹਰਣ ਵਜੋਂ 285 cm ਵਿੱਚ ਤਿੰਨ ਸਾਰਥਕ ਅੰਕ ਅਤੇ 0⋅25 mL ਵਿੱਚ ਦੋ ਸਾਰਥਕ ਅੰਕ ਹਨ।
- (2) ਪਹਿਲੇ ਗੈਰ-ਸਿਫਰ ਅੰਕ ਤੋਂ ਪਹਿਲਾਂ ਆਉਣ ਵਾਲੇ ਸਿਫਰ ਸਾਰਥਕ ਨਹੀਂ ਹੁੰਦੇ। ਅਜਿਹੇ ਸਿਫਰ ਸਿਰਫ ਦਸ਼ਮਲਵ ਦੀ ਸਥਿਤੀ ਨੂੰ ਬਣਾਉਂਦੇ ਹਨ। ਇੰਜ 0⋅03 ਵਿੱਚ ਕੇਵਲ ਇੱਕ ਸਾਰਥਕ ਅੰਕ ਅਤੇ 0⋅0052 ਵਿੱਚ ਦੋ ਸਾਰਥਕ ਅੰਕ ਹਨ।

- (3) ਦੋ ਗੈਰ-ਸਿਫਰ ਅੰਕਾਂ ਦੇ ਵਿੱਚ ਸਥਿਤ ਸਿਫਰ ਸਾਰਥਕ ਹੁੰਦੇ ਹਨ। ਇੰਜ 2·005 ਵਿੱਚ ਚਾਰ ਸਾਰਥਕ ਅੰਕ ਹਨ।
- (4) ਕਿਸੇ ਅੰਕ ਦੇ ਸੱਜੇ ਪਾਸੇ ਜਾਂ ਅੰਤ ਵਿੱਚ ਆਉਣ ਵਾਲੇ ਸਿਫਰ ਸਾਰਥਕ ਹੁੰਦੇ ਹਨ, ਪਰੰਤੂ ਉਨ੍ਹਾਂ ਦੇ ਲਈ ਸ਼ਰਤ ਇਹ ਹੈ ਕਿ ਉਹ ਦਸ਼ਮਲਵ ਦੇ ਸੱਜੇ ਪਾਸੇ ਸਥਿਤ ਹੋਣ। ਉਦਾਹਰਣ ਵਜੋਂ 0⋅200 ਵਿੱਚ ਤਿੰਨ ਸਾਰਥਕ ਅੰਕ ਹਨ, ਪਰੰਤੂ ਦਸ਼ਮਲਵ ਬਿਨਾਂ ਸੰਖਿਆਵਾਂ ਵਿੱਚ ਸੱਜੇ ਪਾਸੇ ਦੇ ਸਿਫਰ ਸਾਰਥਕ ਨਹੀਂ ਹੁੰਦੇ।

ਉਦਾਹਰਣ ਵਜੋਂ 100 ਵਿੱਚ ਕੇਵਲ ਇੱਕ ਸਾਰਥਕ ਅੰਕ ਹੈ। ਭਾਵੇਂ 100 ਵਿੱਚ ਤਿੰਨ ਸਾਰਥਕ ਅੰਕ ਹਨ ਅਤੇ 100.0 ਵਿੱਚ ਚਾਰ ਸਾਰਥਕ ਅੰਕ ਹਨ। ਅਜਿਹੀਆਂ ਸੰਖਿਆਵਾਂ ਨੂੰ ਵਿਗਿਆਨਕ ਸੰਕੇਤਨ ਵਿੱਚ ਪ੍ਦਰਸ਼ਿਤ ਕਰਨਾ ਵਾਜਬ ਹੁੰਦਾ ਹੈ। ਅਸੀਂ ਇੱਕ ਸਾਰਥਕ ਅੰਕ ਦੇ ਲਈ 100 ਨੂੰ 1×10^2 ਦੋ ਸਾਰਥਕ ਅੰਕਾਂ ਦੇ ਲਈ 1.0×10^2 ਅਤੇ ਤਿੰਨ ਸਾਰਥਕ ਅੰਕਾਂ ਦੇ ਲਈ 1.00×10^2 ਲਿਖ ਸਕਦੇ ਹਾਂ।

(5) ਵਸਤੂਆਂ ਦੀ ਗਿਣਤੀ, ਉਦਾਹਰਣ ਵਜੋਂ 2 ਗੇਂਦਾਂ ਜਾਂ 20 ਆਂਡਿਆਂ ਵਿੱਚ ਸਾਰਥਕ ਅੰਕਾਂ ਦੀ ਸੰਖਿਆ ਅਨੰਤ ਹੈ, ਕਿਉਂਕਿ ਇਹ ਦੋਵੇਂ ਹੀ ਯਥਾਰਥਕ ਸੰਖਿਆਵਾਂ ਹਨ ਅਤੇ ਇਨ੍ਹਾਂ ਨੂੰ ਦਸ਼ਮਲਵ ਲਿਖ ਕੇ ਉਸਦੇ ਬਾਅਦ ਅਨੰਤ ਸਿਫਰਾਂ ਲਿਖ ਕੇ ਵਿਅਕਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ ਜਿਵੇਂ 2 = 2.000000 ਜਾਂ 20 = 20.000000 ਵਿਗਿਆਨਿਕ ਸੰਕੇਤਨ ਵਿੱਚ ਲਿਖੀਆਂ ਸੰਖਿਆਵਾਂ ਵਿੱਚ ਸਾਰੇ ਅੰਕ ਸਾਰਥਕ

ਹੁੰਦੇ ਹਨ।ਇੰਜ $4\cdot01 imes10^2$ ਵਿੱਚ ਤਿੰਨ ਅਤੇ $8\cdot256 imes10^{-3}$ ਵਿੱਚ ਚਾਰ ਸਾਰਥਕ ਅੰਕ ਹਨ।

ਸਾਰਥਕ ਅੰਕਾਂ ਨੂੰ ਜੋੜਨਾ ਅਤੇ ਘਟਾਉਣਾ

ਜੋੜਨ ਜਾਂ ਘਟਾਉਣ ਦੇ ਬਾਅਦ ਪ੍ਰਾਪਤ ਪਰਿਣਾਮ ਵਿੱਚ ਦਸ਼ਮਲਵ ਦੇ ਸੱਜੇ ਪਾਸੇ ਜੋੜਨ ਜਾਂ ਘਟਾਉਣ ਵਾਲੀ ਕਿਸੇ ਵੀ ਸੰਖਿਆ ਵਿੱਚ ਜਿਆਦਾ ਅੰਕ ਨਹੀਂ ਹੋਣੇ ਚਾਹੀਦੇ। ਜਿਵੇਂ

> 12.11 18.0 1.012 31.122

ਉੱਪਰ ਦਿੱਤੀ ਗਈ ਉਦਾਹਰਣ ਵਿੱਚ ਦਸ਼ਮਲਵ ਦੇ ਬਾਅਦ ਕੇਵਲ ਇੱਕ ਅੰਕ ਹੈ, ਇਉਂ ਪਰਿਣਾਮ ਵੀ ਦਸ਼ਮਲਵ ਦੇ ਬਾਅਦ ਇੱਕ ਹੀ ਅੰਕ ਤੱਕ, ਭਾਵ $31\cdot1$ ਦੇ ਰੂਪ ਵਿੱਚ ਹੀ ਵਿਅਕਤ ਕਰਨਾ ਚਾਹੀਦਾ ਹੈ।

ਸਾਰਥਕ ਅੰਕਾਂ ਦਾ ਗੁਣਾ ਜਾਂ ਭਾਗ ਕਰਨਾ

ਉਨ੍ਹਾਂ ਪਰਚਾਲਨਾਂ ਦੇ ਪਰਿਣਾਮ ਵਿੱਚ ਸਾਰਥਕ ਅੰਕਾਂ ਦੀ ਸੰਖਿਆ ਉਨੀ ਹੀ ਹੋਣੀ ਚਾਹੀਦੀ ਹੈ ਜਿੰਨੀ ਨਿਊਨਤਮ ਸਾਰਥਕ ਅੰਕਾਂ ਵਾਲੀ ਸੰਖਿਆ ਵਿੱਚ ਹੁੰਦੀ ਹੈ। ਜਿਵੇਂ—

 $2.5 \times 1.25 = 3.125$

ਕਿਉਂਕਿ 2.5 ਵਿੱਚ ਸਿਰਫ ਦੋ ਸਾਰਥਕ ਅੰਕ ਹਨ, ਇਸ ਲਈ ਪਰਿਣਾਮ ਵਿੱਚ ਵੀ ਦੋ ਸਾਰਥਕ ਅੰਕ (3.1) ਹੋਣੇ ਚਾਹੀਦੇ ਹਨ।

ਜਿਵੇਂ ਉਪਰੋਕਤ ਗਣਿਤੀ ਪਰਿਕਿਰਿਆ ਵਿੱਚ ਕੀਤਾ ਗਿਆ ਹੈ, ਪਰਿਣਾਮ ਨੂੰ ਜਰੂਰ ਸਾਰਥਕ ਅੰਕਾਂ ਤੱਕ ਵਿਅਕਤ ਕਰਨ ਦੇ ਲਈ ਸੰਖਿਆਵਾਂ ਦੇ ਨਿਕਟਤਮ (rounding off) ਵਿੱਚ ਹੇਠ ਲਿਖੀਆਂ ਗੱਲਾਂ ਦਾ ਧਿਆਨ ਰੱਖਣਾ ਚਾਹੀਦਾ ਹੈ—

- ਜੇ ਸਭ ਤੋਂ ਸੱਜੇ ਪਾਸੇ ਵਾਲਾ ਅੰਕ (ਜਿਸ ਨੂੰ ਹਟਾਉਣਾ ਹੋਵੇ) 5 ਤੋਂ ਵੱਧ ਹੋਵੇ, ਤਾਂ ਉਸ ਤੋਂ ਪਹਿਲੇ ਵਾਲੇ ਅੰਕ ਦਾ ਮਾਨ ਇੱਕ ਵਧਾ ਦਿੱਤਾ ਜਾਂਦਾ ਹੈ। ਜਿਵੇਂ-ਜੇ 1⋅386 ਵਿੱਚ 6 ਨੂੰ ਹਟਾਉਣਾ ਹੋਵੇ, ਤਾਂ ਅਸੀਂ ਨਿਕਟਤਮ ਦੇ ਬਾਅਦ 1⋅39 ਲਿਖਾਂਗੇ।
- 2. ਜੇ ਸਭ ਤੋਂ ਸੱਜੇ ਪਾਸੇ ਦਾ ਹਟਾਇਆ ਜਾਣ ਵਾਲਾ ਅੰਕ 5 ਤੋਂ ਘੱਟ ਹੋਵੇ, ਤਾਂ ਉਸ ਤੋਂ ਪਹਿਲੇ ਵਾਲੇ ਅੰਕ ਨੂੰ ਬਦਲਿਆ ਨਹੀਂ ਜਾਵੇਗਾ। ਜਿਵੇਂ-4·334 ਵਿੱਚ ਜੇ ਅੰਤਿਮ 4 ਨੂੰ ਹਟਾਉਣਾ ਹੋਵੇ ਤਾਂ ਪਰਿਣਾਮ ਨੂੰ 4·33 ਦੇ ਰੂਪ ਵਿੱਚ ਲਿਖਿਆ ਜਾਵੇਗਾ।
- 3. ਜੇ ਸਭ ਤੋਂ ਸੱਜੇ ਪਾਸੇ ਦਾ ਹਟਾਏ ਜਾਣ ਵਾਲਾ ਅੰਕ 5 ਹੋਵੇ ਤਾਂ ਉਸ ਤੋਂ ਪਹਿਲਾਂ ਅੰਕ ਸਮ ਹੋਣ ਦੀ ਸਥਿਤੀ ਵਿੱਚ ਬਦਲਿਆ ਨਹੀਂ ਜਾਵੇਗਾ, ਪਰੰਤੂ ਵਿਖਮ ਹੋਣ ਤੇ ਇੱਕ ਵਧਾ ਦਿੱਤਾ ਜਾਵੇਗਾ। ਜਿਵੇਂ−ਜੇ 6⋅35 ਨੂੰ 5 ਹਟਾ ਕੇ ਨਿਕਟਤਮ ਕਰਨਾ ਹੋਵੇ ਤਾਂ ਸਾਨੂੰ 3 ਨੂੰ ਵਧਾ ਕੇ 4 ਕਰਨਾ ਹੋਵੇਗਾ ਅਤੇ ਇਸ ਤਰ੍ਹਾਂ ਪਰਿਣਾਮ 6⋅4 ਵਿਅਕਤ ਕੀਤਾ ਜਾਵੇਗਾ, ਪਰੰਤੂ ਜੇ 6⋅25 ਦਾ ਨਿਕਟਤਮ ਕਰਨਾ ਹੋਵੇ ਤਾਂ ਇਸ ਨੂੰ 6⋅2 ਲਿਖਿਆ ਜਾਵੇਗਾ।

1.4.3 ਵਿਧੀ ਵਿਸ਼ਲੇਸ਼ਣ

ਪਰਿਕਲਨ ਕਰਦੇ ਸਮੇਂ ਕਦੇ ਕਦੇ ਸਾਨੂੰ ਮਾਤਰਕਾਂ ਨੂੰ ਇੱਕ ਪੱਧਤੀ ਤੋਂ ਦੂਜੀ ਪੱਧਤੀ ਵਿੱਚ ਰੁਪਾਂਤਰਿਤ ਕਰਨਾ ਪੈਂਦਾ ਹੈ। ਇੰਜ ਕਰਨ ਦੇ ਲਈ ਗੁਣਕ ਲੇਬਲ ਵਿਧੀ (factor label method), ਇਕਾਈ ਗੁਣਨ ਵਿਧੀ (Unit factor method) ਜਾਂ ਵਿਧੀ ਵਿਸ਼ਲੇਸ਼ਣ (dimensional analysis) ਦੀ ਵਰਤੋਂ ਕੀਤੀ ਜਾਂਦੀ ਹੈ।

ਉਦਾਹਰਣ

ਧਾਤ ਦਾ ਇੱਕ ਟੁੱਕੜਾ 3 ਇੰਚ (inch) ਲੰਬਾ ਹੈ। cm ਵਿੱਚ ਇਸ ਦੀ ਲੰਬਾਈ ਕਿੰਨੀ ਹੋਵੇਗੀ ?

ਹੱਲ ਅਸੀਂ ਜਾਣਦੇ ਹਾਂ 1 inch = 2.54 cm ਇਸ ਸਮੀਕਰਣ ਦੇ ਅਧਾਰ ਤੇ ਅਸੀਂ ਲਿਖ ਸਕਦੇ ਹਾਂ ਕਿ

$$\frac{1 \text{ inch}}{2.54 \text{ cm}} = 1 = \frac{2.54 \text{ cm}}{1 \text{ in}}$$

ਇੰਜ $\dfrac{1~\mathrm{inch}}{2.54~\mathrm{cm}}$ ਅਤੇ $\dfrac{2.54~\mathrm{cm}}{1~\mathrm{inch}}$ ਦੋਵੇਂ $1~\mathrm{e}$ ਬਰਾਬਰ ਹਨ। ਇਨ੍ਹਾਂ ਦੋਨਾਂ ਨੂੰ ਇਕਾਈ ਗੁਣਕ ਕਹਿੰਦੇ ਹਨ। ਜੇ ਕਿਸੇ ਸੰਖਿਆ ਦਾ ਗੁਣਾਂ ਇਨ੍ਹਾਂ ਇਕਾਈ ਗੁਣਾਕਾਂ (ਭਾਵ 1) ਨਾਲ ਕੀਤਾ ਜਾਵੇ,

ਤਾਂ ਉਹ ਪਰਵਰਤਿਤ ਨਹੀਂ ਹੋਵੇਗੀ।ਮੰਨ ਲਓ ਕਿ ਉੱਤੇ ਗਏ 3 ਦਾ ਗੁਣਾ ਇਕਾਈ ਗੁਣਕ ਨਾਲ ਕੀਤਾ ਜਾਂਦਾ ਹੈ।ਇੰਜ

$$3 \text{ in} = 3 \text{ in} \times \frac{2.54 \text{ cm}}{1 \text{ inch}} = 3 \times 2.54 \text{ cm} = 7.62 \text{ cm}$$

ਇੱਥੇ ਉਸ ਇਕਾਈ ਗੁਣਕ ਨਾਲ ਗੁਣਾ ਕੀਤਾ ਜਾਂਦਾ ਹੈ

(ਉੱਤੇ
$$\frac{2.54\,\mathrm{cm}}{1\,\mathrm{in}}$$
 ਨਾਲ), ਜਿਸ ਨਾਲ ਇੱਛਤ ਮਾਤਰਕ ਪ੍ਰਾਪਤ

ਹੋ ਜਾਣ, ਭਾਵ ਗੁਣਕ ਦੇ ਅੰਸ਼ ਵਿੱਚ ਉਹ ਮਾਤਰਕ ਹੋਣਾ ਚਾਹੀਦਾ ਹੈ, ਜੋ ਪਰਿਣਾਮ ਵਿੱਚ ਪ੍ਰਾਪਤ ਹੋਵੇ।

ਉੱਤੇ ਦਿੱਤੀ ਗਈ ਉਦਾਹਰਣ ਵਿੱਚ ਤੁਸੀਂ ਵੇਖ ਸਕਦੇ ਹੋ ਕਿ ਮਾਤਰਕਾਂ ਦੇ ਨਾਲ ਵੀ ਸੰਖਿਆਵਾਂ ਦੀ ਤਰ੍ਹਾਂ ਕੰਮ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਉਨ੍ਹਾਂ ਨੂੰ ਕੱਟਿਆ ਜਾ ਸਕਦਾ ਹੈ ਅਤੇ ਭਾਗ, ਗੁਣਾ, ਵਰਗ ਆਦਿ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਆਓ ਕੁੱਝ ਉਦਾਹਰਣਾਂ ਵੇਖੀਏ।

ਉਦਾਹਰਣ 2

ਇੱਕ ਜੱਗ ਵਿੱਚ 2L ਦੁੱਧ ਹੈ। ਦੁੱਧ ਦਾ ਆਇਤਨ \mathbf{m}^3 ਵਿੱਚ ਪਰਿਕਲਿਤ ਕਰੋ।

ਹੱਲ

ਅਸੀਂ ਜਾਣਦੇ ਹਾਂ ਕਿ 1 L = 1000 cm³ ਅਤੇ 1m = 100 cm

ਜਿਸ ਨਾਲ
$$\frac{1 \text{ m}}{100 \text{ cm}} = 1 = \frac{100 \text{ cm}}{1 \text{ m}}$$
 ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ।

ਇਨ੍ਹਾਂ ਇਕਾਈ ਗੁਣਕਾਂ ਤੋਂ m^3 ਪ੍ਰਾਪਤ ਕਰਨ ਦੇ ਲਈ ਪਹਿਲਾਂ ਇਕਾਈ ਗੁਣਕ ਦਾ ਘਣ ਲੈਣਾ ਪੈਂਦਾ ਹੈ।

$$\left(\frac{1\,\mathrm{m}}{100\,\mathrm{cm}}\right)^3 \Rightarrow \frac{1\,\mathrm{m}^3}{10^6\,\mathrm{cm}^3} = \left(1\right)^3 = 1$$

ਹੁਣ $2 L = 2 \times 1000 \text{ cm}^3$

ਇਸ ਨੂੰ ਇਕਾਈ ਗੁਣਕ ਨਾਲ ਗੁਣਾਂ ਕਰਨ ਤੇ ਸਾਨੂੰ ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ

$$2 \times 1000 \text{ cm}^3 \times \frac{1 \text{ m}^3}{10^6 \text{ cm}^3} = \frac{2 \text{ m}^3}{10^3} = 2 \times 10^{-3} \text{ m}^3$$

ਉਦਾਹਰਣ 3

2 ਦਿਨਾਂ ਵਿੱਚ ਕਿੰਨੇ ਸੈਕੰਡ (s) ਹੁੰਦੇ ਹਨ ? ਹੱਲ

ਅਸੀਂ ਜਾਣਦੇ ਹਾਂ ਕਿ 1 ਦਿਨ (day) = 24 ਘੰਟੇ (h)

ਜਾਂ
$$\frac{1 \text{day}}{24 \text{ hrs}} = 1 = \frac{24 \text{ h}}{1 \text{ day}}$$

ਅਤੇ 1h = 60 min

ਜਾਂ

ਇੰਜ 2 ਦਿਨਾਂ ਨੂੰ ਸੈਕੰਡ ਵਿੱਚ ਪਰਿਵਰਤਿਤ ਕਰਨ ਦੇ ਲਈ 2 ਦਿਨ ------ s

ਇਕਾਈ ਗੁਣਕਾਂ ਨੂੰ ਇੱਕ ਹੀ ਸਟੈਪ ਵਿੱਚ ਸ਼੍ਰੇਣੀ ਬੱਧ ਰੂਪ ਵਿੱਚ ਇਸ ਤਰ੍ਹਾਂ ਗੁਣਾ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ—

$$2\,\text{day} \times \frac{24\,\text{h}}{1\,\text{day}} \times \frac{60\,\text{min}}{1\,\text{h}} \times \frac{60\,\text{s}}{1\,\text{min}}$$

 $= 2 \times 24 \times 60 \text{ min} \times 60 \text{ s}$

= 172800 s

1.5 ਰਸਾਇਣਿਕ ਸੰਯੋਜਨ ਦੇ ਨਿਯਮ

ਤੱਤਾਂ ਦੇ ਸੰਯੋਜਨ ਤੋਂ ਯੋਗਿਕਾਂ ਦਾ ਬਣਨਾ ਹੇਠ ਲਿਖੇ ਪੰਜ ਮੂਲ ਨਿਯਮਾਂ ਦੇ ਅੰਤਰਗਤ ਹੰਦਾ ਹੈ

ਐਨਟੋਇਨੇ ਲੈਵੋਜ਼ਈਅਰ (1743—1794)

1.5.1 ਪੂੰਜ ਸੂਰਖਿਅਨ ਦਾ ਨਿਯਮ

ਇਸ ਨਿਯਮ ਦੇ ਅਨੁਸਾਰ ਪੁੰਜ ਨਾ ਤਾਂ ਬਣਾਇਆ ਜਾ ਸਕਦਾ ਹੈ ਅਤੇ ਨਾ ਹੀ ਨਸ਼ਟ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।

ਇਸ ਨਿਯਮ ਨੂੰ ਐਨਟੋਇਨੇ ਲੈਵੋਜ਼ੀਅਰ ਨੇ ਸੰਨ 1789 ਵਿੱਚ ਦਿੱਤਾ ਸੀ।ਉਨ੍ਹਾਂ ਨੇ ਬਲਨ ਪ੍ਤੀਕਿਰਿਆਵਾਂ ਦਾ ਪ੍ਯੋਗਿਕ ਅਧਿਐਨ ਧਿਆਨ-ਪੂਰਵਕ ਕੀਤਾ ਅਤੇ ਫਿਰ ਉੱਪਰ ਦਿੱਤੇ ਗਏ ਨਿਸ਼ਕਰਸ਼ ਤੇ ਪਹੁੰਚੇ। ਰਸਾਇਣ ਵਿਗਿਆਨ ਦਾ ਵਿਕਾਸ ਇਸੇ ਤੇ ਅਧਾਰਿਤ ਹੈ। ਅਸਲ ਵਿੱਚ ਅਭਿਕਾਰਕਾਂ ਅਤੇ ਉਪਜਾਂ ਦੇ ਪੁੰਜਾਂ ਦਾ ਸਹੀ ਮਾਪਨਾ ਅਤੇ ਲੈਵੋਜੀਅਰ ਦੁਆਰਾ ਪ੍ਯੋਗਾਂ ਨੂੰ ਧਿਆਨਪੁਰਵਕ ਕਰਨ ਦੇ ਕਾਰਣ ਅਜਿਹਾ ਸੰਭਵ ਹੋਇਆ।

1.5.2 ਸਥਿਰ ਅਨੁਪਾਤ ਦਾ ਨਿਯਮ

ਇਹ ਨਿਯਮ ਫਰਾਂਸਿਸੀ ਰਸ਼ਾਇਣ ਵਿਗਿਆਨੀ ਜੋਸੇਫ ਪਦਊਸਟ ਨੇ ਦਿੱਤਾ ਸੀ।ਉਨ੍ਹਾਂ ਅਨੁਸਾਰ, ਕਿਸੇ ਯੋਗਿਕ ਵਿੱਚ ਤੱਤਾਂ ਦੇ ਪੁੰਜਾਂ ਦਾ ਅਨੁਪਾਤ ਹਮੇਸ਼ਾ ਸਮਾਨ ਹੁੰਦਾ ਹੈ।

ਜੋਸੇਫ ਪਰਾਉਸਟ

ਪਰਾਊਸਟ ਨੇ ਕਿਊਪਰਰਿਕ ਕਾਰਬੋਨੇਟ ਦੇ ਦੋ ਨਮੂਨਿਆਂ ਦੇ ਨਾਲ ਪ੍ਰਯੋਗ ਕੀਤਾ, ਜਿਨ੍ਹਾਂ ਵਿੱਚੋਂ ਇੱਕ

ਕੁੰਦਰਤੀ ਅਤੇ ਦੂਜਾ ਸੰਸਲਸ਼ਿਤ ਸੀ। ਉਨ੍ਹਾਂ ਨੇ ਪਾਇਆ ਕਿ ਇਨ੍ਹਾਂ ਦੋਹਾਂ ਨਮੂਨਿਆਂ ਵਿੱਚ ਤੱਤਾਂ ਦਾ ਸੰਘਟਨ ਸਮਾਨ ਸੀ, ਜਿਵੇਂ ਹੇਠਾਂ ਦਿੱਤਾ ਗਿਆ ਹੈ।

ਨੂਮਨਾ		ਆੱਕਸੀਜਨ ਦ ਦਾ ਪ੍ਰਤੀਸ਼ਤ	
ਕੁਦਰਤੀ	51.35	9.74	38.91
ਸੰਸਲਿਸ਼ਤ	51.35	9.74	38.91

ਇੰਜ ਸਰੋਤ ਉੱਤੇ ਨਿਰਭਰ ਨਾ ਕਰਦੇ ਹੋਏ ਕਿਸੇ ਯੋਗਿਕ ਵਿੱਚ ਤੱਤ ਸਮਾਨ ਅਨੁਪਾਤ ਵਿੱਚ ਹੁੰਦੇ ਹਨ। ਇਸ ਨਿਯਮ ਨੂੰ ਕਈ ਪ੍ਯੋਗਾਂ ਦੁਆਰਾ ਉਚਿਤ ਸਥਾਪਿਤ ਕੀਤਾ ਗਿਆ ਹੈ। ਇਸ ਨੂੰ ਕਦੇ ਕਦੇ 'ਨਿਸ਼ਚਿਤ ਸੰਘਟਨ ਦਾ ਨਿਯਮ' ਵੀ ਕਿਹਾ ਜਾਂਦਾ ਹੈ।

1.5.3 ਗੁਣਿਤ ਅਨੁਪਾਤ ਦਾ ਨਿਯਮ

ਇਹ ਨਿਯਮ ਡਾਲਟਨ ਦੁਆਰਾ ਸੰਨ 1803 ਵਿੱਚ ਦਿੱਤਾ ਗਿਆ। ਇਸ ਨਿਯਮ ਦੇ ਅਨੁਸਾਰ, ਜੇ ਦੋ ਤੱਤ ਸੰਯੋਜਿਤ ਹੋ ਕੇ ਇੱਕ ਹੋ ਵੱਧ ਯੋਗਿਕ ਬਣਾਉਂਦੇ ਹਨ, ਤਾਂ ਇੱਕ ਤੱਤ ਦੇ ਨਾਲ ਦੂਜੇ ਤੱਤ ਦੇ ਸੰਯੁਕਤ ਹੋਣ ਵਾਲੇ ਪੁੰਜ ਛੋਟੇ ਪੂਰਣ ਅੰਕਾਂ ਦੇ ਅਨੁਪਾਤ ਵਿੱਚ ਹੁੰਦੇ ਹਨ।

ਉਦਾਹਰਣ ਵਜੋਂ—ਹਾਈਡ੍ਰੋਜਨ ਆੱਕਸੀਜਨ ਦੇ ਨਾਲ ਸੰਯੁਕਤ ਹੋ ਕੇ ਦੋ ਯੋਗਿਕ (ਪਾਣੀ ਅਤੇ ਹਾਈਡ੍ਰੋਜਨ ਪਰਆੱਕਸਾਈਡ) ਬਣਾਉਂਦੀ ਹੈ।

ਹਾਈਡ੍ਰੋਜਨ + ਆੱਕਸੀਜਨ ightarrow ਪਾਣੀ $2g \qquad 16g \qquad 18g$

ਹਾਈਡ੍ਰੋਜਨ + ਆੱਕਸੀਜਨ ightarrow ਹਾਈਡ੍ਰੋਜਨ ਪਰਆੱਕਸਾਈਡ 2g 32g 34g

ਇੱਥੇ ਆੱਕਸੀਜਨ ਦੇ ਪੁੰਜ (ਭਾਵ 16 ਗ੍ਰਾਮ ਅਤੇ 32 ਗ੍ਰਾਮ) ਜੋ ਹਾਈਡ੍ਰੋਜਨ ਦੇ ਨਿਸ਼ਚਿਤ ਪੁੰਜ (2g) ਦੇ ਨਾਲ ਸੰਯੁਕਤ ਹੁੰਦੇ ਹਨ, ਇੱਕ ਸਰਲ ਅਨੁਪਾਤ 16 : 32 ਜਾਂ 1 : 2 ਵਿੱਚ ਹੁੰਦੇ ਹਨ।

1.5.4 ਗੇ-ਲੁਸੈਕ ਦਾ ਗੈਸੀ ਆਇਤਨਾਂ ਦਾ ਨਿਯਮ

ਇਹ ਨਿਯਮ ਗੇ-ਲੁਸੈਕ ਦੁਆਰਾ ਸੰਨ 1808 ਵਿੱਚ ਦਿੱਤਾ ਗਿਆ। ਉਨ੍ਹਾਂ ਨੇ ਪਾਇਆ ਕਿ ਜਦ ਰਸਾਇਣਿਕ ਪ੍ਤੀ ਕਿਰਿਆ ਵਿੱਚ ਗੈਸਾਂ ਸੰਯੁਕਤ ਹੁੰਦੀਆਂ ਹਨ ਜਾਂ ਬਣਦੀਆਂ ਹਨ, ਤਾਂ ਉਨ੍ਹਾਂ ਦੇ ਆਇਤਨ ਸਰਲ ਅਨੁਪਾਤ ਵਿੱਚ ਹੁੰਦੇ ਹਨ, ਬਸ਼ਰਤੇ ਸਾਰੀਆਂ ਗੈਸਾਂ ਸਮਾਨ ਤਾਪਮਾਨ ਅਤੇ ਦਾਬ ਤੇ ਹੋਣ।

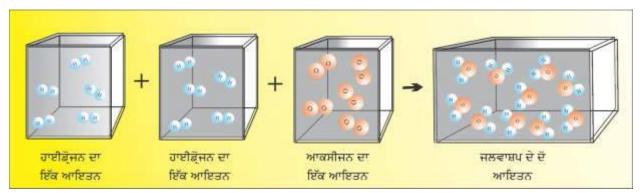
ਜੌਸੇਫ ਲੁਈਸ ਗੇ-ਲੁਸੈਕ

ਇੰਜ ਹਾਈਡ੍ਰੋਜਨ ਦੇ 100 mL ਆੱਕਸੀਜਨ ਦੇ 50 mL ਦੇ ਆਇਤਨ (ਜੋ ਆਪਸ ਵਿੱਚ ਸੰਯੁਕਤ ਭਾਵ 100 mL ਅਤੇ 50 mL ਹੁੰਦੇ ਹਨ) ਆਪਸ ਵਿੱਚ ਸਰਲ ਅਨੁਪਾਤ 2 :1 ਵਿੱਚ ਹੁੰਦੇ ਹਨ।

ਗੇ-ਲੁਸੈਕ ਦੇ ਆਇਤਨ ਸਬੰਧਾਂ ਦੇ ਪੂਰਣ ਅੰਕ ਅਨੁਪਾਤਾਂ ਦੀ ਖੋਜ ਅਸਲ ਵਿੱਚ ਆਇਤਨ ਦੇ ਨਾਲ 'ਸਥਿਰ ਅਨੁਪਾਤ ਦਾ ਨਿਯਮ' ਹੈ।ਪਹਿਲਾਂ ਦੱਸਿਆ ਗਿਆ ਸਥਿਰ ਅਨੁਪਾਤ ਦਾ ਨਿਯਮ ਪੁੰਜ ਦੇ ਨਾਲ ਹੈ।ਗੇ-ਲੁਸੈਕ ਦੇ ਕਾਰਜ ਦੀ ਵਧੇਰੇ ਵਿਆਖਿਆ ਸੰਨ 1811 ਵਿੱਚ ਐਵੋਗੈਡਰੋ ਨੇ ਕੀਤੀ।

1.5.5 ਐਵੋਗੈਡਰੋ ਦਾ ਨਿਯਮ

ਸੰਨ 1811 ਵਿੱਚ ਐਵੋਗੈਂਡਰੋ ਨੇ ਪ੍ਰਸਤਾਵ ਕੀਤਾ ਕਿ ਸਮਾਨ


ਤਾਪਮਾਨ ਅਤੇ ਦਾਬ ਉੱਤੇ ਗੈਸਾਂ ਦੇ ਸਮਾਨ ਆਇਤਨਾਂ ਵਿੱਚ ਅਣੂਆਂ ਦੀ ਸੰਖਿਆ ਸਮਾਨ ਹੋਣੀ ਚਾਹੀਦੀ ਹੈ। ਐਵੋਗੈਂਡਰੋ ਨੇ ਪਰਮਾਣੂਆਂ ਅਤੇ ਅਣੂਆਂ ਦੇ ਵਿੱਚ ਅੰਤਰ ਦੀ ਵਿਆਖਿਆ ਕੀਤੀ, ਜੋ ਅੱਜ ਅਸਾਨੀ ਨਾਲ ਸਮਝ ਵਿੱਚ ਆਉਂਦੀ ਹੈ। ਜੇ ਅਸੀਂ ਹਾਈਡ੍ਰੋਜਨ ਅਤੇ ਆੱਕਸੀਜਨ ਦੀ ਪਾਣੀ ਬਨਾਉਣ ਦੀ ਪ੍ਤੀਕਿਰਿਆ ਨੂੰ ਦੁਬਾਰਾ ਵੇਖੀਏ ਤਾਂ ਇਹ ਕਹਿ ਸਕਦੇ ਹਾਂ ਕਿ

ਐਵੋਗੈਡਰੋ (1776-1856)

ਹਾਈਡ੍ਰੋਜਨ ਦੇ ਦੋ ਆਇਤਨ ਅਤੇ ਆੱਕਸੀਜਨ ਦਾ ਇੱਕ ਆਇਤਨ ਆਪਸ ਵਿੱਚ ਸੰਯੁਕਤ ਹੋ ਕੇ ਪਾਣੀ ਦੇ ਦੋ ਆਇਤਨ ਦਿੰਦੇ ਹਨ ਅਤੇ ਆੱਕਸੀਜਨ ਬਿਲਕੁੱਲ ਵੀ ਨਹੀਂ ਬਚਦੀ।

ਚਿੱਤਰ 1.9 ਵਿੱਚ ਧਿਆਨ ਦਿਓ ਕਿ ਹਰ ਇੱਕ ਡੱਬੇ ਵਿੱਚ ਅਣੂਆਂ ਦੀ ਸੰਖਿਆ ਸਮਾਨ ਹੈ। ਅਸਲ ਵਿੱਚ ਐਵੋਗਡਰੋ ਨੇ ਇਨ੍ਹਾਂ ਪਰਿਣਾਮਾਂ ਦੀ ਵਿਆਖਿਆ ਅਣੂਆਂ ਨੂੰ ਬਹੁ ਪਰਮਾਣੁਕ ਮੰਨ ਕੇ ਕੀਤੀ।ਜੇ ਹਾਈਡ੍ਰੋਜਨ ਅਤੇ ਆੱਕਸੀਜਨ ਨੂੰ ਦੋ ਪਰਮਾਣੁਕ ਮੰਨਿਆ ਜਾਂਦਾ ਜੋ ਹੁਣ ਹੈ, ਤਾਂ ਉੱਤੇ ਦਿੱਤੇ ਗਏ ਪਰਿਣਾਮਾਂ ਨੂੰ ਸਮਝਨਾ ਕਾਫੀ ਸੌਖਾ ਹੈ। ਪਰੰਤੂ ਉਸ ਸਮੇਂ ਡਾਲਟਨ ਅਤੇ ਕਈ ਹੋਰ ਲੋਕਾਂ ਦੀ ਇਹ ਰਾਏ ਸੀ ਕਿ ਇਕ ਕਿਸਮ ਦੇ ਪਰਮਾਣੂ ਆਪਸ ਵਿੱਚ ਸੰਯੁਕਤ ਨਹੀਂ ਹੋ ਸਕਦੇ ਅਤੇ ਹਾਈਡ੍ਰੋਜਨ ਜਾਂ ਆੱਕਸੀਜਨ

Fig. 1.9 ਦੋ ਆਇਤਨ ਹਾਈਡ੍ਰੋਜਨ +1 ਆਇਤਨ ਆਕਸੀਜਨ − 2 ਆਇਤਨ ਪਾਣੀ (ਵਾਸ਼ਪ)

ਦੇ ਦੋ ਪਰਮਾਣੂਆਂ ਵਾਲੇ ਅਣੂ ਮੌਜੂਦ ਨਹੀਂ ਹੋ ਸਕਦੇ। ਐਵੋਗੈਡਰੋ ਦਾ ਪ੍ਰਸਤਾਵ ਫਰਾਂਸਿਸੀ ਵਿੱਚ (Journalde Physidue) ਵਿੱਚ ਪ੍ਰਕਾਸ਼ਿਤ ਹੋਇਆ। ਸਹੀ ਹੋਣ ਦੇ ਬਾਅਦ ਵੀ ਇਸ ਰਾਏ ਨੂੰ ਬਹਤ ਹੰਗਾਰਾ ਨਹੀਂ ਮਿਲਿਆ।

ਲਗਪਗ 50 ਸਾਲਾਂ ਦੇ ਬਾਅਦ (ਸੰਨ 1860 ਵਿੱਚ) ਜਰਮਨੀ (ਕਾਰਲਸਰੂਹ) ਵਿੱਚ ਰਸਾਇਣ ਵਿਗਿਆਨ ਵਿੱਚ ਪਹਿਲਾਂ ਅੰਤਰਰਾਸ਼ਟਰੀ ਸੰਮੇਲਨ ਹੋਇਆ, ਤਾਂਕਿ ਕਈ ਮਤਾਂ ਨੂੰ ਸੁਲਝਾਇਆ ਜਾ ਸਕੇ। ਉਸ ਵਿੱਚ ਸਟੇਨਿਸਲਾਓ ਕੈਨੀਜ਼ਾਰੋ ਨੇ ਰਸਾਇਣ ਦਰਸ਼ਨ ਤੇ ਵਿਚਾਰ ਪੇਸ਼ ਕਰਦੇ ਸਮੇਂ ਐਵੋਗੈਂਡਰੋ ਦੇ ਕਾਰਜ ਦੇ ਮਹੱਤਵ ਤੇ ਜੋਰ ਦਿੱਤਾ।

1.6 ਡਾਲਟਨ ਦਾ ਪਰਮਾਣੂ ਸਿਧਾਂਤ

ਹਾਲਾਂਕਿ ਮਾਦਾ ਦੇ ਛੋਟੇ ਅਭਾਜ ਕਣਾਂ, ਜਿਨ੍ਹਾਂ ਨੂੰ ਐਟੋਮੋਸ (atomos) ਭਾਵ 'ਅਭਾਜ' ਕਿਹਾ ਜਾਂਦਾ ਸੀ, ਦੁਆਰਾ ਬਣੇ ਹੋਣ ਦੇ ਵਿਚਾਰ ਦੀ ਉਤਪਤੀ ਗਰੀਕ ਦਰਸ਼ਨ ਸ਼ਾਸਤਰੀ ਡਿਮੋਕਰੀਟਸ (460–370 BC) ਦੇ ਸਮੇਂ ਹੋਈ, ਪਰੰਤੂ ਕਈ ਪ੍ਰਯੋਗਿਕ ਅਧਿਐਨਾਂ (ਜਿਨ੍ਹਾਂ ਨੇ ਉਪਰੋਕਤ ਨਿਯਮਾਂ ਨੂੰ ਜਨਮ ਦਿੱਤਾ) ਦੇ ਫਲਸਰੂਪ ਇਸ ਉੱਤੇ ਮੁੜ

।ਦਤਾ) ਦ ਫਲਸਰੂਪ ।ੲਸ ਢੁਤ ਸੁ ਵਿਚਾਰ ਕੀਤਾ ਜਾਣ ਲੱਗਾ।

ਸੰਨ 1808 ਵਿੱਚ ਡਾਲਟਨ ਨੇ ਰਸਾਇਣ-ਦਰਸ਼ਨਸ਼ਾਸਤਰ ਦੀ ਇੱਕ ਨਵੀਂ ਪੱਧਤੀ (A New System of Chemical Philosophy) ਪ੍ਕਾਸ਼ਿਤ ਕੀਤੀ, ਜਿਸ ਵਿੱਚ ਉਨ੍ਹਾਂ ਨੇ ਹੇਠ ਲਿਖੇ ਤੱਥ ਪ੍ਰਸਤਾਵਿਤ ਕੀਤੇ—

ਜੋਨ ਡਾਲਟਨ (1776—1884)

- (ੳ)ਮਾਦਾ ਅਭਾਜ ਪਰਮਾਣੂਆਂ ਤੋਂ ਬਣਿਆ ਹੈ।
- (ਅ) ਕਿਸੇ ਦਿੱਤੇ ਹੋਏ ਤੱਤ ਦੇ ਸਾਰੇ ਪਰਮਾਣੂਆਂ ਦੇ ਇੱਕ ਸਮਾਨ ਪੁੰਜ ਸਹਿਤ ਇੱਕ ਸਮਾਨ ਗੁਣ ਹੁੰਦੇ ਹਨ। ਭਿੰਨ ਭਿੰਨ ਤੱਤਾਂ ਦੇ ਪਰਮਾਣੂ ਪੁੰਜ ਵਿੱਚ ਭਿੰਨ ਹੁੰਦੇ ਹਨ।
- (ੲ) ਇੱਕ ਤੋਂ ਵੱਧ ਤੱਤਾਂ ਦੇ ਪਰਮਾਣੂਆਂ ਦੇ ਨਿਸ਼ਚਿਤ ਅਨੁਪਾਤ ਵਿੱਚ ਸੰਯੋਜਨ ਨਾਲ ਯੋਗਿਕ ਬਣਦੇ ਹਨ।
- (ਸ) ਰਸਾਇਣਿਕ ਪ੍ਰਤੀਕਿਰਿਆਵਾਂ ਵਿੱਚ ਪਰਮਾਣੂ ਪੁਨਰ ਵਿਵਸਥਿਤ ਹੁੰਦੇ ਹਨ।ਰਸਾਇਣਿਕ ਪ੍ਰਤੀ ਕਿਰਿਆਵਾਂ ਵਿੱਚ ਨਾ ਤਾਂ ਉਨ੍ਹਾਂ ਨੂੰ ਬਣਾਇਆ ਜਾ ਸਕਦਾ ਹੈ ਅਤੇ ਨਾ ਹੀ ਨਸ਼ਟ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।

ਡਾਲਟਨ ਦੇ ਇਸ ਸਿਧਾਂਤ ਨਾਲ ਰਸਾਇਣਿਕ ਸੰਯੋਜਨ ਦੇ ਨਿਯਮਾਂ ਦੀ ਵਿਆਖਿਆ ਕੀਤੀ ਜਾ ਸਕੀ।

1.7 ਪਰਮਾਣੂ ਪੁੰਜ ਅਤੇ ਅਣਵੀਂ ਪੁੰਜ

ਪਰਮਾਣੂਆਂ ਅਤੇ ਅਣੂਆਂ ਤੋਂ ਜਾਣੂ ਹੋਣ ਦੇ ਬਾਅਦ ਹੁਣ ਇਹ ਸਮਝਨਾ ਸਹੀ ਹੋਵੇਗਾ ਕਿ ਪਰਮਾਣੂ ਪੁੰਜ ਅਤੇ ਅਣਵੀਂ ਪੁੰਜ ਤੋਂ ਅਸੀਂ ਕੀ ਸਮਝਦੇ ਹਾਂ।

1.7.1 ਪਰਮਾਣੂ ਪੁੰਜ

ਪਰਮਾਣੂ ਪੁੰਜ ਭਾਵ ਕਿਸੇ ਪਰਮਾਣੂ ਦਾ ਪੁੰਜ ਅਸਲ ਵਿੱਚ ਬਹੁਤ ਘੱਟ ਹੁੰਦਾ ਹੈ ਕਿਉਂਕਿ ਪਰਮਾਣੂ ਅਤਿਅੰਤ ਛੋਟੇ ਹੁੰਦੇ ਹਨ। ਅੱਜ ਸਹੀ-ਸਹੀ ਪਰਮਾਣ ਪੰਜ ਪਤਾ ਕਰਨ ਦੀਆਂ ਬਿਹਤਰ ਤਕਨੀਕਾਂ (ਜਿਵੇਂ-ਪੁੰਜ ਸਪੈਕਟਰੋ ਸਕੋਪੀ) ਸਾਡੇ ਕੋਲ ਉਪਲਬਧ ਹੈ। ਪਰੰਤੂ ਜਿਵੇਂ ਪਹਿਲਾਂ ਦੱਸਿਆ ਗਿਆ ਹੈ, ਉੱਨਵੀਂ ਸਦੀ ਵਿੱਚ ਵਿਗਿਆਨੀ ਇੱਕ ਪਰਮਾਣੂ ਦਾ ਪੂੰਜ ਦੂਜੇ ਦੇ ਸਪੇਖ ਪ੍ਰਯੋਗਿਕ ਰਪ ਨਾਲ ਨਿਰਧਾਰਿਤ ਕਰ ਸਕਦੇ ਹਨ। ਹਾਈਡੋਜਨ ਪਰਮਾਣ ਨੂੰ ਸਭ ਤੋਂ ਹਲਕਾ ਹੋਣ ਦੇ ਕਾਰਣ ਮਨ-ਮੰਨਿਆ ਰੂਪ ਵਿੱਚ 1 ਪੰਜ (ਬਿਨਾਂ ਕਿਸੇ ਮਾਤਰਕ ਦੇ) ਦਿੱਤਾ ਗਿਆ ਅਤੇ ਬਾਕੀ ਸਾਰੇ ਤੱਤਾਂ ਦੇ ਪਰਮਾਣਆਂ ਦੇ ਪੰਜ ਉਸਦੇ ਸਾਪੇਖ ਦਿੱਤੇ ਗਏ, ਪਰੰਤ ਪਰਮਾਣੂ ਪੁੰਜਾਂ ਦੀ ਵਰਤਮਾਨ ਪੱਧਤੀ ਕਾਰਬਨ-12 ਮਾਨਕ ਉੱਤੇ ਅਧਾਰਿਤ ਹੈ।ਇਸ ਨੂੰ ਸੰਨ 1961 ਵਿੱਚ ਸਵੀਕ੍ਰਿਤ ਕੀਤਾ ਗਿਆ। ਇੱਥੇ ਕਾਰਬਨ-12 ਦਾ ਇੱਕ ਸਮਸਥਾਨਿਕ ਹੈ, ਜਿਸ ਨੂੰ ¹²C ਨੂੰ 12 ਪਰਮਾਣੂ ਪੁੰਜ ਮਾਤਰਕ (atomic mass unitamu) ਪੁੰਜ ਦਿੱਤਾ ਗਿਆ ਹੈ।ਬਾਕੀ ਸਾਰੇ ਤੱਤਾਂ ਦੇ ਪਰਮਾਣੂਆਂ ਦੇ ਪੁੰਜ ਇਸ ਨੂੰ ਮਾਨਕ ਮੰਨ ਕੇ ਇਸਦੇ ਸਾਪੇਖ ਦਿੱਤੇ ਜਾਂਦੇ ਹਨ। ਇੱਕ ਪਰਮਾਣੂ ਪੁੰਜ ਮਾਤਰਕ ਨੂੰ ਇੱਕ ਕਾਰਬਨ-12 ਪਰਮਾਣੂ ਦੇ ਪੁੰਜ ਦੇ 1/12 ਵੇਂ ਭਾਗ ਦੇ ਰੂਪ ਵਿੱਚ ਪਰਿਭਾਸ਼ਿਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ ਅਤੇ

1 amu = 1.66056×10^{-24} g ਹਾਈਡ੍ਰੋਜਨ ਦੇ ਇੱਕ ਪਰਮਾਣੂ ਦਾ ਪੁੰਜ = 1.6736×10^{-24} g

ਇਉਂ amu ਦੀ ਟਰਮ ਵਿੱਚ ਹਾਈਡ੍ਰੋਜਨ

ਪਰਮਾਣੂ ਦਾ ਪੁੰਜ $= \frac{1.6736 \times 10^{-24} \text{ g}}{1.66056 \times 10^{-24} \text{ g}}$ = 1.0078 u= 1.0080 u

ਇਸੇ ਤਰ੍ਹਾਂ, ਆੱਕਸੀਜਨ - 16 (¹6O) ਪਰਮਾਣੂ ਦਾ ਪੁੰਜ 15.995 amu ਹੋਵੇਗਾ।

ਅੱਜਕਲ amu ਦੀ ਥਾਂ u ਦੀ ਵਰਤੋਂ ਕੀਤੀ ਜਾਂਦੀ ਹੈ ਜਿਸ ਨੂੰ 'ਏਕੀ ਕ੍ਰਿਤ ਪੁੰਜ' (unified mass) ਕਿਹਾ ਜਾਂਦਾ ਹੈ।

ਜਦੋਂ ਅਸੀਂ ਪਰਿਕਲਨਾਂ ਦੇ ਲਈ ਪਰਮਾਣੂ ਪੁੰਜਾਂ ਦੀ ਵਰਤੋਂ ਕਰਦੇ ਹਾਂ ਤਾਂ ਅਸਲ ਵਿੱਚ ਅਸੀਂ ਔਸਤ ਪਰਮਾਣੂ ਪੁੰਜ ਦੀ ਵਰਤੋਂ ਕਰਦੇ ਹਾਂ, ਜਿਸਦਾ ਵਰਣਨ ਹੇਠਾਂ ਕੀਤਾ ਜਾ ਰਿਹਾ ਹੈ।

1.7.2 ਔਸਤ ਪਰਮਾਣੂ ਪੁੰਜ

ਕੁਦਰਤ ਵਿੱਚ ਅਨੇਕ ਤੱਤ ਇੱਕ ਤੋਂ ਵੱਧ ਸਮਸਥਾਨਿਕਾਂ ਦੇ ਰੂਪ ਵਿੱਚ ਮਿਲਦੇ ਹਨ। ਜਦੋਂ ਅਸੀਂ ਇਨ੍ਹਾਂ ਸਮਸਥਾਨਿਕਾਂ ਦੀ ਮੌਜੂਦਗੀ ਅਤੇ ਉਨ੍ਹਾਂ ਦੀ ਪ੍ਰਤੀਸ਼ਤ ਉਪਲਬਧਤਾ ਨੂੰ ਧਿਆਨ ਵਿੱਚ ਰੱਖਦੇ ਹਾਂ, ਤਾਂ ਕਿਸੇ ਤੱਤ ਦਾ ਔਸਤ ਪਰਮਾਣੂ ਪੁੰਜ ਪਰਿਕਲਿਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਉਦਾਹਰਣ ਵਜੋਂ ਕਾਰਬਨ ਦੇ ਤਿੰਨ ਸਸਮਥਾਨਿਕ ਹੁੰਦੇ ਹਨ ਜਿਨ੍ਹਾਂ ਦੀ ਪ੍ਤੀਸ਼ਤ ਉਪਲਬਧਤਾ ਅਤੇ ਪੁੰਜ ਇਸ ਸਾਰਣੀ ਵਿੱਚ ਉਨ੍ਹਾਂ ਦੇ ਸਾਹਮਣੇ ਦਰਸਾਏ ਗਏ ਹਨ—

ਉੱਤੇ ਦਿੱਤੇ ਗਏ ਅੰਕੜਿਆਂ ਤੋਂ ਕਾਰਬਨ ਦਾ ਔਸਤ ਪਰਮਾਣੂ ਪੁੰਜ ਇਸ ਤਰ੍ਹਾਂ ਪ੍ਰਾਪਤ ਹੋਵੇਗਾ—

ਸਮਸਥਾਨਿਕ	(%) ਉਪਲਬਧਤਾ	ਪਰਮਾਣੂ ਪੁੰਜ (u)
¹² C	98.892	12
¹³ C	1.108	13.00335
¹⁴ C	2×10^{-10}	14.00317

ਔਸਤ ਪਰਮਾਣੂ ਪੁੰਜ = (0.98892) × (12 u) + (0.01108) × (13.00335 u) + (2 × 10⁻¹⁰)× (14.00317 u)

= 12.011 u

ਇਸੇ ਤਰ੍ਹਾਂ, ਹੋਰ ਤੱਤਾਂ ਦੇ ਲਈ ਵੀ ਔਸਤ ਪਰਮਾਣੂ ਪੁੰਜ ਪਰਿਕਲਿਤ ਕੀਤੇ ਜਾ ਸਕਦੇ ਹਨ। ਤੱਤਾਂ ਦੀ ਆਵਰਤ ਸਾਰਣੀ ਵਿੱਚ ਭਿੰਨ ਭਿੰਨ ਤੱਤਾਂ ਦੇ ਲਈ ਦਿੱਤੇ ਗਏ ਪਰਮਾਣੂ ਪੁੰਜ ਉਨ੍ਹਾਂ ਤੱਤਾਂ ਦੇ ਔਸਤ ਪਰਮਾਣੂ ਪੁੰਜ ਹੁੰਦੇ ਹਨ।

1.7.3 ਅਣਵੀਂ ਪੂੰਜ

ਕਿਸੇ ਅਣੂ ਦਾ ਅਣਵੀਂ ਪੁੰਜ ਉਸ ਵਿੱਚ ਮੌਜੂਦ ਭਿੰਨ ਭਿੰਨ ਤੱਤਾਂ ਦੇ ਪਰਮਾਣੂ ਪੁੰਜਾਂ ਦਾ ਜੋੜ ਹੰਦਾ ਹੈ। ਇਸ ਨੂੰ ਹਰ ਇੱਕ ਤੱਤ ਦੇ ਪਰਮਾਣੂ ਪੁੰਜ ਅਤੇ ਮੌਜੂਦ ਪਰਮਾਣੂਆਂ ਦੀ ਸੰਖਿਆ ਦੇ ਗੁਣਨਫਲਾਂ ਦੇ ਜੋੜ ਦੁਆਰਾ ਪ੍ਰਾਪਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਉਦਾਹਰਣ ਦੇ ਲਈ-ਮੀਥੇਨ (ਜਿਸ ਵਿੱਚ ਇੱਕ ਕਾਰਬਨ ਪਰਮਾਣੂ ਅਤੇ ਚਾਰ ਹਾਈਡ੍ਰੋਜਨ ਪਰਮਾਣੂ ਮੌਜੂਦ ਹੁੰਦੇ ਹਨ) ਦਾ ਅਣਵੀਂ ਪੁੰਜ ਇਸ ਤਰ੍ਹਾਂ ਪ੍ਰਾਪਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ—

ਮੀਥੇਨ (CH₄) ਦਾ ਅਣਵੀਂ ਪੁੰਜ

- = (12.011 u) + 4 (1.008 u)
- = 16.043 u

ਇਸੇ ਤਰ੍ਹਾਂ, ਪਾਣੀ (H₂O) ਦਾ ਅਣਵੀਂ ਪੁੰਜ

- = $2 \times ਹਾਈਡ੍ਰੋਜਨ ਦਾ ਪਰਮਾਣੂ ਪੁੰਜ + <math>1 \times ਅੱਕਸੀਜਨ ਦਾ ਪਰਮਾਣੂ ਪੁੰਜ$
- $= 2 \times (1.008 \text{ u}) + 16 \text{ u}$
- = 18.02 u

ਉਦਾਹਰਣ 1.1

ਗਲੂਕੋਜ਼ ($\mathrm{C_6H_{12}O_6}$) ਅਣੂ ਦਾ ਅਣਵੀਂ ਪੁੰਜ ਪਰਿਕਲਿਤ ਕਰੋ।

ਹੱਲ

ਗਲੂਕੋਜ (C₆H₁₂O₆) ਦਾ ਅਣਵੀਂ ਪੁੰਜ = 6(12.011 u) + 12(1.008 u) + 6×(16.00 u)

- = 72.066 u + 12.096 u + 96.00 u
- = 180.162 u

1.7.4 ਸੂਤਰ-ਪੁੰਜ

ਕੁੱਝ ਪਦਾਰਥਾਂ (ਜਿਵੇਂ-ਸੋਡੀਅਮ ਕਲੋਰਾਈਡ) ਵਿੱਚ ਉਨ੍ਹਾਂ ਦੀਆਂ ਘਟਕ ਇਕਾਈਆਂ ਦੇ ਰੂਪ ਵਿੱਚ ਅਲੱਗ ਅਣੂ ਮੌਜੂਦ ਨਹੀਂ ਹੁੰਦੇ। ਅਜਿਹੇ ਅਣੂਆਂ ਵਿੱਚ ਧਨਾਤਮਕ (ਸੋਡੀਅਮ) ਅਤੇ ਰਿਣਾਤਮਕ ਚਿੱਤਰ 1.10 ਸੋਡੀਅਮ ਕਲੋਰਾਈਡ ਵਿੱਚ Na⁺ ਅਤੇ Cl⁻ ਆਇਨਾਂ ਦੀ ਵਿਵਸਥਾ (ਕਲੋਰਾਈਡ) ਕਣ ਤਿੰਨ ਵਿਧੀ ਸੰਰਚਨਾ ਚਿੱਤਰ 1.10 ਦੇ ਅਨੁਸਾਰ ਵਿਵਸਥਿਤ ਰਹਿੰਦੇ ਹਨ।

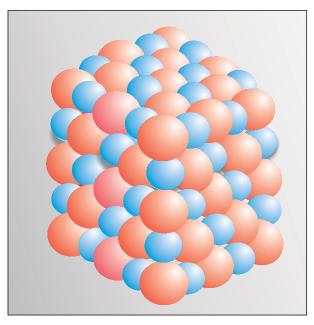


Fig. 1.10 ਸੋਡੀਅਮ ਕਲੋਰਾਈਡ ਵਿੱਚ Na⁺ ਅਤੇ Cl- ਆਇਨਾਂ ਦੀ ਵਿਵਸਥਾ

ਇਸ ਤਰ੍ਹਾਂ ਸੂਤਰ (ਜਿਵੇਂ-NaCl) ਦੀ ਵਰਤੋਂ ਸੂਤਰ ਪੁੰਜ ਪਰਿਕਲਿਤ ਕਰਨ ਦੇ ਲਈ ਕੀਤਾ ਜਾਂਦਾ ਹੈ, ਨਾਕਿ ਅਣਵੀਂ ਪੁੰਜ ਦੇ ਪਰਿਕਲਨ ਦੇ ਲਈ, ਕਿਉਂਕਿ ਠੋਸ ਅਵਸਥਾ ਵਿੱਚ ਸੋਡੀਅਮ ਕਲੋਰਾਈਡ ਵਿੱਚ ਅਣੂ ਮੌਜੂਦ ਹੀ ਨਹੀਂ ਹੁੰਦੇ। ਇਸ ਲਈ ਸੋਡੀਅਮ ਕਲੋਰਾਈਡ ਦਾ ਸੂਤਰ ਪੁੰਜ = ਸੋਡੀਅਮ ਦਾ ਪਰਮਾਣੂ ਪੁੰਜ + ਕਲੋਰੀਨ ਦਾ ਪਰਮਾਣੂ ਪੁੰਜ

= 23.0 u + 35.5 u = 58.5 u

1.8 ਮੋਲ ਸੰਕਲਪ ਅਤੇ ਮੋਲਰ ਪੁੰਜ

ਪਰਮਾਣੂ ਅਤੇ ਅਣੂ ਅਕਾਰ ਵਿੱਚ ਬਹੁਤ ਛੋਟੇ ਹੁੰਦੇ ਹਨ, ਪਰੰਤੂ ਕਿਸੇ ਪਦਾਰਥ ਦੀ ਬਹੁਤ ਘੱਟ ਮਾਤਰਾ ਵਿੱਚ ਵੀ ਉਨ੍ਹਾਂ ਦੀ ਸੰਖਿਆ ਬਹੁਤ ਜਿਆਦਾ ਹੁੰਦੀ ਹੈ।ਐਨੀਆਂ ਵੱਡੀਆਂ ਸੰਖਿਆਵਾਂ ਦੇ ਨਾਲ ਕੰਮ ਕਰਨ ਦੇ ਲਈ ਐਨੇ ਹੀ ਪਰਿਮਾਣ ਦੇ ਇੱਕ ਮਾਤਰਕ ਦੀ ਲੋੜ ਹੰਦੀ ਹੈ।

ਜਿਸ ਤਰ੍ਹਾਂ ਅਸੀਂ 12 ਵਸਤੂਆਂ ਦੇ ਲਈ 'ਇੱਕ ਦਰਜਨ' 20 ਵਸਤੂਆਂ ਦੇ ਲਈ 'ਇੱਕ ਸਕੋਰ' (Score, ਕੋੜੀ) ਅਤੇ 144 ਵਸਤੂਆਂ ਦੇ ਲਈ 'ਇੱਕ ਗੁਰਸ' (gross) ਦੀ ਵਰਤੋਂ ਕਰਦੇ ਹਾਂ, ਉਸੇ ਤਰ੍ਹਾਂ ਅਤਿ ਸੂਖਮ ਸਤਰ ਤੇ ਕਣਾਂ (ਜਿਵੇਂ-ਪਰਮਾਣੂਆਂ, ਅਣੂਆਂ, ਕਣਾਂ, ਇਲੈਕਟਰਾਨਾਂ ਆਦਿ) ਨੂੰ ਗਿਣਨ ਦੇ ਲਈ ਮੋਲ ਸੰਕਲਪ ਦੀ ਵਰਤੋਂ ਕੀਤੀ ਜਾਂਦੀ ਹੈ।

SI ਮਾਤਰਕਾਂ ਵਿੱਚ ਮੋਲ (ਸੰਕੇਤ-mol) ਨੂੰ ਕਿਸੇ ਪਦਾਰਥ ਦੀ ਮਾਤਰਾ ਵਿਅਕਤ ਕਰਨ ਦੇ ਲਈ ਸੱਤ ਅਧਾਰ ਰਾਸ਼ੀਆਂ ਵਿੱਚ ਸ਼ਾਮਲ ਕੀਤਾ ਗਿਆ ਹੈ।

ਕਿਸੇ ਪਦਾਰਥ ਦਾ ਇੱਕ ਮੋਲ ਉਸ ਦੀ ਉਹ ਮਾਤਰਾ ਹੈ, ਜਿਸ ਵਿੱਚ ਉਨੇ ਹੀ ਕਣ ਮੌਜੂਦ ਹੁੰਦੇ ਹਨ, ਜਿੰਨੇ ਕਾਰਬਨ-12 ਸਮਸਥਾਨਿਕ ਦੇ ਠੀਕ 12g (ਜਾਂ 0·012 kg) ਵਿੱਚ ਪਰਮਾਣੂਆਂ ਦੀ ਸੰਖਿਆ ਹੁੰਦੀ ਹੈ। ਇੱਥੇ ਇਹ ਧਿਆਨ ਦੇਣ ਦੀ ਗੱਲ ਹੈ ਕਿ ਕਿਸੇ ਪਦਾਰਥ ਦੇ ਇੱਕ ਮੋਲ ਵਿੱਚ ਕਣਾਂ ਦੀ ਸੰਖਿਆ ਹਮੇਸ਼ਾ ਸਮਾਨ ਹੋਵੇਗੀ, ਭਾਵੇਂ ਹੀ ਉਹ ਕੋਈ ਵੀ ਪਦਾਰਥ ਹੋਵੇ। ਇਸ ਸੰਖਿਆ ਦੇ ਸਹੀ ਨਿਰਧਾਰਨ ਦੇ ਲਈ ਕਾਰਬਨ-12 ਪਰਮਾਣੂ ਦਾ ਪੁੰਜ, ਪੁੰਜ ਸਪੈਕਟ੍ਰੋਸਕੋਪੀ ਦੁਆਰਾ ਗਿਆਤ ਕੀਤਾ ਗਿਆ, ਜਿਸ ਦਾ ਮਾਨ 1·992648 × 10^{-23g} ਪ੍ਰਾਪਤ ਹੋਇਆ। ਕਾਰਬਨ ਦੇ 1 ਮੋਲ ਦਾ ਪੁੰਜ 12g ਹੁੰਦਾ ਹੈ, ਇੰਜ ਕਾਰਬਨ ਦੇ 1 ਮੋਲ ਵਿੱਚ ਪਰਮਾਣੂਆਂ ਦੀ ਸੰਖਿਆ ਇਸ ਤਰ੍ਹਾਂ ਹੋਵੇਗੀ—

 $=6.0221367 \times 10^{23}$ ਪਰਮਾਣੂ ਪ੍ਰਤੀ ਮੋਲ

1 ਮੌਲ ਵਿੱਚ ਕਣਾਂ ਦੀ ਸੰਖਿਆ ਐਨੀਂ ਮਹਤੱਵਪੂਰਣ ਹੈ ਕਿ ਇਸ ਨੂੰ ਇੱਕ ਵੱਖ ਨਾਂ ਅਤੇ ਸੰਕੇਤ ਦਿੱਤਾ ਗਿਆ, ਜਿਸ ਨੂੰ (ਐਮੀਡੀਓ ਡੀਓ ਐਵੋਗੈਡਰੋ ਦੇ ਸਨਮਾਨ ਵਿੱਚ)ਐਵੋਗੈਡਰੋ ਸੰਖਿਆ ਕਹਿੰਦੇ ਹਨ ਅਤੇ $N_{\rm o}$ ਨਾਲ ਵਿਅਕਤ ਕਰਦੇ ਹਨ। ਇਸ ਸੰਖਿਆ ਦੇ ਵੱਡੇ ਮਾਨ ਨੂੰ ਮਹਿਸੂਸ ਕਰਨ ਦੇ ਲਈ ਇਸ ਨੂੰ ਦਸ ਪਾਵਰ ਦੀ ਵਰਤੋਂ ਕੀਤੇ ਬਿਨਾਂ ਆਉਣ ਵਾਲੀਆਂ ਸਾਰੀਆਂ ਸਿਫਰਾਂ ਦੇ ਨਾਲ ਇਸ ਤਰ੍ਹਾਂ ਲਿਖੋ—

6022136700000000000000000

ਇਉਂ ਕਿਸੇ ਪਦਾਰਥ ਦੇ ਇੱਕ ਮੋਲ ਵਿੱਚ ਉੱਤੇ ਦਿੱਤੀ ਗਈ ਸੰਖਿਆ ਦੇ ਬਰਾਬਰ ਕਣ (ਪਰਮਾਣੂ, ਅਣੂ ਜਾਂ ਕੋਈ ਹੋਰ ਕਣ) ਹੋਣਗੇ। ਇੰਜ ਅਸੀਂ ਇਹ ਕਹਿ ਸਕਦੇ ਹਾਂ ਕਿ

1 ਮੋਲ ਹਾਈਡ੍ਰੋਜਨ ਪਰਮਾਣੂ= 6.022×10²³ ਹਾਈਡ੍ਰੋਜਨ ਪਰਮਾਣੂ

1 ਮੋਲ ਪਾਣੀ ਦੇ ਅਣੂ = 6.022×10^{23} ਪਾਣੀ ਦੇ ਅਣੁ

ਚਿੱਤਰ 1.11 ਭਿੰਨ-ਭਿੰਨ ਪਦਾਰਥਾਂ ਦਾ ਇੱਕ ਮੋਲ

1 ਮੋਲ ਸੋਡੀਅਮ ਕਲੋਰਾਈਡ = ਸੋਡੀਅਮ ਕਲੋਰਾਈਡ ਦੀਆਂ 6.022×10^{23} ਸੂਤਰ ਇਕਾਈਆਂ ਚਿੱਤਰ 1.11 ਵਿੱਚ ਭਿੰਨ ਭਿੰਨ ਪਦਾਰਥਾਂ ਦੇ 1 ਮੋਲ ਨੂੰ ਦਰਸਾਇਆ ਗਿਆ ਹੈ।

ਮੋਲ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਕਰਨ ਦੇ ਬਾਅਦ ਕਿਸੇ ਪਦਾਰਥ ਜਾਂ ਉਸਦੇ ਘਟਕਾਂ ਦੇ ਇੱਕ ਮੋਲ ਦੇ ਪੁੰਜ ਨੂੰ ਅਸਾਨੀ ਨਾਲ ਜਾਣਿਆ ਜਾ ਸਕਦਾ ਹੈ।ਕਿਸੇ ਪਦਾਰਥ ਦੇ ਇੱਕ ਮੋਲ ਦੇ ਗ੍ਰਾਮ ਵਿੱਚ ਵਿਅਕਤ ਪੁੰਜ ਨੂੰ ਉਸ ਦਾ ਮੋਲਰ ਪੁੰਜ ਕਹਿੰਦੇ ਹਨ।

ਗ੍ਰਾਮ ਵਿੱਚ ਵਿਅਕਤ ਮੋਲਰ ਪੁੰਜ ਸੰਖਿਆਤਮਕ ਰੂਪ ਵਿੱਚ ਪਰਮਾਣੂ ਪੁੰਜ/ਅਣਵੀਂ ਪੁੰਜ/ਸੂਤਰ ਪੁੰਜ ਦੇ ਬਰਾਬਰ ਹੁੰਦਾ ਹੈ।

ਇੰਜ ਪਾਣੀ ਦਾ ਮੋਲਰ ਪੁੰਜ = 18.02 g mol^{-1} ਸੋਡੀਅਮ ਕਲੋਰਾਈਡ ਦਾ ਮੋਲਰ ਪੁੰਜ = 58.5 g mol^{-1}

1.9 ਪ੍ਰਤੀਸ਼ਤ—ਸੰਘਟਨ

ਹੁਣ ਤੱਕ ਅਸੀਂ ਕਿਸੇ ਨਮੂਨੇ ਵਿੱਚ ਮੌਜੂਦ ਕਣਾਂ ਦੀ ਸੰਖਿਆ ਦੇ ਬਾਰੇ ਚਰਚਾ ਕਰ ਰਹੇ ਸੀ, ਪਰੰਤੂ ਕਈ ਵਾਰ ਕਿਸੇ ਯੋਗਿਕ ਵਿੱਚ ਕਿਸੇ ਵਿਸ਼ੇਸ਼ ਤੱਤ ਦੇ ਪ੍ਤੀਸ਼ਤ ਦੀ ਜਾਣਕਾਰੀ ਦੀ ਜਰੂਰਤ ਹੁੰਦੀ ਹੈ। ਮੰਨ ਲਓ ਕਿ ਤੁਹਾਨੂੰ ਕੋਈ ਅਗਿਆਤ ਜਾਂ ਨਵਾਂ ਯੋਗਿਕ ਦਿੱਤਾ ਗਿਆ ਹੈ। ਤੁਸੀਂ ਪਹਿਲਾਂ ਇਹ ਪ੍ਰਸ਼ਨ ਪੁੱਛੋਗੇ ਕਿ ਇਸ ਦਾ ਸੂਤਰ ਕੀ ਹੈ ਜਾਂ ਇਸ ਦੇ ਘਟਕ ਕਿਹੜੇ-ਕਿਹੜੇ ਹਨ ਅਤੇ ਉਹ ਕਿਸ ਅਨੁਪਾਤ ਵਿੱਚ ਮੌਜੂਦ ਹਨ ? ਗਿਆਨ ਯੋਗਿਕਾਂ ਦੇ ਲਈ ਵੀ ਇਸ ਜਾਣਕਾਰੀ ਤੋਂ ਇਹ ਪਤਾ ਲਗਾਉਣ ਵਿੱਚ ਮਦਦ ਮਿਲਦੀ ਹੈ ਕਿ ਕੀ ਦਿੱਤੇ ਗਏ ਨਮੂਨੇ ਵਿੱਚ ਤੱਤਾਂ ਦੀ ਉਹ ਹੀ ਪ੍ਤੀਸ਼ਤ ਹੈ, ਜੋ ਸ਼ੁੱਧ ਨਮੂਨੇ ਵਿੱਚ ਹੋਣੀ ਚਾਹੀਦੀ ਹੈ। ਦੂਜੇ ਸ਼ਬਦਾਂ ਵਿੱਚ ਇਨ੍ਹਾਂ ਅੰਕੜਿਆਂ ਦੇ ਵਿਸ਼ਲੇਸ਼ਣ ਤੋਂ ਇਹ ਜਾਣਨ ਵਿੱਚ ਸਹਾਇਤਾ ਮਿਲਦੀ ਹੈ ਕਿ ਦਿੱਤਾ ਗਿਆ ਨਮੂਨਾ ਸ਼ੁੱਧ ਹੈ ਜਾਂ ਨਹੀਂ।

ਆਓ, ਪਾਣੀ (H_2O) ਦੀ ਉਦਾਹਰਣ ਲੈ ਕੇ ਇਸ ਨੂੰ ਸਮਝੀਏ। ਕਿਉਂਕਿ ਪਾਣੀ ਵਿੱਚ ਹਾਈਡ੍ਰੋਜਨ ਅਤੇ ਆੱਕਸੀਜਨ ਮੌਜੂਦ ਹੁੰਦੀ ਹੈ, ਇੰਜ ਇਨ੍ਹਾਂ ਤੱਤਾਂ ਦਾ ਪ੍ਤੀਸ਼ਤ ਸੰਘਟਨ ਇਸ ਤਰ੍ਹਾਂ ਪਰਿਕਲਿਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ— ਕਿਸੇ ਤੱਤ ਦਾ ਪੁੰਜ ਪ੍ਤੀਸ਼ਤ =

ਪਾਣੀ ਦਾ ਮੋਲਰ ਪੁੰਜ = 18.02 g

ਹਾਈਡ੍ਰੋਜਨ ਦਾ ਪੁੰਜ ਪ੍ਰਤੀਸ਼ਤ =
$$\frac{2 \times 1.008}{18.02} \times 100$$

= 11.18

ਆੱਕਸੀਜਨ ਦਾ ਪੁੰਜ ਪ੍ਤੀਸ਼ਤ =
$$\frac{16.00}{18.02} \times 100$$

= 88.79

ਆਓ ਇੱਕ ਹੋਰ ਉਦਾਹਰਣ ਲਈਏ।ਈਥੇਨੋਲ ਵਿੱਚ ਕਾਰਬਨ ਹਾਈਡ੍ਰੋਜਨ ਅਤੇ ਆੱਕਸੀਜਨ ਦਾ ਪੁੰਜ ਪ੍ਰਤੀਸ਼ਤ ਕਿੰਨਾ ਹੈ?

ਈਥੇਨੋਲ ਦਾ ਅਣਵੀਂ ਸੂਤਰ =
$$\mathrm{C_2H_5OH}$$

ਈਥੇਨੋਲ ਦਾ ਮੋਲਰ ਪੁੰਜ : (2×12.01 + 6×1.008 + 16.00) g

= 46.068 g

ਕਾਰਬਨ ਦਾ ਪੁੰਜ ਪ੍ਰਤੀਸ਼ਤ

$$= \frac{24.02g}{46.068g} \times 100 = 52.14\%$$

ਹਾਈਡ੍ਰੋਜਨ ਦਾ ਪੁੰਜ ਪ੍ਰਤੀਸ਼ਤ

$$= \frac{6.048 \,\mathrm{g}}{46.068 \,\mathrm{g}} \times 100 = 13.13\%$$

ਆੱਕਸੀਜਨ ਦਾ ਪੁੰਜ ਪ੍ਤੀਸ਼ਤ

$$= \frac{15.9994 \,\mathrm{g}}{46.068 \,\mathrm{g}} \times 100 = 34.728\%$$

ਪੁੰਜ ਪ੍ਤੀਸ਼ਤ ਦੇ ਪਰਿਕਲਨਾਂ ਨੂੰ ਸਮਝਣ ਉਪਰੰਤ ਹੁਣ ਅਸੀਂ ਇਹ ਵੇਖੀਏ ਕਿ ਪ੍ਤੀਸ਼ਤ ਸੰਘਟਨ ਅੰਕੜਿਆਂ ਤੋਂ ਕੀ ਜਾਣਕਾਰੀ ਪ੍ਰਾਪਤ ਕੀਤੀ ਜਾ ਸਕਦੀ ਹੈ।

1.9.1 ਮੂਲ ਅਨੁਪਾਤੀ ਸੂਤਰ ਅਤੇ ਅਣਵੀਂ ਸੂਤਰ

ਮੂਲ ਅਨੁਪਾਤੀ ਸੂਤਰ ਕਿਸੇ ਯੋਗਿਕ ਵਿੱਚ ਮੌਜੂਦ ਭਿੰਨ ਭਿੰਨ ਪਰਮਾਣੂਆਂ ਦੇ ਸਰਲਤਮ ਪੂਰਣ ਸੰਖਿਆ ਅਨੁਪਾਤ ਨੂੰ ਵਿਅਕਤ ਕਰਦਾ ਹੈ।

ਉਦਾਹਰਣ 1.2

ਇੱਕ ਯੋਗਿਕ ਵਿੱਚ 4.07% ਹਾਈਡ੍ਰੋਜਨ, 24.27% ਕਾਰਬਨ ਅਤੇ 71.65% ਕਲੋਗੀਨ ਹੈ। ਇਸ ਦਾ ਮੋਲਰ ਪੁੰਜ 98.96g ਹੈ। ਇਸ ਦੇ ਮੂਲ ਅਨੁਪਾਤੀ ਸੂਤਰ ਅਤੇ ਅਣਵੀਂ ਸੂਤਰ ਕੀ ਹੋਣਗੇ ?

ਹੱਲ

ਸਟੈੱਪ—1. ਪੁੰਜ-ਪ੍ਰਤੀਸ਼ਤ ਨੂੰ ਗ੍ਰਾਮ ਵਿੱਚ ਪਰਿਵਰਤਿਤ ਕਰਨਾ

ਕਿਉਂਕਿ ਸਾਡੇ ਕੋਲ ਪੁੰਜ ਪ੍ਤੀਸ਼ਤ ਉਪਲਬਧ ਹੈ, ਇਸ ਲਈ 100g ਯੋਗਿਕ ਨੂੰ ਮੰਨਕੇ ਪਰਿਕਲਨ ਕਰਨਾ ਸੁਵਿਧਾਜਨਕ ਹੋਵੇਗਾ। ਇਸ ਤਰ੍ਹਾਂ, ਉੱਤੇ ਦਿੱਤੇ ਗਏ ਯੋਗਿਕ ਦੇ 100g ਸੈਂਪਲ ਵਿੱਚ 4·07g ਹਾਈਡ੍ਰੋਜਨ, 24·27g ਕਾਰਬਨ ਅਤੇ 71·65g ਕਲੋਰੀਨ ਮੌਜੂਦ ਹੈ।

ਸਟੈੱਪ—2. ਹਰ ਇੱਕ ਤੱਤ ਨੂੰ ਮੌਲਾਂ ਦੀ ਸੰਖਿਆ ਵਿੱਚ ਪਰਿਵਰਤਿਤ ਕਰਨਾ।

ਉੱਤੇ ਦਿੱਤੇ ਪੁੰਜਾਂ ਨੂੰ ਕ੍ਰਮਵਾਰ ਹਰ ਇੱਕ ਦੇ ਪਰਮਾਣੂ ਪੁੰਜ ਨਾਲ ਭਾਗ ਕਰੋ।

ਹਾਈਡ੍ਰੋਜਨ ਦੇ ਮੋਲਾਂ ਦੀ ਸੰਖਿਆ =
$$\frac{4.07\,\mathrm{g}}{1.008\,\mathrm{g}}$$
 = 4.04

ਕਾਰਬਨ ਦੇ ਮੋਲਾਂ ਦੀ ਸੰਖਿਆ =
$$\frac{24.27g}{12.01g}$$
 = 2.021

ਕਲੋਰੀਨ ਦੇ ਮੋਲਾਂ ਦੀ ਸੰਖਿਆ =
$$\frac{71.65g}{35.453g}$$
 = 2.021

ਸਟੈੱਪ—3.ਉੱਤੇ ਪ੍ਰਾਪਤ ਮੋਲਾਂ ਦੀ ਸੰਖਿਆ ਨੂੰ ਸੱਭ ਤੋਂ ਛੋਟੀ ਸੰਖਿਆ ਨਾਲ ਭਾਗ ਕਰਨਾ

ਕਿਉਂਕਿ 2.021 ਸੱਭ ਤੋਂ ਛੋਟਾ ਮਾਨ ਹੈ, ਇਸ ਲਈ 2.021ਨਾਲ ਭਾਗ ਕਰਨ ਤੇ H:C:Cl ਦੇ ਲਈ ਅਨੁਪਾਤ ਪਾਪਤ ਹੰਦਾ ਹੈ।

ਜੇ ਇਹ ਅਨੁਪਾਤ ਪੂਰਣ ਸੰਖਿਆਵਾਂ ਨਾ ਹੋਣ, ਤਾਂ ਇਨ੍ਹਾਂ ਨੂੰ ਢੁਕਵੇਂ ਗੁਣਾਂਕ ਨਾਲ ਗੁਣਾ ਕਰਕੇ ਪੂਰਣ ਸੰਖਿਆਵਾਂ ਵਿੱਚ ਪਰਿਵਰਤਿਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।

ਸਟੈੱਪ—4. ਸਾਰੇ ਤੱਤਾਂ ਦੇ ਸੰਕੇਤ ਲਿਖ ਕੇ ਕ੍ਰਮਵਾਰ ਉੱਤੇ ਪ੍ਰਾਪਤ ਸੰਖਿਆਵਾਂ ਨੂੰ ਉਸਦੇ ਨਾਲ ਦਰਸਾ ਕੇ ਮੂਲ ਅਨੁਪਾਤੀ ਸਤਰ ਲਿਖੋ

ਇੰਜ, ਉੱਤੇ ਦਿੱਤੇ ਗਏ ਯੋਗਿਕ ਦਾ ਮੂਲ ਅਨੁਪਾਤੀ ਸੂਤਰ CH,Cl ਹੈ।

ਸਟੈਂਪ—5. ਅਣਵੀਂ ਸੂਤਰ ਲਿਖਣਾ

(ੳ) ਮੂਲ ਅਨੁਪਾਤੀ ਸੂਤਰ ਪੁੰਜ ਨਿਰਧਾਰਿਤ ਕਰੋ। ਮੂਲ ਅਨੁਪਾਤੀ ਸੂਤਰ ਵਿੱਚ ਮੌਜੂਦ ਸਾਰੇ ਪਰਮਾਣੂਆਂ ਦੇ ਪਰਮਾਣੂ ਪੁੰਜਾਂ ਦਾ ਜੋੜ ਕਰੋ। ${
m CH_2Cl}$ ਦੇ ਲਈ, ਮੂਲ ਅਨੁਪਾਤੀ ਸੂਤਰ ਪੁੰਜ = $12.01 + 2 \times 1.008 + 35.453 = 49.48~{
m g}$ (ਅ) ਮੋਲਰ ਪੁੰਜ ਨੂੰ ਮੂਲ ਅਨੁਪਾਤੀ ਸੂਤਰ ਪੁੰਜ ਨਾਲ ਭਾਗ ਕਰੋ।

 $\frac{\text{ਮੋਲਰ ਪੁੰਜ}}{\text{ਮੂਲ ਅਨੁਪਾਤੀ ਸੂਤਰ ਪੁੰਜ}} = \frac{98.96g}{49.48g} = 2 = (n)$ (ੲ) ਮੂਲ ਅਨੁਪਾਤੀ ਸੂਤਰ ਨੂੰ ਉੱਤੇ ਪ੍ਰਾਪਤ 'n' ਨਾਲ ਗੁਣਾ ਕਰਨ ਤੇ ਅਣਵੀਂ ਸੂਤਰ ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ। ਮੂਲ ਅਨੁਪਾਤੀ ਸੂਤਰ = CH_2Cl ਅਤੇ n=2. ਇਉਂ ਅਣਵੀਂ ਸੂਤਰ $2 \times \text{CH}_2\text{Cl} = \text{C}_2\text{H}_4\text{Cl}_2$ ਹੈ ਜਦ ਕਿ ਅਣਵੀਂ ਸੂਤਰ ਕਿਸੇ ਯੋਗਿਕ ਦੇ ਅਣੂ ਵਿੱਚ ਮੌਜੂਦ ਭਿੰਨ ਭਿੰਨ ਪ੍ਰਕਾਰ ਦੇ ਪਰਮਾਣੂਆਂ ਦੀ ਸਹੀ ਸੰਖਿਆ ਨੂੰ ਦਰਸਾਉਂਦਾ ਹੈ।

1.10 ਸਟਾੱਇਕਿਯੋਮੀਟ੍ਰੀ ਅਤੇ ਸਟਾੱਇਕਿਯੋਮੀਟ੍ਰਿਕ ਪਰਿਕਲਨ

ਸਟਾੱਇਕਿਯੋਮੀਟ੍ਰੀ ਸ਼ਬਦ ਦੋ ਗਰੀਕ ਸ਼ਬਦਾਂ-ਸਟਾੱਕਿਯੋਨ (stoicheion) ਜਿਸ ਦਾ ਅਰਥ ਤੱਤ ਹੈ ਅਤੇ ਮੈਟ੍ਰੋਨ (metron) ਜਿਸ ਦਾ ਅਰਥ ਮਾਪਨਾ ਹੈ, ਤੋਂ ਮਿਲ ਕੇ ਬਣਿਆ ਹੈ। ਇੰਜ ਸਟਾੱਇਕਿਯੋਮੀਟ੍ਰੀ ਦੇ ਅੰਤਰਗਤ ਰਸਾਇਣਿਕ ਪ੍ਤੀਕਿਰਿਆ ਵਿੱਚ ਅਭਿਕਾਰਕਾਂ ਅਤੇ ਉਪਜਾਂ ਦੇ ਪੁੰਜਾਂ (ਜਾਂ ਕਦੇ ਕਦੇ ਆਇਤਨਾਂ) ਦਾ ਪਰਿਕਲਨ ਆਉਂਦਾ ਹੈ। ਇਹ ਸਮਝਣ ਤੋਂ ਪਹਿਲਾਂ ਕਿ ਕਿਸੇ ਰਸਾਇਣਿਕ ਪ੍ਤੀਕਿਰਿਆ ਵਿੱਚ ਕਿਸੇ ਅਭਿਕਾਰ ਕਦੀ ਕਿੰਨੀ ਮਾਤਰਾ ਦੀ ਜਰੂਰਤ ਹੋਵੇਗੀ ਜਾਂ ਕਿੰਨੀ ਉਪਜ ਪ੍ਰਾਪਤ ਹੋਵੇਗੀ, ਇਹ ਜਾਣ ਲਓ ਕਿ ਕਿਸੇ ਦਿੱਤੀ ਗਈ ਰਸਾਇਣਿਕ ਪ੍ਤੀਕਿਰਿਆ ਦੇ ਸੰਤੁਲਿਤ ਰਸਾਇਣਿਕ ਸਮੀਕਰਣ ਤੋਂ ਕੀ ਜਾਣਕਾਰੀ ਪ੍ਰਾਪਤ ਹੁੰਦੀ ਹੈ। ਆਓ ਮੀਥੇਨ ਦੇ ਬਲਨ ਤੇ ਵਿਚਾਰ ਕਰੀਏ। ਇਸ ਪ੍ਰਤੀਕਿਰਿਆ ਦੇ ਲਈ ਸੰਤੁਲਿਤ ਸਮੀਕਰਣ ਇਸ ਤਰ੍ਹਾਂ ਹੈ—

 $CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2 H_2O(g)$

ਰਸਾਇਣਿਕ ਸਮੀਕਰਣ ਸੰਤੁਲਿਤ ਕਰਨਾ

ਪੁੰਜ ਸੁਰਖਿਅਣ ਦੇ ਨਿਯਮ ਅਨੁਸਾਰ, ਸੰਤੁਲਿਤ ਰਸਾਇਣਿਕ ਸਮੀਕਰਣ ਦੇ ਦੋਵਾਂ ਪਾਸਿਆਂ ਹਰ ਇੱਕ ਤੱਤ ਦੇ ਪਰਮਾਣੂਆਂ ਦੀ ਸੰਖਿਆ ਬਰਾਬਰ ਹੁੰਦੀ ਹੈ। ਕਈ ਰਸਾਇਣਿਕ ਸਮੀਕਰਣ।'ਪਰਖ ਅਤੇ ਭੁਲ' ਪੱਧਤੀ ਨਾਲ ਸੰਤੁਲਿਤ ਕੀਤੇ ਜਾ ਸਕਦੇ ਹਨ।ਆਓ, ਅਸੀਂ ਕੁਝ ਧਾਤਾਂ ਅਤੇ ਅਧਾਤਾਂ ਦੇ ਸੰਯੋਗ ਕਰਕੇ ਆੱਕਸੀਜਨ ਦੇ ਨਾਲ ਆੱਕਸਾਈਡ ਉਤਪੰਨ ਕਰਨ ਦੀਆਂ ਪ੍ਤੀਕਿਰਿਆਵਾਂ ਉੱਤੇ ਵਿਚਾਰ ਕਰੀਏ—

 $4 \ {
m Fe(s)} \ + \ 3{
m O}_2({
m g}) \ o 2{
m Fe}_2{
m O}_3({
m s})$ (ੳ) ਸੰਤੁਲਿਤ ਸਮੀਕਰਣ $2 \ {
m Mg(s)} \ + \ {
m O}_2({
m g}) \ o 2{
m MgO(s)}$ (ਅ) ਸੰਤੁਲਿਤ ਸਮੀਕਰਣ ${
m P}_4({
m s}) \ + \ {
m O} \ ({
m g}) \ o {
m P}_4{
m O}_{10}({
m s})$ (ੲ) ਅਸੰਤੁਲਿਤ ਸਮੀਕਰਣ

ਸਮੀਕਰਣਾਂ (ੳ) ਅਤੇ (ਅ) ਸੰਤੁਲਿਤ ਹਨ, ਕਿਉਂਕਿ ਸਮੀਕਰਣਾਂ ਵਿੱਚ ਤੀਰ ਦੇ ਦੋਹਾਂ ਪਾਸੇ ਸਬੰਧਿਤ ਧਾਤ ਅਤੇ ਆੱਕਸੀਜਨ ਦੇ ਪਰਮਾਣੂਆਂ ਦੀ ਸੰਖਿਆ ਬਰਾਬਰ ਹੈ, ਪਰੰਤੂ ਸਮੀਕਰਣ (ੲ) ਸੰਤੁਲਿਤ ਨਹੀਂ ਹੈ, ਕਿਉਂਕਿ ਇਸ ਵਿੱਚ ਫਾਸਫੋਰਸ ਦੇ ਪਰਮਾਣੂ ਤਾਂ ਸੰਤੁਲਿਤ ਹਨ, ਪਰੰਤੂ ਆੱਕਸੀਜਨ ਦੇ ਪਰਮਾਣੂਆਂ ਦੀ ਸੰਖਿਆ ਤੀਰ ਦੇ ਦੋਵਾਂ ਪਾਸੇ ਬਰਾਬਰ ਨਹੀਂ ਹੈ।ਇਸ ਨੂੰ ਸੰਤੁਲਿਤ ਕਰਨ ਦੇ ਲਈ ਸਮੀਕਰਣ ਵਿੱਚ ਖੱਬੇ ਪਾਸੇ ਆੱਕਸੀਜਨ ਦੇ ਪਹਿਲਾਂ 5 ਨਾਲ ਗੁਣਾ ਕਰਨ ਨਾਲ ਹੀ ਸਮੀਕਰਣ ਦੇ ਸੱਜੇ ਪਾਸੇ ਦੇ ਆੱਕਸੀਜਨ ਦੇ ਪਰਮਾਣੁਆਂ ਦੀ ਸੰਤਲਿਤ ਹੋਵੇਗੀ—

 $P_4(s) + 5O_2(g) o P_4O_{10}(s)$ ਸੰਤੁਲਿਤ ਸਮੀਕਰਣ ਆਓ ਹੁਣ ਅਸੀਂ ਪਰੋਪੇਨ, C_3H_8 ਦੇ ਬਲਣ ਉੱਤੇ ਵਿਚਾਰ ਕਰੀਏ। ਇਸ ਸਮੀਕਰਣ ਨੂੰ ਹੇਠ ਲਿਖੇ ਸਟੈੱਪਾਂ ਵਿੱਚ ਸੰਤੁਲਿਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ—

ਸਟੈੱਪ 1. ਪ੍ਰਤੀਕਾਰਕਾਂ ਅਤੇ ਉਪਜਾਂ ਦੇ ਸਹੀ ਸੂਤਰ ਲਿਖੋ। ਇੱਥੇ ਪਰੋਪੇਨ ਅਤੇ ਆੱਕਸੀਜਨ ਪ੍ਰਤੀਕਾਰਕ ਹਨ ਅਤੇ ਕਾਰਬਨ ਡਾਈਆੱਕਸਾਈਡ ਅਤੇ ਪਾਣੀ ਉਪਜਾਂ ਹਨ :

 $C_3H_8(g) + O_2(g) \rightarrow CO_2(g) + H_2O(l)$ ਅਸੰਤੁਲਿਤ ਸਮੀਕਰਣ

ਸਟੈੱਪ 2.ਁCਁਪਰਮਾਣੂਆਂ ਦੀ ਸੰਖਿਆ ਸੰਤੁਲਿਤ ਕਰੋ ਕਿਉਂਕਿ ਪ੍ਤੀਕਾਰਕ ਵਿੱਚ ਤਿੰਨ C ਪਰਮਾਣੂ ਹਨ, ਇਸ ਲਈ ਸੱਜੇ ਪਾਸੇ ਤਿੰਨ CO₂ ਅਣੂਆਂ ਦਾ ਹੋਣਾ ਜਰੂਰੀ ਹੈ।

ੰ C₃H₃ (g) + O₂ (g) → 3CO₂ (g) + H₂O (l) ਸਟੈੱਪ 3. H ਪਰਮਾਣੂਆਂ ਦੀ ਸੰਖਿਆ ਸੰਤੁਲਿਤ ਕਰੋ ਖੱਬੇ ਪਾਸੇ ਪ੍ਤੀਕਾਰਕਾਂ ਵਿੱਚ 8H ਪਰਮਾਣੂ ਹਨ, ਪਾਣੀ ਦੇ ਹਰ ਅਣੂ ਵਿੱਚ ਦੋ H ਪਰਮਾਣੂ ਹਨ।ਇਸ ਲਈ ਸੱਜੇ ਪਾਸੇ H ਦੇ 8 ਪਰਮਾਣੂਆਂ ਦੇ ਲਈ ਪਾਣੀ ਦੇ ਚਾਰ ਅਣੂ ਹੋਣ ਚਾਹੀਦੇ ਹਨ—

 C_3H_8 (g) $+O_2$ (g) $\to 3CO_2$ (g) $+4H_2O$ (l) \blacksquare **ਸਟੇੱਪ** 4. O ਪਰਮਾਣੂਆਂ ਦੀ ਸੰਖਿਆ ਸੰਤੁਲਿਤ ਕਰੋ ਸੱਜੇ ਪਾਸੇ ਦਸ ਆੱਕਸੀਜਨ ਪਰਮਾਣੂ (3 \times 2 = 6, CO_2 ਵਿੱਚ ਅਤੇ 4 \times 1 = 4, ਪਾਣੀ ਵਿੱਚ । ਇੰਜ ਦਸ ਆੱਕਸੀਜਨ ਪਰਮਾਣੂਆਂ ਦੇ ਲਈ $5O_2$ ਅਣੂਆਂ ਦੀ ਜਰੂਰਤ ਹੋਵੇਗੀ ।

 $C_3H_8(g) +5O_2(g) \rightarrow 3CO_2(g) + 4H_2O(l)$

ਸਟੈੱਪ 5. ਪਰੰਖ ਲਓ ਕਿ ਅੰਤਿਮ ਸਮੀਕਰਣ ਵਿੱਚ ਹਰ ਇੱਕ ਤੱਤ ਦੇ ਪਰਮਾਣੂਆਂ ਦੀ ਸੰਖਿਆ ਸੰਤੁਲਿਤ ਹੈ ਸਮੀਕਰਣ ਵਿੱਚ ਦੋਵਾਂ ਪਾਸੇ 3 ਕਾਰਬਨ ਪਰਮਾਣੂ, 8 ਹਾਈਡ੍ਰੋਜਨ ਪਰਮਾਣੂ ਅਤੇ 10 ਆੱਕਸੀਜਨ ਪਰਮਾਣੂ ਹਨ।

ਇਸ ਤਰ੍ਹਾਂ ਸਾਰੀਆਂ ਸਮੀਕਰਣਾਂ, ਜਿਨ੍ਹਾਂ ਵਿੱਚ ਪ੍ਤੀਕਾਰਕਾਂ ਅਤੇ ਉਪਜਾਂ ਦੇ ਲਈ ਸਹੀ ਸੂਤਰਾਂ ਦੀ ਵਰਤੋਂ ਕੀਤੀ ਗਈ ਹੋਵੇ, ਸੰਤੁਲਿਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਹਮੇਸ਼ਾ ਧਿਆਨ ਰੱਖੋ ਕਿ ਸਮੀਕਰਣ ਸੰਤੁਲਿਤ ਕਰਨ ਦੇ ਲਈ ਪ੍ਤੀਕਾਰਕਾਂ ਅਤੇ ਉਪਜਾਂ ਦਾ ਸੂਤਰਾਂ ਦੇ ਪਦ-ਅੰਕ (subscript) ਨਹੀਂ ਬਦਲੇ ਜਾ ਸਕਦੇ। ਇੱਥੇ ਮੀਥੇਨ ਅਤੇ ਡਾਈਆੱਕਸੀਜਨ ਨੂੰ ਅਭਿਕਾਰਕ ਕਿਹਾ ਜਾਂਦਾ ਹੈ ਅਤੇ ਕਾਰਬਨ ਡਾਈਆੱਕਸਾਈਡ ਅਤੇ ਪਾਣੀ ਨੂੰ ਉਪਜ ਕਹਿੰਦੇ ਹਨ। ਧਿਆਨ ਦਿਓ ਕਿ ਉਪਰੋਕਤ ਪ੍ਤੀਕਿਰਿਆ ਵਿੱਚ ਸਾਰੇ ਅਭਿਕਾਰਕ ਅਤੇ ਉਪਜਾ ਗੈਸਾਂ ਹਨ ਅਤੇ ਇਸ ਨੂੰ ਉਨ੍ਹਾਂ ਦੇ ਸੂਤਰਾਂ ਦੇ ਬਾਅਦ ਬਰੇਕਟ ਵਿੱਚ g ਅੱਖਰ ਨਾਲ ਲਿਖ ਕੇ ਵਿਅਕਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਠੋਸਾਂ ਅਤੇ ਦ੍ਵਾਂ ਦੇ ਲਈ ਕ੍ਰਮਵਾਰ (s) ਅਤੇ (l) ਲਿਖੇ ਜਾਂਦੇ ਹਨ।

 ${
m O_2}$ ਅਤੇ ${
m H_2O}$ ਦੇ ਲਈ ਗੁਣਾਂਕ 2 ਨੂੰ ਸਟਾੱਇਕਿ ਯੋਮੀਟ੍ਰਿਕ ਗਣਾਂਕ ਕਿਹਾ ਜਾਂਦਾ ਹੈ ਇਸੇ ਤਰ੍ਹਾਂ ਤਰ੍ਹਾਂ ${
m CH_4}$ ਅਤੇ ${
m CO_2}$ ਦੋਵਾਂ ਦੇ ਲਈ ਇਹ ਗੁਣਾਂਕ 1 ਹੈ। ਇਹ ਗੁਣਾਂਕ ਪ੍ਤੀਕਿਰਿਆ ਵਿੱਚ ਭਾਗ ਲੈ ਰਹੇ ਜਾਂ ਬਣਨ ਵਾਲੇ ਅਣੂਆਂ ਦੀ ਸੰਖਿਆ (ਜਾਂ ਮੋਲਾਂ ਦੀ ਸੰਖਿਆ) ਨੂੰ ਵਿਅਕਤ ਕਰਦੇ ਹਨ।

ਇੰਜ ਉੱਤੇ ਦਿੱਤੀ ਗਈ ਪ੍ਰਤੀਕਿਰਿਆ ਦੇ ਅਨੁਸਾਰ

- $CH_4(g)$ ਦਾ ਇੱਕ ਮੌਲ $O_2(g)$ ਦੇ 2 ਮੌਲਾਂ ਦੇ ਨਾਲ ਪ੍ਰਤੀਕਿਰਿਆ ਕਰ ਕੇ ਇੱਕ ਮੌਲ $CO_2(g)$ ਅਤੇ 2 ਮੌਲ $H_2O(g)$ ਦਿੰਦਾ ਹੈ।
- $CH_4(g)$ ਦਾ ਇੱਕ ਅਣੂ $O_2(g)$ ਦੇ 2 ਅਣੂਆਂ ਦੇ ਨਾਲ ਪ੍ਤੀਕਿਰਿਆ ਕਰਕੇ $CO_2(g)$ ਦਾ ਇੱਕ ਅਣੂ ਅਤੇ $H_2O(g)$ ਦੇ 2 ਅਣੂ ਦਿੰਦਾ ਹੈ।
- 22.7 L $CH_4(g)$ 45.4 L $O_2(g)$ ਦੇ ਨਾਲ ਪ੍ਤੀਕਿਰਿਆ ਦੁਆਰਾ 22.7 L $CO_2(g)$ ਅਤੇ 45.4 L $H_2O(g)$ ਦਿੰਦੀ ਹੈ।
- $16 \, \mathrm{g} \, \mathrm{CH_4} \, (\mathrm{g}), \, 2 \times 32 \, \mathrm{g} \, \mathrm{O_2} \, (\mathrm{g})$ ਦੇ ਨਾਲ ਪ੍ਤੀਕਿਰਿਆ ਕਰਕੇ $44 \, \mathrm{g} \, \mathrm{CO_2} \, (\mathrm{g})$ ਅਤੇ $2 \times 18 \, \mathrm{g} \, \mathrm{H_2O} \, (\mathrm{g})$ ਦਿੰਦੀ ਹੈ। ਇਨ੍ਹਾਂ ਸਬੰਧਾਂ ਦੇ ਅਧਾਰ ਤੇ ਦਿੱਤੇ ਗਏ ਅੰਕੜਿਆਂ ਨੂੰ ਇੱਕ ਦੂਜੇ ਵਿੱਚ ਪਰਿਵਰਤਿਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ

ਪੁੰਜ ⇒ ਮੋਲਾਂ ਦੀ ਸੰਖਿਆ ⇒ ਅਣੂਆਂ ਦੀ ਸੰਖਿਆ

ਉਦਾਹਰਣ 1.3

10g ਮੀਥੇਨ ਦੇ ਬਲਨ ਨਾਲ ਪ੍ਰਾਪਤ ਪਾਣੀ ਦੀ ਮਾਤਰਾ (g) ਦਾ ਪਰਿਕਲਨ ਕਰੋ।

ਹੱਲ

ਮੀਥੇਨ ਦੇ ਬਲਨ ਦਾ ਸੰਤੁਲਿਤ ਸਮੀਕਰਣ ਇਸ ਪ੍ਰਕਾਰ ਹੈ-

$$CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(g)$$

(i) $16~{
m g~CH_4}$ ਇੱਕ ਮੋਲ ਦੇ ਬਰਾਬਰ ਹੈ।

(ii) ਉੱਤੇ ਦਿੱਤੇ ਸਮੀਕਰਣ ਤੋਂ 1 ਮੋਲ ${\rm CH_4}$ (g) ਤੋਂ ${\rm H_2O}$ ਦੇ 2 ਮੋਲ ਪ੍ਰਾਪਤ ਹੁੰਦੇ ਹਨ।

$$1$$
 ਮੌਲ $H_2O = 18 \text{ g } H_2O \Rightarrow \frac{18 \text{ g } H_2O}{1 \text{ mol } H_2O} = 1$

ਇੰਜ
$$2$$
 ਮੋਲ $H_2O \times \frac{18 \, \mathrm{g} \, H_2O}{1 \, \mathrm{mol} \, H_2O}$

$$= 2 \times 18 \text{ g H}_2\text{O} = 36 \text{ g H}_2\text{O}$$

ਉਦਾਹਰਣ 1.4

ਮੀਥੇਨ ਕਿੰਨੇ ਮੋਲਾਂ ਦੇ ਬਲਨ ਤੋਂ $22 {\rm g} \ {\rm CO_2}({\rm g})$ ਪ੍ਰਾਪਤ ਕੀਤੀ ਜਾਂਦੀ ਹੈ।

ਹੱਲ

ਰਸਾਇਣਿਕ ਸਮੀਕਰਣ ਦੇ ਅਨੁਸਾਰ

= 22 g
$$CO_2$$
 (g) × $\frac{1 \text{ ਮੌਲ } CO_2$ (g)
 $44 \text{ g } CO_2$ (g)

= 0.5 ਮੋਲ CO₂ (g)

ਇੰਜ 0.5 ਮੋਲ CH_4 (g) ਦੇ ਬਲਨ ਨਾਲ 0.5 ਮੋਲ CO_4 (g) ਪ੍ਰਾਪਤ ਹੋਵੇਗੀ ਜਾਂ 0.5 ਮੋਲ CH_4 (g) ਤੋਂ 22g CO_9 (g) ਪ੍ਰਾਪਤ ਹੋਵੇਗੀ।

1.10.1 ਸੀਮਾਂਤ ਅਭਿਕਰਮਕ

ਕਈ ਵਾਰ ਪ੍ਰਤੀਕਿਰਿਆਵਾਂ ਵਿੱਚ ਸੰਤੁਲਿਤ ਸਮੀਕਰਣ ਦੇ ਅਨੁਸਾਰ ਜਰੂਰੀ ਪ੍ਰਤੀਕਾਰਕਾਂ ਦੀਆਂ ਮਾਤਰਾਵਾਂ ਮੌਜੂਦ ਨਹੀਂ ਹੁੰਦੀਆਂ। ਅਜਿਹੀਆਂ ਹਾਲਤਾਂ ਵਿੱਚ ਇੱਕ ਪ੍ਰਤੀਕਾਰਕ ਦੂਜੇ ਨਾਲੋਂ ਵਧੇਰੇ ਹੁੰਦਾ ਹੈ। ਜਿਹੜਾ ਪ੍ਰਤੀਕਾਰਕ ਘੱਟ ਮਾਤਰਾ ਵਿੱਚ ਹੁੰਦਾ ਹੈ, ਉਹ ਕੁੱਝ ਦੇਰ ਬਾਅਦ ਖਤਮ ਹੋ ਜਾਂਦਾ ਹੈ। ਉਸ ਤੋਂ ਬਾਅਦ ਹੋਰ ਅੱਗੇ ਪ੍ਰਤੀਕਿਰਿਆ ਨਹੀਂ ਹੁੰਦੀ, ਭਾਵੇਂ ਦੂਜੇ ਪ੍ਰਤੀਕਾਰਕ ਦੀ ਕਿੰਨੀ ਹੀ ਮਾਤਰਾ ਮੌਜੂਦ ਹੋਵੇ। ਇੰਜ ਜੋ ਪ੍ਰਤੀਕਾਰਕ ਪਹਿਲਾਂ ਸਮਾਪਤ ਹੁੰਦਾ ਹੈ, ਉਹ ਉਪਜਵੀ ਮਾਤਰਾ ਨੂੰ ਸੀਮਿਤ ਕਰ ਦਿੰਦਾ ਹੈ। ਇਸ ਲਈ ਉਸ ਨੂੰ ਸੀਮਾਂਤ ਅਭਿਕਰਮਕ (Limiting reagent) ਕਹਿੰਦੇ ਹਨ।

ਸਟਾੱਇਕਿਯੋਮੀਟ੍ਰਿਕ ਗਣਨਾਵਾਂ ਕਰਦੇ ਸਮੇਂ ਇਹ ਗੱਲ ਧਿਆਨ ਵਿੱਚ ਰੱਖਣੀ ਚਾਹੀਦੀ ਹੈ।

ਉਦਾਹਰਣ 1.5

50.0 kg $N_2(g)$ ਅਤੇ 10.00 kg $H_2(g)$ ਨੂੰ $NH_3(g)$ ਬਨਾਉਣ ਦੇ ਲਈ ਮਿਸ਼ਰਿਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਪ੍ਰਾਪਤ $NH_3(g)$ ਦੀ ਮਾਤਰਾ ਦਾ ਪਰਿਕਲਨ ਕਰੋ।ਇਨ੍ਹਾਂ ਸਥਿਤੀਆਂ ਵਿੱਚ NH_3 ਉਪਜ ਦੇ ਲਈ ਸੀਮਾਂਤ ਅਭਿਕਰਮਕ ਨੂੰ ਪਛਾਣੋ।

ਹੱਲ

ਉੱਤੇ ਦਿੱਤੀ ਗਈ ਪ੍ਰਤੀਕਿਰਿਆ ਦੇ ਲਈ ਸੰਤੁਲਿਤ ਸਮੀਕਰਣ ਇਸ ਪ੍ਰਕਾਰ ਹੈ—

$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$$

ਮੋਲਾਂ ਦਾ ਪਰਿਕਲਨ N_2 (g) ਦੇ ਮੋਲ

$$50.00 \; \mathrm{kg} \; \mathrm{N_2} imes rac{1000 \; \mathrm{g} \; \mathrm{N_2}}{1 \; \mathrm{kg} \; \mathrm{N_2}} imes rac{1 ਮੌਲ \; \mathrm{N_2}}{28.0 \; \mathrm{g} \; \mathrm{N_2}}$$

= 17.86×10² ਮੋਲ

H₂(g) ਦੇ ਮੋਲ

10.00 kg H₂ ×
$$\frac{1000 \text{ g H}_2}{1 \text{ kg H}_2}$$
 × $\frac{1 \text{ mol H}_2}{2.016 \text{ g H}_2}$

= 4.96×10³ ਮੋਲ

ਉੱਤੇ ਦਿੱਤੇ ਗਏ ਸਮੀਕਰਣ ਦੇ ਅਨੁਸਾਰ, ਪ੍ਰਤੀਕਿਰਿਆ ਦੇ 1 ਮੋਲ N_2 (g) ਦੇ ਲਈ 3 ਮੋਲ H_2 (g) ਦੀ ਜਰੂਰਤ ਹੁੰਦੀ ਹੈ। ਇੰਜ $17.86 \times 10^2 \ N_2$ ਦੇ ਲਈ ਜਰੂਰੀ H_2 (g) ਦੇ ਮੋਲਾਂ ਦੀ ਸੰਖਿਆ

$$17.86 \times 10^2$$
 ਮੋਲ $N_2 \times \frac{3 \, \text{ਮੋਲ} \, \text{H}_2 \, \text{(g)}}{1 \, \text{ਮੋਲ} \, N_2 \, \text{(g)}}$

= 5.36 ×10³ ਮੋਲ H₂(g)

ਪਰੰਤੂ ਸਿਰਫ 4.96×10^3 ਮੋਲ H_2 (g) ਉਪਲਬਧ ਹੈ। ਇੰਜ ਇੱਥੇ H_2 (g) ਸੀਮਾਂਤ ਅਭਿਕਰਮਕ ਹੈ।ਇੰਜ NH_3 (g) ਕੇਵਲ ਉਪਲਬਧ H_2 (g) ਦੀ ਮਾਤਰਾ (4.96×10^3 ਮੋਲ) ਤੋਂ ਹੀ ਪ੍ਰਾਪਤ ਹੋਵੇਗੀ।

ਕਿਉਂਕਿ 3 ਮੋਲ $H_2(g)$ ਤੋਂ 2 ਮੋਲ $NH_3(g)$ ਉਪਲਬਧ ਹੁੰਦੀ ਹੈ। ਇਸ ਲਈ :-

$$4.96{\times}10^3$$
 ਮੋਲ ${
m H_{_2}}$ (g) $imes {2\,}$ ਮੋਲ ${
m NH_{_3}}$ (g) ${
m 3}$ ਮੋਲ ${
m H_{_2}}$ (g)

= 3.30×10³ ਮੋਲ NH₃ (g)

ਇਸ ਤਰ੍ਹਾਂ 3.30×10^3 ਮੋਲ $\mathrm{NH_3}$ (g) ਪ੍ਰਾਪਤ ਹੋਵੇਗੀ। ਜੇ ਇਸ ਨੂੰ ਗ੍ਰਾਮ (g) ਵਿੱਚ ਪਰਿਵਰਤਿਤ ਕਰਨਾ ਹੋਵੇ, ਤਾਂ

ਇਸ ਤਰ੍ਹਾਂ ਕੀਤਾ ਜਾਵੇਗਾ—
1 ਮੋਲ
$$NH_3$$
 (g) = 17.0 g NH_3 (g)
 3.30×10^3 ਮੋਲ NH_3 (g) $\times \frac{17.0 \, \text{g} \, \text{NH}_3$ (g)
= $3.30 \times 10^3 \times 17. \, \text{g} \, \text{NH}_3$ (g)
= $56.1 \times 10^3 \, \text{g} \, \text{NH}_3$

1.10.2 ਘੋਲਾਂ ਵਿੱਚ ਪਤੀਕਿਰਿਆਵਾਂ

 $= 56.1 \text{ kg NH}_3$

ਪ੍ਯੋਗਸ਼ਾਲਾ ਵਿੱਚ ਵਧੇਰੇ ਪ੍ਤੀਕਿਰਿਆਵਾਂ ਘੋਲਾਂ ਵਿੱਚ ਕੀਤੀਆਂ ਜਾਂਦੀਆਂ ਹਨ। ਇਸ ਲਈ ਇਹ ਜਾਣਨਾ ਮਹੱਤਵਪੂਰਣ ਹੋਵੇਗਾ ਕਿ ਜਦੋਂ ਕੋਈ ਪਦਾਰਥ ਘੋਲ ਦੇ ਰੂਪ ਵਿੱਚ ਮੌਜੂਦ ਹੁੰਦਾ ਹੈ, ਤਾਂ ਉਸ ਦੀ ਮਾਤਰਾ ਕਿਸ ਤਰ੍ਹਾਂ ਵਿਅਕਤ ਕੀਤੀ ਜਾਂਦੀ ਹੈ। ਕਿਸੇ ਘੋਲ ਦੀ ਸੰਘਣਤਾ ਜਾਂ ਉਸ ਦੇ ਦਿੱਤੇ ਗਏ ਆਇਤਨ ਵਿੱਚ ਮੌਜੂਦ ਪਦਾਰਥ ਦੀ ਮਾਤਰਾ ਹੇਠ ਲਿਖੇ ਰੂਪ ਵਿੱਚ ਵਿਅਕਤ ਕੀਤੀ ਜਾ ਸਕਦੀ ਹੈ—

- 1. ਪੁੰਜ-ਪ੍ਤੀਸ਼ਤ ਜਾਂ ਭਾਰ-ਪ੍ਤੀਸ਼ਤ (w/w %)
- 2. ਮੋਲ−ਅੰਸ਼
- 3. ਮੋਲਰਤਾ
- ਮੋਲਲਤਾ ਆਓ ਇਨ੍ਹਾਂ ਦੇ ਬਾਰੇ ਵਿਸਥਾਰ ਵਿੱਚ ਸਮਝੀਏ।

1. ਪੁੰਜ ਪ੍ਰਤੀਸ਼ਤ

ਇਸ ਨੂੰ ਹੇਠ ਲਿਖੇ ਸਬੰਧ ਦੁਆਰਾ ਗਿਆਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ—

ਉਦਾਹਰਣ 1.6

ਕਿਸੇ ਪਦਾਰਥ A ਦੇ 2g ਨੂੰ 18g ਪਾਣੀ ਵਿੱਚ ਮਿਲਾ ਕੇ ਇੱਕ ਘੋਲ ਪ੍ਰਾਪਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਘੁਲਿਤ A ਦਾ ਪੁੰਜ ਪ੍ਰਤੀਸ਼ਤ ਪਰਿਕਲਿਤ ਕਰੋ।

ਹੱਲ

$$A$$
 ਦਾ ਪੁੰਜ ਪ੍ਤੀਸ਼ਤ = $\frac{A$ ਦਾ ਪੁੰਜ $\times 100$

=
$$\frac{2g}{2gA+18g}$$
 ਪਾਣੀ

$$=\frac{2g}{20g}\times100$$

= 10 %

2. ਮੋਲ-ਅੰਸ਼

ਇਹ ਕਿਸੇ ਵਿਸ਼ੇਸ਼ ਘਟਕ ਦੇ ਮੋਲਾਂ ਦੀ ਸੰਖਿਆ ਅਤੇ ਘੋਲ ਦੇ ਮੋਲਾਂ ਦੀ ਕੁੱਲ ਸੰਖਿਆ ਦੀ ਅਨੁਪਾਤ ਹੁੰਦਾ ਹੈ।ਜੇ ਕੋਈ ਪਦਾਰਥ A ਕਿਸੇ ਪਦਾਰਥ B ਵਿੱਚ ਘੁਲਦਾ ਹੈ ਅਤੇ ਉਨ੍ਹਾਂ ਦੇ ਮੋਲਾਂ ਦੀ ਸੰਖਿਆ ਕੁਮਵਾਰ $n_{_{\rm A}}$ ਅਤੇ $n_{_{\rm B}}$ ਹੋਣ, ਤਾਂ ਉਨ੍ਹਾਂ ਦੇ ਮੋਲ ਅੰਸ਼ ਇਸ ਤਰ੍ਹਾਂ ਵਿਅਕਤ ਕੀਤੇ ਜਾਣਗੇ—

 $A eਾਮੋਲ-ਅੰਸ਼ = \frac{A eੇ ਮੋਲਾਂ eੀ ਸੰਖਿਆ$ ਘੋਲ eੇ ਮੋਲਾਂ eੀ ਸੰਖਿਆ $= <math>\frac{n_{\rm A}}{n_{\rm A} + n_{\rm B}}$ B eਾਮੋਲ-ਅੰਸ਼ = $\frac{B e h h r el h h h r}{m r e h r h r}$ = $\frac{n_{\rm A}}{n_{\rm A} + n_{\rm B}}$

3. ਮੋਲਰਤਾ

ਇਹ ਸਭ ਤੋਂ ਵੱਧ ਵਰਤੇ ਜਾਣ ਵਾਲਾ ਮਾਤਰਕ ਹੈ। ਇਸ ਨੂੰ M ਨਾਲ ਵਿਅਕਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਇਹ ਕਿਸੇ ਘੁਲਿਤ ਦੀ 1L ਘੋਲ ਵਿੱਚ ਮੌਜੂਦ ਮੋਲਾਂ ਦੀ ਸੰਖਿਆ ਹੁੰਦੀ ਹੈ। ਇੰਜ

ਮੰਨ ਲਓ ਕਿ ਸਾਡੇ ਕੋਲ ਕਿਸੇ ਪਦਾਰਥ (ਜਿਵੇਂ-NaOH) ਦਾ 1M ਘੋਲ ਹੈ ਅਤੇ ਅਸੀਂ ਉਸ ਤੋਂ 0·2M ਵਾਲਾ ਘੋਲ ਪ੍ਰਾਪਤ ਕਰਨਾ ਚਾਹੁੰਦੇ ਹਾਂ।

 $1~{\rm M}~{\rm NaOH}~{\rm er}$ ਭਾਵ ਹੈ ਕਿ ਘੋਲ ਦੇ $1{\rm L}$ ਵਿੱਚ $1~{\rm l}$ ਨਾ NaOH ਮੌਜੂਦ ਹੈ। $0.2{\rm M}$ ਘੋਲ ਦੇ ਲਈ ਸਾਨੂੰ $1{\rm L}$ ਘੋਲ ਵਿੱਚ $0.2~{\rm l}$ ਲ NaOH ਦੀ ਜਰੂਰਤ ਹੋਵੇਗੀ। ਅਜਿਹੀਆਂ ਗਣਨਾਵਾਂ ਵਿੱਚ ਸਧਾਰਨ ਸੂਤਰ ${\rm M_1V_1}={\rm M_2V_2}$ ਵਰਤਿਆ ਜਾਂਦਾ ਹੈ, ਜਿੱਥੇ ${\rm M}~{\rm w3}~{\rm V}$ ਕ੍ਰਮਵਾਰ ਮੌਲਰਤਾ ਅਤੇ ਆਇਤਨ ਹਨ। ਇੱਥੇ ${\rm M_1}=0.2,~{\rm V_1}=1000~{\rm mL}$ ਅਤੇ ${\rm M_2}=1.0$, ਇਨ੍ਹਾਂ ਸਾਰਿਆਂ ਮਾਨਾਂ ਨੂੰ ਸੂਤਰ ਵਿੱਚ ਰੱਖ ਕੇ ${\rm V_2}$ ਨੂੰ ਇਸ ਤਰ੍ਹਾਂ ਪਤਾ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ—

 $2\text{M} \times 1000 \text{ mL} = 1.0\text{M} \times \text{V}_{_2}$

$$V_2 = \frac{0.2M \times 1000mL}{1.0M} = 200mL$$

1L ਘੋਲ ਵਿੱਚ 0⋅2 ਮੋਲ NaOH ਚਾਹੀਦਾ ਹੈ।

ਇੰਜ ਸਾਨੂੰ 0.2 ਮੋਲ NaOH ਲੈਣਾ ਹੋਵੇਗਾ ਤੇ ਘੋਲ ਦਾ ਆਇਤਨ 1L ਬਣਾਉਣਾ ਪਵੇਗਾ।

ਹੁਣ ਗਾੜ੍ਹੇ (1M) NaOH ਦਾ ਕਿੰਨਾ ਆਇਤਨ ਲਿਆ ਜਾਵੇ, ਜਿਸ ਵਿੱਚ 0.2 ਮੋਲ ਮੌਜੂਦ ਹੋਵੇ, ਇਸ ਦਾ ਪਰਿਕਲਨ ਨਿਮਮਨਲਿਖਿਤ ਰੂਪ ਵਿੱਚ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ—

ਜੇ $1\mathrm{L}$ ਜਾਂ $1000\mathrm{mL}$ ਆਇਤਨ ਵਿੱਚ 1 ਮੋਲ ਮੌਜੂਦ ਹੈ, ਤਾਂ 0.2 ਮੋਲ ਮੌਜੂਦ ਹੋਵੇਗਾ-

$$rac{1000 \; \mathrm{mL}}{1 \; \mathrm{\ddot{H}}\mathrm{\ddot{B}}} imes 0.2 \; \mathrm{\ddot{H}}\mathrm{\ddot{B}} \; = 200 \; \mathrm{mL}$$
 ਆਇਤਨ ਵਿੱਚ

ਇੰਜ 1M NaOH ਦੇ 200 mL, ਲੈ ਕੇ ਉਸ ਵਿੱਚ ਐਨਾਂ ਪਾਣੀ ਮਿਲਾਇਆ ਜਾਂਦਾ ਹੈ ਤਾਂ ਕਿ ਆਇਤਨ 1L ਦੇ ਬਰਾਬਰ ਹੋ ਜਾਏ।

ਧਿਆਨ ਦਿਓ ਕਿ 200 mL ਦੇ ਘੁਲਿਤ (NaoH) ਦੇ ਮੋਲਾਂ ਦੀ ਸੰਖਿਆ 0.2 ਸੀ ਅਤੇ ਇਹ ਹਲਕਾ ਕਰਨ ਤੇ (1000 mL) ਵਿੱਚ ਵੀ ਉਨੀ ਹੀ, ਭਾਵ (0.2) ਰਹੀ ਹੈ, ਕਿਉਂਕਿ ਅਸੀਂ ਕੇਵਲ ਘੋਲਕ (ਪਾਣੀ) ਦੀ ਮਾਤਰਾ ਪਰਿਵਰਤਿਤ ਕੀਤੀ ਹੈ ਨਾ ਕਿ NaOH ਦੀ।

4. ਮੋਲਲਤਾ

ਇਸ ਨੂੰ 1 kg ਘੋਲਕ ਵਿੱਚ ਮੌਜੂਦ ਘੁਲਿਤ ਦੇ ਮੋਲਾਂ ਦੀ ਸੰਖਿਆ ਦੇ ਰੂਪ ਵਿੱਚ ਪਰਿਭਾਸ਼ਿਤ ਜਾਂਦਾ ਹੈ। ਇਸ ਨੂੰ m ਦੁਆਰਾ ਵਿਅਕਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ।

ਉਦਾਹਰਣ 1.7

NaOH ਦੇ ਅਜਿਹੇ ਘੋਲ ਦੀ ਮੋਲਰਤਾ ਦਾ ਪਰਿਕਲਨ ਕਰੋ, ਜਿਸ ਨੂੰ 4g NaOH ਨੂੰ ਪਾਣੀ ਦੀ ਲੋੜੀਂਦੀ ਮਾਤਰਾ ਵਿੱਚ ਮਿਲਾ ਕੇ ਪ੍ਰਾਪਤ ਕੀਤਾ ਗਿਆ ਹੋਵੇ, ਤਾਂ ਕਿ ਘੋਲ ਦੇ 250 mL ਪ੍ਰਾਪਤ ਹੋ ਜਾਣ। ਹੱਲ

ਕਿਉਂਕਿ ਮੋਲਰਤਾ (M) =
$$\frac{\text{ਘੁਲਿਤ ਦੇ ਮੋਲਾਂ ਦੀ ਸੰਖਿਆ}}{\text{ਘੋਲ ਦਾ ਆਇਤਨ (ਵਿੱਚ)}}$$

$$= \frac{4 \text{ g} / 40 \text{ g}}{0.250 \text{L}} = (0.4 \text{ ਮੋਲ ਪ੍ਰਤੀ ਲਿਟਰ})$$

 $= 0.4 \text{ mol } L^{-1}$

= 0.4 M

ਇਹ ਧਿਆਨ ਰੱਖੋ ਕਿ ਕਿਸੇ ਘੋਲ ਦੀ ਮੋਲਰਤਾ ਤਾਪ ਉੱਤੇ ਨਿਰਭਰ ਕਰਦੀ ਹੈ, ਕਿਉਂਕਿ ਆਇਤਨ ਤਾਪ ਉੱਤੇ ਨਿਰਭਰ ਕਰਦਾ ਹੈ।

ਉਦਾਹਰਣ 1.8

3 M NaCl ਘੋਲ ਦੀ ਘਣਤਾ $1.25~{
m g~mL}^{-1}$ ਹੈ। ਇਸ ਘੋਲ ਦੀ ਮੋਲਲਤਾ ਦਾ ਪਰਿਕਲਨ ਕਰੋ। $M=3~{
m mol~L}^{-1}$

1 L ਘੋਲ ਦਾ ਵਿੱਚ NaCl ਪੁੰਜ = 3 × 58.5 = 175.5 g

1L ਘੋਲ ਦਾ ਪੁੰਜ = $1000 \times 1.25g = 1250 g$ (ਕਿਉਂਕਿ ਘਣਤਾ = 1.25 g mL^{-1}) ਘੋਲ ਵਿੱਚ ਪਾਣੀ ਦਾ ਪੰਜ = 1250 - 175.5

= 1074.5 g

ਹੁਣ ਮੋਲਲਤਾ
$$(m) = \frac{\mbox{\text{w}fms} ਦੇ ਮੋਲਾਂ ਦੀ ਸੰਖਿਆ}{\mbox{Kg ਵਿੱਚ ਘੋਲਕ ਦਾ ਪੁੰਜ}}$$

$$= \frac{3 mol}{1.0745 kg}$$

= 2.79 m ਰਸਾਇਣਿਕ ਪ੍ਯੋਗਸ਼ਾਲਾਵਾਂ ਵਿੱਚ ਇੱਛਤ ਸੰਘਣਤਾ ਦਾ ਘੋਲ ਆਮ ਤੌਰ ਤੇ ਜਿਆਦਾ ਸੰਘਣਤਾ ਦੇ ਘੋਲ ਨੂੰ ਹਲਕਾ ਕਰਕੇ ਬਣਾਇਆ ਜਾਂਦਾ ਹੈ। ਜਿਆਦਾ ਸੰਘਣਤਾ ਵਾਲੇ ਘੋਲ ਨੂੰ 'ਸਟਾੱਕ ਘੋਲ (Stock solution) ਵੀ ਕਹਿੰਦੇ ਹਨ। ਧਿਆਨ ਰੱਖੋ ਕਿ ਘੋਲ ਦੀ ਮੋਲਲਤਾ ਤਾਪਮਾਨ ਦੇ ਨਾਲ ਪਰਿਵਰਤਿਤ ਨਹੀਂ ਹੁੰਦੀ, ਕਿਉਂਕਿ ਪੁੰਜ ਤਾਪਮਾਨ ਅਪ੍ਰਭਾਵਿਤ ਰਹਿੰਦਾ ਹੈ।

ਸਾਰਾਂਸ਼

ਰਸਾਇਣ ਵਿਗਿਆਨ ਦਾ ਅਧਿਐਨ ਬਹੁਤ ਮਹੱਤਵਪੂਰਣ ਹੈ, ਕਿਉਂਕਿ ਇਹ ਜੀਵਨ ਦੇ ਸਾਰੇ ਪਹਿਲੂਆਂ ਨੂੰ ਪ੍ਭਾਵਿਤ ਕਰਦਾ ਹੈ। ਰਸਾਇਣ ਵਿਗਿਆਨੀ ਪਦਾਰਥਾਂ ਦੀ ਸੰਰਚਨਾ, ਗੁਣਾਂ ਅਤੇ ਪਰਿਵਰਤਨਾਂ ਦੇ ਬਾਰੇ ਅਧਿਐਨ ਕਰਦੇ ਹਨ। ਸਾਰੇ ਪਦਾਰਥ ਮਾਦੇ ਦੇ ਬਣੇ ਹੁੰਦੇ ਹਨ। ਇਹ ਤਿੰਨ ਭੌਤਿਕ ਅਵਸਥਾਵਾਂ–ਠੋਸ, ਦ੍ਵ ਅਤੇ ਗੈਸ ਦੇ ਰੂਪ ਵਿੱਚ ਮਿਲਦੇ ਹਨ। ਇਨ੍ਹਾਂ ਤਿੰਨਾਂ ਅਵਸਥਾਵਾਂ ਵਿੱਚ ਘਟਕ–ਕਣਾਂ ਦੀ ਵਿਵਸਥਾ ਭਿੰਨ ਹੁੰਦੀ ਹੈ। ਇਨ੍ਹਾਂ ਅਵਸਥਾਵਾਂ ਦੇ ਵਿਸ਼ੇਸ਼ ਗੁਣ ਹੁੰਦੇ ਹਨ। ਮਾਦਾ ਨੂੰ ਤੱਤਾਂ, ਯੋਗਿਕਾਂ ਅਤੇ ਮਿਸ਼ਰਣਾਂ ਦੇ ਰੂਪ ਵਿੱਚ ਵੀ ਵਰਗੀਕ੍ਰਿਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਕਿਸੇ ਤੱਤ ਵਿੱਚ ਇੱਕ ਹੀ ਕਿਸਮ ਦੇ ਕਣ ਹੁੰਦੇ ਹਨ, ਜੋ ਪਰਮਾਣੂ ਜਾਂ ਅਣੂ ਹੋ ਸਕਦੇ ਹਨ। ਜਦੋਂ ਦੋ ਜਾਂ ਵਧੇਰੇ ਤੱਤਾਂ ਦੇ ਪਰਮਾਣੂ ਨਿਸ਼ਚਿਤ ਅਨੁਪਾਤ ਵਿੱਚ ਸੰਯੁਕਤ ਹੁੰਦੇ ਹਨ, ਤਾਂ ਯੋਗਿਕ ਪ੍ਰਾਪਤ ਹੁੰਦੇ ਹਨ। ਮਿਸ਼ਰਣ ਜਿਆਦਾ ਮਾਤਰਾ ਵਿੱਚ ਮਿਲਦੇ ਹਨ ਅਤੇ ਸਾਡੇ ਆਲੇ ਦੁਆਲੇ ਮੌਜੂਦ ਅਨੇਕ ਪਦਾਰਥ ਮਿਸ਼ਰਣ ਹਨ।

ਜਦੋਂ ਕਿਸੇ ਪਦਾਰਥ ਦੇ ਗੁਣਾਂ ਦਾ ਅਧਿਐਨ ਕੀਤਾ ਜਾਂਦਾ ਹੈ, ਤਾਂ ਮਾਪਨ ਜਰੂਰੀ ਹੋ ਜਾਂਦਾ ਹੈ। ਗੁਣਾਂ ਨੂੰ ਮਾਤਰਾ ਰੂਪ ਵਿੱਚ ਵਿਅਕਤ ਕਰਨ ਦੇ ਲਈ ਮਾਪਨ ਦੀ ਪੱਧਤੀ ਅਤੇ ਮਾਤਰਕਾਂ ਦੀ ਜਰੂਰਤ ਹੁੰਦੀ ਹੈ, ਜਿਨ੍ਹਾਂ ਨਾਲ ਰਾਸ਼ੀਆਂ ਨੂੰ ਵਿਅਕਤ ਕੀਤਾ ਜਾ ਸਕੇ। ਮਾਪਨ ਦੀਆਂ ਕਈ ਪੱਧਤੀਆਂ ਹਨ, ਜਿਨ੍ਹਾਂ ਵਿੱਚ ਅੰਗ੍ਰੇਜੀ ਪੱਧਤੀ ਅਤੇ ਮੀਟਰੀ ਪੱਧਤੀ ਦੀ ਵਰਤੋਂ ਵਿਸਥਾਰ ਵਿੱਚ ਕੀਤੀ ਜਾਂਦੀ ਹੈ। ਪਰੰਤੂ ਵਿਗਿਆਨੀਆਂ ਨੇ ਪੂਰੇ ਵਿਸ਼ਵ ਵਿੱਚ ਇੱਕੋ ਜਿਹੀ ਪੱਧਤੀ ਜਿਸ ਨੂੰ 'SI ਪੱਧਤੀ' ਕਹਿੰਦੇ ਹਨ, ਦੀ ਵਰਤੋਂ ਕਰਨ ਦੀ ਸਹਿਮਤੀ ਬਣਾਈ।

ਕਿਉਂਕਿ ਮਾਪਨਾਂ ਵਿੱਚ ਅੰਕੜਿਆਂ ਨੂੰ ਰਿਕਾਰਡ ਕਰਨਾ ਪੈਂਦਾ ਹੈ ਅਤੇ ਇਨ੍ਹਾਂ ਵਿੱਚ ਕੁੱਝ ਨਾ ਕੁਝ ਅਨਿਸ਼ਚਿਤਾ ਬਣੀ ਰਹਿੰਦੀ ਹੈ, ਇਸ ਲਈ ਅੰਕੜਿਆਂ ਦੀ ਵਰਤੋਂ ਠੀਕ ਢੰਗ ਨਾਲ ਕਰਨਾ ਬਹੁਤ ਮਹੱਤਵਪੂਰਣ ਹੈ। ਰਸਾਇਣ ਵਿਗਿਆਨ ਵਿੱਚ ਰਾਸ਼ੀਆਂ ਦੇ ਮਾਪਨ ਵਿੱਚ 10^{-31} ਤੋਂ 10^{23} ਵਰਗੀਆਂ ਸੰਖਿਆਵਾਂ ਆਉਂਦੀਆਂ ਹਨ। ਇਸ ਲਈ ਇਨ੍ਹਾਂ ਨੂੰ ਵਿਅਕਤ ਕਰਨ ਦੇ ਲਈ ਵਿਗਿਆਨਕ ਸੰਕੇਤਨ ਦੀ ਵਰਤੋਂ ਕੀਤੀ ਜਾਂਦੀ ਹੈ। ਪ੍ਰੇਖਣਾਂ ਵਿੱਚ ਸਾਰਥਕ ਅੰਕਾਂ ਦੀ ਸੰਖਿਆ ਨੂੰ ਦੱਸ ਕੇ ਅਨਿਸ਼ਚਿਤਾ ਦਾ ਧਿਆਨ ਰੱਖਿਆ ਜਾ ਸਕਦਾ ਹੈ। ਵਿਧੀ ਵਿਸ਼ਲੇਸ਼ਣ ਨਾਲ ਮਾਪੀ ਗਈਆਂ ਰਾਸ਼ੀਆਂ ਨੂੰ ਮਾਤਰਕਾਂ ਦੀ ਇੱਕ ਪੱਧਤੀ ਤੋਂ ਦੂਜੀ ਪੱਧਤੀ ਵਿੱਚ ਪਰਿਵਰਤਿਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਇੰਜ ਪਰਿਣਾਮਾਂ ਨੂੰ ਇੱਕ ਪੱਧਤੀ ਦੇ ਮਾਤਰਕਾਂ ਤੋਂ ਦੂਜੀ ਪੱਧਤੀ ਦੇ ਮਾਤਰਕਾਂ ਵਿੱਚ ਪਰਿਵਰਤਿਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।

ਭਿੰਨ-ਭਿੰਨ ਪਰਮਾਣੂਆਂ ਦਾ ਸੰਯੋਜਨ ਰਸਾਇਣਿਕ ਸੰਯੋਜਨ ਦੇ ਨਿਯਮ ਦੇ ਅਨੁਸਾਰ ਹੁੰਦਾ ਹੈ। ਇਹ ਨਿਯਮ ਹਨ-ਪੁੰਜ ਸੁਰਖਿਅਣ ਦਾ ਨਿਯਮ, ਸਥਿਰ ਅਨੁਪਾਤ ਦਾ ਨਿਯਮ, ਗਣਿਤ ਅਨੁਪਾਤ ਦਾ ਨਿਯਮ, ਗੇ-ਲੁਸੈਕ ਦਾ ਗੈਸੀ ਆਇਤਨਾਂ ਦਾ ਨਿਯਮ ਅਤੇ ਐਵੋਗੈਡਰੋ ਦਾ ਨਿਯਮ। ਇਨ੍ਹਾਂ ਸਾਰੇ ਨਿਯਮਾਂ ਦੇ ਪਰਿਣਾਮ ਸਰੂਪ 'ਡਾਲਟਨ ਦਾ ਪਰਮਾਣੂ ਸਿਧਾਂਤ' ਪ੍ਰਾਪਤ ਹੋਇਆ, ਜਿਸਦੇ ਅਨੁਸਾਰ ਪਰਮਾਣੂ ਮਾਦਾ ਦੇ ਰਚਨਾਤਮਕ ਖੰਡ ਹੁੰਦੇ ਹਨ। ਕਿਸੇ ਤੱਤ ਦਾ ਪਰਮਾਣੂ ਪੁੰਜ ਕਾਰਬਨ ਦੇ 12 C ਸਮਸਥਾਨਿਕ (ਜਿਸ ਨੂੰ ਸਹੀਂ 12u ਮੰਨ ਲਿਆ ਗਿਆ ਹੈ, ਦੇ ਸਾਪੇਖ ਵਿਅਕਤ ਕੀਤਾ ਜਾਂਦਾ

ਹੈ। ਆਮ ਤੌਰ ਤੇ ਕਿਸੇ ਤੱਤ ਦੇ ਲਈ ਵਰਤਿਆ ਜਾਣ ਵਾਲਾ ਪਰਮਾਣੂ ਪੁੰਜ ਉਹ ਪਰਮਾਣੂ ਪੁੰਜ ਹੁੰਦਾ ਹੈ, ਜਿਸਨੂੰ ਸਾਰੇ ਸਮਸਥਾਨਕਾਂ ਦਾ ਕੁਦਰਤੀ ਭਰਮਾਰ ਨੂੰ ਧਿਆਨ ਵਿੱਚ ਰੱਖ ਕੇ ਪ੍ਰਾਪਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਕਿਸੇ ਅਣੂ ਵਿੱਚ ਮੌਜੂਦ ਭਿੰਨ ਭਿੰਨ ਪਰਮਾਣੂਆਂ ਦੇ ਪਰਮਾਣੂ ਪੁੰਜਾਂ ਦੇ ਜੋੜ ਦੁਆਰਾ ਅਣਵੀਂ ਪੁੰਜ ਪ੍ਰਾਪਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਕਿਸੇ ਯੋਗਿਕ ਦਾ ਅਣਵੀਂ ਸੂਤਰ ਇਸ ਵਿੱਚ ਮੌਜੂਦ ਭਿੰਨ ਭਿੰਨ ਤੱਤਾਂ ਦੇ ਪੁੰਜ ਪ੍ਰਤੀਸ਼ਤ ਨੂੰ ਅਤੇ ਅਣਵੀਂ ਪੁੰਜ ਨੂੰ ਨਿਰਧਾਰਿਤ ਕਰਕੇ ਪਰਿਕਲਿਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।

ਕਿਸੇ ਵਿਵਸਥਾ ਵਿੱਚ ਮੌਜੂਦ ਪਰਮਾਣੂਆਂ, ਅਣੂਆਂ ਜਾਂ ਹੋਰ ਕਣਾਂ ਦੀ ਸੰਖਿਆ ਨੂੰ ਐਵੋਗੈਡਰੋ ਸਥਿਰ ਅੰਕ (6.022×10^{23}) ਦੇ ਰੂਪ ਵਿੱਚ ਵਿਅਕਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਇਸ ਸੰਖਿਆ ਨੂੰ ਇਨ੍ਹਾਂ ਕਣਾਂ ਦਾ '1 ਮੋਲ' ਕਿਹਾ ਜਾਂਦਾ ਹੈ।

ਵੱਖ-ਵੱਖ ਤੱਤਾਂ ਅਤੇ ਯੋਗਿਕਾਂ ਦੇ ਰਸਾਇਣਿਕ ਪਰਿਵਰਤਨਾਂ ਨੂੰ ਰਸਾਇਣਿਕ ਪ੍ਤੀਕਿਰਿਆਵਾਂ ਦੇ ਰੂਪ ਵਿੱਚ ਵਿਅਕਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਇੱਕ ਸੰਤੁਲਿਤ ਰਸਾਇਣਿਕ ਸਮੀਕਰਣ ਤੋਂ ਕਾਫੀ ਜਾਣਕਾਰੀ ਪ੍ਰਾਪਤ ਹੁੰਦੀ ਹੈ। ਕਿਸੇ ਵਿਸ਼ੇਸ਼ ਪ੍ਤੀਕਿਰਿਆ ਵਿੱਚ ਭਾਗ ਲੈ ਰਹੇ ਮੋਲਾਂ ਦੇ ਅਨੁਪਾਤ ਅਤੇ ਕਣਾਂ ਦੀ ਸੰਖਿਆ ਪ੍ਰਤੀਕਿਰਿਆ ਦੇ ਸਮੀਕਰਣ ਦੇ ਗੁਣਕਾਂ ਤੋਂ ਪ੍ਰਾਪਤ ਕੀਤੀ ਜਾ ਸਕਦੀ ਹੈ। ਜਰੂਰੀ ਪ੍ਰਤੀਕਾਰਕਾਂ ਅਤੇ ਬਣੀਆਂ ਉਪਜਾਂ ਦਾ ਮਾਤਰਾਤਮਕ ਅਧਿਐਨ 'ਸੱਟਾਇਕਿਯੋਮੀਟਰੀ' ਅਖਵਾਉਂਦਾ ਹੈ। ਸਟਾਇਕਿਯੋਮੀਟ੍ਰਿਕ ਪਰਿਕਲਨਾਂ ਵਿੱਚ ਕਿਸੇ ਉਪਜ, ਦੀ ਵਿਸ਼ਿਸ਼ਟ ਮਾਤਰਾ ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਦੇ ਲਈ ਜਰੂਰੀ ਪ੍ਰਤੀਕਾਰਕਾਂ ਦੀ ਮਾਤਰਾ ਜਾਂ ਇਸਦੇ ਉਲਟ ਨਿਰਧਾਰਿਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਦਿੱਤੇ ਗਏ ਘੋਲ ਦੇ ਆਇਤਨ ਵਿੱਚ ਪਦਾਰਥ ਦੀ ਮਾਤਰਾ ਨੂੰ ਭਿੰਨ ਭਿੰਨ ਤਰ੍ਹਾਂ ਪ੍ਰਦਰਸ਼ਿਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਉਦਾਹਰਣ ਵਜੋਂ-ਪੁੰਜ ਪ੍ਰਤੀਸ਼ਤ, ਮੋਲ ਅੰਸ਼, ਮੋਲਰਤਾ ਅਤੇ ਮੋਲਲਤਾ।

ਅਭਿਆਸ

- 1.1 ਹੇਠ ਲਿਖਿਆਂ ਦੇ ਲਈ ਮੋਲਰ ਪੁੰਜ ਦਾ ਪਰਿਕਲਨ ਕਰੋ : (i) ${\rm H_2O}$ (ii) ${\rm CO_2}$ (iii) ${\rm CH_4}$
- 1.2 ਸੋਡੀਅਮ ਸਲਫੇਟ (Na,SO,) ਵਿੱਚ ਮੌਜੂਦ ਭਿੰਨ ਭਿੰਨ ਤੱਤਾਂ ਦਾ ਪੁੰਜ ਪ੍ਰਤੀਸ਼ਤ ਪਰਿਕਲਨ ਕਰੋ।
- 1.3 ਆਇਰਨ ਦੇ ਉਸ ਆੱਕਸਾਈਡ ਦਾ ਮੂਲ ਅਨੁਪਾਤੀ ਸੂਤਰ ਪਤਾ ਕਰੋ ਜਿਸ ਵਿੱਚ ਪੁੰਜ ਦੁਆਰਾ 69.9% ਆਇਰਨ ਅਤੇ 30.1% ਆੱਕਸੀਜਨ ਹੈ।
- 1.4 ਪ੍ਰਾਪਤ ਕਾਰਬਨਡਾਈਆੱਕਸਾਈਡ ਦੀ ਮਾਤਰਾ ਦਾ ਪਰਿਕਲਨ ਕਰੋ। ਜਦੋਂ
 - (i) 1 ਮੋਲ ਕਾਰਬਨ ਨੂੰ ਹਵਾ ਵਿੱਚ ਬਾਲਿਆ ਜਾਂਦਾ ਹੈ ਅਤੇ
 - (ii) 1 ਮੋਲ ਕਾਰਬਨ ਨੂੰ 16 g ਆੱਕਸੀਜਨ ਵਿੱਚ ਬਾਲਿਆ ਜਾਂਦਾ ਹੈ।
- 1.5 ਸੋਡੀਅਮ ਐਸੀਟੇਟ (CH₃COONa) ਦਾ 500 mL 0.375 ਮੋਲਰ ਜਲੀ ਘੋਲ ਬਣਾਉਣ ਦੇ ਲਈ ਉਸ ਦੇ ਕਿੰਨੇ ਪੁੰਜ ਦੀ ਜਰੂਰਤ ਹੋਵੇਗੀ ? ਸੋਡੀਅਮ ਐਸੀਟੇਟ ਦਾ ਮੋਲਰ ਪੁੰਜ 82.0245 g mol⁻¹ ਹੈ।
- 1.6 ਗਾੜ੍ਹੇ ਨਾਈਟ੍ਰਿਕ ਐਸਿਡ ਦੇ ਉਸ ਨਮੂਨੇ ਦਾ ਮੋਲ ਪ੍ਰਤੀ ਲਿਟਰ ਵਿੱਚ ਸੰਘਣਤਾ ਦਾ ਪਰਿਕਲਨ ਕਰੋ, ਜਿਸ ਵਿੱਚ ਉਸ ਦਾ ਪੁੰਜ ਪ੍ਰਤੀਸ਼ਤ 69% ਹੋਵੇ ਅਤੇ ਜਿਸ ਦੀ ਘਣਤਾ 1.41 g mL⁻¹ ਹੋਵੇ।
- $1.7 ext{100g}$ ਕਾੱਪਰ ਸਲਫੇਟ ($CuSO_4$) ਤੋਂ ਕਿੰਨਾ ਕਾੱਪਰ ਪ੍ਰਾਪਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
- 1.8 ਆਇਰਨ ਦੇ ਆੱਕਸਾਈਡ ਦਾ ਅਣਵੀਂ ਸੂਤਰ ਪਤਾ ਕਰੋ, ਜਿਸ ਵਿੱਚ ਆਇਰਨ ਅਤੇ ਆੱਕਸੀਜਨ ਦਾ ਪੁੰਜ ਪ੍ਰਤੀਸ਼ਤ 69.9 ਅਤੇ 30.1 ਹੈ।
- 1.9 ਹੇਠ ਲਿਖੇ ਅੰਕੜਿਆਂ ਦੇ ਅਧਾਰ ਤੇ ਕਲੋਰੀਨ ਦੇ ਔਸਤ ਪਰਮਾਣੂ ਪੁੰਜ ਦਾ ਪਰਿਕਲਨ ਕਰੋ—

	% ਕੁਦਰਤੀ ਬਹੁਲਤਾ	ਮੋਲਰ ਪੁੰਜ
³⁵ C1	75.77	34.9689
³⁷ Cl	24.23	36.9659

- 1.10 ਈਥੇਨ (C¸H¸) ਦੇ ਤਿੰਨ ਮੋਲਾਂ ਵਿੱਚ ਹੇਠ ਲਿਖਿਆਂ ਦਾ ਪਰਿਕਲਨ ਕਰੋ—
 - (i) ਕਾਰਬਨ ਪਰਮਾਣੂਆਂ ਦੇ ਮੋਲਾਂ ਦੀ ਸੰਖਿਆ
 - (ii) ਹਾਈਡ੍ਰੋਜਨ ਪਰਮਾਣੂਆਂ ਦੇ ਮੋਲਾਂ ਦੀ ਸੰਖਿਆ

```
ਈਥੇਨ ਦੇ ਅਣੂਆਂ ਦੀ ਸੰਖਿਆ
        (iii)
        ਜੇ 20g ਚੀਨੀ (C,,H,,O,,) ਨੂੰ ਪਾਣੀ ਦੀ ਕਾਫੀ ਮਾਤਰਾ ਵਿੱਚ ਘੋਲਣ ਤੇ ਉਸਦਾ ਆਇਤਨ 2L ਹੋ ਜਾਏ,
1.11
        ਤਾਂ ਚੀਨੀ ਦੇ ਇਸ ਘੋਲ ਦੀ ਸੰਘਣਤਾ ਕੀ ਹੋਵੇਗੀ ?
        ਜੇ ਮੀਥੇਨੋਲ ਦੀ ਘਣਤਾ 0.793~{
m kg}~{
m L}^{-1} ਹੋਵੇ, ਤਾਂ ਇਸਦੇ 0.25~{
m M} ਦੇ 2.5~{
m L} ਘੋਲ ਨੂੰ ਬਨਾਉਣ ਦੇ ਲਈ
1.12
        ਕਿੰਨੇ ਆਇਤਨ ਦੀ ਜਰੂਰਤ ਹੋਵੇਗੀ ?
        ਦਾਬ ਨੂੰ ਪ੍ਰਤੀ ਇਕਾਈ ਖੇਤਰਫਲ ਉੱਤੇ ਲੱਗਣ ਵਾਲੇ ਬਲ ਦੇ ਰੂਪ ਵਿੱਚ ਪਰਿਭਾਸ਼ਿਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ।
1.13
        ਦਾਬ ਦਾ SI ਮਾਤਰਕ ਪਾਸਕਲ ਹੇਠਾਂ ਦਿੱਤਾ ਗਿਆ ਹੈ—
        ਜੇ ਸਮੁੰਦਰ ਤਲ ਉੱਤੇ ਹਵਾ ਦਾ ਪੁੰਜ1034 g cm<sup>-2</sup> ਹੋਵੇ ਤਾਂ ਪਾਸਕਲ ਵਿੱਚ ਹਵਾ ਦਾ ਦਾਬ ਪਰਿਕਲਨ ਕਰੋ।
        ਪੁੰਜ ਦਾ SI ਮਾਤਰਕ ਕੀ ਹੈ ? ਇਸ ਨੂੰ ਕਿਸ ਤਰ੍ਹਾਂ ਪਰਿਭਾਸ਼ਿਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ ?
1.14
        ਹੇਠ ਲਿਖੇ ਅਗੇਤਰਾਂ ਨੂੰ ਉਨ੍ਹਾਂ ਦੇ ਗੁਣਾਂਕਾਂ ਦੇ ਨਾਲ ਮਿਲਾਓ
1.15
             ਅਗੇਤਰ
                               ਗਣਾਂਕ
             ਮਾਈਕਰੋ
                               10^{6}
        (i)
        (ii) ਡੈਕਾ
                               10^{9}
        (iii) ਮੈਗਾ
                               10^{-6}
        (iv) ਗਿਗਾ
                               10^{-15}
        (v) ਫੈਮਟੋ
                               10
        ਸਾਰਥਕ ਅੰਕਾਂ ਤੋਂ ਤੁਸੀਂ ਕੀ ਸਮਝਦੇ ਹੋ ?
1.16
        ਪੇਯ ਜਲ ਦੇ ਨਮੂਨੇ ਵਿੱਚ ਕਲੋਰੋਫਾੱਰਮ, ਜੇ ਕੈਂਸਰਜਨਕ ਹੈ, ਨੂੰ ਆਮ ਤੌਰ ਤੇ ਪ੍ਰਦੂਸ਼ਕ ਵੇਖਿਆ ਗਿਆ ਹੈ।
1.17
        ਪ੍ਰਦੂਸ਼ਣ ਦਾ ਸਤਰ 15 ppm (ਪੁੰਜ ਦੇ ਰੂਪ ਵਿੱਚ) ਸੀ।
               ਇਸ ਨੂੰ ਪੰਜ, ਪਤੀਸ਼ਤ ਵਿੱਚ ਦਰਸਾਓ।
                ਪਾਣੀ ਦੇ ਨਮੂਨੇ ਵਿੱਚ ਕਲੋਰੋਫਾਰਮ ਦੀ ਮੋਲਲਤਾ ਪਤਾ ਕਰੋ।
        (ii)
        ਹੇਠ ਲਿਖਿਆਂ ਨੂੰ ਵਿਗਿਆਨਕ ਸੰਕੇਤਨ ਵਿੱਚ ਲਿਖੋ-
1.18
                0.0048
        (i)
                234,00
        (ii)
        (iii)
                8008
        (iv)
                500.0
        (v)
                6.0012
        ਹੇਠ ਲਿਖਿਆਂ ਵਿੱਚ ਸਾਰਥਕ ਅੰਕਾਂ ਦੀ ਸੰਖਿਆ ਦੱਸੋ—
1.19
                0.0025
        (i)
        (ii)
                208
        (iii)
                5005
                126,000
        (iv)
        (v)
                500.00
                2.0034
        (vi)
        ਹੇਠ ਲਿਖਿਆਂ ਵਿੱਚ ਤਿੰਨ ਸਾਰਥਕ ਅੰਕਾਂ ਤੱਕ ਨਿਕਟਿਤ ਕਰੋ—
1.20
        (i)
                34.216
        (ii)
                10.4107
        (iii)
                0.04597
        (iv)
        (ੳ) ਜਦੋਂ ਡਾਈਨਾਈਟੋਜਨ ਅਤੇ ਡਾਈਆੱਕਸੀਜਨ ਪਤੀ ਕਿਰਿਆ ਦੁਆਰਾ ਭਿੰਨ ਯੋਗਿਕ ਬਣਾਉਂਦੀਆਂ
```

```
ਹਨ, ਤਾਂ ਹੇਠ ਲਿਖੇ ਅੰਕੜੇ ਪ੍ਰਾਪਤ ਹੁੰਦੇ ਹਨ—
                 ਨਾਈਟ੍ਰੋਜਨ ਦਾ ਪੁੰਜ
                                        ਆੱਕਸੀਜਨ ਦਾ ਪੰਜ
        (i)
                       14 g
                                              16 g
        (ii)
                       14 g
                                              32 g
        (iii)
                       28 g
                                              32 g
                                              80 g
        (iv)
                       28 g
        ਇਹ ਪ੍ਰਯੋਗਿਕ ਅੰਕੜੇ ਰਸਾਇਣਿਕ ਸੰਯੋਜਨ ਦੇ ਕਿਸ ਨਿਯਮ ਦੇ ਅਨੁਸਾਰ ਹਨ ? ਦੱਸੋ।
        ਹੇਠ ਲਿਖਿਆਂ ਵਿੱਚ ਖਾਲੀ ਸਥਾਨ ਭਰੋ-
(M)
                1 km = ...... pm
        (i)
        (ii)
                1 mg = ..... kg = ..... ng
                1 \text{ mL} = \dots L = \dots \text{ dm}^3
        (iii)
        ਜੇ ਪ੍ਰਕਾਸ਼ ਦਾ ਵੇਗ 3.0 \times 10^8 \text{ m s}^{-1} ਹੋਵੇ, ਤਾਂ 2.00 \text{ ns} ਵਿੱਚ ਪ੍ਰਕਾਸ਼ ਕਿੰਨੀ ਦੂਰੀ ਤੈਅ ਕਰੇਗਾ ?
1.22
        ਕਿਸੇ ਪਤੀਕਿਰਿਆ
                                           AB, ਵਿੱਚ ਹੇਠ ਲਿਖੀਆਂ ਪ੍ਰਤੀਕਿਰਿਆ ਮਿਸ਼ਰਣਾਂ ਵਿੱਚ ਸੀਮਾਂਤ
1.23
                               A + B_9
        ਅਭਿਕਰਮਕ (ਜੇ ਕੋਈ ਹੋਵੇ ਤਾਂ) ਪਤਾ ਕਰੋ-
                A ਦੇ 300 ਪਰਮਾਣੂ + B ਦੇ 200 ਅਣੂ
                2 ਮੌਲ A + 3 ਮੌਲ B
        (ii)
               A ਦੇ 100 ਪਰਮਾਣੂ + B ਦੇ 100 ਅਣੂ
               A ਦੇ 5 ਮੋਲ + B ਦੇ 2.5 ਮੋਲ
        (iv)
                A ਦੇ 2.5 ਮੋਲ + B ਦੇ 5 ਮੋਲ
        ਡਾਈਨਾਈਟ੍ਰੋਜਨ ਅਤੇ ਡਾਈਹਾਈਡ੍ਰੋਜਨ ਹੇਠ ਲਿਖੀ ਸਮੀਕਰਣ ਦੇ ਅਨੁਸਾਰ ਅਮੋਨੀਆ ਬਣਾਉਂਦੀ ਹੈ।
1.24
        N_{2}(g) + 3H_{2}(g)
                           2NH<sub>3</sub> (g)
                ਜੇ 2.00 \times 10^3 g ਡਾਈਨਾਈਟ੍ਰੋਜਨ 1.00 \times 10^3 g ਡਾਈਹਾਈਡ੍ਰੋਜਨ ਦੇ ਨਾਲ ਪ੍ਰਤੀਕਿਰਿਆ
        ਕਰਦੀ ਹੈ ਤਾਂ ਪ੍ਰਾਪਤ ਅਮੋਨੀਆ ਦਾ ਪੁੰਜ ਪਰਿਕਲਨ ਕਰੋ।
                ਕੀ ਦੋਵਾਂ ਵਿੱਚੋਂ ਕੋਈ ਪਤੀਕਾਰਕ ਬਾਕੀ ਬਚੇਗਾ ?
                ਜੇ ਹਾਂ, ਤਾਂ ਕਿਹੜਾ ਅਤੇ ਉਸ ਦਾ ਪੂੰਜ ਕਿੰਨਾ ਹੋਵੇਗਾ ?
        (iii)
        0.50 mol Na,CO3 ਅਤੇ 0.50 M Na,CO3 ਵਿੱਚ ਕੀ ਅੰਤਰ ਹੈ ?
1.25
        ਜੇ ਡਾਈਹਾਈਡ੍ਰੋਜਨ ਗੈਸ ਦੇ 10 ਆਇਤਨ ਡਾਈਆੱਕਸੀਜਨ ਗੈਸ ਦੇ 5 ਆਇਤਨਾਂ ਦੇ ਨਾਲ ਪ੍ਰਤੀਕਿਰਿਆ
1.26
        ਕਰਨ ਤਾਂ ਜਲਵਾਸ਼ਪ ਦਾ ਕਿੰਨਾ ਆਇਤਨ ਪ੍ਰਾਪਤ ਹੋਣਗੇ ?
        ਹੇਠ ਲਿਖੇ ਨੂੰ ਮੂਲ ਮਾਤਰਕਾਂ ਵਿੱਚ ਪਰਿਵਰਤਨ ਕਰੋ—
1.27
        (i)
                28.7 pm
                15.15 pm
        (ii)
        (iii)
                25365 mg
        ਹੇਠ ਲਿਖਿਆਂ ਵਿੱਚੋਂ ਕਿਸ ਵਿੱਚ ਪਰਮਾਣੂਆਂ ਦੀ ਸੰਖਿਆ ਸਭ ਤੋਂ ਵੱਧ ਹੋਵੇਗੀ ?
1.28
        (i)
                1 g Au (s)
        (ii)
                1 g Na (s)
                1 g Li (s)
        (iii)
                1 \text{ g Cl}_{2}(g)
        ਈਥੇਨੋਲ ਦੇ ਅਜਿਹੇ ਜਲੀ ਘੋਲ ਦੀ ਮੋਲਰਤਾ ਪਤਾ ਕਰੋ, ਜਿਸ ਵਿੱਚ ਈਥੇਨੋਲ ਦਾ ਮੋਲ ਅੰਸ਼ 0.040 ਹੈ।ਮੰਨ
1.29
        ਲਓ ਕਿ ਪਾਣੀ ਦੀ ਘਣਤਾ 1 ਹੈ।
        ਇੱਕ <sup>12</sup>C ਕਾਰਬਨ ਪਰਮਾਣੂ ਦਾ ਗ੍ਰਾਮ g ਵਿੱਚ ਪੁੰਜ ਕਿੰਨਾ ਹੋਵੇਗਾ ?
1.30
        ਹੇਠ ਲਿਖੇ ਪਰਿਕਲਨਾਂ ਦੇ ਉੱਤਰ ਵਿੱਚ ਕਿੰਨੇ ਸਾਰਥਕ ਅੰਕ ਹੋਣੇ ਚਾਹੀਦੇ ਹਨ ?
1.31
```

(i) $\frac{0.02856 \times 298.15 \times 0.112}{0.5785}$ (ii) 5×5.364

(iii) 0.0125 + 0.7864 + 0.0215

1.32 ਕੁਦਰਤ ਵਿੱਚ ਉਪਲਬਧ, ਆਰਗਨ ਦੇ ਮੋਲਰ ਪੁੰਜ ਦੀ ਗਣਤਾ ਕਰਨ ਦੇ ਲਈ ਹੇਠ ਲਿਖੀ ਸਾਰਣੀ ਵਿੱਚ ਦਿੱਤੇ ਗਏ ਅੰਕੜਿਆਂ ਦੀ ਵਰਤੋਂ ਕਰੋ

ਸਮਸਥਾਨਿਕ	ਸਮਸਥਾਨਿਕ ਮੋਲਰ ਪੁੰਜ	ਭਰਮਾਰ
36 Ar	$35.96755 \text{ mol}^{-1}$	0.337%
38 Ar	$37.96272 \text{ mol}^{-1}$	0.063%
^{40}Ar	$39.9624 \; \mathrm{mol}^{-1}$	99.600%

- 1.33 ਹੇਠ ਲਿਖਿਆਂ ਵਿਚੋਂ ਹਰ ਇੱਕ ਦੇ ਪਰਮਾਣੁਆਂ ਦੀ ਸੰਖਿਆ ਪਤਾ ਕਰੋ
 - (i) 52 ਮੋਲ ਆਰਗਨ (ii) 52 u He (iii) 52 g He.
- 1.34 ਇੱਕ ਵੈਲਡਿੰਗ ਬਾਲਣ ਗੈਸ ਵਿੱਚ ਸਿਰਫ ਕਾਰਬਨ ਅਤੇ ਹਾਈਡ੍ਰੋਜਨ ਮੌਜੂਦ ਹਨ। ਇਸਦੇ ਨਮੂਨੇ ਦੀ ਕੁਝ ਮਾਤਰਾ ਆੱਕਸੀਜਨ ਨਾਲ ਜਲਾਣ ਤੇ 3.38 g ਕਾਰਬਨ ਡਾਈਆੱਕਸਾਈਡ 0.690 g ਪਾਣੀ ਤੋਂ ਇਲਾਵਾ ਹੋਰ ਕੋਈ ਉਪਜ ਨਹੀਂ ਬਣਦੀ।ਇਸ ਗੈਸ ਦੇ 10.0 L (STP ਉੱਤੇ ਮਾਪਿਤ) ਆਇਤਨ ਦਾ ਭਾਰ 11.69 ਗ੍ਰਾਮ ਪ੍ਰਾਪਤ ਕੀਤਾ ਗਿਆ।ਇਸ ਦੇ—
 - (i) ਮੂਲ ਅਨੁਪਾਤੀ ਸੂਤਰ (ii) ਅਣਵੀਂ ਪੁੰਜ ਅਤੇ (iii) ਅਣੁਸੂਤਰ ਦੀ ਗਣਨਾਂ ਕਰੋ।
- 1.35 CaCO੍ਹ ਜਲੀ HCl ਦੇ ਨਾਲ ਹੇਠ ਲਿਖੀ ਪ੍ਰਤੀਕਿਰਿਆ ਕਰਕੇ CaCl੍ਰ ਅਤੇ CO੍ਹ ਬਣਾਉਂਦਾ ਹੈ—

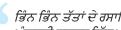
 $CaCO_3$ (s) + 2 HCl (aq) \rightarrow $CaCl_2$ (aq) + CO_2 (g) + H_2O (l) O.75 M HCl ਦੇ 25 mL ਦੇ ਨਾਲ ਪੂਰੀ ਪ੍ਰਤੀਕਿਰਿਆ ਕਰਨ ਦੇ ਲਈ $CaCO_3$ ਦੀ ਕਿੰਨੀ ਮਾਤਰਾ ਦੀ ਲੋੜ ਹੋਵੇਗੀ ?

ਪ੍ਰਯੋਗਸ਼ਾਲਾ ਵਿੱਚ ਕਲੋਗੇਨ ਦੀ ਤਿਆਰੀ ਮੈਂਗਨੀਜ਼ ਡਾਈਆੱਕਸਾਈਡ (MnO₂) ਦੀ ਜਲੀ HCl ਘੋਲ ਦੇ ਨਾਲ ਪ੍ਰਤੀਕਿਰਿਆ ਦੁਆਰਾ ਹੇਠ ਲਿਖੇ ਸਮੀਕਰਣ ਦੇ ਅਨੁਸਾਰ ਕੀਤੀ ਜਾਂਦੀ ਹੈ—

 $4 \text{ HCl}(aq) + \text{MnO}_2(s) \rightarrow 2\text{H}_2\text{O}(l) + \text{MnCl}_2(aq) + \text{Cl}_2$

5.0 g ਮੈਂਗਨੀਜ਼ ਡਾਈ ਆੱਕਸਾਈਡ ਦੇ ਨਾਲ HCl ਦੇ ਕਿੰਨੇ ਗ੍ਰਾਮ ਪ੍ਰਤੀਕਿਰਿਆ ਕਰਨਗੇ ?

जुिंट 2


ਪਰਮਾਣੂ ਦੀ ਬਣਤਰ

(STRUCTURE OF ATOM)

ਉਦੇਸ਼

ਇਸ ਯੂਨਿਟ ਦੇ ਅਧਿਐਨ ਤੋਂ ਬਾਅਦ ਤੁਸੀਂ

- ਇਲੈਕਟ੍ਰਾੱਨ, ਪ੍ਰੋਟਾੱਨ ਅਤੇ ਨਿਊਟ੍ਰਾੱਨ ਦੀ ਖੋਜ ਅਤੇ ਉਨ੍ਹਾਂ ਦੇ ਲੱਛਣਾਂ ਤੋਂ ਜਾਣੂ ਹੋ ਸਕੋਗੇ,
- ਥਾੱਮਸਨ, ਰਦਰਫੋਰਡ ਅਤੇ ਬੋਹਰ ਦੇ ਪਰਮਾਣੂ ਮਾਡਲਾਂ ਦਾ ਵਰਣਨ ਕਰ ਸਕੋਗੇ.
- ਪਰਮਾਣੂ ਦੇ ਕੁਆਟਮ ਯੰਤਰਿਕ ਮਾਡਲ ਦੇ ਮਹੱਤਵਪੂਰਣ ਲਛੱਣਾਂ ਨੂੰ ਸਮਝ ਸਕੋਗੇ,
- ਬਿਜਲੀ-ਚੁੰਬਕੀ ਵਿਕੀਰਣਾਂ ਦਾ ਸੁਭਾਅ ਅਤੇ ਪਲਾਂਕ ਦੇ ਕੁਆਟਮ ਸਿਧਾਂਤ ਨੂੰ ਸਮਝ ਸਕੋਗੇ,
- ਪ੍ਰਕਾਸ਼-ਬਿਜਲਈ ਪ੍ਰਭਾਵ ਅਤੇ ਪਰਮਾਣੂਆਂ ਦੇ ਸਪੈਕਟ੍ਰਮਾਂ ਦੇ ਲੱਛਣਾਂ ਦਾ ਵਰਣਨ ਕਰ ਸਕੋਗੇ,
- ਡੀ ਬਰਾੱਗਲੀ ਸਬੰਧ ਅਤੇ ਹਾਈਜ਼ਨਬਰਗ ਅਨਿਸ਼ਚਿਤਾ ਸਿਧਾਂਤ ਦਾ ਕਥਨ ਕਰ ਸਕੋਗੇ,
- ਪਰਮਾਣੂ ਆਰਬਿਟਲ ਨੂੰ ਕੁਆਟਮ ਸੰਖਿਆਵਾਂ ਦੇ ਰੂਪ ਵਿੱਚ ਪਰਿਭਾਸ਼ਿਤ ਕਰ ਸਕੋਗੇ।
- ਆੱਫ ਬੌ ਸਿਧਾਂਤ, ਪਾੱਲੀ ਦਾ ਰਾਖਵਾਂ ਸਿਧਾਂਤ ਅਤੇ ਹੰਡ ਦਾ ਅਧਿਕਤਮ ਬਹਕਤਾ ਨਿਯਮ ਦਾ ਵਰਣਨ ਕਰ ਸਕੋਗੇ,
- ਪਰਮਾਣੂਆਂ ਦੇ ਇਲੈਕਟ੍ਰਾਨਿਕ ਤਰਤੀਬ ਲਿਖ ਸਕੋਗੇ।

🍆 🕒 ਭਿੰਨ ਭਿੰਨ ਤੱਤਾਂ ਦੇ ਰਸਾਇਣਿਕ ਵਰਤਮਾਨ ਵਿੱਚ ਵਿਭਿੰਨਤਾ ਉਨ੍ਹਾਂ ਪਰਮਾਣੁਆਂ ਦੀ ਅੰਦਰੂਨੀ ਬਣਤਰ ਵਿੱਚ ਅੰਤਰ ਦੇ ਕਾਰਣ ਹੁੰਦੀ ਹੈ।

ਭਾਰਤੀ ਅਤੇ ਯੂਨਾਨੀ ਦਾਰਸ਼ਨਿਕਾ ਦੁਆਰਾ ਬਹੁਤ ਪਹਿਲਾਂ ਤੋਂ ਹੀ (1400 ਈ.ਪੁ.) ਪਰਮਾਣੁਆਂ ਦੀ ਹੋਂਦ ਨੂੰ ਪ੍ਰਸਤਾਵਿਤ ਕੀਤਾ ਗਿਆ ਸੀ। ਉਨ੍ਹਾਂ ਦਾ ਵਿਚਾਰ ਸੀ ਕਿ ਪਰਮਾਣੂ ਮਾਦਾ ਦੇ ਮੂਲ ਰਚਨਾਤਮਕ ਭਾਗ ਹੁੰਦੇ ਹਨ। ਉਨ੍ਹਾਂ ਦੇ ਅਨੁਸਾਰ ਪਦਾਰਥ ਦੇ ਲਗਾਤਾਰ ਵਿਭਾਜਨ ਤੋਂ ਆਖਰ ਨੂੰ ਪਰਮਾਣੂ ਪ੍ਰਾਪਤ ਹੁੰਦੇ ਹਨ, ਜਿਸ ਨੂੰ ਹੋਰ ਵਿਭਾਜਿਤ ਨਹੀਂ ਕੀਤਾ ਜਾ ਸਕਦਾ। 'ਪਰਮਾਣੂ' (atom) ਸ਼ਬਦ ਗਰੀਕ ਭਾਸ਼ਾ ਤੋਂ ਪੈਦਾ ਹੋਇਆ ਹੈ ਜਿਸ ਵਿੱਚ atomo ਦਾ ਭਾਵ ਨਾ ਕੱਟੇ ਜਾਣ ਵਾਲਾ (uncutable) ਜਾਂ 'ਅਭਾਜ' (non-divisible) ਹੁੰਦਾ ਹੈ।ਪਹਿਲਾਂ ਇਹ ਵਿਚਾਰ ਸਿਰਫ ਕਲਪਨਾ ਉੱਤੇ ਅਧਾਰਿਤ ਸਨ ਅਤੇ ਇਨ੍ਹਾਂ ਦਾ ਪ੍ਰਯੋਗਿਕ ਪਰੀਖਣ ਕਰ ਸਕਨਾਂ ਸੰਭਵ ਨਹੀਂ ਸੀ। ਬਹੁਤ ਸਮੇਂ ਤੱਕ ਇਹ ਵਿਚਾਰ ਕਿਸੇ ਪਰਿਮਾਣ ਤੋਂ ਬਿਨਾਂ ਇੰਜ ਹੀ ਚੱਲਦੇ ਰਹੇ, ਪਰੰਤੂ 18ਵੀਂ ਸਦੀ ਵਿੱਚ ਵਿਗਿਆਨੀਆਂ ਨੇ ਇਨ੍ਹਾਂ ਉੱਤੇ ਫਿਰ ਤੋਂ ਬਲ ਦੇਣਾ ਸ਼ੁਰੂ ਕਰ ਦਿੱਤਾ।

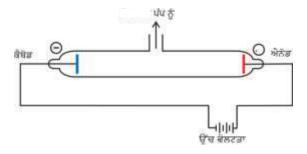
ਸੰਨ 1808 ਵਿੱਚ ਜਾੱਨ ਡਾਲਟਨ ਨਾਮ ਦੇ ਇੱਕ ਬਰਿਟਿਸ਼ ਅਧਿਆਪਕ ਨੇ ਪਹਿਲੀ ਵਾਰ ਵਿਗਿਆਨਿਕ ਅਧਾਰ ਤੇ ਮਾਦਾ ਦਾ ਪਰਮਾਣੂ ਸਿਧਾਂਤ ਸਾਹਮਾਣੇ ਰੱਖਿਆ। ਉਨ੍ਹਾਂ ਦਾ ਸਿਧਾਂਤ ਜਿਸਨੂੰ 'ਡਾਲਟਨ ਦਾ ਪਰਮਾਣੂ ਸਿਧਾਂਤ' ਕਿਹਾ ਜਾਂਦਾ ਹੈ, ਨੇ ਪਰਮਾਣ ਨੂੰ ਪਦਾਰਥ ਦਾ ਮਲ ਕਣ (ਯਨਿਟ−1) ਮੰਨਿਆ।

ਇਸ ਯੂਨਿਟ ਨੂੰ ਅਸੀਂ ਉਨ੍ਹਾਂ ਪ੍ਰਯੋਗਿਕ ਪ੍ਰੇਖਣਾਂ ਤੋਂ ਅਰੰਭ ਕੀਤਾ ਹੈ, ਜੋ 19ਵੀਂ ਸਦੀ ਦੇ ਅੰਤ ਅਤੇ 20ਵੀਂ ਸਦੀ ਦੇ ਸ਼ੁਰੂ ਵਿੱਚ ਵਿਗਿਆਨੀਆਂ ਦੁਆਰਾ ਕੀਤੇ ਗਏ ਸਨ। ਇਸ ਤੋਂ ਇਹ ਸਥਾਪਿਤ ਹੋਇਆ ਕਿ ਪਰਮਾਣੂਆਂ ਨੂੰ ਛੋਟੇ ਕਣਾਂ ਵਿੱਚ, ਭਾਵ ਇਲੈਕਟ੍ਰਾੱਨਾਂ, ਪ੍ਰੋਟਾੱਨਾਂ ਅਤੇ ਨਿਊਟ੍ਰਾਨਾਂ ਵਿੱਚ ਵਿਭਾਜਿਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਇਹ ਧਾਰਣਾ ਡਾਲਟਨ ਦੀ ਧਾਰਣਾਂ ਤੋਂ ਬਿਲਕੁੱਲ ਵੱਖ ਸੀ।ਉਸ ਸਮੇਂ ਵਿਗਿਆਨੀਆਂ ਦੇ ਸਾਹਮਣੇ ਹੇਠ ਲਿਖੀਆਂ ਮੁੱਖ ਸਮੁੱਸਿਆਵਾਂ ਸਨ-

- (i) ਪਰਮਾਣੂ ਦੇ ਉੱਪ−ਪਰਮਾਣਵੀਂ ਕਣਾਂ ਦੀ ਖੋਜ ਦੇ ਬਾਅਦ ਉਸਦੀ ਸਥਿਰਤਾ ਦਾ ਸਪਸ਼ਟੀਕਰਣ
- (ii) ਭੌਤਿਕ ਅਤੇ ਰਸਾਇਣਿਕ-ਦੋਵਾਂ ਗੁਣਾਂ ਵਿੱਚ ਇੱਕ ਤੱਤ ਦੀ ਦੂਜੇ ਤੱਤ ਤੋਂ ਭਿੰਨਤਾ ਦੀ ਤਲਨਾ,

- ਭਿੰਨ-ਭਿੰਨ ਪਰਮਾਣੂਆਂ ਦੇ ਸੰਯੋਜਨ ਵਿੱਚ ਭਿੰਨ ਭਿੰਨ ਕਿਸਮ ਦੇ ਅਣੁਆਂ ਦੇ ਬਣਨ ਦੀ ਵਿਆਖਿਆ ਅਤੇ,
- ਪਰਮਾਣੂਆਂ ਦੁਆਰਾ ਸੋਖਿਤ ਜਾਂ ਛੱਡੀਆਂ ਬਿਜਲੀ-ਚੁੰਬਕੀ ਵਿਕੀਰਣ ਦੀ ਉਤਪਤੀ ਅਤੇ ਸੁਭਾਅ ਨੂੰ ਸਮਝਣਾ।

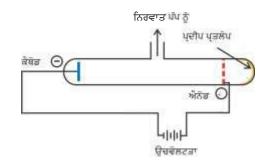
2.1 ਉੱਪ-ਪਰਮਾਣਵੀਂ ਕਣ


ਡਾਲਟਨ ਦੇ ਪਰਮਾਣੂ ਸਿਧਾਂਤ ਦੇ ਨਾਲ ਸੁਰੱਖਿਅਣ ਦੇ ਨਿਯਮ, ਸਥਿਰ ਸੰਘਟਨ ਦੇ ਨਿਯਮ ਅਤੇ ਬਹੁ ਗੁਣਿਤਾ ਅਨੁਪਾਤ ਦੇ ਨਿਯਮ ਦੀ ਸਫਲਤਾ ਪੂਰਵਕ ਵਿਆਖਿਆ ਕੀਤੀ ਜਾ ਸਕੀ। ਪਰ ਇਹ ਕਈ ਪ੍ਯੋਗਾਂ ਦੇ ਪਰਿਣਾਮਾਂ ਦੀ ਵਿਆਖਿਆ ਕਰਨ ਵਿੱਚ ਅਸਫਲ ਰਿਹਾ।ਉਦਾਹਰਣ ਵਜੋਂ-ਕੱਚ ਜਾਂ ਐਬੋਨਾਈਟ (ebonite) ਨੂੰ ਰੇਸ਼ਮ ਜਾਂ ਫਰ (fur) ਦੇ ਨਾਲ ਰਗੜਨ ਤੇ ਬਿਜਲੀ ਪੈਦਾ ਹੁੰਦੀ ਹੈ। ਭਾਵੇਂ ਇਨ੍ਹਾਂ ਪਰਿਣਾਮਾਂ ਬਿਜਲ-ਚੁੰਬਕੀ ਪਰਿਘਟਨਾਂ ਨੂੰ ਸਮਝਣਾਂ ਸੰਭਵ ਹੋਇਆ, ਪਰ ਇਸ ਤੋਂ ਸਿੱਧੇ ਤੌਰ ਤੇ ਪਰਮਾਣੂਆਂ ਅਤੇ ਅਣੂਆਂ ਦੇ ਬਿਜਲਈ-ਸੁਭਾਅ ਸਮਝਣ ਵਿੱਚ ਸਹਾਇਤਾ ਨਹੀਂ ਮਿਲੀ। 20ਵੀਂ ਸਦੀ ਵਿੱਚ ਭਿੰਨ ਭਿੰਨ ਕਿਸਮ ਦੇ ਕਈ ਉੱਪ-ਪਰਮਾਣਵੀਂ ਕਣਾਂ ਦੀ ਖੋਜ ਹੋਈ, ਇਸੇ ਲਈ ਇਸ ਭਾਗ ਵਿੱਚ ਅਸੀਂ ਕੇਵਲ ਦੋ ਕਣਾਂ-ਇਲੈਕਟ੍ਰਾਨ ਅਤੇ ਪ੍ਰੋਟਾਨ ਦੇ ਬਾਰੇ ਗੱਲ ਕਰਾਂਗੇ।

2.1.1 ਇਲੈਕਟ੍ਰਾੱਨ ਦੀ ਖੋਜ

ਸੰਨ 1830 ਵਿੱਚ ਮਾਈਕਲ ਫੈਰਾਡੇ ਨੇ ਦਰਸਾਇਆ ਕਿ ਜੇ ਕਿਸੇ ਘੋਲ ਵਿੱਚੋਂ ਬਿਜਲੀ ਲੰਘਾਈ ਜਾਂਦੀ ਹੈ, ਤਾਂ ਇਲੈਕਟ੍ਰਾਡਾਂ ਉੱਤੇ ਰਸਾਇਣਿਕ ਪ੍ਰਤੀਕਿਰਿਆਵਾਂ ਹੁੰਦੀਆਂ ਹਨ ਜਿਨ੍ਹਾਂ ਦੇ ਫਲਸਰੂਪ ਇਲੈਕਟ੍ਰਾਡਾਂ ਉੱਤੇ ਪਦਾਰਥ ਨਿਸਤਾਰਾ ਅਤੇ ਜਮਾਅ (deposition) ਹੁੰਦਾ ਹੈ। ਉਸ ਨੇ ਕੁੱਝ ਨਿਯਮ ਦੱਸੇ, ਜਿਨ੍ਹਾਂ ਦੇ ਬਾਰੇ ਤੁਸੀਂ 12ਵੀਂ ਜਮਾਤ ਵਿੱਚ ਪੜ੍ਹੋਗੇ। ਇਨ੍ਹਾਂ ਪਰਿਣਾਮਾਂ ਨਾਲ ਬਿਜਲੀ ਦੀ ਕਣੀਂ ਪ੍ਰਕਿਰਤੀ ਦੇ ਬਾਰੇ ਪਤਾ ਲੱਗਦਾ ਹੈ।

ਗੈਸਾਂ ਵਿੱਚ ਬਿਜਲੀ-ਵਿਸਰਜਨ ਆਦਿ ਪ੍ਰਯੋਗਾਂ ਦੇ ਪਰਿਣਾਮਾਂ ਤੋਂ ਪਰਮਾਣੂ ਦੀ ਬਣਤਰ ਦੇ ਬਾਰੇ ਹੋਰ ਜਾਣਕਾਰੀ ਮਿਲੀ. ਇਨ੍ਹਾਂ ਪਰਿਣਾਮਾਂ ਦੀ ਚਰਚਾ ਕਰਨ ਤੋਂ ਪਹਿਲਾਂ ਚਾਰਜਿਤ ਕਣਾਂ ਦੇ ਵਤੀਰੇ ਦੇ ਬਾਰੇ ਵਿੱਚ ਸਾਨੂੰ ਇਹ ਮੂਲ ਨਿਯਮ ਧਿਆਨ ਵਿੱਚ ਰੱਖਣਾ ਪਵੇਗਾ ਕਿ ਸਮਾਨ ਚਾਰਜ ਇੱਕ ਦੂਜੇ ਨੂੰ ਪ੍ਤੀਕਰਸ਼ਿਤ ਕਰਦੇ ਹਨ ਅਤੇ ਉਲਟ ਚਾਰਜ ਇੱਕ ਦੂਜੇ ਨੂੰ ਆਕਰਸ਼ਿਤ ਕਰਦੇ ਹਨ।


ਉਨ੍ਹੀਵੀਂ ਸਦੀ ਦੇ ਅਠਵੇਂ ਦਹਾਕੇ ਵਿੱਚ, ਕਈ ਵਿਗਿਆਨੀਆਂ, ਵਿਸ਼ੇਸ਼ ਕਰਕੇ ਫੈਰਾਡੇ ਨੇ ਅੰਸ਼ਿਕ ਰੂਪ ਵਿੱਚ ਨਿਰਵਾਯੂ ਟਿਊਬ, ਜਿਨ੍ਹਾਂ ਨੂੰ ਕੈਥੋਡ ਕਿਰਣ ਟਿਊਬ ਕਿਹਾ ਜਾਂਦਾ ਹੈ, ਵਿੱਚ ਬਿਜਲੀ-ਵਿਸਰਜਨ ਦਾ ਅਧਿਐਨ ਸ਼ੁਰੂ ਕੀਤਾ। ਇਸ ਨੂੰ ਚਿੱਤਰ 2.1 (ੳ) ਵਿੱਚ ਦਰਸਾਇਆ ਗਿਆ ਹੈ। ਕੈਥੋਡ ਕਿਰਣ ਟਿਊਬ ਕੱਚ ਦੀ ਬਣੀ ਹੁੰਦੀ ਹੈ, ਜਿਸ ਵਿੱਚ ਧਾਤ ਦੇ ਦੋ ਪਤਲੇ ਟੁਕੜੇ (ਜਿਨ੍ਹਾਂ ਨੂੰ ਇਲੈਕਟ੍ਰਾਡ ਕਹਿੰਦੇ ਹਨ।) ਸੀਲ ਕੀਤੇ ਹੁੰਦੇ ਹਨ।ਗੈਸਾਂ ਵਿੱਚ ਬਿਜਲੀ-ਵਿਸਰਜਨ ਨੂੰ ਸਿਰਫ ਘੱਟ ਦਾਬ ਅਤੇ ਉੱਚ ਵੈਲਟੇਜ ਤੇ ਪ੍ਰੇਖਿਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਭਿੰਨ ਭਿੰਨ ਗੈਸਾਂ ਦੇ ਦਾਬ ਨੂੰ ਨਿਰਵਾਯੂ ਕਰਕੇ ਨਿਯੰਤਰਿਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਇਸ

ਚਿੱਤਰ 2.1 (ੳ) ਇੱਕ ਕੈਥੋਡ ਕਿਰਣ ਵਿਸਰਜਨ ਟਿਊਬ

ਤਰ੍ਹਾਂ ਜਦ ਇਲੈਕਟ੍ਰਾਡਾਂ ਤੇ ਉਚੀ ਵੋਲਟਤਾ ਲਾਗੂ ਕੀਤੀ ਗਈ ਤਾਂ ਟਿਊਬ ਵਿੱਚ ਕਣਾਂ ਦੀ ਧਾਰਾ ਦੇ ਦੁਆਰਾ ਰਿਣਾਤਮਕ ਇਲੈਕਟ੍ਰਾਡ (ਕੈਥੋਡ) ਤੋਂ ਧਨਾਤਮਕ ਇਲੈਕਟ੍ਰਾਡ (ਐਨੋਡ) ਦੇ ਵੱਲ ਬਿਜਲੀ ਦਾ ਪ੍ਵਾਹ ਸ਼ੁਰੂ ਹੋ ਗਿਆ। ਇਨ੍ਹਾਂ ਨੂੰ ਕੈਥੋਡ ਕਿਰਣਾਂ ਜਾਂ ਕੈਥੋਡ ਕਿਰਣ ਕਣ ਕਹਿੰਦੇ ਹਨ।

ਕੈਥੋਡ ਤੋਂ ਐਨੋਡ ਤੱਕ ਬਿਜਲੀ ਧਾਰਾ ਦੇ ਪ੍ਵਾਹ ਦੀ ਵਧੇਰੇ ਪਰਖ ਦੇ ਲਈ ਐਨੋਡ ਵਿੱਚ ਛੇਕ ਅਤੇ ਐਨੋਡ ਦੀ ਪਿੱਛੇ ਟਿਊਬ ਉੱਤੇ ਸਵੈਂ-ਦੀਪਤ ਪਦਾਰਥ (ਜਿੰਕ, ਸਟਫਾਈਡ) ਦਾ ਲੇਪ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਜਦੋਂ ਇਹ ਕਿਰਣਾ ਐਨੋਡ ਦੇ ਛੇਕ ਵਿੱਚੋਂ ਲੰਘ ਕੇ ਜਿੰਕ ਸਲਫਾਈਡ ਦੀ ਪਰਤ ਉੱਤੇ ਟਕਾਉਂਦੀਆਂ ਹਨ ਤਾਂ ਉੱਥੇ ਇੱਕ ਚਮਕੀਲਾ ਚਿੰਨ੍ਹ ਬਣ ਜਾਂਦਾ ਹੈ (TV ਵਿੱਚ ਵੀ ਅਜਿਹਾ ਹੀ ਹੁੰਦਾ ਹੈ), ਚਿੱਤਰ 2.1 (ਅ)। ਇਸ ਪ੍ਰਯੋਗ ਦੇ ਪਰਿਣਾਮ ਸੰਖੇਪ ਵਿੱਚ ਹੇਠ ਲਿਖੇ ਹਨ—

ਚਿੱਤਰ 2.1 (ਅ) ਛੇਕ ਵਾਲੀ ਇੱਕ ਕੈਥੋਡ ਕਿਰਣ ਵਿਸਰਜਨ ਟਿਊਬ

- (i) ਕੈਥੋਡ ਕਿਰਣਾਂ (cathode rays) ਕੈਥੋਡ ਤੋਂ ਸ਼ੁਰੂ ਹੋ ਕੇ ਐਨੋਡ ਦੇ ਵੱਲ ਚੱਲਦੀਆਂ ਹਨ।
- (ii) ਇਹ ਕਿਰਣਾਂ ਖੁਦ ਵਿਖਾਈ ਨਹੀਂ ਦਿੰਦੀਆਂ, ਪਰੰਤੂ ਇਨ੍ਹਾਂ ਦੇ ਵਿਹਾਰ ਨੂੰ ਗੈਸਾਂ ਅਤੇ ਕੁਝ ਨਿਸ਼ਚਿਤ ਕਿਸਮ ਦੇ ਪਦਾਰਥਾਂ (ਪ੍ਰਤੀ ਦੀ ਪਤ ਅਤੇ ਸਵੈ ਦੀਪਤ) ਦੀ ਮੌਜੂਦਗੀ ਵਿੱਚ ਵੇਖਿਆ ਜਾ ਸਕਦਾ ਹੈ। ਇਹ ਪਦਾਰਥ ਇਨ੍ਹਾਂ ਨਾਲ ਟਕਰਾ ਕੇ ਚਮਕਦੇ ਹਨ।ਟੈਲੀਵਿਜ਼ਨ ਚਿੱਤਰ ਟਿਊਬ ਕੈਥੋਡ ਕਿਰਣ ਟਿਊਬ ਹੁੰਦੀ ਹੈ। ਟੀ.ਵੀ. ਪੜ੍ਹਦਾ ਜੋ ਪ੍ਰਤੀਦੀਪਤ ਅਤੇ ਸਵੈਦੀਪਤ ਪਦਾਰਥਾਂ ਨਾਲ ਲੇਪਿਤ ਹੁੰਦਾ ਹੈ, ਉੱਤੇ ਚਿੱਤਰ ਪਤਿਦੀਪਤ ਹੁੰਦੇ ਹਨ।

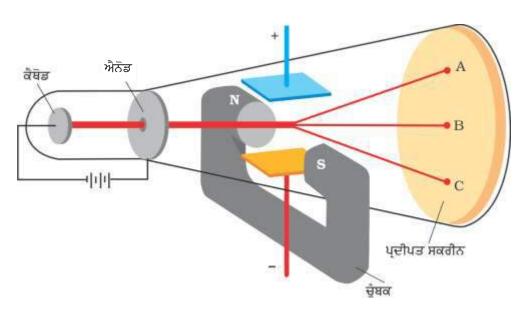
- (iii) ਬਿਜਲਈ ਅਤੇ ਚੁੰਬਕੀ ਖੇਤਰਾਂ ਦੀ ਗੈਰ ਹਾਜਰੀ ਵਿੱਚ ਇਹ ਕਿਰਣਾਂ ਸਿੱਧੀ ਰੇਖਾ ਵਿੱਚ ਚੱਲਦੀਆਂ ਹਨ।
- (iv) ਬਿਜਲਈ ਅਤੇ ਚੁੰਬਕੀ ਖੇਤਰਾਂ ਦੀ ਮੌਜੂਦਗੀ ਵਿੱਚ ਕੈਥੋਡ ਕਿਰਣਾ ਦਾ ਵਿਹਾਰ ਰਿਣਚਾਰਜਿਤ ਕਣਾਂ ਵਾਲਾ ਵਿਹਾਰ ਹੁੰਦਾ ਹੈ, ਜੋ ਇਹ ਸਿੱਧ ਕਰਦਾ ਹੈ ਕਿ ਕੈਥੋਡ ਕਿਰਣਾਂ ਰਿਣਚਾਰਿਜਿਤ ਕਣ ਹੁੰਦੇ ਹਨ ਜਿਨ੍ਹਾਂ ਨੂੰ ਇਲੈਕਟ੍ਰਾੱਨ ਕਹਿੰਦੇ ਹਨ।
- (v) ਕੈਥੋਡ ਕਿਰਣ ਟਿਊਬ ਦੇ ਇਲੈਕਟ੍ਰਾਡਾਂ ਦੇ ਪਦਾਰਥ ਅਤੇ ਮੌਜੂਦ ਗੈਸ ਦੇ ਸੁਭਾਅ ਉੱਤੇ ਕੈਥੋਡ ਕਿਰਣਾਂ (ਇਲੈਕਟ੍ਰਾੱਨ) ਦੇ ਲੱਛਣ ਨਿਰਭਰ ਨਹੀਂ ਕਰਦੇ।

ਉਪਰੋਕਤ ਪਰਿਣਾਮਾਂ ਤੋਂ ਇਹ ਨਿਸ਼ਕਰਸ਼ ਨਿਕਲਦਾ ਹੈ ਕਿ ਇਲੈਕਟ੍ਰਾਨ ਸਾਰੇ ਪਰਮਾਣੁਆਂ ਦੇ ਮੂਲ ਘਟਕ ਹਨ।

2.1.2 ਇਲੈਕਟ੍ਰਾਨ ਦਾ ਚਾਰਜ ਪੁੰਜ ਅਨੁਪਾਤ

ਬਰਿਟਿਸ਼ ਭੌਤਿਕ ਵਿਗਿਆਨੀ ਜੇ.ਜੇ. ਥਾੱਮਸਨ ਨੇ ਸੰਨ 1897 ਵਿੱਚ ਕੈਥੋਡ ਕਿਰਣ ਟਿਊਬ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਅਤੇ ਇਲੈਕਟ੍ਰਾੱਨਾਂ ਦੇ ਪੱਥ ਅਤੇ ਇੱਕ ਦੂਜੇ ਦੇ ਲੰਘ ਦਿਸ਼ਾ ਵਿੱਚ ਬਿਜਲਈ ਅਤੇ ਚੁੰਬਕੀ ਖੇਤਰ ਲਾਗੂ ਕਰਕੇ ਬਿਜਲਈ ਚਾਰਜ (e) ਅਤੇ ਪੁੰਜ (m_e) ਦੇ ਵਿੱਚ ਅਨੁਪਾਤ ਨੂੰ ਮਾਪਿਆ (ਚਿੱਤਰ 2.2)। ਥਾੱਮਸਨ ਨੇ ਇਹ ਤਰਕ ਦਿੱਤਾ ਕਿ ਬਿਜਲਈ ਅਤੇ ਚੁੰਬਕੀ ਖੇਤਰਾਂ ਦੀ ਮੌਜੂਦਗੀ ਵਿੱਚ ਇਲੈਕਟ੍ਰਾਨਾਂ ਦੇ ਆਪਣੇ ਪਥ ਤੋਂ ਵਿਚਲਨ ਦੀ ਮਾਤਰਾ ਹੇਠ ਲਿਖੀਆਂ ਗੱਲਾਂ ਉੱਤੇ ਨਿਰਭਰ ਕਰਦੀ ਹੈ—

 ਕਣ ਉੱਤੇ ਰਿਣ ਚਾਰਜ ਦਾ ਮਾਨ ਵਧੇਰੇ ਹੋਣ ਤੇ ਬਿਜਲਈ ਅਤੇ ਚੁੰਬਕੀ ਖੇਤਰਾਂ ਦੇ ਨਾਲ ਅੰਤਰ ਕਿਰਿਆ ਵੱਧ ਜਾਂਦੀ ਹੈ ਇਸ ਤਰ੍ਹਾਂ ਵਿਚਲਨ ਵਧੇਰੇ ਹੁੰਦਾ ਹੈ।


- (ii) ਕਣ ਦਾ ਪੁੰਜ ਘੱਟ ਹੋਣ ਨਾਲ ਵਿਚਲਨ ਵਧੇਰੇ ਹੁੰਦਾ ਹੈ।
- (iii) ਬਿਜਲਈ ਅਤੇ ਚੁੰਬਕੀ ਖੇਤਰ ਦੀ ਪ੍ਰਬਲਤਾ ਇਲੈਕਟ੍ਰਾਡਾਂ ਉੱਤੇ ਵੋਲਟਤਾ ਅਤੇ ਚੁੰਬਕੀ ਖੇਤਰ ਦੀ ਪ੍ਰਬਲਤਾ ਵਧਾਉਣ ਨਾਲ ਇਲੈਕਟ੍ਰਾਨਾਂ ਦਾ ਮੂਲ ਪਥ ਤੋਂ ਵਿਚਲਨ ਵੱਧ ਜਾਂਦਾ ਹੈ।

ਜਦੋਂ ਸਿਰਫ ਬਿਜਲਈ ਖੇਤਰ ਲਾਇਆ ਜਾਂਦਾ ਹੈ, ਤਾਂ ਇਲੈਕਟ੍ਰਾਨ ਆਪਣੇ ਪਥ ਤੋਂ ਹਟ ਕੇ ਬਿੰਦੂ A ਉੱਤੇ ਕੈਥੋਡ ਕਿਰਣ ਟਿਊਬ ਨਾਲ ਟਕਰਾਉਂਦੇ ਹਨ। ਇਸੇ ਤਰ੍ਹਾਂ ਜਦੋਂ ਸਿਰਫ ਚੁੰਬਕੀ ਖੇਤਰ ਲਾਗੂ ਕੀਤਾ ਜਾਂਦਾ ਹੈ, ਤਾਂ ਇਲੈਕਟ੍ਰਾਨ ਬਿੰਦੂ C ਉੱਤੇ ਕੈਥੋਡ ਕਿਰਣ ਟਿਊਬ ਨਾਲ ਟਕਰਾਉਂਦੇ ਹਨ। ਬਿਜਲਈ ਅਤੇ ਚੁੰਬਕੀ ਖੇਤਰ ਦੀ ਪ੍ਬਲਤਾ ਦੇ ਸਾਵਧਾਨੀ ਪੂਰਵਕ ਸੰਤੁਲਨ ਨਾਲ ਇਨ੍ਹਾਂ ਖੇਤਰਾਂ ਦੀ ਗੈਰ ਹਾਜਰੀ ਵਿੱਚ ਬਿਨਾਂ ਵਿਚਲਿਤ ਪਥ ਉੱਤੇ ਇਲੈਕਟ੍ਰਾਨਾਂ ਨੂੰ ਵਾਪਸ ਲਿਆਇਆ ਜਾ ਸਕਦਾ ਹੈ। ਇਹ ਪਰਦੇ ਉੱਤੇ ਬਿੰਦੂ B ਉੱਤੇ ਟਕਰਾਉਂਦਾ ਹੈ।

ਬਿਜਲਈ ਖੇਤਰ ਦੀ ਪ੍ਰਬਲਤਾ ਜਾਂ ਚੁੰਬਕੀ ਖੇਤਰ ਦੀ ਪ੍ਰਬਲਤਾ ਵਿੱਚੋਂ ਕਿਸੇ ਇੱਕ ਦੀ ਮੌਜੂਦਗੀ ਵਿੱਚ ਇਲੈਕਟ੍ਰਾੱਨਾਂ ਦੇ ਵਿਚਲਨ ਦੀ ਮਾਤਰਾ ਦਾ ਸਹੀ ਮਾਪ ਕਰਕੇ ਅਤੇ ਉਸ ਦੇ ਪ੍ਰੇਖਣ ਤੋਂ ਥਾੱਮਸਨ e/mੂ ਦੇ ਮਾਨ ਦਾ ਨਿਰਧਾਰਣ ਕਰ ਸਕੇ—

$$\frac{e}{m_e}$$
 = 1.758820 × 10¹¹ C kg⁻¹ (2.1)

ਜਿੱਥੇ m_e ਇਲੈਕਟ੍ਰਾੱਨ ਦਾ ਪੁੰਜ kg ਵਿੱਚ ਅਤੇ ਉਸ ਉੱਤੇ ਚਾਰਜ ਕੂਲਾੱਮ (c) ਵਿੱਚ ਹੈ। ਕਿਉਂਕਿ ਇਲੈਕਟ੍ਰਾਨ ਰਿਣ ਚਾਰਜਿਤ ਹੁੰਦੇ ਹਨ, ਇਸ ਲਈ ਇਲੈਕਟ੍ਰਾਨ ਉੱਤੇ ਅਸਲ ਵਿੱਚ (ਰਿਣ) ਚਾਰਜ-e ਹੈ।

ਚਿੱਤਰ. 2.2 ਇਲੈਕਟ੍ਰਾਨ ਦੇ ਚਾਰਜ ਅਤੇ ਪੰਜ ਦੇ ਵਿੱਚ ਅਨੁਪਾਤ ਦਾ ਨਿਰਧਾਰਣ ਕਰਨ ਦਾ ਉਪਕਰਣ

2.1.3 ਇਲੈਕਟ਼ਾੱਨਾਂ ਉੱਤੇ ਚਾਰਜ

ਆਰ.ਏ.ਮਿਲਿਕਨ (1868–1953) ਨੇ ਇਲੈਕਟ੍ਰਾੱਨ ਉੱਤੇ ਚਾਰਜ ਦੇ ਨਿਰਧਾਰਣ ਦੇ ਲਈ ਇੱਕ ਵਿਧੀ ਤਿਆਰ ਕੀਤੀ, ਜੋ ਤੇਲ ਬੂੰਦ ਪ੍ਯੋਗ (1906–14) ਅਖਵਾਉਂਦਾ ਹੈ।

ਉਨ੍ਹਾਂ ਨੇ ਵੇਖਿਆ ਕਿ ਇਲੈਕਟ੍ਰਾੱਨ ਉੱਤੇ ਚਾਰਜ -1.6×10^{-19} C ਬਿਜਲੀ ਚਾਰਜ ਦਾ ਨਵੀਨਤਮ ਮਾਨ 1.6022×10^{-19} C ਹੈ। ਥਾੱਮਸਨ ਦੇ e/m_e ਅਨੁਪਾਤ ਦੇ ਮਾਨ ਨਾਲ ਇਨ੍ਹਾਂ ਪਰਿਣਾਮਾਂ ਨੂੰ ਮਿਲਾ ਕੇ ਇਲੈਕਟ੍ਰਾਨ ਦਾ ਪੁੰਜ (m_e) ਨਿਰਧਾਰਿਤ ਕੀਤਾ।

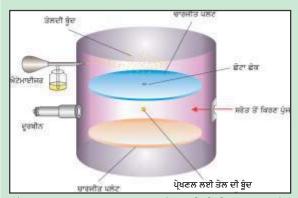
$$m_{\rm e} = \frac{e}{e/m_{\rm e}} = \frac{1.6022 \times 10^{-19} \text{C}}{1.758820 \times 10^{11} \text{C kg}^{-1}}$$

= 9.1094×10⁻³¹ kg (2.2)

2.1.4 ਪ੍ਰੋਟਾੱਨ ਅਤੇ ਨਿਊਟ੍ਰਾਨ ਦੀ ਖੋਜ

ਪਰਿਵਰਤਿਤ ਕੈਥੋਡ ਕਿਰਣ ਟਿਊਬ ਵਿੱਚ ਕੀਤੇ ਗਏ ਵਿਸਰਜਨ ਤੋਂ ਧਨਚਾਰਜਿਤ ਕਣਾਂ ਦੀ ਖੋਜ ਹੋਈ, ਜਿਨ੍ਹਾਂ ਨੂੰ ਕੈਨਾਲ ਕਿਰਣਾਂ ਵੀ ਕਿਹਾ ਜਾਂਦਾ ਹੈ। ਇਨ੍ਹਾਂ ਧਨਚਾਰਜਿਤ ਕਿਰਣਾਂ ਦੇ ਲੱਛਣ ਹੇਠ ਲਿਖੇ ਹਨ—

- ਕੈਥੋਡ ਕਿਰਣਾਂ ਦੇ ਉਲਟ, ਧਨਚਾਰਜਿਤ ਕਣ ਕੈਥੋਡ ਕਿਰਣ ਟਿਊਬ ਵਿੱਚ ਮੌਜੂਦ ਗੈਸ ਦੇ ਸੁਭਾਅ ਉੱਤੇ ਨਿਰਭਰ ਕਰਦੇ ਹਨ। ਇਹ ਸਧਾਰਣ ਧਨਚਾਰਜਿਤ ਗੈਸੀ ਆਇਨ ਹੁੰਦੇ ਹਨ।
- (ii) ਕਣਾਂ ਦੇ ਚਾਰਜ ਅਤੇ ਪੁੰਜ ਦਾ ਅਨੁਪਾਤ ਉਸ ਗੈਸ ਉੱਤੇ ਨਿਰਭਰ ਕਰਦਾ ਹੈ, ਜਿਸਤੋਂ ਇਹ ਉਤਪੰਨ ਹੁੰਦੇ ਹਨ।
- (iii) ਕੁਝ ਧਨਚਾਰਜਿਤ ਕਣ ਬਿਜਲਈ ਚਾਰਜ ਦੀ ਮੂਲ ਇਕਾਈ ਦੇ ਗੁਣਕ ਹੁੰਦੇ ਹਨ।
- (iv) ਚੁੰਬਕੀ ਅਤੇ ਬਿਜਲਈ ਖੇਤਰਾਂ ਵਿੱਚ ਇਨ੍ਹਾਂ ਕਣਾਂ ਦਾ ਵਿਹਾਰ ਇਲੈਕਟ੍ਰਾਨ ਜਾਂ ਕੈਥੋਡ ਕਿਰਣ ਦੇ ਲਈ ਪ੍ਰੇਖਿਤ ਵਿਹਾਰ ਦੇ ਉਲਟ ਹੈ।


ਸਭ ਤੋਂ ਛੋਟਾ ਅਤੇ ਹਲਕਾ ਧਨ ਆਇਨ ਹਾਈਡ੍ਰੋਜਨ ਗੈਸ ਤੋਂ ਪ੍ਰਾਪਤ ਹੋਇਆ ਸੀ ਇਸ ਨੂੰ ਪ੍ਰੋਟਾੱਨ ਕਹਿੰਦੇ ਹਨ। ਇਸ ਧਨਚਾਰਜਿਤ ਕਣ ਦੀ ਪੁਸ਼ਟੀ ਸੰਨ 1919 ਵਿੱਚ ਹੋਈ ਸੀ। ਬਾਅਦ ਵਿੱਚ ਪਰਮਾਣੂ ਵਿੱਚ ਇੱਕ ਬਿਜਲਈ ਉਦਾਸੀਨ ਕਣ ਦੀ ਜਰੂਰਤ ਮਹਿਸੂਸ ਕੀਤੀ ਗਈ। ਇਸ ਕਣ ਦੀ ਖੋਜ ਸੰਨ 1932 ਵਿੱਚ ਚੈਡਵਿਕ ਨੇ ਬੈਰੀਲਿਅਮ ਉੱਤੇ α – ਕਣਾਂ ਦੇ ਟਕਰਾਉਣ ਤੋਂ ਕੀਤੀ। ਜਦੋਂ ਪ੍ਰੋਟਾੱਨ ਦੇ ਭਾਰ ਤੋਂ ਕੁਝ ਜਿਆਦਾ ਭਾਰ ਵਾਲੇ ਬਿਜਲਈ ਉਦਾਸੀਨ ਕਣ ਉਤਸਰਜਿਤ ਹੋਏ। ਉਨ੍ਹਾਂ ਨੇ ਇਨ੍ਹਾਂ ਕਣਾਂ ਨੂੰ ਨਿਊਟ੍ਰਾੱਨ ਕਿਹਾ। ਇਨ੍ਹਾਂ ਮੂਲ ਕਣਾਂ ਦੇ ਮਹੱਤਵਪੂਰਣ ਗੁਣ ਸਾਰਣੀ 2.1 ਵਿੱਚ ਦਿੱਤੇ ਗਏ ਹਨ।

2.2 ਪਰਮਾਣੂ ਮਾੱਡਲ

ਪੂਰਵ ਭਾਗਾਂ ਵਿੱਚ ਦੱਸੇ ਗਏ ਪ੍ਰਯੋਗਾਂ ਤੋਂ ਪ੍ਰਾਪਤ ਪ੍ਰੇਖਣਾਂ ਤੋਂ ਇਹ ਸੁਝਾਅ ਮਿਲਿਆ ਕਿ ਡਾਲਟਨ ਦੇ ਅਭਾਜ ਪਰਮਾਣੂ ਵਿੱਚ

ਮਿਲੀਕਨ ਦੀ ਤੇਲ ਬੁੰਦ ਵਿਧੀ

ਇਸ ਵਿਧੀ ਵਿੱਚ ਕਣੀਕਰਣ (atomizer) ਦੁਆਰਾ ਉਤਪੰਨ ਕੁਹਾਲੇ ਦੇ ਰੂਪ ਵਿੱਚ ਤੇਲ ਦੀਆਂ ਬੁੰਦਾਂ ਨੂੰ ਬਿਜਲੀ ਸੰਘਨਿਤੱਰ (condenser) ਦੇ ਉੱਪਰਲੀ ਪਲੇਟ ਵਿੱਚ ਮੌਜੂਦ ਛੋਟੇ ਜਿਹੇ ਛੇਕ ਵਿੱਚੋਂ ਲੰਘਾਇਆ ਜਾਂਦਾ ਹੈ। ਇਨ੍ਹਾਂ ਬੁੰਦਾਂ ਦੇ ਹੇਠਾਂ ਵੱਲ ਗਤੀ ਨੂੰ ਮਾਈਕ੍ਰੋਮੀਟਰਯੁਕਤ ਦਰਬੀਨ ਨਾਲ ਵੇਖਿਆ ਗਿਆ। ਇਨ੍ਹਾਂ ਬੁੰਦਾਂ ਦੇ ਡਿੱਗਣ ਦੀ ਦਰ ਨੂੰ ਮਾਪ ਦੇ ਮਿਲਿਕਨ ਤੇਲ ਦੀਆਂ ਬੁੰਦਾਂ ਦੇ ਪੁੰਜ ਨੂੰ ਮਾਪ ਸਕੇ।ਚੈਂਬਰ ਦੇ ਅੰਦਰ ਦੀ ਹਵਾ ਨੂੰ X- ਕਿਰਣ ਪੁੰਜ ਪ੍ਰਵਾਹਿਤ ਕਰਕੇ ਆਇਨਿਤ ਕੀਤਾ ਗਿਆ। ਗੈਸੀ ਆਇਨਾਂ ਅਤੇ ਤੇਲ ਬੁੰਦਾਂ ਦੇ ਟਕਰਾਉਣ ਨਾਲ ਤੇਲ ਬੁੰਦਾਂ ਉੱਤੇ ਬਿਜਲਈ ਚਾਰਜ ਉਤਪੰਨ ਹੋਇਆ।ਤੇਲ ਦੀਆਂ ਇਨ੍ਹਾਂ ਬੁੰਦਾਂ ਉੱਤੇ ਬਿਜਲਈ ਚਾਰਜ X– ਕਿਰਣਾਂ ਦੁਆਰਾ ਉਤਪੰਨ ਟਕਰਾਉਣ ਵਾਲੇ ਆਇਨਾਂ ਦੁਆਰਾ ਅਪਣਾਇਆ ਗਿਆ। ਇਨ੍ਹਾਂ ਚਾਰਜਿਤ ਤੇਲ ਦੀਆਂ ਬੰਦਾਂ ਦਾ ਡਿਗਣਾਂ ਰੋਕਿਆ ਜਾ ਸਕਦਾ ਹੈ, ਪ੍ਵੇਗਿਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ ਜਾਂ ਮੰਦਿਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਇਹ ਬੁੰਦਾਂ ਉੱਤੇ ਚਾਰਜ ਅਤੇ ਪਲੇਟ ਉੱਤੇ ਲਾਗੂ ਵੋਲਟਤਾ ਦੀ ਧਰੁਵਣਤਾ ਅਤੇ ਪ੍ਰਬਲਤਾ ਉੱਤੇ ਨਿਰਭਰ ਕਰਦਾ ਹੈ। ਤੇਲ ਦੀਆਂ ਬੰਦਾਂ ਦੀ ਗਤੀ ਉੱਤੇ ਬਿਜਲਈ ਖੇਤਰ ਪ੍ਰਬਲਤਾ ਦੇ ਪ੍ਰਭਾਵ ਨੂੰ ਧਿਆਨ ਪੂਰਵਕ ਮਾਪ ਦੇ ਮਿਲਿਕਨ ਨੇ ਇਹ ਨਿਸ਼ਕਰਸ਼ ਕੱਢਿਆ ਕਿ ਬੁੰਦਾਂ ਉੱਤੇ ਬਿਜਲਈ ਚਾਰਜ (*q*) ਦਾ ਪਰਿਮਾਣ ਹਮੇਸ਼ਾ ਬਿਜਲਈ ਚਾਰਜ, (e) ਦਾ ਗੁਣਾਂਕ ਹੁੰਦਾ ਹੈ,

ਚਿੱਤਰ 2.3 ਚਾਰਜ 'e' ਮਾਪਨ ਦੇ ਲਈ ਮਿਲਿਕਨ ਦਾ ਤੇਲ ਦੀ ਬੂੰਦ ਉਪਕਰਣ।ਚੈਂਬਰ ਵਿੱਚ ਗਤੀਮਾਨ ਤੇਲ ਦੀ ਬੂੰਦ ਉੱਤੇ ਕਾਰਜਕਾਰੀ ਬਲ: ਗੁਰੂਤਾਕਰਸ਼ਣ, ਬਿਜਲੀ ਦੇ ਕਾਰਣ ਸਥਿਰ ਬਿਜਲਈ ਵਿਸਕਾਸਿਤਾ ਖਿੱਚਣ ਬਲ

ਧਨਾਤਮਕ ਅਤੇ ਰਿਣਾਤਮਕ ਚਾਰਜਾਂ ਵਾਲੇ ਉਪ-ਪਰਮਾਣਵੀਂ (sub atomic) ਕਣ ਹੁੰਦੇ ਹਨ। ਇਨ੍ਹਾਂ ਚਾਰਜਿਤ ਕਣਾਂ ਦੀ ਵੰਡ ਦੀ ਵਿਆਖਿਆ ਕਰਨ ਦੇ ਲਈ ਭਿੰਨ ਭਿੰਨ ਪਰਮਾਣੂ ਮਾੱਡਲ ਪੇਸ਼ ਕੀਤੇ ਗਏ। ਭਾਵੇਂ ਇਨ੍ਹਾਂ ਵਿੱਚੋਂ ਹਰ ਮਾੱਡਲ ਦੁਆਰਾ ਕਣਾਂ ਦੀ ਸਥਿਰਤਾ ਦੀ ਵਿਆਖਿਆ ਨਹੀਂ ਕੀਤੀ ਜਾ ਸਕੀ। ਇਨ੍ਹਾਂ ਵਿੱਚੋਂ ਦੋ ਮਾੱਡਲ ਜੇ. ਜੇ ਥਾੱਮਸਨ ਅਤੇ ਅਰਨੈਸਟ ਰਦਰਫੋਰਡ ਦੁਆਰਾ ਪ੍ਰਸਤਾਵਿਤ ਕੀਤੇ ਗਏ ਸਨ, ਜੋ ਇਸ ਤਰ੍ਹਾਂ ਹਨ—

2.2.1 ਪਰਮਾਣੂ ਦਾ ਥਾੱਮਸਨ ਮਾੱਡਲ

ਸੰਨ 1898 ਵਿੱਚ ਜੇ.ਜੇ. ਥਾੱਮਸਨ ਨੇ ਪ੍ਰਸਤਾਵਿਤ ਕੀਤਾ ਕਿ ਪਰਮਾਣੂ ਇੱਕ ਸਮਾਨ ਚਾਰਜਿਤ ਗੋਲਾ (ਅਰਧ ਵਿਆਸ ਲਗਪਗ 10⁻¹⁰ m) ਹੁੰਦਾ ਹੈ ਜਿਸ ਵਿੱਚ ਧਨਚਾਰਜ ਸਮਾਨ ਰੂਪ ਵਿੱਚ ਵਿਤਰਤ ਰਹਿੰਦਾ ਹੈ। ਇਸ ਦੇ ਉੱਤੇ ਇਲੈਕਟ੍ਰਾਨ ਇਸ ਤਰ੍ਹਾਂ ਸਥਿਤ ਹੁੰਦੇ ਹਨ ਕਿ ਉਸ ਨਾਲ ਸਥਾਈ ਸਥਿਰ ਬਿਜਲਈ

ਵਿਵਸਥਾ ਪ੍ਰਾਪਤ ਹੋ ਜਾਂਦੀ ਹੈ (ਚਿੱਤਰ 2.4)। ਇਸ ਮਾੱਡਲ ਨੂੰ ਭਿੰਨ ਭਿੰਨ ਕਿਸਮ ਦੇ ਨਾਮ ਦਿੱਤੇ ਗਏ ਹਨ। ਉਦਾਹਰਣ ਵਜੋਂ-ਪਲਮ ਪੁਡਿੰਗ (plum pudding) ਰੇਜ਼ਿਨ ਪੁਡਿੰਗ (raisin pudding) ਜਾਂ ਤਰਬੂਜ (water melon) ਮਾੱਡਲ। ਇਸ ਮਾੱਡਲ ਵਿੱਚ ਪਰਮਾਣੂ ਦੇ ਧਨ ਚਾਰਜ ਨੂੰ ਪੁਡਿੰਗ ਜਾਂ ਤਰਬੂਜ ਦੇ ਸਮਾਨ

				=	_ =	=
ਨਾਮ	ਚਿਨ੍ਹ	ਪਰਮ ਚਾਰਜ C	ਸਾਪੇਖ ਚਾਰਜ	ਪੁੰਜ kg	ਪੁੰਜ <i>॥</i>	ਲਗਪਗ ਪੁੰਜ <i>॥</i>
ਇਲੈਕਟ੍ਰਾੱਨ	е	-1.6022×10 ⁻¹⁹	-1	9.10939×10 ⁻³¹	0.00054	0
ਪ੍ਰੋਟਾਨ	р	+1.6022×10 ⁻¹⁹	+1	1.67262×10 ⁻²⁷	1.00727	1
ਨਿਊਟ੍ਰਾਨ	n	0	0	1.67493×10 ⁻²⁷	1.00867	1

ਮੰਨਿਆ ਗਿਆ ਹੈ, ਜਿਸ ਵਿੱਚ ਇਲੈਕਟ੍ਰਾਨ ਕ੍ਰਮਵਾਰ ਪਲਮ ਜਾਂ ਬੀਜ ਦੀ ਤਰ੍ਹਾਂ ਮੌਜੂਦ ਹਨ। ਇਸ ਮਾੱਡਲ ਦਾ ਇੱਕ ਮਹੱਤਵਪੂਰਣ ਲੱਛਣ ਇਹ ਹੈ ਕਿ ਇਸ ਵਿੱਚ ਪਰਮਾਣੂ ਦਾ ਪੁੰਜ ਪੂਰੇ ਪਰਮਾਣੂ ਉਤੇ ਸਮਾਨ ਰੂਪ ਵਿੱਚ ਵੰਡਿਆ ਹੋਇਆ ਮੰਨਿਆ ਗਿਆ ਹੈ। ਭਾਵੇਂ ਇਹ ਮਾੱਡਲ ਪਰਮਾਣੂ ਦੀ ਬਿਜਲਈ ਉਦਾਸੀਨਤਾ ਨੂੰ ਸਪੱਸ਼ਟ ਕਰਦਾ ਸੀ, ਪਰੰਤੂ ਇਹ ਭਵਿੱਖ ਦੇ ਪ੍ਯੋਗਾਂ ਦੇ ਪਰਿਣਾਮਾਂ ਦੇ ਢੁਕਵਾਂ ਨਹੀਂ ਵੇਖਿਆ ਗਿਆ। ਥਾੱਮਸਨ ਨੂੰ ਸੰਨ 1906 ਵਿੱਚ ਭੌਤਿਕੀ ਵਿੱਚ ਗੈਸਾਂ ਦੀ ਬਿਜਲਈ ਚਾਲਕਤਾ ਉੱਤੇ ਸਿਧਾ ਤੱਕ ਅਤੇ ਪ੍ਯੋਗਿਕ ਪਰਖ ਦੇ ਲਈ ਨੋਬਲ ਪੁਰਸਕਾਰ ਨਾਲ ਸਨਮਾਨਿਤ ਕੀਤਾ ਗਿਆ।

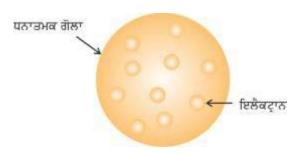
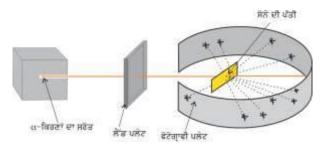
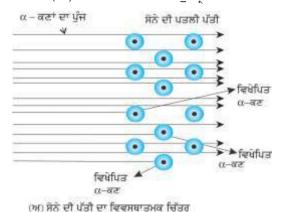


Fig.2.4 ਪਰਮਾਣੂ ਦਾ ਥਾੱਮਸਨ ਮਾੱਡਲ


19ਵੀਂ ਸਦੀ ਦੇ ਦੂਜੇ ਅੱਧ ਵਿੱਚ ਭਿੰਨ ਭਿੰਨ ਕਿਸਮ ਦੀਆਂ ਕਿਰਣਾਂ ਦੀ ਖੋਜ ਹੋਈ। ਵਿਲਹੇਮ ਰਾਂਟਜਨ (Withem Roentgen 1845-1923) ਨੇ ਸੰਨ 1895 ਵਿੱਚ ਦਰਸਾਇਆ ਕਿ ਕੈਥੋਡ ਕਿਰਣ ਟਿਊਬ ਵਿੱਚ ਮੌਜੂਦ ਪਦਾਰਥ ਨਾਲ ਟਕਰਾਉਣ ਤੇ ਇਲੈਕਟ੍ਰਾਨ ਅਜਿਹੀਆਂ ਕਿਰਣਾਂ ਪੈਦਾ ਕਰਦੇ ਹਨ, ਜੋ ਕੈਥੋਡ ਟਿਊਬ ਦੇ ਬਾਹਰ ਰੱਖੇ ਪ੍ਰਤਿਦੀਪਤ (fluorescent) ਪਦਾਰਥ ਵਿੱਚ ਪ੍ਰਤਿਦੀਪਤੀ ਉਤਪੰਨ ਕਰ ਸਕਦੇ ਹਨ। ਕਿਉਂਕਿ ਰਾਂਟਜਨ ਨੂੰ ਇਨ੍ਹਾਂ ਕਿਰਣਾਂ ਦੇ ਸਭਾਅ ਦਾ ਪਤਾ ਨਹੀਂ ਸੀ, ਇਸ ਲਈ ਉਨ੍ਹਾਂ ਨੇ ਇਨ੍ਹਾਂ ਨੂੰ X– ਕਿਰਣਾਂ ਦਾ ਨਾਂ ਦਿੱਤਾ, ਜੋ ਅੱਜ ਵੀ ਚੱਲਦਾ ਹੈ। ਅਜਿਹਾ ਵੇਖਿਆ ਗਿਆ ਕਿ ਇਲੈਕਟ੍ਰਾੱਨਾਂ ਦੇ ਵਧੇਰੇ ਘਣਤਾ ਵਾਲੀ ਧਾਤ ਐਨੋਡ ਟਾਰਗਟ ਨਾਲ ਟਕਰਾਉਣ ਦੇ ਕਾਰਣ ਪ੍ਰਭਾਵੀ X-ਕਿਰਣਾਂ ੳਤਪੰਨ ਹੰਦੀਆਂ ਹਨ। X–ਕਿਰਣਾਂ ਬਿਜਲਈ ਅਤੇ ਚੰਬਕੀ ਖੇਤਰਾਂ ਨਾਲ ਵਿਖੇਪਿਤ (defect) ਨਹੀਂ ਹੁੰਦੀਆਂ ਹਨ। ਇਨ੍ਹਾਂ ਕਿਰਣਾਂ ਦੀ ਪਦਾਰਥ ਵਿੱਚ ਅਤਿ ਉੱਚ ਵੇਦਨਸ਼ਕਤੀ (penetrating power) ਹੁੰਦੀ ਹੈ। ਇਹੀ ਕਾਰਣ ਹੈ ਕਿ ਵਸਤੁਆਂ ਦੇ ਅੰਦਰੁਨੀ ਅਧਿਐਨ ਵਿੱਚ ਇਨ੍ਹਾਂ ਕਿਰਣਾਂ ਦੀ ਵਰਤੋਂ ਕੀਤੀ ਜਾਂਦੀ ਹੈ। ਇਨ੍ਹਾਂ ਕਿਰਣਾਂ ਦੀ ਤਰੰਗ ਲੰਬਾਈ (Wavelength) ਬਹੁਤ ਘੱਟ (0·1 nm) ਹੁੰਦੀ ਹੈ ਅਤੇ ਬਿਜਲ ਚੁੰਬਕੀ ਵਿਹਾਰ ਦਰਸਾੳਂਦੀ ਹੈ (ਭਾਗ 2.3.1)।

ਹੈਨਰੀ ਬੈਕੁਰਲ Henri Becqueral (1852-1908) ਨੇ ਵਿਖਿਆ ਕਿ ਕੁੱਝ ਤੱਤ ਵਿਕੀਰਣਾਂ ਦਾ ਉਤਸਰਜਨ ਖੁੱਦ ਕਰਦੇ ਹਨ। ਉਨ੍ਹਾਂ ਨੇ ਇਸ ਪਰਿਘਟਨਾਂ ਨੂੰ ਰੇਡੀਓ ਐਕਟਿਵਤਾ (radioactivity) ਕਿਹਾ ਅਤੇ ਦੱਸਿਆ ਕਿ ਅਜਿਹੇ ਤੱਤ ਰੇਡਿਓਐਕਟਿਵ ਤੱਤ ਅਖਵਾਉਂਦੇ ਹਨ। ਇਸ ਖੇਤਰ ਨੂੰ ਮੇਰੀ ਕਿਊਰੀ, ਪਿਆਰੇ ਕਿਊਰੀ, ਰਦਰਫੋਰਡ ਅਤੇ ਫਰੈਡਰਿਕ ਸੋਡੀ ਨੇ ਵਿਕਸਿਤ ਕੀਤਾ। ਇਸ ਵਿੱਚ ਤਿੰਨ ਕਿਸਮ ਦੀਆਂ ਕਿਰਣਾਂ, α , β ਅਤੇ γ ਦਾ ਉਤਸਰਜਨ ਵੇਖਿਆ ਗਿਆ। ਰਦਰਫੋਰਡ ਨੇ ਵੇਖਿਆ ਕਿ α ਕਿਰਣਾਂ ਵਿੱਚ ਦੋ ਇਕਾਈ ਧਨਾਤਮਕ ਚਾਰਜ ਅਤੇ ਚਾਰ ਇਕਾਈ ਪਰਮਾਣੂ ਪੁੰਜ ਵਾਲੇ ਉੱਚੀ ਉਰਜਾ ਕਣ ਹੁੰਦੇ ਹਨ। ਉਨ੍ਹਾਂ ਨੇ ਇਹ ਨਿਸ਼ਕਰਸ਼ ਕੱਢਿਆ


ਕਿ α ਕਣ ਹੀਲਿਅਮ ਨਿਊਕਲੀਅਸ ਹੁੰਦੇ ਹਨ, ਕਿਉਂਕਿ ਦੋ ਇਲੈਕਟ੍ਰਾਨਾਂ ਨਾਲ ਮਿਲ ਕੇ α ਕਣ ਹੀਲਿਅਮ ਗੈਸ ਪੈਦਾ ਕਰਦੇ ਹਨ। β ਕਿਰਣਾਂ ਇਲੈਕਟ੍ਰਾਨ ਦੇ ਬਰਾਬਰ ਰਿਣਾਤਮਕ ਚਾਰਜ ਵਾਲੇ ਕਣ ਹੁੰਦੇ ਹਨ। γ ਕਿਰਣਾਂ X ਕਿਰਣਾ ਵਾਂਗ ਉੱਚ ਊਰਜਾ ਵਿਕੀਰਣਾਂ ਹੁੰਦੀਆਂ ਹਨ, ਜਿਨ੍ਹਾਂ ਦਾ ਸੁਭਾਅ ਉਦਾਸੀਨ ਹੁੰਦਾ ਹੈ ਅਤੇ ਜਿਨ੍ਹਾਂ ਦਾ ਕੋਈ ਕਣ ਨਹੀਂ ਹੁੰਦਾ। ਵੇਦਨ ਸ਼ਕਤੀ ਸਭ ਤੋਂ ਘੱਟ α ਕਿਰਣਾਂ ਦੀ, ਉਸ ਤੋਂ ਬਾਅਦ β ਕਿਰਣਾਂ ਦੀ (α ਕਣਾਂ ਨਾਲ 100 ਗੁਣਾ ਵੱਧ) ਅਤੇ ਸਭ ਤੋਂ ਵੱਧ γ ਕਿਰਣਾਂ ਦੀ (α ਕਣਾਂ ਤੋਂ 1000 ਗਣਾ ਵੱਧ ਹੰਦੀ ਹੈ।

2.2.2 ਰਦਰਫੋਰਡ ਦਾ ਨਿਊਕਲੀ ਪਰਮਾਣੂ ਮਾੱਡਲ

ਰਦਰਫੋਰਡ ਅਤੇ ਉਸਦੇ ਵਿਦਿਆਰਥੀਆਂ ਨੇ ਹੈਸ ਗੀਗਰ ਅਤੇ ਅਰਨੈਸਟ ਮਾਰਸਡਨ ਨੇ ਸੋਨੇ ਦੀ ਬਹੁਤ ਪਤਲੀ ਪੱਤੀ (gold foil) ਉੱਤੇ α–ਕਣਾਂ ਦੀ ਬੁਛਾਰ ਕੀਤੀ। ਰਦਰਫੋਰਡ ਦੇ ਪ੍ਰਸਿੱਧ

(ੳ) ਰਦਰਫੋਰਡ ਦਾ ਖਿੰਡਾਉ ਪ੍ਰਯੋਗ

(ਅ) ਸੋਨੇ ਦੀ ਪੱਤੀ ਦਾ ਵਿਵਸਥਾਤਮਕ ਚਿੱਤਰ

ਚਿੱਤਰ 2.5 ਰਦਰਫੋਰਡ ਦੇ ਪ੍ਰਤੀਕਣਨ ਦਾ ਰੇਖਾਂਕਿਤ ਚਿੱਤਰ। ਜਦੋਂ ਸੋਨੇ ਦੀ ਇੱਕ ਪਤਲੀ ਪੱਤੀ ਉੱਤੇ ਐਲਫਾ (α) ਕਣਾਂ ਦੀ ਬੁਛਾਰ (shot) ਕੀਤੀ ਜਾਂਦੀ ਹੈ, ਤਾਂ ਉਸ ਦੇ ਵਿੱਚੋਂ ਵਧੇਰੇ ਕਣ ਪ੍ਰਭਾਵਿਤ ਹੋਏ ਬਿਨਾਂ ਪੱਤੀ ਨੂੰ ਪਾਰ ਕਰ ਜਾਂਦੇ ਹਨ, ਜਦ ਕਿ ਕੁਝ ਦਾ ਵਿਖੇਪਣ ਹੋ ਜਾਂਦਾ ਹੈ। α – ਕਣ ਖਿੰਡਾਉ ਪ੍ਯੋਗ ਨੂੰ ਚਿੱਤਰ 2.5 ਵਿੱਚ ਵਿਖਾਇਆ ਗਿਆ ਹੈ। ਸੋਨੇ ਦੀ ਪਤਲੀ ਪੱਤੀ (100 nm ਮੋਟਾਈ, ਉੱਤੇ ਇੱਕ ਰੇਡੀਓ ਐਕਟਿਵ ਸਰੋਤ ਤੋਂ ਉੱਚ ਊਰਜਾ ਵਾਲੇ α – ਕਣਾਂ ਨੂੰ ਪਾਇਆ ਗਿਆ। ਇਸ ਪਤਲੀ ਪੱਤੀ ਦੇ ਆਲੇ ਦੁਆਲੇ ਵਿਰਤਾਕਾਰ ਪ੍ਤੀਦੀਪਤ ਸ਼ੀਲ (flouroscent) ਜਿੰਕ ਸਲਫਾਈਡ ਤੋਂ ਬਣੀ ਸਕਰੀਨ ਹੁੰਦੀ ਹੈ। ਜਦੋਂ ਕੋਈ α – ਕਣ ਇਸ ਸਕਰੀਨ ਨਾਲ ਟਕਰਾਉਂਦਾ ਹੈ, ਤਾਂ ਪ੍ਕਾਸ਼ ਦੀ ਫਲੈਸ਼ ਉਤਪੰਨ ਹੁੰਦੀ ਹੈ।

ਖਿੰਡਾਉ ਪ੍ਯੋਗ ਦੇ ਪਰਿਣਾਮ ਕਾਫ਼ੀ ਬੇ ਉਮੀਦੇ ਸਨ।ਥਾੱਮਸਨ ਦੇ ਪਰਮਾਣੂ ਮਾੱਡਲ ਦੇ ਅਨੁਸਾਰ ਪੱਤੀ ਦੇ ਵਿੱਚ ਮੌਜੂਦ ਸੋਨੇ ਦੇ ਹਰ ਇੱਕ ਪਰਮਾਣੂ ਦਾ ਪੁੰਜ ਪੂਰੇ ਪਰਮਾਣੂ ਵਿੱਚ ਇੱਕ ਸਾਰ ਵੰਡਿਆ ਹੋਇਆ ਹੋਣਾ ਚਾਹੀਦਾ ਹੈ। α– ਕਣਾਂ ਵਿੱਚ ਊਰਜਾ ਐਨੀ ਜਿਆਦਾ ਹੁੰਦੀ ਹੈ ਉਹ ਪੁੰਜ ਦੇ ਅਜਿਹੇ ਇੱਕ ਸਾਰ ਵਿਤਰਣ ਹੋਣ ਤੇ ਵੀ ਸਿੱਧੇ ਪਾਰ ਕਰ ਜਾਣਗੇ। ਉਨ੍ਹਾਂ ਨੂੰ ਆਸ ਸੀ ਕਿ ਪੱਤੀ ਨਾਲ ਟਕਰਾਉਣ ਦੇ ਬਾਅਦ ਕਣਾਂ ਦੀ ਗਤੀ ਹੌਲੀ ਹੋ ਜਾਵੇਗੀ ਅਤੇ ਉਨ੍ਹਾਂ ਦੀ ਦਿਸ਼ਾ ਵਿੱਚ ਬਹੁਤ ਘੱਟ ਕੋਣ ਤੇ ਬਦਲ ਜਾਵੇਗੀ। ਉਨ੍ਹਾਂ ਨੇ ਵੇਖਿਆ ਕਿ—

- (i) ਵਧੇਰੇ α– ਕਣ ਸੋਨੇ ਦੀ ਪੱਤੀ ਤੋਂ ਵਿਖੇਪਿਤ ਹੋਏ ਬਿਨਾਂ ਨਿਕਲ ਗਏ।
- (ii) ਐਲਫਾ ਕਣਾਂ ਦਾ ਥੋੜਾ ਭਾਗ ਬਹੁਤ ਘੱਟ ਕੋਣ ਨਾਲ ਵਿਖੇਪਿਤ ਹੋਇਆ।
- (iii) ਬਹੁਤ ਹੀ ਥੋੜੇ ਕਣ (20,000 ਵਿਚੋਂ 1) ਪਿੱਛੇ ਵੱਲ ਆਏ ਭਾਵ ਲਗਪਗ 180° ਦੇ ਕੋਣ ਤੇ ਉਨ੍ਹਾਂ ਦਾ ਵਿਖੇਪਣ ਹੋਇਆ।

ਇਨ੍ਹਾਂ ਪ੍ਰੇਖਣਾਂ ਦੇ ਅਧਾਰ ਤੇ ਰਦਰਫੋਰਡ ਨੇ ਪਰਮਾਣੂ ਦੀ ਬਣਤਰ ਦੇ ਬਾਰੇ ਹੇਠ ਲਿਖੇ ਨਿਸ਼ਕਰਸ਼ ਕੱਢੇ—

- (i) ਪਰਮਾਣੂ ਦੇ ਵਿੱਚ ਵਧਰੇ ਭਾਗ ਖਾਲੀ ਹੁੰਦਾ ਹੈ, ਕਿਉਂਕਿ ਵਧੇਰੇ α–ਕਣ ਸੋਨੇ ਦੀ ਪੱਤੀ ਨੂੰ ਪਾਰ ਕਰ ਜਾਂਦੇ ਹਨ।
- (ii) ਕੁਝ ਹੀ ਧਨਚਾਰਜਿਤ α– ਕਣ ਵਿਖੇਪਿਤ ਹੁੰਦੇ ਹਨ। ਇਹ ਵਿਖੇਪਣ ਜਰੂਰ ਹੀ ਬਹੁਤ ਜਿਆਦਾ ਪ੍ਰਤੀ ਕਰਸ਼ਣ ਬਲ (repulsive force) ਦੇ ਕਾਰਣ ਹੋਵੇਗਾ। ਇਸ ਤੋਂ ਇਹ ਪਤਾ ਲੱਗਦਾ ਹੈ ਕਿ ਥਾੱਮਸਨ ਦੇ ਵਿਚਾਰ ਦੇ ਉਲਟ ਪਰਮਾਣੂ ਦੇ ਅੰਦਰ ਧਨਚਾਰਜ ਸਮਾਨ ਰੂਪ ਵਿੱਚ ਵੰਡਿਆ ਹੋਇਆ ਨਹੀਂ ਹੈ। ਧਨਚਾਰਜ ਬਹੁਤ ਘੱਟ ਆਇਤਨ ਦੇ ਅੰਦਰ ਮੌਜੂਦ ਹੋਣਾ ਚਾਹੀਦਾ ਹੈ, ਜਿਸ ਨਾਲ ਧਨਚਾਰਜਿਤ ਐਲਫਾ ਕਣਾਂ ਦਾ ਪ੍ਰਤੀਕਰਸ਼ਨ ਅਤੇ ਵਿਖੇਪਣ ਹੋਇਆ ਹੋਵੇ।
- (iii) ਰਦਰਫੋਰਡ ਨੇ ਗਣਨਾ ਕਰਕੇ ਵਿਖਾਇਆ ਕਿ ਨਿਊਕਲੀਅਸ ਦਾ ਆਇਤਨ, ਪਰਮਾਣੂ ਦੇ ਕੁੱਲ ਆਇਤਨ ਦੀ ਤੁਲਨਾ ਵਿੱਚ ਬਹੁਤ ਘੱਟ (ਵਿਸਾਰਨ ਯੋਗ) ਹੁੰਦਾ ਹੈ। ਪਰਮਾਣੂ ਦਾ ਅਰਧ ਵਿਆਸ ਲਗਭਗ $10^{-10}\,\mathrm{m}$, ਹੁੰਦਾ ਹੈ, ਜਦ ਕਿ ਨਿਉਕਲੀਅਸ ਦਾ ਅਰਧ ਵਿਆਸ ਲਗਭਗ

10⁻¹⁵ m ਹੰਦਾ ਹੈ। ਅਕਾਰ ਦੇ ਅੰਤਰ ਦਾ ਅੰਦਾਜਾ ਇਸ ਗੱਲ ਤੋਂ ਲਾਇਆ ਜਾ ਸਕਦਾ ਹੈ ਕਿ ਜੇ ਨਿਊਕਲੀਅਸ ਨੂੰ ਕ੍ਰਿਕੇਟ ਦੀ ਗੇਂਦ ਜਿੰਨਾ ਮੰਨਿਆ ਜਾਵੇ ਤਾਂ ਪਰਮਾਣੂ ਦਾ ਅਰਧ ਵਿਆਸ ਲਗਪਗ 5 km ਹੋਵੇਗਾ।

ਉੱਤੇ ਦਿੱਤੇ ਗਏ ਪ੍ਰੇਖਣਾਂ ਅਤੇ ਪਰਿਣਾਮਾਂ ਦੇ ਅਧਾਰ ਤੇ ਰਦਰਫੋਰਡ ਨੇ ਪਰਮਾਣੂ ਦਾ ਨਿਊਕਲੀ ਮਾੱਡਲ ਪੇਸ਼ ਕੀਤਾ। ਇਸ ਮਾੱਡਲ ਦੇ ਅਨੁਸਾਰ

- (i) ਪਰਮਾਣੂ ਦਾ ਧਨਚਾਰਜ ਅਤੇ ਵਧੇਰੇ ਪੁੰਜ ਇੱਕ ਅਤਿ ਛੋਟੇ ਖੇਤਰ ਵਿੱਚ ਕੇਂਦਰਿਤ ਹੈ। ਪਰਮਾਣੂ ਦੇ ਇਸ ਅਤਿ ਛੋਟੇ ਭਾਗ ਨੂੰ ਰਦਰਫੋਰਡ ਨੇ ਨਿਉਕਲੀਅਸ ਕਿਹਾ।
- (ii) ਨਿਊਕਲੀਅਸ ਦੇ ਚਾਰੇ ਪਾਸੇ ਇਲੈਕਟ੍ਰਾਨ ਵ੍ਰਿਤਾਕਾਰ ਪਥਾਂ, ਜਿਨ੍ਹਾਂ ਨੂੰ ਆੱਰਬਿਟ (orbit) ਕਿਹਾ ਜਾਂਦਾ ਹੈ, ਵਿੱਚ ਬਹੁਤ ਤੇਜੀ ਨਾਲ ਘੁੰਮਦੇ ਹਨ। ਇਸ ਲਈ ਰਦਰਫੋਰਡ ਦਾ ਪਰਮਾਣੂ ਮਾੱਡਲ ਸੂਰਜ ਮੰਡਲ ਨਾਲ ਮਿਲਦਾ ਜੁਲਦਾ ਹੈ, ਜਿਸ ਵਿੱਚ ਸੂਰਜ ਨਿਊਕਲੀਅਸ ਦੇ ਸਮਾਨ ਹੁੰਦਾ ਹੈ ਅਤੇ ਗ੍ਰਹਿ ਗਤੀਮਾਨ ਇਲੈਕਟ੍ਰਾੱਨ ਦੇ ਸਮਾਨ ਹੁੰਦੇ ਹਨ।
- (iii) ਇਲੈਕਟ੍ਰਾਨ ਅਤੇ ਨਿਊਕਲੀਅਸ ਆਪਸ ਵਿੱਚ ਅਕਰਸ਼ਣ ਦੇ ਸਥਿਰ ਬਿਜਲਈ ਬਲਾਂ ਦੁਆਰਾ ਬੁੱਝੇ ਹੁੰਦੇ ਹਨ।

2.2.3 ਪਰਮਾਣੂ ਸੰਖਿਆ ਅਤੇ ਪੁੰਜ ਸੰਖਿਆ

ਨਿਊਕਲੀਅਸ ਦਾ ਧਨ ਚਾਰਜ ਉਸ ਵਿੱਚ ਪ੍ਰੋਟਾੱਨਾਂ ਦੇ ਕਾਰਣ ਹੁੰਦਾ ਹੈ। ਜਿਵੇਂ ਪਹਿਲਾਂ ਇਹ ਸਥਾਪਿਤ ਹੋ ਚੁੱਕਿਆ ਹੈ ਕਿ ਪ੍ਰੋਟਾੱਨ ਉੱਤੇ ਚਾਰਜ ਇਲੈਕਟ੍ਰਾਨ ਦੇ ਚਾਰਜ ਦੇ ਬਰਾਬਰ ਪਰ ਉਲਟ ਚਿੰਨ੍ਹ ਦਾ ਹੁੰਦਾ ਹੈ। ਇਸ ਦਾ ਭਾਵ ਇਹ ਹੈ ਕਿ ਨਿਊਕਲੀਅਸ ਵਿੱਚ ਮੌਜੂਦ ਪ੍ਰੋਟਾਨਾਂ ਦੀ ਸੰਖਿਆ ਪਰਮਾਣੂ ਸੰਖਿਆ (Z) ਦੇ ਬਰਾਬਰ ਹੁੰਦੀ ਹੈ। ਉਦਾਹਰਣ ਵਜੋਂ ਪ੍ਰੋਟਾਨਾਂ ਦੀ ਸੰਖਿਆ ਹਾਈਡ੍ਰੋਜਨ ਨਿਊਕਲੀਅਸ ਵਿੱਚ 1 ਅਤੇ ਸੋਡੀਅਮ ਵਿੱਚ 11 ਹੁੰਦੀ ਹੈ, ਇਸ ਲਈ ਇਨ੍ਹਾਂ ਦਾ ਪਰਮਾਣੂ ਅੰਕ ਕ੍ਰਮਵਾਰ 1 ਅਤੇ 11 ਹੋਵੇਗਾ। ਪਰਮਾਣੂ ਨੂੰ ਉਦਾਸੀਨ ਬਣਾ ਕੇ ਰੱਖਣ ਲਈ ਉਸ ਵਿੱਚ ਇਲੈਕਟ੍ਰਾੱਨਾਂ ਦੀ ਸੰਖਿਆ, ਪ੍ਰੋਟਾਨਾਂ ਦੀ ਸੰਖਿਆ, (ਪਰਮਾਣੂ ਸੰਖਿਆ Z) ਦੇ ਬਰਾਬਰ ਹੋਵੇਗੀ। ਉਦਾਹਰਣ ਵਜੋਂ-ਹਾਈਡ੍ਰੋਜਨ ਅਤੇ ਸੋਡੀਅਮ ਪਰਮਾਣੂ ਵਿੱਚ ਇਲੈਕਟ੍ਰਾਨਾਂ ਦੀ ਸੰਖਿਆ ਕ੍ਰਮਵਾਰ 1 ਅਤੇ 11 ਹੁੰਦੀ ਹੈ।

ਪਰਮਾਣੂ ਸੰਖਿਆ (Z) = ਪਰਮਾਣੂ ਦੇ ਨਿਊਕਲੀਅਸ ਵਿੱਚ ਪ੍ਰੋਟਾਨਾਂ ਦੀ ਸੰਖਿਆ = ਉਦਾਸੀਨ ਪਰਮਾਣੂ ਵਿੱਚ ਇਲੈਕਟਾਨਾਂ ਦੀ ਸੰਖਿਆ (2.3)

ਨਿਊਕਲੀਅਸ ਦਾ ਧਨਚਾਰਜ ਉਸ ਦੇ ਪ੍ਰੋਟਾੱਨਾਂ ਦੇ ਕਾਰਣ ਹੁੰਦਾ ਹੈ, ਪਰੰਤੂ ਨਿਊਕਲੀਅਸ ਦਾ ਪੁੰਜ ਪ੍ਰੋਟਾਨਾਂ ਅਤੇ ਕੁਝ ਹੋਰ ਉਦਾਸੀਨ ਕਣਾਂ (ਜਿਸ ਵਿੱਚ ਹਰ ਇੱਕ ਪੁੰਜ ਪ੍ਰੋਟਾੱਨ ਦੇ ਪੁੰਜ ਦੇ ਲਗਪਗ ਬਰਾਬਰ ਹੁੰਦਾ ਹੈ) ਦੇ ਕਾਰਣ ਹੁੰਦਾ ਹੈ। ਇਸ ਉਦਾਸੀਨ ਕਣ ਨੂੰ ਨਿਊਟ੍ਰਾੱਨ (n) ਕਹਿੰਦੇ ਹਨ। ਨਿਊਕਲੀਅਸ ਵਿੱਚ ਮੌਜੂਦ ਪ੍ਰੋਟਾੱਨਾਂ ਅਤੇ ਨਿਊਟ੍ਰਾੱਨਾਂ ਨੂੰ ਨਿਊਕਲੀਆੱਨਸ (nucleons) ਕਹਿੰਦੇ ਹਨ। ਨਿਊਕਲੀਆੱਨਾਂ ਦੀ ਕੁੱਲ ਸੰਖਿਆ ਨੂੰ ਪਰਮਾਣੂ ਦੀ ਪੁੰਜ ਸੰਖਿਆ (A) ਕਹਿੰਦੇ ਹਨ।

ਪੁੰਜ ਸੰਖਿਆ (A) = ਪ੍ਰੋਟਾੱਨਾਂ ਦੀ ਸੰਖਿਆ (Z)

+ ਨਿਊਟ੍ਰਾੱਨਾਂ ਦੀ ਸੰਖਿਆ (n)

(2.4)

2.2.4 ਸਮਸਥਾਨਿਕ ਅਤੇ ਸਮਭਾਰਿਕ

ਕਿਸੇ ਵੀ ਪਰਮਾਣੁ ਦੇ ਸੰਘਟਨ ਨੂੰ ਤੱਤ ਦੇ ਪ੍ਤੀਕ (X) ਦੁਆਰਾ ਦਰਸਾਇਆ ਜਾ ਸਕਦਾ ਹੈ, ਜਿਸ ਵਿੱਚ ਖੱਬੇ ਪਾਸੇ ਇੱਕ ਉੱਪਰ ਅੰਕਿਤ ਲਿਖਿਆ ਜਾਂਦਾ ਜੋ ਪਰਮਾਣੂ ਪੁੰਜ ਸੰਖਿਆ (A) ਹੁੰਦੀ ਹੈ। ਖੱਬੇ ਪਾਸੇ ਹੀ ਇੱਕ ਹੇਠ ਅੰਕਿਤ ਲਿਖਿਆ ਜਾਂਦਾ ਹੈ ਜੋ ਪਰਮਾਣੂ ਸੰਖਿਆ (Z) ਹੁੰਦੀ ਹੈ, ਜਿਵੇਂ 🧍 X । ਸਮਭਾਰਿਕ ਸਮਾਨ ਪੁੰਜ ਸੰਖਿਆ ਪਰੰਤੂ ਭਿੰਨ ਪਰਮਾਣੂ ਸੰਖਿਆ ਦੇ ਪਰਮਾਣੂ ਹੋਣਗੇ, ਉਦਾਹਰਣ ਵਜੋਂ ¹⁴₆C ਅਤੇ ¹⁴N। ਸਮਸਥਾਨਿਕ ਉਹ ਪਰਮਾਣੂ ਹੁੰਦੇ ਹਨ, ਜਿਨ੍ਹਾਂ ਦੀ ਪਰਮਾਣੂ ਸੰਖਿਆ (Z) ਸਮਾਨ ਪਰ ਪੁੰਜ ਸੰਖਿਆ (A) ਭਿੰਨ ਹੁੰਦੀ ਹੈ। ਦੂਜੇ ਸ਼ਬਦਾਂ ਵਿੱਚ ਸਮਕੀਰਣ 2.4 ਦੇ ਮਤਾਬਿਕ, ਇਹ ਸਪੱਸ਼ਟ ਹੈ ਕਿ, ਸਮ ਸਥਾਨਿਕਾਂ ਵਿੱਚ ਅੰਤਰ ਦਾ ਕਾਰਣ ਨਿਊਕਲੀਅਸ ਵਿੱਚ ਮੌਜੂਦ ਭਿੰਨ ਭਿੰਨ ਨਿਊਟ੍ਰਾਨਾਂ ਦੀ ਸੰਖਿਆ ਹੈ। ਉਦਾਹਰਣ ਦੇ ਲਈ ਫਿਰ ਤੋਂ ਹਾਈਡ੍ਰੋਜਨ ਪਰਮਾਣੂ ਨੂੰ ਲਓ। 99.985% ਹਾਈਡ੍ਰੋਜਨ ਪਰਮਾਣੂਆਂ ਵਿੱਚ ਕੇਵਲ ਇੱਕ ਪ੍ਰੋਟਾਨ ਹੁੰਦਾ ਹੈ, ਜਿਸ ਨੂੰ ਪ੍ਰੋਟਿਅਮ (¦H) ਕਹਿੰਦੇ ਹਨ। ਬਾਕੀ ਹਾਈਡ੍ਰੋਜਨ ਪਰਮਾਣੂ ਵਿੱਚ ਦੋ ਸਮਸਥਾਨਿਕ ਹੁੰਦੇ ਹਨ-ਡਿਊਟੀਰੀਅਮ (${}^{2}\mathbf{D}$, 0.015%), ਜਿਸ ਵਿੱਚ ਇੱਕ ਪ੍ਰੋਟਾੱਨ ਅਤੇ ਇੱਕ ਨਿਊਟ੍ਰਾੱਨ ਹੁੰਦਾ ਹੈ ਅਤੇ ਟ੍ਰਾਈਟਿਅਮ (tritium, ³T) ਜਿਸ ਵਿੱਚ ਇੱਕ ਪ੍ਰੋਟਾਨ ਅਤੇ ਦੋ ਨਿਊਟ੍ਰਾਨ ਹੁੰਦੇ ਹਨ।ਟ੍ਰਾਈਟਿਅਮ ਧਰਤੀ ਤੇ ਬਹੁਤ ਘੱਟ ਮਾਤਰਾ ਵਿੱਚ ਮਿਲਦਾ ਹੈ। ਸਮਸਥਾਨਿਕਾਂ ਦੀਆਂ ਕੁੱਝ ਹੋਰ ਉਦਾਹਰਣਾਂ ਵੀ ਹਨ, ਜਿਵੇਂ— ਕਾਰਬਨ, ਜਿਸ ਵਿੱਚ 6 ਪ੍ਰੋਟਾਨਾਂ ਤੋਂ ਇਲਾਵਾ 6, 7 ਅਤੇ 8 ਨਿਊਟ੍ਰਾੱਨ (${}^{12}_{6}$ C, ${}^{13}_{6}$ C, ${}^{14}_{6}$ C); ਹੁੰਦੇ ਹਨ, ਕਲੋਗੈਨ ਪਰਮਾਣੂ, ਜਿਸ ਵਿੱਚ 17 ਪ੍ਰੋਟਾੱਨਾਂ ਤੋਂ ਇਲਾਵਾ 18 ਅਤੇ 20 ਨਿਊਟ੍ਰਾੱਨ (³⁵Cl, ³⁷Cl) ਹੁੰਦੇ ਹਨ।

ਸਮਸਥਾਨਿਕਾਂ ਦੇ ਵਿਸ਼ੇ ਵਿੱਚ ਅੰਤਿਮ ਮਹੱਤਵਪੂਰਣ ਗੱਲ ਇਹ ਹੈ ਕਿ ਪਰਮਾਣੂਆਂ ਦੇ ਰਸਾਇਣਿਕ ਗੁਣ ਇਲੈਕਟ੍ਰਾੱਨਾਂ ਦੀ ਸੰਖਿਆ ਦੁਆਰਾ ਨਿਯੰਤਰਿਤ ਹੁੰਦੇ ਹਨ, ਜੋ ਨਿਊਕਲੀਅਸ ਵਿੱਚ ਪ੍ਰੋਟਾਨਾਂ ਦੀ ਸੰਖਿਆ ਦੁਆਰਾ ਨਿਰਧਾਰਿਤ ਹੁੰਦੀ ਹੈ। ਨਿਊਕਲੀਅਸ ਵਿੱਚ ਨਿਊਟ੍ਰਾਨਾਂ ਦੀ ਸੰਖਿਆ ਦਾ ਰਸਾਇਣਿਕ ਗੁਣਾਂ ਤੇ ਪ੍ਰਭਾਵ ਬਹੁਤ ਘੱਟ ਹੁੰਦਾ ਹੈ। ਇਸ ਲਈ ਰਸਾਇਣਿਕ ਪ੍ਰਤੀਕਿਰਿਆਵਾਂ ਵਿੱਚ ਸਾਰੇ ਸਮਸਥਾਨਿਕ ਇੱਕੋ ਜਿਹਾ ਵਿਹਾਰ ਕਰਦੇ ਹਨ।

ਉਦਾਹਰਣ 2.1

ਵਿੱਚ ਪ੍ਰੋਟਾੱਨਾਂ, ਨਿਊਟ੍ਰਾੱਨਾਂ ਅਤੇ ਇਲੈਕਟ੍ਰਾੱਨਾਂ ਦੀ ਸੰਖਿਆ ਦਾ ਪਰਿਕਲਨ ਕਰੋ,

ਹੱਲ

ਇੱਥੇ $^{80}_{35} {
m Br}$, Z=35, A=80 ਸਪੀਸ਼ੀਜ ਉਦਾਸੀਨ ਹੈ। ਪ੍ਰੋਟਾੱਨਾਂ ਦੀ ਸੰਖਿਆ= ਇਲੈਕਟ੍ਰਾੱਨਾਂ ਦੀ ਸੰਖਿਆ= Z=35

ਨਿਊਟ੍ਰਾੱਨਾਂ ਦੀ ਸੰਖਿਆ = 80 - 35 = 45, (ਸਮੀਕਰਣ 2.4)

ਉਦਾਹਰਣ 2.2

ਕਿਸੇ ਸਪੀਸ਼ੀਜ ਵਿੱਚ ਇਲੈਕਟ੍ਰਾਨ, ਪ੍ਰੋਟਾੱਨ ਅਤੇ ਨਿਊਟ੍ਰਾਨਾਂ ਦੀ ਸੰਖਿਆ ਕ੍ਰਮਵਾਰ 18, 16 ਅਤੇ 16 ਹੈ। ਇਸ ਦਾ ਢੁਕਵਾਂ ਪ੍ਰਤੀਕ ਲਿਖੋ।

ਹੱਲ

ਪਰਮਾਣੂ ਸੰਖਿਆ = ਪ੍ਰੋਟਾਨਾਂ ਦੀ ਸੰਖਿਆ = 16 ਇਹ ਤੱਤ ਸਲਫਰ (S) ਹੈ।

ਪਰਮਾਣੂ ਪੁੰਜ ਸੰਖਿਆ = ਪ੍ਰੋਟਾਨਾਂ ਦੀ ਸੰਖਿਆ + ਨਿਊਟ੍ਰਾੱਨਾਂ ਦੀ ਸੰਖਿਆ

$$= 16 + 16 = 32$$

ਇਹ ਸਪੀਸ਼ੀਜ ਉਦਾਸੀਨ ਨਹੀਂ ਹੈ, ਕਿਉਂਕਿ ਪ੍ਰੋਟਾੱਨਾਂ ਦੀ ਸੰਖਿਆ ਇਲੈਕਟ੍ਰਾੱਨਾਂ ਦੀ ਸੰਖਿਆ ਦੇ ਬਰਾਬਰ ਨਹੀਂ ਹੈ। ਇਹ ਇੱਕ ਰਿਣ ਆਇਨ ਹੈ, ਜਿਸਦਾ ਚਾਰਜ ਇਲੈਕਟ੍ਰਾਨਾਂ ਦੇ ਵਾਧੇ ਦੇ ਬਰਾਬਰ ਹੈ = (18 - 16 = 2) ਇਸਦਾ ਪ੍ਰਤੀਕ $_{16}^{32}$ S $^{2-}$ ਹੈ।

ਨੌਟ : ${}^{\Lambda}_{Z}X$ ਸੰਕੇਤ ਦੀ ਵਰਤੋਂ ਕਰਨ ਤੋਂ ਪਹਿਲਾਂ ਇਹ ਪਤਾ ਕਰ ਲਓ ਕਿ ਇਹ ਪਰਮਾਣੂ ਉਦਾਸੀਨ ਪਰਮਾਣੂ ਜਾਂ ਧਨ ਆਇਨ ਜਾਂ ਰਿਣ ਆਇਨ ਹੈ। ਜੇ ਇਹ ਉਦਾਸੀਨ ਪਰਮਾਣੂ ਹੈ, ਤਾਂ ਸਮੀਕਰਣ (2.3) ਉਚਿਤ ਹੈ, ਜਿਸ ਵਿੱਚ ਪ੍ਰੋਟਾਨਾਂ ਦੀ ਸੰਖਿਆ = ਇਲੈਕਟ੍ਰਾਨਾਂ ਦੀ ਸੰਖਿਆ ਪਰਮਾਣੂ ਸੰਖਿਆ ਹੁੰਦੀ ਹੈ। ਜੇ ਸਪੀਸ਼ੀਜ ਇੱਕ ਆਇਨ ਹੈ, ਤਾਂ ਇਹ ਨਿਰਧਾਰਿਤ ਕਰੋ ਕਿ ਪ੍ਰੋਟਾਨਾਂ ਦੀ ਸੰਖਿਆ ਇਲੈਕਟ੍ਰਾਨਾਂ ਦੀ ਸੰਖਿਆ ਤੋਂ ਵੱਧ ਹੈ ਤਾਂ ਕੈਟਇਨ (ਧਨ ਆਇਨ) ਅਤੇ ਜੇ ਘੱਟ ਹੈ, ਤਾਂ ਐਨਾਇਨ (ਰਿਣ ਆਇਨ) ਹੋਵੇਗਾ। ਨਿਊਟ੍ਰਾਨਾਂ ਦੀ ਸੰਖਿਆ ਹਮੇਸ਼ਾ $\Lambda - Z$ ਨਾਲ ਦਿੱਤੀ ਜਾਂਦੀ ਹੈ, ਭਾਵੇਂ ਸਪੀਸ਼ੀਜ਼ ਉਦਾਸੀਨ ਹੋਵੇ ਜਾਂ ਆਇਨ ਹੋਵੇ।

2.2.5 ਰਦਰਫੋਰਡ ਮਾੱਡਲ ਦੀ ਊਣਤਾਈ

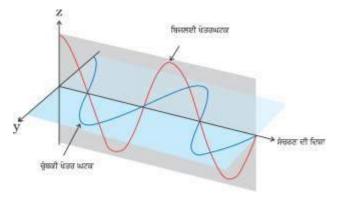
ਰਦਰਫੋਰਡ ਦਾ ਨਿਊਕਲੀ ਮਾੱਡਲ ਸੂਰਜ ਮੰਡਲ ਦਾ ਇੱਕ ਛੋਟਾ ਰੂਪ ਸੀ, ਜਿਸ ਵਿੱਚ ਨਿਊਕਲੀਅਸ ਨੂੰ ਭਾਰੀ ਸੂਰਜ ਦੀ ਤਰ੍ਹਾਂ ਅਤੇ ਇਨਲੈਕਟ੍ਰਾੱਨਾਂ ਨੂੰ ਹਲਕੇ ਗ੍ਰਹਿਆਂ ਵਾਂਗ ਸੋਚਿਆ ਗਿਆ ਸੀ ਅਤੇ ਇਹ ਮੰਨਿਆ ਗਿਆ ਸੀ ਕਿ ਇਲੈਕਟ੍ਰਾੱਨ ਅਤੇ ਨਿਊਕਲੀਅਸ ਦੇ ਵਿੱਚ ਕੁਲਾੱਮ ਬਲ $(kq_1q_2/r^2$ ਹੁੰਦਾ ਹੈ, ਜਿੱਥੇ q_1 ਅਤੇ q_2 ਚਾਰਜ, r ਉਨ੍ਹਾਂ ਚਾਰਜਾਂ ਵਿੱਚ ਦੂਰੀ ਅਤੇ k ਅਨੁਪਾਤਿਕਤਾ ਸਥਿਰ ਅੰਕ ਹੈ। ਕੁਲਾੱਮ ਬਲ ਗਣਿਤੀ ਰੂਪ ਵਿੱਚ

ਗੁਰੂਤਾਕਰਸ਼ਣ ਬਲ $\left(\mathrm{G}.rac{m_1m_2}{r^2}
ight)$ ਦੇ ਸਮਾਨ ਹੁੰਦਾ ਹੈ, ਜਿੱਥੇ m, ਅਤੇ m, ਪੁੰਜ, r ਉਨ੍ਹਾਂ ਪੁੰਜਾਂ ਦੇ ਵਿਚਲੀ ਦੂਰੀ ਅਤੇ Gਗੁਰੂਤਾਕਰਸ਼ਣ ਸਥਿਰ ਅੰਕ ਹੁੰਦਾ ਹੈ। ਜਦੋਂ ਸੂਰਜ ਮੰਡਲ ਉੱਤੇ ਕਲਾਸੀਕਲ ਮਕੈਨਿਕਸ ਨੂੰ ਲਾਗੂ ਕੀਤਾ ਜਾਂਦਾ ਹੈ ਤਾਂ ਪਤਾ ਲੱਗਦਾ ਹੈ ਕਿ ਗ੍ਰਹਿ ਸੂਰਜ ਦੇ ਚੌਹਾਂ ਪਾਸਿਆਂ ਤੇ ਨਿਸ਼ਚਿਤ ਆੱਰਬਿੱਟਾਂ ਵਿੱਚ ਘੁੰਮਦੇ ਹਨ। ਇਸ ਸਿਧਾਂਤ ਤੋਂ ਗੁਹਿਆਂ ਦੇ ਆੱਰਬਿੱਟਾਂ ਦੀ ਸਹੀ ਗਣਨਾਂ ਕੀਤੀ ਜਾ ਸਕਦੀ ਹੈ, ਜੋ ਪ੍ਯੋਗਿਕ ਮਾਪਨ ਨਾਲ ਮੇਲ ਖਾਂਦੀ ਹੈ। ਸੂਰਜ ਮੰਡਲ ਅਤੇ ਨਿਊਕਲੀ ਮਾੱਡਲ ਵਿੱਚ ਸਮਾਨਤਾ ਤੋਂ ਇਹ ਪਤਾ ਲੱਗਦਾ ਹੈ ਕਿ ਇਲੈਕਟ੍ਰਾਨ ਨਿਊਕਲੀਅਸ ਦੇ ਚੌਹਾਂ ਪਾਸੇ ਨਿਸ਼ਚਿਤ ਆਰਬਿਟਾਂ ਵਿੱਚ ਗਤੀ ਕਰਦੇ ਹਨ, ਪਰੰਤੂ ਜਦ ਕੋਈ ਪਿੰਡ ਕਿਸੇ ਆੱਰਬਿਟ ਵਿੱਚ ਗਤੀ ਕਰਦਾ ਹੈ, ਤਾਂ ਇਸ ਵਿੱਚ ਪਵੇਗ (acceleration) ਹੋਣੀ ਚਾਹੀਦੀ ਹੈ (ਜੇ ਪਿੰਡ ਸਥਿਰ ਗਤੀ ਨਾਲ ਕਿਸੇ ਆਰਬਿਟ ਵਿੱਚ ਗਤੀ ਕਰ ਰਿਹਾ ਹੋਵੇ ਤਾਂ ਵੀ ਦਿਸ਼ਾ ਪਰਿਵਰਤਨ ਦੇ ਕਾਰਣ ਉਸ ਵਿੱਚ ਪ੍ਰਵੇਗ ਹੋਣਾ ਚਾਹੀਦਾ ਹੈ।) ਇਸ ਲਈ ਨਿਊਕਲੀ ਮਾੱਡਲ ਵਿੱਚ ਆੱਰਬਿਟਾਂ ਵਿੱਚ ਘੁਮੰਦੇ ਗ੍ਰਹਿਆਂ ਦੀ ਤਰ੍ਹਾਂ ਇਲੈਕਟ੍ਰਾੱਨ ਵਿੱਚ ਵੀ ਪ੍ਰਵੇਗ ਹੋਣਾ ਚਾਹੀਦਾ ਹੈ। ਮੈਕਸਵੈਲ ਦੇ ਬਿਜਲ ਚੁੰਬਕੀ ਨਿਯਮ ਦੇ ਅਨੁਸਾਰ ਪ੍ਰਵੇਗ ਚਾਰਜਿਤ ਕਣਾਂ ਨੂੰ ਬਿਜਲ-ਚੁੰਬਕੀ ਵਿਕੀਰਣ ਦਾ ਉਤਸਰਜਨ ਕਰਨਾ ਚਾਹੀਦਾ ਹੈ (ਗ੍ਰਹਿਆਂ ਦੇ ਨਾਲ ਅਜਿਹਾ ਇਸ ਲਈ ਨਹੀਂ ਹੁੰਦਾ, ਕਿਉਂਕਿ ਉਹ ਚਾਰਜਿਤ ਨਹੀਂ ਹੁੰਦੇ)। ਇਸ ਲਈ ਕਿਸੇ ਆੱਰਬਿਟ ਵਿੱਚ ਮੌਜੂਦ ਇਲੈਕਟ੍ਰਾਨ ਤੋਂ ਵਿਕੀਰਣ ਉਤਸਰਜਿਤ ਕਲਾਸੀਕਲ ਮਕੈਨਿਕਸ ਸਿਧਾਂਤਕ ਵਿਗਿਆਨ ਹੈ। ਜੋ ਨਿਊਟਨ ਦੇ ਗਤੀ ਦੇ ਨਿਯਮਾਂ ਉੱਤੇ ਅਧਾਰਿਤ ਹੈ।ਇਹ ਸਥੂਲ ਵਸਤੂਆਂ ਦੇ ਗਤੀ ਦੇ ਨਿਯਮਾਂ ਨੂੰ ਸਮਝਾਉਂਦੀ ਹੈ।ਇਸ ਵਿਕੀਰਣ ਦੇ ਲਈ ਉਰਜਾ ਇਲੈਕਟ੍ਰਾਨਿਕ ਗਤੀ ਤੋਂ ਪ੍ਰਾਪਤ ਹੋਵੇਗੀ। ਇਸ ਤਰ੍ਹਾਂ ਆੱਰਬਿਟ (orbit) ਛੋਟਾ ਹੁੰਦਾ ਜਾਵੇਗਾ। ਗਣਨਾਵਾਂ ਤੋਂ ਇਹ ਪਤਾ ਲੱਗਦਾ ਹੈ ਕਿ ਇਲੈਕਟ੍ਰਾਨ ਨੂੰ ਸਪਾਇਰਲ (spiral) ਕਰਦੇ ਹੋਏ ਨਿਊਕਲੀਅਸ ਵਿੱਚ ਪਹੁੰਚਣ ਵਿੱਚ 10⁻⁸s ਲੱਗਣਗੇ, ਪਰੰਤੂ ਅਸਲ ਵਿੱਚ ਅਜਿਹਾ ਨਹੀਂ ਹੁੰਦਾ।ਇਸ ਤਰ੍ਹਾਂ ਜੇ ਇਲੈਕਟ੍ਰਾੱਨ ਦੀ ਗਤੀ ਦਾ ਕਲਾਸੀਕਲ ਮਕੈਨਿਕਸ ਅਤੇ ਬਿਜਲ-ਚੰਬਕੀ ਸਿਧਾਂਤ ਦੇ ਅਨੁਸਾਰ ਵਰਣਨ ਕੀਤਾ ਜਾਵੇ ਤਾਂ ਰਦਰਫੋਰਡ ਦਾ ਪਰਮਾਣੂ ਮਾੱਡਲ ਕਿਸੇ ਪਰਮਾਣੂ ਦੇ ਸਥਿਰ ਹੋਣ ਦੀ ਵਿਆਖਿਆ ਨਹੀਂ ਕਰ ਸਕਦਾ। ਤੁਸੀਂ ਇਹ ਪੁੱਛ ਸਕਦੇ ਹੋ ਕਿ ਜੇ ਆਰਬਿਟ ਵਿੱਚ ਇਲੈਕਟ੍ਰਾੱਨਾਂ ਦੀ ਗਤੀ ਨਾਲ ਪਰਮਾਣੂ ਅਸਥਾਈ ਹੋ ਜਾਂਦਾ ਹੈ, ਤਾਂ ਕਿਉਂ ਨਹੀਂ ਅਸੀਂ ਇਲੈਕਟ੍ਰਾੱਨਾਂ ਨੂੰ ਨਿਊਕਲੀਅਸ ਦੇ ਚੌਹਾਂ ਪਾਸਿਆਂ ਤੇ ਸਥਿਰ ਮੰਨ ਲੈਂਦੇ ਹਾਂ ਜੇ ਇਲੈਕਟ੍ਰਾੱਨਾਂ ਨੂੰ ਸਥਿਰ ਮੰਨਿਆ ਜਾਂਦਾ ਹੈ ਤਾਂ ਬਹੁਤ ਜਿਆਦਾ ਘਣਤਾ ਵਾਲੇ ਨਿਊਕਲੀਅਸ ਅਤੇ ਇਲੈਕਟ੍ਰਾਨਾਂ ਦੇ ਵਿੱਚ ਸਥਿਰ ਬਿਜਲਈ ਆਕਰਸ਼ਣ ਇਨ੍ਹਾਂ ਇਲੈਕਟ੍ਰਾਨਾਂ ਨੂੰ ਨਿਊਕਲੀਅਸ ਦੇ ਵੱਲ ਖਿੱਚ ਲਵੇਗਾ, ਜਿਸ ਨਾਲ ਥਾੱਮਸਨ ਮਾੱਡਲ ਦਾ ਇੱਕ ਛੋਟਾ ਰੂਪ ਪ੍ਰਾਪਤ ਹੋਵੇਗਾ।

ਰਦਰਫੋਰਡ ਦੇ ਪਰਮਾਣੂ ਮਾੱਡਲ ਦੀ ਇੱਕ ਦੂਜੀ ਗੰਭੀਰ ਊਣਤਾਈ ਇਹ ਹੈ ਕਿ ਇਹ ਪਰਮਾਣੂਆਂ ਦੀ ਇਲੈਕਟ੍ਰਾੱਨਿਕ ਸੰਰਚਨਾ ਦੇ ਬਾਰੇ ਵਿੱਚ ਕੁਝ ਵੀ ਵਰਣਨ ਨਹੀਂ ਕਰਦਾ, ਅਤੇ ਇਸ ਤੋਂ ਇਹ ਪਤਾ ਨਹੀਂ ਲੱਗਦਾ ਕਿ ਇਹ ਇਲੈਕਟ੍ਰਾਨ ਨਿਊਕਲੀਅਸ ਦੇ ਚੌਹਾਂ ਪਾਸਿਆਂ ਤੇ ਕਿਸ ਤਰ੍ਹਾਂ ਮੌਜੂਦ ਹਨ ਅਤੇ ਇਨ੍ਹਾਂ ਦੀ ਉਰਜਾ ਕੀ ਹੈ ?

2.3 ਬੋਹਰ ਦੇ ਪਰਮਾਣੂ ਮਾੱਡਲ ਦੇ ਵਿਕਾਸ ਦੀ ਪਿੱਠ-ਭੂਮੀ

ਇਤਿਹਾਸਕ ਰੂਪ ਵਿੱਚ ਮਾਦਾ ਦੇ ਨਾਲ ਵਿਕੀਰਣ ਦੀਆਂ ਅੰਤਰਕਿਰਿਆਵਾਂ ਦੇ ਅਧਿਐਨ ਤੋਂ ਪ੍ਰਾਪਤ ਪਰਿਣਾਮਾਂ ਤੋਂ ਪਰਮਾਣੂਆਂ ਅਤੇ ਅਣੂਆਂ ਦੀ ਸੰਰਚਨਾ ਦੇ ਸਬੰਧ ਵਿੱਚ ਕਾਫੀ ਜਿਆਦਾ ਸੂਚਨਾ ਪ੍ਰਾਪਤ ਹੋਈ। ਨੀਲ ਬੋਹਰ ਨੇ ਇਨ੍ਹਾਂ ਪਰਿਣਾਮਾਂ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਰਦਰਫੋਰਡ ਦੁਆਰਾ ਦਿੱਤੇ ਗਏ ਮਾੱਡਲ ਵਿੱਚ ਸੁਧਾਰ ਕੀਤਾ। ਬੋਹਰ ਦੇ ਪਰਮਾਣੂ ਮਾੱਡਲ ਦੇ ਵਿਕਾਸ ਵਿੱਚ ਦੋ ਬਿੰਦੂਆਂ ਦੀ ਅਹਿਮ ਭੂਮਿਕਾ ਰਹੀ ਹੈ।


- (i) ਬਿਜਲ-ਚੁੰਬਕੀ ਵਿਕੀਰਣ ਦਾ ਦੂਹਰਾ ਵਿਹਾਰ ਹੋਣਾ, ਜਿਸਦਾ ਭਾਵ ਇਹ ਹੈ ਕਿ ਵਿਕੀਰਣ ਤਰੰਗ ਅਤੇ ਕਣ ਦੋਵਾਂ ਦੇ ਗੁਣ ਪ੍ਰਦਰਸ਼ਿਤ ਕਰਦੇ ਹਨ।
- (ii) ਪਰਮਾਣੂ ਸਪੈਕਟ੍ਰਮ ਨਾਲ ਸਬੰਧਿਤ ਪ੍ਰਯੋਗਿਕ ਪਰਿਣਾਮ, ਜਿਨ੍ਹਾਂ ਦੀ ਵਿਆਖਿਆ ਇਹ ਮੰਨ ਲੈਣ ਨਾਲ ਕੀਤੀ ਜਾ ਸਕੀ ਕਿ ਪਰਮਾਣੂਆਂ ਵਿੱਚ ਇਲੈਕਟ੍ਰਾਨਿਕ ਊਰਜਾ ਦੇ ਸਤਰ ਕੁਆਂਟਿਤ ਹੁੰਦੇ ਹਨ (ਭਾਗ 2.4)

2.3.1 ਬਿਜਲ-ਚੁੰਬਕੀ ਵਿਕੀਰਣ ਦੀ ਤਰੰਗ ਪ੍ਰਕਿਰਤੀ

ਜੇਮਸ ਮੈਕਸਵੈਲ (ਸੰਨ 1870) ਨੇ ਸਭ ਤੋਂ ਪਹਿਲਾਂ ਚਾਰਜਿਤ ਪਿੰਡਾਂ ਦੇ ਵਿੱਚ ਅੰਤਰਕਿਰਿਆਵਾਂ ਅਤੇ ਸਥੂਲ ਸਤਰ ਤੇ ਬਿਜਲਈ ਅਤੇ ਚੁੰਬਕੀ ਖੇਤਰ ਦੇ ਵਿਹਾਰ ਦੀ ਵਿਆਖਿਆ ਕੀਤੀ। ਉਸ ਨੇ ਇਹ ਸੁਝਾਅ ਦਿੱਤਾ ਕਿ ਬਿਜਲਈ ਚਾਰਜਿਤ ਕਣਾਂ ਨੂੰ ਜਦੋਂ ਪ੍ਵੇਗਿਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ ਤਾਂ ਪਰਤਵੇਂ ਬਿਜਲਈ ਅਤੇ ਚੁੰਬਕੀ ਖੇਤਰ ਪੈਦਾ ਹੁੰਦੇ ਹਨ, ਜੋ ਬਿਜਲਈ ਅਤੇ ਚੁੰਬਕੀ ਖੇਤਰ ਤਰੰਗਾਂ (Waves) ਦੇ ਰੂਪ ਵਿੱਚ ਸੰਚਾਰਿਤ ਹੁੰਦੇ ਹਨ, ਜਿਨ੍ਹਾਂ ਨੂੰ ਬਿਜਲ-ਚੰਬਕੀ ਤਰੰਗ ਜਾਂ ਬਿਜਲ ਚੰਬਕੀ ਵਿਕੀਰਣ ਕਹਿੰਦੇ ਹਨ।

ਪ੍ਕਾਸ਼ ਵਿਕੀਰਣ ਦਾ ਇੱਕ ਰੂਪ ਹੈ, ਜਿਸ ਦੀ ਜਾਣਕਾਰੀ ਕਈ ਸਾਲਾਂ ਤੋਂ ਹੈ ਅਤੇ ਪੁਰਾਣੇ ਸਮੇਂ ਤੋਂ ਇਸ ਦੇ ਸੁਭਾਅ ਦੇ ਬਾਰੇ ਸਮਝਣ ਦੀ ਕੋਸਿਸ ਕੀਤੀ ਗਈ ਹੈ। ਪਹਿਲਾਂ (ਨਿਊਟਨ) ਪ੍ਕਾਸ਼ ਨੂੰ ਕਣਾਂ (ਕਣਿਕਾਵਾਂ, Corpuscles) ਦਾ ਬਣਿਆ ਹੋਇਆ ਮੰਨਿਆ ਜਾਂਦਾ ਸੀ। ਕੇਵਲ 19ਵੀਂ ਸਦੀ ਵਿੱਚ ਪ੍ਕਾਸ਼ ਦੀ ਤਰੰਗ ਪ੍ਕਿਰਤੀ ਪ੍ਮਾਣਿਤ ਹੋਈ।

ਪਹਿਲੀ ਵਾਰ ਮੈਕਸਵੈਲ ਦੇ ਦੱਸਿਆ ਕਿ ਪ੍ਕਾਸ਼ ਤਰੰਗਾਂ ਡੋਲਕ ਬਿਜਲਈ ਅਤੇ ਚੁੰਬਕੀ ਵਿਹਾਰ ਨਾਲ ਸਬੰਧਿਤ ਹੁੰਦੀਆਂ ਹਨ (ਚਿੱਤਰ 2.6) ਭਾਵੇਂ ਬਿਜਲ–ਚੁੰਬਕੀ ਤਰੰਗ ਦੀ ਗਤੀ ਦੀ ਪ੍ਕਿਰਤੀ ਜਟਿਲ ਹੁੰਦੀ ਹੈ, ਪਰ ਅਸੀਂ ਇੱਥੇ ਕੁਝ ਆਮ ਗੁਣਾ ਤੇ ਵਿਚਾਰ ਕਰਾਂਗੇ।

ਚਿੱਤਰ.2.6 ਬਿਜਲ-ਚੁੰਬਕੀ ਤਰੰਗ ਦੇ ਬਿਜਲਈ ਅਤੇ ਚੁੰਬਕੀ ਖੇਤਰ ਘਟਕ। ਇਹ ਘਟਕ ਸਮਾਨ ਤਰੰਗ-ਲੰਬਾਈ, ਆਵਰਤੀ, ਗਤੀ ਅਤੇ ਆਯਾਮ ਵਾਲੇ ਹੁੰਦੇ ਹਨ, ਪਰ ਉਹ ਇੱਕ ਦੇ ਲੰਬਾਤਮਕ ਤਲਾਂ ਵਿੱਚ ਕੰਪਨ ਕਰਦੇ ਹਨ।

- (i) ਡੋਲਨ ਕਰਦੇ ਚਾਰਜਿਤ ਕਣਾਂ ਦੁਆਰਾ ਪੈਦਾ ਬਿਜਲਈ ਅਤੇ ਚੁੰਬਕੀ ਖੇਤਰ ਇੱਕ ਦੂਜੇ ਦੇ ਲੰਬ ਦਿਸ਼ਾ ਵਿੱਚ ਹੁੰਦੇ ਹਨ। ਇਹ ਦੋਵੇਂ ਤਰੰਗ ਦੀ ਚੱਲਣ ਦੀ ਦਿਸ਼ਾ ਦੇ ਵੀ ਲੰਬਾਤਮਕ ਹੁੰਦੇ ਹਨ। ਬਿਜਲ-ਚੁੰਬਕੀ ਤਰੰਗ ਦਾ ਇੱਕ ਸਰਲ ਰੂਪ-ਚੱਤਿਰ 2.6 ਵਿੱਚ ਵਿਖਾਇਆ ਗਿਆ ਹੈ।
- (ii) ਧੁਨੀ ਜਾਂ ਜਲ–ਤਰੰਗਾਂ ਦੇ ਉਲਟ ਬਿਜਲ–ਚੁੰਬਕੀ ਤਰੰਗਾਂ ਨੂੰ ਕਿਸੇ ਮਾਧਿਅਮ ਦੀ ਜਰੂਰਤ ਨਹੀਂ ਹੁੰਦੀ ਅਤੇ ਖਲਾਅ ਵਿੱਚ ਗਤੀ ਕਰ ਸਕਦੀਆਂ ਹਨ।
- (iii) ਹੁਣ ਇਹ ਤੱਥ ਚੰਗੀ ਤਰ੍ਹਾਂ ਸਥਾਪਿਤ ਹੋ ਚੁਕਿਆ ਹੈ ਕਿ ਬਿਜਲ-ਚੁੰਬਕੀ ਵਿਕੀਰਣਾਂ ਕਈ ਤਰ੍ਹਾਂ ਦੀਆਂ ਹੁੰਦੀਆਂ ਹਨ ਜਿਨ੍ਹਾਂ ਦੀ ਤਰੰਗ ਲੰਬਾਈ ਜਾਂ ਆਵਰਤੀ ਇੱਕ ਦੂਜੇ ਤੋਂ ਭਿੰਨ ਹੁੰਦੀ ਹੈ। ਇਹ ਇੱਕ ਦੂਜੇ ਨਾਲ ਮਿਲ ਕੇ ਬਿਜਲ-ਚੰਬਕੀ ਸਪੈਕਟਮ ਬਣਾਉਂਦੀ ਹਨ। (ਚਿੱਤਰ 2.7)। ਸਪੈਕਟਮ ਦੇ ਭਿੰਨ ਭਿੰਨ ਖੇਤਰਾਂ ਦੇ ਭਿੰਨ ਭਿੰਨ ਨਾਮ ਹਨ। ਕੱਝ ੳਦਾਹਰਣਾਂ ਹਨ ਰੇਡੀਓ ਆਵਰਤੀ (radio frequency) ਖੇਤਰ, 10^6 Hz, ਦੇ ਲਗਭਗ ਜਿਸਦੀ ਵਰਤੋਂ ਪ੍ਰਸਾਰਣ ਵਿੱਚ ਕੀਤੀ ਜਾਂਦੀ ਹੈ, ਸੂਖਮ ਤਰੰਗ (microwave) ਖੇਤਰ, (10¹⁰ Hz ਦੇ ਲਗਪਗ), ਜਿਸ ਦੀ ਵਰਤੋਂ ਰਡਾਰ ਵਿੱਚ ਕੀਤੀ ਜਾਂਦੀ ਹੈ, ਇਨਫਾਰੈੱਡ (infra red) ਖੇਤਰ (10¹³ Hz ਦੇ ਲਗਪਗ) ਜਿਸ ਦੀ ਵਰਤੋਂ ਗਰਮ ਕਰਨ ਦੇ ਲਈ ਕੀਤੀ ਜਾਂਦੀ ਹੈ ਅਤੇ ਪਾਰਵੈਂਗਣੀ (ultraviolet) ਖੇਤਰ (1016Hz ਦੇ ਲਗਪਗ) ਜੋ ਸੂਰਜ ਦੀਆਂ ਵਿਕੀਰਣਾਂ ਦਾ ਇੱਕ ਭਾਗ ਹੁੰਦੀਆਂ ਹਨ। ਲਗਪਗ 10¹⁵ Hz ਦੇ ਥੋੜੇ ਜਿਹੇ ਖੇਤਰ ਨੂੰ ਆਮ ਕਰਕੇ ਦ੍ਰਿਸ਼ (Visible) ਪ੍ਰਕਾਸ਼ ਕਹਿੰਦੇ ਹਨ। ਸਿਰਫ਼ ਇਹ ਹੀ ਉਹ ਖੇਤਰ ਹੈ ਜਿਸਨੂੰ ਸਾਡੀਆਂ ਅੱਖਾਂ ਵੇਖ

ਸਕਦੀਆਂ ਹਨ, ਅਦ੍ਸ਼ਿ ਖੇਤਰਾਂ ਨੂੰ ਵੇਖਣ ਦੇ ਲਈ ਵਿਸ਼ੇਸ਼ ਪ੍ਰਕਾਰ ਦੇ ਯੰਤਰਾਂ ਦੀ ਜਰੂਰਤ ਹੁੰਦੀ ਹੈ।

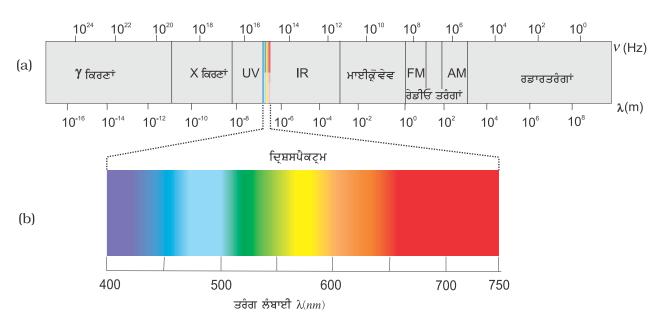
(iv) ਬਿਜਲ-ਚੁੰਬਕੀ ਵਿਕੀਰਣ ਨੂੰ ਦਰਸਾਉਣ ਦੇ ਲਈ ਭਿੰਨ ਭਿੰਨ ਦੇ ਮਾਤਰਕਾਂ ਦੀ ਵਰਤੋਂ ਕੀਤੀ ਜਾਂਦੀ ਹੈ।

ਇਨ੍ਹਾਂ ਵਿਕੀਰਣਾਂ ਨੂੰ ਆਵਰਤੀ (v) ਅਤੇ ਤਰੰਗ ਲੰਬਾਈ (λ) ਦੁਆਰਾ ਚਰਿੱਤਰਿਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਆਵਰਤੀ (v) ਦਾ SI ਮਾਤਰਕ ਹੈ ਹਾਇਨਰਿਕ ਹਰਟਜ਼ ਦੇ ਨਾਮ ਤੇ ਹਰਟਜ (Hz, s^{-1}) ਹੈ। ਇਸ ਨੂੰ ਤਰੰਗਾਂ ਦੀ ਉਸ ਸੰਖਿਆ ਦੇ ਰੂਪ ਵਿੱਚ ਪਰਿਭਾਸ਼ਿਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ, ਜੋ ਕਿਸੇ ਬਿੰਦੂ ਤੋਂ ਪ੍ਰਤੀ ਸੈਕੰਡ ਲੰਘਦੀਆਂ ਹਨ।

ਤਰੰਗ ਲੰਬਾਈ ਦੇ ਮਾਤਰਕ ਲੰਬਾਈ ਦੇ ਮਾਤਰਕ ਹੋਣੇ ਚਾਹੀਦੇ ਹਨ। ਆਮ ਤੌਰ ਤੇ ਇਸ ਦਾ ਮਾਪ ਮੀਟਰ (m) ਵਿੱਚ ਹੁੰਦਾ ਹੈ। ਕਿਉਂਕਿ ਬਿਜਲ-ਚੁੰਬਕੀ ਵਿਕੀਰਣਾਂ ਵਿੱਚ ਛੋਟੀ ਤਰੰਗ ਲੰਬਾਈ ਦੀਆਂ ਤਰੰਗਾਂ ਹੁੰਦੀਆਂ ਹਨ। ਇਸ ਦੇ ਕਈ ਛੋਟੇ ਮਾਤਰਕਾਂ ਦੀ ਜ਼ਰੂਰਤ ਹੁੰਦੀ ਹੈ। ਇਸ ਲਈ ਚਿੱਤਰ 2.7 ਵਿੱਚ ਭਿੰਨ ਭਿੰਨ ਤਰੰਗ ਲੰਬਾਈ ਜਾਂ ਆਵਰਤੀਆਂ ਵਾਲੀਆਂ ਭਿੰਨ ਭਿੰਨ ਕਿਸਮ ਦੀਆਂ ਬਿਜਲ-ਚੁੰਬਕੀ ਵਿਕੀਰਣਾਂ ਨੂੰ ਦਰਸਾਇਆ ਗਿਆ ਹੈ।

ਖਲਾਅ ਵਿੱਚ ਸਭ ਕਿਸਮ ਦੀਆਂ ਬਿਜਲ-ਚੁੰਬਕੀ ਵਿਕੀਰਣਾਂ, ਭਾਵੇਂ ਉਨ੍ਹਾਂ ਦੀ ਤਰੰਗ ਲੰਬਾਈ ਕੁਝ ਵੀ ਹੋਵੇ, ਇਕ ਸਮਾਨ ਗਤੀ, ਭਾਵ $3.0 \times 10^8~{
m m~s^{-1}}$ (2.997925 $\times~10^8~{
m m~s^{-1}}$ ਨਾਲ ਚੱਲਦੀਆਂ ਹਨ।

ਇਸ ਗਤੀ ਨੂੰ ਪ੍ਰਕਾਸ਼ ਦੀ ਗਤੀ (speed of light) ਕਹਿੰਦੇ ਹਨ ਅਤੇ c ਚਿੰਨ੍ਹ ਨਾਲ ਦਰਸਾਉਂਦੇ ਹਨ। ਆਵਰਤੀ (ν) ਤਰੰਗ ਲੰਬਾਈ (λ) ਅਤੇ ਪ੍ਰਕਾਸ਼ ਦੇ ਵੇਗ ਨੂੰ ਹੇਠ ਲਿਖੇ ਸਮੀਕਰਣ (2.5) ਦੁਆਰਾ ਸਬੰਧਿਤ ਕਰਦੇ ਹਨ-


$$c = v \lambda \tag{2.5}$$

ਤਰੰਗਾਂ ਨੂੰ ਦੱਸਣ ਦੇ ਲਈ ਇੱਕ ਦੂਜੀ ਰਾਸ਼ੀ ਤਰੰਗ ਸੰਖਿਆ($\overline{\nu}$) ਦੀ ਵਰਤੋਂ ਕੀਤੀ ਜਾਂਦੀ ਹੈ।ਪ੍ਰਤੀ ਇਕਾਈ ਲੰਬਾਈ ਵਿੱਚ ਤਰੰਗ-ਲੰਬਾਈ ਦੀ ਸੰਖਿਆ ਨੂੰ ਤਰੰਗ-ਸੰਖਿਆ (wave number) ਕਹਿੰਦੇ ਹਨ। ਇਸ ਦਾ ਮਾਤਰਕ ਤਰੰਗ ਲੰਬਾਈ ਦੇ ਮਾਤਰਕ ਦਾ ਪਰਸਪਰੀ ਭਾਵ \mathbf{m}^{-1} ਹੁੰਦਾ ਹੈ ਲੇਕਿਨ ਆਮ ਤੌਰ ਤੇ ਵਰਤਿਆ ਜਾਣ ਵਾਲਾ ਮਾਤਰਕ \mathbf{cm}^{-1} (SI ਮਾਤਰਕ ਨਹੀਂ) ਹੈ।

ਉਦਾਹਰਣ 2.3

ਆੱਲ ਇੰਡੀਆ ਰੇਡੀਓ (ਦਿੱਲੀ) ਦਾ ਵਿਵਧ ਭਾਰਤੀ ਸਟੇਸ਼ਨ 1368 k Hz (ਕਿਲੋ ਹਰਟਜ਼) ਦੀ ਅਵਰਤੀ ਤੇ ਪ੍ਰਸਾਰਣ ਕਰਦਾ ਹੈ। ਸੰਚਾਰਕ (transmitter) ਦੁਆਰਾ ਉਤਸਰਜਿਤ ਬਿਜਲ-ਚੁੰਬਕੀ ਵਿਕੀਰਣ ਦੀ ਤਰੰਗ-ਲੰਬਾਈ ਪਤਾ ਕਰੋ। ਇਹ ਬਿਜਲ-ਚੁੰਬਕੀ ਸਪੈਕਟ੍ਰਮ ਕਿਸ ਖੇਤਰ ਨਾਲ ਸਬੰਧਿਤ ਹੈ ?

ਹੱਲ ਤਰੰਗ ਲੰਬਾਈ = c/v ਜਿੱਥੇ 'c' ਖਲਾਅ ਵਿੱਚ ਬਿਜਲ−ਚੁੰਬਕੀ ਵਿਕੀਰਣ ਦਾ ਵੇਗ ਅਤੇ 'v ' ਅਵਰਤੀ ਹੈ। ਦਿੱਤੇ ਗਏ ਮਾਨਾਂ ਨੂੰ ਭਰਨ ਤੇ

ਚਿੱਤਰ. 2.7 (ੳ) ਬਿਜਲ-ਚੁੰਬਕੀ ਵਿਕੀਰਣਾਂ ਦਾ ਸਪੈਕਟ੍ਰਮ (ਅ) ਦ੍ਰਿਸ਼ ਸਪੈਕਟ੍ਰਮ ਪੂਰੇ ਸਪੈਕਟ੍ਰਮ ਦਾ ਇੱਕ ਛੋਟਾ ਜਿਹਾ ਭਾਗ ਹੁੰਦਾ ਹੈ।

$$\lambda = \frac{c}{v}$$

$$= \frac{3.00 \times 10^8 \, m \, s^{-1}}{1368 k Hz}$$

$$= \frac{3.00 \times 10^8 \, m \, s^{-1}}{1368 \times 10^3 \, s^{-1}}$$
=219.3m

ਇਹ ਰੇਡੀਓ ਤਰੰਗ ਹੈ।

ਉਦਾਹਰਣ 2.4

ਦ੍ਰਿਸ਼ ਸਪੈਕਟ੍ਰਮ ਦੇ ਤਰੰਗ ਲੰਬਾਈ ਦਾ ਦਾਇਰਾ ਵੈਂਗਣੀ (400 nm) ਤੋਂ ਲਾਲ (750 nm) ਤੱਕ ਹੈ।ਇਨ੍ਹਾਂ ਤਰੰਗ-ਲੰਬਾਈਆਂ ਨੂੰ ਅਵਰਤੀਆਂ Hz ਵਿੱਚ ਪ੍ਰਗਟ ਕਰੋ $(1 \text{nm} = 10^{-9} \text{m})$

ਹੱਲ

ਸਮੀਕਰਣ 2.5 ਦੇ ਅਨੁਸਾਰ, ਵੈਂਗਣੀ ਪ੍ਰਕਾਸ਼ ਦੀ ਅਵਰਤੀ

$$\nu = \frac{c}{\lambda} = \frac{3.00 \times 10^8 \, m \, s^{-1}}{400 \times 10^{-9} \, m}$$

 $= 7.50 \times 10^{14} \,\mathrm{Hz}$

ਲਾਲ ਪ੍ਕਾਸ਼ ਦੀ ਅਵਰਤੀ

$$v = \frac{c}{\lambda} = \frac{3.00 \times 10^8 ms^{-1}}{750 \times 10^{-9} m} = 4.00 \times 10^{14} Hz$$

ਦ੍ਰਿਸ਼ ਸਪੈਕਟ੍ਰਮ ਦਾ ਦਾਇਰਾ ਅਵਰਤੀ ਦੇ ਰੂਪ ਵਿੱਚ 4.0×10^{14} ਤੋਂ 7.0×10^{14} Hz ਤੱਕ ਹੈ।

ਉਦਾਹਰਣ 2.5

5800 Å ਤਰੰਗ ਲੰਬਾਈ ਵਾਲੀ ਪੀਲੀ ਵਿਕੀਰਣ ਦੀ (ੳ) ਤਰੰਗ ਸੰਖਿਆ ਅਤੇ (ਅ) ਅਵਰਤੀ ਦੀ ਗਣਨਾ ਕਰੋ।

ਹੱਲ

(ੳ) ਤਰੰਗ-ਸੰਖਿਆ ਦੀ ਗਣਨਾ (v)

$$\lambda = 5800 \text{Å} = 5800 \times 10^{-8} \text{ cm}$$

= $5800 \times 10^{-10} \text{ m}$

$$\bar{\nu} = \frac{1}{\lambda} = \frac{1}{5800 \times 10^{-10} \text{ m}}$$

$$= 1.724 \times 10^{6} \text{m}^{-1}$$

$$= 1.724 \times 10^{4} \text{ cm}^{-1}$$
(ਅ) ਅਵਰਤੀ (ν) ਦੀ ਗਣਨਾ
$$\nu = \frac{\text{c}}{\lambda} = \frac{3.00 \times 10^{8} \text{ m s}^{-1}}{5800 \times 10^{-10} \text{ m}} = 5.172 \times 10^{14} \text{ s}^{-1}$$

2.3.2 ਬਿਜਲ-ਚੁੰਬਕੀ ਵਿਕੀਰਣ ਦੀ ਕਣੀਂ ਪ੍ਰਕਿਰਤੀ ਪਲਾਂਕ ਦਾ ਕੁਆਂਟਮ ਸਿਧਾਂਤ

ਵਿਵਰਤਨ*(diffraction) ਅਤੇ ਵਿਘਨ** (interference) ਜਿਹੀਆਂ ਕੁਝ ਪ੍ਰਯੋਗਿਕ ਪਰਿਘਟਨਾਵਾਂ ਨੂੰ ਬਿਜਲ-ਚੁੰਬਕੀ ਵਿਕੀਰਣ ਦੀ ਤਰੰਗ ਪ੍ਕਿਰਤੀ ਦੁਆਰ ਸਮਝਾਇਆ ਜਾ ਸਕਦਾ ਹੈ, ਲੇਕਿਨ ਕੁਝ ਪ੍ਰੇਖਣਾਂ ਨੂੰ 19ਵੀਂ ਸਦੀ ਦੇ ਭੌਤਿਕ ਵਿਗਿਆਨ (ਜੋ 'ਪਰੰਪਰਿਕ ਭੌਤਿਕੀ' ਅਖਵਾਉਂਦੀ ਹੈ।) ਦੇ ਬਿਜਲ-ਚੁੰਬਕੀ ਸਿਧਾਂਤ ਦੀ ਸਹਾਇਤਾ ਦੇ ਨਾਲ ਵੀ ਵਰਣਨ ਨਹੀਂ ਕੀਤਾ ਜਾ ਸਕਦਾ। ਇਹ ਪੇਖਣ ਹੇਠ ਲਿਖੇ ਹਨ—

- (i) ਗਰਮ ਪਿੰਡ ਤੋਂ ਵਿਕੀਰਣ ਦਾ ਉਤਸਰਜਨ (ਕਾਲੀ ਵਸਤ ਵਿਕੀਰਣ, black body radiation);
- (ii) ਧਾਤ ਦੀ ਸਤ੍ਹਾ ਨਾਲ ਵਿਕੀਰਣ ਦੇ ਟਕਰਾਉਣ ਨਾਲ ਇਲੈਕਟ੍ਰਾਨਾਂ ਦਾ ਨਿਸ਼ਕਾਸਨ (ਪ੍ਰਕਾਸ਼-ਬਿਜਲੀ ਪ੍ਰਭਾਵ)
- (iii) ਠੋਸਾਂ ਵਿੱਚ ਤਾਪਮਾਨ ਦੇ ਬਦਲਾਵ ਦੇ ਰੂਪ ਵਿੱਚ ਗਰਮੀ ਧਾਰਣਸਮਰਥਾ ਦਾ ਪਰਿਵਰਤਨ
- (iv) ਖਾਸ ਕਰਕੇ ਹਾਈਡ੍ਰੋਜਨ ਦੇ ਸੰਦਰਭ ਵਿੱਚ ਪਰਮਾਣੂਆਂ ਵਿੱਚ ਵੇਖੇ ਗਏ ਰੇਖਾ ਸਪੈਕਟਮ।

ਇਹ ਧਿਆਨ ਦੇਣ ਵਾਲੀ ਗੱਲ ਹੈ ਕਿ ਸੰਨ 1900 ਵਿੱਚ ਮੈਕਸ ਪਲਾਂਟ ਦੁਆਰਾ ਸਭ ਤੋਂ ਪਹਿਲਾਂ ਕਾਲੀ ਵਸਤ ਵਿਕੀਰਣ ਦੀ ਕੋਈ ਠੋਸ ਵਿਆਖਿਆ ਕੀਤੀ ਗਈ। ਇਹ ਹੇਠ ਲਿਖੀ ਹੈ—

ਜਦੋਂ ਕਿਸੇ ਠੋਸ ਪਦਾਰਥ ਨੂੰ ਗਰਮ ਕੀਤਾ ਜਾਂਦਾ ਹੈ, ਤਾਂ ਉਸ ਤੋਂ ਵਿਸਤਰਿਤ ਦਾਇਰੇ ਵਾਲੇ ਤਰੰਗ-ਲੰਬਾਈ ਵਾਲੀਆਂ ਵਿਕੀਰਣਾਂ ਉਤਸਰਜਿਤ ਹੁੰਦੀਆਂ ਹਨ। ਉਦਾਹਰਣ ਵਜੋਂ ਜਦੋਂ ਕਿਸੇ ਲੋਹੇ ਦੀ ਛੜ ਨੂੰ ਭੱਠੀ ਵਿੱਚ ਗਰਮ ਕਰਦੇ ਹਨ, ਤਾਂ ਇਸਦਾ ਰੰਗ ਪਹਿਲਾਂ ਹਲਕਾ ਲਾਲ ਹੁੰਦਾ ਹੈ। ਜਿਉਂ ਜਿਉਂ ਤਾਪਮਾਨ ਵੱਧਦਾ ਜਾਂਦਾ ਹੈ, ਤਿਉਂ ਤਿਉਂ ਉਹ ਜਿਆਦਾ ਲਾਲ ਹੁੰਦਾ ਜਾਂਦਾ ਹੈ। ਜਦ ਇਸ ਨੂੰ ਹੋਰ ਗਰਮ ਕੀਤਾ ਜਾਂਦਾ ਹੈ ਤਾਂ ਇਸ ਵਿੱਚੋਂ ਨਿਕਲਨ ਵਾਲੀ ਵਿਕੀਰਣ ਦਾ ਰੰਗ ਸਫੇਦ ਹੋ ਜਾਂਦਾ ਹੈ ਅਤੇ ਜਦ ਤਾਪਮਾਨ ਬਹੁਤ ਜਿਆਦਾ ਹੁੰਦਾ ਹੈ, ਤਾਂ ਇਹ ਨੀਲਾ ਹੋ ਜਾਂਦਾ ਹੈ। ਇਸ ਦਾ ਭਾਵ ਹੈ ਕਿ ਤਾਪਮਾਨ ਦੇ ਵਾਧੇ ਦੇ ਨਾਲ

^{*} ਕਿਸੇ ਰੁਕਾਵਟ ਦੇ ਆਲੇ ਦੁਆਲੇ ਤਰੰਗ ਦੇ ਮੁੜਨ ਨੂੰ ਵਿਵਰਤਨ ਕਹਿੰਦੇ ਹਨ।

^{**} ਇੱਕ ਸਮਾਨ ਅਵਰਤੀ ਵਾਲੀਆਂ ਦੋ ਤਰੰਗਾਂ ਮਿਲ ਕੇ ਇੱਕ ਅਜਿਹੀ ਤਰੰਗ ਦਿੰਦੀਆਂ ਹਨ, ਜਿਸਦਾ ਦਿਸ਼ਾ ਕਾਲ ਵਿੱਚ ਹਰ ਇੱਕ ਬਿੰਦੂ ਉੱਤੇ ਵਿਭਾਜਨ ਹਰ ਇੱਕ ਤਰੰਗ ਦੇ ਉਸ ਬਿੰਦੂ ਉੱਤੇ ਵਿਭਾਜਨ ਬੀਜ ਗਣਿਤੀ ਜਾਂ ਵੈਕਟਰ ਜੋੜ ਹੁੰਦਾ ਹੈ। ਤਰੰਗਾਂ ਦੀ ਇਸ ਤਰ੍ਹਾਂ ਦਾ ਸੰਯੋਜਨ ਵਿਘਨ ਅਖਵਾਉਂਦਾ ਹੈ।

ਨਾਲ ਉਤਸਰਜਿਤ ਵਿਕੀਰਣ ਦੀ ਅਵਰਤੀ ਘੱਟ ਤੋਂ ਵੱਧ ਹੁੰਦੀ ਜਾਂਦੀ ਹੈ। ਬਿਜਲ ਚੁੰਬਕੀ ਸਪੈਕਟ੍ਰਮ ਵਿੱਚ ਲਾਲ ਰੰਗ ਘੱਟ ਅਵਰਤੀ ਵਾਲੇ ਅਤੇ ਨੀਲਾ ਰੰਗ ਵੱਧ ਅਵਰਤੀ ਵਾਲੇ ਖੇਤਰ ਵਿੱਚ ਹੁੰਦਾ ਹੈ। ਇੱਕ ਅਜਿਹਾ ਅਦਰਸ਼ ਪਿੰਡ ਜੋ ਹਰ ਪ੍ਰਕਾਰ ਦੀ ਅਵਰਤੀ ਦੀਆਂ ਕਿਰਣਾਂ ਨੂੰ ਸੋਖਦਾ ਅਤੇ ਉਤਸਰਜਿਤ ਕਰਦਾ ਹੈ। ਕਾਲੀ ਵਸਤ (black body) ਅਤੇ ਇਸ ਪਿੰਡ ਤੋਂ ਉਤਸਰਜਿਤ ਵਿਕੀਰਣ ਨੂੰ ਕਾਲੀ ਵਸਤ ਵਿਕੀਰਣ ਕਹਿੰਦੇ ਹਨ। ਕਾਲੀ ਵਸਤ ਤੋਂ ਉਤਸਰਜਿਤ ਵਿਕੀਰਣ ਦਾ ਪੂਰਾ (exact) ਅਵਰਤੀ ਵਿਤਰਣ (ਅਵਰਤੀ ਅਤੇ ਤੀਬਰਤਾ ਦੇ ਵਿੱਚ ਵਿਕੀਰਣ ਦਾ ਵਕ੍ਰ) ਉਸ ਦੇ ਤਾਪਮਾਨ ਉੱਤੇ ਨਿਰਭਰ ਕਰਦੀ ਹੈ। ਦਿੱਤੇ ਗਏ ਤਾਪਮਾਨ ਉੱਤੇ, ਉਤਸਰਜਿਤ ਕਿਰਣ ਦੀ ਤੀਬਰਤਾ ਤਰੰਗ ਲੰਬਾਈ ਦੇ ਘੱਟ ਹੋਣ ਦੇ ਨਾਲ ਵੱਧਦੀ ਹੈ। ਇਹ ਇੱਕ ਤਰੰਗ ਲੰਬਾਈ ਦੇ ਹੋਰ ਘੱਟ ਹੋਣ ਤੇ ਉਹ ਘੱਟਣੀ ਸ਼ੁਰੂ ਹੋ ਜਾਂਦੀ ਹੈ, ਜਿਵੇਂ ਚਿੱਤਰ 2.8 ਵਿੱਚ ਵਿਖਾਇਆ ਗਿਆ ਹੈ।

ਪ੍ਰਕਾਸ਼ ਦੇ ਤਰੰਗ ਸਿਧਾਂਤ ਦੇ ਅਧਾਰ ਤੇ ਉਪਰੋਕਤ ਪਰਿਣਾਮਾਂ ਦੀ ਸੰਤੋਖਜਨਕ ਵਿਆਖਿਆ ਨਹੀਂ ਕੀਤੀ ਜਾ ਸਕਦੀ।

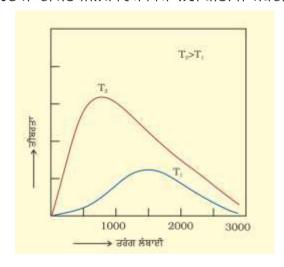
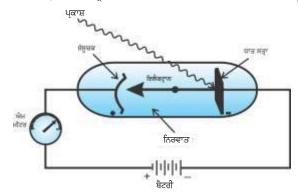


Fig. 2.8 ਤਰੰਗ ਲੰਬਾਈ ਤੀਬਰਤਾ ਸਬੰਧ

ਮੈਕਸ ਪਲਾਂਕ ਨੇ ਇਸ ਦੇ ਲਈ ਸੁਝਾਇਆ ਕਿ ਪਰਮਾਣੂ ਅਤੇ ਅਣੂ ਕੇਵਲ ਵੱਖਰੀ (discrete) ਮਾਤਰਾ ਵਿਚ ਊਰਜਾ ਉਤਸਰਜਿਤ (ਜਾਂ ਸੋਖਣ) ਕਰਦੇ ਹਨ, ਨਾ ਕਿ ਲਗਾਤਾਰ ਰੂਪ ਵਿੱਚ, ਜਿਵੇਂ ਪਹਿਲਾਂ ਮੰਨਿਆ ਜਾਂਦਾ ਸੀ। ਬਿਜਲ-ਚੁੰਬਕੀ ਵਿਕੀਰਣ ਦੇ ਰੂਪ ਵਿੱਚ, ਜਿਵੇਂ ਪਹਿਲਾਂ ਮੰਨਿਆ ਜਾਂਦਾ ਸੀ। ਬਿਜਲ-ਚੁੰਬਕੀ ਵਿਕੀਰਣ ਦੇ ਰੂਪ ਵਿੱਚ ਊਰਜਾ ਦੀ ਜਿਸ ਨਿਊਨਤਮ ਮਾਤਰਾ ਦਾ ਉਤਸਰਜਨ (ਜਾਂ ਸੋਖਣ) ਹੁੰਦਾ ਹੈ, ਉਸ ਨੂੰ ਪਲਾਂਕ ਦੁਆਰਾ ਕੁਆਂਟਮ (quantum) ਨਾਮ ਦਿੱਤਾ ਗਿਆ। ਵਿਕੀਰਣ ਦੇ ਇੱਕ ਕੁਆਂਟਮ ਦੀ ਊਰਜਾ (E) ਉਸ ਦੀ ਅਵਰਤੀ (v) ਦੇ ਸਮਾਨ ਅਨੁਪਾਤ ਹੁੰਦੀ ਹੈ। ਇਸ ਨੂੰ ਸਮੀਕਰਣ (2.6) ਦੁਆਰਾ ਵਿਅਕਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ—


$$E = hv (2.6)$$

ਅਨੁਪਾਤਿਕਾ ਸਥਿਰ ਅੰਕ, 'h' ਨੂੰ ਪਲਾਂਕ ਸਥਿਰ ਅੰਕ ਕਿਹਾ ਜਾਂਦਾ ਹੈ, ਅਤੇ ਇਸਦਾ ਮਾਨ $6.626 \times 10^{-34} \, \mathrm{J \ s}$ ਹੁੰਦਾ ਹੈ।

ਇਸ ਸਿਧਾਂਤ ਦੇ ਅਨੁਸਾਰ ਪਲਾਂਕ ਕਾਲੀ ਵਸਤ ਦੇ ਭਿੰਨ ਭਿੰਨ ਤਾਪਮਾਨਾਂ ਉੱਤੇ ਉਤਸਰਜਿਤ ਵਿਕੀਰਣ ਦੇ ਤੀਬਰਤਾ-ਵਿਤਰਣ ਦੀ ਅਵਰਤੀ ਅਤੇ ਤਰੰਗ ਲੰਬਾਈ ਦੇ ਫਲਨ ਦੇ ਰੂਪ ਵਿੱਚ ਵਿਆਖਿਆ ਕਰ ਸਕੇ।

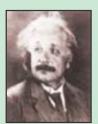
ਪ੍ਕਾਸ਼-ਬਿਜਲਈ ਪ੍ਰਭਾਵ

ਸੰਨ 1887 ਵਿੱਚ ਐਚ. ਹਰਟਜ਼ ਨੇ ਇੱਕ ਬਹੁਤ ਹੀ ਦਿਲਚਸਪ ਪ੍ਰਯੋਗ ਕੀਤਾ, ਜਿਸ ਵਿੱਚ ਕੁੱਝ ਧਾਤਾਂ (ਜਿਵੇਂ-ਪੋਟਾਸ਼ਿਅਮ, ਰੁਬੀਡਿਅਮ, ਸੀਜਿਅਮ ਆਦਿ) ਦੀ ਸਤ੍ਹਾ ਉੱਤੇ ਢੁਕਵੀਂ ਅਵਰਤੀ ਵਾਲਾ ਪ੍ਰਕਾਸ਼ ਪਾਉਣ ਉੱਤੇ, ਜਿਵੇਂ ਚਿੱਤਰ 2.9 ਵਿੱਚ ਵਿਖਾਇਆ ਗਿਆ ਹੈ, ਇਲੈਕਟ੍ਰਾਨ ਨਿਕਲਦੇ ਹਨ। ਇਸ ਪਰਿਘਟਨਾ ਨੂੰ

ਚਿੱਤਰ. 2.9 ਪ੍ਰਕਾਸ਼ ਬਿਜਲਈ ਪ੍ਰਭਾਵ ਦੇ ਅਧਿਐਨ ਦੇ ਲਈ ਉਪਕਰਣ। ਇਕ ਖਲਾਅ ਚੈਂਬਰ ਵਿੱਚ ਇੱਕ ਧਾਤ ਦੀ ਸਾਫ ਸਤ੍ਹਾ ਉੱਤੇ ਇੱਕ ਨਿਸ਼ਚਿਤ ਅਵਰਤੀ ਵਾਲੀ ਪ੍ਰਕਾਸ਼ ਦੀ ਕਿਰਣ ਟਕਰਾਉਂਦੀ ਹੈ। ਧਾਤ ਵਿੱਚੋਂ ਇਲੈਕਟ੍ਰਾਨ ਨਿਸ਼ਕਾਸਿਤ ਹੁੰਦੇ ਹਨ। ਇਹ ਇੱਕ ਸੰਸੂਚਕ ਦੁਆਰਾ ਗਿਣੇ ਜਾਂਦੇ ਹਨ, ਜੋ ਉਨ੍ਹਾਂ ਦੀ ਗਤਿਜ ੳਰਜਾ ਦਾ ਮਾਪਨ ਕਰਦਾ ਹੈ।

ਮੈਕਸ ਪਲਾਂਕ (1858 – 1947)

ਮੈਕਸ ਪਲਾਂਕ ਇੱਕ ਜਰਮਨ ਭੌਤਿਕ ਵਿਗਿਆਨੀ ਸਨ। ਉਨ੍ਹਾਂ ਨੇ ਸੰਨ 1879 ਵਿੱਚ ਮਿਊਨਿਖ ਵਿਸ਼ਵ ਵਿਦਿਆਲੇ ਤੋਂ ਪੀ.ਐਚ.ਡੀ. ਦੀ ਉਪਾਧੀ ਪ੍ਰਾਪਤ ਕੀਤੀ।1888 ਵਿੱਚ ਬਰਲਿਨ ਯੂਨੀਵਰਸਿਟੀ ਦੇ ਇਨਸਟੀਚਯੂਟ ਆੱਫ ਥਿਉਰੈਟੀਕਲ ਫਿਜਿਕਸ (Institute of


Theoretical Physics) ਵਿੱਚ ਡਾਇਰੈਕਟਰ ਨਿਯੁਕਤ ਕੀਤੇ ਗਏ।ਉਨ੍ਹਾਂ ਦੇ ਦੁਆਰਾ ਦਿੱਤੇ ਗਏ ਕੁਆਂਟਮ ਸਿਧਾਂਤ ਦੇ ਲਈ ਉਨ੍ਹਾਂ ਨੂੰ ਸੰਨ 1918 ਵਿੱਚ ਡੌਤਿਕੀ ਵਿੱਚ ਨੌਬਲ (Noble) ਪੁਰਸਕਾਰ ਨਾਲ ਸਨਮਾਨਿਤ ਕੀਤਾ ਗਿਆ।ਉਨ੍ਹਾਂ ਨੇ ਤਾਪਗਤਿਕੀ ਅਤੇ ਭੌਤਿਕੀ ਦੇ ਹੋਰ ਖੇਤਰਾਂ ਵਿੱਚ ਵੀ ਮਹੱਤਵਪੁਰਣ ਯੋਗਦਾਨ ਪਾਇਆ।

ਪ੍ਰਕਾਸ਼-ਬਿਜਲਈ ਪ੍ਰਭਾਵ ਕਹਿੰਦੇ ਹਨ। ਇਸ ਪ੍ਰਯੋਗ ਤੋਂ ਪ੍ਰਾਪਤ ਪਰਿਣਾਮ ਇਸ ਤਰ੍ਹਾਂ ਹਨ—

- (i) ਧਾਤ ਦੀ ਸਤ੍ਹਾ ਉੱਤੇ ਪ੍ਰਕਾਸ਼ ਪੁੰਜ ਦੇ ਟਕਰਾਉਂਦੇ ਹੀ ਉਸ ਦੀ ਸਤ੍ਹਾ ਤੋਂ ਇਲੈਕਟ੍ਰਾਨ ਨਿਕਲਦੇ ਹਨ ਭਾਵ ਧਾਤ ਦੀ ਸਤ੍ਹਾ ਤੋਂ ਇਲੈਕਟ੍ਰਾਨ ਨਿਸ਼ਕਾਸਨ ਅਤੇ ਸਤ੍ਹਾ ਉੱਤੇ ਪ੍ਰਕਾਸ਼ ਪੁੰਜ ਦੇ ਟਕਰਾਉਣ ਦੇ ਵਿੱਚ ਕੋਈ ਸਮਾਂ−ਅੰਤਰਾਲ (time lag) ਨਹੀਂ ਹੁੰਦਾ।
- (ii) ਨਿਸ਼ਕਾਸਿਤ ਇਲੈਕਟ੍ਰਾਨਾਂ ਦੀ ਸੰਖਿਆ ਪ੍ਰਕਾਸ਼ ਦੀ ਤੀਬਰਤਾ ਦੇ ਸਮਾਨ ਅਨੁਪਾਤੀ ਹੁੰਦੀ ਹੈ।
- (iii) ਹਰ ਇੱਕ ਧਾਤ ਦੇ ਲਈ ਇਅਕ ਲੱਛਣਿਕ ਨਿਊਨਤਮ ਅਵਰਤੀ ਹੁੰਦੀ ਹੈ, ਜਿਸ ਨੂੰ ਦਹਿਲੀਜ ਆਵਰਤੀ (threshold frequency) ਕਹਿੰਦੇ ਹਨ ਤੇ ਜਿਸ ਤੋਂ ਘੱਟ ਆਵਰਤੀ ਨਾਲ ਪ੍ਰਕਾਸ਼-ਬਿਜਲਈ ਪ੍ਰਭਾਵ ਪ੍ਦਰਸ਼ਿਤ ਨਹੀਂ ਹੁੰਦਾ। $v > v_0$ ਅਵਰਤੀ ਉੱਤੇ ਨਿਸ਼ਕਾਸਿਤ ਇਲੈਕਟ੍ਰਾਨਾਂ ਦੀ ਕੁੱਝ ਗਤਿਜ ਊਰਜਾ ਹੁੰਦੀ ਹੈ। ਗਤਿਜ ਊਰਜਾ ਵਰਤੇ ਪ੍ਰਕਾਸ਼ ਦੀ ਆਵਰਤੀ ਵੱਧਣ ਦੇ ਨਾਲ ਵੱਧਦੀ ਹੈ।

ਉਪਰੋਕਤ ਸਾਰੇ ਪਰਿਣਾਮਾਂ ਦੀ ਵਿਆਖਿਆ ਕਲਾਸਕੀ ਭੌਤਿਕੀ ਦੇ ਨਿਯਮਾਂ ਦੇ ਅਧਾਰ ਤੇ ਨਹੀਂ ਕੀਤੀ ਜਾ ਸਕੀ।ਉਨ੍ਹਾਂ ਨਿਯਮਾਂ ਦੇ ਅਨੁਸਾਰ ਪ੍ਰਕਾਸ਼ ਦੀ ਕਿਰਣ ਦੀ ਊਰਜਾ ਦੀ ਮਾਤਰਾ ਪ੍ਰਕਾਸ਼ ਦੀ ਤੀਬਰਤਾ ਉੱਤੇ ਨਿਰਭਰ ਕਰਦੀ ਹੈ। ਦੂਜੇ ਸ਼ਬਦਾਂ ਵਿੱਚ, ਨਿਸ਼ਕਾਸਿਤ ਇਲੈਕਟ੍ਰਾੱਨਾਂ ਦੀ ਸੰਖਿਆ ਅਤੇ ਉਨ੍ਹਾਂ ਨਾਲ ਸਬੰਧਿਤ ਊਰਜਾ ਦੀ ਵਿਆਖਿਆ ਪ੍ਰਕਾਸ਼ ਦੀ ਤੀਬਰਤਾ ਨਾਲ ਕੀਤੀ ਜਾ ਸਕਦੀ ਹੈ।ਉਦਾਹਰਣ ਵਜੋਂ, ਪੋਟਾਸ਼ਿਅਮ ਦੇ ਟੁਕੜੇ ਉੱਤੇ ਜਦੋਂ ਕਿਸੇ ਤੀਬਰਤਾ ਦਾ ਲਾਲ ਰੰਗ ਦਾ ਪ੍ਰਕਾਸ਼

ਜਰਮਨੀ ਵਿੱਚ ਪੈਦਾ ਹੋਏ ਅਮਰੀਕੀ ਭੌਤਿਕੀ ਵਿਗਿਆਨੀ ਅਲਬਰਟ ਆਈਂਸਟੀਨ ਵਿਸ਼ਵ ਦੇ ਦੋ ਮਹਾਨ ਭੌਤਿਕੀ ਵਿਗਿਆਨੀਆਂ ਵਿੱਚੋਂ ਇੱਕ ਮੰਨੇ ਜਾਂਦੇ ਹਨ। (ਦੂਜੇ ਵਿਗਿਆਨੀ ਈਜ਼ਾਕ ਨਿਊਟਨ ਸਨ)। ਸੰਨ 1905 ਵਿੱਚ ਜਦੋਂ ਉਹ ਬਰਨੇ ਵਿੱਚ ਇੱਕ ਸਵਿੱਸ ਪੇਟੈਂਟ ਆੱਫਿਸ ਵਿੱਚ ਤਕਨੀਕੀ ਸਹਾਇਕ ਸਨ ਤਾਂ ਵਿਸ਼ੇਸ਼ ਸਾਪੇਖਕਤਾ ਬਰਾਊਨੀ ਗਤੀ ਅਤੇ ਪ੍ਰਕਾਸ਼ ਬਿਜਲਈ ਪ੍ਰਭਾਵ ਤੇ ਛਪੇ ਉਨ੍ਹਾਂ ਦੇ

ਅਲਬਰਟ ਆਈਂਸਟੀਨ (1879 - 1955)

ਤਿੰਨ ਖੋਜ ਪੱਤਰਾਂ ਨੇ ਭੌਤਿਕੀ ਦੇ ਵਿਕਾਸ ਨੂੰ ਬਹੁਤ ਪ੍ਰਭਾਵਿਤ ਕੀਤਾ। ਉਨ੍ਹਾਂ ਨੂੰ ਸੰਨ 1921 ਵਿੱਚ ਪ੍ਰਕਾਸ਼-ਬਿਜਲਈ ਪ੍ਰਭਾਵ ਦੀ ਵਿਆਖਿਆ ਦੇ ਲਈ ਭੌਤਿਕੀ ਵਿੱਚ ਨੋਬਲ ਪੁਰਸਕਾਰ ਨਾਲ ਸਨਮਾਨਿਤ ਕੀਤਾ ਗਿਆ। $[v=(4.3\ \ensuremath{\ensu$

ਬਿਜਲ-ਚੰਬਕੀ ਵਿਕੀਰਣ ਦੇ ਪਲਾਂਕ ਦੇ ਕੁਆਂਟਮ ਸਿਧਾਂਤ ਦੀ ਵਰਤੋਂ ਕਰਦੇ ਹੋਏ ਆਈਸਟੀਨ (1905) ਪ੍ਰਕਾਸ਼-ਬਿਜਲਈ ਪ੍ਰਭਾਵ ਨੂੰ ਸਮਝਣ ਵਿੱਚ ਸਫਲ ਧਾਤ ਦੀ ਸਤ੍ਹਾ ਉੱਤੇ ਪ੍ਰਕਾਸ਼ ਪੂੰਜ ਦੇ ਟਕਰਾਉਣ ਨੂੰ ਕਣਾਂ (ਫੋਟਾੱਨਾਂ) ਦੇ ਪੰਜ ਦਾ ਟਕਰਾਉਣਾ ਸਮਝਿਆ ਜਾ ਸਕਦਾ ਹੈ। ਜਦੋਂ ਕੋਈ ਉਚਿਤ ਉਰਜਾ ਵਾਲਾ ਫੋਟਾੱਨ ਧਾਤ ਦੇ ਪਰਮਾਣੂ ਦੇ ਇਲਕੈਟ੍ਰਾੱਨ ਨਾਲ ਟਕਰਾਉਂਦਾ ਹੈ, ਤਾਂ ਉਹ ਇਲੈਕਟ੍ਰਾੱਨ ਨੂੰ ਪਰਮਾਣੂ ਵਿੱਚੋਂ ਤੁਰੰਤ ਬਾਹਰ ਕੱਢ ਦਿੰਦਾ ਹੈ। ਫੋਟਾੱਨ ਦੀ ਉਰਜਾ ਜਿੰਨੀ ਜਿਆਦਾ ਹੋਵੇਗੀ, ਉਨੀ ਹੀ ਉਰਜਾ ਉਹ ਇਲੈਕਟ੍ਰਾਨ ਨੂੰ ਦੇਵੇਗਾ ਅਤੇ ਨਿਸ਼ਕਾਸਿਤ ਇਲੈਕਟ੍ਰਾਨ ਦੀ ਗਤਿਜ ਉਰਜਾ ਉਨੀ ਹੀ ਵੱਧ ਹੋਵੇਗੀ। ਦੂਜੇ ਸ਼ਬਦਾਂ ਵਿੱਚ, ਨਿਸ਼ਕਾਸਿਤ ਇਲੈਕਟ੍ਰਾਨ ਦੀ ਗਤਿਜ ਉਰਜਾ ਬਿਜਲ-ਚੁੰਬਕੀ ਵਿਕੀਰਣ ਦੀ ਆਵਰਤੀ ਦੇ ਸਮਾਨ-ਅਨੁਪਾਤੀ ਹੋਵੇਗੀ। ਕਿਉਂਕਿ ਟਕਰਾਉਣ ਵਾਲੇ ਫੋਟਾੱਨ ਦੀ ਉਰਜਾ *hv* ਹੈ ਅਤੇ ਇਲੈਕਟ੍ਰਾੱਨ ਨੂੰ ਨਿਸ਼ਕਾਸਿਤ ਕਰਨ ਲਈ ਨਿਊਨਤਮ ਊਰਜਾ $hv_{_0}$ (ਜਿਸ ਨੂੰ ਕਾਰਜਫਲਨ $W_{_0}$ ਵੀ ਕਹਿੰਦੇ ਹਨ) ਊਰਜਾ ਵਿੱਚ ਅੰਤਰ $(hv - hv_{_0})$ ਫੋਟੋ ਇਲੈਕਟ੍ਰਾੱਨ ਗਤਿਜ ਉਰਜਾ ਵਿੱਚ ਸਥਾਨ ਅੰਤਰਿਤ ਹੋ ਜਾਂਦੀ ਹੈ। ਉਰਜਾ ਦੇ ਸੁਰੱਖਿਅਣ (conservation of energy) ਦੇ ਨਿਯਮ ਦੀ ਪਾਲਨਾ ਕਰਦੇ ਹੋਏ ਨਿਸ਼ਕਾਸਿਤ ਇਲੈਕਟ੍ਰਾਨ ਦੀ ਗਤਿਜ ਉਰਜਾ ਸਮੀਕਰਣ 2.7 ਦੁਆਰਾ ਦਿੱਤੀ ਜਾਂਦੀ ਹੈ।

$$hv = hv_0 + \frac{1}{2}m_{\rm e}v^2 \tag{2.7}$$

ਜਿੱਥੇ m_e ਇਲੈਕਟ੍ਰਾੱਨ ਦਾ ਪੁੰਜ ਹੈ ਅਤੇ v ਇਸ ਦਾ ਵੇਗ ਹੈ। ਅੰਤ ਵਿੱਚ ਜਿਆਦਾ ਤੀਬਰਤਾ ਵਾਲੇ ਪ੍ਰਕਾਸ਼ ਵਿੱਚ ਫੋਟਾੱਨਾਂ ਦੀ ਸੰਖਿਆ ਜਿਆਦਾ ਹੋਵੇਗੀ ਅਤੇ ਫਲਸਰੂਪ ਨਿਸ਼ਕਾਸਿਤ ਇਲੈਕਟ੍ਰਾੱਨਾਂ ਦੀ ਸੰਖਿਆ ਵੀ ਉਸ ਪ੍ਰਯੋਗ ਦੀ ਤੁਲਨਾ ਵਿੱਚ ਜਿਆਦਾ ਹੋਵੇਗੀ, ਜਿਸ ਵਿੱਚ ਘੱਟ ਤੀਬਰਤਾ ਦੇ ਪ੍ਰਕਾਸ਼ ਦੀ ਵਰਤੋਂ ਕੀਤੀ ਗਈ ਹੈ।

ਬਿਜਲ-ਚੁੰਬਕੀ ਵਿਕੀਰਣ ਦਾ ਦੁਹਰਾ ਵਿਹਾਰ

ਪ੍ਕਾਸ਼ ਦੀ ਕਣ ਵਾਲੀ ਪ੍ਕਿਰਤੀ ਨੇ ਵਿਗਿਆਨੀਆਂ ਦੇ ਸਾਹਮਣੇ ਦੁਬਿਧਾ ਦੀ ਸਥਿਤੀ ਪੈਦਾ ਕਰ ਦਿੱਤੀ। ਇੱਕ ਪਾਸੇ ਤਾਂ ਇਸ ਨੇ ਕਾਲੀ ਵਸਤ ਵਿਕੀਰਣ ਅਤੇ ਪ੍ਕਾਸ਼ ਬਿਜਲਈ ਪ੍ਭਾਵ ਦੀ ਸੰਤੋਖਜਨ ਵਿਆਖਿਆ ਕੀਤੀ, ਪਰੰਤੁ ਦੂਜੇ ਪਾਸੇ ਇਹ

 पाउ
 Li
 Na
 K
 Mg
 Cu
 Ag

 W₀ /eV
 2.42
 2.3
 2.25
 3.7
 4.8
 4.3

Table 2.2 Values of Work Function (W₀) for a Few Metals

ਪ੍ਕਾਸ਼ ਦੀ ਤਰੰਗ ਵਰਗੇ ਵਿਹਾਰ, ਜਿਸ ਨਾਲ ਵਿਵਰਤਨ, ਵਿਘਨ ਆਦਿ ਪਰਿਘਟਨਾਵਾਂ ਦੀ ਵਿਆਖਿਆ ਕੀਤੀ ਜਾ ਸਕਦੀ ਸੀ, ਦੇ ਨਾਲ ਇਕ ਸੁਰ ਨਹੀਂ ਸੀ। ਇਸ ਦੁਵਿਧਾ ਨੂੰ ਹੱਲ ਕਰਨ ਦਾ ਇੱਕ ਹੀ ਉਪਾਅ ਸੀ ਕਿ ਇਹ ਮੰਨ ਲਿਆ ਜਾਵੇ ਕਿ ਪ੍ਕਾਸ਼ ਦੇ ਕਣ ਅਤੇ ਤਰੰਗ ਦੋਵਾਂ ਵਰਗੇ ਗੁਣ ਹੁੰਦੇ ਹਨ ਭਾਵ ਪ੍ਕਾਸ਼ ਦਾ ਦੁਹਰਾ ਵਿਹਾਰ ਹੁੰਦਾ ਹੈ। ਪ੍ਯੋਗਾਂ ਦੇ ਅਧਾਰ ਤੇ ਅਸੀਂ ਵੇਖਦੇ ਹਾਂ ਕਿ ਪ੍ਕਾਸ਼ ਤਰੰਗ ਜਾਂ ਕਣ ਦੇ ਸਮਾਨ ਵਿਹਾਰ ਕਰਦਾ ਹੈ। ਜਦੋਂ m ਦੇ ਨਾਲ ਵਿਕੀਰਣ ਦੀ ਅੰਤਰ ਕਿਰਿਆ ਹੁੰਦੀ ਹੈ, ਤਾਂ ਇਹ ਕਣ ਵਰਗੇ ਗੁਣ ਪ੍ਦਰਸ਼ਿਤ ਕਰਦਾ ਹੈ। ਜਦੋਂ ਪ੍ਕਾਸ਼ ਦਾ ਸੰਚਰਣ ਹੁੰਦਾ ਹੈ, ਤਾਂ ਇਹ ਤਰੰਗ ਵਰਗੇ ਗੁਣ (ਵਿਵਰਤਨ ਅਤੇ ਵਿਘਨ) ਦਰਸਾਉਂਦਾ ਹੈ। ਪੁੰਜ ਅਤੇ ਵਿਕੀਰਣ ਦੀਆਂ ਪ੍ਚਲਿਤ ਸੋਚਾਂ ਨੂੰ ਵੇਖਦੇ ਹੋਏ ਇਹ ਸੰਕਲਪਨਾ ਬਿਲਕੁੱਲ ਨਵੀਂ ਸੀ। ਲੋਕਾਂ ਨੂੰ ਇਸ ਨੂੰ ਮੰਨਣ ਵਿੱਚ ਕਾਫੀ ਸਮਾਂ ਲੱਗਿਆ। ਜਿਸ ਤਰ੍ਹਾਂ ਤੁਸੀਂ ਅੱਗੇ ਵੇਖੋਗੇ, ਕੁਝ ਸੁਖਮ (ਜਿਵੇਂ-ਇਲੈਕਟ੍ਰਾੱਨ) ਵੀ ਤਰੰਗ ਕਣ ਵਾਲਾ ਦੂਹਰਾ ਵਿਹਾਰ ਪ੍ਦਰਸ਼ਿਤ ਕਰਦੇ ਹਨ।

ਉਦਾਹਰਣ 2.6

 $5 \times \! 10^{14} \, \mathrm{Hz}$ ਅਵਰਤੀ ਵਾਲੀ ਵਿਕੀਰਣ ਦੇ ਇੱਕ ਮੋਲ ਫੋਟਾੱਨ ਦੀ ਉਰਜਾ ਦੀ ਗਣਨਾ ਕਰੋ।

ਹੱਲ

ਇਕ ਫੋਟਾੱਨ ਦੀ ਊਰਜਾ (*E*) ਹੇਠ ਲਿਖੇ ਸਮੀਕਰਣ ਦੁਆਰਾ ਦਿੱਤੀ ਜਾਂਦੀ ਹੈ—

E = hv

 $h = 6.626 \times 10^{-34} \text{ J s}$

 $v = 5 \times 10^{14} \text{ s}^{-1} \text{ (given)}$

 $E = (6.626 \times 10^{-34} \text{ J/s}) \times (5 \times 10^{14} \text{ s}^{-1})$

 $= 3.313 \times 10^{-19} J$

ਇੱਕ ਮੋਲ ਫੋਟਾੱਨਾਂ ਦੀ ਉਰਜਾ

= $(3.313 \times 10^{-19} \text{ J}) \times (6.022 \times 10^{23} \text{ mol}^{-1})$

 $= 199.51 \text{ kJ mol}^{-1}$

ਉਦਾਹਰਣ 2.7

100 ਵਾੱਟ ਦਾ ਇੱਕ ਬਲਬ 400 n m ਵਾਲੀ ਤਰੰਗ ਲੰਬਾਈ ਦਾ ਇੱਕ ਵਰਣੀ ਪ੍ਰਕਾਸ਼ ਉਤਸਰਜਿਤ ਕਰਦਾ ਹੈ। ਬਲਬ ਦੁਆਰਾ ਪ੍ਰਤੀ ਸੈਕੰਡ ਉਤਸਰਜਿਤ ਫੋਟਾੱਨਾਂ ਦੀ ਸੰਖਿਆ ਦੀ ਗਣਨਾ ਕਰੋ।

ਹੱਲ

ਬਲਬ ਦੀ ਬਿਜਲਈ ਸ਼ਕਤੀ = 100 ਵਾੱਟ

 $= 100 \text{ J s}^{-1}$

ਇਕ ਫੋਟਾੱਨ ਦੀ ਊਰਜਾ $E = hv = hc/\lambda$

 $= \frac{6.626 \times 10^{-34} \text{ J s} \times 3 \times 10^8 \text{ m s}^{-1}}{400 \times 10^{-9} \text{ m}}$

 $=4.969\times10^{-19}$ J

ਉਤਸਰਜਿਤ ਫੋਟਾੱਨਾ ਦੀ ਸੰਖਿਆ

$$\frac{100~J~s^{^{-1}}}{4.969\times10^{^{-19}}J} = 2.012\times10^{20}~s^{^{-1}}$$

ਉਦਾਹਰਣ 2.8

ਜਦੋਂ 300 nm ਤਰੰਗ ਲੰਬਾਈ ਦੀ ਵਿਕੀਰਣ ਸੋਡੀਅਮ ਧਾਤ ਦੀ ਸਤ੍ਹਾ ਉੱਤੇ ਟਕਰਾਉਂਦੀ ਹੈ, ਤਾਂ 1.68 ×10⁵ J mol⁻¹ ਗਤਿਜ ਊਰਜਾ ਵਾਲੇ ਇਲੈਕਟ੍ਰਾੱਨ ਉਤਸਰਜਿਤ ਹੁੰਦੇ ਹਨ। ਸੋਡੀਅਮ ਦੇ ਇਲੈਕਟ੍ਰਾੱਨ ਦੇ ਨਿਸ਼ਕਾਸਨ ਦੇ ਲਈ ਘੱਟ ਤੋਂ ਘੱਟ ਕਿੰਨੀ ਊਰਜਾ ਦੀ ਲੋੜ ਹੋਵੇਗੀ ? ਕਿਸੇ ਪ੍ਕਾਸ਼ਿਕ ਇਲੈਕਟ੍ਰਾੱਨ ਦੇ ਉਤਸਰਜਨ ਦੇ ਲਈ ਅਧਿਕਤਮ ਤਰੰਗ ਲੰਬਾਈ ਕੀ ਹੋਵੇਗੀ ?

ਹੱਲ

300 nm ਫੋਟਾੱਨ ਦੀ ਊਰਜਾ (*E*) ਇਸ ਪ੍ਰਕਾਰ ਦਿੱਤੀ ਜਾਂਦੀ ਹੈ—

 $hv = hc / \lambda$

$$= \frac{6.626 \times 10^{-34} \text{ J s} \times 3.0 \times 10^{8} \text{m s}^{-1}}{300 \times 10^{-9}}$$

 $=6.626\times10^{-19}$ J

1 ਮੋਲ ਫੋਟਾੱਨਾਂ ਦੀ ਉਰਜਾ

= $6.626 \times 10^{-19} \text{ J} \times 6.022 \times 10^{23} \text{ mol}^{-1}$

 $= 3.99 \times 10^5 \text{ J mol}^{-1}$

ਸੋਡੀਅਮ ਦੇ ਇੱਕ ਮੋਲ ਇਲੈਕਟ੍ਰਾਨਾਂ ਦੇ ਨਿਸ਼ਕਾਸਿਤ ਦੇ ਲਈ ਲੋੜੀਂਦੀ ਨਿਉਨਤਮ ਉਰਜਾ

 $= (3.99 - 1.68) \times 10^5 \text{ J mol}^{-1}$

 $= 2.31 \times 10^5 \text{ J mol}^{-1}$

ਇੱਕ ਇਲੈਕਟ੍ਰਾੱਨ ਦੇ ਲਈ ਲੋੜੀਂਦੀ ਉਰਜਾ

2.3.3 ਕੁਆਂਟਿਤ ਇਲੈਕਟ੍ਰਾਨਿਕ ਊਰਜਾ ਸਤਰਾਂ ਦੇ ਲਈ ਪਰਮਾਣ : ਪਰਮਾਣ ਵਿਕ ਸਪੈਕਟ੍ਰਾ

ਪ੍ਕਾਸ਼ ਦੀ ਗਤੀ ਉਸ ਮਾਧਿਅਮ ਦੇ ਸੁਭਾਅ ਉੱਤੇ ਨਿਰਭਰ ਕਰਦੀ ਹੈ ਜਿਸ ਵਿੱਚੋਂ ਇਹ ਲੰਘਦੀ ਹੈ। ਇੱਕ ਮਾਧਿਅਮ ਤੋਂ ਦੂਜੇ ਤੱਕ ਜਾਣ ਤੇ ਪ੍ਕਾਸ਼ ਦੀ ਕਿਰਣ ਆਪਣੇ ਮੂਲ ਪੱਥ ਤੋਂ ਮੁੜ ਜਾਂਦੀ ਹੈ ਭਾਵ ਅਪਵਰਤਿਤ (refract) ਹੋ ਜਾਂਦੀ ਹੈ।

ਪ੍ਰਿਜ਼ਮ ਵਿੱਚੋਂ ਸਫੇਦ ਪ੍ਕਾਸ਼ ਦੀ ਕਿਰਣ ਨੂੰ ਗੁਜਾਰਨ ਤੇ ਇਹ ਵੇਖਿਆ ਗਿਆ ਹੈ ਕਿ ਘੱਟ ਤਰੰਗ ਲੰਬਾਈ ਦੀ ਤਰੰਗ ਲੰਬੀ ਤਰੰਗ ਲੰਬਾਈ ਦੀ ਤਰੰਗ ਦੀ ਤੁਲਨਾ ਵਿੱਚ ਵਧੇਰੇ ਝੁੱਕ ਜਾਂਦੀ ਹੈ, ਕਿਉਂਕਿ ਸਧਾਰਣ ਸਫੇਦ ਪ੍ਕਾਸ਼ ਦ੍ਰਿਸ਼ ਦਾਇਰੇ ਵਿੱਚ ਸਾਰੀਆਂ ਤਰੰਗ ਲੰਬਾਈਆਂ ਵਾਲੀਆਂ ਤਰੰਗਾਂ ਹੁੰਦੀਆਂ ਹਨ।ਸਫੇਦ ਪ੍ਕਾਸ਼ ਦੀ ਕਿਰਣ ਰੰਗਦਾਰ ਪੱਟੀਆਂ ਦੀ ਇੱਕ ਲੜੀ ਵਿੱਚ ਫੈਲ ਜਾਂਦੀ ਹੈ ਜਿਸ ਨੂੰ ਸਪੈਕਟ੍ਰਮ ਕਹਿੰਦੇ ਹਨ। ਲਾਲ ਰੰਗ, ਜਿਸ ਦੀ ਤਰੰਗ ਲੰਬਾਈ ਸਭ ਤੋਂ ਵੱਧ ਹੁੰਦੀ ਹੈ, ਦਾ ਵਿਚਲਨ ਸਭ ਤੋਂ ਘੱਟ ਅਤੇ

ਸਭ ਤੋਂ ਘੱਟ ਤਰੰਗ ਲੰਬਾਈ ਵਾਲੇ ਬੈਂਗਣੀ ਰੰਗ ਦਾ ਵਿਚਲਨ ਸਭ ਤੋਂ ਵੱਧ ਹੁੰਦਾ ਹੈ। ਸਫੇਦ ਰੰਗ ਦਾ ਪ੍ਰਕਾਸ਼ ਜੋ ਸਾਨੂੰ ਵਿਖਾਈ ਦਿੰਦਾ ਹੈ ਦੇ ਸਪੇਕਟ੍ਰਮ ਦਾ ਦਾਇਰਾ $7.50 imes 10^{14}~{
m Hz}$ ਦੇ ਬੈਂਗਣੀ ਰੰਗ ਤੋਂ ਲੈ ਕੇ $4{ imes}10^{14}~{
m Hz}$ ਦੇ ਲਾਲ ਰੰਗ ਤੱਕ ਹੁੰਦਾ ਹੈ। ਇਸ ਸਪੈਕਟ੍ਮ ਨੂੰ ਨਿਰੰਤਰ ਸਟੈਕਟ੍ਮ (continuous spectrum) ਕਹਿੰਦੇ ਹਨ—ਨਿਰੰਤਰ ਇਸ ਲਈ ਕਿਉਂਕਿ ਬੈਂਗਨੀ ਰੰਗ ਨੀਲੇ ਰੰਗ ਵਿੱਚ ਅਤੇ ਨੀਲਾ ਰੰਗ ਹਰੇ ਰੰਗ ਵਿੱਚ ਮਿਲਦਾ ਹੈ। ਹੋਰਾਂ ਰੰਗਾਂ ਨਾਲ ਵੀ ਅਜਿਹਾ ਹੀ ਹੁੰਦਾ ਹੈ। ਜਦੋਂ ਅਕਾਸ਼ ਵਿੱਚ ਸੱਤ ਰੰਗੀ ਪੀਂਘ ਬਣਦੀ ਹੈ, ਤਾਂ ਵੀ ਅਜਿਹਾ ਹੀ ਸਪੈਕਟ੍ਰਮ ਵਿਖਾਈ ਦਿੰਦਾ ਹੈ। ਯਾਦ ਰੱਖੋ ਕਿ ਦ੍ਰਿਸ਼ ਪ੍ਰਕਾਸ਼ ਬਿਜਲ-ਚੁੰਬਕੀ ਵਿਕੀਰਣ ਦਾ ਇੱਕ ਬਹੁਤ ਛੋਟਾ ਭਾਗ ਹੁੰਦਾ ਹੈ। (ਚਿੱਤਰ 2.7) ਜਦੋਂ ਬਿਜਲੀ-ਚੰਬਕੀ ਵਿਕੀਰਣ ਮਾਦੇ ਨਾਲ ਅੰਤਰ ਕਿਰਿਆ ਕਰਦੀ ਹੈ ਤਾਂ ਪਰਮਾਣੂ ਅਤੇ ਅਣੂ ਇਸ ਊਰਜਾ ਨੂੰ ਸੋਖ ਲੈਂਦੇ ਹਨ ਅਤੇ ਉੱਚ ਉਰਜਾਸਤਰ ਤੇ ਪਹੁੰਚ ਜਾਂਦੇ ਹਨ। ਉੱਚ ਉਰਜਾ ਸਤਰ ਤੇ ਇਹ ਅਸਥਾਈ ਸਥਿਤੀ ਵਿੱਚ ਹੁੰਦੇ ਹਨ। ਇਹ ਜਦ ਘੱਟ ਉਰਜਾ ਵਾਲੀ ਵਧੇਰੇ ਸਥਾਈ ਸੁਭਾਵਿਕ ਸਥਿਤੀ ਵਿੱਚ ਮੁੜਦੇ ਹਨ ਤਾਂ ਉਹ ਬਿਜਲ-ਚੁੰਬਕੀ ਸਪੈਕਟ੍ਮ ਦੇ ਭਿੰਨ-ਭਿੰਨ ਖੇਤਰਾਂ ਵਿੱਚ ਵਿਕੀਰਣ ਉਤਸਰਜਿਤ ਕਰਦੇ ਹਨ।

ਉਤਸਰਜਨ ਅਤੇ ਸੋਖਣ ਸਪੈਕਟਾ

ਕਿਸੇ ਪਦਾਰਥ ਦੇ ਊਰਜਾ ਸੋਖਣ ਦੇ ਬਾਅਦ ਉਤਸਰਜਿਤ ਵਿਕੀਰਣ ਦਾ ਸਪੈਕਟ੍ਰਮ 'ਉਤਸਰਜਨ ਸਪੈਕਟ੍ਰਾ' ਅਖਵਾਉਂਦਾ ਹੈ। ਪਰਮਾਣੂ ਅਣੂ ਜਾਂ ਆਇਨ ਵਿਕੀਰਣ ਦੇ ਸੋਖਣ ਤੇ ਉਤੇਜਿਤ ਹੋ ਜਾਂਦੇ ਹਨ। ਉਤਸਰਜਨ ਸਪੈਕਟਰਮ ਪ੍ਰਾਪਤ ਕਰਨ ਦੇ ਲਈ ਕਿਸੇ ਸੈਂਪਲ ਨੂੰ ਗਰਮ ਕਰਕੇ ਜਾਂ ਵਿਕੀਰਣ ਕਰਕੇ ਊਰਜਾ ਦਿੱਤੀ ਜਾਂਦੀ ਹੈ ਅਤੇ ਜਦ ਸੈਂਪਲ ਸੋਖਿਤ ਊਰਜਾ ਨੂੰ ਨਿਸ਼ਕਾਸ਼ਿਤ ਕਰਦਾ ਹੈ ਤਾਂ ਉਤਸਰਜਿਤ ਵਿਕੀਰਣ ਦੀ ਤਰੰਗ ਲੰਬਾਈ (ਜਾਂ ਆਵਰਤੀ) ਨੂੰ ਰਿਕਾਰਡ ਕਰ ਲਿਆ ਜਾਂਦਾ ਹੈ।

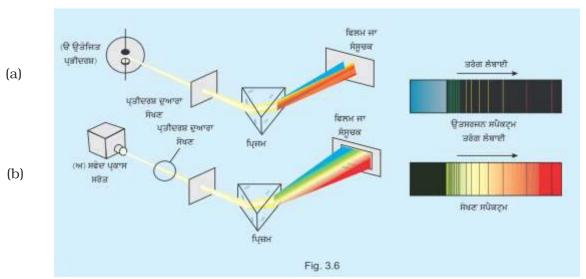
ਸੋਖਣ ਸਪੈਕਟ੍ਰਮ ਉਤਸਰਜਨ ਸਪੈਕਟ੍ਰਮ ਦੇ ਫੋਟੋਗ੍ਰਾਫੀ ਨੈਗੇਟਿਵ ਵਾਂਗ ਹੁੰਦਾ ਹੈ। ਜਦੋਂ ਇੱਕ ਕੰਟਿਨਿਊਅਮ ਵਿਕੀਰਣ ਨੂੰ ਸੈਂਪਲ ਉੱਤੇ ਪਾਇਆ ਜਾਂਦਾ ਹੈ ਤਾਂ ਉਹ ਵਿਕੀਰਣ ਦੀ ਕੁੱਝ ਤਰੰਗ ਲੰਬਾਈਆਂ ਨੂੰ ਸੋਖਤ ਕਰ ਲੈਂਦਾ ਹੈ। ਮਾਦਾ ਦੁਆਰਾ ਸੋਖਿਤ ਵਿਕੀਰਣ ਦੀ ਸੰਗਤ ਲੁਪਤ ਤਰੰਗ ਲੰਬਾਈ ਚਮਕੀਲੇ ਨਿਰੰਤਰ ਸਪੈਕਟ੍ਰਮ ਵਿੱਚ ਗੂੜ੍ਹੇ ਰੰਗ ਦੀਆਂ ਰੇਖਾਵਾਂ ਦੇ ਰੂਪ ਵਿੱਚ ਪ੍ਦਰਸ਼ਿਤ ਹੁੰਦੀਆਂ ਹਨ।

ਉਤਸਰਜਨ ਜਾਂ ਸੋਖਣ ਸਪੈਕਟ੍ਰਮ ਦੇ ਅਧਿਐਨ ਨੂੰ ਸਪੈਕਟ੍ਰੋਮਿਤੀ (spectro) (ਸੈਂਪਲ ਦੁਆਰਾ ਉਤਸਰਜਿਤ ਪ੍ਰਕਾਸ਼ ਨੂੰ ਇੱਕ ਪ੍ਰਿਜ਼ਮ ਵਿੱਚ ਲੰਘਾ ਕੇ ਅਲਗ ਤਰੰਗ ਲੰਬਾਈਆਂ ਦੀਆਂ ਰੇਖਾਵਾਂ ਵਿੱਚ ਵੱਖ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਇਸ ਪ੍ਰਕਾਰ ਉਤਸਰਜਨ ਸਪੈਕਟ੍ਰਮ, ਜੋ ਵੱਖ ਤਰੰਗ ਲੰਬਾਈਆਂ ਦਾ ਫੋਟੋ ਕਾਫੀ ਸੈਸੂਚਨ ਹੁੰਦਾ ਹੈ, ਨੂੰ ਰੇਖਾ ਸਪੈਕਟ੍ਰਮ ਕਿਹਾ ਜਾਂਦਾ ਹੈ। ਕਿਸੇ ਨਿਸ਼ਚਿਤ ਅਕਾਰ ਦੇ ਸੈਂਪਲ ਵਿੱਚ ਬਹੁਤ ਜਿਆਦਾ ਸੰਖਿਆ ਵਿੱਚ ਪਰਮਾਣੂ ਹੁੰਦੇ ਹਨ। ਹਾਲਾਂਕਿ ਕੋਈ ਇੱਕ ਪਰਮਾਣੂ ਕਿਸੇ ਇੱਕ ਸਮੇਂ ਤੇ ਇੱਕ ਹੀ ਉਤੇਜਿਤ ਅਵਸਥਾ ਵਿੱਚ ਹੋ ਸਕਦਾ ਹੈ, ਪਰ ਪਰਮਾਣੂਆਂ ਦੇ ਸਮੂੰਹ ਵਿੱਚ ਸਭ ਸੰਭਵ ਉਤੇਜਿਤ ਅਵਸਥਾਵਾਂ ਹੁੰਦੀਆਂ ਹਨ,

* ਕਿਸੇ ਗਣ ਦੇ ਲਈ ਖੰਡਿਤ (discrete) ਮਾਨਾਂ ਦੇ ਬੰਦਸ਼ ਨੂੰ ਕੁਆਂਟੀ ਕਰਣ ਕਹਿੰਦੇ ਹਨ।

ਜਦੋਂ ਇਹ ਪਰਮਾਣੂ ਨੀਵੇਂ ਊਰਜਾ ਸਤਰ ਤੇ ਜਾਂਦੇ ਹਨ, ਤਾਂ ਉਤਸਰਜਿਤ ਪ੍ਰਕਾਸ਼ ਤੋਂ ਸਪੈਕਟ੍ਰਮ ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ।) (scopy) ਕਹਿੰਦੇ ਹਨ। ਜਿਵੇਂ ਉੱਤੇ ਦੱਸਿਆ ਗਿਆ ਹੈ, ਦ੍ਰਿਸ਼ ਪ੍ਰਕਾਸ਼ ਦਾ ਸਪੈਕਟ੍ਰਮ ਨਿਰੰਤਰ ਹੁੰਦਾ ਹੈ, ਕਿਉਂਕਿ ਉਸ ਵਿੱਚ ਦ੍ਰਿਸ਼ ਪ੍ਰਕਾਸ਼ ਨੂੰ ਲਾਲ ਤੋਂ ਬੈਂਗਣੀ ਤੱਕ ਸਾਰੀਆਂ ਤਰੰਗ ਲੰਬਾਈਆਂ ਮੌਜੂਦ ਹੁੰਦੀਆਂ ਹਨ। ਇਸ ਦੇ ਉਲਟ ਗੈਸ ਅਵਸਥਾ ਵਿੱਚ ਪਰਮਾਣੂਆਂ ਦਾ ਉਤਸਰਜਨ ਸਪੈਕਟ੍ਰਮ ਲਾਲ ਤੋਂ ਬੈਂਗਣੀ ਤਰੰਗ-ਲੰਬਾਈ ਵਿੱਚ ਨਿਰੰਤਰ ਰੂਪ ਵਿੱਚ ਪ੍ਦਰਸ਼ਿਤ ਨਹੀਂ ਕਰਦਾ ਹੈ, ਪਰੰਤੂ ਉਨ੍ਹਾਂ ਵਿੱਚੋਂ ਕੁਝ ਵਿਸ਼ੇਸ਼ ਤਰੰਗ ਲੰਬਾਈਆਂ ਵਾਲਾ ਪ੍ਰਕਾਸ਼ ਉਤਸਰਜਿਤ ਹੁੰਦਾ ਹੈ, ਜਿਨ੍ਹਾਂ ਦੇ ਵਿੱਚ ਕਾਲੇ ਸਥਾਨ ਰਹਿੰਦੇ ਹਨ। ਅਜਿਹੇ ਸਪੈਕਟ੍ਰਮ ਨੂੰ ਰੇਖਾ ਸਟੈਪਕਟ੍ਰਮ ਜਾਂ ਪਰਮਾਣਵੀਂ ਸਪੈਕਟ੍ਰਮ ਕਹਿੰਦੇ ਹਨ, ਕਿਉਂਕਿ ਉਤਸਰਜਿਤ ਵਿਕੀਰਣ ਸਪੈਕਟ੍ਰਮ ਵਿੱਚ ਚਮਕੀਲੀਆਂ ਰੇਖਾਵਾਂ ਦੇ ਰੂਪ ਵਿੱਚ ਪ੍ਰਦਰਸ਼ਿਤ ਹੁੰਦਾ ਹੈ (ਚਿੱਤਰ 2.10)।

ਇਲੈਕਟ੍ਰਾਨਿਕ ਰਚਨਾ ਦੇ ਅਧਿਐਨ ਵਿੱਚ ਰੇਖਾ ਉਤਸਰਜਨ ਸਪੈਕਟ੍ਰਮ ਦਾ ਵਿਸ਼ੇਸ਼ ਮਹੱਤਵ ਹੁੰਦਾ ਹੈ। ਹਰ ਇੱਕ ਤੱਤ ਦਾ ਆਪਣਾ ਇੱਕ ਵਿਸ਼ੇਸ਼ ਰੇਖਾ ਉਤਸਰਜਨ ਸਪੈਕਟ੍ਰਮ ਹੁੰਦਾ ਹੈ। ਰਸਾਇਣਿਕ ਵਿਸ਼ਲੇਸ਼ਣਾਂ ਵਿੱਚ ਪਰਮਾਣੂ ਸਪੈਕਟ੍ਰਮ ਦੀਆਂ ਲੱਛਣਿਕ ਰੇਖਾਵਾਂ ਅਗਿਆਤ ਪਰਮਾਣੂਆਂ ਨੂੰ ਪਛਾਣਨ ਦੇ ਲਈ ਉਸੇ ਤਰ੍ਹਾਂ ਵਰਤੋਂ ਵਿੱਚ ਲਿਆਂਦਾ ਜਾਂਦਾ ਹੈ ਜਿਸ ਤਰ੍ਹਾਂ ਉਂਗਲੀਆਂ ਦੇ ਨਿਸ਼ਾਨ ਮਨੁੱਖਾਂ ਨੂੰ ਪਛਾਣਨ ਦੇ ਲਈ ਵਰਤੋਂ ਵਿੱਚ ਲਿਆਂਦਾ ਜਾਂਦਾ ਹੈ। ਗਿਆਤ ਤੱਤਾਂ ਦੇ ਪਰਮਾਣੂਆਂ ਦੇ ਉਤਸਰਜਨ ਸਪੈਕਟ੍ਰਮ ਦੀਆਂ ਰੇਖਾਵਾਂ ਦਾ ਸਹੀ ਮਿਲਾਨ ਅਗਿਆਤ ਸੈਂਪਲ ਦੀਆਂ ਰੇਖਾਵਾਂ ਨਾਲ ਤੱਤਾਂ ਨੂੰ ਪਛਾਣਨ ਦੇ ਲਈ ਰਾਬਰਟ ਬੁਨਸਨ (1811–1899) ਨੇ ਸਭ ਤੋਂ ਪਹਿਲਾਂ ਕੀਤਾ।


ਰੁਬੀਡਿਅਮ (Rb), ਸੀਜਿਅਮ (Cs), ਥੈਲਿਅਮ (Tl), ਇੰਡਿਅਮ (In) ਗੈਲਿਅਮ (Ga) ਅਤੇ ਸਕੈਡਿਅਮ (Sc) ਆਦਿ ਤੱਤਾਂ ਦੀ ਖੋਜ ਉਦੋ ਹੋਈ ਸੀ ਜਦੋਂ ਉਨ੍ਹਾਂ ਦੇ ਖਣਿਜਾਂ ਦਾ ਸਪੈਕਟ੍ਰਮੀ ਵਿਸ਼ੇਲੇਸ਼ਣ ਕੀਤਾ ਗਿਆ ਸੀ। ਸੂਰਜ ਵਿੱਚ ਹੀਲਿਅਮ (He) ਤੱਤ ਦੀ ਮੌਜੂਦਗੀ ਵੀ ਸਪੈਕਟ੍ਰਮੀ ਵਿਧੀ ਦੁਆਰਾ ਗਿਆਤ ਕੀਤੀ ਗਈ ਸੀ।

ਹਾਈਡ੍ਰੋਜਨ ਦਾ ਰੇਖੀ ਸਪੈਕਟ੍ਰਮ

ਜਦੋਂ ਹਾਈਡ੍ਰੋਜਨ ਗੈਸ ਵਿੱਚੋਂ ਬਿਜਲਈ ਵਿਸਰਜਨ ਪ੍ਵਾਹਿਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ ਤਾਂ H_2 ਅਣੂ ਵਿਘਟਤ ਹੋ ਕੇ ਉੱਚ ਊਰਜਾ ਵਾਲੇ ਹਾਈਡ੍ਰੋਜਨ ਪਰਮਾਣੂ ਦਿੰਦੇ ਹਨ ਜੋ ਅੱਲਗ ਆਵਰਤੀਆਂ ਵਾਲਾ ਬਿਜਲ–ਚੁੰਬਕੀ ਵਿਕੀਰਣ ਉਤਸਰਜਿਤ ਕਰਦੇ ਹਨ। ਹਾਈਡ੍ਰੋਜਨ ਸਪੈਕਟ੍ਰਮ ਵਿੱਚ ਰੇਖਾਵਾਂ ਦੀਆਂ ਕਈ ਲੜੀਆਂ ਹੁੰਦੀਆਂ ਹਨ, ਜਿਨ੍ਹਾਂ ਨੂੰ ਉਨ੍ਹਾਂ ਦੇ ਖੋਜੀਆਂ ਦੇ ਨਾਮ ਨਾਲ ਜਾਣਿਆ ਜਾਂਦਾ ਹੈ। ਬਾਲਮਰ ਨੇ ਸੰਨ 1885 ਵਿੱਚ ਪ੍ਯੋਗਿਕ ਪ੍ਰੇਖਣਾਂ ਦੇ ਅਧਾਰ ਤੇ ਦੱਸਿਆ ਕਿ ਜੇ ਸਪੈਕਟ੍ਰਮੀ ਰੇਖਾਵਾਂ ਦੀ ਤਰੰਗ ਸੰਖਿਆ ($\overline{\nu}$) ਦੇ ਰੂਪ ਵਿੱਚ ਵਿਅਕਤ ਕੀਤਾ ਜਾਵੇ, ਤਾਂ ਹਾਈਡ੍ਰੋਜਨ ਸਪੈਕਟ੍ਰਮ ਦੇ ਦ੍ਰਿਸ਼ ਖੇਤਰ ਦੀਆਂ ਰੇਖਾਵਾਂ ਨੂੰ ਹੇਠ ਲਿਖੇ ਸੂਤਰ ਦੁਆਰਾ ਦਰਸਾਇਆ ਜਾ ਸਕਦਾ ਹੈ—

$$\bar{v} = 109,677 \left(\frac{1}{2^2} - \frac{1}{n^2} \right) \text{cm}^{-1}$$

ਜਿੱਥੇ 'n' ਇੱਕ ਪੂਰਣ ਅੰਕ ਹੈ ਜਿਸ ਦਾ ਮਾਨ 3 ਜਾਂ 3 ਤੋਂ ਵੱਧ ਹੁੰਦਾ ਹੈ, ਭਾਵ n=3,4,5,... ਹੁੰਦਾ ਹੈ।

ਚਿੱਤਰ 2.10 (ੳ) ਪਰਮਾਣਵੀਂ ਉਤਸਰਜਨ : ਹਾਈਡ੍ਰੋਜਨ ਪਰਮਾਣੂਆਂ (ਜਾਂ ਕਿਸੇ ਹੋਰ ਤੱਤ) ਦੇ ਉਤੇਜਿਤ (ਅ) ਪਰਮਾਣਵੀਂ ਸੋਖਣ ਜਦੋਂ ਸਫੇਦ ਪ੍ਕਾਸ਼ ਨੂੰ ਅਨ-ਉਤੇਜਿਤ ਹਾਈਡ੍ਰੋਜਨ ਪਰਮਾਣੂ ਵਿੱਚੋਂ ਕਿਸੇ ਰੇਖਾ ਛਿੱਦਰ (slit) ਅਤੇ ਫਿਰ ਪ੍ਰਿਜ਼ਮ ਵਿੱਚੋਂ ਲੰਘਾਇਆ ਜਾਂਦਾ ਹੈ, ਤਾਂ ਪ੍ਰਾਪਤ ਪ੍ਕਾਸ਼ ਵਿੱਚ ਕੁਝ ਤਰੰਗ-ਲੰਬਾਈਆਂ (ਜੋ ਚਿੱਤਰ 2.10 ੳ ਵਿੱਚ ਉਤਸਰਜਿਤ ਹੋਈਆਂ ਸਨ) ਦੀ ਤੀਬਰਤਾ ਦੀ ਕਮੀ ਹੋ ਜਾਂਦੀ ਹੈ। ਇਹ ਸੰਸੂਚਿਤ ਸਪੈਕਟ੍ਰਮ ਵੀ ਇੱਕ ਰੇਖਾ ਸਪੈਕਟ੍ਰਮ ਹੁੰਦਾ ਹੈ ਅਤੇ ਉਤਸਰਜਨ ਸਪੈਕਟ੍ਰਮ ਦਾ ਫੋਟੋਗਾਫੀ ਨੈਗੇਟਿਵ ਹੰਦਾ ਹੈ।

ਇਸ ਸੂਤਰ ਦੁਆਰਾ ਵਰਣਿਤ ਰੇਖਾਵਾਂ ਨੂੰ 'ਬਾਲਮਰ ਲੜੀ' (Balmer series) ਕਿਹਾ ਜਾਂਦਾ ਹੈ। ਹਾਈਡ੍ਰੋਜਨ ਸਪੈਕਟ੍ਰਮ ਵਿੱਚ ਸਿਰਫ ਇਸੇ ਲੜੀ ਦੀਆਂ ਰੇਖਾਵਾਂ ਬਿਜਲ-ਚੁੰਬਕੀ ਸਪੈਕਟ੍ਰਮ ਦੇ ਦ੍ਰਿਸ਼ ਖੇਤਰ ਵਿੱਚ ਪ੍ਰਾਪਤ ਹੁੰਦੀਆਂ ਹਨ। ਸਵੀਡਨ ਦੇ ਇੱਕ ਸਪੈਕਟ੍ਰਮੀ ਵਿਗਿਆਨੀ ਜੋਹੇਨਸ ਰਿਡੱਬਰਗ ਨੇ ਦੱਸਿਆ ਕਿ ਹਾਈਡ੍ਰੋਜਨ ਸਪੈਕਟ੍ਰਮ ਦੀਆਂ ਸਾਰੀਆਂ ਲੜੀਆਂ ਦੀਆਂ ਰੇਖਾਵਾਂ ਹੇਠ ਲਿਖੇ ਸੂਤਰ ਦੁਆਰਾ ਦਰਸਾਈਆਂ ਜਾ ਸਕਦੀਆਂ ਹਨ

$$\overline{\nu} = 109,677 \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right) \text{ cm}^{-1}$$
 (2.9)

ਜਿੱਥੇ n_1 =1,2.....ਹਨ ਅਤੇ

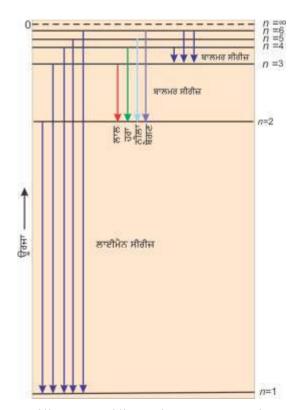
$$n_2 = n_1 + 1, n_1 + 2....$$

 $109,677~{
m cm^{-1}}$ ਨੂੰ ਹਾਈਡ੍ਰੋਜਨ ਦਾ ਰਿਡਬਰਗ ਸਥਿਰ ਅੰਕ (Rydberg constant) ਕਹਿੰਦੇ ਹਨ । n_1 = 1,2,3,4, ਅਤੇ 5 ਵਾਲੀਆਂ ਰੇਖਾਵਾਂ ਨੂੰ ਪੰਜ ਲੜੀਆਂ ਕ੍ਮਵਾਰ ਲਾਈਮੈਨ (Lyman), ਬਾਲਮਰ (Balmer), ਪਾਸ਼ਨ (Paschen), ਬ੍ਰੈਕੇਟ (Brackett) ਅਤੇ ਫੰਡ (Pfund) ਲੜੀਆਂ ਅਖਵਾਉਂਦੀਆਂ ਹਨ।

ਸਾਰਣੀ 2.3 ਵਿੱਚ ਹਾਈਡ੍ਰੋਜਨ ਸਪੈਕਟ੍ਮ ਦੀਆਂ ਇਹ ਲੜੀਆਂ ਵਿਖਾਈਆਂ ਗਈਆਂ ਹਨ। ਚਿੱਤਰ 2.11 ਵਿੱਚ ਹਾਈਡ੍ਰੋਜਨ ਪਰਮਾਣੂ ਦੀ ਲਾਈਮੈਨ, ਬਾਲਸਰ ਅਤੇ ਪਾਸ਼ਨ ਲੜੀਆਂ ਦੇ ਪਾਰਗਮਨ ਨੂੰ ਵਿਖਾਇਆ ਗਿਆ ਹੈ।

Series	$n_{_{1}}$	n_{2}	Spectral Region
Lyman	1	2,3	Ultraviolet
Balmer	2	3,4	Visible
Paschen	3	4,5	Infrared
Brackett	4	5,6	Infrared
Pfund	5	6,7	Infrared

ਸਾਰਣੀ 2.3 ਪਰਮਾਣੂ ਹਾਈਡ੍ਰੋਜਨ ਦੀਆਂ ਸਪੈਕਟ੍ਮੀ ਰੇਖਾਵਾਂ


ਹਾਈਡ੍ਰੋਜਨ ਦਾ ਰੇਖਾ ਸਪੈਕਟ੍ਰਮ ਸਾਰੇ ਤੱਤਾਂ ਦੇ ਰੇਖਾ ਸਪੈਕਟ੍ਰਮਾਂ ਦੀ ਤੁਲਨਾਂ ਵਿੱਚ ਸਭ ਤੋਂ ਸਰਲ ਹੁੰਦਾ ਹੈ। ਭਾਰੇ ਪਰਮਾਣੂਆਂ ਦਾ ਰੇਖਾ ਸਪੈਕਟ੍ਰਮ ਬਹੁਤ ਗੁੰਝਲਦਾਰ ਹੁੰਦਾ ਹੈ, ਪਰੰਤੂ ਸਭ ਰੇਖਾ ਸਪੈਕਟ੍ਰਮਾਂ ਦੇ ਕੁੱਝ ਲੱਛਣ ਸਮਾਨ ਹੁੰਦੇ ਹਨ। ਜਿਵੇਂ (i) ਹਰ ਇੱਕ ਤੱਤ ਦਾ ਰੇਖਾ ਸਪੈਕਟ੍ਰਮ ਵਿਸ਼ੇਸ਼ ਕਿਸਮ ਦਾ ਹੁੰਦਾ ਹੈ (ii) ਹਰ ਇੱਕ ਤੱਤ ਦੇ ਰੇਖਾ ਸਪੈਕਟ੍ਰਮ ਵਿੱਚ ਨਿਯਮ ਬੱਧਤਾ ਹੁੰਦੀ ਹੈ।

ਹੁਣ ਇਹ ਪ੍ਰਸ਼ਨ ਉੱਠਦਾ ਹੈ ਕਿ ਇੱਕੋ ਜਿਹੇ ਇਨ੍ਹਾਂ ਲੱਛਣਾਂ ਦਾ ਕੀ ਕਾਰਣ ਹੋ ਸਕਦਾ ਹੈ? ਕੀ ਇਨ੍ਹਾਂ ਦਾ ਸਬੰਧ ਇਨ੍ਹਾਂ ਤੱਤਾਂ ਦੇ ਪਰਮਾਣੂਆਂ ਦੀ ਇਲੈਕਟ੍ਰਾਨਿਕ ਰਚਨਾ ਨਾਲ ਹੁੰਦਾ ਹੈ? ਇਸ ਤਰ੍ਹਾਂ ਦੇ ਪ੍ਰਸ਼ਨਾਂ ਦੇ ਉੱਤਰ ਜਾਣਨਾ ਜਰੂਰੀ ਹੈ। ਅਸੀਂ ਅੱਗੇ ਵੇਖਾਂਗੇ ਕਿ ਇਨ੍ਹਾਂ ਪ੍ਰਸ਼ਨਾਂ ਦੇ ਉੱਤਰਾਂ ਤੋਂ ਸਾਨੂੰ ਇਨ੍ਹਾਂ ਤੱਤਾਂ ਦੇ ਪਰਮਾਣੂਆਂ ਦੀ ਇਲੈਕਟਾਨਿਕ ਰਚਨਾ ਸਮਝਣ ਵਿੱਚ ਅਸਾਨੀ ਹੋਈ।

2.4 ਹਾਈਡ੍ਰੋਜਨ ਪਰਮਾਣੂ ਦੇ ਲਈ ਬੋਹਰ ਮਾੱਡਲ

ਹਾਈਡ੍ਰੋਜਨ ਪਰਮਾਣੂ ਦੀ ਸੰਰਚਨਾ ਅਤੇ ਇਸਦੇ ਸਪੈਕਟ੍ਰਮ ਦੇ ਆਮ ਲੱਛਣਾਂ ਦੀ ਪਹਿਲੀ ਮਾਤਰਾਤਮਕ ਵਿਆਖਿਆ ਨੀਲ ਬੋਹਰ ਨੇ ਸੰਨ 1913 ਵਿੱਚ ਕੀਤੀ। ਭਾਵੇਂ ਸਿਧਾਂਤ ਆਧੁਨਿਕ ਕੁਆਂਟਮ ਯੰਤਰਿਕੀ ਨਹੀਂ ਸੀ ਫਿਰ ਵੀ ਪਰਮਾਣੂ ਸੰਰਚਨਾ ਅਤੇ ਸਪੈਕਟ੍ਰਾ ਵਿੱਚ ਕਈ ਗੱਲਾਂ ਨੂੰ ਤਰਕ ਸੰਗਤ ਰੂਪ ਵਿੱਚ ਸਮਝਾਉਣ ਵਿੱਚ ਇਸ ਦੀ ਵਰਤੋਂ ਕੀਤੀ ਜਾ ਸਕਦੀ ਹੈ। ਬੋਹਰ ਦਾ ਮਾੱਡਲ ਹੇਠ ਲਿਖੇ ਸਵੈ ਸਿੱਧਾਂ ਉੱਤੇ ਅਧਾਰਿਤ ਹੈ—

- ਹਾਈਡ੍ਰੋਜਨ ਪਰਮਾਣੂ ਦੇ ਇਲੈਕਟ੍ਰਾਨ ਨਿਊਕਲੀਅਸ ਦੇ ਚੌਹਾਂ ਪਾਸੇ ਨਿਸ਼ਚਿਤ ਅਰਧ ਵਿਆਸ ਅਤੇ ਊਰਜਾ ਵਾਲੇ ਵਰਿਤਾਕਾਰ ਪਥਾਂ ਵਿੱਚ ਘੁੰਮ ਸਕਦਾ ਹੈ। ਇਨ੍ਹਾਂ ਵਰਿਤਾਕਾਰ ਪਥਾਂ ਨੂੰ ਅਸੀਂ ਆਰਬਿਟ ਜਾਂ ਸਥਾਈ ਅਵਸਥਾ ਜਾਂ ਅਨੁਮਤ ਊਰਜਾ ਸਤਰ ਕਹਿੰਦੇ ਹਨ। ਇਹ ਆਰਬਿਟ ਨਿਊਕਲੀਅਸ ਦੇ ਚੌਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਸਮਕੇਂਦਰਿਤ ਰੂਪ ਵਿੱਚ ਵਿਵਸਥਿਤ ਹੁੰਦੇ ਹਨ।
- ii) ਆੱਰਬਿਟ ਵਿੱਚ ਇਲੈਕਟ੍ਰਾਨ ਦੀ ਊਰਜਾ ਸਮੇਂ ਦੇ ਨਾਲ-ਨਾਲ ਪਰਿਵਰਤਿਤ ਨਹੀਂ ਹੁੰਦੀ, ਇਸ ਲਈ ਕੋਈ ਇਲੈਕਟ੍ਰਾਨ

ਚਿੱਤਰ 2.11 ਵਿੱਚ ਹਾਈਡ੍ਰੋਜਨ ਪਰਮਾਣੂ ਦੀ ਲਾਈਮੈਨ, ਬਾਲਮਰ ਅਤੇ ਪਾਸ਼ਨ ਲੜੀਆਂ ਦੇ ਪਾਰਗਮਨ ਨੂੰ ਵਿਖਾਇਆ ਗਿਆ ਹੈ।

ਸਥਾਈ ਸਤਰ ਤੋਂ ਉੱਚੇ ਸਥਾਈ ਸਤਰ ਤੇ ਤਦ ਜਾਵੇਗਾ ਜਦੋਂ ਉਹ ਲੋੜੀਂਦੀ ਊਰਜਾ ਦਾ ਸੋਖਣ ਕਰੇਗਾ ਜਾਂ ਇਲੈਕਟ੍ਰਾਨ ਦੇ ਉੱਚ ਸਥਾਈ ਸਤਰ ਤੋਂ ਨੀਵੇਂ ਸਤਰ ਤੇ ਆਉਣ ਤੇ ਊਰਜਾ ਦਾ ਉਤਸਰਜਨ ਹੋਵੇਗਾ (ਸਮੀਕਰਣ 2.16)। ਊਰਜਾ ਪਰਿਵਰਤਨ ਨਿਰਤੰਰ ਤਰੀਕੇ ਨਾਲ ਨਹੀਂ ਹੁੰਦਾ।

ਕੋਣੀ ਸੰਵੇਗ

ਜਿਸ ਤਰ੍ਹਾਂ ਪੁੰਜ (m) ਅਤੇ ਰੇਖਿਕ ਵੇਗ (v), ਦਾ ਗੁਣਨਫਲ ਰੇਖਿਕ ਸੰਵੇਗ ਹੁੰਦਾ ਹੈ, ਉਸੇ ਤਰ੍ਹਾਂ ਕੋਈ ਸੰਵੇਗ $(angular\ momentum)$ ਜੜ੍ਹਤਾ ਘੁੰਮਣ (I) ਅਤੇ ਕੋਈ ਵੇਗ (ω) ਦਾ ਗੁਣਨਫਲ ਹੁੰਦਾ ਹੈ। m_e ਪੁੰਜ ਵਾਲੇ ਇਲੈਕਟ੍ਰਾਨ ਦੇ ਲਈ, ਜੋ ਨਿਊਕਲੀਅਸ ਦੇ ਚੌਹਾਂ ਪਾਸਿਆਂ r ਅਰਧਵਿਆਸ ਆਰਬਿਟ ਵਿੱਚ ਘੰਮਦਾ ਹੈ।

ਕੋਣੀ ਸੰਵੇਗ $= I \times \omega$ ਕਿਉਂਕ $I = m_{\rm e} r^2$, ਅਤੇ $\omega = v/r$ ਜਿੱਥੇ v ਰੇਖਿਕ ਵੇਗ ਹੈ ਇਸ ਲਈ ਕੋਣੀ ਸੰਵੇਗ $= m_{\rm e} r^2 \times v/r = m_{\rm e} vr$

iii) △E ਦੇ ਅੰਤਰ ਵਾਲੀਆਂ ਦੋ ਸਥਾਈ ਅਵਸਥਾਵਾਂ ਦੇ ਪਾਰਗਮਨ ਦੇ ਸਮੇਂ ਸੋਖਿਤ ਜਾਂ ਉਤਸਰਜਿਤ ਵਿਕੀਰਣ ਨੂੰ ਹੇਠ ਲਿਖੇ ਰੂਪ ਵਿੱਚ ਦਿੱਤਾ ਜਾ ਸਕਦਾ ਹੈ─

$$v = \frac{\Delta E}{h} = \frac{E_2 - E_1}{h}$$
 (2.10)

ਜਿੱਥੇ E_1 ਅਤੇ E_2 ਕ੍ਰਮਵਾਰ ਨੀਵੀਆਂ ਅਤੇ ਉੱਚੀਆਂ ਅਨੁਮਤ ਊਰਜਾ ਅਵਸਥਾਵਾਂ ਹਨ। ਇਸ ਸਮੀਕਰਣ ਨੂੰ ਬੋਹਰ ਦਾ ਅਵਰਤੀ ਦੀ ਨਿਯਮ ਕਿਹਾ ਜਾਂਦਾ ਹੈ।

ਨੀਲ ਬੋਹਰ (1885–1962)

ਡੈਨਿਸ਼ ਭੌਤਿਕੀ ਵਿਗਿਆਨੀ ਨੀਲ ਬੋਹਰ ਨੇ ਸੰਨ 1911 ਵਿੱਚ ਕੋਪੇਨਹੈਗੇਨ, ਯੂਨੀਵਰਸਿਟੀ ਤੋਂ ਪੀ.ਐਚ.ਡੀ. ਦੀ ਡਿਗਰੀ ਹਾਸਲ ਕੀਤੀ।ਉਸ ਤੋਂ ਬਾਅਦ ਉਨ੍ਹਾਂ ਨੇ ਜੇ.ਜੇ. ਥਾੱਮਸਨ ਅਤੇ ਅਰਨੈਸਟ ਰਦਰ ਫੌਰਡ ਦੇ ਨਾਲ ਇੱਕ ਸਾਲ

ਬਿਤਾਇਆ। ਸੰਨ 1913 ਵਿੱਚ ਉਹ ਕੋਪੇਨਹੇਗੇਨ ਪਰਤੇ, ਜਿੱਥੇ ਉਹ ਜੀਵਨ ਭਰ ਰਹੇ। ਇੱਥੇ 1920 ਵਿੱਚ ਇੰਸਟੀਚਿਯੂਟ ਆੱਫ ਥਿਊਰੈਟਿਕਲ ਫਿਜਿਕਸ ਦੇ ਡਾਇਰੈਕਟਰ ਬਣੇ। ਪਹਿਲੇ ਵਿਸ਼ਵ ਯੁੱਧ ਦੇ ਬਾਅਦ ਬੋਹਰ ਨੇ ਪਰਮਾਣੂ ਊਰਜਾ ਦੇ ਸ਼ਾਂਤੀ ਪੂਰਣ ਵਰਤੋਂ ਦੇ ਲਈ ਉਤਸਾਹ ਪੂਰਵਕ ਕਾਰਜ ਕੀਤੇ। ਉਨ੍ਹਾਂ ਨੂੰ ਸੰਨ 1957 'Atoms for Peace' ਸਨਮਾਨ ਪ੍ਰਾਪਤ ਹੋਇਆ। ਸੰਨ 1912 ਵਿੱਚ ਬੋਹਰ ਨੂੰ ਭੌਤਿਕੀ ਵਿੱਚ ਨੋਬਲ ਪੁਰਸਕਾਰ ਨਾਲ ਸਨਮਾਨਿਤ ਕੀਤਾ ਗਿਆ। iv) ਇੱਕ ਇਲੈਕਟਟ੍ਰਾਨ ਦਾ ਕੋਈ ਸੰਵੇਗ ਦਿੱਤੀ ਹੋਈ ਸਥਾਈ ਅਵਸਥਾ ਵਿੱਚ ਇਸ ਸਮੀਕਰਣ ਦੇ ਦੁਆਰਾ ਦਰਸਾਇਆ ਜਾ ਸਕਦਾ ਹੈ—

$$m_e \text{ vr} = n.\frac{h}{2\pi}$$
, $n = 1, 2, 3....$ (2.11)

ਇੰਜ ਇੱਕ ਇਲੈਕਟ੍ਰਾੱਨ ਸਿਰਫ ਉਨ੍ਹਾਂ ਆੱਰਬਿਟਾਂ ਵਿੱਚ ਘੁੰਮ ਸਕਦਾ ਹੈ, ਜਿਨ੍ਹਾਂ ਵਿੱਚ ਕੋਈ ਸੰਵੇਗ ਦਾ ਮਾਨ $h/2\pi$ ਦਾ ਪੂਰਣ ਅੰਕ ਗੁਣਕ ਹੋਵੇਗਾ।ਇਹੀ ਕਾਰਣ ਹੈ ਕਿ ਕੁਝ ਨਿਸ਼ਚਿਤ ਆੱਰਬਿਟ ਹੀ ਅਨੁਮਤ ਹੁੰਦੇ ਹਨ। ਬੋਹਰ ਦੀ ਸਥਾਈ ਅਵਸਥਾਵਾਂ ਦੀਆਂ ਊਰਜਾਵਾਂ ਦੇ ਵਿਚਲਨ ਦੇ ਵਿਸ਼ੇ ਵਿੱਚ ਦਿੱਤੀ ਗਈ ਵਿਸਤਰਿਤ ਜਾਣਕਾਰੀ ਕਾਫੀ ਗੁੰਝਲਦਾਰ ਹੈ।ਇਸ ਲਈ ਉਸ ਨੂੰ ਅਗਲੇਰੀਆਂ ਜਮਾਤਾਂ ਵਿੱਚ ਸਮਝਾਇਆ ਜਾਵੇਗਾ।ਬੋਹਰ ਸਿਧਾਂਤ ਦੇ ਅਨੁਸਾਰ ਹਾਈਡ੍ਰੋਜਨ ਪਰਮਾਣੂ ਦੇ ਲਈ—

- (ੳ) ਇਲੈਕਟ੍ਰਾਨ ਦੇ ਲਈ ਸਥਾਈ ਅਵਸਥਾਵਾਂ n = 1,2,3... ਦੇ ਦੁਆਰਾ ਵਿਅਕਤ ਕੀਤਾ ਗਿਆ ਹੈ। ਇਨ੍ਹਾਂ ਪੂਰਣ ਅੰਕਾਂ ਨੂੰ ਮੁੱਖ ਕੁਆਂਟਮ ਸੰਖਿਆ **Principal quantum number**. ਕਿਹਾ ਜਿਾਂਦਾ ਹੈ (ਭਾਗ 2.6.2) ।
- (ਅ) ਸਥਾਈ ਅਵਸਥਾਵਾਂ ਦੇ ਅਰਧਵਿਆਸਾਂ ਨੂੰ ਹੇਠ ਲਿਖੇ ਰੂਪ ਵਿੱਚ ਪ੍ਰਦਰਸ਼ਿਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ—

$$r_{\rm n}=n^2\,a_{\rm o}$$
 (2.12)
ਜਿੱਥੇ $a_{\rm o}=52.9~{\rm pm}$ ਇਸ ਤਰ੍ਹਾਂ ਪਹਿਲੀ ਸਥਾਈ ਅਵਸਥਾ, ਜਿਸ ਨੂੰ ਬੋਹਰ ਆੱਰਬਿਟ ਕਿਹਾ ਜਾਂਦਾ ਹੈ ਦਾ ਅਰਧਵਿਆਸ 52.9 pm ਹੁੰਦਾ ਹੈ। ਆਮ ਤੌਰ ਤੇ ਹਾਈਡ੍ਰੋਜਨ ਪਰਮਾਣੂ ਵਿੱਚ ਇਲੈਕਟ੍ਰਾੱਨ ਇਸੇ ਆੱਰਬਿਟ $n=1$ ਵਿੱਚ ਮਿਲਦਾ ਹੈ। n ਦੇ ਵੱਧਣ ਦੇ ਨਾਲ r ਦਾ ਮਾਨ ਵੱਧਦਾ ਹੈ, ਦੂਜੇ ਸ਼ਬਦਾਂ ਵਿੱਚ, ਇਲੈਕਟ੍ਰਾੱਨ ਨਿਉਕਲੀਅਸ ਤੋਂ ਦੂਰ ਮੌਜੂਦ ਹੁੰਦਾ ਹੈ।

(ੲ) ਇਲੈਕਟ੍ਰਾੱਨ ਨਾਲ ਸਬੰਧਿਤ ਸਭ ਤੋਂ ਮਹੱਤਵਪੂਰਣ ਗੁਣ ਸਥਾਈ ਅਵਸਥਾ ਦੀ ਊਰਜਾ ਹੈ। ਇਸ ਨੂੰ ਹੇਠ ਲਿਖੇ ਸੂਤਰ ਦੁਆਰਾ ਦਿੱਤਾ ਜਾਂਦਾ ਹੈ—

$$E_n = -R_H \left(\frac{1}{n^2}\right)$$
 ਜਿੱਥੇ $n = 1, 2, 3....$ (2.13)

ਜਿੱਥੇ $R_{\rm H}$ ਨੂੰ ਰਿਡਬਰਗ ਸਥਿਆ ਅੰਕ (**Rydberg constant**) ਕਹਿੰਦੇ ਹਨ। ਇਸ ਦਾ ਮਾਨ 2.18×10^{-18} J. ਹੁੰਦਾ ਹੈ। ਨਿਊਨਤਮ ਅਵਸਥਾ, ਜਿਸ ਨੂੰ 'ਤਲ ਸਥਿਤ ਅਵਸਥਾ' (ground state) ਵੀ ਕਹਿੰਦੇ ਹਨ, ਦੀ ਊਰਜਾ $E_{\rm I} = -$

 2.18×10^{-18} ($\frac{1}{1^2}$) = -2.18×10^{-18} J ਹੈ I n = 2, ਵਾਲੀ ਸਥਾਈ ਅਵਸਥਾ ਦੇ ਲਈ ਊਰਜਾ E_2 = -2.18×10^{-18} J ($\frac{1}{2^2}$)= -0.545×10^{-18} J ਹੋਵੇਗੀ। ਚਿੱਤਰ 2.11 ਵਿੱਚ

ਹਾਈਡ੍ਰੋਜਨ ਪਰਮਾਣੂ ਦੀ ਭਿੰਨ-ਭਿੰਨ ਸਥਾਈ ਅਵਸਥਾਵਾਂ ਵਿੱਚ ਊਰਜਾ ਸਤਰਾਂ ਨੂੰ ਵਿਖਾਇਆ ਗਿਆ ਹੈ। ਇਸ ਨੂੰ 'ਊਰਜਾ ਸਤਰ ਚਿੱਤਰ' ਕਿਹਾ ਜਾਂਦਾ ਹੈ।

ਹਾਈਡ੍ਰੋਜਨ ਪਰਮਾਣੂ ਦੇ ਲਈ ਰਿਣਾਤਮਕ ਇਲੈਕਟ੍ਰਾਨਿਕ ਊਰਜਾ (E,) ਦਾ ਕੀ ਭਾਵ ਹੈ ?

ਹਾਈਡ੍ਰੋਜਨ ਪਰਮਾਣੂ ਵਿੱਚ ਹਰ ਸਮੇਂ ਆਰਬਿਟ ਵਿੱਚ ਇਲੈਕਟ੍ਰਾਨ ਦੀ ਉਰਜਾ ਦੇ ਮਾਨ ਨਾਲ ਰਿਣ ਚਿਨ੍ਹ ਹੁੰਦਾ ਹੈ (ਸਮੀਕਰਣ 2.13)। ਇਹ ਰਿਣ ਚਿਨ੍ਹ ਕੀ ਦਰਸਾਉਂਦਾ ਹੈ ? ਇਸ ਰਿਣ ਚਿਨ੍ਹ ਦਾ ਭਾਵ ਇਹ ਹੈ ਕਿ ਪਰਮਾਣੂ ਵਿੱਚ ਇਲੈਕਟ੍ਰਾਨ ਦੀ ਉਰਜਾ ਸਥਿਰ ਅਵਸਥਾ ਵਿੱਚ ਸੁਤੰਤਰ ਇਲਾਕਟਾਨ ਵਿੱਚ ਘੱਟ ਹੈ।ਸਥਿਰ (rest) ਅਵਸਥਾ ਵਿੱਚ ਸੁਤੰਤਰ ਇਲੈਕਟ੍ਰਾਨ ਉਹ ਇਲੈਕਟ੍ਰਾਨ ਹੁੰਦਾ ਹੈ, ਜੋ ਨਿਊਕਲੀਅਸ ਤੋਂ ਅਨੰਤ ਦੂਰੀ ਤੇ ਹੋਵੇ।ਇਸ ਦੀ ਉਰਜਾ ਨੂੰ ਸਿਫਰ ਮੰਨ ਲਿਆ ਜਾਂਦਾ ਹੈ।ਗਣਿਤ ਵਿੱਚ ਇਸ ਦਾ ਭਾਵ ਇਹੈ ਹੈ ਕਿ ਸਮੀਕਰਣ (2.13) ਵਿੱਚ n = ∞ ਰੱਖਿਆ ਜਾਵੇ ਜਿਸ ਨਾਲ E_{∞} =0 ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ।ਜਿਵੇਂ ਹੀ ਇਲੈਕਟ੍ਰਾਨ ਨਿਊਕਲੀਅਸ ਦੇ ਕੋਲ ਆਉਂਦਾ ਹੈ (ਜਿਵੇਂ ਘੱਟਦਾ ਹੈ) ਤਿਵੇਂ ਹੀ E_n ਦਾ ਨਿਰਪੇਖ ਮਾਨ ਵੱਧਦਾ ਜਾਂਦਾ ਹੈ ਅਤੇ ਇਹ ਹੋਰ ਰਿਣਾਤਮਕ ਹੁੰਦਾ ਜਾਂਦਾ ਹੈ।ਜਦੋਂ $n\!\!=\!\!1$ ਹੋਵੇ, ਤਾਂ ਉਰਜਾ ਦਾ ਮਾਨ ਸਭ ਤੋਂ ਵੱਧ ਰਿਣਾਤਮਕ ਹੁੰਦਾ ਹੈ ਅਤੇ ਇਹ ਆਰਬਿਟ ਵਿੱਚ ਸਭ ਤੋਂ ਵੱਧ ਸਥਾਈ ਹੈਦਾ ਹੈ।ਅਸੀਂ ਇਸ ਨੂੰ 'ਤਲਸਥਿਤ ਅਵਸਥਾ ਕਹਿੰਦੇ ਹਾਂ।

ਜਦੋਂ ਇਲੈਕਟ੍ਰਾਨ ਨਿਊਕਲੀਅਸ ਦੇ ਪ੍ਭਾਵ ਤੋਂ ਮੁਕਤ ਹੁੰਦਾ ਹੈ ਤਾਂ ਊਰਜਾ ਦਾ ਮਾਨ ਸਿਫਰ ਲਿਆ ਜਾਂਦਾ ਹੈ। ਅਜਿਹੀ ਸਥਿਤੀ ਵਿੱਚ ਇਲੈਕਟ੍ਰਾਨ ਮੁੱਖ ਕੁਆਂਟਮ ਸੰਖਿਆ = $n = \infty$ ਦੀ ਸਥਾਈ ਅਵਸਥਾ ਨਾਲ ਸਬੰਧਿਤ ਹੁੰਦਾ ਹੈ ਅਤੇ ਆਇਨਿਤ ਹਾਈਡ੍ਰੋਜਨ ਪਰਮਾਣੂ ਅਖਵਾਉਂਦਾ ਹੈ। ਜਦੋਂ ਇਲੈਕਟ੍ਰਾਨ ਨਿਊਕਲੀਅਸ ਦੁਆਰਾ ਆਕਰਸ਼ਿਤ ਹੁੰਦਾ ਹੈ ਤਾਂ n ਆਰਬਿਟ ਵਿੱਚ ਮੌਜੂਦ ਹੁੰਦਾ ਹੈ ਤਾਂ ਊਰਜਾ ਦਾ ਉਤਸਰਜਨ ਹੁੰਦਾ ਹੈ ਅਤੇ ਇਸ ਦੀ ਊਰਜਾ ਘੱਟ ਹੋ ਜਾਂਦੀ ਹੈ। ਸਮੀਕਰਣ 2.13 ਵਿੱਚ ਰਿਣ ਚਿਨ੍ਹ ਇਸੇ ਕਾਰਣ ਹੁੰਦਾ ਹੈ ਅਤੇ ਇਸ ਦੀ ਸਿਫਰ ਊਰਜਾ ਦੀ ਸਾਪੇਖੀ ਅਵਸਥਾ ਅਤੇ $n = \infty$ ਦੇ ਸਬੰਧ ਵਿੱਚ ਇਸ਼ਦੇ ਸਥਾਈ ਹੋਣ ਦੇ ਬਾਰੇ ਦਰਸਾਉਂਦਾ ਹੈ।

(ਸ) ਹਾਈਡ੍ਰੋਜਨ ਪਰਮਾਣੂ ਵਿੱਚ ਮੌਜੂਦ ਇੱਕ ਇਲੈਕਟ੍ਰਾੱਨ ਦੇ ਸਮਾਨ ਉਨ੍ਹਾਂ ਆਇਨਾਂ, ਜਿਨ੍ਹਾਂ ਵਿੱਚ ਕੇਵਲ ਇੱਕ ਇਲੈਕਟ੍ਰਾਨ ਹੁੰਦਾ ਹੈ ਉੱਤੇ ਵੀ ਬੋਹਰ ਦਾ ਸਿਧਾਂਤ ਲਾਗੂ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।ਉਦਾਹਰਣ ਵਜੋਂ He+, Li²+, Be³+ ਆਦਿ। ਇਸ ਤਰ੍ਹਾਂ ਦੇ ਆਇਨਾਂ (ਹਾਈਡ੍ਰੋਜਨ ਦੇ ਸਮਾਨ ਸਪੀਸ਼ੀਜ਼ ਅਖਵਾਉਂਦੇ ਹਨ) ਨਾਲ ਸਬੰਧਿਤ ਸਥਿਰ ਅਵਸਥਾਵਾਂ ਦੀਆਂ ਊਰਜਾਵਾਂ ਹੇਠ ਲਿਖੇ ਸਮੀਕਰਣ ਦੁਆਰਾ ਦਿੱਤੀਆਂ ਜਾ ਸਕਦੀਆਂ ਹਨ

$$E_{\rm n} = -2.18 \times 10^{-18} \left(\frac{Z^2}{n^2} \right)$$
 (2.14)

ਅਰਧ ਵਿਆਸ ਨੂੰ ਹੇਠ ਲਿਖੇ ਸਮੀਕਰਣ ਦੁਆਰਾ ਦਿੱਤਾ ਜਾ ਸਕਦਾ ਹੈ—

$$r_n = \frac{52.9(n^2)}{Z} pm$$
 (2.15)

ਇੱਥੇ Z ਪਰਮਾਣੂ ਸੰਖਿਆ ਹੈ। ਹੀਲਿਅਮ ਅਤੇ ਲੀਥਿਅਮ ਪਰਮਾਣੂਆਂ ਦੇ ਲਈ ਇਸ ਦਾ ਮਾਨ ਕ੍ਰਮਵਾਰ 2 ਅਤੇ 3 ਹੈ। ਉਪਰੋਕਤ ਸਮੀਕਰਣਾਂ ਤੋਂ ਇਹ ਪ੍ਰਤੱਖ ਹੈ ਕਿ Z ਦੇ ਵੱਧਣ ਦੇ ਨਾਲ ਊਰਜਾ ਦਾ ਮਾਨ ਵਧੇਰੇ ਰਿਣਾਤਮਕ ਹੋ ਜਾਂਦਾ ਹੈ ਅਤੇ ਅਰਧ ਵਿਆਸ ਘੱਟ ਹੋ ਜਾਂਦਾ ਹੈ। ਇਸ ਦਾ ਭਾਵ ਇਹ ਹੈ ਕਿ ਇਲੈਕਟ੍ਰਾਨ ਨਿਊਕਲੀਅਸ ਦੇ ਨਾਲ ਦ੍ਰਿੜਤਾ ਪੂਰਵਕ ਬੰਨ੍ਹਿਆ ਹੁੰਦਾ ਹੈ।

(ਹ) ਇਨ੍ਹਾਂ ਆੱਰਬਿਟਾਂ ਵਿੱਚ ਗਤੀ ਕਰਦੇ ਹੋਏ ਇਲੈਕਟ੍ਰਾਨਾਂ ਦੇ ਵੇਗਾਂ ਦੀ ਗਣਨਾ ਕਰਨੀ ਵੀ ਸੰਭਵ ਹੈ, ਭਾਵੇਂ ਇਸ ਲਈ ਇਥੇ ਢੁਕਵਾਂ ਸਮੀਕਰਣ ਇੱਥੇ ਨਹੀਂ ਦਿੱਤਾ ਗਿਆ ਹੈ। ਗੁਣਾਤਮਕ ਰੂਪ ਵਿੱਚ ਨਿਊਕਲੀਅਸ ਉੱਤੇ ਧਨਚਾਰਜ ਦੇ ਵੱਧਣ ਦੇ ਨਾਲ ਇਲੈਕਟ੍ਰਾਨ ਦੇ ਵੇਗ ਵੱਧਦਾ ਹੈ ਅਤੇ ਮੁੱਖ ਕੁਆਂਟਮ ਸੰਖਿਆ ਦੇ ਵੱਧਣ ਦੇ ਨਾਲ ਇਹ ਘੱਟਦਾ ਹੈ।

2.4.1 ਹਾਈਡ੍ਰੋਜਨ ਦੇ ਰੇਖਾ ਸਪੈਕਟ੍ਰਮ ਦੀ ਵਿਆਖਿਆ

ਬੋਹਰ ਦੇ ਮਾੱਡਲ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਭਾਗ 2.3.3 ਵਿੱਚ ਦੱਸੇ ਗਏ ਹਾਈਡ੍ਰੋਜਨ ਪ੍ਰਮਾਣੂ ਦੇ ਰੇਖਾ ਸਪੈਕਟ੍ਰਮ ਵਿਆਖਿਆ ਮਾਤਰਾਤਮਕ ਰੂਪ ਵਿੱਚ ਕੀਤੀ ਜਾ ਸਕਦੀ ਹੈ। ਬੋਹਰ ਦੇ ਸਵੈ ਸਿੱਧ (ii) ਦੇ ਅਨੁਸਾਰ, ਨੀਵੇਂ ਤੋਂ ਉੱਚੇ ਮੁੱਖ ਕੁਆਂਟਮ ਸੰਖਿਆ ਦੇ ਆਰਬਿਟ ਵਿੱਚ ਜਾਣ ਤੇ ਵਿਕੀਰਣ (ਊਰਜਾ) ਦਾ ਸੋਖਣ ਹੁੰਦਾ ਹੈ, ਜਦਕਿ ਵਿਕੀਰਣ (ਊਰਜਾ) ਦਾ ਉਤਸਰਜਨ ਇਲੈਕਟ੍ਰਾਨ ਦੇ ਉੱਚੇ ਤੋਂ ਨੀਵੇਂ ਆਰਬਿਟ ਦੇ ਵੱਲ ਇਲੈਕਟ੍ਰਾਨ ਦੇ ਜਾਣ ਤੇ ਹੁੰਦਾ ਹੈ। ਦੋ ਆਰਬਿਟਾਂ ਦੇ ਵਿਚਲੇ ਊਰਜਾ ਦੇ ਅੰਤਰ ਨੂੰ ਇਸ ਸਮੀਕਰਣ ਦੁਆਰਾ ਦਿੱਤਾ ਜਾ ਸਕਦਾ ਹੈ—

$$\Delta E = E_{\rm f} - E_{\rm i} \tag{2.16}$$

ਸਮੀਕਰਣ 2.13 ਅਤੇ 2.16 ਨੂੰ ਜੋੜਨ ਤੇ

$$\Delta E\!=\!\!\left(-rac{R_{_{
m H}}}{n_{_{
m f}}^2}
ight)\!-\!\left(-rac{R_{_{
m H}}}{n_{_{
m i}}^2}
ight)$$
 (ਜਿੱਥੇ $n_{_{
m i}}$ ਅਤੇ $n_{_{
m f}}$ ਅਰੰਭਿਕ

ਅਤੇ ਅੰਤਿਕ ਆੱਰਬਿਟ ਨੂੰ ਪ੍ਰਦਰਸ਼ਿਤ ਕਰਦੇ ਹਨ)

$$\Delta E = R_{H} \left(\frac{1}{n_{i}^{2}} - \frac{1}{n_{f}^{2}} \right) = 2.18 \times 10^{-18} J \left(\frac{1}{n_{i}^{2}} - \frac{1}{n_{f}^{2}} \right)$$
(2,17)

ਸਮੀਕਰਣ (2.18) ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਫੋਟਾੱਨ ਦੇ ਸੋਖਣ ਅਤੇ ਉਤਸਰਜਨ ਨਾਲ ਸਬੰਧਿਤ ਅਵਰਤੀ (*v*) ਦਾ ਮੂਲ ਅੰਕਨ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।

$$v = \frac{\Delta E}{h} = \frac{R_{H}}{h} \left(\frac{1}{n_{i}^{2}} - \frac{1}{n_{f}^{2}} \right)$$

$$= \frac{2.18 \times 10^{-18} \,\text{J}}{6.626 \times 10^{-34} \,\text{J s}} \left(\frac{1}{n_{i}^{2}} - \frac{1}{n_{f}^{2}} \right) \qquad (2.18)$$

$$= 3.29 \times 10^{15} \left(\frac{1}{n_{i}^{2}} - \frac{1}{n_{f}^{2}} \right) \text{Hz} \qquad (2.19)$$

ਸੰਗਤ ਤਰੰਗ ਸੰਖਿਆ $(\overline{\nu})$ ਦੇ ਲਈ

$$\bar{v} = \frac{v}{c} = \frac{R_H}{hc} \left(\frac{1}{n_i^2} - \frac{1}{n_f^2} \right)$$
 (2.20)

$$= \frac{3.29 \times 10^{15} \,\mathrm{s}^{-1}}{3 \times 10^8 \,\mathrm{m \, s}^{-\mathrm{s}}} \left(\frac{1}{n_{\mathrm{i}}^2} - \frac{1}{n_{\mathrm{f}}^2} \right)$$

$$= 1.09677 \times 10^7 \left(\frac{1}{n_i^2} - \frac{1}{n_f^2} \right)$$
 (2.21)

ਸੋਖਣ ਸਪੈਕਟ੍ਰਮ ਵਿੱਚ $n_{\rm f}>n_{\rm q}$ ਅਤੇ ਬੈਰਕਟ ਵਿੱਚ ਦਿੱਤੀਆਂ ਗਈਆਂ ਅਤਰਾਵਾਂ ਧਨਾਤਮਕ ਹੁੰਦੀਆਂ ਹਨ ਅਤੇ ਊਰਜਾ ਦਾ ਸੋਖਣ ਹੁੰਦਾ ਹੈ। ਦੂਜੇ ਪਾਸੇ ਉਤਸਰਜਨ ਸਪੈਕਟ੍ਰਮ ਵਿੱਚ $n_{\rm q}>n_{\rm f}$, Δ E ਰਿਣਾਤਮਕ ਹੁੰਦਾ ਹੈ ਅਤੇ ਉਰਜਾ ਮੁਕਤ ਹੁੰਦੀ ਹੈ।

ਸਮੀਕਰਣ 2.17 ਰਿਡਬਰਗ ਸਮੀਕਰਣ 2.9 ਵਰਗਾ ਹੀ ਹੈ, ਜਿਸ ਨੂੰ ਉਸ ਸਮੇਂ ਤੇ ਉਪਲਬਧ ਪ੍ਯੋਗਿਕ ਅੰਕੜਿਆਂ ਦੁਆਰਾ ਪ੍ਰਾਪਤ ਕੀਤਾ ਗਿਆ ਸੀ। ਇਸ ਦੇ ਇਲਾਵਾ ਹਾਈਡ੍ਰੋਜਨ ਪਰਮਾਣੂ ਦੇ ਸੋਖਣ ਅਤੇ ਉਤਸਰਜਨ ਸਪੈਕਟ੍ਰਮ ਵਿੱਚ ਹਰ ਇੱਕ ਸਪੈਕਟ੍ਰਮੀ ਅਧਿਐਨ ਵਿੱਚ ਕਈ ਸੰਭਵ ਪਾਰਗਮਨ ਵੇਖੇ ਜਾ ਸਕਦੇ ਹਨ ਅਤੇ ਉਨ੍ਹਾਂ ਵਿੱਚੋਂ ਕਈ ਸਪੈਕਟ੍ਰਮੀ ਰੇਖਾਵਾਂ ਪ੍ਰਾਪਤ ਹੁੰਦੀਆਂ ਹਨ। ਕਿਸੇ ਸਪੈਕਟ੍ਰਮੀ ਰੇਖਾ ਦੀ ਤੀਬਰਤਾ ਇਸ ਗੱਲ ਤੇ ਨਿਰਭਰ ਕਰਦੀ ਹੈ ਇੱਕ ਸਮਾਨ ਤਰੰਗ ਲੰਬਾਈ ਜਾਂ ਆਵਰਤੀ ਵਾਲੇ ਕਿੰਨੇ ਫੋਟਾੱਨ ਸੋਖਿਤ ਜਾਂ ਉਤਸਰਜਿਤ ਹੁੰਦੇ ਹਨ।

ਉਦਾਹਰਣ 2.10

ਹਾਈਡ੍ਰੋਜਨ ਪਰਮਾਣੂ ਵਿੱਚ n = 5 ਅਵਸਥਾ ਤੋਂ n = 2 ਅਵਸਥਾ ਵਾਲੇ ਪਾਰਗਮਨ ਦੇ ਦੌਰਾਨ ਉਤਸਰਜਿਤ ਫੋਟਾੱਨ ਦੀ ਅਵਰਤੀ ਅਤੇ ਤਰੰਗ ਲੰਬਾਈ ਕੀ ਹੋਵੇਗੀ ?

ਹੱਲ

ਕਿਉਂਕਿ $n_{\rm i}$ = 5 ਅਤੇ $n_{\rm i}$ = 2, ਇਸ ਲਈ ਸਮੀਕਰਣ ਤੋਂ ਬਾਲਮਰ ਲੜੀ ਵਿੱਚ ਇੱਕ ਸਪੈਕਟ੍ਰਮੀ ਰੇਖਾ ਪ੍ਰਾਪਤ ਹੁੰਦੀ ਹੈ। ਸਮੀਕਰਣ 2.17 ਤੋਂ

$$\Delta E = 2.18 \times 10^{-18} J \left[\frac{1}{5^2} - \frac{1}{2^2} \right]$$
$$= -4.58 \times 10^{-19} J$$

ਇਹ ਉਤਸਰਜਿਤ ਊਰਜਾ ਹੈ। ਫੋਟਾੱਨ ਦੀ ਅਵਰਤੀ (ਊਰਜਾ ਨੂੰ ਪਰਿਮਾਣ ਦੇ ਰੂਪ ਵਿੱਚ ਲੈਂਦੇ ਹੋਏ) ਇਸ ਤਰ੍ਹਾਂ ਦਿੱਤੀ ਜਾ ਸਕਦੀ ਹੈ—

$$v = \frac{\Delta E}{h}$$

$$= \frac{4.58 \times 10^{-19} \,\mathrm{J}}{6.626 \times 10^{-34} \,\mathrm{J}\,\mathrm{s}}$$

 $= 6.91 \times 10^{14} \text{ Hz}$

$$\lambda = \frac{c}{v} = \frac{3.0 \times 10^8 \,\mathrm{m \, s^{-1}}}{6.91 \times 10^{14} \,\mathrm{Hz}} = 434 \,\mathrm{nm}$$

ਉਦਾਹਰਣ 2.11

He⁺ ਦੇ ਪਹਿਲੇ ਆੱਰਬਿਟ ਨਾਲ ਸਬੰਧਿਤ ਊਰਜਾ ਦੀ ਗਣਨਾ ਕਰੋ ਅਤੇ ਦੱਸੋ ਕਿ ਇਸ ਆੱਰਬਿਟ ਦਾ ਅਰਧ ਵਿਆਸ ਕੀ ਹੋਵੇਗਾ ?

ਹੱਲ

$$E_{\rm n} = -\frac{(2.18 \times 10^{-18} \,\mathrm{J})Z^2}{n^2} \,\mathrm{atom}^{-1}$$

 ${\rm He^+}$ ਦੇ ਲਈ n=1, Z=2

$$E_1 = -\frac{(2.18 \times 10^{-18} \text{ J})(2^2)}{1^2} = -8.72 \times 10^{-18} \text{ J}$$

ਸਮੀਕਰਣ 2.15 ਤੋਂ ਆਰਬਿਟ ਦਾ ਅਰਧ ਵਿਆਸ

$$r_n = \frac{(0.0529 \text{ nm})n^2}{Z}$$

ਕਿਊਕਿ n=1, ਅਤੇ Z=2

$$r_n = \frac{(0.0529nm)l^2}{2} = 0.02645$$

2.4.2 ਬੋਹਰ ਮਾੱਡਲ ਦੀਆਂ ਸੀਮਾਵਾਂ

ਇਸ ਵਿੱਚ ਕੋਈ ਸ਼ਕ ਨਹੀਂ ਕਿ ਹਾਈਡ੍ਰੋਜਨ ਪਰਮਾਣੂ ਦਾ ਬੋਹਰ ਮਾੱਡਲ ਰਦਰਫੋਰਡ ਦੇ ਨਿਊਕਲੀ ਮਾੱਡਲ ਨਾਲੋਂ ਚੰਗਾ ਸੀ। ਹਾਈਡ੍ਰੋਜਨ ਪਰਮਾਣੂ ਅਤੇ ਇਸ ਦੇ ਵਰਗੇ ਹੋਰ ਆਇਨਾਂ (ਜਿਵੇਂ He⁺, Li²⁺, Be³⁺ ਆਦਿ) ਦੇ ਰੇਖਾ ਸਪੈਕਟ੍ਰਮ ਅਤੇ ਸਥਿਰਤਾ ਦੀ ਵਿਆਖਿਆ ਕਰ ਸਕਦਾ ਸੀ, ਪਰ ਬੋਹਰ ਦਾ ਮਾੱਡਲ ਹੇਠ ਲਿਖੇ ਬਿੰਦਆਂ ਦੀ ਵਿਆਖਿਆ ਨਹੀਂ ਕਰ ਸਕਿਆ—

i) ਆਧੁਨਿਕ ਸਪੈਕਟ੍ਰਮ ਤਕਨੀਕਾਂ ਦੁਆਰਾ ਪ੍ਰਾਪਤ ਸਪੈਕਟ੍ਰਮ ਵਿੱਚ ਸੂਖਮ ਰਚਨਾ (ਯੁਗਮਕ) (doublet) ਜਾਂ ਨਾਲ-ਨਾਲ ਸਥਿਤ ਦੋ ਰੇਖਾਵਾਂ) ਦੀ ਵਿਆਖਿਆ ਕਰਨ ਵਿੱਚ ਅਸਫਲ ਰਿਹਾ। ਇਹ ਮਾੱਡਲ ਹਾਈਡ੍ਰੋਜਨ ਦੇ ਇਲਾਵਾ ਹੋਰ ਪਰਮਾਣੂਆਂ ਦੇ ਸਪੈਕਟ੍ਰਮ ਦੀ ਵਿਆਖਿਆ ਕਰਨ ਵਿੱਚ ਅਸਮਰਥ ਰਿਹਾ।ਉਦਾਹਰਣ ਵਜੋਂ ਹੀਲੀਅਮ ਪਰਮਾਣੂ, ਜਿਸ ਵਿੱਚ ਸਿਰਫ ਦੋ ਇਲੈਕਟ੍ਰਾੱਨ ਹੁੰਦੇ ਹਨ। ਬੋਹਰ ਦਾ ਸਿਧਾਂਤ ਚੁੰਬਕੀ ਖੇਤਰ ਵਿੱਚ ਸਪੈਕਟ੍ਰਮੀ ਰੇਖਾਵਾਂ ਦੇ ਵਿਭੇਦਨ (ਜ਼ੀਮਨ ਪ੍ਰਭਾਵ)ਅਤੇ ਬਿਜਲਈ ਖੇਤਰ ਦੀ ਮੌਜੂਦਗੀ ਵਿੱਚ ਸਪੈਕਟ੍ਰਮੀ ਰੇਖਾਵਾਂ ਦੇ ਵਿਭੇਦਨ (ਸਟਾਰਕ ਪ੍ਰਭਾਵ) ਨੂੰ ਸਪੱਸ਼ਟ ਕਰਨ ਵਿੱਚ ਵੀ ਅਸਫਲ ਰਿਹਾ।

ii) ਅੰਤ ਵਿੱਚ ਇਹ ਪਰਮਾਣੂਆਂ ਦੇ ਰਸਾਇਣਿਕ ਬੰਧਨਾ ਦੁਆਰਾ ਅਣੂ ਬਨਾਉਣ ਦੀ ਯੋਗਤਾ ਦੀ ਵਿਆਖਿਆ ਨਹੀਂ ਕਰ ਸਕਿਆ।

ਦੂਜੇ ਸ਼ਬਦਾਂ ਵਿੱਚ, ਉਪਰੋਕਤ ਸਾਰੀਆਂ ਸੀਮਾਵਾਂ ਨੂੰ ਧਿਆਨ ਵਿੱਚ ਰੱਖਦੇ ਹੋਏ ਇੱਕ ਅਜਿਹੇ ਸਿਧਾਂਤ ਦੀ ਜਰੂਰਤ ਹੈ, ਜੋ ਜਟਿਲ ਪਰਮਾਣੂਆਂ ਦੀ ਰਚਨਾ ਦੇ ਮੁੱਖ ਲੱਛਣਾਂ ਦੀ ਵਿਆਖਿਆ ਕਰ ਸਕੇ।

2.5. ਪਰਮਾਣੂ ਦੇ ਕੁਆਂਟਮ ਯੰਤਰਿਕ ਮਾੱਡਲ ਦੇ ਵੱਲ

ਬੋਹਰ ਮਾੱਡਲ ਦੀਆਂ ਕਮੀਆਂ ਨੂੰ ਧਿਆਨ ਵਿੱਚ ਰੱਖਦੇ ਹੋਏ ਪਰਮਾਣੂਆਂ ਦੇ ਲਈ ਵਧੇਰੇ ਢੁੱਕਵਾਂ ਅਤੇ ਸਧਾਰਣ ਮਾੱਡਲ ਦੇ ਵਿਕਾਸ ਦੇ ਯਤਨ ਕੀਤੇ ਗਏ।ਇਸ ਤਰ੍ਹਾਂ ਦੇ ਮਾੱਡਲ ਦੇ ਨਿਰਮਾਣ ਵਿੱਚ ਜਿਨ੍ਹਾਂ ਦੋਂ ਮਹੱਤਵਪੂਰਣ ਤੱਥਾਂ ਦਾ ਵਧੇਰੇ ਯੋਗਦਾਨ ਰਿਹਾ, ਉਹ ਹੇਠ ਲਿਖੇ ਹਨ—

- (ੳ) ਮਾਦਾ ਦਾ ਦੁਹ<mark>ਰਾ ਵਿ</mark>ਹਾਰ
- (ਅ) ਹਾਈਜ਼ਨਬਰਗ ਦਾ ਅਨਿਸ਼ਚਿਤਤਾ ਦਾ ਸਿਧਾਂਤ

2.5.1 ਪਦਾਰਥ ਦਾ ਦੂਹਰਾ ਵਿਹਾਰ

ਫਰਾਂਸਿਸੀ ਭੌਤਿਕੀ ਵਿਗਿਆਨੀ ਡੀ ਬ੍ਰਾਗਲੀ ਨੇ ਸੰਨ 1924 ਵਿੱਚ ਪ੍ਰਸਤੂਤ ਕੀਤਾ ਕਿ ਵਿਕੀਰਣ ਦੀ ਤਰ੍ਹਾਂ ਮਾਦਾ ਨੂੰ ਵੀ ਦੂਹਰਾ ਵਿਹਾਰ ਕਰਨਾ ਚਾਹੀਦਾ ਹੈ, ਭਾਵ ਮਾਦਾ ਵਿੱਚ ਕਣ ਅਤੇ ਤਰੰਗ ਦੋਵੇਂ ਤਰ੍ਹਾਂ ਦੇ ਗੁਣ ਹੋਣੇ ਚਾਹੀਦੇ ਹਨ। ਇਸ ਦਾ ਭਾਵ ਇਹ ਹੈ ਕਿ ਜਿਸ ਤਰ੍ਹਾਂ ਫੋਟਾੱਨ ਦਾ ਸੰਵੇਗ ਅਤੇ ਤਰੰਗ ਲੰਬਾਈ ਹੁੰਦੇ ਹਨ, ਉਸ ਤਰ੍ਹਾਂ ਇਲੈਕਟ੍ਰਾੱਨ ਦਾ ਸੰਵੇਗ ਅਤੇ ਤਰੰਗ ਲੰਬਾਈ ਹੋਣੀ ਚਾਹੀਦੀ ਹੈ। ਬ੍ਗਾਲੀ ਨੇ ਇਸ ਤਰਕ ਦੇ ਅਧਾਰ ਤੇ ਕਿਸੇ ਪਦਰਾਥ ਦੇ ਕਣ ਦੇ ਲਈ ਤਰੰਗ ਲੰਬਾਈ (λ) ਅਤੇ ਸੰਵੇਗ (p) ਦੇ ਵਿੱਚ ਹੇਠ ਲਿਖਿਆ ਸਬੰਧ ਦੱਸਿਆ—

$$\lambda = \frac{h}{mv} = \frac{h}{p} \tag{2.22}$$

ਜਿੱਥੇ m ਕਣ ਦਾ ਪੁੰਜ, v ਉਸਦੇ ਵੇਗ ਅਤੇ p ਉਸ ਦਾ ਸੰਵੇਗ ਹੈ। ਡੀ ਬ੍ਰਾਗਲੀ ਦੇ ਇਨ੍ਹਾਂ ਵਿਚਾਰਾਂ ਦੀ ਪੁਸ਼ਟੀ ਪ੍ਰਯੋਗਾਂ ਦੁਆਰਾ ਉਦੋਂ ਹੋਈ ਜਦੋਂ ਇਹ ਵੇਖਿਆ ਗਿਆ ਕਿ ਇਲੈਕਟ੍ਰਾਨਾਂ ਦੇ ਪੁੰਜ ਦਾ ਵਿਵਰਤਨ ਹੁੰਦਾ ਹੈ, ਜੋ ਤਰੰਗਾਂ ਦਾ ਲੱਛਣ ਹੈ। ਇਸ ਸਿਧਾਂਤ ਦੇ ਅਧਾਰ ਤੇ ਇਲੈਕਟ੍ਰਾਨ ਸੂਖਮਦਰਸ਼ੀ ਦੀ ਰਚਨਾ ਕੀਤੀ ਗਈ, ਜੋ ਇਲੈਕਟ੍ਰਾਨਾਂ ਦੇ ਤਰੰਗ ਵਰਗੇ ਵਿਹਾਰ ਤੇ ਉਸੇ ਤਰ੍ਹਾਂ ਅਧਾਰਿਤ ਹੈ ਜਿਸ ਤਰ੍ਹਾਂ ਸਧਾਰਣ ਸੁਖਮਦਰਸ਼ੀ ਦੀ ਰਚਨਾ ਪ੍ਰਕਾਸ਼ ਦੀ

ਲੂਈ ਡੀ ਬ੍ਰਾਗਲੀ (1892 – 1987)

ਫਰਾਂਸਿਸੀ ਭੌਤਿਕ ਵਿਗਿਆਨੀ ਲਈ ਡੀ ਬ੍ਰਾਗਲੀ ਨੇ ਸੰਨ 1910 ਦੇ ਸ਼ੁਰੂ ਵਿੱਚ ਅੰਡਰਗਰੈਜੂਏਟ ਸਤਰ ਤੇ ਇਤਿਹਾਸ ਪੜ੍ਹਿਆ। ਪਹਿਲੇ ਵਿਸ਼ਵ ਯੁੱਧ ਦੇ ਦੌਰਾਨ ਰੇਡੀਓ ਪ੍ਰਸਾਰਣ ਦੇ ਲਈ ਉਨ੍ਹਾਂ ਦੀ ਨਿਯੁਕਤੀ ਹੋਈ।ਉਸ ਦੇ ਬਾਅਦ ਵਿਗਿਆਨ ਦੇ ਪ੍ਰਤੀ ਉਨ੍ਹਾਂ ਦੀ ਰੁਚੀ ਜਾਗ੍ਤ ਹੋਈ।ਸੰਨ 1924 ਵਿੱਚ ਉਨ੍ਹਾਂ ਨੇ ਪੈਰਿਸ ਵਿਸ਼ਵ ਵਿਦਿਆਲੇ

ਤੋਂ ਡੀ.ਐੱਸ.ਸੀ. ਦੀ ਡਿਗਰੀ ਪ੍ਰਾਪਤ ਕੀਤੀ।ਸੰਨ 1932 ਤੋਂ ਆਪਣੀ ਸੇਵਾ ਮੁਕਤੀ ਦੇ ਸੰਨ 1962 ਤੱਕ ਉਹ ਪੈਰਿਸ ਯੂਨੀਵਰਸਿਟੀ ਵਿੱਚ ਪ੍ਰੋਫੈਸਰ ਰਹੇ।ਸੰਨ 1929 ਵਿੱਚ ਉਨ੍ਹਾਂ ਨੂੰ ਭੌਤਿਕ ਵਿੱਚ ਨੋਬਲ ਪੁਰਸਕਾਰ ਦੇ ਕੇ ਸਨਮਾਨਿਤ ਕੀਤਾ ਗਿਆ।

ਤਰੰਗ ਪ੍ਕਿਰਤੀ ਉੱਤੇ ਅਧਾਰਿਤ ਹੈ। ਆਧੁਨਿਕ ਵਿਗਿਆਨਕ ਖੋਜ–ਕਾਰਜਾਂ ਵਿੱਚ ਇਲੈਕਟ੍ਰਾਨ ਸੂਖਮਦਰਸ਼ੀ ਇੱਕ ਮਹੱਤਵ ਪੂਰਣ ਉਪਕਰਣ ਹੈ, ਕਿਉਂਕਿ ਇਸ ਨਾਲ ਕਿਸੇ ਅਤਿ–ਸੂਖਮ ਵਸਤੂ ਨੂੰ 150 ਲੱਖ ਗੁਣਾ ਵੱਡਾ ਕਰਕੇ ਵੇਖਿਆ ਜਾ ਸਕਦਾ ਹੈ।

ਇਹ ਧਿਆਨ ਦੇਣ ਯੋਗ ਗੱਲ ਹੈ ਕਿ ਡੀ ਬ੍ਰਾਗਲੀ ਦੇ ਅਨੁਸਾਰ ਹਰ ਇੱਕ ਗਤੀਸ਼ੀਲ ਵਸਤੂ ਵਿੱਚ ਤਰੰਗ ਦੇ ਲੱਛਣ ਹੁੰਦੇ ਹਨ। ਸਧਾਰਣ ਵਸਤੂਆਂ ਦਾ ਵਧੇਰੇ ਪੁੰਜ ਹੋਣ ਦੇ ਕਾਰਣ ਉਨ੍ਹਾਂ ਨਾਲ ਸਬੰਧਿਤ ਤਰੰਗ ਲੰਬਾਈ ਐਨੀਂ ਘੱਟ ਹੁੰਦੀ ਹੈ ਕਿ ਉਨ੍ਹਾਂ ਦੇ ਤਰੰਗ ਵਾਲੇ ਗੁਣਾਂ ਦਾ ਪਤਾ ਨਹੀਂ ਲੱਗਦਾ, ਪਰੰਤੂ ਇਲੈਕਟ੍ਰਾਨਾਂ ਅਤੇ ਹੋਰ ਉਪ–ਪਰਮਾਣਵੀਂ ਕਣ, ਜਿਨ੍ਹਾਂ ਦਾ ਪੁੰਜ ਬਹੁਤ ਘੱਟ ਹੁੰਦਾ ਹੈ, ਨਾਲ ਸਬੰਧਿਤ ਤਰੰਗ ਲੰਬਾਈਆਂ ਨੂੰ ਪ੍ਰਯੋਗਾਂ ਦੁਆਰਾ ਪਛਾਣਿਆ ਜਾਂਦਾ ਹੈ।ਪ੍ਰਸ਼ਨਾਂ ਵਿੱਚ ਦਿੱਤੇ ਗਏ ਪਰਿਣਾਮ ਇਸ ਨੂੰ ਗੁਣਾਤਮਕ ਰਪ ਵਿੱਚ ਸਿੱਧ ਕਰਦੇ ਹਨ।

ਉਦਾਹਰਣ 2.12

 $0.1~{
m kg}$ ਪੁੰਜ ਅਤੇ $10~{
m m~s^{\scriptscriptstyle -1}}$ ਵੇਗ ਨਾਲ ਗਤੀ ਕਰ ਰਹੀ ਇੱਕ ਗੇਂਦ ਦੀ ਤਰੰਗ ਲੰਬਾਈ ਕੀ ਹੋਵੇਗੀ ?

ਹਲ

ਡੀ ਬ੍ਰਾਗਲੀ ਸਮੀਕਰਣ (2.22) ਦੇ ਅਨੁਸਾਰ

$$\lambda = \frac{h}{mv} = \frac{(6.626 \times 10^{-34} \,\mathrm{Js})}{(0.1 \,\mathrm{kg})(10 \,\mathrm{m \,s^{-1}})}$$

 $= 6.626 \times 10^{-34} \,\mathrm{m} \,\mathrm{(J = kg \, m^2 \, s^{-2})}$

ਉਦਾਹਰਣ 2.13

ਇੱਕ ਇਲੈਕਟ੍ਰਾੱਨ ਦਾ ਪੁੰਜ 9.1×10^{-31} kg. ਹੈ। ਜੇ ਇਸ ਦੀ ਗਤਿਜ ਊਰਜਾ 3.0×10^{-25} J ਹੈ ਤਾਂ ਇਸਦੀ ਤਰੰਗ ਲੰਬਾਈ ਕੀ ਹੋਵੇਗੀ ?

ਹੱਲ
ਕਿਉਂਕਿ ਗਤਿਜ ਊਰਜਾ = ½
$$mv^2$$

$$v = \left(\frac{2K.E.}{m}\right)^{1/2} = \left(\frac{2\times3.0\times10^{-25}\,\mathrm{kg}\;\mathrm{m}^2\mathrm{s}^{-2}}{9.1\times10^{-31}\,\mathrm{kg}}\right)^{1/2}$$

$$v = 812\;\mathrm{m}\;\mathrm{s}^{-1}$$

$$\lambda = \frac{h}{m\,\mathrm{v}} = \frac{6.626\times10^{-34}\,\mathrm{Js}}{(9.1\times10^{-31}\,\mathrm{kg})(812\;\mathrm{m}\;\mathrm{s}^{-1})}$$

$$\lambda = 8967\times10^{-10}\,\mathrm{m}\;\lambda = 896.7\;\mathrm{nm}$$
ਉਦਾਹਰਣ 2.14
$$3.6\;\mathrm{Å}\;\mathrm{3}\mathrm{d}\mathrm{d}\mathrm{i}\mathrm{s}\mathrm{b}\mathrm{i}\mathrm{v}\mathrm{l}\mathrm{e}\mathrm{i}\mathrm{s}\mathrm{e}\mathrm{v}\mathrm{l}\mathrm{e}\mathrm{l}\mathrm{d}\mathrm{e}\mathrm{l}\mathrm{d}\mathrm{e}\mathrm{l}\mathrm{e}\mathrm{l}\mathrm{d}\mathrm{e}\mathrm{l}\mathrm{e}\mathrm{l}\mathrm{d}\mathrm{e}\mathrm{l}\mathrm{e}\mathrm{l}\mathrm{e}\mathrm{l}\mathrm{d}\mathrm{e}\mathrm{l}\mathrm{e}\mathrm{e}\mathrm{l}\mathrm{e}\mathrm{l}\mathrm{e}\mathrm{l}\mathrm{e}\mathrm{l}\mathrm{e}\mathrm{l}\mathrm{e}\mathrm{l}\mathrm{e}\mathrm{l}\mathrm{e}\mathrm{l}\mathrm{e}\mathrm{l}\mathrm{e}\mathrm{l}\mathrm{e}\mathrm{l}\mathrm{e}\mathrm{l}\mathrm{e}\mathrm{l}\mathrm{e}\mathrm{l}\mathrm{e}\mathrm{l}\mathrm{e}\mathrm{e}\mathrm{$$

2.5.2 ਹਾਈਜੇਨਬਰਗ ਦਾ ਅਨਿਸ਼ਚਿਤਤਾ ਸਿਧਾਂਤ

ਪੁੰਜ ਅਤੇ ਵਿਕੀਰਣ ਦੇ ਦੂਹਰੇ ਵਿਹਾਰ ਦੇ ਫਲਸਰੂਪ ਇੱਕ ਜਰਮਨ ਭੌਤਿਕ ਵਿਗਿਆਨੀ ਵਰਨਰ ਹਾਈਜੇਨਬਰਗ ਨੇ ਸੰਨ 1927 ਵਿੱਚ ਅਨਿਸ਼ਚਿਤਤਾ ਦਾ ਸਿਧਾਂਤ ਦਿੱਤਾ। ਇਸ ਦੇ ਅਨੁਸਾਰ, ਕਿਸੇ ਇਲੈਕ੍ਰਾਨ ਦੀ ਸਹੀ ਸਥਿਤੀ ਅਤੇ ਸਹੀ ਸੰਵੇਗ ਦਾ ਨਿਰਧਾਰਣ ਇਕੱਠੇ ਕਰਨਾ ਅਸੰਭਵ ਹੈ।

$$\Delta \mathbf{x} \times \Delta p_{\mathbf{x}} \ge \frac{h}{4\pi}$$
 (2.23)
 $\mathbf{H}^{\dagger} \quad \Delta \mathbf{x} \times \Delta (m\mathbf{v}_{\mathbf{x}}) \ge \frac{h}{4\pi}$
ਅਤੇ $\Delta \mathbf{x} \times \Delta \mathbf{v}_{\mathbf{x}} \ge \frac{h}{4\pi m}$

ਜਿੱਥੇ Δx ਕਣ ਦੀ ਸਥਿਤੀ ਵਿੱਚ ਅਨਿਸ਼ਚਿਤਤਾ ਅਤੇ Δp_x ਸੰਵੇਗ ਵਿੱਚ ਅਨਿਸ਼ਚਿਤਤਾ ਹੈ। ਇਸ ਦੇ ਅਨੁਸਾਰ ਕਿਸੇ ਇਲੈਕਟ੍ਰਾਨ ਦੀ ਸਹੀ ਸਥਿਤੀ ਅਤੇ ਸਹੀ ਸੰਵੇਗ ਦਾ ਨਿਰਧਾਰਣ ਇਕੱਠੇ ਕਰਨਾ ਅਸੰਭਵ ਹੈ। ਦੂਜੇ ਸ਼ਬਦਾਂ ਵਿੱਚ, ਜੇ ਇਲੈਕਟ੍ਰਾਨ ਦੀ ਬਿਲਕੁਲ ਸਹੀ ਸਥਿਤੀ ਗਿਆਤ ਹੈ Δx ਘੱਟ ਹੈ, ਤਾਂ ਇਲੈਕਟ੍ਰਾਨ ਦੇ ਸੰਵੇਗ ਵਿੱਚ ਅਨਿਸ਼ਚਿਤਤਾ ($\Delta(v_x)$ ਜਿਆਦਾ

ਹੋਵੇਗੀ। ਦੂਜੇ ਪਾਸੇ ਜੇ ਇਲੈਕਟ੍ਰਾੱਨ ਦਾ ਸੰਵੇਗ (ਜਾਂ ਵੇਗ) ਬਿਲਕੁਲ ਸਹੀ ਗਿਆਤ ਹੈ (Δpx ਘੱਟ ਹੈ) ਤਾਂ ਇਲੈਕਟ਼ਾੱਨ ਦੀ ਸਥਿਤੀ (∆x ਜਿਅਦਾ ਗਿਆਤ ਨਹੀਂ ਹੋਵੇਗੀ। ਇਸ ਤਰ੍ਹਾਂ ਜੇ ਇਲੈਕਟ੍ਰਾਨ ਦੀ ਸਥਿਤੀ ਜਾਂ ਵੇਗ ਦੇ ਕੁੱਝ ਭੌਤਿਕ ਮਾਪ ਲਏ ਜਾਣ ਤਾਂ ਇਸ ਦੇ ਪਰਿਣਾਮ ਹਮੇਸ਼ਾ ਕੁਝ ਅਸਪਸ਼ਟ ਹੀ ਪ੍ਰਾਪਤ ਹੋਣਗੇ। ਅਨਿਸ਼ਚਿਤਤਾ ਸਿਧਾਂਤ ਨੂੰ ਇੱਕ ਉਦਾਹਰਣ ਦੁਆਰਾ ਬਹੁਤ ਚੰਗੀ ਤਰ੍ਹਾਂ ਸਮਝਿਆ ਜਾ ਸਕਦਾ ਹੈ। ਮੰਨ ਲਓ ਕਿ ਮੀਟਰ ਦੇ ਕਿਸੇ ਅਚਿਨ੍ਹਿਤ ਪੈਮਾਨੇ ਨਾਲ ਕਿਸੇ ਕਾਗਜ ਦੀ ਮੋਟਾਈ ਮਾਪਨ ਦੇ ਲਈ ਤੁਹਾਨੂੰ ਕਿਹਾ ਜਾਂਦਾ ਹੈ ਤਾਂ ਪ੍ਰਾਪਤ ਪਰਿਣਾਮ ਸਹੀ ਨਹੀਂ ਹੋਵੇਗਾ। ਕਾਗਜ ਦੀ ਮੋਟਾਈ ਨੂੰ ਸਹੀ ਮਾਪਨ ਦੇ ਲਈ ਤੁਹਾਨੂੰ ਕਾਗਜ ਦੀ ਮੋਟਾਈ ਤੋਂ ਘੱਟ ਇਕਾਈ ਵਾਲੇ ਚਿਨ੍ਹਿਤ ਉਪਕਰਣ ਦੀ ਵਰਤੋਂ ਕਰਨੀ ਪਵੇਗੀ। ਇਸੇ ਤਰ੍ਹਾਂ ਇਲੈਕਟ੍ਰਾਨ ਦੀ ਸਥਿਤੀ ਨੂੰ ਨਿਰਧਾਰਿਤ ਕਰਨ ਦੇ ਲਈ ਤੁਹਾਨੂੰ ਇੱਕ ਅਜਿਹੇ ਪੈਮਾਨੇ ਦੀ ਲੋੜ ਹੋਵੇਗੀ, ਜਿਸਦਾ ਅੰਸ਼ ਅੰਕਨ ਇਲੈਕਟ੍ਰਾਨ ਦੀਆਂ ਵਿਸਾਵਾਂ ਤੋਂ ਛੋਟੇ ਮਾਤਰਕਾਂ ਵਿੱਚ ਹੋਣ। ਇਲੈਕਟ੍ਰਾਨ ਦੀ ਸਥਿਤੀ ਪਤਾ ਕਰਨ ਦੇ ਲਈ ਅਸੀਂ ਅਜਿਹੇ ਪ੍ਰਕਾਸ਼ ਜਾਂ ਬਿਜਲ-ਚੁੰਬਕੀ ਵਿਕੀਰਣ ਦੁਆਰਾ ਪ੍ਰਦੀਪਤ ਕਰਨਾ ਪਵੇਗਾ। ਵਰਤੇ ਜਾਣ ਵਾਲੇ ਪ੍ਕਾਸ਼ ਦੀ ਤਰੰਗ ਲੰਬਾਈ ਇਲੈਕਟ੍ਰਾਨ ਦੀਆਂ ਵਿਸਾਵਾਂ ਤੋਂ ਘੱਟ ਹੋਣੀ ਚਾਹੀਦੀ ਹੈ, ਪਰੰਤੂ ਅਜਿਹੀ ਪ੍ਰਕਾਸ਼ ਦੇ ਫੋਟਾੱਨ ਦੀ ਉਰਜਾ ਬਹੁਤ ਜਿਆਦਾ ਹੋਵੇਗੀ। ਅਜਿਹੇ ਪ੍ਕਾਸ਼ ਦਾ ਉੱਚਾ

ਸੰਵੇਗ $p = \frac{h}{\lambda}$ ਵਾਲਾ ਫੋਟਾੱਨ ਇਲੈਕਟ੍ਰਾਨ ਨਾਲ ਟਕਰਾਉਣ ਤੇ ਉਸ ਦੀ ਊਰਜਾ ਵਿੱਚ ਪਰਿਵਰਤਨ ਕਰ ਦੇਵੇਗਾ। ਬਿਨਾਂ ਸ਼ਕ ਇਸ ਪ੍ਕਿਰਿਆ ਨਾਲ ਅਸੀਂ ਇਲੈਕਟ੍ਰਾਨ ਦੀ ਸਥਿਤੀ ਤਾਂ ਸਹੀ–ਸਹੀ ਨਿਰਧਾਰਤ ਕਰ ਲਵਾਂਗੇ, ਪਰੰਤੂ ਟਕਰਾਉਣ ਦੀ ਪ੍ਕਿਰਿਆ ਤੋਂ ਬਾਅਦ ਸਾਨੂੰ ਉਸਦੇ ਵੇਗ ਦੇ ਬਾਰੇ ਵਿੱਚ ਬਹੁਤ ਘੱਟ ਜਾਣਕਾਰੀ ਹੋਵੇਗੀ।

ਅਨਿਸ਼ਚਿਤਤਾ ਸਿਧਾਂਤ ਦਾ ਮਹੱਤਵ

ਹਾਈਜ਼ੇਨਬਰਗ ਦੇ ਅਨਿਸ਼ਚਿਤਤਾ ਨਿਯਮ ਦੀ ਇੱਕ ਮਹੱਤਵਪੂਰਣ ਉਲਝਣ ਇਹ ਹੈ ਕਿ ਇਹ ਨਿਯਮ ਨਿਸ਼ਚਿਤ ਮਾਰਗ ਜਾਂ ਪ੍ਖੇਪ– ਪੱਥ (trajectories) ਦੇ ਅਸਤੀਤਵ ਦਾ ਖੰਡਨ ਕਰਦਾ ਹੈ। ਕਿਸੇ ਪਿੰਡ ਦਾ ਪ੍ਖੇਪ–ਪਥ ਭਿੰਨ–ਭਿੰਨ ਕੋਣਾਂ ਤੇ ਉਸ ਦੀ ਸਥਿਤੀ ਅਤੇ ਵੇਗ ਤੋਂ ਨਿਰਧਾਰਿਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਜੇ ਅਸੀਂ ਕਿਸੇ ਵਿਸ਼ੇਸ਼ ਪਲ ਤੇ ਇੱਕ ਪਿੰਡ ਦੀ ਸਥਿਤੀ ਅਤੇ ਵੇਗ ਅਤੇ ਉਸ ਉਤੇ ਉਸ ਛਿਣ ਕਾਰਜ ਕਰ ਰਹੇ ਬਲਾਂ ਦੀ ਜਾਣਕਾਰੀ ਹੋਵੇ, ਤਾਂ ਇਹ ਦੱਸ ਸਕਦੇ ਹਾਂ ਕਿ ਬਾਅਦ ਵਿੱਚ ਕਿਸੇ ਸਮੇਂ ਤੇ ਪਿੰਡ ਕਿੱਥੇ ਹੋਵੇਗਾ। ਇਸ ਲਈ ਅਸੀਂ ਇਹ ਸਿੱਟਾ ਕੱਢਦੇ ਹਾਂ ਕਿ ਕਿਸੇ ਪਿੰਡ ਦੀ ਸਥਿਤੀ ਅਤੇ ਵੇਗ ਨਾਲ ਉਸਦਾ ਪ੍ਰੇਖੇਪ–ਪੱਥ ਨਿਸ਼ਚਿਤ ਹੋ ਜਾਂਦਾ ਹੈ। ਕਿਉਂਕਿ ਇਲੈਕਟ੍ਰਾੱਨ ਵਰਗੇ ਕਿਸੇ ਉਪ–ਪਰਮਾਣੂ ਪਿੰਡ ਦੇ ਲਈ ਇਕੱਠੇ ਉਸਦੀ ਸਥਿਤੀ ਅਤੇ ਵੇਗ ਦਾ ਨਿਰਧਾਰਣ ਕਿਸੇ ਛਿਣ ਸਹੀ ਤੌਰ ਤੇ ਸੰਭਵ ਨਹੀਂ। ਇਸ ਲਈ ਇਲੈਕਟ੍ਰਾਨ ਦੇ ਪ੍ਰਖੇਪ ਪਥ ਦੇ ਬਾਰੇ ਗੱਲ ਕਰਨੀ ਸੰਭਵ ਨਹੀਂ ਹੈ।

ਹਾਈਜ਼ੇਨਬਰਗ ਅਨਿਸ਼ਚਿਤਤਾ ਸਿਧਾਂਤ ਦਾ ਪ੍ਰਭਾਵ ਸਿਰਫ ਸੂਖਮ ਪਿੰਡਾਂ ਦੀ ਗਤੀ ਦੇ ਲਈ ਹੈ। ਸਥੁਲ ਪਿੰਡਾਂ ਦੇ ਲਈ ਇਹ ਪ੍ਰਭਾਵ ਅਤਿ ਥੋੜ੍ਹਾ ਹੁੰਦਾ ਹੈ। ਇਸ ਉਦਾਹਰਣ ਤੋਂ ਇਹ ਸਮਝਿਆ ਜਾ ਸਕਦਾ ਹੈ—

ਜੇ ਇੱਕ ਮਿਲੀਗ੍ਰਾਮ (10^{-6} kg) ਪੁੰਜ ਵਾਲੇ ਪਿੰਡ ਤੇ m ਨਿਸ਼ਚਿਤਤਾ ਸਿਧਾਂਤ ਲਾਗੂ ਕੀਤਾ ਜਾਵੇ, ਤਾਂ

$$\begin{split} \Delta v \times \Delta x &= \frac{h}{4\pi m} \\ \Delta v \times \Delta x &= \frac{6.626 \times 10^{-34} \text{ J s}}{4 \times 3.1416 \times 10^{-6} \text{ kg}} \approx 10^{-28} \text{m}^2 \text{s}^{-1} \end{split}$$

ਪ੍ਰਾਪਤ ∆v×∆x ਦਾ ਮਾਨ ਬਹੁਤ ਘੱਟ ਅਤੇ ਸਾਰਥਕ ਨਹੀਂ। ਇਸ ਲਈ ਇਹ ਕਿਹਾ ਜਾ ਸਕਦਾ ਹੈ ਕਿ ਮਿਲੀਗ੍ਰਾਮ ਅਕਾਰ ਦੇ ਪਿੰਡਾਂ (ਜਾਂ ਉਸ ਤੋਂ ਵੱਡੇ ਪਿੰਡਾਂ) ਦੇ ਲਈ ਵਿਚਾਰ ਕਰਦੇ ਸਮੇਂ ਅਨਿਸ਼ਚਿਚਤਾਵਾਂ ਕਿਸੇ ਅਸਲੀ ਪਰਿਣਾਮ ਦੀਆਂ ਨਹੀਂ ਹੁੰਦੀਆਂ।

ਦੂਜੇ ਪਾਸੇ ਇਲੈਕਟ੍ਰਾੱਨ ਵਰਗੇ ਸੂਖਮ ਪਿੰਡ ਦੇ ਲਈ ਪ੍ਰਾਪਤ ਮਾਨ ਕਾਫੀ ਜਿਆਦਾ ਹੁੰਦਾ ਹੈ। ਅਜਿਹੀਆਂ ਅਨਿਸ਼ਚਿਤਤਾਵਾਂ ਵਾਸਤਵਕਿ ਪਰਿਣਾਮ ਦੀਆਂ ਹੁੰਦੀਆਂ ਹਨ। ਉਦਾਹਰਣ ਵਜੋਂ— ਇੱਕ 9.11×10⁻³¹ kg. ਪੁੰਜ ਵਾਲੇ ਇਲੈਕਟ੍ਰਾਨ ਦੇ ਲਈ ਹਾਈਜ਼ੇਨਬਰਗ ਅਨਿਸ਼ਚਿਤਤਾ ਸਿਧਾਂਤ ਦੇ ਅਨੁਸਾਰ—

$$\Delta v.\Delta x = \frac{h}{4\pi m}$$

$$= \frac{6.626 \times 10^{-34} \text{ Js}}{4 \times 3.1416 \times 9.11 \times 10^{-31} \text{ kg}}$$

$$= 10^{-4} \text{m}^2 \text{s}^{-1}$$

ਇਸ ਦਾ ਮਤਲਬ ਇਹ ਹੈ ਕਿ ਜੇ ਇਲੈਕਟ੍ਰਾੱਨ ਦੀ ਸਹੀ ਸਥਿਤੀ $10^{-8}~\mathrm{m}$ ਦੀ ਅਨਿਸ਼ਚਿਤਤਾ ਤੱਕ ਜਾਣਨ ਦੀ ਕੋਸ਼ਿਸ਼ ਕੋਈ ਕਰਦਾ ਹੈ ਤਾਂ ਵੇਗ ਵਿੱਚ ਅਨਿਸ਼ਚਿਤਤਾ Δv ਹੋਵੇਗੀ–

$$\frac{10^{-4}m^2s^{-1}}{10^{-8}m} = 10^4m \, s^{-1}$$

ਜੋ ਐਨੀ ਜਿਆਦਾ ਹੈ ਕਿ ਇਲੈਕਟ੍ਰਾੱਨ ਨੂੰ ਬੋਹਰ ਆੱਰਬਿਟਾਂ ਵਿੱਚ ਗਤੀ ਕਰਦੇ ਹੋਏ ਮੰਨਣ ਦੀ ਕਲਾਸਕੀ ਧਾਰਣਾ ਨੂੰ m- ਪ੍ਰਮਾਣਿਕ ਸਾਬਤ ਕਰ ਸਕੇ। ਇਸ ਲਈ ਇਸ ਦਾ ਭਾਵ ਇਹ ਹੈ ਕਿ ਇਲੈਕਟ੍ਰਾੱਨ ਦੀ ਸਥਿਤੀ ਅਤੇ ਸੰਵੇਗ ਦੇ ਵਾਸਤਵਿਕ ਕਥਨ ਨੂੰ ਸੰਭਾਵਿਤ ਕਥਨ ਤੋਂ ਵੱਖ ਕਰਨਾ ਹੋਵੇਗਾ, ਜੋ ਇੱਕ ਇਲੈਕਟ੍ਰਾੱਨ ਦਿੱਤੇ ਗਏ ਸਥਾਨ ਅਤੇ ਸੰਵੇਗ ਤੇ ਰੱਖਦਾ ਹੈ। ਅਜਿਹਾ ਹੀ ਪਰਮਾਣ ਦੇ ਕੁਆਂਟਮ ਯੰਤਰਿਕੀ ਮਾੱਡਲ ਵਿੱਚ ਹੁੰਦਾ ਹੈ।

ਉਦਾਹਾਰਣ 2.15

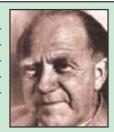
ਇੱਕ ਸੂਖਮਦਰਸ਼ੀ ਢੁਕਵੇਂ ਫੋਟਾੱਨਾਂ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਕਿਸੇ ਪਰਮਾਣੂ ਵਿੱਚ ਇਲੈਕਟ੍ਰਾੱਨ ਨੂੰ 0.1A ਦੂਰੀ ਦੇ ਅੰਤਰਗਤ ਉਸ ਦੀ ਸਥਿਤੀ ਜਾਣਨ ਦੇ ਲਈ ਸਹੀ ਹੁੰਦੀ ਹੈ। ਉਸ ਦੇ ਵੇਗ ਮਾਪਨ ਵਿੱਚ ਅਨਿਸ਼ਚਿਤਤਾ ਕੀ ਹੋਵੇਗੀ।

ਹੱਲ

$$\Delta x.\Delta p = \frac{h}{4\pi}$$
 or $\Delta x.m\Delta v = \frac{h}{4\pi}$

$$\Delta v = \frac{h}{4\pi \Delta x.m}$$

$$\Delta v = \frac{6.626 \times 10^{-34} \text{ Js}}{4 \times 3.14 \times 0.1 \times 10^{-10} \text{m} \times 9.11 \times 10^{-31} \text{ kg}}$$


- = $0.579 \times 10^7 \text{ m s}^{-1} (1\text{J} = 1 \text{ kg m}^2 \text{ s}^{-2})$
- $= 5.79 \times 10^6 \text{ m s}^{-1}$

ਉਦਾਹਾਰਣ 2.16

ਇੱਕ ਗੋਲਫ ਦੀ ਗੇਂਦ ਦਾ ਪੁੰਜ 40g ਅਤੇ ਗਤੀ 45 m/s ਹੈ। ਜੇ ਗਤੀ ਨੂੰ 2% ਯਥਾਰਥਤਾ ਦੇ ਅੰਦਰ ਮਾਪਿਆ ਜਾ ਸਕਦਾ ਹੈ, ਤਾਂ ਸਥਿਤੀ ਵਿੱਚ ਅਨਿਸ਼ਚਿਤਤਾ ਦੀ ਗਣਨਾ ਕਰੋ।

ਵਰਨਰ ਹਾਈਜ਼ੇਨ ਬਰਗ (1901–1976)

ਵਰਨਰ ਹਾਈਜ਼ੇਨ ਬਰਗ ਨੇ ਮਿਊਨਿਖ ਯੂਨੀਵਰਸਿਟੀ ਤੋਂ ਸੰਨ 1923, ਵਿੱਚ ਭੌਤਿਕ ਵਿੱਚ ਪੀ.ਐਚ.ਡੀ ਦੀ ਡਿਗਰੀ ਪ੍ਰਾਪਤ ਕੀਤੀ।ਉਨ੍ਹਾਂ ਨੇ ਉਦੋਂ ਇੱਕ ਸਾਲ ਮੈਕਸ ਬਾਰਨ ਦੇ ਨਾਲ ਮਿਊ ਨਿਖ ਵਿੱਚ ਅਤੇ ਤਿੰਨ ਸਾਲ ਕੌਪੇਨਹੇਗਨ ਵਿੱਚ ਨੀਲ ਬੋਹਰ ਦੇ ਨਾਲ ਕੰਮ ਕੀਤਾ।ਉਹ ਸੰਨ 1927 ਤੋਂ 1941 ਤੱਕ ਲੀਪਸਿਫ ਵਿੱਚ ਭੌਤਿਕੀ ਦੇ ਪ੍ਰੋਫੈਸਰ ਰਹੇ।ਦੂਜੇ ਵਿਸ਼ਵ ਯੁੱਧ ਦੇ ਦੌਰਾਨ ਉਹ ਪਰਮਾਣੂ ਬੰਬ ਤੇ ਜਰਮਨ ਖੋਜ਼ ਦੇ ਇੰਚਾਰਜ ਸਨ।ਯੁੱਧ ਤੋਂ ਬਾਅਦ ਉਨ੍ਹਾਂ ਨੂੰ ਗਵੇਟਿੰਗਜਨ ਵਿੱਚ ਭੌਤਿਕੀ ਦੇ ਮੈਕਸ ਪਲਾਂਕ ਸੰਸਥਾ ਦਾ ਨਿਰਦੇਸ਼ਕ ਬਣਾਇਆ ਗਿਆ।ਉਹ ਇੱਕ ਮੰਨੇ ਪ੍ਰਮੰਨੇ ਪਰਬਤ ਆਰੋਹੀ ਸਨ।ਸੰਨ 1932 ਵਿੱਚ ਉਨ੍ਹਾਂ ਨੂੰ ਭੌਤਿਕੀ ਵਿੱਚ ਨੋਬਲ ਪੁਰਸਕਾਰ ਦਿੱਤਾ ਗਿਆ।

ਹੱਲ ਗਤੀ ਵਿੱਚ 2% ਦੀ ਅਨਿਸ਼ਚਿਤਤਾ ਹੈ, ਇਸ ਲਈ $45 \times \frac{2}{100} = 0.9 \, \mathrm{m \, s^{-1}}$. $\frac{2}{100} = 0.9 \, \mathrm{m \, s^{-1}}$. $\frac{2}{100} = 0.9 \, \mathrm{m \, s^{-1}}$. $\frac{1}{100} = 0.9 \, \mathrm{m \, s^{-1}}$. $\frac{1}{100} = 0.23 \, \mathrm{m \, s^{-1}}$ $\frac{1}{100} = 0.626 \times 10^{-34} \, \mathrm{J \, s^{-1}}$ $\frac{1}{100} = 0.626 \times 10^{-34} \, \mathrm{J \, s^{-1}}$ $\frac{1}{100} = 0.626 \times 10^{-34} \, \mathrm{J \, s^{-1}}$ $\frac{1}{100} = 0.626 \times 10^{-34} \, \mathrm{J \, s^{-1}}$ $\frac{1}{100} = 0.626 \times 10^{-34} \, \mathrm{J \, s^{-1}}$ $\frac{1}{100} = 0.626 \times 10^{-34} \, \mathrm{J \, s^{-1}}$ $\frac{1}{100} = 0.626 \times 10^{-34} \, \mathrm{J \, s^{-1}}$ $\frac{1}{100} = 0.626 \times 10^{-34} \, \mathrm{J \, s^{-1}}$ $\frac{1}{100} = 0.90 \, \mathrm{m \, s^{-1}}$ $\frac{1}{$

ਬੋਹਰ ਮਾੱਡਲ ਦੀ ਅਸਫਲਤਾ ਦੇ ਕਾਰਣ

ਹੁਣ ਬੋਹਰ ਮਾੱਡਲ ਦੀ ਅਸਫਲਤਾ ਦੇ ਕਾਰਣ ਨੂੰ ਤੁਸੀਂ ਸਮਝ ਸਕਦੇ ਹੋ। ਬੋਹਰ ਮਾੱਡਲ ਵਿੱਚ ਇੱਕ ਇਲੈਕਟ੍ਰਾਂਨ ਨੂੰ ਇੱਕ ਚਾਰਜਿਤ ਕਣ ਦੇ ਰੂਪ ਵਿੱਚ ਨਿਊਕਲੀਅਸ ਦੇ ਚੌਹਾਂ ਪਾਸਿਆਂ ਤੇ ਨਿਸ਼ਚਿਤ ਵਰਿਤਾਕਾਰ ਆੱਰਬਿਟਾਂ ਵਿੱਚ ਘੁੰਮਦਾ ਹੋਇਆ ਮੰਨਿਆ ਜਾਂਦਾ ਹੈ। ਇਸ ਮਾੱਡਲ ਵਿੱਚ ਇਲੈਕਟ੍ਰਾਂਨ ਦੇ ਤਰੰਗ ਲੱਛਣ ਤੇ ਕੋਈ ਵਿਚਾਰ ਨਹੀਂ ਕੀਤਾ ਗਿਆ ਹੈ। ਇਸ ਪਥ ਨੂੰ ਪੂਰੀ ਤਰ੍ਹਾਂ ਤਾਂ ਹੀ ਪਰਿਭਾਸ਼ਿਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ, ਜਦ ਇਲੈਕਟ੍ਰਾਨ ਦੀ ਸਹੀ ਸਥਿਤੀ ਅਤੇ ਵੇਗ-ਦੋਵੇਂ ਇਕੱਠੇ ਗਿਆਤ ਹੋਣ। ਹਾਈਜ਼ੇਨਬਰਗ ਦੇ ਸਿਧਾਂਤ ਦੇ ਅਨੁਸਾਰ ਅਜਿਹਾ ਸੰਭਵ ਨਹੀਂ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਹਾਈਡ੍ਰੋਜਨ ਪਰਮਾਣੂ ਦਾ ਬੋਹਰ ਮਾਡਲ ਨਾ ਸਿਰਫ ਮਾਦਾ ਦੇ ਦੂਹਰੇ ਵਿਹਾਰ ਦੀ ਅਣਦੇਖੀ ਕਰਦਾ ਹੈ, ਬਲਕਿ 'ਹਾਈਜ਼ੇਨ ਬਰਗ' ਅਨਿਸ਼ਚਿਤਤਾ ਸਿਧਾਂਤ ਦੇ ਉਲਟ ਵੀ ਹੈ।

ਇਸ ਤਰ੍ਹਾਂ ਦੀਆਂ ਕਮਜੋਰੀਆਂ ਦੇ ਕਾਰਣ ਬੋਹਰ ਮਾੱਡਲ ਨੂੰ ਹੋਰ ਪਰਮਾਣੂਆਂ ਤੇ ਲਾਗੂ ਨਹੀਂ ਕੀਤਾ ਜਾ ਸਕਿਆ। ਇਸ ਲਈ ਪਰਮਾਣੂ ਰਚਨਾ ਦੇ ਬਾਰੇ ਵਿੱਚ ਅਜਿਹੇ ਵਿਚਾਰਾਂ ਦੀ ਲੋੜ ਸੀ ਜਿਨ੍ਹਾਂ ਤੋਂ ਪ੍ਰਾਪਤ ਪਰਮਾਣੂ ਮਾੱਡਲ ਮਾਦਾ ਦੇ ਤਰੰਗ-ਕਣ ਵਾਲੇ ਦੂਹਰੇ ਵਿਹਾਰ ਨੂੰ ਧਿਆਨ ਵਿੱਚ ਰੱਖਣ ਅਤੇ 'ਹਾਈਜ਼ੇਨਬਰਗ ਅਨਿਸ਼ਚਿਤਤਾ ਸਿਧਾਂਤ' ਦੇ ਅਨੁਸਾਰੀ ਹੋਣ। ਅਜਿਹਾ ਕੁਆਂਟਮ ਮਕੈਨਿਕਸ ਦੇ ਆਗਮਨ ਦੁਆਰਾ ਸੰਭਵ ਹੋਇਆ।

2.6 ਪਰਮਾਣੂ ਦਾ ਕੁਆਂਟਮ ਯੰਤਰਿਕ ਮਾੱਡਲ

ਜਿਵੇਂ ਪਹਿਲੇ ਭਾਗ ਵਿੱਚ ਦੱਸਿਆ ਗਿਆ ਹੈ, ਨਿਊਟਨ ਦੇ 'ਗਤੀ ਦੇ ਨਿਯਮਾਂ' ਦੇ ਅਧਾਰ ਤੇ ਵਿਕਸਿਤ ਕਲਾਸਕੀ ਯੰਤਰਿਕ ਇਰਵਿਨ ਸ਼ਰੋਡਿੰਜਰ ਆੱਸਟਰੀਆ ਦੇ ਭੌਤਿਕੀ ਦੇ ਵਿਗਿਆਨੀ ਸਨ। ਉਨ੍ਹਾਂ ਨੇ ਸੰਨ 1910 ਵਿੱਚ ਸਿਧਾਂਤਕ ਭੌਤਿਕੀ ਵਿੱਚ ਵਿਯਨਾ ਯੂਨੀਵਰਸਿਟੀ ਤੋਂ ਪੀ ਐਚ ਡੀ ਦੀ ਡਿਗਰੀ ਪ੍ਰਾਪਤ ਕੀਤੀ। ਪਲਾਂਕ ਦੇ ਕਹਿਣ ਤੇ ਸੰਨ 1927 ਵਿੱਚ ਉਨ੍ਹਾਂ ਨੇ ਬਰਲਿਨ ਯੂਨੀਵਰਸਿਟੀ ਪਲਾਂਕ ਦੇ ਬਾਅਧ ਕਾਰਜ਼ ਸੰਭਾਲਿਆ।ਸੰਨ 1933 ਵਿੱਚ ਹਿਟਲਰ ਅਤੇ ਨਾਜੀ ਦੀਆਂ ਨੀਤੀਆਂ ਦਾ ਵਿਰੋਧ ਕਰਨ

Erwin Schrödinger (1887-1961)

ਦੇ ਕਾਰਣ ਬਰਲਿਨ ਛੱਡਕੇ ਸੰਨ 1936 ਵਿੱਚ ਵਾਪਸ ਆੱਸਟਰੀਆ ਪਰਤ ਗਏ। ਅਸਟਰੀਆ ਉੱਤੇ ਜਰਮਨੀ ਦੇ ਹਮਲੇ ਦੇ ਬਾਅਦ ਜਦੋਂ ਉਨ੍ਹਾਂ ਨੂੰ ਪ੍ਰੋਫੈਸਰ ਦੇ ਪਦ ਤੋਂ ਹਟਾ ਦਿੱਤਾ ਗਿਆ ਉਦੋਂ ਉਹ ਆਇਰਲੈਂਡ (ਡਬਲਿਨ) ਚਲੇ ਗਏ ਜਿੱਥੇ ਉਹ ਸਤਾਰਾਂ ਸਾਲ ਤੱਕ ਰਹੇ। ਸੰਨ 1933 ਵਿੱਚ ਉਨ੍ਹਾਂ ਨੂੰ ਪੀ. ਏ. ਐਮ ਡਿਰਾਕ ਦੇ ਨਾਲ ਸੰਯੁਕਤ ਰੂਪ ਵਿੱਚ ਭੌਤਿਕੀ ਵਿੱਚ ਨੋਬਲ ਪੁਰਸਕਾਰ ਨਾਲ ਸਨਮਾਨਿਤ ਕੀਤੀ ਗਿਆ।

ਦੁਆਰਾ ਸਥੂਲ ਪਦਾਰਥਾਂ (ਜਿਵੇਂ—ਡਿਗੱਦੇ ਹੋਏ ਪੱਥਰ, ਚੱਕਰ ਲਾਉਂਦੇ ਹੋਏ ਗ੍ਰਹਿਆਂ ਆਦਿ) ਜਿਨ੍ਹਾਂ ਦਾ ਵਿਹਾਰ ਕਣ ਵਰਗਾ ਹੁੰਦਾ ਹੈ, ਦੀ ਗਤੀ ਦਾ ਸਫਲਤਾ ਪੂਰਵਕ ਵਰਣਨ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ, ਪਰੰਤੂ ਜਦੋਂ ਇਸ ਨੂੰ ਅਤਿ ਸੂਖਮ ਕਣਾਂ (ਜਿਵੇਂ ਇਲੈਕਟ੍ਰਾਨਾਂ, ਅਣੂਆਂ ਅਤੇ ਪਰਮਾਣੂਆਂ) ਉੱਤੇ ਲਾਗੂ ਕੀਤਾ ਜਾਂਦਾ ਹੈ, ਤਾਂ ਇਹ ਅਸਫਲ ਹੋ ਜਾਂਦਾ ਹੈ। ਅਜਿਹਾ ਹੋਣ ਦਾ ਕਾਰਣ ਇਹ ਹੈ ਕਿ ਕਲਾਸਕੀ ਯੰਤਰਿਕੀ ਮਾਦਾ ਰੂਪ ਵਿੱਚ ਉਪਪਰਮਾਣਵੀਂ ਕਣਾਂ ਦੇ ਦੂਹਰੇ ਵਿਹਾਰ ਦੀ ਸੰਕਲਪਨਾ ਅਤੇ ਅਨਿਸ਼ਚਿਤਤਾ ਨਿਯਮ ਦੀ ਅਣਦੇਖੀ ਕਰਦੀ ਹੈ। ਮਾਦਾ ਦੇ ਦੂਹਰੇ ਵਿਹਾਰ ਨੂੰ ਧਿਆਨ ਵਿੱਚ ਰੱਖ ਕੇ ਵਿਕਸਿਤ ਵਿਗਿਆਨ ਨੂੰ ਕੁਆਂਟਮ ਯੰਤਰੀ (Quantum mechanics) ਕਹਿੰਦੇ ਹਨ।

ਕੁਆਂਟਮ ਯੰਤਰਕੀ ਇੱਕ ਸਿਧਾਂਤਕ ਵਿਗਿਆਨ ਹੈ, ਜਿਸ ਵਿੱਚ ਉਨ੍ਹਾਂ ਅਤਿ ਸੂਖਮ ਵਸਤੂਆਂ ਦੀਆਂ ਗਤੀਆਂ ਦਾ ਅਧਿਐਨ ਕੀਤਾ ਜਾਂਦਾ ਹੈ, ਜੋ ਤਰੰਗ ਅਤੇ ਕਣ ਦੋਵੇਂ ਗੁਣ ਦਰਸਾਉਂਦੀਆਂ ਹਨ। ਇਹ ਅਜਿਹੀਆਂ ਵਸਤੂਆਂ ਦੀ ਗਤੀ ਦੇ ਨਿਯਮਾਂ ਨੂੰ ਨਿਸ਼ਚਿਤ ਕਰਦੀ ਹੈ। ਜੱਦ ਕੁਆਂਟਮ ਯੰਤਰਕੀ ਨੂੰ ਸਥੂਲ ਵਸਤੂਆਂ (ਜਿਨ੍ਹਾਂ ਦੇ ਲਈ ਤਰੰਗੀ ਗੁਣ ਅਤਿ ਘੱਟ ਹੁੰਦੇ ਹਨ) ਉੱਤੇ ਲਾਗੂ ਕੀਤਾ ਜਾਂਦਾ ਹੈ, ਤਾਂ ਕਲਾਸਕੀ ਯੰਤਰਕੀ ਦੇ ਪਰਿਣਾਮਾਂ ਵਰਗੇ ਹੀ ਪਰਿਣਾਮ ਪ੍ਰਾਪਤ ਹੁੰਦੇ ਹਨ।

ਸੰਨ 1926 ਵਿੱਚ ਵਰਨਰ ਹਾਈਜ਼ੇਨਬਰਗ ਅਤੇ ਇਰਵਿਨ ਸ਼ਰੋਡਿੰਜਰ ਦੁਆਰਾ ਵੱਖ–ਵੱਖ ਕੁਆਂਟਮ ਯੰਤਰਕੀ ਦਾ ਵਿਕਾਸ ਕੀਤਾ ਗਿਆ।ਇੱਥੇ ਅਸੀਂ ਸ਼ਰੋਡਿੰਜਰ ਦੁਆਰਾ ਵਿਕਸਿਤ 'ਕੁਆਂਟਮ ਯੰਤਰਕੀ' ਉੱਤੇ ਹੀ ਚਰਚਾ ਕਰਾਂਗੇ, ਜੋ ਤਰੰਗਾਂ ਦੀ ਗਤੀ ਉੱਤੇ ਹੀ ਅਧਾਰਿਤ ਹੈ। ਕੁਆਂਟਮ ਯੰਤਰਕੀ ਦਾ ਮੂਲ ਸਮੀਕਰਣ ਸ਼ਰੋਡਿੰਜਰ ਦੁਆਰਾ ਵਿਕਸਿਤ ਕੀਤਾ ਗਿਆ। ਇਸ ਦੇ ਲਈ ਉਨ੍ਹਾਂ ਨੂੰ ਸੰਨ 1933 ਵਿੱਚ ਭੌਤਿਕੀ ਦਾ ਨੌਬਲ ਪੁਰਸਕਾਰ ਦਿੱਤਾ ਗਿਆ। ਇਹ ਸਮੀਕਰਣ, ਜੋ ਡੀ ਬ੍ਰਾਗਲੀ ਦੁਆਰਾ ਦੱਸੇ ਗਏ ਪਦਾਰਥ ਦੇ ਕਣ ਅਤੇ ਤਰੰਗ ਵਾਲੇ ਦੂਹਰੇ ਵਿਹਾਰ ਨੂੰ ਧਿਆਨ ਵਿੱਚ ਰੱਖਦਾ ਹੈ, ਕਾਫ਼ੀ ਜਟਿਲ ਹੈ। ਇਸ ਨੂੰ ਹੱਲ ਕਰਨ ਦੇ ਲਈ ਉੱਚ ਗਣਿਤ ਦਾ ਗੂਹੜਾ ਗਿਆਨ ਹੋਣਾ ਜਰੂਰੀ ਹੈ। ਇਸ ਸਮੀਕਰਣ ਨੂੰ ਭਿੰਨ ਭਿੰਨ ਸਿਸਟਮਾਂ ਉੱਤੇ ਲਾਗੂ ਕਰਨ ਉਪਰੰਤ ਪ੍ਰਾਪਤ ਹੱਲਾਂ ਦੇ ਬਾਰੇ ਤੁਸੀਂ ਅਗਲੇਰੀਆਂ ਜਮਾਤਾਂ ਵਿੱਚ ਪੜ੍ਹੋਗੇ।

ਅਜਿਹੇ ਸਿਸਟਮ (ਜਿਵੇਂ-ਇੱਕ ਪਰਮਾਣੂ ਜਾਂ ਅਣੂ, ਜਿਸ ਦੀ ਊਰਜਾ ਸਮੇਂ ਦੇ ਨਾਲ ਪਰਿਵਰਤਿਤ ਨਹੀਂ ਹੁੰਦੀ, ਦੇ ਲਈ ਸ਼ਰੋਡਿੰਜਰ ਸਮੀਕਰਣ ਨੂੰ ਇਸ ਤਰ੍ਹਾਂ ਲਿਖਿਆ ਜਾਂਦਾ ਹੈ।

$$\hat{H} \psi = E \psi$$

ਜਿੱਥੇ \widehat{H} ਇੱਕ ਗਣਿਤੀ ਸੰਚਾਲਕ (operator) ਹੈ ਜਿਸ ਨੂੰ 'ਹੈਮਿਲਟੋਨਿਅਨ' ਕਹਿੰਦੇ ਹਨ। ਸ਼ਰੋਡਿੰਜਰ ਨੇ ਦੱਸਿਆ ਕਿ ਸਿਸਟਮ ਦੀ ਕੁੱਲ ਊਰਜਾ ਦੇ ਵਿਅੰਜਕ ਨਾਲ ਇਸ ਸੰਚਾਲਕ ਨੂੰ ਕਿਵੇਂ ਲਿਖਿਆ ਜਾ ਸਕਦਾ ਹੈ। ਕਿਸੇ ਸਿਸਟਮ ਦੀ ਕੁੱਲ ਉਰਜਾ, ਉਸ ਦੇ ਉਪ ਪਰਮਾਣਵੀਂ ਕਣਾਂ (ਇਲੈਕਟ੍ਰਾੱਨ ਅਤੇ ਨਿਊਕਲੀਅਸ) ਦੀ ਗਤਿਜ ਊਰਜਾ ਇਲੈਕਟ੍ਰਾਨਾਂ ਅਤੇ ਨਿਊਕਲੀਅਸ ਦੇ ਵਿੱਚ ਅਕਰਸ਼ਣ ਅਤੇ ਪ੍ਰਤੀਕਰਸ਼ਨ ਪੁਟਸ਼ਲ ਨਾਲ ਸਬੰਧਿਤ ਹੈ। ਇਸ ਸਮੀਕਰਣ ਦੇ ਹੱਲ ਨਾਲ E ਅਤੇ ψ ਦਾ ਮਾਨ ਪ੍ਰਾਪਤ ਹੁੰਦੇ ਹਨ।

ਹਾਈਡ੍ਰੋਜਨ ਪਰਮਾਣੂ ਅਤੇ ਸ਼ਰੋਡਿੰਜਰ ਸਮੀਕਰਣ

ਜਦੋਂ ਸ਼ਰੋਡਿੰਜਰ ਸਮੀਕਰਣ ਨੂੰ ਹਾਈਡੋ਼ਜਨ ਪਰਮਾਣੂ ਦੇ ਲਈ ਹੱਲ ਕੀਤਾ ਜਾਂਦਾ ਹੈ, ਤਾਂ ਉਸ ਤੋਂ ਇਲੈਕਟ੍ਰਾਨ ਦੇ ਸ਼ੈਂਭਵ ਉਰਜਾ-ਸਤਰ ਅਤੇ ਉਨ੍ਹਾਂ ਦੇ ਸੰਗਤ ਤਰੰਗ (ψ) (wave function) ਪ੍ਰਾਪਤ ਹੁੰਦੇ ਹਨ। ਇਹ ਕੁਆਂਟਿਤ ਉਰਜਾ-ਸਤਰ ਅਤੇ ਉਨ੍ਹਾਂ ਦੇ ਸੰਗਤ ਤਰੰਗ-ਫਲਨ ਸ਼ਰੋਡਿੰਜਰ ਸਮੀਕਰਣ ਦੇ ਹੱਲ ਦੇ ਫਲਸਰੂਪ ਪ੍ਰਾਪਤ ਹੁੰਦੇ ਹਨ। ਇਨ੍ਹਾਂ ਨੂੰ ਤਿੰਨ ਕੁਆਂਟਮ-ਸੰਖਿਆਵਾਂ (ਮੁੱਖ ਕੁਆਂਟਮ ਸੰਖਿਆ n (principal quantum number, ਖਿਤਿਜ–ਚਾਪੀ ਕੁਅੰਟਮ ਸੰਖਿਆ , l (azimuthal quantum number) ਅਤੇ ਚੁੰਬਕੀ ਕੁਆਂਟਮ ਸੰਖਿਆ m (magnetic quantum number) ਦੁਆਰਾ ਨਿਦ੍ਸ਼ਿਟ ਕੀਤਾ ਜਾਂਦਾ ਹੈ, ਜੋ ਸ਼ਰੋਡਿੰਜਰ ਸਮੀਕਰਣ ਦੇ ਕੁਦਰਤੀ ਹੱਲ ਤੋਂ ਪ੍ਰਾਪਤ ਹੁੰਦੀ ਹੈ। ਜਦੋਂ ਇਲੈਕਟ੍ਰਾਨ ਕਿਸੇ ਉਰਜਾ ਸਤਰ ਵਿੱਚ ਰਹਿੰਦਾ ਹੈ, ਤਾਂ ਉਸਦੇ ਸੰਗਤ ਤਰੰਗ-ਫਲਨ ਵਿੱਚ ਇਲੈਕਟ੍ਰਾੱਨ ਦੇ ਬਾਰੇ ਵਿੱਚ ਸਹੀ ਜਾਣਕਾਰੀ ਮੌਜੂਦ ਨਹੀਂ ਹੁੰਦੀ। ਤਰੰਗ ਫਲਨ ਇੱਕ ਗਣਿਤੀ ਫਲਨ ਹੈ, ਜਿਸਦਾ ਮਾਨ ਪਰਮਾਣੂ ਵਿੱਚ ਇਲੈਕਟ੍ਰਾੱਨ ਦੇ ਨਿਰਦੇਸ਼ ਅੰਕਾਂ ਉਤੇ ਨਿਰਭਰ ਕਰਦਾ ਹੈ। ਇਸ ਦਾ ਕੋਈ ਭੌਤਿਕ ਅਰਥ ਨਹੀਂ ਹੁੰਦਾ ਹੈ। ਹਾਈਡ੍ਰੋਜਨ ਅਤੇ ਉਸ ਦੇ ਸਮਾਨ ਸਪੀਸ਼ੀਜ ਦੇ ਅਜਿਹੇ ਇੱਕ-ਇੱਕ ਇਲੈਕਟ੍ਰਾੱਨ ਤਰੰਗ-ਫਲਨ ਨੂੰ ਪਰਮਾਣੁ ਆੱਰਬਿਟਲ (atomic orbital) ਕਹਿੰਦੇ ਹਨ। ਇਸ ਤਰ੍ਹਾਂ ਦੇ ਇੱਕ ਇਲੈਕਟ੍ਰਾਨ ਸਪੀਸੀਜ਼ ਦੇ ਤਰੰਗ-ਫਲਨ ਇੱਕ ਇਲੈਕਟ੍ਰਾਨੀ ਸਿਸਟਮ ਅਖਵਾਉਂਦੇ ਹਨ। ਇੱਕ ਪਰਮਾਣੂ ਵਿੱਚ ਕਿਸੇ ਬਿੰਦੂ ਤੇ ਇਲੌਕਟ੍ਰਾਨ ਮਿਲਨ ਦੀ ਸੰਭਾਵਨਾ ਉਸ ਬਿੰਦੂ ਤੇ $|\psi|^2$ ਦੇ ਸਮਾਨ ਅਨੁਪਾਤੀ ਹੁੰਦੀ ਹੈ। ਹਾਈਡੋਜਨ ਪਰਮਾਣੂ ਦੇ ਲਈ ਕੁਆਂਟਮ ਯੰਤਰਕੀ ਦੁਆਰਾ ਪ੍ਰਾਪਤ ਪਰਿਣਾਮ ਹਾਈਡ੍ਰੋਜਨ ਪਰਮਾਣੂ ਸਪੈਕਟ੍ਰਮ ਦੇ ਸਾਰੇ ਪਹਿਲੂਆਂ ਦੀ ਸਫਲਤਾ ਪੂਰਵਕ ਭਵਿੱਖਬਾਣੀ (predict) ਕਰਦੇ ਹਨ। ਇਸਦੇ ਇਲਾਵਾ ਇਹ ਉਨ੍ਹਾਂ ਕੁੱਝ ਪਰਿਘਟਨਾਵਾਂ ਦੀ ਵੀ ਵਿਆਖਿਆ ਕਰਦਾ ਹੈ, ਜੋ ਬੋਹਰ ਮਾੱਡਲ ਦੁਆਰਾ ਸਪਸ਼ਟ ਨਹੀਂ ਕੀਤੀ ਜਾ ਸਕੀ।

ਸ਼ਰੋਡਿੰਜਰ ਸਮੀਕਰਣ ਨੂੰ ਬਹੁ-ਇਲੈਕਟਾਨ ਪਰਮਾਣਆਂ ਤੇ ਲਾਗ ਕਰਨ ਤੇ ਅਕਸਰ ਕੁਝ ਮੁਸ਼ਕਿਲਾਂ ਸਾਹਮਣੇ ਆਉਂਦੀਆਂ ਹਨ।ਬਹੁ-ਇਲੈਕਟ੍ਰਾੱਨ ਪਰਮਾਣੂਆਂ ਦੇ ਲਈ ਸ਼ਰੋਡਿੰਜਰ ਸਮੀਕਰਣ ਦਾ ਯਥਾਰਥ (exact) ਹੱਲ ਨਹੀਂ ਦਿੱਤਾ ਜਾ ਸਕਦਾ ਸੀ। ਇਸ ਮੁਸ਼ਕਿਲ ਨੂੰ ਲਗਭਗ ਵਿਧੀ ਦੀ ਵਰਤੋਂ ਦੁਆਰਾ ਦੂਰ ਕੀਤਾ ਗਿਆ। ਕੰਪਿਊਟਰ ਨਾਲ ਗਣਨਾ ਕਰਨ ਤੇ ਪਤਾ ਲੱਗਦਾ ਹੈ ਕਿ ਹਾਈਡੋਜਨ ਦੇ ਇਲਾਵਾ ਹੋਰ ਪਰਮਾਣਆਂ ਦੇ ਆੱਰਬਿਟਲ ਹਾਈਡ੍ਰੋਜਨ ਪਰਮਾਣੂ ਦੇ ਆਰਬਿਟਲਾਂ ਤੋਂ ਬਹੁਤ ਜਿਆਦਾ ਭਿੰਨ ਨਹੀਂ ਹਨ। ਇਨ੍ਹਾਂ ਵਿੱਚ ਮੁੱਖ ਭਿੰਨਤਾ ਨਿਊਕਲੀਅਸ ਵਿੱਚ ਚਾਰਜ ਵੱਧਣ ਦੇ ਕਾਰਣ ਹੁੰਦੀ ਹੈ। ਇਸ ਦੇ ਕਾਰਣ ਆਰਬਿਟਲ ਕੱਝ ਛੋਟੇ ਹੋ ਜਾਂਦੇ ਹਨ। ਤੁਸੀਂ ਅਗਲੇਰੇ ਉਪਖੰਡਾਂ 2.6.4 ਅਤੇ 2.6.5 ਵਿੱਚ ਪੜ੍ਹੋਗੇ ਕਿ ਬਹੁ-ਇਲੈਕਟ੍ਰਾਨ ਪਰਮਾਣੂਆਂ ਦੇ ਆੱਰਬਿਟਲਾਂ ਦੀਆਂ ਉਰਜਾਵਾਂ n ਅਤੇ l. ਕੁਆਂਟਮ ਸੰਖਿਆਵਾਂ ਉੱਤੇ ਨਿਰਭਰ ਕਰਦੀ ਹੈ ਜਦ ਕਿ ਹਾਈਡ੍ਰੋਜਨ ਪਰਮਾਣੂ ਦੇ ਆੱਰਬਿਟਲਾਂ ਦੀ ਉਰਜਾ ਸਿਰਫ n ਕੁਆਂਟਮ ਸੰਖਿਆ ਉੱਤੇ ਨਿਰਭਰ ਕਰਦੀ ਹੈ।

ਪਰਮਾਣੂ ਦੇ ਕੁਆਂਟਮ ਯੰਤਰਕੀ ਮਾੱਡਲ ਦੇ ਮੁੱਖ ਲੱਛਣ

ਪਰਮਾਣੂ ਦਾ ਕੁਆਂਟਮ ਯੰਤਰਕੀ ਮਾੱਡਲ ਪਰਮਾਣੂ ਰਚਨਾ ਦਾ ਉਹ ਚਿੱਤਰ ਹੈ ਜੋ ਪਰਮਾਣੂਆਂ ਤੇ ਸ਼ਰੋਡਿੰਜਰ ਸਮੀਕਰਣ ਲਾਗੂ ਕਰਨ ਨਾਲ ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ, ਪਰਮਾਣੂ ਦੇ ਕੁਆਂਟਮ ਯੰਤਰਕੀ ਮਾੱਡਲ ਦੇ ਮਹੱਤਵਪੂਰਣ ਲੱਛਣ ਹੇਠੇ ਲਿਖੇ ਹਨ—

- ਪਰਮਾਣੂਆਂ ਵਿੱਚ ਇਲੈਕਟ੍ਰਾਨਾਂ ਦੀ ਊਰਜਾ ਕੁਆਂਟਿਤ ਹੁੰਦੀ ਹੈ (ਭਾਵ ਇਸ ਦੇ ਕੇਵਲ ਕੁੱਝ ਵਿਸ਼ੇਸ਼ ਮਾਨ ਹੀ ਹੋ ਸਕਦੇ ਹਨ), ਉਦਾਹਰਣ ਵਜੋਂ—ਜਦੋਂ ਪਰਮਾਣੂਆਂ ਵਿੱਚ ਇਲੈਕਟ੍ਰਾਨ ਨਿਊਕਲੀਅਸ ਦੇ ਨਾਲ ਬੱਝੇ ਹੁੰਦੇ ਹਨ।
- 2. ਇਲੈਕਟ੍ਰਾੱਨਾਂ ਦੇ ਤਰੰਗ ਵਰਗੇ ਗੁਣਾਂ ਦੇ ਕਾਰਣ ਕੁਅੰਾਂਟਿਤ ਇਲੈਕਟ੍ਰਾੱਨਿਕ ਊਰਜਾ-ਸਤਰਾਂ ਦਾ ਅਸਤਿਤਵ ਹੁੰਦਾ ਹੈ ਅਤੇ ਸ਼ਰੋਡਿੰਜਰ ਤਰੰਗ ਸਮੀਕਰਣ ਦੇ ਅਨੁਮਤ ਹੱਲ ਹੁੰਦੇ ਹਨ।
- 3. ਕਿਸੇ ਪਰਮਾਣੂ ਵਿੱਚ ਇਲੈਕਟ੍ਰਾੱਨ ਦੀ ਸਹੀ ਸਥਿਤੀ ਅਤੇ ਸਹੀ ਵੇਗ ਨੂੰ ਇਕੱਠਾ ਪਤਾ ਨਹੀਂ ਕੀਤਾ ਜਾ ਸਕਦਾ (ਹਾਈਜੇਨਬਰਗ ਅਨਿਸ਼ਚਿਤਤਾ ਸਿਧਾਂਤ) ਇਸ ਲਈ ਕਿਸੇ ਪਰਮਾਣੂ ਵਿੱਚ ਇਲਕੈਟ੍ਰਾਨ ਦੇ ਪਥ ਨੂੰ ਸਹੀ ਤਰ੍ਹਾਂ ਗਿਆਤ ਨਹੀਂ ਕੀਤਾ ਜਾ ਸਕਦਾ। ਇਸ ਲਈ ਅਸੀਂ ਪਰਮਾਣੂ ਦੇ ਭਿੰਨ-ਭਿੰਨ ਬਿੰਦੂਆਂ ਤੇ ਇਲੈਕਟ੍ਰਾਨ ਦੇ ਹੋਣ ਦੀ ਸੰਭਾਵਨਾ (probability) ਦੀ ਸੰਕਲਪਨਾ ਦੇ ਬਾਰੇ ਗੱਲ ਕਰਦੇ ਹਾਂ। ਇਸ ਦੇ ਬਾਰੇ ਤੁਸੀਂ ਅੱਗੇ ਪੜ੍ਹੋਗੇ।

- 4. ਕਿਸੇ ਪਰਮਾਣੂ ਵਿੱਚ ਤਰੰਗ-ਫਲਨ ਨੂੰ 'ਪਰਮਾਣੂ ਆੱਰਬਿਟਲ' ਕਹਿੰਦੇ ਹਨ। ਜਦੋਂ ਇੱਕ ਤਰੰਗ-ਫਲਨ ਦੁਆਰਾ ਕਿਸੇ ਇੱਕ ਇਲੈਕਟਾਨ ਦੀ ਵਿਆਖਿਆ ਕੀਤੀ ਜਾਂਦੀ ਹੈ ਤਾਂ ਅਸੀਂ ਇਹ ਕਹਿੰਦੇ ਹਾਂ ਕਿ ਇਲੈਕਟ੍ਰਾੱਨ ਉਸ ਆੱਰਬਿਟਲ ਵਿੱਚ ਮੌਜੂਦ ਹੈ। ਕਿਉਂਕਿ ਕਿਸੇ ਇਲੈਕਟ੍ਰਾੱਨ ਦੇ ਲਈ ਬਹਤ ਸਾਰੇ ਤਰੰਗ-ਫਲਨ ਹੋ ਸਕਦੇ ਹਨ, ਇਸ ਲਈ ਪਰਮਾਣੂ ਵਿੱਚ ਕਈ ਪਰਮਾਣੂ ਆੱਰਬਿਟਲ ਹੁੰਦੇ ਹਨ। ਪਰਮਾਣਆਂ ਦੀ ਇਲੈਕਟਾਨਿਕ ਰਚਨਾ ਇਨ੍ਹਾਂ ਇੱਕ ਇਲੈਕਟ੍ਰਾਨ ਆਰਬਿਟਲ ਤਰੰਗ ਫਲਨਾਂ ਜਾਂ ਆੱਰਬਿਟਲਾਂ ਉੱਤੇ ਹੀ ਅਧਾਰਿਤ ਹੈ। ਹਰ ਇੱਕ ਆੱਰਬਿਟਲ ਇਲੈਕਟ੍ਰਾੱਨ ਦੀ ਉਰਜਾ ਨਿਸ਼ਚਿਤ ਹੁੰਦੀ ਹੈ। ਕਿਸੇ ਵੀ ਆੱਰਬਿਟਲ ਵਿੱਚ ਦੋ ਤੋਂ ਵੱਧ ਇਲੈਕਟ੍ਰਾੱਨ ਨਹੀਂ ਰਹਿ ਸਕਦੇ। ਕਿਸੇ ਬਹ ਇਲੈਕਟ੍ਰਾੱਨ ਪਰਮਾਣੂ ਵਿੱਚ ਉਰਜਾ ਦੇ ਵੱਧਦੇ ਹੋਏ ਕ੍ਰਮ ਵਿੱਚ ਭਿੰਨ-ਭਿੰਨ ਆੱਰਬਿਟਲਾਂ ਵਿੱਚ ਇਲੈਕਟਾੱਨ ਭਰੇ ਜਾਂਦੇ ਹਨ। ਇਸ ਲਈ ਬਹ ਇਲੈਕਟ੍ਰਾਂਨ ਪਰਮਾਣ ਵਿੱਚ ਹਰ ਇੱਕ ਇਲੈਕਟ੍ਰਾੱਨ ਦੇ ਲਈ ਇੱਕ ਆਰਬਿਟਲ ਤਰੰਗ ਫਲਨ ਹੁੰਦਾ ਹੈ, ਜੋ ਉਸ ਆਰਬਿਟਲ ਦਾ ਲੱਛਣਿਕ ਹੁੰਦਾ ਹੈ ਜਿਸ ਵਿੱਚ ਇਲੈਕਟ੍ਰਾੱਨ ਮੌਜੂਦ ਹੁੰਦਾ ਹੈ।ਪਰਮਾਣੂ ਵਿੱਚ ਇਲੈਕਟਾੱਨ ਦੇ ਬਾਰੇ ਸਾਰੀਆਂ ਜਾਣਕਾਰੀਆਂ ਉਸ ਦੇ ਆੱਰਬਿਟਲ ਤਰੰਗ ਫਲਨ ਵਿੱਚ ਮੌਜੂਦ ਹੁੰਦੀ ਹੈ ਅਤੇ ਕੁਆਂਟਮ ਯੰਤਰਕੀ ਦੇ ਦੁਆਰਾ ਇਸ ਜਾਣਕਾਰੀ ਨੂੰ ਪਾਪਤ ਕਰਨਾ ਸੰਭਵ ਹੋ ਜਾਂਦਾ ਹੈ।
- 5. ਕਿਸੇ ਪਰਮਾਣੂ ਵਿੱਚ ਕਿਸੇ ਬਿੰਦੂ ਤੇ ਇਲੈਕਟ੍ਰਾੱਨ ਦੇ ਮੌਜੂਦ ਹੋਣ ਦੀ ਸੰਭਾਵਨਾ ਉਸ ਬਿੰਦੂ ਉੱਤੇ ਆੱਰਬਿਟਲ ਤਰੰਗ ਫਲਨ ਦੇ ਵਰਗ ਦੇ ਸਮਾਨ ਅਨੁਪਾਤੀ ਹੁੰਦੀ ਹੈ, ਭਾਵ ਉਸ ਬਿੰਦੂ ਉੱਤੇ ΙψΙ² ਨੂੰ ਸੰਭਾਵਨਾ ਘਣਤਾ (probability density) ਕਿਹਾ ਜਾਂਦਾ ਹੈ।ਇਹ ਹਮੇਸ਼ਾ ਧਨਾਤਮਕ ਹੁੰਦਾ ਹੈ। ਕਿਸੇ ਪਰਮਾਣੂ ਦੇ ਭਿੰਨ-ਭਿੰਨ ਬਿੰਦੂਆਂ ਉੱਤੇ ΙψΙ² ਦੇ ਆਉਣ ਨਾਲ ਨਿਊਕਲੀਅਸ ਦੇ ਚੌਹਾਂ ਪਾਸਿਆਂ ਤੇ ਉਸ ਖੇਤਰ ਦਾ ਪਤਾ ਲਾਉਣਾ ਸੰਭਵ ਹੈ, ਜਿੱਥੇ ਇਲੈਕਟ੍ਰਾੱਨ ਦੇ ਮਿਲਣ ਦੀ ਸੰਭਾਵਨਾ ਵੱਧ ਹੋਵੇਗੀ।

2.6.1 ਆੱਰਬਿਟਲ ਅਤੇ ਕੁਆਂਟਮ ਸੰਖਿਆ

ਕਿਸੇ ਪਰਮਾਣੂ ਵਿੱਚ ਕਈ ਆੱਰਬਿਟਲ ਸੰਭਵ ਹੁੰਦੇ ਹਨ। ਗੁਣਾਤਮਕ ਰੂਪ ਵਿੱਚ ਇਨ੍ਹਾਂ ਆੱਰਬਿਟਲਾਂ ਨੂੰ ਉਨ੍ਹਾਂ ਦੇ ਅਕਾਰ, ਆਕ੍ਰਿਤੀ ਅਤੇ ਅਨੁਸਥਿਤੀ ਦੇ ਅਧਾਰ ਤੇ ਅੰਤਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਛੋਟੇ ਅਕਾਰ ਦੇ ਆੱਰਬਿਟਲ ਦਾ ਅਰਥ ਇਹ ਹੈ ਕਿ ਨਿਊਲੀਅਸ ਦੇ ਕੋਲ ਇਲੈਕਟ੍ਰਾੱਨ ਦੇ ਮਿਲਣ ਦੀ ਸਮਰੱਥਾ ਵਧੇਰੇ ਹੈ। ਇਸੇ ਤਰ੍ਹਾਂ ਆਕ੍ਰਿਤੀ ਅਤੇ ਅਨੁਸਥਿਤੀ ਇਹ ਦੱਸਦੇ ਹਨ ਕਿ ਇਲੈਕਟ੍ਰਾੱਨ ਮਿਲਣ ਦੀ ਸੰਭਾਵਨਾ ਕਿਸੇ ਦੂਜੀ ਦਿਸ਼ਾ ਨਾਲੋਂ ਇੱਕ ਦਿਸ਼ਾ ਵਿੱਚ ਵਧੇਰੇ ਹੈ। ਕੁਆਂਟਮ ਸੰਖਿਆਵਾਂ ਦੁਆਰਾ ਪਰਮਾਣੂ ਆੱਰਬਿਟਲਾਂ ਵਿੱਚ ਅੰਤਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਹਰ ਇੱਕ ਆਰਬਿਟਲ ਨੂੰ ਤਿੰਨ ਕੁਆਂਟਮ ਸੰਖਿਆਵਾਂ n, l ਅਤੇ m_l . ਦੁਆਰਾ ਦਰਸਾਇਆ ਜਾਂਦਾ ਹੈ।

ਮੁੱਖ ਕੁਆਂਟਮ ਸੰਖਿਆ 'n' ਇੱਕ ਧਨਾਤਮਕ ਪੂਰਣ ਅੰਕ ਹੁੰਦੀ ਹੈ। ਇਸ ਦਾ ਮਾਨ 1,2,3... ਆਦਿ ਹੋ ਸਕਦਾ ਹੈ। ਮੁੱਖ ਕੁਆਂਟਮ ਸੰਖਿਆ ਤੋਂ ਆੱਬਿਟਲ ਦੇ ਅਕਾਰ ਅਤੇ ਕਾਫੀ ਹੱਦ ਤੱਕ ਉਸ ਦੀ ਊਰਜਾ ਦੇ ਬਾਰੇ ਪਤਾ ਲੱਗਦਾ ਹੈ। ਹਾਈਡ੍ਰੋਜਨ ਅਤੇ ਉਸ ਵਰਗੇ ਸਿਸਟਮਾਂ (He^+ , Li^{2+} , ਆਦਿ) ਦੇ ਲਈ ਇਹ ਇੱਕਲਾ ਹੀ ਆੱਰਬਿਟਲ ਦੇ ਅਕਾਰ ਅਤੇ ਊਰਜਾ ਨੂੰ ਨਿਧਾਰਿਤ ਕਰਦਾ ਹੈ। ਮੁੱਖ ਕੁਆਂਟਮ ਸੰਖਿਆ ਤੋਂ ਸ਼ੈੱਲ (shell) ਦਾ ਵੀ ਪਤਾ ਲੱਗਦਾ ਹੈ। 'n' ਦਾ ਮਾਨ ਵੱਧਣ ਦੇ ਨਾਲ ਅਨੁਮਤ ਆੱਰਬਿਟਲਾਂ ਦੀ ਸੰਖਿਆ ਵੀ ਵੱਧਦੀ ਹੈ. ਇਸ ਨੂੰ 'n' ਦੁਆਰਾ ਦਿੱਤਾ ਜਾਂਦਾ ਹੈ। n ਦੇ ਦਿੱਤੇ ਗਏ ਨਿਸ਼ਚਿਤ ਮਾਨ ਦੇ ਲਈ ਸਾਰੇ ਆੱਰਬਿਟਲ ਪਰਮਾਣੂ ਦਾ ਇੱਕ ਸ਼ੈਲ ਬਣਾਉਂਦੇ ਹਨ। ਉਨ੍ਹਾਂ ਨੂੰ ਹੇਠ ਲਿਖੇ ਅੱਖਰਾਂ ਦੁਆਰਾ ਦਰਸਾਇਆ ਜਾਂਦਾ ਹੈ—

n = 1 2 3 4 ਸ਼ੌੱਲ = K L M N

ਮੁੱਖ ਕੁਆਂਟਮ ਸੰਖਿਆ ਦੇ ਵੱਧਣ ਦੇ ਨਾਲ ਆਰਬਿਟਲ ਦਾ ਅਕਾਰ ਵੱਧਦਾ ਹੈ। ਦੂਜੇ ਸ਼ਬਦਾਂ ਵਿੱਚ, ਇਲੈਕਟ੍ਰਾਨ ਨਿਊਕਲੀਅਸ ਤੋਂ ਦੂਰ ਮੌਜੂਦ ਹੁੰਦੇ ਹਨ। ਕਿਉਂਕਿ ਇੱਕ ਰਿਣ ਚਾਰਜਿਤ ਇਲੈਕਟ੍ਰਾਨ ਨੂੰ ਧਨਚਾਰਜਿਤ ਨਿਊਕਲੀਅਸ ਤੋਂ ਦੂਰ ਹੋਣ ਦੇ ਲਈ ਊਰਜਾ ਦੀ ਜਰੂਰਤ ਹੁੰਦੀ ਹੈ, ਇਸ ਲਈ n ਦੇ ਵੱਧਣ ਦੇ ਨਾਲ ਆਰਬਿਟਲ ਦੀ ਉਰਜਾ ਵੱਧੇਗੀ।

ਉਦਾਹਰਣ ਵਜੋਂ ਜਦੋਂ n=1 ਹੁੰਦਾ ਹੈ ਤਾਂ l ਦਾ ਸਿਰਫ ਇੱਕ ਹੀ ਮਾਨ 0 ਹੁੰਦਾ ਹੈ, n=2 ਦੇ ਲਈ l ਦੇ ਸੰਭਵ ਮਾਨ 0ਅਤੇ 1 ਹੋ ਸਕਦੇ n=2 ਦੇ ਲਈ l ਦੇ ਸੰਭਵ ਮਾਨ 0, 1 ਅਤੇ 2 ਹੋਣਗੇ।

ਹਰ ਇੱਕ ਸ਼ੈੱਲ ਵਿੱਚ ਇੱਕ ਜਾਂ ਵਧੇਰੇ ਸਬਸ਼ੈੱਲ (sub-shells) ਜਾਂ ਉਪ ਸਤਰ (sub-levels) ਹੁੰਦੇ ਹਨ। ਕਿਸੇ ਮੁੱਖ ਸ਼ੈੱਲ ਵਿੱਚ ਸਬ ਸ਼ੈੱਲਾਂ ਦੀ ਸੰਖਿਆ n ਦੇ ਬਰਾਬਰ ਹੁੰਦੀ ਹੈ। ਉਦਾਹਰਣ ਵਜੋਂ-ਪਹਿਲੇ ਸ਼ੈੱਲ ਵਿੱਚ (n=1) ਵਿੱਚ ਸਿਰਫ ਇੱਕ ਸਬ ਸ਼ੈੱਲ ਹੁੰਦਾ ਹੈ, ਜੋ l=0 ਦੇ ਸੰਗਤ ਹੁੰਦਾ ਹੈ। ਇਸੇ ਤਰ੍ਹਾਂ (n=2) ਸ਼ੈੱਲ ਵਿੱਚ ਦੋ ਸੱਬ ਸ਼ੈੱਲ (l=0,1) n=3 ਵਿੱਚ ਤਿੰਨ ਸਬਸ਼ੈੱਲ (l=0,1) n=3 ਵਿੱਚ ਤਿੰਨ ਸਬਸ਼ੈੱਲ (l=0,1) n=3 ਵਿੱਚ ਤਿੰਨ ਸਬਸ਼ੈੱਲ (l=0,1) ਹੁੰਦੇ ਹਨ। n ਦੇ ਹੋਰ ਮਾਨਾਂ ਦੇ ਲਈ ਵੀ ਅਜਿਹਾ ਲਿਖਿਆ ਜਾ ਸਕਦਾ ਹੈ। ਕਿਸੇ ਸ਼ੈੱਲ ਦੇ ਸਬ ਸ਼ੈੱਲਾਂ ਨੂੰ ਖਿਤਿਜ ਚਾਪੀ ਕੁਆਂਟਮ ਸੰਖਿਆ (l) ਦੁਆਰਾ ਪ੍ਦਰਸ਼ਿਤ ਕਰਦੇ ਹਨ। l ਦੇ ਭਿੰਨ-ਭਿੰਨ ਮਾਨਾਂ ਦੇ ਸੰਗਤ ਸਬ ਸ਼ੈੱਲਾਂ ਨੂੰ ਹੇਠ ਲਿਖੇ ਚਿਨ੍ਹਾਂ ਦੁਆਰਾ ਦਰਸਾਇਆ ਜਾਂਦਾ ਹੈ—

ਿਦੇ ਲਈ ਮਾਨ : 0 1 2 3 4 5ਸਬ ਸ਼ੈੱਲਾਂ ਦੇ ਲਈ s p d f g hਸਕੇਤਨ (notations)

ਸਾਰਣੀ 2.4 ਵਿੱਚ ਦਿੱਤੀ ਗਈ ਮੁੱਖ ਕੁਆਂਟਮ ਸੰਖਿਆ ਦੇ ਲਈ l ਦੇ ਸੰਭਵ ਮਾਨ ਅਤੇ ਸੰਗਤ ਸਬ ਸ਼ੈੱਲਾਂ ਦੇ ਸੰਕੇਤਨ ਦਿੱਤੇ ਗਏ ਹਨ।

ਸਾਰਣੀ 2.4 ਸਬ ਸ਼ੈੱਲ ਸੰਕੇਤਨ

n	1	ਸਬ ਸੈੱਲ ਸੰਕੇਤਨ
1	0	1s
2	0	2s
2	1	2p
3	0	3s
3	1	3 <i>p</i>
3	2	3d
4	0	4s
4	1	4p
4	2	4d
4	3	4 <i>f</i>

ਚੁੰਬਕੀ ਆੱਰਬਿਟਲ ਕੁਆਂਟਮ ਸੰਖਿਆ (magnetic orbital quantum number) ' m_l ' ਨਿਰਦੇਸ਼ਅੰਕ ਅਕਸ ਦੇ ਸੰਗਤ ਆੱਰਬਿਟਲਾਂ ਦੇ ਤ੍ਰੈਵਿਮੀ ਅਨੁਸਥਿਤੀ ਦੇ ਬਾਰੇ ਜਾਣਕਾਰੀ ਦਿੰਦੀ ਹੈ। ਕਿਸੇ ਸਬ ਸ਼ੈੱਲ ਦੇ ਲਈ m_l ਦੇ (2l+1) ਮਾਨ ਸੰਭਵ ਹਨ। ਇਨ੍ਹਾਂ ਮਾਨਾਂ ਨੂੰ ਇਸ ਤਰ੍ਹਾਂ ਦਿੱਤਾ ਜਾਂਦਾ ਹੈ—

$$m_l = -l, -(l-1), -(l-2)...~0, 1...~(l-2), (l-1), l$$

ਇਸ ਤਰ੍ਹਾਂ $l=0$, ਦੇ ਲਈ $m_l=0$, ਦਾ ਇੱਕ ਹੀ ਸੀਵਕ੍ਰਿਤ

ਮਾਨ 0 ਹੁੰਦਾ ਹੈ, ਭਾਵ [2(0)+1=1], ਇੱਕ ਆਰਬਿਟਲ ਹੁੰਦਾ ਹੈ। l=1 ਦੇ ਲਈ $m_l=-2,-1,0,+1,+2$ [2(1)+1]=5,5d ਆਰਬਿਟਲ ਹੋ ਸਕਦਾ ਹੈ। ਯਾਦ ਰਹੇ ਕਿ m_l ਦੇ ਮਾਨ l ਤੋਂ ਅਤੇ l ਦੇ ਮਾਨ n ਤੋਂ ਪ੍ਰਾਪਤ ਹੁੰਦੇ ਹਨ।

ਕਿਸੇ ਪਰਮਾਣੂ ਵਿੱਚ ਹਰ ਇੱਕ ਆੱਰਬਿਟਲ n, l, m_l , ਮਾਨਾਂ ਦੇ ਸਮੂਹ ਦੁਆਰਾ ਪਰਿਭਾਸ਼ਿਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਇਸ ਲਈ ਕੁਆਂਟਮ ਸੰਖਿਆਵਾਂ n=2, l=1, m=0 ਦੁਆਰਾ ਵਰਣਿਤ ਆੱਰਬਿਟਲ ਅਜਿਹਾ ਆੱਰਬਿਟਲ ਹੁੰਦਾ ਹੈ, ਜੋ ਦੂਜੇ ਸੈੱਲ ਦੇ p ਸੱਬ ਸ਼ੈੱਲ ਵਿੱਚ ਹੁੰਦਾ ਹੈ। ਇੱਥੇ ਦਿੱਤੇ ਗਏ ਚਾਰਟ ਵਿੱਚ ਸਬ ਸ਼ੈੱਲ ਅਤੇ ਉਸ ਨਾਲ ਸਬੰਧਿਤ ਆੱਰਬਿਟਲਾਂ ਦੀ ਸੰਖਿਆ ਦਾ ਸਬੰਧ ਦਿੱਤਾ ਗਿਆ ਹੈ—

ℓ ਦਾ ਮਾਨ	0	1	2	3	4	5
ਸਬ-ਸ਼ੈੱਲ ਸੰਕੇਤਨ	s	p	d	f	g	h
ਆੱਰਬਿਟਲਾਂ ਦੀ ਸੰਖਿਆ	1	3	5	7	9	11

ਇਲੈਕਟ੍ਰਾਨ ਚੱਕਰਣ 's': ਕਿਸੇ ਪਰਮਾਣੂ ਆੱਰਬਿਟਲ ਦੇ ਲਈ ਚਿਨ੍ਹਿਤ ਤਿੰਨਾਂ ਕੁਆਂਟਮ ਸੰਖਿਆਵਾਂ ਨੂੰ ਉਸ ਦੀ ਊਰਜਾ, ਅਕਾਰ ਅਤੇ ਅਨੁਸਥਿਤੀ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਕਰਨ ਦੇ ਲਈ ਵਰਤਿਆ ਜਾ ਸਕਦਾ ਹੈ, ਪਰੰਤੂ ਬਹੁ-ਇਲੈਕਟ੍ਰਾਨ ਪਰਮਾਣੂਆਂ ਵਿੱਚ ਵੇਖੇ ਗਏ ਰੇਖਾ-ਸਪੈਕਟ੍ਰਮ ਦੀ ਵਿਆਖਿਆ ਕਰਨ ਵਿੱਚ ਇਹ ਕੁਆਂਟਮ ਸੰਖਿਆਵਾਂ ਕਾਫੀ ਨਹੀਂ ਹਨ। ਇਨ੍ਹਾਂ ਵਿੱਚੋਂ ਕੁੱਝ ਰੇਖਾਵਾਂ ਯੁਗਮਕ (ਦੋ ਰੇਖਾਵਾਂ ਕੋਲ ਕੋਲ) ਹੁੰਦੀਆਂ ਹਨ। ਤਿੰਨਾਂ ਕੁਆਂਟਮ ਸੰਖਿਆਵਾਂ ਦੁਆਰਾ ਅਨੁਮਾਨਿਤ ਊਰਜਾ ਦੇ ਇਲਾਵਾ ਇਹ ਕੁਝ ਹੋਰ ਊਰਜਾ-ਸਤਰਾਂ ਦੀ ਮੌਜੂਦਗੀ ਦਾ ਸੰਕੇਤ ਕਰਦਾ ਹੈ।

ਸੰਨ 1925 ਵਿੱਚ ਜਾੱਰਜ ਉਹਲੇਨਬੈਕ (George Uhlenback) ਅਤੇ ਸੈਮੁਅਲ ਗਾਉਟਸਮਿਟ (Samuel

ਆਰਬਿਟ, ਆਰਬਿਟਲ ਅਤੇ ਇਸ ਦਾ ਮਹੱਤਵ

'ਆਰਬਿਟ' ਅਤੇ 'ਆਰਬਿਟਲ' ਦਾ ਅਰਥ ਸਮਾਨ ਨਹੀਂ ਹੈ। ਆਰਬਿਟ (ਜਿਸ ਨੂੰ ਬੋਹਰ ਨੇ ਪ੍ਰਸਤਾਵਿਤ ਕੀਤਾ) ਨਿਊਕਲੀਅਸ ਦੇ ਚੌਹਾਂ ਪਾਸਿਆਂ ਤੇ ਇੱਕ ਵਿ੍ਤਾਕਾਰ ਪੱਥ ਹੁੰਦਾ ਹੈ ਜਿਸ ਵਿੱਚ ਇਲੈਕਟ੍ਰਾਨ ਗਤੀ ਕਰਦਾ ਹੈ।' ਹਾਈਜ਼ੇਨਬਰਗ ਦੇ ਅਨਿਸ਼ਚਿਤਤਾ ਸਿਧਾਂਤ ਦੇ ਅਨੁਸਾਰ ਇਲੈਕਟ੍ਰਾਨ ਦੇ ਇਸ ਪੱਥ ਦਾ ਸਹੀ ਨਿਰਧਾਰਣ ਕਰਨਾ ਅਸੰਭਵ ਹੈ।ਇਸ ਲਈ ਬੋਹਰ ਦੇ ਆਰਬਿਟਾਂ ਦਾ ਕੋਈ ਵਾਸਤਵਿਕ ਅਰਥ ਨਹੀਂ ਹੈ।ਇਨ੍ਹਾਂ ਦੀ ਹੋਂਦ ਨੂੰ ਕਦੇ ਵੀ ਪ੍ਯੋਗਾਂ ਦੁਆਰਾ ਦਰਸਾਇਆ ਨਹੀਂ ਜਾ ਸਕਦਾ।ਇਸ ਦੇ ਉਲਟ ਆਰਬਿਟਲ ਇੱਕ ਕੁਆਂਟਮ ਯੰਤਰਕੀ ਧਾਰਨਾ ਹੈ।ਇਹ ਪਰਮਾਣੂ ਵਿੱਚ ਕਿਸੇ ਇੱਕ ਇਲੈਕਟ੍ਰਾਨ ਦੇ ਤਰੰਗ ਫਲਨ ψ ਦਾ ਵਰਣਨ ਕਰਦਾ ਹੈ।ਇਸ ਨੂੰ ਤਿੰਨ ਕੁਆਂਟਮ ਸੰਖਿਆਵਾਂ (n,l,m_l) ਦੁਆਰਾ ਪ੍ਰਦਰਸ਼ਿਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।ਇਸ ਦਾ ਮਾਨ ਇਲੈਕਟ੍ਰਾਨ ਦੇ ਨਿਰਦੇਸ਼ ਅੰਕਾਂ ਉੱਤੇ ਨਿਰਭਰ ਕਰਦਾ ਹੈ।ਉਂਜ ਤਾਂ ψ ਦਾ ਕੋਈ ਭੌਤਿਕ ਅਰਥ ਨਹੀਂ ਹੁੰਦਾ, ਪਰੰਤੂ ਤਰੰਗ ਫਲਨ ਦਾ ਵਰਗ ਭਾਵ $|\psi|^2$ ਦਾ ਭੌਤਿਕ ਅਰਥ ਹੁੰਦਾ ਹੈ, ਕਿਸੇ ਪਰਮਾਣੂ ਦੇ ਕਿਸੇ ਬਿੰਦੂ ਉੱਤੇ $|\psi|^2$ ਉਸ ਬਿੰਦੂ ਉੱਤੇ ਸੰਭਾਵਨਾ ਘਣਤਾ ਦਾ ਮਾਨ ਦਿੰਦਾ ਹੈ।ਸੰਭਾਵਨਾ ਘਣਤਾ $|\psi|^2$ ਪ੍ਰਤੀ ਇਕਾਈ ਆਇਤਨ ਸੰਭਾਵਨਾ ਦਾ ਮਾਨ ਹੁੰਦਾ ਹੈ।ਅਤੇ ਇੱਕ ਛੋਟੇ ਆਇਤਨ (ਜਿਸ ਨੂੰ ਆਇਤਨ ਅਲਪ ਅੰਸ਼ ਕਿਹਾ ਜਾਂਦਾ ਹੈ) ਦਾ ਗੁਣਨਫਲ ਇਲੈਕਟ੍ਰਾਨ ਦੇ ਉਸ ਆਇਤਨ ਦੇ ਮਿਲਣ ਦੀ ਸੰਭਾਵਨਾ ਨੂੰ ਦਰਸਾਉਂਦਾ ਹੈ।ਇੱਥੇ ਘੱਟ ਆਇਤਨ ਲੈਣ ਦਾ ਇੱਕ ਕਾਰਣ ਇਹ ਹੈ ਕਿ $|\psi|^2$ ਦਾ ਮਾਨ space ਵਿੱਚ ਇੱਕ ਖੇਤਰ ਤੋਂ ਦੂਜੇ ਖੇਤਰ ਵਿੱਚ ਬਦਲਦਾ ਰਹਿੰਦਾ ਹੈ ਪਰੰਤੂ ਇੱਕ ਛੋਟੇ ਅੰਸ਼ ਆਇਤਨ ਵਿੱਚ ਇਸ ਦੇ ਮਾਨ ਨੂੰ ਸਥਿਰ ਮੰਨਿਆ ਜਾ ਸਕਦਾ ਹੈ। ਕਸੇ ਦਿੱਤੇ ਗਏ ਨਿਸ਼ਚਿਤ ਆਇਤਨ ਵਿੱਚ ਇਲੈਕਟ੍ਰਾਨ ਦੇ ਮਿਲਣ ਦੀ ਕੁੱਲ ਸੰਭਾਵਨਾ $|\psi|^2$ ਅਤੇ ਸੰਗਤ ਆਇਤਨ ਅਲਪ ਅੰਸ਼ ਦੇ ਗੁਣਨਫਲਾਂ ਨੂੰ ਜੋੜ ਦੇ ਪ੍ਰਾਪਤ ਕੀਤੀ ਜਾ ਸਕਦੀ ਹੈ।ਇਸ ਤਰ੍ਹਾਂ ਕਿਸੇ ਆਰਬਿਟਲ ਵਿੱਚ ਸੰਭਾਵਿਤ ਇਲੈਕਟਾਨ ਵਿਤਰਣ ਦਾ ਪਤਾ ਲਾਉਣਾ ਸੰਭਵ ਹੈ।

Goudsmit) ਨੇ ਇੱਕ ਚੌਥੀ ਕੁਆਂਟਮ ਸੰਖਿਆ ਦੀ ਮੌਜੂਦਗੀ ਪ੍ਰਸਤੁਤ ਕੀਤੀ ਜੋ ਇਲੈਕਟ੍ਰਾੱਨ ਚੱਕਰਣ ਕੁਆਂਟਮ ਸੰਖਿਆ (m) ਅਖਵਾਉਂਦੀ ਹੈ। ਇੱਕ ਇਲੈਕਟਾਨ ਆਪਣੇ ਅਕਸ ਉੱਤੇ ਠੀਕੂ ਉਸੇ ਤਰ੍ਹਾਂ ਚਕਰਣ ਕਰਦਾ ਹੈ ਜਿਵੇਂ ਸੂਰਜ ਦੇ ਚੌਹਾਂ ਪਾਸੇ ਚੱਕਰ ਕੱਟਦੇ ਸਮੇਂ ਧਰਤੀ ਆਪਣੇ ਅਕਸ ਦੁਆਲੇ ਚਕਰਣ ਕਰਦੀ ਹੈ। ਦੂਜੇ ਸ਼ਬਦਾਂ ਵਿੱਚ-ਇਲੈਕਟ੍ਰਾਨ ਵਿੱਚ ਚਾਰਜ ਅਤੇ ਪੁੰਜ ਦੇ ਇਲਾਵਾ ਨਿਜੀ (intrinsic) ਚਕਰਣ ਕੋਣ ਸੰਵੇਗ ਹੁੰਦਾ ਹੈ। ਇਲੈਕਟਾਨ ਦਾ ਕੋਣੀ ਸੰਵੇਗ ਇੱਕ ਸਦਿਸ਼ (vector) ਰਾਸ਼ੀ ਹੈ। ਇਸ ਦੇ ਕਿਸੇ ਚੁਣੇ ਹੋਏ ਅਕਸ ਦੇ ਸਪੇਖ ਦੋ ਅਨੁਸਥਿਤੀਆਂ ਹੋ ਸਕਦੀਆਂ ਹਨ। ਜਿਨ੍ਹਾਂ ਵਿੱਚ ਚੱਕਰਣ ਕੁਆਂਟਮ ਸੰਖਿਆ $m_{\scriptscriptstyle \parallel}$ ਦੇ ਦੁਆਰਾ ਅੰਤਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। m੍ਹ ਦਾ ਮਾਨ $+rac{1}{2}$ or $-rac{1}{2}$ ਹੋ ਸਕਦਾ ਹੈ। ਇਨ੍ਹਾਂ ਨੂੰ ਇਲੈਕਟ੍ਰਾੱਨ ਦੀਆਂ ਦੋ ਚੱਕਰਣ ਅਵਸਥਾਵਾਂ (spin states) ਵੀ ਕਹਿੰਦੇ ਹਨ। ਆਮ ਤੌਰ ਤੇ ਉਹ ਤੀਰਾਂ ↑ (ਉਪਰੀ ਚੱਕਰਣ, spin up) ਅਤੇ ↓(ਹੇਠਲਾ ਚੱਕਰਣ) (spin down) ਦੁਆਰਾ ਦਰਸਾਏ ਜਾਂਦੇ ਹਨ। ਭਿੰਨ ਭਿੰਨ $m_{_{\parallel}}$ ਮਾਨ ਵਾਲੇ ਦੋ ਇਲੈਕਟ੍ਰਾੱਨ (ਇੱਕ +½ ਅਤੇ ਦੂਜਾ −½) ਉਲਟ ਚੱਕਰਣ ਬਲ ਅਖਵਾਉਂਦੇ ਹਨ। ਕਿਸੇ ਆੱਰਬਿੰਟਲ ਵਿੱਚ ਦੋ ਤੋਂ ਵੱਧ ਇਲੈਕਟ੍ਰਾੱਨ ਨਹੀਂ ਹੋ ਸਕਦੇ ਹਨ, ਇਨ੍ਹਾਂ ਦੋਵਾਂ ਇਲੈਕਟ੍ਰਾੱਨਾਂ ਦਾ ਉਲਟ ਚੱਕਰਣ ਹੋਣਾ ਚਾਹੀਦਾ ਹੈ।

ਸੰਖੇਪ ਵਿੱਚ ਅਸੀਂ ਇਹ ਕਹਿ ਸਕਦੇ ਹਾਂ ਕਿ ਚਾਰੇ ਕੁਆਂਟਮ ਸੰਖਿਆਵਾਂ ਹੇਠ ਲਿਖੀਆਂ ਜਾਣਕਾਰੀਆਂ ਦਿੰਦੀਆਂ ਹਨ—

- i) **n** ਤੋਂ ਸ਼ੈੱਲ ਦਾ ਗਿਆਨ ਹੁੰਦਾ ਹੈ। ਇਹ ਆੱਰਬਿਟਲ ਦਾ ਅਕਾਰ ਅਤੇ ਕਾਫੀ ਹੱਦ ਤੱਕ ਉਰਜਾ ਨਿਰਧਾਰਿਤ ਕਰਦਾ ਹੈ।
- ii) n^{th} ਸ਼ੈੱਲ ਵਿੱਚ n ਸਬ ਸ਼ੈੱਲ ਹੁੰਦੇ ਹਨ। l ਆੱਰਬਿਟਲ ਦੀ ਅਕ੍ਰਿਤੀ ਦੱਸਦਾ ਹੈ। ਹਰ ਇੱਕ ਕਿਸਮ ਦੇ ਸਬ ਸ਼ੈੱਲ ਵਿੱਚ (2l+1) ਆੱਰਬਿਟਲ ਹੁੰਦੇ ਹਨ, ਭਾਵ ਹਰ ਇੱਕ ਸਬ ਸ਼ੈੱਲ ਵਿੱਚ ਇੱਕ s ਆੱਰਬਿਟਲ (l=0) ਅਤੇ ਪੰਜ d ਆੱਰਬਿਟਲ (l=2) ਹੋ ਸਕਦੇ ਹਨ। l ਕੁੱਝ ਹੱਦ ਤੱਕ ਬਹੁ ਇਲੈਕਟ੍ਰਾੱਨ ਪਰਮਾਣੂ ਦੇ ਆੱਰਬਿਟਲ ਦੀ ਊਰਜਾ ਦਾ ਵੀ ਨਿਰਧਾਰਣ ਕਰਦਾ ਹੈ।
- iii) m_l ਆੱਰਬਿਟਲ ਦੀ ਅਨੁਸਥਿਤੀ ਨੂੰ ਪ੍ਰਦਰਸ਼ਿਤ ਕਰਦਾ ਹੈ। l ਦੇ ਦਿੱਤੇ ਗਏ ਕਿਸੇ ਮਾਨ ਦੇ ਲਈ m_l ਦੇ (2l+1) ਮਾਨ ਹੁੰਦੇ ਹਨ। ਐਨੀਂ ਹੀ ਸੰਖਿਆ ਹਰ ਇੱਕ ਸੱਬ ਸ਼ੈੱਲ ਵਿੱਚ ਆੱਰਬਿਟਲਾਂ ਦੀ ਹੁੰਦੀ ਹੈ। ਇਸ ਦਾ ਭਾਵ ਇਹ ਹੈ ਕਿ ਆੱਰਬਿਟਲਾਂ ਦੀ ਸੰਖਿਆ ਉਨ੍ਹਾਂ ਦੀਆਂ ਅਨੁਸਥਿਤੀਆਂ ਦੇ ਤਰੀਕਿਆਂ ਦੇ ਬਰਾਬਰ ਹੁੰਦੀ ਹੈ।
- iv) ਇਲੈਕਟ੍ਰਾੱਨ ਦੇ ਚਕਰਣ ਦੀ ਅਨੁਸਥਿਤੀ ਨੂੰ $m{m}_{_{\! 8}}$ ਦੱਸਦਾ ਹੈ।

ਉਦਾਹਰਣ 2.17

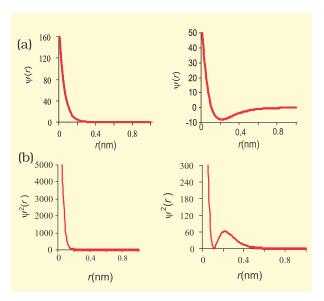
ਮੁੱਖ ਕੁਆਂਟਮ ਸੰਖਿਆ n=3 ਨਾਲ ਸਬੰਧਿਤ ਆੱਰਬਿਟਲਾਂ ਦੀ ਕੁੱਲ ਸੰਖਿਆ ਕੀ ਹੁੰਦੀ ਹੈ ?

ਹੱਲ

n=3 ਦੇ ਲਈ l ਦੇ 0, 1 ਅਤੇ 2 ਮਾਨ ਸੰਭਵ ਹਨ। ਇਸ ਲਈ ਇਕ 3s ਆੱਰਬਿਟਲ ਹੁੰਦਾ ਹੈ, ਜਿਸ ਦੇ ਲਈ $(n=3,\ l=0)$ ਅਤੇ $m_{l}=0)$; ਹੁੰਦੇ ਹਨ, ਤਿੰਨ 3p ਆੱਰਬਿਟਲ ਹੁੰਦੇ ਹਨ, ਜਿਨ੍ਹਾਂ ਦੇ ਲਈ $(n=3,\ l=1)$ ਅਤੇ $m_{l}=-1$, 0, 10 ਹੁੰਦੇ ਹਨ। ਇਸੇ ਤਰ੍ਹਾਂ ਪੰਜ 3d ਆੱਰਬਿਟਲ ਹੁੰਦੇ ਹਨ, ਜਿਨ੍ਹਾਂ ਦੇ ਲਈ $(n=3,\ l=2)$ ਅਤੇ $m_{l}=-2$, 10, 11, 12 ਹੋ ਸਕਦੇ ਹਨ। ਇਸ ਲਈ ਆੱਰਬਿਟਲਾਂ ਦੀ ਕੁੱਲ ਸੰਖਿਆ 1+3+5=9 ਆੱਰਬਿਟਲਾਂ ਦੀ ਸੰਖਿਆ 1+3+5=9 ਅੱਰਬਿਟਲਾਂ ਦੀ ਸੰਖਿਆ 1+3+5=9 ਅੱਰਬਿਟਲਾਂ ਦੀ ਸੰਖਿਆ 1+3+5=9 ਅੱਰਬਿਟਲਾਂ ਦੀ ਸੰਖਿਆ 1+3+5=9 ਅੱਰਬਿਟਲਾਂ ਦੀ ਸੰਖਿਆ 1+3+5=9

ਉਦਾਹਰਣ 2.18

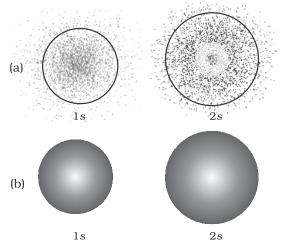
s, p, d, f ਸੰਕੇਤਨ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਹੇਠ ਲਿਖੀਆਂ ਕੁਆਂਟਮ ਸੰਖਿਆਵਾਂ ਵਾਲੇ ਆਰਬਿਟਲ ਦੇ ਬਾਰੇ ਦੱਸੋ—


(ੳ)
$$n = 2$$
, $l = 1$, (ਅ) $n = 4$, $l = 0$, (ੲ) $n = 5$, $l = 3$, (ਸ) $n = 3$, $l = 2$

	n	l	ਆੱਰਬਿਟਲ
♥)	2	1	2p
ਅ)	4	0	4s
ੲ)	5	3	5 <i>f</i>
ਸ)	3	2	3d

2.6.2 ਪਰਮਾਣੂ ਆੱਰਬਿਟਲਾਂ ਦੀਆਂ ਅਕ੍ਰਿਤੀਆਂ

ਕਿਸੇ ਪਰਮਾਣੂ ਵਿੱਚ ਇਲੈਕਟ੍ਰਾਨ ਦੇ ਆੱਰਬਿਟਲ ਤਰੰਗ ਫਲਨ ਭਾਵ ψ ਦਾ ਆਪਣੇ ਆਪ ਵਿੱਚ ਕੋਈ ਭੌਤਿਕ ਅਰਥ ਨਹੀਂ ਹੁੰਦਾ। ਇੱਕ ਕੇਵਲ ਇਲੈਕਟ੍ਰਾੱਨ ਦੇ ਨਿਰਦੇਸ਼ ਅੰਕਾਂ (co-ordinates) ਦਾ ਗਣਿਤੀ ਫਲਨ ਹੁੰਦਾ ਹੈ। ਭਾਵੇਂ ਭਿੰਨ-ਭਿੰਨ ਆੱਰਬਿਟਲਾਂ ਦੇ ਲਈ r (ਨਿਊਕਲੀਅਸ ਤੋਂ ਦੂਰੀ) ਦੇ ਫਲਨ ਦੇ ਰੂਪ ਵਿੱਚ ਸੰਗਤ ਤਰੰਗ ਫਲਨ ਅੰਕਣ ਭਿੰਨ ਹੁੰਦੇ ਹਨ। (ਚਿੱਤਰ 2.12 (ੳ) 1s (n=1, l=0) ਅਤੇ 2s (n=2, l=0) ਆੱਰਬਿਟਲਾਂ ਦੇ ਇਸ ਤਰ੍ਹਾਂ ਦੇ ਅੰਕਣ ਨੂੰ ਵਿਅਕਤ ਕਰਦਾ ਹੈ।


ਜਰਮਨ ਭੌਤਿਕ ਵਿਗਿਆਨੀ ਮੈਕਸ ਬਾਰਨ ਨੇ ਦੱਸਿਆ ਕਿ ਕਿਸੇ ਬਿੰਦੂ ਉੱਤੇ ਤਰੰਗ ਫਲਨ ਦਾ ਵਰਗ (ਭਾਵ ψ^2) ਉਸ ਬਿੰਦੂ ਉੱਤੇ ਇਲੈਕਟ੍ਰਾਨ ਦੇ ਘਣਤਾ ਦੀ ਸੰਭਾਵਨਾ ਨੂੰ ਦਰਸਾਉਂਦਾ ਹੈ। (ਚਿੱਤਰ 2.12 (ਅ) ਵਿੱਚ 1s ਅਤੇ 2s ਆਰਬਿਟਲਾਂ ਦੇ ਲਈ ψ^2 ਦੇ ਪਰਿਵਰਤਨ ਨੂੰ r ਦੇ ਫਲਨ ਦੇ ਰੂਪ ਵਿੱਚ ਦਰਸਾਇਆ ਗਿਆ ਹੈ। ਇੱਥੇ ਤੁਸੀਂ ਵੇਖ ਸਕਦੇ ਹੋ ਕਿ 1s ਅਤੇ 2s ਦੇ ਵਕ੍ਰ ਭਿੰਨ ਹਨ। ਇਹ ਵੇਖਿਆ ਜਾ ਸਕਦਾ ਹੈ ਕਿ 1s ਆਰਬਿਟਲ ਦੇ ਲਈ ਸੰਭਾਵਿਤ ਘਣਤਾ ਨਿਉਕਲੀਅਸ ਉੱਤੇ ਉੱਚਤਮ ਹੈ। ਜੋ

ਚਿੱਤਰ 2.12 (ੳ) ਆੱਰਬਟਿਲ ਤਰੰਗ ਫਲਨ $\psi(r)$ ਦੇ ਅੰਕਣ (ਅ) 1s ਅਤੇ 2s ਆੱਰਬਿਟਲਾਂ ਦੇ ਲਈ ਫਲਨ ਦੇ ਰੂਪ ਵਿੱਚ ਸਮਰੱਥਾ ਘਣਤਾ $\psi^2(r)$ ਵਿੱਚ ਪਰਿਵਰਤਨ ਦੇ ਅੰਕਣ।

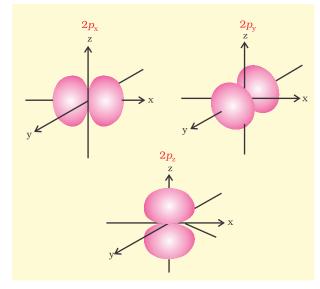
ਨਿਊਕਲੀਅਸ ਤੋਂ ਦੂਰ ਜਾਣ ਤੇ ਘੱਟਦੀ ਹੈ। ਦੂਜੇ ਪਾਸੇ, 2sਆੱਰਬਿਟਲ ਦੇ ਲਈ ਸੰਭਾਵਿਤ ਘਣਤਾ ਪਹਿਲਾਂ ਤੇਜੀ ਨਾਲ ਸਿਫਰ ਤੱਕ ਘੱਟਦੀ ਹੈ, ਫਿਰ ਵੱਧਣੀ ਸ਼ੁਰੂ ਹੁੰਦੀ ਹੈ। ਜਿਵੇਂ-ਜਿਵੇਂ rਦਾ ਮਾਨ ਵੱਧਦਾ ਹੈ, ਤਿਵੇਂ-ਤਿਵੇਂ ਇੱਕ ਛੋਟੇ ਉੱਚਤਮ (small maxima) ਦੇ ਬਾਅਦ ਇਹ ਫਿਰ ਸਿਫਰ ਦੇ ਨੇੜੇ ਤੱਕ ਘੱਟਦਾ ਹੈ। ਉਹ ਖੇਤਰ ਜਿੱਥੇ ਇਹ ਸੰਭਾਵਿਤ ਘਣਤਾ ਸਿਫਰ ਹੋ ਜਾਂਦੀ ਹੈ 'ਨੈਡਲਸਤ੍ਹਾ', ਜਾਂ 'ਨੋਡ' ਅਖਵਾਉਂਦੀ ਹੈ। ਆਮ ਤੌਰ ਤੇ ਆੱਰਬਿਟਲ ਦੇ (n-1) ਨੋਡ ਹੁੰਦੇ ਹਨ। ਭਾਵ ਮੁੱਖ ਕੁਆਂਟਮ ਸੰਖਿਆ n ਦੇ ਨਾਲ ਨੋਡਾਂ ਦੀ ਸੰਖਿਆ ਵੱਧ ਜਾਂਦੀ ਹੈ। ਦਜੇ ਸ਼ਬਦਾਂ ਵਿੱਚ 2s ਆਰਬਿਟਲ ਦੇ ਲਈ ਨੋਡਾਂ ਦੀ ਸੰਖਿਆ ਇੱਕ ਅਤੇ 3s ਦੇ ਲਈ 2 ਹੁੰਦੀ ਹੈ। ਅਗਲੇਰੇ ਆੱਰਬਿਟਲਾਂ ਦੇ ਲਈ ਵੀ ਇਸੇ ਤਰ੍ਹਾਂ ਵੱਧਦੀ ਹੈ। ਇਹ ਸੰਭਾਵਿਤ ਘਣਤਾ ਪਰਿਵਰਤਨ ਚਾਰਜ ਖਿੰਡਾਅ ਦੀ ਟਰਮਾਂ ਵਿੱਚ ਸਮਝੇ ਜਾ ਸਕਦੇ ਹਨ (ਚਿੱਤਰ 2.13 ੳ)। ਇਨ੍ਹਾਂ ਚਿੱਤਰਾਂ ਵਿੱਚ ਬਿੰਦੂਆਂ (dots) ਦੀ ਘਣਤਾ ਉਸ ਖੇਤਰ ਵਿੱਚ ਇਲੈਕਟ੍ਰਾੱਨ ਸੰਭਾਵਿਤ ਘਣਤਾ ਦਰਸਾਉਂਦੀ ਹੈ।

ਆੱਰਬਿਟਲਾਂ ਦੀ ਅਕ੍ਰਿਤੀ ਨੂੰ ਭਿੰਨ-ਭਿੰਨ ਆੱਰਬਿਟਲਾਂ ਦੇ ਲਈ ਸਥਿਰ ਸੰਭਾਵਿਤ ਘਣਤਾ ਵਾਲੇ ਸੀਮਾ ਸਤ੍ਹਾ ਆਰੇਖਾਂ (boundary surface diagrams) ਦੁਆਰਾ ਕਾਫੀ ਸਹੀ ਢੰਗ ਨਾਲ ਪ੍ਰਦਰਸ਼ਿਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਇਸ ਨਿਰੂਪਣ ਵਿੱਚ ਕਿਸੇ ਆੱਰਬਿਟਲ ਦੇ ਲਈ ਇੱਕ ਅਜਿਹੀ ਸੀਮਾ-ਸਤ੍ਹਾ ਜਾਂ

ਚਿੱਤਰ 2.13 (ੳ) 1s ਅਤੇ 2s ਪਰਮਾਣੂ ਆੱਰਬਿਟਲਾਂ ਦੇ ਲਈ ਸੰਭਾਵਿਤ ਘਣਤਾ ਅੰਕਣ ਬਿੰਦੂਆਂ ਦੀ ਘਣਤਾ ਉਸ ਖੇਤਰ ਵਿੱਚ ਇਲੈਕਟ੍ਰਾੱਨ ਮਿਲਣ ਦੀ ਸੰਭਾਵਿਤ ਘਣਤਾ ਨੂੰ ਦਰਸਾਉਂਦੀ ਹੈ।

(ਅ) 1s ਅਤੇ 2s ਆੱਰਬਿਟਲਾਂ ਦੇ ਲਈ ਸੀਮਾ-ਸਤ੍ਹਾ ਅੰਕਣ

ਆਰਬਿਟਲਾਂ ਦੀ ਆਕ੍ਰਿਤੀ ਨੂੰ ਭਿੰਨ-ਭਿੰਨ ਅਰਬਿਟਲਾਂ ਦੇ ਲਈ ਸਥਿਰ ਸੰਭਾਵਿਤ ਘਣਤਾ ਵਾਲੇ ਸੀਮਾ-ਸਤ੍ਹਾ ਆਰੇਖਾ (boundary surface diagrams) ਦੁਆਰਾ ਦੇ ਲਈ ਇੱਕ ਅਜਿਹੀ ਸੀਮਾ-ਸਤ੍ਹਾ ਜਾਂ ਖਾਕਾ (contour surface) ਨੂੰ ਆਰੇਖਿਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ, ਜਿਸ ਤੇ ਸੰਭਾਵਨਾ ਘਣਤਾ $[\psi]^2$ ਦਾ ਮਾਨ ਸਥਿਰ ਹੈ। ਸਿਧਾਂਤਕ ਰਪ ਵਿੱਚ ਕਿਸੇ ਆੱਰਬਿਟਲ ਦੇ ਲਈ ਅਜਿਹੇ ਕਈ ਖਾਕਾ ਸਤ੍ਹਾ ਅਰੇਖ ਸੰਭਵ ਹੁੰਦੇ ਹਨ, ਪਰੰਤ ਕਿਸੇ ਦਿੱਤੇ ਗਏ ਆੱਰਬਿਟਲ ਦੇ ਲਈ ਸਥਿਰ ਸੰਭਾਵਿਤ ਘਣਤਾ ਵਾਲੇ ਸਿਰਫ ਉਹ ਖਾਕਾ ਸਤ੍ਹਾ ਆਰੇਖ ਹੀ ਆੱਰਬਿਟਲ ਦੀ ਆਕ੍ਰਿਤੀ ਦੇ ਚੰਗੇ ਨਿਰਪਣ ਮੰਨ ਜਾਂਦੇ ਹਨ, ਜਿਨ੍ਹਾਂ ਦੇ ਦੁਆਰਾ ਨਿਰਧਾਰਿਤ ਖੇਤਰ ਜਾਂ ਆਇਤਨ ਵਿੱਚ (ਇਲੈਕਟ੍ਰਾਨ ਦੇ ਮਿਲਣ ਦੀ ਸੰਭਾਵਨਾ ਕਾਫੀ ਜਿਆਦਾ (ਜਿਵੇਂ 90%) ਹੁੰਦੀ ਹੈ। $1\mathrm{s}$ ਅਤੇ $2\mathrm{s}$ ਆੱਰਬਿਟਲਾਂ ਦੇ ਲਈ ਖਾਕਾ–ਸਤ੍ਹਾ ਆਰੇਖਾਂ ਨੂੰ ਚਿੱਤਰ 2.13 (ਅ) ਵਿੱਚ ਦਰਸਾਇਆ ਗਿਆ ਹੈ। ਤਸੀਂ ਪੱਛ ਸਕਦੇ ਹੋ ਕਿ ਅਸੀਂ ਅਜਿਹਾ ਸੀਮਾ ਸਤ੍ਹਾ ਆਰੇਖ ਕਿਉਂ ਨਹੀਂ ਬਣਾਉਂਦੇ ਜਿਸ ਵਿੱਚ ਇਲੈਕਟਾਨ ਮਿਲਣ ਦੀ ਸੰਭਾਵਨਾ 100% ਹੋਵੇ? ਇਸ ਦਾ ਉੱਤਰ ਇਹ ਹੈ ਕਿ ਨਿਊਕਲੀਅਸ ਤੋਂ ਕਿਸੇ ਨਿਸ਼ਚਿਤ ਦੂਰੀ ਉੱਤੇ ਵੀ ਇਲੈਕਟ੍ਰਾਨ ਦੇ ਮਿਲਣ ਦੀ ਕੁਝ ਸੰਭਾਵਨਾ ਜਰੂਰ ਹੁੰਦੀ ਹੈ, ਭਾਵੇਂ ਉਸ ਦਾ ਮਾਨ ਬਹੁਤ ਹੀ ਘੱਟ ਕਿਉਂ ਨਾ ਹੋਵੇ। ਇਸ ਲਈ ਨਿਸ਼ਚਿਤ ਅਕਾਰ ਦੇ ਅਜਿਹੇ ਸੀਮਾ ਸਤ੍ਹਾ ਆਰੇਖਾਂ ਨੂੰ ਬਨਾਉਣਾ ਸੰਭਵ ਨਹੀਂ ਹੈ, ਜਿਨ੍ਹਾਂ ਦੇ ਅੰਦਰ ਇਲੈਕਟ੍ਰਾਨ ਦੇ ਮਿਲਣ ਦੀ ਸੰਭਾਵਨਾ 100% ਹੋਵੇ। ${f s}$ ਆੱਰਬਿਟਲ ਦੇ ਲਈ ਸੀਮਾ ਸਤ੍ਹਾ ਦਾ ਆਰੇਖ ਗੋਲਾਕਾਰ ਹੁੰਦਾ ਹੈ, ਜਿਸਦੇ ਕੇਂਦਰ ਵਿੱਚ ਨਿਊਕਲੀਅਸ ਹੈ। ਦੋ ਵਿਮਾਵਾਂ ਵਿੱਚ ਇਹ ਗੋਲਾ ਇੱਕ ਵ੍ਰਿਤ

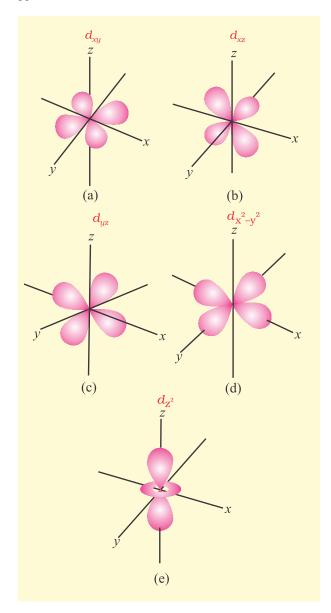

^{*} ਜੇ ਸੰਭਾਵਿਤ ਘਣਤਾ $|\psi|^2$ ਇੱਕ ਦਿੱਤੀ ਹੋਈ ਸਤ੍ਹਾ ਤੇ ਸਥਾਈ ਹੈ ਤਾਂ ਉਸ ਸਤ੍ਹਾ ਤੇ $|\psi|$ ਵੀ ਸਥਿਰ ਹੋਵੇਗਾ $|\psi|^2$ ਅਤੇ $|\psi|$ ਦੇ ਲਈ ਸੀਮਾ ਸਤ੍ਹਾ ਬਰਾਬਰ ਹੋਵੇਗੀ।

ਵਾਂਗ ਵਿਖਾਈ ਦਿੰਦਾ ਹੈ। ਇਸ ਗੋਲੇ ਦੀ ਸੀਮਾ ਦੇ ਅੰਤਰ ਇਲੈਕਟ੍ਰਾੱਨ ਦੇ ਮਿਲਣ ਦੀ ਸੰਭਾਵਨਾ 90% ਹੁੰਦੀ ਹੈ।

ਇਸ ਤਰ੍ਹਾਂ 1s ਅਤੇ 2s ਆੱਰਬਿਟਲ ਗੋਲਾਕਾਰ ਹਨ। ਅਸਲ ਵਿੱਚ ਸਾਰੇ s- ਆੱਰਬਿਟਲ ਗੋਲਾਕਾਰ ਹੁੰਦੇ ਹਨ।ਅਜਿਹਾ ਵੀ ਵੇਖਿਆ ਗਿਆ ਹੈ ਕਿ n ਵੱਧਣ ਦੇ ਨਾਲ s ਆੱਰਬਿਟਲ ਦਾ ਅਕਾਰ ਵੀ ਵੱਧ ਜਾਂਦਾ ਹੈ, ਭਾਵ 4s > 3s > 2s > 1s ਅਤੇ ਮੁੱਖ ਕੁਆਂਟਮ ਸੰਖਿਆ ਦੇ ਵੱਧਣ ਦੇ ਨਾਲ ਇਲੈਕਟ੍ਰਾੱਨ ਨਿਊਕਲੀਅਸ ਤੋਂ ਦੂਰ ਹੋ ਜਾਂਦਾ ਹੈ।

ਚਿੱਤਰ 2.14 ਵਿੱਚ ਤਿੰਨ 2p ਆੱਰਬਿਟਲਾਂ (l=1) ਦੇ ਸੀਮਾ ਸਤ੍ਹਾ ਆਰੇਖ ਵਿਖਾਏ ਗਏ ਹਨ। ਇਨ੍ਹਾਂ ਆਰੇਖਾਂ ਵਿੱਚ ਨਿਊਕਲੀਅਸ ਮੂਲ ਬਿੰਦੂ ਉਤੇ ਹੁੰਦਾ ਹੈ। ਇੱਥੇ s ਆੱਰਬਿਟਲਾਂ ਦੇ ਉਲਟ ਸੀਮਾ ਸਤ੍ਹਾ ਆਰੇਖ ਗੋਲਾਕਾਰ ਨਹੀਂ ਹੁੰਦੇ। ਇਸ ਦੇ ਬਦਲੇ ਹਰ ਇੱਕ p-ਆੱਰਬਿਟਲ ਦੇ ਦੋ ਭਾਗ ਹੁੰਦੇ ਹਨ, ਜਿਨ੍ਹਾਂ ਨੂੰ ਖੰਨ (lobes) ਕਿਹਾ ਜਾਂਦਾ ਹੈ। ਇਹ ਨਿਊਕਲੀਅਸ ਵਿੱਚੋਂ ਲੰਘਣ ਵਾਲੇ ਤੱਲ ਦੇ ਦੋਵਾਂ ਪਾਸੇ ਸਥਿਤ ਹਨ। ਜਿੱਥੇ ਦੋਵੇਂ ਖੰਨ ਇੱਕ-ਦੂਜੇ ਨੂੰ ਛੁੰਹਦੇ ਹਨ, ਉਸ ਤਲ ਤੇ ਸੰਭਾਵਨਾ ਘਣਤਾ ਫਲਨ ਸਿਫਰ ਹੁੰਦਾ ਹੈ। ਤਿੰਨਾਂ p ਆੱਰਬਿਟਲਾਂ ਦੀ ਅਕ੍ਰਿਤੀ ਅਤੇ ਊਰਜਾ ਬਰਾਬਰ ਹੁੰਦੀ ਹੈ। ਇਹ ਆੱਰਬਿਟਲ ਸਿਰਫ ਖੰਨ ਦੀ ਅਨੁਸਥਿਤੀ ਵਿੱਚ ਇੱਕ-ਦੂਜੇ ਤੋਂ ਭਿੰਨ ਹੁੰਦੇ ਹਨ। ਕਿਉਂਕਿ ਇਹ ਖੰਨ x, y ਜਾਂ z ਅਕਸਾਂ ਦੇ ਵੱਲ ਨਿਦ੍ਸ਼ਿਟ ਮੰਨੇ ਜਾ ਸਕਦੇ ਹਨ, ਇਸ ਲਈ ਉਨ੍ਹਾਂ ਨੂੰ $2p_x$, $2p_y$, ਅਤੇ $2p_z$ ਦੁਆਰਾ ਦਰਸਾਇਆ ਜਾਂਦਾ ਹੈ।

ਇੱਥੇ ਇਹ ਵਰਣਯੋਗ ਹੈ ਕਿ m_i ਦੇ ਮਾਨਾਂ (-1, 0 ਅਤੇ +1) ਅਤੇ x, y ਅਤੇ z ਅਕਸਾਂ ਦੇ ਵਿੱਚ ਕੋਈ ਸਬੰਧ ਨਹੀਂ। ਸਾਡੇ ਲਈ ਇਹ ਯਾਦ ਰੱਖਣਾ ਕਾਫੀ ਹੈ ਕਿ ਕਿਉਂਕ m_i ਦੇ ਤਿੰਨ ਸੰਭਵ ਮਾਨ ਹੁੰਦੇ ਹਨ, ਇਸ ਲਈ ਤਿੰਨ p ਆਰਬਿਟਲ ਹੋਣਗੇ, ਜਿਨ੍ਹਾਂ ਦੇ ਅਕਸ ਆਪਸ ਵਿੱਚ ਇੱਕ ਦੂਜੇ ਦੇ ਲੰਬਾਤਮਕ ਹੁੰਦੇ ਹਨ। S ਆਰਬਿਟਲਾਂ ਦੀ ਤਰ੍ਹਾਂ p ਆਰਬਿਟਲਾਂ ਦੇ ਲਈ ਵੀ ਮੁੱਖ ਕੁਆਂਟਮ ਸੰਖਿਆ ਦੇ ਵੱਧਣ ਦੇ ਨਾਲ ਆਰਬਿਟਲਾਂ ਦਾ ਅਕਾਰ ਅਤੇ ਊਰਜਾ ਵੱਧਦੇ ਹਨ। ਇਸ ਲਈ ਭਿੰਨ ਭਿੰਨ p ਆਰਬਿਟਲਾਂ ਦਾ ਅਕਾਰ ਅਤੇ ਊਰਜਾ 4p > 3p > 2p. ਕ੍ਰਮ ਵਿੱਚ ਹੁੰਦੇ ਹਨ। ਇਸ ਦੇ ਇਲਾਵਾ s ਆਰਬਿਟਲਾਂ ਵਾਂਗ p ਆਰਬਿਟਲਾਂ ਦੇ ਸੰਭਾਵਨਾ–ਘਣਤਾ ਫਲਨ ਵੀ ਸਿਫਰ ਵਿੱਚੋਂ ਲੰਘਦੇ ਹਨ। ਨੌਡਾਂ ਦੀ ਸੰਖਿਆ n-2 ਦੁਆਰਾ ਦਿੱਤੀ ਜਾਂਦੀ ਹੈ, ਇਸ ਤਰ੍ਹਾਂ 3p ਆਰਬਿਟਲ ਦੇ ਲਈ ਅਰਧ ਵਿਆਸੀ ਨੌਡ ਇੱਕ, 4p ਦੇ ਲਈ ਦੋ ਅਤੇ ਇਸ ਤੋਂ ਅੱਗੇ ਵੀ ਇਸੇ ਕੁਮ ਵਿੱਚ ਹੁੰਦੇ ਹਨ।

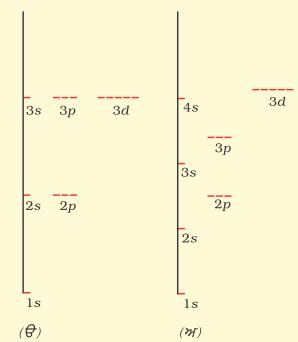


ਚਿੱਤਰ. 2.14 ਤਿੰਨ 2p ਆਰਬਿਟਲਾਂ ਦੇ ਸੀਮਾ ਸਤ੍ਹਾ ਰੇਖਾ ਚਿੱਤਰ

l=2 ਦੇ ਲਈ ਆੱਰਬਿਟਲ, d ਅਖਵਾਉਂਦਾ ਹੈ ਅਤੇ ਮੁੱਖ ਕੁਆਂਟਮ ਸੰਖਿਆ (n) ਦਾ ਮਾਨ 3 ਹੁੰਦਾ ਹੈ ਕਿਉਂਕਿ l ਦਾ ਮਾਨ n-1 ਤੋਂ ਵੱਧ ਨਹੀਂ ਹੋ ਸਕਦਾ। ਇਸ ਵਿੱਚ m_l ਦੇ ਪੰਜ ਮਾਨ ਹੁੰਦੇ ਹਨ (-2,-1,0,+1,+2) ਅਤੇ ਇਸ ਤਰ੍ਹਾਂ ਪੰਜ d ਆੱਰਬਿਟਲ ਹੁੰਦੇ ਹਨ। d ਆੱਰਬਿਟਲਾਂ ਦੇ ਸੀਮਾ–ਸਤ੍ਹਾ ਆਰੇਖ ਚਿੱਤਰ 2.15 ਵਿੱਚ ਵਿਖਾਏ ਗਏ ਹਨ।

ਪੰਜ d ਆੱਰਬਿਟਲਾਂ ਨੂੰ d_{xy} , d_{yz} , d_{zx} , $d_{x^2-y^2}$ ਅਤੇ d_{z^2} ਕਿਹਾ ਜਾਂਦਾ ਹੈ। ਪਹਿਲੇ ਚਾਰ d ਆੱਰਬਿਟਲਾਂ ਦੀ ਅਕ੍ਰਿਤੀ ਇੱਕੋ ਜਿਹੀ ਹੁੰਦੀ ਹੈ ਅਤੇ ਪੰਜਵੇਂ $\mathrm{d}z^2$ ਦੀ ਭਿੰਨ ਹੁੰਦੀ ਹੈ। ਪਰੰਤੂ ਪੰਜਾਂ ਆੱਰਬਿਟਲਾਂ ਦੀ ਊਰਜਾ ਬਰਾਬਰ ਹੁੰਦੀ ਹੈ। n>3 ਵਾਲੇ d ਆੱਰਬਿਟਲਾਂ (4d, 5d ...) ਦੀਆਂ ਸਮਾਨ ਅਕ੍ਰਿਤੀਆਂ ਹੁੰਦੀਆਂ ਹਨ ਪਰ ਉਰਜਾ ਅਤੇ ਅਕਾਰ ਭਿੰਨ ਹੁੰਦੇ ਹਨ।

ਅਰਧ ਵਿਆਸੀ ਨੋਡਾਂ (ਭਾਵ ਜਦੋਂ ਸੰਭਾਵਨਾ-ਘਣਤਾ ਫਲਨ ਸਿਫਰ ਹੋਵੇ) ਦੇ ਇਲਾਵਾ np ਅਤੇ nd ਆਰਬਿਟਲਾਂ ਦੇ ਲਈ ਸੰਭਾਵਨਾ-ਘਣਤਾ ਫਲਨ ਤਲ ਉੱਤੇ ਸਿਫਰ ਹੁੰਦੇ ਹਨ। ਇਹ ਨਿਊਕਲੀਅਸ ਵਿੱਚੋਂ ਲੰਘਦੇ ਹੋਏ ਤਲ ਉੱਤੇ ਨਿਰਭਰ ਕਰਦਾ ਹੈ। ਉਦਾਹਰਣ ਵਜੋਂ P_z ਆਰਬਿਟਲ ਵਿੱਚ xy ਤਲ ਨੌਡਲ ਤਲ ਹੈ। d_{xy} ਆਰਬਿਟਲ ਵਿੱਚ ਨਿਊਕਲੀਅਸ, ਵਿੱਚੋਂ ਲੰਘਦੇ ਹੋਏ ਅਤੇ z ਅਕਸ ਉੱਤੇ xy ਤਲ ਨੂੰ ਟੁੱਕਦੇ ਹੋਏ ਦੋ ਨੌਡਲ ਤਲ ਹੁੰਦੇ ਹਨ। ਇਨ੍ਹਾਂ ਨੂੰ ਕੋਣੀ ਨੌਡ ਕਿਹਾ ਜਾਂਦਾ ਹੈ ਅਤੇ ਕੋਣੀ ਨੌਡਾਂ ਦੀ ਸੰਖਿਆ l ਤੋਂ ਦਿੱਤੀ ਜਾਂਦੀ ਹੈ, ਭਾਵ p ਆਰਬਿਟਲਾਂ ਦੇ ਲਈ ਇੱਕ d ਆਰਬਿਟਲਾਂ ਦੇ ਲਈ ਦੋ ਅਤੇ ਹੋਰਾਂ ਦੇ ਲਈ ਇਸੇ ਤਰ੍ਹਾਂ ਕੋਣੀ ਨੌਡ ਹੁੰਦੇ ਹਨ। ਨੌਡਾਂ ਦੀ ਕੁੱਲ ਸੰਖਿਆ (n-1) ਅਰਥਾਤ ਕੋਣੀ ਨੌਡ l ਅਤੇ ਅਰਧਵਿਆਸੀ ਨੌਡ (n-l-1) ਦਾ ਜੋੜ


ਚਿੱਤਰ-2.15 ਪੰਜ 3d ਆਰਬਿਟਲਾਂ ਦੇ ਸੀਮਾ-ਸਤ੍ਹਾ ਆਰੇਖ ਹੋਵੇਗੀ।

2.6.3 ਆੱਰਬਿਟਲਾਂ ਦੀਆਂ ਉਰਜਾਵਾਂ

ਹਾਈਡ੍ਰੋਜਨ ਪਰਮਾਣੂ ਵਿੱਚ ਇਲੈਕਟ੍ਰਾੱਨ ਦੀ ਊਰਜਾ ਸਿਰਫ ਮੁੱਖ ਕੁਆਂਟਮ ਸੰਖਿਆ ਦੁਆਰਾ ਨਿਰਧਾਰਿਤ ਹੁੰਦੀ ਹੈ। ਇਸ ਲਈ ਆਰਬਿਟਲਾ ਦੀ ਊਰਜਾ ਹੇਠ ਲਿਖੇ ਕ੍ਰਮ ਵਿੱਚ ਵੱਧਦੀ ਹੈ—

1s < 2s = 2p < 3s = 3p = 3d < 4s = 4p = 4d= 4f <

ਅਤੇ ਇਨ੍ਹਾਂ ਨੂੰ ਚਿੱਤਰ 2.16 ਵਿੱਚ ਦਰਸਾਇਆ ਗਿਆ ਹੈ। ਹਲਾਂਕਿ 2s ਅਤੇ 2p ਆੱਰਬਿਟਲਾਂ ਦੀਆਂ ਆਕ੍ਰਿਤੀਆਂ ਭਿੰਨ ਹੁੰਦੀਆਂ ਹਨ। ਫਿਰ ਵੀ ਇਨ੍ਹਾਂ ਦੋਹਾਂ ਆੱਰਬਿਟਲਾਂ 2x ਅਤੇ 2p

ਚਿੱਤਰ 2.16 (ੳ) ਹਾਈਡ੍ਰੋਜਨ ਪਰਮਾਣੂ (ਅ) ਬਹੁਇਲੈਕਟ੍ਰਾਨ ਪਰਮਾਣੂਆਂ ਦੇ ਕੁੱਝ ਇਲੈਕਟ੍ਰਾਨ ਸੈੱਲਾਂ ਦੇ ਊਰਜਾ ਸਤਰ ਅਰੇਖ। ਧਿਆਨ ਦਿਓ ਕਿ ਹਾਈਡ੍ਰੋਜਨ ਪਰਮਾਣੂ ਦੇ ਲਈ ਸਮਾਨ ਮੁੱਖ ਕੁਆਂਟਮ ਸੰਖਿਆ ਦੇ ਲਈ ਭਿੰਨ-ਭਿੰਨ ਖਿਤਿਜ-ਚਾਪੀ ਕੁਆਂਟਮ ਸੰਖਿਆ ਹੋਣ ਤੇ ਵੀ ਉਨ੍ਹਾਂ ਦੀ ਊਰਜਾ ਸਮਾਨ ਹੁੰਦੀ ਹੈ। ਬਹੁ ਇਲੈਕਟ੍ਰਾਨ ਪਰਮਾਣੂਆਂ ਵਿੱਚ ਸਮਾਨ ਮੁੱਖ ਕੁਆਂਟਮ ਵਾਲੇ ਆਰਬਿਟਲਾਂ ਦੀ ਊਰਜਾ ਭਿੰਨ ਖਤਿਜ ਚਾਪੀ ਕੁਆਂਟਮ ਸੰਖਿਆ ਵਾਲੇ ਆਰਬਿਟਲਾਂ ਦੇ ਲਈ ਭਿੰਨ ਹੁੰਦੀ ਹੈ।

ਵਿੱਚ ਮੌਜੂਦ ਇਲੈਕਟ੍ਰਾਨ ਦੀ ਊਰਜਾ ਬਰਾਬਰ ਹੋਵੇਗੀ। ਸਮਾਨ ਊਰਜਾ ਵਾਲੇ ਆੱਰਬਿਟਲਾਂ ਨੂੰ ਸਮਊਰਜਿਤ (degenerate) ਆੱਰਬਿਟਲ ਕਿਹਾ ਜਾਂਦਾ ਹੈ। ਜਿਵੇਂ ਪਹਿਲਾਂ ਦੱਸਿਆ ਗਿਆ ਹੈ, ਹਾਈਡ੍ਰੋਜਨ ਪਰਮਾਣੂ ਵਿੱਚ 1s ਆੱਰਬਿਟਲ ਸਭ ਤੋਂ ਸਥਾਈ ਸਥਿਤੀ ਦੇ ਸੰਗਤ ਹੁੰਦਾ ਹੈ। ਇਹ ਜਮੀਨੀ ਅਵਸਥਾ (ground state) ਅਖਵਾਉਂਦੀ ਹੈ। ਇਸ ਆੱਰਬਿਟਲ ਵਿੱਚ ਮੌਜੂਦ ਇਲੈਕਟ੍ਰਾਨ ਨਿਊਕਲੀਅਸ ਦੁਆਰਾ ਸਭ ਤੋਂ ਵੱਧ ਪ੍ਰਬਲਤਾ ਨਾਲ ਆਕਰਸ਼ਿਤ ਰਹਿੰਦਾ ਹੈ। ਹਾਈਡ੍ਰੋਜਨ ਪਰਮਾਣੂ ਵਿੱਚ 2x, 2p ਜਾਂ ਉੱਚ ਆੱਰਬਿਟਲਾਂ ਵਿੱਚ ਮੌਜੂਦ ਇਲੈਕਟ੍ਰਾਨ ਨੂੰ ਉਤੇਜਿਤ ਅਵਸਥਾ (excited state) ਵਿੱਚ ਕਿਹਾ ਜਾਂਦਾ ਹੈ।

ਹਾਈਡ੍ਰੋਜਨ ਪਰਮਾਣੂ ਦੇ ਉਲਟ ਇੱਕ ਬਹੁ ਇਲੈਕਟ੍ਰਾਨ ਪਰਮਾਣੂ ਦੇ ਇਲੈਕਟ੍ਰਾਨ ਦੀ ਊਰਜਾ ਕੇਵਲ ਆਪਣੇ ਮੁੱਖ ਕੁਆਂਟਮ ਸੰਖਿਆ (ਸ਼ੈੱਲ) ਉੱਤੇ ਹੀ ਨਹੀਂ, ਬਲਕਿ ਖਿਤਿਜਚਾਪੀ ਕੁਆਂਟਮ ਸੰਖਿਆ (ਸਬ-ਸ਼ੈੱਲ) ਉੱਤੇ ਵੀ ਨਿਰਭਰ ਕਰਦੀ ਹੈ। ਅਰਥਾਤ ਦਿੱਤੀ ਗਈ ਮੁੱਖ ਕੁਆਂਟਮ ਸੰਖਿਆ ਦੇ ਲਈ s, p, d, f ... ਦੀਆਂ ਊਰਜਾਵਾਂ ਭਿੰਨ ਹੁੰਦੀਆਂ ਹਨ। ਸਬ-ਸ਼ੈੱਲਾਂ ਵਿੱਚ ਭਿੰਨ ਊਰਜਾਵਾਂ ਦਾ ਕਾਰਣ ਬਹੁ ਇਲੈਕਟ੍ਰਾਨ ਪਰਮਾਣੂਆਂ

ਵਿੱਚ ਇਲੈਕਟ੍ਰਾਨਾਂ ਦੇ ਆਪਸ ਵਿੱਚ ਪ੍ਤੀਕਰਸ਼ਣ ਦੀ ਮੌਜੂਦਗੀ ਹੈ। ਹਾਈਡ੍ਰੋਜਨ ਪਰਮਾਣੂ ਵਿੱਚ ਰਿਣ ਚਾਰਜਿਤ ਇਲੈਕਟ੍ਰਾਨ ਅਤੇ ਧਨ ਚਾਰਜਿਤ ਨਿਊਕਲੀਅਸ ਦੇ ਵਿੱਚ ਆਕਰਸ਼ਣ ਹੀ ਸਿਰਫ ਚਾਰਜ ਅੰਤਰ ਕਿਰਿਆ ਹੈ। ਬਹੁ-ਇਲੈਟ੍ਰਾਨ ਪਰਮਾਣੂਆਂ ਵਿੱਚ ਇਲੈਕਟ੍ਰਾਨ ਅਤੇ ਨਿਊਕਲੀਅਸ ਦੇ ਵਿੱਚ ਆਕਰਸ਼ਣ ਦੇ ਇਲਾਵਾ ਪਰਮਾਣੂ ਵਿੱਚ ਮੌਜੂਦ ਇੱਕ ਇਲੈਕਟ੍ਰਾੱਨ ਦਾ ਦੂਜੇ ਨਾਲ ਪ੍ਰਤੀਕ੍ਰਸ਼ਣ ਵੀ ਹੁੰਦਾ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਇੱਕ ਬਹੁ-ਇਲੈਕਟ੍ਰਾਨ ਪਰਮਾਣ ਵਿੱਚ ਇਲੈਕਟ੍ਰਾਨ ਦੀ ਸਥਿਰਤਾ ਪ੍ਰਤੀਕਰਸ਼ਣ ਦੀ ਤੁਲਨਾ ਵਿੱਚ ਵਧੇਰੇ ਆਕਰਸ਼ਣ ਪ੍ਰਤੀਕਿਰਿਆਵਾਂ ਹਨ। ਆਮ ਤੌਰ ਤੇ ਬਾਹਰੀ ਸ਼ੈੱਲ ਵਿੱਚ ਮੌਜੂਦ ਇਲੈਕਟ੍ਰਾਨ ਦੇ ਅੰਦਰੂਨੀ ਇਲਕਟ੍ਰਾਨਾਂ ਨਾਲ ਪ੍ਰਤੀਆਕਰਸ਼ਣ ਅੰਤਰ ਕਿਰਿਆ ਵਧੇਰੇ ਮਹੱਤਵ ਪੂਰਣ ਹੈ। ਦੂਜੇ ਪਾਸੇ ਨਿਊਕਲੀਅਸ ਵਿੱਚ ਧਨਚਾਰਜ (Ze) ਵੱਧਣ ਦੇ ਕਾਰਣ ਇਲੈਕਟ੍ਰਾਨਾਂ ਵਿੱਚ ਆਕਰਸ਼ਣ ਅੰਤਰ ਕਿਰਿਆਵਾਂ ਵੱਧਦੀਆਂ ਹਨ। ਅੰਦਰਲੇ ਸ਼ੈੱਲਾਂ ਵਿੱਚ ਮੌਜਦ ਇਲੈਕਟਾਨਾਂ ਦੇ ਕਾਰਣ ਬਾਹਰੀ ਸ਼ੈੱਲ ਦਾ ਇਲੈਕਟ੍ਰਾਨ ਨਿਉਕਲੀਅਸ ਦੇ ਚਾਰਜ (Ze) ਨੂੰ ਪੂਰੀ ਤਰ੍ਹਾਂ ਮਹਿਸੂਸ ਨਹੀਂ ਕਰ ਪਾਉਂਦਾ, ਅਰਥਾਤ ਅੰਦਰ ਵਾਲੇ ਇਲੈਕਟ੍ਰਾਨਾਂ ਦੁਆਰਾ ਨਾਭਿਕ ਦੇ ਧਨ ਚਾਰਜ ਅੰਸ਼ਿਕ ਆਵਰਣ ਦੇ ਕਾਰਣ ਇਸ ਚਾਰਜ ਦਾ ਪ੍ਰਭਾਵ ਪੂਰਾ ਨਹੀਂ ਪੈਂਦਾ। ਇਸ ਨੂੰ ਅੰਦਰੂਨੀ ਇਲੈਕਟ੍ਰਾਨਾਂ ਦੁਆਰਾ ਬਾਹਰੀ ਇਲੈਕਟਾਨਾਂ ਦਾ ਨਿਊਕਲੀਅਸ ਤੋਂ ਸਰੱਖਿਅਣ (Shielding) ਕਿਹਾ ਜਾਂਦਾ ਹੈ ਅਤੇ ਨਿਉਕਲੀਅਸ ਦਾ ਕੁੱਲ ਧਨਚਾਰਜ ਜੋ ਇਲੈਕਟ੍ਰਾੱਨ ਉੱਤੇ ਪ੍ਰਭਾਵ ਪਾਉਂਦਾ ਹੈ ਪ੍ਰਭਾਵੀ ਨਿਊਕਲੀਅਰ ਚਾਰਜ Z_ne (effective nuclear charge) ਅਖਵਾਉਂਦਾ ਹੈ। ਅੰਦਰੂਨੀ ਇਲੈਕਟ੍ਰਾਨਾਂ ਦੁਆਰਾ ਸੁਰੱਖਿਅਣ ਦੇ ਬਾਵਜੂਦ ਨਿਊਕਲੀ ਚਾਰਜ ਵਿੱਚ ਵਾਧੇ ਦੇ ਨਾਲ ਬਾਹਰੀ ਇਲੈਕਟਾਨ ਦੁਆਰਾ ਮਹਿਸਸ ਕੀਤਾ ਆਕਰਸ਼ਣ ਬਲ ਵੱਧ ਜਾਂਦਾ ਹੈ। ਦੂਜੇ ਸ਼ਬਦਾਂ ਵਿੱਚ, ਨਿਊਕਲੀਅਸ ਅਤੇ ਇਲੈਕਟ੍ਰਾੱਨ ਦੇ ਵਿੱਚ ਅੰਤਰਕਿਰਿਆ ਦੀ ਉਰਜਾ (ਅਰਥਾਤ ਆੱਰਬਿਟਲ ਉਰਜਾ) ਪਰਮਾਣੂ ਸੰਖਿਆ (Z) ਦੇ ਵੱਧਣ ਦੇ ਨਾਲ ਘੱਟ (ਅਰਥਾਤ ਵਧੇਰੇ ਰਿਣਾਤਕਮ ਹੋ) ਜਾਂਦੀ ਹੈ।

ਆਕਰਸ਼ਣ ਅਤੇ ਪ੍ਰਤੀ ਆਕਰਸ਼ਣ, ਦੋਵੇਂ ਅੰਤਰ ਕਿਰਿਆਵਾਂ ਸ਼ੈੱਲ ਦੇ ਅਕਾਰ ਅਤੇ ਉਸ ਵਿੱਚ ਮੌਜੂਦ ਆਰਬਿਟਲ ਦੀ ਅਕ੍ਰਿਤੀ (ਜਿਸ ਵਿੱਚ ਇਲੈਕਟ੍ਰਾਨ ਮੌਜੂਦ ਹੈ) ਉੱਤੇ ਨਿਰਭਰ ਕਰਦੀ ਹੈ। ਉਦਾਹਰਣ ਵਜੋਂ-ਗੋਲਾਕਾਰ ਅਕ੍ਰਿਤੀ ਦੇ ਕਾਰਣ s ਆਰਬਿਟਲ ਦੇ ਵਿੱਚ ਮੌਜੂਦ ਇਲੈਕਟ੍ਰਾਨ p ਆਰਬਿਟਲ ਵਿੱਚ ਮੌਜੂਦ ਇਲੈਕਟ੍ਰਾਨ p ਆਰਬਿਟਲ ਵਿੱਚ ਮੌਜੂਦ ਇਲੈਕਟ੍ਰਾਨ ਦੀ ਤੁਲਨਾ ਵਿੱਚ ਬਾਹਰੀ ਇਲੈਕਟ੍ਰਾਨਾਂ ਦਾ ਨਿਊਕਲੀਅਸ ਤੋਂ ਸੁੱਰਖਿਅਣ ਵਧੇਰੇ ਪ੍ਰਭਾਵਸ਼ਾਲੀ ਤਰੀਕੇ ਨਾਲ ਕਰਦਾ ਹੈ। ਇਸੇ ਤਰ੍ਹਾਂ p ਆਰਬਿਟਲ ਵਿੱਚ ਮੌਜੂਦ ਇਲੈਕਟ੍ਰਾਨ d ਆਰਬਿਟਲ ਦੀ ਤੁਲਨਾ ਵਿੱਚ ਵਧੇਰੇ ਸੁੱਰਖਿਅਣ ਕਰਦੇ ਹਨ, ਭਾਵੇਂ ਇਹ ਸਾਰੇ ਆਰਬਿਟਲ ਇੱਕ ਹੀ ਸ਼ੈੱਲ ਵਿੱਚ ਹਨ। ਇਸਦੇ ਇਲਾਵਾ ਇੱਕ ਹੀ ਸ਼ੈੱਲ ਵਿੱਚ ਗੋਲਾਕਾਰ ਅਕ੍ਰਿਤੀ ਦੇ ਕਾਰਣ s ਆਰਬਿਟਲ ਇਲੈਕਟ੍ਰਾਨ ਦੀ ਤੁਲਨਾ ਵਿੱਚ ਅਤੇ p ਆਰਬਿਟਲ ਇਲੈਕਟ੍ਰਾਨ d ਆਰਬਿਟਲ ਵਿੱਚ ਅਤੇ p ਆਰਬਿਟਲ ਇਲੈਕਟ੍ਰਾਨ d ਆਰਬਿਟਲ

ਇਲੈਕਟ੍ਰਾਨ ਦੀ ਤੁਲਨਾ ਵਿੱਚ ਨਿਊਕਲੀਅਸ ਦੇ ਨੇੜੇ ਵਧੇਰੇ ਸਮਾਂ ਗੁਜਾਰਦਾ ਹੈ। ਦੂਜੇ ਸ਼ਬਦਾਂ ਵਿੱਚ ਕਿਸੇ ਇੱਕ ਸ਼ੈੱਲ (ਮੁੱਖ ਕੁਆਂਟਮ ਸੰਖਿਆ) ਦੇ ਲਈ ਖਿਤਿਜ ਚਾਪੀ ਕੁਆਂਟਮ ਸੰਖਿਆ (l) ਵੱਧਣ ਦੇ ਨਾਲ ਇਲੈਕਟ੍ਰਾਨ ਦੁਆਰਾ ਮਹਿਸੂਸ ਕੀਤਾ $Z_{
m eff}$ ਘੱਟ ਜਾਂਦਾ ਹੈ, ਅਰਥਾਤ p ਆਰਬਿਟਲ ਦੀ ਤੁਲਨਾ ਵਿੱਚ s ਆੱਰਬਿਟਲ ਅਤੇ d ਆੱਰਬਿਟਲ ਦੀ ਤੁਲਨਾ ਵਿੱਚ p ਆੱਰਬਿਟਲ ਨਿਊਕਲੀਅਸ ਨਾਲ ਵਧੇਰੇ ਮਜਬਤੀ ਨਾਲ ਬੱਝਿਆ ਰਹਿੰਦਾ ਹੈ। p ਆੱਰਬਿਟਲ ਦੇ ਇਲੈਕਟ੍ਰਾੱਨ ਦੀ ਤੁਲਨਾ ਵਿੱਚ s ਆਰਬਿਟਲ ਇਲੈਕਟ੍ਰਾਨ ਦੀ ਅਤੇ d ਆਰਬਿਟਲ ਦੇ ਇਲੈਕਟ੍ਰਾਨ ਦੀ ਤੁਲਨਾ ਵਿੱਚ p ਆੱਰਬਿਟਲ ਦੇ ਇਲੈਕਟ੍ਰਾਨ ਦੀ ਉਰਜਾ ਘੱਟ ਹੁੰਦੀ ਹੈ, ਆਦਿ ਕਿਊਕਿ ਨਿਊਕਲੀਅਸ ਦੇ ਨਾਲ ਸਰੱਖਿਅਣ ਦੀ ਮਾਤਰਾ ਭਿੰਨ ਭਿੰਨ ਆੱਰਬਿਟਲਾਂ ਦੇ ਲਈ ਭਿੰਨ ਹੁੰਦੀ ਹੈ।ਇਸ ਲਈ ਇੱਕ ਹੀ ਸ਼ੈੱਲ (ਮੁੱਖ ਕੁਆਂਟਮ ਸੰਖਿਆ) ਦੇ ਉਰਜਾ ਸਤਰਾਂ ਦਾ ਵਿਭੇਦਨ (splitting) ਹੋ ਜਾਂਦਾ ਹੈ, ਅਰਥਾਤ ਜਿਵੇਂ ਪਹਿਲਾਂ ਦੱਸਿਆ ਜਾ ਚੁੱਕਿਆ ਹੈ, ਆੱਰਬਿਟਲ ਵਿੱਚ ਮੌਜੂਦ ਇਲੈਕਟ੍ਰਾਨਾਂ ਦੀ ਉਰਜਾ ${f n}$ ਅਤੇ ${f l}$ ਦਾ ਮਾਨਾਂ ਉੱਤੇ ਨਿਰਭਰ ਕਰਦੀ ਹੈ।ਗਣਿਤੀ ਰਪ ਵਿੱਚ $\mathbf n$ ਅਤੇ $\mathbf l$ ਉੱਤੇ ਆੱਰਬਿਟਲਾਂ ਦੀਆਂ ਉਰਜਾਵਾਂ ਦੀ ਨਿਰਭਰਤਾ ਕਾਫੀ ਗੰਝਲਦਾਰ ਹੁੰਦੀ ਹੈ, ਲੇਕਿਨ n ਅਤੇ l ਦੇ ਸੰਯਕਤ ਮਾਨ ਦੇ ਲਈ ਇੱਕ ਸਰਲ ਨਿਯਮ ਹੈ। (n+l) ਦਾ ਜਿੰਨਾ ਮਾਨ ਘੱਟ ਹੋਵੇਗਾ ਆਰਬਿਟਲ ਦੀ ਉਰਜਾ ਵੀ ਉਨੀ ਹੀ ਘੱਟ ਹੋਵੇਗੀ। ਜੇ ਦੋ ਆੱਰਬਿਟਲਾਂ ਦੇ ਲਈ (n + l) ਦਾ ਮਾਨ ਬਰਾਬਰ ਹੋਵੇ, ਤਾਂ ਘੱਟ n ਦੇ ਮਾਨ ਵਾਲੇ ਆੱਰਬਿਟਲ ਦੀ ਉਰਜਾ ਘੱਟ ਹੋਵੇਗੀ। ਸਾਰਣੀ 2.5 ਵਿੱਚ (n+1) ਨਿਯਮ ਦਿੱਤਾ ਗਿਆ ਹੈ ਅਤੇ ਚਿੱਤਰ 2.16 ਵਿੱਚ ਬਹੁ ਇਲੈਕਟ੍ਰਾੱਨ ਪਰਮਾਣੂਆਂ ਦੀ ਉਰਜਾ ਵਿਖਾਈ ਗਈ ਹੈ। ਧਿਆਨ ਦੇਣ ਯੋਗ ਗੱਲ ਇਹ ਵੀ ਹੈ ਕਿ ਕਿਸੇ ਵਿਸ਼ੇਸ਼ ਸ਼ੈਲ ਦੇ ਭਿੰਨ-ਭਿੰਨ ਸਬ ਸ਼ੈੱਲਾਂ (ਬਹ ਇਲੈਕਟਾਨ ਪਰਮਾਣੂਆਂ ਵਿੱਚ) ਦੀਆਂ ਉਰਜਾਵਾਂ ਭਿੰਨ ਭਿੰਨ ਹੁੰਦੀਆਂ ਹਨ। ਹਾਲਾਂਕਿ ਹਾਈਡ੍ਰੋਜਨ ਪਰਮਾਣੂ ਵਿੱਚ ਇਨ੍ਹਾਂ ਦੀਆਂ ਉਰਜਾਵਾਂ ਸਮਾਨ ਹੁੰਦੀਆਂ ਹਨ। ਅੰਤ ਵਿੱਚ ਇਹ ਦੱਸਣਾ ਉਚਿਤ ਹੋਵੇਗਾ ਕਿ ਪਰਮਾਣੂ ਸੰਖਿਆ ($Z_{_{\mathrm{eff}}}$) ਵੱਧਣ ਦੇ ਨਾਲ ਸਮਾਨ ਸਬ ਸ਼ੈੱਲਾਂ ਵਾਲੇ ਆਰਬਿਟਲਾਂ ਦੀਆਂ ਉਰਜਾਵਾਂ ਘੱਟ ਹੁੰਦੀਆਂ ਜਾਂਦੀਆਂ ਹਨ।ਉਦਾਹਰਣ ਵਜੋਂ-ਹਾਈਡ੍ਰੋਜਨ ਪਰਮਾਣੂ ਦੇ 2s ਆੱਰਬਿਟਲ ਦੀ ਉਰਜਾ, ਲੀਥਿਅਮ ਦੇ 2s ਆੱਰਬਿਟਲ ਦੀ ਤੁਲਨਾ ਵਿੱਚ ਵਧੇਰੇ ਹੋਵੇਗੀ ਅਤੇ ਸੋਡੀਅਮ ਦੀ ਤਲਨਾ ਵਿੱਚ ਲੀਥਿਅਮ ਦੀ ਉਰਜਾ ਵਧੇਰੇ ਹੋਵੇਗੀ। ਇਹੀ ਕ੍ਰਮ ਅੱਗੇ ਵੀ ਜਾਰੀ ਰਹੇਗਾ। ਜਿਵੇਂ-

$$E_{2s}({
m H}) > E_{2s}({
m Li}) > E_{2s}({
m Na}) > E_{2s}({
m K}).$$

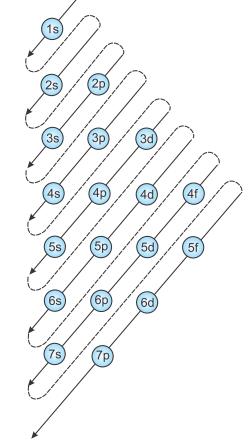
2.6.4 ਪਰਮਾਣੂਆਂ ਵਿੱਚ ਆੱਰਬਿਟਲਾਂ ਦਾ ਭਰਿਆ
ਜਾਣਾ

ਭਿੰਨ-ਭਿੰਨ ਪਰਮਾਣੂਆਂ ਦੇ ਆੱਰਬਿਟਲਾਂ ਵਿੱਚ ਇਲੈਕਟ੍ਰਾਨ ਆੱਫ ਬਾਓ ਨਿਯਮ ਦੇ ਅਨੁਸਾਰ ਭਰੇ ਜਾਂਦੇ ਹਨ। 'ਆਫਬਾਓ ਨਿਯਮ' ਪਾੱਲੀ ਵਰਜਨ ਸਿਧਾਂਤ (Pauli's exclusion principle) ਹੁੰਡ ਦੇ ਅਧਿਕਤਮ ਬਹੁਕਤਾ ਨਿਯਮ (Hund's maximum multiplicity rule) ਅਤੇ ਆੱਰਬਿਟਲਾਂ ਦੀਆਂ ਸਾਪੇਖੀ

ਸਾਰਣੀ 2.5 (n+l) ਨਿਯਮ ਦੇ ਅਧਾਰ ਤੇ ਵੱਧਦੀ ਊਰਜਾ ਦੇ ਨਾਲ ਆਰਬਿਟਲਾਂ ਦੀ ਵਿਵਸਥਾ

ਆਰਬਿਟਲ	n ਦਾ ਮਾਨ	1 ਦਾ ਮਾਨ	(n + l) ਦਾ ਮਾਨ	
1s	1	0	1+0=1	
2s	2	0	2 + 0 = 2	
2p	2	1	2 + 1 = 3	2p (n=2) 3s ਤੋਂ ਘੱਟ ਹੁੰਦੀ ਹੈ।
3s	3	0	3 + 0 = 3	3s (n=3)
3p	3	i	3 + 1 = 4	3p (n =3) 4s ਤੋਂ ਘੱਟ ਹੁੰਦੀ ਹੈ।
4s	4	0	4+0=4	4s (n =4)
3d	3	2	3 + 2 = 5	3d (n =3) 4p ਨਾਲੋਂ ਘੱਟ ਹੁੰਦੀ ਹੈ।
4p	4	1	4 + 1 =5	4p (n =4)

ਊਰਜਾਵਾਂ ਉੱਤੇ ਅਧਾਰਿਤ ਹੈ।


ਆੱਫਬਾਓ ਨਿਯਮ

ਜਰਮਨ ਭਾਸ਼ਾ ਵਿੱਚ 'ਆੱਫਬਾਓ' ਸ਼ਬਦ ਦਾ ਅਰਥ ਹੈ—'ਨਿਰਮਾਣ ਹੋਣਾ', ਆਰਬਿਟਲਾਂ ਦਾ ਨਿਰਮਾਣ ਹੋਣ ਦਾ ਅਰਥ ਹੈ ਆੱਰਬਿਟਲਾਂ ਦਾ ਇਲੈਕਟ੍ਰਾਨਾਂ ਦੁਆਰਾ ਭਰੇ ਜਾਣਾ। ਇਸ ਨਿਯਮ ਦੇ ਅਨੁਸਾਰ ਪਰਮਾਣੂਆਂ ਦੀ ਜਮੀਨੀ ਅਵਸਥਾ ਵਿੱਚ, ਆੱਰਬਿਟਲਾਂ ਨੂੰ ਉਨ੍ਹਾਂ ਦੀ ਊਰਜਾ ਦੇ ਵੱਧਦੇ ਕ੍ਰਮ ਵਿੱਚ ਭਰਿਆ ਜਾਂਦਾ ਹੈ।

ਦੂਜੇ ਸ਼ਬਦਾਂ ਵਿੱਚ ਇਲੈਕਟ੍ਰਾੱਨ ਸਭ ਤੋਂ ਪਹਿਲਾਂ ਸਭ ਤੋਂ ਘੱਟ ਊਰਜਾ ਵਾਲੇ ਉਪਲਬਧ ਆੱਰਬਿਟਲ ਵਿੱਚ ਜਾਂਦੇ ਹਨ ਅਤੇ ਉਨ੍ਹਾਂ ਨੂੰ ਭਰਨ ਤੋਂ ਬਾਦ ਉੱਚ ਊਰਜਾ ਵਾਲੇ ਆੱਰਬਿਟਲਾਂ ਨੂੰ ਭਰਦੇ ਹਨ। ਆੱਰਬਿਟਲਾਂ ਦੀ ਊਰਜਾ ਦਾ ਵੱਧਦਾ ਕ੍ਰਮ, ਅਰਥਾਤ ਉਨ੍ਹਾਂ ਨੂੰ ਭਰੇ ਜਾਣ ਦਾ ਕ੍ਰਮ ਇਸ ਪ੍ਰਕਾਰ ਹੈ—

1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, 5s, 4d, 5p, 4f, 5d, 6p, 7s...

ਇਸ ਕ੍ਰਮ ਨੂੰ ਚਿੱਤਰ 2.17 ਵਿੱਚ ਵਿਖਾਈ ਗਈ

ਚਿੱਤਰ 2.17 ਆੱਰਬਿਟਲਾਂ ਨੂੰ ਭਰਨ ਦਾ ਕ੍ਰਮ

ਵਿਧੀ ਦੁਆਰਾ ਯਾਦ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਸਭ ਤੋਂ ਉੱਤੇ ਤੋਂ ਸ਼ੁਰੂ ਕਰਦੇ ਹੋਏ ਤੀਰ ਦੀ ਦਿਸ਼ਾ ਆਰਬਿਟਲਾਂ ਨੂੰ ਭਰਨ ਦਾ ਕ੍ਰਮ ਦਰਸਾਉਂਦੀ ਹੈ।

ਪਾਓਲੀ ਵਰਜਨ ਸਿਧਾਂਤ

ਭਿੰਨ-ਭਿੰਨ ਆੱਰਬਿਟਲਾਂ ਵਿੱਚ ਭਰੇ ਜਾਣ ਵਾਲੇ ਇਲੈਕਟ੍ਰਾੱਨਾਂ ਦੀ ਸੰਖਿਆ ਵਰਜਨ ਸਿਧਾਂਤ ਦੁਆਰਾ ਨਿਯੰਤਰਿਤ ਹੁੰਦੀ ਹੈ, ਜਿਸ ਨੂੰ ਆੱਸਟਰਿਆ ਦੇ ਵਾੱਲਫਗੰਗ ਪਾਓਲੀ ਨਾਮ ਦੇ ਇੱਕ ਵਿਗਿਆਨੀ ਨੇ ਦਿੱਤਾ ਸੀ। ਇਸ ਸਿਧਾਂਤ ਦੇ ਅਨੁਸਾਰ—

ਕਿਸੇ ਪਰਮਾਣੂ ਵਿੱਚ ਮੌਜੂਦ ਦੋ ਇਲੈਕਟ੍ਰਾਨਾਂ ਦੀਆਂ ਚਾਰੇ ਕੁਆਂਟਮ ਸੰਖਿਆਵਾਂ ਇੱਕ ਸਮਾਨ ਨਹੀਂ ਹੋ ਸਕਦੀਆਂ ਹਨ।ਪਾਓਲੀ ਵਰਜਨ ਸਿਧਾਂਤ ਨੂੰ ਇਸ ਤਰ੍ਹਾਂ ਵੀ ਕਿਹਾ ਜਾ ਸਕਦਾ ਹੈ—

"ਕੇਵਲ ਦੋ ਇਲੈਕਟ੍ਰਾਨ ਇੱਕ ਆੱਰਬਿਟਲ ਵਿੱਚ ਰਹਿ ਸਕਦੇ ਹਨ। ਇਨ੍ਹਾਂ ਇਲੈਕਟ੍ਰਾਨਾਂ ਦੇ ਚੱਕਰਣ ਉਲਟ ਹੋਣੇ ਚਾਹੀਦੇ ਹਨ।" ਇਸ ਦਾ ਅਰਥ ਇਹ ਹੈ ਕਿ ਦੋ ਇਲੈਕਟ੍ਰਾਨਾਂ ਦੀਆਂ ਤਿੰਨ ਕੁਆਂਟਮ ਸੰਖਿਆਵਾਂ n, l ਅਤੇ m ਇੱਕ ਸਮਾਨ ਹੋ ਸਕਦੀ ਹਨ, ਲੇਕਿਨ ਉਨ੍ਹਾਂ ਦੀ ਚੱਕਰਣ ਕੁਆਂਟਮ ਸੰਖਿਆ ਭਿੰਨ ਹੋਣੀ ਚਾਹੀਦੀ ਹੈ। ਕਿਸੇ ਆੱਰਬਿਟਲ ਦਾ ਇਲੈਕਟ੍ਰਾਨਾਂ ਵਿੱਚ ਪਾਓਲੀ ਵਰਜਨ ਸਿਧਾਂਤ ਦੁਆਰਾ ਲਾਇਆ ਗਿਆ

ਨਿਯੰਤਰਣ ਕਿਸੇ ਸਬ–ਸ਼ੈੱਲ ਵਿੱਚ ਮੌਜੂਦ ਇਲੈਕਟ੍ਰਾਨਾਂ ਦੀ ਸਮਰਥਾ ਦੀ ਗਣਨਾ ਕਰਨ ਵਿੱਚ ਸਹਾਈ ਹੁੰਦਾ ਹੈ। ਉਦਾਹਰਣ ਵਜੋਂ, 1s ਵਿੱਚ ਇੱਕ ਆਰਬਿਟਲ ਹੁੰਦਾ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ 1s ਸੱਬ ਸ਼ੈੱਲ ਵਿੱਚ ਇਲੈਕਟ੍ਰਾਨ ਦੀ ਅਧਿਕਤਮ ਸੰਖਿਆ ਦੋ ਹੋ ਸਕਦੀ ਹੈ। p ਅਤੇ d ਸੱਬ ਸ਼ੈੱਲਾਂ ਵਿੱਚ ਅਧਿਕਤਮ ਸੰਖਿਆ ਕ੍ਰਮਵਾਰ 6 ਅਤੇ 10 ਹੋ ਸਕਦੀ ਹੈ, ਆਦਿ। ਇਸ ਨੂੰ ਸੰਖੇਪ ਵਿੱਚ ਇਸ ਤਰ੍ਹਾਂ ਕਿਹਾ ਜਾ ਸਕਦਾ ਹੈ।

ਮੁੱਖ ਕੁਆਂਟਮ ਸੰਖਿਆ n ਵਾਲੇ ਸ਼ੈੱਲ ਵਿੱਚ ਇਲੈਕਟ੍ਰਾੱਨਾਂ ਦੀ ਸੰਖਿਆ $2n^2$ ਦੇ ਬਰਾਬਰ ਹੁੰਦੀ ਹੈ।

ਹੁੰਡ ਦਾ ਅਧਿਕਤਮ ਬਹੁਕਤਾ ਦਾ ਨਿਯਮ

ਇਹ ਨਿਯਮ ਇੱਕ ਹੀ ਸੱਬ ਸ਼ੈੱਲ ਵਿੱਚ ਸਬੰਧਿਤ ਆਰਬਿਟਲਾਂ ਨੂੰ ਭਰਨ ਦੇ ਲਈ ਲਾਗੂ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਇਨ੍ਹਾਂ ਆਰਬਿਟਲਾਂ ਦੀ ਊਰਜਾ ਬਰਾਬਰ ਹੁੰਦੀ ਹੈ। ਉਨ੍ਹਾਂ ਨੂੰ 'ਭੁਸ਼ਟੀਕ੍ਰਿਤ ਆਰਬਿਟਲ'(degenerate orbitals) ਕਹਿੰਦੇ ਹਨ। ਇਹ ਨਿਯਮ ਇਸ ਤਰ੍ਹਾਂ ਹੈ ਇੱਕ ਹੀ ਸਬ–ਸ਼ੈੱਲ ਵਿੱਚ ਇਲੈਕਟ੍ਰਾਨ ਦਾ ਯੁਗਮਨ ਉਦੋਂ ਤੱਕ ਨਹੀਂ ਹੁੰਦਾ ਹੈ, ਜਦੋਂ ਤੱਕ ਉਸ ਸਬ ਸ਼ੈੱਲ ਦੇ ਸਾਰੇ ਆਰਬਿਟਾਂ ਵਿੱਚ ਇੱਕ–ਇੱਕ ਇਲੈਕਟ੍ਰਾਨ ਨਾ ਆ ਜਾਏ। ਕਿਉਕਿ ਤਿੰਨ p, ਪੰਜ d ਅਤੇ ਸੱਤ f ਆਰਬਿਟਲ ਹੁੰਦੇ ਹਨ। ਇਸ ਲਈ (p, d ਅਤੇ f) ਆਰਬਿਟਲਾਂ ਵਿੱਚ ਯੁਗਮਨ ਕ੍ਰਮ ਚੌਥੇ, ਛੇਵੇਂ ਅਤੇ ਅਠਵੇਂ ਇਲੈਕਟ੍ਰਾਨ ਦੇ ਭਰਨ ਤੇ ਸ਼ੁਰੂ ਹੋਵੇਗਾ। ਇਹ ਵੇਖਿਆ ਗਿਆ ਹੈ ਕਿ ਅੱਧੇ ਭਰੇ ਅਤੇ ਪੂਰੇ ਭਰੇ ਭੁਸ਼ਟੀਕ੍ਰਿਤ ਆਰਬਿਟਲਾਂ ਦੀ ਸਥਿਰਤਾ ਉਨ੍ਹਾਂ ਦੀ ਸਮਮਿਤੀ ਦੇ ਕਾਰਣ ਵਧੇਰੇ ਹੰਦੀ ਹੈ ਵੇਖੋ (ਭਾਗ 2.6.6)।

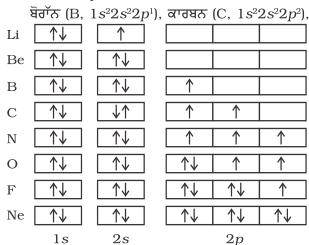
2.6.5 ਪਰਮਾਣੂਆਂ ਦੀ ਇਲੈਕਟ੍ਰਾਨਿਕ ਤਰਤੀਬ

ਪਰਮਾਣੂਆਂ ਦੇ ਆੱਰਬਿਟਲਾਂ ਵਿੱਚ ਇਲੈਕਟ੍ਰਾਨਾਂ ਦੀ ਵੰਡ ਨੂੰ ਉਨ੍ਹਾਂ ਦੀ ਇਲੈਕਟ੍ਰਾਨਿਕ ਤਰਤੀਬ (electronic configuration) ਕਹਿੰਦੇ ਹਨ। ਜੇ ਭਿੰਨ ਭਿੰਨ ਪਰਮਾਣੂ ਆੱਰਬਿਟਲਾਂ ਵਿੱਚ ਇਲੈਕਟ੍ਰਾਨਾਂ ਦੇ ਭਰੇ ਜਾਣ ਨਾਲ ਸਬੰਧਿਤ ਮੂਲ ਨਿਯਮਾਂ ਨੂੰ ਧਿਆਨ ਵਿੱਚ ਰੱਖਿਆ ਜਾਵੇ, ਤਾਂ ਭਿੰਨ-ਭਿੰਨ ਪਰਮਾਣੂਆਂ ਦੀ ਇਲੈਕਟ੍ਰਾਨਿਕ ਤਰਤੀਬ ਨੂੰ ਅਸਾਨੀ ਨਾਲ ਲਿਖਿਆ ਜਾਂਦਾ ਹੈ।

ਪਰਮਾਣੂਆਂ ਦੀ ਇਲੈਕਟ੍ਰਾਨਿਕ ਤਰਤੀਬ ਨੂੰ ਦੋ ਤਰੀਕਿਆਂ ਨਾਲ ਨਿਰੁਪਿਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਉਹ ਹਨ—

- (i) $s^{\mathrm{a}}\,p^{\mathrm{b}}d^{\mathrm{c}}$ ਸੈਕੇਤਨ
- (ii) ਆੱਰਬਿਟਲ-ਆਰੇਖ

S IPI IDI


ਪਹਿਲੇ ਸੰਕੇਤਨ ਵਿੱਚ ਸਬ-ਸ਼ੈੱਲ ਨੂੰ ਸੰਗਤ ਅੱਖਰ ਚਿੰਨ੍ਹ ਨਾਲ ਨਿਰੂਪਿਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ ਅਤੇ ਸਬ-ਸ਼ੈੱਲ ਵਿੱਚ ਮੌਜਦੂ ਇਲੈਕਟ੍ਰਾਨਾਂ ਦੀ ਸੰਖਿਆ ਨੂੰ ਉੱਪਰ ਲਿਖਿਤ (super script) a, b, c.... ਆਦਿ ਦੇ ਰੂਪ ਵਿੱਚ ਦਰਸਾਉਂਦੇ ਹਨ। ਭਿੰਨ-ਭਿੰਨ ਸ਼ੈਲਾਂ ਦੇ ਲਈ ਨਿਰੂਪਿਤ ਸਮਾਨ ਸਬ ਸ਼ੈੱਲ ਦਾ ਵਿਭੇਦਨ ਉਸ ਦੇ ਸੰਗਤ ਸਬ ਸ਼ੈੱਲ ਦੇ ਸਾਹਮਣੇ ਮੁੱਖ ਕੁਆਂਟਮ ਸੰਖਿਆ ਨੂੰ ਲਿਖ ਕੇ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਦੂਜੇ ਸੰਕੇਤਨ ਵਿੱਚ ਸਬ ਸ਼ੈੱਲ ਦੇ ਹਰ ਇੱਕ ਆਰਬਿਟਲ ਨੂੰ ਇੱਕ ਬਾੱਕਸ ਦੁਆਰਾ ਦਰਸਾਇਆ ਜਾਂਦਾ ਹੈ ਅਤੇ ਇਲੈਕਟ੍ਰਾਨ ਦੇ ਧਨ−ਚੱਕਰਣ ਨੂੰ (ੀ) ਵਰਗੇ ਤੀਰ ਅਤੇ ਰਿਣ ਚੱਕਰਣ ਨੂੰ (↓) ਵਰਗੇ ਤੀਰ ਨਾਲ ਦਰਸਾਇਆ ਜਾਂਦਾ ਹੈ। ਪਹਿਲੇ ਸੰਕੇਤਨ ਦੀ ਤੁਲਨਾਂ ਵਿੱਚ ਦੂਜੇ ਸੰਕੇਤਨ ਦਾ ਲਾਭ ਇਹ ਹੈ ਕਿ ਇਸ ਨਾਲ ਚੌਹਾਂ ਕੁਆਂਟਮ ਸੰਖਿਆਵਾਂ ਨੂੰ ਦਰਸਾਇਆ ਜਾ ਸਕਦਾ ਹੈ।

ਹਾਈਡ੍ਰੋਜਨ ਪਰਮਾਣੂ ਵਿੱਚ ਸਿਰਫ ਇੱਕ ਹੀ ਇਲੈਕਟ੍ਰਾਨ ਹੁੰਦਾ ਹੈ, ਜੋ ਸਭ ਤੋਂ ਘੱਟ ਊਰਜਾ ਵਾਲੇ ਆੱਰਬਿਟਲ ਵਿੱਚ ਜਾਂਦਾ ਹੈ, ਜਿਸ ਨੂੰ 1s ਆੱਰਬਿਟਲ ਕਹਿੰਦੇ ਹਨ। ਇਸ ਲਈ ਹਾਈਡ੍ਰੋਜਨ ਪਰਮਾਣੂ ਦੀ ਇ੍ਲੈਕਟ੍ਰਾਨਿਕ ਤਰਤੀਬ $1s^1$ ਹੁੰਦੀ ਹੈ। ਇਸ ਦਾ ਅਰਥ ਇਹ ਹੈ ਕਿ 1s ਆੱਰਬਿਟਲ ਵਿੱਚ ਇੱਕ ਇਲੈਕਟ੍ਰਾਨ ਹੁੰਦਾ ਹੈ। ਹੀਲਿਅਮ (He) ਦਾ ਦੂਜਾ ਇਲੈਟ੍ਰਾਨ ਵੀ 1s ਆੱਰਬਿਟਲ ਵਿੱਚ ਜਾ ਸਕਦਾ ਹੈ। ਇਸ ਲਈ ਹੀਲਿਅਮ ਦੀ ਇਲੈਕਟ੍ਰਾਨਿਕ ਤਰਤੀਬ $1s^2$ ਹੁੰਦੀ ਹੈ। ਜਿਵੇਂ ਉੱਤੇ ਦੱਸਿਆ ਗਿਆ ਹੈ–ਦੋ ਇਲੈਕਟ੍ਰਾਨ ਇੱਕ–ਦੂਜੇ ਤੋਂ ਉਲਟ ਚੱਕਰਣ ਵਿੱਚ ਹੁੰਦੇ ਹਨ। ਉਸ ਨੂੰ ਆੱਰਬਿਟਲ ਆਰੇਖ ਤੋਂ ਵੇਖਿਆ ਜਾ ਸਕਦਾ ਹੈ।

ਲਿਥਿਅਮ (Li) ਦਾ ਤੀਜਾ ਇਲੈਕਟ੍ਰਾੱਨ ਪਾਓਲੀ ਵਰਜਨ ਸਿਧਾਂਤ ਦੇ ਕਾਰਣ 1s ਆੱਰਬਿਟਲ ਵਿੱਚ ਨਹੀਂ ਜਾ ਸਕਦਾ ਹੈ। ਇਸ ਲਈ ਉਹ ਅਗਲੇ ਆੱਰਬਿਟਲ 2s ਵਿੱਚ ਜਾਂਦਾ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਲਿਥਿਅਮ ਦੀ ਇਲੈਕਟ੍ਰਾਨਿਕ ਤਰਤੀਬ $1s^22s^1$ ਹੋਵੇਗੀ।

2s ਆੱਰਬਿਟਲ ਵਿੱਚ ਇੱਕ ਇਲੈਕਟ੍ਰਾਨ ਹੋਰ ਆ ਸਕਦਾ ਹੈ। ਇਸ ਲਈ ਬੈਰਿਲਿਅਮ ਪਰਮਾਣੂ ਦੀ ਤਰਤੀਬ $1s^2\ 2s^2$ ਹੁੰਦੀ ਹੈ (ਸਾਰਣੀ 2.6 ਵਿੱਚ ਤੱਤਾਂ ਦਾ ਪਰਮਾਣੂਆਂ ਦੀ ਇਲੈਕਟ੍ਰਾਨਿਕ ਤਰਤੀਬ ਨੂੰ ਵੇਖੋ)

ਅਗਲੇ ਛੇ ਤੱਤਾਂ ਵਿੱਚ 2p ਆੱਰਬਿਟਲ ਇੱਕ-ਇੱਕ ਕਰਕੇ ਭਰੇ ਜਾਂਦੇ ਹਨ। ਇਸ ਲਈ ਇਨ੍ਹਾਂ ਤੱਤਾਂ ਦੀ ਇਲੈਕਟ੍ਰਾਨਿਕ ਤਰਤੀਬ ਇਸ ਤਰ੍ਹਾਂ ਹੁੰਦੀ ਹੈ।

ਨਾਈਟ੍ਰੌ ਜਨ (N, $1s^22s^22p^3$), ਆੱਕਸੀਜਨ (O, $1s^22s^22p^4$), ਫਲੌਰੀਨ (F, $1s^22s^22p^5$) ਨੀਆੱਨ (N, $1s^22s^22p^6$), 2p ਆੱਰਬਿਟਲਾਂ ਨੂੰ ਭਰਨ ਦੀ ਪ੍ਰਕਿਰਿਆ ਨੀਆੱਨ ਤੇ ਜਾ ਕੇ ਖਤਮ ਹੋ ਜਾਂਦੀ ਹੈ।ਇਨ੍ਹਾਂ ਤੱਤਾਂ ਦੇ ਆੱਰਬਿਟਲ ਚਿੱਤਰ ਇਸ ਪ੍ਰਕਾਰ ਦਰਸਾਏ ਜਾ ਸਕਦੇ ਹਨ—

ਸੋਡਿਅਮ (Na, $1s^22s^22p^63s^1$) ਤੋਂ ਆਰਗੱਨ $(Ar, 1s^22s^22p^63s^23p^6)$ ਤੱਕ ਸਾਰੇ ਤੱਤਾਂ ਦੇ ਪਰਮਾਣੂਆਂ ਵਿੱਚ ਇਲੈਕਟਾਨਿਕ ਤਰਤੀਬ ਦੀ ਪੱਧਤੀ Li ਤੋਂ Ne ਤੱਕ ਦੇ ਤੱਤਾਂ ਦੇ ਸਮਾਨ ਹੁੰਦੀ ਹੈ। ਇੱਥੇ ਅੰਤਰ ਕੇਵਲ ਇਹ ਹੁੰਦਾ ਹੈ ਕਿ ਹੁਣ 3s ਅਤੇ 3p ਆੱਰਬਿਟਲ ਭਰੇ ਜਾਂਦੇ ਹਨ।ਇਸ ਪ੍ਰਕਿਰਿਆ ਨੂੰ ਸਰਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ, ਬਸ਼ਰਤੇ ਪਹਿਲਾਂ ਦੇ ਸ਼ੈੱਲਾਂ ਦੇ ਕੁੱਲ ਇਲੈਕਟ੍ਰਾੱਨਾਂ ਨੂੰ ਨੀਆੱਨ (Ne) ਤੱਤ ਦੇ ਨਾਮ ਨਾਲ ਨਿਰੁਪਿਤ ਕੀਤਾ ਜਾਵੇ। ਸੋਡਿਅਮ ਤੋਂ ਆੱਰਗੱਨ ਤੱਕ ਦੀ ਇਲੈਕਟਾਨਿਕ ਤਰਤੀਬ ਨੂੰ ਇਸ ਤਰ੍ਹਾਂ ਲਿਖਿਆ ਜਾ ਸਕਦਾ ਹੈ—(Na,[Ne] $3s^{1}$), $(Ar[Ne]3s^{2}3p^{6}]$ । ਪੂਰਣ ਰੂਪ ਵਿੱਚ ਭਰੇ ਸ਼ੈੱਲਾਂ ਦੇ ਇਲੈਕਟ੍ਰਾਨਾਂ ਨੂੰ 'ਕੋਰ ਇਲੈਕਟ੍ਰਾਨ' ਕਹਿੰਦੇ ਹਨ ਅਤੇ ਉਹ ਇਲੈਕਟਾਨ, ਜੋ ਉੱਚਤਮ ਮੁੱਖ ਕੁਆਂਟਮ ਸੰਖਿਆ ਦੇ ਇਲੈਕਟ਼ਾਂਨਿਕ ਸ਼ੈੱਲ ਵਿੱਚ ਭਰੇ ਜਾਂਦੇ ਹਨ, ਸੰਯੋਜਕਤਾ ਇਲੈਕਟ੍ਰਾਨ ਅਖਵਾਉਂਦੇ ਹਨ।ਉਦਾਹਰਣ ਵਜੋਂ∹(Ne ਵਿੱਚ ਇਲੈਕਟ੍ਰਾਨ ਕੋਰ ਇਲੈਕਟ੍ਰਾਨ ਹਨ ਅਤੇ Na ਤੋਂ Ar ਤੱਕ ਇਲੈਕਟ੍ਰਾਨ ਸੰਯੋਜੀ ਇਲੈਕਟ੍ਰਾਨ ਹਨ। ਪੋਟਾਸ਼ਿਅਮ (K) ਅਤੇ ਕੈਲਸ਼ਿਅਮ (Ca) ਵਿੱਚ 3d ਆੱਰਬਿਟਲ ਦੀ ਤੁਲਨਾ ਵਿੱਚ 4s ਆੱਰਬਿਟਲ ਦੀ ਉਰਜਾ ਘੱਟ ਹੋਣ ਦੇ ਕਾਰਣ ਪਹਿਲਾਂ ਅਤੇ ਦੂਜਾ ਇਲੈਕਟ੍ਰਾੱਨ ਕ੍ਰਮਵਾਰ 4s ਆੱਰਬਿਟਲ ਵਿੱਚ ਜਾਂਦੇ ਹਨ।

ਸਕੈਡਿਅਮ ਤੋਂ ਸ਼ੁਰੂ ਕਰਨ ਤੇ ਇੱਕ ਨਵਾਂ ਲੱਛਣ ਵਿਖਾਈ ਦਿੰਦਾ ਹੈ। 3d ਆੱਰਬਿਟਲ ਦੀ ਉਰਜਾ 4p ਆੱਰਬਿਟਲ ਦੀ ਤਲਨਾ ਵਿੱਚ ਘੱਟ ਹੋਣ ਦੇ ਕਾਰਣ ਇਸ ਵਿੱਚ ਇਲੈਕਟਾਨ ਪਹਿਲਾਂ ਭਰਦੇ ਹਨ। ਨਤੀਜੇ ਵਜੋਂ ਅਗਲੇ ਦਸ ਤੱਤਾਂ-ਸਕੈਡਿਅਮ (Sc), ਟਾਈਟੇਨਿਅਮ (Ti), ਵੈਨੇਡਿਅਮ (V), ਕਰੋਮਿਅਮ (Cr), ਮੈਂਗਨੀਜ (Mn), ਆਇਰਨ (Fe), ਕੋਬਾਲਟ (Co), ਨਿਕੱਲ (Ni), ਕਾੱਪਰ (Cu) ਅਤੇ ਜਿੰਕ (Zn) ਵਿੱਚ ਪੰਜਾਂ 3d ਆੱਰਬਿਟਲਾਂ ਵਿੱਚ ਇਲੈਕਟਾਨ ਸਿਲਸਿਲੇਵਾਰ ਭਰੇ ਜਾਂਦੇ ਹਨ। ਅਸੀਂ ਇਹ ਵੇਖ ਕੇ ਹੈਰਾਨ ਹੋ ਸਕਦੇ ਹਾਂ ਕਿ ਕਰੋਮਿਅਮ ਅਤੇ ਕਾੱਪਰ ਵਿੱਚ 3d ਆੱਰਬਿਟਲ ਵਿੱਚ ਚਾਰ ਅਤੇ ਨੌਂ ਇਲੈਕਟ੍ਰਾੱਨਾਂ ਦੀ ਜਗ੍ਹਾ ਕ੍ਰਮਵਾਰ ਪੰਜ ਅਤੇ ਦੱਸ ਇਲੈਕਟ੍ਰਾਨ ਹੁੰਦੇ ਹਨ। ਇਸ ਦਾ ਕਾਰਣ ਇਹ ਹੈ ਕਿ ਅੱਧੇ ਅਤੇ ਪੂਰੇ ਭਰੇ ਆੱਰਬਿਟਲ ਵਧੇਰੇ ਸਥਾਈ ਹੁੰਦੇ ਹਨ ਅਰਥਾਤ ਉਨ੍ਹਾਂ ਦੀ ਉਰਜਾ ਘੱਟ ਹੁੰਦੀ ਹੈ। $p^{\scriptscriptstyle 3},\;p^{\scriptscriptstyle 6},\;d^{\scriptscriptstyle 5},$ d^{10}, f^{7}, f^{14} ਆਦਿ ਤਰਤੀਬਾਂ, ਜਿਨ੍ਹਾਂ ਵਿੱਚ ਆਰਬਿਟਲ ਜਾਂ ਤਾਂ ਅੱਧੇ ਜਾਂ ਪੂਰੇ ਭਰੇ ਹਨ, ਵਧੇਰੇ ਸਥਾਈ ਹੁੰਦੇ ਹਨ। ਇਸ ਲਈ ਕਰੋਮਿਅਮ ਅਤੇ ਕਾੱਪਰ ਵਿੱਚ $d^{\scriptscriptstyle 5}$ ਅਤੇ $d^{\scriptscriptstyle 10}$ ਤਰਤੀਬਾਂ ਨੂੰ ਪ੍ਰਾਥਮਿਕਤਾ ਮਿਲਦੀ ਹੈ (ਖੰਡ 2.6.6)। ਧਿਆਨ ਦਿਓ ਕਿ ਅਪਵਾਦ ਵੀ ਮਿਲਦੇ ਹਨ।

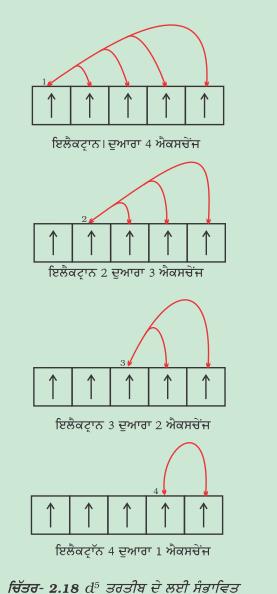
3d ਆੱਰਬਿਟਲਾਂ ਨੂੰ ਭਰਨ ਤੋਂ ਬਾਅਦ ਗੈਲਿਅਮ (Ga) ਤੋਂ 4p ਦਾ ਭਰਨਾ ਸ਼ੁਰੂ ਹੋ ਜਾਂਦਾ ਹੈ ਅਤੇ ਕ੍ਰਿਪਟਾੱਨ (Kr) ਤੇ ਪੂਰਾ ਹੁੰਦਾ ਹੈ।ਅਗਲੇ 18 ਤੱਤਾਂ-ਰੂਬੀਡਿਅਮ (Rb) ਤੋਂ ਜ਼ੀਨਾੱਨ (Xe), ਤੱਕ 5s, 4d ਅਤੇ 5p ਆੱਰਬਿਟਲਾਂ ਦੇ ਭਰਤ ਦੀ ਉਹੀ ਪੱਧਤੀ ਹੁੰਦੀ ਹੈ ਜੋ 4s, 3d ਅਤੇ 4p ਆੱਰਬਿਟਲਾਂ ਦੀ ਸੀ। ਇਸ ਦੇ ਬਾਅਦ 6s ਆੱਰਬਿਟਲਾਂ ਦਾ ਭਰਨਾ ਸ਼ੁਰੂ ਹੋ ਜਾਂਦਾ ਹੈ। ਸੀਜ਼ਿਅਮ (Cs) ਅਤੇ ਬੇਰਿਅਮ (Ba) ਵਿੱਚ ਇਸ ਆੱਰਬਿਟਲ ਵਿੱਚ ਕ੍ਰਮਵਾਰ ਇੱਕ ਅਤੇ ਦੋ ਇਲੈਕਟ੍ਰਾੱਨ ਹੁੰਦੇ ਹਨ। ਉਸ ਦੇ ਬਾਅਦ ਲੈਂਥੇਨਮ (La) ਤੋਂ ਮਰਕਰੀ (Hg) ਤੱਕ 4f ਅਤੇ 5d ਆੱਰਬਿਟਲਾਂ ਵਿੱਚ ਇਲੈਕਟ੍ਰਾਂਨ ਭਰੇ ਜਾਂਦੇ ਹਨ। ਇਸਦੇ ਬਾਅਦ 6p, 7s ਅਤੇ ਅਖੀਰ ਵਿੱਚ 5f ਅਤੇ 6d ਆੱਰਬਿਟਲਾਂ ਨੂੰ ਭਰਿਆ ਜਾਂਦਾ ਹੈ। ਯੂਰੇਨਿਅਮ (U) ਦੇ ਬਾਅਦ ਦੇ ਤੱਤ ਘੱਟ ਸਥਾਈ ਹੁੰਦੇ ਹਨ ਅਤੇ ਉਨ੍ਹਾਂ ਨੂੰ ਬਨਾਵਟੀ ਰੂਪ ਵਿੱਚ ਪ੍ਰਾਪਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਸਾਰਣੀ 2.6 ਵਿੱਚ ਗਿਆਤ ਤੱਤਾਂ ਦੇ ਇਲੈਕਟ੍ਰਾਨਿਕ ਤਰਤੀਬ (ਸਪੈਕਟ੍ਰਮੀ ਵਿਧੀਆਂ ਦੁਆਰਾ ਨਿਰਧਾਰਿਤ) ਦਿੱਤੀਆਂ ਗਈਆਂ ਹਨ।

ਤੁਸੀਂ ਇਹ ਪੁੱਛ ਸਕਦੇ ਹੋ ਕਿ ਆਖਰ ਇਨ੍ਹਾਂ ਤਰਤੀਬਾਂ ਨੂੰ ਜਾਣਨ ਦਾ ਕੀ ਲਾਭ ਹੋਵੇਗਾ ? ਆਧੁਨਿਕ ਰਸਾਇਣ ਵਿਗਿਆਨ ਦੇ ਅਧਿਐਨ ਵਿੱਚ ਰਸਾਇਣਿਕ ਵਿਹਾਰ ਨੂੰ ਸਮਝਣ ਅਤੇ ਉਸ ਦੀ ਵਿਆਖਿਆ ਕਰਨ ਵਿੱਚ ਇਲੈਕਟ੍ਰਾਨਿਕ ਤਰਤੀਬ ਨੂੰ ਹੀ ਅਧਾਰ ਮੰਨਿਆ ਜਾਂਦਾ ਹੈ। ਉਦਾਹਰਣ ਵਜੋਂ ਕੁਝ ਪ੍ਰਸ਼ਨਾਂ, ਜਿਵੇਂ-ਦੋ ਜਾਂ ਦੋ ਤੋਂ ਵੱਧ ਪਰਮਾਣੂ ਮਿਲਕੇ ਅਣੂ ਕਿਉਂ ਬਣਾਉਂਦੇ ਹਨ? ਕੋਈ ਤੱਤ ਧਾਤ ਜਾਂ ਅਧਾਤ ਕਿਉਂ ਹੁੰਦਾ ਹੈ ? He ਅਤੇ Ar ਵਰਗੇ ਤੱਤ ਕਿਰਿਆਸ਼ੀਲ ਕਿਉਂ ਨਹੀਂ ਹੁੰਦੇ ਹਨ, ਜਦ ਕਿ ਹੈਲੌਜਨ ਵਰਗੇ ਤੱਤ ਕਿਰਿਆਸ਼ੀਲ ਹੁੰਦੇ ਹਨ—ਇਨ੍ਹਾਂ ਸਭ ਦੇ ਉੱਤਰ ਇਲੈਕਟ੍ਰਾਨਿਕ ਤਰਤੀਬ ਦੇ ਅਧਾਰ ਤੇ ਦਿੱਤੇ ਜਾ ਸਕਦੇ ਹਨ। ਡਾਲਟਨ ਦੇ ਪਰਮਾਣੂ ਮਾੱਡਲ ਨਾਲ ਇਨ੍ਹਾਂ ਦਾ ਸਪਸ਼ਟੀਕਰਣ ਨਹੀਂ ਕੀਤਾ ਜਾ ਸਕਦਾ। ਇਸ ਲਈ ਆਧੁਨਿਕ ਰਸਾਇਣ ਵਿਗਿਆਨ ਦੇ ਕਈ ਪਹਿਲੂਆਂ ਨੂੰ ਚੰਗੀ ਤਰ੍ਹਾਂ ਸਮਝਣ ਦੇ ਲਈ ਇਲੈਕਟ੍ਰਾਨਿਕ ਤਰਤੀਬ ਦੀ ਪੂਰੀ ਜਾਣਕਾਰੀ ਹੋਣੀ ਅਤਿ ਜਰੂਰੀ ਹੈ।

2.6.6 ਪੂਰਣ ਭਰੇ ਅਤੇ ਅਰਧ ਭਰੇ ਸਬ ਸ਼ੈੱਲਾਂ ਦਾ ਸਥਾਈ ਪਨ

ਕਿਸੇ ਤੱਤ ਦੀ ਜਮੀਨੀ ਅਵਸਥਾ ਇਲੈਕਟ੍ਰਾਨਿਕ ਤਰਤੀਬ ਉਸਦੀ ਨਿਊਨਤਮ ਊਰਜਾ ਨਾਲ ਸਬੰਧਿਤ ਅਵਸਥਾ ਹੁੰਦੀ ਹੈ। ਵਧੇਰੇ ਪਰਮਾਣੂਆਂ ਦੀ ਇਲੈਕਟ੍ਰਾਨਿਕ ਤਰਤੀਬ ਭਾਗ 2.6.5 ਵਿੱਚ ਦਿੱਤੇ ਮੂਲਭੂਤ ਨਿਯਮਾਂ ਦੀ ਪਾਲਨਾ ਕਰਦੀ ਹੈ। ਪਰੰਤੂ ਕੁਝ ਤੱਤ (ਜਿਵੇਂ Cr ਅਤੇ Cu ਵਿੱਚ, ਜਿੱਥੇ ਦੋ ਸਬਸ਼ੈੱਲਾਂ, (4s ਅਤੇ 3d) ਦੀਆਂ ਊਰਜਾਵਾਂ ਵਿੱਚ ਘੱਟ ਅੰਤਰ ਹੁੰਦਾ ਹੈ) ਇੱਕ ਇਲੈਕਟ੍ਰਾਨ ਘੱਟ ਊਰਜਾ ਵਾਲੇ ਸਬ ਸ਼ੈੱਲ s ਤੋਂ ਵੱਧ ਊਰਜਾ ਵਾਲੇ ਸਬ ਸ਼ੈੱਲ ਵਿੱਚ ਸਤਾਨ-ਅੰਤਰਿਤ ਹੋ ਜਾਂਦਾ ਹੈ, ਬਸ਼ਰਤੇ ਇਸ ਸਥਾਨ

ਅੰਤਰਣ ਨਾਲ ਸਬ ਸ਼ੈੱਲ ਦੇ ਸਾਰੇ ਉੱਚ ਊਰਜਾ ਵਾਲੇ ਆੱਰਬਿਟਲ ਪ੍ਰਾਪਤ ਹੋਣ ਜੋ ਪੂਰਣ ਭਰੇ ਜਾਂ ਅਰਧ ਭਰੇ ਹੋਣ। ਇਸ ਲਈ $\,{
m Cr}\,$ ਅਤੇ $\,{
m Cu}\,$ ਦੇ ਸੰਯੋਜੀ ਇਲੈਕਟ੍ਰਾਨਿਕ ਤਰਤੀਬ ਕ੍ਰਮਵਾਰ $\,3d^5$


 $4s^1$ ਅਤੇ $3d^{10}\,4s^1$ ਹੋਣਗੀਆਂ ਨਾ ਕਿ $3d^4\,4s^2$ ਅਤੇ $3d^9\,4s^2$ । ਅਜਿਹਾ ਵੇਖਿਆ ਗਿਆ ਹੈ ਕਿ ਇਨ੍ਹਾਂ ਇਲੈਕਟ੍ਰਾਨਿਕ ਤਰਤੀਬਾਂ ਵਿੱਚ ਜਿਆਦਾ ਸਥਾਈਪਨ ਹੁੰਦਾ ਹੈ।

ਅਰਧ ਭਰੇ ਅਤੇ ਪੂਰਣ ਭਰੇ ਆਰਬਿਟਲਾਂ ਦੇ ਸਥਾਈਪਨ ਦੇ ਕਾਰਣ

ਅਰਧ ਭਰੇ ਅਤੇ ਪੂਰਣ ਭਰੇ ਸਬ ਸ਼ੈੱਲਾਂ ਦੇ ਸਥਾਈ ਹੋਣ ਦੇ ਕਾਰਣ ਹੇਠ ਲਿਖੇ ਹਨ—

- 1.ਇਲੈਕਟ੍ਰਾਨਾਂ ਦਾ ਸਮਮਿਤੀ ਵਿਤਰਣ : ਇਹ ਸਪੱਸ਼ਟ ਹੈ ਕਿ ਸਮਮਿਤੀ ਸਥਾਈਪਨ ਦਿੰਦੀ ਹੈ। ਪੂਰਣ ਭਰੇ ਹੋਏ ਜਾਂ ਅਰਧ ਭਰੇ ਸਬ ਸ਼ੈੱਲਾਂ ਵਿੱਚ ਇਲੈਕਟ੍ਰਾਨਾਂ ਦਾ ਵਿਤਰਣ ਸਮਮਿਤ ਹੁੰਦਾ ਹੈ। ਇਸ ਲਈ ਇਹ ਵਧੇਰੇ ਸਥਾਈ ਹੁੰਦੇ ਹਨ। ਇੱਕ ਹੀ ਸਬ ਸ਼ੈੱਲ ਵਿੱਚ (ਇੱਥੇ 3d) ਇਲੈਕਟ੍ਰਾਨਾਂ ਦੀ ਊਰਜਾ ਸਮਾਨ ਹੁੰਦੀ ਹੈ, ਪਰੰਤੂ ਉਸਦੇ ਤ੍ਰੈਵਿਮੀ ਵਿਤਰਣ ਭਿੰਨ ਹੁੰਦੇ ਹਨ। ਨਤੀਜੇ ਵਜੋਂ ਇਹ ਇੱਕ-ਦੂਜੇ ਨੂੰ ਆਮ ਨਾਲੋਂ ਘੱਟ ਸੁਰੱਖਿਅਣ ਕਰਦੇ ਹਨ ਅਤੇ ਇਲੈਕਟ੍ਰਾਨ ਨਿਊਕਲੀਅਸ ਦੁਆਰਾ ਵਧੇਰੇ ਪ੍ਰਬਲਤਾਨਾਲ ਆਕਰਸ਼ਿਤ ਹੋ ਜਾਂਦੇ ਹਨ।
- 2. ਵਟਾਂਦਰਾ ਊਰਜਾ: ਇਹ ਸਥਾਈਕਰਣ ਪ੍ਰਭਾਵ ਉਦੋਂ ਪੈਦਾ ਹੁੰਦਾ ਹੈ, ਜਦੋਂ ਦੋ ਜਾਂ ਦੋ ਤੋਂ ਵੱਧ ਇਲੈਕਟ੍ਰਾਨ (ਜਿਨ੍ਹਾਂ ਦੇ ਚੱਕਰਣ ਸਮਾਨ ਹੁੰਦੇ ਹਨ) ਇੱਕ ਸਬ ਸ਼ੈੱਲ ਦੇ ਭ੍ਰਸ਼ਟੀਕਰਣ ਆਰਬਿਟਲਾਂ ਵਿੱਚ ਮੌਜੂਦ ਹੁੰਦੇ ਹਨ। ਇਹ ਇਲੈਕਟ੍ਰਾਨ ਆਪਣਾ ਸਥਾਨ ਵਟਾਂਦਰੇ ਦਾ ਸੁਭਾਅ ਰੱਖਦੇ ਹਨ। ਇਸ ਵਟਾਂਦਰੇ ਦੇ ਕਾਰਣ 'ਮੁਕਤ ਊਰਜਾ' (exchange energy) ਅਖਵਾਉਂਦੀ ਹੈ। ਸੰਭਾਵਿਤ ਵਟਾਂਦਰਿਆਂ ਦੀ ਸੰਖਿਆ ਉਦੋਂ ਅਧਿਕਤਮ ਹੁੰਦੀ ਹੈ, ਜਦੋਂ ਸਬ ਸ਼ੈੱਲ ਪੂਰਣ ਭਰੇ (fully filled) ਜਾਂ ਅਰਧ ਭਰੇ (half filled) ਹੁੰਦੇ ਹਨ (ਚਿੱਤਰ 2.18)। ਇਸਦੇ ਨਤੀਜੇ ਵਜੋਂ ਵਟਾਂਦਰਾ ਊਰਜਾ ਅਧਿਕਤਮ ਹੁੰਦੀ ਹੈ ਅਤੇ ਇਸੇ ਤਰ੍ਹਾਂ ਸਥਾਈਪਨ ਵੀ ਅਧਿਕਤਮ ਹੁੰਦਾ ਹੈ।

ਤੁਸੀਂ ਵੇਖੋਗੇ ਕਿ ਇਹ ਊਰਜਾ ਹੁੰਡ ਦੇ ਨਿਯਮ ਦਾ ਅਧਾਰ ਹੈ, ਜਿਸਦੇ ਅਨੁਸਾਰ ਸਮਾਨ ਊਰਜਾ ਦੇ ਆਰਬਿਟਲਾਂ ਵਿੱਚ ਜਾਣ ਵਾਲੇ ਇਲੈਕਟ੍ਰਾੱਨਾਂ ਦੇ ਜਿੱਥੇ ਤੱਕ ਹੋਵੇ ਸਮਾਨਅੰਤਰ ਚੱਕਰਣ ਹੁੰਦੇ ਹਨ। ਦੂਜੇ ਸ਼ਬਦਾਂ ਵਿੱਚ, ਅਰਧ ਭਰੇ ਅਤੇ ਪੂਰਣ ਭਰੇ ਸਬ ਸ਼ੈੱਲਾਂ ਦਾ ਸਥਾਈਪਨ (i) ਆਸ ਤੋਂ ਘੱਟ ਸੁੱਰਖਿਅਣ (ii) ਘੱਟ ਕੁਲੰਬਿਕ ਪ੍ਤੀਕਰਸ਼ਣ ਊਰਜਾ ਅਤੇ (iii) ਉੱਚ ਵਟਾਂਦਰਾ ਊਰਜਾ ਦੇ ਕਾਰਣ ਹੁੰਦਾ ਹੈ। ਵਟਾਂਦਰਾ ਊਰਜਾ ਦੇ ਵਿਸ਼ੇ ਵਿੱਚ ਤੁਸੀਂ ਅਗਲੀਆਂ ਜਮਾਤਾਂ ਵਿੱਚ ਪੜ੍ਹੋਗੇ।

ਵਟਾਂਦਰਾ

Downloaded from https:// www.studiestoday.com

62 CHEMISTRY

ਸਾਰਣੀ 2.6 ਤੱਤਾਂ ਦੀ ਇਲੈਕਟ੍ਰਾਨਿਕ ਤਰਤੀਬ

ਤੱਤ	Z	1s	2 <i>s</i>	2 p	3s	3 <i>p</i>	3d	4s	4 <i>p</i>	4d 4f	5 <i>s</i>	5 <i>p</i>	5d 5f	6s	6 <i>p</i>	6d	7 <i>s</i>
H He	1 2	1 2															
Li Be B C N O F Ne	3 4 5 6 7 8 9	2 2 2 2 2 2 2 2 2	1 2 2 2 2 2 2 2 2	1 2 3 4 5 6													
Na Mg Al Si P S Cl Ar K Ca Sc Ti V Cr* Mn Fe Co Ni Cu* Zn	11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	$\begin{smallmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6$	1 2 3 5 5 6 7 8 10 10	1 2 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 2									
Ga Ge As Se Br Kr Rb Sr Y Zr Nb* Mo* Tc Ru* Rh* Pd* Ag* Cd In Sn Sb Te I	31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	666666666666666666666666666666666666666	10 10 10 10 10 10 10 10 10 10 10 10 10 1	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 2 3 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	1 2 4 5 5 7 8 10 10 10 10 10 10 10 10 10 10 10	1 2 2 2 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2	1 2 3 4 5 6					

 $[\]hbox{\it *Elements with exceptional electronic configurations}$

ਤੱਤ z	1s	2s	2 <i>p</i>	3s	3 <i>p</i>	3d	4s	4 <i>p</i>	4d	4 f	5 <i>s</i>	5 <i>p</i>	5d 5f	6 <i>s</i>	6 <i>p</i>	6d	7s
Cs 55 Ba 56 La* 57 Ce* 58 Pr 59 Nd 60 Pm 61 Sm 62 Eu 63 Gd* 64 Tb 65 Dy 66 Ho 67 Er 68 Tm 69 Yb 70 Lu 71 Hf 72 Ta 73 W 74 Re 75 Os 76 Ir 77 Pt* 78 Au* 79 Hg 80 Tl 81 Pb 82 Bi 83 Po 84 At 85 Rn 86	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	10 10 10 10 10 10 10 10 10 10 10 10 10 1	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	10 10 10 10 10 10 10 10 10 10 10 10 10 1	2 3 4 5 6 7 7 9 10 11 12 13 14 14 14 14 14 14 14 14 14 14 14 14 14	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	666666666666666666666666666666666666666	1 1 2 3 4 5 6 7 9 10 10 10 10 10 10 10	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 2 3 4 5 6		
Fr 87 Ra 88 Ac 89 Th 90 Pa 91 U 92 Np 93 Pu 94 Am 95 Cm 96 Bk 97 Cf 98 Es 99 Fm 100 Md 101 No 102 Lr 103 Rf 104 Db 105 Sg 106 Bh 107 Hs 108 Mt 109 Ds 110 Rg** 111	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	10 10 10 10 10 10 10 10 10 10 10 10 10 1	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	666666666666666666666666666666666666666	10 10 10 10 10 10 10 10 10 10 10 10 10 1	14 14 14 14 14 14 14 14 14 14 14 14 14 1	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	666666666666666666666666666666666666666	10 10 10 10 10 2 10 3 10 4 10 6 10 7 10 7 10 8 10 10 10 11 10 12 10 13 10 14 10 10 11 10 12 10 13 10 14 10 14 10 14 10 14 10 14 10 14 10 14	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	666666666666666666666666666666666666666	1 2 1 1 1 1 1 1 2 3 4 5 6 6 7 8 10	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

^{**} Elements with atomic number 112 and above have been reported but not yet fully authenticated and named.

ਸਾਰਾਂਸ਼

ਪਰਮਾਣੂ ਤੱਤਾਂ ਦੇ ਰਚਨਾਤਮਕ ਭਾਗ ਹੁੰਦੇ ਹਨ।ਇਹ ਤੱਤ ਦੇ ਅਜਿਹੇ ਛੋਟੇ ਭਾਗ ਹਨ, ਜੋ ਰਸਾਇਣਿਕ ਕਿਰਿਆ ਵਿੱਚ ਭਾਗ ਲੈਂਦੇ ਹਨ।ਪਹਿਲਾਂ ਪਰਮਾਣੂ ਸਿਧਾਂਤ, ਜਿਸ ਨੂੰ ਜਾੱਨ ਡਾਲਟਨ ਨੇ ਸੰਨ 1808 ਵਿੱਚ ਪ੍ਰਸਤੁਤ ਕੀਤਾ, ਦੇ ਅਨੁਸਾਰ ਪਰਮਾਣੂ ਪਦਾਰਥ ਦੇ ਅਜਿਹੇ ਸਭ ਤੋਂ ਛੋਟੇ ਕਣ ਹੁੰਦੇ ਹਨ, ਜਿਨ੍ਹਾਂ ਨੂੰ ਹੋਰ ਵੰਡਿਆ ਨਹੀਂ ਜਾ ਸਕਦਾ।ਉਨ੍ਹੀਵੀਂ ਸਦੀ ਦੇ ਅੰਤ ਵਿਚ ਪ੍ਯੋਗਾਂ ਦੁਆਰਾ ਇਹ ਸਿੱਧ ਹੋ ਗਿਆ ਕਿ ਪਰਮਾਣੂ ਵਿਭਾਜਿਤ ਹੈ ਅਤੇ ਇਹ ਤਿੰਨ ਮੂਲ ਕਣਾਂ (ਇਲੈਕਟ੍ਰਾੱਨ, ਪ੍ਰੋਟਾੱਨ ਅਤੇ ਨਿਊਟ੍ਰਾਨ) ਦੁਆਰਾ ਬਣਿਆ ਹੁੰਦਾ ਹੈ।ਇਨ੍ਹਾਂ ਉੱਪ–ਪਰਮਾਣਵੀ ਕਣਾਂ ਦੀ ਖੋਜ ਦੇ ਬਾਅਦ ਪਰਮਾਣੂ ਦੀ ਰਚਨਾ ਨੂੰ ਸਪੱਸ਼ਟ ਕਰਨ ਦੇ ਲਈ ਬਹੁਤ ਸਾਰੇ ਪਰਮਾਣੂ ਮਾੱਡਲ ਪਸਤਤ ਕੀਤੇ ਗਏ।

ਸੰਨ 1898 ਵਿੱਚ ਥਾੱਮਸਨ ਨੇ ਕਿਹਾ ਕਿ ਪਰਮਾਣ ਇੱਕ ਸਮਾਨ ਧਨਾਤਮਕ ਬਿਜਲਈ ਚਾਰਜ ਦਾ ਇੱਕ ਗੋਲਾ ਹੈਦਾ ਹੈ, ਜਿਸ ਉੱਤੇ ਇਲੈਕਟ੍ਰਾਨ ਮੌਜਦੂ ਹੁੰਦੇ ਹਨ।ਉਹ ਮਾੱਡਲ, ਜਿਸ ਵਿੱਚ ਪਰਮਾਣੂ ਦਾ ਪੁੰਜ ਪੂਰੇ ਪਰਮਾਣੂ ਤੇ ਇੱਕ ਸਮਾਨ ਵਿਤਰਿਤ ਮੰਨਿਆ ਗਿਆ ਸੀ, ਸੰਨ 1909 ਵਿੱਚ ਰਦਰਫੋਰਡ ਨੇ ਮਹੱਤਵਪੂਰਣ α- ਕਣ ਖਿੰਡਾਉ ਪ੍ਰਯੋਗ ਦੁਆਰਾ ਗਲਤ ਸਿੱਧ ਹੋਇਆ। ਰਦਰਫੋਰਡ ਨੇ ਇਹ ਸਿੱਟਾ ਕੱਢਿਆ ਕਿ ਪਰਮਾਣੂ ਦੇ ਕੇਂਦਰ ਵਿੱਚ ਬਹੁਤ ਛੋਟੇ ਅਕਾਰ ਦਾ ਧਨਚਾਰਜਿਤ ਨਿਊਕਲੀਅਸ ਹੁੰਦਾ ਹੈ ਅਤੇ ਇਲੈਕਟ੍ਰਾਨ ਇਸਦੇ ਚੌਹਾਂ ਪਾਸੇ ਵ੍ਤਿਕਾਰ ਆੱਰਬਿਟਾਂ ਵਿੱਚ ਗਤੀ ਕਰਦੇ ਹਨ।ਰਦਰਫੋਰਡ ਮਾੱਡਲ ਜੋ ਸੂਰਜਮੰਡਲ ਨਾਲ ਮਿਲਦਾ ਜੂਲਦਾ ਸੀ, ਨਿਸ਼ਚਿਤ ਰੂਪ ਵਿੱਚ ਡਾਲਟਨ ਮਾੱਡਲ ਨਾਲੋਂ ਬਿਹਤਰ ਸੀ, ਪਰੰਤੂ ਇਹ ਪਰਮਾਣੂ ਦੀ ਸਥਿਰਤਾ ਦੀ, ਅਰਥਾਤ ਇਹ ਇਸ ਗੱਲ ਦੀ ਵਿਆਖਿਆ ਨਹੀਂ ਕਰ ਸਕਿਆ ਕਿ ਇਲੈਕਟ੍ਰਾੱਨ ਨਿਊਕਲੀਅਸ ਵਿੱਚ ਕਿਉਂ ਨਹੀਂ ਵੜ ਜਾਂਦੇ ਹਨ ? ਇਸ ਦੇ ਇਲਾਵਾ ਇਹ ਪਰਮਾਣੂ ਦੀ ਇਲੈਕਟ੍ਰਾਨਿਕ ਰਚਨਾ, ਅਰਥਾਤ ਨਿਊਕਲੀਅਸ ਦੇ ਚੌਹਾਂ ਪਾਸਿਆਂ ਤੇ ਇਲੈਕਟ੍ਰਾਨਾਂ ਦੇ ਵਿਤਰਣ ਅਤੇ ਉਨ੍ਹਾਂ ਦੀ ਉਰਜਾ ਦੇ ਬਾਰੇ ਵਿੱਚ ਕੁਝ ਨਹੀਂ ਦੱਸ ਸਕਿਆ। ਰਦਰਫੌਰਡ ਮਾੱਡਲ ਦੀਆਂ ਇਨ੍ਹਾਂ ਕਮੀਆਂ ਨੂੰ ਸੰਨ 1913 ਵਿੱਚ ਨੀਲਬੋਹਰ ਨੇ ਹਾਈਡ੍ਰੋਜਨ ਪਰਮਾਣੂ ਦੇ ਆਪਣੇ ਮਾੱਡਲ ਵਿੱਚ ਦੂਰ ਕੀਤਾ ਅਤੇ ਇਹ ਪ੍ਰਸਤਾਵਿਤ ਕੀਤਾ ਕਿ ਨਿਊਕਲੀਅਸ ਦੇ ਚੌਹਾਂ ਪਾਸਿਆਂ ਤੇ ਵਿਤਕਾਰ ਆਰਿਬਿਟਾਂ ਵਿੱਚ ਇਲੈਕਟਾਨ ਗਤੀ ਕਰਦਾ ਹੈ।ਕੇਵਲ ਕੁੱਝ ਆਰਿਬਟਾਂ ਦਾ ਹੀ ਅਸਤੀਤਵ ਹੋ ਸਕਦਾ ਹੈ ਅਤੇ ਹਰ ਇੱਕ ਆੱਰਬਿਟ ਦੀ ਨਿਸ਼ਚਿਤ ੳਰਜਾ ਹੁੰਦੀ ਹੈ।ਬੋਹਰ ਨੇ ਭਿੰਨ-ਭਿੰਨ ਆੱਰਬਿਟਾਂ ਵਿੱਚ ਇਲੈਕਟਾਨ ਦੀ ੳਰਜਾ ਦੀ ਗਣਨਾ ਕੀਤੀ ਅਤੇ ਹਰ ਇੱਕ ਆਰਬਿਟ ਲਈ ਨਿਊਕਲੀਅਸ ਅਤੇ ਇਲੈਕਟ੍ਰਾਨ ਦੀ ਦੂਰੀ ਦਾ ਪਰਿਕਲਨ ਕੀਤਾ।ਹਾਲਾਂਕਿ ਬੋਹਰ ਮਾੱਡਲ ਹਾਈਡ੍ਰੋਜਨ ਦੇ ਸਪੈਕਟਮ ਨੂੰ ਤਸੱਲੀਪੂਰਵਕ ਸਪੱਸ਼ਟ ਕਰਦਾ ਸੀ, ਲੇਕਿਨ ਇਹ ਬਹੁਇਲੈਕਟਾਨ ਪਰਮਾਣੂਆਂ ਦੇ ਸਪੈਕਟਮਾਂ ਦੀ ਵਿਆਖਿਆ ਨਹੀਂ ਕਰ ਸਕਿਆ। ਇਸਦਾ ਕਾਰਣ ਬਹੁਤ ਜਲਦੀ ਹੀ ਪਤਾ ਲੱਗ ਗਿਆ। ਬੋਹਰ ਮਾੱਡਲ ਵਿੱਚ ਇਲੈਕਟਾਨ ਨੂੰ ਨਿਊਕਲੀਅਸ ਦੇ ਚੌਹਾਂ ਪਾਸਿਆਂ ਤੇ ਇੱਕ ਨਿਸ਼ਚਿਤ ਵਿ੍ਤਕਾਰ ਆੱਰਬਿਟ ਵਿੱਚ ਗਤੀ ਕਰਦੇ ਹੋਏ ਚਾਰਜਿਤ ਕਣ ਦੇ ਰੂਪ ਵਿੱਚ ਮੰਨਿਆ ਗਿਆ ਸੀ। ਇਸ ਵਿੱਚ ਉਸ ਦੇ ਤਰੰਗ ਵਰਗੇ ਲੱਛਣਾਂ ਦੇ ਬਾਰੇ ਨਹੀਂ ਸੋਚਿਆ ਗਿਆ ਸੀ। ਇੱਕ ਆੱਰਬਿਟ ਇੱਕ ਨਿਸ਼ਚਿਤ ਪੱਥ ਹੁੰਦਾ ਹੈ ਅਤੇ ਇਸ ਪੱਥ ਨੂੰ ਪੂਰੀ ਤਰ੍ਹਾਂ ਤਾਂ ਹੀ ਪਰਿਭਾਸ਼ਿਤ ਮੰਨਿਆ ਜਾ ਸਕਦਾ ਹੈ, ਜਦੋਂ ਇੱਕ ਹੀ ਸਮੇਂ ਤੇ ਇਲੈਕਟ੍ਰਾੱਨ ਦੀ ਸਹੀ ਸਥਿਤੀ ਅਤੇ ਸਹੀ ਵੇਗ ਗਿਆਤ ਹੋਵੇ। ਹਾਈਜ਼ੇਨਬਰਗ ਦੇ 'ਅਨਿਸ਼ਚਿਤਤਾ ਸਿਧਾਂਤ' ਦੇ ਅਨੁਸਾਰ ਅਜਿਹਾ ਸੰਭਵ ਨਹੀਂ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਹਾਈਡ੍ਰੋਜਨ ਦਾ ਬੋਹਰ ਮਾੱਡਲ ਨਾ ਕੇਵਲ ਇਲਕਟਾੱਨ ਦੇ ਦਹਰੇ ਵਿਹਾਰ ਦੀ ੳਪੇਖਿਆ ਕਰਦਾ ਹੈ, ਬਲਕਿ ਹਾਈਜ਼ੇਨਬਰਗ ਅਨਿਸ਼ਚਿਤਤਾ ਸਿਧਾਂਤ ਦਾ ਵੀ ਵਿਰੋਧ ਕਰਦਾ ਹੈ।

ਸੰਨ 1926 ਵਿੱਚ ਇਰਵਿਨ ਸ਼ਰੋਡਿੰਜਰ ਨੇ ਇੱਕ ਸਮੀਕਰਣ ਦਿੱਤਾ ਜਿਸ ਨੂੰ ਸ਼ਰੋਡਿੰਜਰ ਸਮੀਕਰਣ ਕਿਹਾ ਜਾਂਦਾ ਹੈ। ਇਸ ਦੇ ਦੁਆਰਾ ਨਿਊਕਲੀਅਸ ਦੇ ਦੁਆਲੇ ਸਥਾਨ ਤੇ ਇਲੈਕਟ੍ਰਾੱਨ ਦੇ ਵਿਤਰਣ ਅਤੇ ਪਰਮਾਣੂਆਂ ਵਿੱਚ ਅਨੁਮਤ ਊਰਜਾ ਸਤਰਾਂ ਦਾ ਵਰਣਨ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ ਇਹ ਸਮੀਕਰਣ ਨਾ ਕੇਵਲ ਡੀ ਬ੍ਰਾਗਲੀ ਦੇ ਤਰੰਗ-ਕਣ ਵਾਲੇ ਦੂਹਰੇ ਲੱਛਣ ਦੀ ਸੰਕਲਪਨਾ ਨੂੰ ਧਿਆਨ ਵਿੱਚ ਰੱਖਦਾ ਹੈ ਬਲਕਿ ਹਾਈਜ਼ੇਨਬਰਗ ਦੇ ਅਨਿਸ਼ਚਿਤਤਾ ਸਿਧਾਂਤ ਦੇ ਵੀ ਸੰਗਤ ਹੈ। ਜਦ ਇਸ ਸਮੀਕਰਣ ਨੂੰ ਹਾਈਡ੍ਰੋਜਨ ਪਰਮਾਣੂ ਵਿੱਚ ਇਲੈਕਟ੍ਰਾੱਨ ਦੇ ਲਈ ਹੱਲ ਕੀਤਾ ਗਿਆ ਤਾਂ ਇਲੈਕਟ੍ਰਾਨ ਦੇ ਸੰਭਵ ਊਰਜਾ ਸਤਰਾਂ ਅਤੇ ਸੰਗਤ ਤਰੰਗ-ਫਲਨ ਜੋ ਤਿੰਨ ਕੁਆਂਟਮ ਸੰਖਿਆਵਾਂ-ਮੁੱਖ ਕੁਆਂਟਮ ਸੰਖਿਆ n ਖਿਤਿਜ ਚਾਪੀ ਕੁਆਂਟਮ ਸੰਖਿਆ ਅਤੇ ਚੁੰਬਕੀ ਕੁਆਂਟਮ ਸੰਖਿਆ $m_{_l}$ ਦੇ ਦੁਆਰੇ ਪਹਿਚਾਣੇ ਜਾਂਦੇ ਹਨ, ਸ਼ਰੋਡਿੰਜਰ ਸਮੀਕਰਣ ਦੇ ਹੱਲ ਦੇ ਪਰਿਣਾਮ ਸਰੂਪ ਪ੍ਰਾਪਤ ਹੁੰਦੇ ਹਨ ਇਨ੍ਹਾਂ ਤਿੰਨਾਂ ਕੁਆਂਟਮ ਸੰਖਿਆਵਾਂ ਦੇ ਮਾਨਾਂ ਉੱਤੇ ਪਾਬੰਦੀ ਵੀ ਸ਼ਰੋਡਿੰਜਰ ਸਮੀਕਰਣ ਦੇ ਹੱਲ ਤੋਂ ਪ੍ਰਾਪਤ ਹੁੰਦੀ ਹੈ। ਹਾਈਡ੍ਰੋਜਨ ਦਾ ਕੁਆਂਟਮ ਯੰਤਰਕੀ ਮਾੱਡਲ ਉਸ ਦੇ ਸਪੈਕਟ੍ਰੱਮ ਦੇ ਸਾਰੇ ਪਹਿਲੂਆਂ ਦੀ ਵਿਆਖਿਆ ਕਰਦਾ ਹੈ ਅਤੇ ਉਸਦੇ ਇਲਾਵਾ ਕੁੱਝ ਅਜਿਹੀਆਂ ਪਰਿਘਟਨਾਵਾਂ ਨੂੰ ਵੀ ਸਮਝਾਂਦਾ ਹੈ ਜੋ ਬੋਹਰ ਮਾੱਡਲ ਦੁਆਰਾ ਸੱਪਸ਼ਟ ਨਹੀਂ ਹੋ ਸਕੀਆਂ।

ਪਰਮਾਣੂ ਦੇ ਕੁਆਂਟਮ ਯੰਤਰਕੀ ਮਾੱਡਲ ਦੇ ਅਨੁਸਾਰ ਬਹੁ ਇਲੈਕਟ੍ਰਾਨ ਪਰਮਾਣੂਆਂ ਦੇ ਇਲੈਕਟ੍ਰਾਨ–ਵਿਤਰਣ ਨੂੰ ਕਈ ਸ਼ੈੱਲਾਂ ਵਿੱਚ ਵੰਡਿਆ ਗਿਆ ਹੈ। ਇਹ ਸ਼ੈੱਲ ਇੱਕ ਜਾਂ ਵੱਧ ਸਬ–ਸ਼ੈੱਲਾਂ ਦੇ ਬਣੇ ਹੋ ਸਕਦੇ ਹਨ ਅਤੇ ਇਨ੍ਹਾਂ ਸਬ ਸ਼ੈਲਾਂ ਵਿੱਚ ਇੱਕ ਜਾਂ ਵਧੇਰੇ ਆੱਰਬਿਟਲ ਹੋ ਸਕਦੇ ਹਨ ਜਿਨ੍ਹਾਂ ਵਿੱਚ ਇਲੈਕਟ੍ਰਾਨ ਮੌਜੂਦ ਹੁੰਦਾ ਹੈ। ਹਾਈਡ੍ਰੋਜਨ ਅਤੇ ਹਾਈਡ੍ਰੋਜਨ ਵਰਗੇ ਸਿਸਟਮਾਂ (ਉਦਾਹਰਣ ਵਜੋਂ— $\mathrm{He^+}$, $\mathrm{Li^{2+}}$ ਆਦਿ) ਵਿੱਚ ਕਿਸੇ ਦਿੱਤੇ ਗਏ ਸ਼ੈੱਲ ਦੇ ਸਾਰੇ ਆੱਰਬਿਟਲਾਂ ਦੀ ਊਰਜਾ ਸਮਾਨ ਹੁੰਦੀ ਹੈ, ਪਰੰਤੂ ਬਹੁ–ਇਲੈਕਟ੍ਰਾਨ ਪਰਮਾਣੂਆਂ ਵਿੱਚ ਆੱਰਬਿਟਲਾਂ ਦੀ ਊਰਜਾ n ਅਤੇ l ਦੇ ਮਾਨਾਂ ਉੱਤੇ ਨਿਰਭਰ ਕਰਦੀ ਹੈ। ਕਿਸੇ ਆੱਰਬਿਟਲ ਦੇ ਲਈ (n+l) ਦਾ ਮਾਨ ਜਿੰਨਾਂ ਘੱਟ ਹੋਵੇਗਾ ਉਸ ਦੀ ਊਰਜਾ ਵੀ ਉਨੀ ਹੀ ਘੱਟ ਹੋਵੇਗੀ। ਜੇ ਕੋਈ ਦੋ ਆੱਰਬਿਟਲਾਂ ਦਾ (n+l) ਦਾ ਮਾਨ ਸਮਾਨ ਹੈ, ਤਾਂ ਉਸ ਆੱਰਬਿਟਲ ਦੀ ਊਰਜਾ ਘੱਟ ਹੋਵੇਗੀ, ਜਿਸ ਦੇ ਲਈ n ਦਾ ਮਾਨ ਘੱਟ ਹੈ। ਕਿਸੇ ਪਰਮਾਣੂ ਵਿੱਚ ਅਜਿਹੇ ਕਈ ਆੱਰਬਿਟਲ

ਸੰਭਵ ਹੁੰਦੇ ਹਨ, ਅਤੇ ਉਨ੍ਹਾਂ ਵਿੱਚ ਊਰਜਾ ਦੇ ਵੱਧਦੇ ਕ੍ਰਮ ਵਿੱਚ ਇਲੈਕਟ੍ਰਾਨ ਪਾਓਲੀ ਦੇ ਵਰਜਨ ਸਿਧਾਂਤ (ਕਿਸੇ ਪਰਮਾਣੂ ਵਿੱਚ ਕੋਈ ਦੋ ਇਲੈਕਟ੍ਰਾਨਾਂ ਦੀ ਚੌਹਾਂ ਕੁਆਂਟਮ ਸੰਖਿਆਵਾਂ ਦਾ ਮਾਨ ਸਮਾਨ ਨਹੀਂ ਹੋ ਸਕਦਾ) ਅਤੇ ਹੁੰਡ ਦੇ ਅਧਿਕਤਮ ਬਹੁਕਤਾ ਨਿਯਮ (ਇੱਕ ਸੱਬ-ਸ਼ੈੱਲ ਦੇ ਆੱਰਬਿਟਲਾਂ ਵਿੱਚ ਇਲੈਕਟ੍ਰਾਨਾਂ ਦਾ ਯੁਗਮਨ ਉਦੋਂ ਤੱਕ ਸ਼ੁਰੂ ਨਹੀਂ ਹੁੰਦਾ, ਜਦ ਤੱਕ ਹਰ ਇੱਕ ਆੱਰਬਿਟਲ ਵਿੱਚ ਇੱਕ-ਇੱਕ ਇਲੈਕਟ੍ਰਾਨ ਨਾ ਆ ਜਾਏ) ਦੇ ਅਧਾਰ ਤੇ ਭਰੇ ਜਾਂਦੇ ਹਨ।ਪਰਮਾਣੂਆਂ ਦੀ ਇਲੈਕਟ੍ਰਾਨਿਕ ਤਰਤੀਬ ਇਨ੍ਹਾਂ ਵਿਚਾਰਾਂ ਤੇ ਅਧਾਰਿਤ ਹੈ।

ਅਭਿਆਸ

- 2.1 (i) ਇੱਕ ਗ੍ਰਾਮ ਭਾਰ ਵਿੱਚ ਇਲੈਕਟ੍ਰਾਨਾਂ ਦੀ ਸੰਖਿਆ ਦਾ ਪਰਿਕਲਨ ਕਰੋ।
 - (ii) ਇੱਕ ਮੋਲ ਇਲੈਕਟਾਨਾਂ ਦੇ ਪੰਜ ਅਤੇ ਚਾਰਜ ਦਾ ਪਰਿਕਲਨ ਕਰੋ।
- 2.2 (i) ਮੀਥੇਨ ਦੇ ਇੱਕ ਮੋਲ ਵਿੱਚ ਮੌਜੂਦ ਇਲੈਕਟ੍ਰਾਨਾਂ ਦੀ ਸੰਖਿਆ ਦਾ ਪਰਿਕਲਨ ਕਰੋ।
 - (ii) $7 \text{ mg}^{-14}\text{C}$ ਵਿੱਚ ਨਿਊਟ੍ਰਾਨਾਂ ਦੀ (ੳ) ਕੁੱਲ ਸੰਖਿਆ ਅਤੇ (ਅ) ਕੁੱਲ ਪੁੰਜ ਗਿਆਤ ਕਰੋ (ਨਿਊਟ੍ਰਾਨ ਦਾ ਪੁੰਜ = 1.675×10^{-27} Kg ਮੰਨ ਲਓ)
 - (iii) ਸਟੈਂਡਰਡ ਤਾਪਮਾਨ ਅਤੇ ਦਾਬ (STP) ਤੇ 34 mg of NH₃ ਵਿੱਚ ਪ੍ਰੋਟਾਨਾਂ ਦੀ (ੳ) ਕੁੱਲ ਸੰਖਿਆ (ਅ) ਕੁਲ ਪੁੰਜ ਦੱਸੋ। ਦਾਬ ਅਤੇ ਤਾਪਮਾਨ ਵਿੱਚ ਪਰਿਵਰਤਨ ਨਾਲ ਕੀ ਉੱਤਰ ਵਿੱਚ ਪਰਿਵਰਤਨ ਹੋਵੇਗਾ ?
- 2.3 ਹੇਠ ਲਿਖੇ ਨਿਊਕਲੀਅਸਾਂ ਵਿੱਚ ਮੌਜੂਦ ਨਿਊਟ੍ਰਾਨਾਂ ਅਤੇ ਪ੍ਰੋਟਾੱਨਾਂ ਦੀ ਸੰਖਿਆ ਦੱਸੋ- $^{13}_{6}$ C, $^{16}_{8}$ O, $^{12}_{12}$ Mg, $^{56}_{56}$ Fe, $^{88}_{38}$ Sr
- 2.4 ਹੇਠ ਦਿੱਤੇ ਗਏ ਪਰਮਾਣੂ ਪੁੰਜ (Z) ਅਤੇ ਪਰਮਾਣੂ ਸੰਖਿਆ (A) ਵਾਲੇ ਪਰਮਾਣੂਆਂ ਦਾ ਪੂਰਣ ਪ੍ਰਤੀਕ ਲਿਖੋ—
 - (i) Z = 17, A = 35.
 - (ii) Z = 92, A = 233.
 - (iii) Z = 4, A = 9.
- 2.5 ਸੋਡੀਅਮ ਲੈਂਪ ਦੁਆਰਾ ਉਤਰਸਰਜਿਤ ਪੀਲੇ ਪ੍ਰਕਾਸ਼ ਦੀ ਤਰੰਗ ਲੰਬਾਈ (λ) 580 nm ਹੈ। ਇਸ ਦੀ ਅਵਰਤੀ (ν) ਅਤੇ ਤਰੰਗ ਸੰਖਿਆ ($\overline{\nu}$) ਦਾ ਪਰਿਕਲਨ ਕਰੋ।
- 2.6 ਹਰ ਇੱਕ ਅਜਿਹੇ ਫੋਟਾੱਨ ਦੀ ਊਰਜਾ ਗਿਆਤ ਕਰੋ—
 - (i) ਜੋ 3×10¹⁵ Hz ਆਵਰਤੀ ਵਾਲੇ ਪ੍ਰਕਾਸ਼ ਦੇ ਸੰਗਤ ਹੋਵੇ।
 - (ii) ਜਿਸ ਦੀ ਤਰੰਗ ਲੰਬਾਈ 0.50 Å ਹੋਵੇ।
- 2.8 ਅਜਿਹਾ ਪ੍ਰਕਾਸ਼ ਜਿਸ ਦੀ ਤਰੰਗ ਲੰਬਾਈ 4000 pm ਅਤੇ ਜੋ 1J ਊਰਜਾ ਦੇਵੇ, ਦੇ ਫੋਲਾਮਾਂ ਦੀ ਸੰਖਿਆ ਦੀ ਗਣਨਾ ਕਰੋ।
- $4 \times 10^{-7} \text{ m}$ ਤਰੰਗ ਲੰਬਾਈ ਵਾਲਾ ਇੱਕ ਫੋਟਾੱਨ 2.13 eV ਕਾਰਜ ਫਲਨ ਵਾਲੀ ਧਾਤ ਦੀ ਸਤ੍ਹਾ ਉੱਤੇ ਟਕਰਾਉਂਦਾ ਹੈ, ਤਾਂ (i) ਫੋਟਾੱਨ ਦੀ ਊਰਜਾ (eV) ਵਿੱਚ (ii) ਉਤਸਰਜਨ ਦੀ ਗਤਿਜ ਊਰਜਾ ਅਤੇ (iii) ਪ੍ਰਕਾਸ਼ੀ ਇਲੈਕਟ੍ਰਾੱਨ ਦੇ ਵੇਗ ਦਾ ਪਰਿਕਲਨ ਕਰੋ (1 eV= 1.6020×10^{-19} J)
- 2.10 ਸੋਡੀਅਮ ਪਰਮਾਣੂ ਦੇ ਆਇਨੀਕਰਣ ਦੇ ਲਈ 242 nm ਤਰੰਗ ਲੰਬਾਈ ਦੀ ਬਿਜਲ–ਚੁੰਬਕੀ ਵਿਕੀਰਣ ਕਾਫੀ ਹੁੰਦੀ ਹੈ। ਸੋਡੀਅਮ ਦੀ ਆਇਨੀਕਰਣ ਉਰਜਾ kJ mol⁻¹ ਵਿੱਚ ਗਿਆਤ ਕਰੋ।
- 2.11 25 ਵਾੱਟ ਦਾ ਇੱਕ ਬਲਬ 0.57µm ਤਰੰਗ ਲੰਬਾਈ ਵਾਲੇ ਪੀਲੇ ਰੰਗ ਦਾ ਇੱਕ ਵਰਣੀ ਪ੍ਰਕਾਸ਼ ਪੈਦਾ ਕਰਦਾ ਹੈ। ਪ੍ਰਤੀ ਸੈਕੰਡ ਕੁਆਂਟਾ ਦੇ ਉਤਸਰਜਨ ਦੀ ਦਰ ਗਿਆਤ ਕਰੋ।
- 2.12 ਕਿਸੇ ਧਾਤ ਦੀ ਸਤ੍ਹਾ ਉੱਤੇ 6800 Å ਤਰੰਗ ਲੰਬਾਈ ਵਿਕੀਰਣ ਪਾਉਣ ਨਾਲ ਸਿਫਰ ਵੇਗ ਵਾਲੇ ਇਲੈਕਟ੍ਰਾੱਨ ਉਤਸਰਜਿਤ ਹੁੰਦੇ ਹਨ। ਧਾਤ ਦੀ ਦਹਿਲੀਜ ਅਵਰਤੀ $(v_{\scriptscriptstyle 0})$ ਅਤੇ ਕਾਰਜ ਫਲਨ $(\mathrm{W}_{\scriptscriptstyle 0})$ ਗਿਆਤ ਕਰੋ।

- 2.13 ਜਦੋਂ ਹਾਈਡ੍ਰੋਜਨ ਪਰਮਾਣੂ ਦੇ n=4 ਊਰਜਾ ਸਤਰ ਤੋਂ n=2 ਊਰਜਾ ਸਤਰ ਤੇ ਇਲੈਕਟ੍ਰਾਨ ਜਾਂਦਾ ਹੈ, ਤਾਂ ਕਿਸ ਤਰੰਗ ਲੰਬਾਈ ਦਾ ਪ੍ਰਕਾਸ਼ ਉਤਸਰਜਿਤ ਹੋਵੇਗਾ ?
- 2.14 ਜੇ ਇਲੈਕਟ੍ਰਾਨ n=5 ਆੱਰਬਿਟਲ ਵਿੱਚ ਮੌਜੂਦ ਹੋਵੇ, ਤਾਂ H ਪਰਮਾਣੂ ਦੇ ਆਇਨੀਕਰਣ ਦੇ ਲਈ ਕਿੰਨੀ ਊਰਜਾ ਦੀ ਲੋੜ ਹੋਵੇਗੀ? ਆਪਣੇ ਉੱਤਰ ਦੀ ਤੁਲਨਾ ਹਾਈਡ੍ਰੋਜਨ ਪਰਮਾਣੂ ਦੀ ਆਇਨੀਕਰਣ ਐਨਥੈਲਪੀ ਨਾਲ ਕਰੋ (ਆਇਨੀਕਰਣ ਐਨਥੈਲਪੀ n=1 ਆੱਰਬਿਟਲ ਤੋਂ ਇਲੈਕਟ੍ਰਾਨ ਨੂੰ ਕੱਢਣ ਦੇ ਲਈ ਲੋੜੀਂਦੀ ਉਰਜਾ ਹੁੰਦੀ ਹੈ।)
- 2.15 ਜਦੋਂ ਹਾਈਡ੍ਰੋਜਨ ਪਰਮਾਣੂ ਵਿੱਚ ਉੱਤੇਜਿਤ ਇਲੈਕਟ੍ਰਾਨ n=6 ਤੋਂ ਮੂਲ ਅਵਸਥਾ ਵਿੱਚ ਜਾਂਦਾ ਹੈ, ਤਾਂ ਪ੍ਰਾਪਤ ਉਤਸਰਜਿਤ ਰੇਖਾਵਾਂ ਦੀ ਅਧਿਕਤਮ ਸੰਖਿਆ ਕੀ ਹੋਵੇਗੀ ?
- 2.16 (i) ਹਾਈਡ੍ਰੋਜਨ ਦੇ ਪਹਿਲੇ ਆੱਰਬਿਟਲ ਨਾਲ ਸਬੰਧਿਤ ਊਰਜਾ $-2.18 \times 10^{-18}~{
 m Jatom}^{-1}$ ਹੈ। ਪੰਜਵੇਂ ਆੱਰਬਿਟਲ ਨਾਲ ਸਬੰਧਿਤ ਊਰਜਾ ਦੱਸੋ।
 - (ii) ਹਾਈਡ੍ਰੋਜਨ ਪਰਮਾਣੂ ਦੇ ਪੰਜਵੇਂ ਬੋਹਰ ਆੱਰਬਿਟਲ ਦਾ ਅਰਧਵਿਆਸ ਦੀ ਗਣਨਾ ਕਰੋ।
- 2.17 ਹਾਈਡ੍ਰੋਜਨ ਪਰਮਾਣੂ ਦੀ ਬਾਲਮਰ ਸੀਰੀਜ਼ ਵਿੱਚ ਅਧਿਕਤਮ ਤਰੰਗ ਲੰਬਾਈ ਵਾਲੇ ਪਾਰਗਮਨ ਦੀ ਤਰੰਗ ਸੰਖਿਆ ਦੀ ਗਣਨਾ ਕਰੋ।
- 2.18 ਹਾਈਡ੍ਰੋਜਨ ਪਰਮਾਣੂ ਵਿੱਚ ਇਲੈਕਟ੍ਰਾੱਨ ਨੂੰ ਪਹਿਲੇ ਆੱਰਬਿਟ ਤੋਂ ਪੰਜਵੇਂ ਆੱਰਬਿਟ ਤੱਕ ਲੈ ਜਾਣ ਦੇ ਲਈ ਲੌੜੀਂਦੀ ਊਰਜਾ ਦੀ ਜੂਲ ਵਿੱਚ ਗਣਨਾ ਕਰੋ। ਜਦੋਂ ਇਹ ਇਲੈਕਟ੍ਰਾੱਨ ਗਰਾਊਂਡ ਸਟੇਟ ਵਿੱਚ ਆਉਂਦਾ ਹੈ, ਤਾਂ ਕਿਸ ਤਰੰਗ ਲੰਬਾਈ ਦਾ ਪ੍ਰਕਾਸ਼ ਉਤਸਰਜਿਤ ਹੋਵੇਗਾ ? (ਇਲੈਕਟ੍ਰਾਨ ਦੀ ਗਰਾਂਊਡ ਸਟੇਟ ਊਰਜਾ $2.18 \times 10^{-11}\,\mathrm{ergs}$.
- 2.19 ਹਾਈਡ੍ਰੋਜਨ ਪਰਮਾਣੂ ਵਿੱਚ ਇਲੈਕਟ੍ਰਾੱਨ ਦੀ ਊਰਜਾ $E_n = (-2.18 \times 10^{-18})/n^2$ J ਦੁਆਰਾ ਦਿੱਤੀ ਜਾਂਦੀ ਹੈ। n=2 ਆੱਰਬਿਟ ਤੋਂ ਇਲੈਕਟ੍ਰਾਨ ਨੂੰ ਪੂਰੀ ਤਰ੍ਹਾਂ ਕੱਢਣ ਦੇ ਲਈ ਲੋੜੀਂਦੀ ਊਰਜਾ ਦੀ ਗਣਨਾ ਕਰੋ। ਪ੍ਰਕਾਸ਼ ਦੀ ਸਭ ਤੋਂ ਲੰਬੀ ਤਰੰਗ ਲੰਬਾਈ (cm ਵਿੱਚ) ਕੀ ਹੋਵੇਗੀ, ਜਿਸ ਦੀ ਵਰਤੋਂ ਇਸ ਪਾਰਗਮਨ ਵਿੱਚ ਕੀਤੀ ਜਾ ਸਕੇ।
- $2.20 ext{ } 2.05 imes 10^7 \ ext{m s}^{-1}$ ਵੇਗ ਨਾਲ ਗਤੀ ਕਰ ਰਹੇ ਕਿਸੇ ਇਲੈਕਟ੍ਰਾਨ ਦੀ ਤਰੰਗ ਲੰਬਾਈ ਕੀ ਹੋਵੇਗੀ ?
- 2.21 ਇਲੈਕਟ੍ਰਾਨ ਦਾ ਪੁੰਜ $9.1 \times 10^{-31} \, \mathrm{kg}$. ਜੇ ਇਸਦੀ ਗਤਿਜ ਊਰਜਾ $3.0 \times 10^{-25} \, \mathrm{J}$ ਹੋਵੇ, ਤਾਂ ਇਸਦੀ ਤਰੰਗ ਲੰਬਾਈ ਦੀ ਗਣਨਾ ਕਰੋ।
- 2.22 ਹੇਠ ਲਿਖਿਆਂ ਵਿੱਚੋਂ ਕਿਹੜੇ ਸਮ–ਆਇਨੀ ਸਪੀਸ਼ੀਜ ਹਨ, ਅਰਥਾਤ ਕਿਨ੍ਹਾਂ ਵਿੱਚ ਇਲੈਕਟ੍ਰਾਨਾਂ ਦੀ ਸਮਾਨ ਸੰਖਿਆ ਹੈ ?

- 2.23 (i) ਹੇਠ ਲਿਖੇ ਆਇਨਾਂ ਦੀ ਇਲੈਕਟ੍ਰਾਨਿਕ ਤਰਤੀਬ ਲਿਖੋ— (ੳ) H^- (ਅ) Na^+ (ੲ) O^{2^-} (ਸ) F^-
 - (ii) ਉਨ੍ਹਾਂ ਤੱਤਾਂ ਦੀ ਪਰਮਾਣੂ ਅੰਕ ਸੰਖਿਆ ਦੱਸੋ, ਜਿਨ੍ਹਾਂ ਦੇ ਸਭ ਤੋਂ ਬਾਹਰੀ ਇਲੈਕਟ੍ਰਾਨਾਂ ਨੂੰ ਹੇਠ ਲਿਖੇ ਰੂਪ ਵਿੱਚ ਦਰਸਾਇਆ ਜਾਂਦਾ ਹੈ— (ੳ) $3s^1$ (ਅ) $2p^3$ ਅਤੇ (ੲ) $3p^5$?
 - (iii) ਹੇਠ ਲਿਖੀਆਂ ਤਰਤੀਬਾਂ ਵਾਲੇ ਪਰਮਾਣੂਆਂ ਦੇ ਨਾਂ ਦੱਸੋ— (ੳ) [He] $2s^1$ (ਅ) [Ne] $3s^2 3p^3$ (ੲ) [Ar] $4s^2 3d^1$.
- 2.24 ਕਿਸ ਘੱਟੋ ਘੱਟ ਮਾਨ n ਦੁਆਰਾ g ਆੱਰਬਿਟਲ ਦੀ ਹੋਂਦ ਅਨੁਮਤ ਹੋਵੇਗੀ?
- 2.25 ਇੱਕ ਇਲੈਕਟ੍ਰਾਨ ਕਿਸੇ 3d ਆੱਰਬਿਟਲ ਵਿੱਚ ਹੈ। ਇਸਦੇ ਲਈ n, l, m ਦੇ ਸੰਭਵ ਮਾਨ ਦਿਓ।
- 2.26 ਕਿਸੇ ਤੱਤ ਦੇ ਪਰਮਾਣੂ ਵਿੱਚ 29 ਇਲੈਕਟ੍ਰਾਨ ਅਤੇ 35 ਨਿਊਟ੍ਰਾਨ ਹਨ। (i) ਇਸ ਵਿੱਚ ਪ੍ਰੋਟਾਨਾਂ ਦੀ ਸੰਖਿਆ ਦੱਸੋ। (ii) ਤੱਤ ਇਲੈਕਟ੍ਰਾਨਿਕ ਤਰਤੀਬ ਲਿਖੋ।
- $2.27 ext{ } ext{H}_2^+, ext{ } ext{H}_2 ext{ } ext{ਅਤੇ } ext{O}_2^+ ext{ } ext{ } ext{ਸਪੀਸ਼ਿਜ ਵਿੱਚ ਮੌਜੂਦ ਇਲੈਕਟ੍ਰਾਨਾਂ ਦੀ ਸੰਖਿਆ ਦੱਸੋ।}$
- 2.28 (i) ਕਿਸੇ ਪਰਮਾਣ ਆੱਰਬਿਟਲ ਦਾ n=3 ਹੈ। ਇਸਦੇ ਲਈ l ਅਤੇ m, ਦੇ ਸੰਭਵ ਮਾਨ ਕੀ ਹੋਣਗੇ?
 - (ii) 3d ਆੱਰਬਿਟਲ ਦੇ ਇਲੈਕਟ੍ਰਾਨਾਂ ਦੇ ਲਈ l ਅਤੇ m_i ਕੁਆਂਟਮ ਸੰਖਿਆਵਾਂ ਦੇ ਮਾਨ ਦੱਸੋ।
 - (iii) ਹੇਠ ਲਿਖਿਆਂ ਵਿੱਚ ਕਿਹੜੇ ਆੱਰਬਿਟਲ ਸੰਭਵ ਹਨ $-1p,\ 2s,\ 2p$ ਅਤੇ 3f

- 2.29 s, p, d ਸੰਕੇਤਨ ਦੁਆਰਾ ਹੇਠ ਲਿਖੀਆਂ ਕੁਆਂਟਮ ਸੰਖਿਆਵਾਂ ਵਾਲੇ ਆਰਬਿਟਲ ਦੱਸੋ। (a) n=1, l=0; (b) n=3; l=1 (c) n=4; l=2; (d) n=4; l=3.
- 2.30 ਕਾਰਣ ਦਿੰਦੇ ਹੋਏ ਦੱਸੋ ਕਿ ਹੇਠ ਲਿਖਿਆਂ ਕੁਆਂਟਮ ਸੰਖਿਆਵਾਂ ਦੇ ਕਿਹੜੇ ਮਾਨ ਸੰਭਵ ਨਹੀਂ ਹਨ—
- 2.31 ਕਿਸੇ ਪਰਮਾਣੂ ਵਿਚ ਹੇਠ ਲਿਖੀਆਂ ਕੁਆਂਟਮ ਸੰਖਿਆਵਾਂ ਵਾਲੇ ਕਿੰਨੇ ਇਲੈਕਟ੍ਰਾੱਨ ਹੋਣਗੇ ? (ੳ) $n = 4, m_0 = -\frac{1}{2}$ (ਅ) n = 3, l = 0
- 2.32 ਇਹ ਦਰਸਾਓ ਕਿ ਹਾਈਡ੍ਰੋਜਨ ਪਰਮਾਣੂ ਦੇ ਬੋਹਰ ਆੱਰਬਿਟ ਦਾ ਘੇਰਾ ਉਸ ਆੱਰਬਿਟ ਵਿੱਚ ਗਤੀਮਾਨ ਇਲੈਕਟ੍ਰਾਨ ਦੀ ਡੀ–ਬ੍ਰਾਗਲੀ ਤਰੰਗ–ਲੰਬਾਈ ਦਾ ਪੂਰਣ ਗੁਣਕ ਹੁੰਦੀ ਹੈ।
- 2.33 He^+ ਸਪੈਕਟ੍ਰਮ ਦੇ n=4 ਤੋਂ n=2 ਬਾਲਮਰ ਪਾਰਗਮਨ ਵਿੱਚ ਪ੍ਰਾਪਤ ਤਰੰਗ ਲੰਬਾਈ ਦੇ ਬਰਾਬਰ ਵਾਲਾ ਪਾਰਗਮਨ ਹਾਈਡੋਜਨ ਸਪੈਕਟਮ ਵਿੱਚ ਕੀ ਹੋਵੇਗਾ ?
- 2.34 ${\rm He^+(g)} \to {\rm He^{2+}(g)} + {\rm e^-}$ ਪ੍ਰਕਿਰਿਆ ਦੇ ਲਈ ਲੋੜੀਂਦੀ ਊਰਜਾ ਦੀ ਗਣਨਾ ਕਰੋ ${\rm Im} = {\rm He^{2+}(g)} + {\rm e^-}$ ਪ੍ਰਕਿਰਿਆ ਦੇ ਲਈ ਲੋੜੀਂਦੀ ਊਰਜਾ ਦੀ ਗਣਨਾ ਕਰੋ ${\rm Im} = {\rm Im} =$
- 2.35 ਜੇ ਕਾਰਬਨ ਪਰਮਾਣੂ ਦਾ ਵਿਆਸ 0.15 nm ਹੈ, ਤਾਂ ਉਨ੍ਹਾਂ ਕਾਰਬਨ ਪਰਮਾਣੂਆਂ ਦੀ ਸੰਖਿਆ ਦੀ ਗਣਨਾ ਕਰੋ ਜਿਨ੍ਹਾਂ ਨੂੰ 20 cm ਸਕੇਲ ਦੀ ਲੰਬਾਈ ਵਿੱਚ ਇੱਕ ਕਰਕੇ ਵਿਵਸਥਿਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
- 2.36 ਕਾਰਬਨ ਦੇ 2×10^8 ਪਰਮਾਣੂ ਇੱਕ ਕਤਾਰ ਵਿੱਚ ਵਿਵਸਥਿਤ ਹਨ। ਜੇ ਇਸ ਵਿਵਸਥਾ ਦੀ ਲੰਬਾਈ 2.4 cm ਹੈ, ਤਾਂ ਕਾਰਬਨ ਪਰਮਾਣੂ ਦੇ ਵਿਆਸ ਦੀ ਗਣਨਾ ਕਰੋ।
- 2.37 ਜਿੰਕ ਪਰਮਾਣੂ ਦਾ ਵਿਆਸ 2.6 Å ਹੈ (ੳ) ਜਿੰਕ ਪਰਮਾਣੂ ਦਾ ਅਰਧ ਵਿਆਸ pm ਵਿੱਚ ਅਤੇ (ਅ) 1.6 cm ਦੀ ਲੰਬਾਈ ਵਿੱਚ ਕਤਾਰ ਵਿੱਚ ਲਗਾਤਾਰ ਮੌਜਦ ਪਰਮਾਣੁਆਂ ਦੀ ਸੰਖਿਆ ਦੀ ਗਣਨਾ ਕਰੋ।
- 2.38 ਕਿਸੇ ਕਣ ਦਾ ਸਥਿਰ ਬਿਜਲਈ ਚਾਰਜ $2.5 \times 10^{-16} \mathrm{C}$ ਹੈ। ਇਸ ਵਿੱਚ ਮੌਜੂਦ ਇਲੈਕਟ੍ਰਾਨਾਂ ਦੀ ਸੰਖਿਆ ਦੀ ਗਣਨਾ ਕਰੋ।
- 2.39 ਮਿਲੀਕਨ ਦੇ ਪ੍ਰਯੋਗ ਵਿੱਚ ਤੇਲ ਦੀ ਬੂੰਦ ਉੱਤੇ ਚਮਕਦੀਆਂ X-ਕਿਰਣਾਂ ਦੁਆਰਾ ਪ੍ਰਾਪਤ ਸਥਿਰ ਬਿਜਲਈ ਕਾਰਜ ਪ੍ਰਾਪਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਤੇਲ ਦੀ ਬੂੰਦ ਉੱਤੇ ਜੇ ਸਥਿਰ ਚਾਰਜ –1.282 × 10⁻¹⁸C ਹੈ, ਤਾਂ ਇਸ ਵਿੱਚ ਮੌਜੂਦ ਇਲੈਕਟ੍ਰਾਨਾਂ ਦੀ ਸੰਖਿਆ ਦੀ ਗਣਨਾ ਕਰੋ।
- 2.40 ਰਦਰਫੋਰਡ ਦੇ ਪ੍ਯੋਗ ਵਿੱਚ ਸੋਨੇ, ਪਲੈਟੀਨਮ ਆਦਿ ਭਾਰੇ ਪਰਮਾਣੂਆਂ ਦੀ ਪਤਲੀ ਪੱਤੀ ਨੂੰ α- ਕਣਾਂ ਦੁਆਰਾ ਬੰਬਾਰੀ ਕੀਤੀ ਜਾਂਦੀ ਹੈ। ਜੇ ਅਲੂਮੀਨਿਅਮ ਆਦਿ ਵਰਗੇ ਹਲਕੇ ਪਰਮਾਣੂ ਦੀ ਪੱਤੀ ਲਈ ਜਾਵੇ, ਤਾਂ ਉਪਰੋਕਤ ਪਰਿਣਾਮਾਂ ਵਿੱਚ ਕੀ ਅੰਤਰ ਹੋਵੇਗਾ?
- $^{79}_{35}{
 m Br}$ ਅਤੇ $^{79}{
 m Br}$ ਪ੍ਰਤੀਕ ਦੀ ਮਾਨਤਾ ਹੈ, ਜਦੋਂ ਕਿ $^{35}_{79}{
 m Br}$ ਅਤੇ $^{35}{
 m Br}$ ਦੀ ਮਾਨਤਾ ਨਹੀਂ। ਸੰਖੇਪ ਵਿੱਚ ਕਾਰਣ ਦੱਸੋ।
- 2.42 ਇੱਕ 81 ਪੁੰਜ ਸੰਖਿਆ ਵਾਲੇ ਤੱਤ ਵਿੱਚ ਪ੍ਰੋਟਾਨਾਂ ਦੀ ਤੁਲਨਾ ਵਿੱਚ 31.7% ਨਿਊਟ੍ਰਾੱਨ ਵਧੇਰੇ ਹਨ। ਇਸ ਦਾ ਪਰਮਾਣੂ ਪ੍ਰਤੀਕ ਲਿਖੋ।
- 2.43 37 ਪੁੰਜ ਸੰਖਿਆ ਵਾਲੇ ਇੱਕ ਆਇਨ ਉੱਤੇ ਰਿਣਚਾਰਜ ਦੀ ਇੱਕ ਇਕਾਈ ਹੈ।ਜੇ ਆਇਨ ਵਿੱਚ ਇਲੈਕਟ੍ਰਾੱਨ ਦੀ ਤੁਲਨਾ ਵਿੱਚ ਨਿਊਟ੍ਰਾੱਨ 11.1% ਵਧੇਰੇ ਹੋਣ ਤਾਂ ਆਇਨ ਦਾ ਪ੍ਰਤੀਕ ਲਿਖੋ।
- 2.44 56 ਪੁੰਜ ਸੰਖਿਆ ਵਾਲੇ ਇੱਕ ਆਇਨ ਉੱਤੇ ਧਨਚਾਰਜ ਦੀਆਂ ਤਿੰਨ ਇਕਾਈਆਂ ਹਨ, ਅਤੇ ਇਸ ਵਿੱਚ ਇਲੈਕਟ੍ਰਾੱਨ ਦੀ ਤੁਲਨਾ ਵਿੱਚ 30.4% ਨਿਊਟ੍ਰਾਨ ਵਧੇਰੇ ਹਨ। ਇਸ ਆਇਨ ਦਾ ਪ੍ਤੀਕ ਲਿਖੋ।
- 2.45 ਹੇਠ ਲਿਖੀਆਂ ਵਿਕੀਰਣਾਂ ਦੀਆਂ ਕਿਸਮਾਂ ਨੂੰ ਆਵਰਤੀ ਦੇ ਵੱਧਦੇ ਹੋਏ ਕ੍ਰਮ ਵਿੱਚ ਵਿਵਸਥਿਤ ਕਰੋ— (ੳ) ਮਾਈਕਰੋਵੇਵ ਔਵਨ (oven) ਤੋਂ ਵਿਕੀਰਣ (ਅ) ਟ੍ਰੈਫਿਕ–ਸਿਗਨਲ ਤੋਂ ਪੀਲਾ ਪ੍ਰਕਾਸ਼ (ੲ) ਐਫ.ਐਮ. ਰੇਡੀਓ ਤੋਂ ਪ੍ਰਾਪਤ ਵਿਕੀਰਣ (ਸ) ਬਾਹਰੀ ਪੁਲਾੜ ਤੋਂ ਕੌਸਮਿਕ ਕਿਰਣਾਂ (ਹ) X– ਕਿਰਣਾਂ

- 2.46 ਨਾਈਟ੍ਰੋਜਨ ਲੇਜ਼ਰ $337\cdot 1~\text{nm}$ ਦੀ ਤਰੰਗ ਲੰਬਾਈ ਤੇ ਇੱਕ ਵਿਕੀਰਣ ਪੈਦਾ ਕਰਦੀ ਹੈ। ਜੇ ਉਤਸਰਜਿਤ ਫੋਟਾੱਨਾਂ ਦੀ ਸੰਖਿਆ 5.6×10^{24} ਹੋਵੇ, ਤਾਂ ਇਸ ਲੇਜ਼ਰ ਦੀ ਸਮਰੱਥਾ ਦੀ ਗਣਨਾ ਕਰੋ।
- 2.47 ਨੀਆੱਨ ਗੈਸ ਨੂੰ ਆਮ ਸੰਕੇਤ ਬੋਰਡਾਂ ਵਿੱਚ ਵਰਤਿਆ ਜਾਂਦਾ ਹੈ। ਜੇ ਇਹ 616 nm ਤੇ ਪ੍ਰਬਲਤਾ ਨਾਲ ਵਿਕੀਕਰਣ ਉਤਸਰਜਿਤ ਕਰਦੀ ਹੈ, ਤਾਂ (a) ਉਤਸਰਜਨ ਦੀ ਅਵਰਤੀ (ਅ) 30 ਸੈਕੰਡ ਵਿੱਚ ਇਸ ਵਿਕੀਰਣ ਦੁਆਰਾ ਤੈਅ ਕੀਤੀ ਗਈ ਦੂਰੀ (ੲ) ਕੁਆਂਟਮ ਦੀ ਊਰਜਾ ਅਤੇ (ਸ) ਮੌਜੂਦ ਕੁਆਂਟਮ ਦੀ ਸੰਖਿਆ ਦੀ ਗਣਨਾ ਕਰੋ (ਜੇ ਇਹ 2J ਦੀ ਉਰਜਾ ਪੈਦਾ ਕਰਦੀ ਹੈ।
- 2.48 ਖਗੋਲੀ ਪ੍ਰੇਖਣਾਂ ਵਿੱਚ ਦੁਰਾੜੇ ਤਾਰਿਆਂ ਤੋਂ ਮਿਲਣ ਵਾਲੇ ਸੰਕੇਤ ਬਹੁਤ ਕਮਜੋਰ ਹੁੰਦੇ ਹਨ। ਇਹ ਫੋਟੋਨ ਸੰਸੂਚਕ 600 nm ਦੇ ਵਿਕੀਰਣ ਨਾਲ ਕੁੱਲ 3.15 × 10⁻¹⁸ J ਪ੍ਰਾਪਤ ਕਰਦਾ ਹੈ। ਸੰਸੂਚਕ ਦੁਆਰਾ ਪ੍ਰਾਪਤ ਫੋਟਾੱਨਾਂ ਦੀ ਸੰਖਿਆ ਦੀ ਗਣਨਾ ਕਰੋ।
- 2.49 ਉੱਤੇਜਿਤ ਅਵਸਥਾਵਾਂ ਵਿੱਚ ਅਣੂਆਂ ਦੇ ਜੀਵਨ ਕਾਲ ਦਾ ਮਾਪ ਅਕਸਰ ਲਗਪਗ ਨੈਨੋ ਸੈਕੰਡ ਪਲਮ ਵਾਲੇ ਵਿਕੀਰਣ ਸਰੋਤ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਜੇ ਵਿਕੀਰਣ ਸੋਰਤ ਦਾ ਕਾਲ 2ns ਅਤੇ ਉਤਸਰਜਿਤ ਫੋਟੋਨਾਂ ਦੀ ਸੰਖਿਆ 2.5×10^{15} ਹੈ, ਤਾਂ ਸਰੋਤ ਦੀ ਉਰਜਾ ਦੀ ਗਣਨਾ ਕਰੋ।
- 2.50 ਸਭ ਤੋਂ ਲੰਬੀ ਯੁਗਮਕ ਤਰੰਗ-ਲੰਬਾਈ ਜਿੰਕ ਸੋਖਣ ਪਾਰਗਮਨ 589 ਅਤੇ 589·6 nm ਤੇ ਵੇਖਿਆ ਜਾਂਦਾ ਹੈ। ਹਰ ਇੱਕ ਪਾਰਗਮਨ ਦੀ ਆਵਰਤੀ ਅਤੇ ਦੋ ਉਤੇਜਿਤ ਅਵਸਥਾਵਾਂ ਦੇ ਵਿੱਚ ਊਰਜਾ ਦੇ ਅੰਤਰ ਦੀ ਗਣਨਾ ਕਰੋ।
- 2.51 ਸੀਜ਼ਿਅਮ ਪਰਮਾਣੂ ਦਾ ਕਾਰਜ–ਫਲਨ 1.9 eV ਹੈ, ਤਾਂ (ੳ) ਉਤਸਰਜਿਤ ਵਿਕੀਰਣ ਦੀ ਦਹਿਲੀਜ ਤਰੰਗ ਲੰਬਾਈ (ਅ) ਦਹਿਲੀਜ ਅਵਰਤੀ ਦੀ ਗਣਨਾ ਕਰੋ।ਜੇ ਸੀਜ਼ਿਅਮ ਤੱਤ ਨੂੰ 500 nm ਦੀ ਤਰੰਗ ਲੰਬਾਈ ਦੇ ਨਾਲ ਵਿਕੀਰਣਿਤ ਕੀਤਾ ਜਾਵੇ, ਤਾਂ ਨਿਕਲੇ ਹੋਏ ਫੋਟੋਇਲੈਕਟ੍ਰਾੱਨ ਦੀ ਗਤਿਜ ੳਰਜਾ ਅਤੇ ਵੇਗ ਦੀ ਗਣਨਾ ਕਰੋ।
- 2.52 ਜਦੋਂ ਸੋਡੀਅਮ ਧਾਤ ਨੂੰ ਭਿੰਨ-ਭਿੰਨ ਤਰੰਗ ਲੰਬਾਈਆਂ ਦੇ ਨਾਲ ਵਿਕੀਰਣਿਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ ਤਾਂ ਹੇਠ ਲਿਖੇ ਪਰਿਣਆਮ ਪ੍ਰਾਪਤ ਹੁੰਦੇ ਹਨ— $\lambda \, (\text{nm}) \qquad \qquad 500 \quad 450 \quad 400 \\ \text{v} \times 10^{-5} \, (\text{cm s}^{-1}) \qquad 2.55 \quad 4.35 \quad 5.35 \\ \text{ਦਹਿਲੀਜ ਤਰੰਗ ਲੰਬਾਈ ਅਤੇ ਪੁਲਾਂਕ ਸਥਿਰ ਅੰਕ ਦੀ ਗਣਨਾ ਕਰੋ।}$
- 2.53 ਪ੍ਕਾਸ਼ ਬਿਜਲਈ ਪ੍ਭਾਵ ਵਿੱਚ ਸਿਲਵਰ ਧਾਤ ਨਾਲ ਫੋਟੋ ਇਲੈਕਟ੍ਰਾੱਨ ਦਾ ਉਤਸਰਜਨ 0.35 V ਦੀ ਵੋਲਟਤਾ ਨਾਲ ਰੋਕਿਆ ਜਾ ਸਕਦਾ ਹੈ। ਜਦੋਂ 256.7 nm ਦੀਆਂ ਵਿਕੀਰਣਾਂ ਵਰਤੀਆਂ ਜਾਂਦੀਆਂ, ਤਾਂ ਸਿਲਵਰ ਧਾਤ ਦੇ ਲਈ ਕਾਰਜਫਲਨ ਦੀ ਗਣਨਾ ਕਰੋ।
- 2.54 ਜੇ $150~{
 m pm}$ ਤਰੰਗ ਲੰਬਾਈ ਦਾ ਫੋਟਾਂਨ ਇੱਕ ਪਰਮਾਣੂ ਨਾਲ ਟਕਰਾਉਂਦਾ ਹੈ ਅਤੇ ਇਸ ਦੇ ਅੰਦਰ ਬੰਧਿਆ ਹੋਇਆ ਇਲੈਕਟ੍ਰਾੱਨ $1.5 \times 10^7~{
 m m~s^{-1}}$ ਵੇਗ ਨਾਲ ਬਾਹਰ ਨਿਕਲਦਾ ਹੈ ਤਾਂ ਉਸ ਊਰਜਾ ਦੀ ਗਣਨਾ ਕਰੋ, ਜਿਸ ਨਾਲ ਇਹ ਨਿਊਕਲੀਅਸ ਨਾਲ ਬੰਧਿਆ ਹੋਇਆ ਹੈ।
- 2.55 ਪਾਸ਼ਨ ਸੀਰੀਜ ਦਾ ਉਤਸਰਜਨ ਪਾਰਗਮਨ n ਆੱਰਬਿਟ ਤੋਂ ਸ਼ੁਰੂ ਹੁੰਦਾ ਹੈ। ਆੱਰਬਿਟ n=3 ਵਿੱਚ ਖਤਮ ਹੁੰਦਾ ਹੈ ਅਤੇ ਇਸ ਨੂੰ $v=3.29\times 10^{15}$ (Hz) [$1/3^2-1/n^2$] ਨਾਲ ਦਰਸਾਇਆ ਜਾ ਸਕਦਾ ਹੈ। ਜੇ ਪਾਰਗਮਨ $1285~\mathrm{nm}$ ਤੇ ਪ੍ਰੇਖਿਤ ਹੁੰਦਾ ਹੈ ਤਾਂ n ਦੇ ਮਾਨ ਦੀ ਗਣਨਾ ਕਰੋ ਅਤੇ ਸਪੈਕਟ੍ਰਮ ਦਾ ਖੇਤਰ ਦੱਸੋ।
- 2.56 ਉਸ ਉਤਸਰਜਨ ਪਾਰਗਮਨ ਦੀ ਗਣਨਾ ਕਰੋ ਜੋ 1·3225 nm ਅਰਧ ਵਿਆਸ ਵਾਲੇ ਆੱਰਬਿਟ ਤੋਂ ਸ਼ੁਰੂ ਹੋ ਕੇ 211·6 pm ਤੇ ਖਤਮ ਹੁੰਦਾ ਹੈ। ਇਸ ਪਾਰਗਮਨ ਦੀ ਸੀਰੀਜ਼ ਦਾ ਨਾਮ ਅਤੇ ਸਪੈਕਟ੍ਰਾਮ ਦਾ ਖੇਤਰ ਵੀ ਦੱਸੋ।
- 2.57 ਡੀ. ਬ੍ਰਾਗਲੀ ਦੁਆਰਾ ਪ੍ਰਸਤੁਤ ਮਾਦਾ ਦੇ ਦੁਹਰੇ ਵਿਹਾਰ ਨਾਲ ਇਲੈਕਟ੍ਰਾੱਨ ਮਾਈਕ੍ਰੋਸਕੋਪ ਦੀ ਖੋਜ ਹੋਈ, ਜਿਸ ਨੂੰ ਜੈਵ ਅਣੂਆਂ ਅਤੇ ਹੋਰ ਕਿਸਮ ਦੇ ਪਦਾਰਥਾਂ ਦੀ ਅਤਿ ਵਡਦਰਸ਼ਿਤ ਪ੍ਰਤੀਬਿੰਬ ਦੇ ਲਈ ਵਰਤੋਂ ਵਿੱਚ ਲਿਆਇਆ ਜਾਂਦਾ ਹੈ। ਇਸ ਮਾਈਕ੍ਰੋਸਕੋਪ ਵਿੱਚ ਜੇ ਇਲੈਕਟ੍ਰਾੱਨ ਦੇ ਵੇਗ 1.6 × 10⁶ ms⁻¹ ਹੈ, ਤਾਂ ਇਸ ਇਲੈਕਟ੍ਰਾੱਨ ਨਾਲ ਸਬੰਧਿਤ ਡੀ ਬ੍ਰਾਗਲੀ ਤਰੰਗ ਲੰਬਾਈ ਦੀ ਗਣਨਾ ਕਰੋ।
- 2.58 ਇਲੈਕਟ੍ਰਾੱਨ ਵਿਵਰਤਨ ਦੇ ਸਮਾਨ ਨਿਊਟ੍ਰਾਨ ਵਿਵਰਤਨ ਸੂਖਮਦਰਸ਼ੀ ਨੂੰ ਅਣੂਆਂ ਦੀ ਬਣਤਰ ਦੇ ਨਿਰਧਾਰਣ ਵਿੱਚ ਵਰਤਿਆ ਜਾਂਦਾ ਹੈ। ਜੇ ਇੱਥੇ 800 pm ਦੀ ਤਰੰਗ ਲੰਬਾਈ ਲਈ ਜਾਵੇ, ਤਾਂ ਨਿਊਟ੍ਰਾੱਨ ਨਾਲ ਸਬੰਧਿਤ ਲੱਛਣਿਕ ਵੇਗ ਦੀ ਗਣਨਾ ਕਰੋ।

- 2.59 ਜੇ ਬੋਹਰ ਦੇ ਪਹਿਲੇ ਆੱਰਬਿਟ ਵਿੱਚ ਇਲੈਕਟ੍ਰਾੱਨ ਦਾ ਵੇਗ $2.9 \times 10^6 \; \mathrm{ms^{-1}}$ ਤਾਂ ਇਸ ਨਾਲ ਸਬੰਧਿਤ ਡੀ ਬਾਗਲੀ ਤਰੰਗ ਲੰਬਾਈ ਦੀ ਗਣਨਾ ਕਰੋ।
- 2.60 ਇੱਕ ਪ੍ਰੋਟਾਨ ਜੋ 1000~V ਦੇ ਪੋਟੈਂਸ਼ਲ ਅੰਤਰ ਵਿੱਚ ਗਤੀ ਕਰ ਰਿਹਾ ਹੈ, ਨਾਲ ਸਬੰਧਿਤ ਵੇਗ $4.37 \times 10^5~{
 m ms}^{-1}~$ ਜੇ $0.1~{
 m kg}$ ਪੁੰਜ ਦੀ ਹਾੱਕੀ ਦੀ ਗੇਂਦ ਇਸ ਵੇਗ ਨਾਲ ਗਤੀਮਾਨ ਹੈ ਤਾਂ ਇਸ ਨਾਲ ਸਬੰਧਿਤ ਤਰੰਗ ਲੰਬਾਈ ਦੀ ਗਣਨਾ ਕਰੋ।
- 2.61 ਜੇ ਇੱਕ ਇਲੈਕਟ੍ਰਾੱਨ ਦੀ ਸਥਿਤੀ \pm 0.002 nm ਸ਼ੁੱਧਤਾ ਨਾਲ ਮਾਪੀ ਜਾਂਦੀ ਹੈ ਤਾਂ ਇਲੈਕਟ੍ਰਾੱਨ ਦੇ ਸੰਵੇਗ ਵਿੱਚ ਅਨਿਸ਼ਚਿਤਤਾ ਦਾ ਗਣਨਾ ਕਰੋ। ਜੇ ਇਲੈਕਟ੍ਰਾੱਨ ਦਾ ਸੰਵੇਗ $h/4\pi_m \times 0.05$ nm ਹੈ ਤਾਂ ਕੀ ਇਸ ਮਾਨ ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਵਿੱਚ ਕੋਈ ਮੁਸ਼ਕਿਲ ਹੋਵੇਗੀ ?
- 2.62 ਛੇ ਇਲੈਕਟ੍ਰਾੱਨਾਂ ਦੀਆਂ ਕੁਆਂਟਮ ਸੰਖਿਆਵਾਂ ਹੇਠਾਂ ਦਿੱਤੀਆਂ ਗਈਆਂ ਹਨ। ਇਨ੍ਹਾਂ ਨੂੰ ਊਰਜਾ ਦੇ ਵੱਧਦੇ ਕ੍ਰਮ ਵਿੱਚ ਵਿਵਸਥਿਤ ਕਰੋ। ਕੀ ਇਨ੍ਹਾਂ ਵਿੱਚੋਂ ਕਿਸੇ ਦੀ ਉਰਜਾ ਸਮਾਨ ਹੈ।
 - 1. n = 4, l = 2, $m_l = -2$, $m_s = -1/2$
 - 2. n = 3, l = 2, $m_l = 1$, $m_s = +1/2$
 - 3. n = 4, l = 1, $m_l = 0$, $m_s = +1/2$
 - 4. n = 3, l = 2, $m_1 = -2$, $m_2 = -1/2$
 - 5. n = 3, l = 1, $m_1 = -1$, $m_2 = +1/2$
 - 6. n = 4, l = 1, $m_l = 0$, $m_s = +1/2$
- 2.63 ਬਰੋਮੀਨ ਪਰਮਾਣੂ ਵਿੱਚ 35 ਇਲੈਕਟ੍ਰਾੱਨ ਹੁੰਦੇ ਹਨ। ਇਸ ਦੇ 2p ਆੱਰਬਿਟਲ ਵਿੱਚ ਛੇ ਇਲੈਕਟ੍ਰਾੱਨ, 3p ਆੱਰਬਿਟਲ ਵਿੱਚ ਛੇ ਇਲੈਕਟ੍ਰਾੱਨ ਅਤੇ 4p ਆੱਰਬਿਟਲ ਵਿੱਚ ਪੰਜ ਇਲੈਕਟ੍ਰਾੱਨ ਹੁੰਦੇ ਹਨ। ਇਨ੍ਹਾਂ ਵਿੱਚੋਂ ਕਿਹੜਾ ਇਲੈਕਟ੍ਰਾੱਨ ਨਿਉਨਤਮ ਪ੍ਰਭਾਵੀ ਨਿਉਕਲੀ ਚਾਰਜ ਅਨੁਭਵ ਕਰਦਾ ਹੈ?
- 2.64 ਹੇਠ ਲਿਖਿਆਂ ਵਿੱਚੋਂ ਕਿਹੜਾ ਆੱਰਬਿਟਲ ਉੱਚ ਪ੍ਰਭਾਵੀ ਨਿਊਕਲੀ ਚਾਰਜ ਅਨੁਭਵ ਕਰੇਗਾ? (i) 2s ਅਤੇ 3s, (ii) 4d and 4f, (iii) 3d ਅਤੇ 3p.
- 2.65 Al ਅਤੇ Si ਵਿੱਚ 3p ਆੱਰਬਿਟਲ ਅਣ-ਯੁਗਮਕ ਇਲੈਕਟ੍ਰਾੱਨ ਹੁੰਦੇ ਹਨ। ਕਿਹੜਾ ਇਲੈਕਟ੍ਰਾੱਨ ਨਿਊਕਲੀਅਸ ਨਾਲ ਵਧੇਰੇ ਪ੍ਰਭਾਵੀ ਨਿਊਕਲੀ ਚਾਰਜ ਅਨੁਭਵ ਕਰੇਗਾ ?
- 2.66 ਇਨ੍ਹਾਂ ਵਿੱਚ ਅਣ-ਯੁਗ ਮਿਤ ਇਲੈਕਟ੍ਰਾਨਾਂ ਦੀ ਸੰਖਿਆ ਦੱਸੋ (ੳ) P, (ਅ) Si, (ੲ) Cr, (ਸ) Fe and (ਹ) Kr.
- 2.67 (ੳ) n = 4 ਨਾਲ ਸਬੰਧਿਤ ਕਿੰਨੇ ਸਬ ਸ਼ੈੱਲ ਹਨ ? (ਅ) ਉਸ ਸਬ ਸ਼ੈੱਲ ਵਿੱਚ ਕਿੰਨੇ ਇਲੈਕਟ੍ਰਾੱਨ ਮੌਜੂਦ ਹੋਣਗੇ, ਜਿਨ੍ਹਾਂ ਦੇ ਲਈ $m_s = -1/2$ ਅਤੇ n = 4 ਹਨ ?

जुिंट 3

ਤੱਤਾਂ ਦਾ ਵਰਗੀਕਰਣ ਅਤੇ ਗੁਣਾਂ ਵਿੱਚ ਆਵਰਤਿਤਾ

(CLASSIFICATION OF ELEMENTS AND PERIODICITY IN PROPERTIES)

ਉਦੇਸ਼

ਇਸ ਇਕਾਈ ਨੂੰ ਪੜ੍ਹਨ ਤੋਂ ਬਾਅਦ ਤੁਸੀਂ

- ਤੱਤਾਂ ਦੇ ਗੁਣਾਂ ਦੇ ਅਧਾਰ ਤੇ ਉਨ੍ਹਾਂ ਦੇ ਵਰਗੀਕਰਨ ਦੀ ਸੰਕਲਪਨਾ ਦੁਆਰਾ ਆਵਰਤੀ ਸਾਰਣੀ ਦੇ ਵਿਕਾਸ ਤੋਂ ਜਾਣੂ ਹੋਵੇਗੇ,
- ਆਵਰਤੀ ਨਿਯਮ ਨੂੰ ਸਮਝ ਸਕੋਗੇ,
- ਆਵਰਤੀ ਵਰਗੀਕਰਣ ਲਈ ਪਰਮਾਣੂ ਸੰਖਿਆ ਅਤੇ ਇਲੈਕਟ੍ਰਾਨਿਕ ਤਰਤੀਬ ਦੇ ਅਧਾਰ ਦੀ ਮਹਤੱਤਾ ਸਮਝ ਸਕੋਗੇ
- 100 ਤੋਂ ਜਿਆਦਾ ਪਰਮਾਣੂ ਕ੍ਰਮ-ਅੰਕ ਵਾਲੇ ਤੱਤਾਂ ਲਈ IUPAC ਨਾਮ ਲਿਖ ਸਕੋਗੇ,
- ਤੱਤਾਂ ਨੂੰ s, p, d, f ਬਲਾੱਕ ਵਿੱਚ ਵਰਗੀਕਰਣ ਕਰ ਸਕੋਗੇ ਅਤੇ ਉਨ੍ਹਾਂ ਦੇ ਮੁੱਖ ਲੱਛਣਾਂ ਨੂੰ ਦੱਸ ਸਕੋਗੇ,
- ਤੱਤਾਂ ਦੇ ਭੌਤਿਕ ਅਤੇ ਰਸਾਇਣਿਕ ਗੁਣਾਂ ਵਿੱਚ ਆਵਰਤੀ ਲੱਛਣਾਂ ਨੂੰ ਪਛਾਣ ਸਕੋਗੇ,
- ਤੱਤਾਂ ਦੀ ਕਿਰਿਆਸ਼ੀਲਤਾ ਦੀ ਤੁਲਨਾ ਕਰ ਸਕੋਗੇ ਅਤੇ ਉਨ੍ਹਾਂ ਨੂੰ ਉਨ੍ਹਾਂ ਦੀ ਪ੍ਰਕਿਰਤੀ ਵਿੱਚ ਮੌਜੂਦਗੀ ਨਾਲ ਸਬੰਧਿਤ ਕਰ ਸਕੋਗੇ,
- ਆਇਨਨ ਐਨਥੈਲਪੀ (IONIC ENTHALPY) ਅਤੇ ਧਾਤਵੀ ਲੱਛਣਾਂ ਵਿੱਚਕਾਰ ਸਬੰਧ ਦੱਸ ਸਕੋਗੇ,
- ਪਰਮਾਣੂ ਨਾਲ ਸਬੰਧਿਤ ਕੁਝ ਮਹੱਤਵਪੂਰਣ ਗੁਣਾਂ ਜਿਵੇਂ-ਪਰਮਾਣੂ ਆਇਨਿਕ ਅਰਧ ਵਿਆਸ, ਆਇਨੀਕਰਣ ਐਨਥੈਲਪੀ, ਇਲੈਕਟ੍ਰਾਨ ਗ੍ਰਹਿਣ ਐਨਥੈਲਪੀ, ਇਲੈਕਟ੍ਰੋਨੈਗੇਟਿਵਤਾ ਅਤੇ ਸੰਯੋਜਕਤਾ ਨਾਲ ਸਬੰਧਿਤ ਵਿਚਾਰਾਂ ਨੂੰ ਵਿਅਕਤ ਕਰਨ ਲਈ ਸਹੀ ਵਿਗਿਆਨਕ ਸ਼ਬਦਾਵਲੀ ਦੀ ਵਰਤੋਂ ਕਰ ਸਕੋਗੇ।
- ਪਰਮਾਣੂ ਨਾਲ ਸਬੰਧਿਤ ਕੁੱਝ ਮਹੱਤਵਪੂਰਣ ਗੁਣਾਂ ਜਿਵੇਂ-ਪਰਮਾਣੂ ਆਇਨਿਕ ਅਰਧ ਵਿਆਸ,ਆਇਨੀਕਰਣ ਐਨਥੈਲਪੀ,ਇਲੈਕਟ੍ਰਾੱਨ ਗ੍ਰਹਿਣ ਐਲਥੈਲਪੀ, ਇਲੈਕਟ੍ਰੋਨੈਗੇਟਿਵਤਾ ਅਤੇ ਸੰਯੋਜਕਤਾ ਨਾਲ ਸਬੰਧਿਤ ਵਿਚਾਰਾਂ ਨੂੰ ਪ੍ਗਟਾਉਣ ਲਈ ਸਹੀ ਵਿਗਿਆਨਕ ਸ਼ਬਦਾਵਲੀ ਦੀ ਵਰਤੋਂ ਕਰ ਸਕੋਗੇ।

ਆਵਰਤੀ ਸਾਰਣੀ ਪ੍ਰਮਾਣਿਤ ਤੌਰ ਤੇ ਰਸਾਇਣ ਵਿਗਿਆਨ ਦਾ ਬਹੁਤ ਮਹੱਤਵਪੂਰਣ ਵਿਚਾਰ ਹੈ। ਹਰ ਰੋਜ ਵਿਦਿਆਰਥੀ ਨੂੰ ਇਸ ਤੋਂ ਸਹਾਇਤਾ ਮਿਲਦੀ ਹੈ, ਖੋਜ ਕਰਨ ਵਾਲਿਆਂ ਨੂੰ ਨਵੀਂ ਦਿਸ਼ਾ ਮਿਲਦੀ ਹੈ ਅਤੇ ਵਿਵਸਥਿਤ ਰੂਪ ਵਿੱਚ ਸੰਪੂਰਣ ਰਸਾਇਣ ਵਿਗਿਆਨ ਦਾ ਸੰਖੇਪ ਵਰਣਨ ਮਿਲਦਾ ਹੈ। ਇਹ ਇਸ ਗੱਲ ਦੀ ਹੈਰਾਨੀਜਨਕ ਉਦਾਹਰਣ ਹੈ ਕਿ ਰਸਾਇਣਿਕ ਤੱਤ ਬੇਤਰਤੀਬੀ ਇਕਾਈ ਨਹੀਂ ਹੁੰਦੇ, ਸਗੋਂ ਉਹ ਵਿਵਸਥਿਤ ਸਮੂੰਹਾਂ ਵਿੱਚ ਸਮਾਨਤਾ ਪ੍ਰਦਰਸ਼ਿਤ ਕਰਦੇ ਹਨ। ਜੋ ਲੋਕ ਇਹ ਜਾਣਨਾ ਚਾਹੁੰਦੇ ਹਨ ਕਿ, ਦੁਨੀਆਂ ਛੋਟੇ-ਛੋਟੇ ਅੰਸ਼ਾਂ ਨਾਲ ਕਿਵੇਂ ਬਣੀ ਉਨ੍ਹਾਂ ਦੇ ਲਈ ਆਵਰਤੀ ਸਾਰਣੀ ਬਹੁਤ ਉਪਯੋਗੀ ਹੈ।"

ਗਲੇਨ ਟੀ ਸੀਬਰਗ

ਇਸ ਯੁਨਿਟ ਵਿੱਚ ਅਸੀਂ ਵਰਤਮਾਨ ਆਵਰਤੀ ਸਾਰਣੀ ਦਾ ਇਤਿਹਾਸਿਕ ਵਿਕਾਸ ਅਤੇ ਆਧੁਨਿਕ ਆਵਰਤੀ ਨਿਯਮ ਦਾ ਅਧਿਐਨ ਕਰਾਂਗੇ। ਤੱਤਾਂ ਦਾ ਵਰਗੀਕਰਣ ਪਰਮਾਣੂ ਦੀ ਇਲੈਕਟ੍ਰਾਨਿਕ ਤਰਤੀਬ ਦਾ ਪਰਿਣਾਮ ਹੈ। ਅੰਤ ਵਿੱਚ ਅਸੀਂ ਤੱਤਾਂ ਦੇ ਭੌਤਿਕ ਅਤੇ ਰਸਾਇਣਿਕ ਗੁਣਾਂ ਦੀ ਆਵਰਤੀ ਸੁਭਾਅ ਤੇ ਵਿਚਾਰ ਕਰਾਂਗੇ।

3.1 ਤੱਤਾਂ ਦਾ ਵਰਗੀਕਰਣ ਕਿਉਂ ਜਰੂਰੀ ਹੈ ?

ਹੁਣ ਤੱਕ ਅਸੀਂ ਇਹ ਜਾਣ ਚੁੱਕੇ ਹਾਂ ਕਿ ਤੱਤ ਸਭ ਕਿਸਮ ਦੇ ਪਦਾਰਥਾਂ ਦੀ ਮੂਲ ਇਕਾਈ ਹੁੰਦੇ ਹਨ। ਸੰਨ 1800 ਵਿੱਚ ਸਿਰਫ 31 ਤੱਤ ਗਿਆਤ ਸਨ। ਸੰਨ 1865 ਤੱਕ 63 ਤੱਤਾਂ ਦੀ ਜਾਣਕਾਰੀ ਹੋ ਗਈ ਸੀ। ਅੱਜਕਲ ਸਾਨੂੰ 114 ਤੱਤਾਂ ਦੇ ਬਾਰੇ ਪਤਾ ਹੈ। ਇਨ੍ਹਾਂ ਵਿੱਚੋਂ ਹੁਣੇ ਜਿਹੇ ਖੋਜੇ ਤੱਤ ਮਨੁੱਖ ਨਿਰਮਿਤ ਹਨ।ਅੱਜੇ ਵੀ ਨਵੇਂ ਤੱਤਾਂ ਦੀ ਸੰਸਲਿਸ਼ਤ ਰਚਨਾ ਦੀ ਕੋਸ਼ਿਸ਼ ਜਾਰੀ ਹੈ। ਐਨੇਂ ਸਾਰੇ ਤੱਤਾਂ ਅਤੇ ਉਨ੍ਹਾਂ ਦੇ ਅਸੰਖ ਯੋਗਿਕਾਂ ਦੇ ਰਸਾਇਣ ਦਾ ਅਧਿਐਨ ਵੱਖ–ਵੱਖ ਕਰ ਸਕਨਾ ਬਹੁਤ ਮੁਸ਼ਕਿਲ ਹੈ। ਇਸ ਮੁਸ਼ਕਿਲ ਨੂੰ ਦੂਰ ਕਰਨ ਦੇ ਲਈ ਵਿਗਿਆਨੀਆਂ ਨੇ ਤੱਤਾਂ ਦਾ ਵਰਗੀਕਰਣ ਕਰਕੇ ਇਸ ਅਧਿਐਨ ਨੂੰ ਸੰਗਠਿਤ ਕੀਤਾ ਅਤੇ ਸੌਖਾ ਬਣਾਇਆ। ਐਨਾਂ ਹੀ ਨਹੀਂ, ਇਸ ਸੰਖੇਪ ਤਰੀਕੇ ਨਾਲ ਸਾਰੇ ਤੱਤਾਂ ਨਾਲ ਸਬੰਧਿਤ ਰਸਾਇਣਕ ਤੱਥਾਂ ਦਾ ਅਧਿਐਨ ਤਰਕ ਸੰਗਤ ਰੂਪ ਵਿੱਚ ਤਾਂ ਕਰ ਹੀ ਸਕਾਂਗੇ, ਭੱਵਿਖ ਵਿੱਚ ਖੋਜੇ ਜਾਣ ਵਾਲੇ ਹੋਰ ਤੱਤਾਂ ਦੇ ਅਧਿਐਨ ਵਿੱਚ ਵੀ ਮਦਦ ਮਿਲੇਗੀ।

3.2 ਆਵਰਤੀ ਸਾਰਣੀ ਦੀ ਉਤਪਤੀ

ਤੱਤਾਂ ਦਾ ਵਰਗੀਕਰਣ ਸਮੂੰਹਾਂ ਵਿੱਚ ਅਤੇ ਆਵਰਤਿਤਾ ਨਿਯਮਾਂ ਅਤੇ ਆਵਰਤੀ ਸਾਰਣੀ ਦਾ ਵਿਕਾਸ ਵਿਗਿਆਨੀਆਂ ਦੁਆਰਾ ਅਨੇਕਾਂ ਪ੍ਰੇਖਣਾਂ ਅਤੇ ਪ੍ਯੋਗਾਂ ਦਾ ਨਤੀਜਾ ਹੈ। ਸਭ ਤੋਂ ਪਹਿਲਾਂ ਜਰਮਨ ਰਸਾਇਣ ਵਿਗਿਆਨੀ ਜਾੱਨ ਡਾਬੇਰਾਇਨਰ ਨੇ ਸੰਨ 1800 ਦੇ ਸ਼ੁਰੂ ਦੇ ਦਸ਼ਕਾਂ ਵਿੱਚ ਇਸ ਗੱਲ ਵੱਲ ਸੰਕੇਤ ਕੀਤਾ ਕਿ ਰਸਾਇਣਿਕ ਤੱਤਾਂ ਦੇ ਗੁਣਾਂ ਵਿੱਚ ਨਿਸ਼ਚਿਤ ਪ੍ਰਵਿਰਤੀ ਹੁੰਦੀ ਹੈ। ਸੰਨ 1829 ਵਿੱਚ ਉਨ੍ਹਾਂ ਨੇ ਸਮਾਨ ਭੌਤਿਕ ਅਤੇ ਰਸਾਇਣਿਕ ਗੁਣਾਂ ਵਾਲੇ ਤਿੰਤ ਤੱਤਾਂ ਦੇ ਸਮੂਹਾਂ (ਤਿਕੜੀ) ਦੇ ਵੱਲ ਧਿਆਨ ਕਰਵਾਇਆ। ਉਨ੍ਹਾਂ ਨੇ ਇਹ ਵੀ ਵੇਖਿਆ ਕਿ ਹਰ ਇੱਕ ਤਿਕੜੀ ਵਿੱਚ ਵਿਚਕਾਰਲੇ ਤੱਤ ਦਾ ਪਰਮਾਣੂ ਭਾਰ ਬਾਕੀ ਦੋਵਾਂ ਤੱਤਾਂ ਦੇ ਪਰਮਾਣੂ ਭਾਰ ਦੇ ਔਸਤ ਮਾਨ ਦੇ ਲਗਪਗ ਬਰਾਬਰ ਸੀ। (ਸਾਰਣੀ 3.1 ਵਿੱਚ ਵੇਖੋ ਨਾਲ ਹੀ, ਮੱਧ ਵਾਲੇ ਤੱਤ ਗਣ ਬਾਕੀ ਦੋਵੇਂ ਤੱਤਾਂ ਦੇ ਗਣਾਂ ਦੇ ਮੱਧ ਵੇਖੇ ਗਏ।

ਡਾਬੇਰਾਇਨਰ ਦਾ 'ਤਿਕੜੀ ਦਾ ਨਿਯਮ' ਕੁਝ ਹੀ ਤੱਤਾਂ ਦੇ ਲਈ ਸਹੀ ਵੇਖਿਆ ਗਿਆ। ਇਸ ਲਈ ਇਸ ਨੂੰ ਸਿਰਫ ਇੱਕ ਸੰਯੋਗ 1865 ਵਿੱਚ ਅਸ਼ਟਕ ਨਿਯਮ (Law of Octaves) ਨੂੰ ਵਿਕਸਿਤ ਕੀਤਾ। ਉਨ੍ਹਾਂ ਨੇ ਤੱਤਾਂ ਨੂੰ ਉਨ੍ਹਾਂ ਦੇ ਵੱਧਦੇ ਹੋਏ ਪਰਮਾਣੂ ਭਾਰ ਦੇ ਕ੍ਰਮ ਵਿੱਚ ਵਿਵਸਥਿਤ ਕੀਤਾ ਅਤੇ ਵੇਖਿਆ ਕਿ ਕਿਸੇ ਵੀ ਤੱਤ ਤੋਂ ਸ਼ੁਰੂ ਕਰਨ ਤੇ ਅਠਵੇਂ ਤੱਤ ਦੇ ਗੁਣ ਪਹਿਲੇ ਤੱਤ ਦੇ ਸਮਾਨ ਸਨ (ਸਾਰਣੀ 3.2 ਵੇਖੋ) ਇਹ ਸਬੰਧ ਉਸੇ ਤਰ੍ਹਾਂ ਦਾ ਸੀ ਜਿਵੇਂ ਅਠਵੇਂ ਸੰਗੀਤ ਦੇ ਸੂਰ (eight musical note) ਦਾ ਸਬੰਧ ਪਹਿਲੇ ਸੰਗੀਤ ਦੇ ਸੂਰ ਦੇ ਨਾਲ ਹੁੰਦਾ ਹੈ। ਨਿਊਲੈਂਡ ਦਾ ਅਸ਼ਟਕ ਨਿਯਮ ਸਿਰਫ Ca ਤੱਕ ਦੇ ਤੱਤਾਂ ਤੱਕ ਸਹੀ ਸਾਬਤ ਹੋਇਆ, ਹਾਲਾਂਕਿ ਉਸ ਸਮੇਂ ਇਸ ਧਾਰਣਾਂ ਨੂੰ ਜਿਆਦਾ ਮਾਨਤਾ ਨਹੀਂ ਮਿਲੀ ਪਰੰਤੂ ਬਾਅਦ ਵਿੱਚ ਰਾੱਯਲ ਸੋਸਾਇਟੀ (ਲੰਦਨ) ਦੁਆਰਾ ਸੰਨ 1887 ਵਿੱਚ ਨਿਊਲੈਂਡ ਨੂੰ ਡੇਵੀ ਪਕਰ ਦੁਆਰਾ ਸਨਮਾਨਿਤ ਕਰਕੇ ਉਨ੍ਹਾਂ ਦੇ ਕੰਮ ਨੂੰ ਮਾਨਤਾ ਦਿੱਤੀ ਗਈ।

ਰੂਸੀ ਰਸਾਇਣ ਵਿਗਿਆਨੀ ਦਮਿਤਰੀ ਮੈਂਡਲੀਵ (1834–1907) ਅਤੇ ਜਰਮਨ ਰਸਾਇਣ ਵਿਗਿਆਨੀ ਲੋਥਰ ਮੇਯਰ (1830– 1895) ਦੇ ਯਤਨਾਂ ਦੇ ਫਲਸਰੂਪ ਆਵਰਤੀ ਸਾਰਣੀ ਦੇ ਵਿਕਾਸ ਵਿੱਚ ਸਫਲਤਾ ਮਿਲੀ। ਸੁਤੰਤਰ ਰੂਪ ਵਿੱਚ ਕਾਰਜ ਕਰਦੇ ਹੋਏ

		71 001 3.1 8 4	dicod c isaei		
ਤੱਤ	ਪਰਮਾਣੂ ਭਾਰ	ਤੱਤ	ਪਰਮਾਣੂ ਭਾਰ	ਤੱਤ	ਪਰਮਾਣੂ ਭਾਰ
Li	7	Ca	40	C 1	35.5
Na	23	Sr	88	Br	80
K	39	Ba	137	I	127

ਸਾਰਣੀ 3.1 ਡਾਬੇਰਾਇਨਰ ਦੇ ਤਿਕੜੀ

ਸਮਝ ਦੇ ਇਸ ਦਾ ਵਿਚਾਰ ਛੱਡ ਦਿੱਤਾ ਗਿਆ। ਇਸ ਦੇ ਬਾਅਦ ਫਰਾਂਸਿਸੀ ਭੂ ਵਿਗਿਆਨੀ ਏ.ਈ.ਬੀ.ਡੀ ਚੈਨਕੋਰਟੋ ਇਸ (A.E.B.de Chancourtois) ਨੇ ਸੰਨ 1862 ਵਿੱਚ ਤੱਤਾਂ ਦੇ ਵਰਗੀਕਰਣ ਕਰਨ ਦੀ ਕੋਸ਼ਿਸ਼ ਕੀਤੀ। ਉਨ੍ਹਾਂ ਨੇ ਤੱਤਾਂ ਨੂੰ ਉਨ੍ਹਾਂ ਦੇ ਵੱਧਦੇ ਹੋਏ ਪਰਮਾਣੂ ਭਾਰ ਦੇ ਕ੍ਰਮ ਵਿੱਚ ਵਿਵਸਥਿਤ ਕੀਤਾ ਅਤੇ ਤੱਤਾਂ ਦੀ ਵ੍ਤਾਕਾਰ ਸਾਰਣੀ ਬਣਾਈ, ਜਿਸ ਵਿੱਚ ਤੱਤਾਂ ਦੇ ਗੁਣਾਂ ਵਿੱਚ ਆਵਰਤੀ ਪੁਨਰ ਉਕਤੀ ਨੂੰ ਦਰਸਾਇਆ ਗਿਆ। ਇਹ ਵੀ ਵਧੇਰੇ ਧਿਆਨ ਨਾ ਖਿੱਚ ਸਕਿਆ। ਅੰਗਰੇਜ ਰਸਾਇਣ ਵਿਗਿਆਨੀ ਜਾੱਨ ਅਲੈਂਗਜੈਂਡਰ ਨਿਊਲੈਂਡ ਨੇ ਸੰਨ ਦੋਹਾਂ ਵਿਗਿਆਨੀਆਂ ਨੇ ਸੰਨ 1869 ਵਿੱਚ ਪ੍ਰਸਤਾਵਿਤ ਕੀਤਾ ਕਿ ਜਦੋਂ ਤੱਤਾਂ ਨੂੰ ਉਨ੍ਹਾਂ ਦੇ ਵੱਧਦੇ ਹੋਏ ਪਰਮਾਣੂ ਭਾਰਾਂ ਦੇ ਕ੍ਰਮ ਵਿੱਚ ਵਿਵਸਥਿਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ, ਤਾਂ ਨਿਯਮਿਤ ਅੰਤਰਾਲ ਬਾਅਦ ਉਨ੍ਹਾਂ ਦੇ ਭੌਤਿਕ ਅਤੇ ਰਸਾਇਣਿਕ ਗੁਣਾਂ ਵਿੱਚ ਸਮਾਨਤਾ ਮਿਲਦੀ ਹੈ। ਲੋਥਰ ਮੇਯਰ ਨੇ ਭੌਤਿਕ ਗੁਣਾਂ ਜਿਵੇਂ ਪਰਮਾਣਵੀਂ ਆਇਤਨ, ਪਿਘਲਣ ਦਰਜਾ, ਉਬਾਲ ਦਰਜਾ ਅਤੇ ਪਰਮਾਣੂ ਭਾਰ ਦੇ ਵਿੱਚ ਕਰਵ ਪਲਾੱਟ (Curve plotting) ਕੀਤਾ, ਜੋ ਇੱਕ ਨਿਸ਼ਿਚਿਤ ਅੰਤਰਾਲ ਵਾਲੇ ਤੱਤਾਂ ਵਿੱਚ ਸਮਾਨਤਾ ਦਰਸਾਉਂਦਾ ਸੀ। ਸੰਨ 1868 ਤੱਕ ਲੋਥਰ ਮੇਯਰ ਨੇ ਤੱਤਾਂ ਦੀ

ਸਾਰਣੀ 3.2 ਨਿਊਲੈਂਡ ਦੇ ਅਸ਼ਟਕ

ਤੱਤ	Li	Be	В	С	N	0	F
ਪਰਮਾਣੂ ਭਾਰ	7	9	11	12	14	16	19
ਤੱਤ	Na	Mg	A1	Si	P	s	C1
ਪਰਮਾਣੂ ਭਾਰ	23	24	27	29	31	32	35.5
ਤੱਤ	K	Ca					
ਪਰਮਾਣੂ ਭਾਰ	39	40					

ਇੱਕ ਸਾਰਣੀ ਦਾ ਵਿਕਾਸ ਕਰ ਲਿਆ, ਜੋ ਅਧੁਨਿਕ ਆਵਰਤੀ– ਸਾਰਣੀ ਨਾਲ ਕਾਫ਼ੀ ਮਿਲਦੀ ਜੁਲਦੀ ਸੀ, ਲੇਕਿਨ ਉਸ ਦੇ ਕੰਮ ਦਾ ਵਿਵਰਣ ਦਮਿਤਰੀ ਮੈਂਡਲੀਵ ਦੇ ਕੰਮ ਦੇ ਵਿਵਰਣ ਤੋਂ ਪਹਿਲਾਂ ਪ੍ਕਾਸ਼ਿਤ ਨਹੀਂ ਹੋ ਸਕਿਆ। ਅਧੁਨਿਕ ਆਵਰਤੀ ਸਾਰਣੀ ਦੇ ਵਿਕਾਸ ਵਿੱਚ ਯੋਗਦਾਨ ਦਾ ਸਿਹਰਾ ਦਮਿਤਰੀ ਮੈਂਡਲੀਵ ਨੂੰ ਦਿੱਤਾ ਗਿਆ ਹੈ।

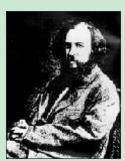
ਹਾਲਾਂਕਿ ਆਵਰਤੀ ਸਬੰਧਾਂ ਦੇ ਅਧਿਐਨ ਦੀ ਸ਼ੁਰੂਆਤ ਡਾੱਬੇਰਾਇਨਰ ਨੇ ਕੀਤਾ ਸੀ, ਪਰੰਤੂ ਮੈਂਡਲੀਵ ਨੇ ਆਵਰਤੀ ਨਿਯਮ ਨੂੰ ਪਹਿਲੀਵਾਰ ਪ੍ਕਾਸ਼ਿਤ ਕੀਤਾ। ਇਹ ਨਿਯਮ ਇਸ ਪ੍ਕਾਰ ਹੈ-

"ਤੱਤਾਂ ਦੇ ਗੁਣ ਉਨ੍ਹਾਂ ਦੇ ਪਰਮਾਣੂ ਭਾਰਾਂ ਦੇ ਆਵਰਤੀ ਫਲਨ ਹੰਦੇ ਹਨ।"

ਮੈਂਡਲੀਵ ਨੇ ਤੱਤਾਂ ਨੂੰ ਖਿਤਿਜੀ ਕਤਾਰਾਂ ਅਤੇ ਖੜੇ-ਦਾਅ ਕਾੱਲਮ ਵਿੱਚ ਉਨ੍ਹਾਂ ਦੇ ਵੱਧਦੇ ਹੋਏ ਪਰਮਾਣੂ ਭਾਰ ਦੇ ਅਨੁਸਾਰ ਸਾਰਣੀ ਵਿੱਚ ਇਸ ਤਰ੍ਹਾਂ ਕ੍ਰਮ ਵਿੱਚ ਰੱਖਿਆ ਹੈ ਕਿ ਸਮਾਨ ਗੁਣਾਂ ਵਾਲੇ ਤੱਤ ਇੱਕ ਹੀ ਖੜੇ ਦਾਅ-ਕਾੱਲਮ ਜਾਂ ਗਰੁੱਪ ਵਿੱਚ ਸਥਾਨ ਮਿਲੇ। ਮੈਂਡਲੀਵ ਦੁਆਰਾ ਤੱਤਾਂ ਦਾ ਵਰਗੀਕਰਣ ਨਿਸ਼ਚਿਤ ਤੌਰ ਤੇ ਲੋਥਰ ਮੇਯਰ ਦੇ ਵਰਗੀਕਰਣ ਨਾਲੋਂ ਵਧੇਰੇ ਵਿਸਥਾਰਿਤ ਸੀ।ਮੈਂਡਲੀਵ ਨੇ ਆਵਰਤਿਤਾ ਦੇ ਮਹੱਤਵ ਨੂੰ ਪੂਰੀ ਤਰ੍ਹਾਂ ਸਮਝਿਆ ਅਤੇ ਤੱਤਾਂ ਦੇ ਵਰਗੀਕਰਣ ਦੇ ਲਈ ਵਧੇਰੇ ਵਿਸਥਾਰਿਤ ਭੌਤਿਕ ਅਤੇ ਰਸਾਇਣਿਕ ਗੁਣਾਂ ਨੂੰ ਅਧਾਰ ਮੰਨਿਆ। ਵਿਸ਼ੇਸ਼ਰੂਪ ਵਿੱਚ ਮੈਂਡਲੀਵ ਨੇ ਤੱਤਾਂ ਦੁਆਰਾ ਪ੍ਰਾਪਤ ਯੋਗਿਕਾਂ ਦੇ ਮੂਲ ਅਨੁਪਾਤੀ ਸੂਤਰਾਂ (emperical formula) ਅਤੇ ਉਨ੍ਹਾਂ ਦੇ ਗੁਣਾਂ ਦੀ ਸਮਾਨਤਾ ਨੂੰ ਅਧਾਰ ਮੰਨਿਆ। ਉਹ ਇਹ ਜਾਣਦੇ ਸਨ ਕਿ ਜੇ ਪਰਮਾਣੂ ਭਾਰ ਦੇ ਕ੍ਰਮ ਦਾ ਸੰਪੂਰਣ ਰੂਪ ਵਿੱਚ ਪਾਲਨ ਕੀਤਾ ਜਾਂਦਾ, ਤਾਂ ਕਝ ਤੱਤ ਉਨ੍ਹਾਂ ਦੇ ਦੁਆਰਾ ਦਿੱਤੇ ਗਏ ਕ੍ਰਮ ਵਿੱਚ

ਆਵਰਤੀ ਸਾਰਣੀ ਵਿੱਚ ਨਹੀਂ ਰੱਖੇ ਜਾ ਸਕਦੇ ਸਨ। ਉਨ੍ਹਾਂ ਨੇ ਸਮਾਨ ਰਸਾਇਣਿਕ ਗੁਣ ਦਰਸਾਉਣ ਵਾਲੇ ਤੱਤਾਂ ਨੂੰ ਆਵਰਤੀ ਸਾਰਣੀ ਵਿੱਚ ਢੁਕਵਾਂ ਸਥਾਨ ਦੇਣ ਦੇ ਲਈ ਉਨ੍ਹਾਂ ਦੇ ਪਰਮਾਣੂ ਭਾਰਾਂ ਦੇ ਕ੍ਰਮ ਦੀ ਉਪੇਖਿਆ ਕੀਤੀ।ਉਦਾਹਰਣ ਵਜੋਂ ਟੈਲੂਰਿਅਮ ਆਇਓਡੀਨ, ਜਿਸਦਾ ਪਰਮਾਣੂ ਭਾਰ ਗਰੁੱਪ VI ਦੇ ਤੱਤ, ਟੈਲਰਿਅਮ ਤੋਂ ਘੱਟ ਸੀ ਨੂੰ ਗਰੱਪ VII ਵਿੱਚ ਫਲੋਰੀਨ, ਕਲੋਰੀਨ ਬਰੋਮੀਨ ਆਦਿ ਦੇ ਨਾਲ ਗੁਣਾਂ ਵਿੱਚ ਸਮਾਨਤਾ ਦੇ ਅਧਾਰ ਤੇ ਰੱਖਿਆ ਗਿਆ। (ਚਿੱਤਰ 3.1)। ਉਨ੍ਹਾਂ ਨੇ ਸਮਾਨ ਗੁਣਾਂ ਵਾਲੇ ਤੱਤਾਂ ਨੂੰ ਇੱਕ ਗਰੁੱਪ ਵਿੱਚ ਰੱਖਣ ਦੀ ਪਹਿਲ ਨੂੰ ਅਧਾਰ ਮੰਨਦੇ ਹੋਏ ਪ੍ਰਸਤਾਵਿਤ ਕੀਤਾ ਕਿ ਕੁਝ ਤੱਤ (ਜੋ ਖੋਜੇ ਨਹੀਂ ਗਏ ਸੀ) ਦੇ ਲਈ ਸਾਰਣੀ ਵਿੱਚ ਕੁਝ ਖਾਲੀ ਥਾਂ ਛੱਡ ਦਿੱਤੇ ਗਏ। ਉਦਾਹਰਣ ਵਜੋਂ ਜਦੋਂ ਮੈਂਡਲੀਵ ਦੀ ਆਵਰਤੀ ਸਾਰਣੀ ਪ੍ਰਕਾਸ਼ਿਤ ਹੋਈ, ਉਦੋਂ ਗੈਲਿਅਮ (Gallium) ਅਤੇ ਜਰਮੇਨਿਅਮ (Germanium) ਤੱਤਾਂ ਦੀ ਖੋਜ ਨਹੀਂ ਹੋਈ ਸੀ। ਉਨ੍ਹਾਂ ਨੇ ਐਲੂਮੀਨਿਅਮ ਅਤੇ ਸਿਲੀਕਾਨ ਦੇ ਹੇਠਾਂ ਇੱਕ-ਇੱਕ ਖਾਲੀ ਥਾਂ ਛੱਡੀ ਅਤੇ ਇਨ੍ਹਾਂ ਤੱਤਾਂ ਦਾ ਨਾਮ ਕਮਵਾਰ ਏਕਾ-ਐਲਮੀਨਿਅਮ (Eka Aluminium) ਅਤੇ ਏਕਾ ਸਿਲੀਕਾਨ (Eka Silicon) ਰੱਖਿਆ। ਮੈਂਡਲੀਵ ਨੇ ਨਾ ਸਿਰਫ ਗੈਲਿਅਮ ਅਤੇ ਜਰਮੇਨਿਅਮ ਤੱਤਾਂ ਦੇ ਹੋਣ ਦੀ ਭਵਿੱਖ ਬਾਣੀ ਕੀਤੀ, ਬਲਕਿ ਇਨ੍ਹਾਂ ਤੱਤਾਂ ਦੇ ਕੁਝ ਭੌਤਿਕ ਗੁਣਾਂ ਦਾ ਵੇਰਵਾ ਵੀ ਦਿੱਤਾ। ਬਾਅਦ ਵਿੱਚ ਖੋਜੇ ਗਏ ਇਨ੍ਹਾਂ ਤੱਤਾਂ ਦੇ ਭੱਵਿਖ ਬਾਣੀ ਕੀਤੇ ਗੁਣਾਂ ਅਤੇ ਪ੍ਰਯੋਗਿਕ ਗੁਣਾਂ ਨੂੰ ਸਾਰਣੀ 3.3 ਵਿੱਚ ਸੂਚੀ ਬੱਧ ਕੀਤਾ ਗਿਆ ਹੈ। ਮੈਂਡਲੀਵ ਦੀਆਂ ਭੱਵਿਖਬਾਣੀਆਂ ਅਤੇ ਕਝ ਸਮੇਂ ਬਾਅਦ ਉਨ੍ਹਾਂ ਦੀ ਸਫਲਤਾ ਦੇ ਕਾਰਣ ਉਨ੍ਹਾਂ ਨੂੰ ਅਤੇ ਉਨ੍ਹਾਂ ਦੀ ਆਵਰਤੀ ਸਾਰਣੀ ਨੂੰ ਕਾਫੀ ਪ੍ਰਸਿੱਧੀ ਮਿਲੀ। ਮੈਂਡਲੀਵ ਦੀ ਸੰਨ 1905 ਵਿੱਚ ਪ੍ਰਕਾਸ਼ਿਤ ਆਵਰਤੀ ਸਾਰਣੀ ਨੂੰ ਚਿੱਤਰ 3.1 ਵਿੱਚ ਦਰਸਾਇਆ ਗਿਆ ਹੈ।

ਸਾਰਣੀ 3.3 ਆਧੁਨਿਕ ਆਵਰਤੀ ਨਿਯਮ ਅਤੇ ਆਵਰਤੀ ਸਾਰਣੀ ਦਾ ਵਰਤਮਾਨ ਸਰੂਪ


ਗੁਣ	ਏਕਾਐਲੂਮੀਨਿਅਮ (ਭਵਿੱਖ ਬਾਣੀ)	ਗੈਲਿਅਮ (ਖੋਜਿਆ ਗਿਆ ਤੱਤ)	ਏਕਾ ਸਿੱਲੀਕਾੱਨ (ਭਵਿੱਖ ਬਾਣੀ)	ਜਰਮੇਨਿਅਮ (ਖੋਜਿਆ ਗਿਆ ਤੱਤ)
ਪਰਮਾਣੂ ਭਾਰ	68	70	72	72.6
ਘਣਤਾ / (g/cm³)	5.9	5.94	5.5	5.36
ਪਿਘਲਣ ਦਰਜਾ / K	ਘੱਟ	302.93	ਜ਼ਿਆਦਾ	1231
ਅੱਕਸਾਈਡ ਦਾ ਸੂਤਰ	E_2O_3	$\mathrm{Ga_2O_3}$	EO_2	${\rm GeO}_2$
ਕਲੋਰਾਈਡ ਦਾ ਸੂਤਰ	ECl ₃	GaCl ₃	ECl ₄	GeCl ₄

ਗਰੁੱਪਾਂ ਅਤੇ ਪੀਰੀਅਡਾਂ ਵਿੱਚ ਤੱਤਾਂ ਦੀ ਅਵਰਤਿਤਾ

SERIES					GROU	GROUPS OF ELEMENTS	VTS		
	0	I	п	Ш	M	>	IA	ПА	VIII
- a e	Helium He 4.0 Neon Ne 19.9	Hydrogen Hydrogen 1.008 Lithium Li 7.03 Sodium Na 23.5	Beryllium Be 9.1 Magnesium Mg 24.3	Boro B 11.0 Alu	Carbon C 12.0 Silicon Sil	Nitrogen N 14.04 Phosphorus P	Oxygen O 16.00 Sulphur S 32.06	Fluorine F 19.0 Chlorine Cl Cl	
4 C	Argon Ar 38	Potassium K 39.1 Copper Cu 63.6	Calcium Ca 40.1 Zinc Zn 65.4	Scandium Sc 44.1 Gallium Ga 70.0	Titanium Ti 48.1 Germanium Ge 72.3	Vanadium V 51.4 Arsenic As 75	Chromium Cr 52.1 Selenium Se 79	Manganese Mn 55.0 Bromine Br 79.95	Iron Cobalt Nickel Fe Co Ni (Cu) 55.9 59 59
9 2	Krypton Kr 81.8	Rubidium Rb 85.4 Silver Ag 107.9	Strontium Sr 87.6 Cadmium Cd 112.4	Yttrium Y 89.0 Indium In 114.0	Zirconium Zr 90.6 Tin Sn 119.0	Niobium Nb 94.0 Antimony Sb 120.0	Molybdenum Mo 96.0 Tellurium Te	- Iodine 126.9	Ruthenium Rhodium Palladium Ru Rh Pd (Ag) 101.7 103.0 106.5
9 9 10 111	Xenon Xe 128	Caesium Cs 132.9 - Gold Au 197.2	Barium Ba 137.4	Lanthanum La 139 - Ytterbium Yb 173 Thallium T	Cerium Ce 140	Tantalum Ta 183 Bismuth Bismut	Tungsten W		Osmium Iridium Platinum Os Ir Pt (Au) 191 193 194.9
12	1	1	Radium Ra 224	1	Thorium Th 232	1	Uranium U 239		
	Я	R20	RO	R O3	RO 2 HIG RH 4	HIGHER SALINE OXIDES R ₂ O ₅ RHER GASEOUS HYDROGE RH3 RH2	HIGHER SALINE OXIDES R2O5 R2O7 HIGHER GASEOUS HYDROGEN COMPOUNDS RH3 RH2 RH2 RH	R ₂ O ₇ OMPOUNDS RH	$ m RO_4$

ਚਿੱਤਰ. 3.1 ਮੈਂਡਲੀਵ ਦੁਆਰਾ ਪ੍ਕਾਸ਼ਿਤ ਆਵਰਤੀ ਸਾਰਣੀ

ਦਮਿਤਰੀ ਇਵਾਨੋ ਵਿੱਚ ਮੈਂਡਲੀਵ ਦਾ ਜਨਮ ਰਸ ਵਿੱਚ ਤੋਬਾਲਸਕ (Tobalsk) ਨਾਮਕ ਸਥਾਨ ਵਿੱਚ ਸੰਨ 1834 ਵਿੱਚ ਹੋਇਆ ਸੀ। ਉਨ੍ਹਾਂ ਦੇ ਪਿਤਾ ਦੀ ਮੌਤ ਤੋਂ ਬਾਅਦ ਪੁਰਾ ਪਰਿਵਾਰ ਸੇਂਟ ਪੀਟਰਸ ਬਰਗ ਚੱਲਾ ਗਿਆ।ਸੰਨ 1856 ਵਿੱਚ ਉਨ੍ਹਾਂ ਨੇ ਰਸਾਇਣ ਵਿੱਚ ਮਾਸਟਰ ਦੀ ਡਿਗਰੀ ਅਤੇ ਸੰਨ 1865 ਵਿੱਚ ਡਾੱਕਟਰ ਦੀ ਡਿਗਰੀ ਪਾਪਤ ਕੀਤੀ। ਫਿਰ ਉਨ੍ਹਾਂ ਦੀ ਨਿਯਕਤੀ ਪੀਟਰਸਬਰਗ ਯੂਨੀਵਰਸਿਟੀ ਵਿੱਚ ਪ੍ਰੋਫੈਸਰ (ਰਸਾਇਣ) ਦੇ ਅਹੁੱਦੇ ਤੇ ਹੋਈ।ਆਪਣੀ ਪ੍ਰਸਿੱਧ ਪੁਸਤਕ 'Principles of Chemistry ਦੇ ਸ਼ੁਰੂ ਦੇ ਕਾਰਜ ਦੇ ਅਧਾਰ ਤੇ ਮੈਂਡਲੀਵ ਨੇ 'ਆਵਰਤੀ ਦੇ ਨਿਯਮ' ਨੂੰ ਪ੍ਰਸਤੂਤ ਕੀਤਾ ਅਤੇ ਤੱਤਾਂ ਦੇ ਲਈ ਆਵਰਤੀ ਸਾਰਣੀ ਦੀ ਰਚਨਾ ਕੀਤੀ।ਉਸ ਸਮੇਂ ਪਰਮਾਣੂ ਰਚਨਾ ਦੇ ਬਾਰੇ ਵਿੱਚ ਕੋਈ ਜਾਣਕਾਰੀ ਨਹੀਂ ਸੀ।ਮੈਂਡਲੀਵ ਦੀ ਇਹ ਧਾਰਣਾ ਕਿ ਤੱਤਾਂ ਦੇ ਗਣ ਕਿਸ ਤਰ੍ਹਾਂ ਉਨ੍ਹਾਂ ਦੇ ਪਰਮਾਣੂ ਪੂੰਜਾਂ ਨਾਲ ਸਬੰਧਿਤ ਹਨ, ਇੱਕ ਤਰ੍ਹਾਂ ਕਲਪਨਾ ਹੀ ਸੀ।ਕੁੱਝ ਤੱਤਾਂ ਨੂੰ ਗਰੁੱਪ ਵਿੱਚ ਉਨ੍ਹਾਂ ਦੇ ਰਸਾਇਣਿਕ ਗਣਾਂ ਦੇ ਅਧਾਰ ਤੇ ਸਹੀ ਸਥਾਨ ਦੇਣ ਦੇ ਲਈ ਮੈਂਡਲੀਵ ਨੇ ਉਨ੍ਹਾਂ ਤੱਤਾਂ ਦੇ ਯਗਮਾਂ ਦੇ ਕ੍ਰਮ ਨੂੰ ਉਲਟ ਕਰ ਦਿੱਤਾ ਅਤੇ ਵਿਸ਼ਵਾਸ ਦੇ ਨਾਲ ਕਿਹਾ ਕਿ ਉਨ੍ਹਾਂ ਦੇ ਪਰਮਾਣ ਭਾਰਾਂ ਵਿੱਚ ਗਲਤੀਆਂ ਸਨ।ਮੈਂਡਲੀਵ ਨੇ ਆਪਣੀ ਦੂਰ ਦ੍ਰਿਸ਼ਟੀ ਦੇ ਅਧਾਰ ਤੇ ਉਸ ਸਮੇਂ ਤੱਕ ਅਗਿਆਤ ਤੱਤਾਂ ਦੇ ਲਈ ਸਾਰਣੀ ਵਿੱਚ ਖਾਲੀ ਥਾਂ ਛੱਡ ਦਿੱਤੇ ਅਤੇ ਉਨ੍ਹਾਂ ਤੱਤਾਂ ਤੋਂ ਸਬੰਧਿਤ ਗਿਆਤ ਤੱਤਾਂ ਦੇ ਗੁਣਾਂ ਵਿੱਚ ਪ੍ਰੇਖਿਤ (observed) ਪ੍ਰਵਿਰਤੀ ਦੇ ਅਧਾਰ ਤੇ ਉਨ੍ਹਾਂ ਤੱਤਾਂ ਦੇ ਗੁਣਾਂ ਦੀ ਭਵਿੱਖ ਬਾਣੀ ਵੀ ਕੀਤੀ।ਮੈਂਡਲੀਵ ਦੀਆਂ ਭਵਿੱਖ ਬਾਣੀਆਂ ਅਗਿਆਤ ਤੱਤਾਂ ਦੀ ਖੋਜ ਤੋਂ ਬਾਅਦ ਸਹੀ ਅਤੇ ਹੈਰਾਨ ਕਰ ਦੇਣ ਵਾਲੀਆਂ ਸਨ।

ਦਮਿਤਰੀ ਇਵਾਨੋਵਿਕ ਮੈਂਡਲੀਵ (1834-1907)

ਬਾਅਦ ਵਿੱਚ ਮੈਂਡਲੀਵ ਦੇ ਆਵਰਤਿਤਾ ਨਿਯਮ ਨੇ ਦਹਾਕਿਆਂ ਤੱਕ ਖੋਜ ਦੇ ਭਿੰਨ-ਭਿੰਨ ਖੇਤਰਾਂ ਨੂੰ ਪ੍ਰੇਰਿਤ ਕਰਕੇ ਉਸ ਨੂੰ ਅੱਗੇ ਵਧਾਇਆ। ਸੰਨ 1890 ਵਿੱਚ ਪਹਿਲੀਆਂ ਦੋ ਨੌਬਲ ਗੈਸਾਂ (ਆਰਗੱਨ ਅਤੇ ਹੀਲੀਅਮ) ਦੀ ਖੋਜ ਨੇ ਇੱਕ ਵਿਸ਼ੇਸ਼ ਗਰੁੱਪ ਦੀ ਪੂਰਤੀ ਦੇ ਲਈ ਉਸੇ ਤਰ੍ਹਾਂ ਦੇ ਹੋਰ ਤੱਤਾਂ ਦੀ ਖੋਜ ਦੀ ਸੰਭਾਵਨਾ ਨੂੰ ਪ੍ਰੇਰਿਤ ਕੀਤਾ। ਇਸੇ ਸੰਭਾਵਨਾ ਦੇ ਅਧਾਰ ਤੇ ਰੈਮਸੇ (Ramsay) ਨੇ ਕਰਿਪਟਾੱਨ (Krypton) ਅਤੇ ਜ਼ੀਨਾੱਨ ਦੀ ਖੋਜ ਵਿੱਚ ਸਫਲਤਾ ਪ੍ਰਾਪਤ ਕੀਤੀ। ਵੀਹਵੀਂ ਸਦੀ ਦੇ ਸ਼ੁਰੂ ਦੇ ਸਾਲਾਂ ਵਿੱਚ ਯੂਰੇਨਿਅਮ ਅਤੇ ਥੋਰਿਅਮ ਰੇਡੀਓਐਕਟਿਵ ਥੈਸੀਰੀਜ਼ ਤੇ ਖੋਜ ਕਾਰਜ ਵੀ ਆਵਰਤੀ ਸਾਰਣੀ ਤੋਂ ਪ੍ਰੇਰਿਤ ਸਨ।

ਮੈਂਡਲੀਵ ਇੱਕ ਬਹੁਪੱਖੀ ਪ੍ਰਤਿਭਾ ਵਾਲੇ ਵਿਅਕਤੀ ਸਨ। ਵਿਗਿਆਨ ਦੇ ਅਨੇਕਾਂ ਖੇਤਰਾਂ ਵਿੱਚ ਉਨ੍ਹਾਂ ਦੀ ਰੁਚੀ ਸੀ। ਉਨ੍ਹਾਂ ਨੇ ਰੂਸ ਦੇ ਕੁਦਰਤੀ ਸਾਧਨਾਂ ਨਾਲ ਸਬੰਧਿਤ ਅਨੇਕ ਸਮੱਸਿਆਵਾਂ ਤੇ ਕੰਮ ਕੀਤਾ। ਉਨ੍ਹਾਂ ਨੇ ਦਰੁਸਤ ਬੈਰੋਮੀਟਰ (Accurate Barometer) ਦੀ ਖੋਜ ਕੀਤੀ। ਸੰਨ 1890 ਵਿੱਚ ਉਨ੍ਹਾਂ ਨੇ ਪ੍ਰੋਫੈਸਰ ਦੇ ਆਹੁਦੇ ਤੋਂ ਅਸਤੀਫਾ ਦੇ ਦਿੱਤਾ। ਉਸ ਤੋਂ ਬਾਅਦ ਉਨ੍ਹਾਂ ਦੀ ਨਿਯੁਕਤੀ ਭਾਰ ਅਤੇ ਨਾਪ ਬਿਓਰੋ ਵਿੱਚ ਡਾਇਰੈਕਟਰ ਵਜੋਂ ਹੋਈ। ਜੀਵਨ ਦੇ ਅੰਤਿਮ ਸਮੇਂ ਤੱਕ ਉਹ ਖੋਜ ਦੇ ਅਨੇਕਾਂ ਖੇਤਰਾਂ ਵਿੱਚ ਲੱਗੇ ਰਹੇ। ਸੰਨ 1907 ਵਿੱਚ ਉਨ੍ਹਾਂ ਦੀ ਮੌਤ ਹੋ ਗਈ।

ਆਧੁਨਿਕ ਆਵਰਤੀ ਸਾਰਣੀ (ਚਿੱਤਰ 3.2) ਨੂੰ ਵੇਖਣ ਤੇ ਇਹ ਸਪੱਸ਼ਟ ਹੋ ਜਾਂਦਾ ਹੈ ਕਿ ਪਰਮਾਣੂ ਅੰਕ 101 ਵਾਲੇ ਤੱਤ ਦਾ ਨਾਮਕਰਣ ਮੈਂਡਲੀਵਿਅਮ (Mendeleevium) ਕਰਕੇ ਮੈਂਡਲੀਵ ਦਾ ਨਾ ਅਮਰ ਕਰ ਦਿੱਤਾ ਗਿਆ। ਮੈਂਡਲੀਵ ਦੀ ਯੋਗ ਅਗਵਾਈ ਨੂੰ ਮਾਨਤਾ ਦੇ ਅਧਾਰ ਤੇ ਅਮਰੀਕੀ ਵਿਗਿਆਨੀ ਗਲੇਨ ਟੀ.ਸੀਬਰਗ (Glenn T.Seborg) ਨੇ ਪਰਮਾਣੂ ਅੰਕ 101 ਵਾਲੇ ਤੱਤ ਦਾ ਨਾਮ (ਮੈਂਡਲੀਵਿਅਮ' ਪ੍ਰਸਤਾਵਿਤ ਕੀਤਾ ਸੀ, ਜੋ ਖੁਦ ਇਸ ਤੱਤ ਦੇ ਖੋਜ ਕਰਤਾ ਸਨ। ਮੈਂਡਲੀਵ ਅਜਿਹੇ ਪਹਿਲੇ ਰਸਾਇਣ ਵਿਗਿਆਨੀ ਸਨ ਜਿਨ੍ਹਾਂ ਨੇ ਉਨ੍ਹਾਂ ਤੱਤਾਂ ਦੇ ਰਸਾਇਣਿਕ ਗੁਣਾਂ ਦੀ ਭੱਵਿਖ ਬਾਣੀ ਵਿੱਚ ਤੱਤਾਂ ਦੇ 'ਆਵਰਤਿਤਾ ਦੇ ਸਿਧਾਂਤ' ਨੂੰ ਅਧਾਰ ਬਣਾਇਆ ਸੀ, ਜਿਨ੍ਹਾਂ ਦੀ ਖੋਜ ਨਹੀਂ ਹੋਈ ਸੀ। ਇਹੀ ਸਿਧਾਂਤ ਲਗਪਗ ਸਾਰੇ ਪਰਾਯੁਰੇਨਿਅਮ ਤੱਤਾਂ (Transuranium elements) ਦਾ ਖੋਜ ਦਾ ਸਰੋਤ ਰਿਹਾ।

3.3 ਆਧੁਨਿਕ ਆਵਰਤੀ ਨਿਯਮ ਅਤੇ ਆਵਰਤੀ ਸਾਰਣੀ ਦਾ ਵਰਤਮਾਨ ਸਰੂਪ

ਇੱਥੇ ਇਹ ਗੱਲ ਧਿਆਨ ਦੇਣ ਯੋਗ ਹੈ ਕਿ ਜਦੋਂ ਮੈਂਡਲੀਵ ਨੇ ਆਵਰਤੀ ਸਾਰਣੀ ਦਾ ਵਿਕਾਸ ਕੀਤਾ ਤਾਂ ਰਸਾਇਣ ਵਿਗਿਆਨੀਆਂ ਨੂੰ ਪਰਮਾਣੂ ਦੀ ਅੰਦਰੂਨੀ ਰਚਨਾ ਦਾ ਗਿਆਨ ਨਹੀਂ ਸੀ। ਵੀਹਵੀਂ ਸਦੀ ਦੇ ਸ਼ੁਰੂ ਵਿੱਚ ਉੱਪ–ਪਰਮਾਣਵੀਂ ਕਣਾਂ ਦਾ ਵਿਕਾਸ ਹੋਇਆ। ਸੰਨ 1913 ਵਿੱਚ ਅੰਗਰੇਜ਼ ਭੌਤਿਕ ਵਿਗਿਆਨੀ ਹੈਨਰੀ ਮੂਜ਼ਲੇ ਨੇ ਤੱਤਾਂ ਦੇ ਲੱਛਣਾਂ ਦੀ X- ਕਿਰਣ ਸਪੈਕਟ੍ਮਾਂ ਵਿੱਚ ਨਿਯਮਿਤਤਾ ਵੇਖੀ ਅਤੇ ਵੇਖਿਆ ਕਿ \sqrt{V} (ਜਿੱਥੇ

X-ਕਿਰਣਾਂ ਦੀ ਆਵਰਤੀ ਹੈ) ਅਤੇ ਪਰਮਾਣੂ ਅੰਕ (Z) ਦੇ ਵਿੱਚ ਵਕਰ ਆਲੇਖਿਤ ਕਰਨ ਤੇ ਇੱਕ ਸਰਲ ਰੇਖਾ ਪ੍ਰਾਪਤ ਹੁੰਦੀ ਹੈ, ਪਰੰਤੂ ਪਰਮਾਣੂ ਪੁੰਜ ਅਤੇ \sqrt{V} ਦੇ ਆਲੇਖ ਵਿੱਚ ਸਰਲ ਰੇਖਾ ਪ੍ਰਾਪਤ ਨਹੀਂ ਹੁੰਦੀ। ਇਸ ਤਰ੍ਹਾਂ ਮੁਜ਼ਲੇ ਨੇ ਦਰਸਾਇਆ ਕਿ ਪਰਮਾਣੂ-ਪੁੰਜ ਦੀ ਤੁਲਨਾ ਵਿੱਚ ਕਿਸੇ ਤੱਤ ਦਾ ਪਰਮਾਣੂ ਅੰਕ ਉਸ ਤੱਤ ਦੇ ਗੁਣਾਂ ਨੂੰ ਦਰਸਾਉਣ ਵਿੱਚ ਵਧੇਰੇ ਸਮਰੱਥ ਹੈ। ਇਸ ਦੇ ਅਨੁਸਾਰ ਮੈਂਡਲੀਵ ਦੇ ਆਵਰਤੀ ਨਿਯਮ ਦਾ ਬਦਲਾਵ ਕੀਤਾ ਗਿਆ। ਇਸ ਨੂੰ ਆਧੁਨਿਕ ਆਵਰਤੀ ਨਿਯਮ ਕਹਿੰਦੇ ਹਨ। ਇਹ ਇਸ ਪ੍ਰਕਾਰ ਹੈ–

'ਤੱਤਾਂ ਦੇ ਭੌਤਿਕ ਅਤੇ ਰਸਾਇਣਿਕ ਗੁਣ ਉਨ੍ਹਾਂ ਦੇ ਪਰਮਾਣੂ ਅੰਕਾਂ ਦੇ ਆਵਰਤੀ ਫਲਨ ਹੁੰਦੇ ਹਨ।

ਆਵਰਤੀ ਨਿਯਮ ਦੇ ਦੁਆਰਾ ਕੁਦਰਤੀ ਰੂਪ ਵਿੱਚ ਮਿਲਣ ਵਾਲੇ 94 ਤੱਤਾਂ ਵਿੱਚ ਮਹੱਤਵਪੂਰਣ ਸਮਾਨਤਾਵਾਂ ਮਿਲੀਆਂ। ਐਕਟੀਨਮ ਅਤੇ ਪੋਰਟੈਕਟੀਨਿਅਮ ਦੀ ਤਰ੍ਹਾਂ ਨੈਪਚੂਨਿਅਮ ਅਤੇ ਪਲੂਟੋਨਿਅਮ ਵੀ ਯੁਰੇਨਿਅਮ ਦੀ ਕੱਚੀ ਧਾਤ ਪਿੱਚ, ਬਲੈਂਡ ਵਿੱਚ ਮਿਲੇ। ਇਸ ਨਾਲ ਅਕਾਰਬਨਿਕ ਰਸਾਇਣ ਵਿਗਿਆਨ ਵਿੱਚ ਉਤਸ਼ਾਹ ਵਧਿਆ ਅਤੇ ਬਣਾਉਟੀ ਘੱਟ-ਆਯੂ ਵਾਲੇ ਤੱਤਾਂ ਦੀ ਖੋਜ ਹੋਈ।

ਤੁਸੀਂ ਪਹਿਲਾਂ ਪੜ੍ਹ ਚੁੱਕੇ ਹੋ ਕਿ ਕਿਸੇ ਤੱਤ ਦਾ ਪਰਮਾਣੂ ਅੰਕ ਉਸ ਤੱਤ ਦੇ ਨਿਊਕਲੀ ਚਾਰਜ (ਪ੍ਰੋਟਾੱਨਾਂ ਦੀ ਸੰਖਿਆ) ਜਾਂ ਉਦਾਸੀਨ ਪਰਮਾਣੂ ਵਿੱਚ ਮੌਜੂਦ ਇਲੈਕਟ੍ਰਾੱਨਾਂ ਦੀ ਸੰਖਿਆ ਦੇ ਬਰਾਬਰ ਹੁੰਦਾ ਹੈ। ਇਸ ਦੇ ਬਾਅਦ ਕੁਅੰਟਮ ਸੰਖਿਆਵਾਂ ਦੀ ਸਾਰਥਕਤਾ ਅਤੇ ਇਲੈਕਟ੍ਰਾਨਿਕ ਤਰਤੀਬਾਂ ਦੀ ਆਵਰਤਿਤਾ ਨੂੰ ਸਮਝਣਾ ਸੌਖਾ ਹੋ ਜਾਂਦਾ ਹੈ। ਹੁਣ ਇਹ ਮੰਨ ਲਿਆ ਗਿਆ ਹੈ ਕਿ ਆਵਰਤੀ ਨਿਯਮ ਤੱਤਾਂ ਅਤੇ ਉਨ੍ਹਾਂ ਦੇ ਯੋਗਿਕਾਂ ਦੇ ਭੌਤਿਕ ਅਤੇ ਰਸਾਇਣਿਕ ਗੁਣਾਂ ਦਾ ਫਲਨ ਹੈ, ਜੋ ਤੱਤਾਂ ਦੀ ਇਲੈਕਟ੍ਰਾਨਿਕ ਤਰਤੀਬ ਉੱਤੇ ਅਧਾਰਿਤ ਹੈ। ਸਮੇਂ-ਸਮੇਂ ਤੇ ਆਵਰਤੀ ਸਾਰਣੀ ਦੇ ਭਿੰਨ-ਭਿੰਨ ਰੂਪ ਪ੍ਰਸਤੁਤ ਕੀਤੇ ਗਏ ਹਨ। ਕੁੱਝ ਰੂਪ ਤੱਤਾਂ ਦੀਆਂ ਰਸਾਇਣਿਕ ਪ੍ਤੀਕਿਰਿਆਵਾਂ ਅਤੇ ਸੰਯੋਜਕਤਾ ਉੱਤੇ ਬਲ ਦਿੰਦੇ ਹਨ, ਜਦੋਂ ਕਿ ਕੁੱਝ ਦੂਜੇ ਇਲੈਕਟ੍ਰਾਨਿਕ ਤਰਤੀਬ ਉੱਤੇ। ਇਸ ਦਾ ਆਧੁਨਿਕ ਸਰੂਪ (ਜਿਸ ਨੂੰ ਆਵਰਤੀ ਸਾਰਣੀ ਦਾ ਦੀਰਘ ਸਰੂਪ ਕਹਿੰਦੇ ਹਨ) ਬੜਾ ਸੌਖਾ ਅਤੇ ਬਹੁਤ ਉਪਯੋਗੀ ਹੈ ਅਤੇ ਇਸ ਨੂੰ ਚਿੱਤਰ 3.2 ਵਿੱਚ ਦਰਸਾਇਆ ਗਿਆ ਹੈ। ਖਿਤਿਜੀ ਲਾਈਨਾਂ (ਜਿਨ੍ਹਾਂ ਨੂੰ ਮੈਂਡਲੀਵ ਨੇ ਸੀਰੀਜ਼ ਕਿਹਾ ਹੈ) ਨੂੰ ਆਵਰਤ (periods) ਕਿਹਾ ਜਾਂਦਾ ਹੈ ਅਤੇ ਖੜੇਦਾਅ ਕਾੱਲਮਾਂ ਨੂੰ ਗਰੁੱਪ ਕਹਿੰਦੇ ਹਨ। ਸਮਾਨ ਬਾਹਰੀ ਇਲੈਕਟ੍ਰਾਨ ਤਰਤੀਬ ਵਾਲੇ ਤੱਤਾਂ ਨੂੰ ਖੜੇਦਾਅ ਕਾੱਲਮਾਂ ਵਿੱਚ ਰੱਖਿਆ ਜਾਂਦਾ ਹੈ ਜਿਨ੍ਹਾਂ ਨੂੰ ਗਰੁੱਪ ਜਾਂ ਪਰਿਵਾਰ ਕਿਹਾ ਜਾਂਦਾ ਹੈ। IUPAC ਦੀ ਸਿਫਾਰਿਸ਼ ਦੇ ਅਨੁਸਾਰ ਗਰੁੱਪਾਂ ਨੂੰ ਪੁਰਾਣੀ ਪੱਧਤੀ 1A....VIIA, VIII, 1B...VIIB ਦੀ ਥਾਂ ਤੇ ਉਨ੍ਹਾਂ ਨੂੰ 1 ਤੋਂ 18 ਤੱਕ ਦੀਆਂ ਸੰਖਿਆਵਾਂ ਵਿੱਚ ਅੰਕਿਤ ਕਰਕੇ ਨਿਰੁਪਿਤ ਕੀਤਾ ਗਿਆ ਹੈ।

ਆਵਰਤੀ ਸਾਰਣੀ ਵਿੱਚ ਕੁੱਲ ਸੱਤ ਪੀਰੀਅਡ ਹਨ। ਆਵਰਤ-ਸੰਖਿਆ ਪੀਰਿਅਡ ਵਿੱਚ ਤੱਤ ਦੀ ਅਧਿਕਤਮ ਕੁਆਂਟਮ ਸੰਖਿਆ (n) ਨੂੰ ਦਰਸਾਉਂਦੀ ਹੈ। ਪਹਿਲੇ ਪੀਰੀਅਡ ਵਿੱਚ 2 ਤੱਤ ਮੌਜੂਦ ਹਨ। ਇਸ ਦੇ ਬਾਅਦ ਦੇ ਪੀਰੀਅਡਾਂ ਵਿੱਚ ਕ੍ਰਮਵਾਰ 8, 8, 18, 18 ਅਤੇ 32 ਤੱਤ ਹਨ। ਸਤਵਾਂ ਪੀਰੀਅਡ (ਅ)-ਪੂਰਣ ਪੀਰੀਅਡ ਹੈ। ਸਿਧਾਂਤਕ ਰੂਪ ਵਿੱਚ ਛੇਵੇਂ ਪੀਰੀਅਡ ਦੀ ਤਰ੍ਹਾਂ ਇਸ ਵਿੱਚ ਤੱਤਾਂ ਦੀ ਅਧਿਕਤਮ ਸੰਖਿਆ ਕੁਅੰਟਮ ਸੰਖਿਆ ਦੇ ਅਧਾਰ ਤੇ 32 ਹੀ ਹੋਵੇਗੀ। ਇਸ ਰੂਪ ਵਿੱਚ ਆਵਰਤੀ ਸਾਰਣੀ ਦੇ ਛੋਵੇਂ ਅਤੇ ਸਤਵੇਂ ਪੀਰੀਅਡ ਦੇ ਕ੍ਰਮਵਾਰ ਲੈਥੇਨੌਇਡਸ ਅਤੇ ਐਕਟੀਨੌਇਡਸ ਦੇ 14–14 ਤੱਤ ਹੇਠਾਂ ਵੱਖਰੇ ਤੌਰ ਤੇ ਦਰਸਾਏ ਜਾਂਦੇ ਰਹੇ ਹਨ।

3.4 100 ਤੋਂ ਵੱਧ ਪਰਮਾਣੂ-ਕ੍ਰਮ-ਅੰਕ ਵਾਲੇ ਤੱਤਾਂ ਦਾ ਨਾਮਕਰਣ

ਸ਼ੁਰੂ ਵਿੱਚ ਪਰੰਪਰਾਗਤ ਰੂਪ ਵਿੱਚ ਨਵੇਂ ਤੱਤਾਂ ਦਾ ਨਾਮਕਰਣ ਉਨ੍ਹਾਂ ਤੱਤਾਂ ਦੇ ਖੋਜ ਕਰਤਾਵਾਂ ਦੇ ਨਾਮ ਤੇ ਕਰ ਦਿੱਤਾ ਜਾਂਦਾ ਸੀ ਅਤੇ ਪ੍ਰਸਾਵਿਤ ਨਾਮ ਦਾ ਸਮਰਥਨ ਆਈ.ਯੂ.ਪੀ.ਏ.ਸੀ. (International Union of Pure and Applied Chemistry) ਦੁਆਰਾ ਕਰ ਦਿੱਤਾ ਜਾਂਦਾ ਸੀ। ਪਰੰਤੂ ਹੁਣੇ ਜਿਹੇ ਇਸ ਮੁੱਦੇ ਉੱਤੇ ਵਿਵਾਦ ਹੋ ਗਿਆ। ਉੱਚ ਪਰਮਾਣੂ ਕ੍ਰਮ-ਅੰਕ ਵਾਲੇ ਨਵੇਂ ਤੱਤ ਐਨੇ ਅਸਥਿਰ ਹੁੰਦੇ ਹਨ ਕਿ ਉਨ੍ਹਾਂ ਦੀ ਸਿਰਫ਼ ਸੂਥਮ ਮਾਤਰਾ ਅਤੇ ਕਦੇ-ਕਦੇ ਤਾਂ ਸਿਰਫ ਕੁੱਝ ਪਰਮਾਣੂ ਮਾਤਰਾ ਹੀ ਪ੍ਰਾਪਤ ਹੁੰਦੀ ਹੈ। ਇਨ੍ਹਾਂ ਤੱਤਾਂ ਦੇ ਸੰਸਲੇਸ਼ਣ ਅਤੇ

^{*} ਗਲੇਨ ਟੀ.ਸੀਬਰਗ ਦੇ ਕੰਮ ਦੀ ਸ਼ੁਰੂਆਤ ਵੀਹਵੀਂ ਸਦੀ ਦੇ ਲਗਪਗ ਅੱਧ (ਸੰਨ 1940) ਵਿੱਚ ਪਲੂਟੋਨੀਅਮ ਦੀ ਖੋਜ ਤੋਂ ਹੋਈ।ਇਸ ਦੇ ਬਾਅਦ ਯੁਰੇਨਿਅਮ ਦੇ ਬਾਅਦ ਵਾਲੇ (94 ਤੋਂ ਲੈ ਕੇ 102 ਤੱਕ) ਤੱਤਾਂ ਵਿੱਚ ਆਵਰਤੀ ਸਾਰਣੀ ਵਿੱਚ ਬਦਲਾਅ ਆਇਆ ਅਤੇ ਲੈੱਥੇਨੌਇਡਸ ਅਤੇ ਐਕਟੀਨੌਇਡਸ ਨੂੰ ਹੇਠਾਂ ਰੱਖਿਆ ਗਿਆ।ਸੰਨ 1951 ਵਿੱਚ ਸੀਬਰਗ ਨੂੰ ਰਸਾਇਣ ਵਿਗਿਆਨ ਦਾ ਨੋਬਲ ਪੁਰਸਕਾਰ ਉਸ ਦੇ ਕੰਮ ਦੇ ਲਈ ਦਿੱਤਾ ਗਿਆ।ਉਨ੍ਹਾਂ ਨੂੰ ਸਤਿਕਾਰ ਦੇਣ ਲਈ ਤੱਤ ਸੰਖਿਆ 106 ਦਾ ਨਾਮ 'ਸੀਬਰਗਿਅਮ' (sq) ਰੱਖਿਆ ਗਿਆ।

76																						
Noble gases		18	0	2	He	$1s^2$	10	Ne	$2s^{2}2p^{6}$	18	$Ar \\ 3s^2 3p^6$	36	Kr	$4s^{2}4p^{6}$	54	Xe	$5s^25p^6$	98	$\begin{array}{c} \operatorname{Rn} \\ 6s^26p^6 \end{array}$		Ono	
S	.R—			ļ	17	VII B	6	Щ	$2s^{2}2p^{5}$	17	$\frac{\text{CI}}{3s^23p^5}$	35	Br	$4s^2 4p^5$	53		$5s^25p^5$	85	$At \\ 6s^26v^5$	117	Uns	
element	NUMBER			,	16	VIB	∞	0	$2s^22p^4$	16	$\frac{S}{3s^23p^4}$	34	Se	$4s^24p^4$	52	Te	$5s^25p^4$	84	$Po \\ 6s^26p^4$	116	Lv	
ntative	GROUP 1			,	15	ΛB	7	Z	$2s^2 2p^3$	15	$\frac{P}{3s^23p^3}$	33	As	$4s^24p^3$	51	Sb	$5s^25p^3$	83	$Bi \\ 6s^2 6v^3$	115	Uup	
Representative elements	——GR			,	14	IVB	9	C	$2s^{2}2p^{2}$	14	$\frac{\text{Si}}{3s^23p^2}$	32	Ge	$4s^24p^2$	90	Sn	$5s^{2}5p^{2}$	82	$Pb \\ 6s^26v^2$	114	旦	
				_ (13	III B	5	В	$2s^2 2p^1$	13	$\frac{\text{Al}}{3s^23p^1}$	31	Ga	$4s^24p^1$	46	In	$5s^25p^1$	81	T_l	113	Uut	
										12	II B	30	Zn	$3d^{4}4s^{2}$	48	Cd	$4d^{10}5s^2$	80	Hg 54'06s2	112	Cn	
										11	IB	29	Cu	$3d^{10}4s^{1}$	47	Ag	$4d^{10}5s^{1}$	79	Au 54106s1	111	Rg	
										10	^	28	ïZ	$3d^84s^2$	46	Pd	$4d^{10}$	78	Pt 5d ⁹ 6s ¹	110	Ds	
							ıts	Ē		6	- IIII	27	ပိ	$3d^74s^2$	45	Rh	$4d^85s^1$	77	Ir 5d'6s²	109	Mt	
		ſ					elemer		UMBEI	~	\downarrow	26	Ге	$3d^{6}4s^{2}$	44	Ru	$4d^{7}5s^{1}$	92	Os 54%s²		Hs	
				ΗŢ	IS		d-Transition elements	1	GKOUP NUMBER	_	VIIA	25	Mn	3d ⁵ 4s ²	43	Тс	$4d^{5}Ss^{2}$	75	Re 5456s2	107	Bh	
						,	d-Tr	Ç	75	9	VIA	24	C	$3d^{5}4s^{1}$	42	Mo	$4d^{5}5s^{1}$	74	W 5d ⁴ 6s ²	106	Sg	
										2	VA	23	>	$3d^34s^2$	41	Ng	$4d^45s^1$	73	$\frac{\text{Ta}}{5d^36s^2}$	105	Db	
										4	IVA	22	Τ̈́	$3d^24s^2$	40	Zr	$4d^{2}5s^{2}$	72	Hf 4f ¹⁴ 5d ² 6s ²	104	Rf	
										- m	III A	21	Sc	$3d^44s^2$	39	Y	$4d^{1}5s^{2}$	57	La^* $5d^16s^2 \frac{4}{4}$	89	Ac**	6d ¹ 7s ²
ntative	nts	Д	ER]	,	1	IIA	4	Be	2s ²	12	$\frac{\text{Mg}}{3s^2}$	20	Ca	4.52	38	Sr	5.82	99	Ba 6s²	88	Ra	$7s^2$
Renrese	elements	GROU	NUMBER	-	-	IA	3	Ľ	2s1	11	Na 3s1	19	\times	4s1	37	Rb	5.81	55	Cs 6s1	87	Fr	$7s^1$
					_	<u>-</u>		7		C	n		4			2			9			

			4			5f
	70	Yb	$4f^{14}5d^{0}6s^{2}$	102	No	$5f^{14}6d^{0}7s^{2}$
	69	Tm	$4f^{13}5d^{0}6s^{2}$	101	Md	$5f^{13}6d^{0}7s^{2}$
	89	Er	$4f^{12}5d^{0}6s^{2}$	100	Fm	$5f^{12}6d^07s^2$
	29	Но	$4f^{11}5d^{0}6s^{2}$	66	Es	$5f^{11}6d^{0}7s^{2}$
ıts	99	Dy	$4f^{10}5d^{1}6s^{2}$	86	Cf	$5f^{10}6d^07s^2$
- Inner transition elements	65	Tb	$4f^{9}5d^{0}6s^{2}$		Bk	$5f^{9}6d^{0}7s^{2}$
transitio	64		$4f^{7}5d^{1}6s^{2}$	96	Cm	$5f^{7}6d^{1}7s^{2}$
f-Inner	63	Eu	$4f^{7}5d^{0}6s^{2}$	95	Am	$5f^{7}6d^{0}7s^{2}$
·	62	Sm	$4f^{6}5d^{0}6s^{2}$		Pu	$5f^{6}Gd^{0}7s^{2}$
	61	Pm	$4f^{5}5d^{0}6s^{2}$	93	dN	$5f^46d^17s^2$
	09	pN	$4f^{4}5d^{0}6s^{2}$	92	n	$5f^{3}6d^{1}7s^{2}$
	59	Pr	$4f^{3}5d^{0}6s^{2}$	91	Pa	$5f^{2}6d^{1}7s^{2}$
	58	Ce	$4f^25d^06s^2$		Th	$5f^{0}6d^{2}7s^{2}$

**Actinoids

 $5f^{n}6d^{0-2}7s^{2}$

Länthanoids $4f^{n}5d^{0-1}6s^{2}$

71 Lu 103 103 Lr Lr

ਚਿੱਤਰ 3.2 ਤੱਤਾਂ ਦੇ ਪਰਮਾਣੂ ਕ੍ਰਮ ਅੰਕ ਅਤੇ ਗਰਾਊਂਡ ਅਵਸਥਾ ਇਲੈਕਾਂਟ੍ਰਾਨਿਕ ਤਰਤੀਬ ਦੇ ਨਾਲ ਅਵਰਤੀ ਸਾਰਣੀ ਦਾ ਵੱਡਾ ਰੂਪ। ਸੰਨ 1984 ਦੇ ਦੀ ਮਾਨਤਾ ਦੇ ਅਨੁਸਾਰ ਗਰੁੱਪਾਂ ਨੂੰ 1 ਤੋਂ 18 ਤਕ ਦਰਸਾਇਆ ਗਿਆ ਹੈ। ਇਸ ਪ੍ਕਾਰ ਦਾ ਸੰਕੇਤਨ ਵਰਗਾਂ IA-VIIA, VIII, IB ਤੋਂ VIIB ਅਤੇ 0 ਨਾਲ ਪ੍ਰਦਰਸ਼ਿਤ ਕਰਨ ਦੀ ਪੁਰਾਣੀ ਪੱਧਤੀ ਨੂੰ ਪ੍ਰਤੀਸਥਾਪਿਤ ਕਰਦਾ ਹੈ.

PERIOD NOMBER

ਵਿਸ਼ੇਸ਼ ਗੁਣਾਂ ਦੇ ਅਧਿਐਨ ਦੇ ਲਈ ਮਹਿੰਗੇ ਅਤੇ ਆਧੁਨਿਕ ਉਪਕਰਣਾਂ ਅਤੇ ਪ੍ਯੋਗਸ਼ਾਲਾ ਦੀ ਜਰੂਰਤ ਪੈਂਦੀ ਹੈ। ਵਿਸ਼ਵ ਦੀਆਂ ਕਝ ਹੀ ਪਯੋਗਸ਼ਾਲਾਵਾਂ ਵਿੱਚ ਮਕਾਬਲੇ ਦੀ ਭਾਵਨਾ ਨਾਲ ਅਜਿਹਾ ਕੰਮ ਹੁੰਦਾ ਹੈ। ਕਦੇ-ਕਦੇ ਵਿਗਿਆਨੀ ਬਿਨਾਂ ਤਸਲੀਬਖਸ ਅੰਕੜੇ ਇਕੱਠੇ ਕਰਨ ਦੇ ਇੱਕ ਨਵੇਂ ਤੱਤ ਦੀ ਖੋਜ ਦਾ ਦਾਵਾ ਕਰਨ ਦੇ ਲਈ ਕਾਹਲੇ ਪੈ ਜਾਂਦੇ ਹਨ। ਉਦਾਹਰਣ ਦੇ ਤੌਰ ਤੇ-ਅਮਰੀਕੀ ਅਤੇ ਰੂਸੀ, ਦੋਹਾਂ ਦੇਸ਼ਾਂ ਦੇ ਵਿਗਿਆਨੀਆਂ ਨੇ 104 ਪਰਮਾਣੂ-ਕ੍ਰਮ ਅੰਕ ਵਾਲੇ ਤੱਤ ਦੀ ਖੋਜ ਦਾ ਦਾਅਵਾ ਕੀਤਾ। ਅਮਰੀਕੀ ਵਿਗਿਆਨੀ ਨੇ ਇਸ ਨੂੰ 'ਰਦਰਫੋਰਡੀਅਮ' (Rutherfordium) ਅਤੇ ਰੂਸੀ ਵਿਗਾਨੀ ਨੇ ਇਸ ਨੂੰ 'ਕੁਰਸ਼ਾਟੋਵਿਅਮ' (Kurchatouim) ਨਾਮ ਦਿੱਤਾ। ਇਸ ਤਰ੍ਹਾਂ ਦੀ ਕਠਿਨਾਈ ਨੂੰ ਦੂਰ ਕਰਨ ਦੇ ਲਈ IUPAC ਨੇ ਸੁਝਾਅ ਦਿੱਤਾ ਕਿ ਜਦੋਂ ਤੱਕ ਤੱਤ ਦੀ ਖੋਜ ਸਿੱਧ ਨਾ ਹੋ ਜਾਵੇ ਅਤੇ ਨਾਮ ਦਾ ਸਮਰਥਨ ਨਾ ਹੋ ਜਾਵੇ, ਤੱਦ ਤੱਕ ਸਿਫਰ ਅਤੇ 1 ਤੋਂ 9 ਤੱਕ ਸੰਖਿਆਵਾਂ ਦੇ ਲਈ ਸੰਖਿਆਤਮਕ ਮੂਲ (numerical root) ਦੀ ਵਰਤੋਂ ਕਰਦੇ ਹੋਏ ਇਨ੍ਹਾਂ ਦੇ ਨਾਵਾਂ ਨੂੰ ਪਰਮਾਣੂ-ਕ੍ਰਮ-ਅੰਕਾਂ ਦੇ ਅਧਾਰ ਤੇ ਸਿੱਧੇ ਦਿੱਤਾ ਜਾਵੇ। ਇਸ ਨੂੰ ਸਾਰਣੀ 3.4 ਵਿੱਚ ਦਿੱਤਾ ਗਿਆ ਹੈ।

ਮੂਲਾਂ ਨੂੰ ਅੰਕਾਂ ਦੇ ਕ੍ਰਮ ਵਿੱਚ ਇੱਕਠਾ ਰੱਖਿਆ ਜਾਂਦਾ ਹੈ, ਜਿਸ ਨਾਲ ਕ੍ਰਮ ਅੰਕ ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ ਅਤੇ ਅੰਤ ਵਿੱਚ 'ਇਅਮ' (ium) ਜੋੜ ਦਿੱਤਾ ਜਾਂਦਾ ਹੈ। 100 ਤੋਂ ਵੱਧ ਪਰਮਾਣੂ ਕ੍ਰਮ ਅੰਕ

ਸਾਰਣੀ 3.4 ਤੱਤਾਂ ਦੇ IUPAC ਨਾਮਕਣ ਦੇ ਲਈ ਸੰਕੇਤਨ

ਅੰਕ	ਨਾਮ	ਸੰਖੇਪ ਰੂਪ
0	nil	n
1	un	u
2	b i	b
3	tri	t
4	quad	q
5	pent	p
6	hex	h
7	sept	s
8	oct	0
9	enn	е

ਸਾਰਣੀ 3.5 ਪਰਮਾਣੂ-ਕ੍ਰਮ-ਅੰਕ 100 ਤੋਂ ਵੱਧ ਵਾਲੇ ਤੱਤਾਂ ਦਾ ਨਾਮਕਰਣ

	ਸਾਰਣਾ 3.5 ਪਰਮਾਣੂ-ਕ੍ਰਮ-ਅ	100 5 E4 E		
ਪਰਮਾਣੂ ਕ੍ਰਮ ਅੰਕ	ਨਾਮ	ਪ੍ਰਤੀਕ	ਅਧਾਰਿਤ ਨਾਮ	ਪ੍ਰਤੀਕ
101	Unnilunium	Unu	Mendelevium	Md
102	Unnilbium	Unb	Nobelium	No
103	Unniltrium	Unt	Lawrencium	Lr
104	Unnilquadium	Unq	Rutherfordium	Rf
105	Unnilpentium	Unp	Dubnium	Db
106	Unnilhexium	Unh	Seaborgium	Sg
107	Unnilseptium	Uns	Bohrium	Bh
108	Unniloctium	Uno	Hassium	Hs
109	Unnilennium	Une	Meitnerium	Mt
110	Ununnillium	Uun	Darmstadtium	Ds
111	Unununnium	Uuu	Rontgenium	Rg
112	Ununbium	Uub	Copernicium	Cn
113	Ununtrium	Uut	*	_
114	Ununquadium	Uuq	Flerovium	Fl
115	Ununpentium	Uup	*	-
116	Ununhexium	Uuh	Livermorium	Lv
117	Ununseptium	Uus	*	-
118	Ununoctium	Uuo	*	-

^{*} ਅਧਿਕਾਰਿਤ IUPAC ਨਾਮ ਦੀ ਘੋਸ਼ਣਾ ਅਜੇ ਤੱਕ ਨਹੀਂ ਹੋਈ।

ਵਾਲੇ ਤੱਤਾਂ ਦੇ IUPAC ਨਾਮ ਸਾਰਣੀ 3.5 ਵਿੱਚ ਦਰਸਾਏ ਗਏ ਹਨ। ਇਸ ਤਰ੍ਹਾਂ ਨਵੇਂ ਤੱਤ ਨੂੰ ਪਹਿਲਾਂ ਅਸਥਾਈ ਨਾਮ ਅਤੇ ਤਿੰਨ ਅੱਖਰਾਂ ਵਾਲਾ ਪ੍ਤੀਕ ਦਿੱਤਾ ਜਾਂਦਾ ਹੈ। ਬਾਅਦ ਵਿੱਚ ਹਰ ਦੇਸ਼ ਦੇ IUPAC ਪ੍ਤੀਨਿੱਧ ਦੇ ਮਤਦਾਨ ਨਾਲ ਸਥਾਈ ਨਾਮ ਅਤੇ ਪ੍ਤੀਕ ਦਿੱਤਾ ਜਾਂਦਾ ਹੈ. ਸਥਾਈ ਨਾਮ ਵਿੱਚ ਉਸ ਦੇਸ਼ ਦਾ ਜਾਂ ਪ੍ਦੇਸ਼ ਦਾ ਨਾਮ ਹੋ ਸਕਦਾ ਹੈ, ਜਿੱਥੇ ਉਸ ਤੱਤ ਦੀ ਖੋਜ ਹੋਈ ਹੈ ਜਾਂ ਸਨਮਾਨ ਪ੍ਗਟ ਕਰਨ ਦੇ ਲਈ ਕਿਸੇ ਪ੍ਸਿੱਧ ਵਿਗਿਆਨੀ ਦਾ ਨਾਂ ਹੋ ਸਕਦਾ ਹੈ। ਪਰਮਾਣੂ-ਕ੍ਰਮ-ਅੰਕ 118 ਤੱਕ ਤੱਤਾਂ ਦੀ ਖੋਜ ਹੋ ਚੁੱਕੀ ਹੈ। 113, 115, 117 ਅਤੇ 118 ਪਰਮਾਣੂ ਕ੍ਰਮ ਅੰਕ ਵਾਲੇ ਤੱਤਾਂ ਦੇ ਅਧਿਕਾਰਿਤ IUPAC ਨਾਵਾਂ ਦੀ ਘੋਸ਼ਣਾ ਅਜੇ ਤੱਕ ਨਹੀਂ ਹੋਈ।

ਉਦਾਹਰਣ 3.1

120 ਪਰਮਾਣੂ-ਕ੍ਰਮ-ਅੰਕ ਵਾਲੇ ਤੱਤ ਦਾ IUPAC ਨਾਮ ਅਤੇ ਪ੍ਰਤੀਕ (symbol) ਕੀ ਹੋਵੇਗਾ ?

ਜੱਲ

ਸਾਰਣੀ 3.4 ਦੇ ਅਨੁਸਾਰ 1, 2 ਅਤੇ 0 ਦੇ ਲਈ ਮੂਲ (root) ਕ੍ਰਮਵਾਰ un, bi ਅਤੇ nil ਹੋਣਗੇ। ਇਸ ਲਈ 120 ਪਰਮਾਣੂ ਕ੍ਰਮ ਅੰਕ ਵਾਲੇ ਤੱਤ ਦਾ ਨਾ Unbinilium ਅਤੇ ਪ੍ਤੀਕ Ubn ਹੋਵੇਗਾ।

3.5 ਤੱਤਾਂ ਦੀ ਇਲੈਕਟ੍ਰਾਨਿਕ ਤਰਤੀਬ ਅਤੇ ਆਵਰਤੀ ਸਾਰਣੀ

ਪਿਛਲੇ ਯੁਨਿਟ ਵਿੱਚ ਅਸੀਂ ਇਹ ਸਮਝਿਆ ਕਿ ਕਿਸੇ ਪਰਮਾਣੂ ਵਿੱਚ ਇਲੈਕਟ੍ਰਾਨ ਦੀ ਪਛਾਣ ਚਾਰ ਕੁਆਂਟਮ ਸੰਖਿਆਵਾਂ ਨਾਲ ਕੀਤੀ ਜਾ ਸਕਦੀ ਹੈ। ਮੁੱਖ ਕੁਆਂਟਮ ਸੰਖਿਆ (n) ਪਰਮਾਣੂ ਦੇ ਮੁੱਖ ਊਰਜਾ ਸਤਰ ਜਿਸ ਨੂੰ ਆਰਬਿਟ (shell) ਕਹਿੰਦੇ ਹਨ ਨੂੰ ਵਿਅਕਤ ਕਰਦੀ ਹੈ। ਅਸੀਂ ਇਹ ਵੀ ਜਾਣਿਆ ਕਿ ਕਿਸ ਤਰ੍ਹਾਂ ਪਰਮਾਣੂ ਵਿੱਚ ਇਲੈਕਟ੍ਰਾਨ ਭਿੰਨ-ਭਿੰਨ ਸੱਬ ਸ਼ੈੱਲਾਂ ਵਿੱਚ ਭਰੇ ਜਾਂਦੇ ਹਨ, ਜਿਨ੍ਹਾਂ ਨੂੰ ਅਸੀਂ s, p, d ਅਤੇ f ਕਹਿੰਦੇ ਹਾਂ। ਪਰਮਾਣੂ ਵਿੱਚ ਇਲੈਕਟ੍ਰਾਨਾਂ ਦੇ ਵਿਤਰਣ ਨੂੰ ਹੀ ਉਸ ਦੀ ਇਲੈਕਟ੍ਰਾਨ ਤਰਤੀਬ ਕਹਿੰਦੇ ਹਨ। ਕਿਸੇ ਤੱਤ ਦੀ ਆਵਰਤੀ ਸਾਰਣੀ ਵਿੱਚ ਸਥਿਤ ਉਸ ਦੇ ਭਰੇ ਜਾਣ ਵਾਲੇ ਅੰਤਿਮ ਆਰਬਿਟ ਦੀ ਕੁਆਂਟਮ ਸੰਖਿਆਵਾਂ ਨੂੰ ਦਰਸਾਉਂਦੀ ਹੈ। ਇਸ ਭਾਗ ਵਿੱਚ ਅਸੀਂ ਦੀਰਘਾਕਾਰ (Long form) ਆਵਰਤੀ ਸਾਰਣੀ ਅਤੇ ਤੱਤਾਂ ਵਿੱਚ ਇਲੈਕਟ੍ਰਾਨਿਕ ਤਰਤੀਬ ਦੇ ਵਿੱਚ ਸਿੱਧੇ ਸਬੰਧ ਦੇ ਬਾਰੇ ਜਾਣਕਾਰੀ ਪ੍ਰਾਪਤ ਕਰਾਂਗੇ।

(ੳ) ਪੀਰੀਅਡ ਵਿੱਚ ਇਲੈਕਟ੍ਰਾੱਨਿਕ ਤਰਤੀਬ

ਪੀਰੀਅਡ ਮੁੱਖ ਊਰਜਾ ਜਾਂ ਬਾਹਰੀ ਆੱਰਬਿਟ ਦੇ ਲਈ n ਦਾ ਮਾਨ ਦੱਸਦਾ ਹੈ। ਆਵਰਤੀ ਸਾਰਣੀ ਵਿੱਚ ਹਰ ਇੱਕ ਸਿਲਸਿਲੇਵਾਰ ਆਵਰਤ (successive period) ਦੀ ਪੂਰਤੀ ਅਗਲੇ ਉੱਚ ਮੁੱਖ ਊਰਜਾ ਸਤਰ ($n=1,\ n=2,$ ਆਦਿ ਨਾਲ ਸਬੰਧਿਤ ਹੁੰਦੀ ਹੈ। ਇਹ ਵੇਖਿਆ ਜਾ ਸਕਦਾ ਹੈ ਕਿ ਹਰ ਇੱਕ ਆਵਰਤ ਵਿੱਚ ਤੱਤਾਂ ਦੀ ਸੰਖਿਆ, ਭਰੇ ਜਾਣ ਵਾਲੇ ਊਰਜਾ ਸਤਰ ਵਿੱਚ ਉਪਲਬਧ ਪਰਮਾਣੂ ਆੱਰਬਿਟਲਾਂ ਦੀ ਸੰਖਿਆ ਤੋਂ ਦੋਗੁਣੀ ਹੁੰਦੀ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਪਹਿਲੇ ਆਵਰਤ (n=1) ਦੀ ਸ਼ੁਰੂਆਤ ਸਭ ਤੋਂ ਹੇਠਲੇ ਸਤਰ (1s) ਵਿੱਚ ਭਰਨ ਨਾਲ ਸ਼ੁਰੂ ਹੁੰਦਾ ਹੈ। ਇਸ ਵਿੱਚ ਦੋ ਤੱਤ

ਹੁੰਦੇ ਹਨ।ਹਾਈਡੋਜਨ ਦੀ ਤਰਤੀਬ ($1\mathrm{s}^1$) ਅਤੇ ਹੀਲਿਅਮ ($1\mathrm{s}^2$) ਹੈ। ਇਸ ਤਰ੍ਹਾਂ, ਪਹਿਲਾ ਸ਼ੈੱਲ (K ਸ਼ੈੱਲ) ਪੂਰਣ ਹੋ ਜਾਂਦਾ ਹੈ। ਦੂਜਾ ਆਵਰਤ (n =2) ਲੀਥਿਅਮ ਤੋਂ ਸ਼ਰ ਹੁੰਦਾ ਹੈ। (Li = $1s^22s^1$) ਜਿਸ ਵਿੱਚ ਤੀਜਾ ਇਲੈਕਟ਼ਾੱਨ 2s ਆਰਬਿਟਲ ਵਿੱਚ ਪ੍ਰਵੇਸ਼ ਕਰਦਾ ਹੈ। ਅਗਲੇ ਤੱਤ ਬੈਰੀਲਿਅਮ ਵਿੱਚ ਚਾਰ ਇਲੈਕਟਾੱਨ ਮੌਜੂਦ ਹੁੰਦੇ ਹਨ। ਇਸ ਦੀ ਇਲੈਕਟ਼ਾਂਨਿਕ ਤਰਤੀਬ ($1{
m s}^2~2s^2$) ਹੈ। ਇਸ ਦੇ ਬਾਅਦ ਬੋਰਾੱਨ ਤੱਤ ਤੋਂ ਸ਼ੁਰੂ ਕਰਦੇ ਹੋਏ ਜਦ ਅਸੀਂ ਨੀਆਂਨ ਤੱਤ ਤੱਕ ਪਹੰਚਦੇ ਹਾਂ ਤਾਂ 2p ਆਰਬਿਟਲ ਪਰਣ ਰਪ ਵਿੱਚ ਇਲੈਕਟ੍ਰਾੱਨਾਂ ਨਾਲ ਭਰ ਜਾਂਦਾ ਹੈ।ਇਸ ਲਈ ਦੂਜੇ ਪੀਰੀਅਡ ਵਿੱਚ ਤੱਤਾਂ ਦੀ ਸੰਖਿਆ ਅੱਠ ਹੁੰਦੀ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ L shell ਨੀਆੱਨ ($2s^22p^6$) ਤੱਤ ਦੇ ਨਾਲ ਸੰਪੂਰਣ ਹੋ ਜਾਂਦਾ ਹੈ। ਆਵਰਤੀ ਸਾਰਣੀ ਦਾ ਤੀਜਾ ਪੀਰੀਅਡ (n=3) ਸੋਡੀਅਮ ਤੱਤ ਦੇ ਨਾਲ ਸ਼ਰ ਹੁੰਦਾ ਹੈ, ਜਿਸ ਵਿੱਚ ਇਲੈਕਟ੍ਰਾਨ 3s ਆਰਬਿਟਲ ਵਿੱਚ ਜਾਂਦਾ ਹੈ। ਸਿਲਸਿਲੇਵਾਰ 3s ਅਤੇ 3p ਆਰਬਿਟਲਾਂ ਵਿੱਚ ਇਲੈਕਟਾਨਾਂ ਦੇ ਭਰਨ ਦੇ ਬਾਅਦ ਤੀਜੇ ਆਵਰਤ ਵਿੱਚ ਤੱਤਾਂ ਦੀ ਸੰਖਿਆ ਸੋਡੀਅਮ ਤੋਂ ਆੱਰਗਨ ਤੱਕ ਕੁੱਲ ਮਿਲਾ ਕੇ ਅੱਠ ਹੋ ਜਾਂਦੀ ਹੈ।

ਚੌਥੇ ਪੀਰੀਅਡ (n = 4) ਦੀ ਸ਼ਰਆਤ ਪੋਟਾਸ਼ਿਅਮ ਤੋਂ, 4sਆੱਰਬਿਟਲ ਦੇ ਭਰਨ ਦੇ ਨਾਲ ਹੁੰਦੀ ਹੈ। ਇੱਥੇ ਇਹ ਗੱਲ ਮਹੱਤਵਪੂਰਣ ਹੈ ਕਿ 4p ਆੱਰਬਿਟਲ ਦੇ ਭਰਨ ਤੋਂ ਪਹਿਲਾਂ ਹੀ 3d ਆੱਰਬਿਟਲ ਦਾ ਭਰਨਾ ਸ਼ੁਰੂ ਹੋ ਜਾਂਦਾ ਹੈ ਜੋ ਉਰਜਾ ਪੱਖੋਂ ਸਮਰੱਥ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਸਾਨੂੰ ਤੱਤਾਂ ਦੀ ਪਰਾਗਮਨ ਸੀਰੀਜ਼ (3dtransition series) ਪ੍ਰਾਪਤ ਹੋ ਜਾਂਦੀ ਹੈ। ਇਹ ਸਕੈਂਡੀਅਮ (scandium, Z=21) ਤੋਂ ਸ਼ੁਰੂ ਹੁੰਦੀ ਹੈ ਜਿਸ ਦੀ ਇਲੈਕਟ਼ਾੱਨਿਕ ਤਰਤੀਬ $3d^14s^2$ ਹੁੰਦੀ ਹੈ।3d ਆੱਰਬਿਟਲ ਜਿੰਕ (Zn, Z =30) ਤੇ ਪੂਰਣ ਰੂਪ ਵਿੱਚ ਭਰ ਜਾਂਦਾ ਹੈ, ਜਿਸ ਦੀ ਇਲੈਕਟ੍ਰਾਂਨਿਕ ਤਰਤੀਬ $^{-}3d^{10}4s^2$ ਹੈ। ਚੌਥਾ ਆਵਰਤ 4p ਆੱਰਬਿਟਲਾਂ ਦੇ ਭਰਨ ਦੇ ਨਾਲ ਕ੍ਰਿਪਟਾੱਨ (Krypton) ਤੇ ਸਮਾਪਤ ਹੰਦਾ ਹੈ। ਕੁੱਲ ਮਿਲਾਕੇ ਚੌਥੇ ਆਵਰਤ ਵਿੱਚ 18 ਤੱਤ ਹੁੰਦੇ ਹਨ। ਪੰਜਵਾਂ ਆਵਰਤ (n=5) ਰੂਬੀਡਿਅਮ ਤੋਂ ਸ਼ੁਰੂ ਹੁੰਦਾ ਹੈ, ਚੌਥੇ ਆਵਰਤ ਦੇ ਸਮਾਨ ਹੈ।ਉਸ ਵਿੱਚ 4d ਯੱਟਰਿਅਮ (Ytrrium, z = 39) ਤੇ 4d ਪਰਾਗਮਨ ਸੀਰੀਜ਼ (4d transition series) ਸ਼ੁਰੂ ਹੁੰਦੀ ਹੈ। ਇਹ ਪੀਰੀਅਡ 5d ਆੱਰਬਿਟਲਾਂ ਦੇ ਭਰਨ ਤੇ ਜ਼ੀਨਾੱਨ (Xenon) ਤੇ ਸਮਾਪਤ ਹੁੰਦਾ ਹੈ। ਛੇਵੇਂ ਪੀਰੀਅਡ (n = 6) ਵਿੱਚ 32 ਤੱਤ ਹੁੰਦੇ ਹਨ। ਸਿਲਸਿਲੇਵਾਰ ਇਲੈਕਟ੍ਰਾੱਨ 6s, 4*f, 5d* ਅਤੇ 6p ਆੱਰਬਿਟਲਾਂ ਵਿੱਚ ਭਰੇ ਜਾਂਦੇ ਹਨ। 4f ਆੱਰਬਿਟਲਾਂ ਦਾ ਭਰਨਾ ਸੀਰਿਅਮ (cerium, z = 58) ਤੋਂ ਸ਼ੁਰੂ ਹੋ ਕੇ ਲਿਊਟੀਸ਼ਿਅਮ (Lutetium, z = 71) ਤੇ ਸਮਾਪਤ ਹੁੰਦਾ ਹੈ। ਇਸ ਨੂੰ 4f ਅੰਤਰਿਕ ਪਰਾਗਮਨ ਸੀਰੀਜ਼ ਜਾਂ ਲੈਥੇਨਾੱਇਡ ਸੀਰੀਜ (Lanthanoid Series) ਕਹਿੰਦੇ ਹਨ। ਸਤਵਾਂ ਪੀਰੀਅਡ (n = 7) ਛੇਵੇਂ ਪੀਰੀਅਡ ਦੇ ਸਮਾਨ ਹੈ ਜਿਸ ਵਿੱਚ ਇਲੈਕਟ੍ਰਾੱਨ ਸਿਲਸਿਲੇਵਾਰ 7s, 5f, 6d ਅਤੇ 7p ਆੱਰਬਿਟਲ ਭਰੇ ਜਾਂਦੇ ਹਨ। ਇਨ੍ਹਾਂ ਵਿੱਚ ਬਨਾਊਟੀ ਵਿਧੀਆਂ (artificial methods) ਦੁਆਰਾ ਮਾਨਵ ਨਿਰਮਿਤ ਰੇਡੀਓਐਕਟਿਵ ਤੱਤ ਹਨ। ਸਤਵਾਂ ਪੀਰੀਅਡ 118ਵੇਂ ਪਰਮਾਣੂ ਕ੍ਰਮ ਅੰਕ ਵਾਲੇ (ਅਜੇ ਖੋਜੇ ਜਾਣ ਵਾਲੇ) ਤੱਤ ਤੇ ਨਾਲ ਸੰਪੂਰਣ ਹੋਵੇਗਾ, ਜੋ ਨੋਬਲ ਗੈਸ ਪਰਿਵਾਰ ਨਾਲ ਸਬੰਧਿਤ ਹੋਵੇਗਾ।ਐਕਟੀਨਿਅਮ (Actinium, Z = 89)

ਦੇ ਬਾਅਦ 5f ਆੱਰਬਿਟਲ ਭਰਨ ਦੇ ਫਲਸਰੂਪ 5f ਅੰਤਰਿਕ ਪਰਾਗਮਨ ਸੀਰੀਜ਼ (5f inner transition series) ਪ੍ਰਾਪਤ ਹੁੰਦੀ ਹੈ।ਉਸ ਨੂੰ 'ਐਕਟੀਨਾੱਇਡ ਸੀਰੀਜ਼' (Actinoid series) ਕਹਿੰਦੇ ਹਨ। 4f ਅਤੇ 5f ਅੰਤਰਿਕ ਪਰਾਗਮਨ ਸੀਰੀਜ਼ ਨੂੰ ਅਵਰਤੀ ਸਾਰਣੀ ਦੇ ਮੁੱਖ ਭਾਗ ਤੋਂ ਬਾਹਰ ਰੱਖਿਆ ਗਿਆ ਹੈ, ਤਾਂਕਿ ਇਸ ਦੀ ਸੰਰਚਨਾ ਨੂੰ ਕਾਇਮ ਰੱਖਿਆ ਜਾ ਸਕੇ ਅਤੇ ਨਾਲ ਹੀ ਸਮਾਨ ਗੁਣਾਂ ਵਾਲੇ ਤੱਤਾਂ ਨੂੰ ਇੱਕ ਹੀ ਗਰੁੱਪ ਵਿੱਚ ਰੱਖ ਕੇ ਵਰਗੀਕਰਣ ਦੇ ਸਿਧਾਂਤ ਦੀ ਵੀ ਪਾਲਨਾ ਕੀਤੀ ਜਾ ਸਕੇ।

ਉਦਾਹਰਣ 3.2

ਆਵਰਤੀ ਸਾਰਣੀ ਦੇ ਪੰਜਵੇਂ ਪੀਰੀਅਡ ਵਿੱਚ 18 ਤੱਤਾਂ ਦੇ ਹੋਣ ਦੀ ਵਿਆਖਿਆ ਤੁਸੀਂ ਕਿਵੇਂ ਕਰੋਗੇ ?

ਹੱਲ

ਜਦੋਂ n=5, l=0, 1, 2, 3. ਹੁੰਦਾ ਹੈ। ਉਪਲਬਧ ਆੱਰਬਿਟਲਾਂ 4d, 5s ਅਤੇ 5p ਦੀਆਂ ਊਰਜਾਵਾਂ ਦਾ ਵੱਧਦਾ ਕ੍ਰਮ ਇਸ ਪ੍ਕਾਰ ਹੈ– 5s < 4d < 5p ਵਿੱਚ ਕੁੱਲ 9 ਆੱਰਬਿਟਲ ਉਪਲਬਧ ਹਨ। ਇਨ੍ਹਾਂ ਵਿੱਚ ਵੱਧ ਤੋਂ ਵੱਧ 18 ਇਲੈਕਟ੍ਰਾਨ ਭਰੇ ਜਾ ਸਕਦੇ ਹਨ। ਇਸਲਈ ਆਵਰਤ 5 ਵਿੱਚ 18 ਤੱਤ ਹੁੰਦੇ ਹਨ।

(ਅ) ਗਰੁੱਪ ਵਾਈਜ਼ ਇਲੈਕਟ੍ਰਾਨਿਕ ਤਰਤੀਬ

ਇੱਕ ਹੀ ਗਰੁੱਪ ਜਾਂ ਖੜੇਦਾਅ ਕਾੱਲਮ ਵਿੱਚ ਮੌਜੂਦ ਤੱਤਾਂ ਦੇ ਸੰਯੋਜਕਤਾ ਸ਼ੈੱਲ ਇਲੈਕਟ੍ਰਾਨਿਕ ਤਰਤੀਬ ਸਮਾਨ ਹੁੰਦੀ ਹੈ। ਇਨ੍ਹਾਂ ਦੇ ਬਾਹਰੀ ਆਰਬਿਟਲਾਂ ਵਿੱਚ ਮੌਜੂਦ ਇਲੈਕਟ੍ਰਾਨਾਂ ਦੀ ਸੰਖਿਆ ਅਤੇ ਗੁਣ ਵੀ ਸਮਾਨ ਹੁੰਦੇ ਹਨ। ਉਦਾਹਰਣ ਦੇ ਲਈ ਗਰੁੱਪ 1 ਦੇ ਤੱਤਾਂ (ਖਾਰੀ ਧਾਤਾਂ) ਦੀ ਸੰਯੋਜਕਤਾ ਸ਼ੈੱਲ ਇਲੈਕਟ੍ਰਾਨਿਕ ਤਰਤੀਬ ns^1 ਹੁੰਦੀ ਹੈ, ਜਿਵੇਂ ਹੇਠਾਂ ਦਿੱਤਾ ਗਿਆ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਇਹ

columns) ਵਿੱਚ ਮੌਜੂਦ ਤੱਤ ਇੱਕ ਗਰੁੱਪ (group) ਜਾਂ ਪਰਿਵਾਰ (family) ਦੀ ਰਚਨਾ ਕਰਦੇ ਹਨ ਅਤੇ ਸਮਾਨ ਗੁਣ ਦਰਸਾਉਂਦੇ ਹਨ। ਇਹ ਸਮਾਨਤਾ ਇਸ ਲਈ ਹੁੰਦੀ ਹੈ ਕਿਉਂਕਿ ਇਨ੍ਹਾਂ ਤੱਤਾਂ ਦੇ ਬਾਹਰੀ ਸ਼ੈੱਲ ਵਿੱਚ ਇਲੈਕਟ੍ਰਾੱਨਾਂ ਦੀ ਸੰਖਿਆ ਅਤੇ ਵਿਤਰਣ ਇੱਕ ਹੀ ਤਰ੍ਹਾਂ ਦਾ ਹੁੰਦਾ ਹੈ। ਇਨ੍ਹਾਂ ਤੱਤਾਂ ਦੀ ਵੰਡ ਚਾਰ ਭਿੰਨ-ਭਿੰਨ ਬਲਾੱਕਾਂ s, p, d ਅਤੇ f ਵਿੱਚ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ, ਜੋ ਇਸ ਗੱਲ ਤੇ ਨਿਰਭਰ ਕਰਦਾ ਹੈ ਕਿ ਕਿਸ ਪ੍ਕਾਰ ਦੇ ਆਰਬਿਟਲ ਇਲੈਕਟ੍ਰਾੱਨਾਂ ਨਾਲ ਭਰੇ ਜਾ ਰਹੇ ਹਨ। ਇਸ ਨੂੰ ਚਿੱਤਰ 3.3 ਵਿੱਚ ਦਰਸਾਇਆ ਗਿਆ ਹੈ।

ਇਸ ਪ੍ਰਕਾਰ ਦੇ ਵਰਗੀਕਣ ਵਿੱਚ ਦੋ ਅਪਵਾਦ ਵੇਖਣ ਨੂੰ ਮਿਲਦੇ ਹਨ। ਪਹਿਲਾਂ ਅਪਵਾਦ ਹੀਲੀਅਮ ਦਾ ਹੈ। ਉਸ ਨੂੰ *s-*ਬਲਾੱਕ ਦੇ ਤੱਤਾਂ ਵਿੱਚ ਹੋਣਾ ਚਾਹੀਦਾ ਹੈ, ਪਰੰਤੂ ਇਸ ਦਾ ਸਥਾਨ ਆਵਰਤੀ ਸਾਰਣੀ ਵਿੱਚ ਗਰੁੱਪ 18 ਦੇ ਤੱਤਾਂ ਦੇ ਨਾਲ p-ਬਲਾੱਕ ਵਿੱਚ ਹੈ। ਇਹ ਇਸ ਅਧਾਰ ਤੇ ਹੈ ਕਿ ਹੀਲੀਅਮ ਦਾ ਸੰਯੂਜੀ ਆਰਬਿਟ (valence shell) ਪਰਾ ਭਰਿਆ ਹੋਇਆ ਹੈ (He $1s^2$), ਜਿਸ ਦੇ ਫਲਸਰੂਪ ਇਹ ਨੋਬਲ ਗੈਸਾਂ ਦੇ ਲੱਛਣਾਂ ਨੂੰ ਪਰਦਰਸ਼ਿਤ ਕਰਦੀ ਹੈ। ਦੂਜਾ ਅਪਵਾਦ ਹਾਈਡ੍ਰੋਜਨ ਦਾ ਹੈ। ਇਸ ਵਿੱਚ ਕੇਵਲ ਇੱਕ s ਇਲੈਕਟ੍ਰਾੱਨ ਹੈ (H = $15^{\scriptscriptstyle 1}$) ਇਸ ਤਰ੍ਹਾਂ ਇਸ ਦਾ ਸਥਾਨ ਗਰੁੱਪ 1 ਵਿੱਚ ਖਾਰੀ ਧਾਤਾਂ ਦੇ ਨਾਲ ਹੋਣਾ ਚਾਹੀਦਾ ਹੈ। ਦੂਜੇ ਪਾਸੇ ਇਹ ਇੱਕ ਇਲੈਕਟ੍ਰਾੱਨ ਲੈ ਕੇ ਨੋਬਲ ਗੈਸ (ਹੀਲੀਅਮ) ਦੀ ਇਲੈਕਟ੍ਰਾਂਨਿਕ ਤਰਤੀਬ ਪ੍ਰਾਪਤ ਕਰ ਸਕਦੀ ਹੈ। ਇਸ ਪ੍ਰਕਾਰ ਇਸ਼ ਦਾ ਵਿਹਾਰ ਗਰੱਪ 17 (ਹੈਲੋਜਨ ਪਰਿਵਾਰ) ਵਾਂਗ ਹੋ ਸਕਦਾ ਹੈ।ਕਿਉਂਕਿ ਇਹ ਇੱਕ ਵਿਸ਼ੇਸ਼ ਸਥਿਤੀ ਹੈ, ਇਸ ਲਈ ਹਾਈਡੋ਼ਜਨ ਨੂੰ ਅਵਰਤੀ ਸਾਰਣੀ ਵਿੱਚ ਸਭ ਤੋਂ ਉੱਤੇ ਵੱਧ ਸਥਾਨ ਦੇਣਾ ਵਧੇਰੇ ਤਰਕ ਸੰਗਤ ਮੰਨਿਆ ਗਿਆ ਹੈ (ਚਿੱਤਰ 3.2 ਅਤੇ 3.3 ਨੂੰ ਵੇਖੋ) ਹੁਣ ਅਵਰਤੀ ਸਾਰਣੀ ਵਿੱਚ ਵਿਖਾਏ ਗਏ ਚਾਰ ਪਕਾਰ ਦੇ ਤੱਤਾਂ ਦੇ ਮੁੱਖ ਲੱਛਣਾਂ ਦੀ ਚਰਚਾ ਅਸੀਂ ਕਰਾਂਗੇ। ਇਨ੍ਹਾਂ ਤੱਤਾਂ

ਪਰਮਾਣੂ ਦਾ ਅੰਕ	ਪ੍ਰਤੀਕ	ਇਲੈਕਟ੍ਰਾੱਨਿਕ ਤਰਤੀਬ
3	Li	$1s^2 2s^1$ (or) [He] $2s^1$
11	Na	$1s^2 2s^2 2p^6 3s^1$ (or) [Ne] $3s^1$
19	K	$1s^22s^22p^63s^23p^64s^1$ (or) [Ar] $4s^1$
37	Rb	$1s^22s^22p^63s^23p^63d^{10}4s^24p^65s^1$ (or) [Kr] $5s^1$
55	Cs	$1s^22s^22p^63s^23p^63d^{10}4s^24p^64d^{10}5s^25p^66s^1$ (or) [Xe] $6s^1$
87	Fr	[Rn]7s ¹

ਸਪੱਸ਼ਟ ਹੋ ਜਾਂਦਾ ਹੈ ਕਿ ਕਿਸੇ ਤੱਤ ਦੇ ਗੁਣ ਉਸਦੇ ਪਰਮਾਣੂ ਕ੍ਰਮ ਅੰਕ ਉੱਤੇ ਨਿਰਭਰ ਕਰਦੇ ਹਨ, ਨਾ ਕਿ ਉਸਦੇ ਸਾਪੇਖੀ ਪਰਮਾਣੂ ਪੰਜ ਉੱਤੇ

3.6 ਇਲੈਕਟ੍ਰਾਂਨਿਕ ਤਰਤੀਬ ਅਤੇ ਤੱਤਾਂ ਦੀਆਂ ਕਿਸਮਾਂ (s, p, d ਅਤੇ f ਬਲਾੱਕ)

ਆਵਰਤੀ ਸਾਰਣੀ ਦਾ ਮੂਲ ਸਿਧਾਂਤ 'ਆਫ ਬਾਓ ਦਾ ਸਿਧਾਂਤ' (Aufbau Priciple) ਅਤੇ ਪਰਮਾਣੂਆਂ ਦੀ ਇਲੈਕਟ੍ਰਾਨਿਕ ਤਰਤੀਬ ਹੈ।ਆਵਰਤੀ ਸਾਰਣੀ ਦੇ ਖੜੇਦਾਅ ਕਾਲਮਾਂ (vertical ਦੇ ਬਾਰੇ ਵਿੱਚ ਵਧੇਰੇ ਜਾਣਕਾਰੀ ਦਾ ਵਿਸਥਾਰ ਬਾਅਦ ਵਿੱਚ ਦਿੱਤਾ ਜਾਵੇਗਾ। ਉਨ੍ਹਾਂ ਦੇ ਲੱਛਣਾਂ ਦੀ ਚਰਚਾ ਕਰਨ ਦੇ ਲਈ ਜਿਸ ਸ਼ਬਦਾਵਲੀ ਦੀ ਵਰਤੋਂ ਕੀਤੀ ਗਈ ਹੈ ਉਸ ਦਾ ਵਰਗੀਕਰਣ ਭਾਗ 3.7 ਵਿੱਚ ਕੀਤਾ ਗਿਆ ਹੈ।

3.6.1 *s*–ਬਲਾੱਕ ਦੇ ਤੱਤ

ਗਰੁੱਪ 1 ਦੇ ਤੱਤਾਂ (ਖਾਰੀ ਧਾਤਾਂ) ਅਤੇ ਗਰੁੱਪ-2 ਦੇ ਤੱਤਾਂ (ਖਾਰੀ ਮਿੱਟੀ ਧਾਤਾਂ) ਦੇ ਬਾਹਰੀ ਸ਼ੈੱਲ ਦੀ ਜਨਰਲ ਇਲੈਕਟ੍ਰਾੱਨਿਕ ਤਰਤੀਬ

	18	Не	Ne	Ar	Kr	Xe	Rn	Uuo
	17		F	CI	Br	I	At	Uus
CK	16		0	S	Se	Te	Po	Lv
p-BLOCK	14 15 16		Z	Ь	As	Sb	Bi	Uup
D	14		C	Si	Ge	Sn	Pb	FI
	13		В	Al	Ga	In	II	Uut
			2p	3p	4 <i>p</i>	<i>d</i> 5	d9	$d_{\mathcal{L}}$
				_				
				12	Zn	рЭ	ВН	Cn
				=	Cu	Ag	Au	Rg
				ı				700

		12	Zn	рЭ	Hg	Cn	
		11	Cu	Ag	Au	Rg	
		9 10	ïZ	Pd	Pt	Ds	
		6	Co	Rh	Ir	Mt	
	d-BLOCK	∞	Fe	Ru	Os	Hs	
Н	d-BI	7	Mn	Тс	Re	Bh	
		9	Cr	Mo	*	Sg	
		5	>	qN	Та	Dp	
		4	Τ̈́	Zr	Hf	Rf	
		∞	Sc	Y	La	Ac	
			34	4 <i>d</i>	54	<i>p</i> 9	

CK	7	Be	Mg	Ca	Sr	Ba	Ra	
s-BL	_	Ľ	Na	K	Rb	Cs	Fr	
	18	2.s	38	4s	58	89	7.8	

	Lu	Lr
	Yb	No No
	Tm	Md
	Er	Fm
	Но	Es
	Dy	Cf
	Tb	Bk
f-BLOCK	Gd	Cm
f-E	Eu	Am
	Sm	Pu
	Pm	dN
	pN	n
	Ce Pr	Th Pa
	Ce	Th
	Lanthanoids 4f	Actinoids 5f

ा।।।।। अयांडा ।।। अड़े ਉपपाडां ।। हिंच इंडिआ है। Fig. 3.3 ਭਿੰਨ ਭਿੰਨ ਅੱਰਬਿਟਲਾ ਦੇ ਭਰਨ ਦੇ ਅਧਾਰ ਤੇ ਆਵਰਤੀ ਸਾਰਣੀ ਦੇ ਤੱਤਾਂ ਦੇ ਪ੍ਕਾਰ। ਤੱਤਾਂ ਨੂੰ ਮੌਟੇ ਤੌਰ ਤੇ ਧਾਤਾਂ

ਕ੍ਰਮਵਾਰ ns^1 ਅਤੇ ns^2 ਹਨ। ਇਨ੍ਹਾਂ ਦੋਵਾਂ ਗਰੁੱਪਾਂ ਦੇ ਤੱਤ ਆਵਰਤੀ ਸਾਰਣੀ ਦੇ s-ਬਲਾੱਕ ਨਾਲ ਸਬੰਧਿਤ ਹਨ। ਇਹ ਸਾਰੀਆਂ ਕਿਰਿਆਸ਼ੀਲ ਧਾਤਾਂ ਹਨ। ਇਨ੍ਹਾਂ ਦੀਆਂ ਆਇਨਨ ਐਲਥੈਲਪੀ ਦੇ ਮਾਨ ਘੱਟ ਹੁੰਦੇ ਹਨ। ਇਹ ਤੱਤ ਅਸਾਨੀ ਨਾਲ ਬਾਹਰੀ ਇਲੈਕਟ੍ਰਾੱਨ ਤਿਆਗਨ ਤੋਂ ਬਾਅਦ 1+ ਆਇਨ (ਖਾਰੀ ਧਾਤਾਂ ਵਿੱਚ) ਜਾਂ 2+ ਆਇਨ (ਖਾਰੀ ਮਿੱਟੀ ਧਾਤਾਂ) ਬਣਾ ਲੈਂਦੇ ਹਨ। ਗਰੁੱਪ ਵਿੱਚ ਹੇਠਾਂ ਵੱਲ ਜਾਣ ਤੇ ਇਨ੍ਹਾਂ ਦੇ ਧਾਤਵੀ ਲੱਛਣ ਅਤੇ ਕਿਰਿਆਸ਼ੀਲਤਾ ਵਿੱਚ ਵਾਧਾ ਹੁੰਦਾ ਹੈ। ਵਧੇਰੇ ਕਿਰਿਆਸ਼ੀਲ ਹੋਣ ਦੇ ਕਾਰਣ ਉਹ ਪ੍ਰਕਿਰਤੀ ਵਿੱਚ ਸੁਤੰਤਰ ਰੂਪ ਵਿੱਚ ਨਹੀਂ ਮਿਲਦੀਆਂ। ਲੀਥਿਅਮ ਅਤੇ ਬੈਰੀਲਿਅਮ ਨੂੰ ਛੱਡ ਕੇ s-ਬਲਾੱਕ ਦੇ ਤੱਤਾਂ ਦੇ ਯੋਗਿਕ ਮੁੱਖ ਰੂਪ ਵਿੱਚ ਆਇਨਿਕ ਹੁੰਦੇ ਹਨ।

3.6.2 *p–*ਬਲਾੱਕ ਦੇ ਤੱਤ

ਆਵਰਤੀ ਸਾਰਣੀ ਦੇ p-ਬਲਾੱਕ ਵਿੱਚ ਗਰੁੱਪ 13 ਤੋਂ ਲੈ ਕੇ ਗਰੁੱਪ 18 ਤੱਕ ਦੇ ਤੱਤ ਸ਼ਾਮਿਲ ਹਨ। p-ਬਲਾੱਕ ਦੇ ਤੱਤਾਂ ਅਤੇ s-ਬਲਾੱਕ ਦੇ ਤੱਤਾਂ ਨੂੰ ਸੰਯੁਕਤ ਰੂਪ ਵਿੱਚ ਨਿਰੂਪਕ ਤੱਤ (Representative elements) ਜਾਂ ਮੁੱਖ ਗਰੁੱਪ ਦੇ ਤੱਤ (Main Group Elements) ਕਿਹਾ ਜਾਂਦਾ ਹੈ। ਹਰ ਇੱਕ ਆਵਰਤ ਵਿੱਚ ਇਨ੍ਹਾਂ ਦੀ ਬਾਹਰੀ ਇਲੈਕਟ਼ਾੱਨਿਕ ਤਰਤੀਬ ns^2np^1 ਤੋਂ ns^2np^6 ਤੱਕ ਪਰਿਵਰਤਿਤ ਹੁੰਦੀ ਹੈ। ਹਰ ਇੱਕ ਪੀਰੀਅਡ ns^2np^6 ਨੋਬਲ ਗੈਸ ਦੀ ਇਲੈਕਟਾਨਿਕ ਤਰਤੀਬ ਦੇ ਨਾਲ ਸਮਾਪਤ ਹੁੰਦੀ ਹੈ। ਨੋਬਲ ਗੈਸਾਂ ਵਿੱਚ ਸੰਯੋਜੀ ਕੋਸ਼ ਵਿੱਚ ਸਾਰੇ ਆੱਰਬਿਟਲ ਇਲੈਕਟ੍ਰਾਨਾਂ ਨਾਲ ਪੂਰੇ ਭਰੇ ਹੁੰਦੇ ਹਨ। ਇਲੈਕਟਾਨਾਂ ਨੂੰ ਕੱਢ ਕੇ ਜਾਂ ਜੋੜ ਕੇ ਇਸ ਸਥਾਈ ਅਵਸਥਾ ਨੂੰ ਬਦਲਨਾਂ ਬਹੁਤ ਮੁਸ਼ਕਿਲ ਹੁੰਦਾ ਹੈ। ਇਸ ਲਈ ਨੋਬਲ ਗੈਸਾਂ ਦੀ ਰਸਾਇਣਿਕ ਕਿਰਿਆਸ਼ੀਲਤਾ ਬਹੁਤ ਘੱਟ ਹੁੰਦੀ ਹੈ। ਨੋਬਲ ਗੈਸਾਂ ਦੇ ਪਰਿਵਾਰ ਤੋਂ ਪਹਿਲਾਂ ਅਧਾਤਾਂ ਦੇ ਰਸਾਇਣਿਕ ਰਪ ਵਿੱਚ ਦੋ ਮਹੱਤਵਪਰਣ ਗਰੱਪ ਹਨ। ਇਹ ਗਰੱਪ ਹਨ 17 ਗਰੱਪ ਦੇ ਹੈਲੋਜਨ (Halogens) ਅਤੇ 16ਵੇਂ ਗਰੱਪ ਦੇ ਤੱਤ ਚੈਲਕੋਜਨ (chalcogens)। ਇਨ੍ਹਾਂ ਦੋ ਗਰੁੱਪਾਂ ਦੇ ਤੱਤਾਂ ਦੀ ਉੱਚ ਰਿਣਾਤਮਕ ਇਲੈਕਟ੍ਰਾਨ ਗ੍ਰਹਿਣ ਐਨਥੈਲਪੀ (negative electron gain enthalpy) ਹੁੰਦੀ ਹੈ। ਇਹ ਤੱਤ ਅਸਾਨੀ ਨਾਲ ਕ੍ਰਮਵਾਰ ਇੱਕ ਜਾਂ ਦੋ ਇਲੈਕਟ੍ਰਾਨ ਗ੍ਰਹਿਣ ਕਰਕੇ ਸਥਾਈ ਨੋਬਲ ਗੈਸ ਇਲੈਕਟ੍ਰਾੱਨਿਕ ਤਰਤੀਬ ਪ੍ਰਾਪਤ ਕਰ ਲੈਂਦੇ ਹਨ। ਆਵਰਤ ਵਿੱਚ ਖੱਬੇ ਤੋਂ ਸੱਜੇ ਵੱਲ ਜਾਣ ਤੇ ਤੱਤ ਦੇ ਅਧਾਤਵੀ ਲੱਛਣਾਂ ਵਿੱਚ ਵਾਧਾ ਹੁੰਦਾ ਹੈ ਅਤੇ ਕਿਸੇ ਗਰੁੱਪ ਵਿੱਚ ਉੱਤੇ ਤੋਂ ਹੇਠਾਂ ਵਲ ਜਾਣ ਤੇ ਧਾਤਵੀ ਲੱਛਣਾਂ ਵਿੱਚ ਵਾਧਾ ਹੁੰਦਾ ਹੈ।

3.6.3 d–ਬਲਾੱਕ ਦੇ ਤੱਤ (ਅੰਤਰਕਾਲੀ ਤੱਤ)

ਆਵਰਤੀ ਸਾਰਣੀ ਦੇ ਮੱਧ ਵਿੱਚ ਸਥਿਤ ਗਰੁੱਪ 3 ਤੋਂ 12 ਵਾਲੇ ਤੱਤ d-ਬਲਾੱਕ ਦੇ ਤੱਤ ਅਖਵਾਉਂਦੇ ਹਨ। ਇਸ ਬਲਾੱਕ ਦੇ ਤੱਤਾਂ ਦੀ ਪਛਾਣ ਇਨ੍ਹਾਂ ਦੇ ਅੰਤਰਿਕ d-ਆੱਰਬਿਟਲ ਵਿੱਚ ਇਲੈਕਟ੍ਰਾਨਾਂ ਦੇ ਭਰੇ ਜਾਣ ਦੇ ਅਧਾਰ ਤੇ ਕੀਤੀ ਜਾਂਦੀ ਹੈ। ਇਹੀ ਕਾਰਣ ਹੈ ਕਿ ਇਹ ਤੱਤ d-ਬਲਾੱਕ ਦੇ ਤੱਤ ਅਖਵਾਉਂਦੇ ਹਨ। ਇਨ੍ਹਾਂ ਤੱਤਾਂ ਦੀ ਆਮ ਇਲੈਕਟ੍ਰਾਨਿਕ ਤਰਤੀਬ $(n-1)d^{1-10}ns^{0-2}$ ਹੈ। ਇਹ ਸਾਰੇ ਤੱਤ ਧਾਤਾਂ ਹਨ। ਇਨ੍ਹਾਂ ਤੱਤਾਂ ਦੇ ਆਇਨ ਅਕਸਰ ਰੰਗੀਨ ਹੁੰਦੇ

ਹਨ ਅਤੇ ਪਰਵਰਤੀ ਸੰਯੋਜਕਤਾ ਅਤੇ ਅਨੁਚੁੰਬਕਤਾ ਪ੍ਰਦਰਸ਼ਿਤ ਕਰਦੇ ਹਨ ਅਤੇ ਉਤਪ੍ਰੇਰਕ ਦੇ ਰੂਪ ਵਿੱਚ ਵਰਤੇ ਜਾਂਦੇ ਹਨ। Zn, Cd ਅਤੇ Hg ਦੀ ਜਨਰਲ ਇਲੈਕਟ੍ਰਾੱਨਿਕ ਤਰਤੀਬ (n-1) $d^{10}ns^2$ ਹੁੰਦੇ ਹੋਏ ਵੀ ਇਹ ਧਾਤਾਂ ਅੰਤਰਕਾਲੀ ਤੱਤਾਂ ਦੇ ਬਹੁਤ ਸਾਰੇ ਲੱਛਣਾਂ ਨੂੰ ਪ੍ਰਦਰਸ਼ਿਤ ਨਹੀਂ ਕਰਦੀਆਂ d-ਬਲਾੱਕ ਦੇ ਤੱਤ ਰਸਾਇਣਕ ਤੌਰ ਤੇ ਅਤਿ ਕਿਰਿਆਸ਼ੀਲ s-ਬਲਾੱਕ ਦੇ ਤੱਤਾਂ ਅਤੇ ਘੱਟ ਕਿਰਿਆਸ਼ੀਲ 13ਵੇਂ ਅਤੇ 14ਵੇਂ ਗਰੁੱਪਾਂ ਦੇ ਤੱਤਾਂ ਦੇ ਵਿੱਚ ਇੱਕ ਪ੍ਰਕਾਰ ਨਾਲ ਪੁਲ ਦਾ ਕੰਮ ਕਰਦੇ ਹਨ। ਇਸ ਕਾਰਣ d-ਬਲਾੱਕ ਦੇ ਤੱਤਾਂ ਨੂੰ ਅੰਤਰਕਾਲੀ ਤੱਤ ਵੀ ਕਹਿੰਦੇ ਹਨ।

3.6.4 *f–*ਬਲਾੱਕ ਦੇ ਤੱਤ

(ਅੰਤਰਿਕ ਅੰਤਰਕਾਲੀ ਤੱਤ)

ਮੁੱਖ ਆਵਰਤੀ ਸਾਰਣੀ ਵਿੱਚ ਜਿਨ੍ਹਾਂ ਤੱਤਾਂ ਨੂੰ ਦੋ ਖਿਤਿਜ ਲਾਈਨਾਂ ਵਿੱਚ ਰੱਖਿਆ ਗਿਆ ਹੈ, ਉਨ੍ਹਾਂ ਨੂੰ ਲੈਥੇਨਾਇਡ Ce(Z=58) – Lu(Z = 71) ਅਤੇ ਐਕਟੀਨਾਂਇਡ Th(Z = 90) - Lr(Z = 71)103) ਨਾਲ ਕੀਤੀ ਜਾਂਦੀ ਹੈ। ਇਨ੍ਹਾਂ ਤੱਤਾਂ ਵਿੱਚ ਅੰਤਿਮ ਇਲੈਕਟ੍ਰਾੱਨ f ਸੱਬ ਸ਼ੈੱਲ ਵਿੱਚ ਭਰਦਾ ਹੈ। ਇਸੇ ਅਧਾਰ ਤੇ ਇਨ੍ਹਾਂ ਸੀਰੀਜ਼ ਦੇ ਤੱਤਾਂ ਨੂੰ *f*-ਬਲਾੱਕ ਦੇ ਤੱਤ (ਅੰਤਰਿਕ ਅੰਤਰਕਾਲੀ ਤੱਤ) ਕਹਿੰਦੇ ਹਨ। ਇਹ ਸਾਰੇ ਤੱਤ ਧਾਤਾਂ ਹਨ। ਹਰ ਇੱਕ ਸੀਰੀਜ਼ ਵਿੱਚ ਤੱਤਾਂ ਦੇ ਗੁਣ ਲਗਪਗ ਸਮਾਨ ਹਨ। ਸ਼ੁਰੂ ਦੇ ਐਕਟੀਨਾੱਇਡ ਸੀਰੀਜ਼ ਦੇ ਤੱਤਾਂ ਦੀਆਂ ਅਨੇਕ ਸੰਭਾਵਿਤ ਆੱਕਸੀਕਰਣ ਅਵਸਥਾਵਾਂ ਦੇ ਫਲਸਰੂਪ ਇਨ੍ਹਾਂ ਤੱਤਾਂ ਦਾ ਰਸਾਇਣ ਇਨ੍ਹਾਂ ਦੇ ਸੰਗਤ ਲੈਂਥੇਨਾੱਇਡ ਸੀਰੀਜ਼ ਦੇ ਤੱਤਾਂ ਦੀ ਤੁਲਨਾ ਵਿੱਚ ਵਧੇਰੇ ਜਟਿਲ ਹੁੰਦਾ ਹੈ। ਐਟੀਨਾੱਇਡ ਸੀਰੀਜ਼ ਦੇ ਤੱਤ ਰੇਡੀਓ ਐਕਟਿਵ (radio active) ਹੁੰਦੇ ਹਨ। ਬਹੁਤ ਸਾਰੇ ਐਕਟੀਨਾੱਇਡ ਤੱਤਾਂ ਨੂੰ ਨਿਊਕਲੀ ਪ੍ਰਤੀਕਿਰਿਆਵਾਂ ਦੁਆਰਾ ਨੈਨੋਗਾਮ (Nanogram) ਜਾਂ ਉਸ ਤੋਂ ਵੀ ਘੱਟ ਮਾਤਰਾ ਵਿੱਚ ਪ੍ਰਾਪਤ ਕੀਤਾ ਗਿਆ ਹੈ।ਇਨ੍ਹਾਂ ਤੱਤਾਂ ਦੇ ਰਸਾਇਣ ਦਾ ਅਧਿਐਨ ਪੂਰਣ ਰੂਪ ਵਿੱਚ ਨਹੀਂ ਹੋ ਸਕਿਆ। ਯੂਰੇਨਿਅਮ ਤੋਂ ਬਾਅਦ ਵਾਲੇ ਤੱਤ ਟਾਂਸਯਰੇਨਿਕ ਤੱਤ ਅਖਵਾੳਂਦੇ ਹਨ।

ਉਦਾਹਰਣ 3.3

ਪਰਮਾਣੂ ਕ੍ਰਮ ਅੰਕ Z=117 ਅਤੇ 120 ਵਾਲੇ ਤੱਤਾਂ ਦੀ ਖੋਜ ਹੁਣ ਤੱਕ ਨਹੀਂ ਹੋ ਸਕੀ। ਦੱਸੋ ਕਿ ਇਨ੍ਹਾਂ ਤੱਤਾਂ ਦਾ ਸਥਾਨ ਆਵਰਤੀ ਸਾਰਣੀ ਵਿੱਚ ਕਿਸ ਪਰਿਵਾਰ/ਗਰੁੱਪ ਵਿੱਚ ਹੋਣਾ ਚਾਹੀਦਾ ਹੈ ਅਤੇ ਹਰ ਇੱਕ ਦੀ ਇਲੈਕਟ੍ਰਾਨਿਕ ਤਰਤੀਬ ਕੀ ਹੋਵੇਗੀ ?

ਹੱਲ

ਚਿੱਤਰ 3.2 ਵਿੱਚ ਦਿੱਤੀ ਸਾਰਣੀ ਤੋਂ ਇਹ ਸਪੱਸ਼ਟ ਹੈ ਕਿ ਪਰਮਾਣੂ ਕ੍ਰਮ ਅੰਕ 117 ਵਾਲੇ ਤੱਤ ਦਾ ਸਥਾਨ ਆਵਰਤੀ ਸਾਰਣੀ ਵਿੱਚ ਹੈਲੌਜਨ ਪਰਿਵਾਰ (ਗਰੁੱਪ 17) ਵਿੱਚ At ਦੇ ਹੇਠਾਂ ਹੋਵੇਗਾ ਅਤੇ ਇਸ ਦੀ ਇਲਕੈਟ੍ਰਾਨਿਕ ਤਰਤੀਬ [Rn] $5f^{14}6d^{10}7s^27p^5$ ਹੋਵੇਗੀ। ਪਰਮਾਣੂ ਕ੍ਰਮ ਅੰਕ 120 ਵਾਲੇ ਤੱਤ ਦਾ ਸਥਾਨ ਗਰੁੱਪ 2(ਖਾਰੀ ਮਿੱਟੀ ਧਾਤਾਂ) ਵਿੱਚ Ra ਦੇ ਹੇਠਾਂ ਹੋਵੇਗਾ ਅਤੇ ਇਸ ਦੀ ਇਲੈਕਟ੍ਰਾਨਿਕ ਤਰਤੀਬ [Uuo] $8s^2$ ਹੋਵੇਗੀ।

3.6.5 ਧਾਤਾਂ, ਅਧਾਤਾਂ ਅਤੇ ਉਪਧਾਤਾਂ

ਤੱਤਾਂ ਦੇ s-, p-, d-ਅਤੇ f ਬਲਾਕਾਂ ਵਰਗੀਕਰਣ ਦੇ ਇਲਾਵਾ ਇਨ੍ਹਾਂ ਦੇ ਗੁਣਾਂ ਦੇ ਅਧਾਰ ਤੇ ਮੋਟੇ ਤੌਰ ਤੇ ਇਨ੍ਹਾਂ ਨੂੰ ਧਾਤਾਂ ਅਤੇ ਅਧਾਤਾਂ ਵਿੱਚ ਵੰਡਿਆ ਜਾ ਸਕਦਾ ਹੈ (ਚਿੱਤਰ 3.3)। ਗਿਆਤ ਤੱਤਾਂ ਵਿੱਚੋਂ 78% ਤੋਂ ਵੱਧ ਸੰਖਿਆ ਧਾਤਾਂ ਦੀ ਹੈ, ਜੋ ਆਵਰਤੀ ਸਾਰਣੀ ਦੇ ਖੱਬੇ ਪਾਸੇ ਸਥਿਤ ਹਨ। ਧਾਤਾਂ ਕਮਰੇ ਦੇ ਤਾਪਮਾਨ ਤੇ ਆਮਤੌਰ ਤੇ ਠੋਸ ਹੁੰਦੀਆਂ ਹਨ। (ਮਰਕਰੀ ਇਸ ਦਾ ਅਪਵਾਦ ਹੈ. ਗੈਲਿਅਮ ਅਤੇ ਸੀਜ਼ਿਅਮ ਦੇ ਪਿਘਲਣ ਦਰਜੇ ਬਹੁਤ ਘੱਟ, ਕਮਵਾਰ 303K ਅਤੇ 302 k ਹਨ।) ਧਾਤਾਂ ਦੇ ਪਿਘਲਣ ਅਤੇ ਉਬਾਲ ਦਰਜੇ ਉੱਚੇ ਹੁੰਦੇ ਹਨ। ਇਹ ਤਾਪ ਅਤੇ ਬਿਜਲੀ ਦੇ ਸੂਚਾਲਕ ਹੁੰਦੀਆਂ ਹਨ। ਇਹ ਕਟੀਣ ਯੋਗ (ਹਥੌੜੇ ਨਾਲ ਕੱਟਣ ਤੇ ਪਤਲੀ ਚਾਦਰ ਵਿੱਚ ਢਾਲੇ ਜਾ ਸਕਣ ਵਾਲੇ) ਅਤੇ ਖਿਚੀਣ ਯੋਗ (ਜਿਸ ਦੀਆਂ ਤਾਰਾਂ ਖਿੱਚੀਆਂ ਜਾ ਸਕਦੀਆਂ ਹਨ) ਹੁੰਦੀਆਂ ਹਨ। ਦੂਜੇ ਪਾਸੇ ਅਧਾਤਾਂ ਆਵਰਤੀ ਸਾਰਣੀ ਦੇ ਸੱਜੇ ਪਾਸੇ ਵੱਲ ਸਥਿਤ ਹਨ। ਦੀਰਘ ਆਵਰਤੀ ਸਾਰਣੀ ਵਿੱਚ ਕਿਸੇ ਗਰੱਪ ਵਿੱਚ ਧਾਤਵੀ ਗਣਾਂ ਵਿੱਚ ਉੱਤੇ ਤੋਂ ਹੇਠਾਂ ਜਾਣ ਤੋਂ ਵਾਧਾ ਹੁੰਦਾ ਹੈ ਅਤੇ ਆਵਰਤੀ ਵਿੱਚ ਖੱਬੇ ਤੋਂ ਸੱਜੇ ਵੱਲ ਜਾਣ ਦੇ ਧਾਤਵੀ ਗੁਣ ਘੱਟਦੇ ਜਾਂਦੇ ਹਨ। ਅਧਾਤਾਂ ਕਮਰੇ ਦੇ ਤਾਪਮਾਨ ਤੇ ਠੋਸ ਜਾਂ ਗੈਸ ਹੁੰਦੀਆਂ ਹਨ। ਇਨ੍ਹਾਂ ਦੀ ਪਿਘਲਣ ਦਰਜੇ ਅਤੇ ਉਬਾਲ ਦਰਜੇ ਘੱਟ ਹੁੰਦੇ ਹਨ (ਬੋਗੱਨ ਅਤੇ ਕਾਰਬਨ ਅਪਵਾਦ ਹਨ)। ਇਹ ਤਾਪ ਅਤੇ ਬਿਜਲੀ ਦੇ ਕਮਜੋਰ ਚਾਲਕ ਹਨ। ਬਹਤ ਸਾਰੇ ਅਧਾਤਵੀ ਠੋਸ ਫੁੱਟਣਸ਼ੀਲ (brittle) ਹੁੰਦੇ ਹਨ।ਇਹ ਕੁਟੀਣਸ਼ੀਲ ਅਤੇ ਖਿਚੀਣਸ਼ੀਲ ਨਹੀਂ ਹੁੰਦੀਆਂ। ਤੱਤਾਂ ਦੇ ਧਾਤਵੀ ਅਤੇ ਅਧਾਤਵੀ ਗਣਾਂ ਵਿੱਚ ਪਰਿਵਰਤਨ ਅਚਾਨਕ (abrupt) ਨਹੀਂ ਹੁੰਦਾ ਹੈ, ਬਲਕਿ ਇਹ ਪਰਿਵਰਤਨ ਟੇਢੀ-ਮੇਢੀ ਰੇਖਾ (Zig zag line) ਵਿੱਚ ਵੇਖਣ ਨੂੰ ਮਿਲਦਾ ਹੈ (ਚਿੱਤਰ 3.3) ਆਵਰਤੀ ਸਾਰਣੀ ਵਿੱਚ ਟੇਢੀ-ਮੇਢੀ ਰੇਖਾ ਦੇ ਬਿਲਕੁੱਲ ਨਾਲ ਸਥਿਤ ਜਰਮੇਨਿਅਮ, ਸਿਲੀਕਾੱਨ, ਆਰਸੈਨਿਕ, ਐਂਟੀਮਨੀ ਅਤੇ ਟੈਲਰਿਅਮ ਤੱਤ, ਧਾਤਾਂ ਅਤੇ ਅਧਾਤਾਂ ਦੋਵਾਂ ਦੇ ਲੱਛਣ ਦਰਸਾਉਂਦੇ ਹਨ। ਇਸ ਤਰ੍ਹਾਂ ਦੇ ਤੱਤਾਂ ਨੂੰ ਉੱਪ ਧਾਤਾਂ (Metalloid) ਕਹਿੰਦੇ ਹਨ।

ਉਦਾਹਰਣ 3.4

ਪਰਮਾਣੂ ਕ੍ਰਮ ਅੰਕ ਅਤੇ ਆਵਰਤੀ ਸਾਰਣੀ ਵਿੱਚ ਸਥਿਤੀ ਨੂੰ ਧਿਆਨ ਵਿੱਚ ਰੱਖਦੇ ਹੋਏ ਹੇਠ ਲਿਖੇ ਤੱਤਾਂ ਨੂੰ ਉਨ੍ਹਾਂ ਦੇ ਵੱਧਦੇ ਹੋਏ ਧਾਤਵੀ ਲੱਛਣਾਂ ਦੇ ਕ੍ਰਮ ਵਿੱਚ ਵਿਵਸਥਿਤ ਕਰੋ- Si, Be, Mg, Na ਅਤੇ P.

ਹੱਲ

ਆਵਰਤੀ ਸਾਰਣੀ ਵਿੱਚ ਗਰੁੱਪ ਵਿੱਚ ਉੱਪਰੋਂ ਹੇਠਾਂ ਵੱਲ ਜਾਣ ਤੇ ਤੱਤਾਂ ਦੇ ਧਾਤਵੀ ਗੁਣਾਂ ਵਿੱਚ ਵਾਧਾ ਹੁੰਦਾ ਹੈ ਅਤੇ ਅਵਰਤ ਵਿੱਚ ਖੱਬੇ ਤੋਂ ਸੱਜੇ ਵੱਲ ਜਾਣ ਤੇ ਧਾਤਵੀ ਗੁਣਾਂ ਵਿੱਚ ਕਮੀ ਹੁੰਦੀ ਹੈ। ਇਸ ਅਧਾਰ ਤੇ ਦਿੱਤੇ ਗਏ ਤੱਤਾਂ ਦੇ ਵੱਧਦੇ ਹੋਏ ਧਾਤਵੀ ਲੱਛਣਾਂ ਦਾ ਕ੍ਰਮ ਇਸ ਤਰ੍ਹਾਂ ਹੋਵੇਗਾ- P < Si < Be < Mg < Na.

3.7 ਤੱਤਾਂ ਦੇ ਗੁਣਾਂ ਵਿੱਚ ਆਵਰਤਿਤਾ

ਆਵਰਤੀ ਸਾਰਣੀ ਵਿੱਚ ਜੇ ਅਸੀਂ ਉੱਪਰ ਤੋਂ ਹੇਠਾਂ ਵੱਲ ਜਾਈਏ ਜਾਂ ਖੱਬੇ ਤੋਂ ਸੱਜੇ ਪਾਸੇ ਜਾਈਏ, ਤਾਂ ਤੱਤਾਂ ਦੇ ਭੌਤਿਕ ਅਤੇ ਰਸਾਇਣਿਕ ਗਣਾਂ ਵਿੱਚ ਇੱਕ ਸ਼ੈਲੀ ਵਿਖਾਈ ਦਿੰਦੀ ਹੈ। ਉਦਾਹਰਣ ਵਜੋਂ-ਕਿਸੇ ਆਵਰਤ ਵਿੱਚ ਰਸਾਇਣਿਕ ਕਿਰਿਆ ਸ਼ੀਲਤਾ ਪਹਿਲੇ ਗਰੱਪ ਦੀਆਂ ਧਾਤਾਂ ਵਿੱਚ ਬਹਤ ਜਿਆਦਾ ਹੈ, ਮੱਧ ਵਿੱਚ ਪਹੁੰਚ ਕੇ ਇਹ ਘੱਟ ਹੋ ਜਾਂਦੀ ਹੈ ਅਤੇ ਗਰੁੱਪ 17 ਦੀਆਂ ਅਧਾਤਾਂ ਤੇ ਪਹੰਚਣ ਤੇ ਵੱਧਕੇ ਬਹੁਤ ਜਿਆਦਾ ਹੋ ਜਾਂਦੀ ਹੈ। ਇਸੇ ਤਰ੍ਹਾਂ ਨਿਰੂਪਕ ਤੱਤਾਂ ਦੇ ਗਰੁੱਪ ਵਿੱਚ (ਜਿਵੇਂ-ਖਾਰੀ ਧਾਤਾਂ ਵਿੱਚ) ਆਵਰਤੀ ਸਾਰਣੀ ਵਿੱਚ ਉੱਪਰ ਤੋਂ ਹੇਠਾਂ ਜਾਣ ਤੇ ਕਿਰਿਆ ਸ਼ੀਲਤਾ ਵੱਧਦੀ ਹੈ, ਜਦਕਿ ਅਧਾਤਾਂ ਦੇ ਸਮੰਹ ਵਿੱਚ (ਜਿਵੇਂ-ਹੈਲੋਜਨ ਪਰਿਵਾਰ) ਉੱਪਰ ਤੋਂ ਹੇਠਾਂ ਜਾਣ ਤੇ ਕਿਰਿਆਸ਼ੀਲਤਾ ਘੱਟਦੀ ਹੈ। ਤੱਤਾਂ ਦੇ ਗਣਾਂ ਵਿੱਚ ਅਜਿਹਾ ਕਿਉਂ ਹੋ ਰਿਹਾ ਹੈ ਅਤੇ ਇਸ ਅਵਰਤਿਤਾ ਨੂੰ ਅਸੀਂ ਕਿਵੇਂ ਸਮਝਾਈਏ ? ਇਨ੍ਹਾਂ ਸਾਰੇ ਪਸ਼ਨਾਂ ਦੇ ਉੱਤਰ ਦੇਣ ਦੇ ਲਈ ਸਾਨੂੰ ਪਰਮਾਣੂ ਦੀ ਰਚਨਾ ਦੇ ਸਿਧਾਂਤ ਅਤੇ ਪਰਮਾਣ ਦੇ ਗਣਾਂ ਦੇ ਵੱਲ ਧਿਆਨ ਦੇਣਾ ਪਵੇਗਾ। ਇਸ ਭਾਗ ਵਿੱਚ ਅਸੀਂ ਭੌਤਿਕ ਅਤੇ ਰਸਾਇਣਿਕ ਗੁਣਾਂ ਦੀ ਅਵਰਤਿਤਾ ਦਾ ਵਰਣਨ ਕਰਾਂਗੇ ਅਤੇ ਉਨ੍ਹਾਂ ਨੂੰ ਇਲੈਕਟ੍ਰਾਨਾਂ ਦੀ ਸੰਖਿਆ ਅਤੇ ਉਰਜਾ-ਸਤਰ ਨੂੰ ਲੈ ਕੇ ਸਮਝਾਵਾਂਗੇ।

3.7.1 ਭੌਤਿਕ ਗੁਣਾਂ ਦੀ ਪ੍ਰਵਿਰਤੀ

ਤੱਤਾਂ ਦੇ ਕਈ ਭੌਤਿਕ ਗੁਣ (ਜਿਵੇਂ ਪਿਘਲਣਾ, ਉੱਬਲਣਾ ਅਤੇ ਵਾਸ਼ਪੀਕਰਣ) ਊਰਜਾ, ਪਰਮਾਣਵੀਂਕਰਣ ਊਰਜਾ ਆਦਿ ਸਾਰੇ ਆਵਰਤੀ ਪਰਿਵਰਤਨ ਦਰਸਾਉਂਦੇ ਹਨ। ਇਸ ਅਨੁਭਾਵ ਵਿੱਚ ਅਸੀਂ ਪਰਮਾਣੂ ਅਤੇ ਆਇਨਿਕ ਅਰਧ–ਵਿਆਸ, ਆਇਨਨ ਐਨਥੈਲਪੀ (Ionisation enthalpy) ਇਲੈਕਟ੍ਰਾਨ ਗ੍ਰਹਿਣ ਐਨਥੈਲਪੀ (Electron gain enthalpy) ਅਤੇ ਇਲੈਕਟ੍ਰੋਨੈਗੇਟਿਵਤਾ (Electronegativity) ਵਿੱਚ ਆਵਰਤ ਪਵਿਰਤੀ ਦਾ ਅਧਿਐਨ ਕਰਾਂਗੇ।

(ੳ) ਪਰਮਾਣੂ ਅਰਧਵਿਆਸ

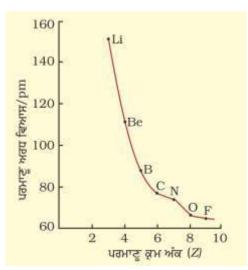
ਪਰਮਾਣੂ ਦੇ ਅਕਾਰ ਦਾ ਸਹੀ-ਸਹੀ ਨਿਰਧਾਰਣ ਬਹੁਤ ਹੀ ਜਟਿਲ ਹੈ, ਜਦਕਿ ਇੱਕ ਗੇਂਦ ਦਾ ਅਰਧ ਵਿਆਸ ਅਸ਼ਾਨੀ ਨਾਲ ਮਾਪਿਆ ਜਾ ਸਕਦਾ ਹੈ। ਕੀ ਤੁਹਾਨੂੰ ਇਸ ਦਾ ਕਾਰਣ ਪਤਾ ਹੈ? ਪਹਿਲੀ ਗੱਲ ਤਾਂ ਇਹ ਹੈ ਕਿ ਪਰਮਾਣੂ ਦਾ ਅਰਧ ਵਿਆਸ ਬਹੁਤ ਛੋਟਾ (ਸਿਰਫ 1.2 × 10⁻¹⁰ m) ਹੁੰਦਾ ਹੈ। ਪਰਮਾਣੂ ਦੇ ਚੌਹਾਂ ਪਾਸਿਆਂ ਤੇ ਇਲੈਕਟ੍ਰਾੱਨ ਬੱਦਲ (electron cloud) ਦੀ ਕੋਈ ਸਪੱਸ਼ਟ ਸੀਮਾ ਨਿਰਧਾਰਿਤ ਨਹੀਂ ਹੈ। ਇਸ ਲਈ ਪਰਮਾਣੂ ਦਾ ਅਕਾਰ ਸਹੀ ਤਰ੍ਹਾਂ ਨਾਲ ਨਿਰਧਾਰਿਤ ਨਹੀਂ ਕੀਤਾ ਜਾ ਸਕਦਾ। ਪ੍ਯੋਗਿਕ ਵਿਧੀ ਦੇ ਅਧਾਰ ਤੇ ਪਰਮਾਣੂ ਦੇ ਅਕਾਰ ਦਾ ਨਿਰਧਾਰਣ ਸੰਭਵ ਨਹੀਂ ਹੈ। ਸੰਯੁਕਤ ਅਵਸਥਾ ਵਿੱਚ ਪਰਮਾਣੂਆਂ ਦੇ ਵਿਚਲੀ ਦੂਰੀ ਦੀ ਜਾਣਕਾਰੀ ਦੇ ਅਧਾਰ ਤੇ ਪਰਮਾਣੂ ਅਕਾਰ ਦਾ ਅਨੁਮਾਨ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਇਕਹਿਰਾ ਬੰਧਨ (Single Bond)

ਦੁਆਰਾ ਜੁੜੇ ਹੋਏ ਸਹਿਸੰਯੋਜਕ ਅਣੁਆਂ (covalent molecules) ਵਿੱਚ ਮੌਜੂਦ ਦੋ ਅਧਾਤਵੀ ਪਰਮਾਣੂਆਂ ਦੇ ਨਿਊਕਲੀਅਸ ਦੇ ਵਿੱਚ ਦੂਰੀ ਗਿਆਤ ਕਰ ਲਈ ਜਾਂਦੀ ਹੈ ਅਤੇ ਇਸ (ਦੂਰੀ) ਦੇ ਅਧਾਰ ਤੇ ਸਹਿਸੰਯੋਜਕ ਅਰਧ ਵਿਆਸ (covalent radius) ਦਾ ਅਨੁਮਾਨ ਲਾਇਆ ਜਾਂਦਾ ਹੈ। ਉਦਾਹਰਣ ਵਜੋਂ-ਕਲੋਰੀਨ ਅਣੂ ਦੇ ਲਈ ਬੰਧਨ ਦੂਰੀ (bond length) ਦਾ ਮਾਨ 198 pm ਨਿਰਧਾਰਿਤ ਕੀਤਾ ਗਿਆ ਹੈ। ਇਸ ਮਾਨ ਦਾ ਅੱਧਾ (99 pm) ਕਲੋਰੀਨ ਦਾ ਅਰਧ ਵਿਆਸ ਹੋਵੇਗਾ। ਧਾਤਾਂ ਦਾ ਧਾਤਵੀ ਅਰਧ ਵਿਆਸ(Metallic Radius) ਦਾ ਮਾਨ ਧਾਤਵੀ ਕ੍ਰਿਸਟਲ ਵਿੱਚ ਸਥਿਤ ਧਾਤ ਕੋਰਾਂ ਦੀ ਅੰਤਰਾ ਨਿਊਕਲੀ ਦੂਰੀ (Internuclear distance) ਦਾ ਅੱਧਾ ਹੁੰਦਾ ਹੈ।ਕਾੱਪਰ ਧਾਤ ਵਿੱਚ ਦੋ ਲਾਗਵੇਂ ਕਾੱਪਰ ਪਰਮਾਣੂਆਂ ਵਿਚਲੀ ਦੂਰੀ 256pm ਹੈ। ਇਸ ਲਈ ਕਾੱਪਰ ਦੇ ਲਈ ਧਾਤਵੀ ਅਰਧ ਵਿਆਸ ਦਾ ਮਾਨ 256pm ਦਾ ਅੱਧਾ, ਅਰਥਾਤ 128pm ਹੋਵੇਗਾ। ਇਸ ਪੁਸਤਕ ਵਿੱਚ ਸਹਿਸੰਯੋਜੀ ਅਰਧ ਵਿਆਸ ਅਤੇ ਧਾਤਵੀ ਅਰਧ ਵਿਆਸ ਦੇ ਲਈ ਕੇਵਲ ਪਰਮਾਣਵੀਂ ਅਰਧ ਵਿਆਸ (Atomic Radius) ਦੀ ਵਰਤੋਂ ਕੀਤੀ ਗਈ ਹੈ। ਭਾਵੇਂ ਉਹ ਤੱਤ ਧਾਤ ਹੋਵੇ ਜਾਂ ਅਧਾਤ, ਪਰਮਾਣਵੀਂ ਅਰਧ ਵਿਆਸ ਨੂੰ *x-* ਕਿਰਣਾਂ ਅਤੇ ਹੋਰ ਸਪੈਕਟ੍ਰੋਸਕੋਪਿਕ ਵਿਧੀ ਨਾਲ ਮਾਪਿਆ ਜਾ ਸਕਦਾ ਹੈ।

ਕੁੱਝ ਤੱਤਾਂ ਦੇ ਲਈ ਪਰਮਾਣੂ ਅਰਧ ਵਿਆਸ ਦਾ ਮਾਨ ਸਾਰਣੀ 3.6 (ੳ) ਵਿੱਚ ਦਿੱਤਾ ਗਿਆ ਹੈ। ਦੋ ਪ੍ਕਾਰ ਦੀਆਂ ਪ੍ਰਵਿਰਤੀਆਂ ਸਪੱਸ਼ਟ ਰੂਪ ਵਿੱਚ ਵੇਖਣ ਨੂੰ ਮਿਲਦੀਆਂ ਹਨ, ਜਿਨ੍ਹਾਂ ਦੀ ਵਿਆਖਿਆ ਸਾਰਣੀ 3.6 ਵਿੱਚ ਅਸੀਂ ਨਿਊਕਲੀ ਚਾਰਜ ਅਤੇ ਊਰਜਾ ਸਤਰ ਨਾਲ ਕਰ ਸਕਦੇ ਹਾਂ। ਆਵਰਤ ਵਿੱਚ ਸੱਜੇ ਪਾਸੇ ਜਾਣ ਤੇ ਪਰਮਾਣੂ ਅਕਾਰ ਘੱਟਦਾ ਹੈ, ਜਿਵੇਂ ਦੂਜੇ ਪੀਰੀਅਡ ਦੇ ਤੱਤਾਂ ਦੇ ਪਰਮਾਣੂ ਅਕਾਰ ਤੋਂ ਸੱਪਸ਼ਟ ਹੈ (ਸਾਰਣੀ 3.6 (ੳ) ਨੂੰ ਵੇਖੋ)। ਇਸ ਪ੍ਰਵਿਰਤੀ ਦਾ ਕਾਰਣ ਇਹ ਹੈ ਕਿ ਪੀਰੀਅਡ ਵਿੱਚ ਸੱਜੇ ਪਾਸੇ ਜਾਣ ਤੇ ਬਾਹਰੀ ਇਲਕਟ੍ਰਾੱਨ ਇੱਕ ਹੀ ਸੰਯੋਜੀ ਸ਼ੈੱਲ ਵਿੱਚ ਸਥਿਤ ਹਨ, ਪਰੰਤੂ ਉਨ੍ਹਾਂ ਦੀ ਨਿਊਕਲੀ ਚਾਰਜ ਵਿੱਚ ਹੋਏ ਵਾਧੇ ਦੇ ਫਲਸਰੂਪ ਬਾਹਰੀ ਇਲੈਕਟ੍ਰਾੱਨਾਂ ਦਾ ਆਕਰਸ਼ਣ ਨਿਊਕਲੀਅਸ ਦੇ ਵੱਲ ਵੱਧਦਾ ਜਾਂਦਾ ਹੈ, ਜਿਸ ਦੇ ਕਾਰਣ ਪਰਮਾਣੂ ਅਰਧ ਵਿਆਸ ਘੱਟ ਜਾਂਦਾ ਹੈ। ਆਵਰਤੀ ਸਾਰਣੀ ਦੇ ਗਰੁੱਪਾਂ ਵਿੱਚ ਪਰਮਾਣੂ ਕ੍ਰਮ ਅੰਕ ਦੇ ਨਾਲ-ਨਾਲ ਪਰਮਾਣੂ ਅਰਧ ਵਿਆਸਾਂ ਵਿੱਚ ਵੀ ਨਿਯਮਿਤ ਰੂਪ ਵਿੱਚ ਵਾਧਾ ਹੁੰਦਾ ਹੈ, ਜਿਵੇਂ ਖਾਰੀ ਧਾਤਾਂ ਅਤੇ ਹੈਲੋਜਨ ਤੱਤਾਂ ਦੇ ਲਈ ਸਾਰਣੀ 3.6 (ਅ) ਵਿੱਚ ਦਰਸਾਇਆ ਗਿਆ ਹੈ। ਗਰੱਪ ਵਿੱਜ ਜਦੋਂ ਅਸੀਂ ਹੇਠਾਂ ਵੱਲ ਜਾਂਦੇ ਹਾਂ, ਤਾਂ ਮੁੱਖ ਕੁਆਂਟਮ ਸੰਖਿਆ (n) ਦਾ ਮਾਨ ਵੱਧਦਾ ਹੈ ਅਤੇ ਸੰਯੋਜੀ ਇਲੈਕਟ੍ਰਾੱਨ (valence electron) ਨਿਉਕਲੀਅਸ ਤੋਂ ਦੂਰ ਹੁੰਦਾ ਜਾਂਦਾ ਹੈ, ਇਸ ਲਈ ਕਿ ਅੰਤਰਿਕ ਉਰਜਾ ਸਤਰ ਇਲੈਕਟ੍ਰਾੱਨਾਂ ਨਾਲ ਭਰੇ ਹੁੰਦੇ ਹਨ, ਜੋ ਢਾਲ ਦੇ ਰੂਪ ਵਿੱਚ ਬਾਹਰੀ ਇਲੈਕਟ੍ਰਾੱਨਾਂ ਤੇ ਨਿਊਕਲੀਅਸ ਦਾ ਆਕਰਸ਼ਣ ਘੱਟ ਕਰ ਦਿੰਦੇ ਹਨ। ਫਲਸਰੂਪ ਪਰਮਾਣੂ ਦਾ ਅਕਾਰ ਵੱਧਦਾ ਜਾਂਦਾ ਹੈ। ਜੋ ਪਰਮਾਣੂ ਅਰਧ ਵਿਆਸ ਦੇ ਰੂਪ ਵਿੱਚ ਵਿਖਾਈ ਦਿੰਦਾ ਹੈ।

ਧਿਆਨ ਦੇਣ ਦੀ ਜਰੂਰਤ ਹੈ ਕਿ ਇੱਥੇ ਨੌਬਲ ਗੈਸਾਂ ਦੇ ਪਰਮਾਣੂ ਅਰਧ ਵਿਆਸ ਤੇ ਵਿਚਾਰ ਨਹੀਂ ਕੀਤਾ ਗਿਆ ਹੈ। ਇਕੱਲਾ ਪਰਮਾਣੂ ਹੋਣ ਦੇ ਕਾਰਣ ਉਨ੍ਹਾਂ ਦਾ ਅਣਬੰਧਿਤ ਅਰਧਵਿਆਸ ਬਹੁਤ ਜਿਆਦਾ ਹੈ। ਇਸ ਲਈ ਨੌਬਲ ਗੈਸਾਂ ਦੀ ਤੁਲਨਾ ਦੂਜੇ ਤੱਤਾਂ ਦੇ ਸਹਿ ਸੰਯੋਜਕ ਅਰਧ ਵਿਆਸ ਨਾਲ ਨਾ ਕਰਕੇ ਵਾਂਡਰਵਾਲਸ ਅਰਧ ਵਿਆਸ ਨਾਲ ਕਰਨੀ ਚਾਹੀਦੀ ਹੈ।

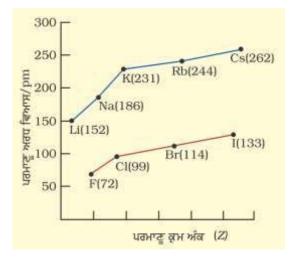
(ਅ) ਆਇਨੀ ਅਰਧ ਵਿਆਸ


ਜੇ ਪਰਮਾਣੂ ਵਿੱਚੋਂ ਇੱਕ ਇਲੈਕਟ੍ਰਾੱਨ ਕੱਢ ਦਿੱਤਾ ਜਾਵੇ ਤਾਂ ਧਨ ਆਇਨ ਬਣਦਾ ਹੈ, ਜਦੋਂ ਕਿ ਇੱਕ ਇਲੈਕਟ੍ਰਾਨ ਮਿਲ ਜਾਵੇ, ਤਾਂ ਪਰਮਾਣੂ ਰਿਣ ਆਇਨ ਬਣ ਜਾਂਦਾ ਹੈ। ਆਇਨੀ ਅਰਧ ਵਿਆਸ

ਪਰਮਾਣੂ (ਆਵਰਤ II)	Li	Be	В	С	N	0	F
ਪਰਮਾਣੂ ਆਵਰਤ ਵਿਆਸ	152	111	88	77	74	66	64
ਪਰਮਾਣੂ (ਆਵਰਤ III)	Na	Mg	A1	Si	P	S	Cl
ਪਰਮਾਣੂ ਆਵਰਤ ਵਿਆਸ	186	160	143	117	110	104	99

ਸਾਰਣੀ 3.6 (ੳ) ਆਵਰਤ ਵਿੱਚ ਪਰਮਾਣੂ ਅਰਧ ਵਿਆਸ ਦੇ ਮਾਨ (ਪੀਕੋ ਮੀਟਰ) **(pm)**

ਸਾਰਣੀ 3.6 (4) ਗਰੁੱਪ ਵਿੱਚ ਪਰਮਾਣੂ ਅਰਧ ਵਿਆਸ ਦਾ ਮਾਨ (ਪੀਕੋਮੀਟਰ)


ਪਰਮਾਣੂ (ਗਰੁੱਪ I)	ਪਰਮਾਣੂ ਅਰਧ ਵਿਆਸ	ਪਰਮਾਣੂ (ਗਰੁੱਪ 17)	ਪਰਮਾਣੂ ਅਰਧ ਵਿਆਸ
Li	152	F	64
Na	186	C1	99
K	231	Br	114
Rb	244	I	133
Cs	262	At	140

ਚਿੱਤਰ 3.4 (ੳ)ਦੂਜੇ ਪੀਰੀਅਡ ਵਿੱਚ ਪਰਮਾਣੂ ਕ੍ਰਮ ਅੰਕ ਦੇ ਨਾਲ ਤੱਤਾਂ ਦੇ ਪਰਮਾਣੂ ਅਰਧ ਵਿਆਸ ਵਿੱਚ ਪਰਿਵਰਤਨ

ਦਾ ਅਨੁਮਾਨ ਆਇਨਿਕ ਕ੍ਰਿਸਟਲ ਵਿੱਚ ਸਥਿਤ ਧੰਨ ਆਇਨਾਂ ਅਤੇ ਰਿਣ ਆਇਨਾਂ ਵਿਚਲੀ ਦੂਰੀ ਦੇ ਨਿਰਧਾਰਣ ਦੇ ਅਧਾਰ ਤੇ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਆਮ ਤੌਰ ਤੇ ਤੱਤਾਂ ਦੇ ਆਇਨੀ ਅਰਧ ਵਿਆਸ ਵੀ ਪਰਮਾਣੂ ਅਰਧ ਵਿਆਸ ਦੀ ਪ੍ਰਵਿਰਤੀ ਹੀ ਦਰਸਾਉਂਦਾ ਹੈ। ਧਨ ਆਇਨ ਅਕਾਰ ਵਿੱਚ ਆਪਣੇ ਮੂਲ ਪਰਮਾਣੂ (parent atom) ਤੋਂ ਛੋਟਾ ਹੁੰਦਾ ਹੈ, ਕਿਉਂਕਿ ਇਸ ਵਿੱਚ ਇਲੈਕਟਾਨਾਂ ਦੀ ਸੰਖਿਆ ਘੱਟ ਹੁੰਦੀ ਹੈ, ਜਦੋਂ ਕਿ ਨਿਊਕਲੀ ਚਾਰਜ, ਮੂਲ ਪਰਮਾਣੂ ਵਾਲਾ ਹੀ ਹੁੰਦਾ ਹੈ। ਰਿਣ ਆਇਨ ਦਾ ਅਕਾਰ ਮੂਲ ਪਰਮਾਣੂ ਤੋਂ ਵਧੇਰੇ ਹੁੰਦਾ ਹੈ ਕਿਉਂਕਿ ਇੱਕ ਜਾਂ ਵੱਧ ਇਲੈਕਟ੍ਰਾੱਨ ਹੋਣ ਨਾਲ ਇਲੈਕਟ੍ਰਾਂਨਾਂ ਵਿੱਚ ਪ੍ਤੀਕਰਸ਼ਣ ਵੱਧਦਾ ਹੈ ਅਤੇ ਪ੍ਭਾਵੀ ਨਿਊਕਲੀ ਚਾਰਜ ਵਿੱਚ ਕਮੀ ਆਉਂਦੀ ਹੈ। ਉਦਾਹਰਣ ਵਜੋਂ-ਫਲੋਰਾਈਡ ਆਇਨ (F⁻) ਦਾ ਆਇਨੀ ਅਰਧ ਵਿਆਸ 136 pm ਜਦ ਕਿ ਫਲੋਰੀਨ ਪਰਮਾਣੂ ਦਾ ਪਰਮਾਣੂ ਅਰਧ ਵਿਆਸ ਕੇਵਲ 64 pm ਹੈ। ਦੂਜੇ ਪਾਸੇ ਸੋਡੀਅਮ ਤੱਤ ਦਾ ਪਰਮਾਣੂ ਅਰਧ ਵਿਆਸ $186~\mathrm{pm}$ ਅਤੇ $\mathrm{Na}^{\scriptscriptstyle +}$ ਆਇਨ ਦਾ ਅਰਧ ਵਿਆਸ 95 pm ਹੈ।

ਜਦੋਂ ਪਰਮਾਣੂਆਂ ਅਤੇ ਆਇਨਾਂ ਵਿੱਚ ਇਲੈਕਟ੍ਰਾਨਾਂ ਦੀ ਸੰਖਿਆ ਸਮਾਨ ਹੁੰਦੀ ਹੈ, ਤਾਂ ਇਹ ਸਮ ਇਲੈਕਟ੍ਰਾਨੀ ਸਪੀਸ਼ੀਜ (Isoelectronic species)* ਅਖਵਾਉਂਦੇ ਹਨ। ਸਮ ਇਲੈਕਟ੍ਰਾਨੀ ਸਪੀਸ਼ੀਜ਼ ਦੀਆਂ ਉਦਾਹਰਣਾਂ ਹਨ- O^2 -, F-, Na⁺ Mg²⁺ ਹਰ ਇੱਕ ਸਪੀਸ਼ੀਜ਼ ਵਿੱਚ ਇਲੈਕਟ੍ਰਾਨਾਂ ਦੀ ਸੰਖਿਆ 10 ਹੈ। ਹਰ ਇੱਕ ਸਪੀਸ਼ੀਜ਼ ਦੇ ਅਰਧ ਵਿਆਸ ਭਿੰਨ-ਭਿੰਨ ਹੋਣਗੇ, ਕਿਉਂਕਿ ਹਰ ਇੱਕ ਦਾ ਨਿਊਕਲੀ ਚਾਰਜ ਭਿੰਨ ਹੈ। ਵਧੇਰੇ ਧਨ ਚਾਰਜਿਤ ਧਨ ਆਇਨ ਦਾ ਆਇਨੀ ਅਰਧ ਵਿਆਸ ਘੱਟ ਹੋਵੇਗਾ, ਕਿਉਂਕਿ ਇਨ੍ਹਾਂ ਦੇ ਨਿਊਕਲੀਅਸ ਅਤੇ ਇਲੈਕਟ੍ਰਾਨਾਂ ਦੇ ਵਿੱਚ ਆਕਰਸ਼ਣ ਵਧੇਰੇ ਹੋਵੇਗਾ। ਵਧੇਰੇ ਰਿਣਚਾਰਜਿਤ ਰਿਣ

ਚਿੱਤਰ 3.4 (ਅ) ਪਰਮਾਣੂ ਕ੍ਰਮ ਅੰਕਾਂ ਦੇ ਨਾਲ ਖਾਰੀ ਧਾਤਾਂ ਅਤੇ ਹੈਲੌਜਨਾਂ ਦੇ ਪਰਮਾਣੂ ਅਰਧ ਵਿਆਸ ਵਿੱਚ ਪਰਿਵਰਤਨ

ਆਇਨ ਦਾ ਆਇਨੀ ਅਰਧ ਵਿਆਸ ਦਾ ਮਾਨ ਵਧੇਰੇ ਹੋਵੇਗਾ। ਕਿਉਂਕਿ ਇਲੈਕਟ੍ਰਾਨਾਂ ਦੇ ਵਿੱਚ ਸੰਪੂਰਣ ਪ੍ਰਤੀਕਰਸ਼ਣ ਦਾ ਪ੍ਰਭਾਵ ਨਿਊਕਲੀ ਚਾਰਜ ਤੋਂ ਵੱਧ ਹੋ ਜਾਵੇਗਾ ਅਤੇ ਆਇਨ ਦਾ ਅਕਾਰ ਵੱਧ ਹੋ ਜਾਵੇਗਾ।

ਉਦਾਹਰਣ 3.5

ਹੇਠ ਲਿਖੇ ਸਪੀਸ਼ਜ਼ ਵਿਚੋਂ ਕਿਸ ਦਾ ਅਰਧ ਵਿਆਸ ਅਧਿਕਤਮ ਅਤੇ ਕਿਸ ਦਾ ਅਰਧ ਵਿਆਸ ਨਿਊਨਤਮ ਹੋਵੇਗਾ ?

Mg, Mg²⁺, Al, Al³⁺.

ਹੱਲ

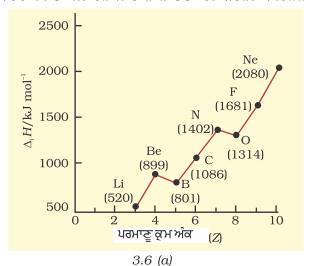
ਪੀਰੀਅਡ ਵਿੱਚ ਖੱਬੇ ਤੋਂ ਸੱਜੇ ਵੱਲ ਜਾਣ ਤੇ ਪਰਮਾਣੂ ਅਰਧ ਵਿਆਸ ਦਾ ਮਾਨ ਘੱਟਦਾ ਹੈ। ਧਨ ਆਇਨ ਦਾ ਅਕਾਰ ਉਸ ਦੇ ਮੂਲ ਪਰਮਾਣੂ ਨਾਲੋਂ ਛੋਟਾ ਹੁੰਦਾ ਹੈ। ਸਮ ਇਲੈਕਟ੍ਰਾਨਿਕ ਸਪੀਸ਼ੀਜ਼ ਵਿੱਚ ਵਧੇਰੇ ਨਿਊਕਲੀਚਾਰਜ ਵਾਲੇ ਸਪੀਸ਼ੀਜ਼ ਦਾ ਅਰਧ ਵਿਆਸ ਛੋਟਾ ਹੁੰਦਾ ਹੈ। ਇਸ ਲਈ ਅਧਿਕਤਮ ਅਕਾਰ ਵਾਲਾ ਸਪੀਸ਼ੀਜ਼ Mg; ਅਤੇ ਨਿਊਨਤਮ ਅਕਾਰ ਵਾਲਾ ਸਪੀਸ਼ੀਜ Al³⁺ ਹੋਵੇਗਾ।

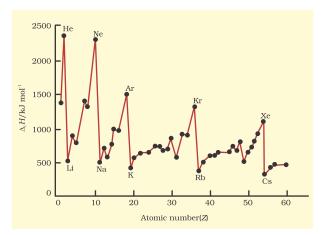
(प्ट) ਅਇਨਨ ਐਨਥੈਲਪੀ

ਤੱਤਾਂ ਦੁਆਰਾ ਇਲੈਕਟ੍ਰਾੱਨ ਤਿਆਗਨ ਦੀ ਮਾਤਰਾਤਮਕ ਪ੍ਰਕਿਰਤੀ 'ਆਇਨਨ ਐਨਥੈਲਪੀ' ਕਹੀ ਜਾਂਦੀ ਹੈ। ਗਰਾਉਂਡ ਅਵਸਥਾ (ground state) ਵਿੱਚ ਵਿਯੋਜਿਤ ਗੈਸੀ ਪਰਮਾਣੂ (Isolated gaseous atom) ਵਿੱਚੋਂ ਬਾਹਰੀ ਇਲੈਕਟ੍ਰਾਨ ਨੂੰ ਬਾਹਰ ਕੱਢਣ ਲਈ ਜੋ ਊਰਜਾ ਲੱਗਦੀ ਹੈ, ਉਸ ਨੂੰ ਤੱਤ ਦੀ ਆਇਨਨ ਐਨਥੈਲਪੀ' ਕਹਿੰਦੇ ਹਨ। ਦੂਜੇ ਸ਼ਬਦਾਂ ਵਿੱਚ ਤੱਤ (X) ਦੀ ਪਹਿਲੀ ਆਇਨਨ ਐਨਥੈਲਪੀ ਦਾ ਮਾਨ ਰਸਾਇਣਕ ਪਕਰਮ 3.1 ਵਿੱਚ

[∗] ਸਮ ਇਲੈਕਟ੍ਰਾੱਨੀ ਸਪੀਸ਼ੀਜ਼−ਦੋ ਜਾਂ ਦੋ ਤੰ ਵੱਧ ਸਪੀਸ਼ੀਜ਼ ਜਿਨ੍ਹਾਂ ਵਿੱਚ ਪਰਮਾਣੂਆਂ ਦੀ ਸੰਖਿਆ ਅਤੇ ਵੇਲੈਂਸੀ ਇਲੈਕਟ੍ਰਾੱਨ ਸਮਾਨ ਹੋਣ ਅਤੇ ਸਮਾਨ ਸੰਰਚਨਾ ਹੋਵੇ ਭਾਵੇਂ ਤੱਤਾਂ ਦੀ ਕੋਈ ਵੀ ਪ੍ਰਕਿਰਤੀ ਹੋਵੇ।

ਐਨਥੈਲਪੀ ਪਰਿਵਰਤਨ ($\Delta_i H$) ਦੇ ਬਰਾਬਰ ਹੋਵੇਗਾ।

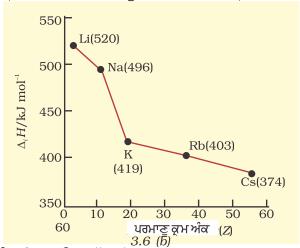

 $X(g) \to X^{+}(g) + e^{-}$ (3.1)


ਆਇਨਨ ਐਨਥੈਲਪੀ ਨੂੰ ਆਮਤੌਰ ਤੇ ਕਿਲੋ ਜੂਲ ਪ੍ਰਤੀ ਮੋਲ (kJ mol⁻¹) ਇਕਾਈ ਵਿੱਚ ਵਿਅਕਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਸਭ ਤੋਂ ਢਿੱਲੇ ਬੱਝੇ ਦੂਜੇ ਇਲੈਕਟ੍ਰਾੱਨ ਨੂੰ ਵੱਖ ਕਰਨ ਦੇ ਲਈ ਦਿੱਤੀ ਗਈ ਊਰਜਾ ਨੂੰ ਦੂਜੀ ਆਇਨਨ ਐਨਥੈਲਪੀ ਕਹਿੰਦੇ ਹਨ। ਇਸ ਐਨਥੈਲਪੀ ਦਾ ਮਾਨ ਰਸਾਇਣਿਕ ਪ੍ਕਰਮ (3.2) ਦੇ ਪੂਰੇ ਹੋਣ ਵਿੱਚ ਲੋੜੀਂਦੀ ਊਰਜਾ ਦੇ ਬਰਾਬਰ ਹੁੰਦੀ ਹੈ।

 $X^{+}(g) \to X^{2+}(g) + e^{-}$ (3.2)

ਪਰਮਾਣੂ ਵਿੱਚੋਂ ਇਲੈਕਟ੍ਰਾੱਨ ਨੂੰ ਵੱਖ ਕਰਨ ਦੇ ਲਈ ਹਮੇਸ਼ਾ ਊਰਜਾ ਦੀ ਜਰੂਰਤ ਹੁੰਦੀ ਹੈ। ਇਸ ਲਈ ਆਇਨਨ ਐਨਥੈਲਪੀ ਹਮੇਸ਼ਾ ਧਨਾਤਮਕ ਹੁੰਦੀ ਹੈ। ਤੱਤ ਦੀ ਦੂਜੀ ਆਇਨਨ ਐਨਥੈਲਪੀ ਦਾ ਮਾਨ ਉਸ ਦੀ ਪਹਿਲੀ ਆਇਨਨ ਐਨਥੈਲਪੀ ਤੋਂ ਵੱਧ ਹੁੰਦਾ ਹੈ ਕਿਉਂਕਿ ਉਦਾਸੀਨ ਪਰਮਾਣੂ ਦੀ ਤੁਲਨਾ ਵਿੱਚ ਧਨ ਚਾਰਜਿਤ ਆਇਨ ਵਿੱਚੋਂ ਇਲੈਕਟ੍ਰਾੱਨ ਨੂੰ ਵੱਖ ਕਰਨਾ ਵਧੇਰੇ ਮੁਸ਼ਕਿਲ ਹੁੰਦਾ ਹੈ। ਇਸੇ ਤਰ੍ਹਾਂ ਤੀਜੀ ਆਇਨਨ ਐਨਥੈਲਪੀ ਦਾ ਮਾਨ ਦੂਜੀ ਆਇਨਨ ਐਨਥੈਲਪੀ ਦੇ ਮਾਨ ਤੋਂ ਵੱਧ ਹੋਵੇਗਾ। 'ਆਇਨਨ ਐਨਥੈਲਪੀ' ਟਰਮ ਨੂੰ ਜੇ ਮਿਥਿਆ (specify) ਨਹੀਂ ਕੀਤਾ ਗਿਆ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਪਹਿਲੀ ਆਇਨਨ ਐਨਥੈਲਪੀ ਸਮਝਨਾ ਚਾਹੀਦਾ ਹੈ।

ਪਰਮਾਣੂ ਕ੍ਰਮ ਅੰਕ 60 ਤੱਕ ਵਾਲੇ ਤੱਤਾਂ ਦੀ ਪਹਿਲੀ ਆਇਨਨ ਐਨਥੈਲਪੀ ਦਾ ਵਕਰ ਚਿੱਤਰ 3.5 ਵਿੱਚ ਦਰਸਾਇਆ ਗਿਆ ਹੈ। ਗ੍ਰਾਫ ਵਿੱਚ ਆਵਰਤਿਤਾ ਅਸਧਾਰਣ ਹੈ। ਇਸ ਚਿੱਤਰ ਵਿੱਚ ਇਹ ਸੱਪਸ਼ਟ ਹੈ ਕਿ ਵਕਰ (curve) ਦੇ ਮੈਕਸੀਮਾ (maxima) ਤੇ ਨੌਬਲ ਗੈਸਾਂ ਹਨ, ਜੋ ਪੂਰਣ ਇਲੈਕਟ੍ਰਾੱਨ ਸ਼ੈਲ (closed electron shell) ਰੱਖਦੀਆਂ ਹਨ ਅਤੇ ਇਨ੍ਹਾਂ ਦੀ ਇਲੈਕਟ੍ਰਾੱਨ ਤਰਤੀਬ ਬਹੁਤ ਹੀ ਸਥਾਈ ਹੈ। ਦੂਜੇ ਪਾਸੇ ਵਕਰ ਦੇ ਮਿਨੀਮਾ (minima) (ਆਨੀਆ ਤੇ ਖਾਰੀ ਧਾਤਾਂ ਸਥਿਤ ਹਨ ਅਤੇ ਇਨ੍ਹਾਂ ਧਾਤਾਂ ਦੀ ਆਇਨਨ ਐਨਥੈਲਪੀ ਦਾ ਮਾਨ ਘੱਟ ਹੁੰਦਾ ਹੈ। ਇਹੀ ਕਾਰਣ ਹੈ ਖਾਰੀ ਧਾਤਾਂ ਅਤਿਕ੍ਰਿਆਸ਼ੀਲ ਹੁੰਦੀਆਂ ਹਨ। ਇਸ ਦੇ ਇਲਾਵਾ ਅਸੀਂ ਵੇਖਾਂਗੇ ਕਿ ਪੀਰੀਅਡ ਵਿੱਚ ਖੱਬੇ ਤੋਂ ਸੱਜੇ ਵੱਲ ਜਾਣ ਨਾਲ ਤੱਤਾਂ ਦੀ ਪਹਿਲੀ ਆਇਨਨ



ਚਿੱਤਰ **3.5** Z = 1 ਤੋਂ 60 ਪਰਮਾਣੂ ਕ੍ਰਮ ਅੰਕਾਂ ਵਾਲੇ ਤੰਤਾਂ ਦੇ ਪ੍ਕਰਮ ਆਇਨਨ ਐਲਥੈਲਪੀ ਦੇ ਮਾਤਰਾ ਵਿੱਚ ਪਰਿਵਰਤਨ

ਐਲਥੈਲਪੀ ਦੀ ਮਾਨਾਂ ਵਿੱਚ ਆਮਤੌਰ ਤੇ ਵਾਧਾ ਹੁੰਦਾ ਹੈ ਅਤੇ ਜਦੋਂ ਅਸੀਂ ਗਰੁੱਪ ਵਿੱਚ ਹੇਠਾਂ ਵੱਲ ਜਾਂਦੇ ਹਾਂ, ਤਾਂ ਉਨ੍ਹਾਂ ਦੇ ਮਾਨਾਂ ਵਿੱਚ ਕਮੀ ਆਉਂਦੀ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਦੀ ਪ੍ਰਵਿਰਤੀ ਦੂਜੇ ਪੀਰੀਅਡ ਦੇ ਤੱਤਾਂ ਅਤੇ ਪਹਿਲੇ ਗਰੁੱਪ ਦੀਆਂ ਖਾਰੀ ਧਾਤਾਂ ਵਿੱਚ ਕ੍ਰਮਵਾਰ ਚਿੱਤਰ 3.6 (ੳ) ਅਤੇ 3.6 (ਅ) ਵਿੱਚ ਸਪੱਸ਼ਟ ਰੂਪ ਵਿੱਚ ਵਿਖਾਈ ਦਿੰਦਾ ਹੈ। ਇਸ ਦਾ ਕਾਰਣ ਦੋ ਤੱਥਾਂ ਤੇ ਅਧਾਰਿਤ ਹੈ (ਹੈ) ਨਿਊਕਲੀਅਸ ਅਤੇ ਇਲੈਕਟ੍ਰਾਨਾਂ ਦੇ ਵਿੱਚ ਆਕਰਸ਼ਣ ਅਤੇ (ii) ਇਲੈਕਟ੍ਰਾਨਾਂ ਦੇ ਵਿੱਚ ਪ੍ਤੀਕਰਸ਼ਣ।

ਤੱਤਾਂ ਵਿੱਚ ਕੋਰ ਇਲੈਕਟ੍ਰਾਨਾਂ (core elelctrons) ਦੀ ਸਥਿਤੀ ਨਿਊਕਲੀਅਸ ਅਤੇ ਸੰਯੋਜੀ ਇਲੈਕਟ੍ਰਾਨਾਂ ਵਿੱਚ ਆਉਣ ਦੇ ਫਲਸਰੂਪ ਸੰਯੋਜੀ ਇਲੈਕਟ੍ਰਾਨ ਨਿਊਕਲੀਅਸ ਤੋਂ ਰੱਖਿਅਤ (shielded) ਜਾਂ ਆਵਰਿਤ (screened) ਹੋ ਜਾਂਦਾ ਹੈ। ਇਸ ਪ੍ਰਭਾਵ ਨੂੰ ਸਕਰੀਨਿੰਗ ਪ੍ਰਭਾਵ (screening effect) ਜਾਂ ਸ਼ੀਲਡਿੰਗ ਪ੍ਰਭਾਵ (shielding effect) ਕਹਿੰਦੇ ਹਨ।ਸਕਰੀਨਿੰਗ ਪ੍ਰਭਾਵ ਦੇ ਕਾਰਣ ਪਰਮਾਣੂ ਦੇ ਸੰਯੋਜੀ ਇਲੈਕਟ੍ਰਾਨਾਂ ਦੁਆਰਾ

ਚਿੱਤਰ 3.6(ੳ) ਦੂਜੇ ਪੀਰੀਅਡ ਦੇ ਤੱਤਾਂ ਦੇ ਪਹਿਲੀ ਆਇਨਨ ਐਨਥੈਲਪੀਅਨ, ਉਨ੍ਹਾਂ ਤੱਤਾਂ ਦੇ ਪਰਮਾਣੂ ਕ੍ਰਮ ਅੰਕਾਂ ਦਾ ਫਲਨ (ਅ) ਖਾਰੀ ਧਾਤਾਂ ਦੇ ਪਹਿਲੇ ਆਇਨਨ ਐਲਥੈਲੀ ਮਾਨ ਉਨ੍ਹਾਂ ਦੇ ਪਰਮਾਣੂ ਕ੍ਰਮ ਅੰਕ ਦਾ ਫਲਨ

ਅਨੁਭਵ ਕੀਤਾ ਗਿਆ ਪ੍ਭਾਵੀ ਨਿਊਕਲੀ ਚਾਰਜ (Effective nuclear charge) ਨਿਊਕਲੀਅਸ ਵਿੱਚ ਮੌਜੂਦ ਵਾਸਤਵਿਕ ਨਿਊਕਲੀ ਚਾਰਜ ਤੋਂ ਘੱਟ ਹੋ ਜਾਂਦਾ ਹੈ। ਉਦਾਹਰਣ ਵਜੋਂ-Li ਦਾ ਬਾਹਰੀ 2s ਇਲੈਕਟ੍ਰਾਨ (ਸੰਯੋਜੀ ਇਲੈਕਟ੍ਰਾਨ) ਉਸਦੇ ਅੰਤਰਿਕ 1s ਕੋਰ ਇਲੈਕਟ੍ਰਾਨਾਂ ਦੁਆਰਾ ਸਕਰੀਨਿੰਗ ਪ੍ਭਾਵ ਦਾ ਅਨੁਭਵ ਕਰਦਾ ਹੈ। ਫਲਸਰੂਪ ਲੀਥਿਅਮ ਦਾ ਸੰਯੋਜੀ ਇਲੈਕਟ੍ਰਾਨ ਵਾਸਤਵਿਕ +3 ਧਨ ਚਾਰਜ ਤੋਂ ਘੱਟ ਪ੍ਭਾਵ ਦਾ ਧਨ ਚਾਰਜ ਅਨੁਭਵ ਕਰੇਗਾ। ਸਕਰੀਨਿੰਗ ਪ੍ਭਾਵ ਉਸ ਹਾਲਤ ਵਿੱਚ ਵਧੇਰੇ ਪ੍ਭਾਵੀ ਹੁੰਦਾ ਹੈ, ਜਦੋਂ ਅੰਤਰਿਕ ਸ਼ੈੱਲ ਦੇ ਆਰਬਿਟਲ ਪੂਰਣ ਰੂਪ ਵਿੱਚ ਭਰੇ ਹੁੰਦੇ ਹਨ। ਇਸ ਤਰ੍ਹਾਂ ਦੀ ਸਥਿਤੀ ਅਸੀਂ ਖਾਰੀ ਧਾਤਾਂ ਵਿੱਚ ਵੇਖਦੇ ਹਾਂ,ਜਿਸ ਵਿੱਚ ਇਕੱਲਾ ns^1 ਇਲੈਕਟ੍ਰਾਨ (n= ਬਾਹਰੀ ਸ਼ੈੱਲ) ਤੋਂ ਪਹਿਲੇ ਸ਼ੈੱਲ ਵਿੱਚ ਨੋਬਲ ਗੈਸ ਦੀ ਇਲੈਕਟ੍ਰਾਨਿਕ ਤਰਤੀਬ ਹੁੰਦੀ ਹੈ।

ਜਦੋਂ ਅਸੀਂ ਦੂਜੇ ਪੀਰੀਅਡ ਵਿੱਚ ਲੀਥਿਅਮ ਤੋਂ ਫਲੋਰੀਨ ਦੇ ਵੱਲ ਜਾਂਦੇ ਹਾਂ ਤਾਂ ਕਮਵਾਰ ਇਲੈਕਟ੍ਰਾਨ ਇੱਕ ਹੀ ਮੁੱਖ ਕੁਆਂਟਮ ਉਰਜਾ ਸਤਰ ਦੇ ਆੱਰਬਿਟਲਾਂ ਵਿੱਚ ਭਰਦੇ ਹਨ ਅਤੇ ਨਿਊਕਲੀਅਸ ਤੇ ਅੰਤਰਿਕ ਕੋਰ ਇਲੈਕਟਾਨਾਂ (Inner core electrons) ਦੁਆਰਾ ਪਾਏ ਗਏ ਸਕਰੀਨਿੰਗ ਪਭਾਵ ਵਿੱਚ ਐਨਾ ਵਾਧਾ ਨਹੀਂ ਹੁੰਦਾ ਕਿ ਨਿਊਕਲੀਅਸ ਅਤੇ ਇਲੈਕਟ੍ਰਾੱਨ ਦੇ ਵਿੱਚ ਵੱਧਦੇ ਹੋਏ ਆਕਰਸ਼ਣ ਨੂੰ ਪੂਰਾ (compensate) ਕਰ ਸਕੇ। ਅਜਿਹੀ ਹਾਲਤ ਵਿੱਚ ਵੱਧਦੇ ਹੋਏ ਨਿਊਕਲੀ ਚਾਰਜ ਦੁਆਰਾ ਸੱਭ ਤੋਂ ਬਾਹਰੀ ਇਲੈਕਟ੍ਰਾੱਨ ਤੇ ਲਾਇਆ ਗਿਆ ਆਕਰਸ਼ਣ ਪ੍ਰਭਾਵ ਸਕਰੀਨਿੰਗ ਪ੍ਰਭਾਵ ਦੀ ਤੁਲਨਾ ਵਿੱਚ ਵਧੇਰੇ ਹੋ ਜਾਂਦਾ ਹੈ। ਫਲਸਰੂਪ ਬਾਹਰੀ ਇਲੈਕਟ੍ਰਾੱਨ ਵੱਧ ਦ੍ਰਿੜਤਾ ਨਾਲ ਬੰਧ ਜਾਂਦੇ ਹਨ ਅਤੇ ਪੀਰੀਅਡ ਵਿੱਚ ਅੱਗੇ ਜਾਣ ਤੇ ਤੱਤਾਂ ਦੀ ਆਇਨਨ ਐਨਥੈਲਪੀ ਦੇ ਮਾਨਾਂ ਵਿੱਚ ਵਾਧਾ ਹੁੰਦਾ ਜਾਂਦਾ ਹੈ। ਗਰੁੱਪ ਵਿੱਚ ਹੇਠਾਂ ਦੇ ਵੱਲ ਜਾਣ ਤੇ ਸਭ ਤੋਂ ਬਾਹਰੀ ਇਲੈਕਟ੍ਰਾੱਨ ਨਿਊਕਲੀਅਸ ਤੇ ਜਿਆਦਾ ਦੂਰੀ ਤੇ ਰਹਿੰਦੇ ਹਨ ਅਤੇ ਅੰਤਰਿਕ ਇਲੈਕਟ੍ਰਾੱਨ ਦੇ ਕਾਰਣ ਨਿਊਕਲੀਅਸ ਉੱਤੇ ਸਕਰੀਨਿੰਗ ਪ੍ਰਭਾਵ ਵਧੇਰੇ ਹੁੰਦਾ ਹੈ। ਅਜਿਹੀ ਹਾਲਤ ਵਿੱਚ ਗਰੁੱਪ ਵਿੱਚ ਹੇਠਾਂ ਵੱਲ ਜਾਣ ਤੇ ਨਿਊਕਲੀ ਚਾਰਜ ਦੀ ਤੁਲਨਾ ਵਿੱਚ ਸਕਰੀਨਿੰਗ ਪ੍ਰਭਾਵ ਵਧੇਰੇ ਮਹੱਤਵਪੂਰਣ ਹੋ ਜਾਂਦਾ ਹੈ।ਇਸ ਕਾਰਣ ਸਭ ਤੋਂ ਬਾਹਰੀ ਇਲੈਕਟ੍ਰਾਂਨ ਨੂੰ ਕੱਢਣ ਦੇ ਲਈ ਘੱਟ ੳਰਜਾ ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ ਅਤੇ ਗਰੁੱਪ ਵਿੱਚ ਹੇਠਾਂ ਵੱਲ ਜਾਣ ਤੇ ਤੱਤਾਂ ਦੀ ਆਇਨਨ ਐਨਥੈਲਪੀ ਦਾ ਮਾਨ ਘੱਟਦਾ ਜਾਂਦਾ ਹੈ।

ਚਿੱਤਰ 3.6 (ੳ) ਤੋਂ ਸਪਸ਼ੱਟ ਹੈ ਕਿ ਬੋਰਾੱਨ (Z=5) ਦੀ ਪਹਿਲੀ ਆਇਨਨ ਐਨਥੈਲਪੀ ਦਾ ਮਾਨ ਬੈਰੀਲਿਅਮ (Z=4) ਦੀ ਪਹਿਲੀ ਆਇਨਨ ਐਨਥੈਲਪੀ ਦੇ ਮਾਨ ਨਾਲੋਂ ਘੱਟ ਹੈ, ਜਦਕਿ ਬੋਰਾੱਨ ਦਾ ਨਿਊਕਲੀ ਚਾਰਜ ਵੱਧ ਹੈ। ਜਦੋਂ ਅਸੀਂ ਇੱਕ ਹੀ ਮੁੱਖ ਕੁਆਂਟਮ ਊਰਜਾ ਸਤਰ ਤੇ ਵਿਚਾਰ ਕਰਦੇ ਹਾਂ ਤਾਂ s-ਇਲੈਕਟ੍ਰਾੱਨ p-ਇਲੈਕਟ੍ਰਾੱਨ ਦੀ ਤੁਲਨਾ ਵਿੱਚ ਨਿਊਕਲੀਅਸ ਵੱਲ ਜਿਆਦਾ ਆਕਰਸ਼ਿਤ ਰਹਿੰਦਾ ਹੈ। ਬੈਰੀਲਿਅਮ ਵਿੱਚ ਸਭ ਤੋਂ ਬਾਹਰੀ ਇਲੈਕਟ੍ਰਾੱਨ, ਜੋ ਵੱਖ ਕੀਤਾ ਜਾਵੇਗਾ, ਉਹ s-ਇਲੈਕਟ੍ਰਾਂਨ ਹੋਵੇਗਾ, ਜਦਕਿ ਬੋਰਾੱਨ ਵਿੱਚ ਸਭ ਤੋਂ ਬਾਹਰੀ ਇਲੈਕਟ੍ਰਾੱਨ (ਜੋ ਵੱਖ ਕੀਤਾ ਜਾਵੇਗਾ) ਉਹ p-ਇਲੈਕਟ੍ਰਾਂਨ ਹੋਵੇਗਾ। ਵਰਣਨਯੋਗ ਹੈ ਕਿ ਨਿਊਕਲੀਅਸ ਦੇ ਵੱਲ 2s-ਇਲੈਕਟ੍ਰਾਂਨ ਦਾ ਪ੍ਰਵੇਸ਼ (penetration) 2p-ਇਲੈਕਟ੍ਰਾਂਨ ਦੀ ਤੁਲਨਾ ਵਿੱਚ ਵਧੇਰੇ ਹੁੰਦਾ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਬੋਰਾੱਨ ਦਾ 2p-ਇਲਾਕਟ੍ਰਾਂਨ ਬੈਰੀਲਿਅਮ ਦੇ 2s-ਇਲੈਕਟ੍ਰਾਂਨ ਦੀ ਤੁਲਨਾ ਵਿੱਚ ਅੰਤਰਿਕ ਕਰ ਇਲੈਕਟ੍ਰਾਂਨਾਂ ਦੁਆਰਾ

ਵਧੇਰੇ ਸੁਰੱਖਿਅਤ (Shielded) ਹੁੰਦਾ ਹੈ। ਇਸ ਲਈ ਬੈਰੀਲਿਅਮ ਦੀ ਤੁਲਨਾ ਵਿੱਚ ਬੋਰਾਂਨ ਦੀ ਪਹਿਲੀ ਆਇਨਨ ਐਨਥੈਲਪੀ ਦਾ ਮਾਨ ਘੱਟ ਹੋਵੇਗਾ। ਦੂਜੀ ਅਨਿਯਮਤਤਾ ਸਾਨੂੰ ਆੱਕਸੀਜਨ ਅਤੇ ਨਾਈਟ੍ਰੋਜਨ ਦੀ ਪਹਿਲੀ ਆਇਨਨ ਐਨਥੈਲਪੀ ਦੇ ਮਾਨਾਂ ਵਿੱਚ ਵੇਖਣ ਨੂੰ ਮਿਲਦੀ ਹੈ। ਆੱਕਸੀਜਨ ਦੇ ਲਈ ਪਹਿਲੀ ਆਇਨਨ ਐਨਥੈਲਪੀ ਦਾ ਮਾਨ ਨਾਈਟ੍ਰੋਜਨ ਦੀ ਪਹਿਲੀ ਆਇਨਨ ਐਨਥੈਲਪੀ ਦਾ ਮਾਨ ਨਾਈਟ੍ਰੋਜਨ ਦੀ ਪਹਿਲੀ ਆਇਨਨ ਐਨਥੈਲਪੀ ਦੇ ਮਾਨ ਤੋਂ ਘੱਟ ਹੈ। ਇਸ ਦਾ ਕਾਰਣ ਇਹ ਹੈ ਕਿ ਨਾਈਟ੍ਰੋਜਨ ਵਿੱਚ ਤਿੰਨੇ ਬਾਹਰੀ 2p ਇਲੈਕਟ੍ਰਾੱਨ ਭਿੰਨ-ਭਿੰਨ p-ਆਰਬਿਟਲਾਂ ਵਿੱਚ ਵਿਤਰਿਤ ਹਨ (ਹੁੰਡ ਦਾ ਨਿਯਮ) ਜਦ ਕਿ ਆੱਕਸੀਜਨ ਦੇ ਚਾਰੇ 2p-ਇਲੈਕਟ੍ਰਾੱਨਾਂ ਵਿੱਚੋਂ ਦੋ 2p-ਇਲੈਕਟ੍ਰਾੱਨ ਇੱਕੀ ਹੀ 2p-ਆਰਬਿਟਲ ਵਿੱਚ ਹਨ। ਫਲਸਰੂਪ ਇਲੈਕਟ੍ਰਾੱਨ ਪ੍ਰਤੀਕਰਸ਼ਣ ਵੱਧ ਜਾਂਦਾ ਹੈ। ਫਲਸਰੂਪ ਨਾਈਟ੍ਰੋਜਨ ਦੇ ਤਿੰਨਾਂ 2p- ਇਲੈਕਟ੍ਰਾਨਾਂ ਵਿਚੋਂ ਇੱਕ ਇਲੈਕਟ੍ਰਾਂਨ ਨੂੰ ਵੱਖ ਕਰਨ ਦੀ ਬਜਾਏ ਆੱਕਸੀਜਨ ਦੇ ਚਾਰਾਂ ਇਲੈਕਟ੍ਰਾਨਾਂਵਿੱਚੋਂ ਚੌਥੇ ਇਲੈਕਟ੍ਰਾਂਨ ਨੂੰ ਵੱਖ ਕਰਨਾ ਅਸਾਨ ਹੋ ਜਾਂਦਾ ਹੈ।

ਉਦਾਹਰਣ 3.6

ਤੀਜੇ ਪੀਰੀਅਡ ਦੇ ਤੱਤਾਂ Na, Mg ਅਤੇ Si ਦੀ ਪਹਿਲੀ ਆਇਨਨ ਐਨਥੈਲਪੀ $\Delta_l H$ ਦਾ ਮਾਨ ਕ੍ਰਮਵਾਰ 496, 737 and 786 kJ mol^{-1} ਹੈ। ਪੂਰਵ ਅਨੁਮਾਨ ਕਰੋ ਕਿ ਐਲੂਮੀਨਿਅਮ ਦੀ ਪਹਿਲੀ $\Delta_l H$ ਮਾਨ 575 ਜਾਂ 760 kJ mol^{-1} ਵਿੱਚੋਂ ਕਿਸ ਦੇ ਨੇੜੇ ਹੋਵੇਗਾ, ਇਸ ਦਾ ਢੁਕਵਾਂ ਕਾਰਣ ਦੱਸੋ।

ਹੱਲ

ਇਹ 575 kJmol⁻¹ ਦੇ ਵਧੇਰੇ ਨੇੜੇ ਹੋਵੇਗਾ। ਐਲੂਮੀਨਿਅਮ ਦਾ ਮਾਨ ਮੈਗਨੀਸ਼ਿਅਮ ਦੇ ਮਾਨ ਤੋਂ ਘੱਟ ਹੋਣਾ ਚਾਹੀਦਾ ਹੈ, ਕਿਉਂਕਿ ਨਿਊਕਲੀ ਚਾਰਜ ਤੋਂ 3*p*-ਇਲੈਕਟ੍ਰਾਨ 3*s*-ਇਲੈਕਟ੍ਰਾਨਾਂ ਦੇ ਦੁਆਰਾ ਰੱਖਿਅਤ ਰਹਿੰਦੇ ਹਨ।

(ਸ) ਇਲੈਕਟ੍ਰਾੱਨ ਗ੍ਰਹਿਣ ਐਨਥੈਲਪੀ

ਜਦੋਂ ਕੋਈ ਉਦਾਸੀਨ ਗੈਸੀ ਪਰਮਾਣੂ (X) ਇਲੈਕਟ੍ਰਾੱਨ ਗ੍ਰਹਿਣ ਕਰਕੇ ਰਿਣ ਆਇਨ (anion) ਵਿੱਚ ਪਰਿਵਰਤਿਤ ਹੁੰਦਾ ਹੈ, ਤਾਂ ਇਸ ਪ੍ਕਰਮ ਵਿੱਚ ਹੋਏ ਐਨਥੈਲਪੀ ਪਰਿਵਰਤਨ ਨੂੰ ਉਸ ਤੱਤ ਦੀ 'ਇਲੈਕਟ੍ਰਾੱਨ ਗ੍ਰਹਿਣ ਐਨਥੈਲਪੀ' ($\Delta_{eg} \mathbf{H}$) ਕਹਿੰਦੇ ਹਨ। ਇਹ ਐਨਥੈਲਪੀ ਇਸ ਤੱਥ ਦੀ ਮਾਪ ਕਹੀ ਜਾ ਸਕਦੀ ਹੈ ਕਿ ਕਿਸ ਸਰਲਤਾ ਨਾਲ ਪਰਮਾਣੂ ਇਲੈਕਟ੍ਰਾਂਨ ਨੂੰ ਗ੍ਰਹਿਣ ਕਰਕੇ ਰਿਣ ਆਇਨ ਬਣਾ ਲੈਂਦਾ ਹੈ। ਇਹ ਸਮੀਕਰਣ 3.3 ਵਿੱਚ ਦਰਸਾਇਆ ਗਿਆ ਹੈ–

$$X(g) + e^- \rightarrow X^-(g)$$
 (3.3)

ਪਰਮਾਣੂ ਦੁਆਰਾ ਇਲੈਕਟ੍ਰਾੱਨ ਗ੍ਰਹਿਣ ਕਰਨ ਦਾ ਪ੍ਕਰਨ ਤਾਪ–ਨਿਕਾਸੀ (exothermic) ਜਾਂ ਤਾਪਸੋਖੀ (endothermic) ਹੋਵੇਗਾ, ਇਹ ਤੱਤ ਦੇ ਸੁਭਾਅ ਤੇ ਨਿਰਭਰ ਕਰਦਾ ਹੈ। ਬਹੁਤ ਸਾਰੇ ਤੱਤ ਜਦੋਂ ਇਲੈਕਟ੍ਰਾੱਨ ਗ੍ਰਹਿਣ ਕਰਦੇ ਹਨ, ਤਾਂ ਊਰਜਾ ਮੁਕਤ ਹੁੰਦੀ ਹੈ। ਇਸ ਅਵਸਥਾ ਵਿੱਚ ਇਲੈਕਟਰਾੱਨ ਗ੍ਰਹਿਣ ਐਨਥੈਲਪੀ ਰਿਣਾਤਮਕ ਹੋਵੇਗੀ।ਉਦਾਹਰਣ ਵਜੋਂ–17ਵੇਂ ਗਰੁੱਪ ਦੇ ਤੱਤਾਂ (ਹੈਲੋਜਨ) ਦੀ ਇਲੈਕਟ੍ਰਾਨ ਗ੍ਰਹਿਣ ਐਲਥੈਲਪੀ ਦਾ ਮਾਨ ਬਹੁਤ ਜਿਆਦਾ ਰਿਣਾਤਮਕ ਹੁੰਦਾ ਹੈ। ਇਸ ਦਾ ਕਾਰਣ ਇਹ ਹੈ ਕਿ ਸਿਰਫ ਇੱਕ ਇਲੈਕਟਰਾੱਨ ਗ੍ਰਹਿਣ

ਗਰੁੱਪ 1	$\Delta_{eg}H$	ਗਰੁੱਪ 16	$\Delta_{eg}H$	ਗਰੁੱਪ 17	Δ _{e g} H	ਗਰੁੱਪ o	$\Delta_{eg}H$
H	- 73					He	+ 48
Li	- 60	0	- 141	F	- 328	Ne	+ 116
Na	- 53	s	- 200	C1	- 349	Ar	+ 96
K	- 48	Se	- 195	Br	- 325	Kr	+ 96
Rb	- 47	Те	- 190	I	- 295	Хe	+ 77
Cs	- 46	Po	- 174	At	- 270	Rn	+ 68

ਸਾਰਣੀ 3.7 ਮੁੱਖ ਗਰੁੱਪ ਦੇ ਕੁਝ ਤੱਤਾਂ ਦੀ ਇਲੈਕਟ੍ਰਾੱਨ ਗ੍ਰਹਿਣ ਐਨਥੈਲਪੀ * / (kJ mol-1)

ਕਰਕੇ ਉਹ ਸਥਾਈ ਨੌਬਲ ਗੈਸ ਦੀ ਇਲੈਕਟ੍ਰਾੱਨਿਕ ਤਰਤੀਬ ਪ੍ਰਾਪਤ ਕਰ ਲੈਂਦੇ ਹਨ। ਇਸੇ ਤਰ੍ਹਾਂ ਨੌਬਲ ਗੈਸਾਂ ਦੀ ਇਲੈਕਟ੍ਰਾੱਨ ਗ੍ਰਹਿਣ ਐਨਥੈਲਪੀ ਦਾ ਮਾਨ ਬਹੁਤ ਜਿਆਦਾ ਧਨਾਤਮਕ ਹੁੰਦਾ ਹੈ ਕਿਉਂਕਿ ਇਲੈਕਟ੍ਰਾੱਨ ਨੂੰ ਵਰਤਮਾਨ ਕੁਆਂਟਮ ਸਤਰ ਤੋਂ ਅਗਲੇ ਕੁਆਂਟਮ ਸਤਰ ਵਿੱਚ ਦਾਖਲ ਕਰਨਾ ਪੈਂਦਾ ਹੈ ਜੋ ਕਿ ਬਹੁਤ ਹੀ ਅਸਥਾਈ ਇਲੈਕਟ੍ਰਾਨਿਕ ਤਰਤੀਬ ਹੋਵੇਗੀ। ਵਰਨਣਯੋਗ ਹੈ ਕਿ ਨੌਬਲ ਗੈਸਾਂ ਦੇ ਪਹਿਲੇ ਜੋ ਤੱਤ ਆਵਰਤ ਸਾਰਣੀ ਵਿੱਚ ਖੱਬੇ ਪਾਸੇ ਉੱਪਰ ਵੱਲ ਸਥਿਤ ਹਨ, ਉਨ੍ਹਾਂ ਦੇ ਲਈ ਇਲੈਕਟ੍ਰਾੱਨ ਗਹਿਣ ਐਨਥੈਲਪੀ ਦਾ ਮਾਨ ਬਹੁਤ ਜਿਆਦਾ ਰਿਣਾਤਮਕ ਹੁੰਦਾ ਹੈ।

ਕਈ ਕਿਤਾਬਾਂ ਵਿੱਚ ਰਸਾਇਣਿਕ ਪ੍ਰਕਰਮ 3.3 ਵਿੱਚ ਦਰਸਾਏ ਗਏ ਐਨਥੈਲਪੀ ਪਰਿਵਰਤਨ ਦੇ ਰਿਣਾਤਮਕ ਮਾਨ ਨੂੰ ਇਲੈਕਟ੍ਰਾੱਨ ਐਫਿਨਿਟੀ (Electron affinity (Ae) ਦੇ ਰੂਪ ਵਿੱਚ ਪਰਿਭਾਸ਼ਿਤ ਕੀਤਾ ਗਿਆ ਹੈ। ਪਰਮਾਣੂ ਦੁਆਰਾ ਇਲੈਕਟ੍ਰਾੱਨ ਗ੍ਰਹਿਣ ਕਰਨ ਤੇ ਜਦੋਂ ਉਰਜਾ ਮੁਕਤ ਹੁੰਦੀ ਹੈ ਤਾਂ ਇਲੈਕਟ੍ਰੇਾਨ ਐਫਿਨਿਟੀ ਨੂੰ ਧਨਾਤਮਕ ਦਰਸਾਇਆ ਜਾਂਦਾ ਹੈ ਜੋ ਤਾਪ ਗਤਿਕ ਦੀ ਪਰੰਪਰਾ ਦੇ ਉਲਟ ਹੈ। ਜੇ ਕਿਸੇ ਪਰਮਾਣ ਵਿੱਚ ਇਲੈਕਟਾੱਨ ਦੇਣ ਦੇ ਕਈ ਬਾਹਰੋਂ ਉਰਜਾ ਦੇਣੀ ਪੈਂਦੀ ਹੈ, ਤਾਂ ਇਲੈਕਟ੍ਰਾੱਨ ਐਫਿਨਿਟੀ ਨੂੰ ਰਿਣਾਤਮਕ ਦਰਸਾਇਆ ਜਾਂਦਾ ਹੈ। ਇਲੈਕਟ੍ਰਾੱਨ ਐਫਿਨਿਟੀ ਨੂੰ ਐਬਸੋ ਲੂਟ ਜੀਰੋ ਤੇ ਪ੍ਰਭਾਸ਼ਿਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਆਇਨ ਐਨਥੈਲਪੀ ਦੀ ਤੁਲਨਾ ਵਿੱਚ ਇਲੈਕਟ੍ਰਾੱਨ ਗ੍ਰਹਿਣ ਐਨਥੈਲਪੀ ਦੇ ਪਰਿਵਰਤਨ ਦਾ ਕ੍ਰਮ ਘੱਟ ਨਿਯਮਿਤ ਹੈ। ਆਮ ਨਿਯਮ ਦੇ ਅਨੁਸਾਰ ਆਵਰਤੀ ਸਾਰਣੀ ਵਿੱਚ ਜਦੋਂ ਅਸੀਂ ਸੱਜੇ ਪਾਸੇ ਜਾਂਦੇ ਹਾਂ, ਤਾਂ ਵੱਧਦੇ ਹੋਏ ਪਰਮਾਣੂ ਕ੍ਰਮ ਅੰਕ ਦੇ ਨਾਲ ਇਲੈਕਟ੍ਰਾੱਨ ਗਹਿਣ ਐਨਥੈਲਪੀ ਵਧੇਰੇ ਰਿਣਾਤਮਕ ਹੁੰਦੀ ਹੈ।ਆਵਰਤੀ ਸਾਰਣੀ ਵਿੱਚ ਖੱਬੇ ਤੋਂ ਸੱਜੇ ਜਾਣ ਤੇ ਪ੍ਭਾਵੀ ਨਿਊਕਲੀ ਚਾਰਜ ਵਿੱਚ ਵਾਧਾ ਹੁੰਦਾ ਹੈ। ਫਲਸਰੂਪ ਛੋਟੇ ਪਰਮਾਣੂ ਵਿੱਚ ਇਲੈਕਟ੍ਰਾੱਨ ਦਾ ਜੋੜਨਾ ਸੌਖਾ ਹੁੰਦਾ ਹੈ। ਕਿਉਂਕਿ ਦਿੱਤਾ ਹੋਇਆ ਇਲੈਕਟ੍ਰਾਨ ਧਨ ਚਾਰਜਿਤ ਨਿਊਕਲੀਅਸ ਦੇ ਨੇੜੇ ਹੋਵੇਗਾ। ਗਰੁੱਪ ਵਿੱਚ ਹੇਠਾਂ ਵੱਲ ਜਾਣ ਤੇ ਇਲੈਕਟ੍ਰਾੱਨ ਗ੍ਰਹਿਣ ਐਨਥੈਲਪੀ ਦਾ ਮਾਨ ਘੱਟ ਰਿਣਾਤਮਕ ਹੁੰਦਾ ਜਾਂਦਾ ਹੈ, ਕਿਉਂਕਿ ਪਰਮਾਣੂ ਅਕਾਰ ਵੱਧਦਾ ਹੈ ਅਤੇ ਦਿੱਤਾ ਹੋਇਆ ਇਲੈਕਟ੍ਰਾਨ ਨਿਊਕਲੀਅਸ ਤੋਂ

ਦੂਰ ਹੁੰਦਾ ਹੈ। ਇਸੇ ਤਰ੍ਹਾਂ ਦੀ ਪ੍ਰਵਿਰਤੀ ਆਮ ਕਰਕੇ ਆਵਰਤੀ ਸਾਰਣੀ ਵਿੱਚ ਵੇਖਣ ਨੂੰ ਮਿਲਦੀ ਹੈ (ਸਾਰਣੀ 3.7)। ਇੱਥੇ ਇਸ ਤੱਥ ਦਾ ਵਰਣਨ ਕਰਨਾ ਮਹੱਤਵਪੂਰਣ ਹੈ ਕਿ ਆੱਕਸੀਜਨ ਅਤੇ ਫਲੌਰੀਨ ਦੇ ਲਈ ਇਲੈਕਟ੍ਰਾੱਨ ਗ੍ਰਹਿਣ ਐਨਥੈਲਪੀ ਦਾ ਮਾਨ ਕ੍ਰਮਵਾਰ ਉਨ੍ਹਾਂ ਦੇ ਗਰੁੱਪਾਂ ਵਿੱਚ ਅੱਗੇ ਆਉਣ ਵਾਲੇ ਤੱਤ ਤੋਂ ਘੱਟ ਰਿਣਾਤਮਕ ਹੈ। ਇਸ ਦਾ ਸਪਸ਼ਟੀਕਰਣ ਇਸ ਤਰ੍ਹਾਂ ਹੈ–ਜਦੋਂ ਆੱਕਸੀਜਨ ਅਤੇ ਫਲੌਰੀਨ ਪਰਮਾਣੂਆਂ ਵਿੱਚ ਇਲੈਕਟ੍ਰਾੱਨ ਜਾਂਦਾ ਹੈ ਤਾਂ ਗ੍ਰਹਿਣ ਕੀਤਾ ਗਿਆ ਇਲੈਕਟ੍ਰਾਨ ਨਿਮਨ ਕੁਆਂਟਮ ਸੰਖਿਆ ਵਾਲੇ ਊਰਜਾ ਸਤਰ (n=2) ਵਿੱਚ ਜਾਂਦਾ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਇਸੇ ਕੁਆਂਟਮ ਊਰਜਾ ਸਤਰ ਵਿੱਚ ਮੌਜੂਦ ਇਲੈਕਟ੍ਰਾਨਾਂ ਦੁਆਰਾ ਵਧੇਰੇ ਪ੍ਤੀਕਰਸ਼ਣ ਹੁੰਦਾ ਹੈ। ਕੁਆਂਟਮ ਸਤਰ n=3 (S ਜਾਂ Cl) ਵਿੱਚ ਪ੍ਵੇਸ਼ ਕਰਾਇਆ ਗਿਆ ਇਲੈਕਟ੍ਰਾਂਨ, ਸਪੇਸ (space) ਵਿੱਚ ਵਧੇਰੇ ਥਾਂ ਘੇਰਦਾ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਇਲੈਕਟ੍ਰਾਂਨ ਪ੍ਤੀਕਰਸ਼ਣ ਬਹੁਤ ਘੱਟ ਹੋ ਜਾਂਦਾ ਹੈ।

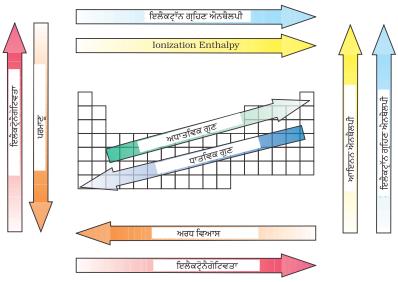
ਉਦਾਹਰਣ 3.7

P, S, Cl ਅਤੇ F ਵਿੱਚੋਂ ਕਿਸ ਦੀ ਅਧਿਕਤਮ ਰਿਣਾਤਮਕ ਇਲੈਕਟ੍ਰਾਨ ਗ੍ਰਹਿਣ ਐਨਥੈਲਪੀ ਅਤੇ ਕਿਸ ਦੀ ਨਿਊਨਤਮ ਇਲੈਕਟ੍ਰਾਨ ਗ੍ਰਹਿਣ ਐਨਥੈਲਪੀ ਹੋਵੇਗੀ ? ਵਿਆਖਿਆ ਕਰੋ. ਜੱਲ

ਆਵਰਤ ਵਿੱਚ ਖੱਬੇ ਤੋਂ ਸੱਜੇ ਵੱਲ ਜਾਣ ਤੇ ਇਲੈਕਟ੍ਰਾੱਨ ਗ੍ਰਹਿਣ ਐਨਥੈਲਪੀ ਵਧੇਰੇ ਰਿਣਾਤਮਕ ਅਤੇ ਗਰੁੱਪ ਵਿੱਚ ਹੇਠਾਂ ਵੱਲ ਜਾਣ ਤੇ ਘੱਟ ਰਿਣਾਤਮਕ ਹੁੰਦੀ ਹੈ। 3p-ਆਰਬਿਟਲ (ਜੋ ਵੱਡਾ ਹੈ)। ਉਸ ਵਿੱਚ ਇਲੈਕਟ੍ਰਾਨ ਪ੍ਰਵੇਸ਼ ਕਰਾਉਣ ਦੀ ਤੁਲਨਾ ਵਿੱਚ ਜਦ 2p-ਆਰਬਿਟਲ ਵਿੱਚ ਇਲੈਕਟ੍ਰਾਨ ਪ੍ਰਵੇਸ਼ ਕਰਵਾਇਆ ਜਾਂਦਾ ਹੈ ਤਾਂ ਇਲੈਕਟ੍ਰਾੱਨ ਪ੍ਰਤੀਕਰਸ਼ਣ ਵਧੇਰੇ ਹੁੰਦਾ ਹੈ। ਇਸ ਲਈ ਸਭ ਤੋਂ ਵੱਧ ਰਿਣਾਤਮਕ ਇਲੈਕਟ੍ਰਾਂਨ ਗ੍ਰਹਿਣ ਐਨਥੈਲਪੀ ਕਲੋਰੀਨ ਦੀ ਹੋਵੇਗੀ ਅਤੇ ਸਭ ਤੋਂ ਘੱਟ ਇਲੈਕਟ੍ਰਾਂਨ ਗ੍ਰਹਿਣ ਐਨਥੈਲਪੀ ਫਾਸਫੋਰਸ ਦੀ ਹੋਵੇਗੀ।

* ਕਈ ਕਿਤਾਬਾਂ ਵਿੱਚ ਰਸਾਇਣਿਕ ਪ੍ਕਰਮ 3.3 ਵਿੱਚ ਦਰਸਾਏ ਗਏ ਐਲਥੈਲਪੀ ਪਰਿਵਰਤਨ ਦੇ ਰਿਣਾਤਮਕ ਮਾਨ ਨੂੰ ਇਲੈਕਟ੍ਰਾੱਨ ਐਫਿਨਿਟੀ (Electron affinity (Ae) ਦੇ ਰੂਪ ਵਿੱਚ ਪਰਿਭਾਸ਼ਿਤ ਕੀਤਾ ਗਿਆ ਹੈ। ਪਰਮਾਣੂ ਦੁਆਰਾ ਇਲੈਕਟ੍ਰਾੱਨ ਗ੍ਰਹਿਣ ਕਰਨ ਤੇ ਜਦੋਂ ਊਰਜਾ ਮੁਕਤ ਹੁੰਦੀ ਹੈ ਤਾਂ ਇਲੈਕਟ੍ਰਾੱਨ ਐਫਿਨਿਟੀ ਨੂੰ ਧਨਾਤਮਕ ਦਰਸਾਇਆ ਜਾਂਦਾ ਹੈ ਜੋ ਤਾਪ ਗਤਿਕ ਦੀ ਪਰੰਪਰਾ ਦੇ ਉਲਟ ਹੈ।ਜੇ ਕਿਸੇ ਪਰਮਾਣੂ ਵਿੱਚ ਇਲੈਕਟ੍ਰਾੱਨ ਦੇਣ ਦੇ ਕਈ ਬਾਹਰੋਂ ਊਰਜਾ ਦੇਣੀ ਪੈਂਦੀ ਹੈ, ਤਾਂ ਇਲੈਕਟ੍ਰਾੱਨ ਐਫਿਨਿਟੀ ਨੂੰ ਰਿਣਾਤਮਕ ਦਰਸਾਇਆ ਜਾਂਦਾ ਹੈ। ਇਲੈਕਟ੍ਰਾੱਨ ਐਫਿਨਿਟੀ ਨੂੰ ਐਬਸੋ ਲੂਟ ਜੀਰੋ ਤੇ ਪ੍ਰਭਾਸ਼ਿਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ।

(ਹ) ਇਲੈਕਟ੍ਰੋਨੈਗੇਟਿਵਤਾ


ਪਰਮਾਣੂ ਦੇ ਰਸਾਇਣਿਕ ਯੋਗਿਕ ਵਿੱਚ ਸਹਿ ਸੰਯੋਜਕ ਬੰਧਨ ਦੇ ਇਲੈਕਟ੍ਰਾੱਨ ਯੁਗਮ ਨੂੰ ਆਪਣੇ ਵੱਲ ਆਕਰਸ਼ਿਤ ਕਰਨ ਦੀ ਯੋਗਤਾ ਦਾ ਗੁਣਾਤਮਕ ਮਾਪ ਇਲੈਕਟ੍ਰੋਨੈਗੇਟਿਵਤਾ ਹੈ। ਆਇਨਨ ਐਨਥੈਲਪੀ ਅਤੇ ਇਲੈਕਟ੍ਰਾੱਨ ਗ੍ਰਹਿਣ ਐਨਥੈਲਪੀ ਨੂੰ ਮਾਪਿਆ ਜਾ ਸਕਦਾ ਹੈ, ਪਰੰਤੂ ਇਲੈਕਟ੍ਰੋਨੈਗੇਟਿਵਤਾ ਮਾਪਨ ਯੋਗ ਨਹੀਂ ਹੈ।ਫਿਰ ਵੀ ਤੱਤਾਂ ਦੀ ਇਲੈਕਟ੍ਰੋਨੈਗੇਟਿਵਤਾ ਮਾਪਨ ਯੋਗ ਨਹੀਂ ਹੈ।ਫਿਰ ਵੀ ਤੱਤਾਂ ਦੀ ਇਲੈਕਟ੍ਰੋਨੈਗੇਟਿਵਤਾ ਦੇ ਲਈ ਕਈ ਸੰਖਿਆ ਸੂਚਕ ਪੈਮਾਨੇ (ਜਿਵੇਂ-ਪਾੱਲਿੰਗ ਪੈਮਾਨਾ, ਮੁਲਿਕਨ ਜ਼ਫੇ ਪੈਮਾਨਾ, ਅਲਰਡ ਰਾਚੋ ਪੈਮਾਨਾ ਆਦਿ) ਦਾ ਵਿਕਾਸ ਹੋਇਆ ਹੈ। ਪਾੱਲਿੰਗ ਪੈਮਾਨਾ ਸਭ ਤੋਂ ਵੱਧ ਵਰਤੋਂ ਵਿੱਚ ਆਉਂਦਾ ਹੈ। ਅਮਰੀਕੀ

ਵਿਗਿਆਨੀ ਲੀਨਿਅਸ ਪਾੱਲਿੰਗ ਨੇ ਸੰਨ 1922 ਵਿੱਚ ਫਲੌਰੀਨ ਦੀ ਇਲੈਕਟ੍ਰੋਨੈਗੇਟਿਵਤਾ ਨੂੰ 4.0 ਮੰਨਿਆ ਇਸ ਤੱਤ ਦੀ ਇਲੈਕਟ੍ਰਾਨਾਂ ਨੂੰ ਆਪਣੇ ਵੱਲ ਆਕਰਸ਼ਿਤ ਕਰਨ ਦੀ ਸਮਰਥਾ ਸਭ ਤੋਂ ਵੱਧ ਹੈ। ਕੁਝ ਤੱਤਾਂ ਦੀ ਇਲੈਕਟ੍ਰੋਨੈਗੇਟਿਵਤਾ ਦੇ ਮਾਨ ਸਾਰਣੀ 3.8 (ੳ) ਵਿੱਚ ਵਿਖਾਏ ਗਏ ਹਨ।

ਇਲੈਕਟ੍ਰੋਨੈਗੇਟਿਵਤਾ ਕਿਸੇ ਦਿੱਤੇ ਗਏ ਤੱਤ ਦੇ ਲਈ ਸਥਿਰ ਨਹੀਂ ਹੈ। ਇਸ ਦਾ ਮਾਨ ਇਸ ਗੱਲ ਤੇ ਨਿਰਭਰ ਕਰਦਾ ਹੈ ਕਿ ਇਹ ਤੱਤ ਕਿਸ ਦੂਜੇ ਤੱਤ ਨਾਲ ਜੁੜਿਆ ਹੈ। ਹਾਲਾਂਕਿ ਇਹ ਮਾਪਨ ਯੋਗ ਟਰਮ ਨਹੀਂ ਹੈ, ਫਿਰ ਵੀ ਦੋ ਪਰਮਾਣੂ ਆਪਸ ਵਿੱਚ ਕਿਸ ਤਰ੍ਹਾਂ ਦੇ ਬਲ ਨਾਲ ਜੁੜੇ ਹਨ, ਇਸ ਦਾ ਅਨੁਮਾਨ ਲਾਉਣ ਦਾ ਅਧਾਰ ਬਣਦੀ ਹੈ ਜਿਸ ਦੇ ਬਾਰੇ ਤੁਸੀਂ ਅੱਗੇ ਜਾਣੋਗੇ।

ਆਮ ਤੌਰ ਤੇ ਇਲੈਕਟ੍ਰੋਨੈਗੇਟਿਵਤਾ

ਅਵਰਤੀ ਸਾਰਣੀ ਵਿੱਚ ਪੀਰੀਅਡ ਵਿੱਚ ਖੱਬੇ ਤੋਂ ਸੱਜੇ ਵੱਲ (Li ਤੋਂ F) ਜਾਣ ਤੇ ਵੱਧਦੀ ਹੈ ਅਤੇ ਗਰੁੱਪ ਵਿੱਚ ਹੇਠਾਂ (F ਤੋਂ At) ਜਾਣ ਤੇ ਘੱਟਦੀ ਹੈ। ਇਹ ਪ੍ਵਿਰਤੀ ਕਿਵੇਂ ਸਮਝਾਈ ਜਾਵੇ। ਕੀ ਇਲੈਕਟ੍ਰੋਨੈਗੇਟਿਵਤਾ ਦਾ ਪਰਮਾਣੂ ਅਰਧ ਵਿਆਸ ਨਾਲ ਸਬੰਧਿਤ ਮੰਨਿਆ ਜਾ ਸਕਦਾ ਹੈ, ਜੋ ਪੀਰੀਅਡ ਵਿੱਚ ਖੱਬੇ ਤੋਂ ਸੱਜੇ ਜਾਣ ਤੇ ਘਟਦਾ ਹੈ ਅਤੇ ਗਰੁੱਪ ਵਿੱਚ ਹੇਠਾਂ ਜਾਣ ਤੇ ਵੱਧਦਾ ਹੈ। ਪੀਰੀਅਡ ਵਿੱਚ ਪਰਮਾਣੂ ਅਰਧ ਵਿਆਸ ਦੇ ਘੱਟ ਹੋਣ ਦੇ ਨਾਲ ਸੰਯੋਜੀ ਇਲੈਕਟ੍ਰਾਨਾਂ ਅਤੇ ਨਿਊਨਕਲੀਅਸ ਵਿੱਚ ਆਕਰਸ਼ਣ ਵੱਧਦਾ ਹੈ ਅਤੇ ਇਲੈਕਟ੍ਰੋਨੈਗੇਟਿਵਤਾ ਵੱਧਦੀ ਹੈ। ਇਸੇ ਅਧਾਰ ਤੇ ਜਦੋਂ ਅਸੀਂ ਗਰੁੱਪ ਵਿੱਚ ਹੇਠਾਂ ਜਾਂਦੇ ਹਾਂ, ਤਾਂ ਜਿਵੇਂ-ਜਿਵੇਂ ਪਰਮਾਣੂ

ਚਿੱਤਰ 3.7 ਆਵਰਤੀ ਸਾਰਣੀ ਵਿੱਚ ਤੱਤਾਂ ਦੀ ਆਵਰਤ ਪ੍ਰਵਿਰਤੀ

ਸਾਰਣੀ 3.8 (ੳ) ਇਲੈਕਟ੍ਰੋਨੈਗੇਟਿਵਤਾ ਦਾ ਮਾਨ (ਪਾੱਲਿੰਗ ਪੈਮਾਨਾ)

ਪਰਮਾਣੂ (ਆਵਰਤ II)	Li	Ве	В	C	N	0	F
ਇਲੈਕਟ੍ਰੋਨੈਗੇਟਿਵਤਾ	1.0	1.5	2.0	2.5	3.0	3.5	4.0
ਪਰਮਾਣੂ (ਆਵਰਤ III)	Na	Mg	Al	Si	P	S	Cl
ਇਲੈਕਟ੍ਰੋਨੈਗੇਟਿਵਤਾ	0.9	1.2	1.5	1.8	2.1	2.5	3.0

ਸਾਰਣੀ 3.8 (ਅ) ਇਲੈਕਟ੍ਰੋਨੈਗੇਟਿਵਤਾ ਦਾ ਮਾਨ (ਪਾੱਲਿੰਗ ਪੈਮਾਨਾ)

ਪਰਮਾਣੂ (ਗਰੁੱਪ I)	ਇਲੈਕਟ੍ਰੋਨੈਗੇਟਿਵਤਾ ਦਾ ਮਾਨ	ਪਰਮਾਣੂ (ਗਰੁੱਪ 17)	ਇਲੈਕਟ੍ਰੋਨੈਗੇਟਿਵਤਾ ਦਾ ਮਾਨ
Li	1.0	F	4.0
Na	0.9	C1	3.0
K	0.8	Br	2.8
Rb	0.8	I	2.5
Cs	0.7	At	2.2

ਅਰਧ ਵਿਆਸ ਵੱਧਦਾ ਹੈ ਤਿਵੇਂ ਤਿਵੇਂ ਇਲੈਕਟੋਨੈਗੇਟਿਵਤਾ ਘੱਟ ਹੁੰਦੀ ਜਾਂਦੀ ਹੈ। ਇਹ ਪ੍ਰਵਿਰਤੀ ਆਇਨਨ ਅਨਥੈਲਪੀ ਵਰਗੀ ਹੈ।ਹਣ ਤਸੀਂ ਇਲੈਕਟੋਨੈਗੇਟਿਵਤਾ ਅਤੇ ਪਰਮਾਣ ਅਰਧ ਵਿਆਸ ਵਿੱਚ ਸਬੰਧ ਸਮਝ ਗਏ ਹੋਵੋਗੇ। ਕੀ ਹਣ ਤਸੀਂ ਇਲੈਕਟੋਨੈਗੇਟਿਵਤਾ ਅਤੇ ਅਧਾਤਾਂ ਦੇ ਵਿੱਚ ਸਬੰਧ ਦੀ ਕਲਪਨਾ ਕਰ ਸਕਦੇ ਹੋ? ਅਧਾਤ ਤੱਤਾਂ ਵਿੱਚ ਇਲੈਕਟਾਨ ਗਹਿਣ ਦੀ ਪ੍ਰਬਲ ਪ੍ਰਵਿਰਤੀ ਹੁੰਦੀ ਹੈ। ਇਸ ਲਈ ਇਲੈਕਟ੍ਰੋਨੈਗੇਟਿਵਤਾ ਦਾ ਸਿੱਧਾ ਸਬੰਧ ਅਧਾਤ ਤੱਤਾਂ ਦੇ ਗੁਣਾਂ ਦੇ ਨਾਲ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਆਵਰਤ ਵਿੱਚ ਤੱਤਾਂ ਦੀ ਇਲੈਕਟੋਨੈਗੇਟਿਵਤਾ ਵਧਣ ਦੇ ਨਾਲ ਹੀ ਅਧਾਤ ਗੁਣਾਂ ਵਿੱਚ ਵਾਧਾ ਹੁੰਦਾ ਹੈ (ਜਾਂ ਧਾਤ ਗੁਣਾਂ ਵਿੱਚ ਕਮੀ ਹੁੰਦੀ ਹੈ)। ਇਸੇ ਤਰ੍ਹਾਂ ਗਰੁੱਪ ਵਿੱਚ ਹੇਠਾਂ ਜਾਣ ਤੇ ਤੱਤਾਂ ਦੀ ਇਲੈਕਟਾਨੈਗੇਟਿਵਤਾ ਘੱਟ ਹੋਣ ਤੇ ਅਧਾਤ ਗਣਾਂ ਵਿੱਚ ਕਮੀ ਆਉਂਦੀ ਹੈ (ਜਾਂ ਧਾਤ ਗੁਣਾਂ ਵਿੱਚ ਆਵਰਤੀ ਸਾਰਣੀ ਵਿੱਚ ਤੱਤਾਂ ਦੀ ਆਵਰਤ ਪ੍ਰਵਿਰਤੀ ਵਾਧਾ ਹੁੰਦਾ ਹੈ। ਇਨ੍ਹਾਂ ਸਾਰੀਆਂ ਆਵਰਤੀ ਪ੍ਰਵਿਰਤੀਆਂ ਨੂੰ ਸੰਖੇਪ ਵਿੱਚ ਚਿੱਤਰ 3.7 ਵਿੱਚ ਦਰਸਾਇਆ ਗਿਆ ਹੈ।

3.7.2 ਰਸਾਇਣਿਕ ਗੁਣਾਂ ਵਿੱਚ ਆਵਰਤ ਪ੍ਰਾਵਿਰਤੀ

ਤੱਤਾਂ ਦੇ ਰਸਾਇਣਿਕ ਗੁਣਾਂ ਵਿੱਚ ਬਹੁਤ ਸਾਰੀਆਂ ਪ੍ਰਵਿਰਤੀਆਂ (ਜਿਵੇਂ ਵਿਕਰਣ ਸਬੰਧ (diagonal relationship) ਅਕਿਰਿਆ ਯੁਗਮ ਪ੍ਰਭਾਵ (Inertpaireffect) ਲੈਥੇਨਾਂਇਡ ਸੁੰਗੜਨ ਪ੍ਰਭਾਵ (effect of lanthanoid contraction) ਆਦਿ ਤੇ ਚਰਚਾ ਅਸੀਂ ਅਗਲੇਰੇ ਯੁਨਿਟ ਵਿੱਚ ਕਰਾਂਗੇ। ਇਸ ਭਾਗ ਵਿੱਚ ਤੱਤਾਂ ਦੀ ਸੰਯੋਜਕਤਾ ਵਿੱਚ ਅਵਰਤਤਾ ਅਤੇ ਦੂਜੇ ਆਵਰਤ ਵਿੱਚ (Li ਤੋਂ F ਤੱਕ) ਅਨਿਯਮਿਤ ਗਣਾਂ ਦਾ ਅਧਿਐਨ ਅਸੀਂ ਕਰਾਂਗੇ।

(ੳ) ਸੰਯੋਜਕਤਾ ਵਿੱਚ ਆਵਰਤਿਤਾ ਜਾਂ ਆੱਕਸੀਕਰਣ ਅਵਸਥਾਵਾਂ

ਸੰਯੋਜਕਤਾ ਤੱਤਾਂ ਦਾ ਮਹੱਤਵਪੂਰਣ ਗੁਣ ਹੈ। ਇਸ ਨੂੰ ਤੱਤ ਦੀ ਇਲੈਕਟਾਨਿਕ ਤਰਤੀਬ ਦੇ ਅਧਾਰ ਤੇ ਸਮਝਿਆ ਜਾ ਸਕਦਾ ਹੈ। ਨਿਰੂਪਣ ਤੱਤਾਂ (Representative Elements) ਦੀ ਸੰਯੋਜਕਤਾ ਆਮ ਕਰਕੇ (ਹਾਲਾਂਕਿ ਜਰੂਰੀ ਨਹੀਂ ਹੈ) ਉਸ ਤੱਤ ਦੇ ਸਭ ਤੋਂ ਬਾਹਰੀ ਸ਼ੈੱਲ ਵਿੱਚ ਮੌਜੂਦ ਇਲੈਕਟ੍ਰਾੱਨਾਂ ਦੀ ਸੰਖਿਆ ਦੇ ਬਰਾਬਰ ਹੁੰਦੀ ਹੈ ਜਾਂ ਅੱਠ ਦੀ ਸੰਖਿਆ ਵਿੱਚੋਂ ਸਭ ਤੋਂ ਬਾਹਰੀ ਇਲੈਕਟ੍ਰਾੱਨਾਂ ਦੀ ਸੰਖਿਆ ਘਟਾਉਣ ਤੇ ਜੋ ਸੰਖਿਆ ਪ੍ਰਾਪਤ ਹੁੰਦੀ ਹੈ ੳਹੀ ੳਸ ਤੱਤ ਦੀ ਸੰਯੋਜਕਤਾ ਅਖਵਾੳਂਦੀ ਹੈ। ਸੰਯੋਜਕਤਾ ਦੀ ਥਾਂ ਤੇ ਹੁਣ ਆਕਸੀਕਰਣ ਅਵਸਥਾ ਦੀ ਵਰਤੋਂ ਕੀਤੀ ਜਾਂਦੀ ਹੈ। ਅਜਿਹੇ ਦੋ ਯੋਗਿਕਾਂ ਤੇ ਵਿਚਾਰ ਕਰਦੇ ਹਾਂ ਜਿਨ੍ਹਾਂ ਵਿੱਚ ਆੱਕਸੀਜਨ ਹੈ : OF_2 and $\mathrm{Na}_2\mathrm{O}$ । ਇਨ੍ਹਾਂ ਯੋਗਿਕਾਂ ਵਿੱਚ ਤਿੰਨ ਤੱਤ ਸ਼ਾਮਿਲ ਹਨ, ਜਿਨ੍ਹਾਂ ਦੀ ਇਲੈਕਟ੍ਰੋਨੈਗੇਟਿਵਤਾ ਦਾ ਕ੍ਰਮ F>O>Na ਹੈ।ਫਲੋਰੀਨ ਦੀ ਬਾਹਰੀ ਇਲੈਕਟ੍ਰਾੱਨਿਕ ਤਰਤੀਬ $2s^2sp^5$ ਹੈ। ਇਸ ਦਾ ਹਰ ਇੱਕ ਪਰਮਾਣੂ $\mathrm{OF}_{_{\! 9}}$ ਅਣੂ ਵਿੱਚ ਆੱਕਸੀਜਨ ਦੇ ਇੱਕ ਇਲੈਕਟ੍ਰਾੱਨ ਨਾਲ ਸੰਯੋਜਨ ਕਰਦਾ ਹੈ। ਫਲੌਰੀਨ ਦੀ ਆੱਕਸੀਕਰਣ ਅਵਸਥਾ −1 ਹੈ, ਕਿਉਂਕਿ ਇਸ

ਅਣੂ ਵਿੱਚ ਦੋ ਫਲੋਰੀਨ ਪਰਮਾਣੂ ਹਨ ਆੱਕਸੀਜਨ ਦੀ ਬਾਹਰੀ ਇਲੈਕਟ੍ਰਾੱਨਿਕ ਤਰਤੀਬ $2s^22p^4$ ਹੈ। ਇਹ ਫਲੋਰੀਨ ਪਰਮਾਣੂ ਨਾਲ ਦੋ ਇਲੈਕਟ੍ਰਾਨਾਂ ਦਾ ਸੰਯੋਜਨ ਕਰਦਾ ਹੈ। ਇਸ ਲਈ ਇਸ ਦੀ ਆੱਕਸੀਕਰਣ ਅਵਸਥਾ +2 ਹੈ। $\mathrm{Na_2O}$ ਅਣੂ ਵਿੱਚ ਆੱਕਸੀਜਨ ਪਰਮਾਣੂ ਵਧੇਰੇ ਇਲੈਕਟ੍ਰੋਨੈਗੇਟਿਵ ਹੈ। ਇਸ ਲਈ ਇਹ ਇਲੈਕਟ੍ਰਾਨ ਗ੍ਰਹਿਣ ਕਰਦਾ ਹੈ ਅਤੇ ਹਰ ਇੱਕ ਸੋਡੀਅਮ ਪਰਮਾਣੂ ਇੱਕ ਇਲੈਕਟ੍ਰਾਨ ਦਿੰਦਾ ਹੈ। ਇਸ ਲਈ ਆੱਕਸੀਜਨ ਆੱਕਸੀਕਰਣ ਅਵਸਥਾ -2 ਦਰਸਾਉਂਦਾ ਹੈ। ਦੂਜੇ ਪਾਸੇ ਸੋਡੀਅਮ (ਜਿਸ ਦੀ ਬਾਹਰੀ ਇਲੈਕਟ੍ਰਾੱਨਿਕ ਤਰਤੀਬ $3s^1$ ਹੈ) ਇੱਕ ਇਲੈਕਟ੍ਰਾੱਨ ਆੱਕਸੀਜਨ ਨੂੰ ਦਿੰਦਾ ਹੈ ਅਤੇ ਇਸ ਤਰ੍ਹਾਂ ਇਸ ਦੀ ਆੱਕਸੀਕਰਣ ਅਵਸਥਾ +1 ਹੈ। ਇਲੈਕਟ੍ਰੋਨੈਗੇਟਿਵਤਾ ਦਾ ਧਿਆਨ ਰੱਖਦੇ ਹੋਏ ਇੱਕ ਵਿਸ਼ੇਸ਼ ਯੋਗਿਕ ਵਿੱਚ ਤੱਤ ਦੇ ਕਿਸੇ ਪਰਮਾਣੂ ਦੁਆਰਾ ਹੋਰ ਪਰਮਾਣੂ ਦੇ ਚਾਰਜ ਦੀ ਸੰਖਿਆ ਗ੍ਰਹਿਣ ਕਰਨ ਨੂੰ ਉਸ ਦੀ ਆੱਕਸੀਕਰਣ ਅਵਸਥਾ ਕਹਿੰਦੇ ਹਨ।

ਹਾਈਡਾਈਡ ਅਤੇ ਆੱਕਸਾਈਡ ਵਿੱਚ ਤੱਤਾਂ ਦੀ ਸੰਯੋਜਕਤਾ ਦੀ ਆਵਰਤ ਪ੍ਰਵਿਰਤੀ (Periodic Trend) ਨੂੰ ਸਾਰਣੀ 3.9 ਵਿੱਚ ਦਰਸਾਇਆ ਗਿਆ ਹੈ। ਤੱਤਾਂ ਦੇ ਰਸਾਇਣਿਕ ਵਿਹਾਰ ਵਿੱਚ ਇਸ ਤਰ੍ਹਾਂ ਦੀਆਂ ਆਵਰਤ ਪ੍ਰਕਿਰਤੀਆਂ ਨੂੰ ਇਸ ਕਿਤਾਬ ਵਿੱਚ ਹੋਰ ਥਾਂਵਾਂ ਉੱਤੇ ਵੀ ਚਰਚਾ ਕੀਤੀ ਗਈ ਹੈ। ਬਹੁਤ ਸਾਰੇ ਤੱਤ ਅਜਿਹੇ ਵੀ ਹਨ, ਜੋ ਪਰਿਵਰਤੀ ਸੰਯੋਜਕਤਾ (variable valency) ਪ੍ਰਦਰਸ਼ਿਤ ਕਰਦੇ ਹਨ। ਪਰਿਵਰਤੀ ਸੰਯੋਜਕਤਾ ਅੰਤਰਕਾਲੀ ਤੱਤਾਂ ਅਤੇ ਐਕਟੀਨਾੱਇਡ ਤੱਤਾਂ ਦਾ ਇੱਕ ਵਿਸ਼ੇਸ਼ ਲੱਛਣ ਹੈ। ਇਸ ਦਾ ਅਧਿਐਨ ਅਸੀਂ ਬਾਅਦ ਵਿੱਚ ਕਰਾਂਗੇ।

ਉਦਾਹਰਣ 3.8

ਆਵਰਤੀ ਸਾਰਣੀ ਦੀ ਵਰਤੋਂ ਕਰਦੇ ਹੋਏ, ਹੇਠ ਲਿਖੇ ਯੁਗਮਾਂ ਵਾਲੇ ਤੱਤਾਂ ਦੇ ਸੰਯੋਗ ਤੋਂ ਬਣੇ ਯੋਗਿਕਾਂ ਦੇ ਅਣੂ ਸੂਤਰ ਦੀ ਭੱਵਿਖ ਬਾਣੀ (prediction) ਕਰੋ–(ੳ) ਸਿੱਲੀਕਾਨ ਅਤੇ ਬਰੋਮੀਨ (ਅ) ਐਲੂਮੀਨਿਅਮ ਅਤੇ ਸਲਫਰ।

ਹੱਲ

- (ੳ) ਸਿੱਲੀਕਾੱਨ ਅਵਰਤੀ ਸਾਰਣੀ ਦੇ 14ਵੇਂ ਗਰੁੱਪ ਦਾ ਤੱਤ ਹੈ ਜਿਸ ਦੀ ਸੰਯੋਜਕਤਾ 4 ਹੈ। ਬਰੋਮੀਨ ਜੋ 17ਵੇਂ ਗਰੁੱਪ (ਹੈਲੋਜਨ ਪਰਿਵਾਰ) ਦਾ ਮੈਂਬਰ ਹੈ ਦੀ ਸੰਯੋਜਕਤਾ 1 ਹੈ। ਇਸ ਲਈ ਯੋਗਿਕ ਦਾ ਅਣੂਸੂਤਰ SiBr₄ ਹੋਵੇਗਾ।
- (ਅ)ਆਵਰਤੀ ਸਾਰਣੀ ਵਿੱਚ 13ਵੇਂ ਗਰੁੱਪ ਦਾ ਤੱਤ ਐਲੂਮੀਨਿਅਮ ਹੈ ਜਿਸ ਦੀ ਸੰਯੋਜਕਤਾ 3 ਹੈ।ਸਲਫਰ 16ਵੇਂ ਗਰੁੱਪ ਦਾ ਤੱਤ ਹੈ, ਜਿਸ ਦੀ ਸੰਯੋਜਕਤਾ 2 ਹੈ। ਇਸ ਲਈ ਐਲੂਮੀਨਿਅਮ ਅਤੇ ਸਲਫਰ ਤੋਂ ਬਣੇ ਯੋਗਿਕ ਦਾ ਅਣੂ ਸੂਤਰ Al₉S₂ ਹੋਵੇਗਾ।

ਗਰੁੱਪ	1	2	13	14	15	16	17	18
ਸੰਯੋਜੀ ਇਲੈਕਟ੍ਰਾਨਾਂ ਦੀ ਸੰਖਿ	ਆ 1	2	3	4	5	6	7	8
ਸੰਯੋਜਕਤਾ	1	2	3	4	3,5	2,6	1,7	0,8

ਸਾ <mark>ਰਣੀ</mark> 3.9	ਯੋਗਿਕਾਂ	ਦੇ	ਸੁਤਰਾਂ	ਦੁਆਰਾ	ਦਰਸਾਏ	ਗਏ	ਤੱਤਾਂ	ਦੀ	ਸੰਯੋਜਕਤਾ
			ਵਿੱਚ ।	ਆਵਰਤ	ਪ੍ਰਵਿਰਤ	1			

ਗਰੁਪ	1	2	13	14	15	16	17
ਹਾਈ੍ਰਾਈਡ ਦਾ	LiH		B_2H_6	CH ₄	NH ₃	H ₂ O	HF
ਸੂਤਰ	NaH	CaH ₂	AlH_3	SiH ₄	PH ₃	H ₂ S	HC1
	KH			GeH ₄	AsH_3	H ₂ Se	HBr
				SnH ₄	SbH ₃	H₂Te	HI
ਆੱਕਸਾਈਡ ਦਾ	Li ₂ O	MgO	B_2O_3	CO_2	N_2O_3 , N_2O_5		_
ਸੂਤਰ	Na ₂ O	CaO	Al_2O_3	SiO_2	P ₄ O ₆ , P ₄ O ₁₀	SO ₃	Cl_2O_7
	K ₂ O	SrO	Ga_2O_3	${\rm GeO}_2$	As_2O_3 , As_2O_5	SeO ₃	-
		BaO	In_2O_3	SnO ₂	$\mathrm{Sb_2O_3}, \mathrm{Sb_2O_5}$	TeO ₃	_
				PbO ₂	Bi ₂ O ₃ –	_	

(ਅ) ਦੂਜੇ ਪੀਰੀਅਡ ਦੇ ਤੱਤਾਂ ਦੇ ਗੁਣਾਂ ਵਿੱਚ ਅਸੰਗਤਤਾ

ਹਰ ਇੱਕ ਗਰੁੱਪ ਦੇ ਪਹਿਲੇ ਤੱਤ ਗਰੁੱਪ 1 (ਲੀਥਿਅਮ), ਗਰੁੱਪ 2 (ਬੈਰੀਲਿਅਮ) ਅਤੇ ਗਰੁੱਪ 13–17 (ਬੋਰਾੱਨ ਤੋਂ ਫਲੌਰੀਨ) ਆਪਣੇ ਗਰੁੱਪ ਦੇ ਬਾਕੀ ਮੈਂਬਰਾਂ ਤੋਂ ਅਨੇਕ ਪੱਖਾਂ ਵਿੱਚ ਭਿੰਨ ਹਨ। ਉਦਾਹਰਣ ਵਜੋਂ-ਲੀਥਿਅਮ ਬਾਕੀ ਖਾਰੀ ਧਾਤਾਂ ਅਤੇ ਬੈਰੀਲਿਅਮ ਬਾਕੀ ਖਾਰੀ ਮਿੱਟੀ ਧਾਤਾਂ ਤੋਂ ਭਿੰਨ ਯੋਗਿਕ ਬਣਾਉਂਦੇ ਹਨ, ਜਿਨ੍ਹਾਂ ਵਿੱਚ ਨਿਸ਼ਚਿਤ ਤੌਰ ਤੇ ਸਹਿ-ਸੰਯੋਜਕ ਬੰਧਨ ਹੁੰਦੇ ਹਨ, ਜਦੋਂ ਕਿ ਬਾਕੀ ਮੈਂਬਰ ਮੁੱਖ ਤੌਰ ਤੇ ਆਇਨਿਕ ਯੋਗਿਕ ਬਣਾਉਂਦੇ ਹਨ। ਅਸਲ ਵਿੱਚ ਲੀਥਿਅਮ ਅਤੇ ਬੈਰੀਲਿਅਮ ਕ੍ਰਮਵਾਰ ਅਗਲੇ ਗਰੁੱਪਾਂ ਦੇ ਦੂਜੇ ਤੱਤਾਂ (ਜਿਵੇਂ-ਮੈਗਨੀਸ਼ਿਅਮ ਅਤੇ ਐਲੂਮੀਨਿਅਮ) ਨਾਲ ਵਧੇਰੇ ਮਿਲਦੇ ਹਨ। ਆਵਰਤ ਗੁਣਾਂ ਦੇ ਇਸ ਤਰ੍ਹਾਂ ਦੀ ਸਮਾਨਤਾ ਨੂੰ 'ਵਿਕਰਣ ਸਬੰਧ (Diagonal Relationship) ਕਹਿੰਦੇ ਹਨ।

ਤੱਤ ਗੁਣ ਧਾਤਵੀਂ ਅਰਧ ਵਿਆਸ M/ pm В Li Be 152 88 111 Na Mg Al 186 160 143 Li Be ਆਇਸਿਕ ਅਰਧ ਵਿਆਸ M+ / pm 76 31 Na Mg 102

s ਅਤੇ p-ਬਲਾੱਕ ਦੇ ਤੱਤਾਂ ਦੇ ਗਰੁੱਪਾਂ ਵਿੱਚ ਦੂਜੇ ਮੈਂਬਰਾਂ ਦੀ ਤੁਲਨਾ ਵਿੱਚ ਪਹਿਲੇ ਤੱਤ ਦੇ ਭਿੰਨ ਰਸਾਇਣਿਕ ਵਿਹਾਰ ਦੇ ਕੀ ਕਾਰਣ ਹੋ ਸਕਦੇ ਹਨ? ਇਨ੍ਹਾਂ ਦਾ ਵੱਖਰਾ ਵਿਹਾਰ ਇਨ੍ਹਾਂ ਕਾਰਣਾਂ ਕਰਕੇ ਹੁੰਦਾ ਹੈ–ਤੱਤਾਂ ਦਾ ਛੋਟਾ ਅਕਾਰ, ਵਧੇਰੇ ਚਾਰਜ/ਅਰਧ ਵਿਆਸ ਅਨੁਪਾਤ ਅਤੇ ਵਧੇਰੇ ਇਲੈਕਟ੍ਰੋਨੈਗੇਟਿਵਤਾ। ਗਰੁੱਪਾਂ ਦੇ ਪਹਿਲੇ ਮੈਂਬਰ ਵਿੱਚ ਸਿਰਫ ਚਾਰ ਸੰਯੋਜਕ ਆੱਰਬਿਟਲ (2s ਅਤੇ 2p) ਬੰਧਨ ਬਨਾਉਣ ਦੇ ਲਈ ਹੁੰਦੇ ਹਨ ਜਦੋਂ ਕਿ ਗਰੁੱਪਾਂ ਦੇ ਦੂਜੇ ਮੈਂਬਰ ਕੋਲ 9 ਸੰਯੋਜਕ ਆੱਰਬਿਟਲ ਹੁੰਦੇ ਹਨ (3s, 3p, 3d) ਫਲਸਰੂਪ ਹਰ ਗਰੁੱਪ ਦੇ ਪਹਿਲੇ ਮੈਂਬਰ ਦੇ ਲਈ ਅਧਿਕਤਮ ਸਹਿਸੰਯੋਜਕਤਾ ਚਾਰ ਹੈ। ਉਦਾਹਰਣ ਵਜੋਂ–ਬੋਰਾਨ ਕੇਵਲ $[BF_4]$ ਬਣਾ ਸਕਦਾ ਹੈ, ਜਦਕਿ ਗਰੁੱਪ ਦੇ ਬਾਕੀ ਮੈਂਬਰ ਆਪਣੇ ਸੰਯੋਜਕ ਸ਼ੈੱਲ ਦਾ ਵਿਸਥਾਰ ਇਲੈਕਟ੍ਰਾੱਨਾਂ ਦੇ ਚਾਰ ਤੋਂ ਵੱਧ ਜੋੜਾਂ ਨੂੰ ਸਥਾਨ ਦੇਣ ਦੇ ਲਈ ਕਰ ਸਕਦੇ ਹਨ। ਉਦਾਹਰਣ ਵਜੋਂ–

ਐਲੂਮੀਨਿਅਮ $[AlF_6]^3$ ਬਣਾਉਂਦਾ ਹੈ।ਐਨਾਂ ਹੀ ਨਹੀਂ p-ਬਲਾੱਕ ਦੇ ਤੱਤਾਂ ਵਿੱਚ ਗਰੁੱਪਾਂ ਦੇ ਪਹਿਲੇ ਮੈਂਬਰ ਆਪਣੇ ਅਤੇ ਦੂਜੇ ਪੀਰੀਅਡ ਦੇ ਹੋਰ ਮੈਂਬਰਾਂ ਨਾਲੋਂ $p_\pi - p_\pi$ ਬੰਧਨ ਬਨਾਉਣ ਦੀ ਪ੍ਬਲ ਯੋਗਤਾ ਰੱਖਦੇ ਹਨ।ਜਿਵੇਂ $C = C, C \equiv C, N = N, N \equiv N, C = N, C \equiv N$) ਜਦਕਿ ਦੇ ਉੱਤਰ ਵਰਤੀ ਮੈਂਬਰ ਅਜਿਹਾ ਨਹੀਂ ਕਰ ਸਕਦੇ।

ਉਦਾਹਰਣ 3.9

ਕੀ ਐਲੂਮੀਨਿਅਮ ਦੇ ਯੋਗਿਕ Al $[AlCl(H_2O)_5]^{2+}$ ਵਿੱਚ ਐਲੂਮੀਨਿਅਮ ਦੀ ਆੱਕਸੀਕਰਣ ਅਵਸਥਾ (oxidation state) ਅਤੇ ਸਹਿ ਸੰਯੋਜਕਤਾ ਸਮਾਨ ਹੈ ?

ਹੱਲ

ਐਲੂਮੀਨਿਅਮ ਦੀ ਆੱਕਸੀਕਰਣ ਅਵਸਥਾ +3 ਅਤੇ ਸਹਿ ਸੰਯੋਜਕਤਾ 6 ਹੈ।

3.7.3 ਰਸਾਇਣਿਕ ਪ੍ਤੀਕਿਰਿਆਸ਼ੀਲਤਾ ਅਤੇ ਆਵਰਤਿਤਾ

ਅਸੀਂ ਕੁਝ ਮੂਲ ਗੁਣਾਂ (ਜਿਵੇਂ ਪਰਮਾਣੂ ਅਤੇ ਆਇਨਨ ਅਰਧਵਿਆਸ, ਆਇਨਨ ਐਨਥੈਲਪੀ, ਇਲੈਕਟ੍ਰਾੱਨ ਗ੍ਰਹਿਣ ਐਨਥੈਲਪੀ ਅਤੇ ਸੰਯੋਜਕਤਾ) ਵਿੱਚ ਆਵਰਤ ਪ੍ਰਵਿਰਤੀ ਦਾ ਅਧਿਐਨ ਕੀਤਾ। ਹੁਣ ਤੱਕ ਅਸੀਂ ਇਹ ਸਮਝ ਗਏ ਹਾਂ ਕਿ ਆਵਰਤਿਤਾ ਇਲੈਕਟ੍ਰਾਂਨਿਕ ਤਰਤੀਬ ਨਾਲ ਸਬੰਧਿਤ ਹੈ।ਭੌਤਿਕ ਅਤੇ ਰਸਾਇਣਿਕ ਗੁਣ ਤੱਤਾਂ ਦੀ ਇਲੈਕਟ੍ਰਾਂਨਿਕ ਤਰਤੀਬ ਦਾ ਅਭਿਵਿਅੰਜਨ ਹੈ। ਤੱਤਾਂ ਦੇ ਇਨ੍ਹਾਂ ਮੂਲ ਗੁਣਾਂ ਅਤੇ ਰਸਾਇਣਿਕ ਗੁਣਾਂ ਵਿੱਚ ਸਬੰਧ ਖੋਜਨ ਦੀ ਕੋਸ਼ਿਸ਼ ਹੁਣ ਅਸੀਂ ਕਰਾਂਗੇ।

ਅਸੀਂ ਜਾਣਦੇ ਹਾਂ ਕਿ ਆਵਰਤ ਵਿੱਚ ਖੱਬੇ ਤੋਂ ਸੱਜੇ ਜਾਣ ਤੇ ਪਰਮਾਣੂ ਅਤੇ ਆਇਨਿਕ ਅਰਧ ਵਿਆਸ ਘੱਟਦਾ ਹੈ। ਫਲਸਰੂਪ ਆਵਰਤ ਵਿੱਚ ਆਇਨਨ ਐਨਥੈਲਪੀ ਅਕਸਰ ਵੱਧਦੀ ਹੈ (ਕਝ ਅਪਵਾਦਾਂ ਨੂੰ ਛੱਡ ਕੇ ਜਿਸ ਦਾ ਵੇਰਵਾ ਭਾਗ 3.7.1-ੳ ਵਿੱਚ ਦਿੱਤਾ ਗਿਆ ਹੈ) ਅਤੇ ਇਲੈਕਟ੍ਰਾੱਨ ਗ੍ਰਹਿਣ ਐਨਥੈਲਪੀ ਹੋਰ ਵਧੇਰੇ ਰਿਣਾਤਮਕ ਹੋ ਜਾਂਦੀ ਹੈ।[AlCl(H₂O)₅]²⁺ ਵਿੱਚ ਸਭ ਤੋਂ ਖੱਬੇ ਪਾਸੇ ਸਥਿਤ ਤੱਤ ਦੀ ਆਇਨਨ ਐਨਥੈਲਪੀ ਸਭ ਤੋਂ ਘੱਟ ਹੈ ਅਤੇ ਸਭ ਤੋਂ ਸੱਜੇ ਪਾਸੇ ਦੇ ਤੱਤ ਦੀ ਇਲੈਕਟ੍ਰਾੱਨ ਗ੍ਰਹਿਣ ਐਲਥੈਲਪੀ ਸਭ ਤੋਂ ਵੱਧ ਰਿਣਾਤਮਕ ਹੈ (ਨੋਟ ਨੋਬਲ ਗੈਸਾਂ ਵਿੱਚ ਪੂਰਣ ਭਰੇ ਸ਼ੈੱਲ ਹੁੰਦੇ ਹਨ। ਉਨ੍ਹਾਂ ਦੀ ਇਲੈਕਟ੍ਰਾੱਨ ਗ੍ਰਹਿਣ ਐਨਥੈਲਪੀ ਦਾ ਮਾਨ ਧਨਾਤਮਕ ਹੁੰਦਾ ਹੈ)।ਅਵਰਤੀ ਸਾਰਣੀ ਵਿੱਚ ਦੋਵਾਂ ਸਿਰਿਆਂ ਤੇ ਸਭ ਤੋਂ ਵੱਧ ਅਤੇ ਮੱਧ ਵਿੱਚ ਸਭ ਤੋਂ ਘੱਟ ਰਸਾਇਣਿਕ ਕਿਰਿਆਸ਼ੀਲਤਾ ਹੁੰਦੀ ਹੈ। ਇਸੇ ਤਰ੍ਹਾਂ ਸਭ ਤੋਂ ਖੱਬੇ ਪਾਸੇ ਅਧਿਕਤਮ ਕਿਰਿਆਸ਼ੀਲਤਾ (ਖਾਰੀ ਧਾਤਾਂ ਵਿੱਚ) ਇੱਕ ਇਲੈਕਟ੍ਰਾਨਿ ਗਵਾ ਦੇ ਧਨ ਆਇਨ ਬਣ ਕੇ ਪ੍ਰਦਰਸ਼ਿਤ ਹੁੰਦੀ ਹੈ ਅਤੇ ਸਭ ਤੋਂ ਸੱਜੇ ਪਾਸੇ (ਹੈਲੋਜਨ ਪਰਿਵਾਰ) ਇਲੈਕਟ੍ਰਾੱਨ ਲੈ ਕੇ ਰਿਣ ਆਇਨ ਬਣਾ ਕੇ ਪ੍ਰਦਰਸ਼ਿਤ ਹੁੰਦੀ ਹੈ। ਇਸ ਗੁਣ ਦਾ ਸਬੰਧ ਤੱਤਾਂ ਦੇ ਲਘੁਕਰਣ ਅਤੇ ਆੱਕਸੀਕਰਣ ਵਿਹਾਰ ਨਾਲ ਕਰਾਂਗੇ ਜਿਸ ਨੂੰ ਤੁਸੀਂ ਬਾਅਦ ਵਿੱਚ ਪੜ੍ਹੋਗੇ। ਤੱਤਾਂ ਦੀ ਧਾਤਵੀ ਅਤੇ ਅਧਾਤਵੀ ਵਿਸ਼ੇਸ਼ਤਾ ਦਾ ਇਸ ਨਾਲ ਸਿੱਧਾ ਸਬੰਧ ਹੈ। ਅਵਰਤ ਵਿੱਚ ਖੱਬੇ ਤੋਂ ਸੱਜੇ ਜਾਣ ਤੇ ਧਾਤਵੀ ਗਣ ਵਿੱਚ ਕਮੀ ਅਤੇ ਅਧਾਤਵੀ ਗੁਣ ਵਿੱਚ ਵਾਧਾ ਹੁੰਦਾ ਹੈ। ਤੱਤਾਂ ਦੀ ਰਸਾਇਣਿਕ ਕਿਰਿਆਸ਼ੀਲਤਾ ਉਨ੍ਹਾਂ ਦੀ ਆੱਕਸੀਜਨ ਅਤੇ ਹੈਲੋਜਨ ਨਾਲ ਕਿਰਿਆ ਕਰਵਾ ਕੇ ਪਦਰਸ਼ਿਤ ਕੀਤੀ ਜਾਂਦੀ ਹੈ। ਇੱਥੇ ਆੱਕਸੀਜਨ ਨਾਲ ਤੱਤਾਂ ਦੀ ਪ੍ਰਤੀਕਿਰਿਆ ਤੇ ਅਸੀਂ ਵਿਚਾਰ ਕਰਾਂਗੇ। ਪੀਰੀਅਡ ਵਿੱਚ ਦੋਵਾਂ ਸਿਰਿਆਂ ਦੇ ਤੱਤ ਆੱਕਸੀਜਨ ਨਾਲ ਸਰਲਤਾ ਪੂਰਵਕ ਸੰਯੋਗ ਕਰਕੇ ਆਕਸਾਈਡ ਬਣਾਉਂਦੇ ਹਨ। ਸਭ ਤੋਂ ਖੱਬੇ ਵਾਲੇ ਤੱਤਾਂ ਦੇ ਆਕਸਾਈਡ ਸਭ ਤੋਂ ਵੱਧ ਖਾਰੇ ਹੁੰਦੇ ਹਨ (ਉਦਾਹਰਣ ਵਜੋਂ- $\mathrm{Na_2O}$) ਅਤੇ ਜੋ ਸਭ ਤੋਂ ਸੱਜੇ ਪਾਸੇ ਹਨ, ਉਨ੍ਹਾਂ ਦੇ ਆੱਕਸੀਜਨ ਸਭ ਤੋਂ ਵੱਧ ਤੇਜਾਬੀ (ਉਦਾਹਰਣ ਵਜੋਂ $\mathrm{Cl_2O_7}$) ਅਤੇ ਮੱਧ ਦੇ ਤੱਤਾਂ ਦੇ ਆੱਕਸਾਈਡ ਐਂਫੋਟੈਰਿਕ (ਉਦਾਹਰਣ ਵਜੋਂ $\mathrm{Al_2O_3}$, $\mathrm{As_2O_3}$) ਜਾਂ ਉਦਾਸੀਨ (ਉਦਾਹਰਣ ਵਜੋਂ- CO , NO , $\mathrm{N_2O}$) ਹੁੰਦੇ ਹਨ। ਐਫੋਟੈਰਿਕ (amphoteric) ਆੱਕਸਾਈਡ ਖਾਰਾਂ ਦੇ ਨਾਲ ਤੇਜਾਬੀ ਅਤੇ ਤੇਜਾਬਾਂ ਦੇ ਨਾਲ ਖਾਰੀ ਵਿਹਾਰ ਕਰਦੇ ਹਨ ਜਦਕਿ ਉਦਾਸੀਨ ਆੱਕਸਾਈਡ ਵਿੱਚ ਤੇਜਾਬ ਜਾਂ ਖਾਰ ਦਾ ਗੁਣ ਨਹੀਂ ਹੁੰਦਾ।

ਉਦਾਹਰਣ 3.9

ਪਾਣੀ ਨਾਲ ਰਸਾਇਣਿਕ ਪ੍ਰਤੀਕਿਰਿਆ ਦੁਆਰਾ ਦਰਸਾਓ ਕਿ $\mathrm{Na_2O}$ ਇੱਕ ਖਾਰੀ ਅਤੇ $\mathrm{Cl_2O_7}$ ਇੱਕ ਤੇਜਾਬੀ ਆੱਕਸਾਈਡ ਹੈ।

ਹੱਲ

 $m Na_2O$ ਪਾਣੀ ਨਾਲ ਪ੍ਰਤੀਕਿਰਿਆ ਕਰਕੇ ਪ੍ਰਬਲ ਖਾਰ ਬਣਾਉਂਦਾ ਹੈ। ਜਦਕਿ $m Cl_2O_7$ ਪ੍ਰਬਲ ਅਮਲ ਬਣਾਉਂਦਾ ਹੈ।

 $2\mathrm{Na_2O} + \mathrm{H_2O} \rightarrow 2\mathrm{NaOH}$

 $\text{Cl}_2\text{O}_7 + \text{H}_2\text{O} \rightarrow 2\text{HClO}_4$

ਖਾਰੀ ਜਾਂ ਤੇਜਾਬੀ ਗੁਣਾਂ ਦੀ ਪਰਖ ਤੁਸੀਂ ਲਿਟਮਸ ਪੇਪਰ ਨਾਲ ਕਰ ਸਕਦੇ ਹੋ।

ਨਿਰੂਪਕ ਤੱਤਾਂ ਦੀ ਤੁਲਨਾ ਵਿੱਚ ਅੰਤਰਕਾਲੀ ਧਾਤਾਂ (3d series) ਦਾ ਆਵਰਤ ਵਿੱਚ ਪਰਮਾਣੂ ਅਰਧ ਵਿਆਸ ਵਿੱਚ ਪਰਿਵਰਤਨ ਬਹੁਤ ਘੱਟ ਹੈ।ਪਰਮਾਣੂ ਅਰਧ ਵਿਆਸ ਵਿੱਚ ਪਰਿਵਰਤਨ ਅੰਤਰਕਾਲੀ ਧਾਤਾਂ (4f series) ਦੇ ਲਈ ਹੋਰ ਵੀ ਘੱਟ ਹੈ।ਆਇਨਨ ਐਨਥੈਲਪੀ s- ਅਤੇ p- ਬਲਾੱਕ ਦੇ ਤੱਤਾਂ ਦੇ ਮੱਧ ਹੈ। ਪਰਿਣਾਮ ਸਰੂਪ ਇਹ ਤੱਤ ਗਰੁੱਪ 1 ਅਤੇ 2 ਦੀਆਂ ਧਾਤਾਂ ਦੀ ਤੁਲਨਾ ਵਿੱਚ ਘੱਟ ਇਲੈਕਟ੍ਰੋਪਾਜੇਟਿਵ ਹਨ।

ਮੁੱਖ ਗਰੁੱਪ ਦੇ ਤੱਤਾਂ ਵਿੱਚ ਉਨ੍ਹਾਂ ਦੇ ਪਰਮਾਣੂ ਕ੍ਰਮ ਅੰਕ ਵੱਧਣ ਨਾਲ ਆਮ ਤੌਰ ਤੇ ਪਰਮਾਣਵੀਂ ਅਤੇ ਅਣਵੀਂ ਅਰਧ ਵਿਆਸ ਵੱਧਦਾ ਹੈ।ਜਿਸ ਕਰਕੇ ਹੌਲੀ–ਹੌਲੀ ਆਇਨਨ ਐਨਥੈਲਪੀ ਘੱਟਦੀ ਹੈ ਅਤੇ ਇਲੈਕਟ੍ਰਾੱਨ ਗ੍ਰਹਿਣ ਐਨਥੈਲਪੀ ਵਿੱਚ ਨਿਯਮਿਤ ਕਮੀ (ਕੁਝ ਅਪਵਾਦ ਤੀਜੇ ਪੀਰੀਅਡ ਦੇ ਤੱਤਾਂ ਵਿੱਚ ਹਨ, ਜਿਨ੍ਹਾਂ ਨੂੰ ਸਾਰਣੀ 3.7.1 ਵਿੱਚ ਦਰਸਾਇਆ ਗਿਆ ਹੈ।) ਹੁੰਦੀ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਗਰੁੱਪ ਵਿੱਚ ਹੇਠਾਂ ਜਾਣ ਤੇ ਧਾਤਵੀ ਗੁਣ ਵੱਧਦਾ ਹੈ ਅਤੇ ਅਧਾਤਵੀ ਗੁਣ ਘੱਟਦਾ ਹੈ।ਇਸ ਪ੍ਰਵਿਰਤੀ ਨੂੰ ਉਨ੍ਹਾਂ ਦੇ ਲਘੂਕਰਣ ਅਤੇ ਆੱਕਸੀਕਰਣ ਦੇ ਗੁਣ ਨਾਲ ਜੋੜਿਆ ਜਾ ਸਕਦਾ ਹੈ, ਜਿਸ ਨੂੰ ਤੁਸੀਂ ਬਾਅਦ ਵਿੱਚ ਪੜ੍ਹੋਗੇ ਅੰਤਰਕਾਲੀ ਤੱਤਾਂ ਦੀ ਪ੍ਰਵਿਰਤੀ ਇਸ ਦੇ ਉਲਟ ਹੈ।ਇਸ ਨੂੰ ਅਸੀਂ ਪ੍ਰਮਾਣੂ ਅਕਾਰ ਅਤੇ ਆਇਨਨ ਐਨਥੈਲਪੀ ਤੋਂ ਸਮਝ ਸਕਦੇ ਹਾਂ।

ਸਾਰਾਂਸ਼

ਇਸ ਯੁਨਿਟ ਵਿੱਚ ਤੁਸੀਂ ਆਵਰਤ ਨਿਯਮ ਅਤੇ ਆਵਰਤੀ ਸਾਰਣੀ ਦੇ ਵਿਕਾਸ ਦਾ ਅਧਿਐਨ ਕੀਤਾ ਹੈ। ਮੈਂਡਲੀਵ ਆਵਰਤੀ ਸਾਰਣੀ ਪਰਮਾਣੂ ਪੁੰਜ ਉੱਤੇ ਅਧਾਰਿਤ ਸੀ। ਆਧੁਨਿਕ ਆਵਰਤੀ ਸਾਰਣੀ ਵਿੱਚ ਤੱਤਾਂ ਦੀ ਵਿਵਸਥਾ ਉਨ੍ਹਾਂ ਦੇ ਵੱਧਦੇ ਹੋਏ ਪ੍ਰਮਾਣੂ ਕ੍ਰਮ ਅੰਕ ਦੇ ਕ੍ਰਮ ਵਿੱਚ ਸੱਤ ਖਿਤਿਜੀ ਲਾਈਨਾਂ (ਪੀਰੀਅਡ) ਅਤੇ 18 ਖੜੇ ਦਾਅ ਕਾੱਲਮ (ਗਰੁੱਪ ਜਾਂ ਪਰਿਵਾਰ) ਵਿੱਚ ਕੀਤੀ ਹੈ। ਪੀਰੀਅਡ ਵਿੱਚ ਪਰਮਾਣੂ ਕ੍ਰਮ ਅੰਕ ਵੱਧਦਾ ਹੈ, ਜਦ ਕਿ ਗਰੁੱਪ ਵਿੱਚ ਉਹ ਇੱਕ ਪੈਟਰਨ ਵਿੱਚ ਵੱਧਦਾ ਹੈ। ਇੱਕ ਗਰੁੱਪ ਦੇ ਤੱਤਾਂ ਵਿੱਚ ਸਮਾਨ ਸੰਯੋਜੀ ਸ਼ੈੱਲ (Valence shell) ਇਲੈਕਟ੍ਰਾਨਿਕ ਤਰਤੀਬ ਹੁੰਦੀ ਹੈ। ਇਸ ਲਈ ਇਹ ਸਮਾਨ ਰਸਾਇਣਿਕ ਗੁਣਾਂ ਨੂੰ ਦਰਸਾਉਂਦੇ ਹਨ। ਇੱਕ ਹੀ ਪੀਰੀਅਡ ਵਿੱਚ ਖੱਬੇ ਤੋਂ ਸੱਜੇ ਵੱਲ ਜਾਣ ਤੇ ਇਲੈਕਟ੍ਰਾਨਾਂ ਦੀ ਸੰਖਿਆ ਵਿੱਚ ਵਾਧਾ ਹੁੰਦਾ ਹੈ। ਇਸ ਲਈ ਇਨ੍ਹਾਂ ਦੀ ਸੰਯੋਜਕਤਾ (valencies) ਭਿੰਨ ਹੁੰਦੀ ਹੈ। ਆਵਰਤੀ ਸਾਰਣੀ ਵਿੱਚ ਇਲੈਕਟ੍ਰਾਨਿਕ ਤਰਤੀਬ ਦੇ ਅਧਾਰ ਤੇ ਚਾਰ ਕਿਸਮ ਦੇ ਤੱਤਾਂ ਦੀ ਪਛਾਣ ਕੀਤੀ ਗਈ ਹੈ। ਇਹ ਤੱਤ ਹਨ–s-ਬਲਾਕ ਤੱਤ, p-ਬਲਾਕ ਤੱਤ d-ਬਲਾਕ ਤੱਤ ਅਤੇ f-ਬਲਾਕ ਤੱਤ। 1S ਬਲਾਕ ਅਰਬਿਟਲ ਵਿੱਚ ਇੱਕ ਇਲੈਕਟ੍ਰਾਨ ਹੋਣ ਦੇ ਕਾਰਣ ਅਵਰਤੀ ਸਾਰਣੀ ਵਿੱਚ ਹਾਈਡ੍ਰੋਜਨ ਦਾ ਸਥਾਨ ਅਨੂਠਾ ਹੈ। ਗਿਆਤ ਤੱਤਾਂ ਵਿੱਚ 78 ਪ੍ਰਤੀਸ਼ਤ ਤੋਂ ਵੱਧ ਸੰਖਿਆ ਧਾਤਾਂ ਦੀ ਹੈ। ਅਧਾਤਾਂ ਦੀ ਸੰਖਿਆ 20 ਪ੍ਰਤੀਸ਼ਤ ਤੋਂ ਘੱਟ ਹੈ, ਜੋ ਆਵਰਤੀ ਸਾਰਣੀ ਵਿੱਚ ਸੱਚੇ ਪਾਸੇ ਸਿਰੇ ਤੇ ਸਥਿਤ ਹਨ। ਅਜਿਹੇ ਤੱਤ ਜੋ ਧਾਤਾਂ ਅਤੇ ਅਧਾਤਾਂ ਦੇ ਨੇੜੇ ਹਨ, ਅਰਧ ਧਾਤਾਂ (Semi metals) ਜਾਂ ਉੱਪਧਾਤਾਂ (Metalloids) ਅਖਵਾਉਂਦੇ ਹਨ (ਜਿਵੇਂ– Si, Ge, As) ਗਰੁੱਪ ਵਿੱਚ ਹੇਠਾਂ ਵੱਲ ਜਾਣ ਤੇ ਤੱਤਾਂ ਦੇ ਧਾਤਵੀ ਗੁਣਾਂ ਵਿੱਚ ਵਾਧਾ ਹੁੰਦਾ ਹੈ। ਖੱਬੇ ਤੋਂ ਸੱਜੇ ਵੱਲ ਜਾਣ ਤੇ ਪੀਰੀਅਡ ਵਿੱਚ ਧਾਤਵੀ ਗੁਣਾਂ ਵਿੱਚ ਕਮੀ ਹੁੰਦੀ ਹੈ। ਤੱਤਾਂ ਦੇ ਭੌਤਿਕ ਅਤੇ ਰਸਾਇਣਿਕ ਗੁਣ ਉਨ੍ਹਾਂ ਦੇ ਪਰਮਾਣੂ ਕ੍ਰਮ ਅੰਕ ਦੇ ਨਾਲ ਆਵਰਤਿਤ ਹੁੰਦੇ ਹਨ।

ਤੱਤਾਂ ਦੇ ਪਰਮਾਣੂ ਅਕਾਰ, ਆਇਨਨ ਐਨਥੈਲਪੀ, ਇਲੈਕਟ੍ਰਾਨ ਗ੍ਰਹਿਣ ਐਨਥੈਲਪੀ ਇਲੈਕਟ੍ਰੋਨੈਗੇਟਿਵਤਾ ਅਤੇ ਸੰਯੋਜਕਤਾ ਵਿੱਚ ਆਵਰਤਿਤਾ ਦੀ ਪ੍ਵਿਰਤੀ ਵੇਖੀ ਜਾਂਦੀ ਹੈ। ਪਰਮਾਣੂ ਅਰਧ ਵਿਆਸ ਪੀਰੀਅਡ ਵਿੱਚ ਖੱਬੇ ਤੋਂ ਸੱਜੇ ਵੱਲ ਜਾਣ ਤੇ ਘੱਟਦਾ ਹੈ ਅਤੇ ਗਰੁੱਪ ਵਿੱਚ ਪਰਮਾਣੂ ਕ੍ਰਮ ਅੰਕ ਵੱਧਣ ਤੇ ਵੱਧਦਾ ਹੈ। ਆਇਨਨ ਐਨਥੈਲਪੀ ਅਕਸਰ ਪੀਰੀਅਡ ਵਿੱਚ ਪਰਮਾਣੂ ਕ੍ਰਮ ਅੰਕ ਵੱਧਣ ਤੇ ਵੱਧਦੀ ਹੈ ਅਤੇ ਗਰੁੱਪ ਵਿੱਚ ਹੇਠਾਂ ਵੱਲ ਜਾਣ ਤੇ ਘੱਟਦੀ ਹੈ। ਇਲੈਕਟ੍ਰੋਨੈਗੇਟਵਿਤਾ ਦੀ ਵੀ ਇਹੀ ਪ੍ਰਵਿਰਤੀ ਹੁੰਦੀ ਹੈ। ਇਲੈਕਟ੍ਰਾਨ ਗ੍ਰਹਿਣ ਐਨਥੈਲਪੀ ਆਮ ਤੌਰ ਤੇ ਪੀਰੀਅਡ ਵਿੱਚ ਸੱਜੇ ਪਾਸੇ ਜਾਣ ਤੇ ਹੋਰ ਜਿਆਦਾ ਰਿਣਾਤਮਕ ਅਤੇ ਗਰੁੱਪ ਵਿੱਚ ਹੇਠਾਂ ਜਾਣ ਤੇ ਘੱਟ ਰਿਣਾਤਮਕ ਹੁੰਦੀ ਹੈ। ਸੰਯੋਜਕਤਾ ਵਿੱਚ ਵੀ ਆਵਰਤਿਤਾ ਵੇਖੀ ਗਈ ਹੈ। ਉਦਾਹਰਣ ਦੇ ਤੌਰ ਤੇ–ਨਿਰੂਪਕ ਤੱਤਾਂ ਵਿੱਚ ਸੰਯੋਜਕਤਾ ਜਾਂ ਤਾਂ ਸਭ ਤੋਂ ਬਾਹਰੀ ਆਰਬਿਟਲਾਂ ਵਿੱਚ ਇਲੈਕਟ੍ਰਾਨਾਂ ਦੀ ਸੰਖਿਆ ਦੇ ਬਰਾਬਰ ਜਾਂ ਅੱਠ ਵਿੱਚੋਂ ਇਨ੍ਹਾਂ ਇਲੈਕਟ੍ਰਾਨਾਂ ਦੀ ਸੰਖਿਆ ਘਟਾ ਕੇ ਗਿਆਤ ਕੀਤੀ ਜਾਂਦੀ ਹੈ। ਰਸਾਇਣਿਕ ਕਿਰਿਆਸ਼ੀਲਤਾ ਇਲੈਕਟ੍ਰਾਨ ਨੂੰ ਤਿਆਗਨ ਦੀ ਅਸਾਨੀ (ਜਾਂ ਘੱਟ ਆਇਨਨ ਐਨਥੈਲਪੀ) ਦੇ ਕਾਰਣ ਹੁੰਦੀ ਹੈ। ਵਧੇਰੇ ਕਿਰਿਆਸ਼ੀਲ ਤੱਤ ਪ੍ਰਕਿਰਤੀ ਵਿੱਚ ਸੁਤੰਤਰ ਅਵਸਥਾ ਵਿੱਚ ਨਹੀਂ ਮਿਲਦੇ। ਉਹ ਅਕਸਰ ਯੋਗਿਕਾਂ ਦਾ ਰੂਪ ਵਿੱਚ ਮਿਲਦੇ ਹਨ। ਕਿਸੇ ਪੀਰਿਅਡ ਵਿੱਚ ਖੱਬੇ ਪਾਸੇ ਦੇ ਤੱਤ ਖਾਰੀ ਆੱਕਸਾਈਡ ਬਣਾਉਂਦੇ ਹਨ, ਜਦਕਿ ਸੱਜੇ ਪਾਸੇ ਦੇ ਤੱਤ ਤੇਜਾਬੀ ਆੱਕਸਾਈਡ ਬਣਾਉਂਦੇ ਹਨ। ਜੋ ਤੱਤ ਮੱਧ ਵਿੱਚ ਹਨ ਉਹ ਐਫੋਟੈਰਿਕ ਜਾਂ ਉਦਾਸੀਨ ਆੱਕਸਾਈਡ ਬਣਾਉਂਦੇ ਹਨ।

ਅਭਿਆਸ

- 3.1 ਆਵਰਤੀ ਸਾਰਣੀ ਵਿੱਚ ਵਿਵਸਥਾ ਦਾ ਭੌਤਿਕ ਅਧਾਰ ਕੀ ਹੈ ?
- 3.2 ਮੈਂਡਲੀਵ ਨੇ ਕਿਸ ਮਹੱਤਵਪੂਰਣ ਗੁਣ ਨੂੰ ਆਪਣੀ ਆਵਰਤੀ ਸਾਰਣੀ ਵਿੱਚ ਤੱਤਾਂ ਦੇ ਵਰਗੀਕਰਣ ਦਾ ਅਧਾਰ ਬਣਾਇਆ? ਕੀ ਉਹ ਉਸ ਤੇ ਦ੍ਰਿੜ ਰਹਿ ਪਾਏ।
- 3.3 ਮੈਂਡਲੀਵ ਦੇ ਆਵਰਤ ਨਿਯਮ ਅਤੇ ਆਧੁਨਿਕ ਆਵਰਤ ਨਿਯਮ ਵਿੱਚ ਮੂਲ ਅੰਤਰ ਕੀ ਹੈ?
- 3.4 ਕੁਆਂਟਮ ਸੰਖਿਆ ਦੇ ਅਧਾਰ ਤੇ ਇਹ ਸਿੱਧ ਕਰੋ ਕਿ ਆਵਰਤੀ ਸਾਰਣੀ ਦੇ ਛੇਵੇਂ ਪੀਰੀਅਡ ਵਿੱਚ 32 ਤੱਤ ਹੋਣੇ ਚਾਹੀਦੇ ਹਨ।

- 3.5 ਪੀਰੀਅਡ ਅਤੇ ਗਰੁੱਪ ਦੀ ਟਰਮ ਵਿੱਚ ਇਹ ਦੱਸੋ ਕਿ Z=14 ਤੱਤ ਕਿੱਥੇ ਸਥਿਤ ਹੋਵੇਗਾ ?
- 3.6 ਉਸ ਤੱਤ ਦਾ ਪਰਮਾਣੂ ਕ੍ਰਮ ਅੰਕ ਲਿਖੋ, ਜੋ ਆਵਰਤੀ ਸਾਰਣੀ ਵਿੱਚ ਤੀਜੇ ਪੀਰੀਅਡ ਅਤੇ 17ਵੇਂ ਗਰੁੱਪ ਵਿੱਚ ਸਥਿਤ ਹੰਦਾ ਹੈ।
- 3.7 ਕਿਸ ਤੱਤ ਦਾ ਨਾਂ ਹੇਠ ਲਿਖੇ ਦੁਆਰਾ ਦਿੱਤਾ ਗਿਆ ਹੈ ?
 - (i) ਲਾੱਰੈਂਸ ਬ੍ਕਲੇ ਪ੍ਰਯੋਗਸ਼ਾਲਾ ਦੁਆਰਾ
 - (ii) ਸੀ ਬੋਰਗ ਗਰੁੱਪ ਦੁਆਰਾ
- 3.8 ਇੱਕ ਹੀ ਗਰੁੱਪ ਵਿੱਚ ਮੌਜੂਦ ਤੱਤਾਂ ਦੇ ਭੌਤਿਕ ਅਤੇ ਰਸਾਇਣਿਕ ਗੁਣ ਸਮਾਨ ਕਿਉਂ ਹੁੰਦੇ ਹਨ?
- 3.9 ਪਰਮਾਣ ਅਰਧ ਵਿਆਸ ਅਤੇ ਆਇਨੀ ਅਰਧ ਵਿਆਸ ਤੋਂ ਤਸੀਂ ਕੀ ਸਮਝਦੇ ਹੋ ?
- 3.10 ਕਿਸੇ ਗਰੁੱਪ ਜਾਂ ਪੀਰੀਅਡ ਵਿੱਚ ਪਰਮਾਣੂ ਅਰਧ ਵਿਆਸ ਕਿਸ ਤਰ੍ਹਾਂ ਪਰਿਵਰਤਿਤ ਹੁੰਦਾ ਹੈ? ਇਸ ਪਰਿਵਰਤਨ ਦੀ ਵਿਆਖਿਆ ਤੁਸੀਂ ਕਿਸ ਤਰ੍ਹਾਂ ਕਰੋਗੇ ?
- 3.11 ਸਮ ਇਲੈਕਟ੍ਰਾਨਿਕ ਸਪੀਸ਼ੀਜ ਤੋਂ ਤੁਸੀਂ ਕੀ ਸਮਝਦੇ ਹੋ? ਇੱਕ ਅਜਿਹੇ ਸਪੀਸ਼ੀਜ ਦਾ ਨਾਂ ਲਿਖੋ ਜੋ ਹੇਠ ਲਿਖੇ ਪਰਮਾਣੂਆਂ ਜਾਂ ਆਇਨਾਂ ਦੇ ਨਾਲ ਸਮ ਇਲੈਕਟ੍ਰਾਨਿਕ ਹੋਵੇਗੀ–
 - (i) F^- (ii) Ar (iii) Mg^{2+}
- 3.12 ਹੇਠ ਲਿਖੇ ਸਪੀਸ਼ੀਜ਼ ਉੱਤੇ ਵਿਚਾਰ ਕਰੋ–
 - N³⁻, O²⁻, F⁻, Na⁺, Mg²⁺ and Al³⁺
 - (a) ਇਨ੍ਹਾਂ ਵਿੱਚ ਕੀ ਸਮਾਨਤਾ ਹੈ ?
 - (b) ਇਨ੍ਹਾਂ ਨੂੰ ਆਇਨੀ ਅਰਧਵਿਆਸ ਦੇ ਵੱਧਦੇ ਕ੍ਰਮ ਵਿੱਚ ਵਿਵਸਥਿਤ ਕਰੋ।
- 3.13 ਧਨ ਆਇਨ ਆਪਣੇ ਮੂਲ ਪਰਮਾਣੂ ਤੋਂ ਛੋਟੇ ਕਿਉਂ ਹੁੰਦੇ ਹਨ ਅਤੇ ਰਿਣ ਆਇਨ ਦਾ ਅਰਧ ਵਿਆਸ ਉਨ੍ਹਾਂ ਦੇ ਮੂਲ ਪਰਮਾਣੂਆਂ ਦੇ ਅਰਧ ਵਿਆਸ ਤੋਂ ਵੱਧ ਕਿਉਂ ਹੁੰਦਾ ਹੈ? ਵਿਆਖਿਆ ਕਰੋ।
- 3.14 ਆਇਨਨ ਐਨਥੈਲਪੀ ਅਤੇ ਇਲੈਕਟ੍ਰਾੱਨ ਗ੍ਰਹਿਣ ਐਨਥੈਲਪੀ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਕਰਨ ਵਿੱਚ ਵਿਯੁਕਤ ਗੈਸੀ ਪਰਮਾਣੂ ਅਤੇ ਗਰਾਉਂਡ ਅਵਸਥਾ ਦੀ ਸਾਰਥਕਤਾ ਕੀ ਹੈ ?
- 3.15 ਹਾਈਡ੍ਰੋਜਨ ਪਰਮਾਣੂ ਵਿੱਚ ਗਰਾਊਂਡ ਅਵਸਥਾ ਵਿੱਚ ਇਲੈਕਟ੍ਰਾੱਨ ਦੀ ਊਰਜਾ –2.18×10⁻¹⁸J. ਹੈ।ਪਰਮਾਣਵੀਂ ਹਾਈਡ੍ਰੋਜਨ ਦੀ ਆਇਨਨ ਐਨਥੈਲਪੀ J mol¹ ਵਿੱਚ ਪਰਿਕਲਿਤ ਕਰੋ। **ਸੰਕੇਤ**-ਉੱਤਰ ਪ੍ਰਾਪਤ ਕਰਨ ਦੇ ਲਈ ਮੋਲ ਸੰਕਲਪ ਦੀ ਵਰਤੋਂ ਕਰੋ।
- 3.16 ਦੂਜੇ ਪੀਰੀਅਡ ਦੇ ਤੱਤਾਂ ਵਿੱਚ ਵਾਸਤਵਿਕ ਆਇਨਨ ਐਨਥੈਲਪੀ ਦਾ ਕ੍ਰਮ ਇਸ ਪ੍ਕਾਰ ਹੈ− Li < B < Be < C < O < N < F < Ne.

ਵਿਆਖਿਆ ਕਰੋ ਕਿ

- (i) Be ਦੀ $\Delta_i H$ B ਤੋਂ ਵੱਧ ਕਿਉਂ ਹੈ
- (ii) O ਦੀ $\Delta_i H$ N ਅਤੇ F ਤੋਂ ਘੱਟ ਕਿਉਂ ਹੈ ?
- 3.17 ਤੁਸੀਂ ਇਸ ਤੱਥ ਦੀ ਵਿਆਖਿਆ ਕਿਸ ਤਰ੍ਹਾਂ ਕਰੋਗੇ ਕਿ ਸੋਡੀਅਮ ਦੀ ਪਹਿਲੀ ਆਇਨਨ ਐਨਥੈਲਪੀ ਮੈਗਨੀਸ਼ਿਅਮ ਦੀ ਪਹਿਲੀ ਆਇਨਨ ਐਨਥੈਲਪੀ ਤੋਂ ਘੱਟ ਹੈ ਪਰ ਇਸਦੀ ਦੂਜੀ ਆਇਨਨ ਐਨਥੈਲੀ ਮੈਗਨੀਸ਼ਿਅਮ ਦੀ ਦੂਜੀ ਆਇਨਨ ਐਨਥੈਲਪੀ ਨਾਲੋਂ ਵੱਧ ਹੇ।
- 3.18 ਮੁੱਖ ਗਰੁੱਪ ਤੱਤਾਂ ਵਿੱਚ ਆਇਨਨ ਐਨਥੈਲਪੀ ਕਿਸੇ ਗਰੁੱਪ ਵਿੱਚ ਹੇਠਾਂ ਦੇ ਵੱਲ ਘੱਟ ਹੋਣ ਦੇ ਕਿਹੜੇ ਕਾਰਕ ਹਨ।
- 3.19 ਗਰੁੱਪ 13 ਦੇ ਤੱਤਾਂ ਦੀ ਪਹਿਲੀ ਆਇਨਨ ਐਨਥੈਲਪੀ ਦੇ ਮਾਨ (in kJ mol^{-1}) ਵਿੱਚ ਇਸ ਤਰ੍ਹਾਂ ਹੈ– B Al Ga In Tl

801 577 579 558 589

ਆਮ ਨਾਲੋਂ ਇਸ ਭਿੰਨਤਾ ਦੀ ਪ੍ਵਿਰਤੀ ਦੀ ਵਿਆਖਿਆ ਤੁਸੀਂ ਕਿਵੇਂ ਕਰੋਗੇ ?

- 3.20 ਤੱਤਾਂ ਦੇ ਹੇਠ ਲਿਖੇ ਯੁਗਮਾਂ ਵਿੱਚੋਂ ਕਿਸ ਤੱਤ ਦੀ ਇਲੈਕਟ੍ਰਾਨ ਗ੍ਰਹਿਣ ਐਨਥੈਲਪੀ ਵਧੇਰੇ ਰਿਣਾਤਮਕ ਹੋਵੇਗੀ ?
 - (i) O ਜਾਂ F (ii) F ਜਾਂ Cl
- 3.21 ਤੁਸੀਂ ਕੀ ਸੋਚਦੇ ਹੋ ਕਿ O ਦੀ ਦੂਜੀ ਇਲੈਕਟ੍ਰਾੱਨ ਗ੍ਰਹਿਣ ਐਨਥੈਲਪੀ ਦੇ ਬਰਾਬਰ ਧਨਾਤਮਕ, ਵਧੇਰੇ ਰਿਣਾਤਮਕ ਜਾਂ ਘੱਟ ਰਿਣਾਮਤਕ ਹੋਵੇਗੀ ? ਆਪਣੇ ਉੱਤਰ ਦੀ ਪੁਸ਼ਟੀ ਕਰੋ।
- 3.22 ਇਲੈਕਟ੍ਰਾੱਨ ਗ੍ਰਹਿਣ ਐਨਥੈਲਪੀ ਅਤੇ ਇਲੈਕਟ੍ਰੋਨੈਗੇਟਿਵਤਾ ਵਿੱਚ ਕੀ ਮੂਲ ਅੰਤਰ ਹੈ?
- 3.23 ਸਾਰੇ ਨਾਈਟ੍ਰੋਜਨ ਯੋਗਿਕਾਂ ਵਿੱਚ N ਦੀ ਇਲੈਕਟ੍ਰੋਨੈਗੇਟਿਵਤਾ ਪਾਓਲਿੰਗ ਪੈਮਾਨੇ ਤੇ 3.0 ਹੈ। ਤੁਸੀਂ ਇਸ ਕਥਨ

```
ਤੇ ਆਪਣੀ ਕੀ ਪ੍ਤੀਕਿਰਿਆ ਦਿਓਗੇ ?
      ਉਸ ਸਿਧਾਂਤ ਦਾ ਵਰਣਨ ਕਰੋ, ਜੋ ਪਰਮਾਣੂ ਦੇ ਅਰਧ ਵਿਆਸ ਨਾਲ ਸਬੰਧਿਤ ਹੁੰਦਾ ਹੈ
       (i) ਜਦੋਂ ਉਹ ਇਲੈਕਟ੍ਰਾੱਨ ਗਹਿਣ ਕਰਦਾ ਹੈ।
       (ii) ਜਦੋਂ ੳਹ ਇਲੈਕਟ਼ਾੱਨ ਦਾ ਤਿਆਗ ਕਰਦਾ ਹੈ
      ਕਿਸੇ ਤੱਤ ਦੇ ਦੋ ਸਮਸਥਾਨਕਾਂ ਦੀ ਪਹਿਲੀ ਆਇਨਨ ਐਨਥੈਲਪੀ ਸਮਾਨ ਹੋਵੇਗੀ ਜਾਂ ਭਿੰਨ ? ਤੁਸੀਂ ਕੀ ਮੰਨਦੇ
       ਹੋ ? ਆਪਣੇ ਉੱਤਰ ਦੀ ਪਸ਼ਟੀ ਕਰੋ।
3.26 ਧਾਤਾਂ ਅਤੇ ਅਧਾਤਾਂ ਵਿੱਚ ਮੁੱਖ ਅੰਤਰ ਕੀ ਹੈ ?
3.27 ਆਵਰਤੀ ਸਾਰਣੀ ਦੀ ਵਰਤੋਂ ਕਰਦੇ ਹੋਏ ਹੇਠ ਲਿਖੇ ਪ੍ਰਸ਼ਨਾਂ ਦੇ ਉੱਤਰ ਦਿਓ-
       ( i ) ਉਸ ਤੱਤ ਦਾ ਨਾਂ ਦੱਸੋ, ਜਿਸ ਦੇ ਬਾਹਰੀ ਸੱਬ ਸ਼ੈਲ ਵਿੱਚ ਪੰਜ ਇਲੈਕਟ੍ਰਾੱਨ ਮੌਜਦ ਹੋਣ।
       (ii) ਉਸ ਤੱਤ ਦਾ ਨਾਂ ਦੱਸੋ ਜਿਸ ਦੀ ਪ੍ਰਵਿਰਤੀ ਦੋ ਇਲੈਕਟ੍ਰਾੱਨਾਂ ਨੂੰ ਤਿਆਗਣ ਦੀ ਹੈਵੇ।
       (iii) ਉਸ ਤੱਤ ਦਾ ਨਾਂ ਦੱਸੋਂ ਜਿਸ ਦੀ ਪ੍ਰਵਿਰਤੀ ਦੋ ਇਲੈਕਟ੍ਰਾਨਾਂ ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਦੀ ਹੋਵੇ।
       (iv) ਉਸ ਗਰਪੱ ਦਾ ਨਾਂ ਦੱਸੋ ਜਿਸ ਵਿਚ ਆਮ ਤਾਪਮਾਨ ਤੇ ਧਾਤ, ਅਧਾਤ, ਦਵ ਅਤੇ ਗੈਸ ਮੌਜੂਦ ਹੋਵੇ।
       ਪਹਿਲੇ ਗਰੱਪ ਦੇ ਤੱਤਾਂ ਦੇ ਲਈ ਕਿਰਿਆਸ਼ੀਲਤਾ ਦਾ ਵੱਧਦਾ ਹੋਇਆ ਕਮ ਇਸ ਪਕਾਰ ਹੈ– Li < Na < K <

m Rb < Cs ਜਦ ਕਿ ਗਰੁੱਪ 17 ਦੇ ਤੱਤ ਦਾ ਕ੍ਰਮ 
m F > CI > Br > I ਹੈ। ਇਸ ਦੀ ਵਿਆਖਿਆ ਕਰੋ।
       s-, p-, d- ਅਤੇ f- ਬਲਾੱਕ ਦੇ ਤੱਤਾਂ ਦਾ ਆਮ ਬਾਹਰੀ ਇਲੈਕਟ੍ਰਾੱਨਿਕ ਤਰਤੀਬ ਲਿਖੋ।
3.29
       ਤੱਤ, ਜਿਸ ਦੀ ਬਾਹਰੀ ਇਲੈਕਟਾੱਨਿਕ ਤਰਤੀਬ ਹੇਠ ਲਿਖੀ ਹੈ, ਦਾ ਸਥਾਨ ਆਵਰਤੀ ਸਾਰਣੀ ਵਿੱਚ ਦੱਸੋ-
       (i) ns^2np^4 ਜਿਸ ਦੇ ਲਈ n=3 ਹੈ (ii) (n-1)d^2ns^2 ਜਦੋਂ n=4, ਹੈ ਅਤੇ (iii) (n-2) f^7 (n-1)d^1ns^2 ਜਦੋਂ n=6,
       ਕੁਝ ਤੱਤਾਂ ਦੀ ਪਹਿਲੀ (\Delta, H_1) ਅਤੇ ਦੂਜੀ (\Delta, H_2) ਆਇਨਾਨ ਐਨਥੈਲਪੀ (\mathrm{kJ\ mol^{-1}} ਵਿੱਚ) ਅਤੇ ਇਲੈਕਟ੍ਰਾੱਨ
       ਗ੍ਰਹਿਣ ਐਨਥੈਲਪੀ (\Delta_{eq}H) (kJ \mod^{-1}ਵਿੱਚ) ਹੇਠ ਲਿਖੀ ਹੈ—
       ਤੱਤ
                                \Delta H_{2}
                    \Delta H_1
                                            \Delta_{ea}H
                    520
                                7300
                                             -60
                    419
                                3051
                                            -48
                    1681
                                3374
                                            -328
       IV
                    1008
                                1846
                                            -295
       V
                    2372
                                5251
                                            +48
       VI
                    738
                                1451
                                            -40
       ਉੱਤੇ ਦਿੱਤੇ ਗਏ ਤੱਤਾਂ ਵਿੱਚ<del>ੋਂ</del> ਕਿਹੜੀ
       (i) ਸਭ ਤੋਂ ਘੱਟ ਕਿਰਿਆਸ਼ੀਲ ਧਾਤ ਹੈ ?
       (ii) ਸਭ ਤੋਂ ਵੱਧ ਕਿਰਿਆਸ਼ੀਲ ਧਾਤ ਹੈ ?
       (iii) ਸਭ ਤੋਂ ਵੱਧ ਕਿਰਿਆਸ਼ੀਲ ਅਧਾਤ ਹੈ ?
       (iv) ਸਭ ਤੋਂ ਘੱਟ ਕਿਰਿਆਸ਼ੀਲ ਅਧਾਤ ਹੈ ?
       (v) ਅਜਿਹੀ ਧਾਤ, ਜੋ ਸਥਾਈ ਦੋ−ਅੰਗੀ ਹੈਲਾਈਡ (binary halide), ਜਿਨ੍ਹਾਂ ਦਾ ਸੂਤਰ MX<sub>2</sub>(X=ਹੈਲੋਜਨ)
       (VI) ਅਜਿਹੀ ਧਾਤ, ਜੋ ਮੁੱਖ ਰੂਪ ਵਿੱਚ MX (X=ਹੈਲੋਜਨ) ਵਾਲੇ ਸਥਾਈ ਸਹਿਸੰਯੋਜੀ ਹੈਲਾਈਡ ਬਣਾਉਂਦੀ ਹੈ।
       ਤੱਤ ਦੇ ਹੇਠ ਲਿਖੇ ਜੋੜਿਆਂ ਦੇ ਸੰਯੋਜਨ ਤੋਂ ਬਣੇ ਸਥਾਈ ਦੋ-ਅੰਗੀ ਯੋਗਿਕਾਂ ਦੇ ਸੂਤਰਾਂ ਦੀ ਭਵਿੱਖ ਬਾਣੀ ਕਰੋ-
       (і) ਲੀਥਿਅਮ ਅਤੇ ਆੱਕਸੀਜਨ
                                          (ii) ਮੈਗਨੀਸ਼ੀਅਮ ਅਤੇ ਨਾਈਟ੍ਰੋਜਨ
                                          (iv) ਸਿੱਲੀਕਾੱਨ ਅਤੇ ਆੱਕਸੀਜਨ
       (iii) ਐਲੁਮੀਨਿਅਮ ਅਤੇ ਆਇਓਡੀਨ
                                          (vi) 71ਵਾਂ ਤੱਤ ਅਤੇ ਫਲੋਰੀਨ
       (v) ਫਾੱਸਫੋਰਸ ਅਤੇ ਫਲੋਰੀਨ
       ਆਧੁਨਿਕ ਆਵਰਤੀ ਸਾਰਣੀ ਵਿੱਚ ਆਵਰਤ ਹੇਠ ਲਿਖਿਆਂ ਵਿੱਚੋਂ ਕਿਸ ਨੂੰ ਵਿਅਕਤ ਕਰਦਾ ਹੈ ?
       (i) ਪਰਮਾਣੂ ਕ੍ਰਮ ਸੰਖਿਆ
                                           (ii) ਪਰਮਾਣੂ ਪੁੰਜ
       (iii) ਮੁੱਖ ਕੁਆਂਟਮ ਸੰਖਿਆ
                                          (iv) ਖਿਤਿਜ-ਚਾਪੀ ਕਆਂਟਮ ਸੰਖਿਆ
       ਆਧਨਿਕ ਆਵਰਤੀ ਸਾਰਣੀ ਦੇ ਲਈ ਹੇਠ ਲਿਖਿਆਂ ਦੇ ਸਬੰਧ ਵਿੱਚ ਕਿਹੜਾ ਕਥਨ ਸਹੀ ਨਹੀਂ ਹੈ ?
```

- p-ਬਲਾੱਕ ਵਿੱਚ 6 ਕਾੱਲਮ ਹਨ, ਕਿਉਂਕਿ p-ਸੱਬ ਸ਼ੈੱਲ ਦੇ ਸਾਰੇ ਆੱਰਬਿਟਲ ਭਰਨ ਦੇ ਲਈ ਵੱਧ ਤੋਂ ਵੱਧ 6 ਇਲੈਕਟ੍ਰਾੱਨਾਂ ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ।
- (ii) d-ਬਲਾੱਕ ਵਿੱਚ 8 ਕਾੱਲਮ ਹਨ, ਕਿਉਂਕਿ d-ਸੱਬ ਸ਼ੈੱਲ ਵਿੱਚ ਆਰਬਿਟਲ ਭਰਨ ਦੇ ਲਈ ਵੱਧ ਤੋਂ ਵੱਧ 8 ਇਲੈਕਟਾੱਨਾਂ ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ।
- (iii) ਹਰ ਇੱਕ ਬਲਾੱਕ ਵਿੱਚ ਕਾਲਮਾਂ ਦੀ ਸੰਖਿਆ ਉਸ ਸਬ ਸ਼ੈੱਲ ਵਿੱਚ ਭਰੇ ਜਾ ਸਕਣ ਵਾਲੇ ਇਲੈਕਟ੍ਰਾੱਨਾਂ ਦੇ ਸੰਖਿਆ ਦੇ ਬਰਾਬਰ ਹੁੰਦੀ ਹੈ।
- (iv) ਤੱਤ ਦੀ ਇਲੈਕਟ੍ਰਾਨਿਕ ਤਰਤੀਬ ਭਰਦੇ ਸਮੇਂ ਅੰਤਿਮ ਭਰੇ ਜਾਣ ਵਾਲੇ ਇਲੈਕਟ੍ਰਾਨ ਦਾ ਸੱਬ ਸ਼ੈੱਲ ਉਸਦੇ ਖਿਤਿਜ-ਚਾਪੀ ਕੁਆਂਟਮ ਸੰਖਿਆ ਨੂੰ ਪ੍ਰਦਰਸ਼ਿਤ ਕਰਦਾ ਹੈ।
- ਅਜਿਹਾ ਕਾਰਕ, ਜੋ ਸੰਯੋਜਕਤਾ ਇਲੈਕਟ੍ਰਾਨ ਨੂੰ ਪ੍ਰਭਾਵਿਤ ਕਰਦਾ ਹੈ, ਉਸ ਤੱਤ ਦੀ ਰਸਾਇਣਿਕ ਪ੍ਰਵਿਰਤੀ ਵੀ ਪ੍ਰਭਾਵਿਤ ਕਰਦਾ ਹੈ। ਹੇਠ ਲਿਖਿਆਂ ਵਿੱਚੋਂ ਕਿਹੜਾ ਕਾਰਕ ਸੰਯੋਜਕਾ ਸ਼ੈਲ ਨੂੰ ਪਭਾਵਿਤ ਨਹੀਂ ਕਰਦਾ?
 - (i) ਸੰਯੋਜਕ ਮੁੱਖ ਕੁਆਂਟਮ ਸੰਖਿਆ (n)
 - (ii) ਨਿਊਕਲੀ ਚਾਰਜ (Z)
 - (iii) ਨਿਊਕਲੀ ਪੁੰਜ
 - (iv)ਕੋਰ ਇਲੈਕਟ੍ਰਾਨਾਂ ਦੀ ਸੰਖਿਆ
- ਸਮ ਇਲੈਕਟ਼ਾੱਨਿਕ ਸਪੀਸ਼ੀਜ Fਂ, Ne ਅਤੇ Na $^{+}$ ਦਾ ਅਕਾਰ ਇਨ੍ਹਾਂ ਵਿੱਚੋਂ ਕਿਸ ਨੂੰ ਪਭਾਵਿਤ ਕਰਦਾ ਹੈ ?
 - (i) ਨਿਊਕਲੀ ਚਾਰਜ (Z)
 - (ii) ਮੁੱਖ ਕੁਆਂਟਮ ਸੰਖਿਆ (n)
 - (iii) ਬਾਹਰੀ ਆੱਰਬਿਟਲਾਂ ਵਿੱਚ ਇਲੈਕਟ੍ਰਾੱਨ-ਇਲੈਕਟ੍ਰਾੱਨ ਅੰਤਰ ਕਿਰਿਆ।
 - (iv) ਉੱਤੇ ਦਿੱਤੇ ਗਏ ਕਾਰਕਾਂ ਵਿੱਚੋਂ ਕੋਈ ਵੀ ਨਹੀਂ, ਕਿਉਂਕਿ ਉਨ੍ਹਾਂ ਦਾ ਅਕਾਰ ਸਮਾਨ ਹੈ।
- ਆਇਨਨ ਐਨਥੈਲਪੀ ਦੇ ਸਬੰਧ ਵਿੱਚ ਹੇਠ ਲਿਖਿਆਂ ਵਿਚੋਂ ਕਿਹੜਾ ਕਥਨ ਗਲਤ ਹੈ ?
 - (i) ਹਰ ਇੱਕ ਸਿਲਸਿਲੇਵਾਰ ਇਲੈਕਟ੍ਰਾਨ ਨਾਲ ਆਇਨਨ ਐਨਥੈਲਪੀ ਵੱਧਦੀ ਹੈ।
 - (ii) ਕੋਰ ਨੋਬਲ ਗੈਸ ਦੀ ਤਰਤੀਬ ਵਿੱਚੋਂ ਜਦੋਂ ਇਲੈਕਟ੍ਰਾੱਨ ਨੂੰ ਕੱਢਿਆ ਜਾਂਦਾ ਹੈ, ਤਾਂ ਆਇਨਨ ਐਨਥੈਲਪੀ ਦਾ ਮਾਨ ਸੱਭ ਤੋਂ ਵੱਧ ਹੁੰਦਾ ਹੈ।
 - (iii) ਆਇਨਨ ਐਨਥੈਲਪੀ ਦੇ ਮਾਨ ਵਿੱਚ ਜਿਆਦਾ ਵਾਧਾ ਸੰਯੋਜਕਤਾ ਇਲੈਕਟ੍ਰਾੱਨਾਂ ਖਤਮ ਹੋਣ ਨੂੰ ਵਿਅਕਤ ਕਰਦਾ ਹੈ।
 - (iv) ਘੱਟ n ਮਾਨ ਵਾਲੇ ਆੱਰਬਿਟਲਾਂ ਨਾਲੋਂ ਵਧੇਰੇ n ਮਾਨ ਵਾਲੇ ਆੱਰਬਿਟਲਾਂ ਦੀ ਤੁਲਨਾ ਵਿੱਚ ਇਲੈਕਟਾਨਾਂ ਨੂੰ ਅਸਾਨੀ ਨਾਲ ਕੱਢਿਆ ਜਾ ਸਕਦਾ ਹੈ।
- В, АІ, Мд, К ਤੱਤਾਂ ਦੇ ਲਈ ਧਾਤਵੀ ਲੱਛਣਾਂ ਦਾ ਸਹੀ ਕ੍ਰਮ ਇਨ੍ਹਾਂ ਵਿੱਚੋਂ ਕਿਹੜਾ ਹੈ? 3.38
 - (i) B > Al > Mg > K
- (ii) Al > Mg > B > K
- (iii) Mg > Al > K > B
- (iv) K > Mg > Al > B
- 3.39 ਤੱਤਾਂ B, C, N, F, ਅਤੇ Si ਦੇ ਲਈ ਅਧਾਤਵੀ ਲੱਛਣਾਂ ਦਾ ਇਨ੍ਹਾਂ ਵਿੱਚੋਂ ਸਹੀ ਕ੍ਰਮ ਕਿਹੜਾ
 - (i) B > C > Si > N > F
- (ii) Si > C > B > N > F
- (iii) F > N > C > B > Si (iv) F > N > C > Si > B
- 3.40 ਤੱਤਾਂ F, Cl, O ਅਤੇ N ਦੀ ਆੱਕਸੀਕਰਣ ਗੁਣ ਦੇ ਅਧਾਰ ਤੇ ਉਨ੍ਹਾਂ ਦੀ ਰਸਾਇਣਿਕ ਕਿਰਿਆਸ਼ੀਲਤਾ ਦਾ ਹੇਠ ਲਿਖਿਆਂ ਵਿੱਚੋਂ ਕਿਹੜਾ ਤੱਤਾਂ ਵਿੱਚ ਹੈ ?
 - (i) F > Cl > O > N (ii) F > O > Cl > N
 - (iii) Cl > F > O > N (iv) O > F > N > Cl

जिंट 4

ਰਸਾਇਣਿਕ ਬੰਧਨ ਅਤੇ ਅਣਵੀਂ ਬਣਤਰ

CHEMICAL BONDING AND MOLECULAR STRUCTURE

ਉਦੇਸ਼

ਇਸ ਯੂਨਿਟ ਦੇ ਅਧਿਐਨ ਤੋਂ ਬਾਅਦ ਤੁਸੀਂ

- ਰਸਾਇਣਿਕ ਬੰਧਨ ਦੀ ਕਾੱਸੇਲ-ਲੁਈਸ ਪ੍ਰਸਤਾਵ ਨੂੰ ਸਮਝ ਸਕੋਗੇ
- ਅਸ਼ਟਕ ਨਿਯਮ ਅਤੇ ਇਸ ਦੀਆਂ ਸੀਮਾਵਾਂ ਦੀ ਵਿਆਖਿਆ ਕਰ ਸਕੋਗੇ ਅਤੇ ਸਧਾਰਣ ਅਣੁਆਂ ਦੀ ਲਈਸ ਬਣਤਰਾਂ ਨੂੰ ਲਿਖ ਸਕੋਗੇ;
- ਭਿੰਨ-ਭਿੰਨ ਕਿਸਮ ਦੇ ਬੰਧਨ ਬਣਨ ਦੇ ਕਾਰਣ ਦੱਸ ਸਕੋਗੇ:
- ਵੀ.ਐਸ.ਈ.ਪੀ.ਆਰ ਸਿਧਾਂਤ ਦਾ ਵੇਰਵਾ ਦੇ ਸਕੋਗੇ ਅਤੇ ਸਰਲ ਅਣੂਆਂ ਦੀ ਜੁਮੈਟਰੀ ਦੀ ਭਵਿੱਖ ਬਾਣੀ ਕਰ ਸਕੋਗੇ;
- ਸਹਿਸੰਯੋਗੀ ਦੇ ਸੰਯੋਜਕਤਾ ਬੰਧਨ ਦੇ ਸਿਧਾਂਤ ਦੀ ਵਿਆਖਿਆ ਕਰ ਸਕੋਗੇ:
- ਸਹਿਸੰਯੋਜਕ ਬੰਧਨਾਂ ਦੇ ਦਿਸ਼ਾਤਮਕ ਗੁਣਾਂ ਦੀ ਭੱਵਿਖਬਾਣੀ ਕਰ ਸਕੋਗੇ:
- ਭਿੰਨ-ਭਿੰਨ ਕਿਸਮ ਦੇ ਉਨ੍ਹਾਂ ਸੰਕਰਣਾਂ ਦੇ ਵਿੱਚ ਅੰਤਰ ਸਪੱਸ਼ਟ ਕਰ ਸਕੋਗੇ, ਜਿਨ੍ਹਾਂ ਵਿੱਚ s, p ਅਤੇ d ਅੱਰਬਿਟਲ ਸ਼ਾਮਲ ਹੋਣ ਅਤੇ ਅਣੂਆਂ ਦੀਆਂ ਆਕ੍ਰਿਤੀਆਂ ਨੂੰ ਉਲੀਕ ਸਕੋਗੇ;
- ਸਮਨਿਊਕਲੀ ਦੋ ਪਰਮਾਣਵੀਂ ਅਣੂਆਂ ਦੇ ਅਣਵੀਂ ਅੱਰਬਿਟਲ ਸਿਧਾਂਤ ਦੀ ਵਿਆਖਿਆ ਕਰ ਸਕੋਗੇ:
- ਹਾਈਡ੍ਰੋਜਨ ਬੰਧਨ ਸੰਕਲਪ ਦੀ ਵਿਆਖਿਆ ਕਰ ਸਕੋਗੇ।

"ਵਿਗਿਆਨੀ ਲਗਾਤਾਰ ਨਵੇਂ ਯੋਗਿਕਾਂ ਦੀ ਖੋਜ ਕਰ ਰਹੇ ਹਨ, ਉਨ੍ਹਾਂ ਦੇ ਤੱਥਾਂ ਨੂੰ ਕ੍ਰਮ ਵਿੱਚ ਵਿਵਸਥਿਤ ਕਰ ਰਹੇ ਹਨ, ਮੌਜੂਦ ਜਾਣਕਾਰੀ ਦੇ ਅਧਾਰ ਤੇ ਉਨ੍ਹਾਂ ਦੀ ਵਿਆਖਿਆ ਦੀ ਕੋਸ਼ਿਸ਼ ਕਰ ਰਹੇ ਹਨ, ਨਵੇਂ ਤੱਥਾਂ ਦੀ ਵਿਆਖਿਆ ਕਰਨ ਦੇ ਲਈ ਪੁਰਾਣੀਆਂ ਧਾਰਣਾਵਾਂ ਵਿੱਚ ਸੋਧ ਕਰ ਰਹੇ ਹਨ ਜਾਂ ਨਵੇਂ ਸਿਧਾਂਤਾਂ ਨੂੰ ਵਿਕਸਿਤ ਕਰ ਰਹੇ ਹਨ।"

ਮਾਦਾ ਇੱਕ ਜਾਂ ਭਿੰਨ-ਭਿੰਨ ਕਿਸਮ ਦੇ ਤੱਤਾਂ ਤੋਂ ਮਿਲ ਕੇ ਬਣਿਆ ਹੁੰਦਾ ਹੈ। ਆਮ ਸਥਿਤੀਆਂ ਵਿੱਚ ਨੋਬਲ ਗੈਸਾਂ ਤੋਂ ਇਲਾਵਾ ਕੋਈ ਹੋਰ ਤੱਤ ਇੱਕ ਸੁਤੰਤਰ ਪਰਮਾਣ ਦੇ ਰੂਪ ਵਿੱਚ ਮੌਜੂਦ ਨਹੀਂ ਹੁੰਦਾ ਹੈ। ਪਰਮਾਣੂਆਂ ਦੇ ਸਮੂਹ ਵਿਸ਼ੇਸ਼ ਗੁਣਾਂ ਵਾਲੇ ਸਪੀਸ਼ੀਜ਼ ਦੇ ਰੂਪ ਵਿੱਚ ਮੌਜੂਦ ਹੁੰਦੇ ਹਨ। ਪ੍ਰਮਾਣੂਆਂ ਦੇ ਅਜਿਹੇ ਸਮੂਹ ਨੂੰ 'ਅਣੂ' ਪ੍ਰਤੱਖ ਕਹਿੰਦੇ ਹਨ।ਪ੍ਰਤੱਖ ਰਪ ਵਿੱਚ ਕੋਈ ਬਲ ਅਣਆਂ ਦੇ ਸੰਘਟਕ ਪਰਮਾਣਆਂ ਨੂੰ ਆਪਸ ਵਿੱਚ ਫੜ ਕੇ ਰੱਖਦੇ ਹਨ। ਭਿੰਨ-ਭਿੰਨ ਰਸਾਇਣਿਕ ਸਪੀਸ਼ੀਜ਼ ਵਿੱਚ ਉਨ੍ਹਾਂ ਦੇ ਅਨੇਕ ਸੰਘਟਕਾਂ (ਪਰਮਾਣੂਆਂ ਆਇਨਾਂ ਆਦਿ) ਨੂੰ ਇਕੱਠੇ ਰੱਖਣ ਵਾਲੇ ਆਕਰਸ਼ਣ ਬਲ ਨੂੰ 'ਰਸਾਇਣਿਕ ਬੰਧਨ' ਕਹਿੰਦੇ ਹਨ। ਕਿਉਂਕਿ ਰਸਾਇਣਿਕ ਯੋਗਿਕ ਭਿੰਨ-ਭਿੰਨ ਤੱਤਾਂ ਦੇ ਪਰਮਾਣੂਆਂ ਦੀ ਭਿੰਨ-ਭਿੰਨ ਵਿਧੀਆਂ ਨਾਲ ਸੰਯੁਕਤ ਹੋਣ ਦੇ ਪਰਿਣਾਮ ਸਰਪ ਬਣਦੇ ਹਨ, ਇਸ ਲਈ ਕਈ ਪਸ਼ਨ ਪੈਦਾ ਹੁੰਦੇ ਹਨ। ਪਰਮਾਣ ਸੰਯਕਤ ਕਿਉਂ ਹੁੰਦੇ ਹਨ ? ਸਿਰਫ ਕੁੱਝ ਹੀ ਸੰਯੋਜਨ ਹੀ ਸੰਭਵ ਕਿਉਂ ਹਨ ? ਕਿਉਂ ਕੁੱਝ ਪਰਮਾਣੂ ਸੰਯੁਕਤ ਹੁੰਦੇ ਹਨ, ਜਦਕਿ ਕੁੱਝ ਦੂਜੇ ਅਜਿਹੇ ਨਹੀਂ ਹੁੰਦੇ ਹਨ? ਅਣੂਆਂ ਦੀਆਂ ਨਿਸ਼ਚਿਤ ਆਕ੍ਰਿਤੀਆਂ ਕਿਉਂ ਹੁੰਦੀਆਂ ਹਨ? ਇਨ੍ਹਾਂ ਸਾਰਿਆਂ ਪਸ਼ਨਾਂ ਦਾ ਉੱਤਰ ਦੇਣ ਦੇ ਲਈ ਸਮੇਂ-ਸਮੇਂ ਤੇ ਭਿੰਨ-ਭਿੰਨ ਸਿਧਾਂਤ ਸਾਹਮਣੇ ਆਏ ਹਨ। ਇਹ ਹਨ-ਕਾੱਸੇਲ ਲਈਸ ਸਿਧਾਂਤ, ਸੰਯੋਜਕਤਾ ਸ਼ੈੱਲ ਇਲੈਕਟ੍ਰਾੱਨ ਯੂਗਮ ਪ੍ਰਤੀਕਰਸ਼ਣ (ਵੀ.ਐਸ.ਈ.ਪੀ.ਆਰ) ਸਿਧਾਂਤ, ਸੰਯੋਜਕਤਾ ਬੰਧਨ ਸਿਧਾਂਤ ਅਤੇ ਅਣਵੀਂ ਆੱਰਬਿਟਲ ਸਿਧਾਂਤ।

ਸੰਯੋਜਕਤਾ ਦੇ ਭਿੰਨ-ਭਿੰਨ ਸਿਧਾਂਤਾਂ ਦਾ ਵਿਕਾਸ ਅਤੇ ਰਸਾਇਣਿਕ ਬੰਧਨਾਂ ਦੀ ਪ੍ਰਕਿਰਤੀ ਦੀ ਵਿਆਖਿਆ ਦਾ ਸਿੱਧਾ ਸਬੰਧ ਅਸਲ ਵਿੱਚ ਪਰਮਾਣੂ ਬਣਤਰ ਤੱਤਾਂ ਦੀ ਇਲੈਕਟ੍ਰਾੱਨਿਕ ਤਰਤੀਬ ਅਤੇ ਅਵਰਤੀ ਸਾਰਣੀ ਨੂੰ ਸਮਝਣ ਨਾਲ ਰਿਹਾ ਹੈ। ਹਰ ਇੱਕ ਸਿਸਟਮ ਵੱਧ ਸਥਾਈ ਹੋਣ ਦੀ ਕੋਸ਼ਿਸ਼ ਕਰਦਾ ਹੈ। ਇਹ ਬੰਧਨ ਸਥਾਈਪਨ ਪਾਪਤ ਕਰਨ ਦੇ ਲਈ ਉਰਜਾ ਨੂੰ ਘੱਟ ਕਰਨ ਦਾ ਕਦਰਤੀ ਤਰੀਕਾ ਹੈ।

4.1 ਰਸਾਇਣਿਕ ਬੰਧਨ ਦੀ ਕਾਂਸੇਲ ਲਈਸ ਧਾਰਣਾ

ਇਲੈਕਟ੍ਰਾੱਨਾਂ ਦੁਆਰਾ ਰਸਾਇਣਿਕ ਬੰਧਨਾਂ ਦੇ ਬਣਨ ਦੀ ਵਿਆਖਿਆ ਦੇ ਲਈ ਕਈ ਯਤਨ ਕੀਤੇ ਗਏ, ਲੇਕਿਨ ਸੰਨ 1916 ਵਿੱਚ ਕਾੱਸੇਲ ਅਤੇ ਲੁਈਸ ਸੁਤੰਤਰ ਰੂਪ ਵਿੱਚ ਸੰਤੋਖਜਨਕ ਵਿਆਖਿਆ ਦੇਣ ਵਿੱਚ ਸਫਲ ਹੋਏ। ਉਨ੍ਹਾਂ ਨੇ ਸਭ ਤੋਂ ਪਹਿਲਾਂ ਸੰਯੋਜਕਤਾ (Valence) ਦੀ ਤਰਕ ਸੰਗਤ ਵਿਆਖਿਆ ਕੀਤੀ। ਇਹ ਵਿਆਖਿਆ ਨੋਬਲ ਗੈਸਾਂ ਦੀ ਅਕਿਰਿਆਸ਼ੀਲਤਾ ਤੇ ਅਧਾਰਿਤ ਸੀ।

ਲੂਈਸ ਪਰਮਾਣੂਆਂ ਨੂੰ ਇੱਕ ਧਨ ਚਾਰਜਿਤ ਕਰਨਲ (ਅੰਤਰਿਕ ਇਲੈਕਟ੍ਰਾਨ ਅਤੇ ਨਿਊਕਲੀਅਸ) ਅਤੇ ਬਾਹਰੀ ਆਰਬਿਟਲਾਂ ਦੇ ਰੂਪ ਵਿੱਚ ਨਿਰੂਪਿਤ ਕੀਤਾ। ਬਾਹਰੀ ਆਰਬਿਟਲਾਂ ਵਿੱਚ ਅੱਠ ਇਲੈਕਟ੍ਰਾੱਨ ਸਮਾ ਸਕਦੇ ਹਨ। ਉਸਨੇ ਇਹ ਵੀ ਮੰਨਿਆ ਕਿ ਇਹ ਅੱਠੇ ਇਲੈਕਟ੍ਰਾੱਨ ਕਿਉਬ ਦੇ ਅੱਠਾਂ ਕੋਣਿਆਂ ਤੇ ਮੌਜੂਦ ਹੁੰਦੇ ਹਨ ਜੋ ਕੇਂਦਰੀ ਕਰਨਲ ਨੂੰ ਚੌਹਾਂ ਪਾਸਿਆਂ ਤੋਂ ਘੇਰ ਕੇ ਰੱਖਦੇ ਹਨ। ਇਸ ਤਰ੍ਹਾਂ ਸੋਡੀਅਮ ਦੇ ਬਾਹਰੀ ਆਰਬਿਟ ਵਿੱਚ ਮੌਜਦ ਇੱਕਲਾ ਇਲੈਕਟ੍ਰਾਨ ਕਿਊਬ ਦੇ ਇੱਕ ਕੋਣੇ ਵਿੱਚ ਸਥਿਤ ਰਹਿੰਦਾ ਹੈ, ਜਦਕਿ ਨੋਬਲ ਗੈਸਾਂ ਵਿੱਚ ਕਿਉਬ ਦੇ ਅੱਠਾਂ ਕੋਣਿਆਂ ਉਤੇ ਇੱਕ-ਇੱਕ ਇਲੈਕਟ੍ਰਾਨ ਮੌਜਦੂ ਰਹਿੰਦਾ ਹੈ। ਇਲੈਕਟ੍ਰਾੱਨਾਂ ਦਾ ਇਹ ਅਸ਼ਟਕ ਇੱਕ ਵਿਸ਼ੇਸ਼ ਸਥਾਈ ਤਰਤੀਬ ਨਿਰੁਪਤ ਕਰਦਾ ਹੈ। ਲੁਈਸ ਨੇ ਇਹ ਸਵੈਸਿੱਧ ਦਿੱਤਾ ਕਿ ਪਰਮਾਣੂ ਆਪਸ ਵਿੱਚ ਰਸਾਇਣਿਕ ਬੰਧਨ ਦੁਆਰਾ ਸੰਯੁਕਤ ਹੋ ਕੇ ਆਪਣੇ ਸਥਾਈ ਅਸ਼ਟਕ ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਦੇ ਹਨ। ਉਦਾਹਰਣ ਵਜੋਂ–ਸੋਡੀਅਮ ਅਤੇ ਕਲੋਰੀਨ ਵਿੱਚ ਸੋਡੀਅਮ ਆਪਣਾ ਇੱਕ ਇਲੈਕਟ੍ਰਾਨ ਕਲੋਰੀਨ ਨੂੰ ਸੌਖਿਆਂ ਹੀ ਦੇ ਕੇ ਆਪਣਾ ਸਥਾਈ ਅਸ਼ਟਕ ਪ੍ਰਾਪਤ ਕਰਦਾ ਹੈ ਅਤੇ ਕਲੋਰੀਨ ਇੱਕ ਇਲਕਟ੍ਰਾੱਨ ਪ੍ਰਾਪਤ ਕਰਕੇ ਆਪਣਾ ਸਥਾਈ ਅਸ਼ਟਕ ਨਿਰਮਿਤ ਕਰਦਾ ਹੈ, ਅਰਥਾਤ ਸੋਡੀਅਮ ਆਇਨ (Na^+) ਅਤੇ Cl^- ਬਣਦੇ ਹਨ। ਹੋਰ ਉਦਾਹਰਣਾਂ (ਜਿਵੇਂ $-Cl_2$, $H_2, F_2,$ ਆਦਿ) ਵਿੱਚ ਪਰਮਾਣੂਆਂ ਦਾ ਬੰਧਨ ਆਪਸ ਵਿੱਚ ਇਲੈਕਟ੍ਰਾੱਨਾਂ ਦੇ ਸਹਿ ਭਾਜਨ ਦੁਆਰਾ ਨਿਰਮਿਤ ਹੁੰਦੇ ਹਨ।ਇਸ ਪ੍ਰਕਿਰਿਆ ਦੁਆਰਾ ਇਨ੍ਹਾਂ ਅਣੂਆਂ ਦੇ ਪਰਮਾਣੂ ਇੱਕ ਬਾਹਰੀ ਸਥਾਈ ਅਸ਼ਟਕ ਅਵਸਥਾ ਪ੍ਰਾਪਤ ਕਰਦੇ ਹਨ।

ਲੂਈਸ ਪ੍ਰਤੀਕ : ਕਿਸੇ ਅਣੂ ਦੇ ਬਣਨ ਵਿੱਚ ਪਰਮਾਣੂਆਂ ਦੇ ਕੇਵਲ ਬਾਹਰੀ ਸ਼ੈੱਲ ਇਲੈਕਟ੍ਰਾੱਨ ਰਸਾਇਣਿਕ ਸੰਯੋਜਨ ਵਿੱਚ ਹਿੱਸਾ ਲੈਂਦੇ ਹਨ। ਇਹ ਇਨ੍ਹਾਂ ਦੇ ਸੰਯੋਜਕਤਾ ਇਲੈਕਟ੍ਰਾਨ (valence electron) ਆਖਵਾਉਂਦੇ ਹਨ। ਅੰਤਰਿਕ ਸ਼ੈੱਲ ਇਲੈਕਟ੍ਰਾੱਨ (Inner Shell Electron) ਚੰਗੀ ਤਰ੍ਹਾਂ ਸੁਰੱਖਿਅਤ ਹੁੰਦੇ ਹਨ ਅਤੇ ਆਮ ਕਰਕੇ ਸੰਯੋਜਨ ਪ੍ਰਕਿਰਿਆ ਵਿੱਚ ਭਾਗ ਨਹੀਂ ਲੈਂਦੇ। ਇੱਕ ਅਮਰੀਕੀ ਰਸਾਇਣ ਵਿਗਿਆਨੀ ਜੀ.ਐਨ. ਲਈਸ ਨੇ ਪਰਮਾਣੂ ਵਿੱਚ ਸੰਯੋਜਕਤਾ ਇਲੈਕਟ੍ਰਾੱਨਾਂ ਨੂੰ ਨਿਰੂਪਿਤ ਕਰਨ ਦੇ ਲਈ ਸੌਖੇ ਪ੍ਤੀਕਾਂ ਨੂੰ ਪ੍ਰਸਤਾਵਿਤ ਕੀਤਾ, ਜਿਨ੍ਹਾਂ ਨੂੰ ਲੁਈਸ ਪ੍ਤੀਕ (Lewis Symbols) ਕਿਹਾ ਜਾਂਦਾ ਹੈ।ਉਦਾਹਰਣ ਵਜੋਂ ਦੂਜੇ ਪੀਰੀਅਡ ਦੇ ਤੱਤਾਂ ਦੇ 'ਲੁਈਸ ਪ੍ਤੀਕ' ਇਸ ਪ੍ਰਕਾਰ ਹਨ—

ਲੁਈਸ ਪ੍ਰਤੀਕਾਂ ਦਾ ਮਹੱਤਵ : ਪ੍ਰਤੀਕ ਦੇ ਚੌਹਾਂ ਪਾਸਿਆਂ ਤੇ

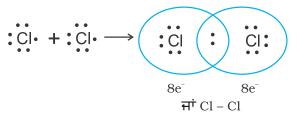
ਮੌਜੂਦ ਬਿੰਦੂਆਂ ਦੀ ਸੰਖਿਆ ਪਰਮਾਣੂ ਦੇ ਸੰਯੋਜਕਤਾ ਇਲੈਕਟ੍ਰਾਂਨਾਂ ਦੀ ਸੰਖਿਆ ਨੂੰ ਦਰਸਾਉਂਦੀ ਹੈ। ਇਹ ਸੰਖਿਆ ਤੱਤ ਦੀ ਆਮ ਜਾਂ ਗੁਰੱਪ ਸੰਯੋਜਕਤਾ ਦੇ ਪਰਿਕਲਨ ਵਿੱਚ ਸਹਾਇਤਾ ਕਰਦੀ ਹੈ। ਤੱਤ ਦੀ ਗਰੁੱਪ ਸੰਯੋਜਕਤਾ ਜਾਂ ਤੋਂ ਲਈਸ ਪ੍ਤੀਕ ਵਿੱਚ ਮੌਜੂਦ ਬਿੰਦੂਆਂ ਦੀ ਸੰਖਿਆ ਦੇ ਬਰਾਬਰ ਹੁੰਦੀ ਹੈ ਜਾਂ 8 ਵਿਚੋਂ ਬਿੰਦੂਆਂ ਦੀ ਸੰਖਿਆ ਦੇ ਬਰਾਬਰ ਹੁੰਦੀ ਹੈ ਜਾਂ 8 ਵਿਚੋਂ ਬਿੰਦੂਆਂ ਦੀ ਸੰਖਿਆ ਨੂੰ ਘਟਾ ਕੇ ਇਸ ਨੂੰ ਪਰਿਕਲਿਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਰਸਾਇਣਿਕ ਬੰਧਨ ਦੇ ਸਬੰਧ ਵਿੱਚ ਕਾੱਸੇਲ ਨੇ ਹੇਠ ਲਿਖੇ ਤੱਥਾਂ ਦੇ ਵੱਲ ਧਿਆਨ ਆਕਰਸ਼ਿਤ ਕੀਤਾ—

- ਆਵਰਤੀ ਸਾਰਣੀ ਵਿੱਚ ਉੱਚ ਇਲੈਕਟੋਨੈਗੇਟਿਵਤਾ ਵਾਲੇ ਹੈਲੋਜਨ ਅਤੇ ਉਪ ਇਲੈਕਟ੍ਰੋਪੋਜ਼ੇਟਿਵਟੀ ਵਾਲੀਆਂ ਖਾਰੀ ਧਾਤਾਂ ਇੱਕ-ਦੂਜੇ ਤੋਂ ਨੋਬਲ ਗੈਸਾਂ ਦੁਆਰਾ ਵੱਖ ਰੱਖੇ ਗਏ ਹਨ।
- ਹੈਲੋਜਨ ਪਰਮਾਣੂਆਂ ਤੋਂ ਰਿਣਆਇਨ ਅਤੇ ਖਾਰੀ ਧਾਤਾਂ ਤੋਂ ਧਨਆਇਨ ਦਾ ਨਿਰਮਾਣ ਸਬੰਧਿਤ ਪਰਮਾਣੂਆਂ ਦੁਆਰਾ ਕ੍ਰਮਵਾਰ ਇੱਕ ਇਲੈਟ੍ਰਾਨ ਗ੍ਰਹਿਣ ਅਤੇ ਇੱਕ ਇਲੈਕਟ੍ਰਾਨ ਮੁਕਤ ਹੋਣਦੇ ਫਲਸਰੂਪ ਹੁੰਦਾ ਹੈ।
- ਇਸ ਤਰ੍ਹਾਂ ਨਿਰਮਿਤ ਰਿਣਆਇਨ ਅਤੇ ਧਨਆਇਨ ਨੋਬਲ ਗੈਸ ਦੀ ਸਥਾਈ ਇਲੈਕਟ੍ਰਾਨਿਕ ਤਰਤੀਬ ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਦੇ ਹਨ। ਨੋਬਲ ਗੈਸਾਂ ਵਿੱਚ ਸਭ ਤੋਂ ਬਾਹਰੀ ਸ਼ੈੱਲ ਦੀ ਇਲੈਕਟ੍ਰਾਨਾਂ ਵਾਲੀ (ਅਸ਼ਟਕ) ਇਲੈਕਟ੍ਰਾਨਿਕ ਤਰਤੀਬ ns^2np^6 ਵਿਸ਼ੇਸ਼ ਰੂਪ ਵਿੱਚ ਸਥਾਈ ਹੁੰਦੀ ਹੈ। ਹੀਲਿਅਮ ਇਸ ਦਾ ਅਪਵਾਦ ਹੈ, ਜਿਸ ਦੇ ਸਭ ਤੋਂ ਬਾਹਰੀ ਸ਼ੈੱਲ ਵਿੱਚ ਕੇਵਲ ਦੋ ਇਲੈਕਟ੍ਰਾਨ (ਡੂਪਲੈਂਟ) ਹੁੰਦੇ ਹਨ।
- ਰਿਣ ਆਇਨ ਅਤੇ ਧਨਆਇਨ ਸਥਿਰ ਬਿਜਲਈ ਆਕਰਸ਼ਣ ਦੁਆਰਾ ਸਥਾਈਪਨ ਗ੍ਰਹਿਣ ਕਰਦੇ ਹਨ।

ਉਦਾਹਰਣ ਵਜੋਂ- ਉਪਰੋਕਤ ਸਿਧਾਂਤ ਦੇ ਅਨੁਸਾਰ ਸੋਡੀਅਮ ਅਤੇ ਕਲੋਰੀਨ ਤੋਂ NaCl ਦਾ ਬਣਨਾ ਹੇਠ ਲਿਖੇ ਰੂਪ ਵਿੱਚ ਦਰਸਾਇਆ ਜਾ ਸਕਦਾ ਹੈ—

Na → Na⁺ + e⁻
[Ne]
$$3s^1$$
 [Ne]
 $C1 + e^-$ → $C1^-$
[Ne] $3s^2 3p^5$ [Ne] $3s^2 3p^6$ or [Ar]
 $Na^+ + C1^-$ → NaCl or Na⁺C1⁻
 CaF_2 ਦਾ ਬਣਨਾ ਇਸ ਤਰ੍ਹਾਂ ਦਰਸਾਇਆ ਜਾ ਸਕਦਾ ਹੈ–
 Ca → $Ca^{2^+} + 2e^-$
[Ar] $4s^2$ [Ar]
 $F + e^-$ → F^-
[He] $2s^2 2p^5$ [He] $2s^2 2p^6$ or [Ne]
 $Ca + 2F^-$ → CaF_2 or $Ca^{2^+}(F^-)_2$
 $VAY = CABBB = CAB$

ਧਨਆਇਨ ਅਤੇ ਰਿਣਆਇਨ ਦੇ ਵਿੱਚ ਆਕਰਸ਼ਣ ਦੇ ਫਲਸਰੂਪ ਨਿਰਮਿਤ ਬੰਧਨ ਨੂੰ 'ਬਿਜਲਈ ਸੰਯੋਜਕ ਬੰਧਨ' (Electrovalent Bond) ਦਾ ਨਾਂ ਦਿੱਤਾ ਗਿਆ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਬਿਜਲਈ ਸੰਯੋਜਕਤਾ (Electrovalency) ਆਇਨ ਤੇ ਮੌਜੂਦ ਚਾਰਜ ਦੀਆਂ ਇਕਾਈਆਂ ਦੀ ਸੰਖਿਆ ਦੇ ਬਰਾਬਰ ਹੁੰਦੀ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਕੈਲਸ਼ਿਅਮ ਦੀ ਧਨਾਤਮਕ ਬਿਜਲਈ ਸੰਯੋਜਕਤਾ ਦੋ ਹੈ, ਜਦ ਕਿ ਕਲੋਰੀਨ ਦੀ ਰਿਣਾਤਮਕ ਸੰਯੋਜਕਤਾ ਇੱਕ ਹੈ।

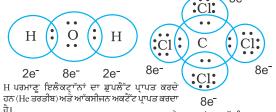

ਇਲੈਕਟ੍ਰਾੱਨ ਸਥਾਨ ਅੰਤਰਣ ਦੁਆਰਾ ਆਇਨ ਦਾ ਬਣਨਾ ਅਤੇ ਆਇਨਿਕ ਕ੍ਰਿਸਟਲੀ ਯੋਗਿਕਾਂ ਦੇ ਬਣਨ ਦੇ ਬਾਰੇ ਵਿੱਚ ਆਧੁਨਿਕ ਸੰਕਲਪਨਾਵਾਂ ਕਾਂਸਲ ਦੇ ਸਵੈਸਿਧਾਂ (postulates) ਤੇ ਅਧਾਰਿਤ ਹੈ। ਆਇਨਿਕ ਯੋਗਿਕਾਂ ਦੇ ਵਿਹਾਰ ਨੂੰ ਸਮਝਣ ਅਤੇ ਉਨ੍ਹਾਂ ਨੂੰ ਕ੍ਰਮਬੱਧ ਕਰਨ ਵਿੱਚ ਕਾੱਸੇਲ ਦੇ ਵਿਚਾਰਾਂ ਤੋਂ ਬਹੁਤ ਸਹਾਇਤਾ ਮਿਲੀ ਹੈ। ਨਾਲ ਹੀ ਨਾਲ ਉਨ੍ਹਾਂ ਨੇ ਇਸ ਤੱਥ ਨੂੰ ਵੀ ਸਵਿਕਾਰ ਕੀਤਾ ਹੈ ਕਿ ਅਨੇਕਾਂ ਯੋਗਿਕ ਉਨ੍ਹਾਂ ਦੇ ਸੰਕਲਪ ਦੇ ਨਾਲ ਮੇਲ ਨਹੀਂ ਖਾਂਦੇ।

4.1.1 ਅਸ਼ਟਕ ਨਿਯਮ (Octel Rule)

ਸੰਨ 1916 ਵਿੱਚ ਕਾੱਸੇਲ ਅਤੇ ਲੁਈਸ ਨੇ ਪਰਮਾਣੂਆਂ ਦੇ ਵਿੱਚ ਰਸਾਇਣਿਕ ਸੰਯੋਜਨ ਦੇ ਇੱਕ ਮਹਤਵ ਪੂਰਣ ਸਿਧਾਂਤ ਨੂੰ ਵਿਕਸਿਤ ਕੀਤਾ।ਇਸ ਨੂੰ 'ਰਸਾਇਣਿਕ ਬੰਧਨ ਦਾ ਇਲੈਟ੍ਰਾਨਿਕੀ ਸਿਧਾਂਤ' ਕਿਹਾ ਜਾਂਦਾ ਹੈ।ਇਸ ਸਿਧਾਂਤ ਦੇ ਅਨੁਸਾਰ ਪਰਮਾਣੂਆਂ ਦਾ ਸੰਯੋਜਕ ਇਲੈਕਟ੍ਰਾੱਨਾਂ ਦੇ ਇੱਕ ਪਰਮਾਣੂ ਤੋਂ ਦੂਜੇ ਪਰਮਾਣੂ ਤੇ ਸਥਾਨ ਅੰਤਰਣ ਦੇ ਦੁਆਰਾ ਜਾਂ ਸੰਯੋਜਕ ਇਲੈਕਟ੍ਰਾੱਨਾਂ ਦੇ ਸਹਿਭਾਜਨ (sharing) ਦੇ ਦੁਆਰਾ ਹੁੰਦਾ ਹੈ। ਇਸ ਪ੍ਰਕਿਰਿਆ ਵਿੱਚ ਪਰਮਾਣੂ ਆਪਣੇ ਸੰਯੋਜਕਤਾ ਸ਼ੈੱਲ ਵਿੱਚ ਅਸ਼ਟਕ ਪ੍ਰਾਪਤ ਕਰਦੇ ਹਨ। ਇਸ ਨੂੰ 'ਅਸ਼ਟਕ ਨਿਯਮ' ਕਹਿੰਦੇ ਹਨ।

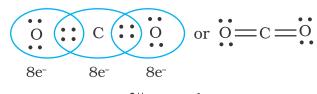
4.1.2 ਸਹਿਸੰਯੋਜੀ ਬੰਧਨ

ਸੰਨ 1919 ਵਿੱਚ ਲੈਂਗਮਯੂਰ ਨੇ ਲੁਈਸ ਦੇ ਸੰਕਲਪਾਂ ਵਿੱਚ ਸੋਧ ਕੀਤੀ। ਉਨ੍ਹਾਂ ਨੇ ਸਥਿਰ ਕਿਊਬੀਕਲ ਅਸ਼ਟਕ ਧਾਰਣਾ ਨੂੰ ਤਿਆਗ ਕੇ 'ਸਹਿਸੰਯੋਜਕ ਬੰਧਨ' (covalent bond) ਦੀ ਵਰਤੋਂ ਕੀਤੀ। ਲੁਈਸ-ਲੈਂਗਮਯੂਰ ਦੇ ਸਿਧਾਂਤ ਨੂੰ ਕਲੋਰੀਨ ਅਣੂ (Cl_2) ਬਣਨ ਦੀ ਉਦਾਹਰਣ ਤੋਂ ਸਮਝਿਆ ਜਾ ਸਕਦਾ ਹੈ। ਕਲੋਰੀਨ ਪਰਮਾਣੂ ਦੀ ਇਲੈਕਟ੍ਰਾਨਿਕ ਤਰਤੀਬ $[Ne]3s^2\ 3p^5\ ਹੈ, ਅਰਥਾਤ ਕਲੋਰੀਨ ਪਰਮਾਣੂ ਵਿੱਚ ਅਰਗੱਨ ਦੀ ਤਰਤੀਬ ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਦੇ ਲਈ ਇੱਕ ਇਲੈਕਟ੍ਰਾਨ ਦੀ ਕਮੀ ਹੈ। <math>Cl_2$ ਅਣੂ ਦੇ ਬਣਨ ਨੂੰ ਦੋ ਕਲੋਰੀਨ ਪਰਮਾਣੂਆਂ ਦੇ ਵਿੱਚ ਇੱਕ ਇਲੈਕਟ੍ਰਾਨ ਯੁਗਮ ਦੇ ਸਹਿਭਾਜਨ ਦੇ ਰੂਪ ਵਿੱਚ ਸਮਝਿਆ ਜਾ ਸਕਦਾ ਹੈ। ਇਸ ਪ੍ਰਕਿਰਿਆ ਵਿੱਚ ਦੋਵੇਂ ਕਲੋਰੀਨ ਪਰਮਾਣੂ ਸਹਿਭਾਜਿਤ ਇਲੈਕਟ੍ਰਾਨ ਯੁਗਮ ਵਿੱਚ ਇੱਕ ਇਲੈਕਟ੍ਰਾਨ ਪਾਉਂਦੇ ਹਨ ਅਤੇ ਇਨ੍ਹਾਂ ਦੇ ਬਾਹਰੀ ਸ਼ੈੱਲ ਨੇੜਲੀ ਨੋਬਲ ਗੈਸ, ਅਰਥਾਤ ਆਰਗਨ ਦੀ ਆਸ਼ਟਨ ਤਰਤੀਬ ਪ੍ਰਾਪਤ ਕਰ ਲੈਂਦੇ ਹਨ।

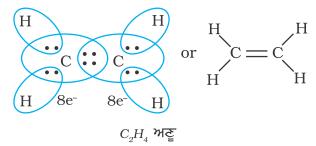

Covalent bond between two Cl atoms

ਦੋ ਕਲੋਰੀਨ ਪਰਮਾਣੂਆਂ ਦੇ ਵਿੱਚ ਸਹਿਯੋਜੀ ਬੰਧਨ ਇੱਥੇ ਬਿੰਦੂ ਇਲੈਕਟ੍ਰਾਨਾਂ ਨੂੰ ਨਿਰੂਪਿਤ ਕਰਦੇ ਹਨ।ਇਹ ਬਣਤਰਾਂ 'ਲੁਈਸ ਬਿੰਦੂ ਬਣਤਰਾਂ' ਅਖਵਾਉਂਦੀਆਂ ਹਨ।

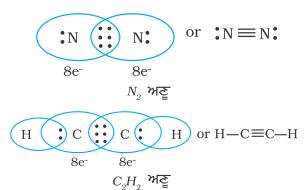
ਹੋਰ ਅਣੂਆਂ ਦੇ ਲਈ ਵੀ ਲਈਸ ਬਿੰਦੂ ਰਚਨਾਵਾਂ ਲਿਖੀਆਂ ਜਾ ਸਕਦੀਆਂ ਹਨ, ਜਿਨ੍ਹਾਂ ਵਿੱਚ ਸੰਯੁਕਤ ਹੋਣ ਵਾਲੇ ਪਰਮਾਣੂ ਸਮਾਨ ਜਾਂ ਭਿੰਨ ਹੋ ਸਕਦੇ ਹਨ। ਇਸ ਦੇ ਲਈ ਮੁੱਖ ਨਿਯਮ ਹੇਠ ਲਿਖੇ ਹਨ—


- ਹਰ ਇੱਕ ਬੰਧਨ ਦਾ ਨਿਰਮਾਣ ਪਰਮਾਣੂਆਂ ਦੇ ਵਿੱਚ ਇੱਕ ਇਲੈਕਟ੍ਰਾਨ ਯੂਗਮ ਦੇ ਫਲਸਰੂਪ ਹੁੰਦਾ ਹੈ।
- ਸੰਯੁਕਤ ਹੋਣ ਵਾਲਾ ਹਰ ਇੱਕ ਪਰਮਾਣੂ ਸਹਿਭਾਜਤ ਯੁਗਮ ਵਿੱਚ ਇੱਕ ਇੱਕ ਇਲੈਕਟ੍ਰਾਨ ਦਾ ਯੋਗਦਾਨ ਦਿੰਦਾ ਹੈ।
- ਇਲੈਕਟ੍ਰਾੱਨਾਂ ਦੇ ਸਹਿਭਾਜਨ ਦੇ ਫਲਸਰੂਪ ਸੰਯੁਕਤ ਹੋਣ ਵਾਲੇ ਪਰਮਾਣੂ ਆਪਣੇ ਬਾਹਰੀ ਸ਼ੈੱਲ ਵਿੱਚ ਨੋਬਲ ਗੈਸ ਤਰਤੀਬ ਪ੍ਰਾਪਤ ਕਰ ਲੈਂਦੇ ਹਨ।
- ਇਸ ਤਰ੍ਹਾਂ ਪਾਣੀ ਅਤੇ ਕਾਰਬਨ ਟੈਟ੍ਰਾ ਕਲੋਰਾਈਡ ਦੇ ਅਣੂਆਂ ਵਿੱਚ ਬੰਧਨਾਂ ਦੇ ਨਿਰਮਾਣ ਨੂੰ ਅਸੀਂ ਇਸ ਪ੍ਰਕਾਰ ਨਿਰੁਪਿਤ ਕਰ ਸਕਦੇ ਹਾਂ

ਇੱਕ ਇਲੈਕਟ੍ਰਾੱਨ ਯੂਗਮ ਦੁਆਰਾ ਸੰਯੂਗਮਿਤ ਦੋ ਪਰਮਾਣੂ



ਕਾਰਬਨ ਅਤੇ ਚਾਰਾਂ ਕਲੌਰੀਨ ਪਰਮਾਣੂਆਂ ਵਿਚੋਂ ਹਰ ਇੱਕ ਇੈਕਟ੍ਰਾੱਨ ਅਸ਼ਟਕ ਪ੍ਰਾਪਤ ਕਰਦੇ ਹਨ।


ਇਕਹਿਰਾ ਸਹਿਸੰਯੋਜੀ ਬੰਧਨ (Single Covalent Bond) ਦੁਆਰਾ ਬੰਧਿਤ ਅਖਵਾਉਂਦੇ ਹਨ। ਕਈ ਯੋਗਿਕਾਂ ਵਿੱਚ ਪਰਮਾਣੂਆਂ ਦੇ ਵਿੱਚ ਬਹੁ ਬੰਧਨ (Multiple Bonds) ਮੌਜੂਦ ਹੁੰਦੇ ਹਨ। ਬਹੁ-ਬੰਧਨ ਦਾ ਨਿਰਮਾਣ ਦੋ ਪਰਮਾਣੂਆਂ ਦੇ ਵਿੱਚ ਇੱਕ ਤੋਂ ਵੱਧ ਇਲੈਕਟ੍ਰਾੱਨ ਯੁਗਮਾਂ ਦੇ ਸਹਿਭਾਜ ਦੇ ਫਲਸਰੂਪ ਹੁੰਦਾ ਹੈ। ਦੋ ਪਰਮਾਣੂਆਂ ਦੇ ਵਿੱਚ ਜੇ ਦੋ ਇਲੈਕਟ੍ਰਾੱਨ ਯੁਗਮਾਂ ਦਾ ਸਹਿਭਾਜਨ ਹੁੰਦਾ ਹੈ ਤਾਂ ਉਨਾਂ ਦੇ ਵਿੱਚਲਾ ਸਹਿਸੰਯੋਜੀ ਬੰਧਨ ਦੂਹਰਾ ਬੰਧਨ (Double Bond) ਅਖਵਾਉਂਦਾ ਹੈ। ਉਦਾਹਰਣ ਵਜੋਂ-ਕਾਰਬਨ ਡਾਈਆੱਕਸਾਈਡ ਅਣੂ ਵਿੱਚ ਕਾਰਬਨ ਅਤੇ ਆੱਕਸੀਜਨ ਪਰਮਾਣੂਆਂ ਦੇ ਵਿੱਚ ਦੋ ਦੂਹਰੇ ਬੰਧਨ ਮੌਜੂਦ ਹੁੰਦੇ ਹਨ। ਇਸ ਤਰ੍ਹਾਂ ਈਥੀਨ (Ethene) ਦੇ ਅਣੂ ਵਿੱਚ ਦੋ ਕਾਰਬਨ ਪਰਮਾਣੂ ਇੱਕ ਦੂਹਰੇ ਬੰਧਨ ਦੁਆਰਾ ਬੰਧਿਤ ਹੁੰਦੇ ਹਨ।

CO₂ ਵਿੱਚ ਦੁਹਰਾ ਬੰਧਨ

ਜਦੋਂ ਸੰਜੋਗੀ ਪਰਮਾਣੂਆਂ ਦੇ ਵਿੱਚ ਤਿੰਨ ਇਲੈਕਟ੍ਰਾੱਨ ਯੁਗਮਾਂ ਦਾ ਸਹਿਭਾਜਨ ਹੁੰਦਾ ਹੈ, ਜਿਵੇਂ N_2 ਅਣੂ ਦੇ ਦੋ ਨਾਈਟ੍ਰੋਜਨ ਪਰਮਾਣੂਆਂ ਦੇ ਵਿੱਚ ਜਾਂ ਈਥਾਈਨ ਵਿੱਚ ਦੋ ਕਾਰਬਨ ਪਰਮਾਣੂਆਂ ਦੇ ਵਿੱਚ ਹੈ, ਤਾਂ ਉਨ੍ਹਾਂ ਦੇ ਵਿੱਚ ਇੱਕ ਤੀਹਰਾ ਬੰਧਨ (Triple Bond) ਬਣਦਾ ਹੈ।

4.1.3 ਸਰਲ ਅਣੂਆਂ ਦਾ ਲੁਈਸ ਨਿਰੂਪਣ (ਲੁਈਸ ਬਣਤਰਾਂ)

ਲੁਈਸ ਬਿੰਦੂ ਰਚਨਾਵਾਂ ਦੁਆਰਾ ਸਹਿਭਾਜਿਤ ਇਲੈਕਟ੍ਰਾੱਨ ਯੁਗਮਾਂ ਅਤੇ ਅਸ਼ਟਕ ਨਿਯਮ ਦੇ ਅਨੁਸਾਰ ਅਣੂਆਂ ਅਤੇ ਆਇਨਾਂ ਵਿੱਚ ਬੰਧਨ ਦਾ ਚਿੱਤਰਣ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਭਾਵੇਂ ਇਹ ਚਿੱਤਰਣ ਅਣੂ ਵਿੱਚ ਬੰਧਨ ਅਤੇ ਉਸ ਦੀ ਪ੍ਕਿਰਤੀ ਨੂੰ ਪੂਰਣ ਰੂਪ ਵਿੱਚ ਸਪਸ਼ਟ ਨਹੀਂ ਕਰਦਾ, ਪਰੰਤੂ ਇਸ ਦੇ ਅਧਾਰ ਤੇ ਰਚਨਾ (Formation) ਅਤੇ ਉਸ ਦੇ ਗੁਣਾਂ ਨੂੰ ਕਾਫੀ ਹੱਦ ਤੱਕ ਸਮਝਣ ਵਿੱਚ ਸਹਾਇਤਾ ਮਿਲਦੀ ਹੈ। ਇਸ ਲਈ ਅਣੂਆਂ ਦੀਆਂ ਲੁਈਸ ਬਿੰਦੂ ਰਚਨਾਵਾਂ ਬੇਹੱਦ ਲਾਭਕਾਰੀ ਹੁੰਦੀਆਂ ਹਨ।ਇਨ੍ਹਾਂ ਨੂੰ ਹੇਠ ਲਿਖੇ ਸਟੈਂਪਾਂ ਦੇ ਅਧਾਰ ਤੇ ਲਿਖਿਆ ਜਾ ਸਕਦਾ ਹੈ।

- ਲੁਈਸ ਰਚਨਾ ਲਿਖਣ ਦੇ ਲਈ ਜਰੂਰੀ ਕੁੱਲ ਇਲੈਕਟ੍ਰਾਂਨਾਂ ਦੀ ਸੰਖਿਆ ਸੰਯੁਗਮਿਤ ਹੋਣ ਵਾਲੇ ਪਰਮਾਣੂਆਂ ਦੇ ਸੰਯੋਜਕਤਾ ਇਲੈਕਟ੍ਰਾਂਨਾਂ ਦੇ ਜੋੜ ਦੁਆਰਾ ਪ੍ਰਾਪਤ ਕੀਤੀ ਜਾਂਦੀ ਹੈ। ਉਦਾਹਰਣ ਵਜੋਂ CH₄ ਅਣੂ ਵਿੱਚ ਕੁੱਲ ਅੱਠ ਸੰਯੋਜਕਤਾ ਇਲੈਕਟ੍ਰਾਂਨ (4 ਕਾਰਬਨ ਪਰਮਾਣੂ ਤੋਂ ਅਤੇ 4 ਹਾਈਡ੍ਰੋਜਨ ਦੇ ਚਾਰ ਪਰਮਾਣੂਆਂ ਤੋਂ) ਉਪਲਬਧ ਹੁੰਦੇ ਹਨ।
- ਸੰਯੋਜਕਤਾ ਇਲੈਕਟ੍ਰਾੱਨਾਂ ਦੀ ਕੁੱਲ ਸੰਖਿਆ ਵਿੱਚ ਰਿਣ ਆਇਨਾਂ ਦੇ ਲਈ ਪ੍ਰਤੀ ਰਿਣ ਚਾਰਜ ਇੱਕ ਇਲੈਕਟ੍ਰਾੱਨ ਜੋੜ ਦਿੱਤਾ ਜਾਂਦਾ ਹੈ। ਜਦ ਕਿ ਧਨ ਆਇਨਾਂ ਦੇ ਲਈ ਪ੍ਰਤੀ ਧਨ ਚਾਰਜ ਇੱਕ ਇਲੈਕਟ੍ਰਾੱਨ ਘਟਾ ਦਿੱਤਾ ਜਾਂਦਾ ਹੈ। ਉਦਾਹਰਣ ਵਜੋਂ CO₃²⁻ ਆਇਨ ਉੱਤੇ ਮੌਜੂਦ ਦੋ ਰਿਣ ਚਾਰਜ ਇਹ ਦਰਸਾਉਂਦਾ ਹੈ ਕਿ ਇਸ ਆਇਨ ਵਿੱਚ ਉਦਾਸੀਨ ਪਰਮਾਣੁਆਂ ਦੁਆਰਾ ਦਿੱਤੇ ਗਏ ਸੰਯੋਗੀ

- ਇਲੈਕਟ੍ਰਾੱਨਾਂ ਨਾਲੋਂ ਦੋ ਇਲੈਕਟ੍ਰਾੱਨ ਵੱਧ ਹਨ INH_4^+ ਉੱਤੇ +1 ਚਾਰਜ ਇੱਕ ਇਲੈਕਟ੍ਰਾਨ ਦੀ ਹਾਨੀ ਨੂੰ ਦਰਸਾਉਂਦਾ ਹੈ। ਇਸ ਲਈ NH_4^+ ਆਇਨ ਦੇ ਲਈ ਉਦਾਸੀਨ ਪਰਮਾਣੂਆਂ ਦੁਆਰਾ ਦਿੱਤੇ ਗਏ ਸੰਯੋਜੀ ਇਲੈਕਟ੍ਰਾੱਨਾਂ ਵਿੱਚੋਂ ਇੱਕ ਇਲੈਕਟ੍ਰਾੱਨ ਘਟਾਇਆ ਜਾਂਦਾ ਹੈ।
- ਸੰਯੁਕਤ ਹੋਣ ਵਾਲੇ ਪਰਮਾਣੂਆਂ ਦੇ ਰਸਾਇਣਿਕ ਪ੍ਰਤੀਕਾਂ ਅਤੇ ਅਣੂ ਦੀ ਅਧਾਰਭੂਤ ਸੰਰਚਨਾ (Skeltal structure) ਅਰਥਾਤ ਕਿਹੜੇ ਪਰਮਾਣੂ ਕਿਹੜੇ ਪਰਮਾਣੂਆਂ ਨਾਲ ਬੰਧਿਤ ਹਨ + ਇਸ ਗੱਲ ਦਾ ਗਿਆਨ ਹੋਣ ਤੇ ਪਰਮਾਣੂਆਂ ਦੇ ਵਿੱਚ ਸਾਰੇ ਇਲੈਕਟ੍ਰਾੱਨਾਂ ਦਾ ਵਿਤਰਣ ਬੰਧਿਤ ਸਹਿਭਾਜੀ ਇਲੈਕਟ੍ਰਾੱਨ ਯੁਗਮਾਂ ਦੇ ਰੂਪ ਵਿੱਚ ਅਤੇ ਸੰਪੂਰਣ ਬੰਧਨਾਂ ਦੀ ਸੰਖਿਆ ਦੇ ਅਨੁਪਾਤ ਵਿੱਚ ਸਰਲ ਹੋ ਜਾਂਦਾ ਹੈ।
- ਆਮ ਕਰਕੇ ਅਣੂ ਵਿੱਚ ਨਿਊਨਤਮ ਇਲੈਕਟ੍ਰੋਨੈਗੇਟਿਵਤਾ ਵਾਲਾ ਪਰਮਾਣੂ ਕੇਂਦਰੀ ਪਰਮਾਣੂ ਦਾ ਸਥਾਨ ਲੈਂਦਾ ਹੈ। ਹਾਈਡ੍ਰੋਜਨ ਅਤੇ ਫਲੋਰੀਨ ਦੇ ਪਰਮਾਣੂ ਆਮ ਕਰਕੇ ਅੰਤਲਾ ਸਥਾਨ (Terminal Position) ਲੈਂਦੇ ਹਨ। ਜਿਵੇਂ NF₃ and CO₃²⁻ ਵਿੱਚ ਕ੍ਰਮਵਾਰ ਨਾਈਟ੍ਰੋਜਨ ਅਤੇ ਕਾਰਬਨ ਕੇਂਦਰੀ ਪਰਮਾਣੂ ਦੇ ਰੂਪ ਵਿੱਚ ਲਿਖੇ ਜਾਣਗੇ।
- ਇੱਕਹਿਰੇ ਬੰਧਨਾਂ ਦੇ ਲਈ ਸਹਿਭਾਜਿਤ ਇਲੈਕਟ੍ਰਾੱਨ ਯੁਗਮ ਲਿਖਣ ਤੋਂ ਬਾਅਦ ਬਾਕੀ ਦੇ ਇਲੈਕਟ੍ਰਾੱਨ ਯੁਗਮਾਂ ਦੀ ਵਰਤੋਂ ਜਾਂ ਤਾਂ ਬਹੁ-ਬੰਧਨ ਦੇ ਲਈ ਕੀਤਾ ਜਾਂਦਾ ਹੈ ਜਾਂ ਉਹ ਏਕਾਕੀ ਇਲੈਕਟ੍ਰਾੱਨ ਯੁਗਮ (lone pair) ਦੇ ਰੂਪ ਵਿੱਚ ਰਹਿੰਦੇ ਹਨ। ਮੂਲ ਜਰੂਰਤ ਇਹ ਹੈ ਕਿ ਹਰ ਇੱਕ ਬੰਧਿਤ ਪਰਮਾਣੂ ਵਿੱਚ ਇਲੈਕਟ੍ਰਾਨਾਂ ਦਾ ਆਕਟੈੱਟ (ਅਸ਼ਟਕ) ਪੂਰਾ ਹੋ ਜਾਏ। ਕੁੱਝ ਅਣੂਆਂ ਅਤੇ ਆਇਨਾਂ ਦੀ ਲੁਈਸ ਬਿੰਦੂ ਸੰਰਚਨਾਵਾਂ ਨੂੰ ਸਾਰਣੀ 4.1 ਵਿੱਚ ਦਿੱਤਾ ਗਿਆ ਹੈ।

ਸਾਰਣੀ 4.1 ਕੁੱਝ ਅਣੂਆਂ ਅਤੇ ਆਇਨਾਂ ਦੀਆਂ ਲੁਈਸ ਸੰਰਚਨਾਵਾਂ

ਅਣੂ/ਆਇਨ		ਲੁਈਸ ਸੰਰਚਨਾ ਨਿਰੁਪਣ
H_2	H : H*	Н – Н
O_2	:Ö::Ö:	:Ö=Ö:
O_3		:Ö_Ö;
NF_3	:F: N:F: :F:	: <u>F</u> - <u>N</u> - <u>F</u> : : <u>F</u> :
$\mathrm{CO}_3^{2^-}$	[: O:] 2- : O:: O::	
HNO_3	+ H	

^{*} ਹਰ ਇੱਕ H ਪਰਮਾਣੂ ਹੀਲਿਅਮ ਦੀ ਤਰਤੀਬ (ਇਲੈਕਟ੍ਰਾੱਨਾਂ ਦਾ ਡੁਪਲੈਟ) ਪ੍ਰਾਪਤ ਕਰਦਾ ਹੈ।


ਉਦਾਹਰਣ 4.1

CO ਅਣੂ ਦੀ ਲੁਈਸ ਬਿੰਦੂ ਸੰਰਚਨਾ ਲਿਖੋ। <mark>ਹੱਲ</mark>

ਸਟੈੱਪ 1: ਕਾਰਬਨ ਅਤੇ ਆੱਕਸੀਜਨ ਪਰਮਾਣੂਆਂ ਦੇ ਸੰਯੋਜੀ ਇਲੈਕਟ੍ਰਾੱਨਾਂ ਦੀ ਕੁੱਲ ਸੰਖਿਆ ਦੀ ਗਣਨਾ। ਕਾਰਬਨ ਅਤੇ ਆੱਕਸੀਜਨ ਦੇ ਬਾਹਰੀ (ਸੰਯੋਜਕਤਾ) ਸ਼ੈੱਲ ਦੀ ਇਲੈਕਟ੍ਰਾਨਿਕ ਤਰਤੀਬ ਕ੍ਰਮਵਾਰ $2s^2$ $2p^2$ ਅਤੇ $2s^2$ $2p^4$ ਹਨ। ਇਸ ਲਈ ਉਪਲੱਬਧ ਇਲੈਕਟ੍ਰਾਨਾਂ ਦੀ ਸੰਖਿਆ 4+6=10 ਸਟੈੱਪ 2: CO ਦੀ ਅਧਾਰਭੂਤ ਸੰਰਚਨ CO ਸਟੈੱਪ 3: C ਅਤੇ O ਦੇ ਵਿੱਚ ਇਕਹਰਾ ਬੰਧਨ ਬਣਾਓ (ਅਰਥਾਤ ਇੱਕ ਸਹਿਭਾਜਿਤ ਇਲੈਕਟ੍ਰਾਨ ਯਗਮ ਲਿਖੋ)

$$C O : O : C - O$$

ਪਰੰਤੂ ਇਸ ਸੰਰਚਨਾ ਵਿੱਚ ਕਾਰਬਨ ਦਾ ਅਸ਼ਟਕ ਪੂਰਾ ਨਹੀਂ ਹੋਇਆ। ਇਸ ਲਈ ਕਾਰਬਨ ਅਤੇ ਆੱਕਸੀਜਨ ਵਿੱਚ ਬਹੁ ਬੰਧਨ ਦੀ ਜਰੂਰਤ ਹੁੰਦੀ ਹੈ। ਇਨ੍ਹਾਂ ਪਰਮਾਣੂਆਂ ਦੇ ਵਿੱਚ ਤੀਹਰਾ ਬੰਧਨ ਲਿਖਣ ਨਾਲ ਦੋਵਾਂ ਪਰਮਾਣੂਆਂ ਦੇ ਲਈ ਅਸ਼ਟਕ ਨਿਯਮ ਦੀ ਪਾਲਨਾ ਹੋ ਜਾਂਦੀ ਹੈ।

ਉਦਾਹਰਣ 4.2

ਨਾਈਟ੍ਰਾਈਟ ਆਇਨ NO_2^- ਦੇ ਲਈ ਲੁਈਸ ਸੰਰਚਨਾ ਲਿਖੋ।

ਹੱਲ

ਸਟੈੱਪ 1: ਨਾਈਟ੍ਰੋਜਨ ਅਤੇ ਆੱਕਸੀਜਨ ਪਰਮਾਣੂਆਂ ਦੇ ਸੰਯੋਜਕਤਾ ਇਲੈਕਟ੍ਰਾੱਨਾਂ ਦੀ ਸੰਖਿਆ ਇਕਾਈ ਰਿਣਚਾਰਜ ਦੇ ਲਈ ਇੱਕ ਇਲੈਕਟ੍ਰਾੱਨ ਜਮਾਂ ਕਰਨ ਨਾਲ ਇਲਕਟ੍ਰਾੱਨਾਂ ਦੀ ਕੁੱਲ ਸੰਖਿਆ

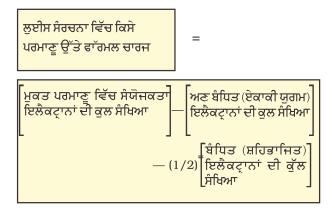
$$N(2s^2 2p^3)$$
, O $(2s^2 2p^4)$

 $5 + (2 \times 6) + 1 = 18$ electrons

ਸਟੇੱਪ 2 : NO₂ ਆਇਨ ਦੀ ਅਧਾਰਮੂਲ ਰਚਨਾ ਨੂੰ ਅਸੀਂ ਇਸ ਤਰ੍ਹਾਂ ਲਿਖ ਸਕਦੇ ਹਾਂ ONO

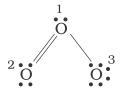
ਸਟੈਂਪ 3 : ਨਾਈਟ੍ਰੋਜਨ ਅਤੇ ਹਰ ਇੱਕ ਆੱਕਸੀਜਨ ਦੇ ਵਿੱਚ ਇੱਕ-ਇਕਹਰਾ ਬੰਧਨ ਬਨਾਉਣ (ਅਰਥਾਤ ਇੱਕ ਸਹਿਭਾਜਿਤ ਇਲੈਕਟ੍ਰਾਨ ਯੂਗਮ ਲਿਖਣ) ਅਤੇ

ਆੱਕਸੀਜਨ ਦੇ ਪਰਮਾਣੂਆਂ ਦੇ ਅਸ਼ਟਕ ਪੂਰਣ ਕਰਨ ਤੇ ਨਾਈਟ੍ਰੋਜਨ ਤੇ ਮੌਜੂਦ ਦੋ ਇਲੈਕਟ੍ਰਾਨ ਇੱਕ ਏਕਾਕੀ ਇਲੈਕਟ੍ਰਾਨ ਯੂਗਮ ਆਉਂਦੇ ਹਨ।


ਕਿਉਂਕਿ ਇਸ ਤਰ੍ਹਾਂ ਨਾਈਟ੍ਰੋਜਨ ਪਰਮਾਣੂ ਉੱਤੇ ਅਸ਼ਟਕ ਪੂਰਾ ਨਹੀਂ ਹੁੰਦਾ ਹੈ। ਇਸ ਲਈ ਨਾਈਟ੍ਰੋਜਨ ਅਤੇ ਆੱਕਸੀਜਨ ਦੇ ਵਿੱਚ ਬਹੁ-ਬੰਧਨ ਦੀ ਜਰੂਰਤ ਹੁੰਦੀ ਹੈ। ਨਾਈਟ੍ਰੋਜਨ ਅਤੇ ਆੱਕਸੀਜਨ ਦੇ ਕਿਸੇ ਇੱਕ ਪਰਮਾਣੂ ਦੇ ਵਿੱਚ ਇੱਕ ਦੂਹਰਾ ਬੰਧਨ ਬਨਾਉਣ ਤੇ ਸਾਨੂੰ ਹੇਠ ਲਿਖਿਤ ਲੁਈਸ ਬਿੰਦੂ ਸੰਰਚਨਾ ਪ੍ਰਾਪਤ ਹੁੰਦੀ ਹੈ—

or
$$\begin{bmatrix}
O : N : O : \\
O = N - O : \\
O = N = O
\end{bmatrix}$$

4.1.4 ਫਾਰਮਲ ਚਾਰਜ


ਲੁਈਸ ਬਿੰਦੂ ਸੰਰਚਨਾਵਾਂ ਅਕਸਰ ਅਣੂਆਂ ਦੀ ਵਾਸਤਵਿਕ ਅਕ੍ਤੀ ਨਹੀਂ ਦਰਸਾਉਂਦੀਆਂ। ਉਹ ਬਹੁ-ਪਰਮਾਣਵੀਂ ਆਇਨਾਂ ਵਿੱਚ ਸੰਪੂਰਣ ਚਾਰਜ ਕਿਸੇ ਵਿਸ਼ੇਸ਼ ਪਰਮਾਣੂ ਉੱਤੇ ਮੌਜੂਦ ਨਾ ਹੋ ਕੇ ਪੂਰੇ ਆਇਨ ਉੱਤੇ ਸਥਿਤ ਹੁੰਦਾ ਹੈ। ਹਾਲਾਂਕਿ ਹਰ ਇੱਕ ਪਰਮਾਣੂ ਉੱਤੇ ਫਾਰਮਲ ਚਾਰਜ ਦਰਸਾਇਆ ਜਾ ਸਕਦਾ ਹੈ। ਬਹੁ ਪਰਮਾਣਵੀਂ ਅਣੂ ਜਾਂ ਆਇਨ ਦੇ ਕਿਸੇ ਪਰਮਾਣੂ ਉੱਤੇ ਮੌਜੂਦ ਫਾਰਮਲ ਚਾਰਜ ਨੂੰ ਉਸ ਦੇ ਵਿਯੋਜਿਤ (Isolated) ਸਥਿਤੀ (ਅਰਥਾਤ ਮੁਕਤ ਪਰਮਾਣੂ ਅਵਸਥਾ) ਵਿੱਚ ਸੰਯੋਜਕਤਾ ਇਲੈਕਟ੍ਰਾਨਾਂ ਦੀ ਕੁੱਲ ਸੰਖਿਆ ਅਤੇ ਲੁਈਸ ਸੰਰਚਨਾ ਵਿੱਚ ਪਰਮਾਣੂ ਨੂੰ ਮਿਲੀ ਇਲੈਕਟ੍ਰਾਨਾਂ ਦੀ ਸੰਖਿਆ ਦੇ ਅੰਤਰ ਦੇ ਰੂਪ ਵਿੱਚ ਪਰਿਭਾਸ਼ਿਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਇਸ ਨੂੰ ਇਸ ਤਰ੍ਹਾਂ ਵਿਖਾਇਆ ਜਾਂਦਾ ਹੈ।

ਫਾਰਮਲ ਚਾਰਜ ਦਾ ਪਰਿਕਲਨ ਇਸ ਧਾਰਣਾ ਉੱਤੇ ਅਧਾਰਿਤ ਹੈ ਕਿ ਅਣੂ ਜਾਂ ਆਇਨ ਵਿੱਚ ਸੰਬੰਧਿਤ ਪਰਮਾਣੂ

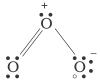
ਉੱਤੇ ਹਰ ਇੱਕ ਸਹਿਭਾਜਿਤ ਯੁਗਮ ਵਿੱਚੋਂ ਇੱਕ ਇਲੈਕਟ੍ਰਾਨ ਅਤੇ ਏਕਾਕੀ ਯੁਗਮ (lone pair) ਦੇ ਦੋਵੇਂ ਇਲੈਕਟ੍ਰਾਨ ਮੌਜੂਦ ਰਹਿੰਦੇ ਹਨ।

ਆਓ ਓਜੋਨ (O_3) ਦੇ ਅਣੂ ਨੂੰ ਲਈਏ। O_3 ਦੀ ਲੁਈਸ ਸੰਰਚਨਾ ਨੂੰ ਇਸ ਤਰ੍ਹਾਂ ਲਿਖਿਆ ਜਾ ਸਕਦਾ ਹੈ—

ਆੱਕਸੀਜਨ ਦੇ ਪਰਮਾਣੂ ਨੂੰ 1,2 ਅਤੇ 3 ਦੁਆਰਾ ਚਿਨ੍ਹਿਤ ਕੀਤਾ ਗਿਆ ਹੈ।

• 1 ਦੁਆਰ ਚਿਨ੍ਹਿਤ ਕੇਂਦਰੀ O ਪਰਮਾਣੂ ਉੱਤੇ ਫਾੱਰਮਲ ਚਾਰਜ

$$=6-2-\frac{1}{2}$$
 (6) = 1


• 2 ਦੁਆਰ ਚਿਨ੍ਹਿਤ ਅੰਤਲੇ O ਪਰਮਾਣੂ ਉੱਤੇ ਫਾੱਰਮਲ ਚਾਰਜ

$$=6-4-\frac{1}{2}(4)=0$$

• 3 ਦੁਆਰ ਚਿਨ੍ਹਿਤ ਅੰਤਲੇ O ਪਰਮਾਣੂ ਉੱਤੇ ਫਾੱਰਮਲ ਚਾਰਜ

$$=6-6-\frac{1}{2}$$
 (2) = -1

ਇਸ ਲਈ O_3 ਦੇ ਅਣੂ ਨੂੰ ਫਾੱਰਮਲ ਚਾਰਜ ਦੇ ਨਾਲ ਇਸ ਤਰ੍ਹਾਂ ਦਰਸਾਇਆ ਜਾ ਸਕਦਾ ਹੈ—

ਇੱਥੇ ਧਿਆਨ ਦੇਣ ਯੋਗ ਗੱਲ ਇਹ ਹੈ ਕਿ ਫਾਰਮਲ ਚਾਰਜ, ਅਣੂ ਵਿੱਚ ਵਾਸਤਵਿਕ ਚਾਰਜ ਵੱਖਰੇ ਰੂਪ ਵਿੱਚ ਪ੍ਰਾਟ ਨਹੀਂ ਕਰਦੇ ਹਨ। ਲੁਈਸ ਸੰਰਚਨਾ ਵਿੱਚ ਪਰਮਾਣੂਆਂ ਉੱਤੇ ਚਾਰਜ ਨੂੰ ਦਰਸਾਉਣ ਨਾਲ ਅਣੂ ਵਿੱਚ ਸੰਯੋਜਕਤਾ ਇਲੈਕਟ੍ਰਾਨਾਂ ਦੇ ਲੇਖਾ ਜੋਖਾ ਰੱਖਣ ਵਿੱਚ ਸਹਾਇਤਾ ਮਿਲਦੀ ਹੈ। ਫਾਰਮਲ ਚਾਰਜ ਦੀ ਮਦਦ ਨਾਲ ਕਿਸੇ ਸਪੀਸ਼ੀਜ਼ ਦੀਆਂ ਕਈ ਸੰਭਵ ਲੁਈਸ ਸਰੰਚਨਾਵਾਂ ਵਿਚੋਂ ਨਿਮਨਤਮ ਊਰਜਾ ਦੀ ਸੰਰਚਨਾ ਦੀ ਚੋਣ ਕਰਨ ਵਿੱਚ ਮਦਦ ਮਿਲਦੀ ਹੈ। ਅਕਸਰ ਨਿਊਨਤਮ ਊਰਜਾ ਵਾਲੀ ਸੰਰਚਨਾ ਉਹ ਹੁੰਦੀ ਹੈ, ਜਿਸ ਦੇ ਪਰਮਾਣੂਆਂ ਵਿੱਚ ਘੱਟ ਤੋਂ ਘੱਟ ਫਾਰਮਲ ਚਾਰਜ ਹੋਵੇ। ਫਾਰਮਲ ਚਾਰਜ ਦਾ ਸਿਧਾਂਤ ਬੰਧਨ ਦੀ ਸ਼ੁੱਧ ਸਹਿਸੰਯੋਜੀ ਪ੍ਰਕਿਰਤੀ ਉੱਤੇ ਅਧਾਰਿਤ ਹੈ, ਜਿਸ ਵਿੱਚ ਬੰਧਿਤ ਪਰਮਾਣੂਆਂ ਦੇ ਵਿੱਚ ਇਲੈਕਟ੍ਰਾਨਾਂ ਦਾ ਸਹਿਭਾਜਨ ਸਮਾਨ ਰੂਪ ਵਿੱਚ ਹੁੰਦਾ ਹੈ।

4.1.5 ਅਸ਼ਟਕ ਨਿਯਮ ਦੀਆਂ ਸੀਮਾਵਾਂ

ਭਾਵੇਂ ਅਸ਼ਟਕ ਨਿਯਮ ਬਹੁਤ ਲਾਭਕਾਰੀ ਹੈ, ਪਰੰਤੂ ਇਹ ਹਮੇਸ਼ਾ ਲਾਗੂ ਨਹੀਂ ਕੀਤਾ ਜਾ ਸਕਦਾ। ਇਹ ਮੁੱਖ ਰੂਪ ਵਿੱਚ ਆਵਰਤੀ ਸਾਰਣੀ ਦੇ ਦੂਜੇ ਪੀਰੀਅਡ ਦੇ ਤੱਤਾਂ ਤੇ ਲਾਗੂ ਹੁੰਦਾ ਹੈ ਅਤੇ ਜਿਆਦਾ ਕਰਕੇ ਕਾਰਬਨਿਕ ਯੋਗਿਕਾਂ ਦੀਆਂ ਬਣਤਰਾਂ ਨੂੰ ਸਮਝਣ ਵਿੱਚ ਲਾਭਦਾਇਕ ਹੁੰਦਾ ਹੈ। ਅਸ਼ਟਕ ਨਿਯਮ ਦੇ ਤਿੰਨ ਮੁੱਖ ਅਪਵਾਦ ਹਨ—

ਕੇਂਦਰੀ ਪਰਮਾਣੂ ਦਾ ਅਪੂਰਣ ਅਸ਼ਟਕ

ਕੁਝ ਯੋਗਿਕਾਂ ਵਿੱਚ ਕੇਂਦਰੀ ਪਰਮਾਣੂ ਦੇ ਚੌਹਾਂ ਪਾਸਿਆਂ ਤੇ ਮੌਜੂਦ ਇਲੈਕਟ੍ਰਾੱਨਾਂ ਦੀ ਸੰਖਿਆ ਅੱਠ ਤੋਂ ਘੱਟ ਹੁੰਦੀ ਹੈ। ਇਹ ਮੁੱਖ ਤੌਰ ਤੇ ਉਨ੍ਹਾਂ ਤੱਤਾਂ ਦੇ ਯੋਗਿਕਾਂ ਵਿੱਚ ਹੁੰਦਾ ਹੈ, ਜਿਨ੍ਹਾਂ ਵਿੱਚ ਸੰਯੋਜਕਤਾ ਇਲੈਕਟ੍ਰਾਨਾਂ ਦੀ ਸੰਖਿਆ ਚਾਰ ਤੋਂ ਘੱਟ ਹੁੰਦੀ ਹੈ। ਉਦਾਹਰਣ ਵਜੋਂ— LiCl, BeH₂ ਅਤੇ BCl₃ ਲੈਂਦੇ ਹਾਂ।

ਇੱਥੇ Li, Be ਅਤੇ B ਦੇ ਸੰਯੋਜਕਤਾ ਇਲੈਕਟ੍ਰਾੱਨਾਂ ਦੀ ਸੰਖਿਆ ਕ੍ਰਮਵਾਰ 1,2 ਅਤੇ 3 ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਦੇ ਹੋਰ ਯੋਗਿਕ ${
m AlCl}_3$ ਅਤੇ ${
m BF}_3$ ਹਨ।

ਟਾਂਕ ਇਲੈਕਟ੍ਰਾਨ (Odd-electron) ਅਣੁ

ਉਨ੍ਹਾਂ ਅਣੂਆਂ ਜਿਨ੍ਹਾਂ ਵਿੱਚ ਇਲੈਕਟ੍ਰਾਨਾਂ ਦੀ ਕੁੱਲ ਸੰਖਿਆ ਟਾਂਕ (odd) ਹੁੰਦੀ ਹੈ। (ਜਿਵੇਂ-ਨਾਈਟ੍ਰਿਕ ਆਕਸਾਈਡ, NO ਅਤੇ ਨਾਈਟ੍ਰੋਜਨ ਡਾਈਆੱਕਸਾਈਡ NO₂ ਵਿੱਚ ਸਾਰੇ ਪਰਮਾਣੂ ਅਸ਼ਟਕ ਨਿਯਮ ਦੀ ਪਾਲਨਾ ਨਹੀਂ ਕਰ ਸਕਦੇ।

$$\ddot{N} = \ddot{O}$$
 $\ddot{O} = \ddot{N} - \ddot{O}$:

ਪਸਾਰਿਆ (expanded) ਅਸ਼ਟਕ

ਆਵਰਤੀ ਸਾਰਣੀ ਦੇ ਤੀਜੇ ਅਤੇ ਇਸ ਤੋਂ ਅਗਲੇ ਪੀਰੀਅਡਾਂ ਵਿੱਚਲੇ ਤੱਤਾਂ ਵਿੱਚ ਬੰਧਨ ਦੇ ਲਈ 3s ਅਤੇ 3p ਆੱਰਬਿਟਲਾਂ ਦੇ ਇਲਾਵਾ 3d ਆੱਰਬਿਟਲ ਵੀ ਉਪਲਬਧ ਹੁੰਦੇ ਹਨ। ਇਨ੍ਹਾਂ ਤੱਤਾਂ ਦੇ ਅਨੇਕ ਯੋਗਿਕਾਂ ਵਿੱਚ ਕੇਂਦਰੀ ਪਰਮਾਣੂ ਦੇ ਚੌਹਾਂ ਪਾਸਿਆਂ ਤੇ ਅੱਠ ਤੋਂ ਵੱਧ ਇਲੈਕਟ੍ਰਾਨ ਹੁੰਦੇ ਹਨ। ਇਸ਼ ਨੂੰ ਪਸਾਰਿਆ ਅਸ਼ਟਕ (Expanded Octet) ਕਹਿੰਦੇ ਹਨ। ਸਪੱਸ਼ਟ ਹੈ ਕਿ ਇਨ੍ਹਾਂ ਯੋਗਿਕਾਂ ਤੇ ਅਸ਼ਟਕ ਨਿਯਮ ਲਾਗੂ ਨਹੀਂ ਹੁੰਦਾ। ਅਜਿਹੇ ਯੋਗਿਕਾਂ ਦੀਆਂ ਕੁੱਝ ਉਦਾਹਰਣਾਂ ਹਨ— PF_5 , SF_6 , H_2SO_4 ਅਤੇ ਕਈ ਉਪਸਹਿਸੰਯੋਜੀ ਯੋਗਿਕ।

$$Cl-S-Cl$$
 or $Cl.S.Cl.$

ਮਜੇਦਾਰ ਤੱਥ ਇਹ ਹੈ ਕਿ ਸਲਫਰ ਪਰਮਾਣੂ ਅਜਿਹੇ ਅਨੇਕਾਂ ਅਜਿਹੇ ਯੋਗਿਕ ਵੀ ਬਣਾਉਂਦਾ ਹੈ ਜਿਸ ਵਿੱਚ ਅਸ਼ਟਕ ਨਿਯਮ ਦਾ ਪਾਲਨ ਹੁੰਦਾ ਹੈ।ਉਦਾਹਰਣ ਵਜੋਂ-ਸਲਫਰ ਡਾਈ ਕਲੋਰਾਈਡ ਵਿੱਚ S ਪਰਮਾਣੂ ਦੁਆਲੇ ਇਲੈਕਟ੍ਰਾੱਨਾਂ ਦਾ ਅਸ਼ਟਕ ਮੌਜੂਦ ਹੰਦਾ ਹੈ।

ਅਸ਼ਟਕ ਨਿਯਮ ਦੀਆਂ ਕੱਝ ਹੋਰ ਕਮੀਆਂ

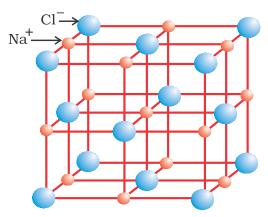
- ਇਹ ਸਪੱਸ਼ਟ ਹੈ ਕਿ ਅਸ਼ਟਕ ਨਿਯਮ ਨੌਬਲ ਗੈਸਾਂ ਦੀ ਰਸਾਇਣਿਕ ਅਕਿਰਿਆਤਾ ਤੇ ਅਧਾਰਿਤ ਹੈ, ਪਰੰਤੂ ਕੁਝ ਨੌਬਲ ਗੈਸਾਂ (ਜਿਵੇਂ'–ਜ਼ੀਨਾੱਨ ਅਤੇ ਕ੍ਰਿਪਟਾੱਨ) ਆੱਕਸੀਜਨ ਅਤੇ ਫਲੋਰੀਨ ਨਾਲ ਵੀ ਸੰਯੋਜਿਤ ਹੁੰਦੀਆਂ ਹਨ ਅਤੇ ਕਈ ਯੋਗਿਕ ਬਣਾਉਂਦੀਆਂ ਹਨ। ਜਿਵੇਂ XeF₂, KrF₂, XeOF₂ ਆਦਿ।
- ਅਸ਼ਟਕ ਸਿਧਾਂਤ ਅਣੂ ਦੀ ਆਕ੍ਰਿਤੀ ਸਪੱਸ਼ਟ ਨਹੀਂ ਕਰਦਾ ਹੈ।
- ਇਹ ਅਣੂ ਦੀ ਊਰਜਾ ਅਰਥਾਤ ਉਸਦੇ ਸਾਪੇਖ ਸਥਿਰਤਾ ਦੇ ਬਾਰੇ ਕੱਝ ਵੀ ਸੰਕੇਤ ਨਹੀਂ ਦਿੰਦਾ।

4.2 ਆਇਨਿਕ ਜਾਂ ਬਿਜਲੀ ਸੰਯੋਜੀ ਬੰਧਨ

ਆਇਨਿ ਬੰਧਨ ਬਣਨ ਦੀ ਕਾੱਸੇਲ ਅਤੇ ਲੁਈਸ ਧਾਰਣਾ ਤੋਂ ਇਹ ਨਿਸ਼ਕਰਸ਼ ਨਿਕਲਦਾ ਹੈ ਕਿ ਇਸ ਬੰਧਨ ਦਾ ਬਣਨਾ ਮੁੱਖ ਰੂਪ ਵਿੱਚ ਹੇਠ ਲਿਖੇ ਤੱਥਾਂ ਤੇ ਨਿਰਭਰ ਕਰੇਗਾ—

- ਉਦਾਸੀਨ ਪਰਮਾਣੂ ਨਾਲ ਸਬੰਧਿਤ ਧਨਆਇਨਾਂ ਅਤੇ ਰਿਣਆਇਨਾਂ ਦੇ ਬਣਨ ਦੀ ਸਰਲਤਾ ਅਤੇ
- ਧਨਆਇਨਾਂ ਅਤੇ ਰਿਣਆਇਨਾਂ ਦੀ ਠੋਸ ਵਿੱਚ ਵਿਵਸਥਿਤ ਹੋਣ ਦੀ ਵਿਧੀ ਅਰਥਾਤ ਕ੍ਰਿਸਟਲੀ ਯੋਗਿਕ ਦਾ ਲੈਟਿਸ (Lattice) ਨਿਰਮਿਤ ਹੋਣ ਦੀ ਵਿਧੀ।

ਧਨਆਇਨ ਦਾ ਬਣਨਾ ਆਇਨੀਕਰਣ, ਅਰਥਾਤ ਉਦਾਸੀਨ ਪਰਮਾਣੂ ਵਿੱਚੋਂ ਇੱਕ ਜਾਂ ਇੱਕ ਤੋਂ ਵੱਧ ਇਲੈਕਟ੍ਰਾਨਾਂ ਦੇ ਕੱਢਣ ਦੁਆਰਾ ਪੂਰਣ ਹੁੰਦੀ ਹੈ।ਇਸੇ ਤਰ੍ਹਾਂ ਉਦਾਸੀਨ ਪਰਮਾਣੂ ਦੁਆਰਾ ਇਲੈਕਟ੍ਰਾਨ ਗ੍ਰਹਿਣ ਕਰਨ ਨਾਲ ਰਿਣਆਇਨ ਪ੍ਰਾਪਤ ਹੰਦਾ ਹੈ।


$$M(g) o M^+(g) + e^-$$
 ; ਆਇਨਨ ਐਨਥੈਲਪੀ $X(g) + e^- o X^-(g)$; ਇਲੈਕਟ੍ਰਾਨ ਗ੍ਰਹਿਣ ਐਨਥੈਲਪੀ $M^+(g) + X^-(g) o MX(s)$

ਇਲੈਕਟ੍ਰਾੱਨ ਗ੍ਰਹਿਣ ਐਲਥੈਲਪੀ, $\Delta_{eg}H$ ਗੈਸ ਅਵਸਥਾ ਵਿੱਚ ਪਰਮਾਣੂ ਦੁਆਰਾ ਇੱਕ ਇਲੈਕਟ੍ਰਾੱਨ ਗ੍ਰਹਿਣ ਕਰਨ ਦੇ ਫਲਸਰੂਪ ਹੋਣ ਵਾਲਾ ਐਨਥੈਲਪੀ ਪਰਿਵਰਤਨ ਹੈ (ਯੂਨਿਟ 31)। ਇਲੈਕਟ੍ਰਾੱਨ ਗ੍ਰਹਿਣ ਪਰਕਿਰਿਆ ਤਾਪ ਨਿਕਾਸੀ ਜਾਂ ਤਾਪਸੋਖੀ ਹੋ ਸਕਦੀ ਹੈ। ਦੂਜੇ ਪਾਸੇ ਆਇਨ ਐਨਥੈਲਪੀ ਹਮੇਸ਼ਾ ਤਾਪਸੋਖੀ ਹੀ ਹੁੰਦਾ ਹੈ। ਇਲੈਕਟ੍ਰਾੱਨ ਗ੍ਰਹਿਣ ਦੇ ਫਲਸਰੂਪ ਹੋਣ ਵਾਲੇ ਉਰਜਾ ਪਰਿਵਰਤਨ ਦਾ ਰਿਣਾਤਮਕ ਮਾਨ ਇਲੈਕਟ੍ਰਾੱਨ ਬੰਧੁਤਾ

(Electron affinity) ਹੁੰਦਾ ਹੈ।

ਇਹ ਸਪੱਸ਼ਟ ਹੈ ਕਿ ਆਇਨਿਕ ਬੰਧਨ ਘੱਟ ਆਇਨਨ ਐਨਥੈਲਪੀ ਅਤੇ ਵੱਧ ਰਿਣਾਤਮਕ ਇਲੈਕਟ੍ਰਾਨ ਗ੍ਰਹਿਣ ਐਲਥੈਲਪੀ ਵਾਲੇ ਤੱਤਾਂ ਦੇ ਵਿੱਚ ਵਧੇਰੇ ਅਸਾਨੀ ਨਾਲ ਬਣਦੇ ਹਨ।

ਵਧੇਰੇ ਆਇਨਿਕ ਯੋਗਿਕਾਂ ਧਨਆਇਨ ਧਾਤਵੀਂ ਤੱਤਾਂ ਤੋਂ ਰਿਣ ਆਇਨ ਅਥਾਤਵੀ ਤੱਤਾਂ ਤੋਂ ਬਣਦੇ ਹਨ। ਦੋ ਅਧਾਤਵੀਂ ਤੱਤਾਂ ਤੋਂ ਬਣਨ ਵਾਲਾ ਅਮੋਨਿਆ ਆਇਨ ਇੱਕ ਅਪਵਾਦ ਹੈ ਇਹ ਅਨੇਕ ਯੋਗਿਕਾਂ ਵਿੱਚ ਧਨਆਇਨ ਦੇ ਰੂਪ ਵਿੱਚ ਹੁੰਦਾ ਹੈ। ਆਇਨਿਕ ਯੋਗਿਕਾਂ ਦੇ ਕ੍ਰਿਸਟਲ ਵਿੱਚ ਧਨਆਇਨ ਅਤੇ ਰਿਣਆਇਨ ਤ੍ਰੈਵਿਗੀ ਰੂਪ ਵਿੱਚ ਨਿਯਮਿਤ ਰੂਪ ਵਿੱਚ ਵਿਵਸਥਿਤ ਰਹਿੰਦੇ ਹਨ। ਇਹ ਆਇਨ ਕੁਲੰਬਿਕ ਅੰਤਰਕਿਰਿਆ (Coulombic Interaction) ਬਲਾਂ ਦੁਆਰਾ ਆਪਸ ਵਿੱਚ ਜੁੜੇ ਰਹਿੰਦੇ ਹਨ। ਆਇਨਾਂ ਦੇ ਅਕਾਰ ਉਨ੍ਹਾਂ ਦੇ ਪੈਕਿੰਗ (packing) ਕ੍ਰਮ ਅਤੇ ਹੋਰ ਕਾਰਣਾਂ ਦੇ ਅਧਾਰ ਤੇ ਇਹ ਯੋਗਿਕ ਭਿੰਨ-ਭਿੰਨ ਕ੍ਰਿਸਟਲੀ ਸੰਰਚਨਾਵਾਂ ਵਿੱਚ ਕ੍ਰਿਸਟਲਿਤ ਹੁੰਦੇ ਹਨ। ਉਦਾਹਰਣ ਦੇ ਲਈ-ਸੋਡੀਅਮ ਕਲੋਰਾਈਡ NaCl (ਖਣਿਜ ਨਮਕ) ਦੀ ਕਿਸਟਲ ਸੰਰਚਨਾ ਹੇਠਾਂ ਦਰਸਾਈ ਗਈ ਹੈ।

ਖਣਿਜ ਨਮਕ ਸੰਰਚਨਾ

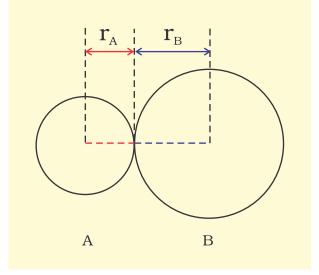
ਆਇਨਿਕ ਠੋਸ ਦੇ ਲਈ ਇਲੈਕਟ੍ਰਾਨ ਗ੍ਰਹਿਣ ਐਨਥੈਲਪੀ ਅਤੇ ਆਇਨਨ ਐਨਥੈਲਪੀ ਦਾ ਯੋਗ ਧਨਾਤਮਕ ਹੋ ਸਕਦਾ ਹੈ। ਅਜਿਹੇ ਸਮੇਂ ਕ੍ਰਿਸਟਲ ਸੰਰਚਨਾ ਦੀ ਸਥਿਰਤਾ ਉਸ ਦੀ ਲੈਟਿਸ ਦੇ ਬਣਨ ਤੇ ਪੈਦਾ ਮੁਕਤ ਊਰਜਾ ਦੇ ਕਾਰਣ ਹੁੰਦਾ ਹੈ।ਉਦਾਹਰਣ ਵਜੋਂ— Na ਧਾਤ ਤੋਂ Na+ ਆਇਨ ਬਣਾਉਣ ਦੇ ਲਈ ਆਇਨਨ ਊਰਜਾ 495.8 kJ mol⁻¹ ਹੈ ਜਦਕਿ Cl(g) ਤੋਂ Cl⁻ (g) ਬਨਾਉਣ ਦੀ ਇਲੈਕਟ੍ਰਾਨ ਗ੍ਰਹਿਣ ਐਨਥੈਲਪੀ ਸਿਰਫ – 348.7 kJ mol⁻¹ ।ਇਨ੍ਹਾਂ ਦੋਵਾਂ ਦਾ ਮਾਨ 147.1 kJ mol⁻¹ ਹੁੰਦਾ ਹੈ।ਇਹ ਪਰਿਮਾਣ (value) ਸੋਡੀਅਮ ਕਲੋਰਾਈਡ ਦੇ ਬਦਲੇ ਲੈਟਿਸ ਐਨਥੈਲਪੀ ਦੇ ਮਾਨ (–788 J) ਦੇ ਨਾਲੋਂ ਵਧੇਰੇ ਮਿਲ ਜਾਂਦੀ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਸਾਰੇ ਸਟੈੱਪਾਂ ਤੋਂ ਪ੍ਰਾਪਤ ਹੋਣ ਵਾਲੀ ਉਰਜਾ ਸੋਖਿਤ ਉਰਜਾ ਤੋਂ ਕਿੱਤੇ ਵੱਧ ਹੁੰਦੀ ਹੈ। ਇਸ

ਲਈ ਆਇਨਿਕ ਯੋਗਿਕ ਦੀ ਸਥਿਰਤਾ ਦਾ ਗੁਣਾਤਮਕ ਮਾਨ ਉਸ ਯੋਗਿਕ ਦੇ ਲੈਟਿਸ ਐਨਥੈਲਪੀ ਉੱਤੇ ਨਿਰਭਰ ਕਰਦੀ ਹੈ, ਨਾ ਕਿ ਗੈਸੀ ਅਵਸਥਾ ਵਿੱਚ ਉਸ ਆਇਨਿਕ ਸਪੀਸ਼ੀਜ਼ ਦੁਆਰਾ ਆੱਕਟੈਟ ਪ੍ਰਾਪਤੀ ਉੱਤੇ।

ਕਿਉਂਕਿ ਆਇਨਿਕ ਯੋਗਿਕਾਂ ਦੇ ਬਣਨ ਵਿੱਚ ਲੈਟਿਸ ਐਨਥੈਲਪੀ ਮਹੱਤਵ ਪੂਰਣ ਭੂਮਿਕਾ ਨਿਭਾਉਂਦੀ ਹੈ, ਇਸ ਲਈ ਆਓ ਇਸ ਵਿਸ਼ੇ ਬਾਰੇ ਕੁਝ ਹੋਰ ਜਾਣਕਾਰੀ ਪ੍ਰਾਪਤ ਕਰੀਏ।

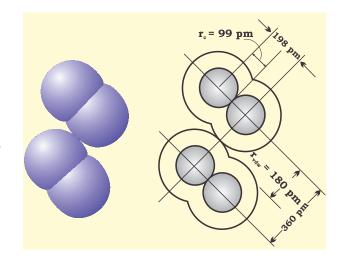
4.2.1 ਲੈਟਿਸ ਐਲਥੈਲਪੀ (ਲੈਟਿਸ ਉਰਜਾ)

ਕਿਸੇ ਆਇਨਿਕ ਠੋਸ ਦੇ ਇੱਕ ਮੋਲ ਯੋਗਿਕ ਨੂੰ ਗੈਸੀ ਅਵਸਥਾ ਵਿੱਚ ਸੰਘਟਕ ਆਇਨਾਂ ਵਿੱਚ ਵੱਖ ਕਰਨ ਦੇ ਲਈ ਲੋੜੀਂਦੀ ਊਰਜਾ ਨੂੰ ਉਸ ਯੋਗਿਕ ਦੀ 'ਲੈਟਿਸ ਐਲਥੈਲਪੀ ਕਹਿੰਦੇ ਹਨ। ਉਦਾਹਰਣ ਦੇ ਲਈ NaCl ਦੀ ਲੈਟਿਸ ਐਨਥੈਲਪੀ 788 kJ mol^{-1} ਹੈ। ਇਸ ਦਾ ਭਾਵ ਹੈ ਕਿ ਇਕ ਮੋਲ ਠੋਸ ਦਾ ਇੱਕ ਮੋਲ $\mathrm{Na}^+(\mathrm{g})$ ਅਤੇ ਇੱਕ ਮੋਲ $\mathrm{Cl}^-(\mathrm{g})$ ਵਿੱਚ ਅਨੰਤ ਦੂਰੀ ਤੱਕ ਵੱਖ ਕਰਨ ਦੇ ਲਈ 788 kJ ਉਰਜਾ ਦੀ ਜਰੂਰਤ ਹੁੰਦੀ ਹੈ।


ਇਸ ਪ੍ਕਿਰਿਆ ਵਿੱਚ ਉਲਟ ਚਾਰਜਾਂ ਵਾਲੇ ਆਇਨਾਂ ਵਿੱਚ ਆਕਰਸ਼ਣ ਬਲ ਅਤੇ ਸਮਾਨ ਚਾਰਜ ਵਾਲੇ ਆਇਨਾਂ ਵਿੱਚ ਪ੍ਤੀਕਰਸ਼ਣ ਬਲ ਦੋਵੇਂ ਭਾਗ ਲੈਂਦੇ ਹਨ। ਕਿਉਂਕਿ ਠੋਸ ਕ੍ਰਿਸਟਲ ਤ੍ਰੈਵਿਗੀ ਹੁੰਦਾ ਹੈ ਇਸ ਲਈ ਕੇਵਲ ਅਕਰਸ਼ਣ ਅਤੇ ਪ੍ਰਤੀ ਕਰਸ਼ਣ ਬਲਾਂ ਦੀ ਅੰਤਰ ਕਿਰਿਆ ਤੋਂ ਹੀ ਲੈਟਿਸ ਐਨਥੈਲਪੀ ਦਾ ਪਰਿਕਲਨ ਕਰਨਾ ਸੰਭਵ ਨਹੀਂ ਹੈ। ਕ੍ਰਿਸਟਲ ਜੁਮੈਟਰੀ ਨਾਲ ਸਬੰਧਿਤ ਕਾਰਕਾਂ ਨੂੰ ਵੀ ਇਸ ਵਿੱਚ ਸ਼ਾਮਿਲ ਕਰਨਾ ਜਰੂਰੀ ਹੈ।

4.3 ਬੰਧਨ ਪੈਰਾਮੀਟਰ

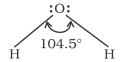
4.3.1 ਬੰਧਨ-ਲੰਬਾਈ


ਕਿਸੇ ਅਣੂ ਵਿੱਚ ਬੰਧਿਤ ਪਰਮਾਣੂਆਂ ਦੇ ਨਿਊਕਲੀਅਸਾਂ ਦੇ ਵਿੱਚ ਸੰਤੁਲਿਤ ਦੂਰੀ 'ਬੰਧਨ ਲੰਬਾਈ' ਅਖਵਾਉਂਦੀ ਹੈ। ਬੰਧਨ ਲੰਬਾਈ ਸਪੈਕਟ੍ਰਮੀ, ਐਕਸ ਕਿਰਣ ਵਿਵਰਤਨ ਅਤੇ ਇਲੈਕਟ੍ਰਾੱਨ ਵਿਵਰਤਨ (Electron Diffraction) ਵਿਧੀਆਂ ਦੀ ਸਹਾਇਤਾ ਨਾਲ ਗਿਆਤ ਕੀਤੀ ਜਾਂਦੀ ਹੈ। ਇਨ੍ਹਾਂ ਤਕਨੀਕਾਂ ਦਾ ਅਧਿਐਨ ਤੁਸੀਂ ਉੱਚ ਜਮਾਤਾਂ ਵਿੱਚ ਕਰੋਗੇ। ਬੰਧਿਤ ਯੁਗਮ ਦਾ ਹਰ ਇਕ ਪਰਮਾਣੂ ਬੰਧਨ ਲੰਬਾਈ ਵਿੱਚ ਯੋਗਦਾਨ ਦਿੰਦਾ ਹੈ (ਚਿੱਤਰ 4.1) ਸਹਿਸੰਯੋਜੀ ਬੰਧਨ ਵਿੱਚ ਹਰ ਇੱਕ ਪਰਮਾਣੂ ਦਾ ਯੋਗਦਾਨ ਉਸ ਪਰਮਾਣੂ ਦਾ 'ਸਹਿਸੰਯੋਜੀ ਅਰਧ ਵਿਆਸ' ਅਖਵਾਉਂਦਾ ਹੈ।

ਬੰਧਿਤ ਅਵਸਥਾ ਵਿੱਚ ਕਿਸੇ ਪਰਮਾਣੂ ਦੇ ਕੋਰ, ਜੋ ਲਾਗਵੇਂ ਪਰਮਾਣੂ ਦੇ ਕੋਰ ਦੇ ਸੰਪਰਕ ਵਿੱਚ ਹੁੰਦਾ ਹੈ, ਦਾ ਅਰਧ ਵਿਆਸ ਉਸਦਾ ਸਹਿਸੰਯੋਜੀ ਅਰਧ ਵਿਆਸ ਮੰਨਿਆ ਜਾਂਦਾ ਹੈ। ਸਹਿਸੰਯੋਜੀ ਅਰਧ ਵਿਆਸ ਇੱਕ ਹੀ ਅਣੂ ਵਿੱਚ ਬੰਧਿਤ ਦੋ ਸਮਰੂਪ ਪਰਮਾਣੂਆਂ ਦੇ ਵਿਚਲੀ ਦੂਰੀ ਦਾ ਅੱਧਾ ਭਾਗ ਹੁੰਦੀ ਹੈ।

ਚਿੱਤਰ. **4.1** ਸਹਿਸੰਯੋਜੀ ਅਣੂ AB ਵਿੱਚ ਬੰਧਨ ਲੰਬਾਈ $R = r_A + r_B$ (ਜਿੱਥੇ R ਬੰਧਨ ਲੰਬਾਈ ਹੈ ਅਤੇ r_A ਅਤੇ r_B ਕ੍ਰਮਵਾਰ R ਅਤੇ R ਪਰਮਾਣੁਆਂ ਦੇ ਸਹਿਸੰਯੋਜੀ ਅਰਧ ਵਿਆਸ ਹਨ)

ਵਾਂਡਰਵਾਲ ਅਰਧਵਿਆਸ ਅਣਬੰਧਿਤ ਅਵਸਥਾ ਵਿੱਚ ਸੰਯੋਜੀ ਸ਼ੈੱਲ ਸਹਿਤ ਪਰਮਾਣੂ ਦਾ ਪੂਰਾ ਅਕਾਰ ਨਿਰੂਪਤ ਕਰਦੀ ਹੈ। ਵਾਂਡਰਵਾਲ ਅਰਧ ਵਿਆਸ ਠੋਸ ਅਵਸਥਾ ਵਿੱਚ ਭਿੰਨ-ਭਿੰਨ ਅਣੂਆਂ ਦੇ ਦੋ ਸਮਰੂਪ ਪਰਮਾਣੂਆਂ ਵਿਚਲੀ ਦੂਰੀ ਦਾ ਅੱਧਾ ਭਾਗ ਹੁੰਦੀ ਹੈ। ਕਲੋਰੀਨ ਅਣੂ ਦੇ ਲਈ ਸਹਿਸੰਯੋਜੀ ਅਤੇ ਵਾਂਡਰਵਾਲ ਅਰਧ ਨੂੰ ਚਿੱਤਰ 4.2 ਵਿੱਚ ਦਰਸਾਇਆ ਗਿਆ ਹੈ।



ਚਿੱਤਰ. 4.2 ਕਲੋਰੀਨ ਦੇ ਅਣੂ ਵਿੱਚ ਸਹਿਸੰਯੋਜੀ ਅਤੇ ਵਾਂਡਰਵਾਲ ਅਰਧ ਵਿਆਸ। ਅੰਦਰ ਦੇ ਵ੍ਰਿਤ ਕਲੋਰੀਨ ਦੇ ਪਰਮਾਣੂ ਦਾ ਅਕਾਰ ਦਰਸਾਉਂਡੇ ਹਨ।(r_{vdw} ਅਤੇ r_c ਕ੍ਰਮਵਾਰ ਵਾਂਡਰਵਾਲ ਅਤੇ ਸਹਿਸੰਯੋਜੀ ਅਰਧ ਵਿਆਸ ਦਰਸਾਉਂਦੇ ਹਨ।

ਕੁੱਝ ਇਕਹਿਰੇ, ਦੂਹਰੇ ਅਤੇ ਤੀਹਰੇ ਬੰਧਨਾਂ ਦੀਆਂ ਔਸਤ ਲੰਬਾਈਆਂ ਸਾਰਣੀ 4.2 ਵਿੱਚ ਦਿੱਤੀਆਂ ਗਈਆਂ ਹਨ, ਕੁਝ ਆਮ ਅਣੂਆਂ ਦੀਆਂ ਬੰਧਨ ਲੰਬਾਈਆਂ ਸਾਰਣੀ 4.3 ਵਿੱਚ ਦਿੱਤੀਆਂ ਗਈਆਂ ਹਨ, ਜਦ ਕਿ ਕੁਝ ਆਮ ਤੱਤਾਂ ਦੇ ਸਹਿਸੰਯੋਜੀ ਅਰਧਵਿਆਸ ਸਾਰਣੀ 4.4 ਵਿੱਚ ਕ੍ਰਮਬੱਧ ਕੀਤੇ ਗਏ ਹਨ।

4.3.2 ਬੰਧਨ ਕੋਣ

ਕਿਸੇ ਅਣੂ ਦੇ ਕੇਂਦਰੀ ਪਰਮਾਣੂ ਦੇ ਆਲੇ-ਦੁਆਲੇ ਮੌਜੂਦ ਬੰਧਨ ਇਲੈਕਟ੍ਰਾੱਨ ਯੁਗਮ ਨੂੰ ਧਾਰਣ ਕਰਨ ਵਾਲੇ ਆਰਬਿਟਲਾਂ ਦੇ ਵਿੱਚ ਬਣਨ ਵਾਲੇ ਕੋਣ ਨੂੰ ਬੰਧਨ ਕੋਣ ਕਹਿੰਦੇ ਹਨ। ਬੰਧਨ ਕੋਣ ਨੂੰ ਡਿਗਰੀ ਦੇ ਰੂਪ ਵਿੱਚ ਵਿਅਕਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ ਅਤੇ ਪ੍ਯੋਗਿਕ ਤੌਰ ਤੇ ਸਪੈਕਟ੍ਰਮੀ ਵਿਧੀਆਂ ਦੁਆਰਾ ਗਿਆਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਬੰਧਨ ਕੋਣ ਅਣੂ ਦੇ ਕੇਂਦਰੀ ਪਰਮਾਣੂ ਦੇ ਦੁਆਲੇ ਆਰਬਿਟਲਾਂ ਦੇ ਵਿਤਰਣ ਦੀ ਜਾਣਕਾਰੀ ਦਿੰਦਾ ਹੈ। ਇਸ ਲਈ ਇਸ ਤੋਂ ਸਨ ਅਣੂ/ਜਟਿਲ ਆਇਨ ਦੀ ਆਕ੍ਰਿਤੀ ਨੂੰ ਗਿਆਤ ਕਰਨ ਵਿੱਚ ਮਦਦ ਮਿਲਦੀ ਹੈ। ਜਿਵੇਂ-ਪਾਣੀ ਦੇ ਅਣੂ H-O-H ਬੰਧਨ ਕੋਣ ਨੂੰ ਇਸ ਤਰ੍ਹਾਂ ਨਿਰੁਪਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ।

4.3.3 ਬੰਧਨ ਐਲਥੈਲਪੀ

ਗੈਸੀ ਸਥਿਤੀ ਵਿੱਚ ਦੋ ਪਰਮਾਣੂਆਂ ਦੇ ਵਿੱਚ ਵਿਸ਼ਿਸ਼ਟ ਬੰਧਨਾਂ ਦੇ ਇੱਕ ਮੋਲ ਨੂੰ ਤੋੜਨ ਦੇ ਲਈ ਲੋੜੀਂਦੀ ਊਰਜਾ ਨੂੰ 'ਬੰਧਨ ਐਨਥੈਲਪੀ' ਕਹਿੰਦੇ ਹਨ। ਬੰਧਨ ਐਨਥੈਲਪੀ ਦਾ ਮਾਤਰਕ kJ $\mathrm{mol^{-1}}$ ਹੁੰਦਾ ਹੈ। ਉਦਾਹਰਣ ਵਜੋਂ—ਹਾਈਡ੍ਰੋਜਨ ਦੇ ਅਣੂ ਵਿੱਚ $\mathrm{H} - \mathrm{H}$ ਬੰਧਨ ਦੀ ਬੰਧਨ ਐਨਥੈਲਪੀ 435.8 kJ $\mathrm{mol^{-1}}$ ਹੁੰਦੀ ਹੈ, ਅਰਥਾਤ

 $H_{2}(g) \rightarrow H(g) + H(g); \Delta_{2}H = 435.8 \text{ kJ mol}^{-1}$

ਇਸੇ ਤਰ੍ਹਾਂ ਬਹੁ ਬੰਧਨ ਵਾਲੇ ਪਰਮਾਣੂ (ਜਿਵੇਂ ${\rm O_2}$ ਅਤੇ ${\rm N_2}$ ਦੇ ਲਈ ਬੰਧਨ ਐਨਬੈਲਪੀ ਹੋਵੇਗੀ—

 $O_2 (O = O) (g) \rightarrow O(g) + O(g); \Delta_a H^2 = 498.0 \text{ kJ mol}^{-1}$ $N_2 (N = N) (g) \rightarrow N(g) + N(g); \Delta_a H^2 = 946.0 \text{ kJ mol}^{-1}$

ਇਹ ਤੱਥ ਮਹੱਤਵਪੂਰਣ ਹੈ ਕਿ ਜੇ ਬੰਧਨ ਵਿਘਟਨ ਐਨਥੈਲਪੀ ਜਿਆਦਾ ਹੈ ਤਾਂ ਬੰਧਨ ਵਧੇਰੇ ਪ੍ਰਬਲ ਹੋਵੇਗਾ। HCl ਵਰਗੇ ਇੱਕ ਬਿਖਮ ਨਿਉਕਲੀ ਦੋ ਪਰਮਾਣਵੀਂ ਅਣੂ ਦੇ ਲਈ

 $HCl~(g) \rightarrow H(g) + Cl~(g);~\Delta_a H^{\scriptscriptstyle \perp} = 431.0~kJ~mol^{\scriptscriptstyle -1}$

ਬਹੁਪਰਮਾਣਵੀਂ ਅਣੂਆਂ ਵਿੱਚ ਬੰਧਨ-ਪ੍ਰਬਲਤਾ ਦਾ ਨਿਰਧਾਰਣ ਵਧੇਰੇ ਜਟਿਲ ਹੁੰਦਾ ਹੈ। ਉਦਾਹਰਣ ਵਜੋਂ H_2O ਵਿੱਚ ਦੋ O-H ਬੰਧਨ ਦੇ ਤੋੜਨ ਲਈ ਲੋੜੀਂਦੀ ਊਰਜਾ ਸਮਾਨ ਨਹੀਂ ਹੈ।

 $H_2O(g) \rightarrow H(g) + OH(g); \Delta_a H_1^z = 502 \text{ kJ mol}^{-1}$ $OH(g) \rightarrow H(g) + O(g); \Delta_a H_2^z = 427 \text{ kJ mol}^{-1}$

ਸਾਰਣੀ 4.2 ਕੁਝ ਇਕਹਿਰੇ, ਦੂਹਰੇ ਅਤੇ ਤੀਹਰੇ ਬੰਧਨਾਂ ਦੀਆਂ ਔਸਤ ਲੰਬਾਈਆਂ

ਬੰਧਨ ਦੀ ਕਿਸਮ	ਸਹਿਸੰਯੋਜੀ ਬੰਧਨ ਲੰਬਾਈ (pm)
О–Н	96
C–H	107
N-O	136
C-O	143
C-N	143
C-C	154
C=O	121
N=O	122
C=C	133
C=N	138
C≡N	116
C≡C	120

ਸਾਰਣੀ 4.3 ਕੁਝ ਅਣੂਆਂ ਦੀਆਂ ਬੰਧਨ ਲੰਬਾਈਆਂ

ਅਣੂ	ਬੰਧਨ ਲੰਬਾਈ (pm)
H ₂ (H – H)	74
$F_2(F-F)$	144
Cl ₂ (Cl – Cl)	199
Br ₂ (Br – Br)	228
$I_2 (I - I)$	267
$N_2 (N \equiv N)$	109
$O_2 (O = O)$	121
HF (H – F)	92
HCl (H – Cl)	127
HBr (H – Br)	141
HI (H – I)	160

ਸਾਰਣੀ 4.4 ਸਹਿਸੰਯੋਜੀ ਅਰਧ ਵਿਆਸ *r_{cov}/(pm)

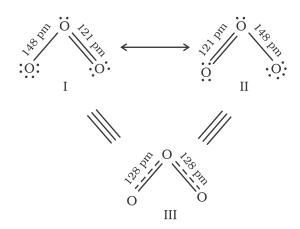
					:0V'	
Н	37					
С	77(1)	N	74 (1)	O 66(1)	F	64
	67 (2)		65(2)	57 (2)	Cl	99
	60(3)		55(3)			
		Р	110	S 104(1)	Br	114
				95(2)		
		As	121	Se 104	I	133
		Sb	141	Te 137		

 ਦਿੱਤੇ ਗਏ ਮਾਨ ਇੱਕਹਿਰੇ ਬੰਧਨਾਂ ਦੇ ਲਈ ਹਨ।ਹੋਰ ਕਿਸਮ ਦੇ ਬੰਧਨਾਂ ਨੂੰ ਬਰੈਕਟ ਵਿੱਚ ਦਰਸਾਇਆ ਗਿਆ ਹੈ।(ਅਵਰਤੀ ਪ੍ਰਵਿਰਤੀ ਦੇ ਲਈ ਯੁਨਿਟ 3 ਵੀ ਵੇਖੋ)। $\Delta_a H^\pm$ ਮਾਨਾਂ ਵਿੱਚ ਅੰਤਰ ਇਹ ਦਰਸਾਉਂਦਾ ਹੈ ਕਿ ਰਸਾਇਣਿਕ ਪਰਿਸਥਿਤੀ ਦੇ ਕਾਰਣ ਦੂਜੇ O-H ਦੀ ਐਲਥੈਲਪੀ ਭਿੰਨ-ਭਿੰਨ ਅਣੂਆਂ (ਜਿਵੇਂ C_2H_5OH ਈਥੇਨੌਲ) ਅਤੇ ਪਾਣੀ ਵਿੱਚ ਭਿੰਨ ਹੁੰਦੀ ਹੈ। ਇਸ ਲਈ ਬਹੁ ਪਰਮਾਣੂਆਂ ਅਣੂਆਂ ਵਿੱਚ ਔਸਤ ਬੰਧਨ ਊਰਜਾ ਨਾਮਕ ਸਟੈੱਪ ਦੀ ਵਰਤੋਂ ਕੀਤੀ ਜਾਂਦੀ ਹੈ। ਇਸ ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਦੇ ਲਈ ਕੁਲ ਬੰਧਨ ਵਿਯੋਜਨ ਐਨਥੈਲਪੀ ਦੇ ਮਾਨ ਨੂੰ ਟੁੱਟੇ ਬੰਧਨਾਂ ਦੀ ਸੰਖਿਆ ਨਾਲ ਵਿਭਾਜਿਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਉਦਾਹਰਣ ਦੇ ਲਈ—ਪਾਣੀ ਦੇ ਅਣੂ ਵਿੱਚ O-H ਬੰਧਨ ਦੀ ਔਸਤ ਬੰਧਨ ਐਨਥੈਲਪੀ।

ਐਨਥੈਲਪੀ =
$$\frac{502 + 427}{2}$$

 $= 464.5 \text{ kJ mol}^{-1}$

4.3.4 ਬੰਧਨ ਕੋਟੀ


ਸਹਿਸੰਯੋਜੀ ਬੰਧਨ ਦੀ ਲੁਈਸ ਵਿਆਖਿਆ ਦੇ ਅਨੁਸਾਰ ਕਿਸੇ ਅਣੂ ਵਿੱਚ ਦੋ ਪਰਮਾਣੂਆਂ ਦੇ ਵਿੱਚ ਬੰਧਨਾਂ ਦੀ ਸੰਖਿਆ ਬੰਧਨ ਕੋਟੀ (Bond Order) ਅਖਵਾਉਂਦੀ ਹੈ। ਉਦਾਹਰਣ ਦੇ ਲਈ ${\rm H_2}$ (ਜਿਸ ਵਿੱਚ ਇੱਕ ਸਹਿਭਾਜਿਤ ਇਲੈਕਟ੍ਰਾੱਨ ਯੁਗਮ ਹੈ, ${\rm O_2}$ ਜਿਸ ਵਿੱਚ ਦੋ ਸਹਿਭਾਜਿਤ ਇਲੈਕਟ੍ਰਾੱਨ ਯੁਗਮ ਹੁੰਦੇ ਹਨ) ਅਤੇ ${\rm N_2}$ (ਜਿਸ ਵਿੱਚ ਤਿੰਨ ਸਹਿਭਾਜਿਤ ਇਲੈਕਟ੍ਰਾੱਨ ਯੁਗਮ ਹੁੰਦੇ ਹਨ) ਵਿੱਚ ਬੰਧਨ ਕੋਟੀ ਕ੍ਰਮਵਾਰ 1, 2 ਅਤੇ 3 ਹੈ। ਇਸੇ ਤਰ੍ਹਾਂ CO ਵਿੱਚ, ਜਿੱਥੇ ਕਾਰਬਨ ਅਤੇ ਆੱਕਸੀਜਨ ਦੇ ਵਿੱਚ ਤਿੰਨ ਸਹਿਭਾਜਿਤ ਯੁਗਮ ਹਨ, ਬੰਧਨ ਕੋਟੀ 3 ਹੈ। ${\rm N_2}$ ਦੀ ਬੰਧਨ ਕੋਟੀ 3 ਹੈ ਅਤੇ ਇਸਦਾ ${\rm \Delta_a H^o}$ ਮਾਨ 946 kJ ${\rm mol}^{-1}$ ਹੈ ਜੋ ਕਿਸੇ ਦੋ ਪਰਮਾਣਵੀਂ ਅਣੂ ਦੇ ਲਈ ਸਭ ਤੋਂ ਵੱਧ ਹੈ।

ਸਮਇਲੈਕਟ੍ਰਾੱਨੀ ਅਣੂਆਂ ਅਤੇ ਆਇਨਾਂ ਵਿੱਚ ਬੰਧਨ ਕੋਟੀ ਸਮਾਨ ਹੁੰਦੀ ਹੈ। ਉਦਾਹਰਣ ਦੇ ਲਈ \mathbf{F}_2 ਅਤੇ $\mathbf{O_2^{2-}}$ ਵਿੱਚ ਬੰਧਨ ਕੋਟੀ 1 ਹੈ।

ਇਸੇ ਤਰ੍ਹਾਂ N_2 , CO ਅਤੇ NO^+ ਦੀ ਬੰਧਨ ਕੋਟੀ 3 ਹੈ। ਅਣੂਆਂ ਦੀ ਸਥਿਰਤਾ ਨੂੰ ਸਮਝਣ ਦੇ ਲਈ ਇੱਕ ਲਾਭਦਾਇਕ ਆਮ ਸਹਿਸਬੰਧ ਇਹ ਹੈ ਕਿ ਬੰਧਨ ਕੋਟੀ ਵੱਧਣ ਤੇ ਬੰਧਨ ਐਨਥੈਲਪੀ ਵੱਧਦੀ ਹੈ. ਜਦਕਿ ਬੰਧਨ ਲੰਬਾਈ ਘੱਟਦੀ ਹੈ।

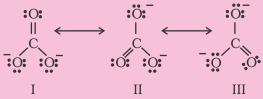
4.3.5 ਅਨੁਨਾਦ ਸੰਰਚਨਾਵਾਂ

ਪ੍ਯੋਗਿਕ ਨਿਰਧਾਰਿਤ ਪੈਰਾ ਮੀਟਰਾਂ (parameters) ਦੇ ਸੰਦਰਭ ਵਿੱਚ ਕਿਸੇ ਅਣੂ ਦੇ ਨਿਰੂਪਣ ਦੇ ਲਈ ਇੱਕ ਲਈਸ ਸੰਰਚਨਾ ਕਈ ਵਾਰ ਕਾਫ਼ੀ ਨਹੀਂ ਹੁੰਦੀ। ਉਦਾਹਰਣ ਵਜੋਂ-ਓਜੋਨ ਅਣੂ ਦੀ ਹੇਠ ਲਿਖੀਆਂ ਸੰਰਚਨਾਵਾਂ (1 ਅਤੇ 11) ਦੁਆਰਾ ਸਮਾਨ ਰੂਪ ਵਿੱਚ ਨਿਰੂਪਿਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਦੋਵਾਂ ਹੀ ਬਣਤਰਾਂ ਵਿੱਚ ਇੱਕ O–O ਇਕਹਿਰਾ ਬੰਧਨ ਅਤੇ ਇੱਕ O=O ਦੂਹਰਾ ਬੰਧਨ ਮੌਜੂਦ ਹੈ। O–O ਇਕਹਿਰੇ

ਚਿੱਤਰ. $\bf 4.3~$ O_3 ਅਣੂ ਦੀਆਂ ਅਨੁਨਾਦ ਸੰਰਚਨਾਵਾਂ (ਸੰਰਚਨਾ 1~ ਅਤੇ 11~ਦੋਂ ਵੱਖ-ਵੱਖ canonical ਰੂਪ ਦਰਸਾਉਂਦੇ ਹਨ, ਜਦਕਿ ਸੰਰਚਨਾ 111~ਅਨੁਨਾਦ ਹਾਈਬ੍ਰਡ resonance hybrid ਰੂਪ ਦਰਸਾਉਂਦੀ ਹੈ।

ਅਤੇ ਦੂਹਰੇ ਬੰਧਨਾਂ ਦੀਆਂ ਸਧਾਰਣ ਬੰਧਨ ਲੰਬਾਈਆਂ ਕ੍ਰਮਵਾਰ $148~\mathrm{pm}$ ਅਤੇ $121~\mathrm{pm}$ ਹਨ। ਪ੍ਰਯੋਗ ਦੁਆਰਾ ਗਿਆਤ ਹੋਇਆ $\mathrm{O_3}$ ਅਣੂ ਵਿੱਚ ਦੋਵੇਂ $\mathrm{O-O}$ ਬੰਧਨਾਂ ਦੀ ਲੰਬਾਈ ਇਕ ਸਮਾਨ $128~\mathrm{pm}$ ਹੁੰਦੀ ਹੈ। ਇਸ ਲਈ $\mathrm{O_3}$ ਦੇ ਅਣੂ ਵਿੱਚ ਅੱਕਸੀਜਨ–ਆੱਕਸੀਜਨ ਬੰਧਨ, ਇਕਹਿਰੇ ਅਤੇ ਦੂਹਰੇ ਬੰਧਨਾਂ ਦਾ ਮੱਧ ਹੈ। ਇਸ ਲਈ ਉੱਪਰ ਦਿੱਤੀਆਂ ਲੁਈਸ ਸੰਰਚਨਾਵਾਂ I ਅਤੇ II ਵਿੱਚੋਂ ਕੋਈ ਵੀ ਇੱਕ ਸੰਰਚਨਾ $\mathrm{O_3}$ ਅਣੂ ਨੂੰ ਨਿਰੂਪਿਤ ਨਹੀਂ ਕਰ ਸਕਦੀ।

 ${\rm O}_3$ ਵਰਗੇ ਅਣੂਆਂ ਦੀ ਵਾਸਤਵਿਕ ਸੰਰਚਨਾ ਨੂੰ ਸਪੱਸ਼ਟ ਕਰਨ ਦੇ ਲਈ ਅਨੁਨਾਦ ਜਾ ਅਨੁਨਾਨ ਸੰਕਲਪ (Resonance concept) ਨੂੰ ਪ੍ਰਸਤਾਵਿਤ ਕੀਤਾ ਗਿਆ। ਇਸ ਸਕੰਲਪ ਦੇ ਅਨੁਸਾਰ ਜਦੋਂ ਕਿਸੇ ਅਣੂ ਨੂੰ ਕੇਵਲ ਇੱਕ ਲੁਈਸ ਸੰਰਚਨਾ ਦੁਆਰਾ ਨਿਰੂਪਿਤ ਨਾ ਕੀਤਾ ਜਾ ਸਕੇ, ਤਾਂ ਸਮਾਨ ਊਰਜਾ, ਨਿਊਕਲੀਅਸਾਂ ਦੀਆਂ ਸਮਾਨ ਸਥਿਤੀਆਂ ਅਤੇ ਸਮਾਨ ਬੰਧਨੀ ਅਤੇ ਅਬੰਧਨੀ ਇਲੈਕਟ੍ਰਾੱਨ ਯੁਗਮਾਂ ਵਾਲੀਆਂ ਕਈ ਸੰਰਚਨਾਵਾਂ ਵਿਹਿਤ (cononical) ਸੰਰਚਨਾਵਾਂ ਦੇ ਰੂਪ ਵਿੱਚ ਲਿਖੀਆਂ ਜਾਂਦੀਆਂ ਹਨ। ਇਨ੍ਹਾਂ ਵਿਹਿਤ ਸੰਰਚਨਾਵਾਂ ਨੂੰ ਅਨੁਨਾਦ ਹਾਈਬ੍ਰਿਡ (Resonance hybrid) ਅਣੂ ਦੀ ਵਾਸਤਵਿਕ ਸਥਿਤੀ ਨੂੰ ਨਿਰੂਪਿਤ ਕਰਦਾ ਹੈ। ਇਸ ਲਈ ${\rm O}_3$ ਦੀਆਂ ਉੱਤੇ ਦਿੱਤੀਆਂ ਦੋ ਸੰਰਚਨਾਵਾਂ I ਅਤੇ II ਉਸ ਦੀਆਂ ਵਿਹਿਤ ਸੰਰਚਨਾਵਾਂ ਹਨ ਅਤੇ ਉਨ੍ਹਾਂ ਦਾ ਹਾਈਬ੍ਰਿਡ ਰੂਪ (ਸੰਰਚਨਾ III) ਉਸਦੀ ਵਾਸਤਵਿਕ ਸੰਰਚਨਾ ਨੂੰ ਨਿਰੂਪਿਤ ਕਰਦਾ ਹੈ। ਅਨੁਨਾਦ ਨੂੰ ਦੋ ਸਿਰਿਆਂ ਵਾਲੇ ਤੀਰ ਦੁਆਰਾ ਦਰਸਾਇਆ ਜਾਂਦਾ ਹੈ। ਕਾਰਬੋਨੇਟ


ਆਇਨ ਅਤੇ ਕਾਰਬਨ ਡਾਈ ਆੱਕਸਾਈਡ ਅਣੂ ਅਨੁਨਾਦ ਸੰਰਚਨਾ ਦੀਆਂ ਦੋ ਹੋਰ ਉਦਾਹਰਣਾਂ ਹਨ।

ਉਦਾਹਰਣ 4.3

 ${
m CO}_3^{2-}$ ਆਇਨ ਦੀ ਸੰਰਚਨਾ ਦੀ ਵਿਆਖਿਆ ਅਨੁਨਾਦ ਦੁਆਰਾ ਕਰੋ।

ਗੱਲ

ਕਾਰਬਨ ਆੱਕਸੀਜਨ ਪਰਮਾਣੂਆਂ ਦੇ ਵਿੱਚ ਦੋ ਇੱਕਹਿਰੇ ਬੰਧਨ ਅਤੇ ਇੱਕ ਦੂਹਰੇ ਬੰਧਨ ਵਾਲੀ ਲਈਸ ਸੰਰਚਨਾ ਕਾਰਬੋਨੇਟ ਆਇਨ ਦੀ ਵਾਸਤਵਿਕ ਸੰਰਚਨਾ ਨੂੰ ਨਿਰੂਪਤ ਕਰਨ ਦੇ ਲਈ ਅਸਮਰੱਥ ਹੈ, ਕਿਉਂਕਿ ਇਸ ਦੇ ਅਨੁਸਾਰ ਤਿੰਨ ਕਾਰਬਨ ਆੱਕਸੀਜਨ ਬੰਧਨਾਂ ਦੀ ਲੰਬਾਈ ਭਿੰਨ ਹੋਣੀ ਚਾਹੀਦੀ ਹੈ।ਪਰੰਤੂ ਪ੍ਰਯੋਗਿਕ ਪਰਿਣਾਮਾਂ ਦੇ ਅਨੁਸਾਰ ਕਾਰਬੋਨੇਟ ਆਇਨ ਦੇ ਤਿੰਨਾਂ ਕਾਰਬਨ ਆਕਸੀਜਨ ਬੰਧਨਾਂ ਦੀ ਲੰਬਾਈ ਸਮਾਨ ਹੁੰਦੀ ਹੈ।ਇਸ ਲਈ ਕਾਰਬੋਨੇਟ ਆਇਨ ਦੀ ਵਾਸਤਵਿਕ ਸੰਰਚਨਾ ਨੂੰ ਹੇਠ ਲਿਖੀਆਂ ਤਿੰਨ ਵਿਹਿਤ ਸੰਰਚਨਾਵਾਂ (I, II ਅਤੇ III) ਦੇ ਅਨੁਨਾਦ ਹਾਈਬ੍ਰਿਡ ਦੇ ਰੂਪ ਵਿੱਚ ਦਰਸਾਇਆ ਜਾ ਸਕਦਾ ਹੈ।

ਚਿੱਤਰ **4.4** CO_3^{2-} ਦੇ ਆਇਨ ਦੀ ਸੰਰਚਨਾ I, II ਅਤੇ III ਤਿੰਨ ਵਿਹਿਤ ਸੰਰਚਨਾਵਾਂ

ਉਦਾਹਰਣ 4.4

 CO_2 ਅਣੂ ਦੀ ਸੰਰਚਨਾ ਦੀ ਵਿਆਖਿਆ ਕਰੋ। ਹੱਲ

 ${
m CO}_2$ ਦੇ ਅਣੂ ਵਿੱਚ ਕਾਰਬਨ–ਆਕਸੀਜਨ ਬੰਧਨ ਦੀ ਲੰਬਾਈ ਦਾ ਪ੍ਰਯੋਗਿਕ ਮਾਨ $115~{
m pm}$ ਹੈ। ਆਮ ਕਾਰਬਨ–ਆੱਕਸੀਜਨ ਦੂਹਰੇ ਬੰਧਨ (C=O) ਅਤੇ ਕਾਰਬਨ ਆੱਕਸੀਜਨ ਤੀਹਰੇ ਬੰਧਨ (C=O) ਦੀਆਂ ਲੰਬਾਈਆਂ ਕ੍ਰਮਵਾਰ $121~{
m pm}$ ਅਤੇ $110~{
m pm}$ ਹਨ। ${
m CO}_2$ ਵਿੱਚ ਕਾਰਬਨ ਆੱਕਸੀਜਨ ਬੰਧਨ ਦੀ ਲੰਬਾਈ ($115~{
m pm}$) (C=O) ਅਤੇ (C=O) ਦੀਆਂ ਆਮ ਲੰਬਾਈਆਂ ਦੇ ਵਿੱਚ ਹੈ। ਇਸ ਤੋਂ ਇਹ ਸੱਪਸ਼ਟ ਹੁੰਦਾ ਹੈ ਕਿ ${
m CO}_2$ ਅਣੂ ਦੀ ਵਾਸਤਵਿਕ ਸੰਰਚਨਾ ਨੂੰ ਕੇਵਲ ਇੱਕ ਲੁਈਸ ਸੰਰਚਨਾ ਦੇ ਅਧਾਰ ਤੇ ਪ੍ਰਦਰਸ਼ਿਤ ਨਹੀਂ ਕੀਤਾ ਜਾ ਸਕਦਾ। ਇਸ ਲਈ ਇਹ ਜਰੂਰੀ ਹੋ ਜਾਂਦਾ ਹੈ ਕਿ ਇਸ ਦੇ ਲਈ ਇੱਕ ਤੋਂ ਵੱਧ ਲੁਈਸ ਸੰਰਚਨਾਵਾਂ ਲਿਖੀਆਂ ਜਾਣ ਅਤੇ ${
m CO}_2$ ਦੀ ਸੰਰਚਨਾ ਨੂੰ ਇਨ੍ਹਾਂ ਵਿਹਿਤ ਸੰਰਚਨਾਵਾਂ I, II ਅਤੇ III ਦੇ ਹਾਈ ਬ੍ਰਿਡ ਦੇ ਰੂਪ ਵਿੱਚ ਪ੍ਰਦਰਸ਼ਿਤ ਕੀਤਾ ਜਾਵੇ।

ਿੱਧ
$$\overset{\text{I}}{\bigcirc}$$
 $\overset{\text{II}}{\bigcirc}$ $\overset{\text{III}}{\bigcirc}$ \overset

ਸਾਧਾਰਨ ਰੂਪ ਵਿੱਚ ਇਹ ਕਿਹਾ ਜਾ ਸਕਦਾ ਹੈ ਕਿ

- ਅਨੁਨਾਦ ਅਣੂ ਨੂੰ ਸਥਿਰਤਾ ਦਿੰਦਾ ਹੈ, ਕਿਉਂਕਿ ਅਨੁਨਾਦ ਹਾਈਬ੍ਰਿਡ ਦੀ ਊਰਜਾ ਕਿਸੇ ਵੀ ਵਿਹਿਤ ਸੰਰਚਨਾ ਦੀ ਉਰਜਾ ਤੋਂ ਘੱਟ ਹੁੰਦੀ ਹੈ।
- ਅਨੁਨਾਦ ਦੇ ਕਾਰਣ ਬੰਧਨਾਂ ਦੇ ਲੱਛਣ ਔਸਤ ਮਾਨ ਪ੍ਰਾਪਤ ਕਰਦੇ ਹਨ।ਇਸ ਤਰ੍ਹਾਂ O₃ ਅਣੂ ਵਿੱਚ ਅਨੁਨਾਦ ਹਾਈਬ੍ਰਿਡ ਰੂਪ III ਦੀ ਊਰਜਾ ਕੇਨਾਨੀਕਲ ਰੂਪ I ਅਤੇ II ਦੀ ਊਰਜਾ ਦੇ ਮਾਨ ਨਾਲੋਂ ਵੀ ਘੱਟ ਹੁੰਦੀ ਹੈ।

ਅਨੁਨਾਦ ਸੰਕਲਪ ਨਾਲ ਸਬੰਧਿਤ ਕਈ ਭੁਲੇਖੇ ਹਨ, ਜਿਨ੍ਹਾਂ ਨੂੰ ਦੂਰ ਕਰਨਾ ਜਰੂਰੀ ਹੈ। ਤੁਹਾਨੂੰ ਯਾਦ ਰਹੇ ਕਿ—

- ਵਾਸਤਵ ਵਿੱਚ ਕੈਨਾਨੀਕਲ ਸੰਰਚਨਾਵਾਂ ਦੀ ਕੋਈ ਹੋਂਦ ਨਹੀਂ ਹੁੰਦੀ।
- ਅਜਿਹਾ ਨਹੀਂ ਹੁੰਦਾ ਕਿ ਅਣੂ ਕੁਝ ਸਮੇਂ ਦੇ ਲਈ ਕਿਸੇ ਇੱਕ ਵਿਹਿਤ ਸੰਰਚਨਾ ਦੇ ਰੂਪ ਵਿੱਚ ਮੌਜੂਦ ਰਹਿੰਦੇ ਹੈ, ਜਦ ਕਿ ਹੋਰ ਸਮੇਂ ਕਿਸੀ ਦੂਜੀ ਵਿਹਿਤ ਸੰਰਚਨਾ ਨੂੰ ਅਪਣਾਉਂਦਾ ਹੈ।
- ਵਿਹਿਤ ਸੰਰਚਨਾਵਾਂ ਵਿੱਚ ਚਲ ਅੰਗਾਂ (ਕੀਟੋ ਅਤੇ ਈਨੋਲ) ਦੇ ਵਿੱਚ ਮਿਲਣ ਵਾਲੇ ਸੰਤੁਲਨ ਵਰਗਾ ਕੋਈ ਸੰਤੁਲਨ ਨਹੀਂ ਹੁੰਦਾ।
- ਵਾਸਤਵਿਕ ਰੂਪ ਵਿੱਚ ਅਣੂ ਦੀ ਕੇਵਲ ਇੱਕ ਸੰਰਚਨਾ ਹੁੰਦੀ ਹੈ, ਜੋ ਵਿਹਿਤ ਸੰਰਚਨਾਵਾਂ ਦੀ ਅਨੁਨਾਦ ਹਾਈਬ੍ਰਿਡ ਹੁੰਦੀ ਹੈ। ਉਸ ਨੂੰ ਕੇਵਲ ਇੱਕ ਲੁਈਸ ਸੰਰਚਨਾ ਦੁਆਰਾ ਪ੍ਰਦਰਸ਼ਿਤ ਨਹੀਂ ਕੀਤਾ ਜਾ ਸਕਦਾ।

4.3.6 ਬੰਧਨ ਧਰੁਵਣਤਾ

ਕਿਸੇ ਬੰਧਨ ਦਾ ਸੌ ਪ੍ਤੀਸ਼ਤ ਆਇਨਿਕ ਜਾਂ ਸਹਿਸੰਯੋਜੀ ਹੋਣਾ ਇੱਕ ਅਦਰਸ਼ ਸਥਿਤੀ ਹੈ। ਪਰੰਤੂ ਅਸਲ ਵਿੱਚ ਕੋਈ ਵੀ ਬੰਧਨ ਜਾਂ ਯੋਗਿਕ ਪੂਰਣ ਰੂਪ ਵਿੱਚ ਸਹਿਸੰਯੋਜੀ ਜਾਂ ਆਇਨਿਕ ਨਹੀਂ ਹੁੰਦਾ ਹੈ। ਇੱਥੋਂ ਤੱਕ ਕਿ ਦੋ ਹਾਈਡ੍ਰੋਜਨ ਪਰਮਾਣੂਆਂ ਦੇ ਵਿੱਚ ਬਣਨ ਵਾਲੇ ਸਹਿਸੰਯੋਜੀ ਬੰਧਨ ਦੀ ਪ੍ਕਿਰਤੀ ਵੀ ਅੰਸ਼ਿਕ ਰੂਪ ਵਿੱਚ ਆਇਨਿਕ ਹੰਦੀ ਹੈ।

ਜਦੋਂ ਸਹਿਸੰਯੋਜੀ ਬੰਧਨ ਦੋ ਸਮਾਨ ਪਰਮਾਣੂਆਂ ਦੇ ਵਿੱਚ (ਜਿਵੇਂ- $\rm H_2$, $\rm O_2$, $\rm Cl_2$, $\rm N_2$ ਅਤੇ $\rm F_2$ ਬਣਦਾ ਹੈ ਤਾਂ ਸੰਯੋਜੀ ਇਲੈਕਟ੍ਰਾੱਨ ਯੂਗਮ ਦੋਵਾਂ ਪਰਮਾਣੂਆਂ ਦੁਆਰਾ ਸਮਾਨ ਰੂਪ

ਵਿੱਚ ਅਕਰਸ਼ਿਤ ਹੁੰਦਾ ਹੈ। ਇਸ ਦੇ ਪਰਿਣਾਮ ਇਲੈਕਟ੍ਰਾੱਨ ਯੁਗਮ ਦੋ ਸਮਾਨ ਨਿਊਕਲੀਅਸਾਂ ਦੇ ਠੀਕ ਵਿਚਕਾਰ ਮੌਜੂਦ ਹੁੰਦਾ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਪ੍ਰਾਪਤ ਬੰਧਨ ਅਧਰੁਵੀ ਸਹਿਸੰਯੋਜੀ ਬੰਧਨ ਅਖਵਾਉਂਦਾ ਹੈ। ਇਸ ਦੇ ਉਲਟ HF ਵਰਗੇ ਬਿਖਮ ਪਰਮਾਣਵੀਂ ਅਣੂ ਵਿੱਚ ਦੋ ਪਰਮਾਣੂਆਂ ਦੇ ਵਿੱਚ ਸੰਯੋਜਿਤ ਇਲੈਕਟ੍ਰਾੱਨ ਯੁਗਮ ਫਲੌਰੀਨ ਪਰਮਾਣੂ ਦੇ ਵੱਲ ਵਿਸਥਾਪਿਤ ਹੋ ਜਾਂਦਾ ਹੈ, ਕਿਉਂਕਿ ਫਲੌਰੀਨ ਦੀ ਇਲੈਕਟ੍ਰੋਨੈਗੇਟਿਵਤਾ ਹਾਈਡ੍ਰੋਜਨ ਨਾਲੋਂ ਜਿਆਦਾ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਨਿਰਮਿਤ H–F ਬੰਧਨ ਇੱਕ ਧਰੁਵੀ ਸਹਿਸੰਯੋਜਕ ਬੰਧਨ ਹੈ।

ਧਰੁਵਣ ਦੇ ਕਾਰਣ ਅਜਿਹੇ ਅਣੂ ਵਿੱਚ ਦੋ ਧਰੁਵੀ ਮੌਮੈਂਟ (Dipole moment) ਪੈਦਾ ਹੋ ਜਾਂਦੀ ਹੈ। ਦੋ ਧਰੁਵ ਨੂੰ ਚਾਰਜ ਦੇ ਮਾਨ ਅਤੇ ਧਨਾਤਮਕ ਅਤੇ ਰਿਣਾਤਮਕ ਚਾਰਜਾਂ ਦੇ ਵਿਚਲੀ ਦੂਰੀ ਦੇ ਗੁਣਨਫਲ ਦੇ ਰੂਪ ਵਿੱਚ ਪਰਿਭਾਸ਼ਿਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਇਸ ਨੂੰ ਆਮ ਕਰਕੇ ਗਰੀਕ ਸ਼ਬਦ 'µ' ਦੁਆਰਾ ਦਰਸਾਇਆ ਜਾਂਦਾ ਹੈ। ਇਸ ਨੂੰ ਹੇਠ ਲਿਖੇ ਸਮੀਕਰਣ ਦੁਆਰਾ ਵਿਅਕਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ।

ਦੋ ਧਰੁਵੀ ਮੋਮੈਟ (μ) = ਚਾਰਜ (Q) × ਚਾਰਜਾਂ ਵਿਚਲੀ

ਦੂਰੀ (r)

ਦੋ ਧਰੁਵੀ ਮੋਮੈਂਟ ਨੂੰ ਆਮ ਤੌਰ ਤੇ ਡੀਬਾਏ (Debye) ਅਤਰਕ (D) ਦੇ ਰੂਪ ਵਿੱਚ ਵਿਅਕਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ।

$$1 D = 3.33564 \times 10^{-30} C m$$

ਜਿੱਥੇ C ਕੁਲਾੱਮ ਅਤੇ m ਮੀਟਰ ਹੈ।

ਇਸ ਦੇ ਇਲਾਵਾ ਦੋ ਧਰੁਵੀ ਮੋਮੈਂਟ ਇੱਕ ਵੈਕਟਰ ਰਾਸ਼ੀ ਹੈ। ਪਰੰਪਰਾ ਦੇ ਅਨੁਸਾਰ ਇਸ ਨੂੰ ਇੱਕ ਛੋਟੇ ਤੀਰ ਦੁਆਰਾ ਦਰਸਾਇਆ ਜਾਂਦਾ ਹੈ, ਜਿਸ ਦਾ ਪੂਛਲ ਸਿਰਾ ਰਿਣਾਤਮਕ ਕੇਂਦਰ ਉੱਤੇ ਸਥਿਤ ਹੁੰਦਾ ਹੈ ਅਤੇ ਅਗਲਾ ਸਿਰਾ ਧਨਾਤਮਕ ਕੇਂਦਰ ਦੇ ਵੱਲ ਰਹਿੰਦਾ ਹੈ। ਪਰੰਤੂ ਰਸਾਇਣ ਵਿੱਚ ਦੋ ਧਰੁਵ ਮੋਮੈਟ ਦੀ ਮੋਜੂਦਗੀ ਅਣੂ ਦੀ ਲੁਈਸ ਸੰਰਚਨਾ ਦੇ ਉੱਤੇ ਕਰਾੱਸ ਤੀਰ (+->) ਦੁਆਰਾ ਦਰਸਾਈ ਜਾਂਦੀ ਹੈ। ਤੀਰ ਦਾ ਕਰਾੱਸ ਅਣੂ ਦੇ ਧਨਾਤਮਕ ਸਿਰੇ ਉੱਤੇ ਅਤੇ ਅਗਲਾ ਹਿੱਸਾ ਰਿਣਾਤਮਕ ਸਿਰੇ ਤੇ ਹੁੰਦਾ ਹੈ। ਉਦਾਹਰਣ ਦੇ ਲਈ –HF ਦੇ ਵਿੱਚ ਦੋ ਧਰੁਵੀ ਮੌਮੈਟ ਨੂੰ ਇਸ ਪ੍ਰਕਾਰ ਦਰਸਾਇਆ ਜਾ ਸਕਦਾ ਹੈ।

ਇਹ ਤੀਰ ਅਣੂ ਵਿੱਚ ਇਲੈਕਟ੍ਰਾੱਨ ਘਣਤਾ ਦੇ ਬਦਲਾਅ ਦੀ ਦਿਸ਼ਾ ਦੱਸਦਾ ਹੈ। ਧਿਆਨ ਦਿਓ ਕਿ ਕਰਾੱਸ ਤੀਰ ਦੀ ਦਿਸ਼ਾ ਦੋ ਧਰਵੀ ਮੌਮੈਂਟ ਵੈਕਟਰ ਦੀ ਪਰੰਪਰਿਕ ਦਿਸ਼ਾ ਦੇ ਉਲਟ ਹੈ।

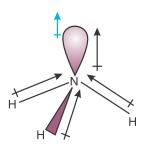
ਡੱਚ ਰਸਾਇਣ ਵਿਗਿਆਨੀ ਪੀਟਰ ਡੀਬਾਏ ਨੂੰ ਸੰਨ 1936 ਵਿੱਚ ਉਨ੍ਹਾਂ ਦੇ ਐਕਸ-ਕਿਰਣਾਂ ਦੇ ਵਿਵਰਤਨ ਅਤੇ ਦੋ ਧਰੁਵੀ ਮੌਮੈਂਟ ਨਾਲ ਸਬੰਧਿਤ ਉਨ੍ਹਾਂ ਦੇ ਕਾਰਜ ਲਈ ਨੌਬਲ ਪੁਰਸਕਾਰ ਦਿੱਤਾ ਗਿਆ।ਉਨ੍ਹਾਂ ਨੂੰ ਸਨਮਾਨਿਤ ਕਰਨ ਦੇ ਲਈ ਦੋ ਧਰੁਵ ਮੌਮੈਂਟ ਦੇ ਮਾਨ ਨੂੰ ਡੀਬਾਏ ਅਤਰਕ ਵਿੱਚ ਦਿੱਤਾ ਜਾਂਦਾ ਹੈ। ਬਹੁਪਰਮਾਣਵੀਂ ਅਣੂਆਂ ਵਿੱਚ ਦੋ ਧਰੁਵੀ ਮੋਮੈਂਟ ਕੇਵਲ ਬੰਧਨਾਂ ਦੇ ਆਪਣੇ ਦੋ ਧਰੁਵ ਜਿਨ੍ਹਾਂ ਨੂੰ ਬੰਧਨ ਮੌਮੈਂਟ ਕਿਹਾ ਜਾਂਦਾ ਹੈ, ਉੱਤੇ ਹੀ ਨਿਰਭਰ ਨਹੀਂ ਕਰਦਾ, ਸਗੋਂ ਇਹ ਭਿੰਨ-ਭਿੰਨ ਬੰਧਨਾਂ ਦੀ ਸਥਾਨਿਕ ਵਿਵਸਥਾ ਉੱਤੇ ਵੀ ਨਿਰਭਰ ਕਰਦਾ ਹੈ। ਅਜਿਹੇ ਵਿੱਚ ਦੋ ਧਰੁਵੀ ਅਣੂ ਦੇ ਭਿੰਨ-ਭਿੰਨ ਬੰਧਨਾਂ ਦੋ ਧਰੁਵੀ ਮੌਮੈਂਟ ਅਣੂ ਦੇ ਭਿੰਨ-ਭਿੰਨ ਬੰਧਨਾਂ ਦੇ ਦੋ ਧਰੁਵੀ ਮੈਮੈਂਟ ਦਾ ਵੈਕਟਰ ਜੋੜ (Vector sum) ਹੁੰਦਾ ਹੈ। ਉਦਾਹਰਣ ਦੇ ਲਈ-ਪਾਣੀ ਦੇ ਅਣੂ, ਜਿਸ ਦੀ ਆਕ੍ਰਿਤੀ ਮੁੜੀ (bent) ਹੁੰਦੀ ਹੈ, ਦੇ ਦੋ O-H ਬੰਧਨ 104.5° ਦੇ ਕੋਣ ਉੱਤੇ ਹੁੰਦੇ ਹਨ। ਇਸ ਅਣੂ ਵਿੱਚ ਕੁੱਲ ਦੋ ਧਰੁਵੀ ਮੌਮੈਂਟ ਦਾ ਮਾਨ 6.7 × 10-3° C m (1D = 3.33564 × 10-3° C m) ਹੁੰਦਾ ਹੈ, ਜੋ ਦੋ O-H ਬੰਧਨਾਂ ਦੇ ਦੋ ਧਰੁਵਾਂ ਦੇ ਮੌਮੈਂਟ ਦੇ ਵੈਕਟਰ ਜੋੜ ਤੋਂ ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ।

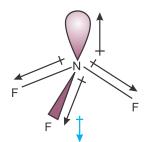
ਕੁੱਲ ਦੋ ਧਰੁਵੀ ਮੋਮੈਂਟ, μ = 1.85 D

= $1.85 \times 3.33564 \times 10^{-30}$ C m = 6.17×10^{-30} C m

 ${
m BeF}_2$ ਦੇ ਲਈ ਦੋ ਧਰੁਵੀ ਮੋਮੈਂਟ ਦਾ ਮਾਨ ਸਿਫਰ ਹੁੰਦਾ ਹੈ। ਅਜਿਹਾ ਇਸ ਲਈ ਅਜਿਹਾ ਹੁੰਦਾ ਹੈ ਕਿ ਇਸ ਅਣੂ ਵਿੱਚ ਦੋ ਸਮਾਨ ਬੰਧਨ ਦੋ ਧਰੁਵ ਉਲਟ ਦਿਸ਼ਾ ਵਿੱਚ ਹੁੰਦੇ ਹਨ ਅਤੇ ਇੱਕਦੂਜੇ ਦੇ ਪ੍ਰਭਾਵ ਨੂੰ ਖਤਮ (cancel) ਕਰ ਦਿੰਦੇ ਹਨ।

$$F \longrightarrow Be \longrightarrow F$$
 $\longleftrightarrow + \longleftrightarrow$)
 BeF_2 ਅਣੂ ਵਿੱਚ ਬੰਧਨ ਮੌਮੈਂਟ BeF_2 ਅਣੂ ਦਾ ਕੱਲ ਦੋਧਰਵੀ ਮੌਮੈਂਟ


 ${\rm BF_3}$ ਵਰਗੇ ਚਾਰ ਪਰਮਾਣਵੀਂ ਅਣੂ ਵਿੱਚ ਦੋ ਧਰੁਵੀ ਮੌਮੈਂਟ ਸਿਫਰ ਹੁੰਦਾ ਹੈ, ਭਾਵੇਂ ਇਸ ਅਣੂ ਵਿੱਚ ${\rm B-F}$ ਬੰਧਨ 120° ਦੇ ਕੋਣ ਉੱਤੇ ਹੁੰਦੇ ਹਨ ਇਸ ਅਣੂ ਵਿੱਚ ਦੋ ਬੰਧਨ ਮੌਮੈਂਟ ਦੇ ਸਮਾਨ ਅਤੇ ਵਿਪਰੀਤ ਦਿਸ਼ਾ ਵਿੱਚ ਹੁੰਦਾ ਹੈ। ਇਸ ਦੇ ਫਲਸਰੂਪ ਤਿੰਨਾਂ ਬੰਧਨਾਂ ਦੀ ਮੌਮੈਂਟ ਦਾ ਕੁੱਲ ਵੈਕਟਰ ਜੋੜ ਸਿਫਰ ਦੇ ਬਰਾਬਰ


ਹੁੰਦਾ ਹੈ।
$$F$$
 $F \longleftrightarrow B \longleftrightarrow (\longleftrightarrow + \longleftrightarrow) = 0$
(a) F (b)
 $F \longleftrightarrow F$ (b)
 $F \to F$ (b) ਬੰਧ ਦੋ ਧਰੁਵ ਦਾ ਨਿਰੁਪਣ

BF₃ਅਣੂ (ਓ) ਬਧ ਦ ਧਰੁਵ ਦਾ ਨਿਰੂਪਣ (ਅ) ਪਰਿਣਾਮੀ ਦੋ ਧਰੁਵੀ ਮੈਮੈਂਟ ਦਾ

ਆਓ $\mathrm{NH_3}$ ਅਤੇ $\mathrm{NF_3}$ ਦੇ ਅਣੂਆਂ ਦੀ ਇੱਕ ਦਿਲਚਸਪ ਉਦਾਹਰਣ ਲਈਏ। ਦੋਵਾਂ ਅਣੂਆਂ ਦੀ ਪਿਰਾਮਿਡਲ ਆਕ੍ਰਿਤੀ ਹੁੰਦੀ ਹੈ, ਜਿਨ੍ਹਾਂ ਨਾਲ ਨਾਈਟ੍ਰੋਜਨ ਦੇ ਪਰਮਮਾਣੂ ਉੱਤੇ ਇੱਕ

ਏਕਾਕੀ ਇਲੈਕਟ੍ਰਾੱਨ ਯੁਗਮ ਮੌਜੂਦ ਹੁੰਦਾ ਹੈ। ਹਾਲਾਕਿ ਫਲੌਰੀਨ ਦੀ ਇਲੈਕਟ੍ਰੋਂ ਨੈਗੇਟਿਵਤਾ ਨਾਈਟ੍ਰੋਜਨ ਨਾਲੋਂ ਵਧੇਰੇ ਹੁੰਦੀ ਹੈ। ਪਰੰਤੂ $\mathrm{NH_3}$ ਦਾ ਪਰਿਣਾਮੀ ਦੋ ਧਰੁਵੀ ਮੌਮੈਂਟ ($4.9 \times 10^{-30} \ \mathrm{Cm}$) $\mathrm{NF_3}$ ਦੇ ਦੋ ਧਰੁਵੀ ਮੌਮੈਂਟ ($0.8 \times 10^{-30} \ \mathrm{Cm}$) ਨਾਲੋਂ ਜਿਆਦਾ ਹੁੰਦਾ ਹੈ। ਅਜਿਹਾ ਇਸ ਲਈ ਹੈ ਕਿ $\mathrm{NH_3}$ ਵਿੱਚ ਨਾਈਟ੍ਰੋਜਨ ਪਰਮਾਣੂ ਉੱਤੇ ਮੌਜੂਦ ਏਕਾਕੀ ਇਲੈਕਟ੍ਰਾੱਨ ਯੁਗਮ ਦਾ ਆਰਬਿਟਲ ਦੋ ਧਰੁਵ ਮੌਮੈਂਟ ਤਿੰਨ $\mathrm{N-F}$ ਬੰਧਨਾਂ ਦੇ ਦੋ ਧਰੁਵੀ ਮੌਮੈਂਟ ਦੇ ਪਰਿਣਾਮੀ ਦੋ ਧਰੁਵੀ ਮੌਮੈਂਟ ਦੀ ਉਲਟ ਦਿਸ਼ਾ ਵਿੱਚ ਹੁੰਦਾ ਹੈ। ਆਰਬਿਟਲ ਦੋਧਰੁਵੀ ਮੌਮੈਂਟ ਏਕਾਕੀ ਇਲੈਕਟ੍ਰਾੱਨ

Resultant dipole moment in NH₃ = 4.90×10^{-30} C m

Resultant dipole moment in NF₃ = 0.80×10^{-30} C m

ਯੁਗਮ ਦੇ ਕਾਰਣ N–F ਬੰਧਨ ਮੋਮੈਂਟ ਦੇ ਪਰਿਣਾਮੀ ਦੋ ਧਰੁਵੀ ਮੋਮੈਂਟ ਦੇ ਪ੍ਰਭਾਵ ਨੂੰ ਘੱਟ ਕਰਦਾ ਹੈ। ਇਸ ਦੇ ਫਲਸਰੂਪ NF₃ ਦੇ ਅਣੂ ਦਾ ਦੋ ਧਰੁਵੀ ਮੋਮੈਂਟ ਘੱਟ ਹੁੰਦਾ ਹੈ।

ਕੁੱਝ ਅਣੂਆਂ ਦੇ ਦੋ ਧਰੁਵੀ ਮੋਮੈਂਟਾਂ ਨੂੰ ਸਾਰਣੀ 4.5 ਵਿੱਚ ਦਿੱਤਾ ਗਿਆ ਹੈ।

ਜਿਸ ਤਰ੍ਹਾਂ ਸਹਿਸੰਯੋਜੀ ਬੰਧਨ ਵਿੱਚ ਅੰਸ਼ਿਕ ਆਇਨਿਕ

ਲੱਛਣ ਹੁੰਦਾ ਹੈ, ਉਸੇ ਤਰ੍ਹਾਂ ਆਇਨਿਕ ਬੰਧਨ ਵਿੱਚ ਵੀ ਅੰਸ਼ਿਕ ਸਹਿਸੰਯੋਜੀ ਲੰਛਣ ਹੁੰਦਾ ਹੈ। ਆਇਨਿਕ ਬੰਧਨਾਂ ਦੇ ਅੰਸ਼ਿਕ ਸਹਿਸੰਯੋਜੀ ਲੱਛਣਾਂ ਦੀ ਵਿਆਖਿਆ ਫਾਜਾਨਸ (Fajans) ਨੇ ਹੇਠ ਲਿਖੇ ਨਿਯਮਾਂ ਦੇ ਅਨੁਸਾਰ ਕੀਤੀ—

- ਧਨ ਆਇਨ ਦੇ ਅਕਾਰ ਦੇ ਘੱਟਣ ਅਤੇ ਰਿਣ ਆਇਨ ਦੇ ਅਕਾਰ ਦੇ ਵੱਧਣ ਨਾਲ ਆਇਨਿਕ ਬੰਧਨ ਦੇ ਸਹਿਸੰਯੋਜੀ ਲੱਛਣ ਵਿੱਚ ਵਾਧਾ ਹੁੰਦਾ ਹੈ।
- ਧਨ ਆਇਨ ਅਤੇ ਰਿਣ ਆਇਨ ਉੱਤੇ ਚਾਰਜ ਦੀ ਮਾਤਰਾ ਦੇ ਵਧਣ ਨਾਲ ਆਇਨਿਕ ਬੰਧਨ ਦੇ ਸਹਿਸੰਯੋਜੀ ਲੱਛਣ ਵਿੱਚ ਵਾਧਾ ਹੁੰਦਾ ਹੈ।
- ਸਮਾਨ ਅਕਾਰ ਅਤੇ ਚਾਰਜ ਦੇ ਧਨ ਆਇਨਾਂ ਵਿੱਚੋਂ ਉਸ ਧਨ ਆਇਨ ਦੀ ਧਰੁਵਣ ਸਮਰੱਥਾ ਆਸ ਨਾਲੋਂ ਵੱਧ ਹੁੰਦੀ ਹੈ, ਜਿਸ ਦੀ ਇਲੈਕਟ੍ਰਾੱਨਿਕ ਤਰਤੀਬ ਖਾਰੀ ਜਾਂ ਖਾਰੀ ਮਿੱਟੀ ਧਾਤਾਂ ਦੇ ਧਨਆਇਨਾਂ ਦੇ ਨੋਬਲ ਗੈਸ ਤਰਤੀਬ ns²np⁶ ਨਾਲੋਂ ਅੰਤਰਕਾਲੀ ਧਾਤਾਂ ਦੇ ਅਨੁਰੂਪ (n-1) dⁿns° ਹੁੰਦੀ ਹੈ।

ਧਨਆਇਨ, ਰਿਣਆਇਨ ਦੇ ਇਲੈਕਟ੍ਰਾਂਨੀ ਚਾਰਜ ਨੂੰ ਆਕਰਸ਼ਿਤ ਕਰ ਕੇ ਉਸ ਨੂੰ ਧਰੁਵਿਤ ਕਰਦਾ ਹੈ ਜਿਸ ਕਰਕੇ ਉਨ੍ਹਾਂ ਵਿੱਚ ਚਾਰਜ ਦੀ ਮਾਤਰਾ ਵੱਧਦੀ ਹੈ। ਇਹ ਪ੍ਕਿਰਿਆ ਸਹਿਸੰਯੋਜੀ ਬੰਧਨ ਨਿਰਮਾਣ ਦੇ ਅਨੁਰੂਪ ਹੈ, ਜਿਸ ਵਿੱਚ ਦੋ ਨਿਊਕਲੀਅਸਾਂ ਦੇ ਵਿੱਚ ਇਲੈਕਟ੍ਰਾਨੀ ਚਾਰਜ ਘਣਤਾ ਵਿੱਚ ਵਾਧਾ ਹੁੰਦਾ ਹੈ। ਧਨਆਇਨ ਦੀ ਧਰੁਵਣ ਸਮਰੱਥਾ, ਰਿਣ ਆਇਨ ਦੀ ਧਰੁਵਤਾ ਅਤੇ ਰਿਣਆਇਨ ਦੇ ਧਰੁਵਣ ਦੀ ਮਾਤਰਾ ਆਦਿ ਉਹ ਕਾਰਕ ਹਨ, ਜੋ ਇੱਕਠੇ ਤੌਰ ਤੇ ਕਿਸੇ ਆਇਨਿਕ ਬੰਧਨ ਦੀ ਸਹਿਸੰਯੋਜਕਤਾ ਦੇ ਪ੍ਤੀਸ਼ਤ ਨੂੰ ਨਿਰਧਾਰਿਤ ਕਰਦੀ ਹੈ।

ਸਾਰਣੀ 4.5 ਕੁਝ ਚੁਣੇ ਹੋਏ ਅਣੂਆਂ ਦੋ ਧਰਵੀ ਮੌਮੈਂਟ

Note 1.2 de de de de del une					
ਅਣੂ ਦੀ ਕਿਸਮ	ਉਦਾਹਰਣ	ਦੋ ਧਰੁਵੀ ਮੋਮੈਂਟ, μ(D)	ਆਕ੍ਰਿਤੀ		
(AB)	HF HCl HBr HI H ₂	1.78 1.07 0.79 0.38 0	ਰੇਖੀ ਰੇਖੀ ਰੇਖੀ ਰੇਖੀ ਰੇਖੀ		
(AB ₂)	$\begin{array}{c} \rm H_2O \\ \rm H_2S \\ \rm CO_2 \end{array}$	1.85 0.95 0	ਮੁੜੀ ਮੁੜੀ ਰੇਖੀ		
(AB ₃)	$\mathrm{NH_3} \\ \mathrm{NF_3} \\ \mathrm{BF_3}$	1.47 0.23 0	ਤ੍ਰੈਸਮਨਤ ਧਰੁਵੀ ਪਿਰਾਮਿਡ ਤ੍ਰੈਸਮਨਤ ਧਰੁਵੀ ਪਿਰਾਮਿਡ ਤ੍ਰੈਸਮਨਤ ਧਰੁਵੀ ਪਿਰਾਮਿਡ		
(AB ₄)	$\mathrm{CH_4} \\ \mathrm{CHCl_3} \\ \mathrm{CCl_4}$	0 1.04 0	ਚੌਫਲਕੀ ਚੌਫਲਕੀ ਚੌਫਲਕੀ		

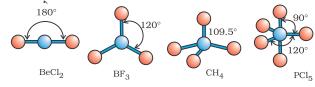
ਸੰਯੋਜਕਤਾ ਸ਼ੈੱਲ ਇਲੈਕਟ੍ਰਾਨ ਯੂਗਮ ਪ੍ਰਤੀਕਰਸ਼ਣ ਸਿਧਾਂਤ

ਜਿਵੇਂ ਪਹਿਲਾਂ ਦੱਸਿਆ ਗਿਆ ਹੈ, ਲੁਈਸ ਧਾਰਣਾ ਅਣੂਆਂ ਦੀ ਆਕ੍ਰਿਤੀ ਦੀ ਵਿਆਖਿਆ ਵਿੱਚ ਅਸਮਰਥ ਹੈ। ਵੀ.ਐਸ.ਈ.ਪੀ.ਆਰ. ਸਿਧਾਂਤ ਸਹਿਸੰਯੋਜੀ ਆਕ੍ਰਿਤੀ ਨੂੰ ਸਮਝਣ ਦੇ ਲਈ ਇੱਕ ਸਰਲ ਕਾਰਜ ਵਿਧੀ ਉਪਲਬਧ ਕਰਵਾਉਂਦਾ ਹੈ। ਇਹ ਵਿਧੀ ਸਭ ਤੋਂ ਪਹਿਲਾਂ 1940 ਵਿੱਚ ਸਿਜਵਿਕ ਅਤੇ ਪਾੱਵੇਲ (Sidgwick and Powell) ਨੇ ਪਰਮਾਣੂਆਂ ਦੇ ਸੰਯੋਜਕਤਾ ਸ਼ੈੱਲ ਵਿੱਚ ਮੌਜੂਦ ਇਲੈਕਟ੍ਰਾੱਨ ਯੁਗਮਾਂ ਦੇ ਵਿੱਚ ਪ੍ਰਤੀਕਰਸ਼ਣ ਅੰਤਰ ਕਿਰਿਆਵਾਂ ਦੇ ਅਧਾਰ ਤੇ ਪ੍ਰਸਤੁਤ ਕੀਤੀ ਸੀ। ਇਸ ਵਿਧੀ ਨੂੰ ਨਾਈਹੋਮ ਅਤੇ ਗਿਲੈਸਪੀ (Nyholm and Gillespie) ਨੇ ਸੈਨ 1957 ਵਿੱਚ ਹੋਰ ਵਧੇਰੇ ਵਿਕਸਿਤ ਅਤੇ ਸੋਧ ਕੀਤੀ—

ਵੀ.ਐਸ.ਈ.ਪੀ.ਆਰ. ਸਿਧਾਂਤ ਦੀ ਮੂਲ ਧਾਰਣਾਵਾਂ ਹਨ—

- ਅਣੂ ਦੀ ਆਕ੍ਰਿਤੀ ਕੇਂਦਰੀ ਪਰਮਾਣੂ ਦੇ ਆਸਪਾਸ ਮੌਜੂਦ ਸੰਯੋਗੀ ਕੋਸ਼ ਇਲੈਕਟ੍ਰਾਨ ਯੁਗਮਾਂ (ਸੰਯੋਜਿਤ ਅਤੇ ਅਸੰਯੋਜਿਤ) ਦੀ ਸੰਖਿਆ ਉੱਤੇ ਨਿਰਭਰ ਕਰਦੀ ਹੈ।
- ਕੇਂਦਰੀ ਪਰਮਾਣੂ ਦੇ ਸੰਯੋਜਕਤਾ ਸ਼ੈੱਲ ਵਿੱਚ ਮੌਜੂਦ ਇਲੈਕਟ੍ਰਾਨ ਯੁਗਮ ਇੱਕ-ਦੂਜੇ ਨੂੰ ਪ੍ਰਤੀ ਕਰਸ਼ਿਤ ਕਰਦੇ ਹਨ, ਕਿਉਂਕਿ ਉਨ੍ਹਾਂ ਦੇ ਇਲੈਕਟ੍ਰਾਨ ਕਲਾਊਡ (Electron Cloud) ਵਿੱਚ ਰਿਣਾਤਮ ਚਾਰਜ ਹੈਦਾ ਹੈ।
- ਇਹ ਇਲੈਕਟ੍ਰਾਨ ਯੁਗਮ ਤ੍ਰਿਵਿਮ ਵਿੱਚ ਉਨ੍ਹਾਂ ਸਥਿਤੀਆਂ ਵਿੱਚ ਵਿਵਸਥਿਤ ਹੋਣ ਦੀ ਕੋਸ਼ਿਸ਼ ਕਰਦੇ ਹਨ, ਜਿਸਦੇ ਫਸਲਰੂਪ ਉਨ੍ਹਾਂ ਵਿੱਚ ਪ੍ਤੀਕਰਸ਼ਣ ਘੱਟ ਤੋਂ ਘੱਟ ਹੋਵੇ। ਇਸ ਸਥਿਤੀ ਵਿੱਚ ਉਨ੍ਹਾਂ ਦੇ ਵਿੱਚ ਆਧਿਕਤਮ ਦੂਰੀ ਹੁੰਦੀ ਹੈ।
- ਸੰਯੋਜਕਤਾ ਸ਼ੈੱਲ ਨੂੰ ਇੱਕ ਗੋਲੇ ਦੇ ਰੂਪ ਵਿੱਚ ਮੰਨਿਆ ਜਾਂਦਾ ਹੈ ਅਤੇ ਇਲੈਕਟ੍ਰਾਨ ਯੁਗਮ ਗੋਲਾਕਾਰ (spherical) ਸਤ੍ਹਾ ਉੱਤੇ ਇੱਕ ਦੂਜੇ ਤੋਂ ਅਧਿਕਤਮ ਦੂਰੀ ਉੱਤੇ ਸਥਿਤ ਹੁੰਦੇ ਹਨ।
- ਬਹੁ-ਬੰਧਨ ਨੂੰ ਇੱਕ ਇਕਹਿਰੇ ਇਲੈਕਟ੍ਰਾਨ ਯੁਗਮ ਦੇ ਰੂਪ ਵਿੱਚ ਅਤੇ ਇਸ ਬਹੁ ਬੰਧਨ ਦੇ ਦੋ ਜਾਂ ਤਿੰਨ ਇਲੈਕਟ੍ਰਾਨ ਯੁਗਮਾਂ ਨੂੰ ਇੱਕਹਿਰਾ ਸੁਪਰ ਯੁਗਮ ਸਮਝਿਆ ਜਾਂਦਾ ਹੈ।
- ਜੇ ਅਣੂ ਨੂੰ ਦੋ ਜਾਂ ਵਧੇਰੇ ਅਨੁਨਾਦ ਸੰਰਚਨਾਵਾਂ ਦੁਆਰਾ ਦਰਸਾਇਆ ਜਾ ਸਕੇ, ਤਾਂ ਇਸ ਸਥਿਤੀ ਵਿੱਚ ਵੀ.ਐਸ.ਈ.ਪੀਆਰ. ਮਾੱਡਲ ਅਜਿਹੀ ਹਰ ਇੱਕ ਸੰਰਚਨਾ ਉੱਤੇ ਲਾਗੂ ਹੁੰਦਾ ਹੈ।

ਇਲੈਕਟ੍ਰਾੱਨ ਯੂਗਮਾਂ ਦੇ ਵਿੱਚ ਪ੍ਰਤੀਕਰਸ਼ਣ ਅੰਤਰ ਕਿਰਿਆਵਾਂ ਹੇਠ ਲਿਖੇ ਕ੍ਰਮ ਵਿੱਚ ਘਟਦੀਆਂ ਹਨ— ਏਕਾਕੀ ਯੁਗਮ– (lp) – ਏਕਾਕੀ ਯੁਗਮ (lp) > ਏਕਾਕੀ ਯੁਗਮ (lp) – ਬੰਧਨ ਯੁਗਮ (bp) > ਬੰਧਨ ਯੁਗਮ (bp) – ਬੰਧਨ ਯਗਮ (bp)


ਨਾਈਲੋਨ ਅਤੇ ਗਿਲੈਸਪੀ ਨੇ ਇਲੈਕਟ੍ਰਾੱਨਾਂ ਦੇ ਏਕਾਕੀ ਯੁਗਮਾਂ ਅਤੇ ਬੰਧਨ ਯੁਗਮ ਦੇ ਮਹੱਤਵਪੂਰਣ ਅੰਤਰਾਂ ਦੀ ਵਿਆਖਿਆ ਕਰਦੇ ਹੋਏ ਵੀ.ਐਸ.ਈ.ਪੀ.ਆਰ. ਮਾੱਡਲ ਵਿਚ ਸੁਧਾਰ ਕੀਤਾ। ਏਕਾਕੀ ਇਲੈਕਟ੍ਰਾੱਨ ਯੁਗਮ ਕੇਂਦਰੀ ਪਰਮਾਣੂ ਉੱਤੇ ਸਥਾਨੀਕ੍ਰਿਤ (localised) ਹੁੰਦੇ ਹਨ, ਜਦਕਿ ਹਰ ਬੰਧਨ ਯੁਗਮ ਦੋ ਪਰਮਾਣੂਆਂ ਦੇ ਵਿੱਚ ਸਹਿਭਾਜਿਤ ਹੁੰਦਾ ਹੈ। ਇਸ ਲਈ ਕਿਸੇ ਅਣੂ ਵਿੱਚ ਬੰਧਨ ਇਲੈਕਟ੍ਰਾੱਨ ਯੁਗਮ ਨਾਲੋਂ ਏਕਾਕੀ ਇਲੈਕਟ੍ਰਾੱਨ ਯੁਗਮ ਵਧੇਰੇ ਥਾਂ ਘੇਰਦੇ ਹਨ। ਇਸ ਦੇ ਫਲਸਰੂਪ

ਏਕਾਕੀ ਇਲੈਕਟ੍ਰਾੱਨ ਯੁਗਮਾਂ ਦੇ ਵਿੱਚ ਏਕਾਕੀ ਯੁਗਮ ਬੰਧਨ ਯੁਗਮ ਅਤੇ ਬੰਧਨ ਯੁਗਮ-ਬੰਧਨ ਯੁਗਮ ਨਾਲੋਂ ਵਧੇਰੇ ਪ੍ਰਤੀਕਰਸ਼ਣ ਹੁੰਦਾ ਹੈ। ਇਨ੍ਹਾਂ ਪ੍ਰਤੀਕਰਸ਼ਣਾਂ ਦੇ ਪ੍ਰਭਾਵਾਂ ਦੇ ਕਾਰਣ ਅਣੂ ਦੀ ਸੰਭਾਵਿਤ ਆਕ੍ਰਿਤੀ ਵਿੱਚ ਭਿੰਨਤਾ ਹੁੰਦੀ ਹੈ ਅਤੇ ਅਣ ਦੇ ਬੰਧਨ ਕੋਣਾਂ ਵਿੱਚ ਵੀ ਅੰਤਰ ਆ ਜਾਂਦਾ ਹੈ।

ਵੀ.ਐਸ.ਈ.ਪੀ.ਆਰ ਮਾੱਡਲ ਦੀ ਸਹਾਇਤਾ ਨਾਲ ਅਣੂਆਂ ਦੀ ਜੋਮੈਟਰੀ ਆਕ੍ਰਿਤੀਆਂ ਦਾ ਪੂਰਵ ਅਨੁਮਾਨ ਲਾਉਣ ਲਈ ਅਣੂਆਂ ਨੂੰ ਦੋ ਸ਼੍ਰੇਣੀਆਂ ਵਿੱਚ ਵੇਡਿਆ ਜਾਂਦਾ ਹੈ—(i) ਉਹ ਅਣੂ, ਜਿਨ੍ਹਾਂ ਦੇ ਕੇਂਦਰੀ ਪਰਮਾਣੂ ਵਿੱਚ ਕੋਈ ਵੀ ਏਕਾਕੀ ਯੁਗਮ ਮੌਜੂਦ ਨਹੀਂ ਹੁੰਦਾ।(ii) ਉਹ ਅਣੂ, ਜਿਨ੍ਹਾਂ ਦੇ ਕੇਂਦਰੀ ਪਰਮਾਣੂ ਉੱਤੇ ਇੱਕ ਜਾਂ ਇੱਕ ਤੋਂ ਵੱਧ ਏਕਾਕੀ ਯੁਗਮ ਮੌਜੂਦ ਹਨ।

ਸਾਰਣੀ 4.6 ਵਿੱਚ ਏਕਾਕੀ ਯੁਗਮ ਰਹਿਤ ਕੇਂਦਰੀ ਪਰਮਾਣੂ A ਦੇ ਚੌਹਾਂ ਪਾਸਿਆਂ ਉੱਤੇ ਇਲੈਕਟ੍ਰਾੱਨ ਯੁਗਮਾਂ ਦੀ ਵਿਵਸਥਾ ਅਤੇ AB ਕਿਸਮ ਦੇ ਕੁਝ ਅਣੂਆਂ ਅਤੇ ਆਇਨਾਂ ਦੀਆਂ ਜੋਮੈਟਰੀਆਂ ਦਰਸਾਈਆਂ ਗਈਆਂ ਹਨ। ਸਾਰਣੀ 4.7 ਵਿੱਚ ਕੁਝ ਉਨ੍ਹਾਂ ਸਰਲ ਅਣੂਆਂ ਅਤੇ ਆਇਨਾਂ ਦੀ ਜੋਮੈਟਰੀ ਦਿੱਤੀ ਗਈ ਹੈ, ਜਿਨ੍ਹਾਂ ਦੇ ਕੇਂਦਰੀ ਪਰਮਾਣੂ ਉੱਤੇ ਇੱਕ ਜਾਂ ਵੱਧ ਏਕਾਕੀ ਯੁਗਮ ਮੌਜੂਦ ਹੁੰਦੇ ਹਨ। ਸਾਰਣੀ 4.8 ਅਣੂਆਂ ਦੀ ਜੋਮੈਟਰੀ ਵਿੱਚ ਵਿਰਪਣ (distortion) ਦੀ ਵਿਆਖਿਆ ਕਰਦੀ ਹੈ।

ਜਿਵੇਂ ਸਾਰਣੀ 4.6 ਵਿੱਚ ਦਰਸਾਇਆ ਗਿਆ ਹੈ, AB_2 , AB_3 , AB_4 , AB_5 ਅਤੇ AB_6 ਕਿਸਮ ਦੇ ਯੋਗਿਕਾਂ ਦੇ ਅਣੂਆਂ ਵਿੱਚ ਕੇਂਦਰੀ ਪਰਮਾਣੂ A ਦੇ ਚੌਹਾਂ ਪਾਸਿਆਂ ਤੇ ਇਲੈਕਟ੍ਰਾੱਨ ਯੂਗਮਾਂ ਅਤੇ B ਪਰਮਾਣੂਆਂ ਦੀ ਵਿਵਸਥਾ ਕ੍ਰਮਵਾਰ ਇਸ ਪ੍ਰਕਾਰ ਹੈ—ਰੇਖੀ, ਤ੍ਰੈਸਮਨਤਧੂਰਈ ਸਮਤਲ, ਚੌਫਲਕੀ, ਤ੍ਰੈਸਮਨਤਧੂਰਈ ਬਾਈ ਪਿਰਾਮਿਡਲ ਅਤੇ ਅੱਠਫਲਕੀ। ਇਸ ਪ੍ਰਕਾਰ ਦੀਆਂ ਜੋਮੈਟਰੀਆਂ BF_3 (AB_3), CH_4 (AB_4) ਅਤੇ PCl_5 (AB_5) ਅਣੂਆਂ ਦੁਆਰਾ ਦਰਸਾਈਆਂ ਜਾਂਦੀਆਂ ਹਨ। ਇਨ੍ਹਾਂ ਅਣੂਆਂ ਦੀਆਂ ਜੋਮੈਟਰੀਆਂ ਨੂੰ ਗੇਂਦ–ਡੰਡੀ (Ball-stick) ਮਾੱਡਲਾਂ ਦੁਆਰਾ ਹੇਠਾਂ ਪ੍ਰਦਰਸ਼ਿਤ ਕੀਤਾ ਗਿਆ ਹੈ।

ਬਿਨਾਂ ਏਕਾਕੀ ਯੁਗਮ ਵਾਲੇ ਕੇਂਦਰੀ ਪਰਮਾਣੂ ਵਾਲੇ ਅਣੂਆਂ ਦੀਆਂ ਆਕ੍ਰਿਤੀਆਂ

ਵੀ.ਐਸ.ਈ.ਪੀ.ਆਰ. ਮਾੱਡਲ ਦੀ ਸਹਾਇਤਾ ਨਾਲ ਅਨੇਕ ਅਣੂਆਂ ਵਿਸ਼ੇਸ਼ ਰੂਪ ਵਿੱਚ p-ਬਲਾੱਕ ਦੇ ਤੱਤਾਂ ਦੁਆਰਾ ਨਿਰਮਿਤ ਯੋਗਿਕਾਂ ਦੀਆਂ ਜੋਮੈਟਰੀਆਂ ਦਾ ਪੂਰਵ ਅਨੁਮਾਨ ਸਹੀ ਰੂਪ ਵਿੱਚ ਲਗਾਇਆ ਜਾ ਸਕਦਾ। ਇੱਥੋਂ ਤੱਕ ਕਿ ਸੰਭਾਵਿਤ ਸੰਰਚਨਾਵਾਂ ਵਿੱਚ ਊਰਜਾ ਦਾ ਅੰਤਰ ਘੱਟ ਹੋਣ ਤੇ ਵੀ ਇਸਦੇ ਦੁਆਰਾ ਵਾਸਤਵਿਕ ਸੰਰਚਨਾ ਦਾ ਪੂਰਵ ਅਨੁਮਾਨ ਸਫਲਤਾ ਪੂਰਵਕ ਲਾਇਆ ਜਾ ਸਕਦਾ ਹੈ। ਅਣਵੀਂ ਜੋਮੈਟਰੀ ਉੱਤੇ ਇਲੈਕਟ੍ਰਾਨ ਯੂਗਮ' ਪ੍ਰਤੀਕਰਸ਼ਣੀ ਪ੍ਰਭਾਵ ਦੇ ਵਿਸ਼ੇ ਵਿੱਚ ਵੀ.ਐਸ.ਈ.ਪੀ.ਆਰ ਮਾੱਡਲ ਦਾ ਸਿਧਾਂਤ ਦੇ ਅਧਾਰ ਸਪੱਸ਼ਟ ਨਹੀਂ ਹੈ। ਇਸ ਵਿਸ਼ੇ ਵਿੱਚ ਅਜੇ ਵੀ ਸ਼ੰਕਾਵਾਂ ਉਠਾਈਆਂ ਜਾਂਦੀਆਂ ਹਨ। ਇਸ ਤਰ੍ਹਾਂ ਇਹ ਬਹਿਸ ਦਾ ਵਿਸ਼ਾ ਬਣਿਆ ਹੋਇਆ ਹੈ।

ਸੰਯੋਜਕਤਾ ਬੰਧਨ ਸਿਧਾਂਤ

ਜਿਵੇਂ ਤੁਸੀਂ ਜਾਣਦੇ ਹੋ ਲਈਸ ਧਾਰਨਾਂ ਨਾਲ ਅਣੂਆਂ ਦੀਆਂ

ਸਾਰਣੀ 4.6 ਏਕਾਕੀ ਯੁਗਮ ਰਹਿਤ ਕੇਂਦਰੀ ਪਰਮਾਣੂ ਵਾਲੇ ਅਣੂਆਂ ਦੀ ਜੋਮੈਟਰੀ

ਦਿਲੈਕਟ੍ਰਾੱਨ ਯੁਗਮਾ ਵ ਸੰਖਿਆ	ਈ ਇਲੈਕਟ੍ਰਾੱਨ ਯੁਗਮਾ ਦੀ ਵਿਵਸਥਾ	ਅਣਵੀਂ ਜੋਮੈਟਰੀ	ਉਦਾਹਰਣ
2	180° • A ਰੇਖੀ	B—A—B ਰੇਖੀ	BeCl ₂ , HgCl ₂
3	120° ਤਿਕੋਣੀ ਸਮਤਲੀ	B B B ਤਿਕੋਣੀ ਸਮਤਲੀ	BF_3
4	109.5° ਜੌਤਲਕੀ	B B B ਚੌਫਲਕੀ	$\mathrm{CH_4}, \mathrm{NH_4}^+$
5	120° A	B B B	PCl ₅
6	ਤਿਕੋਣੀ ਦੋ ਪਿਰੀਮਿਡੀ 90° ਅਸ਼ਟਫਲਕੀ	ਭਕਣੀ ਦੇ ਪਿਗੀਮਿਡੀ B B A B Mਸ਼ਟਫਲਕੀ	SF ₆

ਸਾਰਣੀ 4.7 ਕੁਝ ਸਰਲ ਅਣੂਆਂ/ਆਇਨਾਂ ਦੀਆਂ ਆਕ੍ਰਿਤੀਆਂ (ਜੋਮੈਟਰੀ) ਜਿਨ੍ਹਾਂ ਦੇ ਕੇਂਦਰੀ ਪਰਮਾਣੂ ਉੱਤੇ ਇੱਕ ਜਾਂ ਇੱਕ ਤੋਂ ਵੱਧ ਏਕਾਕੀ ਇਲੈਕਟ੍ਰਾੱਨ ਯੁਗਮ ਮੌਜੂਦ ਹਨ।

ਅਣੂ ਦੀਆਂ ਕਿਸਮਾਂ	ਬੰਧਨ ਯੁਗਮਾ ਦੀ ਸੰਖਿਆ	ਏਕਾਕੀ ਯੁਗਮਾ ਦੀ ਸੰਖਿਆ	ਇਲੈਕਟ੍ਰਾੱਨ ਯੁਗਮ ਦੀ ਸੰਖਿਆ	ਆਕ੍ਰਿਤੀ	ਉਦਾਹਰਣ
AB_2E	2	1	਼ੇ A B B ਤਿਕੋਣੀ ਸਮਤਲੀ	ਮੁੜੀ ਹੋਈ	SO ₂ , O ₃
AB ₃ E	3	1	਼ਿ B B B ਤਿਕੋਣੀ ਪਿਰਾਮਿਡੀ	ਤਿਕੋਣੀ ਪਿਰਾਮਿਡ	NH ₃
$\mathrm{AB_2E_2}$	2	2	ੰ ,∕ ,∕ B ਚੌਫਲਕੀ	ਮੁੜੀ ਹੋਈ	H ₂ O
AB₄E	4	1	:—A B B ਤਿਕੋਣੀ ਦੋ ਪਿਰਾਮਿਡੀ	<u>ਬੂਲਾ</u>	SF ₄
$\mathrm{AB_3E_2}$	3	2	B — A	T-ਆਕ੍ਰਿਤੀ	ClF ₃
$\mathrm{AB}_{\scriptscriptstyle{5}}\mathrm{E}$	5	1	B B B B B ਅਸ਼ਟਫਲਕੀ	ਵਰਗ ਪਿਰਾਮਿਡੀ	BrF ₅
$\mathrm{AB_4E_2}$	4	2	: B B B B ਅਸ਼ਟਫਲਕੀ	ਵਰਗ ਸਮਤਲੀ	XeF ₄

ਸਾਰਣੀ 4.8 ਬੰਧਨ-ਯੁਗਮ ਅਤੇ ਏਕਾਕੀ ਯੁਗਮ ਵਾਲੇ ਕੁਝ ਅਣੂਆਂ ਦੀ ਆਕ੍ਰਿਤੀ

ı	ਅਣੂ ਦੀ	ਬਧਨ	ਏਕਾਕੀ	ਇਲੈਕਟ੍ਰਾਨਾਂ	ਆਕ੍ਰਿਤੀ	ਆਧਾਰਿਤ ਆਕ੍ਰਿਤੀ ਦੀ
	ਕਿਸਮ	ਯੁਗਮਾਂ ਸੰਖਿਆ	ਯੁਗਮਾਂ ਸੰਖਿਆ	ਦੀ ਵਿਵਸਥਾ		ਵਿਆਖਿਆ
	AB_2E	4	1	S 0 119.5°	ਮੁੜ ਹੋਈ ਹ	ਸਿਧਾਂਤਕ ਤੌਰ ਤੇ ਇਸਦੀ ਆਕ੍ਰਿਤੀ ਤ੍ਰਿਕਣੀ ਸਮਤਲੀ ਹੋਣੀ ਚਾਹੀਦੀ ਹੈ, ਪਰੰਤੂ ਅਸਲ ਵਿੱਚ ਇਹ ਅਣੂ ਮੁੜਿਆ ਹੋਇਆ ਜਾਂ V-ਆਕ੍ਰਿਤੀ ਦਾ ਹੁੰਦਾ ਹੈ। ਇਸ ਦਾ ਕਾਰਣ ਇਹ ਹੈ ਕਿ ਏਕਾਕੀ ਯੂਗਮ ਬੰਧਨ ਯੂਗਮ ਦੇ ਵਿੱਚ ਪ੍ਤੀਕਰਸ਼ਣ, ਬੰਧਨ ਯੂਗਮ-ਬੰਧਨ ਯੂਗਮ ਦੇ ਵਿੱਚ ਪ੍ਤੀਕਰਸ਼ਣ ਯੂਗਮ ਬੰਧਨ ਯੂਗਮ ਪ੍ਤੀਕਰਸ਼ਣ ਨਾਲੋਂ ਬਹੁਤ ਜਿਆਦਾ ਹੁੰਦਾ ਹੈ। ਫਲਸਰੂਪ ਬੰਧਨ ਯੂਰਮ ਤੋਂ ਮੁਰਤ ਤੋਂ ਮੁਰਤ ਤੋਂ ਸ਼ੁਰਤ ਜਿਆਦਾ ਹੁੰਦਾ ਹੈ। ਫਲਸਰੂਪ ਬੰਧਨ ਤੋਂ ਸ਼ੁਰਤ ਜਿਆਦਾ ਹੁੰਦਾ ਹੈ। ਫਲਸਰੂਪ ਬੰਧਨ ਤੋਂ ਸ਼ੁਰਤ ਤੋਂ ਸ਼ਿਲਤ ਤੋਂ ਸ਼ਿਲਤ ਤੋਂ ਸ਼ੁਰਤ ਤੋਂ ਸ਼ਿਲਤ ਤੋਂ ਸ਼ੁਰਤ ਤੋਂ ਸ਼ਿਲਤ ਤੋਂ ਸ਼ੁਰਤ ਤੋਂ ਸ਼ਿਲਤ ਤੋਂ ਸ਼ਿਲਤ ਤੋਂ ਸ਼ਿਲਤ ਤੋਂ ਸ਼ਿਲਤ ਤੋਂ ਸ਼ੁਰਤ ਤੋਂ ਸ਼ਿਲਤ ਤੋਂ ਸ਼ੁਰਤ ਤੋਂ ਸ਼ੁਰਤ ਤੋਂ ਸ਼ੁਰਤ ਤੋਂ ਸ਼ੁਰਤ ਤੋਂ ਸ਼ੁਰਤ ਤੋਂ ਸ਼ੁਰਤ ਤੇ ਸ਼ੁਰਤ ਤੋਂ ਸ਼ੁਰਤ ਤੋਂ ਸ਼ੁਰਤ ਤੋਂ ਸ਼ੁਰਤ ਤੋਂ ਸ਼ੁਰਤ ਤੋਂ ਸ਼ੁਰਤ ਤੋਂ ਸ਼
	AB_3E	3	1	H 107° H	ਤ੍ਰਿਕੋਣੀ ਪਿਰੀਮਿਡਲ	ਕੋਣ 119.5° ਤੋਂ ਘੱਟ ਦੇ 120° ਹੋ ਜਾਂਦਾ ਹੈ। ਜੇ ਏਕਾਕੀ ਯੁਗਮ ਦੀ ਥਾਂ ਤੇ ਬੰਧਨ ਯੁਗਮ ਹੁੰਦਾ ਤਾਂ ਅਣੂ ਦੀ ਆਕ੍ਰਿਤੀ ਚੌਫਲਕੀ ਹੁੰਦੀ, ਪਰੁੱਤੂ ਇੱਥੇ ਇੱਕ ਏਕਾਕੀ ਯੁਗਮ ਮੌਜੂਦ ਹੈ। ਇਸ ਲਈ ਏਕਾਕੀ ਯੁਗਮ-ਬੰਧਨ ਯੁਗਮ ਦੇ
				N H	5.0	ਪ੍ਰਤੀਕਰਸ਼ਣ ਦੇ ਕਾਰਣ (ਜੋ ਬੰਧਨ ਯੁਗਮ–ਬੰਧਨ ਯੁਗਮ ਦੇ ਨਾਲੋਂ) ਵੱਧ ਹੁੰਦਾ ਹੈ।ਬੰਧਨੀ ਯੁਗਮਾਂ ਦੇ ਵਿੱਚ ਬੰਧਨ ਕੋਣ 109.5° ਤੋਂ ਘੱਟ ਕੇ 107° ਹੋ ਜਾਂਦਾ ਹੈ।
	AB_2E_2	2	2	н 104.5° н	ਮੁੜ ਹੋਈ	ਜੇ ਸਾਰੇ ਇਲੈਕਟ੍ਰਾਨ ਯੁਗਮ-ਬੰਧਨ ਯੁਗਮ ਹੁੰਦੇ ਤਾਂ ਅਣੂ ਦੀ ਆਕ੍ਰਿਤੀ ਚੌਫਲਕੀ ਹੁੰਦੀ, ਪਰੰਤੂ ਦੋ ਏਕਾਕੀ ਯੁਗਮਾਂ ਦੀ ਮੌਜੂਦਗੀ ਦੇ ਕਾਰਣ ਇਸ ਦਾ ਅਕਾਰ ਵਿਕ੍ਰਿਤ ਚੌਫਲਕੀ ਜਾਂ ਕੋਣੀ ਮੁੜਿਆ ਹੋਇਆ ਹੈ। ਇਸ ਦਾ ਕਾਰਣ
				н		ਇਹ ਹੈ ਕਿ ਏਕਾਕੀ ਯੁਗਮ ਏਕਾਕੀ ਯੁਗਮ ਪ੍ਤੀਕਰਸ਼ਣ ਬੰਧਨ ਯੁਗਮ–ਬੰਧਨ ਯੁਗਮ ਨਾਲੋਂ ਵੱਧ ਹੁੰਦਾ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਬੰਧਨ ਕੋਣ 109.5° ਤੋਂ ਘੱਟ ਕੇ 104.5° ਰਹਿ ਜਾਂਦਾ ਹੈ।
	$\mathrm{AB_4E}$	4	1 _{(e}		<u>ङ</u> ्का	ਆਕ੍ਰਿਤੀ (ੳ) ਵਿੱਚ ਯੁਗਮ ਅਕਸੀ ਸਥਿਤੀ ਵਿੱਚ ਹੈ। ਇਸ ਕਾਰਣ ਇਸ ਆਕ੍ਰਿਤੀ ਵਿੱਚ 90° ਉੱਤੇ ਤਿੰਨ ਏਕਾਕੀ ਯੁਗਮ-ਬੰਧਨ ਯੁਗਮ ਪ੍ਰਤੀਕਰਸ਼ਣ ਹੁੰਦੇ ਹਨ, ਪਰੰਤੂ ਜੋਮੈਟਰੀ (ਅ) ਵਿੱਚ ਏਕਾਕੀ ਯੁਗਮ ਵਿਸ਼ਵਤੀ ਸਥਿਤੀ ਵਿੱਚ ਹਨ ਅਤੇ ਇਸ
			(E	F Eddi H	ਸਾਈ	ਸਥਿਤੀ ਵਿੱਚ 90° ਤੇ ਕੇਵਲ ਦੋ ਏਕਾਕੀ ਯੁਗਮ-ਬੰਧਨ ਯੁਗਮ ਪ੍ਰਤੀਕਰਸ਼ਣ ਹੁੰਦੇ ਹਨ। ਇਸ ਲਈ ਜੋਮੈਟਰੀ (ਅ) ਵਧੇਰੇ ਸਥਾਈ ਹੈ। (ਅ) ਵਿੱਚੋਂ ਦਿੱਤੀ ਗਈ ਆਕ੍ਰਿਤੀ ਨੂੰ ਭਿੰਨ- ਭਿੰਨ ਨਾਮ ਦਿੱਤੇ ਗਏ ਹਨ, ਜਿਵੇਂ-ਵਿਕ੍ਤਿ ਚੌਫਲ ਲਪੇਟਿਆ (folded) ਵਰਗ ਜਾਂ ਝੂਲਾ।

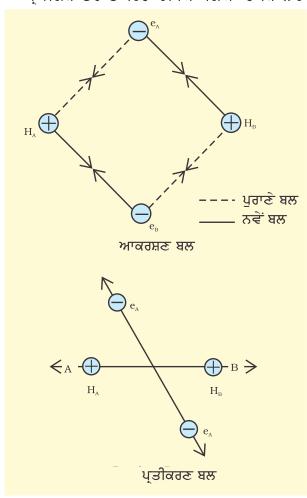
ਅਣੂ ਦੀ ਕਿਸਮ	ਬੰਧਨ ਯੁਗਮਾਂ ਦੀ ਸੰਖਿਆ	ਏਕਾਕੀ ਯੁਗਮਾਂ ਦੀ ਸੰਖਿਆ	ਇਲੈਕਟ੍ਰਾਨਾਂ ਦੀ ਵਿਵਸਥਾ	ਆਕ੍ਰਿਤੀ	ਆਧਾਰਿਤ ਆਕ੍ਰਿਤੀ ਦੀ ਵਿਆਖਿਆ
$\mathrm{AB}_3\mathrm{E}_2$	3	(a) (b)	F Cl F F Cl F	T-Mrlagell F F Cl F F F Cl F F F F Cl F F F F F	ਜੋਮੈਟਰੀ (ੳ) ਵਿੱਚ ਏਕਾਕੀ ਯੁਗਮ ਵਿਸ਼ਵਤੀ ਸਥਿਤ ਵਿੱਚ ਮੌਜੂਦ ਹੈ। ਇਸ ਲਈ ਜੋਮੈਟਰੀ ਵਿੱਚ ਏਕਾਕੀ ਯੁਗਮ ਬੰਧਨ ਯੁਗਮ ਪ੍ਤੀਕਰਸ਼ਣ ਹੋਰ ਜੋਮੈਟਰੀਆਂ ਜਿਨ੍ਹਾਂ ਵਿੱਚ ਏਕਾਕੀ ਯੁਗਮ ਅਕਸੀ ਸਥਿਤੀ ਵਿੱਚ ਹਨ ਦੀ ਤੁਲਨਾ ਵਿੱਚ ਘੱਟ ਹੁੰਦੀ ਹੈ। ਇਸ ਲਈ ਜੋਮੈਟਰੀ (ਉ) ਸਭ ਤੋਂ ਸਥਾਈ ਹੈ। ਇਸ ਲਈ CIF ₃ ਦੀ ਸੰਰਚਨਾ T- ਆਕ੍ਰਿਤੀ ਦੀ ਹੈ।

ਬਣਤਰਾਂ ਨੂੰ ਲਿਖਣ ਵਿੱਚ ਮਦਦ ਮਿਲਦੀ ਹੈ, ਪਰੰਤੂ ਰਸਾਇਣਿਕ ਬੰਧਨ ਬਣਨ ਦੀ ਵਿਆਖਿਆ ਕਰਨ ਵਿੱਚ ਇਹ ਅਸਮਰਥ ਹੈ। ਉੱਪਰਲੀ ਧਾਰਣਾ ਇਹ ਵੀ ਸਪੱਸ਼ਟ ਨਹੀਂ ਕਰਦੀ ਹੈ ਕਿ ਅਣੂਆਂ ਵਿੱਚ ਬੰਧਨ ਵਿਯੋਜਨ ਊਰਜਾਵਾਂ (Bond Dissociation

Energies) ਅਤੇ ਬੰਧਨ ਲੰਬਾਈਆਂ ਜਿਵੇਂ— $\rm H_2$ (435.8 kJ $\rm mol^{-1}$, 74 pm) ਅਤੇ $\rm F_2$ (150.6 kJ $\rm mol^{-1}$, 144 pm) ਭਿੰਨ ਕਿਉਂ ਹਨ, ਜਦੋਂ ਕਿ ਦੋਵਾਂ ਅਣੂਆਂ ਵਿੱਚ ਸਬੰਧਿਤ ਪਰਮਾਣੂਆਂ ਦੇ ਵਿੱਚ ਇੱਕ ਇਲੈਕਟ੍ਰਾੱਨ ਯੁਗਮ ਦੇ ਸਹਿਭਾਜਨ ਦੇ ਫਲਸਰੂਪ ਇੱਕਹਿਰਾ ਸਹਿਸੰਯੋਜੀ ਬੰਧਨ ਬਣਦਾ ਹੈ। ਇਹ ਮਾੱਡਲ ਬਹੁ ਪਰਮਾਣਵੀਂ ਅਣੂਆਂ ਦੀਆਂ ਆਕ੍ਰਿਤੀਆਂ ਦੀਆਂ ਵਿਲੱਖਣਤਾ ਉੱਤੇ ਵੀ ਪ੍ਰਕਾਸ਼ ਨਹੀਂ ਪਾਉਂਦਾ।

ਇਸੇ ਤਰ੍ਹਾਂ ਵੀ.ਐਸ.ਈ.ਪੀ.ਆਰ ਸਿਧਾਂਤ ਸਰਲ ਅਣੂਆਂ ਦੇ ਬਾਰੇ ਜਾਣਕਾਰੀ ਦਿੰਦਾ ਹੈ, ਪਰੰਤੂ ਇਹ ਉਨ੍ਹਾਂ ਦੀ ਵਿਆਖਿਆ ਨਹੀਂ ਕਰ ਸਕਦਾ ਸੀ। ਇਸ ਦੀ ਵਰਤੋਂ ਵੀ ਸੀਮਿਤ ਹੈ। ਇਨ੍ਹਾਂ ਕਮੀਆਂ ਨੂੰ ਦੂਰ ਕਰਨ ਦੇ ਲਈ ਦੋ ਮਹੱਤਵ ਪੂਰਣ ਸਿਧਾਂਤਾਂ ਨੂੰ ਪੇਸ਼ ਕੀਤਾ ਗਿਆ, ਜੋ ਕੁਆਂਟਮ ਯੰਤਰਕੀ (Quantum Mechanical) ਸਿਧਾਂਤ ਉੱਤੇ ਅਧਾਰਿਤ ਹੈ। ਇਹ ਸਿਧਾਂਤ ਹੈ—ਸੰਯੋਜਕਤਾ ਬੰਧਨ ਸਿਧਾਂਤ ਅਤੇ ਅਣਵੀਂ ਆਰਬਿਟਲ ਸਿਧਾਂਤ (Molcular Orbital)

ਸੰਯੋਜਕਤਾ ਬੰਧਨ ਸਿਧਾਂਤ ਨੂੰ ਸਭ ਤੋਂ ਪਹਿਲਾਂ ਹਾਈਟਲਰ ਅਤੇ ਲੰਡਨ (Heitler and London) ਨੇ ਸੰਨ 1927 ਵਿੱਚ ਪੇਸ਼ ਕੀਤਾ ਸੀ। ਜਿਸਦਾ ਵਿਕਾਸ ਪਾੱਲਿੰਗ (Pauling) ਅਤੇ ਹੋਰ ਵਿਗਿਆਨੀਆਂ ਨੇ ਬਾਅਦ ਵਿੱਚ ਕੀਤਾ। ਇਸ ਸਿਧਾਂਤ ਦੀ ਵਿਆਖਿਆ ਪਰਮਾਣੂ ਆੱਰਬਿਟਲਾਂ, ਤੱਤਾਂ ਦੀ ਇਲੈਕਟ੍ਰਾਨਿਕ ਤਰਤੀਬ (ਯੁਨਿਟਕ), ਪਰਮਾਣੂ ਆਰਿਬਿਟਲਾਂ ਦੇ ਅਤਿਵਿਆਪਨ ਅਤੇ ਹਾਈਬ੍ਰਾਡਾਈਜੇਸ਼ਨ ਅਤੇ ਵਿਚਰਣ (variation) ਅਤੇ ਉੱਪਰ ਸਥਾਪਨ ਕਿਰਿਆ (super position) ਦੇ ਸਿਧਾਂਤਾਂ ਦੇ ਗਿਆਨ ਉੱਤੇ ਅਧਾਰਿਤ ਹੈ। ਇਨ੍ਹਾਂ ਸਾਰਿਆਂ ਪਹਿਲੂਆਂ ਦੇ ਪਰਿਪੇਖ ਵਿੱਚ ਸੰਯੋਜਕਤਾ ਬੰਧਨ ਸਿਧਾਂਤ ਦੀ ਗੂੜ੍ਹੀ ਵਿਆਖਿਆ ਇਸ ਪੁਸਤਕ ਦੀ ਵਿਸ਼ੇ-ਵਸਤੂ ਤੋਂ ਬਾਹਰ ਹੈ। ਇਸ ਲਈ ਇਸ ਸਿਧਾਂਤ ਦਾ ਵਰਣਨ ਕੇਵਲ ਗੁਣਾਤਮਕ ਦ੍ਰਿਸ਼ਟੀ ਤੋਂ ਅਤੇ ਗਣਿਤ ਦੀ ਵਰਤੋਂ ਕੀਤੇ ਬਿਨਾਂ ਹੀ ਕੀਤਾ ਜਾਵੇਗਾ। ਆਓ ਸ਼ੁਰੂ ਵਿੱਚ ਸਰਲਤਮ ਅਣੂ (H₂) ਦੇ ਬਣਨ ਉੱਤੇ ਵਿਚਾਰ ਕਰਦੇ ਹਾਂ।

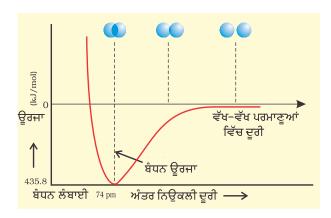

ਮੰਨ ਲਓ ਹਾਈਡ੍ਰੋਜਨ ਦੇ ਦੋ ਪਰਮਾਣੂ A ਅਤੇ B ਜਿਨ੍ਹਾਂ ਦੇ ਨਿਊਕਲੀਅਸ ਕ੍ਰਮਵਾਰ N_A ਅਤੇ N_B ਹਨ ਅਤੇ ਉਨ੍ਹਾਂ ਵਿੱਚ ਮੌਜੂਦ ਇਲੈਕਟ੍ਰਾਨਾਂ ਨੂੰ e_A ਅਤੇ e_B ਦੁਆਰਾ ਦਰਸਾਇਆ ਗਿਆ ਹੈ, ਇੱਕ–ਦੂਜੇ ਵੱਲ ਵੱਧਦੇ ਹਨ। ਜਦੋਂ ਇਹ ਦੋ ਪਰਮਾਣੂ ਇੱਕ–ਦੂਜੇ ਤੋਂ ਕਾਫੀ ਦੂਰੀ ਉੱਤੇ ਹੁੰਦੇ ਹਨ ਤਾਂ ਉਨ੍ਹਾਂ ਵਿੱਚ ਕੋਈ ਅੰਤਰ ਕਿਰਿਆ ਨਹੀਂ ਹੁੰਦੀ। ਜਿਉ–ਜਿਉ ਦੋ ਪਰਮਾਣੂ ਇੱਕ ਦੂਜੇ ਦੇ ਕੋਲ ਜਾਂਦੇ ਹਨ, ਤਿਉ–ਤਿਉਂ ਉਨ੍ਹਾਂ ਦੇ ਵਿੱਚ ਅਕਰਸ਼ਣ ਅਤੇ ਪ੍ਰਤੀਕਰਸ਼ਣ ਬਲ ਪੈਦਾ ਹੁੰਦੇ ਜਾਂਦੇ ਹਨ। ਆਕਰਸ਼ਣ ਬਲ ਹੇਠ ਲਿਖਿਆਂ ਵਿੱਚ ਪੈਦਾ ਹੁੰਦੇ ਹਨ—

- (i) ਇੱਕ ਪਰਮਾਣੂ ਦੇ ਨਿਊਕਲੀਅਸ ਅਤੇ ਉਸਦੇ ਇਲੈਕਟ੍ਰਾੱਨਾਂ ਦੇ ਵਿੱਚ $N_{_{\rm A}}$ $e_{_{\rm A}}$. $N_{_{\rm B}}$ $e_{_{\rm B}}$.
- (ii) ਇੱਕ ਪਰਮਾਣੂ ਦੇ ਨਿਊਕਲੀਅਸ ਅਤੇ ਦੂਜੇ ਪਰਮਾਣੂ ਦੇ

ਇਲੈਕਟ੍ਰਾਨਾਂ ਦੇ ਵਿੱਚ $N_{\rm A}$ – $e_{\rm B}$, $N_{\rm B}$ – $e_{\rm A}$. ਇਸੇ ਤਰ੍ਹਾਂ ਪ੍ਰਤੀ ਕਰਸ਼ਣ ਬਲ ਹੇਠ ਲਿਖਿਆਂ ਵਿੱਚ ਪੈਦਾ ਹੁੰਦੇ ਹਨ— (i) ਦੋ ਪਰਮਾਣੂਆਂ ਦੇ ਇਲੈਕਟ੍ਰਾਨਾਂ ਦੇ ਵਿੱਚ $e_{\rm A}$ – $e_{\rm B}$ ਅਤੇ (ii) ਦੋ ਪਰਮਾਣੂਆਂ ਦੇ ਨਾਭਿਕਾਂ ਦੇ ਵਿੱਚ $N_{\rm A}$ – $N_{\rm B}$.

ਆਕਰਸ਼ਣ ਬਲ ਦੋਵਾਂ ਪਰਮਾਣੂਆਂ ਨੂੰ ਇੱਕ ਦੂਜੇ ਦੇ ਨੇੜ ਲਿਆਉਂਦੇ ਹਨ, ਜਦਕਿ ਪ੍ਰਤੀਕਰਸ਼ਣ ਬਲ ਉਨ੍ਹਾਂ ਨੂੰ ਦੂਰ ਕਰਨ ਦੀ ਕੋਸ਼ਿਸ਼ ਕਰਦੇ ਹਨ (ਚਿੱਤਰ 4.7)।

ਪ੍ਰਯੋਗਿਕ ਤੌਰ ਤੇ ਇਹ ਵੇਖਿਆ ਗਿਆ ਹੈ ਕਿ ਨਵੇਂ



ਚਿੱਤਰ. 4.7 ਕੁਝ ਸਰਲ ਅਣੂਆਂ/ ਆਇਨਾਂ ਦੀਆਂ ਆਕ੍ਤੀਆਂ (ਜੋਮੈਟਰੀ) ਜਿਨ੍ਹਾਂ ਦੇ ਕੇਂਦਰੀ ਪਰਮਾਣੂ ਉਤੋ ਇੱਕ ਤੋ ਵੱਧ ਏਕਾਕੀ ਇਲੈਕਟ੍ਾਨ ਯੁਗਮ ਮੌਜੂਦ ਹਨ।

ਆਕਰਸ਼ਣ ਬਲਾਂ ਦਾ ਮਾਨ, ਨਵੇਂ ਪ੍ਤੀਕਰਸ਼ਣ ਬਲਾਂ ਨਾਲੋਂ ਵਧੇਰੇ ਹੁੰਦਾ ਹੈ। ਇਸ ਦੇ ਪਰਿਣਾਮਸਰੂਪ ਦੋਵੇਂ ਪਰਮਾਣੂ ਇੱਕ-ਦੂਜੇ ਦੇ ਕਰੀਬ ਆਉਂਦੇ ਹਨ ਅਤੇ ਉਨ੍ਹਾਂ ਦੀ ਸਥਿਤਿਜ ਊਰਜਾ ਘੱਟ ਹੋ ਜਾਂਦੀ ਹੈ। ਅੰਤ ਵਿੱਚ ਅਜਿਹੀ ਸਥਿਤੀ ਹੈ, ਨੈੱਟ ਆਕਰਸ਼ਣ ਬਲ ਅਤੇ ਪ੍ਤੀਕਰਸ਼ਣ ਬਲ ਦੇ ਬਰਾਬਰ ਹੋ ਜਾਂਦਾ ਹੈ ਅਤੇ ਸਿਸਟਮ ਦੀ ਉਰਜਾ ਨਿਉਨਸਤਰ ਦੇ ਪਹੁੰਚ ਜਾਂਦੀ ਹੈ। ਇਸ ਅਵਸਥਾ ਵਿੱਚ ਹਾਈਡ੍ਰੋਜਨ ਦੇ ਪਰਮਾਣੂ ਬੰਧਿਤ ਅਖਵਾਉਂਦੇ ਹਨ ਅਤੇ ਇੱਕ ਸਥਾਈ ਅਣੂ ਬਣਾਉਂਦੇ ਹਨ, ਜਿਸ ਦੀ ਬੰਧਨ ਲੰਬਾਈ 74 pm ਹੁੰਦੀ ਹੈ।

ਕਿਉਂਕਿ ਹਾਈਡ੍ਰੋਜਨ ਦੇ ਦੋ ਪਰਮਾਣੂਆਂ ਦੇ ਵਿੱਚ ਬੰਧਨ ਬਣਨ ਤੇ ਊਰਜਾ ਮੁਕਤ ਹੁੰਦੀ ਹੈ, ਇਸ ਲਈ ਹਾਈਡ੍ਰੋਜਨ ਅਣੂ ਦੋ ਵੱਖ ਪਰਮਾਣੂਆਂ ਨਾਲੋਂ ਵਧੇਰੇ ਸਥਾਈ ਹੁੰਦਾ ਹੈ। ਇਸ ਪ੍ਰਕਾਰ ਮੁਕਤ ਊਰਜਾ ਬੰਧਨ ਐਨਥੈਲਪੀ ਅਖਵਾਉਂਦੀ ਹੈ। ਇਹ ਚਿੱਤਰ 4.8 ਵਿੱਚ ਦਿੱਤੇ ਗਏ ਅਰੇਖ ਵਿੱਚ ਨਿਊਨਤਮ ਦੇ ਸੰਗਤ ਹੁੰਦੀ ਹੈ।ਕਨਵਰਸਲੀ ਹਾਈਡ੍ਰੋਜਨ ਦੇ ਇੱਕ ਮੋਲ ਅਣੂਆਂ ਦੇ ਵਿਯੋਜਨ ਦੇ ਲਈ 435.8 kJ ਊਰਜਾ ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ।

 $H_2(g) + 435.8 \text{ kJ mol}^{-1} \rightarrow H(g) + H(g)$

ਚਿੱਤਰ. 4.8 H੍ਰ ਅਣੂ ਦੇ ਬਣਨ ਦੇ ਲਈ H ਪਰਮਾਣੂਆਂ ਦੇ ਵਿਚ ਅੰਤਰ ਨਿਊਕਲੀ ਦੂਰੀ ਦੀ ਸਾਪੇਖ ਸਥਿਤਿਜ ਊਰਜਾ ਦਾ ਅਰੇਖ, ਆਰੇਖ ਵਿੱਚ ਨਿਊਨਤਮ ਊਰਜਾ ਸਥਿਤੀ H₂. ਦੀ ਸਭ ਤੋਂ ਵੱਧ ਸਥਾਈ ਅਵਸਥਾ ਦਰਸਾਉਦੀ ਹੈ।

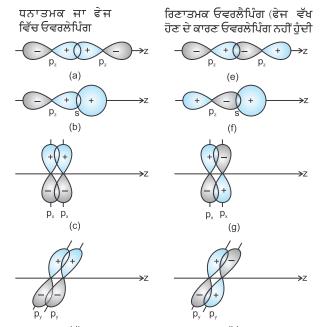
4.5.1 ਆੱਰਬਿਟਲ ਓਵਰ ਲੈਪ ਸੰਕਲਪ

ਹਾਈਡ੍ਰੌਜਨ ਅਣੂ ਦੇ ਬਣਨ ਵਿੱਚ ਇਸ ਅਵਸਥਾ ਵਿੱਚ ਨਿਊਨਤਮ ਅਵਸਥਾ ਪ੍ਰਾਪਤ ਹੁੰਦੀ ਹੈ। ਇਸ ਅਵਸਥਾ ਵਿੱਚ ਦੋ ਪਰਮਾਣੂ ਐਨੇਂ ਨੇੜੇ ਹੋ ਜਾਂਦੇ ਹਨ ਕਿਉਂਕ ਉਨ੍ਹਾਂ ਦੇ ਪਰਮਾਣੂ ਆੱਰਬਿਟਲ ਅੰਸ਼ਿਕ ਰੂਪ ਵਿੱਚ ਅੰਤਰ ਭੇਦਨ ਹੋ ਜਾਂਦੇ ਹਨ। ਇਸ ਨੂੰ ਆੱਰਬਿਟਲ ਓਵਰਲੈਪ ਕਹਿੰਦੇ ਹਨ। ਇਸਦੇ ਪਰਿਣਾਮ ਸਵਰੂਪ ਇਲੈਕਟ੍ਰਾਨ ਸੰਯੁਗਮਿਤ ਹੁੰਦੇ ਹਨ। ਓਵਰ ਲੈਪਿੰਗ ਦੀ ਸੀਮਾ ਸਹਿਸੰਯੋਜੀ ਬੰਧਨ ਦੀ ਪ੍ਰਬਲਤਾ ਨੂੰ ਨਿਰਧਾਰਿਤ ਕਰਦੀ ਹੈ। ਆਮਤੌਰ ਤੇ ਵਧੇਰੇ ਓਵਰਲੈਪਿੰਗ ਦੋ ਪਰਮਾਣੂਆਂ ਦੇ ਵਿੱਚ ਪ੍ਰਬਲ ਬੰਧਨ ਬਣਾਉਣ ਨਾਲ ਸਬੰਧਿਤ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਆੱਰਬਿਟਲ ਓਵਰਲੈਪ ਸੰਕਲਪ ਦੇ ਅਨੁਸਾਰ ਦੋ ਪਰਮਾਣੂਆਂ ਦੇ ਵਿੱਚ ਸਹਿ ਸੰਯੋਜੀ ਬੰਧਨ ਦਾ ਬਣਨਾ ਸੰਯੋਜਕਤਾ ਸ਼ੈੱਲ ਵਿੱਚ ਮੌਜੂਦ ਉਲਟ ਚਕਰਣ (spin) ਵਾਲੇ ਇਲੈਕਟ੍ਰਾਨਾਂ ਦੇ ਸੰਯੁਗਮਨ ਦੇ ਪਰਿਣਾਮ ਸਰੂਪ ਹੁੰਦਾ ਹੈ।

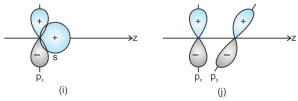
4.5.2 ਬੈਧਨਾਂ ਦੇ ਦਿਸ਼ਾਤਮਕ ਗੁਣ

ਜਿਵੇਂ ਤੁਸੀਂ ਜਾਣਦੇ ਹੋ ਸੰਹਿਸੰਯੋਜੀ ਬੰਧਨ ਪਰਮਾਣੂ ਆੱਰਬਿਟਲਾਂ ਦੇ ਉਵਲੈਪਿੰਗ ਤੋਂ ਬਣਦੇ ਹਨ।ਉਦਾਹਰਣ ਦੇ ਲਈ-ਹਾਈਡ੍ਰੋਜਨ ਦਾ ਅਣੂ ਬਣਨ ਵਿੱਚ ਇਸਦੇ ਦੋ ਪਰਮਾਣੂਆਂ ਦੇ ਸੰਯੋਜਨ ਵਿੱਚ ਉਨ੍ਹਾਂ ਦੇ 1s ਆੱਰਬਿਟਲਾਂ ਦੀ ਉਵਰਲੈਪਿੰਗ ਹੁੰਦੀ ਹੈ।

 ${\rm CH_4}, {\rm NH_3}$ ਅਤੇ ${\rm H_2O},$ ਵਰਗੇ ਬਹੁ ਪਰਮਾਣਵੀਂ ਅਣੂਆਂ ਵਿੱਚ ਬੰਧਨ ਬਣਨ ਦੇ ਨਾਲ-ਨਾਲ ਅਣੂ ਦੀ ਜੋਮੈਟਰੀ ਵੀ ਮਹੱਤਵਪੂਰਣ ਹੁੰਦੀ ਹੈ। ਉਦਾਹਰਣ ਦੇ ਲਈ $-{\rm CH_4}$ ਦੇ ਅਣੂ ਦੀ ਆਕ੍ਰਿਤੀ ਚੌਫਲਕੀ ਕਿਉਂ ਹੁੰਦੀ ਹੈ ਅਤੇ HCH ਬੰਧਨ ਕੋਣ ਦਾ ਮਾਨ 109.5° ਹੁੰਦਾ ਹੈ? ਇਸੇ ਤਰਾਂ ${\rm NH_3}$ ਅਣੂ ਦੀ ਆਕ੍ਰਿਤੀ ਪਿਰਾਮਿਡਲ ਕਿਉਂ ਹੁੰਦੀ ਹੈ ?


'ਸੰਯੋਜਕਤਾ ਬੰਧਨ ਸਿਧਾਂਤ' ਦੇ ਅਧਾਰ ਤੇ ${\rm CH_4}$, ${\rm NH_3}$ ਅਤੇ ${\rm H_2O}$, ਆਦਿ ਬਹੁਪਰਮਾਣਵੀਂ ਅਣੂਆਂ ਦੀ ਆਕ੍ਰਿਤੀ ਉਨ੍ਹਾਂ ਵਿੱਚ ਬੰਧਨ ਬਣਨ ਅਤੇ ਉਨ੍ਹਾਂ ਦੇ ਦਿਸ਼ਾਤਮਕ ਗੁਣਾਂ ਨੂੰ ਪਰਮਾਣੂ ਆਰਬਿਟਲਾਂ ਦੇ ਹਾਈਬ੍ਰਾਈਡਾਈਜੇਸ਼ਨ ਅਤੇ ਓਵਰ ਲੈਪਿੰਗ ਦੀ ਸਹਾਇਤਾ ਨਾਲ ਸਪੱਸ਼ਟ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।

4.5.3 ਪਰਮਾਣੂ ਆੱਰਬਿਟਲਾਂ ਦੀ ਓਵਰਲੈਪਿੰਗ


ਜਦੋਂ ਦੋ ਪਰਮਾਣੂ ਬੰਧਨ ਬਨਾਉਣ ਦੇ ਲਈ ਨੇੜੇ ਆਉਂਦੇ ਹਨ ਤਾਂ ਉਨ੍ਹਾਂ ਦੇ ਆੱਰਬਿਟਲਾਂ ਦੀ ਓਵਰ ਲੈਪਿੰਗ ਧਨਾਤਮਕ, ਰਿਣਾਤਮਕ ਜਾਂ ਸਿਫਰ ਹੋ ਸਕਦੀ ਹੈ। ਇਹ ਆੱਰਬਿਟਲ ਤਰੰਗ ਫਲਨ ਦੇ ਅਯਾਮ (amplitude) ਦੀ ਸਪੇਸ ਵਿੱਚ ਦਿਸ਼ਾ ਅਤੇ ਚਿਨ੍ਹ (ਫੇਜ਼) ਉੱਤੇ ਨਿਰਭਰ ਕਰਦਾ ਹੈ (ਚਿੱਤਰ 4.9)। ਸੀਮਾ–ਸਤ੍ਹਾ ਅਰੇਖਾਂ ਉੱਤੇ ਦਰਸਾਏ ਗਏ ਧਨਾਤਮਕ ਅਤੇ ਰਿਣਾਤਮਕ ਚਿਨ੍ਹ ਤਰੰਗ ਫਲਨ ਦਾ ਚਿੰਨ੍ਹ (phase) ਦੱਸਦੇ ਹਨ। ਇਨ੍ਹਾਂ ਦਾ ਚਾਰਜ ਨਾਲ ਕੋਈ ਸਬੰਧ ਨਹੀਂ ਹੁੰਦਾ। ਬੰਧਨ ਬਨਾਉਣ ਦੇ ਲਈ ਆੱਰਬਿਟਲਾਂ ਦਾ ਚਿੰਨ੍ਹ (phase) ਅਤੇ ਅਨੁਸਥਿਤੀ ਇੱਕ ਸਮਾਨ ਹੋਣੀ ਚਾਹੀਦੀ ਹੈ। ਇਸ ਨੂੰ ਧਨਾਤਮਕ ਓਵਰ ਲੈਪਿੰਗ ਕਹਿੰਦੇ ਹਨ। s ਅਤੇ p ਪਰਮਾਣੂ ਅੱਰਬਿਟਲਾਂ ਦੇ ਧਨਾਤਮਕ, ਰਿਣਾਤਮਕ ਜਾ ਸਿਫ਼ਰ ਓਵਰਲੈਪਿੰਗ ਦੀਆਂ ਦੀਆਂ ਭਿੰਨ-ਭਿੰਨ ਅਵਸਥਾਵਾਂ ਚਿੱਤਰ 4.9 ਵਿੱਚ ਦਰਸਾਈਆਂ ਗਈਆਂ ਹਨ।

ਸਹਿਸੰਯੋਜੀ ਬੰਧਨ ਦੇ ਬਣਨ ਦੇ ਮੁੱਖ ਕਾਰਕ ਦੇ ਰੂਪ ਵਿੱਚ ਓਵਰ ਲੈਪਿੰਗ ਦੀ ਕਸੌਟੀ ਸਮਨਿਊਕਲੀ, ਬਿਖਮ ਨਿਊਕਲੀ ਦੋ ਪਰਮਾਣਵੀਂ ਅਤੇ ਬਹੁ ਪਰਮਾਣਵੀਂ ਅਣੂਆਂ ਉੱਤੇ ਸਮਾਨ ਰੂਪ ਵਿੱਚ ਲਾਗੂ ਹੁੰਦਾ ਹੈ।ਅਸੀਂ ਜਾਣਦੇ ਹਾਂ ਕਿ $\mathrm{CH_4}$, $\mathrm{NH_3}$, ਅਤੇ $\mathrm{H_2O}$ ਅਣੂਆਂ ਦੀ ਆਕ੍ਰਿਤੀ ਕ੍ਰਮਵਾਰ ਚੌਫਲਕੀ, ਪਿਰਾਮਿਡਲ ਅਤੇ ਮੁੜੀ ਹੋਈ ਹੁੰਦੀ ਹੈ।ਇਸ ਲਈ ਸੰਯੋਜਕਤਾ ਬੰਧਨ ਸਿਧਾਂਤ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਇਹ ਜਾਣਨਾ ਦਿਲਚਸਪ ਹੋਵੇਗਾ ਕਿ ਕੀ ਇਨ੍ਹਾਂ ਜੋਮੈਟਰੀ ਆਕ੍ਰਿਤੀਆਂ ਨੂੰ ਆੱਰਬਿਟਲ ਓਵਰ ਲੈਪਿੰਗ ਦੇ ਅਧਾਰ ਤੇ ਸਪੱਸ਼ਟ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।

ਆਓ, ਅਸੀਂ ਸਭ ਤੋਂ ਪਹਿਲਾਂ ਮੀਥੇਨ ($\mathrm{CH_4}$) ਦੇ ਅਣੂ ਤੇ ਵਿਚਾਰ ਕਰਦੇ ਹਾਂ। ਗਰਊਂਡ ਅਵਸਥਾ (Ground state) ਵਿੱਚ ਕਾਰਬਨ ਦੀ ਇਲੈਕਟ੍ਰਾਨਿਕ ਤਰਤੀਬ [He] $2s^2$ $2p^2$ ਹੈ ਜੋ ਉਤੇਜਿਤ ਅਵਸਥਾ ਵਿੱਚ [He] $2s^1$ $2px^1$ $2py^1$

(d) (h) ਸਿਫਰ ਓਵਰਲੈਪਿੰਗ (ਇੱਕ ਦੂਜੇ ਦੇ ਵੱਲ ਪਹੁੰਚਣ ਦੀ ਦਿਸ਼ਾ ਵਿੱਚ ਵੱਖ ਫੇਜ ਹੋਣ ਦੇ ਕਾਰਣ ਓਵਰਲੈਪਿੰਗ ਨਹੀਂ ਹੁੰਦੀ,

ਚਿੱਤਰ *S* ਅਤੇ *P* ਪਰਮਾਣੂ ਆੱਰਬਿਟਲਾਂ ਦੇ ਧਨਾਤਮਕ, ਰਿਣਾਤਮਕ ਅਤੇ ਸਿਫਰ ਓਵਰਲੈਪਿੰਗ

 $2p_2$ ਹੋ ਜਾਂਦੀ ਹੈ। ਇਸਦੇ ਉਤੇਜਨ ਦੇ ਲਈ ਲੋੜੀਂਦੀ ਉਰਜਾ ਦੀ ਪੂਰਤੀ ਹਾਈਬ੍ਰਿਡ ਆੱਰਬਿਟਲਾਂ ਅਤੇ ਹਾਈਡ੍ਰੋਜਨ ਦੇ ਵਿੱਚ ਓਵਰਲੈਪਿੰਗ ਦੇ ਫਲਸਰੂਪ ਮੁਕਤ ਵਾਧੂ ਉਰਜਾ ਤੋਂ ਹੁੰਦੀ ਹੈ। ਕਾਰਬਨ ਦੇ ਚਾਰ ਪਰਮਾਣੂ ਆੱਰਬਿਟਲ, ਜਿਨ੍ਹਾਂ ਵਿੱਚੋਂ ਹਰ ਇੱਕ ਵਿੱਚ ਇੱਕ ਅਯੁਗਮਿਤ ਇਲੈਕਟ੍ਰਾਨ ਮੌਜੂਦ ਹੁੰਦਾ ਹੈ, ਚਾਰ ਹਾਈਡ੍ਜੋਨ ਪਰਮਾਣੁਆਂ ਦੇ ਇੱਕ–ਇੱਕ ਇਲੈਕਟ੍ਰਾੱਨ ਵਾਲੇ 1sਆੱਰਬਿਟਲਾਂ ਦੇ ਨਾਲ ਓਵਰ ਲੈਪਿੰਗ ਕਰ ਸਕਦੇ ਹਨ। ਪਰੰਤੂ ਇਸ ਪ੍ਰਕਾਰ ਨਿਰਮਿਤ ਚਾਰ C–H ਬੈਧਨ ਸਮਰੂਪ ਨਹੀਂ ਹੋਣਗੇ। ਕਾਰਬਨ ਦੇ ਤਿੰਨ 2p ਆੱਰਬਿਟਲਾਂ ਦੇ ਵਿੱਚ 90° ਦਾ ਕੋਣ ਹੋਣ ਦੇ ਕਾਰਣ ਇਨ੍ਹਾਂ ਆੱਰਬਿਟਲਾਂ ਦੁਆਰਾ ਨਿਰਮਿਤ ਬੈਧਨਾਂ H-C-H ਕੋਣ ਦਾ ਮਾਨ ਵੀ 90° ਹੋਵੇਗਾ, ਅਰਥਾਤ ਤਿੰਨ C-H ਬੰਧਨ ਇੱਕ ਦੂਜੇ ਦੇ ਨਾਲ 90° ਦਾ ਕੋਣ ਬਨਾਉਣਗੇ। ਕਾਰਬਨ ਦਾ 2s ਆੱਰਬਿਟਲ ਅਤੇ ਹਾਈਡ੍ਰੋਜਨ ਦਾ 1s ਆੱਰਬਿਟਲ ਗੋਲੀ (spherical) ਜੋਮੈਟਰੀ ਹੋਣ ਦੇ ਕਾਰਣ ਕਿਸੇ ਵੀ ਦਿਸ਼ਾ ਵਿੱਚ ਓਵਰਲੈਪਿੰਗ ਕਰ ਸਕਦਾ ਹੈ। ਇਸ ਲਈ ਚੌਥੇ C–H ਬੰਧਨ ਦੀ ਦਿਸ਼ਾ ਅਨਿਸ਼ਚਿਤ ਹੋਵੇਗੀ। ਇਹ ਨਿਰੁਪਣ CH, ਦੀ ਵਾਸਤਵਿਕ ਆਕ੍ਰਿਤੀ ਨਾਲ ਮੇਲ ਨਹੀਂ ਖਾਂਦਾ, ਜਿਸ ਵਿੱਚ

ਚਾਹੇ H-C-H ਕੋਣ ਚੌਫਲਕੀ ਹੁੰਦੇ ਹਨ ਅਤੇ ਹਰ ਇੱਕ ਦਾ ਮਾਨ 109.5° ਹੁੰਦਾ ਹੈ। ਇਸ ਤੋਂ ਸਪੱਸ਼ਟ ਹੁੰਦਾ ਹੈ ਕਿ ਸਿਰਫ ਆਰਿਬਿਟਲਾਂ ਦੇ ਓਵਰਲੈਪਿੰਗ ਦੇ ਅਧਾਰ ਤੇ CH, ਦੇ ਬੰਧਨਾ ਦੇ ਦਿਸ਼ਾਤਮਕ ਗੁਣਾਂ ਨੂੰ ਸਪੱਸ਼ਟ ਨਹੀਂ ਕੀਤਾ ਜਾ ਸਕਦਾ। ਇਨ੍ਹਾਂ ਤਰਕਾਂ ਦੇ ਅਧਾਰ ਤੇ NH₃ ਅਤੇ H₂O ਅਣੂਆਂ ਵਿੱਚ HNH ਅਤੇ HOH ਕੋਣਾਂ ਦੇ ਮਾਨ 90° ਹੋਣੇ ਚਾਹੀਦੇ ਹਨ ਜੋ ਵਾਸਤਵਿਕ ਤੱਥਾਂ ਦੇ ਅਨੁਰੂਪ ਨਹੀਂ ਹਨ। NH₃ ਅਤੇ H₂O ਵਿੱਚ ਵਾਸਤਵਿਕ ਬੰਧਨ ਕੋਣ ਕ੍ਰਮਵਾਰ 107° ਅਤੇ 104.5° ਹੁਦੇ ਹਨ।

4.5.4 ਓਵਰਲੈਪਿੰਗ ਦੀਆਂ ਕਿਸਮਾਂ ਅਤੇ ਸਹਿਸੰਯੋਜੀ ਬੰਧਨ ਦੀ ਪਕਿਰਤੀ

ਆੱਰਬਿਟਲਾਂ ਦੇ ਓਵਰਲੈਪਿੰਗ ਦੀ ਕਿਸਮ ਦੇ ਅਧਾਰ ਤੇ ਸਹਿਸੰਯੋਜੀ ਬੰਧਨ ਦੋ ਕਿਸਮਾਂ ਦੇ ਹੁੰਦੇ ਹਨ-

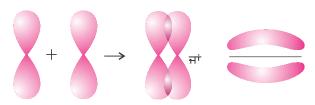
ਸਿਗਮਾ σ ਬੰਧਨ ਅਤੇ (ii) ਪਾਈ π ਬੰਧਨ

- (i) ਸਿਗਮਾσ) ਬੰਧਨ : ਇਸ ਕਿਸਮ ਦਾ ਸਹਿਸੰਯੋਜੀ ਬੰਧਨ ਬੰਧਨੀ ਆੱਰਬਿਟਲਾਂ ਦੇ ਅੰਤਰ ਨਿਊਕਲੀ ਅਕਸ ਤੇ ਸਿਰ-ਦਾਅ (Head on) ਓਵਰ ਲੈਪਿੰਗ ਜਾਂ ਅਕਸ (axial) ਓਵਰ ਲੈਪਿੰਗ ਕਹਿੰਦੇ ਹਨ। ਇਸ ਪ੍ਰਕਾਰ ਦਾ ਬੰਧਨ, ਪਰਮਾਣੂ ਆਰਬਿਟਲਾਂ ਦੇ ਹੇਠ ਲਿਖਿਆਂ ਵਿੱਚੋਂ ਕਿਸੇ ਇੱਕ ਕਿਸਮ ਦੇ ਸੰਯੋਜਨ ਦੁਆਰਾ ਪ੍ਰਾਪਤ ਕੀਤੇ ਜਾ ਸਕਦੇ ਹਨ-
- *s-s ਓਵਰਲੈਪਿੰਗ*—ਇਸ ਪ੍ਰਕਾਰ ਦੇ ਸੰਯੋਜਨ ਵਿੱਚ ਦੋ ਅੱਧੇ ਭਰੇ (Half Filled) s- ਆਰਬਿਟਲ ਅੰਤਰ ਨਿਊਕਲੀ ਅਕਸ ਤੇ ਓਵਰ ਲੈਪਿੰਗ ਕਰਦੇ ਹਨ, ਜਿਵੇਂ ਹੇਠਾਂ ਵਿਖਾਇਆ ਗਿਆ ਹੈ–

s-s ਓਵਰਲੈਪਿੰਗ *s*-ਆੱਰਬਿਟਲ

s-p ਓਵਰਲੈਪਿੰਗ : ਇਸ ਪ੍ਰਕਾਰ ਦੀ ਓਵਰਲੈਪਿੰਗ ਇੱਕ ਪਰਮਾਣੂ ਦੇ ਅੱਧ ਭਰੇ s-ਆਰਬਿਟਲ ਅਤੇ ਦੂਜੇ ਪਰਮਾਣੂ ਦੇ ਅੱਧੇ ਭਰੇ *p-*ਆੱਰਬਿਟਲ ਵਿੱਚ ਹੁੰਦਾ ਹੈ।

p- ਆੱਰਬਿਟਲ *s*-ਆੱਰਬਿਟਲ


s-p ਓਵਰਲੈਪਿੰਗ

p−p ਓਵਰਲੈਪਿੰਗ : ਇਸ ਪ੍ਰਕਾਰ ਦੀ ਓਵਰਲੈਪਿੰਗ ਦੋ ਪਰਮਾਣਆਂ ਦੇ ਅੱਧੇ ਭਰੇ *p-*ਆਰਬਿਟਲਾਂ ਦੇ ਵਿੱਚ ਹੁੰਦੀ ਹੈ।

(ii) **ਪਾਈ pi(\pi) ਬੰਧਨ :** ਪਾਈ ਬੰਧਨ ਦੇ ਬਣਨ ਦੇ ਲਈ ਅਣਵੀਂ ਆੱਰਬਿਟਲ ਇਸ ਤਰ੍ਹਾਂ ਓਵਰਲੈਪਿੰਗ ਕਰਦੇ ਹਨ ਕਿ ਉਨ੍ਹਾਂ ਦੇ ਅਕਸ ਇੱਕ-ਦੂਜੇ ਦੇ ਸਮਾਨਅੰਤਰ ਅਤੇ

ਅੰਤਰ ਨਿਊਕਲੀ ਸ਼ੈਲ ਤੋਂ ਲੰਬ ਦਿਸ਼ਾ ਵਿੱਚ ਹੁੰਦੇ ਹਨ। ਇਸ਼ ਤਰ੍ਹਾਂ ਅੰਸ਼ਕ ਓਵਰ ਲੈਪਿੰਗ ਦੇ ਫਲਸਰੂਪ ਨਿਰਮਿਤ ਆੱਰਬਿਟਲ ਵਿੱਚ ਪਰਮਾਣੂਆਂ ਦੇ ਤਲ ਦੇ ਉੱਤੇ ਹੇਠਾਂ ਦੋ ਪਲੇਟ ਵਾਂਗ ਚਾਰਜਿਤ ਕਲਾਉਡ ਹੁੰਦੇ ਹਨ।

p-ਆੱਰਬਿਟਲ p-ਆੱਰਬਿਟਲ p-p ਓਵਰਲੈਪਿੰਗ

4.5.5 ਸਿਗਮਾ ਅਤੇ ਪਾਈ ਬੰਧਨਾਂ ਦੀ ਪ੍ਰਬਲਤਾ

ਮਲਰਪ ਵਿੱਚ ਬੰਧਨ ਦੀ ਪ੍ਰਬਲਤਾ ਓਵਰਲੈਪਿੰਗ ਦੀ ਸੀਮਾ ਉੱਤੇ ਨਿਰਭਰ ਕਰਦੀ ਹੈ। ਸਿਗਮਾ ਬੰਧਨ ਵਿੱਚ ਆਰਬਿਟਲਾਂ ਦੀ ਓਵਰਲੈਪਿੰਗ ਵਧੇਰੇ ਹੁੰਦੀ ਹੈ। ਇਸ ਲਈ ਸਿਗਮਾ ਬੰਧਨ, ਪਾਈ ਬੰਧਨ (ਜਿਸ ਵਿੱਚ ਘੱਟ ਓਵਰਲੈਪਿੰਗ ਹੁੰਦੀ ਹੈ) ਨਾਲੋਂ ਵਧੇਰੇ ਪ੍ਰਬਲ ਹੁੰਦਾ ਹੈ। ਇਸਦੇ ਇਲਾਵਾ ਇਹ ਜਾਣਨਾ ਵੀ ਮਹੱਤਵਪੂਰਣ ਹੈ ਕਿ ਦੋ ਪਰਮਾਣੂਆਂ ਦੇ ਵਿੱਚ ਪਾਈ ਬੰਧਨ ਕਦੇ ਇੱਕਲਾ ਨਹੀਂ ਵੇਖਿਆ ਜਾਂਦਾ।ਇਹ ਹਮੇਸ਼ਾ ਸਿਗਮਾ ਬੰਧਨ ਦੇ ਨਾਲ ਹੀ ਮਿਲਦਾ ਹੈ, ਜਿਨ੍ਹਾਂ ਵਿੱਚ ਦੂਹਰੇ ਬੰਧਨ ਜਾਂ ਤੀਹਰੇ ਬੰਧਨ ਮੌਜੂਦ ਹੁੰਦੇ ਹਨ I

4.6 ਸੰਕਰਣ

CH, NH, ਅਤੇ H,O ਵਰਗੇ ਬਹੁ–ਪਰਮਾਵੀਂ ਦੀ ਵਿਸ਼ਿਸ਼ਟ ਜੋਮੈਟਰੀ ਆਕ੍ਰਿਤੀਆਂ ਨੂੰ ਸੱਪਸ਼ਟ ਕਰਨ ਦੇ ਲਈ ਪਾੱਲਿੰਗ ਨੇ ਪਰਮਾਣੂ ਆੱਰਬਿਟਲਾਂ ਦੇ ਸੰਕਰਣ ਦਾ ਸਿਧਾਂਤ ਪ੍ਰਸਤਾਵਿਤ ਕੀਤਾ। ਪਾਲਿੰਗ ਦੇ ਅਨੁਸਾਰ ਪਰਮਾਣ ਆੱਰਬਿਟਲ ਸੰਯੋਜਿਤ ਹੋ ਕੇ ਤਲਮਾਨ ਆਰਬਿਟਲਾਂ ਦਾ ਸਮੁੰਹ ਬਣਾਉਂਦੇ ਹਨ। ਇਨ੍ਹਾਂ ਆੱਰਬਿਟਲਾਂ ਨੂੰ ਸੰਕਰ ਆੱਰਬਿਟਲ ਕਹਿੰਦੇ ਹਨ। ਬੰਧਨ ਬਣਨ ਵਿੱਚ ਪਰਮਾਣੂ ਸ਼ੁੱਧ ਆਰਬਿਟਲਾਂ ਦੀ ਥਾਂ ਤੇ ਸੰਕਰਿਤ ਆੱਰਬਿਟਲਾਂ ਦੀ ਵਰਤੋਂ ਕਰਦੇ ਹਨ। ਇਸ ਪਰਿਘਟਨਾਂ ਨੂੰ ਅਸੀਂ ਸੰਕਰਣ ਕਹਿੰਦੇ ਹਾਂ। ਲਗਪਗ ਸਮਾਨ ਉਰਜਾ ਵਾਲੇ ਆਰਬਿਟਲਾਂ ਦੇ ਆਪਸ ਵਿੱਚ ਮਿਲ ਕੇ ਉਰਜਾ ਦੀ ਪੁਨਰ ਵੰਡ ਦੁਆਰਾ ਸਮਾਨ ਉਰਜਾ ਅਤੇ ਅਕਾਰ ਵਾਲੇ ਆੱਰਬਿਟਲਾਂ ਨੂੰ ਬਨਾਉਣ ਵਾਲੀ ਪ੍ਰਕਿਰਿਆ। ਨੂੰ ਸੰਕਰਣ ਕਹਿੰਦੇ ਹਨ। ਉਦਾਹਰਣ ਦੇ ਲਈ-ਕਾਰਬਨ ਦਾ ਇੱਕ ਆਰਬਿਟਲ ਅਤੇ ਤਿੰਨ 2p ਆਰਬਿਟਲ ਸੰਕਰਣ ਦੁਆਰਾ ਚਾਰ ਨਵੇਂ $sp^{\scriptscriptstyle 3}$ ਸੰਕਰ ਆੱਰਬਿਟਲ ਬਣਾਉਂਦੇ ਹਨ।

*ਸੰਕਰਣ ਦੇ ਮਹੱਤਵਪੂਰਣ ਲੱਛਣ—*ਸੰਕਰਣ ਦੇ ਮੁੱਖ ਲੱਛਣ ਇਸ

- 1. ਸੰਕਰ ਆੱਰਬਿਟਲਾਂ ਦੀ ਸੰਖਿਆ ਸੰਕਰਣ ਦੀ ਪ੍ਰਕਿਰਿਆ ਵਿੱਚ ਭਾਗ ਲੈਣ ਵਾਲੇ ਆੱਰਬਿਟਲਾਂ ਦੀ ਸੰਖਿਆ ਦੇ ਬਰਾਬਰ
- 2. ਸੰਕਰ ਆੱਰਬਿਟਲ ਹਮੇਸ਼ਾ ਸਮਾਨ ਉਰਜਾ ਅਤੇ ਅਕਾਰ ਦੇ ਹੁੰਦੇ ਹਨ।

- 3. ਸੰਕਰ ਆੱਰਬਿਟਲ ਸਥਾਈ ਬੰਧਨ ਬਨਾਉਣ ਵਿੱਚ ਸ਼ੁੱਧ ਆੱਰਬਿਟਲਾਂ ਨਾਲੋਂ ਵਧੇਰੇ ਸਮਰਥ ਹੁੰਦੇ ਹਨ।
- ਸੰਕਰ ਆੱਰਬਿਟਲ ਸਥਾਈ ਵਿਵਸਥਾ ਪ੍ਰਾਪਤ ਕਰਨ ਦੇ ਲਈ ਤ੍ਰਿਵਿਸ ਵਿੱਚ ਵਿਸ਼ਿਸ਼ਟ ਦਿਸ਼ਾਵਾਂ ਵਿੱਚ ਨਿਰਦੇਸ਼ਿਤ ਹੁੰਦੇ ਹਨ।ਇਸ ਲਈ ਸੰਕਰਣ ਦਾ ਪ੍ਰਕਾਰ ਅਣੂ ਦੀ ਜੋਮੈਟਰੀ ਦਰਸਾਉਂਦਾ ਹੈ।

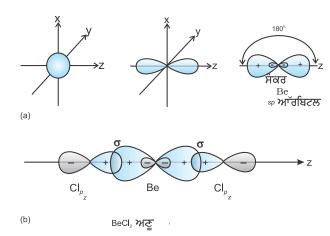
ਸੰਕਰਣ ਦੀਆਂ ਮੁੱਖ ਪਰਿਸਥਿਤੀਆਂ

- (i) ਪਰਮਾਣੂ ਦੇ ਸੰਯੋਜਕਤਾ ਸ਼ੈੱਲ ਦੇ ਆੱਰਬਟਿਲ ਸੰਕਰਿਤ ਹੁੰਦੇ ਹਨ।
- (ii) ਸੰਕਰਿਤ ਹੋਣ ਵਾਲੇ ਆੱਰਬਟਿਲਾਂ ਦੀ ਊਰਜਾ ਲਗਪਗ ਸਮਾਨ ਹੋਣੀ ਚਾਹੀਦੀ ਹੈ।
- (iii) ਸੰਕਰਣ ਦੇ ਲਈ ਇਲੈਕਟ੍ਰਾਨ ਦਾ ਉਤੇਜਿਤ ਹੋਣਾ ਜਰੂਰੀ ਨਹੀਂ ਹੈ।
- (iv) ਇਹ ਜਰੂਰੀ ਨਹੀਂ ਹੈ ਕਿ ਸਿਰਫ ਅੱਧੇ ਭਰੇ ਆੱਰਬਿਟਲ ਹੀ ਸੰਕਰਣ ਵਿੱਚ ਭਾਗ ਲੈਣ। ਕਦੇ-ਕਦੇ ਸੰਯੋਜਕਤਾ ਸ਼ੈੱਲ ਦੇ ਪੂਰਣ ਭਰੇ ਅਤੇ ਖਾਲੀ ਆੱਰਬਿਟਲ ਵੀ ਸੰਕਰਿਤ ਹੋ ਸਕਦੇ ਹਨ।

4.6.1 ਸੰਕਰਣ ਦੀਆਂ ਕਿਸਮਾਂ

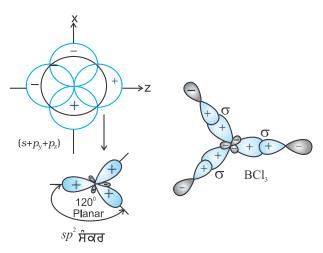
 $s,\ p$ ਅਤੇ d ਆੱਰਬਿਟਲਾਂ ਦੇ ਸੰਕਰਣ ਹੇਠ ਲਿਖੀਆਂ ਕਿਸਮਾਂ ਦੇ ਹੁੰਦੇ ਹਨ—

(I) sp ਸੰਕਰਣ - ਇਸ ਪ੍ਕਾਰ ਦੇ ਸੰਕਰਣ ਵਿੱਚ ਇਕ s ਅਤੇ ਇੱਕ p ਆੱਰਬਿਟਲ ਸੰਕਰਿਤ ਹੋ ਕੇ ਦੋ ਸਮਾਨ sp ਸੰਕਰ ਆੱਰਬਿਟਲਾਂ ਦੇ ਨਿਰਮਾਣ ਕਰਦੇ ਹਨ। z-ਅਕਸ ਉੱਤੇ ਸੰਕਰਣ ਆੱਰਬਿਟਲਾਂ ਨੂੰ ਲੈਣ ਲਈ, sp ਸੰਕਰਣ ਦੇ ਲਈ s ਅਤੇ p_z ਆੱਰਬਿਟਲ ਢੁਕਵੇਂ ਹੁੰਦੇ ਹਨ। ਹਰ ਇੱਕ sp ਸੰਕਰ ਆੱਰਬਿਟਲ ਵਿੱਚ 50% s ਲੱਛਣ ਅਤੇ 50% p ਲੱਛਣ ਹੁੰਦੇ ਹਨ। ਜੇ ਕਿਸੇ ਅਣੂ ਵਿੱਚ ਕੇਂਦਰੀ ਪਰਮਾਣੂ ਦੇ ਸੰਯੋਜਕਤਾ ਸ਼ੈੱਲ ਦੇ ਆੱਰਬਿਟਲ sp ਸੰਕਰਿਤ ਹੁੰਦੇ ਹਨ ਅਤੇ ਦੋ ਪਰਮਾਣੂਆਂ ਨਾਲ ਬੰਧਨ ਬਣਦੇ ਹਨ, ਤਾਂ ਅਣੂ ਦੀ ਰੇਖਿਕ ਜੋਮੈਟਰੀ ਹੁੰਦੀ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਦੇ ਸੰਕਰਣ ਨੂੰ 'ਵਿਕਰਣ ਸੰਕਰਣ' ਵੀ ਕਹਿੰਦੇ ਹਨ।


sp ਸੰਕਰ ਆੱਰਬਿਟਲਾਂ ਦੇ ਦੋ ਉਭਰੇ ਹੋਏ ਧਨਲੰਬ ਅਤੇ ਬਹੁਤ ਛੋਟੇ ਰਿਣ ਲੋਬ ਉਲਟ ਦਿਸ਼ਾਵਾਂ ਵਿੱਚ z-ਅਕਸ ਦੇ ਵੱਲ ਦ੍ਸਿਸ਼ਟ ਹੁੰਦੇ ਹਨ। ਇਸ ਦੇ ਕਾਰਣ ਪ੍ਰਭਾਵੀ ਓਵਰਲੈਪਿੰਗ ਹੁੰਦੀ ਹੈ, ਜਿਸ ਦੇ ਫਲਸਰੂਪ ਪ੍ਰਬਲ ਬੰਧਨ ਨਿਰਮਿਤ ਹੁੰਦੇ ਹਨ।

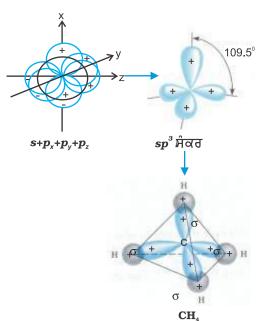
sp ਸੰਕਰਣ ਵਾਲੇ ਅਣੂਆਂ ਦੀ ਉਦਾਹਰਣ

 ${\bf BeCl_2}$: ਜਮੀਨੀ ਅਵਸਥਾ ਵਿੱਚ ${\bf Be}$ ਦੀ ਇਲੈਕਟ੍ਰਾਨਿਕ ਤਰਤੀਬ। $1s^22s^2$ ਹੁੰਦੀ ਹੈ। ਉਤੇਜਿਤ ਅਵਸਥਾ ਵਿੱਚ ਇੱਕ 2s ਇਲੈਕਟ੍ਰਾਨ ਖਾਲੀ 2p ਆੱਰਬਿਟਲ ਵਿੱਚ ${\bf Be}$ ਦੀ ਦੋ ਸੰਯੋਜਕਤਾ ਦੇ ਕਾਰਣ ਉਤੇਜਿਤ (promote) ਹੋ ਜਾਂਦਾ ਹੈ। ਇੱਕ 2s ਆੱਰਬਿਟਲ ਅਤੇ ਇੱਕ 2p ਆੱਰਬਿਟਲ ਸੰਕਰਿਤ ਹੋ ਕੇ ਦੋ ਸੰਕਰ sp ਆੱਰਬਿਟਲ ਬਣਾਉਂਦੇ ਹਨ। ਇਹ ਆਪਸ ਵਿੱਚ


180° ਦਾ ਕੋਣ ਬਣਾਉਂਦੇ ਹਨ। ਹਰ ਇੱਕ *sp* ਸੰਕਰ ਆੱਰਬਿਟਲ ਕਲੋਰੀਨ ਦੇ 3*p* ਆੱਰਬਿਟਲ ਨਾਲ ਅਕਸੀ ਓਵਰਲੈਪਿੰਗ ਦੁਆਰਾ ਦੋ Be-Cl ਸਿਗਮਾ ਬੰਧਨ ਬਣਾਉਂਦੇ ਹਨ। ਇਸ ਨੂੰ ਚਿੱਤਰ 4.10 ਵਿੱਚ ਦਰਸਾਇਆ ਗਿਆ ਹੈ।

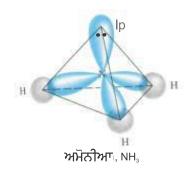
(II) sp^* ਸੰਕਰਣ ਸੰਕਰਣ ਦੀ ਇਸ ਪ੍ਰਕਾਰ ਵਿੱਚ ਇੱਕ s ਆੱਰਬਿਟਲ ਅਤੇ ਦੋ p ਆੱਰਬਿਟਲ ਸੰਕਰਿਤ ਹੋ ਕੇ ਤਿੰਨ ਸਮਾਨ

ਚਿੱਤਰ **4.10** (θ) s ਅਤੇ p ਆੱਰਬਿਟਲਾਂ ਦੁਆਰਾ sp ਸੰਕਰ ਆੱਰਬਿਟਲਾਂ ਦਾ ਨਿਰਮਾਣ $(m)BeCl_2$ ਰੇਖੀ ਅਣੂ ਦਾ ਬਣਨਾ

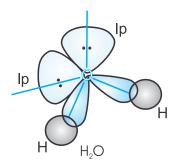

 sp^2 ਸੰਕਰ ਆੱਰਬਿਟਲਾਂ ਦਾ ਨਿਰਮਾਣ ਕਰਦੇ ਹਨ। ਉਦਾਹਰਣ ਦੇ ਲਈ– BCl_3 ਦੇ ਅਣੂ ਵਿੱਚ ਕੇਂਦਰੀ ਬੋਰਾੱਨ ਪਰਮਾਣੂ ਦੀ ਜਮੀਨੀ ਅਵਸਥਾ ਤਰਤੀਬ $1s^22s^22p^1$ ਹੁੰਦੀ ਹੈ। ਉੱਤੇਜਿਤ ਅਵਸਥਾ ਵਿੱਚ ਇੱਕ 2s ਇਲੈਕਟ੍ਰਾੱਨ ਖਾਲੀ 2p ਆਰਬਿਟਲ ਵਿੱਚ ਪਰੋਮੋਟ ਹੋ ਜਾਂਦਾ ਹੈ, ਜਿਸ ਦੇ ਪਰਿਣਾਮਸਰੂਪ ਬੋਰਾੱਨ ਵਿੱਚ ਤਿੰਨ ਅਯੁਗਮਿਤ ਇਲੈਕਟ੍ਰਾੱਨ ਮੌਜੂਦ ਹੁੰਦੇ ਹਨ। ਤਿੰਨ (ਇੱਕ 2s ਅਤੇ ਦੋ 2p) ਆੱਰਬਿਟਲ ਸੰਕਰਿਤ ਹੋ ਕੇ ਤਿੰਨ sp^2

ਚਿੱਤਰ ${f 4.11}~{
m sp}^2$ ਸੰਕਰ ਆਰਿਬਿਟਲਾਂ ਅਤੇ ${
m BCl}_3$ ਅਣੂ ਦਾ ਨਿਰਮਾਣਾ

ਸੰਕਰ ਆੱਰਬਿਟਲ ਬਣਾਉਂਦੇ ਹਨ। ਤਿੰਨ ਸੰਕਰ ਆੱਰਬਿਟਲ ਤ੍ਕਿੰਣੀ ਸਮਤਲੀ ਅਵਸਥਾ ਵਿੱਚ ਹੁੰਦੇ ਹਨ ਅਤੇ ਕਲੋਰੀਨ ਪਰਮਾਣੂਆਂ ਦੇ 3p ਆੱਰਬਿਟਲਾਂ ਨਾਲ ਓਵਰਲੈਪ ਦੁਆਰਾ ਤਿੰਨ B-Cl ਬੰਧਨ ਬਣਾਉਂਦੇ ਹਨ। ਇਸ ਲਈ BCl_3 (ਚਿੱਤਰ 4.11) ਅਣੂ ਦੀ ਤ੍ਕਿੰਣੀ ਸਮਤਲੀ ਜੋਮੈਟਰੀ ਹੁੰਦ ਹੈ। ਜਿਸ ਵਿੱਚ Cl-B-Cl ਬੰਧਨ ਕੋਣ 120° ਦਾ ਹੁੰਦਾ ਹੈ।


(III) sp^3 ਸੰਕਰਣ : ਇਸ ਪ੍ਰਕਾਰ ਦੇ ਸੰਕਰਣ ਦੀ ਵਿਆਖਿਆ CH_4 ਅਣੂ ਦੇ ਉਦਾਹਰਣ ਦੁਆਰਾ ਕੀਤੀ ਜਾ ਸਕਦੀ ਹੈ। ਇਸ ਵਿੱਚ ਸਹਿਸੰਯੋਜੀ ਸ਼ੈੱਲ ਦੇ ਇੱਕ s ਆੱਰਬਿਟਲ ਅਤੇ ਤਿੰਨ p ਆੱਰਬਿਟਲਾਂ ਦੇ ਸੰਕਰਣ ਨਾਲ ਚਾਰ sp^3 ਸੰਕਰ ਆੱਰਬਿਟਲ ਬਣਦੇ ਹਨ। ਇਹ ਆੱਰਬਿਟਲ ਸਮਾਨ ਊਰਜਾ ਅਤੇ ਅਕਾਰ ਦੇ ਹੁੰਦੇ ਹਨ। ਹਰ ਇੱਕ sp^3 ਆੱਰਬਿਟਲ ਵਿੱਚ 25% s-ਲੱਛਣ ਅਤੇ 75% p-ਲੱਛਣ ਹੁੰਦਾ ਹੈ। sp^3 ਸੰਕਰਣ ਦੁਆਰਾ ਪ੍ਰਾਪਤ ਚਾਰ sp^3 ਸੰਕਰ ਆੱਰਬਿਟਲ ਚੌਫਲਕ ਦੇ ਚਾਰ ਕੋਣਿਆਂ ਦੇ ਵੱਲ ਹੁੰਦੇ ਹਨ। ਜਿਵੇਂ ਚਿੱਤਰ 4.12 ਵਿੱਚ ਦਰਸਾਇਆ ਗਿਆ ਹੈ, sp^3 ਸੰਕਰ ਆੱਰਬਿਟਲਾਂ ਦੇ ਵਿੱਚ ਕੋਣ ਦਾ ਮਾਨ 109.5° ਹੁੰਦਾ ਹੈ।

ਚਿੱਤਰ4.12 ਕਾਰਬਨ ਦੇ s , $p_{_x}$, $p_{_y}$ ਅਤੇ $p_{_z}$ ਪਰਮਾਣੂ ਆਰਬਿਟਲਾਂ ਦੇ ਮਿਸ਼ਰਣ ਤੋਂ sp^3 ਸੰਕਰ ਆੱਰਬਿਟਲਾਂ ਦਾ ਨਿਰਮਾਣ ਅਤੇ CH_4 ਦਾ ਬਣਨਾ

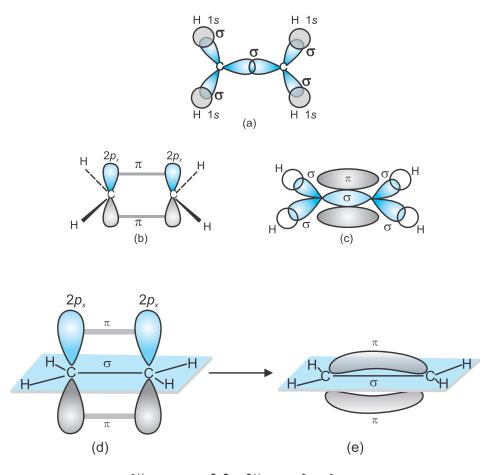

 ${
m NH_3}$ ਅਤੇ ${
m H_2O}$ ਦੀਆਂ ਬਣਤਰਾਂ ਦੀ ਵਿਆਖਿਆ ਵੀ sp^3 ਸੰਕਰਣ ਦੁਆਰਾ ਕੀਤੀ ਜਾ ਸਕਦੀ ਹੈ। ${
m NH_3}$ ਵਿੱਚ ਨਾਈਟ੍ਰੋਜਨ ਪਰਮਾਣੂ ਦੀ ਜਮੀਨੀ ਅਵਸਥਾ ਇਲੈਕਟ੍ਰਾਨਿਕ ਤਰਤੀਬ $2s^22$ p_x^1 2 2 ਹੁੰਦੀ ਹੈ। sp^3 ਸੰਕਰ ਆਰਬਿਟਲਾਂ ਵਿੱਚ ਤਿੰਨ sp^3 ਸੰਕਰ ਆਰਬਿਟਲਾਂ ਵਿੱਚ ਅਯੁਗਮਿਤ

ਇਲੈਕਟ੍ਰਾੱਨ ਹੁੰਦਾ ਹੈ ਜਦ ਕਿ ਚੌਥੇ sp^3 ਸੰਕਰ ਆਰਬਿਟਲ ਵਿੱਚ ਇੱਕ ਏਕਾਕੀ ਇਲੈਕਟ੍ਰਾੱਨ ਯੁਗਮ ਹੁੰਦਾ ਹੈ। ਨਾਈਟ੍ਰੋਜਨ ਦੇ ਤਿੰਨ ਸੰਕਰ ਆਰਬਿਟਲ ਤਿੰਨ ਹਾਈਡ੍ਰੋਜਨ ਪਰਮਾਣੂਆਂ ਦੇ 1s ਆਰਬਿਟਲਾਂ ਦੇ ਨਾਲ ਓਵਰਲੈਪਿੰਗ ਦੁਆਰਾ ਤਿੰਨ N–H ਬੰਧਨ ਨਿਰਮਿਤ ਕਰਦੇ ਹਨ। ਅਸੀਂ ਜਾਣਦੇ ਹਾਂ ਕਿ ਏਕਾਕੀ ਯੁਗਮ ਅਤੇ ਬੰਧਨ ਯੁਗਮ ਦੇ ਵਿੱਚ ਪ੍ਤੀਕਰਸ਼ਣ ਬੰਧਨ ਯੁਗਮ ਬੰਧਨ ਯੁਗਮ ਨਾਲੋਂ ਵੱਧ ਹੁੰਦਾ ਹੈ। ਇਸ ਦੇ ਨਤੀਜੇ ਵਜੋਂ NH_3 ਵਿੱਚ ਬੰਧਨ ਕੋਣ 109.5° ਤੋਂ ਘੱਟ ਕੇ 107° ਹੋ ਜਾਂਦਾ ਹੈ। ਅਜਿਹੇ ਅਣੂ ਦੀ ਜੋਮੈਟਰੀ ਵਿਕ੍ਰਿਤ ਹੋ ਕੇ ਪਿਰਾਮਿਡਲ ਹੋ ਜਾਂਦੀ ਹੈ, ਜਿਵੇਂ ਚਿੱਤਰ 4.13 ਵਿੱਚ ਦਰਸਾਇਆ ਗਿਆ ਹੈ।

ਚਿੱਤਰ4.13 NH੍ਹ ਅਣੂ ਦਾ ਬਣਨਾ

ਪਾਣੀ ਦੇ ਅਣੂ ਵਿੱਚ ਆੱਕਸੀਜਨ ਪਰਮਾਣੂ ਦੇ ਚਾਰ ਸੰਯੋਜਕਤਾ ਸ਼ੈੱਲ ਇਲੈਕਟ੍ਰਾੱਨ (ਇੱਕ 2s ਅਤੇ ਤਿੰਨ 2p) sp^3 ਸੰਕਰਣ ਦੁਆਰਾ ਚਾਰ sp^3 ਸੰਕਰ ਆੱਰਬਿਟਲ ਬਣਾਉਦੇ ਹਨ। ਇਨ੍ਹਾਂ ਵਿੱਚੋਂ ਦੋ ਸੰਕਰ ਆੱਰਬਿਟਲਾਂ ਵਿੱਚ ਇੱਕ-ਇੱਕ ਯੂਗਮ ਹੁੰਦਾ ਹੈ। ਇਹ ਚਾਰ sp^3 ਸੰਕਰ ਆੱਰਬਿਟਲ ਚੋਫਲਕੀ ਜੋਮੈਟਰੀ ਪ੍ਰਾਪਤ ਕਰਦੇ ਹਨ, ਜਿਸ ਵਿੱ ਦੋ ਕੋਣਿਆਂ ਉੱਤੇ ਹਾਈਡ੍ਰੋਜਨ ਪਰਮਾਣੂ ਬੰਧਿਤ ਹੁੰਦੇ ਹਨ ਅਤੇ ਦੂਜੇ ਦੋ ਕੋਣਿਆਂ ਉੱਤੇ ਏਕਾਕੀ ਇਲੈਕਟ੍ਰਾਨ ਯੂਗਮ ਮੌਜੂਦ ਹੁੰਦੇ ਹਨ। ਇਸ ਅਣੂ ਵਿੱਚ ਬੰਧਨ ਕੋਣ 109.5° ਤੋਂ ਘੱਟ ਕੇ 104.5° ਹੋ ਜਾਂਦਾ ਹੈ (ਚਿੱਤਰ 4.14) ਅਤੇ ਅਣੂ V- ਆਕ੍ਰਿਤੀ ਜਾਂ ਕੋਣੀ ਜੋਮੈਟਰੀ ਗ੍ਰਹਿਣ ਕਰਦਾ ਹੈ।

ਚਿੱਤਰ4.14 H₂O ਅਣੂ ਦਾ ਬਣਨਾ


$4.6.2 \ sp^3 \ sp^2 \ sp$ ਸੰਕਰਣ ਦੀਆਂ ਕੁਝ ਹੋਰ ਉਦਾਹਰਣਾਂ

 $\mathbf{C}_2\mathbf{H}_6$ ਅਣੂ ਵਿੱਚ \mathbf{sp}^3 ਸੰਕਰਣ: ਈਥੇਨ ਦੇ ਅਣੂ ਵਿੱਚ ਕਾਰਬਨ ਦੇ ਦੋਵੇਂ ਪਰਮਾਣੂ \mathbf{sp}^3 ਸੰਕਰਿਤ ਹੁੰਦੇ ਹਨ। ਕਾਰਬਨ ਪਰਮਾਣੂ ਦੇ ਚਾਰ \mathbf{sp}^3 ਸੰਕਰ ਆਰਬਿਟਲਾਂ ਵਿੱਚੋਂ ਇੱਕ-ਦੂਜੇ ਕਾਰਬਨ ਪਰਮਾਣੂ ਦੇ ਇੱਕ ਸੰਕਰ ਆਰਬਿਟਲ ਨਾਲ ਅਕਸੀ ਓਵਰਲੈਪਿੰਗ ਦੁਆਰਾ \mathbf{sp}^3 - \mathbf{sp}^3 ਸਿਗਮਾ ਬੰਧਨ ਬਣਾਉਂਦੇ ਹਨ, ਜਦਕਿ ਹਰ ਇੱਕ ਕਾਰਬਨ ਪਰਮਾਣੂ ਦੇ ਹੋਰ ਤਿੰਨ \mathbf{sp}^3 ਸੰਕਰ ਆਰਬਿਟਲ ਹਾਈਡ਼੍ਰੋਜਨ ਪਰਮਾਣੂਆਂ ਦੇ $1\mathbf{s}$ ਆਰਬਿਟਲਾਂ ਦੇ ਨਾਲ \mathbf{sp}^3 - \mathbf{s} ਸਿਗਮਾ ਬੰਧਨ ਬਣਾਉਂਦੇ ਹਨ। ਇਸ ਦੇ ਪਰਿਣਾਮ ਸਰੂਪ ਈਥੇਨ ਵਿੱਚ C-C ਬੰਧਨ ਲੰਬਾਈ $154\ \mathrm{pm}$ ਅਤੇ C-H ਬੰਧਨ ਲੰਬਾਈ $109\ \mathrm{pm}$ ਹੁੰਦੀ ਹੈ।

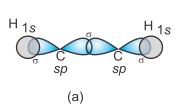
 ${\it C_2H_4}$ ਵਿੱਚ ${\it sp^2}$ ਸੰਕਰਣ : ਈਥੀਨ ਅਣੂ ਦੇ ਬਣਨ ਵਿੱਚ ਕਾਰਬਨ ਦਾ ਇੱਕ ${\it sp^2}$ ਸੰਕਰ ਆੱਰਬਿਟਲ ਨਾਲ ਅਕਸੀ ਓਵਰਲੈਪਿੰਗ ਦੁਆਰਾ C-C ਸਿਗਮ ਬੰਧਨ ਬਣਾਉਂਦਾ ਹੈ, ਜਦਕਿ ਹਰ ਇੱਕ ਕਾਰਬਨ ਪਰਮਾਣੂ ਦੇ ਹੋਰ ਦੋ ${\it sp^2}$ ਸੰਕਰ ਆੱਰਬਿਟਲ ਹਾਈਡ਼ੌਜਨ ਪਰਮਾਣੂਆਂ ਦੇ ਨਾਲ ${\it sp^2-s}$ ਸਿਗਮਾ

ਬੰਧਨ ਬਣਾਉਦੇ ਹਨ। ਇਕ ਕਾਰਬਨ ਪਰਮਾਣੂ ਦਾਅ-ਸੰਕਰਿਤ ਆੱਰਬਿਟਲ ($2p_{_{x}}$ ਜਾਂ $2p_{_{y}}$) ਦੂਜੇ ਕਾਰਬਨ ਪਰਮਾਣੂ ਦੇ ਸਮਾਨ ਆੱਰਬਿਟਲ ਦੇ ਨਾਲ ਪਾਸੇ ਪਰਨੇ (side wise) ਓਵਰਲੈਪਿੰਗ ਦੁਆਰਾ ਕਮਜੋਰ π ਬੰਧਨ ਬਣਾਉਂਦਾ ਹੈ ਜਿਸ ਵਿੱਚ ਕਾਰਬਨ ਅਤੇ ਹਾਈਡ੍ਰੋਜਨ ਪਰਮਾਣੂਆਂ ਦੇ ਤਲ ਦੇ ਉਪਰ ਅਤੇ ਹੇਠਾਂ ਸਮਾਨ ਇਲੈਕਟ੍ਰਾੱਨ ਕਲਾਊਡ ਹੁੰਦਾ ਹੈ।

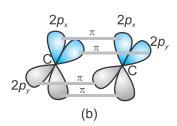
ਇਸ ਪ੍ਕਾਰ ਈਥੀਨ ਅਣੂ ਵਿੱਚ C-C ਦੇ ਵਿੱਚ ਇੱਕ sp^2-sp^2 ਸੰਕਰਿਤ ਆੱਰਬਿਟਲਾਂ ਵਿੱਚ ਸਿਗਮਾ (σ) ਬੰਧਨ ਅਤੇ ਇੱਕ ਪਾਈ $\operatorname{pi}(\pi)$ ਬੰਧਨ ਜਿਸ ਦੀ ਲੰਬਾਈ $134~\operatorname{pm}$ ਹੁੰਦੀ ਹੈ, ਜੋ p-ਆੱਰਬਿਟਲਾਂ ਦੇ ਵਿੱਚ ਹੁੰਦਾ ਹੈ, ਸੰਕਰਣ ਵਿੱਚ ਵਰਤੇ ਨਹੀਂ ਜਾਂਦੇ ਅਤੇ ਅਣੂ ਦੇ ਤਲ ਦੇ ਲੰਬਦਾਅ ਹੁੰਦੇ ਹਨ। C-H ਬੰਧਨ ਵਿੱਚ (sp^2-s) ਸਿਗਮਾ ਬੰਧਨ ਦੀ ਲੰਬਾਈ $108~\operatorname{pm}$ ਹੁੰਦੀ ਹੈ ਅਤੇ H-C-H ਅਤੇ H-C-C ਬੰਧਨ ਕੋਣ ਕ੍ਰਮਵਾਰ 117.6° , 121° ਹੁੰਦਾ ਹੈ। ਈਥੀਨ ਅਣੂ ਵਿੱਚ ਸਿਗਮਾ (σ) ਅਤੇ ਪਾਈ (π) ਬੰਧਨਾਂ ਦਾ ਬਣਨਾ ਚਿੱਤਰ 4.15 ਵਿੱਚ ਦਰਸਾਇਆ ਗਿਆ ਹੈ।

ਚਿੱਤਰ 4.15 ਈਥੀਨ ਵਿੱਚ ਨ ਅਤੇ π ਬੰਧਨਾਂ ਦਾ ਬਣਨਾ

 ${f C}_2{f H}_2$ ਵਿੱਚ ${f sp}$ ਸੰਕਰਣ : ਈਥਾਈਨ ਅਣੂ ਦੇ ਬਣਨ ਵਿੱਚ ਦੋਵੇਂ ਕਾਰਬਨ ਪਰਮਾਣੂ ${f sp}$ -ਸੰਕਰਣ ਦਰਸਾਉਂਦੇ ਹਨ। ਉਨ੍ਹਾਂ ਉੱਤੇ ਦੋ ਦੋ ਅਸੰਕਰਿਤ ($2p_{
m y}$ ਅਤੇ $2p_{
m x}$) ਆੱਰਬਿਟ ਹੁੰਦੇ ਹਨ।

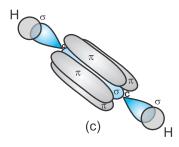

ਇੱਕ ਕਾਰਬਨ ਪਰਮਾਣੂ ਦਾ sp ਸੰਕਰ ਆੱਰਬਿਟਲ ਦੂਜੇ ਕਾਰਬਨ ਦੇ sp ਸੰਕਰ ਆੱਰਬਿਟਲ ਨਾਲ ਅਕਸੀ ਓਵਰਲੈਪਿੰਗ ਦੁਆਰਾ C-C ਸਿਗਮਾ ਬੰਧਨ ਬਣਾਉਂਦਾ ਹੈ। ਬਚੇ ਹੋਏ ਸੰਕਰ ਆੱਰਬਿਟਲ ਹਾਈਡ੍ਰੋਜਨ ਦੇ ਅੱਧੇ ਭਰੇ 1s ਆੱਰਬਿਟਲਾਂ ਨਾਲ ਅਕਸੀ ਓਵਰਲੈਪਿੰਗ ਦੁਆਰਾ ਸਿਗਮਾ ਬੰਧਨ ਬਣਾਉਂਦੇ ਹਨ। ਦੋਵਾਂ ਕਾਰਬਨ ਪਰਮਾਣੂਆਂ ਉੱਤੇ ਮੌਜੂਦ ਦੋ ਦੋ ਅ-ਸੰਕਰਿਤ ਆੱਰਬਿਟਲ ਪਾਸੇ ਪਰਨੇ ਓਵਰਲੈਪਿੰਗ ਦੁਆਰਾ ਦੋ ਪਾਈ ਬੰਧਨ ਬਣਾਉਂਦੇ ਹਨ।ਇਸ ਤਰ੍ਹਾਂ ਈਥਾਈ ਵਿੱਚ ਦੋ ਕਾਰਬਨ ਪਰਮਾਣੂਆਂ ਦੇ ਵਿੱਚ ਮੌਜੂਦ ਤੀਹਰਾ ਬੰਧਨ ਇੱਕ ਸਿਗਮਾ ਅਤੇ ਦੋ ਪਾਈ

ਬੰਧਨਾ ਤੋਂ ਬਣਿਆ ਹੁੰਦਾ ਹੈ, ਜਿਵੇਂ ਚਿੱਤਰ 4.16 ਵਿੱਚ ਦਰਸਾਇਆ ਗਿਆ ਹੈ।


4.6.3 d- ਆੱਰਬਿਟਲਾਂ ਵਾਲੇ ਤੱਤਾਂ ਵਿੱਚ ਸੰਕਰਣ

ਤੀਜੇ ਪੀਰੀਅਡ ਦੇ ਤੱਤਾਂ ਵਿੱਚ s ਅਤੇ p ਆੱਰਬਿਟਲਾਂ ਦੇ ਨਾਲ–ਨਾਲ d ਆੱਰਬਿਟਲ ਵੀ ਮੌਜੂਦ ਹੁੰਦੇ ਹਨ। ਇਨ੍ਹਾਂ d ਆੱਰਬਿਟਲਾਂ ਦੀ ਊਰਜਾ 3s, 3p ਅਤੇ 4s, 4p ਆੱਰਬਿਟਲਾਂ ਦੀ ਊਰਜਾ ਦੇ ਸਮਦ੍ਰਿਸ਼ ਹੁੰਦੀ ਹੈ। 3p ਅਤੇ 4s ਆੱਰਬਿਟਲਾਂ ਦੀ ਊਰਜਾ ਵਿੱਚ ਵਧੇਰੇ ਅੰਤਰ ਹੋਣ ਦੇ ਕਾਰਣ 3p, 3d ਅਤੇ 4s ਆੱਰਬਿਟਲਾਂ ਦਾ ਸੰਕਰਣ ਸੰਭਵ ਨਹੀਂ ਹੈ।

 $s,\ p$ ਅਤੇ d ਆੱਰਬਿਟਲਾਂ ਦੇ ਸੰਕਰਣ ਦੀਆਂ ਮੁੱਖ ਕਿਸਮਾਂ ਨੂੰ ਇੱਥੇ ਹੇਠਾਂ ਸਾਰਾਂਸ਼ ਵਿੱਚ ਦਿੱਤਾ ਗਿਆ ਹੈ–



ਅਣੂ/ਆਇਨ ਦੀ ਆਕ੍ਰਿਤੀ	ਸੰਕਰਣ ਦੀ ਕਿਸਮ	ਪਰਮਾਣਵੀਂ ਆਰਬਿਟਨ	ਉਦਾਹਰਣ
ਵਰ-ਸਮਤਲੀ	dsp^2	d+s+p(2)	[Ni(CN) ₄] ²⁻ ,
ਤਿਕੋਣੀ ਦੋ ਪਿਰਾਮਿਡੀ	sp^3d	s+p(3)+d	[Pt(Cl) ₄] ²⁻ PF ₅ , PCl ₅
ਵਰਗ ਪਿਰਾਮਿਡੀ	sp^3d^2	s+p(3)+d(2)	BrF ₅
ਅੱਠ ਫਲਕੀ	$egin{array}{c} sp^3d^2 \ d^2sp^3 \end{array}$	s+p(3)+d(2) d(2)+s+p(3)	SF ₆ , [CrF ₆] ³⁻ [Co(NH ₃) ₆] ³⁺

(i) PCl_5 ਦਾ ਬਣਨਾ (sp^3d ਸੰਕਰਣ): ਫਾਸਫੋਰਸ ਪਰਮਾਣੂ (Z=15) ਦੀ ਜਮੀਨੀ ਇਲੈਕਟ੍ਰਾਨਿਕ ਤਰਤੀਬ ਨੂੰ ਹੇਠਾਂ ਦਰਸਾਇਆ ਗਿਆ ਹੈ। ਫਾਸਫੋਰਸ ਦੀਆਂ ਬੰਧਨ ਨਿਰਮਾਣ ਪਰਿਸਥਤੀਆਂ ਵਿੱਚ 3s ਆੱਰਬਿਟਲ ਵਿੱਚੋਂ ਇੱਕ ਇਲੈਕਟ੍ਰਾਨ m- ਯੁਗਮਿਤ ਹੋ ਕੇ ਖਾਲੀ $3d^2z$ ਆੱਰਬਿਟਲ ਵਿੱਚ ਪਰੋਮੋਟ ਹੋ ਜਾਂਦਾ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਫਾਸਫੋਰਸ ਦੀ ਉਤੇਜਿਤ ਅਵਸਥਾ ਦੀ ਤਰਤੀਬ ਨੂੰ ਇਸ ਤਰ੍ਹਾਂ ਦਰਸਾਇਆ ਜਾ ਸਕਦਾ ਹੈ–

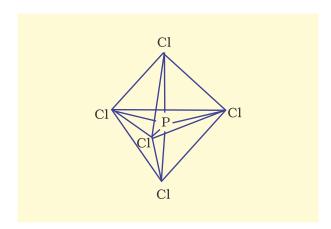
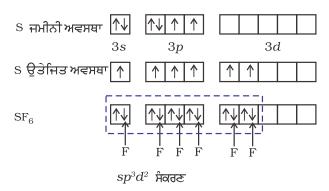
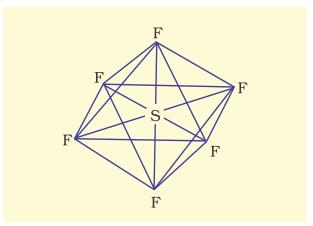

ਇਸ ਤਰ੍ਹਾਂ ਪੰਜ ਆੱਰਬਿਟਲ (ਇੱਕ s, ਤਿੰਨ p ਅਤੇ ਇੱਕ d ਆੱਰਬਿਟਲ) ਸੰਕਰਣ ਦੇ ਲਈ ਉਪਲਬਧ ਹੁੰਦੇ ਹਨ। ਇਨ੍ਹਾਂ

Fig.4.16 ਈਥਾਈਨ ਵਿੱਚ σ ਅਤੇ π ਬੰਧਨਾ ਦਾ ਬਣਨਾ

ਪੰਜ ਕਲੋਰੀਨ ਪਰਮਾਣੂਆਂ ਦੁਆਰਾ ਪ੍ਰਦਾਨ ਕੀਤੇ ਇਲੈਕਟ੍ਰਾੱਨ ਯੁਗਮਾਂ ਦੁਆਰਾ ਭਰੇ ਗਏ sp³d ਸੰਕਰਿਤ ਆੱਰਬਿਟਲ ਦੇ ਸੰਕਰਣ ਦੇ ਦੁਆਰਾ ਪੰਜ sp^3d ਸੰਕਰ ਆੱਰਬਿਟਲ ਪ੍ਰਾਪਤ ਹੁੰਦੇ ਹਨ ਜੋ ਤ੍ਰਿਕੋਣੀ ਦੋ–ਪਿਰਾਮਿਡ ਦੇ ਪੰਜ ਕੋਣਿਆਂ ਦੇ ਵੱਲ ਹੁੰਦੇ ਹਨ, ਜਿਵੇਂ ਚਿੱਤਰ 4.17 ਵਿੱਚ ਵਿਖਾਇਆ ਗਿਆ ਹੈ।

ਇੱਥੇ ਇਹ ਧਿਆਨ ਦੇਣ ਯੋਗ ਗੱਲ ਹੈ ਕਿ ਤ੍ਰਿਕੋਣੀ ਦੋ-ਪਿਰਾਮਿਡੀ ਜੋਮੈਟਰੀ ਵਿੱਚ ਸਾਰੇ ਬੈਧਨ ਕੋਣ ਬਰਾਬਰ ਨਹੀਂ ਹੁੰਦੇ


ਚਿੱਤਰ 4.17 PCl, ਅਣੂ ਦੀ ਤ੍ਰਿਕੋਣੀ ਦੋ-ਪਿਰਾਮਿਡੀ ਜੋਮੈਟਰੀ


ਹਨ। PCl₅ ਵਿੱਚ ਫਾੱਸਫੋਰਸ ਦੇ ਪੰਜ sp³d ਸੰਕਰ ਆੱਰਬਿਟਲ ਕਲੌਰੀਨ ਪਰਮਾਣੂਆਂ ਦੇ ਅੱਧੇ ਭਰੇ ਆੱਰਬਿਟਲਾਂ ਨਾਲ ਓਵਰਲੈਪਿੰਗ ਦੁਆਰਾ ਪੰਜ P-Cl ਸਿਗਮਾ ਬੰਧਨ ਬਣਾਉਂਦੇ ਹਨ। ਇਨ੍ਹਾਂ ਵਿੱਚੋਂ ਤਿੰਨ P-Cl ਬੰਧਨ ਇੱਕ ਤਲ ਵਿੱਚ ਹੁੰਦੇ ਹਨ ਅਤੇ ਆਪਸ ਵਿੱਚ 120° ਦਾ ਕੋਣ ਬਣਾਉਂਦੇ ਹਨ। ਇਨ੍ਹਾਂ ਨੂੰ ਵਿਸ਼ਵਤੀ (Equational) ਬੰਧਨ ਕਹਿੰਦੇ ਹਨ। ਦੂਜੇ ਦੋ P-Cl ਬੰਧਨ ਕ੍ਰਮਵਾਰ ਵਿਸ਼ਵਤੀ ਤਲ ਦੇ ਉੱਪਰ ਅਤੇ ਹੇਠਾਂ ਹੁੰਦੇ ਹਨ ਅਤੇ ਤਲ ਨਾਲ 90° ਦਾ ਕੋਣ ਬਣਾਉਂਦੇ ਹਨ। ਇਨ੍ਹਾਂ ਨੂੰ ਅਕਸੀ (Axial) ਬੰਧਨ ਕਹਿੰਦੇ ਹਨ। ਕਿਉਂਕਿ ਅਕਸੀ ਬੰਧਨ ਇਲੈਕਟ੍ਰਾੱਨ ਯੁਗਮਾਂ ਵਿੱਚ ਵਿਸ਼ੁਵਤੀ ਬੰਧਨ-ਯੁਗਮਾਂ ਨਾਲੋਂ ਵਧੇਰੇ ਪ੍ਤੀਕਰਸ਼ਣ ਅੰਤਰਕਿਰਿਆਵਾਂ ਹੁੰਦੀਆਂ ਹਨ, ਇਸ ਲਈ ਇਹ ਬੰਧਨ ਵਿਸ਼ੁਵਤੀ ਬੰਧਨਾਂ ਨਾਲੋਂ ਲੰਬਾਈ ਵਿੱਚ ਕੁੱਝ ਵੱਧ ਅਤੇ ਪ੍ਬਲਤਾ ਵਿੱਚ ਕੁੱਝ ਘੱਟ ਹੁੰਦੇ ਹਨ। ਇਸ ਦੇ ਪਰਿਣਾਮ ਸਰੂਪ PCl₅ ਵਧੇਰੇ ਕਿਰਿਆਸ਼ੀਲ ਹੁੰਦਾ ਹੈ।

(ii) \mathbf{SF}_6 ਦਾ ਬਣਨਾ ($\mathbf{sp}^3\mathbf{d}^2$ ਸੰਕਰਣ): \mathbf{SF}_6 ਵਿੱਚ ਕੇਂਦਰੀ ਸਲਫਰ ਪਰਮਾਣੂ ਦੀ ਜਮੀਨੀ ਅਵਸਥਾ ਇਲੈਕਟ੍ਰਾਨਿਕ ਤਰਤੀਬ $3s^23p^4$ ਹੈ।ਉੱਤੇਜਿਤ ਅਵਸਥਾ ਵਿੱਚ ਛੇ ਆਰਬਿਟਲ ਅਰਥਾਤ ਇੱਕ \mathbf{s} , ਤਿੰਨ ਅਤੇ ਦੋ \mathbf{d} ਆਰਬਿਟਲ ਅੱਧੇ ਭਰੇ ਹੁੰਦੇ ਹਨ। ਇਹ ਸੰਕਰਣ ਦੁਆਰਾ ਛੇ $\mathbf{sp}^3\mathbf{d}^2$ ਸੰਕਰ ਆਰਬਿਟਲ ਬਣਾਉਂਦੇ ਹਨ ਜੋ ਇੱਕ ਅਸ਼ਟਫਲਕ ਦੇ ਛੇ ਕੋਣਿਆਂ ਦੇ ਵੱਲ ਹੁੰਦੇ ਹਨ। ਇਹ ਸ਼ੰਕਰ ਆਰਬਿਟਲ ਫਲੌਰੀਨ ਪਰਮਾਣੂਆਂ ਦੇ ਅੱਧੇ ਭਰੇ ਆਰਬਿਟਲਾਂ ਦੇ ਨਾਲ ਓਵਰ ਲੈਪਿੰਗ ਦੁਆਰਾ ਛੇ \mathbf{S} - \mathbf{F} ਸਿਗਮਾ ਬੰਧਨ ਬਣਾਉਂਦੇ ਹਨ। ਇਸ ਤਰ੍ਹਾਂ \mathbf{SF}_6 ਅਣੂ ਦੀ ਇੱਕ ਅਸ਼ਟਫਲੀ

ਜੋਮੈਟਰੀ ਹੁੰਦੀ ਹੈ, ਜਿਵੇਂ ਚਿੱਤਰ 4.18 ਵਿੱਚ ਦਰਸਾਇਆ ਗਿਆ ਹੈ।

4.7 ਅਣਵੀਂ ਆਰਬਿਟਲ ਸਿਧਾਂਤ

ਚਿੱਤਰ 4.18 SF₆ ਅਣੂ ਦੀ ਅਸ਼ਟਫਲਕ ਜੋਮੈਟਰੀ

ਅਣਵੀਂ ਆੱਰਬਿਟਲ ਸਿਧਾਂਤ ਐਫ.ਹੁੰਡ ਅਤੇ ਆਰ.ਐਸ.ਮੁਲੀਕਨ ਦੁਆਰਾ ਸੰਨ 1932 ਵਿੱਚ ਵਿਕਸਿਤ ਕੀਤਾ ਗਿਆ। ਇਸ ਸਿਧਾਂਤ ਦੇ ਮੁੱਖ ਲੱਛਣ ਹੇਠ ਲਿਖੇ ਹਨ-

- ਜਿਸ ਤਰ੍ਹਾਂ ਪਰਮਾਣੂ ਵਿੱਚ ਇਲੈਕਟ੍ਰਾਨ ਵੱਖ-ਵੱਖ ਪਰਮਾਣੂ ਆੱਰਬਿਟਲਾਂ ਵਿੱਚ ਮੌਜੂਦ ਰਹਿੰਦੇ ਹਨ, ਉਸੇ ਤਰ੍ਹਾਂ ਅਣੂ ਵਿੱਚ ਇਲੈਕਟ੍ਰਾਨ ਭਿੰਨ-ਭਿੰਨ ਅਣਵੀਂ ਆੱਰਬਿਟਲਾਂ ਵਿੱਚ ਮੌਜੂਦ ਰਹਿੰਦੇ ਹਨ।
- (ii) ਅਣਵੀਂ ਆੱਰਬਿਟਲ ਸਮਦ੍ਸ਼ਿ ਊਰਜਾਵਾਂ ਅਤੇ ਢੁਕਵੀਂ ਸਮਮਿਤੀ ਪਰਮਾਣੂ ਆੱਰਬਿਟਲਾਂ ਦੇ ਸੰਯੋਗ ਤੋਂ ਬਣਦੇ ਹਨ।
- (iii) ਪਰਮਾਣੂ ਆੱਰਬਿਟਲ ਵਿੱਚ ਕੋਈ ਇਲੈਕਟ੍ਰਾੱਨ ਸਿਰਫ ਇੱਕ ਹੀ ਨਿਊਕਲੀਅਸ ਦੇ ਪ੍ਰਭਾਵ ਵਿੱਚ ਰਹਿੰਦਾ ਹੈ, ਜਦ ਕਿ ਅਣਵੀਂ ਆੱਰਬਿਟਲ ਵਿੱਚ ਮੌਜੂਦ ਇਲੈਕਟ੍ਰਾੱਨ ਦੋ ਜਾਂ ਦੋ ਤੋਂ ਵੱਧ ਨਿਊਕਲਸਾਂ ਦੁਆਰਾ ਪ੍ਰਭਾਵਿਤ ਹੁੰਦਾ ਹੈ, ਇਹ ਸੰਖਿਆ ਅਣੂ ਵਿੱਚ ਪਰਮਾਣੂਆਂ ਦੀ

ਸੰਖਿਆ ਉੱਤੇ ਨਿਰਭਰ ਕਰਦੀ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਪਰਮਾਣੂ ਆਰਬਿਟਲ ਇੱਕ ਕੇਂਦਰੀ ਹੁੰਦਾ ਹੈ ਜਦਕਿ ਅਣਵੀਂ ਆਰਬਿਟਲ ਬਹੁਕੇਂਦਰੀ ਹੁੰਦਾ ਹੈ।

- (iv) ਬਣੇ ਹੋਏ ਅਣਵੀਂ ਆੱਰਬਿਟਲਾਂ ਦੀ ਸੰਖਿਆ ਸੰਜੋਗ ਕਰਨ ਵਾਲੇ ਪਰਮਾਣੂ ਆੱਰਬਿਟਲਾਂ ਦੀ ਸੰਖਿਆ ਦੇ ਬਰਾਬਰ ਹੁੰਦੀ ਹੈ। ਜਦੋਂ ਦੋ ਪਰਮਾਣੂ ਆੱਰਬਿਟਲਾਂ ਨੂੰ ਮਿਲਾਇਆ ਜਾਂਦਾ ਹੈ, ਤਾਂ ਦੋ ਅਣਵੀਂ ਆਰਬਿਟਲ ਪ੍ਰਾਪਤ ਹੁੰਦੇ ਹਨ। ਇਨ੍ਹਾਂ ਵਿੱਚੋਂ ਇੱਕ ਬੰਧਨ ਅਣਵੀਂ 'ਅੱਰਬਿਟਲ ਅਤੇ ਦੂਜਾ 'ਪ੍ਰਤੀ ਬੰਧਨ ਅਣਵੀਂ ਆੱਰਬਿਟਲ ਅਖਵਾਉਂਦਾ ਹੈ।
- (v) ਬੰਧਨ ਅਣਵੀਂ ਆੱਰਬਿਟਲ ਦੀ ਊਰਜਾ ਘੱਟ ਹੁੰਦੀ ਹੈ।
 ਇਸ ਲਈ ਉਸ ਦਾ ਸਥਾਈਪਨ ਸੰਗਤ ਪ੍ਰਤੀ ਬੰਧਨ ਅਣਵੀਂ ਆੱਰਬਿਟਲ ਨਾਲੋਂ ਵੱਧ ਹੁੰਦਾ ਹੈ।
- (vi) ਜਿਸ ਤਰ੍ਹਾਂ ਕਿਸੇ ਪਰਮਾਣੂ ਦੇ ਨਿਊਕਲੀਅਸ ਦੇ ਚੌਹਾਂ ਪਾਸੇ ਇਲੈਕਟ੍ਰਾਨ ਸੰਭਾਵਨਾ ਵਿਤਰਣ ਪਰਮਾਣੂ ਆਰਬਿਟਲ ਦੁਆਰਾ ਦਿੱਤਾ ਜਾਂਦਾ ਹੈ, ਉਸੇ ਤਰ੍ਹਾਂ ਕਿਸੇ ਅਣੂ ਵਿੱਚ ਨਿਊਕਲੀਅਸਾਂ ਦੇ ਸਮੂੰਹ ਦੇ ਚੌਹਾਂ ਪਾਸੇ ਇਲੈਕਟ੍ਰਾਨ ਸੰਭਾਵਨਾ ਵਿਤਰਣ ਅਣਵੀਂ ਆਰਬਿਟਲ ਦੁਆਰਾ ਦਿੱਤਾ ਜਾਂਦਾ ਹੈ।
- (vii) ਪਰਮਾਣੂ ਆੱਰਬਿਟਲਾਂ ਦੇ ਵਾਂਗ ਅਣਵੀਂ ਆੱਰਬਿਟਲ ਨੂੰ ਵੀ ਪਾਓਲੀ ਸਿਧਾਂਤ ਅਤੇ ਹੁੰਡ ਦੇ ਨਿਯਮ ਦਾ ਪਾਲਨ ਕਰਦੇ ਹੋਏ ਆੱਫਬਾਓ ਨਿਯਮ ਦੇ ਅਨੁਸਾਰ ਭਰਿਆ ਜਾਂਦਾ ਹੈ।

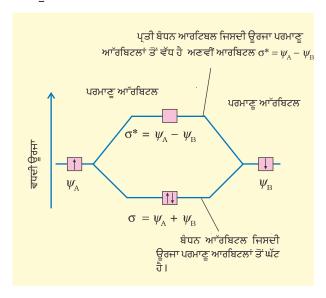
4.7.1 ਅਣਵੀਂ ਆੱਰਬਿਟਲਾਂ ਦਾ ਨਿਰਮਾਣ : ਪਰਮਾਣੂ ਆੱਰਬਿਟਲਾਂ ਦਾ ਰੇਖੀ ਸੰਜੋਗ

ਜਿਵੇਂ ਤੁਸੀਂ ਜਾਣਦੇ ਹੋ, ਤਰੰਗ ਯੰਤਰਕੀ ਦੇ ਅਨੁਸਾਰ ਪਰਮਾਣੂ ਆੱਰਬਿਟਲ ਨੂੰ ਇੱਕ ਤਰੰਗ ਫਲਨ (ψ) ਦੇ ਰੂਪ ਵਿੱਚ ਦਰਸਾਇਆ ਜਾ ਸਕਦਾ ਹੈ। ਇਹ ਫਲਨ ਇਲੈਕਟ੍ਰਾੱਨ ਤਰੰਗ ਦੇ ਆਯਾਮ (Amplitude) ਨੂੰ ਦਰਸਾਉਂਦਾ ਹੈ ਅਤੇ ਇਸ ਨੂੰ ਸ਼ਰੋਡਿੰਗਰ ਸਮੀਕਰਣ ਦੇ ਹੱਲ ਦੁਆਰਾ ਪ੍ਰਾਪਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਪਰੰਤੂ ਇਕ ਤੋਂ ਵੱਧ ਇਲੈਕਟ੍ਰਾਨ ਵਾਲੇ ਸਿਸਟਮ ਦੇ ਲਈ ਸ਼ਰੋਡਿੰਗਰ ਸਮੀਕਰਣ ਦਾ ਹੱਲ ਨਹੀਂ ਕੀਤਾ ਜਾ ਸਕਦਾ। ਇਸਲਈ ਅਣਵੀਂ ਆੱਰਬਿਟਲ, ਜੋ ਅਣੂਆਂ ਦੇ ਲਈ ਇੱਕ ਇਲੈਕਟ੍ਰਾੱਨ ਤਰੰਗ ਫਲਨ ਹੈ, ਨੂੰ ਸ਼ਰੋਡਿੰਗਰ ਸਮੀਕਰਣ ਦੇ ਹੱਲ ਨਾਲ ਸਿੱਧੇ ਪ੍ਰਾਪਤ ਕਰਨਾ ਮੁਸ਼ਕਿਲ ਹੈ। ਇਸ ਮੁਸ਼ਕਿਲ ਦਾ ਹੱਲ ਇੱਕ ਅੰਦਾਜਨ (Approximation) ਵਿਧੀ ਦੇ ਸਹਾਰੇ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਇਸ ਵਿਧੀ ਨੂੰ 'ਪਰਮਾਣੂ ਆੱਰਬਿਟਲਾਂ ਦਾ ਰੇਖੀ ਸੰਜੋਗ' (Linear combination of Atomic Orbitals, LCAO) ਕਹਿੰਦੇ ਹਨ।

ਆਓ ਅਸੀਂ ਇੱਕ ਸਮਨਿਊਕਲੀ ਦੋ ਪਰਮਾਣਵੀ ਅਣੂ, $\rm H_2$ ਤੇ ਇਸ ਵਿਧੀ ਨੂੰ ਵਰਤੀਏ। ਮੰਨ ਲਓ ਕਿ ਇੱਕ ਹਾਈਡ੍ਰੋਜਨ ਅਣੂ ਦੋ ਹਾਈਡ੍ਰੋਜਨ ਪਰਮਾਣੂਆਂ $\rm A$ ਅਤੇ $\rm B$ ਤੋਂ ਬਣਿਆ ਹੈ। ਦੋਵੇਂ ਪਰਮਾਣੂ ਇੱਕ ਸਮਾਨ ਹੀ ਹਨ ਕੇਵਲ ਸੁਵਿਧਾ ਦੇ ਲਈ ਉਨ੍ਹਾਂ ਨੂੰ $\rm A$ ਅਤੇ $\rm B$ ਨਾਲ ਚਿਨ੍ਹਿਤ ਕੀਤਾ ਗਿਆ ਹੈ। ਹਰ ਇੱਕ ਹਾਈਡ੍ਰੋਜਨ ਪਰਮਾਣੂ ਦੀ ਮੂਲ ਅਵਸਥਾ ਵਿੱਚ ਉਸਦੇ $\rm 1s$ ਆਰਬਿਟਲ ਵਿੱਚ ਇੱਕ ਇਲੈਕਟ੍ਰਾਨ ਹੁੰਦਾ ਹੈ। ਇਨ੍ਹਾਂ ਪਰਮਾਣੂ

ਆੱਰਬਿਟਲਾਂ ਨੂੰ ਅਸੀਂ ਤਰੰਗ ਫਲਨਾਂ $\psi_{\rm A}$ ਅਤੇ $\psi_{\rm B}$ ਦੁਆਰਾ ਪ੍ਰਦਰਸ਼ਿਤ ਕਰ ਸਕਦੇ ਹਾਂ। ਗਣਿਤੀ ਰੂਪ ਵਿੱਚ ਅਣਵੀਂ ਆੱਰਬਿਟਲਾਂ ਨੂੰ ਪਰਮਾਣੂ ਆੱਰਬਿਟਲਾਂ ਦੇ ਤਰੰਗ ਫਲਨਾਂ $\psi_{\rm A}$ ਅਤੇ $\psi_{\rm B}$ ਦੇ ਜੋੜ ਜਾਂ ਅੰਤਰ ਦੁਆਰਾ ਕੀਤਾ ਜਾਂਦਾ ਹੈ, ਜਿਵੇਂ ਹੇਠਾਂ ਵਿਖਾਇਆ ਗਿਆ ਹੈ।

$$\psi_{\text{MO}} = \psi_{\text{A}} \pm \psi_{\text{B}}$$


ਇਸ ਤਰ੍ਹਾਂ ਦੋ ਅਣਵੀਂ ਆੱਰਬਿਟਲ σ ਅਤੇ σ* ਪ੍ਰਾਪਤ ਹੁੰਦੇ ਹਨ।

$$\psi = \psi_{A} + \psi_{B}$$

$$\psi^{*} = \psi_{A} - \psi_{B}$$

ਪਰਮਾਣੂ ਆੱਰਬਿਟਲਾਂ ਦੇ ਜੋੜ ਤੋਂ ਬਣਨ ਵਾਲੇ ਅਣਵੀਂ ਆੱਰਬਿਟਲ σ ਨੂੰ ਬੰਧਨ ਅਣਵੀਂ ਆੱਰਬਿਟਲ ਅਤੇ ਪਰਮਾਣੂ ਆੱਰਬਿਟਲਾਂ ਦੇ ਅੰਤਰ ਤੋਂ ਬਣਨ ਵਾਲੇ ਅਣਵੀਂ ਆੱਰਬਿਟਲ, σ* ਨੂੰ ਪ੍ਰਤੀ ਬੰਧਨ ਅਣਵੀਂ ਆੱਰਬਿਟਲ ਕਹਿੰਦੇ ਹਨ (ਚਿੱਤਰ 4.19)

ਗੁਣਾਤਮਕ ਤੌਰ ਤੇ ਅਣਵੀਂ ਆਰਬਿਟਲਾਂ ਦਾ ਬਣਨਾ ਸੰਯੋਗ

ਚਿੱਤਰ **4.19** A ਅਤੇ B ਤੇ ਕੇਂਦਰਿਤ ਪਰਮਾਣੂ ਆੱਰਬਿਟਲ $\psi_{_{A}}$ ਅਤੇ $\psi_{_{B}}$ ਦੇ ਰੇਖੀ ਸੰਜੋਗ ਨਾਲ ਬੰਧਨ (o) ਅਤੇ ਪ੍ਰਤੀ ਬੰਧਨ (o*) ਆਣਵੀਂ ਆੱਰਬਿਟਲਾਂ ਦਾ ਨਿਰਮਾਣ।

ਕਰਨ ਵਾਲੇ ਪਰਮਾਣੂਆਂ ਦੇ ਇਲੈਕਟ੍ਰਾੱਨ ਤਰੰਗਾਂ ਦੇ ਰਚਨਾਤਮਕ (constructive) ਅਤੇ ਵਿਨਾਸ਼ੀ (Destructive) ਵਿਘਨ (Interference) ਦੇ ਰੂਪ ਵਿੱਚ ਸਮਝਿਆਆ ਜਾ ਸਕਦਾ ਹੈ। ਬੰਧਨ ਅਣਵੀਂ ਆੱਰਬਿਟਲ ਦੇ ਨਿਰਮਾਣ ਵਿੱਚ ਬੰਧਨ, ਪਰਮਾਣੂਆਂ ਦੀਆਂ ਦੋ ਇਲੈਕਟ੍ਰਾੱਨ ਤਰੰਗਾਂ ਇੱਕ-ਦੂਜੇ ਨੂੰ ਪ੍ਰਬਲਿਤ ਕਰਦੀਆਂ ਹਨ, ਅਰਥਾਤ ਇਨ੍ਹਾਂ ਵਿੱਚ ਰਚਨਾਤਮਕ ਵਿਘਨ ਹੁੰਦਾ ਹੈ। ਦੂਜੇ ਪਾਸੇ ਪ੍ਰਤੀ ਬੰਧਨ ਅਣਵੀਂ ਆੱਰਬਿਟਲ

ਦੇ ਨਿਰਮਾਣ ਵਿੱਚ ਇਹ ਦੋ ਇਲੈਕਟ੍ਰਾੱਨ ਤਰੰਗਾਂ ਇੱਕ-ਦੂਜੇ ਨੂੰ ਨਿਰਮਤ ਕਰਦੀਆਂ ਹਨ।ਅਰਥਾਤ ਇਨ੍ਹਾਂ ਵਿੱਚ ਵਿਨਾਸ਼ੀ ਵਿਘਨ ਹੁੰਦਾ ਹੈ। ਇਨ੍ਹਾਂ ਦੇ ਪਰਿਣਾਮਸਰੂਪ ਬੰਧਨ ਅਣਵੀਂ ਆਰਬਿਟਲ ਵਿੱਚ ਵਧੇਰੇ ਇਲੈਕਟ੍ਰਾਨ ਘਣਤਾ ਬੰਧਨ ਪਰਮਾਣੂਆਂ ਦੇ ਵਿੱਚ ਬਣੀ ਹੁੰਦੀ ਹੈ। ਨਿਊਕਲੀਅਸਾਂ ਦੇ ਵਿੱਚ ਪ੍ਰਤੀ ਕਰਸ਼ਣ ਬਹੁਤ ਘੱਟ ਹੁੰਦਾ ਹੈ, ਜਦਕਿ ਪ੍ਤੀਬੰਧਨ ਅਣਵੀਂ ਆਰਬਿਟਲ ਵਧੇਰੇ ਇਲੈਕਟ੍ਰਾੱਨ ਘਣਤਾ ਦੋਵਾਂ ਨਿਊਕਲੀਅਸਾਂ ਦੇ ਵਿਚਲੇ ਖੇਤਰ ਤੋਂ ਦੂਰ ਹੁੰਦਾ ਹੈ। ਅਸਲ ਵਿੱਚ ਦੋਵਾਂ ਨਿਊਕਲੀਅਸਾਂ ਦੇ ਮੱਧ ਵਿੱਚ ਇੱਕ ਨੋਡਲ ਤਲ (Nodal plane) ਹੁੰਦਾ ਹੈ ਜਿੱਥੇ ਇਲੈਕਟ੍ਰਾਨ ਘਣਤਾ ਸਿਫਰ ਹੁੰਦੀ ਹੈ। ਇਸ ਲਈ ਨਿਊਕਲੀਅਸਾਂ ਦੇ ਵਿੱਚ ਉੱਚ ਪ੍ਰਤੀਕਰਸ਼ਣ ਹੁੰਦਾ ਹੈ।ਬੰਧਨੀ ਅਣਵੀਂ ਆੱਰਬਿਟਲਾਂ ਵਿੱਚ ਮੌਜੂਦ ਇਲੈਕਟ੍ਰਾੱਨ ਨਿਊਕਲੀਅਸਾਂ ਨੂੰ ਆਪਸ ਵਿੱਚ ਬੰਨ੍ਹ ਕੇ ਰੱਖਣ ਦੀ ਪ੍ਰਵਿਰਤੀ ਰੱਖਦੇ ਹਨ। ਇਸ ਲਈ ਇਹ ਅਣੂ ਨੂੰ ਸਥਾਈਪੈਨ ਪ੍ਰਦਾਨ ਕਰਦੇ ਹਨ। ਇਸ ਤਰ੍ਹਾਂ ਇੱਕ ਬੈਧਨ ਅਣਵੀਂ ਆੱਰਬਿਟਲ ਉਨ੍ਹਾਂ ਪਰਮਾਣੂ ਆੱਰਬਿਟਲਾਂ ਤੋਂ ਹਮੇਸ਼ਾ ਘੱਟ ਉਰਜਾ ਰੱਖਦਾ ਹੈ ਜਿਨ੍ਹਾਂ ਦੇ ਸੰਜੋਗ ਤੋਂ ਉਹ ਬਣਦਾ ਹੈ। ਇਸਦੇ ਉਲਟ ਪ੍ਰਤੀਬੰਧਨ ਅਣਵੀਂ ਆੱਰਬਿਟਲ ਵਿੱਚ ਇਲੈਕਟ੍ਰਾੱਨ ਅਣੂ ਨੂੰ ਅਸਥਾਈ ਕਰ ਦਿੰਦੇ ਹਨ। ਇਲੈਕਟ੍ਰਾੱਨਾਂ ਅਤੇ ਨਿਊਕਲੀਅਸਾਂ ਦੇ ਵਿੱਚ ਅਕਰਸ਼ਣ ਇਸ ਆੱਰਬਿਟਲ ਵਿੱਚ ਆਪਸ ਵਿੱਚ ਪ੍ਰਤੀਕਰਸ਼ਣ ਨਾਲੋਂ ਘੱਟ ਹੁੰਦਾ ਹੈ ਅਤੇ ਇਸ ਨਾਲ ੳਰਜਾ ਵਿੱਚ ਨੈੱਟ ਵਾਧਾ ਹੁੰਦਾ ਹੈ।

ਇੱਥੇ ਧਿਆਨ ਦੇਣ ਯੋਗ ਗੱਲ ਇਹ ਹੈ ਕਿ ਪ੍ਤੀ ਬੰਧਨ ਆੱਰਬਿਟਲ ਦੀ ਊਰਜਾ ਸੰਜੋਗ ਕਰਨ ਵਾਲੇ ਪਰਮਾਣੂ ਆੱਰਬਿਟਲਾਂ ਦੀ ਊਰਜਾ ਤੋਂ ਓਨੀਂ ਮਾਤਰਾ ਵਿੱਚ ਵੱਧ ਹੋ ਜਾਂਦੀ ਹੈ, ਜਿੰਨੀ ਮਾਤਰਾ ਵਿੱਚ ਬੰਧਨ ਅਣਵੀਂ ਅਣਵੀਂ ਆੱਰਬਿਟਲ ਦੀ ਊਰਜਾ ਘੱਟ ਹੁੰਦੀ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਦੋਵੇਂ ਅਣਵੀਂ ਆੱਰਬਿਟਲਾਂ ਦੀ ਕੁੱਲ ਊਰਜਾ ਉਹ ਹੀ ਰਹਿੰਦੀ ਹੈ ਜੋ ਦੋ ਮੂਲ ਪਰਮਾਣੂ ਆੱਰਬਿਟਲਾਂ ਦੀ ਹੁੰਦੀ ਹੈ।

4.7.2 ਪਰਮਾਣੂ ਆੱਰਬਿਟਲਾਂ ਦੇ ਸੰਜੋਗ ਦੀਆਂ ਸ਼ਰਤਾਂ

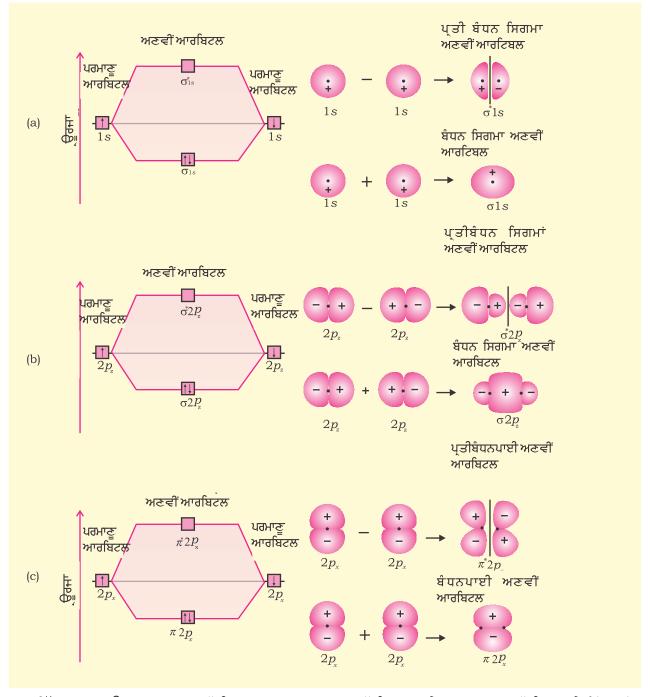
ਪਰਮਾਣੂ ਆੱਰਬਿਟਲਾਂ ਦੇ ਰੇਖੀ ਸੰਜੋਗ ਨਾਲ ਅਣਵੀਂ ਆੱਰਬਿਟਲਾਂ ਦੇ ਨਿਰਮਾਣ ਦੇ ਲਈ ਹੇਠ ਲਿਖੀਆਂ ਸ਼ਰਤਾਂ ਜਰੂਰੀ ਹਨ—

- 1.ਸੰਜੋਗ ਕਰਨ ਵਾਲੇ ਪਰਮਾਣੂ ਆਂਰਬਿਟਲਾਂ ਦੀ ਊਰਜਾ ਸਮਾਨ ਜਾਂ ਲਗਪਗ ਸਮਾਨ ਹੋਣੀ ਚਾਹੀਦੀ ਹੈ। ਇਸ ਦਾ ਭਾਵ ਇਹ ਹੈ ਕਿ ਇੱਕ 1s ਆੱਰਬਿਟਲ ਦੂਜੇ 1s ਆੱਰਬਿਟਲ ਨਾਲ ਸੰਜੋਗ ਕਰ ਸਕਦਾ ਹੈ ਪਰੰਤੂ 2s ਆੱਰਬਿਟਲ ਨਾਲ ਨਹੀਂ, ਕਿਉਂਕਿ 2s ਦੀ ਊਰਜਾ 1s ਆੱਰਬਿਟਲ ਦੀ ਊਰਜਾ ਤੋਂ ਬਹੁਤ ਜ਼ਿਆਦਾ ਹੁੰਦੀ ਹੈ। ਇਹ ਸੱਚ ਨਹੀਂ ਹੈ, ਜੇ ਪਰਮਾਣੂ ਵੱਖਰੀ ਕਿਸਮ ਦੇ ਹਨ।
- 2. ਸੰਜੋਗ ਕਰਨ ਵਾਲੇ ਪਰਮਾਣੂ ਆੱਰਬਿਟਲਾਂ ਦੀ ਅਣਵੀਂ ਅਕਸ ਦੇ ਦੁਆਲੇ ਸਮਾਨ ਸਮਮਿਤੀ ਹੋਣੀ ਚਾਹੀਦੀ ਹੈ। ਪਰੰਪਰਾ ਦੇ ਅਨੁਸਾਰ Z-ਅਕਸ ਨੂੰ ਅਣਵੀਂ ਅਕਸ ਮੰਨਦੇ ਹਨ। ਇੱਥੇ ਇਹ ਤੱਥ ਮਹੱਤਵਪੂਰਣ ਹੈ ਕਿ ਸਮਾਨ ਜਾਂ ਲਗਪਗ ਸਮਾਨ ਉਰਜਾ ਵਾਲੇ ਪਰਮਾਣੂ ਆੱਰਬਿਟਲ ਤਦ ਹੀ ਸੰਜੋਗ

ਕਰਨਗੇ, ਜਦੋਂ ਉਨ੍ਹਾਂ ਦੀ ਸਮਮਿਤੀ ਸਮਾਨ ਹੈ, ਨਹੀਂ ਤਾਂ ਨਹੀਂ ਉਦਾਹਰਣ– $2p_z$ ਪਰਮਾਣੂ ਆੱਰਬਿਟਲ ਦੂਜੇ ਪਰਮਾਣੂ ਦੇ $2p_z$ ਆੱਰਬਿਟਲ ਨਾਲ ਸੰਜੋਗ ਕਰੇਗਾ, ਪਰੰਤੂ $2P_x$ ਜਾਂ $2p_y$ ਆੱਰਬਿਟਲਾਂ ਦੇ ਨਾਲ ਨਹੀਂ, ਕਿਉਂਕਿ ਉਨ੍ਹਾਂ ਦੀਆਂ ਸਮਮਿਤੀਆਂ ਸਮਾਨ ਨਹੀਂ ਹਨ। ਚਿੱਤਰ $4.20~(\Theta)~1s$ ਪਰਮਾਣੂ ਆੱਰਬਿਟਲਾਂ (ਅ) $2p_z$ ਪਰਮਾਣੂ ਆੱਰਬਿਟਲਾਂ ਅਤੇ (ੲ) ਪਰਮਾਣੂ ਆੱਰਬਿਟਲਾਂ ਦੇ ਸੰਜੋਗਾਂ ਤੋਂ ਬਣੇ ਬੰਧਨ ਅਤੇ ਪ੍ਤੀਬੰਧਨ ਅਣਵੀਂ ਆੱਰਬਿਟਲਾਂ ਦੀ ਰੂਪ ਰੇਖਾ ਅਤੇ ਉਨ੍ਹਾਂ ਦੀਆਂ ਉਰਜਾਵਾਂ।

3.ਸੰਜੋਗ ਕਰਨ ਵਾਲੇ ਪਰਮਾਣੂ ਆੱਰਬਿਟਲਾਂ ਨੂੰ ਅਧਿਕਤਮ ਓਵਰਲੈਪਿੰਗ ਕਰਨਾ ਚਾਹੀਦਾ ਹੈ। ਜਿਨ੍ਹਾਂ ਵੱਧ ਓਵਰਲੈਪਿੰਗ ਹੋਵੇਗੀ, ਅਣਵੀਂ ਆੱਰਬਿਟਲਾਂ ਦੇ ਨਿਊਕਲੀਅਸਾਂ ਦੇ ਵਿੱਚ ਇਲੈਕਟ੍ਰਾੱਨ ਘਣਤਾ ਓਨੀਂ ਹੀ ਵੱਧ ਹੋਵੇਗੀ।

4.7.3 ਅਣਵੀਂ ਆਰਬਿਟਲਾਂ ਦੀਆਂ ਕਿਸਮਾਂ


ਦੋ ਪਰਮਾਣਵੀਂ ਅਣੂਆਂ ਦੇ ਅਣਵੀਂ ਆੱਰਬਿਟਲਾਂ ਨੂੰ σ (ਸਿਗਮਾ), π (ਪਾਈ, δ (ਡੈਲਟਾ) ਆਦਿ ਦੁਆਰਾ ਨਾਮ ਦਿੱਤਾ ਜਾਂਦਾ ਹੈ। ਇਸ ਨਾਮਕਰਣ ਨਾਲ ਸਿਗਮਾਂ, ਅਣਵੀਂ ਆੱਰਬਿਟਲ ਬੰਧਨ ਅਕਸ ਦੇ ਦੁਆਲੇ ਸਮਮਿਤ ਹੁੰਦੇ ਹਨ, ਜਦ ਕਿ π ਅਣਵੀਂ ਆੱਰਬਿਟਲ ਸਮਮਿਤ ਨਹੀਂ ਹੁੰਦੇ। ਉਦਾਹਰਣ ਦੇ ਲਈ ਦੋ ਨਿਊਕਲੀਅਸਾਂ ਉੱਤੇ ਕੇਂਦਰਿਤ 1s ਆੱਰਬਿਟਲਾਂ ਦਾ ਰੇਖੀ ਸੰਜੋਗ ਦੋ ਅਣਵੀਂ ਆੱਰਬਿਟਲਾਂ ਨੂੰ ਪੈਦਾ ਕਰਦਾ ਹੈ। ਜੋ ਬੰਧਨ ਅਕਸ ਦੇ ਦੁਆਲੇ ਸਮਮਿਤ ਹੁੰਦੇ ਹਨ। ਇਨ੍ਹਾਂ ਨੂੰ $\sigma 1s$ ਅਤੇ $\sigma *1s$ ਅਣਵੀਂ ਆੱਰਬਿਟਲ ਕਹਿੰਦੇ ਹਨ (ਚਿੱਤਰ 4.20 (ੳ)। ਜੇ ਅੰਤਰ ਨਿਊਕਲੀ ਅਕਲ ਨੂੰ z-ਦਿਸ਼ਾ ਵਿੱਚ ਲਿਆ ਜਾਵੇ, ਤਾਂ ਇਹ ਵੇਖਿਆ ਜਾ ਸਕਦਾ ਹੈ ਕਿ ਦੋ ਪਰਮਾਣੂਆਂ ਦੇ $2p_x$ ਆੱਰਬਿਟਲਾਂ ਦੇ ਰੇਖੀ ਸੰਜੋਗ ਤੋਂ ਵੀ ਦੋ ਸਿਗਮਾ ਅਣਵੀਂ ਆੱਰਬਿਟਲ ਪੈਦਾ ਹੋਣਗੇ। ਇਨ੍ਹਾਂ ਨੂੰ $\sigma 2p_x$ ਅਤੇ $\sigma *2p_x$ ਨਾਲ ਨਿਰੂਪਿਤ ਕਰਦੇ ਹਨ (ਚਿੱਤਰ 4.20 (ਅ)।

 $2p_x$ ਅਤੇ $2p_y$ ਆੱਰਬਿਟਲਾਂ ਦੇ ਓਵਰਲੈਪਿੰਗ ਨਾਲ ਮਿਲਣ ਵਾਲੇ ਅਣਵੀਂ ਆੱਰਬਿਟਲ ਬੰਧਨ ਸ਼ੈੱਲ ਦੇ ਦੁਆਲੇ ਸਮਮਿਤ ਨਹੀਂ ਹੁੰਦੇ। ਅਜਿਹਾ ਅਣਵੀਂ ਤਲ ਦੇ ਉੱਪਰ ਧਨਾਤਮਕ ਲੋਬ ਅਤੇ ਅਣਵੀਂ ਤਲ ਦੇ ਹੇਠਾਂ ਰਿਣਾਤਮਕ ਲੋਬ ਹੋਣ ਦੇ ਕਾਰਣ ਹੁੰਦਾ ਹੈ। ਅਜਿਹੇ ਅਣਵੀਂ ਆੱਰਬਿਟਲਾਂ ਨੂੰ π ਅਤੇ π^* ਦੁਆਰਾ ਚਿਨ੍ਹਿਤ ਕਰਦੇ ਹਨ (ਚਿੱਤਰ 4.20 (ੲ)। ਬੰਧਨ ਅਣਵੀਂ ਆੱਰਬਿਟਲ ਵਿੱਚ ਅੰਤਰ ਨਿਊਕਲੀ ਅਕਸ ਦੇ ਉੱਪਰ ਅਤੇ ਹੇਠਾਂ ਅਧਿਕਤਮ ਇਲੈਕਟ੍ਰਾੱਨ ਘਣਤਾ ਰਹਿੰਦੀ ਹੈ, ਪਰੰਤੂ ਪ੍ਰਤੀ ਬੰਧਨ ਅਣਵੀਂ ਆੱਰਬਿਟਲ π^* ਵਿੱਚ ਨਿਊਕਲੀਅਸਾਂ ਦੇ ਵਿੱਚ ਇੱਕ ਨੌਡ ਹੁੰਦਾ ਹੈ।

4.7.4 ਅਣਵੀਂ ਆਰਬਿਟਲਾਂ ਦਾ ਉਰਜਾ-ਸਤਰ ਆਰੇਖ

ਅਸੀਂ ਵੇਖਿਆ ਹੈ ਕਿ ਪਰਮਾਣੂਆਂ ਉੱਤੇ ਮੌਜੂਦ 1s ਪਰਮਾਣੂ ਆੱਰਬਿਟਲ ਸੰਜੋਗ ਦੁਆਰਾ ਦੋ ਅਣਵੀਂ ਆੱਰਬਿਟਲਾਂ ਦਾ ਨਿਰਮਾਣ ਕਰਦੇ ਹਨ, ਜਿਨ੍ਹਾਂ ਨੂੰ $\sigma 1s$ ਅਤੇ $\sigma^* 1s$ ਨਾਂ ਦਿੱਤਾ ਜਾਂਦਾ ਹੈ। ਇਸੇ ਪ੍ਰਕਾਰ ਦੋ ਪਰਮਾਣੂਆਂ ਦੇ ਅੱਠ ਪਰਮਾਣੂ ਆੱਰਬਿਟਲ 2s ਅਤੇ 2p ਰੇਖੀ ਸੰਜੋਗ ਦੁਆਰਾ ਹੇਠ ਲਿਖੇ ਅੱਠ ਅਣਵੀਂ ਆਰਬਿਟਲ ਨਿਰਮਾਣ ਕਰਦੇ ਹਨ—

ਪ੍ਰਤੀਬੰਧਨ ਅਣਵੀਂ ਆੱਰਬਿਟਲ σ^*2s σ^*2p_z π^*2p_y π^*2p_y

਼ ਚਿੱਤਰ 4.20 (ੳ) $1{
m s}$ ਪਰਮਾਣੂ ਆੱਰਬਿਟਲਾਂ (ਅ) $2p_{_Z}$ ਪਰਮਾਣੂ ਆੱਰਬਿਟਲਾਂ ਅਤੇ (ੲ) ਪਰਮਾਣੂ ਆੱਰਬਿਟਲਾਂ ਦੇ ਸੰਜੋਗਾਂ ਤੋਂ ਬਣੇ ਬੰਧਨ ਅਤੇ ਪ੍ਤੀਬੰਧਨ ਅਣਵੀਂ ਆੱਰਬਿਟਲਾਂ ਦੀ ਰੂਪ ਰੇਖਾ ਅਤੇ ਉਨ੍ਹਾਂ ਦੀਆਂ ਊਰਜਾਵਾਂ

ਬੰਧਨ ਅਣਵੀਂ ਆੱਰਬਿਟਲ ਰ2s ਰ $2p_{_{Z}}$ $\pi 2p_{_{X}}$ $\pi 2p_{_{Y}}$

ਇਨ੍ਹਾਂ ਅਣਵੀਂ ਆੱਰਬਿਟਲਾਂ ਦੇ ਊਰਜਾ ਸਤਰ ਪ੍ਯੋਗਿਕ ਤੌਰ ਤੇ ਸਪੈਕਟ੍ਮੀ ਵਿਧੀ ਦੁਆਰਾ ਪ੍ਰਾਪਤ ਕੀਤੇ ਜਾਂਦੇ ਹਨ। ਦੂਜੇ ਪੀਰੀਅਡ ਦੇ ਤੱਤਾਂ ਦੇ ਸਮਨਿਊਕਲੀ ਦੋ ਪਰਮਾਣਵੀਂ ਅਣੂਆਂ (O₂ ਅਤੇ F₂) ਦੇ ਅਣਵੀਂ ਆੱਰਬਿਟਲਾਂ ਦੀ ਊਰਜਾ ਦਾ ਵੱਧਦਾ ਕ੍ਰਮ ਇਸ ਪ੍ਰਕਾਰ ਹੈ-

 $\begin{array}{l} \sigma 1s < \sigma^* 1s < \sigma 2s < \sigma^* 2s < \sigma 2p_z < (\pi \, 2p_x = \pi \, 2p_y) \\ < (\pi^* 2p_x = \pi^* 2p_y) < \sigma^* 2p_z \end{array}$

ਦੂਜੇ ਪੀਰੀਅਡ ਦੇ ਬਾਕੀ ਪਰਮਾਣੂਆਂ (ਜਿਵੇਂ $\mathrm{Li}_2,\ \mathrm{Be}_2,\ \mathrm{B}_2,\ \mathrm{C}_2,\ \mathrm{N}_2$) ਦੇ ਦੋ ਪਰਮਾਣਵੀਂ ਅਣੂਆਂ ਦੇ ਲਈ ਅਣਵੀਂ

ਆੱਰਬਿਟਲਾਂ ਦੀ ਊਰਜਾ ਦਾ ਕ੍ਰਮ ਉੱਪਰ ਦਿੱਤੇ ਗਏ ਕ੍ਰਮ ਤੋਂ ਭਿੰਨ ਹੁੰਦਾ ਹੈ। ਉਦਾਹਰਣ ਦੇ ਲਈ— B_2 , C_2 , N_2 ਆਦਿ ਦੋ ਪਰਮਾਣਵੀਂ ਅਣੂਆਂ ਦੇ ਅਣਵੀਂ ਆੱਰਬਿਟਲਾਂ ਦਾ ਪ੍ਰਯੋਗਿਕ ਤੌਰ ਤੇ ਨਿਰਧਾਰਿਤ ਉਰਜਾ ਕ੍ਰਮ ਇਸ ਪ੍ਰਕਾਰ ਹੈ

 $\begin{array}{l} {\sigma 1s} < {\sigma ^*1s} < {\sigma 2s} < {\sigma ^*2s} < (\pi \, 2p_{_x} = \pi \, 2p_{_y}) < \!\! \sigma 2p_{_z} \\ < (\pi \, ^*2p_{_x} \! = \pi \, ^*2p_{_u}) < \!\! \sigma ^*2p_{_z} \end{array}$

ਅਣਵੀਂ ਆੱਰਬਿਟਲਾਂ ਦੀ ਊਰਜਾ ਦੇ ਕ੍ਰਮਾਂ ਵਿੱਚ ਮਹੱਤਵਪੂਰਣ ਅੰਤਰ ਇਹ ਹੈ ਕਿ ਰ $2p_z$ ਆਰਬਿਟਲ ਦੀ ਊਰਜਾ $\pi 2p_x$ ਅਤੇ π p_u ਅਣਵੀਂ ਆਰਬਿਟਲਾਂ ਤੋਂ ਵੱਧ ਹੁੰਦੀ ਹੈ।

4.7.5 ਇਲੈਕਟ੍ਰਾੱਨਿਕ ਤਰਤੀਬ ਅਤੇ ਅਣਵੀਂ ਵਿਹਾਰ

ਵਿਭਿੰਨ ਅਣਵੀਂ ਆੱਰਬਿਟਲਾਂ ਵਿੱਚ ਇਲੈਕਟ੍ਰਾਨਾਂ ਦਾ ਵਿਤਰਣ ਇਲੈਕਟ੍ਰਾਨਿਕ ਤਰਤੀਬ ਅਖਵਾਉਂਦਾ ਹੈ। ਇਲੈਕਟ੍ਰਾਨਾਂ ਨੂੰ ਆੱਰਬਿਟਲਾਂ ਦੀ ਊਰਜਾ ਦੇ ਵੱਧਦੇ ਹੋਏ ਕ੍ਰਮ ਵਿੱਚ ਭਰਿਆ ਜਾਂਦਾ ਹੈ। ਅਣੂ ਦੀ ਇਲੈਕਟ੍ਰਾਨਿਕ ਤਰਤੀਬ ਤੋਂ ਅਣੂ ਦੇ ਬਾਰੇ ਮਹਤੱਵਪੂਰਣ ਸੂਚਨਾ ਪ੍ਰਾਪਤ ਹੋ ਸਕਦੀ ਹੈ, ਜਿਵੇਂ ਅੱਗੇ ਦੱਸਿਆ ਗਿਆ ਹੈ।

ਅਣੂਆਂ ਦਾ ਸਥਾਈਪਨ : ਜੇ ਬੰਧਨ ਅਣਵੀਂ ਆੱਰਬਿਟਲਾਂ ਵਿੱਚ ਮੌਜੂਦ ਇਲੈਕਟ੍ਰਾੱਨਾਂ ਦੀ ਸੰਖਿਆ $N_{\rm b}$ ਅਤੇ ਪ੍ਰਤੀਬੰਧਨ ਆੱਰਬਿਟਲਾਂ ਵਿੱਚ ਸੰਖਿਆ $N_{\rm a}$ ਹੋਵੇ ਤਾਂ

ਅਣੂ ਸਥਾਈ ਹੋਵੇਗਾ ਜੇ $\rm N_b > N_a$ ਹੋਵੇ ਅਣੂ ਅਸਥਾਈ ਹੋਵੇਗਾ ਜੇ $\rm N_a > N_b$ ਹੋਵੇ

(i) ਵਿੱਚ ਬੰਧਨ ਇਲੈਕਟ੍ਰਾਨਾਂ ਦੀ ਸੰਖਿਆ ਵੱਧ ਹੋਣ ਦੇ ਕਾਰਣ ਬੰਧਨੀ ਪ੍ਰਭਾਵ ਪ੍ਰਬਲ ਹੁੰਦਾ ਹੈ, ਜਿਸ ਨਾਲ ਇੱਕ ਸਥਾਈ ਅਣੂ ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ। ਦੂਜੇ ਪਾਸੇ (ii) ਵਿੱਚ ਪ੍ਰਤੀਬੰਧਨ ਪ੍ਰਭਾਵ ਪ੍ਰਬਲ ਹੁੰਦਾ ਹੈ, ਜਿਸਦੇ ਪਰਿਣਾ ਸਰੂਪ ਅਣੂ ਅਸਥਾਈ ਹੁੰਦਾ ਹੈ। ਬੰਧਨ ਕੋਟੀ (Bond Oder):

ਬੰਧਨ ਕੋਟੀ ਨੂੰ ਬੰਧਨ ਅਣਵੀਂ ਆੱਰਬਿਟਲਾਂ ਅਤੇ ਪ੍ਰਤੀ ਬੰਧਨ ਅਣਵੀਂ ਆੱਰਬਿਟਲਾਂ ਵਿੱਚ ਮੌਜੂਦ ਇਲੈਕਟ੍ਰਾਨਾਂ ਦੀ ਸੰਖਿਆ ਦੇ ਅੰਤਰ ਦੇ ਅੱਧੇ ਦੇ ਰੂਪ ਵਿੱਚ ਪਰਿਭਾਸ਼ਿਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ

ਬੰਧਨ ਕੋਟੀ
$$\frac{1}{2} \left(N_b - N_a \right)$$

ਬੰਧਨ ਕੋਟੀ ਕਿਸੇ ਅਣੂ ਵਿੱਚ ਮੌਜੂਦ ਸਹਿਸੰਯੋਜੀ ਬੰਧਨਾਂ ਦੀ ਸੰਖਿਆ ਦੱਸਦੀ ਹੈ। ਜੇ $N_{\rm b} > N_{\rm a}$ ਹੋਵੇ ਤਾਂ ਬੰਧਨ ਕੋਟੀ ਧਨਾਤਮਕ ਹੋਵੇਗੀ ਅਤੇ ਅਣੂ ਸਥਾਈ ਹੋਵੇਗਾ ਅਤੇ ਜੇ ਬੰਧਨ ਕੋਟੀ ਰਿਣਾਤਮਕ $N_{\rm b} < N_{\rm a}$) ਜਾਂ ਸਿਫਰ $N_{\rm b} = N_{\rm a}$) ਹੋਵੇ, ਤਾਂ ਅਣੂ ਅਸਥਾਈ ਹੋਵੇਗਾ।

ਬੰਧਨ ਦੀ ਪ੍ਰਕਿਰਤੀ

ਜਿਵੇਂ ਦੱਸਿਆ ਗਿਆ ਹੈ, ਬੰਧਨ ਕੋਟੀ ਕਿਸੇ ਅਣੂ ਵਿੱਚ ਮੌਜੂਦ

ਸਹਿਸੰਯੋਜੀ ਬੰਧਨਾਂ ਦੀ ਸੰਖਿਆ ਦੱਸਦੀ ਹੈ। ਉਦਾਹਰਣ ਵਜੋਂ-ਜੇ ਬੰਧਨ ਕੋਟੀ 1, 2 ਜਾਂ 3 ਹੋਵੇ ਤਾਂ ਉਸ ਵਿੱਚ ਕ੍ਰਮਵਾਰ ਇਕਹਿਰਾ, ਦੂਹਰਾ ਜਾਂ ਤੀਹਰਾ ਬੰਧਨ ਹੋਵੇਗਾ।

ਬੰਧਨ ਲੰਬਾਈ

ਆਮ ਤੌਰ ਤੇ ਕਿਸੇ ਅਣੂ ਵਿੱਚ ਦੋ ਪਰਮਾਣੂਆਂ ਦੇ ਵਿੱਚ ਬੰਧਨ ਕੋਟੀ ਬੰਧਨ ਲੰਬਾਈ ਦਾ ਇੱਕ ਨੇੜਲਾ ਆਪ ਹੁੰਦਾ ਹੈ। ਬੰਧਨ ਲੰਬਾਈ ਬੰਧਨ ਕੋਟੀ ਦੇ ਉਲਟ ਅਨੁਪਾਤੀ ਹੁੰਦੀ ਹੈ। ਜਿਵੇਂ ਬੰਧਨ ਕੋਟੀ ਵੱਧਦੀ ਹੈ, ਤਿਵੇਂ ਤਿਵੇਂ ਬੰਧਨ ਲੰਬਾਈ ਘੱਟਦੀ ਹੈ।

ਚੁੰਬਕੀ ਸੁਭਾਅ

ਜੇ ਕਿਸੇ ਅਣੂ ਦੇ ਸਾਰੇ ਅਣਵੀਂ ਆੱਰਬਿਟਲ ਦੋ ਪੂਰਿਤ ਯੁਗਮਕ ਹੋਣ ਤਾਂ ਪਦਾਰਥ ਪ੍ਤੀਚੁੰਬਕੀ (Diamagnetic) ਹੁੰਦਾ ਹੈ।ਅਜਿਹੇ ਅਣੂ ਚੁੰਬਕੀ ਖੇਤਰ ਵਿੱਚ ਪ੍ਤੀਕਰਸ਼ਿਤ ਹੁੰਦੇ ਹਨ, ਪਰੰਤੂ ਜੇ ਕਿਸੇ ਅਣੂ ਦੇ ਇੱਕ ਜਾਂ ਵੱਧ ਅਣਵੀਂ ਆੱਰਬਿਟਲਾਂ ਵਿੱਚ ਅਯੁਗਮਿਤ ਇਲੈਕਟ੍ਰਾੱਨ ਹੋਣ ਤਾਂ ਉਹ ਅਣੂ ਅਨੁਚੁੰਬਕੀ (Paramagnetic) ਹੁੰਦਾ ਹੈ।ਅਜਿਹੇ ਅਣੂ ਚੁੰਬਕੀ ਖੇਤਰ ਵਿੱਚ ਅਕਰਸ਼ਿਤ ਹੁੰਦੇ ਹਨ।

4.8 ਸਮ ਨਿਊਕਲੀ ਦੋ ਪਰਮਾਣਵੀਂ ਅਣੂਆਂ ਵਿੱਚ ਬੰਧਨ

ਇਸ ਭਾਗ ਵਿੱਚ ਅਸੀਂ ਕੁਝ ਸਮਨਿਊਕਲੀ ਅਣੂਆਂ ਵਿੱਚ ਬੈਧਨ ਦੀ ਚਰਚਾ ਕਰਾਂਗੇ।

1. ਹਾਈਡ੍ਰੋਜਨ ਅਣੂ (H_2) : ਇਹ ਹਾਈਡ੍ਰੋਜਨ ਦੇ ਦੋ ਪਰਮਾਣੂਆਂ ਦੇ ਸੰਯੋਜਨ ਤੋਂ ਬਣਦਾ ਹੈ। ਹਰ ਇੱਕ ਹਾਈਡ੍ਰੋਜਨ ਦੇ 1s ਆੱਰਬਿਟਲ ਵਿੱਚ ਇੱਕ ਇਲੈਕਟ੍ਰਾੱਨ ਹੁੰਦਾ ਹੈ। ਇਸ ਲਈ ਹਾਈਡ੍ਰੋਜਨ ਦੇ ਅਣੂ ਵਿੱਚ ਕੁੱਲ ਦੋ ਇਲੈਕਟ੍ਰਾੱਨ ਹੋਣਗੇ ਜੇ σ_{1s} ਅਣਵੀਂ ਆੱਰਬਿਟਲ ਵਿੱਚ ਮੌਜੂਦ ਹੋਣਗੇ। ਹਾਈਡ੍ਰੋਜਨ ਅਣੂ ਦੀ ਇਲੈਕਟ੍ਰਾਨਕ ਤਰਤੀਬ ਹੋਵੇਗੀ

$$H_2$$
: ($\sigma 1s^2$

ਹਾਈਡ੍ਰੋਜਨ ਅਣੂ ਦੀ ਬੰਧਨ ਕੋਟੀ ਨੂੰ ਇਸ ਪ੍ਰਕਾਰ ਪਰਿਕਲਿਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।

ਬੰਧਨ ਕੋਟੀ
$$\frac{1}{2}$$
 $N_b - N_a = \frac{1}{2}$ [2-0] = 1

ਇਸ ਦਾ ਅਰਥ ਇਹ ਹੈ ਕਿ ਹਾਈਡ੍ਰੋਜਨ ਅਣੂ ਵਿੱਚ ਹਾਈਡ੍ਰੋਜਨ ਦੇ ਦੋ ਪਰਮਾਣੂ ਇੱਕ ਦੂਜੇ ਨਾਲ ਇਕਹਿਰੇ ਸਹਿਸੰਯੋਜੀ ਬੰਧਨ ਦੁਆਰਾ ਬੰਧੇ ਹੋਏ ਹਨ। ਹਾਈਡ੍ਰੋਜਨ ਅਣੂ ਦੀ ਵਿਯੋਜਨ ਉਰਜਾ 438 kJ mol⁻¹ ਹੈ ਅਤੇ ਬੰਧਨ ਲੰਬਾਈ ਦਾ ਪ੍ਯੋਗਿਕ ਮਾਨ 74 pm ਹੈ। ਕਿਉਂਕਿ ਹਾਈਡ੍ਰੋਜਨ ਅਣੂ ਵਿੱਚ ਕੋਈ ਅਯੁਗਮਿਤ ਇਲੈਕਟ੍ਰਾੱਨ ਨਹੀਂ ਹੈ ਇਸ ਲਈ ਇਹ ਪ੍ਰਤੀ ਚੁੰਬਕੀ ਹੈ।

2. ਹੀਲੀਅਮ ਅਣੂ (He_2): ਹੀਲੀਅਮ ਪਰਮਾਣੂ ਦੀ ਇਲੈਕਟ੍ਰਾੱਨਿਕ ਤਰਤੀਬ $1\,s^2$ ਹੈ। ਹਰ ਇੱਕ ਹੀਲੀਅਮ ਪਰਮਾਣੂ ਵਿੱਚ ਦੋ

ਇਲੈਕਟ੍ਰਾੱਨ ਹੁੰਦੇ ਹਨ, ਅਰਥਾਤ He_2 ਅਣੂ ਵਿੱਚ ਕੁਲ ਚਾਰ ਇਲੈਕਟ੍ਰਾੱਨ ਹੋਣਗੇ।

ਇਹ ਇਲੈਕਟ੍ਰਾਨ σ^*1s ਅਤੇ σ^*1s ਅਣਵੀਂ ਆਰਬਿਟਲਾਂ ਵਿੱਚ ਭਰੇ ਜਾਣਗੇ ਅਤੇ He_s ਦੀ ਇਲੈਕਟ੍ਰਾਨਿਕ ਤਰਤੀਬ ਹੋਵੇਗੀ–

$$He_2: (\sigma 1s)^2 (\sigma^* 1s)^2$$

$$\text{He}_2$$
 ਦੀ ਬੰਧਨ ਕੋਈ = ½(2 – 2) = 0

ਕਿਉਂਕਿ ${\rm He}_2$ ਦੀ ਬੰਧਨ ਕੋਟੀ ਸਿਫਰ ਹੈ, ਇਸ ਲਈ ਇਹ ਅਣੂ ਅਸਥਾਈ ਹੋਵੇਗਾ ਅਤੇ ਇਸ ਦੀ ਹੋਂਦ ਨਹੀਂ ਹੋਵੇਗੀ। ਇਸੇ ਤਰ੍ਹਾਂ ਇਹ ਦਰਸਾਇਆ ਜਾ ਸਕਦਾ ਹੈ ਕਿ ${\rm Be}_2$ ਅਣੂ $(\sigma 1s)^2$ $(\sigma 1s)^2$ $(\sigma 2s)^2$ $(\sigma 2s)^2$ ਵੀ ਨਹੀਂ ਬਣੇਗਾ।

3. ਲੀਥਿਅਮ ਅਣੂ (Li_2): ਲੀਥਿਅਮ ਦੀ ਇਲੈਕਟ੍ਰਾੱਨਿਕ ਤਰਤੀਬ $1s^2$, $2s^1$ ਹੈ। ਲੀਥਿਅਮ ਦੇ ਹਰ ਇੱਕ ਪਰਮਾਣੂ ਵਿੱਚ ਤਿੰਨ ਇਲੈਕਟ੍ਰਾੱਨ ਹੋਣਗੇ। ਇਸ ਲਈ Li_2 ਅਣੂ ਦੀ ਇਲੈਕਟ੍ਰਾੱਨਿਕ ਤਰਤੀਬ ਹੋਵੇਗੀ—

$$\text{Li}_2: (\sigma 1 s)^2 (\sigma^* 1 s)^2 (\sigma 2 s)^2$$

ਇਸ ਤਰਤੀਬ ਨੂੰ $KK(\sigma 2s)^2$ ਦੁਆਰਾ ਵੀ ਪ੍ਰਦਰਸ਼ਿਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ, ਜਿਥੇ KK ਪੂਰਣ ਸ਼ੈੱਲ ਰਚਨਾ $(\sigma 1s)^2$ $(\sigma^*1s)^2$ ਦਰਸਾਉਂਦਾ ਹੈ।

 ${
m Li}_2$ ਅਣੂ ਦੀ ਇਲੈਕਟ੍ਰਾੱਨਿਕ ਤਰਤੀਬ ਤੋਂ ਸਪੱਸ਼ਟ ਹੈ ਕਿ ਇਸ ਵਿੱਚ ਚਾਰ ਇਲੈਕਟ੍ਰਾੱਨ ਬੰਧਨ ਅਣਵੀਂ ਆੱਰਬਿਟਲਾਂ ਵਿੱਚ ਅਤੇ ਦੋ ਇਲੈਕਟ੍ਰਾੱਨ ਪ੍ਤੀਬੰਧਨ ਅਣਵੀਂ ਆੱਰਬਿਟਲ ਵਿੱਚ ਮੌਜੂਦ ਹਨ। ਇਸ ਲਈ ਇਸ ਦੀ ਬੰਧਨ ਕੋਟੀ $\frac{1}{2}$ (4-2)=1 ਹੋਵੇਗੀ। ਇਸ ਦਾ ਭਾਵ ਇਹ ਹੈ ਕਿ ${
m Li}_2$ ਅਣੂ ਸਥਾਈ ਹੈ। ਕਿਉਂਕਿ ਇਸ ਵਿੱਚ ਅ–ਯੁਗਮਤ ਇਲੈਕਟ੍ਰਾੱਨ ਨਹੀਂ ਹੈ ਇਸ ਲਈ ਇਹ ਪ੍ਤੀ ਚੁੰਬਕੀ ਹੋਵੇਗਾ। ਅਸਲ ਵਿੱਚ ਇਹ ਵੇਖਿਆ ਗਿਆ ਹੈ ਕਿ ਵਾਸ਼ਪ ਅਵਸਥਾ ਵਿਚ ${
m Li}_2$ ਅਣੂਆਂ ਦੀ ਹੋਂਦ ਹੁੰਦੀ ਹੈ, ਜੋ ਪ੍ਰਤੀਚੁੰਬਕੀ ਹੁੰਦੇ ਹਨ।

4. ਕਾਰਬਨ ਅਣੂ (C_2): ਕਾਰਬਨ ਪਰਮਾਣੂ ਦੀ ਇਲੈਕਟ੍ਰਾੱਨਿਕ ਤਰਤੀਬ $1s^2$ $2s^2$ $2p^2$ ਹੈ। (C_2) ਦੇ ਅਣੂ ਵਿੱਚ ਕੁੱਲ 12 ਇਲੈਕਟ੍ਰਾੱਨ ਹੋਣਗੇ ਅਤੇ ਇਸਦੀ ਇਲੈਕਟ੍ਰਾੱਨਿਕ ਤਰਤੀਬ ਹੋਵੇਗੀ—

$$C_2$$
: $(\sigma ls)^2 (\sigma * ls)^2 (\sigma 2s)^2 (\sigma * 2s)^2 (\pi 2p_x^2 = \pi 2p_y^2)$

ਜਾਂ
$$KK(\sigma 2s)^2(\sigma * 2s)^2(\pi 2p_x^2 = \pi 2p_y^2)$$

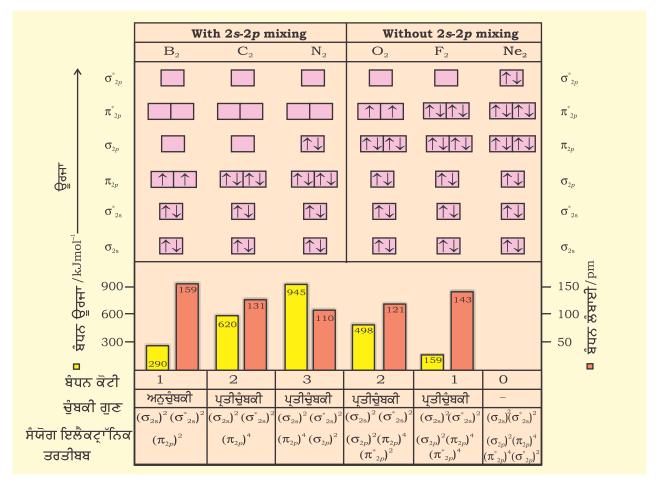
 C_2 ਦੀ ਬੰਧਨ ਕੋਟੀ $\frac{1}{2}(8-2) = \frac{1}{2}(6) = 3$ ਅਤੇ ਇਸ ਨੂੰ ਪ੍ਰਤੀਚੁੰਬਕੀ ਹੋਣਾ ਚਾਹੀਦਾ ਹੈ। ਅਸਲ ਵਿੱਚ ਵਾਸ਼ਪ ਅਵਸਥਾ ਵਿੱਚ C_2 ਪ੍ਰਤੀ ਚੁੰਬਕੀ ਹੈ। C_2 ਦੇ ਅਣੂਆਂ ਵਿੱਚ ਦੋਵੇਂ ਬੰਧਨ

ਪਾਈ-ਬੰਧਨ ਹੁੰਦੇ ਹਨ, ਕਿਉਂਕਿ ਦੋ ਪਾਈ ਬੰਧਨ ਅਣਵੀਂ ਆੱਰਬਿਟਲਾਂ ਵਿੱਚ ਚਾਰ ਇਲੈਕਟ੍ਰਾੱਨ ਮੌਜੂਦ ਹੁੰਦੇ ਹਨ। ਵਧੇਰੇ ਕਰਕੇ ਹੋਰ ਅਣੂਆਂ ਵਿੱਚ ਦੁਹਰਾ ਬੰਧਨ, ਇੱਕ ਸਿਗਮਾ ਅਤੇ ਇੱਕ ਪਾਈ ਬੰਧਨ ਤੋਂ ਬਣਿਆ ਹੁੰਦਾ ਹੈ। ਸਮਾਨ ਰੂਪ ਵਿੱਚ N_2 ਅਣੂ ਵਿੱਚ ਬੰਧਨ ਨੂੰ ਸਮਝਾਇਆ ਜਾ ਸਕਦਾ ਹੈ।

5. ਆੱਕਸੀਜਨ ਅਣੂ (O_2) : ਆੱਕਸੀਜਨ ਪਰਮਾਣੂ ਦੀ ਇਲੈਕਟ੍ਰਾਨਿਕ ਤਰਤੀਬ $1s^2$ $2s^2$ $2p^4$ ਹੈ। ਕਿਉਂਕਿ ਆੱਕਸੀਜਨ ਪਰਮਾਣੂ ਵਿੱਚ 8 ਇਲੈਕਟ੍ਰਾਨ ਹੁੰਦੇ ਹਨ, ਆੱਕਸੀਜਨ ਅਣੂ ਵਿੱਚ ਕੁੱਲ 16 ਇਲੈਕਟ੍ਰਾਨ ਹੋਣਗੇ। O_2 ਅਣ ਦੀ ਇਲੈਕਟ੍ਰਾਨਿਕ ਤਰਤੀਬ ਹੋਵੇਗੀ—

$$\begin{array}{c} \text{O}_2 \colon \ (\sigma 1s)^2 \, (\sigma^* 1s)^2 \, (\sigma 2s)^2 \, (\sigma^* 2s)^2 \, (\sigma 2p_{_{\! z}})^2 \\ & \left(\pi \, 2p_{_{\! x}}^2 \equiv \pi \, 2p_{_{\! y}}^2\right) \, \left(\pi \, ^* 2p_{_{\! x}}^1 \equiv \pi \, ^* 2p_{_{\! y}}^1\right) \\ \text{O}_2 \colon \left[\begin{array}{c} \text{KK} \, (\sigma 2s)^2 (\sigma^* 2s)^2 (\sigma 2p_{_{\! z}})^2 \\ \left(\pi 2p_{_{\! x}}^2 \equiv \pi 2p_{_{\! y}}^2\right), \left(\pi \, ^* 2p_{_{\! x}}^1 \equiv \pi \, ^* 2p_{_{\! y}}^1\right) \end{array} \right] \end{array}$$

 ${
m O_2}$ ਦੀ ਇਲੈਕਟ੍ਰਾੱਨਿਕ ਤਰਤੀਬ ਤੋਂ ਇਹ ਸਪੱਸ਼ਟ ਹੈ ਕਿ ਇਸ ਵਿੱਚ 10 ਇਲੈਕਟ੍ਰਾਨ ਬੰਧਨ ਅਣਵੀਂ ਆਰਬਿਟਲਾਂ ਵਿੱਚ ਅਤੇ 6 ਇਲੈਕਟ੍ਰਾੱਨ ਪ੍ਰਤੀ ਬੰਧਨ ਅਣਵੀਂ ਆਰਬਿਟਲਾਂ ਵਿੱਚ ਮੌਜੂਦ ਹੁੰਦੇ ਹਨ। ਇਸ ਲਈ ਬੰਧਨ ਕੋਟੀ ਹੋਵੇਗੀ—


ਬੰਧਨ ਕੋਟੀ =
$$\frac{1}{2}[N_{\rm b} - N_{\rm a}] = \frac{1}{2}[10 - 6] = 2$$

ਇਸ ਲਈ O_2 ਦੇ ਅਣੂ ਵਿੱਚ ਆੱਕਸੀਜਨ ਪਰਮਾਣੂ ਇੱਕ ਦੋ-ਬੰਧਨ ਦੁਆਰਾ ਜੁੜੇ ਹੁੰਦੇ ਹਨ। ਇਸ ਦੇ ਅਨੁਸਾਰ, ਆੱਕਸੀਜਨ ਅਣੂ ਨੂੰ ਅਨੁਚੁੰਬਕੀ ਹੋਣਾ ਚਾਹੀਦਾ ਹੈ। ਅਜਿਹਾ ਪ੍ਯੋਗੀ ਤੌਰ ਤੇ ਵੇਖਿਆ ਵੀ ਗਿਆ ਹੈ। ਇਸ ਪ੍ਰਕਾਰ ਅਣਵੀਂ ਆੱਰਬਿਟਲ ਸਿਧਾਂਤ ਆੱਕਸੀਜਨ ਦੇ ਅਨੁਚੁੰਬਕੀ ਵਿਹਾਰ ਦੀ ਵਿਆਖਿਆ ਕਰਨ ਵਿੱਚ ਸਮਰੱਥ ਹੈ।

ਇਸੇ ਤਰ੍ਹਾਂ ਆਵਰਤੀ ਸਾਰਣੀ ਦੇ ਦੂਜੇ ਪੀਰੀਅਡ ਦੇ ਹੋਰ ਸਮਨਿਊਕਲੀ ਦੋ ਪਰਮਾਣਵੀਂ ਅਣੂਆਂ ਦੀਆਂ ਇਲੈਕਟ੍ਰਾਨਿਕ ਤਰਤੀਬਾਂ ਲਿਖੀਆਂ ਜਾ ਸਕਦੀਆਂ ਹਨ $\mathbf{I} \ \mathbf{B}_2$ ਤੋਂ \mathbf{Ne}_2 ਤੱਕ ਦੇ ਅਣੂਆਂ ਦੇ ਲਈ ਅਣਵੀਂ ਆੱਰਬਿਟਲ ਤਰਤੀਬ ਅਤੇ ਅਣਵੀਂ ਗੁਣ ਚਿੱਤਰ 4.21 ਵਿੱਚ ਦਿੱਤੇ ਗਏ ਹਨ \mathbf{I} ਅਣਵੀਂ ਆੱਰਬਿਟਲਾਂ ਦਾ ਕ੍ਰਮ ਅਤੇ ਉਨ੍ਹਾਂ ਵਿਚ ਇਲੈਕਟ੍ਰਾੱਨਾਂ ਦੀ ਸੰਖਿਆ ਦਰਸਾਈ ਗਈ ਹੈ \mathbf{I} ਬੰਧਨ ਊਰਜਾ, ਬੰਧਨ ਕੋਟੀ, ਚੁੰਬਕੀ ਗੁਣ ਅਤੇ ਸੰਯੋਜੀ ਇਲੈਕਟ੍ਰਾੱਨਿਕ ਤਰਤੀਬ ਆੱਰਬਿਟਲ ਅਰੇਖਾਂ ਦੇ ਹੇਠਾਂ ਪ੍ਰਦਰਸ਼ਿਤ ਹੈ \mathbf{I}

4.9 ਹਾਈਡ੍ਰੋਜਨ ਬੰਧਨ

ਨਾਈਟ੍ਰੋਜਨ, ਆੱਕਸੀਜਨ ਅਤੇ ਫਲੋਰੀਨ-ਇਹ ਤਿੰਨ ਬਹੁਤ ਜ਼ਿਆਦਾ ਇਲੈਕਟ੍ਰੋਨੈਗੇਟਿਵ ਤੱਤ ਜਦੋਂ ਪਰਮਾਣੂ ਸਹਿਸੰਯੋਜਕ ਬੰਧਨ ਦੁਆਰਾ ਹਾਈਡ੍ਰੋਜਨ ਪਰਮਾਣੂ ਨਾਲ ਜੁੜੇ ਹੁੰਦੇ ਹਨ, ਤਾਂ

ਚਿੱਤਰ 4.21 B_2 ਤੋਂ Ne_2 ਤੱਕ ਦੇ ਲਈ ਅਣਵੀਂ ਆੱਰਬਿਟਲ ਅਤੇ ਅਣਵੀਂ ਗੁਣ

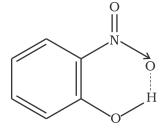
ਸਹਿਸੰਯੋਜੀ ਬੰਧਨ ਦੇ ਇਲੈਕਟ੍ਰਾੱਨ ਵਧੇਰੇ ਇਲੈਕਟ੍ਰੋਨੈਗੇਟਿਵ ਤੱਤ ਦੇ ਵੱਲ ਸਥਾਨ ਅੰਤਰਿਤ ਹੋ ਜਾਂਦੇ ਹਨ। ਫਲਸਰੂਪ ਪ੍ਰਾਪਤ ਅੰਸ਼ਿਕ ਧਨਚਾਰਜਿਤ ਹਾਈਡ੍ਰੋਜਨ ਪਰਮਾਣੂ ਕਿਸੇ ਦੂਜੇ ਰਿਣਾਤਮਕ ਪਰਮਾਣੂ ਦੇ ਨਾਲ ਇੱਕ ਨਵਾਂ ਬੰਧਨ ਬਣਾਉਂਦਾ ਹੈ। ਇਸ ਬੰਧਨ ਨੂੰ ਹਾਈਡ੍ਰੋਜਨ ਬੰਧਨ ਕਹਿੰਦੇ ਹਨ। ਇਹ ਬੰਧਨ ਸਹਿਸੰਯੋਜੀ ਬੰਧਨ ਨਾਲੋਂ ਕਮਜੋਰ ਹੁੰਦਾ ਹੈ। ਉਦਾਹਰਣ ਵਜੋਂ-HF ਵਿੱਚ ਇੱਕ ਅਣੂ ਦੇ ਹਾਈਡ੍ਰੋਜਨ ਪਰਮਾਣੂ ਅਤੇ ਦੂਜੇ ਅਣੂ ਦੇ ਫਲੋਰੀਨ ਪਰਮਾਣੂ ਦੇ ਵਿੱਚ ਹਾਈਡ੍ਰੋਜਨ ਬੰਧਨ ਬਣਦਾ ਹੈ। ਇਸ ਨੂੰ ਇਸ ਪ੍ਰਕਾਰ ਦਰਸਾਇਆ ਜਾ ਸਕਦਾ ਹੈ-

ਇੱਥੇ ਹਾਈਡ੍ਰੋਜਨ ਬੰਧਨ ਦੋ ਪਰਮਾਣੂਆਂ ਦੇ ਵਿੱਚ ਇੱਕ ਪੁਲ ਦਾ ਕੰਮ ਕਰਦਾ ਹੈ, ਜੋ ਇੱਕ ਪਰਮਾਣੂ ਨੂੰ ਸਹਿਸੰਯੋਜਕ ਬੰਧਨ ਅਤੇ ਦੂਜੇ ਨੂੰ ਹਾਈਡ੍ਰੋਜਨ ਬੰਧਨ ਦੁਆਰਾ ਜੋੜ ਕੇ ਰੱਖਦਾ ਹੈ। ਹਾਈਡ੍ਰੋਜਨ ਬੰਧਨ ਨੂੰ ਡਾੱਇਡ ਰੇਖਾ (– – –) ਦੁਆਰਾ ਦਰਸਾਉਂਦੇ ਹਨ, ਜਦਕਿ ਸਹਿਸੰਯੋਜਨ ਬੰਧਨ ਨੂੰ ਠੋਸ ਰੇਖਾ (––) ਦੁਆਰਾ ਦਰਸਾਉਂਦੇ ਹਨ। ਇਸ ਪ੍ਰਕਾਰ ਹਾਈਡ੍ਰੋਜਨ ਬੰਧਨ ਨੂੰ ਉਸ ਆਕਰਸ਼ਣ ਬਲ ਦੇ ਰੂਪ ਵਿੱਚ ਪਰਿਭਾਸ਼ਿਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ, ਜੋ ਇੱਕ ਅਣੂ ਦੇ ਹਾਈਡ੍ਰੋਜਨ ਪਰਮਾਣੂ ਨੂੰ ਦੂਜੇ ਅਣੂ ਦੇ ਇਲੈਕਟ੍ਰੋਨੈਗੇਟਿਵ ਪਰਮਾਣੂ (F, O ਜਾਂ N) ਨਾਲ ਬੰਨ੍ਹਦਾ ਹੈ।

4.9.1 ਹਾਈਡ੍ਰੋਜਨ ਬੰਧਨ ਬਣਨ ਦੇ ਕਾਰਣ

ਜਦੋਂ ਹਾਈਡ੍ਰੋਜਨ ਪਰਮਾਣੂ ਕਿਸੇ ਪ੍ਰਬਲ ਇਲੈਕਟ੍ਰੋਨੈਗੇਟਿਵ ਤੱਤ 'X' ਨਾਲ ਬੰਧਿਤ ਹੁੰਦਾ ਹੈ, ਤਾਂ ਸਹਿਭਾਜਿਤ ਇਲੈਕਟ੍ਰਾਂਨ ਯੁਗਮ ਹਾਈਡ੍ਰੋਜਨ ਪਰਮਾਣੂ ਤੋਂ ਦੂਰ ਹੋ ਜਾਂਦਾ ਹੈ। ਪਰਿਣਾਮਸਰੂਪ ਹਾਈਡ੍ਰੋਜਨ ਪਰਮਾਣੂ ਦੂਜੇ ਪਰਮਾਣੂਆਂ 'X' ਦੇ ਸਾਪੇਖ ਬਹੁਤ ਜਿਆਦਾ ਧਨਾਤਮਕ ਹੋ ਜਾਂਦਾ ਹੈ। ਕਿਉਂਕਿ ਇਲੈਕਟ੍ਰਾਂਨ 'X' ਪਰਮਾਣੂ ਦੇ ਵੱਲ ਸਥਾਨ ਅੰਤਰਿਤ ਹੋ ਜਾਂਦੇ ਹਨ। ਇਸ ਲਈ ਹਾਈਡ੍ਰੋਜਨ ਪਰਮਾਣੂ ਅੰਸ਼ਿਕ ਧਨਾਤਮਕਚਾਰਜ (δ †) ਗ੍ਰਹਿਣ ਕਰਦਾ ਹੈ, ਜਦਕਿ 'X' ਪਰਮਾਣੂ ਉੱਤੇ ਅੰਸ਼ਿਕ ਰਿਣਾਤਮਕ ਚਾਰਜ (δ) ਆ ਜਾਂਦਾ ਹੈ। ਇਸ ਨਾਲ ਇੱਕ ਦੋ ਧਰੁਵੀ ਅਣੂ ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ, ਜਿਸ ਦੇ ਵਿੱਚ ਸਥਿਰ ਬਿਜਲਈ ਬਲ ਹੁੰਦਾ ਹੈ। ਇਸ ਨੂੰ ਇਸ ਤਰ੍ਹਾਂ ਦਰਸਾਇਆ ਜਾ ਸਕਦਾ ਹੈ—

$$H^{\delta_+} - X^{\delta_-} - - - H^{\delta_+} - X^{\delta_-} - - - H^{\delta_+} - X^{\delta_-}$$


ਹਾਈਡ੍ਰੋਜਨ ਬੰਧਨ ਦਾ ਪਰਿਮਾਣ ਯੋਗਿਕ ਦੀ ਭੋਤਿਕ ਅਵਸਥਾ ਉੱਤੇ ਨਿਰਭਰ ਕਰਦਾ ਹੈ। ਠੋਸ ਅਵਸਥਾ ਵਿੱਚ ਇਹ ਅਧਿਕਤਮ ਹੁੰਦਾ ਹੈ ਅਤੇ ਗੈਸੀ ਅਵਸਥਾ ਵਿੱਚ ਨਿਊਨਤਮ। ਇਸ ਤਰ੍ਹਾ ਹਾਈਡ੍ਰੋਜਨ ਬੰਧਨ ਯੋਗਿਕਾਂ ਦੀ ਬਣਤਰ ਅਤੇ ਗੁਣਾਂ ਨੂੰ ਪ੍ਰਬਲਤਾ ਨਾਲ ਪ੍ਰਭਾਵਿਤ ਕਰਦੇ ਹਨ।

4.9.2 ਹਾਈਡ੍ਰੋਜਨ ਬੰਧਨ ਦੀਆਂ ਕਿਸਮਾਂ

ਹਾਈਡੋਜਨ ਬੰਧਨ ਦੋ ਕਿਸਮਾਂ ਦੇ ਹੁੰਦੇ ਹਨ—

- (i) ਅੰਤਰ-ਅਣਵੀਂ ਹਾਈਡ੍ਰੋਜਨ ਬੰਧਨ
- (ii) ਅੰਤਰਾ-ਅਣਵੀਂ ਹਾਈਡ੍ਰੋਜਨ ਬੰਧਨ
- (1) ਅੰਤਰ ਅਣਵੀਂ ਹਾਈਡ੍ਰੋਜਨ ਬੰਧਨ: ਇਹ ਬੰਧਨ ਸਮਾਨ ਜਾਂ ਭਿੰਨ-ਭਿੰਨ ਯੋਗਿਕਾਂ ਦੇ ਦੋ ਵੱਖ-ਵੱਖ ਅਣੂਆਂ ਦੇ ਵਿੱਚ ਬਣਦੇ ਹਨ। ਉਦਾਹਰਣ ਵਜੋਂ-HF ਅਣੂ, ਐਲਕੋਹਲ ਜਾਂ ਪਾਣੀ ਦੇ ਅਣੂਆਂ ਦੇ ਵਿੱਚ ਹਾਈਡ੍ਰੋਜਨ ਬੰਧਨ
- (2) ਅੰਤਰਾ ਹਾਈਡ੍ਰੋਜਨ ਬੰਧਨ : ਇਹ ਬੰਧਨ ਇਹ ਹੀ ਅਣੂ ਵਿੱਚ ਮੌਜੂਦ ਹਾਈਡ੍ਰੋਜਨ ਪਰਮਾਣੂ ਅਤੇ ਜਿਆਦਾ ਇਲੈਕਟ੍ਰੋਨੈਗੇਟਿਵ

ਪਰਮਾਣੂ (F, O, N) ਦੇ ਵਿੱਚ ਬਣਦਾ ਹੈ। ਉਦਾਹਰਣ ਵਜੋਂ— O-ਨਾਈਟ੍ਰੋਫੀਨੋਲ ਵਿੱਚ ਹਾਈਡ੍ਰੋਜਨ, ਜੋ ਆੱਕਸੀਜਨ ਦੇ ਵਿੱਚ ਰਹਿੰਦਾ ਹੈ।

ਚਿੱਤਰ 4.22 o-ਨਾਈਟ੍ਰੋਫੀਨੌਲ ਅਣੂ ਵਿੱਚ ਅੰਤਰਾ ਅਣਵੀਂ ਹਾਈਡੋਜਨ ਬੰਧਨ

ਸਾਰਾਂਸ਼

ਇਲੈਕਟ੍ਰੋਪਾੱਜੇਟਿਵ ਅਤੇ ਇਲੈਕਟ੍ਰੋਨੈਗੇਟਿਵ ਆਇਨਾਂ ਦੇ ਬਣਨ ਦੀ ਕਿਰਿਆ ਵਿਧੀ ਦਾ ਸਭ ਤੋਂ ਪਹਿਲਾਂ ਕਾੱਸੇਲ ਨੇ ਸੰਬਧਿਤ ਆਇਨ ਦੁਆਰਾ ਨੋਬਲ ਗੈਸ ਤਰਤੀਬ ਦੀ ਪ੍ਰਾਪਤੀ ਦੇ ਨਾਲ ਸਬੰਧਿਤ ਕੀਤਾ। ਆਇਨਾਂ ਦੇ ਵਿੱਚ ਬਿਜਲਈ ਅਕਰਸ਼ਣ ਦੇ ਕਾਰਣ ਸਥਿਰਤਾ ਪੈਦਾ ਹੁੰਦੀ ਹੈ, ਜੋ ਬਿਜਲਈ ਸੰਯੋਜਕਤਾ ਦਾ ਅਧਾਰ ਹੈ।

ਲੁਈਸ ਨੇ ਸਭ ਤੋਂ ਪਹਿਲਾਂ ਸਹਿਸੰਯੋਜੀ ਬੰਧਨ ਦੀ ਵਿਆਖਿਆ ਪਰਮਾਣੂਆਂ ਦੁਆਰਾ ਇਲੈਕਟ੍ਰਾੱਨ ਯੁਗਮ ਦੇ ਸਹਿਭਾਜਨ ਦੇ ਰੂਪ ਵਿੱਚ ਕੀਤੀ। ਇਸ ਪ੍ਕਿਰਿਆ ਦੁਆਰਾ ਸਬੰਧਿਤ ਪਰਮਾਣੂ ਨੌਬਲ ਗੈਸ ਤਰਤੀਬ ਪ੍ਰਾਪਤ ਕਰਦੇ ਹਨ। ਲੁਈਸ ਬਿੰਦੂ ਚਿਨ੍ਹ ਕਿਸੇ ਤੱਤ ਦੇ ਪਰਮਾਣੂ ਦੇ ਸੰਯੋਜਕਤਾ ਇਲੈਕਟ੍ਰਾੱਨਾਂ ਨੂੰ ਦਰਸਾਉਂਦੇ ਹਨ ਅਤੇ ਲੁਈਸ ਬਿੰਦੂ ਸੰਰਚਨਾਵਾਂ ਅਣੁਆਂ ਵਿੱਚ ਬੰਧਨ ਦਾ ਚਿੱਤਰਣ ਕਰਦੀ ਹੈ।

ਆਇਨਿਕ ਯੋਗਿਕ ਧਨ ਆਇਨਾਂ ਅਤੇ ਰਿਣ ਆਇਨਾਂ ਦੀ ਨਿਸ਼ਚਿਤ ਕ੍ਰਮ ਵਿੱਚ ਤ੍ਰਿਵਿਗੀ ਵਿਵਸਥਾ ਹੁੰਦੀ ਹੈ, ਜਿਸ ਨੂੰ 'ਕ੍ਰਿਸਟਲੀ ਲੈਟਿਸ' ਕਿਹਾ ਜਾਂਦਾ ਹੈ। ਕ੍ਰਿਸਟਲੀ ਠੋਸਾਂ ਵਿੱਚ ਧਨ ਆਇਨ ਅਤੇ ਰਿਣ ਆਇਨ ਵਿੱਚ ਚਾਰਜ ਸੰਤੁਲਿਤ ਹੁੰਦਾ ਹੈ। ਕ੍ਰਿਸਟਲ ਲੈਟਿਸ ਦੀ ਲੈਟਿਸ ਵਿਰਚਨ ਐਨਥੈਲਪੀ ਦੁਆਰਾ ਸਥਿਰਤਾ ਹੁੰਦੀ ਹੈ।

ਦੋ ਪਰਮਾਣੂਆਂ ਦੇ ਵਿੱਚ ਇਕਹਿਰਾ ਸਹਿਸੰਯੋਜੀ ਬੰਧਨ ਦਾ ਬਣਨਾ ਇੱਕ-ਇੱਕ ਇਲੈਕਟ੍ਰਾੱਨ ਯੁਗਮ ਦੇ ਸਹਿਭਾਜਨ ਦੁਆਰਾ ਹੁੰਦਾ ਹੈ, ਜਦਕਿ ਦੋ ਜਾਂ ਤਿੰਨ ਇਲੈਕਟ੍ਰਾੱਨ ਯੁਗਮਾਂ ਦੇ ਸਹਿਭਾਜਨ ਦੇ ਫਲਸਰੂਪ ਬਹੁਬੰਧਨ ਨਿਰਮਿਤ ਹੁੰਦੇ ਹਨ। ਕੁਝ ਬੰਧਨੀ ਪਰਮਾਣੂਆਂ ਉੱਤੇ ਅਜਿਹੇ ਇਲੈਕਟ੍ਰਾਨ ਯੁਗਮ ਹੁੰਦੇ ਹਨ, ਜੋ ਬੰਧਨ ਵਿੱਚ ਭਾਗ ਨਹੀਂ ਲੈਂਦੇ।ਇਹ ਇਲੈਕਟ੍ਰਾਨ 'ਏਕਾਕੀ ਯੁਗਮ' (lone pair) ਅਖਵਾਉਂਦੇ ਹਨ। ਲੁਈਸ ਬਿੰਦੂ ਰਚਨਾ ਅਣੂ ਵਿੱਚ ਹਰ ਇੱਕ ਪਰਮਾਣੂ ਉੱਤੇ ਬੰਧਨ ਯੁਗਮਾਂ ਅਤੇ ਏਕਾਕੀ ਯੁਗਮਾਂ ਨੂੰ ਦਰਸਾਉਂਦੀ ਹੈ।ਰਸਾਇਣਿਕ ਬੰਧਨਾਂ ਦੇ ਕੁਝ ਪੈਰਾਮੀਟਰ, ਜਿਵੇਂ-ਬੰਧਨ ਐਨਥੈਲਪੀ, ਬੰਧਨ ਕੋਟੀ, ਇਲੈਕਟ੍ਰੋਨੈਗੇਟਿਵਤਾ ਅਤੇ ਬੰਧਨ ਧਰੁਵਣਤਾ ਯੋਗਿਕਾਂ ਦੇ ਗੁਣਾਂ ਨੂੰ ਪ੍ਰਭਾਵਿਤ ਕਰਦੇ ਹਨ।

ਬਹੁਤ ਸਾਰੇ ਅਣੂਆਂ ਅਤੇ ਬਹੁ ਪਰਮਾਣਵੀਂ ਆਇਨਾਂ ਨੂੰ ਸਿਰਫ ਇੱਕ ਲੁਈਸ ਰਚਨਾ ਦੁਆਰਾ ਪ੍ਰਦਰਸ਼ਿਤ ਨਹੀਂ ਕੀਤਾ ਜਾ ਸਕਦਾ। ਅਜਿਹੇ ਸਪੀਸ਼ੀਜ਼ ਲਈ ਅਨੇਕਾਂ ਰਚਨਾਵਾਂ ਲਿਖੀਆਂ ਜਾਂਦੀਆਂ ਹਨ, ਜਿਨ੍ਹਾਂ ਦੇ ਢਾਂਚੇ ਦੀ ਰਚਨਾ ਸਮਾਨ ਹੁੰਦੀ ਹੈ। ਇਹ ਸਾਰੀਆਂ ਰਚਨਾਵਾਂ ਇਕੱਠੇ ਰੂਪ ਵਿੱਚ ਅਣੂ ਜਾਂ ਆਇਨ ਦੀ ਵਾਸਤਵਿਕ ਰਚਨਾ ਪ੍ਰਦਰਸ਼ਿਤ ਕਰਦੀ ਹੈ। ਇਹ ਇੱਕ ਮਹੱਤਵਪੂਰਣ ਅਤੇ ਬੜੀ ਉਪਯੋਗੀ ਧਾਰਣਾ ਹੈ, ਜਿਸ ਨੂੰ 'ਅਨੁਨਾਦ' ਕਹਿੰਦੇ ਹਨ। ਯੋਗਦਾਨ ਦੇਣ ਵਾਲੀਆਂ ਕੈਨੋਨੀਕਲ ਸੰਰਚਨਾਵਾਂ ਦਾ ਅਨੁਨਾਦ ਸੰਕਰ ਅਣੂ ਜਾਂ ਆਇਨ ਦੀ ਵਾਸਤਵਿਕ ਸੰਰਚਨਾ ਪ੍ਰਦਰਸ਼ਿਤ ਕਰਦਾ ਹੈ।

ਵੀ.ਐਸ.ਈ.ਪੀ.ਆਰ. ਮਾੱਡਲ ਦੀ ਵਰਤੋਂ ਅਣੂਆਂ ਦੀ ਜੋਮੈਟਰੀਕਲ ਆਕ੍ਰਿਤੀਆਂ ਦੇ ਪੂਰਵ ਅਨੁਮਾਨ ਦੇ ਲਈ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਇਹ ਮਾੱਡਲ ਇਸ ਕਲਪਨਾ ਉੱਤੇ ਅਧਾਰਿਤ ਹੈ ਕਿ ਅਣੂ ਵਿੱਚ ਇਲੈਕਟ੍ਰਾਨ ਯੁਗਮ ਇੱਕ-ਦੂਜੇ ਨੂੰ ਪ੍ਰਤੀਕਰਸ਼ਿਤ ਕਰਦੇ ਹਨ। ਇਸ ਮਾੱਡਲ ਦੇ ਅਨੁਸਾਰ ਅਣਵੀਂ ਜੋਮੈਟਰੀ ਏਕਾਕੀ ਯੁਗਮ-ਏਕਾਕੀ ਯੁਗਮ, ਏਕਾਕੀ ਯੁਗਮ-ਬੰਧਨ ਯੁਗਮ ਅਤੇ ਬੰਧਨ ਯੁਗਮ-ਬੰਧਨ ਯੁਗਮ ਪ੍ਰਤੀਕਰਸ਼ਣਾਂ ਉੱਤੇ ਨਿਰਭਰ ਕਰਦੀ ਹੈ। ਇਨ੍ਹਾਂ ਪ੍ਰਤੀਕਰਸ਼ਣ ਬਲਾਂ ਦਾ ਕ੍ਰਮ ਇਸ ਪ੍ਰਕਾਰ ਹੈ-lp-lp > lp-bp > bp-bp

ਸਹਿਸੰਯੋਜੀ ਬੰਧਨ ਦਾ ਸਹਿਯੰਜੋਕਤਾ ਬੰਧਨ ਸਿਧਾਂਤ ਸਹਿਸੰਯੋਜੀ ਬੰਧਨ ਬਣਨ ਦੇ ਉਰਜਾ ਵਿਗਿਆਨ ਉੱਤੇ ਅਧਾਰਿਤ ਹੈ, ਜਿਸ ਉੱਤੇ ਲੁਈਸ ਅਤੇ ਵੀ.ਐਸ.ਈ.ਪੀ ਆਰ. ਮਾੱਡਲ ਪ੍ਰਕਾਸ਼ ਨਹੀਂ ਪਾਉਂਦੇ। ਮੂਲ ਰੂਪ ਵਿੱਚ VB ਸਿਧਾਂਤ ਆੱਰਬਿਟਲਾਂ ਦੇ ਓਵਰ ਲੈਪਿੰਗ ਉੱਤੇ ਅਧਾਰਿਤ ਹੈ। ਉਦਾਹਰਣ ਵਜੋਂ H_2 ਅਣੂ ਦਾ ਬਣਨਾ ਦੋ ਹਾਈਡ੍ਰੋਜਨ ਪਰਮਾਣੂਆਂ ਦੇ ਇੱਕ ਇਲੈਕਟ੍ਰਾੱਨ ਵਾਲੇ 1s ਆੱਰਬਿਟਲਾਂ ਦੇ ਓਵਰ ਲੈਪਿੰਗ ਦੇ ਫਲਸਰੂਪ ਹੁੰਦਾ ਹੈ। ਦੋ ਹਾਈਡ੍ਰੋਜਨ ਪਰਮਾਣੂ ਜਿਵੇਂ ਜਿਵੇਂ ਨੇੜੇ ਆਉਂਦੇ ਹਨ, ਤਿਵੇਂ ਤਿਵੇਂ ਸਿਸਟਮ ਦੀ ਸਥਿਤਿਜ ਊਰਜਾ ਘੱਟ ਹੁੰਦੀ ਜਾਂਦੀ ਹੈ। ਸੰਤੁਲਨ ਅੰਤਰ ਨਿਊਕਲੀ ਦੂਰੀ (ਬੰਧਨ ਲੰਬਾਈ) ਉੱਤੇ ਸਿਸਟਮ ਦੀ ਊਰਜਾ ਨਿਊਨਤਮ ਹੁੰਦੀ ਹੈ। ਨਿਊਕਲੀਅਸਾਂ ਨੂੰ ਹੋਰ ਨੇੜੇ ਲਿਆਉਣ ਦੇ ਲਈ ਸਿਸਟਮ ਦੀ ਊਰਜਾ ਤੇਜੀ ਨਾਲ ਵੱਧਦੀ ਹੈ। ਅਰਥਾਤ ਅਣੂ ਦੀ ਸਥਿਰਤਾ ਘੱਟ ਹੋ ਜਾਂਦੀ ਹੈ। ਅੱਰਬਿਟਲ ਓਵਰ ਲੈਪਿੰਗ ਦੇ ਕਾਰਣ ਦੋਵਾਂ ਨਿਊਕਲੀਅਸਾਂ ਦੇ ਵਿੱਚ ਇਲੈਕਟ੍ਰਾਨ ਘਣਤਾ ਵੱਧ ਜਾਂਦੀ ਹੈ ਜਿਸ ਦੇ ਕਾਰਣ ਨਿਊਕਲੀਅਸ ਆਪਸ ਵਿੱਚ ਨੇੜੇ–ਨੇੜੇ ਆ ਜਾਂਦੇ ਹਨ। ਪਰੰਤੂ ਇਹ ਵੇਖਿਆ ਗਿਆ ਹੈ ਕਿ ਸਿਰਫ ਓਵਰਲੈਪਿੰਗ ਦੇ ਅਧਾਰ ਤੇ ਬੰਧਨ ਐਨਥੈਲਪੀ ਅਤੇ ਬੰਧਨ ਲੰਬਾਈਆਂ ਦੇ ਵਾਸਤਵਿਕ ਮਾਨ ਪ੍ਰਾਪਤ ਨਹੀਂ ਹੁੰਦੇ ਹਨ। ਇਸ ਦੇ ਲਈ ਕੁਝ ਹੋਰ ਕਾਰਕਾਂ ਉੱਤੇ ਵੀ ਵਿਚਾਰ ਕਰਨਾ ਜਰੂਰੀ ਹੈ।

ਬਹੁਪਰਮਾਣਵੀਂ ਅਣੂਆਂ ਦੀਆਂ ਵਿਸ਼ਿਸ਼ਟ ਆਕ੍ਰਿਤੀਆਂ ਨੂੰ ਸਪੱਸ਼ਟ ਕਰਨ ਦੇ ਲਈ ਪਾੱਲਿੰਗ ਨੇ ਪਰਮਾਣੂ ਆੱਰਬਿਟਲਾਂ ਦੇ ਸੰਕਰਣ ਦੀ ਧਾਰਣਾ ਨੂੰ ਪ੍ਰਸਤੁਤ ਕੀਤਾ। $_{\rm Be,\ C,\ N}$ ਅਤੇ $_{\rm O}$ ਦੇ ਪਰਮਾਣੂ ਆੱਰਬਿਟਲਾਂ ਦੇ $_{\rm Sp}$ $_{\rm Sp}$ $_{\rm Sp}$ ਸੰਕਰਾਂ ਦੇ ਅਧਾਰ ਤੇ $_{\rm BeCl_2}$, $_{\rm BCl_3}$, $_{\rm CH_4}$, $_{\rm NH_3}$ ਅਤੇ $_{\rm H_2O}$ ਆਦਿ ਅਣੂਆਂ ਦਾ ਬਣਨਾ ਅਤੇ ਉਨ੍ਹਾਂ ਦੀਆਂ ਜੋਮੈਟਰੀਕਲ ਆਕ੍ਰਿਤੀਆਂ ਸਪੱਸ਼ਟ ਕੀਤੀਆਂ ਜਾ ਸਕਦੀਆਂ ਹਨ। ਇਸ ਦੇ ਅਧਾਰ ਤੇ $_{\rm C_2H_2}$ ਅਤੇ $_{\rm C_2H_4}$ ਆਦਿ ਅਣੂਆਂ ਵਿੱਚ ਬਹੁ ਬੰਧਨਾਂ ਦਾ ਨਿਰਮਾਣ ਵੀ ਸਪੱਸ਼ਟ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।

ਅਣਵੀਂ ਆੱਰਬਿਟਲ ਸਿਧਾਂਤ ਪਰਮਾਣੂ ਆੱਰਬਿਟਲਾਂ ਦੇ ਸੰਯੋਗ ਅਤੇ ਵਿਵਸਥਾ ਤੋਂ ਸੰਪੂਰਣ ਅਣੂ ਨਾਲ ਸਬੰਧਿਤ ਅਣਵੀਂ ਆੱਰਬਿਟਲਾਂ ਦੇ ਬਣਨ ਦੇ ਰੂਪ ਵਿੱਚ ਬੰਧਨ ਦਾ ਵਰਣਨ ਕਰਦਾ ਹੈ। ਅਣਵੀਂ ਆੱਰਬਿਟਲਾਂ ਦੀ ਸੰਖਿਆ ਸੰਜੋਗ ਕਰਨ ਵਾਲੇ ਪਰਮਾਣੂ ਆੱਰਬਿਟਲਾਂ ਦੀ ਸੰਖਿਆ ਦੇ ਬਰਾਬਰ ਹੁੰਦੀ ਹੈ। ਬੰਧਨੀ ਅਣਵੀਂ ਆੱਰਬਿਟਲ ਨਿਊਕਲੀਅਸਾਂ ਦੇ ਵਿੱਚ ਇਲੈਕਟਰਾੱਨ ਘਣਤਾਵਾਂ ਦਿੰਦੇ ਹਨ ਅਤੇ ਇਨ੍ਹਾਂ ਦੀ ਉਰਜਾ ਵਿਅਕਤੀਗਤ ਪਰਮਾਣੂ ਆੱਰਬਿਟਲਾਂ ਦੀ ਊਰਜਾ ਤੋਂ ਘੱਟ ਹੁੰਦੀ ਹੈ। ਪ੍ਤੀਬੰਧਨ ਅਣਵੀਂ ਆੱਰਬਿਟਲ ਵਿੱਚ ਨਿਊਕਲੀਅਸਾਂ ਦੇ ਵਿੱਚ ਸਿਫਰ ਇਲੈਕਟ੍ਰਾਂਨ ਘਣਤਾ ਹੁੰਦੀ ਹੈ। ਇਨ੍ਹਾਂ ਆੱਰਬਿਟਲਾਂ ਦੀ ਉਰਜਾ ਵਿਅਕਤੀਗਤ ਪਰਮਾਣੂ ਆੱਰਬਿਟਲਾਂ ਨਾਲੋਂ ਵਧੇਰੇ ਹੁੰਦੀ ਹੈ।

ਅਣੂਆਂ ਦੀ ਇਲੈਕਟ੍ਰਾੱਨ ਤਰਤੀਬ ਅਣਵੀਂ ਆੱਰਬਿਟਲਾਂ ਵਿੱਚ ਇਲੈਕਟ੍ਰਾਂਨਾਂ ਨੂੰ ਊਰਜਾ ਦੇ ਵੱਧਦੇ ਕ੍ਰਮ ਵਿੱਚ ਭਰਦੇ ਹੋਏ ਲਿਖਿਆ ਜਾਂਦਾ ਹੈ।ਪਰਮਾਣੂਆਂ ਦੀ ਤਰ੍ਹਾਂ ਇੱਥੇ ਵੀ ਪਾੱਲੀ ਐਕਸਕਲੂਈਅਨ ਨਿਯਮ ਅਤੇ ਹੁੰਡ ਦੇ ਨਿਯਮ ਲਾਗੂ ਹੁੰਦੇ ਹਨ। ਜੇ ਅਣੂ ਦੇ ਬੰਧਨ ਅਣਵੀਂ ਆਰਬਿਟਲਾਂ ਵਿੱਚ ਇਲੈਕਟ੍ਰਾੱਨਾਂ ਦੀ ਸੰਖਿਆ ਪ੍ਰਤੀ ਬੰਧਨ ਅਣਵੀਂ ਆੱਰਬਿਟਲਾਂ ਵਿੱਚ ਮੌਜੂਦ ਇਲੈਕਟ੍ਰਾੱਨਾਂ ਦੀ ਸੰਖਿਆ ਤੋਂ ਵੱਧ ਹੁੰਦੀ ਹੈ ਤਾਂ ਅਣੂ ਸਥਾਈ ਹੁੰਦਾ ਹੈ।

ਜਦੋਂ ਇੱਕ ਹਾਈਡ੍ਰੋਜਨ ਪਰਮਾਣੂ ਦੇ ਬਹੁਤ ਜਿਆਦਾ ਇਲੈਕਟ੍ਰੋਨੈਗੇਟਿਵ ਪਰਮਾਣੂਆਂ (F, N, O) ਦੇ ਵਿੱਚ ਹੁੰਦਾ ਹੈ, ਤਾਂ ਉਸ ਵਿੱਚ ਹਾਈਡ੍ਰੋਜਨ ਬੰਧਨ ਬਣਦਾ ਹੈ। ਇਹ ਅੰਤਰ ਅਣਵੀਂ (ਸਮਾਨ ਜਾਂ ਭਿੰਨ ਅਣੂਆਂ ਦੇ ਵੱਖ–ਵੱਖ ਅਣੂਆਂ ਦੇ ਵਿੱਚ) ਜਾਂ ਅੰਤਰਾ–ਅਣਵੀਂ (ਇੱਕ ਅਣੂ ਵਿੱਚ ਹੀ) ਕਿਸਮ ਦਾ ਹੋ ਸਕਦਾ ਹੈ। ਹਾਈਡ੍ਰੋਜਨ ਬੰਧਨ ਕਈ ਯੋਗਿਕਾਂ ਦੀਆਂ ਬਣਤਰਾਂ ਅਤੇ ਗਣਾਂ ਉੱਤੇ ਬਹੁਤ ਪ੍ਰਭਾਵ ਪਾਉਂਦੇ ਹਨ।

ਅਭਿਆਸ

- $^{4.1}$ ਰਸਾਇਣਿਕ ਬੰਧਨ ਦੇ ਬਣਨ ਦੀ ਵਿਆਖਿਆ ਕਰੋ।
- $^{4.2}$ ਹੇਠ ਲਿਖੇ ਤੱਤਾਂ ਦੇ ਪਰਮਾਣੂਆਂ ਦੇ ਲੂਈਸ ਬਿੰਦੂ ਪ੍ਰਤੀਕ ਲਿਖੋ–
- $^{4.3}$ ਹੇਠ ਲਿਖੇ ਪਰਮਾਣੂਆਂ ਅਤੇ ਆਇਨਾਂ ਦੇ ਲੁਈਸ ਬਿੰਦੂ ਪ੍ਰਤੀਕ ਲਿਖੋ– S ਅਤੇ S $^{2-}$; Al ਅਤੇ Al $^{3+}$; H ਅਤੇ H $^{-}$
- 4.4 ਹੇਠ ਲਿਖੇ ਅਣੂਆਂ ਅਤੇ ਆਇਨਾਂ ਦੀਆਂ ਲੁਈਸ ਰਚਨਾਵਾਂ ਲਿਖੋ– H_2S , $SiCl_4$, BeF_2 , CO_3^{2-} , HCOOH

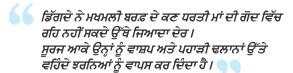
- 4.5 ਅਸ਼ਟਕ ਨਿਯਮ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਕਰੋ ਅਤੇ ਇਸ ਨਿਯਮ ਦੇ ਮਹੱਤਵ ਅਤੇ ਸੀਮਾਵਾਂ ਨੂੰ ਲਿਖੋ।
- 4.6 ਆਇਨਿਕ ਬੰਧਨ ਬਨਾਉਣ ਦੇ ਲਈ ਸਹਾਇਕ ਕਾਰਕ ਲਿਖੋ।
- 4.7 ਹੇਠ ਲਿਖੇ ਅਣੂਆਂ ਦੀ ਆਕ੍ਰਿਤੀ ਦੀ ਵਿਆਖਿਆ ਵੀ.ਐਸ.ਈ.ਪੀ.ਆਰ. (ਸਿਧਾਂਤ) ਦੇ ਅਨੁਰੂਪ ਕਰੋ– $BeCl_2$, Bcl_3 , $SiCl_4$, AsF_5 , H_2S , PH_3
- 4.8 ਭਾਵੇਂ NH_3 ਅਤੇ H_2O ਦੋਵਾਂ ਅਣੂਆਂ ਦੀ ਜੋਮੈਟਰੀ ਵਿਕ੍ਰਿਤ ਚੌਫਲਕੀ ਹੁੰਦੀ ਹੈ, ਫਿਰ ਵੀ ਪਾਣੀ ਵਿੱਚ ਬੰਧਨ ਕੋਣ ਅਮੋਨੀਆਂ ਨਾਲੋਂ ਘੱਟ ਹੁੰਦਾ ਹੈ। ਵਿਆਖਿਆ ਕਰੋ.
- 4.9 ਬੰਧਨ ਪ੍ਰਬਲਤਾ ਨੂੰ ਬੰਧਨ ਕੋਟੀ ਦੇ ਰੂਪ ਵਿੱਚ ਤੁਸੀਂ ਕਿਸ ਤਰ੍ਹਾਂ ਵਿਅਕਤ ਕਰੋਗੇ?
- 4.10 ਬੰਧਨ ਲੰਬਾਈ ਦੀ ਪਰਿਭਾਸ਼ਾ ਦਿਓ।
- $4.11 ext{ } ext{CO}_3^{2-}$ ਆਇਨ ਦੇ ਸੰਦਰਭ ਵਿੱਚ ਅਨੁਨਾਦ ਦੇ ਭਿੰਨ–ਭਿੰਨ ਪਹਿਲੂਆਂ ਨੂੰ ਸਪੱਸ਼ਟ ਕਰੋ।
- 4.12 ਹੇਠਾਂ ਦਿੱਤੀਆਂ ਗਈਆਂ ਰਚਨਾਵਾਂ (1 ਅਤੇ 2) ਦੁਆਰਾ H₃PO₃ ਨੂੰ ਪ੍ਰਦਰਸ਼ਿਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਕੀ ਇਹ ਦੋ ਰਚਨਾਵਾਂ H₃PO₃ ਦੇ ਅਨੁਨਾਦ ਸੰਕਰ ਦੇ ਕੈਨੋਨੀਕਲ ਰੂਪ ਮੰਨੇ ਜਾ ਸਕਦੇ ਹਨ? ਜੇ ਨਹੀਂ, ਤਾਂ ਉਸਦਾ ਕਾਰਣ ਦੱਸੋ।

- $4.13~{
 m SO_3},~{
 m NO_2}$ ਅਤੇ ${
 m NO_3}^-$ ਦੀਆਂ ਅਨੁਨਾਦ ਰਚਨਾਵਾਂ ਲਿਖੋ।
- 4.14 ਹੇਠ ਲਿਖੇ ਪਰਮਾਣੂਆਂ ਵਿੱਚ ਇਲੈਕਟ੍ਰਾੱਨ ਸਥਾਨ ਅੰਤਰਣ ਦੁਆਰਾ ਧਨ ਆਇਨਾਂ ਅਤੇ ਰਿਣ ਆਇਨਾਂ ਵਿੱਚ ਵਿਚਰਨ ਨੂੰ ਲੁਈਸ ਬਿੰਦੂ ਪ੍ਤੀਕਾਂ ਦੀ ਸਹਾਇਤਾ ਨਾਲ ਦਰਸਾਓ : Al and N. ੳ K ਅਤੇ S ਅ Ca ਅਤੇ O ੲ
- 4.15 ਹਾਲਾਂਕਿ ${
 m CO_2}$ ਅਤੇ ${
 m H_2O}$ ਦੋਵੇਂ ਤਿੰਨ ਪਰਮਾਣਵੀਂ ਅਣੂ ਹਨ, ਪਰੰਤੂ ${
 m H_2O}$ ਅਣੂ ਦੀ ਆਕ੍ਰਿਤੀ ਮੁੜੀ ਹੁੰਦੀ ਹੈ, ਜਦਕਿ ${
 m CO_2}$ ਦੀ ਰੇਖੀ ਆਕ੍ਰਿਤੀ ਹੰਦੀ ਹੈ। ਦੋ ਧਰੁਵ ਮੌਮੈਂਟ ਦੇ ਅਧਾਰ ਤੇ ਇਸ ਦੀ ਵਿਆਖਿਆ ਕਰੋ।
- 4.16 ਦੋ ਧਰੁਵ ਮੋਮੈਂਟ ਦੇ ਮਹੱਤਵਪੂਰਣ ਅਨੂ ਪ੍ਰਯੋਗ ਦੱਸੋ।
- 4.17 ਇਲੈਕਟੋਨੈਗੇਟਿਵਟੀ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਕਰੋ। ਇਹ ਇਲੈਕਟ੍ਰਾੱਨ ਗ੍ਰਹਿਣ ਐਨਥੈਲਪੀ ਤੋਂ ਕਿਵੇਂ ਭਿੰਨ ਹੈ।
- 4.18 ਧਰੁਵੀ ਸਹਿਸੰਯੋਜੀ ਬੰਧਨ ਤੋਂ ਤੁਸੀਂ ਕੀ ਸਮਝਦੇ ਹੋ ? ਉਦਾਹਰਣ ਸਹਿਤ ਵਿਆਖਿਆ ਕਰੋ।
- 4.19 ਹੇਠ ਲਿਖੇ ਅਣੂਆਂ ਨੂੰ ਬੰਧਨਾਂ ਦੀ ਵੱਧਦੀ ਆਇਨਿਕ ਪ੍ਕਿਰਤੀ ਦੇ ਕ੍ਰਮ ਵਿੱਚ ਲਿਖੋ− LiF, $\rm K_2O,~N_2,~SO_2$ ਅਤੇ $\rm ClF_3$.
- 4.20 CH₃COOH ਦੀ ਹੇਠਾਂ ਦਿੱਤੀ ਗਈ ਢਾਂਚਾ-ਬਣਤਰ ਸਹੀ ਹੈ, ਪਰੰਤੂ ਕੁਝ ਬੰਧਨ ਤਰੁੱਟੀ ਪੂਰਣ ਦਰਸਾਏ ਗਏ ਹਨ। ਐਸਿਟਿਕ ਐਸਿਡ ਦੀ ਸਹੀ ਲਈਸ ਰਚਨਾ ਲਿਖੋ–

- 4.21 ਚੌਫਲਕੀ ਜੋਮੈਟਰੀ ਦੇ ਇਲਾਵਾ CH_4 ਅਣੂ ਦੀ ਇੱਕ ਹੋਰ ਸੰਭਵ ਜੋਮੈਟਰੀ ਵਰਗ ਸਮਤਲੀ ਹੈ, ਜਿਸ ਵਿੱਚ ਹਾਈਡ੍ਰੋਜਨ ਦੇ ਚਾਰ ਪਰਮਾਣੂ ਇੱਕ ਵਰਗ ਦੇ ਚੌਹਾਂ ਕੋਣਿਆਂ ਉੱਤੇ ਹੁੰਦੇ ਹਨ। ਵਿਆਖਿਆ ਕਰੋ ਕਿ CH_4 ਅਣੂ ਵਰਗ–ਸਮਤਲੀ ਨਹੀਂ ਹੁੰਦਾ।
- 4.22 ਭਾਵੇਂ Be-H ਬੰਧਨ ਧਰੁਵੀ ਹੈ, ਫਿਰ ਵੀ BeH, ਅਣੂ ਦੀ ਦੋ ਧਰੁਵੀ ਮੋਮੈਂਟ ਸਿਫਰ ਹੈ। ਸਪਸ਼ਟ ਕਰੋ।

- 4.23 NH₃ ਅਤੇ NF₃ ਵਿੱਚ ਕਿਸ ਅਣੂ ਦੀ ਦੋ ਧਰੁਵੀ ਮੌਮੈਂਟ ਵਧੇਰੇ ਹੈ ਅਤੇ ਕਿਉਂ?
- 4.24 ਪਰਮਾਣੂ ਆੱਰਬਿਟਲਾਂ ਦੇ ਸੰਕਰਣ ਤੋਂ ਤੁਸੀਂ ਕੀ ਸਮਝਦੇ ਹੋ ? sp, sp^2, sp^3 ਸੰਕਰ ਆੱਰਬਿਟਲਾਂ ਦੀ ਆਕ੍ਰਿਤੀ ਦਾ ਵਰਣਨ ਕਰੋ।
- 4.25 ਹੇਠ ਲਿਖੀ ਪ੍ਤੀਕਿਰਿਆ ਵਿੱਚ Al ਪਰਮਾਣੂ ਦੀ ਸੰਕਰਣ ਅਵਸਥਾ ਵਿੱਚ ਪਰਿਵਰਤਨ (ਜੇ ਹੁੰਦਾ ਹੈ ਤਾਂ) ਨੂੰ ਸਮਝਾਓ
 - $AlCl_3 + Cl^- \rightarrow AlCl_4^-$
- 4.26 ਕੀ ਹੇਠ ਲਿਖੀ ਪ੍ਤੀ ਕਿਰਿਆ ਵਿੱਚ B ਅਤੇ N ਪਰਮਾਣੂਆਂ ਦੀ ਸੰਕਰਣ ਅਵਸਥਾ ਵਿੱਚ ਪਰਿਵਰਤਨ ਹੁੰਦਾ ਹੈ।
 - $BF_3 + NH_3 \rightarrow F_3B.NH_3$
- C_2H_4 ਅਤੇ C_2H_2 ਅਣੂਆਂ ਵਿੱਚ ਕਾਰਬਨ ਪਰਮਾਣੂਆਂ ਵਿੱਚ ਕ੍ਰਮਵਾਰ ਦੂਹਰੇ ਅਤੇ ਤੀਹਰੇ ਬੰਧਨ ਦੇ ਨਿਰਮਾਣ ਨੂੰ ਚਿੱਤਰ ਦੁਆਰਾ ਸਪੱਸ਼ਟ ਕਰੋ।
- 4.28 ਹੇਠ ਲਿਖੇ ਅਣੂਆਂ ਵਿੱਚ ਸਿਗਮਾ (σ) ਅਤੇ ਪਾਈ (π) ਬੰਧਨਾਂ ਦੀ ਕੁੱਲ ਸੰਖਿਆ ਕਿੰਨੀ ਹੈ? (θ) $C_{2}H_{4}$ (θ) $C_{3}H_{4}$
- x-ਅਕਸ ਨੂੰ ਅੰਤਰ ਨਿਊਕਲੀ ਅਕਸ ਮੰਨਦੇ ਹੋਏ ਦੱਸੋ ਕਿ ਹੇਠ ਲਿਖਿਆਂ ਵਿੱਚੋਂ ਕਿਹੜੇ ਆਰਬਿਟਲ ਸਿਗਮਾ (ਰ) ਬੰਧਨ ਨਹੀਂ ਬਣਾਉਨਗੇ ਅਤੇ ਕਿਉਂ? (ੳ) 1s ਅਤੇ 1s (ਅ) 1s ਅਤੇ $2p_x$; (ੲ) $2p_y$ ਅਤੇ p_y (ਸ) 1s ਅਤੇ 2s.
- 4.30 ਹੇਠ ਲਿਖੇ ਅਣੂਆਂ ਵਿੱਚ ਕਾਰਬਨ ਪਰਮਾਣੂ ਦੇ ਕਿਹੜੇ ਸੰਕਰ ਆੱਰਬਿਟਲ ਵਰਤਦੇ ਹਨ ? (ੳ) CH₃-CH₃; (ਅ) CH₃-CH=CH₂; (ੲ) CH₃-CH₂-OH; (ਸ) CH₃-CHO (ਹ) CH₃COOH
- 4.31 ਇਲੈਕਟ੍ਰਾੱਨਾਂ ਦੇ ਬੰਧਨ ਯੁਗਮ ਅਤੇ ਏਕਾਕੀ ਯੁਗਮ ਤੋਂ ਤੁਸੀਂ ਕੀ ਸਮਝਦੇ ਹੋ? ਹਰ ਇੱਕ ਨੂੰ ਇੱਕ-ਇੱਕ ਉਦਾਹਰਣ ਦੁਆਰਾ ਸਪੱਸ਼ਟ ਕਰੋ।
- 4.32 ਸਿਗਮਾਂ ਅਤੇ ਪਾਈ ਬੰਧਨ ਵਿੱਚ ਅੰਤਰ ਸੱਪਸ਼ਟ ਕਰੋ।
- 4.33 ਸੰਯੋਜਕਤਾ ਬੰਧਨ ਸਿਧਾਂਤ ਦੇ ਅਧਾਰ ਤੇ H₃ ਅਣੂ ਦੇ ਬਣਨ ਦੀ ਵਿਆਖਿਆ ਕਰੋ।
- 4.34 ਪਰਮਾਣੂ ਆੱਰਬਿਟਲਾਂ ਦੇ ਰੇਖੀ ਸੰਯੋਗ ਤੋਂ ਅਣਵੀਂ ਆੱਰਬਿਟਲ ਬਣਨ ਦੇ ਲਈ ਜਰੂਰੀ ਸ਼ਰਤਾਂ ਨੂੰ ਲਿਖੋ।
- 4.35 ਅਣਵੀਂ ਆੱਰਬਿਟਲ ਸਿਧਾਂਤ ਦੇ ਅਧਾਰ ਤੇ ਸਮਝਾਓ ਕਿ Be_2 ਅਣੂ ਦੀ ਹੋਂਦ ਕਿਉਂ ਨਹੀਂ ਹੁੰਦੀ?
- 4.36 ਹੇਠ ਲਿਖੇ ਸਪੀਸ਼ੀਜ ਵਿੱਚ ਸਥਾਈਪੰਨ ਦੀ ਤੁਲਨਾ ਕਰੋ ਅਤੇ ਉਨ੍ਹਾਂ ਦੇ ਚੁੰਬਕੀ ਗੁਣ ਲਿਖੋ O_2, O_2^+, O_2^- (ਸੁਪਰ ਆੱਕਸਾਈਡ), O_2^{2-} (ਪਰ ਆੱਕਸਾਈਡ)
- 4.37 ਆੱਰਬਿਟਲਾਂ ਦੇ ਨਿਰੁਪਣ ਵਿੱਚ ਵਰਤੇ ਧਨ (+) ਅਤੇ ਰਿਣ (–) ਚਿਨ੍ਹਾਂ ਦਾ ਕੀ ਮਹੱਤਵ ਹੈ ?
- 4.38 PCl, ਅਣੂ ਵਿੱਚ ਸੰਕਰਣ ਦਾ ਵਰਣਨ ਕਰੋ। ਇਸ ਵਿੱਚ ਅਕਸੀ ਬੰਧਨ ਵਿਸ਼ੁਵਤੀ ਬੰਧਨ ਨਾਲੋਂ ਵਧੇਰੇ ਲੰਬੇ ਕਿਉਂ ਹੁੰਦੇ ਹਨ ?
- 4.39 ਹਾਈਡ੍ਰੋਜਨ ਬੰਧਨ ਦੀ ਪਰਿਭਾਸ਼ਾ ਦਿਓ। ਇਹ ਵਾਂਡਰਵਾਲ ਬਲਾਂ ਨਾਲੋਂ ਪ੍ਰਬਲ ਹੁੰਦੇ ਹਨ ਜਾਂ ਕਮਜੋਰ ?
- 4.40 ਬੰਧਨ–ਕੋਟੀ ਤੋਂ ਤੁਸੀਂ ਕੀ ਸਮਝਦੇ ਹੋ ? ਹੇਠ ਲਿਖਿਆਂ ਵਿੱਚ ਬੰਧਨ ਕੋਟੀ ਦਾ ਪਰਿਕਲਨ ਕਰੋ N_2 , O_2 , O_2^+ ਅਤੇ O_2^- .

ਯੁਨਿਟ 5


ਮਾਦੇ ਦੀਆਂ ਅਵਸਥਾਵਾਂ

STATES OF MATTER

ਉਦੇਸ਼

ਇਸ ਯੂਨਿਟ ਦੇ ਅਧਿਐਨ ਦੇ ਬਾਅਦ ਤੁਸੀਂ

- ਮਾਦੇ ਦੀਆਂ ਭਿੰਨ ਭਿੰਨ ਅਵਸਥਾਵਾਂ ਦੀ ਹੋਂਦ ਨੂੰ ਕਣਾਂ ਦੇ ਵਿੱਚ ਅੰਤਰ ਅਣਵੀਂ ਬਲਾਂ ਅਤੇ ਤਾਪ ਊਰਜਾ ਨਾਲ ਪਰਸਪਰ ਸੰਤੁਲਨ ਦੇ ਆਧਾਰ ਤੇ ਸਮਝ ਸਕੋਗੇ;
- ਅਦਰਸ਼ ਗੈਸਾਂ ਦੇ ਵਿਹਾਰ ਨੂੰ ਨਿਯੰਤਰਿਤ ਕਰਨ ਵਾਲੇ ਨਿਯਮਾਂ ਦੀ ਵਿਆਖਿਆ ਕਰ ਸਕੋਗੇ:
- ਵਾਸਤਵਿਕ ਜੀਵਨ ਦੀਆਂ ਭਿੰਨ ਭਿੰਨ ਪਰਿਸਥਿਤੀਆਂ ਵਿੱਚ ਗੈਸ ਨਿਯਮਾਂ ਦੀ ਵਰਤੋਂ ਕਰ ਸਕੋਗੇ:
- ਗੈਸਾਂ ਦੇ ਦਰਵੀਕਰਣ ਦੇ ਲਈ ਲੋੜੀਂਦੀਆਂ ਪਰਿਸਥਿਤੀਆਂ ਦੀ ਵਿਆਖਿਆ ਕਰ ਸਕੋਗੇ;
- ਗੈਸੀ ਅਤੇ ਦ੍ਵ ਅਵਸਥਾ ਵਿੱਚ ਨਿਰੰਤਰਤਾ ਨੂੰ ਮਹਿਸੂਸ ਕਰ ਸਕੋਗੇ;
- ਗੈਸੀ ਅਵਸਥਾ ਅਤੇ ਵਾਸ਼ਪ ਵਿੱਚ ਅੰਤਰ ਕਰ ਸਕੋਗੇ:
- ਅੰਤਰ ਅਣਵੀਂ ਅਕਰਸ਼ਣ ਦੇ ਅਧਾਰ ਤੇ ਦ੍ਵ ਦੇ ਗੁਣਾਂ ਨੂੰ ਸਪਸ਼ਟ ਕਰ ਸਕੋਗੇ।

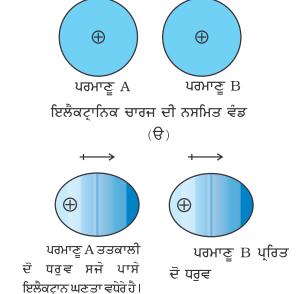
ਰੋਡ ਓ ਕੋਨੋਰ

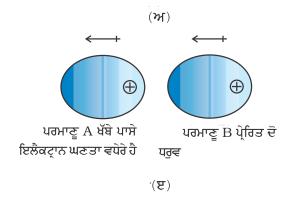
ਜਾਣ ਪਛਾਣ

ਇਸ ਤੋਂ ਪਹਿਲਾਂ ਦੇ ਯੁਨਿਟਾਂ ਵਿੱਚ ਅਸੀਂ ਮਾਦੇ ਦੇ ਇਕ ਕਣ ਨਾਲ ਸੰਬੰਧਿਤ ਗੁਣਾਂ ਜਿਵੇਂ- ਪਰਮਾਣਵੀਂ ਆਕਾਰ, ਆਇਨਨ ਐਨਥੈਲਪੀ, ਇਲੈਕਟ੍ਰਾਂਨਿਕ ਚਾਰਜ ਘਣਤਾ, ਧਰੁਵਤਾ ਆਦਿ ਦਾ ਅਧਿਐਨ ਕੀਤਾ। ਰਸਾਇਨਿਕ ਸਿਸਟਮਾਂ ਦੇ ਵਧੇਰੇ ਗੁਣ, ਜਿਨ੍ਹਾਂ ਤੋਂ ਅਸੀਂ ਜਾਣੂ ਹਾਂ, ਮਾਦੇ ਦੇ ਸਥੂਲ ਕਣਾਂ ਨੂੰ ਨਿਰੂਪਿਤ ਕਰਦੇ ਹਨ, ਅਰਥਾਤ ਉਹ ਗੁਣ ਜੋ ਵੱਡੀ ਗਿਣਤੀ ਵਿੱਚ ਇਕੱਠੇ ਅਣੂਆਂ, ਪਰਮਾਣੂਆਂ ਜਾਂ ਆਇਨਾਂ ਦੇ ਸਮੂਹ ਨਾਲ ਸਬੰਧਿਤ ਹੁੰਦੇ ਹਨ। ਉਦਾਹਰਣ ਵਜੋਂ – ਮਾਦੇ ਦਾ ਸਿਰਫ ਇੱਕ ਅਣੂ ਨਹੀਂ, ਬਲਕਿ ਉਨ੍ਹਾਂ ਦਾ ਸਮੂਹ ਉਬਲਦਾ ਹੈ। ਗਿੱਲਾ ਕਰਨ ਦਾ ਗੁਣ ਪਾਣੀ ਦੇ ਅਣੂਆਂ ਦੇ ਸਮੂਹ ਦਾ ਹੁੰਦਾ ਹੈ ਇੱਕ ਅਣੂ ਦਾ ਨਹੀਂ। ਪਾਣੀ ਬਰਫ਼ ਦੇ ਰੂਪ ਵਿੱਚ, ਜੋ ਇੱਕ ਠੋਸ ਹੈ; ਦ੍ਵ ਅਵਸਥਾ ਵਿੱਚ ਅਤੇ ਵਾਸ਼ਪ ਅਵਸਥਾ ਜਾਂ ਭਾਫ ਦੇ ਰੂਪ ਵਿੱਚ ਗੈਸੀ ਅਵਸਥਾ ਵਿੱਚ ਹੋਂਦ ਵਿੱਚ ਰਹਿੰਦਾ ਹੈ। ਬਰਫ਼ ਪਾਣੀ ਅਤੇ ਵਾਸ਼ਪ ਵਿੱਚ ਭੌਤਿਕ ਗੁਣ ਭਿੰਨ ਭਿੰਨ ਹੁੰਦੇ ਹਨ। ਤਿੰਨਾਂ ਹੀ ਅਵਸਥਾਵਾਂ ਵਿੱਚ ਪਾਣੀ ਦੀ ਰਸਾਇਣਿਕ ਬਣਤਰ H₂O ਹੀ ਰਹਿੰਦੀ ਹੈ। ਪਾਣੀ ਦੀਆਂ ਤਿੰਨਾਂ ਅਵਸਥਾਵਾਂ ਦੇ ਗੁਣ ਪਾਣੀ ਦੇ ਅਣੂਆਂ ਦੀ ਊਰਜਾ ਅਤੇ ਉਨ੍ਹਾਂ ਦੇ ਸਮੂੰਹ ਵਿੱਚ ਇਕੱਠੇ ਹੋਣ ਦੇ ਪ੍ਕਾਰ ਉੱਤੇ ਨਿਰਭਰ ਕਰਦੇ ਹਨ। ਇਹ ਹੋਰ ਪਦਾਰਥਾਂ ਦੇ ਲਈ ਵੀ ਸੱਚ ਹੈ।

ਕਿਸੇ ਪਦਾਰਥ ਦੇ ਰਸਾਇਣਿਕ ਗੁਣ ਉਸਦੀ ਭੌਤਿਕ ਅਵਸਥਾ ਪਰਿਵਰਤਿਤ ਹੋਣ ਨਾਲ ਪਰਿਵਰਤਿਤ ਨਹੀਂ ਹੁੰਦੇ, ਪਰੰਤੂ ਰਸਾਇਣਿਕ ਪ੍ਤੀ ਕਿਰਿਆ ਦੀ ਦਰ ਭੌਤਿਕ ਅਵਸਥਾ ਉੱਤੇ ਨਿਰਭਰ ਕਰਦੀ ਹੈ। ਕਦੇ ਕਦੇ ਪ੍ਯੋਗਾਂ ਦੇ ਅੰਕੜਿਆਂ ਦੀ ਗਣਨਾ ਕਰਦੇ ਸਮੇਂ ਮਾਦੇ ਦੀ ਅਵਸਥਾ ਦੇ ਗਿਆਨ ਦੀ ਜਰੂਰਤ ਹੁੰਦੀ ਹੈ। ਇਸ ਲਈ ਪਦਾਰਥ ਦੀਆਂ ਭਿੰਨ ਭਿੰਨ ਅਵਸਥਾਵਾਂ ਨੂੰ ਨਿਯੰਤਰਿਤ ਕਰਨ ਵਾਲੇ ਭੌਤਿਕ ਨਿਯਮਾਂ ਨੂੰ ਜਾਣਨਾ ਇੱਕ ਭੌਤਿਕ ਵਿਗਿਆਨੀ ਲਈ ਜਰੂਰੀ ਹੁੰਦਾ ਹੈ। ਇਸ ਯੁਨਿਟ ਵਿੱਚ ਅਸੀਂ ਮਾਦੇ ਦੀ ਇਨ੍ਹਾਂ ਤਿੰਨ ਭੌਤਿਕ ਅਵਸਥਾਵਾਂ, ਖਾਸ ਕਰਕੇ ਦ੍ਵ ਅਤੇ ਗੈਸੀ ਅਵਸਥਾ ਦੇ ਬਾਰੇ ਵਿੱਚ ਵਧੇਰੇ ਸਿੱਖਾਂਗੇ। ਅੰਤਰ ਅਣਵੀਂ ਬਲਾਂ ਦੀ ਪ੍ਰਕਿਰਤੀ, ਅਣਵੀਂ ਅੰਤਰ ਕਿਰਿਆਵਾਂ ਅਤੇ ਕਣਾਂ ਦੀ ਗਤੀ ਉੱਤੇ ਤਾਪ ਊਰਜਾ ਦੇ ਪ੍ਰਭਾਵ ਨੂੰ ਸ਼ੁਰੂ ਵਿੱਚ ਸਮਝਣਾ ਜਰੂਰੀ ਹੈ, ਕਿਉਂਕਿ ਇਨ੍ਹਾਂ ਵਿੱਚ ਸੰਤੁਲਨ ਹੀ ਪਦਾਰਥ ਦੀ ਅਵਸਥਾ ਨਿਰਧਾਰਿਤ ਕਰਦਾ ਹੈ।

5.1 ਅੰਤਰ ਅਣਵੀਂ ਬਲ

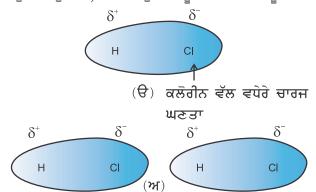

ਅੰਤਰ ਕਿਰਿਆਵਾਂ ਕਰਣ ਵਾਲੇ ਕਣਾਂ (ਪਰਮਾਣੂਆਂ ਅਤੇ ਅਣੂਆਂ) ਦੇ ਵਿੱਚ ਅਕਰਸ਼ਣ ਅਤੇ ਪ੍ਰਤੀਕਰਸ਼ਣ ਬਲਾਂ ਨੂੰ 'ਅੰਤਰ ਅਣਵੀਂ ਬਲ' ਕਹਿੰਦੇ ਹਨ। ਇਸ ਟਰਮ ਦਾ ਭਾਰ ਦੋ ਉਲਟ ਚਾਰਜਿਤ ਆਇਨਾਂ ਦੇ ਵਿੱਚ ਬਿਜਲਈ ਬਲ ਤੋਂ ਜਾਂ ਉਸ ਬਲ ਤੋਂ ਜੋ ਅਣੂ ਵਿੱਚ ਪਰਮਾਣੂਆਂ ਨੂੰ ਬੰਨ੍ਹੇ ਰੱਖਦੀ ਹੈ, ਨਹੀਂ ਹੈ।


ਅੰਤਰ ਅਣਵੀਂ ਆਕਰਸ਼ਣ ਬਲਾਂ ਨੂੰ ਜੋਹਾਨਨ ਵਾਂਡਰ ਵਾਲਸ (1837-1923) ਦੇ ਸਨਮਾਨ ਵਿੱਚ 'ਵਾਂਡਰ ਵਾਲਸ ਬਲ' ਕਹਿੰਦੇ ਹਨ। ਵਾਂਡਰਵਾਲਸ ਨੇ ਆਦਰਸ਼ ਵਿਹਾਰ ਨਾਲ ਵਾਸਤਵਿਕ ਗੈਸਾਂ ਦੇ ਵਿਚਲਨ ਨੂੰ ਉਨ੍ਹਾਂ ਬਲਾਂ ਦੇ ਦੁਆਰਾ ਸਮਝਾਇਆ, ਜਿਨ੍ਹਾਂ ਦਾ ਅਧਿਐਨ ਅਸੀਂ ਇਸ ਅਧਿਆਏ ਵਿੱਚ ਅੱਗੇ ਕਰਾਾਂਗੇ। ਵਾਂਡਰਵਾਲਸ ਬਲਾਂ ਦੇ ਪਰਿਮਾਣ ਵਿੱਚ ਘਾਟਾ ਵਾਧਾ ਹੁੰਦਾ ਹੈ। ਇਸ ਦੇ ਅਧੀਨ ਲੰਡਨ ਬਲ, ਦੋਧਰੁਵ ਬਲ ਅਤੇ ਪ੍ਰੇਰਿਤ ਦੋ ਧਰੁਵ ਬਲ ਆਉਂਦੇ ਹਨ। ਇੱਕ ਵਿਸ਼ੇਸ਼ ਪ੍ਰਬਲ ਪ੍ਰਕਾਰ ਦੀ ਦੋ ਧਰੁਵ ਦੋ ਧਰੁਵ ਅੰਤਰ ਕਿਰਿਆ ਹਾਈਡ੍ਰੋਜਨ ਬੰਧਨ ਹੈ। ਕੇਵਲ ਕੁਝ ਅਣੂ ਹੀ ਹਾਈਡ੍ਰੋਜਨ ਬੰਧਨ ਨਿਰਮਾਣ ਵਿੱਚ ਭਾਗ ਲੈ ਸਕਦੇ ਹਨ। ਇਸ ਲਈ ਇਸ ਨੂੰ ਵਖਰੇ ਭਾਗ ਵਿੱਚ ਰੱਖਿਆ ਗਿਆ ਹੈ। ਇਸ ਅੰਤਰ ਕਿਰਿਆ ਦੇ ਬਾਰੇ ਅਸੀਂ ਪੁਰਵ ਯੂਨਿਟ 4 ਵਿੱਚ ਸਿੱਖ ਚੁਕੇ ਹਾਂ।

ਇੱਥੇ ਧਿਆਨ ਦੇਣ ਯੋਗ ਤੱਥ ਇਹ ਹੈ ਕਿ ਇੱਕ ਆਇਨ ਅਤੇ ਇਕ ਦੋ ਧਰੁਵ ਦੇ ਵਿੱਚ ਅਕਰਸ਼ਣ ਬਲ, ਜਿਨ੍ਹਾਂ ਨੂੰ 'ਆਇਨ–ਦੋ ਧਰੁਵ ਬਲ' ਕਿਹਾ ਜਾਂਦਾ ਹੈ, ਵਾਂਡਰਵਾਲਸ ਬਲ ਨਹੀਂ ਹੈ। ਹੁਣ ਅਸੀਂ ਭਿੰਨ ਭਿੰਨ ਪ੍ਰਕਾਰ ਦੇ ਵਾਂਡਰਵਾਲਸ ਬਲਾਂ ਦਾ ਅਧਿਐਨ ਕਰਾਂਗੇ।

5.1.1 ਪਰਿਖੇਪਣ ਬਲ ਜਾਂ ਲੰਡਨ ਬਲ

ਪਰਮਾਣੂ ਅਤੇ ਅ-ਧਰੁਵੀ ਅਣੂ ਬਿਜਲਈ ਸਮਮਿਤ ਹੁੰਦੇ ਹਨ। ਇਨ੍ਹਾਂ ਵਿੱਚ ਦੋ ਧਰੁਵ ਮੋਮੈਂਟ ਨਹੀਂ ਹੁੰਦਾ ਕਿਉਂਕਿ ਇਨ੍ਹਾਂ ਵਿੱਚ ਇਲੈਕਟ੍ਰਾੱਨਿਕ ਚਾਰਜ ਕਲਾਊਡ ਸਮਮਿਤ ਰੂਪ ਵਿੱਚ ਵਿਤਰਿਤ ਰਹਿੰਦਾ ਹੈ। ਪਰੰਤੂ ਉਦਾਸੀਨ ਪਰਮਾਣੂਆਂ ਜਾਂ ਅਣੂਆਂ ਵਿੱਚ ਵੀ ਦੋ ਧਰੁਵ ਨਿਯੰਤਰਿਤ ਰੂਪ ਵਿੱਚ ਪੈਦਾ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਇਸ ਨੂੰ ਇਸ ਤਰ੍ਹਾਂ ਸਮਝਿਆ ਜਾ ਸਕਦਾ ਹੈ। ਮੰਨ ਲਓ ਕਿ ਦੋ ਪਰਮਾਣੂ A ਅਤੇ B ਇੱਕ ਦੂਜੇ ਦੇ ਨੇੜੇ ਹਨ (ਚਿੱਤਰ 5.1ਓ)। ਅਜਿਹਾ ਹੋ ਸਕਦਾ ਹੈ ਕਿ ਕੋਈ ਇੱਕ ਪਰਮਾਣੂ ਮੰਨ ਲਓ A ਛਿਣ ਭਰ ਰੂਪ ਵਿੱਚ ਅ-ਸਮਮਿਤ ਹੋ ਜਾਵੇ, ਅਰਥਾਤ ਚਾਰਜ ਕਲਾਊਡ ਇੱਕ ਪਾਸੇ ਵੱਧ ਹੋ ਜਾਵੇ (ਚਿੱਤਰ 5.1 ਅ ਅਤੇ ੲ), ਤਾਂ ਇਸ ਦਾ ਪਰਿਣਾਮ ਇਹ ਹੁੰਦਾ ਹੈ ਕਿ A ਪਰਮਾਣੂ ਵਿੱਚ ਕੁਝ ਸਮੇਂ ਦੇ ਲਈ ਛਿਣ ਭਰ ਦੋ ਧਰੁਵ ਪੈਦਾ ਹੋ ਜਾਂਦਾ ਹੈ। ਇਹ ਥੋੜੇ ਸਮੇਂ ਛਿਣ ਮਾਤਰ ਦੋ ਧਰੁਵ ਦੂਜੇ ਪਰਮਾਣੂ B (ਜੋ ਇਸਦੇ ਨੇੜੇ ਹੈ) ਦੀ ਇਲੈਕਟ੍ਰਾੱਨ ਘਣਤਾ ਨੂੰ ਵਿਰੂਪਿਤ ਕਰ ਦਿੰਦਾ ਹੈ। ਪਰਿਣਾਮ ਸਰੂਪ ਪਰਮਾਣੂ B ਵਿੱਚ ਪ੍ਰੇਰਿਤ ਦੋ ਧਰੁਵ ਪੈਦਾ ਹੋ ਜਾਂਦਾ ਹੈ।

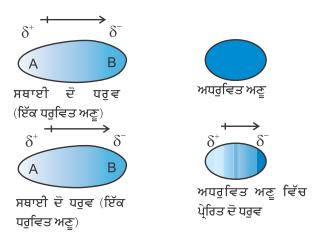

ਚਿੱਤਰ5.1 ਅਣੂਆਂ ਵਿੱਚਲੇ ਲੰਡਨ ਬਲ

ਪਰਮਾਣੂ A ਅਤੇ B ਦੇ ਅਸਥਾਈ ਦੋ ਧਰੁਵ ਇੱਕ ਦੂਜੇ ਨੂੰ ਅਕਰਸ਼ਿਤ ਕਰਦੇ ਹਨ। ਇਸੇ ਪ੍ਕਾਰ ਪ੍ਰੇਰਿਤ ਦੋ ਧਰੁਵ ਅਣੂਆਂ ਵਿੱਚ ਪੈਦਾ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਇਸ ਪ੍ਕਾਰ ਦੇ ਅਕਰਸ਼ਣ ਬਲ ਨੂੰ ਪਹਿਲੀ ਵਾਰ ਜਰਮਨ ਭੌਤਿਕ ਵਿਗਿਆਨੀ ਫਿਟਜ ਲੰਡਨ ਨੇ ਪ੍ਰਸਤਾਵਿਤ ਕੀਤਾ। ਇਸੇ ਕਾਰਣ ਦੋ ਅਸਥਾਈ ਦੋ ਧਰੁਵ ਦੇ ਵਿੱਚਲੇ ਅਕਰਸ਼ਣ ਨੂੰ ਲੰਡਨ ਬਲ ਕਿਹਾ ਜਾਂਦਾ ਹੈ। ਇਸ ਬਲ ਦਾ ਇੱਕ ਹੋਰ ਨਾਂ ਪਰਿਖੇਪਣ ਬਲ ਹੈ। ਇਸ ਪ੍ਕਾਰ ਦੇ ਬਲ ਹਮੇਸ਼ਾ

ਆਕਰਸ਼ਣ ਬਲ ਹੁੰਦੇ ਹਨ ਅਤੇ ਦੋ ਅੰਤਰਕਿਰਿਆ ਕਰਨ ਵਾਲੇ ਕਣਾਂ ਦੇ ਵਿੱਚਲੀ ਦੂਰੀ ਦੇ ਛੇਵੇਂ ਘਾਤ ਦੇ ਉਲਟਕ੍ਰਮ ਅਨੁਪਾਤੀ ਅਰਥਾਤ $1/r^6$, ਜਿੱਥੇ r ਦੋ ਕਣਾਂ ਦੇ ਵਿੱਚ ਦੂਰੀ ਹੈ ਹੁੰਦੇ ਹਨ। ਇਹ ਬਲ ਕੇਵਲ ਘੱਟ ਦੂਰੀ ($\sim 500~{
m pm}$) ਤੱਕ ਹੀ ਮਹੱਤਵ ਪੂਰਣ ਹੁੰਦੇ ਹਨ। ਇਨ੍ਹਾਂ ਦਾ ਪਰਿਮਾਣ ਕਣਾਂ ਦੀ ਧਰੁਵਤਾ ਉੱਤੇ ਨਿਰਭਰ ਕਰਦਾ ਹੈ। ਸਾਰੇ ਕਣਾਂ ਵਿੱਚ ਪਰਿਖੇਪਣ ਬਲ ਮੌਜੂਦ ਹੁੰਦੇ ਹਨ।

5.1.2 ਦੋ ਧਰੁਵ — ਦੋ ਧਰੁਵ ਬਲ

ਸਥਾਈ ਦੋ ਧਰੁਵ ਰੱਖਣ ਵਾਲੇ ਅਣੁਆਂ ਦੇ ਵਿੱਚ ਦੋ ਧਰੁਵ - ਦੋ ਧਰਵ ਬਲ ਕਾਰਜ ਕਰਦੇ ਹਨ। ਦੋ-ਧਰਵ ਦੇ ਸਿਰੇ 'ਅੰਸ਼ਿਕ ਚਾਰਜ' ਰੱਖਦੇ ਹਨ । ਇਨ੍ਹਾਂ ਨੂੰ ਗਰੀਕ ਅੱਖਰ ਡੈਲਟਾ (δ) ਨਾਲ ਪ੍ਰਦਰਸ਼ਿਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। 'ਅੰਸ਼ਿਕ ਚਾਰਜ' ਹਮੇਸ਼ਾ ਇਕਾਈ ਇਲੈਕਟ੍ਰਾਨਿਕ ਕਾਰਜ (1.6×10⁻¹⁹ C) ਤੋਂ ਘੱਟ ਹੁੰਦਾ ਹੈ। ਧਰੁਵੀ ਅਣੂ ਨੇੜਲੇ ਅਣੂ ਨਾਲ ਅੰਤਰ ਕਿਰਿਆ ਕਰਦਾ ਹੈ। ਚਿੱਤਰ 5.2 (ੳ) ਹਾਈਡ੍ਰੋਜਨ ਕਲੋਰਾਈਡ ਦੇ ਦੋ ਧਰੁਵ ਵਿੱਚ ਇਲੈਕਟ੍ਰਾੱਨ ਕਲਾਉਡ ਵਿਤਰਣ ਨੂੰ ਅਤੇ ਚਿੱਤਰ 5.2 (ਅ) ਦੋ HCl ਅਣੁਆਂ ਦੇ ਵਿੱਚ ਦੋ ਧਰੁਵ-ਦੋ ਧਰੁਵ ਅੰਤਰਕਿਰਿਆ ਨੂੰ ਪਰਦਰਸ਼ਿਤ ਕਰਦਾ ਹੈ। ਇਹ ਅੰਤਰ ਕਿਰਿਆ ਆਇਨ-ਆਇਨ ਦੀ ਤੁਲਨਾ ਵਿੱਚ ਕਮਜੋਰ ਹੁੰਦੀ ਹੈ, ਕਿਉਂਕਿ ਇਸ ਵਿੱਚ ਸਿਰਫ ਅੰਸ਼ਿਕ ਚਾਰਜ ਹੀ ਭਾਗ ਲੈਂਦੇ ਹਨ। ਦੋ ਧਰੁਵ ਦੇ ਵਿੱਚ ਦੂਰੀ ਵਧਣ ਨਾਲ ਇਹ ਆਕਰਸ਼ਣ ਬਲ ਘਟਦੇ ਜਾਂਦੇ ਹਨ। ਇੱਥੇ ਵੀ ਉਪਰੋਕਤ ਸਥਿਤੀ ਦੀ ਤਰ੍ਹਾਂ ਅੰਤਰਕਿਰਿਆ ਦੀ ਉਰਜਾ ਧਰੁਵਿਤ ਅਣੁਆਂ ਦੇ ਵਿਚਲੀ ਦੂਰੀ ਦੇ ਉਲਟ ਕ੍ਰਮੀ ਅਨੁਪਾਤੀ ਹੁੰਦੀ ਹੈ। ਸਥਿਰ ਧਰੁਵਿਤ ਅਣੁਆਂ (ਜਿਵੇਂ- ਠੋਸਾਂ ਵਿੱਚ) ਦੇ ਵਿੱਚ ਅੰਤਰ ਕਿਰਿਆ ਦੀ ਉਰਜਾ 1/ r^3 ਦੇ ਅਤੇ ਘੁੰਮਣ ਧਰੁਵਿਤ ਅਣੂਆਂ ਦੇ ਵਿੱਚ 1/r 6 ਦੇ ਸਮਾਨ– ਅਨੁਪਾਤੀ ਹੁੰਦੀ ਹੈ, ਜਿੱਥੇ r ਧਰੁਵੀ ਅਣੁਆਂ ਦੇ ਵਿਚਲੀ ਦੂਰੀ ਹੈ।



ਚਿੱਤਰ 5.2(ੳ) ਇੱਕ ਧਰੁਵੀ ਅਣੂ HCl ਵਿੱਚ ਇਲੈਕਟ੍ਰਾਨਿਕ ਚਾਰਜ ਦਾ ਵਿਤਰਣ (ਅ) ਦੋ HCl ਅਣੂਆਂ ਦੇ ਵਿੱਚ ਦੋ ਧਰੁਵ ਦੋ ਧਰੁਵ ਅੰਤਰ ਕਿਰਿਆ

ਧਰੁਵੀ ਅਣੂ ਲੰਡਨ ਬਲਾਂ ਦੇ ਦੁਆਰਾ ਵੀ ਅੰਤਰ ਕਿਰਿਆ ਕਰ ਸਕਦੇ ਹਨ ਜਿਸ ਦੇ ਇਕੱਠਾ ਪ੍ਰਭਾਵ ਇਹ ਹੁੰਦਾ ਹੈ ਕਿ ਧਰੁਵੀ ਅਣੂਆਂ ਵਿੱਚ ਕੁਲ ਅੰਤਰ ਅਣਵੀਂ ਬਲ ਵਧ ਜਾਂਦੇ ਹਨ।

5.1.3 ਦੋ ਧਰੁਵ—ਪ੍ਰੇਰਿਤ ਦੋ ਧਰੁਵ ਬਲ

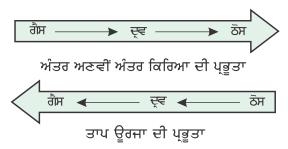
ਇਸ ਤਰ੍ਹਾਂ ਦੇ ਅਕਰਸ਼ਣ ਬਲ, ਸਥਾਈ ਦੋ ਧਰੁਵ ਰੱਖਣ ਵਾਲੇ ਧਰੁਵੀ ਅਣੂਆਂ ਅਤੇ ਸਥਾਈ ਦੋ ਧਰੁਵ ਨਹੀਂ ਰੱਖਣ ਵਾਲੇ ਅਣੂਆਂ ਦੇ ਵਿੱਚ ਕਾਰਜ ਕਰਦੇ ਹਨ। ਸਥਾਈ ਦੋ ਧਰੁਵ ਰੱਖਣ ਵਾਲਾ ਅਣੂ ਬਿਜਲਈ ਉਦਾਸੀਨ ਅਣੂ ਦੇ ਇਲੈਕਟ੍ਰਾੱਨਿਕ ਕਲਾਊਡ ਨੂੰ ਵਿਕਰਿਤ ਕਰਕੇ ਦੋ ਧਰੁਵ ਪ੍ਰੇਰਿਤ ਕਰ ਦਿੰਦਾ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਦੂਜੇ ਅਣੂ ਵਿੱਚ ਪ੍ਰੇਰਿਤ ਦੋ ਧਰੁਵ ਪੈਦਾ ਹੋ ਜਾਂਦਾ ਹੈ। ਇਸ ਸਥਿਤੀ ਵਿੱਚ ਵੀ ਆਕਰਸ਼ਣ $1/r^6$ ਬਲ ਦੇ ਸਮਾਨ-ਅਨੁਪਾਤੀ ਹੁੰਦਾ ਹੈ, ਜਿੱਥੇ r ਦੋ ਅਣੂਆਂ ਦੇ ਵਿਚਲੀ ਦੂਰੀ ਹੈ। ਪ੍ਰੇਰਿਤ ਦੋ ਧਰੁਵ ਮੋਮੈਂਟ, ਸਥਾਈ ਦੋ ਧਰੁਵ ਦੇ ਦੋ ਧਰੁਵ ਮੋਮੈਂਟ ਅਤੇ ਬਿਜਲਈ ਉਦਾਸੀਨ ਅਣੂ ਵਿੱਚ ਧਰੁਵਤਾ ਉੱਤੇ ਨਿਰਭਰ ਕਰਦਾ ਹੈ। ਯੂਨਿਟ 4 ਵਿੱਚ ਅਸੀਂ ਇਹ ਪੜ ਚੁਕੇ ਹਾਂ ਕਿ ਵੱਡੇ ਆਕਾਰ ਦੇ ਅਣੂਆਂ ਨੂੰ ਅਸਾਨੀ ਨਾਲ ਧਰੁਵਿਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਉੱਚ ਧਰੁਵੱਣੀ ਅਕਰਸ਼ਣ ਬਲਾਂ ਦੀ ਸਮਰਥਾ ਵਿੱਚ ਵਾਧਾ ਕਰਦੀ ਹੈ। ਇਸ ਸਥਿਤੀ ਵਿੱਚ ਵੀ ਪਰਿਖੇਪਣ ਬਲਾਂ ਅਤੇ ਦੋ ਧਰੁਵ—ਪ੍ਰੇਰਿਤ ਦੋ ਧਰੁਵ ਅੰਤਰਕਿਰਿਆ (interaction) ਦੇ ਸੰਯਕਤ ਪਭਾਵ ਦੀ ਹੋਂਦ ਹੁੰਦੀ ਹੈ।

ਚਿੱਤਰ-5.3 ਸਥਾਈ ਦੋ ਧਰੁਵ ਅਤੇ ਪ੍ਰੇਰਿਤ ਦੋ ਧਰੁਵ ਅੰਤਰ ਕਿਰਿਆ

5.1.4 ਹਾਈਡ੍ਰੋਜਨ ਬੰਧਨ

ਅਸੀਂ ਯੁਨਿਟ 4 ਵਿੱਚ ਹੀ ਇਹ ਸਿੱਖ ਚੁਕੇ ਹਾਂ (ਜਿਵੇਂ ਭਾਗ 5.1 ਵਿੱਚ ਦਰਸਾਇਆ ਗਿਆ ਹੈ) ਕਿ ਇਹ ਇਕ ਦੋ ਧਰੁਵ—ਦੋ ਧਰੁਵ ਅੰਤਰ ਕਿਰਿਆ ਦੀ ਇੱਕ ਵਿਸੇਸ਼ ਸਥਿਤੀ ਹੈ। ਹਾਈਡ੍ਰੋਜਨ ਬੰਧਨ ਉਨ੍ਹਾਂ ਅਣੂਆਂ ਵਿੱਚ ਹੁੰਦਾ ਹੈ, ਜਿਨ੍ਹਾਂ ਵਿੱਚ ਬੜੇ ਧਰੁਵਿਤ N– H, O-H ਜਾਂ H-F ਬੰਧਨ ਮੌਜੂਦ ਹੁੰਦੇ ਹਨ। ਭਾਵੇਂ ਹਾਈਡ੍ਰੋਜਨ ਬੰਧਨ N, O ਅਤੇ F ਤੱਕ ਹੀ ਸੀਮਿਤ ਹੁੰਦਾ ਹੈ, ਪਰੰਤੂ Cl ਵਰਗੇ ਪਰਮਾਣੂ ਵੀ ਹਾਈਡ੍ਰੋਜਨ ਬੰਧਨ ਵਿੱਚ ਭਾਗ ਲੈਂਦੇ ਹਨ। ਹਾਈਡ੍ਰੋਜਨ ਬੰਧਨ ਦੀ ਊਰਜਾ 10 ਤੋਂ 100 kJ mol⁻¹ ਦੇ ਵਿੱਚ ਹੁੰਦੀ ਹੈ। ਇਹ ਇੱਕ ਸਾਰਥਕ ਮਾਤਰਾ ਵਿੱਚ ਊਰਜਾ ਹੁੰਦੀ ਹੈ। ਇਸ ਲਈ ਵਧੇਰੇ ਯੋਗਿਕਾਂ *ਉਦਾਹਰਣ ਵਜੋਂ - ਪ੍ਰੋਟੀਨ ਅਤੇ ਨਿਊਕਲੀਅਕ ਐਸਿਡ) ਦੀ ਬਣਤਰ ਅਤੇ ਗੁਣਾਂ ਦੇ ਨਿਰਧਾਰਣ ਵਿੱਚ ਹਾਈਡ੍ਰੋਜਨ ਬੰਧਨ ਇੱਕ ਮਹੱਤਵਪੂਰਨ ਬਲ ਹੈ। ਇੱਕ ਅਣੂ ਦੇ ਇਲੈਕਟ੍ਰੋਨੈਗੇਟਿਵ ਪਰਮਾਣੂ ਅਤੇ ਦੂਜੇ ਅਣੂ ਦੇ ਧਨ ਚਾਰਜਿਤ ਹਾਈਡ੍ਰੋਜਨ ਬੰਧਨ ਦੀ ਸਮਰੱਥਾ ਨਿਰਧਾਰਿਤ ਹੁੰਦੀ ਹੈ। ਹੇਠਾਂ ਦਿੱਤਾ ਗਿਆ ਚਿੱਤਰ ਹਾਈਡ੍ਰੋਜਨ ਬੰਧਨ ਦੇ ਨਿਰਮਾਣ ਨੂੰ ਪ੍ਰਦਰਸ਼ਿਤ ਕਰਦਾ ਹੈ।

$$\overset{\delta +}{H} \overset{\delta -}{F} \cdots \overset{\delta +}{H} \overset{\delta -}{F}$$

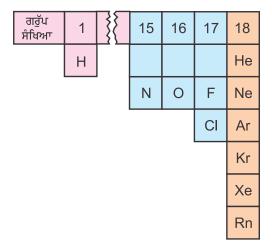

ਅੰਤਰ ਅਣਵੀਂ ਬਲ, ਜਿਨ੍ਹਾਂ ਦੀ ਵਿਆਖਿਆ ਹੁਣੇ ਕੀਤੀ ਗਈ ਹੈ, ਅਕਰਸ਼ਣ ਬਲ ਹੁੰਦੇ ਹਨ। ਅਣੂਆਂ ਦੇ ਵਿੱਚ ਇੱਕ ਦੂਜੇ ਦੇ ਪ੍ਤੀ ਪ੍ਤੀਕਰਸ਼ਣ ਵੀ ਹੁੰਦਾ ਹੈ। ਜਦੋਂ ਦੋ ਅਣੂ ਇੱਕ ਦੂਜੇ ਦੇ ਸੰਪਰਕ ਵਿੱਚ ਆਉਂਦੇ ਹਨ, ਤਾਂ ਦੋਵਾਂ ਅਣੂਆਂ ਦੇ ਇਲੈਕਟ੍ਰਾਨ ਕਲਾਊਡ ਦੇ ਵਿੱਚ ਅਤੇ ਦੋਵਾਂ ਅਣੂਆਂ ਦੇ ਨਿਊਕਲੀਅਸਾਂ ਦੇ ਵਿੱਚ ਪ੍ਤੀਕਰਸ਼ਣ ਪੈਦਾ ਹੁੰਦਾ ਹੈ। ਦੋ ਵੱਖ ਵੱਖ ਅਣੂਆਂ ਦੇ ਵਿੱਚਲੀ ਦੂਰੀ ਘਟਾਉਣ ਨਾਲ ਪ੍ਤੀਕਰਸ਼ਣ ਦਾ ਪਰਿਮਾਣ ਵਧ ਜਾਂਦਾ ਹੈ। ਇਹੀ ਕਾਰਣ ਹੈ ਕਿ ਦ੍ਵ ਅਤੇ ਠੋਸ ਨੂੰ ਸੁੰਗੇੜਨਾ ਮੁਸ਼ਕਿਲ ਹੈ। ਇਨ੍ਹਾਂ ਸਥਿਤੀਆਂ ਵਿੱਚ ਅਣੂ ਪਹਿਲਾਂ ਹੀ ਇੱਕ ਦੂਜੇ ਦੇ ਨੇੜੇ ਸੰਪਰਕ ਵਿੱਚ ਹੁੰਦੇ ਹਨ। ਇਸ ਲਈ ਇਹ ਹੋਰ ਸੁੰਗੜਨ ਦਾ ਵਿਰੋਧ ਕਰਦੇ ਹਨ। ਫਲਸਰੂਪ ਪ੍ਤੀਕਰਸ਼ਣ ਅੰਤਰ ਕਿਰਿਆ ਵਿੱਚ ਵਾਧਾ ਹੰਦਾ ਹੈ।

5.2 ਤਾਪ ਉਰਜਾ

ਇੱਕ ਪਦਾਰਥ ਦੇ ਅਣੂ ਜਾਂ ਪਰਮਾਣੂਆਂ ਦੀ ਗਤੀ ਦੇ ਕਾਰਣ ਤਾਪ ਊਰਜਾ ਪੈਦਾ ਹੁੰਦੀ ਹੈ। ਇਹ ਪਦਾਰਥ ਦੇ ਤਾਪਮਾਨ ਦੇ ਸਮਾਨ ਅਨੁਪਾਤੀ ਹੁੰਦੀ ਹੈ। ਮਾਦੇ ਦੇ ਕਣਾਂ ਦੀ ਔਸਤ ਗਤਿਜ ਊਰਜਾ ਦਾ ਮਾਪ ਹੋਣ ਦੇ ਕਾਰਣ ਇਹ ਕਣਾਂ ਦੀ ਗਤੀ ਦੇ ਲਈ ਜਿੰਮੇਵਾਰ ਹੁੰਦੀ ਹੈ। ਕਣਾਂ ਦੀ ਇਸ ਗਤੀ ਨੂੰ 'ਤਾਪ ਗਤੀ' ਕਹਿੰਦੇ ਹਨ।

5.3 ਅੰਤਰ ਅਣਵੀਂ ਬਲ ਬਨਾਮ ਤਾਪ ਅੰਤਰ ਕਿਰਿਆ

ਅਸੀਂ ਜਾਣਦੇ ਹਾਂ ਕਿ ਅੰਤਰ ਅਣਵੀਂ ਬਲ ਅਣੂਆਂ ਨੂੰ ਕੋਲ-ਕੋਲ ਰੱਖਦੇ ਹਨ, ਪਰੰਤੂ ਤਾਪ ਊਰਜਾ ਅਣੂਆਂ ਨੂੰ ਇੱਕ ਦੂਜੇ ਤੋਂ ਦੂਰ ਕਰਦੀ ਹੈ। ਮਾਦੇ ਦੀਆਂ ਤਿੰਨ ਅਵਸਥਾਵਾਂ ਅਣੂਆਂ ਦੇ ਅੰਤਰ ਅਣਵੀਂ ਬਲਾਂ ਅਤੇ ਤਾਪ ਊਰਜਾ ਦੇ ਵਿੱਚ ਸੰਤੁਲਨ ਦਾ ਪਰਿਣਾਮ ਹੈ। ਅਣਵੀਂ ਅੰਤਰ ਕਿਰਿਆ ਬਹੁਤ ਕਮਜੋਰ ਹੋਣ ਦੀ ਅਵਸਤਾ ਵਿੱਚ, ਜਦ ਤਕ ਤਾਪਮਾਨ ਘੱਟ ਕਰਕੇ ਊਰਜਾ ਘੱਟ ਨਾ ਕੀਤੀ ਜਾਵੇ ਤਦ ਤੱਕ ਅਣੂ ਕੋਲ-ਕੋਲ ਨਾਲ ਜੁੜੇ ਨਹੀਂ ਰਹਿੰਦੇ ਅਤੇ ਠੋਸ ਨਹੀਂ ਬਣਦੇ ਹਨ। ਗੈਸਾਂ ਨੂੰ ਸਿਰਫ ਨਪੀੜਨ ਦੁਆਰਾ ਦ੍ਵਿਤ ਨਹੀਂ ਕੀਤਾ ਜਾ ਸਕਦਾ, ਭਾਵੇਂ ਇਨ੍ਹਾਂ ਵਿੱਚ ਅਣੂ ਇੱਕ ਦੂਜੇ ਦੇ ਬਹੁਤ ਨੇੜੇ ਆ ਜਾਂਦੇ ਹਨ ਅਤੇ ਅੰਤਰ ਅਣਵੀਂ ਬਲ ਅਧਿਕਤਮ ਹੋ ਜਾਂਦਾ ਹੈ, ਫਿਰ ਜੇ ਤਾਪਮਾਨ ਘਟਾ ਕੇ ਅਣੂਆਂ ਦੀ ਤਾਪ ਊਰਜਾ ਘੱਟ ਕੀਤੀ ਜਾਂਦੀ ਹੈ ਤਾਂ ਗੈਸ ਨੂੰ ਅਸਾਨੀ ਨਾਲ ਦ੍ਵਿਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਇੱਕ ਪਦਾਰਥ ਦੀਆਂ ਤਿੰਨਾਂ ਅਵਸਥਾਵਾਂ ਵਿੱਚ ਤਾਪ ਊਰਜਾ ਅਤੇ ਅਣਵੀਂ ਅੰਤਰ ਕਿਰਿਆ ਦੀ ਪ੍ਰਭੂਤਾ ਨੂੰ ਇਸ ਚਿੱਤਰ ਦੁਆਰਾ ਦਰਸਾਇਆ ਜਾ ਸਕਦਾ ਹੈ —



ਮਾਦੇ ਦੀਆਂ ਤਿੰਨਾਂ ਅਵਸਥਾਵਾਂ ਦੀ ਹੋਂਦ ਦੇ ਕਾਰਣਾਂ ਨੂੰ ਅਸੀਂ ਪਹਿਲਾਂ ਹੀ ਸਮਝ ਚੁਕੇ ਹਾਂ। ਹੁਣ ਅਸੀਂ ਗੈਸੀ ਅਤੇ ਦ੍ਵ ਅਵਸਥਾ ਅਤੇ ਮਾਦੇ ਦੀਆਂ ਇਨ੍ਹਾਂ ਅਵਸਥਾਵਾਂ ਨੂੰ ਨਿਯੰਤਰਿਤ ਕਰਨ ਵਾਲੇ ਨਿਯਮਾਂ ਨੂੰ ਵਿਸਥਾਰ ਵਿੱਚ ਪੜ੍ਹਾਂਗੇ। ਠੋਸ ਅਵਸਥਾ ਦਾ ਅਧਿਐਨ ਅਸੀਂ XII ਵਿੱਚ ਕਰਾਂਗੇ।

5.4 ਗੈਸੀ ਅਵਸਥਾ

ਇਹ ਮਾਦਾ ਦੀ ਸਰਲਤਮ ਅਵਸਥਾ ਹੈ। ਅਸੀਂ ਆਪਣੇ ਪੂਰਣ ਜੀਵਨ ਕਾਲ ਵਿੱਚ ਹਵਾ ਦੇ ਮਹਾਸਾਗਰ ਵਿੱਚ ਡੁੱਬੇ ਰਹਿੰਦੇ ਹਾਂ, ਜੋ ਗੈਸਾਂ ਦਾ ਮਿਸ਼ਰਣ ਹੁੰਦਾ ਹੈ। ਇਸ ਵਾਯੂਮੰਡਲ ਦੀ ਸਭ ਤੋਂ ਹੇਠਲੀ ਪਰਤ ਟਰੋਪੋਸਫੀਅਰ, ਜੋ ਗੁਰੂਤਾ ਬਲ ਦੇ ਕਾਰਣ ਧਰਤੀ ਨਾਲ ਬੱਝੀ ਰਹਿੰਦੀ ਹੈ, ਵਿੱਚ ਜੀਵਨ ਗੁਜਾਰਦੇ ਹਾਂ। ਵਾਯੂਮੰਡਲ ਦੀ ਇਹ ਪਤਲੀ ਪਰਤ ਸਾਡੇ ਜੀਵਨ ਦੇ ਲਈ ਮਹੱਤਵਪੂਰਣ ਹੈ। ਇਹ ਪਰਤ ਸਾਨੂੰ ਹਾਨੀਕਾਰਕ ਵਿਕੀਰਣਾਂ ਤੋਂ ਮਦਦ ਕਰਦੀ ਹੈ। ਇਸ ਵਿੱਚ ਡਾਈਆੱਕਸੀਜਨ, ਡਾਈਨਾਈਟ੍ਰੋਜਨ, ਕਾਰਬਨ ਡਾਈਆੱਕਸਾਈਡ, ਜਲ ਵਾਸ਼ਪ ਆਦਿ ਮੌਜੂਦ ਹੁੰਦੇ ਹਨ।

ਹੁਣ ਅਸੀਂ ਅਪਣਾ ਧਿਆਨ ਪਦਾਰਥ ਦੇ ਉਸ ਵਿਹਾਰ ਵੱਲ ਕੇਂਦਰਿਤ ਕਰਾਂਗੇ, ਜੋ ਤਾਪ ਅਤੇ ਦਾਬ ਦੀਆਂ ਸਧਾਰਣ ਸਥਿਤੀਆਂ ਵਿੱਚ ਗੈਸੀ ਅਵਸਥਾ ਵਿੱਚ ਹੁੰਦਾ ਹੈ। ਸਧਾਰਣ ਪਰਿਸਥਿਤੀਆਂ ਵਿੱਚ ਅਵਰਤੀ ਸਾਰਣੀ ਵਿੱਚ ਕੇਵਲ 11 ਤੱਤ ਗੈਸੀ ਅਵਸਥਾ ਵਿੱਚ ਰਹਿੰਦੇ ਹਨ (ਚਿੱਤਰ 5.4)।

ਚਿੱਤਰ. 5.4 ਗੈਸੀ ਅਵਸਥਾ ਵਿੱਚ ਰਹਿੰਦੇ 11 ਤੱਤ

ਗੈਸੀ ਅਵਸਥਾ ਨੂੰ ਹੇਠ ਲਿਖੇ ਗੁਣਾਂ ਦੁਆਰਾ ਲੱਛਣ ਚਿਤਰਨ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ —

- ਗੈਸਾਂ ਬਹੁਤ ਜਿਆਦਾ ਨਪੀੜਨ ਯੋਗ ਹੁੰਦੀਆਂ ਹਨ।
- ਗੈਸਾਂ ਸਭ ਦਿਸ਼ਾਵਾਂ ਵਿੱਚ ਸਮਾਨ ਦਾਬ ਪਾਉਂਦੀਆਂ ਹਨ।
- ਠੋਸਾਂ ਅਤੇ ਦ੍ਵਾਂ ਦੀ ਤੁਲਨਾ ਵਿੱਚ ਗੈਸਾਂ ਦੀ ਘਣਤਾ ਬਹੁਤ ਹੀ ਘੱਟ ਹੁੰਦੀ ਹੈ।
- ਗੈਸਾਂ ਦਾ ਆਇਤਨ ਅਤੇ ਆਕ੍ਰਿਤੀ ਅਨਿਸ਼ਚਿਤ ਹੁੰਦੀ ਹੈ।
 ਇਹ ਬਰਤਨ ਦਾ ਆਇਤਨ ਅਤੇ ਆਕ੍ਰਿਤੀ ਲੈ ਲੈਂਦੀਆਂ ਹਨ।
- ਗੈਸ ਕਿਸੇ ਯੰਤਰਿਕ ਸਹਾਇਤਾ ਤੋਂ ਬਿਨਾਂ ਹਰ ਇਕ ਅਨੁਪਾਤ ਵਿੱਚ ਪੂਰਣ ਮਿਸ਼ਰਿਤ ਹੁੰਦੀ ਹੈ।

ਗੈਸਾਂ ਦੀ ਸਰਲਤਾ ਇਸ ਤੱਥ ਤੋਂ ਸਪਸ਼ਟ ਹੁੰਦੀ ਹੈ ਕਿ ਇਨ੍ਹਾਂ ਦੇ ਅਣੂਆਂ ਦੇ ਵਿੱਚ ਆਕਰਸ਼ਣ ਬਲ ਨਾਂ ਮਾਤਰ ਹੁੰਦੇ ਹਨ। ਇਨ੍ਹਾਂ ਦੇ ਵਿਹਾਰ ਕੁਝ ਸਧਾਰਨ ਨਿਯਮਾਂ ਦੁਆਰਾ ਸੰਚਲਿਤ ਹੁੰਦੇ ਹਨ, ਜਿਨ੍ਹਾਂ ਨੂੰ ਪ੍ਯੋਗਾਂ ਦੁਆਰਾ ਖੋਜਿਆ ਗਿਆ ਹੈ। ਇਹ ਨਿਯਮ ਗੈਸਾਂ ਦੇ ਮਾਪਨਯੋਗ ਗੁਣਾਂ ਦੇ ਵਿੱਚ ਸਬੰਧ ਨੂੰ ਦਰਸਾਉਂਦੇ ਹਨ। ਇਨ੍ਹਾਂ ਵਿੱਚ ਕੁਝ ਗੁਣ (ਜਿਵੇਂ- ਦਾਬ, ਆਇਤਨ, ਤਾਪਮਾਨ ਅਤੇ ਪੁੰਜ) ਬਹੁਤ ਮਹੱਤਵਪੂਰਣ ਹਨ, ਕਿਉਂਕਿ ਇਨ੍ਹਾਂ ਚੌਹਾਂ ਦੇ ਵਿੱਚ ਸਬੰਧ ਹੀ ਗੈਸ ਦੀ ਅਵਸਥਾ ਦੀ ਵਿਆਖਿਆ ਕਰਦਾ ਹੈ। ਇਨ੍ਹਾਂ ਚਾਰਾਂ ਦੇ ਵਿੱਚ ਅੰਤਰ ਸਬੰਧ ਗੈਸ ਨਿਯਮਾਂ ਦਾ ਸੂਤਰੀਕਰਣ ਕਰਦੇ ਹਨ। ਅਗਲੇ ਭਾਗ ਵਿੱਚ ਅਸੀਂ ਗੈਸਾਂ ਦੇ ਨਿਯਮਾਂ ਦੇ ਬਾਰੇ ਸਿੱਖਾਂਗੇ।

5.5 ਗੈਸ ਦੇ ਨਿਯਮ

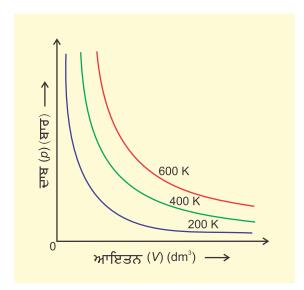
ਗੈਸ ਦੇ ਨਿਯਮ ਜਿਨ੍ਹਾਂ ਦਾ ਅਧਿਐਨ ਹੁਣ ਅਸੀਂ ਕਰਾਂਗੇ, ਗੈਸ ਦੇ ਭੌਤਿਕ ਗੁਣਾਂ ਤੇ ਕਈ ਸਦੀਆਂ ਤੱਕ ਕੀਤੀ ਗਈ ਖੋਜ ਦੇ ਪਰਿਣਾਮ ਹਨ। ਗੈਸਾਂ ਦੇ ਇਨ੍ਹਾਂ ਗੁਣਾਂ ਤੇ ਪਹਿਲਾ ਤਸੱਲੀ ਪੂਰਣ ਮਾਪਨ ਐਂਗਲੋ-ਆਇਰਿਸ਼ ਵਿਗਿਆਨੀ ਬਾੱਯਲ ਨੇ ਸੰਨ 1662 ਵਿੱਚ ਕੀਤਾ ਸੀ। ਉਹ ਨਿਯਮ ਜਿਸਦਾ ਸੂਤਰੀਕਰਣ ਉਨ੍ਹਾਂ ਨੇ ਕੀਤਾ 'ਬਾੱਯਲ ਦਾ ਨਿਯਮ' ਅਖਵਾਉਂਦਾ ਹੈ। ਬਾਅਦ ਵਿੱਚ ਗਰਮ ਹਵਾ ਦੇ ਗੁਬਾਰੇ ਦੁਆਰਾ ਹਵਾ ਵਿੱਚ ਉੱਡਣ ਦੀ ਕੋਸ਼ਿਸ਼ ਨੇ ਹੋਰ ਨਿਯਮਾਂ ਨੂੰ ਖੋਜਣ ਦੇ ਲਈ ਜੈਕੱਸ ਚਾਰਲਸ ਅਤੇ ਗੇ-ਲੁਸੈਕ ਨੂੰ ਪ੍ਰੇਰਿਤ ਕੀਤਾ। ਐਵੋਗੈਡਰੋ ਅਤੇ ਹੋਰ ਵਿਗਿਆਨੀਆਂ ਨੇ ਵੀ ਗੈਸੀ ਅਵਸਥਾ ਬਾਰੇ ਅਨੇਕਾਂ ਸੂਚਨਾਵਾਂ ਦਿੱਤੀਆਂ।

5.5.1 ਬਾੱਯਲ ਦਾ ਨਿਯਮ (ਦਾਬ-ਆਇਤਨ ਸਬੰਧ)

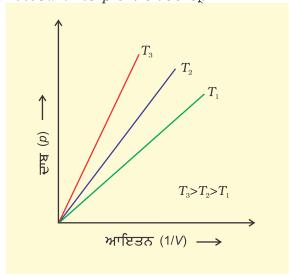
ਆਪਣੇ ਪ੍ਰਯੋਗਾਂ ਦੇ ਅਧਾਰ ਤੇ ਰਾੱਬਟ ਬਾੱਯਲ ਇਸ ਨਿਸ਼ਕਰਸ਼ ਤੇ ਪਹੁੰਚੇ ਕਿ 'ਸਥਿਰ ਤਾਪਮਾਨ ਉੱਤੇ ਗੈਸ ਦੀ ਨਿਸ਼ਚਿਤ ਮਾਤਰਾ (ਅਰਥਾਤ ਮੌਲਾਂ ਦੀ ਸੰਖਿਆ) ਦਾ ਦਾਬ ਉਸਦੇ ਆਇਤਨ ਦੇ ਉਲਟ ਅਨੁਪਾਤੀ ਹੁੰਦਾ ਹੈ।" ਇਸ ਨੂੰ ਬਾੱਯਲ ਦਾ ਨਿਯਮ ਕਹਿੰਦੇ ਹਨ। ਗਣਿਤੀ ਰੂਪ ਵਿੱਚ ਇਸ ਨੂੰ ਇਸ ਤਰ੍ਹਾਂ ਲਿਖਿਆ ਜਾ ਸਕਦਾ ਹੈ —

$$p \propto \frac{1}{V}$$
 (ਸਥਿਰ T ਅਤੇ n ਉੱਤੇ) (5.1)

$$\Rightarrow p = k \frac{1}{V}$$
 (5.2)


ਇੱਥੇ \mathbf{k}_1 ਸਮਾਨ ਅਨੁਪਾਤਿਕ ਸਥਿਰ ਅੰਕ ਹੈ। ਸਥਿਰ ਅੰਕ \mathbf{k}_1 ਦਾ ਮਾਨ ਗੈਸ ਦੀ ਮਾਤਰਾ, ਗੈਸ ਦੇ ਤਾਪਮਾਨ ਅਤੇ ਉਨ੍ਹਾਂ ਇਕਾਈਆਂ ਜਿਨ੍ਹਾਂ ਦੇ ਦੁਆਰਾ p ਅਤੇ V ਵਿਅਕਤ ਕੀਤੇ ਜਾਂਦੇ ਹਨ, ਉੱਤੇ ਨਿਰਭਰ ਕਰਦਾ ਹੈ। ਸਮੀਕਰਣ (5.2) ਨੂੰ ਪੁਨਰਤਰਤੀਬ ਕਰਨ ਤੇ ਅਸੀਂ ਵੇਖਦੇ ਹਾਂ ਕਿ

$$pV = k_1 \tag{5.3}$$


ਅਰਥਾਤ 'ਸਥਿਰ ਤਾਪਮਾਨ ਉੱਤੇ ਗੈਸ ਦੀ ਨਿਸ਼ਚਿਤ ਮਾਤਰਾ ਦੇ ਆਇਤਨ ਅਤੇ ਦਾਬ ਦਾ ਗੁਣਨਫਲ ਸਥਿਰ ਹੁੰਦਾ ਹੈ।' ਜੇ ਗੈਸ ਦੀ ਨਿਸ਼ਚਿਤ ਮਾਤਰਾ ਨੂੰ ਸਥਿਰ ਤਾਪਮਾਨ T ਉੱਤੇ ਦਾਬ p_1 ਅਤੇ ਆਇਤਨ V_1 ਤੋਂ ਪ੍ਰਸਾਰਿਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ (ਜਿਸ ਨਾਲ ਆਇਤਨ V_2 ਅਤੇ ਦਾਬ p_2 ਹੋ ਜਾਏ) ਤਾਂ ਬਾੱਯਲ ਦੇ ਨਿਯਮ ਦੇ ਅਨੁਸਾਰ

$$p_{_{1}}V_{_{1}}=p_{_{2}}V_{_{2}}=$$
 ਸਥਿਰਾਂਕ (5.4)

$$\Rightarrow \frac{p_1}{p_2} = \frac{V_2}{V_1} \tag{5.5}$$

ਚਿੱਤਰ 5.5 (ੳ) ਭਿੰਨ-ਭਿੰਨ ਤਾਪਮਨਾਂ ਉੱਤੇ ਇੱਕ ਗੈਸ ਦੇ ਆਇਤਨ V ਅਤੇ p ਦਾਬ ਦੇ ਵਿੱਚ ਵਕ੍ਰ

ਚਿੱਤਰ 5.5 (ਅ) ਗੈਂਸ ਦੇ ਦਾਬ ਅਤੇ $\frac{1}{V}$ ਵਿੱਚ ਵਕ੍ਰ

ਚਿੱਤਰ 5.5 ਵਿੱਚ ਬਾੱਯਲ ਦੇ ਨਿਯਮ ਨੂੰ ਦੋ ਪ੍ਕਾਰ ਦੇ ਗ੍ਰਾਫੀ ਨਿਰੂਪਣ ਦੁਆਰਾ ਪ੍ਦਰਸ਼ਿਤ ਕੀਤਾ ਗਿਆ ਹੈ। ਚਿੱਤਰ 5.5 (ੳ) ਵੱਖ ਵੱਖ ਤਾਪਮਾਨਾਂ ਉੱਤੇ ਸਮੀਕਰਣ (5.3) ਦਾ ਗ੍ਰਾਫ ਹੈ। k_1 ਦਾ ਮਾਨ ਹਰ ਇੱਕ ਵਕ੍ਰ ਦੇ ਲਈ ਵੱਖ ਵੱਖ ਹੈ ਕਿਉਂਕਿ ਕਿਸੇ ਗੈਸ ਦੇ ਦਿੱਤੇ ਗਏ ਪੁੰਜ ਦੇ ਲਈ ਇਹ ਕੇਵਲ ਤਾਪਮਾਨ ਦੇ ਨਾਲ ਪਰਿਵਰਤਿਤ ਹੁੰਦਾ ਹੈ। ਹਰ ਇੱਕ ਵਕ੍ਰ (graph) ਭਿੰਨ ਤਾਪਮਾਨ ਨਾਲ ਸਬੰਧਿਤ ਹੈ। ਇਸ ਨੂੰ ਸਮਤਾਪੀ ਵਕ੍ਰ (isotherm) ਕਹਿੰਦੇ ਹਨ। ਉੱਚ ਵਕ੍ਰ ਉੱਚ ਤਾਪਮਾਨ ਨਾਲ ਸਬੰਧਿਤ ਹੁੰਦੇ ਹਨ। ਇਹ ਧਿਆਨ ਦੇਣ ਯੋਗ ਗੱਲ ਹੈ ਕਿ ਜੇ ਗੈਸ ਦਾ ਦਾਬ ਅੱਧਾ ਕੀਤਾ ਜਾਂਦਾ ਹੈ ਤਾਂ ਗੈਸ ਦਾ ਆਇਤਨ ਦੋ ਗੁਣਾਂ ਹੋ ਜਾਂਦਾ ਹੈ। ਸਾਰਣੀ $5.1\ 300 \mathrm{K}$ ਉੱਤੇ $0.09\ \mathrm{ਮੋਲ}\ \mathrm{CO}_2$ ਦੇ ਆਇਤਨ ਉੱਤੇ ਦਾਬ ਦੇ ਪ੍ਰਭਾਵ ਨੂੰ ਦਰਸਾਉਂਦੀ ਹੈ।

ਚਿੱਤਰ 5.5 (ਅ) p ਅਤੇ $\frac{1}{V}$ ਦੇ ਵਿੱਚ ਗ੍ਰਾਫ ਨੂੰ ਵਿਅਕਤ ਕਰਦਾ ਹੈ। ਇਹ ਮੂਲ ਬਿੰਦੂ ਵਿੱਚੋਂ ਲੰਘਦੀ ਹੋਈ ਸਰਲ ਰੇਖਾ ਹੈ। ਉੱਚ ਦਾਬ ਉੱਤੇ ਗੈਸ ਬਾੱਯਲ ਦੇ ਨਿਯਮ ਤੋਂ ਵਿਚਲਨ ਦਰਸਾਉਂਦੀ ਹੈ। ਅਜਿਹੀਆਂ ਪਰਿਸਥਿਤੀਆਂ ਵਿੱਚ ਗ੍ਰਾਫ ਵਿੱਚ ਸਿਧੀ ਰੇਖਾ ਪ੍ਰਾਪਤ ਨਹੀਂ ਹੁੰਦੀ ਹੈ।

ਮਾਤਰਾਤਮਕ ਰੂਪ ਵਿੱਚ ਬਾੱਯਲ ਦੇ ਪ੍ਰਯੋਗ ਇਹ ਸਿੱਧ ਕਰਦੇ ਹਨ ਕਿ ਗੈਸ ਬਹੁਤ ਜਿਆਦਾ ਨਪੀੜਨ ਯੋਗ ਹੁੰਦੀ ਹੈ ਕਿਉਂਕਿ ਜਦੋਂ ਇੱਕ ਗੈਸ ਦਾ ਦਿੱਤਾ ਗਿਆ ਪੁੰਜ ਨਪੀੜਿਆ ਜਾਂਦਾ ਹੈ, ਤਾਂ ਉਸ ਦੇ ਅਣੂ ਘੱਟ ਥਾਂ ਘੇਰਦੇ ਹਨ। ਇਸ ਦਾ ਭਾਵ ਇਹ ਹੈ ਕਿ ਉੱਚੇ ਦਾਬ ਉੱਤੇ ਗੈਸ ਵਧੇਰੇ ਸੰਘਣੀ ਹੋ ਜਾਂਦੀ ਹੈ। ਬਾੱਯਲ ਦੇ ਨਿਯਮ ਦੀ ਵਰਤੋਂ ਕਰਨ ਤੇ ਗੈਸ ਦੇ ਦਾਬ ਅਤੇ ਘਣਤਾ ਦੇ ਵਿੱਚ ਇੱਕ ਸਬੰਧ ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ। ਪਰਿਭਾਸ਼ਾ

ਦੇ ਅਨੁਸਾਰ ਘਣਤਾ 'd' ਆਇਤਨ 'V' ਅਤੇ ਪੁੰਜ m ਵਿੱਚ ਸਬੰਧ $d=rac{1}{V}$ ਹੈ। ਜੇ ਅਸੀਂ ਬਾੱਯਲ ਦੇ ਨਿਯਮ ਦੇ ਸਮੀਕਰਣ

ਸਾਰਣੀ $5.1~300 \mathrm{K}$ ਉੱਤੇ 0.09 ਮੋਲ $\mathrm{CO}_{_{2}}$ ਦੇ ਆਇਤਨ ਉੱਤੇ ਦਾਬ ਦਾ ਪ੍ਰਭਾਵ

		2	
ਦਾਬ/10⁴ Pa	ਆਇਤਨ/10 ⁻³ m³	(1/V)/m ⁻³	<i>pV/</i> 10 ² Pa m ³
2.0	112.0	8.90	22.40
2.5	89.2	11.2	22.30
3.5	64.2	15.6	22.47
4.0	56.3	17.7	22.50
6.0	37.4	26.7	22.44
8.0	28.1	35.6	22.48
10.0	22.4	44.6	22.40

5.3 ਵਿੱਚੋਂ ਅਇਤਨ ਦਾ ਮਾਨ ਇਸ ਸਬੰਧ ਵਿੱਚ ਰੱਖੀਏ, ਤਾਂ ਸਾਨੂੰ ਇਹ ਸਬੰਧ ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ —

$$d = \left(\frac{m}{\mathbf{k}_1}\right) p$$

ਇਹ ਪ੍ਦਰਸ਼ਿਤ ਕਰਦਾ ਹੈ ਕਿ ਸਥਿਰ ਤਾਪ ਉੱਤੇ ਗੈਸ ਦੇ ਨਿਸ਼ਚਿਤ ਪੰਜ ਦਾ ਦਾਬ ਘਣਤਾ ਦੇ ਸਮਾਨ−ਅਨਪਾਤੀ ਹੈ।

ਉਦਾਹਰਣ 5.1

ਜਿੰਨੀ ਵੀ ਹੋਵੇ, ਇੱਕ ਗੁਬਾਰੇ ਵਿੱਚ ਕਮਰੇ ਦੇ ਤਾਪਮਾਨ ਉੱਤੇ ਹਾਈਡ੍ਰੋਜਨ ਗੈਸ ਭਰੀ ਜਾਂਦੀ ਹੈ। ਜੇ ਦਾਬ ਨੂੰ 0.2 bar ਤੋਂ ਵੱਧ ਕਰ ਦਿੱਤਾ ਜਾਵੇ ਤਾਂ ਇਹ ਗੁਬਾਰਾ ਫਟ ਜਾਂਦਾ ਹੈ। ਜੇ 1 bar ਦਾਬ ਉੱਤੇ ਗੈਸ 2.27 L ਆਇਤਨ ਘੇਰਦੀ ਹੈ, ਤਾਂ ਕਿੰਨੇ ਆਇਤਨ ਤੱਕ ਗੁਬਾਰੇ ਨੂੰ ਫੁਲਾਇਆ ਜਾ ਸਕਦਾ ਹੈ।

ਹੱਲ

ਬਾੱਯਲ ਦੇ ਨਿਯਮ ਅਨੁਸਾਰ $p_1V_1=p_2V_2$

ਜੇ
$$p_{_1}$$
 = 1 bar ਤਾਂ $V_{_1}$ = 2.27 L

$$p_{\scriptscriptstyle 2}$$
 = 0.2 bar ਤਾਂ $V_{\scriptscriptstyle 2} = \frac{p_{\scriptscriptstyle 1} V_{\scriptscriptstyle 1}}{p_{\scriptscriptstyle 2}}$

$$\Rightarrow V_2 = \frac{1 \operatorname{bar} \times 2.27 \operatorname{L}}{0.2 \operatorname{bar}} = 11.35 \operatorname{L}$$

ਕਿਉਂਕਿ ਗੁਬਾਰਾ 0.2 bar ਦਾਬ ਉੱਤੇ ਫਟ ਜਾਂਦਾ ਹੈ ਇਸ ਲਈ ਉਸਨੂੰ 11.35 L ਆਇਤਨ ਤਕ ਫੁਲਾਇਆ ਜਾ ਸਕਦਾ ਹੈ।

5.5.2 ਚਾਰਲਸ ਦਾ ਨਿਯਮ (ਤਾਪਮਾਨ — ਆਇਤਨ ਸਬੰਧ)

ਗੁਬਾਰਾ ਤਕਨੀਕ ਨੂੰ ਉੱਨਤ ਕਰਨ ਦੇ ਲਈ ਚਾਰਲਸ ਅਤੇ ਗੇ-ਕੁਸੈਕ ਨੇ ਗੈਸਾਂ ਉੱਤੇ ਭਿੰਨ ਭਿੰਨ ਪ੍ਯੋਗ ਕੀਤੇ। ਉਨ੍ਹਾਂ ਦੀਆਂ ਖੋਜਾਂ ਦਰਸਾਉਂਦੀਆਂ ਹਨ ਕਿ ਸਥਿਰ ਦਾਬ ਉੱਤੇ ਨਿਸ਼ਚਿਤ ਪੁੰਜ ਵਾਲੀ ਗੈਸ ਦਾ ਆਇਤਨ ਤਾਪਮਾਨ ਵਧਾਉਣ ਨਾਲ ਵਧਦਾ ਹੈ ਅਤੇ ਤਾਪਮਾਨ ਘਟਾਉਣ ਨਾਲ ਘਟਦਾ ਹੈ। ਉਨ੍ਹਾਂ ਨੂੰ ਵੇਖਿਆ ਕਿ ਤਾਪਮਾਨ ਹੀ ਹਰ ਇੱਕ ਡਿਗਰੀ ਵਿੱਚ ਵਾਧੇ ਨਾਲ ਗੈਸ ਦੀ ਨਿਸ਼ਚਿਤ ਮਾਤਰਾ ਦੇ ਆਇਤਨ ਵਿੱਚ ਉਸਦੇ

 0° C ਤਾਪਮਾਨ ਦੇ ਆਇਤਨ ਨਾਲੋਂ $\frac{1}{273.15}$ ਵੇਂ ਭਾਗ ਦਾ ਵਾਧਾ ਹੁੰਦਾ ਹੈ। ਇਸ ਲਈ ਜੇ 0° C ਅਤੇ t° C ਉੱਤੇ ਕਿਸੇ ਗੈਸ ਦਾ ਆਇਤਨ ਕ੍ਰਮਵਾਰ V_0 ਅਤੇ V_1 ਹੋਵੇ, ਤਾਂ

$$V_{\rm t} = V_0 + \frac{\rm t}{273.15} \ V_0$$

$$\Rightarrow V_{\rm t} \ = \ V_0 \bigg(1 + \frac{\rm t}{273.15} \bigg)$$

$$\Rightarrow V_{\rm t} = V_{\rm o} \left(\frac{273.15 + t}{273.15} \right) \tag{5.6}$$

ਇਸ ਸਥਿਤੀ ਵਿੱਚ ਅਸੀਂ ਤਾਪਮਾਨ ਦੇ ਇੱਕ ਨਵੇਂ ਮਾਪਕ੍ਰਮ ਨੂੰ ਇਸ ਤਰ੍ਹਾਂ ਨਿਰਧਾਰਿਤ ਕਰਦੇ ਹਨ ਕਿ ਨਵੇਂ ਮਾਪਕ੍ਰਮ ਵਿੱਚ ${\rm t^{\circ}C}$ ਨੂੰ $T_{\rm l}=273.15+{\rm t}$ ਅਤੇ ${\rm 0^{\circ}C}$ ਨੂੰ $T_{\rm o}=273.15$ ਦੁਆਰਾ ਦਿੱਤਾ ਜਾਂਦਾ ਹੈ। ਇਸ ਨਵੇਂ ਮਾਪਕ੍ਰਮ ਨੂੰ ਕੈਲਵਿਨ ਤਾਪਮਾਨ ਮਾਪਦ੍ਵ ਜਾਂ ਪਰਮ ਤਾਪਮਾਨ (Absolute temperature scale) ਮਾਪਕ੍ਰਮ ਕਹਿੰਦੇ ਹਨ।

ਇਸ ਤਰ੍ਹਾਂ ਸੈਲ ਸੈਲਸਿਅਸ ਮਾਪਕ੍ਰਮ ਉੱਤੇ 0°C; ਪਰਮਤਾਪਮਾਨ ਉੱਤੇ 273.15 K ਦੇ ਬਰਾਬਰ ਹੁੰਦਾ ਹੈ। ਧਿਆਨ ਦੇਣ ਯੋਗ ਤੱਥ ਇਹ ਹੈ ਕਿ ਪਰਮ ਤਾਪਮਾਨ ਵਿੱਚ ਤਾਪਮਾਨ ਨੂੰ ਲਿਖਦੇ ਸਮੇਂ ਡਿਗਰੀ ਦੇ ਚਿੰਨ੍ਹ ਨੂੰ ਵਰਤੋਂ ਵਿੱਚ ਨਹੀਂ ਲਿਆ ਜਾਂਦਾ। ਕੈਲਵਿਨ ਮਾਪਕ੍ਰਮ ਨੂੰ ਤਾਪਮਾਨ ਦਾ ਤਾਪ ਗਤਿਕ ਤਾਪਕ੍ਰਮ ਵੀ ਕਹਿੰਦੇ ਹਨ। ਇਸ ਦੀ ਵਰਤੋਂ ਹਰ ਇਕ ਵਿਗਿਆਨਕ ਕਾਰਜ ਵਿੱਚ ਕੀਤੀ ਜਾਂਦੀ ਹੈ।

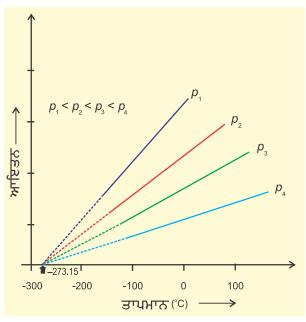
ਇਸ ਤਰ੍ਹਾਂ ਸੈਲਸਿਅਸ ਮਾਪਕਰਮ ਤੋਂ ਕੈਲਵਿਨ ਮਾਪਕ੍ਰਮ ਪ੍ਰਾਪਤ ਕਰਨ ਦੇ ਲਈ ਅਸੀਂ 273 (ਜਿਆਦਾ ਸਹੀ ਰੂਪ ਵਿੱਚ 273.15) ਜੋੜ ਦਿੰਦੇ ਹਾਂ। ਜੇ ਸਮੀਕਰਣ 5.6 ਵਿੱਚ ਅਸੀਂ $T_{_1}$ = 273.15 + t ਅਤੇ $T_{_0}$ = 273.15 ਲਿਖੀਏ, ਤਾਂ ਹੇਠ ਲਿਖਿਆ ਸਬੰਧ ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ —

$$V_{t} = V_{0} \left(\frac{T_{t}}{T_{0}}\right)$$

$$\Rightarrow \frac{V_{t}}{V_{0}} = \frac{T_{t}}{T_{0}}$$
(5.7)

ਇਸ ਤਰ੍ਹਾਂ ਇਕ ਆਮ ਸਮੀਕਰਣ ਇਸ ਤਰ੍ਹਾਂ ਲਿਖਿਆ ਜਾਂਦਾ ਹੈ —

$$\frac{V_2}{V_1} = \frac{T_2}{T_1}$$


$$\Rightarrow \frac{V_1}{T_1} = \frac{V_2}{T_2}$$
(5.8)

$$\Rightarrow \frac{V}{T}$$
 = ਸਥਿਰ ਅੰਕ \mathbf{k}_2 (5.9)

ਇਸ ਤਰ੍ਹਾਂ
$$V = \mathbf{k}_{2} T$$
 (5.10)

ਸਥਿਰਅੰਕ ${\bf k}_2$ ਦਾ ਮਾਨ ਗੈਸ ਦੀ ਮਾਤਰਾ, ਗੈਸ ਦੇ ਦਾਬ ਅਤੇ ਉਹ ਇਕਾਈ ਜਿਸ ਵਿੱਚ ਆਇਤਨ V ਵਿਅਕਤ ਕੀਤਾ ਗਿਆ ਹੈ, ਤੋਂ ਨਿਰਧਾਰਿਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ।

ਸਮੀਕਰਣ (5.10) ਚਾਰਲਸ ਦੇ ਨਿਯਮ ਦਾ ਗਣਿਤੀ ਰੂਪ ਹੈ, ਜੋ ਵਿਅਕਤ ਕਰਦਾ ਹੈ ਕਿ ਸਥਿਰ ਦਾਬ ਉੱਤੇ ਇੱਕ ਗੈਸ ਦੀ ਨਿਸ਼ਚਿਤ ਮਾਤਰਾ ਦਾ ਆਇਤਨ ਉਸ ਦੇ ਪਰਮਤਾਪਮਾਨ ਦੇ ਸਮਾਨ ਅਨੁਪਾਤੀ ਹੁੰਦਾ ਹੈ। ਚਾਰਲਸ ਨੇ ਪ੍ਰਾਪਤ ਕੀਤਾ ਕਿ ਦਿੱਤੇ ਗਏ ਦਾਬ ਉੱਤੇ ਤਾਪਮਾਨ (ਸੈਲਸਿਅਸ ਵਿੱਚ) ਅਤੇ ਆਇਤਨ ਦੇ ਵਿੱਚ ਗ੍ਰਾਫ ਸਰਲ ਰੇਖਾ ਵਿੱਚ ਹੁੰਦਾ ਹੈ। ਇਨ੍ਹਾਂ ਨੂੰ ਸਿਫਰ ਆਇਤਨ ਤੱਕ ਵਧਾਉਣ ਤੇ ਹਰ ਇੱਕ ਰੇਖਾ ਤਾਪਮਾਨ ਅਕਸ ਦੇ – 273.15 °C ਉੱਤੇ ਅੰਤਰਭਾਗ ਬਣਾਉਂਦੀ ਹੈ। ਭਿੰਨ ਭਿੰਨ ਦਾਬ ਉੱਤੇ ਰੇਖਾਵਾਂ ਦੀ ਢਾਲ (Slope) ਭਿੰਨ ਭਿੰਨ ਹੁੰਦੀ ਹੈ, ਪਰੰਤੂ ਸਿਫਰ ਆਇਤਨ ਉੱਤੇ ਹਰ ਇੱਕ ਰੇਖਾ ਤਾਪਮਾਨ ਅਕਸ ਉੱਤੇ – 273.15 °C ਉੱਤੇ ਮਿਲਦੀ ਹੈ (ਚਿੱਤਰ 5.6)।

ਚਿੱਤਰ 5.6 ਆਇਤਨ ਅਤੇ ਤਾਪਮਨ (°C) ਦੇ ਵਿੱਚ ਆਰੇਖ

ਤਾਪ ਅਤੇ ਆਇਤਨ ਦੇ ਵਿੱਚ ਗ੍ਰਾਫ ਦੀ ਹਰ ਇੱਕ ਰੇਖਾ ਨੂੰ ਸਮ ਦਾਬ isobar ਕਹਿੰਦੇ ਹਨ। ਜੇ ਸਮੀਕਰਣ (5.6) ਵਿੱਚ t ਦੇ ਮਾਨ ਨੂੰ – 273.15 °K ਦੁਆਰਾ ਵਿਅਕਤ ਕਰੀਏ ਤਾਂ ਚਾਰਲਸ ਦੇ ਲੇਖਣਾਂ ਨੂੰ ਵਿਅਕਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਅਸੀਂ ਵੇਖਦੇ ਹਾਂ ਕਿ ਕਿਸੇ ਗੈਸ ਦਾ ਆਇਤਨ – 273.15 °C ਤੇ ਸਿਫਰ ਹੋ ਜਾਂਦਾ ਹੈ। ਇਸ ਦਾ ਭਾਵ ਇਹ ਹੈ ਕਿ ਗੈਸ ਦੀ ਹੋਂਦ ਨਹੀਂ ਰਹਿੰਦੀ ਹੈ। ਅਸਲ ਵਿੱਚ ਇਸ ਤਾਪਮਾਨ ਤੇ ਪਹੁੰਚਣ ਤੋਂ ਪਹਿਲਾਂ ਹੀ ਹਰ ਇਕ ਗੈਸ ਪ੍ਰਵਿਤ ਹੋ ਜਾਂਦੀ ਹੈ। ਉਹ ਨਿਊਨਤਮ ਕਾਲਪਨਿਕ ਤਾਪਮਾਨ, ਜਿਸ ਉੱਤੇ ਗੈਸ ਸਿਫਰ ਆਇਤਨ ਘੇਰਦੀ ਹੈ, ਨੂੰ ਪਰਮ ਸਿਫਰ Absolute zero ਕਹਿੰਦੇ ਹਨ। ਬਹੁਤ ਘੱਟ ਦਾਬ ਅਤੇ ਉੱਚ ਤਾਪਮਾਨ ਉੱਤੇ ਹਰ ਗੈਸ 'ਬਾੱਯਲ ਦੇ ਨਿਯਮ ਦੀ ਪਾਲਨਾ ਕਰਦੀ ਹੈ।

ਉਦਾਹਰਣ 5.2

ਪ੍ਰਸ਼ਾਂਤ ਮਹਾਂਸਾਗਰ ਵਿੱਚ ਇੱਕ ਜਹਾਜ ਚਲਾਉਂਦੇ ਸਮੇਂ ਤਾਪਮਾਨ 23.4 °C ਉੱਤੇ ਇੱਕ ਗੁਬਾਰੇ ਨੂੰ 2L ਹਵਾ ਨਾਲ ਭਰਿਆ ਗਿਆ। ਜਦੋਂ ਜਹਾਜ ਹਿੰਦ ਮਹਾਸਾਗਰ, ਜਿੱਥੇ ਤਾਪਮਾਨ 26.1°C ਪਹੁੰਚਦਾ ਹੈ, ਵਿੱਚ ਪਹੁੰਚੇਗਾ ਤਾਂ ਗੁਬਾਰੇ ਦਾ ਆਇਤਨ ਕੀ ਹੋਵਗਾ ?

ਹੱਲ

$$V_1 = 2 L$$
 $T_2 = 26.1 + 273$
 $T_1 = (23.4 + 273) K$ = 299.1 K
= 296.4 K

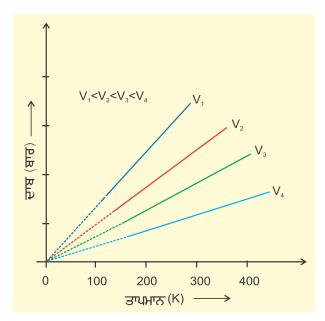
ਚਾਰਲਸ ਦੇ ਨਿਯਮ ਅਨੁਸਾਰ

$$\frac{V_1}{T_1} = \frac{V_2}{T_2}$$

$$\Rightarrow V_2 = \frac{V_1 T_2}{T_1}$$

$$\Rightarrow V_2 = \frac{2L \times 299.1K}{296.4K}$$

$$= 2L \times 1.009$$


$$= 2.018L$$

5.5.3 ਗੇ—ਲਸੈਕ ਨਿਯਮ (ਦਾਬ-ਤਾਪ ਸੰਬੰਧ)

ਆਟੋ ਮੋਬਾਈਲ ਵਾਹਨਾਂ ਦੇ ਟਾਇਰਾਂ ਵਿੱਚ ਦਾਬ ਅਕਸਰ ਸਮਾਨ ਰਹਿੰਦਾ ਹੈ, ਪਰੰਤੂ ਗਰਮੀ ਦੇ ਦਿਨਾਂ ਵਿੱਚ ਇਹ ਬਹੁਤ ਜਿਆਦਾ ਵਧ ਜਾਂਦਾ ਹੈ। ਜੇ ਦਾਬ ਨੂੰ ਚੰਗੀ ਤਰ੍ਹਾਂ ਇਕ ਸਾਰ ਨਾ ਕੀਤਾ ਜਾਵੇ, ਤਾਂ ਟਾਇਰ ਫਟ ਜਾਵੇਗਾ। ਸਰਦੀ ਦੇ ਦਿਨਾਂ ਵਿੱਚ ਅਸੀਂ ਵੇਖਦੇ ਹਾਂ ਕਿ ਵਾਹਨ ਦੇ ਟਾਇਰ ਵਿੱਚ ਦਾਬ ਕਾਫੀ ਘੱਟ ਹੋ ਜਾਂਦਾ ਹੈ। ਤਾਪਮਾਨ ਅਤੇ ਦਾਬ ਦੇ ਵਿੱਚ ਗਣਿਤੀ ਸਬੰਧ ਨੂੰ ਜੋਸੈਫ ਗੇ ਲੁਸੈਕ ਨੇ ਪ੍ਰਸਤੁਤ ਕੀਤਾ, ਜਿਸ ਨੂੰ ਗੇ–ਲੁਸੈਕ ਨਿਯਮ ਆਖਿਆ ਜਾਂਦਾ ਹੈ। ਇਸ ਦੇ ਅਨੁਸਾਰ "ਸਥਿਰ ਆਇਤਨ ਉੱਤੇ ਕਿਸੇ ਨਿਸ਼ਚਿਤ ਮਾਤਰਾ ਵਾਲੀ ਗੈਸ ਦਾ ਦਾਬ ਉਸ ਦੇ ਤਾਪਮਾਨ ਦੇ ਸਮਾਨ ਅਨੁਪਾਤੀ ਹੁੰਦੀ ਹੈ।" ਗਣਿਤੀ ਰੂਪ ਵਿੱਚ

$$p \propto T$$
 $\Rightarrow \frac{p}{T} =$ ਸਥਿਰ ਅੰਕ $= \mathbf{k}_3$

ਇਸ ਸਬੰਧ ਨੂੰ ਬਾੱਯਲ ਦੇ ਨਿਯਮ ਜਾਂ ਚਾਰਲਸ ਦੇ ਨਿਯਮ ਦੁਆਰਾ ਵੀ ਨਿਰੂਪਿਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਸਥਿਰ ਮੋਲਰ ਆਇਤਨ ਉੱਤੇ ਦਾਬ ਅਤੇ ਤਾਪਮਾਨ (K) ਦੇ ਵਿੱਚ ਆਰੇਖ ਨੂੰ ਚਿੱਤਰ 5.7 ਵਿੱਚ ਦਰਸਾਇਆ ਗਿਆ ਹੈ। ਇਸ ਦੀ ਹਰ ਇੱਕ ਰੇਖਾ ਨੂੰ ਸਮ-ਆਇਤਨੀ (isochore) ਕਹਿੰਦੇ ਹਨ।

ਚਿੱਤਰ 5.7 ਇੱਕ ਗੈਸ ਦੇ ਦਾਬ ਅਤੇ ਤਾਪਮਾਨ (K) ਦੇ ਵਿੱਚ ਆਰੇਖ (ਸਮ ਆਇਤਨੀ ਆਰੇਖ)

5.5.4 ਐਵੋਗੈਡਰੋ ਨਿਯਮ (ਅਇਤਨ-ਮਾਤਰਾ ਸਬੰਧ)

ਸੰਨ 1811 ਵਿੱਚ ਇਟਲੀ ਦੇ ਵਿਗਿਆਨੀ ਐਵੋਗੈਡਰੋ ਨੇ ਡਾਲਟਨ ਦਾ ਪਰਮਾਣੂ ਸਿਧਾਂਤ ਅਤੇ ਗੇ-ਲੁਸੈਕ ਸੰਯੁਕਤ ਆਇਤਨ ਸਿਧਾਂਤ ਦੇ ਸੰਯੁਕਤ ਨਿਸਕਰਸ਼ ਤੋਂ ਇੱਕ ਪਰਿਕਲਪਨਾ ਦਿੱਤੀ ਜਿਸ ਨੂੰ 'ਐਵੋਗੈਡਰੋ ਨਿਯਮ' ਦੇ ਰੂਪ ਵਿੱਚ ਜਾਣਿਆ ਜਾਂਦਾ ਹੈ। ਇਸਦੇ ਅਨੁਸਾਰ-ਤਾਪਮਾਨ ਅਤੇ ਦਾਬ ਦੀਆਂ ਸਮਾਨ ਆਇਤਨ ਵਾਲੀਆਂ ਗੈਸਾਂ ਵਿੱਚ ਸਮਾਨ ਸੰਖਿਆ ਵਿੱਚ ਅਣੂ ਹੁੰਦੇ ਹਨ। ਇਸ ਦਾ ਭਾਵ ਇਹ ਹੈ ਕਿ ਜਦੋਂ ਤਾਪਮਾਨ ਅਤੇ ਦਾਬ ਸਥਿਰ ਰਹਿੰਦਾ ਹੈ, ਤਾਂ ਗੈਸ ਦਾ ਆਇਤਨ ਉਸ ਦੇ ਅਣੂਆਂ ਦੀ ਸੰਖਿਆ ਉੱਤੇ ਜਾਂ ਦੂਜੇ ਸ਼ਬਦਾਂ ਵਿੱਚ ਗੈਸ ਦੀ ਮਾਤਰਾ ਉੱਤੇ ਨਿਰਭਰ ਕਰਦਾ ਹੈ।

ਗਣਿਤੀ ਰੂਪ ਵਿੱਚ ਅਸੀਂ ਲਿਖ ਸਕਦੇ ਹਾਂ —

 $V \propto n$ (ਜਿੱਥੇ n ਗੈਸ ਦੇ ਮੋਲਾਂ ਦੀ ਸੰਖਿਆ ਹੈ)

$$\Rightarrow V = \mathbf{k}_{A} n \tag{5.11}$$

ਇੱਕ ਮੋਲ ਗੈਸ ਵਿੱਚ ਅਣੂਆਂ ਦੀ ਸੰਖਿਆ 6.023×10^{23} ਨਿਰਧਾਰਿਤ ਕੀਤੀ ਗਈ ਹੈ, ਜਿਸ ਨੂੰ 'ਐਵੋਗੈਡਰੋ ਸਥਿਰਅੰਕ'

ਕਹਿੰਦੇ ਹਨ। ਇਹ ਉਹੀ ਸੰਖਿਆ ਹੈ ਜਿਸ ਦੀ ਵਿਆਖਿਆ ਯੁਨਿਟ 1 ਵਿੱਚ ਵਿੱਚ ਮੋਲ ਦੀ ਪਰਿਭਾਸ਼ਾ ਵੇਲੇ ਅਸੀਂ ਕੀਤੀ ਸੀ।

ਕਿਉਂਕਿ ਗੈਸ ਦਾ ਆਇਤਨ ਮੋਲਾਂ ਦੀ ਸੰਖਿਆ ਦੇ ਸਮਾਨ-ਅਨੁਪਾਤੀ ਹੁੰਦਾ ਹੈ, ਇਸ ਲਈ ਹਰ ਗੈਸ ਦਾ ਇੱਕ ਮੋਲ, ਸਟੈਂਡਰਡ ਤਾਪਮਾਨ ਅਤੇ ਦਾਬ (STP)* ਜਿਸ ਦਾ ਭਾਵ 273.15 K ਅਤੇ 1 bar (10⁵ pascal) ਹੁੰਦਾ ਹੈ ਸਮਾਨ ਆਇਤਨ ਰੱਖਦਾ ਹੈ। STP ਉੱਤੇ ਅਦਰਸ਼ ਗੈਸ ਦਾ ਮੋਲਰ ਆਇਤਨ 22.4 L mol⁻¹ ਹੁੰਦਾ ਹੈ। ਕੁਝ ਗੈਸਾਂ ਦਾ ਮੋਲਰ ਆਇਤਨ ਸਾਰਣੀ 5.2 ਵਿੱਚ ਦਿੱਤਾ ਗਿਆ ਹੈ—

ਇੱਕ ਗੈਸ ਦੇ ਮੋਲਾਂ ਦੀ ਸੰਖਿਆ ਦੀ ਗਣਨਾ ਇਸ ਤਰ੍ਹਾਂ ਕੀਤੀ ਜਾ ਸਕਦੀ ਹੈ —

$$n = \frac{m}{M} \tag{5.12}$$

ਚਿੱਤਰ 5.2 273.15 K ਅਤੇ 1 bar (STP) ਤੇ ਕੁਝ ਗੈਸਾਂ ਦਾ ਲਿਟਰ ਪ੍ਰਤੀ ਮੋਲ ਵਿੱਚ ਸੋਲਰ ਆਇਤਨ

ਅਰਗਨ	22.37
ਕਾਰਬਨ ਡਾਈਆੱਕਸਾਈਡ	22.54
ਡਾਈ ਨਾਈਟ੍ਰੋਜਨ	22.69
ਡਾਈ ਆੱਕਸੀਜਨ	22.69
ਡਾਈ ਹਾਈਡ੍ਰੋਜਨ	22.72
ਅਦਰਸ਼ ਗੈਸ	22.71

ਜਿੱਥੇ $m = \infty$ ਈ ਗਈ ਗੈਸ ਦਾ ਪੁੰਜ ਅਤੇ M = ਮੋਲਰ ਪੁੰਜ ਇਸ ਤਰ੍ਹਾਂ,

$$V = k_4 \frac{m}{M} \tag{5.13}$$

ਸਮੀਕਰਣ (5.13) ਨੂੰ ਇਸ ਪ੍ਰਕਾਰ ਵਿਵਸਥਿਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ —

$$M = k_4 \frac{m}{M} = k_4 d {(5.14)}$$

ਮਾਨਕ ਪਰਿਵੇਸ਼ ਤਾਪਮਾਨ ਅਤੇ ਦਾਬ (ਐਸ.ਟੀ.ਪੀ.) ਦੀਆਂ ਪਰਿਸਥਿਤੀਆਂ ਕੁਝ ਵਿਗਿਆਨਕ ਕਾਰਜਾਂ ਉੱਤੇ ਲਾਗੂ ਹੁੰਦੀ ਹੈ, ਜਿੱਥੇ ਐਸ.ਟੀ.ਪੀ. ਪਰਿਸਥਿਤੀਆਂ ਤੋਂ ਭਾਵ 298.15 K ਅਤੇ 1 bar (10⁵ Pascal) ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਐਸ.ਟੀ.ਪੀ. (1 bar ਅਤੇ 298.15 K) ਉੱਤੇ ਅਦਰਸ਼ ਗੈਸ ਦਾ ਆਇਤਨ 24.789 L mol⁻¹ ਹੁੰਦਾ ਹੈ।

^{*} ਐਸ.ਟੀ.ਪੀ. ਸ਼ੂਰ ਵਿੱਚ ਐਸ.ਟੀ.ਪੀ. ਦੀ ਪਰਿਭਾਸ਼ਾ 0°C ਅਤੇ 1 bar ਤੇ ਸੀ।ਇਸ ਪਰਿਭਾਸ਼ਾ ਦੇ ਅਨੁਸਾਰ ਐਸ.ਟੀ.ਪੀ. ਤੇ ਅਦਰਸ਼ ਗੈਸ ਦਾ ਮੋਲਰ ਆਇਤਨ 22.4138L mot¹ ਹੁੰਦਾ ਹੈ।

ਇੱਥੇ d ਗੈਸ ਦੀ ਘਣਤਾ ਹੈ। ਸਮੀਕਰਣ 5.14 ਤੋਂ ਅਸੀਂ ਇਹ ਨਿਸ਼ਕਰਸ਼ ਕੱਢਦੇ ਹਾਂ ਕਿ ਕਿਸੇ ਗੈਸ ਦੀ ਘਣਤਾ ਉਸ ਦੇ ਮੋਲਰ ਪੁੰਜ ਦੇ ਸਮਾਨਅਨੁਪਾਤੀ ਹੁੰਦੀ ਹੈ।

ਇੱਕ ਗੈਸ ਜੋ, ਬਾੱਯਲ ਦੇ ਨਿਯਮ, ਚਾਰਲਸ ਦੇ ਨਿਯਮ ਅਤੇ ਐਵੋਗੈਡਰੋ ਦੇ ਨਿਯਮ ਦਾ ਪੂਰਣ ਰੂਪ ਵਿੱਚ ਪਾਲਨਾ ਕਰਦੀ ਹੈ, ਅਦਰਸ਼ ਗੈਸ ਅਖਵਾਉਂਦੀ ਹੈ।ਇਹ ਗੈਸ ਕਾਲਪਨਿਕ ਹੈ।ਅਜਿਹਾ ਮੰਨਿਆ ਜਾਂਦਾ ਹੈ ਕਿ ਇੱਕ ਆਦਰਸ਼ ਗੈਸ ਦੇ ਅਣੂਆਂ ਦੇ ਵਿੱਚ ਅੰਤਰ ਅਣਵੀਂ ਬਲ ਮੌਜੂਦ ਨਹੀਂ ਹੁੰਦੇ।ਵਾਸਤਵਿਕ ਗੈਸ ਕੇਵਲ ਕੁਝ ਵਿਸ਼ੇਸ਼ ਪਰਿਸਥਿਤੀਆਂ ਵਿੱਚ ਜਦੋਂ ਅੰਤਰਕਿਰਿਆਵਾਂ ਬਲ ਪ੍ਰਯੋਗਿਕ ਰੂਪ ਵਿੱਚ ਨਾਂ ਮਾਤਰ ਹੁੰਦੇ ਹਨ ਇਨ੍ਹਾਂ ਨਿਯਮਾਂ ਦੀ ਪਾਲਨਾ ਕਰਦੀ ਹੈ।ਬਾਕੀ ਸਭ ਪਰਿਸਥਿਤੀਆਂ ਵਿੱਚ ਉਹ ਅਦਰਸ਼ ਵਿਹਾਰ ਤੋਂ ਵਿਚਲਨ ਦਰਸਾਉਂਦੀ ਹੈ।

5.6 ਆਦਰਸ਼ ਗੈਸ ਸਮੀਕਰਣ

ਤਿੰਨ ਨਿਯਮਾਂ, ਜਿਨ੍ਹਾਂ ਦਾ ਅਧਿਐਨ ਅਸੀਂ ਹੁਣ ਤੱਕ ਕਰ ਚੁਕੇ ਹਾਂ, ਨੂੰ ਇਕ ਸਮੀਕਰਣ ਦੇ ਦੁਆਰਾ ਜੋੜਿਆ ਜਾ ਸਕਦਾ ਹੈ। ਇਸ ਨੂੰ ਅਦਰਸ਼ ਗੈਸ ਸਮੀਕਰਣ ਕਹਿੰਦੇ ਹਨ।

ਸਥਿਰ T ਅਤੇ n ਉੱਤੇ $V \cong \frac{1}{p}$ ਬਾਯਲ ਦਾ ਨਿਯਮ ਸਥਿਰ p ਅਤੇ n ਉੱਤੇ $V \cong T$ ਚਾਰਲਸ ਦਾ ਨਿਯਮ ਸਥਿਰ p ਅਤੇ T ਉੱਤੇ $V \cong n$ ਐਵੋਗੈਂਡਰੋ ਦਾ ਨਿਯਮ

ਇਸ ਤਰ੍ਹਾਂ

$$V \propto \frac{nT}{p} \tag{5.15}$$

$$\Rightarrow V = R \frac{nT}{p}$$
 (5.16)

R ਵਿੱਚ ਸਮਾਨ ਅਨੁਪਾਤਿਕ ਸਥਿਰ ਅੰਕ ਹੈ।ਸਮੀਕਰਣ (5.16) ਨੂੰ ਮੂਲ ਵਿਵਸਿਥਤ ਕਰਨ ਤੇ ਅਸੀਂ ਪ੍ਰਾਪਤ ਕਰਦੇ ਹਾਂ ਕਿ

$$pV = n RT (5.17)$$

$$\Rightarrow R = \frac{pV}{nT}$$
 (5.18)

R ਨੂੰ 'ਗੈਸ ਨਿਯਮ ਅੰਕ' ਕਹਿੰਦੇ ਹਨ। ਇਹ ਸਾਰੀਆਂ ਗੈਸਾਂ ਦੇ ਲਈ ਸਮਾਨ ਹੁੰਦਾ ਹੈ। ਇੰਜ ਇਸ ਨੂੰ ਵਿਸ਼ਵਵਿਆਪੀ ਗੈਸ ਨਿਯਤ ਅੰਕ ਵੀ ਕਹਿੰਦੇ ਹਨ। ਸਮੀਕਰਣ (5.17) ਨੂੰ ਅਦਰਸ਼ ਗੈਸ ਸਮੀਕਰਣ ਕਹਿੰਦੇ ਹਨ। ਸਮੀਕਰਣ (5.18) ਦਰਸਾਉਂਦੀ ਹੈ ਕਿ R ਦਾ ਮਾਨ ਉਨ੍ਹਾਂ ਇਕਾਈਆਂ ਉੱਤੇ ਨਿਰਭਰ ਕਰਦਾ ਹੈ, ਜਿਸ ਵਿੱਚ p, V ਅਤੇ T ਨੂੰ ਮਾਪਿਆ ਜਾਂਦਾ ਹੈ। ਜੇ ਸਮੀਕਰਣ

ਵਿੱਚ ਤਿੰਨ ਅਸਥਿਰ ਗਿਆਤ ਹੋਣ ਤਾਂ ਚੌਥੇ ਦੀ ਗਣਨਾ ਕੀਤੀ ਜਾ ਸਕਦੀ ਹੈ। ਇਸ ਸਮੀਕਰਣ ਤੋਂ ਅਸੀਂ ਵੇਖਦੇ ਹਾਂ ਕਿ ਸਥਿਰ ਤਾਪਮਾਨ ਅਤੇ ਦਾਬ ਉਤੇ ਕਿਸੇ ਗੈਸ ਦੇ n ਮੋਲ ਸਮਾਨ ਆਇਤਨ

ਰੱਖਦੇ ਹਨ ਕਿਉਂਕਿ
$$V=rac{n{
m R}T}{p}$$
 ਇੱਥੇ $n,{
m R},T$ ਅਤੇ p ਸਥਿਰ

ਹਨ। ਜਦੋਂ ਕਿਸੇ ਗੈਸ ਦਾ ਵਿਹਾਰ ਆਦਰਸ਼ ਗੈਸ ਦੇ ਸਮਾਨ ਹੁੰਦਾ ਹੈ, ਤਾਂ ਇਹ ਸਮੀਕਰਣ ਕਿਸੇ ਵੀ ਗੈਸ ਉੱਤੇ ਲਾਗੂ ਹੋ ਸਕਦਾ ਹੈ। STP ਪਰਿਸਥਿਤੀਆਂ ਵਿੱਚ (273.15 K ਅਤੇ 1 bar ਦਾਬ) ਇੱਕ ਮੋਲ ਅਦਰਸ਼ ਗੈਸ ਦਾ ਆਇਤਨ $22.710981 \ L \ mol^{-1}$ ਹੁੰਦਾ ਹੈ। ਇਨ੍ਹਾਂ ਪਰਿਸਥਿਤੀਆਂ ਵਿੱਚ ਇਕ ਮੋਲ ਅਦਰਸ਼ ਗੈਸ ਦੇ R ਦੇ ਮਾਨ ਦੀ ਗਣਨਾਂ ਇਸ ਤਰ੍ਹਾਂ ਕੀਤੀ ਜਾ ਸਕਦੀ ਹੈ -

R=
$$\frac{(10^5 \text{ Pa})(22.71 \times 10^{-3} \text{m}^3)}{(1 \text{mol})(273.15 \text{K})}$$

- $= 8.314 \text{ Pa m}^3 \text{ K}^{-1} \text{ mol}^{-1}$
- $= 8.314 \times 10^{-2} \text{ bar L K}^{-1} \text{ mol}^{-1}$
- $= 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$

STP ਪਰਿਸਥਿਤੀਆਂ (0°C ਅਤੇ 1 ਵਾਯੂਮੰਡਲੀ ਦਾਬ) ਉੱਤੇ R ਦਾ ਮਾਨ $8.20578 \times 10^{-2} \ L \ atm \ K^{-1} \ mol^{-1}$ ਹੰਦਾ ਹੈ।

ਆਦਰਸ਼ ਗੈਸ ਸਮੀਕਰਣ ਦਾ ਸਬੰਧ ਇਨ੍ਹਾਂ ਚਾਰ ਅਸਥਿਰਾਂ ਨਾਲ ਹੈ। ਇਹ ਕਿਸੇ ਗੈਸ ਦੀ ਅਵਸਥਾ ਦੀ ਵਿਆਖਿਆ ਕਰਦਾ ਹੈ। ਇਸ ਲਈ ਇਸ ਨੂੰ ਅਵਸਥਾ ਸਮੀਕਰਣ ਵੀ ਕਹਿੰਦੇ ਹਨ।

ਹੁਣ ਅਦਰਸ਼ ਗੈਸ ਸਮੀਕਰਣ ਉੱਤੇ ਮੁੜ ਵਿਚਾਰ ਕਰਦੇ ਹਾਂ। ਇਹ ਅਸਥਿਰਾਂ ਦੇ ਸਮਕਾਲਿਕ ਪਰਿਵਰਤਨ ਦੇ ਲਈ ਹੈ। ਜੇ ਕਿਸੇ ਨਿਸ਼ਚਿਤ ਮਾਤਰਾ ਵਾਲੀ ਗੈਸ ਦਾ ਤਾਪਮਾਨ T_1 ਆਇਤਨ V_1 ਅਤੇ ਦਾਬ p_1 ਤੋਂ T_2 , V_2 ਅਤੇ p_2 ਤੱਕ ਪਰਿਵਰਤਿਤ ਹੁੰਦਾ ਹੈ, ਤਾਂ ਅਸੀਂ ਲਿਖ ਸਕਦੇ ਹਾਂ ਕਿ

$$\frac{p_1 V_1}{T_1} = nR$$
 ਅਤੇ $\frac{p_2 V_2}{T_2} = nR$

$$\Rightarrow \frac{p_1 V_1}{T_1} = \frac{p_2 V_2}{T_2}$$
(5.19)

ਸਮੀਕਰਣ (5.19) ਇੱਕ ਲਾਭਦਾਇਕ ਸਮੀਕਰਣ ਹੈ। ਜੇ ਉਪਰੋਕਤ ਛੇ ਅਸਥਿਰਾਂ ਵਿੱਚੋਂ ਪੰਜ ਅਸਥਿਰਾਂ ਦੇ ਮਾਨ ਗਿਆਤ ਹੋਣ ਤਾਂ ਅਗਿਆਤ ਅਸਥਿਰ ਦੀ ਗਣਨਾਂ ਸਮੀਕਰਣ (5.19) ਦੁਆਰਾ ਕੀਤੀ ਜਾ ਸਕਦੀ ਹੈ। ਇਸ ਸਮੀਕਰਣ ਨੂੰ ਸੰਯੁਕਤ ਗੈਸ ਨਿਯਮ ਕਹਿੰਦੇ ਹਨ।

ਉਦਾਹਰਣ 5.3

25°C ਅਤੇ 760 mm Hg ਦਾਬ ਤੇ ਇੱਕ ਗੈਸ 600 mL ਆਇਤਨ ਘੇਰਦੀ ਹੈ। ਕਿਸੇ ਹੋਰ ਸਥਾਨ ਤੇ ਜਿੱਥੇ ਤਾਪਮਾਨ 10°C, ਆਇਤਨ 640 mL ਹੋਵੇ, ਗੈਸ ਦਾ ਦਾਬ ਕਿੰਨਾ ਹੋਵੇਗਾ ?

ਹੱਲ

 $p_{_1}$ = 760 mm Hg, $V_{_1}$ = 600 mL $T_{_1}$ = 25 + 273 = 298 K $V_{_2}$ = 640 mL ਅਤੇ $T_{_2}$ = 10 + 273 = 283 K ਸੰਯਕਤ ਗੈਸ ਨਿਯਮ ਦੇ ਅਨੁਸਾਰ

$$\frac{p_1 V_1}{T_1} = \frac{p_2 V_2}{T_2}$$

$$\Rightarrow p_2 = \frac{p_1 V_1 \times T_2}{T_1 \times V_2}$$

$$\Rightarrow p_2 = \frac{(760 \,\mathrm{mm\ Hg}) \times (600 \,\mathrm{mL}) \times (283 \,\mathrm{K})}{(640 \,\mathrm{mL}) \times (298 \,\mathrm{K})}$$

 $= 676.6 \, \text{mm Hg}$

5.6.1 ਗੈਸੀ ਪਦਾਰਥ ਦੀ ਘਣਤਾ ਅਤੇ ਮੋਲਰ ਪੂੰਜ

ਆਦਰਸ਼ ਗੈਸ ਸਮੀਕਰਣ ਨੂੰ ਮੁੜ ਤਰਤੀਬ ਕਰਨ ਤੇ ਸਾਨੂੰ ਮਿਲਦਾ ਹੈ ਕਿ

$$\frac{n}{V} = \frac{p}{RT}$$

n ਨੂੰ $\frac{m}{\mathrm{M}}$ ਵਿੱਚ ਪ੍ਰਤੀਸਥਾਪਿਤ ਕਰਨ ਤੇ ਅਸੀਂ ਪ੍ਰਾਪਤ ਕਰਦੇ ਹਾਂ

$$\frac{m}{\text{M V}} = \frac{p}{\text{R T}} \tag{5.20}$$

$$\frac{d}{M} = \frac{p}{RT}$$
 (ਜਿੱਥੇ d ਘਣਤਾ ਹੈ) (5.21)

ਸਮੀਕਰਣ (5.21) ਮੁੜ ਤਰਤੀਬ ਦੇਣ ਤੇ ਅਸੀਂ ਇਕ ਗੈਸ ਦੇ ਮੋਲਰ ਪੁੰਜ ਦੀ ਗਣਨਾ ਕਰਨ ਦੇ ਲਈ ਹੇਠ ਲਿਖਿਆਂ ਸਬੰਧ ਪ੍ਰਾਪਤ ਕਰਦੇ ਹਾਂ —

$$M = \frac{dRT}{p}$$
 (5.22)

5.6.2 ਡਾਲਟਨ ਦਾ ਅੰਸ਼ਿਕ ਦਾਬ ਦਾ ਨਿਯਮ

ਇਸ ਨਿਯਮ ਨੂੰ ਜਾੱਨ ਡਾਲਟਨ ਨੇ ਸੰਨ 1801 ਵਿੱਚ ਪ੍ਰਸਤੁਤ ਕੀਤਾ।ਇਸਦੇ ਅਨੁਸਾਰ ਅੰਤਰਕਿਰਿਆ ਰਹਿਤ ਗੈਸਾਂ ਦੇ ਮਿਸ਼ਰਣ ਦਾ ਕੁੱਲ ਦਾਬ ਹਰ ਇੱਕ ਗੈਸ ਦੇ ਅੰਸ਼ਿਕ ਦਾਬ ਦੇ ਜੋੜ ਦੇ ਬਰਾਬਰ ਹੁੰਦਾ ਹੈ। ਅਰਥਾਤ ਉਹ ਦਾਬ ਜਦੋਂ ਇਨ੍ਹਾਂ ਗੈਸਾਂ ਨੂੰ ਤਾਪਮਾਨ ਦੀਆਂ ਸਮਾਨ ਪਰਸਥਿਤੀਆਂ ਵਿੱਚ, ਸਮਾਨ ਆਇਤਨ ਵਾਲੇ ਬਰਤਨ ਵਿੱਚ ਵੱਖ ਵੱਖ ਬੰਦ ਕੀਤਾ ਜਾਂਦਾ ਹੈ, ਹਰ ਇਕ ਗੈਸ ਦੁਆਰਾ ਪੈਦਾ ਕੀਤੇ ਗਏ ਦਾਬ ਨੂੰ ਅੰਸ਼ਿਕ ਦਾਬ ਕਹਿੰਦੇ ਹਨ। ਗਣਿਤੀ ਰੂਪ ਵਿੱਚ—

$$p_{\text{abs}} = p_1 + p_2 + p_3 + \dots$$
 (ਸਥਿਰ T, V ਉੱਤੇ) (5.23)

ਗੈਸਾਂ ਨੂੰ ਆਮ ਤੌਰ ਤੇ ਪਾਣੀ ਦੇ ਉੱਪਰ ਇਕੱਠਾ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਇਸ ਲਈ ਇਹ ਮਿਲੀਆਂ ਹੁੰਦੀਆਂ ਹਨ। ਨਮੀ ਯੁਕਤ ਗੈਸਾਂ, ਜਿਸ ਵਿੱਚ ਜਲਵਾਸ਼ਪ ਵੀ ਹੁੰਦੇ ਹਨ, ਦੇ ਵਾਸ਼ਪਦਾਬ ਵਿੱਚੋਂ ਜਲਵਾਸ਼ਪ ਦਾਬ ਘਟਾਉਣ ਤੇ ਖੁਸ਼ਕ ਗੈਸ ਦੇ ਦਾਬ ਦੀ ਗਣਨਾ ਕੀਤੀ ਜਾ ਸਕਦੀ ਹੈ। ਜਲਵਾਸ਼ਪ ਦੁਆਰਾ ਲਾਏ ਗਏ ਦਾਬ ਨੂੰ 'ਜਲੀ ਤਨਾਅ' ਕਹਿੰਦੇ ਹਨ। ਭਿੰਨ ਭਿੰਨ ਤਾਪਮਾਨ ਉੱਤੇ ਪਾਣੀ ਦੇ ਜਲੀ ਤਨਾਅ ਨੂੰ ਸਾਰਣੀ 5.3 ਵਿੱਚ ਦਿੱਤਾ ਗਿਆ ਹੈ।

 $p_{_{
m SHR} lpha \,
m din}$ = $p_{_{
m reve{d} B}}$ – ਜਲੀ ਤਨਾਅ (5.24)

ਸਾਰਣੀ 5.3 ਭਿੰਨ-ਭਿੰਨ ਤਾਪਮਾਨ ਉੱਤੇ ਪਾਣੀ ਦਾ ਜਲੀ ਤਨਾਅ (ਵਾਸ਼ਪ-ਦਾਬ)

ਤਾਪਮਾਨ <i>k</i>	ਦਾਬ (bar)	ਤਾਪਮਾਨ <i>k</i>	ਦਾਬ (bar)
273.15	0.0060	295.15	0.0260
283.15	0.0121	297.15	0.0295
288.15	0.0168	299.15	0.0331
291.15	0.0204	301.15	0.0372
293.15	0.0230	303.15	0.0418

ਮੋਲ ਅੰਸ਼ ਦੇ ਰੂਪ ਵਿੱਚ ਅੰਸ਼ਿਕ ਦਾਬ

ਮੰਨ ਲਓ ਤਾਪਮਾਨ T ਉੱਤੇ V ਆਇਤਨ ਵਾਲੇ ਬਰਤਨ ਵਿੱਚ ਤਿੰਨ ਗੈਸਾਂ, ਜਿਨ੍ਹਾਂ ਦਾ ਅੰਸ਼ਿਕ ਦਾਬ ਕ੍ਰਮਵਾਰ $p_{_{1}},\,p_{_{2}}$ ਅਤੇ $p_{_{3}}$ ਹੈ, ਰੱਖੀਆਂ ਗਈਆਂ ਹਨ, ਤਾਂ

$$p_1 = \frac{n_1 RT}{V} \tag{5.25}$$

$$p_2 = \frac{n_2 RT}{V} \tag{5.26}$$

$$p_3 = \frac{n_3 RT}{V} \tag{5.27}$$

ਜਿੱਥੇ n_1 n_2 ਅਤੇ n_3 ਇਨ੍ਹਾਂ ਗੈਸਾਂ ਦੇ ਮੋਲਾਂ ਦੀ ਸੰਖਿਆ ਹੈ। $p_{\Vec{a}\Vec{b}}=p_1+p_2+p_3$

$$= n_1 \frac{RT}{V} + n_2 \frac{RT}{V} + n_3 \frac{RT}{V}$$

$$p_{\breve{a}\breve{b}} = (n_1 + n_2 + n_3)$$
 (5.28)

 $p_{_1}$ ਨੂੰ $p_{_{f ar{a}f ar{e}}}$ ਨਾਲ ਭਾਗ ਦੇਣ ਮਾਨ ਸਾਨੂੰ ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ

$$\frac{p_1}{p_{\frac{\vec{q}\vec{w}}}} = \left(\frac{n_1}{n_1 + n_2 + n_3}\right) \frac{R/V}{RT/V}$$
$$= \frac{n_1}{n_1 + n_2 + n_3} = \frac{n_1}{n} = x_1$$

ਜਿੱਥੇ $n = n_1 + n_2 + n_3$

 $x_{\rm i}$ ਨੂੰ ਪਹਿਲੀ ਗੈਸ ਦਾ ਮੋਲ ਅੰਸ਼ ਕਹਿੰਦੇ ਹਨ

ਇੰਜ, $p_1 = x_1 p_{\breve{a}\breve{a}\breve{a}}$

ਇਸੇ ਤਰ੍ਹਾਂ ਦੂਜੀਆਂ ਦੋ ਗੈਸਾਂ ਦੇ ਲਈ ਅਸੀਂ ਲਿਖ ਸਕਦੇ ਹਾਂ—

$$p_2=x_2\;p_{_{ar{ exttt{g}}ar{ exttt{w}}}}$$
 ਅਤੇ $p_3=x_3\;p_{_{ar{ exttt{g}}ar{ exttt{w}}}}$ ਇੰਜ ਇੱਕ ਸਧਾਰਣ ਸਮੀਕਰਣ ਨੂੰ ਇਸ ਤਰ੍ਹਾਂ ਲਿਖਿਆ ਜਾ ਸਕਦਾ ਹੈ $-$

$$p_{i} = x_{i} p_{\breve{\sigma} \breve{\kappa}} \tag{5.29}$$

ਜਿੱਥੇ $p_{_{\rm i}}$ ਅਤੇ $x_{_{\rm i}}$ ਗੈਸ ਦੇ ਕ੍ਰਮਵਾਰ ਅੰਸ਼ਿਕ ਦਾਬ ਅਤੇ ਮੋਲ ਅੰਸ਼ ਹੈ। ਜੇ ਗੈਸਾਂ ਦੇ ਮਿਸ਼ਰਣ ਦਾ ਕੁੱਲ ਦਾਬ ਗਿਆਤ ਹੋਵੇ, ਤਾਂ ਸਮੀਕਰਣ 5.29 ਦੇ ਦੁਆਰਾ ਹਰ ਇੱਕ ਗੈਸ ਤੋਂ ਪੈਦਾ ਅੰਸ਼ਿਕ ਦਾਬ ਨੂੰ ਗਿਆਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।

ਉਦਾਰਣ 5.4

ਇੱਕ ਨੀਆੱਨ ਡਾਈਆੱਕਸੀਜਨ ਮਿਸ਼ਰਣ ਵਿੱਚ 70.6 ਗ੍ਰਾਮ ਡਾਈਆੱਕਸੀਜਨ 167.5 ਗ੍ਰਾਮ ਨੀਆੱਨ ਹੈ, ਜੇ ਗੈਸਾਂ ਦੇ ਮਿਸ਼ਰਣ ਦਾ ਕੁੱਲ ਦਾਬ 25 bar ਹੋਵੇ ਤਾਂ ਮਿਸ਼ਰਣ ਵਿੱਚ ਨੀਆੱਨ ਅਤੇ ਡਾਈ ਆੱਕਸੀਜਨ ਦਾ ਅੰਸ਼ਿਕ ਦਾਬ ਕੀ ਹੋਵੇਗਾ ?

ਡਾਈ ਆੱਕਸੀਜਨ ਦੇ ਮੋਲਾਂ ਦੀ ਸੰਖਿਆ

$$=\frac{70.6\,\mathrm{g}}{32\,\mathrm{g\,mol}^{-1}}$$

= 2.21 mol

ਨੀਆੱਨ ਦੇ ਮੋਲਾਂ ਦੀ ਸੰਖਿਆ

$$= \frac{167.5g}{20gmol^{-1}}$$

 $= 8.375 \, \text{mol}$

ਡਾਈਆੱਕਸੀਜਨ ਦੇ ਮੋਲ ਅੰਸ਼

$$=\frac{2.21}{2.21+8.375}$$
$$=\frac{2.21}{10.585}$$
$$=0.21$$

ਨੀਆੱਨ ਦੇ ਮੋਲ ਅੰਸ਼ =
$$\frac{8.375}{2.21 + 8.375}$$

= 0.79

ਦੂਜਾ ਰੂਪ

ਦੂਜੇ ਰੂਪ ਵਿੱਚ ਨੀਆੱਨ ਦਾ ਮੋਲ ਅੰਸ਼ = 1- 0.21 = 0.79

ਗੈਸ ਦਾ ਅੰਸ਼ਿਕ ਦਾਬ = ਮੋਲ ਅੰਸ਼ × ਕੁੱਲ ਦਾਬ

- \Rightarrow ਨੀਆੱਨ ਦਾ ਅੰਸ਼ਿਕ ਦਾਬ = $0.21 \times (25 \text{ bar})$
- = 19.75 bar

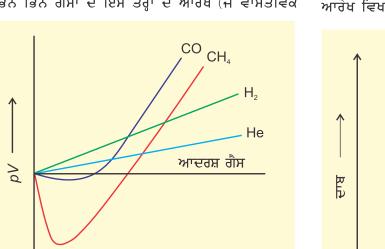
5.7 ਗੈਸਾਂ ਦਾ ਅਣੂ ਗਤੀ ਸਿਧਾਂਤ

ਇੱਥੇ ਅਸੀਂ ਅਨੇਕ ਨਿਯਮਾਂ (ਬਾੱਯਲ ਨਿਯਮ, ਚਾਰਲਸ ਨਿਯਮ ਆਦਿ) ਦਾ ਅਧਿਐਨ ਕੀਤਾ ਜੋ ਵਿਗਿਆਨੀਆਂ ਦੁਆਰਾ ਦਿੱਤੇ ਗਏ ਪ੍ਯੋਗਿਕ ਤੱਥਾਂ ਦਾ ਸੰਖੇਪ ਕਥਨ ਹੈ। ਇਨ੍ਹਾਂ ਵਿਗਿਆਨਕ ਵਿਧੀਆਂ ਦੀ ਵਰਤੋਂ ਸਾਵਧਾਨੀ ਪੂਰਵਕ ਕਰਨ ਤੇ ਅਸੀਂ ਵੇਖਦੇ ਹਾਂ ਕਿ ਕੋਈ ਸਿਸਟਮ ਭਿੰਨ ਭਿੰਨ ਪਰਿਸਥਿਤੀਆਂ ਵਿੱਚ ਕਿਵੇਂ ਵਿਹਾਰ ਕਰਦਾ ਹੈ। ਜਦੋਂ ਪ੍ਯੋਗਿਕ ਤੱਥ ਸਥਾਪਿਤ ਹੋ ਜਾਂਦੇ ਹਨ, ਤਾਂ ਵਿਗਿਆਨੀ ਇਹ ਜਾਣਨ ਦੇ ਲਈ ਉਤਸੁਕ ਰਹਿੰਦੇ ਹਨ ਕਿ ਸਿਸਟਮ ਇਸ ਪ੍ਕਾਰ ਦਾ ਵਿਹਾਰ ਕਿਉਂ ਕਰਦਾ ਹੈ ? ਉਦਾਹਰਣ ਵਜੋਂ- ਗੈਸ ਨਿਯਮ ਦੱਸਦੇ ਹਨ ਕਿ ਜਦੋਂ ਦਾਬ ਵਧਾਇਆ ਜਾਂਦਾ ਹੈ, ਤਾਂ ਗੈਸ ਨਪੀੜਤ ਹੁੰਦੀ ਹੈ, ਪਰੰਤੂ ਸਾਨੂੰ

ਇਹ ਵੀ ਜਾਣਨਾ ਚਾਹੀਦਾ ਹੈ ਕਿ ਜਦੋਂ ਗੈਸ ਨਪੀੜੀ ਜਾਂਦੀ ਹੈ, ਤਾਂ ਉਸ ਦੇ ਅਣਵੀਂ ਸਤਰ ਤੇ ਕੀ ਹੁੰਦਾ ਹੈ ? ਇਨ੍ਹਾਂ ਪ੍ਰਸ਼ਨਾਂ ਦੇ ਉੱਤਰ ਦੇਣ ਦੇ ਲਈ ਇੱਕ ਸਿਧਾਂਤ ਬਣਾਇਆ ਗਿਆ। ਇਹ ਸਿਧਾਂਤ ਸਾਡੇ ਪ੍ਰੇਖਣਾਂ ਨੂੰ ਚੰਗੀ ਤਰ੍ਹਾਂ ਸਮਝਣ ਵਿੱਚ ਇੱਕ ਮਾੱਡਲ ਦਾ ਕਾਰਜ ਕਰਦਾ ਹੈ। ਉਹ ਸਿਧਾਂਤ, ਜੋ ਗੈਸਾਂ ਦੇ ਵਿਹਾਰ ਦਾ ਸਪਸ਼ਟੀਕਰਣ ਦਿੰਦਾ ਹੈ, 'ਗੈਸਾਂ ਦਾ ਅਣੂ ਗਤੀ ਸਿਧਾਂਤ' ਅਖਵਾਉਂਦਾ ਹੈ। ਇਹ ਪਰਮਾਣਵੀਂ ਅਤੇ ਅਣਵੀਂ ਸਿਧਾਂਤ ਦਾ ਵਿਸਥਾਰ ਹੈ।

ਗੈਸਾਂ ਦੇ ਅਣੂਗਤੀ ਸਿਧਾਂਤ ਦੇ ਮੁੱਖ ਸਵੈ ਸਿੱਧ (postulates) ਹੇਠਾਂ ਦਿੱਤੇ ਗਏ ਹਨ। ਇਹ ਸਵੈ ਸਿੱਧ ਉਨ੍ਹਾਂ ਅਣੂਆਂ ਅਤੇ ਪਰਮਾਣੂਆਂ ਨਾਲ ਸਬੰਧਿਤ ਹਨ, ਜਿਨ੍ਹਾਂ ਨੂੰ ਵੇਖਿਆ ਨਹੀਂ ਜਾ ਸਕਦਾ। ਇੰਜ ਇਹ ਸਿਧਾਂਤ ਗੈਸਾਂ ਦੇ ਸੂਖਮਦਰਸ਼ੀ ਪ੍ਤੀਰੂਪ ਹਨ। ਗੈਸਾਂ ਦੇ ਅਣੂ ਗਤੀ ਸਿਧਾਂਤ ਉੱਤੇ ਅਧਾਰਿਤ ਗਣਨਾਵਾਂ ਅਤੇ ਅਨੁਮਾਨ ਇਨ੍ਹਾਂ ਦੇ ਪ੍ਯੋਗਿਕ ਪ੍ਰੇਖਣਾਂ ਦੇ ਅਨੁਰੂਪ ਹੁੰਦੇ ਹਨ ਅਤੇ ਇਸ ਮਾੱਡਲ ਦੇ ਅਸਲ ਰੂਪ ਨੂੰ ਸਥਾਪਿਤ ਕਰਦੇ ਹਨ —

- ਗੈਸ ਵੱਡੀ ਗਿਣਤੀ ਵਿੱਚ ਸਮਰੂਪ ਕਣਾਂ (ਪਰਮਾਣੂ ਜਾਂ ਅਣੂ) ਤੋਂ ਮਿਲਕੇ ਬਣੀ ਹੁੰਦੀ ਹੈ। ਇਹ ਕਣ ਐਨੇਂ ਛੋਟੇ-ਛੋਟੇ ਅਤੇ ਐਨੇਂ ਦੂਰ ਦੂਰ ਹੁੰਦੇ ਹਨ ਕਿ ਗੈਸ ਅਣੂਆਂ ਦਾ ਕੁੱਲ ਆਇਤਨ ਉਨ੍ਹਾਂ ਦੇ ਵਿਚਲੇ ਖਾਲੀ ਥਾਂ ਦੀ ਤੁਲਨਾ ਵਿੱਚ ਨਾ ਮਾਤਰ ਹੁੰਦਾ ਹੈ। ਇਹ ਸਵੈ ਸਿੱਧ ਗੈਸਾਂ ਦੀ ਉੱਚ ਨਪੀੜਨਤਾ ਨੂੰ ਵਿਅਕਤ ਕਰਦਾ ਹੈ।
- ਸਧਾਰਨ ਤਾਪ ਅਤੇ ਦਾਬ ਉੱਤੇ ਗੈਸ ਕਣਾਂ ਦੇ ਵਿੱਚ ਕੋਈ ਅਕਰਸ਼ਣ ਬਲ ਨਹੀਂ ਹੁੰਦਾ ਹੈ। ਇਸ ਸਵੈਸਿੱਧ ਦਾ ਅਧਾਰ ਇਹ ਹੈ ਕਿ ਗੈਸ ਪ੍ਰਸਰਿਤ ਹੋ ਕੇ ਉਨ੍ਹਾਂ ਦੇ ਲਈ ਉੱਪਲਬਧ ਸਥਾਨ ਨੂੰ ਪੂਰਣ ਰੂਪ ਵਿੱਚ ਘੇਰ ਲੈਂਦੀ ਹੈ ਅਤੇ ਸਧਾਰਨ ਤਾਪ ਅਤੇ ਦਾਬ ਉੱਤੇ ਦ੍ਵਿਤ ਨਹੀਂ ਹੁੰਦੀਆਂ।
- ਗੈਸਾਂ ਦੇ ਕਣ ਲਗਾਤਾਰ ਗਤੀ ਅਵਸਥਾ ਵਿੱਚ ਰਹਿੰਦੇ ਹਨ। ਜੇ ਉਹ ਸਥਿਰ ਅਵਸਥਾ ਵਿੱਚ ਹੁੰਦੇ, ਤਾਂ ਗੈਸਾਂ ਇੱਕ ਨਿਸ਼ਚਿਤ ਆਕ੍ਰਿਤੀ ਗ੍ਰਹਿਣ ਕਰ ਲੈਂਦੀਆਂ, ਪਰੰਤੂ ਅਜਿਹਾ ਪ੍ਰੇਖਤ ਹੁੰਦਾ ਨਹੀਂ ਹੈ।
- ਗੈਸ ਦੇ ਕਣ ਹਰ ਇੱਕ ਸੰਭਵ ਦਿਸ਼ਾ ਵਿੱਚ ਚਲਦੇ ਰਹਿੰਦੇ ਹਨ। ਅਪਣੀ ਗਤੀ ਦੇ ਦੌਰਾਨ ਇਹ ਆਪਸ ਵਿੱਚ ਅਤੇ ਬਰਤਨ ਦੀਆਂ ਦੀਵਾਰਾਂ ਨਾਲ ਟਕਰਾਉਂਦੇ ਰਹਿੰਦੇ ਹਨ। ਗੈਸ ਦੇ ਦੁਆਰਾ ਪੈਦਾ ਦਾਬ, ਬਰਤਨ ਦੀਆਂ ਦੀਵਾਰਾਂ ਉੱਤੇ ਗੈਸ ਦੇ ਅਣੂਆਂ ਦੁਆਰਾ ਕੀਤੀਆਂ ਗਈਆਂ ਟੱਕਰਾਂ ਦਾ ਪਰਿਣਾਮ ਹੁੰਦਾ ਹੈ।
- ਗੈਸ ਦੇ ਅਣੂਆਂ ਦੇ ਵਿੱਚ ਟੱਕਰਾਂ ਪੂਰਣ ਰੂਪ ਵਿੱਚ ਲਚਕੀਲੀਆਂ ਹੁੰਦੀਆਂ ਹਨ। ਇਸਦਾ ਭਾਵ ਇਹ ਹੈ ਕਿ ਟਕਰਾਉਣ ਤੋਂ ਪਹਿਲਾਂ ਅਤੇ ਬਾਅਦ ਅਣੂਆਂ ਦੀ ਊਰਜਾ ਸਮਾਨ ਰਹਿੰਦੀ ਹੈ। ਟਕਰਾਉਣ ਕਾਰਣ ਅਣੂਆਂ ਦੇ ਵਿੱਚ ਉਰਜਾ ਦਾ ਤਬਾਦਲਾ ਹੋ ਸਕਦਾ ਹੈ, ਅਰਥਾਤ ਵਿਸ਼ਿਸ਼ਟ

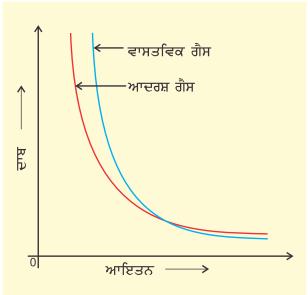

- ਅਣੂ ਦੀ ਊਰਜਾ ਵਿੱਚ ਪਰਿਵਤਨ ਹੋ ਸਕਦਾ ਹੈ, ਪਰੰਤੂ ਕੁੱਲ ਊਰਜਾ ਸਥਿਰ ਬਣੀ ਰਹਿੰਦੀ ਹੈ। ਇਹ ਸਵੈ ਸਿੱਧ ਇਸ ਤੱਥ ਉੱਤੇ ਅਧਾਰਿਤ ਹੈ ਕਿ ਜੇ ਗੈਸ ਦੇ ਅਣੂਆਂ ਦੀ ਊਰਜਾ ਘਟੇ ਤਾਂ ਉਨ੍ਹਾਂ ਦੀ ਗਤੀ ਰੁਕ ਜਾਵੇਗੀ ਅਤੇ ਉਹ ਇਕੱਠੇ ਹੋ ਜਾਣਗੇ, ਜੋ ਵਾਸਤਵਿਕ ਪ੍ਰੇਖਣ ਦੇ ਵਿਪਰੀਤ ਜਾਂ ਪ੍ਤੀਕੂਲ ਹੋਵੇਗਾ।
- ਕਿਸੇ ਵੀ ਸਮੇਂ ਗੈਸ ਦੇ ਭਿੰਨ-ਭਿੰਨ ਕਣਾਂ ਦੀ ਚਾਲ ਭਿੰਨ ਭਿੰਨ ਹੁੰਦੀ ਹੈ। ਫਲਸਰੂਪ ਭਿੰਨ ਭਿੰਨ ਗਤਿਜ ਉਰਜਾਵਾਂ ਹੁੰਦੀਆਂ ਹਨ। ਇਹ ਤੱਥ ਸਹੀ ਲੱਗਦਾ ਹੈ ਕਿਉਂਕਿ ਜਿਉਂ ਹੀ ਅਣੂ ਟਕਰਾਉਂਦੇ ਹਨ, ਤਿਉਂ ਹੀ ਉਨ੍ਹਾਂ ਦੀ ਚਾਲ ਵਿੱਚ ਪਰਿਵਰਤਨ ਹੋ ਜਾਂਦਾ ਹੈ। ਜੇ ਸਾਰੇ ਅਣੂਆਂ ਦੀ ਸ਼ੁਰੂ ਦੀ ਚਾਲ ਸਮਾਨ ਹੋਵੇ, ਤਾਂ ਵੀ ਟਕਰਾਉਣ ਉਪਰੰਤ ਉਨ੍ਹਾਂ ਦੀ ਇਕ ਰੂਪਤਾ ਖਤਮ ਹੋ ਜਾਂਦੀ ਹੈ। ਨਤੀਜੇ ਵਜੋਂ ਉਨ੍ਹਾਂ ਦੀ ਚਾਲ ਭਿੰਨ ਭਿੰਨ ਹੋ ਜਾਂਦੀ ਹੈ। ਇਹ ਚਾਲ ਲਗਾਤਾਰ ਬਦਲਦੀ ਰਹਿੰਦੀ ਹੈ। ਇਸ ਦੇ ਬਾਵਜੂਦ ਨਿਸ਼ਚਿਤ ਤਾਪਮਾਨ ਉੱਤੇ ਚਾਲਾਂ ਦਾ ਵਿਤਰਣ ਸਮਾਨ ਬਣਿਆ ਰਹਿੰਦਾ ਹੈ।
- ਜੇ ਇੱਕ ਅਣੂ ਦੀ ਭਿੰਨ ਭਿੰਨ ਚਾਲ ਹੁੰਦੀ ਹੈ, ਤਾਂ ਉਸ ਦੀਆਂ ਭਿੰਨ ਭਿੰਨ ਗਤਿਜ ਉਰਜਾਵਾਂ ਹੋਣਗੀਆਂ। ਅਜਿਹੀਆਂ ਪਰਿਸਥਿਤੀਆਂ ਵਿੱਚ ਅਸੀਂ ਕੇਵਲ ਔਸਤ ਗਤਿਜ ਊਰਜਾ ਦੀ ਗੱਲ ਕਰ ਸਕਦੇ ਹਾਂ। ਅਣੂ ਗਤੀ ਸਿਧਾਂਤ ਵਿੱਚ ਅਜਿਹਾ ਮੰਨਿਆ ਗਿਆ ਹੈ ਕਿ ਗੈਸ ਦੇ ਅਣੂਆਂ ਦੀ ਔਸਤ ਗਤਿਜ ਊਰਜਾ ਉਸ ਦੇ ਪਰਮ ਤਾਪਮਾਨ ਤੇ ਸਮਾਨ ਅਨੁਪਾਤੀ ਹੁੰਦੀ ਹੈ। ਅਜਿਹਾ ਵੇਖਿਆ ਗਿਆ ਹੈ ਕਿ ਤਾਪਮਾਨ ਵਧਾਉਣ ਤੇ ਗੈਸ ਦਾ ਪਰਸਾਰ ਹੁੰਦਾ ਹੈ ਅਤੇ ਜੇ ਆਇਤਨ ਸਥਿਰ ਰੱਖਿਆ ਜਾਵੇ ਤਾਂ ਦਾਬ ਵਧਦਾ ਹੈ (ਚਾਰਲਸ ਅਤੇ ਗੇ ਲੁਸੈਕਦਾ ਨਿਯਮ)। ਗੈਸ ਨੂੰ ਗਰਮ ਕਰਨ ਨਾਲ ਕਣਾਂ ਦੀ ਗਤਿਜ ਊਰਜਾ ਵਧ ਜਾਂਦੀ ਹੈ, ਜਿਸ ਨਾਲ ਇਹ ਬਰਤਨ ਦੀਆਂ ਦੀਵਾਰਾਂ ਉੱਤੇ ਵਧੇਰੇ ਤੇਜੀ ਨਾਲ ਟਕਰਾਉਂਦੇ ਹਨ। ਨਤੀਜੇ ਵਜੋਂ ਵਧੇਰੇ ਦਾਬ ਪੈਦਾ ਹੁੰਦਾ ਹੈ।

ਗੈਸਾਂ ਦਾ ਅਣੂ ਗਤੀ ਸਿਧਾਂਤ ਸਿਧਾਂਤਕ ਰੂਪ ਵਿੱਚ ਦਾਬ-ਆਇਤਨ ਦੇ ਵਿੱਚ ਸਬੰਧ ਅਤੇ ਗੈਸਾਂ ਦੇ ਨਿਯਮ (ਜਿਨ੍ਹਾਂ ਦਾ ਅਧਿਐਨ ਅਸੀਂ ਪਹਿਲੇ ਭਾਗ ਵਿੱਚ ਕਰ ਚੁਕੇ ਹਾਂ) ਨੂੰ ਦਰਸਾਉਂਦਾ ਹੈ।

5.8 ਆਦਰਸ਼ ਵਿਹਾਰ ਤੋਂ ਵਿਚਲਣ

ਗੈਸਾਂ ਦਾ ਸਿਧਾਂਤਕ ਪ੍ਤੀਰੂਪ ਪ੍ਯੋਗੀ ਪ੍ਰੇਖਣਾਂ ਦੇ ਸੰਗਤ ਹੈ। ਮੁਸਕਿਲ ਉਦੋਂ ਪੈਦਾ ਹੁੰਦੀ ਹੈ, ਜਦੋਂ ਅਸੀਂ ਇਹ ਜਾਣਨ ਦੀ ਕੋਸ਼ਿਸ਼ ਕਰਦੇ ਹਾਂ ਕਿ pV = nRT ਦਾ ਸਬੰਧ ਕਦੋਂ ਤੱਕ ਗੈਸਾਂ ਦੇ ਤਾਪਮਾਨ–ਦਾਬ–ਅਇਤਨ ਦੇ ਵਿੱਚ ਸਬੰਧ ਨੂੰ ਬਣਾ ਕੇ ਰੱਖਦਾ ਹੈ। ਇਸ ਤੱਥ ਦਾ ਪਤਾ ਲਾਉਣ ਦੇ ਲਈ ਅਸੀਂ ਗੈਸਾਂ ਦੇ

pV ਨੂੰ p ਦੇ ਵਿਰੁੱਧ ਅਰੇਖ ਖਿੱਚਦੇ ਹਾਂ।ਬਾੱਯਲ ਦੇ ਨਿਯਮ ਅਨੁਸਾਰ ਸਥਿਰ ਤਾਪਮਾਨ ਉੱਤੇ pV ਸਥਿਰ ਹੋਣਾ ਚਾਹੀਦਾ ਹੈ ਅਤੇ pV ਅਤੇ p ਦੇ ਵਿੱਚ ਅਰੇਖ ਵਿੱਚ ਸਿੱਧੀ ਰੇਖਾ (ਜੋ ਅਕਸ ਦੇ ਸਮਾਨ ਅੰਤਰ ਹੈ) ਪ੍ਰਾਪਤ ਹੋਣੀ ਚਾਹੀਦੀ ਹੈ। ਚਿੱਤਰ $5.8\ 273\ {
m K}$ ਤੇ ਭਿੰਨ ਭਿੰਨ ਗੈਸਾਂ ਦੇ ਇਸ ਤਰ੍ਹਾਂ ਦੇ ਆਰੇਖ (ਜੋ ਵਾਸਤਵਿਕ


ਚਿੱਤਰ 5.8 ਆਦਰਸ਼ ਗੈਸ ਅਤੇ ਵਾਸਤਵਿਕ ਗੈਸ ਦੇ ਲਈ pV ਅਤੇ p ਦੇ ਵਿੱਚ ਆਰੇਖ

ਅੰਕੜਿਆਂ ਉਤੇ ਅਧਾਰਿਤ ਹਨ) ਨੂੰ ਦਰਸ਼ਾਉਂਦਾ ਹੈ।

히

ਇਹ ਅਸਾਨੀ ਨਾਲ ਵੇਖਿਆ ਜਾ ਸਕਦਾ ਹੈ ਕਿ ਸਥਿਰ ਤਾਪਮਾਨ ਉੱਤੇ ਵਾਸਤਵਿਕ ਗੈਸਾਂ ਦੇ ਲਈ pV ਅਤੇ p ਦੇ ਵਿੱਚ ਅਰੇਖ ਵਿੱਚ ਸਿੱਧੀ ਰੇਖਾ ਪ੍ਰਾਪਤ ਨਹੀਂ ਹੁੰਦੀ। ਇਸ ਵਿੱਚ ਆਦਰਸ਼ ਵਿਹਾਰ ਤੋਂ ਸਪਸ਼ਟ ਵਿਚਲਨ ਵਿਖਾਈ ਦਿੰਦਾ ਹੈ ਅਤੇ ਦੋ ਪ੍ਰਕਾਰ ਦੇ ਵਕ੍ਰ ਵਿਖਾਈ ਦਿੰਦੇ ਹਨ। ਇਸ ਵਕ੍ਰ ਵਿੱਚ ਡਾਈ ਹਾਈਡ੍ਰੋਜਨ ਅਤੇ ਹੀਲੀਅਮ ਦੇ ਲਈ ਦਾਬ ਵਧਾਉਣ ਤੇ pV ਦਾ ਮਾਨ ਵੀ ਵਧਦਾ ਜਾਂਦਾ ਹੈ। ਕਾਰਬਨ ਮੋਨੋਆੱਕਸਾਈਡ ਅਤੇ ਮੀਥੇਨ ਦੇ ਲਈ ਦੋ ਪ੍ਰਕਾਰ ਦਾ ਵਕ੍ਰ ਮਿਲਦਾ ਹੈ। ਇਸ ਪ੍ਰਕਾਰ ਦੇ ਵਕ੍ਰ ਵਿੱਚ ਸ਼ੁਰੂ ਵਿੱਚ ਅਦਰਸ਼ ਵਿਹਾਰ ਤੋਂ ਰਿਣਾਤਮਕ ਵਿਚਲਨ ਮਿਲਦਾ ਹੈ। ਦਾਬ ਵਧਣ ਤੇ ਸ਼ੁਰੂ ਵਿੱਚ pV ਦਾ ਮਾਨ ਘੱਟ ਕੇ, ਨਿਊਨਤਮ ਸਤਰ ਤੱਕ ਪਹੁੰਚਦਾ ਹੈ, ਫਿਰ ਵਧਦਾ ਹੈ ਅਤੇ ਅਦਰਸ਼ ਗੈਸ ਦੀ ਰੇਖਾ ਨੂੰ ਪਾਰ ਕਰਕੇ ਲਗਾਤਾਰ ਧਨਾਤਮਕ ਵਿਚਲਨ ਦਰਸਾਉਂਦਾ ਹੈ। ਇੰਜ ਪ੍ਰੇਖਿਤ ਹੁੰਦਾ ਹੈ ਕਿ ਵਾਸਤਵਿਕ ਗੈਸਾਂ ਬਾੱਯਲ ਨਿਯਮ, ਚਾਰਲਸ ਨਿਯਮ ਅਤੇ ਐਵੋਗੈਡਰੋ ਨਿਯਮ ਦਾ ਪੂਰਣ ਪਾਲਨ ਸਾਰੀਆਂ ਸਥਿਤੀਆਂ ਵਿੱਚ ਨਹੀਂ ਕਰਦੀਆਂ ਹਨ।

ਜਦੋਂ ਦਾਬ-ਆਇਤਨ ਆਰੇਖ ਖਿੱਚਿਆ ਜਾਂਦਾ ਹੈ, ਤਾਂ ਆਦਰਸ਼ ਵਿਹਾਰ ਤੋਂ ਵਿਚਲਨ ਅਭਾਸੀ ਹੋ ਜਾਂਦਾ ਹੈ। ਵਾਸਤਵਿਕ ਗੈਸਾਂ ਦੇ ਲਈ ਦਾਬ-ਆਇਤਨ ਆਰੇਖ ਦੇ ਪ੍ਯੋਗਿਕ ਅੰਕੜੇ ਅਤੇ ਆਦਰਸ਼ ਗੈਸ ਦੇ ਲਈ ਬਾੱਯਲ ਦੇ ਨਿਯਮ ਅਨੁਸਾਰ ਸਿਧਾਂਤਕ ਰੂਪ ਦੀਆਂ ਗਣਨਾਵਾਂ ਮੇਲ ਖਾਂਦੀਆਂ ਹੋਣੀਆਂ ਚਾਹੀਦੀਆਂ ਹਨ। ਚਿੱਤਰ 5.9 ਵਿੱਚ ਇਹ ਆਰੇਖ ਵਿਖਾਏ ਹਨ। ਉੱਚੇ ਦਾਬ ਉੱਤੇ ਮਾਪਿਤ ਆਇਤਨ

ਚਿੱਤਰ 5.9 ਅਦਰਸ਼ ਗੈਸ ਅਤੇ ਵਾਸਤਵਿਕ ਗੈਸ ਦੇ ਲਈ ਦਾਬ ਆਇਤਨ ਵਿੱਚ ਆਰੇਖ

ਪਰਿਕਲਿਤ ਆਇਤਨ ਤੋਂ ਵੱਧ ਹੁੰਦਾ ਹੈ, ਜਦਕਿ ਘੱਟ ਦਾਬ ਉੱਤੇ ਮਾਪਿਤ ਅਤੇ ਪਰਿਕਲਿਤ ਆਇਤਨ ਇੱਕ ਦੂਜੇ ਦੇ ਨੇੜੇ ਹੁੰਦੇ ਹਨ।

ਅਜਿਹਾ ਵੇਖਿਆ ਗਿਆ ਹੈ ਕਿ ਵਾਸਤਵਿਕ ਗੈਸਾਂ ਸਾਰੀਆਂ ਪਰਿਸਥਿਤੀਆਂ ਵਿੱਚ ਬਾੱਯਲ, ਚਾਰਲਸ ਅਤੇ ਐਵੋਗੈਡਰੋ ਦੇ ਨਿਯਮ ਦਾ ਪੂਰਣ ਪਾਲਨ ਨਹੀਂ ਕਰਦੀਆਂ ਹਨ। ਹੁਣ ਦੋ ਪ੍ਰਸ਼ਨ ਉੱਠਦੇ ਹਨ—

- (i) ਗੈਸਾਂ ਅਦਰਸ਼ ਵਿਹਾਰ ਤੋਂ ਵਿਚਲਨ ਕਿਉਂ ਦਰਸਾਉਂਦੀਆਂ ਹਨ ?
- (ii) ਉਹ ਕਿਹੜੀਆਂ ਪਰਿਸਥਿਤੀਆਂ ਹਨ, ਜੋ ਗੈਸ ਨੂੰ ਆਦਰਸ਼ਤਾ ਤੋਂ ਵਿਚਲਿਤ ਕਰਦੀਆਂ ਹਨ ?

ਜੇ ਅਸੀਂ ਗੈਸਾਂ ਦੇ ਅਣੂ ਗਤੀ ਸਿਧਾਂਤ ਦੀ ਧਾਰਣਾ ਉੱਤੇ ਮੁੜ ਵਿਚਾਰ ਕਰੀਏ, ਤਾਂ ਸਾਨੂੰ ਇਨ੍ਹਾਂ ਪ੍ਰਸ਼ਨਾਂ ਦਾ ਉੱਤਰ ਮਿਲ ਜਾਵੇਗਾ ਅਸੀਂ ਵੇਖਦੇ ਹਾਂ ਕਿ ਅਣੂ ਗਤੀ ਸਿਧਾਂਤ ਦੀਆਂ ਦੋ ਕਲਪਨਾਵਾਂ ਸਹੀ ਨਹੀਂ ਹਨ।ਉਹ ਹਨ —

- (ੳ) ਗੈਸਾਂ ਦੇ ਅਣੂਆਂ ਦੇ ਵਿੱਚ ਕੋਈ ਅਕਰਸ਼ਣ ਬਲ ਨਹੀਂ ਹੁੰਦਾ।
- (ਅ) ਗੈਸਾ ਦੇ ਅਣੂਆਂ ਦਾ ਆਇਤਨ ਗੈਸ ਦੁਆਰਾ ਘੇਰੇ ਗਏ ਆਇਤਨ ਦੀ ਤੁਲਨਾ ਵਿੱਚ ਬਹੁਤ ਘੱਟ ਹੁੰਦਾ ਹੈ।

ਧਾਰਣਾ (ੳ) ਸਿਰਫ਼ ਉਦੋਂ ਸਹੀ ਹੈ, ਜਦੋਂ ਗੈਸ ਕਦੇ ਵੀ ਦ੍ਵੀਕ੍ਰਿਤ ਨਾ ਹੋਵੇ, ਲੇਕਿਨ ਅਸੀਂ ਜਾਣਦੇ ਹਾਂ ਕਿ ਠੰਡੀ ਕਰਨ ਤੇ ਅਤੇ ਨਪੀੜਨ ਨਾਲ ਗੈਸ ਨੂੰ ਦ੍ਵਿਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ ਅਤੇ ਦ੍ਵ ਦੇ ਅਣੂਆਂ ਨੂੰ ਨਪੀੜਿਤ ਕਰਨਾ ਮੁਸ਼ਕਿਲ ਹੁੰਦਾ ਹੈ, ਅਰਥਾਤ ਪ੍ਤੀਕਰਸ਼ਣ ਬਲ ਇੰਨੇ ਪ੍ਰਭਾਵਸ਼ਾਲੀ ਹੁੰਦੇ ਹਨ ਕਿ ਸੂਖਮ ਆਇਤਨ ਵਿਚ ਅਣੂਆਂ ਨੂੰ ਨਿਚੋੜਨ ਦਾ ਵਿਰੋਧ ਕਰਦੇ ਹਨ। ਜੇ ਧਾਰਣਾ (ਅ) ਸਹੀ ਹੈ ਤਾਂ ਦਾਬ-ਆਇਤਨ ਆਰੇਖ ਵਿੱਚ ਵਾਸਤਵਿਕ ਗੈਸ ਦੇ ਪ੍ਯੋਗਿਕ ਅੰਕੜੇ ਅਤੇ ਬਾੱਯਲ ਦੇ ਨਿਯਮ ਉੱਤੇ ਅਧਾਰਿਤ ਸਿਧਾਂਤਕ ਪਰਿਕਲਨ ਇੱਕ ਦੂਜੇ ਨਾਲ ਮੇਲ ਖਾਣੇ ਚਾਹੀਦੇ ਹਨ।

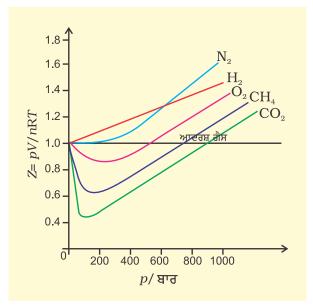
ਵਾਸਤਵਿਕ ਗੈਸ ਆਦਰਸ਼ ਵਿਹਾਰ ਤੋਂ ਵਿਚਲਨ ਇਸ ਲਈ ਦਰਸਾਉਂਦੀ ਹੈ, ਕਿਉਂਕਿ ਅਣੂ ਆਪਸ ਵਿੱਚ ਅੰਤਰ ਕਿਰਿਆ ਕਰਦੇ ਹਨ। ਆਕਰਸ਼ਣ ਬਲ ਅਣੂਆਂ ਨੂੰ ਕੋਲ-ਕਕਕਕੋਲ ਲਿਆਉਣ ਦਾ ਯਤਨ ਕਰਦੇ ਹਨ, ਜਦਕਿ ਪ੍ਤੀਕਰਣ ਬਲ ਅਣੂਆਂ ਨੂੰ ਇੱਕ ਦੂਜੇ ਤੋਂ ਦੂਰ ਕਰਨ ਦਾ ਯਤਨ ਕਰਦੇ ਹਨ। ਉੱਚ ਦਾਬ ਉੱਤੇ ਗੈਸ ਦੇ ਅਣੂ ਪੂਰਣ ਬਲ ਨਾਲ ਬਰਤਨ ਦੀਆਂ ਦੀਵਾਰਾਂ ਨਾਲ ਨਹੀਂ ਟਕਰਾਉਂਦੇ ਹਨ ਕਿਉਂਕਿ ਅਣਵੀਂ ਅਕਰਸ਼ਣ ਬਲ ਮਹਿਸੂਸ ਕਰਦੇ ਹਨ। ਇਹ ਗੈਸ ਦੇ ਅਣੂਆਂ ਦੁਆਰਾ ਬਰਤਨ ਦੀਆਂ ਦੀਵਾਰਾਂ ਉੱਤੇ ਪੈਦਾ ਦਾਬ ਨੂੰ ਪ੍ਰਭਾਵਿਤ ਕਰਦਾ ਹੈ। ਇੰਜ ਵਾਸਤਵਿਕ ਗੈਸ ਦੇ ਦੁਆਰਾ ਪੈਦਾ ਦਾਬ ਅਦਰਸ਼ ਗੈਸ ਦੇ ਦਾਬ ਤੋਂ ਘੱਟ ਹੰਦਾ ਹੈ।

$$p_{\text{ਆਦਰਸ਼}} = p_{\text{ਵਾਸਤfea}} + \frac{an^2}{V^2}$$
 (5.30)
ਪ੍ਰੇਖਿਤ ਸੋਧਣ
ਦਾਬ ਟਰਮ

ਇੱਥੇ a ਇੱਕ ਸਥਿਰ ਅੰਕ ਹੈ।

ਇਸ ਸਥਿਤੀ ਵਿੱਚ ਪ੍ਰਤੀਕਰਸ਼ਣ ਬਲ ਵੀ ਸਾਰਥਕ ਹੋ ਜਾਂਦੇ ਹਨ। ਪ੍ਰਤੀਕਰਸ਼ਣ ਅੰਤਰ ਕਿਰਿਆਵਾਂ ਘੱਟ ਮਾਤਰਾ ਵਿੱਚ ਹੁੰਦੀਆਂ ਹਨ ਅਤੇ ਜਦੋਂ ਅਣੂ ਇੱਕ ਦੂਜੇ ਦੇ ਲਗਪਗ ਸੰਪਰਕ ਵਿੱਚ ਹੁੰਦੇ ਹਨ, ਤਾਂ ਇਹ ਸਾਰਥਕ ਹੋ ਜਾਂਦੀਆਂ ਹਨ। ਇਹ ਸਥਿਤੀ ਉੱਚ ਦਾਬ ਉੱਤੇ ਪੈਦਾ ਹੁੰਦੀ ਹੈ। ਪ੍ਰਤੀਕਰਸ਼ਣ ਬਲ ਅਣੂਆਂ ਸੂਖਮ, ਪਰੰਤੂ ਨਾ ਵਿਨ੍ਹੇ ਜਾਣ ਵਾਲੇ ਗੋਲੇ ਵਾਂਗ ਵਿਹਾਰ ਕਰਨ ਦੇ ਲਈ ਪ੍ਰੇਰਿਤ ਕਰਦੇ ਹਨ। ਅਣੂਆਂ ਦੇ ਦੁਆਰਾ ਘੇਰਿਆ ਸਥਾਨ ਵੀ ਸਾਰਥਕ ਹੋ ਜਾਂਦਾ ਹੈ, ਕਿਉਂਕਿ ਅਣੂ V ਆਇਤਨ ਵਿੱਚ ਵਿਚਰਨ ਦੀ ਥਾਂ ਤੇ (V-nb) ਆਇਤਨ ਵਿੱਚ ਵਿਚਰਨ ਕਰਨ ਦੇ ਲਈ ਮਜਬੂਰ ਹੋ ਜਾਂਦੇ ਹਨ, ਜਿੱਥੇ nb ਗੈਸ ਦੇ ਅਣੂਆਂ ਦੁਆਰਾ ਘੇਰੇ ਵਾਸਤਵਿਕ ਆਇਤਨ ਦੇ ਲਗਪਗ ਬਰਾਬਰ ਹੈ। b ਇੱਕ ਸਥਿਰ ਅੰਕ ਹੈ। ਦਾਬ ਆਇਤਨ ਦੇ ਇਨ੍ਹਾਂ ਸੋਧਾਂ ਨੂੰ ਧਿਆਨ ਵਿੱਚ ਰੱਖਦੇ ਹੋਈ ਅਸੀਂ ਸਮੀਕਰਣ 5.17 ਨੂੰ ਇਸ ਪ੍ਰਕਾਰ ਲਿਖ ਸਕਦੇ ਹਾਂ—

$$\left(p + \frac{an^2}{V^2}\right)(V - nb) = nRT$$
 (5.31)


ਸਮੀਕਰਣ 5.31 ਨੂੰ 'ਵਾਂਡਰਵਾਲ ਸਮੀਕਰਣ' ਕਹਿੰਦੇ ਹਨ। n ਗੈਸ ਦੇ ਮੋਲਾਂ ਦੀ ਸੰਖਿਆ ਹੈ। a ਅਤੇ b ਵਾਂਡਰਵਾਲ ਸਥਿਰ ਅੰਕ ਹਨ ਜਿਨ੍ਹਾਂ ਦਾ ਮਾਨ ਗੈਸ ਦੇ ਲੱਛਣਿਕ ਗੁਣਾਂ ਉੱਤੇ ਨਿਰਭਰ ਕਰਦਾ ਹੈ। a ਦਾ ਮਾਨ ਗੈਸ ਦੇ ਅਣੂਆਂ ਵਿੱਚ ਅੰਤਰ ਅਣਵੀਂ ਆਕਰਸ਼ਣ ਬਲ ਦਾ ਪਰਿਮਾਣ ਹੈ, ਜੋ ਤਾਪਮਾਨ ਅਤੇ ਦਾਬ ਉੱਤੇ ਨਿਰਭਰ ਨਹੀਂ ਕਰਦਾ ਹੈ।

ਘੱਟ ਤਾਪਮਾਨ ਉੱਤੇ ਵੀ ਅੰਤਰ ਅਣਵੀਂ ਬਲ ਸਾਰਥਕ ਹੋ ਜਾਂਦੇ ਹਨ ਕਿਉਂਕਿ ਅਣੂ ਘੱਟ ਊਰਜਾ ਨਾਲ ਚੱਲਦੇ ਹਨ, ਜਿਸ ਨਾਲ ਇਹ ਅਣੂ ਇੱਕ ਦੂਜੇ ਨਾਲ ਅਕਰਸ਼ਣ ਬਲ ਨਾਲ ਬੱਝੇ ਹੁੰਦੇ ਹਨ। ਵਾਸਤਵਿਕ ਗੈਸ ਉਦੋਂ ਆਦਰਸ਼ ਵਿਹਾਰ ਪ੍ਦਰਸ਼ਿਤ ਕਰਦੀ ਹੈ, ਜਦੋਂ ਅੰਤਰ ਅਣਵੀਂ ਬਲ ਪ੍ਯੋਗਿਕ ਰੂਪ ਵਿਚ ਨਾ ਮਾਤਰ ਹੋ ਜਾਣ। ਵਾਸਤਵਿਕ ਗੈਸ ਉਦੋਂ ਵੀ ਅਦਰਸ਼ ਵਿਹਾਰ ਪ੍ਦਰਸ਼ਿਤ ਕਰਦੀ ਹੈ, ਜਦੋਂ ਦਾਬ ਸਿਫਰ ਹੋ ਜਾਏ।

ਆਦਰਸ਼ ਵਿਹਾਰ ਤੋਂ ਵਿਚਲਨ ਨੂੰ ਨਪੀੜਨਤਾ ਕਾਰਕ Z ਦੁਆਰਾ ਮਾਪਿਆ ਜਾਂਦਾ ਹੈ ਜੋ pV ਅਤੇ nRT ਦੇ ਗੁਣਨਫਲ ਦਾ ਅਨੁਪਾਤ ਹੁੰਦਾ ਹੈ। ਗਣਿਤੀ ਰੂਪ ਵਿੱਚ

$$Z = \frac{pV}{nRT} \tag{5.32}$$

ਆਦਰਸ਼ ਗੈਸਾਂ ਦੇ ਲਈ Z=1 ਹੁੰਦਾ ਹੈ ਕਿਉਂਕਿ ਸਾਰੇ ਤਾਪਮਾਨਾਂ ਅਤੇ ਦਾਬ ਉੱਤੇ pV=n RT ਹੁੰਦਾ ਹੈ। Z ਅਤੇ p ਦੇ ਵਿੱਚ ਅਰੇਖ ਖਿੱਚਣ ਤੇ ਸਿੱਧੀ ਰੇਖਾ ਪ੍ਰਾਪਤ ਹੁੰਦੀ ਹੈ, ਜੋ ਦਾਬ ਅਕਸ ਦੇ ਸਮਾਨ ਅੰਤਰ ਹੁੰਦੀ ਹੈ (ਚਿੱਤਰ 5.10)। ਇਨ੍ਹਾਂ ਗੈਸਾਂ ਵਿੱਚ Z ਦਾ ਮਾਨ ਇਕਾਈ ਨਾਲੋਂ ਵਿਚਲਿਤ ਹੋ ਜਾਂਦਾ ਹੈ, ਜੋ ਆਦਰਸ਼ ਵਤੀਰੇ ਤੋਂ ਵਿਚਲਿਨ ਦਰਸਾਉਂਦੀਆਂ ਹਨ।

ਚਿੱਤਰ *5.10* ਕੁਝ ਗੈਸਾਂ ਦੇ ਨਪੀੜਤਾ ਕਾਰਕ ਵਿੱਚ ਪਰਿਵਰਤਨ

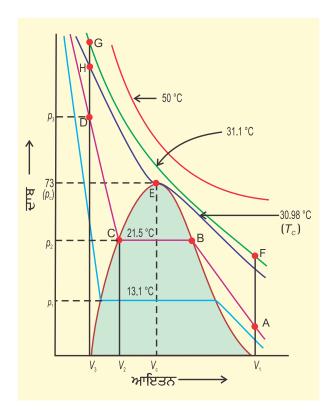
ਘੱਟ ਦਾਬ ਉੱਤੇ ਲਗਪਗ ਸਾਰੀਆਂ ਗੈਸਾਂ ਦੇ ਲਈ Z=1 ਹੁੰਦਾ ਹੈ। ਉਹ ਆਦਰਸ਼ ਗੈਸ ਵਾਂਗ ਵਿਹਾਰ ਕਰਦੀਆਂ ਹਨ, ਪਰੰਤੂ ਉੱਚੇ ਦਾਬ ਉੱਤੇ ਸਾਰੀਆਂ ਗੈਸਾਂ Z>1 ਹੁੰਦਾ ਹੈ। ਅਰਥਾਤ ਇਨ੍ਹਾਂ ਨੂੰ ਨਪੀੜਨਾ ਮੁਸ਼ਕਿਲ ਹੁੰਦਾ ਹੈ। ਮੀਡੀਅਮ ਦਾਬ ਉੱਤੇ Z < 1 ਹੁੰਦਾ ਹੈ। ਇੰਜ ਜਦੋਂ ਗੈਸ ਦੁਆਰਾ ਘੇਰਿਆ ਗਿਆ ਆਇਤਨ ਬਹੁਤ ਜਿਆਦਾ ਹੋਵੇ, ਤਾਂ ਵਾਸਤਵਿਕ ਗੈਸ ਆਦਰਸ਼ ਗੈਸ ਵਾਂਗ ਵਿਹਾਰ ਦਰਸਾਉਂਦੀ ਹੈ, ਕਿਉਂਕਿ ਅਜਿਹੀ ਸਥਿਤੀ ਵਿੱਚ ਅਣੂਆਂ ਦਾ ਆਇਤਨ ਨਾ ਮਾਤਰ ਮੰਨਿਆ ਜਾਂਦਾ ਹੈ। ਦੂਜੇ ਸ਼ਬਦਾਂ ਵਿੱਚ ਜਦੋਂ ਦਾਬ ਬਹੁਤ ਘੱਟ ਹੁੰਦਾ ਹੈ, ਤਾਂ ਗੈਸ ਦਾ ਵਿਹਾਰ ਵਧੇਰੇ ਆਦਰਸ਼ ਹੋ ਜਾਂਦਾ ਹੈ। ਕਿਸ ਦਾਬ ਤੱਕ ਗੈਸ ਆਦਰਸ਼ ਨਿਯਮਾਂ ਦਾ ਪਾਲਨ ਕਰੇਗੀ ਇਹ ਗੈਸ ਦੀ ਪ੍ਰਕਿਰਤੀ ਅਤੇ ਤਾਪਮਾਨ ਉੱਤੇ ਨਿਰਭਰ ਕਰਦਾ ਹੈ। ਉਹ ਤਾਪਮਾਨ ਜਿਸ ਉੱਤੇ ਕੋਈ ਵਾਸਤਵਿਕ ਗੈਸ ਕਾਫੀ ਦਾਬ ਦੀ ਮਾਤਰਾ ਵਿੱਚ ਆਦਰਸ਼ ਗੈਸ ਵਾਂਗ ਵਿਹਾਰ ਕਰਦੀ ਹੈ ਬਾੱਯਲ ਤਾਪਮਾਨ ਜਾਂ ਬਾੱਯਲ ਬਿੰਦ ਅਖਵਾਉਂਦਾ ਹੈ। ਇੱਕ ਗੈਸ ਦਾ ਬਾੱਯਲ ਬਿੰਦ ਗੈਸ ਦੀ ਪ੍ਰਕਿਰਤੀ ਉੱਤੇ ਨਿਰਭਰ ਕਰਦਾ ਹੈ। ਬਾੱਯਲ ਬਿੰਦੂ ਤੋਂ ਉੱਪਰ ਵਾਸਤਵਿਕ ਗੈਸ ਆਦਰਸ਼ਤਾ ਤੋਂ ਧਨਾਤਮਕ ਵਿਚਲਨ ਦਰਸਾਉਂਦੀ ਹੈ ਅਤੇ Z ਦਾ ਮਾਨ ਇੱਕ ਤੋਂ ਵੱਧ ਹੰਦਾ ਹੈ। ਅਣੂਆਂ ਦੇ ਵਿੱਚ ਅਕਰਸ਼ਣ ਬਲ ਬਹੁਤ ਕਮਜੋਰ ਹੁੰਦੇ ਹਨ। ਬਾੱਯਲ ਬਿੰਦੂ ਤੋਂ ਹੇਠਾਂ ਦਾਬ ਵਧਾਉਣ ਤੇ ਵਾਸਤਵਿਕ ਗੈਸਾਂ ਦਾ Z ਦਾ ਮਾਨ ਸ਼ੁਰੂ ਵਿੱਚ ਘੱਟ ਹੁੰਦਾ ਹੈ ਅਤੇ ਫਿਰ ਦਾਬ ਵਧਾਉਣ ਦੇ Zਦਾ ਮਾਨ ਲਗਾਤਾਰ ਵਧਦਾ ਜਾਂਦਾ ਹੈ।ਉਪਰੋਕਤ ਵਿਆਖਿਆ ਤੋਂ ਇਹ ਸਪਸ਼ਟ ਹੁੰਦਾ ਹੈ ਕਿ ਉੱਚੇ ਤਾਪਮਾਨ ਅਤੇ ਘੱਟ ਦਾਬ ਉੱਤੇ ਵਾਸਤਵਿਕ ਗੈਸ ਅਦਰਸ਼ ਵਿਹਾਰ ਦਰਸਾਉਂਦੀ ਹੈ। ਭਿੰਨ ਭਿੰਨ ਗੈਸਾਂ ਦੇ ਲਈ ਇਹ ਪਰਿਸਥਿਤੀਆਂ ਭਿੰਨ ਭਿੰਨ ਹੁੰਦੀਆਂ ਹਨ।

ਜੇ ਅਸੀਂ ਹੇਠ ਲਿਖੀ ਵਿਉਂਤਪਤੀ ਨੂੰ ਵੇਖੀਏ, ਤਾਂ Z ਦੇ ਸੰਦਰਭ ਵਿੱਚ ਸਾਨੂੰ ਹੋਰ ਵਧੇਰੇ ਜਾਣਕਾਰੀ ਪ੍ਰਾਪਤ ਹੁੰਦੀ ਹੈ।

$$Z = \frac{pV_{\text{evaslea}}}{nRT} \tag{5.33}$$

ਜੇ ਗੈਸ ਆਦਰਸ਼ ਵਿਹਾਰ ਦਰਸਾਏ ਤਾਂ

$$V_{\text{ਆਦਰਸ਼}} = \frac{n\,\mathrm{R}T}{p}$$


 $\frac{nRT}{p}$ ਦੇ ਇਸ ਮਾਨ ਨੂੰ ਸਮੀਕਰਣ 5.33 ਵਿੱਚ ਰੱਖਣ ਤੇ ਸਾਨੂੰ ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ

$$Z = \frac{V_{\text{evhsfea}}}{V_{\text{evhsfea}}} \tag{5.34}$$

ਸਮੀਕਰਣ (5.34) ਤੋਂ ਸਪਸ਼ਟ ਹੈ ਕਿ ਨਪੀੜਨਤਾ ਗੁਣਾਂਕ ਗੈਸ ਦੇ ਵਾਸਤਵਿਕ ਮੋਲਰ ਆਇਤਨ ਅਤੇ ਉਸੇ ਤਾਪਮਾਨ ਅਤੇ ਦਾਬ ਉੱਤੇ ਅਦਰਸ਼ ਗੈਸ ਦੇ ਮੋਲਰ ਆਇਤਨ ਦਾ ਅਨੁਪਾਤ ਹੁੰਦਾ ਹੈ। ਇਸ ਭਾਗ ਵਿੱਚ ਅਸੀਂ ਅਧਿਐਨ ਕਰਾਂਗੇ ਕਿ ਗੈਸੀ ਅਤੇ ਦ੍ਵ ਅਵਸਥਾ ਵਿੱਚ ਅੰਤਰ ਕਰਨਾ ਸੰਭਵ ਨਹੀਂ ਹੈ ਅਤੇ ਘੱਟ ਆਇਤਨ ਅਤੇ ਉੱਚ ਅਣਵੀਂ ਅਕਰਸ਼ਣ ਦੇ ਖੇਤਰ ਵਿੱਚ ਦ੍ਵ ਨੂੰ ਗੈਸ ਦੀ ਨਿਰੰਤਰ ਅਵਸਥਾ ਮੰਨਿਆ ਜਾ ਸਕਦਾ ਹੈ। ਅਸੀਂ ਇਹ ਵੀ ਵੇਖਾਂਗੇ ਕਿ ਗੈਸਾਂ ਦੇ ਦ੍ਵੀਕਰਣ ਦੇ ਲਈ ਸਹੀ ਪਰਿਸਥਿਤੀਆਂ ਦੇ ਲਈ ਸਮਤਾਪੀ ਵਕ੍ਰਾਂ ਦੀ ਵਰਤੋਂ ਕਿਸ ਤਰ੍ਹਾਂ ਕੀਤੀ ਜਾਂਦੀ ਹੈ।

5.9 ਗੈਸਾਂ ਦਾ ਦ੍ਵੀਕਰਣ

ਕਿਸੇ ਪਦਾਰਥ ਦੀ ਗੈਸ ਅਤੇ ਦ੍ਵ ਅਵਸਥਾ ਦੇ ਲਈ ਦਾਬ-ਆਇਤਨ-ਤਾਪਮਾਨ ਸਬੰਧਾਂ ਦੇ ਪੂਰਣ ਅਕੜੇ ਪਹਿਲੀ ਵਾਰ ਥਾੱਮਸ ਐਂਡਰਿਊਜ ਨੇ ਕਾਰਬਨ ਡਾਈਆੱਕਸਾਈਡ ਦੇ ਲਈ ਦਿੱਤੇ। ਉਨ੍ਹਾਂ ਨੇ ਭਿੰਨ ਭਿੰਨ ਤਾਪਮਾਨਾਂ ਉੱਤੇ ਕਾਰਬਨ ਡਾਈਆੱਕਸਾਈਡ ਦੇ ਸਮਤਾਪੀ ਆਰੇਖ ਖਿੱਚੋਂ (ਚਿੱਤਰ 5.11)। ਬਾਅਦ ਵਿੱਚ ਇਹ ਵੇਖਿਆ ਗਿਆ ਕਿ ਵਾਸਤਵਿਕ ਗੈਸਾਂ ਕਾਰਬਨ ਡਾਈਆੱਕਸਾਈਡ ਵਾਂਗ ਵਿਹਾਰ ਦਰਸਾਉਂਦੀਆਂ ਹਨ। ਐਂਡਰਿਊਜ਼ ਨੇ ਵੇਖਿਆ ਕਿ ਉੱਚੇ ਤਾਪਮਾਨ ਉੱਤੇ ਸਮਤਾਪੀ ਆਰੇਖ ਆਦਰਸ਼ ਗੈਸਾਂ ਦੇ ਸਮਤਾਪੀ ਆਰੇਖ ਦੇ ਸਮਾਨ ਹੁੰਦੇ ਹਨ। ਉਨ੍ਹਾਂ ਨੇ ਇਹ ਵੀ ਵੇਖਿਆ ਉੱਚੇ ਤਾਪਮਾਨ ਉੱਤੇ ਵੀ ਗੈਸਾਂ ਨੂੰ ਦਵਿਤ ਨਹੀਂ ਕੀਤਾ ਜਾ ਸਕਦਾ। ਜਦੋਂ ਤਾਪਮਾਨ ਘੱਟ ਕੀਤਾ

ਚਿੱਤਰ 5.11 ਭਿੰਨ−ਭਿੰਨ ਤਾਪਮਾਨਾਂ ਉੱਤੇ ਕਾਰਬਨ ਡਾਈਆੱਕਸਾਈਡ ਦੇ ਸਮਤਾਪੀ ਆਰੇਖ

ਜਾਂਦਾ ਹੈ, ਤਾਂ ਵਕ੍ਰ ਦੀ ਆਕ੍ਰਿਤੀ ਪਰਿਵਰਤਿਤ ਹੋ ਜਾਂਦੀ ਹੈ ਅਤੇ ਅੰਕੜੇ ਆਦਰਸ਼ ਵਿਹਾਰ ਤੋਂ ਵਿਚਲਨ ਦਰਸਾਉਂਦੇ ਹਨ। 30.98° C ਉੱਤੇ 73 ਵਾਯੂਮੰਡਲੀ ਦਾਬ ਤੋਂ ਪਹਿਲਾਂ ਕਾਰਬਨ ਡਾਈਆੱਕਸਾਈਡ ਗੈਸ ਦ੍ਵ ਅਵਸਥਾ ਵਿੱਚ ਰਹਿੰਦੀ ਹੈ (ਚਿੱਤਰ 5.11 ਵਿੱਚ ਬਿੰਦੂ E)। 73 ਵਾਯੂਮੰਡਲੀ ਦਾਬ ਉੱਤੇ ਕਾਰਬਨ ਡਾਈਆੱਕਸਾਈਡ ਪਹਿਲੀ ਵਾਰ ਦ੍ਵ ਅਵਸਥਾ ਵਿੱਚ ਪ੍ਗਟ ਹੁੰਦੀ ਹੈ। 30.98° C ਤਾਪਮਾਨ ਕਾਰਬਨ ਡਾਈ ਆੱਕਸਾਈਡ ਦਾ ਕ੍ਰਾਂਤਿਕ ਤਾਪਮਾਨ ($T_{\rm C}$) ਅਖਵਾਉਂਦਾ ਹੈ। ਇਹ ਉਹ ਅਧਿਕਤਮ ਤਾਪਮਾਨ ਹੈ, ਜਿਸ ਉੱਤੇ ਦ੍ਵ ਕਾਰਬਨ ਡਾਈਆੱਕਸਾਈਡ ਪ੍ਰਾਪਤ ਹੁੰਦੀ ਹੈ ਅਤੇ ਇਸ ਤੋਂ ਵੱਧ ਤਾਪਮਾਨ ੳਤੇ ਇਹ ਗੈਸ ਹੰਦੀ ਹੈ।

ਕ੍ਰਾਂਤਿਕ ਤਾਪਮਾਨ ਉੱਤੇ ਇੱਕ ਮੋਲ ਗੈਸ ਦਾ ਆਇਤਨ ਕ੍ਰਾਂਤਿਕ ਆਇਤਨ ($V_{\rm c}$) ਅਤੇ ਇਸ ਤਾਪਮਾਨ ਉੱਤੇ ਦਾਬ ਕ੍ਰਾਂਤ੍ਰਿਕ ਦਾਬ ($p_{\rm c}$) ਅਖਵਾਉਂਦਾ ਹੈ।

ਕ੍ਰਾਂਤਿਕ ਤਾਪਮਾਨ, ਕ੍ਰਾਂਤਿਕ ਦਾਬ ਅਤੇ ਕ੍ਰਾਂਤਿਕ ਆਇਤਨ ਨੂੰ ਕ੍ਰਾਂਤਿਕ ਸਥਿਰ ਅੰਕ ਕਹਿੰਦੇ ਹਨ। ਹੋਰ ਦਾਬ ਵਧਾਉਣ ਨਾਲ ਦ੍ਵ ਕਾਰਬਨ ਡਾਈਆੱਕਸਾਈਡ ਨਪੀੜਿਤ ਹੋ ਜਾਂਦੀ ਹੈ। ਖੜੀ ਰੇਖਾ ਦਵ ਕਾਰਬਨ ਡਾਈਆੱਕਸਾਈਡ ਦੇ ਸਮਤਾਪੀ ਆਰੇਖ ਨੂੰ ਪ੍ਰਦਰਸ਼ਿਤ ਕਰਦੀ ਹੈ। ਬਹੁਤ ਜਿਆਦਾ ਦਾਬ ਵਧਾਉਣ ਨਾਲ ਨਪੀੜਨਤਾ ਵਿੱਚ ਸੁਖਮ ਨਿਊਨਤਾ ਦ੍ਵਾਂ ਦੀ ਘੱਟ ਨਪੀੜਨਤਾ ਨੂੰ ਪਰਦਰਸ਼ਿਤ ਕਰਦੀ ਹੈ।21.5°C ਉੱਤੇ ਬਿੰਦੂ B ਤੱਕ ਕਾਰਬਨ ਡਾਈਆੱਕਸਾਈਡ ਗੈਸ ਅਵਸਥਾ ਵਿੱਚ ਰਹਿੰਦੀ ਹੈ। ਬਿੰਦ B ਉੱਤੇ ਵਿਸ਼ਿਸ਼ਟ ਆਇਤਨ ਦਾ ਦ੍ਵ ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ। ਇਸ ਦੇ ਬਾਅਦ ਨਪੀੜਨ ਤੇ ਦਾਬ ਪਰਿਵਰਤਿਤ ਨਹੀਂ ਹੁੰਦਾ ਹੈ। ਦਵ ਅਤੇ ਗੈਸ ਕਾਰਬਨ ਡਾਈਆੱਕਸਾਈਡ ਨਾਲ ਨਾਲ ਰਹਿੰਦੀਆਂ ਹਨ। ਦਾਬ ਹੋਰ ਵਧਾਉਣ ਨਾਲ ਗੈਸ ਦਾ ਸੰਘਨਾਪਨ ਵਧੇਰੇ ਹੁੰਦਾ ਹੈ ਅਤੇ ਬਿੰਦੂ C ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ। ਬਿੰਦੂ C ਉੱਤੇ ਪੂਰੀ ਗੈਸ ਸੰਘਨੀ ਹੋ ਜਾਂਦੀ ਹੈ। ਉਸ ਦੇ ਬਾਅਦ ਹੋਰ ਦਾਬ ਵਧਾਉਣ ਨਾਲ ਦੂਵ ਬਹੁਤ ਘੱਟ ਨੀਪੜਨ ਹੁੰਦਾ ਹੈ ਅਤੇ ਇੱਕ ਖੜਵੀਂ (steep) ਰੇਖਾ ਮਿਲਦੀ ਹੈ। $V_{_2}$ ਤੋਂ $V_{_3}$ ਤੱਕ ਆਇਤਨ ਵਿੱਚ ਸੂਖਮ ਨਪੀੜਨ $p_{_2}$ ਤੋਂ $p_{_3}$ ਦਾਬ ਨੂੰ ਖੜਵਾਂ ਬਣਾਉਂਦਾ ਹੈ (ਚਿੱਤਰ 5.11)। 30.98°C (ਕਾਂਤਿਕ ਤਾਪਮਾਨ) ਤੋਂ ਹੇਠਾਂ ਹਰ ਇੱਕ ਵਕ੍ਰ ਇਸੇ ਪ੍ਰਕਾਰ ਦੀ ਪਰਵਿਰਤੀ ਪ੍ਰਕਰਸ਼ਿਤ ਕਰਦਾ ਹੈ। ਘੱਟ ਤਾਪਮਾਨ ਉੱਤੇ ਕੇਵਲ ਖਤਿਜੀ ਰੇਖਾ ਦੀ ਲੰਬਾਈ ਵਿੱਚ ਵਾਧਾ ਹੁੰਦਾ ਹੈ। ਕ੍ਰਾਂਤਿਕ ਬਿੰਦੂ ਉਤੇ ਖਤਿਜੀ ਭਾਗ ਇੱਕ ਬਿੰਦੂ ਵਿੱਚ ਵਿਲੀਨ ਹੋ ਜਾਂਦਾ ਹੈ। ਇੰਜ ਅਸੀਂ ਵੇਖਦੇ ਹਾਂ ਕਿ ਚਿੱਤਰ 5.11 ਵਿੱਚ ਬਿੰਦੂ A ਗੈਸੀ ਅਵਸਥਾ ਨੂੰ ਪ੍ਰਦਰਸ਼ਿਤ ਕਰਦਾ ਹੈ। D ਬਿੰਦੂ ਦ੍ਵ ਅਵਸਥਾ ਨੂੰ ਪ੍ਰਦਰਸ਼ਿਤ ਕਰਦਾ ਹੈ, ਜਦਕਿ ਇਸ ਬਿੰਦੂ ਤੋਂ ਹੇਠਾਂ ਗੁੰਬਦਨੁਮਾ ਆਕ੍ਰਿਤੀ ਵਿੱਚ ਕਾਰਬਨ ਡਾਈਆੱਕਸਾਈਡ ਦੀ ਦ੍ਵ ਅਤੇ ਗੈਸੀ ਅਵਸਥਾ ਸੰਤਲਣ ਵਿੱਚ ਹੁੰਦੀ ਹੈ। ਸਾਰੀਆਂ ਗੈਸਾਂ ਸਥਿਰ ਤਾਪਮਾਨ ਉੱਤੇ ਨਪੀੜਨ (ਸਮਤਾਪੀ ਨਪੀੜਨ) ਉੱਤੇ ਕਾਰਬਨ ਡਾਈਆੱਕਸਾਈਡ ਵਾਂਗ

ਵਿਹਾਰ ਪ੍ਰਦਰਸ਼ਿਤ ਕਰਦੀਆਂ ਹਨ।ਉਪਰੋਕਤ ਵਿਆਖਿਆ ਇਹ ਵੀ ਦਰਸਾਉਂਦੀ ਹੈ ਕਿ ਦਵੀਕਰਣ ਦੇ ਲਈ ਗੈਸਾਂ ਨੂੰ ਕ੍ਰਾਂਤਿਕ ਤਾਪਮਾਨ ਤੋਂ ਹੇਠਾਂ ਠੰਡਾ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਕ੍ਰਾਂਤਿਕ ਤਾਪਮਾਨ ਉਹ ਅਧਿਕਤਮ ਤਾਪਮਾਨ ਹੁੰਦਾ ਹੈ, ਜਿਸ ਉੱਤੇ ਦ੍ਵੀਕ੍ਰਿਤ ਗੈਸ ਪਹਿਲੀ ਵਾਰ ਵਿਖਾਈ ਦਿੰਦੀ ਹੈ। ਸਤਾਈ ਗੈਸਾਂ (ਅਰਥਾਤ ਉਹ ਗੈਸਾਂ ਜੋ Z ਦੇ ਮਾਨ ਵਿੱਚ ਲਗਾਤਾਰ ਧਨਾਤਮਕ ਵਿਚਲਨ ਪ੍ਰਦਰਸ਼ਿਤ ਕਰਦੀਆਂ ਹਨ) ਦੇ ਦ੍ਵੀਕਰਣ ਦੇ ਲਈ ਤਾਪਮਾਨ ਵਿੱਚ ਕਮੀਂ ਦੇ ਨਾਲ ਨਾਲ ਕਾਫੀ ਨਪੀੜਨ ਜਰੂਰੀ ਹੁੰਦਾ ਹੈ। ਨਪੀੜਨ ਗੈਸ ਦੇ ਅਣੁਆਂ ਨੂੰ ਕੋਲ ਕੋਲ ਲਿਆਂਉਂਦਾ ਹੈ ਜਦ ਕਿ ਤਾਪਮਾਨ ਘੱਟ ਕਰਨ ਨਾਲ ਅਣੁਆਂ ਦਾ ਚਲਨਾ ਘਟ ਹੋ ਜਾਂਦਾ ਹੈ, ਅਰਥਾਤ ਅੰਤਰ ਅਣਵੀਂ ਅੰਤਰ ਕਿਰਿਆ ਹੀ ਘੱਟ ਗਤੀਸ਼ੀਲ ਅਣੂਆਂ ਨੂੰ ਕੋਲ ਕੋਲ ਕਰਦੀ ਹੈ ਅਤੇ ਗੈਸ ਦ੍ਵਿਤ ਹੋ ਜਾਂਦੀ ਹੈ। ਇਕੱ ਗੈਸ ਨੂੰ ਦ੍ਵ ਵਿੱਚ ਅਤੇ ਦ੍ਵ ਨੂੰ ਗੈਸ ਵਿੱਚ ਇਕ ਫੇਜ਼ ਵਿੱਚ ਰਹਿੰਦੇ ਹੋਏ ਪਰਿਵਰਤਿਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਉਦਾਹਰਣ ਵਜੋਂ- ਚਿੱਤਰ 5.11 ਵਿੱਚ ਤਾਪਮਾਨ ਵਧਾਉਣ ਨਾਲ ਜਦੋਂ ਅਸੀਂ ਬਿੰਦੂ A ਤੋਂ F ਦੇ ਵੱਲ ਜਾਂਦੇ ਹਾਂ, ਤਾਂ ਇਸ ਸਮਤਾਪੀ ਵਕ੍ਰ (31.1°C) ਦੇ ਸਹਾਰ ਸਥਿਰ ਤਾਪਮਾਨ ਉੱਤੇ ਗੈਸ ਨੂੰ ਨਪੀੜਨ ਕਰਨ ਤੇ ਬਿੰਦੂ G ਮਿਲਦਾ ਹੈ। ਇਸ ਦੇ ਬਾਅਦ ਅਸੀਂ ਤਾਪਮਾਨ ਘੱਟ ਕਰਦੇ ਖੜੇ ਦਾਅ ਹੇਠਾਂ ਦੇ ਵੱਲ ਬਿੰਦੂ D ਉੱਤੇ ਜਾਂਦੇ ਹਾਂ। ਜਿਉਂ ਹੀ ਅਸੀਂ ਬਿੰਦੂ H ਨੂੰ ਪਾਰ ਕਰਦੇ ਹਾਂ, ਤਿਉਂ ਹੀ ਸਾਨੂੰ ਦ੍ਵ ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ, ਪਰੰਤੂ ਕਿਧਰੇ ਵੀ ਦੋ ਫੇਜਿਜ਼ ਮੌਜੂਦ ਨਹੀਂ ਹੁੰਦੀਆਂ ਹਨ। ਜੇ ਇਹ ਪ੍ਰਕਿਰਿਆ ਕ੍ਰਾਂਤਿਕ ਤਾਪਮਾਨ ਉੱਤੇ ਪੂਰੀ ਹੁੰਦੀ ਹੈ, ਤਾਂ ਪਦਾਰਥ ਕੇਵਲ ਇੱਕ ਹੀ ਫੇਜ (phase) ਵਿੱਚ ਰਹਿੰਦਾ ਹੈ।

ਇੰਜ ਦਵ ਅਤੇ ਗੈਸੀ ਅਵਸਥਾ ਵਿੱਚ ਨਿਰੰਤਰਤਾ ਹੈ ਇਸ ਅਵਸਥਾ ਨੂੰ ਪਛਾਣਨ ਦੇ ਲਈ ਗੈਸ ਅਤੇ ਦ੍ਵ ਦੇ ਲਈ ਤਰਲ ਟਰਮ ਨੂੰ ਵਰਤੋਂ ਵਿੱਚ ਲਿਆਂਦਾ ਜਾਂਦਾ ਹੈ। ਇੰਜ ਦ੍ਵ ਨੂੰ ਗੈਸ ਦੇ ਸੰਘਨਿਤ ਰੂਪ ਵਿੱਚ ਵੇਖਿਆ ਜਾ ਸਕਦਾ ਹੈ। ਜਦੋਂ ਤਰਲ ਕ੍ਰਾਂਤਿਕ ਤਾਪਮਾਨ ਤੋਂ ਘੱਟ ਤਾਪਮਾਨ ਉੱਤੇ ਹੁੰਦਾ ਹੈ (ਅਤੇ ਉਸ ਦਾ ਆਇਤਨ ਗੁੰਬਦਨੁਮਾ ਆਕ੍ਰਿਤੀ ਵਿੱਚ ਹੋਵੇ) ਤਾਂ ਦ੍ਵ ਅਤੇ ਗੈਸ ਵਿੱਚ ਅੰਤਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ ਕਿਉਂਕਿ ਇਸ ਪਰਿਸਥਿਤੀ ਵਿੱਚ ਦ੍ਵ ਅਤੇ ਗੈਸ ਸੰਤੁਲਣ ਵਿੱਚ ਹੁੰਦੇ ਹਨ ਅਤੇ ਦੋ ਫੇਜਾਂ ਦੇ ਵਿੱਚ ਵੱਖ ਕਰਨ ਵਾਲੀ ਪਰਤ ਵਿਖਾਈ ਦਿੰਦੀ ਹੈ। ਇਸ ਵੱਖ ਕਰਨ ਵਾਲੀ ਪਰਤ ਦੀ ਗੈਰ ਮੌਜੂਦਗੀ ਵਿੱਚ ਅਸੀਂ ਕਿਸੇ ਵੀ ਵਿਧੀ ਦੁਆਰਾ ਇਨ੍ਹਾਂ ਦੋ ਅਵਸਥਾਵਾਂ ਵਿੱਚ ਵੱਖਰਾ ਨਹੀਂ ਕਰ ਸਕਦੇ। ਕ੍ਰਾਂਤਿਕ ਤਾਪਮਾਨ ਉੱਤੇ ਗੈਸ ਵਿੱਚ ਦ੍ਵ ਦਾ ਪਰਿਵਰਤਨ ਅ−ਪਰਤੱਖ ਅਤੇ ਨਿਰੰਤਰ ਹੁੰਦਾ ਹੈ, ਦੋ ਪਰਤਾਂ ਨੂੰ ਵੱਖ ਕਰਨ ਵਾਲੀ ਸਤ੍ਹਾ ਆਦ੍ਰਿਸ਼ ਹੋ ਜਾਂਦੀ ਹੈ (ਭਾਗ 5.10.1)। ਕ੍ਰਾਂਤਿਕ ਤਾਪਮਾਨ ਤੋਂ ਹੇਠਾਂ ਕਿਸੇ ਵੀ ਗੈਸ ਨੂੰ ਕੇਵਲ ਦਾਬ ਵਧਾ ਕੇ ਦ੍ਵਿਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਇਸ ਨੂੰ ਉਸ ਪਦਾਰਥ ਦਾ ਵਾਸ਼ਪ ਕਹਿੰਦੇ ਹਨ। ਕ੍ਰਾਤਿਕ ਤਾਪਮਾਨ ਤੋਂ ਹੇਠਾਂ ਕਾਰਬਨ ਡਾਈਆੱਕਸਾਈਡ ਨੂੰ ਕਾਰਬਨ ਡਾਈਆੱਕਸਾਈਡ

ਵਾਸ਼ਪ ਕਹਿੰਦੇ ਹਨ। ਕੁਝ ਪਦਾਰਥਾਂ ਦੇ ਕ੍ਰਾਂਤਿਕ ਸਥਿਰ ਅੰਕਾਂ ਦੇ ਮਾਨ ਸਾਰਣੀ 5.4 ਵਿੱਚ ਦਿੱਤੇ ਗਏ ਹਨ।

ਸਾਰਣੀ 5.4 ਕੁੱਝ ਤੱਤਾਂ ਦੇ ਕ੍ਰਾਂਤਿਕ ਸਥਿਰ ਅੰਕ

ਪਦਾਰਥ	T _c /K	$p_{ m c}$ /bar	$V_{ m c}/{ m dm}^3{ m mol}^{-1}$
H_2	33.2	12.97	0.0650
Не	5.3	2.29	0.0577
N_2	126.	33.9	0.0900
O_2	154.3	50.4	0.0744
CO_2	304.10	73.9	0.0956
H ₂ O	647.1	220.6	0.0450
NH_3	405.5	113.0	0.0723

ਉਦਾਹਰਣ 5.5

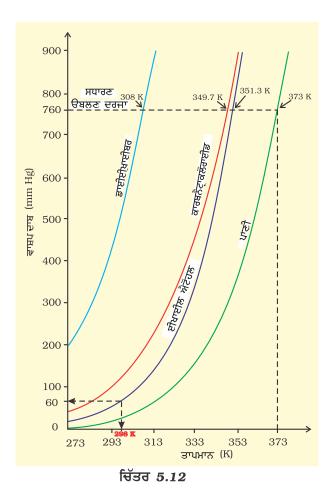
ਇੱਕ ਗੈਸ ਲੱਛਣਿਕ ਕ੍ਰਾਂਤਿਕ ਤਾਪਮਾਨ ਰਖਦੀ ਹੈ, ਜਿਸ ਦੇ ਪਰਿਣਾਮ ਗੈਸ ਦੇ ਅਣੂਆਂ ਦੇ ਵਿੱਚ ਅੰਤਰਅਣਵੀਂ ਬਲਾਂ ਉੱਤੇ ਨਿਰਭਰ ਕਰਦਾ ਹੈ। ਅਮੋਨੀਆਂ ਅਤੇ ਕਾਰਬਨ ਡਾਈਆੱਕਸਾਈਡ ਦੇ ਕ੍ਰਾਂਤਿਕ ਤਾਪਮਾਨ ਕ੍ਰਮਵਾਰ 405.5 K ਅਤੇ 304.10 K ਹਨ। ਜੇ ਤਾਪਮਾਨ ਨੂੰ 500 K ਤੋਂ ਸਮਤਾਪੀ ਤਾਪਮਾਨ ਤੱਕ ਘੱਟ ਕਰੀਏ, ਤਾਂ ਕਿਹੜੀ ਗੈਸ ਪਹਿਲਾਂ ਦ੍ਵਿਤ ਹੋਵੇਗੀ ?

ਹੱਲ

ਅਮੋਨੀਆ ਗੈਸ ਦਾ ਦ੍ਵੀਕਰਣ ਪਹਿਲਾਂ ਹੋਵੇਗਾ, ਕਿਉਂਕਿ ਇਸਦਾ ਕ੍ਰਾਂਤਿਕ ਤਾਪਮਾਨ ਪਹਿਲਾਂ ਪ੍ਰਾਪਤ ਹੋ ਜਾਵੇਗਾ। ਕਾਰਬਨ ਡਾਈਆੱਕਸਾਈਡ ਦੇ ਦ੍ਵੀਕਰਣ ਦੇ ਲਈ ਹੋਰ ਵਧੇਰੇ ਠੰਡਾ ਕਰਨਾ ਹੋਵੇਗਾ।

5.10 ਦਵ ਅਵਸਥਾ

ਗੈਸ ਅਵਸਥਾ ਦੀ ਤੁਲਨਾ ਵਿੱਚ, ਦ੍ਵ ਅਵਸਥਾ ਵਿੱਚ ਅੰਤਰ ਅਣਵੀਂ ਬਲ ਵਧੇਰੇ ਪ੍ਰਬਲ ਹੁੰਦੇ ਹਨ। ਉਨ੍ਹਾਂ ਦੇ ਅਣੂ ਐਨੇ ਕੋਲ ਕੋਲ ਹੁੰਦੇ ਹਨ ਕਿ ਉਨ੍ਹਾਂ ਦੇ ਵਿੱਚ ਖਾਲੀ ਸਥਾਨ ਬਹੁਤ ਘੱਟ ਹੁੰਦਾ ਹੈ। ਆਮ ਪਰਿਸਥਿਤੀਆਂ ਵਿੱਚ ਗੈਸ ਦੀ ਤੁਲਨਾ ਵਿੱਚ ਦਵ ਵਧੇਰੇ ਸੰਘਣੇ ਹੁੰਦੇ ਹਨ।


ਦ੍ਵਾਂ ਦੇ ਅਣੂ ਅੰਤਰਅਣਵੀਂ ਅਕਰਸ਼ਣ ਬਲਾਂ ਦੁਆਰਾ ਬੱਝੇ ਰਹਿੰਦੇ ਹਨ ਦ੍ਵਾਂ ਦਾ ਆਇਤਨ ਨਿਸ਼ਚਿਤ ਹੁੰਦਾ ਹੈ। ਕਿਉਂਕਿ ਅਣੂ ਇੱਕ ਦੂਜੇ ਤੋਂ ਵੱਖ ਨਹੀਂ ਹੁੰਦੇ ਹਨ, ਜਦਕਿ ਦ੍ਵ ਦੇ ਅਣੂ ਮੁਕਤ ਰੂਪ ਵਿੱਚ ਚਲਦੇ ਰਹਿੰਦੇ ਹਨ ਜਿਸ ਕਰਕੇ ਦ੍ਵ ਪ੍ਵਾਹਿਤ ਹੁੰਦੇ ਹਨ। ਦ੍ਵ ਨੂੰ ਇੱਕ ਬਰਤਨ ਤੋਂ ਦੂਜੇ ਬਰਤਨ ਵਿੱਚ ਪਾਇਆ ਜਾ ਸਕਦਾ ਹੈ ਅਤੇ ਜਿਸ ਬਰਤਨ ਵਿੱਚ ਉਸ ਨੂੰ ਰੱਖਿਆ ਜਾਂਦਾ ਹੈ, ਉਸਦੀ ਆਕ੍ਰਿਤੀ ਗ੍ਰਹਿਣ ਕਰ ਲੈਂਦਾ ਹੈ। ਇਸ ਭਾਗ ਵਿੱਚ ਅਸੀਂ ਦ੍ਵ ਦੇ ਕੁਝ ਗੁਣਾਂ ਜਿਵੇਂ-ਵਾਸ਼ਪ ਦਾਬ, ਸਤ੍ਹਾ ਤਣਾਉ ਵਿਸਕਾਸਿਤਾ ਦਾ ਅਧਿਐਨ ਕਰਾਂਗੇ।

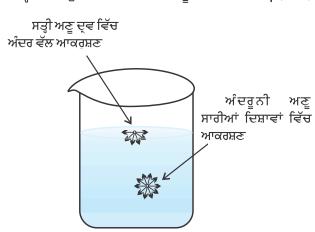
5.10.1 ਵਾਸ਼ਪ ਦਾਬ

ਜੇ ਇਕ ਖਾਲੀ ਬਰਤਨ ਨੂੰ ਦ੍ਵ ਨਾਲ ਅੰਸ਼ਿਕ ਰੂਪ ਵਿੱਚ ਭਰਿਆ ਜਾਂਦਾ ਹੈ ਤਾਂ ਦ੍ਵ ਦਾ ਕੁਝ ਭਾਗ ਵਾਸ਼ਪੀਕ੍ਰਿਤ ਹੋ ਕੇ ਬਰਤਨ ਦੇ ਬਾਕੀ ਆਇਤਨ ਨੂੰ ਭਰ ਦਿੰਦਾ ਹੈ। ਸ਼ੁਰੂ ਵਿੱਚ ਦ੍ਵ ਵਾਸ਼ਪਿਤ ਹੁੰਦਾ ਹੈ ਅਤੇ ਵਾਸ਼ਪ ਦੇ ਦੁਆਰਾ ਦ੍ਵ ਦੀ ਸਤ੍ਹਾ ਉੱਤੇ ਲਾਏ ਗਏ ਦਾਬ (ਵਾਸ਼ਪ ਦਾਬ) ਵਿੱਚ ਵਾਧਾ ਹੁੰਦਾ ਜਾਂਦਾ ਹੈ। ਕੁਝ ਸਮੇਂ ਬਾਅਦ ਇਹ ਸਥਿਰ ਹੋ ਜਾਂਦਾ ਹੈ ਅਤੇ ਦ੍ਵ ਅਵਸਥਾ ਅਤੇ ਵਾਸ਼ਪ ਅਵਸਥਾ ਦੇ ਵਿੱਚ ਸੰਤੁਲਨ ਸਥਾਪਿਤ ਹੋ ਜਾਂਦਾ ਹੈ। ਇਸ ਅਵਸਥਾ ਵਿੱਚ ਵਾਸ਼ਪ ਦਾਬ ਸੰਤੁਲਨ ਵਾਸ਼ਪ ਦਾਬ ਜਾਂ ਸੰਤ੍ਰਿਪਤ ਵਾਸ਼ਪ ਦਾਬ ਅਖਵਾਉਂਦਾ ਹੈ। ਕਿਉਂਕਿ ਵਾਸ਼ਪਨ ਦੀ ਪ੍ਕਿਰਿਆ ਤਾਪਮਾਨ ਉੱਤੇ ਅਧਾਰਿਤ ਹੁੰਦੀ ਹੈ, ਇੰਜ ਕਿਸੇ ਦ੍ਵ ਦੇ ਵਾਸ਼ਪ ਦਾਬ ਦੀ ਚਰਚਾ ਕਰਦੇ ਸਮੇਂ ਤਾਪਮਾਨ ਦਾ ਵਰਣਨ ਕਰਨਾ ਜਰੂਰੀ ਹੁੰਦਾ ਹੈ।

ਜਦੋਂ ਦਵ ਨੂੰ ਖੂਲ੍ਹੇ ਬਰਤਨ ਵਿੱਚ ਗਰਮ ਕੀਤਾ ਜਾਂਦਾ ਹੈ, ਤਾਂ ਉਹ ਅਪਣੀ ਸਤ੍ਹਾ ਤੋਂ ਵਾਸ਼ਪੀਕ੍ਰਿਤ ਹੁੰਦਾ ਹੈ। ਜਦੋਂ ਦ੍ਵ ਦਾ ਵਾਸ਼ਪ ਦਾਬ ਬਾਹਰੀ ਦਾਬ ਦੇ ਬਰਾਬਰ ਹੋ ਜਾਂਦਾ ਹੈ, ਤਾਂ ਪਰੇ ਦਵ ਦਾ ਵਾਸ਼ਪੀਕਰਣ ਹੋਣ ਲੱਗਦਾ ਹੈ ਅਤੇ ਵਾਸ਼ਪ ਆਪਣੇ ਪਰਿਵੇਸ਼ (bulk) ਵਿੱਚ ਮੁਕਤ ਰੂਪ ਵਿੱਚ ਪ੍ਰਸਰਿਤ ਹੁੰਦਾ ਹੈ। ਸੰਪਰਣ ਦਵ ਦੇ ਮਕਤ ਵਾਸ਼ਪੀਕਰਣ ਦੀ ਸਥਿਤੀ ਨੂੰ 'ੳਬਲਨਾ' ਕਹਿੰਦੇ ਹਨ। ਉਹ ਤਾਪਮਾਨ, ਜਿਸ ਉੱਤੇ ਕਿਸੇ ਦ੍ਵ ਦਾ ਵਾਸ਼ਪਦਾਬ ਬਾਹਰੀ ਦਾਬ ਦੇ ਸਮਾਨ ਹੋ ਜਾਂਦਾ ਹੈ, ਇਹ ਉਸ ਦਾਬ ਉੱਤੇ ਦਵ ਦਾ 'ਉਬਾਲ ਦਰਜਾ' ਅਖਵਾਉਂਦਾ ਹੈ। ਕੁਝ ਆਮ ਦ੍ਵਾਂ ਦੇ ਵਾਸ਼ਪ ਦਾਬ (ਚਿੱਤਰ 5.12) ਵਿੱਚ ਦਰਸਾਏ ਗਏ ਹਨ। ਇੱਕ ਵਾਯੂਮੰਡਲੀ ਦਾਬ ਉੱਤੇ ਉਬਾਲ ਤਾਪਮਾਨ ਨੂੰ ਨਾਰਮਲ ਉਬਾਲ ਤਾਪਮਾਨ ਕਹਿੰਦੇ ਹਨ। ਕਿਸੇ ਦੂਵ ਦਾ ਸਟੈਂਡਰਡ ਉਬਾਲ ਦਰਜਾ ਆਮ ਉਬਾਲ ਦਰਜੇ ਤੋਂ ਕੁਝ ਘੱਟ ਹੁੰਦਾ ਹੈ, ਇੰਜ ਪਾਣੀ ਦਾ ਆਮ ਉਬਾਲ ਦਰਜਾ 100 °C (373 K) ਹੈ ਜਦਕਿ ਸਟੈਂਡਰਡ ਉਬਾਲ ਦਰਜਾ 99.6 °C (372.6 K) ਹੈ।

ਜਿਆਦਾ ਉਚਾਈ (altitude) ਉੱਤੇ ਵਾਯੂਮੰਡਲੀ ਦਾਬ ਘੱਟ ਹੁੰਦਾ ਹੈ, ਇੰਜ ਸਮੁੰਦਰ ਤਲ ਦੀ ਤੁਲਨਾ ਵਿੱਚ ਜਿਆਦਾ ਉਚਾਈ ਉਤੇ ਦ੍ਵ ਘੱਟ ਤਾਪਮਾਨ ਉੱਤੇ ਉਬਲਦਾ ਹੈ। ਕਿਉਂਕਿ ਪਹਾੜਾਂ ਉੱਤੇ ਪਾਣੀ ਘੱਟ ਤਾਪਮਾਨ ਉੱਤੇ ਉਬਲਦਾ ਹੈ, ਇਸ ਲਈ ਭੋਜਨ ਨੂੰ ਪਕਾਉਣ ਦੇ ਲਈ ਪਰੈਸ਼ਰ ਕਕਰ ਦੀ ਵਰਤੋਂ

ਕਰਨੀ ਪੈਂਦੀ ਹੈ। ਹਸਪਤਾਲਾਂ ਵਿੱਚ ਸਰਜਰੀ ਵਿੱਚ ਕੰਮ ਆਉਣ ਵਾਲੇ ਉਪਕਰਣਾਂ ਨੂੰ ਆੱਟੋਕਲੇਵ ਵਿੱਚ ਉਬਾਲ ਕੇ ਰੋਗਾਣੂ ਰਹਿਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ, ਕਿਉਂਕਿ ਆੱਟੋਕਲੇਵ ਦੇ ਮੂੰਹ ਉੱਤੇ ਭਾਰ ਰੱਖ ਕੇ ਦਾਬ ਵਧਾਉਣ ਨਾਲ ਉਸ ਵਿੱਚ ਪਾਣੀ ਦਾ ਉਬਾਲ ਦਰਜਾ ਵਧ ਜਾਂਦਾ ਹੈ।


ਜਦੋਂ ਅਸੀਂ ਪਾਣੀ ਨੂੰ ਬੰਦ ਬਰਤਨ ਵਿੱਚ ਉਬਾਲਦੇ ਹਾਂ, ਤਾਂ ਇਸ ਦਾ ਉਬਲਣ ਨਹੀਂ ਹੁੰਦਾ ਹੈ। ਲਗਾਤਾਰ ਗਰਮ ਕਰਨ ਨਾਲ ਵਾਸ਼ਪ ਦਾਬ ਵਧਦਾ ਹੈ। ਸ਼ੁਰੂ ਵਿੱਚ ਦ੍ਵ ਅਤੇ ਵਾਸ਼ਪ ਦੇ ਵਿੱਚ ਇੱਕ ਸਪਸ਼ਟ ਸੀਮਾ ਰੇਖਾ ਵਿਖਾਈ ਦਿੰਦੀ ਹੈ, ਕਿਉਂਕਿ ਦ੍ਵ ਵਾਸ਼ਪ ਦੀ ਤੁਲਨਾ ਵਿੱਚ ਵਧੇਰੇ ਸੰਘਣਾ ਹੁੰਦਾ ਹੈ। ਜਿਉਂ ਜਿਉਂ ਤਾਪਮਾਨ ਵਧਾਇਆ ਜਾਂਦਾ ਹੈ, ਤਿਉਂ ਤਿਉਂ ਵੱਧ ਤੋਂ ਵੱਧ ਅਣੂ ਵਾਸ਼ਪ ਅਵਸਥਾ ਵਿੱਚ ਪਰਿਵਰਤਿਤ ਹੁੰਦੇ ਹਨ ਅਤੇ ਵਾਸ਼ਪਾਂ ਦੀ ਘਣਤਾ ਵਧਦੀ ਜਾਂਦੀ ਹੈ। ਕਿਉਂਕਿ ਅਣੂ ਦੂਰ ਦੂਰ ਹੁੰਦੇ ਹਨ ਇਸ ਲਈ ਇਹ ਪ੍ਰਸਾਰਿਤ ਹੁੰਦੇ ਹਨ। ਜਦੋਂ ਦ੍ਵ ਅਤੇ ਵਾਸ਼ਪ ਦੀ ਘਣਤਾ ਸਮਾਨ ਹੋ ਜਾਂਦੀ ਹੈ, ਤਾਂ ਦ੍ਵ ਅਤੇ ਵਾਸ਼ਪ ਦੇ ਵਿਚਲੀ ਸੀਮਾ ਰੇਖਾ ਅਦ੍ਰਿਸ਼ ਹੋ ਜਾਂਦੀ ਹੈ। ਇਹ ਤਾਪਮਾਨ 'ਕਾਂਤਿਕ ਤਾਪਮਾਨ' ਅਖਵਾਉਂਦਾ ਹੈ। ਜਿਸਦੀ ਵਿਆਖਿਆ

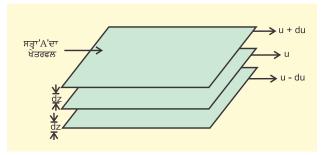
ਅਸੀਂ ਖੰਡ 5.9 ਵਿੱਚ ਕਰ ਚੁੱਕੇ ਹਾਂ।

5.10.2 ਸਤ੍ਹਾ ਤਣਾਉ Surface Tension

ਇਹ ਸਥਾਪਿਤ ਤੱਥ ਹੈ ਕਿ ਦ੍ਵ ਬਰਤਨ ਦਾ ਅਕਾਰ ਗ੍ਰਹਿਣ ਕਰ ਲੈਂਦੇ ਹਨ। ਮਰਕਰੀ ਦੀਆਂ ਬੁੰਦਾਂ ਸਤ੍ਹਾ ਉੱਤੇ ਫੈਲਣ ਦੀ ਬਜਾਏ ਗੋਲਾਕਾਰ ਮਣਕਾ ਦੇ ਰੂਪ ਵਿੱਚ ਕਿਉਂ ਹੁੰਦੀਆਂ ਹਨ ? ਨਦੀ ਦੇ ਤਲ ਸਤ੍ਹਾ ਉੱਤੇ ਫੈਲਣ ਦੀ ਬਜਾਏ ਗੋਲਾਕਾਰ ਮਣਕਾ ਦੇ ਰੂਪ ਵਿੱਚ ਕਿਉਂ ਹੁੰਦੀਆਂ ਹਨ ? ਨਦੀ ਦੇ ਤਲ ਤੇ ਮਿੱਟੀ ਦੇ ਕਣ ਵੱਖ ਵੱਖ ਕਿਉਂ ਹੁੰਦੇ ਹਨ ਅਤੇ ਬਾਹਰ ਕੱਢਣ ਤੇ ਨਾਲ ਚਿਪਕ ਕਿਉਂ ਜਾਂਦੇ ਹਨ? ਕੋਸ਼ਿਕਾ ਨਲੀ ਨੂੰ ਦ੍ਵ ਤਲ ਦੇ ਸੰਪਰਕ ਵਿੱਚ ਲਿਆਉਣ ਤੇ ਕੋਸ਼ਿਕਾ ਨਲੀ ਵਿੱਚ ਦੂਵ ਚੜ੍ਹਦਾ ਜਾਂ ਉਤਰਦਾ ਕਿਉਂ ਹੈ? ਇਹ ਸਾਰੀਆਂ ਘਟਨਾਵਾਂ ਦਵ ਦੇ ਵਿਸ਼ਿਸ਼ਟ ਗਣ, ਜਿਸ ਨੂੰ 'ਸਤ੍ਹਾ ਤਣਾਓ' ਕਹਿੰਦੇ ਹਨ, ਦੇ ਕਾਰਣ ਹੁੰਦੀਆਂ ਹਨ। ਨੇੜਲੇ ਅਣੁਆਂ ਦੇ ਪ੍ਰਭਾਵ ਵਿੱਚ ਕਿਸੇ ਦ੍ਵ ਦੇ ਅਣੁ ਚੱਲਦੇ ਹਨ। ਦ੍ਵ ਦੇ ਇੱਕ ਖੇਪ (bulk) ਵਿੱਚ ਇੱਕ ਅਣੂ ਸਾਰੀਆਂ ਦਿਸ਼ਾਵਾਂ ਵਿੱਚ ਸਮਾਨ ਅਕਰਸ਼ਣ ਬਲ ਅਨੁਭਵ ਕਰਦਾ ਹੈ ਅਤੇ ਪਰਿਣਾਮੀ ਅਕਰਸ਼ਣ ਬਲ ਸਿਫਰ ਹੁੰਦਾ ਹੈ ਪਰੰਤੂ ਸਤ੍ਹਾ ਉੱਤੇ ਮੌਜੂਦ ਅਣੂ ਦ੍ਵ ਦੇ ਅੰਦਰ ਦੇ ਵੱਲ ਅਕਰਸ਼ਣ ਬਲ ਅਨੁਭਵ ਕਰਦਾ ਹੈ।

ਦ੍ਵ ਆਪਣੀ ਸਤ੍ਹਾ ਨੂੰ ਨਿਊਨਤਮ ਕਰਨ ਦੀ ਕੋਸ਼ਿਸ਼ ਕਰਦਾ ਹੈ, ਕਿਉਂਕਿ ਅਜਿਹਾ ਹੋਣ ਨਾਲ ਖੇਪ (bulk) ਵਿੱਚ ਮੌਜੂਦ ਅਧਿਕਤਮ ਅਣੂ ਗੁਆਂਢੀ ਅਣੂਆਂ ਨਾਲ ਅੰਤਰ ਕਿਰਿਆ ਕਰ ਸਕਦੇ ਹਨ। ਜਦੋਂ ਖੇਪ bulk ਵਿੱਚੋਂ ਇੱਕ ਅਣੂ ਨੂੰ ਕੱਢਦੇ ਹਾਂ, ਤਾਂ ਉਨ੍ਹਾਂ ਦੀ ਸਤ੍ਹਾ ਉੱਤੇ ਤਣਾਉ ਵਧ ਜਾਂਦਾ ਹੈ। ਇਸ ਦੇ ਲਈ ਊਰਜਾ ਖਰਚ ਹੁੰਦੀ ਹੈ। ਕਿਸੇ ਦ੍ਵ ਦੀ ਸਤ੍ਹਾ ਵਿੱਚ ਏਕਾਂਕ ਵਾਧੇ ਦੇ ਲਈ ਲੋੜੀਂਦੀ ਊਰਜਾ ਨੂੰ 'ਸਤ੍ਹੀ ਊਰਜਾ' ਕਹਿੰਦੇ ਹਨ। ਇਸਦੀ ਇਕਾਈ J m²। ਸਤ੍ਹਾ ਉੱਤੇ ਖਿੱਚੀ ਗਈ ਇੱਕ ਰੇਖਾ ਦੀ ਏਕਾਂਕ ਲੰਬਾਈ ਉੱਤੇ ਲੱਗਣ ਵਾਲੇ ਲੰਬ ਦਾਅ ਬਲ ਨੂੰ 'ਸਤ੍ਹਾ ਤਣਾਉ' ਕਹਿੰਦੇ ਹਨ। ਇਸ ਨੂੰ ਗਰੀਕ ਸ਼ਬਦ γ (ਗੈਮਾ)

ਚਿੱਤਰ5.13 ਦ੍ਵ ਦੀ ਸਤ੍ਹਾ ਉੱਤੇ ਅਤੇ ਦ੍ਵ ਦੇ ਅੰਦਰ ਸਥਿਤ ਅਣੂ ਉੱਤੇ ਲੱਗ ਰਹੇ


ਨਾਲ ਪ੍ਦਰਸ਼ਿਤ ਕਰਦੇ ਹਨ। ਇਸਦੀ ਇਕਾਈ kg s⁻² ਅਤੇ SI ਇਕਾਈ N m⁻¹ ਹੁੰਦੀ ਹੈ। ਕਿਸੇ ਦ੍ਵ ਦਾ ਨਿਊਨਤਮ ਊਰਜਾ ਸਤਰ ਉਦੋਂ ਹੁੰਦਾ ਹੈ, ਜਦੋਂ ਉਸ ਦਾ ਸਤ੍ਹਾ ਖੇਤਰਫਲ ਨਿਊਨਤਮ ਹੋਵੇ। ਇਸ ਸਥਿਤੀ ਨੂੰ ਗੋਲਾਕਾਰ ਅਕ੍ਰਿਤੀ ਸੰਤੁਸ਼ਟ ਕਰਦੀ ਹੈ। ਇਹੀ ਕਾਰਣ ਹੈ ਕਿ ਵਰਖਾ ਦੀਆਂ ਬੂੰਦਾਂ ਗੋਲਾਕਾਰ ਹੁੰਦੀਆਂ ਹਨ ਅਤੇ ਕੱਚ ਦੇ ਤਿੱਖੇ ਸਿਰੇ ਨੂੰ ਗਰਮ ਕਰਕੇ ਕੂਲਾ ਬਣਾਇਆ ਜਾ ਸਕਦਾ ਹੈ। ਗਰਮ ਕਰਨ ਨਾਲ ਕੱਚ ਪਿਘਲਦਾ ਹੈ ਅਤੇ ਦ੍ਵ ਦਾ ਕਿਨਾਰਾ ਗੋਲ ਆਕ੍ਰਿਤੀ ਲੈਣ ਦੀ ਕੋਸ਼ਿਸ਼ ਕਰਦਾ ਹੈ, ਜਿਸ ਨਾਲ ਕਿਨਾਰਾ ਮੁਲਾਇਮ ਬਣ ਜਾਂਦਾ ਹੈ। ਇਸ ਨੂੰ ਕੱਚ ਦੀ ਅਗਨੀ ਪਾਲਿਸ਼ (Fire-polishing) ਕਹਿੰਦੇ ਹਨ।

ਸਤ੍ਹਾ ਤਣਾਉ ਦੇ ਕਾਰਣ ਇੱਕ ਕੋਸ਼ਿਕਾ ਨਲੀ ਵਿੱਚ ਦ੍ਵ ਚੜ੍ਹਦਾ ਜਾਂ ਉਤਰਦਾ ਹੈ। ਦ੍ਵ ਵਸਤੂਆਂ ਨੂੰ ਗਿੱਲਾ ਕਰ ਦਿੰਦਾ ਹੈ, ਕਿਉਂਕਿ ਉਹ ਪਤਲੀ ਪਰਤ ਦੇ ਰੂਪ ਵਿੱਚ ਵਸਤੂ ਦੀ ਸਤ੍ਹਾ ਉੱਤੇ ਫੈਲ ਜਾਂਦਾ ਹੈ। ਮਿੱਟੀ ਦੇ ਗਿੱਲੇ ਕਣ ਕੋਲ ਕੋਲ ਹੁੰਦੇ ਹਨ, ਕਿਉਂਕਿ ਪਾਣੀ ਦੀ ਪਤਲੀ ਪਰਤ ਦਾ ਸਤ੍ਹਾ ਤਣਾਉ ਘੱਟ ਹੋ ਜਾਂਦਾ ਹੈ। ਕਿਉਂਕਿ ਪਾਣੀ ਦੇ ਅਣੂ ਕਮਜੋਰੀ ਨਾਲ ਮੋਮੀ ਸਤ੍ਹਾ ਦੇ ਵੱਲ ਅਕਰਸ਼ਿਤ ਹੁੰਦੇ ਹਨ, ਇੰਜ ਸਤ੍ਹਾ ਅਤੇ ਪਾਣੀ ਦੇ ਅਣੂਆਂ ਵਿੱਚ ਕਮਜੋਰ ਅਕਰਸ਼ਣ ਬਲਾਂ ਨਾਲ ਸਤ੍ਹਾ ਤਣਾਉ ਵੱਧ ਹੋ ਜਾਂਦਾ ਹੈ। ਗੁਰੂਤਾ ਪ੍ਭਾਵ ਦੇ ਕਾਰਣ ਧਰਤੀ ਉੱਤੇ ਛੋਟੀਆਂ ਛੋਟੀਆਂ ਬੂੰਦਾਂ ਅੰਸ਼ਿਕ ਚਪਟੀ ਹੋ ਜਾਂਦੀਆਂ ਹਨ, ਪਰੰਤੂ ਗੁਰੂਤਾ ਹੀਣ ਵਾਤਾਵਰਣ ਵਿੱਚ ਬੂੰਦਾਂ ਪੂਰਣ ਗੋਲਾਕਾਰ ਹੁੰਦੀਆਂ ਹਨ।

ਸਤ੍ਹਾ ਤਣਾਉ ਦਾ ਪਰਿਮਾਣ ਦ੍ਵ ਦੇ ਅਣੂਆਂ ਦੇ ਵਿੱਚ ਅਕਰਸ਼ਣ ਬਲਾਂ ਉੱਤੇ ਨਿਰਭਰ ਕਰਦਾ ਹੈ। ਜਦੋਂ ਅਕਰਸ਼ਣ ਬਲ ਵਧੇਰੇ ਹੁੰਦਾ ਹੈ ਤਾਂ ਸਤ੍ਹਾ ਤਣਾਉ ਵਧੇਰੇ ਹੁੰਦਾ ਹੈ। ਤਾਪਮਾਨ ਵਧਾਉਣ ਨਾਲ ਅਣੂਆਂ ਦੀ ਗਤਿਜ ਊਰਜਾ ਵਧ ਜਾਂਦੀ ਹੈ ਅਤੇ ਅੰਤਰ ਅਣਵੀਂ ਕਿਰਿਆ ਦਾ ਪ੍ਰਭਾਵ ਘੱਟ ਜਾਂਦਾ ਹੈ। ਇੰਜ ਤਾਪਮਾਨ ਵਧਾਉਣ ਨਾਲ ਸਤ੍ਹਾ ਤਣਾਉ ਘੱਟ ਹੋ ਜਾਂਦਾ ਹੈ।

5.10.3 ਵਿਸਕਾਸਿਤਾ

ਇਹ ਦ੍ਵਾਂ ਦਾ ਲੱਛਣਿਕ ਗੁਣ ਹੈ। ਦ੍ਵ ਦੇ ਪ੍ਵਾਹ ਦੀ ਅਵਸਥਾ ਵਿੱਚ ਜਦੋਂ ਤਰਲ ਦੀਆਂ ਪਰਤਾਂ ਇੱਕ ਦੂਜੇ ਦੇ ਉੱਤੋਂ ਲੰਘਦੀਆਂ ਹਨ, ਤਾਂ ਉਨ੍ਹਾਂ ਦੇ ਵਿੱਚ ਪੈਦਾ ਰਗੜ ਬਲ ਦੇ ਮਾਪ ਨੂੰ ਵਿਸਕਾਸਿਤਾ ਕਹਿੰਦੇ ਹਨ। ਜਦੋਂ ਦ੍ਵ ਦਾ ਪ੍ਵਾਹ ਕਿਸੇ ਸਥਿਰ ਸਤ੍ਹਾ ਉੱਤੇ ਹੁੰਦਾ ਹੈ, ਤਾਂ ਉਸ (ਦ੍ਵ) ਦੀ ਉਹ ਪਰਤ ਜੋ ਸਤ੍ਹਾ ਦੇ ਸੰਪਰਕ ਵਿੱਚ ਹੁੰਦੀ ਹੈ, ਸਥਾਈ ਹੋ ਜਾਂਦੀ ਹੈ। ਜਿਵੇਂ ਜਿਵੇਂ ਸਥਾਈ ਪਰਤ ਤੋਂ ਉਪਰਲੀਆਂ ਪਰਤਾਂ ਦੀ ਦੂਰੀ ਵਧਦੀ ਹੈ, ਤਿਉਂ ਤਿਉਂ ਪਰਤ ਦੀ ਚਾਲ ਵਧਦੀ ਜਾਂਦੀ ਹੈ। ਇੰਜ ਇਸ ਤਰ੍ਹਾਂ ਦਾ ਪ੍ਵਾਹ, ਜਿਸ ਵਿੱਚ ਇੱਕ ਪਰਤ ਤੋਂ ਦੂਜੀ ਪਰਤ ਦੀ ਚਾਲ ਕ੍ਰਮਵਾਰ ਵਧਦੀ ਜਾਂਦੀ ਹੈ 'ਸਤਰੀ ਪ੍ਵਾਹ' (laminar flow) ਅਖਵਾਉਂਦੀ ਹੈ। ਜੇ ਅਸੀਂ ਪ੍ਵਾਹਿਤ ਦ੍ਵ ਵਿੱਚ ਕਿਸੇ ਵੀ ਪਰਤ ਨੂੰ ਚੁਣੀਏਂ, ਤਾਂ ਉਸਦੇ ਉਪਰਲੀ ਪਰਤ ਇਸ ਦੀ ਚਾਲ ਵਧਾਉਂਦੀ ਹੈ, ਜਦਕਿ ਹੇਠਲੀ ਪਰਤ ਚਾਲ ਨੂੰ ਘੱਟ ਕਰਦੀ ਹੈ।

ਚਿੱਤਰ 5.14 ਸਤਹੀ ਪ੍ਰਵਾਹ ਵਿੱਚ ਚਾਲ ਦਾ ਸ਼੍ਰੇਣੀਕਰਣ

ਜੇ ਦੂਰੀ $\mathrm{d}z$ ਉੱਤੇ ਪਰਤ ਦੀ ਚਾਲ $\mathrm{d}u$ ਪਰਿਵਰਤਿਤ ਹੁੰਦੀ ਹੈ, ਤਾਂ ਚਾਲ ਅਨੁਪ੍ਰਵਣ ਨੂੰ $\frac{\mathrm{d}u}{\mathrm{d}z}$ ਨਾਲ ਪ੍ਰਦਰਸ਼ਿਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਅਣੂਆਂ ਦੇ ਵਿੱਚ ਪ੍ਰਬਲ ਅੰਤਰ ਅਣਵੀਂ ਬਲ ਉਨ੍ਹਾਂ ਨੂੰ ਖਿੱਚੀ ਰੱਖਦੇ ਹਨ ਅਤੇ ਇੱਕ ਦੂਜੇ ਦੇ ਚੱਲਣ ਵਿਚੱ ਰੁਕਾਵਟ ਪੈਦਾ ਕਰਦੇ ਹਨ। ਪਰਤਾਂ ਦੇ ਪ੍ਰਵਾਹ ਨੂੰ ਬਣਾ ਕੇ ਰੱਖਣ ਦੇ ਲਈ ਇੱਕ ਬਲ ਦੀ ਜਰੂਰਤ ਹੁੰਦੀ ਹੈ। ਇਹ ਬਲ ਸੰਪਰਕ ਯੁਕਤ ਪਰਤਾਂ ਦੇ ਖੇਤਰਫਲ ਅਤੇ ਚਾਲ ਅਨੁਪ੍ਰਵਣਤਾ ਦੇ ਸਮਾਨ ਅਨੁਪਾਤੀ ਹੁੰਦਾ ਹੈ।

ਇੰਜ $F \propto A$ (A ਸੰਪਰਕ ਦਾ ਖੇਤਰਫਲ ਹੈ)

 $F \propto rac{du}{dz}$ (ਇੱਥੇ $rac{du}{dz}$ ਚਾਲ ਅਨੁਪ੍ਰਵਣਤਾ, ਹੈ ਅਰਥਾਤ ਦੂਰੀ ਦੇ ਨਾਲ ਚਾਲ ਵਿੱਚ ਪਰਿਵਰਤਨ ਹੈ)

$$F \propto A. \frac{\mathrm{du}}{\mathrm{dz}}$$

$$\Rightarrow F = \eta A \frac{du}{dz}$$

ਇੱਥੇ η ਇੱਕ ਸਮਾਨ ਅਨੁਪਾਤਕ ਸਥਿਰ ਅੰਕ ਹੈ ਜਿਸ ਨੂੰ 'ਵਿਸਕਾਸਿਤਾ ਗੁਣਾਂਕ' ਕਹਿੰਦੇ ਹਨ। ਵਿਸਕਾਸਿਤਾ ਗੁਣਾਂਕ ਉਹ ਬਲ ਹੈ, ਜਦੋਂ ਚਾਲ ਅਨੁਪ੍ਰਵਣਤਾ ਅਤੇ ਸੰਪਰਕ ਦਾ ਖੇਤਰਫਲ ਇਕਾਈ ਹੋਵੇ। ਇਸ ਤਰ੍ਹਾਂ η ਵਿਸਕਾਸਿਤਾ ਦਾ ਮਾਪ ਹੈ। ਵਿਕਾਸਿਤਾ ਗੁਣਾਂਕ ਦੀ SI ਇਕਾਈ ਨਿਊਟਨ ਸੈਕੰਡ ਪ੍ਰਤੀ ਵਰਗ ਮੀਟਰ (N s m⁻²) ਅਰਥਾਤ Pas ਹੈ। cgs ਪਧੱਤੀ ਵਿੱਚ ਵਿਸਕਾਸਿਤਾ ਗੁਣਾਂਕ ਦੀ ਇਕਾਈ ਪਾੱਇਜ (ਮਹਾਨ ਵਿਗਿਆਨੀ ਜੀਨ ਲੁਈਸ ਪਾਈਜੱਲੇ ਦੇ ਨਾਮ ਉੱਤੇ) ਹੈ।

152

1 poise = 1 g cm⁻¹s⁻¹ = 10^{-1} kg m⁻¹s⁻¹

ਵਿਸਕਾਸਿਤਾ ਵਧੇਰੇ ਹੋਣ ਤੇ ਦ੍ਵ ਦਾ ਪ੍ਵਾਹ ਬਹੁਤ ਹੌਲੀ ਹੁੰਦਾ ਹੈ। ਹਾਈਡ੍ਰੋਜਨ ਬੰਧਨ ਅਤੇ ਵਾਂਡਰਵਾਲਸ ਬਲ ਦੇ ਕਾਰਣ ਵਿਸਕਾਸਿਤਾ ਵਧ ਜਾਂਦੀ ਹੈ। ਕੱਚ ਇੱਕ ਬੜਾ ਚਿਪਚਿਪਾ ਦ੍ਵ ਹੈ। ਇਹ ਐਨਾਂ ਵਿਸਕੋਸ ਹੁੰਦਾ ਹੈ ਕਿ ਇਸ ਦੇ ਵਧੇਰੇ ਗੁਣ ਠੋਸਾਂ ਨਾਲ ਮਿਲਦੇ ਹਨ। ਕੱਚ ਦੇ ਪ੍ਰਵਾਹ ਦੇ ਗੁਣ ਨੂੰ ਪੁਰਾਣੀ

ਇਮਾਰਤਾਂ ਦੀ ਖਿੜਕੀਆਂ ਦੇ ਪੱਲੇ ਨੂੰ ਵੇਖਕੇ ਮਹਿਸੂਸ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ, ਜਿਨ੍ਹਾਂ ਦੀ ਮੋਟਾਈ ਉੱਤੇ ਦੀ ਤੁਲਨਾ ਵਿੱਚ ਹੇਠਾਂ ਵਧੇਰੇ ਹੁੰਦੀ ਹੈ।

ਤਾਪਮਾਨ ਵਧਾਉਣ ਨਾਲ ਵਿਸਕਾਸਿਤਾ ਦਾ ਗੁਣ ਘੱਟ ਹੁੰਦਾ ਜਾਂਦਾ ਹੈ ਕਿਉਂਕਿ ਵਧੇਰੇ ਤਾਪਮਾਨ ਉੱਤੇ ਅਣੂਆਂ ਦੀ ਗਤਿਜ ਊਰਜਾ ਵੱਧ ਹੁੰਦੀ ਹੈ ਜਿਸ ਨਾਲ ਅੰਤਰ ਅਣਵੀਂ ਬਲਾਂ ਨੂੰ ਸਰ ਕਰਕੇ ਇੱਕ ਦੂਜੇ ਉਤੇ ਖਿਸਕਦੀ ਹੈ।

ਸਾਰਾਂਸ਼

ਪਦਾਰਥ ਦੇ ਕਣਾਂ ਦੇ ਵਿੱਚ ਅੰਤਰ ਅਣਵੀਂ ਬਲ ਹੁੰਦੇ ਹਨ। ਇਹ ਬਲ ਦੋ ਉਲਟ ਚਾਰਜਿਤ ਆਇਨਾਂ ਦੇ ਵਿੱਚ ਪੈਦਾ ਹੋਣ ਵਾਲੇ ਸਥਿਰ ਬਿਜਲਈ ਬਲਾਂ ਤੋਂ ਭਿੰਨ ਹੁੰਦੇ ਹਨ। ਨਾਲ ਹੀ ਇਹ ਉਨ੍ਹਾਂ ਬਲਾਂ ਨੂੰ ਸ਼ਾਮਿਲ ਨਹੀਂ ਕਰਦੇ ਹਨ ਜੋ ਸਹਿਯੋਜਕ ਬੰਧਨ ਵਿੱਚ ਦੋ ਪਰਮਾਣੂਆਂ ਨੂੰ ਇਕੱਠੇ ਰੱਖਦਾ ਹੈ। ਤਾਪ ਊਰਜਾ ਅਤੇ ਅੰਤਰ ਕਿਰਿਆ ਦੇ ਵਿੱਚ ਕੰਪੀਟੀਸ਼ਨ ਪਦਾਰਥ ਦੀ ਅਵਸਥਾ ਨੂੰ ਨਿਰਧਾਰਿਤ ਕਰਦੀ ਹੈ। ਮਾਦੇ ਦੇ ਸਥੂਲ ਗੁਣ ਜਿਵੇਂ-ਗੈਸਾਂ ਦਾ ਵਿਹਾਰ, ਦ੍ਵਾਂ ਅਤੇ ਠੋਸਾਂ ਦੇ ਗੁਣ ਅਤੇ ਉਨ੍ਹਾਂ ਦੀਆਂ ਅਵਸਥਾ ਵਿੱਚ ਪਰਿਵਰਤਨ, ਬਨਾਉਣ ਵਾਲੇ ਕਣਾਂ ਅਤੇ ਉਨ੍ਹਾਂ ਦੇ ਵਿੱਚ ਅੰਤਰ ਕਿਰਿਆ ਉੱਤੇ ਨਿਰਭਰ ਕਰਦੇ ਹਨ। ਪਦਾਰਥ ਦੇ ਰਸਾਇਣਿਕ ਗੁਣ ਉਸ ਦੀ ਅਵਸਥਾ ਦੇ ਪਰਿਵਰਤਨ ਤੋਂ ਪ੍ਰਭਾਵਿਤ ਨਹੀਂ ਹੁੰਦੇ ਹਨ ਪਰੰਤੂ ਉਨ੍ਹਾਂ ਦੀ ਕਿਰਿਆਸ਼ੀਲਤਾ ਭੌਤਿਕ ਅਵਸਥਾ ਉੱਤੇ ਨਿਰਭਰ ਕਰਦੀ ਹੈ।

ਗੈਸ ਦੇ ਅਣੂਆਂ ਦੇ ਵਿੱਚ ਅਕਰਸ਼ਣ ਬਲ ਅਤਿ ਖੀਣ ਹੁੰਦੇ ਹਨ ਅਤੇ ਉਨ੍ਹਾਂ ਦੀ ਰਸਾਇਣਿਕ ਪ੍ਰਕਿਰਤੀ ਉੱਤੇ ਲਗਪਗ ਨਿਰਭਰ ਨਹੀਂ ਕਰਦੇ। ਕੁਝ ਪ੍ਰੇਖਣੀ ਗੁਣ (ਜਿਵੇਂ-ਦਾਬ, ਆਇਤਨ ਤਾਪਮਾਨ ਅਤੇ ਪੁੰਜ) ਦੀ ਅੰਤਰ ਨਿਰਭਰਤਾ ਨੇ ਗੈਸਾਂ ਦੇ ਪ੍ਯੋਗਿਕ ਅਧਿਐਨਾਂ ਦੇ ਬਾਅਦ ਭਿੰਨ ਭਿੰਨ ਗੈਸ ਨਿਯਮ ਦਿੱਤੇ। ਬਾੱਯਲ ਦੇ ਨਿਯਮ ਅਨੁਸਾਰ ਸਮਤਾਪੀ ਸਥਿਤੀਆਂ ਵਿੱਚ ਇੱਕ ਨਿਸ਼ਚਿਤ ਮਾਤਰਾ ਵਾਲੀ ਗੈਸ ਦਾ ਦਾਬ ਉਸਦੇ ਆਇਤਨ ਦੇ ਉਲਟਕ੍ਰਮ ਅਨੁਪਾਤੀ ਹੁੰਦਾ ਹੈ। ਚਾਰਲਸ ਦਾ ਨਿਯਮ ਸਮਦਾਬੀ ਪਰਿਸਥਿਤੀਆਂ ਵਿੱਚ ਆਇਤਨ ਅਤੇ ਪਰਮ ਤਾਪਮਾਨ ਦੇ ਵਿੱਚ ਸਬੰਧ ਨੂੰ ਦਰਸਾਉਂਦਾ ਹੈ। ਇਸਦੇ ਅਨੁਸਾਰ ਕਿਸੇ ਨਿਸ਼ਚਿਤ ਮਾਤਰਾ ਵਾਲੀ ਗੈਸ ਦਾ ਆਇਤਨ ਉਸ ਦੇ ਪਰਮ ਤਾਪਮਾਨ ਦੇ ਸਮਾਨ ਅਨੁਪਾਤੀ ਹੁੰਦਾ ਹੈ। ਜੇ ਗੈਸ ਦੀ ਸ਼ੁਰੂ ਦੀ ਅਵਸਥਾ, p_1, V_1 ਅਤੇ T_2 ਨਾਲ ਦਰਸਾਇਆ ਜਾਵੇ, ਤਾਂ ਗੈਸ ਦੀ ਸ਼ੁਰੂ ਦੀ ਅਵਸਥਾ, p_1, V_2 ਅਤੇ T_3 ਨਾਲ ਦਰਸਾਇਆ ਜਾਵੇ, ਤਾਂ

ਇਨ੍ਹਾਂ ਦੋ ਅਵਸਥਾਵਾਂ ਵਿੱਚ ਸਬੰਧਾਂ ਨੂੰ ਸੰਯੁਕਤ ਗੈਸ ਨਿਯਮ ਦੁਆਰਾ ਪ੍ਰਦਰਸ਼ਿਤ ਕਰ ਸਕਦੇ ਹਾਂ, ਜੋ $\frac{pV_1}{T_1} = \frac{p_2V_2}{T_2}$ ਹੈ। ਇਨ੍ਹਾਂ ਵਿੱਚੋਂ ਜੇ ਪੰਜ ਟਰਮਾਂ ਗਿਆਤ ਹੋਣ ਤਾਂ ਛੇਵੀਂ ਟਰਮ ਗਿਆਤ ਕੀਤੀ ਜਾ ਸਕਦੀ ਹੈ।ਐਵੋਗੈਡਰੋ ਦੇ ਅਨੁਸਾਰ, ਤਾਪਮਾਨ ਅਤੇ ਦਾਬ ਦੀਆਂ ਸਮਾਨ ਸਥਿਤੀਆਂ ਵਿੱਚ ਗੈਸਾਂ ਦੇ ਸਮਾਨ ਆਇਤਨ ਵਿੱਚ ਅਣੂਆਂ ਦੀ ਸੰਖਿਆ ਵੀ ਸਮਾਨ ਹੁੰਦੀ ਹੈ। ਡਾਲਟਨ ਦੇ ਅੰਸ਼ਿਕ ਦਾਬ ਦੇ ਨਿਯਮ ਅਨੁਸਾਰ, ਅਕਿਰਿਆਸ਼ੀਲ ਗੈਸਾਂ ਦੇ ਮਿਸ਼ਰਣ ਦਾ ਕੁਲ ਦਾਬ ਉਨ੍ਹਾਂ ਅੰਸ਼ਿਕ ਦਾਬ ਦੇ ਨਿਯਮ ਅਨੁਸਾਰ, ਅਕਿਰਿਆਸ਼ੀਲ ਗੈਸਾਂ ਦੇ ਮਿਸ਼ਰਣ ਦਾ ਕੁਲ ਦਾਬ ਉਨ੍ਹਾਂ ਅੰਸ਼ਿਕ ਦਾਬ ਦੇ ਜੋੜ ਦੇ ਬਰਾਬਰ ਹੁੰਦਾ ਹੈ। ਅਰਥਾਤ $p=p_1+p_2+p_3+\dots$ ਤਾਪਮਾਨ, ਦਾਬ, ਆਇਤਨ ਅਤੇ ਮੋਲਾਂ ਦੀ ਸੰਖਿਆ ਦੇ ਵਿੱਚ ਅੰਤਰ ਸਬੰਧ ਗੈਸ ਦੀ ਅਵਸਥਾ ਨੂੰ ਨਿਰਧਾਰਿਤ ਕਰਦਾ ਹੈ। ਇਸ ਨੂੰ ਗੈਸ ਦੀ ਅਵਸਥਾ ਸਮੀਕਰਣ ਕਹਿੰਦੇ ਹਨ। ਆਦਰਸ਼ ਗੈਸ ਦੇ ਲਈ ਅਵਸਥਾ ਸਮੀਕਰਣ pV=nRT, ਹੁੰਦਾ ਹੈ ਜਿੱਥੇ R ਗੈਸ ਸਥਿਰ ਅੰਕ ਹੈ। ਦਾਬ, ਆਇਤਨ ਅਤੇ ਤਾਪਮਨ ਦੀ ਚੁਣੀ ਗਈ ਇਕਾਈ ਉੱਤੇ ਇਸ ਦਾ ਮਾਨ ਨਿਰਭਰ ਕਰਦਾ ਹੈ।

ਉੱਚੇ ਦਾਬ ਅਤੇ ਘੱਟ ਤਾਪਮਾਨ ਉੱਤੇ ਗੈਸਾਂ ਦੇ ਵਿੱਚ ਅੰਤਰ ਅਣਵੀਂ ਬਲ ਪ੍ਬਲ ਹੋ ਜਾਂਦੇ ਹਨ, ਕਿਉਂਕਿ ਇਹ ਅਣੂ ਕੋਲ ਕੋਲ ਆ ਜਾਂਦੇ ਹਨ। ਤਾਪਮਾਨ ਅਤੇ ਦਾਬ ਦੀ ਸਹੀ ਪਰਿਸਥਿਤੀਆਂ ਵਿੱਚ ਗੈਸ ਦਾ ਦ੍ਵੀਕਰਣ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਦ੍ਵ ਨੂੰ ਘੱਟ ਆਇਤਨ ਖੇਤਰ ਵਿੱਚ ਗੈਸ ਦੀ ਨਪੀੜਨ ਅਵਸਥਾ ਮੰਨਿਆ ਜਾ ਸਕਦਾ ਹੈ। ਪ੍ਬਲ ਅੰਤਰ ਅਣਵੀਂ ਅਕਰਸ਼ਣ ਬਲਾਂ ਦੇ ਕਾਰਣ ਦ੍ਵ ਦੇ ਕੁਝ ਗੁਣ ਸਤਾ ਤਣਾਓ, ਵਿਸਕਾਸਿਤਾ ਆਦਿ ਹਨ।

ਅਭਿਆਸ

- 5.1~ $30^{\circ}\mathrm{C}$ ਅਤੇ $1~\mathrm{bar}$ ਦਾਬ ਉੱਤੇ ਹਵਾ ਦੇ $500~\mathrm{dm^3}$ ਆਇਤਨ ਨੂੰ $200~\mathrm{dm^3}$ ਤੱਕ ਨਪੀੜਨ ਦੇ ਲਈ ਕਿੰਨੇ ਘੱਟੋ ਘੱਟ ਦਾਬ ਦੀ ਜ਼ਰੂਰਤ ਹੋਵੇਗੀ ?
- 5.2 35°C ਤਾਪਮਾਨ ਅਤੇ 1.2 bar ਦਾਬ ਉੱਤੇ 120 mL ਸਮਰੱਥਾ ਵਾਲੇ ਬਰਤਨ ਵਿੱਚ ਗੈਸ ਦੀ ਇੱਕ ਨਿਸ਼ਚਿਤ ਮਾਤਰਾ ਭਰੀ ਹੈ। ਜੇ 35°C ਉੱਤੇ ਗੈਸ ਨੂੰ 180 mL ਸਮਰੱਥਾ ਵਾਲੀ ਫਲਾਸਕ ਵਿੱਚ ਸਥਾਨ ਅੰਤਰਿਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ ਤਾਂ ਗੈਸ ਦਾ ਦਾਬ ਕੀ ਹੋਵੇਗਾ।
- 5.3 ਅਵਸਥਾ ਸਮੀਕਰਣ ਦੀ ਵਰਤੋਂ ਕਰਦੇ ਹੋਏ ਸਪਸ਼ਟ ਕਰੋ ਕਿ ਦਿੱਤੇ ਗਏ ਤਾਪਮਾਨ ਉੱਤੇ ਗੈਸ ਦੀ ਘਣਤਾ ਗੈਸ ਦੇ ਦਾਬ ਦੇ ਸਮਾਨ

ਅਨੁਪਾਤੀ ਹੁੰਦੀ ਹੈ।

- 5.4 0°C ਅਤੇ 2 bar ਦਾਬ ਉੱਤੇ ਕਿਸੇ ਗੈਸ ਅਕਸਾਈਡ ਦੀ ਘਣਤਾ 5 bar ਦਾ ਦਾਬ ਉੱਤੇ ਡਾਈਨਾਈਟਰੋਜਨ ਦੀ ਘਣਤਾ ਦੇ ਸਮਾਨ ਹੈ ਤਾਂ ਅਕਸਾਈਡ ਦਾ ਅਣਵੀਂ ਭਾਰ ਕੀ ਹੈ ?
- 5.5 27 °C ਉੱਤੇ 1 ਗ੍ਰਾਮ ਅਦਰਸ਼ ਗੈਸ ਦਾ ਦਾਬ 2 bar ਹੈ। ਜਦੋਂ ਸਮਾਨ ਤਾਪਮਾਨ ਉੱਤੇ ਇਸ ਵਿੱਚ 2 ਗ੍ਰਾਮ ਅਦਰਸ਼ ਗੈਸ ਮਿਲਾਈ ਜਾਂਦੀ ਹੈ ਤਾਂ ਦਾਬ 3 bar ਹੋ ਜਾਂਦਾ ਹੈ। ਇਨ੍ਹਾਂ ਗੈਸਾਂ ਦੇ ਅਣਵੀਂ ਭਾਰ ਵਿੱਚ ਸਬੰਧ ਸਥਾਪਿਤ ਕਰੋ।
- 5.6 ਨਾਲੀ ਸਾਫ ਕਰਨ ਵਾਲੇ ਡਰੇਨੈਕਸ ਵਿੱਚ ਸੂਖਮ ਮਾਤਰਾ ਵਿੱਚ ਐਲੂਮੀਨਿਅਮ ਹੁੰਦਾ ਹੈ। ਇਹ ਕਾਸਟਿਕ ਸੋਡਾ ਨਾਲ ਕਿਰਿਆ ਕਰਕੇ ਡਾਈ ਹਾਈਡ੍ਰੋਜਨ ਗੈਸ ਦਿੰਦਾ ਹੈ। ਜੇ 1 bar ਅਤੇ 20°C ਤਾਪਮਾਨ ਉੱਤੇ 0.15g ਗ੍ਰਾਮ ਐਲੂਮੀਨਿਅਮ ਪ੍ਰਤੀਕਿਰਿਆ ਕਰੇਗਾ, ਤਾਂ ਉਪਜੀ ਡਾਈਹਾਈਡ੍ਰੋਜਨ ਦਾ ਆਇਤਨ ਕੀ ਹੋਵੇਗਾ ?
- 5.7 ਜੇ 27° C ਉੱਤੇ 9 dm^3 ਸਮਰੱਥਾ ਵਾਲੀ ਫਲਾਸਕ ਵਿੱਚ 3.2 ਗ੍ਰਾਮ ਮੀਥੇਨ ਅਤੇ 4.4 ਗ੍ਰਾਮ ਕਾਰਬਨ ਡਾਈਆੱਕਸਾਈਡ ਦਾ ਮਿਸ਼ਰਣ ਹੋਵੇ, ਤਾਂ ਇਸਦਾ ਦਾਬ ਕੀ ਹੋਵੇਗਾ ?
- 5.8 27°C ਤਾਪਮਾਨ ਉੱਤੇ ਜਦੋਂ 1 ਲਿਟਰ ਦੀ ਫਲਾਸਕ ਵਿੱਚ 0.7 bar ਉੱਤੇ 2.0 ਲਿਟਰ ਡਾਈ ਆੱਕਸੀਜਨ ਅਤੇ 0.8 bar ਉੱਤੇ 0.5 L ਡਾਈ ਹਾਈਡ੍ਰੋਜਨ ਨੂੰ ਭਰਿਆ ਜਾਂਦਾ ਹੈ, ਤਾਂ ਗੈਸੀ ਮਿਸ਼ਰਣ ਦਾ ਦਾਬ ਕੀ ਹੋਵੇਗਾ।
- 5.9 ਜੇ 27°C ਤਾਪਮਾਨ ਅਤੇ 2 bar ਦਾਬ ਉੱਤੇ ਇੱਕ ਗੈਸ ਦੀ ਘਣਤਾ 5.46 g/dm³ ਹੈ ਤਾ STP ਉੱਤੇ ਘਣਤਾ ਕਿੰਨੀ ਹੋਵੇਗੀ ?
- 5.10 ਜੇ 546°C ਅਤੇ 0.1 bar ਦਾਬ ਉੱਤੇ 34.05 mL ਫਾੱਸਫੋਰਸ ਵਾਸ਼ਪ ਦਾ ਭਾਰ 0.0625 g ਹੈ ਤਾਂ ਫਾਸਫੋਰਸ ਦਾ ਮੋਲਰ ਪੁੰਜ ਕੀ ਹੋਵੇਗਾ ?
- 5.11 ਇੱਕ ਵਿਦਿਆਰਥੀ 27°C ਉੱਤੇ ਗੋਲ ਬਾੱਟਮ ਫਲਾਸਕ ਵਿੱਚ ਪ੍ਤੀਕਿਰਿਆ ਮਿਸ਼ਰਣ ਪਾਉਣਾ ਭੁੱਲ ਗਿਆ ਅਤੇ ਉਸ ਫਲਾਸਕ ਨੂੰ ਅੱਗ ਉੱਤੇ ਰੱਖ ਦਿੱਤਾ।ਕੁਝ ਸਮੇਂ ਬਾਅਦ ਉਸ ਨੂੰ ਆਪਣੀ ਭੁੱਲ ਦਾ ਅਹਿਸਾਸ ਹੋਇਆ।
- 5.12 $3.32~{
 m bar}$ ਉੱਤੇ $5~{
 m dm^3}$ ਆਇਤਨ ਘੇਰਨ ਵਾਲੀ $4.0~{
 m mol}$ ਗੈਸ ਦੇ ਤਾਪਮਾਨ ਦੀ ਗਣਤਾ ਕਰੋ। (R=0.083 bar ${
 m dm^3~K^{-1}}$ ${
 m mol^{-1}}$)
- 5.13 1.4 g ਡਾਈ ਨਾਈਟ੍ਰੋਜਨ ਗੈਸ ਵਿੱਚ ਮੌਜੂਦ ਕੁੱਲ ਇਲੈਕਟ੍ਰਾੱਨਾਂ ਦੀ ਸੰਖਿਆ ਦੀ ਗਣਨਾ ਕਰੋ।
- 5.14 ਜੇ ਇੱਕ ਸੈਕੰਡ ਵਿੱਚ 10¹⁰ ਕਣਕ ਦੇ ਦਾਣੇ ਵਿਤਰਿਤ ਕੀਤੇ ਜਾਣ, ਤਾਂ ਐਵੋਗੈਡਰੋ ਸੰਖਿਆ ਦੇ ਬਰਾਬਰ ਦਾਣੇ ਵਿਤਰਿਤ ਕਰਨ ਵਿੱਚ ਕਿੰਨਾ ਸਮਾਂ ਲੱਗੇਗਾ ?
- $5.15 27^{\circ}\mathrm{C}$ ਤਾਪਮਾਨ ਉੱਤੇ $1~\mathrm{dm^3}$ ਆਇਤਨ ਵਾਲੀ ਫਲਾਸਕ ਵਿੱਚ 8 ਗ੍ਰਾਮ ਡਾਈਆੱਕਸੀਜਨ ਅਤੇ 4 ਗ੍ਰਾਮ ਡਾਈਹਾਈਡ੍ਰੋਜਨ ਦੇ ਮਿਸ਼ਰਣ ਦਾ ਕੁੱਲ ਦਾਬ ਕਿੰਨਾ ਹੋਵੇਗਾ ?
- 5.16 ਗੁਬਾਰੇ ਦੇ ਭਾਰ ਅਤੇ ਵਿਸਥਾਪਿਤ ਹਵਾ ਦੇ ਭਾਰ ਦੇ ਅੰਤਰ ਨੂੰ 'ਪੇ ਲੋਡ' ਕਹਿੰਦੇ ਹਨ। ਜੇ 27°C ਉੱਤੇ 10 m ਅਰਧਵਿਆਸ ਵਾਲੇ ਗੁਬਾਰੇ ਵਿੱਚ 1.66 bar ਉੱਤੇ 100kg ਹੀਲੀਅਮ ਭਰੀ ਜਾਵੇ, ਤਾਂ ਪੇ ਲੋਡ ਦੀ ਗਣਨਾ ਕਰੋ।(ਹਵਾ ਦੀ ਘਣਤਾ = 1.2g m⁻ 3 ਅਤੇ R = 0.083 bar dm³ K⁻¹ mol⁻¹).
- 5.17 31.1° C ਅਤੇ 1bar ਦਾਬ ਉੱਤੇ 8.8 ਗ੍ਰਾਮ ${\rm CO_2}$ ਦੁਆਰਾ ਘੇਰੇ ਗਏ ਆਇਤਨ ਦੀ ਗਣਨਾ ਕਰੋ। ${\rm R}=0.083~{\rm bar}~{\rm L}~{\rm K}^{-1}~{\rm mol}^{-1}$
- 5.18 ਸਮਾਨ ਦਾਬ ਉੱਤੇ ਕਿਸੇ ਗੈਸ ਦੇ 2.9 g ਪੁੰਜ ਦਾ 95°C ਅਤੇ 0.184g ਡਾਈ ਹਾਈਡ੍ਰੋਜਨ ਦਾ 17°C ਉੱਤੇ ਆਇਤਨ ਸਮਾਨ ਹੈ। ਦੱਸੋ ਕਿ ਗੈਸ ਦਾ ਮੋਲਰ ਪੁੰਜ ਕੀ ਹੋਵੇਗਾ ?
- 5.19 ਇੱਕ ਬਾਰ ਦਾਬ ਉੱਤੇ ਡਾਈਹਾਈਡ੍ਰੋਜਨ ਅਤੇ ਡਾਈਆੱਕਸੀਜਨ ਦੇ ਮਿਸ਼ਰਣ ਵਿੱਚ 20% ਡਾਈ ਹਾਈਡ੍ਰੋਜਨ (ਭਾਰ ਨਾਲ) ਰੱਖਿਆ ਜਾਂਦਾ ਹੈ ਤਾਂ ਨਾਈਟ੍ਰੋਜਨ ਦਾ ਅੰਸ਼ਿਕ ਦਾਬ ਕੀ ਹੋਵੇਗਾ ?
- $5.20 pV^2T^2/n$ ਰਾਸ਼ੀ ਦੇ ਲਈ SI ਇਕਾਈ ਕੀ ਹੋਵੇਗੀ ?
- 5.21 ਚਾਰਲਸ ਦੇ ਨਿਯਮ ਦੇ ਅਧਾਰ ਤੇ ਸਮਝਾਓ ਕਿ ਨਿਉਨਤਮ ਸੰਭਵ ਤਾਪਮਾਨ $-273^{\circ}\mathrm{C}$ ਹੁੰਦਾ ਹੈ।
- 5.22 ਕਾਰਬਨ ਡਾਈਆੱਕਸਾਈਡ ਅਤੇ ਮੀਥੇਨ ਦਾ ਕ੍ਰਾਂਤਿਕ ਤਾਪਮਾਨ ਕ੍ਰਮਵਾਰ 31.1°C ਅਤੇ –81.9°C ਹੈ। ਇਨ੍ਹਾਂ ਵਿੱਚੋਂ ਕਿਸ ਵਿੱਚ ਪ੍ਰਬਲ ਅੰਤਰ ਅਣਵੀਂ ਬਲ ਹੈ ਅਤੇ ਕਿਉਂ ?
- 5.23 ਵਾਂਡਰਵਾਲਸ ਪੈਰਾਮੀਟਰ ਦੀ ਭੌਤਿਕ ਸਾਰਥਕਤਾ ਸਮਝਾਓ।

जुिंट 6

ਤਾਪ ਗਤਿਕੀ THERMODYNAMICS

ਉਦੇਸ਼

ਇਸ ਯੂਨਿਟ ਦੇ ਅਧਿਐਨ ਦੇ ਬਾਅਦ ਤੁਸੀਂ

- ਸਿਸਟਮ ਅਤੇ ਆਲੇ ਦੁਆਲੇ ਵਿਚ ਅੰਤਰ ਸਮਝਾ ਸਕੋਗੇ:
- ਬੰਦ, ਖੁਲ੍ਹਾ ਅਤੇ ਵਿਯੋਜਿਤ ਸਿਸਟਮ ਵਿੱਚ ਅੰਤਰ ਕਰ ਸਕੋਗੇ:
- ਆਂਤਰਿਕ ਊਰਜਾ, ਕਾਰਜ ਅਤੇ ਤਾਪ ਨੂੰ ਸਮਝ ਸਕੋਗੇ:
- ਤਾਪਗਤਿਕੀ ਦੇ ਪਹਿਲੇ ਨਿਯਮ ਨੂੰ ਵਿਅਕਤ ਕਰ ਸਕੋਗੇ ਅਤੇ ਇਸਦਾ ਗਣਿਤੀ ਰੂਪ ਲਿਖ ਸਕੋਗੇ;
- ਰਸਾਇਣਿਕ ਸਿਸਟਮਾਂ ਵਿੱਚ ਊਰਜਾ ਪਰਿਵਰਤਨ ਨੂੰ ਕਾਰਜ ਅਤੇ ਤਾਪ ਦੇ ਯੋਗਦਾਨ ਦੇ ਰੂਪ ਵਿਚ ਪਰਿਕਲਿਤ ਕਰ ਸਕੋਗੇ;
- ਅਵਸਥਾਫਲਨ U, H ਨੂੰ ਸਮਝ ਸਕੋਗੇ;
- ΔU ਅਤੇ ΔH ਵਿੱਚ ਸਬੰਧ ਸਥਾਪਿਤ ਕਰ ਸਕੋਗੇ:
- ΔU ਅਤੇ ΔH ਦਾ ਪ੍ਰਯੋਗਿਕ ਮਾਪਨ ਕਰ ਸਕੋਗੇ;
- ΔH ਦੇ ਲਈ ਸਟੈਂਡਰਡ ਅਵਸਥਾ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਕਰ ਸਕੋਗੇ;
- ਭਿੰਨ ਭਿੰਨ ਕਿਸਮ ਦੀਆਂ ਪ੍ਰਤੀਕਿਰਿਆਵਾਂ ਦੇ ਲਈ ਐਨਥੈਲਪੀ ਪਰਿਵਰਤਨ ਦੀ ਗਣਨਾ ਕਰ ਸਕੋਗੇ;
- ਹੈਸ ਦੇ ਸਥਿਰ ਤਾਪ ਸੰਕਲਨ ਨਿਯਮ ਨੂੰ ਵਿਅਕਤ ਅਤੇ ਅਨੁਪ੍ਰਯੋਗ ਕਰ ਸਕੋਗੇ;
- ਵਿਸਤੀਰਣ ਅਤੇ ਗਰਣ ਗੁਣਾਂ ਵਿੱਚ ਅੰਤਰ ਕਰ ਸਕੋਗੇ;
- ਸੁਤੇ ਸਿੱਧ ਅਤੇ ਅ-ਸੁਤੇਸਿੱਧ ਪ੍ਕਰਮਾਂ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਕਰ ਸਕੋਗੇ
- ਐਨਟਰੋਪੀ ਨੂੰ ਤਾਪਗਤਿਕੀ ਅਵਸਥਾ-ਫਲਨ ਦੇ ਰੂਪ ਵਿੱਚ ਪਰਿਭਾਸ਼ਿਤ ਅਤੇ ਇਸਦਾ ਅਨੁਪ੍ਯੋਗ ਕਰ ਸਕੋਗੇ;
- ਮੁਕਤ ਉਰਜਾ ਪਰਿਵਤਰਨ (△G) ਨੂੰ ਸਮਝ ਸਕੋਗੇ;
- ਸੁਤੇ ਸਿੱਧਤਾ ਅਤੇ ΔG ਅਤੇ ΔG ਅਤੇ ਸੰਤੁਕਨਸਥਿਰ ਅੰਕ ਵਿੱਚ ਸਬੰਧ ਸਥਾਪਿਤ ਕਰ ਸਕੋਗੇ।

। ਇਹ ਸਰਬ ਵਿਆਪਕ ਅੰਤਰਵਸਤੂ ਦਾ ਕੇਵਲ ਭੌਤਿਕ ਸਿਧਾਂਤ ਹੈ, ਜਿਸ ਦੇ ਲਈ ਮੈਂ ਸੰਤੁਸ਼ਟ ਹਾਂ ਕਿ ਇਸਦੇ ਮੌਲਿਕ ਸਿਧਾਂਤਾਂ ਨੂੰ ਉਂਨ੍ਹਾਂ ਦੀ ਵਰਤੋਂ ਦੇ ਅਧਾਰ ਤੇ ਕਦੇ ਨਕਾਰਿਆ ਨਹੀਂ ਜਾ ਸਕਦਾ।

ਐਲਬਰਟ ਆਈਨਸਟੀਨ

ਜਦੋਂ ਬਾਲਣ ਜਿਵੇਂ ਮੀਥੇਨ ਗੈਸ, ਰਸੋਈ ਗੈਸ ਜਾ ਕੋਲਾ ਹਵਾ ਵਿੱਚ ਬਲਦੇ ਹਨ ਤਾਂ ਰਸਾਇਣਿਕ ਪ੍ਰਕਿਰਿਆ ਦੇ ਦੌਰਾਨ ਅਣੁਆਂ ਵਿੱਚ ਜਮ੍ਹਾਂ ਰਸਾਇਣਿਕ ਉਰਜਾ ਤਾਪਦੇ ਰਪ ਵਿੱਚ ਨਿਰਮਕਤ ਹੁੰਦੀ ਹੈ। ਜਦੋਂ ਇੱਕ ਇੰਜਨ ਦੇ ਵਿੱਚ ਬਾਲਣ ਬਲਦਾ ਹੈ, ਤਾਂ ਰਸਾਇਣਿਕ ਉਰਜਾ ਯੰਤਰਿਕ ਕਾਰਜ ਕਰਨ ਵਿੱਚ ਵਰਤੀ ਜਾ ਸਕਦੀ ਹੈ ਜਾਂ ਗੈਲਵੈਨੀ ਸੈੱਲ (ਖੁਸ਼ਕ ਸੈੱਲ) ਬਿਜਲਈ ਉਰਜਾ ਪ੍ਰਦਾਨ ਕਰਦੀ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਉਰਜਾ ਦੇ ਭਿੰਨ ਭਿੰਨ ਰਪ ਵਿਸ਼ੇਸ਼ ਪਰਿਸਥਿਤੀਆਂ ਵਿੱਚ ਇੱਕ ਦੂਜੇ ਨਾਲ ਆਪਸ ਵਿੱਚ ਸਬੰਧਿਤ ਹੁੰਦੇ ਹਨ ਅਤੇ ਇੱਕ ਰੂਪ ਤੋਂ ਦੂਜੇ ਰੂਪ ਵਿੱਚ ਬਦਲੇ ਜਾ ਸਕਦੇ ਹਨ। ਇਨ੍ਹਾਂ ਉਰਜਾ ਰੂਪਾਂ ਤਰਣਾਂ ਦਾ ਅਧਿਐਨ ਹੀ ਤਾਪ ਗਤਿਕੀ ਦੀ ਵਿਸ਼ਾ-ਵਸਤੂ ਹੈ। ਤਾਪ-ਗਤਿਕੀ ਦੇ ਨਿਯਮ ਸੂਖਮ ਸਿਸਟਮਾਂ, ਜਿਨ੍ਹਾਂ ਵਿੱਚ ਬਹੁਤ ਸਾਰੇ ਅਣੂ ਹੁੰਦੇ ਹਨ, ਨਾਲ ਸਬੰਧਿਤ ਹੁੰਦੇ ਹਨ, ਨਾ ਕਿ ਸਥਲ ਸਿਸਟਮ ਨਾਲ, ਜਿਨ੍ਹਾਂ ਵਿੱਚ ਬਹੁਤ ਘੱਟ ਅਣ ਹੁੰਦੇ ਹਨ। ਤਾਪਗਤਿਕੀ ਇਸ ਗੱਲ ਨਾਲ ਸਬੰਧਿਤ ਨਹੀਂ ਹੈ ਕਿ ਇਹ ਪਰਿਵਰਤਨ ਕਿਵੇਂ ਅਤੇ ਕਿਸ ਦਰ ਨਾਲ ਕੀਤੇ ਗਏ ਹਨ। ਇਹ ਪਰਿਵਰਤਨਕਾਰੀ ਸਿਸਟਮ ਦੀ ਸ਼ੁਰੂ ਦੀ ਅਤੇ ਅੰਤਿਮ ਅਵਸਥਾ ਨਾਲ ਸਬੰਧਿਤ ਹਨ। ਤਾਪਗਤਿਕੀ ਦੇ ਨਿਯਮ ਤਾਂ ਹੀ ਲਾਗੂ ਹੁੰਦੇ ਹਨ, ਜਦੋਂ ਸਿਸਟਮ ਸੰਤੁਲਣ ਅਵਸਥਾ ਵਿੱਚ ਹੁੰਦਾ ਹੈ, ਜਾਂ ਇੱਕ ਸੰਤੁਲਣ ਅਵਸਥਾ ਤੋਂ ਦੂਜੀ ਸੰਤਲਣ ਅਵਸਥਾ ਵਿੱਚ ਜਾਂਦਾ ਹੈ। ਕਿਸੇ ਸਿਸਟਮ ਦੇ ਸਥਲ ਗਣ (ਜਿਵੇਂ ਦਾਬ ਅਤੇ ਤਾਪਮਾਨ) ਸੰਤਲਣ ਵਿੱਚ ਸਮੇਂ ਦੇ ਨਾਲ ਪਰਿਵਰਤਿਤ ਨਹੀਂ ਹੁੰਦੇ ਹਨ। ਇਸ ਯੂਨਿਟ ਵਿੱਚ ਅਸੀਂ ਤਾਪਗਤਿਕੀ ਦੇ ਮੁਧਿਅਮ ਨਾਲ ਕੁਝ ਮਹੱਤਵਪੂਰਨ ਪ੍ਰਸ਼ਨਾਂ ਦੇ ਉੱਤਰ ਦੇਣ ਦੀ ਕੋਸ਼ਿਸ਼ ਕਰਾਂਗੇ। ਜਿਵੇਂ :

ਇੱਕ ਰਸਾਇਣਿਕ ਪ੍ਰਤੀਕਿਰਿਆ / ਪ੍ਕਰਮ ਵਿੱਚ ਅਸੀਂ ਊਰਜਾ ਪਰਿਵਰਤਨ ਕਿਵੇਂ ਨਿਰਧਾਰਿਤ ਕਰਦੇ ਹਾਂ ?

ਇਹ ਪਰਿਵਰਤਨ ਹੋਵੇਗਾ ਜਾਂ ਨਹੀਂ ?

ਇਹ ਰਸਾਇਣਿਕ ਪ੍ਰਤੀਕਿਰਿਆ / ਪ੍ਰਕਰਮ ਕਿਵੇਂ ਪ੍ਰੇਰਿਤ ਹੁੰਦਾ ਹੈ ? ਰਸਾਇਣਿਕ ਪ੍ਰਤੀਕਿਰਿਆ ਕਿਸ ਸੀਮਾ ਤੱਕ ਚਲਦੀ ਹੈ ?

6.1 ਤਾਪਗਤਿਕੀ ਦੇ ਤਕਨੀਕੀ ਸ਼ਬਦ

ਸਾਡੀ ਦਿਲਚਸਪੀ ਰਸਾਇਣਿਕ ਪ੍ਤੀਕਿਰਿਆਵਾਂ ਅਤੇ ਉਨ੍ਹਾਂ ਵਿੱਚ ਹੋਣ ਵਾਲੇ ਊਰਜਾ ਪਰਿਵਰਤਨਾਂ ਨੂੰ ਜਾਣਨ ਦੀ ਹੁੰਦੀ ਹੈ ਇਸਦੇ ਲਈ ਸਾਨੂੰ ਤਾਪਗਤਿਕੀ ਵਿੱਚ ਵਰਤੇ ਜਾਣ ਵਾਲੇ ਕੁਝ ਤਕਨੀਕੀ ਸ਼ਬਦਾਂ ਨੂੰ ਜਾਣਨਾ ਹੋਵੇਗਾ। ਇਨ੍ਹਾਂ ਦਾ ਵਰਣਨ ਹੇਠਾਂ ਦਿੱਤਾ ਗਿਆ ਹੈ:

6.1.1 ਸਿਸਟਮ ਅਤੇ ਅਲਾ ਦੁਆਲਾ

ਤਾਪਗਤਿਕੀ ਵਿੱਚ ਸਿਸਟਮ ਦੇ (System) ਦਾ ਭਾਵ ਬ੍ਰਹਿਮੰਡ ਦੇ ਉਸ ਭਾਗ ਤੋਂ ਹੈ ਜਿਸ ਉੱਤੇ ਪ੍ਰੇਖਣ ਕੀਤੇ ਜਾਂਦੇ ਹਨ ਅਤੇ ਇਸ ਦਾ ਬਾਕੀ ਭਾਗ ਆਲਾ ਦੁਆਲਾ (Surroundings) ਅਖਵਾਉਂਦਾ ਹੈ। ਆਲੇ ਦੁਆਲੇ ਵਿੱਚ ਸਿਸਟਮ ਨੂੰ ਛੱਡ ਕੇ ਸਭ ਕੁਝ ਸ਼ਾਮਿਲ ਹੈ। ਸਿਸਟਮ ਅਤੇ ਆਲਾ ਦੁਆਲਾ ਦੋਵੇਂ ਮਿਲਕੇ ਬ੍ਰਹਿਮੰਡ ਬਣਦਾ ਹੈ।

ਸਿਸਟਮ + ਆਲਾ ਦੁਆਲਾ = ਬਹਿਮੰਡ

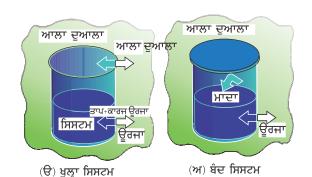
ਸਿਸਟਮ ਤੋਂ ਬਿਨਾਂ ਸੰਪੂਰਣ ਬ੍ਰਹਿਮੰਡ ਸਿਸਟਮ ਵਿੱਚ ਹੋਣ ਵਾਲੇ ਪਰਿਵਰਤਨਾਂ ਤੋਂ ਪ੍ਰਭਾਵਿਤ ਨਹੀਂ ਹੁੰਦਾ ਹੈ। ਇਸ ਲਈ ਪ੍ਰਯੋਗਿਕ ਕਾਰਜਾਂ ਦੇ ਲਈ ਬ੍ਰਹਿਮੰਡ ਦਾ ਉਹੀ ਭਾਗ, ਜੋ ਸਿਸਟਮ ਨਾਲ ਅੰਤਰਕਿਰਿਆ ਕਰਦਾ ਹੈ, ਆਲੇ-ਦੁਆਲੇ ਦੇ ਰੂਪ ਵਿੱਚ ਲਿਆ ਜਾਂਦਾ ਹੈ। ਆਮਤੌਰ ਤੇ ਸਪੇਸ ਦਾ ਉਹ ਖੇਤਰ, ਜੋ ਸਿਸਟਮ ਦੇ ਨੇੜੇ ਤੇੜੇ ਹੋਵੇ, ਆਲੇ ਦੁਆਲੇ ਵਜੋਂ ਲਿਆ ਜਾਂਦਾ ਹੈ।

ਉਦਾਹਰਣ ਵਜੋਂ− ਜੇ ਅਸੀਂ ਇੱਕ ਬੀਕਰ ਵਿੱਚ ਮੌਜੂਦ ਦੋ ਪਦਾਰਥਾਂ A ਅਤੇ B ਪ੍ਰਤੀਕਿਰਿਆ ਦਾ ਅਧਿਐਨ ਕਰ ਰਹੇ ਹਾਂ, ਤਾਂ ਬੀਕਰ (ਜਿਸ ਵਿਚ ਪ੍ਰਤੀਕਿਰਿਆ ਮਿਸ਼ਰਣ ਹੈ) ਸਿਸਟਮ ਹੋਵੇਗਾ, ਅਤੇ ਕਮਰਾ (ਜਿਸ ਵਿੱਚ ਬੀਕਰ ਹੈ) ਆਲੇ ਦੁਆਲੇ ਦਾ ਕਾਰਜ ਕਰੇਗਾ (ਚਿੱਤਰ 6.1)।

ਚਿੱਤਰ 6.1 ਸਿਸਟਮ ਅਤੇ ਅਲਾ ਦੁਆਲਾ

ਧਿਆਨ ਰੱਖੋ ਕਿ ਸਿਸਟਮ ਭੌਤਿਕ ਸੀਮਾਵਾਂ (ਜਿਵੇਂ ਬੀਕਰ ਜਾਂ ਪਰਖਨਲੀ) ਨਾਲ ਪਰਿਭਾਸ਼ਿਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ ਜਾਂ ਸਪੇਸ ਵਿੱਚ ਇੱਕ ਨਿਸ਼ਚਿਤ ਆਇਤਨ ਦੇ ਕਾਰਟੀਜੀਅਨ ਨਿਰਦੇਸ਼ ਅੰਕਾਂ (Cartesian coordinates) ਦੇ ਸਮੂਹ (set) ਨਾਲ ਪਰਿਭਾਸ਼ਿਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਇਹ ਜਰੂਰੀ ਹੈ ਕਿ ਸਿਸਟਮ ਨੂੰ ਵਾਸਤਵਿਕ ਜਾਂ ਕਾਲਪਨਿਕ ਦੀਵਾਰ ਜਾਂ ਸੀਮਾਂ ਦੇ ਦੁਆਰਾ ਆਲੇ-ਦੁਆਲੇ ਨਾਲੋਂ ਵੱਖ ਸੋਚਿਆ ਜਾਵੇ। ਉਹ ਦੀਵਾਰ, ਜੋ ਸਿਸਟਮ ਅਤੇ ਆਲੇ-ਦੁਆਲੇ ਨੂੰ ਵੱਖ ਕਰਦੀ ਹੈ, 'ਪਰਿਸੀਮਾਂ' (Boundary) ਅਖਵਾਉਂਦੀ ਹੈ। ਪਰਿਸੀਮਾਂ ਦੁਆਰਾ ਅਸੀਂ ਸਿਸਟਮ ਦੇ ਅੰਦਰ ਅਤੇ ਬਾਹਰ ਮਾਦਾ ਅਤੇ ਊਰਜਾ ਦੇ ਸੰਚਰਣ ਨੂੰ ਨਿਯੰਤਰਰਿਤ ਅਤੇ ਪ੍ਰੇਖਿਤ ਕਰ ਸਕਦੇ ਹਾਂ।

6.1.2 ਸਿਸਟਮ ਦੀਆਂ ਕਿਸਮਾਂ


ਹੁਣ ਅਸੀਂ ਮਾਦੇ ਅਤੇ ਊਰਜਾ ਦੇ ਸੰਚਰਣ ਦੇ ਅਧਾਰ ਤੇ ਸਿਸਟਮ ਨੂੰ ਵਰਗੀ ਕ੍ਰਿਤ ਕਰਦੇ ਹਾਂ :

1. ਖੁਲ੍ਹਾ ਸਿਸਟਮ (Open System)

ਇੱਕ ਖੁਲ੍ਹੇ ਸਿਸਟਮ ਵਿੱਚ ਊਰਜਾ ਅਤੇ ਮਾਦਾ–ਦੋਵਾਂ ਦਾ ਸਿਸਟਮ ਅਤੇ ਆਲੇ ਦੁਆਲੇ ਦੇ ਵਿੱਚ ਵਟਾਂਦਰਾ (Exchange) ਹੋ ਸਕਦਾ ਹੈ। ਉਦਾਹਰਣ ਵਜੋਂ – ਅਭਿਕਾਰਕ ਇੱਕ ਖੁੱਲੇ ਬੀਕਰ ਵਿੱਚ ਲਏ ਜਾਣ।

2. ਬੰਦ ਸਿਸਟਮ (Closed System)

ਬੰਦ ਸਿਸਟਮ ਵਿੱਚ ਸਿਸਟਮ ਅਤੇ ਆਲੇ ਦੁਆਲੇ ਵਿੱਚ ਮਾਦੇ ਦਾ ਵਟਾਂਦਰਾ ਸੰਭਵ ਨਹੀਂ ਹੈ ਪਰੰਤੂ ਊਰਜਾ ਦਾ ਵਟਾਂਦਰਾ ਹੋ ਸਕਦਾ ਹੈ। ਜਿਵੇਂ - ਅਭਿਕਾਰਕ ਬੰਦ ਬੀਕਰ ਵਿੱਚ ਲਏ ਜਾਣ।

(ੲ) ਵਿਯੋਜਿਤ ਸਿਸਟਮ

ਚਿੱਤਰ 6.2 ਖੁਲ੍ਹਾ ਬੰਦ ਅਤੇ ਵਿਯੋਜਿਤ ਸਿਸਟਮ

[🍍] ਜੇ ਅਭਿਕਾਰਕਨਾਂ ਨੂੰ ਸਿਸਟਮ ਚੁਣਿਆ ਹੈ ਤਾਂ ਬੀਕਰ ਦੀਆਂ ਦੀਵਾਰਾਂ ਪਰਿਸੀਮਾਂ ਹੁੰਦੀਆਂ ਹਨ।

3. ਵਿਯੋਜਿਤ ਸਿਸਟਮ (Isolated System)

ਇੱਕ ਵਿਯੋਜਿਤ ਸਿਸਟਮ ਵਿੱਚ ਸਿਸਟਮ ਅਤੇ ਆਲੇ ਦੁਆਲੇ ਦੇ ਵਿੱਚ ਮਾਦੇ ਅਤੇ ਊਰਜਾ-ਦੋਵਾਂ ਦਾ ਹੀ ਵਟਾਂਦਰਾ ਸੰਭਵ ਨਹੀਂ ਹੁੰਦਾ ਹੈ।ਉਦਾਹਰਣ ਵਜੋਂ – ਅਭਿਕਾਰਕ ਇੱਕ ਥਰਮਸ ਫਲਾਸਕ ਵਿੱਚ ਲਏ ਜਾਣ। ਚਿੱਤਰ 6.2 ਵਿੱਚ ਵੱਖ ਵੱਖ ਕਿਸਮ ਦੇ ਸਿਸਟਮ ਦਰਸਾਏ ਗਏ ਹਨ।

6.1.3 ਸਿਸਟਮ ਦੀ ਅਵਸਥਾ

ਕਿਸੇ ਵੀ ਤਾਪ ਗਤਿਕੀ ਸਿਸਟਮ ਦਾ ਵਰਣਨ ਕੁਝ ਗੁਣਾਂ, ਜਿਵੇਂ ਦਾਬ (p), ਆਇਤਨ (V), ਤਾਪਮਾਨ (T) ਅਤੇ ਸਿਸਟਮ ਦੀ ਬਣਤਰ (composition) ਨੂੰ ਨਿਸ਼ਚਿਤ (specify) ਕਰਕੇ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਸਾਨੂੰ ਸਿਸਟਮ ਨੂੰ ਵਰਣਿਤ ਕਰਨ ਦੇ ਲਈ ਇਨ੍ਹਾਂ ਗੁਣਾਂ ਨੂੰ ਪਰਿਵਰਤਨ ਤੋਂ ਪਹਿਲਾਂ ਅਤੇ ਬਾਅਦ ਨਿਸ਼ਚਿਤ ਕਰਨਾ ਪੈਂਦਾ ਹੈ। ਤੁਸੀਂ ਫਿਜੀਕਸ ਵਿੱਚ ਪੜ੍ਹਿਆ ਹੋਵੇਗਾ ਯੰਤਰਿਕ ਵਿੱਚ ਕਿਸੇ ਸਿਸਟਮ ਦੀ ਅਵਸਥਾ ਦੀ ਵਿਆਖਿਆ ਸਿਸਟਮ ਦੇ ਸਾਰੇ ਪੁੰਜ ਬਿੰਦੂਆਂ ਦੇ ਉਸ ਛਿਣ ਉੱਤੇ ਸਥਿਤੀ ਅਤੇ ਚਾਲ ਦੇ ਅਧਾਰ ਉੱਤੇ ਕੀਤੀ ਜਾਂਦੀ ਹੈ। ਤਾਪ ਗਤਿਕੀ ਵਿੱਚ ਅਵਸਥਾ ਦਾ ਇੱਕ ਵੱਖ ਅਤੇ ਸਰਲ ਰੂਪ ਪ੍ਰਸਤਾਵਿਤ ਕੀਤਾ ਗਿਆ ਹੈ। ਇਸ ਨਾਲ ਹਰ ਕਣ ਦੀ ਗਤੀ ਦੇ ਵਿਸਤਰਿਤ ਗਿਆਨ ਦੀ ਜਰੂਰਤ ਨਹੀਂ ਹੈ, ਕਿਉਂਕਿ ਇੱਥੇ ਅਸੀਂ ਸਿਸਟਮ ਦੇ ਔਸਤ ਮਾਪਨ ਯੋਗ ਗੁਣਾਂ ਦੀ ਵਰਤੋਂ ਕਰਦੇ ਹਾਂ। ਅਸੀਂ ਸਿਸਟਮ ਦੀ ਅਵਸਥਾ ਨੂੰ 'ਅਵਸਥਾ ਫਲਨਾਂ' ਜਾਂ 'ਅਵਸਥਾ ਅਸਥਿਰਾਂ' ਦੇ ਦੁਆਰਾ ਵਿਅਕਤ ਕਰਦੇ ਹਾਂ।

ਤਾਪਗਤਿਕੀ ਵਿੱਚ ਸਿਸਟਮ ਦੀ ਅਵਸਥਾ ਦਾ ਵਰਣਨ ਉਸ ਦੇ ਮਾਪਨਯੋਗ ਜਾ ਸਥੂਲ ਗੁਣਾ ਦੇ ਦੁਆਰਾ ਕੀਤਾ ਜਾਂਦਾ ਹੈ।ਅਸੀਂ ਇੱਕ ਗੈਸ ਦੀ ਅਵਸਥਾ ਦਾ ਉਸਦੇ ਦਾਬ (p), ਅਇਤਨ (V), ਤਾਪਮਾਨ (T), ਮਾਤਰਾ (n) ਆਦਿ ਨਾਲ ਵਰਣਨ ਕਰ ਸਕਦੇ ਹਾਂ। p, V, T ਨੂੰ ਅਵਸਥਾ ਉਤੇ ਅਵਸਥਾ ਫਲਨ ਕਹਿੰਦੇ ਹਨ ਕਿਉਂਕਿ ਇਨ੍ਹਾਂ ਦਾ ਮਾਨ ਸਿਸਟਮ ਦੀ ਅਵਸਥਾ ਉੱਤੇ ਨਿਰਭਰ ਕਰਦਾ ਹੈ, ਨਾ ਕਿ ਇਸ ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਦੇ ਲਈ ਤਰੀਕੇ ਉੱਤੇ। ਕਿਸੇ ਸਿਸਟਮ ਦੀ ਅਵਸਥਾ ਨੂੰ ਪੂਰਣ ਰੂਪ ਵਿੱਚ ਪਰਿਭਾਸ਼ਿਤ ਕਰਨ ਦੇ ਲਈ ਸਿਸਟਮ ਦੇ ਸਾਰੇ ਗੁਣਾਂ ਦਾ ਵਰਣਨ ਕਰਨ ਦੀ ਜਰੂਰਤ ਨਹੀਂ ਹੁੰਦੀ, ਕਿਉਂਕਿ ਕੁਝ ਗੁਣ ਹੀ ਸੁਤੰਤਰ ਰੂਪ ਵਿੱਚ ਪਰਿਵਰਤਿਤ ਹੋ ਸਕਦੇ ਹਨ। ਇਨ੍ਹਾਂ ਗੁਣਾਂ ਦੀ ਸੰਖਿਆ ਸਿਸਟਮ ਦੀ ਪ੍ਕਿਰਤੀ ਉੱਤੇ ਨਿਰਭਰ ਕਰਦੀ ਹੈ। ਇੱਕ ਵਾਰ ਘੱਟ ਤੋਂ ਘੱਟ ਸੰਖਿਆ ਵਿੱਚ ਇਨ੍ਹਾਂ ਸਥੂਲ ਗੁਣਾਂ ਨੂੰ ਤੈਅ ਕਰ ਦਿੱਤਾ ਜਾਵੇ, ਤਾਂ ਬਾਕੀ ਸਾਰੇ ਗੁਣਾਂ ਦਾ ਮਾਨ ਖੁਦ ਹੀ ਨਿਸ਼ਚਿਤ ਹੋ ਜਾਂਦਾ ਹੈ।

6.1.4 ਅੰਦਰੂਨੀ ਊਰਜਾ : ਇੱਕ ਅਵਸਥਾ-ਫਲਨ

ਜਦੋਂ ਅਸੀਂ ਉਨ੍ਹਾਂ ਰਸਾਇਣਿਕ ਸਿਸਟਮਾਂ ਦੀ ਚਰਚਾ ਕਰਦੇ ਹਾਂ

ਜਿਨ੍ਹਾਂ ਵਿੱਚ ਊਰਜਾ ਦਾ ਨਿਕਾਸ ਜਾਂ ਪ੍ਰਵੇਸ਼ ਹੁੰਦਾ ਹੈ, ਤਾਂ ਸਾਨੂੰ ਇੱਕ ਅਜਿਹੇ ਗੁਣ ਦੀ ਜਰੂਰਤ ਹੁੰਦੀ ਹੈ, ਜੋ ਸਿਸਟਮ ਦੀ ਊਰਜਾ ਦਾ ਪ੍ਰਤੀਨਿਧਤਾ ਕਰਦਾ ਹੋਵੇ। ਇਹ ਊਰਜਾ ਰਸਾਇਣਿਕ, ਬਿਜਲਈ ਜਾਂ ਯੰਤਰਿਕ ਊਰਜਾ ਹੋ ਸਕਦੀ ਹੈ। ਇਨ੍ਹਾਂ ਸਭ ਦਾ ਜੋੜ ਹੀ ਸਿਸਟਮ ਦੀ ਊਰਜਾ ਹੁੰਦੀ ਹੈ। ਤਾਪਗਤਿਕੀ ਵਿੱਚ ਇਸ ਨੂੰ ਅੰਦਰੂਨੀ ਊਰਜਾ U ਕਹਿੰਦੇ ਹਨ। ਇਹ ਪਰਿਵਰਤਿਤ ਹੁੰਦੀ ਹੈ, ਜਦਕਿ

- ਤਾਪ ਦਾ ਸਿਸਟਮ ਵਿੱਚ ਪ੍ਰਵੇਸ਼ ਜਾਂ ਨਿਕਾਸ ਹੁੰਦਾ ਹੋਵੇ,
- ਸਿਸਟਮ ਉੱਤੇ ਜਾਂ ਸਿਸਟਮ ਦੁਆਰਾ ਕਾਰਜ ਕੀਤਾ ਗਿਆ ਹੋਵੇ,
- ਸਿਸਟਮ ਵਿੱਚ ਮਾਦੇ ਦਾ ਪ੍ਰਵੇਸ਼ ਜਾਂ ਨਿਕਾਸ ਹੁੰਦਾ ਹੋਵੇ।

(ੳ) ਕਾਰਜ

ਸਭ ਤੋਂ ਪਹਿਲਾਂ ਅਸੀਂ ਕਾਰਜ ਕਰਨ ਨਾਲ ਸਿਸਟਮ ਦੀ ਅੰਦਰੂਨੀ ਊਰਜਾ ਵਿੱਚ ਹੋਣ ਵਾਲੇ ਪਰਿਵਰਤਨ ਦੀ ਪਰਖ ਕਰਾਂਗੇ। ਅਸੀਂ ਇੱਕ ਅਜਿਹਾ ਸਿਸਟਮ ਲੈਂਦੇ ਹਾਂ, ਜਿਸ ਵਿੱਚ ਇੱਕ ਥਰਮਸ ਫਲਾਸਕ ਜਾਂ ਤਾਪਰੋਧੀ ਬੀਕਰ ਵਿੱਚ ਪਾਣੀ ਦੀ ਕੁਝ ਮਾਤਰਾ ਹੈ। ਇਸ ਵਿੱਚ ਸਿਸਟਮ ਅਤੇ ਆਲੇ-ਦੁਆਲੇ ਦੇ ਵਿੱਚ ਤਾਪ ਦਾ ਪ੍ਵਾਹ ਨਹੀਂ ਹੈ, ਅਜਿਹੇ ਸਿਸਟਮ ਨੂੰ ਅਸੀਂ ਗਰਮੀ ਰੋਕ ਵਿਧੀ (adiabatic) ਸਿਸਟਮ ਕਹਿੰਦੇ ਹਾਂ। ਅਜਿਹੇ ਸਿਸਟਮ ਵਿੱਚ ਅਵਸਥਾ ਪਰਿਵਰਤਨ ਨੂੰ ਗਰਮੀ ਰੋਕ ਪ੍ਕਰਮ ਕਹਿੰਦੇ ਹਨ। ਇਸ ਵਿੱਚ ਸਿਸਟਮ ਅਤੇ ਆਲੇ ਦੁਆਲੇ ਵਿੱਚ ਊਰਜਾ ਵਟਾਂਦਰਾ ਨਹੀਂ ਹੁੰਦਾ। ਜਿੱਥੇ ਸਿਸਟਮ ਅਤੇ ਆਲੇ ਦੁਆਲੇ ਨੂੰ ਵੱਖ ਕਰਨ ਵਾਲੀ ਦੀਵਾਰ 'ਗਰਮੀ ਰੋਕ ਦੀਵਾਰ' ਅਖਵਾਉਂਦੀ ਹੈ (ਚਿੱਤਰ 6.3)।

ਚਿੱਤਰ 6.3 ਇੱਕ ਗਰਮੀ-ਰੋਕ ਸਿਸਟਮ, ਜਿਸ ਵਿੱਚ ਪਰਿਸੀਮਾ ਤੋਂ ਤਾਪ ਵਟਾਂਦਰਾ ਸੰਭਵ ਨਹੀਂ ਹੈ।

ਹੁਣ ਅਸੀਂ ਸਿਸਟਮ ਉੱਤੇ ਕੁਝ ਕਾਰਜ ਕਰਕੇ ਇਸਦੀ ਅੰਦਰੂਨੀ ਊਰਜਾ ਵਿੱਚ ਪਰਿਵਰਤਨ ਕਰਦੇ ਹਾਂ। ਮੰਨ ਲਓ ਕਿ ਸਿਸਟਮ ਦੀ ਸ਼ੁਰੂ ਦੀ ਅਵਸਥਾ A ਹੈ ਅਤੇ ਇਸ ਦਾ ਤਾਪਮਾਨ $T_{\rm A}$ ਅਤੇ ਅੰਦਰੂਨੀ ਊਰਜਾ $U_{\rm A}$ ਹੈ। ਸਿਸਟਮ ਦੀ ਅਵਸਥਾ ਨੂੰ ਦੋ ਤਰ੍ਹਾਂ ਨਾਲ ਪਰਿਵਰਤਿਤ ਕਰ ਸਕਦੇ ਹਾਂ।

ਪਹਿਲਾ ਢੰਗ : ਮੰਨ ਲਓ ਕਿ ਛੋਟੇ ਪੈਡਲ ਨਾਲ ਪਾਣੀ ਨੂੰ ਰਿੜਕ ਕੇ ਅਸੀਂ ਇੱਕ ${\bf k}J$ ਕਾਰਜ ਕਰਦੇ ਹਾਂ, ਜਿਸ ਵਿੱਚ ਸਿਸਟਮ ਦੀ ਨਵੀਂ ਅਵਸਥਾ ਮੰਨ ਲਓ ${\bf B}$ ਅਤੇ ਉਸ ਦਾ ਤਾਪਮਾਨ $T_{{\bf B}}$ ਹੋ ਜਾਂਦਾ ਹੈ। ਇਹ ਵੇਖਿਆ ਗਿਆ ਹੈ ਕਿ $T_{{\bf B}} > T_{{\bf A}}$ ਇੰਜ ਤਾਪਮਾਨ ਵਿੱਚ ਪਰਿਵਰਤਨ $\Delta T = T_{{\bf B}} - T_{{\bf A}}$ । ਮੰਨ ਲਓ ਅਵਸਥਾ ${\bf B}$ ਵਿੱਚ ਅੰਦਰੂਨੀ ਊਰਜਾ $U_{{\bf B}}$ ਹੈ, ਤਾਂ ਅੰਦਰੂਨੀ ਊਰਜਾ ਵਿੱਚ ਪਰਿਵਰਤਨ $\Delta U = U_{{\bf B}} - U_{{\bf A}}$ ।

ਦੂਜਾ ਢੰਗ : ਹੁਣ ਅਸੀਂ ਪਾਣੀ ਨੂੰ ਇੱਕ ਇਨਰਸ਼ਨ ਰਾੱਡ (Immerrion Rod) ਪਾ ਕੇ ਉਨ੍ਹਾਂ ਹੀ ਬਿਜਲਈ ਕਾਰਜ (1kJ) ਕਰਦੇ ਹਾਂ ਅਤੇ ਸਿਸਟਮ ਵਿੱਚ ਤਾਪਮਾਨ ਪਰਿਵਰਤਨ ਨੋਟ ਕਰਦੇ ਹਾਂ।ਅਸੀਂ ਵੇਖਦੇ ਹਾਂ ਕਿ ਤਾਪਮਾਨ-ਪਰਿਵਰਤਨ ਪਹਿਲਾਂ ਦੇ ਬਰਾਬਰ $T_{\rm B}$ – $T_{\rm A}$ ਹੀ ਰਹਿੰਦਾ ਹੈ।

ਅਸਲ ਵਿੱਚ ਉਪਰੋਕਤ ਪ੍ਰਯੋਗ ਜੇ.ਪੀ. ਜੂਲ ਦੁਆਰਾ ਸੰਨ 1845 ਦੇ ਨੇੜ੍ਹੇ ਤੇੜੇ ਕੀਤਾ ਗਿਆ ਸੀ। ਉਨ੍ਹਾਂ ਨੇ ਵੇਖਿਆ ਕਿ ਸਿਸਟਮ ਉੱਤੇ ਕੀਤਾ ਗਿਆ ਨਿਸ਼ਚਿਤ ਕਾਰਜ ਸਿਸਟਮ ਦੀ ਅਵਸਥਾ ਵਿੱਚ ਸਮਾਨ ਪਰਿਵਰਤਨ ਲਿਆਉਂਦਾ ਹੈ, ਭਾਵੇਂ ਕਾਰਜ ਕਿਸੇ ਵੀ ਤਰੀਕੇ (ਪ੍ਕਰਮ) ਦੁਆਰਾ ਕੀਤਾ ਜਾਵੇ, ਜਿਵੇਂ ਇਥੇ ਤਾਪਮਾਨ ਦੇ ਪਰਿਵਰਤਨ ਦੁਆਰਾ ਵੇਖਿਆ ਗਿਆ ਹੈ।

ਇੰਜ ਇਹ ਢੁਕਵਾਂ ਦਿੱਸਦਾ ਹੈ ਕਿ ਇਕ ਅਜਿਹੀ ਰਾਸ਼ੀ, ਅੰਦਰੂਨੀ ਊਰਜਾ U, ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਕੀਤਾ ਜਾਵੇ, ਜਿਸਦਾ ਮਾਨ ਸਿਸਟਮ ਦੀ ਅਵਸਥਾ ਦਾ ਲੱਛਣ ਹੋਵੇ, ਜਿਥੇ ਗਰਮੀ ਰੋਕ ਪ੍ਕਰਮ ਵਿੱਚ ਕੀਤਾ ਗਿਆ ਕਾਰਜ $w_{\rm ad}$ ਦੋ ਅਵਸਥਾਵਾਂ ਵਿੱਚ U ਪਰਿਵਰਤਨ ਦੇ ਬਰਾਬਰ, ਅਰਥਾਤ $\Delta U = U_2 - U_1 = w_{\rm ad}$ ਹੈ।


ਇੰਜ ਸਿਸਟਮ ਦੀ ਅੰਦਰੂਨੀ ਊਰਜਾ ਇੱਕ ਅਵਸਥਾ-ਫਲਨ ਹੈ। ਧਨਾਤਮਕ ਚਿੰਨ੍ਹ ਦਸਦਾ ਹੈ ਕਿ ਕਾਰਜ w_{ad} ਸਿਸਟਮ ਉੱਤੇ ਕੀਤਾ ਗਿਆ ਹੈ। ਇਸੇ ਤਰ੍ਹਾਂ ਜੇ ਸਿਸਟਮ ਦੁਆਰਾ ਕਾਰਜ ਕੀਤਾ ਜਾਵੇ, ਤਾਂ w_{ad} ਰਿਣਾਤਮਕ ਹੋਵੇਗਾ।

ਕੀ ਤੁਸੀਂ ਕੋਈ ਹੋਰ ਜਾਣੇ ਅਵਸਥਾ ਫਲਨਾਂ ਦੇ ਨਾਮ ਦੱਸ ਸਕਦੇ ਹੋ ? V, p, ਅਤੇ T ਕੁਝ ਜਾਣੇ ਅਵਸਥਾ ਫਲਨ ਹਨ। ਉਦਾਹਰਣ ਵਜੋਂ-ਜੇ ਅਸੀ ਕਿਸੇ ਸਿਸਟਮ ਦੇ ਤਾਪਮਾਨ ਵਿੱਚ 25° C ਤੋਂ 35° C ਤਕ ਪਰਿਵਰਤਨ ਕਰੀਏ ਤਾਂ ਤਾਪਮਾਨ ਪਰਿਵਰਤਨ 35° C- 25° C = $+10^{\circ}$ C ਹੋਵੇਗਾ। ਭਾਵੇਂ ਅਸੀਂ ਸਿੱਧੇ ਹੀ 35° C ਤੱਕ ਜਾਈਏ ਜਾਂ ਸਿਸਟਮ ਨੂੰ ਪਹਿਲਾਂ ਕੁਝ ਅੰਸ਼ਾਂ (degrees) ਤੱਕ ਠੰਡਾ ਕਰੀਏ ਅਤੇ ਫਿਰ ਸਿਸਟਮ ਨੂੰ ਅੰਤਿਮ ਤਾਪਮਾਨ (35° C) ਤੱਕ ਲੈ ਜਾਈਏ। ਇਸ ਤਰ੍ਹਾਂ T ਇੱਕ ਅਵਸਥਾ ਫਲਨ ਹੈ। ਤਾਪਮਾਨ ਵਿੱਚ ਪਰਿਵਰਤਨ ਪੱਥ

ਉੱਤੇ ਨਿਰਭਰ ਨਹੀਂ ਕਰਦਾ ਹੈ। ਇੱਕ ਤਲਾਅ ਵਿੱਚ ਪਾਣੀ ਦਾ ਆਇਤਨ ਇੱਕ ਅਵਸਥਾ-ਫਲਨ ਹੈ ਕਿਉਂਕਿ ਇਸ ਦੇ ਪਾਣੀ ਦੇ ਆਇਤਨ ਵਿੱਚ ਪਰਿਵਰਤਨ ਇਸ ਗੱਲ ਉੱਤੇ ਨਿਰਭਰ ਨਹੀਂ ਕਰਦਾ ਕਿ ਤਲਾਅ ਕਿਵੇਂ ਭਰਿਆ ਗਿਆ ਹੈ – ਵਰਖਾ ਦੁਆਰਾ, ਟਿਊਬਵੈਲ ਦੁਆਰਾ ਜਾਂ ਦੋਵਾਂ ਦੁਆਰਾ।

(भ) उप

ਅਸੀਂ ਬਿਨਾਂ ਕਾਰਜ ਕੀਤੇ ਵੀ ਆਲੇ ਦੁਆਲੇ ਤੋਂ ਤਾਪ ਲੈ ਕੇ ਜਾਂ ਆਲੇ ਦੁਆਲੇ ਨੂੰ ਤਾਪ ਦੇ ਕੇ ਇੱਕ ਸਿਸਟਮ ਦੀ ਅੰਦਰੂਨੀ ਊਰਜਾ ਵਿੱਚ ਪਰਿਵਰਤਨ ਕਰ ਸਕਦੇ ਹਾਂ। ਇਹ ਊਰਜਾ–ਵਟਾਂਦਰਾ, ਜੋ ਤਾਪਮਾਨ ਅੰਤਰ ਦਾ ਪਰਿਣਾਮ ਹੈ, ਤਾਪ q ਅਖਵਾਉਂਦਾ ਹੈ। ਹੁਣ ਅਸੀਂ ਸਮਾਨ ਤਾਪਮਾਨ ਅੰਤਰ ਲਿਆਉਣ ਦੇ ਲਈ (ਪਹਿਲਾਂ ਭਾਗ 6.14 (ੳ) ਵਿੱਚ ਦੱਸੇ ਅਨੁਸਾਰ ਉਹੀ ਸ਼ੁਰੂ ਅਤੇ ਅੰਤਿਮ ਤਾਪਮਾਨ) ਜੋ ਗਰਮੀ ਰੋਕ ਦੀਵਾਰਾਂ ਨਾਲੋਂ ਤਾਪ ਚਾਲਕ ਦੀਵਾਰ (ਚਿੱਤਰ 6.4) ਦੁਆਰਾ ਤਾਪ ਦੇ ਚਾਲਨ ਨਾਲ ਹੁੰਦਾ ਹੈ, ਉੱਤੇ ਵਿਚਾਰ ਕਰਾਂਗੇ।

ਚਿੱਤਰ 6.4 ਇੱਕ ਸਿਸਟਮ, ਜਿਸ ਵਿੱਚ ਪਰਿਸੀਮਾਂ ਦੇ ਅਰ-ਧਾਰਤਾ ਦਾ ਪਭਾਵ ਸੰਭਵ ਹੈ।

ਮੰਨ ਲਉ ਕਿ ਤਾਂਬੇ ਦਾ ਇੱਕ ਬਰਤਨ (ਜਿਸ ਦੀਆਂ ਦੀਵਾਰਾਂ ਤਾਪ–ਚਾਲਕ ਹਨ) ਵਿੱਚ $T_{\rm A}$ ਤਾਪਮਾਨ ਉੱਤੇ ਪਾਣੀ ਲਿਆ ਗਿਆ ਹੈ। ਇਸ ਨੂੰ ਇੱਕ ਵੱਡੇ ਜਲ–ਜਖੀਰੇ, ਜਿਸ ਦਾ ਤਾਪਮਾਨ $T_{\rm B}$ ਹੈ ਵਿੱਚ ਰੱਖਦੇ ਹਾਂ ਸਿਸਟਮ (ਪਾਣੀ) ਦੁਆਰਾ ਸੋਖੇ ਤਾਪ q ਨੂੰ ਤਾਪਮਾਨ ਪਰਿਵਰਤਨ $T_{\rm B} - T_{\rm A}$ ਦੁਆਰਾ ਮਾਪਿਆ ਜਾ ਸਕਦਾ ਹੈ। ਇੱਥੇ ਵੀ ਅੰਦਰੂਨੀ ਊਰਜਾ ਵਿੱਚ ਪਰਿਵਰਤਨ, $\Delta U = q$ ਹੈ, ਜਦਕਿ ਸਥਿਰ ਅਇਤਨ ਉੱਤੇ ਕੋਈ ਕਾਰਜ ਨਹੀਂ ਕੀਤਾ ਗਿਆ।

ਆਲੇ ਦੁਆਲੇ ਤੋਂ ਤਾਪ ਦਾ ਸਥਾਨ ਅੰਤਰਣ ਸਿਸਟਮ ਵਿੱਚ ਹੋਣ ਤੇ q ਧਨਾਤਮਕ ਹੁੰਦਾ ਹੈ ਅਤੇ ਤਾਪ ਦੇ ਸਿਸਟਮ ਤੋਂ ਆਲੇ ਦੁਆਲੇ ਦੇ ਵੱਲ ਸਥਾਨ ਅੰਤਰਿਕ ਹੋਣ ਤੇ q ਰਿਣਾਤਮਕ ਹੁੰਦਾ ਹੈ।

(प्ट) मयावर मिष्ठी

ਅਸੀਂ ਇੱਕ ਸਧਾਰਣ ਸਥਿਤੀ ਉੱਤੇ ਵਿਚਾਰ ਕਰੀਏ, ਜਦਕਿ ਅੰਦਰੁਨੀ ਉਰਜਾ ਵਿੱਚ ਪਰਿਵਰਤਨ ਦੋਵਾਂ ਹੀ ਢੰਗਾਂ (ਕਾਰਜ ਕਰਨ ਅਤੇ ਤਾਪ-ਸਥਾਨ ਅੰਤਰਣ) ਦੁਆਰਾ ਹੋਵੇ। ਉਸ ਸਥਿਤੀ ਵਿੱਚ ਅਸੀਂ ਅੰਦਰੂਨੀ ਊਰਜਾ ਵਿੱਚ ਪਰਿਵਰਤਨ ਨੂੰ ਇਸ ਪ੍ਰਕਾਰ ਲਿਖ ਸਕਦੇ ਹਾਂ—

$$\Delta U = q + w \tag{6.1}$$

ਇਕ ਵਿਸ਼ਿਸ਼ਟ ਅਵਸਥਾ ਪਰਿਵਰਤਨ ਵਿੱਚ ਪਰਿਵਰਤਨ ਦੇ ਢੰਗ ਦੇ ਅਨੁਸਾਰ q ਅਤੇ w ਦੇ ਮਾਨ ਭਿੰਨ ਹੋ ਸਕਦੇ ਹਨ, ਪਰੰਤੂ $q+w=\Delta U$ ਸਿਰਫ ਸ਼ੁਰੂ ਅਤੇ ਅੰਤਿਮ ਅਵਸਥਾ ਉੱਤੇ ਨਿਰਭਰ ਕਰੇਗਾ। ਇਹ ਪਰਿਵਰਤਨ ਦੀ ਕਿਸਮ ਤੋਂ ਸੁਤੰਤਰ ਹੈ। ਜੇ ਤਾਪ ਜਾਂ ਕਾਰਜ ਦੇ ਰੂਪ ਵਿੱਚ ਊਰਜਾ ਪਰਿਵਰਤਨ ਨਾ ਹੋਵੇ (ਵਿਯੁਕਤ ਸਿਸਟਮ) ਅਰਥਾਤ ਜੇ w=0 ਅਤੇ q=0, ਤਾਂ $\Delta U=0$ ਹੈ।

ਸਮੀਕਰਣ 6.1 ਅਰਥਾਤ $\Delta U = q + w$, ਤਾਪਗਤਿਕੀ ਦੇ ਪਹਿਲੇ ਨਿਯਮ ਦਾ ਗਣਿਤੀ ਕਥਨ ਹੈ। ਪਹਿਲੇ ਨਿਯਮ ਦੇ ਅਨੁਸਾਰ, "ਇੱਕ ਵਿਯੁਕਤ ਸਿਸਟਮ ਦੀ ਉਰਜਾ ਅਪਰਿਵਰਤਨੀ ਹੁੰਦੀ ਹੈ।"

The energy of an isolated system is constant.

ਆਮ ਕਰਕੇ ਇਸ ਨੂੰ ਊਰਜਾ ਸੁਰੱਖਿਅਣ ਦਾ ਸਿਧਾਂਤ ਕਹਿੰਦੇ ਹਨ, ਅਰਥਾਤ ਊਰਜਾ ਨਾ ਤਾਂ ਨਸ਼ਟ ਕੀਤੀ ਜਾ ਸਕਦੀ ਹੈ ਅਤੇ ਨਾ ਹੀ ਇਸਦਾ ਸਿਰਜਨ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।

ਨੋਟ : ਇੱਕ ਤਾਪਗਤਿਕੀ ਗੁਣ (ਜਿਵੇਂ-ਊਰਜਾ) ਅਤੇ ਇੱਕ ਯੰਤਰਿਕ ਗੁਣ (ਜਿਵੇਂ-ਅਇਤਨ) ਵਿੱਚ ਅੰਤਰ ਹੁੰਦਾ ਹੈ। ਅਸੀਂ ਕਿਸੇ ਵਿਸ਼ੇਸ਼ ਅਵਸਥਾ ਵਿੱਚ ਆਇਤਨ ਦਾ ਤਾਂ ਨਿਰਪੇਖ (absolute) ਅਨ ਨਿਸ਼ਚਿਤ ਕਰ ਸਕਦੇ ਹਾਂ, ਪਰੰਤੂ ਅੰਦਰੂਨੀ ਊਰਜਾ ਦਾ ਨਿਰਪੇਖ ਮਾਨ ਨਿਸ਼ਚਿਤ ਨਹੀਂ ਕਰ ਸਕਦੇ, ਭਾਵੇਂ ਅੰਦਰੂਨੀ ਊਰਜਾ ਵਿੱਚ ਪਰਿਵਰਤਨ ΔU ਗਿਆਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।

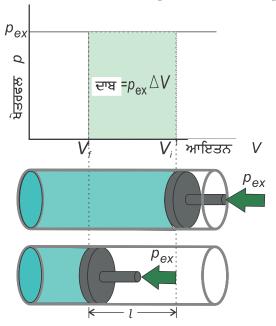
ਉਦਾਹਰਣ 6.1

ਇੱਕ ਸਿਸਟਮ ਦੀ ਅੰਦਰੂਨੀ ਊਰਜਾ ਵਿੱਚ ਪਰਿਵਰਤਨ ਦੱਸੋ, ਜੇ —

- (i) ਸਿਸਟਮ ਦੁਆਰਾ ਆਲੇ−ਦੁਆਲੇ ਤੋਂ ਤਾਪ ਸੋਖਿਤ ਨਾ ਹੋਵੇ, ਪਰੰਤੂ ਸਿਸਟਮ ਉੱਤੇ (w) ਕਾਰਜ ਕੀਤਾ ਜਾਵੇ। ਸਿਸਟਮ ਦੀਆਂ ਦੀਵਾਰਾਂ ਕਿਸ ਤਰ੍ਹਾਂ ਦੀਆਂ ਹੋਣਗੀਆਂ ?
- (ii) ਸਿਸਟਮ ਉੱਤੇ ਕੋਈ ਕਾਰਜ ਨਾ ਕੀਤਾ ਜਾਵੇ, ਪਰੰਤੂ ਤਾਪ ਦੀ ਮਾਤਰਾ q ਸਿਸਟਮ ਤੋਂ ਆਲੇ− ਦੁਆਲੇ ਨੂੰ ਦੇ ਦਿੱਤੀ ਜਾਵੇ। ਸਿਸਟਮ ਦੀਆਂ ਦੀਵਾਰਾਂ ਕਿਸ ਕਿਸਮ ਦੀਆਂ ਹੋਣਗੀਆਂ ?
- (iii) ਸਿਸਟਮ ਦੁਆਰਾ w ਮਾਤਰਾ ਦਾ ਕਾਰਜ ਕੀਤਾ ਜਾਵੇ ਅਤੇ q ਮਾਤਰਾ ਦਾ ਤਾਪ ਸਿਸਟਮ ਨੂੰ ਦਿੱਤਾ ਜਾਵੇ। ਇਹ ਕਿਸ ਕਿਸਮ ਦਾ ਸਿਸਟਮ ਹੋਵੇਗਾ ?

ਹੱਲ

- (i) $\Delta U = W_{ad}$, ਦੀਵਾਰਾਂ ਗਰਮੀ ਰੋਕ ਹੋਣਗੀਆਂ।
- (ii) $\Delta U = -q$, ਦੀਵਾਰਾਂ ਤਾਪ ਸੁਚਾਲਕ ਹੋਣਗੀਆਂ।
- (iii) $\Delta U = q w$, ਇਹ ਬੰਦ ਸਿਸਟਮ ਹੈ।


6.2 ਵਰਤੋਂ

ਕਈ ਰਸਾਇਣਿਕ ਪ੍ਰਤੀਕਿਰਿਆਵਾਂ ਵਿੱਚ ਗੈਸਾਂ ਉਪਜਦੀਆਂ ਹਨ, ਜੋ ਯੰਤਰਿਕ ਕਾਰਜ ਕਰਨ ਜਾਂ ਤਾਪ ਪੈਦਾ ਕਰਨ ਵਿੱਚ ਸਮਰੱਥ ਹੁੰਦੀਆਂ ਹਨ। ਇਨ੍ਹਾਂ ਪਰਿਵਰਤਨਾਂ ਦੇ ਪਰਿਮਾਣ ਦੀ ਗਣਨਾ ਅਤੇ ਇਨ੍ਹਾਂ ਨੂੰ ਅੰਦਰੂਨੀ ਊਰਜਾ-ਪਰਿਵਰਤਨਾਂ ਦੇ ਨਾਲ ਸੰਬੰਧ ਕਰਨਾ ਮਹੱਤਵਪੂਰਣ ਹੈ। ਵੇਖਦੇ ਹਾਂ ਇਹ ਕਿਵੇਂ ਹੰਦਾ ਹੈ।

6.2.1 ਕਾਰਜ

ਸਭ ਤੋਂ ਪਹਿਲਾਂ ਇਕ ਸਿਸਟਮ ਦੁਆਰਾ ਕੀਤੇ ਗਏ ਕਾਰਜ ਦੀ ਪ੍ਕਿਰਤੀ ਉੱਤੇ ਅਸੀਂ ਪ੍ਕਾਸ਼ ਪਾਉਂਦੇ ਹਾਂ।ਅਸੀਂ ਸਿਰਫ ਯੰਤਰਿਕ ਕਾਰਜ,ਅਰਥਾਤ ਦਾਬ–ਆਇਤਨ ਕਾਰਜ ਉੱਤੇ ਵਿਚਾਰ ਕਰਾਂਗੇ।

ਦਾਬ–ਆਇਤਨ ਕਾਰਜ ਨੂੰ ਸਮਝਣ ਦੇ ਲਈ ਅਸੀਂ ਰਗੜ ਰਹਿਤ ਪਿਸਟਨ ਲੱਗੇ ਸਿਲੰਡਰ ਉੱਤੇ ਵਿਚਾਰ ਕਰਦੇ ਹਾਂ, ਜਿਸ ਵਿੱਚ ਇੱਕ ਮੋਲ ਗੈਸ ਭਰੀ ਹੋਈ ਹੈ।ਗੈਸ ਦਾ ਕੁੱਲ ਆਇਤਨ V_i ਅਤੇ ਸਿਲੰਡਰ ਵਿੱਚ ਗੈਸ ਦਾ ਦਾਬ p ਹੈ।ਜੇ ਬਾਹਰੀ ਦਾਬ $p_{\rm ex}$

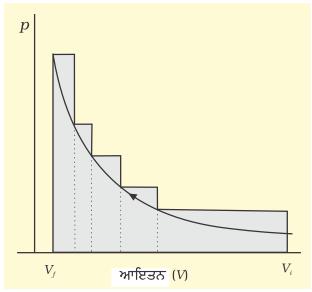
ਇੰਜ ਪਿਸਟਨ ਉੱਤੇ ਬਲ = $p_{\rm ex}$. A

ਚਿੱਤਰ 6.5(a) ਸਿਲੰਡਰ ਵਿੱਚ ਲਈ ਅਦਰਸ਼ ਗੈਸ ਉੱਤੇ ਇੱਕ ਸਟੈੱਪ ਵਿੱਚ ਸਥਿਰ ਦਾਬ ਦੁਆਰਾ $p_{\rm ex}$ ਕੀਤਾ ਗਿਆ ਨਪੀੜਨ ਕਾਰਜ ਸ਼ੇਡਿਡ ਖੇਤਰ ਦੁਆਰਾ ਦਰਸਾਇਆ ਗਿਆ ਹੈ।

ਹੈ, ਜੋ p ਤੋਂ ਵੱਧ ਹੋਵੇ, ਤਾਂ ਪਿਸਟਨ ਅੰਦਰ ਦੇ ਵੱਲ ਤਦ ਤਕ ਗਤੀ ਕਰੇਗਾ, ਜਦ ਤੱਕ ਅੰਦਰੂਨੀ ਦਾਬ $p_{\rm ex}$ ਦੇ ਬਰਾਬਰ ਹੋ ਜਾਵੇ। ਮੰਨ ਲਓ ਕਿ ਇਹ ਪਰਿਵਰਤਨ ਇੱਕ ਸਟੈੱਪ ਵਿੱਚ ਹੁੰਦਾ ਹੈ ਅਤੇ ਅੰਤਿਮ ਆਇਤਨ V_f ਹੈ। ਮੰਨ ਲਓ ਕਿ ਇਸ ਨਪੀੜਨ ਵਿੱਚ ਪਿਸਟਨ l ਦੂਰੀ ਹੈ ਕਰਦਾ ਹੈ ਅਤੇ ਪਿਸਟਨ ਦਾ ਪਰਿਖੇਤਰ ਖੇਤਰਫਲ Λ ਹੈ [ਚਿੱਤਰ $6.5(\theta)$]।

ਤਾਂ ਆਇਤਨ ਵਿੱਚ ਪਰਿਵਰਤਨ = $l \times A = \Delta V = (V_f - V_i)$

ਅਸੀਂ ਇਹ ਵੀ ਜਾਣਦੇ ਹਾਂ ਕਿ ਦਾਬ =
$$\frac{ਬਲ}{ਖੇਤਰਫਲ}$$

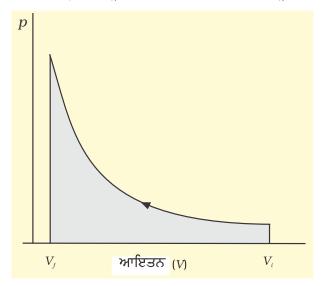

ਜੇ ਪਿਸਟਨ ਚਲਾਉਣ ਨਾਲ ਸਿਸਟਮ ਉੱਤੇ ਕੀਤਾ ਗਿਆ ਕਾਰਜ w ਹੋਵੇ, ਤਾਂ

$$\mathbf{w}$$
 = ਬਲ $imes$ ਵਿਸਥਾਪਨ = p_{ex} . A $.l$

$$= p_{ex} \cdot (-\Delta V) = -p_{ex} \Delta V = -p_{ex} (V_f - V_i)$$
 (6.2)

ਇੱਥੇ ਰਿਣਾਤਮਕ ਚਿਨ੍ਹ ਦੇਣਾ ਇਸ ਲਈ ਜਰੂਰੀ ਹੈ ਕਿ ਪਰੰਪਰਾ (convention) ਅਨੁਸਾਰ ਨਪੀੜਨ ਵਿੱਚ ਸਿਸਟਮ ਉੱਤੇ ਕਾਰਜ ਹੋ ਰਿਹਾ ਹੈ, ਜੋ ਧਨਾਤਮਕ ਹੋਵੇਗਾ। ਇੱਥੇ $(V_f - V_i)$ ਦਾ ਮਾਨ ਰਿਣਾਤਮਕ ਹੋਵੇਗਾ। ਜਦੋਂ ਰਿਣਾਤਮਕ ਦਾ ਰਿਣਾਤਮਕ ਦਾ ਗੁਣਾ ਹੋਵੇਗਾ, ਤਾਂ \mathbf{w} ਦਾ ਮਾਨ ਧਨਾਤਮਕ ਹੋ ਜਾਵੇਗਾ।

ਜੇ ਨਪੀੜਨ ਦੇ ਹਰ ਇੱਕ ਸਟੈੱਪ ਉੱਤੇ ਦਾਬ ਸਥਿਰ ਨਾ ਹੋਵੇ ਅਤੇ ਕਈ ਸੀਮਿਤ ਸਟੈੱਪਾਂ ਵਿੱਚ ਬਦਲਦਾ ਰਹੇ ਤਾਂ ਕੁੱਲ ਕਾਰਜ ਸਾਰੇ ਸਟੈੱਪਾਂ ਵਿੱਚ ਹੋਏ ਕਾਰਜਾਂ ਦਾ ਜੋੜ ਹੋਵੇਗਾ ਅਤੇ $-\sum p\Delta V$ [ਚਿੱਤਰ 6.5 (ਅ)]


ਚਿੱਤਰ 6.5 (ਅ) ਸੇਡਿਡ ਖੇਤਰ ਸੀਮਿਤ ਸਟੈੱਪਾਂ ਵਿੱਚ ਬਦਲਦੇ ਹੋਏ ਸਮਥਿਰ ਦਾਬ ਉੱਤੇ ਸ਼ੁਰੂ ਦੇ ਆਇਤਨ ਤੋਂ ਅੰਤਿਮ ਆਇਤਨ ਤੱਕ ਨਪੀੜਨ ਵਿੱਚ ਕੀਤਾ ਗਿਆ ਕਾਰਜ ਦਰਸਾਉਂਦਾ ਹੈ।

ਜੇ ਦਾਬ ਸਥਿਰ ਨਾ ਹੋਵੇ ਅਤੇ ਇਸ ਤਰ੍ਹਾਂ ਬਦਲਦਾ ਹੋਵੇ ਕਿ ਇਹ ਹਮੇਸ਼ਾ ਹੀ ਗੈਸ ਦੇ ਦਾਬ ਤੋਂ ਅਨੰਤ ਸੂਖਮ ਜਿਆਦਾ ਹੋਵੇ, ਤਾਂ ਨਪੀੜਨ ਦੇ ਹਰ ਇੱਕ ਸਟੈੱਪ ਵਿੱਚ ਆਇਤਨ ਅਨੰਤ ਸੂਖਮ ਮਾਤਰਾ dV ਘਟੇਗਾ। ਇਸ ਸਥਿਤੀ ਵਿੱਚ ਗੈਸ ਦੁਆਰਾ ਕੀਤੇ ਗਏ ਕਾਰਜ ਦੀ ਗਣਨਾਂ ਅਸੀਂ ਹੇਠ ਲਿਖੇ ਸਬੰਧ ਤੋਂ ਗਿਆਤ ਕਰ ਸਕਦੇ ਹਾਂ -

$$\mathbf{w} = -\int_{V_i}^{V_f} p_{ex} dV \tag{6.3}$$

ਨਪੀੜਨ ਵਿੱਚ p_{ex} ਹਰ ਇੱਕ ਸਟੈੱਪ ਉੱਤੇ $(p_{in}+dp)$ ਦੇ ਬਰਾਬਰ ਹੋਵੇਗਾ [ਚਿੱਤਰ 6.5(ੲ)] ਸਮਾਨ ਪਰਿਸਥਿਤੀਆਂ ਵਿੱਚ ਪ੍ਰਸੱਰਣ ਵਿੱਚ ਬਾਹਰੀ ਦਾਬ ਅੰਦਰੂਨੀ ਦਾਬ ਨਾਲੋਂ ਹਮੇਸ਼ਾਂ ਘੱਟ ਹੋਵੇਗਾ ਅਰਥਾਤ $p_{ex}=(p_{in}-dp)$ । ਵਿਆਪਕ ਰੂਪ ਵਿੱਚ ਅਸੀਂ ਲਿਖ ਸਕਦੇ ਹਾਂ ਕਿ $p_{ex}=(p_{in}\pm\ dp)$ ਅਜਿਹੇ ਪ੍ਰਕਰਮ 'ਉਲਟ ਕਰਮਣੀ ਪ੍ਰਕਰਮ' ਅਖਵਾਉਂਦੇ ਹਨ।

ਇੱਕ ਪ੍ਰਕਰਮ ਜਾਂ ਪਰਿਵਰਤਨ ਤਾਂ 'ਉਲਟ ਕ੍ਰਮਣੀ ਪ੍ਰਕਰਮ' ਅਖਵਾਉਂਦਾ ਹੈ ਜਦੋਂ ਇਸਨੂੰ ਕਿਸੇ ਵੀ ਛਿਣ ਅਨੰਤ ਸੂਖਮ ਪਰਿਵਰਤਨ ਰਾਹੀਂ ਉਲਟਕ੍ਰਮਿਤ (reversed) ਕੀਤਾ ਜਾ ਸਕੇ। ਇੱਕ ਉਲਟਕ੍ਰਮਣੀ ਪ੍ਰਕਰਮ ਕਈ ਸੰਤੁਲਨ ਅਵਸਥਾਵਾਂ ਵਿੱਚ ਅਨੰਤ ਸੂਖਮ ਚਾਲ ਨਾਲ ਇਸ ਤਰ੍ਹਾਂ ਅੱਗੇ ਵਧਦਾ ਹੈ ਕਿ ਸਿਸਟਮ ਅਤੇ ਆਲੇ-ਦੁਆਲੇ ਵਿੱਚ ਹਮੇਸ਼ਾ ਲਗਪਗ ਸੰਤੁਲਨ ਰਹਿੰਦਾ ਹੈ। ਉਲੱਟਕ੍ਰਮਣੀ ਪ੍ਰਕਰਮ ਦੇ ਇਲਾਵਾ ਹੋਰ ਸਾਰੇ ਪ੍ਰਕਰਮਾਂ

ਚਿੱਤਰ 6.5 (ੲ) pV ਵਕ੍ਰ ਜਦੋਂ ਸ਼ੁਰੂ ਦੇ ਆਇਤਨ V੍ਰਤੋਂ V੍ਰ ਤੱਕ ਪਹੁੰਚਣ ਦੇ ਲਈ ਉਲਟ ਕ੍ਰਮਣੀ ਪਰਿਸਥਿਤੀਆਂ ਵਿੱਚ ਲਗਾਤਾਰ ਬਦਲਦੇ ਹੋਏ ਅਸਥਿਰ ਦਾਬ ਉੱਤੇ ਅਨੰਤ ਸਟੈਪਾਂ ਵਿੱਚ ਕੀਤਾ ਗਿਆ ਕਾਰਜ ਸ਼ੇਡਿਡ ਖੇਤਰ ਵਿੱਚ ਦਰਸਾਇਆ ਗਿਆ ਹੈ।

ਨੂੰ ਅਪਰਤਵਾਂ (irreversible) ਪ੍ਰਕਰਮ ਕਹਿੰਦੇ ਹਨ। ਰਸਾਇਣ ਵਿਗਿਆਨ ਵਿੱਚ ਬਹੁਤ ਸਾਰੀਆਂ ਅਜਿਹੀਆਂ ਸੱਮਸਿਆਵਾਂ ਆਉਂਦੀਆਂ ਹਨ ਜਿਨ੍ਹਾਂ ਨੂੰ ਹੱਲ ਕਰਨ ਦੇ ਲਈ, ਕਾਰਜ ਟਰਮ ਅਤੇ ਸਿਸਟਮ ਦੇ ਅੰਦਰੂਨੀ ਦਾਬ ਦੇ ਆਪਸੀ ਸਬੰਧ ਦੀ ਜਰੂਰਤ ਪੈਂਦੀ ਹੈ।

ਅਸੀਂ ਸਮੀਕਰਣ 6.3 ਨੂੰ ਹੇਠ ਲਿਖੇ ਪ੍ਕਾਰ ਨਾਲ ਲਿਖ ਕੇ ਉਲਟਕ੍ਰਮਣੀ ਪਰਿਸਥਿਤੀਆਂ ਵਿੱਚ ਕਾਰਜ ਨੂੰ ਅੰਦਰੂਨੀ ਦਾਬ ਨਾਲ ਸਬੰਧ ਕਰ ਸਕਦੇ ਹਾਂ —

$$\mathbf{w}_{rev} = -\int_{V_i}^{V_f} p_{ex} dV = -\int_{V_i}^{V_f} (p_{in} \pm dp) dV$$

(ਕਿਉਂਕਿ $dp \times dV$ ਮਾਨ ਨਾ ਮਾਤਰ ਹੈ)

$$\mathbf{w}_{rev} = -\int_{V_t}^{V_f} p_{in} dV \tag{6.4}$$

ਹੁਣ ਗੈਸ ਦੇ ਦਾਬ P_m ਨੂੰ ਅਦਰਸ਼ ਗੈਸ ਸਮੀਕਰਣ ਦੁਆਰਾ ਇਸ ਦੇ ਅਇਤਨ ਦੀ ਟਰਮ ਵਿੱਚ ਵਿਅਕਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਕਿਸੇ ਅਦਰਸ਼ ਗੈਸ ਦੇ ਸਮੋਲ ਦੇ ਲਈ (pV=nRT)

$$\Rightarrow p = \frac{nRT}{V}$$

ਇਸ ਲਈ ਇਕ ਸਥਿਰ ਤਾਪਮਾਨ (ਸਮਤਾਪੀ ਪ੍ਰਕਰਮ) ਉੱਤੇ

$$\mathbf{w}_{\text{rev}} = -\int_{V_i}^{V_f} nRT \frac{dV}{V} = -nRT \ln \frac{V_f}{V_i}$$
$$= -2.303 \ nRT \log \tag{6.5}$$

ਮੁਕਤ ਪਸਰਨ : ਗੈਸ ਦਾ ਸਪੇਸ ਵਿੱਚ ਪਸਰਨ (p_{ex} = 0) ਮੁਕਤ ਪਸਰਨ ਅਖਵਾਉਂਦਾ ਹੈ। ਅਦਰਸ਼ ਗੈਸਾਂ ਦੇ ਮੁਕਤ ਪਸਰਨ ਵਿੱਚ ਕੋਈ ਕਾਰਜ ਨਹੀਂ ਹੁੰਦਾ ਭਾਵੇਂ ਹੀ ਕਿਰਿਆ ਪਰਤਵੀ ਹੋਵੇ ਜਾਂ ਅ–ਪਰਤਵੀਂ (ਸਮੀਕਰਣ 6.2 ਅਤੇ 6.3)।

ਹੁਣ ਅਸੀਂ ਸਮੀਕਰਣ 6.1 ਨੂੰ ਭਿੰਨ ਭਿੰਨ ਪ੍ਕਰਮ ਦੇ ਅਨੁਸਾਰ ਕਈ ਤਰ੍ਹਾਂ ਲਿਖ ਸਕਦੇ ਹਾਂ—

 $\mathbf{w} = -~p_{ex} \! \Delta V$ ਸਮੀਕਰਣ 6.2~ ਨੂੰ ਸਮੀਕਰਣ 6.1~ ਵਿੱਚ ਰੱਖਣ ਨਾਲ

$$\Delta U = q - p_{ex} \Delta V$$

ਜੇ ਪ੍ਕਰਮ ਸਥਿਰ ਆਇਤਨ ਉੱਤੇ ਹੁੰਦਾ ਹੈ ($\Delta V = 0$), ਤਾਂ $\Delta U = q_V$ ਵਿੱਚ

ਹੇਠ ਲਿਖਿਤ (subscript v) ਦਰਸਾਉਂਦਾ ਹੈ ਕਿ ਤਾਪ ਸਥਿਰ ਆਇਤਨ ਤੇ ਦਿੱਤਾ ਗਿਆ ਹੈ। ਅਦਰਸ਼ ਗੈਸ ਦਾ ਮੁਕਤ ਅਤੇ ਸਮਤਾਪੀ ਪਸਰਨ

ਅਦਰਸ਼ ਗੈਸ ਦਾ ਮੁਕਤ ਅਤੇ ਸਮਤਾਪੀ ਪਸਰਨ

ਇੱਕ ਅਦਰਸ਼ ਗੈਸ ਦਾ ਮੁਕਤ ਅਤੇ ਸਮਤਾਪੀ (T= ਸਥਿਰ) ਪਸਰਨ ਵਿੱਚ $\mathbf{w}=$ 0 ਕਿਉਂਕਿ $p_{ex}=$ 0 ਹੈ। ਜੂਲ ਦੇ ਪ੍ਯੋਗਾਂ ਦੁਆਰਾ ਨਿਰਧਾਰਿਤ ਕੀਤਾ ਕਿ q= 0 ਹੈ, ਇਸ ਲਈ $\Delta U=$ 0 ਹੋਵੇਗਾ।

ਸਮੀਕਰਣ $6.1~\Delta U = q + w~$ ਨੂੰ ਸਮਤਾਪੀ ਪਰਤਵੇਂ ਅਤੇ ਅਪਰਵਤਵੇਂ ਪ੍ਕਰਮਾਂ ਦੇ ਲਈ ਇਸ ਤਰ੍ਹਾਂ ਵਿਅਕਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ -

1. ਸਮਤਾਪੀ ਅਪਰਤਵੇਂ ਪ੍ਰਕਰਮ ਦੇ ਲਈ

$$q = -\mathbf{w} = p_{ex}(V_f - V_i)$$

2. ਸਮਤਾਪੀ ਪਰਤਵੇਂ ਪ੍ਰਕਰਮ ਦੇ ਲਈ

$$q = -w = nRT \ln \frac{V_f}{V_i}$$

= 2.303 nRT log
$$\frac{V_f}{V_i}$$

3. ਗਰਮੀ ਰੋਕ ਪ੍ਕਰਮ ਦੇ ਲਈ, q = 0, ΔU = \mathbf{w}_{ad}

ਉਦਾਹਰਣ 6.2

10 atm ਦਾਬ ਉੱਤੇ ਕਿਸੇ ਅਦਰਸ਼ ਗੈਸ ਦੇ ਦੋ ਲਿਟਰ ਸਮਤਾਪੀ ਰੂਪ ਤੋਂ ਸਪੇਸ ਵਿਚ ਤਦ ਤੱਕ ਪਸਰਿਤ ਹੁੰਦੇ ਹਨ, ਜਦ ਤੱਕ ਇਸਦਾ ਕੁੱਲ ਆਇਤਨ 10 ਲਿਟਰ ਨਾ ਹੋ ਜਾਵੇ। ਇਸ ਪਸਰਨ ਵਿੱਚ ਕਿੰਨੀ ਊਰਜਾ ਸੋਖਿਤ ਹੁੰਦਾ ਹੈ ਅਤੇ ਕਿੰਨਾ ਕਾਰਜ ਜਾਂਦਾ ਹੈ ?

ਹੱਲ

ਅਸੀਂ ਜਾਣਦੇ ਹਾਂ ਕਿ q = - w = p_{ex} (10 - 2) = 0(8) = 0 ਕੋਈ ਕਾਰਜ ਨਹੀਂ ਹੁੰਦਾ ਹੈ ਅਤੇ ਕੋਈ ਊਰਜਾ ਸੋਖਿਤ ਨਹੀਂ ਹੰਦੀ ਹੈ।

ਉਦਾਹਰਣ 6.3

ਜੇ ਇਸ ਪਸਰਨ ਵਿੱਚ ਸਥਿਰ ਬਾਹਰੀ ਦਾਬ 1 atm ਹੋਵੇ, ਤਾਂ ਕੀ ਹੋਵੇਗਾ ?

ਹੱਲ

ਅਸੀਂ ਜਾਣਦੇ ਹਾਂ ਕਿ $q = -w = p_{ex}(8) = 8$ L-atm **ਉਦਾਹਰਣ 6.4**

ਜੇ ਇਹੀ ਪਸਰਨ ਪਰਤਵੇਂ ਰੂਪ ਵਿੱਚ ਹੋਵੇ ਅਤੇ ਆਇਤਨ 10 L ਹੋਵੇ, ਤਾਂ ਕੀ ਹੋਵੇਗਾ ?

ਹੱਲ

ਅਸੀਂ ਜਾਣਦੇ ਹਾਂ ਕਿ q = - w = 2.303×10

$$log \frac{10}{2}$$

= 16.1 litre-atm

6.2.2 ਐਨਥੈਲਪੀ Enthalpy, (H)

(ੳ) ਇੱਕ ਲਾਭਦਾਇਕ ਨਵਾਂ ਅਵਸਥਾ - ਫਲਨਾ

ਅਸੀਂ ਜਾਣਦੇ ਹਾਂ ਕਿ ਸਥਿਰ ਆਇਤਨ ਉੱਤੇ ਸੋਖਿਆ ਤਾਪ ਅੰਦਰੂਨੀ ਊਰਜਾ ਵਿੱਚ ਪਰਿਵਰਤਨ ਦੇ ਬਰਾਬਰ, ਅਰਥਾਤ $\Delta U = q_{_{V}}$ ਹੁੰਦੀ ਹੈ, ਪਰੰਤੂ ਵਧੇਰੇ ਰਸਾਇਣਿਕ ਪ੍ਤੀ ਕਿਰਿਆਵਾਂ ਸਥਿਰ ਆਇਤਨ ਉੱਤੇ ਨਾ ਹੋਕੇ ਫਲਾਸਕ, ਪਰਖਨਲੀ ਆਦਿ ਵਿੱਚ ਸਥਿਰ ਵਾਯੂਮੰਡਲੀ ਦਾਬ ਉੱਤੇ ਹੁੰਦੀਆਂ ਹਨ। ਇਨ੍ਹਾਂ ਪਰਿਸਥਿਤੀਆਂ ਦੇ ਲਈ ਸਾਨੂੰ ਇੱਕ ਨਵੇਂ ਅਵਸਥਾ ਫਲਨ ਦੀ ਜ਼ਰੂਰਤ ਹੋਵੇਗੀ।

ਅਸੀਂ ਸਮੀਕਣ 6.1 ਨੂੰ ਸਥਿਰ ਦਾਬ ਉੱਤੇ $\Delta U = q_p - p \Delta V$ ਦੇ ਰੂਪ ਵਿੱਚ ਲਿਖ ਸਕਦੇ ਹਾਂ, ਜਿੱਥੇ q_p ਸਿਸਟਮ ਦੁਆਰਾ ਸੋਖਿਤ ਤਾਪ ਅਤੇ $-p \Delta V$ ਸਿਸਟਮ ਦੁਆਰਾ ਕੀਤਾ ਗਿਆ ਪਸਰਨ–ਕਾਰਜ ਹੈ।

ਸ਼ੁਰੂ ਦੀ ਅਵਸਥਾ ਨੂੰ ਹੇਠ ਲਿਖਿਤ 1 ਅਤੇ ਅੰਤਿਮ ਅਵਸਥਾ ਨੂੰ 2 ਨਾਲ ਦਰਸਾਉਂਦੇ ਹਨ।

ਅਸੀਂ ਉਪਰੋਕਤ ਸਮੀਕਰਣ ਨੂੰ ਇਸ ਤਰ੍ਹਾਂ ਲਿਖ ਸਕਦੇ ਹਾਂ –

$$U_2$$
– U_1 = q_p – p (V_2 – V_1)
ਮੁੜ ਵਿਵਸਥਿਤ ਕਰਨ ਤੇ

$$q_p = (U_2 + pV_2) - (U_1 + pV_1)$$
 (6.6)

ਹੁਣ ਅਸੀਂ ਇੱਕ ਹੋਰ ਤਾਪਗਤਿਕੀ ਫਲਨ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਕਰ ਸਕਦੇ ਹਾਂ, ਜਿਸ ਨੂੰ ਐਨਥੈਲਪੀ (ਗ੍ਰੀਕ ਸ਼ਬਦ ਐਕਥੈਲਪਿਯਨ ਜਿਸ ਦਾ ਅਰਥ 'ਗਰਮ ਕਰਨਾ' ਜਾਂ 'ਅੰਤਰ ਲੁਪਤ ਗਰਮੀ ਹੁੰਦਾ ਹੈ') ਕਹਿੰਦੇ ਹਨ।

$$H = U + pV \tag{6.7}$$

ਇੰਜ ਸਮੀਕਰਣ (6.6) ਹੋ ਜਾਂਦੀ ਹੈ-

$$q_p = H_2 - H_1 = \Delta H$$

ਭਾਵੇਂ q ਇੱਕ ਪਥ ਨਿਰਭਰ ਫਲਨ ਹੈ, ਫਿਰ ਵੀ q_p ਪਥ ਤੋਂ ਸੁਤੰਤਰ ਹੈ। ਸਪਸ਼ਟ ਹੈ H ਇੱਕ ਅਵਸਥਾ ਫਲਨ ਹੈ H, U, p ਅਤੇ V ਦਾ ਫਲਨ ਹੈ। ਇਹ ਸਾਰੇ ਅਵਸਥਾ ਫਲਨ ਹਨ। ਇਸ ਤਰ੍ਹਾਂ ΔH ਪਥ ਸੁਤੰਤਰ ਰਾਸ਼ੀ ਹੈ।

ਸਥਿਰ ਦਾਬ ਉੱਤੇ ਸੀਮਿਤ ਪਰਿਵਰਤਨਾਂ ਦੇ ਲਈ ਸਮੀਕਰਣ 6.7 ਨੂੰ ਲਿਖਿਆ ਜਾ ਸਕਦਾ ਹੈ—

$$\Delta H = \Delta U + \Delta p V$$

ਕਿਉਂਕਿ p ਸਥਿਰ ਹੈ, ਇਸ ਲਈ ਅਸੀਂ ਲਿਖ ਸਕਦੇ ਹਾਂ -

$$\Delta H = \Delta U + p \Delta V \tag{6.8}$$

ਵਰਣਨਯੋਗ ਹੈ ਕਿ ਜਦੋਂ ਸਥਿਰ ਦਾਬ ਉੱਤੇ ਤਾਪ ਸੋਖਿਤ ਹੁੰਦਾ ਹੈ, ਤਾਂ ਅਸਲ ਵਿੱਚ ਅਸੀਂ ਐਨਥੈਲਪੀ ਵਿੱਚ ਪਰਿਵਰਤਨ ਮਾਪ ਰਹੇ ਹੁੰਦੇ ਹਨ।

ਯਾਦ ਰੱਖੋ ਕਿ $\Delta H = q_p$, ਸਥਿਰ ਦਾਬ ਉੱਤੇ ਸੋਖਿਤ ਤਾਪ ਹੈ। ਤਾਪ ਨਿਕਾਸੀ ਪ੍ਰਤੀ ਕਿਰਿਆਵਾਂ ਦੇ ਲਈ ΔH ਰਿਣਾਤਮਕ ਹੁੰਦਾ ਹੈ, ਜਿੱਥੇ ਪ੍ਰਤੀਕਿਰਿਆ ਦੇ ਦੌਰਾਨ ਤਾਪ ਪੈਦਾ ਹੁੰਦਾ ਹੈ ਅਤੇ ਤਾਪਸੋਖੀ ਪ੍ਰਤੀਕਿਰਿਆਵਾਂ ਦੇ ਲਈ ΔH ਧਨਾਤਮਕ ਹੁੰਦਾ ਹੈ, ਜਿੱਥੇ ਆਲੇ-ਦੁਆਲੇ ਤੋਂ ਤਾਪ ਦਾ ਸੋਖਣ ਹੁੰਦਾ ਹੈ।

ਸਥਿਰ ਅਇਤਨ (ΔV = 0) ਉੱਤੇ ΔU = $q_{_V}$ ਇੰਜ ਸਮੀਕਰਣ 6.8 ਹੋ ਜਾਂਦੀ ਹੈ—

$$\Delta H = \Delta U = q_{_{V}}$$

ਉਹ ਸਿਸਟਮ ਜਿਨ੍ਹਾਂ ਵਿੱਚ ਕੇਵਲ ਠੌਸ ਜਾਂ ਦ੍ਵ ਅਵਸਥਾਵਾਂ ਹੁੰਦੀਆਂ ਹਨ ਵਿੱਚ ΔH ਅਤੇ ΔU ਦੇ ਵਿੱਚ ਅੰਤਰ ਸਾਰਥਕ ਨਹੀਂ ਹੁੰਦਾ, ਕਿਉਂਕਿ ਠੌਸ ਅਤੇ ਦ੍ਵਾਂ ਵਿੱਚ ਗਰਮ ਕਰਨ ਨਾਲ ਆਇਤਨ ਵਿੱਚ ਕੋਈ ਵਿਸ਼ੇਸ਼ ਪਰਿਵਰਤਨ ਨਹੀਂ ਹੁੰਦਾ। ਜੇ ਗੈਸੀ ਅਵਸਥਾ ਹੋਵੇ, ਤਾਂ ਇਨ੍ਹਾਂ ਵਿੱਚ ਅੰਤਰ ਸਾਰਥਕ ਹੋ ਜਾਂਦਾ ਹੈ। ਅਸੀਂ ਇੱਕ ਅਜਿਹੀ ਪ੍ਰਤੀ ਕਿਰਿਆ ਉੱਤੇ ਵਿਚਾਰ ਕਰਦੇ ਹਾਂ, ਜਿਸ ਵਿੱਚ ਗੈਸਾਂ ਸ਼ਾਮਿਲ ਹਨ। ਸਥਿਰ ਦਾਬ ਅਤੇ ਤਾਪਮਾਨ ਉੱਤੇ $V_{\rm A}$ ਗੈਸੀ ਪ੍ਰਤੀਕਾਰਕਾਂ ਦਾ ਅਤੇ $V_{\rm B}$ ਗੈਸੀ ਉਪਜਾਂ ਦਾ ਕੁੱਲ ਆਇਤਨ ਹੋਵੇ ਅਤੇ $n_{\rm A}$ ਗੈਸੀ ਪ੍ਰਤੀਕਾਰਕਾਂ ਅਤੇ $n_{\rm B}$ ਗੈਸੀ ਉਪਜਾਂ ਦੇ ਮੋਲਾਂ ਦੀ ਸੰਖਿਆ ਹੋਵੇ ਤਾਂ ਅਦਰਸ਼ ਗੈਸ ਸਮੀਕਰਣ ਅਨੁਸਾਰ—

$$pV_{\rm A}=n_{\rm A}RT$$

ਇਸ ਤਰ੍ਹਾਂ $pV_{\rm B}=n_{\rm B}RT$
ਜਾਂ $pV_{\rm B}-pV_{\rm A}=n_{\rm B}RT-n_{\rm A}RT=(n_{\rm B}-n_{\rm A})RT$ $p\left(V_{\rm B}-V_{\rm A}\right)=(n_{\rm B}-n_{\rm A})RT$ $p\left(\Delta V=\Delta n_{\rm C}RT\right)$ (6.9)

ਇੱਥੇ Δn_g ਗੈਸੀ ਉਪਜਾਂ ਦੇ ਮੋਲਾਂ ਦੀ ਸੰਖਿਆ ਅਤੇ ਗੈਸੀ ਪ੍ਰਤੀਕਾਰਕਾਂ ਦੇ ਮੋਲਾਂ ਦੀ ਸੰਖਿਆ ਦਾ ਅੰਤਰ ਹੈ।

ਸਮੀਕਰਣ 6.9 ਤੋਂ $p \Delta V$ ਦਾ ਅਨ ਸਮੀਕਰਣ 6.8 ਵਿੱਚ ਰੱਖਣ ਨਾਲ

$$\Delta H = \Delta U + \Delta n_a RT \tag{6.10}$$

ਸਮੀਕਰਣ 6.10 ਦੀ ਵਰਤੋਂ ΔH ਤੋਂ ΔU ਜਾਂ ΔU ਤੋਂ ΔH ਦਾ ਮਾਨ ਗਿਆਤ ਕਰਨ ਲਈ ਕੀਤਾ ਜਾਂਦਾ ਹੈ।

ਉਦਾਹਰਣ 6.5

ਜਲਵਾਸ਼ਪ ਨੂੰ ਅਦਰਸ਼ ਗੈਸ ਮੰਨਣ ਉੱਤੇ 100°C ਅਤੇ 1 bar ਦਾਬ ਉੱਤੇ ਇੱਕ ਮੋਲ ਪਾਣੀ ਦੇ ਵਾਸ਼ਪੀਕਰਣ ਵਿੱਚ ਪਰਿਵਰਤਨ ਲਈ ਮੋਲਰ ਐਨਥੈਲਪੀ ਪਰਿਵਰਤਨ 41kJ mol⁻¹ ਵੇਖਿਆ ਗਿਆ ਅੰਦਰੂਨੀ ਊਰਜਾ ਪਰਿਵਰਤਨ ਦੀ ਗਣਨਾ ਕਰੋ, ਜਦ

- (i) 1 mol ਪਾਣੀ ਨੂੰ 1 bar ਦਾਬ ਅਤੇ 100°C ਉੱਤੇ ਵਾਸ਼ਪੀਕਿਤ ਕੀਤਾ ਜਾਵੇ।
- (ii) 1 mol ਪਾਣੀ ਨੂੰ ਬਰਫ ਵਿੱਚ ਪਰਿਵਰਤਿਤ ਕੀਤਾ ਜਾਵੇ।

162

ਹੱਲ

(i) $H_2O(l) \rightarrow H_2O(g)$ ਪਰਿਵਰਤਨ ਦੇ ਲਈ

 $\Delta H = \Delta U + \Delta n_a RT$

ਜਾਂ $\Delta U = \Delta H - \Delta n_q RT$,

ਮਾਨ ਭਰਨ ਨਾਲ

 $\Delta U = 41.00 \text{ kJ mol}^{-1} - 1$ ×8.3 J mol⁻¹K⁻¹×373 K

= $41.00 \text{ kJ mol}^{-1} - 3.096 \text{ kJ mol}^{-1}$ = $37.904 \text{ kJ mol}^{-1}$

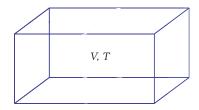
(ii) $H_2O(l) \to H_2O(s)$ ਪਰਿਵਰਤਨ ਦੇ ਲਈ ਆਇਤਨ ਵਿੱਚ ਪਰਿਵਰਤਨ ਅਤਿ ਘੱਟ ਹੈ। ਇਸ ਲਈ

 $p\Delta V = \Delta n_g \mathrm{R}T pprox 0$, ਇਸ ਕੇਸ ਵਿੱਚ

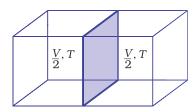
 $\Delta H \cong \Delta U$

ਇਸ ਲਈ so, $\Delta U = 41.00 \text{ kJ mol}^{-1}$

(ਅ)ਵਿਸਤੀਰਣ ਅਤੇ ਗਹਨ ਗੁਣ


ਵਿਸਤੀਰਣ ਅਤੇ ਗਹਨ ਗੁਣਾਂ ਵਿੱਚ ਅੰਤਰ ਕੀਤਾ ਗਿਆ ਹੈ। ਵਿਸਤੀਰਣ ਗੁਣ (extensive property) ਉਹ ਗੁਣ ਹੈ, ਜਿਸਦਾ ਮਾਨ ਸਿਸਟਮ ਵਿੱਚ ਮੌਜੂਦ ਮਾਦੇ ਦੀ ਮਾਤਰਾ/ਮਾਪ (ਸਾਈਜ਼) ਉੱਤੇ ਨਿਰਭਰ ਕਰਦਾ ਹੈ। ਉਦਾਹਰਣ ਵਜੋਂ ਪੁੰਜ, ਆਇਤਨ, ਅੰਦਰੂਨੀ ਊਰਜਾ, ਐਨਥੈਲਪੀ, ਤਾਪ ਧਾਰਣ ਸਮਰੱਥਾ ਆਦਿ ਵਿਸਤੀਰਣ ਗਣ ਹਨ।

ਉਹ ਗੁਣ, ਜੋ ਸਿਸਟਮ ਵਿੱਚ ਮੌਜੂਦ ਮਾਦੇ ਦੀ ਮਾਤਰਾ/ ਆਕਾਰ (ਸਾਈਜ਼) ਉੱਤੇ ਨਿਰਭਰ ਨਹੀਂ ਕਰਦੇ ਹਨ, ਗੁਣ (intensive properties) ਅਖਵਾਉਂਦੇ ਹਨ।ਉਦਾਹਰਣ ਵਜੋਂ ਤਾਪਮਾਨ, ਘਣਤਾ, ਦਾਬ ਆਦਿ ਗਹਨ ਗੁਣ ਹਨ। ਮੌਲਰ ਗੁਣ $\chi_{\rm m}$ ਕਿਸੇ ਸਿਸਟਮ ਦੇ ਇੱਕ ਮੌਲ ਦੇ ਗੁਣ ਦੇ ਮਾਨ ਦੇ


ਬਰਾਬਰ ਹੁੰਦਾ ਹੈ। ਜੇ ਮਾਦੇ ਦੀ ਮਾਤਰਾ ਮੋਲ ਹੋਵੇ ਤਾਂ $\chi_{\rm m}=\frac{\chi}{n}$ ਜੋ ਪੁੰਜ ਦੀ ਮਾਤਰਾ ਤੋਂ ਸੁਤੰਤਰ ਹੈ। ਹੋਰ ਉਦਾਹਰਣ ਮੋਲਰ ਆਇਤਨ $V_{\rm m}$ ਅਤੇ ਮੋਲਰ ਤਾਪ ਸੋਖਣ ਸਮਰਥਾ $C_{\rm m}$ ਹੈ। ਵਿਸਤੀਰਣ ਅਤੇ ਗਹਨ ਗੁਣਾਂ ਵਿੱਚ ਅੰਤਰ ਅਸੀਂ ਇੱਕ ਗੈਸ ਨੂੰ ਆਇਤਨ V ਦੇ ਬਰਾਬਰ ਵਿੱਚ T ਤਾਪਮਾਨ ਉੱਤੇ ਲੈ ਕੇ ਕਰ ਸਕਦੇ ਹਾਂ [ਚਿੱਤਰ 6.6(ੳ)] ਹੁਣ ਵਿਭਾਜਕ ਦੇ ਦੁਆਰਾ ਆਇਤਨ ਅੱਧਾ ਕਰ ਦਿੱਤਾ ਜਾਵੇ [ਚਿੱਤਰ 6.6 (ਅ)] ਜਿਸ

ਨਾਲ ਹੁਣ ਆਇਤਨ $\frac{V}{2}$ ਹੋ ਜਾਂਦਾ ਹੈ ਪਰੰਤੂ ਤਾਪਮਾਨ ਸਮਾਨ

ਹੀ ਰਹਿੰਦਾ ਹੈ। ਇੰਜ ਸਪਸ਼ਟ ਹੈ ਕਿ ਆਇਤਨ ਵਿਸਤੀਰਣ ਗੁਣ ਹੈ ਜਦ ਕਿ ਤਾਪਮਾਨ ਸਹਨ ਗੁਣ ਹੈ।

ਚਿੱਤਰ 6.6 (ੳ) ਅਇਤਨ V ਅਤੇ ਤਾਪਮਾਨ T ਉੱਤੇ ਇੱਕ ਗੈਸ

ਚਿੱਤਰ 6.6 (ਅ) ਵਿਭਾਜਕ ਦੇ ਦੁਆਰਾ ਆਇਤਨ ਦਾ ਅੱਧਾ ਹੋਣਾ

(ੲ) ਤਾਪ-ਧਾਰਣ ਸਮਰੱਥਾ

ਇਸ ਉਪਭਾਗ ਵਿੱਚ ਅਸੀਂ ਵੇਖਦੇ ਹਾਂ ਕਿ ਸਿਸਟਮ ਨੂੰ ਦਿੱਤਾ ਲਿਆ ਤਾਪ ਕਿਵੇਂ ਮਾਪਿਆ ਜਾਂਦਾ ਹੈ। ਜੇ ਸਿਸਟਮ ਦੁਆਰਾ ਤਾਪ ਗ੍ਰਹਿਣ ਕੀਤਾ ਜਾਵੇ, ਤਾਂ ਉਹ ਤਾਪਮਾਨ ਵਿੱਚ ਵਾਧੇ ਦੇ ਰਪ ਵਿੱਚ ਪਗਟ ਹੈਦਾ ਹੈ।

ਤਾਪਮਾਨ ਵਿੱਚ ਵਾਧਾ ਦਿੱਤੇ ਤਾਪ ਦੇ ਸਮਾਨ ਅਨੁਪਾਤੀ ਹੈਦਾ ਹੈ

$$q = ਗੁਣਾਂਕ $\times \Delta T$$$

ਗੁਣਾਂਕ ਦਾ ਮਾਨ ਸਿਸਟਮ ਦੇ ਆਕਾਰ, ਬਣਤਰ ਅਤੇ ਪ੍ਰਕ੍ਰਿਤੀ ਉੱਤੇ ਨਿਰਭਰ ਕਰਦਾ ਹੈ। ਇਸਨੂੰ ਅਸੀਂ ਇਸ ਤਰ੍ਹਾਂ ਵੀ ਲਿਖ ਸਕਦੇ ਹਾਂ —

$$q = C \Delta T$$

ਇੱਥੇ ਗੁਣਾਂਕ C ਨੂੰ 'ਤਾਪ ਧਾਰਣ ਸਮਰੱਥਾ' ਕਹਿੰਦੇ ਹਨ। ਇਸ ਤਰ੍ਹਾਂ ਤਾਪ ਧਾਰਣ ਸਮਰੱਥਾ ਪਤਾ ਹੋਣ ਤੇ ਅਸੀਂ ਤਾਪਮਾਨ ਵਿੱਚ ਵਾਧਾ ਨਾਪ ਦੇ ਦਿੱਤਾ ਤਾਪ ਗਿਆਨ ਕਰ ਸਕਦੇ ਹਾਂ।

ਜੇ C ਜਿਆਦਾ ਹੈ, ਤਾਂ ਤਾਪ ਨਾਲ ਤਾਪਮਾਨ ਵਾਧਾ ਘੱਟ ਹੁੰਦਾ ਹੈ, ਪਾਣੀ ਦੀ ਤਾਪ ਧਾਰਣ ਸਮਰਥਾ ਵਧੇਰੇ ਹੈ, ਇਸ ਦਾ ਅਰਥ ਇਹ ਹੈ ਕਿ ਇਸਦਾ ਤਾਪਮਾਨ ਵਧਾਉਣ ਦੇ ਲਈ ਬਹੁਤ ਜਿਆਦਾ ਊਰਜਾ ਚਾਹੀਦੀ ਹੈ।

C ਪਦਾਰਥ ਦੀ ਮਾਤਰਾ ਦੇ ਸਮਾਨ ਅਨੁਪਾਤੀ ਹੁੰਦੀ ਹੈ।

ਕਿਸੇ ਪਦਾਰਥ ਦੀ ਮੋਲਰ ਤਾਪ ਧਾਰਣ ਸਮਰੱਥਾ
$$C_m = \left(\frac{C}{n}\right)$$

ਇਕ ਮੋਲਕੀ ਤਾਪ ਧਾਰਣ ਸਮਰਥਾ ਹੈ। ਇਹ ਤਾਪ ਦੀ ਉਹ ਮਾਤਰਾ ਹੈ, ਜੋ ਇੱਕ ਮੋਲ ਪਦਾਰਥ ਦਾ ਤਾਪਮਾਨ 1° C (ਜਾ ਇੱਕ ਕੈਲਵਿਨ) ਵਧਾਉਣ ਦੇ ਲਈ ਜ਼ਰੂਰੀ ਹੁੰਦੀ ਹੈ। ਵਿਸ਼ਿਸ਼ਤ ਤਾਪ ਜਿਸ ਨੂੰ 'ਵਿਸ਼ਿਸ਼ਟ ਤਾਪ ਧਾਰਨ ਸਮਰਥਾ' ਵੀ ਕਹਿੰਦੇ ਹਨ ਉਹ ਤਾਪ ਹੈ, ਜੋ ਇਕਾਈ ਪੁੰਜ ਦੇ ਕਿਸੇ ਪਦਾਰਥ ਤਾਪਮਾਨ 1° C (ਜਾਂ ਇੱਕ ਕੈਲਵਿਨ) ਵਧਾਉਣ ਦੇ ਲਈ ਲੋੜੀਂਦੀ ਹੁੰਦੀ ਹੈ। ਕਿਸੇ ਪਦਾਰਥ ਦੇ ਵਿਸ਼ਿਸ਼ਟ ਤਾਪ C ਨੂੰ ਅਸੀਂ ਪੁੰਜ ਅ ਅਤੇ ਤਾਪਮਾਨ ਪਰਿਵਰਤਨ ΔT ਨਾਲ ਗੁਣਾਂ ਕਰਦੇ ਹਾਂ, ਅਰਥਾਤ

$$q = c \times m \times \Delta T = C \Delta T \tag{6.11}$$

(ਸ) ਇੱਕ ਅਦਰਸ਼ ਗੈਸ ਦੇ ਲਈ \mathbf{C}_p ਅਤੇ \mathbf{C}_v ਵਿੱਚ ਸਬੰਧ

ਤਾਪ ਸੋਖਣ ਸਮਰੱਥਾ ਨੂੰ ਸਥਿਰ ਆਇਤਨ ਉੱਤੇ C_v ਨਾਲ ਅਤੇ ਸਥਿਰ ਦਾਬ ਉਤੇ C_p ਨਾਲ ਅੰਕਿਤ ਕਰਦੇ ਹਨ। ਹੁਣ ਅਸੀਂ ਦੋਵਾਂ ਵਿੱਚ ਸਬੰਧ ਗਿਆਤ ਕਰਦੇ ਹਾਂ। q ਦੇ ਲਈ ਸਥਿਰ ਆਇਤਨ ਉੱਤੇ ਸਮੀਕਰਣ ਲਿਖ ਸਕਦੇ ਹਾਂ—

We can write equation for heat, q

at constant volume as $q_{V} = C_{V} \Delta T = \Delta U$

ਅਤੇ ਸਥਿਰ ਦਾਬ ਉੱਤੇ
$$q_p$$
= $\ C_p \Delta T = \Delta H$

ਅਦਰਸ਼ ਗੈਸ ਦੇ ਲਈ C_p ਅਤੇ C_V ਦੇ ਵਿੱਚ ਅੰਤਰ ਇਸ ਤਰ੍ਹਾਂ ਗਿਆਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ—

ਇੱਕ ਮੋਲ ਅਦਰਸ਼ ਗੈਸ ਦੇ ਲਈ $\Delta H = \Delta U + \Delta (pV)$

$$= \Delta U + \Delta (RT)$$

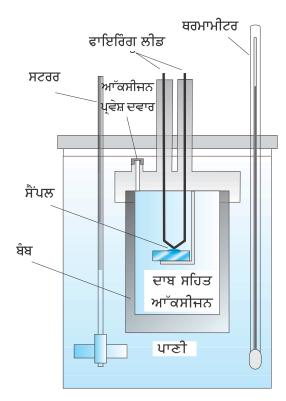
$$= \Delta U + R\Delta T$$

 $\triangle H = \Delta U + R \Delta T$ (6.12) ΔH ਅਤੇ ΔU , ਜਾ ਮਾਨ ਰੱਖਣ ਨਾਲ

$$C_{p}\Delta T = C_{V}\Delta T + R\Delta T$$

$$C_p = C_V + R$$

ਜਾਂ
$$C_p - C_V = R$$
 (6.13)


6.3 ∆U ਅਤੇ ∆H ਦਾ ਅਪਨ ਕੈਲੋਰੀ ਮਿਤੀ

ਰਸਾਇਣਿਕ ਅਤੇ ਭੌਤਿਕ ਪ੍ਕਰਮਾਂ ਨਾਲ ਸਬੰਧਿਤ ਊਰਜਾ ਪਰਿਵਰਤਨ ਨੂੰ ਜਿਸ ਪ੍ਯੋਗਿਕ ਤਕਨੀਕ ਦੁਆਰਾ ਗਿਆਤ ਕਰਦੇ ਹਾਂ ਉਸ ਨੂੰ ਕੈਲੋਰੀਮਿਤੀ (calorimetry) ਕਹਿੰਦੇ ਹਨ। ਕੈਲੋਰੀ ਮਿਤੀ ਵਿੱਚ ਪ੍ਕਰਮ ਇੱਕ ਬਰਤਨ ਵਿੱਚ ਕੀਤਾ ਜਾਂਦਾ ਹੈ ਜਿਸ ਨੂੰ ਕੈਲੋਰੀਮੀਟਰ ਕਹਿੰਦੇ ਹਨ। ਕੈਲੋਰੀਮੀਟਰ ਇੱਕ ਦ੍ਵ ਦੇ ਗਿਆਤ ਆਇਤਨ ਵਿੱਚ ਡੁੱਬਿਆ ਰਹਿੰਦਾ ਹੈ। ਦ੍ਵ ਦੀ ਤਾਪ ਸੋਖਣ ਸਮਰਥਾ ਅਤੇ ਕੈਲੋਰੀਮੀਟਰ ਦੀ ਤਾਪ ਸੋਖਣ ਗਿਆਤ ਹੋਣ ਤੇ ਤਾਪਮਾਨ ਪਰਿਵਰਤਨ ਦੇ ਅਧਾਰ ਉੱਤੇ ਪ੍ਕਰਮ ਵਿੱਚ ਪੈਦਾ ਤਾਪ ਗਿਆਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਮਾਪਨ ਦੋ ਸਥਿਤੀਆਂ ਵਿੱਚ ਕੀਤੇ ਜਾਂਦੇ ਹਨ—

- i) ਸਥਿਰ ਆਇਤਨ ਉੱਤੇ, $q_{_{\scriptscriptstyle V}}$
- ii) ਸਥਿਰ ਦਾਬ ਉੱਤੇ, $\,q_{_{\! D}}$

(a) ∆U ਦਾ ਮਾਪਨ

ਰਸਾਇਣਿਕ ਪ੍ਤੀਕਿਰਿਆਵਾਂ ਦੇ ਲਈ ਸਥਿਰ ਆਇਤਨ ਉਤੇ ਸੋਧਿਤ ਤਾਪ ਦਾ ਮਾਪਨ ਬੰਬ ਕੈਲੋਰੀਮੀਟਰ (bomb calorimeter) ਵਿੱਚ ਕੀਤਾ ਜਾਂਦਾ ਹੈ (ਚਿੱਤਰ 6.7)। ਇੱਥੇ ਇੱਕ ਸਟੀਲ ਦਾ ਬਰਤਨ (ਬੰਬ) ਪਾਣੀ ਵਿੱਚ ਡੋਬਿਆ ਜਾਂਦਾ ਹੈ। ਸਟੀਲ ਬੰਬ ਵਿੱਚ ਅੱਕਸੀਜਨ ਪ੍ਵਾਹਿਤ ਕਰਕੇ ਜਲਨਸ਼ੀਲ ਸੈਂਪਲ (sample) ਨੂੰ ਜਲਾਇਆ ਜਾਂਦਾ ਹੈ। ਪ੍ਤੀਕਿਰਿਆ ਤੋਂ ਪੈਦਾ ਤਾਪ ਪਾਣੀ ਲੈ ਲੈਂਦਾ ਹੈ। ਉਸ ਦੇ ਬਾਅਦ ਪਾਣੀ ਦਾ ਤਾਪਮਾਨ ਗਿਆਤ ਕਰ ਲਿਆ ਜਾਂਦਾ ਹੈ। ਕਿਉਂਕਿ ਬੰਬ

ਚਿੱਤਰ 6.7 ਬੰਬ ਕੈਲੋਰੀਮੀਟਰ

ਕੈਲੋਰਮੀਟਰ ਪੂਰੀ ਤਰ੍ਹਾਂ ਬੰਦ ਹੈ, ਇੰਜ ਇਸ ਦੇ ਆਇਤਨ ਵਿੱਚ ਕੋਈ ਪਰਿਵਰਤਨ ਨਹੀਂ ਹੁੰਦਾ ਅਤੇ ਕੋਈ ਕਾਰਜ ਨਹੀਂ ਕੀਤਾ ਜਾਂਦਾ। ਇੱਥੋਂ ਤੱਕ ਕਿ ਗੈਸਾਂ ਨਾਲ ਸਬੰਧਿਤ ਰਸਾਇਣਿਕ ਪ੍ਰਤੀਕਿਰਿਆਵਾਂ ਵਿੱਚ ਵੀ ਕੋਈ ਕਾਰਜ ਨਹੀਂ ਹੁੰਦਾ ਕਿਉਂਕਿ $\Delta V = 0$ ਹੁੰਦਾ ਹੈ। ਸਮੀਕਰਣ 6.11 ਦਾ ਸਹਾਇਤਾ ਨਾਲ ਕੈਲੋਰੀਮੀਟਰ ਦੀ ਤਾਪ ਸੋਖਣ ਸਮਰਥਾ ਗਿਆਤ ਹੋਣ ਤੇ ਤਾਪਮਾਨ ਪਰਿਵਰਤਨ ਨੂੰ $q_{_{V}}$ ਵਿੱਚ ਪਰਿਵਰਤਿਤ ਕਰ ਲਿਆ ਜਾਂਦਾ ਹੈ।

(ਅ) ∆H ਦਾ ਮਾਪਨ

ਸਥਿਰ ਦਾਬ (ਆਮ ਤੌਰ ਤੇ ਵਾਯੂਮੰਡਲੀ ਦਾਬ) ਉੱਤੇ ਤਾਪ ਪਰਿਵਰਤਨ ਚਿੱਤਰ 6.8 ਵਿੱਚ ਦਰਸਾਏ ਗਏ ਕੈਲੋਰੀਮੀਟਰ ਦੁਆਰਾ ਮਾਪਿਆ ਜਾ ਸਕਦਾ ਹੈ। ਅਸੀਂ ਜਾਣਦੇ ਹਾਂ ਕਿ $\Delta H = q_p$ (ਸਥਿਰ ਦਾਬ ਉੱਤੇ)। ਇੰਜ ਸਥਿਰ ਦਾਬ ਉੱਤੇ ਪੈਦਾ ਜਾਂ ਸੋਖਿਆ ਤਾਪ q_p ਪ੍ਰਤੀ ਕਿਰਿਆ ਤਾਪ ਜਾਂ ਪ੍ਰਤੀਕਿਰਿਆ ਐਨਥੈਲਪੀ ΔH ਅਖਵਾਉਂਦੀ ਹੈ।

ਤਾਪ ਨਿਕਾਸੀ ਪ੍ਰਤੀ ਕਿਰਿਆਵਾਂ ਵਿੱਚ ਤਾਪ ਨਿਰਮੁਕਤ ਹੁੰਦਾ ਹੈ ਅਤੇ ਸਿਸਟਮ ਤੋਂ ਆਲੇ ਦੁਆਲੇ ਵਿੱਚ ਤਾਪ ਦਾ ਪ੍ਵਾਹ ਹੁੰਦਾ ਹੈ। ਇਸ ਲਈ q_p ਰਿਣਾਤਮਕ ਹੋਵੇਗਾ ਅਤੇ $\Delta_r H$ ਵੀ ਰਿਣਾਤਮਕ ਹੋਵੇਗੀ। ਇਸੇ ਤਰ੍ਹਾਂ ਤਾਪਸੋਖੀ ਪ੍ਰਤੀਕਿਰਿਆਵਾਂ ਵਿੱਚ ਤਾਪ ਸੋਖਿਤ ਹੋਵੇਗਾ। ਇੰਜ q_p ਅਤੇ $\Delta_r H$ ਦੋਵੇਂ ਧਨਾਤਮਕ ਹੋਣਗੇ।

ਚਿੱਤਰ 6.8 ਸਥਿਰ ਦਾਬ (ਵਾਯੂਮੰਡਲੀ ਦਾਬ) ਉੱਤੇ ਤਾਪ ਪਰਿਵਰਤਨ ਅਪਨ ਦੇ ਲਈ ਕੈਲੋਰੀਮੀਟਰ

ਉਦਾਹਰਣ 6.6

ਹੇਠ ਲਿਖਿਆਂ ਸਮੀਕਰਣਾਂ ਦੇ ਅਨੁਸਾਰ 1g ਗ੍ਰੇਫਾਈਟ ਨੂੰ ਆੱਕਸੀਜਨ ਦੀ ਵਧੇਰੇ ਮਾਤਰਾ ਵਿੱਚ। 1atm ਦਾਬ ਅਤੇ 298 K ਉੱਤੇ ਬੰਬ ਕੈਲੋਰੀਮੀਟਰ ਵਿੱਚ ਜਲਾਇਆ ਗਿਆ ਹੈ।

C (ਗ੍ਰੇਫਾਈਟ) + O_{2} (g) CO_{2} (g)

ਪ੍ਰਤੀਕਿਰਿਆ ਦੇ ਦੌਰਾਨ ਤਾਪਮਾਨ 298 K ਤੋਂ 299 K ਤੱਕ ਵਧਦਾ ਹੈ।ਜੇ ਬੰਬ ਕੌਲੋਰੀਮੀਟਰ ਦੀ ਤਾਪ ਸੋਖਣ ਸਮਰੱਥਾ 20.7kJ/K, ਹੋਵੇ, ਤਾਂ ਉਪਰੋਕਤ ਪ੍ਰਤੀਕਿਰਿਆ ਦੇ ਲਈ 1 atm ਦਾਬ ਅਤੇ 298 K ਉੱਤੇ ਐਨਥੈਲਪੀ ਪਰਿਵਰਤਨ ਕੀ ਹੋਵੇਗਾ।

ਹੱਲ

ਮੰਨ ਲਓ ਪ੍ਰਤੀਕਿਰਿਆ ਤੋਂ ਪ੍ਰਾਪਤ ਤਾਪ q ਅਤੇ ਕੈਲੋਰੀਮੀਟਰ ਦੀ ਤਾਪ ਸੋਖਣ ਸਮਰਥਾ $C_{\scriptscriptstyle V}$ ਹੈ, ਤਾਂ ਕੈਲੋਰੀਮੀਟਰ ਦੁਆਰਾ ਸੋਖਿਤ ਤਾਪ

$$q = C_v \times \Delta T$$

ਪ੍ਰਤੀਕਿਰਿਆ ਤੋਂ ਪ੍ਰਾਪਤ ਤਾਪ ਦਾ ਮਾਨ ਸਮਾਨ ਹੋਵੇਗਾ, ਪਰੰਤੂ ਚਿੰਨ੍ਹ ਰਿਣਾਤਮਕ ਹੋਵੇਗਾ ਕਿਉਂਕਿ ਸਿਸਟਮ (ਪ੍ਰਤੀ ਕਿਰਿਆ ਮਿਸ਼ਰਣ) ਦੁਆਰਾ ਪ੍ਰਾਪਤ ਤਾਪ ਕੈਲੋਰੀਮੀਟਰ ਦੁਆਰਾ ਗਹਿਣ ਕੀਤੇ ਤਾਪ ਦੇ ਬਰਾਬਰ ਹੋਵੇਗੀ।

$$q = -C_V \times \Delta T = -20.7 \text{ kJ/K} \times (299 - 298) \text{ K}$$

= -20.7 kJ

(ਇੱਥੇ ਰਿਣਾਤਮਕ ਚਿੰਨ੍ਹ ਕਿਰਿਆ ਤਾਪ ਨਿਕਾਸੀ ਹੋਣ ਨੂੰ ਪ੍ਰਗਟ ਕਰਦਾ ਹੈ)

ਇੰਜ 1g ਗ੍ਰੇਫਾਈਟ ਦੇ ਬਲਣ ਦੇ ਲਈ $\Delta U = -20.7$ kJK⁻¹

1 mol ਗ੍ਰੇਫਾਈਟ ਦੇ ਬਲਣ ਦੇ ਲਈ

$$= \frac{12.0 \text{ g mol}^{-1} \times (-20.7 \text{ kJ})}{1 \text{ g}}$$

 $=-2.48 \times 10^2 \, {\rm kJ~mol^{-1}}$, ਇੱਥੇ Δ n_g = 0, Δ H = Δ U = $-2.48 \times 10^2 \, {\rm kJ~mol^{-1}}$

6.4 ਪ੍ਰਤੀਕਿਰਿਆ ਦੇ ਲਈ ਐਨਥੈਲਪੀ ਪਰਿਵਰਤਨ $\Delta_{r}H$ ਪ੍ਰਤੀਕਿਰਿਆ ਐਨਥੈਲਪੀ

ਰਸਾਇਣਿਕ ਪ੍ਤੀਕਿਰਿਆ ਵਿੱਚ ਅਭਿਕਾਰਕ ਉਪਜਾਂ ਵਿੱਚ ਬਦਲਦੇ ਹਨ। ਇਸ ਪ੍ਤੀਕਿਰਿਆ ਨੂੰ ਇਸ ਤਰ੍ਹਾਂ ਦਰਸਾਉਂਦੇ ਹਨ : ਅਭਿਕਾਰਕ \rightarrow ਉਪਜਾਂ। ਪ੍ਤੀਕਿਰਿਆ ਦੌਰਾਨ ਐਨਥੈਲਪੀ ਪਰਿਵਰਤਨ ਪ੍ਤੀਕਿਰਿਆ ਐਨਥੈਲਪੀ ਅਖਵਾਉਂਦਾ ਹੈ। ਰਸਾਇਣਿਕ ਪ੍ਤੀਕਿਰਿਆ ਵਿੱਚ ਐਨਥੈਲਪੀ ਪਰਿਵਰਤਨ $\Delta_{,H}$ ਚਿਨ੍ਹ ਨਾਲ ਦਰਸਾਇਆ ਜਾਂਦਾ ਹੈ।

 $\Delta_{,H} = (\Theta$ ਪਜਾਂ ਦੀ ਐਨਥੈਲਪੀ ਦਾ ਜੋੜ) – (ਅਭਿਕਾਰਕਾਂ ਦੀ ਐਨਥੈਲਪੀ ਦਾ ਜੋੜ)

$$=\sum_{i}a_{i}H_{\text{QUH}}-\sum_{i}b_{i}H_{\text{Mfsarda}}$$
(6.14)

ਇੱਥੇ \sum ਚਿੰਨ੍ਹ ਦੀ ਵਰਤੋਂ ਜੋੜਨ ਦੇ ਲਈ ਕੀਤੀ ਜਾਂਦੀ ਹੈ ਅਤੇ \mathbf{a}_i ਅਤੇ \mathbf{b}_i ਸੰਤੁਲਿਤ ਸਮੀਕਰਣ ਵਿੱਚ ਕ੍ਰਮਵਾਰ ਅਭਿਕਾਰਕਾਂ ਅਤੇ ਉਪਜਾਂ ਦੇ ਸਟਾਇਕਿਓਮੀਟਰੀ ਗੁਣਾਂਕ ਹਨ। ਉਦਾਹਰਣ ਦੇ ਲਈ ਹੇਠ ਲਿਖੀ ਪ੍ਰਤੀਕਿਰਿਆ ਵਿੱਚ :

$$\mathrm{CH_4}\left(\mathrm{g}\right) + \mathrm{2O_2}\left(\mathrm{g}\right) \ \to \ \mathrm{CO_2}\left(\mathrm{g}\right) + \mathrm{2H_2O}\left(\mathrm{l}\right)$$

$$\Delta_{\rm r} H = \sum_i {\bf a}_i H_{\rm guff} - \sum_i {\bf b}_i H_{\rm mfsarda}$$

$$= [H_{\rm m} \left({\rm CO}_2 \, , {\rm g} \right) + 2 H_{\rm m} \, \left({\rm H}_2 {\rm O}, \, l \right)] - [H_{\rm m} \left({\rm CH}_4 \, , \, {\rm g} \right) \\ + 2 H_{\rm m} \left({\rm O}_2 , \, {\rm g} \right)]$$

ਜਿੱਥੇ H_m ਮੋਲਰ ਐਨਥੈਲਪੀ ਹੈ। ਐਨਥੈਲਪੀ ਪਰਿਵਰਤਨ ਇੱਕ ਬਹੁਤ ਲਾਭਦਾਇਕ ਰਾਸ਼ੀ ਹੈ। ਇਸ ਦਾ ਗਿਆਨ ਸਥਿਰ ਤਾਪਮਾਨ ਉੱਤੇ ਕਿਸੇ ਉਦਯੋਗਿਕ ਰਸਾਇਣਿਕ ਪ੍ਤੀਕਿਰਿਆ ਵਿੱਚ ਗਰਮ ਕਰਨ ਜਾਂ ਠੰਡਾ ਕਰਨ ਦੀ ਯੋਜਨਾ ਬਨਾਉਣ ਵਿੱਚ ਜਰੂਰੀ ਹੈ। ਇਸ ਦੀ ਜਰੂਰਤ ਸੰਤੁਲਨ ਸਥਿਰ ਅੰਕ ਦੀ ਤਾਪ ਨਾਲ ਨਿਰਭਰਤਾ ਦੀ ਗਣਨਾ ਕਰਨ ਵਿੱਚ ਵੀ ਪੈਂਦੀ ਹੈ।

(ੳ) ਪ੍ਰਤੀਕਿਰਿਆ ਦੀ ਸਟੈਂਡਰਡ ਐਨਥੈਲਪੀ

ਕਿਸੇ ਰਸਾਇਣਿਕ ਕਿਰਿਆ ਦੀ ਐਨਥੈਲਪੀ ਪਰਿਸਥਿਤੀਆਂ ਉੱਤੇ ਨਿਰਭਰ ਕਰਦੀ ਹੈ। ਇੰਜ ਇਹ ਜਰੂਰੀ ਹੈ ਕਿ ਅਸੀਂ ਕੁਝ ਸਟੈਂਡਰਡ ਪਰਿਸਥਿਤੀਆਂ ਨੂੰ ਨਿਸ਼ਚਿਤ ਕਰੀਏ।ਕਿਸੇ ਰਸਾਇਣਿਕ ਪ੍ਰਤੀ ਕਿਰਿਆ ਦੀ ਸਟੈਂਡਰਡ ਐਨਥੈਲਪੀ ਉਹ ਐਨਥੈਲਪੀ ਪਰਿਵਰਤਨ ਹੈ, ਜਦੋਂ ਪ੍ਰਤੀਕਿਰਿਆ ਵਿੱਚ ਭਾਗ ਲੈਣ ਵਾਲੇ ਸਾਰੇ ਪਦਾਰਥ ਅਪਣੀ ਸਟੈਂਡਰਡ ਅਵਸਥਾਵਾਂ ਵਿੱਚ ਹੋਣ।

ਕਿਸੇ ਪਦਾਰਥ ਦੀ ਸਟੈਂਡਰਡ ਅਵਸਥਾ ਕਿਸੇ ਨਿਸ਼ਚਿਤ ਤਾਪਮਾਨ ਉੱਤੇ ਉਸਦਾ ਉਹ ਸ਼ੁੱਧ ਰੂਪ ਹੈ, ਜੋ **298 K** ਅਤੇ **1 bar** ਦਾਬ ਉੱਤੇ ਮਿਲਦਾ ਹੈ। ਉਦਾਹਰਣ ਵਜੋਂ ਦ੍ਵ ਈਥੇਨੋਲ ਦੀ ਸਟੈਂਡਰਡ ਅਵਸਥਾ 298 K ਅਤੇ 1 bar ਦਾਬ ਉੱਤੇ ਸ਼ੁੱਧ ਦ੍ਵ ਹੁੰਦੀ ਹੈ। ਲੋਹੇ ਦੀ ਸਟੈਂਡਰਡ ਅਵਸਥਾ 500 K ਅਤੇ 1bar ਉੱਤੇ ਸ਼ੁੱਧ ਠੋਸ ਹੁੰਦੀ ਹੈ। ਅੰਕੜੇ ਅਕਸਰ 298K ਉੱਤੇ ਲਏ ਜਾਂਦੇ ਹਨ। ਸਟੈਂਡਰਡ ਪਰਿਸਥਿਤੀਆਂ ਨੂੰ Δ H ਉੱਤੇ ਉੱਪਰਲਿਖਤ \ominus (superscript) ਰੱਖ ਕੇ ਵਿਅਕਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਉਦਾਹਰਣ ਦੇ ਲਈ Δ H $^{\circ}$

(ਅ)ਫੇਜ ਰੂਪਾਂਤਰਣ ਵਿੱਚ ਐਨਥੈਲਪੀ ਪਰਿਵਰਤਨ

ਫੇਜ ਪਰਿਵਰਤਨ ਵਿੱਚ ਉਰਜਾ ਪਰਿਵਰਤਨ ਵੀ ਹੁੰਦਾ ਹੈ।

ਉਦਾਹਰਣ ਦੇ ਲਈ ਬਰਫ ਨੂੰ ਪਿਘਲਨ ਦੇ ਲਈ ਤਾਪ ਦੀ ਜਰੂਰਤ ਹੁੰਦੀ ਹੈ। ਆਮ ਤੌਰ ਤੇ ਬਰਫ ਦਾ ਪਿਘਲਨਾ ਸਥਿਰ (ਵਾਯੂਮੰਡਲੀ ਦਾਬ) ਉੱਤੇ ਹੁੰਦਾ ਹੈ ਅਤੇ ਫੇਜ-ਪਰਿਵਰਤਨ ਹੁੰਦੇ ਸਮੇਂ ਤਾਪਮਾਨ ਸਥਿਰ ਰਹਿੰਦਾ ਹੈ।

$$H_2O(s) \rightarrow H_2O(l); \Delta_{fus}H^{\ominus} = 6.00 \text{ kJ mol}^{-1}$$

ਇੱਥੇ $\Delta_{fus}H^{\circ}$ ਸਟੈਂਡਰਡ ਅਵਸਥਾ ਵਿੱਚ ਪਿਘਲਣ ਐਨਥੈਲਪੀ ਹੈ। ਜੇ ਪਾਣੀ ਬਰਫ ਵਿੱਚ ਬਦਲਦਾ ਹੈ, ਤਾਂ ਇਸਦੇ ਉਲਟ ਪ੍ਰਕਰਮ ਹੁੰਦਾ ਹੈ ਅਤੇ ਉਨੀਂ ਹੀ ਮਾਤਰਾ ਵਿੱਚ ਤਾਪ ਆਲੇ–ਦੁਆਲੇ ਵਿੱਚ ਚਲੀ ਜਾਂਦੀ ਹੈ।

ਪ੍ਰਤੀ ਮੌਲ ਠੌਸ ਪਦਾਰਥ ਦੇ ਪਿਘਲਣ ਵਿੱਚ ਹੋਣ ਵਾਲੇ ਐਨਥੈਲਪੀ ਪਰਿਵਰਤਨ ਨੂੰ ਪਦਾਰਥ ਦੀ ਪਿਘਲਣ ਐਨਥੈਲਪੀ $\Delta_{fus} H^{\circ}$ ਕਿਹਾ ਜਾਂਦਾ ਹੈ।

ਠੌਸਾਂ ਦਾ ਪਿਘਲਣ ਤਾਪਸੋਖੀ ਹੁੰਦਾ ਹੈ, ਇੰਜ ਸਾਰੀਆਂ ਪਿਘਲਣ ਐਨਥੈਲਪੀਆਂ ਧਨਾਤਮਕ ਹੁੰਦੀਆਂ ਹਨ। ਪਾਣੀ ਦੇ ਵਾਸ਼ਪੀਕਰਣ ਵਿੱਚ ਤਾਪ ਦੀ ਜਰੂਰਤ ਹੁੰਦੀ ਹੈ। ਇਸਦੇ ਉਬਲਣ ਅੰਕ $T_{\rm b}$ ਅਤੇ ਸਥਿਰ ਦਾਬ ਉੱਤੇ—

$$\mathrm{H_2O}(l) \rightarrow \mathrm{H_2O}(g); \, \Delta_{vap}H^{\circ} = + \, 40.79 \, \mathrm{kJ \ mol^{-1}}$$

 $\Delta_{vap} H^{\circ}$ ਵਾਸ਼ਪੀਕਰਣ ਦੀ ਸਟੈਂਡਰਡ ਐਨਥੈਲਪੀ ਹੈ।

ਕਿਸੇ ਦ੍ਵ ਦੇ ਇੱਕ ਮੌਲ ਨੂੰ ਸਥਿਰ ਤਾਪਮਾਨ ਅਤੇ ਸਟੈਂਡਰਡ ਦਾਬ (1bar) ਉੱਤੇ ਵਾਸ਼ਪੀਕ੍ਰਿਤ ਕਰਨ ਦੇ ਲਈ ਜਰੂਰੀ ਤਾਪ ਨੂੰ ਉਸਦੀ ਵਾਸ਼ਪਨ ਐਨਥੈਲਪੀ ਜਾਂ ਮੌਲਰ ਵਾਸ਼ਪਨ ਐਨਥੈਲਪੀ $\Delta_{vap} H^{\circ}$ ਕਹਿੰਦੇ ਹਨ।

ਜੌਹਰ ਉਡਾਉਣ ਕਿਰਿਆ ਵਿੱਚ ਠੋਸ ਸਿੱਧੇ ਹੀ ਗੈਸ ਵਿੱਚ ਬਦਲ ਜਾਂਦਾ ਹੈ। ਠੋਸ ਕਾਰਬਨ ਡਾਈ ਆਕਸਾਈਡ ਜਾਂ ਖੁਸ਼ਕ ਬਰਫ (dry ice) $\Delta_{sub}H^{\circ}$ =25.2 kJ mol⁻¹ ਦੇ ਨਾਲ 195K ਉੱਤੇ ਜੌਹਰ ਉੱਡਣ ਹੁੰਦੀ ਹੈ। ਨੈਫਥੇਲੀਨ ਹਵਾ ਵਿੱਚ ਹੌਲੀ ਹੌਲੀ ਜੌਹਰ ਉੱਡਣ ਦੀ ਕਿਰਿਆ ਕਰਦੀ ਹੈ ਜਿਸ ਦੇ ਲਈ $\Delta_{sub}H^{\circ}$ =73.0 kJ mol⁻¹.

ਕਿਸੇ ਠੋਸ ਦੇ ਇੱਕ ਮੌਲ ਨੂੰ ਸਥਿਰ ਤਾਪਮਾਨ ਅਤੇ ਸਟੈਂਡਰਡ ਦਾਬ (1bar) ਉੱਤੇ ਜੌਹਰ ਉਡਾਉਣ ਲਈ ਹੋਣ ਵਾਲੀ ਐਨਥੈਲਪੀ ਪਰਿਵਰਤਨ ਨੂੰ ਉਸ ਦੀ ਸਟੈਂਡਰਡ ਜੌਹਰ ਉਡਾਉਣ ਐਨਥੈਲਪੀ ਕਹਿੰਦੇ ਹਨ। ਐਨਥੈਲਪੀ ਪਰਿਵਰਤਨ ਦਾ ਮਾਨ ਉਸ ਪਦਾਰਥ ਦੇ ਅੰਤਰ ਅਣਵੀਂ ਬਲਾਂ ਦੀ ਸਮਰਥਾ ਉੱਤੇ ਨਿਰਭਰ ਕਰਦਾ ਹੈ, ਜਿਸ ਦਾ ਫੇਜ ਪਰਿਵਰਤਨ ਹੋ ਰਿਹਾ ਹੈ। ਉਦਾਹਰਣ ਦੇ ਲਈ-ਪਾਣੀ ਦੇ ਅਣੂਆਂ ਦੇ ਵਿੱਚ ਮੌਜੂਦ ਪ੍ਬਲ ਹਾਈਡ੍ਰੋਜਨ ਬੰਧਨ ਇਸਦੀ ਦ੍ਵ ਅਵਸਥਾ ਵਿੱਚ ਪਾਣੀ ਦੇ ਅਣੂਆਂ ਨੂੰ ਪ੍ਬਲਤਾ ਨਾਲ ਬੰਨ੍ਹੇ ਰਖਦੇ ਹਨ। ਕਾਰਬਨਿਕ ਦ੍ਵ (ਜਿਵੇਂ ਐਸੀਟੋਨ) ਵਿੱਚ ਅੰਤਰ ਅਣਵੀਂ ਦੋ ਧਰਵ-ਦੋ ਧਰਵ ਪਰਸਪਰ

ਪਦਾਰਥ	T_f/K	∆ _{fus} H [⊖] /(kJ mol ^{−1})	T_b/K	∆ _{vap} H [⊕] /(kJ mol ^{−1})
N_2	63.15	0.72	77.35	5.59
NH_3	195.40	5.65	239.73	23.35
HC1	159.0	1.992	188.0	16.15
CO	68.0	6.836	82.0	6.04
CH ₃ COCH ₃	177.8	5.72	329.4	29.1
CCl ₄ .	250.16	2.5	349.69	30.0
H_2O	273.15	6.01	373.15	40.79
NaCl	1081.0	28.8	1665.0	170.0
C_6H_6	278.65	9.83	353.25	30.8

Table 6.1 Standard Enthalpy Changes of Fusion and Vaporisation

 $(T_{_{\! f}}$ ਅਤੇ $T_{_{\! b}}$ ਕ੍ਰਮਵਾਰ ਪਿਘਲਣ ਅਤੇ ਉਬਲਣ ਅੰਕ ਹਨ)

ਅੰਤਰ ਕਿਰਿਆ ਵਿਸ਼ੇਸ਼ ਰੂਪ ਵਿੱਚ ਕਮਜੋਰ ਹੁੰਦੀ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਇਸ ਦੇ ਇੱਕ ਮੋਲ ਦੇ ਵਾਸ਼ਪੀਕ੍ਰਿਤ ਹੋਣ ਵਿੱਚ ਪਾਣੀ ਦੇ ਇਕ ਮੋਲ ਨੂੰ ਵਾਸ਼ਪੀਕ੍ਰਿਤ ਹੋਣ ਨਾਲੋਂ ਘੱਟ ਤਾਪ ਦੀ ਜਰੂਰਤ ਹੁੰਦੀ ਹੈ। ਸਾਰਣੀ 6.1 ਵਿੱਚ ਕੁਝ ਪਦਾਰਥਾਂ ਦੇ ਪਿਘਲਣ ਅਤੇ ਵਾਸ਼ਪੀਕਰਣ ਦੀਆਂ ਸਟੈਂਡਰਡ ਐਨਥੈਲਪੀ ਦਿੱਤੀਆਂ ਗਈਆਂ ਹਨ।

ਉਦਾਹਰਣ 6.7

ਇੱਕ ਤਲਾਅ (pool) ਵਿੱਚੋਂ ਨਿਕਲਿਆ ਤੈਰਾਕ ਕਰੀਬ 18g ਪਾਣੀ ਦੀ ਪਰਤਨਾਕ ਢੱਕਿਆ (ਗਿੱਲਾ) ਹੈ। ਇਸ ਪਾਣੀ ਨੂੰ 298 K ਉੱਤੇ ਵਾਸ਼ਪਿਤ ਹੋਣ ਦੇ ਲਈ ਕਿੰਨੇ ਤਾਪ ਦੀ ਲੋੜ ਹੋਵੇਗੀ ? 100°C ਉੱਤੇ ਵਾਸ਼ਪੀਕਰਣ ਦੀ ਅੰਦਰੁਨੀ ਉਰਜਾ ਦੀ ਗਣਨਾ ਕਰੋ।

ਪਾਣੀ ਦੇ ਲਈ 373K ਉੱਤੇ $\Delta_{vap} {
m H}^{\circ}$ = $40.66~{
m kJ}$ ${
m mol}^{-1}$ ਹੈ।

ਹੱਲ

ਵਾਸ਼ਪੀਕਰਣ ਦੇ ਪ੍ਕਰਮ ਨੂੰ ਅਸੀਂ ਇਸ ਤਰ੍ਹਾਂ ਪ੍ਦਰਸ਼ਿਤ ਕਰ ਸਕਦੇ ਹਾਂ —

 $18gH_2O(l)$ \longrightarrow $18gH_2O(g)$

 $18 \mathrm{~g~H_{2}O(l)}$ ਵਿੱਚ ਮੋਲਾਂ ਦੀ ਸੰਖਿਆ $18\mathrm{~g}$

 $=\frac{18g}{18g \, \text{mol}^{-1}} = 1 \, \text{mol}$

 $\Delta_{vap}U = \Delta_{vap}H^{\ominus} - p\Delta V = \Delta_{vap}H^{\ominus} - \Delta n_gRT$

(ਉਹ ਮੰਨਦੇ ਹੋਏ ਕਿ ਵਾਸ਼ਪ ਅਦਰਸ਼ ਗੈਸ ਦੇ ਸਮਾਨ ਵਿਹਾਰ ਕਰਦੇ ਹਨ।)

$$\Delta_{vap}H^{\circ} - \Delta n_{g} RT = 40.66 \text{ kJ mol}^{-1}$$
 $-(1)(8.314 \text{ JK}^{-1}\text{mol}^{-1})(373\text{K})(10^{-3} \text{ kJ J}^{-1})$

$$\Delta_{vap}U^{\circ} = 40.66 \text{ kJ mol}^{-1} - 3.10 \text{ kJ mol}^{-1}$$
 $= 37.56 \text{ kJ mol}^{-1}$

(ੲ) ਸਟੈਂਡਰਡ ਨਿਰਮਾਣ ਐਨਥੈਲਪੀ $\Delta_{_{ m f}} {f H}$

ਕਿਸੇ ਯੋਗਿਕ ਦੇ ਇੱਕ ਮੋਲ ਨੂੰ ਉਸ ਦੇ ਹੀ ਤੱਤਾਂ, ਜੋ ਆਪਣੇ ਸਭ ਤੋਂ ਸਥਾਈ ਰੂਪਾਂ ਵਿੱਚ ਲਏ ਗਏ ਹੋਣ। ਅਜਿਹੇ ਰੂਪ ਨੂੰ 'ਸੰਦਰਭ ਅਵਸਥਾ' ਵੀ ਕਹਿੰਦੇ ਹਨ), ਤੋਂ ਨਿਰਮਾਣ ਕਰਨ ਨਾਲ ਹੋਣ ਵਾਲੇ ਸਟੈਂਡਰਡ ਐਨਥੈਲਪੀ ਪਰਿਵਰਤਨ ਨੂੰ ਉਸਦੀ ਸਟੈਂਡਰਡ ਮੋਲਰ ਨਿਰਮਾਣ ਐਨਥੈਲਪੀ $\Delta_f \mathbf{H}^\circ$ ਕਿਹਾ ਜਾਂਦਾ ਹੈ। ਜਿੱਥੇ ਹੇਠ ਲਿਖਿਤ ' f' ਦੱਸਦਾ ਹੈ ਕਿ ਸਬੰਧਿਤ ਯੋਗਿਕ ਦਾ ਇੱਕ ਮੋਲ ਉਸਦੇ ਤੱਤਾਂ, ਜੋ ਆਪਣੇ ਸਭ ਤੋਂ ਸਥਾਈ ਰੂਪ ਵਿੱਚ ਹਨ, ਤੋਂ ਪ੍ਰਾਪਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਹੇਠਾਂ ਕੁਝ ਪ੍ਰਤੀ ਕਿਰਿਆਵਾਂ ਉਨ੍ਹਾਂ ਦੀ ਸਟੈਂਡਰਡ ਨਿਰਮਾਣ ਮੋਲਰ ਐਨਥੈਲਪੀ ਦੇ ਨਾਲ ਦਿੱਤੀਆਂ ਗਈਆਂ ਹਨ।

$$egin{align*} & H_2(g) + \frac{1}{2}O_2(g)
ightarrow H_2O(1); \ & \Delta_f H^\circ = -285.8 \, \mathrm{kJ \ mol^{-1}} \ & \mathrm{C} \ (\mbox{ਗਰੇਫਾਈਟ,s}) + 2H_2(g)
ightarrow \mathrm{CH_4}(g); \ & \Delta_f H^\circ = -74.81 \, \mathrm{kJ \ mol^{-1}} \ & \end{array}$$

Table 6.2 ਕੁਝ ਚੁਣੇ ਹੋਏ ਪਦਾਰਥਾ ਦੀ 298 ${f K}$ ਉੱਤੇ ਸਟੈਂਡਰਡ ਮੋਲਰ ਨਿਰਮਾਣ ਐਨਥੈਲਪੀ ${f \Delta}_{{f r}}{f H}^{\odot}$

ਪਦਾਰਥ	$\Delta_f \operatorname{\mathbf{H}}^{\ominus}$ (kJ mol ⁻¹)	ਪਦਾਰਥ	$\Delta_f \operatorname{\mathbf{H}}^{\circ}/(\operatorname{\mathbf{kJ}} \operatorname{\mathbf{mol}}^{-1})$
Al ₂ O ₃ (s)	167.5	HI(g)	+26.48
BaCO ₃ (s)	-1216.3	KCl(s)	-436.75
Br ₂ (l)	0	KBr(s)	-393.8
Br ₂ (g)	+30.91	MgO(s)	-601.70
CaCO ₃ (s)	-1206.92	Mg(OH) ₂ (s)	-924.54
C (diamond)	+1.89	NaF(s)	-573.65
C (graphite)	0	NaCl(s)	-411.15
CaO(s)	- 635.09	NaBr(s)	-361.06
CH ₄ (g)	-74.81	NaI(s)	-287.78
$C_2H_4(g)$	52.26	NH ₃ (g)	-46.11
CH ₃ OH(l)	-238.86	NO(g)	+ 90.25
C ₂ H ₅ OH(l)	-277.69	$NO_2(g)$	+33.18
C ₆ H ₆ (l)	+ 49.03	PCl ₃ (l)	-319.70
CO(g)	-110.53	PCl ₅ (s)	-443.5
CO ₂ (g)	-393.51	SiO ₂ (s) (quartz)	-910.94
C ₂ H ₆ (g)	-84.68	SnCl ₂ (s)	-325.1
Cl ₂ (g)	0	SnCl ₄ (l)	-511.3
C ₃ H ₈ (g)	-103.85	$SO_2(g)$	-296.83
n-C ₄ H ₁₀ (g)	-126.15	SO ₃ (g)	-395.72
HgS(s) red	-58.2	SiH4(g)	+ 34
H ₂ (g)	0	SiCl ₄ (g)	-657.0
H ₂ O(g)	-241.82	C(g)	+715.0
H ₂ O(l)	-285.83	H(g)	+218.0
HF(g)	-271.1	C1(g)	+121.3
HCl(g)	-92.31	$\mathrm{Fe_2O_3}(\mathrm{s})$	-824.2
HBr(g)	-36.40		

2C (ਗਰੇਫਾਈਟ, s) + $3H_2(g)$ + $\frac{1}{2}O_2(g) \to C_2H_5OH(1)$; ਵਿੱਚ ਐਨਥੈਲਪੀ ਪਰਿਵਰਤਨ ਕੈਲਸ਼ਿਅਮ ਕਾਰਬੋਨੇਟ ਦੀ

ਇਥੇ ਇਹ ਸਮਝਣਾ ਮਹਤਵਪੂਰਣ ਹੈ ਕਿ ਸਟੈਂਡਰਡ ਵਿੱਚ ਇੱਕ ਮੌਲ ਯੋਗਿਕ ਆਪਣੇ ਤੱਤਾਂ ਤੋਂ ਬਣਦਾ ਹੈ। ਜਿਵੇਂ ਉਪਰੋਕਤ ਤਿੰਨ ਪ੍ਰਤੀ ਕਿਰਿਆਵਾਂ ਵਿੱਚ ਪਾਣੀ, ਮੀਥੇਨ ਅਤੇ ਈਥੇਨੋਲ ਵਿੱਚ ਹਰ ਇੱਕ ਦਾ 1 ਮੋਲ ਬਣਦਾ ਹੈ। ਇਸਦੇ ਉਲਟ ਇੱਕ ਤਾਪ ਸੋਖੀ ਪ੍ਤੀਕਿਰਿਆ

$$CaO(s) + CO_2(g) \rightarrow CaCO_3(s);$$

$$\Delta_r H^{\ominus} = -178.3 \text{kJ mol}^{-1}$$

 $\Delta_f H^\circ = -277.7 \, \mathrm{kJ} \, \, \mathrm{mol}^{-1}$ ਨਿਰਮਾਣ ਐਨਥੈਲਪੀ ਨਹੀਂ ਹੈ, ਕਿਉਂਕਿ ਇਸ ਵਿੱਚ ਕੈਲਸ਼ਿਅਮ ਕਾਰਬੋਨੇਟ ਆਪਣੇ ਤੱਤਾਂ ਤੋਂ ਨਾ ਬਣ ਕੇ ਦੂਜੇ ਯੋਗਿਕਾਂ ਤੋਂ ਬਣਿਆ ਹੈ।ਹੇਠ ਲਿਖੀ ਪ੍ਤੀ ਕਿਰਿਆ ਦੇ ਲਈ ਵੀ ਐਨਥੈਲਪੀ ਪਰਿਵਰਤਨ HBr(g) ਦੀ ਸਟੈਂਡਰਡ ਐਨਥੈਲਪੀ ਨਿਰਮਾਣ ਐਨਥੈਲਪੀ $\Delta_{_f}H^{\ominus}$ ਨਹੀਂ ਹੈ, ਬਲਕਿ ਸਟੈਂਡਰਡ ਪ੍ਰਤੀ ਕਿਰਿਆ ਐਨਥੈਲਪੀ ਹੈ।

 $H_2(g) + Br_2(l) \rightarrow 2HBr(g);$

 $\Delta_r H^{\ominus} = -72.8 \text{ kJ mol}^{-1}$ ਇੱਥੇ ਉਪਜ ਦੇ ਇੱਕ ਮੋਲ ਦੀ ਬਜਾਏ ਦੋ ਮੋਲ ਆਪਣੇ ਤੱਤਾਂ ਤੋਂ ਬਣਦੇ ਹਨ, $\Delta_r H^\circ = 2\Delta_f H^\circ$ ਸੰਤੂਲਿਤ ਸਮੀਕਰਣ ਵਿੱਚ 168

ਸਾਰੇ ਗੁਣਾਂ ਕਾਂ ਨੂੰ 2 ਨਾਲ ਵਿਭਾਜਿਤ ਕਰਕੇ HBr(g) ਦੇ ਨਿਰਮਾਣ ਐਨਥੈਲਪੀ ਦੇ ਲਈ ਸਮੀਕਰਣ ਇਸ ਤਰ੍ਹਾਂ ਲਿਖਿਆ ਜਾ ਸਕਦਾ ਹੈ—

$${}^{1}\!\!/_2 H_2(g) + {}^{1}\!\!/_2 Br_2(1) \rightarrow HBr(g);$$

$$\Delta_f H^\circ = -36.4 \text{ kJ mol}^{-1}$$

ਕੁਝ ਪਦਾਰਥਾਂ ਦੀ 298 K ਉੱਤੇ ਸਟੈਂਡਰਡ ਮੋਲਰ ਨਿਰਮਾਣ ਐਨਥੈਲਪੀ ਸਾਰਣੀ 6.2 ਵਿੱਚ ਦਿੱਤੀਆਂ ਗਈਆਂ ਹਨ।

ਪਰੰਪਰਾ ਦੇ ਅਨੁਸਾਰ ਇੱਕ ਤੱਤ ਦੇ ਸਭ ਤੋਂ ਵੱਧ ਸਥਿਰ ਅਵਸਥਾ ਵਿੱਚ (ਸੰਦਰਭ ਅਵਸਥਾ) ਸਟੈਂਡਰਡ ਨਿਰਮਾਣ ਐਨਥੈਲਪੀ $\Delta_i H^0$ ਦਾ ਮਾਨ ਸਿਫਰ ਲਿਆ ਜਾਂਦਾ ਹੈ।

ਮੰਨ ਲਓ ਕਿ ਤੁਸੀਂ ਇੱਕ ਕੈਮੀਕਲ ਇੰਜੀਨੀਅਰ ਹੋ ਅਤੇ ਜਾਣਨਾ ਚਾਹੁੰਦੇ ਹੋ ਕਿ ਜੇ ਸਾਰੇ ਪਦਾਰਥ ਅਪਣੀ ਸਟੈਂਡਰਡ ਵਿੱਚ ਹਨ ਤਾਂ ਕੈਲਸ਼ਿਅਮ ਕਾਰਬੋਨੇਟ ਨੂੰ ਚੂਨਾ ਅਤੇ ਕਾਰਬਨ ਡਾਈਆੱਕਸਾਈਡ ਵਿੱਚ ਵਿਘਟਿਤ ਕਰਨ ਦੇ ਲਈ ਕਿੰਨੇ ਤਾਪ ਦੀ ਜਰੂਰਤ ਹੋਵੇਗੀ

$${
m CaCO_3(s)} \to {
m CaO(s)} + {
m CO_2(g)}; \Delta_r H^{\circ} = ?$$
 ਅਸੀਂ ਇੱਥੇ ਸਟੈਂਡਰਡ ਨਿਰਮਾਣ ਐਨਥੈਲਪੀ ਦੀ ਵਰਤੋਂ ਕਰ ਸਕਦੇ ਹਾਂ ਅਤੇ ਪ੍ਰਤੀ ਕਿਰਿਆ ਦਾ ਐਨਥੈਲਪੀ ਪਰਿਵਰਤਨ ਪਰਿਕਲਿਤ ਕਰ ਸਕਦੇ ਹਾਂ। ਐਨਥੈਲਪੀ ਪਰਿਵਰਤਨ ਦੀ ਗਣਨਾ ਕਰਨ ਦੇ ਲਈ ਅਸੀਂ ਹੇਠ ਲਿਖੇ ਆਮ ਸਮੀਕਰਣ ਦੀ ਵਰਤੋਂ ਕਰ ਸਕਦੇ ਹਾਂ $-$

$$\Delta_r H^\circ = \sum_i {\bf a}_i \Delta_f H^\circ \left(\mbox{ਉਪਜ} \right) - \sum_i {\bf b}_i \Delta_f H^\circ \left(\mbox{ਅਭਿਕਾਰਕ} \right)$$
 (6.15) ਜਿੱਥੇ ਸੰਤੁਲਿਤ ਸਮੀਕਰਣ ਵਿੱਚ ${\bf a}$ ਅਤੇ ${\bf b}$ ਕ੍ਰਮਵਾਰ ਉਪਜਾਂ ਅਤੇ ਅਭਿਕਾਰਕਾਂ ਦੇ ਗੁਣਾਂਕ ਹਨ। ਉਪਰੋਕਤ ਸਮੀਕਰਣ ਨੂੰ ਕੈਲਸ਼ਿਅਮ ਕਾਰਬੋਨੇਟ ਦੇ ਵਿਘਟਨ ਉੱਤੇ ਲਾਗੂ ਕਰਦੇ ਹਾਂ। ਇੱਥੇ 'a' ਅਤੇ 'b' ਦੋਵੇਂ 1 ਹਨ।

ਇੰਜ

$$\begin{split} \Delta_r H^{\ominus} = & \Delta_f H^{\ominus} \left[\text{CaO(s)} \right] + \Delta_f H^{\ominus} \left[\text{CO}_2(g) \right] \\ - & \Delta_f H^{\ominus} \left[\text{CaCO}_3(s) \right] \end{split}$$

=1(
$$-635.1 \text{ kJ mol}^{-1}$$
)+1($-393.5 \text{ kJ mol}^{-1}$)
-1($-1206.9 \text{ kJ mol}^{-1}$)

= 178.3 kJ mol⁻¹

ਇੰਜ ${\rm CaCO_3}$ (s) ਦਾ ਵਿਘਟਨ ਤਾਪਸੋਖੀ ਪ੍ਤੀਕਿਰਿਆ ਹੈ। ਇੰਜ ਇੱਛਤ ਉਪਜਾਂ ਪ੍ਰਾਪਤ ਕਰਨ ਦੇ ਲਈ ਇਸ ਨੂੰ ਗਰਮ ਕਰਨਾ ਪਵੇਗਾ।

(ਸ) ਤਾਪ ਰਸਾਇਣਿਕ ਸਮੀਕਰਣ

ਇੱਕ ਸੰਤੁਲਿਤ ਰਸਾਇਣਿਕ ਸਮੀਕਰਣ ਜਿਸ ਵਿੱਚ ਉਸਦੇ $\Delta_{,H}$ ਦਾ ਮਾਨ ਵੀ ਦਿੱਤਾ ਗਿਆ ਹੋਵੇ ਤਾਪ ਰਸਾਇਣਿਕ ਸਮੀਕਰਣ ਅਖਵਾਉਂਦਾ ਹੈ। ਅਸੀਂ ਇੱਕ ਸਮੀਕਰਣ ਵਿੱਚ ਪਦਾਰਥਾਂ ਦੀਆਂ ਭੌਤਿਕ ਅਵਸਥਾਵਾਂ (ਭਿੰਨ ਰੂਪੀ ਅਵਸਥਾ ਦੇ ਨਾਲ) ਵੀ ਨਿਸ਼ਚਿਤ ਕਰਦੇ ਹਾਂ।

ਉਦਾਹਰਣ ਦੇ ਲਈ

$$C_2H_5OH(l) + 3O_2(g) \rightarrow 2CO_2(g) + 3H_2O(l):$$

 $\Delta_cH^{\circ} = -1367 \text{ kJ mol}^{-1}$

ਉਪਰੋਕਤ ਸਮੀਕਰਣ ਨਿਸ਼ਚਿਤ ਤਾਪਮਾਨ ਅਤੇ ਦਾਬ ਉੱਤੇ ਦ੍ਵ ਈਥੇਨੋਲ ਦਾ ਬਲਨਾ ਦਰਸਾਉਂਦਾ ਹੈ ਕਿ ਇਹ ਇੱਕ ਤਾਪ ਨਿਕਾਸੀ ਪ੍ਤੀਕਿਰਿਆ ਹੈ।

ਤਾਪ ਰਸਾਇਣਿਕ ਸਮੀਕਰਣਾਂ ਦੇ ਸੰਦਰਭ ਵਿੱਚ ਹੇਠ ਲਿਖੀਆਂ ਪਰੰਪਰਾਵਾਂ ਨੂੰ ਯਾਦ ਰਖਣਾ ਜਰੂਰੀ ਹੈ —

- ਸੰਤੁਲਿਤ ਰਸਾਇਣਿਕ ਸਮੀਕਰਣ ਵਿੱਚ ਗੁਣਾਂਕ ਅਭਿਕਾਰਕਾਂ ਅਤੇ ਉਪਜਾਂ ਦੇ ਮੋਲਾਂ (ਅਣੂਆਂ ਦੀ ਨਹੀਂ) ਨੂੰ ਨਿਰਦੇਸ਼ਿਤ ਕਰਦਾ ਹੈ।
- 2. $\Delta_{,}H^{\circ}$ ਦਾ ਗਿਣਤੀ ਨਾਲ ਸਮੀਕਰਣ ਦੁਆਰਾ ਪਦਾਰਥਾਂ ਦੇ ਮੋਲਾਂ ਦੀ ਸੰਖਿਆ ਦੇ ਸੰਦਰਭ ਵਿੱਚ ਹੁੰਦਾ ਹੈ। ਸਟੈਂਡਰਡ ਐਨਥੈਲਪੀ ਪਰਿਵਰਤਨ $\Delta_{,}H^{\circ}$ ਦੀ ਇਕਾਈ $kJ \mod^{-1}$ ਹੁੰਦੀ ਹੈ।

ਉਪਰੋਕਤ ਧਾਰਣਾ ਨੂੰ ਸਮਝਣ ਦੇ ਲਈ ਅਸੀਂ ਹੇਠ ਲਿਖੀ ਪ੍ਤੀਕਿਰਿਆ ਦੇ ਲਈ ਪ੍ਤੀ ਕਿਰਿਆ ਤਾਪ ਦੀ ਗਣਨਾ ਕਰਦੇ ਹਾਂ –

$${
m Fe_2O_3\left(s
ight)} + 3{
m H_2\left(g
ight)} o 2{
m Fe\left(s
ight)} + 3{
m H_2O\left(l
ight)},$$
 ਸਟੈਂਡਰਡ ਨਿਰਮਾਣ ਐਨਥੈਲਪੀ ਦੀ ਸਾਰਣੀ 6.2 ਤੋਂ ਸਾਨੂੰ ਮਿਲਦਾ ਹੈ

$$\Delta_f H^{\oplus}(H_2O, l) = -285.83 \text{ kJ mol}^{-1};$$

 $\Delta_f H^{\oplus}(Fe_2O_3, s) = -824.2 \text{ kJ mol}^{-1};$

Also
$$\Delta_f H^\circ(\text{Fe, s}) = 0$$
 ਅਤੇ $\Delta_f H^\circ(\text{H}_2, \text{g}) = 0$ ਪਰੰਪਰਾ ਦੇ ਅਨੁਸਾਰ

ਤਾਂ

$$\Delta_r H_1^{\circ} = 3(-285.83 \text{ kJ mol}^{-1})$$

$$- 1(-824.2 \text{ kJ mol}^{-1})$$

$$= (-857.5 + 824.2) \text{ kJ mol}^{-1}$$

$$= -33.3 \text{ kJ mol}^{-1}$$

ਧਿਆਨ ਰੱਖੋ ਕਿ ਇਨ੍ਹਾਂ ਗਣਨਾਵਾਂ ਵਿੱਚ ਵਰਤੇ ਗੁਣਾਂਕ ਸ਼ੁੱਧ ਸੰਖਿਆਵਾਂ ਹਨ, ਜੋ ਉਚਿਤ ਸਟੋਕਿਯੋਸੀਟਰਿਕ ਗੁਣਾਂਕਾਂ (stoichiometric coefficients) ਦੇ ਬਰਾਬਰ ਹਨ l $\Delta_{r}H^{\circ}$

ਦੀ ਇਕਾਈ kJ mol⁻¹ ਹੈ, ਜਿਸਦਾ ਅਰਥ ਪ੍ਰਤੀਕਿਰਿਆ ਦਾ ਪ੍ਰਤੀ ਮੋਲ ਹੈ। ਜਦੋਂ ਅਸੀਂ ਉਪਰੋਕਤ ਕਿਸਮ ਦੇ ਰਸਾਇਣਿਕ ਸਮੀਕਰਣ ਨੂੰ ਸੰਤੁਲਿਤ ਕਰ ਲੈਂਦੇ ਹਾਂ, ਤਾਂ ਇਹ ਪ੍ਰਤੀ ਕਿਰਿਆ ਦੇ ਇੱਕ ਮੋਲ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਕਰਦਾ ਹੈ। ਅਸੀਂ ਸਮੀਕਰਣ ਨੂੰ ਭਿੰਨ ਪ੍ਰਕਾਰ ਨਾਲ ਸੰਤੁਲਿਤ ਕਰਦੇ ਹਾਂ। ਉਦਾਹਰਣ ਵਜੋਂ —

$$rac{1}{2} {
m Fe}_2 {
m O}_3 \left({
m s}
ight) + rac{3}{2} {
m H}_2 \left({
m g}
ight)
ightarrow {
m Fe} \left({
m s}
ight) + rac{3}{2} {
m H}_2 {
m O} \left({
m l}
ight)$$
 ਤਾਂ ਪ੍ਤੀਕਿਰਿਆ ਦੀ ਇਹ ਮਾਤਰਾ ਇੱਕ ਮੋਲ ਪ੍ਤੀਕਿਰਿਆ ਹੋਵੇਗੀ ਅਤੇ $\Delta_r H^{
m e}$ ਹੋਵੇਗਾ

$$\Delta_r H_2^{\circ} = \frac{3}{2} \left(-285.83 \text{ kJ mol}^{-1} \right)$$
$$-\frac{1}{2} \left(-824.2 \text{ kJ mol}^{-1} \right)$$

 $= (-428.7 + 412.1) \text{ kJ mol}^{-1}$

$$= -16.6 \text{ kJ mol}^{-1} = \frac{1}{2} \Delta_r H_1^{\ominus}$$

ਇਸ ਤੋਂ ਸਪਸ਼ਟ ਹੁੰਦਾ ਹੈ ਕਿ ਐਨਥੈਲਪੀ ਇੱਕ ਵਿਸਤੀਰਣ ਰਾਸ਼ੀ ਹੈ।

3. ਜਦੋਂ ਕਿਸੇ ਰਸਾਇਣਿਕ ਸਮੀਕਰਣ ਤੋਂ ਉਲਟਾ ਲਿਖਿਆ ਜਾਂਦਾ ਹੈ, ਤਾਂ $\Delta_i H^\circ$ ਦੇ ਮਾਨ ਦਾ ਚਿਨ੍ਹ ਵੀ ਬਦਲ ਜਾਂਦਾ ਹੈ। ਉਦਾਹਰਣ ਦੇ ਲਈ—

$$N_2(g) + 3H_2(g) \rightarrow 2NH_3(g);$$

 $\Delta_r H^{\circ} = -91.8 \text{kJ mol}^{-1}$

$$2NH_3(g) \rightarrow N_2(g) + 3H_2(g);$$

 $\Delta_r H^{\circ} = +91.8 \text{ kJ mol}^{-1}$

(ਹ) ਹੈੱਸ ਦਾ ਨਿਯਮ

ਕਿਉਂਕਿ ਐਨਥੈਲਪੀ ਇੱਕ ਅਵਸਥਾ ਫਲਨ ਹੈ, ਇੰਜ ਐਨਥੈਲਪੀ ਪਰਿਵਰਤਨ ਸ਼ੁਰੂ ਦੀ ਅਵਸਥਾ (ਅਭਿਕਾਰਕਾਂ) ਅੰਤਿਮ ਅਵਸਥਾ (ਉਪਜਾਂ) ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਦੇ ਪਥ ਤੋਂ ਸੁਤੰਤਰ ਹੁੰਦੀ ਹੈ। ਦੂਜੇ ਸ਼ਬਦਾਂ ਵਿੱਚ — ਇੱਕ ਪ੍ਤੀ ਕਿਰਿਆ ਭਾਵੇਂ ਇੱਕ ਸਟੈੱਪ ਵਿੱਚ ਹੋਵੇ ਜਾਂ ਕਈ ਸਟੈੱਪਾਂ ਦੀ ਲੜੀ ਵਿਚ, ਐਨਥੈਲਪੀ ਪਰਿਵਰਤਨ ਸਮਾਨ ਰਹਿੰਦਾ ਹੈ। ਇਸਨੂੰ 'ਹੈੱਸ ਨਿਯਮ' ਦੇ ਰੂਪ ਵਿੱਚ ਇਸਤਰ੍ਹਾਂ ਕਹਿ ਸਕਦੇ ਹਾਂ —

ਕਈ ਸਟੈੱਪਾਂ ਵਿੱਚ ਹੋਣ ਵਾਲੀ ਕਿਸੇ ਰਸਾਇਣਿਕ ਪ੍ਰਤੀ ਕਿਰਿਆ ਦੀ ਸਟੈਂਡਰਡ ਐਨਥੈਲਪੀ ਉਨ੍ਹਾਂ ਸਾਰੀਆਂ ਪ੍ਰਤੀਕਿਰਿਆਵਾਂ ਦੀ ਸਮਾਨ ਤਾਪਮਾਨ ਉੱਤੇ ਸਟੈਂਡਰਡ ਐਨਥੈਲਪੀਆਂ ਦਾ ਜੋੜ ਹੁੰਦੀ ਹੈ, ਜਿਨ੍ਹਾਂ ਵਿੱਚ ਇਸ ਸੰਪੂਰਣ ਪ੍ਰਤੀਕਿਰਿਆ ਨੂੰ ਵਿਭਾਜਿਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।

ਆਉ ਅਸੀਂ ਇਸ ਨਿਯਮ ਦਾ ਮਹੱਤਵ ਇੱਕ ਉਦਹਰਣ ਸਹਿਤ ਸਮਝੀਏ। ਹੇਠ ਲਿਖੀ ਪ੍ਰਤੀ ਕਿਰਿਆ ਵਿੱਚ ਐਨਥੈਲਪੀ ਪਰਿਵਰਤਨ ਉੱਤੇ ਵਿਚਾਰ ਕਰੀਏ—

$$C(\operatorname{\textsf{oligies}},s) + \frac{1}{2}O_2(g) \rightarrow CO(g); \Delta_r H^\circ = ?$$

ਭਾਵੇਂ CO(g) ਪ੍ਰਮੁੱਖ ਉਪਜ ਹੈ, ਪਰੰਤੂ ਇਸ ਪ੍ਤੀ ਕਿਰਿਆ ਵਿਚ ਕੁਝ CO₂ ਗੈਸ ਹਮੇਸ਼ਾ ਪੈਦਾ ਹੁੰਦੀ ਹੈ। ਇੰਜ ਉਪਰੋਕਤ ਪ੍ਤੀਕਿਰਿਆ ਦੇ ਲਈ ਅਸੀਂ ਐਨਥੈਲਪੀ ਪਰਿਵਰਤਨ ਨੂੰ ਸਿੱਧੇ ਅਪ ਕੇਗਿਅਤ ਨਹੀਂ ਕਰ ਸਕਦੇ। ਜੇ ਅਸੀਂ ਹੋਰ ਅਜਿਹੀਆਂ ਪ੍ਤੀ ਕਿਰਿਆਵਾਂ ਲੱਭ ਸਕੀਏ ਜਿਨ੍ਹਾਂ ਵਿੱਚ ਸਬੰਧਿਤ ਸਪੀਸ਼ੀਜ ਹੋਣ, ਤਾਂ ਉਪਰੋਕਤ ਸਮੀਕਰਣ ਵਿੱਚ ਐਨਥੈਲਪੀ ਪਰਿਵਰਤਨ ਦਾ ਪਰਿਕਲਨ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।

ਹੁਣ ਅਸੀਂ ਹੇਠ ਲਿਖੀਆਂ ਪ੍ਰਤੀ ਕਿਰਿਆਵਾਂ ਉੱਤੇ ਵਿਚਾਰ ਕਰਦੇ ਹਾਂ —

$$C$$
(ਗਰੇਫਾਈਟ,s)+ $O_2(g) \rightarrow CO_2(g);$ $\Delta_r H^\circ = -393.5 \, \mathrm{kJ \, mol^{-1}}$ (i)

$$CO(g) + \frac{1}{2}O_2(g) \rightarrow CO_2(g);$$

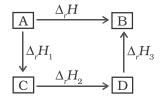
 $\Delta H^{\circ} = -283.0 \text{ kJ mol}^{-1}$ (ii)

ਅਸੀਂ ਉਪਰੋਕਤ ਸਮੀਕਰਣਾਂ ਨੂੰ ਇਸ ਤਰ੍ਹਾਂ ਸੰਯੁਕਤ ਕਰਦੇ ਹਾਂ ਕਿ ਇੱਛਤ ਸਮੀਕਰਣ ਪ੍ਰਾਪਤ ਹੋ ਜਾਵੇ। ਸੱਜੇ ਪਾਸੇ ਇੱਕ ਮੋਲ CO(g) ਪ੍ਰਾਪਤ ਕਰਨ ਦੇ ਲਈ ਸਮੀਕਰਣ (ii) ਨੂੰ ਅਸੀਂ ਉਲਟਾ ਕਰਦੇ ਹਾਂ, ਜਿਸ ਵਿੱਚ ਊਰਜਾ ਮੁਕਤ ਹੋਣ ਦੀ ਬਜਾਏ ਸੋਖਿਤ ਹੁੰਦੀ ਹੈ। ਇੰਜ ਅਸੀਂ $\Delta_i H^0$ ਦੇ ਮਾਨ ਦਾ ਚਿਨ੍ਹ ਬਦਲ ਦਿੰਦੇ ਹਾਂ।

$$CO_2(g) \rightarrow CO(g) + \frac{1}{2}O_2(g);$$

 $\Delta_r H^{\circ} = +283.0 \text{ kJ mol}^{-1}$ (iii)

ਅਸੀਂ (i) ਅਤੇ (iii) ਨੂੰ ਜੋੜ ਕੇ ਅਸੀਂ ਇੱਛਤ ਸਮੀਕਰਣ ਪ੍ਰਾਪਤ ਕਰਦੇ ਹਾਂ।


$$C(\text{ਗਰੇਫਾਈਟ},s) + \frac{1}{2}O_2(g) \rightarrow CO(g);$$

ਇਸ ਦੇ ਲਈ $\Delta_r H^\circ = (-393.5 + 283.0)$
= - 110.5 kJ mol⁻¹

ਵਿਆਪਕ ਰੂਪ ਵਿੱਚ ਜੇ ਇੱਕ ਪ੍ਤੀਕਿਰਿਆ $A \rightarrow B$ ਦੇ ਲਈ ਇੱਕ ਪਖ ਤੋਂ ਕੁੱਲ ਐਨਥੈਲਪੀ ਪਰਿਵਰਤਨ $\Delta_{\rho}H$ ਹੋਵੇ ਅਤੇ ਦੂਜੇ ਪਥ ਤੋਂ $\Delta_{\rho}H_{1}$, $\Delta_{\rho}H_{2}$, $\Delta_{\rho}H_{3}$ ਸਮਾਨ ਉਪਜ B ਦੇ ਬਣਨ ਵਿੱਚ ਭਿੰਨ ਭਿੰਨ ਐਨਥੈਲਪੀ ਪਰਿਵਰਤਨਾਂ ਨੂੰ ਦਰਸਾਉਂਦੇ ਹੋਣ, ਤਾਂ

$$\Delta_r H = \Delta_r H_1 + \Delta_r H_2 + \Delta_r H_3 \dots$$
 (6.16)

170

ਇਸ ਨੂੰ ਇਸ ਰੂਪ ਵਿੱਚ ਪ੍ਦਰਸ਼ਿਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ—

6.5 ਭਿੰਨ ਭਿੰਨ ਕਿਸਮ ਦੀਆਂ ਪ੍ਰਤੀਕਿਰਿਆਵਾਂ ਦੇ ਲਈ ਐਨਥੈਲਪੀ

ਪ੍ਰਤੀ ਕਿਰਿਆਵਾਂ ਦੇ ਪ੍ਕਾਰ ਨੂੰ ਨਿਸ਼ਚਿਤ ਕਰਦੇ ਹੋਏ ਐਨਥੈਲਪੀ ਦਾ ਨਾਮਕਰਣ ਕਰਨਾ ਸੁਵਿਧਾਜਨਕ ਹੁੰਦਾ ਹੈ।

(ੲ) ਸਟੈਂਡਰਡ ਜਲਣ ਐਨਥੈਲਪੀ Δ ੍ਰf H $^{\circ}$

ਜਲਣ ਪ੍ਰਤੀ ਕਿਰਿਆਵਾਂ ਪ੍ਰਕਿਰਤੀ ਵਿੱਚ ਤਾਪ ਨਿਕਾਸੀ ਹੁੰਦੀਆਂ ਹਨ। ਇਹ ਉਦਯੋਗ, ਰਾਕੇਟ, ਜਹਾਜ ਅਤੇ ਜੀਵਨ ਦੇ ਹੋਰ ਪਹਿਲੂਆਂ ਵਿੱਚ ਮਹੱਤਵਪੂਰਣ ਹੁੰਦੀਆਂ ਹਨ। ਸਟੈਂਡਰਡ ਜਲਣ ਐਨਥੈਲਪੀ ਨੂੰ ਇਸ ਤਰ੍ਹਾਂ ਪਰਿਭਾਸ਼ਿਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ ਕਿ ਇਹ ਕਿਸੇ ਪਦਾਰਥ ਦੀ ਪ੍ਰਤੀ ਮੋਲ ਉਹ ਐਨਥੈਲਪੀ ਪਰਿਵਰਤਨ ਹੈ ਜੋ ਇਸ ਦੇ ਬਲਣ ਦੇ ਫਲਸਰੂਪ ਹੁੰਦਾ ਹੈ, ਜਦੋਂ ਪੂਰਾ ਪ੍ਰਤੀਕਾਰਕ ਅਤੇ ਉਪਜਾਂ ਇੱਕ ਵਿਸ਼ਿਸ਼ਟ ਤਾਪਮਾਨ ਉੱਤੇ ਆਪਣੀਆਂ ਸਟੈਂਡਰਡ ਅਵਸਥਾਵਾਂ ਵਿੱਚ ਹੁੰਦੇ ਹਨ।

ਖਾਣਾ ਪਕਾਉਣ ਵਾਲੇ ਗੈਸ ਦੇ ਸਿਲੰਡਰ ਵਿੱਚ ਮੁੱਖ ਰੂਪ ਵਿੱਚ ਬਿਊਟੇਨ (C_4H_{10}) ਗੈਸ ਹੁੰਦੀ ਹੈ। ਬਿਊਟੇਨ ਦੇ ਇੱਕ ਮੋਲ ਦੇ ਜਲਣ ਨਾਲ $2658~\mathrm{kJ}$ ਤਾਪ ਦਿੰਦੀ ਹੈ। ਇਸਦੇ ਲਈ ਅਸੀਂ ਤਾਪ ਰਸਾਇਣਿਕ ਪ੍ਰਤੀਕਿਰਿਆ ਨੂੰ ਇਸ ਤਰ੍ਹਾਂ ਲਿਖ ਸਕਦੇ ਹਾਂ -

$$C_4H_{10}(g) + \frac{13}{2}O_2(g) \rightarrow 4CO_2(g) + 5H_2O(1);$$

$$\Delta_cH^{\circ} = -2658.0 \text{ kJ mol}^{-1}$$

ਇਸੇ ਤਰ੍ਹਾਂ ਗਲੂਕੋਜ਼ ਦੇ ਜਲਣ ਨਾਲ 2802.0 kJ/ mol ਤਾਪ ਨਿਰਮੁਕਤ ਹੁੰਦਾ ਹੈ, ਜਿਸ ਦੇ ਕਈ ਸਮੀਕਰਣ ਹੈ—

$$C_6H_{12}O_6(s) + 6O_2(g) \rightarrow 6CO_2(g) + 6H_2O(1);$$

$$\Delta_cH^{\circ} = -2802.0 \text{ kJ mol}^{-1}$$

ਸਾਡੇ ਸ਼ਰੀਰ ਵਿੱਚ ਵੀ ਜਲਣ ਦੇ ਪ੍ਕਰਮ ਦੀ ਤਰ੍ਹਾਂ ਭੋਜਨ ਤੋਂ ਊਰਜਾ ਪੈਦਾ ਹੁੰਦੀ ਹੈ, ਭਾਵੇਂ ਅੰਤਿਮ ਉਪਜਾਂ ਕਈ ਪ੍ਕਾਰ ਦੇ ਜਟਿਲ ਜੈਵ-ਰਸਾਇਣਿਕ ਪ੍ਤੀਕਿਰਿਆਵਾਂ ਦੀ ਸ਼੍ਰੇਣੀ ਤੋਂ ਬਣਦੇ ਹਨ, ਜਿਨ੍ਹਾਂ ਵਿੱਚ ਐਨਜ਼ਾਈਮ ਦੀ ਵਰਤੋਂ ਹੁੰਦੀ ਹੈ।

ਉਦਾਹਰਣ 6.8

ਬੈਨਜ਼ੀਨ ਦੇ 1 ਮੋਲ ਦਾ ਜਲਣ 298 K ਅਤੇ 1 atm ਦਾਬ ਉੱਤੇ ਹੁੰਦਾ ਹੈ। ਬਲਣ ਦੇ ਉਪਰੰਤ CO₂(g) ਅਤੇ ${
m H_2O}$ (I) ਬਣਦੇ ਹਨ ਅਤੇ 3267.0 kJ ਤਾਪ ਪੈਦਾ ਹੁੰਦਾ ਹੈ। ਬੈਨਜ਼ੀਨ ਦੇ ਲਈ ਸਟੈਂਡਰਡ ਨਿਰਮਾਣ ਐਨਥੈਲਪੀ ਦੀ ਗਣਨਾ ਕਰੋ। ${
m CO_2(g)}$ ਅਤੇ ${
m H_2O(l)}$ ਦੇ ਲਈ ਸਟੈਂਡਰਡ ਨਿਰਮਾਣ ਐਨਥੈਲਪੀ ਦੇ ਮਾਨ ਕ੍ਰਮਵਾਰ $-393.5~{
m kJ}~{
m mol}^{-1}$ ਅਤੇ $-285.83~{
m kJ}~{
m mol}^{-1}$ ਹੈ।

ਹੱਲ

ਬੈਨਜ਼ੀਨ ਦਾ ਨਿਰਮਾਣ ਹੇਠ ਲਿਖੇ ਸਮੀਕਰਣ ਨਾਲ ਕੀਤਾ ਜਾਂਦਾ ਹੈ—

$$6C\left($$
ਗਰੇਫਾਈਟ $\right)+3H_{2}\left(g\right) \rightarrow C_{6}H_{6}\left(1\right);$
$$\Delta_{f}H^{\circ}=?...\left(i\right)$$

ਮੋਲ ਬੈਨਜ਼ੀਨ ਦੇ ਲਈ ਜਲਣ ਐਨਥੈਲਪੀ ਹੈ-

$$C_6H_6(l) + \frac{15}{2}O_2(g) \rightarrow 6CO_2(g) + 3H_2O(l);$$

 $\Delta_cH^o = -3267\text{kJ mol.}^{-1}(ii)$

1 ਮੋਲ CO₉(g) ਦੇ ਲਈ ਨਿਰਮਾਣ ਐਨਥੈਲਪੀ ਹੈ:

$$C$$
(ਗਰੇਫਾਈਟ)+ $O_2(g) \rightarrow CO_2(g);$
$$\Delta_f H^\circ = -393.5 \, \mathrm{kJ} \, \, \mathrm{mol}^{-1}... \, (iii)$$

1 ਮੋਲ $\mathrm{H_2O}(\mathrm{l})$ ਦੇ ਲਈ ਨਿਰਮਾਣ ਐਨਥੈਲਪੀ ਹੈ :

$$H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O(1);$$

 $\Delta_f H^{\circ} = -285.83 \text{ kJ mol}^{-1}... \text{ (iv)}$

ਸਮੀਕਰਣ (iii) ਨੂੰ 6 ਨਾਲ ਅਤੇ (iv) ਨੂੰ 3 ਗੁਣ ਕਰਨ ਤੇ

$$6C\left($$
ਗਰੇਫਾਈਟ $\right)+6O_{2}\left(g\right) o 6CO_{2}\left(g\right);$ $\Delta_{f}H^{\circ}=-2361\,\mathrm{kJ\ mol^{-1}}$

$$3H_2(g) + \frac{3}{2}O_2(g) \rightarrow 3H_2O(1);$$

 $\Delta_f H^{\circ} = -857.49 \text{kJ mol}^{-1}$

ਉਪਰੋਕਤ ਦੋਵਾਂ ਸਮੀਕਰਣਾਂ ਨੂੰ ਜੋੜਨ ਤੇ

$$6C\left($$
ਗਰੇਫਾਈਟ $ight)+3H_{2}\left(g
ight)+rac{15}{2}O_{2}\left(g
ight)
ightarrow6CO_{2}\left(g
ight) \ +3H_{2}O\left(l
ight);$

$$\Delta_f H^{\oplus} = -857.42 \,\mathrm{kJ \ mol^{-1}}$$

ਸਮੀਕਰਣ (ii) ਨੂੰ ਉਲਟਾ ਕਰਨ ਤੇ

$$6\text{CO}_{2}(g) + 3\text{H}_{2}\text{O}(1) \rightarrow \text{C}_{6}\text{H}_{6}(1) + \frac{15}{2}\text{O}_{2};(g)$$

 $\Delta_{f}H^{\ominus} = -857.49 \text{ kJ mol}^{-1}$

ਸਮੀਕਰਣ (v) ਅਤੇ (vi) ਨੂੰ ਜੋੜਨ ਨਾਲ ਸਾਨੂੰ ਪ੍ਰਾਪਤ ਹੰਦਾ ਹੈ—

$$6$$
C $\left($ ਗਰੇਫਾਈਟ $ight)$ + 3 H $_{2}\left(g
ight)$ $ightarrow$ C_{6} H $_{6}\left(l
ight)$;
$$\Delta_{f}H^{\circ}=48.51~{\rm kJ~mol^{-1}}$$

(ਅ)ਪਰਮਾਣਵੀਂ ਕਰਣ ਐਨਥੈਲਪੀ

ਆਉਡਾਈਹਾਈਡ੍ਰੋਜਨ ਦੇ ਪਰਮਾਣਵੀਂ ਕਰਣ ਦੀ ਇਸ ਉਦਾਹਰਣ ਉੱਤੇ ਵਿਚਾਰ ਕਰੀਏ —

 $H_2(g) \rightarrow 2H(g); \ \Delta_a H^\circ = 435.0 \ \mathrm{kJ \ mol}^1$ ਤੁਸੀਂ ਵੇਖ ਸਕਦੇ ਹੋ ਕਿ ਇਸ ਪ੍ਕਿਰਿਆ ਵਿੱਚ ਡਾਈ ਹਾਈਡ੍ਰੋਜਨ ਦੇ H–H ਬੰਧਨਾਂ ਦੇ ਟੁੱਟਣ ਤੇ H ਪਰਮਾਣੂ ਪ੍ਰਾਪਤ ਹੁੰਦੇ ਹਨ। ਇਸ ਪ੍ਕਿਰਿਆ ਵਿੱਚ ਹੋਣ ਵਾਲੇ ਐਨਥੈਲਪੀ ਪਰਿਵਰਤਨ ਨੂੰ ਪਰਅਣਵੀ ਕਰਣ ਐਨਥੈਲਪੀ, $\Delta_a H^\circ$ ਕਹਿੰਦੇ ਹਨ। ਇਹ ਗੈਸੀ ਅਵਸਥਾ ਵਿੱਚ ਕਿਸੇ ਵੀ ਪਦਾਰਥ ਦੇ ਇੱਕ ਮੋਲ ਵਿੱਚ ਮੌਜੂਦ ਬੰਧਨਾ ਨੂੰ ਪੂਰਣ ਰੂਪ ਵਿੱਚ ਤੋੜ ਦੇ ਪਰਮਾਣੂਆਂ ਵਿੱਚ ਬਦਲਣ ਤੇ ਹੋਣ ਵਾਲਾ ਐਨਥੈਲਪੀ ਪਰਿਵਰਤਨ ਹੈ। ਉੱਤੇ ਦਰਸਾਏ ਗਏ ਡਾਈਹਾਈਡ੍ਰੋਜਨ ਵਰਗੇ ਦੋ ਪਰਮਾਣਵੀਂ ਅਣੂਆਂ ਦੀ ਪਰਅਣਵੀਂ ਕਰਣ ਐਨਥੈਲਪੀ ਇਨ੍ਹਾਂ ਦੀ ਬੰਧਨ ਵਿਯੋਜਨ ਐਨਥੈਲਪੀ ਵੀ ਹੁੰਦੀ ਹੈ। ਪਰਅਣਵੀਂ ਕਰਣ ਐਨਥੈਲਪੀ ਦੀਆਂ ਕੁਝ ਹੋਰ ਉਦਾਹਰਣਾ ਹੇਠ ਲਿਖੀਆਂ ਹਨ—

 ${
m CH_4(g)}
ightarrow {
m C(g)} + 4{
m H(g)}; \ \Delta_a H^{\circ} = 1665 \ {
m kJ \ mol}^{-1}$ ਇਹ ਧਿਆਨ ਦੇਣ ਯੋਗ ਗੱਲ ਹੈ ਕਿ ਇੱਥੇ ਉਪਜਾਂ ਕੇਵਲ ਗੈਸੀ ਅਵਸਥਾ ਵਿੱਚ C ਅਤੇ H ਪਰਮਾਣੂ ਹਨ।

 $Na(s) \to Na(g)$; $\Delta_a H^\circ = 108.4 \; kJ \; mol^{-1}$ ਇਸ ਉਦਾਹਰਣ ਵਿੱਚ ਪਰਮਾਵੀਂਕਰਣ ਐਨਥੈਲਪੀ ਅਤੇ ਜੌਹਰ ਉਡਾਉਣ ਐਨਥੈਲਪੀ ਇੱਕ ਸਮਾਨ ਹਨ।

(ੲ) ਬੰਧਨ ਐਨਥੈਲਪੀ Δ_{bond} $oldsymbol{H}^{\ominus}$

ਸਧਾਰਣ ਪ੍ਰਤੀ ਕਿਰਿਆਵਾਂ ਵਿੱਚ ਰਸਾਇਣਿਕ ਬੰਧਨ ਟੁੱਟਦੇ ਅਤੇ ਬਣਦੇ ਹਨ। ਬੰਧਨ ਟੁੱਟਣ ਦੇ ਲਈ ਊਰਜਾ ਦੀ ਜਰੂਰਤ ਹੁੰਦੀ ਹੈ ਅਤੇ ਬੰਧਨ ਬਣਨ ਵਿੱਚ ਊਰਜਾ ਪੈਦਾ ਹੁੰਦੀ ਹੈ। ਕਿਸੇ ਵੀ ਪ੍ਰਤੀਕਿਰਿਆ ਦੇ ਤਾਪ ਨੂੰ ਰਸਾਇਣਿਕ ਬੰਧਨਾਂ ਦੇ ਟੁੱਟਣ ਅਤੇ ਬਣਨ ਵਿੱਚ ਹੋਣ ਵਾਲੇ ਊਰਜਾ ਪਰਿਵਰਤਨਾਂ ਨਾਲ ਜੋੜਿਆ ਜਾ ਸਕਦਾ ਹੈ। ਰਸਾਇਣਿਕ ਬੰਧਨਾਂ ਨਾਲ ਜੁੜੇ ਐਨਥੈਲਪੀ ਪਰਿਵਰਤਨਾਂ ਦੇ ਲਈ ਤਾਪ ਗਤਿਕੀ ਵਿੱਚ ਦੋ ਵੱਖ ਟਰਮਾਂ ਵਰਤੀਆਂ ਜਾਂਦੀਆਂ ਹਨ—

- (i) ਬੰਧਨ ਵਿਯੋਜਨ ਐਨਥੈਲਪੀ
- (ii) ਔਸਤ ਬੰਧਨ ਐਨਥੈਲਪੀ

ਆਓ ਅਸੀਂ ਇਨ੍ਹਾਂ ਦੀ ਚਰਚਾ ਦੋ ਪਰਮਾਣਵੀਂ ਅਤੇ ਬਹੁ ਪਰਮਾਣਵੀਂ ਅਣੂਆਂ ਦੇ ਸੰਦਰਭ ਵਿੱਚ ਕਰੀਏ।

ਦੋ ਪਰਮਾਣਵੀਂ ਅਣੂ: ਹੇਠ ਲਿਖੀ ਪ੍ਕਿਰਿਆ ਉੱਤੇ ਵਿਚਾਰ ਕਰੋ ਜਿਸ ਵਿੱਚ ਇੱਕ ਮੋਲ ਡਾਈ ਹਾਈਡ੍ਰੋਜਨ ਵਿੱਚ ਮੌਜੂਦ ਸਾਰੇ ਬੰਧਨ ਟੱਟਦੇ ਹਨ—

 $H_2(g) \rightarrow 2H(g)$; $\Delta_{H-H}H^{\circ} = 435.0 \text{ kJ mol}^{-1}$ ਇਸ ਪ੍ਰਕਿਰਿਆ ਵਿੱਚ ਹੋਣ ਵਲਾ ਐਨਥੈਲਪੀ ਪਰਿਵਰਤਨ H-H ਬੰਧਨ ਦੀ ਬੰਧਨ ਵਿਯੋਜਨ ਐਨਥੈਲਪੀ (bond dissociation enthalpy) ਹੈ।

ਬੰਧਨ ਵਿਯੋਜਨ ਐਨਥੈਲਪੀ ਉਸ ਪ੍ਰਕਿਰਿਆ ਵਿੱਚ ਹੋਣ ਵਾਲਾ ਐਨਥੈਲਪੀ ਪਰਿਵਰਤਨ ਹੈ, ਜਿਸ ਵਿੱਚ ਕਿਸੇ ਗੈਸੀ ਸਹਿਸੰਯੋਜਕ ਯੋਗਿਕ ਦੇ ਇੱਕ ਮੋਲ ਬੰਧਨ ਟੁੱਟ ਕੇ ਗੈਸੀ ਉਪਜਾਂ ਬਣਨ।

ਧਿਆਨ ਦਿਓ ਕਿ ਇਹ ਐਨਥੈਲਪੀ ਪਰਿਵਰਤਨ ਅਤੇ ਡਾਈ ਹਾਈਡ੍ਰੋਜਨ ਦੀ ਪਰਅਣਵੀਂ ਕਰਣ ਐਨਥੈਲਪੀ ਇੱਕ ਸਮਾਨ ਹਨ। ਹੋਰ ਸਾਰੇ ਦੋ ਪਰਮਾਣਵੀਂ ਅਣੂਆਂ ਦੇ ਲਈ ਵੀ ਇਹ ਸੱਚ ਹੈ। ਉਦਾਹਰਣ ਵਜੋਂ —

$$\text{Cl}_2(g) \to 2\text{Cl}(g) \; ; \; \Delta_{\text{Cl-Cl}} H^{\circ} = 242 \text{ kJ mol}^{-1}$$

 $\text{O}_2(g) \to 2\text{O}(g) \; ; \; \Delta_{\text{O=O}} H^{\circ} = 428 \text{ kJ mol}^{-1}$

ਬਹੁ ਪਰਮਾਣਵੀਂ ਅਣੂ ਵਿੱਚ ਬੰਧਨ ਵਿਯੋਜਨ ਊਰਜਾ ਦਾ ਮਾਨ ਇੱਕ ਅਣੂ ਵਿੱਚ ਭਿੰਨ ਬੰਧਨਾਂ ਦੇ ਲਈ ਭਿੰਨ ਹੁੰਦਾ ਹੈ। ਬਹੁ ਪਰਮਾਣਵੀਂ ਅਣੂ (Polyatomic Moleculas): ਅਸੀਂ ਇੱਕ ਬਹੁ ਪਰਮਾਣਵੀਂ ਅਣੂ (ਜਿਵੇਂ – $\mathrm{CH_4}$) ਉੱਤੇ ਵਿਚਾਰ ਕਰਦੇ ਹਾਂ। ਇਸਦੇ ਪਰਮਾਣਵੀਂ ਕਰਣ ਦੇ ਲਈ ਤਾਪ ਰਸਾਇਣਿਕ ਪ੍ਰਤੀਕਿਰਿਆ ਇਸ ਤਰ੍ਹਾਂ ਦਿੱਤੀ ਜਾਂਦੀ ਹੈ —

$$CH_4(g) \rightarrow C(g) + 4H(g);$$

 $\Delta_a H^{\circ} = 1665 \text{ kJ mol}^{-1}$

ਮੀਥੇਨ ਵਿਚ ਸਾਰੇ C-H ਬੰਧਨ ਸਮਾਨ ਹਨ। ਇਸ ਲਈ ਮੀਥੇਨ ਅਣੂ ਵਿੱਚ ਸਾਰੇ C-H ਬੰਧਨਾਂ ਦੀ ਬੰਧਨ ਦੂਰੀ ਅਤੇ ਬੰਧਨ ਊਰਜਾ ਵੀ ਸਮਾਨ ਹੈ, ਫਿਰ ਵੀ C-H ਬੰਧਨ ਨੂੰ ਤੋੜਨ ਦੇ ਲਈ ਲੋੜੀਂਦੀ ਊਰਜਾ ਭਿੰਨ ਭਿੰਨ ਹੈ, ਜੋ ਹੇਠਾਂ ਦਿੱਤੀ ਗਈ ਹੈ —

$$\begin{split} & \text{CH}_4(g) \to \text{CH}_3(g) + \text{H}(g); \Delta_{bond} H^{\ominus} = +427 \text{ kJ mol}^{-1} \\ & \text{CH}_3(g) \to \text{CH}_2(g) + \text{H}(g); \Delta_{bond} H^{\ominus} = +439 \text{ kJ mol}^{-1} \\ & \text{CH}_2(g) \to \text{CH}(g) + \text{H}(g); \Delta_{bond} H^{\ominus} = +452 \text{ kJ mol}^{-1} \\ & \text{CH}(g) \to \text{C}(g) + \text{H}(g); \Delta_{bond} H^{\ominus} = +347 \text{ kJ mol}^{-1} \\ & \text{CH}_4(g) \to \text{C}(g) + 4\text{H}(g); \Delta_{a} H^{\ominus} = 1665 \text{ kJ mol}^{-1} \end{split}$$

172

ਹੁਣ ਅਸੀਂ ${\rm CH_4}$ ਵਿੱਚ ${\rm C-H}$ ਬੰਧਨ ਦੀ ਔਸਤ ਬੰਧਨ ਐਨਥੈਲਪੀ ਪਰਿਭਾਸ਼ਿਤ ਕਰਦੇ ਹਾਂ

$$\Delta_{\text{C-H}}H^{\circ} = \frac{1}{4}(\Delta_a H^{\circ}) = \frac{1}{4} (1665 \text{ kJ mol}^{-1})$$

= 416.25 kJ mol⁻¹

ਅਸੀਂ ਵੇਖਦੇ ਹਾਂ ਕਿ ਮੀਥੇਨ ਵਿੱਚ C–H ਬੰਧਨ ਦੀ ਔਸਤ ਬੰਧਨ ਐਥੈਲਪੀ 416.25 kJ/mol⁻¹ ਹੈ।ਇਹ ਵੇਖਿਆ ਗਿਆ ਹੈ ਕਿ ਭਿੰਨ ਭਿੰਨ ਯੋਗਿਕਾਂ, ਜਿਵੇਂ CH₃CH₂Cl, CH₃NO₂, ਆਦਿ ਵਿੱਚ C – H ਬੰਧਨ ਦਾ ਔਸਤ ਐਨਥੈਲਪੀ ਮਾਨ ਇੱਕ ਦੂਜੇ ਨਾਲੋਂ ਥੋੜਾ ਭਿੰਨ ਹੁੰਦਾ ਹੈ।* ਪਰੰਤੂ ਇਨ੍ਹਾਂ ਮਾਨਾਂ ਵਿੱਚ ਵਧੇਰੇ ਅੰਤਰ ਨਹੀਂ ਹੁੰਦਾ। ਹੈੱਸ ਦੇ ਨਿਯਮ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਬੰਧਨ ਐਨਥੈਲਪੀ ਦੀ ਗਣਨਾ ਕੀਤੀ ਜਾ ਸਕਦੀ ਹੈ। ਕੁਝ ਇਕਹਿਰੇ ਅਤੇ ਬਹੁ ਬੰਧਨਾਂ ਦੀ ਐਨਥੈਲਪੀ ਸਾਰਣੀ 6.3 ਵਿੱਚ ਉਪਲਬਧ ਹੈ।ਪ੍ਰਤੀਕਿਰਿਆ ਐਨਥੈਲਪੀ ਬਹੁਤ ਮਹੱਤਵਪੂਰਨ ਹੁੰਦੀ ਹੈ ਕਿਉਂਕਿ ਇਹ ਪੁਰਾਣੇ ਬੰਧਨਾਂ ਦੇ ਟੁੱਟਣ ਅਤੇ ਨਵੇਂ ਬੰਧਨਾਂ ਦੇ ਬਣਨ ਦੇ ਕਾਰਣ ਹੀ ਪੈਦਾ ਹੁੰਦੀ ਹੈ। ਜੇ ਸਾਨੂੰ ਭਿੰਨ ਭਿੰਨ ਬੰਧਨ ਐਨਥੈਲਪੀਆਂ ਗਿਆਨ ਹੋਣ ਤਾਂ ਗੈਸੀ ਅਵਸਥਾ ਵਿੱਚ ਕਿਸੇ ਵੀ ਪ੍ਰਤੀਕਿਰਿਆ ਦੀ ਐਨਥੈਲਪੀ ਗਿਆਤ ਕੀਤੀ ਜਾ ਸਕਦੀ

ਹੈ। ਗੈਸੀ ਅਵਸਥਾ ਵਿੱਚ ਪ੍ਤੀਕਿਰਿਆ ਦੀ ਸਟੈਂਡਰਡ ਐਨਥੈਲਪੀ $\Delta_{\mu}H^{\circ}$ ਉਪਜਾਂ ਅਤੇ ਪ੍ਤੀਕਾਰਕਾਂ ਦੀਆਂ ਬੰਧਨ ਐਨਥੈਲਪੀਆਂ ਇਸ ਤਰ੍ਹਾਂ ਸਬੰਧਿਤ ਹੰਦੀਆਂ ਹਨ—

$$\Delta_r H^\circ = \sum$$
 ਬੰਧਨ ਐਨਥੈਲਪੀ $_{
m Qun}$ $-\sum$ ਬੰਧਨ ਐਨਥੈਲਪੀ $_{
m Uj Siarga}$

(6.17)**

ਇਹ ਸਬੰਧ ਉਸ ਸਮੇਂ ਵਿਸ਼ੇਸ਼ ਉਪਯੋਗੀ ਹੁੰਦਾ ਹੈ, ਜਦੋਂ Δ_f H° ਦਾ ਅਨਗਿਆਨ ਨਾ ਹੋਵੇ। ਕਿਸੇ ਪ੍ਤੀਕਿਰਿਆ ਦਾ ਕੁੱਲ ਐਨਥੈਲਪੀ ਪਰਿਵਰਤਨ ਉਸ ਪ੍ਤੀਕਿਰਿਆ ਵਿੱਚ ਪ੍ਤੀਕਾਰਕ ਅਣੂਆਂ ਦੇ ਸਾਰੇ ਬੰਧਨਾਂ ਨੂੰ ਤੋੜਨ ਦੇ ਲਈ ਲੋੜੀਂਦੀ ਊਰਜਾ ਅਤੇ ਉਰਜਾ ਦੇ ਅਣੂਆਂ ਦੇ ਸਾਰੇ ਬੰਧਨ ਨੂੰ ਤੋੜਨ ਦੇ ਲਈ ਲੋੜੀਂਦਾ ਊਰਜਾ ਦਾ ਅੰਤਰ ਹੁੰਦਾ ਹੈ। ਧਿਆਨ ਰੱਖੋ ਕਿ ਇਹ ਸਬੰਧ ਲਗਪਗ ਸਹੀ ਹੈ। ਇਹ ਉਸ ਸਮੇਂ ਲਾਗੂ ਹੋਵੇਗਾ, ਜਦੋਂ ਪ੍ਤੀਕਿਰਿਆ ਵਿੱਚ ਸਾਰੇ ਪਦਾਰਥ (ਪ੍ਤੀਕਾਰਕ ਅਤੇ ਉਪਜਾਂ) ਗੈਸੀ ਅਵਸਥਾ ਵਿੱਚ ਹੋਣ।

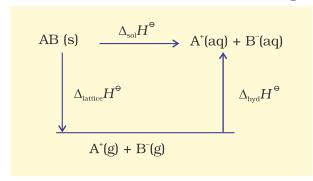
ਸਾਰਣੀ 6.3(ੳ) 298 K ਉੱਤੇ ਕੁਝ ਇਕਹਿਰੇ ਬੰਧਨਾਂ ਦੇ ਔਸਤ ਐਨਥੈਲਪੀਆਮਨ ($kJ \ mol^{-1}$ ਵਿੱਚ)

	I	Br	C1	S	Р	Si	F	0	N	С	Н
**											
Н	297	368	431	339	318	293	569	464	389	414	435.8
С	238	276	330	259	264	289	439	351	293	347	
N	-	243	201	-	209	-	272	201	159		
O	201	-	205	-	351	368	184	138			
F	-	197	255	327	490	540	155				
Si	213	289	360	226	213	176					
P	213	272	331	230	213						
S	-	213	251	213							
C1	209	218	243								
Br	180	192									
I	151										

ਸਾਰਣੀ 6.3(ਅ) 298 K ਉੱਤੇ ਕੁਝ ਔਸਤ ਬਹੁ ਬੰਧਨ ਐਨਥੈਲਪੀ ਅਨ (kJ mol⁻¹ ਵਿੱਚ)

N = N	418	C = C	611	O = O	498
$N \equiv N$	946	$C \equiv C$	837		
C = N	615	C = O	741		
$C \equiv N$	891	$C \equiv O$	1070		

^{*} ਨੋਹ ਕਰੋ-ਬੰਧਨ ਵਿਯੋਜਨ ਐਨਥੈਲਪੀ ਅਤੇ ਔਸਤ ਬੰਧਨ ਐਨਥੈਲਪੀ ਦੇ ਲਈ ਸਮਾਜ ਚਿੰਨ੍ਹ ਦੀ ਵਰਤੋਂ ਕੀਤੀ ਜਾਂਦੀ ਹੈ।


ਪਰਿਵਰਤਨ ਹੋਵੇਂ ਤਾਂ
$$\Delta_r H^\ominus = \sum \Delta_f H^\ominus_{\mathrm{Quni}}$$
 ਦੇ ਬੰਧਨ $-\sum \Delta_f H^\ominus_{\mathrm{wfsardar}}$ ਦੇ ਬੰਧਨ

^{**} ਜੇ ਅਸੀਂ ਬੰਧਨ ਨਿਰਮਾਣ ਐਨਥੈਲਪੀ ($\Delta_f H^\ominus_{bond}$) ਦੀ ਵਰਤੋਂ ਕਰੀਏ, ਜੋ ਗੈਸੀ ਪਰਮਾਣੂਆਂ ਦੁਆਰਾ ਕਿਸੇ ਪ੍ਰਕਾਰ ਦੇ ਇੱਕ ਮੋਲ ਬੰਧਨ ਬਣਨ ਦਾ ਐਨਥੈਲਪੀ

(ਸ) ਘੋਲ ਐਨਥੈਲਪੀ Δ_{so} \mathbf{H}^{\ominus}

ਕਿਸੇ ਪਦਾਰਥ ਦੀ ਘੋਲ ਐਨਥੈਲਪੀ ਉਹ ਐਨਥੈਲਪੀ ਪਰਿਵਰਤਨ ਹੈ, ਜੋ ਇਸਦੇ ਇੱਕ ਮੋਲ ਨੂੰ ਘੋਲਕ ਦੀ ਨਿਸ਼ਚਿਤ ਮਾਤਰਾ ਵਿੱਚ ਘੋਲਣ ਨਾਲ ਹੁੰਦਾ ਹੈ। ਅਨੰਤ ਪਤਲਾਪਨ ਉੱਤੇ ਘੋਲ ਐਨਥੈਲਪੀ ਉਹ ਐਨਥੈਲਪੀ ਪਰਿਵਰਤਨ ਹੈ, ਜਦੋਂ ਪਦਾਰਥ ਨੂੰ ਘੋਲਕ ਦੀ ਅਨੰਤ ਮਾਤਰਾ ਵਿੱਚ ਘੋਲਿਆ ਜਾਂਦਾ ਹੈ, ਜਦਕਿ ਆਇਨਾਂ ਦੇ (ਘੁਲਿਤ ਦੇ ਅਣੂਆਂ ਦੇ) ਵਿੱਚ ਪਰਸਪਰ ਅੰਤਰ-ਕਿਰਿਆ ਨਾ ਮਾਤਰ ਹੋਵੇ।

ਜਦੋਂ ਵਿੱਚ ਅਇਨਿਕ ਯੋਗਿਕ ਨੂੰ ਘੋਲਕ ਵਿੱਚ ਘੋਲਿਆ ਜਾਂਦਾ ਹੈ, ਤਾਂ ਇਸ ਦੇ ਆਇਨ ਕ੍ਰਿਸਟਲ ਲੈਟਿਨ ਵਿੱਚ ਆਪਣੀ ਨਿਯਮਿਤ ਸਥਿਤੀ ਨੂੰ ਛੱਡ ਦਿੰਦੇ ਹਨ। ਉਸ ਸਮੇਂ ਉਹ ਘੋਲ ਵਿੱਚ ਜ਼ਿਆਦਾ ਸੁਤੰਤਰ ਹੁੰਦੇ ਹਨ, ਪਰੰਤੂ ਉਸੇ ਸਮੇਂ ਇਨ੍ਹਾਂ ਆਇਨਾਂ ਦਾ ਸਾਲਵੇਸ਼ਨ (ਪਾਣੀ ਵਿੱਚ ਜਲੀਕਰਣ) ਵੀ ਹੁੰਦਾ

ਹੈ। ਇਸ ਨੂੰ ਇੱਕ ਅਇਨਿਕ ਯੋਗਿਕ AB (s) ਦੇ ਲਈ ਅਰੇਖੀ ਰੂਪ ਵਿੱਚ ਵਿਖਾਇਆ ਗਿਆ ਹੈ।

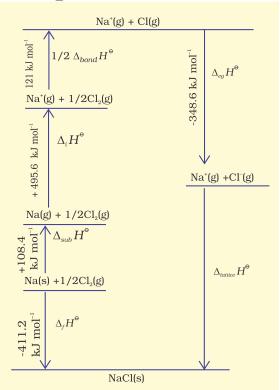
ਇੰਜ ਪਾਣੀ ਵਿੱਚ AB(s) ਦੀ ਘੋਲ ਐਨਥੈਲਪੀ $\Delta_{sol}H^{\circ}$ ਅਤੇ ਜਲੀ ਕਰਣ ਐਨਥੈਲਪੀ $\Delta_{hyd}H^{\circ}$ ਦਾ ਮਾਨਾਂ ਦੁਆਰਾ ਇਸ ਤਰ੍ਹਾਂ ਗਿਆਤ ਕੀਤੀ ਜਾ ਸਕਦੀ ਹੈ—

$$\Delta_{sol} \boldsymbol{H}^{\scriptscriptstyle\ominus} = \Delta_{lattice} \boldsymbol{H}^{\scriptscriptstyle\ominus} + \Delta_{hyd} \boldsymbol{H}^{\scriptscriptstyle\ominus}$$

ਵਧੇਰੇ ਆਇਨਿਕ ਯੋਗਿਕਾਂ ਦੇ ਲਈ $\Delta_{sol} H^{\circ}$ ਧਨਾਤਮਕ ਹੁੰਦੀ ਹੈ। ਇਸ ਲਈ ਵਧੇਰੇ ਯੋਗਿਕਾਂ ਦੀ ਪਾਣੀ ਵਿੱਚ ਘੁਲਣਸ਼ੀਲਤਾ ਤਾਪਮਾਨ ਵਧਾਉਣ ਨਾਲ ਵਧਦੀ ਹੈ। ਜੇ ਲੈਟਿਨ ਐਨਥੈਲਪੀ ਬਹੁਤ ਜਿਆਦਾ ਹੈ, ਤਾਂ ਯੋਗਿਕ ਦਾ ਘੋਲ ਨਹੀਂ ਬਣਦਾ। ਬਹੁਤ ਸਾਰੇ ਫੋਲਰਾਈਡ ਕਲੋਰਾਈਡਾਂ ਨਾਲੋਂ ਘੱਟ ਕਿਉਂ ਘੁਲਦੇ ਹਨ ? ਐਨਥੈਲਪੀ ਪਰਿਵਰਤਨਾਂ ਦੇ ਅਨੁਮਾਨ ਬੰਧਨ ਊਰਜਾਵਾਂ (ਐਨਥੈਲਪੀਆਂ) ਅਤੇ ਲੈਟਿਸ ਊਰਜਾਵਾਂ (ਐਨਥੈਲਪੀਆਂ) ਦੀਆਂ ਸਾਰਣੀਆਂ ਦੀ ਵਰਤੋਂ ਦੁਆਰਾ ਕੀਤੇ ਜਾ ਸਕਦੇ ਹਨ।

ਲੈਟਿਸ ਐਨਥੈਲਪੀ

ਇੱਕ ਅਇਨਿਕ ਯੋਗਿਕ ਦੀ ਲੈਟਿਨ ਐਨਥੈਲਪੀ ਉਹ ਐਨਥੈਲਪੀ ਪਰਿਵਰਤਨ ਹੈ, ਜਦ ਇੱਕ ਮੋਲ ਆਇਨਿਕ ਯੋਗਿਕ ਗੈਸੀ ਅਵਸਥਾ ਵਿੱਚ ਅਪਣਾ ਆਇਨਾਂ ਵਿੱਚ ਵਿਯੋਜਿਤ ਹੰਦਾ ਹੈ।


$$Na^+Cl^-(s) \rightarrow Na^+(g) + Cl^-(g);$$

$$\Delta_{lattice} H^{\ominus} = +788 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$$

ਕਿਉਂਕਿ ਲੈਟਿਸ ਐਨਥੈਲਪੀ ਨੂੰ ਪ੍ਰਯੋਗਾਂ ਦੁਆਰਾ ਸਿੱਧੇ ਗਿਆਤ ਕਰਨਾ ਅਸੰਭਵ ਹੈ, ਇੰਜ ਅਸੀਂ ਇੱਕ ਅਸਿੱਧੇ ਢੰਗ ਦੀ ਵਰਤੋਂ ਕਰਦੇ ਹਾਂ ਜਿੱਥੇ ਇੱਕ ਐਨਥੈਲਪੀ ਆਰੇਖ ਬਣਾਉਂਦੇ ਹਾਂ। ਉਸ ਨੂੰ ਬਾੱਰਨ–ਹੈਬਰ ਚੱਕਰ (Born-Haber Cycle) ਅਖਿਆ ਜਾਂਦਾ ਹੈ। (ਚਿੱਤਰ 6.9)।

ਆਓ, ਅਸੀਂ ਹੇਠ ਲਿਖੇ ਸਟੈੱਪਾਂ ਵਿੱਚ Na⁺Cl⁻(s) ਦੀ ਲੈਟਿਸ ਐਨਥੈਲਪੀ ਦੀ ਗਣਨਾ ਕਰਦੇ ਹਾਂ —

- 1. Na(s) \rightarrow Na(g) ਸੋਡੀਅਮ ਧਾਤ ਦਾ ਜੌਹਰ ਉਡਾਉਣਾ $\Delta_{\mathrm{sub}}\mathrm{H}^{\scriptscriptstyle \ominus}$ = 108.4 kJ $\mathrm{mol}^{\scriptscriptstyle -1}$
- $2.~~Na(g)
 ightarrow Na^+(g) + e(g)$, ਸੋਡੀਅਮ ਪਰਮਾਣੂ ਦੀਆਂ ਆਇਨਨ ਐਨਥੈਲਪੀ $\Delta_i H^\circ = 496~{
 m kJ~mol}^{-1}$
- $3. \ \, rac{1}{2} \mathrm{Cl}_2(\mathrm{g}) o \mathrm{Cl}(\mathrm{g}) \,$ ਕਲੋਰੀਨ ਦਾ ਵਿਯੋਜਨ। ਇਸ ਪ੍ਰਤੀ ਕਿਰਿਆ ਦੀ ਐਨਥੈਲਪੀ ਬੰਧਨ ਵਿਯੋਜਨ ਐਨਥੈਲਪੀ ਦੀ ਅੱਧੀ ਹੈ $rac{1}{2} \Delta_{bond} H^\circ = 121 \mathrm{kJ \ mol}^{-1}$.

ਚਿੱਤਰ 6.9 NaCl ਦੀ ਲੈਟਿਸ ਐਨਥੈਲਪੀ ਦੇ ਲਈ ਐਨਥੈਲਪੀ ਆਰੇਖ

4. $Cl(g) + e(g) \to C\bar{l}(g)$ ਕਲੋ ਗੰਨ ਪਰਮਾਣੂ ਦੁਆਰਾ ਇਲੈਕਟ੍ਰਾਨ ਗ੍ਰਹਿਣ ਐਨਥੈਲਪੀ। ਇਸ ਪ੍ਰਕਿਰਿਆ ਵਿੱਚ ਇਲੈਕਟ੍ਰਾਨ ਗ੍ਰਹਿਣ ਐਨਥੈਲਪੀ $\Delta_{eg}H^{\circ} = -348.6$ kJ mol^{-1}

ਤੁਸੀਂ ਯੁਨਿਟ 3 ਵਿੱਚ ਅਇਨਨ ਐਨਥੈਲਪੀ ਅਤੇ ਇਲੈਕਟ੍ਰਾੱਨ ਗ੍ਰਹਿਣ ਐਨਥੈਲਪੀ ਦੇ ਬਾਰੇ ਵਿੱਚ ਪੜ੍ਹਿਆ ਹੈ।ਅਸਲ ਵਿੱਚ ਇਹ ਟਰਮਾਂ ਤਾਪ ਗਤਿਕੀ ਤੋਂ ਹੀ ਲਈਆਂ ਗਈਆਂ ਹਨ। ਪਹਿਲਾਂ ਇਨ੍ਹਾਂ ਟਰਮਾਂ ਦੀ ਜਗ੍ਹਾ ਆਇਨਨ ਊਰਜਾ ਅਤੇ ਇਲੈਕਟ੍ਰਾੱਨ ਬੰਧੁਤਾ ਟਰਮਾਂ ਦੀ ਵਰਤੋਂ ਕੀਤੀ ਜਾਂਦੀ ਸੀ (ਬਾੱਕਸ ਵੇਖੋ)।

ਆਇਨਨ ਊਰਜਾ ਅਤੇ ਇਲੈਕਟ੍ਰਾੱਨ ਬੰਧੁਤਾ

ਆਇਨਨ ਊਰਜਾ ਅਤੇ ਇਲੈਕਟ੍ਰਾੱਨ ਬੰਧੁਤਾ ਟਰਮਾਂ ਨੂੰ ਪਰਮ ਜ਼ੀਰੋ ਤਾਪਮਾਨ ਉੱਤੇ ਪਰਿਭਾਸ਼ਿਤ ਕੀਤਾ ਗਿਆ ਹੈ। ਕਿਸੇ ਹੋਰ ਤਾਪਮਾਨ ਉੱਤੇ ਇਨ੍ਹਾਂ ਦਾ ਮਾਨ ਪ੍ਰਤੀ ਕਾਰਕਾਂ ਅਤੇ ਉਪਜਾਂ ਦੀ ਤਾਪ ਧਾਰਣ ਸਮਰੱਥਾ ਦੀ ਸਹਾਇਤਾ ਨਾਲ ਪਰਿਕਲਿਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਹੇਠ ਲਿਖੀ ਪ੍ਰਤੀ ਕਿਰਿਆ ਵਿੱਚ

 $M(g) \rightarrow M^{+}(g) + e^{-}$ (ਅਇਨਨ ਦੇ ਲਈ) $M(g) + e^{-} \rightarrow M^{-}(g)$ (ਇਲੈਕ੍ਰਟਾੱਨ ਬੰਧੁਤਾ ਦੇ ਲਈ) ਪਰਿਕਲਿਤ

ਤਾਪਮਾਨ T ਉੱਤੇ ਐਨਥੈਲਪੀ ਪਰਿਵਰਤਨ ਹੇਠ ਲਿਖੇ ਸਮੀਕਰਣ ਦੀ ਸਹਾਇਤਾ ਨਾਲ ਪਰਿਕਲਿਤ ਕੀਤਾ ਜਾਸਕਦਾ ਹੈ -

$$\Delta_{r}H^{\ominus}(T) = \Delta_{r}H(0) + \int_{0}^{T} \Delta_{r}C_{p}^{\ominus}dT$$

ਉਪਰੋਕਤ ਪ੍ਰਤੀ ਕਿਰਿਆਵਾਂ ਵਿੱਚ ਭਾਗ ਲੈ ਰਹੇ ਹਰ ਇੱਕ ਪਦਾਰਥ ਦੀ ਤਾਪ ਧਾਰਣ ਸਮਰਥਾ C_p = 5/2 R (ਅਤੇ C_V = 3/2R) ਇਸ ਲਈ

 $\Delta_{r}C_{p}^{\ominus} = + 5/2 \text{ R (ਆਇਨਨ ਦੇ ਲਈ)}$ $\Delta_{r}C_{p}^{\ominus} = - 5/2 \text{ R (ਇਲੈਕਟ੍ਰਾਨ ਗ੍ਰਹਿਣ ਦੇ ਲਈ)}$ ਇਸ ਤਰ੍ਹਾਂ

 $\Delta_{\mu}H^{\ominus}$ (ਆਇਨਨ ਐਨਥੈਲਪੀ)

 $=E_0$ (ਆਇਨਨ ਊਰਜਾ) + $5/2~\mathrm{R}T$ $\Delta_{,}H^\ominus_{}=-\mathrm{A}(ਇਲੈਕਟ੍ਰਾਨ ਬੰਧੁਤਾ) - <math>5/2~\mathrm{R}T$

5. Na⁺(g) + Cl[−](g) → Na⁺Cl[−](s) ਇਨ੍ਹਾਂ ਭਿੰਨ ਭਿੰਨ ਟਰਮਾਂ ਦਾ ਕ੍ਰਮ ਚਿੱਤਰ 6.9 ਵਿੱਚ ਦਰਸਾਇਆ ਗਿਆ ਹੈ। ਇਸ ਕ੍ਰਮ ਨੂੰ 'ਬਾੱਰਨ ਹੈਬਰ ਚੱਕਰ ਕਹਿੰਦੇ ਹਨ।' ਇਸ ਚੱਕਰ ਦਾ ਮਹੱਤਵ ਇਹ ਹੈ ਕਿ ਇਸ ਪੂਰੇ ਚੱਕਰ ਵਿੱਚ ਐਨਥੈਲਪੀ-ਪਰਿਵਰਤਨ ਸਿਫਰ ਹੁੰਦਾ ਹੈ।

ਹੈੱਸ ਨਿਯਮ ਦੇ ਅਨੁਸਾਰ

$$\Delta_{lattice} H^{\ominus} = 411.2 + 108.4 + 121 - 348.6$$

$$\Delta_{lattice}H^{o} = +788kJ$$

 ${
m NaCl(s)}
ightarrow {
m Na}^+(g) + {
m Cl}^-(g)$ ਦੇ ਲਈ ਇਸ ਪ੍ਰਕਿਰਿਆ ਦੇ ਲਈ ਅੰਦਰੂਨੀ ਊਰਜਾ ਇਸ ਤੋਂ 2/3 RT ਘੱਟ ਹੋਵੇਗੀ (ਕਿਉਂਕਿ $\Delta n_g = 2$) ਜੋ + 783 kJ ${
m mol}^{-1}$ ਦੇ ਬਰਾਬਰ ਹੋਵੇਗੀ।

ਹੁਣ ਅਸੀਂ ਇਸ ਲੈਟਿਸ ਐਨਥੈਲਪੀ ਦੇ ਮਾਨ ਦੀ ਸਹਾਇਤਾ ਨਾਲ ਘੋਲ ਐਨਥੈਲਪੀ ਦਾ ਪਰਿਕਲਨ ਕਰ ਸਕਦੇ ਹਾਂ।

$$\Delta_{sol}H^{\ominus} = \Delta_{lattice}H^{\ominus} + \Delta_{hyd}H^{\ominus}$$

NaCl(s) ਦੇ ਇੱਕ ਮੋਲ ਦੇ ਲਈ ਲੈਟਿਸ ਐਨਥੈਲਪੀ = + 788 kJ mol⁻¹

$$\Delta_{lattice} H^{\circ} = -784 \text{ kJ mol}^{-1}$$
(ਰੈਫਰੈਂਸ ਪੁਸਤਕ ਤੋਂ)
 $\Delta_{sol} H^{\circ} = +788 \text{ kJ mol}^{-1} -784 \text{ kJ mol}^{-1}$
= +4 kJ mol $^{-1}$

ਇਸ ਤਰ੍ਹਾਂ NaCl(s) ਦੀ ਘੋਲ ਪ੍ਰਕਿਰਿਆ ਵਿੱਚ ਬਹੁਤ ਘੱਟ ਉਰਜਾ ਪਰਿਵਰਤਨ ਹੁੰਦਾ ਹੈ।

6.6 ਸਤੇ ਸਿੱਧਤਾ

ਤਾਪ ਗਤਿਕੀ ਦਾ ਪਹਿਲਾ ਨਿਯਮ ਸਾਨੂੰ ਕਿਸੇ ਸਿਸਟਮ ਦੁਆਰਾ ਸੋਖਿਤ ਤਾਪ ਅਤੇ ਉਸ ਉੱਤੇ ਜਾਂ ਉਸ ਦੁਆਰਾ ਕੀਤੇ ਗਏ ਕਾਰਜ ਵਿੱਚ ਸਬੰਧ ਦੱਸਦਾ ਹੈ। ਇਹ ਤਾਪ ਦੇ ਪ੍ਵਾਹ ਦੀ ਦਿਸ਼ਾ ਉੱਤੇ ਕੋਈ ਪਾਬੰਦੀ ਨਹੀਂ ਲਗਾਉਂਦਾ, ਬਲਕਿ ਤਾਪ ਦਾ ਪ੍ਵਾਹ ਉੱਚੇ ਤਾਪਮਾਨ ਤੋਂ ਘੱਟ ਤਾਪਮਾਨ ਦੀ ਦਿਸ਼ਾ ਵਿੱਚ ਹੁੰਦਾ ਹੈ। ਅਸਲ ਵਿੱਚ ਪ੍ਰਾਕਰਤਿਕ ਰੂਪ ਵਿੱਚ ਹੋਣ ਵਾਲੇ ਸਾਰੇ ਭੌਤਿਕ ਅਤੇ ਰਸਾਇਣਿਕ ਪ੍ਕਰਮ ਇੱਕ ਹੀ ਦਿਸ਼ਾ ਦੇ ਵੱਲ ਜਿਸ ਵਿੱਚ ਸੰਤੁਲਨ ਸਥਾਪਿਤ ਹੋਵੇ, ਸੁਤੇ ਸਿੱਧ ਹੋਣਗੇ। ਉਦਾਹਰਣ ਦੇ ਲਈ ਇੱਕ ਗੈਸ ਦਾ ਉਪਲਬਧ ਸਥਾਨ ਨੂੰ ਭਰਨ ਦੇ ਲਈ ਪਸਰਨ, ਕਾਰਬਨ ਦਾ ਆੱਕਸੀਜਨ ਵਿੱਚ ਜਲ ਕੇ ਕਾਰਬਨ ਡਾਈਆੱਕਸਾਈਡ ਬਣਨਾ ਆਦਿ।

ਪਰੰਤੂ ਤਾਪ ਠੰਡੀ ਵਸਤੂ ਤੋਂ ਗਰਮ ਵਸਤੂ ਦੇ ਵੱਲ ਆਪਣੇ ਆਪ ਨਹੀਂ ਜਾਵੇਗਾ। ਇੱਕ ਬਰਤਨ ਵਿੱਚ ਰੱਖੀ ਗੈਸ ਕਿਸੇ ਕੋਣੇ ਵਿੱਚ ਸੁਤੇ ਸਿੱਧ ਨਪੀੜਤ ਨਹੀਂ ਹੋਵੇਗੀ ਜਾਂ ਕਾਰਬਨ ਡਾਈਆਂਕਸਾਈਡ ਸੁਤੇ ਸਿੱਧ ਕਾਰਬਨ ਅਤੇ ਆੱਕਸੀਜਨ ਵਿੱਚ ਪਰਿਵਰਤਿਤ ਨਹੀਂ ਹੋਵੇਗੀ। ਇਸੇ ਤਰ੍ਹਾਂ ਦੇ ਹੋਰ ਸੁਤੇ ਸਿੱਧ ਪ੍ਕਰਮ ਇਕ ਦਿਸ਼ਾ ਵਿੱਚ ਪਰਿਵਰਤਨ ਦਰਸਾਉਂਦੇ ਹਨ। ਹੁਣ ਪ੍ਰਸ਼ਨ ਉੱਠਦਾ ਹੈ ਕਿ ਸੁਤੇ ਸਿੱਧ ਹੋਣ ਵਾਲੇ ਪਰਿਵਰਤਨਾਂ ਦੇ ਲਈ ਪ੍ਰੇਰਕ ਬਲ (driving force) ਕੀ ਹੈ ? ਇੱਕ ਸੁਤੇ ਸਿੱਧ ਪ੍ਕਰਮ ਦੀ ਦਿਸ਼ਾ ਕਿਵੇਂ ਨਿਰਧਾਰਿਤ ਹੁੰਦੀ ਹੈ ? ਇਸ ਭਾਗ ਵਿੱਚ ਅਸੀਂ ਇਨ੍ਹਾਂ ਪ੍ਕਰਮਾਂ ਦੇ ਲਈ ਮਾਪ ਦੰਡ ਨਿਰਧਾਰਿਤ ਕਰਾਂਗੇ ਕਿ ਇਹ ਸੰਭਵ ਹੋ ਸਕਦੇ ਹਨ ਜਾਂ ਨਹੀਂ।

ਪਹਿਲਾਂ ਸਾਨੂੰ ਸਮਝਣਾ ਚਾਹੀਦਾ ਹੈ ਕਿ ਸੁਤੇ ਸਿੱਧ ਪ੍ਕਰਮ ਕੀ ਹੈ ? ਤੁਸੀਂ ਸਧਾਰਣ ਰੂਪ ਵਿੱਚ ਸੋਚ ਸਕਦੇ ਹੋ ਕਿ ਸੁਤੇ ਸਿੱਧ ਰਸਾਇਣਿਕ ਪ੍ਤੀਕਿਰਿਆ ਉਹ ਹੈ, ਜੋ ਪ੍ਤੀਕਾਰਕਾਂ ਦੇ ਸੰਪਰਕ ਨਾਲ ਤੁਰੰਤ ਹੀ ਹੋਣ ਲੱਗਦੀ ਹੈ। ਅਸੀਂ ਹਾਈਡ੍ਰੋਜਨ ਅਤੇ ਆੱਕਸੀਜਨ ਦੇ ਸੰਜੋਗ ਦੀ ਸਥਿਤੀ ਨੂੰ ਲੈਂਦੇ ਹਾਂ। ਇਨ੍ਹਾਂ ਗੈਸਾਂ

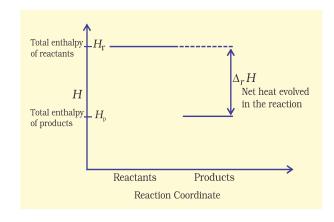
ਨੂੰ ਕਮਰੇ ਦੇ ਤਾਪਮਾਨ ਉੱਤੇ ਮਿਸ਼ਰਿਤ ਕਰਕੇ ਅਨੇਕਾਂ ਸਾਲਾਂ ਤੱਕ ਬਿਨਾਂ ਕਿਸੇ ਖਾਸ ਪਰਿਵਰਤਨ ਦੇ ਰੱਖਿਆ ਜਾ ਸਕਦਾ ਹੈ। ਭਾਵੇਂ ਇਨ੍ਹਾਂ ਦੇ ਵਿੱਚ ਪ੍ਰਤੀਕਿਰਿਆ ਹੋ ਰਹੀ ਹੈ ਪਰੰਤੂ ਬਹੁਤ ਹੀ ਹੌਲੀ ਗਤੀ ਨਾਲ। ਇਸ ਨੂੰ ਤਾਂ ਵੀ ਸੂਤੇ ਸਿੱਧ ਪ੍ਤੀਕਿਰਿਆ ਹੀ ਕਹਿੰਦੇ ਹਨ। ਇਸ ਤਰ੍ਹਾਂ ਸੂਤੇ ਸਿੱਧ ਪ੍ਰਕਰਮ ਦਾ ਅਰਥ ਹੈ ਕਿਸੇ ਬਾਹਰੀ ਸਾਧਨ (agency) ਦੀ ਬਿਨਾਂ ਸਹਾਇਤਾ ਦੇ ਕਿਸੇ ਪ੍ਰਕਰਮ ਦੇ ਹੋਣ ਦੀ ਪ੍ਰਵਿਰਤੀ ਹੋਣਾ। ਭਾਵੇਂ ਇਸ ਨਾਲ ਪ੍ਰਤੀ ਕਿਰਿਆ ਜਾਂ ਪ੍ਰਕਰਮ ਦੇ ਹੋਣ ਦੀ ਦਰ ਦਾ ਪਤਾ ਨਹੀਂ ਚਲੱਦਾ ਹੈ। ਸੂਤੇ ਸਿੱਧ ਪ੍ਕਰਮਾਂ ਦੇ ਦੂਜੇ ਪਹਿਲੂ ਨੂੰ ਅਸੀਂ ਵੇਖਦੇ ਹਾਂ ਸੂਤੇ ਸਿੱਧ ਆਪਣੀ ਦਿਸ਼ਾ ਨੂੰ ਉਲਟਾ ਨਹੀਂ ਸਕਦੇ। ਸੂਤੇ ਸਿੱਧ ਪਕਰਮਾਂ ਦੇ ਲਈ ਅਸੀਂ ਸੰਖੇਪ ਵਿੱਚ ਕਹਿ ਸਕਦੇ ਹਾਂ ਕਿ –

ਸੁੱਤੇ ਸਿੱਧ ਪ੍ਕਰਮ ਇਕ ਅਪਰਤਵਾਂ ਪ੍ਕਰਮ ਹੁੰਦਾ ਹੈ। ਇਹ ਕਿਸੇ ਬਾਹਰੀ ਸਾਧਨ (agency) ਦੇ ਦੁਆਰਾ ਹੀ ਪਰਵਤਾਂ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।

(ੳ) ਕੀ ਐਨਥੈਲਪੀ ਦਾ ਘੱਟ ਹੋਣਾ ਸੂਤੇ ਸਿੱਧ ਦੀ ਕਸੌਟੀ ਹੈ ?

ਜੇ ਅਸੀਂ ਅਜਿਹੀਆਂ ਘਟਨਾਵਾਂ ਜਿਵੇਂ - ਪਹਾੜੀ ਤੋਂ ਪਾਣੀ ਦਾ ਡਿੱਗਣਾ ਜਾਂ ਜਮੀਨ ਉੱਤੇ ਪੱਥਰ ਡਿੱਗਣ ਦੀਆਂ ਪਕਿਰਿਆਂ ਉੱਤੇ ਵਿਚਾਰ ਕਰੀਏ, ਤਾਂ ਅਸੀਂ ਵੇਖਾਂਗੇ ਕਿ ਪ੍ਕਰਮ ਦੀ ਦਿਸ਼ਾ ਵਿੱਚ ਸਿਸਟਮ ਦੀ ਸਥਿਤਿਜ ਉਰਜਾ ਵਿੱਚ ਕਮੀਂ ਹੁੰਦੀ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਅਸੀਂ ਵੇਖਾਂਗੇ ਕਿ ਪ੍ਰਕਰਮ ਦੀ ਦਿਸ਼ਾ ਵਿੱਚ ਸਿਸਟਮ ਦੀ ਸਥਿਤਿਜ ਉਰਜਾ ਵਿੱਚ ਕਮੀਂ ਹੁੰਦੀ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਅਸੀਂ ਕਹਿ ਸਕਦੇ ਹਾਂ ਕਿ ਇੱਕ ਰਸਾਇਣਿਕ ਪ੍ਤੀਕਿਰਿਆ ਉਸ ਦਿਸ਼ਾ ਵਿੱਚ ਸੂਤੇ ਸਿੱਧ ਹੋਵੇਗੀ, ਜਿਸ ਦਿਸ਼ਾ ਵਿੱਚ ਉਰਜਾ ਵਿੱਚ ਕਮੀਂ ਹੋਵੇ, ਜਿਵੇਂ ਤਾਪ ਨਿਕਾਸੀ ਪ੍ਤੀ ਕਿਰਿਆਵਾਂ ਵਿੱਚ ਹੁੰਦਾ ਹੈ। ਉਦਾਹਰਣ ਦੇ ਲਈ

$$\begin{split} \frac{1}{2} \, \mathrm{N_2(g)} + \frac{3}{2} \, \mathrm{H_2(g)} &= \mathrm{NH_3(g)} \; ; \\ & \Delta_r H^{\ominus} = - \, 46.1 \; \mathrm{kJ} \; \mathrm{mol^{-1}} \\ & \mathrm{H_2(g)} + \frac{1}{2} \, \mathrm{Cl_2(g)} = \mathrm{HCl} \; \mathrm{(g)} \; ; \\ & \Delta_r H^{\ominus} = - \, 92.32 \; \mathrm{kJ} \; \mathrm{mol^{-1}} \\ & \mathrm{H_2(g)} + \frac{1}{2} \, \mathrm{O_2(g)} \to \mathrm{H_2O(l)} \; ; \end{split}$$


 $\Delta_{r}H^{\Theta} = -285.8 \text{ kJ mol}^{-1}$

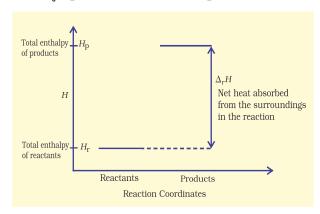
ਕਿਸੇ ਵੀ ਤਾਪ ਸੋਖੀ ਪਤੀ ਕਿਰਿਆ ਦੇ ਲਈ ਪਤੀਕਾਰਕਾਂ ਤੋਂ ਉਪਜਾਂ ਦੇ ਬਣਨ ਤੇ ਐਨੂਥੈਲਪੀ ਵਿੱਚ ਆਈ ਕਮੀਂ ਨੂੰ ਇੱਕ ਅਥੈਲਪੀ ਆਰੇਖ ਚਿੱਤਰ 6.10(ੳ) ਨਾਲ ਦਰਸਾਇਆ ਜਾ ਸਕਦਾ ਹੈ।

ਹੁਣ ਤੱਕ ਪ੍ਰਾਪਤ ਪਰਮਾਣਾਂ ਦੇ ਅਧਾਰ ਤੇ ਅਸੀਂ ਇਹ ਧਾਰਣਾਂ ਬਣਾ ਸਕਦੇ ਹਾਂ ਕਿ ਕਿਸੇ ਰਸਾਇਣਿਕ ਪ੍ਰਤੀਕਿਰਿਆ ਲਈ ਆਈ ਐਨਥੈਲਪੀ ਵਿੱਚ ਕਮੀਂ ਉਸਦਾ ਪ੍ਰੇਰਬਲ (driving force) ਹੈ।

ਹੁਣ ਅਸੀਂ ਹੇਠ ਲਿਖੀਆਂ ਪ੍ਰਤੀਕਿਰਿਆਵਾਂ ਉੱਤੇ ਵਿਚਾਰ ਕਰਦੇ ਹਾਂ –

$$rac{1}{2} \; ext{N}_2(\mathrm{g}) + ext{O}_2(\mathrm{g}) o ext{NO}_2(\mathrm{g});$$

$$\Delta_r H^\circ = +33.2 \; \mathrm{kJ} \; \mathrm{mol}^{-1}$$
 C(ਗਰੇਫਾਈਟ, s) + 2 S(l) o CS $_2$ (l);



ਚਿੱਤਰ 6.10 (ੳ) ਤਾਪ ਨਿਕਾਸੀ ਪਤੀ ਕਿਰਿਆ ਦੇ ਲਈ ਐਨਥੈਲਪੀ ਆਰੇਖ

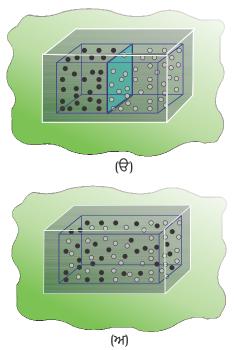
 $\Delta_r H^{\circ} = +128.5 \text{ kJ mol}^{-1}$

ਇਹ ਪ੍ਰਤੀ ਕਿਰਿਆਵਾਂ ਸੂਤੇ ਸਿੱਧ ਪਕਰਮ ਅਤੇ ਤਾਪਸੋਖੀ ਹਨ। ਐਨਥੈਲਪੀ ਵਿੱਚ ਵਾਧੇ ਨੂੰ ਇੱਕ ਐਨਥੈਲਪੀ ਆਰੇਖ ਦੁਆਰਾ ਦਰਸਾਇਆ ਗਿਆ ਹੈ। ਚਿੱਤਰ 6.10(ਅ)।

ਇਨ੍ਹਾਂ ਉਦਾਹਰਣਾਂ ਤੋਂ ਇਹ ਸਪਸ਼ਟ ਹੁੰਦਾ ਹੈ ਕਿ ਐਨਥੈਲਪੀ

ਚਿੱਤਰ 6.10 (ਅ) ਤਾਪਸੌਖੀ ਪ੍ਤੀਕਿਰਿਆ ਦੇ ਲਈ ਐਨਥੈਲਪੀ-ਆਰੇਖ

ਵਿੱਚ ਕਮੀਂ ਸਤੇ ਸਿੱਧਤਾ ਦੇ ਲਈ ਇੱਕ ਸਹਾਇਕ ਕਾਰਕ ਹੈ, ਪਰੰਤੂ ਇਹ ਸਾਰੇ ਪ੍ਰਕਰਮਾਂ ਦੇ ਲਈ ਸੱਚ ਨਹੀਂ ਹੈ।


(ਅ) ਐਨਟ੍ਰਾਂਪੀ ਅਤੇ ਸੂਤੇ-ਸਿੱਧਤਾ

ਇੱਕ ਸਤੇ ਸਿੱਧ ਪਕਰਮ ਦਿੱਤੀ ਗਈ ਦਿਸ਼ਾ ਵਿੱਚ ਕਿਵੇਂ ਪੇਰਿਤ ਹੁੰਦਾ ਹੈ ? ਆਓ, ਅਸੀਂ ਇੱਕ ਅਜਿਹੀ ਸਥਿਤੀ ਦਾ ਅਧਿਐਨ ਕਰੀਏ, ਜਿਸ ਵਿੱਚ $\Delta H = 0$, ਅਰਥਾਤ ਐਨਥੈਲਪੀ ਵਿੱਚ ਕੋਈ ਪਰਿਵਰਤਨ ਨਹੀਂ ਹੈ, ਫਿਰ ਵੀ ਪ੍ਤੀਕਿਰਿਆ ਜਾਂ ਪ੍ਕਰਮ ਸਤੇ ਸਿੱਧ ਹੈ।

ਅਸੀਂ ਇੱਕ ਬੰਦ ਬਰਤਨ ਜੋ ਆਲੇ ਦੁਆਲੇ ਤੋਂ ਵਿਯਕਤ (isolated) ਹੈ, ਵਿੱਚ ਦੋ ਗੈਸਾਂ ਨੂੰ ਪਸਰਿਤ ਕਰਦੇ ਹਾਂ, ਜਿਵੇਂ 176

ਚਿੱਤਰ 6.11 ਵਿੱਚ ਦਰਸਾਇਆ ਗਿਆ ਹੈ।

ਦੋ ਗੈਸਾਂ А ਅਤੇ В ਜਿਨ੍ਹਾਂ ਨੂੰ ਕ੍ਰਮਵਾਰ ਕਾਲੇ ਅਤੇ ਸਫੇਦ

ਚਿੱਤਰ 6.11 ਦੋ ਗੈਸਾਂ ਦਾ ਪ੍ਰਸਰਣ

ਬਿੰਦੂਆਂ ਨਾਲ ਦਰਸਾਇਆ ਗਿਆ ਹੈ ਅਤੇ ਇਕ ਵਿਭਾਜਕ ਨਾਲ ਵੱਖ ਕੀਤਾ ਗਿਆ ਹੈ [ਚਿੱਤਰ 6.11 (ੳ)] ਜਦ ਵਿਭਾਜਕ ਹਟਾਇਆ ਜਾਂਦਾ ਹੈ [ਚਿੱਤਰ 6.11(ਅ)] ਤਾਂ ਗੈਸਾਂ ਆਪਸ ਵਿੱਚ ਪ੍ਸਰਿਤ ਹੋਣ ਲੱਗਦੀਆਂ ਹਨ। ਕੁਝ ਸਮੇਂ ਬਾਅਦ ਪ੍ਸਰਣ ਸੰਪੂਰਣ ਹੋ ਜਾਂਦਾ ਹੈ।

ਹੁਣ ਅਸੀਂ ਇਸ ਪ੍ਰਕਰਮ ਦਾ ਅਧਿਐਨ ਕਰਦੇ ਹਾਂ। ਪ੍ਰਸਰਣ ਤੋਂ ਪਹਿਲਾਂ ਜੇ ਅਸੀਂ ਖੱਬੇ ਪਾਸੇ ਦੇ ਹਿੱਸੇ ਵਿੱਚ ਗੈਸ ਦੇ ਅਣੂਆਂ ਨੂੰ ਕੱਢਦੇ, ਤਾਂ ਨਿਸ਼ਚਿਤ ਰੂਪ ਵਿੱਚ ਇਹ ਗੈਸ A ਦੇ ਹੋਣਗੇ। ਇਸੇ ਤਰ੍ਹਾਂ ਜੇ ਅਸੀਂ ਸੱਜੇ ਪਾਸੇ ਦੇ ਹਿੱਸੇ ਵਿੱਚੋਂ ਅਣੂ ਕੱਢਦੇ, ਤਾਂ ਇਹ ਗੈਸ B ਦੇ ਅਣੂ ਹੋਣਗੇ। ਪਰੰਤੂ ਜੇ ਵਿਭਾਜਕ ਹਟਾਉਣ ਦੇ ਬਾਅਦ ਅਣੂ ਕੱਢੇ ਜਾਣ ਤਾਂ ਅਸੀਂ ਨਿਸ਼ਚਿਤ ਤੌਰ ਤੇ ਨਹੀਂ ਕਹਿ ਸਕਦੇ ਹਾਂ ਕਿ ਕੱਢਿਆ ਗਿਆ ਅਣੂ ਗੈਸ A ਦਾ ਹੈ ਜਾਂ ਗੈਸ B ਦਾ। ਅਸੀਂ ਇਹ ਕਹਿ ਸਕਦੇ ਹਾਂ ਕਿ ਸਿਸਟਮ ਘੱਟ ਭੱਵਿਖਬਾਣੀ ਯੋਗ ਜਾਂ ਵਧੇਰੇ ਉੱਘੜ–ਦੁੱਘੜ ਹੋ ਗਿਆ ਹੈ।

ਹੁਣ ਅਸੀਂ ਦੂਜੀ ਧਾਰਣਾ ਬਣਾਉਂਦੇ ਹਾਂ : ਇੱਕ ਵਿਯੁਕਤ ਸਿਸਟਮ ਵਿੱਚ ਸਿਸਟਮ ਦੀ ਊਰਜਾ ਵਿੱਚ ਹਮੇਸ਼ਾ ਵਧੇਰੇ ਉਘੱੜ-ਦੁੱਘੜ ਹੋਣ ਦੀ ਪ੍ਰਵਿਰਤੀ ਹੁੰਦੀ ਹੈ। ਇਹ ਸੁਤੇ ਸਿੱਧ ਦੀ ਇੱਕ ਕਸੌਟੀ ਹੋ ਸਕਦੀ ਹੈ।

ਇੱਥੇ ਅਸੀਂ ਇੱਕ ਹੋਰ ਤਾਪ ਗਤਿਕੀ ਫਲਨ ਦੀ ਗੱਲ ਕਰਦੇ ਹਾਂ, ਜਿਸਨੂੰ 'ਐਨਟ੍ਰਾੱਪੀ S' ਕਹਿੰਦੇ ਹਨ। ਉਪਰੋਕਤ ਅਵਸਥਾ ਐਨਟ੍ਰਾੱਪੀ ਦੀ ਅਭਿਵਿਅੰਜਨ ਹੈ। ਇੱਕ ਅਨਸਿਕ ਦ੍ਰਿਸ਼ ਬਨਾਉਣ ਦੇ ਲਈ ਇਕ ਵਿਅਕਤੀ ਸੋਚ ਸਕਦਾ ਹੈ ਕਿ ਐਨਟ੍ਰਾੱਪੀ ਕਿਸੇ ਸਿਸਟਮ ਵਿੱਚ ਬੇਤਰਤੀਬੀ ਦਾ ਸਾਧਨ ਹੈ।ਇੱਕ ਵਿਯਕਤ ਸਿਸਟਮ ਵਿੱਚ ਜਿੰਨੀ ਜਿਆਦਾ ਬੇਤਰਤੀਬੀ, ਉਨੀਂ ਹੀ ਜਿਆਦਾ ਉਸਦੀ ਐਨਟ੍ਰਾੱਪੀ ਹੋਵੇਗੀ। ਜਿੱਥੋਂ ਤੱਕ ਇਕ ਰਸਾਇਣਿਕ ਪ੍ਤੀਕਿਰਿਆ ਦਾ ਪ੍ਰਸ਼ਨ ਹੈ, ਐਨਟ੍ਰਾੱਪੀ ਪਰਿਵਰਤਨ ਪਰਮਾਣੂਆਂ ਅਤੇ ਆਇਨਾਂ ਦੇ ਇੱਕ ਪੈਟਰਨ (ਅਭਿਕਾਰਕ) ਵਿਚੋਂ ਦੂਜੇ (ਉਪਜਾਂ) ਵਿੱਚ ਮੁੜ ਵਿਵਸਥਿਤ ਹੁੰਦਾ ਹੈ। ਜੇ ਉਪਜਾਂ ਦੀ ਸੰਰਚਨਾ ਪ੍ਤੀਕਾਰਕਾਂ ਦੀ ਸੰਰਚਨਾ ਨਾਲੋਂ ਵਧੇਰੇ ਬੇਤਰਤੀਬੀ ਹੋਵੇਗੀ, ਤਾਂ ਐਨਟ੍ਰਾੱਪੀ ਵਿੱਚ ਵਾਧਾ ਹੋਵੇਗਾ। ਇੱਕ ਰਸਾਇਣਿਕ ਪਤੀ ਕਿਰਿਆ ਵਿੱਚ ਐਨਟ੍ਰਾੱਪੀ ਵਿੱਚ ਗੁਣਾਤਮਕ ਪਰਿਵਰਤਨ ਪ੍ਰਤੀਕਿਰਿਆ ਵਿੱਚ ਵਰਤੇ ਪਦਾਰਥਾਂ ਦੀ ਸੰਰਚਨਾ ਦੇ ਆਧਾਰ ਤੇ ਅਨੁਮਾਨ ਲਾਇਆ ਜਾਂਦਾ ਹੈ। ਸੰਰਚਨਾ ਵਿੱਚ ਤਰਤੀਬ ਦੇ ਘਟਨ ਦਾ ਅਰਥ ਹੈ ਐਨਟ੍ਰਾੱਪੀ ਦਾ ਵਧਨਾ। ਇੱਕ ਪਦਾਰਥ ਦੇ ਲਈ ਠੋਸ ਅਵਸਥਾ ਨਿਊਨਤਮ ਐਨਟ੍ਰਾੱਪੀ (ਸਭ ਤੋਂ ਵੱਧ ਤਰਤੀਬ) ਦੀ ਅਵਸਥਾ ਹੈ, ਜਦਕਿ ਗੈਸ ਅਵਸਥਾ ਅਧਿਕਤਮ ਐਨਟ੍ਰਾੱਪੀ ਦੀ ਅਵਸਥਾ ਹੈ।

ਹੁਣ ਅਸੀਂ ਐਨਟ੍ਰਾੱਪੀ ਨੂੰ ਮਾਤਰਾ ਨਿਰਧਾਰਿਤ (quantify) ਕਰਦੇ ਹਾਂ। ਅਣੂਆਂ ਵਿੱਚ ਊਰਜਾ ਦੇ ਵਿਤਰਣ ਨਾਲ ਬੇਤਰਤੀਬੀ ਦੀ ਗਣਨਾ ਕਰਨ ਦੇ ਲਈ ਇੱਕ ਵਿਧੀ ਸੰਖਿਆ ਨਾਲ ਸੰਬੰਧਿਤ ਹੈ, ਜੋ ਇਸ ਪੁਸਤਕ ਦੀ ਸੀਮਾਂ ਤੋਂ ਬਾਹਰ ਹੈ। ਦੂਜੀ ਵਿਧੀ ਇਸ ਪ੍ਤੀਕਿਰਿਆ ਵਿੱਚ ਹੋਣ ਵਾਲੇ ਤਾਪ ਪਰਿਵਰਤਨਾ ਨਾਲ ਜੋੜਨ ਦੀ ਵਿਧੀ ਹੈ, ਜੋ ਐਨਟ੍ਰਾੱਪੀ ਨੂੰ ਤਾਪ ਗਤਿਕੀ ਫਲਨ ਬਣਾਉਂਦੀ ਹੈ। ਦੂਜੇ ਤਾਪ ਗਤਿਕੀ ਫਲਨਾ, ਜਿਵੇਂ ਅੰਦਰੂਨੀ ਊਰਜਾ U ਜਾਂ ਐਨਥੈਲਪੀ H ਵਾਂਗ ਐਨਟ੍ਰਾੱਪੀ ਵੀ ਇਕ ਤਾਪ ਗਤਿਕੀ ਅਵਸਥਾ ਫਲਨ ਹੈ। ΔS ਕ੍ਰਿਰਿਆ ਦੇ ਪਥ ਉੱਤੇ ਨਿਰਭਰ ਨਹੀਂ ਕਰਦਾ।

ਜਦ ਵੀ ਕਿਸੇ ਸਿਸਟਮ ਨੂੰ ਤਾਪ ਦਿੱਤਾ ਜਾਂਦਾ ਹੈ ਤਾਂ ਇਹ ਅਣਵੀਂ ਗਤੀ ਨੂੰ ਵਧਾ ਕੇ ਸਿਸਟਮ ਦੀ ਬੇਤਰਤੀਬ ਵਧਾ ਦਿੰਦਾ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਤਾਪ (*q*) ਸਿਸਟਮ ਵਿੱਚ ਬੇਤਰਤੀਬੀ ਵਧਾਉਣ ਦਾ ਪ੍ਰਭਾਵ ਰੱਖਦੀ ਹੈ। ਕੀ ਅਸੀਂ ΔS ਨੂੰ q ਨਾਲ ਸਬੰਧਿਤ ਕਰ ਸਕਦੇ ਹਾਂ ? ਅਨੁਭਵ ਦਰਸਾਉਂਦਾ ਹੈ ਕਿ ਤਾਪ ਦਾ ਵਿਤਰਣ ਉਸ ਤਾਪ ਉੱਤੇ ਨਿਰਭਰ ਕਰਦਾ ਹੈ, ਜਿਸ ਉੱਤੇ ਤਾਪ ਦਿੱਤਾ ਜਾਂਦਾ ਹੈ। ਇੱਕ ਉੱਚ ਤਾਪ ਦੇ ਸਿਸਟਮ ਵਿੱਚ ਨੀਵੇਂ ਤਾਪਮਾਨ ਦੇ ਸਿਸਟਮ ਦੀ ਤੁਲਨਾ ਵਿੱਚ ਵਧੇਰੇ ਬੇਤਰਤੀਬੀ ਹੁੰਦੀ ਹੈ। ਇੰਜ ਕਿਸੇ ਸਿਸਟਮ ਦਾ ਤਾਪਮਾਨ ਉਸ ਦੇ ਕਣਾਂ ਦੀ ਅਨਿਯਮਿਤ ਗਤੀ ਦਾ ਮਾਪਨ ਹੈ। ਨੀਵੇਂ ਤਾਪਮਾਨ ਉੱਤੇ ਕਿਸੇ ਸਿਸਟਮ ਨੂੰ ਦਿੱਤਾ ਗਿਆ ਤਾਪ ਉਸ ਸਿਸਟਮ ਨੂੰ ਉੱਚ ਤਾਪਮਾਨ ਉੱਤੇ ਦਿੱਤੀ ਗਈ ਓਨੇ ਹੀ ਤਾਪ ਦੀ ਤੁਲਨਾ ਵਿੱਚ ਵਧੇਰੇ ਬੇਤਰਤੀਬੀ ਹੁੰਦੀ ਹੈ। ਇਸ ਲਈ ਕਿਸੇ ਸਿਸਟਮ ਨੂੰ ਦਿੱਤਾ ਗਿਆ ਤਾਪ ਉਸੇ ਸਿਸਟਮ ਨੂੰ ਉੱਚੇ ਤਾਪਮਾਨ ਉੱਤੇ ਦਿੱਤੀ ਗਈ ਤਾਪ ਦੀ ਤੁਲਨਾ ਵਿੱਚ ਵਧੇਰੇ ਬੇਤਰਤੀਬ ਦਾ ਕਾਰਣ ਬਣਦਾ ਹੈ। ਇਸ ਤੋਂ ਪਤਾ ਲੱਗਦਾ ਹੈ ਕਿ ਐਨਟਾੱਪੀ ਪਰਿਵਰਤਨ ਤਾਪ ਦੇ ਉਲਟ ਕਮ ਅਨੁਪਾਤੀ ਹੁੰਦਾ ਹੈ।ਉਲਟ ਕ੍ਰਮਣੀ ਪ੍ਰਕਰਮਾਂ ਦੇ ਲਈ ਅਸੀਂ ΔS ਨੂੰ

q ਅਤੇ ਤਾਪਮਾਨ T ਨਾਲ ਇਸ ਤਰ੍ਹਾਂ ਸਬੰਧਿਤ ਕਰ ਸਕਦੇ ਹਾਂ -

$$\Delta S = \frac{q_{rev}}{T} \tag{6.18}$$

ਕਿਸੇ ਸੂਤੇ ਸਿੱਧ ਪ੍ਰਕਰਮ ਦੇ ਲਈ ਸਿਸਟਮ ਅਤੇ ਆਲੇ ਦੁਆਲੇ ਦਾ ਕੁੱਲ ਐਨਟ੍ਰਾੱਪੀ ਪਰਿਵਰਤਨ (ΔS_{tota}) ਹੇਠ ਲਿਖੇ ਸਮੀਕਰਣ ਦੁਆਰਾ ਦਿੱਤਾ ਜਾ ਸਕਦਾ ਹੈ -

$$\Delta S_{total} = \Delta S_{system} + \Delta S_{surr} > 0$$
 (6.19)

ਜਦੋਂ ਇੱਕ ਸਿਟਮ ਸੰਤੁਲਨ ਵਿੱਚ ਹੋਵੇ, ਤਾਂ ਐਨਟ੍ਰਾੱਪੀ ਅਧਿਕਤਮ ਹੁੰਦੀ ਹੈ ਅਤੇ ਐਨਟ੍ਰਾੱਪੀ ਵਿੱਚ ਪਰਿਵਰਤਨ $\Delta S = 0$. ਹੈ

ਅਸੀਂ ਕਹਿ ਸਕਦੇ ਹਾਂ ਕਿ ਇਕ ਸੁਤੇ ਸਿੱਧ ਪ੍ਕਰਮ ਦੀ ਐਨਟ੍ਰਾੱਪੀ ਵਿੱਚ ਵਾਧਾ ਉਦੋਂ ਤੱਕ ਹੁੰਦਾ ਰਹਿੰਦਾ ਹੈ ਜਦੋਂ ਤੱਕ ਇਹ ਅਧਿਕਤਮ ਨਾ ਹੋ ਜਾਏ। ਸੰਤੁਲਨ ਉੱਤੇ ਐਨਟ੍ਰਾੱਪੀ ਵਿੱਚ ਪਰਿਵਰਤਨ ਸਿਫਰ ਹੁੰਦਾ ਹੈ। ਕਿਉਂਕਿ ਐਨਟ੍ਰਾੱਪੀ ਇੱਕ ਅਵਸਥਾ ਗੁਣ ਹੈ, ਇਸ ਲਈ ਇੱਕ ਉਲਟਕ੍ਰਮਣੀ ਪ੍ਕਰਮ ਦੇ ਦੌਰਾਨ ਅਸੀਂ ਐਨਟ੍ਰਾੱਪੀ ਪਰਿਵਰਤਨ ਦੀ ਗਣਨਾ ਹੇਠ ਲਿਖੇ ਸਮੀਕਰਣ ਨਾਲ ਕਰ ਸਕਦੇ ਹਾਂ —

$$\Delta S_{\text{sys}} = \frac{q_{\text{sysrev}}}{T}$$

ਅਸੀਂ ਜਾਣਦੇ ਹਾਂ ਕਿ ਸਮਤਾਪੀ ਪਰਿਸਥਿਤੀਆਂ ਵਿੱਚ ਉਲਟਕ੍ਰਮਣੀ ਅਤੇ ਅਪਰਤਵੀਂ ਦੋਵਾਂ ਪ੍ਕਰਮਾਂ ਦੇ ਲਈ $\Delta U = 0$, ਹੁੰਦਾ ਹੈ, ਪਰੰਤੂ ΔS_{total} ਅਰਥਾਤ $\Delta S_{sys} + \Delta S_{surr}$ ਅਪਰਵਤੇਂ ਪ੍ਕਰਮ ਦੇ ਲਈ ਸਿਫਰ ਨਹੀਂ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ΔU ਅਪਰਤਵੇਂ ਅਤੇ ਪਰਤਵੇਂ ਪ੍ਕਰਮ ਵਿੱਚ ਅੰਤਰ ਨਹੀਂ ਕਰਦੀ ਹੈ, ਜਦਕਿ ΔS ਅੰਤਰ ਕਰਦੀ ਹੈ।

ਉਦਾਹਰਣ 6.9

ਦੱਸੋ ਕਿ ਹੇਠ ਲਿਖਿਆਂ ਵਿੱਚੋਂ ਕਿਸਦੀ ਐਨਟ੍ਰਾੱਪੀ ਵਧਦੀ / ਘਟਦੀ ਹੈ —

- (i) ਇੱਕ ਦ੍ਵ ਠੋਸ ਅਵਸਥਾ ਵਿੱਚ ਪਰਿਵਰਤਿਤ ਹੁੰਦਾ ਹੈ।
- (ii) ਇੱਕ ਕ੍ਰਿਸਟਲੀ ਠੋਸ ਦਾ ਤਾਪ 0 K ਤੋਂ 115 K ਤੱਕ ਵਧਾਇਆ ਜਾਂਦਾ ਹੈ।

(iii)
$$2NaHCO_3(s) \rightarrow Na_2CO_3(s) + CO_2(g) + H_2O(g)$$

(iv) $H_2(g) \rightarrow 2H(g)$

ਹੱਲ

(i) ਠੋਸ ਅਵਸਥਾ ਵਿੱਚ ਹੋਣ ਤੋਂ ਬਾਅਦ ਅਣੂ ਤਰਤੀਬੀ ਅਵਸਥਾ ਪ੍ਰਾਪਤ ਕਰਦੇ ਹਨ, ਇੰਜ ਐਨਟ੍ਰਾੱਪੀ ਘਟਦੀ ਹੈ।

- (ii) 0 K ਤਾਪਮਾਨ ਉੱਤੇ ਸਾਰੇ ਅਣੂ ਸਥਿਰ ਹੁੰਦੇ ਹਨ। ਐਨਟ੍ਰਾੱਪੀ ਨਿਊਨਤਮ ਹੁੰਦੀ ਹੈ। ਜੇ ਤਾਪਮਾਨ 115 K ਤੱਕ ਵਧਾਇਆ ਜਾਂਦਾ ਹੈ ਤਾਂ ਅਣੂ ਗਤੀ ਕਰਨੀ ਸ਼ੁਰੂ ਕਰ ਦਿੰਦੇ ਹਨ ਅਤੇ ਆਪਣੀ ਸੰਤੁਲਨ ਅਵਸਥਾ ਉੱਤੇ ਡੋਲਨ ਕਰਦੇ ਹਨ ਅਤੇ ਸਿਸਟਮ ਵਧੇਰੇ ਬੇਤਰਤੀਬ ਹੋ ਜਾਂਦਾ ਹੈ। ਇੰਜ ਐਨਟ੍ਰਾੱਪੀ ਵਧ ਜਾਂਦੀ ਹੈ।
- (iii) ਪ੍ਰਤੀ ਕਾਰਕ NaHCO₃ ਠੋਸ ਹੈ ਅਤੇ ਇਸ ਦੀ ਐਨਟ੍ਰਾੱਪੀ ਘੱਟ ਹੈ। ਉਪਜਾਂ ਵਿੱਚ ਇੱਕ ਠੋਸ ਅਤੇ ਦੋ ਗੈਸਾਂ ਹਨ। ਇੰਜ ਉਪਜਾਂ ਉੱਚ ਐਨਟ੍ਰਾੱਪੀ ਰੱਖਦੀਆਂ ਹਨ।
- (iv) ਇਥੇ ਇੱਕ ਅਣੂ ਦੋ ਪਰਮਾਣੂ ਦਿੰਦਾ ਹੈ, ਅਰਥਾਤ ਕਣਾਂ ਦੀ ਸੰਖਿਆ ਵਧਦੀ ਹੈ ਜੋ ਵਧੇਰੇ ਬੇਤਰਤੀਬੀ ਵੱਲ ਲੈ ਜਾਂਦੀ ਹੈ। H ਪਰਮਾਣੂਆਂ ਦੇ ਦੋ ਮੋਲ ਹਾਈਡ੍ਰੋਜਨ ਅਣੂ ਦੇ ਇੱਕ ਮੋਲ ਦੀ ਤੁਲਨਾ ਵਿੱਚ ਵਧੇਰੇ ਐਨਟ੍ਰਾੱਪੀ ਰੱਖਦੇ ਹਨ।

ਉਦਾਹਰਣ 6.10

ਲੋਹੇ ਦੇ ਆੱਕਸੀਕਰਣ

$$4Fe(s) + 3O_2(g) \rightarrow 2Fe_2O_3(s)$$

ਐਨਟ੍ਰਾਪੀ ਪਰਿਵਰਤਨ – 549.4 JK⁻¹mol⁻¹ ਹੈ 298 K ਉੱਤੇ ਇਸ ਪ੍ਤੀਕਿਰਿਆ ਵਿੱਚ ਐਨਟ੍ਰਾਪੀ ਪਰਿਵਰਤਨ ਰਿਣਾਤਮਕ ਹੋਣ ਦੇ ਬਾਵਜੂਦ ਵੀ ਪ੍ਤੀਕਿਰਿਆ ਸੁਤੇ ਸਿੱਧ ਕਿਉਂ ਹੈ ?

ਇਸ ਪ੍ਰਤੀਕਿਰਿਆ ਦੇ ਲਈ $\Delta_{
m r} H^{
m e}$ = $-1648 imes 10^3
m J mol^{-1}$

ਹੱਲ

ਇੱਕ ਪ੍ਰਤੀਕਿਰਿਆ ਦੀ ਸੁਤੇ ਸਿੱਧਾਤਾ

 $\Delta S_{total} \left(\Delta S_{sys} + \Delta S_{surr} \right)$ ਦੇ ਅਧਾਰ ਤੇ ਹੁੰਦੀ ਹੈ ΔS_{surr} ਦੀ ਗਣਨਾ ਕਰਨ ਦੇ ਲਈ ਸਾਨੂੰ ਆਲੇ ਦੁਆਲੇ ਦੁਆਰਾ ਸੋਖਿਤ ਤਾਪ ਉੱਤੇ ਵਿਚਾਰ ਕਰਨਾ ਹੋਵੇਗਾ, ਜੋ $\Delta_{\rho}H^{\circ}$ ਦੇ ਤੱਲ ਹੈ। T ਤਾਪਮਾਨ ਉੱਤੇ ਆਲੇ ਦੁਆਲੇ ਦੀ ਐਨਟ੍ਰਾੱਪੀ ਵਿੱਚ ਪਰਿਵਰਤਨ ਹੈ —

$$\Delta S_{surr} = -rac{\Delta_r H^{\odot}}{T}$$
(ਸਿਥਿਰ ਦਾਬ ਉੱਤੇ)

$$= - \frac{\left(-1648 \times 10^3 \, J \, mol^{-1}\right)}{298 K}$$

 $= 5530\,JK^{-1}mol^{-1}$

ਇੰਜ ਪ੍ਤੀਕਿਰਿਆ ਦੇ ਲਈ ਕੁੱਲ ਐਨਟਰਾੱਪੀ ਪਰਿਵਰਤਨ

178

$$\Delta_r S_{total} = 5530 \, \text{JK}^{-1} \text{mol}^{-1} + \left(-549.4 \, \text{JK}^{-1} \text{mol}^{-1}\right)$$

 $=4980.6\,\mathrm{JK^{-1}mol^{-1}}$

ਇਸ ਤੋਂ ਪ੍ਰਗਟ ਹੁੰਦਾ ਹੈ ਕਿ ਪ੍ਰਤੀਕਿਰਿਆ ਸੂਤੇ ਸਿੱਧ ਹੈ।

(ੲ) ਗਿਬੱਜ ਊਰਜਾ ਅਤੇ ਸੁਤੇ ਸਿੱਧਤਾ

ਅਸੀਂ ਵੇਖ ਚੁਕੇ ਹਾਂ ਕਿ ਕਿਸੇ ਸਿਸਟਮ ਦੇ ਲਈ ਐਨਟ੍ਰਾੱਪੀ ਵਿੱਚ ਕੁੱਲ ਪਰਿਵਰਤਨ, ΔS_{total} ਕਿਸੇ ਪ੍ਕਰਮ ਦੀ ਸੁਤੇ ਸਿੱਧਤਾ ਦਾ ਨਿਰਣਾ ਕਰਦਾ ਹੈ। ਪਰੰਤੂ ਵਧੇਰੇ ਪ੍ਰਤੀਕਿਰਿਆਵਾਂ ਬੰਦ ਸਿਸਟਮ ਜਾਂ ਖੁਲ੍ਹੇ ਸਿਸਟਮ ਦੀ ਸ਼੍ਰੇਣੀ ਵਿੱਚ ਆਉਂਦੀਆਂ ਹਨ। ਇੰਜ ਵਧੇਰੀਆਂ ਪ੍ਰਤੀ ਕਿਰਿਆਵਾਂ ਵਿੱਚ ਐਨਟ੍ਰਾੱਪੀ ਅਤੇ ਐਨਥੈਲਪੀ ਦੋਵਾਂ ਵਿੱਚ ਪਰਿਵਰਤਨ ਆਉਂਦੇ ਹਨ। ਪਹਿਲੇ ਭਾਗ ਵਿੱਚ ਕੀਤੀ ਵਿਆਖਿਆ ਤੋਂ ਇਹ ਸਪਸ਼ਟ ਹੈ ਕਿ ਨਾ ਤਾਂ ਕੇਵਲ ਐਨਥੈਲਪੀ ਵਿੱਚ ਕਮੀ ਅਤੇ ਨਾ ਹੀ ਐਨਟ੍ਰਾੱਪੀ ਵਿੱਚ ਵਾਧਾ ਸੁਤੇ ਸਿਧ ਪ੍ਰਰਮਾ ਦੀ ਦਿਸ਼ਾ ਨਿਰਧਾਰਿਤ ਕਰ ਸਕਦੀ ਹੈ।

ਇਸ ਮੰਤਵ ਲਈ ਅਸੀਂ ਇੱਕ ਨਵੇਂ ਤਾਪ ਗਤਿਕੀ ਫਲਨ ਗਿਬੱਜ ਊਰਜਾ ਜਾਂ ਗਿੱਬਜ ਫਲਨ G, ਨੂੰ ਇਸ ਤਰ੍ਹਾਂ ਪਰਿਭਾਸ਼ਿਤ ਕਰਦੇ ਹਾਂ

$$G = H - TS \tag{6.20}$$

ਗਿੱਬਜ਼ ਊਰਜਾ, G ਇੱਕ ਵਿਸਤੀਰਣ (extensive) ਅਤੇ ਅਵਸਥਾ ਗੁਣ ਹੈ।

ਸਿਸਟਮ ਦੀ ਗਿੱਬਜ ਊਰਜਾ ਵਿੱਚ ਪਰਿਵਰਤਨ ΔG_{sys} ਨੂੰ ਇਸ ਤਰ੍ਹਾਂ ਲਿਖਿਆ ਜਾ ਸਕਦਾ ਹੈ -

$$\Delta G_{sys} = \Delta H_{sys} - T\Delta S_{sys} - S_{sys}\Delta T$$

ਸਥਿਰ ਤਾਪ ਉੱਤੇ $\Delta T = 0$

$$\therefore \Delta G_{sys} = \Delta H_{sys} - T \Delta S_{sys}$$

ਸਾਧਾਰਣ ਤੌਰ ਤੇ ਸਬਸਕਰਿਪਟ ਸਿਸਟਮ ਨੂੰ ਛੱਡਦੇ ਹੋਏ ਸਮੀਕਰਣ ਨੂੰ ਇਸ ਤਰ੍ਹਾਂ ਲਿਖਦੇ ਹਨ—

$$\Delta G = \Delta H - T \Delta S \tag{6.21}$$

ਇਸ ਤਰ੍ਹਾਂ ਗਿੱਬਜ਼ ਊਰਜਾ ਵਿੱਚ ਪਰਿਵਰਤਨ = ਐਨਥੈਲਪੀ ਵਿੱਚ ਪਰਿਵਰਤਨ – ਤਾਪਮਾਨ × ਐਨਟ੍ਰਾਪੀ ਵਿੱਚ ਪਰਿਵਰਤਨ । ਇਹ ਸਮੀਕਰਣ 'ਗਿਬੱਜ ਸਮੀਕਰਣ ਦੇ ਰੂਪ ਵਿੱਚ ਜਾਣਿਆ ਜਾਂਦਾ ਹੈ,' ਜੋ ਰਸਾਇਣ ਵਿਗਿਆਨੀ ਦੇ ਅਤਿ ਮਹੱਤਵ ਪੂਰਣ ਸਮੀਕਰਣਾਂ ਵਿੱਚੋਂ ਇੱਕ ਹੈ । ਇੱਥੇ ਅਸੀਂ ਸੁਤੇ ਸਿੱਧ ਦੇ ਲਈ ਦੋਵਾਂ ਟਰਮਾਂ ਨੂੰ ਨਾਲ–ਨਾਲ ਲਿਆ ਹੈ, ਊਰਜਾ (ΔH ਦੀ ਟਰਮ ਵਿੱਚ) ਅਤੇ ਐਨਟਰਾੱਪੀ (ΔS ਬੇਤਰਤੀਬੀ ਦਾ ਮਾਪਨ) ਜਿਵੇਂ ਪਹਿਲਾਂ ਦੱਸਿਆ ਗਿਆ ਹੈ । ਵਿਧੀ ਅਧਾਰ ਤੇ ਵਿਸ਼ਲੇਸ਼ਣ ਕਰਨ ਤੇ ਅਸੀਂ ਵੇਖਦੇ ਹਾਂ ਕਿ ΔG ਦੀ ਇਕਾਈ ਊਰਜਾ ਦੀ ਇਕਾਈ ਹੁੰਦੀ ਹੈ, ਕਿਉਂਕਿ ΔH ਅਤੇ $T\Delta S$ ਦੋਵੇਂ ਊਰਜਾ ਦੀਆਂ ਟਰਮਾ ਹਨ (ਕਿਉਂਕਿ $T\Delta S$ = (K) (J/K) = J)

ਹੁਣ ਅਸੀਂ ਵਿਚਾਰ ਕਰਦੇ ਹਾਂ ਕਿ ΔG ਕਿਸ ਤਰ੍ਹਾਂ ਪ੍ਰਤੀ ਕਿਰਿਆ ਦੇ ਸੁਤੇ ਸਿਧੱਤਾ ਦੇ ਨਾਲ ਸਬੰਧਿਤ ਹੈ।

ਅਸੀਂ ਜਾਣਦੇ ਹਾ ਕਿ

$$\Delta S_{total} = \Delta S_{sys} + \Delta S_{surr}$$

ਜੇ ਸਿਸਟਮ ਆਲੇ ਦੁਆਲੇ ਦੇ ਨਾਲ ਤਾਪੀ ਸੰਤੁਲਨ ਵਿੱਚ ਹੈ, ਤਾਂ ਆਲੇ ਦੁਆਲੇ ਦਾ ਤਾਪਮਾਨ ਸਿਸਟਮ ਦੇ ਤਾਪਮਾਨ ਦੇ ਸਮਾਨ ਹੀ ਹੋਵੇਗਾ। ਇੰਜ ਆਲੇ ਦੁਆਲੇ ਦੀ ਐਨਥੈਲਪੀ ਵਿੱਚ ਵਾਧਾ ਸਿਸਟਮ ਦੀ ਐਨਥੈਲਪੀ ਵਿੱਚ ਕਮੀਂ ਦੇ ਤੱਲ ਹੋਵੇਗੀ।

ਇੰਜ ਐਲੇ ਦੁਆਲੇ ਦੀ ਐਨਟ੍ਰਾੱਪੀ ਵਿੱਚ ਪਰਿਵਰਤਨ

$$\Delta S_{surr} = \frac{\Delta H_{surr}}{T} = -\frac{\Delta H_{sys}}{T}$$

$$\Delta S_{total} = \Delta S_{sys} + \left(-\frac{\Delta H_{sys}}{T}\right)$$

ਉਪਰੋਕਤ ਸਮੀਕਰਣ ਨੂੰ ਦੁਬਾਰਾ ਵਿਵਸਥਿਤ ਕਰਨ ਤੇ

$$T\Delta S_{total} = T\Delta S_{sys} - \Delta H_{sys}$$

ਸੂਤੇ ਸਿੱਧ ਪ੍ਕਰਮ ਦੇ ਲਈ $\Delta S_{total} > 0$, ਇੰਜ

$$(T\Delta S_{sys} - \Delta H_{sys}) > 0$$

ਸਮੀਕਰਣ 6.21 ਦੀ ਵਰਤੋਂ ਕਰਨ ਤੇ ਉਪਰੋਕਤ ਸਮੀਕਰਣ ਇਸ ਤਰ੍ਹਾਂ ਲਿਖੀ ਜਾ ਸਕਦੀ ਹੈ —

$$-\Delta G>0$$

$$\Delta G = \Delta H - T\Delta S < 0 \tag{6.22}$$

 ΔH_{sys} ਪ੍ਰਤੀਕਿਰਿਆ ਦੀ ਐਨਥੈਲਪੀ ਵਿੱਚ ਪਰਿਵਰਤਨ ਹੈ। $T\Delta S_{sys}$ ਉਹ ਊਰਜਾ ਹੈ ਜੋ ਉਪਯੋਗੀ ਕਾਰਜ ਦੇ ਲਈ ਉਪਲਬਧ ਨਹੀਂ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ΔG ਉਪਯੋਗੀ ਕਾਰਜ ਦੇ ਲਈ ਨੈੱਟ ਊਰਜਾ ਹੈ ਅਤੇ ਇਸ ਤਰ੍ਹਾਂ 'ਮੁਕਤ ਊਰਜਾ' ਦਾ ਮਾਪਨ ਹੈ। ਇਸ ਕਾਰਣ ਇਸ ਨੂੰ ਪ੍ਰਤੀ ਕਿਰਿਆ ਦੀ ਮੁਕਤ ਊਰਜਾ ਵੀ ਕਿਹਾ ਜਾਂਦਾ ਹੈ।

 ΔG ਸਥਿਰ ਦਾਬ ਅਤੇ ਤਾਪਮਾਨ ਉੱਤੇ ਸੁੱਤੇ ਸਿੱਧ ਦੀ ਕਮੌਟੀ ਹੈ।

- (i) ਜੇ ΔG ਰਿਣਾਤਮਕ (< 0) ਹੈ, ਤਾਂ ਪ੍ਕਰਮ ਸੁਤੇ ਸਿੱਧ ਹੁੰਦਾ ਹੈ। (ii) ਜੇ ΔG ਧਨਾਤਮਕ (> 0) ਹੈ, ਤਾਂ ਪ੍ਕਰਮ ਸੁਤੇ ਸਿੱਧ ਨਹੀਂ ਹੈ। **ਟਿੱਪਣੀ** : ਜੇ ਪ੍ਰਤੀ ਕਿਰਿਆ ਦੇ ਲਈ ਐਨਥੈਲਪੀ ਪਰਿਵਰਤਨ ਧਨਾਤਮਕ ਹੋਵੇ ਅਤੇ ਐਨਟ੍ਰਾੱਪੀ ਪਰਿਵਰਤਨ ਵੀ ਧਨਾਤਮਕ ਹੋਵੇ, ਤਾਂ ਪ੍ਰਤੀਕਿਰਿਆ ਤਾਂ ਹੀ ਸੁਤੇ ਸਿੱਧ ਹੋਵੇਗੀ ਜਦੋਂ $T\Delta S$ ਦਾ ਮਾਨ ΔH . ਦੇ ਮਾਨ ਤੋਂ ਵੱਧ ਹੋਵੇਗਾ। ਇਹ ਦੋ ਤਰ੍ਹਾਂ ਹੋ ਸਕਦਾ ਹੈ —
- (ੳ) ਧਨਾਤਮਕ ਐਨਟ੍ਰਾਪੀ ਪਰਿਵਰਤਨ ਘੱਟ ਹੋਵੇ, ਤਾਂ ਇਸ

ਸਥਿਤੀ ਵਿੱਚ T ਵੱਧ ਹੋਣਾ ਚਾਹੀਦਾ ਹੈ। (ਅ) ਧਨਾਤਮਕ ਐਨਟ੍ਰਾਪੀ ਪਰਿਵਰਤਨ ਵਧੇਰੇ ਹੋਵੇ, ਤਾਂ ਇਸ ਸਥਿਤੀ ਵਿੱਚ T ਘੱਟ ਹੋਣਾ ਚਾਹੀਦਾ ਹੈ। ਪਹਿਲੇ ਵਾਲਾ ਕਾਰਣ ਇਹ ਦੱਸਦਾ ਹੈ ਕਿ ਵਧੇਰੇ ਪ੍ਤੀਕਿਰਿਆਵਾਂ ਦੀ ਸੁਤੇ ਸਿੱਧਤਾ ਉੱਤੇ ਤਾਪਮਾਨ ਦੇ ਪ੍ਭਾਵ ਨੂੰ ਸੰਖੇਪਿਤ (Summarise) ਕੀਤਾ ਗਿਆ ਹੈ।

6.7 ਗਿੱਬਜ ਉਰਜਾ ਪਰਿਵਰਤਨ ਅਤੇ ਸੰਤੁਲਿਤ ਅਵਸਥਾ

ਅਸੀਂ ਵੇਖ ਚੁਕੇ ਹਾਂ ਕਿ ਇਸ ਤਰ੍ਹਾਂ ਮੁਕਤ ਊਰਜਾ ਦੀ ਚਿੰਨ੍ਹ ਅਤੇ ਪਰਿਮਾਣ-ਪ੍ਤੀਕਿਰਿਆ ਦੇ ਬਾਰੇ ਵਿੱਚ ਹੇਠ ਲਿਖੀ ਜਾਣਕਾਰੀ ਦਿੰਦਾ ਹੈ —

- (i) ਰਸਾਇਣਿਕ ਪ੍ਤੀਕਿਰਿਆ ਦੇ ਸੁਤੇ ਸਿੱਧ ਦਾ ਪੂਰਵ ਅਨਮਾਨ।
- (ii) ਰਸਾਇਣਿਕ ਪ੍ਤੀਕਿਰਿਆ ਤੋਂ ਪ੍ਰਾਤ ਹੋ ਸਕਣ ਵਾਲੇ ਉਪਯੋਗੀ ਕਾਰਜ ਦਾ ਪੂਰਵ ਅਨੁਮਾਨ।

ਹੁਣ ਤੱਕ ਅਸੀਂ ਅਪਰ ਵੀਆਂ ਪ੍ਤੀਕਿਰਿਆਵਾਂ ਵਿੱਚ ਮੁਕਤ ਊਰਜਾ ਪਰਿਵਰਤਨਾਂ ਉੱਤੇ ਵਿਚਾਰ ਕਰ ਚੁੱਕੇ ਹਾਂ। ਹੁਣ ਅਸੀਂ ਪਰਤਵੀਆਂ ਪ੍ਤੀਕਿਰਿਆਂ ਵਿੱਚ ਮੁਕਤ ਊਰਜਾ-ਪਰਿਵਰਤਨ ਦੀ ਪਰਖ ਇੰਜ ਪ੍ਤੀਕਿਰਿਆ ਦੇ ਲਈ ਕੁੱਲ ਐਨਟ੍ਰਾੱਪੀ ਪਰਿਵਰਤਨ

'ਉਲਟਕ੍ਰਮਣੀਤਾ' ਵਿੱਚ ਤਾਪ ਗਤਿਕੀ ਇੱਕ ਵਿਸ਼ੇਸ਼ ਪਰਿਸਥਿਤੀ ਹੈ, ਜਿਸ ਵਿੱਚ ਇੱਕ ਪ੍ਕਰਮ ਨੂੰ ਇਸ ਤਰ੍ਹਾਂ ਕੀਤਾ ਜਾਂਦਾ ਹੈ ਕਿ ਸਿਸਟਮ ਹਮੇਸ਼ਾ ਆਪਣੇ ਆਲੇ ਦੁਆਲੇ ਨਾਲ ਪੂਰਣ ਰੂਪ ਵਿੱਚ ਸੰਤੁਲਨ ਵਿੱਚ ਰਹੇ। ਰਸਾਇਣਿਕ ਪ੍ਤੀ ਕਿਰਿਆਵਾਂ ਦੇ ਸੰਦਰਭ ਵਿੱਚ 'ਉਲਟਕ੍ਰਮਣੀਤਾ' ਦਾ ਅਰਥ ਹੈ ਕਿ ਇੱਕ ਰਸਾਇਣਿਕ ਪ੍ਤੀਕਿਰਿਆ ਦੋਵਾਂ ਦਿਸ਼ਾਵਾਂ ਵਿੱਚ ਨਾਲਨਾਲ ਚੱਲ ਸਕਦੀ ਹੈ ਜਿਸ ਨਾਲ ਕਿ ਸੰਤੁਲਨ ਸਥਾਪਿਤ ਹੋ ਸਕੇ। ਇਸ ਤੋਂ ਲੱਗਦਾ ਹੈ ਕਿ ਪ੍ਤੀ ਕਿਰਿਆ ਦੋਵਾਂ ਦਿਸ਼ਾਵਾਂ ਵਿੱਚ ਮੁਕਤ ਊਰਜਾ ਵਿੱਚ ਕਮੀ ਦੇ ਨਾਲ ਚੱਲ ਸਕੇ, ਜੋ ਅਸੰਭਵ ਲੱਗਦਾ ਹੈ। ਇਹ ਤਾਂ ਹੀ ਸੰਭਵ ਹੈ, ਜਦ ਸੰਤੁਲਿਤ ਅਵਸਥਾ ਵਿੱਚ ਸਿਸਟਮ ਦੀ ਮੁਕਤ ਉਰਜਾ ਨਿਉਨਤਮ ਹੋਵੇ। ਜੇ ਅਜਿਹਾ

ਨਾ ਹੋਵੇ, ਤਾਂ ਸਿਸਟਮ ਸੁਤੇ ਸਿੱਧ ਹੀ ਘੱਟ ਮੁਕਤ ਊਰਜਾ ਦੀ ਸਥਿਤੀ ਵਿੱਚ ਪਰਿਵਰਤਿਤ ਹੋ ਜਾਵੇਗਾ।

ਇੰਜ ਸੰਤਲਨ

 $A + B \rightleftharpoons C + D$; ਦੇ ਲਈ ਕਸੌਟੀ ਹੈ−

 $\Delta G = 0$

ਕਿਸੇ ਪ੍ਤੀਕਿਰਿਆ, ਜਿਸ ਵਿੱਚ ਸਾਰੇ ਪ੍ਤੀਕਾਰਕ ਅਤੇ ਉਪਜਾਂ ਸਟੈਂਡਰਡ ਅਵਸਥਾ ਵਿੱਚ ਹੋਣ, ਤਾਂ ਗਿੱਬਜ ਊਰਜਾ $\Delta_{r}G^{\circ}$ ਸੰਤੁਲਿਤ ਅਵਸਥਾ ਸਥਿਰਅੰਕ ਨਾਲ ਹੇਠ ਲਿਖੇ ਸਮੀਕਰਣ ਦੁਆਰਾ ਸਬੰਧਿਤ ਹੁੰਦੀ ਹੈ —

$$0 = \Delta_r G^{\ominus} + RT \ln K$$

ਜਾਂ $\Delta_r G^{\ominus} = -RT \ln K$

ਜਾਂ
$$\Delta_r G^{\circ} = -2.303 \,\mathrm{R}T \log K$$
 (6.23)

ਅਸੀ ਇਹ ਵੀ ਜਾਣਦੇ ਹਾਂ ਕਿ

$$\Delta_r G^{\ominus} = \Delta_r H^{\ominus} - T \Delta_r S^{\ominus} = -RT \ln K \tag{6.24}$$

ਪ੍ਬਲ ਤਾਪਸੋਖੀ ਪ੍ਤੀਕਿਰਿਆਵਾਂ ਦੇ ਲਈ $\Delta_{,H}^{\circ}$ ਦਾ ਮਾਨ ਵਧੇਰੇ ਅਤੇ ਧਨਾਤਮਕ ਹੁੰਦਾ ਹੈ। ਇਨ੍ਹਾਂ ਪਰਿਸਥਿਤੀਆਂ ਵਿੱਚ K ਦਾ ਮਾਨ। ਤੋਂ ਬਹੁਤ ਘੱਟ ਹੋਵੇਗਾ ਅਤੇ ਪ੍ਤੀਕਿਰਿਆ ਵਿੱਚ ਜਿਆਦਾ ਉਪਜਾਂ ਬਨਾਉਣ ਦੀ ਪ੍ਰਵਿਰਤੀ ਨਹੀਂ ਹੋਵੇਗੀ। ਤਾਪ ਨਿਕਾਸੀ ਪ੍ਤੀ ਕਿਰਿਆਵਾਂ ਵਿੱਚ $\Delta_{,H}^{\circ}$ ਦਾ ਮਾਨ ਬੜਾ ਜਿਆਦਾ ਅਤੇ ਰਿਣਾਤਮਕ ਹੋਵੇਗਾ ਅਤੇ $\Delta_{,G}^{\circ}$ ਦਾ ਮਾਨ ਵਧੇਰੇ ਅਤੇ ਰਿਣਾਤਮਕ ਸੰਭਵ ਹੈ। ਇਨ੍ਹਾਂ ਪਰਿਸਥਿਤੀਆਂ ਵਿੱਚ K ਦਾ ਮਾਨ 1 ਤੋਂ ਬਹੁਤ ਜਿਆਦਾ ਹੋਵੇਗਾ। ਅਸੀਂ ਪ੍ਰਬਲ ਤਾਪ ਸੋਖੀ ਪ੍ਤੀਕਿਰਿਆਵਾਂ ਦੇ ਲਈ ਉੱਚ K ਦੀ ਆਸ ਰੱਖ ਸਕਦੇ ਹਾਂ ਅਤੇ ਪ੍ਤੀਕਿਰਿਆ ਲਗਪਗ ਪੂਰੀ ਹੋ ਸਕਦੀ ਹੈ। $\Delta_{,G}^{\circ}$ ਦਾ ਮਾਨ $\Delta_{,S}^{\circ}$ ਦੇ ਮਾਨ ਉੱਤੇ ਨਿਰਭਰ ਕਰਦਾ ਹੈ। ਜੇ ਪ੍ਤੀਕਿਰਿਆ ਵਿੱਚ ਐਨਟ੍ਰਾਪੀ ਪਰਿਵਰਤਨ ਨੂੰ ਵੀ ਧਿਆਨ ਵਿੱਚ ਰੱਖਿਆ ਜਾਵੇ, ਤਾਂ K ਦਾ ਮਾਨ ਜਾਂ ਪ੍ਤੀਕਿਰਿਆ ਦੀ ਸੀਮਾ ਇਸ ਗੱਲ ਨਾਲ ਪ੍ਰਭਾਵਿਤ ਹੋਵੇਗੀ ਕਿ $\Delta_{,S}^{\circ}$ ਦਾ ਮਾਨ ਧਨਾਤਮਕ ਜਾਂ ਰਿਣਾਤਮਕ ਹੈ।

ਸਮੀਕਰਣ 6.24 ਦੀ ਵਰਤੋਂ ਕਰਨ ਤੇ

ਸਾਰਣੀ 6.4 ਪ੍ਰਤੀਕਿਰਿਆ ਦੀ ਸੂਤੇ ਸਿੱਧਤਾ ਉੱਤੇ ਤਾਪਮਾਨ ਦਾ ਪ੍ਰਭਾਵ

$\Delta_{_{\! r}}\! H^{\scriptscriptstyle \ominus}$	$\Delta_{_{\! r}}\!S^{\scriptscriptstyle\ominus}$	$\Delta_{_{\! r}}\!G^\ominus$	ਵਰਣਨ*
-	+	-	ਸਾਰੇ ਤਾਪਮਾਨਾਂ ਉੱਤੇ ਪ੍ਤੀਕਿਰਿਆ ਸੁਤੇ ਸਿੱਧ
-	-	– (ਨੀਵੇਂ ਤਾਪਮਾਨ ਉੱਤੇ)	ਨੀਵੇਂ ਤਾਪਮਾਨ ਉੱਤੇ ਪ੍ਤੀਕਿਰਿਆ ਸੁਤੇ ਸਿੱਧ
-	-	+ (ਉੱਚੇ ਤਾਪਮਾਨ ਉੱਤੇ)	ਉੱਚੇ ਤਾਪਮਾਨ ਉੱਤੇ ਪ੍ਤੀਕਿਰਿਆ ਸੁਤੇ ਸਿੱਧ ਨਹੀਂ
+	+	+ (ਨੀਵੇਂ ਤਾਪਮਾਨ ਉੱਤੇ)	ਨੀਵੇਂ ਤਾਪਮਾਨ ਉੱਤੇ ਪ੍ਤੀਕਿਰਿਆ ਸੁਤੇ ਸਿੱਧ ਨਹੀਂ
+	+	– (ਉੱਚੇ ਤਾਪਮਾਨ ਉੱਤੇ)	ਉੱਚੇ ਤਾਪਮਾਨ ਉੱਤੇ ਪ੍ਤੀਕਿਰਿਆ ਸੁਤੇ ਸਿੱਧ
+	-	+ (ਸਾਰੇ ਤਾਪਮਾਨ ਉੱਤੇ)	ਸਾਰੇ ਤਾਪਮਾਨਾਂ ਉੱਤੇ ਪ੍ਰਤੀਕਿਰਿਆ ਸੁਤੇ ਸਿੱਧ ਨਹੀਂ

^{*} ਟਰਮ ਨੀਵਾਂ ਤਾਪਮਾਨ ਅਤੇ ਉੱਚਾ ਤਾਪਮਾਨ ਤੁਲਨਾਤਮਕ ਹਨ। ਕਿਸੇ ਵਿਸ਼ੇਸ਼ ਪ੍ਰਤੀਕਿਰਿਆ ਦੇ ਲਈ ਉੱਚਾ ਤਾਪਮਾਨ ਔਸਤ ਕਮਰੇ ਦਾ ਤਾਪਮਾਨ ਵੀ ਹੋ ਸਕਦਾ ਹੈ।

- (i) ΔH^{\geq} ਅਤੇ ΔS^{\geq} ਦੇ ਮਾਪਨ ਨਾਲ ΔG^{\geq} ਦਾ ਮਾਪਨ ਦਾ ਮਾਨ ਅਨੁਮਾਨ ਲਾਕੇ, ਕਿਸੇ ਵੀ ਤਾਪਮਾਨ ਉੱਤੇ ਕਿਫਾਇਤੀ ਰੂਪ ਵਿੱਚ ਉਪਜਾਂ ਦੇ ਪ੍ਰਾਪਤੀ ਦੇ ਲਈ K ਦੇ ਮਾਨ ਦੀ ਗਣਨਾ ਕੀਤੀ ਜਾ ਸਕਦੀ ਹੈ।
- (ii) ਜੇ ਪ੍ਯੋਗਸ਼ਾਲਾ ਵਿੱਚ K ਸਿੱਧਾ ਹੀ ਮਾਪ ਲਿਆ ਜਾਵੇ, ਤਾਂ ਕਿਸੇ ਵੀ ਹੋਰ ਤਾਪਮਾਨ ਉੱਤੇ ΔG° ਦੇ ਮਾਨ ਦੀ ਗਣਨਾ ਕੀਤੀ ਜਾ ਸਕਦੀ ਹੈ।

ਉਦਾਹਰਣ 6.11

298 K ਉੱਤੇ ਆੱਕਸੀਜਨ ਤੇ ਓਜ਼ੋਨ ਵਿੱਚ ਰੂਪਾਤਰਣ $3/2 ext{ O}_2(g) o ext{O}_3(g)$ ਦੇ ਲਈ $\Delta_{_p} G^{^{\ominus}}$ ਦੇ ਅਨਦੀ ਗਣਨਾ ਕਰੋ। ਇਸ ਪ੍ਰਤੀਕਿਰਿਆ ਲਈ $K_{_p}$ ਦਾ ਮਾਨ $2.47 imes 10^{-29}$ ਹੈ

ਹੱਲ

ਅਸੀਂ ਜਾਣਦੇ ਹਾਂ ਕਿ $\Delta_r G^{\ominus}$ = $-2.303~{
m R}T\log K_p$ ਅਤੇ R = $8.314~{
m J}{
m K}^{-1}~{
m mol}^{-1}$

ਇੰਜ
$$\Delta_r G^{\circ} = -2.303 \text{ (8.314 J K}^{-1} \text{ mol}^{-1}\text{)}$$

× (298 K) (log $2.47 \times 10^{-29}\text{)}$

- = 163000 J mol⁻¹
- = 163 kJ mol⁻¹.

ਉਦਾਹਰਣ 6.12

ਹੇਠ ਲਿਖੀ ਪ੍ਰਤੀਕਿਰਿਆ ਦੇ ਲਈ 298 K ਉੱਤੇ ਸੰਤੁਲਨ ਸਥਿਰ ਅੰਕ ਦਾ ਮਾਨਗਿਅਤ ਕਰੋ

$$\begin{split} 2\mathrm{NH_3}\left(\mathbf{g}\right) + \mathrm{CO_2}\left(\mathbf{g}\right) & \rightleftharpoons \mathrm{NH_2}\mathrm{CONH_2}\left(\mathbf{aq}\right) \\ & + \mathrm{H_2}\mathrm{O}(l) \end{split}$$

ਦਿੱਤੇ ਹੋਏ ਤਾਪਮਾਨ ਉੱਤੇ ਸਟੈਂਡਰਡ ਗਿੱਬਜ਼ ਊਰਜਾ $\Delta_{,G}^{\circ}$ ਦਾ ਮਾਨ $-13.6~{
m kJ}~{
m mol}^{-1}$ ਹੈ।

ਹੱਲ

ਅਸੀਂ ਜਾਣਦੇ ਹਾਂ ਕਿ $\log K =$

$$\frac{-\Delta_r G^{\ominus}}{2.303 \mathrm{R}\, T}$$

=
$$\frac{\left(-13.6 \times 10^3 \text{ J mol}^{-1}\right)}{2.303\left(8.314 \text{ JK}^{-1} \text{ mol}^{-1}\right)\left(298 \text{ K}\right)}$$

= 2.38
 $K = \text{antilog } 2.38 = 2.4 \times 10^2$.

ਉਦਾਹਰਣ 6.13

60°C ਤਾਪਮਾਨ ਉੱਤੇ ਡਾਈਨਾਈਟ੍ਰੋਜਨ ਟੈਟ੍ਰਾਆੱਸਾਈਡ 50% ਵਿਯੋਜਿਤ ਹੁੰਦਾ ਹੈ। ਇੱਕ ਵਾਯੂਮੰਡਲੀ ਦਾਬ ਅਤੇ ਇਸ ਤਾਪਮਾਨ ਉੱਤੇ ਸਟੈਂਡਰਡ ਮੁਕਤ ਊਰਜਾ ਪਰਿਵਰਤਨ ਦੀ ਗਣਨਾ ਕਰੋ।

ਹੱਲ :

 $N_2O_4(g)$ \Longrightarrow $2NO_2(g)$ ਜੇ N_2O_4 50% ਵਿਯੋਜਿਤ ਹੁੰਦਾ ਹੈ, ਤਾਂ ਦੋਵਾਂ ਪਦਾਰਥਾਂ ਦਾ ਮੋਲ ਅੰਸ਼ ਹੋਵੇਗਾ -

$$x_{N_2O_4} = \frac{1 - 0.5}{1 + 0.5}$$
; $x_{NO_2} = \frac{2 \times 0.5}{1 + 0.5}$

$$\begin{aligned} p_{_{\mathrm{N_2O_4}}} = & \frac{0.5}{1.5} \times 1 \\ \text{atm.} & p_{_{\mathrm{NO_2}}} = \\ & \frac{1}{1.5} \times 1 \\ \text{atm.} \end{aligned}$$

ਸੰਤੁਲਨ ਸਥਿਰ ਅੰਕ

$$K_p = \frac{\left(p_{\text{NO}_2}\right)^2}{p_{\text{N}_2\text{O}_4}} = \frac{1.5}{(1.5)^2 (0.5)}$$

= 1.33 atm.

$$\Delta_r G^{\ominus} = -RT \ln K_n$$

$$\Delta_{r}G^{\circ} = (-8.314 \text{ JK}^{-1} \text{ mol}^{-1}) \times (333 \text{ K})$$

$$\times (2.303) \times (0.1239)$$

$$= -763.8 \text{ kJ mol}^{-1}$$

ਸਾਰਾਂਸ਼

ਤਾਪ ਗਤਿਕੀ ਰਸਾਇਣਿਕ ਅਤੇ ਭੌਤਿਕ ਪ੍ਕਰਮਾਂ ਵਿੱਚ ਊਰਜਾ ਪਰਿਵਰਤਨ ਨਾਲ ਸਬੰਧ ਰੱਖਦੀ ਹੈ। ਉਹ ਇਨ੍ਹਾਂ ਪਰਿਵਰਤਨਾਂ ਦੇ ਸਾਕਰਾਤਮਕ ਅਧਿਐਨ ਕਰਨ ਅਤੇ ਉਪਯੋਗੀ ਅੰਦਾਜੇ ਲਾਉਣ ਵਿੱਚ ਸਾਡੀ ਸਹਾਇਤਾ ਕਰਦੀ ਹੈ। ਇਨ੍ਹਾਂ ਕਾਰਜਾਂ ਦੇ ਲਈ ਬ੍ਹਿਮੰਡ ਨੂੰ ਸਿਸਟਮ ਅਤੇ ਆਲੇ ਦੁਆਲੇ ਵਿੱਚ ਵੰਡਦੇ ਹਾਂ। ਰਸਾਇਣਿਕ ਅਤੇ ਭੌਤਿਕ ਪ੍ਕਰਮ ਤਾਪ (q) ਨਿਕਾਸ ਜਾਂ ਸੋਖਣ ਦੇ ਨਾਲ ਹੁੰਦੇ ਹਨ, ਜਿਸਦਾ ਕੁਝ ਭਾਗ ਕਾਰਜ (w) ਵਿੱਚ ਬਦਲਿਆ ਜਾ ਸਕਦਾ ਹੈ। ਇਹ ਰਾਸ਼ੀਆਂ ਤਾਪਗਤਿਕੀ ਦੇ ਪਹਿਲੇ ਨਿਯਮ $\Delta U = q + w$ ਦੁਆਰਾ ਸਬੰਧਿਤ ਹੁੰਦੀਆਂ ਹਨ। ΔU ਸ਼ੁਰੂਆਤੀ ਅਤੇ ਅੰਤਿਮ ਅਵਸਥਾ ਉੱਤੇ ਨਿਰਭਰ ਕਰਦਾ ਹੈ ਅਤੇ U ਅਵਸਥਾ ਫਲਨ ਹੈ, ਜਦਕਿ q ਅਤੇ w ਪਥ ਉੱਤੇ ਨਿਰਭਰ ਕਰਦੇ ਹਨ ਅਤੇ ਅਵਸਥਾ ਫਲਨ ਨਹੀਂ ਹਨ। ਅਸੀਂ q w w ਦੇ ਲਈ ਚਿਨ੍ਹ ਪਰੰਪਰਾ ਦਾ ਪਾਲਨ ਕਰਦੇ ਹਾਂ, ਜੇ ਇਨ੍ਹਾਂ ਨੂੰ ਸਿਸਟਮ ਨੂੰ ਦਿੱਤਾ ਜਾਵੇ ਤਾਂ ਇਨ੍ਹਾਂ ਨੂੰ ਧਨਾਤਮਕ ਚਿਨ੍ਹ ਦਿੰਦੇ ਹਾਂ। ਅਸੀਂ ਤਾਪ ਦੇ ਇੱਕ ਪਰਿਵਰਤਨ ਹੁੰਦਾ ਹੈ। ਤਾਪਮਾਨ ਵਿੱਚ ਵਾਧੇ ਦਾ ਮਾਨ ਪਦਾਰਥ ਤਾਪ ਸੋਖਣ ਸਮਰੱਥਾ (C) ਉੱਤੇ ਨਿਰਭਰ ਕਰਦਾ ਹੈ। ਇੰਜ ਸੋਖਿਤ ਜਾਂ ਨਿਕਾਸੀ ਤਾਪ $q = C\Delta T$ ਹੁੰਦਾ ਹੈ। ਜੇ ਗੈਸ ਪਸਾਰ ਹੁੰਦਾ ਹੈ, ਤਾਂ ਕਾਰਜ ਦਾ ਮਾਪਨ $w = -p_{w}\Delta V$ ਨਾਲ ਕਰਦੇ ਹਨ। ਪਰਤਵੇਂ ਪ੍ਕਰਮ ਵਿੱਚ ਆਇਤਨ ਬਹੁਤ ਥੋੜੇ ਪਰਿਵਰਤਨ ਦੇ ਲਈ $p_{ex} = p$ ਦਾ ਮਾਨ ਰੱਖ ਸਕਦੇ ਹਾਂ। ਇੰਜ $w_{rev} = -p$ dV। ਇਸ ਅਵਸਥਾ ਵਿੱਚ ਅਸੀਂ ਗੈਸ ਸਮੀਕਰਣ pV = nRT ਦੀ ਵਰਤੋਂ ਕਰ ਸਕਦੇ ਹਾਂ।

ਸਥਿਰ ਆਇਤਨ ਉੱਤੇ $\mathbf{w}=0$, ਤਾਂ $\Delta U=q_v$, ਅਰਥਾਤ ਇਹ ਸਥਿਰ ਆਇਤਨ ਉੱਤੇ ਸਥਾਨ ਅੰਤਰਿਤ ਤਾਪ ਹੈ। ਪਰੰਤੂ ਰਸਾਇਣਿਕ ਸਮੀਕਰਣਾਂ ਦੇ ਅਧਿਐਨ ਲਈ ਅਸੀਂ ਆਮ ਤੌਰ ਤੇ ਸਥਿਰ ਦਾਬ ਲੈਂਦੇ ਹਾਂ। ਅਸੀਂ ਇੱਕ ਹੋਰ ਅਵਸਥਾ ਫਲਨ ਐਨਥੈਲਪੀ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਕਰਦੇ ਹਾਂ।

ਐਨਥੈਲਪੀ ਪਰਿਵਰਤਨ $\Delta H=\Delta U+\Delta n_g \mathrm{R}T$ ਦਾ ਮਾਪਨ ਸਿੱਧੇ ਸਥਿਰ ਦਾਬ ਉੱਤੇ ਤਾਪਮਾਨ ਪਰਿਵਰਤਨ ਤੋਂ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ, ਇੱਥੇ $\Delta H=q_p$ ਹੈ।

ਐਨਥੈਲਪੀ ਪਰਿਵਰਤਨ ਦੀਆਂ ਕਈ ਕਿਸਮਾਂ ਹਨ। ਫੇਜ ਪਰਿਵਰਤਨ (ਜਿਵੇਂ- ਪਿਘਲਣਾ ਵਾਸ਼ਪੀਕਰਣ ਅਤੇ ਜੌਹਰ ਉਡਾਉਨਾਂ) ਆਮ ਤੌਰ ਤੇ ਸਥਿਰ ਤਾਪਮਾਨ ਉੱਤੇ ਹੁੰਦੇ ਹਨ, ਜਿਨ੍ਹਾਂ ਨੂੰ ਧਨਾਤਮਕ ਐਨਥੈਲਪੀ ਪਰਿਵਰਤਨ ਨਾਲ ਦਰਸਾਇਆ ਜਾਂਦਾ ਹੈ। ਨਿਰਮਾਣ ਐਨਥੈਲਪੀ, ਜਲਣ ਐਨਥੈਲਪੀ ਅਤੇ ਹੋਰ ਐਨਥੈਲਪੀਆਂ ਵਿੱਚ ਪਰਿਵਰਤਨ ਹੈੱਸ ਦੇ ਨਿਯਮ ਨੂੰ ਵਰਤ ਕੇ ਗਿਆਨ ਕੀਤੇ ਜਾ ਸਕਦੇ ਹਨ। ਰਸਾਇਣਿਕ ਪ੍ਤੀਕਿਰਿਆ ਵਿੱਚ ਐਨਥੈਲਪੀ ਪਰਿਵਰਤਨ

$$\Delta_r H^{\ominus} = \sum_{f} \left(a_i \Delta_f H^{\ominus}_{\text{products}} \right) - \sum_{i} \left(b_i \Delta_f H_{\text{reactants}} \right)$$

ਗੈਸੀ ਅਵਸਥਾ ਵਿੱਚ

 $\Delta_{P}H^{\circ} = \Sigma$ ਪ੍ਰਤੀਕਾਰਕਾਂ ਦੀ ਬੰਧਨ ਊਰਜਾ – Σ ਉਪਜਾਂ ਦੀ ਬੰਧਨ ਊਰਜਾ

ਤਾਪ ਗਤਿਕੀ ਦਾ ਪਹਿਲਾ ਨਿਯਮ ਰਸਾਇਣਿਕ ਪ੍ਤੀਕਿਰਿਆ ਦੀ ਦਿਸ਼ਾ ਦੇ ਬਾਰੇ ਵਿੱਚ ਸਾਨੂੰ ਨਿਰਦੇਸ਼ਿਤ ਨਹੀਂ ਕਰਦਾ, ਅਰਥਾਤ ਇਹ ਨਹੀਂ ਦੱਸਦਾ ਕਿ ਰਸਾਇਣਿਕ ਪ੍ਰਤੀਕਿਰਿਆ ਦਾ ਪ੍ਰੇਰਕ ਬਲ ਕੀ ਹੈ ? ਵਿਯੁਕਤ ਸਿਸਟਮ ਦੇ ਲਈ $\Delta U = 0$ । ਇੰਜ ਅਸੀਂ ਇਸ ਕਾਰਜ ਦੇ ਲਈ ਦੂਜਾ ਅਵਸਥਾ ਫਲਨ, S ਐਨਟ੍ਰਾੱਪੀ ਪਰਿਭਾਸ਼ਿਤ ਕਰਦੇ ਹਾਂ । ਐਨਟ੍ਰਾੱਪੀ ਬੇਤਰਤੀਬੀ ਦਾ ਮਾਪਨ ਹੈ । ਇੱਕ ਸੁਤੇ ਸਿੱਧ ਪਰਿਵਰਤਨ ਦੇ ਲਈ ਕੁੱਲ ਐਨਟ੍ਰਾੱਪੀ ਪਰਿਵਰਤਨ ਧਨਾਤਮਕ ਹੁੰਦਾ ਹੈ । ਇੱਕ ਵਿਯੁਕਤ ਸਿਸਟਮ ਦੇ ਲਈ $\Delta U = 0$, $\Delta S > 0$ ਹੈ । ਇੰਜ ਐਨਟ੍ਰਾੱਪੀ ਪਰਿਵਰਤਨ ਸੁਤੇ ਸਿੱਧ ਪ੍ਕਰਮ ਦਾ ਅੰਤਰ ਕਰਦਾ ਹੈ ਜਦਕਿ ਊਰਜਾ ਪਰਿਵਰਤਨ ਨਹੀਂ ਕਰਦਾ । ਪਰਤਵੇਂ ਪਰਿਵਰਤਨ ਦੇ ਲਈ ਇੱਕ ਐਨਟ੍ਰਾੱਪੀ ਪਰਿਵਰਤਨ ਸਮੀਕਰਣ $\Delta S = \frac{q_{\rm rev}}{T}$ ਤੋਂ ਗਿਆਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ ।

ਪੱਥ ਉੱਤੇ ਨਿਰਭਰ ਨਹੀਂ ਕਰਦਾ ਹੈ।

ਕਿਉਂਕਿ ਵਧੇਰੇ ਪ੍ਰਤੀਕਿਰਿਆਵਾਂ ਸਥਿਰ ਦਾਬ ਉੱਤੇ ਹੁੰਦੀਆਂ ਹਨ, ਇਸ ਲਈ ਅਸੀਂ ਇੱਕ ਹੋਰ ਅਵਸਥਾ ਫਲਨ ਗਿਬਜ ਊਰਜਾ, G ਪਰਿਭਾਸ਼ਿਤ ਕਰਦੇ ਹਾਂ, ਜੋ ਸਿਸਟਮ ਦੇ ਐਨਟ੍ਰਾੱਪੀ ਅਤੇ ਐਨਥੈਲਪੀ ਪਰਿਵਰਤਨਾਂ ਨਾਲ ਸਮੀਕਰਣ $\Delta_{,G} = \Delta_{,H} - T \Delta_{,S}$ ਦੁਆਰਾ ਸਬੰਧਿਤ ਹੈ।

ਸੁਤੇ ਸਿਧ ਪ੍ਕਰਮ ਦੇ ਲਈ $\Delta G_{\rm sys} < 0$ ਅਤੇ ਸੰਤੁਲਿਤ ਅਵਸਥਾ ਉੱਤੇ $\Delta G_{\rm sys} = 0$ ਸਟੈਂਡਰਡ ਗਿਬੱਜ ਊਰਜਾ ਪਰਿਵਰਤਨ ਸੰਤੁਲਿਤ ਸਥਿਰ ਅੰਕ ਨਾਲ $\Delta_c G^\circ = - \, {\rm R} T \ln \, K$ ਸਮੀਕਰਣ ਨਾਲ ਸਬੰਧਿਤ ਹੈ।

ਇਸ ਦੀ ਸਹਾਇਤਾ ਨਾਲ $\Delta_{r}G^{\circ}$ ਗਿਆਤ ਹੋਣ ਤੇ K ਦਾ ਮਾਨ ਗਿਆਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। $\Delta_{r}G^{\circ}$ ਦਾ ਮਾਨ ਸਮੀਕਰਣ $\Delta_{r}G^{\circ} = \Delta_{r}H^{\circ} - T\Delta_{r}S^{\circ}$ ਤੋਂ ਗਿਆਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਸਮੀਕਰਣ ਵਿੱਚ ਤਾਪਮਾਨ ਇੱਕ ਮਹਤੱਵਪੂਰਣ ਕਾਰਕ ਹੈ। ਧਨਾਤਮਕ ਐਨਟ੍ਰਾਪੀ ਪਰਿਵਰਤਨ ਵਾਲੀਆਂ ਕਈ ਪ੍ਰਤੀਕਿਰਿਆਵਾਂ, ਜੋ ਘੱਟ ਤਾਪਮਾਨ ਉੱਤੇ ਸੁਤੇ ਸਿੱਧ ਨਾ ਹੋਣ, ਉਨ੍ਹਾਂ ਨੂੰ ਉੱਚੇ ਤਾਪਮਾਨ ਉੱਤੇ ਸਤੇ ਸਿੱਧ ਬਣਾਇਆ ਜਾ ਸਕਦਾ ਹੈ।

ਅਭਿਆਸ

- 6.1 ਸਹੀ ਉੱਤਰ ਚੁਣੋ— ਤਾਪ ਗਤਿਕੀ ਅਵਸਥਾ ਫਲਨ ਇੱਕ ਰਾਸ਼ੀ ਹੈ,
 - (i) ਜੋ ਤਾਪ-ਪਰਿਵਰਤਨਾ ਦੇ ਲਈ ਵਰਤੀ ਜਾਂਦੀ ਹੈ।
 - (ii) ਜਿਸ ਦਾ ਮਾਨ ਪਥ ਉੱਤੇ ਨਿਰਭਰ ਨਹੀਂ ਕਰਦਾ।
 - (iii) ਜੋ ਦਾਬ-ਆਇਤਨ ਕਾਰਜ ਦੀ ਗਣਨਾ ਕਰਨ ਵਿੱਚ ਵਰਤਿਆ ਜਾਂਦਾ ਹੈ।
 - (iv) ਜਿਸ ਦਾ ਮਾਨ ਕੇਵਲ ਤਾਪਮਾਨ ਉੱਤੇ ਨਿਰਭਰ ਕਰਦਾ ਹੈ।
- 6.2 ਇਕ ਪ੍ਰਕਰਮ ਦੇ ਐਡੀਅਬੈਟਿਕ ਪਰਿਸਥਿਤੀ ਵਿੱਚ ਹੋਣ ਦੇ ਲਈ
 - (i) $\Delta T = 0$
 - (ii) $\Delta p = 0$
 - (iii) q = 0
 - (iv) w = 0
- 6.3 ਸਾਰੇ ਤੱਤਾਂ ਦੀ ਐਨਥੈਲਪੀ ਉਨ੍ਹਾਂ ਦੀ ਸੰਦਰਭ-ਅਵਸਥਾ ਵਿੱਚ ਹੁੰਦੀ ਹੈ
 - (i) ਇਕਾਈ
 - (ii) ਸਿਫਰ
 - (iii) < 0
 - (iv) ਸਾਰੇ ਤੱਤਾਂ ਦੇ ਲਈ ਭਿੰਨ ਹੁੰਦੀ ਹੈ।
- 6.4 ਮੀਥੇਨ ਦੇ ਜਲਣ ਦੇ ਲਈ ΔU° ਦਾ ਮਾਨ X ${
 m kJ~mol^{-1}}$ ਹੈ। ਇਸਦੇ ਲਈ ΔH° ਦਾ ਮਾਨ ਹੋਵੇਗਾ—
 - (i) = ΔU^{\ominus}
 - (ii) $> \Delta U^{\ominus}$
 - (iii) $< \Delta U^{\ominus}$
 - (iv) = 0
- 6.5 ਮੀਥੇਨ, ਗਰੇਫਾਈਟ ਅਤੇ ਡਾਈ ਹਾਈਡ੍ਰੋਜਨ ਦੇ ਲਈ 298 K ਉੱਤੇ ਜਲਣ ਐਨਥੈਲਪੀ ਦੇ ਮਾਨ ਕ੍ਰਮਵਾਰ −890.3 kJ mol⁻¹, −393.5 kJ mol⁻¹ ਅਤੇ −285.8 kJ mol⁻¹ ਹਨ \ CH₄(g) ਦੀ ਨਿਰਮਾਣ ਐਨਥੈਲਪੀ ਕੀ ਹੋਵੇਗੀ ?
 - (i) -74.8 kJ mol⁻¹ (ii) -52.27 kJ mol⁻¹
 - (iii) $+74.8 \text{ kJ mol}^{-1}$ (iv) $+52.26 \text{ kJ mol}^{-1}$.
- 6.6 ਇੱਕ ਪ੍ਤੀਕਿਰਿਆ $A + B \to C + D + q$ ਦੇ ਲਈ ਐਨਟ੍ਰਾੱਪੀ ਪਰਿਵਰਤਨ ਧਨਾਤਮਕ ਵੇਖਿਆ ਗਿਆ। ਇਹ ਪ੍ਤੀਕਿਰਿਆ ਸੰਭਵ ਹੋਵੇਗੀ—
 - (i) ਉੱਚੇ ਤਾਪਮਾਨ ਉੱਤੇ
 - (ii) ਕੇਵਲ ਨੀਵੇਂ ਤਾਪਮਾਨ ਉੱਤੇ
 - (iii) ਕਿਸੇ ਵੀ ਤਾਪਮਾਨ ਉੱਤੇ ਨਹੀਂ
 - (v) ਕਿਸੇ ਵੀ ਤਾਪਮਾਨ ਉੱਤੇ
- 6.7 ਇੱਕ ਪ੍ਕਰਮ ਵਿੱਚ ਸਿਸਟਮ ਦੁਆਰਾ 701 J ਤਾਪ ਸੋਖਿਤ ਹੁੰਦਾ ਹੈ ਅਤੇ 394 J ਕਾਰਜ ਕੀਤਾ ਜਾਂਦਾ ਹੈ।ਇਸ ਪ੍ਕਰਮ ਵਿੱਚ ਅੰਦਰੁਨੀ ਉਰਜਾ ਵਿੱਚ ਕਿੰਨਾ ਪਰਿਵਰਤਨ ਹੋਵੇਗਾ ?
- 6.8 ਇੱਕ ਬੰਬ ਕੈਲੋਰੀਮੀਟਰ ਵਿੱਚ ${
 m NH_2CN}$ (s) ਦੀ ਪ੍ਰਤੀ ਕਿਰਿਆ ਡਾਈ ਹਾਈਡ੍ਰੋਜਨ ਦੇ ਨਾਲ ਕੀਤੀ ਗਈ ਅਤੇ ΔU ਦਾ ਮਾਨ $-742.7~{
 m kJ}~{
 m mol^{-1}}$ ਪ੍ਰਾਪਤ ਕੀਤਾ ਗਿਆ (298 K ਉੱਤੇ)। ਇਸ ਪ੍ਰਤੀਕਿਰਿਆ ਦੇ ਲਈ 298 K ਉੱਤੇ ਐਨਥੈਲਜੀ ਪਰਿਵਰਤਨ ਗਿਆਤ ਕਰੋ -

```
NH_2CN(g) + O_2(g) \rightarrow N_2(g) + CO_2(g) + H_2O(l)
```

- 6.9 $60.0~{
 m g}$ ਐਕੂਸੀ ਨਿਯਮ ਦਾ ਤਾਪਮਾਨ $35^{\circ}{
 m C}$ ਤੋਂ $55^{\circ}{
 m C}$ ਕਰਨ ਦੇ ਲਈ ਕਿੰਨੇ ਕਿਲੋ ਜੂਲ ਤਾਪ ਦੀ ਜਰੂਰਤ ਹੋਵੇਗੀ। ${
 m Al}$ ਦੀ ਮੋਲਰ ਤਾਪਸੋਖਣ ਸਮਰਥਾ $24~{
 m J}~{
 m mol}^{-1}~{
 m K}^{-1}$ ਹੈ।
- 6.10 10.0°C ਉੱਤੇ 1 ਮੋਲ ਪਾਣੀ ਦੀ ਬਰਫ −10°C ਉੱਤੇ ਜਮਾਉਣ ਤੇ ਐਨਥੈਲਪੀ ਪਰਿਵਰਤਨ ਦੀ ਗਣਨਾ ਕਰੋ।

```
\Delta_{fus}H = 6.03 \text{ kJ mol}^{-1} \ 0^{\circ}\text{C} \ \overrightarrow{\mathcal{G}}\overrightarrow{\mathcal{G}}
C_{p} [\text{H}_{2}\text{O}(l)] = 75.3 \text{ J mol}^{-1} \ \text{K}^{-1}
C_{p} [\text{H}_{2}\text{O}(s)] = 36.8 \text{ J mol}^{-1} \ \text{K}^{-1}
```

- 6.11 ਕਾਰਬਨ ਦੀ ${
 m CO_2}$ ਵਿੱਚ ਜਲਣ ਐਨਥੈਲਪੀ $-393.5~{
 m kJ~mol^{-1}}$ ਹੈ।ਕਾਰਬਨ ਅਤੇ ਆੱਕਸੀਜਨ ਤੋਂ $35.2~{
 m g~CO_2}$ ਬਣਨ ਤੇ ਉਪਜੇ ਤਾਪ ਦੀ ਗਣਨਾ ਕਰੋ।
- 6.12 CO(g), CO $_2$ (g), N $_2$ O(g) ਅਤੇ N $_2$ O $_4$ (g) ਦੀ ਨਿਰਮਾਣ ਐਨਥੈਲਪੀ ਕ੍ਰਮਵਾਰ -110, -393, 81 ਅਤੇ $9.7~{\rm kJ~mol^{-1}}$ ਹਨ। ਪ੍ਤੀਕਿਰਿਆ N $_2$ O $_4$ (g) + 3CO $_5$ (g) ਦੇ ਲਈ $\Delta_i H$ ਦਾ ਮਾਨ ਗਿਆਨ ਕਰੋ।
- 6.13 $N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$; $\Delta_r H^9 = -92.4 \text{ kJ mol}^{-1}$ $NH_3(g)$ ਦੀ ਸਟੈਂਡਰਡ ਨਿਰਮਾਣ ਐਨਥੈਲਪੀ ਕੀ ਹੈ ?
- 6.14 ਹੇਠ ਲਿਖੇ ਅੰਕੜਿਆਂ ਤੋਂ CH₂OH(l) ਦੀ ਸਟੈਂਡਰਡ ਨਿਰਮਾਣ ਐਨਥੈਲਪੀ ਗਿਆਤ ਕਰੋ—

$${
m CH_3OH~(l)} + {
m O_2(g)} o {
m CO_2(g)} + 2{
m H_2O(l)} \; ; \; \Delta_r H^\ominus = -726 \; {
m kJ~mol^{-1}}$$
 ${
m C(}$ ਗਰੇਫਾਈਟ) + ${
m O_2(g)} o {
m CO_2(g)} \; ; \; \Delta H_c^\ominus = -393 \; {
m kJ~mol^{-1}}$ ${
m H_2(g)} + {
m O_2(g)} o 2{
m H_2O(l)} \; ; \; \Delta_r H^\ominus = -286 \; {
m kJ~mol^{-1}}.$

 ${
m CCl_4(g)}
ightarrow {
m C(g)} + 4$ Cl(g) ਪ੍ਰਤੀਕਿਰਿਆ ਦੇ ਲਈ ਐਨਥੈਲਪੀ ਪਰਿਵਰਤਨ ਗਿਆਤ ਕਰੋ ਅਤੇ CCl₄ ਵਿੱਚ C − Cl ਦੀ ਬੰਧਨ ਐਨਥੈਲਪੀ ਦੀ ਗਣਨਾ ਕਰੋ-

$$\Delta_{vap}H^{\ominus}(CCl_4) = 30.5 \text{ kJ mol}^{-1}.$$

$$\Delta_f H^{\ominus}$$
 (CCl₄) = -135.5 kJ mol⁻¹.

$$\Delta_a H^{\ominus}$$
 (C) = 715.0 kJ mol $^{-1}$, ਇੱਥੇ $\Delta_a H^{\ominus}$ ਪਰਮਾਣਵੀਂ ਕਰਣ ਐਨਥੈਲਪੀ ਹੈ। $\Delta_a H^{\ominus}$ (Cl $_2$) = 242 kJ mol $^{-1}$

- 6.16 ਇਕ ਵਿਯੁਕਤ ਸਿਸਟਮ ਦੇ ਲਈ $\Delta U = 0$, ਇਸਦੇ ਲਈ ΔS ਕੀ ਹੋਵੇਗਾ ?
- 6.17 298 K ਉੱਤੇ ਪ੍ਰਤੀਕਿਰਿਆ 2A + B \rightarrow C ਦੇ ਲਈ $\Delta H = 400 \text{ kJ mol}^{-1}$ ਅਤੇ $\Delta S = 0.2 \text{ kJ K}^{-1} \text{ mol}^{-1}$ ΔH ਅਤੇ ΔS ਤਾਪ–ਵਿਸਤਾਰ ਉੱਤੇ ਸਥਿਰ ਮੰਨਦੇ ਹੋਏ ਦਸੋ ਕਿ ਕਿਸ ਤਾਪਮਾਨ ਉੱਤੇ ਪ੍ਰਤੀਕਿਰਿਆ ਸੂਤੇ ਸਿੱਧ ਹੋਵੇਗੀ ?
- 6.18 ਪ੍ਰਤੀਕਿਰਿਆ $2{
 m Cl}_2({
 m g})
 ightarrow {
 m Cl}_2({
 m g})$ ਦੇ ਲਈ ΔH ਅਤੇ ΔS ਦੇ ਚਿਨ੍ਹ ਕੀ ਹੋਣਗੇ ?
- 6.19 ਪ੍ਤੀਕਿਰਿਆ $2 \text{ A(g)} + \text{B(g)} \rightarrow 2 \text{D(g)}$ ਦੇ ਲਈ $\Delta U^{\circ} = -10.5 \text{ kJ}$ ਅਤੇ $\Delta S^{\circ} = -44.1 \text{ JK}^{-1}$ ਪ੍ਤੀਕਿਰਿਆ ਦੇ ਲਈ ΔG° ਦੀ ਗਣਨਾ ਕਰੋ ਅਤੇ ਦੱਸੋ ਕਿ ਇਹ ਪ੍ਤੀਕਿਰਿਆ ਸੁਤੇ ਸਿੱਧ ਹੋ ਸਕਦੀ ਹੈ ?

- 6.20 $300~{\rm K}$ ਉੱਤੇ ਇੱਕ ਪ੍ਰਤੀ ਕਿਰਿਆ ਦੇ ਲਈ ਸੰਤੁਲਨ ਸਥਿਰ ਅੰਕ $10~{\bar 0}$ । ΔG° ਦਾ ਮਾਨ ਕੀ ਹੋਵੇਗਾ ? R = $8.314~{\rm JK^{-1}~mol^{-1}}$.
- 6.21 ਹੇਠ ਲਿਖੀਆਂ ਪ੍ਰਤੀ ਕਿਰਿਆਵਾਂ ਦੇ ਅਧਾਰ ਤੇ NO(g) ਦੇ ਤਾਪਗਤਿਕੀ ਸਥਿਰਤਾ ਉੱਤੇ ਟਿੱਪਣੀ ਕਰੋ —

$$N_2(g) + O_2(g) \rightarrow NO(g)$$
; $\Delta_r H^{\ominus} = 90 \text{ kJ mol}^{-1}$

$$NO(g) + O_2(g) \rightarrow NO_2(g) : \Delta_r H^{\oplus} = -74 \text{ kJ mol}^{-1}$$

6.22 ਜਦੋਂ 1.00 ਮੋਲ $\mathrm{H_2O}(l)$ ਨੂੰ ਸਟੈਂਡਰਡ ਪਰਿਸਥਿਤੀਆਂ ਵਿੱਚ ਨਿਰਮਿਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ, ਤਾਂ ਆਲੇ ਦੁਆਲੇ ਦੇ ਐਨਟ੍ਰਾੱਪੀ ਪਰਿਵਰਤਨ ਦੀ ਗਣਨਾ ਕਰੋ— $\Delta_r H^{\mathrm{o}} = -286 \mathrm{\ kJ\ mol^{-1}}.$

ਯੂਨਿਟ 7

ਸੰਤੁਲਿਤ ਅਵਸਥਾ

EQUILIBRIUM

ਉਦੇਸ਼

ਇਸ ਯੂਨਿਟ ਦੇ ਅਧਿਐਨ ਦੇ ਬਾਅਦ ਤੁਸੀਂ

- ਭੌਤਿਕ ਅਤੇ ਰਸਾਇਣਿਕ ਪ੍ਰਤੀਕਿਰਿਆਵਾਂ ਵਿੱਚ ਸੰਤੁਲਨ ਦੀ ਗਤਿਕ ਪ੍ਰਕਿਰਤੀ ਨੂੰ ਪਛਾਣ ਸਕੋਗੇ;
- ਭੌਤਿਕ ਅਤੇ ਰਸਾਇਣਿਕ ਪ੍ਰਤੀਕਿਰਿਆਵਾਂ ਦੇ ਸੰਤੁਲਨ ਦੇ ਨਿਯਮ ਨੂੰ ਵਿਅਕਤ ਕਰ ਸਕੋਗੇ;
- ਸੰਤੁਲਨ ਦੇ ਲੱਛਣਾਂ ਨੂੰ ਵਿਅਕਤ ਕਰ ਸਕੋਗੇ;
- ਕਿਸੇ ਦਿੱਤੀ ਗਈ ਪ੍ਰਤੀਕਿਰਿਆ ਦੇ ਲਈ ਸੰਤੁਲਨ ਸਥਿਰ ਅੰਕ ਵਿਅੰਜਕ ਲਿਖ ਸਕੋਗੇ;
- K_p ਅਤੇ K_c ਵਿੱਚ ਸਬੰਧ ਸਥਾਪਿਤ ਕਰ ਸਕੋਗੇ;
- ਪ੍ਤੀਕਿਰਿਆ ਦੀ ਸੰਤੁਲਿਤ ਅਵਸਥਾ ਨੂੰ ਪ੍ਰਭਾਵਿਤ ਕਰਨ ਵਾਲੇ ਭਿੰਨ ਭਿੰਨ ਕਾਰਕਾਂ ਦੀ ਵਿਆਖਿਆ ਕਰ ਸਕੋਗੇ;
- ਅਰਹੀਨੀਅਸ, ਬਰੁਾਨਸਟੈਂਡ ਲੋਰੀ ਅਤੇ ਲੁਈਸ ਧਾਰਣਾਵਾਂ ਦੇ ਅਧਾਰ ਤੇ ਪਦਾਰਥਾਂ ਨੂੰ ਤੇਜ਼ਾਬ ਜਾਂ ਖਾਰਾ ਵਿੱਚ ਵਰਗੀਕ੍ਰਿਤ ਕਰ ਸਕੋਗੇ;
- ਤੇਜਾਬ ਅਤੇ ਖਾਰਾਂ ਦੀ ਪ੍ਰਬਲਤਾਦੀ ਵਿਆਖਿਆ ਉਨ੍ਹਾਂ ਦੇ ਆਇਨਨ ਸਥਿਰ ਅੰਕਾਂ ਦੇ ਰੂਪ ਵਿੱਚ ਕਰ ਸਕੋਗੇ;
- ਇਲੈਕਟ੍ਰੋਲਾਈਟ ਅਤੇ ਸਮਆਇਨ ਦੀ ਸੰਘਣਤਾ ਉੱਤੇ ਆਇਨਨ ਦੀ ਮਾਤਰਾ ਦੀ ਨਿਰਭਰਤਾ ਦੀ ਵਿਆਖਿਆ ਕਰ ਸਕੋਗੇ;
- ਹਾਈਡ੍ਰੋਜਨ ਆਇਨ ਦੀ ਮੋਲਰ ਸੰਘਣਤਾ ਦਾ pH ਸਕੇਲ ਦੇ ਰੂਪ ਵਿੱਚ ਵਰਣਨ ਕਰ ਸਕੋਗੇ;
- ਪਾਣੀ ਦੇ ਆਇਨਨ ਅਤੇ ਇਸਦੀ ਤੇਜਾਬ ਅਤੇ ਖਾਰ ਦੇ ਰੂਪ ਵਿੱਚ ਦੋਹਰੀ ਭੂਮਿਕਾ ਦਾ ਵਰਣਨ ਕਰ ਸਕੋਗੇ;
- ਪਾਣੀ ਦੇ ਆਇਨਿਕ ਗੁਣਨਫਲ ($K_{
 m w}$) ਅਤੇ ${
 m p} K_{
 m w}$ ਵਿੱਚ ਅੰਤਰ ਕਰ ਸਕੋਗੇ;
- ਬਟਰ ਘੋਲਾਂ ਦੀ ਵਰਤੋਂ ਨੂੰ ਸਮਝ ਸਕੋਗੇ ਅਤੇ;
- ਘੁਲਣਸ਼ੀਲਤਾ ਗੁਣਨਫਲ ਸਥਿਰ ਅੰਕ ਦੀ ਗਣਨਾ ਕਰ ਸਕੋਗੇ।;

ਅਨੇਕ ਜੈਵਿਕ ਅਤੇ ਵਾਤਾਵਰਣ ਦੀਆਂ ਪ੍ਰਕਿਰਿਆਵਾਂ ਵਿੱਚ ਰਸਾਇਣਿਕ ਸੰਤੁਲਨ ਮਹੱਤਵ ਪੂਰਨ ਹੈ। ਉਦਾਹਰਣ ਵਜੋਂ ਸਾਡੇ ਫੇਫੜਿਆਂ ਤੋਂ ਮਾਸਪੇਸ਼ੀਆਂ ਤੱਕ ${\rm O}_2$ ਦੇ ਪਰਿਵਹਨ ਅਤੇ ਵਿਤਰਣ ਵਿੱਚ ${\rm O}_2$ ਅਣੂਆਂ ਅਤੇ ਹੀਮੋਗਲੋਬਿਨ ਦੇ ਵਿੱਚ ਸੰਤੁਲਨ ਦੀ ਇੱਕ ਨਿਰਣਾਇਕ ਭੂਮਿਕਾ ਹੈ। ਇਸੇ ਤਰ੍ਹਾਂ CO ਅਣੂਆਂ ਅਤੇ ਹੀਮੋਗਲੋਬਿਨ ਦੇ ਵਿੱਚ ਸੰਤੁਲਨ CO ਦੇ ਜਹਿਰੀਲੇਪਨ ਦਾ ਕਾਰਣ ਦੱਸਦਾ ਹੈ।

ਜਦੋਂ ਕਿਸੇ ਬੰਦ ਦ੍ਵ ਬਰਤਨ ਵਿੱਚ ਇੱਕ ਦ੍ਵ ਵਾਸ਼ਪਿਤ ਹੁੰਦਾ ਹੈ, ਤਾਂ ਉੱਚ ਗਤਿਜ ਊਰਜਾ ਵਾਲੇ ਅਣੂ ਦ੍ਵ ਦੇ ਸਤ੍ਹਾ ਨਾਲ ਟਕਰਾ ਕੇ ਵਾਸ਼ਪ ਫੇਜ਼ ਤੋਂ ਦ੍ਵ ਫੇਜ ਵਿੱਚ ਅਟਕ ਜਾਂਦੇ ਹਨ। ਇਸ ਤਰ੍ਹਾਂ ਦ੍ਵ ਅਤੇ ਵਾਸ਼ਪ ਦੇ ਵਿੱਚ ਇੱਕ ਗਤਿਜ ਸੰਤੁਲਨ ਸਥਾਪਿਤ ਹੋ ਜਾਂਦਾ ਹੈ ਜਿਸ ਦੇ ਨਤੀਜੇ ਵਜੋਂ ਦ੍ਵ ਦੀ ਸਤ੍ਹਾ ਉੱਤੇ ਇੱਕ ਨਿਸ਼ਚਿਤ ਵਾਸ਼ਪ ਦਾਬ ਪੈਦਾ ਹੋ ਜਾਂਦਾ ਹੈ। ਜਦੋਂ ਪਾਣੀ ਦਾ ਵਾਸ਼ਪਨ ਸ਼ੁਰੂ ਹੁੰਦਾ ਹੈ ਤਾਂ ਪਾਣੀ ਦਾ ਵਾਸ਼ਪ ਦਾਬ ਵਧਣ ਲੱਗਦਾ ਹੈ ਅਤੇ ਅੰਤ ਵਿੱਚ ਸਥਿਰ ਹੋ ਜਾਂਦਾ ਹੈ। ਅਜਿਹੀ ਸਥਿਤੀ ਵਿੱਚ ਅਸੀਂ ਕਹਿੰਦੇ ਹਾਂ ਕਿ ਸਿਸਟਮ (system) ਵਿੱਚ ਸੰਤੁਲਿਤ ਅਵਸਥਾ ਸਥਾਪਿਤ ਹੋ ਗਈ ਹੈ। ਭਾਵੇਂ ਇਹ ਸੰਤੁਲਨ ਸਥਾਈ ਨਹੀਂ ਹੈ ਅਤੇ ਦ੍ਵ ਦੀ ਸਤ੍ਹਾ ਉੱਤੇ ਦ੍ਵ ਅਤੇ ਵਾਸ਼ਪ ਦੇ ਵਿੱਚ ਅਨੇਕਾਂ ਕਿਰਿਆ ਕਲਾਪ ਹੁੰਦੇ ਰਹਿੰਦੇ ਹਨ। ਇਸ ਤਰ੍ਹਾਂ ਸੰਤੁਲਿਤ ਅਵਸਥਾ ਤੇ ਵਾਸ਼ਪਨ ਦੀ ਦਰ ਸੰਘਣਨ-ਦਰ ਦੇ ਬਰਾਬਰ ਹੋ ਜਾਂਦੀ ਹੈ। ਇਸ ਨੂੰ ਇਸ ਤਰ੍ਹਾਂ ਦਰਸਾਇਆ ਜਾਂਦਾ ਹੈ —

 $\mathrm{H_{2}O}$ (ਦ੍ਵ) \Longrightarrow $\mathrm{H_{2}O}$ (ਵਾਸ਼ਪ)

ਇੱਥੇ ਦੋ ਅੱਧੇ ਤੀਰ ਇਸ ਗੱਲ ਨੂੰ ਦਰਸ਼ਾਉਂਦੇ ਹਨ ਕਿ ਦੋਵਾਂ ਦਿਸ਼ਾਵਾਂ ਵਿੱਚ ਪ੍ਰਕਿਰਿਆਵਾਂ ਨਾਲ ਨਾਲ ਹੁੰਦੀਆਂ ਹਨ ਅਤੇ ਪ੍ਤੀਕਾਰਕਾਂ ਅਤੇ ਉਪਜਾਂ ਦੀ ਸੰਤੁਲਿਤ ਅਵਸਥਾ ਉੱਤੇ ਮਿਸ਼ਰਣ ਨੂੰ 'ਸੰਤਲਿਤ ਮਿਸ਼ਰਣ' ਕਹਿੰਦੇ ਹਨ।

ਭੌਤਿਕ ਪ੍ਕਰਮਾਂ ਅਤੇ ਰਸਾਇਣਿਕ ਪ੍ਰਤੀਕਿਰਿਆਵਾਂ ਦੋਵਾਂ ਵਿੱਚ ਸੰਤੁਲਿਤ ਅਵਸਥਾ ਸਥਾਪਿਤ ਹੋ ਸਕਦੀ ਹੈ।ਪ੍ਰਤੀਕਿਰਿਆ ਤੇਜ ਜਾਂ ਹੌਲੀ ਹੋਣਾ ਉਸਦੀ ਪ੍ਕਿਰਤੀ ਅਤੇ ਪ੍ਰਯੋਗਿਕ ਪਰਿਸਥਿਤੀਆਂ ਉੱਤੇ ਨਿਰਭਰ ਕਰਦਾ ਹੈ।ਜਦੋਂ ਸਥਿਰ ਤਾਪਮਾਨ ਉੱਤੇ ਇੱਕ ਬੰਦ ਬਰਤਨ ਵਿੱਚ ਪ੍ਰਤੀ ਕਾਰਕ ਕਿਰਿਆ ਕਰਕੇ ਉਪਜਾਂ ਬਣਾਉਂਦੇ ਹਨ, ਤਾਂ ਉਨ੍ਹਾਂ ਦੀ ਸੰਘਣਤਾ ਹੌਲੀ ਹੌਲੀ ਘੱਟ ਹੁੰਦੀ ਜਾਂਦੀ ਹੈ ਅਤੇ ਉਪਜਾਂ ਦੀ ਸੰਘਣਤਾ ਵਧਦੀ ਰਹਿੰਦੀ ਹੈ। ਕਿੰਤੂ ਕੁਝ ਸਮੇਂ ਬਾਅਦ ਨਾ ਤਾਂ ਪ੍ਰਤੀਕਾਰਕਾਂ ਦੀ ਸੰਘਣਤਾ ਵਿੱਚ ਅਤੇ ਨਾਂ ਹੀ ਉਪਜਾਂ ਦੀ ਸੰਘਣਤਾ ਵਿੱਚ ਕੋਈ ਪਰਿਵਰਤਨ ਹੁੰਦਾ ਹੈ। ਅਜਿਹੀ ਸਥਿਤੀ ਵਿੱਚ ਸਿਸਟਮ ਵਿੱਚ ਗਤਿਕ ਸੰਤੁਲਨ (dynamic equilibrium) ਸਥਾਪਿਤ ਹੋ ਜਾਂਦਾ ਹੈ ਅਤੇ ਅਗ੍ਗਾਮੀ ਅਤੇ ਪਿਛਾਂ ਮੁਖੀ ਪ੍ਰਤੀਕਿਰਿਆਵਾਂ ਦੀਆਂ ਦਰਾਂ ਸਮਾਨ ਹੋ ਜਾਂਦੀਆਂ ਹਨ। ਇਸੇ ਕਾਰਣ ਇਸ ਅਵਸਥਾ

ਵਿੱਚ ਪ੍ਰਤੀਕਿਰਿਆ ਮਿਸ਼ਰਣ ਵਿੱਚ ਮੌਜੂਦ ਭਿੰਨ ਭਿੰਨ ਘਟਕਾਂ ਦੀ ਸੰਘਣਤਾ ਵਿੱਚ ਕੋਈ ਪਰਿਵਰਤਨ ਨਹੀਂ ਹੁੰਦਾ। ਇਸ ਅਧਾਰ ਤੇ ਕਿ ਸੰਤੁਲਿਤ ਅਵਸਥਾ ਪਹੁੰਚਣ ਤੱਕ ਕਿੰਨੀ ਪ੍ਰਤੀਕਿਰਿਆ ਪੂਰਣ ਹੋ ਚੁਕੀ ਹੈ, ਸਭ ਰਸਾਇਣਿਕ ਪ੍ਰਤੀ ਕਿਰਿਆਵਾਂ ਨੂੰ ਹੇਠ ਲਿਖੇ ਤਿੰਨ ਗਰੂਪਾਂ ਵਿੱਚ ਵਰਗੀਕ੍ਰਿਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ —

- (i) ਪਹਿਲੇ ਗਰੁੱਪ ਵਿੱਚ ਉਪ ਪ੍ਰਤੀਕਿਰਿਆਵਾਂ ਆਉਂਦੀਆਂ ਹਨ, ਜੋ ਲਗਪਗ ਪੂਰਣ ਹੋ ਜਾਂਦੀਆਂ ਹਨ ਅਤੇ ਪ੍ਰਤੀ ਕਾਰਕਾਂ ਦੀ ਸੰਘਣਤਾ ਨਾ ਮਾਤਰ ਰਹਿ ਜਾਂਦੀ ਹੈ। ਕੁਝ ਪ੍ਰਤੀਕਿਰਿਆਵਾਂ ਵਿੱਚ ਤਾਂ ਪ੍ਰਤੀਕਾਕਰਕਾਂ ਦੀ ਸੰਘਣਤਾ ਐਨੀਂ ਘੱਟ ਹੋ ਜਾਂਦੀ ਹੈ ਕਿ ਉਨ੍ਹਾਂ ਦਾ ਪ੍ਰੇਖਣ ਪ੍ਰਯੋਗ ਦੁਆਰਾ ਸੰਭਵ ਨਹੀਂ ਹੋ ਸਕਦਾ।
- (ii) ਦੂਜੇ ਗਰੁੱਪ ਵਿੱਚ ਉਹ ਪ੍ਰਤੀ ਕਿਰਿਆਵਾਂ ਆਉਂਦੀਆਂ ਹਨ, ਜਿਨ੍ਹਾਂ ਵਿੱਚ ਬਹੁਤ ਘੱਟ ਮਾਤਰਾ ਵਿੱਚ ਉਪਜਾਂ ਬਣਦੀਆਂ ਹਨ ਅਤੇ ਸੰਤੁਲਨ ਅਵਸਥਾ ਵਿੱਚ ਪ੍ਰਤੀਕਾਰਕਾਂ ਦਾ ਵਧੇਰੇ ਹਿੱਸਾ ਅਪਰਵਰਤਿਤ ਰਹਿ ਜਾਂਦਾ ਹੈ।
- (iii) ਤੀਜਾ ਗਰੁੱਪ ਉਨ੍ਹਾਂ ਪ੍ਰਤੀ ਕਿਰਿਆਵਾਂ ਦਾ ਹੈ, ਜਿਨ੍ਹਾਂ ਵਿੱਚ ਪ੍ਰਤੀ ਕਾਰਕਾਂ ਅਤੇ ਉਪਜਾਂ ਦੀ ਸੰਘਣਤਾ (concentration) ਸੰਤੁਲਿਤ ਅਵਸਥਾ ਵਿੱਚ ਤੁਲਨਾ ਯੋਗ ਹੋਵੇ।

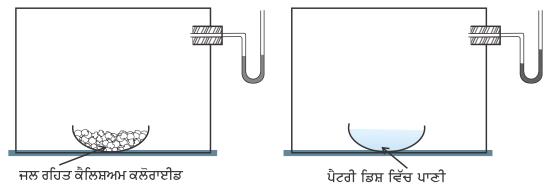
ਸੰਤੁਲਿਤ ਅਵਸਥਾ ਤੇ ਪ੍ਤੀਕਿਰਿਆ ਕਿਸ ਸੀਮਾ ਤੱਕ ਪੂਰਣ ਹੁੰਦੀ ਹੈ ਇਹ ਉਸਦੀ ਪ੍ਯੋਗਿਕ ਪਰਿਸਥਿਤੀਆਂ (ਜਿਵੇਂ-ਪ੍ਤੀਕਾਰਕਾਂ ਦੀ ਸੰਘਣਤਾ, ਤਾਪਮਾਨ ਆਦਿ) ਉੱਤੇ ਨਿਰਭਰ ਕਰਦੀ ਹੈ। ਉਦਯੋਗ ਅਤੇ ਪ੍ਯੋਗਸ਼ਾਲਾ ਵਿੱਚ ਪਰਿਚਾਲਨ ਪਰਿਸਥਿਤੀਆਂ (operational conditions) ਸਹੀ (optimize) ਕਰਨਾ ਬਹੁਤ ਮਹੱਤਵਪੂਰਣ ਹੁੰਦਾ ਹੈ, ਤਾਂ ਕਿ ਸੰਤੁਲਿਤ ਅਵਸਥਾ ਦਾ ਝੁਕਾਅ ਇੱਛਤ ਉਪਜ ਦੀ ਦਿਸ਼ਾ ਵਿੱਚ ਹੋਵੇ।ਇਸ ਯੁਨਿਟ ਵਿੱਚ ਅਸੀਂ ਭੌਤਿਕ ਅਤੇ ਰਸਾਇਣਿਕ ਪ੍ਕਰਮਾਂ ਵਿੱਚ ਸੰਤੁਲਨ ਦੇ ਕੁਝ ਮਹੱਤਵਪੂਰਣ ਪਹਿਲੂਆਂ ਦੇ ਨਾਲ ਨਾਲ ਜਲੀ ਘੋਲਾਂ ਵਿੱਚ ਅਇਨਾਂ ਦੇ ਸੰਤੁਲਨ, ਜਿਸ ਨੂੰ ਆਇਨਿਕ ਸੰਤੁਲਨ ਕਹਿੰਦੇ ਹਨ, ਨੂੰ ਵੀ ਸ਼ਾਮਿਲ ਕਰਾਂਗੇ।

7.1 ਭੌਤਿਕ ਪ੍ਕਰਮਾਂ ਵਿੱਚ ਸੰਤੁਲਿਤ ਅਵਸਥਾ

ਭੌਤਿਕ ਪ੍ਕਰਮਾਂ ਦੇ ਅਧਿਐਨ ਦੁਆਰਾ ਸੰਤੁਲਿਤ ਅਵਸਥਾ ਵਿੱਚ ਕਿਸੇ ਸਿਸਟਮ ਦੇ ਲੱਛਣਾਂ ਨੂੰ ਚੰਗੀ ਤਰ੍ਹਾਂ ਸਮਝਿਆ ਜਾ ਸਕਦਾ ਹੈ। ਫੇਜ਼ ਰੂਪਾਂਤਰਣ ਪ੍ਕਰਮ (phase transformation processes) ਇਸਦੀਆਂ ਜਾਣੂ ਉਦਾਹਰਣਾਂ ਹਨ।ਉਦਾਹਰਣ ਵਜੋਂ —

> ਠੋਸ ⇌ ਦ੍ਰਵ ਦ੍ਰਵ ⇌ ਗੈਸ ਠੋਸ ⇌ ਗੈਸ

7.1.1 ਠੋਸ — ਦੂਵ ਸੰਤੂਲਿਤ ਅਵਸਥਾ


ਤਾਪਰੋਧੀ (insulated) ਥਰਮਸ ਫਲਾਸਕ ਵਿੱਚ ਰੱਖੀ ਬਰਫ ਅਤੇ ਪਾਣੀ (ਇਹ ਮੰਨਦੇ ਹੋਏ ਕਿ ਫਲਾਸਕ ਵਿੱਚ ਰੱਖੇ ਪਦਾਰਥ ਅਤੇ ਆਲੇ ਦੁਆਲੇ ਵਿੱਚ ਤਾਪ ਦਾ ਵਟਾਂਦਰਾ ਨਹੀਂ ਹੁੰਦਾ ਹੈ) 273 K ਅਤੇ ਵਾਯਮੰਡਲੀ ਦਾਬ ਉੱਤੇ ਸੰਤਲਿਤ ਅਵਸਥਾ ਵਿੱਚ ਹੁੰਦੇ ਹਨ। ਇਹ ਸਿਸਟਮ ਦਿਲਚਸਪ ਲੱਛਣਾਂ ਨੂੰ ਦਰਸਾਉਂਦਾ ਹੈ। ਅਸੀਂ ਇੱਥੇ ਵੇਖਦੇ ਹਾਂ ਕਿ ਸਮੇਂ ਦੇ ਨਾਲ ਨਾਲ ਬਰਫ ਅਤੇ ਪਾਣੀ ਦੇ ਪੰਜਾਂ ਵਿੱਚ ਕੋਈ ਪਰਿਵਰਤਨ ਨਹੀਂ ਹੁੰਦਾ ਹੈ ਅਤੇ ਤਾਪਮਾਨ ਸਥਿਰ ਰਹਿੰਦਾ ਹੈ, ਪਰੰਤੂ ਸੰਤੂਲਿਤ ਅਵਸਥਾ ਸਥਿਤਿਕ ਨਹੀਂ ਹੈ। ਬਰਫ ਅਤੇ ਪਾਣੀ ਦੇ ਵਿੱਚ ਅਜੇ ਵੀ ਤੇਜ ਪਤੀਕਿਰਿਆਵਾਂ ਹੁੰਦੀਆਂ ਹਨ।ਦ੍ਵ ਪਾਣੀ ਦੇ ਅਣੂ ਬਰਫ ਨਾਲ ਟਕਰਾ ਕੇ ਚਿੰਬੜ ਜਾਂਦੇ ਹਨ ਅਤੇ ਬਰਫ ਦੇ ਕੁਝ ਅਣੂ ਦ੍ਵ ਅਵਸਥਾ ਵਿੱਚ ਚਲੇ ਜਾਂਦੇ ਹਨ। ਬਰਫ ਅਤੇ ਪਾਣੀ ਦੇ ਪੰਜਾਂ ਵਿੱਚ ਕੋਈ ਪਰਿਵਰਤਨ ਨਹੀਂ ਹੁੰਦਾ ਹੈ, ਕਿਉਂਕਿ ਪਾਣੀ ਦੇ ਅਣੂਆਂ ਦੀ ਬਰਫ ਤੋਂ ਪਾਣੀ ਵਿੱਚ ਸਥਾਨਅੰਤਰਣ ਦੀ ਦਰ ਅਤੇ ਪਾਣੀ ਤੋਂ ਬਰਫ ਵਿੱਚ ਸਥਾਨ ਅੰਤਰਣ ਦੀ ਦਰ 273 K ਅਤੇ ਇੱਕ ਵਾਯੂਮੰਡਲੀ ਦਾਬ ਉੱਤੇ ਬਰਾਬਰ ਹੁੰਦੀ ਹੈ।

ਇਹ ਸਪਸ਼ਟ ਹੈ ਕਿ ਪਾਣੀ ਅਤੇ ਬਰਫ ਕਿਸੇ ਵਿਸ਼ੇਸ਼ ਤਾਪਮਾਨ ਅਤੇ ਦਾਬ ਉੱਤੇ ਹੀ ਸੰਤੁਲਿਤ ਅਵਸਥਾ ਵਿੱਚ ਹੁੰਦੇ ਹਨ। ਵਾਯੂਮੰਡਲੀ ਦਾਬ ਉੱਤੇ ਕਿਸੇ ਸ਼ੁੱਧ ਪਦਾਰਥ ਦੇ ਲਈ ਉਹ ਤਾਪਮਾਨ, ਜਿਸ ਉੱਤੇ ਠੋਸ ਅਤੇ ਦ੍ਵ ਫੇਜਾਂ ਸੰਤੁਲਿਤ ਅਵਸਥਾ ਵਿੱਚ ਹੁੰਦੀਆਂ ਹਨ, ਪਦਾਰਥ ਦਾ ਸਟੈਂਡਰਡ ਪਿਘਲਣ ਅੰਕ ਅਖਵਾਉਂਦਾ ਹੈ। ਇਹ ਸਿਸਟਮ ਦਾਬ ਦੇ ਨਾਲ ਸਿਰਫ ਥੋੜਾ ਹੀ ਪਰਿਵਰਤਿਤ ਹੁੰਦਾ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਇਹ ਸਿਸਟਮ ਗਤਿਕ ਸੰਤੁਲਿਤ ਅਵਸਥਾ ਵਿੱਚ ਹੁੰਦਾ ਹੈ। ਇਸ ਤੋਂ ਹੇਠ ਲਿਖੇ ਨਿਸ਼ਕਰਸ਼ ਪ੍ਰਾਪਤ ਹੰਦੇ ਹਨ —

- (i) ਦੋਵੇਂ ਉਲਟ ਪ੍ਰਕਿਰਿਆਵਾਂ ਨਾਲ-ਨਾਲ ਹੁੰਦੀਆਂ ਹਨ।
- (ii) ਦੋਵੇਂ ਪ੍ਕਿਰਿਆਵਾਂ ਸਮਾਨ ਦਰ ਨਾਲ ਹੁੰਦੀਆਂ ਹਨ। ਇਸ ਵਿੱਚ ਬਰਫ ਅਤੇ ਪਾਣੀ ਦਾ ਪੂੰਜ ਸਥਿਰ ਰਹਿੰਦਾ ਹੈ।

7.1.2 ਦ੍ਵ — ਵਾਸ਼ਪ ਸੰਤੁਲਿਤ ਅਵਸਥਾ

ਇਸ ਤੱਥ ਨੂੰ ਹੇਠ ਲਿਖੇ ਪ੍ਯੋਗ ਦੇ ਮਾਧਿਅਮ ਨਾਲ ਸਮਝਿਆ ਜਾ ਸਕਦਾ ਹੈ। ਇੱਕ U ਅਕਾਰ ਦੀ ਟਿਊਬ, ਜਿਸ ਵਿੱਚ ਪਾਰਾ ਭਰਿਆ ਹੋਵੇ (ਮੈਨੋਮੀਟਰ) ਨੂੰ ਇੱਕ ਕੱਚ (ਜਾਂ ਪਲਾਸਟਿਕ) ਦੇ ਪਾਰਦਰਸ਼ੀ ਬਾੱਕਸ ਨਾਲ ਜੋੜ ਦਿੰਦੇ ਹਨ। ਬਾੱਕਸ ਵਿੱਚ ਇੱਕ ਵਾਚ ਗਲਾਸ ਜਾਂ ਪੈਟਰੀ ਡਿਸ਼ ਵਿੱਚ ਨਿਰਜਲੀ ਕੈਲਸ਼ਿਅਮ ਕਲੋਰਾਈਡ (ਜਾਂ ਫਾੱਸਫੋਰਸ ਪੈਂਟਾ ਆੱਕਸਾਈਡ) ਵਰਗਾ ਜਲ ਸੋਖਕ ਰੱਖਕੇ ਬਾੱਕਸ ਦੀ ਹਵਾ ਨੂੰ ਕੁਝ ਘੰਟਿਆਂ ਤੱਕ ਸੁਖਾਇਆ ਜਾਂਦਾ ਹੈ। ਇਸ ਦੇ ਬਾਅਦ ਜਲ ਸੋਖਕ ਨੂੰ ਬਾਹਰ ਕੱਢ ਲਿਆ ਜਾਂਦਾ ਹੈ। ਬਾੱਕਸ ਨੂੰ ਇੱਕ ਪਾਸੇ ਟੇਢਾ ਕਰਕੇ ਉਸ ਵਿੱਚ ਪਾਣੀ ਪਾ ਕੇ ਇੱਕ ਵਾਚ ਗਲਾਸ (ਜਾਂ ਪੈਟਰੀ ਡਿਸ਼) ਨੂੰ ਜਲਦੀ ਰੱਖ ਦਿੱਤਾ ਜਾਂਦਾ ਹੈ। ਮੈਨੋਮੀਟਰ ਨੂੰ ਵੇਖਣ ਤੇ ਪਤਾ ਲੱਗਦਾ ਹੈ ਕਿ ਕੁਝ ਸਮੇਂ ਬਾਅਦ ਇਸ ਦੀ ਸੱਜੀ ਭੂਜਾ ਵਿੱਚ ਪਾਰਾ ਹੌਲੀ ਹੌਲੀ ਉੱਪਰ ਚੜ੍ਹਦਾ ਹੈ ਅਤੇ ਅੰਤ ਸਥਿਰ ਹੋ ਜਾਂਦਾ ਹੈ, ਅਰਥਾਤ ਬਾੱਕਸ ਵਿੱਚ ਦਾਬ ਪਹਿਲਾਂ ਵਧਦਾ ਹੈ ਅਤੇ ਫਿਰ ਸਥਿਰ ਹੋ ਜਾਂਦਾ ਹੈ। ਵਾਚ ਗਲਾਸ ਵਿੱਚ ਲਏ ਗਏ ਪਾਣੀ ਦਾ ਆਇਤਨ

ਚਿੱਤਰ 7.1 ਸਥਿਰ ਤਾਪਮਾਨ ਉੱਤੇ ਪਾਣੀ ਦੀ ਸੰਤੁਲਿਤ ਅਵਸਥਾ ਦਾ ਵਾਸ਼ਪ ਦਾਬ ਮਾਪਨ

ਵੀ ਘੱਟ ਹੋ ਜਾਂਦਾ ਹੈ (ਚਿੱਤਰ 7.1)। ਸ਼ੁਰੂ ਵਿੱਚ ਬਾੱਕਸ ਵਿੱਚ ਜਲਵਾਸ਼ਪ ਨਹੀਂ ਹੁੰਦੇ ਜਾਂ ਬਹੁਤ ਘੱਟ ਹੋ ਸਕਦੇ ਹਨ, ਪਰੰਤੂ ਜਦੋਂ ਜਲ ਦਾ ਵਾਸ਼ਪਨ ਹੋਣ ਤੇ ਗੈਸੀ ਫੇਜ਼ ਵਿੱਚ ਪਾਣੀ ਦੇ ਅਣੂਆਂ ਦੇ ਬਦਲਣ ਦੇ ਕਾਰਣ ਵਾਸ਼ਪ ਦਾਬ ਵਧ ਜਾਂਦਾ ਹੈ, ਤਾਂ ਵਾਸ਼ਪਣ ਦੀ ਦਰ ਸਥਿਰ ਰਹਿੰਦੀ ਹੈ। ਸਮੇਂ ਦੇ ਨਾਲ-ਨਾਲ ਦਾਬ ਦੇ ਵਾਧੇ ਦੀ ਦਰ ਵਿੱਚ ਕਮੀਂ ਹੋਣ ਲੱਗਦੀ ਹੈ। ਜਦੋਂ ਸੰਤੁਲਨ ਸਥਾਪਿਤ ਹੋ ਜਾਂਦਾ ਹੈ ਤਾਂ ਪ੍ਰਭਾਵੀ-ਵਾਸ਼ਪਣ ਨਹੀਂ ਹੁੰਦਾ ਹੈ। ਇਸ ਦਾ ਮਤਲਬ ਇਹ ਹੈ ਕਿ ਜਿਵੇਂ ਜਿਵੇਂ ਪਾਣੀ ਦੇ ਅਣੂਆਂ ਦੀ ਸੰਖਿਆ ਗੈਸੀ ਅਵਸਥਾ ਵਿੱਚ ਵਧਣ ਲੱਗਦੀ ਹੈ, ਤਿਵੇਂ ਤਿਵੇਂ ਗੈਸੀ ਅਵਸਥਾ ਤੋਂ ਪਾਣੀ ਦੇ ਅਣੂਆਂ ਦੀ ਦ੍ਵ ਅਵਸਥਾ ਵਿੱਚ ਸੰਘਣਨ (condensation) ਦੀ ਦਰ ਸੰਤੁਲਿਤ ਅਵਸਥਾ ਸਥਾਪਿਤ ਹੋਣ ਤੱਕ ਵਧਦੀ ਰਹਿੰਦੀ ਹੈ। ਅਰਥਾਤ

ਸੰਤੁਲਿਤ ਅਵਸਥਾ ਤੇ ਵਾਸ਼ਪ ਦੀ ਦਰ = ਸੰਘਣਨ ਦੀ ਦਰ

$$H_2O(1) \rightleftharpoons H_2O \text{ (vap)}$$

ਸੰਤੁਲਿਤ ਅਵਸਥਾ ਵਿੱਚ ਪਾਣੀ ਦੇ ਅਣੂਆਂ ਦੁਆਰਾ ਪੈਦਾ ਦਾਬ ਕਿਸੇ ਦਿੱਤੇ ਤਾਪਮਾਨ ਉੱਤੇ ਸਥਿਰ ਰਹਿੰਦਾ ਹੈ, ਇਸ ਨੂੰ ਪਾਣੀ ਦਾ ਸੰਤੁਲਨ ਵਾਸ਼ਪ ਦਾਬ (ਜਾਂ ਪਾਣੀ ਦਾ ਵਾਸ਼ਪ ਦਾਬ) ਕਹਿੰਦੇ ਹਨ। ਦ੍ਵ ਦਾ ਵਾਸ਼ਪ ਦਾਬ ਤਾਪਮਾਨ ਦੇ ਨਾਲ ਵਧਦਾ ਹੈ। ਜੇ ਇਹ ਪ੍ਰਯੋਗ ਮੀਥਾਲੀਨ ਐਲਕੋਹਲ, ਐਸੀਟੋਨ ਅਤੇ ਈਥਰ ਦੇ ਨਾਲ ਦੋਹਰਾਇਆ ਜਾਵੇ, ਤਾਂ ਇਹ ਪ੍ਰੇਖਿਤ ਹੋਵੇਗਾ ਕਿ ਇਨ੍ਹਾਂ ਦੇ ਸੰਤੁਲਨ ਵਾਸ਼ਪ ਦਾਬ ਭਿੰਨ ਭਿੰਨ ਹੁੰਦੇ ਹਨ। ਆਨ ਅਨੁਸਾਰ ਉੱਚ ਵਾਸ਼ਪ ਦਾਬ ਵਾਲਾ ਦ੍ਵ ਵਧੇਰੇ ਵਾਸ਼ਪਸ਼ੀਲ ਹੁੰਦਾ ਹੈ ਅਤੇ ਉਸਦਾ ਉਬਲਣ ਦਰਜਾ ਘੱਟ ਹੁੰਦਾ ਹੈ।

ਜੇ ਤਿੰਨ ਵਾਚ ਗਲਾਸਾਂ ਵਿੱਚ ਐਸੀਟੋਨ, ਈਥਾਈਲ ਐਲਕੋਹਲ ਅਤੇ ਪਾਣੀ ਹਰ ਇੱਕ ਦਾ 1mL ਵਾਯੂਮੰਡਲ ਵਿੱਚ ਖੁਲ੍ਹਾ ਰੱਖਿਆ ਜਾਵੇ ਅਤੇ ਇਸ ਪ੍ਯੋਗ ਨੂੰ ਇੱਕ ਗਰਮ ਕਮਰੇ ਵਿੱਚ ਇਨ੍ਹਾਂ ਦ੍ਵਾਂ ਦੇ ਭਿੰਨ ਭਿੰਨ ਆਇਤਨਾਂ ਦੇ ਨਾਲ ਦੋਹਰਾਇਆ ਜਾਵੇ ਤਾਂ ਅਸੀਂ ਇਹ ਵੇਖਾਂਗੇ ਇਨ੍ਹਾਂ ਸਾਰਿਆਂ ਪ੍ਯੋਗਾਂ ਵਿੱਚ ਦ੍ਵ ਦਾ ਪੂਰਣ ਵਾਸ਼ਪੀਕਰਣ ਹੋ ਜਾਂਦਾ ਹੈ। ਪੂਰਣ ਵਾਸ਼ਪਣ ਦਾ ਸਮਾਂ (i) ਦ੍ਵ ਦੇ ਸੁਭਾਅ (ii) ਦ੍ਵ ਦੀ ਮਾਤਰਾ (iii) ਤਾਪਮਾਨ ਉੱਤੇ ਨਿਰਭਰ ਕਰਦਾ ਹੈ। ਜਦੋਂ ਵਾਚ

ਗਲਾਸ ਨੂੰ ਵਾਯੂਮੰਡਲ ਵਿੱਚ ਖੁਲ੍ਹਾ ਰੱਖਿਆ ਜਾਂਦਾ ਹੈ ਤਾਂ ਵਾਸ਼ਪ ਦੀ ਦਰ ਤਾਂ ਸਥਿਰ ਰਹਿੰਦੀ ਹੈ, ਪਰੰਤੂ ਵਾਸ਼ਪ ਦੇ ਅਣੂ ਕਮਰੇ ਦੇ ਪੂਰੇ ਆਇਤਨ ਵਿੱਚ ਫੈਲ ਜਾਂਦੇ ਹਨ। ਇੰਜ ਵਾਸ਼ਪ ਤੋਂ ਦ੍ਵ ਅਵਸਥਾ ਵਿੱਚ ਸੰਘਣਨ ਦੀ ਦਰ ਵਾਸ਼ਪਨ ਦੀ ਦਰ ਤੋਂ ਘੱਟ ਹੁੰਦੀ ਹੈ। ਇਸ ਦੇ ਨਤੀਜੇ ਵਜੋਂ ਪੂਰਾ ਦ੍ਵ ਵਾਸ਼ਪਿਤ ਹੋ ਜਾਂਦਾ ਹੈ। ਇਹ ਇੱਕ ਖੁਲ੍ਹੇ ਸਿਸਟਮ ਦੀ ਉਦਾਹਰਣ ਹੈ। ਖੁਲ੍ਹੇ ਸਿਸਟਮ ਦੀ ਸੰਤਲਿਤ ਅਵਸਥਾ ਦੀ ਸਥਾਪਨਾ ਹੋਣਾ ਸੰਭਵ ਨਹੀਂ ਹੈ।

ਬੰਦ ਬਰਤਨ ਵਿੱਚ ਪਾਣੀ ਅਤੇ ਜਲ-ਵਾਸ਼ਪ ਇੱਕ ਵਾਯੂਮੰਡਲੀ ਦਾਬ (1.013 bar) ਅਤੇ 100°C ਤਾਪਮਾਨ ਉੱਤੇ ਸੰਤੁਲਨ ਸਥਿਤੀ ਵਿੱਚ ਹਨ। 1.013 bar ਦਾਬ ਉੱਤੇ ਪਾਣੀ ਦਾ ਉਬਲਣ ਅੰਕ 100°C ਹੈ। ਕਿਸੇ ਸ਼ੁੱਧ ਦ੍ਵ ਦੇ ਲਈ ਇੱਕ ਵਾਯੂਮੰਡਲੀ ਦਾਬ (1.013 bar) ਉਹ ਤਾਪ ਹੈ ਜਿਸ ਉੱਤੇ ਦ੍ਵ ਅਤੇ ਵਾਸ਼ਪ ਸੰਤੁਲਿਤ ਅਵਸਥਾ ਵਿੱਚ ਹੋਣ ਦ੍ਵ ਦਾ ਉਬਲਣ ਅੰਕ ਅਖਵਾਉਂਦਾ ਹੈ। ਦ੍ਵ ਦਾ ਉਬਲਣ ਅੰਕ ਵਾਯੂਮੰਡਲੀ ਦਾਬ ਉੱਤੇ ਨਿਰਭਰ ਕਰਦਾ ਹੈ। ਵਧੇਰੇ ਅਲਟੀਚਿਯੁਡ ਉੱਤੇ ਦ੍ਵ ਦਾ ਉਬਲਣ ਅੰਕ ਘਟਦਾ ਹੈ।

7.1.3 ਠੋਸ-ਵਾਸ਼ਪ ਸੰਤੁਲਿਤ ਅਵਸਥਾ

ਹੁਣ ਅਸੀਂ ਅਜਿਹੇ ਸਿਸਟਮਾਂ ਉੱਤੇ ਵਿਚਾਰ ਕਰਾਂਗੇ, ਜਿੱਥੇ ਨੌਸ–ਵਾਸ਼ਪ ਵਿੱਚ ਜੋਹਰ ਉੱਡਦੇ ਹਨ। ਜੇ ਅਸੀਂ ਆਇਓਡੀਨ ਨੂੰ ਇੱਕ ਬੰਦ ਬਰਤਨ ਵਿੱਚ ਰੱਖੀਏ, ਤਾਂ ਕੁਝ ਸਮੇਂ ਬਾਅਦ ਬਰਤਨ ਬੈਂਗਨੀ ਵਾਸਪਾਂ ਨਾਲ ਭਰ ਜਾਂਦਾ ਹੈ ਅਤੇ ਸਮੇਂ ਦੇ ਨਾਲ–ਨਾਲ ਰੰਗ ਦੀ ਤੀਬਰਤਾ ਵਿੱਚ ਵਾਧਾ ਹੁੰਦਾ ਹੈ। ਪਰੰਤੂ ਕੁਝ ਸਮੇਂ ਬਾਅਦ ਰੰਗ ਦੀ ਤੀਬਰਤਾ ਸਥਿਰ ਹੋ ਜਾਂਦੀ ਹੈ। ਇਸ ਸਥਿਤੀ ਵਿੱਚ ਸੰਤੁਲਿਤ ਅਵਸਥਾ ਸਥਾਪਿਤ ਹੋ ਜਾਂਦੀ ਹੈ। ਇੰਜ ਨੌਸ ਆਇਓਡੀਨ ਜੌਹਰ ਉੱਡਕੇ ਆਇਉਡੀਨ ਵਾਸ਼ਪ ਦਿੰਦੀ ਹੈ ਅਤੇ ਸੰਤੁਲਨ ਅਵਸਥਾ ਨੂੰ ਇਸ ਰੂਪ ਵਿੱਚ ਦਰਸਾਇਆ ਜਾ ਸਕਦਾ ਹੈ —

 $I_2(\ddot{o}\pi) \iff I_2$ (ਵਾਸ਼ਪ) ਇਸ ਕਿਸਮ ਦੇ ਸੰਤੁਲਨ ਦੀਆਂ ਹੋਰ ਉਦਾਹਰਣਾਂ ਹਨ— ਕਪੂਰ (ਠੋਸ) \iff ਕਪੂਰ (ਵਾਸ਼ਪ) NH_4Cl (ਠੋਸ) \iff NH_4Cl (ਵਾਸ਼ਪ)

7.1.4 ਦ੍ਵ ਵਿੱਚ ਠੋਸ ਜਾਂ ਗੈਸ ਦੀ ਘੁਲਣਸ਼ੀਲਤਾ ਸਬੰਧੀ ਸੰਤਲਨ

ਦ੍ਵਾਂ ਵਿੱਚ ਠੋਸ

ਅਸੀਂ ਆਪਣੇ ਅਨੁਭਵ ਤੋਂ ਇਹ ਜਾਣਦੇ ਹਾਂ ਕਿ ਦਿੱਤੇ ਗਏ ਪਾਣੀ ਦੀ ਇੱਕ ਨਿਸ਼ਚਿਤ ਮਾਤਰਾ ਵਿੱਚ ਸਧਾਰਣ ਤਾਪਮਾਨ ਉੱਤੇ ਲੂਣ ਜਾਂ ਖੰਡ ਦੀ ਇੱਕ ਸੀਮਿਤ ਮਾਤਰਾ ਹੀ ਘੁਲਦੀ ਹੈ। ਜੇ ਅਸੀਂ ਉੱਚੇ ਤਾਪਮਾਨ ਤੇ ਖੰਡ ਦੀ ਚਾਸ਼ਨੀ ਬਣਾਈਏ ਅਤੇ ਉਸਨੂੰ ਠੰਡਾ ਕਰੀਏ ਤਾਂ ਚੀਨੀ ਦੇ ਕ੍ਰਿਸਟਲ ਵੱਖ ਹੋ ਜਾਣਗੇ। ਕਿਸੇ ਤਾਪਮਾਨ ਉੱਤੇ ਦਿੱਤੇ ਗਏ ਘੋਲ ਵਿੱਚ ਜੇ ਹੋਰ ਵਧੇਰੇ ਘੁਲਿਤ ਨਾ ਘੁਲ ਸਕੇ, ਤਾਂ ਅਜਿਹੇ ਘੋਲ ਨੂੰ ਸੰਤ੍ਰਿਪਤ ਘੋਲ (Saturated) ਕਹਿੰਦੇ ਹਨ। ਘੁਲਿਤ ਦੀ ਘੁਲਣਸ਼ੀਲਤਾ ਤਾਪਮਾਨ ਉੱਤੇ ਨਿਰਭਰ ਕਰਦੀ ਹੈ।ਸੰਤ੍ਰਿਪਤ ਘੋਲ ਵਿੱਚ ਅਣੂਆਂ ਦੀ ਠੱਸ ਅਵਸਥਾ ਅਤੇ ਘੁਲਿਤ (Solute) ਦੇ ਘੋਲ ਵਿੱਚ ਅਣੂਆਂ ਦੀ ਰੋਸ ਅਵਸਥਾ ਕਤੇ ਘੁਲਿਤ ਅਵਸਥਾ ਰਹਿੰਦੀ ਹੈ ਚੀਨੀ (ਘੋਲ) ⇌ ਚੀਨੀ (ਠੱਸ).

ਚੀਨੀ ਦੇ ਘੁਲਣ ਦੀ ਦਰ = ਚੀਨੀ ਦੇ ਕ੍ਰਿਸਟਲਨ ਦੀ ਦਰ

ਰੇਡੀਓ ਐਕਟਿਵਤਾ ਯੁਕਤ ਚੀਨੀ ਦੀ ਸਹਾਇਤਾ ਨਾਲ ਉਪਰੋਕਤ ਦਰਾਂ ਅਤੇ ਸੰਤੁਲਿਤ ਅਵਸਥਾ ਦੀ ਗਤਿਕ ਪ੍ਕਿਰਤੀ ਨੂੰ ਸਿੱਧ ਕੀਤਾ ਗਿਆ ਹੈ। ਜੇ ਅਸੀਂ ਰੇਡੀਔਕਟਿਵਤਾਹੀਨ (nonradioactive) ਚੀਨੀ ਦੇ ਸੰਤ੍ਰਿਪਤ ਘੋਲ ਵਿੱਚ ਰੇਡੀਓ ਐਕਟਿਵਤਾ ਯੁਕਤ ਚੀਨੀ ਦੀ ਕੁਝ ਮਾਤਰਾ ਪਾ ਦੇਈਏ ਤਾਂ ਕੁਝ ਸਮੇਂ ਬਾਅਦ ਦੋਵੇਂ ਘੋਲ ਅਤੇ ਠੱਸ ਚੀਨੀ ਜਿਸ ਵਿੱਚ ਸ਼ੁਰੂ ਵਿੱਚ ਰੇਡੀਓ ਐਕਟਿਵਤਾ ਯੁਕਤ ਚੀਨੀ ਦੇ ਅਣੂ ਨਹੀਂ ਸਨ, ਪਰੰਤੂ ਸੰਤੁਲਿਤ ਅਵਸਥਾ ਦੀ ਗਤਿਕ ਪ੍ਕਿਰਤੀ ਦੇ ਕਾਰਣ ਰੇਡੀਓ ਐਕਟਿਵਤਾ ਯੁਕਤ ਅਤੇ ਰੇਡੀਓ ਐਕਟਿਵਤਾਹੀਨ ਚੀਨੀ ਦੇ ਅਣੂਆਂ ਦਾ ਵਟਾਂਦਰਾ ਦੋਵਾਂ ਫੇਜਾਂ ਵਿੱਚ ਹੁੰਦਾ ਹੈ। ਇਸ ਲਈ ਰੇਡੀਓਐਕਟਿਵ ਅਤੇ ਰੇਡੀਓਐਕਟਿਵਤਾ ਰਹਿਤ ਚੀਨੀ ਅਣੂਆਂ ਦਾ ਅਨੁਪਾਤ ਤਦ ਤੱਕ ਵਧਦਾ ਰਹਿੰਦਾ ਹੈ, ਜਦ ਤਕ ਇਹ ਇੱਕ ਸਥਿਰ ਅਨ ਤੱਕ ਨਹੀਂ ਪਹੁੰਚ ਜਾਂਦਾ।

ਦ੍ਵਾਂ ਵਿੱਚ ਗੈਸਾਂ

ਜਦੋਂ ਸੋਡਾ ਵਾਟਰ ਦੀ ਬੋਤਲ ਖੋਲੀ ਜਾਂਦੀ ਹੈ, ਤਾਂ ਉਸ ਵਿੱਚ ਘੁਲੀ ਹੋਈ ਕਾਰਬਨਡਾਈ ਆਕਸਾਈਡ ਗੈਸ ਦੀ ਕੁਝ ਮਾਤਰਾ ਤੇਜੀ ਨਾਲ ਬਾਹਰ ਨਿਕਲਣ ਲੱਗਦੀ ਹੈ। ਭਿੰਨ ਦਾਬ ਉੱਤੇ ਪਾਣੀ ਵਿੱਚ ਕਾਰਬਨ ਡਾਈਆਕਸਾਈਡ ਦੀ ਭਿੰਨ ਘੁਲਣਸ਼ੀਲਤਾ ਦੇ ਕਾਰਣ ਅਜਿਹਾ ਹੁੰਦਾ ਹੈ। ਸਥਿਰ ਤਾਪਮਾਨ ਅਤੇ ਦਾਬ ਉੱਤੇ ਗੈਸ ਦੇ ਘੁਲੇ ਘਣੂਆਂ ਅਤੇ ਗੈਸ ਦੇ ਅਣੂਆਂ ਦੇ ਵਿੱਚ ਸੰਤੁਲਿਤ ਅਵਸਥਾ ਸਥਾਪਿਤ ਰਹਿੰਦੀ ਹੈ। ਉਦਾਹਰਣ ਵਜੋਂ

CO₂(g) ⇌ CO₂(ਘੋਲ ਵਿੱਚ)

ਇਹ ਸੰਤੁਲਨ ਅਵਸਥਾ ਹੈਨਰੀ ਦੇ ਨਿਯਮ ਅਨੁਸਾਰ ਹੈ। ਜਿਸਦੇ ਅਨੁਸਾਰ, "ਕਿਸੇ ਤਾਪਮਾਨ ਉੱਤੇ ਇੱਕ ਦਿੱਤੇ ਗਏ ਘੋਲਕ ਦੀ ਮਾਤਰਾ ਵਿੱਚ ਘੁਲੀ ਹੋਈ ਗੈਸ ਦੀ ਮਾਤਰਾ ਘੋਲ ਦੇ ਉੱਤੇ ਗੈਸ ਦੇ ਦਾਬ ਦੇ ਸਮਾਨ ਅਨੁਪਾਤੀ ਹੁੰਦੀ ਹੈ।" ਤਾਪਮਾਨ ਵਧਣ ਦੇ ਨਾਲ-ਨਾਲ ਇਹ ਮਾਤਰਾ ਘਟਦੀ ਜਾਂਦੀ ਹੈ। CO₂ ਗੈਸ ਨੂੰ ਸੋਡਾ ਵਾਟਰ ਦੀ ਬੋਤਲ ਵਿੱਚ ਵਧੇਰੇ ਦਾਬ ਉੱਤੇ ਸੀਲ ਬੰਦ ਕੀਤਾ ਹੁੰਦਾ ਹੈ। ਇਸ ਦਾਬ ਉੱਤੇ ਗੈਸ ਦੇ ਬਹੁਤ ਜਿਆਦਾ ਅਣੂ ਦ੍ਵ ਵਿੱਚ ਘੁਲ ਜਾਂਦੇ ਹਨ। ਜਿਉਂ ਹੀ ਬੋਤਲ ਖੋਲ੍ਹੀ ਜਾਂਦੀ ਹੈ ਤਿਉਂ ਹੀ ਬੋਤਲ ਵਿਚਲੇ ਦ੍ਵ ਦੀ ਸਤ੍ਹਾ ਉੱਤੇ ਦਾਬ ਘੱਟ ਹੋ ਜਾਂਦਾ ਹੈ, ਜਿਸ ਨਾਲ ਪਾਣੀ ਵਿੱਚ ਘੁਲੀ ਹੋਈ ਕਾਰਬਨ ਡਾਈ ਆੱਕਸਾਈਡ ਨਿਕਲ ਕੇ ਘੱਟ ਵਾਯੂਮੰਡਲੀ ਦਾਬ ਤੇ ਨਵੀਂ ਸੰਤੁਲਿਤ ਅਵਸਥਾ ਦੇ ਵੱਲ ਵਧਦੀ ਹੈ। ਜੇ ਸੋਡਾ ਵਾਟਰ ਦੀ ਇਸ ਬੋਤਲ ਨੂੰ ਕੁਝ ਸਮੇਂ ਤੱਕ ਹਵਾ ਵਿੱਚ ਖੁਲ੍ਹਾ ਛੱਡ ਦਿਤਾ ਜਾਵੇ ਤਾਂ ਇਸ ਵਿੱਚੋਂ ਲਗਪਗ ਸਾਰੀ ਗੈਸ ਨਿਕਲ ਜਾਵੇਗੀ।

ਇਹ ਸਧਾਰਣ ਰੂਪ ਵਿੱਚ ਕਿਹਾ ਜਾ ਸਕਦਾ ਹੈ ਕਿ–

- (i) ਠੋਸ ⇌ ਦ੍ਵ, ਸੰਤੁਲਿਤ ਅਵਸਥਾ ਦੇ ਲਈ ਵਾਯੂਮੰਡਲੀ ਦਾਬ (1.013 bar) ਉੱਤੇ ਇੱਕ ਹੀ ਤਾਪਮਾਨ (ਪਿਘਲਣ ਅੰਕ) ਅਜਿਹਾ ਹੁੰਦਾ ਹੈ ਜਿਸ ਉੱਤੇ ਦੋਵੇਂ ਫੇਜ ਮਿਲਦੇ ਹਨ। ਜੇ ਆਲੇ ਦੁਆਲੇ ਤੋਂ ਤਾਪ ਦਾ ਵਟਾਂਦਰਾ ਨਾ ਹੋਵੇ, ਤਾਂ ਦੋਵਾਂ ਫੇਜ਼ਾਂ ਦੇ ਪੁੰਜ ਸਥਿਰ ਹੁੰਦੇ ਹਨ।
- (ii) ਵਾਸ਼ਪ ⇌ ਦ੍ਵ ਸੰਤੁਲਿਤ ਅਵਸਥਾ ਦੇ ਲਈ ਕਿਸੇ ਨਿਸ਼ਚਿਤ ਤਾਪਮਾਨ ਉੱਤੇ ਵਾਸ਼ਪ ਦਾਬ ਸਥਿਰ ਰਹਿੰਦਾ ਹੈ।
- (iii) ਦ੍ਵ ਵਿੱਚ ਠੋਸ ਦੇ ਘੁਲਣ ਦੇ ਲਈ ਕਿਸੇ ਨਿਸ਼ਚਿਤ ਤਾਪਮਾਨ ਉੱਤੇ ਦ੍ਵ ਵਿੱਚ ਠੋਸ ਦੀ ਘੁਲਣਸ਼ੀਲਤਾ ਨਿਸ਼ਚਿਤ ਹੁੰਦੀ ਹੈ।
- (iv) ਦ੍ਵ ਵਿੱਚ ਗੈਸ ਦੀ ਘੁਲਣਸ਼ੀਲਤਾ ਦ੍ਵ ਦੇ ਉੱਤੇ ਗੈਸ ਦੇ ਦਾਬ ਦੇ ਸਮਾਨ ਅਨੁਪਾਤੀ ਹੁੰਦੀ ਹੈ। ਇਨ੍ਹਾਂ ਨਿਸ਼ਕਰਸ਼ਾਂ ਨੂੰ ਸਾਰਣੀ 7.1 ਵਿੱਚ ਦਿੱਤਾ ਗਿਆ ਹੈ।

ਸਾਰਣੀ 7.1 ਭੌਤਿਕ ਸੰਤੁਲਿਤ ਅਵਸਥਾ ਦੀਆਂ ਕੁੱਝ ਵਿਸ਼ੇਸ਼ਤਾਵਾਂ

Tenno e	
ਪ੍ਕਰਮ	ਨਿਸ਼ਕਰਮ
ਦ੍ਵ \rightleftharpoons ਵਾਸ਼ਪ $H_2O(1) \rightleftharpoons H_2O(g)$	ਨਿਸ਼ਚਿਤ ਤਾਪਮਾਨ ਉਤੋਂ $_{ m pH_2O}$ ਸਥਿਰ ਹੁੰਦਾ ਹੈ।
ਠੋਸ ⇌ੇ ਦ੍ਵ	ਸਥਿਰ ਦਾਬ ਉਤੋਂ ਪਿਘਲਣ ਦਰਜਾ ਨਿਸ਼ਚਿਤ ਹੁੰਦਾ ਹੈ।
H_2O (s) \rightleftharpoons H_2O (l)	ਘੋਲ ਵਿੱਚ ਘੁਲਿਤ ਦੀ ਸੰਘਣਤਾ ਨਿਸ਼ਚਿਤ ਤਾਪਮਾਨ ਉੱਤੇ ਸਥਿਰ ਹੁੰਦੀ ਹੈ।
ਘੁਲਿਤ (ਠੋਸ) ⇌ ਘੁਲਿਤ ਘੋਲ ਚੀਨੀ (ਠੋਸ) ⇌ ਚੀਨੀ ਘੋਲ	[ਗੈਸ (aq)]/ਗੈਸ (g)] ਨਿਸ਼ਚਿਤ ਤਾਪਮਾਨ ਉਤੋ ਸਥਿਰ ਹੁੰਦਾ ਹੈ।
$Gas(g) \rightleftharpoons ਗੈਸ (aq)$ $CO_2(g) \rightleftharpoons CO_2(aq)$	$[{ m Cl}_2\ ({ m aq})]/[{ m CO}_2({ m aq})]$ ਨਿਸ਼ਚਿਤ ਤਾਪਮਾਨ ਉੱਤੇ ਸਥਿਰ ਹੁੰਦਾ ਹੈ।

7.1.5 ਭੌਤਿਕ ਪ੍ਕਰਮਾਂ ਵਿੱਚ ਸੰਤੁਲਿਤ ਅਵਸਥਾ ਦੇ ਸਧਾਰਣ ਲੱਛਣ

ਉਪਰੋਕਤ ਭੌਤਿਕ ਪ੍ਕਰਮਾਂ ਵਿੱਚ ਸਾਰੇ ਸਿਸਟਮ-ਸੰਤੁਲਿਤ ਅਵਸਥਾ ਦੇ ਸਧਾਰਣ ਲੱਛਣ ਹੇਠ ਲਿਖੇ ਹਨ -

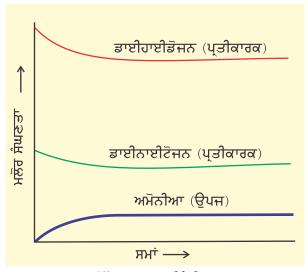
- (i) ਨਿਸ਼ਚਿਤ ਤਾਪਮਾਨ ਉੱਤੇ ਸਿਰਫ ਬੰਦ ਸਿਸਟਮ (closed system) ਵਿੱਚ ਹੀ ਸੰਤੁਲਿਤ ਅਵਸਥਾ ਸੰਭਵ ਹੈ।
- (ii) ਸੰਤੁਲਿਤ ਅਵਸਥਾ ਉੱਤੇ ਦੋਵੇਂ ਵਿਰੋਧੀ ਪ੍ਰਤੀਕਿਰਿਆਵਾਂ ਬਰਾਬਰ ਦਰ ਨਾਲ ਹੁੰਦੀਆਂ ਹਨ ਇਨ੍ਹਾਂ ਵਿੱਚ ਗਤਿਕ, ਪਰੰਤੁ ਸਥਾਈ ਅਵਸਥਾ ਹੁੰਦੀ ਹੈ।
- (iii) ਸਿਸਟਮ ਦੇ ਸਾਰੇ ਮਾਪਨ ਯੋਗ ਗਣ ਸਥਿਰ ਹੁੰਦੇ ਹਨ।
- (iv) ਜਦੋਂ ਕਿਸੇ ਭੌਤਿਕ ਪ੍ਕਰਮ ਵਿੱਚ ਸੰਤੁਲਿਤ ਅਵਸਥਾ ਸਥਾਪਿਤ ਹੋ ਜਾਂਦੀ ਹੈ, ਤਾਂ ਸਾਰਣੀ 7.1 ਵਿੱਚ ਵਰਣਨ ਕੀਤੇ ਮਾਪਦੰਡਾਂ ਵਿੱਚੋਂ ਕਿਸੇ ਇੱਕ ਦਾ ਮਾਨ ਨਿਸ਼ਚਿਤ ਤਾਪਮਾਨ ਉੱਤੇ ਸਥਿਰ ਹੋਣਾ ਵਰਣਨ ਕੀਤੀ ਸੰਤੁਲਿਤ ਅਵਸਥਾ ਦੀ ਪਛਾਣ ਹੈ।
- (v) ਕਿਸੇ ਵੀ ਸਮੇਂ ਇਨ੍ਹਾਂ ਰਾਸ਼ੀਆਂ ਦਾ ਮਾਨ ਇਹ ਦਰਸਾਉਂਦਾ ਹੈ ਕਿ ਸੰਤੁਲਿਤ ਅਵਸਥਾ ਤੱਕ ਪਹੁੰਚਣ ਤੋਂ ਪਹਿਲਾਂ ਭੌਤਿਕ ਪ੍ਰਕਰਮ ਕਿਸ ਸੀਮਾਂ ਤੱਕ ਅੱਗੇ ਵਧ ਚੁਕਿਆ ਹੈ।

7.2 ਰਸਾਇਣਿਕ ਸਮੀਕਰਣਾਂ ਵਿੱਚ ਸੰਤੁਲਿਤ ਅਵਸਥਾ — ਗਤਿਕ ਸੰਤਲਨ

ਇਹ ਪਹਿਲਾਂ ਹੀ ਦੱਸਿਆ ਜਾ ਚੁਕਿਆ ਹੈ ਕਿ ਬੰਦ ਸਿਸਟਮ ਵਿੱਚ ਕੀਤੀਆਂ ਜਾਣ ਵਾਲੀਆਂ ਰਸਾਇਣਿਕ ਪ੍ਤੀ ਕਿਰਿਆਵਾਂ ਅੰਤ ਵਿੱਚ ਸੰਤੁਲਿਤ ਅਵਸਥਾ ਵਿੱਚ ਪਹੁੰਚ ਜਾਂਦੀਆਂ ਹਨ। ਇਹ ਪ੍ਤੀ ਕਿਰਿਆਵਾਂ ਵੀ ਅਗ੍ਗਾਮੀ ਜਾਂ ਪਿਛਾਂਹ ਮੁਖੀ ਦਿਸ਼ਾਵਾਂ ਵਿੱਚ ਪੂਰੀਆਂ ਹੋ ਸਕਦੀਆਂ ਹਨ। ਜਦੋਂ ਅਗ੍ਗਾਮੀ ਅਤੇ ਪਿਛਾਂਹ ਮੁਖੀ ਪ੍ਤੀਕਿਰਿਆਵਾਂ ਦੀਆਂ ਦਰਾਂ ਬਰਾਬਰ ਹੋ ਜਾਂਦੀਆਂ ਹਨ, ਤਾਂ ਪ੍ਤੀਕਾਰਕਾਂ ਅਤੇ ਉਪਜਾਂ ਦੀਆਂ ਸੰਘਣਤਾਵਾਂ ਸਥਿਰ ਰਹਿੰਦੀਆਂ ਹਨ। ਇਹ ਰਸਾਇਣਿਕ ਸੰਤੁਲਨ ਦੀ ਅਵਸਥਾ ਹੈ। ਇਹ ਗਤਿਕ ਸੰਤੁਲਿਤ ਅਵਸਥਾ ਅਗ੍ਗਾਮੀ ਪ੍ਤੀ ਕਿਰਿਆ (ਜਿਸ ਵਿੱਚ ਪ੍ਤੀ ਕਾਰਕ ਉਪਜਾਂ ਵਿੱਚ ਬਦਲੇ ਜਾਂਦੇ ਹਨ) ਅਤੇ ਪਿਛਾਂਹ ਮੁਖੀ ਪ੍ਤੀਕਿਰਿਆ (ਜਿਸ ਵਿੱਚ ਉਪਜਾਂ ਮੂਲ ਪ੍ਤੀਕਾਰਕ ਵਿੱਚ ਬਦਲ ਜਾਂਦੇ ਹਨ) ਤੋਂ ਮਿਲਕੇ ਪੈਦਾ ਹੁੰਦੀ ਹੈ। ਇਸ ਨੂੰ ਸਮਝਣ ਦੇ ਲਈ ਅਸੀਂ ਹੇਠ ਲਿਖੀ ਉਲਟ-ਢਮਣੀ ਪਤੀਕਿਰਿਆ ਉੱਤੇ ਵਿਚਾਰ ਕਰੀਏ (ਚਿੱਤਰ 7.2)—

$$A + B \rightleftharpoons C + D$$

ਸਮਾਂ ਬੀਤਨ ਦੇ ਨਾਲ ਪ੍ਰਤੀ ਕਾਰਕਾਂ (A ਅਤੇ B) ਦੀ ਸੰਘਣਤਾ ਘਟਦੀ ਹੈ ਅਤੇ ਉਪਜਾਂ (C ਅਤੇ D) ਦਾ ਸੰਚਨ ਹੁੰਦਾ ਹੈ। ਅਗ੍ਗਾਮੀ ਪ੍ਰਤੀਕਿਰਿਆ ਦੀ ਦਰ ਘਟਦੀ ਜਾਂਦੀ ਹੈ ਅਤੇ ਪਿਛਾਂਹ ਮੁਖੀ ਪ੍ਰਤੀ ਕਿਰਿਆ ਦੀ ਦਰ ਵਧਦੀ ਜਾਂਦੀ ਹੈ। ਫਲਸਰੂਪ ਇੱਕ ਅਜਿਹੀ ਸਥਿਤੀ ਆਉਂਦੀ ਹੈ ਜਦੋਂ ਦੋਵੇਂ ਪ੍ਰਤੀਕਿਰਿਆਵਾਂ ਦੀ ਦਰ ਸਮਾਨ ਹੋ ਜਾਂਦੀ ਹੈ। ਅਜਿਹੀ ਸਥਿਤੀ



ਚਿੱਤਰ 7.2 ਰਸਾਇਣਿਕ ਸੰਤੁਲਿਤ ਅਵਸਥਾ ਦੀ ਪ੍ਰਾਪਤੀ

ਵਿੱਚ ਸਿਸਟਮ ਵਿੱਚ ਸੰਤੁਲਿਤ ਅਵਸਥਾ ਸਥਾਪਿਤ ਹੋ ਜਾਂਦੀ ਹੈ। ਇਹੀ ਸੰਤੁਲਿਤ ਅਵਸਥਾ C ਅਤੇ D ਦੇ ਵਿੱਚ ਪ੍ਰਤੀਕਿਰਿਆ ਕਰਵਾ ਕੇ ਵੀ ਪ੍ਰਾਪਤ ਕੀਤੀ ਜਾ ਸਕਦੀ ਹੈ। ਦੋਵਾਂ ਵਿੱਚੋਂ ਕਿਸੇ ਵੀ ਦਿਸ਼ਾ ਤੋਂ ਇਸ ਸੰਤੁਲਿਤ ਅਵਸਥਾ ਦੀ ਪ੍ਰਾਪਤੀ ਸੰਭਵ ਹੈ।

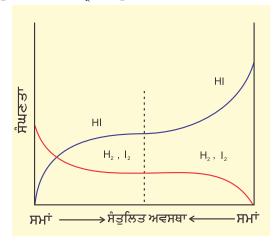
$$A + B \rightleftharpoons C + D \overrightarrow{H} C + D \rightleftharpoons A + B$$

ਹੈਬਰ ਵਿਧੀ ਦੁਆਰਾ ਅਮੋਨੀਆ ਦੇ ਸੰਸਲੇਸ਼ਣ ਵਿੱਚ ਰਸਾਇਣਿਕ ਸੰਤਲਿਤ ਅਵਸਥਾ ਦੀ ਗਤਿਕ ਪ੍ਰਕਿਰਤੀ ਨੂੰ ਦਰਸਾਇਆ ਜਾ ਸਕਦਾ ਹੈ। ਹੈਬਰ ਨੇ ਉੱਚੇ ਤਾਪਮਾਨ ਅਤੇ ਦਾਬ ਉੱਤੇ ਡਾਈਨਾਈਟੋ਼ਜਨ ਅਤੇ ਡਾਈ ਹਾਈਡੋ਼ਜਨ ਦੀ ਭਿੰਨ ਭਿੰਨ ਗਿਆਤ ਮਾਤਰਾਵਾਂ ਦੇ ਨਾਲ ਪ੍ਰਤੀਕਿਰਿਆ ਕਰਵਾ ਕੇ ਨਿਯਮਿਤ ਅੰਤਰਾਲ ਤੇ ਅਮੋਨੀਅਮ ਦੀ ਮਾਤਰਾ ਗਿਆਤ ਕੀਤੀ। ਇਸ ਦੇ ਅਧਾਰ ਤੇ ਉਨ੍ਹਾਂ ਨੇ ਪ੍ਰਤੀਕਿਰਿਆ ਵਿੱਚ ਬਾਕੀ ਡਾਈ ਨਾਈਟ੍ਰੋਜਨ ਅਤੇ ਡਾਈ ਹਾਈਡ੍ਰੋਜਨ ਦੀ ਸੰਘਣਤਾ ਗਿਆਤ ਕੀਤੀ। ਚਿੱਤਰ 7.4 ਦਰਸਾਉਂਦਾ ਹੈ ਕਿ ਇੱਕ ਨਿਸ਼ਚਿਤ ਸਮੇਂ ਦੇ ਬਾਅਦ ਕੁਝ ਪਤਿਕਾਰਕਾਂ ਦੇ ਬਾਕੀ ਰਹਿਣ ਤੇ ਵੀ ਅਮੋਨੀਆ ਦੀ ਸੰਘਣਤਾ ਅਤੇ ਮਿਸ਼ਰਣ ਦੀ ਰਚਨਾ ਉਹੀ ਬਣੀ ਰਹਿੰਦੀ ਹੈ। ਮਿਸ਼ਰਣ ਦੀ ਰਚਨਾ ਦੀ ਸਥਿਰਤਾ ਇਸ ਗੱਲ ਦਾ ਸੈਕੇਤ ਦਿੰਦੀ ਹੈ ਕਿ ਸੰਤੁਲਿਤ ਅਵਸਥਾ ਸਥਾਪਿਤ ਹੋ ਗਈ ਹੈ।ਪ੍ਤੀ ਕਿਰਿਆ ਦੀ ਗਤਿਕ ਪ੍ਰਕਿਰਤੀ ਨੂੰ ਸਮਝਣ ਦੇ ਲਈ ਅਮੋਨੀਆ ਦਾ ਸੰਸ਼ਲੇਸ਼ਣ ਲਗਪਗ ਸ਼ਰ ਦੀਆਂ ਪਰਿਸਥਿਤੀਆਂ (ਉਸੇ ਅੰਸ਼ਿਕ ਦਾਬ ਅਤੇ ਤਾਪਮਾਨੌ ਉੱਤੇ) ਪਰੰਤੂ ${
m H_2}$ ਦੀ ਜਗ੍ਹਾ ${
m D_2}$ (deuterium) ਲੈ ਕੇ ਕੀਤਾ ਗਿਆ। H₂ ਜਾਂ D₂ ਦੇ ਨਾਲ ਪ੍ਰਤੀ ਕਿਰਿਆ ਕਰਵਾਉਣ ਦੇ ਸੰਤੁਲਿਤ ਅਵਸਥਾ ਉੱਤੇ ਸਮਾਨ ਰਚਨਾ ਵਾਲਾ ਪਤੀ ਕਿਰਿਆ ਮਿਸ਼ਰਣ ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ, ਪਰੰਤੂ ਪ੍ਰਤੀ ਕਿਰਿਆ ਮਿਸ਼ਰਣ ਵਿੱਚ H_2 ਅਤੇ NH_3 ਦੀ ਥਾਂ ਤੇ ਕ੍ਰਮਵਾਰ D੍ਹ ਅਤੇ ND੍ਹ ਮੌਜੂਦ ਹੁੰਦੇ ਹਨ। ਸੰਤੁਲਿਤ ਅਵਸਥਾ ਸਥਾਪਿਤ ਹੋਣ ਦੇ ਬਾਅਦ ਦੋਵੇਂ ਮਿਸ਼ਰਣ (ਜਿਸ ਵਿੱਚ $m H_2,~N_2,~NH_3$ ਅਤੇ D_2 , N_2 , ND_3 ਹੁੰਦੇ ਹਨ) ਨੂੰ ਆਪਸ ਵਿੱਚ ਮਿਲਾ ਕੇ ਕੁਝ ਸਮੇਂ ਦੇ ਲਈ ਛੱਡ ਦਿੰਦੇ ਹਨ। ਬਾਅਦ ਵਿੱਚ ਇਸ ਮਿਸ਼ਰਣ ਦਾ

ਿੱਤਰ 7.4 ਪ੍ਰਤੀਕਿਰਿਆ $N_2\left(g\right)$ + $3H_2\left(g\right)$ $\rightleftharpoons 2NH_3\left(g\right)$ ਦੀ ਸੰਤੁਲਿਤ ਅਵਸਥਾ ਦਾ ਨਿਰੁਪਣ

ਵਿਸ਼ਲੇਸ਼ਣ ਕਰਨ ਤੇ ਪਤਾ ਲੱਗਦਾ ਹੈ ਕਿ ਅਮੋਨੀਆ ਦੀ ਸੰਘਣਤਾ ਅ–ਪਰਿਵਰਤਿਤ ਰਹਿੰਦੀ ਹੈ।

ਫਿਰ ਵੀ ਜਦੋਂ ਇਸ ਮਿਸ਼ਰਣ ਦਾ ਵਿਸ਼ਲੇਸ਼ਣ ਪੁੰਜ ਸਪੈਕਟ੍ਰੋਮੀਟਰ (mass spectrometer) ਦੁਆਰਾ ਕੀਤਾ ਜਾਂਦਾ ਹੈ, ਤਾਂ ਇਸ ਵਿੱਚ ਡਿਊਟੀਰੀਅਮ ਯੁਕਤ ਭਿੰਨ ਭਿੰਨ ਅਮੋਨੀਆ ਅਣੂ ($\mathrm{NH_3}$, $\mathrm{NH_2D}$, $\mathrm{NHD_2}$ ਅਤੇ $\mathrm{ND_3}$) ਅਤੇ ਡਾਈ ਹਾਈਡ੍ਰੋਜਨ ਅਣੂ ($\mathrm{H_2}$, HD ਅਤੇ $\mathrm{D_2}$) ਮਿਲਦੇ ਹਨ। ਇਸ ਤੋਂ ਇਹ ਨਿਸ਼ਕਰਸ਼ ਨਿਕਲਦਾ ਹੈ ਕਿ ਸੰਤੁਲਿਤ ਅਵਸਥਾ ਦੇ ਬਾਅਦ ਵੀ ਮਿਸ਼ਰਣ ਵਿੱਚ ਅਗ੍ਗਾਮੀ ਅਤੇ ਪਿਛਾਂਹਮੁਖੀ ਪ੍ਤੀ ਕਿਰਿਆਵਾਂ ਹੁੰਦੇ ਰਹਿਣ ਦੇ ਕਾਰਣ ਅਣੂਆਂ ਵਿੱਚ H ਅਤੇ D ਪਰਮਾਣੂਆਂ ਦੀ ਦੌੜ-ਭੱਜ (scrambling) ਹੁੰਦੀ ਰਹਿੰਦੀ ਹੈ। ਸੰਤੁਲਿਤ ਅਵਸਥਾ ਸਥਾਪਿਤ ਹੋਣ ਦੇ ਬਾਅਦ ਜੇ ਪ੍ਤੀ ਕਿਰਿਆ ਸਮਾਪਤ ਹੋ ਜਾਂਦੀ ਹੈ ਤਾਂ ਇਸ ਪ੍ਕਾਰ ਦਾ ਮਿਸ਼ਰਣ ਪ੍ਰਾਪਤ ਹੋਣਾ ਸੰਭਵ ਨਹੀਂ ਹੁੰਦਾ ਹੈ।


ਅਮੌਨੀਆ ਦੇ ਸੰਸ਼ਲੇਸ਼ਣ ਵਿੱਚ ਸਮਸਥਾਨਕ (deuterium) ਦੀ ਵਰਤੋਂ ਤੋਂ ਇਹ ਸਪਸ਼ਟ ਹੁੰਦਾ ਹੈ ਕਿ ਰਸਾਇਣਿਕ ਪ੍ਤੀਕਿਰਿਆਵਾਂ ਵਿੱਚ ਗਤਿਕ ਸੰਤੁਲਿਤ ਅਵਸਥਾ ਸਥਾਪਿਤ ਹੋਣ ਤੇ ਅਗ੍ਗਾਮੀ ਅਤੇ ਪਿਛਾਂਹ ਮੁਖੀ ਪ੍ਤੀਕਿਰਿਆਵਾਂ ਵਿੱਚ ਗਤਿ ਸੰਤੁਲਿਤ ਅਵਸਥਾ ਸਥਾਪਿਤ ਹੋਣ ਤੇ ਅਗ੍ਗਾਮੀ ਅਤੇ ਪਿਛਾਂਹ ਮੁਖੀ ਪ੍ਤੀਕਿਰਿਆਵਾਂ ਵਿੱਚ ਗਤਿ ਸੰਤੁਲਿਤ ਅਵਸਥਾ ਸਥਾਪਿਤ ਹੋਣ ਤੇ ਅਗ੍ਗਾਮੀ ਅਤੇ ਪਿਛਾਂਹ ਮੁਖੀ ਪ੍ਤੀ ਕਿਰਿਆਵਾਂ ਦੀ ਦਰ ਸਮਾਨ ਹੁੰਦੀ ਹੈ ਅਤੇ ਇਸਦੇ ਮਿਸ਼ਰਣ ਦੀ ਰਚਨਾ ਵਿੱਚ ਕੋਈ ਪ੍ਰਭਾਵੀ ਪਰਿਵਰਤਨ ਨਹੀਂ ਹੁੰਦਾ।

ਸੰਤੁਲਿਤ ਅਵਸਥਾ ਦੋਵਾਂ ਦਿਸ਼ਾਵਾਂ ਦੁਆਰਾ ਸਥਾਪਿਤ ਕੀਤੀ ਜਾ ਸਕਦੀ ਹੈ, ਭਾਵੇਂ $H_2(g)$ ਅਤੇ $N_2(g)$ ਦੀ ਪ੍ਤੀ ਕਿਰਿਆ ਕਰਵਾ ਕੇ $NH_3(g)$ ਪ੍ਰਾਪਤ ਕੀਤੀ ਜਾਵੇ ਜਾਂ $NH_3(g)$ ਦਾ ਵਿਘਟਨ ਕਰਵਾ ਕੇ $N_2(g)$ ਅਤੇ $H_2(g)$ ਪ੍ਰਾਪਤ ਕੀਤੀ ਜਾਵੇ।

$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$$

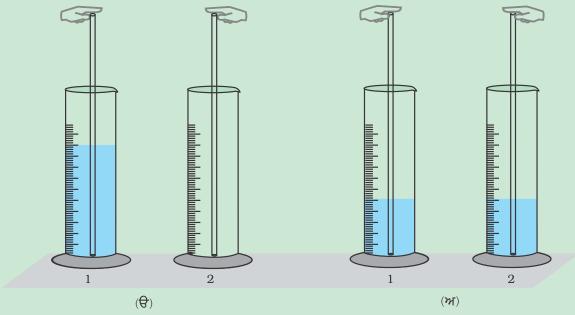
 $2NH_3(g) \rightleftharpoons N_2(g) + 3H_2(g)$

ਇਸੇ ਤਰ੍ਹਾਂ ਅਸੀਂ ਪ੍ਤੀ ਕਿਰਿਆ $H_2(g) + I_2(g)$ $\rightleftharpoons 2HI(g)$ ਵਿਚਾਰ ਕਰਦੇ ਹਾਂ। ਜੇ ਅਸੀਂ H_2 ਅਤੇ I_2 ਦੇ ਬਰਾਬਰ ਬਰਾਬਰ ਮੁੱਢਲੀ ਸੰਘਣਤਾ ਨਾਲ ਸ਼ੁਰੂ ਕਰੀਏ, ਤਾਂ ਪ੍ਰਤੀ ਕਿਰਿਆ ਅਗ੍ਰਗਾਮੀ ਦਿਸ਼ਾ ਵਿੱਚ ਵਧੇਗੀ। H_2 ਅਤੇ I_2 ਦੀ ਸੰਘਣਤਾ ਘੱਟ ਹੋਣ ਲੱਗਦੀ ਹੈ ਅਤੇ HI ਦੀ ਸੰਘਣਤਾ ਵਧਣ ਲਗੇਗੀ, ਜਦ ਤੱਕ ਸੰਤੁਲਨ ਸਥਾਪਿਤ ਨਾ ਹੋ ਜਾਵੇ (ਚਿੱਤਰ 7.5) ਜੇ ਅਸੀਂ HI ਤੋਂ ਸ਼ੁਰੂ ਕਰਕੇ ਪ੍ਰਤੀਕਿਰਿਆ ਨੂੰ ਉਲਟ ਦਿਸ਼ਾ ਵਿੱਚ ਹੋਣ ਦੇਈਏ, ਤਾਂ HI ਦੀ ਸੰਘਣਤਾ ਘੱਟ ਹੋਣ ਲੱਗੇਗੀ ਅਤੇ H_2 ਅਤੇ I_2 ਦੀ ਸੰਘਣਤਾ ਉਦੋਂ ਤਕ ਵਧਦੀ ਰਹੇਗੀ ਜਦ ਤੱਕ ਸੰਤੁਲਿਤ ਅਵਸਥਾ ਸਥਾਪਿਤ ਨਾ ਹੋ ਜਾਏ (ਚਿੱਤਰ 7.5)।

ਜੇ ਨਿਸ਼ਚਿਤ ਆਇਤਨ ਵਿੱਚ H ਅਤੇ I ਪਰਮਾਣੂਆਂ ਦੀ ਕੁਝ ਸੰਖਿਆ ਉਹੀ ਹੋਵੇ, ਤਾਂ ਭਾਵੇਂ ਅਸੀਂ ਸ਼ੁੱਧ ਪ੍ਤੀਕਾਰਕਾਂ ਨਾਲ ਪ੍ਤੀਕਿਰਿਆ ਸ਼ੁਰੂ ਕਰੀਏ, ਜਾਂ ਸ਼ੁੱਧ ਉਪਜਾਂ ਨਾਲ ਉਹੀ ਸੰਤੁਲਨ ਮਿਸ਼ਰਣ ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ।

ਚਿੱਤਰ **7.5** $H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$ ਪ੍ਰਤੀਕਿਰਿਆ ਵਿੱਚ ਰਸਾਇਣਿਕ ਸੰਤੁਲਿਤ ਅਵਸਥਾ ਕਿਸੇ ਵੀ ਦਿਸ਼ਾ ਤੋਂ ਸਥਾਪਿਤ ਹੋ ਸਕਦੀ ਹੈ।

7.3 ਰਸਾਇਣਿਕ ਸੰਤੁਲਿਤ ਅਵਸਥਾ ਦਾ ਨਿਯਮ ਅਤੇ ਸੰਤੁਲਿਤ ਅਵਸਥਾ ਸਥਿਰ ਅੰਕ


ਸੰਤੁਲਿਤ ਅਵਸਥਾ ਉੱਤੇ ਪ੍ਤੀਕਾਰਕਾਂ ਅਤੇ ਉਪਜਾਂ ਦੇ ਮਿਸ਼ਰਣ ਨੂੰ 'ਸੰਤੁਲਿਤ ਮਿਸ਼ਰਣ' ਕਹਿੰਦੇ ਹਨ। ਯੁਨਿਟ ਦੇ ਇਸ ਭਾਗ ਵਿੱਚ ਸੰਤੁਲਿਤ ਮਿਸ਼ਰਣ ਦੀ ਰਚਨਾ ਦੇ ਸਬੰਧ ਵਿੱਚ ਕਈ ਪ੍ਰਸ਼ਨਾਂ ਉੱਤੇ ਅਸੀਂ ਵਿੱਚਾਰ ਕਰਾਂਗੇ। ਇੱਕ ਸੰਤੁਲਿਤ ਮਿਸ਼ਰਣ ਵਿੱਚ ਪ੍ਤੀਕਾਰਕਾਂ ਅਤੇ ਉਪਜਾਂ ਦੀਆਂ ਸੰਘਣਤਾਵਾਂ ਵਿੱਚ ਦੀ ਸਬੰਧ ਹੈ ? ਮੁੱਢਲੀਆਂ ਸੰਘਣਤਾਵਾਂ ਤੋਂ ਸੰਤੁਲਿਤ ਸੰਘਣਤਾਵਾਂ ਨੂੰ ਕਿਵੇਂ ਗਿਆਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ ? ਸੰਤੁਲਿਤ ਮਿਸ਼ਰਣ ਦੀ ਰਚਨਾ ਨੂੰ ਕਿਹੜੇ ਕਾਰਕ ਪਰਿਵਰਤਿਤ ਕਰ ਸਕਦੇ ਹਨ ?

ਗਤਿਕ ਸੰਤੁਲਿਤ ਅਵਸਥਾ—ਵਿਦਿਆਰਥੀਆਂ ਦੇ ਲਈ ਇੱਕ ਪ੍ਰਯੋਗ

ਭੌਤਿਕ ਜਾਂ ਰਸਾਇਣਿਕ ਪ੍ਰਤੀ ਕਿਰਿਆਵਾਂ ਵਿੱਚ ਸੰਤੁਲਿਤ ਅਵਸਥਾ ਦੀ ਪਰਵਿਰਤੀ ਹਮੇਸ਼ਾ ਗਤਿਕ ਹੁੰਦੀ ਹੈ। ਰੇਡੀਓ ਐਕਟਿਵ ਸਮਸਥਾਨਕਾਂ ਦੀ ਵਰਤੋਂ ਦੁਆਰਾ ਇਸ ਤੱਥ ਨੂੰ ਪ੍ਰਦਰਸ਼ਿਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਪਰ ਕਿਸੇ ਸਕੂਲ ਦੀ ਪ੍ਰਯੋਗਸ਼ਾਲਾ ਵਿੱਚ ਇਸ ਨੂੰ ਪ੍ਰਦਰਸ਼ਿਤ ਕਰਨਾ ਸੰਭਵ ਨਹੀਂ ਹੈ। ਹੇਠ ਲਿਖੇ ਪ੍ਰਯੋਗ ਕਰਕੇ ਇਸ ਤਥ ਨੂੰ 5-6 ਵਿਦਿਆਰਥੀਆਂ ਦੇ ਸਮੁੰਹ ਨੂੰ ਅਗਾਮੀ ਨਾਲ ਵਿਖਾਇਆ ਜਾ ਸਕਦਾ ਹੈ।

100mL ਦੇ ਦੋ ਮਾਪਨ ਸਿਲੰਡਰ (ਜਿਨ੍ਹਾਂ ਉੱਤੇ 1 ਅਤੇ 2 ਲਿਖਿਆ ਹੋਵੇ) ਅਤੇ 30 cm ਲੰਬੀਆਂ ਕੱਚ ਦੀਆਂ ਦੋ ਟਿਊਬਾਂ ਲਓ। ਟਿਊਬਾਂ ਦਾ ਵਿਆਸ ਜਾਂ ਤਾਂ ਸਮਾਨ ਹੋ ਸਕਦਾ ਹੈ ਜਾਂ ਉਨ੍ਹਾਂ ਵਿੱਚ 3 ਤੋਂ 5mm ਦਾ ਅੰਤਰ ਹੋ ਸਕਦਾ ਹੈ। ਮਾਪਨ ਸਿਲੰਡਰ 1 ਦੇ ਅੱਧੇ ਭਾਗ ਵਿੱਚ ਰੰਗੀਨ ਪਾਣੀ (ਪਾਣੀ ਵਿੱਚ ਪੋਟਾਸ਼ਿਅਮ ਪਰਮੈਂਗਨੇਟ ਦਾ ਇੱਕ ਕ੍ਰਿਸਟਲ ਪਾ ਕੇ ਰੰਗੀਨ ਪਾਣੀ ਬਣਾਓ) ਭਰਦੇ ਹਾਂ ਅਤੇ ਸਿਲੰਡਰ 2 ਨੂੰ ਖਾਲੀ ਰੱਖਦੇ ਹਾਂ। ਸਿਲੰਡਰ 1 ਵਿੱਚ ਇਕ ਟਿਊਬ ਅਤੇ ਸਿਲੰਡਰ 2 ਵਿੱਚ ਦੂਜੀ ਟਿਊਬ ਰੱਖਦੇ ਹਾਂ। ਸਿਲੰਡਰ 1 ਵਾਲੀ ਟਿਊਬ ਦੇ ਉੱਪਰ ਵਾਲੇ ਛੇਕ ਨੂੰ ਉਂਗਲੀ ਨਾਲ ਬੰਦ ਕਰੋ ਅਤੇ ਇਸਦੇ ਹੇਠਲੇ ਹਿੱਸੇ ਵਿੱਚ ਭਰੇ ਗਏ ਪਾਣੀ ਨੂੰ ਸਿਲੰਡਰ 2 ਵਿੱਚ ਪਾਓ। ਸਿਲੰਡਰ 2 ਵਿੱਚ ਰੱਖੀ ਟਿਊਬ ਦੀ ਵਰਤੋਂ ਕਰਦੇ ਹੋਏ ਉਸ ਤਰ੍ਹਾਂ ਸਿਲੰਡਰ 2 ਤੋਂ ਸਿਲੰਡਰ 1 ਵਿੱਚ ਪਾਣੀ ਸਥਾਨ ਅੰਤਰਿਤ ਕਰੋ। ਇਸ ਤਰ੍ਹਾਂ ਦੋਵਾਂ ਟਿਊਬਾਂ ਦੀ ਸਹਾਇਤਾ ਨਾਲ ਸਿਲੰਡਰ 1 ਤੋਂ ਸਿਲੰਡਰ 2 ਅਤੇ ਸਿਲੰਡਰ 2 ਤੋਂ ਸਿਲੰਡਰ 1 ਵਿੱਚ ਰੰਗੀਨ ਪਾਣੀ ਵਾਰ−ਵਾਰ ਉਦੋਂ ਤੱਕ ਸਥਾਨ ਅੰਤਰਿਤ ਕਰਦੇ ਹਾਂ ਜਦ ਤੱਕ ਦੋਵਾਂ ਸਿਲੰਡਰਾਂ ਵਿੱਚ ਰੰਗੀਨ ਪਾਣੀ ਦਾ ਸਤਰ ਸਮਾਨ ਹੋ ਜਾਵੇ।

ਜੇ ਇਨ੍ਹਾਂ ਦੋ ਸਿਲੰਡਰਾਂ ਵਿੱਚ ਰੰਗੀਨ ਘੋਲ ਦਾ ਸਥਾਨ ਅੰਤਰਣ ਇੱਕ ਤੋਂ ਦੂਜੇ ਵਿੱਚ ਕਰਦੇ ਤਾਂ ਇਨ੍ਹਾਂ ਸਿਲੰਡਰਾਂ ਵਿੱਚ ਰੰਗੀਨ ਪਾਣੀ ਦੇ ਸਤਰ ਵਿੱਚ ਹੁਣ ਕੋਈ ਪਰਿਵਰਤਨ ਨਹੀਂ ਹੋਵੇਗਾ। ਜੇ ਇਨ੍ਹਾਂ ਦੋ ਸਿਲੰਡਰਾਂ ਵਿੱਚ ਪਾਣੀ ਦੇ ਸਤਰ ਨੂੰ ਅਸੀਂ ਕ੍ਰਮਵਾਰ ਪ੍ਰਤੀ ਕਾਰਕਾਂ ਅਤੇ ਉਪਜਾਂ ਦੀ ਸੰਘਣਤਾ ਦੇ ਰੂਪ ਵਿੱਚ ਵੇਖੀਏ ਤਾਂ ਅਸੀਂ ਇਹ ਕਹਿ ਸਕਦੇ ਹਾਂ ਕਿ ਇਹ ਪ੍ਰਕਿਰਿਆ ਇਸ ਪ੍ਰਕਿਰਿਆ ਦੀ ਗਤਿਕ ਪ੍ਰਕਿਰਤੀ ਨੂੰ ਦੱਸਦੀ ਹੈ, ਜੋ ਰੰਗੀਨ ਪਾਣੀ ਦਾ ਸਤਰ ਸਥਾਈ ਹੋਣ ਤੇ ਵੀ ਜਾਰੀ ਰਹਿੰਦਾ ਹੈ। ਜੇ ਅਸੀਂ ਇਸ ਪ੍ਯੋਗ ਨੂੰ ਵੱਖ ਵੱਖ ਵਿਆਸ ਵਾਲੀਆਂ ਦੋ ਟਿਊਬਾਂ ਦੀ ਸਹਾਇਤਾ ਨਾਲ ਦੋਹਰਾਈਏ ਤਾਂ ਅਸੀਂ ਵੇਖਾਂਗੇ ਕਿ ਇਨ੍ਹਾਂ ਦੋ ਸਿਲੰਡਰਾਂ ਵਿੱਚ ਰੰਗੀਨ ਪਾਣੀ ਦੇ ਸਤਰ ਭਿੰਨ ਹੋਣਗੇ। ਇਨ੍ਹਾਂ ਦੋ ਸਿਲੰਡਰਾਂ ਵਿੱਚ ਰੰਗੀਨ ਪਾਣੀ ਦੇ ਸਤਰ ਵਿੱਚ ਅੰਤਰ ਭਿੰਨ ਵਿਆਸ ਦੀਆਂ ਟਿਊਬਾਂ ਦੇ ਕਾਰਣ ਹੁੰਦਾ ਹੈ।

ਚਿੱਤਰ 7.3 ਗਤਿਕ ਸੰਤੁਲਿਤ ਅਵਸਥਾ (ੳ) ਸ਼ੁਰੂਆਤੀ ਅਵਸਥਾ (ਅ) ਅੰਤਿਮ ਅਵਸਥਾ

ਉਦਯੋਗਿਕ ਦ੍ਰਿਸ਼ਟੀ ਤੋਂ ਲਾਭਕਾਰੀ ਰਸਾਇਣਾਂ (ਜਿਵੇਂ H_2 , NH_3 ਅਤੇ CaO) ਦੇ ਸੰਸ਼ਲੇਸ਼ਣ ਦੇ ਲਈ ਜਰੂਰੀ ਪ੍ਰਤਿਬੰਧ ਦਾ ਨਿਰਧਾਰਣ ਕਿਵੇਂ ਕੀਤਾ ਜਾਂਦਾ ਹੈ ?

ਇਨ੍ਹਾਂ ਪ੍ਰਸ਼ਨਾਂ ਦੇ ਉੱਤਰ ਦੇ ਲਈ ਅਸੀਂ ਹੇਠ ਲਿਖੇ ਸਧਾਰਣ ਉਲਟ ਕ੍ਰਮਣੀ ਪ੍ਰਤੀ ਕਿਰਿਆ ਉੱਤੇ ਵਿਚਾਰ ਕਰਾਂਗੇ —

$$A + B \rightleftharpoons C + D$$

ਇੱਥੇ ਇੱਕ ਸੰਤੁਲਿਤ ਸਮੀਕਰਣ ਵਿੱਚ A ਅਤੇ B ਪ੍ਰਤੀਕਾਰਕ ਅਤੇ C ਅਤੇ D ਉਪਜਾਂ ਹਨ। ਅਨੇਕਾਂ ਉਲਟਕ੍ਰਮਣੀ ਪ੍ਰਤੀ ਕਿਰਿਆਵਾਂ ਦੇ ਪ੍ਰਯੋਗਿਕ ਅਧਿਐਨ ਦੇ ਅਧਾਰ ਉੱਤੇ ਨਾੱਰਵੇ ਦੇ ਰਸਾਇਣ ਵਿਗਿਆਨੀਆਂ ਕੈਟੋ ਮੈਕਸੀ ਮਿਅਨ ਗੁਲਬਰਗ (Cato Maximillian Guldberg) ਅਤੇ ਪੀਟਰ ਵਾਜੇ (Peter Waage) ਨੇ ਸੰਨ1864 ਵਿੱਚ ਪ੍ਰਸਥਾਪਿਤ ਕੀਤਾ ਕਿ ਕਿਸੇ ਮਿਸ਼ਰਣ ਵਿੱਚ ਸੰਘਲਣਤਾਵਾਂ ਨੂੰ ਹੇਠ ਲਿਖੇ ਸੰਤੁਲਨ-ਸਮੀਕਰਣ ਦੁਆਰ ਦਰਸਾਇਆ ਜਾ ਸਕਦਾ ਹੈ —

$$K_c = \frac{[\mathbf{C}][\mathbf{D}]}{[\mathbf{A}][\mathbf{B}]} \tag{7.1}$$

ਇੱਥੇ ਸੰਤੁਲਨ ਸਥਿਰ ਅੰਕ ਹੈ ਅਤੇ ਸਜੇ ਪਾਸੇ ਦਾ ਵਿਅੰਜਨ 'ਸੰਤੁਲਨ ਸਥਿਰ ਅੰਕ ਵਿਅੰਜਨ' ਅਖਵਾਉਂਦਾ ਹੈ। ਇਸ ਸੰਤੁਲਨ-ਸਮੀਕਰਣ ਨੂੰ 'ਪੁੰਜ ਅਨੁਪਾਤੀ ਕਿਰਿਆ ਦਾ ਨਿਯਮ' (Law of Mass Action) ਵੀ ਕਹਿੰਦੇ ਹਨ।

ਗੁਲਬਰਗ ਅਤੇ ਵਾਜੇ ਦੁਆਰਾ ਪ੍ਰਸਤਾਵਿਤ ਸੁਝਾਵਾਂ ਨੂੰ ਚੰਗੀ ਤਰ੍ਹਾਂ ਸਮਝਣ ਦੇ ਲਈ ਇੱਕ ਮੂੰਹ ਬੰਦ ਬਰਤਨ (sealed vessel) $731 \mathrm{K}$ ਉੱਤੇ ਗੈਸੀ H_2 ਅਤੇ ਗੈਸੀ I_2 ਵਿੱਚ ਪ੍ਰਤੀਕਿਰਿਆ ਉੱਤੇ ਵਿਚਾਰ ਕਰੋ। ਇਸ ਪ੍ਰਤੀਕਿਰਿਆ ਦਾ ਅਧਿਐਨ ਭਿੰਨ ਭਿੰਨ ਪ੍ਰਯੋਗਿਕ ਪਰਿਸਥਿਤੀਆਂ ਵਿੱਚ ਛੇ ਪ੍ਰਯੋਗਾਂ ਦੁਆਰਾ ਕੀਤਾ ਗਿਆ—

$$H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$$

1 ਮੋਲ 1 ਮੋਲ 2 ਮੋਲ

ਪਹਿਲੇ ਚਾਰ (1, 2, 3 ਅਤੇ 4) ਪ੍ਯੋਗਾਂ ਦੇ ਸ਼ੁਰੂ ਵਿੱਚ ਬੰਦ ਬਰਤਨਾਂ ਵਿੱਚ ਸਿਰਫ ਗੈਸੀ H_2 ਅਤੇ ਗੈਸੀ I_2 ਸਨ। ਹਰ ਇਕ ਪ੍ਯੋਗ ਹਾਈਡ਼ੌਜਨ ਅਤੇ ਆਇਓਡੀਨ ਦੇ ਭਿੰਨ ਭਿੰਨ ਸੰਘਣਤਾਵਾਂ ਦੇ ਨਾਲ ਕੀਤਾ ਗਿਆ। ਕੁਝ ਸਮੇਂ ਬਾਅਦ ਬੰਦ ਬਰਤਨ ਮਿਸ਼ਰਣ ਦੇ ਰੰਗ ਦੀ ਤੀਬਰਤਾ ਸਥਿਰ ਹੋ ਗਈ ਅਰਥਾਤ ਸੰਤੁਲਿਤ ਅਵਸਥਾ ਸਥਾਪਿਤ ਹੋ ਗਈ। ਦੂਜੇ ਦੋ ਪ੍ਯੋਗ (5 ਅਤੇ 6) ਕੇਵਲ ਗੈਸੀ HI ਲੈਕੇ ਸ਼ੁਰੂ ਕੀਤੇ ਗਏ। ਇਸ ਤਰ੍ਹਾਂ ਉਲਟ ਪ੍ਤੀਕਿਰਿਆ ਤੋਂ ਸੰਤੁਲਿਤ ਅਵਸਥਾ ਸਥਾਪਿਤ ਹੋਈ। ਸਾਰਣੀ 7.2 ਵਿੱਚ ਇਨ੍ਹਾਂ ਸਾਰੇ ਛੇ ਪ੍ਯੋਗਾਂ ਦੇ ਅੰਕ ਭ੍ਰੇ ਦਿੱਤੇ ਗਏ ਹਨ।

ਪ੍ਯੋਗ ਸੰਖਿਆ 1, 2, 3 ਅਤੇ 4 ਵਿੱਚ ਇਹ ਵੇਖਿਆ ਜਾ ਸਕਦਾ ਹੈ— ਕਿਰਿਆ ਕੀਤੇ H_2 ਦੇ ਮੋਲਾਂ ਦੀ ਸੰਖਿਆ = ਕਿਰਿਆ ਕੀਤੇ I_2 ਦੇ ਮੋਲਾਂ ਦੀ ਸੰਖਿਆ = $\frac{1}{2}$ (ਨਿਰਮਿਤ ਹੋਏ HI ਦੇ ਮੋਲਾਂ ਦੀ ਸੰਖਿਆ ਪ੍ਰਯੋਗ ਸੰਖਿਆ 5 ਅਤੇ 6 ਵਿੱਚ ਅਸੀਂ ਦੇਖਦੇ ਹਾਂ ਕਿ -

$$[H_2(g)]_{eq} = [I_2(g)]_{eq}$$

ਸੰਤੁਲਿਤ ਅਵਸਥਾ ਉੱਤੇ ਪ੍ਤੀਕਾਰਕਾਂ ਅਤੇ ਉਪਜਾਂ ਦੀ ਸੰਘਣਤਾ ਦੇ ਵਿੱਚ ਸਬੰਧ ਸਥਾਪਿਤਕਰਕ ਦੇ ਲਈ ਅਸੀਂ ਕਈ ਸੰਭਾਵਨਾਵਾਂ ਦੇ ਵਿਸ਼ੇ ਵਿੱਚ ਸੋਚ ਸਕਦੇ ਹਾਂ। ਹੇਠਾਂ ਦਿੱਤੇ ਗਏ ਸਧਾਰਣ ਵਿਅੰਜਕ ਉੱਤੇ ਅਸੀਂ ਵਿਚਾਰ ਕਰਦੇ ਹਾਂ —

$$[\mathrm{HI}(\mathrm{g})]_{\mathrm{eq}} / [\mathrm{H}_2(\mathrm{g})]_{\mathrm{eq}} [\mathrm{I}_2(\mathrm{g})]_{\mathrm{eq}}$$

ਸਾਰਣੀ 7.3 ਵਿੱਚ ਦਿੱਤੇ ਗਏ ਅੰਕੜਿਆਂ ਦੀ ਸਹਾਇਤਾ ਦੇ ਨਾਲ ਜੇ ਅਸੀਂ ਪ੍ਰਤੀਕਾਰਕਾਂ ਅਤੇ ਉਪਜਾਂ ਦੀ ਸੰਤੁਲਿਤ-ਸੰਘਣਤਾ ਨੂੰ ਉਪਰੋਕਤ ਵਿਅੰਜਕ ਵਿੱਚ ਰੱਖੀਏ, ਤਾਂ ਉਸ ਵਿਅੰਜਕ ਦਾ ਮਾਨ ਸਥਿਰ ਨਹੀਂ, ਬਲਕਿ ਭਿੰਨ ਭਿੰਨ ਹੋਵੇਗਾ (ਸਾਰਣੀ 7.3) ਜੇ ਅਸੀਂ ਹੇਠ ਲਿਖਿਆ ਵਿਅੰਜਕ ਲਈਏ—(7.1)

$$[HI(g)]_{eq}^2 / [H_2(g)]_{eq} [I_2(g)]_{eq}$$

ਸਾਰਣੀ 7.2 ਮੁਢਲੀ ਅਤੇ ਸੰਤੁਲਿਤ ਅਵਸਥਾ ਉੱਤੇ H₂, I₂ ਅਤੇ HI ਦੀਆਂ ਸੰਘਣਤਾਵਾਂ

ਪ੍ਰਯੋਗੀ ਸੰਖਿਆ		ਮੁੱਢਲੀ ਸੰਘਣਤਾ	/mol L ⁻¹	ਸੰਤੁਲਨ ਤੇ ਸੰਘਣਤਾ∕mol L ⁻¹		
	[H ₂ (g)]	[I ₂ (g)]	[HI (g)]	[H ₂ (g)]	[I ₂ (g)]	[HI (g)]
1	2.4×10^{-2}	1.38×10^{-2}	0	1.14×10^{-2}	0.12×10^{-2}	2.52×10^{-2}
2	2.4×10^{-2}	1.68×10^{-2}	0	0.92×10^{-2}	0.20×10^{-2}	2.96×10^{-2}
3	2.44×10^{-2}	1.98×10^{-2}	0	0.77×10^{-2}	0.31×10^{-2}	3.34×10^{-2}
4	2.46×10^{-2}	1.76×10^{-2}	0	0.92×10^{-2}	0.22×10^{-2}	3.08×10^{-2}
5	0	0	3.04×10^{-2}	0.345×10^{-2}	0.345×10^{-2}	2.35×10^{-2}
6	0	0	7.58×10^{-2}	0.86×10^{-2}	0.86×10^{-2}	5.86×10^{-2}

ਸਾਰਣੀ 7.3 ਪ੍ਰਤੀਕਾਰਕਾਂ ਦੇ ਸੰਤੁਲਨ ਸੰਘਣਤਾ ਸੰਬੰਧੀ ਵਿਅੰਜਕ $H_{y}(g) + I_{y}(g) \iff 2HI(g)$

ਪ੍ਰਯੋਗ ਸੰਖਿਆ	$\frac{\left[\mathrm{HI}(g)\right]_{\mathrm{eq}}}{\left[\mathrm{H}_{2}(g)\right]_{\mathrm{eq}}\left[\mathrm{I}_{2}(g)\right]_{\mathrm{eq}}}$	$\frac{{{{[HI(g)]}_{eq}^{2}}}}{{{{[H_{2}(g)]}_{eq}}[{I_{2}(g)]}_{eq}}}$
1	1840	46.4
2	1610	47.6
3	1400	46.7
4	1520	46.9
5	1970	46.4
6	790	46.4

ਤਾਂ ਅਸੀਂ ਵੇਖਾਂਗੇ ਕਿ ਸਾਰੇ ਛੇ ਪ੍ਯੋਗਾਂ ਵਿੱਚ ਇਹ ਵਿਅੰਜਕ ਸਥਿਰ ਮਾਨ ਦਿੰਦਾ ਹੈ। (ਜਿੰਵੇ ਸਾਰਣੀ 7.3 ਵਿੱਚ ਵਿਆਖਿਆ ਗਿਆ ਹੈ।) ਇਹ ਵੇਖਿਆ ਜਾ ਸਕਦਾ ਹੈ। ਕਿ ਇਸ ਵਿਅੰਜਕ ਵਿੱਚ ਪ੍ਤੀਕਾਰਕਾਂ ਅਤੇ ਉਪਜਾਂਦੀਆ ਸੰਘਣਤਾਵਾਂ ਦੀ ਪਾਵਰ (power) ਦਾ ਮਾਨ ਉਹੀ ਹੈ ਜੋ ਰਸਾਇਣਿਕ ਪ੍ਤੀ ਕਿਰਿਆ ਦੇ ਸਮੀਕਰਣ ਵਿੱਚ ਲਿਖੇ ਉਨ੍ਹਾਂ ਦੇ ਸਟੋਕਿਉਸੀਟਰਿਕ ਗੁਣਾਂਕ (stoichiometric coefficients) ਹਨ। ਸੰਤੁਲਿਤ ਅਵਸਥਾ ਵਿੱਚ ਇਸ ਵਿਅੰਜਕ ਦੇ ਮਾਨ ਨੂੰ ਸੰਤੁਲਨ ਸਥਿਰ ਅੰਕ ਕਿਹਾ ਜਾਂਦਾ ਹੈ ਅਤੇ ਇਸ ਨੂੰ $'K_c'$ ਪ੍ਤੀਕ ਦੁਆਰਾ ਦਰਸਾਇਆ ਜਾਂਦਾ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਪ੍ਤੀਕਿਰਿਆ $H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$ ਦੇ ਲਈ K_c , ਅਰਥਾਤ ਸੰਤੁਲਨ ਸਥਿਰ ਅੰਕ ਨੂੰ ਇਸ ਰੂਪ ਵਿੱਚ ਲਿਖਿਆ ਜਾਂਦਾ ਹੈ —

$$K_c = [HI(g)]_{eq}^2 / [H_2(g)]_{eq} [I_2(g)]_{eq}$$
 (7.2)

ਉੱਤੇ ਦਿੱਤੇ ਗਏ ਵਿਅੰਜਕ, ਸੰਘਣਤਾ ਦੇ ਹੇਠ ਲਿਖਿਤ ਦੇ ਰੂਪ ਵਿੱਚ ਜੋ 'eq' ਲਿਖਿਆ ਗਿਆ ਹੈ, ਉਹ ਆਮ ਤੌਰ ਤੇ ਨਹੀਂ ਲਿਖਿਆ ਜਾਂਦਾ ਕਿਉਂਕਿ ਇਹ ਮੰਨਿਆ ਜਾਂਦਾ ਹੈ ਕਿ K_c ਦੇ ਵਿਅੰਜਕ ਵਿੱਚ ਸੰਘਣਤਾ ਦਾ ਮਾਨ ਸੰਤੁਲਿਤ ਅਵਸਥਾ ਉੱਤੇ ਹੀ ਹੈ। ਇੰਜ ਅਸੀਂ ਲਿਖਦੇ ਹਾਂ—

$$K_c = [HI(g)]^2 / [H_2(g)] [I_2(g)]$$
 (7.3)

ਸਬਸਕਰਿਪਟ 'c' ਦੱਸਦਾ ਹੈ ਕਿ K_c ਦਾ ਮਾਨ ਸੰਘਣਤਾ ਦੇ ਮਾਤ੍ਕ $\mod \mathrm{L}^{-1}$ ਵਿੱਚ ਵਿਅਕਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ।

ਦਿੱਤੇ ਗਏ ਕਿਸੇ ਤਾਪਮਾਨ ਉੱਤੇ ਪ੍ਰਤੀਕਿਰਿਆ ਉਪਜਾਂ ਦੀ ਸੰਘਣਤਾ ਅਤੇ ਪ੍ਰਤੀਕਾਰਕਾਂ ਦੀ ਸੰਘਣਤਾ ਦੇ ਗੁਣਨਫਲ ਦਾ ਅਨੁਮਾਨ ਸਥਿਰ ਰਹਿੰਦਾ ਹੈ। ਅਜਿਹਾ ਕਰਦੇ ਸਮੇਂ ਸੰਘਣਤ ਵਿਅਕਤ ਕਰਨ ਦੇ ਲਈ ਸੰਤੁਲਿਤ ਰਸਾਇਣਿਕ ਸਮੀਕਰਣ ਵਿੱਚ ਪ੍ਰਤੀਕਾਰਕਾਂ ਅਤੇ ਉਪਜਾਂ ਦੇ ਸਟੋਕਿਊ ਸੀ— ਟਰਿਕ ਗੁਣਾਂਕ ਨੂੰ ਉਨ੍ਹਾਂ ਦੀ ਸੰਘਣਤਾ ਦੀ ਪਾਵਰ ਦੇ ਰੂਪ ਵਿੱਚ ਵਿਅਕਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ।

ਇਸ ਤਰ੍ਹਾਂ ਇੱਕ ਸਧਾਰਣ ਪ੍ਰਤੀਕਿਰਿਆ

$$aA + bB \rightleftharpoons cC + dD$$
 ਦੇ ਲਈ

ਸੰਤੁਲਨ ਸਥਿਰ ਅੰਕ ਨੂੰ ਹੇਠ ਲਿਖੇ ਵਿਅੰਜਕ ਨਾਲ ਵਿਅਕਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ —

$$K_c = [{\rm C}]^{\rm c}[{\rm D}]^{\rm d} / [{\rm A}]^{\rm a}[{\rm B}]^{\rm b}$$
 (7.4) ਪ੍ਰਤੀਕਿਰਿਆ ਉਪਜ (C ਜਾਂ D) ਅੰਸ਼ ਵਿੱਚ ਅਤੇ ਪ੍ਰਤੀਕਾਰਕ (A ਅਤੇ B) ਹਰ ਵਿੱਚ ਹੁੰਦੇ ਹਨ। ਹਰ ਇੱਕ ਸੰਘਣਤਾ ਉਦਾਹਰਣ ਵਜੋਂ [C], [D] ਆਦਿ। ਨੂੰ ਸੰਤੁਲਿਤ ਪ੍ਰਤੀ ਕਿਰਿਆ ਵਿੱਚ ਸਟੋਕਿਓ ਮੀਟ੍ਰਿਕ ਗੁਣਾਂਕ ਦੀ ਪਾੱਵਰ ਦੇ ਰੂਪ ਵਿੱਚ ਵਿਅਕਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਜਿਵੇਂ –

 $4{
m NH_3(g)}+5{
m O_2(g)} \ \Longleftrightarrow \ 4{
m NO(g)}+6{
m H_2O(g)}$ ਪ੍ਤੀਕਿਰਿਆ ਦੇ ਲਈ ਸੰਤੁਲਨ ਸਥਿਰ ਅੰਕ ਨੂੰ ਅਸੀਂ ਇਸ ਰੂਪ ਵਿੱਚ ਵਿਅਕਤ ਕਰਦੇ ਹਾਂ -

$$K_c = [NO]^4 [H_2O]^6 / [NH_3]^4 [O_2]^5$$

ਭਿੰਨ ਭਿੰਨ ਸਪੀਸ਼ੀਜ਼ ਦੀ ਮੋਲਰ-ਸੰਘਣਤਾ ਨੂੰ ਉਨ੍ਹਾਂ ਨੂੰ ਵਰਗਾ ਕਾਰ ਬਰੈਕਟ ਵਿੱਚ ਰੱਖ ਕੇ ਦਰਸਾਇਆ ਜਾਂਦਾ ਹੈ ਅਤੇ ਇਹ ਮੰਨਿਆ ਜਾਂਦਾ ਹੈ ਕਿ ਇਹ ਸੰਤੁਲਿਤ ਸੰਘਣਤਾਵਾਂ ਹਨ। ਜਦ ਤੱਕ ਬਹੁਤ ਜਰੂਰੀ ਨਾ ਹੋਵੇ ਤਦ ਤਕ ਸੰਤੁਲਨ ਸਥਿਰ ਅੰਕ ਦੇ ਵਿਅੰਜਨ ਵਿੱਚ ਫੇਜਾਂ (ਠੋਸ, ਦ੍ਵ ਜਾਂ ਗੈਸ) ਨਹੀਂ ਲਿਖੀਆਂ ਜਾਂਦੀਆਂ ਹਨ।

ਅਸੀ ਸਟੋਕਿਓ ਮੀਟ੍ਰਿਕ ਗੁਣਾਂਕ ਬਦਲ ਦਿੰਦੇ ਹਾਂ, ਜਿਵੇਂ – ਜੇ ਪੂਰੀ ਪ੍ਤੀਕਿਰਆ ਸਮੀਕਰਣ ਨੂੰ ਕਿਸੇ ਫੈਕਟਰ ਨਾਲ ਗੁਣਾਂ ਕਰੀਏ ਤਾਂ ਸੰਤੁਲਨ ਸਥਿਰ ਅੰਕ ਦੇ ਲਈ ਵਿਅੰਜਕ ਲਿਖਦੇ ਸਮੇਂ ਇਹ ਸੁਨਿਸ਼ਚਿਤ ਕਰਨਾ ਚਾਹੀਦਾ ਹੈ ਕਿ ਉਹ ਵਿਅੰਜਕ ਉਸ ਪਰਿਵਰਤਨ ਨੂੰ ਵੀ ਵਿਅਕਤ ਕਰੇ।

ਪ੍ਤੀਕਿਰਿਆ
$$H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$$
 (7.5)

ਦੇ ਸੰਤੁਲਨ ਵਿਅੰਜਕ ਨੂੰ ਇਸ ਤਰ੍ਹਾਂ ਲਿਖਦੇ ਹਨ —

$$K_c = [HI]^2 / [H_2] [I_2] = x$$
 (7.6)

ਉਲਟ ਪ੍ਤੀਕਿਰਿਆ $2 {\rm HI}(g) \rightleftharpoons {\rm H}_2(g) + {\rm I}_2(g)$ ਦੇ ਲਈ ਸੰਤੁਲਨ ਸਥਿਰ ਅੰਕ ਉਸੇ ਤਾਪਮਾਨ ਉੱਤੇ ਇਸ ਪ੍ਰਕਾਰ ਹੋਵੇਗਾ—

$$K_c' = [H_2] [I_2] / [HI]^2 = 1 / x = 1 / K_c$$
 (7.7)

ਇਸ ਤਰ੍ਹਾਂ
$$K_c = 1 / K_c$$
 (7.8)

ਉਲਟਕ੍ਰਮ ਪ੍ਰਤੀ ਕਿਰਿਆ ਦਾ ਸੰਤੁਲਨ ਸਥਿਰ ਅੰਕ ਅਗ੍ਗਾਮੀ ਪ੍ਰਤੀ ਕਿਰਿਆ ਦੇ ਸੰਤੁਲਨ ਸਥਿਰ ਅੰਕ ਦੇ ਉਲਟ ਕ੍ਰਮ (Inverse) ਹੁੰਦਾ ਹੈ।

ਉਪਰੋਕਤ ਪ੍ਤੀ ਕਿਰਿਆ ਨੂੰ ਇਸ ਰੂਪ ਵਿੱਚ ਲਿਖਣ ਤੇ

$$\frac{1}{2} H_2(g) + \frac{1}{2} I_2(g) \rightleftharpoons HI(g)$$
 (7.9)

ਸੰਤਲਨ ਸਥਿਰ ਅੰਕ ਦਾ ਮਾਨ ਹੋਵੇਗਾ—

$$K_c'' = [HI] / [H_2]^{1/2} [I_2]^{1/2} = {[HI]^2 / [H_2] [I_2]}^{1/2}$$

= $x^{1/2} = K_c^{1/2}$ (7.10)

ਇਸ ਤਰ੍ਹਾਂ ਜੇ ਅਸੀਂ ਸਮੀਕਰਣ 7.5 ਨੂੰ n ਨਾਲ ਗੁਣਾਂ ਕਰੀਏ, ਤਾਂ ਪ੍ਰਤੀ ਕਿਰਿਆ

$$nH_{g}(g) + nI_{g}(g) \rightleftharpoons 2nHI(g)$$
 (7.11)

ਪ੍ਰਾਪਤ ਹੋਵੇਗੀ ਅਤੇ ਇਸ ਸੰਤੁਲਨ ਸਥਿਰ ਅੰਕ ਦਾ ਮਾਨ $K_c^{\ n}$ ਹੋਵੇਗਾ। ਇਨ੍ਹਾਂ ਪਰਿਣਾਮਾਂ ਨੂੰ ਸਾਰਣੀ 7.4 ਵਿੱਚ ਸਾਰਾਂਸ਼ ਰੂਪ ਵਿੱਚ ਦਿੱਤਾ ਗਿਆ ਹੈ। ਇੱਥੇ ਇਹ ਧਿਆਨ ਰੱਖਣਾ ਚਾਹੀਦਾ ਹੈ ਕਿ K_c ਅਤੇ $K_c^{\ n}$ ਦੇ ਸੰਖਿਆ ਤਮਕ ਮਾਨ ਭਿੰਨ ਹੁੰਦੇ ਹਨ। ਇਸ ਲਈ ਇਹ ਜਰੂਰੀ ਹੈ ਕਿ ਸੰਤੁਲਿਤ ਅਵਸਥਾ ਸਥਿਰਅੰਕ ਦਾ ਮਾਨ ਲਿਖਦੇ ਸਮੇਂ ਸੰਤੁਲਿਤ ਰਸਾਇਣਿਕ ਸਮੀਕਰਣ ਦਾ ਵਰਣਨ ਕਰੀਏ।

ਸਾਰਣੀ 7.4 ਇਕ ਸਧਾਰਨ ਉਲਟਕ੍ਰਮ ਦੀ ਪ੍ਰਤੀਕਿਰਿਆ ਦੇ ਸੰਤੁਲਨ ਸਥਿਰ ਅੰਕਾ ਅਤੇ ਉਹਨਾਂ ਦੇ ਗੁਣਕਾ ਵਿੱਚ ਸੰਬੰਧ

ਰਸਾਇਣਿਕ ਸਮੀਕਰਨ	ਸੰਤੁਲਨ ਸਥਿਰ ਅੰਕ
$a A + b B \rightleftharpoons c C + dD$	K
$c C + d D \rightleftharpoons a A + b B$	$K_c' = (1/K_c)$
$na A + nb B \rightleftharpoons ncC + ndD$	$K_c'' = (K_c^n)$

ਉਦਾਹਰਣ 7.1

500K ਉੱਤੇ N_2 ਅਤੇ H_2 ਤੋਂ ਅਮੋਨੀਆ ਬਣਨ ਦੇ ਦੌਰਾਨ ਸੰਤੁਲਿਤ ਅਵਸਥਾ ਉਤੇ ਹੇਠ ਲਿਖੀਆਂ ਸੰਘਣਤਾਵਾਂ ਪਾਪਤ ਹੋਈਆਂ :

 $[N_2]$ = 1.5 × 10⁻²M. $[H_2]$ = 3.0 ×10⁻²M and $[NH_3]$ = 1.2 ×10⁻²M ਸੰਤੁਲਨ ਸਥਿਰਅੰਕ ਦੀ ਗਣਨਾ ਕਰੋ।

ਹੱਲ

ਪ੍ਰਤੀਕਿਰਿਆ $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$ ਦੇ ਲਈ ਸੰਤੁਲਨ ਸਥਿਰ ਅੰਕ ਇਸ ਰੂਪ ਵਿੱਚ ਲਿਖਿਆ ਜਾ ਸਕਦਾ ਹੈ—

$$K_{c} = \frac{\left[\text{NH}_{3}(g)\right]^{2}}{\left[\text{N}_{2}(g)\right]\left[\text{H}_{2}(g)\right]^{3}}$$

$$= \frac{\left(1.2 \times 10^{-2}\right)^{2}}{\left(1.5 \times 10^{-2}\right)\left(3.0 \times 10^{-2}\right)^{3}}$$

$$= 0.106 \times 10^{4} = 1.06 \times 10^{3}$$

ਉਦਾਹਰਣ 7.2

800K ਉੱਤੇ ਪ੍ਰਤੀ ਕਿਰਿਆ $N_2(g) + O_2(g) \rightleftharpoons$ 2NO(g) ਦੇ ਲਈ ਸੰਤੁਲਨ ਸੰਘਣਤਾਵਾਂ ਹੇਠ ਲਿਖਿੀਆਂ ਹਨ—

 ${
m N_2=}3.0 \times 10^{-3}{
m M}, {
m O_2}=4.2 \times 10^{-3}{
m M}$ ਅਤੇ NO= $2.8 \times 10^{-3}{
m M}$ ਪ੍ਰਤੀਕਿਰਿਆ ਦੇ ਲਈ $K_{\rm c}$ ਦਾ ਮਾਨ ਕੀ ਹੋਵੇਗਾ ?

ਹੱਲ

ਪ੍ਰਤੀ ਕਿਰਿਆ ਦੇ ਲਈ ਸੰਤੁਲਨ ਸਥਿਰ ਅੰਕ ਇਸ ਤਰ੍ਹਾਂ ਲਿਖਿਆ ਜਾ ਸਕਦਾ ਹੈ —

$$K_{c} = \frac{[\text{NO}]^{2}}{[\text{N}_{2}][\text{O}_{2}]}$$

$$= \frac{(2.8 \times 10^{-3} \text{M})^{2}}{(3.0 \times 10^{-3} \text{M})(4.2 \times 10^{-3} \text{M})}$$

$$= 0.622$$

7.4 ਸਮ-ਅੰਗੀ ਸੰਤਲਿਤ ਅਵਸਥਾ

ਕਿਸੇ ਸਮ-ਅੰਗੀ ਸਿਸਟਮ ਵਿੱਚ ਸਾਰੇ ਪ੍ਰਤੀ ਕਾਰਕ ਅਤੇ ਉਪਜਾਂ ਇਕ ਸਮਾਨ ਫੇਜ਼ ਵਿੱਚ ਹੁੰਦੇ ਹਨ। ਉਦਾਹਰਣ ਵਜੋਂ-ਗੈਸੀ ਪ੍ਰਤੀਕਿਰਿਆ $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$ ਵਿੱਚ ਪ੍ਰਤੀਕਾਰਕ ਅਤੇ ਉਪਜਾਂ ਸਾਰੇ ਸਮ ਅੰਗੀ ਗੈਸ ਫੇਜ਼ ਵਿੱਚ ਹਨ।

ਇਸੇ ਤਰ੍ਹਾਂ

$$CH_3COOC_2H_5$$
 (aq) + H_2O (l) \rightleftharpoons CH_3COOH (aq) + C_2H_5OH (aq)

ਅਤੇ Fe³⁺ (aq) + SCN⁻(aq) ⇌ Fe(SCN)²+ (aq) ਪ੍ਤੀਕਿਰਿਆਵਾਂ ਵਿੱਚ ਸਾਰੇ ਪ੍ਤੀ ਕਾਰਕ ਅਤੇ ਉਪਜਾਂ ਸਮ− ਅੰਗੀ ਘੋਲ ਫੇਜ਼ ਵਿੱਚ ਹਨ। ਹੁਣ ਅਸੀਂ ਕੁਝ ਸਮਅੰਗੀ ਪ੍ਤੀਕਿਰਿਆਵਾਂ ਦੇ ਸੰਤੁਲਨ ਸਥਿਰ ਅੰਕ ਦੇ ਬਾਰੇ ਪੜ੍ਹਾਂਗੇ।

7.4.1 ਗੈਸੀ ਸਿਸਟਮ ਵਿੱਚ ਸੰਤੁਲਨ ਸਥਿਰ ਅੰਕ (Kp)

ਅਸੀਂ ਹੁਣ ਤੱਕ ਪ੍ਤੀਕਾਰਕਾਂ ਅਤੇ ਉਪਜਾਂ ਦੀ ਮੋਲਰ ਸੰਘਣਤਾ ਦੇ ਰੂਪ ਵਿੱਚ ਸੰਤੁਲਨ ਸਥਿਰ ਅੰਕ ਨੂੰ ਵਿਅਕਤ ਕੀਤਾ ਹੈ ਅਤੇ ਇਸ ਨੂੰ ਪ੍ਤੀਕ K_c ਦੁਆਰਾ ਦਰਸਾਇਆ ਹੈ। ਗੈਸੀ ਪ੍ਤੀ ਕਿਰਿਆਵਾਂ ਦੇ ਸੰਤੁਲਨ ਸਥਿਰ ਅੰਕ ਨੂੰ ਅੰਸ਼ਿਕ ਦਾਬ ਦੇ ਰੂਪ ਵਿੱਚ ਪ੍ਦਰਸ਼ਿਤ ਕਰਨਾ ਵਧੇਰੇ ਸੁਵਿਧਾ ਜਨਕ ਹੈ।

ਆਦਰਸ਼ ਗੈਸ ਸਮੀਕਰਣ ਨੂੰ ਅਸੀਂ ਇਸ ਰੂਪ ਵਿੱਚ ਵਿਅਕਤ ਕਰਦੇ ਹਾਂ —

$$pV = nRT$$

$$\Rightarrow p = \frac{n}{V}RT$$

ਇੱਥੇ ਦਾਬ (p) ਨੂੰ bar ਵਿੱਚ, ਗੈਸ ਦੀ ਮਾਤਰਾ ਨੂੰ ਮੋਲਾਂ ਦੀ ਸੰਖਿਆ 'n' ਦੁਆਰਾ ਆਇਤਕ V ਨੂੰ ਲਿਟਰ (L) ਵਿੱਚ ਅਤੇ ਤਾਪਮਾਨ ਨੂੰ ਕੈਲਵਿਨ (K) ਵਿੱਚ ਵਿਅਕਤ ਕਰਨ ਤੇp =

$$c{
m R}T \, \left(rac{n}{V} = {
m C} \,
ight)$$
 ਸਥਿਰ ਅੰਕ 'R' ਦਾ ਮਾਨ 0.081 bar ${
m L}$

mol⁻¹ K⁻¹ ਹੁੰਦਾ ਹੈ।

ਜਦੋਂ $\frac{n}{V}$ ਨੂੰ ਅਸੀਂ ' \mod/L ਵਿੱਚ ਵਿਅਕਤ ਕਰਦੇ ਹਾਂ, ਤਾਂ ਇਹ ਸੰਘਣਤਾ 'C' ਦਰਸਾਉਂਦਾ ਹੈ। ਇੰਜ $p=\mathrm{CRT}$

ਸਥਿਰ ਤਾਪਮਾਨ ਉੱਤੇ ਗੈਸ ਦਾ ਦਾਬ ਉਸਦੀ ਸੰਘਣਤਾ ਦੇ ਸਮਾਨ ਅਨੁਪਾਤੀ ਹੁੰਦਾ ਹੈ, ਅਰਥਾਤ $p \propto$ ਗੈਸ ਇੰਜ ਉਪਰਲੇ ਸੰਬੰਧ ਨੂੰ p = [ਗੈਸ] ਦੇ ਰੂਪ ਵਿੱਚ ਲਿਖਿਆ ਜਾ ਸਕਦਾ ਹੈ।

ਸੰਤੁਲਿਤ ਅਵਸਥਾ ਵਿੱਚ ਪ੍ਰਤੀਕਿਰਿਆ

$$H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$$
 ਦੇ ਲਈ

$$K_{c} = \frac{\left[\operatorname{HI}(g)\right]^{2}}{\left[\operatorname{H}_{2}(g)\right]\left[\operatorname{I}_{2}(g)\right]}$$

$$\overrightarrow{H}^{\dagger} K_{c} = \frac{\left(p_{HI}\right)^{2}}{\left(p_{H_{2}}\right)\left(p_{I_{2}}\right)}$$
(7.12)

ਕਿਉਂਕਿ
$$p_{\rm HI}$$
 = $\left[{\rm HI}({\rm g}) \right] {\rm R}T$
$$p_{{\rm I}_2} = \left[{\rm I}_2\left({\rm g} \right) \right] {\rm R}T$$

$$p_{{\rm H}_2} = \left[{\rm H}_2\left({\rm g} \right) \right] {\rm R}T$$

ਇਸ ਲਈ

$$K_{p} = \frac{(p_{\text{HI}})^{2}}{(p_{\text{H}_{2}})(p_{\text{I}_{2}})} = \frac{\left[\text{HI}(g)\right]^{2} \left[\text{RT}\right]^{2}}{\left[\text{H}_{2}(g)\right] \text{RT.} \left[\text{I}_{2}(g)\right] \text{RT}}$$
$$= \frac{\left[\text{HI}(g)\right]^{2}}{\left[\text{H}_{2}(g)\right] \left[\text{I}_{2}(g)\right]} = K_{c}$$
(7.13)

ਉਪਰੋਕਤ ਉਦਾਹਰਣ ਵਿੱਚ $K_p = K_c$ ਹੈ ਅਰਥਾਤ ਦੋਵਾਂ ਸੰਤੁਲਨ ਸਥਿਰ ਅੰਕਾਂ ਦੇ ਮਾਨ ਬਰਾਬਰ ਹਨ, ਪਰ ਇਹ ਹਮੇਸ਼ਾ ਸੱਚ ਨਹੀਂ ਹੁੰਦਾ ਹੈ। ਉਦਾਹਰਣ ਦੇ ਲਈ ਪ੍ਤੀਕਿਰਿਆ

$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$$
 ਵਿੱਚ

$$K_{p} = \frac{(p_{NH_{3}})^{2}}{(p_{N_{2}})(p_{H_{2}})^{3}}$$

$$= \frac{[NH_{3}(g)]^{2}[RT]^{2}}{[N_{2}(g)]RT.[H_{2}(g)]^{3}(RT)^{3}}$$

$$=\frac{\left[\operatorname{NH}_{3}\left(\mathbf{g}\right)\right]^{2}\left[\operatorname{R}T\right]^{2}}{\left[\operatorname{N}_{2}\left(\mathbf{g}\right)\right]\left[H_{2}\left(\mathbf{g}\right)\right]^{3}}=K_{c}\left(\operatorname{R}T\right)^{-2}$$

ਅਰਥਾਤ $K_p = K_c (RT)^{-2}$

(7.14)

ਇਸ ਤਰ੍ਹਾਂ ਇੱਕ ਸਮਅੰਗੀ ਗੈਸੀ ਪ੍ਰਤੀਕਿਰਿਆ

$$aA + bB \rightleftharpoons cC + dD$$

$$Kp = \frac{(p_{C}^{c})(p_{D}^{d})}{(p_{A}^{a})(p_{B}^{b})} = \frac{[C]^{c}[D]^{d}(RT)^{(c+d)}}{[A]^{a}[B]^{b}(RT)^{(a+b)}}$$

$$\mathrm{Kp} = \frac{\left[\mathrm{C}\right]^{c}\left[\mathrm{D}\right]^{d}}{\left[\mathrm{A}\right]^{a}\left[\mathrm{B}\right]^{b}} \left(\mathrm{R}T\right)^{(c+d)-(a+b)}$$

$$K_{\mathbf{p}} = \frac{\left[\mathbf{C}\right]^{c} \left[\mathbf{D}\right]^{d}}{\left[\mathbf{A}\right]^{a} \left[\mathbf{B}\right]^{b}} \left(\mathbf{R}T\right)^{\Delta n} = K_{c} \left(\mathbf{R}T\right)^{\Delta n}$$

(7.15)

ਇਥੇ ਸੰਤੁਲਿਤ (balanced) ਰਸਾਇਣਿਕ ਸਮੀਕਰਣ ਵਿੱਚ Δn = (ਗੈਸੀ ਉਪਜਾਂ ਦੇ ਮੋਲਾਂ ਦੀ ਸੰਖਿਆ) – (ਗੈਸੀ ਪ੍ਤੀਕਾਰਕਾਂ ਦੇ ਮੋਲਾਂ ਦੀ ਸੰਖਿਆ) ਹੈ। ਇਹ ਜਰੂਰੀ ਹੈ ਕਿ

 K_p ਦੀ ਗਣਨਾ ਕਰਦੇ ਸਮੇਂ ਦਾਬ ਦਾ ਮਾਨ bar ਵਿੱਚ ਰੱਖਣਾ ਚਾਹੀਦਾ ਹੈ, ਕਿਉਂਕਿ ਦਾਬ ਦੀ ਪ੍ਰਮਾਣਿਕ ਅਵਸਥਾ $1 \, \mathrm{bar} \, \bar{\mathrm{d}} \, \mathrm{l}$ ਯੁਨਿਟ $1 \, \mathrm{J} \, \bar{\mathrm{d}} \, \mathrm{l}$ ਗਿਆਤ ਹੈ ਕਿ

1pascal, Pa=1Nm $^{-2}$ ਅਤੇ 1bar = 10^5 Pa ਾਰਣੀ 7.5 ਕੁਝ ਚੁਣੀਆਂ ਹੋਈਆਂ ਪ੍ਰਤੀਕਿਰਿਆਵਾਂ ਦੇ ਲਈ ਸੰਤੁਲਨ ਸਥਿਰ ਅੰਕ K_p ਦੇ ਮਾਨ

ਪ੍ਰਤੀਕਿਰਿਆ	ਤਾਪਮਾਨ/к	K_p
$N_2(g) + 3H_2(g) = 2NH_3$	298	6.8×10^5
	400	41
	500	3.6 ×10 ⁻²
$2SO_2(g) + O_2(g) = 2SO_3(g)$	298	4.0 ×10 ²⁴
	500	2.5×10^{10}
	700	3.0×10^4
$N_2O_4(g) = 2NO_2(g)$	298	0.98
	400	47.9
	500	1700

ਉਦਾਹਰਣ 7.3

 $500~{
m K}$ ਤਾਪਮਾਨ ਉੱਤੇ ${
m PCl_5}$, ${
m PCl_3}$ ਅਤੇ ${
m Cl_2}$ ਸੰਤੁਲਿਤ ਅਵਸਥਾ ਵਿੱਚ ਹਨ ਅਤੇ ਇਨ੍ਹਾਂ ਦੀਆਂ ਸੰਘਣਤਾਵਾਂ ਕ੍ਰਮਵਾਰ $1.41~{
m M},\, 1.59 {
m M}$ ਅਤੇ $1.59 {
m M}$ ਹਨ। ਪ੍ਰਤੀਕਿਰਿਆ

 $\mathrm{PCl}_{_{5}} \
ightharpoonup \ \mathrm{PCl}_{_{3}} + \mathrm{Cl}_{_{2}}$ ਦੇ ਲਈ $\mathrm{K}_{_{c}}$ ਦੀ ਗਣਨਾ ਕਰੋ। ਹੱਲ

ਉਪਰੋਕਤ ਪ੍ਰਤੀਕਿਰਿਆ ਦੇ ਲਈ ਸੰਤੁਲਨ ਸਥਿਰ ਅੰਕ ਇਸ ਰੂਪ ਵਿਚ ਪ੍ਰਗਟ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ

$$K_{c} = \frac{[PCl_{3}][Cl_{2}]}{[PCl_{5}]} = \frac{(1.59)^{2}}{(1.41)} = 1.79$$

ਉਦਾਹਰਣ 7.4

ਪ੍ਤੀਕਿਰਿਆ CO (g) + H_2O (g) \rightleftharpoons CO $_2$ (g) + H_2 (g) ਦੇ ਲਈ 800K ਉੱਤੇ K_c = 4.24 ਹੈ। 800K ਉੱਤੇ CO_2 ਅਤੇ H_2 , CO ਅਤੇ H_2O ਦੀਆਂ ਸੰਤੁਲਨ ਉੱਤੇ ਸੰਘਣਤਾਵਾਂ ਦੀ ਗਣਨਾ ਕਰੋ, ਜੇ ਸ਼ੁਰੂ ਵਿੱਚ ਸਿਰਫ CO ਅਤੇ H_2O ਹੀ ਮੌਜੂਦ ਹੋਣ ਅਤੇ ਹਰ ਇਕ ਦੀ ਸੰਘਣਤਾ 0.10M ਹੋਵੇ।

ਹੱਲ

ਹੇਠ ਲਿਖੀ ਪ੍ਰਤੀ ਕਿਰਿਆ ਦੇ ਲਈ

$${
m CO}$$
 (g) + ${
m H_2O}$ (g) \Longrightarrow ${
m CO_2}$ (g) + ${
m H_2}$ (g) ਸ਼ੁਰੂ ਵਿੱਚ

 $(0.1-x) \, {\rm M} \quad (0.1 {\rm M} \, x) \, {\rm M} \quad x \, {\rm M} \quad x \, {\rm M}$ ਜਿੱਥੇ ਸੰਤੁਲਨ ਉੱਤੇ ${\rm CO}_2$ ਅਤੇ ${\rm H}_2$ ਦੀ ਮਾਤਰਾ ${\rm x}$ ${\rm mol} \, {\rm L}^{-1}$ ਇੰਜ ਸੰਤੁਲਨ ਸਥਿਰ ਅੰਕ ਨੂੰ ਇਸ ਤਰ੍ਹਾਂ ਲਿਖਿਆ ਜਾ ਸਕਦਾ ਹੈ -

$$K_c = x^2/(0.1-x)^2 = 4.24$$

$$x^2 = 4.24(0.01 + x^2-0.2x)$$

$$x^2 = 0.0424 + 4.24x^2 - 0.848x$$

$$3.24x^2 - 0.848x + 0.0424 = 0$$

$$a = 3.24$$
, $b = -0.848$, $c = 0.0424$

(ਇੱਕ ਦੋ ਘਾਤੀ ਸਮੀਕਰਣ $ax^2 + bx + c = 0$ ਦੇ ਲਈ

$$x = \frac{\left(-b \pm \sqrt{b^2 - 4ac}\right)}{2a}$$

 $x = 0.848 \pm \sqrt{(0.848)^2 - 4(3.24)(0.0424)}$

 (3.24×2)

 $x = (0.848 \pm 0.4118)/6.48$

 $x_1 = (0.848 - 0.4118)/6.48 = 0.067$

 $x_2 = (0.848 + 0.4118)/6.48 = 0.194$

ਮਾਨ 0.194 ਨੂੰ ਛੱਡਿਆ ਜਾ ਸਕਦਾ ਹੈ ਕਿਉਂਕਿ ਇਹ

ਸ਼ੁਰੂ ਦੀ ਸੰਘਣਤਾ ਤੋਂ ਵੱਧ ਹੈ।

ਇਸ ਲਈ ਸੰਤੁਲਿਤ ਅਵਸਥਾ ਉੱਤੇ ਸੰਘਣਤਾਵਾਂ ਹਨ —

$$[CO_2] = [H_2] = x = 0.067 M$$

$$[CO] = [H_2O] = 0.1 - 0.067 = 0.033 M$$

ਉਦਾਹਰਣ 7.5

ਇਸ ਸੰਤੁਲਨ

$$2NOCl(g) \rightleftharpoons 2NO(g) + Cl_2(g)$$

ਦੇ ਲਈ $1069~{\rm K}$ ਤਾਪਮਾਨ ਉੱਤੇ ਸੰਤੁਲਨ ਸਥਿਰ ਅੰਕ K_c ਦਾ ਮਾਨ 3.75×10^{-6} ਹੈ। ਇਸ ਤਾਪਮਾਨ ਉੱਤੇ ਉਪਰੋਕਤ ਪ੍ਤੀਕਿਰਿਆ ਦੇ ਲਈ K_p ਦੀ ਗਣਨਾ ਕਰੋ।

ਹੱਲ

ਅਸੀਂ ਜਾਣਦੇ ਹਾਂ ਕਿ

$$K_p = K_c (RT)^{\Delta n}$$

ਉਪਰੋਕਤ ਪ੍ਰਤੀ ਕਿਰਿਆ ਦੇ ਲਈ

$$\Delta n = (2+1) - 2 = 1$$

$$K_p = 3.75 \times 10^{-6} (0.0831 \times 1069)$$

$$K_p = 0.033$$

ਸੰਤੁਲਨ ਸਥਿਰ ਅੰਕ ਦਾ ਮਾਤਰਕ

ਇੱਕ ਤੋਂ ਵੱਧ ਫੇਜ ਵਾਲੇ ਸਿਸਟਮ ਵਿੱਚ ਸਥਾਪਿਤ ਸੰਤੁਲਿਤ ਅਵਸਥਾ ਨੂੰ 'ਬਿਖਮ ਅੰਗੀ ਸੰਤੁਲਿਤ ਅਵਸਥਾ' ਕਿਹਾ ਜਾਂਦਾ ਹੈ। ਉਦਾਹਰਣ ਦੇ ਲਈ ਇੱਕ ਬੰਦ ਬਰਤਨ ਵਿੱਚ ਜਲਵਾਸ਼ਪ ਅਤੇ ਪਾਣੀ (ਦ੍ਵ) ਦੇ ਵਿੱਚ ਸਥਾਪਿਤ ਸੰਤੁਲਿਤ ਅਵਸਥਾ ਬਿਖਮ ਅੰਗੀ ਸੰਤੁਲਿਤ ਅਵਸਥਾ ਹੈ।

$$H_2O(1) \rightleftharpoons H_2O(g)$$

ਇਸ ਉਦਾਹਰਣ ਵਿੱਚ ਇੱਕ ਗੈਸ ਫੇਜ ਅਤੇ ਦੂਜੀ ਦ੍ਵ ਫੇਜ਼ ਹੈ। ਇਸੇ ਤਰ੍ਹਾਂ ਠੋਸ ਅਤੇ ਇਸਦੇ ਸੰਤ੍ਰਿਪਤ ਘੋਲ ਦੇ ਵਿੱਚ ਸਥਾਪਿਤ ਸੰਤੁਲਿਤ ਅਵਸਥਾ ਵੀ ਬਿਖਰ ਅੰਗੀ ਸੰਤੁਲਿਤ ਅਵਸਥਾ ਹੈ।

$$Ca(OH)_2$$
 (s) + (aq) \rightleftharpoons Ca^{2+} (aq) + $2OH^-$ (aq)

ਬਿਖਮ ਅੰਗੀ ਸੰਤੁਲਿਤ ਅਵਸਥਾਵਾਂ ਵਿੱਚ ਵਧੇਰੇ ਕਰਕੇ ਸ਼ੁੱਧ ਠੋਸ ਜਾਂ ਸ਼ੁੱਧ ਦਵ ਭਾਗ ਲੈਂਦੇ ਹਨ। ਬਿਖਮ ਅੰਗੀ ਸੰਤੁਲਿਤ ਅਵਸਥਾ (ਜਿਸ ਵਿੱਚ ਸ਼ੁੱਧ ਠੋਸ ਜਾਂ ਸ਼ੁੱਧ ਦ੍ਵ ਹੋਣ) ਦੇ ਸੰਤੁਲਨ ਵਿਅੰਜਕ ਨੂੰ ਸਰਲ ਬਣਾਇਆ ਜਾ ਸਕਦਾ ਹੈ, ਕਿਉਂਕਿ ਸ਼ੁੱਧ ਠੋਸ ਅਤੇ ਸ਼ੁੱਧ ਦ੍ਵ ਦੀ ਮੋਲਰ ਸੰਘਣਤਾ ਉਨ੍ਹਾਂ ਦੀ ਮਾਤਰਾ ਉੱਤੇ ਨਿਰਭਰ ਨਹੀਂ ਹੁੰਦੀ, ਬਲਕਿ ਸਥਿਰ ਹੁੰਦੀ ਹੈ। ਦੂਜੇ ਸ਼ਬਦਾਂ ਵਿੱਚ ਸੰਤੁਲਿਤ ਅਵਸਥਾ ਵਿੱਚ ਇੱਕ ਪਦਾਰਥ 'X' ਦੀ ਮਾਤਰਾ ਕੁਝ ਵੀ ਹੋਵੇ [X(s)] ਅਤੇ [X(l)] ਦੇ ਮਾਨ ਸਥਿਰ ਹੁੰਦੇ ਹਨ।

ਇਸਦੇ ਉਲਟ ਜੇ 'X' ਦੀ ਮਾਤਰਾ ਕੁਝ ਵੀ ਹੋਵੇ [X(s)] ਅਤੇ [X(l)] ਦੇ ਮਾਨ ਸਥਿਰ ਹੁੰਦੇ ਹਨ। ਇਸਦੇ ਉਲਟ ਜੇ 'X' ਦੀ ਮਾਤਰਾ ਕਿਸੇ ਨਿਸ਼ਚਿਤ ਆਇਤਨ ਵਿੱਚ ਬਦਲਦੀ ਹੈ, ਤਾਂ [X(a)] ਅਤੇ [X(aq)] ਦੇ ਮਾਨ ਵੀ ਬਦਲਦੇ ਹਨ। ਇਥੇ ਅਸੀਂ ਇੱਕ ਦਿਲ ਚਸਪ ਅਤੇ ਮਹੱਤਵਪੂਰਣ ਬਿਖਮ ਅੰਗੀ ਰਸਾਇਣਿਕ ਸੰਤੁਲਿਤ ਅਵਸਥਾ ਕੈਲਸ਼ਿਅਮ ਕਾਰਬੋਨੇਟ ਦੇ ਤਾਪੀ ਵਿਯੋਜਨ ਉੱਤੇ ਵਿਚਾਰ ਕਰਾਂਗੇ —

$$CaCO_3(s) \triangleq CaO(s) + CO_2(g)$$
 (7.16)

$$K_c = \frac{\left[\text{CaO}(s)\right]\left[\text{CO}_2(g)\right]}{\left[\text{CaCO}_3(s)\right]}$$

ਕਿਉਂਕਿ [CaCO₃(s)] ਅਤੇ [CaO(s)] ਦੋਵੇਂ ਸਥਿਰ ਹਨ, ਇਸ ਲਈ ਉਪਰੋਕਤ ਪ੍ਤੀ ਕਿਰਿਆ ਦੇ ਲਈ ਸਕਲ ਰੂਪ ਵਿੱਚ ਸੰਤਲਨ ਸਥਿਰ ਅੰਕ

$$K'_c = [CO_2(g)] \tag{7.17}$$

or
$$K_p = p_{CO_2}$$
 (7.18)

ਇਸ ਤੋਂ ਸਪਸ਼ਟ ਹੁੰਦਾ ਹੈ ਕਿ ਇਕ ਨਿਸ਼ਚਿਤ ਤਾਪਮਾਨ ਉੱਤੇ CO੍ਰ(a) ਦੀ ਇੱਕ ਨਿਸ਼ਚਿਤ ਸੰਘਣਤਾ ਦਾ ਦਾਬ CaO(s)

7.5 ਬਿਖਮ-ਅੰਗੀ ਸੰਤੁਲਿਤ ਅਵਸਥਾ

ਸੰਤੁਲਨ ਸਥਿਰ ਅੰਕ K_c ਦਾ ਮਾਨ ਕੱਢਦੇ ਸਮੇਂ ਸੰਘਣਤਾ ਨੂੰ $\mathrm{mol}L^{-1}$ ਵਿੱਚ ਅਤੇ K_p ਦਾ ਮਾਨ ਕੱਢਦੇ ਸਮੇਂ ਅੰਸ਼ਿਕ ਦਾਬ Pa , kPa , bar ਜਾਂ atm ਵਿੱਚ ਵਿਅਕਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਸੰਤੁਲਨ ਸਥਿਰ ਅੰਕ ਦਾ ਮਾਤਰਕ ਸੰਘਣਤਾ ਜਾਂ ਦਾਬ ਦੇ ਮਾਤਰਕ ਉੱਤੇ ਨਿਰਭਰ ਹੈ ਜੇਕਰ ਨਾ ਸੰਤੁਲਨ ਵਿਅੰਜਕ ਦੇ ਅੰਸ਼ ਵਿੱਚ ਪਾਵਰਾਂ ਦਾ ਯੋਗ ਹਰ ਵਿੱਚ ਪਾੱਵਰਾਂ ਦੇ ਬਰਾਬਰ ਹੋਵੇ। ਪਤੀਕਿਰਿਆ

 $\mathrm{H_2}(\mathrm{g}) + \mathrm{I_2}(\mathrm{g}) \Longrightarrow 2\mathrm{HI}, \ K_\mathrm{c}$ ਅਤੇ K_p ਦਾ ਕੋਈ ਮਾਤਰਕ ਨਹੀਂ ਹੁੰਦਾ।

 $\mathrm{N_2O_4(g)} \
ightleftharpoons \ \mathrm{2NO_2(g)}, \ K_\mathrm{c}$ ਦਾ ਮਾਤਰਕ $\mathrm{molL^{-1}}$ ਅਤੇ K_p ਦਾ ਮਾਤਰਕ bar ਹੈ।

ਜੇ ਪ੍ਤੀਕਾਰਕਾਂ ਅਤੇ ਉਪਜਾਂ ਨੂੰ ਸਟੈਂਡਰਡ ਅਵਸਥਾ ਵਿੱਚ ਲਿਆ ਜਾਵੇ ਤਾਂ ਸੰਤੁਲਨ ਸਥਿਰਅੰਕਾਂ ਨੂੰ ਵਿਸ਼ਹੀਨ (dimensionless) ਮਾਤਰਾਵਾਂ ਵਿੱਚ ਵਿਅਕਤ ਕਰਦੇ ਹਨ। ਪ੍ਤੀਕਾਰਕਾਂ ਅਤੇ ਉਪਜਾਂ ਨੂੰ ਸਟੈਂਡਰਡ ਅਵਸਥਾ ਵਿੱਚ ਸ਼ੁਧ ਗੈਸ ਦੀ ਸਟੈਂਡਰਡ ਸਟੇਟ ਇੱਕ bar ਹੁੰਦੀ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ 4 bar ਦਾਬ ਸਟੈਂਡਰਡ ਅਵਸਥਾ ਦੇ ਸਾਪੇਖ ਵਿੱਚ 4 bar/1 bar = 4 ਹੁੰਦਾ ਹੈ, ਜੋ ਵਿਸ਼ਹੀਨ ਹੈ। ਇੱਕ ਘੁਲਿਤ ਦੇ ਲਈ ਸਟੈਂਡਰਡ ਅਵਸਥਾ (c) 1 ਮੋਲਰ ਘੋਲ ਹੈ ਅਤੇ ਹੋਰ ਸੰਘਣਤਾਵਾਂ ਇਸੇ ਦੇ ਸਾਪੇਖ ਵਿੱਚ ਅਪੀਆਂ ਜਾਂਦੀਆਂ ਹਨ। ਸੰਤੁਲਨ ਸਥਿਰ ਅੰਕ ਦਾ ਮਾਨ ਚੁਣੀ ਹੋਈ ਸਟੈਂਡਰਡ ਅਵਸਥਾ ਉੱਤੇ ਨਿਰਭਰ ਕਰਦਾ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਇਸ ਪ੍ਣਾਲੀ ਵਿੱਚ K_p ਅਤੇ K_c ਦੋਵੇਂ ਵਿਸ਼ਹੀਨ ਰਾਸ਼ੀਆਂ ਹਨ ਪਰ ਉਨ੍ਹਾਂ ਦਾ ਸੰਖਿਆਤਮਕ ਮਾਨ ਸਟੈਂਡਰਡ ਅਵਸਥਾ ਹੋਣ ਦੇ ਕਾਰਣ ਭਿੰਨ ਹੋ ਸਕਦਾ ਹੈ।

ਅਤੇ $CaCO_3(s)$ ਦੇ ਨਾਲ ਸੰਤੁਲਿਤ ਅਵਸਥਾ ਵਿੱਚ ਰਹਿੰਦਾ ਹੈ।ਪ੍ਯੋਗ ਕਰਨ ਤੇ ਇਹ ਪਤਾ ਲੱਗਦਾ ਹੈ ਕਿ 1100~K ਉੱਤੇ $CaCO_3(s)$ ਅਤੇ CaO(s) ਦੇ ਨਾਲ ਸੰਤੁਲਿਤ ਅਵਸਥਾ ਵਿੱਚ ਮੌਜੂਦ CO_2 ਦਾ ਦਾਬ $2.0 \times 10^5~Pa$ ਹੈ।ਇਸ ਲਈ ਉਪਰੋਕਤ ਪ੍ਰਤੀ ਕਿਰਿਆ ਦੇ ਲਈ ਸੰਤੁਲਨ ਸਥਿਰ ਅੰਕ ਦਾ ਮਾਨ ਇਸ ਤਰ੍ਹਾਂ ਹੋਵੇਗਾ —

$$K_p = p_{\text{CO}_2} = 2 \times 10^5 \,\text{Pa} / 10^5 \,\text{Pa} = 2.00$$

ਇਸੇ ਤਰ੍ਹਾਂ ਨਿਕੱਲ, ਕਾਰਬਨ ਮੋਨੋਆੱਕਸਾਈਡ ਅਤੇ ਨਿੱਕਲ ਕਾਰਬੋਨਾਈਟ ਦੇ ਵਿੱਚ ਸਥਾਪਿਤ ਬਿਖਮ ਅੰਗੀ ਸੰਤੁਲਿਤ ਅਵਸਥਾ (ਨਿਕੱਲ ਦੀ ਸ਼ੁਧੀਕਰਣ ਵਿੱਚ ਵਰਤੀ ਜਾਂਦੀ) ਸਮੀਕਰਣ

 $Ni (s) + 4 CO (g) \rightleftharpoons Ni(CO)_4(g),$

ਵਿੱਚ ਸੰਤੁਲਨ ਸਥਿਰ ਅੰਕ ਦਾ ਮਾਨ ਇਸ ਰੂਪ ਵਿੱਚ ਲਿਖਿਆ ਜਾਂਦਾ ਹੈ—

$$K_c = \frac{\left[\text{Ni}\left(\text{CO}\right)_4\right]}{\left[\text{CO}\right]^4}$$

ਇਹ ਧਿਆਨ ਰੱਖੋ ਕਿ ਸੰਤੁਲਿਤ ਅਵਸਥਾ ਸਥਾਪਿਤ ਹੋਣ ਦੇ ਲਈ ਸ਼ੁੱਧ ਪਦਾਰਥਾਂ ਦੀ ਮੌਜੂਦਗੀ ਜਰੂਰੀ ਹੈ (ਭਾਵੇਂ ਉਨ੍ਹਾਂ ਦੀ ਮਾਤਰਾ ਘੱਟ ਹੋਵੇਂ), ਪਰੰਤੂ ਉਨ੍ਹਾਂ ਦੀ ਸੰਘਣਤਾ ਜਾਂ ਦਾਬ, ਸੰਤੁਲਨ ਸਥਿਰ ਅੰਕ ਦੇ ਵਿਅੰਜਕ ਵਿੱਚ ਨਹੀਂ ਹੋਣਗੇ। ਇੰਜ ਸਧਾਰਣ ਸਥਿਤੀ ਵਿੱਚ ਸ਼ੁੱਧ ਦ੍ਵ ਅਤੇ ਸ਼ੁਧ ਠੋਸ ਨੂੰ ਸੰਤੁਲਨ ਸਥਿਰ ਅੰਕ ਦੇ ਵਿਅੰਜਕ ਵਿੱਚ ਨਹੀਂ ਲਿਖਿਆ ਜਾਂਦਾ। ਪ੍ਰਤੀ ਕਿਰਿਆ—

 $Ag_2O(s) + 2HNO_3(aq) \rightleftharpoons 2AgNO_3(aq) + H_2O(l)$ ਵਿੱਚ ਸੰਤੁਲਨ ਸਥਿਰ ਅੰਕ ਦਾ ਮਾਨ ਇਸ ਰੂਪ ਵਿੱਚ ਲਿਖਿਆ ਜਾਂਦਾ ਹੈ —

$$K_c = \frac{\left[\text{AgNO}_3\right]^2}{\left[\text{HNO}_3\right]^2}$$

ਉਦਾਹਰਣ 7.6

ਪ੍ਰਤੀਕਿਰਿਆ CO_2 (g) + C (s) \rightleftharpoons 2CO (g) ਦੇ ਲਈ 1000 K ਉੱਤੇ K_2 ਦਾ ਮਾਨ 3.0 ਹੈ।

ਜੇ ਸ਼ੁਰੂ ਵਿੱਚ p_{CO_2} = 0.48 bar ਅਤੇ p_{CO} = 0 bar ਹੋਵੇ ਸ਼ੁੱਧ ਗਰੇਫਾਈਟ ਮੌਜੂਦ ਹੋਵੇ, ਤਾਂ CO ਅਤੇ CO₀

ਦੇ ਸੰਤੁਲਨ ਉੱਤੇ ਅੰਸ਼ਿਕ ਦਾਬਾਂ ਦੀ ਗਣਨਾ ਕਰੋ।

ਹੱਲ

ਇਸ ਪ੍ਰਤੀਕਿਰਿਆ ਦੇ ਲਈ ਜੇ CO_{g} ਦੇ ਦਾਬ ਵਿੱਚ ਕਮੀ x ਹੋਵੇ ਤਾਂ

$$CO_2(g) + C(s) \rightleftharpoons 2CO(g)$$

ਸ਼ੁਰੂ ਵਿੱਚ 0.48 bar 0 ਸੰਤੁਲਨ ਉੱਤੇ 198

$$(0.48 - x)$$
bar $2x$ bar $K_p = \frac{p_{CO}^2}{p_{CO_2}}$ $K_p = (2x)^2/(0.48 - x) = 3$ $4x^2 = 3(0.48 - x)$ $4x^2 = 1.44 - x$ $4x^2 + 3x - 1.44 = 0$ $a = 4$, $b = 3$, $c = -1.44$ $x = \frac{\left(-b \pm \sqrt{b^2 - 4ac}\right)}{2a}$ $x = \frac{\left(-3 \pm 5.66\right)/8}{2a}$ $x = (-3 \pm 5.66)/8$ x

7.6 ਸੰਤੁਲਨ ਸਥਿਰ ਅੰਕ ਦੀ ਵਰਤੋਂ

ਸੰਤੁਲਨ ਸਥਿਰ ਅੰਕ ਦੀ ਵਰਤੋਂ ਉੱਤੇ ਵਿਚਾਰ ਕਰਨ ਤੋਂ ਪਹਿਲਾਂ ਅਸੀਂ ਇਸਦੇ ਮਹੱਤਵਪੂਰਣ ਲੱਛਣਾਂ ਉੱਤੇ ਧਿਆਨ ਦਿੰਦੇ ਹਾਂ —

- (ੳ) ਸੰਤੁਲਨ ਸਥਿਰ ਅੰਕ ਦਾ ਵਿਅੰਜਕ ਤਾਂ ਹੀ ਲਾਭਦਾਇਕ ਹੁੰਦਾ ਹੈ, ਜਦੋਂ ਪ੍ਤੀਕਾਰਕਾਂ ਅਤੇ ਉਪਜਾਂ ਦੀ ਸੰਘਣਤਾ ਸੰਤੁਲਿਤ ਅਵਸਥਾ ਉੱਤੇ ਸਥਿਰ ਹੋ ਜਾਏ।
- (ਅ) ਸੰਤੁਲਨ ਸਥਿਰ ਅੰਕ ਦਾ ਮਾਨ ਪ੍ਤੀਕਾਰਕਾਂ ਅਤੇ ਉਪਜਾਂ ਦੀ ਮੁੱਢਲੀ ਸੰਘਣਤਾ ਉੱਤੇ ਨਿਰਭਰ ਨਹੀਂ ਕਰਦਾ।
- (ੲ) ਸਥਿਰ ਅੰਕ ਦਾ ਮਾਨ ਇੱਕ ਸੰਤੁਲਿਤ ਸਮੀਕਰਣ ਦੁਆਰਾ ਵਿਅਕਤ ਰਸਾਇਣਿਕ ਪ੍ਤੀ ਕਿਰਿਆ ਦੇ ਲਈ ਨਿਸ਼ਚਿਤ ਤਾਪਮਾਨ ਉੱਤੇ ਵਿਸ਼ਿਸ਼ਟ ਹੁੰਦਾ ਹੈ, ਜੋ ਤਾਪਮਾਨ ਬਦਲਨ ਨਾਲ ਬਦਲਦਾ ਹੈ।
- (ਸ) ਉਲਕ੍ਰਮਣੀ ਪ੍ਰਤੀ ਕਿਰਿਆ ਦਾ ਸੰਤੁਲਨ ਸਥਿਰ ਅੰਕ ਅਗ੍ਰਗਾਮੀ ਪ੍ਰਤੀ ਕਿਰਿਆ ਦੇ ਸੰਤੁਲਨ ਸਥਿਰ ਅੰਕ ਦੇ ਮਾਨ ਦਾ ਉਲਟ (inverse) ਹੁੰਦਾ ਹੈ।
- (ਹ) ਕਿਸੇ ਪ੍ਰਤੀ ਕਿਰਿਆ ਦਾ ਸੰਤੁਲਨ ਸਥਿਰ ਅੰਕ K, ਉਸ ਸੰਗਤ ਪ੍ਰਤੀਕਿਰਿਆ ਦੇ ਸੰਤੁਲਨ ਸਥਿਰ ਅੰਕ ਨਾਲ ਸਬੰਧਿਤ ਹੁੰਦਾ ਹੈ ਜਿਸਦਾ ਸਮੀਕਰਣ ਮੂਲ ਪ੍ਰਤੀਕਿਰਿਆ ਦੇ ਸਮੀਕਰਣ

ਵਿੱਚ ਕਿਸੇ ਛੋਟੇ ਪੂਰਣ ਅੰਕ ਨਾਲ ਗੁਣਾ ਜਾਂ ਭਾਗ ਦੇਣ ਤੇ ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ।

ਹੁਣ ਅਸੀਂ ਸੰਤੁਲਨ ਸਥਿਰ ਅੰਕ ਦੀ ਵਰਤੋਂ ਉੱਤੇ ਵਿਚਾਰ ਕਰਾਂਗੇ ਅਤੇ ਇਸ ਦੀ ਵਰਤੋਂ ਹੇਠ ਲਿਖੇ ਬਿੰਦੂਆਂ ਨਾਲ ਸੰਬੰਧਿਤ ਪ੍ਰਸ਼ਨਾਂ ਦੇ ਉੱਤਰ ਦੇਣ ਲਈ ਕਰਾਂਗੇ।

- ਸੰਤੁਲਨ ਸਥਿਰ ਅੰਕ ਦੇ ਪਰਿਮਾਣ ਦੀ ਸਹਾਇਤਾ ਨਾਲ ਪ੍ਰਤੀ ਕਿਰਿਆ ਦੀ ਸੀਮਾ ਦਾ ਅਨੁਮਾਨ ਲਾਉਣਾ।
- ਪ੍ਰਤੀ ਕਿਰਿਆ ਦੀ ਦਿਸ਼ਾ ਦਾ ਪਤਾ ਲਾਉਣਾ ਅਤੇ
- ਸੰਤੁਲਿਤ ਸੰਘਣਤਾ ਦੀ ਗਣਤਾ ਕਰਨਾ।

7.6.1 ਪ੍ਰਤੀ ਕਿਰਿਆ ਦੀ ਸੀਮਾ ਦਾ ਅਨੁਪਾਤ ਲਾਉਣਾ

ਸੰਤੁਲਨ ਸਥਿਰ ਅੰਕ ਦਾ ਸੰਖਿਆਤਮਕ ਮਾਨ ਪ੍ਰਤੀਕਿਰਿਆ ਦੀ ਸੀਮਾ ਨੂੰ ਦਰਸਾਉਂਦਾ ਹੈ, ਪਰੰਤੂ ਇਹ ਜਾਣਨਾ ਮਹੱਤਵਪੂਰਣ ਹੈ ਕਿ ਸੰਤੁਲਨ ਸਥਿਰ ਅੰਕ ਇਹ ਨਹੀਂ ਦੱਸਦਾ ਕਿ ਸੰਤੁਲਨ ਅਵਸਥਾ ਜਿਸ ਦਰ ਨਾਲ ਪ੍ਰਾਪਤ ਹੋਈ ਹੈ। K_c ਜਾਂ K_p ਦਾ ਪਰਿਮਾਣ ਉਪਜਾਂ ਦੀ ਸੰਘਣਤਾ ਦੇ ਸਮਾਨ ਅਨੁਪਾਤੀ ਹੁੰਦਾ ਹੈ (ਕਿਉਂਕਿ ਇਹ ਸੰਤੁਲਨ ਸਥਿਰ ਅੰਕ ਵਿਅੰਜਕ ਦੇ ਅੰਸ਼ (Numerator) ਵਿੱਚ ਲਿਖਿਆ ਜਾਂਦਾ ਹੈ) ਅਤੇ ਪ੍ਰਤੀਕਾਰਕਾਂ ਦੀ ਸੰਘਣਤਾ ਦੇ ਉਲਟ ਅਨੁਪਾਤੀ ਹੁੰਦਾ ਹੈ (ਕਿਉਂਕਿ ਇਹ ਵਿਅੰਜਕ ਦੇ ਹਰ (denominator) ਵਿੱਚ ਲਿਖੀ ਜਾਂਦੀ ਹੈ)। ਸੰਤੁਲਨ ਸਥਿਰ ਅੰਕ K ਦੇ ਉੱਚ ਮਾਨ ਉਪਜਾਂ ਦੀ ਉੱਚ ਸੰਘਣਤਾ ਦੱਸਦਾ ਹੈ। ਇਸੇ ਤਰ੍ਹਾਂ K ਦਾ ਘੱਟ ਮਾਨ ਉਪਜਾਂ ਦੀ ਘੱਟ ਸੰਘਣਤਾ ਦੱਸਦਾ ਹੈ।

ਸੰਤੁਲਿਤ ਮਿਸ਼ਰਣਾਂ ਦੀ ਰਚਨਾਂ ਨਾਲ ਸਬੰਧਿਤ ਹੇਠ ਲਿਖੇ ਆਮ ਨਿਯਮ ਬਣ ਸਕਦੇ ਹਨ—

- ਜੇ K_c > 10³ ਹੋਵੇ, ਤਾਂ ਉਪਜਾਂ ਪ੍ਤੀਕਾਰਕਾਂ ਦੀ ਤੁਲਨਾ ਵਿੱਚ ਜਿਆਦਾ ਬਣਨਦੀਆਂ।ਜੇ K ਦਾ ਮਾਨ ਕਾਫੀ ਜਿਆਦਾ ਹੈ, ਤਾਂ ਪ੍ਤੀਕਿਰਿਆ ਲਗਪਗ ਪੂਰਣਤਾ ਦੇ ਨੇੜੇ ਹੁੰਦੀ ਹੈ। ਉਦਾਹਰਣ ਵਜੋਂ —
- (ੳ) 500 K ਉੱਤੇ $\rm H_2$ ਅਤੇ $\rm O_2$ ਦੀ ਪ੍ਰਤੀਕਿਰਿਆ ਸੰਤੁਲਨ ਲਈ ਸਥਿਰ ਅੰਕ $\rm \it K_c = 2.4~\times10^{47}\,I$
- (ਅ) 300 K ਉੱਤੇ $H_2(g) + Cl_2(g) \rightleftharpoons 2HCl(g);$

$$K_{\rm c} = 4.0 \times 10^{31} \, \rm I$$

- (ੲ) 300 K ਉੱਤੇ $H_2(g) + Br_2(g) \rightleftharpoons 2HBr(g);$ $K_c = 5.4 \times 10^{18} I$
- ਜੇ $K_c < 10^{-3}$ ਪ੍ਰਤੀਕਾਰਕਾਂ ਦੀ ਤੁਲਨਾ ਵਿੱਚ ਉਪਜਾਂ ਘੱਟ ਹੋਣਗੀਆਂ। ਜੇ K_c ਦਾ ਮਾਨ ਬਹੁਤ ਘੱਟ ਹੈ ਤਾਂ ਪ੍ਰਤੀਕਿਰਿਆ ਮੁਸ਼ਕਲ ਨਾਲ ਹੁੰਦੀ ਹੈ। ਹੇਠ ਲਿਖੀਆਂ ਉਦਾਹਰਣਾਂ ਨਾਲ ਇਹ ਸਪਸ਼ਟ ਹੋ ਜਾਂਦਾ ਹੈ -
- (θ) 500 K ਉੱਤੇ $H_{s}O$ ਦਾ H_{s} ਅਤੇ O_{s} ਵਿੱਚ ਵਿਘਟਨ ਦਾ

ਸੰਤੁਲਨ ਸਥਿਰ ਅੰਕ ਬਹੁਤ ਘੱਟ ਹੈ, K_c = 4.1×10^{-48} I (ਅ) $298 ~\rm K$ ਉੱਤੇ $N_2(g)~+~O_2(g)~ \rightleftharpoons ~2NO(g);$ K_c = 4.8×10^{-31}

• ਜੇ K_c 10^{-3} ਤੋਂ 10^3 ਦੇ ਦਾਇਰੇ (Range) ਵਿੱਚ ਹੁੰਦਾ ਹੈ, ਤਾਂ ਉਪਜ ਅਤੇ ਪ੍ਰਤੀਕਾਰਕ ਦੋਵਾਂ ਦੀਆਂ ਸੰਘਣਤਾਵਾਂ ਸੰਤੋਖਜਨਕ ਹੁੰਦੀਆਂ ਹਨ। ਹੇਠ ਲਿਖੀ ਉਦਾਹਰਣ ਉੱਤੇ ਵਿਚਾਰ ਕਰਨ ਤੇ -

 $(\theta)\,700{
m K}$ ਉੱਤੇ ${
m H_2}$ ਅਤੇ ${
m I_2}$ ਤੋਂ ${
m HI}$ ਬਣਤੇ ਹੇ

ਪ੍ਤੀਕਿਰਿਆ ਮੁਸ਼ਕਿਲ ਦੋਵੇਂ,ਪ੍ਤੀਕਾਰਕ ਅਤੇ ਉਪਜਾਂ ਪ੍ਤੀਕਿਰਿਆ ਲਗਪਗ ਨਾਲ ਹੁੰਦੀ ਹੈ। ਸੰਤੁਲਿਨ ਅਵਸਥਾ ਵਿੱਚ ਮੌਜੂਦ ਪੂਰਣਤਾ ਵੱਲ ਵੱਧਦੀ ਹੈ

ਚਿੱਤਰ 7.6 Kੂ ਉੱਤੇ ਪ੍ਰਤੀਕਿਰਿਆ ਦੀ ਸੀਮਾਂ ਦਾ ਨਿਰਭਰ ਕਰਨਾ

(ਅ) ਇਸੇ ਤਰ੍ਹਾਂ ਇੱਕ ਹੋਰ ਪ੍ਤੀਕਿਰਿਆ ${
m N_2O_4}$ ਦਾ ${
m NO_2}$ ਵਿੱਚ ਵਿਘਟਨ ਹੈ, ਜਿਸ ਦੇ ਲਈ 25°C ਉੱਤੇ $K_c=4.64 imes 10^{-3}$ ਜੋ ਨਾ ਤਾਂ ਘੱਟ ਹੈ ਨਾ ਜ਼ਿਆਦਾ। ਇਸ ਲਈ ਸੰਤੁਲਿਤ ਮਿਸ਼ਰਣ ਵਿੱਚ ${
m N_2O_4}$ ਅਤੇ ${
m NO_2}$ ਦੀ ਸੰਘਣਤਾਵਾਂ ਸੰਤੋਖਜਨਕ ਹੋਣਗੀਆਂ।

ਇਸ ਸਧਾਰਨੀ ਕਰਣ ਨੂੰ 7.7 ਵਿੱਚ ਦਰਸਾਇਆ ਗਿਆ ਹੈ।

7.6.2 ਪ੍ਰਤੀਕਿਰਿਆ ਦੀ ਦਿਸ਼ਾ ਦਾ ਪੂਰਵ ਅਨੁਮਾਨ

ਪ੍ਤੀਕਾਰਕ ਅਤੇ ਉਪਜਾਂ ਦੇ ਕਿਸੇ ਪ੍ਤੀਕਿਰਿਆ ਮਿਸ਼੍ਣ ਵਿੱਚ ਪ੍ਤੀਕਿਰਿਆ ਦੀ ਦਿਸ਼ਾ ਦਾ ਪਤਾ ਲਾਉਣ ਲਈ ਵੀ ਸੰਤੁਲਨ ਸਥਿਰ ਅੰਕ ਦੀ ਵਰਤੋਂ ਕੀਤੀ ਜਾਂਦੀ ਹੈ। ਇਸਦੇ ਲਈ ਅਸੀਂ ਪ੍ਤੀ ਕਿਰਿਆ ਭਾਗਫਲ (reaction quotient) 'Q' ਦੀ ਗਣਨਾ ਕਰਦੇ ਹਾਂ। ਸੰਤੁਲਨ ਸਥਿਰ ਅੰਕ ਦੀ ਹੀ ਤਰ੍ਹਾਂ ਪ੍ਤੀਕਿਰਿਆ ਭਾਗਫਲ ਨੂੰ ਵੀ ਪ੍ਤੀਕਿਰਿਆ ਦੀ ਕਿਸੇ ਵੀ ਸਥਿਤੀ ਦੇ ਲਈ ਪਰਿਭਾਸ਼ਿਤ (ਮੋਲ ਸੰਘਣਤਾ ਤੋਂ Q_c ਅਤੇ ਅੰਸ਼ਿਕ ਦਾਬ ਤੋਂ Q_p) ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਕਿਸੇ ਸਧਾਰਣ ਪ੍ਤੀ ਕਿਰਿਆ ਦੇ ਲਈ

$$a A + b B \rightleftharpoons c C + d D$$
 (7.19)

$$Q_c = [C]^c[D]^d / [A]^a[B]^b$$
 (7.20)

ਜੇ $Q_c > K_c$, ਹੋਵੇ, ਤਾਂ ਪ੍ਰਤੀ ਕਿਰਿਆ ਪ੍ਰਤੀ ਕਾਰਕਾਂ ਦੇ ਵੱਲ ਹੋਵੇਗੀ (ਉਲਟਕ੍ਰਮਣੀ ਪ੍ਰਤੀ ਕਿਰਿਆ)।

ਜੇ $Q_c = K_c$, ਹੋਵੇ ਤਾਂ ਪ੍ਰਤੀਕਿਰਿਆ ਮਿਸ਼ਰਣ ਸੰਤੁਲਿਤ ਅਵਸਥਾ ਵਿੱਚ ਹੈ।

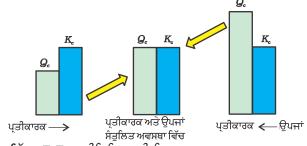
 ${
m H_2}$ ਦੇ ਨਾਲ ${
m I_2}$ ਦੀ ਗੈਸੀ ਪ੍ਤੀਕਿਰਿਆ ਉੱਤੇ ਵਿਚਾਰ

ਕਰਦੇ ਹਾਂ-

 $H_2(g) + I_2(g) \rightleftharpoons 2HI(g);$ 700 K ਉੱਤੇ $K_c = 57.0$

ਮੰਨ ਲਓ ਅਸੀਂ $[H_2]_t$ =0.10M, $[I_2]_t$ = 0.20 M ਅਤੇ $[HI]_t$ = 0.40 M ਲਿਆ

(ਸੰਘਣਤਾ ਉਤੇ ਹੇਠ ਲਿਖਿਤ t ਦਾ ਭਾਵ ਹੈ ਕਿ ਸੰਘਣਤਾਵਾਂ ਦਾ ਮਾਪਨ ਕਿਸੇ ਸਮੇਂ t, ਉੱਤੇ ਕੀਤਾ ਗਿਆ ਹੈ, ਨਾ ਕਿ ਸੰਤੁਲਿਤ ਅਵਸਥਾ ਤੇ)


ਇਸ ਤਰ੍ਹਾਂ ਪ੍ਰਤੀਕਿਰਿਆ ਭਾਗਫਲ Q_c ਪ੍ਰਤੀ ਕਿਰਿਆ ਦੀ ਇਸ ਸਥਿਤੀ ਵਿੱਚ ਦਿੱਤਾ ਗਿਆ ਹੈ —

 Q_c = [HI] $_{\rm t}^2$ / [H $_{\rm 2}$] $_{\rm t}$ [I $_{\rm 2}$] $_{\rm t}$ = (0.40) 2 / 0.10 × 0.20 = 8.0 ਇਸ ਸਮੇਂ (8.0), K_c (57.0), ਦੇ ਬਰਾਬਰ ਨਹੀਂ ਹੈ। ਇੰਜ H $_{\rm 2}$ (g), I $_{\rm 2}$ (g) ਅਤੇ HI(g) ਦਾ ਮਿਸ਼ਰਣ ਸੰਤੁਲਨ ਵਿੱਚ ਨਹੀਂ ਹਨ। ਇਸ ਲਈ H $_{\rm 2}$ (g) ਅਤੇ I $_{\rm 2}$ (g) ਪ੍ਰਤੀ ਕਿਰਿਆ ਕਰਕੇ ਹੋਰ HI(g) ਬਨਾਉਣਗੇ ਅਤੇ ਉਨ੍ਹਾਂ ਦੀ ਸੰਘਣਤਾ ਉਦੋਂ ਤਕ ਘਟੇਗੀ,

ਜਦ ਤਕ $Q_c = K_c$ ਨਾ ਹੋ ਜਾਏ। ਪ੍ਰਤੀਕਿਰਿਆ — ਭਾਗਫਲ Q_c ਅਤੇ K_c ਦੇ ਮਾਨਾਂ ਦੀ ਤੁਲਨਾ ਕਰਕੇ ਪ੍ਰਤੀਕਿਰਿਆ ਦਿਸ਼ਾ ਦਾ ਪੂਰਵ ਅਨੁਮਾਨ ਲਾਉਣ ਵਿੱਚ ਲਾਭਕਾਰੀ ਹੈ।

ਇਸ ਤਰ੍ਹਾਂ, ਪ੍ਤੀ ਕਿਰਿਆ ਦੇ ਸਬੰਧ ਵਿੱਚ ਅਸੀਂ ਹੇਠ ਲਿਖੀ ਆਮ ਧਾਰਨਾ ਬਣਾ ਸਕਦੇ ਹਾਂ —

- ਜੇ $Q_c < K_c$ ਹੋਵੇ, ਤਾਂ ਨੈੱਟ ਪ੍ਰਤੀਕਿਰਿਆ ਖੱਬੇ ਤੋਂ ਸੱਜੇ ਵੱਲ ਵਧੇਗੀ।
- ਜੇ $Q_c > K_c$ ਹੋਵੇ, ਤਾਂ ਨੈੱਟ ਪ੍ਤੀਕਿਰਿਆ ਸੱਜੇ ਤੋਂ ਖੱਬੇ ਵੱਲ ਵਧੇਗੀ।
- ਜੇ $Q_c = K_c$ ਹੋਵੇ, ਤਾਂ ਨੈੱਟ ਪ੍ਰਤੀਕਿਰਿਆ ਨਹੀਂ ਹੁੰਦੀ ਹੈ।

ਚਿੱਤਰ 7.7 ਪ੍ਰਤੀਕਿਰਿਆ ਦੀ ਦਿਸ਼ਾ ਦਾ ਪੂਰਵ ਅਨੁਮਾਨ

ਉਦਾਹਰਣ 7.7

 $2A \implies B + C$ ਪ੍ਰਤੀ ਕਿਰਿਆ ਦੇ ਲਈ K_c ਦਾ ਮਾਨ 2×10^{-3} ਹੈ। ਦਿੱਤੇ ਗਏ ਸਮੇਂ ਉੱਤੇ ਪ੍ਰਤੀਕਿਰਿਆ ਮਿਸ਼ਰਣ ਦੀ ਰਚਨਾ $[A] = [B] = [C] = 3 \times 10^{-4} \,\mathrm{M}$ ਹੈ। ਪ੍ਰਤੀ ਕਿਰਿਆ ਕਿਸ ਦਿਸ਼ਾ ਵਿੱਚ ਅੱਗੇ ਵਧੇਗੀ ?

ਹੱਲ

ਪ੍ਤੀ ਕਿਰਿਆ ਦੇ ਲਈ ਪ੍ਤੀ ਕਿਰਿਆ ਭਾਗਫਲ

200

 Q_c = [B][C] / [A] 2 [A] = [B] = [C] = 3×10^{-4} M Q_c = $(3 \times 10^{-4})(3 \times 10^{-4})$ / $(3 \times 10^{-4})^2$ = 1 ਇਸ ਤਰ੍ਹਾਂ Q_c > K_c ਇਸ ਲਈ ਪ੍ਤੀਕਿਰਿਆ ਉਲਟ ਦਿਸ਼ਾ ਵਿੱਚ ਅੱਗੇ ਵਧੇਗੀ।

7.6.3 ਸੰਤੁਲਿਤ ਸੰਘਣਤਾਵਾਂ ਦੀ ਗਣਨਾ

ਜੇ ਮੁੱਢਲੀ ਸੰਘਣਤਾ ਗਿਆਤ ਹੋਵੇ, ਪਰ ਸੰਤੁਲਿਤ ਸੰਘਣਤਾ ਗਿਆਤ ਨਾ ਹੋਵੇ, ਤਾਂ ਹੇਠ ਲਿਖੇ ਤਿੰਨ ਸਟੈੱਪਾਂ ਵਿੱਚ ਉਸ ਨੂੰ ਪਾਪਤ ਕਰਾਂਗੇ—

ਸਟੈੱਪ 1. ਪ੍ਤੀ ਕਿਰਿਆ ਦੇ ਲਈ ਸੰਤੁਲਿਤ ਸਮੀਕਰਣ ਲਿਖੋ। ਸਟੈੱਪ 2. ਸੰਤੁਲਿਤ ਸਮੀਕਰਣ ਦੇ ਲਈ ਇੱਕ ਸਾਰਣੀ ਬਣਾਓ, ਜਿਸ ਵਿੱਚ ਪ੍ਤੀਕਿਰਿਆ ਵਿੱਚ ਭਾਗ ਲੈ ਰਹੇ ਹਨ ਇੱਕ ਪਦਾਰਥ ਨੂੰ ਸੂਚੀ ਬੱਧ ਕੀਤਾ ਹੋਵੇ;

- (ੳ) ਮੁੱਢਲੀ ਸੰਘਣਤਾ
- (ਅ) ਸੰਤੁਲਿਤ ਅਵਸਥਾ ਵਿੱਚ ਜਾਣ ਦੇ ਲਈ ਸੰਘਣਤਾ ਵਿੱਚ ਪਰਿਵਰਤਨ ਅਤੇ
- (ੲ) ਸੰਤੁਲਿਤ ਅਵਸਥਾ ਸੰਘਣਤਾ ਸਾਰਣੀ ਬਨਾਉਣ ਵਿੱਚ ਕਿਸੇ ਇੱਕ ਪ੍ਤੀਕਾਰਕ ਦੀ ਸੰਘਣਤਾ ਨੂੰ x ਦੇ ਰੂਪ ਵਿੱਚ, ਜੋ ਸੰਤੁਲਿਤ ਅਵਸਥਾ ਵਿੱਚ ਹੈ, ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਕਰੋ ਅਤੇ ਫਿਰ ਪ੍ਤੀ ਕਿਰਿਆ ਦੀ ਸਟੋਕਿਓ ਮੀਟਰੀ ਤੋਂ ਦੂਜੇ ਪਦਾਰਥਾਂ ਦੀ ਸੰਘਣਤਾ ਨੂੰ x ਦੇ ਰੂਪ ਵਿੱਚ ਵਿਅਕਤ ਕਰੋ।

ਸਟੈੱਪ 3. \times ਨੂੰ ਹੱਲ ਕਰਨ ਦੇ ਲਈ ਇੱਕ ਸੰਤੁਲਿਤ ਸਮੀਕਰਣ ਵਿੱਚ ਸੰਤੁਲਿਤ ਸੰਘਣਤਾਵਾਂ ਨੂੰ ਪ੍ਰਤੀ ਸਥਾਪਿਤ ਕਰਦੇ ਹਨ। ਜੇ ਤੁਸੀਂ ਵਰਗ ਸਮੀਕਰਣ ਹੱਲ ਕਰਨਾ ਹੋਵੇ, ਤਾਂ ਗਣਿਤੀ ਹੱਲ ਚੁਣੋ ਜਿਸ ਦਾ ਰਸਾਇਣਿਕ ਅਰਥ ਹੋਵੇ।

ਸਟੈੱਪ 4. ਪਰਿਕਲਿਤ ਮਾਨ ਦੇ ਅਧਾਰ ਤੇ ਸੰਤੁਲਨ ਸੰਘਣਤਾਵਾਂ ਦੀ ਗਣਨਾ ਕਰੋ।

ਸਟੈੱਪ 5. ਇਨ੍ਹਾਂ ਨੂੰ ਸੰਤੁਲਿਤ ਸਮੀਕਰਣ ਵਿੱਚ ਪ੍ਤੀ ਸਥਾਪਿਤ ਕਰਕੇ ਆਪਣੇ ਪਰਿਣਾਮ ਦੀ ਪਰਖ ਕਰੋ।

ਉਦਾਹਰਣ 7.8

 $13.8 \mathrm{g} \ \mathrm{N_2O_4}$ ਨੂੰ $1\mathrm{L}$ ਬਰਤਨ ਵਿੱਚ ਰੱਖਿਆ ਜਾਂਦਾ ਹੈ ਤਾਂ ਇਸ ਪ੍ਰਕਾਰ ਸੰਤੁਲਨ ਸਥਾਪਿਤ ਹੁੰਦਾ ਹੈ

 N_2O_4 (g) $\rightleftharpoons 2NO_2$ (g)

ਜੇ ਸੰਤੁਲਿਤ ਅਵਸਥਾ ਉੱਤੇ ਕੁੱਲ ਦਾਬ 9.15 bar ਹੋਵੇ

ਤਾਂ K_c , K_p ਅਤੇ ਸੰਤੁਲਿਤ ਅਵਸਥਾ ਉੱਤੇ ਅੰਸ਼ਿਕ ਦਾਬ ਦੀ ਗਣਨਾ ਕਰੋ। ਹੱਲ ਅਸੀਂ ਜਾਣਦੇ ਹਾਂ ਕਿ pV = nRTਕੁੱਲ ਆਇਤਨ (V) = 1 Lਅਣਵੀਂ ਭਾਰ $N_2O_4 = 92 g$ ਗੈਸ ਦੇ ਮੋਲ = 13.8g/92 g = 0.15 ਗੈਸ ਸਥਿਰ ਅੰਕ (R) = 0.083 bar L mol⁻¹K⁻¹ ਤਾਪਮਾਨ = 400 K pV = nRT $p \times 1L = 0.15 \text{ mol} \times 0.083 \text{ bar L mol}^{-1}\text{K}^{-1}$ p = 4.98 bar N_2O_4 2NO₂ ਸ਼ੁਰੂ ਵਿੱਚ: 4.98 bar ਸੰਤੁਲਨ ਤੇ : (4.98 – x) bar 2x bar, ਇੰਜ ਸੰਤੁਲਨ ਤੇ ਡਿੱਲ = 9.15 = (4.98 - x) + 2x9.15 = 4.98 + xx = 9.15 - 4.98 = 4.17 bar ਸੰਤੁਲਿਤ ਅਵਸਥਾ ਉੱਤੇ ਅੰਸ਼ਿਕ ਦਾਬ $p_{N_2O_4} = 4.98 - 4.17 = 0.81$ bar $p_{NO_2} = 2x 4.17 = 8.34 \text{ bar}$

$$K_p = (p_{NO_2})^2 / p_{N_2O_4}$$

$$= (8.34)^2 / 0.81 = 85.87$$

$$K_p = K_c (RT)^{\Delta n}$$

$$85.87 = K_c (0.083 \times 400)^1$$

$$K_c = 2.586$$

ਉਦਾਹਰਣ 7.9

 $380 {
m K}$ ਉੱਤੇ 3.00 ਮੋਲ ${
m PCl}_{\scriptscriptstyle 5}$ ਨੂੰ $1 {
m L}$ ਬੰਦ ਬਰਤਨ ਵਿੱਚ ਰੱਖਿਆ ਜਾਂਦਾ ਹੈ। ਸੰਤੁਲਿਤ ਅਵਸਥਾ ਉੱਤੇ ਮਿਸ਼ਰਣ ਦੀ ਰਚਨਾ ਗਿਆਤ ਕਰੋ ਜੇ $K_{\scriptscriptstyle c}$ = 1.80 ਹੈ। ਹੱਲ

$$\operatorname{PCl}_5 \
ightleftharpoons \ \operatorname{PCl}_3 + \operatorname{Cl}_2$$
ਸ਼ੁਰੂ ਵਿੱਚ: $3.0 \qquad \qquad 0 \qquad 0$ ਮੰਨ ਲਓ PCl_5 ਦੇ ਪ੍ਰਤੀ ਮੋਲ ਵਿੱਚੋਂ x mol ਵਿਯੋਜਿਤ ਹੁੰਦੇ ਹਨ। ਤਾਂ

ਸੰਤੁਲਨ ਤੋਂ $(3-x) \qquad x \qquad x$ $K_c = [PCl_3][Cl_2]/[PCl_5]$ $1.8 = x^2/(3-x)$ $x^2 + 1.8x - 5.4 = 0$ $x = [-1.8 \pm \sqrt{(1.8)^2 - 4(-5.4)}]/2$ $x = [-1.8 \pm \sqrt{3.24 + 21.6}]/2$ $x = [-1.8 \pm 4.98]/2$ x = [-1.8 + 4.98]/2x = 1.59 $[PCl_5] = 3.0 - x = 30 - 1.59 = 1.49 \text{ M}$ $[PCl_3] = [Cl_2] = x = 1.59 \text{ M}$

7.7 ਸੰਤੁਲਨ ਸਥਿਰ ਅੰਕ *K*, ਪ੍ਰਤੀ ਕਿਰਿਆ ਭਾਗਫਲ *Q* ਅਤੇ ਗਿਬੱਜ ਉਰਜਾ *G* ਵਿੱਚ ਸਬੰਧ

ਕਿਸੇ ਪ੍ਰਤੀ ਕਿਰਿਆ ਦੇ ਲਈ K_c ਦਾ ਮਾਨ ਪ੍ਰਤੀ ਕਿਰਿਆ ਦੀ ਗਤਿਕੀ ਉੱਤੇ ਨਿਰਭਰ ਨਹੀਂ ਕਰਦਾ ਹੈ। ਜਿਵੇਂ ਕਿ ਤੁਸੀਂ ਯੁਨਿਟ 6 ਵਿੱਚ ਪੜ ਚੁਕੇ ਹੋ, ਇਹ ਪ੍ਰਤੀ ਕਿਰਿਆ ਦੀ ਤਾਪਗਤਿਕੀ, ਖਾਸ ਕਰਕੇ ਗਿੱਬਜ ਊਰਜਾ ਵਿੱਚ ਪਰਿਵਰਤਨ ਉੱਤੇ ਨਿਰਭਰ ਕਰਦਾ ਹੈ।

- ਜੇ ∆G ਰਿਣਾਤਮਕ ਹੈ, ਤਾਂ ਪ੍ਰਤੀ ਕਿਰਿਆ ਸੁਤੇ ਸਿੱਧ ਮੰਨੀ ਜਾਂਦੀ ਹੈ ਅਤੇ ਅਗ੍ਗਾਮੀ ਦਿਸ਼ਾ ਵਿੱਚ ਪੂਰੀ ਹੋਵੇਗੀ।
- ਜੇ △G ਧਨਾਤਮਕ ਹੈ, ਤਾਂ ਪ੍ਤੀ ਕਿਰਿਆ ਸੁਤੇ ਸਿੱਧ ਨਹੀਂ ਹੋਵੇਗੀ। ਇਸ ਦੀ ਬਜਾਏ ਉਲਟ ਕ੍ਰਮਣੀ ਪ੍ਤੀ ਕਿਰਿਆ ਲਈ △G ਰਿਣਾਤਮਕ ਹੋਵੇਗਾ। ਇੰਜ ਅਗ੍ਰਗਾਮੀ ਪ੍ਰਤੀ ਕਿਰਿਆ ਦੀਆਂ ਉਪਜਾਂ ਪ੍ਰਤੀਕਾਰਕ ਵਿੱਚ ਪਰਿਵਰਤਤ ਹੋ ਜਾਣਗੀਆਂ।
- ਜੇ ΔG ਸਿਫਰ ਹੋਵੇ ਤਾਂ, ਪ੍ਤੀਕਿਰਿਆ ਸੰਤੁਲਿਤ ਅਵਸਥਾ ਨੂੰ ਪ੍ਰਾਪਤ ਕਰੇਗੀ।

ਇਸ ਤਾਪ ਗਤਿਕ ਤੱਥ ਦੀ ਵਿਆਖਿਆ ਇਸ ਸਮੀਕਰਣ ਨਾਲ ਕੀਤੀ ਜਾ ਸਕਦੀ ਹੈ —

$$\Delta G = \Delta G^{\ominus} + RT \ln Q \tag{7.21}$$

ਜਦਕਿ $G^{\scriptscriptstyle\ominus}$ ਸਟੈਂਡਰਡ ਗਿਬੱਜ ਉਰਜਾ ਪਰਿਵਰਤਨ ਹੈ।

ਸੰਤੁਲਿਤ ਅਵਸਥਾ ਉੱਤੇ ਜਦੋਂ $\Delta G = 0$ ਅਤੇ Q = K, ਹੋਵੇ ਤਾਂ ਸਮੀਕਰਣ 7.21 ਇਸ ਤਰ੍ਹਾਂ ਹੋਵੇਗੀ—

$$\Delta G = \Delta G^{\ominus} + RT \ln K = 0$$

$$\Delta G^{\ominus} = -RT \ln K \tag{7.22}$$

 $\ln K = -\Delta G^{\ominus} / RT$

ਦੋਵਾਂ ਪਾਸੇ ਐਂਟੀਲਾੱਗ ਲੈਣ ਤੇ

$$K = e^{-\Delta G^{\odot}/RT} \tag{7.23}$$

ਇੰਜ ਸਮੀਕਰਣ 7.23 ਦੀ ਵਰਤੋਂ ਕਰਕੇ, ΔG° ਟਰਮ ਦੇ ਰੂਪ ਵਿੱਚ ਪ੍ਰਤੀ ਕਿਰਿਆ ਦੀ ਸੁਤੇ ਸਿੱਧਤਾ ਨੂੰ ਸਮਝਿਆ ਜਾ

ਸਕਦਾ ਹੈ –

- ਜੇ ΔG° < 0 ਹੋਵੇ ਤਾਂ $-\Delta G^{\circ}/RT$ ਧਨਾਤਮਕ ਹੋਵੇਗਾ। ਇੰਜ $e^{-\Delta G^{\circ}/RT}>$ 1 ਹੋਣ ਨਾਲ K>1 ਹੋਵੇਗਾ, ਜੋ ਪ੍ਰਤੀਕਿਰਿਆ ਦੀ ਸੁਤੇ ਸਿਧੱਤਾ ਨੂੰ ਦਰਸਾਉਂਦਾ ਹੈ ਜਾ ਅਗ੍ਗਾਮੀ ਦਿਸ਼ਾ ਵਿੱਚ ਉਸ ਸੀਮਾਂ ਤੱਕ ਹੁੰਦੀ ਹੈ ਜਿਸ ਨਾਲ ਕਿ ਉਪਜਾਂ ਵਧੇਰੇ ਬਣਨ।
- ਜੇ $\Delta G^{\circ} > 0$ ਹੋਵੇ ਤਾਂ $-\Delta G^{\circ}/RT$ ਰਿਣਾਤਮਕ ਹੋਵੇਗਾ। ਇੰਜ $e^{-\Delta G^{\circ}/RT} < 1$ ਹੋਣ ਨਾਲ K < 1 ਹੋਵੇਗਾ ਜੋ ਪ੍ਰਤੀ ਕਿਰਿਆ ਦਾ ਸੁਤੇ ਸਿੱਧ ਨਾ ਹੋਣਾ ਦਰਸਾਉਂਦਾ ਹੈ, ਜਾਂ ਪ੍ਰਤੀਕਿਰਿਆ ਅਗ੍ਗਾਮੀ ਦਿਸ਼ਾ ਵਿੱਚ ਉਸ ਸੀਮਾ ਤੱਕ ਹੁੰਦੀ ਹੈ ਜਿਸ ਨਾਲ ਉਪਜਾਂ ਨਿਊਨਤਮ ਬਣਨ।

ਉਦਾਹਰਣ 7.10

ਗਲਾਈਕੋਲਾਈਸਿਜ਼ ਵਿੱਚ ਗਲੂਕੋਜ਼ ਦੇ ਫਾੱਸਫੋਰਾਈਲੇਸ਼ਨ ਦੇ ਲਈ ΔG° ਦਾ ਮਾਨ $13.8~{
m kJ/mol^{-1}}$ ਹੈ। $298~{
m K}$ ਉੱਤੇ K੍ਰ ਦਾ ਮਾਨ ਗਿਆਤ ਕਰੋ।

ਗੱਲ

 $\Delta G^{\ominus} = 13.8 \text{ kJ/mol} = 13.8 \times 10^{3} \text{JK}^{-1}/\text{mol}^{-1}$ $\Delta G^{\ominus} = - \text{RT ln} K_{\circ}$

 $\ln K_c = -13.8 \times 10^3 \text{J/mol}$ (8.31 J mol⁻¹K⁻¹ × 298 K)

 $\ln K_{\rm c} = -5.569$

 $K_c = e^{-5.569}$

 $K_{\rm c} = 3.81 \times 10^{-3}$

ਉਦਾਹਰਣ 7.11

ਸੁਕ ਰੋਜ ਦੇ ਜਲ−ਅਪਘਟਕ ਨਾਲ ਗਲੂਕੋਜ਼ ਅਤੇ ਫੱਰਕਟੋਜ਼ ਹੇਠ ਲਿਖੀ ਪ੍ਤੀ ਕਿਰਿਆ ਦੇ ਅਨੁਸਾਰ ਮਿਲਦੇ ਹਨ —

 $C_{12}H_{22}O_{11} + H_2O \rightleftharpoons C_6H_{22}O_6 + C_6 + H_{12}O_6$ 300K ਉੱਤੇ ਪ੍ਤੀਕਿਰਿਆ ਦੇ ਲਈ ਸੰਤੁਲਨ ਸਥਿਰ ਅੰਕ K_c , 2×10^{13} ਹੈ। 300K ਉੱਤੇ ΔG° ਦੇ ਮਾਨ ਦੀ ਗਣਨਾ ਕਰੋ।

ਹੱਲ

 $\Delta G^{\ominus} = -RT \ln K_{c}$

 $\Delta G^{\oplus} = -8.314 \text{J mol}^{-1} \text{K}^{-1} \times$

 $300K \times \ln(2 \times 10^{13})$

 $\Delta G^{\oplus} = -7.64 \times 10^4 \,\text{J mol}^{-1}$

7.8 ਸੰਤੁਲਨ ਨੂੰ ਪ੍ਰਭਾਵਿਤ ਕਰਨ ਵਾਲੇ ਕਾਰਕ

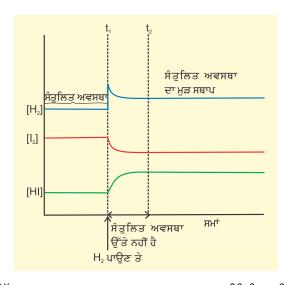
ਰਸਾਇਣਿਕ ਸੰਸਲੇਸ਼ਣ ਦੇ ਪ੍ਰਮੁੱਖ ਉਦੇਸ਼ਾਂ ਵਿੱਚੋਂ ਇੱਕ ਇਹ ਹੈ ਕਿ ਨਿਊਨਤਮ ਊਰਜਾ ਦੇ ਖਰਚ ਦੇ ਨਾਲ ਪ੍ਰਤੀ ਕਾਰਜਾਂ ਦਾ ਉਪਜਾਂ ਵਿੱਚ ਅਧਿਕਤਮ ਪਰਿਵਰਤਨ ਹੋਵੇ, ਜਿਸਦਾ ਅਰਥ ਹੈ— ਉਪਜਾਂ ਦੀ ਅਧਿਕਤਮ ਪ੍ਰਾਪਤੀ ਤਾਪਮਾਨ ਅਤੇ ਦਾਬ ਦੀਆਂ ਆਮ ਪਰਿਸਥਿਤੀਆਂ ਵਿੱਚ ਹੋਵੇ। ਜੇ ਅਜਿਹਾ ਨਹੀਂ ਹੁੰਦਾ ਹੈ, ਤਾਂ ਪ੍ਯੋਗਿਕ ਪਰਿਸਥਿਤੀਆਂ ਵਿੱਚ ਪਰਿਵਰਤਨ ਦੀ ਜਰੂਰਤ ਹੈ। ਉਦਾਹਰਣ ਲਈ $\mathrm{N_2}$ ਅਤੇ $\mathrm{H_2}$ ਤੋਂ ਅਮੋਨੀਆ ਦੇ ਸੰਸਲੇਸ਼ਣ ਦੇ ਹੈਬਰ ਪ੍ਕਰਮ ਵਿੱਚ ਪ੍ਯੋਗਿਕ ਪਰਿਸਥਿਤੀਆਂ ਦੀ ਚੋਣ ਅਸਲ ਵਿੱਚ ਆਰਥਿਕ ਰੂਪ ਵਿੱਚ ਮਹੱਤਵਪੂਰਣ ਹੈ। ਸੰਸਾਰ ਵਿੱਚ ਅਮੋਨੀਆ ਦਾ ਸਲਾਨਾ ਉਤਪਾਦਨ 100 ਮਿਲੀਅਨ ਟੱਨ ਹੈ। ਇਸਦੀ ਮੁੱਖ ਵਰਤੋਂ ਖਾਦਾਂ ਦੇ ਰੂਪ ਵਿੱਚ ਹੁੰਦੀ ਹੈ।

ਸੰਤੁਲਨ ਸਥਿਰ ਅੰਕ K ਮੁੱਢਲੀਆਂ ਸੰਘਣਤਾਵਾਂ ਉੱਤੇ ਨਿਰਭਰ ਨਹੀਂ ਕਰਦਾ ਹੈ। ਪਰੰਤੂ ਜੇ ਸੰਤੂਲਿਤ ਅਵਸਥਾ ਵਾਲੇ ਕਿਸੇ ਸਿਸਟਮ ਵਿੱਚ ਪ੍ਤੀਕਾਰਕਾਂ ਜਾਂ ਉਪਜਾਂ ਵਿੱਚੋਂ ਕਿਸੇ ਇੱਕ ਦੀ ਸੰਘਣਤਾ ਵਿੱਚ ਪਰਿਵਰਤਨ ਕੀਤਾ ਜਾਏ, ਤਾਂ ਸਿਸਟਮ ਵਿੱਚ ਸੰਤੁਲਿਤ ਅਵਸਥਾ ਨਹੀਂ ਰਹਿ ਸਕਦੀ ਅਤੇ ਨੈੱਟ ਪ੍ਰਤੀ ਕਿਰਿਆ ਫਿਰ ਉਦੋਂ ਤੱਕ ਹੁੰਦੀ ਰਹਿੰਦੀ ਹੈ ਜਦ ਤੱਕ ਸਿਸਟਮ ਵਿੱਚ ਫਿਰ ਸੰਤਲਿਤ ਅਵਸਥਾ ਸਥਾਪਿਤ ਨਾ ਹੋ ਜਾਏ। ਫੇਜ਼ ਸੰਤਲਿਤ ਅਵਸਥਾ ਉੱਤੇ ਤਾਪਮਾਨ ਦਾ ਪ੍ਰਭਾਵ ਅਤੇ ਠੋਸਾਂ ਦੀ ਘੁਲਣਸ਼ੀਲਤਾ ਦੇ ਬਾਰੇ ਵਿੱਚ ਅਸੀਂ ਪਹਿਲਾਂ ਹੀ ਪੜ੍ਹ ਚੁਕੇ ਹਾਂ। ਅਸੀਂ ਇਹ ਵੀ ਵੇਖ ਚਕੇ ਹਾਂ ਕਿ ਤਾਪਮਾਨ ਜਾਂ ਦਾਬ ਵਿੱਚ ਪਰਿਵਰਤਨ ਸੰਤਲਨ ਅਵਸਥਾ ਵਿੱਚ ਪਰਿਵਰਤਨ ਲਿਆ ਸਕਦਾ ਹੈ। ਇਹ ਵੀ ਦੱਸਿਆ ਜਾ ਚਕਿਆ ਹੈ ਕਿ ਕਿਸੇ ਤਾਪਮਾਨ ਉੱਤੇ ਜੇ ਪਤੀਕਿਰਿਆ ਦੇ ਸੰਤਲਨ ਸਥਿਰ ਅੰਕ ਦਾ ਮਾਨ ਗਿਆਤ ਹੋਵੇ ਤਾਂ ਕਿਸੇ ਮੁੱਢਲੀ ਸੰਘਣਤਾ ਤੋਂ ਉਸ ਪ੍ਤੀਕਿਰਿਆ ਦੇ ਪ੍ਰਤੀ ਕਾਰਕਾਂ ਅਤੇ ਉਪਜਾਂ ਦੀ ਸੰਤੂਲਨ ਵਿੱਚ ਸੰਘਣਤਾ ਦੀ ਗਣਨਾ ਕੀਤੀ ਜਾ ਸਕਦੀ ਹੈ। ਇੱਥੋਂ ਤੱਕ ਕਿ ਸਾਨੂੰ ਜੇ ਸੰਤੁਲਨ ਸਥਿਰ ਅੰਕ ਦਾ ਤਾਪਮਾਨ ਦੇ ਨਾਲ ਪਰਿਵਰਤਨ ਦਾ ਵੀ ਗਿਆਨ ਹੋਵੇ. ਤਾਂ ਹੇਠ ਦਿੱਤੇ ਗਏ ਲੀ-ਸ਼ੈਟੇਲੀਅਰ ਸਿਧਾਂਤ ਦੀ ਮਦਦ ਨਾਲ ਪਰਿਸਥਿਤੀਆਂ ਦੇ ਪਰਿਵਰਤਨ ਨਾਲ ਸੰਤੁਲਿਤ ਅਵਸਥਾ ਉੱਤੇ ਪੈਣ ਵਾਲੇ ਪ੍ਰਭਾਵ ਦੇ ਬਾਰੇ ਵਿੱਚ ਗੁਣਾਤਮਕ ਨਿਸ਼ਕਰਸ਼ ਅਸੀਂ ਪਾਪਤ ਕਰ ਸਕਦੇ ਹਾਂ। ਇਸ ਸਿਧਾਂਤ ਦੇ ਅਨੁਸਾਰ ਕਿਸੇ ਸਿਸਟਮ ਦੀ ਸੰਤੁਲਿਤ ਅਵਸਥਾ ਪਰਿਸਥਿਤੀਆਂ ਨੂੰ ਨਿਰਧਾਰਿਤ ਕਰਨ ਵਾਲੇ ਕਾਰਕਾਂ (ਸੰਘਣਨਾ, ਦਾਬ ਅਤੇ ਤਾਪਮਾਨ) ਵਿਚੋਂ ਕਿਸੇ ਵਿੱਚ ਵੀ ਪਰਿਵਰਤਨ ਹੋਣ ਤੇ ਸੰਤਲਿਤ ਅਵਸਥਾ ਉਸ ਦਿਸ਼ਾ ਵਿੱਚ ਬਦਲਦੀ ਹੈ ਜਿਸ ਨਾਲ ਸਿਸਟਮ ਉੱਤੇ ਲਾਇਆ ਹੋਇਆ ਪ੍ਰਭਾਵ ਘੱਟ ਜਾਂ ਸਮਾਪਤ ਹੋ ਜਾਵੇ। ਇਹ ਵੀ ਭੌਤਿਕ ਅਤੇ ਰਸਾਇਣਿਕ ਸੰਤੁਲਿਤ ਅਵਸਥਾਵਾਂ ਉੱਤੇ ਲਾਗੂ ਹੁੰਦਾ ਹੈ। ਇੱਕ ਸੰਤੁਲਨ ਮਿਸ਼ਰਣ ਦੀ ਰਚਨਾ ਨੂੰ ਪਰਿਵਰਤਨ ਕਰਨ ਦੇ ਲਈ ਅਨੇਕ ਕਾਰਕਾਂ ਦੀ ਜਾਂਦੀ ਵਰਤੋਂ ਕੀਤੀ ਜਾ ਸਕਦੀ ਹੈ।

ਹੇਠ ਲਿਖੇ ਉਪ ਭਾਗਾਂ ਵਿੱਚ ਅਸੀਂ ਸੰਤੁਲਿਤ ਅਵਸਥਾ ਉੱਤੇ ਸੰਘਣਤਾ, ਦਾਬ, ਤਾਪਮਾਨ ਅਤੇ ਉਤਪ੍ਰੇਰਕ ਦੇ ਪ੍ਰਭਾਵ ਉੱਤੇ ਵਿਚਾਰ ਕਰਾਂਗੇ।

7.8.1 ਸੰਘਣਤਾ-ਪਰਿਵਰਤਨ ਦਾ ਪ੍ਭਾਵ

ਸਧਾਰਣ ਤੌਰ ਤੇ ਜਦ ਕਿਸੇ ਪ੍ਤੀਕਾਰਕ/ਉਪਜ ਨੂੰ ਪ੍ਤੀ ਕਿਰਿਆ ਵਿੱਚ ਮਿਲਾਉਣ ਜਾਂ ਕੱਢਣ ਨਾਲ ਸੰਤੁਲਿਤ ਅਵਸਥਾ ਪਰਿਵਰਤਿਤ ਹੁੰਦੀ ਹੈ, ਤਾਂ ਇਸ ਦਾ ਅਨੁਮਾਨ 'ਲੀ ਸ਼ੈਟੇਲੀਅਰ ਸਿਧਾਂਤ ਦੇ ਅਧਾਰ ਤੇ ਲਾਇਆ ਜਾ ਸਕਦਾ ਹੈ।


 ਪ੍ਤੀਕਾਰਕ / ਉਪਜ ਨੂੰ ਮਿਲਾਉਣ ਨਾਲ ਸੰਘਣਤਾ ਉੱਤੇ ਪਏ ਦਬਾਅ ਨੂੰ ਘੱਟ ਕਰਨ ਦੇ ਲਈ ਪ੍ਰਤੀ ਕਿਰਿਆ ਉਸ

- ਦਿਸ਼ਾ ਦੇ ਵੱਲ ਅੱਗੇ ਵਧਦੀ ਹੈ ਤਾਂ ਕਿ ਮਿਲਾਏ ਗਏ ਪਦਾਰਥ ਦੀ ਵਰਤੋਂ ਹੋ ਸਕੇ।
- ਪ੍ਤੀਕਾਰਕ / ਉਪਜ ਨੂੰ ਕੱਢਣ ਨਾਲ ਸੰਘਣਤਾ ਉੱਤੇ ਦਬਾਅ ਨੂੰ ਘੱਟ ਕਰਨ ਦੇ ਲਈ ਪ੍ਰਤੀ ਕਿਰਿਆ ਉਸ ਦਿਸ਼ਾ ਦੇ ਵੱਲ ਅੱਗੇ ਵਧਦੀ ਹੈ ਤਾਂ ਕਿ ਪ੍ਰਤੀ ਕਿਰਿਆ ਵਿੱਚੋਂ ਕੱਢੇ ਗਏ ਪਦਾਰਥ ਦੀ ਪੂਰਤੀ ਹੋ ਸਕੇ। ਦੂਜੇ ਸ਼ਬਦਾਂ ਵਿੱਚ—"ਜਦੋਂ ਕਿਸੇ ਪ੍ਰਤੀਕਿਰਿਆ ਦੇ ਪ੍ਰਤੀਕਾਰਕਾਂ ਜਾਂ ਉਪਜਾਂ ਵਿੱਚੋਂ ਕਿਸੇ ਇੱਕ ਦੀ ਵੀ ਸੰਘਣਤਾ ਸੰਤੁਲਿਤ ਅਵਸਥਾ ਉੱਤੇ ਬਦਲ ਦਿੱਤੀ ਜਾਂਦੀ ਹੈ, ਤਾਂ ਸੰਤੁਲਿਤ ਅਵਸਥਾ ਮਿਸ਼ਰਣ ਦੀ ਸੰਘਣਤਾ ਵਿੱਚ ਇਸ ਤਰ੍ਹਾਂ ਪਰਿਵਰਤਨ ਹੁੰਦਾ ਹੈ ਕਿ ਸੰਘਣਤਾ ਪਰਿਵਰਤਨ ਦੇ ਕਾਰਣ ਪੈਣ ਵਾਲਾ ਪ੍ਰਭਾਵ ਘੱਟ ਜਾਂ ਸਿਫਰ ਹੋ ਜਾਵੇ।"

ਆਓ

$$H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$$

ਪ੍ਰਤੀਕਿਰਿਆ ਉੱਤੇ ਵਿਚਾਰ ਕਰੀਏ। ਜੇ ਸੰਤੁਲਿਤ ਅਵਸਥਾ ਉੱਤੇ ਪ੍ਰਤੀਕਿਰਿਆ ਮਿਸ਼ਰਣ ਵਿੱਚ ਬਾਹਰੋਂ $H_2(g)$ ਪੀਏ ਜਾਏ, ਤਾਂ ਸੰਤੁਲਿਤ ਅਵਸਥਾ ਦੀ ਦੁਬਾਰਾ ਸਥਾਪਨਾ ਦੇ ਲਈ ਪ੍ਰਤੀਕਿਰਿਆ ਉਸ ਦਿਸ਼ਾ ਵਿੱਚ ਅੱਗੇ ਵਧੇਗੀ ਜਿਸ ਵਿੱਚ H_2 ਕਰਤੀ ਜਾਵੇ ਅਰਥਾਤ ਹੋਰ ਵਧੇਰੇ H_2 ਅਤੇ I_2 ਕਿਰਿਆ ਕਰਕੇ HI ਬਣੇਗੀ ਅਤੇ ਸੰਤੁਲਿਤ ਅਵਸਥਾ ਸੱਜੇ (ਅਗ੍ਗਾਮੀ) ਦਿਸ਼ਾ ਵਿੱਚ ਵਿਸਥਾਪਿਤ ਹੋਵੇਗੀ (ਚਿੱਤਰ 7.8) ਇਹ ਕੀ ਸੈਟੇਲੀਅਰ ਦੇ

ਚਿੱਤਰ 7.8 $H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$ ਪ੍ਰਤੀਕਿਰਿਆ ਵਿੱਚ ਸੰਤੁਲਿਤ ਅਵਸਥਾ ਉੱਤੇ H_2 ਦੇ ਪਾਉਣ ਪ੍ਰਤਿਕਾਰਕਾਂ ਅਤੇ ਉਪਜਾਂ ਦੀ ਸੰਘਣਤਾ ਵਿੱਚ ਪਰਿਵਰਤਨ

ਸਿਧਾਂਤ ਦੇ ਅਨੁਰੂਪ ਹੈ ਜਿਸਦੇ ਅਨੁਸਾਰ ਪ੍ਤੀਕਾਰਕ/ਉਪਜ ਦੇ ਜੋੜ ਦੀ ਸਥਿਤੀ ਵਿੱਚ ਨਵੀਂ ਸੰਤੁਲਿਤ ਅਵਸਥਾ ਸਥਾਪਿਤ ਹੋਵੇਗੀ ਜਿਸ ਵਿੱਚ ਪ੍ਤੀਕਾਰਕ/ਉਪਜ ਦੀ ਸੰਘਣਤਾ ਉਸਦੇ ਜੋੜ ਕਰਨ ਦੇ ਸਮੇਂ ਤੋਂ ਘੱਟ ਅਤੇ ਮੂਲ ਮਿਸ਼ਰਣ ਤੋਂ ਵੱਧ ਹੋਣੀ ਚਾਹੀਦੀ ਹੈ। ਹੇਠ ਲਿਖੀ ਪ੍ਤੀਕਿਰਿਆ ਭਾਗਫਲ ਦੇ ਅਧਾਰ ਤੇ ਵੀ ਅਸੀਂ ਇਸ ਨਿਸ਼ਕਰਸ਼ ਤੇ ਪਹੰਚ ਸਕਦੇ ਹਾਂ -

$$Q_c = [HI]^2 / [H_2][I_2]$$

ਜੇ ਸੰਤੁਲਿਤ ਅਵਸਥਾ ਉੱਤੇ H₂ ਪਾਈ ਜਾਂਦੀ ਹੈ ਤਾਂ H₂ ਵਧਦੀ ਹੈ ਅਤੇ Q਼ ਦਾ ਮਾਨ K਼ ਤੋਂ ਘੱਟ ਹੋ ਜਾਂਦਾ ਹੈ। ਇਸ ਲਈ ਪਤੀ ਕਿਰਿਆਂ ਸੱਜੇ (ਅਗ੍ਗਾਮੀ) ਦਿਸ਼ਾ ਦੇ ਵੱਲ ਵਧਦੀ ਹੈ, ਅਰਥਾਤ [H¸] ਅਤੇ [I¸] ਘਟਦੀ ਹੈ ਅਤੇ [HI] ਉਦੋਂ ਤੱਕ ਵਧਦਾ ਹੈ ਜਦ ਤੱਕ $Q_{\rm c}=K_{\rm c}$ ਨਾ ਹੋ ਜਾਏ। ਅਰੂਥਾਤ ਨਵੀਂ ਸੰਤੁਲਿਤ ਅਵਸਥਾ ਸਥਾਪਿਤ ਨਾ ਹੋ ਜਾਏ। ਉਦਯੋਗਿਕ ਪ੍ਰਕਰਮਾ ਵਿੱਚ ਉਪਜ ਨੂੰ ਵੱਖ ਕਰਨਾ ਬਹੁਤ ਮਹੱਤਵ ਪੂਰਣ ਹੁੰਦਾ ਹੈ। ਜਦੋਂ ਸੰਤੁਲਿਤ ਅਵਸਥਾ ਉੱਤੇ ਕਿਸੇ ਉਪਜ ਨੂੰ ਵੱਖ ਕਰ ਦਿੱਤਾ ਜਾਂਦਾ ਹੈ, ਤਾਂ ਪ੍ਰਤੀਕਿਰਿਆ, ਜੋ ਪੂਰਣ ਰੂਪ ਵਿੱਚ ਹੋਏ ਬਿਨਾਂ ਸੰਤੁਲਿਤ ਅਵਸਥਾ ਉੱਤੇ ਪਹੁੰਚ ਗਈ ਹੈ, ਮੁੜ ਅਗਗਾਮੀ ਦਿਸ਼ਾ ਵਿੱਚ ਹੋਣ ਲੱਗਦੀ ਹੈ। ਜਦੋਂ ਉਪਜਾਂ ਵਿੱਚੋਂ ਕੋਈ ਗੈਸ ਹੋਵੇ ਜਾਂ ਵਾਸ਼ਪੀ ਕ੍ਰਿਤ ਹੋਣ ਵਾਲਾ ਪਦਾਰਥ ਹੋਵੇ, ਤਾਂ ਉਪਜ ਦਾ ਵੱਖ ਕਰਨਾ ਅਸਾਨ ਹੁੰਦਾ ਹੈ। ਅਮੋਨੀਆ ਦੇ ਉਦਯੋਗਿਕ ਨਿਰਅਣ ਵਿੱਚ ਅਮੋਨੀਆ ਦਾ ਦਵੀਕਰਣ ਕਰਕੇ ਉਸ ਨੂੰ ਵੱਖ ਕਰ ਲਿਆ ਜਾਂਦਾ ਹੈ ਜਿਸ ਨਾਲ ਪ੍ਤੀਕਿਰਿਆ ਅਗ੍ਰਗਾਮੀ ਦਿਸ਼ਾ ਵਿੱਚ ਹੁੰਦੀ ਹੈ। ਇਸੇ ਤਰ੍ਹਾਂ CaCO੍ਹ ਤੋਂ CaO ਜੋ ਇਮਾਰਤ ਨਿਰਮਾਣ ਦੀ ਮਹੱਤਵ ਪੂਰਣ ਸੱਮਗਰੀ ਹੈ, ਦੇ ਉਦਯੋਗਿਕ ਨਿਰਮਾਣ ਵਿੱਚ ਭੱਠੀ ਵਿੱਚੋਂ CO₂ ਨੂੰ ਲਗਾਤਾਰ ਹਟਾ ਕੇ ਪ੍ਤੀਕਿਰਿਆ ਪੂਰਣ ਕਰਵਾਈ ਜਾਂਦੀ ਹੈ। ਇਹ ਯਾਦ ਰੱਖਣਾ ਚਾਹੀਦਾ ਹੈ ਕਿੱਉਪਜ ਲਗਾਤਾਰ ਹਟਾਉਂਦੇ ਰਹਿਣ ਨਾਲ $Q_{
m c}$ ਦਾ ਮਾਨ $K_{
m c}$ ਤੋਂ ਘੱਟ ਰਹਿੰਦਾ ਹੈ, ਜਿਸ ਨਾਲ ਪ੍ਰਤੀਕਿਰਿਆ ਅਗ੍ਰਗਾਮੀ ਦਿਸ਼ਾ ਵਿੱਚ ਹੁੰਦੀ ਰਹਿੰਦੀ ਹੈ।

ਸੰਘਣਤਾ ਦਾ ਪ੍ਰਭਾਵ — ਇਕ ਪ੍ਰਯੋਗ

ਇਸ ਨੂੰ ਹੇਠ ਲਿਖੀ ਪ੍ਰਤੀਕਿਰਿਆ ਦੁਆਰਾ ਪ੍ਰਦਰਸ਼ਿਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ —

 $Fe^{3+}(aq) + SCN^{-}(aq) \rightleftharpoons [Fe(SCN)]^{2+}(aq)$ (7.24)

ਪੀਲਾ ਰੰਗਹੀਣ ਗੂੜ੍ਹਾ ਲਾਲ

$$K_{c} = \frac{\left[\operatorname{Fe}(\operatorname{SCN})^{2^{+}}(\operatorname{aq})\right]}{\left[\operatorname{Fe}^{3^{+}}\right]\left[\operatorname{SCN}^{-}\right]}$$
(7.25)

ਇੱਕ ਟੈਸਟ ਟਿਊਬ ਵਿੱਚ ਆਇਰਨ (III) ਨਾਈਟ੍ਰੇਟ ਦੇ ਘੋਲ ਦਾ 1mL ਲੈਕੇ ਉਸ ਵਿੱਚ ਦੋ ਬੂੰਦਾਂ ਪੋਟਾਸ਼ੀਅਮ ਥਾਇਓਸਾਇਅਨੇਟ ਘੋਲ ਪਾ ਕੇ ਟੈਸਟ ਟਿਊਬ ਨੂੰ ਹਿਲਾਉਣ ਤੇ ਘੋਲ ਦਾ ਰੰਗ ਲਾਲ ਹੋ ਜਾਂਦਾ ਹੈ, ਜੋ [Fe(SCN)]²⁺ ਬਣਨ ਦੇ ਕਾਰਣ ਹੁੰਦਾ ਹੈ। ਸੰਤੁਲਿਤ ਅਵਸਥਾ ਸਥਾਪਿਤ ਹੋਣ ਤੇ ਰੰਗ ਦੀ ਤੀਬਰਤਾ ਸਥਿਰ ਹੋ ਜਾਂਦੀ ਹੈ। ਪ੍ਤੀਕਾਰਕ ਜਾਂ ਉਤਪਾਦ ਨੂੰ ਪ੍ਤੀਕਿਰਿਆ ਦੀ ਸੰਤੁਲਿਤ ਅਵਸਥਾ ਉੱਤੇ ਮਿਲਾਉਣ ਨਾਲ ਸੰਤੁਲਿਤ ਅਵਸਥਾ ਨੂੰ ਅਗ੍ਗਾਮੀ ਜਾਂ ਉਲਕ੍ਰਮਣੀ ਦਿਸ਼ਾਵਾਂ ਵਿੱਚ ਆਪਣੀ ਇੱਛਾ ਅਨੁਸਾਰ ਵਿਸਥਾਪਿਤ ਕਰ ਸਕਦੇ ਹਾਂ। Fe³⁺ or SCN⁻ ਆਇਨਾਂ ਦੀ ਕਮੀਂ ਕਰਨ ਵਾਲੇ ਪ੍ਤੀ ਕਾਰਕਾਂ ਨੂੰ ਮਿਲਾਉਣ ਨਾਲ ਸੰਤੁਲਨ ਉਲਟ ਦਿਸ਼ਾ ਵਿੱਚ ਵਿਸਥਾਪਿਤ ਕਰ ਸਕਦੇ ਹਾਂ। ਜਿਵੇਂ ਐਗਜਾਲਿਕ ਐਸਿਡ (H,C,O), Fe³⁺

ਆਇਨ ਨਾਲ ਕਿਰਿਆ ਕਰਕੇ ਸਥਾਈ ਕੰਪਲੈਕਸ ਆਇਨ $[\mathrm{Fe}(\mathrm{C_2O_4})_3]^{3-}$ ਬਣਾਉਂਦੇ ਹਨ। ਇੰਜ ਮੁਕਤ $\mathrm{Fe^{3+}}$ ਆਇਨ ਦੀ ਸੰਘਣਤਾ ਘੱਟ ਹੋ ਜਾਂਦੀ ਹੈ। ਲੀਸੈਟੇਲੀਅਰ ਦੇ ਸਿਧਾਂਤ ਦੇ ਅਨੁਸਾਰ $\mathrm{Fe^{3+}}$ ਆਇਨ ਨੂੰ ਕੱਢਣ ਨਾਲ ਪੈਦਾ ਸੰਘਣਤਾ ਦਬਾਓ ਨੂੰ $[\mathrm{Fe}(\mathrm{SCN})]^{2+}$ ਦੇ ਟੁਟਣ ਨਾਲ $\mathrm{Fe^{3+}}$ ਆਇਨਾਂ ਦੀ ਪੂਰਤੀ ਕਰਕੇ ਮੁਕਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਕਿਉਂਕਿ $[\mathrm{Fe}(\mathrm{SCN})]^{2+}$ ਦੀ ਸੰਘਣਤਾ ਘਟਦੀ ਹੈ, ਇਸ ਨਾਲ ਲਾਲ ਰੰਗ ਦੀ ਤੀਬਰਤਾ ਘੱਟ ਹੋ ਜਾਂਦੀ ਹੈ। ਜਲੀ HgCl_2 ਮਿਲਾਉਣ ਨਾਲ ਵੀ ਲਾਲ ਰੰਗ ਦੀ ਤੀਬਰਤਾ ਘੱਟ ਹੁੰਦੀ ਹੈ।

ਕਿਉਂਕਿ Hg^{2+} ਆਇਨ SCN^- ਆਇਨਾਂ ਦੇ ਨਾਲ ਪ੍ਤੀਕਿਰਿਆ ਕਰਕੇ ਸਥਾਈ ਕੰਪਲੈਕਸ ਆਇਨ $[Hg(SCN)_4]^{2-}$ ਬਣਾਉਂਦੇ ਹਨ। ਮੁਕਤ SCN^- ਆਇਨਾਂ ਦੀ ਕਮੀਂ ਸਮੀਕਰਣ 7.24 ਵਿੱਚ ਸੰਤੁਲਨ ਨੂੰ ਸੱਜੇ ਪਾਸੇ ਤੋਂ ਖੱਬੇ ਪਾਸੇ SCN^- ਆਇਨਾਂ ਦੀ ਪੂਰਤੀ ਦੇ ਲਈ ਵਿਵਸਥਾਪਿਤ ਕਰਦੀ ਹੈ। ਪੋਟਾਸ਼ਿਅਮ ਥਾਇਓ ਸਾਇਅਨੇਟ ਮਿਲਾਉਣ ਤੇ SCN^- ਦੀ ਸੰਘਣਤਾ ਵਧ ਜਾਂਦੀ ਹੈ। ਇਸ ਨਾਲ ਇਸ ਲਈ ਸੰਤੁਲਿਤ ਅਵਸਥਾ ਅਗ੍ਗਾਮੀ ਦਿਸ਼ਾ ਵਿੱਚ (ਸੱਜੇ ਪਾਸੇ) ਵਧ ਜਾਂਦੀ ਹੈ ਅਤੇ ਘੋਲ ਦੇ ਰੰਗ ਦੀ ਤੀਬਰਤਾ ਵਧ ਜਾਂਦੀ ਹੈ।

7.8.2 ਦਾਬ—ਪਰਿਵਰਤਨ ਦਾ ਪ੍ਭਾਵ

ਕਿਸੇ ਗੈਸੀ ਪ੍ਤੀ ਕਿਰਿਆ ਵਿੱਚ ਆਇਤਨ ਪਰਿਵਰਤਨ ਦੁਆਰਾ ਦਾਬ ਬਦਲਣ ਨਾਲ ਉਪਜ ਦੀ ਮਾਤਰਾ ਪ੍ਰਭਾਵਿਤ ਹੁੰਦੀ ਹੈ। ਇਹ ਤਾਂ ਹੀ ਹੁੰਦਾ ਹੈ, ਜਦੋਂ ਪ੍ਤੀਕਿਰਿਆ ਨੂੰ ਦਰਸਾਉਣ ਵਾਲੇ ਰਸਾਇਣਿਕ ਸਮੀਕਰਣ ਵਿੱਚ ਗੈਸੀ ਪ੍ਤੀ ਕਾਰਕਾਂ ਦੇ ਮੋਲਾਂ ਦੀ ਸੰਖਿਆ ਅਤੇ ਗੈਸੀ ਉਪਜਾਂ ਦੀ ਸੰਖਿਆ ਵਿੱਚ ਭਿੰਨਤਾ ਹੁੰਦੀ ਹੈ। ਬਿਖਮ ਅੰਗੀ ਸੰਤੁਲਨ ਤੇ ਲੀ-ਸੈਟੇਲੀਅਰ (Le Chatelier) ਸਿਧਾਂਤ, ਦੀ ਵਰਤੋਂ ਤੋਂ ਕਰਨ ਤੇ ਠੋਸਾਂ ਅਤੇ ਦ੍ਵਾਂ ਉੱਤੇ ਦਾਬ ਤੇ ਪਰਿਵਰਤਨ ਨੂੰ ਵਿਸਾਰਿਆ ਜਾ ਸਕਦਾ ਹੈ। ਕਿਉਂਕਿ ਠੋਸ/ਦ੍ਵ ਦਾ ਆਇਤਨ (ਅਤੇ ਸੰਘਣਤਾ) ਦਾਬ ਉੱਤੇ ਨਿਰਭਰ ਨਹੀਂ ਕਰਦਾ ਹੈ ਹੇਠ ਲਿਖੀ ਪ੍ਤੀਕਿਰਿਆ ਵਿੱਚ—

$$CO(g) + 3H_2(g) \rightleftharpoons CH_4(g) + H_2O(g)$$

ਗੈਸੀ ਪ੍ਤੀਕਾਰਕਾਂ (CO + 3H¸) ਦੇ ਚਾਰ ਮੋਲਾਂ ਤੋਂ ਉਪਜਾਂ (CH, + H,O) ਦੇ ਦੋ ਮੋਲ ਬਣਦੇ ਹਨ।ਉਪਰੋਕਤ ਪ੍ਤੀਕਿਰਿਆ ਵਿੱਚ ਸੰਤੁਲਨ ਮਿਸ਼ਰਣ ਨੂੰ ਇੱਕ ਨਿਸ਼ਚਿਤ ਤਾਪਮਾਨ ਉੱਤੇ ਪਿਸਟਨ ਲੱਗੇ ਇਕ ਸਿਲੰਡਰ ਵਿੱਚ ਰੱਖ ਕੇ ਦਾਬ ਦੋਗਣਾ ਕਰਕੇ ਉਸ ਦੇ ਮੂਲ ਆਇਤਨ ਨੂੰ ਅੱਧਾ ਕੀਤਾ ਗਿਆ। ਇਸ ਤਰ੍ਹਾਂ ਪ੍ਰਤੀ ਕਾਰਕਾਂ ਅਤੇ ਉਪਜਾਂ ਦਾ ਅੰਸ਼ਿਕ ਦਾਬ ਅਤੇ ਇਸ ਦੇ ਫਲ ਸਰੂਪ ਉਨ੍ਹਾਂ ਦੀ ਸੰਘਣਤਾ ਬਦਲ ਗਈ ਹੈ।ਹੁਣ ਮਿਸ਼ਰਣ ਸੰਤਲਿਤ ਅਵਸਥਾ ਵਿੱਚ ਨਹੀਂ ਰਹਿ ਗਿਆ ਹੈ। ਲੀ-ਸੈਟੇਲੀਅਰ ਸਿਧਾਂਤ ਲਾਗ ਕਰਕੇ ਪਤੀ ਕਿਰਿਆ ਜਿਸ ਦਿਸ਼ਾ ਵਿੱਚ ਜਾਕੇ ਮੜ ਸੰਤਲਿਤ ਅਵਸਥਾ ਸਥਾਪਿਤ ਕਰਦੀ ਹੈ, ਉਸ ਦਾ ਪਤਾ ਲਾਇਆ ਜਾ ਸਕਦਾ ਹੈ। ਕਿਉਂਕਿ ਦਾਬ ਦੋ ਗਣਾ ਹੋ ਗਿਆ ਹੈ, ਇਸ ਨਾਲ ਸੰਤਲਿਤ ਅਵਸਥਾ ਅਗਗਾਮੀ ਦਿਸ਼ਾ (ਜਿਸ ਵਿੱਚ ਮੋਲਾਂ ਦੀ ਸੰਖਿਆ ਅਤੇ ਦਾਬ ਘੱਟ ਹੁੰਦਾ ਹੈ) ਵਿੱਚ ਵਧਦੀ ਹੈ (ਅਸੀਂ ਜਾਣਦੇ ਹਾਂ ਕਿ ਦਾਬ ਗੈਸ ਦੇ ਮੋਲਾਂ ਦੀ ਸੰਖਿਆ ਦੇ ਸਮਾਨ ਅਨਪਾਤੀ ਹੁੰਦਾ ਹੈ। ਇਸਨੂੰ ਪਤੀ ਕਿਰਿਆ ਭਾਗਫਲ $Q_{\scriptscriptstyle c}$ ਦੁਆਰਾ ਸਮਝਿਆ ਜਾ ਸਕਦਾ ਹੈ।ਉੱਤੇ ਦਿੱਤੀ ਗਈ ਮੀਥੇਨ ਬਨਾਉਣ ਦੀ ਪ੍ਰਤੀ ਕਿਰਿਆ ਭਾਗਫਲ ਉ੍ਹਦੁਆਰਾ ਸਮਝਿਆ

ਜਾ ਸਕਦਾ ਹੈ। ਉੱਤੇ ਦਿੱਤੀ ਗਈ ਮੀਥੇਨ ਬਨਾਉਣ ਦੀ ਪ੍ਰਤੀ ਕਿਰਿਆ ਵਿੱਚ [CO], $[H_2]$, $[CH_4]$ ਅਤੇ $[H_2O]$ ਕਿਰਿਆ ਕਾਰਕਾਂ ਦੀ ਸੰਤੁਲਨ ਅਵਸਥਾਈ ਸੰਘਣਤਾ ਨੂੰ ਪ੍ਰਦਰਸ਼ਿਤ ਕਰਦੇ ਹਨ। ਜਦੋਂ ਪ੍ਰਤੀ ਕਿਰਿਆ ਮਿਸ਼ਰਣ ਦਾ ਆਇਤਨ ਅੱਧਾ ਕਰ ਦਿੱਤਾ ਜਾਂਦਾ ਹੈ, ਤਾਂ ਉਨ੍ਹਾਂ ਦੇ ਅੰਸ਼ਿਕ ਦਾਬ ਅਤੇ ਸੰਘਣਤਾਵਾਂ ਦੋਗੁਣੀਆਂ ਹੋ ਜਾਂਦੀਆਂ ਹਨ। ਹੁਣ ਅਸੀਂ ਪ੍ਰਤੀਕਿਰਿਆ ਭਾਗਫਲ ਦਾ ਮਾਨ ਸੰਤੁਲਿਤ ਅਵਸਥਾ ਦਾ ਦੋਗੁਣਾ ਮਾਨ ਰੱਖਕੇ ਪ੍ਰਾਪਤ ਕਰ ਸਕਦੇ ਹਾਂ।

$$Q_c = \frac{[2\text{CH}_4][2\text{H}_2\text{O}]}{[2\text{CO}][2\text{H}_2\text{O}]^3} = \frac{4}{16} \frac{\left[\text{CH}_4\right]\left[\text{H}_2\text{O}\right]}{\left[\text{CO}\right]\left[\text{H}_2\right]} = \frac{\text{K}_c}{4}$$

ਕਿਉਂਕਿ $Q_{\rm c} < K_c$ ਹੈ ਇਸ ਨਾਲ ਪ੍ਰਤੀਕਿਰਿਆ ਅਗ੍ਗਾਮੀ ਦਿਸ਼ਾ ਵਿੱਚ ਵਧਦੀ ਹੈ।

 $C(s) + CO_2(g) \rightleftharpoons 2CO(g)$ ਪ੍ਰਤੀਕਿਰਿਆ ਵਿੱਚ ਜਦੋਂ ਦਾਬ ਵਧਾਇਆ ਜਾਂਦਾ ਹੈ ਤਾਂ ਪ੍ਰਤੀਕਿਰਿਆ ਉਲਟ ਦਿਸ਼ਾ ਵਿਚ ਹੁੰਦੀ ਹੈ ਕਿਉਂਕਿ ਅਗ੍ਗਾਮੀ ਦਿਸ਼ਾ ਵਿੱਚ ਮੋਲਾਂ ਦੀ ਸੰਖਿਆ ਵਧ ਜਾਂਦੀ ਹੈ।

7.8.3 ਅਕਿਰਿਅਸ਼ੀਲ ਗੈਸ ਦੇ ਜੋੜ ਦਾ ਪ੍ਭਾਵ

ਜੇ ਆਇਤਨ ਸਥਿਰ ਰੱਖਦੇ ਹਾਂ ਅਤੇ ਇੱਕ ਅਕਿਰਿਆਸ਼ੀਲ ਗੈਸ (ਜਿਵੇਂ ਆੱਰਗਨ) ਜੋ ਕਿਰਿਆ ਵਿੱਚ ਭਾਗ ਨਹੀਂ ਲੈਂਦੀ ਹੈ, ਨੂੰ ਮਿਲਾਉਂਦੇ ਹਾਂ ਤਾਂ ਸੰਤੁਲਨ ਪਰਿਵਰਤਨ ਨਹੀਂ ਹੁੰਦਾ। ਕਿਉਂਕਿ ਸਥਿਰ ਆਇਤਨ ਤੇ ਅਕਿਰਿਆ ਸ਼ੀਲ ਗੈਸ ਮਿਲਾਉਣ ਤੇ ਪ੍ਤੀਕਿਰਿਆ ਵਿੱਚ ਭਾਗ ਲੈਣ ਵਾਲੇ ਪਦਾਰਥਾਂ ਦੀਆਂ ਮੋਲਰ ਸੰਘਣਤਾਵਾਂ ਜਾਂ ਦਾਬ ਵਿੱਚ ਕੋਈ ਪਰਿਵਰਤਨ ਨਹੀਂ ਆਉਂਦਾ। ਪ੍ਤੀਕਿਰਿਆ ਭਾਗਫਲ ਵਿੱਚ ਪਰਿਵਰਤਨ ਸਿਰਫ ਉਦੋਂ ਹੁੰਦਾ ਹੈ ਜਦੋਂ ਮਿਲਾਈ ਗਈ ਗੈਸ ਪ੍ਤੀ ਕਿਰਿਆ ਵਿੱਚ ਭਾਗ ਲੈਣ ਵਾਲਾ ਪ੍ਤੀਕਾਰਕ ਜਾਂ ਉਪਜ ਹੋਵੇ।

7.8.4 ਤਾਪਮਾਨ ਪਰਿਵਰਤਨ ਦਾ ਪ੍ਭਾਵ

ਜਦੋਂ ਕਦੇ ਦਾਬ ਜਾਂ ਆਇਤਨ ਵਿੱਚ ਪਰਿਵਰਤਨ ਦੇ ਕਾਰਣ ਸੰਘਣਤਾ ਬਦਲਦੀ ਹੈ, ਤਾਂ ਸੰਤੁਲਨ ਮਿਸ਼ਰਣ ਦੀ ਰਚਨਾ ਵਿੱਚ ਪਰਿਵਰਤਨ ਹੁੰਦਾ ਹੈ, ਕਿਉਂਕਿ ਪ੍ਤੀਕਿਰਿਆ ਭਾਗਫਲ (Q) ਸੰਤੁਲਨ ਸਥਿਰ ਅੰਕ (K_c) ਦੇ ਬਰਾਬਰ ਨਹੀਂ ਰਹਿੰਦਾ, ਪਰ ਜਦੋਂ ਤਾਪਮਾਨ ਵਿੱਚ ਪਰਿਵਰਤਨ ਹੁੰਦਾ ਹੈ, ਸੰਤੁਲਨ ਸਥਿਰ ਅੰਕ (K_c) ਦਾ ਅਨਪਰਿਵਰਤਿਤ ਹੋ ਜਾਂਦਾ ਹੈ। ਆਮਤੌਰ ਤੇ ਤਾਪਮਾਨ ਤੇ ਸਥਿਰ ਅੰਕ ਦੀ ਨਿਰਭਰਤਾ ਪ੍ਤੀ ਕਿਰਿਆ ਦੇ ΔH ਦੇ ਚਿਨ੍ਹ ਉੱਤੇ ਨਿਰਭਰ ਕਰਦੀ ਹੈ।

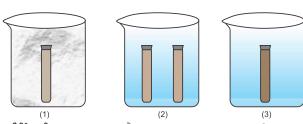
- ਤਾਪ ਨਿਕਾਸੀ ਪ੍ਤੀ ਕਿਰਿਆ (△H ਰਿਣਾਤਮਕ) ਦਾ ਸੰਤੁਲਨ ਸਥਿਰ ਅੰਕ ਤਾਪਮਾਨ ਵਧਣ ਤੇ ਘਟਦਾ ਹੈ।
- ਤਾਪ ਸੋਖੀ ਪ੍ਤੀ ਕਿਰਅ (∆H ਧਨਾਤਮਕ) ਦਾ ਸੰਤੁਲਨ ਸਥਿਰ ਅੰਕ ਤਾਪਮਾਨ ਦੇ ਵਧਣ ਤੇ ਵਧਦਾ ਹੈ।

ਤਾਪਮਾਨ ਵਿੱਚ ਪਰਿਵਰਤਨ ਸੰਤੁਲਨ ਸਥਿਰ ਅੰਕ ਅਤੇ ਪ੍ਰਤੀ ਕਿਰਿਆ ਦੇ ਵੇਗ ਵਿੱਚ ਪਰਿਵਰਤਨ ਲਿਆਉਂਦਾ ਹੈ।

ਹੇਠ ਲਿਖੀ ਪ੍ਰਤੀਕਿਰਿਆ ਦੇ ਅਨੁਸਾਰ ਅਮੋਨੀਆ ਦਾ ਬਣਨਾ

$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$$
;

 $\Delta H = -92.38 \text{ kJ mol}^{-1}$


ਇੱਕ ਤਾਪ ਨਿਕਾਸੀ ਪ੍ਕਰਮ ਹੈ। ਲੀ ਸੈਟੇਲੀਅਰ ਸਿਧਾਂਤ ਦੇ ਅਨੁਸਾਰ, ਤਾਪਮਾਨ ਵਧਣ ਤੇ ਸੰਤੁਲਿਤ ਅਵਸਥਾ ਖੱਬੀ ਦਿਸ਼ਾ ਵਿੱਚ ਸਥਾਨ ਅੰਤਰਿਤ ਹੋ ਜਾਂਦੀ ਹੈ ਅਤੇ ਅਮੋਨੀਆ ਦੀ ਸੰਤੁਲਨ ਸੰਘਣਤਾ ਘੱਟ ਹੋ ਜਾਂਦੀ ਹੈ। ਦੂਜੇ ਸ਼ਬਦਾਂ ਵਿੱਚ ਘੱਟ ਤਾਪਮਾਨ ਅਮੋਨੀਆ ਦੀ ਜਿਆਦਾ ਪ੍ਰਾਪਤੀ ਦੇ ਲਈ ਢੁਕਵਾਂ ਹੈ। ਪਰੰਤੂ ਪ੍ਰਯੋਗਿਕ ਰੂਪ ਵਿਚ ਜਿਆਦਾ ਘੱਟ ਤਾਪਮਾਨ ਉੱਤੇ ਪ੍ਰਤੀਕਿਰਿਆ ਦੀ ਗਤੀ ਹੌਲੀ ਹੋ ਜਾਂਦੀ ਹੈ ਅਤੇ ਉਤਪ੍ਰੇਰਕ ਵਰਤੋਂ ਵਿੱਚ ਲਿਆਂਦਾ ਜਾਂਦਾ ਹੈ।

ਤਾਪਮਾਨ ਦਾ ਪ੍ਰਭਾਵ-ਇਕ ਪ੍ਰਯੋਗ

 NO_2 ਗੈਸ (ਭੂਗੀ) ਦਾ N_2O_4 ਵਿੱਚ ਡਾਈਮਰਾਈਜ਼ੇਸਨ (Dimersization) ਦੀ ਪ੍ਤੀਕਿਰਿਆ ਦੇ ਦੁਆਰਾ ਸੰਤੁਲਿਤ ਅਵਸਥਾ ਉੱਤੇ ਤਾਪਮਾਨ ਦਾ ਪ੍ਭਾਵਿਤ ਪ੍ਦਰਸ਼ਿਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।

$$2NO_2(g) \rightleftharpoons N_2O_4(g); \Delta H = -57.2 \text{ kJ mol}^{-1}$$
 (ਭੂਰਾ) (ਰੰਗਹੀਨ)

ਗਾੜ੍ਹੇ $\mathrm{HNO_3}$ ਵਿੱਚ ਕਾੱਪਰ ਖਰਾਦਨ (Lirnings) ਪਾ ਕੇ ਅਸੀਂ $\mathrm{NO_2}$ ਗੈਸ ਤਿਆਰ ਕਰਦੇ ਹਾਂ ਅਤੇ ਇਸ ਨੂੰ ਇੱਕ ਨਿਕਾਸ ਨਲੀ ਦੀ ਸਹਾਇਤਾ ਨਾਲ $5\mathrm{mL}$ ਵਾਲੀਆਂ ਦੋ ਟੈਸਟ ਟਿਊਬਾਂ ਵਿੱਚ ਇਕੱਠੇ ਕਰਦੇ ਹਾਂ। ਦੋਵਾਂ ਟੈਸਟ ਟਿਊਬਾਂ ਵਿੱਚ ਰੰਗ ਦੀ ਤੀਬਰਤਾ ਸਮਾਨ ਹੋਣੀ ਚਾਹੀਦੀ ਹੈ। ਹੁਣ ਐਰਲਡਾਈਟ (Araldite) ਦੀ ਸਹਾਇਤਾ ਨਾਲ ਪਰਖ ਨਲੀ ਦੇ ਸਟਾੱਪਰ (stopper) ਨੂੰ ਬੰਦ ਕਰ ਦਿੰਦੇ ਹਾਂ। $250\mathrm{mL}$ ਦੇ ਤਿੰਨ ਬੀਕਰ ਲੈਂਦੇ ਹਾਂ ਅਤੇ ਇਨ੍ਹਾਂ ਤੇ ਕ੍ਰਮਵਾਰ 1, 2 ਅਤੇ 3 ਅੰਕਿਤ ਕਰਦੇ ਹਾਂ। ਬੀਕਰ ਨੂੰ। ਫਰੀਜਿੰਗ ਮਿਸ਼ਰਣ (Freezing mixture) ਨਾਲ, ਬੀਕਰ ਨੰ. 2 ਨੂੰ ਕਮਰੇ ਦੇ ਤਾਪਮਾਨ ਵਾਲੇ ਪਾਣੀ ਅਤੇ ਬੀਕਰ ਨੰ. 3 ਨੂੰ ਗਰਮ ($363~\mathrm{K}$) ਪਾਣੀ ਨਾਲ ਭਰ ਲਉ। ਜਦੋਂ ਦੋਵਾਂ ਟੈਸਟ ਟਿਊਬਾਂ ਨੂੰ ਬੀਕਰ ਨੰ. 2 ਵਿੱਚ ਰੱਖਿਆ ਜਾਂਦਾ ਹੈ, ਤਾਂ ਗੈਸ ਦੇ ਭੂਰੇ ਰੰਗ ਦੀ ਤੀਬਰਤਾ ਇੱਕ ਸਮਾਨ ਵਿਖਾਈ ਦਿੰਦੀ ਹੈ। ਕਮਰੇ ਦੇ ਤਾਪਮਾਨ ਵਾਲੇ ਪਾਣੀ ਵਿੱਚ 8-10 ਮਿੰਟ ਤੱਕ ਟੈਸਟ ਟਿਊਬਾਂ ਨੂੰ ਰੱਖਣ ਤੋਂ ਬਾਅਦ ਉਨ੍ਹਾਂ ਵਿੱਚੋਂ ਇਕ ਨੂੰ ਬੀਕਰ

ਫਰੀਜਿੰਗ ਮਿਸ਼ਰਣ ਨਾਲ ਕਮਰੇ ਦਾ ਤਾਪਮਾਨ (363K) ਉੱਤੇ ਪਾਣੀ ਭਰਿਆ ਬੀਕਰ (270K) (298K) ਉੱਤੇ ਪਾਣੀ

ਚਿੱਤਰ 7.9 ਪ੍ਰਤੀਕਿਰਿਆ $2{
m NO}_2({
m g}) \rightleftharpoons {
m N}_2{
m O}_4({
m g})$ ਦੀ ਸੰਤੁਲਿਤ ਅਵਸਥਾ ਉੱਤੇ ਤਾਪਮਾਨ ਦਾ ਪ੍ਰਭਾਵ

ਨੰ. 1 ਦੇ ਪਾਣੀ ਵਿੱਚ ਅਤੇ ਦੂਜੀ ਪਰਖਨਲੀ ਨੂੰ ਬੀਕਰ ਨੰ 3 ਦੇ ਪਾਣੀ ਵਿੱਚ ਰੱਖੋ। ਪ੍ਤੀ ਕਿਰਿਆ ਦੀ ਦਿਸ਼ਾ ਉੱਤੇ ਤਾਪਮਾਨ ਦਾ ਪ੍ਰਭਾਵ ਇਸ ਪ੍ਯੋਗ ਤੋਂ ਵਿਖਿਆਇਆ ਜਾ ਸਕਦਾ ਹੈ। ਘੱਟ ਤਾਪਮਾਨ ਉੱਤੇ ਬੀਕਰ ਨੰ 1. ਵਿੱਚ ਤਾਪ ਨਿਕਾਸੀ ਅਗ੍ਗਾਮੀ ਪ੍ਤੀ ਕਿਰਿਆ ਦੁਆਰਾ N_2O_4 ਬਣਨ ਨੂੰ ਤਰਜੀਹ ਮਿਲਦੀ ਹੈ ਅਤੇ NO_2 ਦੀ ਕਮੀ ਹੋਣ ਦੇ ਕਾਰਣ ਭੂਰੇ ਰੰਗ ਦੀ ਤੀਬਰਤਾ ਘਟਦੀ ਹੈ, ਜਦਕਿ ਬੀਕਰ ਨੰ. 3 ਵਿੱਚ ਉੱਚੇ ਤਾਪਮਾਨ ਤੇ ਉਲਟਕ੍ਰਮਣੀ ਪ੍ਰਤੀਕਿਰਿਆ ਨੂੰ ਤਰਜੀਹ ਮਿਲਦੀ ਹੈ, ਜਿਸ ਤੋਂ NO_2 ਬਣਦਾ ਹੈ। ਨਤੀਜੇ ਵਜੋਂ ਭੂਰੇ ਰੰਗ ਦੀ ਤੀਬਰਤਾ ਵਧ ਜਾਂਦੀ ਹੈ।

ਸੰਤੁਲਿਤ ਅਵਸਥਾ ਉੱਤੇ ਤਾਪਮਾਨ ਦਾ ਪ੍ਰਭਾਵ ਇੱਕ ਤਾਪਸੋਖੀ ਪ੍ਤੀਕਿਰਿਆ ਤੋਂ ਵੀ ਸਮਝਿਆ ਜਾ ਸਕਦਾ ਹੈ। [Co(H₂O)ਫ਼]³⁺(aq) + 4Cl⁻(aq)⇌[CoCl₂]² +6H₂O(l)

ੁਟਰ(ਜ਼₂ਰ)₆] (ਕਰ੍ਹ) + 4ਵਜ (ਕਰ੍ਹ)—[ਵਰਦਾ₄] +ਰਜ₂, ਗੁਲਾਬੀ ਰੰਗਹੀਣ ਨੀਲਾ

ਕਮਰੇ ਦੇ ਤਾਪਮਾਨ ਉੱਤੇ $[\mathrm{CoCl_4}]^{2-}$ ਦੇ ਕਾਰਣ ਸੰਤੁਲਨ ਮਿਸ਼ਰਣ ਦਾ ਰੰਗ ਨੀਲਾ ਹੋ ਜਾਂਦਾ ਹੈ। ਜਦੋਂ ਇਸ ਨੂੰ ਫਰੀਜਿੰਗ ਮਿਸ਼ਰਣ ਵਿੱਚ ਠੰਡਾ ਕੀਤਾ ਜਾਂਦਾ ਹੈ, ਤਾਂ ਮਿਸ਼ਰਣ ਦਾ ਰੰਗ $[\mathrm{Co}(\mathrm{H_2O})_{\mathrm{c}}]^{3+}$ ਦੇ ਕਾਰਣ ਗੁਲਾਬੀ ਹੋ ਜਾਂਦਾ ਹੈ।

7.8.5 ਉਤਪ੍ਰੇਰਕ ਦਾ ਪ੍ਰਭਾਵ

ਉਤਪ੍ਰੇਰਕ ਰਸਾਇਣਿਕ ਪ੍ਰਤੀ ਕਿਰਿਆ ਦੀ ਉਪਜਾਂ ਵਿੱਚ ਪਰਿਵਰਤਨ ਦੇ ਲਈ ਘੱਟ ਊਰਜਾ ਵਾਲਾ ਇੱਕ ਨਵਾਂ ਮਾਰਗ ਉਪਲਬਧ ਕਰਵਾ ਕੇ ਪ੍ਰਤੀਕਿਰਿਆ ਦੇ ਵੇਗ ਨੂੰ ਵਧਾ ਦਿੰਦਾ ਹੈ। ਇਹ ਇਕ ਹੀ ਅੰਤਰਕਾਲੀ-ਅਵਸਥਾ (transition state) ਵਿੱਚੋਂ ਗੁਜਰਨ ਵਾਲੀ ਅਗ੍ਗਾਮੀ ਅਤੇ ਉਲਕ੍ਰਮਣੀ ਪ੍ਰਤੀਕਿਰਿਆਵਾਂ ਦੇ ਵੇਗ ਨੂੰ ਵਧਾ ਦਿੰਦਾ ਹੈ, ਜਦਕਿ ਸੰਤੁਲਿਤ ਅਵਸਥਾ ਨੂੰ ਪਰਿਵਰਤਿਤ ਨਹੀਂ ਕਰਦਾ। ਉਤਪ੍ਰੇਰਕ ਅਗ੍ਗਾਮੀ ਅਤੇ ਉਲਟ ਕ੍ਰਮਣੀ ਪ੍ਰਤੀਕਿਰਿਆ ਦੇ ਲਈ ਉਤੇਜਨ ਊਰਜਾ ਨੂੰ ਸਮਾਨ ਮਾਤਰਾ ਵਿੱਚ ਘੱਟ ਕਰ ਦਿੰਦਾ ਹੈ। ਉਤਪ੍ਰੇਰਕ ਅਗ੍ਗਾਮੀ ਅਤੇ ਉਲਟਕ੍ਰਮਣੀ ਪ੍ਰਤੀਕਿਰਿਆ ਮਿਸ਼ਰਣ ਉਤੇ ਸੰਤੁਲਿਤ ਅਵਸਥਾ ਰਚਨਾ ਨੂੰ ਪਰਿਵਰਤਿਤ ਨਹੀਂ ਕਰਦਾ ਹੈ। ਇਹ ਸੰਤੁਲਿਤ ਸਮੀਕਰਣ ਵਿੱਚ ਜਾਂ ਸੰਤੁਲਨ ਸਥਿਰ ਅੰਕ ਸਮੀਕਰਣ ਵਿੱਚ ਪਗਟ ਨਹੀਂ ਹੰਦਾ ਹੈ।

NH₃ ਦੇ ਨਾਈਟ੍ਰੋਜਨ ਅਤੇ ਹਾਈਡ੍ਰੋਜਨ ਤੋਂ ਨਿਰਮਾਣ ਉੱਤੇ ਵਿਚਾਰ ਕਰੀਏ, ਜੋ ਇੱਕ ਬੜੀ ਤਾਪਨਿਕਾਸੀ ਪ੍ਤੀਕਿਰਿਆ ਹੈ ਇਸ ਵਿੱਚ ਉਪਜ ਦੇ ਕੁੱਲ ਮੋਲਾਂ ਦੀ ਸੰਖਿਆ ਪ੍ਤੀ ਕਾਰਕਾਂ ਦੇ ਮੋਲਾਂ ਦੀ ਸੰਖਿਆ ਤੋਂ ਘੱਟ ਹੁੰਦੀ ਹੈ। ਸੰਤੁਲਨ ਸਥਿਰ ਅੰਕ ਤਾਪਮਾਨ ਨੂੰ ਵਧਾਉਣ ਤੇ ਘਟਦਾ ਹੈ। ਘੱਟ ਤਾਪਮਾਨ ਉੱਤੇ ਪ੍ਰਤੀ ਕਿਰਿਆ ਵੇਗ ਘਟਦਾ ਹੈ ਅਤੇ ਸੰਤੁਲਿਤ ਅਵਸਥਾ ਉੱਤੇ ਪਹੁੰਚਣ ਵਿੱਚ ਵਧੇਰੇ ਸਮਾਂ ਲੱਗਦਾ ਹੈ, ਜਦਕਿ ਉੱਚੇ ਤਾਪਮਾਨ ਉੱਤੇ ਕਿਰਿਆ ਦੀ ਦਰ ਸੰਤੋਖਜਨਕ ਹੁੰਦੀ ਹੈ, ਪਰੰਤੂ ਪ੍ਰਾਪਤੀ (ਉਪਜ) ਘੱਟ ਹੁੰਦੀ ਹੈ।

ਜਰਮਨ ਰਸਾਇਣ ਵਿਗਿਆਨੀ ਫਰਿਜ ਹੈਬਰ (Fritz Haber) ਨੇ ਦਰਸਾਇਆ ਕਿ ਲੋਹਾ ਉਤਪ੍ਰੇਕਕ ਦੀ ਮੌਜੂਦਗੀ ਵਿੱਚ ਪ੍ਰਤੀਕਿਰਿਆ ਸੰਤੋਖਜਨਕ ਦਰ ਨਾਲ ਹੁੰਦੀ ਹੈ, ਜਦਕਿ $\mathrm{NH_3}$ ਦੀ ਸੰਤੁਲਨ ਸੰਘਣਤਾ ਤਸੱਲੀ ਬਖਸ਼ ਹੁੰਦੀ ਹੈ। ਕਿਉਂਕਿ ਉਪਜ ਦੇ ਮੋਲਾਂ ਦੀ ਸੰਖਿਆ ਪ੍ਰਤੀਕਾਰਕਾਂ ਦੇ ਮੋਲਾਂ ਦੀ ਸੰਖਿਆ ਤੋਂ ਘੱਟ ਹੁੰਦੀ ਹੈ। ਇੰਜ $\mathrm{NH_3}$ ਦਾ ਉਤਪਾਦਨ ਦਾਬ ਵਧਾਕੇ ਵਧਾਇਆ ਜਾ ਸਕਦਾ ਹੈ।

 ${
m NH_3}$ ਦੇ ਸਮਲੇਸ਼ਣ ਦੇ ਲਈ ਤਾਪਮਾਨ ਅਤੇ ਦਾਬ ਦੀ ਅਨੁਕੂਲਤਮ ਪਰਿਸਥਿਤੀਆਂ $500\,^{\circ}{
m C}$ ਅਤੇ 200 ਵਾਯੂਮੰਡਲੀ ਦਾਬ ਹੁੰਦੀ ਹੈ।

ਇਸੇ ਤਰ੍ਹਾਂ ਸੰਪਰਕ ਵਿਧੀ ਦੁਆਰਾ ਸਲਫਿਊਰਿਕ ਐਸਿਡ ਦੇ ਨਿਰਮਾਣ ਵਿੱਚ

 $2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g); \ K_c = 1.7 \times 10^{26}$ ਸੰਤੁਲਨ ਸਥਿਰ ਅੰਕ (K_c) ਦੇ ਮਾਨ ਦੇ ਅਨੁਸਾਰ ਪ੍ਰਤੀਕਿਰਿਆ ਨੂੰ ਲਗਪਗ ਪੂਰਣ ਹੋ ਜਾਣਾ ਚਾਹੀਦਾ ਹੈ, ਪਰੰਤੂ SO_2 ਦਾ SO_3 ਵਿੱਚ ਅੱਕਸੀਕਰਣ ਬਹੁਤ ਹੀ ਧੀਮੀ ਦਰ ਨਾਲ ਹੁੰਦਾ ਹੈ। ਪਲੈਟੀਨਮ ਜਾਂ ਡਾਈਵੈਨੇਡਿਅਮ ਪੈਂਟਾਕਸਾਈਡ (V_2O_5) ਉਤਪੇਰਕ ਦੀ ਮੌਜੂਦਗੀ ਵਿੱਚ ਪ੍ਰਤੀ ਕਿਰਿਆ ਵੇਗ ਕਾਫੀ ਵਧ ਜਾਂਦਾ ਹੈ।

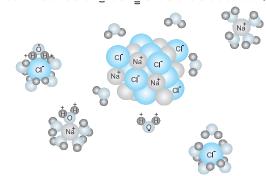
ਨੌਟ : ਜੇ ਕਿਸੇ ਪ੍ਤੀਕਿਰਿਆ ਦੇ ਸੰਤੁਲਨ ਸਥਿਰ ਅੰਕ ਦਾ ਮਾਨ ਕਾਫੀ ਘੱਟ ਹੁੰਦਾ ਹੈ, ਤਾਂ ਉਸ ਵਿੱਚ ਉਤਪ੍ਰੇਰਕ ਬਹੁਤ ਘੱਟ ਸਹਾਇਤਾ ਕਰ ਸਕਦਾ ਹੈ।

7.9 ਘੋਲ ਵਿੱਚ ਅਇਨਿਕ ਸੰਤੁਲਿਤ ਅਵਸਥਾ

ਸੰਤੁਲਨ ਦੀ ਦਿਸ਼ਾ ਵਿੱਚ ਸੰਘਣਤਾ ਪਰਿਵਰਤਨ ਦੇ ਪ੍ਰਭਾਵ ਵਾਲੇ ਪ੍ਸੰਗ ਵਿੱਚ ਤੁਸੀਂ ਹੇਠ ਲਿਖੇ ਅਇਨਿਕ ਸੰਤੁਲਨ ਦੇ ਸੰਪਰਕ ਵਿੱਚ ਆਏ ਹੋ—

 $Fe^{3+}(aq) + SCN^{-}(aq) \rightleftharpoons [Fe(SCN)]^{2+}(aq)$

ਅਜਿਹੇ ਅਨੇਕਾਂ ਸੰਤੂਲਨ ਹਨ ਜਿਨ੍ਹਾਂ ਵਿੱਚ ਸਿਰਫ ਅਇਨ ਸ਼ਾਮਲ ਹੁੰਦੇ ਹਨ, ਇਥੇ ਅਸੀਂ ਉਨ੍ਹਾਂ ਸੰਤੁਲਨਾ ਦਾ ਅਧਿਐਨ ਕਰਾਂਗੇ। ਇਹ ਸਭ ਜਾਣਦੇ ਹਨ ਕਿ ਚੀਨੀ ਦੇ ਜਲੀ ਘੋਲ ਵਿਚੋਂ ਬਿਜਲੀ ਧਾਰਾ ਪ੍ਰਵਾਹਿਤ ਨਹੀਂ ਹੁੰਦੀ ਹੈ, ਜਦ ਕਿ ਪਾਣੀ ਵਿੱਚ ਸਧਾਰਣ ਨਮਕ (ਸੋਡੀਅਮ ਕਲੋਰਾਈਡ) ਮਿਲਾਉਣ ਤੇ ਇਸ ਵਿੱਚ ਬਿਜਲੀ ਧਾਰਾ ਦਾ ਪ੍ਰਵਾਹ ਹੁੰਦਾ ਹੈ ਅਤੇ ਨਮਕ ਦੀ ਸੰਘਣਤਾ ਵਧਣ ਦੇ ਨਾਲ ਘੋਲ ਦੀ ਚਾਲਕਤਾ ਵਧਦੀ ਹੈ। ਮਾਈਕਲ ਫੈਰਾਡੇ ਨੇ ਪਦਾਰਥਾਂ ਦੀ ਉਨ੍ਹਾਂ ਦੀ ਬਿਜਲੀ ਚਾਲਕਤਾ ਸਮਰੱਥਾ ਦੇ ਅਧਾਰ ਤੇ ਦੋ ਵਰਗਾਂ ਵਿੱਚ ਵਰਗੀ ਕ੍ਰਿਤ ਕੀਤਾ – ਇੱਕ ਵਰਗ ਦੇ ਪਦਾਰਥ ਜਲੀ ਘੋਲ ਵਿੱਚ ਬਿਜਲੀ ਧਾਰਾ ਪ੍ਰਵਾਹਿਤ ਕਰਦੇ ਹਨ, ਇਹ ਇਲੈਕਟ੍ਰੋਲਾਈਟ (electrolytes) ਅਖਵਾਉਂਦੇ ਹਨ, ਜਦਕਿ ਦੂਜੇ ਜੋ ਅਜਿਹਾ ਨਹੀਂ ਕਰਦੇ ਨਾਨ ਇਲੈਕਟ੍ਰੋਲਾਈਟ (non-electrolytes) ਅਖਵਾਉਂਦੇ ਹਨ। ਫੈਰਾਡੇ ਨੇ ਇਲੈਕਟ੍ਰੋਲਾਈਟਾਂ ਨੂੰ ਫਿਰ ਪ੍ਰਬਲ ਅਤੇ ਦੁਰਬਲ ਇਲੈਕਟਰੋਲਾਈਟਾਂ ਵਿੱਚ ਵਰਗੀਕ੍ਰਿਤ ਕੀਤਾ। ਪ੍ਰਬਲ ਇਲੈਕਟ੍ਰੋਲਾਈਟ ਅੰਸ਼ਿਕ ਰੂਪ ਵਿੱਚ ਅਇਨਿਤ ਹੁੰਦੇ ਹਨ। ਉਦਾਹਰਣ ਵਜੋਂ - ਸੋਡੀਅਮ ਕਲੋਰਾਈਡ ਦੇ ਜਲੀ ਘੋਲ ਵਿੱਚ

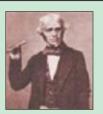

206

ਮੁੱਖ ਰੂਪ ਵਿੱਚ ਸੋਡੀਅਮ ਆਇਨ ਅਤੇ ਕਲੋਰਾਈਡ ਆਇਨ ਮਿਲਦੇ ਹਨ ਜਦਕਿ ਐਸਿਟਿਕ ਐਸਿਡ ਵਿੱਚ ਐਸੀਟੇਟ ਆਇਨ ਅਤੇ ਹਾਈਡ੍ਰੋਨਿਅਮ ਆਇਨ ਮਿਲਦੇ ਹਨ। ਇਸ ਦਾ ਕਾਰਣ ਇਹ ਹੈ ਕਿ ਸੋਡੀਅਮ ਕਲੋਰਾਈਡ ਦਾ ਲਗਪਗ 100% ਆਇਨਨ ਹੁੰਦਾ ਹੈ, ਜਦਕਿ ਐਸਿਟਿਕ ਐਸਿਡ ਜੋ ਦੁਰਬਲ ਇਲੈਕਟ੍ਰੋਲਾਈਟ ਹੈ, 5% ਹੀ ਆਇਨਿਤ ਹੁੰਦਾ ਹੈ। ਇਹ ਧਿਆਨ ਰੱਖੋ ਕਿ ਕਮਜ਼ੋਰ ਇਲੈਕਟ੍ਰੋਲਾਈਟਾਂ ਵਿੱਚ ਆਇਨਾਂ ਅਤੇ ਅਣ-ਆਇਨਿਤ ਅਣੂਆਂ ਦੇ ਵਿੱਚ ਸੰਤੁਲਨ ਸਥਾਪਿਤ ਹੁੰਦਾ ਹੈ। ਇਸ ਕਿਸਮ ਦਾ ਸੰਤੁਲਨ, ਜਿਸ ਵਿੱਚ ਜਲੀ ਘੋਲ ਵਿੱਚ ਆਇਨ ਮਿਲਦੇ ਹਨ, ਆਇਨਿਕ ਸੰਤੁਲਨ ਅਖਵਾਉਂਦਾ ਹੈ। ਤੇਜਾਬ, ਖਾਰਾਂ ਅਤੇ ਨਮਕ ਇਲੈਕਟ੍ਰੋਲਾਈਟ ਵਰਗ ਵਿੱਚ ਆਉਂਦੇ ਹਨ। ਇਹ ਪ੍ਰਬਲ ਅਤੇ ਦੁਰਬਲ ਇਲੈਕਟ੍ਰੋਲਾਈਟਾਂ ਦੀ ਤਰ੍ਹਾਂ ਵਿਹਾਰ ਕਰਦੇ ਹਨ।

7.10 ਤੇਜ਼ਾਬ, ਖਾਰ ਅਤੇ ਲੁਣ

ਤੇਜ਼ਾਬ, ਖਾਰ ਅਤੇ ਲੂਣ ਕੁਦਰਤ ਵਿੱਚ ਵੱਡੇ ਰੂਪ ਵਿੱਚ ਮਿਲਦੇ ਹਨ। ਜਠਰ ਰਸ, ਜਿਸ ਵਿੱਚ ਹਾਈਡੋਕਲੋਰਿਕ ਐਸਿਡ ਹੁੰਦਾ ਹੈ, ਸਾਡੇ ਮਿਹਦੇ ਦੁਆਰਾ ਕਾਫੀ ਮਾਤਰਾ (1.2-1.5 L/ਦਿਨ) ਰਿਸਦਾ ਹੈ। ਇਹ ਪਾਚਕ ਕਿਰਿਆ ਦੇ ਲਈ ਬੜਾ ਜਰੂਰੀ ਹੈ। ਸਿਰਦੇ ਦਾ ਮੁੱਖ ਭਾਗ ਐਸਿਟਿਕ ਐਸਿਡ ਹੈ। ਨਿੰਬੂ ਅਤੇ ਸੰਤਰੇ ਦੇ ਰਸ ਵਿੱਚ ਸਿਟਿਕ ਐਸਿਡ ਅਤੇ ਐਸਕਾਰਬਿਕ ਐਸਿਡ ਅਤੇ ਇਮਲੀ ਵਿੱਚ ਟਾਰਟੈਰਿਕ ਐਸਿਡ ਮਿਲਦਾ ਹੈ। ਵਧੇਰੇ ਤੇਜਾਬ ਸੁਆਦ ਵਿੱਚ ਖੱਟੇ ਹੁੰਦੇ ਹਨ। ਲਤੀਨੀ ਸ਼ਬਦ Acidus ਤੋਂ ਬਣਿਆ 'ਐਸਿਡ' ਸ਼ਬਦ ਇਨ੍ਹਾਂ ਦੇ ਲਈ ਵਰਤਿਆ ਜਾਂਦਾ ਹੈ ਜਿਸ ਦਾ ਅਰਥ ਹੈ ਖੱਟਾ ਤੇਜਾਬ ਨੀਲੇ ਲਿਟਮਸ ਨੂੰ ਲਾਲ ਕਰ ਦਿੰਦੇ ਹਨ ਅਤੇ ਕੁਝ ਧਾਤਾਂ ਨਾਲ ਕਿਰਿਆ ਕਰਕੇ ਹਾਈਡੋਜਨ ਪੈਦਾ ਕਰਦੇ ਹਨ। ਇਸੇ ਤਰ੍ਹਾਂ ਖਾਰਾਂ ਨਾਲ ਲਿਟਮਸ ਨੂੰ ਨੀਲਾ ਕਰਦੀਆਂ ਹਨ ਅਤੇ ਸੁਆਦ ਵਿੱਚ ਕੌੜੀਆਂ ਅਤੇ ਛੂਹ ਵਿੱਚ ਸਾਬਨੀ ਹੁੰਦੀਆਂ ਹਨ। ਖਾਰ ਦੀ ਇੱਕ ਆਮ ਉਦਾਹਰਣ ਕੱਪੜੇ ਧੋਣ ਵਾਲਾ ਸੋਡਾ ਹੈ, ਜੋ ਧਲਾਈ ਲਈ ਵਰਤਿਆ ਜਾਂਦਾ ਹੈ। ਜਦੋਂ ਤੇਜਾਬ ਅਤੇ ਖਾਰ ਨੂੰ ਸਹੀ ਅਨੁਪਾਤ ਵਿੱਚ ਮਿਲਾਉਂਦੇ ਹਨ, ਤਾਂ ਉਹ ਆਪਸ ਵਿੱਚ ਕਿਰਿਆ ਕਰਕੇ ਲੂਣ ਦਿੰਦੇ ਹਨ। ਲੂਣਾਂ ਦੀਆਂ ਕੁਝ ਆਮ ਉਦਾਹਰਣਾਂ ਸੋਡੀਅਮ ਕਲੋਰਾਈਡ,

ਬੇਰਿਅਮ ਸਲਫੇਟ, ਸੋਡੀਅਮ ਨਾਈਟ੍ਰੇਟ ਆਦਿ ਹਨ। ਸੋਡੀਅਮ ਕਲੋਰਾਈਡ (ਸਧਾਰਣ ਲੂਣਾ) ਸਾਡੇ ਭੋਜਨ ਦਾ ਇੱਕ ਮੁੱਖ ਹੈ, ਜੋ ਹਾਈਡ੍ਰੋਕਲੋਰਿਕ ਐਸਿਡ ਅਤੇ ਸੋਡੀਅਮ ਹਾਈਡੋਕਸਾਈਡ ਦੀ ਕਿਰਿਆ ਨਾਲ ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ। ਇਹ ਠੋਸ ਅਵਸਥਾ ਵਿੱਚ ਮਿਲਦਾ ਹੈ ਜਿਸ ਵਿੱਚ ਧਨਚਾਰਜਿਤ ਸੋਡੀਅਮ ਅਤੇ ਰਿਣਚਾਰਜਿਤ ਕਲੋਰਾਈਡ ਆਇਨ ਆਪਸ ਵਿੱਚ ਉਲਟਚਾਰਜਿਤ ਸਪੀਸ਼ੀਜ ਦੇ ਵਿੱਚ ਸਥਿਰ ਬਿਜਲਈ ਅਕਰਸ਼ਣ ਦੇ ਕਾਰਣ ਝੁੰਡ (cluster) ਬਣਾ ਲੈਂਦੇ ਹਨ। ਦੋ ਚਾਰਜਾਂ ਦੇ ਵਿੱਚ ਸਥਿਰ ਬਿਜਲੀ ਬਲ ਮਾਧਿਅਮ ਦੇ ਡਾਈ ਇਲੈਕਟ੍ਰਿਕ ਸਥਿਰ ਅੰਕ ਦੇ ਉਲਟ-ਕ੍ਰਮ ਅਨੁਪਾਤੀ ਹੁੰਦਾ ਹੈ। ਪਾਣੀ ਸਰਬ ਵਿਆਪੀ ਘੋਲ ਹੈ ਜਿਸਦਾ ਡਾਈਇਲੈਕਟ੍ਰਿਕ ਸਥਿਰ ਅੰਕ 80 ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਜਦੋਂ ਸੋਡੀਅਮ ਕਲੋਰਾਈਡ ਨੂੰ ਪਾਣੀ ਵਿੱਚ ਘੋਲਿਆ ਜਾਂਦਾ ਹੈ, ਤਾਂ ਆਇਨਾਂ ਦੇ ਵਿੱਚ ਸਥਿਤ ਬਿਜਲਈ ਅਕਰਸ਼ਣ ਬਲ 80 ਦੇ ਗੁਣਕ ਵਿੱਚ ਕਮਜ਼ੋਰ ਹੋ ਜਾਂਦੇ ਹਨ, ਜਿਸ ਨਾਲ ਆਇਨ ਘੋਲ ਵਿੱਚ ਮਕਤ ਰਪ ਵਿੱਚ ਵਿੱਚਰਦੇ ਹਨ। ਇਹ



ਚਿੱਤਰ 7.10 ਪਾਣੀ ਵਿੱਚ ਸੋਡੀਅਮ ਕਲੋਰਾਈਡ ਦਾ ਵਿਯੋਜਨ।Na[†] ਅਤੇ Cl[⊤] ਆਇਨ ਧਰੁਵੀ ਜਲ ਅਣੂ ਦੇ ਨਾਲ ਜਲ ਯੋਜਿਤ ਹੋ ਕੇ ਸਥਾਈ ਹੋ ਜਾਂਦੇ ਹਨ।

ਪਾਣੀ ਦੇ ਅਣੂਆਂ ਦੇ ਨਾਲ ਜਲਯੋਜਿਤ (hydrated) ਹੋ ਕੇ ਵੱਖ ਹੋ ਜਾਂਦੇ ਹਨ।

ਪਾਣੀ ਵਿੱਚ ਹਾਈਡ੍ਰੋਕਲੋਰਿਕ ਐਸਿਡ ਦੇ ਅਇਨਾਨ ਦੀ ਤੁਲਨਾ ਐਸਿਟਿਕ ਐਸਿਡ ਦੇ ਅਇਨਾਨ ਨਾਲ ਕਰਨ ਤੇ ਸਾਨੂੰ ਗਿਆਤ ਹੋਵੇਗਾ ਕਿ ਭਾਵੇਂ ਦੋਵੇਂ ਧਰਵੀ ਅਣ ਹਨ, ਫਿਰਵੀ

ਫੈਰਾਡੇ ਦਾ ਜਨਮ ਲੰਦਨ ਦੇ ਕੋਲ ਇੱਕ ਸੀਮਿਤ ਸਾਧਨ ਵਾਲੇ ਪਰਿਵਾਰ ਵਿੱਚ ਹੋਇਆ ਸੀ। 14 ਸਾਲ ਦੀ ਉਮਰ ਵਿੱਚ ਉਹ ਇੱਕ ਦਿਆਲੂ ਜਿਲਦ ਸਾਜ (Book binder) ਦੇ ਕੋਲ ਕੰਮ ਸਿੱਖਣ ਲੱਗੇ। ਉਸਨੇ ਉਨ੍ਹਾਂ ਨੂੰ ਉਨ੍ਹਾਂ ਕਿਤਾਬਾਂ ਨੂੰ ਪੜ੍ਹਨ ਦੀ ਖੁੱਲ੍ਹੇ ਦੇ ਦਿਤੀ ਸੀ ਜਿਨ੍ਹਾਂ ਦੀ ਜਿਲਦ ਉਹ ਬੰਨ੍ਹਦਾ ਸੀ। ਚੰਗੀ ਕਿਸਮਤ ਕਰਕੇ ਉਹ ਡੇਵੀ (Davy) ਦੇ ਪ੍ਰਯੋਗਸ਼ਾਲਾ ਸਹਾਇਕ ਬਣ ਗਏ ਅਤੇ ਸੰਨ 1813-14 ਵਿੱਚ ਫੈਰਾਡੇ ਉਨ੍ਹਾਂ ਦੇ ਨਾਲ ਮਹਾਦੀਪ ਦੇ ਯਾਤਰਾ ਤੇ ਚਲੇ ਗਏ। ਉਸ ਯਾਤਰਾ ਦੇ ਦੌਰਾਨ ਉਹ ਉਸ ਸਮੇਂ ਕਈ ਮੰਨੇ ਪ੍ਰਮੰਨੇ ਵਿਗਿਆਨੀਆਂ ਦੇ ਸੰਪਰਕ ਵਿੱਚ ਆਏ ਅਤੇ ਉਨ੍ਹਾਂ ਦੇ ਤਜਰਬੇ ਤੋਂ ਬੜਾ ਸਿੱਖਿਆ। ਸੰਨ 1825 ਵਿੱਚ ਡੇਵੀ ਤੋਂ ਬਾਅਦ ਉਹ ਰਾੱਯਲ ਸੰਸਸ਼ਾ ਪ੍ਰਯੋਗਸ਼ਾਲਾਵਾਂ (Royal Institution laboratories) ਦੇ ਡਾਇਰੈਕਟਰ ਬਣੇ ਅਤੇ ਸੰਨ 1833 ਵਿੱਚ ਉਹ ਰਸਾਇਣ ਵਿਗਿਆਨ ਦੇ ਪਹਿਲੇ ਫੁਲੇਰਿਅਨ ਪ੍ਰੋਫੈਸਰ (First Fullerian Professor) ਬਣੇ। ਫੈਰਾਡੇ ਦਾ ਪਹਿਲਾ ਮਹੱਤਵਪੂਰਣ ਕਾਲਜ ਵਿਸ਼ਕੇਸ਼ਣ ਰਸਾਇਣ ਵਿੱਚ ਸੀ। ਸੰਨ 1821 ਤੋਂ ਬਾਅਦ ਉਨ੍ਹਾਂ ਦਾ ਵਧੇਰੇ ਕਾਰਜ ਬਿਜਲੀ ਅਤੇ ਮੈਗਨੇਟਿਜ਼ਮ ਅਤੇ ਹੋਰ ਬਿਜਲੀ-ਚੁੰਬਕੀ ਸਿਧਾਂਤਾ ਨਾਲ ਸਬੰਧਿਤ ਸੀ।

Michael Faraday (1791–1867)

ਉਨ੍ਹਾਂ ਦੇ ਵਿਚਾਰਾਂ ਦੇ ਅਧਾਰ ਤੇ 'ਆਧੁਨਿਕ ਖੇਤਰ ਸਿਧਾਂਤ' ਦੀ ਸਥਾਪਨਾ ਹੋਈ। ਸੰਨ 1834 ਵਿੱਚ ਉਨ੍ਹਾਂ ਨੇ ਬਿਜਲਈ ਅਪਘਟਨ ਨਾਲ ਸਬੰਧਿਤ ਦੋ ਨਿਯਮਾਂ ਦੀ ਖੋਜ ਕੀਤੀ। ਫੈਰਾਡੇ ਇੱਕ ਬਹੁਤ ਹੀ ਚੰਗੇ ਅਤੇ ਦਿਆਲੂ ਸੁਭਾਅ ਦੇ ਮਨੁੱਖ ਸਨ। ਉਨ੍ਹਾਂ ਨੇ ਸਾਰੇ ਸਨਮਾਨਾਂ ਨੂੰ ਲੈਣ ਤੋਂ ਨਾਂਹ ਕਰ ਦਿੱਤੀ। ਉਹ ਸਾਰੇ ਵਿਗਿਆਨਿਕ ਝਗੜਿਆਂ ਤੋਂ ਦੂਰ ਰਹੇ। ਉਹ ਹਮੇਸ਼ਾਂ ਇਕੱਲੇ ਕੰਮ ਕਰਨਾ ਪਸੰਦ ਕਰਦੇ ਸਨ। ਉਨ੍ਹਾਂ ਨੇ ਕਦੇ ਵੀ ਸਹਾਇਕ ਨਹੀਂ ਰੱਖਿਆ। ਉਨ੍ਹਾਂ ਨੇ ਵਿਗਿਆਨ ਨੂੰ ਭਿੰਨਭਿੰਨ ਤਰੀਕਿਆਂ ਨਾਲ ਫੈਲਾਇਆ (disseminated), ਜਿਸ ਵਿੱਚ ਉਨ੍ਹਾਂ ਦੁਆਰਾ ਰੱਯਲ ਸੰਸਸ਼ਾ ਵਿੱਚ ਸ਼ੁਰੂ ਕੀਤੀ ਗਈ ਹਰ ਸ਼ੁਕਰਵਾਰ ਦੇ ਸ਼ਾਮ ਦੀ ਭਾਸ਼ਣ ਮਾਲਾ ਸ਼ਾਮਿਲ ਹੈ। 'ਸੋਮਬੱਤੀ ਦੇ ਰਸਾਇਣਿਕ ਇਤਿਹਾਸ' ਵਿਸ਼ੇ ਤੇ ਆਪਣੇ ਕ੍ਰਿਸਮਨ ਵਿਖਿਅਨ ਦੇ ਲਈ ਉਹ ਮਸ਼ਹਰ ਸਨ। ਉਨ੍ਹਾਂ ਨੇ ਲਗਪਗ 450 ਵਿਗਿਆਨ ਰਿਸਰਚ ਪੇਪਰ ਪ੍ਰਕਾਸ਼ਿਤ ਕੀਤੇ। ਹਾਈ ਡ੍ਰਕਲੋਰਿਕ ਐਸਿਡ ਆਪਣੇ ਬਨਾਉਣ ਵਾਲੇ ਆਇਨਿਤ ਵਿੱਚ ਪੂਰਣ ਰੂਪ ਵਿੱਚ ਆਇਨਨਤ ਹੁੰਦਾ ਹੈ, ਪਰੰਤੂ ਐਸਿਟਿਕ ਐਸਿਡ ਅੰਸ਼ਿਕ ਰੂਪ ਵਿਚ (< 5%) ਹੀ ਅਇਨਿਤ ਹੁੰਦਾ ਹੈ। ਅਇਨਨ ਦੀ ਮਾਤਰਾ ਇਨ੍ਹਾਂ ਵਿੱਚ ਮੌਜੂਦ ਬੰਧਨਾਂ ਦੀ ਸਮਰਥਾ ਅਤੇ ਅਇਨਾਂ ਦੇ ਜਲ ਯੋਜਨ ਦੀ ਮਾਤਰਾ ਉੱਤੇ ਨਿਰਭਰ ਕਰਦੀ ਹੈ। ਪਹਿਲਾਂ ਵਿਯੋਜਨ ਅਤੇ ਆਇਨਨ ਟਰਮਾਂ ਭਿੰਨ ਭਿੰਨ ਅਰਥਾਂ ਵਿੱਚ ਵਰਤੇ ਜਾਂਦੇ ਹਨ। ਘੋਲ ਦੇ ਅਇਨਨ ਜੋ ਉਸਦੀ ਠੋਸ ਅਵਸਥਾ ਵਿੱਚ ਵੀ ਮੌਜੂਦ ਹੁੰਦੇ ਹਨ, ਦੇ ਪਾਣੀ ਵਿੱਚ ਨਿਖੇੜਨ ਦੀ ਪ੍ਰਕਿਰਿਆ ਨੂੰ 'ਵਿਯੋਜਨ' ਕਹਿੰਦੇ ਹਨ (ਉਦਾਹਰਣ ਲਈ — ਸੋਡੀਅਮ ਕਲਰਾਈਡ), ਜਦਕਿ ਆਇਨਨ ਉਹ ਪ੍ਰਕਿਰਿਆ ਹੈ ਜਿਸ ਵਿੱਚ ਉਦਾਸੀਨ ਅਣੂ ਘੋਲ ਵਿੱਚ ਟੁੱਟਦੇ ਚਾਰਜਿਤ ਅਇਨ ਦਿੰਦੇ ਹਨ। ਇੱਥੇ ਅਸੀਂ ਇਨ੍ਹਾਂ ਦੋਵਾਂ ਟਰਮਾਂ ਨੂੰ ਅੰਤਰ ਬਦਲ ਕੇ ਵਰਤਾਂਗੇ।

7.10.1 ਤੇਜਾਬਾਂ ਅਤੇ ਖਾਰਾਂ ਦੀ ਅਰਹੀਨਿਅਸ ਧਾਰਣਾ

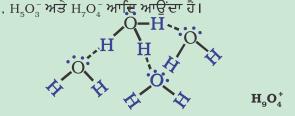
ਅਰਹੀਨਿਅਸ ਦੇ ਸਿਧਾਂਤ ਅਨੁਸਾਰ ਤੇਜਾਬ ਉਹ ਪਦਾਰਥ ਹਨ, ਜੋ ਪਾਣੀ ਵਿਚ ਅਪਘਟਿਤ ਹੋ ਕੇ ਹਾਈਡ਼ੱਜਨ ਆਇਨ $H^+(aq)$ ਦਿੰਦੇ ਹਨ ਅਤੇ ਖਾਰਾਂ ਉਹ ਪਦਾਰਥ ਹਨ ਜੋ ਪਾਣੀ ਵਿਚ ਹਾਈਡ਼ਾੱਕਸਿਕ $OH^-(aq)$ ਦਿੰਦੇ ਹਨ। ਇਸ ਪ੍ਕਾਰ ਪਾਣੀ ਵਿੱਚ ਇੱਕ ਤੇਜਾਬ HX ਦਾ ਆਇਨ ਹੇਠ ਲਿਖੇ ਸਮੀਕਰਣਾਂ ਵਿੱਚੋਂ ਕਿਸੇ ਇੱਕ ਦੇ ਦੁਆਰਾ ਪ੍ਦਰਸ਼ਿਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ —

$$HX (aq) \rightarrow H^{+}(aq) + X^{-}(aq)$$

 $HX(aq) + H_2O(l) \rightarrow H_3O^+(aq) + X^-(aq)$

ਇੱਕ ਮੁਕਤ ਪ੍ਰੋਟਾਨ, H^+ ਬਹੁਤ ਜਿਆਦਾ ਕਿਰਿਆਸ਼ੀਲ ਹੁੰਦਾ ਹੈ। ਸੁਤੰਤਰ ਰੂਪ ਵਿੱਚ ਜਲੀ ਘੋਲ ਵਿੱਚ ਇਸਦੀ ਹੋਂਦ ਨਹੀਂ ਹੈ। ਇਹ ਘੁਲਿਤ ਪਾਣੀ ਦੇ ਅਣੂ ਦੇ ਆੱਕਸੀਜਨ ਨਾਲ ਸੰਬੰਧਿਤ ਹੋ ਕੇ ਤਿਕੋਣੀ ਪਿਰਾਮਿਡੀ ਹਾਈਡ੍ਰੋਨੀਅਮ ਆਇਨ, H_3O^+ (ਦੰਦਾ ਹੈ (ਬਾੱਕਸ ਵੇਖੋ)।ਅਸੀਂ H^+ (aq) ਅਤੇ H_3O^+ (aq) ਦੋਵਾਂ ਨੂੰ ਹੀ ਜਲਯੋਜਿਤ ਹਾਈਡ੍ਰੋਜਨ ਆਇਨ, ਜੋ ਪਾਣੀ ਦੇ ਅਣੂਆਂ ਨਾਲ ਘਿਰਿਆ ਹੋਇਆ ਇੱਕ ਪ੍ਰੋਟਾਨ ਹੈ, ਦੇ ਰੂਪ ਵਿੱਚ ਵਰਤੋਂ ਵਿੱਚ ਲਿਆਉਂਦੇ ਹਾਂ। ਇਸ ਅਧਿਆਏ ਵਿੱਚ ਇਸ ਨੂੰ ਸਧਾਰਣ ਤੌਰ ਤੇ H^+ (aq) ਜਾਂ H_3O^+ (aq) ਨੂੰ ਅੰਤਰ ਬਦਲ ਕੇ ਵਰਤਾਂ ਗੇ। ਇਸਦਾ ਅਰਥ ਜਲ ਯੋਜਿਤ ਪ੍ਰੋਟਾਨ ਹੈ।

ਇਸੇ ਤਰ੍ਹਾਂ MOH ਕਿਸੇ ਖਾਰ ਦਾ ਅਣੂ ਜਲੀ ਘੋਲ ਵਿੱਚ ਹੇਠ ਲਿਖੇ ਸਮੀਕਰਣ ਦੇ ਅਨੁਸਾਰ ਅਇਨਿਤ ਹੁੰਦਾ ਹੈ।


MOH(aq) → M⁺(aq) + OH⁻(aq) ਹਾਈਡ੍ਰੋਕਸਿਲ ਆਇਨ ਵੀ ਜਲੀ ਘੋਲ ਵਿੱਚ ਜਲਯੋਜਿਤ ਰੂਪ ਵਿੱਚ ਰਹਿੰਦਾ ਹੈ (ਬਾੱਕਸ ਵੱਖੋ) ਪਰੰਤੂ ਅਰਹੀਨੀਅਸ ਦੀ ਤੇਜਾਬ– ਖਾਰ ਧਾਰਣਾ ਦੀਆਂ ਅਨੇਕਾਂ ਸੀਮਾਵਾਂ ਹਨ। ਇਹ ਕੇਵਲ ਪਦਾਰਥਾਂ ਦੇ ਜਲੀ ਘੋਲ ਵਿੱਚ ਹੀ ਲਾਗੂ ਹੁੰਦਾ ਹੈ। ਇਹ ਅਮੋਨੀਆ ਵਰਗੇ ਪਦਾਰਥਾਂ ਦੇ ਖਾਰੀ ਗੁਣਾਂ ਨੂੰ ਸਪਸ਼ਟ ਨਹੀਂ ਕਰ ਸਕੀ, ਜਿਨ੍ਹਾਂ ਵਿੱਚ ਹਾਈਜਡਰੋਕਸਿਲ ਗਰੁੱਪ ਨਹੀਂ ਹੈ।

7.10.2 ਬਰਾੱਨਸਟੈਂਡ ਲੌਰੀ ਤੇਜਾਬ ਅਤੇ ਖਾਰ

ਡੈਨਿਸ਼ ਕੈਮਿਸਟ ਜੋਹਾਨਸ ਬਰਾੱਨ ਸਟੈਡ (1874-1936) ਅਤੇ ਅੰਗ੍ਰੇਜ ਕੈਮਿਸਟ ਥਾੱਮਸ ਐਸ. ਲੌਰੀ (1874-1936) ਨੇ ਤੇਜਾਬਾਂ ਅਤੇ ਖਾਰਾਂ ਦੀ ਇੱਕ ਵਧੇਰੇ ਵਿਆਪਕ ਪਰਿਭਾਸ਼ਾ ਦਿੱਤੀ ਬਰਾੱਨ

ਹਾਈਡ੍ਰੋਨਿਅਮ ਅਤੇ ਹਾਈਡ੍ਰੋਕਸਿਕ ਆਇਨ

ਹਾਈਡ੍ਰੋਜਨ ਆਇਨ, ਜੋ ਖੁਦ ਇੱਕ ਪ੍ਰੋਟਾੱਨ ਹੈ, ਬਹੁਤ ਛੋਟਾ (ਵਿਆਸ = 10^{-13} cm) ਹੋਣ ਅਤੇ ਪਾਣੀ ਦੇ ਅਣੂ ਉੱਤੇ ਮੌਜੂਦ ਬਿਜਲਈ ਖੇਤਰ ਹੋਣ ਦੇ ਕਾਰਣ ਖੁਦ ਨੂੰ ਜਲ–ਅਣੂ ਉੱਤੇ ਮੌਜੂਦ ਦੇ ਏਕਾਂਕੀ ਯੁਗਮਾਂ ਵਿੱਚੋਂ ਕਿਸੇ ਇੱਕ ਨਾਲ ਜੁੜ ਕੇ $\rm H_3O^+$ ਦਿੰਦਾ ਹੈ। ਇਸ ਸਪੀਸ਼ੀਜ਼ ਨੂੰ ਕਈ ਯੋਗਿਕਾਂ (ਉਦਾਹਰਣ ਵਜੋਂ– $\rm H_3O^+Cl^-$) ਵਿੱਚ ਠੱਸ ਅਵਸਥਾ ਵਿੱਚ ਪਹਿਚਾਨਿਆ ਗਿਆ ਹੈ। ਜਲੀ ਘੋਲ ਵਿੱਚ ਹਾਈਡ੍ਰੋਨਿਅਮ ਆਇਨ ਫਿਰ ਤੋਂ ਜਲਯੋਜਿਤ ਹੋ ਕੇ $\rm H_5O_2^+$, $\rm H_7O_3^+$ ਅਤੇ $\rm H_9O_4^+$ ਸਦ੍ਰਿਸ਼ ਸਪੀਸ਼ੀਜ਼ ਬਣਾਉਂਦਾ ਹੈ। ਇਸੇ ਤਰ੍ਹਾਂ ਹਾਈਡ੍ਰੋਕਸਿਲ ਆਇਨ ਜਲ ਯੋਜਿਤ ਹੋਕੇ ਕਈ ਰਿਣਾਤਮਕ ਸਪੀਸ਼ੀਜ਼ $\rm H_3O_2^-$

ਸਟੈਂਡ ਲੌਰੀ ਦੇ ਸਿਧਾਂਤ ਦੇ ਅਨੁਸਾਰ ਉਹ ਪਦਾਰਥ ਜੋ ਘੋਲ ਵਿੱਚ H^+ (ਪ੍ਰੋਟਾੱਨ) ਦੇਣ ਵਿੱਚ ਸਮਰੱਥ ਹਨ ਤੇਜਾਬ ਹਨ ਅਤੇ ਉਹ ਪਦਾਰਥ, ਜੋ ਘੋਲ ਵਿੱਚੋਂ ਪ੍ਰੋਟਾੱਨ, H^+ ਗ੍ਰਹਿਣ ਕਰਨ ਵਿੱਚ ਸਮਰੱਥ ਹਨ, ਖਾਰਾਂ ਹਨ।

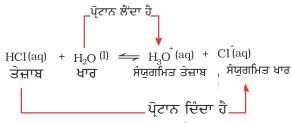
ਸੰਖੇਪ ਵਿੱਚ ਤੇਜਾਬ ਪ੍ਰੋਟਾੱਨ ਦਾਤਾ ਅਤੇ ਖਾਰ ਪ੍ਰੋਟਾੱਨ ਗ੍ਰਹਿਣੀ ਹਨ। ਇੱਥੇ ਅਸੀਂ NH₃ ਦੇ H₂O ਵਿੱਚ ਘੋਲ ਦੀ ਉਦਾਹਰਣ ਉੱਤੇ ਵਿਚਾਰ ਕਰਾਂਗੇ, ਜਿਸ ਨੂੰ ਹੇਠ ਲਿਖੇ ਸਮੀਕਰਣ ਵਿੱਚ ਦਰਸਾਇਆ ਗਿਆ ਹੈ।

ਹਾਈਡ੍ਰਾੱਕਸਿਲ ਅਇਨਾਂ ਦੀ ਮੌਜੂਦਗੀ ਦੇ ਕਾਰਣ ਖਾਰੀ ਘੋਲ ਬਣਦਾ ਹੈ। ਉਪਰੋਕਤ ਪ੍ਤੀਕਿਰਿਆ ਵਿੱਚ ਪਾਣੀ ਪ੍ਰੋਟਾੱਨ ਦਾਤਾ ਹੈ ਅਤੇ $\mathrm{NH_3}$ ਪ੍ਰੋਟਾੱਨ ਗ੍ਰਹਿਣੀ ਹੈ। ਇਸ ਲਈ ਇਨ੍ਹਾਂ ਨੂੰ ਕ੍ਰਮਵਾਰ ਬਰਾੱਨ ਸਟੈਂਡ ਤੇਜਾਬ ਅਤੇ ਖਾਰ ਕਹਿੰਦੇ ਹਨ। ਉਲਟ

ਪ੍ਰੋਟਾਨ ਲੈਂਦਾ ਹੈ
$$\longrightarrow$$
 $NH_3(aq) + H_2O(l) \Longrightarrow $NH_4^+(aq) + OH^-(aq)$ ਖਾਰ ਤੇਜ਼ਾਬ ਸੰਯੁਗਮਿਤ ਖਾਰ$

ਕ੍ਰਮਣੀ ਪ੍ਤੀਕਿਰਿਆ ਵਿੱਚ ਪ੍ਰੋਟਾੱਨ $\mathrm{NH_4^+}$ ਤੋਂ $\mathrm{OH^-}$ ਨੂੰ ਸਥਾਨ ਅੰਤਰਿਤ ਹੁੰਦਾ ਹੈ। ਇੱਥੇ $\mathrm{NH_4^+}$ ਬਰਾੱਨ ਸਟੈਡ ਤੇਜਾਬ ਅਤੇ $\mathrm{OH^-}$ ਬਰਾੱਨ ਸਟੈਡ ਖਾਰ ਦਾ ਕਾਰਜ ਕਰਦੇ ਹਨ। $\mathrm{H_2O}$ ਅਤੇ $\mathrm{OH^-}$ ਜਾਂ $\mathrm{NH_4^+}$ ਅਤੇ $\mathrm{NH_3}$ ਤੇਜਾਬ ਅਤੇ ਖਾਰ ਦੇ ਯੁਗਮ ਜੋ

Svante Arrhenius (1859-1927)


ਅਰਹੀਨਿਸ ਦਾ ਜਨਮ ਸਵੀਡਨ ਵਿੱਚ ਉਪਮਾਲਾ ਦੇ ਨੇੜੇ ਹੋਇਆ ਸੀ।ਸੰਨ 1884 ਵਿੱਚ ਉਨ੍ਹਾਂ ਨੇ ਉਪਮਾਲਾ ਯੂਨੀਵਰਸਿਟੀ ਵਿੱਚ ਇਲੈਕਟਰੋਨਿਟਿਕ ਘੋਲਾਂ ਦੀਆਂ ਚਾਲਕਤਾਵਾਂ ਉੱਤੇ ਥੀਸਿਜ (Thesis) ਪ੍ਰਸਤੁਤ ਕੀਤਾ। ਅਗਲੇ 5 ਸਾਲਾਂ ਤੱਕ ਉਨ੍ਹਾਂ ਨੇ ਬਹੁਤ ਯਾਤਰਾਵਾਂ ਕੀਤੀਆਂ ਅਤੇ ਯੂਰੋਪ ਦੇ ਖੋਜ ਕੇਂਦਰਾਂ ਵਿੱਚ ਗਏ।1895 ਵਿੱਚ ਉਹ ਨਵੇਂ ਸਥਾਪਿਤ ਸਟਾੱਕਹੋਮ ਯੂਨੀਵਰਸਿਟੀ ਵਿੱਚ ਫਿਜ਼ੀਕਸ ਦੇ ਪ੍ਰੋਫੈਸਰ ਪਦ ਉੱਤੇ ਨਿਯੁਕਤ ਕੀਤੇ ਗਏ।ਸੰਨ 1897 ਤੋਂ 1902 ਤੱਕ ਉਹ ਇਸਦੇ ਰੈਕਟਰ ਵੀ ਰਹੇ।ਸੰਨ 1905 ਤੋਂ ਆਪਣੀ ਮੌਤ ਤਕ ਉਹ ਸਟਾੱਕ ਹੋਮ ਦੇ ਨੌਬਲ ਸੰਸਥਾਨ ਵਿੱਚ ਭੌਤਿਕੀ ਰਸਾਇਣ ਦੇ ਨਿਰਦੇਸ਼ਕ ਪਦ ਉੱਤੇ ਕੰਮ ਕਰਦੇ ਰਹੇ।ਉਹ ਕਈ ਸਾਲਾਂ ਤੱਕ ਇਲੈਕਟ੍ਰੋਲਿਟਿਕ ਘੋਲਾਂ ਉੱਤੇ ਕੰਮ ਕਰਦੇ ਰਹੇ।1899 ਵਿੱਚ ਉਨ੍ਹਾਂ ਨੇ ਇੱਕ ਸਮੀਕਰਣ, ਜੋ ਅੱਜ ਆਮ ਕਰਕੇ ਅਰਹੀਨਿਅਸ ਸਮੀਕਰਣ, ਅਖਵਾਉਂਦਾ ਹੈ ਦੇ ਆਧਾਰ ਤੇ ਪ੍ਰਤੀ ਕਿਰਿਆ ਦਰ ਦੀ ਤਾਪਮਾਨ ਉੱਤੇ ਨਿਰਭਰਤਾ ਦਾ ਵਰਣਨ ਕੀਤਾ।

ਉਨ੍ਹਾਂ ਨੇ ਕਈ ਖੇਤਰਾਂ ਵਿੱਚ ਕੰਮ ਕੀਤਾ। ਪ੍ਰਤੀਰੱਖਿਆ ਰਸਾਇਣ (immunochemistry), ਬ੍ਰਹਿਮੰਡ ਵਿਗਿਆਨ (comology), ਜੀਵਨ ਦਾ ਸਰੋਤ (origin of life) ਅਤੇ ਹਿਮ ਯੁੱਗ ਦੇ ਕਾਰਣ (causes of ice age) ਵਰਗੇ ਖੇਤਰਾਂ ਵਿੱਚ ਉਨ੍ਹਾਂ ਦਾ ਮਹੱਤਵਪੂਰਣ ਯੋਗਦਾਨ ਰਿਹਾ। ਉਹ ਅਜਿਹੇ ਪਹਿਲੇ ਵਿਅਕਤੀ ਸਨ ਜਿਨ੍ਹਾਂ ਨੇ 'ਗਰੀਨ ਹਾਊਸ ਪ੍ਰਭਾਵ' ਨੂੰ ਇਹ ਨਾਮ ਦੇ ਕੇ ਇਸ ਦੀ ਵਿਵੇਚਨਾ ਕੀਤੀ। ਸੰਨ 1903 ਵਿੱਚ ਇਲੈਕਟ੍ਰੋਲਾਈਟਮ ਦੇ ਵਿਘਟਨ ਦੇ ਸਿਧਾਂਤ ਅਤੇ ਰਸਾਇਣ ਵਿਗਿਆਨ ਦੇ ਵਿਕਾਸ ਵਿੱਚ ਇਸ ਦਾ ਲਾਭ ਉੱਤੇ ਉਨ੍ਹਾਂ ਨੂੰ ਰਸਾਇਣ ਵਿਗਿਆਨ ਦਾ ਨੋਬਲ ਪੁਰਸਕਾਰ ਮਿਲਿਆ।

ਕ੍ਰਮਵਾਰ ਇੱਕ ਪ੍ਰੋਟਾੱਨ ਦੀ ਮੌਜੂਦਗੀ ਜਾਂ ਗੈਰ ਮੌਜੂਦਗੀ ਦੇ ਕਾਰਣ ਭਿੰਨ ਹਨ, ਸੰਯੁਗਮੀ ਤੇਜਾਬ ਖਾਰ ਯੁਗਮ ਅਖਵਾਉਂਦੇ ਹਨ। ਇਸ ਤਰ੍ਹਾਂ ਪਾਣੀ ਦੀ ਸੰਯੁਗਮੀ ਖਾਰ OH^- ਅਤੇ NH_3 ਦਾ ਸੰਯੁਗਮੀ ਤੇਜਾਬ NH_4^+ ਹੈ। ਜੇ ਬਰਾੱਨਸਟੈਂਡ ਤੇਜਾਬ ਪ੍ਰਬਲ ਹੈ ਤਾਂ ਉਸਦੀ ਸੰਯੁਗਮੀ ਖਾਰ ਦੁਰਬਲ ਹੋਵੇਗੀ ਅਤੇ ਜੇ ਬਰਾੱਨ ਸਟੈਂਡ ਤੇਜਾਬ ਦੁਰਬਲ ਹੈ ਤਾਂ ਇਸਦਾ ਸੰਯੁਗਮੀ ਖਾਰ ਪ੍ਰਬਲ ਹੋਵੇਗੀ। ਇੱਥੇ ਧਿਆਨ ਦੇਣ ਯੋਗ ਗੱਲ ਇਹ ਹੈ ਕਿ ਸੰਯੁਗਮੀ ਤੇਜਾਬ ਵਿੱਚ ਇੱਕ ਵਾਧੂ ਪ੍ਰੋਟਾੱਨ ਹੁੰਦਾ ਹੈ ਅਤੇ ਹਰ ਇੱਕ ਸੰਯੁਗਮੀ ਖਾਰ ਵਿੱਚ ਇੱਕ ਪ੍ਰੋਟਾੱਨ ਘੱਟ ਹੁੰਦਾ ਹੈ।

ਪਾਣੀ ਵਿੱਚ ਹਾਈਡ੍ਰੋਕਲੋਰਿਕ ਐਸਿਡ ਦੀ ਹੋਰ ਉਦਾਹਰਣ ਉੱਤੇ ਵਿਚਾਰ ਕਰੀਏ। HCl(aq) H_2O ਨੂੰ ਪ੍ਰੋਟਾੱਨ ਦੇ ਕੇ ਤੇਜਾਬ ਵਾਂਗ ਅਤੇ H_2O ਖਾਰ ਵਾਂਗ ਵਿਹਾਰ ਕਰਦਾ ਹੈ।

ਉਪਰੋਕਤ ਸਮੀਕਰਣ ਤੋਂ ਵੇਖਿਆ ਜਾ ਸਕਦਾ ਹੈ ਕਿ ਪਾਣੀ ਵੀ ਇੱਕ ਖਾਰ ਵਾਂਗ ਵਿਹਾਰ ਕਰਦਾ ਹੈ, ਕਿਉਂਕਿ ਇਹ ਪ੍ਰੋਟਾੱਨ ਗ੍ਰਹਿਣ ਕਰਦਾ ਹੈ। ਜਦੋਂ ਪਾਣੀ HCl ਤੋਂ ਪ੍ਰੋਟਾੱਨ ਗ੍ਰਹਿਣ ਕਰਦਾ ਹੈ,

ਤਾਂ H_3O^+ ਸਪੀਸ਼ੀਜ਼ ਦਾ ਨਿਰਮਾਣ ਹੁੰਦਾ ਹੈ। ਇੰਜ Cl^- ਆਇਨ HCl ਤੇਜਾਬ ਦੀ ਸੰਯੁਗਮੀ ਖਾਰ ਹੈ ਅਤੇ HCl, Cl^- ਖਾਰ ਦਾ ਸੰਯੁਗਮੀ ਤੇਜਾਬ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ H_2O ਵੀ H_3O^+ ਤੇਜਾਬ ਦੀ ਸੰਯੁਗਮੀ ਥਾਰ ਅਤੇ H_3O^+ , H_2O ਦਾ ਸੰਯੁਗਮੀ ਤੇਜਾਬ ਹੈ।

ਇਸ ਦਿਲਚਸਪ ਤੱਥ ਹੈ ਕਿ ਪਾਣੀ ਇੱਕ ਤੇਜਾਬ ਅਤੇ ਇੱਕ ਖਾਰ ਦਾ ਦੋਹਰੀ ਭੂਮਿਕਾ ਦਰਸਾਉਂਦਾ ਹੈ। HCl ਦੇ ਨਾਲ ਪ੍ਤੀਕਿਰਿਆ ਵਿੱਚ ਪਾਣੀ ਖਾਰ ਦੀ ਤਰ੍ਹਾਂ ਵਿਹਾਰ ਕਰਦਾ ਹੈ ਜਦਕਿ ਅਮੋਨੀਆ ਦੇ ਨਾਲ ਪ੍ਰੋਟਾੱਨ ਤਿਆਗ ਕੇ ਤੇਜਾਬ ਦੇ ਵਾਂਗ ਵਿਹਾਰ ਕਰਦਾ ਹੈ।

ਉਦਾਹਰਣ 7.12

ਹੇਠ ਲਿਖੇ ਬਗੱਨ ਸਟੈਂਡ ਤੇਜਾਬਾਂ ਦੇ ਲਈ ਸੰਯੁਗਮੀ ਖਾਰ ਕਿਹੜੇ ਹਨ ? HF, H₂SO₄ ਅਤੇ HCO₅

ਹੱਲ

ਹਰ ਇੱਕ ਦੇ ਸੰਯੁਗਮੀ ਖਾਰਾਂ ਵਿੱਚ ਇੱਕ ਪ੍ਰੋਟਾੱਨ ਘੱਟ ਹੋਣਾ ਚਾਹੀਦਾ ਹੈ। ਇੰਜ ਸੰਗਤਮੀ ਯੁਗਮੀ ਥਾਰ ਕ੍ਰਮਵਾਰ F^- , HSO_4^- ਅਤੇ CO_3^{2-} ਹਨ।

ਉਦਾਹਰਣ 7.13

ਬਰਾੱਨ ਸਟੈਂਡ ਥਾਰਾਂ NH_2^- , NH_3 ਅਤੇ HCOO^- ਦੇ ਲਈ ਸੰਗਤ ਬਰਾੱਨ ਸਟੈਂਡ ਤੇਜਾਬ ਲਿਖੋ।

ਹੱਲ

ਸੰਯੁਗਮੀ ਤੇਜਾਬ ਵਿੱਚ ਖਾਰ ਨਾਲੋਂ ਇੱਕ ਪ੍ਰੋਟਾੱਨ ਵੱਧ ਹੋਣਾ ਚਾਹੀਦਾ ਹੈ। ਇੰਜ ਸੰਗਤ ਸੰਯੁਗਮੀ ਤੇਜਾਬ ਕ੍ਰਮਵਾਰ NH_3 , NH_4^+ ਅਤੇ HCOOH ਹਨ।

ਉਦਾਹਰਣ 7.14

 ${\rm H_2O,\ HCO_3^-,\ HSO_4^-}$ ਅਤੇ ${\rm NH_3}$ ਬਰਾੱਨ ਸਟੈਂਡ ਤੇਜਾਬ ਅਤੇ ਬਰਾੱਨ ਸਟੈਂਡ ਖਾਰ ਦੋਵਾਂ ਤਰ੍ਹਾਂ ਕੰਮ ਕਰ ਸਕਦੇ ਹਨ। ਹਰ ਇੱਕ ਦੇ ਲਈ ਸੰਗਤ ਸੰਯੁਗਮੀ ਤੇਜਾਬ ਅਤੇ ਖਾਰ ਲਿਖੋ।

ਉੱਤਰ ਹੇਠ ਲਿਖੀ ਸਾਰਣੀ ਵਿੱਚ ਦਿੱਤਾ ਗਿਆ ਹੈ *—*

ਸਪੀਸ਼ੀਜ	ਸੰ ਯੁ ਗਮੀ	ਸੰ ਯੁ ਗਮੀ
	ਤੇ ਜਾਬ	ਖਾਰ
H_2O	H_3O^+	OH
HCO_3^-	H_2CO_3	CO_3^{2-}
HSO_4^-	H_2SO_4	SO_4^{2-}
NH_3	$\mathrm{NH_4}^+$	NH_2^-

7.10.3 ਲੂਈਸ ਤੇਜਾਬ ਅਤੇ ਖਾਰ

ਜੀ. ਐਨ ਲੁਈਸ ਨੇ ਸੰਨ 1923 ਵਿੱਚ ਤੇਜਾਬ ਨੂੰ ਇਲੈਕਟ੍ਰਾੱਨ ਯੁਗਮ ਗ੍ਰਹਿਣੀ (electron pair acception) ਅਤੇ ਖਾਰ ਨੂੰ ਇਲੈਕਟ੍ਰਾਨ ਯੁਗਮ ਦਾਤਾ (electron pair donor) ਦੇ ਰੂਪ ਵਿੱਚ ਪਰਿਭਾਸ਼ਿਤ ਕੀਤਾ। ਜਿੱਥੋਂ ਤੱਕ ਖਾਰਾਂ ਦਾ ਪ੍ਰਸ਼ਨ ਹੈ, ਬਰਾੱਨ ਸਟੈਂਡ ਲੌਰੀ ਖਾਰ ਅਤੇ ਲੁਈਸ ਖਾਰ ਵਿੱਚ ਕੋਈ ਵਿਸ਼ੇਸ਼ ਅੰਤਰ ਨਹੀਂ ਹੈ, ਕਿਉਂਕਿ ਦੋਵਾਂ ਹੀ ਸਿਧਾਂਤਾ ਵਿੱਚ ਖਾਰ ਏਕਾਕੀ ਇਲੈਕਟ੍ਰਾੱਨ ਯੁਗਮ ਦਿੰਦਾ ਹੈ, ਪਰੰਤੂ ਲੁਈਸ ਅਸਲ ਸਿਧਾਂਤ ਦੇ ਅਨੁਸਾਰ ਬਹੁਤ ਸਾਰੇ ਅਜਿਹੇ ਪਦਾਰਥ ਵੀ ਤੇਜਾਬ ਹਨ ਜਿਨ੍ਹਾਂ ਵਿੱਚ ਪ੍ਰੋਟਾੱਨ ਨਹੀਂ ਹੈ। ਘੱਟ ਇਲੈਕਟ੍ਰਾੱਨ ਵਾਲੇ BF_3 ਦੀ NH_3 ਨਾਲ ਪ੍ਤੀਕਿਰਿਆ ਇਸ ਦੀ ਇੱਕ ਪ੍ਰਮੁੱਖ ਉਦਾਹਰਣ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਪ੍ਰੋਟਾਨ ਰਹਿਤ ਅਤੇ ਇਲੈਕਟ੍ਰਾਨਾਂ ਦੀ ਕਮੀਂ ਵਾਲਾ BF_3 ਯੋਗਿਕ NH_3 ਦੇ ਨਾਲ ਕਿਰਿਆ ਕਰਕੇ ਉਸਦਾ ਏਕਾਂਕੀ ਇਲੈਕਟ੍ਰਾਨ ਯੁਗਮੀ (electron lone pair) ਲੈ ਕੇ ਤੇਜਾਬ ਦਾ ਕਾਰਜ ਕਰਦਾ ਹੈ। ਇਸ ਪ੍ਤੀ ਕਿਰਿਆ ਨੂੰ ਹੇਠ ਲਿਖੀ ਸਮੀਕਰਣ ਦੁਆਰਾ ਪ੍ਰਦਰਸ਼ਿਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ —

$$BF_3 + :NH_3 \rightarrow BF_3:NH_3$$

ਇਲੈਕਟ੍ਰਾਨ ਘਾਟ ਸਪੀਸ਼ੀਜ ਜਿਵੇਂ $AlCl_3$, Co^{3+} , Mg^{2+} ਆਦਿ ਲੁਈਸ ਤੇਜਾਬ ਵਾਂਗ ਵਿਹਾਰ ਕਰਦੇ ਹਨ, ਜਦਕਿ H_2O , NH_3 , OH^- ਸਪੀਸ਼ੀਜ਼ ਜੋ ਇੱਕ ਇਲੈਕਟ੍ਰਾਨ ਯੁਗਮ ਦਾਨ ਕਰ ਸਕਦੇ ਹਨ, ਲੁਈਸ ਖਾਰ ਦੀ ਤਰ੍ਹਾਂ ਵਿਹਾਰ ਕਰਦੇ ਹਨ।

ਉਦਾਹਰਣ 7.15

ਹੇਠ ਲਿਖਿਆਂ ਨੂੰ ਲੁਈਸ ਤੇਜਾਬਾਂ ਅਤੇ ਖਾਰਾਂ ਵਿੱਚ ਵਰਗੀਕ੍ਰਿਤ ਕਰੋ ਅਤੇ ਦੱਸੋ ਕਿ ਇਹ ਅਜਿਹਾ ਵਿਹਾਰ ਕਿਉਂ ਦਰਸਾਉਂਦੇ ਹਨ ?

(θ) OH⁻ (η)F⁻ (ϵ) H⁺

ਹੱਲ

- (ੳ) ਕਿਉਂਕਿ OH ਇੱਕ ਲੁਈਸ ਖਾਰ ਹੈ ਇੰਜ ਇਹ ਇਲੈਕਟ੍ਰਾਨ ਯੂਗਮ ਦਾਨ ਕਰ ਸਕਦਾ ਹੈ।
- (ਅ) ਕਿਉਂਕਿ ⊦⁻ ਲੁਈਸ ਖਾਰ ਹੈ, ਇੰਜ ਇਹ ਚੌਹਾਂ ਇਲੈਕਟ੍ਰਾਨ ਯੁਗਮਾਂ ਵਿੱਚੋਂ ਕਿਸੇ ਇੱਕ ਦਾ ਦਾਨ ਕਰ ਸਕਦਾ ਹੈ।
- (ੲ) ਕਿਉਂਕਿ Hੋ ਲੁਈਸ ਤੇਜਾਬ ਹੈ, ਇਸ ਤਰ੍ਹਾਂ OHੋ ਅਤੇ Fੋ ਵਰਗੀਆਂ ਖਾਰਾਂ ਤੋਂ ਇਲੈਕਟ੍ਰਾਨ ਯੁਗਮ ਲੈ ਸਕਦਾ ਹੈ।
- (ਸ) ਕਿਉਂਕਿ BCl₃ ਲੁਈਸ ਤੇਜਾਬ ਹੈ, ਇੰਜ ਅਮੋਨੀਅਮ ਅਤੇ ਅਮੀਨ ਅਣੂਆਂ ਆਦਿ ਖਾਰਾਂ ਤੋਂ ਇਲੈਕਟ੍ਰਾਨ ਯੁਗਮ ਲੈ ਸਕਦਾ ਹੈ।

7.11 ਤੇਜਾਬਾਂ ਅਤੇ ਖਾਰਾਂ ਦਾ ਆਇਨਨ

ਵਧੇਰੀਆਂ ਰਸਾਇਣਿਕ ਅਤੇ ਜੈਵਿਕ ਪ੍ਰਤੀਕਿਰਿਆਵਾਂ ਜਲੀ ਮਾਧਿਅਮ ਵਿੱਚ ਹੁੰਦੀਆਂ ਹਨ। ਇਨ੍ਹਾਂ ਨੂੰ ਸਮਝਣ ਦੇ ਲਈ ਅਰਹੀਨਿਅਸ ਦੀ ਪਰਿਭਾਸ਼ਾ ਦੇ ਅਨੁਸਾਰ ਤੇਜਾਬਾਂ ਅਤੇ ਖਾਰਾਂ ਦੇ ਆਇਨਨ ਦੀ ਵਿਵੇਚਨਾ ਲਾਭਕਾਰੀ ਹੋਵੇਗੀ। ਪਰਕ ਲੋਰਿਕ ਐਸਿਡ (HClO₁) ਹਾਈਡ਼ੋਕਲੋਰਿਕ ਐਸਿਡ (HCl), ਹਾਈਡੋਬਰੋਮਿਕ ਐਸਿਡ (HBr), ਹਾਈਡੋਅਇਓਡਿਕ ਐਸਿਡ (HI), ਨਾਈਟ੍ਰਿਕ ਐਸਿਡ (HNO੍ਹ) ਅਤੇ ਸਲਫਿਊਰਿਕ ਐਸਿਡ (H₂SO₂) ਆਦਿ ਤੇਜਾਬ ਪ੍ਰਬਲ ਅਖਵਾਉਂਦੇ ਹਨ ਕਿਉਂਕਿ ਇਹ ਜਲੀ ਮਾਧਿਅਮ ਵਿੱਚ ਸੰਗਤ ਆਇਨਾਂ ਵਿੱਚ ਲਗਪਗ ਪਰਣ ਤੌਰ ਤੇ ਵਿਯੋਜਿਤ ਹੋ ਕੇ ਪ੍ਰੋਟਾਨ ਦਾਤਾ ਦੇ ਸਮਾਨ ਕਾਰਜ ਕਰਦੇ ਹਨ। ਇਸੇ ਤਰ੍ਹਾਂ ਲੀਥਿਅਮ ਹਾਈ ਡੋਕਸਾਈਡ (LiOH), ਸੋਡੀਅਮ ਹਾਈਡ੍ਰੋਕਸਾਈਡ (NaOH), ਪੋਟਾਸ਼ਿਅਮ ਹਾਈਡ੍ਰੋਕਸਾਈਡ (KOH), ਸੀਜਿਅਮ ਹਾਈਡ੍ਰੋਕਸਾਈਡ (CsOH) ਅਤੇ ਬੇਰੀਅਮ ਹਾਈਡ੍ਰੋਕਸਾਈਡ Ba(OH), ਜਲੀ ਮਧਿਅਮ ਵਿੱਚ ਸੰਗਤ ਆਇਨਾਂ ਵਿੱਚ ਲਗਪਗ ਪੂਰਣ ਤੌਰ ਤੇ ਵਿਯੋਜਿਤ ਹੋ ਕੇ, $\mathrm{H}_{\mathrm{s}}\mathrm{O}^{\dagger}$ ਅਤੇ $\mathrm{OH}^{\mathtt{T}}$ ਮਾਧਿਅਮ ਵਿੱਚ ਪੂਰਣ ਰੂਪ ਵਿੱਚ ਵਿਯੋਜਿਤ ਹੋ ਕੇ OH⁻ ਪਦਾਨ ਕਰਦੇ ਹਨ। ਤੇਜਾਬ ਜਾਂ ਖਾਰ ਦੀ ਸਮਰੱਥਾ ਤੇਜਾਬਾਂ ਅਤੇ ਖਾਰਾਂ ਦੇ ਬਰਾੱਨਸਟੈਡ ਕੌਰੀ ਸਿਧਾਂਤ ਦੇ ਅਨੁਸਾਰ ਮਾਪਿਆ ਜਾ ਸਕਦਾ ਹੈ। ਇਸ ਦੇ ਅਨੁਸਾਰ ਪ੍ਰਬਲ ਤੇਜ਼ਾਬ ਤੋਂ ਭਾਵ ਇੱਕ ਉੱਤਮ ਪ੍ਰੋਟਾੱਨ ਦਾ ਅਤੇ ਪ੍ਰਬਲ ਖਾਰ ਤੋਂ ਭਾਵ ਉੱਤਮ ਪੋਟਾੱਨ ਗਹਿਣੀ ਹੈ।

ਦੁਰਬਲ ਤੇਜਾਬ HA ਦੇ ਤੇਜਾਬ ਥਾਰ ਵਿਯੋਜਨ ਸੰਤੁਲਨ ਉਤੇ ਵਿਚਾਰ ਕਰੀਏ—

 ${
m HA(aq)} \, + \, {
m H_2O(l)} \;
ightharpoonup {
m H_3O^+(aq)} \, + \, {
m A^-(aq)}$ ਸੰਯੁਗਮੀ ਤੇਜਾਬ ਖਾਰ ਤੇਜਾਬ ਖਾਰ

ਭਾਗ 7.10.2 ਵਿੱਚ ਅਸੀਂ ਵੇਖਿਆ ਸੀ ਕਿ ਤੇਜਾਬ (ਜਾਂ ਖਾਰ) ਵਿਯੋਜਨ ਸੰਤੂਲਨ ਇੱਕ ਪ੍ਰੋਟਾਨ ਦੇ ਅਗ੍ਰਗਾਮੀ ਅਤੇ ਉਲਟ ਕ੍ਰਮਣੀ ਦਿਸ਼ਾ ਵਿੱਚ ਸਥਾਨ ਅੰਤਰਣ ਨਾਲ ਜੁੜੀ ਇਕ ਗਤਿਕ ਅਵਸਥਾ ਹੈ। ਹਣ ਇਹ ਪਸ਼ਨ ਉੱਠਦਾ ਹੈ ਕਿ ਜੇ ਸੰਤੁਲਨ ਗਤਿਕ ਹੈ, ਤਾਂ ਉਹ ਸਮੇਂ ਦੇ ਨਾਲ ਕਿਸ ਦਿਸ਼ਾ ਵਿੱਚ ਵਧੇਗਾ ? ਇਸਨੂੰ ਪ੍ਰਭਾਵਿਤ ਕਰਨ ਵਾਲਾ ਪ੍ਰੇਰਕ ਬਲ ਕਿਹੜਾ ਹੈ ? ਇਨ੍ਹਾਂ ਪ੍ਰਸ਼ਨਾਂ ਦੇ ਉੱਤਰ ਦੇਣ ਦੇ ਲਈ ਅਸੀਂ ਵਿਯੋਜਨ ਸੰਤਲਨ ਵਿੱਚ ਸ਼ਾਮਲ ਦੋ ਤੇਜਾਬਾਂ (ਜਾਂ ਖਾਰਾਂ) ਦੇ ਸਮਰਥਾ ਦੀ ਤੁਲਨਾ ਦੇ ਸੰਦਰਭ ਵਿੱਚ ਵਿਚਾਰ ਕਰਾਂਗੇ। ਉਪਰੋਕਤ ਵਰਣਨ ਕੀਤੇ ਤੇਜਾਬ ਵਿਯੋਜਨ ਸੰਤੁਲਨ ਵਿੱਚ ਮੌਜੂਦ ਦੋ ਤੇਜਾਬਾਂ HA ਅਤੇ H₂O+ ਪਰ ਵਿਚਾਰ ਕਰੀਏ। ਸਾਨੂੰ ਇਹ ਵੇਖਣਾ ਪਵੇਗਾ ਕਿ ਇਨ੍ਹਾਂ ਵਿੱਚੋਂ ਕਿਹੜਾ ਪ੍ਰਬਲ ਪ੍ਰੋਟਾਨ ਦਾਤਾ ਹੈ। ਪ੍ਰੋਟਾੱਨ ਦੇਣ ਦੀ ਜਿਸ ਦੀ ਵੀ ਪ੍ਰਵਿਰਤੀ ਦੂਜੇ ਤੋਂ ਵਧੇਰੇ ਹੋਵੇਗੀ ਉਹ ਪ੍ਰਬਲ ਤੇਜਾਬ ਅਖਵਾਉਂਦਾ ਹੈ ਅਤੇ ਸੰਤੁਲਨ ਦੁਰਬਲ ਤੇਜਾਬ ਦੀ ਦਿਸ਼ਾ ਵੱਲ ਅੱਗੇ ਵਧੇਗਾ। ਜਿਵੇਂ ਜੇ HA, H੍ਹO+ ਤੋਂ ਪ੍ਰਬਲ ਤੇਜਾਬ ਹੈ ਤਾਂ HA ਪ੍ਰੋਟਾੱਨ ਦਾਨ ਕਰੇਗਾ, H₂O+ ਨਹੀਂ। ਘੋਲ ਵਿੱਚ ਮੁੱਖ ਰੂਪ ਵਿੱਚ A⁻ਅਤੇ H¸O⁺ ਆਇਨ ਹੋਣਗੇ। ਸੰਤੂਲਨ ਦਰਬਲ ਤੇਜਾਬ ਜਾਂ ਖਾਰ ਦੀ ਦਿਸ਼ਾ ਵੱਲ ਅੱਗੇ ਵਧੇਗਾ, ਕਿਉਂਕਿ ਪ੍ਰਬਲ ਤੇਜਾਬ ਪ੍ਰਬਲ ਖਾਰ ਨੂੰ ਪ੍ਰੋਟਾੱਨ ਦਿੰਦਾ ਹੈ।

ਇਸਦੇ ਅਨੁਸਾਰ, ਪ੍ਬਲ ਤੇਜਾਬ ਪਾਣੀ ਵਿੱਚ ਪੂਰਣ ਰੂਪ ਵਿੱਚ ਅਇਨਿਤ ਹੁੰਦਾ ਹੈ। ਪਰਿਣਾਮੀ ਖਾਰ ਅਤਿਅੰਤ ਦੁਰਬਲ ਹੋਵੇਗੀ, ਅਰਥਾਤ ਪ੍ਰਬਲ ਤੇਜਾਬਾਂ ਦੀ ਸੰਯਗਮੀ ਖਾਰ ਅਤਿਅੰਤ ਦੁਰਬਲ ਹੁੰਦੀ ਹੈ। ਪ੍ਰਬਲ ਤੇਜਾਬ ਵਿਚੇਂ ਪਰਲੋਰਿਕ ਐਸਿਡ (HClO₂) ਹਾਈਡ੍ਰੋਕਲੋਰਿਕ ਐਸਿਡ (HCl) ਹਾਈਡ੍ਰੋਬਾੱਮਿਕ ਐਸਿਡ (HBr) ਹਾਈਡੁਆਇਓਡਿਕ ਐਸਿਡ (HI) ਨਾਈਟਿਕ ਐਸਿਡ (HNO₃) ਸਲਫਿਊਰਿਕ ਐਸਿਡ (H₃SO₄) ਆਦਿ ਪ੍ਬਲ ਤੇਜਾਬਾਂ ਦੇ ਸੰਯੁਗਮੀ ਖਾਰਾਂ ${
m ClO_4^-}, {
m Cl}, {
m Br}^-, {
m \Gamma}, {
m NO_3}^-$ ਆਇਨ ਹੋਣਗੇ ਜੋ H₂O ਤੋਂ ਦੁਰਬਲ ਖਾਰਾਂ ਹਨ। ਇਸੇ ਤਰ੍ਹਾਂ ਅਤਿਅੰਤ ਪ੍ਰਬਲ ਖਾਰ ਅਤਿਅੰਤ ਦੁਰਬਲ ਤੇਜਾਬ ਦੇਵੇਗਾ ਜਦਕਿ ਇੱਕ ਦੁਰਬਲ ਤੇਜਾਬ ਜਿਵੇਂ HA ਬਹੁਤ ਘੱਟ ਵਿਯੋਜਿਤ ਹੋਵੇਗਾ ਅਤੇ ਇਸ ਦੇ ਘੋਲ ਵਿੱਚ ਅਣਵਿਯੋਜਿਤ HA ਅਣੂ ਮੌਜੂਦ ਹੋਣਗੇ। ਨਾਈਟ੍ਰਸ ਐਸਿਡ (HNO੍ਹ) ਹਾਈਡ੍ਰੋਫਲੋਰਿਕ ਐਸਿਡ (HF) ਅਤੇ ਐਸਿਟਿਕ ਐਸਿਡ (CH੍ਰCOOH) ਵਿਸ਼ਿਸ਼ਟ ਦਰਬਲ ਤੇਜਾਬ ਹਨ। ਇਹ ਗੱਲ ਧਿਆਨ ਰੱਖਣ ਯੋਗ ਹੈ ਕਿ ਦਰਬਲ ਤੇਜਾਬਾਂ ਦੀਆਂ ਸੰਯੁਗਮੀ ਖਾਰਾਂ ਅਤਿਅੰਤ ਪ੍ਰਬਲ ਹੁੰਦੀਆਂ ਹਨ। ਉਦਾਹਰਣ ਦੇ ਲਈ NH₂, O²⁻ ਅਤੇ H⁻ ਉੱਤਮ ਪ੍ਰੋਟਾੱਨ ਗ੍ਰਹਿਣੀ ਹੁੰਦੇ ਹਨ ਇੰਜ H_oO ਤੋਂ ਅਤਿਅੰਤ ਪ੍ਰਬਲ ਖਾਰਾਂ ਹਨ। ਫੀਲੋਨ ਫਥੈਲੀਨ, ਬਰੋ ਮੋਥਾਈ ਮੋਲ ਬਲੂ ਆਦਿ ਪਾਣੀ ਵਿੱਚ ਘੋਲ ਕਾਰਬਨਿਕ ਯੋਗਿਕ ਦੁਰਬਲ ਤੇਜਾਬਾਂ ਵਾਂਗ ਵਿਹਾਰ ਕਰਦੇ ਹਨ। ਇਨ੍ਹਾਂ ਦੇ ਤੇਜਾਬ (HIn) ਅਤੇ ਸੰਯੁਗਮੀ ਖਾਰ (I ${
m n}^-$) ਭਿੰਨ ਰੰਗ ਦਰਸਾਉਂਦੇ ਹਨ।

 $HIn(aq) + H_2O(l) \rightleftharpoons H_3O^{\dagger}(aq) + In^{-}(aq)$ ਤੇਜਾਬ ਸੂਚਕ ਰੰਗ (θ) ਸੰਯੁਗਮੀ ਤੇਜਾਬ ਸੰਯੁਗਮ ਦੀ ਖਾਰ ਰੰਗ (w)

ਅਜਿਹਾ ਯੋਗਿਕਾਂ ਦੀ ਵਰਤੋਂ ਤੇਜਾਬ ਖਾਰ ਅਨੁਮਾਪਨ (titrations) ਵਿੱਚ ਸੂਚਕਾਂ ਦੇ ਰੂਪ ਵਿੱਚ H^{\dagger} ਅਇਨਾਂ ਦੀ ਸੰਘਣਤਾ ਕੱਢਣ ਦੇ ਲਈ ਕੀਤਾ ਜਾਂਦਾ ਹੈ।

7.11.1 ਪਾਣੀ ਦਾ ਅਇਨਨ ਸਥਿਰ ਅੰਕ ਅਤੇ ਇਸਦਾ ਅਇਨਿਕ ਗੁਣਨਫਲ

ਅਸੀਂ ਖੰਡ 7.10.2 ਵਿੱਚ ਇਹ ਵੇਖਿਆ ਹੈ ਕਿ ਕੁਝ ਪਦਾਰਥ (ਜਿਵੇਂ-ਪਾਣੀ) ਆਪਣੇ ਵਿਸ਼ਿਸ਼ਟ ਗੁਣਾਂ ਦੇ ਕਾਰਣ ਤੇਜਾਬ ਅਤੇ ਖਾਰਦਵਾਂ ਦੀ ਤਰ੍ਹਾਂ ਵਿਹਾਰ ਕਰ ਸਕਦੇ ਹਨ। ਤੇਜਾਬ HA ਦੀ ਮੌਜੂਦਗੀ ਵਿੱਚ ਇਹ ਪ੍ਰੋਟਾੱਨ ਗ੍ਰਹਿਣ ਕਰਦਾ ਹੈ ਅਤੇ ਖਾਰ ਦੀ ਤਰ੍ਹਾਂ ਵਿਹਾਰ ਕਰਦਾ ਹੈ, ਜਦ ਕਿ ਖਾਰ ਦੀ ਮੌਜੂਦਗੀ ਵਿੱਚ ਇਹ ਪ੍ਰੋਟਾੱਨ ਦੇ ਕੇ ਐਸਿਡ ਦੀ ਤਰ੍ਹਾਂ ਵਿਹਾਰ ਕਰਦਾ ਹੈ। ਸ਼ੁੱਧ ਪਾਣੀ H_2O ਦਾ ਇੱਕ ਅਣੂ ਪ੍ਰੋਟਾੱਨ ਦਿੰਦਾ ਹੈ ਅਤੇ ਐਸਿਡ ਦੀ ਤਰ੍ਹਾਂ ਵਿਹਾਰ ਕਰਦਾ ਹੈ ਅਤੇ ਪਾਣੀ ਦਾ ਦੂਜਾ ਅਣੂ ਇੱਕ ਪ੍ਰੋਟਾੱਨ ਗ੍ਰਹਿਣ ਕਰਦਾ ਹੈ ਅਤੇ ਉਸੇ ਸਮੇਂ ਖਾਰ ਵਾਂਗ ਵਿਹਾਰ ਕਰਦਾ ਹੈ। ਹੇਠ ਲਿਖੀ ਸੁਤੰਲਿਤ ਅਵਸਥਾ ਸਥਾਪਿਤ ਹੁੰਦੀ ਹੈ—

 $H_2O(l) + H_2O(l) \Longrightarrow H_3O^+(aq) + OH^-(aq)$ ਐਸਿਡ ਖਾਰ ਸੰਯੁਗਮੀ ਐਸਿਡ ਸੰਯੁਗਮੀ ਖਾਰ ਵਿਯੋਜਨ ਸਥਿਰ ਅੰਕ ਨੂੰ ਅਸੀਂ ਇਸ ਤਰ੍ਹਾਂ ਪ੍ਰਦਰਸ਼ਿਤ ਕਰਦੇ ਹਾਂ — $K = [H_3O^+][OH^-]/[H_2O]$ (7.26)

ਪਾਣੀ ਦੇ ਸੰਘਣਤਾ ਹਰ ਵਿੱਚੋਂ ਹਟਾ ਦਿੰਦੇ ਹਨ ਕਿਉਂਕਿ ਇਸ ਦੀ ਸੰਘਣਤਾ ਸਥਿਰ ਰਹਿੰਦੀ ਹੈ। $[\mathrm{H_2O}]$ ਨੂੰ ਸੰਤੁਲਨ ਸਥਿਰ ਅੰਕ ਸ਼ਾਮਲ ਕਰਨ ਤੇ ਨਵਾਂ ਸਥਿਰ ਅੰਕ $K_{_{\mathrm{W}}}$ ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ, ਜਿਸ ਨੂੰ ਪਾਣੀ ਦਾ ਆਇਨਿਕ ਗੁਣਨਫਲ ਕਹਿੰਦੇ ਹਨ।

$$K_{\rm w} = [{\rm H}^+][{\rm OH}^-]$$
 (7.27)

298 K ਉੱਤੇ ਪ੍ਰਯੋਗ ਰਾਹੀਂ H^+ ਦੀ ਸੰਘਣਤਾ 1.0×10^{-7} M ਪ੍ਰਾਪਤ ਕੀਤੀ ਗਈ ਹੈ ਅਤੇ ਪਾਣੀ ਦੇ ਵਿਯੋਜਨ ਤੋਂ ਪੈਦਾ H^+ ਅਤੇ OH^- ਆਇਨਾਂ ਦੀ ਸੰਖਿਆ ਬਰਾਬਰ ਹੁੰਦੀ ਹੈ।

ਹਾਈਡ੍ਰਾੱਕਸਿਲ ਆਇਨਾਂ ਦੀ ਸੰਘਣਤਾ, $[OH^-] = [H^+]$ = 1.0×10^{-7} M.

ਇਸ ਤਰਾਂ 298K ਉਤੇ $K_{\rm w}$ ਦਾ ਮਾਨ $K_{\rm w}$ = [${\rm H_3O^{\dagger}}$][O ${\rm H^{-}}$] = $(1\times10^{-7})^2$ = $1\times10^{-14}\,{\rm M^2}$ (7.28)

 $K_{_{\!\!
m W}}$ ਦਾ ਮਾਨ ਤਾਪਮਾਨ ਉੱਤੇ ਨਿਰਭਰ ਕਰਦਾ ਹੈ ਕਿਉਂਕਿ ਇਹ ਸੰਤੁਲਨ ਸਥਿਰ ਅੰਕ ਹੈ।

ਸ਼ੁਧ ਪਾਣੀ ਦੀ ਘਣਤਾ $1000~{\rm g}$ / L ਹੈ ਅਤੇ ਇਸ ਦਾ ਮੋਲਰ ਪੁੰਜ $18.0~{\rm g}$ /mol ਹੈ। ਇਸ ਤੋਂ ਸ਼ੁੱਧ ਪਾਣੀ ਦੀ ਮੋਲਰਤਾ ਅਸੀਂ ਇਸ ਤਰ੍ਹਾਂ ਕੱਢ ਸਕਦੇ ਹਾਂ -

 $[H_2O]$ = (1000 g /L)(1 mol/18.0 g) = 55.55 M. ਇਸ ਤਰ੍ਹਾਂ ਵਿਯੋਜਿਤ ਅਤੇ ਅਣਵਿਯੋਜਿਤ ਪਾਣੀ ਦਾ ਅਨੁਪਾਤ 10^{-7} / (55.55) = 1.8×10^{-9} ਜਾਂ ~ 2×10^{-9} (ਇਸ ਤਰ੍ਹਾਂ ਸੰਤੁਲਨ ਮੁੱਖ ਤੌਰ ਤੇ ਅਣਵਿਯੋਜਿਤ ਪਾਣੀ ਦੇ ਅਣੂਆਂ ਦੇ ਵੱਲ ਰਹਿੰਦਾ ਹੈ॥

ਤੇਜਾਬੀ, ਖਾਰੀ ਅਤੇ ਉਦਾਸੀਨ ਜਲੀ ਘੋਲਾਂ ਨੂੰ $\rm H_3O^+$ ਅਤੇ $\rm OH^-$ ਦੀਆਂ ਸੰਘਣਤਾਵਾਂ ਦੇ ਸਾਪੇਖਿਕ ਮਾਨਾਂ ਦੁਆਰਾ ਅੰਤਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ -

ਤੇਜਾਬੀ [H₃O+] > [OH¯] ਉਦਾਸੀਨ [H₃O+] = [OH¯] ਖਾਰੀ [H₃O+] < [OH¯]

7.11.2 pH ਸਕੇਲ

ਹਾਈਡ੍ਰੋਨਿਅਮ ਆਇਨ ਦੀ ਮੋਲਰਤਾ ਵਿੱਚ ਸੰਘਣਤਾ ਨੂੰ ਲੌਗਰਿਥਮਿਕ ਸਕੇਲ (logarithmic scale) ਵਿੱਚ ਸਰਲਤਾ ਨਾਲ ਪ੍ਦਰਸ਼ਿਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ, ਜਿਸ ਨੂੰ **pH** ਸਕੇਲ ਕਿਹਾ ਜਾਂਦਾ ਹੈ।

ਹਾਈਡ੍ਰੋਜਨ ਆਇਨ ਦੀ ਸਕਿਰਿਅਤਾ $\left(a_{H^+}\right)$ ਦੇ ਰਿਣਾਤਮਕ 10 ਅਧਾਰ ਤੇ ਲੌਗਰਿਥਮਿਕ ਮਾਨ ਨੂੰ pH ਕਹਿੰਦੇ ਹਨ। ਘੱਟ

ਸੰਘਣਤਾ (< 0.01 M) ਉੱਤੇ ਹਾਈਡ੍ਰੋਜਨ ਆਇਨ ਦੀ ਸਕਿਰਿਅਤਾ ਸੰਖਿਆਤਮਕ ਰੂਪ ਵਿੱਚ ਇਸ ਦੀ ਮੋਲਰਤਾ, ਜੋ (H⁺) ਦੁਆਰਾ ਪ੍ਦਰਸ਼ਿਤ ਕੀਤੀ ਜਾਂਦੀ ਹੈ, ਤੇ ਕੁੱਲ ਹੁੰਦੀ ਹੈ। ਹਾਈਡ੍ਰੋਜਨ ਆਇਨ ਦੀ ਸਕਿਰਿਅਤਾ ਦੀ ਕੋਈ ਇਕਾਈ ਨਹੀਂ ਹੁੰਦੀ ਹੈ, ਇਸ ਨੂੰ ਇਸ ਸਮੀਕਰਣ ਦੁਆਰਾ ਪ੍ਰਭਾਵਿਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ —

 $a_{H^{+}} = [H^{+}] / \text{mol } L^{-1}$

ਹੇਠ ਲਿਖੀ ਸਮੀਕਰਣ pH ਅਤੇ ਹਾਈਡ੍ਰੋਜਨ ਆਇਨ ਸੰਘਣਤਾ ਵਿੱਚ ਸਬੰਧ ਦਰਸਾਉਂਦਾ ਹੈ —

 $pH = -\log a_{H_+} = -\log \{[H^+] / mol L^{-1}\}$

ਇਸ ਤਰ੍ਹਾਂ HCl ਦੇ ਤੇਜਾਬੀ ਘੋਲ (10^{-2} M) ਦੇ pH ਦਾ ਮਾਨ 2 ਹੁੰਦਾ ਹੈ। ਇਸੇ ਤਰ੍ਹਾਂ NaOH ਦੇ ਇਕ ਖਾਰੀ ਘੋਲ, ਜਿਸ ਵਿੱਚ [OH¯] = 10^{-4} ਅਤੇ [H $_3$ O $^+$] = 10^{-10} M ਦੀ pH = 10 ਹੋਵੇਗੀ। ਸ਼ੁੱਧ ਅਤੇ ਉਦਾਸੀਨ ਪਾਣੀ ਵਿੱਚ 298K ਉੱਤੇ ਹਾਈਡ੍ਰੋਜਨ ਆਇਨ ਦੀ ਸੰਘਣਤਾ 10^{-7} ਹੁੰਦੀ ਹੈ, ਇਸ ਲਈ ਇਸ ਦੀ

 $pH = -log(10^{-7}) = 7$

ਜੇ ਕੋਈ ਜਲੀ ਘੋਲ ਤੇਜਾਬੀ ਹੈ, ਤਾਂ ਉਸਦੀ pH 7 ਤੋਂ ਘੱਟ ਅਤੇ ਜੇ ਇਹ ਖਾਰੀ ਹੈ ਤਾਂ ਇਸ ਦੀ pH 7 ਤੋਂ ਵੱਧ ਹੋਵੇਗੀ।

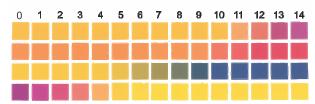
ਇਸ ਤਰ੍ਹਾਂ ਤੇਜਾਬੀ ਘੋਲ ਦੀ pH < 7 ਖਾਰੀ ਘੋਲ ਦੀ pH > 7 ਉਦਾਸੀਨ ਘੋਲ ਦੀ pH = 7

ਹੁਣ 298 K ਉੱਤੇ ਸਮੀਕਰਣ 7.28 ਉੱਤੇ ਮੁੜ ਵਿਚਾਰ ਕਰਦੇ ਹਾਂ —

 $K_{\rm w} = [H_3 O^+] [OH^-] = 10^{-14}$

ਸਮੀਕਰਣ ਦੇ ਦੋਵੇਂ ਪਾਸੇ ਦਾ ਰਿਣਾਤਮਕ ਲੌਗਰਿਥਮ ਲੈਣ ਤੇ

$$\begin{split} -\text{log} \; K_{\text{w}} &= -\text{log} \; \{ [\text{H}_{3}\text{O}^{+}] \; [\text{OH}^{-}] \} \\ &= -\text{log} \; [\text{H}_{3}\text{O}^{+}] - \text{log} \; [\text{OH}^{-}] \\ &= -\text{log} \; 10^{-14} \end{split}$$


 $pK_{w} = pH + pOH = 14$ (7.29)

ਧਿਆਨ ਦੇਣ ਯੋਗ ਗੱਲ ਇਹ ਹੈ ਕਿ ਭਾਵੇਂ $K_{\rm w}$ ਦਾ ਮਾਨ ਤਾਪਮਾਨ ਦੇ ਨਾਲ ਪਰਿਵਰਤਿਤ ਹੁੰਦਾ ਹੈ। ਫਿਰ ਵੀ ਤਾਪਮਾਨ ਦੇ ਨਾਲ ${
m pH}$ ਦੇ ਮਾਨ ਵਿੱਚ ਪਰਿਵਰਤਨ ਐਨ ਘੱਟ ਹੁੰਦਾ ਹੈ ਕਿ ਅਸੀਂ ਆਮ ਤੌਰ ਤੇ ਇਸ ਨੂੰ ਨਿਕਾਰ ਦਿੰਦੇ ਹਾਂ।

 $pK_{_{\rm W}}$ ਜਲੀ ਘੋਲਾਂ ਦੇ ਲਈ ਇੱਕ ਮਹੱਤਵਪੂਰਣ ਰਾਸ਼ੀ ਹੁੰਦੀ ਹੈ। ਇਹ ਹਾਈਡ੍ਰੋਜਨ ਅਤੇ ਹਾਈਡ੍ਰੋਕਸਿਲ ਆਇਨਾਂ ਦੀ ਸੰਘਣਤਾ ਨੂੰ ਨਿਯੰਤਰਿਤ ਕਰਦੀ ਹੈ, ਕਿਉਂਕਿ ਇਨ੍ਹਾਂ ਦਾ ਗੁਣਨਫਲ ਸਥਿਰ ਅੰਕ ਹੁੰਦਾ ਹੈ। ਇੰਜ ਇਹ ਧਿਆਨ ਵਿੱਚ ਰਹੇ ਕਿ pH ਸਕੇਲ ਲੌਗਰਿਥਮਿਕ ਹੁੰਦੀ ਹੈ। pH ਦੇ ਮਾਨਲ ਵਿੱਚ

ਇਕਾਈ ਪਰਿਵਰਤਨ ਦਾ ਅਰਥ ਹੈ [H+] ਦੀ ਸੰਘਣਤਾ ਵਿੱਚ ਗੁਣਕ 10 ਦਾ ਪਰਿਵਰਤਨ। ਇਸੇ ਤਰ੍ਹਾਂ ਜੇ ਹਾਈਡ੍ਰੋਜਨ ਆਇਨ ਸੰਘਣਤਾ [H+] ਵਿੱਚ 100 ਗੁਣਕ ਦਾ ਪਰਿਵਰਤਨ ਹੋਵੇ ਤਾਂ pH ਦੇ ਮਾਨ ਵਿੱਚ 2 ਇਕਾਈ ਦਾ ਪਰਿਵਰਤਨ ਹੋਵੇਗਾ। ਹੁਣ ਤੁਸੀਂ ਸਮਝ ਗਏ ਹੋਵੋਗੇ ਕਿ ਕਿਉਂ ਤਾਪਮਾਨ ਦੁਆਰਾ pH ਵਿੱਚ ਪਰਿਵਰਤਨ ਨੂੰ ਅਸੀਂ ਨਿਕਾਰ ਦਿੰਦੇ ਹਾਂ।

ਜੈਵਿਕ ਅਤੇ ਸ਼ਿੰਗਾਰ ਸਬੰਧੀ ਵਰਤੋਂ ਵਿੱਚ ਘੋਲ ਵਿੱਚ pH ਦਾ ਮਾਪਨ ਵਧੇਰੇ ਜਰੂਰੀ ਹੈ। pH ਪੇਪਰ, ਜੋ ਭਿੰਨ ਭਿੰਨ pH ਵਾਲੇ ਘੋਲ ਵਿੱਚ ਭਿੰਨ ਭਿੰਨ ਰੰਗ ਦਿੰਦਾ ਹੈ, ਦੀ ਸਹਾਇਤਾ ਨਾਲ pH ਦੇ ਲਗਪਗ ਮਾਨ ਦਾ ਪਤਾ ਲਾਇਆ ਜਾ ਸਕਦਾ ਹੈ। ਅੱਜ ਕਲ ਚਾਰ ਪੱਟੀ ਵਾਲਾ pH ਪੇਪਰ ਮਿਲਦਾ ਹੈ। ਇੱਕ ਹੀ ਉੱਤੇ ਭਿੰਨ ਭਿੰਨ ਪੱਟੀਆਂ ਭਿੰਨ ਭਿੰਨ ਰੰਗ ਦਿੰਦੀਆਂ ਹਨ (ਚਿੱਤਰ 7.11)। pH ਪੇਪਰ ਦੁਆਰਾ 1-14 ਤੱਕ ਦੇ pH ਮਾਨ ਲਗਪਗ 0.5 ਦੀ ਐਕੂਰੇਸੀ ਤਕ ਗਿਆਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।

ਚਿੱਤਰ 7.11 ਸਮਾਨ pH ਉੱਤੇ ਭਿੰਨ ਰੰਗ ਦੇਣ ਵਾਲੀ pH ਪੇਪਰ ਦੀਆਂ ਚਾਰ ਪੱਟੀਆਂ

ਉੱਚ ਐਕੂਰੇਸੀ ਦੇ ਲਈ pH ਮੀਟਰ ਦੀ ਵਰਤੋਂ ਕੀਤੀ ਜਾਂਦੀ ਹੈ। pH ਮੀਟਰ ਇੱਕ ਅਜਿਹਾ ਯੰਤਰ ਹੈ ਜੋ ਪ੍ਰੇਖਣ-ਘੋਲ ਦੇ ਬਿਜਲਈ ਪੋਟੈਂਸ਼ਲ ਉੱਤੇ ਅਧਾਰਿਤ pH ਦਾ ਮਾਪਨ 0.001 ਐਕੂਰੇਸੀ ਤੱਕ ਕਰਦਾ ਹੈ। ਅੱਜ ਕਲ ਬਜਾਰ ਵਿੱਚ ਪੈੱਨ ਦੇ ਬਰਾਬਰ ਆਕਾਰ ਵਾਲੇ pH ਮੀਟਰ ਉਪਲਬਧ ਹੋ ਗਏ ਹਨ। ਕੁਝ ਸਧਾਰਣ ਪਦਾਰਥਾਂ ਦੀ pH ਸਾਰਣੀ 7.5 ਵਿੱਚ ਦਿੱਤੀ ਗਈ ਹੈ।

ਉਦਾਹਰਣ 7.16

ਇੱਕ ਪੇਯ ਪਦਾਰਥ (soft drink) ਦੇ ਨਮੂਨੇ ਵਿੱਚ ਹਾਈਡ੍ਰੋਜਨ ਆਇਨ ਦੀ ਸੰਘਣਤਾ $3.8 \times 10^{-3} M$ ਹੈ। ਇਸ ਦੀ pH ਕੀ ਹੋਵੇਗੀ ?

ਹੱਲ

 $pH = -\log[3.8 \times 10^{-3}]$ = $-\{\log[3.8] + \log[10^{-3}]\}$ = $-\{(0.58) + (-3.0)\} = -\{-2.42\} = 2.42$ ਇੰਜ ਪੇਯ ਪਦਾਰਥ ਦੀ $pH \ 2.42$ ਹੈ। ਇਹ ਤੇਜਾਬੀ ਹੈ।

ਉਦਾਹਰਣ 7.17

 $1.0 \times 10^{-8} \, \mathrm{M}$ HCl ਘੋਲ ਦੀ pH ਗਣਨਾ ਕਰੋ।

	_	F	
ਤਰਲ ਦੇ ਨਾਮ	pН	ਤਰਲ ਦੇ ਨਾਮ	pН
NaOH ਦਾ ਸੰਤ੍ਰਿਪਤ ਘੋਲ	~15	ਕਾਲੀ ਕਾੱਫੀ	5.0
0.1 M NaOH ੰਘੋਲ	13	ਟਮਾਟਰ ਦਾ ਰਸ	~4.2
ੋਚੂਨੈ ਦੇ ਪਾਣੀ	10.5	ਸਾੱਫਟ ਡਿ੍ਰੰਕ ਅਤੇ ਸਿਰਕਾ	~4.2 ~3.0
ੋਮਿਲਕ ਆੱਫ ਮੈਗਨੀਸ਼ੀਅਮ	10	ਨਿੰਬੂ ਪਾਣੀ	~2.2
ੋਅੰਡੇ ਦਾ ਸਫੈਦ ਪਾਣੀ	7.8	ਜਠਰ-ਰਸ	~1.2
ੋਮਨੁਖੀ ਖੂਣ	7.4	1M HCl ਘੋਲ	~0
ੋਦੱਧ	6.8	ਗਾੜਾ HCl	~-1.0
ੂਮਨੁੱਖੀ ਸ਼ੁਦਕ	6.4		

ਸਾਰਣੀ 7.5 ਕੁਝ ਸਧਾਰਣ ਪਦਾਰਥਾਂ ਦੀ pH ਦੇ ਮਾਨ

ਹੱਲ $2H_2O(l) \rightleftharpoons H_3O^+(aq) + OH^-(aq)$ $K_w = [OH^-][H_3O^+]$ $= 10^{-14}$ ਮੰਨ ਲਓ [OH^-] = x = ਪਾਣੀ ਤੋਂ ਪ੍ਰਾਪਤ H_3O^+ H_3O^+ ਸੰਘਣਤਾ (i) ਜੋ ਘੁਲਿਤ HCl ਤੋਂ ਪ੍ਰਾਪਤ ਹੁੰਦੀ ਹੈ ਜਿਵੇਂ

ਸੰਘਣਤਾ (i) ਜੋ ਘੁਲਿਤ HCl ਤੋਂ ਪ੍ਰਾਪਤ ਹੁੰਦੀ ਹੈ ਜਿਵੇਂ HCl(aq) + H₂O(l) \rightleftharpoons H₃O⁺ (aq) + Cl⁻(aq), ਅਤੇ (ii) ਪਾਣੀ ਦੇ ਆਇਨੀ ਕਰਣ ਤੋਂ ਪ੍ਰਾਪਤ ਹੁੰਦੀ ਹੈ। ਇੱਥੇ ਦੋਹਾਂ H₃O⁺ ਸਾਧਨਾ ਉੱਤੇ ਵਿਚਾਰ ਕਰਨਾ ਹੋਵੇਗਾ [H₃O⁺] = 10^{-8} + x $K_w = (10^{-8} + x)(x) = 10^{-14}$

$$K_{\rm w} = (10^{-6} + x)(x) = 10^{-14}$$

 $H^{\dagger} x^2 + 10^{-8} x - 10^{-14} = 0$
 $[OH^{-}] = x = 9.5 \times 10^{-8}$

ਇੰਜ pOH = 7.02 ਅਤੇ pH = 6.98

7.11.3 ਦੂਰਬਲ ਤੇਜਾਬਾਂ ਦੇ ਆਇਨਨ ਸਥਿਰ ਅੰਕ

ਆਓ, ਜਲੀ ਘੋਲ ਵਿੱਚ ਅੰਸਿਕ ਰੂਪ ਵਿੱਚ ਅਇਨਤ ਇੱਕ ਦੁਰਬਲ ਤੇਜਾਬ HX ਉੱਤੇ ਵਿਚਾਰ ਕਰੀਏ। ਹੇਠ ਲਿਖੀਆਂ ਸਮੀਕਰਣਾਂ ਵਿੱਚੋਂ ਕਿਸੇ ਵੀ ਸਮੀਕਰਣ ਦੁਆਰਾ ਅਵਿਯੋਜਿਤ HX ਅਤੇ ਆਇਨਾਂ $H^{+}(aq)$ ਅਤੇ $X^{-}(aq)$ ਦੇ ਵਿੱਚ ਸਥਾਪਿਤ ਸੰਤੁਲਿਤ ਅਵਸਥਾ ਨੂੰ ਪ੍ਰਦਰਸ਼ਿਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।

$$\mathrm{HX}(\mathrm{aq}) + \mathrm{H_2O}(\mathrm{l}) \rightleftharpoons \mathrm{H_3O^+}(\mathrm{aq}) + \mathrm{X^-}(\mathrm{aq})$$
 ਮੁੱਢਲੀ ਸੰਘਣਤਾ (M) c 0 0 h ਨ ਲਓ a ਅਇਨੀਕਰਣ ਦੀ ਮਾਤਰਾ ਹੈ l ਸੰਘਣਤਾ ਵਿੱਚ ਪਰਿਵਰਤਨ (M) $\mathrm{-c}\mathrm{a}$ +c a +c a ਸੰਤੁਲਨ ਸੰਘਣਤਾ (M) $\mathrm{c}\mathrm{c}\mathrm{a}$ c a c a

ਜਿੱਥੇ c = ਅਣਵਿਯੋਜਿਤ ਤੇਜਾਬ HX ਦੀ ਮੁੱਢਲੀ ਸੰਘਣਤਾ ਅਤੇ α = HX ਦੇ ਆਇਨਨ ਦੀ ਮਾਤਰਾ ਹੈ।

ਇਨ੍ਹਾਂ ਸੰਕੇਤਨਾਂ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਅਸੀਂ ਉੱਪਰ ਦਿੱਤੇ ਤੇਜਾਬ ਦੇ ਵਿਯੋਜਨ ਸੰਤੁਲਨ ਦੇ ਲਈ ਸੰਤੁਲਨ ਸਥਿਰ ਅੰਕ ਵਿਉਂਤਪਨ ਕਰ ਸਕਦੇ ਹਾਂ

$$K_a = c^2\alpha^2 / c(1-\alpha) = c\alpha^2 / 1-\alpha$$

 $K_{\rm a}$ ਨੂੰ ਤੇਜਾਬ HX ਦਾ ਵਿਯੋਜਨ ਜਾਂ ਅਇਨਨ ਸਥਿਰ ਅੰਕ ਕਹਿੰਦੇ ਹਨ। ਇਸ ਨੂੰ ਮੋਲਰਤਾ ਦੇ ਰੂਪ ਵਿੱਚ ਇਸ ਤਰ੍ਹਾਂ ਪ੍ਰਦਰਸ਼ਿਤ ਕਰ ਸਕਦੇ ਹਾਂ -

$$K_{a} = [H^{+}][X^{-}] / [HX]$$
 (7.30)

ਕਿਸੇ ਨਿਸ਼ਚਿਤ ਤਾਪਮਾਨ ਉੱਤੇ K_{a} ਦਾ ਮਾਨ ਤੇਜਾਬ HX ਦੀ ਪ੍ਰਬਲਤਾ ਦਾ ਮਾਪ ਹੈ, ਅਰਥਾਤ K_{a} ਦਾ ਮਾਨ ਜਿੰਨਾ ਜਿਆਦਾ ਹੋਵੇਗਾ, ਤੇਜਾਬ ਓਨਾਂ ਹੀ ਜਿਆਦਾ ਪ੍ਰਬਲ ਹੋਵੇਗਾ। K_{a} ਵਿਸਰਿਤ (dimensionless) ਰਾਸ਼ੀ ਹੈ, ਜਿਸ ਵਿੱਚ ਸਾਰੇ ਸਪੀਸ਼ੀਜ ਦੀ ਸੰਘਣਤਾ ਦੀ ਸਟੈਂਡਰਡ ਅਵਸਥਾ 1M ਹੈ।

ਸਾਰਣੀ 7.6 298 K ਉੱਤੇ ਕੁਝ ਚੁਣੇ ਹੋਏ ਕਮਜ਼ੋਰ ਤੇਜ਼ਾਬਾਂ ਦੇ ਆਇਨਨ ਸਥਿਰ ਅੰਕਾਂ ਦੇ ਮਾਨ

ਐਸਿਡ	ਆਇਨਨ ਸਥਿਰ ਅੰਕ $oldsymbol{\mathit{K}}_{\!$
ਹਾਈਡ੍ਰੋਕਲੋਰਿਕ ਐਸਿਡ (HF)	3.5×10^{-4}
ਨਾਈਟ੍ਰਿਸ ਐਸਿਡ (HNO ₂)	4.5×10^{-4}
ਫਾਰਮਿਕ ਐਸਿਡ (HCOOH)	1.8×10^{-4}
ਨਿਯਾਸੀਨ (C ₅ H ₄ NCOOH)	1.5×10^{-5}
ਐਸਿਟਿਕ ਐਸਿਡ (CH ₃ COO)	H) 1.74×10^{-5}
ਬੈਨਜੋਇਕ ਐਸਿਡ ($\mathrm{C_6H_5CO}$	OH) 6.5×10^{-5}
ਹਾਈਪੋਕਲੋਰਸ ਐਸਿਡ (HCIC	3.0×10^{-8}
ਹਾਈਡ੍ਰੋਸਾਇਨਿਕ ਐਸਿਡ (HC	4.9×10^{-10}
ਫੀਨਾਲ (C ₆ H ₅ OH)	1.3×10^{-10}

ਕੁਝ ਚੁਣੇ ਹੋਏ ਤੇਜਾਬਾਂ ਦੇ ਆਇਨਨ ਸਥਿਰ ਅੰਕ ਸਾਰਣੀ 7.6 ਵਿੱਚ ਦਿੱਤੇ ਗਏ ਹਨ। ਹਾਈਡ੍ਰੋਜਨ ਆਇਨ ਸੰਘਣਤਾ ਦੇ ਲਈ pH ਮਾਪਕ੍ਰਮ ਐਨਾਂ ਲਾਭਕਾਰੀ ਹੈ ਕਿ ਇਸ ਨੂੰ $pK_{\rm w}$ ਦੇ ਇਲਾਵਾ ਹੋਰ ਸਪੀਸ਼ੀਜ ਅਤੇ ਰਾਸ਼ੀਆਂ ਦੇ ਲਈ ਵੀ ਵਰਤਿਆ ਜਾਂਦਾ ਹੈ।

$$pK_a = -\log(K_a) \tag{7.31}$$

ਤੇਜਾਬ ਦੇ ਆਇਨਨ ਸਥਿਰ ਅੰਕ $K_{\rm q}$ ਅਤੇ ਮੁੱਢਲੀ ਸੰਘਣਤਾ c ਗਿਆਤ ਹੋਣ ਤੇ ਅਤੇ ਸਾਰੇ ਸਪੀਸ਼ੀਜ ਦੀਆਂ ਸੰਤੁਲਨ ਸੰਘਣਤਾਵਾਂ ਅਤੇ ਤੇਜਾਬ ਦੇ ਆਇਨਨ ਦੀ ਮਾਤਰਾ ਤੋਂ ਘੋਲ ਦੀ pH ਦੀ ਗਣਨਾ ਸੰਭਵ ਹੈ।ਕਮਜ਼ੋਰ ਇਲੈਕਟ੍ਰੋਲਾਈਟ ਦੀ pH ਇਨ੍ਹਾਂ ਸਟੈਪਾਂ ਨਾਲ ਕੱਢੀ ਜਾ ਸਕਦੀ ਹੈ -

ਸਟੈਪ 1. ਵਿਯੋਜਨ ਤੋਂ ਪਹਿਲਾਂ ਮੌਜੂਦ ਸਪੀਸ਼ੀਜ ਨੂੰ ਬਰਾੱਨ ਸਟੈਡ ਲੌਰੀ ਤੇਜਾਬ / ਖਾਰ ਦੇ ਰੂਪ ਵਿੱਚ ਗਿਆਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ।

ਸਟੈਪ 2. ਸਾਰੀਆਂ ਸੰਭਾਵਿਤ ਪ੍ਰਤੀਕਿਰਿਆਵਾਂ ਦੇ ਲਈ ਸੰਤੁਲਿਤ ਸਮੀਕਰਣ ਲਿਖੇ ਜਾਂਦੇ ਹਨ, ਜਿਵੇਂ – ਸਪੀਸ਼ੀਜ ਜੋ ਤੇਜਾਬ ਅਤੇ ਖਾਰਾਂ ਦੋਵਾਂ ਦੇ ਰੂਪ ਵਿੱਚ ਕਾਰਜ ਕਰਦੇ ਹਨ।

ਸਟੈਪ 3. ਉੱਚ K_a ਵਾਲੀ ਪ੍ਰਤੀਕਿਰਿਆ ਨੂੰ 'ਪਹਿਲਾਂ' ਪ੍ਰਤੀਕਿਰਿਆ ਦੇ ਰੂਪ ਵਿੱਚ ਚਿੰਨ੍ਹਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ, ਜਦਕਿ ਦੂਜੀਆਂ ਪ੍ਰਤੀ ਕਿਰਿਆਵਾਂ ਪੂਰਕ ਪ੍ਰਤੀ ਕਿਰਿਆਵਾਂ ਹੁੰਦੀਆਂ ਹਨ।

ਸਟੈਪ 4. ਪਹਿਲਾਂ ਵਾਲੀ ਪ੍ਤੀ ਕਿਰਿਆ ਦੇ ਸਾਰੇ ਸਪੀਸ਼ੀਜ ਦੇ ਹੇਠਲੇ ਮਾਨਾਂ ਨੂੰ ਸਾਰਣੀ ਦੇ ਰੂਪ ਵਿੱਚ ਸੂਚੀ ਬੱਧ ਕੀਤਾ ਜਾਂਦਾ ਹੈ—

- (ੳ) ਮੁੱਢਲੀ ਸੰਘਣਤਾ, c
- (ਅ) ਸੰਤੁਲਨ ਦੇ ਵੱਲ ਵਧਣ ਤੇ ਅਇਨਨ ਦੀ ਮਾਤਰਾ α ਦੇ ਰੂਪ ਵਿੱਚ ਸੰਘਣਤਾ ਵਿੱਚ ਪਰਿਵਰਤਨ
- (ੲ) ਸੰਤੁਲਨ ਸੰਘਣਤਾ

ਸਟੈਪ 5. ਮੁੱਖ ਪ੍ਤੀਕਿਰਿਆ ਦੇ ਲਈ ਸੰਤੁਲਨ ਸਥਿਰ ਅੰਕ ਸਥਿਰ ਅੰਕ ਵਿੱਚ ਸੰਤੁਲਨ ਸੰਘਣਤਾਵਾਂ ਨੂੰ ਰੱਖ ਕੇ α ਦੇ ਲਈ ਹੱਲ ਕਰਦੇ ਹਾਂ।

ਸਟੈਪ 6. ਮੁੱਖ ਪ੍ਤੀਕਿਰਿਆ ਦੀ ਸਪੀਸ਼ੀਜ ਦੀ ਸੰਘਣਤਾ ਦੀ ਗਣਨਾ ਕਰਦੇ ਹਾਂ।

ਸਟੈਪ 7. pH ਦੀ ਗਣਨਾ

$$pH = -\log[H_{3}O^{+}]$$

ਉੱਪਰ ਦਿੱਤੀ ਵਿਧੀ ਨੂੰ ਇਸ ਉਦਾਹਰਣ ਨਾਲ ਸਮਝਾਇਆ ਗਿਆ ਹੈ—

ਉਦਾਹਰਣ 7.18

HF ਦਾ ਆਇਨਨ ਸਥਿਰ ਅੰਕ 3.2×10^{-4} ਹੈ। 0.02 M ਘੋਲ ਵਿੱਚ HF ਦੀ ਆਇਨਨ ਦੀ ਮਾਤਰਾ ਅਤੇ ਘੋਲ ਵਿੱਚ ਮੌਜੂਦ ਸਾਰੇ ਸਪੀਸ਼ੀਜ (H_3O^+ , F^- ਅਤੇ HF) ਦੀ ਸੰਘਣਤਾ ਅਤੇ pH ਦੀ ਗਣਨਾ ਕਰੋ।

ਹੱਲ

ਹੇਠ ਲਿਖੀਆਂ ਪ੍ਰੋਟਾੱਨ ਸਥਾਨ ਅੰਤਰਣ ਪ੍ਰਤੀਕਿਰਿਆਵਾਂ ਸੰਭਵ ਹਨ —

1) HF + $H_9O \rightleftharpoons H_9O^+ + F^-$

$$K_{3} = 3.2 \times 10^{-4}$$

2) $H_9O + H_9O \rightleftharpoons H_9O^+ + OH^-$

$$K_{\rm w} = 1.0 \times 10^{-14}$$

$$HF + H_0O \rightleftharpoons H_0O^+ + F^-$$

ਮੁੱਢਲੀ ਸੰਘਣਤਾ (M)

ਸੰਘਣਤਾ ਪਰਿਵਰਤਨ (M)

$$-0.02\alpha$$
 $+0.02\alpha$ $+0.02\alpha$

ਸੰਤੁਲਨ ਸੰਘਣਤਾ (M)

$$0.02 - 0.02 \alpha$$
 0.02α 0.02α

ਸੰਤੁਲਨ ਪ੍ਰਤੀ ਕਿਰਿਆ ਦੇ ਲਈ ਸੰਤੁਲਨ ਸੰਘਣਤਾਵਾਂ ਨੂੰ ਪ੍ਰਤੀਸਥਾਪਿਤ ਕਰਨ ਤੇ

$$K_{\rm a} = (0.02\alpha)^2 / (0.02 - 0.02\alpha)$$

$$= 0.02 \alpha^2 / (1 - \alpha) = 3.2 \times 10^{-4}$$

ਸਾਨੂੰ ਹੇਠ ਲਿਖੀ ਦੋ ਘਾਤੀ ਸਮੀਕਰਣ ਪ੍ਰਾਪਤ ਹੁੰਦੀ ਹੈ

$$\alpha^2 + 1.6 \times 10^{-2} \alpha - 1.6 \times 10^{-2} = 0$$

ਦੋ ਘਾਤੀ ਸਮੀਕਰਣ ਨੂੰ ਹੱਲ ਕਰਨ ਤੇ ਦੋ ਮਾਨ ਪ੍ਰਾਪਤ ਹੁੰਦੇ ਹਨ—

$$\alpha = +0.12$$
 ਅਤੇ -0.12

 α ਦਾ ਰਿਣਾਤਮਕ ਮਾਨ ਸੰਭਵ ਨਹੀਂ ਹੈ। ਇੰਜ α = 0.12 ਸਪਸ਼ਟ ਹੈ ਕਿ ਆਇਨਨ ਮਾਤਰਾ α = 0.12 ਹੋਵੇ ਤਾਂ ਦੂਜੇ ਸਪੀਸ਼ੀਜ (ਜਿਵੇਂ- HF, F $^-$ ਅਤੇ ${\rm H_3O^+}$) ਦੀਆਂ ਸੰਤੁਲਨ ਸੰਘਣਤਾਵਾਂ ਇਸ ਪ੍ਰਕਾਰ ਹਨ—

$$[H_{2}O^{+}] = [F^{-}] = c\alpha = 0.02 \times 0.12$$

$$= 2.4 \times 10^{-3} \text{ M}$$

[HF] =
$$c(1 - \alpha) = 0.02 (1 - 0.12)$$

$$= 17.6 \times 10^{-3} \text{ M}$$

$$pH = -\log[H^+] = -\log(2.4 \times 10^{-3}) = 2.62$$

ਉਦਾਹਰਣ 7.19

 $0.1 \mathrm{M}$ ਇੱਕ ਬੇਸੀ ਤੇਜਾਬ ਦੀ $\mathrm{pH}\ 4.50$ ਹੈ। ਸੰਤੁਲਿਤ ਅਵਸਥਾ ਤੇ H^+ , A^- ਅਤੇ HA ਦੀ ਸੰਘਣਤਾ ਦੀ ਗਣਨਾ ਕਰੋ। ਨਾਲ ਹੀ ਇੱਕ ਬੇਸੀ ਤੇਜਾਬ ਦੇ K_a ਅਤੇ $\mathrm{p}K_a$ ਦੇ ਮਾਨ ਦੀ ਵੀ ਗਣਨਾ ਕਰੋ।

ਹੱਲ

$$pH = -\log [H^{\dagger}]$$

$$[H^+] = 10^{-pH} = 10^{-4.50}$$

$$= 3.16 \times 10^{-5}$$

$$[H^+] = [A^-] = 3.16 \times 10^{-5}$$

$$K_{\rm a} = [{\rm H}^+][{\rm A}^-] / [{\rm HA}]$$

$$[HA]_{ealbm} = 0.1 - (3.16 \times 10^{-5}) \simeq 0.1$$

$$K_{\rm a} = (3.16 \times 10^{-5})^2 / 0.1 = 1.0 \times 10^{-8}$$

$$pK_a = -\log(10^{-8}) = 8$$

ਦੂਜੇ ਰੂਪ ਵਿੱਚ ਵਿਯੋਜਿਤ ਪ੍ਰਤੀਸ਼ਤਤਾ ਕਿਸੇ ਦੂਰਬਲ ਤੇਜਾਬ ਦੀ ਸਮਰਥਾ ਦੀ ਗਣਨਾ ਦਾ ਲਾਭਕਾਰੀ ਮਾਪਕ੍ਰਮ ਹੈ। ਇਸਨੂੰ ਇਸ ਤਰ੍ਹਾਂ ਦਿੱਤਾ ਗਿਆ ਹੈ –

$$= [HA]_{\Lambda \bar{V} H \Lambda} / [HA]_{\Lambda \bar{V} \bar{V} H \Lambda} \times 100\%$$

ਉਦਾਹਰਣ 7.20

0.08M ਹਾਈ ਪੈਕਲੋਰਸ ਐਸਿਡ (HOCI) ਦੇ ਘੋਲ ਦੀ pH ਦੀ ਗਣਨਾ ਕਰੋ। ਤੇਜਾਬ ਦਾ ਆਇਨਨ ਸਥਿਰ ਅੰਕ 2.5 × 10⁻⁵ ਹੈ। HOCl ਦੀ ਵਿਯੋਜਨ ਪਤੀਸ਼ਤਤਾ ਗਿਆਤ ਕਰੋ।

ਜੱਲ

$$HOCl(aq) + H_2O(l) \rightleftharpoons H_3O^+(aq) + ClO^-(aq)$$

ਮੁੱਢਲੀ ਸੰਘਣਤਾ (M)

ਸੰਤੁਲਿਤ ਅਵਸਥਾ ਦੇ ਲਈ ਪਰਿਵਰਤਨ (M)

ਸੰਤਲਨ ਸੰਘਣਤਾ (M)

 $K_{a} = \{ [H_{3}O^{+}][ClO^{-}] / [HOCl] \}$

 $= x^2 / (0.08 - x)$

As x << 0.08, = 0.08 - x = 0.08

 $x^2 / 0.08 = 2.5 \times 10^{-5}$

 $x^2 = 2.0 \times 10^{-6}$, ਇਸ ਤਰ੍ਹਾਂ $x = 1.41 \times 10^{-3}$ $[H^+] = 1.41 \times 10^{-3} M.$

ਇੰਜ

ਵਿਯੋਜਨ ਪ੍ਰਤੀਸ਼ਤਤਾ

$$= \{ [HOCl]_{dissociated} / [HOCl]_{initial} \} \times 100$$

=
$$1.41 \times 10^{-3} \times 10^{2} / 0.08 = 1.76 \%$$
.
pH = $-\log(1.41 \times 10^{-3}) = 2.85$.

7.11.4 ਦੁਰਬਲ ਖਾਰਾਂ ਦਾ ਆਇਨਨ

ਖਾਰ MOH ਦਾ ਆਇਨਨ ਹੇਠ ਲਿਖੇ ਸਮੀਕਰਣ ਦੁਆਰਾ ਪ੍ਰਦਰਸ਼ਿਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ –

$$MOH(aq) \rightleftharpoons M^{+}(aq) + OH^{-}(aq)$$

ਤੇਜਾਬ ਆਇਨਨ ਸੰਤੁਲਿਤ ਅਵਸਥਾ ਵਾਂਗ ਦੁਰਬਲ ਖਾਰ MOH ਅੰਸ਼ਿਕ ਰੂਪ ਵਿੱਚ ਧਨਾ ਅਇਨ M+ ਅਤੇ ਰਿਣ ਆਇਨਨ OH⁻ ਵਿੱਚ ਆਇਨਿਤ ਹੁੰਦੀ ਹੈ। ਖਾਰ ਆਇਨਨ ਦੇ ਸੰਤੁਲਨ ਅੰਕ ਨੂੰ ਖਾਰ ਆਇਨਨ ਸਥਿਰ ਅੰਕ ਕਿਹਾ ਜਾਂਦਾ ਹੈ। ਇਸ ਨੂੰ ਅਸੀਂ K ਨਾਲ ਪ੍ਰਦਰਸ਼ਿਤ ਕਰਦੇ ਹਾਂ। ਸਾਰਿਆਂ ਸਪੀਸ਼ੀਜ ਦੀ ਸੰਤੁਲਨ ਸੰਘਣਤਾ ਮੋਲਰਤਾ ਵਿੱਚ ਹੇਠ ਲਿਖੇ ਸਮੀਕਰਣ ਦੁਆਰਾ ਪ੍ਰਦਰਸ਼ਿਤ ਕੀਤੀ ਜਾਂਦੀ ਹੈ –

$$K_{b} = [M^{+}][OH^{-}] / [MOH]$$
 (7.33)

ਦੂਜੀ ਤਰ੍ਹਾਂ ਜੇ c = ਖਾਰ ਦੀ ਮੁੱਢਲੀ ਸੰਘਣਤਾ ਅਤੇ lpha = ਖਾਰ ਦੇ ਆਇਨਨ ਦੀ ਮਾਤਰਾ ਜਦੋਂ ਸੰਤੁਲਿਤ ਅਵਸਥਾ ਪ੍ਰਾਪਤ ਹੁੰਦੀ ਹੈ, ਤਾਂ ਸੰਤੁਲਨ ਸਥਿਰ ਅੰਕ ਹੇਠ ਲਿਖੇ ਰੂਪ ਵਿੱਚ ਲਿਖਿਆ

$$K_{b} = (c\alpha)^{2} / c (1-\alpha) = c\alpha^{2} / (1-\alpha)$$

ਕੁਝ ਚੁਣੀਆਂ ਹੋਈਆਂ ਖਾਰਾਂ ਦੇ ਆਇਨਨ ਸਥਿਰ ਅੰਕ K_{μ} ਦੇ ਮਾਨ ਸਾਰਣੀ 7.7 ਵਿੱਚ ਦਿੱਤੇ ਗਏ ਹਨ।

298 K ਉੱਤੇ ਕੁਝ ਦੂਰਬਲ ਥਾਰਾਂ ਦੇ ਆਇਨਨ ਸਾਰਣੀ 7.7 ਸਥਿਰ ਅੰਕਾਂ ਦੇ ਮਾਨ

ਖਾਰ	$K_{\!_{\mathrm{b}}}$
ਡਾਈ ਮੀਥਾਈਲ ਐਮੀਨ (CH ₃) ₂ NH	5.4×10^{-4}
ਟ੍ਰਾਈ ਈਥਾਈਲ ਐਮੀਨ $(C_2H_5)_3N$	6.45×10^{-5}
ਅਮੋਨੀਅਮ ($\mathrm{NH_{3}}$ or $\mathrm{NH_{4}OH}$)	1.77×10^{-5}
ਕੁਈਨੀਨ (ਇੱਕ ਬਨਸਪਤੀ ਉਪਜ)	1.10×10^{-6}
ਪਿਰੀਡੀਨ $\mathrm{C_5H_5N}$	1.77×10^{-9}
ਐਨੀਲੀਨ, $C_6^{}H_5^{}NH_2^{}$	4.27×10^{-10}
ਯੂਰੀਆ CO (NH ₂) ₂	1.3×10^{-14}

ਕਈ ਕਾਰਬਨਿਕ ਯੋਗਿਕ ਐਮੀਨਾਂ ਵਾਂਗ ਬਹੁਤ ਦੁਰਬਲ ਖਾਰਾਂ ਹਨ। ਐਮੀਨਾਂ ਅਮੋਨੀਆ ਦੇ ਡੈਰੀਵੇਟਿਵ ਹਨ, ਜਿਨ੍ਹਾਂ ਵਿੱਚ ਇੱਕ ਜਾਂ ਵਧੇਰੇ ਹਾਈਡ੍ਰੋਜਨ ਪਰਮਾਣੂ ਹੋਰ ਗਰੁੱਪਾਂ ਦੁਆਰਾ ਪ੍ਰਤੀਸਥਾਪਿਤ ਹੁੰਦੇ ਹਨ। ਜਿਵੇਂ- ਮੀਥਾਈਲ ਐਮੀਨ, ਕੋਡੀਨ, ਕੁਈਨੀਨ ਅਤੇ ਨਿਕੋਟਿਨ, ਸਾਰੇ ਬੜੇ ਦੂਰਬਲ ਖਾਰਾਂ ਹਨ। ਇਸ ਲਈ ਇਨ੍ਹਾਂ ਦੇ $K_{
m L}$ ਦੇ ਮਾਨ ਬਹੁਤ ਛੋਟੇ ਹੁੰਦੇ ਹਨ। ਅਮੋਨੀਆ ਪਾਣੀ ਵਿੱਚ ਹੇਠ ਲਿਖੀ ਪ੍ਤੀਕਿਰਿਆ ਦੇ ਫਲਸਰੂਪ OH- ਆਇਨ ਦਿੰਦਾ ਹੈ–

 $NH_3(aq) + H_2O(1) \rightleftharpoons NH_4^+(aq) + OH^-(aq)$

ਹਾਈਡ੍ਰੋਜਨ ਆਇਨ ਸੰਘਣਤਾ ਲਈ pH ਸਕੇਲ ਐਨਾਂ ਲਾਭਦਾਇਕ ਹੈ ਕਿ ਇਸਨੂੰ ਹੋਰ ਸਪੀਸ਼ੀਜ ਅਤੇ ਰਾਸ਼ੀਆਂ ਦੇ ਲਈ ਵੀ ਵਰਤਿਆ ਗਿਆ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ

$$pK_b = -\log(K_b) \tag{7.34}$$

ਉਦਾਹਰਣ 7.21

 $0.004 \mathrm{M}$ ਹਾਈਡ੍ਰੋਜੀਨ ਘੋਲ ਦੀ pH 9.7 ਹੈ। ਇਸ ਦੇ ਲਈ K_{p} ਅਤੇ $\mathrm{p}K_{\mathrm{p}}$ ਦੀ ਗਣਨਾ ਕਰੋ।

ਹੱਲ

 $NH_2NH_2 + H_2O \rightleftharpoons NH_2NH_3^+ + OH^-$ ਅਸੀਂ pH ਤੋਂ H^+ ਸੰਘਣਤਾ ਦੀ ਗਣਨਾ ਕਰ ਸਕਦੇ ਹਾਂ। ਹਾਈਡ੍ਰੋਜਨ ਆਇਨ ਸੰਘਣਤਾ ਗਿਆਤ ਕਰਕੇ ਅਤੇ ਪਾਣੀ ਦੇ ਆਇਨਿਕ ਗੁਣਨਫਲ ਤੋਂ ਅਸੀਂ ਹਾਈਡ੍ਰੱਕਸਿਕ ਆਇਨ ਦੀ ਸੰਘਣਤਾ ਦੀ ਗਣਨਾ ਕਰ ਸਕਦੇ ਹਾਂ। ਇਸ ਤਰ੍ਹਾਂ,

[H⁺] = antilog (-pH) = antilog (-9.7) = 1.67×10^{-10} [OH⁻] = $K_{\rm w}$ / [H⁺] = 1×10^{-14} / 1.67×10^{-10} = 5.98×10^{-5}

ਸੰਗਤ ਹਾਈਡ੍ਰੋਜੀਨਿਅਮ ਆਇਨ ਦੀ ਸੰਘਣਤਾ ਦਾ ਮਾਨ ਵੀ ਹਾਈਡ੍ਰਾੱਕਸਿਕ ਆਇਨ ਦੀ ਸੰਘਣਤਾ ਦੇ ਬਰਾਬਰ ਹੋਵੇਗਾ। ਇਨ੍ਹਾਂ ਦੋਵਾਂ ਆਇਨਾਂ ਦੀ ਸੰਘਣਤਾ ਬਹੁਤ ਘੱਟ ਹੈ। ਇੰਜ ਅਣਵਿਯੋਜਿਤ ਖਾਰ ਦੀ ਸੰਘਣਤਾ 0.004 ਲਈ ਜਾ ਸਕਦੀ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ

 $K_{\rm b} = [{\rm NH_2NH_3}^+][{\rm OH}^-] / [{\rm NH_2NH_2}]$ = $(5.98 \times 10^{-5})^2 / 0.004 = 8.96 \times 10^{-7}$ p $K_{\rm b} = -{\rm log}(8.96 \times 10^{-7}) = 6.04$.

ਉਦਾਹਰਣ 7.22

 $0.2 {
m M\,NH_4Cl}\,$ ਅਤੇ $0.1\ {
m NH_3}$ ਦੇ ਮਿਸ਼ਰਣ ਤੋਂ ਬਣੇ ਘੋਲ ਦੀ ${
m pH}$ ਦੀ ਗਣਨਾ ਕਰੋ। ${
m NH_3}$ ਘੋਲ ${
m pK_b}$ = $4.75\, {
m d}$ । ਹੱਲ

 $\mathrm{NH_3} + \mathrm{H_2O} \iff \mathrm{NH_4^+} + \mathrm{OH^-}$ $\mathrm{NH_3}$ ਦਾ ਆਇਨਨ ਸਥਿਰ ਅੰਕ $K_\mathrm{b} = \mathrm{antilog} \left(-\mathrm{p} K_\mathrm{b} \right)$ ਅਰਥਾਤ

$$K_{\rm b} = 10^{-4.75} = 1.77 \times 10^{-5} \, {
m M}$$
 ${
m NH}_3 + {
m H}_2 {
m O}$ ${
m NH}_4^+ + {
m OH}^-$
ਮੁੱਢਲੀ ਸੰਘਣਤਾ (M)
 0.10 0.20 0
ਸੰਤੁਲਿਤ ਅਵਸਥਾ ਸੰਘਣਤਾ ਵਿੱਚ ਪਰਿਵਰਤਨ (M)
 $-{
m x}$ $+{
m x}$ $+{
m x}$
ਸੰਤੁਲਿਤ ਅਵਸਥਾ ਉੱਤੇ (M)
 $0.10 - {
m x}$ $0.20 + {
m x}$ ${
m x}$
 $K_{\rm b} = [{
m NH}_4^+][{
m OH}^-] / [{
m NH}_3]$
 $= (0.20 + {
m x})({
m x}) / (0.1 - {
m x}) = 1.77 \times 10^{-5}$
 $K_{\rm b}$ ਦਾ ਮਾਨ ਘੱਟ ਹੈ। $0.1{
m M}$ ਅਤੇ $0.2{
m M}$ ਦੀ ਤੁਲਨਾ ਵਿੱਚ ${
m x}$ ਨੂੰ ਅਸੀਂ ਨਿਕਾਰ ਸਕਦੇ ਹਾਂ।
 $[{
m OH}^-] = {
m x} = 0.88 \times 10^{-5}$
ਇਸ ਲਈ $[{
m H}^+] = 1.12 \times 10^{-9}$
 ${
m pH} = -\log[{
m H}^+] = 8.95$.

$7.11.5~K_a$ ਅਤੇ K_b ਵਿੱਚ ਸਬੰਧ

ਇਸ ਅਧਿਆਏ ਵਿੱਚ ਅਸੀਂ ਪੜ੍ਹ ਚੁਕੇ ਹਾਂ ਕਿ $K_{\rm a}$ ਅਤੇ $K_{\rm b}$ ਕ੍ਰਮਵਾਰ ਤੇਜਾਬ ਅਤੇ ਖਾਰ ਦੀ ਸਮਰਥਾ ਨੂੰ ਦਰਸਾਉਂਦੇ ਹਨ। ਸੰਯੁਗਮੀ ਤੇਜਾਬ ਖਾਰ ਯੁਗਮ ਵਿੱਚ ਇਹ ਇੱਕ ਦੂਜੇ ਨਾਲ ਸਰਲ ਰੂਪ ਵਿੱਚ ਸਬੰਧਿਤ ਹੁੰਦੇ ਹਨ। ਜੇ ਇੱਕ ਦਾ ਮਾਨ ਗਿਆਤ ਹੈ ਤਾਂ ਦੂਜੇ ਨੂੰ ਗਿਆਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ${\rm NH_4^+}$ ਅਤੇ ${\rm NH_3}$ ਦੀ ਉਦਾਹਰਣ ਦੀ ਵਿਆਖਿਆ ਕਰਦੇ ਹਾਂ —

$$\begin{split} \mathrm{NH_4^+(aq)} + \mathrm{H_2O(l)} & \rightleftharpoons \mathrm{H_3O^+(aq)} + \mathrm{NH_3(aq)} \\ K_\mathrm{a} &= [\mathrm{H_3O^+][\ N\mathrm{H_3}]} \ / \ [\mathrm{NH_4^+]} = 5.6 \times 10^{-10} \\ \mathrm{NH_3(aq)} + \mathrm{H_2O(l)} & \rightleftharpoons \mathrm{NH_4^+(aq)} + \mathrm{OH^-(aq)} \\ K_\mathrm{b} &= [\mathrm{NH_4^+][\ O\mathrm{H}^-]} \ / \ \mathrm{NH_3} = 1.8 \times 10^{-5} \\ & \overleftarrow{\delta} \overleftarrow{c} : 2 \ \mathrm{H_2O(l)} & \rightleftharpoons \mathrm{H_3O^+(aq)} + \mathrm{OH^-(aq)} \\ K_\mathrm{w} &= [\mathrm{H_3O^+][\ O\mathrm{H}^-]} = 1.0 \times 10^{-14} \ \mathrm{M} \end{split}$$

 $K_{\rm a}$, ${
m NH_4^+}$ ਦਾ ਐਸਿਡ ਦੇ ਰੂਪ ਵਿੱਚ ਅਤੇ $K_{
m b}$, ${
m NH_3}$ ਦੀ ਖਾਰ ਦੇ ਰੂਪ ਵਿੱਚ ਸਮਰਥਾ ਦਰਸਾਉਂਦਾ ਹੈ। ਨੈੱਟ ਪ੍ਰਤੀ ਕਿਰਿਆ ਵਿੱਚ ਧਿਆਨ ਦੇਣ ਯੋਗ ਗੱਲ ਇਹ ਹੈ ਕਿ ਜੋੜੀ ਗਈ ਪ੍ਰਤੀਕਿਰਿਆ ਵਿੱਚ ਸੰਤੁਲਨ ਸਥਿਰ ਅੰਕ ਦਾ ਮਾਨ $K_{
m a}$ ਅਤੇ $K_{
m b}$ ਦੇ ਗੁਣਨਫਲ ਦੇ ਬਰਾਬਰ ਹੁੰਦਾ ਹੈ —

$$\begin{split} K_{_{\rm a}} \times K_{_{\rm b}} = \{ [\mathrm{H_{_3}O^+}][\ \mathrm{NH_{_3}}]\ /\ [\mathrm{NH_{_4}^+}\] \} \times \{ [\mathrm{NH_{_4}^+}\] \\ [\ \mathrm{OH^-}]\ /\ [\mathrm{NH_{_3}}] \} \end{split}$$

= $[H_3O^+][OH^-] = K_w$ = $(5.6 \times 10^{-10}) \times (1.8 \times 10^{-5}) = 1.0 \times 10^{-14} M$ 216

ਇਸ ਨੂੰ ਇਸ ਸਧਾਰਨੀ ਕਰਣ ਦੁਆਰਾ ਦੱਸਿਆ ਜਾ ਸਕਦਾ ਹੈ— ਦੋ ਜਾਂ ਜਿਆਦਾ ਪ੍ਰਤੀ ਕਿਰਿਆਵਾਂ ਨੂੰ ਜੋੜਨ ਤੇ ਉਨ੍ਹਾਂ ਦੀ ਨੈੱਟ ਪ੍ਰਤੀਕਿਰਿਆ ਦਾ ਸੰਤੁਲਨ ਅੰਕ ਹਰ ਇੱਕ ਪ੍ਰਤੀਕਿਰਿਆ ਦੇ ਸੰਤੁਲਨ ਸਥਿਰ ਅੰਕ ਦੇ ਗੁਣਨਫਲ ਦੇ ਬਰਾਬਰ ਹੁੰਦਾ ਹੈ।

$$K_{\overline{\alpha}\overline{c}} = K_1 \times K_2 \times \dots \tag{7.35}$$

ਇਸੇ ਤਰ੍ਹਾਂ ਸੰਯਗਮੀ ਤੇਜਾਬ ਥਾਰ ਯੂਗਮ ਦੇ ਲਈ

$$K_{\rm a} \times K_{\rm b} = K_{\rm w} \tag{7.36}$$

ਜੇ ਇੱਕ ਦਾ ਮਾਨ ਗਿਆਤ ਹੋਵੇ, ਤਾਂ ਦੂਜੇ ਦਾ ਗਿਆਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਇਹ ਧਿਆਨ ਦੇਣਾ ਚਾਹੀਦਾ ਹੈ ਕਿ ਪ੍ਬਲ ਐਸਿਡ ਦੀ ਸੰਯੁਗਮੀ ਖਾਰ ਦੁਰਬਲ ਅਤੇ ਦੁਰਬਲ ਤੇਜਾਬ ਦੀ ਸੰਯੁਗਮੀ ਖਾਰ ਪ੍ਰਬਲ ਹੁੰਦੀ ਹੈ।

ਦੂਜੇ ਤਰੀਕੇ ਨਾਲ ਉਪਰੋਕਤ ਸਮੀਕਰਣ $K_{_{
m w}}=K_{_{
m a}} imes K_{_{
m b}},$ ਨੂੰ ਖਾਰ ਵਿਯੋਜਨ ਸੰਤੁਲਿਤ ਅਵਸਥਾ ਪ੍ਤੀਕਿਰਿਆ ਤੋਂ ਵੀ ਅਸੀਂ ਪ੍ਰਾਪਤ ਕਰ ਸਕਦੇ ਹਾਂ –

$$B(aq) + H_0O(1) \rightleftharpoons BH^+(aq) + OH^-(aq)$$

$$K_{\rm b} = [{\rm BH}^{+}][{\rm OH}^{-}] / [{\rm B}]$$

ਕਿਉਂਕਿ ਪਾਣੀ ਦੀ ਸੰਘਣਤਾ ਸਥਿਰ ਰਹਿੰਦੀ ਹੈ, ਇੰਜ ਇਸ ਨੂੰ ਹਰ ਵਿੱਚੋਂ ਹਟਾ ਦਿੱਤਾ ਗਿਆ ਹੈ ਅਤੇ ਵਿਯੋਜਨ ਸਥਿਰ ਅੰਕ ਵਿੱਚ ਸ਼ਾਮਲ ਕਰ ਦਿੱਤਾ ਗਿਆ ਹੈ। ਉਪਰੋਕਤ ਸਮੀਕਰਣ ਨੂੰ [H⁺] ਨਾਲ ਗੁਣਾ ਕਰਨ ਅਤੇ ਭਾਗ ਦੇਣ ਨਾਲ :

$$\begin{split} K_{\rm b} &= [{\rm BH}^+][{\rm OH}^-][{\rm H}^+] \; / \; [{\rm B}][{\rm H}^+] \\ &= &\{ [\; {\rm OH}^-][{\rm H}^+]\} \{ [{\rm BH}^+] \; / \; [{\rm B}][{\rm H}^+] \} \\ &= &K_{\rm w} \; / \; K_{\rm a} \\ &\mapsto & K_{\rm a} \times K_{\rm b} = K_{\rm w} \end{split}$$

ਇਹ ਧਿਆਨ ਦੇਣ ਯੋਗ ਗੱਲ ਹੈ ਕਿ ਜੇ ਦੋਵੇਂ ਪਾਸੇ ਲੈਗਰਿਥਮ ਲਿਆ ਜਾਵੇ, ਤਾਂ ਸੰਯੁਗਮੀ ਐਸਿਡ ਅਤੇ ਖਾਰ ਦੇ ਮਾਨਾਂ ਨੂੰ ਸਬੰਧਿਤ ਕੀਤਾ ਸਕਦਾ ਹੈ—

$$pK_a + pK_b = pK_w = 14$$
 (298K ਉੱਤੇ)

ਉਦਾਹਰਣ 7.23

0.05M ਅਮੋਨੀਆ ਘੋਲ ਦੀ ਆਇਨਨ ਮਾਤਰਾ ਅਤੇ pH ਗਿਆਤ ਕਰੋ। ਅਮੋਨੀਆ ਦਾ ਆਇਨਨ ਸਥਿਰ ਅੰਕ ਦਾ ਮਾਨ ਸਾਰਣੀ 7.7 ਵਿੱਚ ਦਿੱਤਾ ਗਿਆ ਹੈ। ਅਮੋਨੀਆ ਦੇ ਸੰਯੁਗਮੀ ਤੇਜਾਬ ਦਾ ਆਇਨਨ ਸਥਿਰ ਅੰਕ ਵੀ ਗਿਆਤ ਕਰੋ।

ਹੱਲ

ਪਾਣੀ ਵਿੱਚ ਅਮੌਨੀਆ ਦਾ ਆਇਨਨ ਇਸ ਤਰ੍ਹਾਂ ਦਰਸਾਇਆ ਜਾ ਸਕਦਾ ਹੈ :

NH
$$_3$$
 + H $_2$ O \rightleftharpoons NH $_4^+$ + OH $^-$ (7.33) ਸਮੀਕਰਣ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਅਸੀਂ ਹਾਈਡਾੱਕਸਿਕ ਆਇਨ ਦੀ ਸੰਘਣਤਾ ਦੀ ਗਣਨਾ ਕਰ ਸਕਦੇ ਹਾਂ [OH $^-$] = c α = 0.05 α K_b = 0.05 α^2 / (1 $-\alpha$) α ਦਾ ਮਾਨ ਘੱਟ ਹੈ, ਇੰਜ ਸਮੀਕਰਣ ਵਿੱਚ ਸੱਜੇ ਪਾਸੇ ਦੇ ਹਰ 1 ਦੀ ਤੁਲਨਾ ਵਿੱਚ α ਨੂੰ ਨਾਮਾਤਰ ਮੰਨ ਸਕਦੇ ਹਾਂ ਇੰਜ K_b = c α^2 ਜਾਂ \Rightarrow α = $\sqrt{1.77 \times 10^{-5}}$ /0.05 = 0.018 [OH $^-$] = c α = 0.05 × 0.018 = 9.40 × 10 $^-$ 4M. [H $^+$] = K_w / [OH $^-$] = 10^{-14} / 9.4 × 10^{-4} = 1.06×10^{-11} pH = $-\log(1.06 \times 10^{-11})$ = 10.97 . ਸੰਯੁਗਮੀ ਤੇਜਾਬ ਖਾਰ ਯੁਗਮ ਦੇ ਲਈ ਸਬੰਧ ਵਰਤਨ ਤੇ K_a × K_b = K_w ਸਾਰਣੀ 7.7 ਤੋਂ ਪ੍ਰਾਪਤ NH $_3$ ਦੇ K_b ਦਾ ਮਾਨ ਰੱਖਣ ਦੇ ਅਸੀਂ NH $_4^+$ ਦੇ ਸੰਯੁਗਮੀ ਤੇਜਾਬ ਦੀ ਸੰਘਣਾ ਪ੍ਰਾਪਤ ਕਰ ਸਕਦੇ ਹਾਂ I K_a = K_w / K_b = 10^{-14} / 1.77×10^{-5} = 5.64×10^{-10} .

7.11.6 ਡਾਈ ਅਤੇ ਬਹੁ-ਬੇਸਿਕ ਤੇਜਾਬ ਅਤੇ ਡਾਈ ਅਤੇ ਬਹ-ਐਸਿਡੀ ਖਾਰਾਂ

ਆੱਰਜੈਲਿਕ ਐਸਿਡ, ਸਕਫਿਊਰਿਕ ਐਸਿਡ ਅਤੇ ਫਾਸਫੋਰਿਕ ਐਸਿਡ ਆਦਿ ਕੁਝ ਤੇਜਾਬਾਂ ਵਿੱਚ ਪ੍ਤੀ ਅਣੂ ਇੱਕ ਤੋਂ ਵੱਧ ਅਇਨਿਤ ਹੋਣ ਵਾਲੇ ਪ੍ਰੋਟਾੱਨ ਹੁੰਦੇ ਹਨ। ਅਜਿਹਾਂ ਤੇਜਾਬਾਂ ਨੂੰ ਬਹੁ ਬੇਸਿਕ ਜਾਂ ਪਾੱਲੀ ਪ੍ਰੋਟਿਕ ਤੇਜਾਬ ਦੇ ਨਾਂ ਨਾਲ ਜਾਣਿਆ ਜਾਂਦਾ ਹੈ। ਉਦਾਹਰਣ ਵਜੋਂ – ਡਾਈਬੇਸਿਕ ਤੇਜਾਬ H_2X ਦੇ ਲਈ ਆਇਨਨ ਪ੍ਤੀਕਿਰਿਆ ਹੇਠ ਲਿਖੇ ਸਮੀਕਰਣਾਂ ਦੁਆਰਾ ਦਰਸਾਈ ਜਾਂਦੀ ਹੈ—

$$H_2X(aq) \rightleftharpoons H^+(aq) + HX^-(aq)$$
 $HX^-(aq) \rightleftharpoons H^+(aq) + X^{2-}(aq)$
ਅਤੇ ਸੰਗਤ ਸੰਤੁਲਿਤ ਅਵਸਥਾ ਸਮੀਕਰਣ ਹੇਠ ਲਿਖੇ ਹਨ $-K_{a_1} = \{[H^+][HX^-]\} / [H_2X]$ ਅਤੇ

 $K_{\rm a_2} = \{ [{\rm H^+}][{\rm X^{2-}}] \} / [{\rm HX^-}]$

 $K_{\rm a_1}$ ਅਤੇ $K_{\rm a_2}$ ਨੂੰ ਤੇਜਾਬ $H_{\rm 2}$ X ਦਾ ਪਹਿਲਾ ਅਤੇ ਦੂਜਾ ਅਇਨਨ ਸਥਿਰ ਅੰਕ ਕਹਿੰਦੇ ਹਨ। ਇਸ ਤਰ੍ਹਾਂ $H_{\rm 3}{\rm PO}_4$ ਵਰਗੇ ਟ੍ਰਾਈਬੇਸਿਕ ਐਸਿਡ ਦੇ ਲਈ ਤਿੰਨ ਅਇਨਨ ਸਥਿਰ ਅੰਕ ਹਨ। ਕੁਝ ਪਾੱਲੀ ਪ੍ਰੋਟਿਕ ਐਸਿਡਾਂ ਦੇ ਆਇਨਨ–ਸਥਿਰ ਅੰਕਾਂ ਦੇ ਮਾਨ ਸਾਰਣੀ 7.8 ਵਿੱਚ ਅੰਕਿਤ ਹਨ।

Table 7.8 The Ionization Constants of Some Common Polyprotic Acids (298K)

ਤੇਜ਼ਾਬ	K _a	K _{a2}	K _a 3
ਆੱਗਜੈਲਿਕ ਐਸਿਡ	5.9×10^{-2}	6.4 × 10 ⁻⁵	
ਐਸਕਾੱਰਬਿਕ ਐਸਿਡ	7.4×10^{-4}	1.6×10^{-12}	
ਸਲਫਿਊਰਸ ਐਸਿਡ	1.7×10^{-2}	6.4×10^{-8}	
ਸਲਫਿਉਰਿਕ ਐਸਿਡ	Very large	1.2×10^{-2}	
ਕਾਰਬਾੱਨਿਕ ਐਸਿਡ	4.3×10^{-7}	5.6×10^{-11}	
ਸਿਟਰਿਕ ਐਸਿਡ	7.4×10^{-4}	1.7×10^{-5}	4.0×10^{-7}
ਫਾਸਫੋਰਿਕ ਐਸਿਡ	7.5×10^{-3}	6.2×10^{-8}	4.2 × 10 ⁻¹³

ਇਸ ਪਕ੍ਰਾਰ ਵੇਖਿਆ ਜਾ ਸਕਦਾ ਹੈ ਕਿ ਬਹੁ ਪੋਟਿਕ ਐਸਿਡਾ ਦੇ ਉੱਚ ਕੋਟੀ ਦੇ ਅਇਨਨ $\left(K_{\mathrm{a}_2},K_{\mathrm{a}_3}\right)$ ਸਥਿਰ ਅੰਕਾਂ ਦਾ ਮਾਨ ਨੀਵੀਂ ਕੋਟੀ ਦੇ ਅਇਨਨ ਸਥਿਰ ਅੰਕ $\left(K_{\mathrm{a}_1}\right)$ ਤੋਂ ਘੱਟ ਹੁੰਦੇ ਹਨ। ਇਸਦਾ ਕਾਰਣ ਇਹ ਹੈ ਕਿ ਸਥਿਰ ਬਿਜਲਈ-ਬਲਾਂ ਦੇ ਕਾਰਣ ਰਿਣਾਤਮਕ ਆਇਨ ਤੋਂ ਧਨਾਤਮਕ ਪ੍ਰੋਟਾੱਨ ਕੱਢਣਾ ਮੁਸ਼ਕਿਲ ਹੈ। ਇਸਨੂੰ ਅਣ ਚਾਰਜਿਤ $\mathrm{H_2CO_3}$ ਅਤੇ ਚਾਰਜਿਤ $\mathrm{HCO_3}^-$ ਵਿੱਚੋਂ ਪ੍ਰੋਟਾਨ ਨਿਸ਼ਕਾਸ਼ਿਤ ਕਰਨ ਲਈ ਵੇਖਿਆ ਜਾ ਸਕਦਾ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਦੋ-ਚਾਰਜਿਤ ਰਿਣਆਇਨ ਤੋਂ $\mathrm{H_2PO_4}^-$ ਦੀ ਤੁਲਨਾ ਵਿੱਚ ਪ੍ਰੋਟਾਨ ਦਾ ਨਿਸ਼ਕਾਸ਼ਨ ਕਰਨਾ ਮੁਸ਼ਕਿਲ ਹੁੰਦਾ ਹੈ।

ਬਹੁ ਪ੍ਰੋਟਿਕ ਤੇਜਾਬ ਘੋਲ ਵਿੱਚੋਂ ਤੇਜਾਬਾਂ ਦਾ ਮਿਸ਼ਰਣ ਹੁੰਦਾ ਹੈ। H_2A ਵਰਗੇ ਦੋ–ਪ੍ਰੋਟਿਕ ਤੇਜਾਬ ਦੇ ਲਈ H_2A , HA^- ਅਤੇ A^{2-} ਦਾ ਮਿਸ਼ਰਣ ਹੁੰਦਾ ਹੈ। ਪਹਿਲੀ ਪ੍ਤੀਕਿਰਿਆ ਵਿੱਚ H_2A ਦਾ ਵਿਯੋਜਨ ਅਤੇ H_3O^+ ਸ਼ਾਮਿਲ ਹੁੰਦਾ ਹੈ, ਜੋ ਵਿਯੋਜਨ ਦੇ ਪਹਿਲੇ ਸਟੈੱਪ ਤੋਂ ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ।

7.11.7 ਤੇਜਾਬ—ਤੀਬਰਤਾ (strength) ਨੂੰ ਪ੍ਰਭਾਵਿਤ ਕਰਨ ਵਾਲੇ ਕਾਰਕ

ਤੇਜਾਬ ਅਤੇ ਖਾਰਾਂ ਦੀ ਮਾਤਰਾਤਮਕ ਤੀਬਰਤਾ ਨੂੰ ਸਮਝਣ ਤੋਂ ਬਾਅਦ ਅਸੀਂ ਕਿਸੇ ਦਿੱਤੇ ਹੋਏ ਤੇਜਾਬ ਦੇ pH ਮਾਨ ਦੀ ਗਣਨਾ ਕਰ ਸਕਦੇ ਹਾਂ। ਪਰੰਤੂ ਇਹ ਉਤਸੁਕਤਾ ਪੈਦਾ ਹੁੰਦੀ ਹੈ ਕਿ ਕੁਝ ਤੇਜਾਬ ਦੂਜੇ ਤੇਜਾਬਾਂ ਦੀ ਤੁਲਨਾ ਵਿੱਚ ਪ੍ਰਬਲ ਕਿਉਂ ਹੁੰਦੇ ਹਨ ? ਇਨ੍ਹਾਂ ਨੂੰ ਵਧੇਰੇ ਪ੍ਰਬਲ ਬਨਾਉਣ ਵਾਲੇ ਕਾਰਕ ਕਿਹੜੇ ਹਨ ? ਇਸ ਦਾ ਉੱਤਰ ਇੱਕ ਮੁਸ਼ਕਿਲ ਤੱਥ ਹੈ। ਲੇਕਿਨ ਮੁੱਖ ਰੂਪ ਵਿੱਚ ਅਸੀਂ ਇਹ ਕਹਿ ਸਕਦੇ ਹਾਂ ਕਿ ਇੱਕ ਤੇਜਾਬ ਦੇ ਵਿਯੋਜਨ ਦੀ ਸੀਮਾ H-A ਬੰਧਨ ਦੀ ਸਮਰਥਾ ਅਤੇ ਧਰੁਵਣਤਾ ਉੱਤੇ ਨਿਰਭਰ ਕਰਦੀ ਹੈ।

ਆਮ ਤੌਰ ਤੇ ਜਦੋਂ H-A ਬੰਧਨ ਦੀ ਮਜਬੂਤੀ ਘਟਦੀ ਹੈ, ਅਰਥਾਤ ਬੰਧਨ ਦੇ ਵਿਯੋਜਨ ਵਿੱਚ ਲੋੜੀਂਦੀ ਊਰਜਾ ਘਟਦੀ ਹੈ ਤਾਂ HA ਦੀ ਤੇਜਾਬੀ ਤੀਬਰਤਾ ਵਧਦੀ ਹੈ। ਇਸੇ ਤਰ੍ਹਾਂ ਜਦੋਂ H-A ਬੰਧਨ ਵਧੇਰੇ ਧਰੁਵੀ ਹੁੰਦਾ ਹੈ, ਅਰਥਾਤ H ਅਤੇ A ਪਰਮਾਣੂਆਂ ਦੇ ਵਿੱਚ ਇਲੈਕਟ੍ਰੋਮੈਗੇਟਿਵਤਾ ਦਾ ਅੰਤਰ ਵਧਦਾ ਹੈ ਅਤੇ ਚਾਰਜ ਵੱਖ ਵੱਖ ਨਜਰ ਆਉਂਦਾ ਹੈ ਤਾਂ ਬੰਧਨ ਦਾ ਵਿਯੋਜਨ ਸਰਲ ਹੋ ਜਾਂਦਾ ਹੈ ਜੋ ਤੇਜਾਬੀਪਨ ਵਿੱਚ ਵਾਧਾ ਕਰਦਾ ਹੈ।

ਪਰੰਤੂ ਇਹ ਧਿਆਨ ਦੇਣ ਯੋਗ ਗੱਲ ਹੈ ਕਿ ਜਦ ਤੱਤ A ਅਵਰਤੀ ਸਾਰਣੀ ਦੇ ਉਸੇ ਗਰੁੱਪ ਦੇ ਤੱਤ ਹੋਣ ਤਾਂ ਬੰਧਨ ਦੀ ਧਰੁਵੀ ਪ੍ਰਕਿਰਤੀ ਦੀ ਤੁਲਨਾ ਵਿੱਚ H-A ਬੰਧਨ ਸਮਰਥਾ ਤੇਜਾਬੀਪਨ ਦੇ ਨਿਰਧਾਰਨ ਵਿੱਚ ਪ੍ਰਮੁੱਖ ਕਾਰਕ ਹੁੰਦਾ ਹੈ। ਗਰੁੱਪ ਵਿੱਚ ਹੇਠਾਂ ਵੱਲ ਜਾਣ ਤੇ ਜਿਉਂ ਜਿਉਂ A ਦਾ ਆਕਾਰ ਵਧਦਾ ਹੈ, ਤਿਉਂ ਤਿਉਂ H-A ਬੰਧਨ ਸਮਰਥਾ ਘਟਦੀ ਹੈ ਅਤੇ ਤੇਜਾਬ ਤੀਬਰਤਾ ਵਧਦੀ ਹੈ। ਉਦਾਹਰਣ ਵਜੋਂ —

ਤੇਜਾਬ ਤੀਬਰਤਾ ਵਿੱਚ ਵਾਧਾ ਕਿਸੇ ਤਰ੍ਹਾਂ H,S, H,O ਨਾਲੋਂ ਪ੍ਰਬਲ ਤੇਜਾਬ ਹੈ।

ਪਰੰਤੂ ਜਦੋਂ ਅਸੀਂ ਅਵਰਤੀ ਸਾਰਣੀ ਦੇ ਇੱਕ ਹੀ ਪੀਰੀਅਡ ਦੇ ਤੱਤਾਂ ਤੇ ਵਿਚਾਰ ਕਰਦੇ ਹਾਂ ਤਾਂ H-A ਬੰਧਨ ਦੀ ਧਰੁਵਣਤਾ ਤੇਜਾਬ-ਤੀਬਰਤਾ ਨੂੰ ਨਿਰਧਾਰਿਤ ਕਰਨ ਵਿੱਚ ਮਹੱਤਵਪੂਰਣ ਕਾਰਕ ਬਣ ਜਾਂਦੀ ਹੈ। ਜਿਉਂ ਜਿਉਂ A ਦੀ ਇਲੈਕਟ੍ਰੋਨੈਗੇਟਿਵਤਾ ਵਧਦੀ ਹੈ, ਤਿਉਂ ਤਿਉਂ ਤੇਜਾਬ ਦੀ ਤੀਬਰਤਾ ਵੀ ਵਧਦੀ ਹੈ। ਉਦਾਹਰਣ ਵਜੋਂ —

7.11.8 ਤੇਜਾਬਾਂ ਅਤੇ ਖਾਰਾਂ ਦੇ ਆਇਨਨ ਵਿੱਚ ਸਮ ਆਇਨ ਪਭਾਵ

ਆਓ, ਐਸਿਟਿਕ ਐਸਿਡ ਦੀ ਉਦਾਹਰਣ ਲਈਏ, ਜਿਸਦਾ ਵਿਯੋਜਨ ਇਸ ਸੰਤੁਲਿਤ ਅਵਸਥਾ ਦੁਆਰਾ ਪ੍ਰਦਰਸ਼ਿਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ —

 $CH_3COOH(aq) \rightleftharpoons H^+(aq) + CH_3COO^-(aq)$ $\overrightarrow{H}^{\dagger} HAc(aq) \rightleftharpoons H^+(aq) + Ac^-(aq)$ $K_a = [H^+][Ac^-] / [HAc]$

ਐਸਿਟਿਕ ਐਸਿਡ ਦੇ ਘੋਲ ਵਿੱਚ ਐਸੀਟੇਟ ਆਇਨ ਮਿਲਾਉਣ ਤੇ ਹਾਈਡ੍ਰੋਜਨ ਆਇਨਾਂ ਦੀ ਸੰਘਣਤਾ ਘਟਦੀ ਹੈ। ਇਸੇ ਤਰ੍ਹਾਂ ਜੇ ਬਾਹਰੀ ਸਰੋਤ ਤੋਂ H⁺ ਮਿਲਾਏ ਜਾਣ ਤਾਂ ਸੰਤੁਲਿਤ ਅਵਸਥਾ ਅਣ ਵਿਯੋਜਿਤ ਐਸਿਟਿਕ ਐਸਿਡ ਦੇ ਵੱਲ ਵਿਸਥਾਪਿਤ ਹੋ ਜਾਂਦੀ ਹੈ, ਅਰਥਾਤ ਉਸ ਦਿਸ਼ਾ ਵਿੱਚ ਅੱਗੇ ਵਧਦੀ ਹੈ ਜਿਸ ਨਾਲ H^{\dagger} ਸੰਘਣਤਾ ਘਟਦੀ ਹੈ। ਇਹ ਘਟਨਾ ਸਮ ਆਇਨ ਪ੍ਰਭਾਵ ਦੀ ਉਦਾਹਰਣ ਹੈ। ਕਿਸੇ ਅਜਿਹੇ ਪਦਾਰਥ ਦੇ ਮਿਲਣ ਨਾਲ ਜੋ ਵਿਘਟਨ ਸੰਤੁਲਨ ਵਿੱਚ ਪਹਿਲਾਂ ਹੀ ਮੌਜੂਦ ਆਇਨਿਕ ਸਪੀਸੀਜ ਨੂੰ ਹੋਰ ਉਪਲਬਧ ਕਰਵਾਕੇ ਸੰਤੁਲਿਤ ਅਵਸਥਾ ਨੂੰ ਵਿਵਸਥਾਪਿਤ ਕਰਦਾ ਹੈ ਉਹ ਸਮ ਆਇਨ ਪ੍ਰਭਾਵ ਅਖਵਾਉਂਦਾ ਹੈ।

ਇੰਜ ਅਸੀਂ ਕਹਿ ਸਕਦੇ ਹਾਂ ਕਿ ਸਮ ਆਇਨ ਪ੍ਰਭਾਵ ਦਾ ਸ਼ੈਟੇਲੀਅਰ ਸਿਧਾਂਤ ਉੱਤੇ ਅਧਾਰਿਤ ਹੈ ਜਿਸ ਨੂੰ ਅਸੀਂ ਭਾਗ 7.8 ਵਿੱਚ ਪੜ੍ਹ ਚੁਕੇ ਹਾਂ।

 $0.05 \mathrm{M}$ ਐਸੀਟੇਟ ਆਇਨ ਨੂੰ 0.05 ਐਸਿਟਿਕ ਐਸਿਡ ਵਿੱਚ ਮਿਲਾਉਣ ਤੇ pH ਦੀ ਗਣਨਾ ਅਸੀਂ ਇਸ ਪ੍ਰਕਾਰ ਕਰ ਸਕਦੇ ਹਾਂ -

 $K_a = [H^+][Ac^-]/[H Ac] = \{(0.05+x)(x)\}/(0.05-x)$ ਦੁਰਬਲ ਐਸਿਡ ਦੇ ਲਈ K_a ਘੱਟ ਹੁੰਦਾ ਹੈ, x<<0.05. ਇੰਜ $(0.05+x)\approx (0.05-x)\approx 0.05$ $1.8\times 10^{-5}=(x)\ (0.05+x)\ /\ (0.05-x)$ $=x(0.05)\ /\ (0.05)=x=[H^+]=1.8\times 10^{-5}M$

pH = $-\log(1.8 \times 10^{-5}) = 4.74$

 $[NH_3] = 0.10 - x \approx 0.10$

ਉਦਾਹਰਣ 7.24

 $0.10 \mathrm{M}$ ਅਮੋਨੀਆ ਘੋਲ ਦੀ pH ਪਤਾ ਕਰੋ। ਇਸ ਘੋਲ ਦੇ $50.0~\mathrm{mL}$ ਨੂੰ $0.10 \mathrm{M}$ ਦੇ HCl ਦੇ $25.0~\mathrm{mL}$ ਨਾਲ ਪ੍ਤੀਕਿਰਿਆ ਕਰਵਾਉਣ ਨਾਲ pH ਦੀ ਗਣਨਾ ਕਰੋ। ਅਮੋਨੀਆ ਦਾ ਵਿਯੋਜਨ ਸਥਿਰ ਅੰਕ $K_{\mathrm{b}}=1.77$ $\times~10^{-5}$ ਹੈ। ਹੱਲ

7.11.9 ਲੂਣਾਂ ਦਾ ਜਲ-ਅਪਘਟਨ ਅਤੇ ਇਨ੍ਹਾਂ ਘੋਲ ਦੀ ਸਮ

ਤੇਜਾਬਾਂ ਅਤੇ ਖਾਰਾਂ ਦੇ ਨਿਸ਼ਚਿਤ ਅਨੁਪਾਤ ਵਿੱਚ ਪ੍ਰਤੀਕਿਰਿਆ ਦੁਆਰਾ ਬਣਾਏ ਗਏ ਲੂਣਾਂ ਦਾ ਪਾਣੀ ਵਿੱਚ ਅਇਨਨ ਹੁੰਦਾ

pH = 9.24

ਹੈ। ਅਇਨਨ ਦੁਆਰਾ ਬਣੇ ਧਨ ਆਇਨ ਰਿਣ ਆਇਨ ਜਲੀ ਘੋਲ ਵਿੱਚ ਜਲ ਯੋਜਿਤ ਹੁੰਦੇ ਹਨ ਜਾਂ ਪਾਣੀ ਨਾਲ ਪ੍ਰਤੀਕਿਰਿਆ ਕਰਕੇ ਅਪਣੀ ਪ੍ਰਕਿਰਤੀ ਦੇ ਅਨੁਸਾਰ ਤੇਜਾਬ ਜਾਂ ਖਾਰ ਦਾ ਮੁੜ ਉਤਪਾਦਨ ਕਰਦੇ ਹਨ। ਪਾਣੀ ਅਤੇ ਧਨ ਆਇਨ ਜਾਂ ਰਿਣਆਇਨ ਜਾਂ ਦੋਵਾਂ ਤੋਂ ਹੋਣ ਵਾਲੀ ਅੰਤਰ ਕਿਰਿਆ ਨੂੰ 'ਜਲ ਅਪਘਟਨ' (hydrolysis) ਕਹਿੰਦੇ ਹਨ। ਇਸ ਅੰਤਰ ਕਿਰਿਆ ਵਿੱਚ pH ਪ੍ਰਭਾਵਿਤ ਹੁੰਦੀ ਹੈ। ਪ੍ਰਬਲ ਖਾਰਾਂ ਦੁਆਰਾ ਦਿੱਤੇ ਗਏ ਧਨ ਆਇਨ (ਉਦਾਹਰਣ ਵਜੋਂ – Na^+ , K^+ , Ca^{2+} , Ba^{2+} , ਆਦਿ) ਅਤੇ ਪ੍ਰਬਲ ਤੇਜਾਬਾਂ ਦੁਆਰਾ ਦਿੱਤੇ ਗਏ ਰਿਣ ਆਇਨ (ਉਦਾਹਰਣ ਵਜੋਂ – Cl^- , Br^- , NO_3^- , ClO_4^- ਆਦਿ) ਕੇਵਲ ਜਲ ਯੋਜਿਤ ਹੁੰਦੇ ਹਨ। ਇਸ ਲਈ ਪ੍ਰਬਲ ਤੇਜਾਬਾਂ ਅਤੇ ਪ੍ਰਬਲ ਖਾਰਾਂ ਤੋਂ ਬਣੇ ਲੂਣਾਂ ਦੇ ਘੋਲ ਉਦਾਸੀਨ ਹੁੰਦੇ ਹਨ। ਭਾਵ ਉਨ੍ਹਾਂ ਦੀ $\mathrm{pH7}$ ਹੁੰਦੀ ਹੈ। ਭਾਵੇਂ ਦੁਜੀਆਂ ਕਿਸਮਾਂ ਦੇ ਲੂਣਾਂ ਦਾ ਜਲ ਅਪਘਟਨ ਹੁੰਦਾ ਹੈ।

ਹੁਣ ਅਸੀਂ ਹੇਠ ਲਿਖੇ ਲੂਣਾਂ ਦੇ ਜਲ-ਅਪਘਟਨ (hydrolysis) ਉੱਤੇ ਵਿਚਾਰ ਕਰਦੇ ਹਾਂ :

- (i) ਦੁਰਬਲ ਤੇਜਾਬਾਂ ਅਤੇ ਪ੍ਰਬਲ ਖਾਰਾਂ ਦੇ ਲੂਣ, ਉਦਾਹਰਣ ਵਜੋਂ— CH₂COONa
- (ii) ਪ੍ਰਬਲ ਤੇਜਾਬਾਂ ਅਤੇ ਦੁਰਬਲ ਖਾਰਾਂ ਦੇ ਲੂਣ, ਉਦਾਹਰਣ ਵਜੋਂ— NH₄Cl ਅਤੇ
- (iii) ਦੁਰਬਲ ਤੇਜਾਬਾਂ ਅਤੇ ਦੁਰਬਲ ਖਾਰਾਂ ਦੇ ਲੂਣ, ਉਦਾਹਰਣ ਵਜੋਂ— CH₃COONH₄.

ਪਹਿਲੀ ਉਦਾਹਰਣ ਵਿੱਚ $\mathrm{CH_{3}COONa}$, ਦੁਰਬਲ ਤੇਜਾਬ $\mathrm{CH_{3}COOH}$ ਅਤੇ ਪ੍ਬਲ ਖਾਰ NaOH ਦਾ ਲੂਣ ਹੈ, ਜੋ ਜਲੀ ਘੋਲ ਵਿੱਚ ਪੂਰਣ ਰੂਪ ਵਿੱਚ ਆਇਨਤ ਹੋ ਜਾਂਦਾ ਹੈ।

 $CH_3COONa(aq) \rightarrow CH_3COO^-(aq) + Na^+(aq)$

ਇਸ ਪ੍ਕਾਰ ਬਣੇ ${\rm CH_3COO^-}$ ਆਇਨ ਪਾਣੀ ਦੇ ਨਾਲ ਜਲਅਪਘਟਿਤ ਹੋ ਕੇ ਐਸਿਟਿਕ ਐਸਿਡ ਅਤੇ ${\rm OH^-}$ ਦਾ ਨਿਰਮਾਣ ਕਰਦੇ ਹਨ -

 $CH_3COO^-(aq)+H_2O(l) \rightleftharpoons CH_3COOH(aq)+OH^-(aq)$

ਐਸਿਟਿਕ ਐਸਿਡ ਇੱਕ ਦੁਰਬਲ ਤੇਜਾਬ ਹੈ ($K_{\rm a}=1.8 imes 10^{-5}$), ਜੋ ਘੋਲ ਵਿੱਚ ਅਣਆਇਨਿਤ ਹੀ ਰਹਿੰਦਾ ਹੈ। ਇਸ ਦੇ ਕਾਰਣ ਘੋਲ ਵਿੱਚ ${\rm OH^-}$ ਆਇਨਾਂ ਦੀ ਸੰਘਣਤਾ ਵਿੱਚ ਵਾਧਾ ਹੋ ਜਾਂਦਾ ਹੈ, ਜੋ ਘੋਲ ਨੂੰ ਖਾਰਾ ਬਣਾਉਂਦਾ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਬਣੇ ਘੋਲ ਦੀ ${\rm pH}$ 7 ਤੋਂ ਜਿਆਦਾ ਹੁੰਦੀ ਹੈ।

ਇਸੇ ਤਰ੍ਹਾਂ ਦੁਰਬਲ ਖਾਰ $\mathrm{NH_4OH}$ ਅਤੇ ਪ੍ਰਬਲ ਤੇਜਾਬ HCl ਤੋਂ ਬਣਿਆ $\mathrm{NH_4Cl}$ ਪਾਣੀ ਵਿੱਚ ਪੂਰਣ ਰੂਪ ਵਿੱਚ ਅਇਨਿਤ ਹੋ ਜਾਂਦਾ ਹੈ।

 $NH_4Cl(aq) \rightarrow NH_4^+(aq) + Cl^-(aq)$

ਅਮੋਨੀਆ ਆਇਨਾਂ NH_4^+ ਦਾ ਜਲਅਪਘਟਨ ਹੋਣ ਨਾਲ $\mathrm{NH}_4\mathrm{OH}$ ਅਤੇ H^+ ਬਣਦੇ ਹਨ।

 $NH_4^+(aq) + H_2O(1) \rightleftharpoons NH_4OH(aq) + H^+(aq)$

ਅਮੋਨੀਆ ਹਾਈਡ੍ਰੋਕਸਾਈਡ ($K_{_{\! \mathrm{D}}} = 1.77 imes 10^{-5}$) ਇੱਕ ਦੁਰਬਲ ਖਾਰ ਹੈ। ਇਹ ਘੋਲ ਵਿੱਚ ਅਣ−ਆਇਨਿਤ ਰਹਿੰਦੀ ਹੈ। ਇਸ ਦੇ ਪਰਿਣਾਮ ਸਰੂਪ ਘੋਲ ਵਿੱਚ H^+ ਆਇਨ ਸੰਘਣਤਾ ਵਧ ਜਾਂਦੀ ਹੈ ਅਤੇ ਘੋਲ ਨੂੰ ਤੇਜਾਬੀ ਬਣਾ ਦਿੰਦਾ ਹੈ। ਇੰਜ $\mathrm{NH_4Cl}$ ਦੇ ਪਾਣੀ ਵਿੱਚ ਘੋਲ ਦੀ $\mathrm{pH}\ 7$ ਤੋਂ ਘੱਟ ਹੋਵੇਗੀ।

ਦੁਰਬਲ ਤੇਜਾਬ ਅਤੇ ਦੁਰਬਲ ਖਾਰ ਦੁਆਰਾ ਬਣਾਏ ਗਏ ਲੂਣ ${\rm CH_3COONH_4}$ ਦੇ ਜਲ ਅਪਘਟਨ ਨੂੰ ਵੇਖੋ। ਇਸ ਦੇ ਦੁਆਰਾ ਦਿੱਤੇ ਗਏ ਆਇਨਾਂ ਦਾ ਅਪਘਟਨ ਇਸ ਤਰ੍ਹਾਂ ਹੁੰਦਾ ਹੈ —

$$CH_3COO^- + NH_4^+ + H_2O \rightleftharpoons CH_3COOH + NH_4OH$$

 ${
m CH_3COOH}$ ਅਤੇ ${
m NH_4OH}$ ਅੰਸ਼ਿਕ ਰੂਪ ਵਿੱਚ ਇਸ ਤਰ੍ਹਾਂ ਆਇਨੀਕਿਤ ਰਹਿੰਦੇ ਹਨ -

$$CH_3COOH \implies CH_3COO^- + H^+$$
 $NH_4OH \implies NH_4^+ + OH^ H_2O \implies H^+ + OH^-$

ਵਿਸਥਾਰ ਵਿੱਚ ਗਣਨਾ ਕੀਤੇ ਬਿਨਾਂ ਕਿਹਾ ਜਾ ਸਕਦਾ ਹੈ ਕਿ ਜਲ ਅਪਘਟਨ ਦੀ ਮਾਤਰਾ ਘੋਲ ਦੀ ਸੰਘਣਤਾ ਤੋਂ ਸੁਤੰਤਰ ਹੁੰਦੀ ਹੈ ਇੰਜ ਘੋਲ ਦੀ pH ਹੈ—

$$pH = 7 + \frac{1}{2} (pK_a - pK_b)$$
 (7.38)

ਘੋਲ ਦੀ pH 7 ਤੋਂ ਵੱਧ ਹੋਵੇਗੀ, ਜੇ ਅੰਤਰ ਧਨਾਤਮਕ ਹੋਵੇ ਅਤੇ pH 7 ਤੋਂ ਘੱਟ ਹੋਵੇਗੀ ਜੇ ਅੰਤਰ ਰਿਣਾਤਮਕ ਹੋਵੇ—

ਉਦਾਹਰਣ 7.25

ਐਸਿਟਿਕ ਐਸਿਡ ਦੀ pK_a ਅਤੇ ਅਮੌਨੀਅਮ ਹਾਈਡ੍ਰਾੱਕਸਾਈਡ ਦਾ pK_b ਕ੍ਰਮਵਾਰ 4.76 ਅਤੇ 4.75 ਹੈ। ਅਮੌਨੀਆ ਐਸੀਟੇਟ ਘੋਲ ਦੀ pH ਪਤਾ ਕਰੋ।

ਜੱ ਲ

$$pH = 7 + \frac{1}{2} [pK_a - pK_b]$$

$$= 7 + \frac{1}{2} [4.76 - 4.75]$$

$$= 7 + \frac{1}{2} [0.01] = 7 + 0.005 = 7.005$$

7.12 ਬਫਰ ਘੋਲ

ਸਰੀਰ ਵਿੱਚ ਮੌਜੂਦ ਕਈ ਤਰਲ (ਉਦਾਹਰਣ ਵਜੋਂ-ਖੂਣ ਜਾਂ ਖੂਤਰ) ਦੀਆਂ ਨਿਸ਼ਚਿਤ pH ਹੁੰਦੀਆਂ ਹਨ। ਇਨ੍ਹਾਂ ਦੀ pH ਵਿੱਚ ਹੋਇਆ ਪਰਿਵਰਤਨ ਸਰੀਰ ਦੇ ਠੀਕ ਤਰ੍ਹਾਂ ਕੰਮ ਨਾ ਕਰਨ (malfunctioning) ਦਾ ਸੂਚਕ ਹੈ। ਕਈ ਰਸਾਇਣਿਕ ਅਤੇ ਜੈਵਿਕ ਪ੍ਤੀਕਿਰਿਆਵਾਂ ਵਿੱਚ ਵੀ pH ਦਾ ਨਿਯੰਤਰਣ ਬਹੁਤ ਮਹੱਤਵ ਪੂਰਣ ਹੁੰਦਾ ਹੈ। ਕਈ ਦਵਾਈਆਂ ਅਤੇ ਸ਼ਿੰਗਾਰ ਦੇ ਸਮਾਨ (cosmetic formulations) ਨੂੰ ਕਿਸੇ ਵਿਸ਼ੇਸ਼ pH ਤੇ ਰੱਖਿਆ ਜਾਂਦਾ ਹੈ ਅਤੇ ਸਰੀਰ ਵਿੱਚ ਦਾਖਲ ਕਰਵਾਇਆ ਜਾਂਦਾ ਹੈ। ਅਜਿਹੇ ਘੋਲ, ਜਿਨ੍ਹਾਂ ਦੀ pH ਹਲਕਾ ਕਰਨ ਜਾਂ ਤੇਜਾਬ ਜਾਂ ਖਾਰ ਦੀ ਥੋੜੀ ਮਾਤਰਾ ਵਿੱਚ ਮਿਲਾਉਣ ਦੇ ਬਾਅਦ ਵੀ ਅਣਪਰਿਵਰਤਿਤ ਰਹਿੰਦੀ ਹੈ। ਬਫਰ ਘੋਲ ਅਖਵਾਉਂਦੇ ਹਨ। ਗਿਆਤ pH ਦੇ ਘੋਲ ਦੇ ਤੇਜਾਬ ਨੂੰ pK_a ਅਤੇ ਖਾਰ ਦੇ pK_b

ਦੇ ਮਾਨਾਂ ਅਤੇ ਤੇਜਾਬਾਂ ਅਤੇ ਲੂਣਾਂ ਦੇ ਅਨੁਪਾਤ ਜਾਂ ਖਾਰਾਂ ਅਤੇ ਲੂਣਾਂ ਦੇ ਅਨੁਪਾਤ ਦੇ ਨਿਯੰਤਰਣ ਦੁਆਰਾ ਬਣਾਉਂਦੇ ਹਨ। ਐਸਿਟਿਕ ਐਸਿਡ ਅਤੇ ਸੋਡੀਅਮ ਐਸੀਟੇਟ ਦਾ ਮਿਸ਼ਰਣ ਲਗਪਗ pH 4.75 ਦਾ ਬਫਰ ਘੋਲ ਦਿੰਦਾ ਹੈ ਅਤੇ ਅਮੋਨਿਅਮ ਕਲੋਰਾਈਡ ਅਤੇ ਅਮੋਨਿਅਮ ਹਾਈਡਾਕਸਾਈਡ ਦਾ ਮਿਸ਼ਰਣ pH 9.25 ਦਿੰਦਾ ਹੈ। ਬਫਰ ਘੋਲਾਂ ਦੇ ਬਾਰੇ ਵਿੱਚ ਉਚੀਆਂ ਜਮਾਤਾਂ ਵਿੱਚ ਅਸੀਂ ਹੋਰ ਵਧੇਰੇ ਪੜ੍ਹਾਂਗੇ।

7.13 ਬਹੁਤ ਘੱਟ ਘੁਲਣਸ਼ੀਲ ਲੂਣਾ ਦੀ ਘੁਲਣਸ਼ੀਲਤਾ ਸੰਤੁਲਿਤ ਅਵਸਥਾ

ਸਾਨੂੰ ਪਤਾ ਹੈ ਕਿ ਪਾਣੀ ਵਿੱਚ ਅਇਨਿਕ ਠੋਸਾਂ ਦੀ ਘੁਲਣਸ਼ੀਲਤਾ ਵਿੱਚ ਬਹੁਤ ਅੰਤਰ ਰਹਿੰਦਾ ਹੈ। ਇਨ੍ਹਾਂ ਵਿੱਚੋਂ ਕੁਝ ਤਾਂ ਐਨੇਂ ਜਿਆਦਾ ਘਲਣਸ਼ੀਲ (ਜਿਵੇਂ ਕੈਲਸ਼ਿਅਮ ਕਲੋਰਾਈਡ) ਹਨ ਕਿ ਉਨ੍ਹਾਂ ਦੀ ਪ੍ਰਕਿਰਤੀ ਹਾਈ ਗਰੋਸ਼ੋਪਿਕ ਹੈ ਅਤੇ ਵਾਯੂਮੰਡਲ ਵਿੱਚੋਂ ਜਲਵਾਸ਼ਪ ਸੋਖ ਲੈਂਦੇ ਹਨ।ਕੁਝ ਹੋਰ (ਜਿਵੇਂ ਲੀਥਿਅਮ ਫਲੋਰਾਈਡ) ਦੀ ਘੁਲਣਸ਼ੀਲਤਾ ਘੱਟ ਹੈ ਕਿ ਇਨ੍ਹਾਂ ਨੂੰ ਆਮ ਤੌਰ ਤੇ ਅਘੁੱਲ ਕਹਿੰਦੇ ਹਨ। ਘੁਲਣਸ਼ੀਲਤਾ ਲਈ ਗੱਲਾਂ ਤੇ ਨਿਰਭਰ ਕਰਦੀ ਹੈ, ਜਿਨ੍ਹਾਂ ਵਿੱਚੋਂ ਮੁੱਖ ਹਨ- ਲੂਣ ਦੀ ਲੈਟਿਸ ਐਨਥੈਲਪੀ (lattice enthalpy) ਅਤੇ ਘੋਲ ਵਿੱਚ ਅਇਨਾਂ ਦੀ ਸਾੱਲਵੇਸ਼ਨ ਐਨਥੈਲਪੀ (solvation enthalpy)। ਇੱਕ ਲੂਣ ਨੂੰ ਘੋਲਕ ਵਿੱਚ ਘੋਲਣ ਦੇ ਲਈ ਆਇਨਾਂ ਦੇ ਵਿੱਚ ਪ੍ਰਬਲ ਅਕਰਸ਼ਣ ਬਲ (lattice enthalpy) ਨਾਲੋਂ ਆਇਨ-ਘੋਲਕ ਅੰਤਰ ਕਿਰਿਆ ਵੱਧ ਹੋਣੀ ਚਾਹੀਦੀ ਹੈ। ਆਇਨਾਂ ਦੀ ਸਾੱਵਵੇਸ਼ਨ ਐਨਥੈਲਪੀ ਹਮੇਸ਼ਾ ਰਿਣਾਤਮਕ ਹੁੰਦੀ ਹੈ। ਇੰਜ ਸਾੱਲਵੇਸ਼ਨ ਪ੍ਰਕਿਰਿਆ ਵਿੱਚ ਉਰਜਾ ਮੁਕਤ ਹੁੰਦੀ ਹੈ। ਸਾੱਲਵੇਸ਼ਣ ਉਰਜਾ ਦੀ ਮਾਤਰਾ ਘੋਲਕ ਦੀ ਪ੍ਰਕਿਰਤੀ ਉੱਤੇ ਨਿਰਭਰ ਕਰਦੀ ਹੈ। ਅਧਰੂਵੀ (ਸਹਿਸੰਯੋਜਕ) ਘੋਲਕ ਵਿੱਚ ਸਾੱਲਵੇਸ਼ਨ ਐਨਸ਼ੈਲਪੀ ਦੀ ਮਾਤਰਾ ਘੱਟ ਹੁੰਦੀ ਹੈ, ਜੋ ਲੂਣ ਦੀ ਲੈਟਿਸ ਐਨਥੈਲਪੀ ਨੂੰ ਸਰ (overcome) ਕਰਨ ਵਿੱਚ ਸਮਰਥ ਨਹੀਂ ਨਤੀਜੇ ਵਜੋਂ ਅਪਰੂਵੀ ਘੋਲਕ ਵਿੱਚ ਨਹੀਂ ਘੁਲਦਾ ਹੈ। ਜੇ ਕੋਈ ਲੂਣ ਇਕ ਸਧਾਰਣ ਨਿਯਮ ਨਾਲ ਪਾਣੀ ਵਿੱਚ ਘੁਲ ਸਕਦਾ ਹੈ ਤਾਂ ਇਸਦੀ ਸਾੱਲਵੇਸ਼ਕ ਐਨਥੈਲਪੀ ਲੂਣ ਦੀ ਲੈਟਿਸ ਐਨਥੈਲਪੀ ਤੋਂ ਵੱਧ ਹੋਣੀ ਚਾਹੀਦੀ ਹੈ। ਹਰ ਇੱਕ ਲੂਣ ਦੀ ਇੱਕ ਲੱਛਣੀ ਘੁਲਣਸ਼ੀਲਤਾ ਹੁੰਦੀ ਹੈ, ਜੋ ਤਾਪਮਾਨ ਉਤੇ ਨਿਰਭਰ ਕਰਦੀ ਹੈ। ਹਰ ਇੱਕ ਲੂਣ ਦੀ ਆਪਣੀ ਵਿਸ਼ਿਸ਼ਟ ਘੁਲਣਸ਼ੀਲਤਾ ਹੁੰਦੀ ਹੈ। ਇਹ ਤਾਪਮਾਨ ਉੱਤੇ ਨਿਰਭਕਰ ਕਰਦੀ ਹੈ। ਅਸੀਂ ਲੂਣਾ ਨੂੰ ਉਨ੍ਹਾਂ ਦੀ ਘੁਲਣਸ਼ੀਲਤਾ ਦੇ ਅਧਾਰ ਤੇ ਉੱਤੇ ਤਿੰਨ ਗਰੱਪਾਂ ਵਿੱਚ ਵੰਡਦੇ ਹਾਂ—

ਗਰੁੱਪ I	ਘੁਲਣਸ਼ੀਲ	ਘੁਲਣਸ਼ੀਲਤਾ > 0.1M
ਗਰੁੱਪ II	ਕੁਝ ਘੱਟ ਘੁਲਣਸ਼ੀਲ	0.01M < ਘੁਲਣਸ਼ੀਲਤਾ < 0.1M
ਗਰੁੱਪ III	ਬਹੁਤ ਘੱਟ ਘੁਲਣਸ਼ੀਲ	ਘੁਲਣਸ਼ੀਲਤਾ < 0.01M

ਹੁਣ ਅਸੀਂ ਬਹੁਤ ਘੱਟ ਘੁਲਣਸ਼ੀਲ ਆਇਨਿਕ ਲੂਣ ਅਤੇ ਇਸਦੇ ਸੰਤ੍ਰਿਪਤ ਜਲੀ ਘੋਲ ਦੇ ਵਿੱਚ ਸੰਤੁਲਿਤ ਅਵਸਥਾ ਉੱਤੇ ਵਿਚਾਰ ਕਰਾਂਗੇ।

7.13.1 ਘੁਲਣਸ਼ੀਲਤਾ ਗੁਣਨਫਲ ਸਥਿਰ ਅੰਕ

ਆਓ ਬੇਰਿਅਮ ਸਲਫੇਟ ਠੋਸ ਵਰਗੇ ਲੂਣ, ਜੋ ਇਸਦੇ ਸੰਤ੍ਰਿਪਤੀ ਜਲੀ ਘੋਲ ਦੇ ਸੰਪਰਕ ਵਿੱਚ ਹੈ, ਉੱਤੇ ਵਿਚਾਰ ਕਰੀਏ। ਅਘੁੱਲ ਠੋਸ ਅਤੇ ਇਸ ਦੇ ਸੰਤ੍ਰਿਪਤ ਘੋਲ ਵਿੱਚ ਆਇਨ ਦੇ ਵਿੱਚ ਸੰਤੁਲਿਤ ਅਵਸਥਾ ਨੂੰ ਹੇਠ ਲਿਖੇ ਸਮੀਕਰਣ ਦੁਆਰਾ ਪ੍ਰਦਰਸ਼ਿਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ —

$$\mathrm{BaSO_4}(s)$$
 $\stackrel{\mathrm{\hat{H}}\mathrm{\bar{5}}\mathrm{V}\mathrm{S}}{\leftarrow}$ $\mathrm{Ba^{2+}(aq)} + \mathrm{SO_4^{2-}(aq)},$

ਸੰਤੁਲਨ ਸਥਿਰ ਅੰਕ ਹੇਠ ਲਿਖੇ ਸਮੀਕਰਣ ਦੁਆਰਾ ਪ੍ਰਦਰਸ਼ਿਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ—

 $K = \{[Ba^{2+}][SO_4^{2-}]\} / [BaSO_4]$

ਸ਼ੁੱਧ ਠੋਸ ਪਦਾਰਥ ਦੀ ਸੰਘਣਤਾ ਸਥਿਰ ਹੁੰਦੀ ਹੈ ਇਸ ਲਈ

$$K_{sp} = K[BaSO_4] = [Ba^{2+}][SO_4^{2-}]$$
 (7.39)

 $K_{\rm sp}$ ਨੂੰ ਘੁਲਣਸ਼ੀਲਤਾ ਗੁਣਨਫਲ ਸਥਿਰ ਅੰਕ ਜਾਂ ਘੁਲਣਸ਼ੀਲਤਾ ਗੁਣਨਫਲ ਕਹਿੰਦੇ ਹਨ। ਉਪਰੋਕਤ ਸਮੀਕਰਣ ਵਿੱਚ $K_{\rm sp}$ ਦਾ ਪ੍ਯੋਗਿਕਮਾਨ $298{\rm K}$ ਉੱਤੇ 1.1×10^{-10} ਹੈ। ਇਸਦਾ ਅਰਥ ਇਹ ਹੈ ਕਿ ਠੋਸ ਬੇਰਿਅਮ ਸਲਫੇਟ, ਜੋ ਆਪਣੇ ਸੰਤ੍ਰਪਤ ਘੋਲ ਦੇ ਨਾਲ ਸੰਤੁਲਿਤ ਅਵਸਥਾ ਵਿੱਚ ਹੈ, ਦੇ ਲਈ ਬੇਰਿਅਮ ਅਤੇ ਸਲਫੇਟ ਆਇਨਾਂ ਦੀਆਂ ਸੰਘਣਤਾਵਾਂ ਦਾ ਗੁਣਨਫਲ ਇਸ ਦੇ ਘੁਲਣਸ਼ੀਲਤਾ–ਗੁਣਨਫਲ ਸਥਿਰ ਅੰਕ ਦੇ ਤੁੱਲ ਹੁੰਦਾ ਹੈ। ਇਨ੍ਹਾਂ ਦੋਵਾਂ ਆਇਨਾਂ ਦੀ ਸੰਘਣਤਾ ਬੇਰਿਅਮ ਸਲਫੇਟ ਦੀ ਮੋਲਰ–ਘੁਲਣਸ਼ੀਲਤਾ ਦੇ ਬਰਾਬਰ ਹੋਵੇਗੀ। ਜੇ ਮੋਲਰ ਘਲਣਸ਼ੀਲਤਾ 'S' ਹੋਵੇ ਤਾਂ

$$1.1 \times 10^{-10} = (S)(S) = S^2$$

ਜਾਂ $S = 1.05 \times 10^{-5}$.

ਇਸ ਪ੍ਰਕਾਰ ਬੇਰਿਅਮ ਸਲਫੇਟ ਦੀ ਮੋਲਰ ਘੁਲਣਸ਼ੀਲਤਾ $1.05 \times 10^{-5} \; \mathrm{mol} \; \mathrm{L}^{-1}$ ਹੋਵੇਗੀ।

ਕੋਈ ਲੂਣ ਵਿਯੋਜਨ ਦੇ ਫਲਸਰੂਪ ਭਿੰਨ ਭਿੰਨ ਚਾਰਜਾਂ ਵਾਲੇ ਦੋ ਜਾਂ ਤਿੰਨ (ਦੋ ਤਾਂ ਵੱਧ) ਰਿਣਆਇਨ ਜਾਂ ਧਨ ਆਇਨ ਦੇ ਸਕਦਾ ਹੈ। ਉਦਾਹਰਣ ਦੇ ਲਈ— ਆਓ, ਅਸੀਂ ਜਰਕੋਨਿਅਮ ਫਾੱਸਫੇਟ $({\rm Zr}^{4+})_3({\rm PO_4}^{3-})_4$ ਵਰਗੇ ਲੂਣ ਉੱਤੇ ਵਿਚਾਰ ਕਰੀਏ, ਜੋ ਚਾਰ ਧਨ ਚਾਰਜ ਵਾਲੇ ਤਿੰਨ ਜਰਕੋਨਿਅਮ ਆਇਨਾਂ ਅਤੇ ਤਿੰਨ ਰਿਣ ਚਾਰਜ ਵਾਲੇ ਚਾਰ ਫਾਸਫੇਟ ਰਿਣਆਇਨਾਂ ਵਿੱਚ ਵਿਯੋਜਿਤ ਹੁੰਦਾ ਹੈ। ਜੇ ਜਰਕੋਨਿਅਮ ਫਾੱਸਫੇਟ ਦੀ ਮੋਲਰ ਘੁਲਣਸ਼ੀਲਤਾ 'S' ਹੋਵੇ ਤਾਂ ਇਸ ਯੋਗਿਕ ਦੇ ਸਟੋਕਿਓਮੀਟਰਿਕ ਅਨਪਾਤ ਦੇ ਅਨਸਾਰ

$$[Zr^{4+}]=3S$$
 ਅਤੇ $[PO_4^{3-}]=4S$ ਹੋਣਗੇ ਇੰਜ $K_{\rm sp}=(3S)^3~(4S)^4=6912~(S)^7$ ਜਾਂ $S=\{K_{\rm sp}~/~(3^3\times 4^4)\}^{1/7}=(K_{\rm sp}~/~6912)^{1/7}$

ਜੇ ਕਿਸੇ ਠੋਸ ਲੂਣ, ਜਿਸ ਦਾ ਸਧਾਰਣ ਸੂਤਰ $M_x^{p+} X_y^{q-}$ ਹੋਵੇ, ਜੇ ਆਪਣੇ ਸੰਤ੍ਰਿਪਤ ਘੋਲ ਦੇ ਨਾਲ ਸੰਤੁਲਿਤ ਅਵਸਥਾ ਵਿੱਚ ਹੋਵੇ ਅਤੇ ਜਿਸਦੀ ਮੋਲਰ ਘੁਲਣਸ਼ੀਲਤਾ 'S' ਹੋਵੇ ਨੂੰ ਹੇਠ ਲਿਖੇ ਸਮੀਕਰਣ ਦੁਆਰਾ ਵਿਅਕਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ — $M_x X_y(s) \rightleftharpoons x M^{p+}(aq) + y X^{q-}(aq)$ (ਇੱਥੇ $x \times p^+ = y \times q^-$)

ਅਤੇ ਇਸਦੀ ਘੁਲਣਸ਼ੀਲਤਾ ਗੁਣਨਫਲ ਸਥਿਰ ਅੰਕ ਹੇਠ ਲਿਖੇ ਸਮੀਕਰਣ ਦੁਆਰਾ ਵਿਅਕਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ —

$$K_{sp} = [M^{p+}]^{x}[X^{q-}]^{y} = (xS)^{x}(yS)^{y}$$

$$= x^{x} \cdot y^{y} \cdot S^{(x+y)}$$

$$S^{(x+y)} = K_{sp} / x^{x} \cdot y^{y}$$

$$S = (K_{sp} / x^{x} \cdot y^{y})^{1/x+y}$$
(7.41)

ਸਮੀਕਰਣ ਵਿੱਚ ਜਦੋਂ ਇੱਕ ਜਾਂ ਵਧੇਰੇ ਸੀਪਸ਼ੀਜ ਦੀ ਸੰਘਣਤਾ ਉਨ੍ਹਾਂ ਦੀ ਸੰਤੁਲਨ ਸੰਘਣਤਾ ਨਹੀਂ ਹੁੰਦੀ, ਤਾਂ $K_{\rm sp}$ ਨੂੰ $Q_{\rm sp}$ ਨਾਲ ਵਿਅਕਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ (ਵੇਖੋ ਇਕਾਈ 7.6.2)। ਸਪਸ਼ਟ ਹੈ ਕਿ ਸੰਤੁਲਿਤ ਅਵਸਥਾ ਉੱਤੇ $K_{\rm sp}=Q_{\rm sp}$ ਹੁੰਦਾ ਹੈ ਪਰੰਤੂ ਹੋਰ ਪਰਿਸਥਿਤੀਆਂ ਇਹ ਅਵਖੇਪਣ (precipitation) ਘੁਲਣਾ (dissolution) ਪ੍ਰਕਿਰਿਆਵਾਂ ਦਾ ਸੰਕੇਤ ਦਿੰਦਾ ਹੈ। ਸਾਰਣੀ 7.9 ਵਿੱਚ 298K ਉੱਤੇ ਕੁਝ ਸਧਾਰਣ ਲੂਣਾ ਦੇ ਘੁਲਣਸ਼ੀਲਤਾ ਗੁਣਨਫਲ ਸਥਿਰ ਅੰਕਾਂ ਦੇ ਮਾਨ ਦਿਤੇ ਗਏ ਹਨ।

ਉਦਾਹਰਣ 7.26

ਇਹ ਮੰਨਦੇ ਹੋਏ ਕਿ ਕਿਸੇ ਵੀ ਕਿਸਮ ਦੇ ਆਇਨ ਪਾਣੀ ਵਿੱਚ ਪ੍ਰਤੀਕਿਰਿਆ ਨਹੀਂ ਕਰਦੇ, ਸ਼ੁੱਧ ਪਾਣੀ ਵਿੱਚ ${\rm A_2X_3}$ ਦੀ ਘੁਲਣਸ਼ੀਲਤਾ ਦੀ ਗਣਨਾ ਕਰੋ। ${\rm A_2X_3}$, ਦਾ ਘੁਲਣਸ਼ੀਲਤਾ ਗੁਣਨਫਲ $K_{\rm sp}=1.1\times 10^{-23}$ ਹੈ।

ਹੱਲ

$$A_2X_3 \rightarrow 2A^{3+} + 3X^{2-}$$
 $K_{\rm sp} = [A^{3+}]^2 [X^{2-}]^3 = 1.1 \times 10^{-23}$
ਜੇ $S = A_2X_3$ ਤਾਂ $[A^{3+}] = 2S; [X^{2-}] = 3S$
ਇਸ ਤਰ੍ਹਾਂ $K_{\rm sp} = (2S)^2(3S)^3 = 108S^5$
 $= 1.1 \times 10^{-23}$

ਇੰਜ S⁵ = 1 × 10⁻²⁵

 $S = 1.0 \times 10^{-5} \text{ mol/L}.$

ਉਦਾਹਰਣ 7.27

ਦੋ ਘੱਟ ਘੁਲਣਸ਼ੀਲ ਲੂਆਂ ${
m Ni(OH)}_2$ ਅਤੇ ${
m AgCN}$ ਦੇ ਘੁਲਣਸ਼ੀਲਤਾ ਗੁਣਨਫਲ ਦੇ ਮਾਨ ਕ੍ਰਮਵਰ 2.0×10^{-15} ਅਤੇ 6×0^{-17} ਹਨ। ਕਿਹੜਾ ਲੂਣ ਜਿਆਦਾ ਘੁਲਣਸ਼ੀਲ ਹੈ ?

ਹੱਲ

 $AgCN \rightleftharpoons Ag^+ + CN^-$

Table 7.9 The Solubility Product Constants, K_{sp} of Some Common Ionic Salts at 298K.

ਲੂਣ ਦਾ ਨਾਮ	ਸੁਤਰ	K sp
ਸਿਲਵਰ ਬਰੋਮਾਈਡ	AgBr	5.0 × 10-13
ਸਿਲਵਰ ਕਾਰਬੋਨੇਟ	Ag ₂ CO ₃	8.1 × 10-12
ਸਿਲਵਰ ਕਰੋਮੇਟ	Ag ₂ CrO ₄	1.1 × 10-12
ਸਿਲਵਰ ਕਲੋਰਾਈਡ	AgCl	1.8 × 10-10
ਸਿਲਵਰ ਸਲਫੇਟ	AgI	8.3 × 10 ⁻¹⁷
ਸਿਲਵਰ ਮਾਇਓਡਾਈਡ ਸਿਲਵਰ ਆਇਓਡਾਈਡ	Ag ₂ SO ₄	1.4 × 10-5
	Al(OH)3	1.3 × 10- ³³
ਐਲੂਮੀਨਿਅਮ ਹਾਈਡ੍ਰੋਕਸਾਈਡ ਬੇਰੀਅਮ ਕਰੋਮੇਟ	BaCrO ₄	1.2×10^{-10}
ਬਰੀਅਮ ਫਲੋਰਾਈਡ ਬੇਰੀਅਮ ਫਲੋਰਾਈਡ	BaF ₂	1.0 × 10-6
ਬੇਰੀਅਮ ਕਾਰਬੋਨੇਟ	BaSO ₄	1.1 × 10-10
ਕੈਲਸ਼ਿਅਮ ਫਲੋਰਾਈਡ ਕੈਲਸ਼ਿਅਮ ਫਲੋਰਾਈਡ	CaCO ₃	2.8 × 10-9
ਕਲਾਸ਼ਅਸ ਫਲਰਾਈਡ ਕੈਲਸ਼ਿਅਮ ਅੱਗਜੇਲੇਟ	CaF ₂ Ca(OH) ₂	5.3 × 10 ⁻⁹ 5.5 × 10 ⁻⁶
ਕ੍ਰੈਲਸ਼ਿਅਮ ਸਲਫੇਟ - ਕ੍ਰੈਲਸ਼ਿਅਮ ਸਲਫੇਟ	Ca(O11)2 CaC ₂ O ₄	4.0 × 10-9
ਕਲਸ਼ਿਅਮ ਹਾਈਡੋਕਸਾਈਡ ਕੈਲਸ਼ਿਅਮ ਹਾਈਡੋਕਸਾਈਡ	CaSO ₄	9.1 × 10-6
ਕੈਲੁਸ਼ਿਅਮ ਸਲਫ਼ਾਈਡ	Cd(OH) ₂	2.5 × 10-14
ਕਰੋਸ਼ਿਅਮ ਹਾਈਡੋਕਸਾਈਡ	CdS	8.0 × 10-27
ਕਿਉਪਰਸ ਬਰੋਮਾਈਡ	Cr(OH)3	6.3 × 10-31
ਕਿਉੈਪਰਿਕ ਕਾਰਬੋਨੇਟ	CuBr	5.3 × 10-9
ਕਿਉਂਪਰਸ ਕਲੋਰਾਈਡ	CuCO₃	1.4 × 10-10
ਕਿਉੈਪਰਿਕ ਹਾਈਡੋਕਸਾਈਡ	CuCl	1.7 × 10-6
ਕ੍ਰਿਊਪਰ੍ਰਸ ਆਇਓਂਡਾ੍ਰਈਡ	Cu(OH)2	2.2×10^{-20}
ਕਿਊਪਰਿਕ ਸਲਫਾਈਡ	CuI	1.1 × 10-12
ਫ੍ਰੇਰਸੋ ਕਾਰਬੋਨੇਟ ਫਰਸ ਹਾਈਡੋਕਸਾਈਡੀ	CuS	6.3 × 10 ⁻³⁶
ਫਰਸ ਹਾਈਡ੍ਰਕਸਾਈਡ। ਫੈਰਕ ਹਾਈਡੋਕਸਾਈਡ	FeCO ₃	3.2 × 10 ⁻¹¹
ਰਿਕ ਹਾਈਡਕਸਾਈਡ ਫੈਰਸ ਸਲਫਾਈਡ	Fe(OH) ₂	8.0 × 10-16
ਮਰਕਿਊਰਸ ਬਰੋਸਾਈਡ	Fe(OH)₃	1.0×10^{-38}
ਮਰਕਿਊਰਸ ਕਲੋਰਾਈਡ	FeS	6.3 × 10-18
ਮਰਕਿਉੈਰਸ ਅਇਓਡਾਈਡ	Hg ₂ Br ₂ Hg ₂ Cl ₂	5.6 × 10-23 1.3 × 10-18
ਮਰਕਿਉਰਸ ਸਲਫੇਟ	Hg_2I_2	4.5×10^{-29}
ਮਰਕਿਉੈਰਸ ਸਲਫਾਈਡ	Hg ₂ SO ₄	7.4×10^{-7}
ਮੈਗਨੀਸ਼ਿਅਮ ਕਾਰਬੋਨੇਟ	HgS	4.0×10^{-53}
ਮੈਗਨੀਸ਼ਿਅਮ ਫਲੋਰਾਈਡ	MgCO ₃	3.5 × 10-8
ਮੈਗਨੀਸ਼ਿਅਮ ਹਾਈਡੋਕਸਾਈਡ	MgF ₂	6.5 × 10-9
ਮੈਗਨੀਸ਼ਿਅਮ ਅਗਜੇਲੇਟ	Mg(OH) ₂	1.8 × 10-11
	MgC ₂ O ₄	7.0 × 10 ⁻⁷
ਮੈਗਨੀਜ਼ ਕਾਰਬੋਨੇਟ	MnCO ₃	1.8 × 10-11
ਮੈਗਨੀਜ ਸਲਫਾਈਡ ਨਿੱਕਲ ਹਾਈਡੋ਼ਕਸਾਈਡ	MnS	2.5 × 10 ⁻¹³
ਿਨਕਲ ਹਾਈਡ੍ਕਸਾਈਡ ਨਿੱਕਲ ਸਲਫਾਈਡ	Ni(OH) ₂	2.0×10^{-15}
	NiS	4.7 × 10-5
ਲੈੱਡ ਬਰੋਮਾਈਡ ਲੈੱਡ ਕਾਰਬੋਨੇਟ	PbBr ₂	4.0 × 10-5
੍ਹ ਲੈ ਕਾਰਬਨਟ ਲੈੱਡ ਕਲੋਰਾਈਡ	PbCO ₃ PbCl ₂	7.4 × 10-14
ਲੈੱਡ ਫਲੋਰਾਈਡ 	PbC ₁₂ PbF ₂	1.6 × 10-5 7.7 × 10-8
ਲੈੱਡ ਹਾਈਡੋਕਸਾਈਡ	Pb(OH) ₂	1.2 × 10 ⁻¹⁵
ਲੈੱਡ ਆਇਓਡਾਈਡ	PbI ₂	7.1×10^{-9}
ਲੈੱਡ ਸਲਫੇਟ	PbSO ₄	1.6 × 10-8
ਲੈੱਡ ਸਲਫਾਈਡ	PbS	8.0 × 10-28
ਸਟੇਨਸ ਹਾਈਡੋਕਸਾਈਡ	Sn(OH) ₂	1.4 × 10-28
ਸਟੇਨਸ ਸਲਫਾਈਡ	SnS	1.0 × 10-25
ਸਟਰੋਸ਼ਿਅਮ ਕਾਰਬੋਨੇਟ	SrCO₃	1.1 × 10-10
ਸਟਰੋੁਸ਼ਿਅਮ ਫਲੋਰਾਈਡ	SrF ₂	2.5 × 10-9
ਸਟਰੋਸ਼ਿਅਮ ਸਲਫੇਟ	SrSO ₄	3.2 × 10-7
ਥੈਲਸ ਬਰੋਮਾਈ <i>ਡ</i>	TlBr	3.4 × 10-6
ਥੈਲਸ ਕਲੋਰਾਈਡ ਥੈਲਸ ਅਇਓਡਾਈਡ	TlCl	1.7 × 10-4
	TII	6.5 × 10-8
ਜ਼ਿੰਕ ਕਾਰਬੋਨੇਟ	ZnCO ₃	1.4 × 10-11
ਜ਼ਿੰਕ ਹਾਈਡ੍ਰੋਕਸਾਈਡ	Zn(OH) ₂	1.0 × 10-15 1.6 × 10-24
ਜ਼ਿੰਕ ਸਲਫਾਈਡ	ZnS	1.0 ^ 10-2+

$$K_{\rm sp} = [{\rm Ag^+}][{\rm CN^-}] = 6 \times 10^{-17}$$
 ${\rm Ni(OH)}_2 \rightleftharpoons {\rm Ni}^{2+} + 2{\rm OH}^ K_{\rm sp} = [{\rm Ni}^{2+}][{\rm OH}^-]^2 = 2 \times 10^{-15}$ ਜੇ $[{\rm Ag^+}] = {\rm S}_1$, ਅਤੇ $[{\rm CN}^-] = {\rm S}_1$ ਤਾਂ $[{\rm Ni}^{2+}] = {\rm S}_2$, ਅਤੇ $[{\rm OH}^-] = 2{\rm S}_2$ ${\rm S}_1{}^2 = 6 \times 10^{-17}$, ${\rm S}_1 = 7.8 \times 10^{-9}$ $({\rm S}_2)(2{\rm S}_2)^2 = 2 \times 10^{-15}$, ${\rm S}_2 = 0.58 \times 10^{-4}$ ${\rm AgCN}$ ਤੋਂ ${\rm Ni(OH)}_2$ ਦੀ ਘੁਲਣਸ਼ੀਲਤਾ ਵਧੇਰੇ ਹੈ।

7.13.2 ਆਇਨਿਕ ਲੂਣਾਂ ਦੀ ਘੁਲਣਸ਼ੀਲਤਾ ਉੱਤੇ ਸਮ ਆਇਨ ਪਭਾਵ

ਲੀ ਸੈਟੇਲੀਅਰ (Le Chatelier) ਦੇ ਸਿਧਾਂਤ ਦੇ ਅਨੁਸਾਰ, ਇਹ ਆਸ ਕੀਤੀ ਜਾਂਦੀ ਹੈ ਕਿ ਜੇ ਕਿਸੇ ਲੂਣ ਦੇ ਘੋਲ ਵਿੱਚ ਕਿਸੇ ਇੱਕ ਆਇਨ ਦੀ ਸੰਘਣਤਾ ਵਧਾਉਣ ਤੇ ਆਇਨ ਆਪਣੇ ਉਲਟਚਾਰਜ ਦੇ ਆਇਨ ਦੇ ਨਾਲ ਸੰਜੋਗ ਕਰੇਗਾ ਅਤੇ ਘੋਲ ਵਿੱਚੋਂ ਕੁਝ ਲੁਣ ਉਦੋਂ ਤਕ ਅਵਖੇਪਿਤ ਹੋਵੇਗਾ ਜਦ ਤੱਕ ਇਕ ਵਾਰ ਦੁਬਾਰਾ $K_{\rm sp} = Q_{\rm sp}$ ਨਾ ਹੋ ਜਾਵੇ। ਜੇ ਕਿਸੇ ਆਇਨ ਦੀ ਸੰਘਣਤਾ ਘਟਾ ਦਿੱਤੀ ਜਾਏ, ਤਾਂ ਕੁਝ ਹੋਰ ਲੂਣੁ ਘੁਲ ਕੇ ਦੋਵਾਂ ਆਇਨਾਂ ਦੀ ਸੰਘਣਤਾ ਵਧਾ ਦੇਣਗੇ, ਤਾਂ ਕਿ ਫਿਰ $K_{
m sp}$ = $Q_{
m sp}$ ਹੋ ਜਾਏ। ਇਹ ਘੁਲਣਸ਼ੀਲ ਲੂਣਾਂ ਦੇ ਲਈ ਵੀ ਲਾਗੂ ਹੈ, ਬਿਨਾਂ ਇਸਦੇ ਇਨਾਂ ਆਇਨਾਂ ਦੀ ਉੱਚ ਸੰਘਣਤਾ ਦੇ ਕਾਰਣ $Q_{ ext{\tiny sp}}$ ਵਿੱਚ ਮੋਲਾਰਤਾ ਦੇ ਸਥਾਨ ਤੇ ਅਸੀਂ ਸਕਿਰਿਅਤਾ (activities) ਦੀ ਵਰਤੋਂ ਕਰਦੇ ਹਾਂ। ਇਸ ਤਰ੍ਹਾਂ ਸੋਡੀਅਮ ਕਲੋਰਾਈਡ ਦੇ ਸੰਤ੍ਰਿਪਤ ਘੋਲ ਵਿੱਚ HCl ਦੇ ਵਿਯੋਜਨ ਤੋਂ ਪ੍ਰਾਪਤ ਕਲੋਰਾਈਡ ਆਇਨ ਦੀ ਸੰਘਣਤਾ (ਸਕਿਰਿਅਤਾ) ਵਧ ਜਾਣ ਦੇ ਕਾਰਣ ਸੋਡੀਅਮ ਕਲੋਰਾਈਡ ਦਾ ਅਵਖੇਪਣ ਹੋ ਜਾਂਦਾ ਹੈ। ਇਸ ਵਿਧੀ ਨਾਲ ਪ੍ਰਾਪਤ ਸੋਡੀਅਮ ਕਲੋਰਾਈਡ ਬਹੁਤ ਹੀ ਸ਼ੁਧ ਹੁੰਦਾ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਅਸੀਂ ਸੋਡੀਅਮ ਅਤੇ ਮੈਗਨੀਸ਼ਿਅਮ ਸਲਫੇਟ ਵਰਗੀਆਂ ਅਸ਼ੁੱਧੀਆਂ ਦੂਰ ਕਰ ਸਕਦੇ ਹਾਂ। ਭਾਗਾਤਮਕ ਵਿਸ਼ਲੇਸ਼ਣ ਵਿੱਚ ਕਿਸੇ ਆਇਨ ਨੂੰ ਬਹੁਤ ਘੱਟ ਘੁਲਣ ਵਾਲੇ ਉਸ ਦੇ ਬਹੁਤ ਘੱਟ ਘੁਲਣਸ਼ੀਲ ਲੂਣ ਦੇ ਰੂਪ ਵਿੱਚ ਪੂਰੀ ਤਰ੍ਹਾਂ ਅਵਖੇਪਿਤ ਕਰਨ ਵਿੱਚ ਵੀ ਸਮ ਆਇਨ ਪ੍ਰਭਾਵ ਦੀ ਵਰਤੋਂ ਕੀਤੀ ਜਾਂਦੀ ਹੈ।ਇਸ ਤਰ੍ਹਾਂ ਅਸੀਂ ਭਾਰਾਤਮਕ ਵਿਸ਼ਲੇਸ਼ਣ ਵਿੱਚ ਸਿਲਵਰ ਆਇਨ ਦਾ ਅਵਖੇਪਣ ਸਿਲਵਰ ਕਲੋਰਾਈਡ ਦੇ ਰੂਪ ਵਿੱਚ, ਫੈਰਿਕ ਆਇਨ ਦਾ ਅਵਖੇਪਣ ਫੈਰਿਕ ਹਾਈਡੋਕਸਾਈਡ ਦੇ ਰੂਪ ਵਿੱਚ ਅਤੇ ਬੇਰੀਅਮ ਆਇਨ ਦੇ ਅਵਖੇਪਣ ਬੇਰੀਅਮ ਸਲਫੇਟ ਦੇ ਰੂਪ ਵਿੱਚ ਕਰ ਸਕਦੇ ਹਾਂ।

ਉਦਾਹਰਣ 7.28

 $0.10~{
m NaOH}$ ਵਿੱਚ ${
m Ni(OH)}_2$ ਦੀ ਮੋਲਰ ਘੁਲਣਸ਼ੀਲਤਾ ਦੀ ਗਣਨਾ ਕਰੋ। ${
m Ni(OH)}_2$ ਦਾ ਆਇਨ ਇੱਕ ਗੁਣਨਫਲ 2.0×10^{-15} ਹੈ।

ਹੱਲ

ਮੰਨ ਲਓ $\mathrm{Ni}(\mathrm{OH})_2$ ਦੀ ਘੁਲਣਸ਼ੀਲਤਾ $\mathrm{S} \; \mathrm{mol}/\mathrm{L}^{-1}$ ਦੇ

ਘੁਲਣਨਾਲ $\mathrm{Ni^{2+}}$ ਦੇ (S) ਅਤੇ $\mathrm{OH^-}$ ਦੇ $\mathrm{2S}$ ਮੌਲ ਪ੍ਰਤੀ ਲਿਟਰ ਬਣਦੇ ਹਨ, ਜੋ ਕਿ $\mathrm{OH^-}$ ਦੀ ਘੁਲ ਸੰਘਣਤਾ (0.10 + 2S) $\mathrm{mol/L}$ ਹੋਵੇਗੀ, ਕਿਉਂਕਿ ਘੋਲ ਵਿੱਚ ਪਹਿਲਾਂ ਹੀ NaOH ਤੋਂ ਪ੍ਰਾਪਤ $\mathrm{0.10}$ $\mathrm{mol/L^{-1}}$ ਮੌਜੂਦ ਹੈ। $K_{\mathrm{sp}} = 2.0 \times 10^{-15} = [\mathrm{Ni^{2+}}] [\mathrm{OH^-}]^2$ $= (\mathrm{S}) \ (0.10 + 2\mathrm{S})^2$ ਕਿਉਂਕਿ K_{sp} is small, $\mathrm{2S} << 0.10$, ਇੰਜ $(0.10 + 2\mathrm{S}) \approx 0.10$ ਅਰਥਾਤ $\mathrm{2.0} \times 10^{-15} = \mathrm{S} \ (0.10)^2$ $\mathrm{S} = 2.0 \times 10^{-13} \ \mathrm{M} = [\mathrm{Ni^{2+}}]$

ਦੁਰਬਲ ਤੇਜਾਬਾਂ ਦੇ ਲੂਣਾਂ ਦੀ ਘੁਲਣਸ਼ੀਲਤਾ ਘੱਟ pH ਉੱਤੇ ਵਧਦੀ ਹੈ, ਕਿਉਂਕਿ ਘੱਟ pH ਉੱਤੇ ਰਿਣਆਇਨ ਦੀ ਸੰਘਣਤਾ ਇਸਦੇ ਪ੍ਰੋਟੀਨੀਕਰਣ ਦੇ ਕਾਰਣ ਘਟਦੀ ਹੈ, ਜੋ ਲੂਣ ਦੀ ਘੁਲਣਸ਼ੀਲਤਾ ਨੂੰ ਵਧਾ ਦਿੰਦਾ ਹੈ। ਇਸ ਨਾਲ $K_{\rm sp}=Q_{\rm sp}$ ਹੋਣ ਲਈ ਲੂਣ ਦੀ ਘੁਲਣਸ਼ੀਲਤਾ ਵਧ ਜਾਂਦੀ ਹੈ। ਸਾਨੂੰ ਦੋ ਸੰਤੁਲਨਾ ਨੂੰ ਇਕੱਠਿਆਂ ਸੰਤੁਸ਼ਟ ਕਰਨਾ ਪੈਂਦਾ ਹੈ, ਅਰਥਾਤ

$$K_{\rm sp} = [{\rm M}^+] [{\rm X}^-],$$

$$\begin{aligned} \mathrm{HX}\left(\mathrm{aq}\right) &\rightleftharpoons \mathrm{H}^{\scriptscriptstyle{+}}\left(\mathrm{aq}\right) + \mathrm{X}^{\scriptscriptstyle{-}}\left(\mathrm{aq}\right); \\ K_{\mathrm{a}} &= \frac{\left[\mathrm{H}^{\scriptscriptstyle{+}}\left(\mathrm{aq}\right)\right] \left[\mathrm{X}^{\scriptscriptstyle{-}}\left(\mathrm{aq}\right)\right]}{\left[\mathrm{HX}\left(\mathrm{aq}\right)\right]} \end{aligned}$$

 $[X^{-}] / [HX] = K_a / [H^{+}]$

ਦੋਵਾਂ ਪਾਸਿਆਂ ਦਾ ਉਲਟ (inverse) ਲੈਕੇ, 1 ਜੋੜਨ ਤੇ ਸਾਨੂੰ ਪ੍ਰਾਪਤ ਹੋਵੇਗਾ

$$\begin{split} & \underbrace{\begin{bmatrix} \mathbf{H}\mathbf{X} \end{bmatrix}}_{\begin{bmatrix} \mathbf{X}^{-} \end{bmatrix}} + 1 = \underbrace{\begin{bmatrix} \mathbf{H}^{+} \end{bmatrix}}_{K_{\mathbf{a}}} + 1 \\ & \underbrace{\begin{bmatrix} \mathbf{H}\mathbf{X} \end{bmatrix} + \begin{bmatrix} \mathbf{H}^{-} \end{bmatrix}}_{\begin{bmatrix} \mathbf{X}^{-} \end{bmatrix}} = \underbrace{\begin{bmatrix} \mathbf{H}^{+} \end{bmatrix} + K_{\mathbf{a}}}_{K_{\mathbf{a}}} \end{split}$$

ਦੁਬਾਰਾ ਉਲਟ (inverse) ਲੈਣ ਤੇ ਸਾਨੂੰ ਪ੍ਰਾਪਤ ਹੋਵੇਗਾ—

 $[X^-] / \{[X^-] + [HX]\} = f = K_a / (K_a + [H^+])$ ਇਹ ਵੇਖਿਆ ਜਾ ਸਕਦਾ ਹੈ ਕਿ pH ਦੇ ਘਟਣ ਨਾਲ 'f' ਵੀ ਘਟਦਾ ਹੈ। ਜੇ ਦਿੱਤੀ ਗਈ pH ਉੱਤੇ ਲੂਣ ਦੀ ਘੁਲਣਸ਼ੀਲਤਾ S ਹੋਵੇ, ਤਾਂ

$$K_{\rm sp}$$
 = [S] [f S] = S² { $K_{\rm a}$ / ($K_{\rm a}$ + [H+])} ਅਤੇ
S = { $K_{\rm sp}$ ([H+] + $K_{\rm a}$) / $K_{\rm a}$ } $^{1/2}$ (7.42)

ਇੰਜ S, [H⁺] ਦੇ ਵਧਣ ਜਾਂ pH ਦੇ ਘਟਣ ਤੇ ਘੁਲਣਸ਼ੀਲਤਾ ਵਧਦੀ ਹੈ।

ਸਾਰਾਂਸ਼

ਜੇ ਦ੍ਵ ਤੋਂ ਨਿਕਲਨ ਵਾਲੇ ਅਣੂਆਂ ਦੀ ਸੰਖਿਆ ਵਾਸ਼ਪ ਤੋਂ ਦ੍ਵ ਵਿੱਚ ਮੁੜਨ ਵਾਲੇ ਅਣੂਆਂ ਦੀ ਸੰਖਿਆ ਦੇ ਬਰਾਬਰ ਹੋਵੇ, ਤਾਂ ਸੰਤੁਲਨ ਸਥਾਪਿਤ ਹੋ ਜਾਂਦਾ ਹੈ। ਇਹ ਗਤੀਸ਼ੀਲ ਪ੍ਰਕਿਰਤੀ ਦਾ ਹੁੰਦਾ ਹੈ। ਸੰਤੁਲਿਤ ਅਵਸਥਾ ਭੌਤਿਕ ਅਤੇ ਰਸਾਇਣਿਕ, ਦੋਵਾਂ ਪ੍ਕਰਮਾਂ ਦੁਆਰਾ ਸਥਾਪਿਤ ਹੋ ਸਕਦੀ ਹੈ। ਇਸ ਅਵਸਥਾ ਵਿੱਚ ਅਗ੍ਗਾਮੀ ਅਤੇ ਪਿਛਾਂਹ ਮੁਖੀ ਪ੍ਤੀਕਿਰਿਆ ਦੀ ਦਰ ਬਰਾਬਰ ਹੁੰਦੀ ਹੈ। ਉਪਜਾਂ ਦੀ ਸੰਘਣਤਾ ਨੂੰ ਪ੍ਤੀ ਕਾਰਕਾਂ ਦੀ ਸੰਖਿਆ ਨਾਲ ਭਾਗ ਦੇਣ ਤੇ ਅਸੀਂ ਹਰ ਇੱਕ ਟਰਮ ਨੂੰ ਸਟੋਕਿਓਮੀਟਿਰਕ ਸਥਿਰ ਅੰਕ ਦੀ ਘਾਤ ਦੇ ਰੂਪ ਵਿੱਚ ਸੰਤੁਲਨ ਸਥਿਰ ਅੰਕ, K_c ਨੂੰ ਵਿਅਕਤ ਕਰਦੇ ਹਾਂ।

ਪ੍ਰਤੀ ਕਿਰਿਆ
$$a A + b B \rightleftharpoons c C + d D ਦੇ ਲਈ$$

$$K_c = [C]^c[D]^d/[A]^a[B]^b$$

ਨਿਸ਼ਚਿਤ ਤਾਪਮਾਨ ਉੱਤੇ ਸੰਤੁਲਨ ਸਥਿਰ ਅੰਕ ਦਾ ਮਾਨ ਨਿਸ਼ਚਿਤ ਰਹਿੰਦਾ ਹੈ। ਇਸ ਅਵਸਥਾ ਵਿੱਚ ਸਾਰੇ ਸਥੂਲ ਗੁਣ ਜਿਵੇਂ ਸੰਘਣਤਾ, ਦਾਬ ਆਦਿ ਸਥਿਰ ਰਹਿੰਦੇ ਹਨ। ਗੈਸੀ ਪ੍ਤੀਕਿਰਿਆ ਦੇ ਲਈ ਸੰਤੁਲਨ ਸਥਿਰ ਅੰਕ ਨੂੰ K_p ਨਾਲ ਵਿਅਕਤ ਕਰਦੇ ਹਨ। ਇਸ ਵਿੱਚ ਸੰਤੁਲਨ ਸਥਿਰ ਅੰਕ ਟਰਮ ਵਿੱਚ ਸੰਘਣਤਾ ਦੀ ਥਾਂ ਤੇ ਅਸੀਂ ਅੰਸ਼ਿਕ ਦਾਬ ਲਿਖਦੇ ਹਾਂ। ਪ੍ਤੀ ਕਿਰਿਆ ਦੀ ਦਿਸ਼ਾ ਦਾ ਅਨੁਮਾਨ ਪ੍ਤੀ ਕਿਰਿਆ ਭਾਗਫਲ Q_c ਤੋਂ ਲਾਇਆ ਜਾਂਦਾ ਹੈ, ਜੋ ਸੰਤੁਲਿਤ ਅਵਸਥਾ ਤੇ K_c ਦੇ ਬਰਾਬਰ ਹੁੰਦਾ ਹੈ। 'ਲੀ ਸ਼ੈਟੇਲੀਅਰ ਸਿਧਾਂਤ' ਦੇ ਅਨੁਸਾਰ ਤਾਪਮਾਨ, ਦਾਬ, ਸੰਘਣਤਾ ਆਦਿ ਕਾਰਕਾਂ ਵਿੱਚੋਂ ਕਿਸੇ ਇੱਕ ਵਿੱਚ ਪਰਿਵਰਤਨ ਦੇ ਕਾਰਣ ਸੰਤੁਲਿਤ ਅਵਸਥਾ ਉਸੇ ਦਿਸ਼ਾ ਵਿੱਚ ਵਿਸਥਾਪਿਤ ਹੁੰਦੀ ਹੈ, ਜੋ ਪਰਿਵਰਤਨ ਦੇ ਪ੍ਰਭਾਵ ਨੂੰ ਘੱਟ ਜਾਂ ਨਸ਼ਟ ਕਰ ਸਕੇ। ਇਸ ਦੀ ਵਰਤੋਂ ਭਿੰਨ ਭਿੰਨ ਕਾਰਕਾਂ ਜਿਵੇਂ ਤਾਪਮਾਨ, ਸੰਘਣਤਾ, ਦਾਬ, ਉੱਤਪ੍ਰੇਰਕ ਅਤੇ ਅਕਿਰਿਆਸ਼ੀਲ ਗੈਸਾਂ ਦੇ ਸੰਤੁਲਨ ਦੀ ਦਿਸ਼ਾ ਉੱਤੇ ਪ੍ਰਭਾਵ ਦੇ ਅਧਿਐਨ ਵਿੱਚ ਕੀਤਾ ਜਾਂਦਾ ਹੈ ਅਤੇ ਉਪਜ ਦੀ ਮਾਤਰਾ ਦਾ ਨਿਯੰਤਰਣ ਇਨ੍ਹਾਂ ਕਾਰਕਾਂ ਨੂੰ ਨਿਯੰਤਰਿਤ ਕਰਕੇ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਪ੍ਤੀਕਿਰਿਆ ਮਿਸ਼ਰਣ ਦੀ ਸੰਤੁਲਿਤ ਅਵਸਥਾ ਰਚਨਾ ਨੂੰ ਉਤਪ੍ਰੇਰਕ ਪ੍ਰਭਾਵਿਤ ਨਹੀਂ ਕਰਦਾ, ਪਰ ਪ੍ਤੀ ਕਿਰਿਆ ਦੀ ਗਤੀ ਨੂੰ ਨਵੇਂ ਘੱਟ ਊਰਜਾ–ਪਥ ਵਿੱਚ ਪ੍ਰਤੀ ਕਾਰਕ ਤੋਂ ਉਪਜ ਅਤੇ ਉਪਜ ਤੋਂ ਪ੍ਰਤੀਕਾਰਕ ਵਿੱਚ ਬਦਲ ਕੇ ਵਧਾਉਂਦਾ ਹੈ।

ਉਹ ਸਾਰੇ ਪਦਾਰਥ, ਜੋ ਜਲੀ ਘੋਲ ਵਿੱਚ ਬਿਜਲੀ ਦਾ ਚਾਲਨ ਕਰਦੇ ਹਨ 'ਇਲੈਕਟ੍ਰੋਲਾਈ' ਅਖਵਾਉਂਦੇ ਹਨ। ਤੇਜਾਬ, ਖਾਰ ਅਤੇ ਲੁਣ 'ਇਲੈਕਟੋਲਾਈਟ' ਹਨ।ਇਹ ਜਲੀ ਘੋਲ ਵਿੱਚ ਵਿਯੋਜਨ ਜਾਂ ਆਇਨਨ ਦੁਆਰਾ ਧਨ ਆਇਨ ਅਤੇ ਰਿਣ ਆਇਨ ਦੇ ਬਣਨ ਦੇ ਕਾਰਣ ਬਿਜਲੀ ਦਾ ਚਾਲਨ ਕਰਦੇ ਹਨ।ਪਬਲ ਇਲੈਕਟੋਲਾਈਟ ਪਰੀ ਤਰ੍ਹਾਂ ਵਿਯੋਜਿਤ ਹੋ ਜਾਂਦੇ ਹਨ।ਦਰਬਲ ਇਲੈਕਟੋਲਾਈਟ ਵਿੱਚ ਆਇਨਿਤ ਅਤੇ ਅਨੁਆਇਨਿਤ ਅਣੂਆਂ ਵਿੱਚ ਸੰਤੂਲਨ ਹੁੰਦਾ ਹੈ। ਅਰਹੀਨੀਅਸ ਦੇ ਅਨੁਸਾਰ, ਜਲੀ ਘੋਲ ਵਿੱਚ ਤੇਜਾਬ ਹਾਈਡ੍ਰੋਜਨ ਆਇਨ ਅਤੇ ਖਾਰਾਂ ਹਾਈਡ੍ਰੋਕਸਿਲ ਆਇਨ ਦਿੰਦੇ ਹਨ। ਦੂਜੇ ਪਾਸੇ ਬਰਾੱਨਸਟੈਂਡਲੌਰੀ ਨੇ ਤੇਜਾਬ ਨੂੰ ਪ੍ਰੋਟਾਨ ਦਾਤਾ ਦੇ ਰੂਪ ਵਿੱਚ ਅਤੇ ਖਾਰ ਨੂੰ ਪ੍ਰੋਟਾਨ ਗ੍ਰਹਿਣੀ ਦੇ ਰੂਪ ਵਿੱਚ ਪਰਿਭਾਸ਼ਿਤ ਕੀਤਾ। ਜਦ ਇੱਕ ਬਰਾੱਨ ਸਟੈਡ-ਲੌਰੀ ਤੇਜਾਬ ਇੱਕ ਖਾਰ ਨਾਲ ਪੂਤੀ ਕਿਰਿਆ ਕਰਦਾ ਹੈ, ਤਾਂ ਇਹ ਉਸਦਾ ਸੰਗਤ ਸੰਯਗਮੀ ਖਾਰ ਅਤੇ ਕਿਰਿਆ ਕਰਨ ਵਾਲੀ ਖਾਰ ਦੇ ਸੰਗਤ ਸੰਯਗਮੀ ਤੇਜਾਬ ਨੂੰ ਬਣਾਉਂਦਾ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਸੰਯੁਗਮੀ ਤੇਜਾਬ - ਖਾਰ ਵਿੱਚ ਕੇਵਲ ਇੱਕ ਪ੍ਰੋਟਾਨ ਦਾ ਅੰਤਰ ਹੁੰਦਾ ਹੈ। ਅੱਗੇ, ਲੂਈਸ ਨੇ ਤੇਜਾਬ ਨੂੰ ਸਧਾਰਣ ਰੂਪ ਵਿੱਚ ਇਲੈਕਟ੍ਰਾੱਨ ਯੂਗਮ ਗ੍ਰਹਿਣੀ ਅਤੇ ਖਾਰ ਨੂੰ ਇਲੈਕਟ੍ਰਾਨ ਯੂਗਮ ਦਾਤਾ ਦੇ ਰੂਪ ਵਿੱਚ ਪਰਿਭਾਸ਼ਿਤ ਕੀਤਾ। ਅਰਹੀਨਿਅਸ ਦੀ ਪਰਿਭਾਸ਼ਾ ਦੇ ਅਨੁਸਾਰ, ਦਰਬਲ ਤੇਜਾਬ ਦੇ ਵਿਯੋਜਨ ਦੇ ਲਈ ਸਥਿਰ ਅੰਕ, (K) ਅਤੇ ਦਰਬਲ ਖਾਰ ਦੇ ਵਿਯੋਜਨ ਦੇ ਲਈ ਸਥਿਰ ਅੰਕ, (K_{\bullet}) ਦੇ ਵਿਅੰਜਕ ਨੂੰ ਵਿਕਸਿਤ ਕੀਤਾ ਗਿਆ। ਆਇਨਨ ਦੀ ਮਾਤਰਾ ਅਤੇ ਉਸਦੀ ਸੰਘਣਤਾ ਉੱਤੇ ਨਿਰਭਰਤਾ ਅਤੇ ਸਮ ਆਇਨ ਤੇ ਵਿਚਾਰ ਕੀਤਾ ਗਿਆ।ਹਾਈਡੋਜਨ ਆਇਨ ਦੀ ਸੰਘਣਤਾ (ਸਕਿਰਿਅਤਾ ਦੇ ਲਈ **pH** ਅਪਕਮ (pH = $-\log[H^+]$)) ਪੇਸ਼ ਕੀਤਾ ਗਿਆ ਹੈ ਅਤੇ ਉਸ ਨੂੰ ਹੋਰ ਰਾਸ਼ੀਆਂ ਦੇ ਲਈ ਵਿਸਥਾਿਰਤ ਕੀਤਾ (pOH $= -\log[OH^-]$) ; $pK_a = -\log[K_a]$; $pK_b = -\log[K_b]$; ਅਤੇ $pK_w = -\log[K_w]$ ਆਦਿ) ਪਾਣੀ ਦੇ ਆਇਨਨ ਦਾ ਅਧਿਐਨ ਕਰਨ ਤੇ ਅਸੀਂ ਵੇਖਦੇ ਹਾਂ ਕਿ ਸਮੀਕਰਣ pH + pOH = pK, ਹਮੇਸ਼ਾ ਸੰਤੁਸ਼ਟ ਹੁੰਦੀ ਹੈ। ਪ੍ਰਬਲ ਤੇਜਾਬ ਅਤੇ ਦੁਰਬਲ ਖਾਰ, ਦੂਰਬਲ ਤੇਜਾਬ ਅਤੇ ਪ੍ਰਬਲ ਖਾਰ ਅਤੇ ਦੂਰਬਲ ਤੇਜਾਬ ਅਤੇ ਦੂਰਬਲ ਖਾਰ ਦੇ ਲੂਣਾਂ ਦਾ ਜਲੀ ਘੋਲ ਵਿੱਚ ਜਲ-ਅਪਘਟਨ ਹੁੰਦਾ ਹੈ। ਬਰਫ ਘੋਲ ਦੀ ਪਰਿਭਾਸ਼ਾ ਅਤੇ ਉਸਦਾ ਮਹੱਤਵ ਦਾ ਸੰਖੇਪ ਵਰਣਨ ਕੀਤਾ ਗਿਆ ਹੈ। ਘੱਟ ਘੁਲਣਸ਼ੀਲ ਲੂਣਾਂ ਦੀ ਘੁਲਣਸ਼ੀਲਤਾ ਸਬੰਧੀ ਸੰਤੁਲਨ ਦਾ ਵਰਣਨ ਅਤੇ ਘੁਲਣਸ਼ੀਲਤਾ ਗੁਣਾਂਕ ਸਥਿਰ ਅੰਕ $(K_{\scriptscriptstyle
m s})$ ਦੀ ਜਾਣਕਾਰੀ ਦਿੰਦੇ ਹਨ। ਇਸ ਦਾ ਸਬੰਧ ਲਣਾਂ ਦੀ ਘਲਣਸ਼ੀਲਤਾ ਨਾਲ ਸਥਾਪਿਤ ਕੀਤਾ ਗਿਆ। ਘੋਲ ਤੋਂ ਲਣ ਦਾ ਅਵਖੇਪਣ ਜਾਂ ਉਸਦੇ ਪਾਣੀ ਵਿੱਚ ਘੁਲਣਸ਼ੀਲਤਾ ਦੀਆਂ ਸ਼ਰਤਾਂ ਦਾ ਨਿਰਧਾਰਣ ਕੀਤਾ ਗਿਆ ਹੈ।ਸਮ ਆਇਨ ਅਤੇ ਘੱਟ ਘੁਲਣਸ਼ੀਲ ਲੂਣਾਂ ਦੀ ਘੁਲਣਸ਼ੀਲਤਾ ਦੇ ਮਹੱਤਵ ਦੀ ਵੀ ਚਰਚਾ ਕੀਤੀ ਗਈ ਹੈ।

ਵਿਦਿਆਰਥੀਆਂ ਦੇ ਲਈ ਇਸ ਯੂਨਿਟ ਨਾਲ ਸਬੰਧਿਤ ਕਿਰਿਆਵਾਂ

- (ੳ) ਵਿਦਿਆਰਥੀ ਭਿੰਨ ਭਿੰਨ ਤਾਜੇ ਫਲਾਂ ਅਤੇ ਸਬਜੀਆਂ ਦੇ ਰਸਾਂ, ਪੇਯ, ਸ਼ਰੀਰ ਪਦਾਰਥਾਂ ਦ੍ਵਾਂ ਅਤੇ ਪਾਣੀ ਦੇ ਨਮੂਨਿਆਂ ਦੀ pH ਗਿਆਤ ਕਰਨ ਦੇ ਲਈ pH ਪੇਪਰ ਦੀ ਵਰਤੋਂ ਕਰ ਸਕਦੇ ਹਨ।
- (ਅ) pH ਪੇਪਰ ਦੀ ਵਰਤੋਂ ਭਿੰਨ ਭਿੰਨ ਲੂਣਾਂ ਦੇ ਘੋਲ ਦੀ pH ਗਿਆਤ ਕਰਨ ਲਈ ਕੀਤੀ ਜਾ ਸਕਦੀ ਹੈ।ਉਹ ਇਹ ਪਤਾ ਕਰ ਸਕਦਾ / ਸਕਦੀ ਹੈ ਕਿ ਇਹ ਪ੍ਰਬਲ / ਦੁਰਬਲ ਤੇਜਾਬਾਂ ਜਾਂ ਖਾਰਾਂ ਤੋਂ ਬਣਾਏ ਗਏ ਹਨ।
- (ੲ) ਉਹ ਸੋਡੀਅਮ ਐਸੀਟੇਟ ਅਤੇ ਐਸਿਟਿਕ ਐਸਿਡ ਨੂੰ ਮਿਸ਼ਰਤ ਕਰਕੇ ਕੁਝ ਬਫਰ ਘੋਲ ਬਣਾ ਸਕਦੇ ਹਨ ਅਤੇ pH ਪੇਪਰ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਉਨ੍ਹਾਂ ਦੀ pH ਗਿਆਤ ਕਰ ਸਕਦੇ ਹਨ।
- (ਸ) ਉਨ੍ਹਾਂ ਨੂੰ ਭਿੰਨ ਭਿੰਨ pH ਦੇ ਘੋਲਾਂ ਵਿੱਚ ਭਿੰਨ ਭਿੰਨ ਰੰਗ ਪ੍ਰੇਖਿਤ ਕਰਨ ਦੇ ਲਈ ਸੂਚਕ ਦਿੱਤੇ ਜਾ ਸਕਦੇ ਹਨ।
- (ਹ) ਸੂਚਕਾਂ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਕੁਝ ਤੇਜਾਬ ਅਤੇ ਖਾਰ ਟਾਈਟ੍ਰੇਸ਼ਨ ਕਰ ਸਕਦੇ ਹਨ।
- (ਕ) ਉਹ ਘੱਟ ਘੁਲਣਸ਼ੀਲ ਲੂਣਾਂ ਦੀ ਘੁਲਣਸ਼ੀਲਤਾ ਉੱਤੇ ਸਮ ਆਇਨ ਪ੍ਰਭਾਵ ਨੂੰ ਵੇਖ ਸਕਦੇ ਹਨ।
- (ਖ) ਜੇ ਸਕੂਲ ਵਿੱਚ pH ਮੀਟਰ ਉਪਲਬਧ ਹੋਵੇ, ਤਾਂ ਉਹ ਇਹ ਨਾਲ pH ਮਾਪ ਕੇ ਉਸਦੀ pH ਪੇਪਰ ਨਾਲ ਪ੍ਰਾਪਤ ਪਰਿਣਾਮਾਂ ਨਾਲ ਤਲਨਾ ਕਰ ਸਕਦੇ ਹਨ।

ਅਭਿਆਸ

- 7.1 ਇੱਕ ਦ੍ਵ ਨੂੰ ਸੀਲ ਬੰਦ ਬਰਤਨ ਵਿੱਚ ਨਿਸ਼ਚਿਤ ਤਾਪਮਾਨ ਉੱਤੇ ਇਸਦੇ ਵਾਸ਼ਪਾਂ ਦੇ ਨਾਲ ਸੰਤੁਲਨ ਵਿੱਚ ਰੱਖਿਆ ਜਾਂਦਾ ਹੈ। ਬਰਤਨ ਦਾ ਆਇਤਨ ਅਚਾਨਕ ਵਧਾ ਦਿੱਤਾ ਜਾਂਦਾ ਹੈ।
- ੳ) ਵਾਸ਼ਪ ਦਾਬ ਪਰਿਵਰਤਨ ਦਾ ਮੱਢਲਾ ਪਰਿਣਾਮ ਕੀ ਹੋਵੇਗਾ ?
- ਅ) ਸ਼ੁਰੂ ਵਿੱਚ ਵਾਸ਼ਪਨ ਅਤੇ ਸੰਘਨਣ ਦੀ ਦਰ ਕਿਵੇਂ ਬਦਲਦੀ ਹੈ ?
- ੲ) ਕੀ ਹੋਵੇਗਾ, ਜਦ ਕਿ ਸੰਤੁਲਨ ਮੁੜ ਅੰਤਿਮ ਰੂਪ ਵਿੱਚ ਸਥਾਪਿਤ ਹੋ ਜਾਏਗਾ ਤਾਂ ਅੰਤਿਮ ਵਾਸ਼ਪ-ਦਾਬ ਕੀ ਹੋਵੇਗਾ ?
- 7.2 ਹੇਠ ਲਿਖੇ ਸੰਤੁਲਨ ਦੇ ਲਈ $K_{\rm c}$ ਕੀ ਹੋਵੇਗਾ, ਜੇ ਸੰਤੁਲਨ ਦੇ ਸਭ ਪਦਾਰਥਾਂ ਦੀਆਂ ਸੰਘਣਤਾਵਾਂ ਹਨ ${\rm [SO_2]}$ = 0.60M, ${\rm [O_2]}$ = 0.82M ਅਤੇ ${\rm [SO_3]}$ = 1.90M

$$2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$$

7.3 ਇੱਕ ਨਿਸ਼ਚਿਤ ਤਾਪਮਾਨ ਅਤੇ ਕੁੱਲ ਦਾਬ 10⁵Pa, ਉੱਤੇ ਆਇਓਡੀਨ ਵਾਸ਼ਪ ਵਿੱਚ ਆਇਤਨ ਅਨੁਸਾਰ 40% ਆਇਓਡੀਨ ਪਰਮਾਣੂ ਹੁੰਦੇ ਹਨ।

$$I_2 \rightleftharpoons 2I(g)$$

ਸੰਤੁਲਨ ਲਈ K_p ਦੀ ਗਣਨਾ ਕਰੋ।

- 7.4 ਹੇਠ ਲਿਖਿਆਂ ਵਿੱਚੋਂ ਹਰ ਇੱਕ ਪ੍ਰਤੀਕਿਰਿਆ ਦੇ ਲਈ ਸੰਤੁਲਨ ਸਥਿਰ ਅੰਕ K_c ਦਾ ਵਿਅੰਜਕ ਲਿਖੋ -
 - (i) 2NOCl (g) \rightleftharpoons 2NO (g) + Cl₂ (g)
 - (ii) $2Cu(NO_3)_2$ (s) $\rightleftharpoons 2CuO$ (s) $+ 4NO_2$ (g) $+ O_2$ (g)
 - (iii) $CH_3COOC_2H_5(aq) + H_2O(l) \rightleftharpoons CH_3COOH (aq) + C_2H_5OH (aq)$
 - (iv) Fe^{3+} (aq) + $3OH^-$ (aq) $\rightleftharpoons Fe(OH)_3$ (s)
 - (v) I_2 (s) + $5F_2 \rightleftharpoons 2IF_5$
- 7.5 $K_{_{\! p}}$ ਦੇ ਮਾਨ ਤੋਂ ਹੇਠ ਲਿਖਿਆਂ ਵਿੱਚੋਂ ਹਰ ਇੱਕ ਸੰਤੁਲਨ ਦੇ ਲਈ $K_{_{\! p}}$ ਦਾ ਮਾਨ ਪਤਾ ਕਰੋ -
 - (i) 2NOCl (g) \rightleftharpoons 2NO (g) + Cl₂ (g); $K_p = 1.8 \times 10^{-2} 500 \text{ K}$
 - (ii) $CaCO_3$ (s) \rightleftharpoons $CaO(s) + CO_2(g)$; $K_p = 167 1073 \text{ K}$
- 7.6 ਸੰਤੁਲਨ NO (g) + O_3 (g) \rightleftharpoons NO $_2$ (g) + O_2 (g) ਦੇ ਲਈ $1000~\rm K$ ਉੱਤੇ $K_c = 6.3 \times 10^{14}~\rm ਹੈ \, l$ ਸੰਤੁਲਨ ਤੇ ਅਗ੍ਗਾਮੀ ਅਤੇ ਉਲਟ ਦੋਵੇਂ ਪ੍ਤੀਕਿਰਿਆਵਾਂ ਐਲੀਮੈਂਟਰੀ ਦੋ ਅਣਵੀਂ ਹਨ l ਉਲਟ ਪ੍ਤੀਕਿਰਿਆ ਦੇ ਲਈ K_c ਕੀ ਹੈ ?

- 7.7 ਸੰਤੁਲਨ ਸਥਿਰ ਅੰਕ ਵਿਅੰਜਨ ਲਿਖਦੇ ਸਮੇਂ ਸਮਝਾਓ ਕਿ ਸ਼ੁੱਧ ਦ੍ਵਾਂ ਅਤੇ ਠੋਸਾਂ ਨੂੰ ਨਿਕਾਰਿਆ ਕਿਉਂ ਜਾ ਸਕਦਾ ਹੈ।
- 7.8 N_{2} ਅਤੇ O_{2} ਦੇ ਵਿੱਚ ਹੇਠ ਲਿਖੀ ਪ੍ਰਤੀਕਿਰਿਆ ਹੁਦੀ ਹੈ -

$$2N_2(g) + O_2(g) \rightleftharpoons 2N_2O(g)$$

ਜੇ ਇੱਕ $10~\rm L$ ਦੇ ਬਰਤਨ ਵਿੱਚ $0.482~\rm \ddot{h}$ ਲ $\rm N_2$ ਅਤੇ $0.933~\rm \ddot{h}$ ਲ $\rm O_2$ ਰੱਖੀ ਜਾਏ ਅਤੇ ਇੱਕ ਤਾਪਮਾਨ ਜਿਸ ਉੱਤੇ $\rm N_2O$ ਬਣਨ ਦਿੱਤਾ ਜਾਏ ਤਾਂ ਸੰਤੁਲਨ ਮਿਸ਼ਰਣ ਦਾ ਸੰਘਟਨ ਗਿਆਤ ਕਰੋ, $\rm K_2=2.0\times10^{-37}\,l$

7.9 ਹੇਠ ਲਿਖੀ ਪ੍ਤੀ ਕਿਰਿਆ ਦੇ ਅਨੁਸਾਰ No, ${\rm Br}_{_2}$ ਦੇ ਨਾਲ ਪ੍ਤੀਕਿਰਿਆ ਕਰਕੇ ਨਾਈਟ੍ਰੋਸਾਈਲ ਬਰੋਮਾਈਡ ਬਣਾਉਂਦੀ ਹੈ —

2NO (g) +
$$Br_{g}$$
 (g) \rightleftharpoons 2NOBr (g)

ਜਦੋਂ ਸਥਿਰ ਤਾਪਮਾਨ ਤੇ ਇੱਕ ਬੰਦ ਬਰਤਨ ਵਿੱਚ $0.087~{
m Hm~NO}$ ਅਤੇ $0.0437~{
m Hm~hm}$ ਮਸ਼ਰਤ ਕੀਤੇ ਜਾਂਦੇ ਹਨ, ਤਾਂ $0.0518~{
m Hm~NOBr}$ ਪ੍ਰਾਪਤ ਹੁੰਦੀ ਹੈ। NO ਅਤੇ ${
m Br}_{_{2}}$ ਦੀ ਸੰਤੁਲਨ ਮਾਤਰਾ ਗਿਆਤ ਕਰੋ।

7.10 HI(g) ਦਾ ਇੱਕ ਸੈਂਪਲ 0.2 atm ਦਾਬ ਉੱਤੇ ਇੱਕ ਫਲਾਸਕ ਵਿੱਚ ਰੱਖਿਆ ਜਾਂਦਾ ਹੈ। ਸੰਤੁਲਨ ਦੇ HI(g) ਦਾ ਅੰਸ਼ਿਕ ਦਾਬ $0.04~{
m atm}$ ਹੈ। ਇੱਥੇ ਦਿੱਤੇ ਗਏ ਸੰਤੁਲਨ ਦੇ ਲਈ K_n ਦਾ ਮਾਨ ਕੀ ਹੋਵੇਗਾ ?

2HI (g)
$$\rightleftharpoons$$
 H₂ (g) + I₂ (g)

- 7.11 ਸੰਤੁਲਨ $2{
 m SO}_2({
 m g})+{
 m O}_2({
 m g})\rightleftharpoons 2{
 m SO}_3({
 m g})$ ਦੇ ਲਈ $450{
 m K}$ ਉੱਤੇ K_p = $2.0\times 10^{10}/{
 m bar}$ ਹੈ। ਇਸ ਤਾਪਮਾਨ ਉੱਤੇ K_c ਦਾ ਮਾਨ ਗਿਆਤ ਕਰੋ।
- 7.12 $500~{\rm K}$ ਤਾਪਮਾਨ ਉੱਤੇ ਇੱਕ ਬਰਤਨ ਵਿੱਚ ${\rm N_2}$ ਦੇ $1.57~{\rm Hz}$, ${\rm H_2}$ ਦੇ $1.92~{\rm Hz}$ ਅਤੇ ${\rm NH_3}$ ਦੇ $8.13~{\rm Hz}$ ਦਾ ਮਿਸ਼ਰਣ ਲਿਆ ਜਾਂਦਾ ਹੈ। ਪ੍ਰਤੀ ਕਿਰਿਆ ${\rm N_2}$ (g) $+3{\rm H_2}$ (g) $\rightleftharpoons 2{\rm NH_3}$ (g) ਦੇ ਲਈ $K_{\rm c}$ ਦਾ ਮਾਨ 1.7×10^2 ਹੈ। ਕੀ ਪ੍ਰਤੀਕਿਰਿਆ ਮਿਸ਼ਰਣ ਸੰਤੁਲਨ ਤੇ ਹੈ। ਜੇ ਨਹੀਂ ਤਾਂ ਨੈੱਟ ਪ੍ਰਤੀਕਿਰਿਆ ਦੀ ਦਿਸ਼ਾ ਕੀ ਹੋਵੇਗੀ ?
- 7.13 ਇੱਕ ਗੈਸ ਪ੍ਰਤੀਕਿਰਿਆ ਦੇ ਲਈ

$$K_{c} = \frac{\left[\text{NH}_{3} \right]^{4} \left[\text{O}_{2} \right]^{5}}{\left[\text{NO} \right]^{4} \left[\text{H}_{2} \text{O} \right]^{6}}$$
 ਹੈ ਤਾਂ

ਇਸ ਵਿਅੰਜਕ ਦੇ ਲਈ ਸੰਤੁਲਿਤ ਰਸਾਇਣਿਕ ਸਮੀਕਰਣ ਲਿਖੋ।

7.14 H₂O ਦਾ ਇੱਕ ਮੋਲ ਅਤੇ CO ਦਾ ਇੱਕ ਮੋਲ 725 K ਤਾਪਮਾਨ ਉੱਤੇ 10 L ਦੇ ਬਰਤਨ ਵਿੱਚ ਲਏ ਜਾਂਦੇ ਹਨ। ਸੰਤੁਲਨ ਤੇ 40% ਪਾਣੀ (ਪੁੰਜ ਅਨੁਸਾਰ) CO ਦੇ ਨਾਲ ਹੇਠ ਲਿਕੀ ਸਮੀਕਰਣ ਦੇ ਅਨੁਸਾਰ ਪ੍ਤੀਕਿਰਿਆ ਕਰਦਾ ਹੈ—

$$H_2O(g) + CO(g) \rightleftharpoons H_2(g) + CO_2(g)$$

ਪ੍ਰਤੀਕਿਰਿਆ ਦੇ ਲਈ ਸੰਤੁਲਨ ਸਥਿਰ ਅੰਕ ਦੀ ਗਣਨਾ ਕਰੋ।

- 7.15 700 K ਤਾਪਮਾਨ ਉੱਤੇ ਪ੍ਰਤੀਕਿਰਿਆ H_2 (g) $+ I_2$ (g) \iff 2HI (g) ਦੇ ਲਈ ਸੰਤੁਲਨ ਸਥਿਰ ਅੰਕ 54.8 ਹੈ। ਜੇ ਅਸੀਂ ਸ਼ੁਰੂ ਵਿੱਚ HI(g) ਲਈ ਹੋਵੇ, ਤਾਂ 700K ਤਾਪਮਾਨ ਦੇ ਸੰਤੁਲਨ ਸਥਿਾਪਿਤ ਹੋਵੇ, ਤਾਂ ਸੰਤੁਲਨ ਤੇ 0.5 ਮੋਲ L^{-1} HI(g) ਮੌਜੂਦ ਹੋਵੇ, ਤਾਂ ਸੰਤੁਲਨ ਉੱਤੇ H_2 (g) ਅਤੇ I_2 (g) ਦੀਆਂ ਸੰਘਣਤਾਵਾਂ ਕੀ ਹੋਣਗੀਆਂ ?
- 7.16 ICI ਜਿਸਦੀ ਸੰਘਣਤਾ ਸ਼ੁਰੂ ਵਿਚ 0.78 M ਹੈ, ਨੂੰ ਜੇ ਸੰਤੁਲਨ ਤੇ ਆਉਣ ਦਿੱਤਾ ਜਾਏ, ਤਾਂ ਹਰ ਇੱਕ ਦੀ ਸੰਤੁਲਨ ਉੱਤੇ ਸੰਘਣਤਾ ਕੀ ਹੋਵੇਗੀ ?

2ICl (g)
$$\rightleftharpoons$$
 I₂ (g) + Cl₂ (g); K_c = 0.14

7.17 ਹੇਠਾਂ ਦਰਸਾਏ ਗਏ ਸੰਤੁਲਨ ਵਿੱਚ 899 K ਉੱਤੇ K_p ਦਾ ਮਾਨ $0.04~{\rm atm}$ ਹੈ। C_2H_6 ਦੀ ਸੰਤੁਲਨ ਉੱਤੇ ਸੰਘਣਤਾ ਕੀ ਹੋਵੇਗੀ ਜੇ $4.0~{\rm atm}$ ਦਾਬ ਉੱਤੇ C_2H_6 ਨੂੰ ਇੱਕ ਫਲਾਸਕ ਵਿੱਚ ਰੱਖਿਆ ਗਿਆ ਹੈ ਅਤੇ ਸੰਤੁਲਿਤ ਅਵਸਥਾ ਉੱਤੇ ਆਉਣ ਦਿੱਤਾ ਜਾਂਦਾ ਹੈ ?

$$C_2H_6(g) \rightleftharpoons C_2H_4(g) + H_2(g)$$

7.18 ਈਥੇਨੋਲ ਅਤੇ ਐਸਿਟਿਕ ਐਸਿਡ ਦੀ ਪ੍ਰਤੀ ਕਿਰਿਆ ਤੋਂ ਈਥਾਲੀਨ ਐਸੀਟੇਟ ਬਣਾਇਆ ਜਾਂਦਾ ਹੈ ਅਤੇ ਸੰਤੁਲਨ ਨੂੰ ਇਸ ਤਰ੍ਹਾਂ ਦਰਸਾਇਆ ਜਾ ਸਕਦਾ ਹੈ —

$$CH_3COOH(l) + C_9H_5OH(l) \rightleftharpoons CH_3COOC_9H_5(l) + H_9O(l)$$

- (i) ਇਸ ਪ੍ਰਤੀਕਿਰਿਆ ਦੇ ਸੰਘਣਤਾ ਅਨੁਪਾਤ (ਪ੍ਰਤੀ ਕਿਰਿਆ ਭਾਗਫਲ) $Q_{\rm c}$, ਲਿਖੋ (ਟਿਪਣੀ : ਇਥੇ ਪਾਣੀ ਬਹੁਤ ਜਿਆਦਾ ਨਹੀਂ ਹੈ ਅਤੇ ਘੋਲਕ ਵੀ ਨਹੀਂ ਹੈ)।
- (ii) ਜੇ 293 K ਉੱਤੇ 1.00 ਮੋਲ ਐਸਿਟਿਕ ਐਸਿਡ ਅਤੇ 0.18 ਮੋਲ ਈਥੇਨੋਲ ਸ਼ੁਰੂ ਵਿੱਚ ਲਏ ਜਾਣ ਤਾਂ ਅੰਤਿਮ ਸੰਤਲਨ ਮਿਸ਼ਰਣ ਵਿੱਚ 0.171 ਮੋਲ ਈਥਾਈਨ ਐਸੀਟੇਟ ਹੈ। ਸੰਤਲਨ ਸਥਿਰ ਅੰਕ ਦੀ ਗਣਨਾ ਕਰੋ।
- (iii) 0.5 ਮੋਲ ਈਥੇਨੋਲ ਅਤੇ 1.0 ਮੋਲ ਐਸਿਟਿਕ ਐਸਿਡ ਨਾਲ ਸ਼ੁਰੂ ਕਰਦੇ ਹੋਏ 293 K ਤਾਪਮਾਨ ਉੱਤੇ ਕੁਝ ਸਮਾਂ ਬਾਅਦ ਈਥਾਈਲ ਐਸੀਟੇਟ ਦੇ 0.214 ਮੋਲ ਮਿਲੇ ਤਾਂ ਕੀ ਸੰਤਲਨ ਸਥਾਪਿਤ ਹੋ ਗਿਆ ?
- 7.19 437K ਤਾਪਮਾਨ ਉੱਤੇ ਨਿਰਵਾਤ ਵਿੱਚ PCl_5 ਦਾ ਇੱਕ ਨਮੂਨਾ ਇੱਕ ਫਲਾਸਕ ਵਿੱਚ ਲਿਆ ਗਿਆ ਸੰਤੁਲਨ ਸਥਾਪਤ ਹੋਣ ਤੇ PCl_5 ਦੀ ਸੰਘਣਤਾ $0.5 \times 10^{-1} \, \mathrm{mol} \, \mathrm{L}^{-1}$ ਪ੍ਰਾਪਤ ਹੋਈ। ਜੇ K_5 ਦਾ ਮਾਨ 8.3×10^{-3} ਹੈ, ਤਾਂ ਸੰਤੁਲਨ ਤੇ PCl_3 ਅਤੇ Cl_3 ਦੀਆਂ ਸੰਘਣਤਾਵਾਂ ਕੀ ਹੋਣਗੀਆਂ ?

$$PCl_{5}(g) \rightleftharpoons PCl_{3}(g) + Cl_{2}(g)$$

7.20 ਲੋਹੇ ਦੀ ਕੱਚੀ ਧਾਤ ਤੋਂ ਸਟੀਲ ਬਣਾਉਂਦੇ ਸਮੇਂ ਜੋ ਪ੍ਰਤੀਕਿਰਿਆ ਹੁੰਦੀ ਹੈ ਉਹ ਆਇਰਨ (II) ਅੱਕਸਾਈਡ ਦਾ ਕਾਰਬਨ ਮੋਨੋਆੱਕਸਾਈਡ ਦੇ ਦੁਆਰਾ ਲਘੂਕਰਣ ਹੈ ਅਤੇ ਇਸ ਨਾਲ ਧਾਤ ਵੀ ਲੋਹਾ ਅਤੇ ਕਾਰਬਨ ਡਾਈਆੱਕਸਾਈਡ ਬਣਦੇ ਹਨ।

FeO (s) + CO (g) \rightleftharpoons Fe (s) + CO₂ (g); $K_p = 0.265$ atm 1050K ਉਤੇ

 $1050 \mathrm{K}$ ਉੱਤੇ CO ਅਤੇ $\mathrm{CO_2}$ ਦੇ ਸੰਤੁਲਨ ਉੱਤੇ ਅੰਸ਼ਿਕ ਦਾਬ ਕੀ ਹੋਣਗੇ, ਜੇ ਉਨ੍ਹਾਂ ਦੇ ਮੁਢਲੇ ਅੰਸ਼ਿਕ ਦਾਬ ਹਨ —

PCO = 1.4 atm ਅਤੇ PCO₂ = 0.80 atm

- 7.21 ਪ੍ਤੀਕਿਰਿਆ $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$ ਦੇ ਲਈ (500 K) ਸੰਤੁਲਨ ਸਥਿਰ ਅੰਕ $K_c = 0.061$ ਹੈ। ਇੱਕ ਵਿਸ਼ੇਸ਼ ਸਮੇਂ ਤੇ ਮਿਸ਼ਰਣ ਦੀ ਰਚਨਾ ਇਸ ਪ੍ਰਕਾਰ ਹੈ
 - $3.0~{
 m mol~L^{-1}~N_2},\, 2.0~{
 m mol~L^{-1}~H_2}$ ਅਤੇ $0.5~{
 m mol~L^{-1}~NH_3}.$ ਕੀ ਪ੍ਤੀਕਿਰਿਆ ਸੰਤੁਲਿਤ ਅਵਸਥਾ ਵਿੱਚ ਹੈ। ਜੇ ਨਹੀਂ, ਤਾਂ ਸੰਤੁਲਨ ਸਥਾਪਿਤ ਕਰਨ ਦੇ ਲਈ ਪ੍ਤੀਕਿਰਿਆ ਕਿਸ ਦਿਸ਼ਾ ਵਿੱਚ ਵਧੇਗੀ ?
- 7.22 ਬ੍ਰੋਮੀਨ ਮੋਨੋਕਲੋਰਾਈਡ BrCl ਵਿਘਟਿਤ ਹੋ ਕੇ ਬ੍ਰੋਮੀਨ ਅਤੇ ਕਲੋਰੀਨ ਦਿੰਦਾ ਹੈ ਅਤੇ ਸੰਤੁਲਨ ਸਥਾਪਿਤ ਹੁੰਦਾ ਹੈ :

$$2BrCl(g) \rightleftharpoons Br_{2}(g) + Cl_{2}(g)$$

ਇਸ ਦੇ ਲਈ $500 \mathrm{K}$ ਉੱਤੇ K_c = 32 ਹੈ। ਜੇ ਸ਼ੁਰੂ ਵਿੱਚ BrCl ਦੀ ਸੰਘਣਤਾ $3.3 \times 10^{-3} \ \mathrm{mol}\ \mathrm{L}^{-1}$ ਹੋਵੇ, ਤਾਂ ਸੰਤਲਨ ਤੇ ਮਿਸ਼ਰਣ ਵਿੱਚ ਇਸਦੀ ਸੰਘਣਤਾ ਕੀ ਹੋਵੇਗੀ ?

 $7.23~1127~{
m K}$ ਅਤੇ $1~{
m atm}$ ਦਾਬ ਉੱਤੇ CO ਅਤੇ ${
m CO_2}$ ਦੇ ਗੈਸੀ ਮਿਸ਼ਰਣ ਵਿੱਚ ਸੰਤੁਲਿਤ ਅਵਸਥਾ ਉੱਤੇ ਠੋਸ ਕਾਰਬਨ ਵਿੱਚ 90.55% (ਪੁੰਜ ਅਨੁਸਾਰ) CO ਹੈ।

$$C(s) + CO_{2}(g) \rightleftharpoons 2CO(g)$$

ਉਪਰੋਕਤ ਤਾਪਮਾਨ ਉੱਤੇ ਪ੍ਰਤੀਕਿਰਿਆ ਦੇ ਲਈ $K_{
m c}$ ਦੇ ਮਾਨ ਦੀ ਗਣਨਾ ਕਰੋ।

7.24 298K ਉੱਤੇ NO ਅਤੇ O, ਤੋਂ NO, ਬਣਦੀ ਹੈ —

NO (g) +
$$\frac{1}{2}$$
 O₂ (g) \Longrightarrow NO₂ (g)

ਪ੍ਰਤੀਕਿਰਿਆ ਦੇ ਲਈ (ੳ) ΔG° ਅਤੇ (ਅ) ਸੰਤੁਲਨ ਸਥਿਰ ਅੰਕ ਦੀ ਗਣਨਾ ਕਰੋ $-\Delta_i G^{\circ}$ (NO₂) = 52.0 kJ/mol

```
\Delta_{f}G^{\ominus} (NO) = 87.0 kJ/mol
           \Delta_{c}G^{\ominus}(O_{2}) = 0 \text{ kJ/mol}
          ਹੇਠ ਲਿਖਿਆਂ ਵਿੱਚੋਂ ਹਰ ਇੱਕ ਸੰਤਲਨ ਵਿੱਚ ਜਦੋਂ ਆਇਤਨ ਵਧਾ ਕੇ ਦਾਬ ਘੱਟ ਕੀਤਾ ਜਾਂਦਾ ਹੈ, ਤਾਂ ਦੱਸੋ ਕਿ
7.25
          ਪਤੀਕਿਰਿਆ ਦੀ ਉਪਜਾਂ ਦੇ ਮੋਲਾਂ ਦੀ ਸੰਖਿਆ ਵਧਦੀ ਹੈ ਜਾਂ ਘਟਦੀ ਹੈ ਜਾਂ ਸਮਾਨ ਰਹਿੰਦੀ ਹੈ ?
(<del>Q</del>)
           PCl_{5}(g) \rightleftharpoons PCl_{3}(g) + Cl_{2}(g)
           CaO(s) + CO_2(g) \rightleftharpoons CaCO_3(s)
(개)
           3\text{Fe (s)} + 4\text{H}_2\text{O (g)} \rightleftharpoons \text{Fe}_3\text{O}_4\text{ (s)} + 4\text{H}_2\text{ (g)}
(ੲ)
          ਹੇਠ ਲਿਖੀਆਂ ਵਿਚੋਂ ਦਾਬ ਵਧਾਉਣ ਤੇ ਕਿਹੜੀਆਂ ਪ੍ਰਤੀਕਿਰਿਆਵਾਂ ਪ੍ਰਭਾਵਿਤ ਹੋਣਗੀਆਂ? ਇਹ ਵੀ ਦੱਸੋ ਕਿ ਦਾਬ
7.26
          ਪਰਿਵਰਤਨ ਕਰਨ ਤੇ ਪ੍ਤੀਕਿਰਿਆ ਅਗ੍ਗਾਮੀਆਂ ਜਾਂ ਉਲਟਕ੍ਰਮਣੀ ਦਿਸ਼ਾ ਵਿੱਚ ਗਤੀਮਾਨ ਹੋਵੇਗੀ ?
           COCl_2(g) \rightleftharpoons CO(g) + Cl_2(g)
(i)
           CH_4(g) + 2S_2(g) \rightleftharpoons CS_2(g) + 2H_2S(g)
(ii)
(iii)
          CO_{2}(g) + C(s) \rightleftharpoons 2CO(g)
(iv)
          2H_2(g) + CO(g) \rightleftharpoons CH_3OH(g)
          CaCO_3 (s) \rightleftharpoons CaO (s) + CO_2 (g)
(v)
          4 \text{ NH}_3 (g) + 5O_2 (g) \rightleftharpoons 4 \text{NO } (g) + 6 \text{H}_2 \text{O} (g)
(vi)
          ਹੇਠ ਲਿਖੀ ਪ੍ਰਤੀਕਿਰਿਆ ਦੇ ਲਈ 1024 \mathrm{K} ਉੱਤੇ ਸੰਤੁਲਨ ਸਥਿਰ ਅੰਕ 1.6 \times 10^5 ਹੈ।
7.27
           H_{9}(g) + Br_{9}(g) \rightleftharpoons 2HBr(g)
           ਜੇ HBr ਦੇ 10.0 bar ਸੀਲਬੰਦ ਬਰਤਨ ਵਿੱਚ ਪਾਏ ਜਾਣ, ਤਾਂ ਸਾਰੀਆਂ ਗੈਸਾਂ ਦੇ 1024K ਉੱਤੇ ਸੰਤੁਲਨ ਦਾਬ
          ਹੇਠ ਲਿਖੀ ਤਾਪਸੋਖੀ ਪਤੀਕਿਰਿਆ ਦੇ ਅਨੁਸਾਰ ਆੱਕਸੀਕਰਣ ਦੁਆਰਾ ਡਾਈ ਹਾਈਡੋਜਨ ਗੈਸ ਕਦਰਤੀ ਗੈਸ ਤੋਂ
7.28
          ਪ੍ਰਾਪਤ ਕੀਤੀ ਜਾਂਦੀ ਹੈ –
           CH_4(g) + H_2O(g) \rightleftharpoons CO(g) + 3H_2(g)
           (ੳ) ਉਪਰੋਕਤ ਪ੍ਤੀਕਿਰਿਆ ਦੇ ਲਈ K_{p} ਦਾ ਵਿਅੰਜਕ ਲਿਖੋ।
          (ਅ) K_{_{0}} ਅਤੇ ਪ੍ਤੀਕਿਰਿਆ ਮਿਸ਼ਰਣ ਦਾ ਸੰਤੁਲਨ ਤੇ ਰਚਨਾ ਕਿਸ ਤਰ੍ਹਾਂ ਪ੍ਰਭਾਵਿਤ ਹੋਵੇਗੀ ਜੇ
                (i) ਦਾਬ ਵਧਾ ਦਿੱਤਾ ਜਾਏ
                (ii) ਤਾਪਮਾਨ ਵਧਾ ਦਿੱਤਾ ਜਾਏ
                (iii) ੳਤਪੇਰਕ ਦੀ ਵਰਤੋਂ ਕੀਤੀ ਜਾਏ
7.29
          ਸੰਤੁਲਨ 2H_2(g) + CO(g) \rightleftharpoons CH_3OH(g) ਉੱਤੇ ਪ੍ਭਾਵ ਦੱਸੋ −
                    нੂ ਮਿਲਾਉਣ ਤੇ
          a)
                    СН ОН ਮਿਲਾਉਣ ਤੇ
          b)
```

- c) CO ਹਟਾਉਣ ਤੇ
- d) CH,OH ਹਟਾਉਣ ਤੇ
- 7.30 $473~{
 m K}$ ਉੱਤੇ ਫਾੱਸਫੋਰਸ ਪੈਂਟਾ ਕਲੋਰਾਈਡ, ${
 m PCl_s}$ ਦੇ ਵਿਘਟਨ ਦੇ ਲਈ K_c ਦਾ ਮਾਨ 8.3×10^3 ਹੈ। ਜੇ ਵਿਘਟਨ ਇਸ ਤਰ੍ਹਾਂ ਦਰਸਾਇਆ ਜਾਏ

$$PCl_{_{5}}(g) \rightleftharpoons PCl_{_{3}}(g) + Cl_{_{2}}(g)$$
 $\Delta_{_{r}}H^{\ominus} = 124.0 \text{ kJ mol}^{-1}$ ਤਾਂ

- (θ) ਪ੍ਰਤੀਕਿਰਿਆ ਦੇ ਲਈ K੍ਹ ਦਾ ਵਿਅੰਜਕ ਲਿਖੋ।
- (ਅ) ਉਲਟ ਕਿਰਿਆ ਦੇ ਲਈ ਸਮਾਨ ਤਾਪਮਾਨ ਉੱਤੇ K_{c} ਦਾ ਮਾਨ ਕੀ ਹੋਵੇਗਾ ?

- (ੲ) ਜੇ (i) ਹੋਰ ਜਿਆਦਾ $PC1_5$ ਮਿਲਾਇਆ ਜਾਏ (ii) ਦਾਬ ਵਧਾਇਆ ਜਾਏ (iii) ਤਾਪਮਾਨ ਵਧਾਇਆ ਜਾਏ, ਤਾਂ K_c ਉੱਤੇ ਕੀ ਪ੍ਰਭਾਵ ਹੋਵੇਗਾ ?
- 7.31 ਹੈਬਰ ਵਿਧੀ ਵਿੱਚ ਵਰਤੀ ਜਾਂਦੀ ਹਾਈਡ੍ਰੋਜਨ ਨੂੰ ਕੁਦਰਤੀ ਗੈਸ ਤੋਂ ਪ੍ਰਾਪਤ ਮੀਥੇਨ ਨੂੰ ਉੱਚ ਤਾਪਮਾਨ ਉੱਤੇ ਭਾਫ ਨਾਲ ਕਿਰਿਆ ਕਰਕੇ ਬਣਾਿਆ ਜਾਂਦਾ ਹੈ। ਦੋ ਸਟੈੱਪਾਂ ਵਾਲੀ ਪ੍ਰਤੀਕਿਰਿਆ ਵਿੱਚ ਪਹਿਲੇ ਸਟੈੱਪ ਵਿੱਚ CO ਅਤੇ ${
 m H_2}$ ਬਣਦੀ ਹੈ। ਦੂਜੇ ਸਟੈੱਪ ਵਿੱਚ ਪਹਿਲੇ ਸਟੈੱਪ ਵਿੱਚ ਬਨਣ ਵਾਲੀ CO ਹੋਰ ਭਾਫ਼ ਨਾਲ ਪ੍ਰਤੀਕਿਰਿਆ ਕਰਦੀ ਹੈ —

$$CO(g) + H_2O(g) \rightleftharpoons CO_2(g) + H_2(g)$$

- ਜੇ $400\,^{\circ}\mathrm{C}$ ਉੱਤੇ ਪ੍ਰਤੀਕਿਰਿਆ ਬਰਤਨ ਵਿੱਚ CO ਅਤੇ ਭਾਫ਼ ਦਾ ਸਮਮੋਲਰ ਮਿਸ਼ਰਣ ਇਸ ਤਰ੍ਹਾਂ ਲਿਆ ਜਾਏ ਕਿ $p_{\mathrm{CO}}=p_{\mathrm{H_2O}}=4.0\,\mathrm{\ bar}$ ਤਾਂ $\mathrm{H_2}$ ਦਾ ਸੰਤੁਲਿਤ ਅਵਸਥਾ ਉੱਤੇ ਅੰਸ਼ਿਕ ਦਾਬ ਕੀ ਹੋਵੇਗਾ $?\,400\,^{\circ}\mathrm{C}$ ਉੱਤੇ $K_p=10.1$
- 7.32 ਦੱਸੋ ਕਿ ਹੇਠ ਲਿਖੀਆਂ ਵਿੱਚੋਂ ਕਿਸ ਪ੍ਤੀਕਿਰਿਆ ਵਿੱਚ ਪ੍ਤੀ ਕਾਰਕਾਂ ਅਤੇ ਉਪਜਾਂ ਦੀ ਸੰਘਣਤਾ ਕਾਫ਼ੀ ਜਿਆਦਾ ਹੋਵੇਗੀ —
 - Θ) Cl₂ (g) \rightleftharpoons 2Cl (g) $K_2 = 5 \times 10^{-39}$
 - \forall) Cl₂ (g) + 2NO (g) \rightleftharpoons 2NOCl (g) $K_c = 3.7 \times 10^8$
 - ੲ) $\text{Cl}_2(g) + 2\text{NO}_2(g) \rightleftharpoons 2\text{NO}_2\text{Cl}(g)$ $K_c = 1.8$
- 7.33 25° C ਉੱਤੇ ਪ੍ਤੀਕਿਰਿਆ $3O_{2}$ (g) $\rightleftharpoons 2O_{3}$ (g) ਦੇ ਲਈ K_{c} ਦਾ ਮਾਨ 2.0×10^{-50} ਹੈ। ਜੇ ਹਵਾ ਵਿੱਚ 25° C ਤਾਪਮਾਨ ਉੱਤੇ O_{2} ਦੀ ਸੰਤੁਲਨ ਸੰਘਣਤਾ 1.6×10^{-2} ਹੈ, ਤਾਂ O_{3} ਦੀ ਸੰਘਣਤਾ ਕੀ ਹੋਵੇਗੀ ?
- 7.34 ${
 m CO(g)} + 3{
 m H_2(g)} \rightleftharpoons {
 m CH_4(g)} + {
 m H_2O(g)}$ ਪ੍ਰਤੀਕਿਰਿਆ ਇਕ ਲਿਟਰ ਫਲਾਸਕ ਵਿੱਚ $1300~{
 m K}$ ਉਤੇ ਸੰਤੁਲਿਤ ਅਵਸਥਾ ਵਿੱਚ ਹੈ। ਇਸ ਵਿੱਚ ${
 m CO}$ ਦੇ 0.3 ਮੌਲ, ${
 m H_2}$ ਦੇ 0.01 ਮੌਲ ${
 m H_2O}$ ਦੇ 0.02 ਮੌਲ ਅਤੇ ${
 m CH_4}$ ਦੀ ਅਗਿਆਤ ਮਾਤਰਾ ਹੈ। ਦਿੱਤੇ ਗਏ ਤਾਪਮਾਨ ਉੱਤੇ ਪ੍ਰਤੀਕਿਰਿਆ ਦੇ ਲਈ ${
 m K_c}$ ਦਾ ਮਾਨ 3.90 ਹੈ। ਮਿਸ਼ਰਣ ਵਿੱਚ ${
 m CH_4}$ ਦੀ ਮਾਤਰਾ ਗਿਆਤ ਕਰੋ।
- 7.35 ਸੰਯੁਗਮੀ ਤੇਜਾਬ-ਖਾਰ ਯੁਗਮ ਦਾ ਕੀ ਅਰਥ ਹੈ ? ਹੇਠ ਲਿਖੇ ਸਪੀਸ਼ੀਜ ਦੇ ਲਈ ਸੰਯੁਗਮੀ ਤੇਜਾਬ / ਖਾਰ ਦੱਸੋ HNO_2 , CN^- , $HCIO_4$ F $^-$, OH^- , CO_3^{2-} , ਅਤੇ S^{2-}
- 7.36 ਹੇਠ ਲਿਖਿਆਂ ਵਿੱਚੋਂ ਕਿਹੜੇ ਲਈਸ ਤੇਜਾਬ ਹਨ –

H₂O, BF₃, H⁺, ਅਤੇ NH₄⁺

- 7.37 ਹੇਠ ਲਿਖੇ ਬਰਾੱਨ ਸਟੈਂਡ ਤੇਜਾਬਾਂ ਦੇ ਲਈ ਸੰਯੁਗਮੀ ਖਾਰਾਂ ਦੇ ਸੂਤਰ ਲਿਖੋ— ${
 m HF,\,H_2SO_4\, w3\,HCO_3^-}$
- 7.38 ਬਰਾੱਨਸਟੈਂਡ ਧਾਰਾਂ NH੍ਹ-, NH੍ਹ ਅਤੇ HCOO ਦੇ ਸੰਯੁਗਮੀ ਤੇਜਾਬ ਲਿਖੋ।
- 7.39 ਸਪੀਸ਼ੀਜ $\rm H_2O,\,HCO_3^-,\,HSO_4^-$ ਅਤੇ $\rm NH_3$ ਬਰਾੱਨ ਸਟੈਂਡ ਤੇਜਾਬ ਅਤੇ ਖਾਰ ਦੋਵਾਂ ਵਾਂਗ ਵਿਹਾਰ ਕਰਦੇ ਹਨ। ਹਰ ਇੱਕ ਦੇ ਸੰਯੁਗਮੀ ਤੇਜਾਬ ਅਤੇ ਖਾਰ ਦੱਸੋ।
- 7.40 ਹੇਠ ਲਿਖੇ ਸਪੀਸ਼ੀਜ ਨੂੰ ਲੁਈਸ ਤੇਜਾਬ ਅਤੇ ਖਾਰ ਵਿੱਚ ਵਰਗੀਕ੍ਰਿਤ ਕਰੋ ਅਤੇ ਦੱਸੋ ਕਿ ਇਹ ਕਿਸ ਤਰ੍ਹਾਂ ਲੁਈਸ ਤੇਜਾਬ–ਖਾਰ ਦੇ ਸਮਾਨ ਕਾਰਜ ਕਰਦੇ ਹਨ (ੳ) OH^- (ਅ) F^- (ੲ) H^+ (ਸ) BCl_3
- 7.41 ਇੱਕ ਸਾੱਫਟ ਡਰਿੰਕ ਦੇ ਨਮੂਨੇ ਵਿੱਚ ਹਾਈਡ੍ਰੋਜਨ ਆਇਨ ਦੀ ਸੰਘਣਤਾ 3.8 × 10⁻³ M ਹੈ। ਇਸਦੀ pH ਪਰਿਕਲਿਤ ਕਰੋ।
- 7.42 ਸਿਰਕੇ ਦੇ ਇੱਕ ਨਮੂਨੇ ਦੀ pH 3.76 ਹੈ, ਇਸ ਵਿੱਚ ਹਾਈਡ੍ਰੋਜਨ ਆਇਨ ਦੀ ਸੰਘਣਤਾ ਪਤਾ ਕਰੋ।
- 7.43~ HF, ${\rm CH_3OOH}$ ਅਤੇ HCN ਦਾ $298{\rm K}$ ਉੱਤੇ ਆਇਨਨ ਸਥਿਰ ਅੰਕ ਕ੍ਰਮਵਾਰ $6.8\times10^{-4},\,1.8\times10^{-4}$ ਅਤੇ 4.8×10^{-9} ਹੈ। ਇਨ੍ਹਾਂ ਦੇ ਸੰਗਤ ਸੰਯੁਗਮੀ ਖਾਰਾਂ ਦੇ ਆਇਨਨ ਸਥਿਰ ਅੰਕ ਗਿਆਤ ਕਰੋ।
- 7.44 ਫੀਨਾੱਲ ਦਾ ਆਇਨਨ ਸਥਿਰ ਅੰਕ 1.0×10^{-10} ਹੈ। $0.05~{\rm M}$ ਫੀਨਾੱਲ ਦੇ ਘੋਲ ਵਿੱਚ ਫੀਨਾੱਲੇਟ ਆਇਨ ਦੀ ਸੰਘਣਤਾ ਅਤੇ $0.01{\rm M}$ ਸੋਡੀਅਮ ਫੀਨੇਟ ਘੋਲ ਵਿੱਚ ਉਸ ਦੇ ਆਇਨਨ ਦੀ ਮਾਤਰਾ ਗਿਆਤ ਕਰੋ।
- $7.45~{
 m H}_{\circ}{
 m S}$ ਦਾ ਪਹਿਲਾ ਆਇਨਨ ਸਥਿਰ ਅੰਕ 9.1×10^{-8} ਹੈ। ਇਸਦੇ $0.1{
 m M}$ ਘੋਲ ਵਿੱਚ ${
 m HS}^-$ ਆਇਨਾਂ ਦੀ ਸੰਘਣਤਾ

- ਦੀ ਗਣਨਾ ਕਰੋ ਅਤੇ ਦੱਸੋ ਕਿ ਜੇ ਇਸ ਵਿੱਚ $0.1 \rm M~HCl$ ਮੌਜੂਦ ਹੋਵੇ ਤਾਂ ਸੰਘਣਤਾ ਕਿਸ ਤਰ੍ਹਾਂ ਪ੍ਰਭਾਵਿਤ ਹੋਵੇਗੀ ? ਜੇ $\rm H_2S$ ਦਾ ਦੂਜਾ ਵਿਯੋਜਨ ਸਥਿਰ ਅੰਕ 1.2×10^{-13} ਹੋਵੇ ਤਾਂ $\rm S^{2-}$ ਆਇਨਾਂ ਦੀ ਦੋਵਾਂ ਸਥਿਤੀਆਂ ਵਿੱਚ ਸੰਘਣਤਾ ਦੀ ਗਣਨਾ ਕਰੋ।
- 7.46 ਐਸਿਟਿਕ ਐਸਿਡ ਦਾ ਆਇਨਨ ਸਥਿਰ ਅੰਕ 1.74×10^{-5} ਹੈ। ਇਸਦੇ 0.5 M ਘੋਲ ਵਿੱਚ ਵਿਯੋਜਨ ਦੀ ਮਾਤਰਾ, ਐਸੀਟੇਟ ਆਇਨ ਦੀ ਸੰਘਣਤਾ ਅਤੇ pH ਦਾ ਪਰਿਕਲਨ ਕਰੋ।
- 7.47 0.01M ਕਾਰਬਨਿਕ ਤੇਜਾਬ (HA) ਦੇ ਘੋਲ ਦੀ pH 1.74×10^{-5} ਹੈ। ਇਸਦੇ ਰਿਣ ਆਇਨ ਦੀ ਸੰਘਣਤਾ, ਤੇਜਾਬ ਦਾ ਆਇਨਨ ਸਥਿਰ ਅੰਕ ਅਤੇ p $K_{\rm a}$ ਦਾ ਅਨਪਰਿਕਲਨ ਕਰੋ।
- 7.48 ਪੂਰਣ ਵਿਯੋਜਨ ਮੰਨਦੇ ਹੋਏ ਹੇਠ ਲਿਖੇ ਘੋਲਾਂ ਦੀ pH ਪਤਾ ਕਰੋ (ੳ) 0.003 M HCl (ਅ) 0.005 M NaOH (ੲ) 0.002 M HBr (ਸ) 0.002 M KOH
- 7.49 ਹੇਠ ਲਿਖੇ ਘੋਲਾਂ ਦੀ pH ਗਿਆਤ ਕਰੋ -
 - ੳ) 2 g ਗ੍ਰਾਮ TIOH ਨੂੰ ਪਾਣੀ ਵਿੱਚ ਘੋਲ ਕੇ 2 ਲਿਟਰ ਘੋਲ ਬਣਾਇਆ ਜਾਏ।
 - ਅ) 0.3 ਗ੍ਰਾਮ $\mathrm{Ca(OH)}_2$ ਨੂੰ ਪਾਣੀ ਵਿੱਚ ਘੋਲ ਕੇ $500~\mathrm{mL}$ ਘੋਲ ਬਣਾਇਆ ਜਾਏ।
 - ੲ) 0.3 ਗ੍ਰਾਮ NaOH ਨੂੰ ਪਾਣੀ ਵਿੱਚ ਘੋਲ ਕੇ 200 mL ਘੋਲ ਬਣਾਇਆ ਜਾਏ।
 - ਸ) $13.6~\mathrm{M}~\mathrm{HCl}$ ਦੇ $1~\mathrm{mL}$ ਨੂੰ ਪਾਣੀ ਵਿੱਚ ਹਲਕਾ ਕਰਕੇ ਕੁੱਲ ਆਇਤਨ $1~\mathrm{f8c}$ ਰ ਕੀਤਾ ਜਾਏ।
- 7.50 ਬਰੋਮੋਐਸਿਟਿਕ ਐਸਿਡ ਦੀ ਆਇਨਨ ਦੀ ਮਾਤਰਾ 0.132 ਹੈ। $0.1 \mathrm{M}$ ਤੇਜਾਬ ਦੀ pH ਅਤੇ pK_{a} ਦਾ ਮਾਨ ਗਿਆਤ ਕਰੋ।
- 7.51 0.005 ਕੋਡੀਨ ($C_{18}H_{21}NO_{2}$) ਘੋਲ ਦੀ pH 9.95 ਹੈ। ਇਸਦਾ ਆਇਨਨ ਸਥਿਰ ਅੰਕ ਗਿਆਤ ਕਰੋ।
- 7.52 0.001 M ਐਨੀਲੀਨ ਘੋਲ ਦੀ pH ਕੀ ਹੈ ? ਐਨੀਲੀਨ ਦਾ ਆਇਨਨ ਸਥਿਰ ਅੰਕ ਸਾਰਣੀ 7.7 ਤੋਂ ਲੈ ਸਕਦੇ ਹੋ। ਇਸਦੇ ਸੰਯੁਗਮੀ ਤੇਜਾਬ ਦਾ ਆਇਨਨ ਸਥਿਰ ਅੰਕ ਗਿਆਤ ਕਰੋ।
- 7.53 ਜੇ 0.05M ਐਸਿਟਿਕ ਐਸਿਡ ਦੇ pK_a ਦਾ ਮਾਨ 4.74 ਹੈ, ਤਾਂ ਆਇਨਨ ਦੀ ਮਾਤਰਾ ਗਿਆਤ ਕਰੋ। ਜੇ ਇਸਨੂੰ (ੳ) 0.01M (ਅ) 0.1M HCl ਘੋਲ ਵਿੱਚ ਪਾਇਆ ਜਾਏ ਤਾਂ ਵਿਯੋਜਨ ਦੀ ਮਾਤਰਾ ਕਿਸ ਤਰ੍ਹਾਂ ਪ੍ਰਭਾਵਿਤ ਹੋਵੇਗੀ ?
- 7.54 ਡਾਈਮੀਥਾਲਈਲ ਐਮੀਨ ਦਾ ਆਇਨਨ ਸਥਿਰ ਅੰਕ 5.4×10^{-4} ਹੈ। ਇਸਦੇ 0.02M ਘੋਲ ਦੀ ਆਇਨਨ ਦੀ ਆਇਨਕ ਦੀ ਮਾਤਰਾ ਦੀ ਗਣਨਾ ਕਰੋ। ਜੇ ਇਹ ਘੋਲ NaOH ਪ੍ਰਤੀ 0.1M ਹੋਵੇ ਤਾਂ ਡਾਈਮੀਥਾਈਨ ਐਮੀਨ ਦਾ ਪਤੀਸ਼ਤ ਆਇਨਨ ਕੀ ਹੋਵੇਗਾ ?
- 7.55 ਹੇਠ ਲਿਖੇ ਜੈਵਿਕ ਦ੍ਵਾਂ, ਜਿਨ੍ਹਾਂ ਵਿੱਚ m pH ਦਿੱਤੀ ਗਈ ਹੈ, ਕੀ ਹਾਈਡ੍ਰੋਜਨ ਆਇਨ ਸੰਘਣਤਾ ਪਰਿਕਲਿਤ ਕਰੋ -
 - (ੳ) ਮਾਨਵ ਪੇਸ਼ੀ ਦ੍ਵ, 6.83 (ਅ) ਮਾਨਵ ਮਿਹਦਾ ਦ੍ਵ, 1.2
 - (ੲ) ਮਾਨਵ ਖੂਣ,7.38 (ਸ) ਮਾਨਵ ਖੁੱਕ,6.4
- 7.56 ਦੁੱਧ, ਕਾੱਫੀ, ਟਮਾਟਰ ਜੂਸ, ਨੀਂਬੂ ਰਸ ਅਤੇ ਆਂਡੇ ਦੀ ਸਫੇਦੀ ਦੇ pH ਦਾ ਮਾਨਕ੍ਰਮਵਾਰ 6.8, 5.0, 4.2, 2.2 ਅਤੇ 7.8 ਹੈ। ਹਰ ਇੱਕ ਦੇ ਸੰਗਤ H^+ ਆਇਨ ਦੀ ਸੰਘਣਤਾ ਗਿਆਨ ਕਰੋ।
- 7.57 298K ਉੱਤੇ 0.561 g KOH ਪਾਣੀ ਵਿੱਚ ਘੋਲਣ ਤੇ ਪ੍ਰਾਪਤ 200 mL ਘੋਲ ਦੀ pH ਪੋਟਾਸ਼ਿਅਮ, ਹਾਈਡ੍ਰੋਜਨ ਅਤੇ ਹਾਈਡ੍ਰੋਕਸਿਲ ਆਇਨਾਂ ਦੀਆਂ ਸੰਘਣਤਾਵਾਂ ਗਿਆਤ ਕਰੋ।
- 7.58 298K ਉੱਤੇ ${
 m Sr(OH)}_2$ ਘੋਲ ਦੀ ਘੁਲਣਸ਼ੀਲਤਾ $10.23~{
 m g/L}$ ਹੈ। ਸਟਰੌਂਸਿਅਸ ਅਤੇ ਹਾਈਡ੍ਰੋਕਸਿਲਆਇਨ ਦੀ ਸੰਘਣਤਾ ਅਤੇ ਘੋਲ ਦੀ ${
 m pH}$ ਪਤਾ ਕਰੋ।
- 7.59 ਪ੍ਰੋਪੇਨੌਇਕ ਤੇਜਾਬ ਦਾ ਆਇਨ ਸਥਿਰ ਅੰਕ 1.32×10^{-5} ਹੈ। 0.05 M ਤੇਜਾਬ ਘੋਲ ਦੇ ਆਇਨਨ ਦੀ ਮਾਤਰਾ ਅਤੇ pH ਗਿਆਤ ਕਰੋ। ਜੇ ਘੋਲ ਵਿੱਚ 0.01 M HCl ਮਿਲਾਇਆ ਜਾਏ ਤਾਂ ਉਸਦੇ ਆਇਨਨ ਦੀ ਮਾਤਰਾ ਗਿਆਤ ਕਰੋ।
- 7.60 ਜੇ ਸਾਇਨਿਕ ਐਸਿਡ (HCNO) ਦੇ 0.1M ਘੋਲ ਦੀ pH 2.34 ਹੋਵੇ, ਤਾਂ ਤੇਜਾਬ ਦੇ ਆਇਨਨ ਸਥਿਰ ਅੰਕ ਅਤੇ ਆਇਨਨ ਦੀ ਮਾਤਰਾ ਗਿਆਤ ਕਰੋ।
- 7.61 ਜੇ ਨਾਈਟ੍ਰਸ ਐਸਿਡ ਦਾ ਆਇਨਨ ਸਥਿਰ ਅੰਕ 4.5×10^{-4} ਹੈ, ਤਾਂ $0.04~\mathrm{M}$ ਸੋਡੀਅਮ ਨਾਈਟ੍ਰਾਈਟ ਘੋਲ ਦੀ pH

- ਅਤੇ ਜਲ ਯੋਜਨ ਦੀ ਮਾਤਰਾ ਗਿਆਤ ਕਰੋ।
- 7.62 ਜੇ ਪੀਰੀਡੀਨਿਅਮ ਹਾਈਡ੍ਰੋਜਨ ਕਲੋਰਾਈਡ ਦੇ $0.02\,\mathrm{M}$ ਘੋਲ ਦੀ $\mathrm{pH}=3.44\,$ ਹੈ ਤਾਂ ਪਿਰੀਡੀਨ ਦਾ ਆਇਨਨ ਸਥਿਰ ਅੰਕ ਗਿਆਤ ਕਰੋ।
- 7.63 ਹੇਠ ਲਿਖੇ ਲੂਣਾਂ ਦੇ ਜਲਈ ਘੋਲਾਂ ਦੇ ਉਦਾਸੀਨ, ਤੇਜਾਬੀ ਜਾਂ ਖਾਰੀ ਹੋਣ ਦਾ ਅਨੁਮਾਨ ਲਾਓ— NaCl, KBr, NaCN, NH,NO3, NaNO2 ਅਤੇ KF
- 7.64 ਕਲੈਰੋਐਸਿਟਿਕ ਐਸਿਡ ਦਾ ਆਇਨਨ ਸਥਿਰ ਅੰਕ 1.35×10^{-3} ਹੈ। $0.1 \mathrm{M}$ ਤੇਜਾਬ ਅਤੇ ਇਸਦੇ $0.1 \mathrm{M}$ ਸੋਡੀਅਮ ਲੂਣ ਦੀ pH ਗਿਆਤ ਕਰੋ।
- 7.65 310 K ਉੱਤੇ ਪਾਣੀ ਦਾ ਆਇਨਿਕ ਗੁਣਨਫਲ 2.7 × 10⁻¹⁴ ਹੈ। ਇਸੇ ਤਾਪਮਾਨ ਉੱਤੇ ਉਦਾਸੀਨ ਪਾਣੀ ਦੀ pH ਪਤਾ ਕਰੋ।
- 7.66 ਹੇਠ ਲਿਖੇ ਮਿਸ਼ਰਣਾਂ ਦੀ pH ਪਰਿਕਲਿਤ ਕਰੋ
 - ੳ) ਦਾ 10 mL 0.2M Ca(OH), ਦਾ 10 mL + 25 mL of 0.1M HCl
 - ਅ) ਦਾ 10 mL 0.01M H₂SO₄ + 10 mL of 0.01M Ca(OH)₂
 - ੲ) ਦਾ 10 mL 0.1M H₂SO₄ + 10 mL of 0.1M KOH
- 7.67 ਸਿਲਵਰ ਕਰੋਮੇਟ, ਬੇਰੀਅਮ ਕਰੋਮੇਟ, ਫੈਰਿਕ ਹਾਈਡ੍ਰੋਕਸਾਈਡ, ਲੈੱਡ ਕਲੋਰਾਈਡ ਅਤੇ ਮਰਕਿਊਰਸ ਆਇਓਡਾਈਡ ਘੋਲ ਦੀ ਸਾਰਣੀ 7.9 ਵਿੱਚ ਦਿੱਤੇ ਗਏ ਘੁਲਣਸ਼ੀਲਤਾ ਗੁਣਨਫਲ ਸਥਿਰ ਅੰਕ ਦੀ ਸਹਾਇਤਾ ਨਾਲ ਘੁਲਣਸ਼ੀਲਤਾ ਗਿਆਤ ਕਰੋ ਅਤੇ ਹਰ ਇੱਕ ਆਇਨ ਦੀ ਮੋਲਰਤਾ ਵੀ ਗਿਆਤ ਕਰੋ।
- 7.68 ${
 m Ag_2CrO_4}$ ਅਤੇ ${
 m AgBr}$ ਦਾ ਘੁਲਣਸ਼ੀਲਤਾ ਗੁਣਨਫਲ ਸਥਿਰ ਅੰਕ ਕ੍ਰਮਵਾਰ 1.1×10^{-12} ਅਤੇ 5.0×10^{-13} ਹੈ। ਉਨ੍ਹਾਂ ਦੇ ਸੰਤ੍ਰਿਪਤ ਘੋਲ ਦੀ ਮੋਲਰਤਾ ਦਾ ਅਨੁਪਾਤ ਗਿਆਤ ਕਰੋ।
- 7.69 ਜੇ 0.002 M ਸੰਘਣਤਾ ਵਾਲੇ ਸੋਡੀਅਮ ਆਇਓਡੇਟ ਅਤੇ ਕਿਊਪਰਿਕ ਕਲੋਰੇਟ ਘੋਲ ਦੇ ਸਮਾਸ ਆਇਤਨ ਨੂੰ ਮਿਲਾਇਆ ਜਾਏ, ਤਾਂ ਕੀ ਕਾੱਪਰ ਆਇਓਡੇਟ ਦਾ ਅਵਖੇਪਣ ਹੋਵੇਗਾ ? (ਕਾੱਪਰ ਆਇਓਡੇਟ ਦੇ ਲਈ $K_{\rm sp}$ = 7.4 \times 10^{-8})
- 7.70 ਬੈਨਜੋਇਕ ਐਸਿਡ ਦਾ ਆਇਨਨ ਸਥਿਰ ਅੰਕ 6.46×10^{-5} ਅਤੇ ਸਿਲਵਰ ਬੈਨਰੋਏਟ ਦੀ $K_{\rm sp}$ 2.5×10^{-13} ਹੈ। $3.19 {\rm pH}$ ਵਾਲੇ ਬਰਰ ਘੋਲ ਵਿੱਚ ਸਿਲਵਰ ਬੈਨਜੋਏਟ ਪਾਣੀ ਦੂ ਤੁਲਨਾ ਵਿੱਚ ਕਿੰਨੇ ਗੁਣਾ ਘੁਲੇਗਾ ?
- 7.71 ਫੈਕਸ ਸਲਫੇਟ ਅਤੇ ਸੋਡੀਅਮ ਸਲਫਾਈਡ ਦੇ ਸਮਮੋਲਰ ਘੋਲ ਦੀ ਅਧਿਕ ਤਮ ਸੰਘਣਤਾ ਦੱਸੋ, ਜਦ ਕਿ ਉਨ੍ਹਾਂ ਦੇ ਸਮਾਨ ਆਇਤਨ ਮਿਲਾਉਣ ਤੇ ਆਇਰਨ ਸਲਫਾਈਡ ਅਵਖੇਪਿਤ ਨਾ ਹੋਵੇ (ਆਇਰਨ ਸਲਫਾਈਡ ਦੇ ਲਈ $K_{\rm sp} = 6.3 \times 10^{-18}$)
- 7.72 1 ਗ੍ਰਾਮ ਕੈਲਸ਼ੀਅਮ ਸਲਫੇਟ ਨੂੰ ਘੋਲਣ ਦੇ ਲਈ ਘੱਟ ਤੋਂ ਘੱਟ ਕਿੰਨੇ ਆਇਤਨ ਪਾਣੀ ਦੀ ਜਰੂਰਤ ਹੋਵੇਗੀ ? (ਕੈਲਸ਼ੀਅਮ ਸਲਫੇਟ ਦੇ ਲਈ $K_{\rm sp}=9.1\ 10^{-6}$)
- 7.73 $0.1 {\rm M~HCl}$ ਵਿੱਚ ਹਾਈਡ੍ਰੋਜਨ ਸਲਫਾਈਡ ਵਿੱਚ ਸੰਤ੍ਰਿਪਤ ਘੋਲ ਦੀ ਸੰਘਣਤਾ $1.0 \times 10^{-19} {\rm M}$ ਹੈ। ਜੇ ਇਸ ਘੋਲ ਦਾ $10~{\rm mL}$ ਹੇਠ ਲਿਖੇ $0.04 {\rm M}$ ਘੋਲ ਦੇ $5~{\rm mL}$ ਪਾਏ ਜਾਣ, ਤਾਂ ਕਿਹੜੇ ਘੋਲਾਂ ਨਾਲ ਅਵਖੇਪ ਪ੍ਰਾਪਤ ਹੋਵੇਗਾ ? FeSO $_4$, MnCl $_2$, ZnCl $_2$ ਅਤੇ CdCl $_3$

Appendix II

ਤੱਤ, ਉਨ੍ਹਾਂ ਦੇ ਪਰਮਾਣਵੀਂ ਕ੍ਰਮ ਅੰਕ ਅਤੇ ਅਣਵੀਂ ਪੁੰਜ

Element	Symbol	Atomic Number	Molar mass/ (g mol ⁻¹)	Eleme
Actinium	Ac	89	227.03	Mercu
Aluminium	Al	13	26.98	Molybo
Americium	Am	95	(243)	Neody
Antimony	Sb	51	121.75	Neon
Argon	Ar	18	39.95	Neptui
Arsenic	As	33	74.92	Nickel
Astatine	At	85	210	Niobiu
Barium	Ba	56	137.34	Nitrog
Berkelium	Bk	97	(247)	Nobeli
Beryllium	Ве	4	9.01	Osmiu
Bismuth	Bi	83	208.98	Oxygei
Bohrium	Bh	107	(264)	Pallad
Boron	В	5	10.81	Phosp
Bromine	Br	35	79.91	Platinu
Cadmium	Cd	48	112.40	Pluton
Caesium	Cs	55	132.91	Poloni
Calcium	Ca	20	40.08	Potass
Californium	Cf	98	251.08	Praseo
Carbon	С	6	12.01	Prome
Cerium	Ce	58	140.12	Protac
Chlorine	C1	17	35.45	Radiur
Chromium	Cr	24	52.00	Radon
Cobalt	Co	27	58.93	Rheniu
Copper	Cu	29	63.54	Rhodiu
Curium	Cm	96	247.07	Rubidi
Dubnium	Db	105	(263)	Ruther
Dysprosium	Dy	66	162.50	Ruther
Einsteinium	Es	99	(252)	Samar
Erbium	Er	68	167.26	Scand
Europium	Eu	63	151.96	Seabor
Fermium	Fm	100	(257.10)	Seleni
Fluorine	F	9	19.00	Silicor
Francium	Fr	87	(223)	Silver
Gadolinium	Gd	64	157.25	Sodiur
Gallium	Ga	31	69.72	Stronti
Germanium	Ge	32	72.61	Sulphi
Gold	Au	79	196.97	Tantal
Hafnium	Hf	72	178.49	Techno
Hassium	Hs	108	(269)	Telluri
Helium	Не	2	4.00	Terbiu Thalliu
Holmium	Но	67	164.93	Thoriu
Hydrogen	H	1	1.0079	Thuliu
Indium	In	49	114.82	Tin
Iodine	I	53	126.90	Titaniı
Iridium	Ir	77	192.2	l l
Iron	Fe	26	55.85	Tungs Ununk
Krypton	Kr	36	83.80	l l
Lanthanum	La	57	138.91	Ununr Ununı
Lawrencium	Lr	103	(262.1)	Uraniu
Lead	Pb	82	207.19	Vanadi
Lithium	Li	3 71	6.94	Xenon
Lutetium	Lu		174.96	Ytterbi
Magnesium	Mg	12	24.31	Yttriun
Manganese	Mn	25	54.94	Zinc
Meitneium Mondologium	Mt Md	109	(268)	Zircon
Mendelevium	Md	101	258.10	Zircor

Mercury Molybdenum Neodymium Neon Neptunium Nickel Niobium Nitrogen Nobelium Osmium Oxygen Palladium Phosphorus Platinum Plutonium Polonium Potassium Praseodymium Promethium Protactinium Radium Radon Rhenium	Hg		
Neodymium Neon Neptunium Nickel Niobium Nitrogen Nobelium Osmium Oxygen Palladium Phosphorus Platinum Plutonium Polonium Potassium Praseodymium Protactinium Radium Radon Rhenium	Mc	80	200.59
Neon Neptunium Nickel Niobium Nitrogen Nobelium Osmium Osmium Oswygen Palladium Phosphorus Platinum Plutonium Polonium Potassium Praseodymium Protactinium Radium Radon Rhenium	Mo	42	95.94
Neptunium Nickel Niobium Nitrogen Nobelium Osmium Oxygen Palladium Phosphorus Platinum Plutonium Potonium Potassium Praseodymium Protactinium Radium Radon Rhenium	Nd	60	144.24
Nickel Niobium Nitrogen Nobelium Osmium Osmium Oxygen Palladium Phosphorus Plattinum Plutonium Polonium Potassium Praseodymium Protactinium Radium Radon Rhenium	Ne	10	20.18
Niobium Nitrogen Nobelium Osmium Oswium Oxygen Palladium Phosphorus Platinum Plutonium Polonium Potassium Praseodymium Promethium Protactinium Radium Radon Rhenium	Np	93	(237.05)
Nitrogen Nobelium Osmium Oxygen Palladium Phosphorus Platinum Plutonium Polonium Potassium Praseodymium Protactinium Radium Radon Rhenium	Ni	28	58.71
Nobelium Osmium Oxygen Palladium Phosphorus Platinum Plutonium Polonium Potassium Praseodymium Protactinium Radium Radon Rhenium	Nb	41	92.91
Osmium Oxygen Palladium Phosphorus Platinum Plutonium Polonium Potassium Praseodymium Protactinium Radium Radon Rhenium	N	7	14.0067
Oxygen Palladium Phosphorus Platinum Plutonium Polonium Potassium Praseodymium Protactinium Radium Radon Rhenium	No	102	(259)
Palladium Phosphorus Platinum Plutonium Polonium Potassium Praseodymium Promethium Protactinium Radium Radon Rhenium	Os	76	190.2
Phosphorus Platinum Plutonium Polonium Potassium Praseodymium Promethium Protactinium Radium Radon Rhenium	О	8	16.00
Platinum Plutonium Polonium Potassium Praseodymium Promethium Protactinium Radium Radon Rhenium	Pd	46	106.4
Plutonium Polonium Potassium Praseodymium Promethium Protactinium Radium Radon Rhenium	P	15	30.97
Polonium Potassium Praseodymium Promethium Protactinium Radium Radon Rhenium	Pt	78	195.09
Potassium Praseodymium Promethium Protactinium Radium Radon Rhenium	Pu	94	(244)
Praseodymium Promethium Protactinium Radium Radon Rhenium	Po	84	210
Promethium Protactinium Radium Radon Rhenium	K	19	39.10
Protactinium Radium Radon Rhenium	Pr	59	140.91
Radium Radon Rhenium	Pm	61	(145)
Radon Rhenium	Pa	91	231.04
Rhenium	Ra	88	(226)
	Rn	86	(222)
DI1:	Re	75	186.2
Rhodium	Rh	45	102.91
Rubidium	Rb	37	85.47
Ruthenium	Ru	44	101.07
Rutherfordium	Rf	104	(261)
Samarium	Sm	62	150.35
Scandium	Sc	21	44.96
Seaborgium	Sg	106	(266)
Selenium	Se	34	78.96
Silicon	Si	14	28.08
Silver	Ag	47	107.87
Sodium	Na	11	22.99
Strontium	Sr	38	87.62
Sulphur	S	16	32.06
Tantalum	Ta	73	180.95
Technetium	Тс	43	(98.91
Tellurium	Te	52	127.60
Terbium	Tb	65	158.92
Thallium	Tl	81	204.37
Thorium	Th	90	232.04
Thulium	Tm	69	168.93
Tin	Sn	50	118.69
Titanium	Ti	22	47.88
Tungsten	W	74	183.85
Ununbium	Uub	112	(277
Ununnilium	Uun	110	(269)
Unununium	Uuu	111	(272)
Uranium	U	92	238.03
Vanadium		0.0	E0.01
Xenon	V	23	
Ytterbium	Xe	54	131.30
Yttrium	Xe Yb	54 70	50.94 131.30 173.04
Zinc Zirconium	Xe	54	131.30

The value given in parenthesis is the molar mass of the isotope of largest known half-life.

Appendix III

ਪਦਾਰਥ	ਵਿਸ਼ਿਸਟ ਤਾਪ ਧਾਰਣ ਅਵਸਥਾ	ਮੋਲਰ ਤਾਪ ਧਾਰਣ ਸਮਰਥਾ
	(J/g)	(J/mol)
air	0.720	20.8
water (liquid)	4.184	75.4
ammonia (gas)	2.06	35.1
hydrogen chloride	0.797	29.1
hydrogen bromide	0.360	29.1
ammonia (liquid)	4.70	79.9
ethyl alcohol (liquid)	2.46	113.16
ethylene glycol (liquid)	2.42	152.52
water (solid)	2.06	37.08
carbon tetrachloride (liquid)	0.861	132.59
chlorofluorocarbon (CCl ₂ F ₂)	0.5980	72.35
ozone	0.817	39.2
neon	1.03	20.7
chlorine	0.477	33.8
bromine	0.473	75.6
iron	0.460	25.1
copper	0.385	24.7
aluminium	0.902	24.35
gold	0.128	25.2
graphite	0.720	8.65

ਗੈਸ	$C_{ m p}$	$C_{ m v}$	C_{p} - C_{v}	$C_{\rm p}$ / $C_{\rm v}$
ਇੱਕ ਪਰਮਾਣਵੀ*				
helium	20.9	12.8	8.28	1.63
argon	20.8	12.5	8.33	1.66
iodine	20.9	12.6	8.37	1.66
mercury	20.8	12.5	8.33	1.66
ਦੋ ਪਰਮਾਣਵੀ _†				
hydrogen	28.6	20.2	8.33	1.41
oxygen	29.1	20.8	8.33	1.39
nitrogen	29.0	20.7	8.30	1.40
hydrogen chloride	29.6	21.0	8.60	1.39
carbon monoxide	29.0	21.0	8.00	1.41
ਤਿੰਨ ਪਰਮਾਣਵੀ †				
nitrous oxide	39.0	30.5	8.50	1.28
carbon dioxide	37.5	29.0	8.50	1.29
ਬਹਪਰਮਾਣਵੀ⊹				
ethane	53.2	44.6	8.60	1.19

Appendix IV

ਭੌਤਿਕ ਸਥਿਰ ਅੰਕ

ਰਾਸ਼ੀ	ਪ੍ਰਤੀਕ	ਪਰੰਪਰਾਗਤ ਮਾਤਰ	ਐਸ ਆਈ ਮਾਤਰਕ
ਗੁਰੂਤਵੀ ਪ੍ਵੇਗ	g	980.6 cm/s	9.806 m/s
ਪਰਮਾਣਵੀ ਪੁੰਜ ਮਾਤਰਕ	amu	$1.6606 \times 10^{-24} \text{ g}$	$1.6606 \times 10^{-27} \text{ kg}$
(1/12 ¹² C atom)	or u	G	
ਐਵੋਗੈਡਰੋ ਸਥਿਰ ਅੰਕ	N_{A}	6.022×10^{23}	6.022×10^{23}
		particles/mol	particles/mol
ਬੋਹਰ ਅਰਧ ਵਿਆਸ	a_{0}	0.52918 Å 5.2918 × 10 ⁻⁹ cm	5.2918 × 10 ⁻¹¹ m
ਬੋਲਟਜਮੈਨ ਸਥਿਰ ਅੰਕ	k	$1.3807 \times 10^{-16} \text{ erg/K}$	$1.3807 \times 10^{-23} \text{ J/K}$
ਇਲੈਕਟ੍ਰਾੱਨ ਦੀ ਚਾਰਜ ਪੁੰਜ ਅਨੁਪਾਤ	e/m	$1.7588 \times 10^8 \text{ coulomb/g}$	$1.7588 \times 10^{11} \text{ C/kg}$
ਇਲੈਕਟ੍ਰਾੱਨ ਦੀ ਚਾਰਜ	e	1.60219×10^{-19} coulomb 4.8033×10^{-19} esu	1.60219 × 10 ⁻¹⁹ C
ਇਲੈਕਟ੍ਰਾੱਨ ਵਿਰਾਮ ਪੁੰਜ	m_e	9.10952 ×10 ⁻²⁸ g 0.00054859 u	9.10952 ×10 ⁻³¹ kg
ਫੈਰਾਡੇ ਸਥਿਰ ਅੰਕ	F	96,487 coulombs/eq 23.06 kcal/volt. eq	96,487 C/mol e ⁻ 96,487 J/V.mol e ⁻
ਗੈਸ ਸਥਿਰ ਅੰਕ	R	$0.8206 \frac{\text{L atm}}{\text{mol K}}$	$8.3145 \frac{\text{kPa dm}^3}{\text{mol K}}$
		$1.987 \frac{\text{cal}}{\text{mol K}}$	8.3145 J/mol.K
ਮੋਲਰ ਆਇਤਨ (STP)	V_m	22.710981 L/mol	$22.710981 \times 10^{-3} \text{ m}^3/\text{mol}$
	Ш		22.710981 dm ³ /mol
ਨਿਊਟ੍ਰਾੱਨ ਵਿਰਾਮ ਪੁੰਜ	m_n	1.67495 × 10 ⁻²⁴ g 1.008665 u	$1.67495 \times 10^{-27} \text{ kg}$
ਪਲੈਂਕਸ ਸਥਿਰ ਅੰਕ	h	$6.6262 \times 10^{-27} \text{ ergs}$	$6.6262 \times 10^{-34} \text{ J s}$
ਪ੍ਰੋਟਾੱਨ ਵਿਰਾਮ ਪੁੰਜ	m_p	1.6726 ×10 ⁻²⁴ g 1.007277 u	1.6726 ×10 ⁻²⁷ kg
ਰਿਡਬਰਗ ਸਥਿਰ ਅੰਕ	$R_{_{\infty}}$	$3.289 \times 10^{15} \text{ cycles/s}$ $2.1799 \times 10^{-11} \text{ erg}$	$1.0974 \times 10^{7} \mathrm{m}^{\text{-}1} \ 2.1799 \times 10^{\text{-}18} \mathrm{J}$
ਪ੍ਰਕਾਸ਼ ਦੀ ਚਾਲ	c	$2.9979 \times 10^{10} \text{cm/s}$	$2.9979 \times 10^{8} \text{ m/s}$
(ਖੇਲਾਅ ਵਿੱਚ)		(186,281 miles/second)	

 $\pi = 3.1416$ 2.303 R = 4.576 cal/mol K = 19.15 J/mol K e = 2.71828 2.303 RT (at 25°C) = 1364 cal/mol = 5709 J/mol ln X = 2.303 log X

Appendix VI

298 K ਉੱਤੇ ਤਾਪਗਤਿਕ ਅੰਕੜੇ

ਅਕਾਰਬਨਿਕ ਪਦਾਰਥ

ਪਦਾਰਥ	ਨਿਰਮਾਣ ਐਨਥੈਲਪੀ $\Delta_{ m r} H^{ m J} / \ ({ m kJ \ mol}^{-1})$	ਗਿਬਜ਼ ਨਿਰਮਾਣ ਊਰਜਾ $\Delta_{ m f} G^{ t extsf{J}} / ext{(kJ mol}^{-1})$	ਐਨਟ੍ਰਾੱਪੀ* S ^J /(J K ⁻¹ mol ⁻¹)
ਐਲੂਮੀਨਿਅਮ			
Al(s)	0	0	28.33
Al ³⁺ (aq)	-524.7	-481.2	-321.7
$Al_2O_3(s)$	-1675.7	-1582.3	50.92
$Al(OH)_3(s)$	-1276	_	_
AlCl ₃ (s)	-704.2	-628.8	110.67
<i>ਐਂਟੀਮਨੀ</i>			
SbH ₃ (g)	145.11	147.75	232.78
SbCl ₃ (g)	-313.8	-301.2	337.80
SbCl ₅ (g)	-394.34	-334.29	401.94
ਅਰਸੈਨਿਕ			
As(s), gray	0	0	35.1
$As_2S_3(s)$	-169.0	-168.6	163.6
AsO ₄ ³⁻ (aq)	-888.14	-648.41	-162.8
ਬੇਰਿਅਮ			
Ba(s)	0	0	62.8
Ba ²⁺ (aq)	-537.64	-560.77	9.6
BaO(s)	- 553.5	-525.1	70.42
BaCO ₃ (s)	-1216.3	-1137.6	112.1
BaCO ₃ (aq)	-1214.78	-1088.59	-47.3
ਬੋਗੱਨ			
B(s)	0	0	5.86
$B_2O_3(s)$	-1272.8	-1193.7	53.97
BF ₃ (g)	-1137.0	-1120.3	254.12
ਬ੍ਰੋਮੀਨ			
$\mathrm{Br}_2(\mathrm{l})$	0	0	152.23
$Br_2(g)$	30.91	3.11	245.46
Br(g)	111.88	82.40	175.02
Br ⁻ (aq)	-121.55	-103.96	82.4
HBr(g)	-36.40	-53.45	198.70
$BrF_3(g)$	-255.60	-229.43	292.53

ਪਦਾਰਥ	ਨਿਰਮਾਣ ਐਨਥੈਲਪੀ $\Delta_{ m f} H^{ m J} / \ ({ m kJ \ mol}^{-1})$	ਗਿਬਜ਼ ਨਿਰਮਾਣ ਊਰਜਾ $\Delta_{\mathbf{f}}\mathbf{G}^{\mathtt{J}}/$ (\mathbf{kJ} \mathbf{mol}^{-1})	ਐਨਟ੍ਰਾੱਪੀ* S [™] /(J K ^{−1} mol ^{−1})
ਕੈਲਸ਼ੀਅਮ			
Ca(s)	0	0	41.42
Ca(g)	178.2	144.3	154.88
Ca ²⁺ (aq)	-542.83	-553.58	-53.1
ਕੈਲਸ਼ੀਅਮ (ਚੱਲਦਾ)			
CaO(s)	-635.09	-604.03	39.75
Ca(OH) ₂ (s)	-986.09	-898.49	83.39
Ca(OH) ₂ (aq)	-1002.82	-868.07	-74.5
CaCO ₃ (s), calcite	-1206.92	-1128.8	92.9
CaCO ₃ (s), aragonite	-1207.1	-1127.8	88.7
CaCO ₃ (aq)	-1219.97	-1081.39	-110.0
CaF ₂ (s)	-1219.6	-1167.3	68.87
CaF ₂ (aq)	-1208.09	-1111.15	-80.8
CaCl ₂ (s)	-795.8	-748.1	104.6
CaCl ₂ (aq)	-877.1	-816.0	59.8
CaBr ₂ (s)	-682.8	-663.6	130
CaC ₂ (s)	-59.8	-64.9	69.96
CaS(s)	-482.4	-477.4	56.5
CaSO ₄ (s)	-1434.11	-1321.79	106.7
CaSO ₄ (aq)	-1452.10	-1298.10	-33.1
ਕਾਰਬਨ**			
C(s), (ਗਰੇਫਾਈਟ)	0	0	5.740
C(s), (ਡਾਇਮੈਂਡ)	1.895	2.900	2.377
C(g)	716.68	671.26	158.10
CO(g)	-110.53	-137.17	197.67
$CO_2(g)$	-393.51	-394.36	213.74
CO ₃ ² -(aq)	-677.14	-527.81	-56.9
CCl ₄ (l)	-135.44	-65.21	216.40
$CS_2(1)$	89.70	65.27	151.34
HCN(g)	135.1	124.7	201.78
HCN(1)	108.87	124.97	112.84
ਸੀਰਿਆ			
Ce(s)	0	0	72.0
Ce ³⁺ (aq)	-696.2	-672.0	-205
Ce ⁴⁺ (aq)	-537.2	-503.8	-301
ਕਲੋਰੀਨ			
$\operatorname{Cl}_2(g)$	0	0	223.07

^{**} For organic compounds, a separate table is provided in continuation.

Downloaded from https:// www.studiestoday.com

236

ਪਦਾਰਥ	ਨਿਰਮਾਣ ਐਨਥੈਲਪੀ Δ _t H [ਾ] / (kJ mol ⁻¹)	ਗਿਬਜ਼ ਨਿਰਮਾਣ ਊਰਜਾ $\Delta_{ m f} G^{ t extsf{J}} / ext{(kJ mol}^{-1})$	ਐਨਟ੍ਰਾੱਪੀ* S [™] /(J K ^{−1} mol ^{−1}
C1(g)	121.68	105.68	165.20
Cl⁻(aq)	-167.16	-131.23	56.5
HCl(g)	-92.31	-95.30	186.91
HCl(aq)	-167.16	-131.23	56.5
ਕਾਂਪਰ			
Cu(s)	O	O	33.15
Cu ⁺ (aq)	71.67	49.98	40.6
Cu ²⁺ (aq)	64.77	65.49	-99.6
Cu ₂ O(aq)	-168.6	-146.0	93.14
CuO(s)	-157.3	-129.7	42.63
CuSO ₄ (s)	-771.36	-661.8	109
$CuSO_4.5H_2O(s)$	-2279.7	-1879.7	300.4
ਡਿਊਟੀਰਿਅਮ			
$D_2(g)$	0	0	144.96
$D_2(g)$ $D_2O(g)$	-249.20	-234.54	198.34
$D_2O(l)$	-294.60	-243.44	75.94
<i>ਫਲੌਰੀਨ</i>			
$F_2(g)$	0	0	202.78
F ⁻ (aq)	-332.63	-278.79	-13.8
HF(g)	-271.1	-273.2	173.78
HF(aq)	-332.63	-278.79	-13.8
ਹਾਈਡ੍ਰੋਜਨ (ਡਿਊਟੀਰਿਮ ਵੀ	े हेंसे)		
$H_2(g)$	O	0	130.68
H(g)	217.97	203.25	114.71
H ⁺ (aq)	O	O	0
$H_2O(l)$	-285.83	-237.13	69.91
$H_2O(g)$	-241.82	-228.57	188.83
$H_2O_2(1)$	-187.78	-120.35	109.6
$H_2O_2(aq)$	-191.17	-134.03	143.9
ਆਇਓਡੀਨ			
$I_2(s)$	0	0	116.14
I ₂ (g)	62.44	19.33	260.69
I ⁻ (aq)	-55.19	-51.57	111.3
HI(g)	26.48	1.70	206.59

ਪਦਾਰਥ	ਨਿਰਮਾਣ ਐਨਥੈਲਪੀ $\Delta_{ m f} H^{\!\scriptscriptstyle m J} / \ ({ m kJ \ mol}^{-1})$	ਗਿਬਜ਼ ਨਿਰਮਾਣ ਊਰਜਾ $\Delta_{\mathbf{f}}\mathbf{G}^{\mathtt{J}}/$ (\mathbf{kJ} $\mathbf{mol}^{-\mathtt{l}}$)	ਐਨਟ੍ਰਾੱਪੀ* S [™] /(J K ⁻¹ mol ⁻¹)
ਆਇਰਨ			
Fe(s)	0	0	27.28
Fe ²⁺ (aq)	-89.1	-78.90	-137.7
Fe ³⁺ (aq)	-48.5	-4.7	-315.9
Fe ₃ O ₄ (s), magnetite	-1118.4	-1015.4	146.4
$Fe_2O_3(s)$, haematite	-824.2	-742.2	87.40
$FeS(s,\alpha)$	-100.0	-100.4	60.29
FeS(aq)	_	6.9	_
$FeS_2(s)$	-178.2	-166.9	52.93
ਲੈੱਡ			
Pb(s)	0	0	64.81
Pb ²⁺ (aq)	-1.7	-24.43	10.5
PbO ₂ (s)	-277.4	-217.33	68.6
PbSO ₄ (s)	-919.94	-813.14	148.57
PbBr ₂ (s)	-278.7	-261.92	161.5
PbBr ₂ (aq)	-244.8	-232.34	175.3
<i>ਮੈਗਨੀਸ਼ਿਅਮ</i>			
Mg(s)	0	O	32.68
Mg(g)	147.70	113.10	148.65
Mg ²⁺ (aq)	-466.85	-454.8	-138.1
MgO(s)	-601.70	-569.43	26.94
MgCO ₃ (s)	-1095.8	-1012.1	65.7
MgBr ₂ (s)	-524.3	-503.8	117.2
ਮਰਕਰੀ			
Hg(1)	0	0	76.02
Hg(g)	61.32	31.82	174.96
HgO(s)	-90.83	-58.54	70.29
$Hg_2Cl_2(s)$	-265.22	-210.75	192.5
ਨਾਈਟ੍ਰੋਜਨ			
$N_2(g)$	0	0	191.61
NO(g)	90.25	86.55	210.76
N ₂ O(g)	82.05	104.20	219.85
$NO_2(g)$	33.18	51.31	240.06
$N_2O_4(g)$	9.16	97.89	304.29
$HNO_3(1)$	-174.10	-80.71	155.60
HNO ₃ (1) HNO ₃ (aq)	-207.36	-111.25	146.4
NO_3^- (aq)	-205.0	-111.25	146.4
NO ₃ (aq) NH ₃ (g)	-46.11	-16.45	192.45
NH ₃ (g) NH ₃ (aq)	- 8 0.11	-26.50	111.3
11113(44)	00.20	-20.50	111.0

238

ਪਦਾਰਥ	ਨਿਰਮਾਣ ਐਨਥੈਲਪੀ $\Delta_{ m f} H^{ m J}/~({ m kJ~mol}^{-1})$	ਗਿਬਜ਼ ਨਿਰਮਾਣ ਊਰਜਾ $\Delta_{\mathbf{f}}\mathbf{G}^{\!\scriptscriptstyle \mathrm{J}}/$ (\mathbf{kJ} $\mathbf{mol}^{\!\scriptscriptstyle -1}$)	ਐਨਟ੍ਰਾੱਪੀ* S [™] /(J K ⁻¹ mol ⁻¹)
NH ₄ (aq)	-132.51	-79.31	113.4
$NH_2OH(s)$	-114.2	_	_
$HN_3(g)$	294.1	328.1	238.97
$N_2H_4(1)$	50.63	149.34	121.21
$NH_4NO_3(s)$	-365.56	-183.87	151.08
NH ₄ Cl(s)	-314.43	-202.87	94.6
$NH_4ClO_4(s)$	-295.31	-88.75	186.2
ਆੱਕਸੀਜਨ			
$O_2(g)$	0	O	205.14
$O_3(g)$	142.7	163.2	238.93
OH ⁻ (aq)	-229.99	-157.24	-10.75
ਫਾੱਸਫੋਰਸ			
P(s), white	0	0	41.09
$P_4(g)$	58.91	24.44	279.98
PH ₃ (g)	5.4	13.4	210.23
P ₄ O ₁₀ (s)	-2984.0	-2697.0	228.86
$H_3PO_3(aq)$	-964.8	_	_
$H_3PO_4(1)$	-1266.9	_	_
H ₃ PO ₄ (aq)	-1277.4	-1018.7	_
PCl ₃ (1)	-319.7	-272.3	217.18
PCl ₃ (g)	-287.0	-267.8	311.78
PCl ₅ (g)	-374.9	-305.0	364.6
ਪੋਟਾਸ਼ੀਅਮ			
K(s)	0	0	64.18
K(g)	89.24	60.59	160.34
K ⁺ (aq)	-252.38	-283.27	102.5
ਪੋਟਾਸ਼ੀਅਮ (ਚਲਦਾ)			
KCl(s)	-436.75	-409.14	82.59
KBr(s)	-393.80	-380.66	95.90
KI(s)	-327.90	-324.89	106.32
KClO ₃ (s)	-397.73	-296.25	143.1
KClO ₄ (s)	-432.75	-303.09	151.0
$K_2S(s)$	-380.7	-364.0	105
K ₂ S(aq)	-471.5	-480.7	190.4
ਸਿੱਲੀਕਾੱਨ			
Si(s)	0	0	18.83
$SiO_2(s,\alpha)$	-910.94	-856.64	41.84

ਪਦਾਰਥ	ਨਿਰਮਾਣ ਐਨਥੈਲਪੀ $\Delta_{ m r} H^{ m J} / \ ({ m kJ \ mol}^{-1})$	ਗਿਬਜ਼ ਨਿਰਮਾਣ ਊਰਜਾ $\Delta_{\mathbf{f}}\mathbf{G}^{\mathtt{J}}/$ (kJ \mathbf{mol}^{-1})	ਐਨਟ੍ਰਾੱਪੀ* S ^J /(J K ⁻¹ mol ⁻¹)
ਸਿਲਵਰ			
Ag(s)	0	0	42.55
Ag ⁺ (aq)	105.58	77.11	72.68
$Ag_2O(s)$	-31.05	-11.20	121.3
AgBr(s)	-100.37	-96.90	107.1
AgBr(aq)	-15.98	-26.86	155.2
AgCl(s)	-127.07	-109.79	96.2
AgCl(aq)	-61.58	-54.12	129.3
AgI(s)	-61.84	-66.19	115.5
AgI(aq)	50.38	25.52	184.1
AgNO ₃ (s)	-124.39	-33.41	140.92
ਸੋਡੀਅਮ			
Na(s)	0	0	51.21
Na(g)	107.32	76.76	153.71
Na ⁺ (aq)	-240.12	-261.91	59.0
NaOH(s)	-425.61	-379.49	64.46
NaOH(aq)	-470.11	-419.15	48.1
NaCl(s)	-411.15	-384.14	72.13
NaCl(aq)	-407.3	-393.1	115.5
NaBr(s)	-361.06	-348.98	86.82
NaI(s)	-287.78	-286.06	98.53
NaHCO ₃ (s)	-947.7	-851.9	102.1
Na ₂ CO ₃ (s)	-1130.9	-1047.7	136.0
ਸਲਫਰ			
S(s), ਰੌਮਬਿੰਕ	O	0	31.80
S(s), ਮੋਨੋਕਲਿਨਿਕ	0.33	0.1	32.6
S ²⁻ (aq)	33.1	85.8	-14.6
$SO_2(g)$	-296.83	-300.19	248.22
SO ₃ (g)	-395.72	-371.06	256.76
$H_2SO_4(1)$	-813.99	-690.00	156.90
H ₂ SO ₄ (aq)	-909.27	-744.53	20.1
SO ₄ ² -(aq)	-909.27	-744.53	20.1
$H_2S(g)$	-20.63	-33.56	205.79
H ₂ S(aq)	-39.7	-27.83	121
SF ₆ (g)	-1209	-1105.3	291.82
टिरु			
Sn(s), white	O	0	51.55
Sn(s), gray	-2.09	0.13	44.14
SnO(s)	-285.8	-256.9	56.5
$SnO_2(s)$	-580.7	-519.6	52.3

ਪਦਾਰਥ	ਨਿਰਮਾਣ ਐਨਥੈਲਪੀ ∆ _f H [ਾ] / (kJ mol ⁻¹)	ਗਿਬਜ਼ ਨਿਰਮਾਣ ਊਰਜਾ $\Delta_{\mathbf{f}}\mathbf{G}^{\mathtt{J}}/$ (\mathbf{kJ} \mathbf{mol}^{-1})	ਐਨਟ੍ਰਾੱਪੀ* S ^J /(J K ⁻¹ mol ⁻¹)
ਜਿੰਕ			
Zn(s)	0	0	41.63
$Zn^{2+}(aq)$	-153.89	-147.06	-112.1
ZnO(s)	-348.28	-318.30	43.64
Zn(g)	+130.73	+95.14	160.93

^{*}The entropies of individual ions in solution are determined by setting the entropy of H^+ in water equal to 0 and then defining the entropies of all other ions relative to this value; hence a negative entropy is one that is lower than the entropy of H^+ in water.

ਆੱਰਗੈਨਿਕ ਯੋਗਿਕ

ਪਦਾਰਥ	ਜਲਣ ਐਨਥੈਲਪੀ	ਨਿਰਮਾਣ ਐਨਥੈਲਪੀ	ਗਿੱਬਜ ਨਿਰਮਾਣ ਊਰਜਾ	ਐਨਟ੍ਰਾੱਪੀ
ਹਾਈਡੋਕਾਰਬਨਾਂ	Δ _c H / (kJ moi)	$\Delta_{\rm f}H^{\rm J}/$ (kJ mol ⁻¹)	Δ _f G / (KJ mol)	S/(J K moi)
$CH_4(g)$, methane	-890	-74.81	-50.72	186.26
$C_2H_2(g)$, ethyne (acetylene)	-1300	226.73	209.20	200.94
$C_2H_4(g)$, ethene(ethylene)	-1411	52.26	68.15	219.56
$C_2H_6(g)$, ethane	-1560	-84.68	-32.82	229.60
$C_3H_6(g)$, propene (propylene)	-2058	20.42	62.78	266.6
C ₃ H ₆ (g), cyclopropane	-2091	53.30	104.45	237.4
$C_3H_8(g)$, propane	-2220	-103.85	-23.49	270.2
$C_4H_{10}(g)$, butane	-2878	-126.15	-17.03	310.1
$C_5H_{12}(g)$, pentane	-3537	-146.44	-8.20	349
$C_6H_6(l)$, benzene	-3268	49.0	124.3	173.3
$C_6H_6(g)$	-3302	_	_	_
C ₇ H ₈ (l), toluene	-3910	12.0	113.8	221.0
$C_7H_8(g)$	-3953	_	_	_
C ₆ H ₁₂ (l), cyclohexane	-3920	-156.4	26.7	204.4
$C_6H_{12}(g)$,	-3953	_	_	_
$C_8H_{18}(I)$, octane	-5471	-249.9	6.4	358
ਐਲਕੋਹਲਾਂ ਅਤੇ ਫੀਮੋਲਾਂ				
CH ₃ OH(l), methanol	-726	-238.86	-166.27	126.8
CH ₃ OH(g)	-764	-200.66	-161.96	239.81
$C_2H_5OH(l)$, ethanol	-1368	-277.69	-174.78	160.7
$C_2H_5OH(g)$	-1409	-235.10	-168.49	282.70
C ₆ H ₅ OH(s), phenol	-3054	-164.6	-50.42	144.0

ਪਦਾਰਥ	ਜਲਣ ਐਨਥੈਲਪੀ $\Delta_{ m c} H^{ m J} / \ ({ m kJ \ mol}^{-1})$	ਨਿਰਮਾਣ ਐਨਥੈਲਪੀ ∆ _f H ^J / (kJ mol ⁻¹)	ਗਿੱਬਜ ਨਿਰਮਾਣ ਊਰਜਾ Δ _f G ^J / (kJ mol ⁻¹) :	ਐਨਟ੍ਰਾੱਪੀ S [™] /(J K ⁻¹ mol ⁻¹)
ਕਾਰਬੋਗਜ਼ਿਲਿਕ ਐਸਿਡ				
HCOOH(l), formic acid	-255	-424.72	-361.35	128.95
CH ₃ COOH(l), acetic acid	<i>–</i> 875	-484.5	-389.9	159.8
CH ₃ COOH (aq)	_	-485.76	-396.64	86.6
$(COOH)_2(s)$, oxalic acid	-254	-827.2	-697.9	120
$C_6H_5COOH(s)$, benzoic acid	-3227	-385.1	-245.3	167.6
ਐਲਡੀਹਾਈਡ ਅਤੇ ਕੀਟੋਨ				
HCHO(g), methanal (formaldehyde)	-57 1	-108.57	-102.53	218.77
CH ₃ CHO(l), ethanal (acetaldehyde)	-1166	-192.30	-128.12	160.2
CH ₃ CHO(g)	-1192	-166.19	-128.86	250.3
$CH_3COCH_3(I)$, propanone (acetone)	-1790	-248.1	-155.4	200
<i>ਖੰਡ</i>				
$C_6H_{12}O_6(s)$, glucose	-2808	-1268	-910	212
$C_6H_{12}O_6(aq)$	_	_	-917	_
C ₆ H ₁₂ O ₆ (s), fructose	-2810	-1266	_	_
$C_{12}H_{22}O_{11}(s)$, sucrose	-5645	-2222	-1545	360

Appendix VII

ਬਿਜਲਈ ਰਸਾਇਣਿਕ ਤਰਤੀਬ ਵਿੱਚ 298 K ਉੱਤੇ ਸਟੈਂਡਰਡ ਪੋਟੈਂਸ਼ਲ

The second will be second as the second seco	FoJ / T7	The second secon	77. LO
ਲਘੂਕਰਣ ਅਰਥ ਪ੍ਤੀਕਿਰਿਆ	E ^J /V	ਲਘੂਕਰਣ ਅਰਥ ਪ੍ਤੀਕਿਰਿਆ	E ^J /V
$H_4XeO_6 + 2H^+ + 2e^- \longrightarrow XeO_3 + 3H_2O$	+3.0	$Cu^+ + e^- \longrightarrow Cu$	+0.52
$F_2 + 2e^- \longrightarrow 2F-$	+2.87	$NiOOH + H_2O + e^- \longrightarrow Ni(OH)_2 + OH^-$	+0.49
$O_3 + 2H^+ + 2e^- \longrightarrow O_2 + H_2O$	+2.07	$Ag_2CrO_4 + 2e^- \longrightarrow 2Ag + CrO_4^{2-}$	+0.45
$S_2O_8^{2-} + 2e^- \longrightarrow 2SO_4^{2-}$	+2.05	$O_2 + 2H_2O + 4e^- \longrightarrow 4OH^-$	+0.40
$Ag^+ + e^- \longrightarrow Ag^+$	+1.98	$ClO_4^- + H_2O + 2e^- \longrightarrow ClO_3^- + 2OH^-$	+0.36
$Co^{3+} + e^{-} \longrightarrow Co^{2+}$	+1.81	$[Fe(CN)_6]^{3-} + e^- \longrightarrow [Fe(CN)_6]^{4-}$	+0.36
$H_2O_2 + 2H^+ + 2e^- \longrightarrow 2H_2O$	+1.78	$Cu^{2+} + 2e^{-} \longrightarrow Cu$	+0.34
$Au^+ + e^- \longrightarrow Au$	+1.69	$Hg_2Cl_2 + 2e^- \longrightarrow 2Hg + 2Cl^-$	+0.27
$Pb^{4+} + 2e^{-} \longrightarrow Pb^{2+}$	+1.67	$AgCl + e^{-} \longrightarrow Ag + Cl^{-}$ $Bi^{3+} + 3e^{-} \longrightarrow Bi$	+0.27
$2HClO + 2H^{\scriptscriptstyle{+}} + 2e^{\scriptscriptstyle{-}} {\longrightarrow} Cl_2 + 2H_2O$	+1.63		+0.20
$Ce^{4+} + e^{-} \longrightarrow Ce^{3+}$	+1.61	$SO_4^{2^-} + 4H^+ + 2e^- \longrightarrow H_2SO_3 + H_2O$ $Cu^{2^+} + e^- \longrightarrow Cu^+$	+0.17 +0.16
$2HBrO + 2H^{+} + 2e^{-} \longrightarrow Br_{2} + 2H_{2}O$	+1.60	$Cu^{+} + e^{-} \rightarrow Cu$ $Sn^{4+} + 2e^{-} \longrightarrow Sn^{2+}$	+0.16
$MnO_4^- + 8H^+ + 5e^- \longrightarrow Mn^{2+} + 4H_2O$	+1.51	$AgBr + e^{-} \longrightarrow Ag + Br^{-}$	+0.13
$Mn^{3+} + e^- \longrightarrow Mn^{2+}$	+1.51	$Ti^{4+} + e^{-} \longrightarrow Ti^{3+}$	0.00
$Au^{3+} + 3e^- \longrightarrow Au$	+1.40	$2H^{+} + 2e^{-} \longrightarrow H_{2}$	0.00 0.0 by
$Cl_2 + 2e^- \longrightarrow 2Cl^-$	+1.36	$2\Pi + 2C \longrightarrow \Pi_2$	definition
$Cr_2O_7^{2-} + 14H^+ + 6e^- \longrightarrow 2Cr^{3+} + 7H_2O$	+1.33	$Fe^{3+} + 3e^{-} \longrightarrow Fe$	-0.04
$O_3 + H_2O + 2e^- \longrightarrow O_2 + 2OH^-$	+1.24	$O_2 + H_2O + 2e^- \longrightarrow HO_2^- + OH^-$	-0.08
$O_2 + 4H^+ + 4e^- \longrightarrow 2H_2O$	+1.23	$Pb^{2+} + 2e^{-} \longrightarrow Pb$	-0.13
$ClO_4^- + 2H^+ + 2e^- \longrightarrow ClO_3^- + 2H_2O$	+1.23	$In^+ + e^- \longrightarrow In$	-0.14
$MnO_2 + 4H^+ + 2e^- \longrightarrow Mn^{2+} + 2H_2O$	+1.23	$\operatorname{Sn}^{2+} + 2e^{-} \longrightarrow \operatorname{Sn}$	-0.14
$Pt^{2+} + 2e^{-} \longrightarrow Pt$	+1.20	$AgI + e^{-} \longrightarrow Ag + I^{-}$	-0.15
$Br_2 + 2e^- \longrightarrow 2Br^-$	+1.09	$Ni^{2+} + 2e^{-} \longrightarrow Ni$	-0.23
$Pu^{4+} + e^{-} \longrightarrow Pu^{3+}$	+0.97	$V^{3+} + e^- \longrightarrow V^{2+}$	-0.26
$NO_3^- + 4H^+ + 3e^- \longrightarrow NO + 2H_2O$	+0.96	$Co^{2+} + 2e^{-} \longrightarrow Co$	-0.28
$2Hg^{2+} + 2e^- \longrightarrow Hg_2^{2+}$	+0.92	$In^{3+} + 3e^{-} \longrightarrow In$	-0.34
$ClO^- + H_2O + 2e^- \longrightarrow Cl^- + 2OH^-$	+0.89	$Tl^+ + e^- \longrightarrow Tl$	-0.34
$Hg^{2+} + 2e^{-} \longrightarrow Hg$	+0.86	$PbSO_4 + 2e^- \longrightarrow Pb + SO_4^{2-}$	-0.36
$NO_3^- + 2H^+ + e^- \longrightarrow NO_2 + H_2O$	+0.80	$Ti^{3+} + e^{-} \longrightarrow Ti^{2+}$	-0.37
$Ag^+ + e^- \longrightarrow Ag$	+0.80	$Cd^{2+} + 2e^{-} \longrightarrow Cd$	-0.40
$Hg_2^{2+} + 2e^- \longrightarrow 2Hg$	+0.79	$In^{2+} + e^{-} \longrightarrow In^{+}$	-0.40
$Fe^{3+} + e^{-} \longrightarrow Fe^{2+}$	+0.77	$Cr^{3+} + e^{-} \longrightarrow Cr^{2+}$	-0.41
$BrO^- + H_2O + 2e^- \longrightarrow Br^- + 2OH^-$	+0.76	$Fe^{2+} + 2e^{-} \longrightarrow Fe$	-0.44
$Hg_2SO_4 + 2e^- \longrightarrow 2Hg + SO_4^{2-}$	+0.62	$In^{3+} + 2e^{-} \longrightarrow In^{+}$	-0.44
$MnO_4^2 + 2H_2O + 2e^- \longrightarrow MnO_2 + 4OH^-$	+0.60	$S + 2e^{-} \longrightarrow S^{2-}$	-0.48
$MnO_4^- + e^- \longrightarrow MnO_4^{2-}$	+0.56	$In^{3+} + e^- \longrightarrow In^{2+}$	-0.49
$I_2 + 2e^- \longrightarrow 2I^-$	+0.54	$U^{4+} + e^{-} \longrightarrow U^{3+}$	-0.61
$I_3^- + 2e^- \longrightarrow 3I^-$	+0.53	$\operatorname{Cr}^{3+} + 3e^{-} \longrightarrow \operatorname{Cr}$	-0.74
		$Zn^{2+} + 2e^- \longrightarrow Zn$	-0.76

Downloaded from https:// www.studiestoday.com

Appendix continued

ਲਘੂਕਰਣ ਅਰਥ ਪ੍ਤੀਕਿਰਿਆ	E^{J}/V	ਲਘੂਕਰਣ ਅਰਥ ਪ੍ਰਤੀਕਿਰਿਆ	$E^{\scriptscriptstyle m J}/{ m V}$
$Cd(OH)_2 + 2e^- \longrightarrow Cd + 2OH^-$	-0.81	La ³⁺ + 3e ⁻ − → La	-2.52
$2H_2O + 2e^- \longrightarrow H_2 + 2OH^-$	-0.83	$Na^+ + e^- \longrightarrow Na$	-2.71
$Cr^{2+} + 2e^{-} \longrightarrow Cr$	-0.91	$Ca^{2+} + 2e^{-} \longrightarrow Ca$	-2.87
$Mn^{2+} + 2e^- \longrightarrow Mn$	-1.18	$Sr^{2+} + 2e^{-} \longrightarrow Sr$	-2.89
$V^{2+} + 2e^- \longrightarrow V$	-1.19	$Ba^{2+} + 2e^{-} \longrightarrow Ba$	-2.91
$Ti^{2+} + 2e^{-} \longrightarrow Ti$	-1.63	$Ra^{2+} + 2e^{-} \longrightarrow Ra$	-2.92
$Al^{3+} + 3e^{-} \longrightarrow Al$	-1.66	$Cs^+ + e^- \longrightarrow Cs$	-2.92
$U^{3+} + 3e^{-} \longrightarrow U$	-1.79	$Rb^+ + e^- \longrightarrow Rb$	-2.93
$Sc^{3+} + 3e^{-} \longrightarrow Sc$	-2.09	$K^+ + e^- \longrightarrow K$	-2.93
$Mg^{2+} + 2e^{-} \longrightarrow Mg$	-2.36	$Li^+ + e^- \longrightarrow Li$	-3.05
$Ce^{3+} + 3e^{-} \longrightarrow Ce$	-2.48		

ਕੁਝ ਚੁਣ ਹੲ ਪ੍ਰਸ਼ਨਾਂ ਦ ਉਤਰ

UNIT 1

```
\sim 15\times 10^{-4}\,\mathrm{g} , 1.25\times 10^{-4}\,m
1.17
                                                             (iii) 8.008 \times 10^3 (iv) 5.000 \times 10^2
          (i) 4.8 \times 10^{-3} (ii) 2.34 \times 10^{5}
1.18
1.19
          (i) 2
                                     (ii) 3
                                                             (iii) 4
                                                                                       (iv) 3
          (v) 4
                                     (vi) 5
                                     (ii) 10.4
                                                             (iii) 0.0460 (iv) 2810
1.20
          (i) 34.2
                                                             (%) (i) : (10^6 \, \text{mm}, \, 10^{15} \, \text{pm})
          (ੳ) ਬਹੁਅਨੁਪਾਤੀ ਦਾ ਨਿਯਮ
1.21
                                                                   (ii) : (10^{-6} \text{ kg}, 10^{6} \text{ ng})
                                                                   (iii) : (10^{-3} L, 10^{-3} dm^3)
          6.00 \times 10^{-1} \text{ m} = 0.600 \text{ m}
1.22
          (i) B ਸੀਮਾਂਤ ਹੈ
1.23
                                                               (ii) A ਸੀਮਾਂਤ ਹੈ
          (iii) ਸਟੋਕਿਓਮੀਟ੍ਰਿਕ ਮਿਸ਼ਰਣ - ਨਹੀਂ
                                                                (iv) B ਸੀਮਾਂਤ ਹੈ
          (v) A ਸੀਮਾਂਤ ਹੈ
1.24
          (i) 2.43 \times 10^3 g
                                                                (ii) ਹਾਂ
          (iii) ਹਾਈਡ੍ਰੋਜਨ ਬਚੀ ਰਹੇਗੀ ; 5.72 \times 10^2g
1.26
          10 ਆਇਤਨ
          (i) 2.87 \times 10^{-11}m
                                              (ii) 1.515 \times 10^{-11} \,\mathrm{m} (iii) 2.5365 \times 10^{-2} \mathrm{kg}
1.27
          1.99265 \times 10^{-23}g
1.30
1.31
          (i) 3
                                              (ii) 4
                                                                                  (iii) 4
          39.948 \text{ g mol}^{-1}
1.32
          (i) 3.131 \times 10^{25} ਪਰਮਾਣੂ
                                           (ii) 13 ਪਰਮਾਣ (iii) 7.8286 × 10<sup>24</sup> ਪਰਮਾਣ
1.33
          ਮੂਲ ਅਨੁਪਾਤੀ ਸੂਤਰ CH, ਮੋਲਰ ਪੂੰਜ 26.0 \text{ g mol}^{-1}, ਅਣਵੀਂ ਸੂਤਰ C_2H_2
1.34
          0.94 g CaCO<sub>3</sub>
1.35
1.36
          8.40 g HCl
                                                   UNIT 2
         (i) 1.099 \times 10^{27} ਇਲੈਕਟ੍ਰਾੱਨ (ii) 5.48 \times 10^{-7} kg, 9.65 \times 10^{4}C
2.1
         (i) 6.022 \times 10^{24} ਇਲੈਕਟ਼ਾੱਨ
2.2
         (ii) (\theta) 2.4088 \times 10^{21} ਨਿਊਟ੍ਰਾੱਨ (ਅ) 4.0347 \times 10^{-6} kg
         (iii) (ੳ) 1.2044 \times 10^{22} ਪ੍ਰੋਟਾੱਨ (ਅ) 2.015 \times 10^{-5} \text{ kg}
         7.6: 8.8: 12.12: 30.26: 50, 38
2.3
2.4
         (i) C1
                                              (ii) U
                                                                              (iii) Be
2.5
         5.17 \times 10^{14} \text{ s}^{-1}, 1.72 \times 10^{6} \text{m}^{-1}
         (i) 1.988 \times 10^{-18} \,\text{J} (ii) 3.98 \times 10^{-15} \,\text{J}
2.6
```

```
246
```

```
6.0 \times 10^{-2} \text{ m}, 5.0 \times 10^{9} \text{ s}^{-1} ਅਤੇ 16.66 \text{ m}^{-1}
2.7
          2.012 \times 10^{16} ਫੋਟਾੱਨ
2.8
         (i) 4.97 \times 10^{-19} \, \mathrm{J} (3.10 eV); (ii) 0.97 eV (iii) 5.84 \times 10^5 \, \mathrm{m \ s^{-1}}
2.9
2.10 494 kJ mol<sup>-1</sup>
2.11 \quad 7.18 \times 10^{19} \text{s}^{-1}
2.12 4.41 \times 10^{14} \text{s}^{-1}, 2.91 × 10^{-19} \text{J}
2.13 486 nm
2.14 \quad 8.72 \times 10^{-20} \text{J}
2.15 15 ਉਤਸਰਜਨ ਲਾਈਨਾਂ
2.16 (i) 8.72 \times 10^{-20}J
                                          (ii) 1.3225
        1.523 \times 10^6 \text{ m}^{-1}
2.17
2.18 	 2.08 \times 10^{-11} \text{ ergs}, 950 \text{ Å}
2.19 3647Å
2.20 \quad 3.55 \times 10^{-11} \text{m}
2.21 8967Å
2.22 Na+, Mg<sup>2+</sup>, Ca<sup>2+</sup>; Ar, S<sup>2-</sup> ਅਤੇ K<sup>+</sup>
2.23 (i) (\theta) 1s^2 (ਅ) 1s^2 2s^2 2p^6; (\epsilon) 1s^22s^22p^6 (\epsilon) 1s^22s^22p^6
          (ii) (ੳ)(ਅ) 7(ੲ) 17
          (iii) (ੳ) ਲੀਥਿਅਮ (ਅ) ਫਾਸਫੇਟ (ੲ) ਸਕੈਡੀਅਮ
2.24 \quad n = 5
2.25 n = 3; l = 2; m_l = -2, -1, 0, +1, +2 (ਕੋਈ ਇੱਕ ਮਾਨ)
2.26 (i) 29 ਪ੍ਰੋਟਾੱਨ
2.27 1, 2, 15
2.28 (i) l m_1
              0
               1
                    -1,0,+1
                  -2,-1,0,+1,+2
          (ii) l = 2; m_1 = -2, -1, 0, +1, +2
          (iii) 2s, 2p
2.29 (ੳ) 1s, (ਅ) 3p, (ੲ) 4d ਅਤੇ (ਸ) 4f
2.30 (ੳ), (ੲ) ਅਤੇ (ਹ) ਸੰਭਵ ਨਹੀਂ
        (\theta) \ 16 \ \text{ਇਲੈਕਟ੍ਰਾੱਨ} \ (\gamma) \ 2 \ \text{ਇਲੈਕਟ੍ਰਾੱਨ}
2.31
2.33 n = 2 ਤੋਂ n = 1
        8.72 × 10<sup>-18</sup>J ਪ੍ਰਤੀ ਪਰਮਾਣੂ
2.34
        1.33 \times 10^9
2.35
2.36 0.06 nm
        (영) 1.3 \times 10^2 \text{ pm} (ਅ) 6.15 \times 10^7 \text{ pm}
2.37
2.38
        1560
2.39
         K–ਕਣਾਂ ਦੀ ਵਧੇਰੇ ਮਾਤਰਾ ਲੰਘੇਗੀ, ਕਿਉਂਕਿ ਹੌਲੇ ਪਰਮਾਣੂ ਦਾ ਨਿਉਕਲੀਅਸ ਛੋਟਾ ਹੈ, K–ਕਣਾਂ ਦੀ ਘੱਟ ਮਾਤਰਾ
2.40
```

```
ਲੰਘੇਗੀ, ਕਿਉਂਕਿ ਹਲਕੇ ਨਿਉਕਲੀਅਸ ਵਿੱਚ ਧਨ ਚਾਰਜ ਦੀ ਸੰਖਿਆ ਘੱਟ ਹੈ।
2.41
         For a given element the number of prontons is the same for the isotopes, whereas
         the mass number can be different for the given atomic number.
2.42
          37 Cl<sup>-1</sup>
2.43
          ^{56}_{26} \mathrm{Fe}^{3+}
2.44
         ਕਾੱਸਮਿਕ ਕਿਰਣਾਂ > X–ਕਿਰਣਾਂ > ਅੰਬਰ ਰੰਗ > ਮਾਈਕ੍ਰੌਵੇਵ > FM
2.45
         3.3 \times 10^{6} \,\text{J}
2.46
         (\Theta) 4.87 \times 10^{14} \text{ s}^{-1}
                                            (\%) 9.0 \times 10^9 \,\mathrm{m}
                                                                           (ੲ) 32.27 \times 10^{-20} \text{ J}
2.47
         (ਸ) 6.2 \times 10^{18} quanta
2.48
         8.28 \times 10^{-10} \text{ J}
2.49
2.50
         3.45 \times 10^{-22} \text{ J}
         (ੳ) ਦਹਿਲੀਜ ਤਰੰਗ ਲੰਬਾਈ
                                            (ਅ) ਵਿਕਿਰਣੀ ਦਹਿਲੀਜ ਬਾਰੰਬਾਰਤਾ
2.51
              652.46 nm
                                                 4.598 \times 10^{14} \text{ s}^{-1}
         (ੲ) ਨਿਸਕਾਸਿਤ ਫੋਟੋ ਇਲੈਕਟ੍ਰਾੱਨਾਂ ਦੀ ਗਤਿਜ ਉਰਜਾ
              9.29 \times 10^{-20} \; \mathrm{J}, ਅਤੇ ਫੋਟੋ ਇਲੈਕਟ੍ਰਾੱਨਾਂ ਦਾ ਵੇਗ 4.516 \times 10^5 \; \mathrm{ms^{-1}}
2.52
         530.9 nm
         4.48 eV
2.53
         7.6 \times 10^{3} \text{ eV}
2.54
         ਇਨਫ੍ਰਾਰੈੱਡ, 5
2.55
         434 nm
2.56
2.57
         455 pm
         494.5 ms<sup>-1</sup>
2.58
2.59
         332 pm
         1.516 \times 10^{-38} \,\mathrm{m}
2.60
         ਪਰਿਭਾਸ਼ਿਤ ਨਹੀਂ ਕੀਤਾ ਜਾ ਸਕਦਾ ਕਿਉਂਕਿ ਅਸਲੀ ਮਾਨ ਅਨਿਸ਼ਚਤਤਾ ਨਾਲੋਂ ਛੋਟਾ ਹੈ।
2.61
2.62
         (v) < (ii) = (iv) < (vi) = (iii) < (i)
2.63
         4p
         (i) 2s
2.64
                                            (ii) 4d
                                                                           (iii) 3p
2.65
         Si
         (♥) 3
2.66
                                            (ਅ) 2
                                                                           (g) 6
                                            (ਹ) ਸਿਫਰ
         (H) 4
         (♥) 16
2.67
         (ਅ) 16
                                                 UNIT 5
5.1
         2.5 bar
5.2
         0.8 bar
         70 g/mol
5.4
5.5
         M_B = 4M_A
         203.2 mL
5.6
```

```
248
```

```
5.7
         8.314 \times 10^4 \text{ Pa}
5.8
         1.8 bar
         3g/dm^3
5.9
5.10
        1249.8 g mol<sup>-1</sup>
5.11
         3/5
5.12
         50 K
         4.2154 \times 10^{23} ਇਲੈਕਟ੍ਰਾੱਨ
5.13
5.14
         1.90956 × 10<sup>6</sup> ਸਾਲ
5.15
         56.025 bar
5.16
         3811.1 kg
5.17
         5.05 L
         40 g mol<sup>-1</sup>
5.18
5.19
         0.8 bar
                                                  UNIT 6
6.1
         (ii)
6.2
         (iii)
6.3
         (ii)
6.4
         (iii)
6.5
         (i)
6.6
         (iv)
6.7
         \Delta U = 3077
6.8
         -743.939 kJ
6.9
        1.067 kJ
6.10
       \Delta H = -7.151 \text{ kJ mol}^{-1}
6.11 - 314.8 kJ
6.12
       \Delta H = -778 \text{ kJ}
       - 46.2 kJ mol<sup>-1</sup>
6.13
6.14

    239 kJ mol<sup>-1</sup>

6.15
       326 kJ mol<sup>-1</sup>
6.16
        \Delta S > 0
6.17
         2000 K
         \Delta H = - \text{ ve } (ਬੰਧਨ ਊਰਜਾ ਪੈਦਾ ਹੁੰਦੀ ਹੈ) ਅਤੇ
6.18
         \Delta S = - \text{ ve } (ਅਣੂਆਂ ਵਿੱਚ ਬੇ-ਤਰਤੀਬੀ ਪਰਮਾਣੂਆਂ ਨਾਲੋਂ ਘੱਟ ਹੁੰਦੀ ਹੈ)
         0.164 kJ, ਪ੍ਰਤੀਕਿਰਿਆ ਸੂਤੇ ਸਿੱਧ ਨਹੀਂ ਹੈ।
6.19
6.20
         -5.744 kJ mol<sup>-1</sup>
         NO(g) ਅਸਥਾਈ ਹੈ, ਪਰ NO<sub>2</sub>(g) ਬਣਦੀ ਹੈ।
6.21
6.22
          q_{surr} = + 286 \text{ kJ mol}^{-1}
          \Delta S_{surr} = 959.73 \text{ J K}^{-1}
                                                  UNIT 7
7.2
          12.229
```

Downloaded from https://www.studiestoday.com

```
7.3
          2.6 \times 10^{4}
7.5
          (i) 4.33 \times 10^{-4} (ii) 1.90
7.6
          1.59 \times 10^{-15}
7.8
          [N_2] = 0.0482 \text{ molL}^{-1}, [O_2] = 0.0933 \text{ molL}^{-1}, [N_2O] = 6.6 \times 10^{-21} \text{ molL}^{-1}
          {
m NO} ਦੇ 0.0352 ਮੋਲ ਅਤੇ {
m Br}_{_2} ਦੇ 0.0178 ਮੋਲ
          7.47 \times 10^{11} \text{ M}^{-1}
7.10
7.11
7.12
          Q_c = 2.379 \times 10^3. ਨਹੀਂ, ਪ੍ਰਤੀਕਿਰਿਆ ਸੰਤੁਲਿਤ ਅਵਸਥਾ ਉੱਤੇ ਨਹੀਂ ਹੈ।
7.14
          0.44
7.15
          0.068 molL<sup>-1</sup> (H<sub>2</sub> ਅਤੇ I<sub>2</sub> ਦੋਵਾਂ ਦੇ)
7.16
          [I_2] = [Cl_2] = 0.167 \text{ M}, [ICl] = 0.446 \text{ M}
7.17
          [C_2H_6]_{eq} = 3.62 \text{ atm}
          (i) [CH_3COOC_2H_5][H_2O] / [CH_3COOH][C_2H_5OH]
          (ii) 3.92 (iii) Q < K ਇਸ ਲਈ ਸੰਤੁਲਿਤ ਅਵਸਥਾ ਨਹੀਂ ਪਹੁੰਚੀ
          ਦੋਹਾਂ ਦੀ 0.02 molL-1
7.19
          [P_{co}] = 1.739atm, [P_{co2}] = 0.461atm.
7.21
          ਨਹੀਂ, ਪ੍ਰਤੀਕਿਰਿਆ ਹੋਰ ਉਪਜਾਂ ਬਣਾਏਗੀ।
7.22
          3 \times 10^{-4} \text{ molL}^{-1}
7.23
          0.149
          (\Theta) - 35.0 \text{kJ}, (ਅ) 1.365 \times 10^6
          [P_{_{H_9}}]_{eq} = [P_{_{Br_9}}]_{eq} = 2.5 \times 10^{-2} bar, [P_{_{HBr}}] = 10.0 bar
7.27
7.30
          (ਅ) 120.48
7.31
          [H_2]_{eq} = 0.96 \text{ bar}
7.33
          2.86 \times 10^{-28} \text{ M}
7.34
          5.85x10^{-2}
          NO<sub>2</sub>-, HCN, ClO<sub>4</sub>, HF, H<sub>2</sub>O, HCO<sub>3</sub>-, HS-
7.35
7.36
          BF<sub>3</sub>, H<sup>+</sup>, NH<sub>4</sub><sup>+</sup>
7.37
          F-, HSO<sub>4</sub>-, CO<sub>3</sub><sup>2-</sup>
7.38
          NH<sub>3</sub>, NH<sub>4</sub>+, HCOOH
7.41
          2.42
7.42 	 1.7 \times 10^{-4} M
          F = 1.5 \times 10^{-11}, HCOO= 5.6 \times 10^{-11}, CN= 2.08 \times 10^{-6}
          [ਫੀਨੌਲੇਟ ion]= 2.2 \times 10^{-6}, \alpha = 4.47 \times 10^{-5} , ਸੋਡੀਅਮ ਫੀਨੌਲੇਟ ਵਿੱਚ \alpha = 10^{-8}
7.44
7.45
          [HS^-] = 9.54 \times 10^{-5}, 0.1 M HCl ਵਿੱਚ [HS^-] = 9.1 \times 10^{-8} M, [S^{2-}] = 1.2 \times 10^{-13} M, 0.1 M
          HCl ਵਿੱਚ [S²-]= 1.09 × 10⁻¹9M
7.46 [ਐਸੀਟੇਟ ਆਇਨ]= 0.00093, pH= 3.03
7.47 [A^{-}] = 7.08 \times 10^{-5} \text{M}, \text{ K}_{3} = 5.08 \times 10^{-7}, \text{ pK}_{3} = 6.29
7.48 (ੳ) 2.52 (ਅ) 11.70 (ੲ) 2.70 (ਸ) 11.30
7.49 (ੳ) 11.65 (ਅ) 12.21 (ੲ) 12.57 (ਸ) 1.87
7.50
        pH = 1.88, pK_{a} = 2.70
7.51
          K_b = 1.6 \times 10^{-6}, pK_b = 5.8
7.52
          \alpha = 6.53 \times 10^{-4}, \text{ K}_{a} = 2.35 \times 10^{-5}
```

Downloaded from https://www.studiestoday.com

250

7.73

```
7.53
         (영) 0.0018 (ਅ) 0.00018
7.54 \quad \alpha = 0.0054
7.55 (\Theta) 1.48 × 10<sup>-7</sup>M, (\aleph) 0.063
                                                   (\Xi) 4.17 \times 10^{-8} M (\Xi) 3.98 \times 10^{-7}
7.56
         (\Theta) 1.5 \times 10^{-7} M
                                  (ਅ) 10^{-5}M, (ੲ) 6.31 \times 10^{-5}M (Ħ) 6.31 \times 10^{-3}M
7.57
         [K^{+}] = [OH^{-}] = 0.05M, [H^{+}] = 2.0 \times 10^{-13}M
7.58
         [Sr^{2+}] = 0.1581M, [OH^{-}] = 0.3162M, pH = 13.50
         \alpha = 1.63 \times 10^{-2}, pH = 3.09. 0.01M HCl ਦੀ ਮੌਜੂਦਗੀ ਵਿੱਚ \alpha = 1.32 \times 10^{-3}
7.59
7.60
         K_a = 2.09 \times 10^{-4}, \ \alpha = 0.0457

m pH = 7.97. ਜਲਯੋਜਨ ਦੀ ਮਾਤਰਾ = 2.36 	imes 10^{-5}
7.61
7.62
         K_b = 1.5 \times 10^{-9}
7.63
         NaCl, KBr ਘੋਲ ਉਦਾਸੀਨ ਹਨ; NaCN, NaNO, ਅਤੇ KF ਘੋਲ ਖਾਰੀ ਹਨ ਅਤੇ NH, NO, ਘੋਲ ਤੇਜਾਬੀ ਹੈ।
7.64
         (ੳ) ਤੇਜਾਬੀ ਘੋਲ ਦੀ pH = 1.9
                                                           (ਅ) ਲੂਣ ਦੇ ਘੋਲ ਦੀ pH = 7.9
7.65
         pH = 6.78
         (영) 12.6 (ਅ) 7.00 (ੲ) 1.3
7.66
7.67
         ਸਿਲਵਰ ਕ੍ਰੋਮੇਟ S= 0.65 \times 10^{-4}M; Ag^+ ਦੀ ਮੋਲਰਤਾ = 1.30 \times 10^{-4}M
         {
m CrO_4^{2-}} ਦੀ ਮੋਲਰਤਾ = 0.65 \times 10^{-4} {
m M}; ਬੇਰੀਅਮ ਕ੍ਰੋਮੇਟ S = 1.1 \times 10^{-5} {
m M}; {
m Ba^{2+}} ਅਤੇ {
m CrO_4^{2-}} ਦੋਵਾਂ ਦੀ
         ਮੋਲਰਤਾ 1.1 \times 10^{-5}M; ਫੈਰਿਕ ਹਾਈਡ੍ਰੋਕਸਾਈਡ S = 1.39 \times 10^{-10}M;
          Fe^{3+} ਦੀ ਮੋਲਰਤਾ = 1.39 \times 10^{-10}M; [OH^-] ਦੀ ਮੋਲਰਤਾ = 4.17 \times 10^{-10}M
         ਲੈੱਡ ਕਲੋਰਾਈਡ S = 1.59 \times 10^{-2} M; Pb^{2+} ਦੀ ਮੋਲਰਤਾ = 1.59 \times 10^{-2} M
         \text{Cl}^- ਦੀ ਮੋਲਰਤਾ = 3.18 \times 10^{-2} \text{M}; ਮਰਕਿਊਰਸ ਆਇਓਡਾਈਡ \text{S} = 2.24 \times 10^{-10} \text{M};
         Hg_2^{2+} ਦੀ ਮੋਲਰਤਾ = 2.24 \times 10^{-10} M; I^- ਦੀ ਮੋਲਰਤਾ = 4.48 \times 10^{-10} M
         ਸਿਲਵਰ ਕ੍ਰੋਮੇਟ ਵਧੇਰੇ ਘੁਲਣਸ਼ੀਲ ਹੈ ਅਤੇ ਉਨ੍ਹਾਂ ਦੀ ਮੋਲਰਤਾ ਦੀ ਅਨੁਪਾਤ = 91.9
7.68
7.69
         ਅਵਖੇਪ ਨਹੀਂ
7.70
         ਨੀਵੇਂ pH ਉੱਤੇ ਸਿਲਵਰ ਬੈੱਨਜ਼ੋਏਟ 3.317 ਗੁਣਾ ਵੱਧ ਘੁਲਣਸ਼ੀਲ ਹੈ।
         ਘੋਲ ਦੀ ਵੱਧ ਤੋਂ ਵੱਧ ਮੋਲਰਤਾ 2.5 × 10<sup>-9</sup>M
7.71
         ਪਾਣੀ ਦੇ 2.43 ਲਿਟਰ
7.72
         ਕੈਡਮੀਅਮ ਕਲੋਰਾਈਡ ਦੇ ਘੋਲ ਵਿੱਚ ਅਵਖੇਪਣ ਹੋਵੇਗਾ।
```