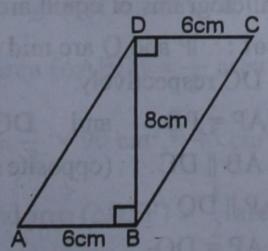
POINTS TO REMEMBER

- 1. Equal figures: Two plane figures having equal area are called equal figures.
- 2. Congruent figures: Two plane figures having the same shape and size are called congruent. figures. But two plane figures having equal areas need not be congruent.
- 3. Results on Area of polygon regions
- (i) Parallelograms on the same base and between the same parallels are equal in area.
- (ii) The area of a parallelogram is equal to the area of the rectangle on the same base and of the same altitude i.e. between the same parallels.
- (iii) Triangles are the same base and between the same parallels are equal in area.
 - 4. Some more results:
 - (i) Area of a || gm = Base × height
- (ii) Area of a triangle = $\frac{1}{2}$ × Base × height
- (iii) Area of trapezium = $\frac{1}{2}$ (sum of parallel sides) × height
- (iv) Area of rhombus = $\frac{1}{2}$ × Product of diagonals
 - 5. (i) If a triangle and a parallelogram are on the same base and between the same parallels, then the area of triangle is half of the area of the parallellogram.
- (ii) Parallelograms on equal bases and between the same parallels are equal in area.

EXERCISE 16

Q. 1. In the adjoining figure, BD is a diagonal of quad. ABCD. Show that ABCD is a parallelogram and calculate the area of || gm ABCD.



Sol. Given: BD is the diagonal of quadrilateral ABCD

$$AB = 6 \text{ cm}$$
, $CD = 6 \text{ cm}$ and $BD = 8 \text{ cm}$

$$\angle ABD = \angle BDC = 90^{\circ}$$

To prove: (i) ABCD is a parallelogram.

$$Proof : : \angle ABD = \angle BDC$$

$$(each = 90^{\circ})$$

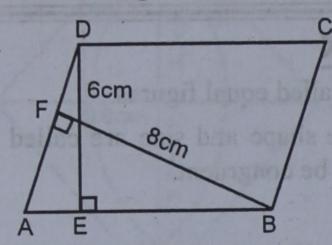
But these are alternate angles.

But
$$AB = DC = 6 \text{ cm}$$

$$= 6 \times 8 \text{ cm}^2 = 48 \text{ cm}^2 \text{Ans.}$$

Q. 2. In a ||gm ABCD, it is given that AB = 16 cm and the altitudes corresponding to the sides AB and AD are 6 cm and 8 cm respectively.

Find the length of AD.



Sol. In || gm ABCD, AB = 16 cm, altitudes on AB and AD are DE and BF are drawn and DE = 7 cm, BF = 8 cm

Area of \parallel gm ABCD = Base \times altitude

$$= AB \times DE$$

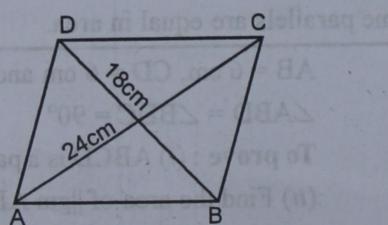
= $16 \times 6 = 96 \text{ cm}^2$...(i)

Again area of \parallel gm = AD × BF = AD × 8 cm² ...(ii)

From (i) and (ii)

$$8 \text{ AD} = 96 \implies \text{AD} = \frac{96}{8} = 12 \text{ cm Ans.}$$

Q. 3. Find the area of a rhombus, the lengths of whose diagonals are 18 cm and 24 cm respectively.



Sol. Let the first diagonal of rhombus

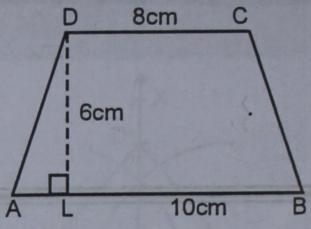
$$(d_1) = 18 \text{ cm}$$

and second diagonal $(d_2) = 24$ cm

:. Area =
$$\frac{d_1 \times d_2}{2} = \frac{18 \times 24}{2} \text{ cm}^2$$

= 216 cm² Ans.

Q. 4. Find the area of a trapezium whose parallel sides measure 10 cm and 8 cm respectively and the distance between these sides is 6 cm.



Sol. In trapezium ABCD

$$AB = 10 \text{ cm}, DC = 8 \text{ cm}$$

and
$$DL = 6$$
 cm

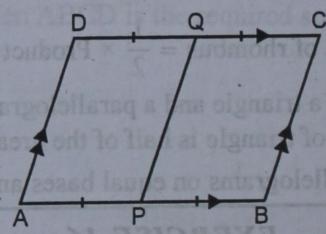
Area of trapezium ABCD

$$= \frac{\text{Sum of parallel sides}}{2} \times \text{height}$$

$$= \frac{(10+8)}{2} \times 6 \text{ cm}^2$$

$$= \frac{18}{2} \times 6 = 54 \text{ cm}^2 \text{ Ans.}$$

Q. 5. Show that the line segment joining the mid-points of a pair of opposite sides of a parallelogram, divides it into two equal parallelograms.



Sol. Given: In || gm ABCD,

P and Q are the mid points of sides AB and DC respectively. PQ is joined.

To prove: APQD and PBCQ are parallelograms of equal areas.

Proof: P and Q are mid points of AB and DC respectively.

$$\therefore$$
 AP = PB and DQ = QC

But AB || DC (opposite sides of ||gm)

and
$$AP = DQ$$

:. APQD is a || gm.

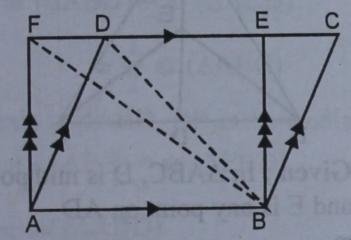
Similarly PBCQ is a || gm.

: || gms APQD and PBCQ are on the equal bases and between the same parallel lines.

: area of || gm APQD = area of || gm PBCQ

Hence APQD and PBCQ are parallelograms of equal areas.

- Q. 6. In the given figure, the area of || gm ABCD is 90 cm². State giving reasons:
 - (i) ar (\parallel gm ABEF) (ii) ar (Δ ABD) (iii) ar (Δ BEF).



- Sol. Area of || gm ABCD = 90 cm²

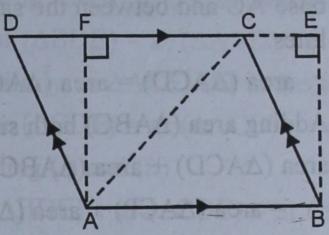
 AF || BE are drawn and BD and BF are joined.
 - :. ABEF is a parallelogram.
 - (i) Now || gm ABCD and || gm ABEF are on the same base and between the same parallel lines.

: area of || gm ABCD = area of || gm ABEF

But area of || gm ABCD = 90 cm²

- :. Area of \parallel gm ABEF = 90 cm²
- (ii) : BD and BF are the diagonals of || gm ABCD and || gm ABEF respectively and diagonals of a || gm bisect it into two triangles of equal area.
 - ∴ Area (\triangle ABD) = $\frac{1}{2}$ area (\parallel gm ABCD) = $\frac{1}{2} \times 90 \text{ cm}^2 = 45 \text{ cm}^2$
- (iii) and area ($\triangle BEF$) = $\frac{1}{2}$ area (\parallel gm ABEF) = $\frac{1}{2} \times 90$ cm² = 45 cm² Ans.
- Q. 7. In the given figure, the area of \triangle ABC is 64 cm². State giving reasons:

- (i) ar (|| gm ABCD)
- (ii) ar (rect. ABEF).



Sol. Area of $\triangle ABC = 64 \text{ cm}^2$

|| gm ABCD and rectangle ABEF are drawn on the same base AB of ΔABC.

(i) In || gm ABCD, CA is its diagonal

∴ Area (
$$\triangle$$
ABC) = $\frac{1}{2}$ ar (\parallel gm ABCD)

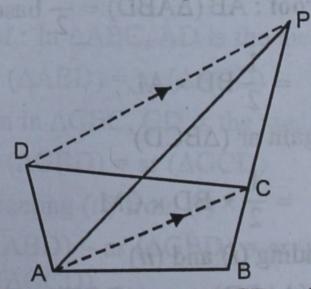
- \Rightarrow Area || gm ABCD = 2 area (ΔABC) = 2 × 64 cm² = 128 cm²
- (ii) : || gm ABCD and rectangle are on the same base AB and between the same parallels.
 - :. Area (|| gm ABCD)

= (rectangle ABEF)

- :. Area (rectangle ABEF)
 - $= 128 \text{ cm}^2 \text{ Ans.}$
- Q. 8. In the given figure, ABCD is a quadrilateral. A line through D, parallel to AC, meets BC produced in P.

Prove that : ar (ΔABP)

= ar (quad. ABCD).



Sol. Given: In quad. ABCD, a line through D is drawn parallel to AC and meets BC produced in P.

To prove : Area (ΔABP)

= area (quad. ABCD)

Proof: :: AC || PD

and \triangle ACD and \triangle ACP are on the same base AC and between the same parallel lines.

∴ area (ΔACD) = area (ΔACP)

Adding area (ΔABC) both sides,

area (ΔACD) + area (ΔABC)

= area (ΔACP) + area (ΔABC)

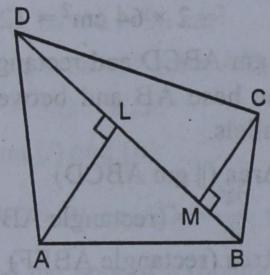
⇒ area (quad ABCD) = area (ΔABP)

or ar (ΔABP) = ar (quad. ABCD)

Hence proved.

Q. 9. ABCD is a quadrilateral. If AL \perp BD and CM \perp BD, prove that : ar (quad.

$$ABCD) = \frac{1}{2} \times BD \times (AL + CM).$$



Sol. Given: In quadrilateral ABCD,

 $AL \perp BD$ and $CM \perp BD$.

To prove : ar (quad ABCD)

$$= \frac{1}{2} \times BD \times (AL + CM)$$

Proof: AB (\triangle ABD) = $\frac{1}{2}$ base × altitude

$$= \frac{1}{2} BD \times AL \qquad ...(i)$$

Again ar (\Delta BCD)

$$= \frac{1}{2} \times BD \times CM \qquad ...(ii)$$

Adding (i) and (ii)

 $ar (\Delta ABD) + ar (\Delta BCD)$

$$= \frac{1}{2}BD \times AL + \frac{1}{2}BD \times CM$$

⇒ ar (quad ABCD)

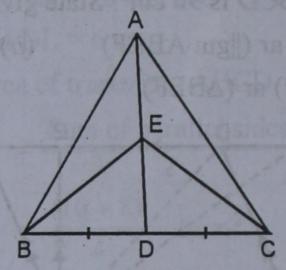
$$= \frac{1}{2} BD (AL + CM)$$

Hence proved

Q. 10. In the given figure, D is the mid-point of BC and E is any point on AD.

Prove that:

- (i) ar (\triangle EBD) = ar (\triangle EDC).
- (ii) ar $(\Delta ABE) = ar (\Delta ACE)$.



Sol. Given: In ΔABC, D is mid point of BC and E is any point on AD.

To prove : (i) ar (\triangle EBD) = ar (\triangle EDC).

(ii) ar ($\triangle ABE$) = ar ($\triangle ACE$).

Proof: In AABC,

AD is the median of the triangle

$$\therefore$$
 ar (\triangle ABD) = ar (\triangle ACD)

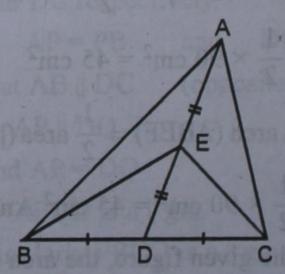
Again in ΔEBC,

ED is the median of ΔEBC

- (i) : $\operatorname{ar}(\Delta EBD) = \operatorname{ar}(\Delta EDC)$...(ii)
- (ii) Subtracting (ii) from (i) $ar (\Delta ABD) - ar (\Delta EBD)$ $= ar (\Delta ACE) - ar (\Delta ECB)$ $\Rightarrow ar (\Delta ABE) = ar (\Delta ACE)$

Hence proved.

Q. 11. In the given figure, D is the mid-point of BC and E is the mid-point of AD.



Prove that : ar (ΔABE)

$$=\frac{1}{4}$$
 ar (\triangle ABC).

Sol. Given: In ΔABC, D is mid point of BC and E is mid point on AD. CE and BE are joined.

To prove : ar (ΔABE)

$$= \frac{1}{4} \text{ ar } (\frac{1}{4} ABC).$$

Proof: In AABC, AD is the median

$$\therefore$$
 ar (\triangle ABD) = ar (\triangle ACD)

$$= \frac{1}{2} \text{ ar } (\Delta ABC) \qquad \dots (i)$$

Again in AABD, BE is the median

$$\therefore$$
 ar $(\triangle ABE) = ar (\triangle EBD)$

$$=\frac{1}{2}$$
 ar (\triangle ABD)

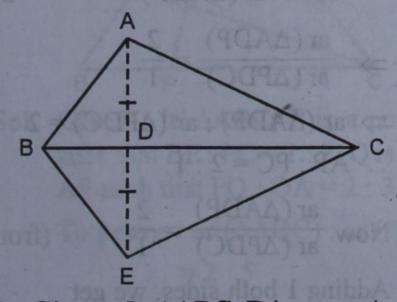
$$= \frac{1}{2} \times \frac{1}{2} \text{ ar } (\Delta ABC) \qquad [from (i)]$$

$$=\frac{1}{4} \text{ ar } (\Delta ABC)$$

Hence proved.

Q. 12. In the given figure, a point D is taken on side BC of \triangle ABC and AD is produced to E, making DE = AD.

Show that : ar $(\Delta BEC) = ar (\Delta ABC)$.



Sol. Given: In $\triangle ABC$, D is any point on BC, AD is joined and produced to E such that DE = AD.

BE and CE are joined.

To prove : ar (BEC) = ar (\triangle ABC).

Proof : : : AD = DE

(given)

:. D is mid point of AE.

Now in AABE, BD is the median

$$\therefore$$
 ar (\triangle BDE) = ar (\triangle ABD) ...(i)

Similarly, in AACE, CD is the median

$$\therefore$$
 ar (\triangle CDE) = ar (\triangle ACD) ...(ii)

Adding (i) and (ii)

$$ar (\Delta BDE) + ar (\Delta CDE) = ar (\Delta ABD)$$

$$+ ar (\Delta ACD)$$

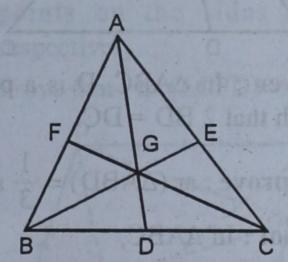
$$\Rightarrow$$
 ar (\triangle BEC) = ar (\triangle ABC)

Hence proved.

Q. 13. If the medians of a \triangle ABC intersect at G, show that :

$$ar (\Delta AGB) = ar (\Delta AGC) = ar (\Delta BGC)$$

$$=\frac{1}{3}$$
 ar (\triangle ABC)



Sol. Given: In ΔABC, AD, BE and CF are the medians of the sides BC, CA and AB respectively intersecting at the point G.

To prove : ar $(\triangle AGB) = ar (\triangle AGC)$

= ar (
$$\triangle$$
BGC) = $\frac{1}{3}$ ar (\triangle ABC)

Proof: In AABC, AD is the median

$$\therefore$$
 ar (\triangle ABD) = ar (\triangle ACD) ...(i)

Again in AGBC, GD is the median

$$\therefore$$
 ar (\triangle GBD) = ar (\triangle GCD) ...(ii)

Subtracting (ii) from (i)

 $ar (\Delta ABD) - ar (\Delta GBD) = ar (\Delta ACD)$

- ar (\triangle GCD)

$$\Rightarrow$$
 ar (\triangle AGB) = ar (\triangle AGC) ...(iii)

Similarly we can prove that

$$ar (\Delta AGC) = ar (\Delta BGC)$$
 ...(iv)

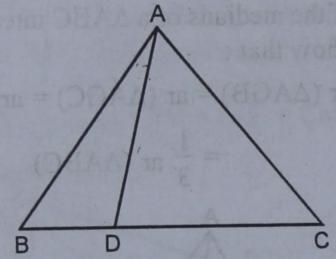
From (iii) and (iv)

ar
$$(\Delta AGB)$$
 = ar (ΔAGC) = ar (ΔBGC)
But ar (ΔAGB) + ar (ΔAGC)
+ ar (ΔBGC) = ar (ΔABC)
= ar (ΔAGB) = ar (ΔAGC) = ar (ΔBGC)
= $\frac{1}{3}$ ar (ΔABC)

Hence proved.

Q. 14. D is a point on base BC of a \triangle ABC such that 2 BD = DC.

Prove that : ar $(\triangle ABD) = \frac{1}{3}$ ar $(\triangle ABC)$.



Sol. Given: In $\triangle ABC$, D is a point on BC such that 2 BD = DC.

To prove : ar $(\triangle ABD) = \frac{1}{3}$ ar $(\triangle ABC)$.

Proof: In AABC,

$$\therefore 2BD = DC \implies \frac{BD}{DC} = \frac{1}{2}$$

 \Rightarrow BD : DC = 1 : 2

 \therefore ar (\triangle ABD) : ar (\triangle ADC) = 1 : 2

But ar (ΔABD) + ar (ΔADC)

 $= ar (\Delta ABC)$

 \Rightarrow ar (ΔABD) + 2 ar (ΔABD) = ar (ΔABC)

 \Rightarrow 3 ar (\triangle ABD) = ar (\triangle ABC)

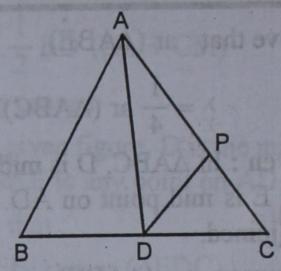
 \Rightarrow ar (ΔABD) = $\frac{1}{3}$ ar (ΔABC)

Hence proved.

Q. 15. In the given figure, AD is a median of \triangle ABC and P is a point on AC such that : ar $(\triangle$ ADP) : ar $(\triangle$ ABD) = 2 : 3.

Find: (i) AP: PC

(ii) ar ($\triangle PDC$): ar ($\triangle ABC$).



Sol. Given: In $\triangle ABC$, AD is median of the triangle, P is a point on AC such that: ar $(\triangle ADP)$: ar $(\triangle ABD) = 2:3$, now we have

To find: (i) AP: PC

- (ii) ar (\triangle PDC) : ar (\triangle ABC).
- (i) In ΔABC, AD is the median
 ∴ ar (ΔABD) = ar (ΔADC) ...(i)
 ∴ ar (ΔADP) : ar (ΔABD) = 2 : 3
 ⇒ ar (ΔADP) : ar (ΔADC) = 2 : 3

[from (i)] \Rightarrow ar (\triangle ADC) : ar (\triangle ADP) = 3 : 2

 $\Rightarrow \frac{\operatorname{ar}(\Delta ADC)}{\operatorname{ar}(\Delta ADP)} = \frac{3}{2}$

 $\Rightarrow \frac{\operatorname{ar}(\Delta ADC)}{\operatorname{ar}(\Delta ADP)} - 1 = \frac{3}{2} - 1$

(Substracting 1 from both sides)

$$\Rightarrow \frac{\operatorname{ar}(\Delta ADC) - \operatorname{ar}(\Delta ADP)}{\operatorname{ar}(\Delta ADP)} = \frac{1}{2}$$

$$\Rightarrow \frac{\operatorname{ar}(\Delta ADP)}{\operatorname{ar}(\Delta PDC)} = \frac{2}{1} \qquad ...(ii)$$

 \Rightarrow ar (\triangle ADP) : ar (\triangle PDC) = 2 : 1

 $\therefore AP : PC = 2 : 1$

(ii) Now $\frac{\operatorname{ar}(\Delta ADP)}{\operatorname{ar}(\Delta PDC)} = \frac{2}{1}$ (from (ii))

Adding 1 both sides, we get

$$\frac{\operatorname{ar}(\Delta ADP)}{\operatorname{ar}(\Delta PDC)} + 1 = \frac{2}{1} + 1$$

$$\frac{\operatorname{ar}(\Delta ADP) + \operatorname{ar}(\Delta PDC)}{\operatorname{ar}(\Delta PDC)} = \frac{2}{1} + 1$$

 $\frac{\operatorname{ar}(\Delta ADC)}{\operatorname{ar}(\Delta PDC)} = \frac{3}{1}$

But ar $(\Delta ADC) = ar (\Delta ABD)$

[from (i)]

$$\frac{\operatorname{ar}(\Delta ADB)}{\operatorname{ar}(\Delta PDC)} = \frac{3}{1}$$

$$\Rightarrow \frac{\operatorname{ar}(\Delta PDC)}{\operatorname{ar}(\Delta ABD)} = \frac{1}{3}$$

But ar
$$(\triangle ABD) = \frac{1}{2}$$
 ar $(\triangle ABC)$

$$\therefore \frac{\operatorname{ar}(\Delta PDC)}{\frac{1}{2}\operatorname{ar}(\Delta ABC)} = \frac{1}{3}$$

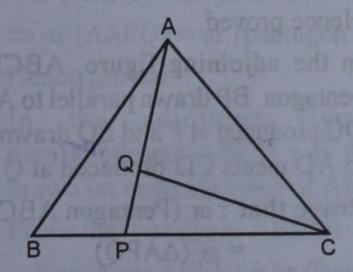
$$\Rightarrow \frac{2 \operatorname{ar} (\Delta PDC)}{\operatorname{ar} (\Delta ABC)} = \frac{1}{3}$$

$$\Rightarrow \frac{\operatorname{ar}(\Delta PDC)}{\operatorname{ar}(\Delta ABC)} = \frac{1}{3 \times 2} = \frac{1}{6}$$

Hence ar (ΔPDC) : ar $(\Delta ABC) = 1:6$

Q. 16. In the given figure, P is a point on side BC of \triangle ABC such that BP : PC = 1 : 2 and Q is a point on AP such that PQ : QA = 2 : 3.

Show that : ar $(\triangle AQC)$: ar $(\triangle ABC)$ = 2 · 5



Sol. Given: In ΔABC, P is a point on BC such that BP: PC = 1:2. Q is a point on AP such that PQ: QA = 2:3.

To prove : ar $(\triangle AQC)$: ar $(\triangle ABC)$ = 2 : 5

Proof: In $\triangle ABC$, P is a point on BC such that

BP : PC = 1 : 2

 \therefore ar (\triangle APB) : ar (\triangle APC) = 1 : 2

ar $(\Delta APC) = \frac{2}{3}$ ar (ΔABC)

Again In AAPC,

Q is a point on AP such that PQ: QA

 \Rightarrow ar ($\triangle AQC$): ar ($\triangle PQC$) = 3:2

or ar
$$(\Delta AQC) = \frac{3}{5}$$
 ar (ΔAPC)

$$= \frac{3}{5} \times \frac{2}{3} \times \text{ar} (\Delta ABC)$$
$$= \frac{2}{5} \text{ar} (\Delta PBC)$$

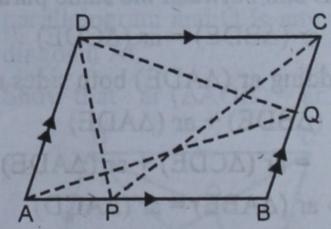
$$\Rightarrow \frac{\operatorname{ar}(\Delta AQC)}{\operatorname{ar}(\Delta ABC)} = \frac{-2}{5}$$

 \therefore ar $(\triangle AQC)$: ar $(\triangle ABC) = 2:5$

Hence proved.

Q. 17. In the adjoining figure, ABCD is a parallelogram. P and Q are any two points on the sides AB and BC respectively.

Prove that : ar $(\Delta CPD) = ar (\Delta AQD)$.



Sol. Given: In || gm ABCD, P and Q are any two points on the sides AB and BC respectively.

AQ, DQ, CP and DP are joined .-

To prove : ar $(\Delta CPD) = ar (\Delta AQD)$.

Proof: \triangle CPD and \parallel gm ABCD are on the same base CD and between the same parallel lines.

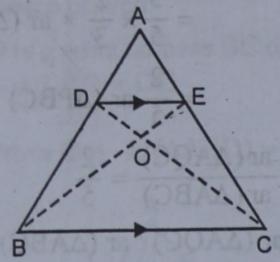
$$\therefore \text{ ar } (\Delta \text{CPD}) = \frac{1}{2} \text{ ar } (\parallel \text{gm ABCD}) \dots (i)$$

Similarly, $\triangle AQD$ and \parallel gm ABCD are on the same base AD and between the same parallel lines.

:. ar
$$(\Delta AQD) = \frac{1}{2}$$
 ar $(\parallel \text{gm ABCD})$... (ii)

From (i) and (ii) ar $(\Delta CPD) = ar (\Delta AQD)$ Hence proved.

Q. 18. In the adjoining figure, DE || BC. Prove that : (i) ar (\triangle ABE) = ar (\triangle ACD) (ii) ar (\triangle OBD) = ar (\triangle OCE)



Sol. Given: In AABC, DE || BC

To prove : (i) ar $(\triangle ABE) = ar (\triangle ACD)$

(ii) ar (\triangle OBD) = ar (\triangle OCE)

Proof: (i) In $\triangle ABC$, DE || BC

 Δ BDE and Δ CDE are on the same base DE and between the same parallels.

$$\therefore$$
 ar $(\Delta BDE) = ar (\Delta CDE)$...(i)

Adding ar (\triangle ADE) both sides of (i)

 $ar (\Delta BDE) + ar (\Delta ADE)$

= $ar (\Delta CDE) + ar (\Delta ADE)$

 \Rightarrow ar (\triangle ABE) = ar (\triangle ACD)

(ii) Subtracting ar ($\triangle DOE$) from both sides of (i)

 $ar (\Delta BDE) - ar (\Delta DOE) = ar (\Delta CDE)$

- ar (∆DOE)

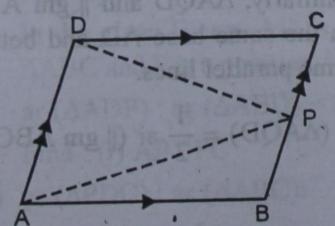
 \Rightarrow ar (\triangle OBD) = ar (\triangle OCE)

Hence proved.

Q. 19. In the given figure, ABCD is a parallelogram and P is a point on BC.

Prove that : ar (ΔABP) + ar (ΔDPC)

 $= ar (\Delta APD)$



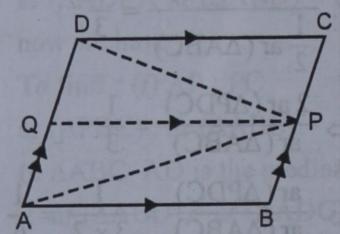
Sol. Given: In || gm ABCD, P is a point on BC

To prove : ar (ΔABP) + ar (ΔDPC) = ar (ΔAPD)

Construction: From P, draw PQ || AB or DC

Proof: · · OPCD is a || gm and PD is the diagonal

 \therefore ar $(\Delta DPC) = ar (\Delta QPD)$...(i)



Similarly ABPQ is a || gm and AP is the diagonal

$$\therefore$$
 ar $(\triangle ABP) = ar (\triangle APQ)$...(ii)

Adding (i) and (ii)

 $ar (\Delta DPC) + ar (\Delta ABP)$

= $ar (\Delta QPD) + ar (\Delta APQ)$

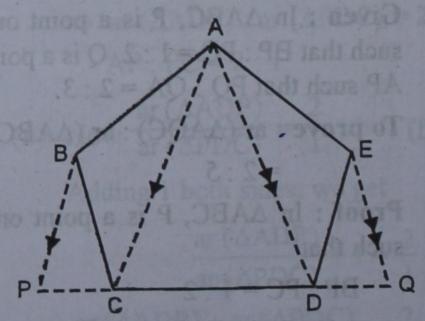
 \Rightarrow ar (\triangle ABP) + ar (\triangle DPC) = ar (\triangle APD)

Hence proved.

Q. 20. In the adjoining figure, ABCDE is a pentagon. BP drawn parallel to AC meets DC produced at P and EQ drawn parallel to AD meets CD produced at Q.

Prove that: ar (Pentagon ABCDE)

 $= ar (\Delta APQ)$



Sol. Given: In a pentagon ABCDE, AC and AD are joined. From B, BP || AC and from E, EQ || AD are drawn to meet CD

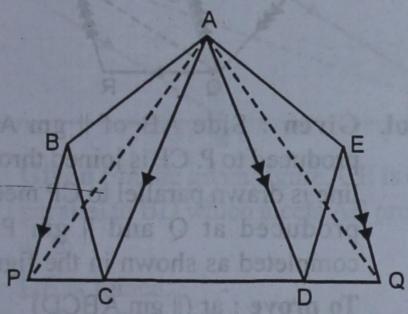
produced on both sides at P and Q respectively.

To prove: ar (Pentagon ABCDE)

 $= ar (\Delta APQ)$

Construction: Given AP and AQ

Proof: :: BP \parallel AC and \triangle ABC and \triangle APC are on the same base AC and between the same parallel lines.

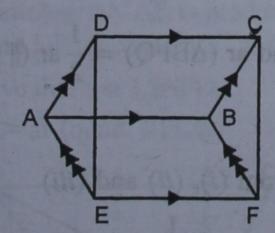


∴ ar $(\triangle ABC)$ = ar $(\triangle APC)$...(i) Similarly ar $(\triangle ADE)$ = ar $(\triangle APQ)$...(ii) and ar $(\triangle ACD)$ = ar $(\triangle ACD)$...(iii) Adding (i), (ii) and (iii) ar $(\triangle ABC)$ + ar $(\triangle ADE)$ + ar $(\triangle ACD)$ = ar $(\triangle APC)$ + ar $(\triangle ADQ)$ + ar $(\triangle ACD)$ ⇒ ar $(\triangle APQ)$ = ar (pentagon ABCDE)

Q. 21. In the adjoining figure, two parallelograms ABCD and AEFB are drawn on opposite sides of AB.

Hence proved.

Prove that: ar (|| gm ABCD) + ar (|| gm AEFB) = ar (|| gm EFCD).



Sol. Given: || gm ABCD and || gm AEFB are drawn on the opposite sides of AB. DE and FC are joined.

To prove : ar (|| gm ABCD)

+ ar (|| gm AEFB) = ar (|| gm EFCD)

Proof: In $\triangle ADE$ and $\triangle BFC$

AD = BC

{·· Opposite sides of a parallelogram are equal}

AE = BF

DE = CF

ΔADE ≅ ΔBFC

 \Rightarrow ar (\triangle ADE) = ar (\triangle BFC) ...(i)

(: Congruent triangles are equal in area)

Now ar (|| gm ABCD) + ar (|| gm AEFB)

= ar (\parallel gm EFCD) – ar (\triangle ADE)

 $+ ar (\Delta BFC)$

= ar (\parallel gm EFCD) – ar (\triangle ADE)

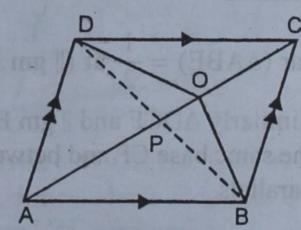
 $+ ar (\Delta ADE) [from (i)]$

= ar (|| gm EFCD)

Hence proved.

Q. 22. In the adjoining figure, ABCD is a parallelogram and O is any point on its diagonal AC.

Show that : ar $(\triangle AOB) = ar(\triangle AOD)$.



Sol. In || gm ABCD, O is any point on its diagonal. OB and OD are joined.

To prove : ar $(\triangle AOB) = ar (\triangle AOD)$

Construction: Join BD which intersects AC at P.

Proof: Diagonals of a || gm bisect each other

 \therefore AP = PC and BP = PD

Now in AABD, AP is its median

 \therefore ar $(\triangle ABP) = ar (\triangle ADP)$...(i)

Similarly in \triangle OBD, OP is the median

 \therefore ar (\triangle OBP) = ar (\triangle ODP) ...(ii)

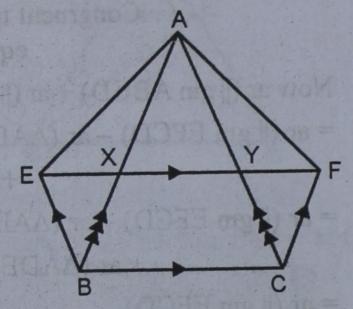
Adding (i) and (ii) $ar (\Delta APB) + ar (\Delta OBP) = ar (\Delta ADP)$ $+ ar (\Delta ODP)$

 \Rightarrow ar (\triangle AOB) = ar (\triangle AOD)

Hence proved

Q. 23. In the given figure, XY || BC, BE || CA and FC || AB.

Prove that : ar $(\triangle ABE)$ = ar $(\triangle ACF)$



Sol. Given: In the figure, XY || BC, BE || CA and FC || AB.

To prove : ar $(\triangle ABE)$ = ar $(\triangle ACF)$

Proof: △ABE and || gm BCYE are on the same base BE and between the same parallels

∴ ar
$$(\triangle ABE) = \frac{1}{2}$$
 ar $(\parallel \text{gm BCYE})$... (i)

Similarly ΔDCF and \parallel gm BCFX are on the same base CF and between the same parallels.

∴ ar
$$(\triangle ACF) = \frac{1}{2}$$
 ar $(\parallel gm BCFX) ...(ii)$

But || gm BCFX and || gm BCYE are on the same base BC and between the same parallels.

From (i), (ii) and (iii) ar
$$(\Delta ABE) = ar (\Delta ACF)$$

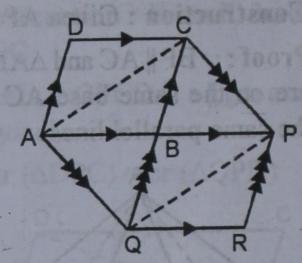
Hence proved.

Q. 24. In the given figure, the side AB of || gm ABCD is produced to a point P. A line through A drawn parallel to CP meets

CB produced in Q and the parallelogram PBQR is completed.

Prove that : ar (|| gm ABCD)

= ar (|| gm BPRQ).



Sol. Given: Side AB of || gm ABCD is produced to P. CP is joined through A, a line is drawn parallel to CP meeting CB produced at Q and || gm PBQR is completed as shown in the figure.

To prove : ar (|| gm ABCD)

= ar (|| gm BPRQ)

Construction: Join AC and PQ.

Proof: $\triangle AQC$ and $\triangle AQP$ are on the same base AQ and between the same parallels

$$\therefore$$
 ar $(\Delta AQC) = ar (\Delta AQP)$

Subtracting ar ($\triangle AQB$) from both sides, ar ($\triangle AQC$) – ar ($\triangle AQB$) = ar ($\triangle AQP$)

- ar (ΔAQB)

$$\Rightarrow$$
 ar (\triangle ABC) = ar (\triangle BPQ) ...(i)

But ar
$$(\triangle ABC) = \frac{1}{2}$$
 ar $(\parallel \text{gm ABCD})$... (ii)

and ar
$$(\Delta BPQ) = \frac{1}{2} ar (\parallel gm BPRQ)$$

...(iii)

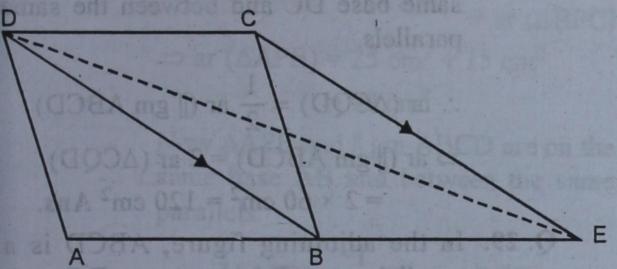
From (i), (ii) and (iii)

$$=\frac{1}{2}$$
 ar (|| gm ABCD)

$$=\frac{1}{2}$$
 ar (|| gm BPRQ)

 \Rightarrow ar (|| gm ABCD) = ar (|| gm BPRQ) Hence proved. Q. 25. In the adjoining figure, CE is drawn parallel to DB to meet AB produced at E.

Prove that : ar (quad. ABCD) = ar (Δ DAE).



Sol. Given: In the given figure, CE is drawn parallel to BD which meets AB produced at E.

DE is joined.

To prove: ar (quad. ABCD)

 $= ar (\Delta DAE)$

Proof: $\triangle DBE$ and $\triangle DBC$ are on the same base BD and between the same parallels.

 \therefore ar (\triangle DBE) = ar (\triangle DBC)

Adding ar (\(\Delta ABD \)) both sides,

 $ar (\Delta DBE) + ar (\Delta ABD) = ar (\Delta DBC)$

+ ar (ΔABD)

 \Rightarrow ar (\triangle ADE) = ar (quad ABCD)

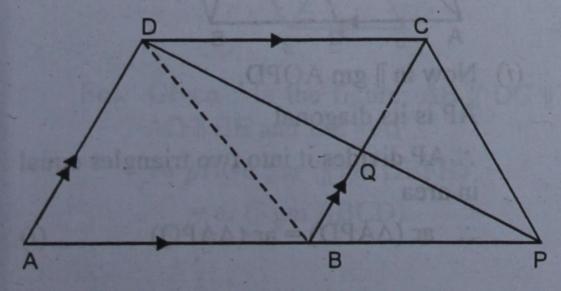
 \Rightarrow ar (quad ABCD) = ar (\triangle DAE)

Hence proved.

Q. 26. In the adjoining figure, ABCD is a parallelogram. AB is produced to a point P and DP intersects BC at Q.

Prove that : ar (ΔAPD)

= ar (quad. BPCD).



Sol. Given: In || gm ABCD, AB is produced point P and DP intersects BC at Q.

To prove: ar (ΔAPD) = ar (quad BPCD)

Construction: Join BD.

Proof: \triangle BPD and \triangle BPC are on the same base BP and between the same parallels.

 \therefore ar (\triangle BPD) = ar (\triangle BPC) ...(i)

In || gm ABCD, BD is its diagonal

 \therefore ar (\triangle ABD) = ar (\triangle DBC) ...(ii)

Adding (i) and (ii)

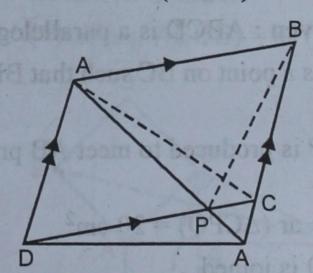
 $ar (\Delta BPD) + ar (\Delta ABD) = ar (\Delta BPC)$

 $+ ar (\Delta DBC)$

 \Rightarrow ar (\triangle APD) = ar (quad BPCD)

Hence proved.

Q. 27. In the adjoining figure, ABCD is a parallelogram. Any line through A cuts DC at a point P and BC produced at Q. Prove that: ar (ΔBPC) = ar (ΔDPQ).



Sol. Given: ABCD is a || gm. A line through A, drawn which intersects DC at a point P and BC produced at Q.

To prove : ar (ΔBPC) = ar (ΔDPQ)

Construction: Join AC and BP.

Proof: \triangle BPC and \triangle APC are on the same base BC and between the same parallels.

$$\therefore$$
 ar $(\Delta BPC) = ar (\Delta APC)$... (i)

Again $\triangle AQC$ and $\triangle DQC$ and on the same base QC and between the same parallels.

$$\therefore$$
 ar $(\Delta AQC) = ar (\Delta DQC) ...(ii)$

Now ar (ΔBPC) = ar (ΔAPC)

[from (i)]

=
$$ar (\Delta AQC) - ar (\Delta PQC)$$

=
$$ar (\Delta DQC) - ar (\Delta PQC)$$

[from (ii)]

 $= ar (\Delta DPQ)$

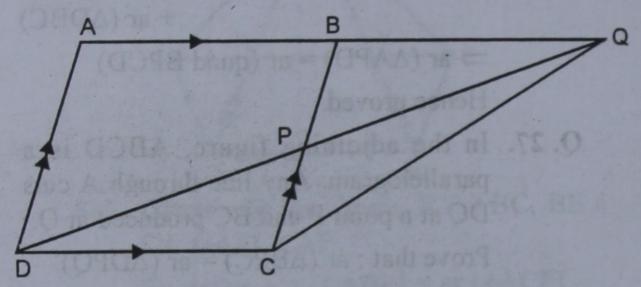
Hence proved.

Q. 28. In the adjoining figure, ABCD is a parallelogram. P is a point on BC such that BP: PC = 1:2. DP produced meets AB produced at Q.

Given ar $(\Delta CPQ) = 20 \text{ cm}^2$.

Calculate: (i) ar (\triangle CDP)

(ii) ar (|| gm ABCD).



Sol. Given: ABCD is a parallelogram.

P is a point on BC such that BP : PC = 1 : 2

DP is produced to meet AB produced at Q

$$ar (\Delta CPQ) = 20 cm^2$$

CQ is joined.

(i) : BP : PC = 1 : 2

$$\therefore$$
 ar (ΔBPQ) : ar $(\Delta CPQ) = 1:2$

$$\Rightarrow$$
 ar $(\Delta BPQ) = \frac{1}{2}$ ar (ΔCPQ)

$$=\frac{1}{2}\times 20 \text{ cm}^2 = 10 \text{ cm}^2$$

Now in $\triangle BPQ$ and $\triangle CPD$,

(Vertically opposite angles)

 $\angle BQP = \angle PDC$ (alternate angles)

∴ ∠BPQ ~ ΔCPD

$$\frac{\text{ar}(\Delta CPD)}{\text{ar}(\Delta BPQ)} = \frac{(PC)^2}{BP^2} = \frac{(2)^2}{(1)^2} = \frac{4}{1}$$

$$\therefore \text{ ar } (\Delta \text{CPD}) = 4 \text{ ar } (\Delta \text{BPQ})$$
$$= 4 \times 10 \text{ cm}^2 = 40 \text{ cm}^2 \text{ Ans.}$$

(ii) ar
$$(\Delta CQD)$$
 = ar (ΔCPD) + ar (ΔCPQ)
= $(40 + 20)$ cm² = 60 cm²

But ΔCQD and || gm ABCD are on the same base DC and between the same parallels.

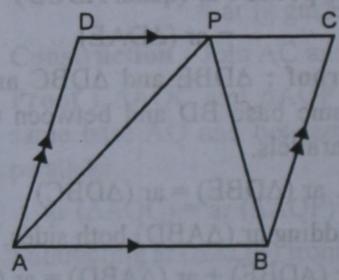
∴ ar
$$(\Delta CQD) = \frac{1}{2}$$
 ar $(\parallel gm \ ABCD)$
⇒ ar $(\parallel gm \ ABCD) = 2$ ar (ΔCQD)

$$= 2 \times 60 \text{ cm}^2 = 120 \text{ cm}^2 \text{ Ans.}$$

Q. 29. In the adjoining figure, ABCD is a parallelogram. P is a point on DC such that ar $(\Delta APD) = 25 \text{ cm}^2$ and ar $(\Delta BPC) = 15 \text{ cm}^2$.

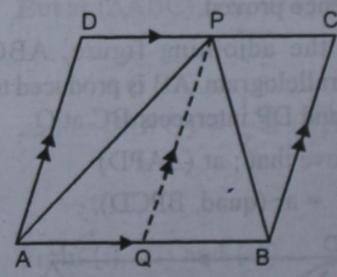
Calculate: (i) ar (|| gm ABCD)

(ii) DP: PC.



Sol. ABCD is a \parallel gm. P is a point on DC such that ar $(\Delta APD) = 25 \text{ cm}^2$ and ar $(\Delta BPC) = 15 \text{ cm}^2$

Through P, draw PQ || AD or BC



(i) Now in || gm AQPD,

AP is its diagonal

.. AP divides it into two triangles equal in area

$$\therefore$$
 ar $(\Delta APD) = ar (\Delta APQ)$...(i)

Similarly in || gm QBCP,

PB is its diagonal

$$\therefore$$
 ar $(\Delta BPC) = ar (\Delta PQB)$...(ii)

Adding (i) and (ii)

$$ar (\Delta APQ) + ar (\Delta PQB) = ar (\Delta APD)$$

+ ar (ΔBPC)

$$\Rightarrow \text{ar } (\Delta APB) = 25 \text{ cm}^2 + 15 \text{ cm}^2$$
$$= 40 \text{ cm}^2$$

Now \triangle APB and \parallel gm ABCD are on the same base AB and between the same parallels.

∴ ar
$$(\triangle APB) = \frac{1}{2} (\parallel gm \ ABCD)$$

$$\Rightarrow$$
 ar (|| gm ABCD) = 2 ar (\triangle APB)
= 2 × 40 cm² = 80 cm²

(ii) Now ar (ΔAPQ) : ar $(\Delta PQB) = AQ$: QB

$$\Rightarrow$$
 ar (\triangle APD) : ar (\triangle BPC) = DP : PC

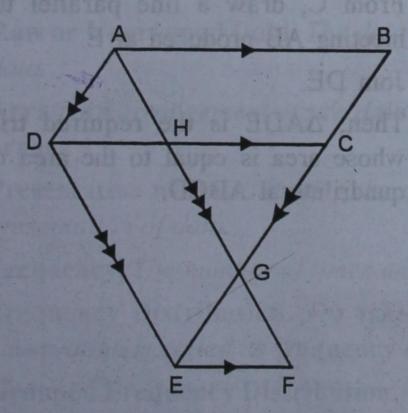
$$\Rightarrow$$
 25 cm² = 15 cm² = DP : PC

 \Rightarrow DP : PC = 25 : 15 (Dividing by 5)

 \Rightarrow DP : PC = 5 : 3 Ans.

Q. 30. In the given figure, AB || DC || EF, AD || BE and DE || AF.

Prove that: ar (|| gm DEFH) = ar (|| gm ABCD).



Sol. Given: In the figure, AB || DC || EF, AD || BE and DE || AF.

To prove : ar (|| gm DEFH) = ar (|| gm ABCD) **Proof**: || gm ABCD and || gm ADGE are on the same base AD and between the same parallels.

$$\therefore$$
 ar (\parallel gm ABCD) = ar (\parallel gm ADGE)

...(i)

Similarly || gm DEFH and || gm ADEG are on the same base DE and between the same parallels.

...(ii)

From (i) and (ii)

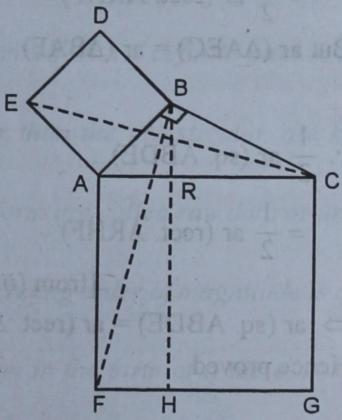
Hence proved.

Q. 31. In the given figure, squares ABDE and AFGC are drawn on the side AB and hypotenuse AC of right triangle ABC and BH \(\perp FG.\)

Prove that:

(i) $\triangle EAC \cong \triangle BAF$.

(ii) ar (sq. ABDE) = ar (rect. ARHF).



Sol. Given: Square ABDE and AFGC are drawn on side AB and hypotenuse AC of right triangle ABC. BH \(\perp \) FG intersecting AC at R.

To prove : (i) $\triangle EAC \cong \triangle BAF$.

(ii) ar (sq. ABCD) = as (rect. ARHF).

Construction: Join BF and CE.

Proof:
$$\angle CAE = \angle CAB + \angle BAE$$

$$= \angle CAB + 90^{\circ}$$
 ...(i)

Similarly
$$\angle BAF = \angle CAB + \angle CAF$$

= $\angle CAB + 90^{\circ}$...(ii)

From (i) and (ii) $\angle CAE = \angle BAF$

(i) Now in ΔEAC and ΔBAF

$$\angle CAE = \angle BAF$$
 (proved)

AE = AB (sides of a square)

AC = AF (sides of a square)

∴ ΔEAC ≅ ΔBAF

(SAS criterion of congruency)

and ar $(\Delta EAC) = ar (\Delta BAF)$

(ii) Square ABDE and ΔEAC are on the same base AE and between the same parallels.

∴ ar
$$(\triangle AEC) = \frac{1}{2}$$
 ar (square ABDE)

...(iii)

Similarly ar (ΔBAF)

$$= \frac{1}{2} \text{ ar (rect. ARHF)} \qquad ...(iv)$$

But ar $(\Delta AEC) = ar (\Delta BAF)$

(proved)

$$\therefore \frac{1}{2} \text{ ar (sq. ABDE)}$$

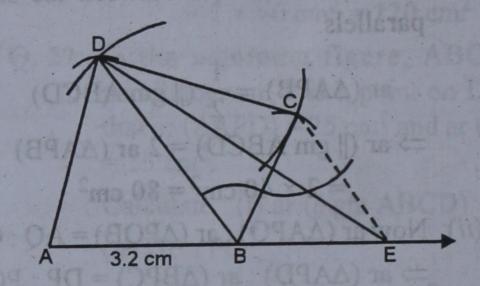
$$= \frac{1}{2} \text{ ar (rect. ARHF)}$$

[from (iii and iv)]

⇒ ar (sq. ABDE) = ar (rect. ARHF) Hence proved. Q. 32. Construct a quadrilateral ABCD in which AB = 3.2 cm, BC = 2.8 cm, CD = 4 cm, DA = 4.5 cm and BD = 5.2 cm. Also construct a triangle equal in area to this quadrilateral.

Sol. Steps of construction:

- (i) Draw a line segment AB = 3.2 cm.
- (ii) With centre A and radius 4.5 cm and with centre B and radius 5.2 cm, draw arcs which intersect each other at D.



- (iii) Join AD and BD.
- (iv) Again, with centre B and radius 2.8 cm, and with centre D and radius 4 cm, draw two arcs intersecting each other at C.
- (v) Join BC and CD.ABCD is the given quadrilateral.
- (vi) Produce AB.
- (vii) From C, draw a line parallel to BD meeting AB produced at E.
- (viii) Join DE.

Then, $\triangle ADE$ is the required triangle whose area is equal to the area of the quadrilateral ABCD.