Polygons

POINTS TO REMEMBER

- 1. Polygon: A closed plane figure bounded by three or more line segments is called a polygon. These line segments are called its sides and by joining two non-consecutive vertices of a polygon is called its diagonal and the point of intersection of two consecutive sides of a polygon is called a vertex.
- 2. Convex Polygon: If each angle of a polygons is less than 180°, then it is called a convex polygon.
- 3. Concave Polygon: If at least one angle of a polygon is a reflex angle i.e. more than 180°, then it is called a concave polygon.
- 4. Regular Polygon: If all sides of a polygon are equal and all angles are equal, then it is called a regular polygon.
- 5. Theorems:
- (i) The sum of all the interior angles of a convex polygon of n sides is (2n-4) right angles.
- (ii) The sum of all the exterior angles of a convex polygon is 4 right angles.
 - 6. Some more results:
- (i) For All Convex Polygons:
- (i) Sum of all interior angles of a polygon of n sides = (2n-4) right angles.
- (ii) Sum of all exterior angles of a polygon of n sides = 4 right angles.
- (iii) At each vertex of a polygon, we have: Interior Angle + Exterior Angle = 180°.
- (ii) For Regular Polygons:
- (i) Each interior angle of a regular polygon of n sides $=\frac{(2n-4)}{n}rt$. $\angle s = \left[\frac{(2n-4)\times 90}{n}\right]^n$
- (ii) Each exterior angle of a regular polygon of n sides = $\left(\frac{360}{n}\right)^{\circ}$.
- (iii) If each exterior angle of a regular polygon is x° , then number of its sides $= \left(\frac{360}{x}\right)$.

Note: Greater is the number of sides in a regular polygon, greater is the value of its interior angle and smaller is the value of its each exterior angle.

(iii) Number of diagonals in a polygon of *n* sides = $\left[\frac{n(n-1)}{2}-n\right]$.

EXERCISE 14 (A)

- Q. 1. Write in degrees the sum of all interior angles of a:
 - Hexagon (*i*)
- (ii) Septagon
- Nonagon (iii)
- (iv) 15-gon
- Sol. (i) Sum of interior angles of a hexagon =(2n-4) right angles $= (2 \times 6 - 4) \times 90^{\circ}$ $=(12-4)\times90^{\circ}=8\times90^{\circ}$
- (ii) Sum of interior angles of a septagon = (2n-4) right angles $= \frac{2 \times 10-4}{10} \times 90^{\circ}$ $=(2 \times 7 - 4) \times 90^{\circ}$ $= (14 - 4) \times 90^{\circ} = 10 \times 90^{\circ}$ = 900° Ans.

 $= 720^{\circ} \text{ Ans.}$

- (iii) Sum of interior angles of nonagon =(2n-4) right angles $= (2 \times 9 - 4) \times 90^{\circ} = (18 - 4) \times 90^{\circ}$ $= 14 \times 90^{\circ} = 1260^{\circ}$.
- (iv) Sum of interior angles of a 15-gon =(2n-4) right angles $=(2 \times 15 - 4) \times 90^{\circ} = (30 - 4) \times 90^{\circ}$ $= 26 \times 90^{\circ} = 2340^{\circ}$ Ans.
- Q. 2. Find the measure, in degrees, of each interior angle of a regular:
 - Pentagon
- (ii) Octagon
- Decagon
- (iv) 16-gon
- Sol. We know that each interior angle of a regular polygon of n sides

$$=\frac{(2n-4)}{n}$$
 right angles.

(i) Each interior angle of pentagon $=\frac{(2n-4)}{n}$ right angles $=\frac{2\times 5-4}{5}\times 90^{\circ}$

 $= \frac{10-4}{5} \times 90^{\circ} = \frac{6}{5} \times 90^{\circ} = 108^{\circ} \text{ Ans.}$

Each interior angle of octagion

$$= \frac{2n-4}{n} \text{ rt. angles.}$$

$$= \frac{2 \times 8-4}{8} \times 90^{\circ}$$

$$= \frac{16-4}{8} \times 90^{\circ} = \frac{12}{8} \times 90^{\circ}$$

$$= 135^{\circ} \text{ Ans.}$$

(iii) Each interior angle of decagon

$$= \frac{2n-4}{n} \text{ rt. angles.}$$

$$= \frac{2 \times 10-4}{10} \times 90^{\circ}$$

$$= \frac{20-4}{10} \times 90^{\circ} = \frac{16}{10} \times 90^{\circ}$$

$$= 144^{\circ} \text{ Ans.}$$

(iv) Each interior angle of 16-gon

$$= \frac{2n-4}{n} \text{ rt. angles.}$$

$$= \frac{2\times16-4}{16} \times 98 = \frac{32-4}{16} \times 90^{\circ}$$

$$= \frac{28}{16} \times 90^{\circ} = \frac{315}{2} = 157.5^{\circ} \text{ Ans.}$$

- Q. 3. Find the measure, in degrees, of each exterior angle of a regular polygon containing:

 - (i) 6 sides (ii) 8 sides
 - (iii) 15 sides (iv) 20 sides
 - Sol. We know that each exterior angle of a polygon of *n* sides = $\frac{360^{\circ}}{n}$.
 - (i) Each exterior angle of 6 sided polygon
 - (ii) Each exterior angle of 8 sided polygon

$$=\frac{360^{\circ}}{8}=45^{\circ}$$

(iii) Each exterior angle of 15 sided polygon $= \frac{360^{\circ}}{15} = 24^{\circ}$

(iv) Each exterior angle of 20 sided polygon
$$= \frac{360^{\circ}}{20} = 18^{\circ} \text{ Ans.}$$

- Q. 4. Find the number of sides of a polygon, the sum of whose interior angles is:
 - (i) 24 right angles

(ii) 1620°

- (iii) 2880°
- Sol. We know that sum of interior angles of a regular polygon of n sides = (2n-4) right angles.
 - (i) Sum = 24 right angles $\therefore (2n-4) = 24 \Rightarrow 2n = 24 + 4 = 28$ $\therefore n = \frac{28}{2} = 14$

Hence polygon has 14 sides.

(ii) Sum =
$$1620^{\circ}$$

 $\therefore (2n-4) \text{ right angles} = 1620^{\circ}$
 $\Rightarrow (2n-4) \times 90^{\circ} = 1620^{\circ}$
 $\Rightarrow 2n-4 = \frac{1620^{\circ}}{90^{\circ}}$
 $\Rightarrow 2n-4 = 18^{\circ} \Rightarrow 2n = 18+4=22$
 $\therefore n = \frac{22}{2} = 11$

Hence polygon has 11 sides.

(iii) Sum =
$$2888^{\circ}$$

$$\Rightarrow (2n-4) \text{ right angles} = 2880°

$$\Rightarrow 2n-4 = \frac{2880^{\circ}}{90^{\circ}}$$

$$\Rightarrow 2n-4 = 32$$

$$\Rightarrow 2n = 32 + 4 = 36$$

$$\therefore x = \frac{36}{2} = 18$$$$

Hence polygon has 18 sides. Ans.

Q. 5. Find the number of sides in a regular polygon, if each of its exterior angles is:

- (i) 72° (ii) 24°
- (iii) (22·5)° (iv) 15°
- Sol. We know that each exterior angle of a regular polygon of n sides = $\frac{360^{\circ}}{n}$
 - (i) Exterior angle = 72°

$$\therefore \frac{360^{\circ}}{n} = 72^{\circ} \implies n = \frac{360^{\circ}}{72^{\circ}} = 5$$

.. No. of sides of polygon = 5 Ans.

(ii) Each exterior angle = 24°

$$\therefore \frac{360^{\circ}}{n} = 24 \implies n = \frac{360^{\circ}}{24^{\circ}} = 15$$

.. No. of sides of the regular polygon = 15 Ans.

(iii) Each exterior angle = $(22.5)^{\circ}$

$$\therefore \frac{360^{\circ}}{n} = 22.5^{\circ}$$

$$\Rightarrow n = \frac{360^{\circ}}{22.5^{\circ}} = \frac{360 \times 10}{225} = 16$$

.. No. of sides of the regular polygon = 16. Ans.

(iv) Each exterior angle = 15°

$$\therefore \frac{360^{\circ}}{n} = 15^{\circ} \implies n = \frac{360^{\circ}}{15^{\circ}} = 24$$

Hence no. of sides of the regular polygon = 24 Ans.

- Q. 6. Find the number of sides in a regular polygon, if each of its interior angles is:
 - (i) 120°
- (ii) 150°
- (iii) 160°
- (iv) 165°
- Sol. We known that each interior angle of a regular polygon of n sides = $\frac{2n-4}{n}$ right angles.
 - (i) Each interior angle = 120°

$$\therefore = \frac{2n-4}{n} \text{ rt. Angle} = 120^{\circ}$$

$$\Rightarrow \frac{2n-4}{n} \times 90^{\circ} = 120^{\circ}$$

$$\Rightarrow \frac{2n-4}{n} = \frac{120^{\circ}}{90^{\circ}}$$

$$\Rightarrow \frac{2n-4}{n} = \frac{4}{3} \Rightarrow 6n-12 = 4n$$

$$\Rightarrow 6n-4n = 12 \Rightarrow 2n = 12$$

$$\therefore n = 6$$

Hence number of sides = 6. Ans.

(ii) Each interior angle = 150°

$$\therefore \frac{2n-4}{n} \text{ right angle} = 150^{\circ}$$

$$\Rightarrow \frac{2n-4}{n} \times 90^{\circ} = 150^{\circ}$$

$$\Rightarrow \frac{2n-4}{n} = \frac{150^{\circ}}{90} = \frac{5}{3}$$

$$\Rightarrow 6n-12 = 5n \Rightarrow 6n-5n = 12$$

$$\Rightarrow n = 12$$

Hence no. of sides = 12 Ans.

(iii) Each interior angle = 160°

$$\therefore \frac{2n-4}{n} \text{ right angles} = 160^{\circ}$$

$$\Rightarrow \frac{2n-4}{n} \times 90^{\circ} = 160^{\circ}$$

$$\Rightarrow \frac{2n-4}{n} = \frac{160^{\circ}}{90} = \frac{16}{9}$$

$$18n-36 = 16n \Rightarrow 18n-16n = 36$$

$$\Rightarrow 2n = 36 \Rightarrow n = \frac{36}{2} = 18.$$

Hence no. of sides = 18 Ans.

(iv) Each interior angle = 165°

$$\therefore \frac{2n-4}{n} \text{ right angles} = 165^{\circ}$$

$$\Rightarrow \frac{2n-4}{n} \times 90^{\circ} = 165^{\circ}$$

$$\Rightarrow \frac{2n-4}{n} = \frac{165^{\circ}}{90^{\circ}} = \frac{11}{6}$$

$$\Rightarrow 12n-24 = 11n$$

$$\Rightarrow 12n-11n = 24$$

$$\Rightarrow n = 24$$
Hence no. of sides = 24 Ans.

Q. 7. Is it possible to describe a polygon, the sum of whose interior angles is:

- (i) 320°
- (ii) 540°
- (iii) 11 right angles (iv) 14 right angles?

Sol. We know that sum of interior angles of a regular polygon of n sides = (2n-4) right angles.

(i) Sum of interior angles = 320° $\therefore (2n-4) \text{ right angles} = 320^{\circ}$ $\Rightarrow (2n-4) \times 90^{\circ} = 320^{\circ}$ $\Rightarrow 2n-4 = \frac{320^{\circ}}{90^{\circ}} = \frac{32}{9}$ $\Rightarrow 2n = \frac{32}{9} + 4 = \frac{32+36}{9} = \frac{68}{9}$ $n = \frac{68}{9 \times 2} = \frac{34}{9}$

Which is in fraction.

Hence it is not possible to describe a polygon.

(ii) Sum of interior angles = 540° $\therefore (2n-4) \text{ right angles} = 540^{\circ}$ $\Rightarrow (2n-4) \times 90^{\circ} = 540^{\circ}$ $\Rightarrow 2n-4 = \frac{540^{\circ}}{90^{\circ}} = 6$

$$\Rightarrow 2n = 6 + 4 = 10 \qquad \Rightarrow n = \frac{10}{2} = 5$$

Yes, it is possible to describe a polygon.

(iii) Sum of interior angles = 11 right angles $\therefore (2n-4) \text{ right angles} = 11 \text{ right angles}$ $\Rightarrow 2n-4=11 \Rightarrow 2n=11+4=15$ $\Rightarrow n=\frac{15}{2}$ Which is in fraction.

Hence it is not possible to describe a polygon.

(iv) Sum of interior angles = 14 right angles $\therefore (2n-4) \text{ right angles} = 14 \text{ right angles}$ $\Rightarrow 2n-4 = 14$ $\Rightarrow 2n = 14+4=18$

$$\Rightarrow n = \frac{18}{2} = 9$$

Hence it is possible to describe a polygon.

Ans.

- Q. 8. Is it possible to have a regular polygon, each of whose exterior angle is:

- (iii) $\frac{1}{8}$ of a right angle (iv) 80°?
- Sol. We know that exterior angle of a regular polygon of *n* sides = $\frac{360^{\circ}}{n}$
 - (i) Exterior angle = 32°

$$\therefore \frac{360^{\circ}}{n} = 32^{\circ} \implies n = \frac{360^{\circ}}{32^{\circ}} = \frac{45}{4}$$

which is in fraction.

:. It is not possible to have a regular polygon.

(ii) Exterior angle = 180°

$$\therefore \frac{360^{\circ}}{n} = 18^{\circ} \implies n = \frac{360^{\circ}}{18^{\circ}} = 20$$

Hence it is possible to have a regular polygon.

(iii) Exterior angle = $\frac{1}{8}$ of right angle

$$=\frac{1}{8}\times90^{\circ}=\frac{45^{\circ}}{4}$$

$$\therefore \frac{360^{\circ}}{n} = \frac{45^{\circ}}{4} \implies n = \frac{360^{\circ} \times 4}{45} = 32$$

.. It is possible to have a regular polygon.

(iv) Exterior angle = 80°

$$\therefore \frac{360^{\circ}}{n} = 80^{\circ} \implies \frac{360^{\circ}}{80^{\circ}} = \frac{9}{2}$$

which is in fraction.

:. It is not possible to have a regular polygon. Ans.

- Q. 9. Is it possible to have a regular polygon, each of whose interior angles is:
 - (i) 120°

- (iii) 175° (iv) 130°?

- Sol. We know that each interior angle of a regular polygon of *n* sides = $\frac{2n-4}{n}$ right angles.
 - (i) Interior angle = 120°

$$\therefore \frac{2n-4}{n} \text{ right angles} = 120^{\circ}$$

$$\Rightarrow \frac{2n-4}{n} \times 90^{\circ} = 120^{\circ}$$

$$\Rightarrow \frac{2n-4}{n} = \frac{120^{\circ}}{90^{\circ}} = \frac{4}{3}$$

$$\Rightarrow 6n - 12 = 4n \Rightarrow 6n - 4n = 12$$

$$\Rightarrow 2n = 12 \Rightarrow n = 6$$

It is possible to have a regular polygon.

(ii) Interior angle = 105°

$$\therefore \frac{2n-4}{n} \text{ right angle} = 105^{\circ}$$

$$\Rightarrow \frac{2n-4}{n} \times 90^{\circ} = 105^{\circ}$$

$$\Rightarrow \frac{2n-4}{n} = \frac{105^{\circ}}{90^{\circ}}$$

$$\Rightarrow \frac{2n-4}{n} = \frac{7}{6} \Rightarrow 12n-24 = 7n$$

$$\Rightarrow$$
 $12n - 7n = 24 \Rightarrow $5n = 24$$

$$\Rightarrow \qquad n = \frac{24}{5}$$

which is in fraction.

Hence it is not possible to have a regular polygon.

(iii) Interior angle = 175°

$$\therefore \frac{2n-4}{n} \text{ right angle} = 175^{\circ}$$

$$\Rightarrow \frac{2n-4}{n} \times 90^{\circ} = 175^{\circ}$$

$$\Rightarrow \frac{2n-4}{n} = \frac{175^{\circ}}{90^{\circ}}$$

$$\Rightarrow \frac{2n-4}{n} = \frac{35}{18} \Rightarrow 36n-72 = 35n$$

$$\Rightarrow 36n - 35n = 72 \Rightarrow n = 72$$

:. It is possible to have a regular polygon.

(iv) Interior angle =
$$130^{\circ}$$

$$\therefore \frac{2n-4}{n} \text{ right angle} = 130^{\circ}$$

$$\Rightarrow \frac{2n-4}{n} \times 90^{\circ} = 130^{\circ} \Rightarrow \frac{2n-4}{n} = \frac{130^{\circ}}{90}$$

$$\Rightarrow \frac{2n-4}{n} = \frac{13}{9} \Rightarrow 18n - 36 = 13n$$

$$\Rightarrow 18n - 13n = 36 \Rightarrow 5n = 36$$

$$n = \frac{36}{5}$$

which is in fraction.

:. It is not possible to have a regular polygon. Ans.

- Q. 10. The angles of a quadrilateral are in the ratio 6:3:2:4. Find the angles.
 - Sol. Sum of four angles of a quadrilateral ABCD = 360°

then
$$\angle A + \angle B + \angle C + \angle D = 360^{\circ}$$

and
$$\angle A: \angle B: \angle C: \angle D=6:3:2:4$$

Let
$$\angle A = 6x$$
, then $\angle B = 3x$,

$$\angle C = 2x$$
 and $\angle D = 4x$

then
$$6x + 3x + 2x + 4x = 360^{\circ}$$

$$\Rightarrow 15x = 360^{\circ} \Rightarrow x = \frac{360^{\circ}}{15} = 24^{\circ}$$

$$\therefore$$
 $\angle A = 6x = 6 \times 24^{\circ} = 144^{\circ}$

$$\angle B = 3x = 3 \times 24^{\circ} = 72^{\circ}$$

$$\angle C = 2x = 2 \times 24^{\circ} = 48^{\circ}$$

$$\angle D = 4x = 4 \times 24^{\circ} = 96^{\circ} \text{ Ans.}$$

- Q. 11. The angles of a pentagon are in the ratio 3:4:5:2:4. Find the angles.
 - Sol. Sum of five angles of a pentagon ABCDE

$$= (2n - 4)$$
 right angles

$$= (2 \times 5 - 4) \times 90^{\circ} = (10 - 4) \times 90^{\circ}$$

$$= 6 \times 90^{\circ} = 540^{\circ}$$

The ratio between the angles say $\angle A$, $\angle B$, $\angle C$, $\angle D$, $\angle E$

Let
$$\angle A = 3x$$
, then $\angle B = 4x$, $\angle C = 5x$, $\angle D = 2x$ and $\angle E = 4x$

$$3x + 4x + 5x + 2x + 4x = 540^{\circ}$$

$$\Rightarrow 18x = 540^{\circ} \Rightarrow x = \frac{540^{\circ}}{18} = 30^{\circ}$$

$$\therefore \angle A = 3x = 3 \times 30^{\circ} = 90^{\circ}$$

$$\angle B = 4x = 4 \times 30^{\circ} = 120^{\circ}$$

$$\angle C = 5x = 5 \times 30^{\circ} = 150^{\circ}$$

$$\angle D = 2x = 2 \times 30^{\circ} = 60^{\circ}$$

$$\angle E = 4x = 4 \times 30^{\circ} = 120^{\circ} \text{ Ans.}$$

- Q. 12. The angles of a pentagon are $(3x + 5)^{\circ}$, $(x + 16)^{\circ}$, $(2x + 9)^{\circ}$, $(3x 8)^{\circ}$ and $(4x 15)^{\circ}$ respectively. Find the value of x and hence find the measures of all the angles of the pentagon.
 - Sol. Let angles of pentagon ABCDE are $(3x+5)^{\circ}$, $(x+16)^{\circ}$, $(2x+9)^{\circ}$, $(3x-8)^{\circ}$ and $(4x-15)^{\circ}$.

But the sum of these five angles

$$=(2n-4)$$
 right angle

$$=(2 \times 5 - 4) \times 90^{\circ}$$

$$=(10-4) \times 90^{\circ} = 6 \times 90^{\circ} = 540^{\circ}$$

$$\therefore 3x + 5 + x + 16 + 2x + 9 + 3x - 8$$

$$+4x - 15 = 540^{\circ}$$

$$\Rightarrow 13x + 30 - 23 = 540^{\circ}$$

$$\Rightarrow 13x + 7 = 540^{\circ}$$

$$\Rightarrow 13x = 540^{\circ} - 7 = 533^{\circ}$$

$$x = \frac{533}{13} = 41$$

:. First angle =
$$3x + 5 = 3 \times 41 + 5$$

= $123 + 5 = 128^{\circ}$

Second angle =
$$x + 16 = 41 + 16 = 57^{\circ}$$

Third angle =
$$2x + 9 = 2 \times 41 + 9$$

$$= 82 + 9 = 91^{\circ}$$

Fourth angle =
$$3x - 8 = 3 \times 41 - 8$$

$$= 123 - 8 = 115^{\circ}$$

Fifth angle =
$$4x - 15 = 4 \times 41 - 15$$

$$= 164 - 15 = 149^{\circ}$$
 Ans.

Q. 13. The angles of a hexagon are $2x^{\circ}$, $(2x + 25)^{\circ}$, $3(x-15)^{\circ}$, $(3x-20)^{\circ}$, $2(x+5)^{\circ}$ and $3(x-5)^{\circ}$ respectively. Find the value of x and hence find the measures of all the angles of the hexagon.

Sol. Angles a hexagon are
$$2x^{\circ}$$
, $(2x + 25)^{\circ}$, $3(x-15)^{\circ}$, $(3x-20)^{\circ}$, $2(x+5)^{\circ}$ and $3(x-5)^{\circ}$.

But sum of angles of a hexagon

$$= (2n - 4) \text{ right angles}$$

$$= (2 \times 6 - 4) \times 90^{\circ}$$

$$= (12 - 4) \times 90^{\circ} = 8 \times 90^{\circ}$$

$$= 720^{\circ}$$

$$\therefore 2x + 2x + 25 + 3(x - 15) + 3x - 20$$
$$+ 2(x + 5) + 3(x - 5) = 720^{\circ}$$

$$\Rightarrow 2x + 2x + 25 + 3x - 45 + 3x - 20 + 2x + 10 + 3x - 15 = 720^{\circ}$$

$$\Rightarrow 15x + 35^{\circ} - 80^{\circ} = 720$$

$$\Rightarrow 15x - 45^{\circ} = 720^{\circ}$$

$$\Rightarrow$$
 15x = 720° + 45° \Rightarrow 15x = 765°

$$\Rightarrow x = \frac{765}{15} = 51^{\circ}$$

 \therefore First angle = $2x = 2 \times 51^{\circ} = 102^{\circ}$

Second angle =
$$2x + 25 = 2 \times 51^{\circ} + 25^{\circ}$$

= $102 + 25 = 127^{\circ}$

Third angle =
$$3(x-15) = 3(51^{\circ} - 15^{\circ})$$

= $3 \times 36^{\circ} = 108^{\circ}$

Fourth angle =
$$3x - 20 = 3 \times 51^{\circ} - 20$$

= $153 - 20 = 133^{\circ}$

Fifth angle =
$$2(x + 5) = 2(51 + 5)$$

= $2 \times 56 = 112^{\circ}$

Sixth angle =
$$3(x-5) = 3(51-5)$$

= $3 \times 46 = 138^{\circ}$

Hence angles are 102°, 127°, 108°, 133°, 112° and 138°. Ans.

- Q. 14. Three of the exterior angles of a hexagon as 40° , 52° and 85° respectively and each of the remaining exterior angles is x° . Calculate the value of x.
 - Sol. Sum of exterior angles of a hexagon = 360°

Three angles are 40° , 52° and 85° and three angles are x° each.

$$40^{\circ} + 52^{\circ} + 85^{\circ} + x^{\circ} + x^{\circ} + x^{\circ} = 360^{\circ}$$

$$\Rightarrow 177^{\circ} + 3x^{\circ} = 360^{\circ}$$

$$\Rightarrow 3x^{\circ} = 360^{\circ} - 177^{\circ} = 183^{\circ}$$

$$\therefore x = \frac{183}{3} = 61^{\circ}$$

Hence $x = 61^{\circ}$ Ans.

- Q. 15. One angle of an octagon is 100° and the other angles are all equal. Find the measure of each of the equal angles.
 - Sol. One angles of an octagon = 100° Let each of the other 3 angles = x°

But sum of interior angles of an octagon

=
$$(2x - 4)$$
 right angles
= $(2 \times 8 - 4) \times 90^{\circ} = (16 - 4) \times 90^{\circ}$
= $12 \times 90^{\circ} = 1080^{\circ}$

$$\therefore 100 + 7x = 1080 \Rightarrow 7x = 1080 - 100$$

$$\Rightarrow 7x = 980^{\circ} \Rightarrow x = \frac{980}{7} = 140^{\circ}$$

Hence each angle of the remaining angles $= 140^{\circ} \text{ Ans.}$

- Q. 16. The interior angle of a regular polygon is double the exterior angle. Find the number of sides in the polygon.
 - Sol. Let no. of sides of a regular polygon = xBut sum of interior angle and exterior angle = 180°

Let each exterior angle = x°

then interior angle = 2x

$$x + 2x = 180^{\circ} \implies 3x = 180^{\circ}$$
$$x = \frac{180^{\circ}}{3} = 60^{\circ}.$$

Now $x \times$ exterior angle = 360°

$$x \times 60^{\circ} = 360^{\circ} \implies x = \frac{360^{\circ}}{60^{\circ}} = 6$$

.. No. of sides of the regular polygon = 6.

Q. 17. The ratio of each interior angle to each exterior angle of a regular polygon is 7:2. Find the number of sides in the polygon.

Sol. Let number of sides of regular polygon = 3

and ratio of interior angle with exterior angle = 7:2

Let each interior angle = 7xand each exterior angle = 2x

$$\therefore 7x + 2x = 180^{\circ}$$

$$\Rightarrow 9x = 180^{\circ}$$

$$x = \frac{180^{\circ}}{9} = 20^{\circ}$$

:. Each exterior angles =
$$20x^{\circ} = 2 \times 20^{\circ}$$

= 40°

But sum of exterior angles of a regular polygon of x sides = 360°

$$\Rightarrow x \times 40^{\circ} = 360^{\circ}$$

$$\Rightarrow \qquad x = \frac{360^{\circ}}{40^{\circ}} = 9$$

.. No. of sides of a regular polygon = 9.

- Q. 18. The sum of the interior angles of a polygon is 6 times the sum of its exterior angles. Find the number of sides in the polygon.
 - Sol. Sum of the exterior angles of a regular polygon of x sides = 360°

$$=360^{\circ} \times 6 = 2160^{\circ}$$

But sum of interior angles of the polygon

$$=(2x-4)$$
 right angles

$$(2x-4) \times 90^{\circ} = 2160^{\circ}$$

$$\Rightarrow 2x - 4 = \frac{2160^{\circ}}{90^{\circ}}$$

$$\Rightarrow$$
 $2x-4=24$

$$\Rightarrow 2x = 24 + 4 = 28$$

$$x = \frac{28}{2} = 14$$

Hence number of sides = 14 Ans.

Q. 19. Two angles of a convex polygon are right angles and each of the other angles is 120°. Find the number of sides of the polygon.

Sol. Two angles of a convex polygon = 90° each

∴ Exterior angles will be 180° – 90°
= 90° each

Each of other interior angles is 120°

:. Each of exterior angles will be $180^{\circ} - 120^{\circ} = 60^{\circ}$

But, the sum of its exterior angles

$$= 360^{\circ}$$

Let no. of sides = n

Then
$$90^{\circ} + 90^{\circ} + (n-2) \times 60^{\circ} = 360^{\circ}$$

 $180^{\circ} + (n-2) 60^{\circ} = 360^{\circ}$

$$60^{\circ} (n-2) = 360^{\circ} - 180^{\circ} = 180^{\circ}$$

$$n - 2 = \frac{180^{\circ}}{60^{\circ}} = 3$$

$$n = 3 + 2 = 5$$

Hence, number of sides = 5 Ans.

- Q. 20. The ratio between the number of sides of two regular polygons is 3:4 and the ratio between the sum of their interior angles is 2:3. Find the number of sides is each polygon.
 - Sol. The ratio between the sides of two regular polygon = 3:4

Let number of sides in the first polygon = 3x

and number of sides in the second = 4xSum of interior angles of the first polygon

$$= (2 \times 3x - 4)$$
 right angles

$$= (6x - 4)$$
 right angles

and sum of interior angles of the second polygon

$$= (2 \times 4x - 4)$$
 right angles

$$=(8x-4)$$
 right angles.

$$\therefore$$
 (6x – 4) right angles

$$: (8x - 4) \text{ right angles} = 2:3$$

$$\Rightarrow$$
 $(6x-4):(8x-4)=2:3$

$$\Rightarrow \frac{6x-4}{8x-4} = \frac{2}{3}$$

$$\Rightarrow 18x - 12 = 16x - 8$$

$$\Rightarrow 18x - 16x = -8 + 12$$

$$\Rightarrow 2x = 4$$

$$\therefore x = 2$$

Hence number of sides in the first polygon

$$= 3x = 3 \times 2 = 6$$

and no. of sides of the second polygon

$$= 4x = 4 \times 2 = 8$$
 Ans.

- Q. 21. The number of sides of two regular polygons are in the ratio 4:5 and their interior angles are in the ratio 15: 16. Find the number of sides in each polygon.
 - Sol. Ratio between the sides of two regular polygon = 4:5

Let no. of sides of first polygon = 4xand no. of sides the second polygon = 5x

: Interior angle of the first polygon

$$= \frac{2 \times 4x - 4}{4x} \text{ right angles}$$

$$= \frac{8x - 4}{4x} = \frac{2x - 1}{x} \text{ right angles}$$

and interior angle of second polygn

$$= \frac{2 \times 5x - 4}{5x} \text{ right angle}$$
$$= \frac{10x - 4}{5x} \text{ right angle}$$

$$\therefore \frac{2x-1}{x}: \frac{10x-4}{5x} = 15:16$$

$$\Rightarrow \frac{2x-1}{x} \times \frac{5x}{10x-4} = \frac{15}{16}$$

$$\Rightarrow \frac{5(2x-1)}{10x-4} = \frac{15}{16}$$

$$\Rightarrow \frac{10x-5}{10x-4} = \frac{15}{16}$$

$$\Rightarrow$$
 $160x - 80 = 150x - 60$

$$\Rightarrow$$
 $160x - 150x = -60 + 80$

$$\Rightarrow 10x = 20$$

$$x = \frac{20}{10} = 2$$

$$\therefore$$
 No. of sides of the first polygon = $4x$
= $4 \times 2 = 8$

and no. of sides of the second polygon $= 5 \times 2 = 10 \text{ Ans.}$

- Q. 22. How many diagonals are there in a
 - (i) Pentagon (ii) Hexagon
 - (iii) Octagon?
 - Sol. No. of diagonals of a polygon of n sides

$$=\frac{1}{2}n(n-1)-n$$

(i) : No. of diagonals in a pentagon

$$= \frac{1}{2}n(n-1) - n$$

$$= \frac{1}{2} \times 5(5-1) - 5 \qquad \text{(Here } n = 5\text{)}$$

$$= \frac{1}{2} \times 5 \times 4 - 5$$

$$= 10 - 5 = 5$$

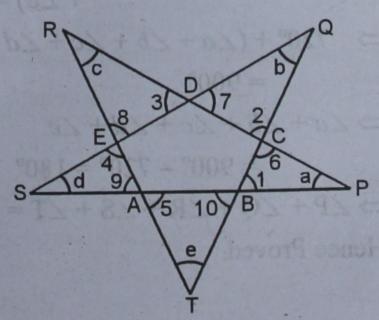
(ii) No. of diagonals in a hexagon

$$= \frac{1}{2} \times 6(6-1) - 6 \quad \text{(Here } n = 6\text{)}$$
$$= \frac{1}{2} \times 6 \times 5 - 6 = 15 - 6 = 9$$

(iii) No. of diagonals in an octagon

$$= \frac{1}{2} \times 8(8-1) - 8 \qquad \text{(Here } x = 8\text{)}$$
$$= \frac{1}{2} \times 8 \times 7 - 8 = 28 - 8 = 20 \text{ Ans.}$$

Q. 23. The alternate sides of any pentagon are produced to meet, so as to form a starshaped figure, shown in the figure. Prove that the sum of measures of the angles at the vertices of the star is 180°.



Given: The alternate sides of a pentagon ABCDE are produce to meet at P, Q, R, S and T so as to form a star shaped figure.

To Prove:
$$\angle P + \angle Q + \angle R + \angle S + \angle T$$

= 180° ...(i)

or
$$\angle a + \angle b + \angle c + \angle d + \angle e = 180^{\circ}$$

Proof: $\angle 1 + \angle 2 + \angle 3 + \angle 4 + \angle 5$

$$= 360^{\circ}$$
 ...(i)

(Sum of ext. angles of a polygon)

Similarly
$$\angle 6 + \angle 7 + \angle 8 + \angle 9 + \angle 10$$

$$=360^{\circ}$$
 ...(ii)

But in
$$\triangle BCP = \angle 1 + \angle b + \angle a$$

= 180° ...(iii)

(Sum of angles of a triangle)

Similarly in
$$\triangle CDQ$$
, $\angle 2 + \angle 7 + \angle b$

$$= 180^{\circ}$$
 ...(*iv*)

In Δ DER,

$$= \angle 3 + \angle 8 + \angle C = 180^{\circ}$$
 ...(v)

· In \triangle EAS,

$$= \angle 4 + \angle 9 + \angle d = 180^{\circ}$$
 ...(vi)

and in
$$\triangle ABT = \angle 5 + \angle 10 + \angle e$$

$$= 180$$
 ...(*vii*)

. Adding (iii) to (vii)

$$\angle 1 + \angle 6 + \angle a + \angle 2 + \angle 7 + \angle b + \angle 3 + \angle 8$$

$$+ \angle c + \angle 4 + \angle 9 + d + \angle 5 + \angle 10 + \angle e$$

$$= 180^{\circ} + 180^{\circ} + 180^{\circ} + 180^{\circ} + 180^{\circ}$$

$$\Rightarrow (\angle 1 + \angle 2 + \angle 3 + \angle 4 + \angle 5) + (\angle 6 + \angle 7 + \angle 8 + \angle 9 + \angle 10)$$

$$+(\angle a + \angle b + \angle c + \angle d + \angle e) = 900^{\circ}$$

$$\Rightarrow 360^{\circ} + 360^{\circ} + (\angle a + \angle b + \angle c + \angle d$$

$$+ \angle e) = 900^{\circ}$$

$$\Rightarrow 720^{\circ} + (\angle a + \angle b + \angle c + \angle d + \angle e)$$

$$=900^{\circ}$$

$$\Rightarrow \angle a + \angle b + \angle c + \angle d + \angle e$$

$$=900^{\circ} - 720^{\circ} = 180^{\circ}$$

$$\Rightarrow \angle P + \angle Q + \angle R + \angle S + \angle T = 180^{\circ}$$

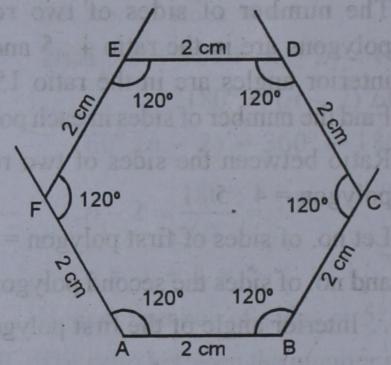
Hence Proved.

EXERCISE 14 (B)

- Q. 1. Construct a regular hexagon of side 2 cm, using ruler and compasses only.
- Sol. We know that each angle of a regular hexagon = 120°.

Steps of Construction:

- (i) Draw AB = 2 cm.
- (ii) At A and B, draw rays making an angle of 120° each.



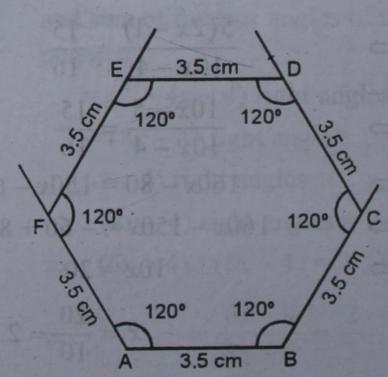
- (iii) Cut off AF = BC = 2 cm.
- (iv) Again at F and C, draw rays making an angle of 120° each.
- (v) Cut off FE = CD = 2 cm.
- (vi) Join ED.

Then, ABCDEF is the required hexagon.

- Q. 2. Construct a regular hexagon of side 3.5 cm, using ruler and compasses only.
 - Sol. We know that each angle of a regular hexagon = 120°

Steps of Construction:

(i) Draw AB = 3.5 cm.

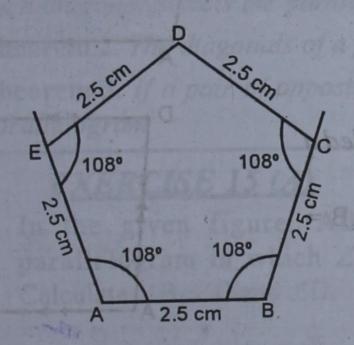


- (ii) At A and B, draw rays making an angle of 120° each.
- (iii) Cut off AF = BC = 3.5 cm
- (iv) At F and C, draw rays making an angle of 120° each.
- (v) Cut off FE = CD = 3.5 cm.
- (vi) Join ED.

 Then, ABCDEF is the required to regular hexagon.
- Q. 3. Construct a regular pentagon of side 2.5 cm. Using ruler, compasses and protractor.
 - Sol. We know that each angle of a regular pentagon = 108°.

Steps of Construction:

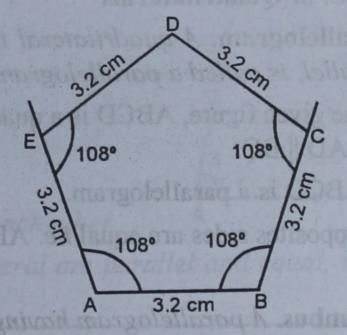
- (i) Draw a line segment AB = 2.5 cm.
- (ii) At A and B, draw rays making an angle of 108° each.



- (iii) Cut off AE = BC = 2.5 cm.
- (iv) At E and C, draw rays making an angle of 108° each meeting each other at D. Then, ABCDE is the required regular pentagon.
- Q. 4. Construct a regular pentagon of side 3.2 cm, using ruler, compasses and protractor.
 - Sol. We know that each angle of a regular pentagon = 108°

Steps of Construction:

- (i) Draw a line segment AB = 3.2 cm.
- (ii) At A and B, draw rays making an angle of 108°.



(iii) Cut off AE = BC = 3.2 cm.

3. Restangle A parallelogram each of whose angles measures

(iv) At E and C, draw rays making an angle of 108° each meeting each other at D.

Then, ABCDE is the required pentagon.