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e Real Numbers e Approximation
e Directed Numbers e Squares and Square Roots
e HCF and LCM e Powers and Roots

e Fractions and Decimals

Numbers

1. Write the following numbers in ascending and descending order.

fo @uagesip 41 /o0
(i) l“‘}ﬂ‘!_!l_ ol l_

g lipg g 1150124 8
@) 1.7117, 7.1771, 1.7711, 7.7171, 1.7771

(i) 6.213, 6.231, 6.132, 6.321, 6.3
iv) 9,9% 33,8 Jo,8

9 The additive inverse of —24 is multiplied with the multiplicative inverse of 27 . What 1s the product

L3 | B3

obtained?

1 : : ‘i
3. By how much does —47 have to be increased in order to get —2—7

g

4. Mango trees cover 0.35 portion of an orchard, while guava trees grow on 0.26 portion. If the rest of
the orchard has 3042 litchi trees, how many mango trees are there in the orchard’

r
Hmm... 120 square flowerbeds in a square field... Well, why don't we change the
We have made a mistake here. There cannot be number to a perfect square, say
Jﬁ) square flowerbeds in a row Collating data on their prnjecfsj 121 or 144>

! to create a website..
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REAL NUMBERS

e Natural Numbers
*  Whole Numbers

e Integers
 Fractions

e Rational Numbers
* Irrational Numbers

AAL Introduction

We have learnt about natural numbers, whole

numbers, integers, and rational numbers in previous
classes. In this chapter, we will briefly recall what
was learnt earlier and extend the system of these
numbers to the set of real numbers.

AAA Natural Numbers

The set of natural numbers i1s the infinite set of
counting numbers beginning with 1.

NS o5 6

Natural numbers may be represented on a number
ray with 1 as its end point and all subsequent
numbers on its right at an equal distance from each
other.

—
X

o2 -3 4. HauEERr <8

A Whole Numbers

The set of natural numbers along with the digit O
form the infinite set of whole numbers.

W =40,1,%3 456 )

o

*  Properties of Irratlonal N‘
. Rauonahsmg Factor mg;

. Propemes of Real Numbers

Whole numbers may be represented on a number
ray with O as its end point and all subsequent
numbers on its right at an equal distance from each
other.

The additive inverse of a natural number is a
negative integer. The sum of a number and its
additive inverse is 0. The set of whole numbers,
along with the set of the additive inverse of all
natural numbers, forms the infinite set of integers.

Integers are represented by I or Z.
Z=1{..,-5-4-3-2-1,0,1,2 3,4,5, ...}

Integers may be represented on a number line with
0 as its mid-point, all natural numbers to its right,
and all negative integers to its left.

« —t—t— —t
-5-4-3-2-10 1 2 3

A £ | [l
T L L)

4 5

Natural numbers are positive integers. 0 is an integer
which is neither positive nor negative.
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A Fractions

Fractions are numbers that are written in the form

a

b where a and b are natural numbers.

Fractions are represented on a number ray to the
right of zero.

]
1

sl +
ala +
aAlw -+

F }
Oe -dr =l S
"I | "R

A Rational Numbers

All numbers that can be written in the form B,

where p and q are integers, but q # 0, form the set
of rational numbers. It is represented by Q.

S RSV T .
4 7 5

Thus, rational numbers include:

A

L. g = oy 4 (natural numbers)
e b

2. \q*= o= 0 (whole numbers)
p_-l4 |

e i FCILy - (integers)
Rpioe :

kg - - (fractions)
P’ -4 : .

B 9 (negative fractions)

Representation of a Rational
Number on the Number Line

Rational numbers may be represented on the
number line with 0 as its mid-point.

6 3
Example 1: Represent ~— and 13 on the number

line.
If —6 is divided by 7, it is apparent that the quotient

B
will be less than 0 but more than —1. Thus = will

lie between —1 and 0 on the number line. Similarly,
1% will lie between +1 and +2 on the number line.

Divide the distance between 0 and —1 into seven

equal parts. The distance to the left of 0, till the

6
sixth of these parts, represents ——. Now divide the

distance between 1 and 2 into eight equal parts. The
distance to the right of 1, till three of these parts,

3
represents + 1'5 :
-} — >
-2 b4 fo ekt e
aniLts. i /Sl A
e 7 8 8 8

Insertion of Rational Numbers

Rational numbers are very densely packed on the
number line.

There can be infinite rational numbers between two given
rational numbers. This is why there can be no predecessor
or successor of a rational number.

The common fraction, also known as vulgar
fraction, obtained by adding the numerators and
denominators of any two given common fractions,
will always lie between the two on the number line.

Example 2: Find two rational numbers between
—8.17 and -8.18.

The average of the given numbers is given by

-8.17 +(-8.18) -16.35
= =-8.175
2
~8.17 + (-8.175)
The average of —8.17 and -8.175 = :
-16.345

= : = —8.1725. Thus, 2 rational numbers

between —8.17 and —8.18 are —8.175 and —8.1725.

Example 3: Find two rational numbers between
gt
— and -.

The given fractions are % and %

Now, 4+5 _ 9 Wil lie between Sl 1.
7+7 14 7 7
L gl 4 9
$+9 _ 2 il lie between — and —.
7+14 21 7 14
. 4 3

Thus, 2 rational numbers between 7 and - are
9 13

—— gand

55
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Decimal Fractions as Rational
Numbers

All decimal fractions that can be converted to the

2 .
form g, q # 0 where p and q are integers, are

rational numbers. The exact value of non-
terminating and non-repeating decimals cannot be
determined. Such decimals that cannot be converted

into the form %, where a and beZ and b # 0, are

irrational numbers.

Example 4: Convert the following terminating

P

decimal fractions to the form q 4" 0.
(1) 0.65
Multiplying and dividing 0.65 by 100
0.65x100
i Ty s
100 Express 088 as a |

rational nhumber.

[

13;
20

iiiiiiiiiiiiiiiiii

GRS,
Multiplying and dividing 0.275 by 1000, we
get

0.275 =

0.275 %1000

1000
275 11

1000 ~ 40

Thus, rational numbers £ where q is either 2 or 5,
%

or their products, are all terminating decimals.

Example 5: Convert the following non-terminating

. : : P
recurring decimal fractions to the form @, q #0.

®) 1.06
100 x 1.06 = 106.6666...
10x 1.06 = 10.66666...

(100 X 1.06)— (10 X 1.06)= 96.0000...
- 1.06 (100 — 10) = 96
96 16
90 15

— 1.06 =

(i) 1.93
100 x 1.23 = 123.2323...
%123 T = v

(100 x 1.23) - (1 x 1.23)= 122.0000...

- =
——
ﬂ — ———
L]
& & 122
= e
. 99
R T R e e e e T L e e e S o i e P SRR T T e T
el e e e N s e S R e ;.):_ S B S e e R i e g g -irsg;'o
Note: 1 .06 cdn also be writfen-ad | 06kto reptesent &
B i Y = i = o it ‘#‘B" CaCl g gt
Note: ]| U0 can also be written as 1. 00, to represent a
E i e e et e SR e e e e S R T e S e e By P T R P P
b _‘-{.__ __.-A.;, e Ft ._ .:_,__".." Lty - ﬁé’ T .q e e s -:."._." G ..?: Sh e e
et et h o o i e e e SR e e e i
G __m ! : = ek fé:;"."' i i \,6‘5"’: .._J.ﬁ o ""'o‘,el" - fEate -'P‘ & e o L’f__-._ r
F e o ’ .4 i e i g e e R R P s M T
SR o __- o it .i{.a.?,&?fﬁz'.g-’-:;,:;--”.‘& f '?c'&':f:é'-’{;ou:%-.% Xé-.;o-;%fiior:‘_{“-‘:-ofsf-'_"*._‘é’w,._"'g ol 7 g

Remember
Natural numbers N = {1,2,3,4,5,6,....}
Whole numbers W = {0,1,2,3,4,5,6,...}
Integers (I or Z) {iicot 2b sl

_ =101 2, D, - i)
Rational Numbers Q) is the set of numbers

which can be expressed in the form % , where q #0

Every fraction is a rational number.

Every integer 1s a rational number.

. 0 1s a rational number.

Every decimal fraction is a rational number.

Exercise 4.1

1. State whether the following statements are True
or False.
(1) O 1s to the left of all negative integers on
the number line.
(1) 3 1s greater than —3333.

©

(111) 1% will lie to the right of the mid-point

between 1 and 2 on the number line.

2

(iv) 1= will lie to the left of the mid-point

between 1 and 2 on the number line.
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(v) If a decimal fraction is non-terminating
and non-recurring, it is known as a rational

number.

) . o
(vi) The rational number 3‘5 lies between 2,

11
and 3%.

(vii) Set W —Set N = {0}.

9. How many natural numbers lie between 212
and 21207

3. How many integers lie between -219 and
+2190?

4. Write the following numbers in descending
order.

() —213, +126, 212, +127, 127

amBers i9a gy "B 7T
B e e O]

E X8 =745 02
(iv) —2.3838, —2.3388, —2.8838, —2.8833,
-2.3883
) 3.8, 3.6,3.88, 3.68, 3.86
5. Write the following numbers in ascending order.
() +418, —481, —418, +481, —841

guayes, § &y vog

) 5> 937 15° 20° 7
(iv) 6.7134, 6.7431, 6.7341, 6.7413, 6.7143
v) 7.98,7.9,7.98,7.89,7.8

6. Insert a rational number between the following
pairs of numbers.

(i) —0.001 and + 0.001
(i) —8 and -3 (i) 85 and 86

e, 3 o
(v1) 23 and 23 (vii) 3.0688 and 3.0699
(viii) 5.2168 and 5.2169
9 11 6 D
4 B I— -8— -8—
(1x) 13 and T (x) - and -
7. Insert 3 rational numbers between the following
numbers.
i o 0 3
(i) 3.18 and 3.19 (1) 23 and 23

8. Represent the following rational numbers on the
number line.

Fie L N =9
0 2 3 ) =
(iti) 3.7 (iv) 4.85

7

b Ras

9. Which of the following rational numbers wall
have a terminating decimal value?

< i
W 3 )
Tl . 7
(1) 5 V) ~To
7

v 35
10. Convert each of the following decimal fractions

in the form %,wherepandqe Z and q # 0.

(i) 0.32 (i) 0.42
(iii) 0.85 (iv) 1.875
(v) 0.4375 (vi) 3.7
(vi1) 1.64 (viil) 5.93
(ix) 7.113 (%) 8.9505

A Irrational Numbers

The set of irrational numbers includes all those

. v P
numbers which cannot be written 1n the form "

where p and q are integers and q # 0. The exact
values of irrational numbers cannot be determined.

Q— = {-.-: “Jg .ssy 3*/5 "3 4'020020002”
&)

Example 6: Consider this: J64 =8

; i 3
8 is a natural number or a rational number (T) but

J8 = 2.8284271... is an irrational number as its
exact value cannot be determined.

70
Example 7: Consider this: 7.7777... = -9—

@
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70 P

9 1sarational number in the form g, q # 0 where

pandq € Zbut 7.77777... is an irrational number
P

as it cannot be converted to the form 7,

q # 0, where pand q € Z.

Operations Involving Irrational
Numbers

The closure property of multiplication may or may
not apply to irrational numbers.

For example,

V3x+2 =

\/g or q, Xq, =(js

(an 1rrational number)

J§xJ7=J:E=60r'thﬁz=q3

(a rational number)

A rational number may be multiplied with an
irrational number to form a new irrational number
as product.

5X |2 '= 52 or 7 x3f5i="7./8

In an irrational product like 5.2, .2 is known as
the radical.

Irrational numbers with the same radicals are known

as like irrational numbers, whereas irrational
numbers with different radicals are known as unlike
irrational numbers.

Like irrational numbers: 76, 36 , 5v6 , 26
Unlike irrational numbers: 7./6 , 643, 65, 32

Addition and Subtraction of
Irrational Numbers

Addition and subtraction can be carried out only
between like irrational numbers.

Example 8: Evaluate 2./5 +3.\/5

=@2+3)5 =55
Example 9: Evaluate 4.7 - 3.7

= (VR3S yp

L)

Similarly, always keep in mind that 1+2 =+/3,
V3-2 # 1, 243 + 32 = 5\6 and so on.

Multiplication and Division of
Irrational Numbers

Multiplication and division can be carried out
between like as well as unlike irrational numbers.

Example 10: Find the product.
) 2% {3 =93
@ﬁXI=I=
(i) V2x+/3 =2x3 = 6
(v) 2/5x3v5 = (2% 3)(v/5 x/5)
(V) 2V3x3v2 = (2% 3)(\/3x2)
= 63%x2 = 66

Example 11: Divide the following:

N ek
Bt ofB:Fe B8 = = =3
(i) 343 + 6

=6X5=30

2
o |

I

(ii) 6J2_4+2J§= T:Sx _—

I
(&%)
X
h
Il
(&%)
X
N
1
(@)

Try 'H'ns’

_J-_ )( Zr = F i
TWNIxN2
| *-'Ni ¥2 '

i i i H P 1 {

e

b 2000 0 )

._i“ :

i —

i

1
L}
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Properties of Irrational Numbers

1. The negative of an irrational number is an
irrational number too. —1 X q, = g, where
Qe = —49r ¢

9. The sum of a rational number and an irrational
number is an irrational number.

25 5 9

3. The product of a rational number, other than
0, and an irrational number 1s an irrational
number. q X q, = q, , where q # 0

4. The sum and difference of two irrational
numbers is a new irrational number.

g ¥dp ™ 9
q;=4951= {3 where q, # q,
5. The product and quotient of two irrational
numbers is 2 new rational or irrational number.

q;Xq, ~ g3 0r q,

1

h Q. #5
where ql qg

0y g, = Yg O 4, where q, # q,

A Rationalising Factor

To ‘rationalise’ is to make an irrational number a
rational number. If the product of two irrational
numbers q and g, is a rational number, then g,
and q, are rationalising factors of each other.

Example 12: 5 x~/5 =25 =5
Thus 5 is the rationalising factor of /5.

Example 13: 32 x/2 = 34 =3X%X2=6
Thus 3 is the rationalising factor of 32 .

Example 14: (3 +2)(3-+2)= 9-(+/2)°
=9-2=7
{using the identity (a + b) (a —b) = a? —b?}
Thus 3 — /2 is the rationalising factor of 3+2.
Or, 3+ ﬁ is the rationalising factor of 3 - g2

Examplel5: (246 — 31/5)(2V6 +35)
=(2V6)" - (35)’

= (4 X 6)— (9 X 5) = 24 — 45 = 21

Thus 26 +3J/5 is the rationalising factor of

9.6 - 3./5 or vice versa.

Rationalising the Denominator of an
Irrational Number

The denominators of irrational numbers like
3

1 S 7
5 946’ 9+ 3 > 5 -3 can be rationalised by
multiplying the numerator and denominator of the
irrational number by the rationalising factor of the

denominator. N
1 1 5 5
Example 16: \/3 P \/—5' X \/5 = *\g;

2 117_5=5x\/€_5\/€=5\/€

dhis e 2-\[?_)
Examplel&:2+ﬁ'2+ﬁx2_ﬁ
32-+3) 6-3V3 _

4 -3 fige + 7
7 i e
Example]g:\/g_ﬁ= \/g_\/g"\/ghﬁ

YR B R A T N
i Al S

6-33

Try this!
Rationalise the
denominators of:

unEis
(') 3‘\[5_

1
(i1} 3J€+2§/§ s

A Real Numbers

The set of real numbers is the union of the set of rational
numbers and the set of irrational numbers. Every point on

a number line represents a real number.

i 10

¥e
13-
8012112111,

R:QU (i = 1.678,

gt

5

0, 3, 1.58,
4

9[04

©
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Properties of Real Numbers

Let us consider operations on rational as well as
irrational numbers to highlight the properties of
operations on real numbers.

Closure Property

The sum, difference, product, or quotient of two
real numbers 1s a real number.

1% roeh r, =T,

A I, = I
St Xy X =1
4. Py T =
2 1 =10+3 7
Example 20: —— + — = e
IS 15 '

Example 21: 3.2 + 52 = (3 + 52 = 82

2 I +5 v 045 14
Example 22: 1 - -2—=— - —= R e
d AR a0 15 15

Example 23: 37 -7 =(3 - 17 =27
Example 24: —1.88 X -3.55 = +6.674

Example 25: 420 x 9/5 = (4 x2)v100
=8x10 =80

Example 26: 3.762 + 1.52 = 2.475

15 (30
Example 27: 15@+3\/E= 2 -6 =5\/5

Commutative Property of Addition
and Multiplication

A change in the order of addition or multiplication
of two real numbers does not change their respective
sum or product.

Lyt ok et b,

o T LT

2—r2xrl

ey todn e SIOTE SN S )
Example 28: - ( 9 14

Example 29: -3\/5 + \/5 = /5 + (=3/5)
=-25

©

Example 30: 6.94 X ~1.5 = 1.5 X 6.94 = —10.41

Example 31: 9 x —/8 = —\/8 x /2
=-16 =-4

Associative Property of Addition
and Multiplication

A change in the grouping of three real numbers
while adding or multiplying does not change their
respective sum or product.

s e B i

2T Xy PR SR o

E le 32 ("i"'g " g &
AAIPIE O%- AT s 3

(3
< SLIHE
Example 33: (2\/6 +/6)+ 3v6 = 36 + 346

=66
or 26+ (V6 +3v6)=2V6 + 446 =66

Example 34: (7.8 X 3.5) x 2.2 = 27.3 X 2.2 = 60.06

or 7.8X(3.0x2.2)=7.8x7.7=60.06
Example 35: (\E X 2\@) X Jg = 2\/6 X \/g
=230

or ﬁx(?x/gx\/f_))=\/§><2\/g=2\/%

Distributive Property of
Multiplication over Addition

When a real number is multiplied by the sum of
two or more real numbers, the product is the same
as the sum of the individual products of the real
number and each addend.

Iy X (rg + 13) = (r) X19) + (r; X15)
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Example 36: 2.85 x (3.61 + 2.51) = 2.85 X 6.12
= 17.442
or (2.85 % 3.61) + (2.85 x 2.51)
= 10.2885 + 7.1535 = 17.442

Thus 2.85 % (3.61 + 2.51)
= (2.85 x 3.61) + (2.85 x 2.51)
Example 37:  34/2 x (ﬁ + 2\/5) = 32 x 32

=9x2=18

or (32 x2) + (32 x242) =6+12=18
Thus 342 x (v2 + 242) = (342 x+/2)

+ (342 x 24/2)

Identity Property of Real Numbers

The addition of 0 or the multiplication with 1 does
not change a real number.
rhfl=0+r=r
rX1=1Xr=r

Inverse Property of Real Numbers

1. Corresponding to every real number, there exists
another real number of opposite sign such that
the sum of the two real numbers is 0.

r+(—r)=0
2. Corresponding to every (non-zero) real number,
there exists a real number, known as 1ts
reciprocal, such that the product of the two real
numbers 1s 1.

1
rXx—=1,r#0
r

Cancellation Property of Real
Numbers

For any three real numbers,
if n+h=k+h =1 =1,

if I']X}‘2=rg)<l'3 =>I'l =I‘3

1. Write the following numbers in the smallest set
or subset in the Venn diagram below.

(i) 8 (ii) — 8
(iii) + 478 (iv) — 2191
fy) ,— 21,91 (vi) + 3.6
(vii) 0 (viil) +4.6
(ix) —6.7 (x) 8.292992999...
3 W
() 3 (i) o
i) 02 iv) =3
22 :
(xv) o5 (xvi) /64

(xvi)) /6.4 (xviii) 2 + /3
(xix) 644 (xx) 4+/6
22 ;T . :
2. It by 3.1428571..., 1s — an irrational
number?

3. Fill in the boxes with the correct real numbers
in the following statements:

@ 27 +¥7 =+ 247
(i) 3.8+ 4.65 =4.65+

(i) +29 =29 + 510
(iv) 3.9 + (4.69 + 2.12) = (
+ 2.12

TR N e
o (5+5)% = (5+7)

vi) 342 (/3 +245) = (332 x245)
+

+ 4.69)

( X )

@
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(viii) 213 + =
7
(x) g x| |=1
(x) -7.36 + =0

4. Find the answers to the following expressions
by using the properties of addition and
multiplication of real numbers.

(1) 283 + (717 + 386)
() (2154 - 1689) + 1689
(1) 3.18 + (6.82 + 1.35)
(iv) (6.784 — 3.297) + 3.297

7
W 75* (l“g " ')
(vi) 0.25 X (4.17 - 0.17)
(vii) (6.6 X 6.6) + (6.6 X 3.4)

(viii) (ixS]-(—i—x?)

(ix) (6.8 x5)— (6.8 x4)
6 7 6

() XX

{.D25
5. Which of the following operations on irrational

numbers are correct?

() 645 -4V3=2y2 (i) VIxf7T=7
(i) 3v3 +3V3 =643 (V) V7 x+/7 =49
V) V7 +2=4V0 (Vi) 2/8x3\2 =24

2
(vii) 8v2 + 82 =32 (@)2J§+3Jﬁ-ﬁ
(X) 5++/3=5V3 (%) 3320 + 345 =2

6. Find the rationalising factors of the following
irrational numbers:

@ 1o (i) 7
(iii) 25 (iv) 347
(v) -248 (vi) 67

Downloaded from https:// www.studiestoday.com

s :;2_ ¢ jad pﬁﬁ% AL shareand
(ix) 2v3 +4/3 ®) 745 -25

(xi) 142 (xii) 3-+/5

(xiii) 342 +6 (xiv) 447 + 642

(xv) 3\{6—&[3- .

7. Rationalise the denominators of the following
numbers:

] 3
(1) 72' (1) 7;
3 8
(m) 5 (v) J6
3 5
(v) o5 (vi) N
33 ol
(vn) ag (viii) ;75__;;3
5 17
(ix) 334-32 (x) 4 6+3J;
3 11
o) 3573 i) 375943
S V341
o) g f5_3f2 ™ 5y
V5-42
(xv) 35 +s_f2

8. Find the additive inverse of each of the
following irrational numbers:

0 7 (ii) 35
(iii) —-6+7 (iv) 547




. o o o o o

. I e e S o

i

R e
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- 1 'Ilustréta tha closure propbrty of addition of real

numbers usmg the Irrational numbers J_ and-

TR
z ll|ustrate that the elosure properly does not apply
on aubt[aption of real numbers using two rational

9
htimbarsE* and *-3- |

3. lllustrate the distributive property of multiplication
over addition of real numbers using three

irrational numbers 3.7, -2v7 and /7.

" 1. Find two rational numbers between % and %
9. How many integers lie between —416 and +4160?
3. Write the following numbers in descending order:

() —312, + 621,412, + 721,-721

4. Find the rationalising factors of the following
irrational numbers.

Revision Exercise

() 547 - 27 (i) 7-13
(i) 2 5 (v) 6511 447
4. Rationalize the denominators of the following
L T g3
7 W 20728
oo | V2 -+/3
L ™ & B
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