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QUADRILATERALS

Four non-collinear co-planar points A, B, C, and D
joined by four line segments form quadrilateral

ABCD. The eight elements of a quadrilateral are
its four sides and four angles.

Fig. 28.2

In Figure 28.1, A, B, C, and D are the vertices of

quadrilateral ABCD. Z£1, £2, Z3, and Z£4 are its => In quadrilateral ABCD,

four interior angles. AB, BC, CD, and DA are its L1+ (L LD) " L% ¥ 3

four sides. £5, £6, £7, and 48 are its four exterior = 180° + 180° (adding equations)
angles. AC and BD, which connect the opposite => Sum of interior angles of quadrilateral
vertices, are known as its diagonals. ABCD = 360° Q.E.D

2. To prove: The sum of the exterior angles of a
quadrilateral is 360°.
Proof: Extend sides AB, BC, CD, and DA of
quadrilateral ABCD to form exterior angles,
L1, L2, L3, Z4 respectively (Figure 28.3).
Now [Z1 + 4£5=180° (linear pair)
= L1l = 1807~ £L3
Similarly £2 = 180° — £6, £3 = 180° —Z£7
and Z4 = 180° - £8
9 LA LIV LD % LF

= 180° — £5 + 180° — £6 + 180°

Fig. 28.1

Sum of Angles of a Quadrilateral

I. 7o prove: The sum of the interior angles of a — /7 +:180°~Z8
quadnilateral is 360°. (adding the four equations)
Proof: Draw a quadrilateral ABCD and connect A,
its opposite vertices B and D (Figure 28.2). R (3 D
InAABD Z1+ £2 + /3 = 180° \wiss \7

(sum of interior angles)

In ABCD 44+ 45+ 4£6 =180°
(sum of interior angles)

@ Fig. 28.3
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=pidd % 120 L8 +ild
#:720%< (LD ALE6 HLT 4 L8)
" = Sum of exterior angles
= 720° — Sum of interior angles
= Sum of exterior angles

= 720° — 360° = 360° Q.E.D
Alternatively,
LIS L5 =160
£2 + £6 = 180°

> all linear pairs

25 k1= 180"
Z4 + £8 =180° )
Types of Quadrilaterals and Their Properties

L1+ 29+ L3+ L4+ L5+ L6+ LT+ L8
= 720°
But £5+ £6 + £7 + £8 = 360°
(sum of interior angles)
s L1+ L2+ £3+ £4 +360° = 720°
or Zl1+ /£2+ Z£3+ £4 = 360°

or Sum of exterior angles = 360°

A

Convex quadrilaterals
All angles < 180°

Klte ABCD

Concave quadrilaterals

One angle > 180°

Two pairs of
adjacent sides,
Ol equal

One pair of opposite

|

Two pairs of adjacent I

sides equal ‘
= AL 52 I Ay £C

l

|

|

J

|

|

|

AB = AD; BC = CD

B C
sides parallel
but not equal
> ——
A D A D

— M o —— i — —

Opposite sides

Trapezium ABCD Isosceles trapezium ABCD
BC|[AD BC|[AD; AB =CD

BC # AD

BC = AD
C

parallel and
equal
n ——
A D

Paralleln ram ABCD

Rectangle ABCD

Opposite sides

AB||CD AD || BC
AB = DC, AD = BC

AB || CD; AD || BC
all angles = 90°
AB = DC, AD = BC

B C

B C
parallel and all
sides equal
imm
e
& D A D

Rhombus ABCD Square ABCD
AB || CD; AD || BC : AB || CD; AD || BC
AB=BC =CD=DA AB=BC=CD=DA

all angles = 90°
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Additional Properties of Some 2. To prove: If one pair of opposite sides in a

Quadrilaterals

From the properties that define a quadrilateral, we
can derive some additional properties.

Parallelogram

A parallelogram s defined as a quadrilateral in which the
oppostte sudes are parallel.
1. o prove:
(1) The diagonal divides a parallelogram into
two equal halves.
(1) The opposite sides of a parallelogram are
equal.
(1) The opposite angles of a parallelogram are
equal.
Proof: In parallelogram ABCD shown in
Figure 28.5,
given: AB | | CD and BC || DA

Fig. 28.5

In ABCD and ADAB,

Ll = /3 (alternate interior angles)
L2 = /4 (alternate interior angles)
BD = DB (same side)
= ABCD = ADAB (by ASA)

= T'he diagonal divides a parallelogram into
two equal halves.
BC = DA (corresponding sides
of congruent triangles)
= 'The opposite sides of a parallelogram are
equal.
ZBCD = ZDAB  (corresponding angles
of congruent triangles)
= The opposite angles of a parallelogram are

equal. Q.E.D

@

quadrilateral are given to be parallel and equal,
the quadrilateral is a parallelogram.

Proof: In quadrilateral ABCD shown in
Figure 28.6,

given: BC || AD and BC = AD

A > D
B e C
Fig. 28.6
In ABCD and ADAB,
Ll =42 (alternate interior angles)
BD = DB (same side)
BC =AD (given)
= ABCD = ADAB (by SAS)

= ZABD = ZCDB (corresponding angles
of congruent triangles)

But ZABD and ZCDB are alternate interior

angles formed by transversal BD on lines AB

and CD.

— 8

Thus, as the opposite sides are parallel to each

other, the given quadrilateral ABCD 1is a

parallelogram. Q.E.D
. 1o prove: The diagonals of a parallelogram bisect
each other.
Proof: In AOBC and AODA in Figure 28.7,
L= (alternate interior angles)
L2 = /4 (alternate interior angles)
BC =AD (opposite sides of a
parallelogram)
= AOBC = AODA (by ASA)
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= OB = OD and AO = CO
(corresponding sides
of congruent triangles)

Thus, O is the mid-point of diagonals AC and BD
or the diagonals of a parallelogram bisect each other.

QED

Similarly, more properties can be derived for other
types of quadrilaterals.

Kite
A kite is defined as a quadnilateral in which two pairs of

adjacent sides are equal.
In kite ABCD shown in Figure 28.8,

given: AB = BC and CD = DA
More properties:

(i) Diagonal AC L Diagonal BD
(i) Diagonal BD bisects opposite angles ZABC
and ZCDA
(i) AABD = ACBD
(iv) £ZDAB = £DCB

A
|
|
|
|
|
|
|
|
|
|
|
|
|

C

Fig. 28.8

Trapezium
A trapezium is defined as a quadrilateral in which a pair of
opposite sides are parallel to each other.

In trapezium ABCD shown in Figure 28.9,
given: AD || BG
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More properties:
() ZDAB + ZABC = 180°
(i) ZADC + ZDCB = 180°

Isosceles Trapezium

An isosceles trapezium is defined as a trapezium in which the
non-parallel sides are equal to each other.

In trapezium ABCD shown in Figure 28.10,

given: AD | | BC and AB = DG

More properties:
() ZDAB + ZABC = 180°
(i) ZADC + £DCB = 180°
(ili) Diagonal AC = Diagonal BD

A > D

B > C
Fig. 28.10

Rectangle

A rectangle is defined as a parallelogram in which all the
interior angles are right angles.
In rectangle ABCD shown in Figure 28.11,
given: AD || BC, AB || DG,
AR RCIY="LCDA = ZDAD = 30°

More properties:
G) AB = CD and BC = DA
(i) ABCD = ADAB and AABC = ACDA
(i) AO = OC and BO = OD

(iv) AC = BD
A > D
? < ¥
B i C
Fig. 28.11
Rhombus

A rhombus is defined as a parallelogram in which all sides

@

are equal to each other.
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In rhombus ABCD shown in Figure 28.12,
given: AD | | BC, AB | | DG,
AB =BC =CD = DA

Fig. 28.12

More properties:

(1) ABCD = ADAB and AABC = ACDA
(1) AO OC and BO = OD

(m) £l =42, 4£3=44,45F £6, 27 = 48
(1v) AC 1 BD
Square

A square 15 defined as a rhombus in which all the interior
angles are right angles.
In square ABCD shown in Figure 28.13,
given: AB || DC, AD || BC,
AB = BC = CD = DA,
ZLABC = ZBCD = ZCDA = £ZDAB = 90°

More properties:
(i) ABCD = ADAB and AABC = ACDA
(i) AO = OC and BO = OD
(i) AOBC = AOCD =

AODA = AOAB
(av) AC L BD
(v) AC =BD
A D
O
B C
Fig. 28.13

Example I: Find the measure of x and all the angles
in the quadrilateral shown in Figure 28.14.

As the sum of the interior angles of a quadrilateral
is 360°,

2

. 2x—10+x+5+£ 360°
' 21x 52x + 21x
= 4x+ﬁ o 6] i e T = 365
= 73x—365><13=>x—%—65°
= 2x—10= (65X 2)— 10 = 120°

21x

X+ 2x— 10+x+5+ﬁ—" 360°

=5 x T =l ‘= Hi=yiF
: 21x_21x65 o 2

R Tk = 105

Thus, the angles of the given quadrilateral are 65°,
120%, 707, and 1032,

21x
13

X+5

Fig. 28.14

Example 2: In parallelogram ABCD shown in
Figure 28.15, BO bisects ZABC and CO bisects
ZBCD. Find the magnitude of ZCOB.
Llriyerars + Z3=380°
(adjacent angles of a parallelogram)
= L2%2% 23+ Z5= 180°

(as L1 = £2 and £3 = Z4 is given)
= 2(£2+4£3)=180°
180°

= Lltel'd= > = 90°

A O

5 6 ”
1
3
Bk c
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Now ZCOB + Z£2 + 43 = 180°

=>
=

Exercise 28.1

s

10.

(sum of angles in a triangle)
ZCOB + 90° = 180°
£ZCOB = 180° - 90° = 90°

| ;'17";")/'j +his!

If one angle of a quadrilateral is e and
two other angles are equal to this angle.
find the fourth angle.

The angles of a quadrilateral are in the ratio

11 : 18 : 21 : 22. Find all the angles of the
quadrilateral.

. An angle in a quadrilateral measures 72°. If

the other three angles are in the ratio 5 : 6 : 7,
find all the angles of the quadrilateral.

The adjacent angles in a parallelogram are n
the ratio 1 : 4. Find all the angles of the
parallelogram.

. The angles of a quadrilateral are 7x, 10x, 11x,

and 12x. Find the value of x and all the angles
of the quadrilateral.

. The angles of a quadrilateral are 2x, 2x + 19,

4x — 12, and 3x — 0.5. Find the value of x and
all the angles of the quadrilateral.

. An exterior angle of a parallelogram measures

117°. Find the magnitudes of all the angles of
the parallelogram.

. The perimeter of a parallelogram with its

adjacent sides in the ratio 2 : 7 is given to be
54 cm. Find the measure of the sides of the
parallelogram.

In isosceles AABC where AB = AC, an altitude
is drawn from vertex C to point X on side AB
and another altitude is drawn from vertex B to
point Y on side AC. If the altitudes intersect at
point O, what type of quadrilateral is AXOY?

. If the mid-points of all the sides of a kiteshape

are connected, what type of quadrilateral 1s
obtained? What theorem did you use to arrive
at your answer?

Find the measure of x in parallelogram ABCD
shown in Figure 28.16.
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11.

1

Find the measure of all the angles in rhombus
PQRS shown in Figure 28.17.

Fig. 28.17

. Find the measure of xin rectangle ABCD shown

in Figure 28.18.

A C

B 116° D
Fig. 28.18

O is a point on side DA of rectangle ABCD
(Figure 28.19) such that AOBC 1s an 1sosceles
triangle. If BC = 12 cm, find the measure of
OD and give reasons for your answer.

0O

Fig. 28.19
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14. In parallelogram ABCD shown in Figure 28.20,
BO bisects ZABC. If ZAOB = 40°, find all

the angles of the parallelogram.

Fig. 28.20

15. If line ¢ 1s parallel to the diagonal BD in the
parallelogram shown i Figure 28.21, find the

value of all its interior angles, given ZCDA
=9x: 15

Fig. 28.21

16. DE 1s the altitude of parallelogram ABCD

(Figure 28.22), such that ZCED = 90°. Find
the value of y.

11x—2 15x /Y

'm

Fig. 28.22

7

18.

19,

20.

If the opposite sides of a quadrilateral are equal,
does the figure have to be a parallelogram?
Why?

In parallelogram ABCD (Figure 28.23),
BX = DY. Is AXCY a parallelogram too? Why?

Fig. 28.23
In parallelogram ABCD A D
(Figure 28.24), AX 1 BD
and CY 1 DB. If the L

measure of line segment C
BX = 3 cm, what 1s the Fig. 28.24
measure of line segment

DY and why?

In parallelogram ABCD (Figure 28.25) P is a
point on AD that is joined to point O, the inter-
section of its two diagonals, and extended to
intersect the opposite side BC at point Q. If line
segment PO measures 6 cm, find the measure
of OQ and give reasons for your answer.

Area Propositions on Parallelograms

If right-angled ADAE is cut off from parallelogram
ABCD and its hypotenuse DA affixed to side BC of
the parallelogram, rectangle EFCD is obtained as
shown in Figure 28.26.

Thus, area of ABCD = area of EFCD

But area of EFCD = EF X FC (length X breadth)
Thus, area of parallelogram ABCD = EF X FC
But AB — AE + BF = EF (as AE = BF)
= AB=EF

@

D C

I |

I |

| |

| |

| |

I |

: |
2 LB bk
D C
E F

Fig. 28.26
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Thus, area of parallelogram ABCD

= AB X FC or length X altitude

Case I: Parallelograms on the same base and between the
same parallel lines are equal in area.

In Figures 28.27(1) and (ii), parallelograms ABCD
and EBCF rest on the same base BC and are between
the same parallel lines or BC | | AE.
~ Area of parallelogram ABCD = BC X DH
Area of parallelogram BCFE = BC X EG
But EG = DH

G A {

o IpE—
o----------+0

B o
Fig. 28.27

Thus, area of parallelogram ABCD = area of
parallelogram EBCFE. We have already demonst-
rated the proof of this theorem by finding’ the area

of parallelogram ABCD from the area of rectangle
EFCD.

Notice that both ABCD and EFCD (Figure 28.26)

are two parallelograms resting on the same base GD
between the same parallel lines DC and AE

Example 3: Given AB = 5 cm and AD =9 cm n
the figure below, find the area of parallelogram
ABEFE.

Rectangle ABCD and parallelogram ABEF rest on
the same base AB between the same parallel lines
AB || DE.
Thus, area of ABCD = area of ABEF
Area of ABCD = length X breadth

=9 x5 = 45 cm®
. Area of parallelogram ABEF = 45 cm?
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A B
D C F 2

Case II: The area of a triangle is half that of a parallelogram
on the same base and between the same parallel lines.

In Figure 28.28 (i) and (ii), AABC and parallelogram
ABCD rest on the same base AB and are between
the same parallel lines AB | | CD.

Fig. 28.28

]
Thus, area of AABGC = 7 area of parallelogram
ABCD.

Similarly, the areas of the following triangles are also
half the areas of their respective parallelograms
whose base they share.
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Example 4: Given AB =7 cmand AD = 12 cm in A g G
Figure 28.29, find the area of AEFG.

Area of parallelogram ABEF = area of rectangle

ABCD
=> Area of ABEF = 12 X 7 = 84 cm?
D C F E
Now parallelogram ABEF and AEFG rest on the e g
same base EF between the same parallel lines ol LT
AG || EE
]
= Area of AEFG = 5 area of parallelogram ABEF Try this!
In parallelogram PARS, if PQ = PRI

l —_— -

= Area of AEFG 7 84 Ay gy i and RS = 3x-2, find PQ and RS.

Exercise 28.2

1. If the area of parallelogram ACEF i =
(Figure 28.30) is 29 cm? what is the area of
parallelogram BDEF?

= D k= C

5 /B C D Fig. 28.32
T f_,/ 4. If the area of rectangle ABCE is 34 cm?
/ A4 (Figure 28.33), find the area of:
F E (1) Parallelogram ABDF
Fig. 28.30 (1) Triangle BFD
A g

2. In rectangle ABCD (Figure 28.31), AB = 12
cm and BC = 9 cm. Find the area of
parallelogram ABFE.

A . R - ) A0
B
Fig. 28.33
// 5. In Figure 28.34, if the area of AABE = 13 cm?
’ R - find the area of parallelogram ABCD.
Fig. 28.31 5

3. In Figure 28.32, the area of parallelogram
ABEF is given as 72 cm® If AB = 12 cm, find
the measure of BC.

@
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_ PC RS is a rectangle (Figure 28.35),
where PQ = 6 cm and QR = 8 cm, find:

1 Wy -

S
Fig. 28.35

7. ABCD (Figure 28.36) is a square with length
8 cm. If CE || DB, find the area of trapezium
AECD.
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8. In Figure 28.37, ABCD is a rectangle,
DE || CE, AB = 11 cm. and AD = 8 cm. Find

the area of AFGE.

A E B F

D G G
Fig. 28.37

9. In Figure 28.38, PQRS is a parallelogram. Find
the relationship between the areas of ATUS and

APUR.
(Hint: What is the relationship between ATSR and

APSR?)
T P Q
.
3
S
Fig. 28.38
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4. In rectangle PQRS, PQ = 15 cm,

and QR = 12 cm. Find the area of 79
g
NMFIIDPQYT T = R
5. DEFG is a square with length 12em. If FH||GE,
~ find the area of trapezium DHFG.
o H
G F e . -
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