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Quadrilateral

A quadrilateral is a polygon with four sides. The
quadrilateral ABCD shown in the figure has:

Four sides AB, BC, CD and DA

Four vertices A, B, C and D

Four angles ZA (or £DAB), 4B (or ZABC), £C (or /BCD) and 4D (or ZCDA)
Two diagonals AC and BD.

Parallelogram

THEOREM 1

A quadrilateral is called a parallelogram if its
opposite sides are parallel. In the figure, ABCD is a
parallelogram, in which AB is parallel to DC and AD
is parallel to BC. A parallelogram has some special
properties, which we will now study. A - B

(i) The opposite sides of a parallelogram are equal.

(ii) The opposite angles of a parallelogram are equal.

(iii) Each diagonal bisects a parallelogram into two congruent triangles.

Given ABCD is a parallelogram in which AB || DC
and AD || BC.
To Prove (i) AB = DC and BC = AD,
| (ii) ZA = ZC and £B = £D,
(iii) AABC = ACDA and AABD = ACDB.
Construction Join the points A and C.

Proof In AABC and ACDA,
L= 722 (. AB|| DC, alternate angles are equal),
AC =AC (common),
and /3=,4 (. BC|| AD, alternate angles are equal).
AABC = ACDA  (A-S-A condition of congruency).
So, the corresponding parts of the triangles are equal.
AB =DC and BC = AD.  (Proved) |
Also, /B = £D. | -
We have A1 = /2 and Z4 = /3.S0, A+ /£4=22+43 = LA = 4LC.,
G-39
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So, ZA = ZCand ZB = Z/D. (Proved)
Now, AABC = ACDA (proved already). Similarly, AABD = ACDB.
Hence, each diagonal bisects the parallelogram into two congruent parts. (Proved)

THEOREM 2 The diagonals of a parallelogram bisect each other.

Given ABCD is a parallelogram in which AB|| DC,
AD || BC and the diagonals AC and BD intersect at the
point O.

To prove OA =0OC and OB = OD.
Proof In AOAB and AOCD,
ZOAB = ZOCD (AB||DC and alternate angles are equal)

AB = DC (Opposite sides of a parallelogram are equal)
and ZOBA = ZODC (AB|| DC and alternate angles are equal).
AOAB = AOCD (A-S-A conditon of congruency).
S0, the corresponding sides of AOAB and AOCD are equal.
OA =OC and OB = OD. (Proved)

THEOREM 3 If a pair of opposite sides of a quadrilateral are equal and parallel, the
quadrilateral is a parallelogram. -

Given ABCD is a quadrilateral in which AB = DC and AB || DC.
To prove ABCD is a parallelogram.
Construction Join the points B and D.
Proof In AABD and ACDB,

AB =DC (Given)

ZABD = Z/CDB (. AB|| DC, alternate angles are equal)
and BD = DB (Common side).

AABD = ACDB (S-A-S condition of congruency).
So, the corresponding parts of these triangles are equal.
.. ZADB = ZCBD, but these are alternate angles. So, AD || BC.
Thus, AB || DC and AD || BC. Hence, ABCD is a parallelogram. (Proved)

A B

Thus, the properties of a parallelogram are:

e Its opposite sides are equal. 7 ” :

o Its opposite angles are equal.

e Its diagonals bisect each other. .

e Each of its diagonals divides it into two A " B
congruent trjangles, LA+ £D =180° £ZD + £C =180°

ZC+ £B =180° 4B + £A = 180°
e Its adjacent angles are supplementary

because they are co-interior angles and the
opposite sides are parallel.

Rectangle : ;
A parallelogram is called a rectangle if one of its angles e .
is a right angle. In the figure, ABCD is a parallelogram : M‘":Af’
in which ZA =90°. Thus, ABCD is a rectangle. A gt
rectangle has all the properties of a parallelogram. In .
addition, it has the following special properties. Rectangle
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'PROPERTY 1 All the interior angles of a rectangle are right angles.

In the figure, AB || DC = ZA+ £D =180° But ZA =90°", so £D =90°
Also, the opposite angles are equal. So, ZC = ZA =90°and 4B = ZD =90°.
Thus, ZA = ZB = ZC = ZD =90°.

PROPERTY 2 The diagonals of a rectangle are equal in length.

In the figure above, A ABC = ABAD, because AB = BA, ZABC = ZBAD (=90°) and
BC = AD;

So, diagonal AC = diégonal BD.

Rhombus

A parallelogram is called a rhombus if two adjacent
sides are equal. In the figure, ABCD is a parallelogram
in which AB = AD. So, it is a rhombus. A rhombus has

all the properties of a parallelogram. It also has the
following additional properties. Rhombus

PROPERTY 1 All the sides of a rhombus are equal in length.

In the figure, AB = BC = CD = DA.

PROPERTY 2 The two diagonals of a rhombus are perpendicular to each other.

In the figure, AC L BD.

PROPERTY 3 Each diagonal of a rhombus bisects the angles at the two vertices it joins.

In the figure, AC bisects ZA and ZC and BD bisects ZB and ZD.

PROPERTY 4 The diagonals of a rhombus form four congruent triangles.

In the figure, AOAB = AOBC = AOCD = AODA.

Square D C

If two adjacent sides of a rectangle are equal, it is
called a square. In the figure, ABCD is a square. A
square has all the properties of a rectangle and the

following additional property. . :

Every square is a rhombus.

PROPERTY All the sides of a square are equal in length.

Thus, every square is a rhombus and it has all the properties of a rhombus.
AC L BD. AC bisects ZA and £C, and BD bisects £B and ZD and
AOAB = AOBC = AOCD = AODA.

Trapezium

A quadrilateral in which one pair of sides is parallel, is -
called a trapezium. In the figure, ABCD is a trapezium
in which AB || DC but AD is not parallel to BC. AD and
BC are called oblique sides. -

AB || DC, so ZA + £D =180° and £/B + £C =180°

Trapezium
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Isosceles trapezium

D 10
If the oblique sides of a tfapezium are equal, it is
called an isosceles trapezium. |
Here, AB || DC and AD = BC. A e
Isosceles trapezium
PROPERTY 1 The base angles of an isosceles trapezium are equal.
In the figure, ZA = £B. Also, ZC = ZD.
PROPERTY 2 The diagonals are equal. |
In the figure, AC = BD.
Kite /D
A Kite is a quadrilateral in which the adjacent sides on A s C
either side of a diagonal are equal. In the figure, ABCD
is a kite in which AD = DC and AB = BC. A kite has the
following properties.
B
Kite

PROPERTY 1 The diagonals of a kite are perpendicular to each other.

In the figure, AC L BD.

PROPERTY 2 The diagonal on either side of which the adjacent sides are equal, is bisected by
the other diagonal.

In the figure, the diagonal BD bisects the diagonal AC, hence, OA = OC.
The kite ABCD also has the following properties.

(1) LA=4C (ii) BD bisects ZABC and ZADC.

Solved Examples

EXAMPLE 1 In the figure, ABCD is a parallelogram. Find x and y. Diletacinion 6

Solution The opposite sides of a parallelogram are equal.
AB=DC = 8x-18=3x+7 = d5x=25 = x=5.
AD||BC = /A + 4B =180° as these are cointerior angles. gnd -
= y+30+25+4y+30=180 e

= 5y =180 -85 =95.

95

y=-—5—=19.Thus,x=5andy=19.

(4y+30)°

EXAMPLE 2 In the adjoining figure, ABCD is a rectangle. Find x, y D c
and z. z y

Soution The diagonals of a rectangle are equal and they bisect - 96°
each other. '. OA =0B=0C =0D. = -
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Solution

EXAMPLE 4

Solution

EXAMPLE 5

Solution

EXAMPLE 6

Solution
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In AOAB,OA =OB = ZOBA = ZOAB = x.
The sum of the angles of AOAB =180°
= X+x+96°=180° = 2x=180°-96°=84"> => x =42°.
ZOBA = 42° but ZABC =90° = £OBC = ZABC - ZOBA =90° — 42° = 48°.

B @G- 0C = OB = /0CB=-y. = 1 =48°.

Again, ZOAD = Z/DAB - ZOAB =90° —x =90° - 42° = 48°.
In AOAD,OA =OD = ZODA = LZOAD = z=48"°.

In the adjoining figure, ABCD is a square. Find x. D =

The diagonal BD of the square ABCD bisects ZABC.

APBE=%LABC:%><90°=45“. p

Also, /BPE = opposite ZDPC = 75°. A E B
In A PEB, exterior ZAEP = /BPE + ZPBE.
X=756%1-45° =120°.

In the adjoining figure, ABCD is a rhombus and D C
/BCD =80°. Find x and y. 110°

ABCD is a rhombus. So, AC bisects #BCD. N

/PCM = % £BCD = % x 80° = 40°. A e

In A PCM, exterior £DPC =x + /PCM = 110°=x+40° = x = 1 10°% — 402 =70°".
Now, AD || BC (ABCD being a rhombus) = £ZBCD + ZADC =180"
— 80° + ZADC =180° = ZADC =180° —-80° =100°.

ABCD being a rhombus, the diagonal BD bisects ZADC

— LADB:%XAADC - y=%x100°=50°.

In the adjoining figure, the bisectors of two
consecutive angles ZA and /B of the parallelogram
ABCD meet at the point P. Prove that ZAPB =90°.

PA and PB are the bisectors of ZA and /B respectively.
1
- .£PAB=%4A and /PBA =§AB.

1
Now, AD||BC = ZA+/B=180° = _(/A+/B)=90°

= -;-Mflr?liéﬁzgt)“ = LPAB-{—ZPBA:QO‘”. L)

‘In A PAB, the sum of angles = 180° = ZPAB + ZPBA + ZAPB = 180°

= onv L APB =180° = ZAPB =180°-90° = 90°.

In the adjoining figure, ABCD is a parallelogram. D C
Prove that (i) AADN = ACBP [(ii) AN =CP. N

In AADN and ACBP, ZAND = ZCPB (=90°),
/ADN = alternate ZCBP (.- AD || BC)
and AD = BC (opposite sides of a parallelogram).
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AADN = ACBP (A-A-S conditions of congruence).
So, the corresponding sides are equal. Hence, AN = CP.

Remember These

1. A parallelogram is a rectangle if one of its angles is a right angle.
2. A rectangle is a parallelogram with equal diagonals.
3. Arhombus is a parallelogram with equal adjacent sides.

4. If one angle of a parallelogram is a right angle and two equal adjacent sides are equal then
it is a square. A square is both a rectangle and a rhombus.

Important properties of some quadrilaterals

Property Parallelogram Rectangle Square Rhombus
1. Opposite sides are parallel. Yes Yes Yes Yes
2. Opposite sides are equal. Yes Yes Yes Yes
3. Adjacent sides are equal. Yes Yes
4. Opposite angles are equal. Yes Yes Yes Yes
5. Each interior angle is 90°. Yes Yes
6. Diagonals are equal. Yes Yes
7. Diagonals bisect each other. Yes Yes Yes Yes
8. Diagonals are | to each other. Yes Yes
9. Each diagonal bisects the angles Ves Ve
through which it passes.
10. Diagonals forgm 2 pairs of Ve Vo Yes Yes
congruent triangles.
58 1 Dl.agonals form 4 congruent YVes .
triangles.

1. Fill in the blanks.
(i) Two consecutive angles of a parallelogram are ...... :
(ii) The opposite angles of a parallelogram are ...... :
(iii) Each diagonal ...... a parallelogram.
(iv)=The: 2 sides of a parallelogram are equal.
(V) Akl of a rhombus are equal.
(vi) If the diagonals of a parallelogram are equal, it is é ...... :
(vii) If the diagonals of a quadrilateral bisect each other, itis a ...... .
(viii) The diagonals of a ...... are equal.
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(ix) The diagonals of a ...... bisect each other.
(x) The diagonals of a ...... are perpendicular to each other.
(xi) Each diagonal of a ...... bisects the angles through which it passes.
(xii) If the two adjacent angles of a parallelogram are in the ratio 3 : 7, the largest angle is

IIIIIII

2. Which of the following statements are true?
(i) Every rhombus is a parallelogram.
(ii) Every square is a rectangle.
(iii) Every square is a rhombus.
(iv) Every rhombus is a square.
(v) Every rectangle is a rhombus.
(vi) Every rhombus is a rectangle.
(vii) The diagonals of a rectangle bisect each other at right angles.
(viii) Each diagonal of a rhombus bisects the angle through which it passes.
(ix) The diagonals of all quadrilaterals bisect each other.
(x) If AC = BD in a parallelogram ABCD then ZABC = 90°

3. Find the angles of the parallelogram ABCD it
2

1) ZA:: LB-=2.:.7 (ii) éCz—é-A’D
4. Find x, y and z in each of the following figures.
(i) D . C (ii) D (3x + ‘I4lr;:-m C (iii) -

/’o 7 (y*9) 48°

+5Y :
z° -— 64° [\31240 S 2
A | B A (2x +25)cm B i
(v) X2 (vi) 7
y° z°
40° D X
Rectangle Square
(vii) o (viii) 7, .
83°
P
n x° 64° X
‘ Isosceles Trapezium
Square
5 D : X C G y
78°
@) X
Rectangle
aE b In the rectangle, x :y =2 :7.
Find x and y.

ABCD is a square. Prove that AOAB is an
isosceles triangle. Also, find (i) £XOD (ii) £XOC.
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7.
& & | 8. &
A E
e B

ABCD is a parallelogram and AE and CF
bisect ZA and ZC respectively. Prove that B G
AE || FC.

AE is the bisector of ZCAD. Also,
BA || CE and AB = AC. Prove that
(i) LEAC = ZACB (ii) ABCE is a

parallelogram
ANSWERS
1. (1) supplementary (ii) equal (iii) bisects (iv) opposite (v) sides (vi) rectangle (vii) parallelogram
(viii) rectangle and square (ix) parallelogram, rhombus, rectangle and square
(x) rhombus and square (xi) rhombus and square (xii) 126°

2. (1), (1), (iid), (viii), (x)
3. 1) ZA=4C=40°, /B =4/D=140° (ii) ZA=2ZC=72°, /B = /D =108°

4.1)x=64,y=116,2=64 (1) x =6,y =15,z=106 (iii) x =138, y = 42, z = 42 (iv) x =105,y =9, z=105

(V) x=50,y=80,2z=40 (vi)x =45,y =45 z=90(vil)) x =45,y =38, z=128
(vili) x =64,y=116,z=116

5. (1) 57° (ii) 33° 6. x =20°, y = 70°

o
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