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A closed plane shape bounded by three or more line segments is called a polygon.

Some polygons have names based on the number of sides, as shown in the table.
Otherwise, a polygon with n sides is called n-gon. For example a polygon that
has 15 sides is called 15-gon. '

Table 3.1 Names of polygons

Number of sides Name

3 Triangle
Quadrilateral
Pentagon
Hexagon

Heptagon
Octagon

-0 3 O O &

Nonagon

10 Decagon

When all the sides of a polygon are equal in length and all its angles are equal in
magnitude, it is called a regular polygon.

Examples An equilateral triangle and a square are regular polygons.

Angles of a polygon

A polygon has as many angles as it has sides. For Y
example, in the adjoining figure, the hexagon \
ABCDEF has six (interior) angles ZA, 4B, ZC, £ o X
4D, ZE and ZF.

If we extend the side ED to X, we get the exterior
angle CDX at the vertex D. And if we extend the side
CD to Y, we get the exterior angle EDY at D, and
ZCDX =vertically opposite ZEDY'. s .

Also, ZCDX + ZCDE = ZEDY + ZCDE =180° (straight angle).
We can generalise this for any polygon as follows.

1. At each vertex of a polygon, there are two equal exterior angles.

2. The sum of an exteror angle and adjacent interior angle at a vertex =180°.
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Convex polygon
If all the interior angles of a polygon are less than 180°,
the polygon is said to be convex. All regular polygons
are convex.

Convex polygon

Concave (or re-entrant) polygon

If one or more of the interior angles of a polygon is
greater than 180° (that is, a reflex angle), the polygon is
said to be concave.

Concave polygon
Angle properties of a polygon

PROPERTY 1 The sum of the interior angles of a polygon with n sides = (2n —4) right angles.

(i) The sum of the (interior) angles of a triangle =(2 x3 —4) right angles
= 2 right angles =180°, which we know is true.

(ii) The sum of the (interior) angles of a quadrilateral = (2 x 4 — 4) right angles

= 4 right angles.

In the adjoining figure, the sum of the angles .
of the quadrilateral ABCD = the sum of the g

angles of AABD + the sum of the angles of ABCD

= 2 right angles + 2 right angles = 4 right angles. 3 o

So, the property is true for a quadrilateral.

4iii) The sum of the (interior) angles of a hexagon =(2 x6 —4) right angles
= 8 right angles.
In the adjoining figure, the sum of the angles of £ :
the hexagon ABCDEF = the sum of the angles
of the triangles ABC, ACD, ADE and AEF 5 o
= 4 x 2 right angles = 8 right angles.

So, the property holds for a hexagon.
It can be verified easily that it holds for other polygons as well.

EXAMPLE Find the magnitude of each interior angle of a regular octagon.

Solution The sum of the eight angles of an octagon = (2 x8 — 4) right angles =12 x 90~
Now, in a regular polygon, all the angles are equal.
12 x90°

P 135° We can generalise this:

each angle of a regular octagon =

1
An interior angle of a regular polygon of n sides = 4 (2n - 4) right angles

Note When we speak of angle of a polygon we mean interior angle.
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PROPERTY 2 The sum of the exterior angles of a convex polygon =360°.

(i) In the adjoining figure,

Zai 21 =180° ihi /9 =180~ .
Zc+ /3 =180°. 1 7
Za+ A+ /b+ 72+ /c+ 73

=180° +180° +180° =540°
= Za+ b+ Ze +(Z21 + 22 + £3) =540°.

But, /1 + £2 + /3 =180°, being angles of 5 \c)\r:
a triangle.

Z0+£b+ Zc =540° —180° =360°.
So, the property is true for a triangle.

(ii) In the adjoining figure,
a0t L =480 ¥h 172 = 180",
2E+ LG 1B0 S ild 44 = 1.80°;
Za+2+4b+ L2+ Lo+ 43+ 4d + L4
=180° +180° +180° +180° =720°
= Za+Lb+Le+Ld+(L+ 42+ 43+ £4)=T720°.
But the sum of the interor angles of a quadrilateral = 360°.
Za+4Zb+ Zec+ £Zd =720° —-360° =360°.
So, the property holds for a quadrilateral.

(iii) In the adjoining figure,
Za+ =180 b1 VD —150°,
e+ Z3=1808 20 + 24 = 180°,
Ze+ /0 =1B0%.
Za+Z1+4b+ L2+ Lc+ 43 +4Zd + /4
+ Ze + /5 =5x180°=900°,
= Za+/b+Zc+Ld+ Le+(LAA+ 22+ /3 + 24+ £5) =900°.

But the sum of interor angles of a pentagon
= (2 x5 —4) right angles =6 x90° =540°.
Za+2Zb+ Zc+ Zd + Ze =900° —540° = 360°.
So, the property is true for a pentagon.
You can easily verify that the property holds for other polygons as well.

EXAMPLE 1 Find the measure of each exterior angle of a regular hexagon. .
Solution The sum of the exterior angles of a polygon = 360°.
The interior angles of a regular poygon are equal, so its exterior angles are
also equal.

The number of exterior angles in a hexagon = 6.

360°

So, each exterior angle of a regular hexagon = = 60°.
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We can generalise this result as follows.

The exterior angle of a regular polygon of n sides = Sl
n
Also the number of sides of a regular polygon = 360°
| an exterior angle

Calculate the number of sides of a regular polygon if each exterior angle is 24°.

The number of sides of the regular polygon = o %20 _ 15,

an exterior angle 0

 Solved Examples

The sum of the interior angles of a polygon is 2340°. How many sides does it
have?

Let the number of sides of the polygon =n.
Then the sum of its interior angles = (2n — 4) right angles =2340° (given).

(2n —4)x90° =2340° = 2n—4=g%2=26 ea2n= 30,

90
n =15. So, the polygon has 15 sides.

Each interior angle of a regular polygon is 168°. How many sides does it have?

Each exterior angle of the regular polygon =180° —an interior angle
=180°-168°=12°.
360° ~ 360

= =30
an exterior angle 12

number of sides of the regular polygon =

Alternatively
If the number of sides of the regular polygon be n then the sum of the interior
angles = 168°xn =(2n — 4)x90° (by property)

360

—, 360°=180°xn-168°xn = 12°xn =360° = n:TZ—:SO.

Find the measure of each interior angle of a regular 20-gon.

360°

Each exterior angle of a regular 20-gon = = 18,

each interior angle = 180° — each exterior angle = 180°-18°=162°.

Is it possible to have a polygon in which the sum of the interior angles is 810°?

Let the number of sides of the polygon = n. Given, sum of interior angles = 810°.

= (2n-4)x90=810 = 2n—4=8—1~9=9 — n:Ezﬁ_l..

90 2 2

A polygon cannot have 6% sides. So, such a polygon is not possible.

Is it possible to have a regular polygon with exterior angles of 30°?
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the number of sides of the polygon = e L Bk s 12 .

an exterior angle 30
A polygon can have 12 sides. So, such a regular polygon is possible.

The angles of a hexagon are in the ratio 3:5: 7 : 9 : 2 : 4. Find the angles.

Let the angles of the hexagon be 3x, 5x 7x, 9x, 2x and 4x.
Then the sum of the angles = 3x +5x +7x +9x +2x + 4x = 30x.

Also, the sum of the angles of the hexagon = (2 x 6 — 4) right angles = 8 x 90°.
30x =8x90° = x=5%90"_o4.

3x =3x24°=72°, B5x=5x24°=120° 7x =7x24°=168°,
9x =9x24°=216°, 2x=2x24°=48° 4x =4x24°=96°,
Hence, the angles of the hexagon are 72° 120°, 168°, 216°, 48° and 96°,

If each interior angle of a regular polygon is eleven times an exterior angle, find
the number of sides of the polygon.

Let an exterior angle = x. Then an interior angle = 11x.

X il =:180% Ssldx = 180°% = x=-1%:15°.
an exterior angle = 15°.
number of sides of the polygon = 500, SR 24.

an exterior angle 1B

Four of the angles of a pentagon are equal and the fifth is 20° greater than each of
the equal angles. Find the angles.

Let each of the four equal angles = x. Then the fifth angle = x +20°.
the sum of the angles of the pentagon = 4x + (x +20°) =5x +20°

= (2 x5 —-4)right angles =5x +20° = 6x90°=5x +20°

= 5x =540°-20°=520°"

SO 520 = Jags

Thus, each of the four equal angles =104° and the fifth angle = 104° + 20° = 124°.

Five angles of a polygon are 172° each. The remaining angles are 160° each.
Calculate the number of sides of the polygon.

Let the number of sides of the polygon =n.
Then the sum of the angles of the polygon =5x172° +(n —5) x 160°
= (2n - 4) right angles = (2n — 4) x90°.
(2n -4)x90=5%x172 +(n -5)x160 = 180n —360 =860 +160n —800
= 180n -160n =860 -800 +360 =420 = 20n =420 = n=21. -
Hence, the polygon has 21 sides.

| RememberThese e

1. At a vertex of a polygon, exterior angle + adjacent interior angle =180°.
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| sum of the interior angles of a polygon of n sides = (2n ~ 4) right angles = (2n - 4) x 90
3- -'An--mtp&rinr angle of a regular n-gon = ikl

z right angles.
4. The sum of the exterior angles of any convex polygon = 360°.
5. An exterior angle of a regular n-gon = .
n

360°

6. The number of sides of a regular n-gon = :
an exterior angle

1. Find the sum of the interior angles of a polygon of

(i) 7 sides (ii) 9 sides (iii) 10 sides (iv) 14 sides
2. Find the magnitude of each interior angle of a regular
(i) hexagon (ii) heptagon (iii) 12-gon (iv) 15-gon
3. Find the number of sides of a polygon if the sum of its angles is
(i) 2520° (ii) 3240° (iii) 20 straight angles (iv) 20 right angles
4. Find the number of sides of a regular polygon if each interior angle is
(i) 108° (ii) 144° (iii) 168° (iv) 172°
3
(V) BT ©
] {4
5. Find the number of sides of a regular polygon if each exterior angle is
(3] 19 (ii) 30° (iii) 120° (iv) 90°
1
v) 22-°
(V) 5
6. Is it possible to have a polygon in which the sum of the interior angles is
(i) 1890° (ii) 2250° (iii) 3690° (iv) 3780°
7. Can a regular polygon have interior angles of
(i) 40° (ii) 110° (iii) 135° (iv) 148°
8. Can a regular polygon have exterior angles of
9
(i) 54° (ii) 100° (iii) 48° (iv) 271_30

9. (i) The angles of a quadrilateral are in the ratio 7 : 5 : 9 : 15. Find the smallest angle.

(ii) The interior angles of a pentagon are in the ratio 4 : 5 : 11 : 13 : 12. Find the
largest angle.

10. The angles of a hexagon are x +10°, 2x + 20°, 2x — 20°, 3x —50°, x +40° and x +20°. Find x.

11. Calculate the number of sides of a regular polygon if
(i) an interior angle is five times an exterior angle
(ii) the ratio of an exterior angle to an interior angle is 2 : 7
(iii) an exterior angle exceeds an interior angle by 60°
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12. In an octagon, four of the angles are equal and each of the others is 20° greater than each of
the first four. Find the angles.

13. In a pentagon, two angles are 40° and 60° and the rest are in the ratio 1 : 3 : 7. Find the
biggest angle of the pentagon.

14. A heptagon has two equal angles of 120° and five other equal angles. Find the equal angles.

15. (i) Three angles of a polygon are 80° each. The remaining angles are 160° each. Calculate
the number of sides of the polygon.

(ii) Four angles of a polygon are 120° each. The remaining angles are 150° each.
Calculate the number of sides of the polygon.

16. In the adjoining figure, AB || DC, /B =3ZC and

A
ZA: ZE : ZD =2 : 3 : 4. Find the angles. s

E< \

D - C

ANSWERS
1. (1) 900° (ii) 1260° (iii) 1440° (iv) 2160° 2. (1) 120° (i) 128$° (1if) 150° (iv) 156°
3.(1) 16 (i) 20 (iii) 22 (iv) 12 4.(i)5 (i) 10 (iii) 30 (iv)45 (v) 42
5.(i)24 (i) 12 (iii) 3 (ivvd4 (v)16 6.()No (ii) No (ili) No  (iv) Yes
7. (i) No (ii) No (iii) Yes (iv) No 8. (i) No (ii) No (iii) No (iv) Yes
9. (i) 50° (ii) 156° 10. 70° 11.) 12 ()9 ()3 12. 125°, 145°
13. 280° 14. 132° 15. (i) 6 (ii) 8

16. ZA =80°, £B =135°, LC =45°, /D =160°, ZE =120°

*
G’O
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