Unit 5 Mensuration

Chapter 23

Circumference and Area of a Circle

POINTS TO REMEMBER

- 1. Some Important Formulae:
 - (i) For a circle of radius = r units, we have
 - (i) Circumference of the circle = $(2 \pi r)$ units
 - = (πd) units, where d is the diameter.

- (ii) For a semi-circle of radius = r units, we have
 - (i) Area of the semi-circle = $\left(\frac{1}{2}\pi r^2\right)$ sq. units
 - (ii) Perimeter of the semi-circle = $(\pi r + 2r)$ units.

If R and r be the outer and inner radii of a ring, then Area of the ring = π (R² - r^2) sq. units.

2. Results on Sectors and Segments:

Suppose an arc ACB makes an angle θ° at the centre O of a circle of radius = r units. Then:

- (i) Length of arc ACB = $\left(\frac{2\pi r \theta}{360}\right)$ units
- (ii) Area of sector OACBO = $\left(\frac{\pi r^2 \theta}{360}\right)$ sq. units

$$= \frac{1}{2} \times r \times \left(\frac{2\pi r \theta}{360}\right) \text{ sq. units}$$

$$=$$
 $\left(\frac{1}{2} \times \text{ radius} \times \text{ arc length}\right) \text{ sq. units}$

(iii) Perimeter of sector OACBO = length of arc ACB + OA + OB

$$= \left(\frac{2\pi r\theta}{360} + 2r\right) \text{ units.}$$

(iv) Area of segment ACBA = (Area of sector OACBO) – (Area of Δ OAB)

$$= \left(\frac{\pi r^2 \theta}{360} - \frac{1}{2}r^2 \sin \theta\right) \text{ sq. units.}$$

- (v) Perimeter of segment ACBA = (arc ACB + chord AB) units.
- (vi) Area of Major segment BDAB = (Area of circle) (Area of minor segment ACBA).

3. Rotations Made By a Wheel:

- (i) Distance moved by a wheel in 1 revolution = Circumference of the wheel.
- (ii) Number of rotations made by a wheel in unit time

- 4. (i) Angle described by minute hand in 60 minutes = 360°.
 - (ii) Angle described by minute hand in 5 minutes = $\left(\frac{360}{60} \times 5\right)^{\circ} = 30^{\circ}$.
 - (iii) Angle described by hour hand in 12 hours = 360°.
 - (iv) Angle described by hour hand in 1 hour = 30°.
- 5. In an equilateral triangle of side a units, we have
 - (i) Height of the triangle, $h = \frac{\sqrt{3}}{2}a$ units.

- (ii) Area of the triangle = $\left(\frac{\sqrt{3}}{4}a^2\right)$ sq. units.
- (iii) Radius of incircle, $r = \frac{1}{3}h = \left(\frac{1}{3} \cdot \frac{\sqrt{3}}{2}a\right) = \left(\frac{a}{2\sqrt{3}}\right)$ units.
- (iv) Radius of circumcircle, $R = \frac{2}{3}h = \left(\frac{2}{3}, \frac{\sqrt{3}}{2}a\right) = \left(\frac{a}{\sqrt{3}}\right)$ units.

Thus,
$$r = \frac{a}{2\sqrt{3}}$$
 and $R = \frac{a}{\sqrt{3}}$.

Note: Until and unless stated otherwise take $\pi = \frac{22}{7}$

EXERCISE 23

Note: Take $\pi = \frac{22}{7}$, unless mentioned otherwise.

Q. 1. A sheet is 11 cm long and 2 cm wide. Circular pieces 0.5 cm in diameter are cut from it to prepare discs. Calculate the number of discs that can be prepared.

(2004)

Sol. Length of sheet = 11 cm Width of sheet = 2 cm

First of all, we have to cut the sheet in squares of side 0.5 cm.

$$\therefore \text{ No. of squares} = \frac{11}{0.5} \times \frac{2}{0.5}$$

$$= \frac{11 \times 10}{5} \times \frac{2 \times 10}{5}$$

$$\Rightarrow 22 \times 4 = 88$$

.. No. of discs will be equal to number of squares cut out = 88 Ans.

Q.2. Find the circumference and area of a circle of radius 17.5 cm.

Sol. Radius (r) of the circle = 17.5 cm

 \therefore Circumference (C) = $2 \pi r$

$$=2 \times \frac{22}{7} \times 17.5 = 110 \text{ cm}$$

And area (A) =
$$\pi r^2 = \frac{22}{7} \times (17.5)^2 \text{ cm}^2$$

$$=\frac{22}{7}\times\frac{175}{10}\times\frac{175}{10}=962.5 \text{ cm}^2 \text{ Ans.}$$

- Q.3. Find the circumference and area of a circle of diameter 91 cm.
- Sol. Diameter of a circle = 91 cm.

∴ Radius
$$(r) = \frac{91}{2}$$
 cm.
∴ Circumference $(C) = 2\pi r$

$$=2\times\frac{22}{7}\times\frac{91}{2}$$
 cm $\doteq 286$ cm

And Area (A) =
$$\pi r^2 = \frac{22}{7} \times \frac{91}{2} \times \frac{91}{2} \text{ cm}^2$$

= $\frac{26026}{4} \text{ cm}^2 = 6506.5 \text{ cm}^2 \text{ Ans.}$

Q.4. Find the circumference and area of a circle of radius 15 cm. (Take $\pi = 3.14$)

Sol. Radius of a circle (r) = 15 cm

:. Circumference (C) =
$$2 \pi r$$

= $2 \times 3 \cdot 14 \times 15 = 94 \cdot 2 \text{ cm}$
And Area (A) = $\pi r^2 = 3 \cdot 14 \times (15)^2 \text{ cm}^2$

$$= 3.14 \times 15 \times 15 = 706.5 \text{ cm}^2 \text{ Ans.}$$

Q. 5. The circumference of a circle is $123 \cdot 2 \text{ cm. Taking } \pi = \frac{22}{7}, \text{ calculate :}$ (1996)

(i) The radius of the circle in cm;

- (ii) The area of the circle in cm², correct to the nearest cm²;
- (iii) The effect on the area of the circle if the radius is doubled.

Sol. The circumference of a circle = 123.2 cm

(i) Let, radius of the circle be r, then $2 \pi r = 123.2$

$$\Rightarrow \frac{2 \times 22}{7} r = 123.2$$

$$r = \frac{123 \cdot 2 \times 7}{2 \times 22} = 19.6 \text{ cm}$$

(ii) Area of the circle

$$= \pi r^2 = \frac{22}{7} (19.6)^2 \text{ cm}^2$$

$$= \frac{22}{7} \times 19.6 \times 19.6$$

$$= 1207.36 \text{ cm}^2$$

$$= 1207 \text{ cm (Approx.)}$$

(iii) If the radius is doubled,

DS,

ea of

= 3.14

ins.

rect to

ifthe

Then, effect of the area of the circle

$$=\frac{\pi r^2}{\pi (2r)^2}=\frac{\pi r^2}{4\pi r^2}=\frac{1}{4}$$

:. Area of the resulting circle is four times the area of the original circle.

- Q. 6. Find the length of a rope by which a cow must be tethered in order that it may be able to graze an area of $9856 \, m^2$.
- Sol. Let length of rope = r m.

:. radius =
$$r$$
 m
and Area of another place = 9856 m²
According to the condition,

$$\pi r^2 = 9856 \implies \frac{22}{7}r^2 = 9856$$

$$\Rightarrow r^2 = \frac{9856 \times 7}{7} = 448 \times 7 = 3136$$

$$\Rightarrow r^2 = \frac{9856 \times 7}{22} = 448 \times 7 = 3136$$
$$(r)^2 = (56)^2$$

$$\therefore$$
 $r = 56 \text{ m}$

Hence, length of rope = 56 m. Ans.

- Q. 7. The area of a circle is 394.24 cm². Calculate:
 - the radius of the circle,
 - the circumference of the circle.
 - Sol. Area of the circle = 394.24 cm²

(i) Let radius of the circle =
$$r$$

$$\pi r^2 = 394.24$$

$$\Rightarrow \frac{22}{7}r^2 = 394.24$$

$$\Rightarrow \frac{22}{7}r^2 = 394.24$$

$$\Rightarrow r^2 = \frac{394.24 \times 7}{22}$$

$$\Rightarrow r^2 = 125.44 = (11.2)^2$$

$$\therefore r = 11.2 \text{ cm}$$
(ii) Circumference = $2 \pi r$

$$= 2 \times \frac{22}{7} \times 11.2 \text{ cm}$$

$$= 70.4 \text{ cm Ans.}$$

- Q. 8. Find the perimeter and area of a semicircular plate of radius 25 cm. (Take $\pi = 3.14$).
 - Sol. Radius (r) of the semi-circular plate = 25 cm

$$\therefore \text{ Circumference} = \frac{1}{2} \times 2\pi r + 2r$$

$$= \frac{2 \times 3.14 \times 25}{2} + 2 \times 25 \text{ cm}$$

$$= \frac{157.0}{2} + 50 = 128.5 \text{ cm}$$

And area of the circle =
$$\frac{1}{2} \pi r^2$$

= $\frac{1}{2} \times 3.14 \times 25 \times 25 \text{ cm}^2$
= $981.25 \text{ cm}^2 \text{ Ans.}$

- Q. 9. The perimeter of a semi-circular metalic plate is 86.4 cm. Calculate the radius and area of the plate.
- Sol. Perimeter of a semi-circular plate = 86.4

Let the radius of the plate = r

$$\pi r + 2r = 86.4$$

$$\frac{22}{7}r + 2r = 86.4 \implies \frac{36}{7}r = 86.4$$

$$\Rightarrow r = \frac{86.4 \times 7}{36} = 16.8 \,\mathrm{cm}$$

Area of the plate =
$$\frac{1}{2}\pi r^2$$

= $\frac{1}{2} \times \frac{22}{7} \times (16.8)^2 \text{ cm}^2$
= $\frac{11}{7} \times 16.8 \times 16.8$
= $443.52 \text{ cm}^2 \text{ Ans.}$

- Q. 10. The circumference of a circle exceeds its diameter by 180 cm. Calculate:
 - (i) the radius
 - (ii) the circumference and
 - (iii) the area of the circle.
 - Sol. Let the radius of the circle = rthen circumference = $2\pi r$

(i)
$$\therefore 2\pi r - 2r = 180$$

$$\Rightarrow \frac{2 \times 22}{7} r - 2r = 180$$

$$\Rightarrow \frac{44 - 14}{7} r = 180 \Rightarrow \frac{30}{7} r = 180$$

$$\Rightarrow r = \frac{180 \times 7}{30} = 42 \text{ cm}.$$

(ii) Circumference = $2\pi r$

$$=2\times\frac{22}{7}\times42=264\,\mathrm{cm}$$

(iii) Area of the circle = πr^2 = $\frac{22}{7} \times (42)^2 \text{ cm}^2$ = $\frac{22}{7} \times 42 \times 42 = 5544 \text{ cm}^2 \text{ Ans.}$

- Q. 11. A copper wire when bent in the form of a square encloses an area of 272.25 cm². If the same wire is bent into the form of a circle, what will be the area enclosed by the wire?
 - Ans. Area of a square = $272 \cdot 25 \text{ cm}^2$ Let 'a' be the side of the square, Then, $a^2 = 272 \cdot 25$

$$\Rightarrow a = \sqrt{272.25} = 16.5 \text{ cm}$$

 \therefore Side of the square = 16.5 cm

Then, perimeter = $4a = 4 \times 16.5 = 66$ cm.

Now, the circumference of the circular wire = 66 cm

Let r be the radius of the circular wire, Then, $2 \pi r = 66$

$$\Rightarrow \frac{2 \times 22}{7} r = 66 \Rightarrow r = \frac{66 \times 7}{2 \times 22} = \frac{21}{2} \text{ cm}$$

:. Area =
$$\pi r^2 = \frac{22}{7} \times \left(\frac{21}{2}\right)^2 \text{ cm}^2$$

= $\frac{22}{7} \times \frac{21}{2} \times \frac{21}{2} \text{ cm}^2$
= $346 \cdot 5 \text{ cm}^2 \text{ Ans.}$

- Q. 12. A copper wire when bent in the form of an equilateral triangle has an area of $121\sqrt{3}$ cm². If the same wire is bent into the form of a circle, find the area enclose by the wire.
 - Sol. Area of an equilateral triangle $= 121\sqrt{3}$ cm²

Let side of the triangle = a

Then,
$$\frac{\sqrt{3}}{4}a^2 = 121\sqrt{3}$$

$$\Rightarrow a^2 = \frac{121\sqrt{3} \times 4}{\sqrt{3}}$$

$$\Rightarrow a^2 = 484 = (22)^2$$

$$\therefore a = 22 \text{ cm.}$$

Now, the perimeter of the wire = 3a= $3 \times 22 = 66$ cm

Then, circumference of the circular win = 66 cm

Let r be the radius, then

$$2 \pi r = 66 \implies \frac{2 \times 22}{7} \times r = 66$$

$$\Rightarrow r = \frac{66 \times 7}{2 \times 22} = \frac{21}{2} \text{ cm}$$

$$\therefore \text{ Area enclose by it} = \pi r^2$$

$$= \frac{22}{7} \times \left(\frac{21}{2}\right)^2 \text{ cm}^2$$

$$= \frac{22}{7} \times \frac{21}{2} \times \frac{21}{2} = 346.5 \text{ cm}^2 \text{ Ans.}$$

- Q. 13. The circumference of a circular field 528 m. Calculate:
 - (i) its radius; (ii) its area;
 - (iii) the cost of levelling the field at Rs. 1.5 per m².

Sol. Circumference of the circular field = 528 m.

(i) Let r be the radius of the field, then

$$2\pi r = 528 \implies 2 \times \frac{22}{7} \times r = 528$$

$$\Rightarrow r = \frac{528 \times 7}{2 \times 22} = 84 \text{ m}$$

- (ii) The area of the field = $\pi r^2 = \frac{22}{7} \times (84)^2 \,\mathrm{m}^2$ $=\frac{22}{7} \times 84 \times 84 = 22176 \text{ m}^2$
- (iii) Rate of levelling the field = Rs. 1.50 per m^2

:. Total cost = Rs.
$$1.50 \times 22176$$

= Rs. 33264 Ans.

- Q. 14. The cost of levelling a circular field at Rs. 2 per sq. metre is Rs. 33957. Calculate:
 - (i) the area of the field;
 - (ii) the radius of the field;
 - (iii) the circumference of the field;
 - (iv) the cost of fencing it at Rs. 2.75 per metre.
 - Sol. (i) Cost of levelling the field = Rs. 33957Rate of levelling = Rs. 2 per sq. metre

:. Area of the field =
$$\frac{33957}{2}$$
 = 16978.5 m²

(ii) Let r be the radius of the field, then $\pi r^2 = 16978.5$

⇒
$$\frac{22}{7} \times r^2 = 16978.5$$

⇒ $r^2 = \frac{16978.5 \times 7}{22} = 5402.25$
⇒ $r = \sqrt{5402.25} = 73.5 \text{ m}.$
∴ Radius = 73.5 m.

(iii) The circumference =
$$2\pi r$$

= $2 \times \frac{22}{7} \times 73 \cdot 5m$
= 462 m

(iv) Cost of fencing at the rate of Rs. 2.75 per metre.

$$= 462 \times Rs. 2.75 = Rs. 1270.50 Ans.$$

- Q. 15. The cost of fencing a circular field at Rs. 9.50 per metre is Rs. 2926. Find the cost of ploughing the field at Rs. 1.50 per sq. metre.
 - Sol. Rate of fencing the circular field = Rs. 9.50 per metre Total cost = Rs. 2926

$$\therefore \text{ Circumference} = \frac{2926}{9.50} = 308 \,\text{m}$$

Let r be the radius of the circular field

then
$$2\pi r = 308$$
 $\Rightarrow 2 \times \frac{22}{7} r = 308$

$$\Rightarrow r = \frac{308 \times 7}{2 \times 22} \Rightarrow r = 49$$

Now, area of the field = πr^2

$$= \frac{22}{7} (49)^2 m^2$$
$$= \frac{22}{7} \times 49 \times 49 = 7546 \text{m}^2$$

Rate of ploughing the field = Rs. 1.50 per m²

:. Total cost = Rs.
$$1.50 \times 7546$$

= Rs. 11319 Ans.

- Q. 16. AC and BD are two perpendicular diameters of a circle ABCD. Given that the area of the shaded portion is 308 cm²; calculate: (2004)
 - The length of AC; and
 - The circumference of the circle.

Sol. Area of AOB + Area of COD =
$$308 \text{ cm}^2$$

Let r be the radius of the circle

$$308 = \frac{1}{4}\pi r^{2} + \frac{1}{4}\pi r^{2} \implies 308 = \frac{1}{2}\pi r^{2}$$

$$\implies 308 = \frac{1}{2} \times \frac{22}{7}r^{2}$$

$$\implies r^{2} = \frac{308 \times 2 \times 7}{22} = 196 = (14)^{2}$$

$$\therefore r = 14 \text{ cm}.$$

$$\therefore \text{ Radius} = 14 \text{ cm and diameter}$$

$$AC = 2 \times 14 = 28 \text{ cm}$$

Now, circumference of the circle = $2 \pi r$

$$= 2 \times \frac{22}{7} \times 14 = 88 \text{ cm Ans.}$$

17. AC and BD are two perpendicular diameters of a circle with centre O. If AC = 16 cm, calculate the area and perimeter of the shaded part. (Take $\pi = 3.14$). (2009)

Sol. Area =
$$2 \times \text{quadrant} = \frac{1}{2} \pi r^2$$

= $\frac{1}{2} \times 3.14 \times 8 \times 8 = 100.48 \text{ cm}^2$

Perimeter =
$$\frac{1}{2}$$
 of circumference + $4r$

$$= \pi r + 4r = r (\pi + 4) = 8 (3.14 + 4)$$
$$= 8 \times 7.14 = 57. 12 \text{ cm}$$

- Q. 18. The sum of the radii of two circles is 140 cm and the difference of their circumferences is 88 cm. Find the radii of the two circles.
 - Sol. Let R and r be the radii of the two circles Then, R + r = 140and $2\pi R - 2\pi r = 88$

$$\Rightarrow 2\pi (R-r) = 88 \Rightarrow 2 \times \frac{22}{7} (R-r) = 88$$

$$\Rightarrow R-r = \frac{88 \times 7}{2 \times 22} = 14$$

$$\therefore R + r = 140 \qquad ...(i)$$
and $R - r = 14 \qquad ...(ii)$

Adding, we get, $2R = 154 \implies R = 77$ and subtracting, we get, 2r = 126

$$\Rightarrow r = \frac{126}{2} = 63$$

Hence, radii of the two circles are 77 m and 63 m Ans.

- Q. 19. The sum of the radii of two circles is 84 cm and the difference of their areas is 5544 cm². Calculate the radii of the two circles.
 - Sol. Let R and r be the radii of the two circles,

then
$$R + r = 84$$
 ...(i) Now, and $\pi R^2 - \pi r^2 = 5544$ $\Rightarrow \pi (R^2 - r^2) = 5544$ $\Rightarrow \pi (R^2 - r^2) = 5544$ $\Rightarrow R^2 - r^2 = \frac{5544 \times 7}{22}$ $\Rightarrow (R + r) (R - r) = 1764$...(ii) $\Rightarrow 84 (R - r) = 1764$ {from (i)} $\Rightarrow R - r = \frac{1764}{84} = 21$ Now, $R + r = 84$, $R - r = 21$ Adding, we get, $2R = 105$

369

$$\Rightarrow R = \frac{105}{2} = 52.5 \text{ cm}$$

And subtracting, 2r = 63

$$\Rightarrow r = \frac{63}{2} = 31.5 \text{ cm}$$

.. Radii of the two circles are 52.5 cm and 31.5 cm Ans.

Q. 20. Two circles touch externally. The sum of their areas is $117 \pi \text{ cm}^2$ and the distance between their centres is 15 cm. Find the radii of the two circles.

Sol. Let R and r be the radii of two circles,

Then
$$R + r = 15 \text{ cm}$$
 ...(i)
and $\pi R^2 + \pi r^2 = 117 \pi$

$$\Rightarrow \pi (R^2 + r^2) = 117\pi \Rightarrow R^2 + r^2 = 117$$

$$(R + r)^2 = (15)^2$$

$$\Rightarrow R^{2} + r^{2} + 2Rr = 225 \Rightarrow 117 + 2Rr = 225$$
$$\Rightarrow 2Rr = 225 - 117 = 108$$

$$\therefore 2R = 108$$

Now,
$$(R - r)^2 = R^2 + r^2 - 2Rr$$

= 117 - 108 = 9 = (3)²
 \therefore R - r = 3 ...(ii)

Adding (i) and (ii),

$$2R = 18 \Rightarrow R = \frac{18}{2} = 9$$

Subtracting (ii) from (i)

$$2r = 12 \implies r = 6$$

- :. Radii of the two circles are 9 cm and 6 cm.
 - Q. 21. Two circles touch internally. The sum of their areas is $170 \text{ } \pi \text{ } \text{cm}^2$ and the distance between their centres is 4 cm.

Find the radii of the circles.

Sol. Let R and r be the radii of the two circles, then R - r = 4 cm ...(i)

and, sum of their areas = 170π

$$\Rightarrow \qquad \pi R^2 + \pi r^2 = 170 \pi$$

$$\Rightarrow R^2 + r^2 = 170$$

Now,
$$R-r=4$$

$$(R-r)^2 = R^2 + r^2 - 2Rr$$

$$\Rightarrow (4)^2 = 170 - 2Rr$$

$$\Rightarrow$$
 16 = 170 - 2Rr

$$\Rightarrow$$
 2Rr = 170 - 16 = 154

Now,
$$(R + r)^2 = R^2 + r^2 + 2Rr$$

$$= 170 + 154 = 324 =$$

 $(18)^2$

$$R + r = 18$$
 ...(ii)

Adding (i) and (ii), we get

$$2R = 22 \qquad \Rightarrow R = \frac{22}{2} = 11$$

Subtracting (i) from (ii),

$$2r = 14$$
 $\Rightarrow r = 7$

Hence, Radii of the circles are 11 cm and 7cm Ans.

Q. 22. Find the area of a ring whose outer and inner radii are 19 cm and 16 cm respectively.

Sol. Outer radius (R) = 19 cm

Downloaded from https://www.studiestoday.com and inner radius (r) = 16 cm

:. Area of the ring

= outer area – inner area
=
$$\pi R^2 - \pi r^2 = \pi (R^2 - r^2)$$

= $\frac{22}{7} (19^2 - 16^2) \text{ cm}^2$
= $\frac{22}{7} \times (19 + 16) (19 - 16) \text{ cm}^2$
= $\frac{22}{7} \times 35 \times 3 = 330 \text{ cm}^2 \text{ Ans.}$

- Q. 23. The areas of two concentric circles are 962.5 cm² and 1386 cm² respectively. Find the width of the ring.
 - Sol. Let R and r be the radii of the outer circle and inner circle respectively.

Then, $\pi r^2 = 962.5$

$$\Rightarrow \frac{22}{7}r^2 = 962.5$$

$$\Rightarrow r^2 = \frac{962.5 \times 7}{22}$$
= 306.25 = (17.5)²

$$\therefore r = 17.5 \text{ cm}.$$

And
$$\pi R^2 = 1386$$

$$\Rightarrow \frac{22}{7} R^2 = 1386$$

$$\Rightarrow$$
 R² = $\frac{1386 \times 7}{22}$ = 441 = (21)²

$$\therefore$$
 R = 21 cm

... Width of the ring =
$$R - r$$

= $21 - 17.5 = 3.5$ cm Ans.

Q. 24. The area enclosed between two concentric circles is 770 cm². If the radius of the outer circle is 21 cm, calculate the radius of the inner circle.

(2001)

Let r be the inner radius and area of enclosed is between two concentric circles = 770 cm^2

Area of enclosed area between two concentric circles = $\pi R^2 - \pi r^2$

$$\Rightarrow 770 = \pi (R^2 - r^2)$$

$$\Rightarrow 770 = \frac{22}{7} (441 - r^2)$$

$$441 - r^2 = 770 \times \frac{7}{22} = 245$$

$$r^2 = 441 - 245 = 196 = (14)^2$$

$$r = 14 \text{ cm}$$

Radius of the inner circle = 14 cm.

- Q. 25. In the given figure, the area enclosed between two concentric circles is 808.5 cm². The circumference of the outer circle is 242 cm. Calculate:
 - (i) the radius of the inner circle,
 - (ii) the width of the ring.

Sol. Area enclosed by two concentric circles = 808.5 cm²

> Circumference of outer circle = 242 cm. Let R and r be the radii of two circles.

Then,
$$2\pi R = 242$$
 $\Rightarrow 2 \times \frac{22}{7} R = 242$

Sol. Radius of the outer circle (R) = 21 cm

$$\Rightarrow R = \frac{242 \times 7}{2 \times 22} = \frac{77}{2} = 38.5 \text{ cm}.$$

and
$$\pi (R^2 - r^2) = 808.5$$

$$\Rightarrow \frac{22}{7} (R^2 - r^2) = 808.5$$

$$\Rightarrow \qquad \mathbf{R}^2 - r^2 = \frac{808 \cdot 5 \times 7}{22}$$

$$\Rightarrow$$
 $(38.5)^2 - r^2 = 257.25$

$$\Rightarrow$$
 1482.25 - r^2 = 257.25

$$\Rightarrow$$
 $r^2 = 1482 \cdot 25 - 257 \cdot 25 = 1225 \cdot 00$

$$r = \sqrt{1225} = 35$$

Hence (i) Radius of the inner circle = 35cm.

and (ii) width of ring = R - r

$$= 38.5 - 35.0 = 3.5$$
 cm. Ans.

- Q. 26. Find the area of a circle circumscribing an equilateral triangle of side 15 cm. [Take $\pi = 3.14$].
 - Sol. ΔABC is an equilateral and a circle with centre O is drawn to pass through the vertices of the triangle. Each side of the triangle = 15 cm. Join OB and draw OM ⊥ BC.

In right $\triangle OBM$, $\angle OBM = \frac{60^{\circ}}{2} = 30^{\circ}$

:: OM ⊥ BC

$$\therefore BM = \frac{1}{2}BC = \frac{15}{2}cm$$

$$BM$$

Now,
$$\cos \theta = \frac{BM}{OB}$$

$$\therefore OB = \frac{BM}{\cos \theta} = \frac{BM}{\cos 30^{\circ}} = \frac{7.5}{\sqrt{3}} = \frac{7.5 \times 2}{\sqrt{3}}$$

:. OB =
$$\frac{15 \times \sqrt{3}}{\sqrt{3} \times \sqrt{3}} = \frac{15\sqrt{3}}{3} = 5\sqrt{3}$$

$$\Rightarrow$$
 Radius $(r) = 5\sqrt{3}$ cm

$$\therefore$$
 Area of the circle = πr^2

$$= 3.14 \times (5\sqrt{3})^2 \text{ cm}^2$$

$$= 3.14 \times 75 = 235.5 \text{ cm}^2 \text{ Ans.}$$

- Q. 27. Find the area of a circle inscribed in an equilateral triangle of side 18 cm. [Take $\pi = 3.14$].
 - Sol. A circle is inscribed in an equilateral triangle ABC whose each side is 18 cm.

Join OB and draw OM ⊥ BC

$$\therefore \angle OBM = \frac{60^{\circ}}{2} = 30^{\circ}$$

:. BM =
$$\frac{1}{2}$$
, BC = $\frac{18}{2}$ = 9cm

In right $\triangle OBM$, $\tan 30^{\circ} = \frac{OM}{BM}$ $\Rightarrow OM = BM \tan 30^{\circ}$

OM
$$(r) = \frac{1}{\sqrt{3}} \times 9$$

= $\frac{9 \times \sqrt{3}}{\sqrt{3} \times \sqrt{3}} = \frac{9\sqrt{3}}{3} = 3\sqrt{3}$ cm

$$\therefore$$
 Area of incircle = πr^2

$$= 3.14 \times (3\sqrt{3})^2 \text{ cm}^2$$

$$= 3.14 \times 27 = 84.78 \text{ cm}^2 \text{ Ans.}$$

- Q. 28. The shape of the top of a table in a restaurant is that of a segment of a circle with centre O and ∠BOD = 90°.

 BO = OD = 60 cm. Find
 - (i) the area of the top of the table

Arundeep's Foundation Math-X

- (ii) the perimeter of the table. [Take $\pi = 3.14$]
- Sol. Radius (r) of the circular segment = 60 cm.

Reflex $\angle BOD = 360^{\circ} - 90^{\circ} = 270^{\circ}$

(i) :. Area of the top of the table

$$= \pi r^2 \times \frac{270^{\circ}}{360^{\circ}}$$

$$= 3.14 \times (60)^2 \times \frac{270^{\circ}}{360^{\circ}} \text{ cm}^2$$

$$= 3.14 \times 60 \times 60 \times \frac{3}{4} \text{ cm}^2 = 8478 \text{ cm}^2$$

- (ii) Perimeter = $2\pi r \times \frac{270^{\circ}}{360^{\circ}} + 2r$ = $\left[2(3.14) \times 60 \times \frac{3}{4} + 2 \times 60\right]$ cm = $(3.14 \times 90 + 120)$ cm = 282.6 + 120 = 402.6 cm Ans.
- Q. 29. In the given figure, ABCD is a square of side 5 cm inscribed in a circle. Find
 - (i) the radius of the circle,
 - (ii) the area of the shaded region.

[Take
$$\pi = 3.14$$
]

Sol. Each side of square ABCD = 5 cm Radius of the circumcircle (r)

$$= \frac{1}{2} \times \text{diagonal} = \frac{1}{2} \times \sqrt{2} \times \text{side}$$

$$= \frac{\sqrt{2}}{2} \times 5 \text{cm.} = \frac{5\sqrt{2}}{2} \text{cm.}$$
Now, area of circle = πr^2

$$= 3.14 \times \left(\frac{5\sqrt{2}}{2}\right)^2 \text{ cm}^2$$

=
$$3.14 \times \frac{25 \times 2}{4} = 3.14 \times \frac{25}{2} \text{ cm}^2 = 39.25 \text{ cm}^2$$

Area of square = $(\text{side})^2 = (5)^2 = 25$
cm²

- $\therefore \text{ Area of shaded region} = 39.25 25.00$ $= 14.25 \text{ cm}^2 \text{ Ans.}$
- Q. 30. In the given figure, ABCD is a rectangle inscribed in a circle. If two adjacent sides of the rectangle be 8 cm and 6 cm. Calculate:
 - (i) the radius of the circle and
 - (ii) the area of the shaded region.

[Take $\pi = 3.14$].

- Sol. A rectangle ABCD is inscribed in a circle, sides of rectangle are 8 cm and 6 cm.
 - (i) Radius of the circle = $\frac{1}{2}$ × diagonal of the rectangle

$$=\frac{1}{2}\sqrt{l^2+b^2}$$

$$= \frac{1}{2}\sqrt{8^2 + 6^2} = \frac{1}{2} \times \sqrt{(64 + 36)} \text{ cm}$$
$$= \frac{1}{2} \times \sqrt{100} = \frac{1}{2} \times 10 = 5 \text{ cm}.$$

(ii) Area of circle =
$$\pi r^2 = 3.14 \times (5)^2 \text{ cm}^2$$

= $3.14 \times 25 = 78.5 \text{ cm}^2$

Area of rectangle =
$$l \times b$$

= $8 \times 6 = 48 \text{ cm}^2$

:. Area of shaded region =
$$78.5 - 48.0$$

= $30.5 \text{ cm}^2 \text{ Ans.}$

Q. 31. In the given figure, ABCD is a piece of cardboard in the shape of a trapezium in which AB || DC, ∠ABC = 90°.

From this piece, quarter circle BEFC is removed.

Given
$$DC = BC = 4.2 \text{ cm}$$

and, $AE = 2 \text{ cm}$.

Calculate the area of the remaining piece of the cardboard.

Sol. ABCD is a trapezium in which AB || DC. ∠ABC = 90°, DC = BC = 4·2 cm and AE = 2cm

:.
$$AB = AE + EB = AE + BC$$

= 2 + 4.2 = 6.2cm

Now, area of the trapezium

$$= \frac{1}{2} (AB + DC) \times BC$$

$$= \frac{1}{2} (6.2 + 4.2) \times 4.2 \text{ cm}^2$$

$$= \frac{1}{2} \times 10.4 \times 4.2 \text{ cm}^2 = 21.84 \text{ cm}^2$$
Radius of quarter circle = BC = 4.2 cm

Area of quarter circle =
$$\frac{1}{4}\pi r^2$$

$$= \frac{1}{4} \times \frac{22}{7} \times (4.2)^2 \text{ cm}^2$$

$$= \frac{11}{14} \times 4.2 \times 4.2 \,\mathrm{cm}^2 = 13.86 \,\mathrm{cm}^2$$

$$\therefore \text{ Area of shaded portion}$$

$$= (21.84 - 13.86) \text{ cm}^2$$

$$= 7.98 \text{ cm}^2 \text{ Ans.}$$

Q. 32. Find the perimeter and area of the shaded region in the given figure

[Take
$$\pi = 3.142$$
].

Sol. ABC is a right triangle whose $\angle A = 90^{\circ}$ (Angle in a semicircle)

 \Rightarrow BC = 20 cm

Radius of the semi-circle (r)

$$=\frac{1}{2} \times BC = \frac{1}{2} \times 20 = 10 \text{ cm}$$

(i) Area of semi circle =
$$\frac{1}{2}\pi r^2$$

= $\frac{1}{2} \times 3.142 \times (10)^2$
= $\frac{1}{2} \times 3.142 \times 100 = 157.1 \text{ cm}^2$

Area of triangle =
$$\frac{1}{2} \times AB \times AC$$

$$=\frac{1}{2} \times 12 \times 16 \text{ cm}^2 = 96 \text{ cm}^2$$

$$\therefore \text{ Area of shaded portion} = 157 \cdot 1 - 96 \cdot 0$$
$$= 61 \cdot 1 \text{ cm}^2$$

- (ii) Circumference of semi-circle = πr = $3.142 \times 10 = 31.42$ cm
- .. Perimeter of the shaded portion

$$= 31.42 + 12 + 16 = 59.42$$
 cm Ans.

Q. 33. In the given figure, PQRS is a diameter of a circle of radius 6 cm. The lengths PQ, QR and RS are equal. Semi-circles are drawn on PQ and QS as diameters. If PS = 12 cm, find the perimeter and the area of the shaded region.

[Take $\pi = 3.14$].

Sol. Radius of the circle (r) = 6 cm.

PQ = QR = RS =
$$\frac{12}{3}$$
 = 4 cm
and PS = $2r = 2 \times 6 = 12$ cm.
(i) Area of circle = πr^2
= $3.14 \times (6)^2$ cm² = 3.14×36 cm²
= 113.04 cm²

Area of semi-circle PBQ

$$= \frac{1}{2}\pi \left(\frac{1}{2}PQ\right)^2 = \frac{1}{2}\times 3\cdot 14\times \left(\frac{4}{2}\right)^2 \text{ cm}^2$$
$$= \frac{1}{2}\times 3\cdot 14\times 4\text{ cm}^2 = 6\cdot 28 \text{ cm}^2$$

Area of semi-circle PTS = $\frac{1}{2}\pi(6)^2$

$$=\frac{1}{2} \times 3.14 \times 36 \text{ cm}^2 = 56.52 \text{ cm}^2$$

Area of semi-circle QES

$$= \frac{1}{2}\pi \left(\frac{1}{2}QS\right)^{2} = \frac{1}{2}(3.14)\left(\frac{8}{2}\right)^{2} cm^{2}$$
$$= \frac{1}{2} \times 3.14 \times 4 \times 4 = 25.12 cm^{2}$$

Now, area of shaded portion = Area of semi-circle PBQ + area of semi-circle PTS - area of semicircle QES

$$= 6.28 + 56.52 - 25.12$$

= $62.80 - 25.12 = 37.68 \text{ cm}^2$

(ii) Perimeter of shaded portion = length of (arc PTS + arc PBQ + arc QES)

$$= \frac{1}{2} \times 2\pi \times \frac{PS}{2} + \frac{1}{2} \times 2\pi \times \left(\frac{PQ}{2}\right)$$

$$+ \frac{1}{2} \times 2\pi \times \left(\frac{QS}{2}\right)$$

$$= 3.14 \times 6 + 3.14 \times 2 + 3.14 \times 4$$

$$= 3.14 (6 + 2 + 4) = 3.14 \times 12$$

$$= 37.68 \text{ cm Ans.}$$

Q. 34. Find the perimeter and area of the shaded region shown in the figure. The four corners are circle quadrants and at the centre, there is a circle. [Take $\pi = 3.14$].

Sol. Side of square = 4 cm ∴ Area of square = $(4)^2 = 16 \text{ cm}^2$ Radius of each quadrant = 1 cm

Area of 4 quadrants =
$$4 \times \frac{1}{4} \pi r^2$$

= $3.14 \times 1^2 = 3.14 \text{ cm}^2$
Area of central circle = πr^2
= $3.14 \times (1)^2 = 3.14 \text{ cm}^2$

.. Area of shaded portion = Area of square - Area of 4 quadrants - area of central circle = 16 - (3.14 + 3.14) cm²

$$= 16 - 6.28 = 9.72 \text{ cm}^2$$

(ii) Perimeter of shaded portion = Length of area of 4 quadrant + circumference of circle + 2 cm × 4 = $4 \times \frac{1}{4} (2\pi r) + 2\pi r + 2$ cm × 4

=
$$2 \pi r + 2 \pi r + 8 \text{ cm}$$

= $4 \pi r + 8 \text{ cm} = 4 \times 3.14 \times 1 + 8 \text{ cm}$
= $12.56 + 8 \text{ cm} = 20.56 \text{ cm}$. Ans.

- Q. 35. In the given figure, find the area of the unshaded portion within the rectangle. (Take $\pi = 3.14$)
- Sol. In the figure radius of each circle = 3 cm :. Diameter = 2 × 3cm = 6 cm
 - :. Length of rectangle (l) = 6 + 6 + 3 = 15 cm and breadth (b) = 6 cm Now, area of the rectangle $= l \times b$

 $= 15 \times 6 = 90 \text{ cm}^2$

and area of
$$2\frac{1}{2}$$
 circles

$$= \frac{5}{2}\pi r^2 = \frac{5}{2} \times 3.14 \times 3 \times 3 \text{ cm}^2$$
$$= 5 \times 1.57 \times 9 = 70.65 \text{ cm}^2$$

- $\therefore \text{ Area of unshaded portion} = 90 70.65$ $= 19.35 \text{ cm}^2$
- Q. 36. In the given figure, ABCP is a quadrant of a circle of radius 14 cm. With AC as diameter, a semi-circle is drawn. Find the area of the shaded region.

Sol. ABCP is quadrant of radius 14 cm.

AQC is semi-circle on AC as diameter.

Area of shaded portion

= Area of semi-circle + area of ΔABC – area of quadrant

Area of
$$\triangle ABC = \frac{1}{2} \times 14 \times 14 = 98 \text{ cm}^2$$

Area of quadrant =
$$\frac{1}{4} \times \pi r^2$$

$$= \frac{1}{4} \times \frac{22}{7} \times 14 \times 14 \text{ cm}^2 = 154 \text{ cm}^2$$

Length of AC =
$$\sqrt{AB^2 + BC^2}$$

$$=\sqrt{14^2+14^2}=14\times\sqrt{2}$$
 cm

Area of semi-circle =
$$\frac{1}{2}\pi r^2$$

$$= \frac{1}{2} \times \frac{22}{7} \times (7\sqrt{2})^{2}$$
$$= \frac{1}{2} \times \frac{22}{7} \times 49 \times 2 = 154 \text{ cm}^{2}$$

:. Area of shaded portion

 $= (154 + 98 - 154) \text{ cm}^2 = 98 \text{ cm}^2 \text{ Ans.}$ Q. 37. In the given figure, OACB is a quadrant

of a circle. The radius OA = 3.5 cm, OD = 2 cm. (2005)

Calculate the area of the shaded portion.

Sol. Area of quadrant whose radius is 3.5 cm

$$= \frac{1}{4} \times \pi r^2 = \frac{1}{4} \times \frac{22}{7} \times (3.5)^2 \text{ cm}^2$$
$$= \frac{1}{4} \times \frac{22}{7} \times 12.25 = 9.625 \text{ cm}^2$$

Area of right $\triangle AOD$, $=\frac{1}{2} \times 3.5 \times 2 \text{ cm}^2 = 3.5 \text{ cm}^2$

.. Area of shaded portion = Area of quadrant - area of triangle = 9.625 - 3.500 = 6.125 cm² Ans.

Q. 38. In the given figure, ABCD is a square of side 14 cm and A, B, C, D are centres of circular arcs, each of radius 7 cm. Find the area of the shaded region.

Sol. ABCD is a square of side 14 cm.

Radius (r) of each quadrant = 7 cm.

:. Area of square = $(a)^2 = (14)^2 = 196 \text{ cm}^2$

Area of 4 quadrants = $4 \times \frac{1}{4} \pi r^2 = \pi r^2$

$$=\frac{22}{7}\times7\times7=154\,\mathrm{cm}^2$$

:. Area of shaded portion = Area of square - area of 4 quadrants

$$= 196 - 154 = 42 \text{ cm}^2 \text{ Ans.}$$

Q. 39. In the given figure, two circles with centres A and B touch each other at the point T. If AT = 14 cm and AB = 3.5 cm, find the area of the shaded region.

Sol. Two circles are touching internally at T.

A and B are the centres of the circles.

Radius of bigger circle (R) = AT = 14 cm

And radius of smaller circle
$$(r) = BT$$

 $= AT - AB = 14.0 - 3.5 = 10.5 \text{ m}$
 \therefore Area of shaded portion = Area of bigger circle - area of smaller circle $= \pi R^2 - \pi r^2$
 $= \pi (R^2 - r^2) = \frac{22}{7} (14^2 - 10.5^2) \text{ cm}^2$
 $= \frac{22}{7} (14 + 10.5) (14 - 10.5) \text{ cm}^2$
 $= \frac{22}{7} \times 24.5 \times 3.5 \text{ cm}^2$
 $= 269.5 \text{ cm}^2 \text{ Ans.}$

Q. 40. In the adjoining figure, the inside perimeter of a running track with semicircular ends and straight parallel sides is 312 m. The length of the straight portion of the track is 90 m. If the track has a uniform width of 2 m throughout, find its area.

sol. Inside perimeter = 312 m

:. Inner circumference of each semicircle

$$= \frac{312 - (90 + 90)}{2} = \frac{312 - 180}{2}$$
m
$$= \frac{132}{2} = 66$$
m.

$$\therefore \text{ Inner radius } (r) = \frac{66 \times 7}{22} = 21 \text{ m}$$

And diameter = $21 \times 2 = 42 \text{ m}$

Width of track = 2 m

Outer radius (R) = 21 + 2 = 23 m

Outer diameter = $23 \times 2 = 46 \text{ m}$.

Outer area = Area of the outer semi-circles + area of outer rectangle.

$$= 2 \times \frac{1}{2} \pi \cdot (R)^2 + 90 \times 46$$
$$= \left(\frac{22}{7} \times 23 \times 23 + 90 \times 46\right) m^2$$
$$= 1662.57 + 4140 = 5802.57 m^2$$

Inner area = Area of two inner semicircles - Area of inner rectangle.

$$= \left(2 \times \frac{1}{2} \pi r^2 + 90 \times 42\right) m^2$$
$$= \left(\frac{22}{7} \times 21 \times 21 + 3780\right) m^2$$
$$= 1386 + 3780 = 5166 \text{ m}^2$$

:. Area of path = Outer area - Inner area

$$= 5802.57 - 5166 = 636.57 \text{ m}^2 \text{ Ans.}$$

Q. 41. In the given figure, ABCD is a square of side 7 cm and A, B, C, D are centres of equal circles which touch externally in pairs. Find the area of the shaded region.

Sol. Side of the square ABCD (a) = 7 cm
∴ Radius of each circle at the vertices

of the square (r) = 3.5 cm

Now, area of shaded portion = Area of four circles + area of square – area of 4 quadrants at the vertices

$$= 4 \times \pi r^2 + a^2 - 4 \times \frac{1}{4} \pi r^2$$
$$= 4\pi r^2 - \pi r^2 + a^2 = 3\pi r^2 + a^2$$

$$= \left(3 \times \frac{22}{7} \times 3.5 \times 3.5 + 7 \times 7\right) \text{ cm}^2$$

= 115.5 + 49.0 = 164.5 cm² Ans.

Q. 42. In the given figure, AB is the diameter of a circle with centre O and OA = 7 cm. Find the area of the shaded region.

Sol. Radius of bigger circle AO = 7 cm

Radius of small circle =
$$\frac{1}{2}$$
 AO
= $\frac{1}{2} \times 7$ cm = 3.5 cm

Area of smaller circle = πr^2

$$= \frac{22}{7} \times (3.5)^2 \text{ cm}^2$$
$$= 22 \times 0.5 \times 3.5 \text{ cm}^2 = 38.5 \text{ cm}^2$$

Now, Area of semicircle = $\frac{1}{2}\pi r^2$

$$=\frac{1}{2}\times\frac{22}{7}\times(7)^2 \text{ cm}^2$$

$$= \frac{1}{2} \times \frac{22}{7} \times 7 \times 7 \text{ cm}^2 = 11 \times 7 = 77 \text{ cm}^2$$

Area of triangle $\triangle CDB = \frac{1}{2} \times CD \times OB$

(: Area of
$$\Delta = \frac{1}{2} \times \text{Base} \times \text{Altitude}$$
)

$$=\frac{1}{2} \times 14 \times 7 \text{ cm}^2 = 49 \text{ cm}^2$$

(:
$$CD = 2 \times AO \text{ and } AO = OB$$
)

- : Area of shaded portion = Area of small circle + Area of semicircle Area of $\Delta CDB = 38.5 \text{ cm}^2 + 77 \text{ cm}^2 49 \text{ cm}^2$ $= 115.5 \text{ cm}^2 49 \text{ cm}^2 = 66.5 \text{ cm}^2 \text{ Ans.}$
- Q. 43. The diameter of a wheel is 1.26 m. How far it will travel in 500 revolutions?
 - Sol. Diameter of a wheel (d) = 1.26 m.
 - \therefore Its circumference = πd

$$=\frac{22}{7} \times 1.26 \text{ m} = 3.96 \text{ m}$$

... In one revolution, it travels = 3.96 m And in 500 revolution it will travel = $3.96 \times 500 = 1980$ m Ans.

- Q. 44. The wheel of the engine of a train $4\frac{2}{7}$ m in circumference makes 7 revolutions in 3 seconds. Find the speed of the train in km per hour.
 - Sol. Circumference of a wheel

$$=4\frac{2}{7}m=\frac{30}{7}m$$

: It covers 7 revolutions in 3 seconds.

In one hour it makes revolutions

$$=\frac{7}{3}\times60\times60=8400$$

: Distance in 8400 revolutions

$$=\frac{30}{7}$$
 × 8400 m = 36000 m

$$\therefore \text{ Speed} = \frac{36000}{1000} \text{ km / hour}$$
$$= 36 \text{ km/hour Ans.}$$

Q. 45. A toothed wheel of diameter 50 cm is attached to a smaller wheel of diameter 30 cm. How many revolutions will the smaller wheel make when the larger one makes 30 revolutions?

Sol. Diameter of toothed wheel = 50 cm

$$\therefore \text{ Circumference} = \pi d = \frac{22}{7} \times 50 \text{ cm}$$

$$= \frac{1100}{7} \text{ cm}$$

Distance covered in 30 revolutions

$$=\frac{1100}{7}\times30=\frac{33000}{7}$$
cm

: Distance covered by the small wheel

$$=\frac{33000}{7}$$
cm

Diameter of smaller wheel = 30 cm

 \therefore Circumference = $d\pi$

$$=30 \times \frac{22}{7} \text{ cm} = \frac{660}{7} \text{ cm}$$

$$\therefore \text{ No. of revolutions} = \frac{33000}{7} \div \frac{660}{7}$$

$$=\frac{33000}{7}\times\frac{7}{660}=50$$
 Ans.

- Q. 46. A wheel makes 1000 revolutions in covering a distance of 88 km. Find the radius of the wheel.
 - Sol. In 1000 revolutions,

The total distance covered = 88 km

:. In 1 revolution, distance will be covered

$$= \frac{88}{1000} \text{km} = \frac{88 \times 1000}{1000} = 88 \text{m}$$

:. Circumference of the wheel = 88 m.

Let, radius of the wheel = r

Then
$$2\pi r = 88$$

$$\Rightarrow \frac{2 \times 22}{7} r = 88$$

$$\Rightarrow r = \frac{88 \times 7}{2 \times 22} = 14 \text{m}$$

Hence, radius of the wheel = 14 m Ans.