Chapter 22

Constructions

OINTS TO REMEMBER

1. Length of Direct Common Tangents:

 $=\sqrt{d^2-(r_1-r_2)^2}$ where d is the difference between the centres of two circles and r_1 , r_2 are the radii of the circles.

2. Length of Inverse Common Tangents:

 $=\sqrt{d^2-(r_1-r_2)^2}$ where d is the difference between the centres of the two circles and r_1 , r_2 are the radii of the circles.

3. Angle at the Centre of a Regular Polygon:

 $=\frac{360^{\circ}}{n}$ where n is the number of sides of the regular polygon.

4. Circumcircle of a Triangle:

The circle passing through the vertices of a triangle is called the circumcircle of the triangle.

5. Circumcentre of a Triangle:

The point of intersection of the right bisectors of any two sides of a triangle is called its circumcentre.

6. Incircle of a Triangle:

A circle inside a triangle touching its sides, is called the incircle of a triangle.

7. Incentre of a Triangle:

The point of intersection of the bisectors of any two angles of a triangle is called the incentre of the triangle.

EXERCISE 22 (A)

Q.1. Draw a circle of radius 3 cm. Take a point P on it. Using ruler and compasses only construct a tangent to the circle at the point P.

Sol. Steps of Construction:

- (i) Draw a circle with O as centre and radius 3 cm.
- (ii) Take a point P on it.
- (iii) Join OP.

(iv) At P draw a perpendicular PT on OP and produce it both sides.

Then, T'PT is the required tangent to the circle.

- Q.2. Draw a circle of radius 3.4 cm. Take a point P on it. Without using the centre of the circle, construct a tangent to the circle at the point P.
- Sol. Steps of Construction:
 - (i) Draw a circle with radius 3.4 cm.
- (ii) Take a point P on it.
- (iii) Take two more points Q and R on it.
- (iv) Join QP and PR and RQ.
- (v) Draw $\angle QPT = \angle PRQ$.
- (vi) Produce TP to T'.Then T'PT is the required tangent to the circle.

- Q.3. Draw a circle of radius 2.7 cm. Mark its centre as O. Take a point P at distance of 5.3 cm from O. From the point P, draw two tangents to the circle. Measure the length of each.
- Sol. Steps of Construction:
 - (i) Take a line segment OP = 5.3 cm.

- (ii) At O, with a radius of 2.7 cm, draw a circle.
- (iii) Bisect OP at M.
- (iv) With centre M and OP as diameter, draw at circle intersecting the given circle at T and S.
- (v) Join PT and PS. PT and PS are the required tangents to the circle.

On measuring them, PT = PS = 4.7 cm.

- Q.4. Draw a circle of radius 4 cm. Mark its centre as C and mark a point D such that CD = 7 cm. Using ruler and compasses only but not using the centre of the circle, construct two tangents from D.
- Sol. Steps of Construction:
 - (i) Draw a circle of radius 4 cm with centre C.
 - (ii) Take a point D such that CD = 7 cm.

- (iii) Through D, draw a secant AB intersecting the circle at A and B.
- (iv) With DB as diameter and M, the midpoint of DB as centre, draw a semi-circle.
- (v) From A, draw a perpendicular meeting the semi-circle at P.
- (vi) With D as centre and DP as radius draw an arc intersecting the circle at T and S.
- (vii) Join DT and DS.DT and DS are the required tangents to the given circle.

- Q.5. Draw a circle of radius 3.2 cm. Draw two tangents to it inclined at an angle of 60° with each other.
- Sol. Steps of Construction:
 - (i) Draw a circle with centre O and radius 3.2 cm.

- (ii) Draw a radius OS.
- (iii) At O, draw angle of $(180^{\circ} 60^{\circ}) = 120^{\circ}$ on OT.
- (iv) At S and T, draw perpendiculars meeting each other at P.Then, PT and PS are the required tangents inclined at an angle of 60°.
- Q.6. Draw a circle of radius 2.5 cm. Draw two tangents to it inclined at an angle of 45° to each other.
- Sol. Steps of Construction:
 - (i) Draw a circle with centre O and radius 2.5 cm.

(ii) Draw a radius OS.

- (iii) With OS and at O, draw another radius so that $\angle TOS = (180^{\circ} 45^{\circ}) 135^{\circ}$ with each other.
- (iv) At S and S, draw perpendiculars meeting each other at P.
- (v) TP and SP are the required tangents inclined at an angle of 45°.

EXERCISE 22 (B)

- Q.1. Using ruler and compasses only, draw an equilateral triangle of side 4.5 cm and draw its circumscribed circle. Measure the radius of the circle.
- Sol. Steps of Construction:
 - (i) Draw a line segment BC = 4.5 cm.

- (ii) With centres B and C, draw arcs of radius 4.5 cm each intersecting each other at A.
- (iii) Join AB and AC.ΔABC is an equilateral triangle.
- (iv) Draw the bisectors of side BC and AC intersecting each other at O.
- (v) Join OB.
- (vi) With centre O and radius OB, draw a circle which passes through A, B and C.

This is the required circle and on measuring its radius, it is 2.6 cm.

- Q.2. Using ruler and compasses only, draw an equilateral triangle of height 6 cm and draw its inscribed circle. Measure the radius of the circle.
- Sol. Steps of Construction:
 - (i) Draw a line XY and take a point D on it.

- (ii) At D, draw a perpendicular and cut off DA = 6 cm.
- (iii) At A, draw rays making an angle of 30° with AD both sides meeting the line XY at B and C respectively.
- (iv) Draw the angle bisectors of B and C intersecting each other at I and from I, draw a perpendicular I D on BC.
- (v) With I as centre and I D as radius, draw a circle which to makes the sides of the triangle internally. This is the required incircle and its radius, on measuring it is 2 cm.
- Q.3. (i) Construct a triangle with sides 5 cm, 4 cm and 3 cm. Draw its circumcircle and measure its radius.
 - (ii) Using a ruler and a pair of compasses only, construct:
 - (a) a triangle ABC, given AB = 4 cm, BC = 6 cm and $\angle ABC = 90^{\circ}$.

- (b) a circle which passes through the points A, B and C and mark its centre as O.
- Sol. (i) Steps of Construction:
- (a) Draw a line segment BC = 5 cm.

- (b) With centre B and radius 4 cm, and with centre C and radius 3 cm, draw arcs intersecting each other at A.
- (c) Join AB and AC.
- (d) Draw the perpendicular bisectors of sides AC and BC intersecting each other at O.
- (e) We see that O lies on the side BC.
- (f) With centre O and radius OB, draw a circle which will pass through A, B and C respectively.

On measuring the radius of the circle, it is 2.5 cm.

(ii) In \triangle ABC, AB = 4 cm, BC = 6 cm \angle ABC = 90°

Steps of construction:

- (a) Draw a line segment AB = 4 cm
- (b) At B, draw a ray B x making an angle of 90° and cut off BC = 6 cm.
- (c) Join AC,
- (d) Draw the perpendicular bisectors of sides AB and AC which intersect each other at O.
- (e) With centre O, and radius equal to OB or OA or OC draw a circle which passes through A, B and C.
- :. This is the required circle.
- Q.4. Construct a ΔABC in which BC = 6.4 cm, ∠ABC = 60° and CA = 5.8 cm. Draw the inscribed circle of ΔABC. Use ruler and compasses only for your construction. Measure and record the radius of the incircle. (2007)

Sol.

Steps of construction:

- (i) Draw a line segment BC = 6.4 cm.
- (ii) At B draw a ray BX making an angle of 60°.
- (iii) From C, draw an arc of radius 5.8 cm which intersects the ray BX at A.
- (iv) Join AC.
- (v) Draw the bisectors of ∠B and ∠C which intersect each other at O.
- (vi) From O, drw OL ⊥ BC.
- (vii) Now with centre O and radius equal to OL, draw a circle which touches the sides of the triangle ABC.

This is the required incircle

Radius of the circle on measuring = 1.6 cm (approx.)

Q.5. Draw a right-angled \triangle ABC in which hypotenuse BC = 6.4 cm and the altitude from A on BC is 2.5 cm. Draw the circumcircle of the triangle and measure its radius.

Sol. Steps of Construction:

(i) Draw a line segment BC = 6.4 cm.

- (ii) Draw its perpendicular bisector MX and cut off ML = 2.5 cm.
- (iii) With centre M and diameter BC, draw a semi-circle.
- (iv) Through L, draw a line parallel to BC intersecting the semi-circle at A and A'.

- (v) Join AB and AC.
 - \therefore ABC is a right-angled triangle, right angle at $\angle A$.
 - : M is the circumcentre.
- (vi) With centre M and radius BM, complete the circle which passes through A, B and C.

On measuring its radius is $BM = \frac{1}{2}BC$

$$= \frac{1}{2} \times 6.4 = 3.2 \,\mathrm{cm}.$$

- Q.6. Construct a \triangle ABC in which AB = 4.5 cm, BC = 7 cm and median AD = 4 cm. Draw the inscribed circle of the triangle and measure its radius.
- Sol. Steps of Construction:
 - (i) Draw a line segment BC = 7 cm.
- (ii) Find its mid-point D.

- (iii) With centre D and radius 4 cm draw an arc.
- (iv) With centre B and radius 4.5 cm, draw another arc intersecting the first arc at A.
- (v) Join AB, AC and AD.
- (vi) Draw the bisectors of ∠B and ∠C intersecting each other at I.
- (vii) From I, draw IL ⊥ BC.
- (viii) With centre I and radius IL, draw a circle touching the sides of the \triangle ABC.

- On measuring its radius IL, it is = 1.5 cm.
- Q.7. Using ruler and compasses only, construct a $\triangle PQR$ in which QR = 6 cm, $\angle Q = 60^{\circ}$ and $\angle R = 75^{\circ}$. Draw the circumcircle of the triangle.
- Sol. Steps of Construction:
 - (i) Draw a line segment QR = 6 cm.

- (ii) At Q draw a ray making an angle of 60° and at R, a ray making an angle of 75° which intersect each other at P.
- (iii) Draw the perpendicular bisector of side QR and PR intersecting each other at O.
- (iv) With centre O and radius OQ, draw a circle. It will pass through P, Q and R.
- Q.8. Using compasses and ruler, construct a ΔABC in which AB = 6 cm, BC = 7 cm, AC = 5 cm. Draw a circle inside the triangle touching its sides.
- Sol. Steps of Construction:
 - (i) Draw a line segment BC = 7 cm.
 - (ii) At B, with a radius 6 cm and at C with a radius of 5 cm, draw arcs intersecting each other at A.
- (iii) Join AB and AC .-
- (iv) Draw the bisectors of ∠B and ∠C intersecting each other at I.

- (v) From I, draw a perpendicular ID on BC.
- (vi) With centre I and radius ID, draw a circle which will touch the sides of the ΔABC.
- Q.9. Draw an isosceles AABC in which base BC = 6 cm and the altitude from vertex to the base is 4 cm. Draw its inscribed circle.

Sol. Steps of Construction:

- (i) Draw a line segment BC = 6 cm.
- (ii) Draw the perpendicular bisector and cut off DA = 4 cm.

- (iii) Join AB and AC.
- (iv) Draw the bisector of \(\arr B \) and \(\arr C \) intersecting each other at I.
- (v) With I as centre and ID as radius draw a circle which will touch its sides.
- Q.10. Draw a \triangle ABC in which BC = 6 cm, $\angle B = 45^{\circ}$ and (AB - AC) = 1.5 cm. Draw

the circumcircle of the triangle. Use ruler and compasses only.

Sol. Steps of Construction:

Draw a line segment BC = 6 cm.

- (ii) At B, draw a ray making an angle of 45° and cut off BD = 1.5 cm.
- Join DC and draw its perpendicular bisector which intersects BD produced at A.
- (iv) Join AC.
- (v) Draw the perpendicular bisectors of AC and AB intersecting each other at O.
- (vi) With centre O and radius OB draw a circle which will pass through A, B and C of AABC.
- Q.11. Using ruler and compasses only construct a ΔABC having base = 5 cm, vertical angle = 45° and median through vertex equal to 4 cm. Draw the incircle of the triangle.

Sol. Steps of Construction:

- (i) Draw a line segment BC = 5 cm.
- Draw a ray BX of 45° at B below the base BC.
- At B, with BX draw another ray BY making an angle of 90°.
- Draw the perpendicular bisector of BC which intersect the 90° ray at O.

(v) With centre O and radius OB draw a segment on BC.

(vi) With centre M, the mid-point of BC and radius 4 cm, draw arc which intersects the segments at A and A'.

- (vii) Join AB and AC.
- (viii) Draw the bisectors of ∠B and ∠C intersecting each other at I.
- (ix) From I, draw a perpendicular ID on BC.
- (x) With centre I and radius ID, draw a circle which will touch the sides of the triangle ABC.
- Q.12. Using ruler and compasses only, construct a ΔABC in which BC = 6·2 cm,
 ∠A = 60° and the altitude through A is 2·6 cm. Draw the incircle of the triangle.

Sol. Steps of Construction:

- (i) Draw a line segment BC = 6.2 cm.
- (ii) At B, draw a ray BX below BC making an angle of 60°.
- (iii) At B, along AX, draw another ray BY making an angle of 90°.
- (iv) Draw the perpendicular bisector of BC making by at O.

(v) With centre O and radius OB, draw a segment on BC.

0.1

- (vi) Now cut off MP = 2.6 cm.
- (vii) From P, draw a line parallel to BC intersecting the segment at A and A'.
- (viii) Join AB and AC.
- (ix) Draw the bisectors of ∠B and ∠C intersecting each other at I.
- (x) From I, draw ID \perp BC.
- (xi) With centre I and radius ID, draw a circle which will touch the sides of $\triangle ABC$.
- Q.13. Draw a \triangle ABC in which BC = 5.6 cm, \angle B = 45° and the median AD from A to BC is 4.5 cm. Inscribe a circle in it.

Sol. Steps of Construction:

- (i) Draw a line segment BC = 5.6 cm.
- (ii) At B, draw a ray BX making an angle of 45°.
- (iii) Find the mid-point D of BC.
- (iv) With centre D and radius 4.5 cm, draw an arc which intersects BX at A.
- (v) Join AD and AC.
- (vi) Draw the bisectors of ∠B and ∠C intersecting each other at I.
- (vii) From I, draw IP ⊥ BC.

- (viii) With centre I and radius IP, draw a circle which will touch the sides of the triangle ABC.
- Q.14. Draw a regular hexagon of side 2.4 cm. Circumscribe a circle to it.
 - Sol. Steps of Construction: Here, number of sides (x) = 6

$$\therefore \text{ Angle at the centre} = \frac{360^{\circ}}{6} = 60^{\circ}$$

And included angle between two adjacent sides = 120°.

- (i) Draw a line segment AB = 2.4 cm.
- (ii) At A and B, draw rays making angle of 120° on each and cut off AF = BC = 2.4 cm. ABCDEF is a regular hexagon.
- (iii) Draw perpendicular bisectors of sides AB and BC intersecting each other at O.
- (iv) With centre O and radius OA draw a circle which will pass through A, B, C, D, E and F.
- Q.15. Draw a regular pentagon of side 2.2 cm. Inscribe a circle in it.
 - Sol. Steps of Construction:

 Each angle of a regular pentagon = 108°
 - (i) Draw a line segment AB = 2.2 cm.

- (ii) At A and B, draw rays making an angle of 108° and cut off AE = BC = 2.2 cm.
- (iii) Similarly, at C and E, draw rays making an angle of 108° making each other at D.

Now, ABCDE is the required pentagon.

- (iv) Draw the bisectors of ∠A and ∠B intersecting each other at O.
- (v) From O, draw OL \perp AB.
- (vi) With centre O and radius OL, draw a circle touching the sides of the regular pentagon.