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Chapter 20

Angle Properties of A Circle

POINTS TO REMEMBER

Some Important Theorems.

?'
|

Theorem 1. The angle subtended by an arc of a circle at the centre is double the angl {
subtended by it at any point on the remaining part of the circle. |
Given. A circle with centre O and an arc AB subtends ZAOB at the centre and ZACB at any '
- point C on the remaining part of the circle.

To prove.ZAOB =2 ZACB. |
_ Construction. Join CO and produce it to some point D. .
2 C C
. / \ !
A B
(i) () , (iii)

Proof.

______ Statement Reason -
" | 1. mAAOC, I~
B| oa=oc Radii of the same circle. I
;::: = Z0AC= Z0CA i (1, Angles opposite to equal sides of a A are equal. ||}
= | 2. ZAOD=Z0CA + ZOCA Ext. angle of a A = Sum of its int. opp. Zs.

= /0CA + ZOCA Using (I). -'
| = 2/0CA . (ID) ;_

| 3. Similarly, I
#| sBOoD=2,0CB _..(1I0) '
«x 4. In figure (i), . _

Z/AOD + Z/BOD =2 ZOCA +2 ZOCB | Adding corresponding sides of (II) and (D). |}

= | =2(£OCA+2£0CB)=2 ZACB R {t

. ZAOB =2 ZACB,
|- 4.
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In Figure (iii),
ZAOD + £ZBOD =2 ZOCA +2 ZOCB | Adding the corresponding sides of (II) and (III).
=2 ZACB

.. Reflex ZAOB =2 ZACB.
In Figure (ii),

ZBOD - ZAOD =2 ZOCB -2 ZOCA |Subtracting the corresponding sides of (III) and (II).
=2 (£LOCB- Z0OCA)=2 ZACB
.. ZAOB =2 ZACB

Hence, ZAOB=2 Z/ACB.

Theorem 2. 4 ngles in the same segment of a circle are equal.
Given. A circle with centre O and two angles ZACB and ZADB in the same segment of the circle.
To prove. ZACB = ZADB.

Construction. Join OA and OB.
0

(ii)

Proof.

Statement Reason
In Fig. (I) : _
t11. Arc AB subtends ZAOB at the centre and
| ZACB at a point C of the remaining part
of the circle.

s LZAOB =2/ZACB (1) Angle at the centre is double the angle at any
point on remaining part of the circle.

2. Arc AB subtends ZAOB at the centre and
ZADB at a point D on the remaining part

of the circle. - |
;. ZAOB =2 ZADB ..(IT) Same as above.

. 2 ZACB=2 ZADB From (I) and (I).
.. LACB=ZADB ' |

. Similarly, in Fig. (II) :

1
ZACB=ZADB = 5 reflex ZAOB

- LZACB= ZADB.
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Hence, the angles in the same segment of a circle are equal.
Theorem 3. The angle in a semi-circle is a right angle. .
Given. A semi-circle ACB of a circle with centre O.

To prove. ZACB = 90°.

Proof. "

Statement ~ Reason
&- 1. Arc AB subtends ZAOB at the centre and

e
\\\\\\

Z/ACB at a point C on the remaining part

b

=| of the circle.

f L ZAOBF2ZACH Angle at the centre is double the angle at any
point on remaining part of the circle.

ik 1

§| =—=<ACB=7 ZAOB (1)

| 2. za0B=180° (1) | AOBisastraight line.

1 5 :
3. LZACB— (5 x 180 ] =90 From (I) and (II).

Hence, the angle in a semi-circle is right angle.

Theorem 4 (Converse of Theorem 3). If an arc of a circle
subtends a right angle at any point on the remaining part of the
circle, then the arc is a semi-circle.

ey
i

~ Given. Accircle with centre O and an arc AB subtending ZACB at
- apoint C on the remaining part of the circle such that ZACB = 90°.

- To prove. Arc AB is a semi-circle.
Construction. Join OA and OB.
Proof.

S Statement Reason
~|1. Arc AB subtends ZAOB at the centre and
| Z£ACBata point C on the remaining part

£ of the circle.

.. ZAOB=2 ZACB' (@) Angle at the centre is double the angle at a pomt :
| on the remaining of the circle. - "

2. ZACB=00° () Given.
3N ZA0B =:(2:x 90%) = 1800803 From (I) and (II).
‘= AOB is a straight line.
— AOB is a diameter Chord AB passes through centre O.
— Arc AB is a semi-circle.

9
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it ;",5
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- _:_,-;;%
e |
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Hence, arc AB is a semi-circle.
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Theorem 5. The opposite angles of a quadrilateral inscribed in a circle are supplementary.
OR D

The sum of the opposite angles of a cyclic quadrilateral is 180°
_ Given. A quadrilateral ABCD inscribed in a circle with centre O.
| To prove. ZADC + ZABC = 180° | Al
| and ZBAD + £ZBCD = 180°
| Construction. Join OA and OC.
Proof. | B
Statement Reason
‘| 1. Arc ABC subtends ZAOC at the centre and
ZADC at a point D on the remaining part

of the circle.

"Bl . ,A0Cc=2/ADC

1 N
e AN = 5 £ZAOC sl Angle at the centre is double the angle at any point

on remaining part of the circle.
- | 2. Similarly, major arc CDA subtends reflex |
' Z/AOC at the centre and ZABC at a point B
on the remaining part of the circle.

- reflex ZAOC =2 ZABC Same as above

“% ]
= L 8BU— 5 reflex ZAOC ...(1D)

. Adding (I) and (II), we get
1
ZADC+ ZABC = 3 ZAOC

1
-+ E reflex ZAOC

1
=5 (£AOC + reflex ZAOC)

L gitnimi e |
= (*2- x 360 J =180 (£LAOC + reflex ZAOC)
.. ZADC + ZABC = 180° = sum of the angle around a point O = 360"

. Similarly, ZBAD + ZBCD = 180°.

Hence, the opposite angles of a cyclic quadrilateral arc supplementary

Theorem 6. (Converse of Theorem 5).  If a pair of opposite angles of a quadrilateral are
supplementary, then the quadrilateral is cyclic.

Given. A quadrilateral ABCD is which ZB + £D = 180°.
To prove. ABCD is a cyclic quadrilateral.
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Construction. If possible, let ABCD be not a cyclic quadrilateral. Draw a circle passing throug
three non-collinear points A, B, C. Suppose this circle meets CD or CD produced at D', 3
shown in Fig. (i) and Fig. (#i) respectively, Join D'A. '.

.Dr

D D’ o

|

i

|

i

l [ ]

|

|

|

|

1

A B

(i (i) |
Proof.
Statement ' Reason
1. ZB+ /2D = 180° Given. |
2. /B + D' = 180° ABCD' is a cyclic quadrilateral and so its opposite¥ |
Zs are supplementary. -_ | E‘
o 3. ZB+ D= /B + AD' From 1 and 2. lr lj
§| =sD=2sD e 4] :
iﬁf? 4. But, this is not possible An exterior angle of a triangle is never equal to itd¥
%ﬁ, | int. opp. angle.
| .. Our supposition is wrong. :_"

Hence, ABCD is a cyclic quadrilateral.

Theorem 7. The exterior angle of a cyclic quadrilateral
is equal to the interior opposite angle.

Given. A cyclic quadrilateral whose side AB is produced to a
point E.

To prove. ZCBE = ZADC

Proof.
Statement Reason
1. ZABC + ZADC = 180° Feni - .ABCD is a cyclic quadrilateral and so the sum of
its opp. Zs is 180°.
2. ZABC + ZCBE = 180° 5 ABE is a straight line. -
|3. ZABC+ ZADC= ZABC+ ZCBE From 1 and 2. |
= /ADC= ZCBE _ ZABC is common to both sides.

Hence, the exterior angle of a cyclic quadrilateral is equal to the interior opposite anglé.“‘"-----
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'2. Arc Properties of Circles (Theorems) :

Theorem 1. In equal circles (or in the
same circle), if two arcs subtend equal angles
at the centre, they are equal.

Given. Two equal circles C; and C, with O
and O' as their centres respectively. AB
subtends ZAOB and CD subtends ZCO'D
such that ZAOB = ZCO'D.

To Prove : AB = CD

Proof.

Statement

Reason

. Place circle C, on circle C, such that
. Then, A falls on C and OB falls along O'D.

. Clearly, B falls on D.
| .. AB completely coincides with CD.

O falls on O’ and OA falls along O'C.

OA = O'C (Radii of equal circles).

- ZAOB = ZCO'D (Given).

OB = O'D (Radii of equal circles).

A falls on C, B falls on D and AB falls along CD, as
circles are equal.

Hence, ﬁ =CD.
Theorem 2. (Converse of Theorem 1).

In equal circles (or in the same circle), if two
arcs are equal, they subtend equal angles at
the centre.

Given. Two equal circles C, and C, with O
and O’ as their respective centres such that

AB=CD.
To prove. ZAOB = ZCO'D.
To Proof.

_S'tatement

Reason

. Place circle C, on circle C, such that
A falls on C, AO falls along CO’" and

. Then, O falls on O’ and B falls on D.

. Sector AOB completely coincides with

AB falls on CD.

.. OB falls on O'D.

sector CO'D. °
.. ZAOB = ZCQO'D.

AO = CO' (Radii of equal circles) and AB = CD
(Given).

A falls on C, O falls on O and B falls on D.

Hence, ZAOB = ZCO'D.
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Theorem 3. In equal circles (or in the same circle), if two chords are equal, they cut off
equal arcs. | |
Given. Two equal circles C, and C, with centres O and O’ respectively.

And. chord AB = chord CD.

G, C,
B B c b
To prove. AB=CD
Proof.
Statement _ Reason I
| Case I. When AB and CD are Minor Arcy .
| 1. In AOAB and AO'CD,
* () OA=0'C Radii of equal circles.
(i) OB =0'D Radii of equal circles.
" (iif) AB =CD Given.
2. .. AOAB = AO'CD SSS-axiom of congruency.
| = ZAOB=4£COD c.p.c.t. j
= AB=CD ...() In equal circles, two arcs subtending equal Zs a

the centre, are equal.

Case II. When AB and CD are Major Arcs
In this case, BA and DC are Minor Arcs.

~.AB=CD=BA=DC Chord AB = chord BA, chord CD = chord DC
= BA=DC Result being true for Minor Arcs
= AB=CD Equal arcs subtracted from equal circles give equa

arcs.
Case I11. When AB and CD are diameter§

-

& — — 3 s
~In this case, AB and CD are semi-circles|

Semi-circles of equal circles are equal.

Hence, chord AB = chord CD = AB = CD.

e P S S R T L I e T e T ST, T T e T WWWHW*
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Theorem 4 (Converse of Theorem 3).

In equal circles (or in the same circle), if two arcs are equal, then their chords are equal.

Given. Two equal circles C, and C, with centres O and O’ respectively and AB = CD.
To prove. Chord AB = chord CD.

.C1

A B

Construction. Join OA, OB, O'C and O'D.
Proof.

Statement Reason

Case 1. When ﬁ and CD are Minor Arcs

CAB=CD = ZAOB==ZCO'D...(I1) ~ Equal arcs of equal circles subtend equal
angles at the centre.

. In AOAB and AO’CD,

() OA =0O'C Radii of equal circles.

(if) OB = O'D Radii of equal circles.

(iiij) ZAOB = £CO'D | From (I).

.. AOAB = AO'CD SAS-axiom of congruency.
: — Chord AB = chord CD V) c.p.c.t.

Case 2. When AB and CD are Major Arcs
In this case, BA and DC are minor arcs.

Now, AB = CD = BA=BC

— BA = DC
= AB =CD Chord BA = chord AB, and chord DC

= chord CD.

Case 3. When AB and CD are semi-circleg
In this case, AB and CD are diameters.
». AB = CD.Diameters of equal circles are eqyal.

Hence, in all the cases, AB= é_ﬁ = chord AB = chord CD.
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Sol.

Q. 2.

EXERCISE — 20 (A)

. In the given figure, O is the centre of

the circle ; ZOAB = 30° and héOCB =
40°. Calculate ZAOC.

A

Join OB.
Now in AAOB,

OA = OB (Radn of the same circle)
.. ZOAB=Z0OBA

(Opposite angles to equal sides)
;. => ZOBA = 302 ua(s £ QABI=30")
Similarly, in AOBC,
OB =0C

.. = ZOBC = ZOCB=40°
Adding, we get
ZOBA + ZOBC =30°+40°=70°

Now, arc AC subtends ZAOC at the
centre of the circle and ZABC at the
remaining part of the circle.

o ZAOC =2 ZABC
=2 x 70° = 140° Ans.

In the given figure, O is the centre of
the circle and £ZAOC = 130°. Find
ZABC.
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Sol.

0. 3.

Sol.

(1)

(i1)

Q. 4.

In the figure,
ZAOC =130°
. Reflex ZAOC=360°-130°=230°

Now, major arc AC subtends ZAOC at
the centre and ZABC at the remaining
part of the circle. |

- LZAOC=2 ZABC.

S ABC = %moc

x 230°=115° Ans.

o
59
In the given figure, O is the centre of
the circle and ZAOB =110°. Calculate : =

(i) LACO (if) LCAO.
C
B
A
In the figure, 10
ZA0B=110°

Now, arc AB subtends ZAOB at the
centre and ZACB at the remaining part
of the circle | F

;. ZLAOB=2 ZACB

1 1
:>£ACB='2- LADBE EX 110°= 55°

or ZACO = 55°
Now in zldAC,
OA = OC (Radii of the same circle)
.. ZCAO=ZACO ‘
(Angles opposite to equal sides)
=355° |
In the given figure, AB || DC and ZBAD
=100°. Calculate :
(i) ZBCD  (ii) ZADC
(i) £ ABC




o5
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100°
2

Sol. In the figure, ABCD is a cyclic
quadrilateral.

AB || DC and ZBAD = 100°

(i) £BAD + 4BCD = 180° (Sum of the
opposite angles of a cyclic quadrilateral)

= 100°+ £ZBCD = 180°

— Z/BCD = 180° — 100° = 80°
(i) - DC || AB
.. ZBAD + ZADC = 180°

(Sum of angles on the same
side of a transversal)

= 100° + ZADC = 180°
= ZADC =180°-100°=80°
(7if) ZABC+ ZADC = 180° (Sum of opposite
angles of a cyclic quadrilateral)
= ZABC + 80° = 180°
= ZABC=180°-80° =100° Ans.

Q. 5. In the given figure, ZACB = 52° and \
£BDC =43°, Calculate :
(i) £ADB (i) ZBAC
(iii) £LABC.

&

Sol. In the ﬁgure
(i) ZADB=Z/ACB

(Angles in the same segment)
= ke (e ACB.="352°)

(i) £BAC=4ZBDC
(Angles in the same segment)
= v G 2 BRC = 43°)
(m) In AABC,
ZABC+ ZBCA + ZBAC =180°

(Angles of a triangle)
=PLABC + 52"+ 435 =180°
= ZABC + 95°= 180°

= ZABC = 180° — 95° = 85°
Hence, ZABC = 85° Ans.

Q. 6. In the given figure, O is the centre of

the circle, If ZAOB = 140° and ZOAC
= 50°, Calculate :

- (i) ZABC
(iii) ZOAB

(i) £BCO
(iv) £ZBCA

Sol. O is the centre of the circle
ZAOB = 140°, ZOAC = 50°

Join OC and AB
In AOAC,
OA = OC (Radii of the same circle)
. ZOCA = ZOAC=50°
(. ZOAC = 50°)
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Butin AAOC,

ZAOC+ Z0AC + £ACO = 180°
(Angles of a triangle)

= /AOC + 50° + 50° = 180°

— ZAO0C + 100° = 180°

— ZAOC = 180° — 100° = 80°
/BOC = 140° — 80° = 60°

(i) Now, arc AC subtends ZAOC at the

(1)

(iif)

(iv)

centre and ZABC at the remaining part
of the circle

.. ZAOC=2 ZABC

1 1
— ZABC = '2" ZAOC=5>< 80° = 40°

In AOBC, OB = 0OC
(Radii of the same circle)
Z0BC = «£BCO
(Angle opposite to equal sides)
But, ZBOC + ZOBC + £BCO = 180°
— 60° + ZBCO + £ZBCO = 180°
— 2/BCO = 180° — 60° = 120°

120°
— /BCO = e 60°
= ZBCO = 60°.
In AOAB,

OB = OA (Radii of the same circle)
- Z/OAB=ZOBA
(Angles opposite to equal sides)
But, ZAOB + ZOAB + ZOBA = 180°
. 140°+ ZOBA + ZOBA = 180°
= 140° + 2 ZOBA = 180°
— 2/0BA = 180° — 140° = 40°

0

2
Z/BCA=~£0CB+ ZACO

= 60° + 50° = 110°

WAl &) 1 = 20°

. In the given figure, ZBAD = 75 [

/ABD =56°, ZADC = 72°. Calculate :
(i) £ZBDC (if) £BCD
(iti) £BCA.
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Sol.

(1)

(i7)

(#17)

. In the given figure, O is the centre of

In the figure; |
ABCD is a cyclic quadrilateral
ZBAD =70°, ZABD = 56°
and ZADC =T72°
Join AC
/BDC=/ZADC- ZADB
= /ADC - {180° - £DAB - ZABD}
= 72° — (180° — 70° - 56°)
= 72°%— 1802 Ll1° -t S0
=198° — 180° = 18°
/ZBCD=180°- £ZBAD
{-- ABCD is a cyclic quadrilateral}
= 180° - 70° = 110°
/ZBCA=/ZADB
(Angles in the same segment)
But ZADB=ZADC- ZBDC
=TI A NS
ZBCA = 54° Ans.

the circle. If ZADC = 140°, find ZBAC.

il e =

I

rr rri
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ol. In the figure, ABCD is a cyclic quadrilateral

and AOB is the diameter of the circle.
ZADC = 140°

- ZABC+ ZADC = 180° {Opposite angles of
a cyclic quadrilateral} _

ZABC+140°=180°=ZABC=180"-140°=40°
Now in A ABC,
ZACB=90° (Angle in a semi-circle)

ZABC=40° (proved)
But ZBAC + ZACB + ZABC =180°
(Angles of a triangle)

= /BAC+ 90°+ 40°=180°
—/BAC + 130° = 180° = ZBAC = 180° — 130°
.. ZBAC = 50° Ans.

Q. 9. In the given figure, O
is the centre of the
circle and AABC 1s
equilateral. Find
(i) £ZBDC (ii) £BEC.

Sol. In the figure,

O is the centre of the
circle and AABC is an equilateral triangle
()t LA LABC = ZACB=60%
ZBAC=/BDC (Angles in the same segment)
cu ZBRC=60° |
(if) . ABEC is a cyclic quadrilateral
s ZA+ ZBEC=180°= 60° + ZBEC = 180°
= /BEC = 180° - 60° = 120° Ans.

Q. 10. (i) In the figure, O 1s
the centre of the circle
and ~/ AOC =160°.
Prove ‘that: 3 £y—2
= TA

(ii) In the given figure, O is
the centre of the circle,
ZBAD = 75° and chord BC = chord CD.
Find (a) ZBOC (b) £ZOBD (c) £BCD.

Sol. (/) Given. O is the centre of the circle ZAOC
=160°, ZABC = Zx and ZADC = 4y.

I'o Prove. 3£y - 24x = 140°

Proof. "~ ZAOC + reflex ZADC = 360°

(Angles at a point)
= 160° + Reflex ZADC = 360°

= Reflex ZADC = 360°- 160° = 200°

Now arc. ADC subtends ZAOC at the

B E

W
centre and ZABC at the remaining part of
the circle

L ARDC =0, =2 = 160°

160°
=X = = 80°
Similarly, reflex ZADC = 2y
200°
= 2y = 200° =y .= T 100°

Now, L.H.S. = 34y - 24x
= 3 X 100° - 2 X 80°
= 300° - 160° = 140° = R.H.S.
Hence Proved.
(ii) In the figure, O is the centre of the circle,
ZBAD = 75° chord BC
= chord CD
Join BD, OC
i BOD:  subtends
ZBOD at the centre and
ZBAD at the remaining
part
- ZBOD=2 ZBAD
& ZBBRD=2x 75 =.1350%
- BC=CD (given)
L ZBOC =Z2C0D
{Equals chords subtend equal angles at the centre |
= WZBOD = ZBOC+H ZCOD
= /BOC + ZBOC =2 £BOC

150°
2

=2 ZBOC= 150°= ZBOGC= =57

1
(b) £OBD = - [180° -~ ZBOD]

ave 1
= Z([180%=1507) =1 5 $B0° =15

(¢) £ZBCD + ZBAD = 180°
{opposite angles of a cyclic quadrilateral }
= ZBCD + 75° = 180°
= Z/BCD = 180° - 75°
=105°
Q. 11. In the given figure, O
is the centre of the circle. A
If ZCBD=25°and ZAPB
=120°, find ZADB.
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Sol. In the figure,
O is the centre of

/AOD =40° or ZAOC = 40°
and ZBDC = 100°

the circle Arc AC subtends ZAOC at the centre .
ZCBD=25%°and A B and ZABC at the remaining part of the
ZAPB =120° circle -
In ACPB, s ZAOC=2 ZABC
Ext. AL _ JABc < Lraoc S ZABG= = % 40°= 30°
= /CBD + £ZBCP ; 2 2
— 120°=25°+ Z/BCP = ZBCP=120°-25°=95° Now, in ADBC,
But, /BCP or ZBCA and ZADB are in /DCB + ZDBC + £ZBDC = 180°

the same segment of a circle.
ZADB = ZBCA = 95°

(Angles of a triangle)

= /0OCB+ ZABC+ £BDC = 180°
Hence, ZADB = 95° Ans. — “OCB + 20° + 100° = 180°
Q. 12. (i) In the giVBH = AO‘CB +120° = 180°
figie, HODASE = ZOCB = 180° — 120° = 60° 5“
diameter of the circle /0OCB = 60° Ans
with centre O and Q. 13. In the figure,
ZAOC = 100°, .
AB is parallel to DC,
find ZBDC. A > B
e : Z/BCE = 80° and 5§ {0
(ii) In the given figure, , g .
: ZBAC=25° Find : i
O is the centre of , t 80°
: (1))XCAD (ii) £CBD D E . % 4
the circle : C |
o o sk (iii) LADC (2008) = |
ZA0D =40"an Sol. In the figure, AB || DC
<BDCs 100 /BCE = 80° and ZBAC =25°
Find ZOCB. BD isjoined el
Sol.(7) In the figure, --ABCD is a cyclic
AOB is the diameter of the circle with centre O,  gyadrilateral 4 P
ZAOC =100 . (I) - /BAD Q.l:
But, ZAOC + ZBOC = 180° (A linear pair) — /BCE = 80° A80° .l

= 100° + ZBOC = 180°
= /BOC = 180° — 100° = 80°

Now, arc BC subtends ZBOC at the
centre and ZBDC at the remaining part
of the circle.

. ZBOC =2 £BDC
g | 1 .
= /BDC = EABOC = /BDC = 5 x 80° = 40°

Hence ZBDC = 40° Ans.
(i) In the figure,
O is the centre of the circle
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{Ext. angle of a cyclic
quadrilateral is equal to its interior opposite angle}
— /BAC+ ZCAD =80° |
= 25°+ ZCAD = 80° = ZCAD = 80° - 25°
= ZCAD=53" |
(i) ZCBD=ZCAID= 3555

(iii) - AB || DC

D

(Angles in the same segment)
| {From (i)}
(given)
and AD is its transversal
.. ZBAD + ZADC = 180° (co-interior angles)




Downloaded from https:// www.studiestoday.com

317

. . Arundeep's Foundation Math-X

80° + ZADC = 180°
ZADC = 180° - 80° = 100°

. 14. In the given figure, O is the centre of
the circle and ZOBC = 50°, Calculate :

(i) ZADC (if) ZAOC.

- Sol. In the figure, AOB is the diameter, O is
the centre of the circle, ABCD is the
cyclic quadrilateral, ZOBC = 50°.

(i) .- ABCD is a cyclic quadrilateral

f .. ZABC + ZADC = 180°

» ZOBC + ZADC = 180°.

% 50°+ ZADC = 180° = ZADC = 180° - 50°
I ZADC = 130°

(i1) Major arc AC, subtends reflex LZAOC
at the centre and ZADC at the remaining
part of the circle

|. Reflex ZAOC =2 ZADC =2 x 130° = 260°
s ZAO0C =360° — Reflex ZAOC
| = 360° — 260° = 100° Ans.

| Q.15. In the given figure, ABDC is a cyclic
quadrilateral in which ZCAD = 25°,
- ZABC=50°and ZACB = 35°.Calculate :

(i) ZCBD' (ii) £DAB (iii) ADB
' D

e R i T R e

;] Sol. In the figure,

ZCAD =25° £ZABC = 50° and
ZACH =357

(i) - ZCAD and ZCBD are in the same;
segment of a circle &

e LEBD = ZCAD= 257
(. ZCAD = 25%)
(ii) In AABC,
ZACB+ ZABC+ CAB=180°
(Sum of angles of a triangle)
= 35° t:60° +ZCAB = 180°
= 85° + LCAB = 180°
= ZCAB = 180° — 85° =95°
= LCAD + ZDAB = 95°
=3 25° + ZDAB = 95°
£DAB = 95° — 25° =70°

(iii) '~ ZADB and ZACB are in the same
segment

.. ZADB=ZACB =35°
(- ZACB = 35°) Ans.
Q. 16. In the figure, / BAD =65°, L/ ABD =
70° and / BDC = 45°.
Find : (i) » BCD (ii) » ADB
Hence, show that AC is a diameter.

Sol. (i) ABCD is a cyclic quadrilateral
.. £«BAD+ «BCD=180°

[Opposite angles of a cyclic
quadrilateral are supplementary]

= 65+ £BCD=180°
= /BCD =180°-65° =115° Ans.
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(ii) In A ABD, we have
/BAD+ ~ABD+ £ ADB=180°
[Angle sum property of a A ]

= 65°+70°+ £/ ADB=180° = ADB
=180°—-65°—-70° |

— /ADB=180°-135° = ADB=45°

Sl

Ans.
In A BCD. we have AOB is the diameter of the circle with
centre O. Chord ED || AB and ZEAE
Wit P &L s BCD +  CBD = 180° _ = 65°. Join EB.
[Angle sum property of a A ] (i) In A AEB,
= 45° +115°+ £LBD = 1803 ZAEB+ Z/EAB + Z/EBA = 180°
[From (i), «BCD = 115°] = 90° + 65° + ZEBA = 180°
— /CBD=180°-45°-115" => '155° + ZEBA ='180°
— ,CBD=180°-160° = ~ CBD=20° = ZEBA = 180° — 155° =25°
Also,  ABC= £ ABD+ /CBD BB 295
(ii) .~ ED || AB

= 70° + 20° = 90°

Thus, AC is a diameter of the circle.
[-+ Angle in a semicircle is a right angle]

.. ZEAB+ ZAED=180°
(Angles on the same side of the transversaq
=65t ZAED = 180°

Proved.
Q. 17. In the given figure, AB is a diameter of = ZAED = 180° —65° = 115°
a circle with centre O and chord ED is £BED = ZAED - ZAEB h i
parallel to AB and ZEAB = 65°. Calculate: = 115° =908= 25% |
(i) ZEBA (i) ZBED (iii) - EBCD is a cyclic quadrilateral
(iii) #BCD .. . +/BCD+ ZBED = 180°
=  /BCD +25°=180°
- ZBCD = 180° — 25°
£BCD = 155°.
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. 18. In the given figure, ABCD is a cyclic
_ quadrilateral whose side CD has been
Y produced to E. |
- If BA = BC and ZBAC = 46°, find
ZADE.
A
Sol. In the figure,
O 1s the centre of the circle, ABCD is
: b cyclic quadrilateral. ABE is a straight line
and ZCBE =555%
Rol. Indfefionre; ZABC+ ZCBE=180° (Linear pair)
| ABCD is a cyclic quadrilateral. Its side e L
CD is produced to E 5 ZABC = 180° — 55°
W BA =BC and ZBAC = 46° = £ABC = 125°
Al In AABC, Now, major arc ADC subtends reflex
| by ZAOC at the centre and ZABC at the
AB =BC remaining part of the circle
.. ZBAC=/ZBCA=46° x =2 x 125° = 250°
_But, ZABC + ZBAC+ ZBCA = 180° (/) In cyclic quadrilateral ABCD,
(Angles of a triangle) ZADC + ZABC = 180°
= ZABC + 46° + 46° = 180° = ZADC + 125° = 180°
=D ZABC + 92° = 180° = - ZADC = 180° — 125°
— ZABC = 180° - 92° : ' ZADC = 55° |
~ /ABC = 88° Hence, ZABC =125° LZADC =55° and
il In cyclic quadrilateral ABCD, 0. 20 JIr 125? Al;_s' e e
4 . . 20. In the given figure, an are two
i G D JRROYIE £ OBC parallel chords of a circle. If BDE and
= 88° Ans. ACE are straight lines, intersecting at E,
| In the given figure, O is the centre of a prove that AAEB is isosceles.

D. 19.

circle and ABE is a straight line. If ZCBE
= 55°, find :

(i) ZADC
(i) LZABC
(iit) the value of x.

A

o -_Dc_)\r/vnloaded from 'https:// www.studiestoday.com
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Given. In the figure,

AB and CD are two parallel chords. BDE
and ACE are two straight lines
intersecting each other at E out side the

circle.
To prove. AAEB is an isosceles triangle.
Proof. ABDC is a cyclic quadrilateral
.. Ext. ZEDC = ZA and
Ext. ZDCE= 4B
But, AB | CD
;. ZEDC=4£B
(Corresponding angles)

and ZDCE = ZA
— LB = LA

EA =EB
Hence, AAEB is an isosceles triangle.

In the given figure, chords AB and CD

of a circle are produced to meet at O.
Prove that AODB and AOAC are similar.

IfBO =3 cm. DO = 6 cm. and CD =2
cm, find AB.
-

Sol.

(1)

Given. In the figure, two chords AB
and CD meet at O on producing.

To prove. (i) AODB ~ AOAC

IfBO=3cm, DO =6cm,and CD =2
cm, find AB.

Proof. ABDC is a cyclic quadrilateral

.. Ext. ZBDO = Int. opposite ZA or
ZOAC

Similarly, Ext. ZDBO = ZC or ZOCA
Now, in AODB and AOAC,

£Z0=Z0 (Common)
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Q. 22.

(Prove

" Z0DB=Z0AC
.. AODB ~ AOAC (A.A. axior
BO _ DO
@] W o
k., Bt i)
OD+CD BO+AB
3 & 6 {
6+2 3+AB
3 6
— — = Il
8 3+AB
=33+AB)=8x6
=1 3+AB = : ; : =16

..

AB=16-3=13 cm. Ans
In the given figure, O is the centre o
the circle. If ZAOD = 140° and ZCAE
= 50°. Calculate :

(i) ZEDB (if) ZEBD

Sol.

Sl

In the figure, O is the centre of the circl
ZAOD = 140° and ZCAB = 50°

ZAOD + ZDOB = 18(0°

= 140° + ZDOB = 180°

= /DOB = 180° — 140° = 40

But, OB = OD (Radii of the same circle

:. ZOBD = £ODB ,
(Angles opposite to equal sides (

But in AOBD, | |

(Linear pair




Oy

Downloaded from https:// www.studiestoday.com

321

Arundeep’s Foundation Math-X

ZOBD + ZODB + #BOD = 180°
— ZOBD + ZOBD + 40° = 180°
— 2 ZOBD = 180° — 40° = 140°

140°

i @B = = 70°

(i) Incyclic quadrilatel.:al ABDC,
Ext. ZEDB = ZCAB = 50°
| (¢ £ZCAB = 50°)
(it) ZEBD + ZOBD = 180° (Linear pair)
= Z/EBD + 70° = 180°
= ZEBD = 180° — 70° = 110°
ZEBD = 110° Ans.

). 23. In the given figure, AB is a diameter of

4

a circle with centre O. If ADE and CBE
are straight lines, meeting at E such that
ZBAD = 35° and ZBED = 25°. Find :

(i) £.DCB (i) ZDBC
(ifi) £BDC.

Sol. In the figure,

AB is the diameter of circle with centre
O. ADE and CBE are straight lines
meeting each other at E. ZBAD = 35°
and ZBED = 25°. Join BD, CA and CD.

In AABD, :
* ZADB =90° (Angle in a semi-circle)
-. ZBDE = 180° — 90° = 90°

E

Q. 24.

Sol.

In ABED,
Z/DBE = 180° — (90° + 25°)
; = 180 — 115° = 65°

But, ZCBD + ZDBE = 180°
= ZCBD + 65° = 180°
= ZCBD = 180°-65=115°
'+ ZBCD = ZBAD,
(Angles in the same segment)
& ZBED=35° (.- ZBAD = 35°)
Now, in ACBD,
ZDCB + ZDBC + ZBDC = 180°
(Angles of a triangle)
=5 885115 + ZBDE+ 180°
=> 150° + ZBDC = 180°
= £BDC = 180° - 150°
.. ZBDC = 30°
Hence (i) ZDCB = 35°
(i1) £ZDBC = 115° and
(iif) £BDC = 30°. Ans.

In the given figure, find whether the
points A, B, C, D are concyclic, when
@D x=70 (ii) x = 80.

A B E
Points A, B, C and D forms a

quadrilateral when

(i) x°=70°,
(i) x°=80° and ZCBE = 110°
(i) When x° = 70°, then

ZADC=1680°-x
=180°-70°= 110°
s LADC=ZCBE=110°
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(i1)

Q. 25.

Sol.

(1)

e

- ZABC = 180° - T1I0™="70°
... /ABC+ ZADC=70°+110°=180°
Or the sum of the opposite angles of a
quadrilateral. is 180° _
. ABCD is cyclic quadrilateral
Hence A, B, C and D are concyclic.
When x° = 80°
then ZADC =180° —x

= 180° — 80° = 100°
and ZABC = 180°-110°=70°
.. ZADC+ ZABC =100°+ 70° =170°

Sum of opposite angles of a
quadrilateral is not equal to 180°

. ABCD is not a cyclic quadrilateral.
Hence A, B, C and D are not concyclic.

In the given figure, the straight lines AB
and CD pass through the centre O of
the circle. If ZAOD = 75° and ZOCE =
40°, find :

(i) £CDE (if) ZOBE.

In the figure,

Lines AB and CD pass through the centre
O of the circle. ZAOD = 75° and

ZOCE = 40°. .

ZCED =90° (Angle in a semi-circle)

Now, in ACDE,

ZCDE + ZCED + ZECD =180°
(Angies‘ of a triangle)

= ZCDE + 90° + 40° = 180°

=3 ZCDE + 130° = 180°

ZCRE =180°2"130°
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Q. 26.

=2 ZCDE =50°

(if) Now, in AOBD, o
Ext. /DOA = ZCDE + ZOBD ;
= 75° = 50° + ZOBD

— ZOBD = 75° - 50° = 25° Ans.

In the given figure, the two circl
intersect at P and Q. If ZA = 80°
/D = 84°, Calcualte :

(i) ZQBC

(i) ZDBCF.

Sol. In the figure, two circles intersect ea
other at P and Q

ABCD i1s a quadri]ateral in whic

ZA = 80° and £D = 84°. Join PQ.

AQPD is a cyclic quadrilateral.

.. ZADP + ZAQP = 180°

= 84°+ ZAQP =180°

= ZAQP =180°—-84° = 960. 1:

Similarly, ZQAD + ZQPD = 180°
80° + ZQPD = 180°

ZQPD = 180° — 80° = 100°

Now, in cyclic quadrilateral QBCP,

Ext. ZAQP = Int. opposite ZBCP

and Ext. ZQPD = ZQBC |

ZQBC = £QPD = 100°
and /BCP = ZAQP = 96° Ans!

Q. 27. In the adjoining figure, AB = AC = CL
£ZADC = 35°. Calculate :

(i) ZABC (if) ZBEC

—
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Sol.

(7)

(i7)

In the figure,
AB = AC=CD, ZADC = 35°
AC=CD

.. ZCAD=ZADC =35°

Now, in A ACD,

Ext. ZACB=ZCAD+ ZADC

=38P 850 =170°

AB =AC

.. ZABC=ZACB=10°

Butin AABC, '
ZABC+ ZACB + ZBAC=180°
~ (Angles of a triangle)

= 70° + 70° + ZBAC = 180°
= 140°+ ZBAC = 180°
= ZBAC = 180° — 140°
g £ZBAC = 40°
But ZBAC=ZBEC

(Angles- in the same segment)
- ZBEC = 40° Ans.

. In the adjoining figure, two circles

intersect at A and B. The centre of the
smaller circle is O and lies on the
circumference of the larger circle. If PAC

and PBD are straight lines and
ZAPB=75° find:

(i) ZAOB (if) ZACB (iii) ZADB.

(i)

(7)
(i)
Q. 29.

Sol.

Sol. Two circles intersect each other at A

and B. The centre of the smaller circle
is O and it lies on the circumference of
the larger circle. PAC and PBD are two
lines and ZAPB = 75°.

Arc AB of smaller circle subtends
ZAOB at the centre and ZAPB at the
remaining part of the circle.

ZEAOB=27APB
=2 x 75°=150°

. OBDA 1s a cyclic quadrilateral
.. ZADB + ZAOB = 180°
= L a<ADB + 150° = 180°
= ZADB = 180°— 150° = 30°
But ZADB=/ZACB

(Angles in the same segment)
4 £LACB= 30"
ZAOB=150° (ii) ZACB =30° and
ZADB = 30° Ans.

The exterior angles B and C in AABC
are bisected to meet at a point P.
Prove that :

Hence

ZBRG= 90“*—%. Is ABPC a cyclic

quadrilateral ?

Given. The sides AB and AC ofa AABC
are produced to X and Y respectively.
BP and CP are the bisectors of Ext. ZB
and ext. ZC meeting each other at P.
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ZA
2

Is ABPC a cyclic quadrilateral ?

Proof : In AABC,

Ext. ZB = Interior £C + ZA

Ext. ZC = Interior £B + ZA

To prove. (i) £BPC =90"-
(i)

1
or ZCBP = E(AC + ZA)

=l£C+14A
2 2

and ZBCP = -:-12-(43 + ZA)

4B+%AA

1
2

(i) ZBCD (ii) ZCBD (iii) £DCI (iv) BIC.

Arundeep’s Foundation Math-

55° and ZACB = 65°. Calculate :

Sol. I is the incentre of the AABC. AD
joined and produced to meet the circ
at D. DB, DC; IC and IB are joined.

ZABC =55°and ZACB = 65°

(i) .- AD is the diameter.
- . ZACD = 90° (Angle in a semi-circl
— /ACB+ ZBCD=90° = 65°+ £ZBCD =%

Adding, we get

ZCBP + £BCP = %-AC +—;—— LA

, , = ZBCD = 90° - 65° = 25°
sl T
+24 +2A A
=—;—(4A+ £B+4C)+%4A
] 1 -y (
=—x180°+—ZA =90°+—ZA ;
2 2 2

But in ABPC,
ZBPC = 180° — (CBP + £BCP)

= 180" ——[90“ = . AA]
- (i) Similarly, ZABD = 90°

1 1 — Z/ABC + ZCBD =90°

=180°-90°-—ZA =90°-—ZA
" 2 =  55°+ZCBD=90°
(if) Inquadrilateral ABPC, et /CBD = 00° — 5§5° = 3§
ZA + Z/BPC = ZA +90° £tk (iii) In AABC,
- /BAC + ZABC + ZACB = 180°
=90°+ —1-AA (Angles of a triangl
2

— /BAC + 55°+ 65° = 180°
= ZBAC + 120° = 180°

= ZBAC=180°-120°
ZBAC = 60°

-~ I 1s the incentre of AABC

But, it is not equal to 180°
. ABPC is not a cyclic quadrilateral.

In the given figure, I is the incentre of
AABC, Al produced meets the
circumcircle of AABC at D ; ZABC =
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(iv)

Sol.
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. I lies on the bisector of ZBAC

0

= 30°

60
ZBAl = ZCAI'= 5

Or ZBAD = ZCAD = 30°
- 1lies on the angle bisector of ZACB

(1] 0
P e
2

ZACI =

Now, ZDCI = ZACD - ACI Sol.

A 57 57-5°
: 2 2
-~ I lies on the angle bisector of ZABC

]

555 €
= /IBC === =27'%°

Now, in ABIC,
ZBIC + ZICB + ZIBC = 180°

| (Angles of a triangle)
— ZBIC +.(32:5% 1 27a3)= 180°
ZBIC + 60° = 180°
= ZBIC = 180° — 60° = 120° Ans.

EXERCISE 20 (B)

=

. In the given figure, arc AC and arc BD

are two equal arcs of a circle. Prove
that chord AB and chord CD are parallel.

Q. 3.

(7)
(i7)

(i)
Given. In a circle, arc AC = arc BD.
AB and CD arc joined.

To prove. AB || CD

Construction. Join AD.

Proof. arc AC = arc BD.
ZADC = £ZBAD

(Equal arcs subtends equal angles at the
circumference)

(given)

Arundeep’s Foundation Math-X

But, these are alternate angles
.. AB|CD
Hence proved.

. Prove that the angle suBtended at the

centre of a circle, is bisected by the
radius passing through the mid-point of
the arc.

Given. An arc AB of the circle which
subtend ZAOB at the centre. C is the
mid-point of arc AB, OC is joined.

A
C

To prove. ZAOC = ZBOC
Proof. .- C is the mid-point of arc AB.
.. arc AC = arc BC

But these subtends ZAOC and ZBOC
at the centre

.. ZAOC = £ZB0OC
Hence, OC is the bisector of ZAOB
Hence proved.

In the given figure, P is the mid-point of
arc APB and M is the mid-point of chord
AB of a circle with centre O. Prove that:

PM L AB;
PM produced will pass through the

centre O ;

PM produced will bisect the major arc
AB.
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Sol. Given. P is the mid-point of arc APB
and M is the mid-point of chord AB of
the circle with centre O.

: P
To prove. (i) PM L AB

(if) PM produced will pass through the
centre O.

(iii) PM produced_will bisect the major arc
AB.

Construction. Produce PM to join the
circle at N. Join AO, BO.

Proof. .. P is the mid-point of arc AB
.. Arc AP = arc PB
. LZAOP=%P0OB
= ZAOM = ZBOM
(i) Now, in AOAM and OBM,

OM = OM (Common)
OA=0B (Radii of the same
| circle)

ZAOM = £ZBOM (Proved)

. AOAM = AOBM (S.A.S. axiom)
.. ZAMO = £ZBMO (cp.c.l.)

But, ZAMO + ZBMO = 180°
(Linear pair)
. ZAMO = ZBMO = 90°
Hence, OM or MP L AB.
(if) .- ZOMA + ZAMP =90° + 90° = 180°

.. PMO is a straight line. Which is
passing through O.

(iii) - PON is the diameter of the circle
. arc PAN = arc PBN
= arc PAN — arc AP = arc PBN — arc
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Sol.
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PB (.. arc AP = arc PB)
=> arc AN = arc BN
Hence, N bisects major arc AB
Hence proved.

. Prove that in a cyclic trapezium, the non-

parallel sides are equal.

. Given. ABCD is a cyclic trapezium in

which AB || DC

To prove. AD =BC

Construction. Join BD
Proof. - AB || DC (given)
-. ZABD = ZCDB (Alternate angles)

But these are the angles subtended by
the arcs AD and BC respectively

arc AD = arc BC
. chord AD = chord BC
(Equal arcs make equal chords).
Hence, AD =BC
Hence proved.

P is a point on a circle with centre O. If
P is equidistant from the two radii OA
and OB, prove that arc AP = arc BP.

Given. A circle with centre O and P is a
point on the circle. OA and OB are two
radii and PL 1 OA, PM 1L OB. Such
that OL = OM.

A
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To prove. arc AP = arc PB
Construction. Join PO
Proof. In right AOLP and AOMP,

Hyp. OP = OP (Common)
1 Side PL =PM ()
ni ©. AOLP = AOMP  (RH.S. axiom)
:. ZLOP = ZMOP (c.p-c.t.)

or ZAOP = ZBOP
.. arc AP = arc PB
(Equal arcs subtend equal angles at the centre)

Hence proved.

In the given figure, two chords AC and
BD of a circle intersect at E. If arc
AB = arc CD. prove that : BE = EC and
AE =ED.

Q. 6.

en) §

i)
b

Sol. Given. In the figure, two chords AC
and BD of a circle intersect each other
at E inside the circle. Arc AB = arc CD.

A

0.1
(A

I
110

ieh

To prove. BE = EC and AE = ED
Construction. Join AB and CD.
Proof. .- Arc AB =arc CD (Given)
». Chord AB = chord CD

Now, in AAEB and ACED,
AR =CD

ZBAE = ZCDE

ZABE = ZECD

(Angle in the same-segment)

(Proved)

s, AAEB = ACED (A.S.A. axiom)
BE =EC (c.pie.t.)
and - AE =ED (Cpc.t:)

Hence proved,

Q. 7. In the given figure, two chords AB

and CD of a circle intersect at a point
P. If AB = CD. Prove that : arc AD =
arc CB.

. D

\]

C

Sol. Given. Two chords AB and CD of a
circle intersect each other at P inside the
circle and AB = CD.

To prove. arc AD = arc CB
Proof. ‘. AB =CD (Given)
.. Minor arc AB = Minor arc CD

Subtracting arc BD from both sides,
Minor arc AB — arc BD = Minor arc
CD - arc BD

=> arc AD = arc CB
Hence proved.

Q. 8. Iftwo sides of a cyclic quadrilateral are
parallel, prove that :

(i) its other two sides are equal.
(i) its diagonals are equal.

Sol. Given. ABCD is a cyclic quadrilateral in
which AC and BD are its diagonal and
AB || DC.

Downloaded from https:// www.studiestoday.com



Downloaded from https:// www.studiestoday.com

/

To prove.
() AD =BC (ii) AC=BD.
Proof. In quadrilateral ABCD,

AB || DC (given)
.. ZCAB = ZDCA (Alternate angles)
&arc BC =arc AD

(Equal arcs subtends equal angles at the
circumference of a circle)

.. AD=BC
(Equal arcs. have equal chords)
Now, in AABC and AADB,
AB=AB (Common)
BC=AD (Proved)

£LACB=ZADB
| (Angles in the same segment)
.. AABC=AADB (S.A.S. axiom)
AC = BD. LC.pie.t.)
Hence proved.

. In the given figure, AB, BC and CD are

equal chords of a circle with centre O
and AD is a diameter.

If ZDEF = 110°, find

(i) LAEF (i) LFAB.
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(ii)

Q. 10.
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Given. In the figure,

Chord AB = chord BC = chord CD

O is the centre of the circle and AD is
its diameter and ZDEF = 110°

To find (/) ZAEF and (ii) LFAB.
Construction. Join AE, BE and CE
Proof :

+AB=BC=CD

. arc AB = arc BC = arc CD

. ZAEB=/BEC=/CED

(Equal arcs subtends equal angles at
the circumference of the circle)

and ZAED =90° (Angle in a semi-circle)
.. ZAEF = ZDEF - ZAED
= 110°-90° =20°

.- ABEF is cyclic quadrilateral
2 LFAB + £ZBEF=180°%
= .. ZFAB + 50° = 180°

(+£BEE= 30° + 20° = 50°)
= ZFAB = 180° — 50° = 130° Ans.

In the given figure, ABCDE is a pentagon
inscribed in a circle. IfAB = BC = CD,
ZBCD = 110° and ZBAE = 120°, find
(i) £ABC (ii) £CDE

(iif) ZAED

(iv) ZEAD.
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Sol. ABCDE is a pentagon inscribed in a (iif) ZAED = 35° + 35°+35°=105°

circle, AB=BC=CD and ZBCD=110°
and ZBAE = 120°.

Join BE, CE and AD
(/) In cyclic quadrilateral EBCD,
' ZBCD = 1108

.. ZBED = 180°—-110°=70°

BC=CD=AB
.. arc BC = arc CD = arc AB -
70°
2
and ZAEB =35° (.AB=BC=
CD) Sol

= 35°

R Y BEC =

(i) Incyclic quadrilateral AECB,
ZAEC + ZABC = 180°
= 70°+ ZABC = 180°
= ZABC = 180° — 70° = 110°
In AABE, -
ZAEB+ ZABE + ZEAB =180°
—  35°+ ZABE + 120° = 180°

— v ABE +155%=-180°
= ZABE = 180° - 155° =25°
.. ZEBC= ZABC - ZABE
= )P OB0 = g5

Now, in cyclic quadrilateral EBCD,
ZEBC + ZCDE = 180°
= 85°+ ZCDE = 180°
e ZCDE = 180° — 85°
.. ZCDE = 95°

Q. 11.

(iv) Incyclic quadrilateral ABCD,

ZDAB + ZBCD = 180°

= ZDAB + 110° = 180°

= ZDAB = 180° - 110° = 70°
But ZEAB =120°

LaZBAD = 1205 — 707= 5U° Ans,

In the given figure, AABC is an isosceles
triangle inscribed in a circle with centre
O. If AB = AC, prove that : AP bisects
ZBPC.

Given. ABC is an isosceles triangle
inscribed in a circle with centre O.

AB=AC

To prove. AP bisects ZBPC.
Construction. Join OB and OC.
Proof. . AB=AC

- arc AB =arc AC

= ZLAOB=ZAOC

(Equal arcs subtends equal angles at
the centre)
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Q. 12.

Downloaded from https

.» Arc AB subtends ZAOB at the centre
and ZAPB at the remaining part of the
circle.

ZAOB =2 ZAPB
Similarly, ZAOC =2 ZAPC
+ ZAOB = ZAOC
s 2ZAPB =2ZAPC
= ZAPB = ZAPC
.. AP is the bisector of ZBPC

Hence proved.

In the given figure, AB is a side of a
regular 6-sided polygon and AC is a side
of a regular 8-sided polygon inscribed
in a circle with centre O.

Find :
(i) £ZAOB
(iii) ZABC.

(i) ZACB

Downloaded from https:// www.studiestoday.com

Sol.

(1)

(i1)

(ii7)

' ==atgdiestoday.com . :
I 330 I Arundeep’s Foundation Math-X

AB is the side of a regular 6-sided
polygon inscribed in a circle with centre

O and AC is the side of regular 8-sided |

polygon. |

The side AB subtends ZAOB at the
centre and side AC subtends ZAOC at
the centre.

360°

Now, ZAOB = = 60°

Arc AB subtends ZAOB at the centre
and ZACB at the remaining part of the

“circle.
- ZAOB=2/ACB
— /ACB = -;-AAOB - % x 60°= 30°
(4]
ZAOC = 3630 - 45°

Now, arc AC subtends ZAOC at the
centre and ZABC at the remaining part
of the circle

5 ZADC =2 2800

1
= ZABC = 5‘ ZAOC

45°

DZENBO= > = 22-5°

= 22°30" Ans.
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