Chapter 20

Angle Properties of A Circle

POINTS TO REMEMBER

1. Some Important Theorems.

Theorem 1. The angle subtended by an arc of a circle at the centre is double the angle subtended by it at any point on the remaining part of the circle.

Given. A circle with centre O and an arc AB subtends ∠AOB at the centre and ∠ACB at any point C on the remaining part of the circle.

To prove. $\angle AOB = 2 \angle ACB$.

Construction. Join CO and produce it to some point D.

Proof.

Statement	Reason
1. In ΔAOC,	energy of a circle with Centre Chandles
OA = OC	Radii of the same circle.
$\Rightarrow \angle OAC = \angle OCA$ (I)	Angles opposite to equal sides of a Δ are equal.
2. ∠AOD = ∠OCA + ∠OCA	Ext. angle of a Δ = Sum of its int. opp. $\angle s$.
= \(\text{OCA} + \(\text{OCA} \)	Using (I).
= 2∠OCA(II)	
3. Similarly,	
$\angle BOD = 2 \angle OCB$ (III)	
4. In figure (i),	
$\angle AOD + \angle BOD = 2 \angle OCA + 2 \angle OCB$	Adding corresponding sides of (II) and (III).
$= 2 (\angle OCA + \angle OCB) = 2 \angle ACB$	
$\therefore \angle AOB = 2 \angle ACB.$	

305

In Figure (iii),

 $\angle AOD + \angle BOD = 2 \angle OCA + 2 \angle OCB$

=2 \(\alpha CB

 \therefore Reflex \angle AOB = 2 \angle ACB.

In Figure (ii),

 $\angle BOD - \angle AOD = 2 \angle OCB - 2 \angle OCA$

 $= 2 (\angle OCB - \angle OCA) = 2 \angle ACB$

 \therefore \angle AOB = 2 \angle ACB

Adding the corresponding sides of (II) and (III).

Subtracting the corresponding sides of (III) and (II).

Hence, $\angle AOB = 2 \angle ACB$.

Theorem 2. Angles in the same segment of a circle are equal.

Given. A circle with centre O and two angles ∠ACB and ∠ADB in the same segment of the circle.

To prove. $\angle ACB = \angle ADB$.

Construction. Join OA and OB.

Proof.

Proof.	
Statement	Reason
In Fig. (I):	
1. Arc AB subtends ∠AOB at the centre and	Congruetion Join OA and OB
∠ACB at a point C of the remaining part	Press.
of the circle.	Statement
∴ ∠AOB = 2∠ACB(I)	Angle at the centre is double the angle at any point on remaining part of the circle.
2. Arc AB subtends ∠AOB at the centre and	TARREST ADV - STEEL STEE
∠ADB at a point D on the remaining part	CO STATE OF
of the circle.	
$\therefore \angle AOB = 2 \angle ADB \qquad(II)$	Same as above.
3. 2 ∠ACB = 2 ∠ADB	From (I) and (II).
∴ ∠ACB = ∠ADB	Manus of errors shirt stated as a coale.
4. Similarly, in Fig. (II):	To A OB in a diameter
$\angle ACB = \angle ADB = \frac{1}{2} \text{ reflex } \angle AOB$	Honce are AR is a semi-duck
· /ACB = /ADB	

Hence, the angles in the same segment of a circle are equal.

Theorem 3. The angle in a semi-circle is a right angle.

Given. A semi-circle ACB of a circle with centre O.

To prove. $\angle ACB = 90^{\circ}$.

Proof.

Statement	Reason
1. Arc AB subtends ∠AOB at the centre and	Handel & ADB = 23 A CB
∠ACB at a point C on the remaining part	
of the circle.	o moustage sums our ut splang "7 margand"
∴ ∠AOB = 2 ∠ACB	Angle at the centre is double the angle at any point on remaining part of the circle.
$\Rightarrow \angle ACB = \frac{1}{2} \angle AOB$ (I)	Construction, Join OA and OB
2. ∠AOB = 180°(II)	AOB is a straight line.
3. $\angle ACB = \left(\frac{1}{2} \times 180^{\circ}\right) = 90^{\circ}$	From (I) and (II).

Hence, the angle in a semi-circle is right angle.

Theorem 4 (Converse of Theorem 3). If an arc of a circle subtends a right angle at any point on the remaining part of the circle, then the arc is a semi-circle.

Given. A circle with centre O and an arc AB subtending \angle ACB at a point C on the remaining part of the circle such that \angle ACB = 90°.

To prove. Arc AB is a semi-circle.

Construction. Join OA and OB.

Proof.

Statement	Reason
1. Arc AB subtends ∠AOB at the centre and	MINE ZAOBE ZEACB
∠ACB at a point C on the remaining part	
of the circle.	Contrained ait in 80A guardus to A TAN in 18
∴ ∠AOB = 2 ∠ACB(I)	Angle at the centre is double the angle at a point on the remaining of the circle.
2. ∠ACB = 90°(II)	Given.
3. $\angle AOB = (2 \times 90^{\circ}) = 180^{\circ}$	From (I) and (II).
⇒ AOB is a straight line.	WIAN BOAY
⇒ AOB is a diameter	Chord AB passes through centre O.
⇒ Arc AB is a semi-circle.	BOXX OF BOX - S BOXX - SON - 1

Hence, arc AB is a semi-circle.

Theorem 5. The opposite angles of a quadrilateral inscribed in a circle are supplementary.

OR

The sum of the opposite angles of a cyclic quadrilateral is 180°.

Given. A quadrilateral ABCD inscribed in a circle with centre O.

To prove. $\angle ADC + \angle ABC = 180^{\circ}$

and $\angle BAD + \angle BCD = 180^{\circ}$

Construction. Join OA and OC.

Statement

Proof.

1. Arc ABC subtends ZAOC at the centre and	
∠ADC at a point D on the remaining part	Okasana.
of the circle.	
∴ ∠AOC = 2 ∠ADC	
1	A 1 441 and in double the engl
$\Rightarrow \angle ADC = \frac{1}{2} \angle AOC$ (I)	Angle at the centre is double the angle

2. Similarly, major arc CDA subtends reflex ∠AOC at the centre and ∠ABC at a point B on the remaining part of the circle.

 \therefore reflex $\angle AOC = 2 \angle ABC$

⇒
$$\angle ABC = \frac{1}{2} \text{ reflex } \angle AOC$$
 ...(II)

3. Adding (I) and (II), we get

$$\angle ADC + \angle ABC = \frac{1}{2} \angle AOC$$

+ $\frac{1}{2}$ reflex $\angle AOC$
= $\frac{1}{2} (\angle AOC + \text{reflex } \angle AOC)$
= $(\frac{1}{2} \times 360^{\circ}) = 180^{\circ}$

4. Similarly, $\angle BAD + \angle BCD = 180^{\circ}$.

Angle at the centre is double the angle at any point on remaining part of the circle.

Same as above

Reason

 $(\angle AOC + reflex \angle AOC)$

= sum of the angle around a point O = 360°

Hence, the opposite angles of a cyclic quadrilateral arc supplementary

Theorem 6. (Converse of Theorem 5). If a pair of opposite angles of a quadrilateral are supplementary, then the quadrilateral is cyclic.

Given. A quadrilateral ABCD is which $\angle B + \angle D = 180^{\circ}$.

To prove. ABCD is a cyclic quadrilateral.

Construction. If possible, let ABCD be not a cyclic quadrilateral. Draw a circle passing through three non-collinear points A, B, C. Suppose this circle meets CD or CD produced at D', as shown in Fig. (i) and Fig. (ii) respectively, Join D'A.

Proof.

Statement	Reason
1. $\angle B + \angle D = 180^{\circ}$	Given.
2. $\angle B + \angle D' = 180^{\circ}$	ABCD' is a cyclic quadrilateral and so its opposite ∠s are supplementary.
3. $\angle B + \angle D = \angle B + \angle D'$	From 1 and 2.
$\Rightarrow \angle D = \angle D'$	OHAN S = DOALLASTER
4. But, this is not possible	An exterior angle of a triangle is never equal to its int. opp. angle.
Our supposition is wrong.	- A delicate Office Office Office of State of St

Hence, ABCD is a cyclic quadrilateral.

Theorem 7. The exterior angle of a cyclic quadrilateral is equal to the interior opposite angle.

Given. A cyclic quadrilateral whose side AB is produced to a point E.

To prove. $\angle CBE = \angle ADC$

Proof.

Statement	Reason
1. ∠ABC + ∠ADC = 180°	ABCD is a cyclic quadrilateral and so the sum of
	its opp. $\angle s$ is 180°.
2. ∠ABC + ∠CBE = 180°	ABE is a straight line.
3. $\angle ABC + \angle ADC = \angle ABC + \angle CBE$	From 1 and 2.
⇒∠ADC = ∠CBE	∠ABC is common to both sides.

Hence, the exterior angle of a cyclic quadrilateral is equal to the interior opposite angle.

2. Arc Properties of Circles (Theorems):

Theorem 1. In equal circles (or in the same circle), if two arcs subtend equal angles at the centre, they are equal.

Given. Two equal circles C_1 and C_2 with O and O' as their centres respectively. \widehat{AB} subtends $\angle AOB$ and \widehat{CD} subtends $\angle CO'D$ such that $\angle AOB = \angle CO'D$.

To Prove : $\widehat{AB} = \widehat{CD}$

Proof.

Statement	Reason
1. Place circle C ₁ on circle C ₂ such that	
O falls on O' and OA falls along O'C.	To prove AB = CD . All seems of
2. Then, A falls on C and OB falls along O'D.	OA = O'C (Radii of equal circles).
Renzon	$\angle AOB = \angle CO'D$ (Given).
3. Clearly, B falls on D.	OB = O'D (Radii of equal circles).
:. AB completely coincides with CD.	A falls on C, B falls on D and AB falls along CD, as circles are equal.

Hence, $\widehat{AB} = \widehat{CD}$.

Theorem 2. (Converse of Theorem 1).

In equal circles (or in the same circle), if two arcs are equal, they subtend equal angles at the centre.

Given. Two equal circles C_1 and C_2 with O and O' as their respective centres such that $\widehat{AB} = \widehat{CD}$.

To prove. $\angle AOB = \angle CO'D$.

To Proof.

Statement	Reason
1. Place circle C ₁ on circle C ₂ such that	
A falls on C, AO falls along CO' and	
AB falls on CD.	A SELECTION OF A SELECTION OF DEC. S.
2. Then, O falls on O' and B falls on D.	AO = CO' (Radii of equal circles) and AB = CD
∴ OB falls on O'D.	(Given).
3. Sector AOB completely coincides with	In this case. AB and CD are semi-circles
sector CO'D.	A falls on C, O falls on O' and B falls on D.
∴ ∠AOB = ∠CO'D.	

Hence, $\angle AOB = \angle CO'D$.

Theorem 3. In equal circles (or in the same circle), if two chords are equal, they cut off equal arcs.

Given. Two equal circles C_1 and C_2 with centres O and O' respectively. And, chord AB = chord CD.

To prove. $\widehat{AB} = \widehat{CD}$ Proof.

Statement	Reason
Case I. When \widehat{AB} and \widehat{CD} are Minor Arcs 1. In $\triangle OAB$ and $\triangle O'CD$,	Contract of the Contract of th
(i) OA = O'C	Radii of equal circles.
(ii) OB = O'D	Radii of equal circles.
(iii) AB = CD	Given.
2. ∴ ΔOAB ≅ ΔO'CD	SSS-axiom of congruency.
⇒∠AOB = ∠CO'D	c.p.c.t.
$\Rightarrow \widehat{AB} = \widehat{CD} \qquad(1)$	In equal circles, two arcs subtending equal $\angle s$ at the centre, are equal.
Case II. When \widehat{AB} and \widehat{CD} are Major Arcs	Displace COON WEONS Sweet of the
In this case, BA and DC are Minor Arcs.	2003301
$\therefore AB = CD \Rightarrow \widehat{BA} = \widehat{DC}$	Chord AB = chord BA, chord CD = chord DC
$\Rightarrow \widehat{BA} = \widehat{DC}$	Result being true for Minor Arcs
$\Rightarrow \widehat{AB} = \widehat{CD}$	Equal arcs subtracted from equal circles give equal
AO = CO (Radif of hope of choice) end AB Li	arcs.
Case III. When AB and CD are diameters	OBject Objects on O'D, 122 P. S. Off St.
In this case, \widehat{AB} and \widehat{CD} are semi-circles.	Ablaitanis ilus garaiqmas 80 Apobas E
$\therefore \widehat{AB} = \widehat{CD}$	Semi-circles of equal circles are equal.

Hence, chord $AB = \text{chord } CD \Rightarrow AB = CD$.

Theorem 4 (Converse of Theorem 3).

In equal circles (or in the same circle), if two arcs are equal, then their chords are equal. Given. Two equal circles C_1 and C_2 with centres O and O' respectively and $\widehat{AB} = \widehat{CD}$.

To prove. Chord AB = chord CD.

Construction. Join OA, OB, O'C and O'D.

Proof.

Proof.	- AGINLANDA
Statement	Reason
Case 1. When \widehat{AB} and \widehat{CD} are Minor Arcs	ZOAB-ZOBA
1. $AB = CD \Rightarrow \angle AOB = \Rightarrow \angle CO'D(I)$	Equal arcs of equal circles subtend equal
	angles at the centre.
2. In ΔOAB and ΔO'CD,	Similarly, in AOBC.
(i) OA = O'C	Radii of equal circles.
(ii) OB = O'D	Radii of equal circles.
$(iii) \angle AOB = \angle CO'D$	From (I).
∴ ΔOAB ≅ ΔO′CD	SAS-axiom of congruency.
\Rightarrow Chord AB = chord CD(II)	c.p.c.t.
Case 2. When \widehat{AB} and \widehat{CD} are Major Arcs	remaining part of the carde
In this case, BA and DC are minor arcs.	LARGE 2 ZABC
Now, $\widehat{AB} = \widehat{CD} \Rightarrow \widehat{BA} = \widehat{DC}$	-28 70° = 140° Ams
$\Rightarrow \widehat{BA} = \widehat{DC}$	Q. 2. In the given figure. O is the centre of
\Rightarrow BA = DC	the sincle and EAOC = 130°. Find
\Rightarrow AB = CD	Chord BA = chord AB, and chord DC
ary summer only to upant the Art Art	= chord CD.
Case 3. When \widehat{AB} and \widehat{CD} are semi-circles	s The state of the
In this case, AB and CD are diameters.	Bearing the Assessment of the Sample of the
: AB = CD.Diameters of equal circles are eq	ual.

Hence, in all the cases, $\widehat{AB} = \widehat{CD} \Rightarrow \text{chord AB} = \text{chord CD}$.

EXERCISE - 20 (A)

Q. 1. In the given figure, O is the centre of the circle; $\angle OAB = 30^{\circ}$ and $\angle OCB =$ 40°. Calculate ∠AOC.

Sol. Join OB.

Now in $\triangle AOB$,

OA = OB (Radii of the same circle)

(Opposite angles to equal sides)

$$\therefore \Rightarrow \angle OBA = 30^{\circ} \quad (\because \angle OAB = 30^{\circ})$$

Similarly, in $\triangle OBC$,

$$OB = OC$$

$$\therefore \Rightarrow \angle OBC = \angle OCB = 40^{\circ}$$

Adding, we get

$$\angle OBA + \angle OBC = 30^{\circ} + 40^{\circ} = 70^{\circ}$$

Now, arc AC subtends ∠AOC at the centre of the circle and ∠ABC at the remaining part of the circle.

$$\therefore \angle AOC = 2 \angle ABC$$

$$= 2 \times 70^{\circ} = 140^{\circ}$$
 Ans.

Q. 2. In the given figure, O is the centre of the circle and $\angle AOC = 130^{\circ}$. Find ∠ABC.

Sol. In the figure,

:. Reflex
$$\angle AOC = 360^{\circ} - 130^{\circ} = 230^{\circ}$$

Now, major arc AC subtends ∠AOC at the centre and ∠ABC at the remaining part of the circle.

$$\therefore$$
 \angle AOC = 2 \angle ABC.

$$\Rightarrow \angle ABC = \frac{1}{2} \angle AOC$$

$$=\frac{1}{2}\times 230^{\circ}=115^{\circ}$$
 Ans.

- Q. 3. In the given figure, O is the centre of the circle and $\angle AOB = 110^{\circ}$. Calculate:

 - (i) $\angle ACO$ (ii) $\angle CAO$.

Sol. In the figure,

$$\angle AOB = 110^{\circ}$$

(i) Now, arc AB subtends ∠AOB at the centre and ∠ACB at the remaining part of the circle

$$\Rightarrow \angle ACB = \frac{1}{2} \angle AOB = \frac{1}{2} \times 110^{\circ} = 55^{\circ}$$

or $\angle ACO = 55^{\circ}$

(ii) Now in $\triangle OAC$,

OA = OC (Radii of the same circle)

(Angles opposite to equal sides)

$$=55^{\circ}$$

Q. 4. In the given figure, AB | DC and \(\subseteq BAD \) = 100°. Calculate:

(i) ∠BCD

(ii) ∠ADC

(iii) ∠ABC. Downloaded from https://www.studiestoday.com

Sol. In the figure, ABCD is a cyclic quadrilateral.

AB \parallel DC and \angle BAD = 100°

- (i) $\angle BAD + \angle BCD = 180^{\circ}$ (Sum of the opposite angles of a cyclic quadrilateral) \Rightarrow 100° + \angle BCD = 180°
 - $\angle BCD = 180^{\circ} 100^{\circ} = 80^{\circ}$
- (ii) : DC || AB $\therefore \angle BAD + \angle ADC = 180^{\circ}$

(Sum of angles on the same side of a transversal)

$$\Rightarrow$$
 100° + \angle ADC = 180°

$$\Rightarrow \angle ADC = 180^{\circ} - 100^{\circ} = 80^{\circ}$$

(iii) $\angle ABC + \angle ADC = 180^{\circ}$ (Sum of opposite angles of a cyclic quadrilateral)

$$\Rightarrow \angle ABC + 80^{\circ} = 180^{\circ}$$

$$\Rightarrow$$
 $\angle ABC = 180^{\circ} - 80^{\circ} = 100^{\circ} \text{ Ans.}$

- Q. 5. In the given figure, $\angle ACB = 52^{\circ}$ and $\angle BDC = 43^{\circ}$. Calculate:
 - $(i) \angle ADB$ $(ii) \angle BAC$

(iii) ∠ABC.

Sol. In the figure,

(i)
$$\angle ADB = \angle ACB$$

(Angles in the same segment) $= 52^{\circ}$ (: $\angle ACB = 52^{\circ}$)

(ii)
$$\angle BAC = \angle BDC$$

(Angles in the same segment)

(iii) In ΔABC,

$$\angle ABC + \angle BCA + \angle BAC = 180^{\circ}$$

(Angles of a triangle)

$$\Rightarrow \angle ABC + 52^{\circ} + 43^{\circ} = 180^{\circ}$$

$$\Rightarrow$$
 $\angle ABC + 95^{\circ} = 180^{\circ}$

$$\Rightarrow$$
 $\angle ABC = 180^{\circ} - 95^{\circ} = 85^{\circ}$

Hence, $\angle ABC = 85^{\circ}$ Ans.

- Q. 6. In the given figure, O is the centre of the circle, If $\angle AOB = 140^{\circ}$ and $\angle OAC$ = 50°, Calculate:
 - (i) ∠ABC

(ii) ∠BCO

(iii) ∠OAB (iv) ∠BCA

Sol. O is the centre of the circle $\angle AOB = 140^{\circ}, \angle OAC = 50^{\circ}$

Join OC and AB

In AOAC,

OA = OC (Radii of the same circle)

$$\therefore$$
 \angle OCA = \angle OAC = 50°

 $(:: \angle OAC = 50^{\circ})$

But in AAOC,

$$\angle AOC + \angle OAC + \angle ACO = 180^{\circ}$$
(Angles of a triangle)

$$\Rightarrow \angle AOC + 50^{\circ} + 50^{\circ} = 180^{\circ}$$

$$\Rightarrow$$
 $\angle AOC + 100^{\circ} = 180^{\circ}$

$$\Rightarrow \angle AOC = 180^{\circ} - 100^{\circ} = 80^{\circ}$$

$$\therefore$$
 $\angle BOC = 140^{\circ} - 80^{\circ} = 60^{\circ}$

 (i) Now, arc AC subtends ∠AOC at the centre and ∠ABC at the remaining part of the circle

$$\therefore \angle AOC = 2 \angle ABC$$

$$\Rightarrow \angle ABC = \frac{1}{2} \angle AOC = \frac{1}{2} \times 80^{\circ} = 40^{\circ}$$

(ii) In \triangle OBC, OB = OC

(Radii of the same circle)

(Angle opposite to equal sides)

But,
$$\angle BOC + \angle OBC + \angle BCO = 180^{\circ}$$

$$\Rightarrow$$
 60° + \angle BCO + \angle BCO = 180°

$$\Rightarrow 2\angle BCO = 180^{\circ} - 60^{\circ} = 120^{\circ}$$

$$\Rightarrow \angle BCO = \frac{120^{\circ}}{2} = 60^{\circ}$$

$$\Rightarrow$$
 $\angle BCO = 60^{\circ}$.

(iii) In ΔOAB,

OB = OA (Radii of the same circle)

(Angles opposite to equal sides)

But,
$$\angle AOB + \angle OAB + \angle OBA = 180^{\circ}$$

$$\Rightarrow 140^{\circ} + \angle OBA + \angle OBA = 180^{\circ}$$

$$\Rightarrow$$
 140° + 2 \angle OBA = 180°

$$\Rightarrow 2\angle OBA = 180^{\circ} - 140^{\circ} = 40^{\circ}$$

$$\therefore \angle OBA = \frac{40^{\circ}}{2} = 20^{\circ}$$

(iv)
$$\angle BCA = \angle OCB + \angle ACO$$

= $60^{\circ} + 50^{\circ} = 110^{\circ}$

Q. 7. In the given figure, $\angle BAD = 70^{\circ}$, $\angle ABD = 56^{\circ}$, $\angle ADC = 72^{\circ}$. Calculate:

Sol. In the figure; ABCD is a cyclic quadrilateral $\angle BAD = 70^{\circ}$, $\angle ABD = 56^{\circ}$ and $\angle ADC = 72^{\circ}$ Join AC

(i)
$$\angle BDC = \angle ADC - \angle ADB$$

 $= \angle ADC - \{180^{\circ} - \angle DAB - \angle ABD\}$
 $= 72^{\circ} - (180^{\circ} - 70^{\circ} - 56^{\circ})$
 $= 72^{\circ} - 180^{\circ} + 70^{\circ} + 56^{\circ}$
 $= 198^{\circ} - 180^{\circ} = 18^{\circ}$

(ii)
$$\angle BCD = 180^{\circ} - \angle BAD$$

{: ABCD is a cyclic quadrilateral}
= $180^{\circ} - 70^{\circ} = 110^{\circ}$

(iii)
$$\angle BCA = \angle ADB$$

(Angles in the same segment)
But $\angle ADB = \angle ADC - \angle BDC$

But
$$\angle ADB = \angle ADC - \angle BDC$$

= $72^{\circ} - 18^{\circ} = 54^{\circ}$

$$\therefore$$
 \angle BCA = 54° Ans.

Q. 8. In the given figure, O is the centre of the circle. If ∠ADC = 140°, find ∠BAC.

Sol. In the figure, ABCD is a cyclic quadrilateral and AOB is the diameter of the circle.

∴ ∠ABC + ∠ADC = 180° {Opposite angles of a cyclic quadrilateral}

 $\Rightarrow \angle ABC + 140^{\circ} = 180^{\circ} \Rightarrow \angle ABC = 180^{\circ} - 140^{\circ} = 40^{\circ}$ Now in \triangle ABC,

 $\angle ACB = 90^{\circ}$ (Angle in a semi-circle)

 $\angle ABC = 40^{\circ}$ (proved) But $\angle BAC + \angle ACB + \angle ABC = 180^{\circ}$

(Angles of a triangle)

 $\Rightarrow \angle BAC + 90^{\circ} + 40^{\circ} = 180^{\circ}$

 $\Rightarrow \angle BAC + 130^{\circ} = 180^{\circ} \Rightarrow \angle BAC = 180^{\circ} - 130^{\circ}$

 \therefore \angle BAC = 50° Ans.

Q. 9. In the given figure, O is the centre of the circle and ΔABC is equilateral. Find
(i) ∠BDC (ii) ∠BEC.

Sol. In the figure,

O is the centre of the circle and ΔABC is an equilateral triangle

(i) $\therefore \angle A = \angle ABC = \angle ACB = 60^{\circ}$

 $\angle BAC = \angle BDC$ (Angles in the same segment)

∴ ∠BDC = 60°

(ii) : ABEC is a cyclic quadrilateral

 $\therefore \angle A + \angle BEC = 180^{\circ} \Rightarrow 60^{\circ} + \angle BEC = 180^{\circ}$

 $\Rightarrow \angle BEC = 180^{\circ} - 60^{\circ} = 120^{\circ} \text{ Ans.}$

Q. 10. (i) In the figure, O is the centre of the circle and $\angle AOC = 160^{\circ}$.

Prove that: $3 \angle y - 2$ $\angle x = 140^{\circ}$.

(ii) In the given figure, O is the centre of the circle,

 $\angle BAD = 75^{\circ}$ and chord BC = chord CD. Find (a) $\angle BOC$ (b) $\angle OBD$ (c) $\angle BCD$.

Sol. (i) Given. O is the centre of the circle $\angle AOC$ = 160°, $\angle ABC = \angle x$ and $\angle ADC = \angle y$.

Fo Prove. $3\angle y - 2\angle x = 140^{\circ}$

Proof. :: $\angle AOC$ + reflex $\angle ADC$ = 360° (Angles at a point)

 \Rightarrow 160° + Reflex $\angle ADC = 360°$

 \Rightarrow Reflex \angle ADC = 360°- 160° = 200° Now arc. ADC subtends \angle AOC at the centre and ∠ABC at the remaining part of the circle

$$\therefore$$
 $\angle AOC = 2x \Rightarrow 2x = 160^{\circ}$

$$\Rightarrow x = \frac{160^{\circ}}{2} = 80^{\circ}$$
Similarly, reflex $\angle ADC = 2y$

$$\Rightarrow 2y = 200^{\circ} \Rightarrow y = \frac{200^{\circ}}{2} = 100^{\circ}$$
Now, L.H.S. = $3\angle y - 2\angle x$
= $3 \times 100^{\circ} - 2 \times 80^{\circ}$
= $300^{\circ} - 160^{\circ} = 140^{\circ} = \text{R.H.S.}$

Hence Proved.

(ii) In the figure, O is the centre of the circle, ∠BAD = 75°, chord BC

= chord CD Join BD, OC

∴ arc BCD subtends
∠BOD at the centre and
∠BAD at the remaining
part

$$\therefore$$
 ∠BOD = 2 × 75° = 150°

$$:: BC = CD$$
 (given)

{Equals chords subtend equal angles at the centre}

$$\therefore \angle BOD = \angle BOC + \angle COD$$
$$= \angle BOC + \angle BOC = 2 \angle BOC$$

$$\Rightarrow 2 \angle BOC = 150^{\circ} \Rightarrow \angle BOC = \frac{150^{\circ}}{2} = 75^{\circ}$$

(b)
$$\angle OBD = \frac{1}{2} [180^{\circ} - \angle BOD]$$

$$= \frac{1}{2} (180^{\circ} - 150^{\circ}) = \frac{1}{2} \times 30^{\circ} = 15^{\circ}$$

(c) ∠BCD + ∠BAD = 180° {opposite angles of a cyclic quadrilateral}

 $\Rightarrow \angle BCD + 75^{\circ} = 180^{\circ}$

 $\Rightarrow \angle BCD = 180^{\circ} - 75^{\circ}$ $= 105^{\circ}$

Q. 11. In the given figure, O is the centre of the circle. A If ∠CBD=25° and ∠APB = 120°, find ∠ADB.

Sol. In the figure,

O is the centre of the circle

 \angle CBD = 25° and

 $\angle APB = 120^{\circ}$

In ΔCPB,

Ext. ∠APB

$$= \angle CBD + \angle BCP$$

120°

100°

$$\therefore$$
 $\angle ADB = \angle BCA = 95^{\circ}$

Hence, $\angle ADB = 95^{\circ}$ Ans.

Q. 12. (i) In the given

figure, AOB is a

diameter of the circle

with centre O and

$$\angle AOC = 100^{\circ}$$
,

find ∠BDC.

(ii) In the given figure,

O is the centre of

the circle:

$$\angle AOD = 40^{\circ}$$
 and

$$\angle BDC = 100^{\circ}$$
.

Find ∠OCB.

Sol.(i) In the figure,

AOB is the diameter of the circle with centre O, $\angle AOC = 100^{\circ}$

But,
$$\angle AOC + \angle BOC = 180^{\circ}$$
 (A linear pair)

$$\Rightarrow$$
 100° + \angle BOC = 180°

$$\Rightarrow \angle BOC = 180^{\circ} - 100^{\circ} = 80^{\circ}$$

Now, arc BC subtends ∠BOC at the centre and ∠BDC at the remaining part of the circle.

$$\Rightarrow \angle BDC = \frac{1}{2} \angle BOC \Rightarrow \angle BDC = \frac{1}{2} \times 80^{\circ} = 40^{\circ}$$

Hence $\angle BDC = 40^{\circ}$ Ans.

(ii) In the figure,

O is the centre of the circle

$$\angle AOD = 40^{\circ} \text{ or } \angle AOC = 40^{\circ}$$

and $\angle BDC = 100^{\circ}$

Arc AC subtends ∠AOC at the centre and ∠ABC at the remaining part of the circle

$$\Rightarrow \angle ABC = \frac{1}{2} \angle AOC \Rightarrow \angle ABC = \frac{1}{2} \times 40^{\circ} = 20^{\circ}$$

Now, in ΔDBC,

$$\angle DCB + \angle DBC + \angle BDC = 180^{\circ}$$

(Angles of a triangle)

$$\Rightarrow \angle OCB + \angle ABC + \angle BDC = 180^{\circ}$$

$$\Rightarrow \angle OCB + 20^{\circ} + 100^{\circ} = 180^{\circ}$$

$$\Rightarrow \angle OCB + 120^{\circ} = 180^{\circ}$$

$$\Rightarrow$$
 $\angle OCB = 180^{\circ} - 120^{\circ} = 60^{\circ}$

$$\angle OCB = 60^{\circ}$$
 Ans.

Q. 13. In the figure,

AB is parallel to DC,

 $\angle BCE = 80^{\circ}$ and

 $\angle BAC = 25^{\circ}$. Find:

(i)∠CAD (ii) ∠CBD

(iii) ∠ADC

Sol. In the figure, AB || DC

$$\angle BCE = 80^{\circ}$$
 and $\angle BAC = 25^{\circ}$

BD is joined

:: ABCD is a cyclic

quadrilateral

(*i*)∴ ∠BAD

 $= \angle BCE = 80^{\circ}$

{Ext. angle of a cyclic

quadrilateral is equal to its interior opposite angle}

$$\Rightarrow \angle BAC + \angle CAD = 80^{\circ}$$

$$\Rightarrow 25^{\circ} + \angle CAD = 80^{\circ} \Rightarrow \angle CAD = 80^{\circ} - 25^{\circ}$$

$$\Rightarrow \angle CAD = 55^{\circ}$$

(ii)
$$\angle CBD = \angle CAD = 55^{\circ}$$

(Angles in the same segment)

{From (i)}

80°

(2008)

: Ref

$$(iii)$$
 :: AB || DC

(given)

and AD is its transversal

$$\therefore$$
 $\angle BAD + \angle ADC = 180^{\circ}$ (co-interior angles)

$$\Rightarrow$$
 80° + \angle ADC = 180°

$$\Rightarrow \angle ADC = 180^{\circ} - 80^{\circ} = 100^{\circ}$$

2. 14. In the given figure, O is the centre of the circle and ∠OBC = 50°. Calculate:

- Sol. In the figure, AOB is the diameter, O is the centre of the circle, ABCD is the cyclic quadrilateral, ∠OBC = 50°.
 - (i) ∴ ABCD is a cyclic quadrilateral
 ∴ ∠ABC + ∠ADC = 180°

$$\Rightarrow 50^{\circ} + \angle ADC = 180^{\circ} \implies \angle ADC = 180^{\circ} - 50^{\circ}$$

$$\angle ADC = 130^{\circ}$$

(ii) Major arc AC, subtends reflex ∠AOC at the centre and ∠ADC at the remaining part of the circle

. Reflex
$$\angle AOC = 2 \angle ADC = 2 \times 130^{\circ} = 260^{\circ}$$

 $\therefore \angle AOC = 360^{\circ} - \text{Reflex } \angle AOC$
 $= 360^{\circ} - 260^{\circ} = 100^{\circ} \text{ Ans.}$

- Q.15. In the given figure, ABDC is a cyclic quadrilateral in which $\angle CAD = 25^{\circ}$, $\angle ABC = 50^{\circ}$ and $\angle ACB = 35^{\circ}$. Calculate:
 - (i) ∠CBD (ii) ∠DAB (iii) ADB

Sol. In the figure,

$$\angle$$
CAD = 25°, \angle ABC = 50° and \angle ACB = 35°

(i) ∵ ∠CAD and ∠CBD are in the same segment of a circle

$$(:: \angle CAD = 25^{\circ})$$

(ii) In ΔABC,

$$\angle ACB + \angle ABC + CAB = 180^{\circ}$$

(Sum of angles of a triangle)

$$\Rightarrow$$
 35° + 50° + \angle CAB = 180°

$$\Rightarrow$$
 85° + \angle CAB = 180°

$$\Rightarrow$$
 $\angle CAB = 180^{\circ} - 85^{\circ} = 95^{\circ}$

$$\Rightarrow \angle CAD + \angle DAB = 95^{\circ}$$

$$\Rightarrow$$
 25° + \angle DAB = 95°

$$\angle DAB = 95^{\circ} - 25^{\circ} = 70^{\circ}$$

(iii) ∴ ∠ADB and ∠ACB are in the same segment

$$(:: \angle ACB = 35^{\circ})$$
 Ans.

Q. 16. In the figure, $\angle BAD = 65^{\circ}$, $\angle ABD = 70^{\circ}$ and $\angle BDC = 45^{\circ}$.

Find: (i) \angle BCD (ii) \angle ADB Hence, show that AC is a diameter.

Sol. (i) ABCD is a cyclic quadrilateral

$$\therefore \angle BAD + \angle BCD = 180^{\circ}$$

[Opposite angles of a cyclic quadrilateral are supplementary]

$$\Rightarrow \angle 65^{\circ} + \angle BCD = 180^{\circ}$$

$$\Rightarrow \angle BCD = 180^{\circ} - 65^{\circ} = 115^{\circ} Ans.$$

(ii) In \triangle ABD, we have

$$\angle BAD + \angle ABD + \angle ADB = 180^{\circ}$$

[Angle sum property of a Δ]

$$\Rightarrow 65^{\circ} + 70^{\circ} + \angle ADB = 180^{\circ} \Rightarrow \angle ADB$$
$$= 180^{\circ} - 65^{\circ} - 70^{\circ}$$

$$\Rightarrow \angle ADB = 180^{\circ} - 135^{\circ} \Rightarrow \angle ADB = 45^{\circ}$$
Ans.

In \triangle BCD, we have

$$\angle$$
 BDC + \angle BCD + \angle CBD = 180°

[Angle sum property of a Δ]

$$\Rightarrow$$
 45° + 115° + \angle CBD = 180°
[From (i), \angle BCD = 115°]

$$\Rightarrow$$
 \angle CBD = $180^{\circ} - 45^{\circ} - 115^{\circ}$

$$\Rightarrow \angle CBD = 180^{\circ} - 160^{\circ} \Rightarrow \angle CBD = 20^{\circ}$$

Also, $\angle ABC = \angle ABD + \angle CBD$

$$=70^{\circ} + 20^{\circ} = 90^{\circ}$$

Thus, AC is a diameter of the circle.

[: Angle in a semicircle is a right angle]

Proved.

- Q. 17. In the given figure, AB is a diameter of a circle with centre O and chord ED is parallel to AB and \(\subseteq EAB = 65^\circ.\) Calculate:
 - (i) ∠EBA
- (ii) ∠BED
- (iii) ∠BCD

Sol. In the figure,

AOB is the diameter of the circle with centre O. Chord ED \parallel AB and \angle EAB = 65°. Join EB.

(i) In \triangle AEB,

$$\angle AEB + \angle EAB + \angle EBA = 180^{\circ}$$

$$\Rightarrow$$
 90° + 65° + \angle EBA = 180°

$$\Rightarrow$$
 $\angle EBA = 180^{\circ} - 155^{\circ} = 25^{\circ}$

(ii) : ED || AB

(Angles on the same side of the transversal)

$$\Rightarrow$$
 65° + \angle AED = 180°

$$\Rightarrow$$
 $\angle AED = 180^{\circ} - 65^{\circ} = 115^{\circ}$

$$\angle BED = \angle AED - \angle AEB$$
$$= 115^{\circ} - 90^{\circ} = 25^{\circ}.$$

(iii) : EBCD is a cyclic quadrilateral

$$\Rightarrow$$
 $\angle BCD + 25^{\circ} = 180^{\circ}$

$$\Rightarrow$$
 $\angle BCD = 180^{\circ} - 25^{\circ}$

$$\angle BCD = 155^{\circ}.$$

. 18. In the given figure, ABCD is a cyclic quadrilateral whose side CD has been produced to E.

If BA = BC and \angle BAC = 46°, find \angle ADE.

Sol. In the figure,

ABCD is a cyclic quadrilateral. Its side CD is produced to E

$$BA = BC$$
 and $\angle BAC = 46^{\circ}$

In ΔABC,

$$AB = BC$$

$$\therefore \angle BAC = \angle BCA = 46^{\circ}$$

But,
$$\angle ABC + \angle BAC + \angle BCA = 180^{\circ}$$

(Angles of a triangle)

$$\Rightarrow \angle ABC + 46^{\circ} + 46^{\circ} = 180^{\circ}$$

$$\Rightarrow$$
 $\angle ABC + 92^{\circ} = 180^{\circ}$

$$\Rightarrow$$
 $\angle ABC = 180^{\circ} - 92^{\circ}$

In cyclic quadrilateral ABCD,

Ext.
$$\angle ADE = Int.$$
 opposite $\angle ABC$

- 2. 19. In the given figure, O is the centre of a circle and ABE is a straight line. If ∠CBE = 55°, find:
 - (i) ∠ADC
 - (ii) ∠ABC
 - (iii) the value of x.

Sol. In the figure,

O is the centre of the circle, ABCD is cyclic quadrilateral. ABE is a straight line and $\angle CBE = 55^{\circ}$.

$$\angle ABC + \angle CBE = 180^{\circ}$$
 (Linear pair)

$$\Rightarrow \angle ABC + 55^{\circ} = 180^{\circ}$$

$$\Rightarrow$$
 $\angle ABC = 180^{\circ} - 55^{\circ}$

$$\Rightarrow$$
 $\angle ABC = 125^{\circ}$

Now, major arc ADC subtends reflex ∠AOC at the centre and ∠ABC at the remaining part of the circle

$$x = 2 \times 125^{\circ} = 250^{\circ}$$

(i) In cyclic quadrilateral ABCD,

$$\angle ADC + \angle ABC = 180^{\circ}$$

$$\Rightarrow \angle ADC + 125^{\circ} = 180^{\circ}$$

$$\Rightarrow \angle ADC = 180^{\circ} - 125^{\circ}$$

$$\angle ADC = 55^{\circ}$$

Hence, $\angle ABC = 125^{\circ}$, $\angle ADC = 55^{\circ}$ and $x^{\circ} = 250^{\circ}$ Ans.

Q. 20. In the given figure, AB and CD are two parallel chords of a circle. If BDE and ACE are straight lines, intersecting at E, prove that ΔAEB is isosceles.

Sol. Given. In the figure,

Foundation Make, X

AB and CD are two parallel chords. BDE and ACE are two straight lines intersecting each other at E out side the circle.

To prove. ΔAEB is an isosceles triangle. Proof. ABDC is a cyclic quadrilateral

$$\therefore$$
 Ext. \angle EDC = \angle A and

Ext.
$$\angle DCE = \angle B$$

But, AB || CD

$$\therefore \angle EDC = \angle B$$

(Corresponding angles)

and $\angle DCE = \angle A$

$$\Rightarrow$$
 $\angle B = \angle A$

$$EA = EB$$

Hence, ΔAEB is an isosceles triangle.

Q. 21. In the given figure, chords AB and CD of a circle are produced to meet at O. Prove that \triangle ODB and \triangle OAC are similar. If BO = 3 cm. DO = 6 cm. and CD = 2cm, find AB.

Sol. Given. In the figure, two chords AB and CD meet at O on producing.

To prove. (i) $\triangle ODB \sim \triangle OAC$

(i) If BO = 3 cm, DO = 6 cm, and CD = 2cm, find AB.

Proof. ABDC is a cyclic quadrilateral

 \therefore Ext. $\angle BDO = Int. opposite <math>\angle A$ or **ZOAC**

Similarly, Ext. $\angle DBO = \angle C$ or $\angle OCA$ Now, in \triangle ODB and \triangle OAC,

(Common)

(Proved)

$$\frac{BO}{OC} = \frac{DO}{AO}$$

$$\Rightarrow \frac{BO}{OD + CD} = \frac{DO}{BO + AB}$$

$$\Rightarrow \frac{3}{6+2} = \frac{6}{3+AB}$$

$$\Rightarrow \frac{3}{8} = \frac{6}{3 + AB}$$

$$\Rightarrow$$
 3 (3 + AB) = 8 × 6

$$\Rightarrow 3 + AB = \frac{8 \times 6}{3} = 16$$

$$AB = 16 - 3 = 13$$
 cm. Ans

Q. 22. In the given figure, O is the centre o the circle. If $\angle AOD = 140^{\circ}$ and $\angle CAE$ = 50°. Calculate:

(ii) ∠EBD

Sol. In the figure, O is the centre of the circle $\angle AOD = 140^{\circ}$ and $\angle CAB = 50^{\circ}$

$$\angle AOD + \angle DOB = 180^{\circ}$$
 (Linear pair)

$$\Rightarrow 140^{\circ} + \angle DOB = 180^{\circ}$$

$$\Rightarrow$$
 $\angle DOB = 180^{\circ} - 140^{\circ} = 40^{\circ}$

But, OB = OD (Radii of the same circle)

(Angles opposite to equal sides) But in \triangle OBD,

321

$$\angle$$
OBD + \angle ODB + \angle BOD = 180°

$$\Rightarrow \angle OBD + \angle OBD + 40^{\circ} = 180^{\circ}$$

$$\Rightarrow$$
 2 \angle OBD = 180° - 40° = 140°

∴
$$\angle OBD = \frac{140^{\circ}}{2} = 70^{\circ}$$

(i) In cyclic quadrilateral ABDC,Ext. ∠EDB = ∠CAB = 50°

$$(:: \angle CAB = 50^{\circ})$$

(ii) $\angle EBD + \angle OBD = 180^{\circ}$ (Linear pair)

$$\Rightarrow$$
 \angle EBD + 70° = 180°

$$\Rightarrow$$
 $\angle EBD = 180^{\circ} - 70^{\circ} = 110^{\circ}$

$$\angle EBD = 110^{\circ} \text{ Ans.}$$

2. 23. In the given figure, AB is a diameter of a circle with centre O. If ADE and CBE are straight lines, meeting at E such that ∠BAD = 35° and ∠BED = 25°. Find:

(ii) ∠DBC

(iii) ∠BDC.

Sol. In the figure,

AB is the diameter of circle with centre O. ADE and CBE are straight lines meeting each other at E. \angle BAD = 35° and \angle BED = 25°. Join BD, CA and CD.

In ΔABD,

jes)

∴ ∠ADB = 90° (Angle in a semi-circle)

$$\therefore \angle BDE = 180^{\circ} - 90^{\circ} = 90^{\circ}$$

In ABED,

$$\angle DBE = 180^{\circ} - (90^{\circ} + 25^{\circ})$$

$$= 180 - 115^{\circ} = 65^{\circ}$$

But,
$$\angle$$
CBD + \angle DBE = 180°

$$\Rightarrow$$
 \angle CBD + 65° = 180°

$$\Rightarrow$$
 \angle CBD = $180^{\circ} - 65 = 115^{\circ}$

$$\therefore$$
 \angle BCD = \angle BAD,

(Angles in the same segment)

 $(:: \angle BAD = 35^{\circ})$

Now, in \triangle CBD,

$$\angle DCB + \angle DBC + \angle BDC = 180^{\circ}$$

(Angles of a triangle)

$$\Rightarrow$$
 35° + 115° + \angle BDC = 180°

$$\Rightarrow$$
 150° + \angle BDC = 180°

$$\Rightarrow \angle BDC = 180^{\circ} - 150^{\circ}$$

Hence (i) $\angle DCB = 35^{\circ}$

(ii)
$$\angle DBC = 115^{\circ}$$
 and

(iii)
$$\angle BDC = 30^{\circ}$$
. Ans.

Q. 24. In the given figure, find whether the points A, B, C, D are concyclic, when

(i)
$$x = 70$$

(ii) x = 80.

Sol. Points A, B, C and D forms a quadrilateral when

(i)
$$x^{0} = 70^{\circ}$$
,

(ii)
$$x^{\circ} = 80^{\circ}$$
 and $\angle CBE = 110^{\circ}$

(i) When
$$x^0 = 70^\circ$$
, then

$$\angle ADC = 180^{\circ} - x$$

$$= 180^{\circ} - 70^{\circ} = 110^{\circ}$$

Downloaded from https:// www.studiestoday.com

$$\therefore \angle ABC = 180^{\circ} - 110^{\circ} = 70^{\circ}$$

$$\angle ABC + \angle ADC = 70^{\circ} + 110^{\circ} = 180^{\circ}$$

Or the sum of the opposite angles of a quadrilateral is 180°

: ABCD is cyclic quadrilateral
Hence A, B, C and D are concyclic.

(ii) When $x^{\circ} = 80^{\circ}$ then $\angle ADC = 180^{\circ} - x$

$$= 180^{\circ} - 80^{\circ} = 100^{\circ}$$

and
$$\angle ABC = 180^{\circ} - 110^{\circ} = 70^{\circ}$$

$$\therefore \angle ADC + \angle ABC = 100^{\circ} + 70^{\circ} = 170^{\circ}$$

Sum of opposite angles of a quadrilateral is not equal to 180°

: ABCD is not a cyclic quadrilateral.

Hence A, B, C and D are not concyclic.

- Q. 25. In the given figure, the straight lines AB and CD pass through the centre O of the circle. If ∠AOD = 75° and ∠OCE = 40°, find:
 - (i) ∠CDE

(ii) ∠OBE.

Sol. In the figure,

Lines AB and CD pass through the centre O of the circle. $\angle AOD = 75^{\circ}$ and

∠OCE = 40°.

(i) $\angle CED = 90^{\circ}$ (Angle in a semi-circle) Now, in $\triangle CDE$,

$$\angle CDE + \angle CED + \angle ECD = 180^{\circ}$$

(Angles of a triangle)

$$\Rightarrow \angle CDE + 90^{\circ} + 40^{\circ} = 180^{\circ}$$

$$\Rightarrow$$
 $\angle CDE + 130^{\circ} = 180^{\circ}$

$$\Rightarrow$$
 $\angle CDE = 180^{\circ} - 130^{\circ}$

$$\angle CDE = 50^{\circ}$$

(ii) Now, in ΔOBD,

Ext.
$$\angle DOA = \angle CDE + \angle OBD$$

$$\Rightarrow$$
 75° = 50° + \angle OBD

$$\Rightarrow$$
 $\angle OBD = 75^{\circ} - 50^{\circ} = 25^{\circ}$ Ans.

- Q. 26. In the given figure, the two circle intersect at P and Q. If $\angle A = 80^{\circ}$ and $\angle D = 84^{\circ}$, Calcualte:
 - (i) ∠QBC

(ii) ∠BCP.

Sol. In the figure, two circles intersect eac other at P and Q

ABCD is a quadrilateral in whic $\angle A = 80^{\circ}$ and $\angle D = 84^{\circ}$. Join PQ.

AQPD is a cyclic quadrilateral.

$$\Rightarrow$$
 84° + $\angle AQP = 180°$

$$\Rightarrow \angle AQP = 180^{\circ} - 84^{\circ} = 96_{\circ}$$

Similarly, $\angle QAD + \angle QPD = 180^{\circ}$

$$\Rightarrow 80^{\circ} + \angle QPD = 180^{\circ}$$

$$\angle QPD = 180^{\circ} - 80^{\circ} = 100^{\circ}$$

Now, in cyclic quadrilateral QBCP, Ext. $\angle AQP = Int.$ opposite $\angle BCP$ and Ext. $\angle QPD = \angle QBC$

$$\angle QBC = \angle QPD = 100^{\circ}$$

and
$$\angle BCP = \angle AQP = 96^{\circ}$$
 Ans.

Q. 27. In the adjoining figure, AB = AC = CI $\angle ADC = 35^{\circ}$. Calculate:

(ii) ∠BEC

323

Sol. In the figure,

$$AB = AC = CD$$
, $\angle ADC = 35^{\circ}$
 $AC = CD$

$$\therefore$$
 \angle CAD = \angle ADC = 35°

Now, in \triangle ACD,

(i) Ext.
$$\angle ACB = \angle CAD + \angle ADC$$

= $35^{\circ} + 35^{\circ} = 70^{\circ}$

$$AB = AC$$

$$\therefore \angle ABC = \angle ACB = 70^{\circ}$$

(ii) But in ΔABC,

$$\angle ABC + \angle ACB + \angle BAC = 180^{\circ}$$

(Angles of a triangle)

$$\Rightarrow$$
 70° + 70° + \angle BAC = 180°

$$\Rightarrow$$
 140° + \angle BAC = 180°

$$\Rightarrow \angle BAC = 180^{\circ} - 140^{\circ}$$

$$\angle BAC = 40^{\circ}$$

But ∠BAC = ∠BEC

(Angles in the same segment)

- Q. 28. In the adjoining figure, two circles intersect at A and B. The centre of the smaller circle is O and lies on the circumference of the larger circle. If PAC and PBD are straight lines and $\angle APB = 75^{\circ}$, find:
 - (i)∠AOB
- (ii) ∠ACB (iii) ∠ADB.

- sol. Two circles intersect each other at A and B. The centre of the smaller circle is O and it lies on the circumference of the larger circle. PAC and PBD are two lines and ∠APB = 75°.
 - (i) Arc AB of smaller circle subtends
 ∠AOB at the centre and ∠APB at the remaining part of the circle.

$$\therefore \angle AOB = 2\angle APB$$
$$= 2 \times 75^{\circ} = 150^{\circ}$$

· OBDA is a cyclic quadrilateral

$$\therefore \angle ADB + \angle AOB = 180^{\circ}$$

$$\Rightarrow$$
 $\angle ADB + 150^{\circ} = 180^{\circ}$

$$\Rightarrow$$
 $\angle ADB = 180^{\circ} - 150^{\circ} = 30^{\circ}$

But
$$\angle ADB = \angle ACB$$

(Angles in the same segment)

$$\therefore \angle ACB = 30^{\circ}$$
 Hence

- (i) $\angle AOB = 150^{\circ}$ (ii) $\angle ACB = 30^{\circ}$ and
- (iii) $\angle ADB = 30^{\circ} Ans.$
- Q. 29. The exterior angles B and C in ΔABC are bisected to meet at a point P. Prove that:

$$\angle BPC = 90^{\circ} - \frac{\angle A}{2}$$
. Is ABPC a cyclic quadrilateral?

Sol. Given. The sides AB and AC of a △ABC are produced to X and Y respectively. BP and CP are the bisectors of Ext. ∠B and ext. ∠C meeting each other at P.

To prove. (i)
$$\angle BPC = 90^{\circ} - \frac{\angle A}{2}$$

(ii) Is ABPC a cyclic quadrilateral?

Proof: In AABC,

Ext. $\angle B = Interior \angle C + \angle A$

Ext. $\angle C = Interior \angle B + \angle A$

or
$$\angle CBP = \frac{1}{2}(\angle C + \angle A)$$
$$= \frac{1}{2}\angle C + \frac{1}{2}\angle A$$

and
$$\angle BCP = \frac{1}{2}(\angle B + \angle A)$$

= $\frac{1}{2}\angle B + \frac{1}{2}\angle A$

Adding, we get

$$\angle CBP + \angle BCP = \frac{1}{2} \angle C + \frac{1}{2} \angle A$$

$$+ \frac{1}{2} \angle B + \frac{1}{2} A$$

$$= \frac{1}{2} (\angle A + \angle B + \angle C) + \frac{1}{2} \angle A$$

$$00 \quad 1 \quad \angle A \quad 000 \quad 1 \quad \angle A$$

 $=\frac{1}{2} \times 180^{\circ} + \frac{1}{2} \angle A = 90^{\circ} + \frac{1}{2} \angle A$

But in ABPC,

$$\angle BPC = 180^{\circ} - (CBP + \angle BCP)$$

$$= 180^{\circ} - \left[90^{\circ} + \frac{1}{2} \angle A\right]$$

$$= 180^{\circ} - 90^{\circ} - \frac{1}{2} \angle A = 90^{\circ} - \frac{1}{2} \angle A$$

(ii) In quadrilateral ABPC,

$$\angle A + \angle BPC = \angle A + 90^{\circ} - \frac{1}{2} \angle A$$

= $90^{\circ} + \frac{1}{2} \angle A$

But, it is not equal to 180°

: ABPC is not a cyclic quadrilateral.

Q. 30. In the given figure, I is the incentre of $\triangle ABC$, AI produced meets the circumcircle of $\triangle ABC$ at D; $\angle ABC =$

55° and $\angle ACB = 65°$. Calculate:

(i) ∠BCD (ii) ∠CBD (iii) ∠DCI (iv) BIC.

Sol. I is the incentre of the ΔABC. AD i joined and produced to meet the circle at D. DB, DC; IC and IB are joined.

$$\angle$$
ABC = 55° and \angle ACB = 65°

(i) : AD is the diameter.

∴∠ACD = 90° (Angle in a semi-circle

$$\Rightarrow \angle ACB + \angle BCD = 90^{\circ} \Rightarrow 65^{\circ} + \angle BCD = 90^{\circ}$$

$$\Rightarrow \angle BCD = 90^{\circ} - 65^{\circ} = 25^{\circ}$$

(ii) Similarly, $\angle ABD = 90^{\circ}$

$$\Rightarrow \angle ABC + \angle CBD = 90^{\circ}$$

$$\Rightarrow$$
 55° + \angle CBD = 90°

$$\Rightarrow$$
 $\angle CBD = 90^{\circ} - 55^{\circ} = 35^{\circ}$

(iii) In ΔABC,

$$\angle BAC + \angle ABC + \angle ACB = 180^{\circ}$$

(Angles of a triangle

$$\Rightarrow \angle BAC + 55^{\circ} + 65^{\circ} = 180^{\circ}$$

$$\Rightarrow$$
 $\angle BAC + 120^{\circ} = 180^{\circ}$

$$\Rightarrow$$
 $\angle BAC = 180^{\circ} - 120^{\circ}$

$$\angle BAC = 60^{\circ}$$

: I is the incentre of AABC

∴ I lies on the bisector of ∠BAC

$$\therefore \angle BAI = \angle CAI = \frac{60^{\circ}}{2} = 30^{\circ}$$

Or
$$\angle BAD = \angle CAD = 30^{\circ}$$

: I lies on the angle bisector of ∠ACB

$$\angle ACI = \frac{65^{\circ}}{2} = 32 \frac{1^{\circ}}{2}$$
Now, $\angle DCI = \angle ACD - ACI$

$$= 90^{\circ} - 32 \frac{1}{2}^{\circ} = 57 \frac{1}{2}^{\circ} = 57 \cdot 5^{\circ}$$

(iv) : I lies on the angle bisector of ∠ABC

$$= \angle IBC = \frac{55^{\circ}}{2} = 27.5^{\circ}$$

Now, in ΔBIC,

$$\angle$$
BIC + \angle ICB + \angle IBC = 180°

(Angles of a triangle)

$$\Rightarrow \angle BIC + (32.5^{\circ} + 27.5^{\circ}) = 180^{\circ}$$

$$\Rightarrow$$
 $\angle BIC + 60^{\circ} = 180^{\circ}$

$$\Rightarrow$$
 $\angle BIC = 180^{\circ} - 60^{\circ} = 120^{\circ} \text{ Ans.}$

EXERCISE 20 (B)

Q. 1. In the given figure, arc AC and arc BD are two equal arcs of a circle. Prove that chord AB and chord CD are parallel.

Sol. Given. In a circle, arc AC = arc BD.

AB and CD arc joined.

To prove. AB || CD

Construction. Join AD.

Proof. arc AC = arc BD. (given)

∴ ∠ADC = ∠BAD

(Equal arcs subtends equal angles at the circumference)

But, these are alternate angles

∴ AB || CD

Hence proved.

- Q. 2. Prove that the angle subtended at the centre of a circle, is bisected by the radius passing through the mid-point of the arc.
 - Sol. Given. An arc AB of the circle which subtend ∠AOB at the centre. C is the mid-point of arc AB, OC is joined.

To prove. $\angle AOC = \angle BOC$

Proof. : C is the mid-point of arc AB.

: arc AC = arc BC

But these subtends ∠AOC and ∠BOC at the centre

Hence, OC is the bisector of ∠AOB Hence proved.

- Q. 3. In the given figure, P is the mid-point of arc APB and M is the mid-point of chord AB of a circle with centre O. Prove that:
 - (i) $PM \perp AB$;
 - (ii) PM produced will pass through the centre O;
 - (iii) PM produced will bisect the major arc AB.

Sol. Given. P is the mid-point of arc APB and M is the mid-point of chord AB of the circle with centre O.

To prove. (i) PM \perp AB

- (ii) PM produced will pass through the centre O.
- (iii) PM produced will bisect the major arc AB.

Construction. Produce PM to join the circle at N. Join AO, BO.

Proof. . P is the mid-point of arc AB

:. Arc AP = arc PB

 \therefore $\angle AOP = \angle POB$

 $\Rightarrow \angle AOM = \angle BOM$

(i) Now, in $\triangle OAM$ and OBM,

OM = OM

(Common)

OA = OB

(Radii of the same circle)

10

 $\angle AOM = \angle BOM$ (Proved)

 $\therefore \triangle OAM \cong \triangle OBM$ (S.A.S. axiom)

 $\therefore \angle AMO = \angle BMO$ (c.p.c.t.)

But, $\angle AMO + \angle BMO = 180^{\circ}$

(Linear pair)

 \therefore $\angle AMO = \angle BMO = 90^{\circ}$

Hence, OM or MP \(\text{AB}. \)

- (ii) : $\angle OMA + \angle AMP = 90^{\circ} + 90^{\circ} = 180^{\circ}$
 - .. PMO is a straight line. Which is passing through O.
- (iii) : PON is the diameter of the circle

: arc PAN = arc PBN

⇒ arc PAN - arc AP = arc PBN - arc

PB \Rightarrow arc AN = arc BN

Hence, N bisects major arc AB Hence proved.

- Q. 4. Prove that in a cyclic trapezium, the nonparallel sides are equal.
- Sol. Given. ABCD is a cyclic trapezium in which AB || DC

To prove. AD = BC

Construction. Join BD

Proof. . AB || DC

(given)

 $\therefore \angle ABD = \angle CDB$ (Alternate angles)

But these are the angles subtended by the arcs AD and BC respectively

: arc AD = arc BC

: chord AD = chord BC

(Equal arcs make equal chords).

Hence, AD = BC

Hence proved.

- Q. 5. P is a point on a circle with centre O. If P is equidistant from the two radii OA and OB, prove that arc AP = arc BP.
- Sol. Given. A circle with centre O and P is a point on the circle. OA and OB are two radii and PL \perp OA, PM \perp OB. Such that OL = OM.

To prove. arc AP = arc PB

Construction. Join PO

Proof. In right ΔOLP and ΔOMP,

Hyp. $\overrightarrow{OP} = \overrightarrow{OP}$

ath.)

CBB

Di

d by

0. If

OA

isa

(Common)

(R.H.S. axiom)

Side PL = PM

(Given)

 $\therefore \triangle OLP \cong \triangle OMP$

(Orven

∴ ∠LOP = ∠MOP

(c.p.c.t.)

or $\angle AOP = \angle BOP$

: arc AP = arc PB

(Equal arcs subtend equal angles at the centre)
Hence proved.

Q. 6. In the given figure, two chords AC and BD of a circle intersect at E. If arc AB = arc CD. prove that: BE = EC and AE = ED.

Sol. Given. In the figure, two chords AC and BD of a circle intersect each other at E inside the circle. Arc AB = arc CD.

To prove. BE = EC and AE = ED

Construction. Join AB and CD.

Proof. : Arc AB = arc CD (Given)

:. Chord AB = chord CD

Now, in ΔAEB and ΔCED,

AB = CD

(Proved)

 $\angle BAE = \angle CDE$

∠ABE = ∠ECD

(Angle in the same-segment)

∴ ∆AEB ≅ ∆CED

(A.S.A. axiom)

BE = EC

(c.p.c.t.)

and AE = ED

(c.p.c.t.)

Hence proved.

Q. 7. In the given figure, two chords AB and CD of a circle intersect at a point P. If AB = CD. Prove that : arc AD = arc CB.

Sol. Given. Two chords AB and CD of a circle intersect each other at P inside the circle and AB = CD.

To prove. arc AD = arc CB

Proof.

AB = CD

(Given)

:. Minor arc AB = Minor arc CD

Subtracting arc BD from both sides, Minor arc AB – arc BD = Minor arc CD – arc BD

⇒ arc AD = arc CB

Hence proved.

- Q. 8. If two sides of a cyclic quadrilateral are parallel, prove that:
 - (i) its other two sides are equal.
 - (ii) its diagonals are equal.
- Sol. Given. ABCD is a cyclic quadrilateral in which AC and BD are its diagonal and AB || DC.

To prove.

(i)
$$AD = BC$$
 (ii) $AC = BD$.

Proof. In quadrilateral ABCD,

$$\therefore$$
 \angle CAB = \angle DCA (Alternate angles)

(Equal arcs subtends equal angles at the circumference of a circle)

$$AD = BC$$

(Equal arcs. have equal chords)

Now, in $\triangle ABC$ and $\triangle ADB$,

$$BC = AD$$
 (Proved)

$$\angle ACB = \angle ADB$$

(Angles in the same segment)

$$\therefore \triangle ABC \cong \triangle ADB$$
 (S.A.S. axiom)

$$\therefore AC = BD. \qquad (c.p.c.t.)$$

Hence proved.

Q. 9. In the given figure, AB, BC and CD are equal chords of a circle with centre O and AD is a diameter.

If
$$\angle DEF = 110^{\circ}$$
, find

Sol. Given. In the figure,

Chord AB = chord BC = chord CD

O is the centre of the circle and AD is its diameter and $\angle DEF = 110^{\circ}$

To find (i) $\angle AEF$ and (ii) $\angle FAB$.

Construction. Join AE, BE and CE

Proof:

$$:: AB = BC = CD$$

(Equal arcs subtends equal angles at the circumference of the circle)

and $\angle AED = 90^{\circ}$ (Angle in a semi-circle)

(i)
$$\therefore \angle AEF = \angle DEF - \angle AED$$

$$= 110^{\circ} - 90^{\circ} = 20^{\circ}$$

(ii) : ABEF is cyclic quadrilateral

$$\Rightarrow$$
 $\angle FAB + 50^{\circ} = 180^{\circ}$

$$(:. \angle BEF = 30^{\circ} + 20^{\circ} = 50^{\circ})$$

$$\Rightarrow \angle FAB = 180^{\circ} - 50^{\circ} = 130^{\circ} Ans.$$

Q. 10. In the given figure, ABCDE is a pentagon inscribed in a circle. If AB = BC = CD,
 ∠BCD = 110° and ∠BAE = 120°, find

(i) ∠ABC

(ii) ∠CDE

(iii) ∠AED

(iv) $\angle EAD$.

Downloaded from https://www.studiestoday.com

Sol. ABCDE is a pentagon inscribed in a circle, AB = BC = CD and ∠BCD = 110° and ∠BAE = 120°.

Join BE, CE and AD

(i) In cyclic quadrilateral EBCD,

$$\therefore \angle BED = 180^{\circ} - 110^{\circ} = 70^{\circ}$$

$$BC = CD = AB$$

$$\therefore \angle CED = \angle BEC = \frac{70^{\circ}}{2} = 35^{\circ}$$
and $\angle AEB = 35^{\circ}$ ($\therefore AB = BC = CD$)

(ii) In cyclic quadrilateral AECB,

$$\angle AEC + \angle ABC = 180^{\circ}$$

$$\Rightarrow$$
 70° + \angle ABC = 180°

$$\Rightarrow$$
 $\angle ABC = 180^{\circ} - 70^{\circ} = 110^{\circ}$

In ΔABE,

$$\angle AEB + \angle ABE + \angle EAB = 180^{\circ}$$

$$\Rightarrow$$
 35° + \angle ABE + 120° = 180°

$$\Rightarrow$$
 ABE + 155° = 180°.

$$\Rightarrow$$
 $\angle ABE = 180^{\circ} - 155^{\circ} = 25^{\circ}$

$$\therefore \angle EBC = \angle ABC - \angle ABE$$

$$= 110^{\circ} - 25^{\circ} = 85^{\circ}$$

Now, in cyclic quadrilateral EBCD,

$$\angle$$
EBC + \angle CDE = 180°

$$\Rightarrow$$
 85° + \angle CDE = 180°

$$\Rightarrow$$
 $\angle CDE = 180^{\circ} - 85^{\circ}$

(iii)
$$\angle AED = 35^{\circ} + 35^{\circ} + 35^{\circ} = 105^{\circ}$$

(iv) In cyclic quadrilateral ABCD,

$$\angle DAB + \angle BCD = 180^{\circ}$$

$$\Rightarrow$$
 $\angle DAB = 180^{\circ} - 110^{\circ} = 70^{\circ}$

$$\therefore$$
 $\angle EAD = 120^{\circ} - 70^{\circ} = 50^{\circ}$ Ans.

Q. 11. In the given figure, ∆ABC is an isosceles triangle inscribed in a circle with centre
O. If AB = AC, prove that : AP bisects ∠BPC.

Sol. Given. ABC is an isosceles triangle inscribed in a circle with centre O.

$$AB = AC$$

To prove. AP bisects ∠BPC.

Construction. Join OB and OC.

Proof.
$$AB = AC$$

$$\Rightarrow \angle AOB = \angle AOC$$

(Equal arcs subtends equal angles at the centre)

∴ Arc AB subtends ∠AOB at the centre and ∠APB at the remaining part of the circle.

$$\therefore$$
 $\angle AOB = 2 \angle APB$

Similarly, $\angle AOC = 2 \angle APC$

$$\therefore 2\angle APB = 2\angle APC$$

$$\Rightarrow \angle APB = \angle APC$$

∴ AP is the bisector of ∠BPC

Hence proved.

Q. 12. In the given figure, AB is a side of a regular 6-sided polygon and AC is a side of a regular 8-sided polygon inscribed in a circle with centre O.

Find:

(i) ∠AOB

(ii) ∠ACB

(iii) ∠ABC.

- Sol. AB is the side of a regular 6-sided polygon inscribed in a circle with centre O and AC is the side of regular 8-sided polygon.
 - (i) The side AB subtends ∠AOB at the centre and side AC subtends ∠AOC at the centre.

Now,
$$\angle AOB = \frac{360^{\circ}}{6} = 60^{\circ}$$

(ii) Arc AB subtends ∠AOB at the centre and ∠ACB at the remaining part of the circle.

$$\Rightarrow \angle ACB = \frac{1}{2} \angle AOB = \frac{1}{2} \times 60^{\circ} = 30^{\circ}$$

(iii)
$$\angle AOC = \frac{360^{\circ}}{8} = 45^{\circ}$$

Now, arc AC subtends ∠AOC at the centre and ∠ABC at the remaining part of the circle

$$\Rightarrow \angle ABC = \frac{1}{2} \angle AOC$$

$$\Rightarrow \angle ABC = \frac{45^{\circ}}{2} = 22.5^{\circ}$$
$$= 22^{\circ}30' \text{ Ans.}$$

= 869 + ZCDE = 1802 =