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:_ ~~Chapter 19
Chord Properties Of A Circles

'3I TS TO REMEMBER

* . Circle. 4 circle is the locus of a point which moves in a plane
8 in such a way that its distance from a fixed point remains
' constant. |

1 The fixed point is called the centre and the constant distance
% is called the radius of the circle.

The given figure consists of a circle with centre O and radius
equal to 7 units.

2. Circumference. The perimeter of a circle is s called its circumference.
| - - Circumference = 21 r.
5. Radius. 4 line segment joining the centre and a point on the

-8 circleis called its radius.
| The plural of radius is radii. '

'3 Inthe given figure, OA, OB and OC are the radii of a circle. -

. Chord. 4 line segment joining any two points on a circle is
called a chord of the circle.

5. Diameter. A chord of the circle passing through the centre of

acircle is called its diameter:
In the adjoining figure, AOB is a diameter of a circle with
> %centre O, . :
Diameter is the largest chord of a circle. /
- All diameters of a circle are equal in length.

Diameter = 2 x Radius.

6. Secant. 4 line which intersects a circle in two distinct points
is called a secant of the circle.

In the given figure, the line / cuts the circle in two points C
and D. Then, / is a secant of the circle.
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W 7. Tangent. A line that intersects the circle in exactly one point
" s called a tangent to the circle.

The point at which the tangent intersects the circle is called
its point of contact. In the given figure, SPT is a tangent at
the point P of the circle with centre O. Clearly, P is the point
of contact of the tangent with the circle. |

Facts about Tangents : |
(i) No tangent can be drawn to a circle through a point inside it.

(i) One and only one tangent can be drawn to a circle.at a point
. o
on 1t.

(iif) Two tangents can be drawn to a circle from a point outside
it.

In the given figure, PT and PS are the tangents to the circle
from point P. |

Position of a Point With Respect to a Circle
Let us consider a circle with centre O and radius r.
A point P is said to lie.
(/) inside the circle, if OP <r;
(if) on the circle, if OP =r.
(éii) outside the circle , if OP > r.
In the adjoining figure of a circle with centre O and radius r.
(i) The points A, O, B lie inside the circle ;
(if) The points P, Q, R lie on the circle ;
(iif) The points X, Y, Z lie outside the circle.
. Interior and Exterior of a Circle :

The region consisting of all those points which lie inside a circle, is called the interior of the
circle. The region consisting of all those points which lie outside a circle, is called the exterior
of the circle. R '

. Circular Region or Circular Disc :

The region consisting of all those points which are either on
the circle or lie inside the circle , is called the circular region.

. Arc. A continuous piece of a circle is called an arc of the circle.
Let P and Q be any two points on a circle with centre O.
Then, clearly the whole circle has been divided into two pieces,

namely arc PAQ and arc QBP, to be denoted by PAQ and
QBP respectively.

We may denote them byfﬁ and 'fﬁ' réspectively. o

An arc PQ is called a minor arc or a major arc, according
as length. '

(PO < length (Q_ﬁ) or length PQ)> length (6]-?‘)
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Central Angle. An angle subtended by an arc at the centre of
a circle is called its central angle.

In the given figure, central angle of FQ = ZPOQ =0

Degree Measure of an Arc
Let F‘j be an arc of a circle with centre O.
If ZPOQ = 6° we say that the degree measure of ﬁi is 0° and we write, (FQ) = 0°.

Ifm (PQ) = 6°, then m QP = (360 — 0)°.
Degree measure of a circle is 360°.

Congruent Arcs. Two arcs AB and CD are said to be
congruent, if they have same degree measure.

AB=CD < m (AB)=m (CD) < ZAOB = £COD.
Congruent Circles. Two circles of equal radii are said to be congruent.

]_.i

Concentric Circles. Circles having same centre but different
radii are called concentric circles.

Seml-C ircle. A diameter divides a circle into two equal arcs.
Each of these two arcs is called a semi-circle.

The degree measure of a semi-circle 1s 180°.
An arc whose length is less than the arc of a semi-circle is
called a minor arc, otherwise it is called a major arc.

In the given figure of a circle with centre O, ABC as well as

— I 2 %
ADC is a semi-circle.

Major segment

Segment. A segment is a part of a circular region bounded by
an arc and a chord, including the arc and the chord.

The segment containing the minor arc is called a minor

segment, while the other one is major segment.

The centre of the circle lies in the major segment. W
| Minor segment

Alternate Segments of a Circle. The minor and major segmems of a circle are called alternate
segments of each other.
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Sector of a Circle : The part of the plane region enclosed-by
an arc of a circle and its two bounding radii is called a sector

of the circle. 5
Thus, the region OABO is the sector of a circle with centre O.

B

. Quadrant. One-fourth of a circular disc is called a quadrant.
. Cyclic Quadrilateral. Ifall the four vertices of a quadrilateral

lie on a circle, then such quadrilateral is called a cyclic
quadrilateral.

If four points lie on a circle, they are said to be concyclic.

We can also say that quad. ABCD is inscribed in a circle with
centre O.

. Some chord properties of a circle (Theorems)
‘Theorem 1. The straight line drawn from the centre of

a circle to bisect a chord, which is not a diameter, is
perpendicular to the chord.

Given. AB is a chord, other than the diameter of a circle with
centre O and OL bisects AB.

To prove. OL L AB.
Construction. Join OA and OB.

Proof.
Statement Reason
1. In AOLA and AOLB,
(/) OA=0B Radii of the same circle
(i) AL=BL Given, OL biects AB
(i) OL = OL common
.. AOLA =AOLB SSS — Axiom of cungruénce
e . JOLA= ZOLB . (D) c.p.c.t.
2. ZOLA+/Z0LB=180° -...(dD ALB is a straight line
3. ZOLA=Z0LB=90° From (I) and (II).

Hence, OL 1L AB.

Theorem 2. (Converse of Theorem 1). The perpendicular to
a chord from the centre of a circle bisects the chrod.

Given. AB is a chord of a circle with centre O and OL L AB.

To prove. LA=LB.
Construction. Join OA and OB.
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Proof.
Statement Reason
. In AOLA and AOLB,
(i) OA=0B | Radii of the same circle
(ii) ZOLA = ZOLB ' | Each equal to 90°, since OL L AB
L UE = OL : Common
.. AOLA =AOLB RHS-axiom of congrﬁency
S alA. T LB CD.C.1:

Hence, LA =LB.

Theorem 3. One and only one circle can be drawn,
passing through three non-collinear points.

Given. Three non-collinear points A, B, C.

To prove. One and only one circle can be drawn, passing
through A, B and C.

Construction. Join AB and BC. Draw the perpendicular
biectors of AB and BC, meeting at a point O.

Proof.

Statement Reason

O lies on the perpendicular bisector of AB

SQA=GB () Each point on perpendicular bisector of AB
is equidistant from A and B.

O lies on the perpendicular bisector of BC.

EOBE="CG ) | Each point on perpendicular bisector of BC
| <3 is equidistant from B and C.
OA=0B=0C From (7) and (ii)

. O is the equidistant from A, B and C
= Any circle drawn with centre O and
radius OA will pass through B and C

also.
O is the only point equidistant from A, B Perpendicular bisectors of AB and BC cut
and C. - each other at point O only.

Hence, one and only one circle can be drawn to pass through three non-collinear points A, B,
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Proof.
Statement Reason
1 ' -
AL = EAB | ()1 Perpendicular from centre bisects the chrod.

CM = ECD ~4an) Perpendicular from centre bisects the chord.
Now, AB =CD Given.'
= 1 ] '
~ EAB ~ ECD __ Halves of equals are equal.
il —aL-cm ..(1II) From (Iy and (II).
 |4. In AOLA and AOMC, |
(i) OA=0C Radii of the same circle.
8| (@) AL=CM | From (III).
(iiil) ZOLA = ZOMC Each equal to 90°, as OL L AB and OM L CD.
: .. AOLA = AOMC RHS-axiom of congruency of As.
= .. OL=0OM cipiC.
v&_ Hence, the chords AB and CD are equidistant from the centre O.
& Theorem 5 (Converse of Theorem 4). Chords of acircle
. that are equidistant from the centre of the circle, are equal.
. Given. AB and CD are two chords of a circle with centre O ;
- OL L AB, OM 1 CD and OL = OM.
To prove. AB = CD
Construction. Join OA and OC.
%? Proof.
?f Statement Reason
~|1. In AOLA and AOMC,
i (1) OL = OM Given.
Bl @)oa=0cC Radii of the same circle.

centlre.

Given. A circle with centre O in which chord AB = chord CD

:OL L AB and OM _L CD.
To prove. OL = OM.

290 Arundeep’s Foundation Math-X
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————————————————_
5] Theorem 4. Equal chords of a circle are equidistant from the |

(iii) ZOLA = ZOMC
- AOLA = AOMC
- AL=CM
1 1
AR O]
Tod 2

= AB=CD

Each equal to 90°, as OL 1L AB and OM L CD.
RHS-axiom of congruency of As.

or

c.p.c.t. | e by

Perpendicular from centre bisects the chord.

Doubles of equals are equal.

Hence, chord AB = chord CD.
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3 1.

Sol.

Sol.

EXERCISE 19 |
A chord of length 16 cm is drawn 1n a
circle of radius 10 cm. Calculate the

distance of the chord from the centre
of the circle.

In a circle with centre O and radius
OA =10 cm., AB is achord. OM L AB.

AB =16 cmand OA =10 cm
- OM 1 AB
. M is the mid-point of AB

:>AM=-12£=8cm.

Now, in right AOAM,
OA2 = AM? + OM?
(Pythagoras Theorem)
= (10)? = (8)* + OM?
= 100 = 64 + OM?
= OM? = 100 — 64 = 36 = (6)°
OM = 6 cm.

Hence, distance of the chord from the
centre = 6 cm. Ans.

. A circle of radius 2:5 cm has a chord of

length 4-8 cm. Find the distance of the
chord from the centre of the circle.

In a circle with centre' O and radius
OA = 2:5 cm.

AN ¢—48cm—p/ B

Q. 3.

Sol.

AB is chord of the circle OM L AB.
*. M is the mid-point
+ AB =4-8 cm.
o AM = 52—3 = 2:4 cm.
Now, in right AOAM,
OAZ=AM2+OM2
(Pythagoras Theorem)
= (2:5)2 = (2-4)* + OM?
= 625 =576 + OM?
— OM? =625 — 5-76 = 0-49 = (0-7)%.
OM = 0-7 cm.

Hence, distance of the chord from the
centre of the circle = 07 cm. Ans_.

The radius of a circle is 40 cm and the
length of perpendicular drawn from its
centre to a chord is 24 cm. Find the
length of the chord.

O is the centre of the cirf::le with
OA = 40 cm as radius, AB is the chord
and OM 1 AB

. M bisects AB at M

;. AM = %AB, OM = 24 cm.

Now, in right AOAM,
0AZ = AM? + OM?
(Pythagoras Theorem)
= (40)2 = AM? + (24)?
= 1600 = AM? + 576
— AM2 = 1600 — 576 = 1024 = (32)*
AM =32 cm.
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and AB =2AM =2 x 32 =64 cm.

. Length of the chord = 64 cm. Ans.

Q. 4. A chord of length 48 cm is drawn at a
distance of 7 cm from the centre of the
circle. Calculate the radius of the circle.

O is the centre of the circle with OA as
radius.

Sol.

AB is the chord and OM L AB

' 1
AM = MB or AM=-5AB

and OM =7 cm.
Now, in right AOAM,
OA? = AM? + OM?
(Pythagoras Theorem)
= (24)* + (7)* = 576 + 49 = 625 =
(25)°
- OA =25 cm. Ans.

A chord of length 16 cm is at a distance
of 15 cm from the centre of the circle.
Find the length of the chord of the same
circle which is at a distance of 8 cm
from the centre ?

O is the centre of the circle chord AB =
16 cm and OM L AB. |

Such that OM = 15 cm.

Qu,

Sol.

A \N4—16cm —p/ B

1

AM =—1—AB= 16 x —=8cm.
2 2

OA and OC are' the radii of the circle
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Hence, length of the chord CD =2 x CN

|
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CD is another chord and ON L iy

Such that ON =8 ¢cm and CN = -21-
Now, in right AOAM,

OA%=AM? + OM? __

(Pythagoras Theorem

= @2+ (152 | -}

| = 64 + 225 =289 = (17)}

5. OA =17 cm. | by

Similarly, in right AONC,

OC?2=0ON2?+CN2

= (17> = (8 +CN? (- OA=08

— 289 = 64 + CN? | |

— CN2=289.-—64

= ' CN? =225 = (15)

CN =15 cm.

=2 x15=30cm Ans.

Q. 6. Two parallel chords of lengths 30 ¢
and 16 cm are drawn on the opposi
sides of the centre of the circle of radiuf
17 cm. Find the distance between th
chords.

O is the centre of the circle. AB and CI
are the chords of the circle drawn o
the same side of the centre. AB = 30 cr
and CD = 16 cm. Radius of the circle
17 cm. OA = OC radii of the circle OI
1 CD and OM 1 AB.

Sol.

. L bisects CP and M bisects AB.

CL = —I-CD = l£’~_= 8cm.
2 2

‘and AM =—AB=

_—1* l ® 30 =15cm.:
2 ¥ £
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Now, in right AOCL,
OC2 = CL2+ OL?2
(Pythagoras Theorem)
= (17)? = (8) + OL?
= 289 = 64 + OL?
= OL2 =289 — 64 = 225 = (15)2
OL =15 cm.
Similarly, in right AOAM,
0A? = AM? + OM?
= (17)2 = (15)2 + OM?
= 289 =225 + OM?
= OM? =289 — 225 =64 = 4(3)2
OM = 8 cm.

Now, ML=OL +OM =15 + 8 =23 cm.

Q: 7

Sol.

Hence, the distance between the two
chords 1s 23 cm. Ans.

Two parallel chords of the lengths 80
cm and 18 cm are drawn on the same
side of the centre of the a circle of radius
41 cm. Find the distance between the
chrods.

A circle with centre O and radius 41 cm.

Two chords AB and CD are parallel and
drawn on the same side of the centre.
AB =80 cm.and CD = 18 cm. From O,
OL L CD which intersects AB at M.

M and L bisects AB and CD respectively
80
Such that AM = S 40cm and

CL = % = 9cm and radius OA = OC
=4] cm.
Now, in right AOLC,
OC? = CL? + OL?
(Pythagoras Theorem)

Sol.

= (41)? = (9)* + OL?
= 1681 = 81 + OL?
= OL?= 1681 — 81 = 1600 = (40)*
OL = 40 cm.
Similarly, in right A OAM,
OAZ = AM? + OM?
= (41)2 = (40)2 + OM?
= 1681 = 1600 + OM?>
= OM?2 = 1681 — 1600 = 81 = (9)?
OM =9 cm.
Now, ML = OL — OM
= 40 — 9= 31 an .Ans.

. Two parallel chords AB and CD are

3-9 cm apart and lie on the opposite sides
of the centre of a circle. If AB = 14

cm. CD = 4 cm, find the radius of the
circle.

Length of chord AB = 14 ¢cm. and CD
=4 cm.

From O, the centre of the circle,
perpendiculars are drawn on AB and CD
which bisect them at M and L

respectively. OA and OC are joined.
M= 3:5.cm.

Let OM = x cm., then OL = (3-9 — x)
cm.

[n right AOAM,
OA? = AM? + OM?
(Pythagoras Theorem)

2
(5]
S0 o (i)

Similarly, in right AOCL,
OC? = CL? + OL2
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N
2 1 6
4 = — = — =
=(5) +(39 - x)2 i 2CD 5 3cm,
s (2)2 it (39 2 x)z (”) Now, In I‘lgzht AOSL, !
But OA = OC OC = CL +OlL

(Radii of the same circle) : (Pythagor as Theoremg
WO + 32 = (2 + (39 - x)? o SO e e

iy
— 049 +x2=4+1521 +x2-78x
imilarly, in right AOAM,
= x2—x2+78x=4+1521-049 S

OA? = AM? + OM?
78 x = 1921 - 0:49 = 18-72
= AL =¥ a3 165 ¥ i)

18-72 | |
X = 7.8 =24 But OA = OC (Radii of the same circle)
©. OM = 2-4 cm. - From (i) and (i), -
Now from (i), | _ 9 + (IR =H6 e
OA2=(0'7)2+I2=0'49+(2'4)2 =0+1+x2+2x=16 +x*
2 2 ‘
= 0-49 + 576 = 6:25 = (2'5)? wp e R o I
: = 6
;. OA = 2-5 cm. g :>3F=5=3
Hence, radius of the circle = 2:5 cm. Ans. & P 2 j
Q.9. AB and CD are two parallel chords of S A0 9T
lengths 8 cm and 6 cm respectively. If Now, from (ii),
they are 1 cm apart and lie on the same OA2=16+x2=16+(3)*=16+9
side of the centre of a circle, find the =25 = (5)?
radius of the circle. AT

Sol. Chords AB and CD are parallel and lie

: Hence, radius of the circle = 5 cm. Ans.
on the same side of the centre of the

circle. From O, perpendicular OL is Q. 10. PQR s anisosceles triangle inscribed in
drawn on CD which intersects AB at a circle: IfWPQ@es BROE 25_0111 and
M. OA and OC are joined. QR = 14 cm, calculate the radius of the

circle to the nearest cm.

Sol. In APQR,
Q

Now, AB = 8 cm, CD = 6 cm. o -
And LM =1 cm. v
Let OMi= x cm. then OL = (1 + x) cm. . DEji= PR =28 e
OA and OC are joined

From P, draw a perpendicular PM which
]

AM = = AR = 8 —=4cm and passes through O. bl
2 2 It bisects QR also. Join OR.
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.Q. 11.

Sol.

B OR 14— Tem,
2 2
Now, in right APRM,
PR? = PM? + RM?
(Pythagoras Theorem)
= (25)% = PM? + (7)?
= 625 =PM? + 49
PM? = 625 — 49 = 576 = (24)?
;. PM = 24 cm.
Let PO = OR = r.cm.
. OM = (24 - r) cm.
Similarly, in right AORM,
OR? = OM? + RM?
= r2 =24 -r)? + RM?
=>r=576+r"—48 r+49
=2 -2 +48r=576+49
= r?—r* + 48r = 625

625 Q. 12!
SN O05 =T o

48
= r=13
. Radius of the circle = 13 cm. Ans. Sol.

An isosceles AABC is inscribed in a

circle. If AB = AC = 12v/5 cm and BC
= 24 cm., find the radius of the circle.

In AABC, AB =AC = 12+/5 cm.
BC =24 cm.

A

B c
From A, draw a perpendicular. Which
passes through O, ‘the centre of the
circle and bisects BC at M. Join OB.
Let OA=0OB =r,then OM =AM -AO

BM sibpe it 224 £12 om.
S

Arundeep’s Foundation Math-X

Now, in right A ABM,
AB? = AM? + BM?
(Pythagoras Theorem)
— (124/5)2 = AM? +(12)2
144 x 5 =AM? + 144

=
=  AM?=720-144 =576
- AM? = (24)) = AM = 24 cm.

OM=AM-AO = (24 —r) cm.
Similarly, in right AOBM,
OB2 = BM? + OM?2
= r = (12)% + (24 - r)?
=144 + 576 + 2 - 48 r
> rr—r+48 r=144 + 576

720
S
TR

.. Radius of the circle = 15 cm. Ans.

= 48 r =720

An equilateral triangle of side 9 cm is
inscribed in a circle. Find the radius of
the circle.

InAABC,AB=AC=BC=9cm.

A

From A, draw a perpendicular which
passes through O, the centre of the
circle and meets BC in M and bisects
BC. Join OB. Let OA=0B =r.

Now BM:—I—BC=-!-:~:9=Ecm.
2 2 2

In right AABM,
AB?=BM? + AM?
(Pythagoras Theorem)

= (9)* = [;—)2 + AM?
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— 81=-8£1-+AM2
81 324 -8l
AM?=81-—=
= 4
= AM2 = —2# = (3 }:Bljcm

;. AM =

3x81_2 f3em
4 2 '

| 9
.:0M=AM-A0=(5¢?ﬂJmn

Similarly, in right AOBM,
OB? = BM? + OM?

(3 (36

— r2 = 81+243+r2—9\/§r

454
81. 4248
= s S bl e e
4 4
o 9J§r=§%£=81
s o Ve Rk o a8
BN LN
Hence, radius of the circle
= 3\/§ cm Ans.

[f a line / intersects two concentric
circles at the points A, B, C and D, as
shown in the figure, prove that AB =
CD. '

Given. A line / intersects two concentric
circles with centre O at A, B, C and D.

To prove. AB =CD.

0]

1 r

S

Construction. From O, draw a

perpendicular OL to /.
Proof. In bigger circle,
AD is the chord, OL L AD
.. L bisects AD

—AL=LD (i)

Similarly, in smaller circle,
BC is the chord and OL L BC
¢ BLALC, 28k 4
Subtracting (if) from (i)

AL-BL=LD-LC = "AB=CD.

Q. 14.

Sol.

Hence proved.

The radii of two concentric circles are
17 cm. and 10 cm. A line segment PQRS
cuts the larger circle at P and S and the
smaller circle at Q and R. If QR = 12
cm., find the length of PQ.

Draw OM 1/

Join OP and OQ. | | S

OP = 17 cm.; OQ = 10 cm.
QR=12cm. |

e ONE LOIR .

. M is mid point of QR

-

-~ QM =—%—>< [2 =tbCnil;
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Q. 15.

Sol.

Now, in right AOQM,
0Q? = QM2 + OM?
(Pythagoras Theorem)
= (10)* = (6)* + OM?
= 100 = 36 + OM?
= OM? = 100 — 36 = 64

Similarly, in right AOPM,

OP? = PM? + OM?
= (17)2 = PM2 + 64
= 289 = PM? + 64
= PM? =289 — 64 =225 = (15)?
PM=15 |
Now PQ=PM-QM=15-6
= 0 cm. Ans.

Two circles of radii 17 cm. and 25 cm
intersect each other at two points A and
B. If the length of common chord AB
of the circles 30 cm, find the distance
between the centres of the circles.

Two circles of radii 17 cm. and 25 cm.
intersects each other at A and B.

AB,AO, AC and OC are joined.

Now, OA =25 cm. AC =17 cm.
-AB =30 cm.

OC bisects AB at M.

and OM, CM are perpendicular on AB

_ 30
. AM=MB= F = 15cm.

Now, in right AAOM,
AO? = OM? + AM?
(Pythagoras Theorem)
= (25)* = OM? + (15)?

Q. 16.

Sol.

625 = OM? + 225
= OM? = 625 — 225 = 400
= OM? = (20)?
OM = 20 al?)
Similarly, in right AACM,
AC2 = CM? + AM?
= (17)? = CM2 + (15)?
= 289 = CM? + 225
= CM? = 289 — 225 = 64 = (8)?
CM=38
Now, OC=0OM + MC =20 + 8
= 28 cm. Ans.
In the adjoining figure, BC is a diameter

...(ii)

~of a circle with centre O. If AB and CD

are two chords such that AB || CD,
prove that AB = CD.

Given. BC is the diameter of the circle
with centre O. Two chords AB and CD
are parallel. |

AB=CD

Construction. Draw OL | AB and OM
B @ D)

Proof. .- OL 1 AB
. L 1s the mid point of AB

To prove.
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Again, OM L CD = 12 = (r — 4)% + (8)*
M is mid-point of CD. —=r2=r24+16-8r+ 64
Now, in AOLB and AOMC, —2_ 2 +8r=16+ 64
OB =0C (Radii of the same circle) VL g
ZL=ZM ' (Each 90°) 30 -
— J' ===
/LBO=/OCM (Alternate angles) o L R
- AOLB = AOMC (A.S.A. axiom) -. Radius of the circle = 10 cm. Ans.
- OL=0OM (c.p.c.t.) Q. 18. Inthe adjoining figure, AB is a chord of
CAB=CD a circle with centre O and BC 1s a
o " diameter. If OD 1 AB, show that
(Equal chords are equi {stant CA =2 OD and CA || OD.
from the centre of the circle)
Hence proved.
Q. 17. The adjoining figure shows a circle with
centre O in which a diameter AB bisects
the chrod PQ at point R. If PR = RQ =
8 cm and RB = 4 cm, find the radius of
the circle.
Q
Sol. Given. AB is the chord of a circle with
centre O. BC is the diameter. OD 1L AB.
A O R| B AC is joined.
To prove. CA=2 OD and CA || OD
| P Proof. In circle, AB is chord and OD L
Sol. A circle with centre O, AB is the diameter AB
and PQ is the chord. Such that AB bisects . D is mid-point of AB
PQ at R.PR=RQ =8 cm.and RB=4 Now in AABC,
cm. | D is mid-point of AB and O is mld-pmnt
Q of BC
,z’g .. OD||CA and OD = %CA
I, 0 4
A O heR = B Hence CA =2 OD and CA | OD
= / Hence proved.
< Q. 19. In the adjoining figure, P is a point of
_ F intersection of two circles with centres
Join OQ. C and D. Ifthe straight line APB is parallel
Let 7 be the radius to CD, prove that AB = 2CD.
Then OQ = OB = r A g B
And OR = (r — 4)
Now, in right A ORQ,
02 = OR +RO:
Q

(Pythagoras Theorem)

Downloaded from https:// www.studiestoday.com




Downloaded from hitps:// www.studiestoday.com

‘ 299

Arundeep’s Foundation Math-X

Sol. Given. Two circles with centres C and

Q. 20.

D intersect each other at P and Q. A line

APB is parallel to CD.
A ¢ B
Q

To prove. AB =2 CD.

Construction. From C and D, draw
perpendiculars CL and DM on AB.

Proof. .. CL || DM
(Both perpendiculars on AB)
and AB || CD (given)
.. LCDM is a rectangle
L. LM=CD
4 B AR
.. L bisects AP
Similarly, M will bisect PB.

1 1
: =—AP PM =—PB
...LP > and >

Adding, we get

| 1 1
+ == —PB
LP + PM > 7

= % (AP + PB)

N LM=%AB =>CD=-%AB

= 'AB=2CD
Hence proved.

If a diameter of a circle bisects each of
the two chords of a circle, then prove
that the chords are parallel.

P

L

Sol. Given. Diameter POQ bisects two

Sol.

chords AB and CD at L and M
respectively.

To prove. AB | CD
Proof. . L is mid-point of AB and OL is

joined.

~.OL LAB

Similarly, OM L CD

Now, ZALO = ZDMO (each
90°)

But these are alternate interior angles.
- AB||CD

Hence proved.

. If two chords of a circle are equally

inclined to the diameter through their
point of intersection, prove that the
chords are equal.

Given. Two chords AB and AC are

equally inclined to diameter AD i.e.
£ZBAD = ZCAD.

To prove. AB = CD.

Construction. From O, draw OL 1 AB
and OM L AC.

Proof. .- OL L AB

.. L is mid-point of AB
Similarly, OM L AC

. M is mid-point of AC
Now, in AALO and AAMO,

AO=A0 (Common)
ZL=ZM (each 90°)
ZBAD or ZLAO=£ZMAO (given)
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- AALO=AAMO  (S.A.A.axiom)
OL = OM (c.p-ct) -

Hence, AB = AC (Equal chords are
equidistant from the centre of the circle)

Q. 22. Show that equal chords of a circle subtend
equal angles at the centre of the circle.

Sol. Given. Two equal chords AB and CD
of a circle with centre O, intersect each
other at right angle. L and M are the mid-
points of AB and CD respectively.

To prove. OLPM 1s'a square.
Construction. Join OP
Proof. .- OL L AB and OM L CD

Sol. Given. In a circle chord AB = chord _ and AB =CD (given)
CD AB subtends ZAOB and chord CD | L OSSN -
subtends ZCOD at the centre. OA, OB, (Equal chords are equidistant
OC and OD are joined. ' from the centre)

Now, in AOLP and AOMP, |
LP=MP (half of equal
chords)
OL = OM (proved)
OF =P (common)
. AOLP =z AOMP | (S.S.S.
_ axiom)
To prove. ZAOB = ZCOD b= ¢ 3EP =8M - (c.p.c.t.)
Proof. In AOAB and AOCD o But OL=0M -_ (proved)
OA=0C (Radii of the same  °. Each angle of quad. OLPM is a right- angle.
' circle) .. OLPM is a square.
OB=0D '(given) Hence proved.
AB=CD (given) Q. 24. Prove that the perpendicular bisector of 5
-. AOAB = AOCD (S.S.S. a chord of a circle always passes
axiom) through the centre.

- ZAOB=ZCOD (cp.cil)
Hence proved.

Q. 23. Inthe given figure, equal chords AB and
CD of circle with centre O, cut at right
~ angels at P. If L and M are mid-points _
“of AB and CD respectively, prove that
OLPM is a square.
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Sol.
1[ :

1 Q. 25.

Sol.

Given. A circle with centre O. AB is its
chord.

To prove. The perpendicular bisector of
AB passes through O.

Construction. Let CD be the per-
pendicular bisector of chord AB. Let it

does not pass through the centre O. Join
QL

Proof. - C is the mid-point of AB and
OC s joined.

A ZOCA =90)° ()
But, CD is perpendicular bisector of AB
FZACD =90 ...(i)
From (i) and (ii),

ZLACD=Z0OCA

But it is not possible as ZACD is a part

of ZOCA

.. CO and CD will coincide each other.

Hence, the perpendicular bisector of
chord AB passes through the centre O
of the circle.

Hence proved.

AB and CD are two parallel chords of a
circle and a line / is the perpendicular
bisector of AB. Show that / is the
perpendicular bisector of CD also.

Given. Two chords AB and CD are
pamlklie. AB | CD
A line / is perpendicular bisector of AB

and passes through CD at M. :
To prove. / is perpendicular bisector of
CD.

Proof. Since the perpendicular bisector
of a chord of a circle passes through
the centre of the circle and / is the
perpendicular bisector of AB

.. [ passes through O.
But AB || CD (given)
. I 1s perpendicular to CD.

- | passes through the centre O of the
circle.

. 1 1s also perpendicular bisector of CD.
Hence proved.

Q. 26. Prove that the diameter of a circle

perpendicular to one of the two parallel
chords of a circle is perpendicular to
the other and bisects it.

Sol. Given. Chord AB || CD. O is the centre

of the circle. Diameter PQ 1is
perpendicularto AB.

To prove. PQ is also perpendicular to
CLl,

Proof. - PQ L AB
.. ZALO=90°
P

- AB| CD

- ZOMD = ZALO (Alternate angle)
. ZOMD = 90°

HencesBe) 1L Cl).

Hence proved.
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Q. 27. Prove that a diameter of a circle, which "~ AB=CD, LM is joined.
bisects a chord of the circle also bisects To prove.
the angle subtended by the chord at the (i) ZOLM = ZOML

centre of the circle. (il ZALM= ZCML 0

A Proof. . L is the mid-point of AB and
OL is joined
.. OL LAB
Similarly, we can prove that
OM LCD | __
+AB=CD (given]
.. OL=0M '
Sol. Given.AB is the chord of the circle with (Equal chords are equidistant from the centre;
centre O and diameter PQ bisects AB at (i) Now, in AOLM, | _
Lie. AL=LB, OA, OB are joined. OL =OM (proved)
To prove. PQ bisects ZAOB : - /OLM = ZOML g 0
ie. ZAOL = ZBOL (Angles opposite to equal sides) ...(i
Proof. In AAOL and ABOL, (ii) ZALO=90° (.- OL L AB)
. OL=0L (common) and ZCMO = 90° (-. OM 1 CD)
OA = OB (Radii of the same circle) - /ALO = ZCMO ...(ii)
AL = LB (given) Substracting (i) from (ii),
.. AAOL = ABOL (S.S.S. — Z/ALO - ZOLM = ZCMO - ZOM
| i) = ZALM = Z/CML
. ZAOL = ZBOL (c:pic.L.) Hence proved.
Hence proved. Q. 29. Inthe given figure, AB and AC are equ
Q. 28. In the given figure, L and M are mid- chords of a circle with centre O and O
points of two equal chords AB and CD 1 AB,OQ LAC.
of a circle with centre O. | c

(i) ZOLM = ZOML

(i) ZALM=ZCML . ‘
B e:

C . \
P 8
{’ Prove that PB = QC.

Sol. Given. In circle with centre O,

Prove that : °|""'

A chord AB ="AC, OP L AB and
' 0OQ L AC. PB and QC are joined. '
| " T PB=QC
Sol. Given. L and M are the mid-points of O PEDNE:

chords AB and CD respectively. Proof. .- OL _LAB and OM L AC (given))
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'. L and M are the mid-points of AB and AC

- BL=CM (Half of equal chords)
.+ AB=AC (given)
.. OL=OM

(Equal chords are equidistant from the centre)

. Q. 30.

But, OP = OQ (Radii of the same circle)
.. OP-OL = 0Q - OM

5. LP=MQ -
Now, in ALPB and AMQC,
LB =MC (Half of equal chords)
LP = MQ (Proved)
ZPLB = ZQMC (Each 90°)
.. ALPB=AMQC . (S.A.S axiom)
= BR=0C. (c.psc.t.)

Hence proved.

In an equilateral triangle, prove that the
centroid and the circumcentre of the

triangle coincide.
A
F E
B D C

Arundeep’s Foundation Math-X

Sol. G iven.In AABC,AB=BC=CA

To prove. Centroid and circumcentre
coincide.

Proof. Let AD, BE and CF be the'_-
medians which intersect at G. i.e. G is
the centroid.

‘Now, in ABEC and ABFC,
BC=BC (common)
ZB=ZC (Each 60°)
CE = BF (Half of equal sides)
.. ABEC =z A BFC (S.A.S axiom)

BEE= (c.p.c.t.)
Similarly, we can prove that
AD = BE
- AD=BE = CF
2 2 2
—AD =—BE=—-CF
55 a2 h

= GA=GB=GC
(. G divides the medians in the ratio 1 : 2)
-. G is the circumcentre of AABC

But, G is also the centroid of the triangle
ABC.

Hence, centroid and circumcentre
coincide.

Hence proved.
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