ગુજરાત રાજ્યના શિક્ષણવિભાગના પત્ર-ક્રમાં ક મશબ/1219/119-125/છ, તા.16/02/2019 થી મંજૂર

પ્રયોગશાળા માર્ગદર્શિકા

ભૌતિકવિજ્ઞાન

ધોરણ XII

प्रतिज्ञापत्र

ભારત મારો દેશ છે. બધાં ભારતીયો મારાં ભાઈબહેન છે. હું મારા દેશને ચાહું છું અને તેના સમૃદ્ધ અને વૈવિધ્યપૂર્ણ વારસાનો મને ગર્વ છે. હું સદાય તેને લાયક બનવા પ્રયત્ન કરીશ. હું મારાં માતાપિતા, શિક્ષકો અને વડીલો પ્રત્યે આદર રાખીશ અને દરેક જણ સાથે સભ્યતાથી વર્તીશ. હું મારા દેશ અને દેશબાંધવોને મારી નિષ્ઠા અર્પું છું. તેમનાં કલ્યાણ અને સમૃદ્ધિમાં જ મારું સુખ રહ્યું છે.

કિંમત : ₹ 221.00

राष्ट्रीय शैक्षिक अनुसंधान और प्रशिक्षण परिषद् NATIONAL COUNCIL OF EDUCATIONAL RESEARCH AND TRAINING

ગુજરાત રાજ્ય શાળા પાઠ્યપુસ્તક મંડળ 'વિદ્યાયન', સેક્ટર 10-એ, ગાંધીનગર-382010

© NCERT, નવી દિલ્લી તથા ગુજરાત રાજ્ય શાળા પાઠ્યપુસ્તક મંડળ, ગાંધીનગર આ પ્રયોગશાળા માર્ગદર્શિકાના સર્વ હક NCERT તથા ગુજરાત રાજ્ય શાળા પાઠ્યપુસ્તક મંડળને હસ્તક છે. આ પ્રયોગશાળા માર્ગદર્શિકાનો કોઈ પણ ભાગ કોઈ પણ રૂપમાં NCERT અને ગુજરાત રાજ્ય શાળા પાઠ્યપુસ્તક મંડળની લેખિત પરવાનગી વગર પ્રકાશિત કરી શકાશે નહિ.

અનુવાદ

શ્રી પી. એમ. પટેલ

શ્રી કેયુર એચ. શાહ

શ્રી શૈલેષકુમાર એસ. પટેલ

સમીક્ષા

પ્રિ. ડૉ. વિમલ જોષી

ડૉ. રજની એચ. જોષી

ડૉ. મૂકેશ એન. ગાંધી

શ્રી કે. ડી. પટેલ

શ્રી સી. ડી. પટેલ

શ્રી મયૂર એમ. રાવલ

શ્રી એ. જી. મોમીન

કુ. હસુમતી એચ. શાહ

ભાષાશુદ્ધિ

ડૉ. દીપક બી. ભટ્ટ

સંયોજન

ડૉ. ચિરાગ એચ. પટેલ

(વિષય - સંયોજક : ભૌતિકવિજ્ઞાન)

નિર્માણ-સંયોજન

શ્રી હરેન શાહ

(નાયબ નિયામક : શૈક્ષણિક)

મુદ્રણ-આયોજન

શ્રી હરેશ એસ. લીમ્બાચીયા (નાયબ નિયામક : ઉત્પાદન)

પ્રસ્તાવના

રાષ્ટ્રીય સ્તરે સમાન અભ્યાસક્રમ રાખવાની સરકારશ્રીની નીતિના અનુસંધાને ગુજરાત સરકાર તથા ગુજરાત માધ્યમિક અને ઉચ્ચતર માધ્યમિક શિક્ષણ બોર્ડ દ્વારા તા. 25-10-2017ના ઠરાવ ક્રમાંક મશબ/1217/1036/છ-થી શાળા કક્ષાએ NCERT ના પાઠ્યપુસ્તકોનો સીધો જ અમલ કરવાનો નિર્ણય કરવામાં આવ્યો તેને અનુલક્ષીને NCERT, નવી દિલ્લી દ્વારા પ્રકાશિત ધોરણ XII ભૌતિકવિજ્ઞાન પ્રયોગશાળા માર્ગદર્શિકાનો ગુજરાતીમાં અનુવાદ કરીને વિદ્યાર્થીઓ સમક્ષ મૂકતાં ગુજરાત રાજ્ય શાળા પાઠ્યપુસ્તક મંડળ આનંદ અનુભવે છે.

આ પ્રયોગશાળા માર્ગદર્શિકાનો અનુવાદ તથા તેની સમીક્ષા નિષ્ણાત પ્રાધ્યાપકો અને શિક્ષકો પાસે કરાવવામાં આવ્યા છે અને સમીક્ષકોનાં સૂચનો અનુસાર હસ્તપ્રતમાં યોગ્ય સુધારા-વધારા કર્યા પછી આ પ્રયોગશાળા માર્ગદર્શિકા પ્રસિદ્ધ કરતાં પહેલા આ પ્રયોગશાળા માર્ગદર્શિકાની મંજૂરી માટે એક સ્ટેટ લેવલની કમિટીની રચના કરવામાં આવી. આ કમિટીની સાથે NCERTના પ્રતિનિધિ તરીકે RIE, ભોપાલથી ઉપસ્થિત રહેલા નિષ્ણાતોની એક દિવસીય કાર્યશિબીરનું આયોજન કરવામાં આવ્યું અને પ્રયોગશાળા માર્ગદર્શિકાને અંતિમ સ્વરૂપ આપવામાં આવ્યું. જેમાં, ડૉ. એસ. કે. મકવાણા (RIE, ભોપાલ), ડૉ. કલ્પના મસ્કી (RIE, ભોપાલ), પ્રિ.ડૉ.વિમલ જોષી, શ્રી કે.ડી.પટેલ, શ્રી કેયુર એચ. શાહ, શ્રી એ.જી.મોમીન, શ્રી શૈલેષ એસ. પટેલ અને કુ.હસુમતી શાહે ઉપસ્થિત રહી પોતાના કીમતી સૂચનો અને માર્ગદર્શન પૂરા પાડ્યા છે.

પ્રસ્તુત પ્રયોગશાળા માર્ગદર્શિકાને રસપ્રદ, ઉપયોગી અને ક્ષતિરહિત બનાવવા માટે મંડળ દ્વારા પૂરતી કાળજી લેવામાં આવી છે, તેમ છતાં શિક્ષણમાં રસ ધરાવનાર વ્યક્તિઓ પાસેથી ગુણવત્તા વધારે તેવાં સૂચનો આવકાર્ય છે.

NCERT, નવી દિલ્લીના સહકાર બદલ તેમના આભારી છીએ.

અવંતિકા સિંઘ (IAS)

नियाभक

કાર્યવાહક પ્રમુખ

તા.04-04-2019

ગાંધીનગર

પ્રથમ આવૃત્તિ : 2019

પ્રકાશક: ગુજરાત રાજ્ય શાળા પાઠ્યપુસ્તક મંડળ, 'વિદ્યાયન', સેક્ટર 10-એ, ગાંધીનગર વતી,

અવંતિકા સિંઘ, નિયામક

भूद्र :

FOREWORD

The National Council of Educational Research and Training (NCERT) is the apex body concerning all aspects of refinement of School Education. It has recently developed textual material in Physics for Higher Secondary stage which is based on the National Curriculum Framework (NCF)-2005. NCF recommends that children's experience in school education must be linked to the life outside school so that learning experience is joyful and fills the gap between the experience at home and in community. It recommends to diffuse the sharp boundaries between different subjects and discourages rote learning. The recent development of syllabi and textual material is an attempt to implement this basic idea. The present Laboratory Manual will be complementary to the textbook of Physics for Class XII. It is in continuation to the NCERT's efforts to improve upon comprehension of concepts and practical skills among students. The purpose of this manual is not only to convey the approach and philosophy of the practical course to students and teachers but to provide them appropriate guidance for carrying out experiments in the laboratory. The manual is supposed to encourage children to reflect on their own learning and to pursue further activities and questions. Of course, the success of this effort also depends on the initiatives to be taken by the principals and teachers to encourage children to carry out experiments in the laboratory and develop their thinking and nurture creativity.

The methods adopted for performing the practicals and their evaluation will determine how effective this practical book will prove to make the children's life at school a happy experience, rather than a source of stress and boredom. The practical book attempts to provide space to opportunities for contemplation and wondering, discussion in small groups, and activities requiring hands-on experience. It is hoped that the material provided in this manual will help students in carrying out laboratory work effectively and will encourage teachers to introduce some open-ended experiments at the school level.

PROFESSOR YASH PAL

Chairperson

National Steering Committee

National Council of Educational

Research and Training

CONSTITUTION OF INDIA

Part IV A (Article 51 A)

Fundamental Duties

Fundamental Duties – It shall be the duty of every citizen of India —

- (a) to abide by the Constitution and respect its ideals and institutions, the National Flag and the National Anthem;
- (b) to cherish and follow the noble ideals which inspired our national struggle for freedom;
- (c) to uphold and protect the sovereignty, unity and integrity of India;
- (d) to defend the country and render national service when called upon to do so;
- (e) to promote harmony and the spirit of common brotherhood amongst all the people of India transcending religious, linguistic and regional or sectional diversities; to renounce practices derogatory to the dignity of women;
- (f) to value and preserve the rich heritage of our composite culture;
- (g) to protect and improve the natural environment including forests, lakes, rivers, wildlife and to have compassion for living creatures;
- (h) to develop the scientific temper, humanism and the spirit of inquiry and reform;
- (i) to safeguard public property and to abjure violence;
- (j) to strive towards excellence in all spheres of individual and collective activity so that the nation constantly rises to higher levels of endeavour and achievement;
- (k) who is a parent or guardian, to provide opportunities for education to his child or, as the case may be, ward between the age of six and fourteen years.

Preface

The development of the present laboratory manual is in continuation to the NCERT's efforts to support comprehension of concepts of science and also facilitate inculcation of process skills of science. This manual is complementary to the *Physics Textbook for Class XII* published by NCERT in 2007 following the guidelines enumerated in National Curriculum Framework (NCF)-2005. One of the basic criteria for validating a science curriculum recommended in NCF–2005, is that 'it should engage the learner in acquiring the methods and processes that lead to the generation and validation of scientific knowledge and nurture the natural curiosity and creativity of the child in science'. The broad objective of this laboratory manual is to help the students in performing laboratory based exercises in an appropriate manner so as to develop a spirit of enquiry in them. It is envisaged that students would be given all possible opportunities to raise questions and seek their answers from various sources.

The physics practical work in this manual has been presented under four sections (i) experiments (ii) activities (iii) projects and (iv) demonstrations. A write-up on major skills to be developed through practical work in physics has been given in the beginning which includes discussion on objectives of practical work, experimental errors, logarithm, plotting of graphs and general instructions for recording experiments.

Experiments and activities prescribed in the NCERT syllabus (covering CBSE syllabus also) of class XII are discussed in detail. Guidelines for conducting each experiment has been presented under the headings (i) apparatus and material required (ii) principle (iii) procedure (iv) observations (v) calculations (vi) result (vii) precautions (viii) sources of error. Some important experimental aspects that may lead to better understanding of result are also highlighted in discussion. Some questions related to the concepts involved have been raised so as to help the learners in self assessment. Additional experiments/activities related to a given experiment are put forth under suggested additional experiments/activities at the end.

A number of project ideas including guidelines are suggested so as to cover all types of topics that may interest young learners at higher secondary level.

A large number of demonstration experiments have also been suggested for the teachers to help them in classroom transaction. Teachers should encourage participation of the students in setting up and improvising apparatus, in discussion and give them opportunity to analyse the experimental data to arrive at conclusions.

Appendices have been included with a view to try some innovative experiments using improvised apparatus. Data section at the end of the book enlists a number of useful Tables of physical constants.

Each experiment, activity, project and demonstration suggested in this manual have been tried out by the experts and teachers before incorporating them. We sincerely hope

that students and teachers will get motivated to perform these experiments supporting various concepts of physics thereby enriching teaching learning process and experiences.

It may be recalled that NCERT brought out laboratory manual in physics for senior secondary classes earlier in 1989. The write-ups on activities, projects, demonstrations and appendices included in physics manual published by NCERT in 1989 have been extensively used in the development of the present manual.

We are grateful to the teachers and subject experts who participated in the workshops organised for the review and refinement of the manuscript of this laboratory manual.

I acknowledge the valuable contributions of Professor B.K. Sharma and other team members who contributed and helped in finalising this manuscript. I also acknowledge with thanks the dedicated efforts of Shashi Prabha who looked after the coordinatorship after superannuation of Professor B.K. Sharma in June, 2008. I also especially thank Professor Krishna Kumar, *Former Director* and Professor G. Ravindra, *Joint Director*, NCERT for their administrative support and keen interest in the development of this laboratory manual.

We warmly welcome comments and suggestions from our valued readers for further improvement of this manual.

HUKUM SINGH
Professor and Head
Department of Education in
Science and Mathematics

DEVELOPMENT TEAM

MEMBERS

Gagan Gupta, Reader, DESM, NCERT, New Delhi

R. Joshi, Lecturer (S.G), DESM, NCERT, New Delhi

S.K. Dash, Reader, DESM, NCERT, New Delhi

V.P. Srivastava, Reader, DESM, NCERT, New Delhi

MEMBER-COORDINATORS

B.K. Sharma, Professor, DESM, NCERT, New Delhi Shashi Prabha, Senior Lecturer, DESM, NCERT, New Delhi

ACKNOWLEDGEMENT

The National Council of Educational Research and Training (NCERT) acknowledges the valuable contributions of the individuals and the organisations involved in the development of Laboratory Manual of Physics for Class XII. The council also acknowledges the valuable contributions of the following academics for reviewing, refining and editing the manuscript of this manual : A.K. Das, PGT, St. Xavier's Senior Secondary School, Raj Niwas Marg, New Delhi; A.K. Ghatak, Professor (Retired), IIT, New Delhi; A.W. Joshi, Hon. Visiting Scientist, NCRA Pune; Anil Kumar, Principal, R.P.V.V., BT-Block, Shalimar Bagh, New Delhi; Anuradha Mathur, PGT, Modern School Vasant Vihar, New Delhi; Bharthi Kukkal, PGT, Kendriya Vidayalaya, Pushp Vihar, New Delhi; C.B. Verma, Principal (Retired), D.C. Arya Senior Secondary School, Lodhi Road, New Delhi; Chitra Goel, PGT, R.P.V.V., Tyagraj Nagar, New Delhi; Daljeet Kaur Bhandari, Vice Principal, G.H.P.S., Vasant Vihar, New Delhi; Girija Shankar, PGT, RPVV, Surajmal Vihar, New Delhi; H.C. Jain, Principal (Retired), Regional Institute of Education (NCERT), Ajmer; K.S. Upadhyay, *Principal*, Jawahar Navodaya Vidyalaya, Farrukhabad, U.P.; M.N. Bapat, *Professor*, Regional Institute of Education (NCERT), Bhopal; Maneesha Pachori, Reader, Maharaja Agrasen College, University of Delhi, New Delhi; P.C. Agarwal, Reader, Regional Institute of Education (NCERT), Ajmer; P.C. Jain, *Professor (Retired)*, University of Delhi, New Delhi; P.K. Chadha, Principal, St. Soldier Public School, Paschim Vihar, New Delhi; Pragya Nopany PGT, Birla Vidya Niketan, Pushp Vihar-IV, New Delhi; Pushpa Tyagi, PGT, Sanskriti School, Chanakyapuri, New Delhi; R.P. Sharma, Education Officer (Science), CBSE, New Delhi; R.S. Dass, Vice Principal (Retired), Balwant Ray Mehta Vidya Bhawan, Lajpat Nagar, New Delhi; Rabinder Nath Kakarya, PGT, Darbari Lal DAVMS, Pitampura, New Delhi; Rachna Garg, Senior Lecturer, CIET, NCERT; Rajesh Kumar, Principal, District Institute of Educational Research and Training, Pitampura, New Delhi; Rajeshwari Prasad Mathur, *Professor*, Aligarh Muslim University, Aligarh; Rakesh Bhardwaj, *PGT*, Maharaja Agrasen Model School, CD-Block, Pitampura, New Delhi; Ramneek Kapoor, PGT, Jaspal Kaur Public School, Shalimar Bagh, New Delhi; Rashmi Bargoti, PGT, S.L.S. D.A.V. Public School, Mausam Vihar, New Delhi; S.N. Prabhakara, PGT, Demonstration School, Mysore; S.R. Choudhury, Raja Ramanna Fellow, Centre for Theoretical Physics, Jamia Millia Islamia, New Delhi; S.S. Islam, Professor, Jamia Millia Islamia, New Delhi; Sher Singh, PGT, Navyug School, Lodhi Road, New Delhi; Shirish R. Pathare, Scientific Officer; Homi Bhabha Centre for Science Education (TIFR), Mumbai; Subhash Chandra Samanta, Reader (Retired), Midnapur College, Midnapur (W.B.); Sucharita Basu Kasturi, PGT, Sardar Patel Vidyalaya, New Delhi;

Surajit Chakrabarti, *Reader*, Maharaja Manindra Chandra College, Kolkata; Suresh Kumar, *PGT*, Delhi Public School, Dwarka, New Delhi; V.K. Gautam, *Education Officer*, Kendriya Vidayalaya Sangthan, (Science), Shaheed Jeet Singh Marg, New Delhi; Ved Ratna, *Professor (Retired)*, DESM, NCERT, New Delhi; Vijay H. Raybagkar, *Reader*, N. Wadia College, Pune; Vishwajeet D. Kulkarni, *Teacher Grade I*, Smt. Parvatibai Chowgule College, Margo, Goa; Y.K. Vijay, *Professor*, CDPE University of Rajasthan, Jaipur, Rajasthan; Yashu Kumar, *PGT*, Kulachi Hansraj Model School, New Delhi. We are thankful to all of them. Special thanks are due to Hukum Singh, *Professor and Head*, DESM, NCERT for providing all academic and administrative support.

The Council also acknowledges the support provided by the APC Office and administrative staff of DESM, Deepak Kapoor, *Incharge*, Computer Station; Bipin Srivastva, Rohit Verma and Mohammad Jabir Hussain, *DTP Operators* for typing the manuscript, preparing CRC and refining and drawing some of the illustrations; K. T. Chitralekha, *Copy Editor*; Abhimanu Mohanty, *Proof Reader*. The efforts of the Publication Department are also highly appreciated.

CONSTITUTION OF INDIA

Part III (Articles 12 – 35)

(Subject to certain conditions, some exceptions and reasonable restrictions)

guarantees these

Fundamental Rights

Right to Equality

- before law and equal protection of laws;
- irrespective of religion, race, caste, sex or place of birth;
- of opportunity in public employment;
- by abolition of untouchability and titles.

Right to Freedom

- of expression, assembly, association, movement, residence and profession;
- of certain protections in respect of conviction for offences;
- of protection of life and personal liberty;
- of free and compulsory education for children between the age of six and fourteen years;
- of protection against arrest and detention in certain cases.

Right against Exploitation

- for prohibition of traffic in human beings and forced labour;
- for prohibition of employment of children in hazardous jobs.

Right to Freedom of Religion

- freedom of conscience and free profession, practice and propagation of religion;
- freedom to manage religious affairs;
- freedom as to payment of taxes for promotion of any particular religion;
- freedom as to attendance at religious instruction or religious worship in educational institutions wholly maintained by the State.

Cultural and Educational Rights

- for protection of interests of minorities to conserve their language, script and culture;
- for minorities to establish and administer educational institutions of their choice.

Right to Constitutional Remedies

• by issuance of directions or orders or writs by the Supreme Court and High Courts for enforcement of these Fundamental Rights.

અનુક્રમણિકા

FORE	WORD	iii
PREF	ACE	v
I :	ભૌતિકવિજ્ઞાન પ્રાયોગિક કાર્યનાં મુખ્ય	
	કૌશલ્યોનો પરિચય	
I.1.1	પરિચય	1
I.1.2	પ્રાયોગિક કાર્યના હેતુઓ	2
I.1.3	પ્રયોગશાળા કાર્યના વિશિષ્ટ હેતુઓ	4
I.1.4	પ્રાયોગિક ત્રુટિઓ	5
I.1.5	લઘુગણક	11
I.1.6	પ્રાકૃતિક સાઇન / કોસાઇન કોષ્ટક	14
I.1.7	આલેખ દોરવા	15
I.1.8	પ્રયોગ કરવા માટેની સામાન્ય સૂચનાઓ	19
I.1.9	પ્રયોગ દરમિયાન અવલોકનો નોંધવા માટેની સામાન્ય સૂચનાઓ	20
પ્રયોગો		
E1	વિદ્યુતસ્થિતિમાનના તફાવત વિરુદ્ધ વિદ્યુતપ્રવાહનો આલેખ દોરી આપેલા તાર માટે એકમ લંબાઈ દીઠ અવરોધ નક્કી કરવો.	23
E2	મીટરબ્રિજનો ઉપયોગ કરીને આપેલા તારનો અવરોધ નક્કી કરવો અને તે પરથી તારના દ્રવ્યની અવરોધકતા નક્કી કરવી.	28
E3	મીટરબ્રિજનો ઉપયોગ કરી અવરોધના સંયોજનો(શ્રેણી અને સમાંતર)ના નિયમો ચકાસવા.	36
E4	પોર્ટેન્શિયોમીટરનો ઉપયોગ કરી આપેલા બે પ્રાથમિક કોષ (ડેનિયલ અને લેકલાન્સે કોષ)ના વિદ્યુત ચાલક બળ(emf) સરખાવો.	42
E5	પોટૅન્શિયોમીટરનો ઉપયોગ કરી આપેલા પ્રાથમિક કોષનો આંતરિક અવરોધ નક્કી કરવો.	49
E6	અર્ધ આવર્તનની રીતથી ગૅલ્વેનોમીટરનો અવરોધ નક્કી કરવો અને તેની ફિગર ઑફ મેરિટ શોધવી.	53
E7	આપેલા ગૅલ્વેનોમીટર (અવરોધ અને ફિગર ઑફ મેરિટ જ્ઞાત હોય તેવા)ને (i) ઇચ્છિત અવધિ (0 થી 30 mA) ધરાવતા એમીટર અને (ii) ઇચ્છિત અવધિ (0 થી 3V) ધરાવતા વોલ્ટમીટરમાં રૂપાંતર કરો અને તેની ચકાસણી કરવી.	59
E8	સોનોમીટર અને વિદ્યુતચુંબકનો ઉપયોગ કરી પ્રત્યાવર્તી પ્રવાહ (ઊલટસૂલટ પ્રવાહ-ac)ની આવૃત્તિ નક્કી કરો.	65
E9	અંતર્ગોળ અરીસાના કિસ્સામાં u નાં જુદાં-જુદાં મૂલ્યો માટે v નાં મૂલ્યો શોધવા અને કેન્દ્રલંબાઈ શોધવી.	69

E10	બહિર્ગોળ લેન્સ માટે u અને υ અથવા $1/u$ અને $1/\upsilon$ વચ્ચેના આલેખ દોરી કેન્દ્રલંબાઈ શોધવી.	77			
E11	બહિર્ગોળ લેન્સનો ઉપયોગ કરી બહિર્ગોળ અરીસાની કેન્દ્રલંબાઈ શોધવી.	86			
E12	બહિર્ગોળ લેન્સનો ઉપયોગ કરી અંતર્ગોળ લેન્સની કેન્દ્રલંબાઈ શોધવી.	92			
E13	આપેલ કાચના પ્રિઝમ માટે આપાતકોણ અને વિચલનકોણ વચ્ચેનો આલેખ દોરી, લઘુત્તમ વિચલનકોણ નક્કી કરવો	99			
E14	ચલ સૂક્ષ્મદર્શકયંત્ર (ટ્રાવેલિંગ માઇક્રોસ્કૉપ)નો ઉપયોગ કરી કાચના સ્લેબ (ચોસલા)નો વક્રીભવનાંક શોધવો.				
E15	(i) અંતર્ગોળ અરીસા (ii) બહિર્ગોળ લેન્સ અને સમતલ અરીસાનો ઉપયોગ કરી આપેલા પ્રવાહી (પાણી)નો વક્રીભવનાંક નક્કી કરવો.	110			
E16	p-n જંકશનની ફોરવર્ડ બાયસ અને રિવર્સ બાયસની સ્થિતિમાં I - V ની લાક્ષણિકતા દર્શાવતા વક્કો દોરવા.				
E17	ઝેનર ડાયોડ માટે લાક્ષણિક વક્ર દોરવા અને તેનો રિવર્સ બ્રેકડાઉન વોલ્ટેજ નક્કી કરવો.	125			
E18	કૉમન ઍમિટર n-p-n (અથવા p-n-p) ટ્રાન્ઝિસ્ટરની લાક્ષણિકતાનો અભ્યાસ કરવો તથા વોલ્ટેજ અને પ્રવાહ લબ્ધિ (ગેઇન)ના મૂલ્યો શોધવા.	130			
પ્રવૃત્તિર	મો મો				
A 1	આપેલા વિદ્યુત-પરિપથના ઘટકોનું જોડાણ કરવું.	139			
A2	આપેલા ખુલ્લા પરિપથની આકૃતિ દોરવી, કે જેમાં ઓછામાં ઓછી એક બૅટરી, અવરોધ / રીઓસ્ટેટ, કળ, એમીટર અને વોલ્ટમીટરનો સમાવેશ થાય. બરાબર ક્રમમાં ન જોડ્યા હોય તે ઘટકોની નોંધ કરી, પરિપથ અને આકૃતિને સુધારો.	141			
A3	લોખંડના ગર્ભ સહિત તથા રહિત ઇન્ડક્ટરના અવરોધ અને ઇમ્પિડન્સનું માપન કરવું.	145			
A4	મલ્ટિમીટરનો ઉપયોગ કરીને આપેલા પરિપથ માટે અવરોધ, વોલ્ટેજ (dc/ac), પ્રવાહ (dc)નું માપન કરવું અને આપેલા પરિપથની સતતતા (સાતત્યતા) ચકાસવી.	150			
A5	ત્રણ બલ્બ, ત્રણ સ્વિચ (On/Off), ફ્યુઝ અને પાવર સપ્લાયનો ઉપયોગ કરી ઘર-વપરાશ માટેનો પરિપથ બનાવવો.	157			
A6	સ્થિત પ્રવાહ માટે તારની લંબાઈ સાથે પોટૅન્શિયલ (સ્થિતિમાન) ડ્રોપમાં થતા ફેરફારનો અભ્યાસ કરવો.	159			
A7	LDR (Light Dependent Resistor - પ્રકાશ આધારિત અવરોધ) પર પ્રકાશની તીવ્રતાની અસરનો અભ્યાસ ઉદ્ગમનાં અંતરો બદલીને કરવો.	164			
A8	ડાયોડ, LED, ટ્રાન્ઝિસ્ટર, IC, અવરોધ અને કેપેસીટરને આ પ્રકારની વસ્તુઓના ભેગા કરેલા સમૂહમાંથી ઓળખવા.	167			
A9	મલ્ટિમીટરની મદદથી - (A) ડાયોડ કાર્યરત અવસ્થામાં છે કે નહિ તે ચકાસવું અને ડાયોડના એકદિશ પ્રવાહના વહનને ચકાસવું. (B) ટ્રાન્ઝિસ્ટરના ઍમિટર, બેઝ અને કલેક્ટરને ઓળખવા.	174			

	(C) p-n-p અને n-p- n ટ્રાન્ઝિસ્ટરનો ભેદ પારખવો અને ટ્રાન્ઝિસ્ટર કાર્યરત છે કે નહિ તે ચકાસવું.				
A10	કાચના સ્લેબ પર ત્રાંસા આપાત થતા પ્રકાશના કિરણપુંજનું વક્રીભવન અને પાર્થિક (રેખીય,	182			
A11 A12 A13	Lateral) વિચલનનું અવલોકન કરવું. બે પોલરોઇડની મદદથી પ્રકાશના ધ્રુવીભવન (Polarisation)નું અવલોકન કરવું. પાતળી સ્લિટ વડે પ્રકાશના વિવર્તનનું અવલોકન કરવું. મીણબત્તી અને પડદાનો ઉપયોગ કરી (i) બહિર્ગોળ લેન્સ અને (ii) અંતર્ગોળ અરીસા વડે પડદા પર મળતા પ્રતિબિંબના પ્રકાર અને પરિમાણનો અભ્યાસ (લેન્સ / અરીસાથી મીણબત્તીના જુદાં-જુદાં અંતરો માટે) કરવો.	186 190 192			
A14	લેન્સના આપેલા સમુહમાંથી બે લેન્સનો ઉપયોગ કરી દર્શાવેલ (યોગ્ય) કેન્દ્રલંબાઈવાળું લેન્સનું સંયોજન મેળવવું.				
પરિયોજ	નાઓ				
P 1	વિવર્તનનો ઉપયોગ કરી લેસર (LASER) કિરણપુંજ (Beam)ની તરંગલંબાઈ નક્કી કરવી.	207			
P2	કોષનો આંતરિક અવરોધ જે પરિબળો પર આધારિત છે તેનો અભ્યાસ કરવો.	211			
Р3	ટાઈમ સ્વિચ (Time Switch) બનાવવી અને તેનો સમય-અચળાંક જુદાં-જુદાં પરિબળો પર કેવી રીતે આધારિત છે તેનો અભ્યાસ કરવો.	217			
P4	ફોટો ટ્રાન્ઝિસ્ટર (Photo Transistor)ના ઉપયોગથી વિવિધ ઉદ્ગમો વડે ઉત્સર્જાતા પારરક્ત (Infrared) વિકિરણોનો અભ્યાસ કરવો.	220			
P5	લૉજિક ગેટ્સના યોગ્ય સંયોજનનો ઉપયોગ કરી સ્વયંસંચાલિત ટ્રાફિક સિગ્નલ-વ્યવસ્થાની રચના કરવી.	223			
P6	જુદાં-જુદાં પાવર અને બનાવટવાળા વિવિધ વિદ્યુત-ગોળાની જ્યોતિર્મયતા (Luminosity) નો અભ્યાસ કરવો.	227			
P7	(i) કેપેસીટર (ii) ઇન્ડક્ટર (iii) LCR શ્રેણી-પરિપથના આવૃત્તિ પ્રતિચાર (Frequency Response)નો અભ્યાસ કરવો.	233			
નિદર્શનો					
D1	વિદ્યુતભાર બે પ્રકારના હોય છે તથા સમાન (સજાતીય) વિદ્યુતભાર એકબીજાને અપાકર્ષે અને અસમાન (વિજાતીય) વિદ્યુતભાર એકબીજાને આકર્ષે છે તેનું નિદર્શન કરવું.	242			
D2	ઇલેક્ટ્રોસ્ટેટિક શિલ્ડિંગ (Electrostatic Shielding)નું નિદર્શન કરવું.	244			
D3	(i) અમુક વિદ્યુતપ્રવાહના વહનથી ઓગળી જતા ધાતુના કામચલાઉ ફયુઝ (Fuse)નો ઉપયોગ અને (ii) રોજિંદી જિંદગીમાં ઉપયોગમાં લેવાતા વિવિધ પ્રકારના ફ્યુઝનું નિદર્શન કરવું.	246			
D4	નિસ્યંદિત પાણી વધારે અવરોધ આપે છે અને તેમાં સોડિયમ ક્લોરાઇડ (Sodium Chloride) ભેળવવાથી અવરોધ ઘટે છે તેમ નિદર્શન કરવું.	248			
D5	લેડ સંગ્રાહક કોષ (Lead Accumalator)ના કાર્યનું નિદર્શન કરવું.	250			
D6	વિદ્યુતપ્રવાહ માપક સાધનને નિશ્ચિત અશૂન્ય (non-zero) અવરોધ હોય છે તેનું નિદર્શન કરવું.	253			

D7	વોલ્ટેજમાપક સાધનનો અવરોધ અનંત નથી (non-infinite) તેનું નિદર્શન કરવું.	254
D8	લોખંડની ભૂકીની મદદથી ચુંબકીયક્ષેત્ર રેખાઓનું નિદર્શન કરવું.	256
D9	ગજિયા ચુંબકની આસપાસના વિસ્તારમાં વિવિધ પદાર્થો લાવી ચુંબકીયક્ષેત્રની ગોઠવણી (pattern) પર ઉદ્ભવતી અસરનો અભ્યાસ કરવો.	257
D10	પૃથ્વીના ચુંબકીયક્ષેત્રને ઊર્ધ્વ અને સમક્ષિતિજ બંને ઘટકો હોય છે તેમ દર્શાવવું.	259
D11	પ્રવાહધારિત બે સુવાહકોમાં વિરુદ્ધ / સમાન દિશામાં વિદ્યુતપ્રવાહના વહનને લીધે તેમની વચ્ચે લાગતાં અપાકર્ષણ / આકર્ષણ બળનું નિદર્શન કરવું.	261
D12	(i) કોઈ ચુંબકને ગૂંચળા તરફ અને દૂર લઈ જતા હોય ત્યારે અને (ii) વિદ્યુતપ્રવાહધારિત ગૂંચળાને એક સમાન બીજા આપેલ ગૂંચળાની તરફ અને દૂર લઈ જતાં હોય ત્યારે, તે ગૂંચળામાં ઉદ્ભવતા પ્રેરિત વિદ્યુત ચાલક બળનું નિદર્શન કરવું.	264
D13	ઇન્ડક્ટિવ પરિપથમાં ડાયરેક્ટ પ્રવાહ (એકદિશીય પ્રવાહ) (dc) ને જ્યારે સ્વિચ ઑફ કરીએ ત્યારે ઊંચા મૂલ્યનું વિદ્યુતચાલક બળ ઉદ્દ્ભવે છે તેમ નિદર્શન કરવું.	267
D14	(i) સ્ટીલના એક સળિયા પર પ્રાઈમરી અને સેકન્ડરીને વીંટાળી ટ્રાન્સફોર્મરના સિદ્ધાંત અને (ii) લેમિનેટેડ કોર (Laminated Core)નો ઉપયોગ કરીને એડી પ્રવાહોને દૂર કરવાનું નિદર્શન કરવું.	269
પરિશિષ્ટ		
$A_x 1$	સાદુ ઇલેક્ટ્રોસ્કૉપ બનાવવું અને પદાર્થ પરના વિદ્યુતભારને પારખવા માટે તેનો ઉપયોગ કરવો	272
$A_{x}2$	ધાતુના તારમાં 'ઇલેક્ટ્રૉન ડ્રિફ્ટ'નું યાંત્રિક મૉડેલ બનાવવા માટેનું માર્ગદર્શન	273
A_x3	અવરોધકો અને તેનાં મૂલ્યો દર્શાવતા વર્શસંકેતો (Colour Codes)	275
$A_{\chi}4$	ખુલ્લા પ્રકારનું કામચલાઉ ક ્યુઝ હૉલ્ડર	277
$A_x 5$	પ્રવાહના સ્રોત તરીકે માત્ર બે સૂકા કોષ વાપરી સુરેખ વાહક વડે ઉત્પન્ન થતા	278
	ચુંબકીયક્ષેત્રના અભ્યાસ માટે ચોરસ ગૂંચળું બનાવવું	
$A_{\chi}6$	ચુંબકીયક્ષેત્રના અભ્યાસ માટે સોલેનોઇડ બનાવવું	280
$A_x 7$	રેઝર બ્લેડની જાડાઈ જેટલી એક સમાન પહોળાઈ ધરાવતી પાતળી સ્લિટ બનાવવી	282
$A_{\chi}8$	યંગના પ્રયોગ માટે સાદી બેવડી (Double) સ્લિટ બનાવવી	283
$A_{\chi}9$	પરમાણ્વીય ન્યુક્લિયસો માટે $lpha$ -કણના પ્રકીર્ણનનું યાંત્રિક એકરૂપકરણ	284
ડેટા વિ	ભાગ :	287-304

ભૌતિકવિજ્ઞાનના પ્રાયોગિક કાર્યનાં મહત્ત્વનાં કૌશલ્યોનો પરિચય

I 1.1 પરિચય

શાળાકીય અભ્યાસમાં ઉચ્ચતર માધ્યમિક વિભાગ એ ખૂબ જ નિર્ણાયક અને પડકારરૂપ તબક્કો છે, કારણ કે આ તબક્કે સામાન્ય રીતે અવિભાજિત અભ્યાસક્રમ શાખા આધારિત વિષયવસ્તુ ક્ષેત્ર અભિગમ્યમાં રૂપાંતરિત થાય છે. આ તબક્કે વિદ્યાર્થીઓ ભૌતિકશાસ્ત્રને એક શાખા તરીકે, ભવિષ્યની કારકિર્દીના ઉજજ્વળ હેતુ સાથે મૂળભૂત વિજ્ઞાન અથવા વિજ્ઞાન આધારિત વ્યવસાયિક અભ્યાસક્રમો જેવા કે ઍન્જિનિયરિંગ, મેડિકલ, ઇન્ફોર્મેશન ટેક્નોલૉજી વગેરે તરીકે લે છે.

ભૌતિકવિજ્ઞાન દ્રવ્ય અને ઊર્જા સાથે જોડાયેલા નિર્જીવ અને સજીવ વિશ્વના અભ્યાસ સાથે સંકળાયેલ છે. જોકે વિજ્ઞાનની બધી જ શાખાઓમાં પ્રાયોગિક કાર્ય જરૂરી છે. પ્રયોગશાળામાં નિયંત્રિત પ્રયોગો એ ભૌતિકવિજ્ઞાનમાં પાયાનું મહત્ત્વ ધરાવે છે. ભૌતિકવિજ્ઞાનમાં પ્રયોગશાળામાં પ્રયોગ કરવાનો પાયાનો હેતુ, સામાન્યતઃ સિદ્ધાંતો, નિયમો અને અધિતર્ક સાથે સંકળાયેલ ભૌતિક ઘટનાઓ ચકાસવી અને તેની સત્યાર્થતા મેળવવી છે. ફક્ત આટલું કરવાથી અધ્યેતા પોતે સ્વતંત્ર વિચારસરણીવાળા કે સંશોધન કરી શકે તેવા બની જતા નથી. આ બાબતે પ્રાયોગિક કાર્ય એ ખૂબ જ જરૂરી અને જુદા જુદા રસ્તે પ્રેરણારૂપ બને છે. અહીં માત્ર પ્રયોગ જ કરવાનો નથી; પરંતુ પ્રયોગ કરવાની સાથે સંકળાયેલ અન્ય પાસાંઓનાં સંશોધનનો પણ સમાવેશ થાય છે. ઘણી પ્રવૃત્તિઓ અને પ્રૉજેક્ટ-કાર્ય વિદ્યાર્થીઓના પ્રયોગને લગતા સંશોધનથી થયેલ પ્રથમદર્શી અનુભવો વધારે સુદઢ બને છે. તેમ છતાં, વિદ્યાર્થીઓ પ્રાયોગિક કાર્યનું ઉચ્ચતર માધ્યમિક તબક્કે વાતાવરણમાંથી મેળવેલ સૈદ્ધાંતિક જ્ઞાન સાથે સંકલન કરવા સક્ષમ બને છે.

વિજ્ઞાનનો ઇતિહાસ તપાસતાં માલૂમ પડે છે કે, ઘણીખરી મહત્ત્વની શોધો પ્રયોગ કરતાં હોય તે દરમિયાન થયેલ છે. ભૌતકવિજ્ઞાનના વિકાસમાં, ઘટનાના સૈદ્ધાંતિક અર્થઘટન જેટલું જ અગત્ય પ્રાયોગિક કાર્યનું છે. કોઈ વ્યક્તિ દ્વારા પોતાની જાતે પ્રયોગશાળામાં પ્રયોગ કરવાથી તેનામાં જ્ઞાન પેદા કરવાની પ્રક્રિયામાં સીધો સંકળાયેલ હોવાની અનુભૂતિ મેળવે છે. પ્રયોગશાળામાં જાતે પ્રયોગ કરવાથી અને મેળવેલ માહિતીનું વિશ્લેષણ કરવાથી તેનામાં વૈજ્ઞાનિક અભિગમ, તાર્કિક વિચારસરણી, તર્કસંગત દષ્ટિકોણ, આત્મવિશ્વાસની સમજ, છૂટું પાડવાની ક્ષમતા, વૈકલ્પિક સહકારનો અભિગમ, ધીરજ, ખંત, સ્વયં જવાબદારી જેવા ગુણોનો વિકાસ થાય છે. પ્રયોગ કરવાથી ગોઠવણ કરવાની, અવલોકન કરવાની અને અહેવાલ લખવાનાં કૌશલ્યોનો પણ વિકાસ થાય છે.

નેશનલ ક્યુરિકુલમ ફ્રેમ વર્ક (NCF-2005) તથા માધ્યમિક અને ઉચ્ચતર માધ્યમિક કક્ષાએ અભ્યાસક્રમ (NCERT-2006)માં શીખવવા-શીખવાની પ્રક્રિયા સંકલનમાં પ્રાયોગિક કાર્યને ખૂબ જ મહત્ત્વ આપેલ છે.

NCERT એ નવા અભ્યાસક્રમ પર આધારિત ભૌતિકવિજ્ઞાન ધોરણ - 12 માટે પાઠ્યપુસ્તક પ્રકાશિત કરેલ છે. તેના પૂરકમાં વિભાવનાઓને સમજવા. ભૌતિકવિજ્ઞાન પ્રયોગશાળામાં તેનું સંકલન કરવા તથા ભૌતિકવિજ્ઞાનના અભ્યાસક્રમમાં આવતી વિષયવસ્તુ માટે આ પ્રાયોગિક પુસ્તક વિકસાવવામાં આવ્યું છે. પ્રાયોગિક ભૌતિકવિજ્ઞાન પુસ્તકનો મુખ્ય આશય વિદ્યાર્થીઓને 'પ્રક્રિયા અભિગમિત દેખાવ'માં (ઉત્પાદિત અથવા પરિણામ અભિગમિત દેખાવથી ઊલટું) ગોઠવવા તથા શાળાકીય કાર્યમાં પ્રયોગ પ્રત્યે પ્રોત્સાહિત કરવાનો છે. શાળાના પ્રાયોગિક કાર્ય દરમિયાન રહેલાં ભયસ્થાનોને સમજવા માટે આ પ્રાયોગિક પુસ્તક મદદરૂપ અને મૂલ્યવાન સાબિત થશે તેવી આશા રાખવામાં આવે છે.

I 1.2 પ્રાયોગિક કાર્યના હેતુઓ

ભૌતિકવિજ્ઞાન કુદરતી ઘટનાઓને સમજવા સાથે સંકળાયેલ છે અને આ ઘટનાઓની સમજણનો ઉપયોગ ટેક્નોલૉજી અને સમાજની પ્રગતિ માટે કરવામાં આવે છે. ભોતિકવિજ્ઞાન પ્રાયોગિક કાર્ય 'કંઈક કરીને શીખવાની' ઉક્તિને સાંકળે (સમાવિષ્ટ) છે. તે વિભાવનાને સ્પષ્ટ કરે છે અને તપાસના બીજ રોપે છે.

પ્રયોગ અથવા પ્રવૃત્તિ દરમિયાન કાળજીપૂર્વક અને તબક્કાવાર અવલોકનોની શ્રેણી વ્યક્તિગત અથવા નાના જૂથ (group) અથવા સંયુક્ત સંશોધન શીખવાની સગવડતા પૂરી પાડે છે.

પ્રાયોગિક ભૌતિકવિજ્ઞાનના અભ્યાસક્રમથી વિદ્યાર્થી મૂળભૂત નિયમો અને સિદ્ધાંતો આધારિત પ્રયોગ કરવા અને જુદાં જુદાં માપનનાં સાધનોના ઉપયોગથી અનુભવ મેળવવા સક્ષમ બને છે. પ્રાયોગિક કાર્ય શીખવાના મૂળભૂત કૌશલ્યનો વિકાસ કરે છે. ભૌતિકવિજ્ઞાનના પ્રાયોગિક કાર્યથી વિકાસ પામતા મુખ્ય કૌશલ્યોની નીચે ચર્ચા કરેલ છે:

I 1.2.1 ગોઠવણ (પ્રાયોગિક સાધનો) કૌશલ્યો

જો અધ્યેતા (શીખનાર) નીચે જણાવેલ બાબતો ધ્યાનમાં લેશે તો તેનામાં પ્રાયોગિક કાર્યમાં **ગોઠવણ-કૌશલ્ય**નો વિકાસ થશે :

- (i) સૈદ્ધાંતિક અને પ્રયોગના હેતુઓ વચ્ચેનો સંબંધ સમજે.
- (ii) પ્રયોગ કરવાની પદ્ધતિ વિશે ખ્યાલ બાંધે.
- (iii) સાધનોની યોગ્ય ક્રમમાં ગોઠવણ કરે.
- (iv) સાધનો, સામગ્રી, યંત્ર વગેરેની કાર્યપદ્ધતિ અને સિદ્ધાંતની યોગ્યતા ચકાસે.
- (v) માપનના સાધનની મર્યાદા જાણે અને તેનું લઘુત્તમ માપ, ત્રુટિ વગેરે શોધે.

- (vi) સાધન કે તેને વ્યક્તિગત નુકસાન નિવારવા કાળજીપૂર્વક અને ધ્યાનપૂર્વક સાધનનો ઉપયોગ કરે.
- (vii) પદ્ધતિસર પ્રયોગ કરે.
- (viii) ચોકસાઈપૂર્વક અવલોકન કરે અને નોંધે.
- (ix) સૂત્રમાં યોગ્ય માહિતી મૂકે અને યોગ્ય SI એકમો ધ્યાનમાં રાખે.
- (x) પરિણામની ચોકસાઈથી ગણતરી કરે અને તેની યોગ્ય સાર્થક અંક સહિતની રજૂઆત કરે અને સાધનની ચોકસાઈના અંશ નક્કી કરે.
- (xi) પરિણામનું અર્થઘટન કરે, સિદ્ધાંતને ચકાસે અને તારણ લખે અને
- (xii) યોગ્ય સાધન, તંત્ર, યંત્ર, દ્રવ્યની જરૂરી પસંદગી કરીને સાદા સાધનોમાં સુધારો કરી વધુ સંશોધન માટેના સાધનની રચના કરવી.

I 1.2.2 અવલોકનકીય કૌશલ્ય

જો અધ્યેતા (શીખનાર) નીચે જણાવેલ બાબતો ધ્યાનમાં લેશે તો તેનામાં પ્રાયોગિક કાર્યના **અવલોકનકીય કૌશલ્ય**નો વિકાસ થશે.

- (i) સાધન વિશે વાંચે અને લઘુત્તમ માપને ધ્યાનમાં રાખીને ભૌતિકરાશિનું માપન કરે.
- (ii) અવલોકન નોંધતી વખતે સાચો ક્રમબદ્ધ અનુસરે.
- (iii) પદ્ધતિસર શૈલીથી સાવચેતીપૂર્વક અવલોકન નોંધે.
- (iv) દરેક અવલોકન સ્વતંત્ર રીતે વધારે વખત પુનરાવર્તિત કરવાથી અવલોકનમાં આવતી અમુક ત્રુટિ ઘટાડી શકાય છે.

I 1.2.3 રેખાંકન-કૌશલ્ય

જો અધ્યેતા (શીખનાર) નીચે જણાવેલ બાબતો ધ્યાનમાં લેશે તો તેનામાં **રેખાંકન-કૌશલ્ય**નો વિકાસ થશે

- (i) પ્રયોગના સાધનનું પ્રમાણસર રેખાચિત્ર બનાવે.
- (ii) તીર(કિરણ) સાથેનું સાચું રેખાચિત્ર, સાચો વિદ્યુત-પરિપથ નામનિર્દેશન સાથે દોરે.
- (iii) બળ, તણાવ, વિદ્યુતપ્રવાહ, પ્રકાશના કિરણની દિશા યોગ્ય રેખા અને તીર દ્વારા દર્શાવે અને
- (iv) યોગ્ય પ્રમાણમાપની પસંદગી અને યોગ્ય પ્રમાણમાપનો ઉપયોગ કરી સાચો અને સ્પષ્ટ આલેખ દોરે.

I 1.2.4 અહેવાલ-કૌશલ્ય

જો અધ્યેતા (શીખનાર) નીચે જણાવેલ બાબતો ધ્યાનમાં લેશે તો તેનામાં **અહેવાલ-કૌશલ્ય**નો વિકાસ થશે

- (i) પ્રયોગ માટેના હેતુ, સાધનો, ઉપયોગમાં લીધેલ સૂત્ર, સિદ્ધાંત, અવલોકન-કોઠો, ગણતરી અને પરિણામની યોગ્ય રજૂઆત કરે
- (ii) નામ નિર્દેશનવાળી રેખાકૃતિમાં ઘટકોની યોગ્ય સંજ્ઞા સહિત રજૂઆત કરે
- (iii) જરૂર જણાય ત્યાં અવલોકનોની પદ્ધતિસર અને યોગ્ય એકમ સહિત અવલોકન કોઠામાં નોંધ કરે
- (iv) કિરણ પ્રકાશશાસ્ત્રના પ્રયોગમાં માપનની નોંધ વખતે યોગ્ય સંજ્ઞા પદ્ધતિને અનુસરે
- (v) આપેલ પ્રયોગની ગણતરી/પરિણામની યોગ્ય સાર્થક અંક, યોગ્ય સંજ્ઞાઓ, એકમો, ચોકસાઈના પ્રમાણ સહિત રજૂઆત કરે
- (vi) પરિણામમાં ત્રુટિની ગણતરી કરે
- (vii) સાધનની મર્યાદાઓની રજૂઆત કરે
- (viii) અધિતર્કનો સ્વીકાર કે અસ્વીકાર કરવામાં આવ્યો હોય તેનો સારાંશ દર્શાવે
- (ix) નોંધેલ અવલોકનો, માહિતી અથવા દોરેલ આલેખનું યોગ્ય અર્થઘટન કરી તારણ મેળવે અને
- (x) કરેલ કામગીરીમાં ભિવષ્યમાં સંશોધનના શોધનો અવકાશ દર્શાવેતેમ છતાં, વધુ મહત્ત્વના એવા સર્જનાત્મકતાનો વિકાસ અને સંશોધનની કળા જેવા કૌશલ્યો ખીલે

I 1.3 પ્રાયોગિક કાર્યના વિશિષ્ટ હેતુઓ

પ્રાયોગિક કાર્યના વિશિષ્ટ હેતુઓ તરીકે પ્રક્રિયા અભિગમિત દેખાવ કૌશલ્ય અને ઉત્પાદિત અભિગમિત દેખાવ કૌશલ્ય વર્ગીકૃત કરી શકાય છે.

${f I}\ {f 1.3.1}$ પ્રક્રિયા અભિગમિત દેખાવ કૌશલ્ય

અધ્યેતા (શીખનાર)માં પ્રાયોગિક કાર્યમાં પ્રક્રિયા અભિગમિત દેખાવ કૌશલ્યનો વિકાસ કરી શકાય, જો તે નીચેની બાબતો માટે સક્ષમ હોય.

- (i) જો તે યોગ્ય યંત્રો, સાધનો, સામગ્રી, રસાયણોની પસંદગી કરે અને તેને યોગ્ય રીતે જાળવે.
- (ii) સાધન સાથે યોગ્ય રીતે કામ કરે.
- (iii) સાધનની ત્રુટિ અને તેની મર્યાદાઓને શોધે અને તેનું નિરાકરણ કરે.
- (iv) પ્રયોગમાં ઉપયોગમાં લીધેલ સિદ્ધાંત/સૂત્ર લખે.
- (v) અવલોકન લેવા માટે વ્યવસ્થિત આયોજન તૈયાર કરે.
- (vi) જ્યાં જરૂર પડે ત્યાં સાધન/કિરણ રેખાકૃતિ/વિદ્યુત પરિપથની સ્વચ્છ અને નામનિર્દેશનવાળી આકૃતિ દોરે.

- (vii) પ્રયોગ કરવા સાધનની યોગ્ય ગોઠવણી કરે.
- (viii) સાધન, રસાયણો અને સામગ્રીનો કાળજીપૂર્વક ઉપયોગ કરે.
- (ix) અવલોકનો પર અસર કરી શકે તેવા પરિબળોને ઓળખે અને તેની અસરોને ઘટાડવા માટે યોગ્ય માપનો કરે.
- (x) ફાળવેલ સમયમાં યોગ્ય ઝડપ, ચોકસાઈ અને ચીવટતાપૂર્વક પ્રયોગ પૂર્ણ કરે.
- (xi) મેળવેલ માહિતીને આલેખમાં રજૂ કરે અને યોગ્ય પ્રમાણમાપ પસંદ કરી યોગ્ય પ્રમાણમાપનો ઉપયોગ કરી આલેખ દોરે.
- (xii) નોંધેલ માહિતી, અવલોકનો, ગણતરી અને દોરેલ આલેખના અર્થઘટન પરથી તારણ મેળવે.
- (xiii) પ્રયોગ સાથે સંકળાયેલ સિદ્ધાંત, પદ્ધતિ અને પ્રયોગ દરમિયાન રાખવાની સાવચેતીઓનો યોગ્ય રીતે અહેવાલ કરે.
- (xiv) સાધનોને અલગ કરીને તેની પુનઃગોઠવણ કરે.
- (xv) પ્રયોગશાળાની કાર્યપદ્ધતિ માટેની પ્રમાણભૂત માર્ગદર્શિકાને અનુસરે.

I 1.3.2 ઉત્પાદક-અભિગમિત રજૂઆત કૌશલ્ય

અધ્યેતા (શીખનાર)માં પ્રાયોગિક કાર્યમાં ઉત્પાદક-અભિગમિત રજૂઆત કૌશલ્યનો વિકાસ કરી શકાય, જો તે નીચેની બાબતો માટે સક્ષમ હોય.

- (i) પ્રયોગમાં વપરાયેલ સાધન અને સામગ્રીના જુદા જુદા ભાગને ઓળખે.
- (ii) પ્રયોગની રૂપરેખા અનુસાર સાધનોને ગોઠવે.
- (iii) અવલોકનો નોંધે અને પદ્ધતિસર માહિતીને નોંધે અને આલેખીય અથવા સાંખ્યિક વિશ્લેષણની સુવિધા પૂરી પાડે.
- (iv) આલેખ, ગણતરી વગેરેનો ઉપયોગ કરીને અવલોકનોને પદ્ધતિસર રજૂ કરે અને નોંધેલ અવલોકનો પરથી અનુમાન તારવે.
- (v) નોંધેલ અવલોકનોને વર્ગીકૃત કરી અને તેનું અર્થઘટન કરી પરિશામને અંતિમ સ્વરૂપ આપે અને
- (vi) પ્રયોગના તારણ પર આધારિત અધિતર્ક સ્વીકારે કે અસ્વીકાર કરે.

I 1.4 પ્રાયોગિક ત્રુટિઓ

દરેક પ્રયોગનો અંતિમ ઉદ્દેશ પ્રત્યક્ષ કે પરોક્ષ રીતે કેટલીક ભૌતિકરાશિના મૂલ્યને માપવા માટેનો છે. ઘણી પ્રક્રિયાઓ માપનના મૂલ્યમાં કેટલીક અનિશ્ચિતતાઓ લાવે છે. ત્રુ**ટિ વિનાનું કોઈ માપન હોઈ શકે** નહિ. કેટલાક પ્રયોગો દ્વારા માપેલ ભૌતિકરાશિનું આ પ્રાયોગિક મૂલ્ય તેના પ્રમાણિત કે સાચા મૂલ્ય કરતાં કદાચ અલગ હોઈ શકે. ધારો કે કોઈ ભૌતિકરાશિનું પ્રાયોગિક અવલોકન કરેલ મૂલ્ય 'a' અને

તેનું સાચુ મૂલ્ય a_0 છે. તફાવત $(a-a_0)=e$ ને માપનમાં આવેલ ત્રુટિ કહે છે. સાચુ મૂલ્ય a_0 મોટાભાગે જાણીતું હોતું નથી અને આથી ત્રુટિ e નું નિરપેક્ષ મૂલ્ય જ્ઞાત કરવું શક્ય નથી તેમ છતાં e ના લગભગ મૂલ્યનો અંદાજ મેળવવો શક્ય છે. **ત્રુટિના અંદાજિત મૂલ્યને પ્રાયોગિક ત્રુટિ કહે છે.** માપનના સાધનનું લઘુત્તમ માપ અથવા લઘુત્તમ માપના ગાણિતિક સૂત્રમાં આવતા ચલને લીધે ત્રુટિ ઉદભવે છે. પ્રયોગની ગુણવત્તાને આધારે પરિણામમાં આવતી પ્રાયોગિક અનિશ્ચિતતા નક્કી કરી શકાય છે. અનિશ્ચિતતાનું નાનું મૂલ્ય એ પ્રાયોગિક રીતે માપેલ મૂલ્યને સાચા મૂલ્યની નજીક લઈ જાય છે. ચોકસાઈ એ પ્રાયોગિક મૂલ્યથી સાચા મૂલ્યની નજીકતાનું માપ દર્શાવે છે. બીજી બાજુ, જો કોઈ ભૌતિકરાશિને એકના એક પ્રયોગમાં ફરી ફરીને પુનરાવર્તિત રીતે માપવામાં આવે તો, મેળવેલ મૂલ્યો એકબીજાથી અલગ હોઈ શકે. આ ફેલાવો અથવા પ્રાયોગિક માહિતીનો વિસ્તાર એ પ્રયોગ અથવા સાધનની ચોકસાઈનું માપ દર્શાવે છે. નાના વિસ્તારમાં પ્રાયોગિક મૂલ્યનો ફેલાવો એટલે વધારે ચોકસાઈ સાથેનો પ્રયોગ. આમ, સાચાપણું અને ચોકસાઈ બે અલગ ખ્યાલ (વિભાવના) છે. સાચાપણું એ સાચા મૂલ્યની નજીકનું માપ જયારે ચોકસાઈ એ પ્રાયોગિક માહિતીના ફેલાવા (dispersion)નું માપ દર્શાવે છે. એવું પણ શક્ય બની શકે કે ચોક્કસાઈથી મેળવેલ પ્રાયોગિક માહિતી કદાચ સાચી ન પણ હોય. (જો ત્યાં ઘણી બધી વ્યવસ્થિત ત્રુટિઓ હાજર હોય તો) મહત્તમ ફેલાવાનો લગભગ અંદાજ તે સાધનના લઘુત્તમ માપ સાથે જોડાયેલો છે.

પ્રાયોગિક ત્રુટિઓને બે પ્રકારમાં વર્ગીકૃત કરી શકાય. (a) વ્યવસ્થિત (b) અવ્યવસ્થિત. વ્યવસ્થિત ત્રુટિઓ ઉદ્દભવવાના કારણો (i) ખામીયુક્ત સાધન (જેવી કે વર્નિયર કેલીપર્સની શૂન્ય ત્રુટિ) (ii) પ્રયોગ કરવાની ખોટી પદ્ધતિ અને (iii) પ્રયોગ કરનાર વ્યક્તિની વ્યક્તિગત ખામી. વ્યવસ્થિત ત્રુટિઓ એવી ત્રુટિઓ છે કે જેમાં સુધારો લાગુ પાડી શકાય છે અને સૈધ્ધાંતિક રીતે તેને દૂર કરી શકાય છે. કેટલીક સામાન્ય વ્યવસ્થિત ત્રુટિઓ. (i) માઇક્રોમીટર સ્ક્રૂ અને વર્નિયર કેલીપર્સમાં શૂન્ય ત્રુટિ (ii) 'તીવ્ર નકારાત્મક' (backlash) ત્રુટિ. જયારે માઇક્રોસ્કોપના સ્ક્રૂને પ્રથમ એક દિશામાં અને પછી મૂળ દિશામાં ફેરવીને અવલોકન લેવામાં આવે ત્યારે નોંધેલ અવલોકન ખરેખર સ્ક્રૂના ફેરવવાથી મળતા અંતર કરતાં ઓછું હોય છે. આ ત્રુટિ નિવારવા સ્ક્રૂને એક જ દિશામાં ફેરવીને અવલોકન નોંધવામાં આવે. (iii) બેન્ચ ત્રુટિ અથવા ઇન્ડેક્સ સુધારાને પ્રકાશીય બેન્ચની માપપટ્ટી પર જયારે અંતર માપવામાં આવેતો હોય ત્યારે પ્રકાશીય સાધનો વચ્ચે સાચું અંતર મળતું નથી. સાચું મૂલ્ય મેળવવા તેનાં તફાવતનો ઉમેરો કે બાદબાકી જરૂરી છે. (iv) જો સંબંધ સુરેખ હોય અને વ્યવસ્થિત ત્રુટિ અથળ રહેતી હોય, ઢાળ અથળ રહે તે રીતે સુરેખ આલેખ ખસે છે પરંતુ અંતઃખંડ વ્યવસ્થિત ત્રુટિયુક્ત બને છે.

કેટલાક પ્રયોગોના પરિશામોમાં વ્યવસ્થિત ત્રુટિ છે કે નહિ તે શોધવા માટે એક જ ભૌતિક રાશિ જુદી જુદી રીતથી માપવામાં આવે. જો એક જ ભૌતિકરાશિના મૂલ્ય બે જુદી જુદી રીતથી મેળવેલ હોય અને તેમાં ખૂબ મોટો તફાવત હોય, તો તેમાં વ્યવસ્થિત ત્રુટિ હોવાની સંભાવના છે. પ્રાયોગિક મૂલ્ય વ્યવસ્થિત

ત્રુટિના સુધારા પછી પણ ત્રુટિ ધરાવે છે. આવી વધેલી (બાકી રહેલી) ત્રુટિઓ કે જેમના ઉદ્દગમો છૂટાં પાડી શકાતા નથી તેમને અવ્યવસ્થિત ત્રુટિ કહે છે. અવ્યવસ્થિત ત્રુટિને નિવારી શકાતી નથી અને અવ્યવસ્થિત ત્રુટિનું ચોક્કસ મૂલ્ય મેળવવાની કોઈ રીત નથી. તેમ છતાં તેની માત્રા એક જ ભૌતિક રાશિનું એક જ પદ્ધતિથી વારંવાર અવલોકન લઈ કદાચ ઘટાડી શકાય છે અને માપેલ કિંમતોનું સરેરાશ મૂલ્ય લેવામાં આવે છે. (વધારે વિગત માટે Physics Textbook for Class-XI Part-I, Chapter-2 NCERT, 2006 જુઓ.)

પ્રયોગશાળામાં પ્રયોગ કરતી વખતે જુદા જુદા લઘુત્તમ માપવાળા જુદા જુદા સાધનોની મદદથી જુદી જુદી ભૌતિકરાશિઓનું માપન કરવામાં આવે છે. જે સાધન વડે માપન કરવામાં આવ્યું હોય, તેના લઘુત્તમ માપ કરતાં માપેલ મૂલ્યમાં ત્રુટિ વધારે ન હોય તેવું વાજબીપણે ધારી લેવામાં આવે છે. સાધન વડે સીધે સીધી મપાતી એવી સાદી રાશિમાં સામાન્ય રીતે સાધનના લઘુત્તમ માપને મહત્તમ ત્રુટિ તરીકે લેવામાં આવે છે. જો રાશિનું સાચુ મૂલ્ય A_{θ} હોય અને તેને a જેટલા લઘુત્તમ માપવાળા સાધન વડે માપતાં મળતું મૂલ્ય A હોય તો,

$$\mathbf{A} = (\mathbf{A}_0 \pm a)$$
$$= \mathbf{A}_0 \left(1 \pm \frac{a}{\mathbf{A}_0} \right)$$

 $= \mathbf{A}_0 \left(1 \pm f_a \right)$

જ્યાં f_a ને $\mathbf A$ ની મહત્તમ સાપેક્ષ (આંશિક) ત્રુટિ કહેવામાં આવે છે. તેવી જ રીતે, બીજી માપેલ રાશિ $\mathbf B$ માટે, આપણી પાસે

$$\mathbf{B} = \mathbf{B}_0 \left(1 \pm f_b \right)$$

હવે, કોઈ રાશિ, ધારો કે Z, નીચેના સૂત્ર દ્વારા A અને B ના માપેલ મૂલ્ય પરથી ગણતરી કરી શકાય તો,

$$Z = A \cdot B$$

હવે આપણે ગણતરી કરેલ Z ના મૂલ્યમાં ઉદ્ભવતી કુલ અનિશ્ચિતતા (અથવા મહત્તમ ત્રુટિ)ની ગણતરી કરીએ. આપણે લખી શકીએ કે,

$$Z = A \cdot B$$

$$= \mathbf{A}_0 (1 \pm f_a) \cdot \mathbf{B}_0 (1 \pm f_b)$$

$$= A_0 B_0 (1 \pm f_a \pm f_b \pm f_a f_b)$$

= ${
m A}_0 {
m B}_0 \left[1 \pm (f_a \pm f_b)
ight]$ [જો f_a અને f_b ઘણી નાની રાશિઓ હોય તો તેમનો ગુણાકાર

 $f_a f_b$ અવગણી શકાય]

અથવા $Z \approx Z_0 (1 \pm f_z)$

જ્યાં Zનાં મૂલ્યમાં ઉદ્ભવતી આંશિકત્રુટિ f_z નું મહત્તમ મૂલ્ય $|f_a+f_b|$ જેટલું હોઈ શકે.

બીજી બાજુ, જો રાશિ Y નીચેની રીતે ગણી શકાય, તો

$$Y = \frac{A}{B} = \frac{A_0 (1 \pm f_a)}{B_0 (1 \pm f_b)}$$

$$= Y_0 (1 \pm f_a) (1 \pm f_b)^{-1} \qquad \left(\because Y_0 = \frac{A_0}{B_0} \right)$$

$$= Y_0 (1 \pm f_a) (1 \pm f_b + f_b^2)$$

$$= Y_0 (1 \pm f_a) (1 \pm f_b)$$

$$\sim Y_0 [1 \pm (f_a + f_b)]$$

અથવા
$$Y = Y_0 (1 \pm f_v)$$
 જયાં $f_v = f_a + f_b$,

જયાં Yની ગણતરીમાં મહત્તમ આંશિક અનિશ્ચિતતા f_y એ $|f_a|+f_b|$ જ થશે. અહીં નોંધો કે મહત્તમ આંશિક અનિશ્ચિતતા હંમેશા ઉમેરાય છે.

વધારે વ્યાપક કિસ્સામાં, જો રાશિ P અન્ય રાશિઓ x,y,z વગેરે પરથી સૂત્ર $P=x^ay^bz^c$ પરથી ગણી શકાય તો P ની ગણતરીમાં આવતી મહત્તમ સાપેક્ષ ત્રુટિ f_P નીચેના સૂત્ર દ્વારા આપી શકાય.

$$f_P = |a| f_x + |b| f_y + |c| f_z$$

આ ઉપરથી જોઈ શકાય છે કે રાશિ P માં ઉદ્ભવતી એકંદર સાપેક્ષ ત્રુટિ f_P નું મૂલ્ય માપેલી દરેક ભૌતિક રાશિની સાપેક્ષ ત્રુટિ f_x , f_y , f_z વગેરે તથા તેમની ઘાત a, b, c વગેરે પર પણ આધારિત છે. સૂત્રમાં જે ભૌતિક રાશિની ઘાત સૌથી વધારે હોય, તે ભૌતિકરાશિના માપનમાં સાપેક્ષ ત્રુટિ લઘુત્તમ હોવી જોઈએ. આથી તેનો ફાળો |a| f_x + |b| f_y + |c| f_z અનુસાર એકંદર સાપેક્ષ ત્રુટિ f_P માં સમાનક્રમના મૂલ્યનો જળવાઈ રહે.

હવે આપણે રાશિમાં અંદાજિત અચોક્સાઈ (અથવા પ્રાયોગિક ત્રુટિ)ની ગણતરી કરીએ કે જેના સૂત્રમાં ઘણા ભૌતિક પ્રાચલોનું માપન કરેલ હોય તેનો સમાવેશ થતો હોય.

સ્થિતિસ્થાપકતા અંક, યંગ મૉડચુલસ Yનીચેના સૂત્ર દ્વારા ગણી શકાય.

$$Y = \frac{MgL^3}{4bd^3 \delta}$$

જ્યાં M દ્રવ્યમાન, g ગુરુત્વપ્રવેગ, L એ લંબચોરસ આડછેદ ધરાવતા ધાતુના સળિયાની લંબાઈ કે જેની પહોળાઈ b અને જાડાઈ d છે અને δ એ સળિયામાં સમક્ષિતિજ દિશામાંથી વંકન (અથવા ઝોલ) કે જે બે છેડા પર આધાર પર ટેકવીને મધ્યમાન બિંદુ પર M દ્રવ્યમાન લટકાવતાં મળે છે. (આકૃતિ I 1.1)

હવે વાસ્તવિક પ્રયોગમાં દ્રવ્યમાન M લગભગ 1 kg લેવામાં આવે છે. સામાન્ય રીતે દ્રવ્યમાનમાં અચોકસાઈ 1 g કરતાં વધારે ન હોઈ શકે. તેનો અર્થ એ થાય કે દ્રવ્યમાન માપવા માટેના સામાન્ય તુલાનું લઘુત્તમ માપ 1 g છે. આથી, આંશિક

ત્રુટિ
$$f_M$$
, $\frac{1 \mathrm{g}}{1 \mathrm{kg}}$ અથવા f_M = 1 × 10⁻³ છે.

ધારો કે ગુરુત્વપ્રવેગનું મૂલ્ય $\rm g=9.8~m~s^{-2}$ છે અને તે કોઈ નોંધપાત્ર ત્રુટિ ધરાવતું નથી. આથી $\rm g$ માં આંશિક ત્રુટિ ન હોય. એટલે કે $f_{\rm g}=0$, વધુમાં સળિયાની લંબાઈ $\rm L$, ધારો કે $\rm 1~m$ લો અને તે $\rm 1~mm=0.001~m$ નું લઘુત્તમ માપ ધરાવતી સામાન્ય માપપટ્ટીની મદદથી માપવામાં આવી છે. આથી લંબાઈ $\rm L$ માં આવતી આંશિક ત્રુટિ $f_{\rm L}$,

$$f_L = \frac{0.001 \, m}{1 \, m} = 1 \times 10^{-3}$$

પછી સળિયાની પહોળાઈ b ધારો કે 5 cm છે. જે 0.01 cm લઘુત્તમ માપ ધરાવતા વર્નિયર કેલીપર્સની મદદથી માપવામાં આવે છે. તેથી, આંશિક ત્રુટિ f_b ,

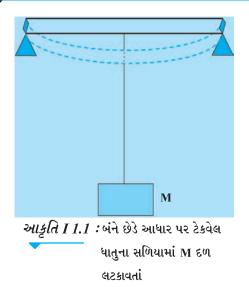
$$f_b = \frac{0.01 \text{ cm}}{5 \text{ cm}} = 0.002 = 2 \times 10^{-3}$$

તે જ રીતે, સળિયાની જાડાઈ d માટે $0.001~\mathrm{cm}$ લઘુત્તમ માપવાળા સ્કૂગેજનો ઉપયોગ કરેલ છે. જો સળિયાની જાડાઈ $0.2~\mathrm{cm}$ લેવામાં આવે તો,

$$f_d = \frac{0.001 \text{ cm}}{0.2 \text{ cm}} = 0.005 = 5 \times 10^{-3}$$

અંતમાં, વંકન δ જે $0.001~\mathrm{cm}$ લઘુત્તમ માપવાળા સ્ફેરોમીટરની મદદથી માપવામાં આવે છે. જે $5~\mathrm{mm}$ હોય, તો

$$f_{\delta} = \frac{0.001 \text{ cm}}{0.5 \text{ cm}} = 0.002 = 2 \times 10^{-3}$$


દરેક ભૌતિક રાશિઓમાં સાપેક્ષ ત્રુટિઓની ગણતરી બાદ, હવે આપણે Y માં સાપેક્ષ ત્રુટિની ગણતરી કરીએ તો,

$$f_Y = (1) f_M + (1) f_g + (3) f_L + (1) f_b + (3) f_d + (1) f_\delta$$

$$= 1 \times \left(1 \times 10^{-3}\right) + 1 \times 0 + 3 \times \left(1 \times 10^{-3}\right) + 1 \times \left(2 \times 10^{-3}\right) + 3 \times \left(5 \times 10^{-3}\right) + 1 \times \left(2 \times 10^{-3}\right)$$

$$= 1 \times 10^{-3} + 3 \times 10^{-3} + 2 \times 10^{-3} + 15 \times 10^{-3} + 2 \times 10^{-3}$$

અથવા
$$f_Y = 22 \times 10^{-3} = 0.022$$

આથી શક્ય સાપેક્ષ ત્રુટિ (અથવા અચોકસાઈ) $f_Y \times 100 = 0.022 \times 100 = 2.2\,\%$ છે. અત્રે નોંધો કે સારા પ્રયોગ માટે, Yના ગણતરી કરીને મેળવેલ મૂલ્યમાં મહત્તમ સાપેક્ષ ત્રુટિ f_Y માં જુદા જુદા પદોનો એટલે કે f_M , $3f_L$, f_b , $3f_d$ અને f_δ ના ફાળાની અસર સમાન મૂલ્યના ક્રમની હોવી જોઈએ. એવું ન બનવું જોઈએ કે જેથી આમાંની કોઈ રાશિ ખૂબ જ મોટી બની જાય અને f_Y નું મૂલ્ય માત્ર તે પદ (અવયવ)ને આધારે નક્કી થાય. જો આવું બને તો બીજી રાશિઓનું માપન નજીવું બની જાય. આ કારણથી જ લંબાઈ Lનું માપન મોટા લઘુત્તમ માપ (0.1 cm)વાળી માપપટ્ટી વડે જયારે નાની રાશિઓ d અને δ નું માપન અનુક્રમે સ્ક્રૂગેજ અને સ્ફેરોમીટર વડે માપવામાં આવે છે કે જેમનું લઘુત્તમ માપ (0.001 cm) છે તથા જે ભૌતિક રાશિઓની સૂત્રમાં ઘાતાંક વધારે હોય તેવી ભૌતિક રાશિઓ જેવી કે d અને L વધારે કાળજીપૂર્વક ઓછા

લઘુત્તમ માપવાળા સાધનની મદદથી માપવી જોઈએ. મોટાભાગના પ્રયોગોનું કેટલીક ભૌતિક રાશિઓના માપનનું અંતિમ પરિજ્ઞામ જ હોય છે. આ માપેલ મૂલ્ય એ સામાન્ય રીતે પ્રયોગનું પરિજ્ઞામ કહેવાય છે. પરિજ્ઞામને રજૂ કરવાના ક્રમમાં મુખ્યત્વે ત્રણ બાબતો જરૂરી છે. તેઓ માપેલું મૂલ્ય, પરિજ્ઞામમાં અંદાજિત અચોકસાઈ (અથવા પ્રાયોગિક ત્રુટિ) અને એકમ કે જેમાં રાશિ રજૂ કરેલ છે. આ રીતે **માપેલ મૂલ્ય** ત્રુટિ અને તેના યોગ્ય એકમ સહિત, મૂલ્ય \pm ત્રુટિ (એકમ) સ્વરૂપે રજૂ કરવામાં આવે છે. ધારો કે પરિજ્ઞામ $\mathbf{A} \pm a$ (એકમ) સ્વરૂપે દર્શાવાય છે. આ દર્શાવે છે કે મૂલ્ય \mathbf{A} માં અંદાજિત અચોકસાઈ $\frac{\mathbf{A}}{a}$ માં એક ભાગ હોય છે, જ્યાં \mathbf{A} અને a બંને અંકો છે. સામાન્ય રજૂઆતમાં આ સંખ્યાના બધા અંક સમાવવા જોઈએ કે જેમની વિશ્વસનીયતા જાણીતી છે કે જેમાં પ્રથમ અંક કે જે અચોક્કસ છે. આમ, બધા જ વિશ્વસનીય અંકો સહિત પ્રથમ અનિશ્ચિત અંક ભેગા થઈને **સાર્થક સંખ્યા** કહેવાય છે. માપેલ મૂલ્યના સાર્થક અંકો ત્રુટિ સાથે બંધ બેસતા હોવા જોઈએ. સ્થિતિસ્થાપકતાના યંગ મૉડ્યુલસના પ્રસ્તુત ઉદાહરણમાં $\mathbf{Y} = 18.2 \times 10^{10}~\mathrm{N/m^2}$ (મહેરબાની કરીને આપેલી માહિતીને આધારે Yની ગણતરી કરી આ મૂલ્ય તપાસો) અને

ત્રુંટિ
$$\frac{\Delta Y}{Y} = f_Y$$

$$\Delta \mathbf{Y} = f_{\mathbf{Y}} \mathbf{Y}$$

 $= 0.022 \times 18.2 \times 10^{10} \, N/m^2$

= $0.39 \times 10^{10} \text{ N/m}^2$ જ્યાં ΔY પ્રાયોગિક ત્રુટિ છે.

આથી Yનું રજૂ કરેલનું મૂલ્ય $(18.2\pm0.4)\times10^{10}~\mathrm{N/m^2}$ હોવું જોઈએ.

I 1.5 લઘુગણક (Logarithms)

આપેલ આધાર પર સંખ્યાના લઘુગણક (Logarithms)એ ઘાતની સંખ્યા છે કે જેના આધારે તે સંખ્યાને તેટલી ઘાત તરીકે ૨જૂ કરે છે.

જો $a^x = N$ હોય, તો xને aના આધારમાં Nનો લઘુગણક (લોગેરિધમ) કહે છે અને તેને $\log_a N$ રીતે રજૂ કરાય ($\log N$, aના આધાર પર એમ વંચાય) દાખલા તરીકે $2^4 = 16$. આથી, 16નો 2ના આધાર પર $\log_2 4$ મળે અથવા $\log_2 16 = 4$.

સામાન્ય રીતે, આપશે 10ના આધારમાં આપેલી સંખ્યાના લઘુગણક (લોગેરિધમ) ઉપયોગમાં લઈએ છીએ. અહીં $\log 10 = 1$, $\log 100 = \log 10^2$ અને તે મુજબ 10ના આધારમાં લઘુગણક (લોગેરિધમ) સામાન્ય રીતે \log વડે લખાય છે.

(i) સામાન્ય લઘુગણક (લોગેરિધમ)

સંખ્યાના લઘુગણક (લોગેરિધમ)માં બે ભાગ હોય છે.

- (i) પૂર્શાંશ (Characteristic) : આ પૂર્શાંક ભાગ છે. (પૂર્શ પ્રાકૃતિક સંખ્યા)
- (ii) અપૂર્ણાશ (Mantissa) : આ અપૂર્ણાંક ભાગ છે. સામાન્ય રીતે દશાંશ પદ્ધતિમાં દર્શાવવામાં આવે છે. (અપૂર્ણાશ ભાગ હંમેશાં ધન હોય છે.)

(ii) સંખ્યાનો પૂર્ણાશ (Characteristic) ભાગ કેવી રીતે નક્કી કરવો ?

પૂર્ણાંશ ભાગ સંખ્યાના મૂલ્ય પર આધાર રાખે છે અને તે દશાંશ ચિહ્નના સ્થાનના આધારે નક્કી કરવામાં આવે છે. એક કરતાં મોટી સંખ્યા માટે, પૂર્ણાંશ ધન અને દશાંશ ચિહ્નની ડાબી બાજુ આવેલા અંકોની સંખ્યા કરતાં એક ઓછો હોય છે.

એક કરતાં નાની સંખ્યા (એટલે કે દશાંશ અપૂર્ણાંક) માટે , પૂર્ણાંશ ઋણ હોય છે અને દશાંશ ચિહ્ન અને પ્રથમ અંક વચ્ચેના શૂન્યોની સંખ્યા કરતાં એક વધારે હોય છે. દાખલા તરીકે, સંખ્યાના પૂર્ણાંશ.

430700 માટે 5, 4307 માટે 3, 43.07 માટે 1 4.307 માટે 0. 0.4307 માટે –1. 0.04307 માટે –2

0.0004307 Hi = -4, 0.00004307 Hi = -5,

ઋષ્કા પૂર્શાશ સામાન્ય રીતે $\overline{1}$, $\overline{2}$, $\overline{4}$, $\overline{5}$ રીતે લખાય છે અને બાર 1, બાર 2 વગેરે રીતે વંચાય છે.

${f I}$ ${f 1.5.1}$ સંખ્યાનો અપૂર્ણાંશ (Mantissa) ભાગ કેવી રીતે નક્કી કરશો ?

અપૂર્ણાંશ ભાગનું મૂલ્ય અંક અને તેના ક્રમ પર આધાર રાખે છે અને દશાંશ ચિહ્નના સ્થાનથી સ્વતંત્ર હોય છે. જો અંક અને તેનો ક્રમ સમાન હોય તો અપૂર્ણાંશ ભાગ સમાન હોય છે, પછી ભલે દશાંશ ચિહ્નનું સ્થાન ગમે તે હોય.

પાના નં. 266-269 પર આપેલ લઘુગણક (લોગેરિધમ) કોષ્ટક 1 અને 2, ફક્ત અપૂર્ણાંશ ભાગ આપે છે. તે સામાન્ય રીતે ચાર અંકો ધરાવતી સંખ્યાઓ માટે છે અને જો સંખ્યામાં ચાર અંક કરતાં વધારે અંક ધરાવતી હોય, તો તેનો પૂર્ણાંશ ભાગ નક્કી કર્યા બાદ તેને ચાર આંકડા સુધી રાઉન્ડ ઑફ કરવામાં આવે છે. અપૂર્ણાશ ભાગ નક્કી કરવા, ટેબલનો ઉપયોગ નીચેના સ્વરૂપે વાપરી શકાય.

- (i) આપેલી સંખ્યાના પ્રથમ બે સાર્થક અંકો કોષ્ટકના સૌથી ડાબી બાજુના સ્તંભમાં કે જેમાં10 અને 99 વચ્ચેના અંક છે તેમાં શોધવાના અને 10 કરતાં નાની સંખ્યા માટે સંખ્યાને10 વડે ગુણીને અપૂર્ણાંશ ભાગ મેળવવામાં આવે છે.
- (ii) સમક્ષિતિજ રેખાના સૌથી ઉપરના સ્તંભમાં નીચે મુજબ સંખ્યાઓ આપેલ છે.

જે આપેલ સંખ્યાના ત્રીજા સાર્થક અંકને અન્રૂપ છે.

(iii) હવે જમણી બાજુના સ્તંભમાં ચોથા સાર્થક અંકને અનુરૂપ સંખ્યાઓ નીચે મુજબ આપેલ છે.

1 2	3	4	5	6	7	8	9
-----	---	---	---	---	---	---	---

ઉદાહરણ 1:278.6નો લઘુગણક મેળવો.

જવાબ : સંખ્યામાં દશાંશ ચિહ્નની ડાબી બાજુ 3 અંકો છે. આથી, તેનો પૂર્ણાંશ 2 છે. અપૂર્ણાંશ નક્કી કરવા માટે, દશાંશ ચિહ્નને અવગણો અને પ્રથમ ઊભા સ્તંભમાં 27 જુઓ. 8 માટે વચ્ચેના સૌથી ઉપરના ભાગમાં જુઓ. 27 થી સમક્ષિતિજ રીતે જમણી બાજુ અને 8થી શિરોલંબ દિશામાં નીચે તરફ આગળ વધતા જાવ. બંને રેખાઓ જ્યાં મળે છે તે બિંદુ પાસે 4440 લખેલા છે. આ 278 માટેનો અપૂર્ણાંશ છે. હજુ વધુ સમક્ષિતિજ દિશામાં આગળ વધો અને તફાવતના કૉલમમાં 6ની શિરોલંબ કૉલમમાં નીચે જુઓ. તમને 9નો અંક મળશે. આથી 2786 માટે અપૂર્ણાંશ ભાગ 4440 + 9 = 4449 થશે.

આથી 278.6નો લઘુગણક 2.4449 (અથવા log 278.6 = 2.4449).

ઉદાહરણ 2 : 278600નો લઘુગણક મેળવો.

જવાબ : આ સંખ્યાનો પૂર્ણાંશ 5 અને અપૂર્ણાંશ ભાગ ઉદાહરણ –1 મુજબ સમાન જ થશે. આપણે પ્રથમ ચાર સાર્થક અંકોનો અપૂર્ણાંશ ભાગ શોધવાનો છે. આથી, આપણે છેલ્લા બે શૂન્ય અવગણી શકીએ.

 $\log 278600 = 5.4449$

ઉદાહરણ 3 : 0.00278633નો લઘુગણક મેળવો.

જવાબ : આ સંખ્યાનો પૂર્ણાંશ $\frac{1}{3}$ છે કેમકે દશાંશ ચિહ્ન પછી બે શૂન્યો છે. આપણે ફક્ત પ્રથમ ચાર

સાર્થક અંકો માટે અપૂર્ણાંક ભાગ શોધી શકાય. આથી, આપણે છેલ્લા બે અંક (33)ને અવગણી શકાય અને 2786 માટે અપૂર્ણાંશ ભાગ 4449 છે.

 $\therefore \log 0.00278633 = \overline{3.4449}$

જ્યારે સંખ્યા 4 સાર્થક અંક કરતાં વધારે અંક ધરાવતી હોય ત્યારે સંખ્યાનો છેલ્લો અંક 5 જેટલો અથવા 5થી મોટો હોય તો, તે અંકની ડાબી બાજુનો તરતનો અંક એક વધારી દેવાનો અને તે જ રીતે છેવટે ફક્ત ચાર સાર્થક અંક બાકી વધે ત્યાં સુધી આગળ વધવું અને જો છેલ્લો અંક 5 કરતાં નાનો હોય તો તેને અવગણો. જેવી રીતે ઉપરના ઉદાહરણમાં અવગણેલ છે.

જો આપશી પાસે સંખ્યા 2786.58 હોય, તો છેલ્લો અંક 8 છે. આથી આપશે તેની તરત ડાબી બાજુનો અંક વધારીને 6 કરવો પડે અને 6 એ 5 કરતાં મોટો હોવાથી આપશે તે પહેલાંનો અંક 6થી 7 કરવો પડે અને 2787નો લઘુગણક શોધવો પડે.

I 1.5.2 પ્રતિલઘુગણક (Antilogarithms)

સંખ્યા કે જેનો લઘુગણક x હોય તો તે સંખ્યા પ્રતિલઘુગણક (એન્ટીલોગેરિધમ) કહેવાય અને તેને antilog x વડે દર્શાવાય. આમ, જેવી રીતે $\log 2 = 0.3010$ તેવી રીતે antilog 0.3010 = 2.

ઉદાહરણ 1 : જે સંખ્યાનો લઘુગણક 1.8088 હોય તે સંખ્યા શોધો.

જવાબ : આ હેતુ માટે આપણે પ્રતિલઘુગણકનો ઉપયોગ કરી શકીએ કે જેનો ઉપયોગ અપૂર્ણાશ ભાગ માટે થાય છે.

- (i) ઉદાહરણ 1માં અપૂર્ણાંશ ભાગ 0.8088 છે. ડાબી બાજુથી પ્રથમ બે અંક 0.80, ત્રીજો અંક 8 અને ચોથો અંક કરીથી 8 છે.
- (ii) પ્રતિલઘુગણક (એન્ટીલોગેરિધમ)ના ટેબલમાં પહેલા શિરોલંબ કૉલમમાં 0.80 જુઓ. તેની આ સમક્ષિતિજ રેખામાં 8 ઉપર હોય, તેવા કૉલમની હરોળમાં ભેગા મળે ત્યાં આપણને 6427 મળે છે. તેનો અર્થ એ થયો કે 0.808 અપૂર્ણાંશ માટે સંખ્યા 6427 છે.
- (iii) આગળ વધતાં આ સમક્ષિતિજ હરોળમાં mean differenceના ખાનામાં જમણી બાજુના 8 ની નીચે, જ્યાં બંને છેદે ત્યાં 12નો અંક મળે છે. આ 12ને 6427માં ઉમેરતાં આપણને 6439 મળે. હવે 0.8088 અપૂર્ણાંશ ભાગ માટે 6439 સંખ્યા મળે છે.
- (iv) પૂર્ણાંશ 1 છે. આ અંક કરતાં એક વધારે જેટલા અંક જરૂરી સંખ્યાના પૂર્ણાંક ભાગમાં રજૂ કરવું. આથી, જરૂરી સંખ્યામાં પૂર્ણાંક ભાગમાં અંકોની સંખ્યા = 1 + 1 = 2. આથી જરૂરી સંખ્યા 64.39 એટલે કે antilog 1.8088 = 64.39.

ઉદાહરણ 2: 2.8088નો એન્ટીલોગ (પ્રતિલઘુગણક) શોધો.

જવાબ : પૂર્ણાંક સંખ્યા 2 હોવાથી, દશાંશચિહ્નની જમણી બાજુ એક શૂન્ય હોવું જોઈએ.

આથી, Antilog 2.8088 = 0.06439 લઘુગણક (લોગેરિધમ)ના ગુણધર્મો : (i) $\log_a mn = \log_a m + \log_a n$ (ii) $\log_a m/n = \log_a m - \log_a n$

(iii) $\log_a m^n = n \log_a m$

લઘુગણકની વ્યાખ્યા :

 $\log_a 1 = 0$ (આથી $a^0 = 1$)

1 નો કોઈ પણ આધાર પર \log શૂન્ય મળે અને $\log_a a = 1$ (આથી, આધારનો પોતાનો જ \log , 1 મળે, $a^1 = a$).

I 1.6 પ્રાકૃતિક સાઇન/કોસાઇન કોષ્ટક (Natural sine/cosine)

કોઈ ખૂણાનું sine કે cosine મૂલ્ય શોધવા માટે આપણે ત્રિકોણમિતિય વિધેયના કોષ્ટકનો ઉપયોગ કરવો પડે છે. Natural sine અને cosine કોષ્ટક ડેટા વિભાગમાં (ટેબલ 3 અને 4, પાના નં. 270-273) પર આપેલ છે. ખૂણાઓ સામાન્ય રીતે ડીગ્રી અને મિનિટ (કળા)માં આપેલા હોય છે. દા.ત., 35° 6′ અથવા 35.1°.

I 1.6.1 Natural sine કોષ્ટકમાં અવલોકન

ધારોકે આપણે sin 35° 10′ નું મૂલ્ય જાણવું છે. આથી, નીચે મુજબ આગળ વધી શકાય.

- (i) Natural sine કોપ્ટક ખોલો.
- (ii) પ્રથમ કૉલમમાં જુઓ અને 35° શોધો. સમક્ષિતિજ દિશામાં તપાસ કરો. 0.5736ના મૂલ્યથી જમણી બાજુ જાવ અને જ્યાં 6' લખેલ છે તે કૉલમમાં જુઓ. તમારે 0.5750 પાસે ઊભા રહેવું પડશે.
- (iii) પરંતુ 10' માટે જરૂરી કિંમત મેળવવાની છે.

10' અને 6' વચ્ચેનો તફાવત 4' છે. આથી, આપણે mean differenceના કૉલમમાં 4'ની નીચેના ખાનામાં જોવું પડે તેને અનુરૂપ કિંમત 10 છે. આ 10 છેલ્લે મેળવેલ 0.5750માં ઉમેરો . આથી, આપણને 0.5760 મળશે.

આમ, $\sin(35^{\circ} 10') = 0.5760$

I 1.6.2 Natural cosine કોષ્ટકમાં અવલોકન

Natural cosine ટેબલનો ઉપયોગ સમાન રીતે જ કરવામાં આવે છે. તેમ છતાં, જેમ θ વધે તેમ $\cos\theta$ ઘટે છે તે હકીકતને આધારે mean difference બાદ કરવામાં આવે છે. ઉદાહરણ તરીકે, $\cos25^\circ=0.9063$. 25° 40'ના ખૂણાનું cosine મેળવવા માટે, એટલે કે $\cos25^\circ$ 40', $\cos25^\circ$ 36'=0.9018 મેળવી શકાય અને 4' માટેનો mean difference 5 મળે. જે મેળવેલ સંખ્યા 0.9018ના છેલ્લા અંકમાંથી બાદ કરતાં 0.9013 મળે છે. આમ, $\cos25^\circ$ 40'=0.9013.

I 1.6.3 Natural tangent કોપ્ટકમાં અવલોકન

Natural tangent ટેબલ, Natural sine ટેબલની જેમ જ ઉપયોગમાં લેવાય છે.

${f I}$ ${f 1.7}$ આલેખ દોરવા

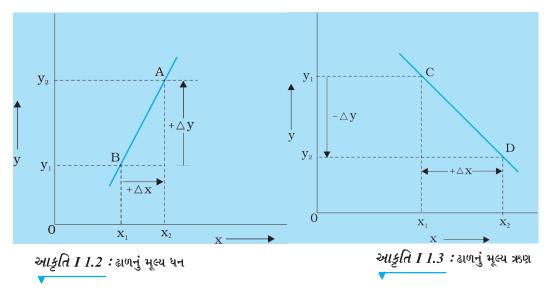
આલેખ એ બે ચલ રાશિઓ વચ્ચેના સંબંધની ચિત્રાત્મક રજૂઆત છે. તે આપણને પ્રાયોગિક માહિતીને પ્રથમ દિષ્ટિએ તાદશ્ય કરવામાં મદદરૂપ થાય છે અને બે રાશિઓ વચ્ચેનો સંબંધ દર્શાવે છે. જો કોઈ બે ભૌતિક રાશિ a અને bમાંથી આપણે aમાં ફેરફાર કરીએ અને તેના પરિણામ સ્વરૂપ bમાં પણ ફેરફાર થાય તો aને સ્વતંત્ર ચલ અને bને આધારિત ચલ કહેવામાં આવે છે. દા.ત. જયારે તમે લોલકની લંબાઈ બદલો ત્યારે આવર્તકાળ બદલાય છે. અહીં લંબાઈ એ સ્વતંત્ર ચલ જયારે આવર્તકાળ આધારિત ચલ છે. આલેખ એ ફક્ત બે ચલ રાશિઓના સંબંધની ચિત્રાત્મક રજૂઆત કરે છે તેવું નથી, તે ચોક્ક્સ નિયમોની ચકાસણી કરવા પણ સક્ષમ છે. (જેવા કે બોઇલનો નિયમ) ઘણી મોટી સંખ્યાના અવલોકનોમાંથી સરેરાશ કિંમત મેળવવા, પ્રયોગના અવલોકનોની ક્ષમતાની બહાર અમુક રાશિઓમાં અંતઃર્વેશન/ બહિર્વેશનના મૂલ્યો, માપન માટેના આપેલ સાધનનું અંકીકરણ અથવા માપકરણ અને આધારિત ચલની મહત્તમ અને લઘૃત્તમ કિંમત શોધી શકાય છે.

સામાન્ય રીતે આલેખ પેપર પર આલેખ દોરાય કે જેમાં મિલિમીટર/સેન્ટીમીટરના ચોરસ દોરેલા હોય છે. આલેખ દોરવા માટે નીચેના તબક્કાઓ ધ્યાન પર લેવા જોઇએ.

- (i) સ્વતંત્ર અને આધારિત ચલ નક્કી કરો. સ્વતંત્ર ચલને X-અક્ષ પર અને આધારિત ચલને Y-અક્ષ પર રજૂ કરો.
- (ii) દરેક ચલનો વિસ્તાર નક્કી કરો અને તેને રજૂ કરવાની અક્ષ પર કેટલા મોટા ચોરસ પ્રાપ્ય છે તે ગણો.
- (iii) આલેખ દોરવા માટે પ્રમાણમાપ પસંદ કરવું જટિલ કાર્ય છે. આદર્શ રીતે, આલેખ પરનો નાનામાં નાનો ભાગ એ માપનનું લઘુત્તમ માપ અથવા જે ચોક્કસ પરિણામો જાણીતા છે કે તેની ચોકસાઈ જેટલું હોવું જોઈએ. ઘણી વખતે, આલેખની વધારે સ્પષ્ટતા માટે લઘુત્તમ માપનો યોગ્ય ભાગ (અપૂર્ણાંક)એ આલેખ પેપરના નાનામાં નાના ભાગ જેટલું લેવામાં આવે છે.
- (iv) ઉગમબિંદુની પસંદગી એ સમજદારીથી કરવી પડે તેવો બીજો મુદ્દો છે. સામાન્ય રીતે, (0, 0) એ ઉગમબિંદુ તરીકે સેવા આપે છે. પરંતુ આ પસંદગી સામાન્ય રીતે જયારે ચલ વચ્ચેનો સંબંધ શૂન્યથી શરૂ થતો હોય અથવા કોઈ એક ચલ માટે શૂન્ય સ્થિતિ શોધવાની હોય ત્યારે સ્વીકારેલી છે. જો તેનું સાચું મૂલ્યાંકન શક્ય ન હોય. તેમ છતાં, બીજા બધા

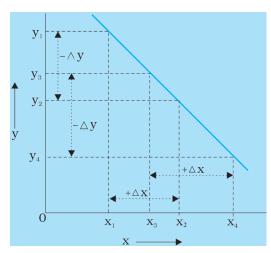
- કિસ્સામાં ઉગમબિંદુ આપેલા ચલને અનુરૂપ શૂન્ય ૨જૂ કરે તે જરૂરી નથી. તેમ છતાં તે આપેલા ચલને અનુરૂપ નાનામાં નાના મૂલ્ય કરતાં નજીકની નાની રાઉન્ડ સંખ્યાને ૨જૂ કરે તો અનુકુળ રહે છે. દરેક અક્ષ પર ચલના મૂલ્યો માત્ર પૂર્ણ (રાઉન્ડ) સંખ્યામાં જ લખો.
- (v) X-અક્ષ અને Y-અક્ષ પ્રમાણમાપના ચિહ્નોથી ગીચ ન થવી જોઈએ. અક્ષ પર દરેક 5 cm અંતરે સંખ્યા લખવી જોઈએ. જે રાશિ લીધેલ હોય તેના એકમ પણ લખો. આંકડાઓને વૈજ્ઞાનિક પદ્ધતિ મુજબ રજૂ કરો. એટલે કે સંખ્યામાં પ્રથમ અંક પછી દશાંશ ચિહ્ન મૂકો અને તેને 10ની યોગ્ય ઘાત વડે ગુણો. આલેખ પેપરની ઉપર જમણી અથવા ડાબી બાજુ ખૂણામાં પ્રમાણમાપ પરિવર્તન પણ લખો.
- (vi) દોરેલા આલેખની નીચે યોગ્ય શીર્ષક અને આલેખ સાથે સંકળાયેલ ભૌતિક રાશિઓના નામ અથવા તેની સંજ્ઞા લખવી જોઈએ. આલેખ પેપર ઉપર બંને અક્ષ પર લીધેલ પ્રમાણમાપ પણ દર્શાવવું જોઈએ.
- (vii) જયારે આલેખ સુરેખ મળવાનો અંદાજ હોય, ત્યારે સામાન્ય રીતે 6થી 7 અવલોકનથી ચાલી શકે. ઘણા બધા અવલોકનો લેવામાં વધારે સમય બગાડવાની જરૂર નથી. અવલોકનો શક્ય એવા બધા જ વિસ્તાર સુધી લેવા પડે.
- (viii) જો આલેખ વક્ર હોય તો, સ્વતંત્ર ચલની સમગ્ર શ્રેણી તે 6થી 7 ભાગમાં ગોઠવી દો. પછી અનુમાન કરો કે વક્રમાં કયા વક્રાકાર ભાગ પાસે તીક્ષ્ણ ફેરફાર જોવા મળશે. આ વિસ્તારમાં (વિભાગમાં) વધારે અવલોકન લો. દાખલા તરીકે જ્યારે મહત્તમ અથવા લઘુત્તમ કિંમત મેળવવાની હોય ત્યારે મહત્તમ કે લઘુત્તમનું ચોક્કસ બિંદુ મેળવવા ત્યાં વધારે અવલોકન લેવા પડે, જેમકે લઘુત્તમ વિચલનકોણ (δm) શોધવા માટે તમારે δmની આસપાસ વધારે અવલોકન લેવા પડે.
- (ix) ''માહિતી''ના બિંદુઓની રજૂઆતનો પણ યોગ્ય અર્થ હોય છે. મૂકેલ બિંદુના વિસ્તારનું પરિણામ એ તે માહિતીની ચોક્કસાઈને અનુરૂપ હોવું જોઈએ. આપણે એક ઉદાહરણ લઈએ કે જેમાં મૂકેલ બિંદુને ⊙ સ્વરૂપે, બિંદુની આસપાસ વર્તુળ સ્વરૂપે રજૂ કરેલ છે. કેન્દ્રિય ટપકું માપેલ માહિતીનું મૂલ્ય છે. વર્તુળની 'x' અને 'y' દિશામાં ત્રિજ્યા એ અચોક્કસાઈનું માપ દર્શાવે છે. જો વર્તુળની ત્રિજ્યા મોટી હોય તો તેનો અર્થ માહિતીમાં અચોક્કસાઈ વધારે છે. વધુમાં આ પ્રકારની રજૂઆત એવું દર્શાવે છે કે X અને Y અક્ષ પર ચોક્કસાઈ એકસમાન છે. બીજી ઉપયોગમાં લેવાથી અન્ય સંજ્ઞાઓ કે જે ઉપર જેવો સમાન અર્થ ધરાવે છે તે □, ▲, ■, ▲, ×, વગેરે છે. જો X-અક્ષ અને Y-અક્ષ પર અનિશ્ચિતતા જુદી જુદી હોય તેવા કિસ્સામાં વપરાતી કેટલીક

સંજ્ઞાઓ + (X-અક્ષ પર ચોક્કસાઈનું માપ Y-અક્ષ પર કરતાં વધારે છે.) + (X-અક્ષ પર ચોક્કસાઈનું માપ Y-અક્ષ કરતાં ઓછું છે.), +, +, +, +, + જેવી છે. તમે તમારી જાતે નવી ડીઝાઈન કરી શકો.


(x) માહિતીના બધા બિંદુઓ મૂકાઈ જાય પછી, રૂઢિગત રીતે હાથથી સરળ વક્ર દોરવો કે જેથી મોટા ભાગનાં બિંદુઓ તેની પર કે તેની નજીક અને બાકીના બધા તેની આજુબાજુ સમાન રીતે વહેંચાઈ જાય. હવેના સમયમાં આપેલ માહિતીનો આલેખ દોરવા કમ્પ્યુટરનો ઉપયોગ થાય છે.

I 1.7.1 સુરેખ આલેખનો ઢાળ

સુરેખ આલેખનો ઢાળ m નીચેની રીતે વ્યાખ્યાયિત થાય છે.

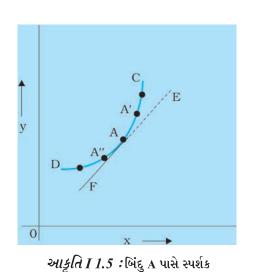

$$m = \frac{\Delta y}{\Delta x}$$

જ્યાં Δy એ Y-અક્ષ પર લીધેલ ભૌતિકરાશિના મૂલ્યમાં થતો ફેરફાર છે અને તેને અનુરૂપ X-અક્ષ પર લીધેલ ભૌતિકરાશિના મુલ્યમાં થતો ફેરફાર Δx છે. આકૃતિ I 1.2માં દર્શાવ્યા અનુસાર Δx અને Δy

બંનેની નિશાની સમાન હશે ત્યારે ઢાળ mની નિશાની ધન હશે. બીજી બાજુ, જો Δy ની નિશાની Δx ની નિશાની કરતાં વિરુદ્ધ હોય (એટલે કે જ્યારે x વધે તેમ y ઘટે) તો ઢાળનું મૂલ્ય ઋણ હશે. જે આકૃતિ I 1.3માં દર્શાવેલ છે.

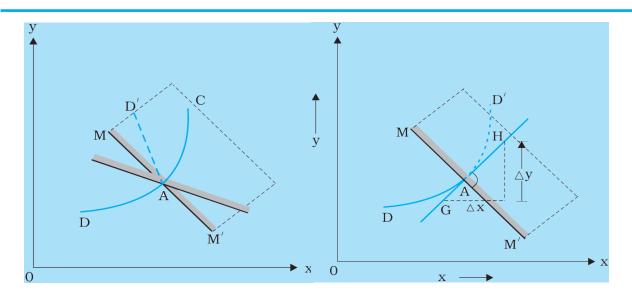
વધુમાં આપેલ સુરેખાનો ઢાળ રેખા પરના બધાં જ બિંદુઓ માટે સમાન મૂલ્ય ધરાવે છે. આનું કારણ આકૃતિ I 1.4માં દર્શાવ્યા મુજબ રેખા પરના દરેક બિંદુ માટે xના સમાન ફેરફાર માટે yના ફેરફાર સમાન મળે છે. આમ, આપેલી રેખા માટે ઢાળ અચળ રહે છે.

આકૃતિ I 1.4 : આપેલ સુરેખા માટે ઢાળ અચળ હોય છે.


જયારે ઢાળની ગણતરી કરતા હોઇએ ત્યારે, X-અક્ષ પરનો ભાગ પૂરતી લંબાઈનો રાખો અને તે ચલની રાઉન્ડ કિંમત રજૂ કરે તેનું ધ્યાન રાખો. તેને અનુરૂપ Y-અક્ષ પરના ચલનો અંતરાલ (ભાગ) માપો અને ઢાળની ગણતરી કરો. સામાન્ય રીતે, ઢાળની કિંમતમાં બેથી વધારે સાર્થક અંક ન હોવા જોઈએ. ઢાળની કિંમત અને અક્ષ પરના અંતઃખંડ જો હોય તો, આલેખ પેપર પર જરૂર લખો.

ઢાળને $\tan \theta$ સ્વરૂપે ન દર્શાવો. જ્યારે બંને અક્ષ પર સમાન પ્રમાણમાપ હોય ત્યારે જ ઢાળ $\tan \theta$ જેટલો હોય છે. એ પણ ધ્યાનમાં રાખો કે આલેખ એ ભૌતિક સાર્થકતા છે, ભૌમિતિક નહિ.

ઘણી વખત સુરેખ આલેખ કે જે ઉગમબિંદુમાંથી પસાર થવા જોઈએ તેને બદલે કંઈક અંતઃખંડ આપે છે. તેથી જ્યારે સુરેખ સંબંધ ઇચ્છિત હોય ત્યાં સૂત્રમાં બે ભૌતિકરાશિના ગુણોત્તરને બદલે ઢાળનો ઉપયોગ કરી શકાય.


${ m II.7.2}$ વક્ર આલેખનો આપેલ બિંદુએ ઢાળ

ઉપરના મુદ્દામાં દર્શાવ્યું છે તે મુજબ સુરેખ આલેખનો ઢાળ દરેક બિંદુ પાસે સમાન મૂલ્ય ધરાવે છે. જયારે આ બાબત વક માટે સાચી નથી. આકૃતિ I 1.5માં દર્શાવ્યા અનુસાર, વક CDના ઢાળનું મૂલ્યબિંદુ A',A,A'' વગેરે બિંદુ પાસે જુદુ જુદુ હશે.

તેથી સુરેખ ન હોય તેવા વક્રના કિસ્સામાં, આપશે ચોક્કસ બિંદુ પાસેના ઢાળની વાત કરવી પડે. વક્રના કોઈ ચોક્કસ બિંદુ પાસેનો ઢાળ જેમકે આકૃતિ I 1.5માં A બિંદુ પાસે વક્રને દોરેલ સ્પર્શક EFનો ઢાળ એ બિંદુ A પાસેનો ઢાળ દર્શાવે છે. તે જ રીતે વક્ર ઉપર આપેલા બિંદુ પાસે ઢાળ શોધવા માટે, ઇચ્છિત બિંદુ પાસે વક્રને સ્પર્શક દોરવો જોઈએ.

આપેલ વક્રના આપેલ બિંદુએ સ્પર્શક દોરવા માટે, લાકડાના બ્લૉક પર જડિત સમતલ અરીસાપટ્ટીનો ઉપયોગ કરી શકાય અને તે જે કાગળ પર વક્ર દોરેલ હોય તેના પર લંબરૂપે મૂકી શકાય. આ બાબત આકૃતિ I 1.6 (a) અને I 1.6 (b)માં ઉદાહરણ તરીકે દર્શાવેલ છે. સમતલ અરીસાની પટ્ટી MM' ઇચ્છિત બિંદુ A પાસે એવી રીતે મૂકો કે જેથી વક્રના ભાગ DAનું પ્રતિબિંબ D'A અરીસાની પટ્ટીમાં

આકૃતિ 11.6 (a), (b) : સમતલ અરીસાનો ઉપયોગ કરી બિંદુ A પાસે સ્પર્શક દોરવો

DA સાથે સતત દેખાય. સામાન્ય રીતે, પ્રતિબિંબ D'A વક્રના DA ભાગ સાથે આકૃતિ I1.6 (a)માં દર્શાવ્યા મુજબ સહેલાઈથી જોડાય તે રીતે દેખાશે નહિ.

પછી અરીસાની પટ્ટી MM' ને, બિંદુ A પાસે તેની સ્થિતિ સમાન રહે તે રીતે પરિભ્રમણ કરાવો. અરીસામાં પ્રતિબિંબ D'A પણ પરિભ્રમણ પામશે. હવે MM' ની સ્થિતિ એવી રીતે ગોઠવો કે જેથી DAD', આકૃતિ I 1.6 (b)માં દર્શાવ્યા પ્રમાણે સળંગ, સરળ વક્ર દેખાય. આ ગોઠવણ માટે અરીસાની ધારને અનુલક્ષીને MAM' રેખા દોરો. પછી, કોણમાપકનો ઉપયોગ કરીને, બિંદુ A પાસે MAM' રેખાને લંબ GH દોરો.

GAH રેખા એ DAC વક્ક ઉપર બિંદુ A પાસેનો જરૂરી સ્પર્શક છે. સ્પર્શકનો ઢાળ (એટલે કે $\Delta y / \Delta x$) એ CAD વક્કનો બિંદુ A પાસેનો ઢાળ દર્શાવે છે. ઉપરની પદ્ધતિનો ઉપયોગ કોઈ પણ વક્કના કોઈ પણ બિંદુએ ઢાળ શોધવા માટે કરી શકાય.

I 1.8 પ્રયોગ કરવા માટેની સામાન્ય સૂચનાઓ

- (1) વિદ્યાર્થીએ પ્રયોગના સિદ્ધાંતને સંપૂર્ણપણે સમજવો જોઇએ. તે પ્રયોગનો હેતુ અને તેને અનુરૂપ પદ્ધતિ પ્રયોગ કરતાં પહેલાં સ્પષ્ટ રીતે સમજી લેવા જોઈએ.
 - (2) સાધનો યોગ્ય ક્રમમાં ગોઠવવા જોઈએ. કોઈ નુકસાન ન થાય તે માટે બધા સાધનોને કાળજીપૂર્વક અને સાવચેતીથી ઉપયોગમાં લેવા જોઈએ. સાધનનું કોઈ આકસ્મિક નુકસાન અથવા તૂટફૂટ થાય તો તરત જ જવાબદાર શિક્ષકના ધ્યાન પર લાવો.

- (3) દરેક પ્રયોગમાં, પ્રયોગ કરતી વખતે રાખવાની તકેદારીઓનું ચુસ્તપણે પાલન કરો.
- (4) દરેક અવલોકન, સમાન મૂલ્ય મળે તો પણ, દરેક વખતે અવલોકન ફરીથી લો. વિદ્યાર્થીએ અવલોકન નોંધવા માટેનું ચોક્કસ આયોજન ધ્યાનમાં રાખવું. મોટા ભાગના પ્રયોગમાં અવલોકનો અવલોકનકોઠાના સ્વરૂપમાં હોવા જરૂરી છે.
- (5) ગણતરી સ્પષ્ટ દર્શાવો. (જ્યાં જરૂર હોય ત્યાં લઘુગણક (logarithms)નો ઉપયોગ કરીને). દરેક રાશિના માપનની ચોક્કસાઇનું પરિમાણ હંમેશા ધ્યાનમાં રાખો. આથી, અંતિમ પરિણામમાં કોઈ કલ્પિત ચોક્કસાઇ પ્રતિબિંબિત ન થાય. મેળવેલ પરિણામને યોગ્ય રીતે રાઉન્ડ ઑફ કરવું.
- (6) જ્યાં શક્ય હોય ત્યાં અવલોકનોને આલેખ સાથે દર્શાવો.
- (7) પરિશામ હંમેશા યોગ્ય SI એકમ સહિત દર્શાવો અને જો પ્રાયોગિક ત્રુટિ હોય તો તે પણ દર્શાવો.

I 1.9 પ્રયોગ દરમિયાન અવલોકન નોંધવા માટેની સામાન્ય સૂચનાઓ

પ્રયોગના અવલોકનોની સ્પષ્ટ અને પદ્ધતિસરની પ્રાયોગિક ફાઇલ (રેકોર્ડબુક, નોટબુક)માં નોંધ એ પ્રાયોગિક સંશોધનોના પરિણામની યોગ્ય રજૂઆત માટે ખૂબ જ ઉપયોગી છે. અહેવાલ તૈયાર કરવા સામાન્ય રીતે નીચે મુજબના મથાળાનો ઉપયોગ થાય છે.

તારીખ પાના નંબર

હેતુ

જે પ્રયોગ કરવાનો હોય તે પ્રયોગના હેતુઓ સ્પષ્ટપણે અને ચોક્કસાઈપૂર્વક દર્શાવો.

સાધનો અને જરૂરી સામગ્રીઓ

પ્રયોગ કરવા માટે ઉપયોગમાં લીધેલ સાધન અને સામગ્રી જણાવો.

માપન માટેના સાધનો અને ઉપકરણોનું વર્ણન (વૈકલ્પિક)

પ્રયોગમાં ઉપયોગમાં લીધેલ સાધન અને માપન માટેના જુદા જુદા સાધનોનું વર્ગીકરણ દર્શાવો.

પદ અને વ્યાખ્યાઓ અથવા વિભાવનાઓ (ખ્યાલ) (વૈકલ્પિક)

જુદા જુદા ઉપયોગી પદ અને વ્યાખ્યાઓ અને પ્રયોગમાં વપરાયેલ વિભાવનાઓ સ્પષ્ટપણે લખવી.

સિદ્ધાંત/સૈદ્ધાંતિક

પ્રયોગને અંતર્ગત સિદ્ધાંત રજૂ કરો અને ઉપયોગમાં લીધેલ સૂત્ર લખો, સંકળાયેલી સંજ્ઞાઓ સ્પષ્ટપણે સમજાવો. (તારવણી જરૂરી નથી.) વિદ્યુતશાસ્ત્રને લગતા પ્રયોગ/પ્રવૃત્તિ માટે સ્પષ્ટ વિદ્યુત પરિપથ અને પ્રકાશ માટે કિરણ રેખાકૃતિ દોરો.

પદ્ધતિ (પૂર્વનિર્ધારિત સાવચેતીઓ સાથે)

પ્રયોગના સાધનની ગોઠવણી દરમિયાન ખરેખર ધ્યાનમાં આવેલ પૂર્વનિર્ધારિત સાવચેતીઓ સહિત જુદા જુદા પગલાં અને લેવાતાં માપન શ્રેણીબદ્ધ તબક્કામાં જણાવો.

અવલોકનો

શક્ય હોય ત્યાં અવલોકનોની નોંધણી કોષ્ટકીય રીતે સ્પષ્ટ અને છેકછાક વિના નોંધો. અવલોકન કોઠાની ઉપર, વાપરેલ માપનના સાધનોનું લઘુત્તમ માપ અને તેમનો વિસ્તાર સ્પષ્ટપણે દર્શાવો. તેમ છતાં, જો પ્રયોગનું પરિણામ ચોક્કસ પરિસ્થિતિ જેવા કે તાપમાન, દબાણ વગેરે પર આધારિત હોય તો તે પરિબળોના મૂલ્યો જણાવો.

ગણતરી અને આલેખ દોરવો

જુદી જુદી રાશિઓની માપેલી કિંમતો સૂત્રમાં મૂકો અને પદ્ધતિસર ગણતરી કરો તથા લઘુગણક (લોગેરિધમ) કોષ્ટકનો ઉપયોગ કરી સ્પષ્ટ દર્શાવો. પ્રાયોગિક ત્રુટિની ગણતરી કરો.

જ્યાં શક્ય હોય, ત્યાં પરિણામ મેળવવા આલેખની રીતનો ઉપયોગ કરો.

પરિણામ

પ્રાયોગિક પરિણામોને આધારે તારણ રજૂ કરો. (ભૌતિક ગુણવત્તા સહિત સાંખ્યિક પરિણામને યોગ્ય સાર્થક અંક અને યોગ્ય SI એકમ તથા શક્ય ત્રુટિ સહિત રજૂ કરો.). વળી, જો પરિણામ ભૌતિક પરિસ્થિતિ પર આધારિત હોય, તો તે ભૌતિક પરિસ્થિતિ જેવી કે તાપમાન, દબાણ વગેરેનો ઉલ્લેખ કરો.

સાવચેતીઓ

પ્રયોગ/પ્રવૃત્તિ જ્યારે કરતા હોય ત્યારે ખરેખર ધ્યાનમાં આવેલ સાવચેતીઓનો ઉલ્લેખ કરો.

ત્રુટિના ઉદ્ગમ

પ્રયોગ કરતા હોય તે દરમિયાન ઉદ્ભવતી અને વ્યક્તિગત રીતે નિયંત્રિત ન થઈ શકે તેવી ત્રુટિઓના શક્ય ઉદ્ગમો દર્શાવો અને પરિણામ પર અસર આવે તેવી ત્રુટિઓનો ઉલ્લેખ કરો.

ચર્ચા

પ્રયોગ ગોઠવણી માટેના ખાસ કારણો વગેરે આ શીર્ષક હેઠળ ઉલ્લેખવામાં આવે છે. વળી, પ્રયોગ દરમિયાન અવલોકનમાંથી કોઈ ખાસ તારવણી અથવા નડતી કોઈ ખાસ મુશ્કેલીઓનો ઉલ્લેખ કરવો. આ ચર્ચામાં પ્રયોગમાં ચોક્કસાઈ વધારવા માટેના મુદ્દાઓ, તકેદારીઓ અને સામાન્યતઃ પ્રયોગના પાયાના સિદ્ધાંતને સારી રીતે સમજવા થિયરી સાથે જોડાયેલા મુદ્દા ઉમેરી શકાય.

પ્રયોગો EXPERIMENTS

પ્રયોગ

હેતુ

વિદ્યુતસ્થિતિમાનના તફાવત વિરુદ્ધ વિદ્યુતપ્રવાહનો આલેખ દોરી આપેલા તાર માટે એકમ લંબાઈ દીઠ અવરોધ નક્કી કરવો.

સાધનો અને જરૂરી સામગ્રી

અજ્ઞાત અવરોધ ($\sim 10~\Omega$) ધરાવતો તાર, બૅટરી એલિમિનેટર અથવા સંગ્રાહક કોષ (0 to 3 V) અથવા બે સૂકા કોષ (દરેક 1.5 V ધરાવતા), વોલ્ટમીટર (0 - 5 V), મિલિએમીટર (0 - 500 mA), રીઓસ્ટેટ, સાદી કળ, જોડાણ માટેના તાર અને કાચપેપરનો ટુકડો

સિદ્ધાંત

ઓહ્મનો નિયમ દર્શાવે છે કે સુવાહકની ભૌતિક સ્થિતિ અચળ જાળવી રાખવામાં આવે તો, સુવાહકમાંથી વહેતો વિદ્યુતપ્રવાહ એ તેના છેડા વચ્ચેના વિદ્યુતસ્થિતિમાનના તફાવતના સમપ્રમાણમાં હોય છે.

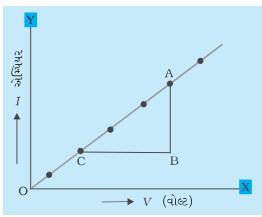
જો સુવાહકમાંથી વહેતો વિદ્યુતપ્રવાહ I અને તેના છેડા વચ્ચેનો વિદ્યુતસ્થિતિમાનનો તફાવત V હોય, તો ઓદ્મના નિયમ અનુસાર

$$V \propto I$$

અને તેથી

$$V = RI$$

જ્યાં R એ સમપ્રમાણતાનો અચળાંક છે અને તેને સુવાહકના વિદ્યુત અવરોધ તરીકે લેવાય છે. જો Vને વોલ્ટમાં અને Iને એમ્પિયરમાં લેવામાં આવે તો Rને ઓક્ષમાં રજૂ કરાય છે. અવરોધ R એ વાહકના દ્રવ્ય અને પરિમાણ પર આધાર રાખે છે. સમાન આડછેદ ધરાવતા તાર માટે, અવરોધ, લંબાઈ I અને આડછેદના ક્ષેત્રફળ A પર આધાર રાખે છે. તે વાહકના તાપમાન પર પણ આધાર રાખે છે. આપેલ તાપમાને અવરોધ,


$$R = \rho \frac{l}{A}$$

જ્યાં ρએ વિશિષ્ટ અવરોધ અથવા અવરોધકતા છે અને તે તારના દ્રવ્યની લાક્ષણિકતા છે.

પ્રયોગશાળા માર્ગદર્શિકા

સમીકરણ (E 1.1) અને (E 1.2) પરથી,

$$V = \left(\rho \frac{l}{A} \right) I$$
 મેળવી શકીએ.

આકૃતિ E 1.1 : વિદ્યુતપ્રવાહ I અને વિદ્યુતસ્થિતિમાન V વચ્ચેનો તફાવત

V અને I વચ્ચેનો રેખીય સંબંધ મેળવી શકાય છે. એટલે કે V અને I નો આલેખ આકૃતિ E 1.1માં દર્શાવ્યા મુજબ ઉગમબિંદુમાંથી પસાર થતી સુરેખ રેખા મળવી જોઈએ. સમીકરણ (E 1.1) અનુસાર આલેખનો ઢાળ $\frac{1}{R}$ થશે. (ઉગમબિંદુમાંથી પસાર થતી સુરેખ રેખાનું સમીકરણ v=mx છે. જ્યાં m એ આલેખનો ઢાળ છે.)

$$\log = \frac{1}{R}$$

$$\Rightarrow R = \frac{1}{\text{sin}}$$

જો તારની લંબાઈ l હોય તો, તારની એકમ લંબાઈ દીઠ અવરોધ $= \frac{R}{l}$

પદ્ધતિ

- (1) જોડાણ માટેના વાયરોના છેડા પર કોઈ પણ અવાહક પડનું આવરણ થઈ ગયેલ હોય, તો તેને દૂર કરવા છેડાઓને કાચપેપર વડે સાફ કરો.
- (2) આકૃતિ E 1.2 માં દર્શાવ્યા મુજબ અવરોધ, રીઓસ્ટેટ, બૅટરી, કળ, વોલ્ટમીટર અને એમીટર જેવા જુદાં-જુદાં ઘટકો જોડો. (નોંધ:જો બૅટરી એલિમિનેટર બદલી શકાય તેવા વૉલ્ટેજ વાળું હોય

તો રીઓસ્ટેટની જરૂર નથી.)

mA V - (*)

આકૃતિ E 1.2 : આપેલા તાર માટે વિદ્યુતપ્રવાહ I અને વિદ્યુતસ્થિતિમાનના તફાવત V વચ્ચેનો સંબંધ મેળવવા માટેનો વિદ્યુતપરિપથ

- (3) મિલિએમીટર અને વોલ્ટમીટરના દર્શકો માપન સ્કેલ પરના શૂન્યના ચિક્ષ પર એકરેખસ્થ છે કે નહિ તે ચકાસો. જો આમ ન હોય તો, સ્ક્રૂડ્રાઇવર (ડિસમિસ)ની મદદથી દર્શકના છેડાની નજીક આવેલા સ્ક્રૂની ગોઠવણી કરીને દર્શકને શૂન્યના ચિક્ષ સાથે એકરેખસ્થ કરો.
- (4) આપેલા વોલ્ટમીટર અને મિલિએમીટરનો વિસ્તાર અને લઘુત્તમ માપ નોંધો.
- (5) કળ K ભરાવો અને રીઓસ્ટેટના સંપર્કને કોઈ એક અંતિમ છેડા પર ગોઠવો કે જેથી અવરોધક તારમાંથી લઘુત્તમ વિદ્યુતપ્રવાહ પસાર થાય.
- (6) મિલિએમીટર અને વોલ્ટમીટરનાં અવલોકનો નોંધો.

પ્રયોગ 1

- (7) કળ K ખુલ્લી કરો અને જો તાર ગરમ થયો હોય તો તેને ઠંડો પડવા દો. ફરીથી કળ ભરાવો. રીઓસ્ટેટનો સંપર્ક થોડો ખસેડી લાગુ પાડેલ વોલ્ટેજમાં વધારો કરો. મિલિએમીટર અને વોલ્ટમીટરનાં અવલોકનો લો.
- રીઓસ્ટેટની ચાર જુદી-જુદી ગોઠવણી માટે પદ 7 પુનરાવર્તિત કરો. તમારાં અવલોકનો અવલોકન-કોઠામાં નોંધો.

અવલોકનો

- (1) એમીટરનો વિસ્તાર = 0 mA થી mA
- (2) એમીટરનું લઘુત્તમ માપ = ____ mA
- (3) વોલ્ટમીટરનો વિસ્તાર = 0 V થી _____ V
- (4) વોલ્ટમીટરનું લઘુત્તમ માપ = _____ V
- (5) માપપટ્ટીનું લઘુત્તમ માપ = _____ m
- (6) આપેલ તારની લંબાઈ *l* = _____ m

કોષ્ટક E 1.1: વોલ્ટમીટર અને મિલિએમીટરનાં અવલોકનો

ક્રમ નં.	લાગુ પાડેલ વિદ્યુતસ્થિતિમાનનો તફાવત $\left[ightarrow ightarrow \left[ightarrow ightarrow \left[ightarrow ightarrow \left[ightarrow ightarrow ightarrow ightarrow ightarrow \left[ightarrow i$	તારમાંથી પસાર થતો વિદ્યુતપ્રવાહ [મિલિએમીટરનું અવલોકન <i>I</i> (mA)]
	V	I
1		
2		
6		

ગણતરીઓ

- (1) આકૃતિ E 1.1 માં દર્શાવ્યા અનુસાર તારના બે છેડા વચ્ચેના વિદ્યુતસ્થિતિમાનના તફાવત (V) અને તેમાંથી પસાર થતા વિદ્યુતપ્રવાહ (I)નો આલેખ દોરો.
- (2) આલેખનો ઢાળ નક્કી કરો. આપેલ તારનો અવરોધ એ ઢાળના વ્યસ્ત જેટલો થશે. આલેખ પરથી $R=rac{\mathrm{BC}}{\mathrm{AB}}=$ _____ Ω (3) આપેલ તારની એકમ લંબાઈ દીઠ અવરોધ $=rac{R}{l}=$ _____ $\Omega\mathrm{m}^{-1}$.

ત્રુટિ

$$\frac{\Delta R}{R} = \frac{\Delta V}{V} + \frac{\Delta I}{I} = \underline{\hspace{1cm}}$$

(E 1.4)

પ્રયોગશાળા માર્ગદર્શિકા

અહીં, R એ એકમ લંબાઈ દીઠ અવરોધ અને ΔR એ અંદાજિત ત્રુટિ છે. ΔV અને ΔI એ અનુક્રમે વોલ્ટમીટર અને એમીટરના લઘુત્તમ માપ છે.

પરિણામ

- (1) આપેલ તારના બે છેડા વચ્ચેનો વિદ્યુતસ્થિતિમાનનો તફાવત એ વિદ્યુતપ્રવાહ સાથે રેખીય રીતે બદલાય છે.
- (2) તારનો એકમ લંબાઈ દીઠ અવરોધ $(R \pm \Delta R) = (\underline{} \pm \underline{} \Omega m^{-1}).$

સાવચેતીઓ

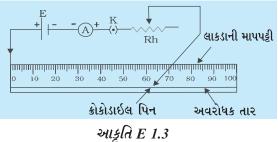
- (1) પરિપથમાં વોલ્ટમીટર સમાંતરમાં અને એમીટર શ્રેણીમાં જોડાયેલ હોવું જોઈએ. વિદ્યુતપ્રવાહ ધન છેડા પર દાખલ થાય અને ઋણ છેડા પર બહાર નીકળે છે તે પણ ચકાસો.
- (2) તારમાં સતત વહેતા વિદ્યુતપ્રવાહને લીધે તારને બિનજરૂરી ગરમ થતો રોકવા માટે, જ્યારે અવલોકનો લેતા હોય ત્યારે જ કળ ભરાવો.
- (3) માપનનાં સાધનો (વોલ્ટમીટર, એમીટર, માપપટ્ટી)માં શૂન્ય ત્રુટિનું જ્ઞાન મેળવીને એમીટર અને વોલ્ટમીટરના કિસ્સામાં ડિસમિસ (સ્કૂ ડ્રાઇવર)ની મદદથી દર્શકના નીચેના છેડે આપેલા સ્કૂની ગોઠવણીની મદદથી દૂર કરી શકાય છે.

ત્રુટિનાં ઉદ્ગમો

- (1) ઉપયોગમાં લીધેલ તાર સમાન આડછેદ ધરાવતો ન હોઈ શકે.
- (2) અવરોધક તારની લંબાઈ વોલ્ટમીટરના એક છેડાથી બીજા છેડા સુધીની માપવી જોઈએ. વોલ્ટમીટરના છેડાઓ પાસે વીંટળાયેલ તારની લંબાઈને ધ્યાનમાં લઈએ, તો તે લંબાઈના માપનમાં ત્રુટિ આપી શકે છે.

ચર્ચા

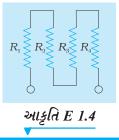
અવરોધએ ઓહ્મના નિયમને અનુસરે છે. તેમ છતાં, બધાં જ વાહક સાધનો ઓદ્મના નિયમને અનુસરતા નથી. જેમ કે ડાયોડ, થાઇરિસ્ટર વગેરે. આ બધા બિનઓહ્મીક અવરોધકો ગણાય છે.


સ્વ-મૂલ્યાંકન

(1) પરિપથમાં વોલ્ટમીટર હંમેશાં સમાંતરમાં અને એમીટર હંમેશાં શ્રેશીમાં જોડવામાં આવે છે, શા માટે ? શું તેઓને વિરુદ્ધ પ્રકારે જોડવામાં આવે, તો તે મુજબના પ્રાચલો નોંધશે ?

- (2) વિદ્યુત-પરિપથમાં જુદાં-જુદાં ઘટકોને જોડવા માટે સામાન્ય રીતે કૉપર (તાંબા)ના તારનો ઉપયોગ શા માટે થાય છે ?
- (3) પરિપથમાં લાંબા સમય સુધી સતત વિદ્યુતપ્રવાહ પસાર થવા દેવામાં આવે તો શું થાય ? શા માટે ?

સૂચવેલ વધારાના પ્રયોગો / પ્રવૃત્તિઓ


- (1) તારનો વ્યાસ અચળ રાખવામાં આવે ત્યારે તારની લંબાઈનો તેના અવરોધ પર અસરનો અભ્યાસ કરવો.
- (2) બજારમાં પ્રાપ્ય હોય તેવા જુદા-જુદા SWG (પ્રમાણભૂત તાર-જાડાઈ Standard wire gauge) ધરાવતા તારનો ઉપયોગ કરી તેમની લંબાઈ અચળ જાળવી રાખી તારના અવરોધ પર તારના વ્યાસની અસરનો અભ્યાસ કરવો.
- (3) જુદા-જુદા દ્રવ્યના બનેલા તારની અવરોધકતાનો અભ્યાસ કરવો. શું આ બધા તાર માટે અવરોધકતા સમાન છે ?
- (4) સમાન દ્રવ્યમાંથી બનેલ બે એકરૂપ તારની લંબાઈ સમાન છે. જેમાંથી એક તારના વર્તુળાકાર આડછેદનું ક્ષેત્રફળ A છે. જ્યારે બીજા તારનો આડછેદ વર્તુળાકાર નથી પરંતુ આડછેદનું ક્ષેત્રફળ A છે. શું તેઓના અવરોધ સમાન હશે ?
- (5) ટૉર્ચના બલ્બના ફિલામેન્ટ માટે વોલ્ટેજ અને પ્રવાહના સંબંધનો અભ્યાસ કરવો.
- (6) આકૃતિ E 1.3માં દર્શાવ્યા મુજબ પરિપથ જોડો.

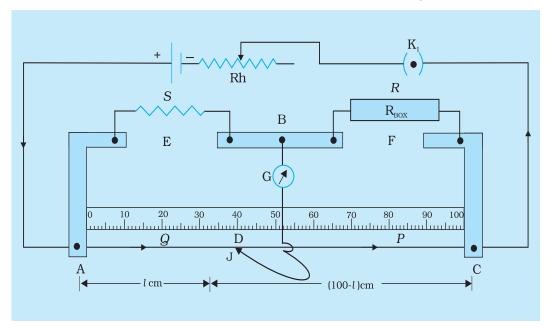
▼ 1.3

ક્રોકોડાઇલ પિનને 10, 20, 30... cm આગળ જોડીને એમીટરનું અવલોકન I નોધો. $\frac{1}{I}$ અને I વચ્ચેનો આલેખ દોરો. તેનો ઢાળ શોધો અને તેના પરિણામનું અર્થઘટન કરો. આ આલેખનો ઉપયોગ શું અવરોધક તારની એકરૂપતા ચકાસવા કરી શકાય ?

(7) ચાર અવરોધો R_{j} , R_{j} , R_{j} અને R_{j} ને આકૃતિ E 1.4માં દર્શાવ્યા મુજબ ભેગા કરો. 6 Vના ઉદ્દગમ, એમીટર અને વોલ્ટમીટરનો ઉપયોગ કરી અવરોધોના આ સંયોજનને જોડીને વિદ્યુતપરિપથ પૂર્ણ કરો. દરેક અવરોધમાંથી વહેતા વિદ્યુતપ્રવાહ / વોલ્ટેજનું માપન કેવી રીતે કરશો ?

હેતુ

મીટરબ્રિજનો ઉપયોગ કરીને આપેલા તારનો અવરોધ નક્કી કરવો અને તે પરથી તારના દ્રવ્યની અવરોધકતા નક્કી કરવી.


સાધનો અને જરૂરી સામગ્રી

મીટરબ્રિજ, (જે દ્રવ્યનો વિશિષ્ટ અવરોધ નક્કી કરવો હોય તે દ્રવ્યનો) 1 m લાંબો તાર, અવરોધ પેટી, રીઓસ્ટેટ, ગૅલ્વેનોમીટર, જૉકી, એકમાર્ગી કળ, કોષ અથવા બૅટરી એલિમિનેટર, જોડાણ માટેના જાડા તાર, કાયપેપર, સ્ક્રૂગેજ.

साधननुं वर्शन

મીટરબ્રિજ:

તે લાકડાના પાટિયા પર માપપટ્ટી પર ગોઠવેલ કોન્સ્ટનટનના 1 મીટર લંબાઈનો સમાન આડછેદ ધરાવતો તાર AC ધરાવે છે. (આકૃતિ E 2.1) તારના બે છેડા ટર્મિનલ (જોડાણઅગ્ર) A અને C સાથે જોડેલા છે. કાટખૂણે વાળેલી ધાતુની જાડી પટ્ટીઓના ઉપયોગથી બે ખાલી જગ્યા (ભૂજા, gap) E અને F બનાવેલ છે કે જેમાં અવરોધો જોડીને વ્હીસ્ટન બ્રિજ બનાવાય છે. (આકૃતિ E 2.2) બે ગેંપની વચ્ચે

આકૃતિ E 2.1 મીટરબ્રિજ

જોડાણઅગ્ર (ટર્મિનલ) B છે જે ગૅલ્વેનોમીટર સાથે જોડવા માટે ઉપયોગમાં લેવાય છે અને ગૅલ્વેનોમીટરનો બીજો છેડો જૉકી J સાથે જોડાય છે.

સિદ્ધાંત

મીટરબ્રિજ એ વ્હીસ્ટન બ્રિજના સિદ્ધાંત ઉપર કાર્ય કરે છે. આકૃતિ E 2.2માં દર્શાવ્યા અનુસાર તે ABCD નેટવર્કના સ્વરૂપમાં ચાર અવરોધો $P,\ Q,\ R$ અને S ધરાવે છે. જોડાણઅગ્ર A અને Cને કોષના બે છેડાઓ સાથે કળ \mathbf{K}_1 દ્વારા જોડવામાં આવે છે. જોડાણઅગ્ર \mathbf{B} અને \mathbf{D} ને સંવેદનશીલ ગૅલ્વેનોમીટર \mathbf{G} સાથે કળ \mathbf{K}_2 દ્વારા જોડવામાં આવે છે.

જો ગૅલ્વેનોમીટર G માં કોઈ આવર્તન ન મળે, તો વ્હીસ્ટન બ્રિજની સંતુલિત સ્થિતિમાં,

$$\frac{P}{O} = \frac{R}{S}$$
 (E 2.1)

જો $P,\ Q$ અને R જ્ઞાત હોય, તો (E 2.1) સંબંધનો ઉપયોગ કરી S નક્કી કરી શકાય છે.

મીટરબ્રિજની ખાલી જગ્યા E માં અજ્ઞાત અવરોધ S અને ખાલી જગ્યા Fમાં અવરોધપેટી $(R_{\rm Box})$ ને જોડવામાં આવે છે. જોડાશઅગ્ર Bને ગૅલ્લેનોમીટર Gના એક છેડા સાથે જોડવામાં આવે છે. ગૅલ્લેનોમીટરનો બીજો છેડો જૉકી સાથે જોડવામાં આવે છે જે તાર AC પર સરકી શકે છે. ડીસી (dc) પ્રવાહના ઉદ્દગમને કળ K_1 દ્વારા A અને C વચ્ચે જોડવામાં આવે છે કે જેના વડે ACના બે છેડા વચ્ચે અચળ વિદ્યુતસ્થિતિમાનનો તફાવત પૂરો પાડી શકાય.

ખાલી જગ્યા (ગૅપ) F માં જોડેલી અવરોધપેટી (R_{Box}) માંથી અનુરૂપ કળ કાઢીને જ્ઞાત મૂલ્યનો અવરોધ (અથવા તાર) દાખલ કરેલ છે. જૉકીને તાર AC ઉપર એવી રીતે ફેરવવામાં (સરકાવવામાં) આવે છે કે જેથી ગૅલ્વેનોમીટરમાં કોઈ આવર્તન ન મળે. જૉકીને જ્યારે તટસ્થબિંદુ તરીકે ઓળખાતા બિંદુ D પર મૂકતાં આવુ બને છે. આ પરિસ્થિતિમાં,

$$\frac{P}{Q} = \frac{R}{S} = \frac{\text{DC}$$
લંબાઈના તારનો અવરોધ ADલંબાઈના તારનો અવરોધ

A K_2 K_2 K_3 K_4 K_5 K_6 K_7 K_8 $K_$

આકૃતિ E 2.2 : વ્હીસ્ટન બ્રિજ

(E 2.2)

સમાન આડછેદનું ક્ષેત્રફળ ધરાવતા તારનો અજ્ઞાત અવરોધ S નીચેના સૂત્ર દ્વારા આપી શકાય :

$$S = R \times \frac{l}{100 - l} \tag{E 2.3}$$

29

પ્રયોગશાળા માર્ગદર્શિકા

કેમ કે, સમાન આડછેદનું ક્ષેત્રફળ ધરાવતા તાર માટે અવરોધ એ લંબાઈના સમપ્રમાણમાં છે. આમ, I અને R જાણીને સમીકરણ (E 2.3) નો ઉપયોગ કરીને, અજ્ઞાત અવરોધ Sનું મૂલ્ય નક્કી કરી શકાય છે.

અવરોધકતા

આપેલ તારના દ્રવ્યની અવરોધકતા (વિશિષ્ટ અવરોધ)

$$\rho = \frac{S a}{L}$$

જ્યાં S એ L લંબાઈ ધરાવતા તારનો અવરોધ અને આડછેદનું ક્ષેત્રફળ $a=\pi r^2$, (r એ ત્રિજ્યા છે.)

પદ્ધતિ

- (1) સ્ક્રુગેજની મદદથી તારનો સરેરાશ વ્યાસ શોધો. આ પરથી તેની ત્રિજ્યાનું મૂલ્ય મેળવો.
- (2) કાચપેપરના ટુકડાની મદદથી જોડાણ માટેના તારના છેડાઓ પાસે અવાહક આવરણ દૂર કરો. અવરોધ પેટીની દરેક કળને દબાવીને ચુસ્ત રીતે બંધ કરો.
- (3) આકૃતિ E 2.1માં દર્શાવ્યા મુજબ ગેપ E માં જાણીતી લંબાઈનો અજ્ઞાત અવરોધ રાખી પરિપથ તૈયાર કરો.
- (4) પછી, અવરોધપેટીમાંથી અવરોધ R કાઢો. જૉકીને પ્રથમ જોડાણઅગ્ર (ટર્મિનલ) A સાથે સંપર્ક કરાવો અને પછી જોડાણઅગ્ર C સાથે સંપર્ક કરાવો. દરેક કિસ્સામાં ગૅલ્વેનોમીટરના દર્શકનું આવર્તન કઈ દિશામાં મળે છે તે નોંધો. જૉકી J તાર સાથે ખૂબ ઓછા સમય માટે સંપર્કમાં રહે તેની ખાતરી રાખો. જો જૉકીના આ બે છેડાના સંપર્ક દરમિયાન ગૅલ્વેનોમીટર શૂન્યના ચિક્ષની બંને બાજુ આવર્તન દર્શાવે, તો તાર AC પર કોઈ બિંદુ પાસે તટસ્થબિંદુ મેળવી શકાય. જો આવું ન થતું હોય તો, અવરોધ R એવી રીતે ગોઠવો કે જેથી તાર AC પર લગભગ મધ્યમાં એટલે કે 30 cm અને 70 cmની વચ્ચે તટસ્થ બિંદુ મળે.
- (5) જો એક જ બાજુ આવર્તન મળે તો, પરિપથમાં ફરીથી ખાસ કરીને જોડાણો તેમની સાતત્યતા માટે ચકાસો.
- (6) અવરોધ Rનાં જુદાં-જુદાં ચાર મૂલ્યો માટે પદ 4 પુનરાવર્તિત કરો.
- (7) અવરોધો S અને Rના સ્થાન બદલો અને Rનાં S સમાન મૂલ્યો માટે પદ S થી S પુનરાવર્તિત કરો. જ્યારે S અને Rના સ્થાન બદલો ત્યારે ખાત્રી કરો કે સમાન લંબાઈ ધરાવતો અવરોધ S, હવે ગૅપ (ખાલી જગ્યા) S માં છે. આ અદલાબદલી જોડાણઅગ્રો દ્વારા દાખલ થતા અવરોધની અસરની કાળજી રાખવા માટે છે.

અવલોકનો

- (1) અજ્ઞાત અવરોધના તારની લંબાઈ, L = cm
- (2) અજ્ઞાત અવરોધના તારના વ્યાસનું માપન સ્ક્રૂગેજનું લઘુત્તમ માપ (L.C.) = mm સ્ક્રૂગેજની શૂન્ય ત્રુટિ = mm સ્ક્રૂગેજની શૂન્ય ત્રુટિનો સુધારો = mm

કોષ્ટક E 2.1 તારનો વ્યાસ

ક્રમ નં.	એક બા	જુનાં અવલોકન		પરસ્પર	સરેરાશ વ્યાસ		
	મુખ્ય વર્તુળાકાર		વ્યાસ	મુખ્ય	વર્તુળાકાર	વ્યાસ	
	માપક્રમનું	માપક્રમનો	$d_{_{1}} =$	માપક્રમનું	માપક્રમનો	$d_2 =$	<i>d</i> =
	અવલોકન	એકરેખસ્થ	$P + n \times L.C.$	અવલોકન	એકરેખસ્થ	$P' + n' \times L.C.$	$\underline{d_1 + d_2}$
	P (mm)	થતો વિભાગ <i>n</i>	(mm)	P' (mm)	થતો વિભાગ <i>n'</i>	(mm)	2 (mm)
1							
2							
3							

સરેરાશ વ્યાસ (શૂન્ય ત્રુટિના સુધારા સાથે) = mm તારની ત્રિજ્યા r= mm

કોષ્ટક E 2.2 : અજ્ઞાત અવરોધ

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ક્રમ નં.		ડાબી ભૂજામાં S				જમણી ભૂજામાં S							
		Ω	તટસ્થ બિં સ્થાન	તટસ્થ બિંદુ લંબાઈ <i>(A</i>	લંબાઈ DC = 100	$\mathbf{S}_{\mathbf{I}} = \mathbf{R} \times \frac{l}{100-}$	माक्टे क्टिड्स	તટસ્થ બિંદુ લંબાઈ AD	લેબાઈ D'C = 100 –	$\mathbf{S_2} = \mathbf{R} \times \frac{100 - 1}{l}$	C		ΔS	$\Delta \rho \Omega$ m
5 સરેરાશ	2													

પ્રયોગશાળા માર્ગદર્શિકા

ગણતરીઓ

$$L = \text{ cm}, r = \text{ mm}, S = \Omega$$

$$ho = S rac{\pi r^2}{L}$$
માં આ કિંમતો મૂકી ho નું મૂલ્ય $\Omega
m m$ માં ગણો.

ત્રુટિ

$$\frac{\Delta \rho}{\rho} = \frac{\Delta S}{S} + \frac{2\Delta r}{r} + \frac{\Delta L}{L}$$

ત્રુટિઓ Δr અને ΔL તેમના માપન માટેનાં સાધનોના લઘુત્તમ માપ છે અને ત્રુટિ ΔS નીચેનાં સમીકરણો દ્વારા મેળવાતી મહત્તમ કિંમત છે.

$$\Delta S_{1} = \left[\frac{\Delta l}{l} + \frac{\Delta l}{(100 - l)}\right] S_{1}$$

$$\Delta \mathbf{S}_2 = \left[\frac{\Delta l'}{l'} + \frac{\Delta l'}{(100-l')}\right] \mathbf{S}_2$$
 જો એવું ધારી લેવામાં આવે કે અવરોધપેટીમાં જે અવરોધ દર્શાવેલ છે તેટલો જ અવરોધ લાગતો હોય, તો $\Delta R = 0$

તેથી મહત્તમ ત્રુટિ $\Delta S = \Delta S_{_I} + \Delta S_{_2}$

પરિણામ

- (2) તારના દ્રવ્યની અવરોધકતા $\rho \pm \Delta \rho =$ \pm Ω m. અહીં S અને ρ એ સરેરાશ મૂલ્યો છે. ΔS અને $\Delta \rho$ એ ત્રુટિનાં પાંચ મૂલ્યોમાંથી મહત્તમ મૂલ્ય છે.

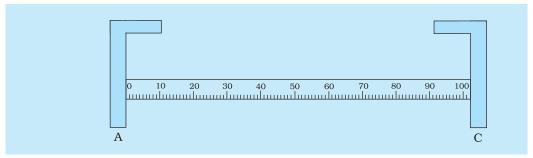
સાવચેતીઓ

- (1) બધાં જ જોડાણો અને પ્લગ ચુસ્ત હોવાં જોઈએ.
- (2) મીટરબ્રિજના તાર પર જૉકી સરળતાથી સરકવી જોઈએ.
- (3) અવલોકનો લેતા હોય તે સમયે જ કળ K_1 ભરાવેલી હોવી જોઈએ.
- (4) તટસ્થબિંદુ તારની મધ્યમાં (30 cm થી 70 cm) હોવું જોઈએ.

(E 2.6)

ત્રુટિનાં ઉદ્ગમો

- (1) મીટરબ્રિજનો તાર સમાન આડછેદનું ક્ષેત્રફળ ધરાવતો ન પણ હોય.
- (2) તાંબાની પટ્ટીઓના છેડાના અવરોધો, જોડાણઅગ્રોના અવરોધોની અસર, માપનમાં અસર કરી શકે છે.
- (3) જ્યારે તારને ગૅપ (ખાલી જગા) E અથવા F માં જોડવામાં આવે ત્યારે જોડાણઅગ્રોની નીચેના તારની લંબાઈ ગણતરીમાં આવતી નથી.
- (4) ધાતુની પટ્ટીઓ / છેડાના અવરોધો અવગણી શકાય નહિ તેને લીધે અવરોધમાં ઉદ્દ્ભવતી ત્રુટિ ગૅપ (ખાલી જગા) E અને Fમાં જ્ઞાત અને અજ્ઞાત અવરોધોની અદલાબદલી કરીને ઘટાડી શકાય છે.
- (5) મીટરબ્રિજનો તાર પૂર્ણપણે ખેંચાયેલ (તંગ) ન હોય અને આ તાર મીટરબ્રિજની માપપટ્ટી પર ગોઠવાયેલ ન હોય, તો લંબાઈ *l* અને *l'* ના માપનમાં ત્રુટિ આવી શકે છે.
- (6) ગૅલ્વેનોમીટરમાંથી જયારે પ્રવાહ પસાર થતો ન હોય, ત્યારે તેનો દર્શક શૂન્ય પર હોવો જોઈએ. તેમ છતાં, ઘણી વખત એવું જોવા મળે છે કે તે શૂન્ય પર હોતો નથી. આવા કિસ્સામાં સ્કૂ ડ્રાઇવર (ડિસમિસ)ની મદદથી દર્શકની માપપટ્ટીની નીચે આવેલા સ્કૂને મૃદુતા (હળવે)થી ફેરવીને દર્શકને શૂન્ય પર ગોઠવવો જોઈએ. નહિતર જૉકીને તાર પર સરળતાથી પછાડીને તટસ્થબિંદુ મેળવવું જોઈએ.

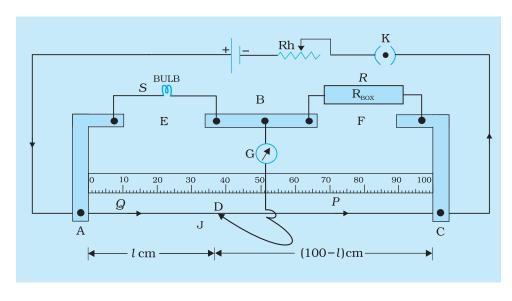

ચચા

- (1) R અને Sનું એવું સંયોજન પસંદ કરવામાં આવે છે કે જેથી તટસ્થબિંદુ મીટરબ્રિજના તારના મધ્યબિંદુની નજીક આવે. શા માટે ? શું જયારે R અને S સમાન ક્રમના અવરોધ હોય, ત્યારે તટસ્થબિંદુ શોધવાની સંવેદિતા મહત્તમ હોય છે ?
- (2) કેટલી ચોક્સાઈથી તટસ્થ બિંદુ શોધી શકાય તે ઉપયોગમાં લીધેલા ગૅલ્વેનોમીટરની સંવેદિતા પર આધાર રાખે છે. આ તપાસવા માટે, ગૅલ્વેનોમીટરમાં માત્ર ખ્યાલ આવે તેટલું આવર્તન મળે તે માટે જોકીને જેટલું ખસેડવું પડે તે અંતર શોધો. આના કારણે મળતી ત્રુટિને કઈ રીતે લઘુત્તમ કરી શકાય ? શું આને વિદ્યુત સ્થિતિમાનના તફાવત સાથે કોઈ લેવા દેવા છે?
- (3) જૉકીના સ્થાન માટેની લંબાઈ $I \pm 0.1~{\rm cm}$ સુધીની ચોકસાઈથી માપો. આ પ્રકારની ત્રુટિથી પરિણામમાં કેટલી અચોકસાઈ ઉદ્ભવી શકે ?
- (4) જયારે અવલોકનો લેતા ન હોય ત્યારે તારમાં બિનજરૂરી ઉષ્મા ઉદ્ભવે નહીં તે માટે કળ ખુલ્લી રાખવાનું સલાહભરેલું છે. શા માટે ? આ ઉષ્માઊર્જા તટસ્થબિંદુ પર કેટલે અંશે અસર કરી શકે છે ? શું આ નોંધપાત્ર છે ?

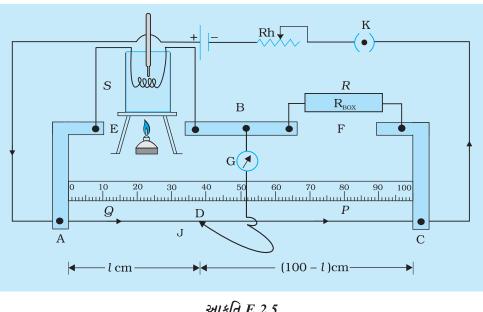
પ્રયોગશાળા માર્ગદર્શિકા

સ્વ-મૂલ્યાંકન

- (1) બ્રિજના તારની લંબાઈ ચોક્કસ 100 cm હોતી નથી. આથી, તારની ચોક્કસ લંબાઈ નોંધો અને ગણતરીમાં તેનો ઉપયોગ કરો.
- (2) જો મીટરબ્રિજનો તાર સમાન આડછેદનું ક્ષેત્રફળ ધરાવતો ન હોય, તો તે અવલોકનોને કેવી રીતે અસર કરી શકે ?



આકૃતિ E 2.3 મીટરબ્રિજનો ખામીવાળો માપક્રમ


- (3) જો મીટરબ્રિજનો તાર સમાન ઘનતા ધરાવતા દ્રવ્યમાંથી બનાવેલ ન હોય, તો તે અવલોકનો પર કેવી અસર કરી શકે ?
- (4) જો આ પ્રયોગમાં તાર ACની લંબાઈ 1 mને બદલે 50 cm ધરાવતા તારની મદદથી કરવામાં આવે, તો પરિણામમાં કેવો ફેરફાર ઉદ્ભવી શકે ?
- (5) આકૃતિ E 2.3માં દર્શાવ્યા પ્રમાણે તાર સાથે જોડાયેલ માપપટ્ટી ચોક્કસ લંબાઈ દર્શાવતી ન હોય, તો તમે ત્રુટિને કઈ રીતે લઘુતમ કરશો ?
- (6) મીટરબ્રિજનો ખૂબ જ મોટા કે ખૂબ જ નાના અવરોધ માપવા માટે કેમ ઉપયોગી નથી ?
- (7) તારના અવરોધનું માપન કરવા માટે ઓહ્મના નિયમ કરતાં મીટરબ્રિજ વાપરવો શા માટે વધારે હિતાવહ છે ?

સૂચવેલ વધારાના પ્રયોગો / પ્રવૃત્તિઓ

- (1) આપેલા વોલ્ટેજ અને પાવર ધરાવતા વિદ્યુત ગોળા (બલ્બ)નો અવરોધ નક્કી કરો. કૉપરના બે તારના છેડે ક્રૉકોડાઇલ પિન જોડો. આકૃતિ E 2.4માં દર્શાવ્યા પ્રમાણે આ ગોળાને ખાલી જગ્યા (ગૅપ) Eમાં જોડવા માટે ઉપયોગમાં લો. તમે મેળવેલ અવરોધ એ સૈદ્ધાંતિક મૂલ્ય કરતાં શા માટે જુદો પડે છે ?
- (2) તમે મેળવેલાં અવલોકનોનો ઉપયોગ કરી $\frac{(100-l)}{l}$ અને R વચ્ચેનો આલેખ દોરો. આ આલેખનો ઢાળ શોધો. તે શું દર્શાવે છે ?
- (3) તારનો અવરોધ તાપમાન સાથે બદલાય છે. તેનો અભ્યાસ મીટરબ્રિજનો ઉપયોગ કરી તમે કરી શકશો. દિવેલ ભરેલા બીકર, યોગ્ય થરમૉમીટર (0– 300°C) અને જાણીતી લંબાઈ ધરાવતા અવરોધક તારનો તમે ઉપયોગ કરી શકો. પ્રયોગ માટેની ગોઠવણી આકૃતિ E 2.5માં દર્શાવેલ છે, તેનો ઉપયોગ કરી શકો.

આકૃતિ E 2.4

આકૃતિ E 2.5

હેતુ

મીટરબ્રિજનો ઉપયોગ કરી અવરોધના સંયોજનો(શ્રેણી અને સમાંતર)ના નિયમો ચકાસવા.

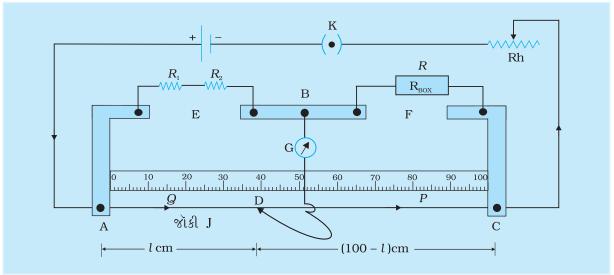
સાધનો અને જરૂરી સામગ્રી

મીટરબ્રિજ, સંવેદનશીલ ગૅલ્વેનોમીટર, બે જુદાં-જુદાં અવરોધો (કાર્બન અથવા તાર વીંટાળેલા (Wire Wound) અવરોધકો), અવરોધપેટી, જૉકી, રીઓસ્ટેટ, કળ, કોષ અથવા બૅટરી એલિમિનેટર, જોડાણ માટેના જાડા તાર અને કાચપેપરનો ટુકડો

સિદ્ધાંત

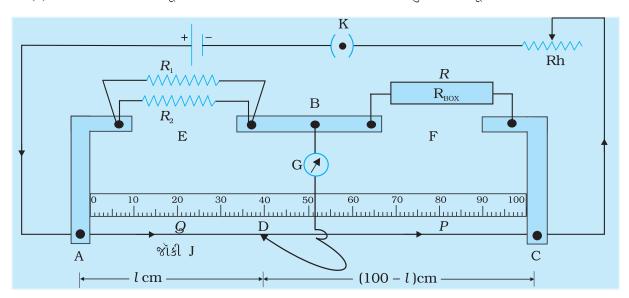
જ્યારે બે અવરોધો $R_{_{I}}$ અને $R_{_{2}}$ ને શ્રેણી-જોડાણમાં જોડવામાં આવે, તો સંયોજનનો અવરોધ $R_{_{\mathrm{S}}}$ નીચેના સૂત્ર દ્વારા આપી શકાય :

$$(E 3.1) R_s = R_t + R_2$$


જ્યારે તેમને સમાંતરમાં જોડવામાં આવે ત્યારે, સંયોજનનો અવરોધ $\mathbf{R}_{_{\mathrm{P}}}$ નીચેના સૂત્ર દ્વારા આપી શકાયઃ

$$\frac{1}{R_p} = \frac{1}{R_t} + \frac{1}{R_2}$$

પદ્ધતિ


- (1) આકૃતિ E 3.1માં દર્શાવ્યા પ્રમાણે પરિપથ તૈયાર કરો.
- (2) અવરોધપેટી (R_{BOX}) માંની દરેક કળને ફેરવી અને દબાવીને ચુસ્ત રીતે બંધ કરો અને ખાતરી કરી લો કે દરેક કળ સારા વિદ્યુતીય સંપર્કમાં ગોઠવાય. જોડાણ માટેના તારના છેડાઓને જોડતાં પહેલાં કાચપેપરની મદદથી સાફ કરો.
- (3) અવરોધપેટીમાંથી યોગ્ય મૂલ્યનો અવરોધ R મેળવવા કેટલીક કળ દૂર કરો. (ખેંચી કાઢો.) પ્રયોગ 2માં કર્યા મુજબ મીટરબ્રિજના તાર પર જૉકીને સરકાવીને A અને C છેડાઓની વચ્ચે તટસ્થ બિંદુ મેળવો.

Downloaded from https://www.studiestoday.com

આકૃતિ E 3.1 મીટરબ્રિજની એક ભૂજામાં અવરોધો $R_{_{I}}$ અને $R_{_{2}}$ નું શ્રેણી-જોડાણ

- (4) અવલોકન-કોઠામાં અવરોધ R અને લંબાઈ AD અને DCનાં મૂલ્યો નોંધો.
- (5) કોઠા E 3.1માં દર્શાવ્યા મુજબ શ્રેણી-જોડાણ માટેના સમતુલ્ય અવરોધ (x)ના પ્રાયોગિક મૂલ્યની ગણતરી કરો.
- (6) અવરોધ Rનાં ચાર મૂલ્યો માટે પ્રયોગ ફરીથી કરો. અજ્ઞાત અવરોધનું સરેરાશ મૂલ્ય મેળવો.

આકૃતિ E 3.2 મીટરબ્રિજની એક ભૂજામાં અવરોધો $\mathbf{R}_{_1}$ અને $\mathbf{R}_{_2}$ નું સમાંતર જોડાણ

(7) આકૃતિ E 3.2માં દર્શાવ્યા અનુસાર $R_{_I}$ અને $R_{_2}$ અવરોધોને સમાંતર જોડાણમાં જોડી પદ 2 થી 6નું પુનરાવર્તન કરો અને અવરોધોના સમાંતર જોડાણ માટેના સમતુલ્ય અવરોધ (X)ના પ્રાયોગિક મૂલ્યની ગણતરી કરો.

પ્રયોગશાળા માર્ગદર્શિકા

અવલોકનો

કોઠો E 3.1 : અવરોધોના શ્રેણી અને સમાતંર જોડાણ

	ક્રમ	અવરોધ	લંબાઈ	લંબાઈ	અજ્ઞાત અવરોધ	$\Delta \pmb{R}_S$ અથવા $\Delta \pmb{R}_P$
		R	AD = l	DC,	$X(R_S \text{ or } R_P)$	
				I' = 100 - I	$=\frac{R\times l}{l'}$	
		(ohm)	(cm)	(cm)	(ohm)	(ohm)
$R_{_I}$ અને	1					
$R_{_{2}}$ નું શ્રેણી	2					
જોડાણ, $ extit{R}_{\!\scriptscriptstyle S}$	5					
					સરેરાશ $R_{_{\!s}}\!=$	
$R_{_I}$	1					
અને $R_{\scriptscriptstyle 2}$ નું	2					
સમાંતર						
જોડાણ, $ extbf{\emph{R}}_{\scriptscriptstyle P}$	5					
					સરેરાશ $R_p =$	

ગણતરીઓ

- (1) અવરોધોના શ્રેણી-જોડાણનું સૈદ્ધાંતિક અંદાજિત મૂલ્ય. $R_S=R_I+R_2$ નોંધો કે \mathbf{R}_1 અને \mathbf{R}_2 અવરોધનાં મૂલ્યો કાર્બન અવરોધકો માટે વર્ણસંકેત પરથી મેળવી શકાય અથવા નિક્રોમ, કોન્સ્ટનટન જેવાં દ્રવ્યોના તારમાંથી બનાવેલ અવરોધ માટે મૂલ્ય આપેલા હોય છે.
- (2) અવરોધોના સમાંતર જોડાણનું સૈદ્ધાંતિક અંદાજિત મૂલ્ય $R_p = \frac{R_1 R_2}{R_1 + R_2}$

ત્રુટિ

ત્રુટિઓના અંદાજમાં, આપણે R માં ત્રુટિને શૂન્ય ધારી લીધેલ છે એટલે કે અવરોધપેટીમાંના અવરોધનું મૂલ્ય જેટલું તેના પર દર્શાવેલ છે તેટલું જ છે તેવું અપેક્ષિત છે.

આવા દરેક કિસ્સામાં
$$\frac{\Delta R_s}{R_s} = \frac{\Delta l}{l} + \frac{\Delta l'}{l'}$$

જ્યાં R_{ς} , l અને l' નાં મૂલ્યો અવલોકન-કોઠા E 3.1માંથી લેવામાં આવે છે. Δl , $\Delta l'$ એ મીટરબ્રિજ ઉપરની માપન માટેની માપપટ્ટીનું લઘુત્તમ માપ દર્શાવે છે.

પ્રયોગ 3

એટલે કે
$$\Delta R_s = R_s \left[\frac{\Delta l}{l} + \frac{\Delta l'}{l'} \right]$$

(E 3.4)

તે જ રીતે
$$\Delta R_{p} = R_{p} \left[\frac{\Delta l}{l} + \frac{\Delta l'}{l'} \right]$$

(E 3.5)

 ΔR_s અને ΔR_p નાં પાંચ મહત્તમ મૂલ્યોને ત્રુટિના અંદાજ તરીકે રજૂ કરી શકાય છે. સમીકરણ (E 3.4) અને (E 3.5) પરથી જોઈ શકાય છે કે જો સંતુલનની લંબાઈઓ $I \approx I'$ હોય તો ત્રુટિ લઘુત્તમ બને છે.

આથી તટસ્થબિંદુ એ તાર ACના મધ્ય ભાગમાં મેળવવામાં આવે છે. આ માટે, અવરોધપેટીમાંથી એવો અવરોધ કાઢવો જરૂરી છે કે જેથી ડાબી અને જમણી ભૂજામાં ના અવરોધો સરખાવી શકાય તેવા હોય.

પરિણામ

કોષ્ટક E 3.2 : અવરોધનાં સૈદ્ધાંતિક અને પ્રાયોગિક મૂલ્યો

	સૈદ્ધાંતિક અપેક્ષિત અવરોધ (Ω)	પ્રાયોગિક મેળવેલ અવરોધ (Ω)
શ્રેણી-જોડાણ	$R_1 + R_2$	$R_s \pm \Delta R_s$
સમાંતર જોડાણ	$\frac{R_1 R_2}{R_1 + R_2}$	$R_{_{p}}\pm\Delta R_{_{p}}$

 R_s અને R_p એ R_I અને R_2 અવરોધોના અનુક્રમે શ્રેણી અને સમાંતર જોડાણના સમતુલ્ય અવરોધોનું સરેરાશ મૂલ્ય છે.

સાવચેતીઓ

- (1) બધાં જોડાણ અને કળ ચુસ્ત રીતે બંધ હોવા જોઈએ.
- (2) મીટરબ્રિજના તાર પર જૉકી મૃદુતાથી ફેરવવી જોઈએ.
- (3) અવરોધપેટીમાંની કળ સમઘડી દિશામાં પરિભ્રમણ કરાવીને ચુસ્ત રીતે બંધ કરવી.
- (4) તટસ્થબિંદુ તારના મધ્ય ભાગમાં (30 cm થી 70 cm) હોવું જોઈએ.

ત્રુટિનાં ઉદ્ગમો

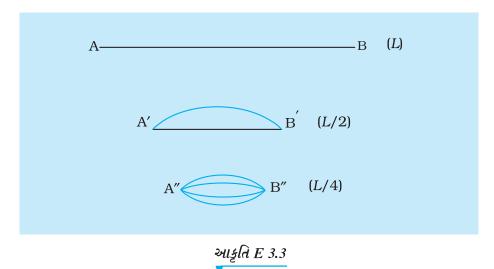
(1) જૉકીને મીટરબ્રિજના તાર ઉપર વધુ પડતી સખત ન દબાવો નહિતર, સમયગાળે તે તાર અસમાન આડછેદવાળો બની શકે છે.

પ્રયોગશાળા માર્ગદર્શિકા

- (2) જો મીટરબ્રિજનો તાર ખેંચાયેલો ન હોય અને મીટરબ્રિજની માપપટ્ટી પર ન હોય તો / અને /' ના માપનમાં ત્રુટિ ઉદ્ભવી શકે.
- (3) જો પૂરતા લાંબા સમય સુધી મોટા ક્રમનો વિદ્યુતપ્રવાહ પસાર કરવામાં આવે તો, તાર AC ગરમ થઈ શકે અને પ્રયોગ દરમિયાન તેના અવરોધમાં નોંધપાત્ર ફેરફાર થઈ શકે.
- (4) ગૅલ્વેનોમીટરમાંથી જ્યારે વિદ્યુતપ્રવાહ પસાર થતો ન હોય ત્યારે તેનો દર્શક શૂન્ય પર રહેવો જોઈએ. તેમ છતાં, ઘણી વખત એવું જોવા મળે છે કે આવું થતું નથી. આવા કિસ્સાઓમાં, સ્ક્રૂડ્રાઇવરની મદદ વડે દર્શકની નીચે આપેલા સ્ક્રૂને હળવેથી ફેરવીને શૂન્ય પર ગોઠવો. નહિતર તાર AC પર જૉકીને સરકાવીને તટસ્થ બિંદુ મેળવો અને તે અવલોકિત બિંદુએ જૉકીને તાર પર ટપારતાં, ગૅલ્વેનોમીટરમાં કોઈ પણ આવર્તન ન મળે.
- (5) ઘણી વખત, અવરોધપેટીમાંના અવરોધ તેની પર નિર્દેશ કરેલ કિંમત જેટલો અવરોધ આપતા નથી તેવું જોવા મળે છે. તેથી, *R*ની આ ત્રુટિ પરિણામમાં વધારાની ત્રુટિનું કારણ બની શકે છે.

ચર્ચા

- (1) અત્રે એ નોંધો કે, જો કાર્બન અવરોધકો વાપરવામાં આવેલ હોય તો, ΔR_1 અને ΔR_2 એ તેમના પર વર્શસંકેત (કલરકોડ)* મુજબ દર્શાવેલ ટોલરન્સ સીમાઓના પટ્ટા પરથી મેળવી શકાય છે અને ત્રુટિ ΔR_s અને ΔR_p ની આ મૂલ્યોને આધારે ભૌતિકવિજ્ઞાન, પાઠ્યપુસ્તક *ધોરણ* XI, ભાગ I (NCERT, 2006) દાખલા નં. 2.10 (પાન નં. 27) અનુસાર ગણી શકાય. ΔR_s અને ΔR_p નાં મહત્તમ મૂલ્યો સંયુક્ત રીતે મેળવેલ મૂલ્યોને સમીકરણ (E 3.4) અને (E 3.5)માં ત્રુટિઓના અંદાજિત મૂલ્ય તરીકે નોંધેલ છે.
- (2) કેટલી ચોક્સાઈથી તટસ્થ બિંદુ શોધી શકાય તે ઉપયોગમાં લીધેલા ગૅલ્વેનોમીટરની સંવેદિતા પર આધાર રાખે છે. સંવેદિતા તપાસવા માટે, ગૅલ્વેનોમીટરમાં માત્ર ખ્યાલ આવે તેટલું આવર્તન મળે તે માટે જૉકીને જેટલું ખસેડવું પડે તે અંતર શોધો. આદર્શ રીતે, આ અવિધ માપપટ્ટીના લઘુત્તમ માપ કરતાં વધુ ન હોવી જોઈએ.
- (3) કેટલાક કિસ્સામાં, બ્રિજનો તાર ચોક્કસ રીતે 100 cm લંબાઈનો ન હોય તેવું શક્ય હોય. આવા કિસ્સામાં ગણતરી માટે તેની ચોક્કસ લંબાઈનો ઉપયોગ કરવો જોઈએ.
- (4) જો અવરોધો R_1 અને R_2 એ કોન્સ્ટનટન, નિક્રોમ જેવાં દ્રવ્યોના બનેલા હોય, ત્યારે તેમના ત્રુટિના સુધારા સહિતનાં મૂલ્યોના માપનને સમતુલ્ય અવરોધ તરીકે ધ્યાને લઈ ગણતરી કરી શકાય.

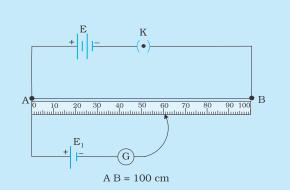

સ્વ-મૂલ્યાંકન

(1) અસરકારક અવરોધના સૈદ્ધાંતિક રીતે અપેક્ષિત મૂલ્ય અને મેળવેલ પ્રાયોગિક મૂલ્યના તફાવત વિશે ટિપ્પણી કરવી.

- (2) દરેકનો અવરોધ R હોય તેવા n અવરોધો આપેલ છે, તેમના સંયોજનથી તમે મહત્તમ અને લઘુત્તમ અસરકારક અવરોધો કઈ રીતે મેળવી શકો ? આ પ્રયોગને બલ્બના ફિલામેન્ટને અવરોધકો તરીકે ગણીને વિસ્તારો.
- (3) તાર અને તાંબાની પટ્ટી વચ્ચેના જોડાણ પાસે અંત્યબિંદુના અવરોધ અથવા તારના અયોગ્ય જોડાણ (સોલ્ડરિંગ)ના કારણે ઉદ્ભવતી અસરો ઘટાડવાની જુદી-જુદી પદ્ધતિઓ ઓળખો.
- (4) નીચે આપેલી પરિસ્થિતિમાં મીટરબ્રિજની સંવેદિતા કેવી રીતે બદલી શકાય ? રીઓસ્ટેટના સ્લાઇડર (હેડ)ને લઘુત્તમ અવરોધ થી મહત્તમ અવરોધ તરફની સ્થિતિમાં ખસેડવામાં આવે.

સૂચવેલ વધારાના પ્રયોગો / પ્રવૃત્તિઓ

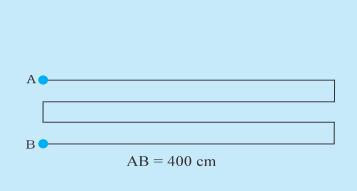
- (1) ગૅલ્વેનોમીટરની જગ્યાએ ટૉર્ચના બલ્બને મૂકો અને પ્રયોગ ફરીથી કરો. તાર AC પર જૉકીના સ્થાન સાથે બલ્બની તેજસ્વિતામાં થૃતા ફેરફારને સમજાવો. (આકૃતિ E 3.1)
- (2) તમારાં અવલોકનોનો ઉપયોગ કરી $\left(\frac{l'}{l}\right)$ ને Y-અક્ષ પર અને R ને X-અક્ષ પર લઈ $\left(\frac{l'}{l}\right)$ અને R વચ્ચેનો આલેખ દોરો. આલેખના ઢાળ પરથી અજ્ઞાત અવરોધ નક્કી કરો.
- (3) યાદચ્છિક લંબાઈ Lના તારનો ઉપયોગ કરી, તેના છેડા A અને B વચ્ચેનો અવરોધ મીટરબ્રિજનો ઉપયોગ કરી માપો જેને R_{γ} કહો. પછી, તે તારને એવી રીતે વાળો કે તેની લંબાઈ L/2 થાય. A' અને B' છેડાઓ વચ્ચેનો નવો અવરોધ માપો જેને R_{γ} કહો. છેલ્લે તેને ફરીથી વાળો અને A'' અને B'' છેડાઓ વચ્ચેનો અવરોધ માટે અવલોકન પુનરાવર્તિત કરો. ઉપર દર્શાવ્યા મુજબ તારને ઘણી વખત વાળી (ફૉલ્ડ કરી) અને તેનો અવરોધ મેળવી n (ફૉલ્ડની સંખ્યા) અને અસરકારક અવરોધ માટે આલેખ દોરો. વાળેલો તાર તેનાં અંત્યબિંદુઓ (A, B, A', B') અને A'', B'') સિવાય અન્ય કોઈ બિંદુ પાસે વિદ્યુતીય સંપર્કન બનાવે તેની કાળજી રાખો.

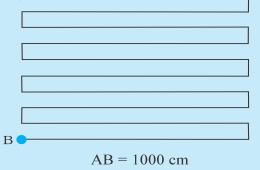

હેતુ

પોર્ટેન્શિયોમીટરનો ઉપયોગ કરી આપેલા બે પ્રાથમિક કોષ (ડેનિયલ અને લેકલાન્સે કોષ)ના વિદ્યુત ચાલક બળ(emf) સરખાવો.

સાધનો અને જરૂરી સામગ્રી

પોર્ટેન્શિયોમીટર, લેકલાન્સે કોષ, ડેનિયલ કોષ, દ્વિમાર્ગી કળ (ટૂ વે કી), અવરોધપેટી (0 થી $1000~\Omega$), ગૅલ્વેનોમીટર (વેસ્ટન પ્રકારનું), વોલ્ટમીટર (0-3~V), બૅટરી ઍિલમિનેટર / લેડ-સંગ્રાહક કોષ, નાના અવરોધવાળું રીઓસ્ટેટ (લગભગ $20~\Omega$), બે એકમાર્ગી કળ, જોડાણ માટેના તાર અને કાચપેપર

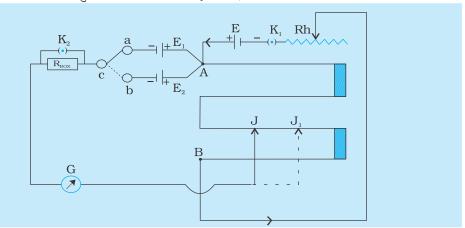

साधननुं वर्शन


આકૃતિ E 4.1 (a)

પોટૅન્શિયોમીટર

પોર્ટેન્શિયોમીટર એ આકૃતિ E 4.1 (a)માં દર્શાવ્યા મુજબ, જેનો અવરોધનો તાપમાન ગુશાંક નીચો હોય તથા આડછેદનું ક્ષેત્રફળ સમાન હોય તેવા તાર AB ને લાકડાની સમતલ માપપટ્ટી પર યોગ્ય રીતે ખેંચીને બનાવવામાં આવે છે. ઘણી વાર AB 100 cm લંબાઈ ધરાવે છે પરંતુ વધારે ચોકસાઈ માટે તાર 400 cm અથવા 1000 cm લંબાઈનો રાખી શકાય. પોર્ટેન્શિયોમીટર તારને સામાન્ય રીતે 100 cm લંબાઈ ધરાવતી માપપટ્ટી સાથે લાકડાના પાટિયા પર જડિત કરવામાં આવે છે. ગોઠવણને નાની કરવા માટે, આકૃતિ E 4.1 (b) અને આકૃતિ E 4.1 (c)માં દર્શાવ્યા અનુસાર તારને ઘણી વખત વાળવામાં (ફૉલ્ડ કરવામાં) આવે છે.

આકૃતિ E 4.1 (b)


આકૃતિ E 4.1 (c)

A

સિદ્ધાંત

વોલ્ટમીટરની મદદથી આપણે કોષના બે છેડા વચ્ચેનો વિદ્યુતસ્થિતિમાનનો તફાવત માપી શકીએ છીએ, પરંતુ પોર્ટેન્શિયોમીટરની મદદથી આપણે આપેલા કોષના વિદ્યુતચાલક બળ (emf)નું મૂલ્ય નક્કી કરી શકીએ છીએ. બે પ્રાથમિક કોષો કે જેમના વિદ્યુતચાલક બળ સરખાવવાના હોય, તેમને પરિપથમાં એવી રીતે જોડવામાં આવે કે જેથી તેમના ધન છેડાઓ ભેગા કરીને પોર્ટેન્શિયોમીટર તાર ABના A છેડા સાથે જોડવામાં આવે અને તેમના ઋણ છેડાઓ દ્વિમાર્ગી (ટૂવે) કળ a, b, c દ્વારા ગૅલ્વેનોમીટર સાથે જોડવામાં આવે છે. ગૅલ્વેનોમીટરનો બીજો છેડો જૉકી J સાથે જોડેલ છે. કળના છેડાઓ સાથે શંટ કરવામાં આવેલ અવરોધપેટી $R_{\rm Box}$ કે જે દ્વિમાર્ગી કળ અને ગૅલ્વેનોમીટર Gની વચ્ચે આકૃતિ E 4.2માં દર્શાવ્યા મુજબ જોડવામાં આવે છે.

 $E_{_{I}}$ અને $E_{_{2}}$ વિદ્યુતચાલકબળ સાથેના બે પ્રાથમિક કોષને દ્વિમાર્ગી કળ $a,\ b,\ c$ ની મદદથી ગૅલ્વેનોમીટર G દ્વારા સરકતા સંપર્ક જૉકી J સાથે જોડેલ છે. (નોંધઃ જો બૅટરી એલિમિનેટર બદલી શકાય તેવા વૉલ્ટેજ વાળું હોય તો રીઓસ્ટેટની જરૂર નથી.)

આકૃતિ E 4.2 : બે પ્રાથમિક કોષના વિદ્યુતચાલક બળ (emf) ની સરખામણી માટેનો વિદ્યુત પરિપથ

બૅટરી E અને રીઓસ્ટેટ Rhની મદદથી તાર ABના છેડાઓ વચ્ચેનો વિદ્યુતસ્થિતિમાનનો તફાવત અચળ (સ્થિર) જાળવી રખાય છે. છેડો A એ છેડા B કરતાં ઊંચા સ્થિતિમાને છે. અત્રે નોંધો કે, વિદ્યુતચાલકબળ E > વિદ્યુતચાલકબળ E_2 પણ હોવું જોઈએ.

 ${\rm E_1}$ કોષને પરિપથમાં જોડાણમાં લાવવા માટે દ્વિમાર્ગી કળમાં ખાલી જગ્યા (gap) 'ac'ને બંધ કરો. ગૅલ્વેનોમીટરમાં તટસ્થ બિંદુ (શૂન્ય આવર્તન) મેળવવા માટે જૉકીને પોટૅન્શિયોમીટરના તાર પર સરકાવો. ધારો કે તે ${\rm J}$ બિંદુ એ છે. લંબાઈ ${\rm AJ}$ ને $I_{\rm l}$ cm તરીકે નોંધો. તે જ રીતે, ${\rm E_2}$ ને સંપર્કમાં લાવવા ખાલી જગ્યા (gap) 'bc'ને બંધ કરો અને તાર ઉપર જૉકીને સરકાવીને તટસ્થ બિંદુ ${\rm J_1}$ મેળવો. લંબાઈ ${\rm AJ_1}$ ને $I_{\rm l}$ cm તરીકે નોંધો.

હવે, પોટૅન્શિયોમીટરના સિદ્ધાંત અનુસાર જ્યારે સમાન જાડાઈ અને દ્રવ્ય ધરાવતા તારમાંથી સ્થિર પ્રવાહ પસાર થતો હોય, તો તેના પર કોઈ પણ બે બિંદુઓ વચ્ચેનો વિદ્યુતસ્થિતિમાનનો તફાવત, તે બિંદુ વચ્ચેની લંબાઈના સમપ્રમાણમાં હોય છે.

પ્રયોગશાળા માર્ગદર્શિકા

(E 4.1)

(E 4.2)

આમ,

$$V \propto l$$

$$V = \phi l$$

જ્યાં φ સ્થિતિમાન પ્રચલન છે. (વિદ્યુતસ્થિતિમાન પ્રચલન)

φ ઘટાડવા માટે પોટૅન્શિયોમીટર તારની લંબાઈ વધારવી જોઈએ. φનું નાનું મૂલ્ય એ પોટૅન્શિયોમીટરને વધારે સંવેદનશીલ અને ચોક્કસ બનાવે છે. બે કોષના કિસ્સામાં આપણી પાસે,

$$E_{_{I}} = \phi l_{_{I}}$$

$$E_{2} = \phi l_{2}$$

જયાં E_1 અને E_2 બે કોષના વિદ્યુતચાલક બળ, I_1 અને I_2 એ જયારે E_1 અને E_2 અનુક્રમે પરિપથમાં જોડાણમાં હોય ત્યારની તટસ્થ બિંદુ માટેની લંબાઈઓ છે અને ϕ એ પોર્ટેન્શિયોમીટર તાર પર સ્થિતિમાન પ્રચલન (વિદ્યુતસ્થિતિમાન પ્રચલન) છે.

$$\frac{E_I}{E_2} = \frac{\phi l_I}{\phi l_2} = \frac{l_I}{l_2}$$

પદ્ધતિ

- (1) આકૃતિ E 4.2 અનુસાર પરિપથનું જોડાણ કરો. બૅટરી E તથા બે કોષ E_1 અને E_2 ના ધન છેડાઓ પોર્ટેન્શિયોમીટર તારના શૂન્ય છેડા A સાથે જોડો.
- (2) Eનો ઋણ છેડો એકમાર્ગી કળ K_1 અને રીઓસ્ટેટ મારફતે પોર્ટેન્શિયોમીટર તારના B છેડા સાથે જોડો.
- (3) કોષ E_1 અને E_2 ના ઋણ છેડાઓ દ્વિમાર્ગી કળના છેડાઓ 'a' અને 'b' સાથે જોડો.
- (4) અવરોધપેટી R_{box} ને કળ K_{2} મારફતે શંટ કરો. દ્વિમાર્ગી કળનો સામાન્ય છેડો અવરોધપેટી R_{Box} ના એક છેડા સાથે જોડો.
- (5) અવરોધપેટીનો બીજો છેડો ગૅલ્વેનોમીટર સાથે જોડો કે જેનો બીજો છેડો જૉકી સાથે જોડેલો છે. ગૅલ્વેનોમીટરમાં તટસ્થ બિંદુ મેળવવા જૉકીને પોર્ટેન્શિયોમીટર તાર પર સરકાવી શકાય.
- (6) દ્વિમાર્ગી કળની ખાલી જગ્યાઓ 'a' અને 'c' વચ્ચે પ્લગ-કી ભરાવીને કોષ $E_{_{1}}$ ને પરિપથ જોડાણમાં લાવો.
- (7) કળ K_2 ને ખુલ્લી છોડો. રીઓસ્ટેટના અવરોધને લઘુત્તમ રાખો. અવરોધપેટીમાંથી મોટો અવરોધ (હજાર ઓક્ષના ક્રમનો) રાખો. પોર્ટેન્શિયોમીટર તારના શૂન્ય છેડા પર જૉકીનો સંપર્ક બનાવો. ગૅલ્વેનોમીટરમાં આવર્તનની દિશા નોંધો.

- (8) પછી જૉકીને ખસેડીને તારના બીજા છેડા સાથે સંપર્કમાં લાવો. અત્રે નોંધો કે ગૅલ્વેનોમીટરના દર્શકના આવર્તનની દિશા પદ-7માં નોંધેલ હતી તેના કરતાં વિરુદ્ધ છે કે નહિ.
- (9) જો ગૅલ્વેનોમીટરના દર્શકનું આવર્તન ઉપરની બંને પરિસ્થિતિમાં વિરુદ્ધ દિશામાં હોય, તો (પરિપથ) જોડાણ સાચું છે. જો ન હોય તો તેના કારણ શોધી કાઢો. જોડાણ ક્યાંક ઢીલું હોઈ શકે અથવા બૅટરી Eનું વિદ્યુતચાલકબળ, કોષ E_1 અને E_2 ના વિદ્યુતચાલકબળ કરતાં ઓછું હોઈ શકે. જરૂરિયાત મુજબ જરૂરી ફેરફાર કરો.
- (10) પોટૅન્શિયોમીટર તાર પર જૉકીને હળવેથી એટલે સુધી સરકાવો કે તમને ગૅલ્વેનોમીટરમાં શૂન્ય આવર્તન મળે. શૂન્ય (તટસ્થ) બિંદુનું ચોક્કસ સ્થાન મેળવવા કળ K_2 ને ભરાવો. અવરોધપેટીમાંનો અવરોધ ગૅલ્વેનોમીટરમાંથી વહેતા વિદ્યુતપ્રવાહ પર મર્યાદા મૂકે છે. તટસ્થ બિંદુની નજીક, ગૅલ્વેનોમીટરમાંથી વહેતો વિદ્યુતપ્રવાહ ઓછો છે. કળ K_2 ભરાવવાથી અવરોધ શૉર્ટસર્કિટ થઈ જશે અને આથી પ્રવાહ વધી જશે. આ તટસ્થ બિંદુ મેળવવાની સંવેદનશીલતા વધારે છે. તાર AJની લંબાઈ નોંધો અને તેને I_7 તરીકે નોંધો. તટસ્થબિંદુ ફરીથી મેળવવા જૉકીને વિરુદ્ધ દિશામાંથી ફેરવો અને I_7 નું બીજું મૂલ્ય શોધો.
- (11) પછી ટૂ વે કી (દ્વિમાર્ગી કળ)ની ખાલી જગ્યા b અને cની વચ્ચે કળ ભરાવી E_2 ને પરિપથમાં (જોડાણમાં) લાવો. જે રીતે તમે I_7 શોધ્યું તે જ રીતે તટસ્થબિંદુ J_1 મેળવો અને લંબાઈ AJ_1 ને I_2 તરીકે નોંધો.
- (12) રીઓસ્ટેટના સંપર્કબિંદુનું સ્થાન ખસેડીને પદ 6 થી 11 ત્રણ વખત પુનરાવર્તિત કરો અને E_1 અને E_2 ના દરેક અવલોકન માટે $I_1 \ / \ I_2$ ગણો.
- (13) તમારાં અવલોકનો કોઠા-સ્વરૂપે નોંધો.

અવલોકનો

- (1) પોટૅન્શિયોમીટરના પાટિયા પર તારની સંખ્યા =
- (2) વોલ્ટમીટરની અવધિ = 0V થી V
- (3) વોલ્ટમીટરનું લઘુત્તમ માપ = V
- (4) Eના બે છેડા વચ્ચનું વિદ્યુતસ્થિતિમાન = V
- (5) Eાના બે છેડા વચ્ચનું વિદ્યુતસ્થિતિમાન = V
- (6) E_2 ના બે છેડા વચ્ચેનું વિદ્યુતસ્થિતિમાન = V

પ્રયોગશાળા માર્ગદર્શિકા

કોષ્ટક E 4.1 : તટસ્થ બિંદુ માટેની લંબાઈ

	9											
ક્રમ		l ₁ cm		<i>l</i> ₂ cm			ગુણોત્તર					
	લેકલાન્શે	કોષ (E ₁)		ડેનિયલ કોષ (E,)			E_{I} l_{I}	()				
	પરિપથમાં	જોડાણમાં હ	કોય ત્યારે	પરિપથમાં જોડાણમાં હોય ત્યારે			$\frac{E_I}{E_2} = \frac{l_I}{l_2}$	$\Delta \left(rac{E_{_{I}}}{E_{_{2}}} ight)$				
	જૉકીને એક દિશામાં ખસેડતા (i)	જૉકીને વિરુદ્ધ દિશામાં ખસેડતા (ii)	સરેરાશ	જૉકીને એક દિશામાં ખસેડતા (i)	જૉકીને વિરુદ્ધ દિશામાં ખસેડતા (ii)	સરેરાશ						
(1)												
(2)												
(3)												
(4)												
						સરેરાશ						

ગણતરીઓ

અવલોકનોના દરેક સેટ માટે $I_{_{
m I}}$ / $I_{_{
m 2}}$ ગણો.

ત્રુટિ

$$\frac{\Delta \left(\frac{\mathbf{E}_1}{\mathbf{E}_2}\right)}{\frac{\mathbf{E}_1}{\mathbf{E}_2}} = \frac{\Delta l_1}{l_1} + \frac{\Delta l_2}{l_2}$$

$$\therefore \Delta \left(\frac{\mathbf{E}_1}{\mathbf{E}_2}\right) = \left(\frac{\Delta l_1}{l_1} + \frac{\Delta l_2}{l_2}\right) \left(\frac{\mathbf{E}_1}{\mathbf{E}_2}\right)$$

 $\Delta l_{_1}$ અને $\Delta l_{_2}$ એ અનુક્રમે $l_{_1}$ અને $l_{_2}$ ના માપનમાંની ત્રુટિ દર્શાવે છે.

અવલોકનોના ચાર સેટ માટે $A\left(\frac{E_{_I}}{E_{_2}}\right)$ ગણો અને ચાર મૂલ્યોમાંથી મહત્તમ મૂલ્યને પરિણામમાં અંદાજિત ત્રુટિ તરીકે લખો.

પરિણામ

લેકલાન્શે કોષ અને ડેનિયલ કોષના વિદ્યુતચાલક બળનો ગુણોત્તર

$$= \frac{E_I}{E_2} \pm A \left(\frac{E_I}{E_2}\right)_{max} = \dots \pm \dots$$

 $\frac{E_1}{E_2}$ એ બે કોષના વિદ્યુતચાલક બળના ગુણોત્તરનું સરેરાશ મૂલ્ય છે.

સાવચેતીઓ

- (1) અવરોધપેટીમાં ભરાવેલી કળ સારા (ચુસ્ત) વિદ્યુત સંપર્કમાં છે તેની ચોક્કસ ખાતરી કરો.
- (2) તારમાં કોઈ વળ ન ઉદ્ભવે તેની સાવચેતી માટે પોર્ટેન્શિયોમીટર તાર પર જૉકીને હળવેથી દબાવો.
- (3) બંને કોષ માટે તટસ્થ લંબાઈ શોધવાની ક્રિયા પૂરી ન થાય તે પહેલાં રીઓસ્ટેટના સંપર્કબિંદુની અવસ્થા બદલાઈ જવી ન જોઈએ.

ત્રુટિનાં ઉદ્ગમો

- (1) પોટેન્શિયોમીટર તારના આડછેદનું ક્ષેત્રફળ તારની સમગ્ર લંબાઈ માટે સમાન ન પણ હોઈ શકે.
- (2) જેમના વિદ્યુતચાલક બળ સરખાવવાના છે તેવા બે કોષની સતત ડિસ્ચાર્જ પ્રક્રિયા નિવારવા જયારે E_1 અને E_2 ઉપયોગમાં લેવાતા ન હોય ત્યારે કળ ખુલ્લી રાખવી.
- (3) જો પોર્ટેન્શિયોમીટરનો તાર તંગ અને પાટિયા પરની માપપટ્ટી પર ન હોય, તો લંબાઈના માપનમાં ત્રુટિ આવી શકે.
- (4) બહુવિધ કળવાળી જૉકી એ માપપટ્ટી પર સાચી ગોઠવણી ન પણ આપી શકે.

ચર્ચા

- (1) વિદ્યુતપ્રવાહને કારણે ઉદ્ભવતી ઉષ્માને નિવારવા લાંબા સમય સુધી વિદ્યુતપ્રવાહ પસાર કરવો ન જોઈએ.
- (2) બૅટરી Eનું વિદ્યુતચાલક બળ બે પ્રાથમિક કોષ E_1 અને E_2 ના વિદ્યુતચાલક બળ કરતાં વધારે હોવું જોઈએ કે જેથી તટસ્થબિંદુ તાર પર મેળવી શકાય.
- (3) મોટા અવરોધવાળી અવરોધપેટી ઉપયોગમાં લેવાથી વિદ્યુતપ્રવાહ ઘટે છે. આથી ગૅલ્વેનોમીટરની કૉઇલ (ગૂંચળા)ને નુકસાન થતું નથી.
- (4) તટસ્થ બિંદુ મેળવતા હોય ત્યારે, ગૅલ્વેનોમીટરમાં આવર્તન ન દેખાય તેવી જૉકીના સ્થાનની

પ્રયોગશાળા માર્ગદર્શિકા

નાની અવિધ (એક સ્થાનને બદલે) મળી શકે. આવા કિસ્સામાં તટસ્થ બિંદુનો વધારે સારો અંદાજ એ તે અવિધનું મધ્યબિંદુ છે.

સ્વ-મૂલ્યાંકન

- (1) બૅટરીના છેડાઓ વચ્ચે જોડેલ વોલ્ટમીટર વિદ્યુતસ્થિતિમાનનો તફાવત માપે છે તે વિદ્યુતચાલકબળથી કઈ રીતે જુદું પડે છે ?
- (2) જો તમારા પ્રયોગની ગોઠવણ દરમિયાન ગૅલ્વેનોમીટરનો દર્શક હલતો (ધ્રુજારી અનુભવતો) હોય, તો તમે શું નિષ્કર્ષ મેળવશો ?
- (3) બે કોષના વિદ્યુતસ્થિતિમાનના તફાવતનો ગુણોત્તર મેળવવા વોલ્ટમીટરનો ઉપયોગ કરો. શું આ ગુણોત્તર તેમના વિદ્યુતચાલક બળના ગુણોત્તરથી નોંધપાત્ર રીતે જુદો પડે છે ? જો ના તો, તમે શું નિષ્કર્ષ કાઢશો ?

સૂચવેલ વધારાના પ્રયોગો / પ્રવૃત્તિઓ

- (1) પોર્ટેન્શિયોમીટરની મદદથી બે અવરોધકના અવરોધ સરખાવી શકાય ? જો હા, તો તેનો વિદ્યુત પરિપથ દોરો અને પ્રયોગ કરો.
- (2) l_1 Y-અક્ષ અને l_2 X-અક્ષ પર લઈ l_1 અને l_2 નો આલેખ દોરો. આલેખના ઢાળ પરથી $\frac{E_I}{E_2}$ ગણો.
- (3) બજારમાં ઉપલબ્ધ હોય તેવા કોષના વિદ્યુતચાલક બળ સરખાવો અને જુદી-જુદી કંપનીના સૂકા કોષ માટે બારચાર્ટ (સ્તંભાલેખ) દોરો.

હેતુ

પોર્ટેન્શિયોમીટરનો ઉપયોગ કરી આપેલા પ્રાથમિક કોષનો આંતરિક અવરોધ નક્કી કરવો.

સાધનો અને જરૂરી સામગ્રી

પોર્ટેન્શિયોમીટર, લેકલાન્શે કોષ અથવા સૂકો કોષ, એમીટર, અવરોધપેટી $R_{(Box\ 1)}$ (લગભગ 0–50 Ω), ત્રણ એકમાર્ગી કળ, ગૅલ્વેનોમીટર, મોટી અવરોધપેટી ($R_{Box\ 2}$) (લગભગ 0 – 10 $k\Omega$), લગભગ 20 Ω જેટલા નાના અવરોધવાળું રીઓસ્ટેટ, જૉકી, લેડ સંગ્રાહક કોષ અને જોડાણ માટેના તાર

સિદ્ધાંત

જ્યારે E વિદ્યુતચાલક બળ અને r આંતરિક અવરોધવાળા કોષને સમાંતર અવરોધ R જોડવામાં આવે ત્યારે, પરિપથમાં વિદ્યુતપ્રવાહ I,

$$I = \frac{E}{R+r}$$
 (E 5.1)

કોષના બે છેડાને સમાંતર વિદ્યુતસ્થિતિમાનનો તફાવત V=(RI)

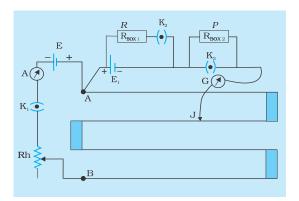
$$V = \left(\frac{E}{R+r}\right)R$$

આમ,

$$\frac{E}{V} = I + \frac{r}{R}$$

અથવા
$$r = \left(\frac{E}{V} - I\right)R$$

જો I_0 અને I એ અનુક્રમે ખુલ્લા અને બંધ-પરિપથ (આકૃતિ E 5.1) માટે પોર્ટેન્શિયોમીટરના બિંદુ A થી તટસ્થબિંદુ સુધીનાં અંતરો હોય, તો E એ I_0 ના સમપ્રમાણમાં અને V એ I ના સમપ્રમાણમાં હોય છે.


$$\frac{E}{V} = \frac{l_o}{l}$$

પ્રયોગશાળા માર્ગદર્શિકા

સમી- (E 5.3) અને (E 5.4) પરથી

$$r = \left(\frac{l_0 - l}{l}\right) R$$

પદ્ધતિ

આકૃતિ E 5.1 : પોર્ટેન્શિયોમીટરની મદદથી પ્રાથમિક કોષનો ▼ આંતરિક અવરોધ માપવા માટેનો વિદ્યુત પરિપથ

- (1) પરિષય (આકૃતિ E 5.1)માં દર્શાવ્યા અનુસાર જુદાં-જુદાં વિદ્યુતીય ઘટકોને જોડો. પરિપથનાં જોડાણો ચકાસ્યાં બાદ કળ K_1 બંધ કરો. (નોંધ : જો બૅટરી એલિમિનેટર બદલી શકાય તેવા વૉલ્ટેજ વાળું હોય તો રીઓસ્ટેટની જરૂર નથી.)
- (2) K_2 અને K_3 કળ ખુલ્લી અને $R_{\text{Box 2}}$ માંથી મોટા રક્ષણાત્મક અવરોધ P સાથે તટસ્થબિંદુનું સ્થાન શોધો. અંતિમ અવલોકન માટે, કળ K_3 બંધ કરી અવરોધ P શૉર્ટસર્કિટ કરો અને તટસ્થ બિંદુ I_0 શોધો.
- (3) $R = 10 \ \Omega \ (R_{Box}$ માંથી) લો. K_2 કળ બંધ કરો અને ઝડપથી નવી તટસ્થ લંબાઈ I માપો. આ થઈ જાય એટલે તરત જ K_2 ને ખોલી દો.
- (4) ઉપર્યુક્ત બધાં જ અવલોકનો દરમિયાન એમીટરનું અવલોકન અચળ જાળવી રાખો.
- (5) R ના મૂલ્યમાં 1 Ω નો સમાન પદમાં ઘટાડો કરો અને Rના દરેક મૂલ્ય માટે તટસ્થ લંબાઈ I મેળવો.
- (6) પ્રયોગના અંતે, કળ K_2 ખોલો અને ફરીથી I_g શોધવા પદ 2 પુનરાવર્તિત કરો.

અવલોકનો :

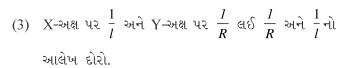
 $l_0 =$ cm (પ્રયોગની શરૂઆતમાં)

 $l_{o} = \dots$ cm (પ્રયોગના અંતમાં)

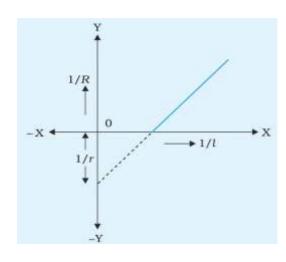
સરેરાશ $l_0 = \dots$ cm

કોષ્ટક E 5.1 : તટસ્થ બિંદુ માટેની લંબાઈ

ક્રમ	RΩ	l cm	$\frac{I}{R} \Omega^{-1}$	$\frac{1}{l}$ cm ⁻¹	$r = \left(\frac{l_0 - l}{l}\right) R \Omega$
(1)					
(2)					
(6)					


(E 5.6)

ગણતરીઓ


- (2) r મેળવવા આલેખીય રીતનો પણ ઉપયોગ કરો. સમીકરણ (E 5.5) નીચે મુજબ લખી શકાય :

$$\frac{1}{R} = \frac{l_0}{r} \left(\frac{1}{l} \right) - \frac{1}{r}$$

જે સુરેખ રેખાનું સમીકરણ છે. (આકૃતિ E 5.2)

(4) તમે મૂકેલાં બિંદુઓની શક્ય તેટલી નજીકથી સુરેખ રેખા દોરો. Y-અક્ષ પરનો ઋણ અંતઃખંડ એ $\frac{1}{r}$ નું મૂલ્ય આપે છે. તે પરથી, rનું મૂલ્ય મેળવો. (આકૃતિ \to 5.2)

આકૃતિ E 5.2 : 1/R અને 1/1 વચ્ચેનો આલેખ

પરિણામ

આપેલ કોષનો આંતરિક અવરોધ r

- (i) ગણતરી પરથી Ω
- (ii) આલેખ પરથી Ω

સાવચેતીઓ

- (1) જે પ્રાથમિક કોષનો આંતરિક અવરોધ શોધવાનો હોય તેને સમગ્ર પ્રયોગ દરમિયાન ખલેલ પહોંચવી ન જોઈએ નહિતર તેનો આંતરિક અવરોધ બદલાઈ શકે છે.
- (2) બૅટરી Eનું વિદ્યુતચાલક બળ પ્રાથમિક કોષના વિદ્યુતચાલક બળ $E_{_{1}}$ કરતાં વધારે હોવું જોઈએ.
- (3) E અને E_1 બંને કોષના ધન છેડાઓ પોટૅન્શિયોમીટરના સમાન ધ્રુવ (અહીં આપણા પરિપથ માટે A) સાથે જોડવા જોઈએ.
- (4) હંમેશાં જે છેડા પર કોષના ધન છેડાઓ જોડેલ હોય, તે બિંદુ A થી તટસ્થ બિંદુ સુધીની લંબાઈ માપવી જોઈએ.

પ્રયોગશાળા માર્ગદર્શિકા

(5) જયારે અવલોકન લેતા હોય ત્યારે જ K_1 અને K_2 કળ ભરાવેલ રાખો નહિતર વિદ્યુતપ્રવાહના સતત વહનને કારણે તાર ગરમ થઈ શકે અને કોષના આંતરિક અવરોધ પર પણ અસર કરી શકે છે.

ત્રુટિનાં ઉદ્ગમો

- (1) પોર્ટેન્શિયોમીટર તાર સમાન આડછેદવાળો ન હોઈ શકે.
- (2) છેડા પર રહેલ પિત્તળની પટ્ટીઓને સીમિત (નિશ્ચિત) અવરોધ હોઈ શકે.
- (3) ગૌણ (બાહ્ય) કોષના વિદ્યુતચાલક બળ દ્વારા સમગ્ર તાર પર વિદ્યુત સ્થિતિમાનનો તફાવત ઉદ્ભવતો હોઇ સમગ્ર પ્રયોગ દરમિયાન અચળ ના પણ રહેતો હોય.
- (4) વિદ્યુતપ્રવાહ દ્વારા પોર્ટેન્શિયોમીટર તાર ગરમ થવાથી કેટલીક ત્રુટિ દાખલ થઈ શકે.

ચર્ચા

- (1) પોટૅન્શિયોમીટરના સિદ્ધાંતમાં પ્રયોગના સમયગાળામાં તાર ABમાંથી સ્થિર વિદ્યુતપ્રવાહ ધારવામાં આવેલ છે. આથી, ગૌણકોષનું વિદ્યુતચાલક બળ (emf) સમગ્ર પ્રયોગ દરમિયાન અચળ જળવાઈ રહે છે.
- (2) જૉકીનું સ્થાન માપપટ્ટીના લઘુત્તમ માપ ± 0.1 cm સુધી ચોકસાઈથી માપી શકે છે. વધુમાં જૉકીની ધાર પણ આ લઘુત્તમ માપમાં મર્યાદા મૂકે છે. આથી તીક્ષ્ણ ધારવાળી જૉકીનો ઉપયોગ કરવો સલાહ ભરેલ છે.
- (3) તારનો છેડો એ માપપટ્ટીનો છેડો ન હોવાથી લંબાઈ *I* ના માપનમાં શૂન્ય ત્રૂટિ ઉદ્ભવવાની શક્યતા છે.

સ્વ-મૂલ્યાંકન

- (1) વિદ્યુતચાલક બળ (emf)નાં બધાં ઉદ્દગમોના ધન છેડાઓ પોર્ટેન્શિયોમીટરના A બિંદુ સાથે જોડેલ છે, પરંતુ જો બધાં વિદ્યુતચાલક બળોનાં ઉદ્દગમોના ઋણ છેડાઓ A બિંદુ સાથે જોડેલ હોય, તો તટસ્થ બિંદુની લંબાઈ પર કેવી અસર થઈ શકે ?
- (2) તાજા બનાવેલ લેકલાન્શે કોષનો આંતરિક અવરોધ શોધો. *R*ના મૂલ્ય સાથે આંતરિક અવરોધે બદલાય છે ?
- (3) કોષના આંતરિક અવરોધ પર અસર કરતાં પરિબળો જણાવો.

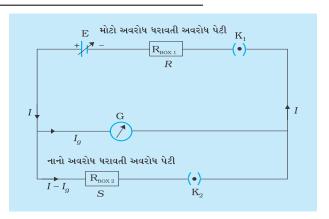
સૂચવેલ વધારાના પ્રયોગો / પ્રવૃત્તિઓ

- (1) જુદી-જુદી બનાવટના સૂકા કોષના આંતરિક અવરોધ શોધો.
- (2) ગૌણ કોષનો આંતરિક અવરોધ આ રીતથી માપી શકાય ? તમારા જવાબનું કારણ આપો.

હેત

અર્ધ આવર્તનની રીતથી ગૅલ્વેનોમીટરનો અવરોધ નક્કી કરવો અને તેની ફિગર ઑફ મેરિટ શોધવી.

સાધનો અને જરૂરી સામગ્રી


ચિલત ગૂંચળાવાળું ગૅલ્વેનોમીટર, બૅટરી અથવા બૅટરી એલિમિનેટર $(0-6~\mathrm{V}),~0-10~\mathrm{k}\Omega$ અવિધવાળી એક અવરોધપેટી $(R_{\mathrm{Box}\,\mathrm{I}}),~0-200~\Omega$ અવરોધવાળી એક અવરોધપેટી $(R_{\mathrm{Box}\,\mathrm{I}}),~\dot{\mathrm{o}}$ એકમાર્ગી કળ, વોલ્ટમીટર, જોડાણ માટેના તાર અને કાચપેપરનો ટુકડો

સિદ્ધાંત

ગૅલ્વેનોમીટર

ગૅલ્વેનોમીટર એ ખૂબ જ નાના વિદ્યુતપ્રવાહને માપવા (શોધવા) માટેનું સંવેદનશીલ સાધન છે. તેની કામગીરી જે સિદ્ધાંત પર છે તેમાં જ્યારે સમાન ચુંબકીયક્ષેત્રમાં મૂકેલા ગૂંચળામાંથી વિદ્યુતપ્રવાહ પસાર કરવામાં આવે ત્યારે તે ટૉર્ક અનુભવે છે. ગૂંચળાનું કોણાવર્તન તે ગૂંચળા સાથે જોડેલા દર્શકની મદદથી જાણી શકાય છે. જે એક માપક્રમ પર ચલિત થાય છે.

જયારે ત્રિજયાવર્તી ચુંબકીયક્ષેત્રમાં મૂકેલા ગૂંચળામાંથી I વિદ્યુતપ્રવાહ પસાર કરવામાં આવે છે, ત્યારે ગૂંચળું θ જેટલું કોણાવર્તન અનુભવે છે જે I સાથે નીચે મુજબ સંબંધ ધરાવે છે :

આકૃતિ E 6.1 : ગૅલ્વેનોમીટરનો અવરોધ શોધવા માટેનો વિદ્યુત પરિપથ

 $I = k\theta$

(E 6.1)

જ્યાં, k સમપ્રમાણતાનો અચળાંક છે અને તે ગૅલ્વેનોમીટરની ફિગર ઑફ મેરિટ તરીકે ઓળખાય છે.

અર્ધઆવર્તનની રીતથી ગૅલ્વેનોમીટરનો અવરોધ G શોધવા માટેનો જરૂરી વિદ્યુતપરિપથ, આકૃતિ \to 6.1માં દર્શાવેલ છે.

પ્રયોગશાળા માર્ગદર્શિકા

જ્યારે પરિપથમાં અવરોધ R દાખલ કરવામાં આવે ત્યારે તેમાંથી (ગૅલ્વેનોમીટરમાંથી) વહેતો વિદ્યુતપ્રવાહ $\mathrm{I}_{_{\mathrm{I}}}$ નીચેના સમીકરણ દ્વારા આપી શકાય

$$I_g = \frac{E}{R+G}$$

આ કિસ્સામાં, કળ K_2 ને ખુલ્લી રાખો. અહીં E એ બૅટરીનું વિદ્યુતચાલક બળ, G એ ગૅલ્વેનોમીટરનો અવરોધ છે, કે જે શોધવાનો છે.

જો વિદ્યુતપ્રવાહ I_g એ ગૅલ્વેનોમીટરમાં θ આવર્તન ઉત્પન્ન કરે, તો સમીકરણ (E 6.1) પરથી આપણે મેળવી શકીએ કે,

$$I_{\rm g} = k\theta$$
 સમીકરણો (E 6.2) અને (E 6.3)નો સમન્વય કરતાં નીચે મુજબ સમીકરણ મેળવી શકીએ.

$$\frac{E}{R+G} = k\theta$$
 કળ $K_{_{I}}$ અને $K_{_{2}}$ બંને બંધ રાખીએ અને શંટના અવરોધ S નું મૂલ્ય એવું ગોઠવીએ કે જેથી
ગૅલ્વેનોમીટરના દર્શકનું આવર્તન $\frac{1}{2}$ (અડધું) થાય. G અને S સમાંતર જોડાણમાં અને તેમની સાથે

R શ્રેણી જોડાણમાં હોવાથી, પરિપથનો કુલ (પરિણામી) અવરોધ.

$$R' = R + \frac{GS}{G + S}$$

વિદ્યુતચાલક બળ Eના કારણે પરિપથમાં કુલ પ્રવાહ I નીચે મુજબ લખી શકાય

$$I = \frac{E}{R + \frac{GS}{G + S}}$$

જો G અવરોધ ધરાવતા ગૅલ્વેનોમીટરમાં વિદ્યુતપ્રવાહ I_g^\prime હોય, તો

$$GI'_{g} = S(I - I'_{g})$$

અથવા
$$I'_g = \frac{IS}{G+S}$$
 સમીકરણ (E 6.6)માંથી Iનું મૂલ્ય સમીકરણ (E 6.7)માં મૂકતાં વિદ્યુતપ્રવાહ I'_g નીચે મુજબ દર્શાવી શકાય

$$I'_{g} = \frac{IS}{G+S} = \frac{E}{R + \frac{GS}{G+S}} \cdot \frac{S}{G+S}$$

$$I'_{g} = \frac{ES}{R(G+S)+GS}$$

ગૅલ્વેનોમીટરના વિદ્યુતપ્રવાહ I_g' માટે, જો ગૅલ્વેનોમીટરનું આવર્તન તેના પ્રારંભિક મૂલ્ય કરતાં અડધું

$$\left(=\frac{\theta}{2}\right)$$
 સુધી ઘટાડવામાં આવે ત્યારે

$$I'_g = k\left(\frac{\theta}{2}\right) = \frac{ES}{R(G+S) + GS}$$

સમીકરણ (E 6.2) ને સમીકરણ (E 6.8) વડે ભાગતાં,

$$\frac{I_g}{I'_g} = \frac{E}{R+G} \times \frac{R(G+S)+GS}{ES} = 2$$

અથવા
$$R (G + S) + GS = 2S (R + G)$$

 $RG = RS + GS$
 $G (R - S) = RS$

અથવા
$$G = \frac{RS}{R - S}$$

R અને Sનાં મૂલ્યો જાણવાથી, ગૅલ્વેનોમીટરનો અવરોધ G જાણી શકાય છે. સામાન્ય રીતે S ($\sim 100\Omega$)ની સાપેક્ષમાં R ખૂબ જ મોટો ($\sim 10~\mathrm{k}\Omega$) પસંદ કરવામાં આવે, તો

$$G \approx S$$

દર્શકના એક કાપા જેટલા આવર્તન માટે જરૂરી વિદ્યુતપ્રવાહને ગૅલ્વેનોમીટરની ફિગર ઑફ મેરિટ (k)

તરીકે વ્યાખ્યાયિત કરી શકાય, જે
$$k=rac{I}{ heta}$$
 છે.

ગૅલ્વેનોમીટરની ફિગર ઑફ મેરિટ નક્કી કરવા માટે પરિપથની ગોઠવણીમાં કળ \mathbf{K}_2 ને ખુલ્લી રાખો. સમીકરણ $(\mathbf{E}\ 6.2)$ અને $(\mathbf{E}\ 6.3)$ નો ઉપયોગ કરી ગૅલ્વેનોમીટરની ફિગર ઑફ મેરિટ

$$k = \frac{1}{\theta} \left(\frac{E}{R+G} \right)$$
 વડે આપી શકાય.

55

પ્રયોગશાળા માર્ગદર્શિકા

 $E,\ R,\ G$ અને θ ના મૂલ્ય જાણવાથી ગૅલ્વેનોમીટરની ફિગર ઑફ મેરિટ ગણી શકાય છે.

પદ્ધતિ

- (1) જોડાણ માટેના તાર (વાયર)ને કાચપેપરની મદદથી સાફ કરો અને ચોખ્ખા કરો અને વિદ્યુત-પરિપથમાં દર્શાવ્યા પ્રમાણે ચુસ્ત જોડાણ કરો. (આકૃતિ E 6.1)
- (2) ઉચ્ચ અવરોધવાળી અવરોધપેટી $(R_{\text{Box 1}})$ $(1-10 \text{ k}\Omega)$ માંથી $5 \text{ k}\Omega$ ની કળ કાઢો અને પછી કળ $K_{_{1}}$ બંધ કરો. આ અવરોધપેટીમાંથી અવરોધ R એવી રીતે ગોઠવો કે ગૅલ્વેનોમીટરના ડાયલ પર પૂર્ણ સ્કેલ આવર્તન મળે. અવરોધ Rનું આ મૂલ્ય અને આવર્તન θ નોંધો.
- (3) \mathbf{K}_2 કળ દાખલ કરો અને R ચોક્કસ રાખો. શંટના અવરોધ Sનું મૂલ્ય એવી રીતે ગોઠવો કે ગૅલ્વેનોમીટરનું આવર્તન θ નું બરાબર અડધું થાય. Sનું મૂલ્ય નોંધો. શંટના અવરોધ Sનું મૂલ્ય નોંધ્યા બાદ કળ \mathbf{K}_2 દૂર કરો. (ખુલ્લી કરો.)
- (4) θ બેકી સંખ્યાનું આવર્તન હોય તેવાં પાંચ અવલોકનો માટે પદ 2 અને 3નું પુનરાવર્તન કરો અને અવલોકનો માટે R, S, θ અને $\theta/2$ ને અવલોકન-કોષ્ટકમાં (સ્વરૂપે) નોંધો.
- (5) સમીકરણ (E 6.9) અને (E 6.11)નો ઉપયોગ કરીને અનુક્રમે ગૅલ્વેનોમીટરનો અવરોધ G અને ફિગર ઑફ મેરિટ kની ગણતરી કરો.

અવલોકનો

કોષ્ટક E 61 : ગૅલ્વેનોમીટરનો અવરોધ

ક્રમ	મોટો અવરોધ	ગૅલ્વેનોમીટરનું આવર્તન	શંટનો અવરોધ	ગૅલ્વેનોમીટરનું અર્ધ આવર્તન	$G = \frac{RS}{R - S}$	$k = \frac{E}{R+G} \cdot \frac{1}{\theta}$ એમ્પિયર
	$R(\Omega)$	heta (વિભાગ)	$S\left(\Omega\right)$	$rac{ heta}{2}$ (વિભાગ)	(Ω)	વિભાગ
(1)						
(2)						
(5)						

ગણતરીઓ

G (ગૅલ્વેનોમીટરનો અવરોધ)નું સરેરાશ મૂલ્ય = Ω

k (ગૅલ્વેનોમીટરની ફિગર ઑફ મેરિટ)નું સરેરાશ મૂલ્ય = એમ્પિયર / વિભાગ

પરિણામ

- (1) અર્ધ આવર્તનની રીતથી ગૅલ્વેનોમીટરનો અવરોધ G = Ω
- (2) ગૅલ્વેનોમીટરની ફિગર ઑફ મેરિટ $k = \dots$ એમ્પિયર / વિભાગ

સાવચેતીઓ

- (1) અવરોધપેટીમાંથી મોટા મૂલ્યનો અવરોધ R કાઢ્યા પછી જ કળ K_1 ને ભરાવવી જોઈએ, નહિતર ગૅલ્વેનોમીટરનું ગૂંચળું બળી જઈ શકે.
- (2) Rનું મૂલ્ય એવું ગોઠવો કે ગૅલ્વેનોમીટરમાં બેકી વિભાગોનું આવર્તન મળે જેથી $\frac{\theta}{2}$ ખૂબ જ સહેલાઈથી મેળવી શકાય.
- (3) બૅટરીનું વિદ્યુતચાલક બળ અચળ રહેવું જોઈએ.
- (4) પ્રાયોગિક રીતે શકય હોય તેટલો ઊંચા મૂલ્યનો R ઉપયોગમાં લો. આ Gનું ખાતરીપૂર્વક સચોટ મૂલ્ય આપે છે.
- (5) બધાં જ જોડાણો અને અવરોધપેટીમાંની બધી કળ ચુસ્ત હોવી જોઈએ.

ત્રુટિનાં ઉદ્ગમો

- (1) અવરોધપેટીમાંની કળ ઢીલી હોઈ શકે અથવા તે સાફ ન પણ હોઈ શકે.
- (2) બૅટરીનું વિદ્યુતચાલક બળ અચળ ન પણ હોઈ શકે.

ચર્ચા

- (1) ${\rm K_2}$ કળ બંધ કરવાથી અને અવરોધપેટી ${\rm R_{\rm Box}}_2$ ના અવરોધનું મૂલ્ય ગોઠવતાં તમને ગૅલ્વેનોમીટરમાં $\theta/2$ આવર્તન મળે છે, ત્યારે અવરોધ S ગૅલ્વેનોમીટરના અવરોધ G જેટલો બને છે, કારણ કે R માંથી વહેતા વિદ્યુતપ્રવાહનો અડધો ભાગ S દ્વારા અને અડધો ભાગ ગૅલ્વેનોમીટર દ્વારા વહેંચાય છે. તે નોંધપાત્ર છે કે R એ S અથવા Gની સાપેક્ષે ખૂબ મોટો છે તેથી કળ ${\rm K_2}$ ખોલવાથી કે બંધ કરવાથી Rમાંથી વહેતા વિદ્યુતપ્રવાહમાં નજીવો ફેરફાર કરે છે.
- (2) ગૅલ્વેનોમીટરની પ્રવાહ સંવેદિતા Cને આપણે એકમ વિદ્યુતપ્રવાહ દીઠ આવર્તન તરીકે વ્યાખ્યાયિત કરી શકાય. કળ \mathbf{K}_2 ખુલ્લી રાખી, તેમાંથી પસાર થતો વિદ્યુતપ્રવાહ

$$C\theta = \frac{E}{R}$$

$$C = \frac{E}{R\theta}$$

પ્રયોગશાળા માર્ગદર્શિકા

(3) સમીકરણ E 6.9 પરથી RS = G(R - S). RSને Y-અક્ષ પર અને (R - S) ને X-અક્ષ પર લઈ દોરેલા RS વિરુદ્ધ (R - S)ના આલેખના ઢાળ પરથી પણ ગૅલ્વેનોમીટરનો અવરોધ G નક્કી કરી શકાય છે.

સ્વ-મૂલ્યાંકન

- (1) તમે ગૅલ્વેનોમીટરનો ઉપયોગ કરી વિદ્યુતપ્રવાહનું માપન કેવી રીતે કરશો ?
- (2) (a) ગૅલ્વેનોમીટર, એમીટર અને વોલ્ટમીટરમાંથી કોને મહત્તમ અવરોધ હશે અને કોને લઘુત્તમ હશે ? સમજાવો.
 - (b) બે મીટરમાંથી કોને ઓછો અવરોધ હશે મિલિએમીટર અથવા માઇક્રોએમીટર ?
- (3) ગૅલ્વેનોમીટરની સંવેદિતા કયાં પરિબળો પર કેવી રીતે આધાર રાખે છે ?
- (4) કોષનો આંતરિક અવરોધ શૂન્ય લીધેલ છે. આ દર્શાવે છે કે પ્રયોગમાં આપણે તાજો ચાર્જ કરેલો સંગ્રાહક કોષ અથવા સારી બૅટરી એલિમિનેટર વાપરવી જોઈએ. જો આંતરિક અવરોધ મર્યાદિત હોય, તો તે પરિણામ પર કેવી રીતે અસર કરશે ?
- (5) શું $\frac{1}{3}$ આવર્તન લઈને ગૅલ્વેનોમીટરનો અવરોધ શોધવાનું શક્ય છે ? જો હા તો Gના મૂલ્યની ગણતરીના સૂત્રમાં શું જરૂરી ફેરફાર કરવા જોઈએ ?

સૂચવેલ વધારાના પ્રયોગો/પ્રવૃત્તિઓ

- (1) R અને $\frac{1}{\theta}$ વચ્ચેનો આલેખ દોરો. (Rને X-અક્ષ પર લો.) આલેખનો ઉપયોગ G અને k નક્કી કરવા માટે કરો.
- (2) θ ને Y-અક્ષ પર અને $\left(\frac{E}{R+G}\right)$ ને X-અક્ષ પર લઈ θ વિરુદ્ધ $\left(\frac{E}{R+G}\right)$ નો આલેખ દોરો. તમે આ આલેખ પરથી k કઈ રીતે નક્કી કરશો.
- (3) G અને kનાં મૂલ્યોનો ઉપયોગ કરીને આપેલા ગૅલ્વેનોમીટરને 0 -3 Aની અવિધવાળા એમીટરમાં રૂપાંતર કરવા જરૂરી શંટનું મૂલ્ય ગણો.
- (4) આપેલા ગૅલ્વેનોમીટરને $0-30~\mathrm{V}$ ની અવધિવાળા વોલ્ટમીટરમાં રૂપાંતર કરવા જરૂરી શ્રેણી-અવરોધનું મૂલ્ય ગણો.

હેતુ

આપેલા ગૅલ્વેનોમીટર (અવરોધ અને ફિગર ઑફ મેરિટ જ્ઞાત હોય તેવા)ને (i) ઇચ્છિત અવિ $(0\ \text{થl}\ 30\ \text{mA})$ ધરાવતા એમીટર અને (ii) ઇચ્છિત અવિ $(0\ \text{vl}\ 3V)$ ધરાવતા વોલ્ટમીટરમાં રૂપાંતર કરો અને તેની ચકાસણી કરવી.

સાધનો અને જરૂરી સામગ્રી

અવરોધ અને ફિગર ઑફ મેરિટ જ્ઞાત હોય તેવું ગૅલ્વેનોમીટર, 26 અથવા 30 SWG (Standard Wire Gauge) વાળો કોન્સ્ટનટન અથવા મેંગેનીનનો તાર, બૅટરી અથવા બૅટરી એલિમિનેટર, એકમાર્ગી કળ, $200~\Omega$ ની અવધિવાળું રીઓસ્ટેટ, $0-30~\mathrm{mA}$ અવધિવાળું એમીટર, 3V અવધિવાળું વોલ્ટમીટર, જોડાણ માટેના વાયર અને કાચપેપર.

(i) સિદ્ધાંત (ગૅલ્વેનોમીટરનું એમીટરમાં રૂપાંતર)

ગૅલ્વેનોમીટર એક સંવેદનશીલ સાધન છે કે જે $100~\mathrm{mA}$ ના ક્રમના ખૂબ જ નાના વિદ્યુતપ્રવાહની હાજરી નોંધી શકે છે. એમ્પિયરના ક્રમનો વિદ્યુતપ્રવાહ માપવા માટે, G અવરોધ ધરાવતા ગૅલ્વેનોમીટરને સમાંતરમાં શંટ તરીકે ઓળખાતો લઘુ અવરોધ $\mathbf S$ જોડવામાં આવે છે.

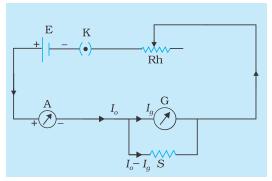
જો પૂર્ણ સ્કેલ આવર્તન માટે પરિપથમાં વહેતો કુલ વિદ્યુતપ્રવાહ I_o હોય, તો S માંથી પસાર થતો પ્રવાહ (I_o-I_g) થશે, જયાં I_g એ પૂર્ણ સ્કેલ આવર્તન માટે ગૅલ્વેનોમીટરમાંથી પસાર થતો વિદ્યુતપ્રવાહ છે. સાધનને એ રીતે અંકિત (માપનું અંકન) કરવામાં આવે છે કે જેથી વિદ્યુતપ્રવાહ સીધેસીધો એમ્પિયરમાં માપી શકાય અને તેનો ઉપયોગ એમીટર તરીકે કરી શકાય. G અને S એકબીજાને સમાંતર જોડાણમાં હોવાથી બંનેના છેડાઓ વચ્ચેનો વિદ્યુતસ્થિતિમાનનો તફાવત સમાન થશે. આથી,

$$I_gG = (I_0 - I_g) S$$
 (E 7.1)

અથવા
$$S = \frac{I_g G}{I_0 - I_g}$$
 (E 7.2)

ગૅલ્વેનોમીટરની ફિગર ઑફ મેરિટ જે k સંજ્ઞા વડે રજૂ કરાય છે. તે એક વિભાગને અનુરૂપ વિદ્યુતપ્રવાહ દર્શાવે છે. આમ, જો ગૅલ્વેનોમીટરના માપક્રમ પર કુલ વિભાગની સંખ્યા (કોઈ એક બાજુએ) N હોય, તો વિદ્યુતપ્રવાહ I_{g} નું મૂલ્ય, $I_{g}=kN$ વડે આપી શકાય.

Downloaded from https://www.studiestoday.com


પ્રયોગશાળા માર્ગદર્શિકા

જો n એ રૂપાંતરિત ગૅલ્વેનોમીટરમાં વાસ્તવિક આવર્તન દર્શાવતું હોય, તો કુલ વિદ્યુતપ્રવાહ

$$I = n \frac{I_o}{N}.$$

પદ્ધતિ

- (1) પ્રયોગ 6માં આપેલ પદ્ધતિ અનુસાર ગૅલ્વેનોમીટરનો અવરોધ G અને ફિગર ઑફ મેરિટ k નક્કી કરો.(નોંધઃજો બૅટરી એલિમિનેટર બદલી શકાય તેવા વૉલ્ટેજ વાળું હોય તો રીઓસ્ટેટની જરૂર નથી.)
- (2) ગૅલ્વેનોમીટરના માપક્રમ પર શૂન્યની કોઈ એક તરફ રહેલા કુલ વિભાગોની સંખ્યા N ગણો.
- (3) $I_g = Nk$ સંબંધ અનુસાર ગૅલ્વેનોમીટરના પૂર્ણ સ્કેલ આવર્તન માટેનો વિદ્યુતપ્રવાહ I_g ગણો. જ્યાં k એ ગૅલ્વેનોમીટરની ફિંગર ઑફ મેરિટ છે.

આકૃતિ E 7.1 : ગૅલ્વે નો મીટર નું એ મીટર માં ▼ રૂપાંતર ચકાસવા માટેનો વિદ્યુત પરિપથ

- (4) $S = \frac{I_g G}{I_o I_g}$ સૂત્રનો ઉપયોગ કરીને શંટનો અવરોધ S ગણો.
- (6) ધારો કે ગણતરીથી મળેલ તારની લંબાઈ 10 cm છે. તે લંબાઈ કરતાં 3 4 cm વધારે લંબાઈવાળો તાર કાપો અને તેને ગૅલ્વેનોમીટરની સમાંતરમાં જોડો અને આકૃતિ E 7.1માં દર્શાવ્યા મુજબ વિદ્યુત-પરિપથ પૂર્ણ કરો.
- (7) તારની લંબાઈ એવી ગોઠવો કે જેથી આપણે ગૅલ્વેનોમીટરમાં પૂર્ણ સ્કેલ આવર્તન જોઈ શકીએ ત્યારે એમીટરમાં વિદ્યુતપ્રવાહ 30 mA થાય.
- (8) આમ, હવે ગૅલ્વેનોમીટર જેની અવધિ 30 mA છે તેવા એમીટરમાં રૂપાંતરિત થયું.
- (9) હવે શંટના તારની ચોક્કસ લંબાઈ માપો અને અગાઉ માપેલ ત્રિજયાના મૂલ્ય અને જાણીતા વિશિષ્ટ અવરોધના મૂલ્ય પરથી તેના અવરોધની ગણતરી કરો.
- (10) અવરોધના ઉપર્યુક્ત મૂલ્યને સૂત્ર $S = \frac{l \times \rho}{\pi r^2}$ ના ઉપયોગથી ગણતરી કરેલ મૂલ્ય સાથે સરખાવો.

અવલોકનો

- (1) ગૅલ્વેનોમીટરનો અવરોધ G (આપેલ) = Ω
- (2) ગૅલ્વેનોમીટરની ફિગર ઑફ મેરિટ, k (આપેલ) = એમ્પિયર / વિભાગ
- (3) ગૅલ્વેનોમીટરના માપક્રમ પર શૂન્યની કોઈ એક તરફ આવેલા વિભાગોની સંખ્યા $N = \dots$ વિભાગ
- (4) N વિભાગનું પૂર્ણ સ્કેલ આવર્તન ઉત્પન્ન કરવા (મેળવવા) જરૂરી વિદ્યુતપ્રવાહ $I_{_{g}}=kN=....$ એમ્પિયર
- (5) તારની ત્રિજયાઃ

આપેલ સ્ક્રૂગૅજનું લઘુત્તમ માપ = cm

તારના અવલોકિત વ્યાસઃ

- (i) cm (ii) cm
- (iii) cm (iv) cm

અવલોકિત સરેરાશ વ્યાસ $D = \dots$ cm

તારની ત્રિજ્યા $r = \frac{D}{2} = \dots$ cm

ગણતરીઓ

- (1) શંટ અવરોધ = $S=rac{I_{g}G}{I_{o}\cdot I_{g}}=.....$ Ω
- (2) તારના દ્રવ્યના વિશિષ્ટ અવરોધનું આપેલ મૂલ્ય ho = Ω m
- (3) તારની જરૂરી લંબાઈ $l=\frac{S\pi r^2}{\rho}=....$ cm
- (4) ઇચ્છિત અવધિ માટે શંટના તારની અવલોકિત લંબાઈ l' = cm
- (5) અવલોકિત લંબાઈના તાર પરથી શંટનો અવરોધ $S'=rac{l' imes
 ho}{\pi r^2}=.....$

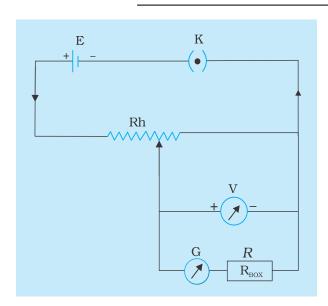
પરિણામ

આપેલ ગૅલ્વેનોમીટરને 0 થી એમ્પિયરની અવધિ ધરાવતા એમીટરમાં રૂપાંતરિત કરવા માટે,

- (1) ગણતરી કરેલ શંટ તારનો અવરોધ S= Ω
- (2) અવલોકિત શંટ તારનો અવરોધ $S' = \ldots \Omega$

પ્રયોગશાળા માર્ગદર્શિકા

સાવચેતીઓ


- (1) ચકાસણી માટે જે એમીટરનો ઉપયોગ કરો તેની અવધિ રૂપાંતર માટેની અવધિ જેટલી હોવી જોઈએ.
- (2) ગણતરી કરેલ તારની લંબાઈ કરતાં 3 થી 4 cm વધારે કાપો.
- (3) તારની લંબાઈની ગોઠવણી કર્યા બાદ, બે પ્લગની વચ્ચેની તારની લંબાઈ ચોકસાઈપૂર્વક માપો.

(ii) સિદ્ધાંત (ગૅલ્વેનોમીટરનું વોલ્ટમીટરમાં રૂપાંતર)

ગૅલ્વેનોમીટર સાથે શ્રેણીમાં યોગ્ય મૂલ્યનો મોટો અવરોધ જોડવાથી, તે વોલ્ટમીટરમાં રૂપાંતરિત થાય છે. વોલ્ટમીટર હંમેશાં જે વિદ્યુત ઘટકના બે છેડા વચ્ચેનો વિદ્યુતસ્થિતિમાનનો તફાવત માપવાનો હોય તેને સમાંતર જોડવામાં આવે છે.

જો ગૅલ્વેનોમીટર (G અવરોધ ધરાવતું) મહત્તમ પ્રવાહ માટે પૂર્ણ સ્કેલ આવર્તન દર્શાવે, તો ગૅલ્વેનોમીટરના સમાંતર વિદ્યુતસ્થિતિમાનનો તફાવત $I_{\rm g}G$. જો રૂપાંતરિત ગૅલ્વેનોમીટરની ઇચ્છિત અવિધ V_o વોલ્ટ રાખવી હોય, તો ગૅલ્વેનોમીટરની શ્રેણીમાં જોડવો પડતો જરૂરી અવરોધ $R=rac{V_o}{I_o}$ - G વડે આપી શકાય.

પહૃતિ

આકૃતિ E 7.2 : ગૅલ્વેનોમીટરનું વોલ્ટમીટરમાં રૂપાંતરની ચકાસણી માટેનો વિદ્યુત પરિપથ

- (1) $V_{o},\ I_{g}$ અને Gનાં આપેલ મૂલ્યો માટે શ્રેણી-અવરોધ Rના મૂલ્યની ગણતરી કરો.
- (2) આકૃતિ E 7.2માં દર્શાવ્યા મુજબ કોષ અને રૂપાંતરિત ગૅલ્વેનોમીટર અને નજીકની સમાન અવિધ ધરાવતું વોલ્ટમીટર, ઉચ્ચ અવરોધ ધરાવતા રીઓસ્ટેટ સાથે સમાંતરમાં જોડો. (નોંધ: જો બૅટરી એલિમિનેટર બદલી શકાય તેવા વૉલ્ટેજ વાળું હોય તો રીઓસ્ટેટની જરૂર નથી.)
- (3) કળ K બંધ કરો અને રીઓસ્ટેટને એવી રીતે ગોઠવો કે વોલ્ટમીટરએ ઇચ્છિત અવિધ (3 V)ના વોલ્ટેજ દર્શાવે. સાથે સાથે, રીઓસ્ટેટના સ્લાઇડરની સ્થિતિ અને અવરોધપેટીમાંના અવરોધનું મૂલ્ય પણ એવું ગોઠવો કે જેથી ગૅલ્વેનોમીટરમાં પૂર્ણ સ્કેલ આવર્તન અવલોકિત થાય ત્યારે વોલ્ટમીટર 3 V દર્શાવે. અવરોધપેટીમાંનો કુલ અવરોધ નોંધો.

અવલોકનો

- (1) ગૅલ્વેનોમીટરનો અવરોધ G (આપેલ) = Ω
- (2) ગૅલ્વેનોમીટરની ફિગર ઑફ મેરિટ, k (આપેલ) એમ્પિયર / વિભાગ
- (3) ગૅલ્વેનોમીટરના માપક્રમ પર શૂન્યની કોઈ એક તરફ આવેલા વિભાગોની સંખ્યા $N = \dots$ વિભાગ
- (4) N વિભાગનું પૂર્ણ સ્કેલ આવર્તન ઉત્પન્ન કરવા (મેળવવા) જરૂરી વિદ્યુતપ્રવાહ $I_g = kN = \dots$ એમ્પિયર
- (5) અવરોધપેટીમાંથી કાઢેલ કુલ અવરોધ = Ω

ગણતરીઓ

ગૅલ્વેનોમીટર સાથે શ્રેણીમાં જોડેલ અવરોધ

$$R = \frac{V_o}{I_o} - G = \dots \Omega$$

પરિણામ

આપેલ ગૅલ્વેનોમીટરનું 0 થી Vની અવધિવાળા વોલ્ટમીટરમાં રૂપાંતર કરવા,

- (1) ગણતરી કરેલ શ્રેણી-અવરોધનું મૂલ્ય R = Ω
- (2) અવલોકિત કરેલ શ્રેણી-અવરોધનું મૂલ્ય R' = Ω
- (3) પૂર્ણ સ્કેલ આવર્તન માટે વિદ્યુતપ્રવાહ $I_g = \dots$ એમ્પિયર

સાવચેતીઓ

- (1) ઉપયોગમાં લીધેલ અવરોધપેટી ઉચ્ચ અવરોધવાળી હોવી જોઈએ.
- (2) રીઓસ્ટેટ પોટૅન્શિયલ ડિવાઇડર (વિદ્યુતસ્થિતિમાન વિભાજક) તરીકે વાપરવું જોઈએ.
- (3) ગૅલ્વેનોમીટરને થતું કોઈ પણ પ્રકારનું નુકસાન અટકાવવા માટે અવરોધપેટીમાંથી પ્રથમ $10~k\Omega$ ના ક્રમનો ઉચ્ચ અવરોધ કાઢો (ઉપયોગ કરો) અને પછી બૅટરીની કળ બંધ કરો.

ત્રુટિનાં ઉદ્ગમો

તાર અસમાન આડછેદનું ક્ષેત્રફળ ધરાવતો હોઈ શકે.

પ્રયોગશાળા માર્ગદર્શિકા

ચર્ચા

- (1) જો તારના આડછેદનું ક્ષેત્રફળ અસમાન હોય તો, તે અવલોકનોને કઈ રીતે અસર કરશે ?
- (2) રીઓસ્ટેટને પ્રવાહ વિભાજક અને વિદ્યુતસ્થિતિમાન વિભાજક તરીકે ઉપયોગ કરો.
- (3) તમારા સાધનમાં ઘર્ષણ ઘણું નાનું છે તે તપાસવા માટે, સમાન ગોઠવણી માટે 5 થી 10 વખત θનું માપન કરો. જો દરેક વખતે, દર્શક માપક્રમ પરના ચોક્કસ સમાન બિંદુએ જ આવે, તો તમારા સાધનમાં ઘર્ષણ ખૂબ જ નાનું છે.

સ્વ-મૂલ્યાંકન

- (1) તમે રૂપાંતરિત ગૅલ્વેનોમીટરની અવધિ વધારીને $0-60~\mathrm{mA}$ કેવી રીતે કરશો ?
- (2) તમે રૂપાંતરિત ગૅલ્વેનોમીટરની અવધિ ઘટાડીને $0-20~\mathrm{mA}$ કેવી રીતે કરશો ?
- (3) જો S < G તો રૂપાંતરિત ગૅલ્વેનોમીટરના અવરોધનો ક્રમ શું હશે ?
- (4) વિદ્યુત-પરિપથમાં એમીટર શા માટે હંમેશાં શ્રેણી-જોડાણમાં જોડવામાં આવે છે ?
- (5) વિદ્યુત-પરિપથમાં વોલ્ટમીટર શા માટે હંમેશાં સમાંતર જોડાણમાં જોડવામાં આવે છે ?

સૂચવેલ વધારાના પ્રયોગો / પ્રવૃત્તિઓ

- (1) જો સમાન દ્રવ્યના તારની ત્રિજ્યા બમણી કરવામાં આવે, તો તારની લંબાઈ ગણો.
- (2) જો સમાન ત્રિજ્યા હોય પરંતુ ઉપયોગમાં લીધેલ દ્રવ્ય તાંબું હોય, તો તારની લંબાઈ ગણો.
- (3) એમીટર અને વોલ્ટમીટરની અવિધ બદલો અને ઉપર પ્રયોગમાં દર્શાવેલ સમાન પદ્ધતિને અનુસરી પુનરાવર્તન કરો.
- (4) રૂપાંતરિત એમીટર / વોલ્ટમીટરનો ચકાસણી માટે ઉપયોગ કરો કે અવધિ રૂપાંતર માટેની સમાન અવધિ હોય.

હેતુ

સોનોમીટર અને વિદ્યુતચુંબકનો ઉપયોગ કરી પ્રત્યાવર્તી પ્રવાહ (ઊલટસૂલટ પ્રવાહ-ac)ની આવૃત્તિ નક્કી કરો.

સાધનો અને જરૂરી સામગ્રી

સોનોમીટર કે જેના ઉપર નરમ લોખંડનો તાર ખેંચાયેલ હોય, વિદ્યુતચુંબક (electromagnet), સ્ટેપડાઉન ટ્રાન્સફોર્મર, ખાંચાવાળા $\frac{1}{2}$ kg ના વજનિયાંનું હેંગર, ભૌતિક તુલા, તીક્ષ્ણ ધારવાળી બે ફાચર (ટેકાઓ) અને વજનપેટી

સિદ્ધાંત

બંને છેડે જડિત આધારવાળી, ખેંચાયેલી દોરીમાં મૂળભૂત રીતે દોલનો (મોડ ઑફ વાઇબ્રેશન)ની

આવૃત્તિ
$$n=\frac{1}{2l}\sqrt{\frac{T}{m}}$$
 વડે આપી શકાય છે.

(E 8.1)

અહીં l એ દોલિત દોરીની લંબાઈ છે, T એ તારમાં તણાવબળ છે અને m એ દોરી (અથવા તાર)ની એકમ લંબાઈ દીઠ દ્રવ્યમાન છે.

જો વિદ્યુતચુંબકની કોઇલ (ગૂંચળા)માંથી ઊલટસૂલટ પ્રવાહ પસાર કરવામાં આવે છે, કોર (ગર્ભ)માં ઉદ્ભવતું ચુંબકત્વ એ વિદ્યુતપ્રવાહના તાત્ક્ષણિક મૂલ્યના સમપ્રમાણમાં હોય છે. જો વિદ્યુતચુંબકને સોનોમીટર તારની નજીક મધ્યમાં મૂકવા (રાખવા)માં આવે, તો તાર દરેક ચક્ર દરમિયાન વિદ્યુતચુંબક તરફ બે વખત આકર્ષાય છે. તાર દ્વારા અનુભવાતું આકર્ષણ બળ એ વિદ્યુતચુંબકના કોરમાં ઉદ્ભવતા ચુંબકત્વના સમપ્રમાણમાં હોય છે. દરેક ચક્ર દરમિયાન, તાર બે વખત ખેંચાશે અને તેથી અનુનાદ વખતે, તે એવી આવૃત્તિથી દોલિત થશે કે જે ઊલટસૂલટ પ્રવાહની આવૃત્તિથી બમણી હશે. આથી, જો એ ઊલટસૂલટ પ્રવાહની આવૃત્તિથી બમણી હશે. આથી, જો એ ઊલટસૂલટ પ્રવાહની

$$f = \frac{n}{2} = \frac{1}{4l} \sqrt{\frac{T}{m}}$$
 (E 8.2)

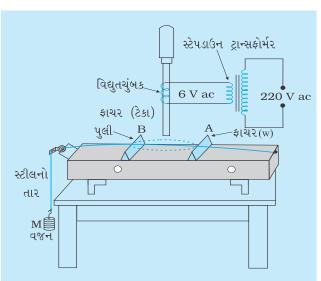
 $4 n^2 l^2 m = T$

પ્રયોગશાળા માર્ગદર્શિકા

અથવા
$$l^2 = \frac{1}{4n^2m} \times T$$

T(X-અક્ષ પર લઈને) અને $I^2(Y$ -અક્ષ પર લઈને) વચ્ચેનો આલેખ સુરેખ રેખા મળવી જોઈએ.

આ રેખાનો ઢાળ $\frac{1}{4n^2m}$ મળવો જોઈએ. આથી


(E 8.3)

$$n^2 = \frac{1}{4m \times \text{sin}}$$

$$\therefore n = \frac{1}{2} \frac{1}{\sqrt{m \times \sin q}}$$

ઊલટસૂલટ પ્રવાહની આવૃત્તિ $f=rac{\mathrm{n}}{2}=rac{1}{4}rac{1}{\sqrt{\mathrm{m} imes}$ એ ઢાળના મૂલ્યનો ઉપયોગ કરી નક્કી કરી શકાય.

પદ્ધતિ

આકૃતિ E 8.1 : સોનોમીટરની મદદથી ac મેઇન્સની આવૃત્તિ શોધવા માટેની ગોઠવણી

- (1) સોનોમીટરને ગોઠવો અને હેંગરમાં $\frac{1}{2}$ kgનું વજનિયું મૂકીને તાર ABને ખેંચો. (આકૃતિ E 8.1)
- (2) વિદ્યુતચુંબકને સ્ટૅન્ડમાં ગોઠવો અને તેને સ્ટેપડાઉન ટ્રાન્સફોર્મરના ગૌણ ગૂંચળા સાથે જોડો. તેના સ્થાનને એવી રીતે ગોઠવો કે જેથી તેનો એક છેડો સોનોમીટર તારના મધ્યની નજીકમાં રહે.
- (3) ઊલટસૂલટ પ્રવાહના પુરવઠાને ચાલુ કરો અને ફાચર (ટેકા) W અથવા W' ને સરકાવીને દોલિત ગાળા ABની લંબાઈને ગોઠવો. આ ગોઠવણી ત્યાં સુધી કરો કે જેથી દોલિત થતા તારમાં કંપવિસ્તાર મહત્તમ મળે.
- (4) દોલિત લંબાઈ માપો અને દોરીમાં તણાવની નોંધ કરો.
- (5) વજનિયાં $\frac{1}{2}$ kgના પદ (ક્રમ)માં વધારતા જાવ અને દરેક સમયે દોલિત-લંબાઈ શોધો.
- (6) ac પુરવઠો બંધ કરો. સોનોમીટર તારને તેની ખીલીઓમાંથી ખોલો અને ભૌતિક તુલા વડે તેનું દ્રવ્યમાન કરો. 100 cmના સોનોમીટરના તારનું દ્રવ્યમાન ગણો. તેથી, તાર માટે એકમ લંબાઈ દીઠ દ્રવ્યમાન, m શોધો.

અવલોકનો

- (1) તારની લંબાઈ = cm = m
- (2) તારનું દ્રવ્યમાન = g = kg
- (3) એકમ લંબાઈ દીઠ દ્રવ્યમાન m = g/cm = kg/m
- (4) ગુરૂત્વપ્રવેગ g = ms^{-2}

કોપ્ટક E 8.1 : અનુનાદિય લંબાઈ

ક્રમ	હેંગરનું વજનિયાં સહિત દ્રવ્યમાન	તણાવ T = mg (N)	અનુનાદિય લંબાઈ /			સરેરાશ <i>I</i> (m)માં	$n = \frac{1}{2l} \sqrt{\frac{T}{m}} (Hz)$
	(kg)		પ્રથમ	બીજા	સરેરાશ		
			પ્રયત્ને (cm)	પ્રયત્ને (cm)	(cm)		
(1)			(CIII)	(em)	,		
(2) (3)							
(4)							
						સરેરાશ	

ગણતરીઓ

- (1) દરેક સમૂહ માટે, ઉપર આપેલ સૂત્રના ઉપયોગથી n નું મૂલ્ય ગણો. આ મૂલ્યોનું સરેરાશ શોધો.
- (2) Y-અક્ષ પર I^2 અને X-અક્ષ પર T લઈ I^2 વિરુદ્ધ T નો આલેખ દોરો. આલેખનો ઢાળ નક્કી કરો. ઢાળના આ મૂલ્યના ઉપયોગથી ઊલટસૂલટ પ્રવાહની આવૃત્તિ નક્કી કરો.

પરિણામ

- (1) T અને I^2 વચ્ચેનો આલેખ સુરેખ રેખા છે.
- (2) આલેખનો ઢાળ = $\frac{1}{4mn^2}$ =
- (3) ac પુરવઠા (સપ્લાય)ની આવૃત્તિ $f = \frac{n}{2}$
 - (i) ગણતરી પરથી = હટ્રઝ
 - (ii) આલેખ પરથી = હટ્ર્ઝ

પ્રયોગશાળા માર્ગદર્શિકા

સાવચેતીઓ

- (1) પુલી શક્ય એટલી ઘર્ષણરહિત હોવી જોઈએ.
- (2) ફાચર (ટેકા)ની ધાર તીક્ષ્ણ હોવી જોઈએ.
- (3) વિદ્યુતચુંબકનો છેડો સોનોમીટર તારના મધ્યમાં નજીક હોવો જોઈએ.
- (4) દરેક અવલોકનો લીધાં બાદ, થોડી મિનિટો માટે પરિપથ બંધ કરી દેવો.

ત્રુટિનાં ઉદ્ગમો

- (1) પુલીનું ઘર્ષણબળ એ આ પ્રયોગમાં ત્રુટિના મુખ્ય ઉદ્દગમ છે. આ કારણે, વાસ્તવિક રીતે આપેલા તણાવ કરતાં તાર પર અનુભવાતું તણાવનું મૂલ્ય ઓછું હોય છે.
- (2) AC આવૃત્તિ સ્થિર હોતી નથી.

ચર્ચા

- (1) ઊલટસૂલટ પ્રવાહની આવૃત્તિ એ દોલિત થતી દોરી (તાર)ની આવૃત્તિથી અડધી હોય છે.
- (2) સારાં પરિણામો માટે સોનોમીટર તાર નરમ લોખંડમાંથી બનાવવો જોઈએ.

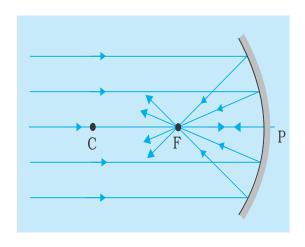
સ્વ-મૂલ્યાંકન

- (1) ac એ dc થી કઈ રીતે જુદો પડે છે?
- (2) ac ની આવૃત્તિનો શું અર્થ થાય છે ?
- (3) તાર દોલિત કઈ રીતે કરે છે ? ઓળખી કાઢો અને તેના નિયમો કે જેની મદદથી તમે તાર પર લાગતા બળની દિશા નક્કી કરી તે સમજાવો.
- (4) લોખંડમાં એવો શું ગુણધર્મ છે કે જે તેને સારો વિદ્યુતચુંબક બનાવે છે ?
- (5) શું આવૃત્તિ અને વિદ્યુતચુંબકના ચુંબકત્વ અને ઊલટસૂલટ આવૃત્તિ વચ્ચે કોઈ સંબંધ છે ?

સુચવેલ વધારાના પ્રયોગો/ પ્રવૃત્તિઓ

ઉપરનો પ્રયોગ ઘોડાની નાળ જેવા કાયમી ચુંબકની મદદથી કરો અને સોનોમીટર તારમાંથી ઊલટસૂલટ પ્રવાહ પસાર કરો. આ કિસ્સામાં અનુનાદિય આવૃત્તિ એ ઊલટસૂલટ પ્રવાહની આવૃત્તિ જેટલી હોય છે. સોનોમીટર તાર નરમ લોખંડનો હોવો જરૂરી નથી. આ હેતુ માટે તમે કોન્સ્ટનટન અથવા મેંગેનીનનો તાર વાપરી શકો.

હેતુ


અંતર્ગોળ અરીસાના કિસ્સામાં u નાં જુદાં-જુદાં મૂલ્યો માટે v નાં મૂલ્યો શોધવા અને કેન્દ્રલંબાઈ શોધવી.

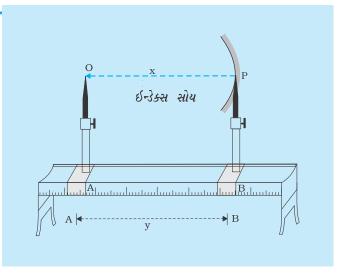
સાધનો અને જરૂરી સામગ્રી

ઓપ્ટિકલ બેન્ચ (પ્રકાશીય પાટલી), તીક્ષ્ણ ધારવાળી બે પિન, 20 cm કરતાં ઓછી કેન્દ્રલંબાઈવાળો અંતર્ગોળ અરીસો, ક્લેમ્પ સહિતના ત્રણ શિરોલંબ (ટટ્ટાર) સ્ટૅન્ડ, પાતળી પિન (ગૂંથણ માટેની પિન ચાલે), માપપટ્ટી અને સ્પિરિટ લેવલ

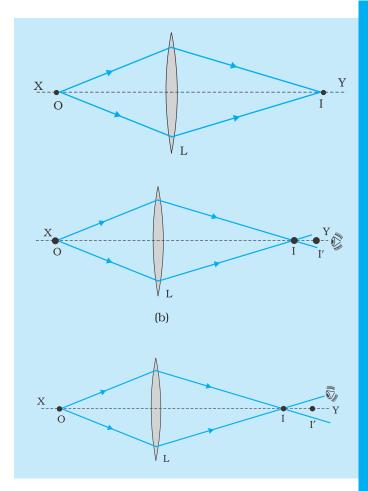
પદો અને વ્યાખ્યાઓ

- (1) અરીસાની મુખ્ય અક્ષ એ વક્રતાકેન્દ્ર અને અરીસાના ધ્રુવમાંથી પસાર થતી રેખા છે.
- (2) મુખ્ય કેન્દ્ર એ એવું બિંદુ છે કે જ્યાં મુખ્ય અક્ષને સમાંતર કિરણો, અરીસાની સપાટી પરથી પરાવર્તન પામ્યા બાદ ભેગા થાય છે. (આકૃતિ E 9.1)
- (3) અરીસાના ભૌમિતિક કેન્દ્રને ધ્રુવ P કહેવાય છે.
- (4) કેન્દ્રલંબાઈએ ધ્રુવ P અને મુખ્ય કેન્દ્ર F વચ્ચેનું અંતર છે.

આકૃતિ E 9.1 : અંતર્ગોળ અરીસાની કેન્દ્રલંબાઇ


ઇન્ડેક્સ-સુધારણા

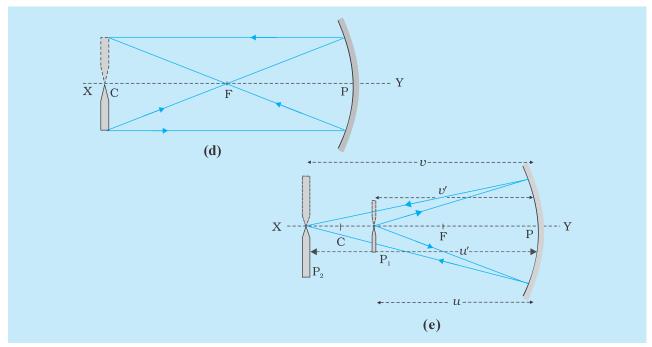
સામાન્ય રીતે બે વસ્તુઓ વચ્ચેનાં સંબંધિત બિંદુઓ વચ્ચેનું અંતર, તેમની ટોચ પરનાં બિંદુઓ માટે માપપટ્ટી વડે માપેલા અંતર જેટલું હોતું નથી. દાખલા તરીકે, આકૃતિ E 9.2માં બે શિરોલંબ(ટટ્ટાર) બિંદુ વચ્ચેનું અંતર એ પિનની ટોચ અને અરીસાના ધ્રુવ વચ્ચેનું સાચું અંતર આપતા નથી. આ સુધારો જરૂરી છે, આથી, તે લાગુ પડાય છે. જેને ઇન્ડેક્સ-સુધારો કહેવાય છે.


Downloaded from https://www.studiestoday.com

પ્રયોગશાળા માર્ગદર્શિકા

આકૃતિ E 9.2 ઇન્ડેક્સ સુધારો નક્કી કરવો.

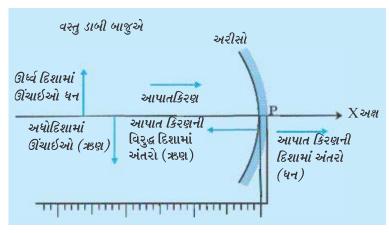
દેષ્ટિસ્થાન ભેદ



આકૃતિ E 9.3 (a),(b),(c) : ઓપ્ટિકલ બેન્ચ પર પિનની મદદથી પ્રતિબિંબનું સ્થાન નક્કી કરવું

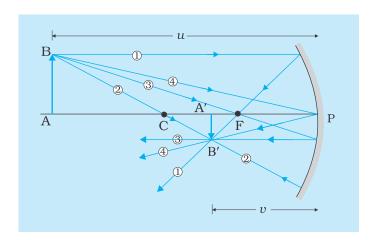
આ એક વસ્તુના પ્રતિબિંબના સ્થાનમાં કાર્યરત છે. દાખલા તરીકે, આકૃતિ E 9.3 (a)માં દર્શાવ્યા અનુસાર O અને I એ અરીસા / લેન્સ માટે વસ્તુ અને પ્રતિબિંબ બિંદુઓ છે.

વસ્તુનું બિંદુ O અને તેના સાચા પ્રતિબિંબ 'I' એ એકાંતર બિંદુઓ છે. એટલે કે બેમાંથી ગમે તે એકને વસ્તુ તરીકે અને બીજાને પ્રતિબિંબ તરીકે લઈ શકાય. આમ, તે બંને બિંદુઓ પાસે દેષ્ટિસ્થાન ભેદને દૂર કરવાની ચોક્કસ ગોઠવણી માટે મદદરૂપ થાય છે.


જો આપશે એમ કહીએ કે, વસ્તુ O (વસ્તુ પિન) અને તેના પ્રતિબિંબ I વચ્ચે દેષ્ટિસ્થાન ભેદ નથી તો જ્યાંથી આપશે અવલોકન લેતા હોય, ત્યાંથી આંખને (નજરને) ડાબે અને પછી જમણે ફેરવતાં, વસ્તુ અને તેના પ્રતિબિંબ બંને અરીસા/ લેન્સની સાપેક્ષે એકસાથે ખસતાં દેખાશે. તે દર્શાવે છે કે ઓપ્ટિકલ બેન્ચ પર બંનેનાં સ્થાન સમાન છે. (આકૃતિઓ E 9.3 (d) અને (e)). જો તેમનાં સ્થાન સમાન ન હોય ત્યારે તેમની એક સ્થિતિમાં એકરૂપ દેખાશે અને બીજામાં તેઓ છૂટા પડેલા દેખાશે. (આકૃતિઓ E 9.3 (b) અને (c)) આ રીત દ્વારા ઓપ્ટિકલ બેન્ચ પર પ્રતિબિંબનું સ્થાન નક્કી કરવાની પદ્ધતિને દેષ્ટિસ્થાન ભેદની રીત કહે છે.

આકૃતિ E 9.3 (d),(e) : અંતર્ગોળ અરીસાની કેન્દ્રલંબાઈ શોધવા માટેની કિરણ રેખાકૃતિ

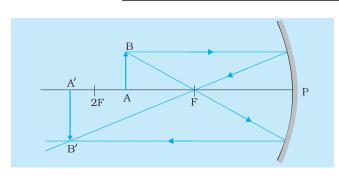
સંજ્ઞા-પદ્ધતિ


- (1) બધાં જ અંતરો એ અરીસાના ધ્રુવ (અથવા લેન્સના ઓપ્ટિકલ કેન્દ્ર) P થી માપવામાં આવે છે.
- (2) આપાત કિરણના પ્રસરણની દિશામાં માપેલ અંતર ધન તરીકે અને તેની વિરુદ્ધ દિશામાં માપેલ અંતરને ઋણ તરીકે લેવામાં આવે છે.
- (3) ઉપરની દિશામાં માપેલ ઊંચાઈઓ (અરીસા / લેન્સની મુખ્ય અક્ષથી ઉપર તરફ) ધન તરીકે અને નીચેની દિશામાં માપેલ ઊંચાઈઓ ઋણ તરીકે લેવામાં આવે છે. (આકૃતિ E 9.4)
- નોંધ : કાર્તેઝિય સંજ્ઞા પરંપરા(પધ્ધિતિ) માં, વસ્તુને હંમેશાં અરીસા અથવા લેન્સની ડાબી બાજુએ રાખવામાં આવે છે.

આકૃતિ E 9.4 : કાતિર્ઝિય સંજ્ઞા પરંપરા (પધ્ધતિ)

પ્રયોગશાળા માર્ગદર્શિકા

ગોલીય અરીસાઓમાં કિરણ પથ



આકૃતિ E 9.5

અંતર્ગોળ અરીસા વડે પ્રતિબિંબની રચના માટેના કિરણ માર્ગ પ્રતિબિંબનું સ્થાન નક્કી કરવા, આપણે માત્ર અમુક ચોક્કસ પથ/માર્ગ અથવા કિરણો (ઓછામાં ઓછા બે)ના પથ આકૃતિ E 9.5 માં દર્શાવ્યા મુજબ ધ્યાનમાં લેવા જોઈએ. સરળતા ખાતર, પ્રતિબિંબનું સ્થાન નક્કી કરવા માટે કોઈ પણ બે કિરણો લેવામાં આવે છે.

- (1) અરીસાની મુખ્ય અક્ષને સમાંતર આપાત થયેલ કિરણ મુખ્ય કેન્દ્રમાંથી કાં તો પસાર થશે. (અંતર્ગોળ અરીસો) અથવા તેમાંથી નીકળી દૂર જતા દેખાશે. (બહિર્ગોળ અરીસો)
- (2) આપાતકિરણ વક્રતાકેન્દ્ર C માંથી પસાર થાય (અંતર્ગોળ અરીસો) અથવા પસાર થતા હોય તેમ દેખાય (બહિર્ગોળ અરીસો), તો મૂળ માર્ગે પાછું ફેકાશે એટલે કે પરાવર્તન પામી મૂળ માર્ગ પર જ પાછું જશે. તમે જોઈ શકો (નોંધી શકો) કે આ કિરણ અરીસા પર લંબરૂપે આપાત થાય છે.
- (3) જે આપાતકિરણ મુખ્ય કેન્દ્ર F માંથી પસાર થતું હોય (અંતર્ગોળ અરીસો) અથવા પસાર થતું હોય તેવું દેખાય (બહિર્ગોળ અરીસો) તે અરીસા દ્વારા પરાવર્તન પામી મુખ્ય અક્ષને સમાંતર બનશે.
- (4) અરીસાના ધ્રુવ P પર આપાત થતું આપાતકિરણ મુખ્ય અક્ષ સાથે તેટલા જ કોણે પરાવર્તન પામશે જેટલા આપાતકોણે તે આપાત થયં હોય.

સિદ્ધાંત

આકૃતિ E 9.6 : અંતર્ગોળ અરીસામાં પ્રતિબિંબની નિર્માણ, વક્રતાત્રિજ્યા અને મુખ્ય કેન્દ્ર Fની વચ્ચે વસ્તુ, વક્રતાકેન્દ્ર અને અનંતની વચ્ચે વાસ્તવિક, ઊલટું અને વિવર્ધિત પ્રતિબિંબ

f કેન્દ્રલંબાઈ ધરાવતા અંતર્ગોળ અરીસાના ધ્રુવથી u જેટલા અંતરે મૂકેલી વસ્તુ માટે, ધ્રુવથી v જેટલા અંતરે પ્રતિબિંબ રચાશે. આ અંતરો વચ્ચેનો સંબંધ (અંતર્ગોળ

અરીસા માટે)
$$\frac{1}{f} = \frac{1}{u} + \frac{1}{v}$$
 અથવા $f = \frac{uv}{u+v}$ છે.

જો વસ્તુ (વસ્તુ પિન)ને અંતર્ગોળ અરીસાની પરાવર્તક સપાટીની સામે એવી રીતે ગોઠવેલ છે કે જેથી વસ્તુનું સ્થાન અરીસાના મુખ્ય કેન્દ્ર F અને વક્કતાકેન્દ્ર Cની વચ્ચે હોય, ત્યારે વાસ્તવિક, ઊલટું અને વિવર્ધિત A'B'

પ્રતિબિંબ એ અરીસાના વક્કતાકેન્દ્ર C અને અનંત અંતરની વચ્ચે રચાશે. (આકૃતિ E 9.6)

આમ, આવા કિસ્સામાં રચાતું પ્રતિબિંબ ચોખ્ખું અને જોવામાં સરળ હોય તેવું રચાય છે. અરીસાની કેન્દ્રલંબાઈ, ઉપર્યુક્ત સંબંધના ઉપયોગથી વસ્તુને 2F અને મુખ્ય કેન્દ્ર Fની વચ્ચે મૂકી નક્કી કરી શકાય છે.

પદ્ધતિ

- (1) ખૂબ જ દૂર રહેલી વસ્તુનાં કિરણોને અંતર્ગોળ અરીસા દ્વારા કેન્દ્રિત કરીને પ્રતિબિંબ મેળવી કેન્દ્રલંબાઈનું અંદાજિત મૂલ્ય મેળવો. દૂર રહેલા મકાન અથવા ઝાડનું તેજસ્વી અને ચોખ્ખું પ્રતિબિંબ સમતલ દીવાલ અથવા કાગળ ઉપર મેળવો અને અરીસા તથા પ્રતિબિંબ વચ્ચેનું અંતર માપો જે અંતર્ગોળ અરીસાની અંદાજિત કેન્દ્રલંબાઈ આપે છે.
- (2) દઢ ટેબલ પર ઓપ્ટિકલ બેન્ચ ગોઠવો. સ્પિરિટ લેવલ અને બેન્ચના પાયામાં આપેલ લેવલિંગ સ્કૂની મદદથી તેને સમક્ષિતિજ બનાવો (ગોઠવો).
- (3) અપરાઇટમાં અંતર્ગોળ અરીસાને જડિત કરો અને તેને ઓપ્ટિકલ બેન્ચના એક છેડાની નજીક રહે તેમ ઊર્ધ્વ ગોઠવો. ઓપ્ટિકલ બેન્ચ પર વસ્તુ પિન P₁ ને આગળ અને પાછળ એવી રીતે ખસેડો કે જેથી તેનું પ્રતિબિંબ સમાન ઊંચાઈ ધરાવતું રચાય. પિનની ઊંચાઈ અથવા અરીસાના નમન માટે સૂક્ષ્મ ગોઠવણ કરો. આ પ્રક્રિયા એવું દર્શાવે છે કે અરીસાની મુખ્ય અક્ષ એ ઓપ્ટિકલ બેન્ચને સમાંતર છે.
- (4) બીજી એક તીક્ષ્ણ અને પ્રકાશીત પિન P_2 ને અંતર્ગોળ અરીસાની પરાવર્તક સપાટીની સામે ઊર્ધ્વ રીતે રહે તેમ ગોઠવો. P_1 અને P_2 પિનને એવી રીતે ગોઠવો કે, જેથી ઓપ્ટિકલ બેન્ચના પાયાથી તેમની ટોચની ઊંચાઈઓ અરીસાના ધ્રુવ Pની ઊંચાઈ જેટલી થાય. (આકૃતિ E 9.3 (e))
- (5) ઇન્ડેક્સ-સુધારો નક્કી કરવા માટે, સુરેખ પાતળી ઇન્ડેક્સ સોય એવી રીતે ગોઠવો કે જેથી તેનો એક છેડો A_1 પિનની ટોચને સ્પર્શે અને બીજો છેડો B_1 અરીસાના ધ્રુવને સ્પર્શે. અપરાઇટ્સ (સ્તંભ)ના સ્થાન માપપટ્ટી પર વાંચો. તેમનો તફાવત એ પિનની ટોચ અને અરીસાના ધ્રુવ વચ્ચેનું અવલોકિત અંતર આપે છે. સોય A_1B_1 ની લંબાઈ માપવા માટે તેને માપપટ્ટી પર મૂકો કે જે અભ્યાસમાં લીધેલ છે તે બિંદુઓ વચ્ચેનું વાસ્તવિક અંતર દર્શાવે છે. આ બંનેનો તફાવત એ સુધારો આપે છે. અવલોકિત અંતરમાં લાગુ પાડવામાં આવે છે. બંને પિન P_1 અને P_2 નાં બધાં માપનો માટે ઇન્ડેક્સ-સુધારો શોધો.
- (6) પિન P_1 ને અરીસાથી દૂર ખસેડો અને તેને લગભગ 2F અંતરે ગોઠવો. પિનનું સમાન માપનું ઊલટું પ્રતિબિંબ દેખાવું જોઈએ.
- (7) હવે બેન્ચ પર બીજી પિન P_2 ગોઠવો, તેની ઊંચાઈ પણ લગભગ પહેલાંની પિન જેટલી જ ગોઠવો. એક પિનની ટોચ પર કાગળનો (નાનો) ટુકડો મૂકો, તેને વસ્તુ પિન તરીકે લો.
- (8) કાગળ સાથેની પિનને F અને 2Fની વચ્ચે ના કોઈ અંતરે ગોઠવો.
- (9) બીજી પિનની મદદથી પ્રતિબિંબનું સ્થાન નક્કી કરો. યાદ રાખો કે પ્રતિબિંબ અને આ પિન વચ્ચે દેષ્ટિસ્થાન ભેદ દૂર થવો જોઈએ.

પ્રયોગશાળા માર્ગદર્શિકા

- (10) u અને v નાં મૂલ્યો નોંધો એટલે કે અરીસાથી અનુક્રમે વસ્તુ અને પ્રતિબિંબ પિન વચ્ચેનાં અંતરો.
- (11) વસ્તુનાં ઓછામાં ઓછા પાંચ જુદાં જુદાં સ્થાનો માટે પ્રયોગનું પુનરાવર્તન કરો અને તદનુરૂપ v નાં મૂલ્યો નક્કી કરો. તમારાં અવલોકનો અવલોકન-કોષ્ટકમાં (કોષ્ટક સ્વરૂપે) નોંધો.
- (12) ઇન્ડેક્સ-સુધારો લાગુ પાડ્યા બાદ સુધારેલ u અને v નાં મૂલ્યો નોંધો. કેન્દ્રલંબાઈ f નું મૂલ્ય શોધો.

અવલોકનોઃ

- (1) અંતર્ગોળ અરીસાની અંદાજિત કેન્દ્રલંબાઈ = cm
- (2) ઇન્ડેક્સ સોયની મદદથી વસ્તુનું અરીસાથી માપેલ વાસ્તવિક અંતર $l_o = \dots$ cm
- (3) અરીસાથી વસ્તુનું અવલોકિત અંતર = માપપટ્ટી પર અરીસાના અપરાઇટનું સ્થાન વસ્તુ પિનના અપરાઇટનું સ્થાન $I'_{\theta} = \dots$ cm
- (4) વસ્તુ-અંતર માટે ઇન્ડેક્સ-સુધારો, e = વાસ્તવિક અંતર અવલોકિત અંતર

$$= l_0 - l'_0 = \dots$$
 cm

તે જ રીતે પ્રતિબિંબ પિન માટે,

$$e_i = l_i - l_i^1 = \dots$$
 cm.

કોષ્ટક \mathbf{E} 9.1 : u, v અને f નક્કી કરવા

ક્રમ		સ્થાન		અવલોકિત	અવલોકિત	સુધારેલ	સુધારેલ	$f = \frac{uv}{u + v}$	Δf
	અરીસો	વસ્તુપિન	પ્રતિબિંબ પિન	<i>u'</i> (cm)	υ' (cm)	u = u' + e (cm)	$\begin{array}{c} \upsilon = \upsilon' + e_{i} \\ \text{(cm)} \end{array}$	(cm)	(cm)
	M	\mathbf{P}_{1}	P_2						
	(cm)	(cm)	(cm)						
1									
2									
6									
							સરેરાશ		

ગણતરીઓ

u અને υ નાં સુધારેલાં મૂલ્યો ગણો અને તે પરથી fનું મૂલ્ય ગણો. તેમને અવલોકન કોષ્ટકમાં નોંધો અને આપેલા અંતર્ગોળ અરીસા માટે કેન્દ્રલંબાઈનું સરેરાશ મૂલ્ય શોધો.

ત્રુટિ

$$\because \frac{1}{f} = \frac{1}{u} + \frac{1}{v}$$

$$\frac{\Delta f}{f^{\lambda}} = \frac{\Delta u}{u^{\lambda}} + \frac{\Delta v}{v^2}$$

અથવા
$$\Delta f = f^2 \left[\frac{\Delta u}{u^2} + \frac{\Delta v}{v^2} \right]$$

પરિણામ

આપેલ અંતર્ગોળ (અભિસારી) અરીસાની કેન્દ્રલંબાઈ

$$(f \pm \Delta f) = \dots \pm \dots$$
 cm

અહીં f એ કેન્દ્રલંબાઈનું સરેરાશ મૂલ્ય અને Δf એ ત્રુટિના મૂલ્યોનું મહત્તમ (મૂલ્ય) દર્શાવે છે.

સાવચેતીઓ

- (1) પ્રકાશીય ઘટકો (સાધન)ને પકડી રાખતા અપરાઇટ્સ એ દઢ અને ઊર્ધ્વ ગોઠવાયેલા હોવા જોઈએ.
- (2) વસ્તુ પિનને અરીસાના વક્રતાકેન્દ્ર અને મુખ્ય કેન્દ્રની વચ્ચે રાખવી જોઈએ.
- (3) અરીસાનું દર્પણમુખ નાનું હોવું જોઈએ નહિતર રચાતું પ્રતિબિંબ અલગ મળી શકે નહિ.
- (4) આંખને પ્રતિબિંબ પિન (સોય)થી અલગ જોવાના અંતરે (નીયર પૉઇન્ટ) (25 cm) દ્રષ્ટિ રાખવી જોઈએ.
- (5) વસ્તુના ઊલટા પ્રતિબિંબની ટોચ અને પ્રતિબિંબ પિનની ટોચ એકબીજાને સ્પર્શવી જોઈએ અને સંપાત થવી ન જોઈએ. દેષ્ટિસ્થાનભેદ દૂર કરતી વખતે આ ચકાસણી કરી લેવી.
- (6) સમગ્ર પ્રયોગ દરમિયાન પ્રતિબિંબ પિન અને વસ્તુ પિન અદલ-બદલ ન થવી જોઈએ.
- (7) f ની ગણતરી માટે u અને υ નાં સુધારેલાં મૂલ્યો જ સૂત્રમાં મૂકવા અને પછી f નું સરેરાશ મૂલ્ય લેવું જોઈએ. u અને υ નાં સરેરાશ મૂલ્યો લઈ fની ગણતરી ન કરવી.
- (8) પિનનું સ્પષ્ટ પ્રતિબિંબ જોવા માટે સફેદ પડદા અથવા સમતલ (રંગવિહીન) પૃષ્ઠ ભૂમિકાનો ઉપયોગ કરી શકાય.
- (9) સૂર્યનું પ્રતિબિંબ સીધું ન જોવું જોઈએ કેમકે તે તમારી આંખોને નુકસાન કરી શકે.

પ્રયોગશાળા માર્ગદર્શિકા

ત્રુટિનાં ઉદ્ગમો

- (1) જો ઓપ્ટિકલ બેન્ચ સમિક્ષિતિજ ન હોય અને તે જ રીતે જો પિનની ટોચ અને અરીસાનો ધ્રુવ સમાન સમિક્ષિતિજ સમતલમાં ન હોય, તો અવલોકનોમાં ત્રુટિ ઉદ્ભવી શકે.
- (2) અંતર્ગોળ અરીસાની સમગ્ર સપાટી પર પડ ચઢાવેલ (ફ્રન્ટ કૉટેડ) હોવું જોઈએ નહિતર અરીસાની પરાવર્તક સપાટી પરથી ઘણા બધા (બહુવિધ) પરાવર્તનો મળશે.

ચર્ચા

બિંદું Bનું પ્રતિબિંબ B' (આકૃતિ E 9.6)એવા બિંદુએ રચાશે કે જયાં બે કિરણો છેદતા હોય અથવા છેદતા હોય તેવો ભાસ થાય. વસ્તુના તિળયા A(મુખ્ય અક્ષ પર રહેલા)નું પ્રતિબિંબ, મુખ્ય અક્ષ પર એવી રીતે રચાવું જોઇએ કે જેથી અંતિમ પ્રતિબિંબ એ વસ્તુ જે રીતે અક્ષને લંબ છે.

સ્વ-મૂલ્યાંકન

- (1) દાંતના ડૉક્ટર (ડેન્ટિસ્ટ) દાંત જોવા માટે અંતર્ગોળ અરીસાનો ઉપયોગ કરે છે. તે કઈ રીતે ડેન્ટિસ્ટને મદદરૂપ થાય છે ?
- (2) જો પર u < f હોય, તો તમે અંતર્ગોળ અરીસાની કેન્દ્રલંબાઈ નક્કી કરી શકો ?

સૂચવેલ વધારાના પ્રયોગો / પ્રવૃત્તિઓ

- (1) $u_{\mathcal{O}}$ ને Y-અક્ષ પર અને u+v ને X-અક્ષ પર લઈ $u_{\mathcal{O}}$ વિરુદ્ધ u+v નો આલેખ દોરો. આલેખના ઢાળ પરથી f નક્કી કરો.
- (2) સ્ફેરોમિટરની મદદથી, અંતર્ગોળ અરીસાની વક્રતાત્રિજ્યા નક્કી કરો અને તેની કેન્દ્રલંબાઈ

$$\left(f = \frac{R}{2}\right) \quad \text{sign}.$$

હેતુ

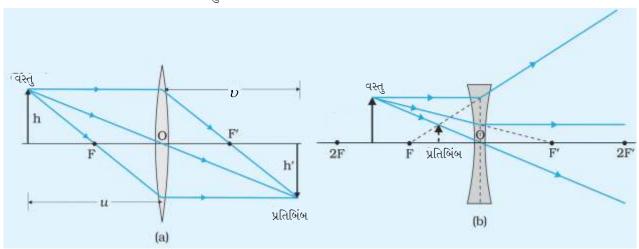
બહિર્ગીળ લેન્સ માટે u અને v અથવા $\frac{1}{u}$ અને $\frac{1}{v}$ વચ્ચેના આલેખ દોરી કેન્દ્રલંબાઈ શોધવી.

સાધનો અને જરૂરી સામગ્રી

ઓપ્ટિકલ બેન્ચ, તીક્ષ્ણ ધારવાળી બે સોય (પિન), 20 cm કરતાં ઓછી કેન્દ્રલંબાઈ ધરાવતો બહિર્ગોળ લેન્સ, ત્રણ અપરાઇટ્સ (ક્લેમ્પ સહિત), ઇન્ડેક્સ નીડલ (સોય), (ગૂંથણ માટેની સોય પણ હોઈ શકે), માપપટ્ટી અને સ્પિરિટ લેવલ

પદો અને વ્યાખ્યાઓ

- (1) લેન્સની મુખ્ય અક્ષ એ બે સપાટીઓનાં વક્રતાકેન્દ્રોને જોડતી રેખા છે.
- (2) ઓપ્ટિકલ કેન્દ્ર એ લેન્સનું એવું બિંદુ છે કે જેમાંથી પસાર થતું કિરણ અવિચલિત રહે છે.
- (3) મુખ્ય કેન્દ્ર એક એવું બિંદુ છે કે મુખ્ય અક્ષને સમાંતર કિરણો લેન્સમાંથી પસાર થયા બાદ જ્યાં ભેગાં થતાં હોય (બહિર્ગોળ) અથવા ભેગા થતા હોય તેવો ભાસ થાય (અંતર્ગોળ).
- (4) કેન્દ્રલંબાઈ એ લેન્સના ઓપ્ટિકલ કેન્દ્ર અને મુખ્ય કેન્દ્ર વચ્ચેનું અંતર છે.
- (5) આલેખના અંતઃખંડો : જો કોઈ આલેખ X-અક્ષ અને Y-અક્ષને છેદે, તો ઊગમબિંદુ અને છેદનબિંદુનાં સ્થાનો વચ્ચેની લંબાઈઓ એ આલેખના અંતઃખંડો છે.


પાતળા લેન્સ દ્વારા રચાતા પ્રતિબિંબનું સ્થાન શોધવાની આલેખીય પદ્ધતિ

પાતળા લેન્સની મદદથી રચાતા પ્રતિબિંબનું સ્થાન નક્કી કરવા માટે વસ્તુના દરેક બિંદુએથી ઉદ્ભવતાં બધાં જ કિરણોના વકીભવનને અનુસરીને આલેખીય પદ્ધતિ વાપરી શકાય. તેમ છતાં, નીચેનાં ત્રણ કિરણોમાંથી ગમે તે બે પસંદ કરવા વધારે સગવડભર્યા છે (આકૃતિ E 10.1).

Downloaded from https://www.studiestoday.com

પ્રયોગશાળા માર્ગદર્શિકા

- (1) વસ્તુની ટોચમાંથી, લેન્સની મુખ્ય અક્ષને સમાંતર કિરણ કે જે વકીભવન પામ્યા બાદ દ્વિતીય મુખ્ય કેન્દ્ર F' માંથી પસાર થાય (બહિર્ગોળ લેન્સમાં) અથવા પ્રથમ મુખ્ય કેન્દ્રમાંથી અપસરણ પામતાં (divergence) દેખાય (અંતર્ગોળ લેન્સમાં).
- (2) વસ્તુની ટોચમાંથી નીકળતું કિરણ ઓપ્ટિકલ કેન્દ્ર પર આપાત થાય ત્યારે અવિચલિત રીતે લેન્સ માંથી પસાર થાય. આમ થવાનું કારણ કેન્દ્રની નજીક લેન્સ એ કાચના પાતળા સ્લેબ તરીકે વર્તે છે.
- (3) વસ્તુના તે જ બિંદુમાંથી આવતું પ્રકાશનું કિરણ પ્રથમ મુખ્ય કેન્દ્ર Fમાંથી (બહિર્ગોળ લેન્સ માટે) પસાર થાય અથવા F' માંથી (અંતર્ગોળ લેન્સ માટે) પસાર થતું દેખાય, તે વક્કીભવન પામ્યા બાદ મુખ્ય અક્ષને સમાંતર નિર્ગમન પામે છે.

આકૃતિ E 10.1 (a) બહિર્ગોળ લેન્સ અને અંતર્ગોળ લેન્સ દ્વારા પ્રતિબિંબની રચના માટેનો કિરણ-પથ

સિદ્ધાંત

પાતળા બહિર્ગોળ લેન્સના ઓપ્ટિકલ કેન્દ્રથી $\mathbf u$ અંતરે મૂકેલ વસ્તુ માટે, ઓપ્ટિકલ કેન્દ્રથી બીજી બાજુએ $\mathbf v$ અંતરે વાસ્તવિક અને ઊલટું પ્રતિબિંબ રચાય છે. આ અંતરો વચ્ચેનો સંબંધ

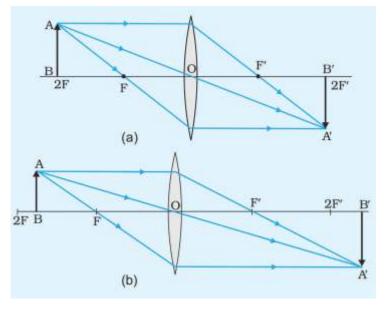
$$\frac{\text{(E 10.1)}}{f} = \frac{1}{v} - \frac{1}{u} \text{ } \hat{\omega}.$$

નવી કાર્તેઝિય સંજ્ઞા પધ્ધતિ અનુસાર (જુઓ ભૌતિકવિજ્ઞાન, પાઠ્યપુસ્તક, NCERT, 2007 ધોરણ XII, ભાગ II પાન નં. 311) u ઋણ છે. પરંતુ υ ધન છે. (આકૃતિ E 10.2 (a) અને (b)). તેથી સમીકરણ (E 10.1) u અને υ ના મૂલ્યના સ્વરૂપમાં નીચેનું સ્વરૂપ લે છે.

$$\frac{\text{(E 10.2)}}{f} = \frac{1}{\upsilon} + \frac{1}{u}$$

અથવા $f = \frac{uv}{u+v}$

(E 10.3)


આ પરિણામમાં u અને υ નાં ધન મૂલ્યો અવેજ કરવા. સમીકરણ (E 10.2) દર્શાવે છે કે $\frac{1}{\upsilon}$

વિરુદ્ધ $\frac{1}{u}$ નો આલેખ ઋણ ઢાળવાળી સુરેખ રેખા મળે. જો $\frac{1}{v}$ શૂન્ય હોય અથવા $\frac{1}{u}$ શૂન્ય હોય

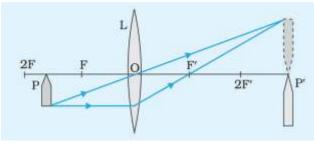
ત્યારે અનુક્રમે $\frac{1}{u} = \frac{1}{f}$ અથવા $\frac{1}{v} = \frac{1}{f}$. આલેખના બંને અક્ષો પરના અંતઃખંડો $\frac{1}{f}$ છે. u વિરુદ્ધ

 υ નો આલેખ અતિવલય છે. જયારે $u=\upsilon$ ત્યારે બં ને 2f જેટલા થાય. સમીકરણ (E 10.3) દર્શાવે છે કે u અને υ નાં મૂલ્યો અદલબદલ કરી શકાય છે.

જયારે એક વસ્તુ (ધારો કે એક પિન) પાતળા બહિર્ગોળ લેન્સની સામે 2f જેટલા અંતરે મૂકવામાં આવે, ત્યારે લેન્સની બીજી બાજુએ 2f જેટલા અંતરે સમાન માપનું વાસ્તવિક અને ઊલટું પ્રતિબિંબ રચાય છે. [આકૃતિ E 10.2 (a)] જો વસ્તુનું સ્થાન લેન્સના ઓપ્ટિકલ કેન્દ્રથી અંતર 2f અને અંતર f ની વચ્ચે હોય ત્યારે લેન્સની બીજી બાજુએ ઓપ્ટિકલ કેન્દ્રથી 2f કરતાં વધારે અંતરે વાસ્તવિક, ઊલટું અને વિવર્ધિત થયેલ પ્રતિબિંબ રચાશે. (આકૃતિ E 10.2 (b)) આમ, અંતર u અને v માપીને, બહિર્ગોળ લેન્સની કેન્દ્રલંબાઈ સમીકરણ (E 10.3)ના ઉપયોગ

આકૃતિ E 10.2 (a), (b) બહિર્ગાળ લેન્સ દ્વારા પ્રતિબિંબની રચના (a) u = 2f અને (b) 2f > u > f

વડે નક્કી કરી શકાય છે. લેન્સની કેન્દ્રલંબાઈ, \mathbf{u} અને \mathbf{v} વચ્ચે અથવા $\frac{1}{u}$ અને $\frac{1}{v}$ વચ્ચે આલેખ દોરી નક્કી કરી શકાય છે.


પદ્ધતિ

(1) દૂરની વસ્તુને (લેન્સની મદદથી) કેન્દ્રિત કરી પ્રતિબિંબ મેળવી પાતળા બહિર્ગોળ લેન્સની કેન્દ્રલંબાઈનું અંદાજિત મૂલ્ય મેળવો. સૂર્યનું તીક્ષ્ણ પ્રતિબિંબ અથવા દૂરના ઝાડનું લેન્સની બીજી બાજુએ મૂકેલા પડદા પર ધારો કે સમતલ દીવાલ અથવા કાગળ પર મેળવો અને માપપટ્ટીની મદદથી લેન્સ અને પ્રતિબિંબ વચ્ચેનું અંતર માપીને તે (અંદાજિત કેન્દ્રલંબાઈ) શોધી શકાય છે. આ અંતર બહિર્ગોળ લેન્સની અંદાજિત કેન્દ્રલંબાઈ, f છે.

નોંધ : સૂર્યનું પ્રતિબિંબ સીધું ન જોવું જોઈએ કેમકે તે તમારી આંખોને નુકસાન કરી શકે છે.

પ્રયોગશાળા માર્ગદર્શિકા

- (2) દઢ ટેબલ અથવા પ્લેટફોર્મ પર ઓપ્ટિકલ બેંચને ગોઠવો. સ્પિરિટ લેવલનો ઉપયોગ કરીને બેન્ચના પાયામાં આપેલ લેવલિંગ સ્કૂની મદદથી તેને સમક્ષિતિજ ગોઠવો.
- (3) અપરાઇટ્સમાં બહિર્ગોળ લેન્સને જડિત કરો અને તેને ઓપ્ટિકલ બેન્ચના લગભગ મધ્યમાં એવી રીતે ગોઠવો કે જેથી તેની મુખ્ય અક્ષ ઓપ્ટિકલ બેન્ચને સમાંતર રહે. આ સ્થિતિમાં, લેન્સ એ ઓપ્ટિકલ બેન્ચના લંબ સમતલમાં રહેશે.
- (4) ઇન્ડેક્સ-સુધારો નક્કી કરવા માટે, સ્ટૅન્ડ પર ગોઠવેલ (mounted) પિન લેન્સની નજીક લાવો. ઇન્ડેક્સ સોય (તીક્ષ્શ ધારવાળી ગૂંથશ માટેની સોય પણ આ હેતુ માટે વપરાય) સમિક્ષિતિજ એવી રીતે ગોઠવો કે જેથી તેનો એક છેડો લેન્સની વક્કસપાટીની એક ધારને સ્પર્શે અને બીજો છેડો પિનની ટોચને સ્પર્શે. બે અપરાઇટ્સના સ્થાન ઓપ્ટિકલ બેન્ચ પર આપેલી માપપટ્ટી પર નોંધો. આ બે બિંદુ વચ્ચેનો તફાવત એ ઇન્ડેક્સ સોયની અવલોકિત લંબાઈ આપશે. પિનની ટોચ અને ઓપ્ટિકલ કેન્દ્ર O વચ્ચેની લંબાઈ એ ઇન્ડેક્સ સોયની સાચી લંબાઈ (જેનું માપન માપપટ્ટી દ્વારા કર્યું) વત્તા લેન્સની જાડાઈનું અડધું, કેમ કે દ્વિબહિર્ગોળ લેન્સમાં સમાન વક્રતાત્રિજયા ધરાવતી સપાટીઓ માટે તે (ઓપ્ટિકલ કેન્દ્ર) સપાટીઓનું (જોડતી રેખાનું) ભૌમિતિક કેન્દ્ર છે. આ બે લંબાઈઓ વચ્ચેનો તફાવત એ ઇન્ડેક્સ-સુધારો છે. બંને પિનો માટે ઇન્ડેક્સનો સુધારો શોધો.
- (5) માઉન્ટેડ (સ્ટૅન્ડ પર ગોઠવેલ) તીક્ષ્ણ પિનો P અને P'ને ઊર્ધ્વ રીતે અનુક્રમે (આકૃતિ E 10.3)

આકૃતિ E 10.3 : બહિર્ગોળ લેન્સની કેન્દ્રલંબાઈ શોધવા માટેનો કિરણ રેખાકૃતિ

લેન્સની ડાબી અને જમણી બાજુ ગોઠવો. પિનો P અને P'ને એવીરીતે ગોઠવો કે જેથી ટોચની ઊંચાઈ ઓપ્ટિકલ બેન્ચના પાયાથી લેન્સના ઓપ્ટિકલ કેન્દ્રની ઊંચાઈ જેટલી થાય. ધારો કે પિન P (લેન્સની ડાબી બાજુએ મૂકેલ)ને વસ્તુ પિન તરીકે લો અને પિન P' (લેન્સની જમણી બાજુએ રહેલ) ને પ્રતિબિંબ પિન તરીકે ગણીએ. કાગળનો નાનો ટુકડો બે પૈકી કોઈ એક પિન ધારો કે (પ્રતિબિંબ પિન P') મૂકો જે વસ્તુ પિન P થી તેને જુદી પાડે.

- (6) વસ્તુ પિન P (લેન્સની ડાબી બાજુએ)ને લેન્સના ઓપ્ટિકલ કેન્દ્ર O થી 2f કરતાં સહેજ ઓછા અંતરે ગોઠવો. (આકૃતિ E 10.3) લેન્સની બીજી બાજુ પ્રતિબિંબ પિન P' ની ઉપર ઊલટા અને વાસ્તવિક પ્રતિબિંબનું સ્થાન મેળવો.
- (7) દિષ્ટિસ્થાન ભેદની રીતના ઉપયોગથી, પ્રતિબિંબ પિન P'નું સ્થાન એવી રીતે ગોઠવો કે જેથી વસ્તુ પિન Pનું પ્રતિબિંબ એ પ્રતિબિંબ પિન P' સાથે એકાકાર બને.
- નોંધ : જેમ uનું મૂલ્ય 2f થી f તરફ બદલાય, υ નું મૂલ્ય 2f થી અનંત તરફ બદલાશે. u અને υ ના મૂલ્ય અદલબદલ કરી શકાય તેવા છે, એટલે કે વસ્તુ અને પ્રતિબિંબ બે સંલગ્નિત બિંદુ છે, તેથી તે સ્પષ્ટ છે કે વસ્તુ પિનને 2f થી fની અવિધમાં ખસેડતાં u અને υ બંનેનાં મૂલ્યોના અવિધ મૂલ્યોનો સંપૂર્ણ વિસ્તાર f અને અનંતની વચ્ચે હોય છે.

- (8) ઓપ્ટિકલ બેન્ચ પર વસ્તુ પિન, બહિર્ગાળ લેન્સ અને પ્રતિબિંબ પિનના અપરાઇટ્સનાં સ્થાન નોંધો અને અવલોકન-કોષ્ટકમાં અવલોકનો નોંધો.
- (9) વસ્તુ પિનને લેન્સના ઓપ્ટિકલ કેન્દ્રની નજીક ખસેડો (2 cm અથવા 3 cm જેટલું). પ્રયોગનું પુનરાવર્તન કરો અને લેન્સથી f અને 2f અંતરની વચ્ચે વસ્તુ પિન અંતરનાં ઓછામાં ઓછા છ અવલોકનોના સમૂહ માટે અવલોકનો નોંધો.

અવલોકન

- (1) બહિર્ગાળ લેન્સની અંદાજિત કેન્દ્રલંબાઈ = cm
- (2) ઇન્ડેક્સ સોય (નીડલ)ની મીટરપટ્ટી વડે માપેલ લંબાઈ $L_{_0} =$ cm
- (3) પાતળા બહિર્ગાળ લેન્સની જાડાઈ (આપેલ), t = cm
- (4) લેન્સના ઓપ્ટિકલ કેન્દ્ર O અને પિનની ટોચ વચ્ચેની ખરેખર (વાસ્તવિક) લંબાઈ $l_{_0} = L_{_0} + t \, / \, 2 = \, \, \ldots \ldots \, \, \mathrm{cm}$
- (5) ઇન્ડેક્સ નીડલની અવલોકિત લંબાઈ, $l'_0 = બહિર્ગાળ લેન્સના કેન્દ્ર અને વસ્તુ પિનની ટોચ વચ્ચેનું અંતર$
 - = માપપટ્ટી પર (લેન્સના અપરાઇટનું સ્થાન વસ્તુ પિનના અપરાઇટનું સ્થાન) = ____ cm - ___ cm = ___ cm
- (6) વસ્તુઅંતર માટે ઇન્ડેક્સ–સુધારો $e_{_0}=l_{_0}-l'_{_0}=$ cm તે જ રીતે પ્રતિબિંબ પિન માટે $e_{i}=l_{i}-l'_{i}=$ cm.

કોષ્ટક E 10.1 $u,\ \upsilon$ અને f નક્કી કરવા

ક્રમ નં.	લેન્સ અપરાઈટ <i>a (cm)</i>	વસ્તુ પિન અપરાઇટ <i>b (cm)</i>	પ્રતિબિંબ પિન અપરાઈટ <i>c (cm)</i>	અવલોકિત $u=a-b\ (cm)$	અવલોકિત $v = a - c \ (cm)$	સુધારેલ $u=$ અવલોકિત $u+e_{_{\theta}}$ (cm)	સુધારેલ $v=$ અવલોકિત $v+e_i$ (cm)	$\frac{1}{u}$ cm^{-1}	1 v cm ⁻¹	$f = \frac{uv}{u + v}$ cm	Δf (cm)
1 2 6											
સરેરાશ											

પ્રયોગશાળા માર્ગદર્શિકા

ગણતરીઓ

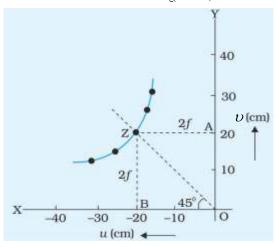
A. u અને v ના સુધારેલ મૂલ્યો ગણો. સમીકરણ (E 10.3)નો ઉપયોગ કરી fનું મૂલ્ય ગણો. કોષ્ટકમાં તેને નોંધો અને આપેલ બહિર્ગોળ લેન્સની સરેરાશ કેન્દ્રલંબાઈનું મૂલ્ય શોધો.

ત્રુટિ

$$\frac{1}{f} = \frac{1}{u} + \frac{1}{v}$$

અથવા
$$\frac{\Delta f}{f^2} = \frac{\Delta u}{u^2} + \frac{\Delta U}{U^2}$$

$$\therefore \Delta f = f^2 \left[\frac{\Delta u}{u^2} + \frac{\Delta \upsilon}{\upsilon^2} \right]$$


 Δf નાં છ મૂલ્યોમાંથી મહત્તમ મૂલ્યને પરિણામ સાથે પ્રાયોગિક ત્રુટિ તરીકે રજૂ કરો.

આલેખ દોરીને કેન્દ્રલંબાઈની ગણતરી

(આલેખો દોરવાની વિસ્તૃત પદ્ધતિ પ્રકરણ 1, મુદ્દા 1.8 (પાન નં. 15) પર ઉદાહરણ રૂપે આપેલ છે.)

B. $u-\upsilon$ ના આલેખ : u ને X-અક્ષ પર અને υ ને Y-અક્ષ પર લો.

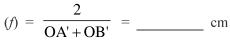
X અને Y-અક્ષ પરના પ્રમાણમાપ સમાન હોવા જોઈએ. u અને v ના જુદાં-જુદાં મૂલ્યો માટે અતિવલય વક્ર દોરો. (આકૃતિ E 10.4) નોંધો કે f અને 2fની વચ્ચેના u નાં છ અવલોકનોના સમૂહ માટે, u અને v નાં મૂલ્યો અદલ-બદલ કરીને તમને આલેખ પર 12 બિંદુઓ મળશે.

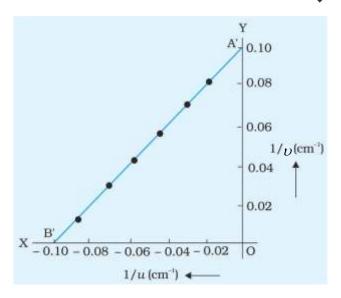
બિંદુ u=2f, v=2f ને u-v આલેખમાં બિંદુ Z તરીકે દર્શાવેલ છે. (આકૃતિ E 10.4). બિંદુ Z એ $\angle XOY$ ની દિભાજક રેખા OZ અને અતિવલય આલેખનું છેદનબિંદુ છે. બે રેખાઓ AZ અને BZ અનુક્રમે Y-અક્ષ અને X-અક્ષ પર લંબરેખાઓ દોરો. AZ અને BZ બંનેની લંબાઈઓ અંતર 2f જેટલી છે. આમ, u-v આલેખ દોરીને લેન્સની કેન્દ્રલંબાઈ મેળવી શકાય છે.

Y-અક્ષ પર અંતર OA (= 2f) = _____ cm X-અક્ષ પર અંતર (OB) (= 2f) = ____ cm બહિર્ગાળ લેન્સની સરેરાશ કેન્દ્રલંબાઈ

આકૃતિ
$$E$$
 10.4 : બહિર્ગોળ લેન્સ માટે u વિરુદ્ધ v નો આલેખ $f=rac{\mathrm{OA}+\mathrm{OB}}{4}=$ _____ cm

C. $\frac{1}{u} - \frac{1}{\upsilon}$ આલેખ: $\frac{1}{u}$ X અક્ષ પર અને $\frac{1}{\upsilon}$ Y-અક્ષ પર લઈ સુરેખ આલેખ દોરો. (આકૃતિ E 10.5) OA' (Y-અક્ષ પર) અને OB' (X-અક્ષ પર) બંને અંત:ખંડો $\frac{1}{f}$ જેટલા સમાન હશે.


Y-અક્ષ પરનો અંતઃખંડ


$$OA'$$
 $\left(=\frac{1}{f}\right) = \underline{\qquad} cm^{-1}$

X-અક્ષ પરનો અંતઃખંડ

OB'
$$\left(=\frac{1}{f}\right) = \underline{\qquad} \text{cm}^{-1}$$

બહિર્ગાળ લેન્સની સરેરાશ કેન્દ્રલંબાઈ

આકૃતિ E 10.5 : બહિર્ગાળ લેન્સ માટે $\frac{1}{u}$ વિરુદ્ધ $\frac{1}{v}$ નો આલેખ (પ્રમાણમાપ સિવાય)

પરિણામ

આપેલ અભિસારી પાતળા બહિર્ગાળ લેન્સની કેન્દ્રલંબાઈઃ

- (i) અવલોકન કોષ્ટક E. 10.1માં દર્શાવ્યા મુજબ ગણતરીથી મેળવેલ $f \pm \Delta f =$ _____ cm. (અહીં f એ કેન્દ્રલંબાઈનું સરેરાશ મૂલ્ય છે.)
- (ii) u-v ના આલેખ પરથી = ____ cm અને
- (iii) $\frac{1}{u} \frac{1}{v}$ ના આલેખ પરથી = ____cm

સાવચેતીઓ

- (1) પ્રકાશીય ઘટકો (વસ્તુ)ને આધાર આપતાં અપરાઇટ્સ દઢ અને ઊર્ધ્વ ગોઠવાયેલાં હોવાં જોઈએ.
- (2) લેન્સનું દર્પણમુખ નાનું હોવું જોઈએ નહિંતર રચાતું પ્રતિબિંબ અલગ મળી શકે નહિં.
- (3) આંખને પ્રતિબિંબ સોય (પિન)થી 25 cm કરતાં વધારે અંતરે ગોઠવવી જોઈએ.
- (4) જો ઓપ્ટિકલ બેન્ચ સમક્ષિતિજ ન હોય અને તે જ રીતે જો પિનોની ટોચ અને લેન્સનું ઓપ્ટિકલ કેન્દ્ર સમાન સમક્ષિતિજ ઊંચાઈએ (લેવલે) ન હોય, તો અવલોકનોમાં ત્રુટિ આવી શકે.
- (5) પ્રયોગ કરતા હોય તે દરમિયાન, પ્રતિબિંબ અને વસ્તુ પિન અદલ-બદલ ન થવી જોઈએ, કારણ કે વસ્તુ અંતર અને પ્રતિબિંબ અંતરના ઇન્ડેક્સ-સુધારા માટે કારણભૂત બની શકે છે.

પ્રયોગશાળા માર્ગદર્શિકા

- (6) વસ્તુ પિનના ઊલટા પ્રતિબિંબની ટોચ પ્રતિબિંબ પિનની ટોચને સ્પર્શવી જોઈએ અને સંપાત ન થવી જોઈએ. જ્યારે દેષ્ટિસ્થાન ભેદ દૂર થાય ત્યારે આની ખાતરી કરી લેવી.
- (7) ઓપ્ટિકલ બેન્ચના બધા પ્રયોગો દરમિયાન (જે ઓપ્ટિકલ બેન્ચના વિવરણમાં આપેલ છે.) બધી જ સામાન્ય સૂચનાઓની કાળજી રાખવી (જરૂરી છે.)
- (8) f ની ગણતરી માટે, અંતરો u અને v નાં સુધારેલ મૂલ્યો જ સૂત્રમાં મૂકવા અને પછી f નું સરેરાશ મૂલ્ય લેવું જોઈએ. u અને v નાં સરેરાશ મૂલ્યો લઈને f ની ગણતરી ન કરવી.

ત્રુટિનાં ઉદ્ગમો

- (1) અપરાઇટ્સ ઊર્ધ્વ ન પણ હોઈ શકે.
- (2) દેષ્ટિસ્થાન ભેદ ચોકસાઈથી દૂર થયેલ ન હોઈ શકે.
- (3) ઇન્ડેક્સ-સુધારો શોધવા માટેની ગૂંથણ માટેની સોય અથવા ઇન્ડેક્સ સળિયો (પિન) એ સોય જેવી તીક્ષ્ણ હોતી નથી. માપપટ્ટી પર તેની ચોકસાઈથી લંબાઈ માપી શકાતી નથી.

ચર્ચા

 $\frac{1}{\upsilon} \text{ વિરુદ્ધ } \frac{1}{u} \text{ નો આલેખ દોરવા, જો બંને અક્ષ પર પ્રમાણમાપ સમાન ન હોય, તો સુરેખ રેખીય આલેખ <math>X$ -અક્ષ સાથે 45°ના ખૂશે ન પણ હોય. જે પરિણામમાં મૂંઝવણો પેદા કરે અને આલેખ દોરવામાં ત્રુટિ ઉદ્ભવે. સમાન પ્રમાણમાપ રાખીને અને X-અક્ષ સાથે 45°ના ખૂશે શ્રેષ્ઠ બંધબેસતો આલેખ દોરવો એ ઉત્તમ પદ્ધતિ છે. પછી બંને અક્ષો પર $\frac{1}{f}$ નું માપનમાં ખૂબ જ મોટું અથવા ખૂબ જ નાનું બને જે અંતર્ગત ત્રુટિઓનું કારણ થશે.

સ્વ-મૂલ્યાંકન

- (1) બહિર્ગાળ લેન્સના કિસ્સામાં વસ્તુનું સ્થાન અનંતથી ઓપ્ટિકલ કેન્દ્ર તરફ બદલાતું હોય તેના પ્રતિબિંબની રચના માટે કિરણ રેખાકૃતિ દોરો.
- (2) બહિર્ગાળ લેન્સ અને અંતર્ગાળ લેન્સ દ્વારા રચાતા પ્રતિબિંબમાં કયા તફાવત છે ?
- (3) જાડા બહિર્ગાળ લેન્સની કેન્દ્રલંબાઈ પાતળા બહિર્ગાળ લેન્સની કેન્દ્રલંબાઈ કરતાં કઈ રીતે જુદી પડે છે?
- (4) બહિર્ગાળ લેન્સ, કાચના વર્તુળાકાર સ્લેબ અને અંતર્ગાળ લેન્સને અડક્યા સિવાય કઈ રીતે પારખી શકશો ?
- (5) સમતલ બહિર્ગાળ લેન્સની સમતલ સપાટી માટે વક્રતા-કેન્દ્ર ક્યાં આવેલું હોય છે ?
- (6) સમતલ બહિર્ગીળ લેન્સ માટે મુખ્ય અક્ષની વ્યાખ્યા આપો.

પ્રયોગ 10

- (7) જો બહિર્ગીળ લેન્સને પાણીમાં ડુબાડવામાં આવે તો, તેની કેન્દ્રલંબાઈમાં કેવો ફેરફાર થશે ?
- (8) સમતલ બહિર્ગાળ લેન્સ માટે કેન્દ્રલંબાઈ અને વક્રતાકેન્દ્ર વચ્ચે શું સંબંધ છે ?
- (9) લેન્સ દ્વારા રચાતું આભાસી પ્રતિબિંબ ઊલટું હોઈ શકે ?

સૂચવેલ વધારાના પ્રયોગો / પ્રવૃત્તિઓ

(1) uvને Y-અક્ષ પર અને u+v ને X-અક્ષ પર લઈ આલેખ દોરો. બહિર્ગાળ લેન્સની કેન્દ્રલંબાઈ આલેખના ઢાળ પરથી નક્કી કરો.

(2) કેન્દ્રલંબાઈ પર માધ્યમની અસર :

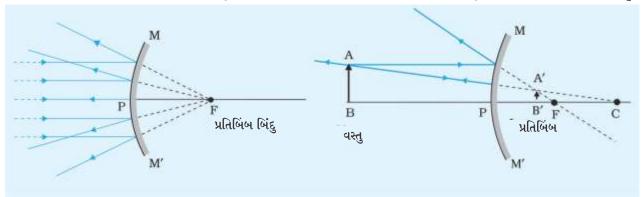
તમારી પાસે માછલીઘર છે, તેનાથી અમુક અંતરે એક ખુલ્લી બારી છે અને 50 cm વ્યાસ ધરાવતો બિલોરી (વિપુલદર્શક) (મેગ્નિફાઇંગ) કાચ છે. 30 cm લંબાઈ ધરાવતી માપપટ્ટીની મદદથી મેગ્નિફાઇંગ (બિલોરી) કાચની હવામાં લગભગ કેન્દ્રલંબાઈ શોધો. પછી ડાબા હાથે તેને પાણીમાં ડુબાડો અને જમણા હાથે એક સફેદ પ્લાસ્ટિકની કોથળી (5 cm × 5 cmનું કાર્ડ રહે તેમ વાળીને સફેદ પડદો બનાવવા માટે)ને ડુબાડો. પડદાનું સ્થાન બદલીને દૂરની વસ્તુનું પ્રતિબિંબ પડદા પર મેળવો. (કેન્દ્રિત કરો). શું પાણીમાં લગભગ કેન્દ્રલંબાઈએ હવામાં મેળવેલ લગભગ કેન્દ્રલંબાઈ કરતાં મોટી છે કે નાની ? મિત્રને પાણીમાં આ કેન્દ્રલંબાઈ માપવા કહો અને તે બેનો ગુણોત્તર શોધો.

(3) સ્વચ્છ ઇલેક્ટ્રિક બલ્બના ફિલામેન્ટની લંબાઈનું માપન :

તમે ફિલામેન્ટની પાછળ કે તેના સંપર્કમાં માપપટ્ટી મૂકીને તેની લંબાઈ માપી શકતા નથી. અલબત્ત તમે વર્નિયર માઇક્રોસ્કૉપની મદદથી આ માપન કરી શકો છો. પરંતુ શું આ માત્ર સાદા બહિર્ગોળ લેન્સ અને માપપટ્ટીની મદદથી કરી શકાય ? તમે પ્રયોગમાં જરૂરિયાત મુજબ ક્લેમ્પ-સ્ટૅન્ડ જેવાં સાધનો પણ ઉમેરી શકો. શું તમે બલ્બના ફિલામેન્ટમાં અડીને આવેલા વિભાગો વચ્ચેની અંધારી (ડાર્ક) ખાલી જગાનું માપન કરી શકશો ?

<mark>પ્ર</mark>યોગ 11

હેતુ


બહિર્ગાળ લેન્સનો ઉપયોગ કરી બહિર્ગાળ અરીસાની કેન્દ્રલંબાઈ શોધવી.

સાધનો અને જરૂરી સામગ્રી

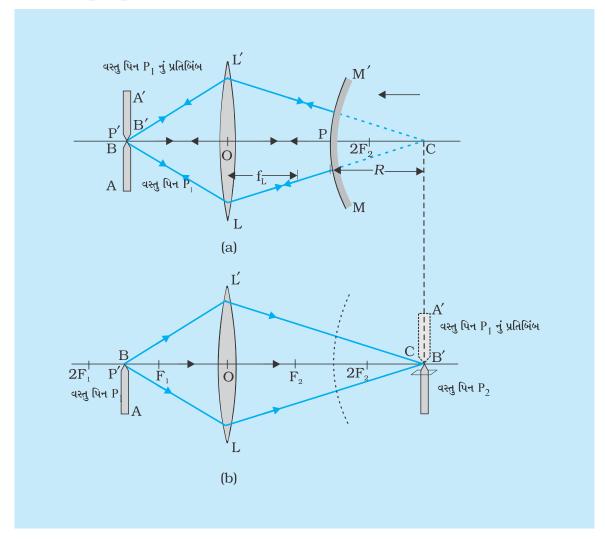
લેન્સને પકડી રાખવા માટેના અપરાઇટ્સ (સ્તંભ) સાથેની ઓપ્ટિકલ બેન્ચ, અરીસો અને બે સોય (પિન), પાતળો બહિર્ગાળ લેન્સ, બહિર્ગાળ અરીસો, ઇન્ડેક્સ સોય (ગૂંથણ માટેની સોય અથવા બંને છેડે અણીદાર પૉઇન્ટેડ પેન્સિલ પણ ચાલે), મીટરપટ્ટી અને સ્પિરિટ લેવલ.

સિદ્ધાંત

આકૃતિ E 11.1 એ બહિર્ગોળ અરીસા MM' (નાનું દર્પણમુખ ધરાવતો) વડે બે જુદી-જુદી પરિસ્થિતિમાં વસ્તુ ABનાં પ્રતિબિંબની રચના સમજાવે છે. બહિર્ગોળ અરીસા વડે રચાતું પ્રતિબિંબ આભાસી અને ચત્તું હોય છે તેથી તેની કેન્દ્રલંબાઈ સીધેસીધી માપી શકાતી નથી. તેમ છતાં, વસ્તુ અને બહિર્ગોળ અરીસાની વચ્ચે બહિર્ગોળ લેન્સને દાખલ કરીને તે નક્કી કરી શકાય છે. (આકૃતિ E 11.2). પાતળા બહિર્ગોળ લેન્સની સામે વસ્તુ ABને P' બિંદુએ એવી રીતે મૂકો કે જેથી તેનું વાસ્તવિક ઊલટું અને વિવર્ધિત પ્રતિબિંબ A'B' લેન્સની બીજી બાજુએ C' સ્થાન પર રચાય. (આકૃતિ

આકૃતિ E 11.1 (a)

વસ્તુ અનંત અંતરે છે. ખૂબ જ નાનું અને બિંદુવત્ પ્રતિબિંબ બહિર્ગોળ અરીસાની પાછળ કેન્દ્રિતથતું મળે છે. આકૃતિ E 11.1 (b)


અરીસાની સામે વસ્તુ છે. અરીસાની પાછળ નાનું, આભાસી પ્રતિબિંબ, મુખ્ય કેન્દ્ર અને ધ્રુવની વચ્ચે રચાય છે.

E 11.2 (b)). હવે બહિર્ગોળ લેન્સ અને બિંદુ Cની વચ્ચે બહિર્ગોળ અરીસો દાખલ કરો અને એવી રીતે ગોઠવો કે જેથી વાસ્તવિક અને ઊલટું પ્રતિબિંબ A'B' એ P' બિંદુએ રહેલી વસ્તુ AB સાથે એકરૂપ થાય [આકૃતિ E 11.2 (a)]. આ ત્યારે જ શક્ય બને જ્યારે વસ્તુની ટોચમાંથી શરૂ કરી

Downloaded from https://www.studiestoday.com

પ્રકાશનું કિરણ લેન્સમાંથી પસાર થયા બાદ, બહિર્ગોળ અરીસાની પરાવર્તક સપાટી પર લંબરૂપે આપાત થાય અને તેમના માર્ગને પુનઃપ્રાપ્ત કરે. ગોલીય સપાટીને કોઈ લંબકિરણ તે ગોળાની ત્રિજ્યા પર ગોઠવાય છે. આથી (C બિંદુએ) બહિર્ગોળ અરીસાનું વક્રતાકેન્દ્ર જ હોવું જોઈએ. તેથી, અંતર PC એ વક્રતાત્રિજયા R અને તેનું અર્ધમૂલ્ય એ બહિર્ગોળ અરીસાની કેન્દ્રલંબાઈ f થશે. આમ,

$$f = \frac{PC}{2} = \frac{R}{2}$$

આકૃતિ E 11.2 (a) બહિર્ગોળ અરીસા અને બહિર્ગોળ લેન્સ દ્વારા પ્રતિબિંબની રચના P' બિંદુએ પ્રતિબિંબ A'B' વસ્તુ AB સાથે એકરૂપ થાય છે. (b) બહિર્ગોળ લેન્સ - પ્રતિબિંબ ઊલટું અને વિવિધિત છે

પદ્ધતિ

(1) જો કોઈ કિસ્સામાં આપેલ પાતળા બહિર્ગોળ લેન્સની કેન્દ્રલંબાઈ જાણીતી ન હોય, તો પહેલાં તેની કેન્દ્રલંબાઈના લગભગ મૂલ્યનો અંદાજ મેળવો.

પ્રયોગશાળા માર્ગદર્શિકા

- (2) ઓપ્ટિકલ બેન્ચને દઢ ટેબલ પર અથવા પ્લેટફૉર્મ પર ગોઠવો. સ્પિરિટ લેવલ અને બેન્ચના પાયામાં આપેલા સ્કૂની મદદથી તેને સમક્ષિતિજ ગોઠવો.
- (3) સમક્ષિતિજ ઓપ્ટિકલ બેન્ચ પર ગોઠવેલી અપરાઇટ્સમાં પિન P_1 (વસ્તુ પિન), બહિર્ગાળ લેન્સ LL' અને બહિર્ગાળ અરીસા MM'ને ગોઠવો [આકૃતિ E 11.2 (a)].
- (4) લેન્સ, અરીસો અને પિન P₁ ઓપ્ટિકલ બેન્ચ ઉપર ઊર્ધ્વ રીતે જ ગોઠવાયેલ છે તે ચકાસો. પિનની ટોચ, બહિર્ગોળ લેન્સ LL'નું ઓપ્ટિકલ કેન્દ્ર O અને બહિર્ગોળ અરીસા MM'નું ધ્રુવ P' સમાન સમક્ષિતિજ સમતલમાં સુરેખ રેખા પર, ઓપ્ટિકલ બેન્ચને સમાંતર છે તે પણ ચકાસો.
- (5) ઇન્ડેક્સ સોય (પિન)નો ઉપયોગ કરીને અનુક્રમે બહિર્ગોળ અરીસો રાખેલા અપરાઇટ અને પ્રતિબિંબ પિન વચ્ચેનો ઇન્ડેક્સનો સુધારો નક્કી કરો.
- (6) વસ્તુ પિન P_1 ને બહિર્ગીળ લેન્સ LL' થી, લેન્સની કેન્દ્રલંબાઈ કરતાં સહેજ વધારે અંતરે ગોઠવો.
- (7) બહિર્ગોળ અરીસા MM'નું સ્થાન એવી રીતે ગોઠવો કે અરીસા દ્વારા પાછું પરાવર્તન પામેલ પ્રકાશનું કિરણ લેન્સમાંથી પસાર થાય અને વસ્તુ પિન P_1 સાથે એકરૂપ થતું હોય તેવું આકૃતિ E 11.2 (a)માં દર્શાવ્યા મુજબનું વાસ્તવિક અને ઊલટું પ્રતિબિંબ રચાય. આ ત્યારે જ બની શકે જ્યારે પિન P_1 ની ટોચમાંથી શરૂ થયેલ કિરણ, લેન્સમાંથી પસાર થયા બાદ અરીસા પર લંબરૂપે અથડાય અને તેના મૂળ પથ પર પાછું પરાવર્તન પામે. પ્રતિબિંબ અને વસ્તુ પિનો વચ્ચે દેષ્ટિસ્થાન ભેદ દૂર કરો.
- (8) વસ્તુ પિન, બહિર્ગાળ લેન્સ LL' અને બહિર્ગાળ લેન્સ MM' જકડી રાખેલ હોય તેવા અપરાઇટ્સના સ્થાન નોંધો અને અવલોકન-કોષ્ટકમાં તેનાં અવલોકનો નોંધો.
- (9) બહિર્ગોળ અરીસાને તેના અપરાઇટસ પરથી દૂર કરો અને તેમાં પ્રતિબિંબ પિન P_2 ગોઠવો. આ પિનની ઊંચાઈ એવી રીતે ગોઠવો કે જેથી તેની ટોચ પણ લેન્સની મુખ્ય અક્ષ પર રહે. એટલે કે પિન P_1 અને P_2 ની ટોચ અને બહિર્ગોળ લેન્સનું ઓપ્ટિકલ કેન્દ્ર, બધા ઓપ્ટિકલ લેન્સની લંબાઈને સમાંતર સુરેખ સમક્ષિતિજ રેખા પર રહે.
- (10) પ્રતિબિંબ પિન P_2 ને વસ્તુ પિન P_1 થી અલગ કરવા માટે તેની ઉપર તમે કાગળનો નાનો ટુકડો મૂકી શકો.
- (11) લેન્સ LL' અને વસ્તુ પિન P_1 ના સ્થાન બદલ્યા સિવાય અને દેષ્ટિસ્થાન ભેદની રીતનો ઉપયોગ કરી લેન્સની બીજી બાજુએ પ્રતિબિંબ પિન P_2 ના સ્થાનને એવી રીતે ગોઠવો કે જેથી તે વસ્તુપિન P_1 ના બહિર્ગોળ લેન્સ દ્વારા રચાતા વાસ્તવિક અને ઊલટા પ્રતિબિંબ સાથે એકરૂપ થાય. [આકૃતિ E 11.2 (b)] પ્રતિબિંબ પિનનું સ્થાન નોંધો.
- (12) પિન P_1 અને લેન્સ LL' અને અરીસા MM' વચ્ચેનાં અંતરો બદલીને પ્રયોગ પુનરાવર્તિત કરો. આ સંજોગોમાં અવલોકનોના પાંચ સમૂહ લો.

અવલોકનો

- (1) બહિર્ગાળ લેન્સની કેન્દ્રલંબાઈ f (અંદાજિત / આપેલ) = cm
- (2) ઇન્ડેક્સ પિન (સોય)ની વાસ્તવિક લંબાઈ, l = cm
- (3) ઇન્ડેક્સ પિન (સોય)ની અવલોકિત લંબાઈ l'=1 માપપટ્ટી પર અરીસાના અપરાઇટનું સ્થાન માપપટ્ટી પર પિનના અપરાઇટ (સ્તંભ)નું સ્થાન = cm
- (4) ઇન્ડેક્સ-સુધારો, e= વાસ્તવિક લંબાઈ અવલોકિત લંબાઈ (l-l')= cm

કોષ્ટક E 11.1 : બહિર્ગોળ અરીસાની વક્રતાત્રિજ્યા R નક્કી કરવી

ક્રમ		અપરાઇટ	નું સ્થાન		અવલોકિત <i>R'</i> = c– <i>d</i> (cm)	સુધારેલ <i>R</i> = અવલોકિત <i>R'</i> + <i>e</i> (cm)	કેન્દ્રલંબાઈ <i>f</i> (cm)	Δ <i>f</i> (cm)
	વસ્તુ પિન P ₁ a (cm)	બહિર્ગોળ લેન્સ LL' b (cm)	બહિર્ગોળ અરીસો MM′ <i>c</i> (cm)	પ્રતિબિંબ પિન P ₂ d (cm)				
1								
2								
5								
					સરેરાશ			

ગણતરીઓ

બહિર્ગોળ અરીસાની વક્કતાત્રિજ્યા Rનું સરેરાશ મૂલ્ય ગણો અને નીચે આપેલ સંબંધનો ઉપયોગ કરી તેની કેન્દ્રલંબાઈ નક્કી કરોઃ

$$f = \frac{R}{2} = \dots$$
cm

ત્રુટિ

$$f = \frac{R' + l}{2} = \frac{(c - d) + (l - l')}{2}$$

$$\therefore \frac{\Delta f}{f} = \frac{\Delta c}{c} + \frac{\Delta d}{d} + \frac{\Delta l}{l} + \frac{\Delta l'}{l'}$$

પ્રયોગશાળા માર્ગદર્શિકા

જ્યાં Δc , Δd , Δl અને $\Delta l'$ એ માપનમાં સાધનોના લઘુત્તમ માપ છે. Δf પાંચ મૂલ્યોમાંથી મહત્તમ મૂલ્યને પરિણામ સાથે પ્રાયોગિક ત્રુટિ દર્શાવો.

પરિણામ

આપેલ બહિર્ગોળ અરીસાની કેન્દ્રલંબાઈ $(f\pm\Delta f)=$ _____ \pm ___ cm. અહીં f એ કેન્દ્રલંબાઈનું સરેરાશ મૂલ્ય છે.

સાવચેતીઓ

- (1) પિનો, લેન્સ અને અરીસાને ગોઠવતા અપરાઇટ્સ દઢ અને ઊર્ધ્વ રીતે ગોઠવાયેલ હોવા જોઈએ.
- (2) આપેલા બહિર્ગોળ લેન્સ અને બહિર્ગોળ અરીસાના દર્પણમુખ નાનાં હોવાં જોઈએ નહિતર રચાતું પ્રતિબિંબ વિકૃત થઈ જશે.
- (3) આંખ પ્રતિબિંબ પિનથી લગભગ 25 cm અથવા તેનાથી વધારે અંતરે રાખવી જોઈએ.
- (4) ઓપ્ટિકલ બેન્ચ સમક્ષિતિજ રહેવી જોઈએ. પિનોની ટોચ, બહિર્ગોળ લેન્સનું કેન્દ્ર અને અરીસાનું ધ્રુવ એક જ સમક્ષિતિજ સમતલમાં હોવા જોઈએ.

ત્રુટિનાં ઉદ્ગમો

- (1) વસ્તુ પિનના ઊલટા પ્રતિબિંબની ટોચ પ્રતિબિંબ પિનની ટોચને માત્ર સ્પર્શવી જોઈએ પણ સંપાત થવી ન જોઈએ. આ બાબતની દેષ્ટિસ્થાન ભેદ દૂર કરતાં સમયે ચકાસણી કરવી.
- (2) દેષ્ટિસ્થાન ભેદ દૂર કરવાની પ્રક્રિયાને આંખની વ્યક્તિગત ખામીઓ કંટાળાજનક બનાવે છે.
- (3) બહિર્ગાળ અરીસાની સપાટી ફ્રન્ટકૉટેડ હોવી જોઈએ નહિતર બહુવિધ પરાવર્તનો થઈ શકે.

ચર્ચા

કોઈ પણ બહિર્ગોળ લેન્સ સાથે પ્રયોગ કરવો કદાચ શક્ય ન બને. આ પ્રયોગમાં ઉપયોગમાં લીધેલ લેન્સની કેન્દ્રલંબાઈ બહુ નાની ન હોવી જોઈએ કે બહુ મોટી પણ ન હોવી જોઈએ. શા માટે ?

સ્વ-મૂલ્યાંકન

(1) જો બહિર્ગોળ અરીસાની કેન્દ્રલંબાઈ જુદી કેન્દ્રલંબાઈ ધરાવતા બહિર્ગોળ લેન્સની મદદથી, નક્કી કરવી હોય, તો તમે પરિણામમાં કોઈ બદલાવની આશા રાખો છો ? જો હા, તો કયા પ્રકારના ફેરફારની આશા રાખો છો ? જો ના, તો કેમ ?

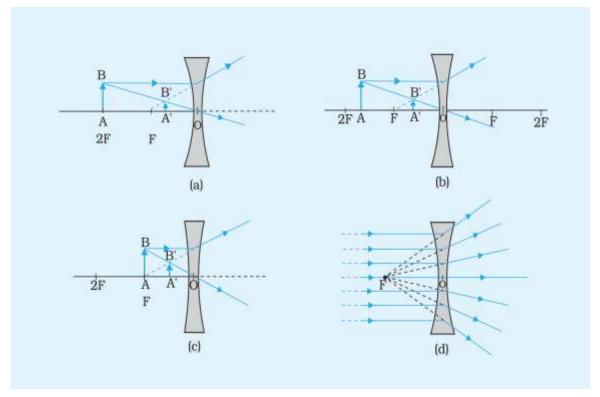
પ્રયોગ 11

- (2) જો જુદા-જુદા વક્કિભવનાંક ધરાવતા બહિર્ગાળ લેન્સનો ઉપયોગ કરવામાં આવે, તો પરિણામ કેવી રીતે બદલાય ?
- (3) જો પ્રયોગ માટે પસંદ કરેલ બહિર્ગોળ લેન્સની કેન્દ્રલંબાઈ, બર્હિગોળ અરીસાથી ઓછી હોય, તો આ પસંદગી પ્રયોગ પર કઈ રીતે મર્યાદા લાદે છે ?

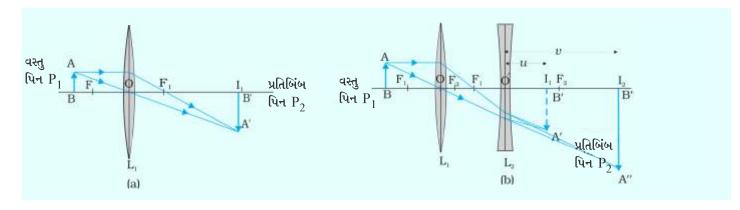
સૂચવેલ વધારાના પ્રયોગો/પ્રવૃત્તિઓ

- (1) જુદી-જુદી કેન્દ્રલંબાઈવાળા બહિર્ગાળ લેન્સનો ઉપયોગ કરી, પ્રયોગનું પુનરાવર્તન કરો. પરિણામો સરખાવી, તેનું વિશ્લેષણ કરો.
- (2) એક જ બહિર્ગાળ લેન્સની મદદથી, જુદી-જુદી કેન્દ્રલંબાઈવાળા બહિર્ગાળ અરીસાનો ઉપયોગ કરી પ્રયોગનું પુનરાવર્તન કરો. પરિણામોની ચર્ચા કરો.

હેતુ


બહિર્ગાળ લેન્સનો ઉપયોગ કરી અંતર્ગાળ લેન્સની કેન્દ્રલંબાઈ શોધવી.

સાધનો અને જરૂરી સામગ્રી


લેન્સ અને બે પિન (સોય) ને પકડી રાખવા માટેના ઊર્ધ્વ સ્ટૅન્ડ ધરાવતી ઓપ્ટિકલ બેન્ચ, પાતળો અંતર્ગોળ લેન્સ, અંતર્ગોળ લેન્સ કરતાં ઓછી કેન્દ્રલંબાઈ ધરાવતો એક બહિર્ગોળ લેન્સ (કેન્દ્રલંબાઈ $\sim 15~\mathrm{cm}$), ઇન્ડેક્સ સોય (ગૂંથણ માટેની સોય પણ ચાલે), માપપટ્ટી અને સ્પિરિટ લેવલ.

સિદ્ધાંત

આકૃતિ E 12.1(a), (b), (c) અને (d) એ અંતર્ગોળ લેન્સ વડે વસ્તુ ABના મળતા પ્રતિબિંબ A' B'ની રચના દર્શાવે છે.

આકૃતિ E 12.1 (a),(b),(c),(d) વસ્તુના જુદા - જુદા સ્થાન માટે અંતર્ગોળ લેન્સ વડે રચાતાં પ્રતિબિંબ

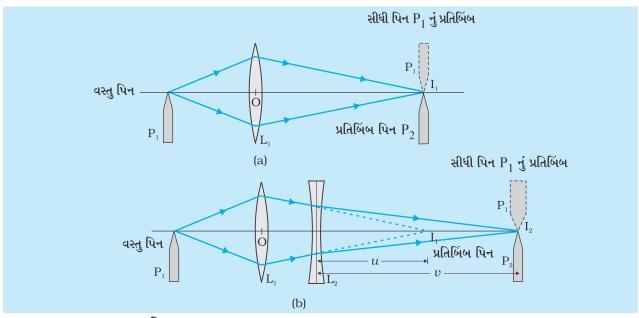
આકૃતિ E 12.2 (a) બહિર્ગાળ લેન્સથી મળતું પ્રતિબિંબ (b) અંતર્ગાળ લેન્સ અને બહિર્ગાળ લેન્સના સંયોજનથી મળતું પ્રતિબિંબ

એ સ્પષ્ટ છે કે આ કિસ્સાઓમાં અંતર્ગોળ લેન્સથી મળતું પ્રતિબિંબ હંમેશાં આભાસી અને ચત્તું હોય છે, તેની કેન્દ્રલંબાઈ પ્રત્યક્ષ રીતે શોધી શકાતી નથી. જો કે (આકૃતિ E 12.2માં દર્શાવ્યા પ્રમાણે) વસ્તુ અને અંતર્ગોળ લેન્સની વચ્ચે, બહિર્ગોળ લેન્સને મૂકીને વાસ્તવિક પ્રતિબિંબ મેળવી, પરોક્ષ રીતે તે શોધી શકાય છે.

બહિર્ગોળ લેન્સ L_1 વસ્તુ ABમાંથી આવતા પ્રકાશનાં કિરણોને અભિકેન્દ્રીત કરી, તેનું વાસ્તવિક અને ઊંધુ પ્રતિબિંબ A'B', I_1 સ્થાને મળે [આકૃતિ E 12.2 (a)] જ્યારે અપસારી અંતર્ગોળ લેન્સ L_2 ને, લેન્સ L_1 અને I_1 ની વચ્ચે આકૃતિ E 12.2(b)માં દર્શાવ્યા પ્રમાણે મૂકવામાં આવે ત્યારે અંતર્ગોળ લેન્સ L_2 માટે પ્રતિબિંબ A'B' એક આભાસી વસ્તુ તરીકે વર્તશે. બિંદુ I_2 પર અપસારી લેન્સ L_2 વડે, વાસ્તવિક અને ઊંધુ પ્રતિબિંબ A''B'' રચાય. તેથી અંતર્ગાળ લેન્સ L_2 માટે અંતરો $O'I_1$ અને $O'I_2$ અનુક્રમે વસ્તુ અને પ્રતિબિંબ અંતર u અને v થશે. અહીં એ નોંધવું મહત્વપૂર્ણ છે કે, બહિર્ગોળ લેન્સ L_1 ની કેન્દ્રલંબાઈ, અંતર્ગોળ લેન્સ L_2 ની કેન્દ્રલંબાઈ કરતાં ઓછી જ હોવી જોઈએ. બીજું પ્રતિબિંબ A''B'' તો જ મળશે, જો લેન્સ L_2 અને પ્રથમ પ્રતિબિંબ A''B' વચ્ચેનું અંતર L_2 ની કેન્દ્રલંબાઈ કરતાં ઓછું હોય છે.

અંતર્ગોળ લેન્સ $\mathbf{L}_{_{2}}$ ની કેન્દ્રલંબાઈ નીચેના સંબંધથી ગણી શકાયઃ

$$\frac{1}{f} = \frac{1}{\nu} - \frac{1}{u} \quad \text{અથવા} \quad f = \frac{u\nu}{u - \nu}$$
 (E 12.1)


અંતર્ગોળ લેન્સ માટે u અને υ બંને ધન છે તથા u એ υ કરતાં ઓછું મળતું હોવાથી f હંમેશાં ઋણ મળશે.

પદ્ધતિ

(1) જો બહિર્ગોળ લેન્સની કેન્દ્રલંબાઈ અજ્ઞાત હોય, તો પ્રથમ તેની કેન્દ્રલંબાઈની આશરે કિંમત $(f_{\rm L})$ નો અંદાજ કાઢવો અને તે અંતર્ગોળ લેન્સની કેન્દ્ર લંબાઈ કરતા ઓછી છે તેની ખાતરી કરો.

પ્રયોગશાળા માર્ગદર્શિકા

- (2) ઓપ્ટિકલ બેન્ચને દઢ પ્લેટફોર્મ પર ગોઠવો. સ્પિરિટ લેવલનો ઉપયોગ કરી બેન્ચના પાયામાં આપેલા લેવલિંગ સ્કૂની મદદથી તેને સમક્ષિતિજ કરો.
- (3) ઓપ્ટિકલ બેન્ચ પર વસ્તુ પિન P_1 , બહિર્ગાળ લેન્સ L_1 અને પ્રતિબિંબ પિન P_2 ઊભા રહે તે રીતે મૂકો. પ્રતિબિંબ પિન P_2 પર તમે નાનો કાગળનો ટુકડો મૂકી શકો છો જેથી વસ્તુ પિનના P_1 ના પ્રતિબિંબથી તેને અલગ પાડી શકાય [આકૃતિ E 12.2 (a)].
- (4) સમક્ષિતિજ સીધી રેખા પર, ઓપ્ટિકલ બેન્ચની લંબાઈને સમાંતર, P_1 અને P_2 ની અણી તથા બહિર્ગાળ લેન્સ L_1 ના ઓપ્ટિકલ કેન્દ્ર (O)ની સમરેખતા ચકાસો. આ પરિસ્થિતિમાં લેન્સનાં સમતલો અને બંને પિનો લેન્સની અક્ષને લંબ હોય.
- (5) ઇન્ડેક્સ સુધારા નક્કી કરવા, લગાવેલી પિનને અંતર્ગાળ લેન્સ L_2 ની નજીક લાવો. અણીવાળી સોયને (વણાટ માટે વપરાતી તીક્ષ્ણ ધારવાળી સોંય પણ આ કાર્ય માટે ચાલશે) સમક્ષિતિજ એવી રીતે ગોઠવો કે જેથી તેનો એક છેડો લેન્સની કોઈ પણ એક વક્રકાર સપાટીને સ્પર્શે અને બીજો છેડો પિનની ટોચને સ્પર્શે. આ બંને અપરાઈટ્સના સ્થાનો ઓપ્ટિકલ બેન્ચ પર આપેલ સ્કેલથી નોંધો. આ બંનેનો તફાવત ઇન્ડેક્સ સોયની અવલોકિત લંબાઈ આપે છે. પિનની ટોચ અને લેન્સ L_2 ના ઓપ્ટિકલ કેન્દ્ર O' વચ્ચેની વાસ્તવિક લંબાઈ આ સોયની લંબાઈનું માપ (માપપટ્ટીથી માપેલું તે પ્રમાણે) અને ઓપ્ટિકલ કેન્દ્રથી લેન્સની અડધી જાડાઈનો સરવાળો છે. આ બંને લંબાઈનો તફાવત એ ઇન્ડેક્સ સુધારો છે. (જો અંતર્ગોળ લેન્સ કેન્દ્રથી પાતળો હોય, તો જાડાઈ અવગણી શકાય છે.)
- (6) વસ્તુ પિન P_1 ને બહિર્ગોળ લેન્સની કેન્દ્રથી તેની કેન્દ્રલંબાઈ (f_L) કરતાં સહેજ વધારે અંતરે ગોઠવો.
- (7) વસ્તુ પિન P_1 ના પ્રતિબિંબ અને પ્રતિબિંબ પિન P_2 વચ્ચેનો દેષ્ટિસ્થાન ભેદ દૂર કરી, લેન્સની બીજી બાજુએ I_1 બિંદુ પર તેનું વાસ્તવિક અને ઊંધુ પ્રતિબિંબ નક્કી કરો. [આકૃતિ E 12.2 (a)]
- (8) વસ્તુ પિન P_1 , બહિર્ગોળ લેન્સ L_1 અને પ્રતિબિંબ પિન P_2 બિંદુ I_1 ને પકડી રાખતાં અપરાઈટ્સના અવલોકન વાંચો આ અવલોકનો કોપ્ટક E 12.1માં નોંધો.
- (9) ત્યારબાદ, બહિર્ગોળ લેન્સ L_1 અને વસ્તુપિન P_1 ના સ્થાન બદલ્યા સિવાય, બહિર્ગોળ લેન્સ L_1 અને પ્રતિબિંબ પિન P_2 ની વચ્ચે અંતર્ગોળ લેન્સ L_2 ને મૂકો. હવે વસ્તુપિનનું પ્રતિબિંબ બહિર્ગોળ લેન્સ L_1 થી દૂર જશે તે બિંદુને I_2 કહો. અંતર્ગોળ લેન્સની સ્થિતિને એવી રીતે ગોઠવો કે જેથી I_2 બિંદુ I_1 બિંદુથી પૂરતા પ્રમાણમાં દૂર રહે.
- (10) જો બહિર્ગોળ અને અંતર્ગોળ લેન્સના સંયોજનથી મળતું પ્રતિબિંબ ચોખ્ખું દેશ્યમાન ન હોય તેવા કિસ્સામાં, અંતર્ગોળ લેન્સને બિંદુ ${\rm I_1}$ ની નજીક લઈ જઈ પેન્સિલને હાથમાં રાખી, પ્રતિબિંબનું સ્થાન નિશ્ચિત કરો અને પ્રતિબિંબ પિન ${\rm P_2}$ ને બિંદુ ${\rm I_1}$ પર રાખી બહિર્ગોળ લેન્સ ${\rm L_2}$ ને ક્યાં

આકૃતિ E 12.3 : બહિર્ગોળ લેન્સની મદદથી અંતર્ગોળ લેન્સની કેન્દ્રલંબાઈ

ખસેડવો તે નિશ્ચિત કરો. જ્યારે બિંદુ ${\rm I_2}$ પર સ્પષ્ટ પ્રતિબિંબ દેખાય ત્યારે તે વાતની ખાતરી કરો કે તે ઓપ્ટિકલ બેન્ચની રેન્જમાં જ છે. પ્રતિબિંબ પિન ${\rm P_2}$ ને ખસેડો જેથી પ્રતિબિંબ નિશ્ચિત થાય (અથવા બિંદુ ${\rm I_2}$ નિશ્ચિત થાય) (દેષ્ટિસ્થાન ભેદની રીતથી આકૃતિ E 12.3 (b)) ${\rm I_2}$ પર મળતું પ્રતિબિંબ તદન મોટું અને અસ્પષ્ટ હશે.

- (11) અંતર્ગોળ લેન્સ અને પ્રતિબિંબ પિન P_2 ની એટલે કે બિંદુ I_2 ની અપરાઈટ્સ સ્થિતિઓ નોંધો અને અવલોકન-કોષ્ટકમાં અવલોકનોની નોંધ કરો.
- (12) વસ્તુ પિનના સ્થાનો બદલી, પદ 6 થી 10નું પુનરાવર્તન કરો અને અવલોકનોના પાંચ સમુહ નોંધો.

અવલોકન

- (1) બહિર્ગાળ લેન્સની કેન્દ્રલંબાઈ $f_{\scriptscriptstyle
 m L}$ = ____ cm
- (2) ઇન્ડેક્સ સોયની માપપટ્ટીની મદદથી માપેલી લંબાઈ ${
 m s} = ___$ cm
- (3) પાતળા અંતર્ગીળ લેન્સની ઓપ્ટિકલ કેન્દ્રથી જાડાઈ (આપેલ) t =_____ cm
- (4) લેન્સના ઓપ્ટિકલ કેન્દ્ર O અને પિનાની ટોચ વચ્ચેની વાસ્તવિક લંબાઈ, $l={
 m s}+\frac{t}{2}=$ ____ cm
- (5) ઇન્ડેક્સ સોયની અવલોકિત લંબાઈ l' = લેન્સના ધ્રુવ અને પિનની ટોચ વચ્ચેનું અંતર $= \text{માપપદ્દી પર લેન્સના અપરાઈટ્સનું સ્થાન પિનના અપરાઈટ્સનું સ્થાન = <math>\underline{\hspace{1cm}}$ cm

પ્રયોગશાળા માર્ગદર્શિકા

કોષ્ટક \mathbb{E} 12 1 : અંતર્ગોળ લેન્સ માટે μ υ અને f નક્કી કરવા

વસ્તુ પિનની અપરાઈટ્સ P_1 , a (cm) પિકર્ગોળ લેન્સ L_1 ની અપરાઈટ્સ b (cm) L_1 વડે રચાતું પ્રતિબિબ (બિંદુ I_1) c (cm) તાંગોળ લેન્સ L_2 ની અપરાઈટ્સ a (cm) અવલોકિત $u = c - a$ (cm) સુધારેલ $u = a$ અવલોકિત $u + e$ (cm) સુધારેલ $u = a$ અવલોકિત $u + e$ (cm) a પ્રતિબિ $a = a$	ક્રમ નં.			ના સ્થાન								
		વસ્તુ પિનની અપરાઇટ્સ P ₁ , <i>a</i> (cm)	બહિર્ગોળ લેન્સ $\mathbf{L_1}$ ની અપરાઈટ્સ b (cm)	$\mathbf{L}_{_{1}}$ વડે રચાતું પ્રતિબિંબ $(બિદુ \ \mathbf{I}_{_{1}}) \ c \ (cm)$	અંતર્ગોળ લેન્સ $\mathbf{L}_{\!\scriptscriptstyle 2}$ ની અપરાઈટ્સ $d\pmod{d}$	L, અને L, વડે બિંદુ I, પર રચાતું પ્રતિબિંબ <i>g</i> (cm)	અવલોકિત $u = c - d$ (cm)	અવલોકિત $v=g-d ({ m cm})$	સુધારેલ $u=$ અવલોકિત $u+e$ (cm)	સુધારેલ υ = અવલોકિત υ + e (cm)	f = u v/(u - v) (cm)	$\Delta f({ m cm})$
1 2 5												

(6) ઇન્ડેક્સ સુધારો e = l - l' =_____ cm

ગણતરીઓ

અંતર્ગોળ લેન્સની કેન્દ્રલંબાઈ $f=\dfrac{u\upsilon}{u-\upsilon}$ સૂત્રની મદદથી શોધવી.

ત્રુટિ

$$\frac{1}{f} = \frac{1}{\upsilon} - \frac{1}{u}$$

$$\frac{\Delta f}{f^2} = \frac{\Delta \upsilon}{\upsilon^2} + \frac{\Delta u}{u^2}$$

$$\Delta f = f^2 \left[\frac{\Delta \upsilon}{\upsilon^2} + \frac{\Delta u}{u^2} \right]$$

જ્યાં Δu , Δv એ માપન માપક્રમનું લઘુત્તમ માપ છે. u, v અને fની કિંમતો અવલોકન- કોષ્ટકમાંથી લો. ત્રુટિ Δf ની પાંચ કિંમતોમાંથી મહત્તમ કિંમતને પરિણામની ત્રુટિ તરીકે નોંધો.

પ્રયોગ 12

પરિણામ

આપેલા અંતર્ગોળ લેન્સની કેન્દ્રલંબાઈ $f\pm\Delta f=$ _____ \pm ___ cm છે. જ્યાં f એ સરેરાશ કેન્દ્રલંબાઈ છે.

સાવચેતીઓ

- (1) અંતર્ગોળ લેન્સને, બહિર્ગોળ લેન્સની નજીક મૂકવો. હકીકતમાં બીજું પ્રતિબિંબ ${\rm I_2}$ તો જ મળશે જો અંતર્ગોળ લેન્સ ${\rm L_2}$ અને પ્રથમ પ્રતિબિંબ ${\rm I_1}$ (જે અંતર્ગોળ લેન્સ માટે આભાસી વસ્તુ તરીકે વર્તે) વચ્ચેનું અંતર અંતર્ગોળ લેન્સની કેન્દ્રલંબાઈ કરતાં ઓછું હોય.
- (2) I_2 પર મળતું પ્રતિબિંબ ખૂબ મોટું અને અસ્પષ્ટ હોઈ શકે છે, તેથી વસ્તુ પિન પાતળી અને ધારદાર પસંદ કરવી જોઈએ તથા તેને બલ્બ વડે પ્રકાશિત કરવી જોઈએ.
- (3) બહિર્ગાળ લેન્સ અને પિન P₁ના સ્થાન પ્રયોગના બીજા ભાગ દરમિયાન બદલાવા જોઈએ નહિ.
- (4) લેન્સ ${\rm L_2}$ ની અંતર્ગોળ સપાટી પરથી પરાવર્તન પામતા કિરણોને લીધે પ્રતિબિંબ પિન ${\rm P_2}$ નું નાનું, વાસ્તવિક અને ઊલટું પ્રતિબિંબ પણ મળી શકે છે. બહિર્ગોળ અને અંતર્ગોળ લેન્સના સંયોજનથી મળતા ઘાટા અને પ્રકાશિત પ્રતિબિંબ સાથે તેને ગૂંચવવું નહિ.
- (5) u અને v માટે ઇન્ડેક્સમાં સુધારો કરવો જોઈએ.

ત્રુટિનાં ઉદ્ગમો

- (1) જો વસ્તુ પિનની ટોચ અને લેન્સના ઓપ્ટિકલ કેન્દ્ર જો એકસરખા સમિક્ષિતિજ લેવલ પર ના હોય તો પ્રતિબિંબ પિનની ટોચ અને વસ્તુ પિનના પ્રતિબિંબની ટોચ એકબીજાને સ્પર્શ કરશે નહિ. તેમની વચ્ચે થોડી જગા રહેશે અથવા એકબીજાને ઢાંકી દેશે. આ પરિસ્થિતિમાં દિષ્ટિસ્થાન ભેદ દૂર કરવામાં ત્રુટિ ઉત્પન્ન થઈ શકે છે, જે પરિણામની ત્રુટિ સુધી લઈ જઈ શકે છે.
- (2) ખૂબ જ સચોટ પરિણામ મેળવવા વસ્તુ પિનની ટોચ ધારદાર રાખવી જોઈએ.

ચર્ચા

- (1) અંતર્ગોળ લેન્સ કિરણોને અપકેન્દ્રિત કરતો હોવાથી તેના વડે મળતા પ્રતિબિંબને પડદા પર ઝીલી શકાતું નથી, તે વાસ્તવિક નથી. આ અપકેન્દ્રિત થયેલાં કિરણોને અભિકેન્દ્રિત કરવા બહિર્ગોળ લેન્સનો ઉપયોગ કરવો.
- (2) અંતર્ગોળ લેન્સ વડે અપકેન્દ્રિત થતાં કિરણોને, અંતર્ગોળ અરીસાની ઉપર લંબરૂપે આપાત કરી, જ્યાં વસ્તુ મૂકી છે તે બિંદુ પર વાસ્તવિક પ્રતિબિંબ મેળવી શકાય. આથી અંતર્ગોળ અરીસાની મદદથી પણ અંતર્ગોળ લેન્સની કેન્દ્રલંબાઈ શોધી શકાય છે.

પ્રયોગશાળા માર્ગદર્શિકા

(3) પ્રતિબિંબ I_2 ખૂબજ મોટું છે તથા બે લેન્સના રંગવિભેદનના કારણે તે અસ્પષ્ટ બની શકે છે. આથી વસ્તુપિન P_1 ની પાછળ પડદો મૂકવો વધુ યોગ્ય છે અને આ પ્રમાણે સફેદ રંગના સ્થાને આખા પ્રયોગ દરમિયાન માત્ર એક જ રંગનો ઉપયોગ કરી શકાય છે. આ જ કારણે પિન P_1 તદન પાતળી અને ધારદાર હોવી જોઈએ. (પિન P_2 ની સાપેક્ષે)

સ્વ-મૂલ્યાંકન

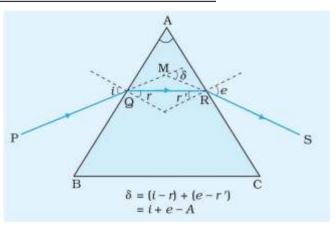
- (1) આ પ્રયોગમાં અંર્તગોળ અને બહિર્ગોળ લેન્સના સંયોજન વચ્ચે 'd' જેટલું અંતર રાખી એક $\text{જ લેન્સ તરીકે કેન્દ્રલંબાઈ } f \text{ શોધી શકાય, તથા } \frac{1}{f} = \frac{1}{f_1} + \frac{1}{f_2} \frac{d}{f_1 f_2}$ સંબંધ ચકાસી શકાય.
- (2) \mathbf{u} અને \mathbf{v} ની કિંમતોની ફેરબદલી f ગણો અને f ની પ્રાયોગિક રીતે મેળવેલી કિંમત સાથે સરખામણી કરો.

સૂચવેલ વધારાના પ્રયોગો/પ્રવૃત્તિઓ

- (1) u-v વિરુદ્ધ u-v નો આલેખ દોરો. uv ને Y—અક્ષ પર તથા u-v ને X—અક્ષ પર લો. આલેખના ઢાળ પરથી f ની કિંમત શોધો.
- (2) જુદી-જુદી કેન્દ્રલંબાઈના અંર્તગોળ અને બર્હિગોળ લેન્સ લઈ પ્રયોગનું પુનરાવર્તન કરો. પરિણામો સરખાવો.

પ્રયોગ 13

હેતુ


આપેલ કાચના પ્રિઝમ માટે આપાતકોણ અને વિચલનકોણ વચ્ચેનો આલેખ દોરી, લઘુત્તમ વિચલનકોણ નક્કી કરવો.

સાધનો અને જરૂરી સામગ્રી

ડ્રૉઇંગબૉર્ડ, કાચનો ત્રિકોણાકાર પ્રિઝમ, માપપટ્ટી, ટાંકણીઓ, સેલોટેપ / ડ્રૉઇંગપિન, આલેખ પેપર, કોણમાપક, સફેદ કાગળની શીટ

સિદ્ધાંત

ત્રિકોણકાર પ્રિઝમને ત્રણ લંબચોરસ સપાટીઓ અને બે ત્રિકોણીય પાયા છે. જે રેખા પર પ્રિઝમની કોઈપણ બે સપાટીઓ (વક્કીભવનકારક સપાટીઓ) ભેગી થાય તે વક્કીભવન ધાર થાય અને આવી બે ધાર વચ્ચેનો ખૂણો એટલે પ્રિઝમકોણ. આ પ્રયોગ માટે પ્રિઝમની લંબચોરસ સપાટીઓ ઊભી રહે તેમ ગોઠવવો અનુકૂળ છે. વક્કીભવન ધારને લંબ સમક્ષિતિજ સમતલ પરથી પ્રિઝમનો મુખ્ય ભાગ ABC મેળવી શકાય (આકૃતિ E 13.1).

આકૃતિ E 13.1 કાચના પ્રિઝમ વડે પ્રકાશનું વકીભવન

પ્રકાશનું કિરણ PQ (હવામાંથી કાચમાં જાય છે) પહેલી સપાટી AB પર i ખૂણે આપાત થાય છે, r ખૂણે વક્કીભવન પામી QR માર્ગે જાય છે અને અંતે e ખૂણે નિર્ગમન પામી RS માર્ગે જાય છે. આકૃતિમાં દર્શાવેલી ટપકાંવાળી રેખા સપાટીઓના લંબ દર્શાવે છે. બીજી સપાટી AC પાસે આપાતકોણ r' (કાચમાંથી હવામાં જાય ત્યારે) અને વક્કીભવનકોણ (અથવા નિર્ગમનકોણ) e છે. આપાતિકેરણ PQ (આગળ લંબાવેલ) નિર્ગમન કિરણ RS (પાછળ લંબાવેલ)ની દિશાઓ વચ્ચેનો કોણ વિચલનકોણ δ છે.

Downloaded from https://www.studiestoday.com

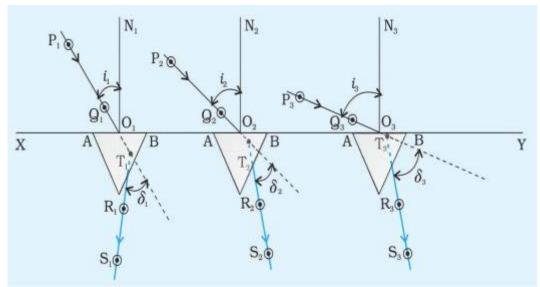
પ્રયોગશાળા માર્ગદર્શિકા

ભૌમિતિક સ્વીકૃતિઓ પરથી લખી શકાય કે,

(E 13.1)

$$r + r' = A$$

$$\delta = (i - r) + (e - r') = i + e - A$$


પ્રિઝમ માટે લઘુત્તમ વિચલનકોણની δ_m ની સ્થિતિમાં પ્રકાશ કિરણ પ્રિઝમના પાયાને સમાંતર એટલે કે પ્રિઝમમાંથી સંમિત રીતે પસાર થાય.

$$\delta = \delta_{m}, \ i = e$$
 ત્યારે $r = r'$

પ્રિઝમની લઘુત્તમ વિચલનકોણની સ્થિતિમાં મૂકવાના ફાયદા તરીકે પ્રતિબિંબ સૌથી વધારે તેજસ્વી હોય છે.

પદ્ધતિ :

- (1) સફેદ જાડા કાગળની શીટને ડ્રૉઇંગબૉર્ડ પર સેલોટેપ અથવા ડ્રૉઇંગપિનની મદદથી જડિત કરો.
- (2) સીધી રેખા XY, અણીવાળી પેન્સિલની મદદથી મધ્યમાં અને કાગળની લંબાઈને સમાંતર દોરો.
- (3) બિંદુઓ O_1, O_2, O_3 સીધી રેખા XY પર 8 થી 10 cm ના યોગ્ય અંતર રાખી અંકિત કરો તથા તે બિંદુઓ પર લંબ N_1O_1, N_2O_2, N_3O_3 દોરો. (આકૃતિ E 13.2)

આકૃતિ E 13.2 કાચના પ્રિઝમ વડે જુદા-જુદા આપાતકોણ માટે પ્રકાશના કિરણનું થતું વક્રીભવન

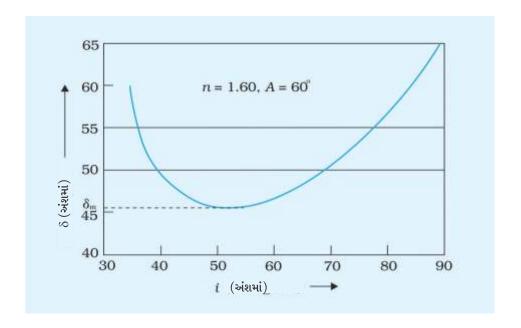
- (4) કોણમાપકની મદદથી લંબ સાથે આપાતકોણ 35°, 40°, 45°, 50° 60° બનાવી અનુરૂપ રેખાઓ અનુક્રમે P_1O_1 , P_2O_2 , P_3O_3 દોરો. સફેદ કાગળની શીટ પર ખુણા $\angle P_1O_1N_1$, $\angle P_2O_2N_2$, $\angle P_3O_3N_3$, ની કિંમત લખો. (આકૃતિ E 13.2)
- (5) ABનું મધ્યબિંદુ O₁ પર આવે અને વક્કીભવનકારક સપાટી AB, XY રેખા પર ગોઠવાય તે રીતે આકૃતિમાં દર્શાવ્યા મુજબ પ્રિઝમ ગોઠવો. પ્રિઝમની સીમાઓ તીક્ષ્ણ પેન્સિલ વડે દોરો.

- (6) તીક્ષ્ણ અણી ધરાવતી બે ટાંકણીઓ P_1 અને Q_1 ને 10 cm ના અંતરે આપાતિકરણ P_1 Q_1 પર એવી રીતે લગાવો કે જેથી Q_1 બિંદુ O_1 ની નજીક રહે. એક આંખ બંધ કરી (દા.ત., ડાબી આંખ) પ્રિઝમમાં જુઓ. તમારી જમણી આંખને પિન P_1 અને Q_1 ના પ્રતિબિંબની રેખા પર લાવો. સફેદ કાગળની શીટ પર 10 cmના અંતરે બે ટાંકણીઓ R_1 અને S_1 એવી રીતે ઊભી ગોઠવો જેથી તેની ટોચ, ટાંકણીઓ P_1 અને Q_1 ના પ્રતિબિંબની ટોચ સાથે સંપાત થાય. આ રીતે ટાંકણીઓ R_1 અને S_1 પ્રતિબિંબો P_1 અને Q_1 સાથે એકરેખસ્થ થાય.
- (7) હવે ટાંક્શીઓ R_1 અને S_1 ને દૂર કરી સફેદ કાગળની શીટ પર તેના નિશાન પર અણીવાળી પેન્સિલ વડે ગોળ કરો. આ જ રીતે P_1 અને Q_1 ટાંક્ણીઓને દૂર કરી તેમના નિશાન પર પણ પેન્સિલ વડે ગોળ કરો.
- (8) R_1 અને S_1 બિંદુઓને માપપટ્ટી અને અણીવાળી પેન્સિલની મદદથી જોડી નિર્ગમનકિરણ R_1S_1 મેળવો. તેને પાછળ લંબાવો તથા આપાતકિરણ P_1Q_1 ને આગળ લંબાવો જેથી તે બિંદુ T_1 પર ભેગા થાય. કિરણોની દિશા દર્શાવવા માટે P_1Q_1 અને R_1S_1 પર તીરની નિશાની દોરો.
- (9) વિચલનકોશ δ_1 અને પ્રિઝમકોશ BAC (ખૂશો A) ને કોશમાપક વડે માપો. આ ખૂશાઓની કિંમત આકૃતિમાં લખો. (આકૃતિ E 13.1)
- (10) જુદા-જુદા આપાતકોશ (40°, 45°, 50°) માટે પદ 5 થી 9 પુનરાવર્તિત કરો અને અનુરૂપ વિચલનકોશ δ_2 , δ_3 ને કોશમાપક વડે માપી, તેમને સંબધિત આકૃતિમાં દર્શાવો.
- (11) નોંધેલાં અવલોકનોને કોષ્ટકમાં યોગ્ય એકમ અને સાર્થક સંખ્યાનો ઉપયોગ કરી લખો.

અવલોકન

કોણમાપકનું લઘુત્તમ માપ = ____ (ડિગ્રી)

પ્રિઝમકોણ (A) = ____ (ડિગ્રી)


કોષ્ટક ${f E}$ 13.1 : પ્રિઝમ માટે આપાતકોણ ${f i}$ અને વિચલનકોણ ${f \delta}$ ના માપન

ક્રમ	આપાતકોણ, i (ડિગ્રી)	વિચલનકોણ, δ (ડિગ્રી)
1		
2		
3		
10		

પ્રયોગશાળા માર્ગદર્શિકા

પ્રિઝમ માટે i અને δ વચ્ચેનો આલેખ દોરવો.

કોષ્ટક E 13.1માંથી અવલોકિત કિંમતોનો ઉપયોગ કરી આપાતકોણ iને X—અક્ષ પર અને વિચલનકોણ δ ને Y—અક્ષ પર લો. આ અક્ષો પર યોગ્ય પ્રમાણમાપ લઈ i અને δ નો આલેખ દોરો. કાળજીપૂર્વક મુક્ત હાથ વડે આલેખ પર મૂકેલાં દરેક યોગ્ય કિંમતનાં બિંદુઓમાંથી પસાર થાય તેમ હળવો વક્ર દોરો (આકૃતિ E 13.3).

આકૃતિ E 13.3 આપાતકોણ અને વિચલનકોણ વચ્ચેનો આલેખ

ગણતરી

આલેખના નિમ્નતમ બિંદુએથી X—અક્ષને સમાંતર સ્પર્શક દોરી, આલેખમાં Y-અક્ષ પર મળતા લઘુત્તમ વિચનલકોણ δ_m નું મૂલ્ય મેળવો. આ પરિણામને યોગ્ય સાર્થક સંખ્યાને ઉપયોગ કરી નોંધો.

પરિણામ

લઘુત્તમ વિચલનકોણ $\delta_{\scriptscriptstyle m}=$ ______ \pm _____ (ડિગ્રી

સાવચેતીઓ

- (1) ટાંકણીઓ કાગળ પર શિરોલંબ લગાવો.
- (2) PQ અને RS વચ્ચેનું અંતર લગભગ 10 cm રાખો જેથી આપાત અને નિર્ગમન કિરણો ખૂબ સચોટતાથી દર્શાવાય.
- (3) બધાં અવલોકનો માટે સમાન પ્રિઝમકોણ લો.
- (4) અવલોકનોના આપેલા સમુહ માટે પ્રિઝમનાં સ્થાનમાં વિક્ષેપ ન પડવો જોઈએ.

ત્રુટિનાં ઉદ્ગમો

- (1) જો સંલગ્ન બાજુઓની વચ્ચે રચાતા ત્રણ વક્રીભવનકોણ સમાન ન હોય, તો $A+\delta \neq i+e$.
- (2) ખૂશાઓનાં માપ લેતી વખતે પણ ત્રુટિ આવી શકે.

ચર્ચા

- (1) આપાતકોણનું મૂલ્ય 35°થી વધારે લેવું એવું સૂચન છે. 35° થી ઓછા આપાતકોણ માટે પ્રિઝમમાં પૂર્ણ આંતરિક પરાવર્તન થવાની શક્યતા છે આથી આમ કરવું જરૂરી છે.
- (2) તમારે દરેક અવલોકનોને $i + e = A + \delta$ સૂત્રની મદદથી ચકાસવા જોઈએ.
- (3) આ પ્રયોગમાં મળતો $i-\delta$ વક્ર અરેખીય વક્ર છે. આવી પરિસ્થિતિમાં લઘુત્તમ વિચલનકોણના વિભાગમાં વધારે અવલોકન લેવા જોઈએ, જેથી લઘુત્તમ વિચલનકોણનું માપ સચોટ મળે. દા.ત., δ નાં અવલોકનો પ્રારંભમાં 35°, 40°, 45° અને 50° માટે લીધા હોય અને જો $i-\delta$ નાં બિંદુઓ આકૃતિ E 13.3માં દર્શાવ્યા મુજબ હોય, તો 45° થી 55°ની અવિધમાં 1° કે 2° ના તફાવતમાં i નાં વધુ અવલોકનો લેવાં જોઈએ.
 - આ વિભાગમાં લીધેલાં વધારે અવલોકનોની મદદથી વક્રને સરળતાથી દોરી શકાશે અને આલેખ પર નિમ્નતમ બિંદુનું સ્થાન વધારે સચોટતાથી નક્કી કરી શકાશે.
- (4) લઘુત્તમ વિચલનની પરિસ્થિતિમાં વક્રીભૂતકિરણ પ્રિઝમની અંદર પાયાને સમાંતર બનશે જેથી r=r' શરત સંતોષાશે.
- (5) આલેખ તીક્ષ્ણ નિમ્નતમ દર્શાવતું નથી, લઘુત્તમ વિચલનની નજીક અમુક અવિધના આપાતકોણોમાં એકસરખું વિચલન જણાતું હોય છે. માટે $i-\delta$ ના આલેખમાં સ્પર્શક રેખા દોરવામાં અને લઘુત્તમ વિચલનકોણ નક્કી કરવામાં વિશેષ કાળજી રાખવી જરૂરી છે.

સ્વ-મૂલ્યાંકન

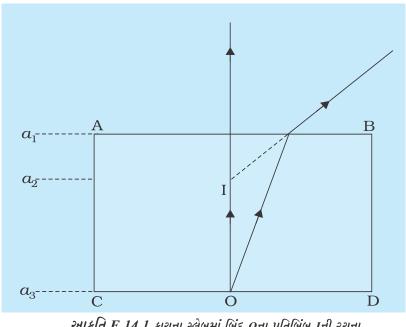
- (1) i અને δ વચ્ચેના આલેખનું વિશ્લેષણ કરો.
- (2) આ પ્રયોગમાં મેળવેલા નિર્ગમનકોણને આપાતકોણ બનાવવામાં આવે, તો δનાં મૂલ્યોમાં કોઈ ફેરફાર થાય ? જો હા તો કેમ ? જો ના તો કેમ ?
- (3) જો આપાતકોણ ઘટાડતા જઈએ તો શું થાય ? જો તમે માનતા હોય કે તેમાં કંઈક લઘુત્તમ છે તો તેનુ સુત્ર સૈદ્ધાંતિક રીતે શોધો. જો *i* નું મૂલ્ય લઘુત્તમ આપાતકોણ કરતાં ઓછું હોય તો શું થાય ?

પ્રયોગશાળા માર્ગદર્શિકા

સુચવેલ વધારાના પ્રયોગો/પ્રવૃત્તિઓ

(1) આલેખ પરથી મેળવેલ A અને δ*m*નાં મૂલ્યો નો ઉપયોગ નીચેના સૂત્રમાં કરી પ્રિઝમના દ્રવ્યનો વક્રીભવનાંક ગણો.

$$n = \frac{\sin i}{\sin r} = \frac{\sin[(A + \delta_m)/2]}{\sin(A/2)}$$


- (2) તમે અવલોકેલા દરેક આપાતકોણ i, વિચલનકોણ δ ને અનુરૂપ નિર્ગમનકોણ માપો. (i+e) અને $(A+\delta)$ ગણો અને તેમને કેવી રીતે સરખાવી શકાય તે જુઓ.
- (3) $i \delta$ વક્રને કાપતી સમાંતર સમિક્ષિતિજ રેખા દોરો, જેનાથી તમને i અને e ના જુદા-જુદા મૂલ્યો મળશે. આ સમાંતર રેખાઓનાં મધ્યબિંદુઓ મેળવો અને તે મધ્યબિંદુઓને જોડો. આ રીતે મેળવેલા વક્રનો આકાર કેવો હશે ? જો આ આકાર એક સુરેખા બનાવે છે, તો તેનો (i) ઢાળ (ii) y-અંતઃખંડ (iii) x-અંતઃખંડ શોધો.
- (4) પોલા પ્રિઝમની મદદથી જુદા-જુદા પ્રવાહીના વક્રીભવનાંક, $i \delta$ નો આલેખ દોરીને નક્કી કરવો.
- (5) તમે દોરેલી આકૃતિઓ માટે r, r' અને e માપો. i અને r, તથા e અને r'નાં મૂલ્યો પરથી પ્રિઝમના દ્રવ્યનો વકીભવનાંક શોધો.

હેતુ

ચલ સૂક્ષ્મદર્શકયંત્ર (ટ્રાવેલિંગ માઇક્રોસ્કૉપ)નો ઉપયોગ કરી કાચના સ્લેબ (ચોસલા)નો વક્રીભવનાંક શોધવો.

સાધનો અને જરૂરી સામગ્રી

ટ્રાવેલિંગ માઇક્રોસ્કૉપ, કાચનો સ્લેબ, લાઇકોપોડિયમ પાઉડર / ચૉકનો ભૂકો, કાગળ

આકૃતિ E 14.1 કાચના સ્લેબમાં બિંદુ Oના પ્રતિબિંબ 1ની રચના

સિદ્ધાંત

કાચના સ્લેબને સમક્ષિતિજ સપાટી પર હવામાં મૂકી તેના તળિયાને ઉપરથી જોતાં વક્રીભવનની ઘટનાના કારણે તે ઊંચે આવેલું દેખાય છે. આ આભાસી તળિયા અને સ્લેબની ઉપરની સપાટી વચ્ચેના અંતરને સ્લેબની આભાસી જાડાઈ કહે છે. સામાન્યતઃ અવલોકનની સ્થિતિમાં, હવાના માધ્યમની સાપેક્ષે કાચનો વક્રીભવનાંક,

$$n_{ga} = rac{$$
સ્લેબની વાસ્તવિક જાડાઈ
$$rac{}{$$
સ્લેબની આભાસી જાડાઈ

Downloaded from https://www.studiestoday.com

પ્રયોગશાળા માર્ગદર્શિકા

પદ્ધતિ

- (1) ઉપયોગમાં લેવાતા માઇક્રોસ્કૉપના માપક્રમનું લઘુત્તમ માપ શોધો.
- (2) કાગળની શીટ પર નિશાન કરો.
- (3) માઇક્રોસ્કૉપના સમક્ષિતિજ પ્લેટફ્રોર્મ પર કાગળ મૂકો. માઇક્રોસ્કૉપને એવી રીતે ગોઠવો કે જેથી તેના લેન્સનું તંત્ર નિશાન ઉપર શિરોલંબ રીતે ગોઠવાય.
- (4) માઇક્રોસ્કૉપને નિશાન પર ફોક્સ કરો અને કોષ્ટક E 14.1 માં દર્શાવ્યા પ્રમાણે મુખ્ય માપક્રમ પરના અવલોકન (MSR) અને વર્નિયર માપક્રમ પરના એકરેખસ્થ કાપા (VSR)નો ઉપયોગ કરો અવલોકન a_j ની નોંધ કરો.
- (5) હવે, કાગળની શીટ પરના અંકિત નિશાન ઉપર કાચનો સ્લેબ મૂકો.
- (6) કાગળ પર રહેલું અંકિત નિશાન કાચના સ્લેબમાંથી જ્યાં સુધી તીક્ષ્ણ અને સ્પષ્ટ ન દેખાય ત્યાં સુધી માઇક્રોસ્કૉપને ઉપર લઈ જાઓ. મુખ્ય માપ અને વર્નિયર માપક્રમના એકરેખસ્થ કાપાની મદદથી અવલોકન a_{γ} લો.
- (7) કાચના સ્લેબની ઉપરની સપાટી પર થોડોક લાઇકોપોડિયમ પાઉડર / ચૉકનો ભૂકો પાથરો.
- (8) માઈક્રોસ્કોપના લેન્સના તંત્રને ઉપર તરફ ખસેડી ચોકના ભૂકાના થોડાક ક્શોને સ્પષ્ટ રીતે ફ્રોક્સ કરો અને અવલોકન $a_{_3}$ નોંધો.
- (9) સ્લેબને ઊંધો કરો અને પદ 3 થી 8નું પુનરાવર્તન કરો.

અવલોકન

ટ્રાવેલિંગ માઇક્રોસ્કૉપનું લઘુત્તમ માપ :

મુખ્ય માપક્રમના 20 કાપાનું માપ (MSD) = 1 cm (ધારો કે)

$$\therefore$$
 1 કાપાની કિંમત (1 MSD) = $\frac{1}{20}$ cm

વર્નિયર માપક્રમના 50 કાપાઓ (VSD) = 49 MSD (ધારો કે)

$$\therefore 1 \text{ VSD} = \frac{49}{50} \text{ MSD} = \frac{49}{50} \times \frac{1}{20} \text{ cm}$$

માઇક્રોસ્કૉપનું લઘુત્તમ માપ = (1 MSD - 1 VSD)

$$= \left[\frac{1}{20} - \left(\frac{49}{50} \right) \times \frac{1}{20} \right] = \frac{1}{20} \left(1 - \frac{49}{50} \right)$$
 cm

संघुत्तम भाप (LC) = 0.001 cm

કોષ્ટક E 14. 1 : કાચના સ્લેબનો વક્કીભવનાંક

	માઇક્રોસ્કૉપને ફોક્સ કરતાં અવલોકનો								
ક્રમ	ક્રમ કાગળ પર અંકિત નિશાન			સ્લેબ માંથી દેખાતા કાગળ પરનું અંકિત સ્થાન			કાચની ઉપરની સપાટી પર રહેલા કણો		
	M.S.R. M (cm)	V.S.R. N (cm)	a ₁ = M+ N× L.C. (cm)	M.S.R. M (cm)	V.S.R. N (cm)	$a_2 = M+$ $N \times$ $L.C.$ (cm)	M.S.R. M (cm)	V.S.R. N (cm)	a ₃ = M+ N× L.C. (cm)
1									
2									
3									

ગણતરીઓ

વક્રીભવનાંક
$$n_{\mathrm{g}a}=rac{}{}$$
 સ્લેબની વાસ્તવિક જાડાઈ $=rac{a_{3}-a_{1}}{a_{2}-a_{1}}=rac{b}{c}$ (ધારો)

અવલોકનોના બે સેટ માટે $n_{_{ga}}$ શોધી સરેરાશ $n_{_{ga}}$ શોધો.

ત્રુટિ

 $n_{\mathrm{g}a}$ ના માપનની અંદાજિત ત્રુટિ

$$\frac{\Delta n_{ga}}{n_{ga}} = \left(\frac{\Delta b}{b} + \frac{\Delta c}{c}\right) \tag{E 14.1}$$

જ્યાં
$$\frac{\Delta b}{b} = \left(\frac{\Delta a_1}{a_1} + \frac{\Delta a_3}{a_3}\right)$$
 (E 14.2)

અને
$$\frac{\Delta c}{c} = \left(\frac{\Delta a_1}{a_1} + \frac{\Delta a_2}{a_2}\right)$$
 (E 14.3)

સમીકરણ E 14.1 પરથી,
$$\frac{\Delta n_{ga}}{n_{ga}} = \left(\frac{2\Delta a}{b} + \frac{2\Delta a}{c}\right)$$

અથવા
$$\Delta n_{ga} = 2n_{ga} \left[\frac{\Delta a}{b} + \frac{\Delta a}{c} \right]$$

 $\Delta a =$ માઇક્રોસ્કૉપનું લઘુત્તમ માપ એટલે કે $a_{_{\! 1}},\; a_{_{\! 2}}$ અને $a_{_{\! 3}}$ ના માપનની ત્રુટિ.

પ્રયોગશાળા માર્ગદર્શિકા

અવલોકનોના બે સેટ પરથી મળેલી Δn_{ga} ની મહત્તમ કિંમતને પરિણામની સાથે પ્રાયોગિક ત્રુટિ તરીકે નોંધી શકાય.

પરિણામ

કાચના સ્લેબનો વક્રીભવનાંક,

$$n_{ga} \pm \Delta n_{ga} = \dots \pm \dots$$

 $n_{ga}^{}$ એ હવાની સાપેક્ષે કાચના વક્રીભવનાંકનું સરેરાશ મૂલ્ય છે.

સાવચેતીઓ

- (1) નકારાત્મક પ્રતિક્રિયા ત્રુટિ (back-lash error) ટાળવા માઇક્રોસ્કૉપને ફોક્સ કરવા વપરાતા સ્કૂને માત્ર એક જ દિશામાં ફેરવવા જોઈએ.
- (2) એકવાર માઇક્રોસ્કૉપને પ્રથમ અવલોકન એટલે કે a_1 માટે ફોક્સ કરી દીધાં પછી, લેન્સના તંત્રની ફોક્સીંગ વ્યવસ્થાને પછીનાં અવલોકનો a_2 , a_3 માટે બદલવું / ફેરફાર કરવો નહિ.
- (3) કાચના સ્લેબને સમક્ષિતિજ સપાટી પર મૂકવો જોઈએ.
- (4) વર્નિયર માપક્રમના એકરેખસ્થ કાપાના અવલોકનમાં ત્રુટિને ટાળવા માટે વિપુલદર્શક કાચનો ઉપયોગ કરવો જોઈએ.

ત્રુટિનાં ઉદ્ગમો

- (1) માઈક્રોસ્કૉપની સ્થિતિ કાચના સ્લેબની સપાટીને લંબરૂપે ન પણ હોય.
- (2) જો કાચના સ્લેબ પર પાથરેલ લાઇકોપોડિયમ પાઉડર / ચોકનો ભૂકો વધારે ઘટ્ટ થાય, તો તે કાચના સ્લેબની વાસ્તવિક સપાટીનું પ્રતિનિધિત્વ કરતો નથી અને તેથી પરિશામમાં ત્રુટિ આવી શકે.

ચર્ચા

- (1) જો તમે પાણી ભરેલી ડોલમાં પડેલા સિક્કાને ઊંચકો તો વાસ્તવિક અને આભાસી ઊંડાઈને અનુભવી શકો છે.
- (2) એવી પરિસ્થિતિ વિચારો કે જેમાં વસ્તુમાંથી આવતાં કિરણો કાચના સ્લેબ પર ત્રાંસા આપાત થાય. શું તમે n_{ga} માટે ગાણિતિક સમીકરણ મેળવી શકો ?

સ્વ-મૂલ્યાંકન

(1) જો રંગહીન કાચના સ્લેબને પારદર્શક પ્રવાહી કે જેનો વક્રીભવનાંક સ્લેબના વક્રીભવનાંક જેટલો હોય તો તેમાં ડુબાડીએ તો શું સ્લેબ દેખાશે ? તે માટેનું કારણ આપો.

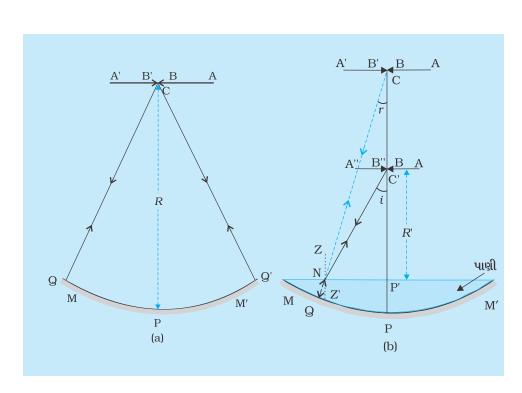
પ્રયોગ 14

(2) તમારી પાસે એકસરખા પરિમાણવાળા ત્રણ સ્લેબ છે. – એક પોલો કે જેને સંપૂર્ણ પાણીથી ભરેલો છે, બીજો ક્રાઉન કાચનો બનેલો છે અને ત્રીજો ફિલન્ટ કાચનો બનેલો છે. જો તેમાંના દરેકને તળિયે કલરથી નિશાન કરેલા છે. કયા કિસ્સામાં નિશાન સૌથી વધુ ઉપર દેખાશે ? અહીં $n_{\rm ga-2} > n_{\rm siG-1} > n_{\rm upl}$

સૂચવેલ વધારાના પ્રયોગો / પ્રવૃત્તિઓ

ઉપર વર્શવેલી રીતની મદદથી વ્યવહારમાં મળતાં પારદર્શક પ્રવાહીઓના વક્રીભવનાંકો શોધો. આ પ્રયોગ માટે તમે પાતળા કાચના બીકરનો ઉપયોગ કરી શકો.

પ્રયોગ 15


હેતુ

- (i) અંતર્ગોળ અરીસા (ii) બહિર્ગોળ લેન્સ અને સમતલ અરીસાનો ઉપયોગ કરી આપેલા પ્રવાહી (પાણી)નો વક્રીભવનાંક નક્કી કરવો.
- (i) અંતર્ગોળ અરીસાની મદદથી પાણીનો વક્રીભવનાંક

સાધનો અને જરૂરી સામગ્રી

નાનું દર્પણમુખ અને મોટી કેન્દ્રલંબાઈવાળો અંતર્ગોળ અરીસો, પાણી, દઢ આધાર તલ અને ક્લેમ્પ વ્યવસ્થા વાળું લેબોરેટરી સ્ટૅન્ડ. (સ્ટૅન્ડની ઊંચાઈ આપેલા અંતર્ગોળ અરીસાની કેન્દ્રલંબાઈના બમણાંથી વધારે હોવી જોઈએ.), પિન, માપપટ્ટી, સ્પિરિટ લેવલ, ઓળંબો અને બૂચના કેટલાક નાના ટુકડાં.

સિદ્ધાંત

આકૃતિ E 15.1 વક્કતાકેન્દ્ર પર મૂકેલ અંતર્ગોળ અરીસા MM' વડે રચાતું વસ્તુ ABનું પ્રતિબિંબ A'B'. (a) પાણી રહિત (ખાલી) અરીસો અને (b) પાણી ભરેલો અરીસો

જ્યારે વસ્તુને અંતર્ગોળ અરીસા MM' ની પરાવર્તક સપાટીની સામે વકતાત્રિજ્યા R જેટલા અંતરે મુકીએ ત્યારે તેનું વાસ્તવિક અને ઊલટું પ્રતિબિંબ વક્રતાકેન્દ્ર પર રચાય છે. આમ $u = \mathbf{p} = R =$ અંતર PC, (જ્યાં P = અરીસાનો ધ્રુવ) [આકૃતિ E 15.1 (a)]. આમ તીક્ષ્ણ ધારવાળી પિન અને અંતર્ગોળ અરીસા વડે મળતા તેના વાસ્તવિક અને ઊલટા પ્રતિબિંબ વચ્ચે દષ્ટિસ્થાન ભેદની રીતથી અંતર્ગોળ અરીસાના વક્રતાકેન્દ્ર C નું સ્થાન નક્કી કરી શકાય છે. જ્યારે અરીસો અંશતઃ પારદર્શક પ્રવાહી (દા.ત., પાણી)થી ભરેલો હોય ત્યારે આકૃતિ E 15.1 (b) વકતાકેન્દ્ર C'નું સ્થાન દર્શાવે છે. આ કિસ્સામાં વસ્તુ પિન અને તેના પ્રતિબિંબ વચ્ચેનો દૃષ્ટિ

સ્થાન ભેદ અરીસાના ધ્રુવ P થી ટૂંકા અંતરે દૂર થાય છે. આપાતકિરણ C'N પાણી-હવાની સીમાએ પથ NM પર એવી રીતે વક્કીભવન પામે છે કે જેથી તે વક્કાકાર પરાવર્તક સપાટી પર બિંદુ M પર લંબરૂપે આપાત થાય. પરાવર્તિત કિરણ પાણીમાં એ જ ગતિપથ MN પર પાછું આવી NC પર અક્ષ પાસે C બિંદુએ મળે છે. વાસ્તવમાં હવામાં પરાવર્તિત કિરણ NC'પર પસાર થાય છે. આથી વાસ્તવિક અને ઊલટું પ્રતિબિંબ C'પર મળે છે. તેથી જ તો પાણી ભરેલા અંતર્ગોળ અરીસા માટે અંતર PC' આભાસી વક્કતાત્રિજયા R' છે.

આકૃતિ E 15.1 (b) આપાતકિરણ C'Nનું પાણીમાં વક્કીભવન દર્શાવે છે. પાણીની સપાટીએ લંબ ZZ' છે. $\angle ZNC'$ અને $\angle ZNC$ એ અનુક્રમે આપાતકોણ i અને વક્કીભવનકોણ r છે. ભૌમિતિક દલીલો પરથી સ્પષ્ટ છે કે, $\angle i = \angle NC'P$ અને $\angle r = \angle NCP$. આમ, પાણીનો હવાની સાપેક્ષે વક્કીભવનાંક નીચે પ્રમાણે આપી શકાય :

$$n_{wa} = \frac{\sin i}{\sin r} = \frac{\frac{NP'}{NC'}}{\frac{NP'}{NC}} = \frac{NC}{NC'}$$

ખૂબ નાના દર્પણમુખ અને મોટી વક્રતાત્રિજ્યા ધરાવતા અરીસા માટે અંતરો NC અને NC' એ લગભગ અનુક્રમે PC અને P'C' અંતરો જેટલા છે. વધારામાં, જો અરીસામાં ખૂબ ઓછું પાણી ભરીએ, તો અંતર PP' ને PC અથવા PC'ની સરખામણીમાં અવગણી શકાય છે. આમ,

$$n_{wa} = \frac{PC}{PC'} = \frac{R}{R'}$$

આ પ્રમાણે, આ પદ્ધતિનો ઉપયોગ કરી કોઈપણ પારદર્શક પ્રવાહીનો વક્રીભવનાંક નક્કી કરી શકાય છે.

પદ્ધતિ

(1) અંતર્ગોળ અરીસા માટે દૂરની વસ્તુનું પ્રતિબિંબ ફોક્સ કરી અંદાજિત કેન્દ્રલંબાઈ શોધો. દીવાલ અથવા તો કાગળ પર સૂર્ય અથવા ઝાડનું તીક્ષ્ણ પ્રતિબિંબ મેળવી તે શોધી શકાય. અરીસા અને પ્રતિબિંબ વચ્ચેનું અંતર માપપટ્ટી વડે માપો. આ અંતર અંતર્ગોળ અરીસાની અંદાજિત કેન્દ્રલંબાઈ f નું મૂલ્ય છે. આ કેન્દ્રલંબાઈનું બમણું એ આપેલા અંતર્ગોળ અરીસા માટે વક્રતાત્રિજયાની અંદાજિત કિંમત છે.

પ્રયોગશાળા માર્ગદર્શિકા

નોંધ : અંતર્ગોળ અરીસામાં દેખાતા સૂર્યના પ્રતિબિંબને જોશો નહિ, કેમકે તે તમારી આંખોને નુકસાન કરી શકે છે.

- (2) જડિત અને સ્થિત લેબોરેટરી સ્ટૅન્ડ પર પરાવર્તક સપાટી ઉપર તરફ રહે તેમ આપેલા અંતર્ગોળ અરીસાને મૂકો. સ્પિરિટ લેવલની મદદથી ખાતરી કરો કે, અરીસાને જ્યાં મૂક્યો છે તે સમતલ સમક્ષિતિજ છે. આમ, અરીસાની મુખ્ય અક્ષ શિરોલંબ રહેશે. કાગળના અથવા પ્લાસ્ટિકના કે બુચના કેટલાક ટુકડાઓની મદદથી સ્ટૅન્ડ પર અરીસાની સ્થિતિ સ્થિર રાખી શકાય.
- (3) તીક્ષ્ણ ધારવાળી તેજસ્વી (ચમકતી) પિનને ક્લેમ્પમાં સમક્ષિતિજ ભરાવી અરીસાથી સહેજ ઉપર રાખો. પિનના સ્થાનને એવી રીતે ગોઠવો કે જેથી તેની ટોચ B અરીસાના ધ્રુવ P થી સહેજ ઉપર રહે અથવા અરીસાની મુખ્ય અક્ષ પર રહે.
- (4) ક્લેમ્પમાં લગાવેલ પિનને અંતર્ગોળ અરીસાના ધ્રુવ P થી અંદાજિત કેન્દ્રલંબાઈ કરતાં અંદાજે બમણાં અંતરે લઈ જાઓ. (પ્રથમ તબક્કામાં આ મેળવેલ છે.) ફરી એકવાર તપાસો કે પિનની ટોચ અને ધ્રુવ P એક જ શિરોલંબ રેખામાં છે કે નહિ. (જે અરીસાની મુખ્ય અક્ષ છે.)
- (5) પિનના સ્થાનને ત્યાં સુધી ગોઠવતાં જાવ, જ્યાં સુધી પિનની ટોચ અને તેના ઊલટા પ્રતિબિંબ વચ્ચે દેષ્ટિસ્થાન ભેદ દૂર થાય.
- (6) પિનની ટોચ અને અરીસા વચ્ચેનું શિરોલંબ અંતર ઓળંબો અને માપપટ્ટીનો ઉપયોગ કરીને માપો. આ અંતર અરીસા માટે વાસ્તવિક વક્રતાત્રિજ્યા છે.
- (7) અરીસાની વક્રસપાટીમાં થોડું પાણી ભરો.
- (8) પિનને ધીરે-ધીરે નીચે લેતાં જાવ, જ્યાં સુધી પિનની અણી અને તેના પાણી ભરેલા અરીસા વડે મળતાં ઊલટા પ્રતિબિંબ વચ્ચે દેષ્ટિસ્થાન ભેદ દૂર થાય.
- (9) અરીસામાંથી પાણી દૂર કરી, પિનની અણી અને અરીસા વચ્ચેનું શિરોલંબ અંતર માપો. આ અંતર પાણી ભરેલા અરીસાની આભાસી વક્રતાત્રિજ્યા દર્શાવે છે.
- (10) પ્રયોગનું ઓછામાં ઓછું બીજી બે વખત પુનરાવર્તન કરો. (પદ 2 થી 9)

અવલોકન

- (1) અંતર્ગોળ અરીસાની અંદાજિત કેન્દ્રલંબાઈ f = cm
- (2) વક્રતાત્રિજયાનું અંદાજિત મૂલ્ય R = 2f = ... cm

કોષ્ટક E 15.1 : R, R' અને $n_{_{wa}}$ નાં અવલોકનો

ક્રમ	ધ્રુવની સાપેક્ષે પિ	$n_{wa} = R/R'$	$\Delta n_{_{Wa}}$	
	ખાલી અંતર્ગોળ અરીસા માટે	પાણી ભરેલા અરીસા માટે		
	અંતર PC,	અંતર PC',		
	R (cm)	R' (cm)		
1				
2				
3				
		સરેરાશ		

ગણતરીઓ

 $n_{_{wa}}$ ગણો અને તેની સરેરાશ કિંમત શોધો.

ત્રુટિ

$$\frac{\Delta n_{wa}}{n_{wa}} = \frac{\Delta R}{R} + \frac{\Delta R'}{R'}$$

$$\therefore \Delta n_{wa} = \left\lceil \frac{\Delta R}{R} + \frac{\Delta R'}{R'} \right\rceil n_{wa}$$

પરિણામ

હવાની સાપેક્ષે પાણીનો વક્રીભવનાંક

$$n_{wa} \pm \Delta n_{wa} = \dots \pm \dots$$

 $n_{_{wa}}$ એ સરેરાશ કિંમત છે અને $\Delta n_{_{wa}}$ એ ત્રુટિઓની ત્રણ કિંમત પૈકીની મહત્તમ છે.

સાવચેતીઓ

- (1) પિનને સમિક્ષિતિજ મૂકેલા અંતર્ગોળ અરીસાની પરાવર્તક સપાટીની ઉપર એવી રીતે સમિક્ષિતિજ મૂકવી જોઈએ કે જેથી પિનની અણી અરીસાના ધ્રુવની ઉપર શિરોલંબ મુખ્ય અક્ષ પર રહે.
- (2) અરીસાનું દર્પણમુખ નાનું હોવું જોઈએ.
- (3) અરીસો ઘણો પાતળો હોવો જોઈએ, નહિતર એક કરતાં વધારે પરાવર્તનોના કારણે પ્રતિબિંબ અસ્પષ્ટ બને છે.
- (4) અરીસામાં લીધેલ પાણી એટલું પૂરતું હોવું જોઈએ કે જેથી પાણીની સપાટી સમક્ષિતિજ રહે, નહિ તો પૃષ્ઠતાણના કારણે સપાટી સમક્ષિતિજ રહેશે નહિ.
- (5) આંખને પિનથી 25 cm કરતાં વધારે અંતરે રાખવી જોઈએ.

પ્રયોગશાળા માર્ગદર્શિકા

ત્રુટિનાં ઉદ્ગમો

PC ને જોડતી રેખા શિરોલંબ ના પણ હોઈ શકે.

ચર્ચા

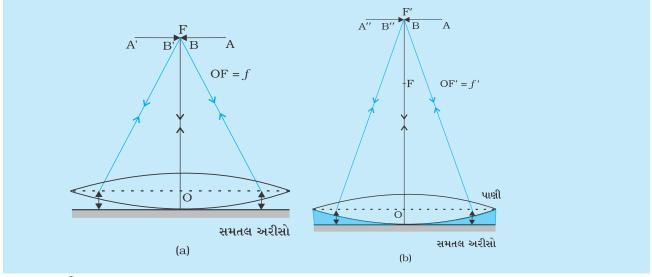
- (1) જો જુદી-જુદી વક્કતાત્રિજ્યા ધરાવતા અંતર્ગોળ અરીસાઓની મદદથી પાણીનો વક્કીભવનાંક નક્કી કરવામાં આવે, તો તે વક્કીભવનાંકના મૂલ્યને કેવી રીતે અસર કરી શકે ?
- (2) PC અને PC' નાં સચોટ મૂલ્યો શોધવા ઓળંબાનો ઉપયોગ કરી શકાય. ઓળંબો કઈ રીતે સાચા માપનની ખાતરી આપશે ?

સ્વ-મૂલ્યાંકન

- (1) પાણીથી ભરેલો અંતર્ગોળ અરીસો, અંતર્ગોળ અરીસા અને સમતલ બહિર્ગોળ લેન્સના સંયોજન તરીકે વર્તે છે એવું સ્વીકારી, આ પ્રયોગ પરથી પાણીનો વક્કીભવનાંક શોધો.
- (2) અરીસામાંના પાણીનો જથ્થો થોડાક ટીપાંથી શરૂ કરો, ધીરે-ધીરે વધારતાં જઈએ તેમ પ્રતિબિંબના સ્થાન અથવા તેની તીવ્રતા (તેજસ્વીતા) બદલાય તેવી તમે અપેક્ષા રાખો છો?
- (3) જો આપેલા પાણીની પારદર્શિતા જળવાઇ રહે એ રીતે રંગ ઉમેરવામાં આવે, તો શું તેને લીધે વક્કીભવનાંકના મૂલ્ય અને પ્રતિબિંબની તીવ્રતાનું મૂલ્ય બદલાય ?
- (4) જો ખૂબ જ ઓછી માત્રામાં અન્ય પારદર્શક પ્રવાહી (જેમકે કેરોસીન) જે પાણી કરતાં હલકું હોય તેને ઉમેરતાં તે પાણીની સપાટી પર પાતળી ફિલ્મ બનાવે છે, તો શું હજી પણ પ્રયોગ કરી શકાય ? જો થઈ શકે તો શું વકીભવનાંકનું મૂલ્ય બદલાશે ?

સૂચવેલ વધારાના પ્રયોગો / પ્રવૃત્તિઓ

- (1) જુદાં-જુદાં પ્રવાહીઓનો વક્કીભવનાંક નક્કી કરો. (સફેદ સરકો (Vinegar), કેરોસીન, ગ્લિસરીન, રાંધણતેલ)
- (2) ટેબલ-લૅમ્પ લો. તેને જુદા-જુદા કલરના પારદર્શક કાગળથી ઢાંકી દો. અંતર્ગોળ અરીસાની મદદથી પ્રવાહી (જેમકે પાણી)નો વક્કીભવનાંક નક્કી કરો. શું તમે પ્રવાહીના વક્કીભવનાંકના મૂલ્યમાં કોઈ ફેરફાર અવલોક્યો ?
- (3) મીઠા/ખાંડના દ્રાવણની સાંદ્રતા બદલતા જઈ તેના વકીભવનાંકમાં થતા ફેરફારનો અભ્યાસ કરો.


(ii) બહિર્ગોળ લેન્સ અને સમતલ અરીસાની મદદથી પાણીનો વક્રીભવનાંક શોધવો.

સાધનો અને જરૂરી સામગ્રી

બંને બાજુથી બહિર્ગોળ હોય તેવો લેન્સ (જેની કેન્દ્રલંબાઈ લગભગ 20 cm હોય), સમતલ અરીસો (લેન્સના દર્પણમુખ કરતા જેનું પરિમાણ મોટું હોય), પિન લગાવેલ ક્લેમ્પ સહિત લેબોરેટરી સ્ટૅન્ડ, માપપટ્ટી, ઓળંબો, પાણીનું ડ્રૉપર

સિદ્ધાંત

આ રીતમાં વાસ્તિવિક અને ઊલટું પ્રતિબિંબ બહિર્ગોળ લેન્સના મુખ્ય કેન્દ્ર પર મૂકેલી વસ્તુ પર સંપાત થાય છે. મુખ્ય કેન્દ્ર F પર મૂકેલી પિન AB માંથી નીકળતાં કિરણો લેન્સની પાર નીકળે ત્યારે અક્ષને સમાંતર બને છે. જ્યારે આ કિરણો બહિર્ગોળ લેન્સની નીચે મૂકેલા સમક્ષિતિજ સમતલ અરીસા પર લંબરૂપે આપાત થાય, ત્યારે તે તે જ રસ્તે પાછા કરી લેન્સના મુખ્ય ફોકલ પ્લેન (સમતલ) પર વાસ્તિવિક અને ઊલટું પ્રતિબિંબ A' B' રચે છે. (આકૃતિ E 15.2 (a)). પ્રતિબિંબ A' B'નું પરિમાણ વસ્તુ પિન ABના પરિમાણ જેટલું હોય છે અને પિનની ટોચ દ્વિતીય મુખ્ય કેન્દ્રનું સ્થાન દર્શાવે છે. f(OF) બહિર્ગોળ લેન્સની (પાતળો લેન્સ)ની કેન્દ્રલંબાઈ છે તથા O એ આ લેન્સનું ઓપ્ટિકલ કેન્દ્ર છે. હવે, જો લેન્સ અને સમતલ અરીસાની વચ્ચેની જગામાં પારદર્શક પ્રવાહી (જેમકે પાણી) કે જેનો વકીભવનાંક n_{wa} છે તે ભરવામાં આવે અને ઉપરની પદ્ધતિનું મુખ્ય કેન્દ્ર F શોધવા પુનરાવર્તન કરવામાં આવે, તો નવી પરિસ્થિતિમાં ઓપ્ટિકલ કેન્દ્ર O અને બિંદુ F' વચ્ચેનું અંતર OF' (f' કહી શકાય) તે સંયોજનની કેન્દ્રલંબાઈ કહી શકાય.

અાકૃતિ E 15.2 સમતલ અરીસા પર મૂકેલા સમબહિર્ગોળ લેન્સ વડે રચાતા પ્રતિબિંબનું વસ્તુ AB પર સંપાતીકરણ (a)A'B' જ્યારે લેન્સ અને અરીસાની વચ્ચે હવા હોય ત્યારે અને (b)A" B" જ્યારે લેન્સ અને અરીસાની વચ્ચે પાણી હોય ત્યારે

આ સંયોજન કાચનો બહિર્ગોળ લેન્સ (જેની બંને વક્રસપાટી માટે વક્રતાત્રિજ્યા R જેટલી સમાન

પ્રયોગશાળા માર્ગદર્શિકા

હોય) અને પાણી સમતલ-અંતર્ગોળ લેન્સ કે જેની વક્રતાત્રિજયા પણ એટલી જ R હોય, તેનો સમાવેશ કરે છે. પાણીના લેન્સની કેન્દ્રલંબાઈ $f_{\rm W}$ આ ત્રણ કેન્દ્રલંબાઈના સંબંધ પરથી નક્કી કરી શકાય છે. (એટલે કે $f,\ f'$ અને $f_{\rm W}$ પરથી)

$$\frac{1}{f'} = \frac{1}{f} + \frac{1}{f_{\mathbf{w}}}$$

$$\frac{1}{f_{w}} = \frac{f - f'}{f f'}$$

પણ સંજ્ઞા પદ્ધતિ સાથે : f = + ve (ધન), f' = + ve (ધન), $f_W = - ve$ (ઋણ)

$$f_w = \frac{f f'}{f - f'}$$

સમતલ - અંતર્ગોળ લેન્સ માટેના લેન્સમેકર સૂત્ર પરથી,

(E 15.3)

$$\frac{1}{f_{\rm w}} = (n_{\rm wa} - 1) \frac{1}{\rm R}$$

આમ,
$$R=(n_{_{wa}}-1)$$
 $\frac{f\,f'}{f-f'}$

આથી,

(E 15.4)

$$n_{wa} = \left(1 + \frac{R}{f_{\rm w}}\right)$$

ધોરણ XI (NCERT) પ્રયોગપોથી ભૌતિકવિજ્ઞાન પ્રયોગ 3માં સ્ફ્રેરોમીટરની મદદથી આપેલ બહિર્ગાળ લેન્સની ગોળાકાર સપાટીઓની વક્રતાત્રિજ્યા નક્કી કરવાની પદ્ધતિને અનુસરી અને સમીકરણ 15.4નો ઉપયોગ $n_{_{wa}}$ ગણવામાં થાય છે.

આથી, આ પદ્ધતિનો ઉપયોગ કરી પારદર્શક પ્રવાહીનો વક્રીભવનાંક નક્કી કરી શકાય છે.

પદ્ધતિ

- (1) સમતલ અરીસાને લેબોરેટરીના દઢ સ્ટૅન્ડના પાયા પર તેની પરાવર્તક સપાટી ઉપર તરફ રહે તેમ મૂકો.
- (2) સમતલ અરીસા ઉપર બહિર્ગાળ લેન્સ મૂકો.
- (3) ધારદાર અણીવાળી ચમકતી પિનને ક્લેમ્પમાં સમક્ષિતિજ લગાવી લેન્સની ઉપર રાખો. પિનની સ્થિતિને એવી રીતે ગોઠવો કે જેથી તેની ટોચ B બહિર્ગોળ લેન્સના ઓપ્ટિકલ કેન્દ્રની ઉપર શિરોલંબ રહે. આ માટે ઓળંબો અને સ્પિરિટ લેવલનો ઉપયોગ કરી શકાય.

- (4) ક્લેમ્પમાં ભરાવેલી પિનને ધીરે-ધીરે ઉપર તરફ લેતાં જાવ, પ્રતિબિંબને જોતા જાવ અને તે ઊંચાઈએ લઈ જાવ જ્યાં પિનની ટોચ B, પ્રતિબિંબની ટોચ B' પર સંપાત થાય. ખાતરી કરો કે વસ્તુ પિન અને તેના પ્રતિબિંબ વચ્ચે કોઈ દેષ્ટિસ્થાન ભેદ ના હોય. અંતર OF માપો. (આકૃતિ 15.2 (a)) પિનનાં અંતરો લેન્સની ઉપરની અને નીચેની સપાટીઓથી અવલોકો અને OF = f = આ બે અંતરોની સરેરાશ લો.
- (5) ડ્રૉપરની મદદથી લેન્સની નીચે થોડાં પાણીનાં ટીપાં નાંખો, જેથી અરીસા અને લેન્સ વચ્ચેની જગા, પાણીથી ભરાયેલ રહે.
- (6) વસ્તુ પિનને ઉપરની તરફ ખસેડો. વસ્તુ પિનની ટોચ અને તેના પ્રતિબિંબ વચ્ચેનો દેષ્ટિસ્થાન બેદ દૂર કરો. OF' અંતર માપો. (આકૃતિ E 15.2 (b)). અગાઉ પિનનું બે સપાટીઓ (લેન્સની) માપેલા અંતર OF' = f' ને સરેરાશ તરીકે લો.
- (7) પ્રયોગનું પુનરાવર્તન કરો અને તમારાં અવલોકનો કોષ્ટક 15.2 માં નોંધો.

અવલોકન

- (1) સ્કેરોમીટરના બે પાયા વચ્ચેના અંતરનું સરેરાશ મૂલ્ય l = cm
- (2) લેન્સના ઉપસેલા ભાગ (તીર આકાર) (sagitta)ની સરેરાશ કિંમત h = cm
- (3) લેન્સની વક્રતાત્રિજ્યા Rનું સરેરાશ મૂલ્ય = cm

કોષ્ટક 15.2 બહિર્ગોળ લેન્સની કેન્દ્રલંબાઈ OF (=f) અને પાણી સમતલ-બહિર્ગોળ લેન્સની કેન્દ્રલંબાઈ (OF')=f'

57	.		ઓપ્ટીકલ કેન્દ્રની સાપેક્ષે પિનનું સ્થાન						M_w	n _{wa}	An _{wa}
		પાણી વગર (OF = f)			પાણી સ	પાણી સાથે (OF ' = f')					
		 પિનનું અ	માપેલા સ્થા ન	થી અંતર	પિનનું ર	ઝાપેલા સ્થ ા ન	ાથી અંતર				
		લેન્સની	સમતલ	$d_1 + d_2$	લેન્સની	સમતલ	$\frac{d_3+d_4}{2}$				
		ઉપરની	અરીસાથી	$\frac{1}{2}$	ઉપરની	અરીસાથી	$\frac{3}{2}$				
		સપાટીથી	d_2 (cm)		સપાટીથી						
		d_1 (cm)		f (cm)	d_3 (cm)	d_4 (cm)	f (cm)				
1											
2											
3											

117

પ્રયોગશાળા માર્ગદર્શિકા

ગણતરીઓ

$$n_{wa} = \left(1 + \frac{R}{f_{w}}\right)$$

ત્રુટિ

$$\frac{\Delta n_{wa}}{n_{wa}} = \frac{\Delta R}{R} + \frac{\Delta f_{w}}{f_{w}}$$

અથવા
$$\Delta n_{_{wa}}=n_{_{wa}}\left[rac{\Delta R}{R}+rac{\Delta f_{_{
m W}}}{f_{_{
m W}}}
ight]$$

જ્યાં
$$\Delta R = R \left[\frac{2\Delta l}{l} + \frac{2\Delta h}{h} \right]^*$$

સમીકરણ 15.1નો ઉપયોગ Δf_{w} શોધવા આપણે કરીએ.

$$\frac{\Delta f_{\rm w}}{f_{\rm w}^2} = \frac{\Delta f}{f^2} + \frac{\Delta f'}{f'^2}$$

અથવા
$$\Delta f_{\rm w} = f_{\rm w}^2 \left[\frac{\Delta f}{f^2} + \frac{\Delta f'}{f^{'2}} \right]$$

 $\Delta l, \ \Delta h, \ \Delta f$ અને $\Delta f'$ એ માપપટ્ટીનું લઘુત્તમ માપ દર્શાવે છે.

પરિશામ

આપેલ પ્રવાહી (જેમકે પાણી)નો હવાની સાપેક્ષે વકીભવનાંક $n_{wa} \pm \Delta n_{wa} = \underline{\qquad} \pm \underline{\qquad}$ અહીં n_{wa} એ સરેરાશ મૂલ્ય અને Δn_{wa} એ આ ત્રણ પૈકીની મહત્તમ ત્રુટિ છે.

સાવચેતીઓ

- (1) પિનની ટોચને લેન્સના ઓપ્ટિકલ કેન્દ્રની ઉપર સમક્ષિતિજ રીતે શિરોલંબ મુખ્ય અક્ષ પર ગોઠવાય તે રીતે રાખવી, નહિ તો દ્રષ્ટિસ્થાન ભેદ દૂર કરવો મુશ્કેલ થશે.
- (2) પાતળા લેન્સનો ઉપયોગ કરવો જોઈએ, જેથી સપાટીથી માપેલાં અંતરો લગભગ ઓપ્ટિકલ કેન્દ્રથી માપેલા અંતરની બરાબર હોય. હજુ પણ અંતરો બંને સપાટીથી માપી f અને f' ની સરેરાશ લેવું વધુ સારું છે.

(3) ડ્રૉપરની મદદથી અરીસા અને લેન્સની વચ્ચે ધીમેથી પાણી મુકવું, જેથી લેન્સની સ્થિતિમાં કોઈપણ વિશેષ કર્યા વગર તેમની વચ્ચેની હવાની જગ્યા ભરાઈ જાય.

ત્રુટિનાં ઉદ્યમો

- (1) બહિર્ગાળ લેન્સની બંને સપાટીઓની વક્રતાત્રિજ્યા સમાન ન હોય એવું બની શકે.
- (2) સમતલ અરીસો સમક્ષિતિજ ના પણ હોય.

ચર્ચા

- (1) વાપરેલ બહિર્ગાળ લેન્સ પાતળો હોવો જોઈએ. જો જાડો લેન્સ વાપરવામાં આવે, તો પરિણામ માં શું ફેરફાર થશે?
- (2) લેન્સમાંથી વક્કીભવન અને અરીસામાંથી પરાવર્તન પામી કિરણો એ જ રસ્તે પાછા જાય છે તેવું ચોક્કસ કરવા ઓળંબો કેવી રીતે અસરકારક છે ? સમક્ષિતિજ સાથે સમતલ અરીસો ખૂણો બનાવે તે સ્થિતિમાં મુખ્ય અક્ષને શિરોલંબ સાથે ખૂણાને દર્શાવતી યોગ્ય આકૃતિ દોરો.

સ્વ-મૂલ્યાંકન

- (1) નાની કેન્દ્રલંબાઈવાળો બહિર્ગોળ લેન્સ આપેલો હોય તો શું થાય ?
- (2) આ પ્રયોગ કરવા માટે તમે કઈ મૂળભૂત ધારણાઓ કરેલ છે ?
- (3) લેન્સ અને અરીસાની વચ્ચે પાણી ભર્યા પછી આપણે વસ્તુ પિનને શા માટે ઉપર લઈ જઈએ છીએ ?

સૂચવેલ વધારાના પ્રયોગો / પ્રવૃત્તિઓ

- (1) આ પદ્ધતિનો ઉપયોગ કરી અન્ય પારદર્શક પ્રવાહીનો વક્રીભવનાંક શોધો.
- (2) લેન્સ અને અરીસા વચ્ચે મૂકેલા દ્રાવણની સાંદ્રતા બદલીને તેની દ્રાવણના વકીભવનાંક પર શું અસર થાય તેનો અભ્યાસ કરો.
- (3) સમતલ અરીસાની મદદથી આપેલા બહિર્ગોળ લેન્સની કેન્દ્રલંબાઈ માપો. હવે સમતલ અરીસાના સ્થાને (સમાન વક્રતાવાળો) બહિર્ગોળ અરીસો મૂકો. લેન્સની કેન્દ્રલંબાઈ શોધવાના પ્રયોગનું પુનરાવર્તન કરો. યોગ્ય કિરણાકૃતિ દોરો.

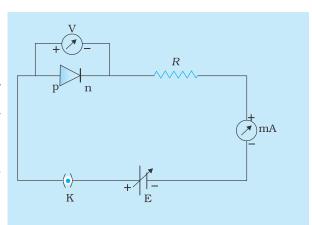
old Hયોગ 16

હેતુ

p-n જંકશનની ફોરવર્ડ બાયસ અને રિવર્સ બાયસની સ્થિતિમાં I - V ની લાક્ષણિકતા દર્શાવતા વક્કો દોરવા.

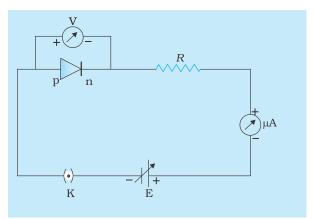
સાધનો અને જરૂરી સામગ્રી

p—n જંક્શન ડાયોડ (OA – 79 અથવા IN 4007), અવરોધ (3 Ω , 1/2W), ચલિત પાવર સપ્લાય (0 – 12 V), વોલ્ટમીટર (0 – 12 V), મિલિએમીટર (0 – 200 mA), પ્લગ-કી, જોડાણ માટેના તાર, માઇક્રોએમીટર (0 – 200 μ A), કાચપેપર.


પદો અને વ્યાખ્યાઓ

- (1) ફોરવર્ડ બાયસ : p-n જંક્શન ડાયોડને બાહ્ય વોલ્ટેજ એ રીતે આપવામાં આવે કે જેથી તેનો p-વિભાગ, n-વિભાગની સાપેક્ષે ઊંચા સ્થિતિમાને હોય તો તેને ફોરવર્ડ બાયસ કહે છે.
- (2) થ્રેશોલ્ડ વોલ્ટેજ અથવા કટ-ઇન વોલ્ટેજ : જ્યારે p— વિભાગને બૅટરીના ધન છેડા સાથે જોડી વોલ્ટેજ વધારવામાં આવે, ત્યારે શરૂઆતમાં આપેલા વોલ્ટેજ કોઈ એક ચોક્કસ કિંમત સુધી પહોચે ત્યાં સુધી અવગણ્ય પ્રવાહ મળે છે. કોઈ એક લાક્ષણિક વોલ્ટેજ પછી, ડાયોડના બાયસ વોલ્ટેજમાં નજીવો વધારો કરતાં, ડાયોડ પ્રવાહમાં નોંધપાત્ર (ચરઘાતાંકીય રીતે) વધારો થાય છે. આ વોલ્ટેજને ડાયોડનો થ્રેશોલ્ડ વોલ્ટેજ અથવા કટ-ઈન (Cut-in) વોલ્ટેજ કહે છે.
- (3) રિવર્સ બાયસ : p–n જંક્શન ડાયોડની n–વિભાગ p–વિભાગની સાપેક્ષે ઊંચા સ્થિતિમાને હોય ત્યારે ડાયોડ રિવર્સ બાયસમાં છે તેમ કહી શકાય. રિવર્સ બાયસમાં, p–n જંક્શન ડાયોડનો p–વિભાગ બૅટરીના ઋણ છેડા સાથે જોડાય છે.
- (4) રિવર્સ સંતૃપ્ત પ્રવાહ : જ્યારે રિવર્સ બાયસમાં લગાડેલ વોલ્ટેજને શૂન્યથી વધારવામાં આવે ત્યારે પ્રવાહ વધે છે, પરંતું તરત જ અચળ બને છે. આ પ્રવાહ ખૂબ નાનો હોય છે. (થોડાક માઇક્રોએમ્પિયરમાં) જેને રિવર્સ સંતૃપ્ત પ્રવાહ કહે છે.

Downloaded from https://www.studiestoday.com


પદ્ધતિ

- (1) આપેલા વોલ્ટમીટર (V), મિલિએમીટર (mA) અને માઇક્રોએમીટર (μA)ની અવધિ અને લઘુત્તમ માપ નોંધો.
- (2) જોડાણ માટેના તાર પરથી અને ડાયોડના લીડ (Leads) પરથી અવાહક પડ દૂર કરવા કાચપેપરનો ઉપયોગ કરો.
- (3) ચલ વોલ્ટેજ પાવર સપ્લાય, p-n જંક્શન ડાયોડ, વોલ્ટમીટર, મિલિએમીટર, અવરોધ અને પ્લગ-કીને આકૃતિ E 16.1માં દર્શાવ્યા મુજબ જોડો.
- (4) શરૂઆતમાં જ્યારે કળ ખુલ્લી હશે ત્યારે તમે જોશો કે પરિપથમાં કોઈ પ્રવાહ વહેતો નથી. હવે કળને બંધ કરો.
- (5) પાવર-સપ્લાયના બટનને ધીરેથી અને થોડુંક ફેરવીને પરિપથને નાનો વોલ્ટેજ આપો. ડાયોડના છેડા પર વોલ્ટમીટરનું અવલોકન અને ડાયોડમાંથી વહેતા અનુરૂપ પ્રવાહને મિલિએમીટરમાંથી નોંધો.

આકૃતિ E 16.1 p − n જંક્શન ડાયોડની ફોરવર્ડ બાયસ સ્થિતિ

- (6) પરિપથમાં લગાડેલ વોલ્ટેજને ક્રમશઃ (તબક્કાઓમાં) વધારતા જાઓ અને તેને અનુરૂપ વોલ્ટમીટર તથા મિલિએમીટરનાં અવલોકનો કોષ્ટક E16.1માં નોંધો. જ્યાં સુધી લગાડેલ વોલ્ટેજ થ્રેશોલ્ડ વોલ્ટેજ અથવા કટ-ઇન વોલ્ટેજની ઉપર ના જાય ત્યાં સુધી ડાયોડમાંથી વહેતો પ્રવાહ અવગણ્ય અને નાનો હશે. કટ-ઇન વોલ્ટેજ પછી પ્રવાહમાં ઝડપી ફેરફાર હશે.
- (7) એકવાર થ્રેશોલ્ડ વોલ્ટેજે પહોંચ્યા પછી વોલ્ટેજને ધીરે-ધીરે બદલો (0.1 Vના તબક્કામાં) અને ડાયોડમાંથી વહેતો સંલગ્ન પ્રવાહ I નોંધો. પ્રવાહ મિલિએમીટરની સીમા સુધી પહોંચે ત્યાં સુધી સતત વોલ્ટેજ વધારતાં જાવ.
- (8) હવે પરિપથ છોડી દો અને આકૃતિ E 16.2 મુજબ, રિવર્સ બાયસ માટે જોડાણો કરો. p-n જંક્શન ડાયોડના p-વિભાગને પાવર સપ્લાયના ઋણ ટર્મિનલ સાથે જોડો તથા મિલિએમીટરના સ્થાને માઇક્રોએમીટર જોડો. લગાડેલ

આકૃતિ E 16.2 p-n જંક્શનની રિવર્સ બાયસ સ્થિતિ

પ્રયોગશાળા માર્ગદર્શિકા

વોલ્ટેજ ને ક્રમશઃ વધારતાં જાવ અને અનુરૂપ વોલ્ટમીટર અને માઇક્રોએમીટરનાં અવલોકનો કોષ્ટક E 16.2માં નોંધતા જાઓ. પ્રયોગના આ ભાગમાં, આપેલા સપ્લાય વોલ્ટેજ માટે, તમે રિવર્સ બાયસ લાક્ષણિક વકનો સીધો ભાગ મેળવશો.

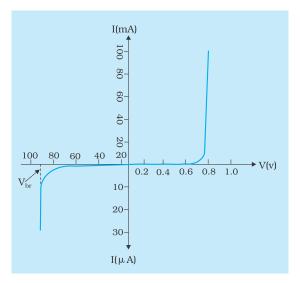
ચેતવણી

ડાયોડના છેડાઓ વચ્ચે વોલ્ટેજનું મૂલ્ય ખૂબ વધારશો નહિ. વધુ પડતો પ્રવાહ (સીમા બહાર) ડાયોડને ડાયોડમાંથી મહત્તમ સ્વીકાર્ય પ્રવાહ કેટલો પસાર થઈ શકે તે ડાયોડ બનાવનાર તરફથી (ઉત્પાદક) આપેલા ટેક્નિકલ ડેટા પરથી જાણી શકાય.

અવલોકન

- (1) વાપરેલ p-n જંક્શન ડાયોડ (ડાયોડનો નંબર) =
- (2) ફોરવર્ડ બાયસ માટે
 - (i) વોલ્ટમીટરની અવધિ (Range) = V થી V
 - (ii) વોલ્ટમીટરના માપક્રમનું લઘુત્તમ માપ = V
 - (iii) મિલિએમીટરની અવધિ = mA થી mA
 - (iv) મિલિએમીટરના માપક્રમનું લઘુત્તમ માપ = mA
- (3) રિવર્સ બાયસ માટે
 - (i) વોલ્ટમીટરની અવધિ = V થી V
 - (ii) વોલ્ટમીટરના માપક્રમનું લઘુત્તમ માપ = V
 - (iii) માઇક્રોએમીટરની અવધિ = μA થી μA
 - (iv) માઇક્રોએમીટરનું લઘુત્તમ માપ = μA

કોષ્ટક E 16.1 ફોરવર્ડ પ્રવાહનો ડાયોડ પર લગાડેલ વોલ્ટેજ સાથે થતો ફેરફાર (ફોરવર્ડ બાયસ)


ક્રમ	ફોરવર્ડ વોલ્ટેજ $V_f(V)$	ફોરવર્ડ પ્રવાહ $I_{_f}$ (m $f A$)
1		
2		
3		
20		

કોષ્ટક E 16.2 રિવર્સ પ્રવાહનો ડાયોડ પર લગાડેલ વોલ્ટેજ સાથે થતો ફેરફાર (રિવર્સ બાયસ)

ક્રમ	રિવર્સ વોલ્ટેજ $V_{\mu}(V)$	રિવર્સ પ્રવાહ $I_{_{\! r}}$ (μA)
1		
2		
20		

આલેખ દોરવો

- (1) ડાયોડના ફોરવર્ડ વોલ્ટેજ (V_{f}) ને ધન X—અક્ષ પર અને ડાયોડમાંથી વહેતા પ્રવાહ (I)ને ધન Y—અક્ષ પર લઈ આલેખ દોરો. (આકૃતિ E 16.3 પ્રમાણે) જે વાપરેલ સિલિકોન ડાયોડની I V લાક્ષણિકતા દર્શાવે છે. ની (knee) શોધો અને કટ-ઇન (Cut-in) વોલ્ટેજ નક્કી કરો.
- (2) હવે રિવર્સ વોલ્ટેજ $(V_{_{_{\it f}}})$ ને ઋણ X–અક્ષ પર અને સંલગ્ન પ્રવાહ (μA) ને ઋણ Y–અક્ષ પર આકૃતિ E 16.3માં દર્શાવ્યા મુજબ લો તથા રિવર્સ સંતૃપ્ત પ્રવાહ શોધો.

આકૃતિ E 16.3 ફોરવર્ડ અને રિવર્સ બાયસ માટે સિલિકોન ડાયોડની I–Vની લાક્ષણિકતાઓ

પરિણામ

- (A) આપેલા ડાયોડ માટે કટ-ઇન વોલ્ટેજનું મૂલ્ય V
- (B) આપેલા ડાયોડ માટે રિવર્સ સંતૃપ્ત પ્રવાહનું મૂલ્ય μΑ છે.

સાવચેતીઓ

(1) ઉત્પાદક તરફથી આપવામાં આવેલ સ્પષ્ટીકરણ મુજબ ફોરવર્ડ બાયસમાં પસાર થઈ શકે તેવો મહત્તમ સ્વીકાર્ય પ્રવાહ શોધો અને આ સીમાની ઉપર ન જવાય તેનું ધ્યાન રાખો.

પ્રયોગશાળા માર્ગદર્શિકા

- (2) ઉત્પાદકે આપેલા સ્પષ્ટીકરણ મુજબ ડાયોડમાં કેટલો મહત્તમ રિવર્સ વોલ્ટેજ લગાવી શકાય તે જાણો અને આ હદ ના વટાવાય તે ધ્યાન રાખો.
- (3) ખાસ અગત્યનું ધ્યાન એ રાખો કે, ડાયોડમાં લગાડેલ વિદ્યુતસ્થિતિમાનનો તફાવત ધીરે-ધીરે નાના તબક્કામાં વધારતા જાવ. તમારી દેષ્ટિ એમીટરના અવલોકન પર રાખો અને જુઓ કે પ્રવાહ આપેલ સીમાથી વધે નહિ.

ચર્ચા

જો આપણે જુદા-જુદા ડાયોડ (Ge અથવા Si) વાપરીએ તો I – Vની લાક્ષણિકતાઓમાં શું ફેરફાર થાય? શું ડાયોડનો થ્રેશોલ્ડ વોલ્ટેજ કે કટ-ઇન વોલ્ટેજ ડાયોડના દ્રવ્ય પર આધાર રાખે છે ?

સ્વ-મૂલ્યાંકન

- (1) તમે ડાયોડને સ્વિચ કે રેકિટફાયર તરીકે કેવી રીતે વાપરશો ?
- (2) ડાયોડ અને અવરોધ વચ્ચે શું તફાવત છે ?
- (3) જો પરિપથમાં રહેલા અવરોધ કરતાં મોટા મૂલ્યનો અવરોધ ડાયોડ સાથે શ્રેણીમાં જોડવામાં આવે, તો I – Vના લાક્ષણિકતામાં રેખીય ભાગના ઢાળ વિશે ટીપ્પણી આપો.

સૂચવેલ વધારાના પ્રયોગો / પ્રવૃત્તિઓ

- (1) આ પ્રયોગને ડાયોડ સાથે શ્રેણીમાં જુદી-જુદી કિંમતના અવરોધ (R) જોડી કરો. નીચેનામાં શું ફેરફાર થાય છે તે નોંધો :
 - (a) કટ-ઇન વોલ્ટેજ
 - (b) જુદા-જુદા R અને સમાન વોલ્ટેજ માટે મળતો વાસ્તવિક પ્રવાહ
 - (c) I V ની લાક્ષણિકતાના વક્રનો આકાર
- (2) આ પ્રયોગને ડાયોડના બદલે "લાઇટ એમિટિંગ ડાયોડ" (LED)નો ઉપયોગ કરી કરો અને I Vની લાક્ષણિકતા દોરો. જ્યારે તમે જુદા-જુદા કલરના LEDનો ઉપયોગ કરો છો ત્યારે શ્રેશોલ્ડ વોલ્ટેજમાં કેવા ફેરફાર અવલોકી શકો છો ?

પ્રયોગ 17

હેતુ

ઝેનર ડાયોડ માટે લાક્ષણિક વક્ર દોરવા અને તેનો રિવર્સ બ્રેકડાઉન વોલ્ટેજ નક્કી કરવો.

સાધનો અને જરૂરી સામગ્રી

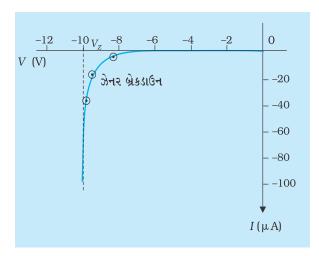
p-n જંક્શન ઝેનર ડાયોડ (IN 758), 0.1~V લઘુત્તમ માપવાળું ચલિત dc પાવર સપ્લાય (0-15~V), માઇક્રોએમીટર $(0-100~\mu A)$, વોલ્ટમીટર (0-15~V), $125~\Omega$ નો અવરોધ, વધારે અવરોધવાળું રીઓસ્ટેટ અને જોડાણ માટેના વાયરો.

સિદ્ધાંત

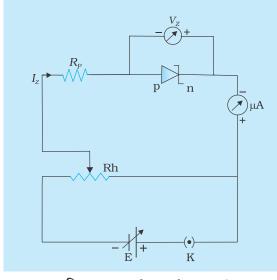
ઝેનર ડાયોડ એક પ્રકારનો p-n જંક્શન ડાયોડ છે. (રેક્ટિફાયરના p-n જંક્શન ડાયોડની સરખામણીમાં અહીં p અને n વિભાગમાં અશુદ્ધિઓ (ડોપિંગ) ખૂબ વધારે પ્રમાણમાં ઉમેરવામાં આવે છે.) જે રિવર્સ વોલ્ટેજ લાક્ષણિકતાના બ્રેકડાઉન વિભાગમાં વાપરવામાં આવે છે. આ ડાયોડને પૂરતા પાવર વ્યય ક્ષમતા (Power dissipatian capacity) સાથે બનાવવામાં આવે છે કે જેથી તેઓ બ્રેકડાઉન વિભાગમાં પણ કામ કરવા સક્ષમ હોય. નીચેની બે પધ્ધતિઓ (Mechanisms) જંક્શન ડાયોડમાં બ્રેકડાઉન માટે જવાબદાર છે.

(i) એવલાન્ચ બ્રેકડાઉન

જેમ રિવર્સ બાયસ વોલ્ટેજ વધારતાં જઈએ, તેમ p – n ડાયોડના જંક્શન પાસેના વિદ્યુતક્ષેત્રમાં વધારો થાય છે. એક ચોક્કસ રિવર્સ-બાયસ (વોલ્ટેજ) માટે, ઉષ્મીય રીતે ઉત્પન્ન થયેલા, જંક્શનને પસાર કરતાં, કેરિયરને વિદ્યુતક્ષેત્ર પૂરતી ઊંચી ઊર્જા આપે છે. આ કેરિયર પોતાના રસ્તામાં આવતા સ્ફટિક આયન સાથે અથડાઈ, સહસંયોજક બંધ તોડી ઇલેક્ટ્રૉન-હોલ જોડકું ઉત્પન્ન કરે છે. આ કેરિયરો લગાડેલા વિદ્યુતક્ષેત્રમાંથી પૂરતી ઊર્જા મેળવી બીજા સ્ફટિક આયન સાથે અથડાય છે અને વધુ ઇલેક્ટ્રૉન-હોલ જોડકાંઓ ઉત્પન્ન કરે છે. આ પ્રક્રિયા ઉત્તરોત્તર વધે છે, જે ખૂબ ઓછા સમયમાં કેરિયરનો એવલાન્ય ઉત્પન્ન કરે છે. આ પધ્ધતિને એવલાન્ય ગુણન કહે છે. જે ખૂબ મોટો રિવર્સ પ્રવાહ ઉત્પન્ન કરે છે અને કહી શકાય કે ડાયોડ એવલાન્ય બ્રેકડાઉનના ક્ષેત્રમાં કાર્ય કરે છે.


(ii) ઝેનર બ્રેકડાઉન

ઝેનર ડાયોડમાં p અને n બંને વિભાગોમાં ખૂબ મોટા પ્રમાણમાં ડોપિંગ કરવામાં આવે છે. ડોપિંગ ઘનતા ઊંચી હોવાના કારણે, ડેપ્લેશન સ્તરની પહોળાઈ નાની હોય છે. જંક્શનની પહોળાઈ નાની હોવાથી લગભગ $10^{-7}m$ જેટલી, તેથી ખૂબ નાનો વોલ્ટેજ પણ મોટું ક્ષેત્ર ઉત્પન્ન કરી શકે છે. જંક્શનનું


Downloaded from https://www.studiestoday.com

પ્રયોગશાળા માર્ગદર્શિકા

આ ખૂબ ઊંચું ક્ષેત્ર વેલેન્સ બેન્ડમાંથી ઇલેક્ટ્રૉનને પાતળા ડેપ્લેશન સ્તરમાંથી પસાર કરી n-વિભાગમાં લઈ જાય છે. આવું ચોક્કસ વિદ્યુતક્ષેત્ર ($\sim 10^6~V/m$) અથવા વોલ્ટેજ V_z લગાડ્યા પછી ઇલેક્ટ્રૉનના ઉત્સર્જનની આ પધ્ધતિને આંતરિક ક્ષેત્ર ઉત્સર્જન કહે છે કે જેના લીધે ઊંચો રિવર્સ પ્રવાહ અથવા

આકૃતિ E 17.1 ઝેનર ડાયોડનો લાક્ષણિક વક

આકૃતિ E 17.2 ઝેનર ડાયોડના લાક્ષણિક વક માટેનો પરિપથ

બ્રેકડાઉન વોલ્ટેજ આપે છે. આ બ્રેકડાઉનને ઝેનર બ્રેકડાઉન અને વોલ્ટેજને ઝેનર વોલ્ટેજ કહે છે. ઝેનર વોલ્ટેજે મળતા રિવર્સ પ્રવાહને ઝેનર પ્રવાહ કહે છે.

બ્રેકડાઉનની પ્રકૃતિ સૂચવે છે કે ઝેનર ડાયોડની V વિરુદ્ધ Iની આદર્શ લાક્ષણિકતાઓમાં (સૈધ્ધાંતિક રીતે આકૃતિ E 17.1માં દર્શાવેલ મુજબ) બ્રેકડાઉન પછી વક્ક, પ્રવાહ અક્ષને સમાંતર બને છે. જે સૂચિત કરે છે કે વોલ્ટેજનો નાનો ફેરફાર પણ લગભગ અનંત અથવા ખૂબ મોટો પ્રવાહનો ફેરફાર ઉત્પન્ન કરે છે. તમને અનુભવશો કે જેને આપણે અગાઉ બ્રેકડાઉન તરીકે વ્યાખ્યિત કર્યું હતું તે આ જ છે. જોકે ડાયોડમાંથી આટલો મોટો પ્રવાહ પસાર થવાના કારણે વધારે પડતી ઉષ્મા ઉત્પન્ન થવાનો ભય છે. ડાયોડને આવા નુકસાનથી બચાવવા, સામાન્ય રીતે આપણે વ્યવહારિક પરિપથોમાં નિયંત્રક અવરોધ (Protective Resistance) \mathbf{R}_p ને ઝેનર ડાયોડ સાથે જોડીએ છીએ જે ડાયોડમાંથી પસાર થતા મહત્તમ પ્રવાહને નિયંત્રિત કરે છે.

વ્યવહારિક પરિપથમાં પ્રોટેક્ટિવ અવરોધ નક્કી કરવાની સાદી રીત નીચે પ્રમાણે છે :

ધારો કે આપણને $V_z=10~\mathrm{V}$ નો IN 758 ઝેનર ડાયોડ આપેલો છે. આ ડાયોડની મહત્તમ પાવર વ્યયક્ષમતા $0.4~\mathrm{W}$ છે. (ઉત્પાદકે આપેલા રેટિંગ અનુસાર). આપણે પ્રોટેક્ટિવ અવરોધ અને ઝેનર બ્રેકડાઉન વોલ્ટેજ વચ્ચેનો સાદો સંબંધ શોધી શકીએ.

જેનો ઝેનર વોલ્ટેજ $V_{\rm Z}$ અને પાવર વ્યયનું રેટિંગ $P_{\rm Z}$ હોય તેવા ઝેનર ડાયોડને મહત્તમ સ્થિતિમાન $V_{\rm Z}$ ધરાવતા વિદ્યુતસ્થિતિમાન વિભાજક રચના સાથે જોડવામાં આવે છે. (આકૃતિ E 17.2). જો ઝેનર ડાયોડને સમાંતર સ્થિતિમાન $V_{\rm Z}$ હોય અને બાકીનું સ્થિતિમાન પ્રોટેક્ટિવ અવરોધને સમાંતરે હોય તો,

$$I_z = \frac{P_z}{V_z}$$
 હોવાથી

(E 17.1)

$$V = V_z + \left(\frac{P_z}{V_z}\right) R_p$$

અને
$$R_{\rm p} = \frac{(V - V_z)V_z}{P_z}$$

તેને નુકસાનથી બચાવી શકાય.

(E 17.2)

તેથી $R_{\rm p}=\frac{(15-10)10}{0.4}=125$ Ωને ઝેનર ડાયોડ IN 758 સાથે શ્રેણીમાં જોડવો જોઈએ જેથી

પદ્ધતિ

- આપેલા વોલ્ટમીટર અને માઇક્રોએમીટરનું લઘુત્તમ માપ નોંધો.
- (2) લગાડેલ શૂન્ય વોલ્ટેજ માટે વોલ્ટમીટર અને માઇક્રોએમીટરનું અવલોકન શૂન્ય હોવું જોઈએ. જો તેમ ના હોય, તો શરૂઆતના અવલોકનને યોગ્ય રીતે સુધારો.
- (3) જોડાણ તારના છેડાને કાચ પેપરની મદદથી સાફ કરો અને જુદાં-જુદાં ઘટકોને આપેલા પરિપથ મુજબ તારથી જોડો (આકૃતિ E.17.2). એ વાતનું ધ્યાન રાખો કે ઝેનર ડાયોડ રિવર્સ બાયસમાં છે તથા વોલ્ટમીટર અને માઇક્રોએમીટરના ધન નિશાન કરેલા છેડાને પાવર સપ્લાયના ઊંચા સ્થિતિમાન બાજુએ જોડો.
- (4) એ વાતની ખાતરી કરો કે માઇક્રોએમીટર અને શ્રેણી પ્રોટેક્ટિવ અવરોધ $R_{_{\! p}}$ ને ઝેનર ડાયોડ સાથે શ્રેણીમાં તથા વોલ્ટમીટરને ઝેનર ડાયોડ સાથે સમાંતરમાં જોડાણ છે.
- (5) પાવર સપ્લાયની સ્વિચ ચાલુ કરો.
- (6) સ્થિતિમાન વિભાજકના સંપર્ક બિંદુને ફેરવી થોડોક રિવર્સ બાયસ વોલ્ટેજ $(V_{_{_{\! I}}})$ લગાવો. નીચા રિવર્સ બાયસ માટે પ્રવાહ અવગણ્ય એવો નાનો હશે. એટલે કે લગભગ $10^{-8}\,\mathrm{A}$ થી $10^{-10}\,\mathrm{A}$ જેટલો અને તેથી મિલિએમીટર કે માઇક્રોએમીટરમાં તમને શૂન્ય અવલોકન નોંધી શકાય છે.
- (7) ધીરે-ધીરે તબક્કાવાર ઝેનર ડાયોડને આપેલ વોલ્ટેજ વધારતાં જાઓ અને રિવર્સ બાયસ વોલ્ટેજ $(V_{_{p}})$ અને માઈક્રોએમીટરમાંથી અનુરૂપ રિવર્સ પ્રવાહ I_r નોંધો. એ વાતનું ધ્યાન રાખો કે, રિવર્સ વોલ્ટેજ V_r 0.1 Vના તબક્કામાં વધારો.

પ્રયોગશાળા માર્ગદર્શિકા

અવલોકન

- (1) વોલ્ટમીટરની અવધિ (Range) = V થી V
- (2) વોલ્ટમીટરનું લઘુત્તમ માપ = V
- (3) માઇક્રોએમીટરની અવધિ = μA થી μA
- (4) માઇક્રોએમીટરનું લઘુત્તમ માપ = μA
- (5) વાપરેલ ઝેનર ડાયોડની વિગતો (કોડ નં.) =
- (6) પ્રોટેક્ટિવ અવરોધની ગણતરી માટે નીચેની માહિતી જરૂરી છે. 3નર ડાયોડ માટે મહત્તમ સ્વીકાર્ય પાવર (પાવર રેટિંગ) જે ઉત્પાદક દ્વારા ઉલ્લેખ કર્યો હોય $P_z =W$ 3નર ડાયોડ માટે ઉત્પાદક દ્વારા ઉલ્લેખ કરાયેલ મહત્તમ સ્વીકાર્ય વોલ્ટેજ (વોલ્ટેજ રેટિંગ), $V_z =V$

ઝેનર ડાયોડ સાથે શ્રેણીમાં વાપરેલ પ્રોટેક્ટિવ અવરોધ (R_p) નું મૂલ્ય $R_p=$... Ω (E 17.2 પ્રમાણે)

(7) વોલ્ટમીટર અને માઇક્રોએમીટરના અવલોકનો કોષ્ટક E 17.1માં નોંધો.

કોષ્ટક \mathbb{E} 17.1 : રિવર્સ પ્રવાહ (\mathbf{I}_r) નો ઝેનર ડાયોડ પરના રિવર્સ વોલ્ટેજ (\mathbf{V}_r) સાથે થતો ફેરફાર

ઝેનર ડાયોડ માટે								
વોલ્ટમીટરનું અવલોકન $V_{_{f r}}(V)$	માઇક્રોએમીટરનું અવલોકન $I_{ m r}$ ($\mu { m A}$)							

આલેખ દોરવો

- (i) રિવર્સ વોલ્ટેજ V_r અને રિવર્સ પ્રવાહ I_r વચ્ચેનો આલેખ દોરો. V_r ને X-અક્ષ પર અને I_r ને Y-અક્ષ પર લઈ કોપ્ટક E 17.1 ના અવલોકનો પરથી આલેખ દોરો.
- (ii) $V_r I_r$ ના આલેખની પ્રકૃતિ ચર્ચા અને તેનું અર્થઘટન કરો.
- (iii) $V_r I_r$ ના આલેખ પરથી બ્રેકડાઉન વોલ્ટેજની કિંમત શોધો.

પરિણામ

આલેખ પરથી મળેલ ઝેનર ડાયોડનો બ્રેકડાઉન વોલ્ટેજ $V_Z=\dots$ V

સાવચેતીઓ

- (1) જોડાણ તારના છેડાઓને કાચપેપર ઘસી યોગ્ય રીતે સાફ કરવા જોઈએ.
- (2) વોલ્ટમીટર અને માઇક્રોએમીટરનાં શૂન્ય અવલોકનો યોગ્ય રીતે ચેક કરવા જોઈએ.

ચર્ચા

- (1) આદર્શ રીતે, બ્રેકડાઉન પછી પ્રવાહ I_r અનંત રીતે મોટો બને છે. શું તમારા કિસ્સામાં આવું થયું છે ? જો ના થયું હોય તો, તમે જાણ્યું કે પ્રવાહ અચાનક વધ્યો છે પણ અનંત નથી થયો તો તેનું કારણ વિચારો. શું પ્રોટેક્ટિવ અવરોધ કે પરિપથના કોઈ બીજા સંપર્ક અવરોધ આ કિસ્સામાં ભાગ ભજવે છે ?
- (2) વિદ્યુત-ઘટકોની પુસ્તિકા (manual)માંથી ઝેનર ડાયોડના બ્રેકડાઉન વોલ્ટેજની નોંધ કરો જે કોઈપણ પરિપથમાં જુદા-જુદા વોલ્ટેજ તરીકે લઈ શકાય.
- (3) ઝેનર ડાયોડ વોલ્ટેજ નિયમનમાં શું ભાગ ભજવે છે તે ચર્ચો.

સ્વ-મૂલ્યાંકન

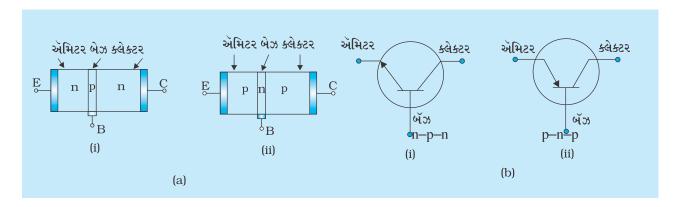
- (1) ઝેનર ડાયોડનો સિદ્ધાંત શું છે ?
- (2) રિવર્સ પ્રવાહ કેવી રીતે મેળવી શકાય ?
- (3) ઝેનર બ્રેકડાઉને શું થાય ?
- (4) આંતરિક ક્ષેત્ર ઉત્સર્જનનો અર્થ શું થાય ?
- (5) તમે ઝેનર ડાયોડનો વોલ્ટેજ રેગ્યુલેટર (નિયામક) તરીકે કેવી રીતે ઉપયોગ કરી શકો ?

સૂચવેલ વધારાના પ્રયોગો / પ્રવૃત્તિઓ

(1) જુદા કોડ નંબરના ઝેનર ડાયોડનો ઉપયોગ કરી પ્રયોગનું પુનરાવર્તન કરો. શું તમે તેમના રિવર્સ બ્રેકડાઉન વોલ્ટેજનો કોઈ ફેરફાર અવલોક્યો ?

<mark>પ્રયોગ 18</mark>

હેતુ


કૉમન ઍમિટર n-p-n (અથવા p-n-p) ટ્રાન્ઝિસ્ટરની લાક્ષણિકતાનો અભ્યાસ કરવો તથા વોલ્ટેજ અને પ્રવાહ લબ્ધિ (ગેઇન)નાં મૂલ્યો શોધવા.

સાધનો અને જરૂરી સામગ્રી

ટ્રાન્ઝિસ્ટર (BC 147 OR BC 177 or AC 128), માઇક્રોએમીટર $(0-100~\mu\text{A})$, મિલિએમીટર (0-20~mA), ઊંચા અવરોધ વાળા બે રીઓસ્ટેટ, $100~\text{k}\Omega$ નો કાર્બન અવરોધ, બે dc પાવર સપ્લાય જે ઇનપુટને (0-3V)નો વોલ્ટેજ આપે તથા આઉટપુટને (0-15~V)નો વોલ્ટેજ આપે, બે એકમાર્ગી કળ (One-way key) અને જોડાણ માટેના તાર

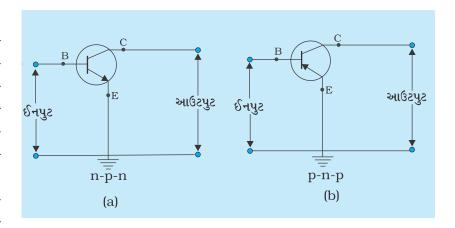
સિદ્ધાંત

Ge કે Siનો બનેલ n–p–n ટ્રાન્ઝિસ્ટર જેમાં બે n–પ્રકારના સ્તરોની વચ્ચે p-પ્રકારનું પાતળું સ્તર હોય. p–n–p ટ્રાન્ઝિસ્ટરમાં બે p–પ્રકારના સ્તરોની વચ્ચે n–પ્રકારનું પાતળું સ્તર હોય. તેમની રેખાકૃતિ અને પરિપથ સંજ્ઞા આકૃતિ E 18.1 (a) અને E 18.1 (b) પ્રમાણે છે.

આકૃતિ E 18.1 (a) n-p-n અને p-n-p ટ્રાન્ઝિસ્ટરની રેખાકૃતિઓ (b) તેમની પરિપથ સંજ્ઞાઓ

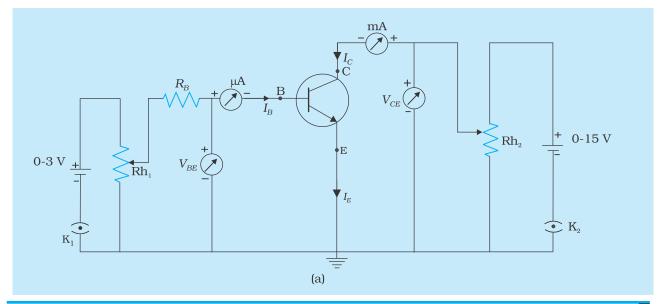
ટ્રાન્ઝિસ્ટરના મધ્ય ભાગને બેઝ કહે છે, જે પાતળો અને ઓછી અશુદ્ધિ ઉમેરેલ (ડોપિંગ) હોય છે. ઍમિટર મધ્યમ પરિમાણવાળો અને વધારે અશુદ્ધિ ઉમેરેલ (ડોપિંગ) હોય છે. કલેક્ટર મધ્યમ અશુદ્ધિ

Downloaded from https://www.studiestoday.com

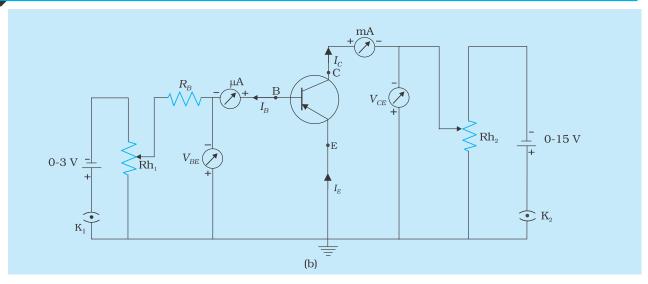

ઉમેરેલ (ડોપિંગ) તથા ઍમિટર કરતા સાઇઝમાં મોટો હોય છે. જ્યારે ટ્રાન્ઝિસ્ટરને પરિપથમાં જોડવામાં આવે ત્યારે, કોઈ પણ એક છેડાને ઇનપુટ અને આઉટપુટ વચ્ચે કૉમન (સામાન્ય) બનાવવામાં આવે છે. આમ, ત્રણ પરિપથ સંરચના શક્ય બને છે. :

- (i) કૉમન ઍમિટર (CE) જોડાણ
- (ii) કૉમન બેઝ (CB) જોડાણ
- (iii) કૉમન કલેક્ટર (CC) જોડાણ

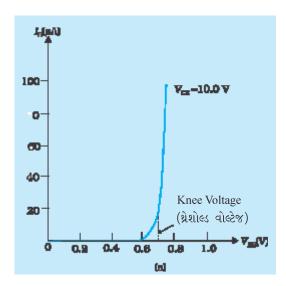
CE જોડાણ


જયારે ટ્રાન્ઝિસ્ટરને CE જોડાણ માટે વાપરવામાં આવે ત્યારે આકૃતિ E 18.2 (a), (b) મુજબ બેઝ અને ઍમિટરના છેડાઓની વચ્ચે ઇનપુટ આપવામાં આવે છે તથા કલેક્ટર અને ઍમિટરના છેડાઓની વચ્ચેથી આઉટપુટ લેવામાં આવે છે.

જયારે ઍમિટરને સામાન્ય છેડા તરીકે ગ્રાઉન્ડેડ કરીએ, બેઝને ઇનપુટ છેડા તરીકે અને કલેક્ટરને આઉટપુટ છેડા તરીકે લઈએ ત્યારે ટ્રાન્ઝિસ્ટરની મળતી લાક્ષણિકતાઓને કોમન ઍમિટર લાક્ષણિકતાઓ કહે છે.


આકૃતિ E 18.2

(a) n-p-n ટ્રાન્ઝિસ્ટર (b) p-n-p ટ્રાન્ઝિસ્ટરના CE જોડાણમાં બેઝ અને ઍમિટરના છેડાઓની વચ્ચે ઈનપુટ આપવામાં આવે છે તથા કલેક્ટર અને ઍમિટરના છેડાઓની વચ્ચે આઉટપુટ લેવામાં આવે છે.


131

પ્રયોગશાળા માર્ગદર્શિકા

આકૃતિ E 18.3 (a) n-p-n ટ્રાન્ઝિસ્ટર (b) p-n-p ટ્રાન્ઝિસ્ટર ના CE જોડાણમાં લાક્ષણિકતાઓના અભ્યાસ માટેનો જોડાણ

આકૃતિ 18.3 (a) અને (b) અનુક્રમે n-p-n અને p-n-p ટ્રાન્ઝિસ્ટર માટે કૉમન ઍમિટર લાક્ષણિકતાઓના અભ્યાસનો પરિપથ દર્શાવે છે. કૉમન ઍમિટર લાક્ષણિકતાઓના ત્રણ પ્રકાર છે :

આકૃતિ E 18.4(a) ટ્રાન્ઝિસ્ટરની CE રૂપરેખાની વિશેષ ઇનપુટ લાક્ષણિક્તાઓ

(I) ઇનપુટ લાક્ષણિકતાઓ

અચળ આઉટપુટ વોલ્ટેજ $V_{\rm CE}$ માટે ઇનપુટ પ્રવાહ $I_{\rm B}$ નો ઇનપુટ વોલ્ટેજ $V_{\rm BE}$ સાથેના ફેરફારને ઇનપુટ લાક્ષણિકતાઓ કહે છે. જ્યારે ઇનપુટ વોલ્ટેજ $V_{\rm BE}$ Knee Voltage કરતાં ઓછો હોય ત્યારે પ્રવાહ નાનો હોય છે, તેના પછી પ્રવાહ $I_{\rm B}$ વધે છે. (આકૃતિ E 18.4 (a)) આમ, અચળ કલેક્ટર-ઍમિટર વોલ્ટેજ $(V_{\rm CE})$ એ બેઝ-ઍમિટર વોલ્ટેજનો ફેરફાર $(\Delta V_{\rm BE})$ અને પરિણામી બેઝ પ્રવાહના ફેરફાર $(\Delta I_{\rm B})$ ના ગુણોત્તરને ઇનપુટ અવરોધ (r_i) કહે છે. તેને ઇનપુટ લાક્ષણિકતા વક્રના નિશ્ચિત બિંદુએ લીધેલા ઢાળના વ્યસ્ત તરીકે વ્યાખ્યાયિત કરી શકાય. આમ,

$$r_i = \left(rac{\Delta V_{BE}}{\Delta I_B}
ight)_{V_{CE} \ = \$$
અર્યળ

 \mathbf{r}_{i} નું મૂલ્ય 100 Ω ના ક્રમનું હોય છે.

(II) આઉટપુટ લાક્ષણિકતાઓ

ઇનપુટ પ્રવાહ $(I_{
m B})$ ના જુદાં-જુદાં મૂલ્ય માટે, આઉટપુટ ક્લેક્ટર પ્રવાહ $(I_{
m C})$ નો આઉટપુટ વોલ્ટેજ $V_{
m CE}$ સાથે થતો ફેરફાર આઉટપુટ લાક્ષણિકતા છે. (આકૃતિ E 18.4 (b))

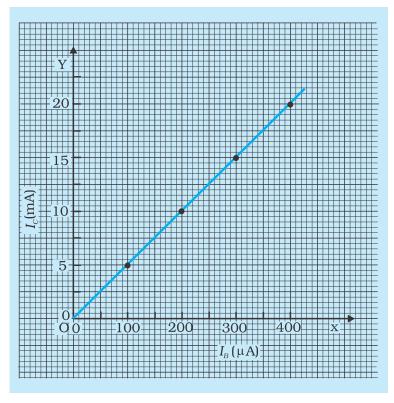
પ્રયોગ 18

 $I_{\scriptscriptstyle B}$ = $60\mu A$

આપેલા આઉટપુટ વોલ્ટેજ V_{CF} માટે જેમ ઇનપુટ પ્રવાહ $I_{
m B}$ વધુ તેમ આઉટપુટ પ્રવાહ $I_{
m C}$ વધુ.

અચળ બેઝ પ્રવાહ $(I_{
m B})$ માટે ક્લેક્ટર–ઍમિટર વોલ્ટેજ

$$(\Delta V_{\rm CE}) \ \, \text{અને કલેક્ટર પ્રવાહના ફેરફાર } (\Delta I_{\rm C}) \ \, \text{ના ગુણોત્તરને} \\ \ \, \text{આઉટપુર અવરોધ } (r_{\rm o}) \ \, \text{કહે છે. વધારામાં, આઉટપુટ} \\ \ \, \text{લાક્ષણિકતાના વક્રના નિશ્ચિત બિંદુએ લીધેલા ઢાળના વ્યસ્ત વડે પણ તેને વ્યાખ્યાયિત કરી શકાય છે. આમ,} \\ \ \, T_{o} = \left(\frac{\Delta V_{\rm CE}}{\Delta I_{\rm C}}\right)_{I_{\rm B}} = \ \, \text{અચળ} \\ \ \, \frac{1}{1}_{\rm B} = \frac{1}{1} \frac{1}{1$$


10

આકૃતિ E 18.4(b) CE જોડાણ માટે ટ્રાન્ઝિસ્ટરની વિશેષ આઉટપુટ લાક્ષણિક્તાઓ

 $r_{_{0}}$ નું મૂલ્ય 50 થી 100 k Ω ના ક્રમનું હોય છે.

(III) ટ્રાન્સફર લાક્ષણિકતાઓ

અચળ આઉટપુટ વોલ્ટેજ (V_{CF}) એ, ઇનપુટ બેઝ પ્રવાહ (I_{R}) સાથે આઉટપુટ ક્લેક્ટર પ્રવાહ (I_{C}) ના

આકૃતિ E 18.4(C) ટ્રાન્ઝિસ્ટરની CE જોડાણ માટે વિશેષ ટ્રાન્સફર લાક્ષણિકતાઓ

પ્રયોગશાળા માર્ગદર્શિકા

ફેરફારને ટ્રાન્સફર લાક્ષણિકતાઓ કહે છે. (આકૃતિ E 18.4 (c)) અચળ કલેક્ટર-ઍમિટર વોલ્ટેજે, કલેક્ટર પ્રવાહના ફેરફાર (ΔI_c) અને બેઝ પ્રવાહના ફેરફાર (ΔI_B) ના ગુણોત્તરને પ્રવાહ-લબ્ધિ (ગેઇન) β કહે છે.

$$eta = \left(rac{\Delta I_C}{\Delta I_B}
ight)_{V_{CE}} =$$
અચળ

તેને ફોરવર્ડ પ્રવાહ ગેઇન પણ કહે છે.

વોલ્ટેજ ગેઇન : ઍમિટર-બેઝમાં આપેલા નાના વોલ્ટેજના ફેરફાર ΔV_i ને અનુરૂપ કલેક્ટર પાસે આઉટપુટ વોલ્ટેજનો ફેરફાર ΔV_i હોય તો, વોલ્ટેજ ગેઇન,

(E 18.4)

$$A_{V} = \frac{\Delta V_{o}}{\Delta V_{i}} = \frac{\Delta I_{C}}{\Delta I_{B}} \quad \frac{r_{o}}{r_{i}} \quad ; A_{V} = \beta \frac{r_{o}}{r_{i}}$$

પદ્ધતિ

- (1) પ્રથમ આપેલ ટ્રાન્ઝિસ્ટર n-p-n છે કે p-n-p છે તે ચકાસો.
- (2) આકૃતિ E 18.3માં દર્શાવ્યા મુજબ પરિપથ જોડો. (નોંધો કે બેઝ-ઍમિટર જંક્શન ફોરવર્ડ બાયસમાં જયારે કલેક્ટર-બેઝ જંક્શન રિવર્સ બાયસમાં છે. દા.ત., n-p-n ટ્રાન્ઝિસ્ટરમાં બેઝને ઍમિટરની સાપેક્ષે ધન(+Ve) વોલ્ટેજ આપ્યા છે અને કલેક્ટરને પણ ઍમિટરની સાપેક્ષે ઊંચો ધન વોલ્ટેજ આપ્યો છે.
- (3) ટ્રાન્ઝિસ્ટરની ઇનપુટ લાક્ષણિકતાઓ મેળવવા, કલેક્ટર-ઍમિટર વોલ્ટેજ (V_{CE}) ને નિશ્ચિત (અચળ) રાખો. પ્રથમ $V_{CE}=0$ V ગોઠવો અને બેઝ-ઍમિટર વોલ્ટેજ V_{BE} ને 0.1 Vના તબક્કામાં બદલતા જાવ. V_{RE} ના દરેક મૂલ્ય માટે બેઝ પ્રવાહ (I_R) નોંધો.
- (4) V_{CE} ના ત્રણ જુદા-જુદા નિશ્ચિત(અચળ) મૂલ્ય રાખી પદ-3 ને પુનરાવર્તિત કરો. તમે નોંધશો કે થોડાં ઘણાં અવલોકનો માટે I_B શૂન્ય રહેશે, એટલે કે જ્યાં સુધી સિલિકોન ટ્રાન્ઝિસ્ટર માટે $V_{BE}=0.6$ થી $0.7~\rm V$ અને જર્મેનિયમ ટ્રાન્ઝિસ્ટર માટે $0.2~\rm V$ થી $0.3~\rm V$ ના આવે ત્યાં સુધી, તે ધીરે-ધીરે વધે છે અને ત્યાર પછી ઝડપથી વધે છે, જ્યાં સુધી I_B માઇક્રોએમીટરની મહત્તમ અવિષ (રેન્જ)ના 90~% સુધી ના પહોંચે.
- (5) ટ્રાન્ઝિસ્ટરની આઉટપુટ લાક્ષણિકતાઓ મેળવવા, બેઝ-પ્રવાહ I_B ને $10~\mu A$ રાખો. $V_{CE} = 0~V~$ રાખી કલેક્ટર પ્રવાહ $I_{\mathbf{C}}$ નું મુલ્ય નોંધો. હવે, V_{CE} નાં મૂલ્યો ખૂબ કાળજીપૂર્વક નાના તબક્કાઓમાં વધારો અને તેને સંલગ્ન I_C નાં મૂલ્યો નોંધો. (શરૂઆતમાં I_C નું મૂલ્ય ખૂબ ઝડપથી વધે છે અને પછી ધીમેથી વધી લગભગ અચળ બને છે.(આકૃતિ E18.4(b)) અગાઉ નોંધ્યું તે પ્રમાણે I_B અચળ રહેવું જોઈએ.

પ્રયોગ 18

(6) I_B નાં ત્રણ જુદા-જુદા મૂલ્યો માટે પદ-5 પુનરાવર્તિત કરો. જેમકે 20 μA , 30 μA , 40 μA . તમે નોંધશો કે જેમ I_B વધે છે, તેમ I_C પણ વધે છે.

અવલોકન

- (1) ઇનપુટ પરિપથમાં વાપરેલા વોલ્ટમીટરની અવધિ (Range) = ... V to ... V
- (2) ઇનપુટ પરિપથમાં વાપરેલા વોલ્ટમીટરનું લઘુત્તમ માપ = ... V
- (3) આઉટપુટ પરિપથમાં વાપરેલા વોલ્ટમીટરની અવધિ = ... V થી ... V.
- (4) આઉટપુટ પરિપથમાં વાપરેલા વોલ્ટમીટરનું લઘુત્તમ માપ = ... V
- (5) ઇનપુટ પરિપથમાં વાપરેલા માઇક્રોએમીટરની અવધિ = ... μA થી ... μA
- (6) ઇનપુટ પરિપથમાં વાપરેલાં માઇક્રોએમીટરનું લઘુત્તમ માપ = ... μΑ
- (7) આઉટપુટ પરિપથમાં વાપરેલા મિલિએમીટરની અવધિ = ... mA થી ... mA
- (8) આઉટપુટ પરિપથમાં વાપરેલા મિલિએમીટરનું લઘુત્તમ માપ = ... mA
- (9) વાપરેલ ટ્રાન્ઝિસ્ટરનો પ્રકાર = ...

કોષ્ટક $\mathbb E$ 18.1 : અચળ $V_{\scriptscriptstyle CE}$ માટે ઇનપુટ વોલ્ટેજ $V_{\scriptscriptstyle BE}$ સાથે ઇનપુટ પ્રવાહ $I_{\scriptscriptstyle B}$ નો ફેરફાર

ક્રમ	ઇનપુટ વોલ્ટેજ	ઇનપુટ પ્રવાહ Ι _Β (μA)				
	$V_{\rm BE} = \dots V$	$V_{CE} = \dots V$	$V_{CE} = \dots V$	$V_{CE} = \dots V$	$V_{CE} = \dots V$	
1						
2						
5						

કોષ્ટક ${\mathbb E}$ 18.2 : અચળ $I_{\scriptscriptstyle
m B}$ માટે આઉટપુટ વોલ્ટેજ $V_{\scriptscriptstyle CE}$ સાથે આઉટપુટ પ્રવાહ $I_{\scriptscriptstyle
m C}$ નો ફેરફાર

ક્રમ	આઉટપુટ વોલ્ટેજ $V_{_{CE}}$		આઉટપુટ પ્રવાહ $I_{_{C}}(\mathrm{mA})$				
	$V_{CE} = \dots V$	$I_B = \dots \mu A$	$I_B = \dots \mu A$	$I_B = \dots \mu A$	$I_B = \dots \mu A$		
1							
2							
5							

પ્રયોગશાળા માર્ગદર્શિકા

ટ્રાન્સફર લાક્ષણિકતાઓ માટે કોપ્ટક E 18.2નો ઉપયોગ કરી અચળ V_{CE} માટે, જુદા-જુદા I_{B} નાં મૂલ્યોને અનુરૂપ I_{C} નાં મૂલ્યો નોંધો.

કોષ્ટક \mathbb{E} 18.3 : અચળ V_{CF} માટે ઇનપુટ પ્રવાહ (I_p) સાથે આઉટપુટ પ્રવાહ (I_C) નો ફેરફાર

ક્રમ	ઇનપુટ પ્રવાહ	આઉટપુટ પ્રવાહ $I_{_{C}}\left(\mathbf{m}\mathbf{A} ight)$				
	$I_B = \dots \mu A$	$V_{CE} = \dots V$	$V_{CE} = \dots V$	$V_{CE} = \dots V$	\mathbf{V}_{CE} = \mathbf{V}	
1						
2						
5						

આલેખ દોરવો

- (i) ઇનપુટ લાક્ષણિકતાઓ માટે V_{CE} ના નિશ્ચિત મૂલ્ય માટે, ઇનપુટ વોલ્ટેજ V_{BE} અને ઇનપુટ પ્રવાહ I_B વચ્ચેનો આલેખ દોરો. V_{BE} ને X–અક્ષ પર અને I_B ને Y-અક્ષ પર લો. (કોષ્ટક \to 18.1નાં અવલોકનો પરથી)
- (ii) $V_{_{RE}}$ વિરુદ્ધ $I_{_{R}}$ ના આલેખની પ્રકૃતિ ચર્ચા અને તેનું અર્થઘટન કરો.
- (iii) આઉટપુટ લાક્ષણિકતાઓ માટે I_B ના નિશ્ચિત મૂલ્ય માટે, આઉટપુટ વોલ્ટેજ V_{CE} અને આઉટપુટ પ્રવાહ I_C વચ્ચેનો આલેખ દોરો. V_{CE} ને X-અક્ષ પર અને I_C ને Y—અક્ષ પર લો તથા કોષ્ટક E. 18.2નાં અવલોકનોનો ઉપયોગ કરો.
- (iv) V_{CE} વિરુદ્ધ $I_{\mathcal{C}}$ ના આલેખની પ્રકૃતિ ચર્ચો અને તેનું અર્થઘટન કરો.
- (v) ટ્રાન્સફર લાક્ષણિકતાઓ માટે V_{CE} ના નિશ્ચિત મૂલ્ય માટે ઇનપુટ પ્રવાહ I_{B} અને આઉટપુટ-પ્રવાહ I_{C} વચ્ચેનો આલેખ દોરો. I_{B} ને X-અક્ષ પર અને I_{C} ને Y-અક્ષ પર લો તથા કોષ્ટક E 18.3નાં અવલોકનોનો ઉપયોગ કરો.
- (vi) $I_{\mathcal{C}}$ વિરુદ્ધ $I_{\mathcal{B}}$ ના આલેખની પ્રકૃતિ ચર્ચો અને તેનું અર્થઘટન કરો.

ગણતરીઓ

(i) ઇનપુટ લાક્ષણિકતાના જે ભાગમાં ઝડપી વધારો થતો હોય તેના કોઈ એક બિંદુએ સ્પ્શક દોરો. (આકૃતિ 18.4 (a)) અને તે પરથી વક્રના તે બિંદુએ ઢાળનો વ્યસ્ત શોધો. જે ટ્રાન્ઝિસ્ટરના ડાયનેમિક (ક્રિયાશીલ) ઇનપુટ અવરોધ આપે છે.

$$r_i = \left(\frac{\Delta V_{BE}}{\Delta I_B}\right)$$

 $V_{\scriptscriptstyle CE}=$ અચળ

(ii) આઉટપુટ લાક્ષિણિકતાના વક્ર પર સ્પર્શકો દોરો (રેખીય રીતે વધતા ભાગ A પર, ટર્નિંગ (વળાંકવાળા) બિંદુ (B) પર અને લગભગ સમિક્ષિતિજ ભાગ C પર) (આકૃતિ E 18.4 (b)). આ ઢાળના વ્યસ્ત માપો જે સંચાલન બિંદુઓ A, B અને C (આકૃતિ E 18.4 (b)) પાસે ડાયનેમિક (ક્રિયાશીલ) આઉટપુટ અવરોધ આપે છે.

$$r_o = \left(rac{\Delta V_{CE}}{\Delta I_C}
ight) I_{B} = \,$$
 અસળ

નોંધો કે ક્રિયાશીલ (ડાયનેમિક) આઉટપુટ અવરોધ સંચાલન (operating) બિંદુ પર આધાર રાખે છે.

(iii) પ્રવાહ ગેઇન (β) મેળવવા માટે ટ્રાન્ઝિસ્ટરની ટ્રાન્સફર લાક્ષણિકતાઓ પર ઢાળ શોધો.

$$eta = \left(rac{\Delta I_C}{\Delta I_B}
ight)_{V_{CE} = }$$
 અરળ

(iv) ઇનપુટ અવરોધ $\mathbf{r}_{_{\!f}}$, આઉટપુટ અવરોધ $\mathbf{r}_{_{\!o}}$ અને પ્રવાહ ગેઇન β નાં મૂલ્યો લઈ, નીચેના સંબંધનો ઉપયોગ કરી ટ્રાન્ઝિસ્ટરનો વોલ્ટેજ ગેઇન $\mathbf{A}_{\mathbf{V}}$ શોધો.

$$A_V = \beta \left(\frac{r_o}{r_i}\right)$$

પરિણામ

આપેલા ટ્રાન્ઝિસ્ટરના કૉમન ઍમિટર (CE) જોડાણ માટે,

- (1) ટ્રાન્ઝિસ્ટરની લાક્ષણિકતાઓ દોરેલા આલેખમાં દર્શાવ્યા મુજબ છે.
- (2) $V_{CE} = \dots V$ પર ઇનપુટ અવરોધ $= \dots \Omega$
- (3) $V_{BE} = \dots \text{ V}$ પર આઉટપુટ અવરોધ $= \dots \Omega$
- (4) પ્રવાહ ગેઇન, β = ...
- (5) વોલ્ટેજ ગેઇન, $A_{V} = ...$

સાવધાનીઓ

- (i) n-p-n કે p-n-p પ્રમાણે આપેલા ટ્રાન્ઝિસ્ટરનું જોડાણ કરવું.
- (ii) પરીપથ વપરાશમાં ન હોય ત્યારે કળ ખુલ્લી રાખી પરિપથને બ્રેક કરવો.

પ્રયોગશાળા માર્ગદર્શિકા

ચર્ચા

- (1) જો આપણે n–p–n ના સ્થાને p–n–p ટ્રાન્ઝિસ્ટર વાપરીએ તો લાક્ષણિક વક્કોમાં શું કોઈ ફેરફાર હોય ?
- (2) ઇનપુટ પરિપથ ફોરવર્ડ બાયસમાં અને આઉટપુટ પરિપથ રિવર્સ બાયસમાં શા માટે રાખવા જોઈએ ?
- (3) આઉટપુટ લાક્ષણિક વક્રના જુદા-જુદા વિભાગ માટે તમે જોયું કે ક્રિયાશીલ (ડાયનેમિક) આઉટપુટ અવરોધ જુદા-જુદા હોય છે. આ પરથી તમે શું અનુમાન કરો છો ?
- (4) જો તમે 200 Ωના ઇનપુટ અવરોધને ઇનપુટમાં વાપરો તો લાક્ષણિક વક્રોને CE ટ્રાન્ઝિસ્ટરની ડાયનેમિક (ક્રિયાશીલ) ઇનપુટ લાક્ષણિકતાઓ કહે છે. પરિપથમાં વપરાતા અવરોધનો મુખ્ય આશય પ્રવાહનું નિયમન કરી, ઉષ્મીય વ્યય અથવા ટ્રાન્ઝિસ્ટરને થતા નુકસાનને ટાળવા (અટકાવવા)નું છે. જો પરિપથમાં અવરોધ જોડ્યા વગર પ્રયોગ કરવામાં આવે, તો લાક્ષણિકતાના વક્રોને સ્થિત ઇનપુટ લાક્ષણિકતાઓ અને સ્થિત આઉટપુટ લાક્ષણિકતાઓ કહે છે. સ્થિત લાક્ષણિકતાઓ મેળવતી વખતે વધારાની કાળજી એ રાખવાની છે કે, સ્વીકાર્ય સીમાની ઉપર ખૂબ મોટા પ્રવાહના વહનથી ટ્રાન્ઝિસ્ટરને નુકસાન ના થાય.

સ્વ-મૂલ્યાંકન

- (1) ક્રિયાશીલ (ડાઇનેમિક) ઇનપુટ અવરોધનો અર્થ શું થાય ? અને શા માટે તેને ક્રિયાશીલ (ડાઇનેમિક) કહે છે ?
- (2) CE જોડાણ (પરિપથ) માટે, $I_B=0$ હોવા છતાં I_C કટ-ઑફ થતો નથી. CE મોડમાં કટ-ઑફ વોલ્ટેજ નક્કી કરવા, I_C ને તમે શૂન્ય કેવી રીતે કરશો ?
- (3) $V_{CE} > V_{BE}$ માટે CE પરિપથમાં (રૂપરેખામાં) શું $I_{C'}$ V_{CE} થી લગભગ સ્વતંત્ર છે ?

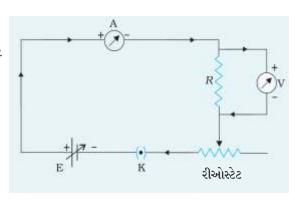
સૂચવેલ વધારાના પ્રયોગો / પ્રવૃત્તિઓ

n–p–n ટ્રાન્ઝિસ્ટરને કૉમન બેઝ જોડાણમાં જોડો. લાક્ષણિક વક્રો દોરો. CB અને CE જોડાણો માટે ઇનપુટ અને આઉટપુટ લાક્ષણિકતાના વક્રોની સરખામણી કરો. r_i અને r_o પણ શોધો.

પ્રવૃત્તિઓ ACTIVITIES

પ્રवृत्ति 1

હેતુ


આપેલા વિદ્યુત-પરિપથનાં ઘટકો નું જોડાણ કરવું.

જરૂરી સાધન-સામગ્રી

અવરોધ, એમીટર (0-1.5A), વોલ્ટમીટર (0-5V), બૅટરી, કી (એકમાર્ગી કળ), રીઓસ્ટેટ, કાચપેપર, જોડાણ માટેના તાર.

પદ્ધતિ

- (1) આકૃતિ A 1.1 માં દર્શાવ્યા પ્રમાણે ઘટકો જોડો.
- (2) કળ બંધ કર્યા પછી જુઓ કે વોલ્ટમીટર અને એમીટર જમણી બાજુ આવર્તન દર્શાવે છે.
- (3) એકત્રિત પરિપથનું સાતત્ય મલ્ટિમીટર વડે ચકાસો.(પ્રવૃત્તિ 4 જુઓ.)

આકૃતિ A 1.1 આપેલાં ઘટકોનું જોડાણ

પરિણામ

વિદ્યુત-પરિપથનાં ઘટકોનું એકત્રીકરણ કર્યું.

સાવચેતીઓ

- (1) બૅટરીના ધન છેડાને એમીટર અને વોલ્ટમીટરના ધન છેડા સાથે જોડવો જોઈએ.
- (2) એમીટરને અવરોધ સાથે શ્રેણીમાં અને વોલ્ટમીટરને અવરોધ સાથે સમાંતરમાં જોડવું જોઈએ.
- (3) જોડાણ તારના છેડાઓ અને ઘટકના છેડાઓને સાફ્ર કરવા માટે કાચપેપરનો ઉપયોગ કરવો જોઈએ. તેમની સપાટીઓ પર લાગેલા ગ્રીસ/ઑઇલ કે ઓક્સાઈડના પડ અવાહક પ્રકૃતિ

Downloaded from https://www.studiestoday.com

પ્રયોગશાળા માર્ગદર્શિકા

ધરાવતા હોવાથી તેમને દુર કરવા જોઈએ. જોકે પ્લગ કે કળોને કાચ પેપરથી સાફ ન કરશો. કાચપેપરના વધારે પડતા ઉપયોગથી કળ પ્લગમાં બરાબર બેસતી નથી.

ચર્ચા

- (1) તમે સાધનોનું જોડાણ શરૂ કરો તે પહેલાં પ્રયોગ માટેની પરિપથ આકૃતિ (સર્કિટ ડાયાગ્રામ) દોરો અને તમારી સમક્ષ રાખો.
- (2) રીઓસ્ટેટ પર લગાડેલી પ્લેટ પર અવરોધની કિંમત અને તેના પ્રવાહ-વહનની ક્ષમતા આપેલી હોય છે.

સ્વ-મૂલ્યાંકન

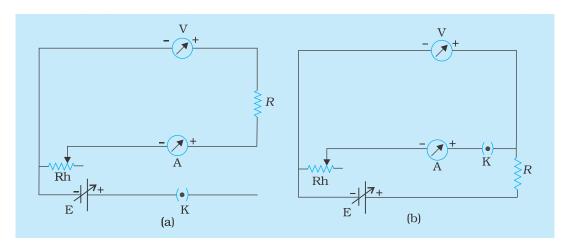
- (1) તમે કોષના emf નો અર્થ શું કરશો?
- (2) કોષમાંથી (વિદ્યુતકોષમાંથી) વહેતો પ્રવાહ અચળ રહે ? જો ના તો શા માટે ?
- (3) પરિપથમાં એમીટરને હંમેશાં કેમ શ્રેણીમાં જ જોડાય છે ?
- (4) હંમેશા જે ઘટકનું વિદ્યુતસ્થિતિમાન માપવાનું હોય તેને સમાંતર જ વોલ્ટમીટર જોડવામાં આવે છે. શા માટે?

સૂચવેલ વધારાના પ્રયોગો / પ્રવૃત્તિઓ

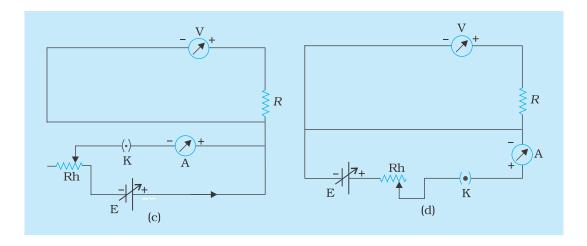
- (1) વર્ગખંડમાં તમારે જે ભણવાના છે, તેવા જુદા-જુદા પ્રકારના પરિપથ દોરો. તેમાં સંકળાયેલ ઘટકોનો ઉપયોગ કરી તેમનું જોડાણ કરો. દા.ત.
 - (i) મીટરબ્રિજના ઉપયોગથી અજ્ઞાત અવરોધનું મૂલ્ય માપવા માટેનો પરિપથ.
 - (ii) પોટૅન્શિયોમીટરની મદદથી આપેલા બે વિદ્યુતકોષોના emf ની સરખામણીનો પરિપથ.
- (2) રીઓસ્ટેટની જુદી-જુદી ગોઠવણી માટે વોલ્ટમીટર અને એમીટરનાં અવલોકનો માપો અને ચકાસો કે અવરોધના બે છેડા વચ્ચેનો વિદ્યુતસ્થિતિમાનનો તફાવત અને તેમાંથી વહેતા પ્રવાહનો ગુણોત્તર અચળ છે કે નહિં.
- (3) બે અવરોધોને શ્રેશી અથવા સમાંતરમાં જોડીને પરિપથને સંશોધિત (modify) કરો.

હેતુ

આપેલા ખુલ્લા પરિપથની આકૃતિ દોરવી, કે જેમાં ઓછામાં ઓછી એક બૅટરી, અવરોધ / રીઓસ્ટેટ, કળ, એમીટર અને વોલ્ટમીટરનો સમાવેશ થાય. બરાબર ક્રમમાં ન જોડ્યા હોય તે ઘટકોની નોંધ કરી, પરિપથ અને આકૃતિને સુધારો.


જરૂરી સાધન-સામગ્રી

આપેલ ખુલ્લો પરિપથ કે જેમાં ઓછામાં ઓછો એક વિદ્યુતકોષ અથવા બૅટરી, પ્લગ કળ, અવરોધ, રીઓસ્ટેટ, એમીટર, વોલ્ટમીટર, જોડાણના તાર અને કાચપેપર.

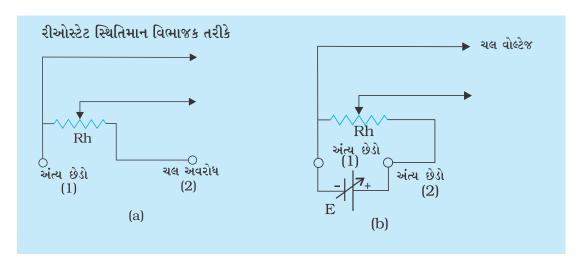

સિદ્ધાંત

પરિપથનાં બધાં જ ઘટકો / સાધનો કાર્યરત સ્થિતિમાં છે અને કળ બંધ છે તેમ ધારતા જો વિદ્યુતપરિપથનાં બધાં જ ઘટકો યોગ્ય રીતે જોડાણમાં હશે તો જ તે કાર્યરત થશે.

ખુલ્લો પરિષથ એટલે, પરિષથના કોઈ ભાગનું તુટવું કે જે ઇરાદાપૂર્વક પણ હોઈ શકે, જેમકે કળની ખુલ્લી સ્થિતિ અથવા કોઈ ખામી જેમકે કોઈ તાર તૂટી ગયો હોય, અથવા કોઈ ઘટક કે ઘટકો બળી ગયાં હોય અથવા ઢીલું જોડાણ હોય. આવી કેટલીક પરિષથ આકૃતિઓ A 2.1 (a), (b), (c) અને (d)માં આપેલી છે.

પ્રયોગશાળા માર્ગદર્શિકા

આકૃતિ A 2.1 (a), (b), (c), (d) ખુલ્લાં પરિપથો


છે. જેમાં પરિપથનાં અમૂક ઘટકો જેવા કે કળ, એમીટર, વોલ્ટમીટર, અવરોધ, રીઓસ્ટેટ વગેરેનો સમાવેશ થાય. આપેલો પરિપથ દોર્યા પછી, વિદ્યાર્થીઓએ જે ઘટકો બરાબર ક્રમમાં ન જોડ્યાં હોય તેની નોંધ કરવાની છે. પછી સુધારેલ પરિપથ દોરી અને તેજ પ્રમાણે પરિપથના ઘટકોને યોગ્ય ક્રમમાં જોડવાં.

તેથી શિક્ષકોને સલાહ છે કે, થોડાંક ખુલ્લાં પરિપથો ગોઠવવાં કે જેનાં કેટલાંક ઘટકો યોગ્ય કમમાં જોડેલાં ન હોય.

પદ્ધતિ

- (1) તમારા શિક્ષક દ્વારા આપવામાં આવેલાં પરિપથોની આકૃતિ નોટબુકમાં દોરો. [આકૃતિ A 2.1 (a), (b), (c) અને (d)]
- (2) એક પરિપથને ધ્યાનમાં લઈ, તેમાં યોગ્ય ક્રમમાં ન જોડેલા હોય તેવા વિવિધ ઘટકોની નોંધ કોપ્ટક A 2.1 માં કરો.
- (3) સુધારેલા વિદ્યુત પરિપથની આકૃતિ દોરો.
- (4) સુધારેલા વિદ્યુત પરિપથ મુજબ વિદ્યુત-ઘટકોને જોડો.
- (5) કળ બંધ કરી સુધારેલો પરિપથ કાર્યરત છે કે નહિ તે ચકાસો.
- નોંધ : રીઓસ્ટેટનો ઉપયોગ ચલ અવરોધ અને વિદ્યુતસ્થિતિમાન વિભાજક બંને તરીકે કરી શકાય. રીઓસ્ટેટ ચલ અવરોધ તરીકે :
- (1) આકૃતિ A 2.2 (a) આપેલ, રીઓસ્ટેટને ચલ અવરોધ તરીકે દર્શાવતો પરિપથ દોરો.

(2) રીઓસ્ટેટના એક અંત્ય છેડા અને બીજા ચલ છેડાને નીચે દોર્યા મુજબ જોડો.

આકૃતિ A 2.2 (a) રીઓસ્ટેટ ચલ અવરોધ તરીકે
(b) રીઓસ્ટેટ ચલિત વોલ્ટેજ આપતા સ્થિતિમાન વિભાજક તરીકે

- (1) આકૃતિ A 2.2 (b)માં દર્શાવ્યા મુજબ રીઓસ્ટેટનો સ્થિતિમાન વિભાજક તરીકે ઉપયોગ દર્શાવતો પરિપથ દોરો.
- (2) રીઓસ્ટેટના છેડાઓને ઉપર દોર્યા પ્રમાણે જોડો.
 - (i) અંતિમ છેડાઓ (1) અને (2)ને ઇનપુટ સ્થિતિમાન (બૅટરી) સાથે અને
 - (ii) એક અંતિમ છેડો અને બીજા ચલિત છેડાને ચલિત વોલ્ટેજ માટે.

અવલોકનો

કોષ્ટક A 2.1 : આપેલ કૉલમમાં યોગ્ય (🗸) નિશાન કરો

ક્રમ	પરિપથનો ઘટક	સાચું જોડાણ	ખોટું જોડાણ
1	બૅટરી / વિદ્યુતકોષ		
2	અવરોધ		
3	રીઓસ્ટેટ		
4	કળ		
5	એમીટર		
6	વોલ્ટમીટર		

પરિણામ

સાચી પરિપથ આકૃતિ મુજબ એકત્રિત કરેલો વિદ્યુત-પરિપથ કાર્યરત છે.

પ્રયોગશાળા માર્ગદર્શિકા

સાવચેતીઓ

- (1) જોડાણ કરતાં પહેલાં જોડાણ તારના છેડાઓ કાચપેપર વડે સાફ કરવા જોઈએ.
- (2) બૅટરીનો ધન છેડો, એમીટર અને વોલ્ટમીટરના ધન છેડા સાથે જોડવો જોઈએ.
- (3) એમીટર અવરોધ સાથે શ્રેણીમાં અને વોલ્ટમીટર અવરોધ સાથે સમાંતરમાં જોડવું જોઈએ.

ચર્ચા

- (1) (a) રીઓસ્ટેટને શ્રેણીમાં ચલિત અવરોધ તરીકે વાપરી શકાય. આ કિસ્સામાં, અંતિમ છેડો
 - (1) અને બીજો ચલિત છેડો વાપરી શકાય. (આકૃતિ A 2.2 (a)).
 - (b) જયારે રીઓસ્ટેટને વિદ્યુતકોષ સાથે સ્થિતિમાન વિભાજક તરીકે વાપરીએ ત્યારે તેના એક અંતિમ છેડા અને બીજા ચલિત છેડાની મદદથી ચલિત વોલ્ટેજ મેળવી શકાય. (આકૃતિ A 2.2 (b)).
 - ચર્ચાના મુદ્દાઓ 1(a) અને 1 (b) કેવી રીતે શક્ય બને તે યોગ્ય ઠેરવો.
- (2) કળને ખુલ્લી રાખવી પડે જેથી ઘટકોને નુકસાન ના થાય.

સ્વ-મૂલ્યાંકન

- (1) પરિપથમાંના દરેક ઘટકના કાર્યનું અર્થઘટન કરો.
- (2) (i) મહત્તમ અવરોધ (ii) લઘુત્તમ અવરોધ માટેના સરકતા સંપર્કના સ્થાનને દર્શાવતા રીઓસ્ટેટની ચલિત અવરોધ તરીકેની પરિપથ આકૃતિ દોરો.
- (3) વિદ્યુત-પરિપથની ગોઠવણીમાં કાચપેપરનું કાર્ય શું છે ?
- (4) રીઓસ્ટેટ અને અવરોધપેટી સર્કિટ (પરિપથ)માં રહેલ અવરોધને બદલી શકે છે છતાં પણ તેમનાં કાર્યો જુદાં-જુદાં છે. ચર્ચા કરો.

સૂચવેલ વધારાના પ્રયોગો / પ્રવૃત્તિઓ

- (1) રીઓસ્ટેટનો સ્થિતિમાન વિભાજક તરીકેનો ઉપયોગ કરતી સર્કિટ ડાયાગ્રામ (પરિપથ આકૃતિ) દોરો. વાસ્તવિક જોડાણો બનાવો અને તેના દ્વારા મળતી વોલ્ટેજ અવધિ (Range) નક્કી કરો.
- (2) પ્રયોગશાળામાં ઉપલબ્ધ જુદા-જુદા પ્રકારની કળનો અભ્યાસ કરો. વિદ્યુત-પરિપથમાં તેમના કાર્યો ઓળખો.
- (3) પ્રયોગશાળામાં ઉપલબ્ધ જુદા-જુદા પ્રકારના અવરોધોનો વિસ્તૃત અભ્યાસ કરો. (કાર્બન અવરોધ, તાર વીંટાળેલ અવરોધપેટી)
- (4) ઘર-વપરાશના પરિપથમાં અને પ્રયોગશાળામાં વપરાતાં જોડાણ તારની સરખામણી કરો.
- (5) પ્રયોગશાળામાં જુદા-જુદા બૅટરી એલિમિનેટરો અને dc સ્રોતો (કોષ, બૅટરીઓ)નો અભ્યાસ કરો. કારની બૅટરીની સરખામણીમાં તેઓ કેવી રીતે જુદા પડે છે ?

પ્રવૃત્તિ 3

હેતુ

લોખંડના ગર્ભ સહિત તથા રહિત ઇન્ડક્ટરના અવરોધ અને ઇમ્પિડન્સનું માપન કરવું.

જરૂરી સાધન-સામગ્રી

ઇન્ડક્ટર કોઇલ (જેનો વ્યાસ લગભગ 2 cm અને આંટાની સંખ્યા 2000 હોય), નરમ લોખંડનો ગર્ભ (નળાકારીય સળિયો જેનો વ્યાસ 1.75 cm અને લંબાઈ ઇન્ડક્ટર જેટલી હોય), અવરોધપેટી (0 થી $10,000~\Omega$), બૅટરી એલિમિનેટર (0–2–4–6 વોલ્ટ), ટેપિંગ (વોલ્ટેજના જુદાજુદા જોડાણઅગ્રો) સાથેનું સ્ટેપ ડાઉન ટ્રાન્સફોર્મર (0–2–4–6 વોલ્ટ, 50~Hz), dc મિલિએમીટર (0–500~mAની રેન્જવાળું), ac મિલિએમીટર (0–500~mAની રેન્જવાળું), dc વોલ્ટમીટર (0–5Vની રેન્જવાળું), એકમાર્ગીય કળ, જોડાણ માટેના તાર.

સિદ્ધાંત

પોલા નળાકાર પર તાંબાના તારના ઘણા બધા આંટા વીંટાળીને તૈયાર કરેલ નળાકારીય ગૂંચળું (Coil)

એટલે ઈન્ડક્ટર. આવા ગૂંચળાનો અવરોધ,
$$R=rac{V}{I}$$

(A 3.1)

જ્યાં V એ કૉઇલના બે છેડા વચ્ચેનો સ્થિતિમાનનો તફાવત અને I એ કૉઇલમાંથી પસાર થતો dc પ્રવાહ છે. જ્યારે ગૂંચળામાં નરમ લોખંડને ગર્ભ તરીકે મૂકવામાં આવે ત્યારે ગૂંચળા માટે વિદ્યુતસ્થિતિમાનનો તફાવત V' અને પ્રવાહ I' મળે છે જો લોખંડના ગર્ભ (core) સહિત ગૂંચળાનો અવરોધ,

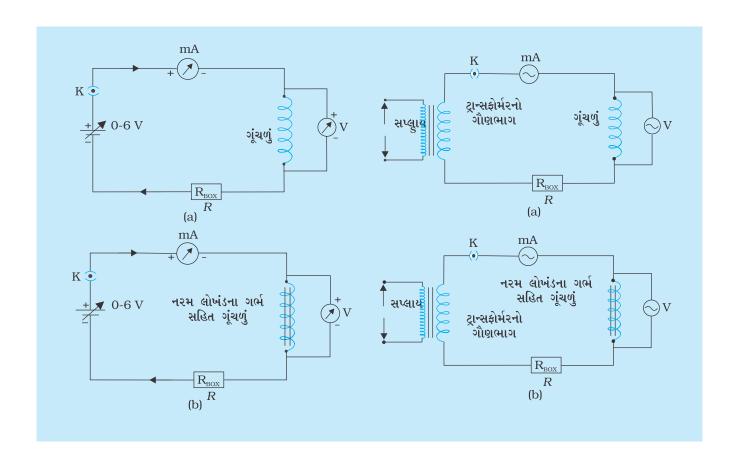
$$R' = \frac{V'}{P}$$

ac પ્રવાહના વહન દરમ્યાન ગૂંચળાના અવરોધ ને ઇમ્પિડન્સ Z કહે છે. લોખંડના ગર્ભ વગર ગૂંચળામાંથી પસાર થતો પ્રત્યાવર્તી વોલ્ટેજ (alternating voltage) અને પ્રત્યાવર્તી પ્રવાહ (alternating current) અનુક્રમે V_{ac} અને I_{ac} છે. ગૂંચળાનો ઇમ્પિડન્સ,

Downloaded from https://www.studiestoday.com

પ્રયોગશાળા માર્ગદર્શિકા

$$Z = \frac{V_{ac}}{I_{ac}}$$


વડે અપાય છે.

હવે, લોખંડના ગર્ભને ગૂંચળાની અંદર મૂકતાં, ઇમ્પિડન્સનું મૂલ્ય Z' બને છે.

(A 3.4)

$$\mathbf{Z'} = \frac{V'_{ac}}{I'_{ac}}$$

જ્યાં V'_{ac} અને I'_{ac} એ લોખંડના ગર્ભને મૂક્યા પછી ઇન્ડક્ટર માટે અનુક્રમે પ્રત્યાવર્તી વોલ્ટેજ અને પ્રત્યાવર્તી પ્રવાહ છે.

આકૃતિ A 3.1

(a) : dc પરિપથમાં ઇન્ડક્ટર : (a)હવાનું ગર્ભ (b) નરમ લોખંડનું ગર્ભ ધરાવતા અવરોધનું માપન

આકૃતિ A 3.2 ac પરિપથમાં ઇન્ડક્ટર:
(a) હવાનું ગર્ભ (b) નરમ લોખંડનું ગર્ભ ધરાવતા ઈમ્પિડન્સનું માપન

પદ્ધતિ

- (1) **લોખંડના ગર્ભ રહિત ઇન્ડક્ટરના અવરોધ માટે,** સાધનોને આકૃતિ A 3.1 (a)માં દર્શાવેલ પરિપથ આકૃતિ મુજબ ગોઠવો અને કળ K ખુલ્લી રાખો.
- (2) dc સ્રોત અને dc મિલિએમીટરને ઇન્ડક્ટર સાથે શ્રેણીમાં અને વોલ્ટમીટરને સમાંતરમાં જોડો.
- (3) બૅટરી એલિમિનેટરને તેનાં લઘુત્તમ મૂલ્ય માટે ગોઠવી, તેની સ્વિચ 'ON' કરો. પ્લગમાં કળ ભરાવો. *R*ને એવી રીતે ગોઠવો કે જેથી અવલોકનો માપક્રમમાં રહે. ઇન્ડક્ટર માટે dc વોલ્ટેજ અને dc પ્રવાહ માપો.
- (4) એલિમિનેટરના વોલ્ટેજ ક્રમશઃ વધારતાં જાવ અને ઇન્ડક્ટર માટેનાં dc પ્રવાહ તથા dc વોલ્ટેજના મૂલ્યો નોંધતાં જાવ.
- (5) નરમ લોખંડના ગર્ભ સહિત ઇન્ડક્ટરના અવરોધ માટે, લોખંડના ગર્ભને ગૂંચળાની અંદર સંપૂર્ણપણે રહે તેમ ગોઠવો. (આકૃતિ A 3.1 (b))
- (6) પદ 3 અને 4નું પુનરાવર્તન કરો અને ઇન્ડક્ટર માટે પ્રવાહ અને વોલ્ટેજ નોંધો.
- (7) લોખંડના આવરણ (ગર્ભ) રહિત ઇન્ડક્ટરના ઇમ્પિડન્સના માપન માટે, વિવિધ ટેપિંગ સાથેના સ્ટેપ ડાઉન ટ્રાન્સફોર્મરનો ઉપયોગ કરો. (2V, 4V, 6V), ac વોલ્ટમીટર (0-5) N, ac એમીટર (0-0.3) તે આકૃતિ A 3.2 (a) મુજબ જોડો.
- (8) પદ 3 અને 4નું પ્રત્યાવર્તી પ્રવાહ અને પ્રત્યાવર્તી વોલ્ટેજ માટે પુનરાવર્તન કરો. ઇન્ડક્ટર માટે વોલ્ટેજ અને પ્રવાહનાં મૃલ્યો નોંધો.
- (9) **નરમ લોખંડના ગર્ભ સહિત ઇન્ડક્ટરના ઇમ્પિડન્સના માપન માટે,** નરમ લોખંડના ગર્ભને ગૂંચળાંની અંદર એવી રીતે દાખલ કરાવો કે જેથી તે સંપૂર્ણપણે ગૂંચળાની અંદર રહે. (આકૃતિ A 3.2 (b))
- (10) પદ 3 અને 4નું પ્રત્યાવર્તી વોલ્ટેજ અને પ્રત્યાવર્તી પ્રવાહ માટે પુનરાવર્તન કરો. ઇન્ડક્ટર માટે પ્રવાહ અને વોલ્ટેજ નોંધો.

અવલોકનો

- (1) dc વોલ્ટમીટરની અવધિ = 0 થી ... V
- (2) dc વોલ્ટમીટરનું લઘુત્તમ માપ = ... V
- (3) dc એમીટરની અવધિ = 0 થી ... mA
- (4) dc એમીટરનું લઘુત્તમ માu = ... mA
- (5) ac વોલ્ટમીટરની અવધિ = 0 થી ... V
- (6) ac વોલ્ટમીટરનું લઘુત્તમ માV = ... V
- (7) ac એમીટરની અવધિ = 0 થી ... mA
- (8) ac એમીટરનું લઘુત્તમ માu = ... mA

પ્રયોગશાળા માર્ગદર્શિકા

કોષ્ટક A 3.1 : ઇન્ડક્ટરનો લોખંડના ગર્ભરહિત અને ગર્ભ સહિત અવરોધ

ક્મ	બૅટરીના એલિમિનેટરની ગોઠવણી	લોખંડના ગર્ભરહિત		લોખં	ાંડના ગર્ભ સ	હિત	
		વોલ્ટેજ	પ્રવાહ	$R = \frac{V}{I}$	વોલ્ટેજ	પ્રવાહ	$R' = \frac{V'}{I'}$
		<i>V</i> (V)	I (mA)	$R(\Omega)$	V' (V)	I' (mA)	R (Ω)
1							
2							
3							
4							
	સરેરાશ					સરેરાશ	

કોષ્ટક A 3.2 : ગૂંચળાનો ઇમ્પિડન્સ લોખંડના ગર્ભ રહિત અને ગર્ભ સહિત

ક્મ	<i>ac</i> વોલ્ટેજના સ્ત્રોતની ગોઠવણી	લોખંડના ગર્ભ રહિત		હેત	લોખંડના ગર્ભ સહિત <i>ac</i> વોલ્ટેજ		
		વોલ્ટેજ	પ્રવાહ	$Z = \frac{V}{I}$	વોલ્ટેજ	પ્રવાહ	$Z' = \frac{V'}{I'}$
		<i>V</i> (V)	I (mA)	$\boldsymbol{Z}(\Omega)$	V' (V)	I' (mA)	$Z'(\Omega)$
1							
2							
3							
4							
-0-2			સરેરાશ			સરેરાશ	

ગણતરીઓ

- (1) દરેક અવલોકન માટે વોલ્ટેજ અને પ્રવાહનો ગુણોત્તર ગણો અને અવરોધ તથા ઇમ્પિડન્સ મેળવો.
- (2) દરેક કિસ્સામાં અવરોધ અને ઇમ્પિડન્સનાં સરેરાશ મૂલ્યો ગણો એટલે કે લોખંડના ગર્ભ રહિત અને ગર્ભ સહિત.

પરિણામ

- (1) લોખંડના ગર્ભ રહિત ઇન્ડક્ટર કૉઇલનો dc અવરોધ = ... Ω .
- (2) લોખંડના ગર્ભ સહિત ઇન્ડક્ટરની કૉઇલનો dc અવરોધ $= ... \Omega$.
- (3) ઇન્ડક્ટરની કૉઇલનો લોખંડના ગર્ભ રહિત ઇમ્પિડન્સ $= \dots \Omega$.
- (4) ઇન્ડક્ટરની કૉઇલનો લોખંડના ગર્ભ સહિત ઇમ્પિડન્સ = ... Ω .

સાવચેતીઓ

- (1) ગૂંચળા સાથે એમીટરને શ્રેણીમાં અને વોલ્ટમીટરને સમાંતરમાં જોડો.
- (2) લોખંડના ગર્ભને કૉઇલની અંદર સંપૂર્ણપણે ગોઠવો.
- (3) જોડાણ કરતાં પહેલાં, જોડાણના તારના છેડાઓને કાચપેપરની મદદથી સાફ કરવા જોઈએ.

ત્રુટિના સ્રોતો

ac મિલિએમીટર અને ac વોલ્ટમીટરનું લઘુત્તમ માપ એટલું નાનું પણ ના હોય કે જે લોખંડના ગર્ભ (Core)ને મૂક્યા પછી ઇમ્પિડન્સનો તફાવત સચોટતાથી નોંધી શકે.

સ્વ-મૂલ્યાંકન

- (1) પરિપથના ઇમ્પિડન્સનો અર્થ શું થાય ?
- (2) dc અને ac એમીટર અને વોલ્ટમીટર વચ્ચે તમે કયા તફાવતોનું અવલોકન કર્યુ ?
- (3) જ્યારે ઇન્ડક્ટર કૉઇલમાંથી લોખંડના ગર્ભને બહાર લઈ લેવામાં આવે ત્યારે, એમીટર અને વોલ્ટમીટરનાં અવલોકનો પર શું અસર થાય ? શા માટે ?

ચર્ચા

- (1) ગૂંચળાના dc અવરોધની લોખંડના ગર્ભ રહિત અને લોખંડનાં ગર્ભ સહિત મૂલ્યોની સરખામણી કરો. લોખંડના ગર્ભને દાખલ કર્યા પછી ગૂંચળા (Coil)ના અવરોધમાં કોઈ ફેરફાર જોવા નહીં મળે. આ પરિશામ સમજાવો.
- (2) લોખંડના ગર્ભ રહિત અને ગર્ભ સહિત ગૂંચળાના ઇમ્પિડન્સની સરખામણી કરો. લોખંડના ગર્ભને મૂક્યા પછી એ નોંધાય છે કે ઇમ્પિડન્સ વધે છે. આ પરિણામ સમજાવો.

સૂચવેલ વધારાના પ્રયોગો / પ્રવૃત્તિઓ

- (1) ac નું માપન લાકડાં, પ્લાસ્ટિક અને કૉપર ગર્ભ સાથે પુનરાવર્તિત કરો. (જેની લંબાઈ કોઈ પણ હોઈ શકે.) આવા ગર્ભ મૂક્યા પછી ઇમ્પિડન્સમાં શું તમે કોઈ ફેરફાર જુઓ છે ?
- (2) જો લોખંડનો ગર્ભ સંપૂર્ણપણે અંદર ન હોય, તો શું ઇમ્પિડન્સમાં એ જ ફેરફાર થશે ?

प्रवृत्ति 4

હેતુ

મલ્ટિમીટરનો ઉપયોગ કરીને આપેલા પરિપથ માટે અવરોધ, વોલ્ટેજ (dc/ac), પ્રવાહ (dc)નું માપન કરવું અને આપેલા પરિપથની સતતતા (સાતત્યતા) ચકાસવી.

જરૂરી સાધન-સામગ્રી

મલ્ટિમીટર તેના પરીક્ષણ છેડાઓ સહિત, અવરોધપેટી, કળ, વિદ્યુતકોષ, 6 V આઉટપુટ વોલ્ટેજવાળું સ્ટેપ ડાઉન ટ્રાન્સફોર્મર, રીઓસ્ટેટ, જોડાણ માટેના તાર અને કાચપેપરનો ટુકડો

(શિક્ષકો માટે નોંધ: સાવચેતીનાં પગલાં માટે 220 V ના પ્રત્યાવર્તી પ્રવાહ આપતા સ્રોતને વિદ્યાર્થીઓ દ્વારા સંચાલન કરવાની પરવાનગી આપશો નહિ.)

મલ્ટિમીટરનું વર્ષાન : મલ્ટિમીટર એ પ્રવાહમાપક (એમીટર) અથવા વોલ્ટેજ માપક (વોલ્ટમીટર) અથવા અવરોધમાપક (ઓહ્મમીટર) તરીકે કાર્ય કરતું સાધન છે. ક્યારેક તે AVO તરીકે પણ ઓળખાય છે. (એમ્પિયર, વોલ્ટ અને ઓહ્મ) મીટર. તે અવરોધ અને dc અને ac બંને પરિપથોમાં વિદ્યુતસ્થિતિમાનનો તફાવત તથા dc પરિપથમાં જુદી-જુદી રેન્જનો પ્રવાહ માપી શકે છે. ભ્રમણ કરી પસંદ કરતા દટ્ટા (Knob) દ્વારા અથવા સ્વિચના અને સૉકેટના સંયોજનથી કાર્ય અને રેન્જ પસંદ કરી શકાય છે.

મહ્ટિમીટરના બે પ્રકાર છે : એનાલોગ અને ડિજિટલ.

એનાલોગ મિલ્ટિમીટર : આકૃતિ A 4.1 (a)માં દર્શાવ્યા પ્રમાશે એનાલોગ મિલ્ટિમીટર એ dc ગૅલ્વેનોમીટર છે જેને જુદી-જુદી રેન્જના પ્રવાહ અથવા અવરોધ અથવા વોલ્ટેજનું માપન કરતા એમીટર અને વોલ્ટમીટરમાં રૂપાંતરિત કરી શકાય છે. ac માપન માટે પ્રવાહ અને વોલ્ટેજની rms કિંમતો (વર્ગના સરેરાશનું વર્ગિત મૂલ્ય) માપી શકાય છે.

જ્યારે મલ્ટિમીટરનો ઉપયોગ પ્રવાહ માપવા માટે કરવામાં આવે ત્યારે તેને પરિપથમાં શ્રેણીમાં જોડવું જોઈએ. પરિપથનાં બે બિંદુઓ વચ્ચે વોલ્ટેજનો તફાવત માપવા માટે તેના બે છેડાઓ (leads)ને તેમની સાથે જોડવામાં આવે છે.

દા.ત., અવરોધના બે છેડાઓ વચ્ચેનો વોલ્ટેજ માપવા, મલ્ટિમીટરને અવરોધ સાથે સમાંતરમાં જોડવામાં આવે છે.

જયારે મિલ્ટિમીટરને અવરોધ માપક મોડ પર રાખવામાં આવે ત્યારે આપોઆપ અંદર આપેલા વિદ્યુતકોષ સાથે જોડાય છે, આના લીધે આપણે જે અવરોધનું માપન કરવાનું હોય, તે બાહ્ય અવરોધમાંથી પ્રવાહ પસાર થાય છે. આ પ્રવાહની સંવેદના જેના ડાયલ પર અવરોધના મૂલ્યો અંકિત કરેલ હોય તેવું મિલ્ટિમીટર અનુભવે છે. તે અનિવાર્યપણે અંકનમાં અરેખીય છે.

આકૃતિ A 4.1 (a) એનાલોગ મલ્ટિમીટર

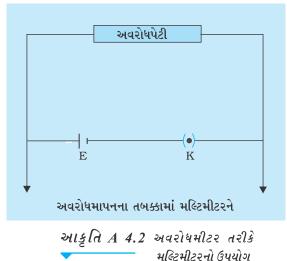
ડિજિટલ મલ્ટિમિટર: આકૃતિ A 4.1 (b) ડિજિટલ મલ્ટિમીટર દર્શાવે છે.

વોલ્ટેજ અને પ્રવાહ માપવા માટે તે ADC (analog to digital convertor) તરીકે ઓળખાતો ડિજિટલ પરિપથ વાપરે છે. જો કે ADC ખૂબ નાના ઇનપુટ વોલ્ટેજને સ્વીકારતો હોવાથી, નમૂના

રૂપ ઇનપુટ વોલ્ટેજ અથવા પ્રવાહ જરૂરી છે.

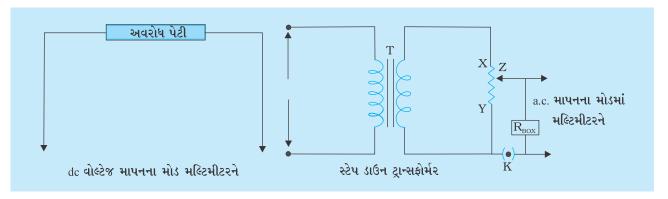
વોલ્ટેજનું માપન પ્રત્યક્ષ રીતે થાય છે. જ્યાં પ્રવાહ માપક સાધનમાંના આંતરિક પ્રમાણભૂત અવરોધને લીધે પ્રવાહ સપ્રમાણ રીતે વોલ્ટેજમાં રૂપાંતરિત થાય છે. અવરોધના માપન માટે અચળ પ્રવાહના સ્રોત વપરાય છે. તે વોલ્ટેજનાં મૂલ્યો અવરોધના પ્રમાણમાં ઉત્પન્ન કરી તેને ADCની મદદથી ડિજિટલમાં રૂપાંતર કરે છે. આ મીટરનું વિભેદન તેમની અવિધ (Range) અને ડિસ્પ્લે પૅનલ પર જોવા મળતાં આંકડાઓની સંખ્યા પર આધાર રાખે છે.

આકૃતિ A 4.1 (b) ડિજિટલ મલ્ટિમીટર

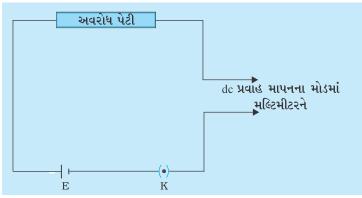

સિદ્ધાંત

જ્યારે આકૃતિ A 4.2માં દર્શાવ્યા મુજબ અવરોધ Rને પરિપથમાં જોડવામાં આવે ત્યારે અવરોધના બે છેડા વચ્ચેનો વિદ્યુતસ્થિતિમાનનો તફાવત, અવરોધ સાથે મલ્ટિમીટરને (વોલ્ટેજની યોગ્ય ગોઠવણી સાથે) સમાંતર જોડી માપી શકાય છે.

મલ્ટિમીટરની કૉઇલ dc પ્રવાહના સપ્રમાણમાં આવર્તન દર્શાવે છે. પ્રત્યાવર્તી પ્રવાહ ac નું માપન પ્રવાહની ઉષ્મીય અસરના સિદ્ધાંત પર આધારિત છે.


આકૃતિ A 4.5માં દર્શાવ્યા મુજબ મલ્ટિમીટરને (પ્રવાહની યોગ્ય ગોઠવણી દ્વારા) અવરોધ સાથે શ્રેણીમાં જોડી તેમાંથી પસાર થતો પ્રવાહ માપી શકાય છે.

વિદ્યુતનાં ઘટકોનું સતતતા તેમના અવરોધના માપનથી ચકાસી શકાય. ઘટકના બે છેડાઓ વચ્ચેનો અનંત અવરોધ


151

પ્રયોગશાળા માર્ગદર્શિકા

આકૃતિ A **4.3** મલ્ટિમીટરનો ac વોલ્ટમીટર તરીકે ઉપયોગ

આકૃતિ A 4.4 મલ્ટિમીટરનો ac વોલ્ટમીટર તરીકે ઉપયોગ

આકૃતિ A 4.5 મલ્ટિમીટરનો એમીટર તરીકે ઉપયોગ

અસતતતા દર્શાવે છે. ઘટકના બે છેડાઓ વચ્ચેનો ખૂબ ઓછો અવરોધ ($\leq 0.1\Omega$) તે ઘટક-પરીક્ષણ દરમિયાન શોર્ટ-સર્કિટમાં હોવાનું દર્શાવે છે. (આકૃતિ A 4.2)

પહૃતિ

એનાલોગ મલ્ટિમીટર

- (1) જોડાણ માટેના તારના છેડાઓને કાચપેપર વડે તેઓ ચમકે ત્યાં સુધી બરાબર સાફ્ર કરો. શક્ય હોય તો નવા તાર જ જોડાણ માટે લો કેમ કે લાંબા સમયથી પડી રહેલા તાર પર કંઈક અવાહક આવરણ જામી ગયું હોય છે. મલ્ટિમીટરના ધાત્વિય છેડાઓ પર કાટ કે અવાહક પડ જામ્યું નથીને તે પણ ચકાસો.
- (2) અવરોધના માપન માટે : મલ્ટિમીટરને અવરોધ માપનના મોડ પર મૂકો. લાલ અને કાળા છેડા (probes) ને મલ્ટિમીટર સાથે જોડો.
- (3) લાલ છેડાના ખુલ્લા ભાગને સીધું જ બ્લૅક (કાળા) છેડા સાથે જોડી, શુન્ય એડજસ્ટમેન્ટના ડટ્ટા વડે અવરોધના માપક્રમ પર શૂન્ય ઓહ્મ ગોઠવો. (એકદમ જમણી તરફ)
- (4) પરીક્ષણ માટેના ધાતુના બે સળિયા (છેડાઓને) અલગ રાખો અને અવરોધપેટીને મલ્ટિમીટર સાથે આકૃતિ A 4.2માં દર્શાવ્યા પ્રમાણે જોડો.

- (5) અવરોધપેટીમાંથી અનુરૂપ અવરોધ કળ કાઢી જ્ઞાત અવરોધ R પરિપથમાં ઉમેરો અને પરિપથમાં વપરાયેલા અવરોધકના અવરોધના મુલ્ય માટે મલ્ટિમીટરનું અવલોકન R_M વાંચો. બીજા ચાર અવરોધો માટે આ પદનું પુનરાવર્તન કરો.
- (6) અરેખીય માપક્રમનું અવલોકન ધ્યાનથી તપાસો અને નોંધો કે શૂન્ય માપક્રમની છેક જમણી બાજુએ છે. પસંદ કરેલી અવધિ માટે ગુણક અંકનો યોગ્ય ઉપયોગ કરો. દા.ત., $R \times 100$ ના માપક્રમ (સ્કેલ) પર 4 કાપાનું આવર્તન એટલે અવરોધનું માપ = $4 \times 100~\Omega = 400~\Omega$
- (7) dc વોલ્ટેજના માપન માટે : કાર્યકારી સ્વિચ (ac/dc)ને યોગ્ય સ્થિતિમાં રાખી, ઉપલબ્ધ મહત્તમ અવિધ (રેન્જ) પસંદ કરો. એ વાતની ખાતરી કરો કે પરીક્ષણ છેડાઓને સૉકેટમાં યોગ્ય ધ્રુવો સાથે જોડેલા છે. રૈવાજિક રીતે ધન ધ્રુવ સાથે રેડ (લાલ) અને ઋણ ધ્રુવ સાથે બ્લૅક (કાળો) છેડો વપરાય છે.
- (8) આકૃતિમાં (A 4.3)માં દર્શાવ્યા પ્રમાણે મલ્ટિમીટર જોડો.
- (9) dc વોલ્ટેજ માપવા માટે મલ્ટિમીટરને ગોઠવો. યોગ્ય રેન્જ પસંદ કરો. દા.ત., પરિપથમાં $1.5~V~{\rm emf}$ નો વિદ્યુતકોષ વાપર્યો હોય તો રેન્જ 2.5Vની રાખો.
- (10) વિદ્યુતકોષનો emf માપવા માટે મલ્ટિમીટરના ધન છેડાને કોષના ધન સાથે અને ઋણ છેડાને કોષના ઋણ સાથે કળ K માં થઈને જોડો. અવરોધપેટીમાંથી પરિપથમાં R અવરોધવાળો કોઈપણ અવરોધ દાખલ કરશો નહિ. કળ K ભરાવી મલ્ટિમીટરનું અવલોકન વાંચો (પરિપથના સતત પ્રવાહ જોડાણના તારને ગરમ કરશે). તમારાં અવલોકનોને કોષ્ટક A 4.2માં નોંધો. પછી કળ K ખુલ્લી કરો.
- (11) હવે પરિપથમાં અવરોધપેટીમાંથી અવરોધ કળ કાઢી એક જ્ઞાત અવરોધ (ધારોકે $10~\Omega$) દાખલ કરો. કળ K ભરાવો અને અવરોધના બે છેડાઓ વચ્ચે સ્થિતિમાનના તફાવતનું માપન કરવા મલ્ટિમીટરનું અવલોકન વાંચો. પરિપથમાં અવરોધ ન હતો (એટલે કે R=0) એટલે કે પદ 10~માં અવલોકન કર્યુ તેના કરતાં શું અવલોકનમાં કોઈ ફેરફાર મળશે ?
- (12) પરિપથમાં અવરોધના જુદાં-જુદાં ત્રણ મૂલ્યો માટે પદ 11નું પુનરાવર્તન કરો તમારાં અવલોકનો કોષ્ટક A 4.2માં નોંધો.
- (13) $\frac{1}{2}$ ac વોલ્ટેજના માપન માટે : જેનો આઉટપુટ વોલ્ટેજ $6 \ V$ છે તેવા $\frac{1}{2}$ લગકળ અને મલ્ટિમીટરને સ્થિતિમાન વિભાજક તરીકે રીઓસ્ટેટ XY, અવરોધપેટી R_{BOX} , પ્લગકળ અને મલ્ટિમીટરને આકૃતિ A 4.4માં દર્શાવ્યા પ્રમાણે જોડો. Rનું મૂલ્ય (જેમકે $5 \ \Omega$) નિશ્ચિત કરો.
- (14) મલ્ટિમીટરને 10Vની અવધિ (રેન્જ)ના ac વોલ્ટમીટર તરીકે વર્તે તેમ ગોઠવો.
- (15) રીઓસ્ટેટના ચલિત છેડા Zને બિંદુ Xની નજીક લાવો. આ સ્થિતિમાં રીઓસ્ટેટની કોઇલનો અવરોધ લઘુત્તમ હશે. કળ K ભરાવી અવરોધ Rના છેડાઓ વચ્ચેના વોલ્ટેજ ડ્રોપનું મિલ્ટિમીટરનું અવલોકન કોષ્ટક A 4.3માં નોંધો. રીઓસ્ટેટના ચલિત છેડાની ઓછામાં ઓછી ચાર સ્થિતિઓ માટે અવલોકનોનું પુનરાવર્તન કરો (કોષ્ટક A 4.3).

પ્રયોગશાળા માર્ગદર્શિકા

વિદ્યાર્થીઓ માટે નોંધ: સાવચેતીના ભાગ રૂપે 220 Vના AC સ્રોતના કિસ્સામાં મહેરબાની કરીને જાતે સંચાલન ન કરો.

- (16) $\frac{1}{1000}$ **dc** પ્રવાહની યોગ્ય માપણી માટે : કાર્યકારી સ્વિચ પસંદ કરો, યોગ્ય રેન્જ સ્વિચ / સૉકેટ પસંદ કરો. દા.ત. પરિપથમાં સ્ત્રોત તરીકે 1.5 V emf ધરાવતો એક કોષ અને પ્રયોગ દરમિયાન જેની કિંમત 2 Ω થી 10 Ω સુધી બદલાય તેવો એક અવરોધ વાપર્યો હોય તો 1A (1000 mA) વાળી અવધિ યોગ્ય ગણાય.
- (17) આકૃતિ A 4.5માં દર્શાવ્યા પ્રમાણે મિલ્ટિમીટરનો ધન છેડો વિદ્યુતકોષના ધન છેડા સાથે અને ઋણ છેડો કોષના ઋણ છેડા સાથે જોડાય તેમ મિલ્ટિમીટરને શ્રેણીમાં જોડો.
- (18) મલ્ટિમીટરમાંથી વહેતા dc પ્રવાહનું માપન તેનાં અવલોકનો વાંચી કરો.
- (19) પરિપથમાં અવરોધને લાવીને પ્લગ K ને કળ લગાવી મલ્ટિમીટર વડે પરિપથમાં વહેતા પ્રવાહનું માપન કરો. આવા અવરોધ Rની બીજી ચાર કિંમત માટે તેનું પુનરાવર્તન કરો. તમારાં અવલોકનો કોષ્ટક A 4.4માં નોંધો.

ડિજિટલ મલ્ટિમીટર

તેમાં વોલ્ટેજ, પ્રવાહ અને અવરોધના માપનની પદ્ધતિ એનાલોગ માપનની જેમ જ છે. નોંધનીય તફાવત એ છે કે, ડિજિટલ મલ્ટિમીટર, એનાલોગની જેમ સંવેદનશીલ નથી કે સરળતાથી નુકસાન પામે. તેઓ ઊંધા ધ્રુવત્વનો વોલ્ટેજ પણ સ્વીકારે છે (ધન કે ઋણ ચિલ્ન દર્શાવી). જ્યારે માપવાની રાશિનું મૂલ્ય રેન્જની ઉપરની સીમાને પાર થાય ત્યારે તેઓ આંકડો દર્શાવે છે.

Rના માપન માટે કોઈ ગોઠવણીની જરૂરિયાત નથી. (કોઈ પણ રેન્જ માટે).

અવલોકનો

- (1) મિલ્ટિમીટરની પૅનલ પરના અવરોધના માપક્રમની અવધિ = Ω
- (2) માપક્રમનું લઘુત્તમ માપ = Ω

કોષ્ટક A 4.1 : અવરોધનું માપન

ક્રમ	અવરોધપેટીમાં દર્શાવેલ	મલ્ટિમીટરનું અવલોકન	તફાવત
	અવરોધ $ extbf{ extit{R}}$ (Ω)	$R_{\rm m}$ (Ω)	$[R-R_{\rm m}]$ (Ω)
1			
2			
5			

મલ્ટિમીટરનું લઘુત્તમ માપ પૅનલ પર પસંદ કરેલ dc વોલ્ટેજની માપક્રમની અવિધ =V માપક્રમનું લઘુત્તમ માપ =V

કોષ્ટક A 4.2 : dc વોલ્ટેજનું માપન

ક્રમ	પરિપથમાંનો અવરોધ	વોલ્ટેજ (V) માટે
	$R(\Omega)$	મલ્ટિમીટરનું અવલોકન
1		
2		
5		

મલ્ટિમીટરની પૅનલ પર પસંદ કરેલ વોલ્ટેજના માપક્રમની અવિધ = V માપક્રમનું લઘુત્તમ માપ = V

કોષ્ટક \mathbf{A} 4.3 : અવરોધ ($\mathbf{R}=\dots\Omega$) ના છેડાઓ વચ્ચેના વોલ્ટેજ ડ્રોપનું માપન

ક્રમ	રીઓસ્ટેટના ચલિત છેડાનું ગૂંચળા XY પરનું સ્થાન	મલ્ટિમીટરનું અવલોકન (V)
1	બિંદુ Xની નજીક	
2		
5	બિંદુ Yની નજીક	

મલ્ટિમીટરની પૅનલ પર પસંદ કરેલ dc પ્રવાહના માપક્રમની અવધિ = mA માપક્રમનું લઘુત્તમ માપ = mA

કોષ્ટક A 4.4 : dc પ્રવાહનું માપન

ક્રમ	પરિપથમાંનો અવરોધ $ extbf{ extit{R}}$ (Ω)	પ્રવાહ માટે મલ્ટિમીટરનું વાચન (mA)
1		
2		
5		

પરિણામ

(1) dc/ac વોલ્ટેજ, dc પ્રવાહ અને અવરોધનું માપન મલ્ટિમીટર વડે કરી શકાય છે.

પ્રયોગશાળા માર્ગદર્શિકા

(2) મલ્ટિમીટર વડે મપાયેલા અવરોધનાં મૂલ્યો એ અવરોધ પર સંકેતથી આપેલ (Decoded) મૂલ્યોની લગભગ નજીક છે.

સાવચેતીઓ

- (1) આપેલ વોલ્ટેજ અથવા પ્રવાહ અને અવરોધના માપન માટે કાર્યકારી સ્વિચ અને રેન્જ સ્વિચની યોગ્ય પસંદગી કરવી જોઈએ.
- (2) dc વોલ્ટેજ અને પ્રવાહના માપન માટે ધાત્વિય છેડાઓને યોગ્ય ધ્રુવો સાથે જોડવા જોઈએ.

ત્રુટિનાં ઉદ્ગમો

- (1) વોલ્ટેજ/પ્રવાહના વાચન માટે વપરાતો માપક્રમ અયોગ્ય હોઈ શકે.
- (2) 'R'ના માપન વખતની શૂન્ય ગોઠવણી એનાલોગ મલ્ટિમીટર વડે સચોટ ના પણ થઈ શકે છે.

ચર્ચા

- (1) જો અવરોધપેટીના સ્થાને કાર્બન અવરોધ વાપરવામાં આવે, તો તે ગરમ (હીટિંગ)ના થાય તે જોવું, કેમકે તેના લીધે અવરોધના મૂલ્યમાં ફેરફાર થઈ શકે છે.
- (2) માપેલ રાશિનાં નાનાં મૂલ્યો માટે માપનની પ્રતિશત ત્રુટિ વધુ હોય છે.
- (3) જો મલ્ટિમીટરના બે પરીક્ષણ ધાત્વિય છેડાઓ સમાન ન હોય અને મલ્ટિમીટરના જંકશન પાસે નોંધપાત્ર અવરોધ રહેતો હોય (પરીક્ષણ છેડાઓ અને પરીક્ષણ અવરોધ) તો, તમારાં માપનો કઈ રીતે અસર પામશે ?

સ્વ-મૂલ્યાંકન

શું dc વોલ્ટેજ / પ્રવાહ, ac વોલ્ટેજ/પ્રવાહની કાર્યકારી સ્વિચની મદદથી માપી શકાય ? તમારો જવાબ ચકાસો.

સૂચવેલ વધારાના પ્રયોગો / પ્રવૃત્તિઓ

મિશ્રિત કલર કૉડવાળા અવરોધોનો સમૂહ તમને આપેલ છે. મલ્ટિમીટરની મદદથી અવરોધ પરના કોડમાં દર્શાવેલ સહનશીલતા હદ (Tolerance limit) ની અંદર મળેલી અવરોધકની decoded કિંમતો ચકાસો.

હેતુ

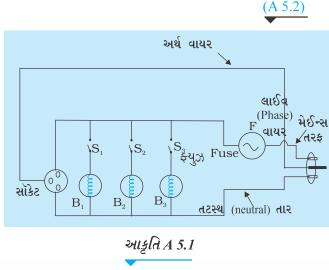
ત્રણ બલ્બ, ત્રણ સ્વિચ (On/Off), ફ્યુઝ અને પાવર સપ્લાયનો ઉપયોગ કરી ઘર-વપરાશ માટેનો પરિપથ બનાવવો.

જરૂરી સાધન-સામગ્રી

ત્રણ બલ્બ (દરેક 40 W, 220 V), ત્રણ (on/off) સ્વિચ, સૉકેટ, 1Aનો ફ્યૂઝ, પ્લગ, જોડાણનો લવચીક (flexible) તાર, મુખ્ય સ્વિચ

સિદ્ધાંત

ઘર-વપરાશના જુદા-જુદા વિદ્યુતનાં સાધનોમાં વપરાતો પાવર જો $P_1,\,P_2,\,P_3,\,P_4,\,P_5,\,.....$ હોય, તો કોઈ પણ ક્ષણે વપરાતો કુલ પાવર


(A 5.1)

$$P = P_{_1} + P_{_2} + P_{_3} + P_{_4} + P_{_5} + \dots$$

જો મેઇન્સ (મુખ્ય સ્રોત)માં મળતો પ્રવાહ I અને વિદ્યુતસ્થિતિમાન V હોય, તો

$$I = \frac{P}{V}$$

જ્યાં P વૉટમાં, V વોલ્ટમાં અને I એમ્પિયરમાં છે. જ્યારે અકસ્માતે ઊંચો પ્રવાહ (દા.ત., જ્યારે સાધનોના છેડાઓ અકસ્માતે જોડાઈ જાય) પસાર થાય ત્યારે ઉપકરણોને નુકસાનથી બચાવવા થોડાક ઊંચા રેટિંગવાળો ફ્યૂઝ (સામાન્ય પ્રવાહથી 10 થી 20 % જેટલું ઊંચું) ઉપકરણો સાથે આકૃતિ A 5.1 દર્શાવ્યા પ્રમાણે શ્રેણીમાં જોડવામાં આવે છે.

Downloaded from https://www.studiestoday.com

પ્રયોગશાળા માર્ગદર્શિકા

પદ્ધતિ

- (1) બલ્બ B_1 , B_2 , B_3 ને અનુક્રમે સ્વિચો S_1 , S_2 , S_3 સાથે શ્રેણીમાં જોડો. B_1 , B_2 , B_3 ને S_1 , S_2 , S_3 સાથે એકબીજાને સમાંતરમાં જોડો. (આકૃતિ A 5.1 પ્રમાણે)
- (2) આકૃતિ A 5.1માં દર્શાવ્યા મુજબ ગોઠવણ સાથે ફયૂઝ Fને શ્રેણીમાં જોડો. પ્લગ અને સૉકેટને બે છેડાઓ સાથે જોડો. પ્લગને અર્થ (earth) પિનમાંથી તાર સાથે જોડો.
- (3) મુખ્ય ઇલેક્ટ્રિક બૉર્ડમાં આપેલા સૉકેટનું પ્લગ લગાવો.
- (4) એક પછી એક સ્વિચો S_1 , S_2 , S_3 દબાવો અને અવલોકન કરો કે એક બલ્બ બીજા બલ્બથી સ્વતંત્ર રીતે on/off થઈ શકે છે.
- (5) એક સાથે બધી જ સ્વિચને દબાવો અને શું થાય છે તે જુઓ. તમારાં અવલોકનો નોંધો.

પરિણામ

ઘર-વપરાશના પરિપથનું જોડાણ પૂર્ણ અને સલામત છે.

સાવચેતીઓ

- (1) મેઇન્સ (મુખ્ય સ્રોત) સાથે કાર્ય કરવામાં કાળજી રાખવી જોઈએ.
- (2) પરિપથમાંથી વહેતા મહત્તમ પ્રવાહની ગણતરી કરી, કાળજીપૂર્વક ફયૂઝનું રેટિંગ નક્કી કરવું જોઈએ.

ચર્ચા

- (1) ફ્યુઝએ સલામતી માટેનું સાધન છે. નક્કી કરેલ મૂલ્ય કરતાં વધારે ઊંચા રેટિંગવાળા ફ્યુઝને ક્યારેય વાપરશો નહિ.
- (2) આપણા ઘરમાં આવતા મુખ્ય વિદ્યુતનું રેટિંગ કુલ પાવરની જરૂરિયાત પરથી નક્કી થાય છે. સામાન્ય રીતે તે 220V, 30 A અને 50 Hz છે. સપ્લાયને વિતરણ બોર્ડ સાથે જોડેલો હોય છે, જે પાવરને જુદાં-જુદાં પરિપથોમાં વહેંચે છે. કેટલાક વિદ્યુત-વપરાશનાં સાધનો જેવા કે રૂમ હીટર, એરકંડિશનર, ગીઝર, વિદ્યુત સગડી ભારે રેટિંગ 220V, 15A જેટલું અને બીજા વિદ્યુત-વપરાશનાં સાધનો જેવાં કે વીજળીના ગોળાઓ, છત પરના પંખાઓ વગેરેમાં ઓછાં રેટિંગ 220V, 5A હોય છે. 220V, 5A સપ્લાયનો એક વિદ્યુત-પરિપથ વિચારો. આવા પરિપથમાં બધાં સાધનો સ્વિચ સાથે સમાંતરમાં જોડાયેલાં હોય છે. સપ્લાયની લાઇવ લાઇનમાં આ સ્વિચ દરેક સાધનો સાથે શ્રેણીમાં હોય છે.

સ્વ-મૂલ્યાંકન

પરિપથમાં વાપરેલા ત્રણ ગોળા(બલ્બ)ઓમાંથી વહેતો મહત્તમ પ્રવાહ ગણો.

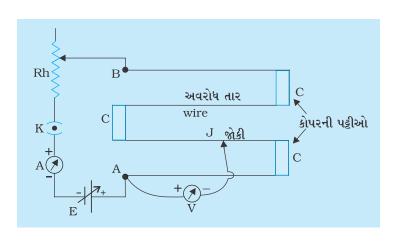
સૂચવેલ વધારાના પ્રયોગો / પ્રવૃત્તિઓ

લાઇટના બે પૉઇન્ટ, પંખાનો એક પૉઇન્ટ અને પ્લગનો એક પૉઇન્ટ ધરાવતો પરિપથ દોરો.

હેતુ

સ્થિત પ્રવાહ માટે તારની લંબાઈ સાથે પોટૅન્શિયલ (સ્થિતિમાન) ડ્રોપમાં થતા ફેરફારનો અભ્યાસ કરવો.

જરૂરી સાધન-સામગ્રી


પોર્ટેન્શિયોમીટર, અચળ વોલ્ટેજવાળું બૅટરી એલિમિનેટર, dc પાવર સપ્લાય (અથવા લેડ-સંગ્રાહકકોષ), યોગ્ય રેન્જવાળા વોલ્ટમીટર અને એમીટર, પ્લગ કળ, જૉકી, રીઓસ્ટેટ, જોડાણ માટેના તાર વગેરે.

સિદ્ધાંત

સમાન આડછેદનું ક્ષેત્રફળ ધરાવતા અને એકમ લંબાઈ દીઠ અચળ અવરોધ ધરાવતા તારમાંથી જયારે સ્થિત પ્રવાહનું વહન થાય ત્યારે તારના બે છેડાઓ વચ્ચેનો પોટૅન્શિયલ ડ્રૉપ (V) એ તાર પરના બે બિંદુઓ વચ્ચેની લંબાઈ (I)ના સમપ્રમાણમાં હોય છે. ગાણિતિક રીતે $V \propto I$

પદ્ધતિ

- આકૃતિમાં દર્શાવ્યા મુજબ વિદ્યુત-પરિપથ રચો. આકૃતિ A 6.1.
- (2) બૅટરીના ધન છેડાને પોટૅન્શિયોમીટરના બિંદુ A (શૂન્યલંબાઈ) સાથે જોડો.
- (3) પોટેન્શિયોમીટરના તાર પરના બીજા છેડા (બિંદુ) Bને બૅટરીના ઋણ છેડા સાથે એમીટર, પ્લગ-કી (કળ) અને રીઓસ્ટેટ થકી જોડો. એમીટરને એવી

આકૃતિ A 6.1 પોર્ટેન્શિયલ ડ્રૉપના ફેરફારના અભ્યાસ માટેનો પરિપથ

Downloaded from https://www.studiestoday.com

પ્રયોગશાળા માર્ગદર્શિકા

રીતે જોડવું જોઈએ કે જેથી તેનો ઋણ છેડો, બૅટરીના ઋણ છેડા સાથે જોડાય.

- (4) વોલ્ટમીટરના ધન છેડાને બિંદુ A સાથે અને બીજા છેડાને જૉકી કળ J સાથે જોડો.
- (5) હવે કળ Kને બંધ કરો અને જોકીને બિંદુ B પર દબાવો. રીઓસ્ટેટને વોલ્ટમીટરના પૂર્ણ સ્કેલ આવર્તન માટે ગોઠવો.
- (6) જ્યારે જૉકીને બિંદુ A પર દબાવો ત્યારે તે વોલ્ટમીટરમાં શૂન્ય આવર્તન દર્શાવે છે.
- (7) હવે જૉકીને 40 cm પર દબાવો અને સંલગ્ન વોલ્ટમીટરનું અવલોકન વાંચો.
- (8) જુદી-જુદી લંબાઈઓ 80 cm, 120 cm, પર જૉકીને દબાવીને તમારા અવલોકનોનું પુનરાવર્તન કરો, જે પોર્ટેન્શિયોમીટરની 400 cmની લંબાઈ સુધી વિસ્તૃત કરી શકાય. વોલ્ટમીટરનાં અવલોકનો દરેક કિસ્સામાં નોંધો અને કોષ્ટક A 6.1માં દર્શાવો.

અવલોકનો

```
વોલ્ટમીટરની અવધિ (Range) = ... V
વોલ્ટમીટરનું લઘુત્તમ માપ = ... V
શૂન્ય ત્રુટિ = ... V
```

કોષ્ટક A 6.1 : લંબાઈ સાથે પોટૅન્શિયલ ડ્રૉપનો ફેરફાર

ક્રમ	જ્યાં પોટેન્શિયલ ડ્રૉપ માપ્યો છે તે પોટૅન્શિયોમીટરના તારની લંબાઈ / (cm)	વોલ્ટમીટરનું ${ m al} = { m al} V({ m V})$	$\phi = \frac{V}{l} (V \text{ cm}^{-1})$
1			
2			
5			
		સરેરાશ	

ગણતરીઓ

ગુણોત્તર $\left(\frac{V}{l}\right) = \phi$ ગણો. જે તાર માટે વિદ્યુતસ્થિતિમાન પ્રચલન છે, જેનું મૂલ્ય લગભગ અચળ છે.

આલેખ દોરવો

V વિરુદ્ધ I નો આલેખ દોરો. V ને Y—અક્ષ પર અને I ને X—અક્ષ પર લો. રેખાનો ઢાળ ϕ આપે છે.

પરિણામ

પ્રાયોગિક ત્રુટિની મર્યાદામાં ગુણોત્તર $\left(rac{V}{l}
ight)=\phi$ અચળ રહે છે.

તેનું સરેરાશ મૂલ્ય = ... $V \text{ cm}^{-1}$

આલેખ V અને I વચ્ચે રેખીય સંબંધ દર્શાવે છે. આલેખ પરથી $\left(\frac{V}{l}\right) = \phi$ નું મૂલ્ય ... V cm $^{-1}$ છે.

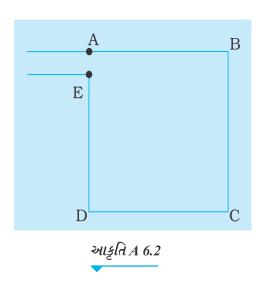
સાવચેતીઓ

- (1) વોલ્ટમીટર અથવા એમીટરની શૂન્ય ત્રુટિને (જો હોય તો) દર્શકના પાયામાં રહેલા સ્કૂની મદદથી સુધારી શકાય છે.
- (2) આખા પ્રયોગ દરમિયાન તારમાં પ્રવાહ અચળ રહેવો જોઈએ. આ સુનિશ્ચિત કરવા માટે સમયના ટુંકાગાળા માટે પ્રવાહ તુટક તુટક મળવો જોઈએ. તેની એમીટર વડે દેખરેખ રાખી શકાય અને જરૂર પડે ત્યારે રીઓસ્ટેટની મદદથી ફરી ગોઠવી શકાય.
- (3) અવલોકનો નોંધતી વખતે જૉકી વડે તારને વધારે સખત રીતે ન દબાવો, નહિ તો તે બિંદુ પાસે સમયના તે ગાળા માટે તાર અસમાન બનશે (વ્યાસ બદલાઇ જશે.)
- (4) પ્રયોગ શરૂ કરતાં પહેલાં વિવિધ બિંદુએ તારની સમાનતા ચકાસો. જો તાર અસમાન હશે તો સ્થિતિમાન પ્રચલન અચળ રહેશે નહિ.

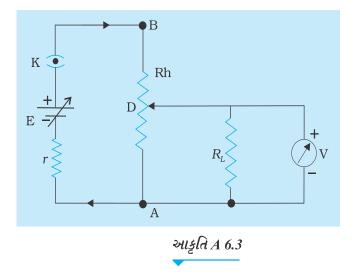
ત્રુટિના ઉદ્ગમો

- (1) તારની સમગ્ર લંબાઈ પર તેનો આડછેદ સમાન જ હોવો જોઈએ. તેને ચકાસવા પ્રયોગ શરૂ કરતાં પહેલાં તેનાં જુદાં-જુદાં બિંદુઓએ વ્યાસ માપો.
- (2) વોલ્ટમીટર સચોટ રીડિંગ ન પણ આપી શકે.

ચર્ચા


(1) 400 cm અથવા 1000 cmના પોર્ટેન્શિયોમીટર તારના દરેક 100 cmને અંતે કૉપરની જાડી પટ્ટી સાથે દઢતાથી જોડ્યો છે. જોકે તારનો આ નાનો ભાગ, પોર્ટેન્શિયોમીટરના તારની કુલ લંબાઈના ભાગરૂપે નથી કારણ કે વિદ્યુતપ્રવાહ આ ભાગોમાંથી નહિં, પરંતુ કૉપરની પટ્ટીઓમાંથી વહે છે.

પ્રયોગશાળા માર્ગદર્શિકા


- (2) પોર્ટેન્શિયોમીટરનો ફાયદો એ છે કે, જે સ્રોતનો વોલ્ટેજ માપવાનો છે, તેમાંથી કોઈ પ્રવાહ ખેંચતો નથી તથા સ્રોતના આંતરિક અવરોધની તેની પર અસર થતી નથી.
- (3) જો આલેખ અરેખીય હોય તો તમે શું નિષ્કર્ષ તારવશો ?

સ્વ-મૂલ્યાંકન

(1) સમાંગ દ્રવ્ય અને સમાન આડછેદનું ક્ષેત્રફળ ધરાવતા 100 cmના તાર વડે આકૃતિ A 6.2માં દર્શાવ્યા મુજબ ચોરસ બનાવ્યો છે. આ પ્રકારની ગોઠવણી AE વચ્ચે 1/4, 1/2, 3/4 વોલ્ટેજને પસંદ કરવા કેવી રીતે ઉપયોગમાં લઈ શકાય ?

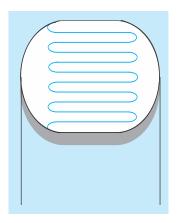
(2) E emf અને r આંતરિક અવરોધ ધરાવતી બૅટરી, પ્રયોગશાળામાં રીઓસ્ટેટ Rh ને કળ સહિત આકૃતિ A 6.3માં દર્શાવેલ છે. R_L એ લોડ (ભાર) અવરોધ છે, જે વાસ્તવમાં એક સહાયક પરિપથનું પ્રતિનિધિત્વ કરે છે. જો D એ ABનું મધ્યબિંદુ હોય તો, વોલ્ટમીટરનું વાચન શું હશે ? શું તે R_L કે R_V પર આધાર રાખશે ? $(R_V$ એ વોલ્ટમીટરનો અવરોધ છે.) શું તે r પર આધાર રાખશે ?

(3) ઉપરના પ્રશ્નમાં જ્યારે તારના છેડાઓ A અને B વચ્ચે સ્થિતિમાનનો તફાવત 3V હોય તેવો કિસ્સો વિચારો. એક પ્રયોગમાં શક્ય હોય તેટલી ચોકસાઈથી 1.7 Vના સ્થિતિમાનના તફાવતની જરૂરિયાત છે. સ્રોતના emfને ઘટાડવાની શક્યતાઓ વિચારો. તેના માટે શ્રેણીમાં અન્ય અવરોધ અથવા તે જ અવરોધના પણ મોટી લંબાઈના રીઓસ્ટેટને વાપરો. શું આ જ પરિપથના ઉપયોગ વડે ઋણ સ્થિતિમાન મેળવવું શક્ય છે ? જો હા હોય તો કેવી રીતે ?

સુચવેલ વધારાના પ્રયોગો / પ્રવૃત્તિઓ

- (1) આકૃતિ A 6.3માં દર્શાવ્યા મુજબ પરિપથ જોડો. બિંદુ A થી જુદી-જુદી લંબાઈઓ I માટે સ્થિતિમાનનો તફાવત નોંધો. V વિરુદ્ધ Iનો આલેખ દોરો. આલેખ પરથી 1.3 Vને સંલગ્ન લંબાઈ મેળવો. તમે 1.3 V પર કાર્ય કરતાં સહાયક પરિપથને 1.3 V કેવી રીતે આપી શકાય તે દર્શાવતો પરિપથ દોરો.
- (2) મનોરંજન માટેના ઇલેક્ટ્રૉનિક માર્કેટમાં એક નાનો પરિપથ મળે છે. જેને 'લેવલ ઇન્ડિકેટર' કહે છે. (લોકપ્રિય રીતે તેને 'dancing LED's કહે છે.) તે સામાન્ય રીતે 'ગ્રાફિક ઈક્વિલાઇઝર' (Graphic equaliser) અથવા 'સ્ટીરિયોફોનિક ટુ-ઇન-વન રેક્રીડર'માં વપરાય છે. આ પ્રવૃત્તિમાં વોલ્ટમીટરના સ્થાને આવો પરિપથ જોડો અને હારમાં ગોઠવેલી LED વારાફરતી ચાલુ થાય (glow થાય) તે માટે જરૂરી વોલ્ટેજના લેવલ નો અંદાજ કાઢો.

પ્રવૃત્તિ 7


હેતુ

LDR (Light Dependent Resistor - પ્રકાશ આધારિત અવરોધ) પર પ્રકાશની તીવ્રતાની અસરનો અભ્યાસ ઉદ્ગમનાં અંતરો બદલીને કરવો.

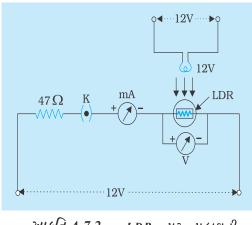
જરૂરી સાધન-સામગ્રી

LDR, બે પાવર સપ્લાય (દરેક 12 Vના), કળ, મિલિએમીટર (0–500 mA), વોલ્ટમીટર (0–10V), 47 Ω નો અવરોધ, 12 Vનો લેમ્પ, જોડાણ માટેના તાર

સિદ્ધાંત

આકૃતિ A 7.1 અંતર સાથે LDRના અવરોધમાં થતા કેરકાર

પ્રકાશ આધારિત અવરોધ અથવા ફોટો અવરોધ એ પ્રકાશ પ્રત્યે સંવેદનશીલ સાધન છે. તેનો અવરોધ તેના પર આપાત પ્રકાશની તીવ્રતા પ્રમાણે બદલાય છે. પ્રકાશ માટે સંવેદનશીલ હોય તેવો ગુણધર્મ ધરાવતા અર્ધવાહકોની મદદથી પ્રકાશીય અવરોધ બનાવાય છે, આવું એક દ્વવ્ય કેડમિયમ સલ્ફાઈડ છે. ધાતુની પાતળી પટ્ટી (thin film) પર કેડમિયમ સલ્ફાઈડનો સર્પાકાર ટ્રેક બનાવવામાં આવે છે (આકૃતિ A 7.1). મોટા ભાગના ઇલેક્ટ્રૉન કિસ્ટલ લેટિસ (સ્ફટીકમય જાળી)માં બંધિત હોય છે અને તે ગતિ કરવા માટે મુક્ત હોતા નથી તેના કારણે LDR ઊંચો અવરોધ ધરાવે


છે. જેવો પ્રકાશ લેટિસ પર પડે કે તરત જ કેટલાક ઇલેક્ટ્રૉનને સ્ફ્ટીકમય જાળીમાંથી મુક્ત થવાની પૂરતી ઊર્જા પ્રાપ્ત થાય છે અને તે વિદ્યુતનું વહન કરે છે. લાક્ષણિક LDRનો સંપૂર્ણ અંધારામાં અવરોધ $1 \ M\Omega$ છે, જ્યારે તીવ્ર (તેજસ્વી) પ્રકાશમાં તેનો અવરોધ $10^2 \ \Omega$ ના ક્રમમાં છે.

પહૃતિ

- (1) આકૃતિ A 7.2માં દર્શાવ્યા મુજબ પરિપથને જોડો.
- (2) શરૂઆતમાં લૅમ્પને બંધ રાખો. કળ Kમાં પ્લગ લગાવો.
- (3) વોલ્ટમીટર અને મિલિએમીટરનાં અવલોકનો વાંચો.

Downloaded from https://www.studiestoday.com

- (4) LDR અવરોધ R' નું સંદર્ભ માપન કરો.
- (5) આ અવરોધના મૂલ્યને ત્યારબાદના દરેક માપનમાં ઉમેરો. જે દર્શાવે છે કે, પૃષ્ઠભૂમિમાં રહેલા પ્રકાશ તીવ્રતાને પણ ગણતરીમાં લીધેલ છે.
- (6) LDRની સામે રહે તેમ શિરોલંબ સ્થિતિમાં 12 Vના લૅમ્પ (બલ્બ)ને જડિત સ્ટૅન્ડમાં ગોઠવો. LDRને લૅમ્પની નીચે લગભગ 10 cm અંતરે લંબરૂપે રાખો.
- (7) મિલિએમીટર અને વોલ્ટમીટરનાં અવલોકનો નોંધો.
- (8) લૅમ્પ અને LDR વચ્ચેનું અંતર બદલીને 15 cm જેટલું (લગભગ) કરો. પદ 7નું પુનરાવર્તન કરી, અવલોકનો નોંધો અને LDRના લૅમ્પથી (ગોળાથી) જુદા-જુદા અંતરે અવરોધ ગણો.

આકૃતિ A 7.2 LDR પર પ્રકાશની તીવ્રતાની અસરનો અભ્યાસ કરવાનો પરિપથ

અવલોકનો અને ગણતરીઓ

વોલ્ટમીટરની અવધિ (Range) = 0 V to ... V

વોલ્ટમીટરનું લઘુત્તમ માપ = ... V

મિલિએમીટરની અવધિ = ... 0 mA to ... mA

મિલિએમીટરનું લઘુત્તમ માપ = ... mA

કોષ્ટક A 7.1 : અંતર સાથે LDRના અવરોધમાં થતા ફેરફાર

ક્રમ	LDR અને પ્રકાશ	વોલ્ટમીટરનું	મિલિએમીટરનું	$R = \frac{V}{I}(\Omega)$	અવરોધનાં વાસ્તિવક
	ઉદ્ગમ વચ્ચેનું	અવલોકન $V\left(\mathbf{V} ight)$	અવલોકન $I({ m mA})$		મૂલ્ય ($R + R'$) Ω
	અંતર <i>d</i> cm				
1					
2					
5					

પરિણામ

જેમ અંતર વધે, આપાત પ્રકાશની તીવ્રતા ઘટે છે અને LDRનો અવરોધ વધે છે.

પ્રયોગશાળા માર્ગદર્શિકા

સાવચેતીઓ

- (1) LDR પ્રકાશના ઉદ્ગમને લંબરૂપે એવી રીતે મૂકેલ છે કે જેથી સમગ્ર પ્રયોગ દરમિયાન પ્રકાશના કિરણ માટેનો આપાતકોણ લંબ રૂપે અચળ રહે છે.
- (2) બધાં જ જોડાણો ચુસ્ત હોવાં જોઈએ.

ત્રુટિના ઉદ્ગમો

પૃષ્ઠભૂમિમાં રહેલા પ્રકાશની તીવ્રતા એ આ પ્રવૃત્તિમાં ત્રુટિનો ઉદ્ગમ (સ્રોત) છે.

ચર્ચા

- (1) દરેક કિસ્સામાં R.d² ગણો. તમે શું અનુમાન બાંધો છો ?
- (2) LDRનો ઉપયોગ ખાસ કરીને પ્રકાશ અથવા તો અંધારાના સેન્સર (સંવેદક) પરિપથ તરીકે થાય છે. તે ઑટોમેટિક લાઇટિંગ, રસ્તા કે શેરીઓની લાઇટમાં, ધુમાડાથી વાગતાં ઍલાર્મ વગેરેમાં થાય છે.
- (3) શ્રેણીમાં યોગ્ય અવરોધ જોડીને LDRને નુકસાનથી બચાવી શકાય.

સ્વ-મૂલ્યાંકન

LDR નો અવરોધ શામાટે અચળ રહેતો નથી ?

સૂચવેલ વધારાના પ્રયોગો / પ્રવૃત્તિઓ :

- (1) ઉપરની પ્રવૃત્તિને સંપૂર્ણ અંધારિયા ઓરડા (Dark Room)માં કરો. લેબોરેટરીમાં સામાન્ય પ્રકાશમાં મેળવેલાં પરિણામો સાથે તેનાં પરિણામોને સરખાવો અને ચર્ચા કરો.
- (2) સમાન અંતર રાખી, LDR પર જુદા-જુદા પાવરના બલ્બના ઉપયોગથી આપાત પ્રકાશની તીવ્રતાની અસરનો અભ્યાસ કરો.
- (3) LDR અને બલ્બ વચ્ચેનું અંતર સમાન રાખીને પ્રકાશના બલ્બના પાવરને વધારવા ચલિત વોલ્ટેજનાં મૂલ્યો આપીને LDR ના અવરોધમાં થતા ફેરફારનું અવલોકન કરો.
- (4) જુદી-જુદી લાક્ષણિકતાવાળા LDR પર પ્રકાશની તીવ્રતાની અસરનો અભ્યાસ કરો.

પ્રવૃત્તિ 8

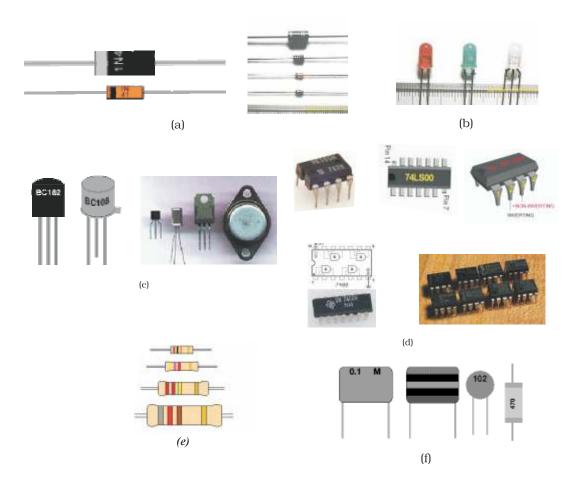
હેતુ

ડાયોડ, LED, ટ્રાન્ઝિસ્ટર, IC, અવરોધ અને કેપેસીટરને આ પ્રકારની વસ્તુઓના ભેગા કરેલા સમૂહમાંથી ઓળખવા.

જરૂરી સાધન-સામગ્રી

મલ્ટિમીટર, ડાયોડ, LED, ટ્રાન્ઝિસ્ટર, IC, અવરોધ અને કેપેસીટરનો ભેગો કરેલો સમૂહ

સિદ્ધાંત


- (1) ડાયોડ બે જોડાણઅગ્રો વાળું સાધન છે. તે જ્યારે ફોરવર્ડ બાયસમાં હોય ત્યારે વહન કરે છે અને જ્યારે રિવર્સ બાયસમાં હોય ત્યારે વહન કરતો નથી. વહન દરમિયાન તે પ્રકાશનું ઉત્સર્જન કરતો નથી.
- (2) LED (Light Emitting Diode) પણ બે જોડાણઅગ્રો વાળું સાધન છે. તે ફોરવર્ડ બાયસમાં વહન કરે છે અને રિવર્સ બાયસમાં વહન કરતું નથી. વહન દરમિયાન તે પ્રકાશનું ઉત્સર્જન કરે છે.
- (3) ટ્રાન્ઝિસ્ટર ત્રણ જોડાણઅગ્ર ધરાવતું સાધન છે. આ જોડાણઅગ્રો ઍમિટર (E), બેઝ (B) અને ક્લેક્ટર (C) છે.
- (4) IC (Integrated circuit) એ ચિપ (Chip)ના સ્વરૂપમાં ઘણા બધા જોડાણઅગ્રો ધરાવતું સાધન છે. પરંતુ કેટલાકને માત્ર ત્રણ જોડાણઅગ્રો હોય છે. દા.ત., 7805, 7806, 7809, 7912
- (5) અવરોધ એ બે જોડાણઅગ્રો ધરાવતું સાધન છે, તેમાંથી બંને દિશામાં સરખી રીતે વહન થઈ શકે છે.
- (6) કેપેસીટર બે જોડાણઅગ્રો ધરાવતું સાધન છે. તે વહન થતું નથી પરંતુ તેને dc વોલ્ટેજ આપતાં તે થોડાક વિદ્યુતભારનો સંગ્રહ કરે છે.

પદ્ધતિ

- (1) દરેક ઘટકોનો ભૌતિક (બાહ્ય) દેખાવ ચકાસો.
 - (a) જો તેને ચાર કે તેથી વધારે જોડાણઅગ્રો હોય અને તેનો દેખાવ- ચિપ (કાળા લંબચોરસ બ્લૉક) જેવો હોય તો તે IC છે.

Downloaded from https://www.studiestoday.com

પ્રયોગશાળા માર્ગદર્શિકા

આકૃતિ A 8.1 (a) ડાયોડ (b) LED (c) ટ્રાન્ઝિસ્ટર (d) IC (e) અવરોધ (f) કેપેસીટર

- (b) જો તેને ત્રણ જોડાણઅગ્રો હોય તો તે ઘટક ટ્રાન્ઝિસ્ટર હોઈ શકે છે. ચોકસાઈ પૂર્વક માપન નક્કી કરવા મિલ્ટમીટરને (મહત્તમ રેન્જના) અવરોધ મોડ પર ગોઠવો. તેનો બ્લૅક અથવા કૉમન જોડાણઅગ્ર ઘટકના કોઈ એક તરફના જોડાણઅગ્ર સાથે અને બીજો જોડાણઅગ્ર (લાલ અથવા ધન) ઘટકના મધ્ય જોડાણઅગ્ર સાથે જોડો. મિલ્ટમીટરનું આવર્તન તપાસો. જો આવર્તન નોંધાય તો મિલ્ટિમીટરના જોડાણઅગ્રોની ફેરબદલી કરો. હવે જો આવર્તન ના જણાય તો આપેલ ઘટક ટ્રાન્ઝિસ્ટર જ છે. આ ટેસ્ટને મિલ્ટિમીટરના જોડાણઅગ્રોને ઘટકના મધ્ય જોડાણ અગ્ર અને અન્ય તરફના જોડાણઅગ્ર સાથે જોડી પુનરાવર્તન કરો. જો અગાઉ પ્રમાણેની વર્તણૂક જણાય તો આપેલ ઘટક ટ્રાન્ઝિસ્ટર છે.
- (2) જો ઘટકને બે જોડાણઅગ્રો હોય તો તે અવરોધ, કેપેસીટર, ડાયોડ અથવા LED હોઈ શકે છે.

प्रवृत्ति 8

- (a) કલરના પટ્ટાઓ જુઓ. જો તેમાં કલરના ત્રણ લાક્ષણિક પટ્ટાઓનો સમૂહ હોય અને અંતે સિલ્વર કે ગોલ્ડન પટ્ટો હોય, તો આપેલ ઘટક અવરોધ છે.
- (b) મલ્ટિમીટરના જોડાણઅગ્રો (અવરોધના તબક્કા (mode)ની મહત્તમ રેન્જમાં) ઘટકના જોડાણઅગ્રો સાથે જોડો અને મલ્ટિમીટરનું આવર્તન જુઓ. જોડાણઅગ્રો ઊલટાવીને આવર્તન જુઓ.
- (c) જો બંને કિસ્સામાં મલ્ટિમીટરનું આવર્તન સમાન હોય તો (બંને દિશામાં) આપેલ ઘટક અવરોધ છે.
- (d) જો એક દિશામાં આવર્તન દરમિયાન પ્રકાશનું ઉત્સર્જન થતું હોય અને બીજી દિશામાં ખૂબ ઓછું અથવા શૂન્ય આવર્તન મળતું હોય તો ઘટક LED છે.
- (e) જો મલ્ટિમીટર એક દિશામાં આવર્તન ન દર્શાવતું હોય અને બીજી દિશામાં આવર્તન પ્રકાશના ઉત્સર્જન વગર દર્શાવતું હોય, તો આપેલ ઘટક ડાયોડ છે.
- (f) કોઈ પણ રીતે જોડાયેલા છેડાઓમાં, જો મલ્ટિમીટર આવર્તન દર્શાવતું ન હોય તો ઘટક કેપેસીટર છે. પરંતુ જો કેપેસીટરના કેપેસીટન્સનું મૂલ્ય મોટું હોય, તો મલ્ટિમીટર ક્ષણિક આવર્તન દર્શાવી શકે છે.
- (g) તમારા અવલોકનો કોષ્ટક A 8.1 અને A 8.2માં નોંધો.

શિક્ષકો માટેની નોંધ :

- (i) ત્રણ છેડાઓવાળી IC આપવાનું ટાળો.
- (ii) ડિજિટલ મલ્ટિમીટરના સ્થાને એનાલોગ મલ્ટિમીટરનો ઉપયોગ યોગ્ય છે.
- (iii) જો ડિજિટલ મલ્ટિમીટર વાપરો તો સૂચનાઓમાં આવર્તન શબ્દને સ્થાને વાંચન શબ્દ જોઈએ.
- (iv) દરેક ઘટકને જુદા-જુદા મૂળાક્ષર (Alphabet) વડે નામકરણ (Labeling) કરો. દા.ત., A, B, C, D, E,

અવલોકન

કોષ્ટક A 8.1 : જોડાણઅગ્રોની સંખ્યાની ચકાસણી

ક્રમ	જોડાણઅગ્રોની સંખ્યા	સાધન પર અંકિત કરેલ મૂળાક્ષર	સાધનનું નામ
(1)	બે (Two)		
(2)	ત્રણ (Three)		
(3)	ત્રણ કરતાં વધારે		

પ્રયોગશાળા માર્ગદર્શિકા

કોષ્ટક A 8.2 વહનની અવસ્થાઓની ચકાસણી

ક્રમ	વહનની અવસ્થા	સાધનનો કોડ	સાધનનું નામ
(1)	પ્રકાશના ઉત્સર્જન વગર માત્ર એક જ દિશામાં વહન		
	થાય છે.		
(2)	પ્રકાશના ઉત્સર્જન સાથે માત્ર એક જ દિશામાં વહન થાય છે.		
(3)	ત્રણ જોડાણઅગ્રોવાળું સાધનઃ એક દિશામાં વહન થાય છે.		
	મધ્ય જોડાણઅગ્ર અને બાકીના બેમાંથી ગમે તે એક		
	જોડાણઅગ્રની વચ્ચે.		
(4)	બંને દિશામાં વહન થાય છે.		
(5)	વહન થતું નથી, પરંતુ પ્રારંભિક આવર્તન દેખાડે છે		
	જે ક્ષય પામી શૂન્ય બને છે.		

પરિણામ

ડાયોડ, LED, ટ્રાન્ઝિસ્ટર, IC, અવરોધ અને કેપેસીટરને અનુક્રમે ભેગા કરેલા સમૂહમાંથી ઓળખ્યા.

સાવચેતીઓ

કોઈ પણ ઘટકનો અવરોધ મેળવતી વખતે તેના ધાત્વીય જોડાણઅગ્રોને યોગ્ય રીતે સાફ કરવા જોઈએ.

ત્રુટિનાં ઉદ્ગમો

- (1) મલ્ટિમિટરના ધાત્વીય જોડાણઅગ્રોને સ્પર્શ કરાવવામાં આવે ત્યારે મલ્ટિમીટર શૂન્ય અવરોધ દર્શાવવું જોઈએ. જો તેમ ના દર્શાવે તો પૉઇન્ટરને શૂન્ય પર લાવો. તે માટે 'Zero Adj knob' વાપરો. જો તેમ કરવામાં નહિ આવે, તો અવરોધનું માપન વિશ્વસનીય નહિ ગણાય.
- (2) ઘટકના અવરોધની ચકાસણી વખતે મલ્ટિમીટરના ધાત્વીય જોડાણઅગ્રોને સ્પર્શ કરવાનું ટાળવું જોઈએ, નહિતર શરીરનો અવરોધ, ઘટકના અવરોધ સાથે સમાંતરમાં જોડાય છે જે અવરોધના માપન પર અસર કરી શકે.

प्रवृत्ति 8

સૂચવેલ વધારાના પ્રયોગો / પ્રવૃત્તિઓ

પરિપથના મૂળભુત ઘટકો જેવાકે એવરોધ, કેપેસીટરના અભ્યાસ માટે નીચે મુદ્દાઓ દર્શાવેલ છે.

(1) અવરોધ

અવરોધના પ્રકારો :

- (a) વીંટાળેલા તારનો (wire wound) અવરોધ : ચોક્કસ લંબાઈના વાહક દ્રવ્યના તારને વીંટાળીને બનાવવામાં આવે છે. દ્રવ્ય તરીકે મિશ્ર ધાતુ પણ હોઈ શકે, જેવી કે મેંગેનીન, કોન્સ્ટનટન, નિક્રોમ વગેરે.*
- (b) કાર્બન અવરોધ : તેઓ ગ્રેફાઇટ (કાર્બન સ્વરૂપ) અને સારા અવાહક લાખના યોગ્ય પ્રમાણમાં મિશ્રણથી બનાવવામાં આવે છે. મિશ્રણને દબાવીને ગરમ કરીને સળિયા જેવો આકાર આપવામાં આવે છે. આ માત્રામાં ફેરફાર કરી ખૂબ મોટી અવિધ ધરાવતાં કાર્બન અવરોધ બનાવી શકાય છે. આવા અવરોધની સ્થિરતા બહુ નબળી છે, પરંતુ તેઓ નાના અને સસ્તા છે.
- (c) કાર્બન ફિલ્મ અવરોધ** : કાર્બન અવરોધ સસ્તા અને સરળતાથી પ્રાપ્ય છે. નાના સિરામિકના સિળયા પર કાર્બનની પાતળી પટ્ટી (Film)નો ઢોળ ચઢાવવામાં આવે છે. ઇચ્છિત મૂલ્યનો અવરોધ મેળવવા અવરોધીય આવરણ સર્પાકારે રાખવામાં આવે છે. (વિગતે જાણવા એપેન્ડિક્ષ 3 માં જુઓ.)
- (d) *પાતળા ફિલ્મ અવરોધ :* કોઈ અવાહક આધાર પર ખૂબ પાતળી ફિલ્મ જેવું વાહક દ્રવ્ય જમા કરી (લગાવી) બનાવવામાં આવે છે. પાતળી ફિલ્મ ખૂબ નાનો આડછેદ આપે છે, આથી અવરોધ મોટો થાય છે. આવી ફિલ્મો ધાતુ કે મિશ્ર ધાતુમાંથી બને છે.

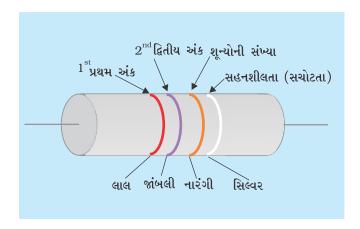
અવરોધની સહનશીલતા

કેટલાક ચોક્કસ અવરોધ માટે ઉલ્લેખ કરાયેલા મૂલ્ય કરતાં વાસ્તવિક અવરોધનું મૂલ્ય જુદું હોય છે. તેના માટે તાપમાનનો ફેરફાર, ભેજ વગેરે જેવા બાહ્ય પરિબળોની અસર અથવા ચોક્કસ મૂલ્યનો અવરોધ બનાવવામાં રહી ગયેલી કોઈ અંતર્ગત (સહજ) મર્યાદા કારણભૂત હોઈ શકે. ઉપરોક્ત કારણોને લીધે અવરોધના મૂલ્યમાં થતા ફેરફારને સહનશીલતા (tolerance) કહે છે.

અવરોધનો વૉટેજ (પાવર)

દરેક અવરોધ માટે સલામત રીતે વહન કરાતો મહત્તમ પ્રવાહ હોય છે. તેના કરતાં વધારે પ્રવાહ, વધારાની ઉષ્મા ઉત્પન્ન કરે છે, જે તેને નુકસાન કરી શકે છે. જે સામાન્ય રીતે પ્રવાહના પદમાં નહિ, પણ અવરોધને નુકસાન કર્યા વગર તેના વડે વ્યય થતા પાવરના મહત્તમ વૉટના પદમાં હોય છે. જેને વૉટેજ (wattage) કહે છે. કાર્બન અવરોધોના સામાન્ય રીતે વૉટેજ 1/8, 1/2, 1 અને 2 વૉટ છે. તેના વધારે વૉટેજ પણ ઉપલબ્ધ છે.

અવરોધનો વર્ણસંકેત (Colour Code)


સામાન્યતઃ અવરોધ માટે સૌથી વધારે વપરાતા વર્ણસંકેતમાં તેના એક છેડે કલરના ત્રણ પટ્ટા હોય છે.

^{*} તાર વીંટાળેલ અવરોધમાં, ઈચ્છિત ન હોય એવું (વણજોઈતું) ઇન્ડક્ટન્સ બીજા પ્રકારના અવરોધ કરતાં વધારે હોય છે.

^{**} વિગતે જાણવા પરિશિષ્ટ 3 જુઓ.

પ્રયોગશાળા માર્ગદર્શિકા

કલર અને તેના સંલગ્ન આંકડાકીય અર્થ (નામ) :

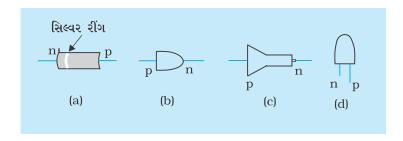
આકૃતિ A 8.2

કલરકોડના નિશાન સહિત કાર્બન અવરોધ આ કલર કૉડને સરળતાથી BB ROY GB VGW (BB ROY Great Britain Very Good Wife)ના પદથી સરળતાથી યાદ રાખી શકાય. કલર કૉડવાળા અવરોધના મૂલ્યને વાંચવા, નજીકના છેડા પરના પટ્ટા (strip)થી ચાલુ કરો. પ્રથમ પટ્ટાનો કલરનો અંક અવરોધના મૂલ્યનો પ્રથમ અંક છે. બીજા પટ્ટાનો કલર બીજો અંક છે. ત્રીજા પટ્ટાનો કલર ગુણાંક દર્શાવે અથવા બીજા અંકના છેડે લાગતાં શૂન્યો દર્શાવે છે.

માત્ર ત્રણ પટ્ટા ધરાવતા અવરોધની સહનશીલતા 20% હોય છે. તેનું વાસ્તવિક મૂલ્ય નક્કી કરેલી કિંમતથી 20% બદલાય છે. ચોથા પટ્ટાને, પ્રથમ ત્રણથી અલગ રીતે દોરવામાં આવે છે, તેમાં સહનશીલતા ચોથા પટ્ટાના કલરથી જાણી શકાય છે. જો ચોથો પટ્ટો સિલ્વરનો હોય તો તેની સહનશીલતા 10%, સોનેરી (Gold) કલરનો

હોય, તો સહનશીલતા 5 % અને લાલ કલર (red)નો હોય તો 2 %, બ્રાઉન કલરનો હોય તો 1 % છે. 2 % અને 1% ના અવરોધના ઓહ્મિક મૂલ્ય મોટા ભાગે છાપેલા હોય છે.

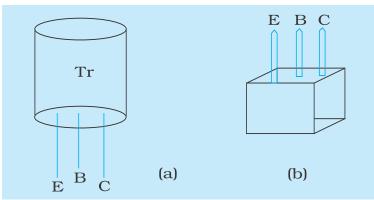
(2) કેપેસીટર


કેપેસીટર એ વિદ્યુતભારનો સંગ્રહ કરતું સાધન છે. જે dc ના ભાગને બ્લૉક કરે છે અને ac ને વહન પામવા દે છે.

વ્યવહારમાં વપરાતાં જુદા-જુદા ડાઇઇલેક્ટ્રીકવાળા કેપેસીટરના ઘણા પ્રકાર છે.

- (1) હવાના માધ્યમવાળા કેપેસીટર (ચલિત ગેન્ગ કેપેસીટર)
- (ii) માઇકા કેપેસીટર(નાના કેપેસીટન્સવાળા)
- (iii) સિરામિક કેપેસીટર (ખૂબ નાનું કેપેસીટન્સ)
- (iv) પેપર (કાગળ) કેપેસીટર (નાનું કેપેસીટન્સ)
- (v) પ્લાસ્ટિક કેપેસીટર
- (vi) વિદ્યુતવિભાજ્ય (Electrolytic) કેપેસીટર (મધ્યમ કેપેસીટન્સ)
- (vii) તેલ (oil) ભરેલા કેપેસીટર (ઊંચું કેપેસીટન્સ)

(3) ડાયોડ


કેટલાક સેમિકન્ડક્ટર (અર્ધવાહક) જંકશન ડાયોડમાં તેના એક છેડે સિલ્વર રિંગ હોય છે. ડાયોડની આ બાજુ n—વિભાગ અને બીજી બાજુ p—વિભાગ છે. (આકૃતિ A 8.3 (a)). કેટલાક ડાયોડમાં, ડાયોડની સંજ્ઞા ડાયોડની સપાટી ઉપર દોરેલ હોય છે. તીરની નિશાની પ્રવાહના વહનની દિશા દર્શાવે છે. જે બાજુએથી તીર ચાલુ થાય છે તે p—વિભાગ અને જ્યાં તીર પૂર્શ થાય છે તે n—વિભાગ છે. (આકૃતિ A 8.3 (b)). કેટલાક ડાયોડ ગોળી આકારના હોય છે, જેમાં સપાટ બાજુ p—વિભાગ અને નળાકાર બાજુ n—વિભાગ છે. (આકૃતિ A 8.3 (c)) LED (Light Eitting Diode) ના કિસ્સામાં નાની પિન n—વિભાગ જયારે લાંબી પિન p—વિભાગ છે. (આકૃતિ A 8.3 (d))

આકૃતિ A 8.3 : કેટલાક ડાયોડના આકારો

(4) ટ્રાન્ઝિસ્ટરો

આ પ્રવૃત્તિમાં n-p-n અને p-n-p ટ્રાન્ઝિસ્ટરને અલગ કરવાની પદ્ધતિ આપી છે. ટ્રાન્ઝિસ્ટરનો આપેલ પિન ડાયાગ્રામ જાણીતો છે. જો પિન ડાયાગ્રામ જ્ઞાત ન હોય તોપણ ટ્રાન્ઝિસ્ટરનો પ્રકાર (n-p-n) અથવા p-n-p નક્કી કરી શકાય છે. આપેલ ટ્રાન્ઝિસ્ટરના જુદા-જુદા છેડાઓ વચ્ચેના અવરોધનાં મૂલ્યો માપીને તે કરી શકાય છે. (આકૃતિ A 8.4 (a) અને (b)). કોષ્ટક A 9.5 (p-181) n-p-n અને p-n-p ટ્રાન્ઝિસ્ટરના અવરોધોનાં મૂલ્યોની પ્રકૃતિનો સારાંશ દર્શાવે છે.

આકૃતિ A 8.3 : જુદા-જુદા ટ્રાન્ઝિસ્ટર છેડાઓ

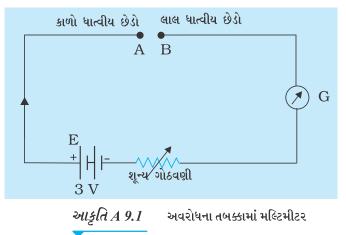
49 ()

હેતુ

મહ્ટિમીટરની મદદથી-

(A) ડાયોડ કાર્યરત અવસ્થામાં છે કે નહિ તે ચકાસવું અને ડાયોડના એકદિશ પ્રવાહના વહનને ચકાસવું. (B) ટ્રાન્ઝિસ્ટરના ઍમિટર, બેઝ અને કલેક્ટરને ઓળખવા. (C) p-n-p અને n-p-n ટ્રાન્ઝિસ્ટરનો ભેદ પારખવો અને ટ્રાન્ઝિસ્ટર કાર્યરત છે કે નહિ તે ચકાસવું.

જરૂરી સાધન-સામગ્રી

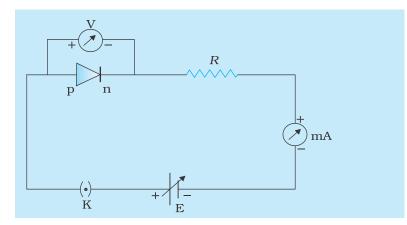

મલ્ટિમીટર, ડાયોડ, ટ્રાન્ઝિસ્ટર (જેનો બેઝ ડાયાગ્રામ જ્ઞાત હોય), પ્લગ કળ, બૅટરી, અવરોધપેટી, જોડાણ માટેના તાર, કાચપેપર

સિદ્ધાંત

અવરોધના મૉડમાં વાપરેલું એનાલોગ મલ્ટિમીટર

આ પસંદગીમાં પરિપથમાં બૅટરી અને અવરોધ આવે છે. નીચે આપેલા પરિપથની આકૃતિ (આકૃતિ

A 9.1) મુખ્ય પરિપથના ઘટકો દર્શાવે છે. 3Vની બૅટરી (જે મલ્ટિમીટરમાં આપેલ છે.), એક નિશ્ચિત અવરોધ, રીઓસ્ટેટ અને ગૅલ્વેનોમીટર G. લાલ અને કાળા ધાત્વીય છેડાઓ નિશ્ચિત અવરોધના છેડાઓ B અને A સાથે અનુક્રમે જોડેલા છે.

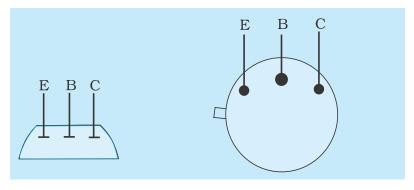


આવર્તનને પૂર્ણ આવર્તન મૉડ પર ગોઠવેલ છે. રીઓસ્ટેટની મદદથી (શૂન્ય ગોઠવણી) લાલ અને કાળા ધાત્વીય છેડાઓને જોડો. કોઈ અવરોધ કે જેનું પરીક્ષણ/માપન કરવાનું છે અથવા માપવાનો છે તેને A અને Bની વચ્ચે મૂકવામાં આવે છે. પ્રવાહના લીધે મળતું આવર્તન અવરોધનું વાચન થઈ શક તે રીતે અંકિત હોય છે. તમે જોશો કે કાળો ધાત્વીય છેડો ધન સાથે અને લાલને આંતરિક 3Vની બૅટરીના ઋણ છેડા સાથે જોડવામાં આવેલ છે. અવરોધનાં મૂલ્યો માપતી વખતે તેઓ A

અને B સાથે કેવી રીતે જોડયા છે તે વાતનું મહત્ત્વ નથી. હા, આનું મહત્ત્વ ત્યારે છે જ્યારે બૅટરી ડાયોડ અથવા ટ્રાન્ઝિસ્ટરના જંકશનને બાયસ પૂરું પાડતી હોય.

(A) ડાયોડ કાર્યરત અવસ્થામાં છે કે નહિ તે ચકાસવું અને તેમાંથી વહેતા એકદિશ વિદ્યુતપ્રવાહના વહનને ચકાસવું.

સેમિકન્ડક્ટર જંકશન ડાયોડ જયારે ફોરવર્ડ બાયસમાં જોડાય છે, ત્યારે અવરોધ ઓછો હોય છે. જયારે તે રિવર્સ બાયસમાં જોડાય છે ત્યારે અવરોધ વધારે હોય છે. આથી, ફોરવર્ડ અને રિવર્સ બાયસનાં અવરોધોના માપનથી જંક્શન ડાયોડનું કાર્ય, તપાસી શકાય છે. જંકશન ડાયોડનું કાર્ય આકૃતિ A 9.2માં દર્શાવેલા પરિપથમાં પ્રવાહના એકદિશ વહનને ચકાસીને પણ તપાસી શકાય છે. ડાયોડની યોગ્ય કાર્યરત અવસ્થામાં, ફૉરવર્ડ બાયસ સ્થિતિમાં નોંધપાત્ર વિદ્યુતપ્રવાહ (થોડાક mAના ક્રમનો) વહન પામશે. જો

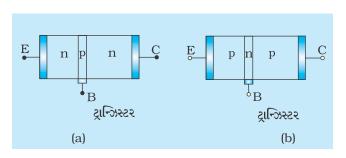


આકૃતિ A 9.2 સેમિકન્ડક્ટર જંક્શન ડાયોડ કોરવર્ડ બાયસમાં

બાયસના ધ્રુવત્વને ઊલટાવીએ (એટલે કે ડાયોડને રિવર્સ બાયસ સ્થિતિમાં લાવીએ), તો અવગણ્ય પ્રવાહ (થોડાક mAના ક્રમનો) વહન પામશે.

(B) ટ્રાન્ઝિસ્ટરના ઍમિટર, બેઝ અને કલેક્ટરની ઓળખ

સામાન્ય રીતે, દરેક ટ્રાન્ઝિસ્ટરને સરખા પરિમાણની ત્રણ પિનો હોય છે. કેટલાક ટ્રાન્ઝિસ્ટરમાં ટપકું (dot) અથવા નિશાન, કોઈ એક પિનની નજીક કરેલ હોય છે. આ પિન ઍમિટર છે. પિન ડાયાગ્રામની મદદથી ટ્રાન્ઝિસ્ટરના ઍમિટર (E), બેઝ (B) અને કલેક્ટર (C)ને ઓળખી શકાય છે. આકૃતિ A 9.3 લાક્ષણિક ધાતુની ટોપવાળા (Metal Capped) નળાકારીય ટ્રાન્ઝિસ્ટર દર્શાવે છે. જે ઉપર તરફ પિનો દર્શાવીને દોરી શકાય. વાસ્તવમાં ટ્રાન્ઝિસ્ટરનો કોઈ સાર્વત્રિક પિન ડાયાગ્રામ નથી.


આકૃતિ A 9.3

લાક્ષણિક ધાતુની કેપ (ટોપ) વાળા નળાકારીય ટ્રાન્ઝિસ્ટરનો બેઝ ડાયાગ્રામ. નોંધો કે પિનના જોડાણો જુદા-જુદા ટ્રાન્ઝિસ્ટર માટે જુદા-જુદા હોઈ શકે છે. ઉત્પાદક દ્વારા આપવામાં આવેલ ડેટાપત્રક જોવું વધારે સલાહનીય છે

આપેલાં ટ્રાન્ઝિસ્ટર (જેના કૉડ નંબરો AC 127, BC 548, 2N 3055 HL, 100 વગેરે)ના પિન ડાયાગ્રામ ટ્રાન્ઝિસ્ટરના મેન્યુઅલ (વિગત-પત્રક)માંથી શોધી શકાય છે.

પ્રયોગશાળા માર્ગદર્શિકા

(C) n-p-n અને p-n-p ટ્રાન્ઝિસ્ટરને અલગ તારવવા અને આપેલ ટ્રાન્ઝિસ્ટર $(n-p-n \ \hat{s} \ p-n-p)$ કાર્યરત સ્થિતિમાં છે \hat{s} નહિ તે ચકાસવું

આકૃતિ A 9.4 (a) n-p-n અને (b) p-n-p દ્રાન્ઝિસ્ટરોનું રેખાકૃતિ નિરૂપણ

n-p-n ટ્રાન્ઝિસ્ટરમાં બેઝ B P-પ્રકારના દ્રવ્યનો જ્યારે ઍિમટર E અને કલેક્ટર C n-પ્રકારનાં દ્રવ્યોનો હોય છે. (આકૃતિ A 9.4 a) આમ, બેઝ B અને ઍિમટર E (અથવા કલેક્ટર C) વચ્ચે ફોરવર્ડમાં અવરોધ ઓછા મૂલ્યનો છે. p-n-p ટ્રાન્ઝિસ્ટર (આકૃતિ A 9.4 b)ના કિસ્સામાં (જેના ઍિમટર E, બેઝ B અને કલેક્ટર C અનુક્રમે p-, n-, અને p- પ્રકારનાં દ્રવ્યોના છે.) ઍિમટર અને બેઝ વચ્ચેમાં ફોરવર્ડ અવરોધ ઓછો હોય છે.

ટ્રાન્ઝિસ્ટરની કાર્યરત અવસ્થામાં બેઝ - ઍમિટર અને બેઝ - કલેક્ટર વચ્ચેના અવરોધ માપવામાં આવે છે. પરિણામનાં અવરોધ-મૂલ્યો કોષ્ટક A 9.1માં દર્શાવ્યાં છે.

કોષ્ટક A 9.1 n-p-n અને p-n-p ટ્રાન્ઝિસ્ટરના જુદા-જુદા છેડાઓ વચ્ચેનાં અવરોધ-મૂલ્યો

ક્રમ	ટ્રાન્ઝિસ્ટરના કોઈ પણ એક છેડાને (B, C કે E) મલ્ટિમીટરના ઋણ (કાળા) ધાત્વીય છેડા સાથે જોડ્યોછે	ટ્રાન્ઝિસ્ટરના (અન્ય) છેડાને મલ્ટિમીટરના ધન (લાલ) ધાત્વીય છેડા સાથે જોડ્યો છે	બાયસ	અવરોધ
A. 1	n–p–n ટ્રાન્ઝિસ્ટર માટે			
(1)	Е	В	ફોરવર્ડ	નાનો
(2)	С	В	ફોરવર્ડ	નાનો
(3)	В	С	રિવર્સ	ખૂબ મોટો
(4)	В	Е	રિવર્સ	ખૂબ મોટો
В. ј	p–n–p ટ્રાન્ઝિસ્ટર માટે			
(1)	В	E	ફોરવર્ડ	નાનો
(2)	В	С	ફોરવર્ડ	નાનો
(3)	E	В	રિવર્સ	ખૂબ મોટો
(4)	С	В	રિવર્સ	ખૂબ મોટો

કોષ્ટક A 9.1માં દર્શાવેલાં પરિણામોમાં કોઈ પણ પ્રકારનું વિચલન દર્શાવે છે કે, ટ્રાન્ઝિસ્ટર કાર્યરત અવસ્થામાં નથી. દા.ત., p—n—p ટ્રાન્ઝિસ્ટરમાં ટર્મિનલ E (જયારે મલ્ટિમીટરના ઋણ ધાત્વીય છેડા સાથે જોડેલ હોય.) અને ટર્મિનલ B (જયારે મલ્ટિમીટરના ધન ધાત્વીય છેડા સાથે જોડેલ હોય) વચ્ચેના અવરોધનું નાનું મૂલ્ય દર્શાવે છે કે ડાયોડનાં ટર્મિનલ E અને B શોર્ટ-સર્કિટ થયેલા છે. કાર્યકારી ટ્રાન્ઝિસ્ટર માટે રિવર્સ બાયસમાં ઘણો મોટો અવરોધ હોવો જોઈએ.

પદ્ધતિ

- (1) જો ડાયોડ, ટ્રાન્ઝિસ્ટર અને જોડાણ માટેના તાર લાંબા સમયથી વપરાયા ન હોય, તો તેમની સપાટી પર અવાહક સ્તર લાગી ગયા હોય છે. તેથી તેના છેડાઓને કાચ પેપર વડે ચળકે નહિ ત્યાં સુધી સાફ કરવા.
- (A) ડાયોડની કાર્યરત અવસ્થા અને ડાયોડમાંથી વહેતો એકદિશ પ્રવાહ.
- (2) મલ્ટિમીટરને અવરોધ માપક મોડમાં ગોઠવો.
- (3) ડાયોડના ટર્મિનલ-1ને મલ્ટિમીટરના ધન ધાત્વીય છેડા સાથે ટર્મિનલ-2 ને મલ્ટિમીટરના ઋણ ધાત્વીય છેડા સાથે જોડો. ડાયોડનો અવરોધ માપો. ડાયોડનાં જોડાણોને ઊંધા (રિવર્સ) કરી ફરીથી ડાયોડનો અવરોધ માપો. તમારાં અવલોકનો કોષ્ટક A 9.2માં નોંધો તથા આપેલ ડાયોડ કાર્યરત છે કે નહિ તે પણ ચકાસો.
- નોંધ : ડાયોડનાં અવરોધનું ઓછું મૂલ્ય (કેટલાક Ω થી $k\Omega$ ની અવિધમાં) દર્શાવે છે કે ડાયોડ ફોરવર્ડ બાયસ જોડાણમાં છે. જ્યારે અવરોધનું ખૂબ ઊંચું મૂલ્ય ($M\Omega$ ના ક્રમનું) દર્શાવે છે કે ડાયોડ રિવર્સ બાયસ જોડાણમાં છે.
 - જો બંને અવરોધોનાં મૂલ્યો, એટલે કે રિવર્સ અને ફોરવર્ડ દિશાના જો ઓછાં મૂલ્યોના હોય તો તેનો મતલબ ડાયોડ શોર્ટ-સર્કિટમાં છે. બીજી તરફ, જો બંને અવરોધોનાં મૂલ્યો ખૂબ ઊંચાં હોય તો ડાયોડ જંકશન અસતત અને ખુલ્લાં હોઈ શકે તેમ વિચારી શકાય. આમ, બંને પરિસ્થિતિમાં કહી શકાય કે ડાયોડ કાર્યરત અવસ્થામાં નથી.
- (4) અવલોકનો પરથી આપેલ ડાયોડના p અને n છેડાઓને ઓળખો.
- (5) આકૃતિ A 9.2માં દર્શાવ્યા મુજબ, ડાયોડને વિદ્યુતકોષ અને અવરોધપેટી સાથે શ્રેશી-પરિપથમાં (કળ ON કર્યા વગર) જોડો. મલ્ટિમીટરને પ્રવાહ માપક મોડમાં યોગ્ય અવિધ સાથે ગોઠવો. (mA- ઊંચા પ્રવાહની અવિધ (રેન્જ)થી શરૂ કરો.)
- (6) પસંદ કરેલી પ્રવાહની રેન્જમાં (મલ્ટિમીટરમાં) યોગ્ય અવરોધ R અવરોધપેટીમાંથી કાઢો. કળને ON કરો અને પરિપથમાંથી વહેતો પ્રવાહ માપો. તમારાં અવલોકનોને કોષ્ટક A 9.3માં નોંધો.

પ્રયોગશાળા માર્ગદર્શિકા

- (7) પદ 6ને પરિપથમાં અવરોધ R ના બીજા જુદાં જુદાં મૂલ્યો માટે પુનરાવર્તન કરો.
- (8) ડાયોડનું ધ્રુવત્વ બદલો. (હવે ડાયોડ રિવર્સ બાયસમાં છે) અને પદ 6 અને 7ને પુનરાવર્તિત કરો.
 - (B) અને (C) n-p-n અને p-n-p ટ્રાન્ઝિસ્ટરને ઓળખવા અને આપેલ ટ્રાન્ઝિસ્ટર (p-n-p) અથવા n-p-n) કાર્યરત અવસ્થામાં છે કે નહિ તે ચકાસવું
- (9) ટ્રાન્ઝિસ્ટરની કોઈ એક પિન પાસે કરેલાં ટપકાં અથવા નિશાનના અવલોકન પરથી ઍમિટર E, બેઝ B અને કલેક્ટર C ઓળખવા. ટ્રાન્ઝિસ્ટરની રેખાકૃતિ (Schematic diagram) અને બેઝ ડાયાગ્રામ તમારી નોટબુકમાં દોરો.
- (10) અવરોધ માપક મોડમાં મલ્ટિમીટરને ગોઠવો.
- (11) મલ્ટિમીટરનાં ધન (લાલ) ધાત્વીય છેડાને બેઝ સાથે અને ઋણ (કાળા) ધાત્વીય છેડાને ઍમિટર સાથે જોડો અને અવરોધ માપો. કોષ્ટક A 9.4માં અવલોકન નોંધો.
- (12) મલ્ટિમીટરનાં જોડાણોને ઊલટાવી અને ફરીથી ટ્રાન્ઝિસ્ટરના બેઝ B અને ઍમિટર E (અથવા કલેક્ટર C) વચ્ચેનો અવરોધ માપો.
- (13) કોષ્ટક A 9.4 પરથી તપાસો કે ટ્રાન્ઝિસ્ટર કાર્યરત અવસ્થામાં છે કે નહિ.
- (14) કાર્યરત અવસ્થામાં રહેલ ટ્રાન્ઝિસ્ટર માટે કોપ્ટક A 9.1માં આપેલી માહિતીઓનો ઉપયોગ કરી, આપેલ ટ્રાન્ઝિસ્ટરની પ્રકૃતિ જણાવો. (n–p–n કે p–n–p)

અવલોકનો

કોષ્ટક A 9.2 : ડાયોડના અવરોધનું માપન

ક્રમ	મલ્ટિમીટરના ધન ધાત્વીય છેડા સાથે જોડેલા ડાયોડના છેડાઓ	મલ્ટિમીટરના ઋણ ધાત્વીય છેડા સાથે જાડેલા ડાયોડના છેડાઓ	અવરોધ (Ω)
1	1	2	
2	2	1	

કોષ્ટક A 9.3 : ડાયોડમાંથી વહેતો એકદિશ પ્રવાહ

(a) જ્યારે ડાયોડ ફોરવર્ડ બાયસ જોડાણમાં હોય

ક્રમ	અવરોધ (Ω)	પ્રવાહ (mA)
1		
2		

प्रवृत्ति 9

(b) જ્યારે ડાયોડ રિવર્સ બાયસ જોડાણમાં હોય

ક્રમ	અવરોધ (Ω)	પ્રવાહ (mA)
1		
2		
3		

3. કોષ્ટક A 9.4 : ટ્રાન્ઝિસ્ટરના જુદા-જુદા છેડાઓ વચ્ચેના અવરોધનાં મૂલ્યો

ક્રમ	મલ્ટિમીટરના ધન ધાત્વીય છેડા સાથે જોડેલા ડાયોડના છેડાઓ	મલ્ટિમીટરના ઋણ ધાત્વીય છેડા સાથે જાડેલા ટ્રાન્ઝિસ્ટરનો ટર્મિનલ છેડો	અવરોધ (Ω)
1	В	Е	
2	В	С	
3	E	В	
4	С	В	

પરિણામ

- (1) આપેલ ડાયોડના p- અને n- બાજુઓ (વિભાગો)ને કોષ્ટક A 9.2 પરથી ઓળખી શકાય.
- (2) આપેલ ડાયોડ કાર્યરત અવસ્થામાં છે / નથી. (કોષ્ટક A 9.2 અને A 9.3 પરથી)
- (3) ડાયોડમાંથી વહેતો એકદિશ પ્રવાહ જણાય / ના જણાય. (કોષ્ટક A 9.3 પરથી)
- (4) ટ્રાન્ઝિસ્ટરના ત્રણેય છેડાઓની ઓળખ અને પિન ડાયાગ્રામ આકૃતિ A 9.3માં દર્શાવ્યો છે.
- (5) આપેલ ટ્રાન્ઝિસ્ટર n–p–n / p–n–p છે. (કોષ્ટક A 9.4 પરથી)
- (6) આપેલ ટ્રાન્ઝિસ્ટર કાર્યરત અવસ્થામાં છે / નથી. (કોષ્ટક A 9.4 પરથી)

સાવચેતીઓ

- (1) કોઈ પણ ઘટકનો અવરોધ મેળવતી વખતે તેના છેડાઓને યોગ્ય રીતે સાફ કરવા જોઈએ.
- (2) માપનના જુદાં-જુદાં મોડમાં મલ્ટિમીટરની સિલેક્ટર સ્વિચ (પસંદગી કળ) કાળજીપૂર્વક વાપરવી જોઈએ.

પ્રયોગશાળા માર્ગદર્શિકા

ત્રુટિનાં ઉદ્ગમો

- (1) જ્યારે મલ્ટિમીટરના ધાત્વીય છેડાઓને સ્પર્શ કરાવવામાં આવે ત્યારે, મલ્ટિમીટર શૂન્ય અવરોધ દર્શાવવુ જોઈએ. જો તેમ ના થાય તો પૉઇન્ટરને શૂન્ય પર (Zero Adj knobની મદદથી) લાવો. જો આમ નહિ કરો તો માપેલા અવરોધનાં મૂલ્યો વિશ્વસનીય નહિ હોય.
- (2) ઘટકના અવરોધની ચકાસણીમાં, મલ્ટિમીટરના ધાત્વીય છેડાઓને સ્પર્શ થાય નહિ તે ધ્યાન રાખો. શરીરનો અવરોધ, ઘટકના અવરોધ સાથે સમાંતરમાં જોડાય તો અવરોધના માપન પર તેની અસર થઈ શકે.

ચર્ચા

- (1) ટ્રાન્ઝિસ્ટરમાં, બેઝ વિભાગ અને ઍમિટર વિભાગને જોડતા જંકશનને બેઝ-ઍમિટર જંકશન કહે છે. બેઝ વિભાગ અને કલેક્ટર વિભાગને જોડતા જંકશનને બેઝ-કલેક્ટર જંકશન કહે છે.
- (2) જ્યારે મલ્ટિમીટર પ્રવાહ માપક મોડમાં હોય, ત્યારે જુદાં-જુદાં મૂલ્યના શંટ અવરોધ કૉઇલ સાથે સમાંતરમાં મૂકવામાં આવે છે. વોલ્ટેજ માપક મોડમાં જુદાં-જુદાં મૂલ્યના અવરોધ પરિપથમાં કૉઇલ સાથે શ્રેણી જોડાણમાં આવે છે. જ્યારે તમે મલ્ટિમીટરની સ્વિચને અવરોધ માપન માટે પસંદ કરો છો ત્યારે પરિપથમાં, જુદાં-જુદાં અવરોધ મલ્ટિમીટરના વિદ્યુતકોષ સાથે શ્રેણીમાં જોડાય છે.

સ્વ-મૂલ્યાંકન

(1) જ્યારે પિન ડાયાગ્રામ ઉપલબ્ધ ના હોય ત્યારે ટ્રાન્ઝિસ્ટરનો બેઝ શોધવો. તમે આ માટે કોષ્ટક A 9.5નો ઉપયોગ કરી શકો છે. કોષ્ટક A 9.5માં આપેલાં પરિણામોનો ઉપયોગ કરી આપેલ ટ્રાન્ઝિસ્ટર n-p-n કે p-n-p પ્રકારનો છે તે નક્કી કરવું.

प्रवृत्ति 9

કોષ્ટક A 9.5 :જુદાં-જુદાં ટ્રાન્ઝિસ્ટરના છેડા વચ્ચે અવરોધની કિંમત (જ્યારે પિન આકૃતિ અજ્ઞાત હોય ત્યારે.)

(નોંધ : અહિં ટ્રાન્ઝીસ્ટરના છેડા 2 ને બેઝપિન ધારીએ છીએ)

અનુક્રમ	મલ્ટિમીટરના ધન છેડા	મલ્ટિમીટરના ઋણ છેડા સાથે જોડલો	અવરોધની પ્રકૃતિ
	સાથે જોડેલો ટ્રાન્ઝિસ્ટરનો	ટ્રાન્ઝિસ્ટરનો છેડો	
	છેડો		
[A]	n–p–n ટ્રાન્ઝિસ્ટર માટે		
1	1	2	ખૂબ જ વધુ
2	1	3	ખૂબ જ વધુ
3	2	1	ઓછો
4	2	3	ઓછો
5	3	1	ખૂબ જ વધુ
6	3	2	ખૂબ જ વધુ
[B]	p–n–p ટ્રાન્ઝિસ્ટર માટે		
1	1	2	ઓછો
2	2	1	ખૂબ જ વધુ
3	1	3	ખૂબ જ વધુ
4	3	1	ખૂબ જ વધુ
5	2	3	ખૂબ જ વધુ
6	3	2	ઓછો

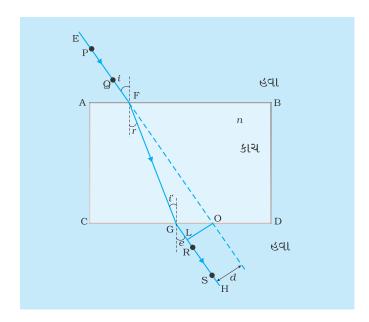
$oldsymbol{\mathsf{U}}$ વૃત્તિ 10

હેતુ

કાચના સ્લેબ પર ત્રાંસા આપાત થતા પ્રકાશના કિરણપુંજનું વક્રીભવન અને પાર્શ્વિક (રેખીય, Lateral) વિચલનનું અવલોકન કરવું.

જરૂરી સાધન-સામગ્રી

ચિત્રકામનું પાટિયું, કાચનું લંબઘન ચોસલું, સફેદ કાગળ, સેલોટેપ, ડ્રૉઇંગપિન, મીટરપટ્ટી, ટાંકણી, કોણમાપક, અણી કાઢેલી પેન્સિલ અને ભૂંસવા માટેનું ૨બ૨


સિદ્ધાંત

જ્યારે કાચના લંબઘન ચોસલા પર પ્રકાશકિરણ આપાત થાય, તે કિરણ વકીભૂત થઈ ચોસલામાંથી, આપાત કિરણને સમાંતર નિર્ગમન પામે છે. નિર્ગમન પામતું કિરણ ફક્ત પાર્શ્વિક સ્થાનાંતર પામે છે. આપેલ આપાતકોણ અને માધ્યમની જોડી માટે, આ સ્થાનાંતર ચોસલાની જાડાઈના સમપ્રમાણમાં હોય છે.

પહૃતિ

- (1) સેલોટેપ અથવા ડ્રૉઇંગપિનની મદદથી ચિત્રકામના પાટિયા પર સફેદ કાગળ ચોંટાડો.
- (2) લંબાઈમાં સંમિતતા જળવાય તે રીતે કાચના ચોસલાને કાગળની મધ્યમાં મૂકો. તેની સીમાઓ ABCD અણીદાર પેન્સિલ વડે દોરો. (આકૃતિ A 10.1).
- (3) બિંદુ F પર સપાટી ABને લંબ દોરો. લંબ સાથે આપાતકોણ *i* બનાવતી આપાત કિરણ દર્શાવતી રેખા EF દોરો.
- (4) એકબીજાથી 8 cm થી 10 cm દૂર બે ટાંકણીઓ P અને Q રેખા EF પર ઊર્ધ્વ રહે તે રીતે લગાડો.
- (5) કાચના ચોસલાની બીજી બાજુએ ટાંકણી P અને Qના પ્રતિબિંબને જુઓ. તેમની લાઇનમાં ટાંકણીઓ R અને S એ રીતે લગાવો જેથી R અને S ની ટોચ P અને Q ના પ્રતિબિંબની

- ટોચ સાથે એક રેખસ્થ રહે. ધ્યાન રહે કે ચારેય પિનની ટોચ એક જ રેખામાં દેખાય.
- (6) હવે ચોસલું હટાવી પિન વડે પડેલા કાણાં જોડી પેન્સિલથી સુરેખ રેખા GH દોરો. આ રેખા નિર્ગમન કિરણ દર્શાવે છે. તે R અને S વડે માર્ક કરેલાં બિંદુઓમાંથી પસાર થઈ, ચોસલાની CD બાજુ પર બિંદુ G પર મળે છે.
- (7) રેખા FG દોરી વક્કીભૂત કિરણ દર્શાવો.
 CD બાજુ પર G બિંદુએ CDને લંબ
 દોરો. GH રેખા લંબ સાથે નિર્ગમનકોણ

*આકૃતિ A 10.1 કાચના લંબચોરસ ચોસલામાં વક્રી*ભવન

- e બનાવે છે. હવે કોણમાપકની મદદથી આપાતકોણ i અને નિર્ગમનકોણ e નું મૂલ્ય માપો. તેમની કિંમતો સફ્રેદ કાગળ પર લખો. $\angle i$ અને $\angle e$ વચ્ચે તમને કોઈ સંબંધ મળે છે ?
- (8) રેખા EFને આગળ લંબાવો કે જેથી તે ચોસલાની CD બાજુને બિંદુ O પર મળે. GH રેખા પર લંબ OL દોરો.
- (9) નિર્ગમન કિરણ GH એ રેખા EF ની મૂળ દિશાને સમાંતર છે કે નહિ તે ચકાસો. તે લંબ અંતર OL જેટલું પાર્શ્વિક (લેટરલ) વિચલન પામેલી છે. પાર્શ્વિક વિચલન OL=d અને કાચના ચોસલાની જાડાઈ માપો.
- (10) આપાતકોણ બદલીને આગળના પદ 2 થી 9નું પુનરાવર્તન કરો.
- (11) જુદી-જુદી જાડાઈવાળા કાચના ચોસલા વાપરી પદ 2 થી 10 નું પુનરાવર્તન કરો. દરેક વખતે પાર્સિક વિચલન અને ચોસલાની જાડાઈનું માપ લો. દરેક વખતે ∠i અને ∠e નું માપ પણ સફેદ કાગળ પર લખો.
- (12) અવલોકનોને યોગ્ય એકમો સાથે કોષ્ટકમાં નોંધો. આ અવલોકનો પરથી તમે શું તારણ કાઢશો?

પ્રયોગશાળા માર્ગદર્શિકા

અવલોકનો

કોણમાપકનું લઘુત્તમ માપ = ... (અંશ)

મીટર પટ્ટીનું લઘુત્તમ માપ = ... mm = ... cm

કોપ્ટક A 10.1: આપાતકોણ i નિર્ગમનુકોણ e અને પાર્શ્વિક વિચલન dની માપણી

અનુક્રમ	કાચના ચોસલાની	આપા	તકોણ <i>(i)</i>	નિર્ગમ	ાનકોણ <i>(e)</i>	પાર્શ્વિક વિચલન
	જાડાઈ <i>t</i> 10 ⁻² m					d 10 ⁻² m
		અંશ	રેડિયન	અંશ	રેડિયન	
1	t ₁					
2	t ₁					
5	t ₁					
6	t_2					
10	t_2					
11	t ₃					

પરિણામ

- (1) કાચના ચોસલામાંથી નિર્ગમન પામતું કિરણ આપાત કિરણની દિશાને સમાંતર હોય છે પણ પાર્શ્વિક રીતે વિચલિત હોય છે.
- (2) આપાત કિરણની સાપેક્ષમાં નિર્ગમન કિરણનું પાર્શ્વિક વિચલન કાચના ચોસલાની જાડાઈના સમપ્રમાણમાં હોય છે.

ચર્ચા

(1) આપાતકોશ *i*, નિર્ગમનકોશ *e* અને પાર્શ્વિક વિચલન *d*ની માપશીમાં ચોકસાઈ વાપરેલી પિન કેટલી અણીદાર છે અને કેટલા ધ્યાનથી તમે પિનની ટોચને એક જ સીધી રેખામાં અવલોકન કરો છો તેની પર આધારિત છે. પિનની ટોચનાં અવલોકનમાં, પિન વડે કાણાને માર્ક કરવામાં, અણીદાર પેન્સિલ વડે આપાત, વકીભૂત અને નિર્ગમન કિરણને દોરવામાં તથા કોણમાપક વડે આપાતકોણ *i* અને નિર્ગમનકોણ *e* ચોકસાઈથી માપવામાં વિશેષ ધ્યાન રાખવું.

સ્વ-મૂલ્યાંકન

- (1) કોષ્ટક 10.1નું પરીક્ષણ કરો. $\angle i$ અને $\angle e$ વચ્ચે અને t અને d વચ્ચેના સંબંધનું અર્થઘટન કરો.
- (2) કોપ્ટક 10.1માંથી મૂલ્યો લઈ અચળ આપાતકોણ માટે લેટરલ સ્થાનાંતર d ને Y-અક્ષ પર અને કાચના ચોસલાની જાડાઈ t ને X-અક્ષ પર લઈ આલેખ દોરો. તમે મેળવેલા આલેખનો આકાર ઓળખો અને તેનું અર્થઘટન કરો.

સુચવેલ વધારાના પ્રયોગો / પ્રવૃત્તિઓ

(1) કાચના ચોસલાને લંબાઈને અનુરૂપ, પહોળાઈને અનુરૂપ અને જાડાઈને અનુરૂપ મુકીને મેળવેલા અવલોકનો પરથી ચોસલાના પદાર્થ (કાચ)નો વક્કીભવનાંક (refractive index) શોધો. તમને મળેલાં પરિશામની ચર્ચા કરો.

$$\operatorname{Hint}: \left(\frac{\sin i}{\sin r}\right) = n \quad \text{(પદાર્થનો વક્કીભવનાંક) સુત્રનો ઉપયોગ કરો.}$$

યાદ રહે કે FG એ CD બાજુ પર આપાત કિરણ અને GH એ વકીભૂત કિરણ છે. n અને n' વચ્ચેના સંબંધની ચર્ચા કરો.

પ્રવૃત્તિ 11

હેતુ

બે પોલરોઇડની મદદથી પ્રકાશના ધ્રુવીભવન (Polarisation)નું અવલોકન કરવું.

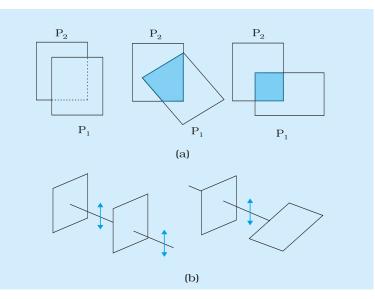
જરૂરી સાધન-સામગ્રી

બે પોલરોઇડ તકતીઓ, પ્રકાશનું ઉદ્ગમ સ્થાન / સૂર્યપ્રકાશ, પૂઠું, કાતર, સફેદ કાગળ, ગુંદર

પદો અને વ્યાખ્યાઓ

પ્રકાશના તરંગમાં પરસ્પર લંબ એવા ચલ વિદ્યુતક્ષેત્ર સદિશ f E અને ચુંબકીયક્ષેત્ર સદિશ f B હોય

- છે. આ બંને સદિશ પ્રસરણની દિશાને પણ લંબ હોય છે.
- (i) અધુવીભુત પ્રકાશ : સદિશો કોઈ એક જ દિશા પૂરતા મર્યાદિત નથી પણ તેઓ પ્રસરણની દિશાને લંબ બધી દિશામાં અસ્તવ્યસ્ત રીતે ગોઠવાયેલા હોય છે.
- (ii) તલ અથવા રેખીય ધ્રુવીભુત પ્રકાશ : જો \mathbf{E} ક્ષેત્ર સિંદશ પ્રસરણ દિશાને લંબ સમતલમાં એક જ દિશામાં આવેલા હોય, તો તે પ્રકાશતરંગને તલ / રેખીય ધ્રુવીભુત કહી શકાય.
- (iii) પોલરોઇડ : પોલરોઇડમાં કોઈ એક ચોક્કસ દિશામાં ગોઠવાયેલા અણુઓની લાંબી સાંકળ હોય છે. ગોઠવાયેલ અણુઓની દિશામાં આવેલા E સદિશો, (પ્રકાશ તરંગો સાથે સંકળાયેલા) શોષાઈ જાય છે એટલે કે જો કોઈ અધ્રુવીભુત પ્રકાશ આ પોલરોઇડ પર આપાત થાય, તો પ્રકાશનું રેખીય ધ્રુવીભવન થાય કે જેમાં E સદિશો ગોઠવાયેલા અણુઓની દિશાને લંબદિશામાં હોય. આ દિશાને પોલરોઇડની દગ્-અક્ષ (pass-axis) કહે છે.
 - સન ગ્લાસીસ, કેલકયુલેટર અને ડિજિટલ ઘડીયાળમાં કૃત્રિમ પદાર્થોની બનેલી પ્લાસ્ટીકની તકતીઓ વપરાય છે.
- (iv) ધ્રુવક (polariser) અને વિશ્લેષક (Analyzer) : જયારે બે પોલરોઇડમાંથી પસાર થતા પ્રકાશનો અભ્યાસ કરીએ, જેમ તેમના નિર્ગમનની અક્ષો વચ્ચેનો ખુશો 0° થી 90° બદલાય, તેમ નિર્ગમનની તીવ્રતા 1 થી 0 વચ્ચે બદલાય છે. આમાં ઉદ્દગમ પાસેના પહેલા પોલરોઇડને ધ્રુવક કહે છે અને બીજા પોલરોઈડને વિશ્લેષક કહે છે.


Downloaded from https://www.studiestoday.com

प्रवृत्ति 11

સિદ્ધાંત

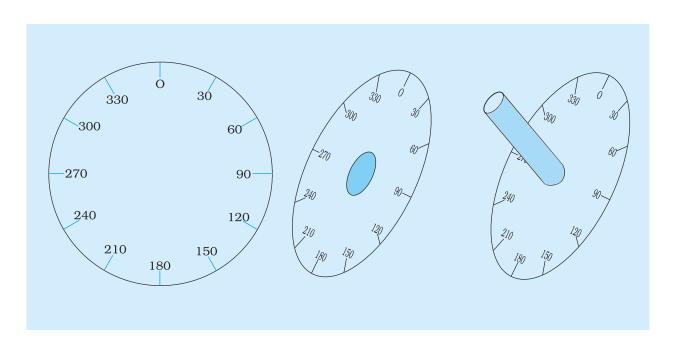
કુદરતી પ્રકાશ એ પ્રસરણ દિશાને લંબ એવા કિરણપુંજ માંથી પસાર થતા બધા જ સંભવિત સમતલોમાં સ્થિત E સદિશો સાથે સંકળાયેલો છે. જો કે આ બધા સદિશોને પરસ્પર લંબ ઘટકોમાં વિભાજિત કરી શકાય. દરેક પોલરોઇડને એક એવી દગ્ અક્ષ હોય છે કે જ્યારે આ પોલરોઇડને કોઈ અધ્રુવીભુત

પ્રકાશના માર્ગમાં લંબરૂપે મૂક્યો હોય તો E સદિશનો આ અક્ષને સમાંતર ઘટક તેમાંથી પસાર થાય છે અને નિર્ગમન પામેલો પ્રકાશતલ ધ્રુવીભુત પ્રકાશ હોય છે. આ બાબત બીજા પોલરોઇડની મદદથી ચકાસી શકાય છે. બીજો પોલરોઇડ પ્રથમ પોલરોઇડ પાસે અને કિરણપુંજના માર્ગમાં મૂકવામાં આવે છે. [આકૃતિ A 11.1] બીજા પોલરોઇડને પરિભ્રમણ આપતાં એક સ્થિતિ એવી આવે કે જ્યારે નિર્ગમન પ્રકાશ સંપુણપણે અદશ્ય થાય છે. જ્યારે બંને પોલરોઇડના અક્ષ પરસ્પર લંબ હોય ત્યારે જ આવી ઘટના બને છે. જ્યારે બંને પોલરોઇડના અક્ષ સમાંતર હોય ત્યારે નિર્ગમન પ્રકાશની તીવ્રતા મહત્તમ હોય છે. એટલે જ જ્યારે બંને પોલરોઇડને કિરણપુંજના માર્ગમાં પરિભ્રમણ કરાવવામાં આવે ત્યારે નિર્ગમિત પ્રકાશની આંશિક તીવ્રતા 0 થી 1 વચ્ચે મળે છે.

આકૃતિ A 11.1 : (a) બે પોલરોઇડ P_1 અને P_2 માંથી પ્રકાશનું પસાર થવું.જયારે તેમના વચ્ચેનો ખૂણો *0° થી 90° બદલાય ત્યારે નિર્ગમન* પ્રકાશની તીવ્રતા *1 થી 0 વચ્ચે* બદલાય છે. નોંધનીય છે કે એક જ પોલરોઇડ P,માં પસાર થતો પ્રકાશ ખૂણાના ફેરફાર સાથે બદલાતો નથી. (b) જ્યારે બે પોલરોઇડમાંથી પ્રકાશ પસાર થાય ત્યારે E સદિશોનું વર્તન નિર્ગમન પામતા ધ્રુવીભૂત પ્રકાશમાં પોલરોઇડના અક્ષને સમાંતર ઘટક છે.ડબલ બાજુના તીર એ E સદિશનાં દોલનો દર્શાવે છે.

કાર્યપદ્ધતિ

ખૂણાના માપન માટે વર્તુળાકાર માપપટ્ટી બનાવવી


- (1) એક પૂઠું લો. તેના પર સફેદ કાગળ ચોંટાડો. તે સફેદ કાગળ પર 10 cm ત્રિજ્યા ધરાવતું વર્તુળ દોરો.
- (2) આ વર્તુળને કાતર વડે કાપો.

પ્રયોગશાળા માર્ગદર્શિકા

- (3) [આકૃતિ A 11.2]માં દર્શાવ્યા પ્રમાણે આ વર્તુળ પર કોણીય વિભાગો દોરો.
- (4) વર્તુળના કેન્દ્ર પર એવી રીતે કાશું પાડો કે જેથી આપનો પોલરાઇઝર તેમાં બેસી જાય. આ કાશામાં પોલરોઇડ ગોઠવી દો. [આકૃતિ A 11.3]
- (5) આવી જ માપપટ્ટી એનાલાઇઝર માટે પણ બનાવો.

(b) ધ્રુવીભવનનું અવલોકન કરવું

- (1) પોલરોઇડ P_1 (જેને પોલરાઇઝર કહીશું) લો અને તેને તમારી આંખ સામે પકડી રાખો તથા કોઈ પણ ઉદ્ગમમાંથી આવતા પ્રકાશનું અવલોકન કરો.
- (2) બીજો પોલરોઇડ P_2 (જેને એનાલાઇઝર કહીશું). લો અને તેને P_1 ઉપર મૂકો તથા આ સંયુક્ત તંત્રમાંથી આવતા પ્રકાશનું અવલોકન કરો.

આકૃતિ A 11.2 કોણીય વિભાગવાળું વર્તુળ

આકૃતિ A 11.3 કોણમાપન માટેની વર્તુળાકાર માપપટ્ટી

- (3) એનાલાઇઝરને ગોળ ફેરવો કે જેથી નિર્ગમન પામતાં પ્રકાશની તીવ્રતા મહત્તમ મળે. માપપટ્ટી પરનાં અવલોકનો વચ્ચેનો તફાવત શોધો.
- (4) હવે એનાલાઇઝરને પરિભ્રમણ કરાવો કે જેથી નિર્ગમિત પ્રકાશની તીવ્રતા શૂન્ય મળે. માપપટ્ટી પરનાં અવલોકનો વચ્ચેનો તફાવત નોંધો.

અવલોકનો

- (1) મહત્તમ તીવ્રતા માટેના માપપટ્ટીનાં અવલોકનોનો તફાવત a = ... $^{\circ}$.
- (2) લઘુત્તમ તીવ્રતા માટેના માપપટ્ટીનાં અવલોકનોનો તફાવત b = ... $^{\circ}$.

प्रवृत्ति 11

(3) મહત્તમ તીવ્રતાથી લઘુત્તમ તીવ્રતા સુધી એનાલાઇઝરનું પરિભ્રમણ $a-b=\dots$ ે.

પરિણામ

સાવધાનીઓ

પોલરોઇડ વાપરતી વખતે ધ્યાન રાખવું કે તેના પર આંગળીની છાપ રહી ન જાય.

ચર્ચા

કોઈ એક ઉદ્દગમમાંથી નીકળી, પોલરોઇડમાંથી પસાર થયા પછીના પ્રકાશનું અવલોકન કરતા તેની તીવ્રતામાં કોઈ ફેર જણાતો નથી. ધ્રુવીભવનની આ સ્થિતિ બાબતે તમે શું કહેશો ? ધ્રુવીભવનની સ્થિતિ શોધવાનું કામ એનાલાઈઝર કઈ રીતે સંભવ કરે છે?

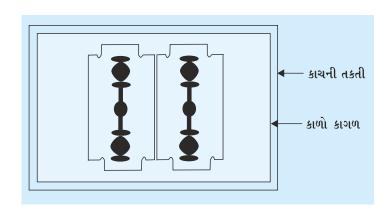
સ્વ-મૂલ્યાંકન

- (1) પ્રકાશનું ધ્રુવીભવન એટલે શું ?
- (2) શું ધ્વનિના તરંગોનું ધ્રુવીભવન થઈ શકે ?
- (3) પ્રકાશનું ધ્રુવીભવન કરવા માટે સામાન્ય રીતે વપરાતા સ્ફટિકોના નામ આપો.
- (4) પ્રકાશના એવા ઉદ્ગમસ્થાનનું નામ આપો જે સીધો તલધ્ર્વીભુત પ્રકાશ જ આપે છે.
- (5) સૂર્યપ્રકાશના ધ્રુવીભવનની વિવિધ રીતોનો અભ્યાસ કરો. (પ્રકીર્ણન દ્વારા ધ્રુવીભવન, પરાવર્તન દ્વારા ધ્રુવીભવન)

સૂચવેલ વધારાના પ્રયોગો / પ્રવૃત્તિઓ

- (1) પ્રકાશની તીવ્રતા માપવા માટે એક ફોટો ડાયોડ લો. તેને એક મલ્ટિમીટર સાથે વ્યવસ્થિત રીતે જોડો કે જેથી તે પ્રકાશિત થાય. એનાલાઇઝરને જુદા-જુદા ખૂરો ફેરવવાથી નિર્ગમિત પ્રકાશની તીવ્રતામાં થતા ફેરફારો નોંધો. માલસના નિયમ $I=I_{o}\cos^{2}\theta$ ને ચકાસવા આલેખ દોરો. અહીં I_{o} એ $\theta=0^{\circ}$ ખૂરો મળતી તીવ્રતા છે અને I એ θ ખૂરો મળતી તીવ્રતા છે.
- (2) પ્રકાશની લંબગત પ્રકૃતિનું નિદર્શન આપવા માટે આ પ્રવૃત્તિનો કેવી રીતે ઉપયોગ થાય તેના પર નોંધ લખો.

પ્રવૃત્તિ 12


હેતુ

પાતળી સ્લિટ વડે પ્રકાશના વિવર્તનનું અવલોકન કરવું.

જરૂરી સાધન-સામગ્રી

અસ્ત્રાની બે બ્લેડ, એક સેલોટેપ, પ્રકાશનું ઉદ્ગમ (વીજળીનો બલ્બ / લેસર પેન્સિલ), કાળા કાગળનો ટુકડો, કાચની બે સ્લાઇડો

સિદ્ધાંત

આકૃતિ A 12.1

બે રેઝર બ્લેડ, એક કાચની સ્લાઇડ અને એક કાળા કાગળના ઉપયોગથી બનાવેલી પાતળી સ્લિટ જયારે કોઈ કિરણપુંજ પાતળી તિરાડ (aperture) અથવા કોઈ તીક્ષ્ણ અડચણ પરથી પસાર થાય, ત્યારે તિરાડ/અડચણની ધાર પાસેથી વાંકુ વળે છે. આ કિરણપુંજ ફેલાય છે અને ભૌમિતિક પડછાયાના વિસ્તારમાં ઘૂસી જાય છે. અડચણ અથવા સુક્ષ્મ કાણા પાસેથી પ્રકાશની વાંકા વળવાની આ ઘટનાને વિવર્તન કહે છે. આ ઘટના પ્રકાશના તરંગ સ્વરૂપના પુરાવાને સમર્થન આપે છે. એક જ તરંગઅગ્ર પરના જુદાં-જુદાં બિંદુઓ પરથી પ્રકાશના વ્યતિકરણના કારણે આ ઘટના ઉદ્ભવે છે. રેઝરની બે બ્લેડની તીક્ષ્ણ ધાર પાસે-પાસે પરસ્પર સમાંતર મૂકતા એક બહુ જ પાતળી સ્લિટ ઉદ્ભવે છે. (જેનું અંતર A⁰ માં હોય છે.) [આકૃતિ A 12.1]

એક જ સ્લિટ વડે મળતા વિવર્તન ભાતમાં મધ્યસ્થ અધિકતમ, તેની બંને બાજુએ ઘટતી તીવ્રતા અને ઘટતી જાડાઈવાળી રંગીન શલાકાઓ (વીજળીના બલ્બના કિસ્સામાં) અને પ્રકાશિત-અપ્રકાશિત શલાકાઓ (લેસર પેન્સિલના કિસ્સામાં) મળે છે.

પદ્ધતિ

(1) રેઝરની બે બ્લેડના ઉપયોગથી એક બહુ જ પાતળી સ્લિટ બનાવો. આના માટે, કાચની પ્લેટ લો અને તેના પર કાળો કાગળ ચોંટાડો. કાળા કાગળના મધ્ય ભાગમાંથી એક પાતળી સ્લિટ કાપો. [આકૃતિ A 12.1] માં દર્શાવ્યા પ્રમાણે આ સ્લિટ પર બંને બ્લેડ એકબીજાની પાસે બહુ જ નજીક મૂકો.

Downloaded from https://www.studiestoday.com

- (2) રેઝરની બંને બ્લેડની તીક્ષ્ણ ધાર વડે બનાવેલી એકદમ પાતળી સ્લિટની પાછળ સુરેખ ફિલામેન્ટવાળો વીજળીનો ગોળો (અથવા લેસર પેન્સિલ) પૂરતાં અંતરે (આશરે 4 થી 8 m દૂર) મૂકો. સ્લિટમાંથી ગોળાનું અવલોકન કરો. આપને શું મળે છે ?
- (3) આના બદલે, સ્લિટને દીવાલથી 0.5 m દૂર રાખી પ્રકાશનું એક ઉદ્દગમ સ્લિટથી 15 20 cm અંતરે મુકી દીવાલ પર પડતા પ્રકાશનું અવલોકન કરો.
- (4) ઉપરનાં પદ 2 અને 3 નું લેસર પેન્સિલનો ઉપયોગ કરી પુનરાવર્તન કરો. અવલોકનોના ફેરફાર નોંધો.

પરિણામ

એકદમ પાતળી તિરાડ (અડચણ) પર આપાત થતો પ્રકાશ ધાર પાસેથી વાંકો વળે છે અને વિવર્તનની ઘટના દર્શાવે છે.

ચર્ચા

- (1) વિવર્તન ભાતની શલાકાઓની તીક્ષ્ણતા, મુખ્યત્વે, એકદમ પાસે પાસે મુકેલી બે ધારદાર બ્લેડથી બનતી સ્લિટના અત્યંત પાતળાપણા પર આધાર રાખે છે.
- (2) સામાન્ય વીજળીના ગોળાની સરખામણીમાં એકરંગી પ્રકાશ આપતી લેસર પેન્સિલ વધુ હિતાવહ છે.
 - સાદા ગોળાના પ્રકાશથી બહુ ઓછી શલાકાઓ સ્પષ્ટ દેખાય છે. જ્યારે આપેલ સ્લિટની માપસરની જાડાઈમાં એકરંગી પ્રકાશવાળી લેસર પેન્સિલ વડે ઘણીબધી પ્રકાશિત અને અપ્રકાશિત શલાકાઓ એકદમ સ્પષ્ટ (ભિન્ન) જોવા મળે છે.

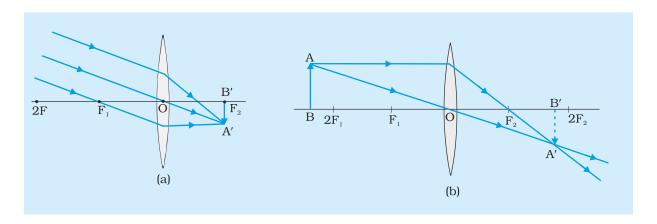
સ્વ-મૂલ્યાંકન

- (1) રેઝરની બે બ્લેડ પાસે-પાસે સમાંતર રહે તે રીતે પકડો. પણ આવી રીતે પકડતાં મોટેભાગે તે બંને પરસ્પર સમાંતર હોતી નથી. જ્યાં ધાર વચ્ચેનું અંતર ઓછું છે, શું સ્લિટના તે બિંદુ / ભાગ પર શલાકાઓ વધુ પહોળી અને / અથવા એકદમ નજીક મેળવવાની અપેક્ષા રાખો છો? શું તમને શલાકાઓ રંગીન મળે છે? તમારા અવલોકનોનું અર્થઘટન કરો.
 - [Hint: મધ્યસ્થ શલાકા સિવાય બાકી બધી શલાકાઓનું સ્થાન આપાત પ્રકાશની તરંગલંબાઈ પર આધારિત છે અને જુદા-જુદા રંગની હોય છે. લાલ અથવા વાદળી રંગનું ફિલ્ટર વાપરતા આ શલાકાઓ વધુ સ્પષ્ટ જોવા મળશે. વાદળી ફિલ્ટરની સરખામણીમાં લાલ ફ્લ્ટિર વાપરતા તમને શલાકાઓ સહેલાઈથી વધુ પહોળી જોવા મળશે.]
- (2) સ્લિટની પહોળાઈ, આપાત પ્રકાશની તરંગલંબાઈ ત્રના ક્રમમાં હોય તો વિવર્તન ભાત મળે છે. તો જો સ્લિટની પહોળાઈ ત્રના અમુક ગુણાંકમાં હોય, તો શું થશે તેનું અવલોકન કરો. કારણનું અર્થઘટન કરો.

પ્રવૃત્તિ 13

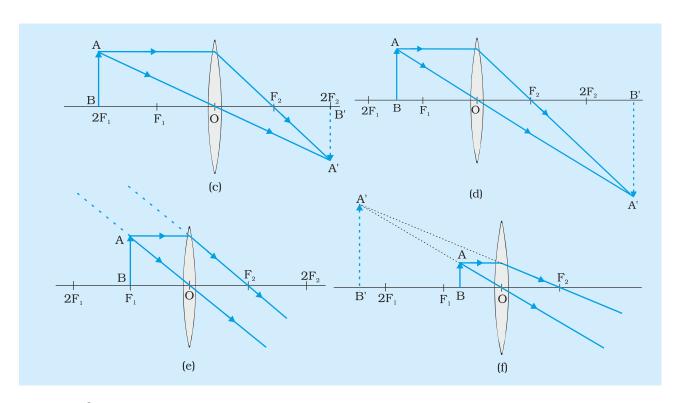
હેતુ

મીણબત્તી અને પડદાનો ઉપયોગ કરી (i) બહિર્ગાળ લેન્સ અને (ii) અંતર્ગાળ અરીસા વડે પડદા પર મળતા પ્રતિબિંબના પ્રકાર અને પરિમાણનો અભ્યાસ (લેન્સ / અરીસાથી મીણબત્તીના જુદાં-જુદાં અંતરો માટે) કરવો.


(i) બહિર્ગાળ લેન્સ દ્વારા મળતા પ્રતિબિંબના પ્રકાર અને પરિમાણનો અભ્યાસ કરવો.

જરૂરી સાધન-સામગ્રી

એક મીણબત્તી, દીવાસળીની એક પેટી, મીણબત્તી મૂકવા માટે એક નાનું સ્ટૅન્ડ, ઓછી કેન્દ્રલંબાઈ અને જ્ઞાત જાડાઈવાળો બહિર્ગોળ લેન્સ, સ્ટૅન્ડવાળો પડદો, મીટરપટ્ટી


સિદ્ધાંત

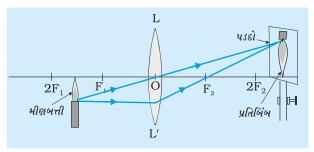
અમુક ચોક્કસ સ્થાનો માટે આકૃતિ [A 13 (i), 1 (a)] થી [A 13 (i), 1 (f)]માં દર્શાવેલ છે તે પ્રમાણે વસ્તુના સ્થાનના ફેરફાર સાથે બહિર્ગોળ લેન્સ વડે મળતાં પ્રતિબિંબનું સ્થાન, પ્રકાર અને પરિમાણ બદલાય છે. અહીં બહિર્ગોળ લેન્સની બંને સપાટીઓ સમાન વક્રતાત્રિજ્યા ધરાવે છે તેમ ધારેલું છે.

- (a) વસ્તુ અનંત અંતરે એટલે કે $u=\infty$, લેન્સની બીજી તરફ આવેલા દ્વિતીય મુખ્ય કેન્દ્ર \mathbf{F}_2 પર સાચું, ઊલટું અને એકદમ નાનું પ્રતિબિંબ મળે છે. એટલે કે $\mathbf{v}=f$
 - (i) જ્યારે આપાતકિરણો મુખ્ય અક્ષને સમાંતર હોય અને (ii) જ્યારે આપાતકિરણો મુખ્ય અક્ષને સમાંતર ન હોય, પ્રતિબિંબ અનુક્રમે મુખ્ય અક્ષ પર અને ફોકલ પ્લેન પર મળે છે.

Downloaded from https://www.studiestoday.com

આકૃતિ A 13.(i). 1 (a),(b), (c), (d), (e), (f) : વસ્તુ AB ના વિવિધ સ્થાનો માટે પાતળા બહિર્ગોળ લેન્સ LL' વડે મળતા પ્રતિબિંબ A'B' નું સ્થાન, પરિમાણ અને પ્રકાર

- (b) વસ્તુ અનંત અને $2F_1$ ની વચ્ચે હોય એટલે કે, $\infty>u>2f$. લેન્સની બીજી તરફ આવેલા દ્વિતીય મુખ્ય કેન્દ્ર F_2 અને $2F_2$ વચ્ચે સાચું, ઊલટું અને નાનું પ્રતિબિંબ મળે છે, એટલે કે $2f>\upsilon>f$.
- (c) વસ્તુ $2F_1$ પર હોય એટલે કે u=2f. લેન્સની બીજી બાજુએ $2F_2$ પર સાચું અને ઊલટું પ્રતિબિંબ મળે છે એટલે કે v=2f. પ્રતિબિંબનું પરિમાણ વસ્તુના પરિમાણ જેટલું જ હોય છે.
- (d) વસ્તુ $2F_1$ અને પ્રથમ મુખ્ય કેન્દ્ર F_1 ની વચ્ચે હોય એટલે કે 2f>u>f. લેન્સની બીજી બાજુએ $2F_2$ અને અનંત વચ્ચે સાચું, ઊલટું અને મોટું પ્રતિબિંબ મળે છે એટલે કે $2f<\upsilon<\infty$.
- (e) વસ્તુ પ્રથમ મુખ્ય કેન્દ્ર F_1 પર હોય એટલે કે u=f, લેન્સની બીજી બાજુએ અનંત અંતરે સાચું, ઊલટું અને ઘણું મોટું પ્રતિબિંબ મળે છે, એટલે કે $v=\infty$.
- (f) વસ્તુ મુખ્ય કેન્દ્ર \mathbf{F}_1 અને ઓપ્ટિકલ કેન્દ્ર \mathbf{O} ની વચ્ચે હોય એટલે કે f>u>0. વસ્તુ તરફ $\mathbf{v}=\mathbf{v}=\mathbf{v}$


પ્રયોગશાળા માર્ગદર્શિકા

પદ્ધતિ

(1) દૂરની વસ્તુના પ્રતિબિંબને કેન્દ્રીત કરીને બહિર્ગોળ લેન્સની આશરે કેન્દ્રલંબાઈ શોધો. આ માટે સૂર્યનું અથવા કોઈ એક ઝાડનું પ્રતિબિંબ દીવાલ પર મેળવી, લેન્સ અને દીવાલ વચ્ચેનું અંતર માપો. આ અંતર આપેલ બહિર્ગોળ લેન્સની કેન્દ્રલંબાઈ f ની આશરે કિંમત આપે છે.

નોંધ : સૂર્યને લેન્સમાંથી જોવો નહીં, નહિતર તે તમારી આંખને નુકસાન કરી શકે છે.

- (2) ટેબલની ધાર (લંબાઈવાળી) પર મીટર પટ્ટી સેલોટેપ અથવા ક્લૅમ્પથી લગાવો.
- (3) લેન્સ LL' ને લેન્સ સ્ટૅન્ડ પર લગાવી, આશરે મીટર પટ્ટીની મધ્યમાં એવી રીતે મૂકવું કે જેથી તેની મુખ્ય અક્ષ સમક્ષિતિજ અને માપપટ્ટીને સમાંતર રહે. આ સ્થિતિમાં લેન્સ ટેબલના લંબ સમતલમાં રહેશે.

આકૃતિ A 13.1 (i) 2 પાતળા બહિર્ગોળ લેન્સ વડે પ્રકાશિત મીણબત્તીના મળતા વાસ્તવિક પ્રતિબિંબો

- (4) પ્રગટાવેલી મીણબત્તીને એક નાના સ્ટૅન્ડ પર મૂકવી કે જેથી તે ઊર્ધ્વ રહે. મીણબત્તીવાળા સ્ટૅન્ડને લેન્સની ડાબી બાજુએ મૂકો. સ્ટૅન્ડની ઊંચાઈને એવી રીતે ગોઠવવી કે જેથી પ્રકાશિત મીણબત્તીની જયોતની ટોચ લેન્સના મુખ્ય અક્ષ પર રહે. આ પરિસ્થિતિમાં પ્રકાશિત મીણબત્તીની જયોતની ટોચની ઊંચાઈ લેન્સના ઓપ્ટિકલ કેન્દ્રની ઊંચાઈ જેટલી થશે.
- (5) મીણબત્તીના સ્ટૅન્ડને (લેન્સની ડાબી બાજુએ) 2F₁થી થોડા દુર આવેલા બિંદુ પર ખસેડો (એટલે કે બિંદુ O થી 2f કરતાં થોડા વધુ અંતરે જયાં f એ પદ-1 માં મેળવેલી લેન્સની કેન્દ્રલંબાઈ છે.) [આકૃતિ A 13 (i). 1(b)] પ્રમાણે, મીણબત્તીનું પ્રતિબિંબ લેન્સની જમણી બાજુએ દ્વિતીય મુખ્ય કેન્દ્ર F₂ની નજીકના સ્થાને મળશે.
- (6) લેન્સની જમણી બાજુએ ઊર્ધ્વ રહે તે રીતે એક પડદો મૂકવો. તેની ઊંચાઈ એવી રીતે ગોઠવવી કે જેથી તેનો વધુ પડતો ભાગ લેન્સના મુખ્ય અક્ષની ઉપરની બાજુએ આવે.
- (7) ઓપ્ટીકલ બેન્ચ (Optical bench) તરીકે કાર્ય કરતી મીટરપટ્ટી પર પડદાના સ્થાનને દ્વિતીય મુખ્ય કેન્દ્ર F_2 ની નજીક ખસેડો.
- (8) પ્રકાશિત મીણબત્તીનું સ્પષ્ટ પ્રતિબિંબ પડદા પર મેળવવા માટેના છેલ્લા ફેરફારો કરો. પ્રતિબિંબના પ્રકારની નોંધ કરો.

- (9) આલેખ પેપરની પટ્ટી ચોંટાડી હોય તેવા સાદા અરીસાની પટ્ટીની મદદથી પ્રકાશીત મીણબત્તીની જ્યોતની ઊંચાઈ માપો. પડદા પર મળતા જ્યોતના પ્રતિબિંબની ઊંચાઈ પણ માપો. આ માટે, પડદા પર એક નાનો આલેખ પેપર ચોંટાડો. વૈકલ્પિક રીતમાં પડદા પર એક સફેદ કાગળ ચોંટાડી, તેના પર જ્યોતની ટોચ અને તળિયાનું સ્થાન નોંધો અને મીટરપટ્ટી વડે પ્રતિબિંબની ઊંચાઈ નક્કી કરો.
- (10) પ્રકાશીત મીણબત્તીને લેન્સ તરફ થોડાક અંતરે (3 થી 5 cm જેટલું) ખસેડો. પદ 8 અને 9નું પુનરાવર્તન કરો. અવલોકનો નોંધો. ઓછાંમાં ઓછાં આવાં છ અવલોકનો લો.

અવલોકનો

બહિર્ગોળ લેન્સની અંદાજિત કેન્દ્રલંબાઈ = ... cm

કોષ્ટક A 13 (i) 1 : વસ્તુનાં જુદાં-જુદાં સ્થાન માટે પ્રતિબિંબના પ્રકાર, પરિમાણ અને સ્થાન

અનુ- ક્રમ	લેન્સનું સ્થાન (cm)	મીણબત્તીનું સ્થાન (cm)	જ્યોતનું પરિમાણ (cm)	પડદા પર પ્રતિબિંબનું સ્થાન (cm)	પ્રતિબિંબનું પરિમાણ (cm)	પ્રતિબિંબનો પ્રકાર (cm)	પ્રતિબિંબનું સાપેક્ષ પરિમાણ (cm)
(1)							
(2)							
(6)							

પરિણામ

- (1) જેમ જેમ વસ્તુ લેન્સના મુખ્ય કેન્દ્ર તરફ જાય છે, તેમ તેમ પ્રતિબિંબનું પરિમાણ વધે છે અને તે મુખ્ય કેન્દ્રથી દૂર જાય છે. આ બધાં સ્થાનોમાં પ્રતિબિંબ સાચું, ઊલટું અને લેન્સની બીજી બાજુએ મળે છે.
- (2) જ્યારે વસ્તુને લેન્સની એકદમ નજીક લાવીએ ત્યારે બીજી બાજુએ પ્રતિબિંબ દેખાતુ નથી.
- (3) જ્યારે વસ્તુને કેન્દ્રલંબાઈ કરતા ઓછા અંતરે મૂકેલ હોય ત્યારે પ્રતિબિંબ આભાસી, મોટું અને ચત્તું મળે છે. આ પ્રતિબિંબ લેન્સની જે બાજુએ વસ્તુ હોય તે જ બાજુએ મળે છે.

પ્રયોગશાળા માર્ગદર્શિકા

સાવચેતીઓ

- (1) આ પ્રયોગ છાંયડા વાળી જગ્યા પર કરવો કે જ્યાં સીધો પ્રકાશ આવતો ન હોય (ડાર્ક રૂમને પ્રાધાન્ય) નહિતર પ્રતિબિંબ સ્પષ્ટ નહિ દેખાય.
- (2) કેન્દ્રલંબાઈની આશરે કિંમત મેળવતી વખતે સૂર્યના પ્રતિબિંબને સીધેસીધું ન જોવું, નહિતર તમારી આંખોને નુકસાન થઈ શકે છે.
- (3) પ્રકાશીય ઘટકોને ગોઠવવા માટેના સ્ટૅન્ડ દઢ અને ઊર્ધ્વ હોવા જોઈએ.
- (4) લેન્સનું દર્પણમુખ નાનું હોવું જોઈએ નહિતર પ્રતિબિંબ સ્પષ્ટ નહિ મળે.
- (5) પડદા પર મળતા પ્રતિબિંબથી આંખને 25 cmથી વધુ દૂર રાખવી.

ચર્ચા

- (1) જ્યારે વસ્તુને મુખ્ય કેન્દ્ર અને ઓપ્ટિકલ કેન્દ્રની વચ્ચે મૂકીએ ત્યારે પ્રતિબિંબ આભાસી મળે છે. તે પડદા પર મેળવી શકાતું નથી. તેની કિરણ આકૃતિ દોરો.
- (2) જ્યારે મીણબત્તીને મુખ્ય કેન્દ્ર પાસે મૂકો, ત્યારે પ્રતિબિંબ અનંત અંતરે મળે છે. તે ટેબલના છેડા કરતા પણ દૂર જઈ શકે.

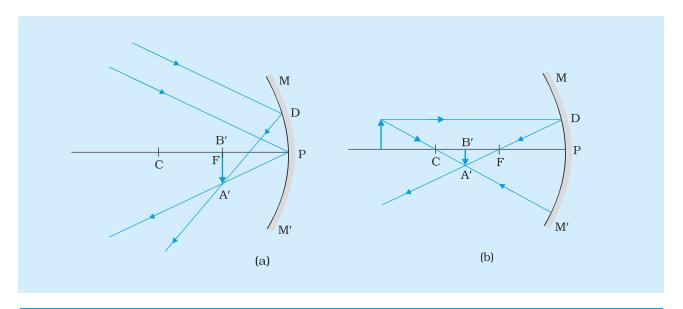
સ્વ-મૂલ્યાંકન

- (1) જ્યારે તમે ટેબલના બીજા છેડાથી લેન્સ તરફ જાઓ ત્યારે લેન્સ વડે મળતા તમારા પ્રતિબિંબના પરિમાણમાં કેવા ફેરફાર થાય ?
- (2) વસ્તુનું ચત્તું અને આભાસી પ્રતિબિંબ મેળવવા માટે વસ્તુને ક્યાં મૂકવી જોઈએ ?
- (3) વસ્તુ લેન્સની જે બાજુએ હોય તે જ બાજુએ પ્રતિબિંબ મેળવવું હોય તો વસ્તુને ક્યાં મૂકવી જોઈએ ?
- (4) લેન્સના મુખ્ય અક્ષ પર તમે અનંત અંતરેથી મુખ્ય કેન્દ્ર તરફ જાઓ, તો બહિર્ગોળ લેન્સ વડે મળતા પ્રતિબિંબનું સ્થાન કઈ રીતે બદલાશે ?
- (5) વસ્તુ જેટલા જ પરિમાણનું સાચું પ્રતિબિંબ મેળવવું હોય, તો વસ્તુનું સ્થાન ક્યાં હોવું જોઈએ?

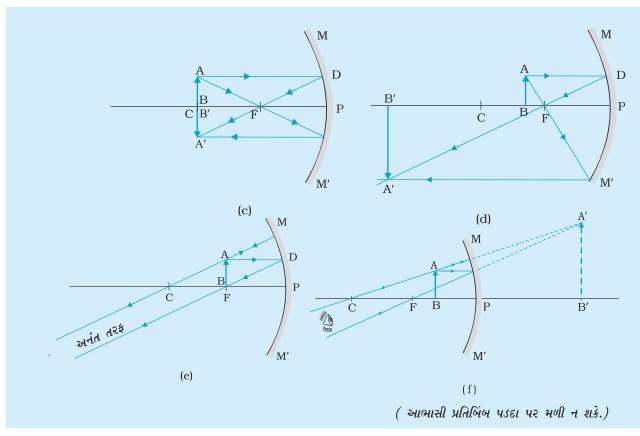
प्रवृत्ति 13

હેતુ

(ii) મીણબત્તી અને પડદાનો ઉપયોગ કરી (અરીસાથી મીણબત્તીના જુદાં-જુદાં અંતરો માટે) પડદા પર અંતર્ગોળ અરીસા વડે મળતા પ્રતિબિંબના પ્રકાર અને પરિમાણનો અભ્યાસ કરવો.


જરૂરી સાધન-સામગ્રી

ઓપ્ટીકલ બેન્ચ (Optical bench), મીણબત્તી, દીવાસળીની પેટી, મીણબત્તીનું નાનું સ્ટૅન્ડ, આશરે 25 cm કેન્દ્રલંબાઈ વાળો અંતર્ગોળ અરીસો, પડદો, ત્રણ ઊભા સ્ટૅન્ડ (ક્લૅમ્પ સાથે), મીટર પટ્ટી, સેલોટેપ, સ્પિરિટ લેવલ.

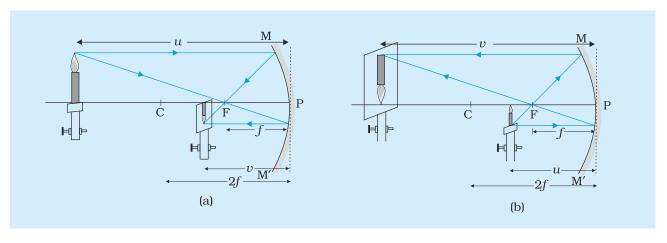

સિદ્ધાંત

અંતર્ગોળ અરીસા વડે મળતા વસ્તુનાં પ્રતિબિંબનું સ્થાન, પ્રકાર અને પરિમાણ, વસ્તુના સ્થાન સાથે બદલાય છે. [આકૃતિ A 13 (ii) 1 (a) થી (f)] અરીસા સામે (જુદી-જુદી પરિસ્થિતિમાં) વસ્તુને જુદાં સ્થાને મૂકવાથી મળતા પ્રતિબિંબ દર્શાવે છે.

- (a) વસ્તુ અનંત અંતરે એટલે કે $u=\infty$. મુખ્ય કેન્દ્ર પર સાચું, ઊલટું અને ઘણું જ નાનું પ્રતિબિંબ મળે છે એટલે કે v=f.
- (b) વસ્તુ અનંત અંતરે અને વક્કતાકેન્દ્રની વચ્ચે એટલે કે $\infty > u > 2f$. સાચું, ઊલટું અને નાનું પ્રતિબિંબ વક્કતાકેન્દ્ર (C) અને મુખ્ય કેન્દ્ર (F)ની વચ્ચે મળે છે એટલે કે f > v > 2f.
- (c) વસ્તુ વક્રતાકેન્દ્ર પર એટલે કે u=2f. સાચું અને ઊલટું પ્રતિબિંબ વક્રતાકેન્દ્ર પર જ મળે છે એટલે કે v=2f. અહીં પ્રતિબિંબનું પરિમાણ વસ્તુના પરિમાણ જેટલું જ હોય છે.

પ્રયોગશાળા માર્ગદર્શિકા

આકૃતિ A 13 (ii) 1 : (a), (b), (c), (d), (e), (f) અંતર્ગોળ અરીસા વડે પ્રતિબિંબની રચના


- (d) વસ્તુ વક્કતાકેન્દ્ર અને મુખ્ય કેન્દ્ર વચ્ચે એટલે કે 2f > u > f તો સાચું, ઊલટું અને મોટું પ્રતિબિંબ વક્કતાકેન્દ્ર અને અનંત અંતરની વચ્ચે મળે એટલે કે $2f < v < \infty$.
- (e) વસ્તુ મુખ્ય કેન્દ્ર પર એટલે કે u=f તો સાચું, ઊલટું અને ઘણું જ મોટું પ્રતિબિંબ અનંત અંતરે મળશે એટલે કે $v=\infty$.
- (f) વસ્તુ મુખ્ય કેન્દ્ર F અને અરીસાના ધ્રુવ P વચ્ચે એટલે કે f < u < 0 તો આભાસી, ચત્તું અને ઘણું જ મોટું પ્રતિબિંબ અરીસાની પાછળ મળે.
 - અંતર્ગોળ અરીસા પર પરાવર્તન થયા પછી જો પ્રકાશ કિરણો ખરેખર મળે અને જેને પડદા પર મેળવી શકાય તેવા પ્રતિબિંબને સાચું (હંમેશા ઊલટું) પ્રતિબિંબ કહી શકાય. પણ જ્યારે પરાવર્તન પછી પ્રકાશના કિરણો ખરેખર મળે નહીં પણ મળવાનો આભાસ થતો હોય તે પ્રતિબિંબને આભાસી (હંમેશાં ચત્તું) પ્રતિબિંબ કહી શકાય. એટલે આકૃતિ [A 13 (ii) 1 (a) થી (d)] સુધીમાં મીણબત્તીનું પ્રતિબિંબ પડદા પર મેળવી શકાય છે. પ્રતિબિંબનું કદ પડદા પર આલેખ પેપર ચોંટાડી મેળવી શકાય.

પદ્ધતિ

- (1) દૂરની વસ્તુના પ્રતિબિંબને કેન્દ્રિત કરીને અંતર્ગાળ અરીસાની કેન્દ્રલંબાઈનું અંદાજિત મૂલ્ય મેળવો. આ માટે, સૂર્ય અથવા કોઈ એક ઝાડનું પ્રતિબિંબ કોરા કાગળ પર અથવા દીવાલ પર મેળવો અને પછી દીવાલ તથા અરીસા વચ્ચેનું અંતર માપી લો. આ અંતર આપેલ અંતર્ગોળ અરીસાની કેન્દ્રલંબાઈનું આશરે માપ છે. આ કેન્દ્રલંબાઈ બમણી કરવાથી આપેલ અરીસાની વક્તાત્રિજયાની અંદાજિત કિંમત મળે છે.
- (2) ઓપ્ટિકલ બેન્ચ દઢ પ્લૅટફૉર્મ (platform) પર મૂકો. અને સ્પિરિટ લેવલની મદદથી બેન્ચના બેઝ (base) પર આપેલા લેવલીંગ સ્ક્રુની મદદથી તેને સમક્ષિતિજ કરો.
- (3) અંતર્ગોળ અરીસાને ઓપ્ટિકલ બેન્ચના એક છેડા પર ઊર્ધ્વ રીતે ગોઠવો જેથી તેની મુખ્ય અક્ષ સમક્ષિતિજ અને ઓપ્ટિકલ બેન્ચને સમાંતર રહે. આ સ્થિતિમાં અરીસો મુખ્ય અક્ષને લંબ સમતલમાં જ રહે છે.
- (4) એક નાના મીણબત્તીના સ્ટૅન્ડ પર એક સળગાવેલી મીણબત્તી મુકો અને તેને બેન્ચના સ્ટેન્ડ પર ગોઠવો. આ સ્ટૅન્ડને અરીસાની પરાવર્તક બાજુની નજીક મુકો. આ સ્ટૅન્ડને એવી રીતે ગોઠવો કે જેથી મીણબત્તીનું તળીયું (અથવા મીણબત્તીના સ્ટૅન્ડની ટોચ) એ ઓપ્ટીકલ બેન્ચના તળીયાથી અરીસાના ધ્રુવ Pની ઊંચાઈ જેટલું થાય. આ પરિસ્થિતિમાં, મીણબત્તીનું તળિયું (અથવા મીણબત્તીના સ્ટૅન્ડની ટોચ) અરીસાના મુખ્ય અક્ષ પર આવે.
- (6) મીણબત્તીના સ્ટૅન્ડને ઓપ્ટિકલ બેન્ચના બીજા છેડા તરફ ખસેડો કે જેથી તેનું અંતર અરીસાથી કેન્દ્રલંબાઈ કરતા ઘણું વધારે હોય એટલે અરીસાની સામે મીણબત્તીનું સ્થાન ઘણું દુર ગણી શકાય એટલે કે u >> R આ સ્થિતિમાં મીણબત્તીનું પ્રતિબિંબ અરીસાના મુખ્ય કેન્દ્ર Fની ઘણી નજીક મળશે. અથવા v=f [આકૃતિ A 13 (ii) 1(a)].
- (7) અરીસા, પડદા અને મીણબત્તીના સ્ટૅન્ડના સ્થાન ઓપ્ટિકલ બેન્ચ પર આવેલી માપપટ્ટી પરથી વાંચો અને અવલોકન-કોષ્ટકમાં તેની નોંધ કરો.

પ્રયોગશાળા માર્ગદર્શિકા

- (8) માપપટ્ટીની મદદથી સળગાવેલી મીણબત્તીની ઊંચાઈ માપો. પડદા પર મળતા તેના પ્રતિબિંબની ઊંચાઈ પણ માપો. (પ્રવૃત્તિ 13 (i) ના નવમા પદ પ્રમાણે)
- (9) સળગતી મીણબત્તીને વક્કતાકેન્દ્ર C નજીક લાવો (અંતર PC = 2f). હવે પ્રતિબિંબ C અને Fની વચ્ચે, 2f ની નજીક મળશે. સચોટ પ્રતિબિંબ મળે તે રીતે પડદાને ગોઠવો. [આકૃતિ A 13 (ii) 1 (b)].

આકૃતિ A 13 (ii). 2: અંતર્ગોળ અરીસા વડે પ્રકાશિત મીણબત્તીનાં મળતા વાસ્તવિક પ્રતિબિંબો (a) u > v અને (b) u < v.

- (10) મીણબત્તીને C પર મૂકો. પડદાને મુખ્ય કેન્દ્ર F તરફ ઓપ્ટિકલ બેન્ચ (optical bench) પર ખસેડો. પદ 1 માં મેળવેલી અંદાજિત કેન્દ્રલંબાઈનો ઉપયોગ કરો. અંતિમ ગોઠવણ કરો. સળગતી મીણબત્તીનું સચોટ પ્રતિબિંબ પડદા પર મેળવો. પ્રતિબિંબના પ્રકારની નોંધ કરો.
- (11) પદ 7 અને 8 ફરીથી કરો અને અવલોકનો નોંધો. પ્રતિબિંબના પ્રકાર પણ નોંધો.
- (12) સળગતી મીણબત્તીને એવી રીતે ખસેડો કે જેથી R>u>f થાય. હવે, પ્રતિબિંબ બિંદુ C અને અનંત (∞) ની વચ્ચે મળશે. એટલે કે $\infty>\nu>R$ [આકૃતિ A 13 (ii). 1 (d)] હવે, $u<\nu$ હોવાથી, મીણબત્તી (વસ્તુ) મુખ્ય અક્ષની નીચે જ્યારે પડદો મુખ્ય અક્ષ ઉપર મૂકો એટલે કે [આકૃતિ A 13 (ii) 2(b)]માં દર્શાવ્યા પ્રમાણે મીણબત્તીની ટોચ અને પડદાનું તળિયું મુખ્ય અક્ષ પર છે.
- (13) મીણબત્તીને F અને પછી F અને P વચ્ચે મૂકી ઉપરના પદને ફરીથી કરવા. કોષ્ટક A 13 (ii) 1 માં અવલોકનો નોંધવા.

નોંધ: જ્યારે મીણબત્તીને વક્કતાકેન્દ્ર C પર મૂકીએ (એટલે કે u=R), આ રીત પ્રતિબિંબનું સ્થાન મેળવવા માટે ઉપયોગી થતી નથી. કારણ કે મીણબત્તી અને પડદાને એક સાથે ઓપ્ટિકલ બેન્ચ પર એક જ જગ્યાએ મૂકવું અઘરું બને છે.

प्रवृत्ति 13

અવલોકનો

અંતર્ગોળ અરીસાની અંદાજિત કેન્દ્રલંબાઈ = cm

કોષ્ટક A 13 (ii) 1 : વસ્તુનાં જુદાં-જુદાં સ્થાન માટે પ્રતિબિંબના પ્રકાર, પરિમાણ અને સ્થાન

અનુ- ક્રમ	અરીસાનું સ્થાન (cm)	મીણબત્તીનું સ્થાન (cm)	જયોતનું પરિમાણ (cm)	પડદા પર પ્રતિબિંબનું સ્થાન (cm)	પ્રતિબિંબનું પરિમાણ (cm)	પ્રતિબિંબનો પ્રકાર (cm)	પ્રતિબિંબનું સાપેક્ષ પરિમાણ (cm)
1							
2							
6							

પરિણામ

પ્રતિબિંબના પ્રકાર, પરિમાણ અને સ્થાનનાં અવલોકનો દર્શાવે છે કે,

- (1) જેમ વસ્તુ મુખ્ય કેન્દ્ર પાસે આવે તેમ પ્રતિબિંબ મુખ્ય કેન્દ્રથી દૂર જાય છે.
- (2) જેમ પ્રતિબિંબ અરીસાથી દૂર જાય છે તેમ તેનું પરિમાણ વધતું જાય છે.
- (3) જયારે વસ્તુ અનંત અને Fની વચ્ચે મૂકેલ હોય ત્યારે અંતર્ગોળ અરીસા વડે રચાતું તેનું પ્રતિબિંબ સાચું અને ઊલટું મળે છે.
- (4) જ્યારે વસ્તુ F અને ધ્રુવ વચ્ચે મૂકેલ હોય ત્યારે પ્રતિબિંબ અરીસાની પાછળ, આભાસી, ચત્તું અને મોટું હોય છે.

સાવચેતીઓ

- (1) આ પ્રયોગ છાંયડાવાળી જગ્યામાં કે જ્યાં સીધો પ્રકાશ આવતો ન હોય (ડાર્ક રૂમ Dark room ને પ્રાધાન્ય) ત્યાં કરવો નહિતર પ્રતિબિંબ ચોખ્ખું દેખાશે નહિ.
- (2) સૂર્યને કેન્દ્રિત કરી અરીસાના કેન્દ્રલંબાઈનું અંદાજિત માપ કાઢતી વખતે સૂર્યને અરીસામાંથી જોવો નહિં. તેનાથી આંખોને નુકસાન થઈ શકે.
- (3) પ્રકાશીય સાધનોને બેન્ચ પર જકડી રાખવા માટે વપરાતી વસ્તુઓ દઢ અને ઊર્ધ્વ હોવી જોઈએ.
- (4) અરીસાનું દર્પણમુખ નાનું હોવું જોઈએ નહીંતર પ્રતિબિંબ સ્પષ્ટ નહિં મળે.
- (5) પડદા પર મળતા પ્રતિબિંબથી આંખને 25 cm કરતા વધુ અંતરે રાખવી.

પ્રયોગશાળા માર્ગદર્શિકા

- (6) જો ઓપ્ટિકલ બેન્ચનો ઉપરનો ભાગ સમક્ષિતિજ ન હોય, તો અવલોકનોમાં ત્રૂટિ ઉદભવી શકે.
- (7) ઓપ્ટિકલ બેન્ચના બધા જ પ્રયોગોમાં આપેલી સામાન્ય સૂચનાઓનું ધ્યાન રાખવું.
- (8) અંતર્ગોળ અરીસો front-coated હોવો જોઈએ નહિતર અરીસાની પરાવર્તક સપાટી પરથી આવતા એકથી વધુ પરાવર્તનના કારણે પ્રતિબિંબનું ચોક્કસ સ્થાન ગુંચવાશે.

ચર્ચા

- (1) જયારે વસ્તુ અરીસાના મુખ્ય કેન્દ્ર અને ધ્રુવ વચ્ચે હોય ત્યારે મળતા પ્રતિબિંબની લાક્ષણિકતાઓનું ચોક્કસપણે અવલોકન કરી શકાતું નથી. તમે ફક્ત પડદાને અરીસાની સામે ખસેડીને પ્રતિબિંબ અરીસાની સામે મળતું નથી તે ચકાસી શકો છો. કિરણ આકૃતિ (Ray diagram) દોરીને જોઈ શકાય કે અરીસાની પાછળ આભાસી પ્રતિબિંબ બને છે.
- (2) તમે અવલોકનના વલણો અને કિરણ આકૃતિઓ દોરી $u = \infty$ અને u = f ને અનુલક્ષીને તારણો કાઢી શકો કારણ કે વસ્તુ અને પ્રતિબિંબ અનુક્રમે ઓપ્ટીકલ બેન્ચની અવધિની બહાર છે.
- (3) u = 2 f ને અનુલક્ષીને પરિસ્થિતિ મેળવવી પણ અઘરી છે કારણ કે મીણબત્તી અને પડદા એક જ સ્થાને મૂકવા પડે.

સ્વ-મૂલ્યાંકન

- (1) અંતર્ગોળ અરીસાની કેન્દ્રલંબાઈ 20 cm છે, તો તેની વક્રતાત્રિજયા કેટલી હશે?
- (2) જ્યારે વસ્તુને અંતર્ગોળ અરીસાની સામે 30 cm અંતરે મૂકીએ ત્યારે તે જ પરિમાણનું પ્રતિબિંબ મળે છે, તો અરીસાની કેન્દ્રલંબાઈ કેટલી હશે ?
- (3) અંતર્ગોળ અરીસાની કેન્દ્રલંબાઈ 30 cm છે. આ અરીસાની સામે વસ્તુ 40 cm અંતરે મૂકી હોય તો મળતા પ્રતિબિંબની લાક્ષણિકતાઓ કઈ હશે ?
- (4) જો અરીસાના નીચલા અડધા ભાગમાં કાળો કલર કરવામાં આવે, તો પ્રતિબિંબના પરિમાણ અને તીવ્રતા પર શું અસર પડે ?
- (5) શું પડદા પર આભાસી પ્રતિબિંબ મેળવી શકાય ? જો હા, તો કેવી રીતે ?
- (6) લેન્સ સાથે કરાતા આવા જ પ્રયોગમાં પ્રતિબિંબ સહેજ રંગીન મળે છે. આનું કારણ શું હશે?

સૂચવેલ વધારાના પ્રયોગો / પ્રવૃત્તિઓ

સમતલ અરીસા અને એક પિન ની મદદથી આપેલ બહિર્ગાળ લેન્સની કેન્દ્રલંબાઈ શોધો.

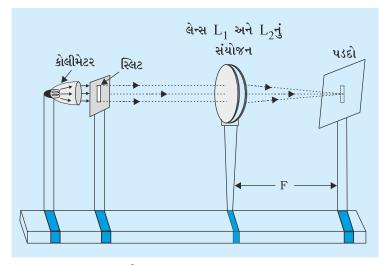
પ્રવૃત્તિ 14

હેતુ

લેન્સના આપેલા સમુહમાંથી બે લેન્સનો ઉપયોગ કરી દર્શાવેલ (યોગ્ય) કેન્દ્રલંબાઈવાળું લેન્સનું સંયોજન મેળવવું.

સાધનો અને જરૂરી સામગ્રી

જ્ઞાત પાવરવાળા બહિર્ગોળ લેન્સનો સમૂહ, પડદા અને ઊર્ધ્વ સ્ટૅન્ડ (upright)વાળી ઓપ્ટિકલ બેન્ચ (optical bench), પ્રકાશનું સમાંતર કિરણપુંજ આપતું પ્રકાશનું ઉદ્દગમ સ્થાન (કોલિમેટર (collimator))


સિદ્ધાંત

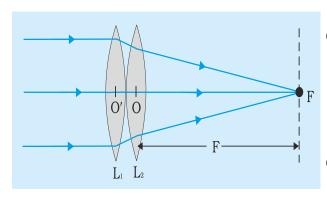
મુખ્ય અક્ષને સમાંતર, પ્રકાશનું સમાંતર કિરણપુંજ લેન્સમાંથી વક્રીભૂત થયા પછી કાં તો મુખ્ય અક્ષ પરના બિંદુ પર કેન્દ્રિત થાય અથવા કોઈ એક બિંદુએથી વિકેન્દ્રીત થતા હોય તેવો આભાસ થાય. આ બિંદુને મુખ્ય કેન્દ્ર કહે છે. ઓપ્ટિકલ કેન્દ્રથી મુખ્ય કેન્દ્ર સુધીના અંતરને કેન્દ્રલંબાઈ કહે છે.

લેન્સનો પાવર

લેન્સની પોતાનામાંથી પસાર થતાં કિરણોને કેન્દ્રિત અથવા વિકેન્દ્રીકરણ કરવાની ક્ષમતાને તે લેન્સનો પાવર કહે છે.

પાવર =
$$\frac{1}{\frac{1}{\frac{1}{2}} + \frac{1}{2}}$$

આકૃતિ A 14.1 (a) : લેન્સના સંયોજનની કેન્દ્રલંબાઈ


તેનો SI એકમ ડાયોપ્ટર (Dioptre) છે. બહિર્ગોળ લેન્સનો પાવર ધન લેવામાં આવે છે. બે કે તેથી વધુ લેન્સ એકબીજાના સંપર્કમાં રહે અને તેમની મુખ્ય અક્ષ સામાન્ય રહે તેવી ગોઠવણને લેન્સનું સંયોજન કહે છે. જો લેન્સની વ્યક્તિગત કેન્દ્રલંબાઈ $f_{\rm l}, f_{\rm 2}, f_{\rm 3}$, $f_{\rm n}$ હોય અને સંયોજનની કેન્દ્રલંબાઈ F હોય, તો

પ્રયોગશાળા માર્ગદર્શિકા

$$\begin{split} &\frac{1}{\mathrm{F}} = \frac{1}{f_{\mathrm{I}}} + \frac{1}{f_{\mathrm{2}}} + \ldots + \frac{1}{f_{\mathrm{n}}} \\ &\text{અથવા} \ \ P = P_{\mathrm{I}} + P_{\mathrm{2}} + \ldots + P_{\mathrm{n'}} \\ &\text{અહીં} \ \ P = \ \mathrm{ai}\ \mathrm{ai}\ \mathrm{avel} + P_{\mathrm{n}} + P_{\mathrm{n'}} \\ &\text{P}_{\mathrm{I}}, P_{\mathrm{2}}, \ldots + P_{\mathrm{n}} = \ \mathrm{ai}\ \mathrm{respect} + P_{\mathrm{n'}} \\ &\text{આફિતિ A 14.1 (a)} \end{split}$$

પદ્ધતિ

- (1) જરૂરી કેન્દ્રલંબાઈને અનુલક્ષીને બંને લેન્સના સંયોજનનો પાવર ગણો.
- (2) આપેલા લેન્સના સમૂહમાંથી એક લેન્સ એવો પસંદ કરો કે, જેનો પાવર-સંયોજનના પાવર કરતા ઓછો હોય. (જો ફક્ત બહિર્ગોળ લેન્સ જ હોય તો)
- (3) જરૂરી કેન્દ્રલંબાઈવાળું સંયોજન મેળવવા માટે જ્ઞાત કેન્દ્રલંબાઈવાળા લેન્સની સાથે સંપર્કમાં મૂકવામાં આવનાર અજ્ઞાત કેન્દ્રલંબાઈવાળા લેન્સનો પાવર શોધો. લેન્સના સમૂહમાંથી એવો લેન્સ પસંદ કરો કે જેનો પાવર ગણતરી કરેલા પાવરની નજીક હોય.

આકૃતિ A 14.1 (b) : સમાંતર કિરણપુંજને લેન્સના સંયોજન પર આપાત કરવું

- (4) સમિક્ષિતિજ ટેબલ પર ઓપ્ટિકલ બેન્ચને ગોઠવો. કોલીમેટરને એવી રીતે ગોઠવો કે તેમાંથી પ્રકાશનો સમાંતર કિરણપુંજ સીધો ઓપ્ટિકલ બેન્ચને સમાંતર જાય. જો કોલીમેટર ના મળે તો સમતલ અરીસા વડે સૂર્યપ્રકાશને ઓપ્ટિકલ બેન્ચને સમાંતર કરો. અને સ્લિટને પ્રકાશીત કરો. [આકૃતિ A 14.1 (b)].
- (5) બે લેન્સને એકબીજા સાથે સંપર્કમાં રહે તે રીતે ઊર્ધ્વ સ્ટૅન્ડ પર મૂકો. આ માટે એકબીજા સાથે સંપર્કમાં હોય તેવા બે લેન્સ પકડી રાખે તેવું સ્ટેન્ડ અથવા થરમૉકોલની શીટમાં ખાંચા પાડીને લેન્સને ગોઠવી શકાય.
- (6) સમાંતર કિરણપુંજને આ સંયોજન પર આપાત કરવું અને બીજી તરફ મૂકેલા પડદા પર તેનું સચોટ પ્રતિબિંબ લેવું. આ માટે પડદા અને લેન્સના સંયોજન વચ્ચેનું અંતર ગોઠવવું.
- (7) બંને લેન્સથી પડદાનું અંતર માપવું અને કોષ્ટકમાં નોંધવું.
- (8) ઓપ્ટિકલ બેન્ચ પર ઓછામાં ઓછું ત્રણવાર લેન્સના સંયોજનનું સ્થાન બદલી આ પ્રવૃત્તિ ફરીથી કરવી. દરેક કિસ્સામાં અવલોકનો નોંધવાં.

प्रवृत्ति 14

અવલોકનો

લેન્સ $\mathbf{L_1}$ ની કેન્દ્રલંબાઈ $=f_1$ લેન્સ $\mathbf{L_2}$ ની કેન્દ્રલંબાઈ $=f_2$

લેન્સ-સંયોજનની ગણતરીથી કેન્દ્રલંબાઈ $\frac{1}{F} = \frac{1}{f_1} + \frac{1}{f_2}$

ઓપ્ટિકલ બેન્ય પરની માપપટ્ટીનું લઘુત્તમ માપ = ... mm

કોષ્ટક A 14.1 : લેન્સના સંયોજનની કેન્દ્રલંબાઈ

અનુક્રમ	પડદાથી પહેલા લેન્સનું અંતર	પડદાથી બીજા લેન્સનું અંતર	પડદાનું લેન્સના સંયોજનથી સરેરાશ અંતર
નંબર	d ₁ (cm)	<i>d</i> ₂ (cm)	$\frac{d_1 + d_2}{2} = F(\text{cm})$
1			
2			
3			

ગણતરીઓ

લેન્સના સંયોજનથી પડદાનું સરેરાશ અંતર એ તેની કેન્દ્રલંબાઈનું માપ છે. પ્રયોગ દરમિયાન મળેલા બધા જ અવલોકનો (readings)ના સરેરાશને સંયોજનની કેન્દ્રલંબાઈ તરીકે લો.

પરિણામ

લેન્સ-સંયોજનની કેન્દ્રલંબાઈની માપેલી કિંમત = ... cm માપેલી કેન્દ્રલંબાઈ અને ગણતરી દ્વારા મેળવેલી કેન્દ્રલંબાઈ વચ્ચેનો તફાવત = ... cm આ તફાવત પ્રયોગ દરમિયાન થયેલી ત્રુટિના કારણે હોઈ શકે.

ત્રુટિનાં ઉદ્ગમો

- (1) લેન્સના જાડાપણાના કારણે ત્રુટિઓ ઉદ્ભવી શકે.
- (2) લેન્સના પરિઘનો ભાગ સંપર્કમાં હોતો નથી.
- (3) સચોટ પ્રતિબિંબનું સ્થાન એટલે કે સચોટ કેન્દ્રલંબાઈ મેળવવામાં ગોલીય વિપથન (Spherical abberation)ના કારણે ત્રુટિ ઉદ્ભવી શકે.

પ્રયોગશાળા માર્ગદર્શિકા

ચર્ચા

- (1) જ્ઞાત કેન્દ્રલંબાઈવાળા બહિર્ગોળ લેન્સના મુખ્ય કેન્દ્ર પર ટૉર્ચ (Torch)નો ગોળો મૂકીને પ્રકાશનું સમાંતર કિરણપુંજ આપતું ઉદ્ગમ મેળવી શકાય.
- (2) લેન્સની જોડીને એકબીજાથી *d* અંતરે ગોઠવી તથા આ અંતરને યોગ્ય રીતે ગોઠવી તમે લેન્સ સંયોજન બનાવી શકો.

સૂત્ર $\frac{1}{F} = \frac{1}{f_1} + \frac{1}{f_2} - \frac{d}{f_1 f_2}$ નો ઉપયોગ કરી તમે ઇચ્છિત કેન્દ્રલંબાઈવાળું સંયોજન બનાવી શકો.

આ રીતે તમે કઈ અવધિની કેન્દ્રલંબાઈઓ મેળવી શકો ?

સ્વ-મૂલ્યાંકન

- (1) 20 cm કેન્દ્રલંબાઈવાળા બહિર્ગોળ લેન્સને 10 cm કેન્દ્રલંબાઈવાળા અંતર્ગોળ લેન્સ સાથે સંપર્કમાં મુકતા આ સંયોજનની અસરકારક કેન્દ્રલંબાઈ કેટલી થશે ?
- (2) જો બહિર્ગોળ લેન્સને સંપૂર્ણપણે પાણીમાં ડુબાડો તો તેની કેન્દ્રલંબાઈ પર શું અસર થશે ?
- (3) f_1 અને f_2 કેન્દ્રલંબાઈ ધરાવતા બે લેન્સને એકબીજાથી d અંતરે રાખીએ તો શું હજુ પણ સૂત્ર $\frac{1}{F} = \frac{1}{f_1} + \frac{1}{f_2} \quad \text{માન્ય છે? જો ના હોય તો સુધારેલું સૂત્ર આપો. શું સંયોજનની કેન્દ્રલંબાઈ <math display="block">(i) < F \ (ii) > F \ \&\ \$

સૂચવેલ વધારાના પ્રયોગો/પ્રવૃત્તિઓ

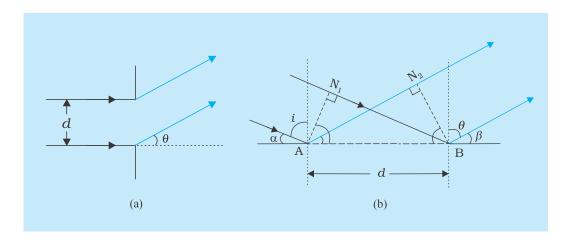
- (1) પ્રત્યાવર્તનક્ષમ ત્રુટિ (Refractive error) ધરાવતી એક વ્યક્તિ દૂર આવેલી વસ્તુઓને સ્પષ્ટ જોઈ શકે છે પણ ચોપડી વાંચી શકતી નથી. આપણે એવું શોધી કાઢ્યું કે, તે વ્યક્તિ કેન્દ્રલંબાઈ
 - 2, $\frac{2}{3}$ m અને -1m વાળા લેન્સનાં સંયોજનોની મદદથી ચોપડી સ્પષ્ટ રીતે વાંચી શકે છે, તો આ વ્યક્તિ માટે કેટલા પાવરવાળો લેન્સ નિયત (Prescribe) કરી શકાય ?
- (2) (i) અભિસારિત લેન્સ તરીકે કામ કરે.
 - (ii) અભિસારિત લેન્સ તરીકે કામ ન કરે. તેના માટે કયા લેન્સોનું સંયોજન પસંદ કરવું પડે ?

પરિયોજનાઓ PROJECTS

પરિયોજના]

હેતુ

વિવર્તનનો ઉપયોગ કરી લેસર (LASER) કિરણપુંજ (Beam)ની તરંગલંબાઈ નક્કી કરવી.


સાધનો અને જરૂરી સામગ્રી

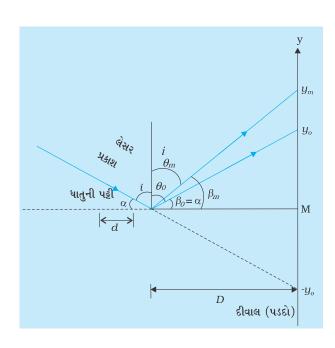
એક He-Ne અથવા અર્ધવાહક લેસર (LASER), mm માં અંકનવાળી સ્ટીલની ચળકતી માપપટ્ટી, એક મીટરપટ્ટી, ક્લેમ્પવાળું સ્ટૅન્ડ, પૂંઠા પર લગાડેલ આલેખનો કાગળ

પદો અને વ્યાખ્યાઓ

LASER : Light Amplification by Stimulated Emission of Radiation. (ટૂંકમાં LASER)

વિવર્તન : નાના કાશા અથવા સ્લિટમાંથી પ્રકાશના વાંકા વળવાની ઘટનાને વિવર્તન કહે છે.

આકૃતિ P 1.1 : એક સ્લિટ વડે વિવર્તન (a) લંબ આપાત (b) ત્રાસું આપાત


સિદ્ધાંત

જો λ તરંગલંબાઈ ધરાવતું પ્રકાશનું સમાંતર કિરણપુંજ d પહોળાઈવાળી સ્લિટ પર લંબરૂપે આપાત થાય [આકૃતિ P 1.1 (a)માં દર્શાવ્યા પ્રમાણે], તો વિવર્તન ભાતનું મધ્યસ્થ અધિકતમ $\theta=0$ પર મળશે અને

પછીના અધિકતમો
$$\sin heta = \left(n + \frac{1}{2}\right) \frac{\lambda}{d}\,,\; n \neq 0$$
 પર મળશે.

પ્રયોગશાળા માર્ગદર્શિકા

સ્ટીલની ચકળતી માપપટ્ટી પર હોય તેવી સમાન અંતરે આવેલી આવી ઘણી બધી સ્લિટો ધ્યાનમાં લઈએ. વળી, પ્રકાશપુંજનો આપાતકોણ 90°ની નજીક હોય.

આકૃતિ P 1.2 : પ્રાયોગિક ગોઠવણની યોજનાકીય રેખાકૃતિ

આકૃતિ P 1.1 (b)ને અનુલક્ષીને આપાત અને વિવર્તિત કિરણપુંજ વચ્ચેનો પથ-તફાવત

$$(N_1B - AN_2) = d (\sin i - \sin \theta)$$

અહીં, i એ આપાત કિરણ અને લંબ વચ્ચેનો કોણ છે. $i \leq 90^\circ$ ના આપાતકોણ પર આપાત λ તરંગલંબાઈવાળા પ્રકાશના વિવર્તન માટે જો ધાતુની માપપટ્ટી પરના કાપાઓનો ઉપયોગ કરીએ, તો આકૃતિ P 1.2માં દર્શાવ્યા મુજબ, θ_m કોણે વિવર્તન પામતાં m મા ક્રમના અધિકતમ માટે,

 $d (\sin i - \sin \theta_m) = m\lambda$ મળે.

જ્યાં ક્રમિક કાપાઓ વચ્ચેનું અંતર d અચળ છે.

જો d=1 mm અને $\alpha=$ આપાત કિરણ અને સ્ટીલની માપપટ્ટી વચ્ચેનો કોણ હોય,

તો
$$lpha=\left(rac{\pi}{2}-i
ight)$$
 અને $eta_{\!\scriptscriptstyle m}=\left(rac{\pi}{2}- heta_{\!\scriptscriptstyle m}
ight)$

તો ઉપરનું સમીકરણ નીચે મુજબ લખી શકાય : $d(\cos\alpha-\cos\beta_m)=m\lambda$ શૂન્યમાં ક્રમ (m=0) માટે, કિરણપુંજ વિશિષ્ટ રીતે પરાવર્તન પામે છે અને $\alpha=\beta_0$ થાય. માપપટ્ટી પરના આપાત ક્ષેત્ર અને પડદાની વચ્ચેના અંતરને D લો. વિવર્તનનાં ટપકાં (spots) Y—અક્ષ પર આવેલ હોય છે અને m મા ક્રમના ટપકાના સ્થાનને y_m વડે દર્શાવીએ. આકૃતિ P 1.2 પરથી

$$\cos \beta_{m} = \frac{D}{\sqrt{D^{2} + y_{m}^{2}}} = \frac{D}{D\sqrt{1 + (\frac{y_{m}}{D})^{2}}}$$

$$\therefore \qquad \cos \beta_m = \left[1 + \left(\frac{y_m}{D} \right)^2 \right]^{-\frac{1}{2}}$$

પરિયોજના 1

$$=1-\frac{1}{2}\frac{y_{\rm m}^2}{D^2}+...$$

દ્વિપદી વિસ્તરણનો ઉપયોગ કરતાં ($\cdot \cdot$ બધા m માટે $y_{_m} << D$ હોવાથી)

અને
$$\cos \alpha = \cos \beta_0 = 1 - \frac{1}{2} \frac{y_o^2}{D^2} + \dots$$

$$\cos \alpha - \cos \beta_{\rm m} pprox (y_{\rm m}^2 - y_{\rm 0}^2) / 2D^2 = \frac{m\lambda}{d}$$
 (સમીકરણ P1.1 પરથી)

માટે, પ્રકાશની તરંગલંબાઈ

$$\lambda = d \left(y_{_{\mathrm{m}}}^2 - y_{_{0}}^2 \right) / 2 m D^2$$
 વડે આપી શકાય.

પદ્ધતિ

- (1) સ્ટૅન્ડ પર ધાતુની માપપટ્ટીને સમક્ષિતિજ ગોઠવો.
- (2) માપપટ્ટીના છેડા પાસે બીજા સ્ટૅન્ડ પર લેસરનું ઉદ્ગમ ગોઠવો.
- (3) બંને સ્ટૅન્ડને સમાન ઊંચાઈએ એકબીજાથી લગભગ 20 cm દૂર રહે તે રીતે ટેબલ પર મૂકો.
- (4) માપપટ્ટીથી 3 થી 4 m અંતરે, લેસરના ઉદ્ગમ સ્થાનની સામેની દીવાલ પર આલેખનો એક કાગળ ચોંટાડો.
- (5) લેસર ઉદ્ગમને ચાલુ કરો અને તેને એવી રીતે ઢોળાવ આપો કે જેથી લેસરની કિરણપુંજ માપપટ્ટી પરના છિદ્ર/થોભણ (grooves) પર ગ્રેઝિંગ (grazing) [આપાતકોણનો પૂરકકોણ] કોણે અથડાય અને આલેખવાળા કાગળ પર વિવર્તન બિંદુઓ જોવા મળે. (આલેખના કાગળ પર બિંદુઓ જોવા માટે તમારે ઉદ્ગમ અને માપપટ્ટીનું સ્થાન અને નમન ગોઠવવું પડશે.)
- (6) હવે લેસર અને માપપટ્ટીનું સ્થાન તથા નમન નિશ્ચિત રાખો.
- (7) આલેખના કાગળ પર જુદાં-જુદાં વિવર્તન બિંદુઓનાં સ્થાનનાં નિશાન કરો.
- (8) ધાતુની માપપટ્ટી હટાવી, લેસર ઉદ્દગમ પરથી સીધા આવતાં બિંદુઓનું આલેખ પેપર પર અવલોકન કરો. આ સ્થાનને $(-y_o)$ કહો.
- (9) સીધી આવતી કિરણપુંજના સ્થાન $(-y_0)$ અને પ્રથમ બિંદુ (y_0) ના વચ્ચેના મધ્ય બિંદુ આલેખ પર શોધો અને તેને M કહો.
- (10) હવે M થી બીજા બિંદુનું અંતર (y_i) માપો.
- (11) વિવર્તન ભાતના બીજા અને ત્રીજા ક્રમનું અવલોકન મેળવવા પદ 7 થી 10નું પુનરાવર્તન કરો.

પ્રયોગશાળા માર્ગદર્શિકા

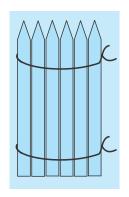
અવલોકનો

પ્રથમ ક્રમ માટે : d = 1 mm $D = \dots \dots \text{ m}$ $M \text{ થી પ્રથમ બિંદુનું અંતર } (y_0) = \dots \dots y_0$ $M \text{ થી બીજા બિંદુનું અંતર } (y_1) = \dots \dots y_1$ બીજા અને ત્રીજા ક્રમનાં અવલોકનો - પ્રથમ ક્રમની જેમ જ.

ગણતરીઓ

દરેક સેટ માટે $(y_1^2-y_0^2)$ ની કિંમત ગણો અને પછી $(y_1^2-y_0^2)$ ની સરેરાશ કિંમત શોધો.

સૂત્ર $\lambda=rac{d(y_1^2-y_0^2)}{2D^2}$ માં આ સરેરાશ મૂલ્યનો ઉપયોગ કરી તરંગલંબાઈ λ ની કિંમત શોધો.


પરિણામ

લેસર કિરણપુંજની તરંગલંબાઈ = m

ચર્ચા

- (2) સોડિયમના સ્ફ્ટીકનો લેટિસ (Lattice) અચળાંક $1\stackrel{\circ}{A}$ છે. શું તમે સોડિયમના સ્ફ્ટીકથી લેસર પ્રકાશનું વિવર્તન મેળવી શકો ?

સૂચવેલ વધારાના પ્રયોગો/પ્રવૃત્તિઓ

આ પરિયોજનામાં ઉપયોગમાં લીધેલા તે જ સિદ્ધાંતની મદદથી પેન્સિલોના સમૂહને નીચે આકૃતિમાં દર્શાવ્યા પ્રમાણે એકબીજાની જોડે મૂકી પેન્સિલની જાડાઈ માપો. (આકૃતિ P 1.3)

આકૃતિ P 1.3 : એકબીજાને અડકીને મૂકેલી પેન્સિલોનો સમૂહ

${f \mathsf{U}}$ રિયોજના ${f 2}$

હેતુ

કોષનો આંતરિક અવરોધ જે પરિબળો પર આધારિત છે તેનો અભ્યાસ કરવો.

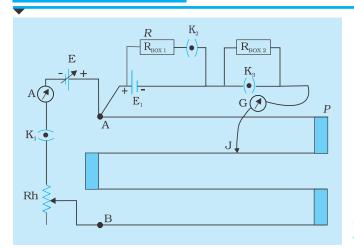
સાધનો અને જરૂરી સામગ્રી

પોર્ટેન્શિયોમીટર, બૅટરી, એક માર્ગી ત્રણ કળ (One-way keys), નાના અવરોધવાળું રીઓસ્ટેટ (rheostat), એક ગૅલ્વેનોમીટર, ઉંચા અવરોધવાળી અવરોધ પેટી, આંશિક અવરોધવાળી અવરોધ પેટી, એમીટર, વોલ્ટમીટર, વોલ્ટાનો કોષ, જુદી-જુદી સાંદ્રતાવાળાં વિદ્યુતવિભાજય દ્રાવણો (electrolytes), જૉકી, જોડાણ માટેના તાર અને કાચપેપર.

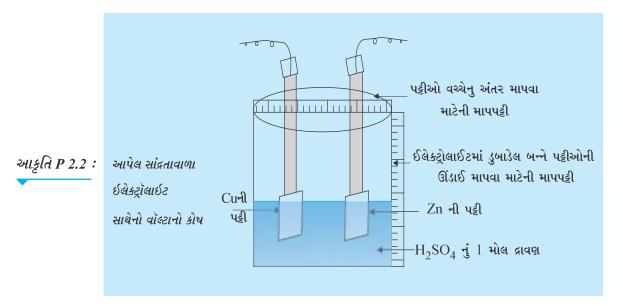
પદો અને વ્યાખ્યાઓ

- (1) આંતરિક અવરોધ : કોષમાંના વિદ્યુતવિભાજય દ્રાવણ વડે પસાર થતા વિદ્યુતપ્રવાહને લાગતો અવરોધ.
- (2) વિદ્યુતચાલક બળ emf(E): ઑપન સર્કિટ (Open Circuit) (એટલે કે જ્યારે વિદ્યુતપ્રવાહ પસાર થતો ન હોય) સ્થિતિમાં આપેલ કોષનો વિદ્યુતસ્થિતિમાનનો તફાવત.

સિદ્ધાંત


પોર્ટેન્શિયોમીટરનો સિદ્ધાંત : સ્થિત પ્રવાહ વહન કરતા અને સમાન આડછેદ ધરાવતા વાહકની લંબાઈના બે છેડા વચ્ચે મળતા વિદ્યુતસ્થિતિમાનનો તફાવત તે વાહકની લંબાઈના સમપ્રમાણમાં હોય છે.

- કોષનો આંતરિક અવરોધ
- (i) ઇલેક્ટ્રૉડ (પ્લેટો) વચ્ચેના અંતર
- (ii) વિદ્યુતવિભાજ્ય દ્રાવણમાં ડુબાડેલા ઇલેક્ટ્રૉડ વચ્ચેના સામાન્ય (common) વિસ્તાર અને
- (iii) વિદ્યુતવિભાજય દ્રાવણની સાંદ્રતા પર આધારિત છે.


પદ્ધતિ

(1) આપેલ સાંદ્રતાવાળા વિદ્યુતવિભાજય દ્રાવણને ભરીને એક કોષ બનાવો. [આકૃતિ P 2.2]

પ્રયોગશાળા માર્ગદર્શિકા

આકૃતિ P 2.1 : પોર્ટેન્શિયોમીટર વડે પ્રાથમિક કોષનો આંતરિક અવરોધ માપવા માટેનો પરિપથ

- (2) કોષનો આંતરિક અવરોધ નક્કી કરવા માટેનો પરિપથ ગોઠવો. [આકૃતિ P 2.1] (સંદર્ભ : પ્રયોગ E 5)
- (3) પ્રયોગ E 5 માં વર્શન કર્યું છે તે પ્રમાણે આપેલ કોષનો આંતરિક અવરોધ નક્કી કરો.

અવલોકનો અને ગણતરીઓ

(1) પ્લેટો વચ્ચેના અંતરની અસર

એક જ વિદ્યુતવિભાજ્ય દ્રાવણમાં પ્લેટો વચ્ચે જુદાં-જુદાં અંતરો માટે કોષનો આંતરિક અવરોધ શોધો. તમારાં અવલોકન દરમિયાન દ્રાવણમાં ડુબાડેલી પ્લેટોનું ક્ષેત્રફળ સમાન રાખવું. કોષ્ટક P 2.1માં અવલોકનો નોંધવા.

પરિયોજના 2

કોષ્ટક P 2.1 : પ્લેટો વચ્ચેના અંતર પર આંતરિક અવરોધનો આધાર

ક્રમાંક	પ્લેટો વચ્ચેનું અંતર	R	સમતોલનની (cm)	આંતરિક અવરોધ	
	(cm)	(Ω)		$r = R \times \left(\frac{l_0 - l}{l}\right)$ (Ω)	
			ઑપન સર્કિટ (જ્યારે કળ \mathbf{K}_2	બંધ-પરિપથ (જયારે કળ K ₂	
			અને $\mathrm{K_{_3}}$ ખુલ્લી હોય)	અને $\mathbf{K}_{_3}$ બંધ હોય)	
			લંબાઈ $l_{_{ heta}}$ (cm)	લંબાઈ <i>I</i>	
1					
2					
3					

II. વિદ્યુતવિભાજ્ય દ્રાવણમાં ડુબાડેલ પ્લેટોના સામાન્ય ક્ષેત્રફળની અસર

કોષ્ટક P 2.2 : વિદ્યુતવિભાજ્ય દ્રાવણમાં ડુબાડેલી પ્લેટોના સામાન્ય ક્ષેત્રફળ પર આંતરિક અવરોધનો આધાર

ક્રમાંક	વિદ્યુતવિભાજ્ય દ્રાવણમાં ડુબાડેલ પ્લેટની લંબાઈ (cm)	R (Ω)	સમતોલનની લંબાઈ (cm)		આંતરિક અવરોધ $r\!=\!\mathrm{R} imes\!\left(\!rac{l_0\!-\!l}{l}\! ight)$ $\left(\Omega ight)$
			ઑપન સર્કિટ $($ જ્યારે કળ $\mathbf{K}_{\!_{3}}$ અને $\mathbf{K}_{\!_{3}}$ ખુલ્લી હોય $)$	બંધ-પરિપથ (જ્યારે કળ $\mathbf{K}_{\!\scriptscriptstyle 2}$ અને $\mathbf{K}_{\!\scriptscriptstyle 3}$ બંધ હોય)	
			લંબાઈ <i>I₀</i> (cm)	લંબાઈ <i>I</i>	
1					
2					
3					

પ્રયોગશાળા માર્ગદર્શિકા

III. વિદ્યુતવિભાજ્ય દ્રાવણની સાંદ્રતાની અસર

બંને પ્લેટ વચ્ચેનું અંતર અચળ જાળવી, વિદ્યુતવિભાજ્ય દ્રાવણમાં સમાન ક્ષેત્રફળ ડુબાડી, આપેલ સાંદ્રતાવાળા દ્રાવણને કોષમાં ભરી, કોષનો આંતરિક અવરોધ નક્કી કરો. આ પ્રયોગનું કોષમાં સમાન ઊંચાઈ સુધી જુદી-જુદી સાંદ્રતાવાળા વિદ્યુતવિભાજ્ય દ્રાવણ ભરી પુનરાવર્તન કરવું. અવલોકનોને કોષ્ટક P 2.3માં નોંધવા.

કોષ્ટક P 2.3 : વિદ્યુતવિભાજ્ય દ્રાવણની સાંદ્રતા પર આંતરિક અવરોધનો આધાર

ક્રમાંક	વિદ્યુતવિભાજ્ય દ્રાવણની સાંદ્રતા (મોલમાં)	R (Ω)	સમતોલનની લંબાઈ (cm)		આંતરિક અવરોધ $r\!=\!R imes\!\left(\!rac{l_0\!-\!l}{l}\! ight)$ (Ω)
			ઑપન સર્કિટ $($ જયારે કળ $\mathbf{K}_{\!\scriptscriptstyle 2}$ અને $\mathbf{K}_{\!\scriptscriptstyle 3}$ ખુલ્લી હોય $)$	બંધ-પરિપથ $($ જ્યારે કળ $\mathbf{K}_{\!\scriptscriptstyle 2}$ અને $\mathbf{K}_{\!\scriptscriptstyle 3}$ બંધ હોય)	
			લંબાઈ <i>l</i> $_{\scriptscriptstyle 0}$ (cm)	લંબાઈ <i>l</i> (cm)	
1					
2					
3					

પરિણામ

- (1) ઇલેક્ટ્રૉડ (પ્લેટ) વચ્ચેના અંતરના વધારા સાથે કોષનો આંતરિક અવરોધ વધે છે.
- (2) વિદ્યુતવિભાજય દ્રાવણમાં ડુબાડેલ ઇલેક્ટ્રૉડના સામાન્ય ક્ષેત્રફળના ઘટાડા સાથે આંતરિક અવરોધ વધે છે.
- (3) વિદ્યુતવિભાજ્ય દ્રાવણની સાંદ્રતાના ઘટાડા સાથે આંતરિક અવરોધ વધે છે.

સાવચેતીઓ

- (1) બૅટરી Eનું વિદ્યુતચાલક બળ, કોષ E_1 ના વિદ્યુતચાલક બળ કરતા વધુ છે તેની ખાતરી કરી લેવી.
- (2) બંને E અને E₁ના ધન છેડાને પોટૅન્શિયોમીટરના A છેડા સાથે જોડવા જોઈએ.
- (3) વિદ્યુતપ્રવાહને બહુ લાંબા સમય માટે પસાર ન કરવો કે જેથી તાર ગરમ થાય જેના પરિણામે અવરોધમાં ફેરફાર થાય.

- (4) તારની લંબાઈ હંમેશા જ્યાં બધા ધન છેડા જોડેલા હોય તેવા પોટેન્શિયોમીટરના છેડા A થી માપવી.
- (5) જૉકીને તાર પર બહુ જોરથી ન દબાવવી નહિતર તારનો વ્યાસ સમાન નહિં રહે. વધુમાં, જૉકીને તાર પર ફેરવતી વખતે પણ ભાર ન આપવો.

ત્રુટિનાં ઉદ્ગમો

- (1) પોર્ટેન્શિયોમીટરનો તાર સંપૂર્ણ લંબાઈ પર સમાન આડછેદવાળો ન પણ હોય.
- (2) પોર્ટેન્શિયોમીટર પર વિદ્યુતવિભવનો ઘટાડો કરતાં સહાયક / ગૌણ (auxiliary) કોષનું વિદ્યુતચાલક બળ સંપૂર્ણ પ્રયોગ દરમિયાન અચળ ન પણ રહે.
- (3) પોટૅન્શિયોમીટરના તારના છેડાઓના અવરોધને ગણતરીમાં લીધા નથી.
- (4) વિદ્યુતપ્રવાહના કારણે પોટૅન્શિયોમીટર તાર ગરમ થવાથી પણ ત્રુટિ ઉદ્ભવી શકે.

ચર્ચા

- (1) કોષનો આંતરિક અવરોધ તાપમાન પર પણ આધારિત હોય છે એટલે જ સંપૂર્ણ પ્રયોગ દરમિયાન વિદ્યુતવિભાજય દ્રાવણનું તાપમાન અચળ જાળવવું જોઈએ.
- (2) સમતોલન બિંદુનું અંદાજિત સ્થાન મેળવતી વખતે, વધુ પડતા વિદ્યુતપ્રવાહથી ગેલ્વેનોમીટરને થતા નુકસાનથી બચાવવા, તેની સાથે શ્રેણીમાં મોટો અવરોધ જોડવો. આનાથી સમતોલન બિંદુના સ્થાન પર કોઈ અસર પડતી નથી. જોકે સમતોલન બિંદુનું ચોક્કસ સ્થાન મેળવતી વખતે આ અવરોધને દૂર કરવો. ગેલ્વેનોમીટર સાથે સમાંતરમાં શંટ જોડીને પણ આ હેતુ પાર પાડી શકાય.
- (3) આંતરિક અવરોધ વહેતા વિદ્યુતપ્રવાહ પર પણ આધારિત છે, તેથી વહેતો પ્રવાહ પણ ખાસ બદલાવવો જોઈએ નહિ.
- (4) વાહકનો અવરોધ તેની લંબાઈ સાથે વધે છે એટલે જ કોષનો આંતરિક અવરોધ પ્લેટ વચ્ચેના અંતરના વધારા સાથે વધે છે.
- (5) વાહકનો અવરોધ તેના આડછેદના ક્ષેત્રફળ સાથે વ્યસ્ત પ્રમાણમાં બદલાય છે. તેથી કોષનો આંતરિક અવરોધ પ્લેટના સામાન્ય ક્ષેત્રફળના ઘટાડા સાથે વધે છે.
- (6) વિદ્યુતવિભાજય દ્રાવણની વાહકતા જે તે દ્રાવણના વિયોજન અંશ (degree of dissociation) પર આધારિત છે.

પ્રયોગશાળા માર્ગદર્શિકા

સ્વ-મૂલ્યાંકન

- (1) જો ગૅલ્વેનોમીટરમાં ફક્ત એક જ તરફનું વિચલન મળે તો શું તારણ કાઢશો ?
- (2) શું કોષ સાથે જોડેલા બાહ્ય અવરોધ Rને લાંબી અવધિમાં ફેરફાર કરી શકાય ?
- (3) પોર્ટેન્શિયોમીટરની સંવેદિતા કઈ રીતે વધારી શકાય ?
- (4) તમને બે કોષ A અને B આપેલ છે. આમાંથી કોષ A તાજો બનાવેલો અને કોષ B થોડા સમયથી વાપરેલો છે. આ બંનેમાંથી કયા કોષનો આંતરિક અવરોધ ઓછો હશે ?

પરિયોજના 3

હેતુ

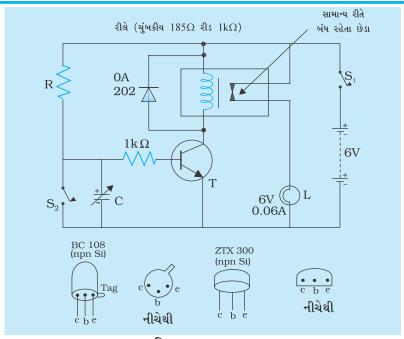
ટાઈમ સ્વિચ (Time Switch) બનાવવી અને તેનો સમય-અચળાંક જુદાં-જુદાં પરિબળો પર કેવી રીતે આધારિત છે તેનો અભ્યાસ કરવો.

સાધનો અને જરૂરી સામગ્રી

એક બૅટરી (6V), એક ગોળો (6V, 0.06 A), એક રીલે (relay) (ચુંબકીય - 185 Ω), એક ટ્રાન્ઝિસ્ટર (n-p-n BC 108), બે કળ S_1 અને S_2 , દરેક 1/2 W ના અવરોધો (5k Ω , 10 k Ω , 15 k Ω) , કેપેસીટર (વિદ્યુતવિભાજ્ય પ્રકારના 500 μ F, 1000 μ F, 2000 μ F), જોડાણ માટેના તાર અને સ્ટૉપ ક્લોક (Stop Watch)

સિદ્ધાંત

જ્યારે C કેપેસીટન્સ ધરાવતા કેપેસીટરને અવરોધ R દ્વારા વિદ્યુતભારિત કરવામાં આવે ત્યારે કોઈ


ક્ષણે આ કેપેસીટરે મેળવેલા વિદ્યુતભારને $q(t)=q_0[1-\mathrm{e}^{-\frac{\mathrm{t}}{r}}]$ વડે આપી શકાય જ્યાં $\tau=RC$ એ સમય અચળાંક છે.

વિદ્યુતભારિત કરતી વખતે મહત્તમ વિદ્યુતભારના 63.7 % વિદ્યુતભાર મેળવવા માટે કેપેસીટરને લાગતા સમયને પરિપથનો સમય-અચળાંક કહે છે.

પદ્ધતિ

- (1) આકૃતિ P 3.1 માં દર્શાવ્યા પ્રમાણે ઘટકોને ગોઠવો અને પરિપથ બનાવો.
- (2) સ્વિચ S_1 બંધ કરી, સ્ટૉપ ક્લોક ચાલુ કરો. ગોળો L ચાલુ થશે અને અવરોધ Rમાં થઈ કેપેસીટર C વિદ્યુતભારિત થવાનું ચાલુ થશે.
- (3) થોડા સમય પછી, કેપેસીટર પરનો વોલ્ટેજ થ્રેશોલ્ડ (threshold) કિંમત કરતાં વધુ થશે જેથી ટ્રાન્ઝિસ્ટર T માંથી બેઝ પ્રવાહ વહેતો થશે અને એટલે જ કલેક્ટર પ્રવાહ પણ વહન પામશે. આને લીધે રીલે કોન્ટેક્ટ્સ (relay contacts) તૂટશે અને ગોળો બંધ થઈ જશે. જેવો ગોળો બંધ થાય કે તરત સ્ટૉપ ક્લોક બંધ કરવી. સમયગાળો નોંધવો અને તેને R અને Cના ગુણાકાર સાથે સરખાવો.
- (4) Rની કિંમત (ધારો કે 5 k Ω) અચળ રાખી, Cની ત્રણ કિંમતો (દા.ત., 500 μF , 1000 μF ,

પ્રયોગશાળા માર્ગદર્શિકા

આકૃતિ P 3.1 : ટાઇમ સ્વિચનું પરિપથ

2000 μF)નો ઉપયોગ કરી દરેક કિસ્સામાં સમયગાળો માપવો. Rની કિંમત $10~k\Omega$ અને $15~k\Omega$ લઈને આ જ પદ્ધતિનું પુનરાવર્તન કરવું. અવલોકનોને કોષ્ટક P 3.1માં નોંધવાં.

(5) Cની કિંમત (ધારો કે 500 μ F) અચળ રાખવી, Rની ત્રણ કિંમતો (દા.ત., 5 $k\Omega$, 10 $k\Omega$ અને $15k\Omega$)નો ઉપયોગ કરી ગોળો ચાલુ (ON) અને બંધ (OFF) વચ્ચેનો સમયગાળો માપો. Cની કિંમત $1000~\mu$ F અને $2000~\mu$ F લઈને આ જ પદ્ધતિનું પુનરાવર્તન કરવું. અવલોકનોને કોષ્ટક P 3.2માં નોંધવાં.

અવલોકનો અને ગણતરી

સ્ટૉપ ક્લોકનું લઘુત્તમ માપ = ... sec

કોષ્ટક P 3.1 : R અચળ હોય ત્યારનો સમયગાળો

ક્રમાંક	$R_{_1}$	= 5 kΩ	ગુણાકાર	R_2 =	= 10 kΩ	ગુણાકાર	R_3	= 15 kΩ	ગુણાકાર
	<i>C</i> ની	સમયગાળો	RC (s)	<i>C</i> ની	સમયગાળો	RC (s)	<i>C</i> ની	સમયગાળો	RC (s)
	કિંમત	(s)		કિંમત	(s)		કિંમત	(s)	
	(μ F)			(µF)			(μ F)		
1									
2									
3									

પરિયોજના 3

કોષ્ટક P 3.2 : C અચળ હોય ત્યારનો સમયગાળો

ક્રમાંક	$C_1 =$	500 μF	ગુણાકાર	$C_2 =$	1000 μF	ગુણાકાર	$C_3 =$	2000 μF	ગુણાકાર
	<i>R</i> ની કિંમત kΩ		RC (s)	<i>R</i> ની કિંમત kΩ	સમયગાળો (s)	RC (s)	<i>R</i> ની કિંમત kΩ	સમયગાળો (s)	RC (s)
1									
2									
3									

પરિણામ

સાવચેતી

પરિપથ અને તેમાં લગાડેલા ઘટકોને સાવચેતીથી તપાસવા. ડ્રાય સોલ્ડરિંગ (Dry Soldering) ન થાય તે માટે ખાસ ધ્યાન રાખવું.

સ્વ-મૂલ્યાંકન

જો પરિપથમાં n-p-nને બદલે p-n-p ટ્રાન્ઝિસ્ટરનો ઉપયોગ કરીએ, તો તમે પરિપથમાં કેવો ફેરફાર કરશો ?

સૂચવેલ વધારાના પ્રયોગો / પ્રવૃત્તિઓ

પૂર્ણતરંગ રેક્ટિફાયરમાં મળતા સ્પંદયુક્ત (Pulsating) DCને લીસું (smooth) કરવા માટે લોડ સાથે સમાંતરમાં કેપેસીટર જોડી શકાય. કેપેસીટરના ચાર્જિંગ અને ડિસ્ચાર્જિંગ (discharging)ને આ એકધારું કરવાની ક્રિયા (smoothening) સાથે સાંકળો. વધુમાં, એ પણ ચર્ચા કરો કે વધુ કેપેસીટન્સવાળો કેપેસીટર વાપરીએ તો શું એકધારો થવાની પ્રક્રિયામાં કોઈ સુધારો આવે.

<mark>પ</mark>રિયોજના 4

હેતુ

ફોટો ટ્રાન્ઝિસ્ટર (Photo Transistor)ના ઉપયોગથી વિવિધ ઉદ્દ્રગમો વડે ઉત્સર્જાતા પારરક્ત (Infrared) વિકિરણોનો અભ્યાસ કરવો.

સાધનો અને જરૂરી સામગ્રી

ફોટોટ્રાન્ઝિસ્ટર, મિલિએમીટર (0-30mA), 6Vની બે બૅટરીઓ, ઇન્ફ્રારેડ ઉદ્ગમો જેવા કે IR LED, વિદ્યુત–ગોળા $(40\ \text{W},\ 60\ \text{W},\ 100\ \text{W})$, ચલ અવરોધ, અવરોધો $(1\ \text{k}\Omega,\ 5\ \text{k}\Omega)$, કળ (keys), જોડાણ માટેના તાર

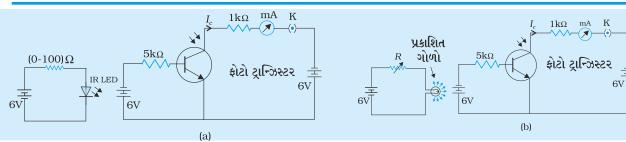
સાધન/ઉપકરણનું વર્ણન

ફોટોટ્રાન્ઝિસ્ટર : એવું ફોટોડીટેક્શન (Photodetection) ઉપકરણ કે જેના બેઝ ક્ષેત્રમાં પ્રકાશ પડતા કલેક્ટરમાં વિદ્યત્પ્રવાહ મળે છે.

ટંન્ગસ્ટન (Tungsten)નો વિદ્યુત-ગોળો (કે જે રોજબરોજ વાપરીએ છીએ) દેશ્ય પ્રકાશ અને ઇન્ફ્રારેડ બંને વિકિરણોનો ઉદ્ગમ છે.

પદો અને વ્યાખ્યાઓ

10¹¹ Hz થી 10¹⁴ Hz આવૃત્તિનો વિસ્તાર ધરાવતા વિદ્યુત ચુંબકીય વિકિરણોને ઇન્ફ્રારેડ વિકિરણો કહે છે કારણ કે તેમની તરંગલંબાઈ દશ્ય પ્રકાશના લાલ રંગની તરંગલંબાઈ કરતા વધુ હોય છે.


સિદ્ધાંત

કલેક્ટર પરિપથમાં પ્રવાહનું મૂલ્ય બેઝ ક્ષેત્ર પર આપાત થતા વિકિરણની તીવ્રતા પર આધારિત હોય છે.

પદ્ધતિ

ફોટોડીટેક્ટર (photodetector) એક સંવેદનશીલ ઉપકરણ હોવાથી તેને અને ઉદ્દગમને એક બંધ ડબામાં મૂકવો જેથી બીજાં વિકિરણો (જેવા કે દશ્ય / ઇન્ફ્રારેડ) કટ-ઑફ થાય. વધુમાં, સાપેક્ષ નમન બદલ્યા વગર તમે ઉદ્દગમ અને ડીટેક્ટર (detector) વચ્ચેનું અંતર બદલી શકો તેમજ તેને માપી પણ શકો. ઉપકરણની સંપૂર્ણ ગોઠવણ આકૃતિ P4.1માં દર્શાવેલ છે.

પરિયોજના 4

આકૃતિ P 4.1 (a) : ફોટોટ્રાન્ઝિસ્ટરનો ઉપયોગ કરી IR LED માંથી નીકળતા IR વિકિરણને માપવા માટેનો પરિપથ આકૃતિ P 4.1 (b): ફોટોટ્રાન્ઝિસ્ટરનો ઉપયોગ કરી ગોળામાંથી નીકળતા IR વિકિરણને માપવાનો પરિપથ

પહેલા IR LED / ગોળાને ડીટેક્ટરની એકદમ નજીક રાખી, IR ડીટેક્ટરમાં વિદ્યુતપ્રવાહને મહત્તમ કરો. અંતર માપી લો. એમીટરનું અવલોકન નોંધો. હવે અંતરને ક્રમશઃ વધારતા જાઓ અને અનુરૂપ એમીટરનું અવલોકન નોંધો અને તમારાં અવલોકનોને કોષ્ટકમાં નોંધો. જુદાં-જુદાં ઉદ્દ્ગમો (ગોળા) માટે તમારાં અવલોકનોનું પુનરાવર્તન કરો.

અવલોકન

મિલિએમીટરની અવધિ = ... mA મિલિએમીટરનું લઘુત્તમ માપ = ... mA મિલિએમીટરનું પ્રારંભિક અવલોકન = ... mA

કોષ્ટક P 4.1 : જુદાં-જુદાં ઉદ્ગમો માટે ડીટેક્ટર પ્રવાહ

ક્રમાંક	ઉદ્ગમ	ઇનપુટ પાવર	ઉદ્ગમની સાપેક્ષે	ડીટેક્ટર પ્રવાહ $I\ (\mathrm{mA})$
			ડીટેક્ટરનું સ્થાન x (cm)	
1	IR LED	નાનું	(i)	
			(ii)	
			(iii)	
2	ગોળો	40. W/	(iv)	
2	ુાાળા	40 W	(i) (ii)	
			(iii)	
			(iv)	
3	ગોળો	60 W	(i)	
			(ii)	
			(iii)	
			(iv)	
4	ગોળો	100 W	(i)	
			(ii)	
			(iii)	
			(iv)	221

પ્રયોગશાળા માર્ગદર્શિકા

પરિણામ

- (1) ઉદ્ગમથી ડીટેક્ટરના અંતરના વધારા સાથે ડીટેક્ટર પ્રવાહ બદલાય છે.
- (2) આપેલ અંતર માટે, જુદાં-જુદાં ઉદ્ગમો માટે ડીટેક્ટર પ્રવાહ જુદો-જુદો મળે છે.

સાવચેતીઓ

- (1) જોડાણો સ્વચ્છ અને મજબૂત હોવાં જોઈએ.
- (2) ઉદ્ગમ અને ડીટેક્ટરને બંધ ડબામાં રાખવું જેથી છૂટાછવાયા વિકિરણો કટ-ઑફ થાય.

ત્રુટિનાં ઉદ્ગમો

- (1) છૂટાંછવાયાં (વધારાનાં) વિકિરણો સંપૂર્ણપણે કટ-ઑફ ન પણ થયાં હોય.
- (2) મિલિએમીટરના લઘુત્તમ માપના કારણે ત્રુટિ ઉદ્ભવી શકે.

ચર્ચા

- (1) આકૃતિ P 4.1માં દર્શાવેલ પરિપથમાં IR LED પ્રવાહ બદલવાની જોગવાઈ છે. શું તમને લાગે છે કે આને લીધે ઉત્સર્જિત વિકિરણની તીવ્રતા અથવા વિકિરણની આવૃત્તિ અથવા બંને પર અસર પડશે. IR LEDને બદલે લાલ, પીળો અને લીલો LED તે જ ગોઠવણ માટે અજમાવો.
- (2) ડીટેક્ટર પદાર્થ IR માટે સંવેદનશીલ હોય છે. તેના વર્ક ફંક્શનના મૂલ્ય બાબતે તમારો શું વિચાર છે?
- (3) જો તમે આ પ્રયોગનું પુનરાવર્તન એ જ ડીટેક્ટર સાથે, પણ માઇક્રોવેવ ઉદ્ગમ વાપરો તો, તમારા વિચાર પ્રમાણે ડીટેક્ટર પ્રવાહ શું મળશે ?

સૂચવેલ વધારાના પ્રયોગો/પ્રવૃત્તિઓ

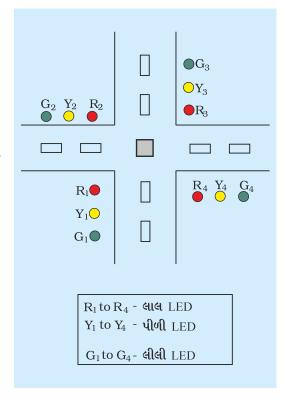
- (1) આ જ ગોઠવણની મદદથી જુદા-જુદા રંગના ફિલ્ટરનો ઉપયોગ કરી ડીટેક્ટર પ્રવાહ પર પ્રકાશના ઉદ્ગમની આવૃત્તિની અસરનો અભ્યાસ કરી શકાય. આપણે લાલ, નારંગી, પીળો, લીલો, વાદળી ફિલ્ટરોનો ઉપયોગ કરી દર્શાવી શકીએ કે કેવી રીતે લાલ અને નારંગી પ્રકાશ માટે ડીટેક્ટર પ્રવાહ મળતો નથી. જ્યારે લીલા અને વાદળી ફિલ્ટર વડે પ્રવાહ મળે છે.
- (2) અવલોકનોના દરેક સમૂહ માટે ડીટેક્ટરના સ્થાન (x) વિરુદ્ધ ડીટેક્ટર પ્રવાહ (I)નો આલેખ દોરો.

પરિયોજના 5

હેતુ

લૉજિક ગેટ્સના યોગ્ય સંયોજનનો ઉપયોગ કરી સ્વયંસંચાલિત ટ્રાફ્રિક સિગ્નલ-વ્યવસ્થાની રચના કરવી.

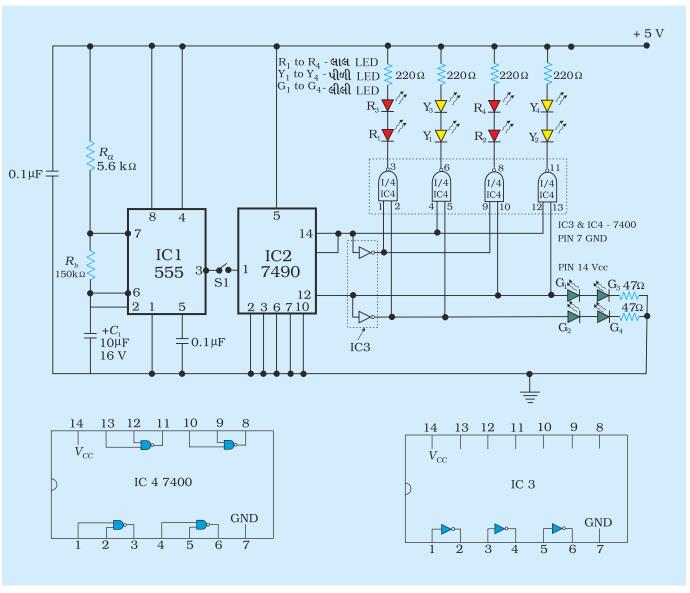
સાધનો અને જરૂરી સામગ્રી


રંગ (લાલ, પીળા, લીલા) દરેકની ચાર LED, એક IC 555 ટાઇમર (Timer), એક IC 7490, બે NOT ગેટ (અથવા એક IC 7400), ચાર NAND ગેટ (અથવા એક IC 7400), $0.1~\mu\text{F}$ અને $10~\mu\text{F}$ (16~V)ના કેપેસીટર, $5.6~\text{k}\Omega$ અને $150~\text{k}\Omega$ ના અવરોધ (દરેક 1~Wના), $47~\text{k}\Omega$ ના બે અવરોધ (દરેક 1~Wના), બેટરી, સ્વિચ

સિદ્ધાંત

ઇન્ટિગ્રેટેડ સર્કિટ (IC) એ ખૂબજ નાના કદનો ઇલેક્ટ્રૉનિક પરિપથ છે કે જેમાં ઇલેક્ટ્રૉનિક ઘટકો અને ઉપકરણોનું આખું તંત્ર સમાવેલું હોય છે. એક ચિપ પર કેટલા ઘટકો લગાડેલાં હોય તેના આધાર પરથી ઇન્ટિગ્રેટેડ સર્કિટોને જુદાં-જુદાં સમૂહમાં વર્ગીકૃત કરાય છે: દા.ત., 555 ટાઇમર, IC 7400 વગેરે MSI (મિડિયમ સ્કેલ ઇન્ટિગ્રેટેડ) સર્કિટનાં ઉદાહરણો છે. કોઈ પણ લૉજિક ગેટનું કાર્ય યોગ્ય IC વાપરીને મેળવી શકાય.

આકૃતિ P 5.1માં ચાર રસ્તા પર ઉપયોગમાં લેવાતી સામાન્ય ટ્રાફિક લાઇટ સિસ્ટમની પાયાની ગોઠવણ બતાવી છે.


દરેક ટ્રાફિક લાઇટ સીસ્ટમ લાલ, પીળી અને લીલી લાઇટનો ઉપયોગ કરે છે. આજકાલ આ કાર્ય માટે LEDનો ઉપયોગ થાય છે. (અહીં $R_1, Y_1, G_1; R_2, Y_2, G_2; R_3, Y_3, G_3$ અને R_4, Y_4, G_4 વડે દર્શાવેલ છે.) ટ્રાફિક લાઇટ સીસ્ટમમાં સામાન્ય રીતે, યાર રસ્તાની વિરુદ્ધ બાજુએ આવેલી સમાન રંગની લાઇટો એક સાથે ON અથવા OFF હોય છે. એટલે જ R_1 અને R_3, R_5

આકૃતિ P 5.1 : રોડ ટ્રાફિક લાઇટ તંત્રની પાયાની પોજનાકીય રેખાકૃતિ

પ્રયોગશાળા માર્ગદર્શિકા

અને R_4 , Y_1 અને Y_3 , Y_2 અને Y_4 , G_1 અને G_3 , G_2 અને G_4 ને શ્રેણીમાં જોડેલા હોય છે. આ

આકૃતિ P 5.2 : સ્વયંસંચાલિત ટ્રાફિક લાઇટનો મૂળભૂત પરિપથ

IC 7490 એ દશક (decade) કાઉન્ટર છે. નામ પ્રમાણે, એ દર 10 ઇનપુટ પલ્સ (pulse) પર એક આઉટપુટ પલ્સ (pulse) આપે છે.

IC 555 એ એકદમ સ્થાયી ટાઇમિંગ પરિપથ છે. જે ચોક્કસ ડીલે (delay) અથવા દોલનો ઉત્પન્ન કરે છે. તેનો આવર્તકાળ એક બાહ્ય અવરોધ-કેપેસીટરના સંયોજનથી નિયંત્રિત થાય છે. ટાઇમરની ટ્રિંગરિંગ (triggering) અને રીસેટિંગ (resetting)ની જોગવાઈ પણ હોય છે.

ટ્રાફિક લાઇટ સીસ્ટમમાં જો લાલ લાઇટ 8 સેકન્ડ (અથવા સમયના 8 એકમો) માટે ON રહે,

પીળી લાઇટ 2 સેકન્ડ માટે અને લીલી લાઇટ 10 સેકન્ડ માટે ON રહે, તો લાલ, પીળી અને લીલી લાઇટના સમયનો ગુણોત્તર 4:1:5 થાય.

IC 555 ટાઇમર IC તરીકે કાર્ય કરે છે જે અવરોધ સાથે શ્રેણીમાં જોડેલા કેપેસીટરના ચાર્જિંગ અને ડીસ્ચાર્જિંગના સિદ્ધાંત પર કાર્ય કરે છે અને તે ચોક્કસ સમયગાળા માટે ઊંચું અથવા નીચું આઉટપુટ આપે છે. વર્તમાન પરિસ્થિતિમાં તેનો ઉપયોગ ચોરસ તરંગ આઉટપુટ મેળવવામાં કે જેનો આવર્તકાળ, કેપેસીટન્સ C_1 અને અવરોધો R_a અને R_b ની યોગ્ય કિંમતો લઈને બદલી શકાય છે. આવા ટાઇમરનો આવર્તકાળ નીચે પ્રમાણે આપી શકાય છે :

$$T = 0.693 \; (R_a + R_b) \; C_{_1} \sim 0.693 \; R_a C_{_1} \; ($$
ੇਮ ਤੇ, $R_a > > R_b)$

IC 7490 એ દશક કાઉન્ટરનું કાર્ય કરે છે.

પદ્ધતિ

- (1) આકૃતિ P 5.1માં દર્શાવ્યા પ્રમાણે પરિપથમાં ઘટકો જોડો.
- (2) એક પ્લાયવુડનું પાટિયું લઈ તેના પર કાળો કલર (રોડનો કલર) કરવો.
- (3) ચાર જુદી-જુદી પટ્ટીઓ પર LED R_1 , Y_1 , G_1 ; R_2 , Y_2 , G_2 ; R_3 , Y_3 , G_3 અને R_4 , Y_4 , G_4 ને લગાડો અને આ ચાર પટ્ટીઓ ચાર રસ્તાની યોગ્ય ચાર બાજુઓ પર જોડી દો.
- (4) પરિપથનાં જોડાણોની બે વાર ચકાસણી કરો અને પછી ટ્રાફિક લાઇટ સીસ્ટમની કામગીરી માટે સ્વિચ બંધ કરો.

અવલોકનો

કોષ્ટક P 5.1: જુદા-જુદા સમયના કાઉન્ટ પર લાઇટોને ON રહેવા માટેની જરૂરિયાતો

સમયનો એકમ (S)	R_1, R_3	Y_1, Y_3	G_1, G_3	R_2, R_4	Y ₂ , Y ₄	G ₂ , G ₄
0 થી 3	1	0	0	0	0	1
4	0	1	0	0	0	1
5 થી 8	0	0	1	1	0	0
9	0	0	1	0	1	0

પરિણામ

સ્વિચ \mathbf{S}_1 બંધ કરતા જ, ટ્રાફિક લાઇટ સીસ્ટમ નિદર્શન આપવાનું કાર્ય શરૂ કરે છે.

પ્રયોગશાળા માર્ગદર્શિકા

સાવચેતીઓ

- (1) પરિપથની ગોઠવણીમાં વપરાતા ઘટકોનું સોલ્ડરિંગ (Soldering) કરતી વખતે પૂરતું ધ્યાન રાખવું જેથી ડ્રાય સોલ્ડરિંગ જોડાણો ટાળી શકાય.
- (2) સીધેસીધા સોલ્ડરિંગથી ICને નુકસાન ન થાય તે માટે IC બેઝનો ઉપયોગ કરવો.

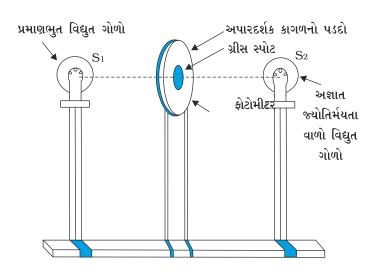
સ્વ-મૂલ્યાંકન

- (1) ફક્ત LED અને ડીલે પરિપથનો ઉપયોગ કરી ટ્રાફિક સિગ્નલ સીસ્ટમનો પરિપથ ડિઝાઇન કરો.
- (2) NAND ગેટનો ઉપયોગ કરી મૂળભૂત ગેટ (OR, AND, NOT) ડિઝાઇન કરો.

પરિયોજના 6

હેતુ

જુદાં-જુદાં પાવર અને બનાવટવાળા વિવિધ વિદ્યુત-ગોળાની જ્યોતિર્મયતા (Luminosity)નો અભ્યાસ કરવો.


સાધનો અને જરૂરી સામગ્રી

યોગ્ય સ્ટૅન્ડવાળી ઓપ્ટિકલ બેન્ચ, બન્સનનો ગ્રીસ સ્પોટ ફોટોમીટર, જુદા-જુદા પાવર અને બનાવટવાળા ગોળા, એક પ્રમાણભૂત ગોળો

સાધનનું વર્શન

બન્સનના ગ્રીસ સ્પોટ ફોટોમીટર (Bunsen's Grease Spot Photometer)નું વર્શન :

એક વતુર્ળાકાર ફ્રેમ પર મેટ (matt) કાગળને જડીત કરીને તેના કેન્દ્ર પર ગ્રીસ (grease)નું ટપકું મૂકતા કાગળનો તે ભાગ અર્ધપારદર્શક બને છે. આવી રીતે બનાવેલ પડદાને ઓપ્ટિકલ બેન્ચના મધ્યબિંદુએ શિરોલંબ સ્ટૅન્ડ પર જડી દેવામાં આવે છે. ફોટોમીટરની એક બાજુએ પ્રમાણભૂત ગોળો અને બીજી બાજુએ એક

આકૃતિ P 6.1 : ગ્રીસ સ્પોટ ફોટોમીટર

વિદ્યુતગોળો એવી રીતે ગોઠવવામાં આવે છે કે જેથી બંને ગોળાની ફિલામેન્ટ અને ગ્રીસનું ટપકું -ત્રણેય એક જ સુરેખ પર ઓપ્ટિકલ બેન્ચના બેઝની જેમ આવે.

પદો અને વ્યાખ્યાઓ

(1) ફોટોમેટ્રી (Photometry) (પ્રકાશમાપન) : ભૌતિકશાસ્ત્રની શાખા કે જેમાં દશ્ય વિસ્તારમાં પ્રકાશનાં જુદાં-જુદાં ઉદ્દગમોની જ્યોતિર્મયતા (Iuminosity) અને સપાટીઓની જ્યોતિ-તીવ્રતાનો અભ્યાસ કરવામાં આવે તે શાખાને ફોટોમેટ્રી (Photometry) કહે છે.

પ્રયોગશાળા માર્ગદર્શિકા

- (2) ઉદ્ગમ-સ્થાનની જયોતિર્મયતા (Luminosity) (L) અથવા જયોતિપાવર (Illuminating Power) : ઉદ્ગમથી એકમ અંતરે અને પ્રકાશકિરણોને લંબરૂપે રાખેલ પૃષ્ઠ પર એકમ સમયમાં એકમ ક્ષેત્રફળ દીઠ દેશ્યપ્રકાશની અવિધમાં આપાત થતી ઊર્જાને તે ઉદ્ગમ-સ્થાનની જયોતિર્મયતા (Luminosity) અથવા જયોતિપાવર (Illuminating power) કહે છે તેને L વડે દર્શાવાય છે. તેનો SI એકમ candela (cd) છે.
- (3) જયોતિ ફ્લક્સ (Luminous Flux) [φ] : ઉદ્ગમ-સ્થાન વડે દરેક દિશામાં, દશ્ય અવધિમાં દર સેકન્ડે ઉત્સર્જિત થતી કુલ ઊર્જાને જયોતિ ફ્લક્સ (Luminous Flux) કહે છે. તેનો SI એકમ lumen છે.
- (4) પૃષ્ઠના કોઈ બિંદુ પર જયોતિતીવ્રતા (I) (Intensity of Illumination) : પૃષ્ઠના કોઈ એક બિંદુની આસપાસ એકમ ક્ષેત્રફળમાં એકમ સમયમાં આપાત થતા દેશ્ય અવધિની ઊર્જાને જયોતિતીવ્રતા કહે છે. તેનો SI એકમ lux છે.
- (5) *પૃષ્ઠની તેજસ્વિતા (Brightness) :* પૃષ્ઠના એકમ ક્ષેત્રફળમાંથી આવતી જયોતિર્મયતાને આપેલ દિશામાં પૃષ્ઠની તેજસ્વિતા (Brightness) કહે છે.

સંબંધ

જયોતિ ફ્લક્સ (ϕ) , જયોતિર્મયતા (L) અને જયોતિતીવ્રતા (I)ના સંબંધો દર્શાવતાં સમીકરણો નીચે પ્રમાણે છે :

(P 6.2)

(P 6.3)

$$\phi = 4\pi L$$

$$I = \phi / 4\pi r^2$$

$$I = L/r^2$$

અને
$$B = IR$$

જયાં R= પૃષ્ઠનો પરાવર્તન સહગુણક (Reflection Coefficient) (0 < R < 1)

અને I= ઉદ્ગમની જયોતિતીવ્રતા

r= ઉદ્ગમથી પૃષ્ઠનું અંતર

સિદ્ધાંત

ફોટોમેટરીના સિદ્ધાંત પ્રમાણે, જો બે જુદા-જુદા પ્રકાશનાં ઉદ્ગમ-સ્થાનો વડે પ્રકાશિત કરેલાં બે પૃષ્ઠોને સમાન તેજસ્વિતા (brightness) હોય, તો બંને ઉદ્ગમોના જયોતિપાવર, સમાન R વાળા પૃષ્ઠોથી તેમના સંબંધિત અંતરોના વર્ગના સમપ્રમાણમાં હોય છે, તેથી.

$$\frac{L_1}{L_2} = \frac{r_1^2}{r_2^2}$$

વાદ (Theory)

ગ્રીસ સ્પોટ ફોટોમીટરમાં પ્રકાશનાં બે ઉદ્દગમ-સ્થાન $\mathbf{S}_{_1}$ અને $\mathbf{S}_{_2}$ પડદાની વિરુદ્ધ બાજુઓ પર એવા

પરિયોજના 6

અંતરે મૂક્યાં છે કે જેથી પડદા પર ગ્રીસ સ્પોટ અને બાકીનું પૃષ્ઠ સમાન પ્રકાશિત લાગે. આ કિસ્સામાં પડદાની બંને બાજુ પર તીવ્રતા સમાન હશે.

પડદાથી r_1 અને r_2 અંતરે મૂકેલા અને અનુક્રમે જ્યોતિપાવર L_1 અને L_2 ધરાવતા બે ઉદ્ગમસ્થાન S_1 અને S_2 ના કારણે પડદા પર મળતી જ્યોતિતીવ્રતા I_1 અને I_2 હોય તો $I_1=I_2$

(P 6.6)

અથવા

$$\frac{L_1}{r_1^2} = \frac{L_2}{r_2^2}$$

(P 6.7)

અથવા

$$\frac{L_1}{L_2} = \frac{r_1^2}{r_2^2}$$

(P 6.8)

જો ઉદ્ગમ-સ્થાન S_1 ને જ્ઞાત જ્યોતિપાવર ધરાવતું પ્રમાણભૂત ઉદ્ગમ લઈએ, તો સમીકરણ (P 6.8)નો ઉપયોગ કરી જુદા-જુદા પાવર અને બનાવટવાળા ગોળાઓના જ્યોતિપાવર શોધી શકાય.

પદ્ધતિ

- (1) ઓપ્ટિકલ બેન્ચ પર યોગ્ય ઊંચાઈ પર ગ્રીસ સ્પોટના પડદાને ગોઠવો.
- (2) જ્ઞાત વૉટેજ (wattage)વાળા વિદ્યુત-ગોળાને પડદાની એક બાજુ પર ગોઠવો અને જુદા વોટેજવાળા બીજા ગોળાને પડદાની બીજી બાજુ પર ગોઠવો.
- (3) સ્ટૅન્ડ અથવા અપરાઇટ્સ (uprights)ની ઊંચાઈ એવી રીતે ગોઠવો કે જેથી બંને ગોળાઓના ફિલામેન્ટ અને ગ્રીસ સ્પોટનું કેન્દ્ર, બધા એક જ સમક્ષિતિજ સુરેખમાં આવે.
- (4) બંને ગોળાઓનાં અંતરો એવી રીતે ગોઠવો કે જેથી ગ્રીસ સ્પોટ અને પડદા પર બાકીની સપાટી સમાન તેજસ્વી લાગે.
- (5) ઓપ્ટિકલ બેન્ચ પર અંતરો $r_{\scriptscriptstyle 1}$ અને $r_{\scriptscriptstyle 2}$ માપો.
- (6) ઇન્ડેક્સનો સુધારો (Index correction) શોધો અને તેનો ઉપયોગ r_1 અને r_2 ની સાચી કિંમત શોધવા માટે કરો.

અવલોકન

(1) પ્રમાણભૂત ગોળાનો પાવર અને બનાવટ = ...

પ્રયોગશાળા માર્ગદર્શિકા

(a) સમાન વૉટેજ પણ જુદા-જુદા બનાવટવાળા ગોળાઓ

કોષ્ટક P 6.1 : બે ઉદ્ગમોના જ્યોતિપાવર

અનુક્રમ	ગોળાની બનાવટ	પડદાથી ગોળ	પડદાથી ગોળાઓનું અંતર			
		જ્યોતિપાવર $L_{_1}$ $r_{_1}$ (cm)	જ્યોતિપાવર $L_{_2}$ $r_{_2}$ (cm)	$\frac{L_2}{L_1} = \frac{r_2}{r_1^2}$		
1						
2						
3						
4						

(b) સમાન બનાવટ પણ જુદા-જુદા વૉટેજવાળા ગોળા

કોષ્ટક P 6.2: બે ઉદ્ગમોના જ્યોતિપાવર

અનુક્રમ	ગોળાનો વૉટેજ	પડદાથી ગોળ	પડદાથી ગોળાઓનું અંતર			
	W	જ્યોતિપાવર $L_{_1}$	જ્યોતિપાવર $L_{_2}$	$\frac{L_2}{L_1} = \frac{r_2}{r_1^2}$		
		માટે <i>r</i> , (cm)	માટે <i>r</i> ₂ (cm)	1 1		
1						
2						
3						
4						

ગણતરીઓ

બંને કોષ્ટકના દરેક અવલોકન માટે ગુણોત્તર $\dfrac{L_2}{L_{\rm l}}=\dfrac{r_{\rm l}^2}{r_{\rm l}^2}$ શોધો.

પરિણામ

(1) સમાન વૉટેજ પણ જુદા-જુદા બનાવટના ગોળાર	ત્રો જ્યોતિમેયતાના ઘટતા ક્રમમા	નીચે મુજબ છે
---	--------------------------------	--------------

(i) ...

(ii) ...

(iii) ...

(iv) ...

(2) સમાન બનાવટ પણ જુદા-જુદા વૉટેજવાળા ગોળાઓ જ્યોતિર્મયતાના ઘટતા ક્રમમાં નીચે મુજબ છે.

(i) ...

(ii) ...

(iii) ...

(iv) ...

<u>પરિયોજના 6</u>

સાવચેતીઓ

- (1) ઓપ્ટિકલ બેન્ચ પર ગોળાઓને સમાન ઊંચાઈ પર ગોઠવવા.
- (2) દરેક અવલોકન પર ઇન્ડેક્સ સુધારો કરવો.
- (3) પડદાના અપારદર્શક ભાગનો પરાવર્તન સહગુણક એક હોવો જોઈએ.

ત્રુટિનાં ઉદ્ગમસ્થાનો

- (1) ઓપ્ટિકલ બેન્ચની માપપટ્ટીનું લઘુત્તમ માપ, માપનમાં ચોકસાઈ પર મર્યાદા મૂકે છે.
- (2) ગ્રીસ સ્પોટ ક્યારે અદશ્ય થશે એટલે કે તે પરિસર જેવો જ પ્રકાશિત બને, તે ચોક્કસપણે નક્કી કરવું અઘરું છે.

ચર્ચા

(1) આ રીતનો ઉપયોગ સમાન પાવર પણ જુદા-જુદા બનાવટના ગોળાઓની જ્યોતિતીવ્રતાની સરખામણી કરવા, બજારમાં તપાસ (સર્વે) કરી અને તપાસેલા ગોળાઓમાં કઈ બનાવટનો ગોળો સૌથી સારો છે તે શોધી કાઢવું.

સ્વ-મૂલ્યાંકન

- (1) જ્યોતિ ફ્લક્સ એટલે શું ?
- (2) ફોટોમેટ્રીમાં વ્યસ્ત વર્ગનો નિયમ લખો.
- (3) ગ્રીસ સ્પોટના પડદાની એક બાજુએ 100 Wનો એક ગોળો 40 cm અંતરે મૂકેલો છે, તો ગ્રીસ સ્પોટને અદશ્ય થવા માટે 60 Wનો ગોળો પડદાની બીજી બાજુ ક્યાં મૂકવો પડે ?
- (4) ગોળાનો જ્યોતિ ફ્લક્સ તેના વિદ્યુતીય પાવર જેટલો હશે. શું તમે તેવી અપેક્ષા રાખો છે ?

सूथवेस वधाराना प्रयोगो/प्रवृत्तिओ

- (1) અજ્ઞાત પાવરના જુદા-જુદા ગોળાઓની જ્યોતિર્મયતાની સરખામણી કરવા માટે પણ આ રીતનો ઉપયોગ કરી શકાય.
- (2) એક બાજુ CFL ગોળો અને બીજી તરફ વિદ્યુત-ગોળો રાખી આ પ્રયોગ અજમાવી જુઓ. \mathbf{y} માણભૂત ગોળાની બાજુના અપારદર્શક ભાગની તેજસ્વિતા $B_1=R_1I_1$

(P 6.9)

પ્રયોગશાળા માર્ગદર્શિકા

જ્યાં $I_{_{\mathrm{I}}}$ = પ્રમાણભૂત ગોળા વડે પડદા પર જ્યોતિ તીવ્રતા અને

 $R_{_{1}}=$ અપારદર્શક ભાગનો પરાવર્તન સહગુણક

 $(\underline{P 6.10})$ ગ્રીસ સ્પોટની તેજસ્વિતા $B_2=R_2~I_1+T_2~I_2$

જ્યાં $R_{_{2}}$ અને $T_{_{2}}$ એ ગ્રીસ સ્પોટના અનુક્રમે પરાવર્તન અને પ્રસારણ સહગુણક છે અને

 $I_{_{\! 2}}$ એ અજ્ઞાત ઉદ્દગમને કારણે પડદા પર જ્યોતિ તીવ્રતા છે.

(P6.11) જો $I_1 = I_2$ તો આપણને $B_2 = (R_2 + T_2) I_1 = R_2 I_1$ મળે.

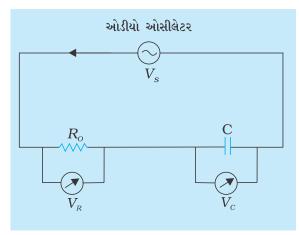
શોષણ સહગુણકને શૂન્ય ધારતા, સમીકરણ P 6.9 અને P 6.11 પરથી સ્પષ્ટ થાય છે કે,

બંને તેજસ્વિતાઓને સમાન થવા માટે $R_{_1}$ અને $R_{_2}$ સમાન મૂલ્યના હોવા જરૂરી છે.

હેતુ

- (i) કેપેસીટર (ii) ઇન્ડક્ટર (iii) LCR શ્રેણી-પરિપથના આવૃત્તિ પ્રતિચાર (Frequency Response)નો અભ્યાસ કરવો.
- (i) કેપેસીટરનો આવૃત્તિ પ્રતિચાર (Frequency Response)

સાધનો અને જરૂરી સામગ્રી


કાગળ અથવા અબરખ (mica)નું કેપેસીટર (0.1 – 1.0 μF), ડિજિટલ મલ્ટિમીટર (DMM), કાર્બન અવરોધ (1000 Ω) અને ઓડિયો ઓસિલેટર (Audio Oscillator) / સિગ્નલ જનરેટર (Signal Generator)

સાધનનું વર્શન

કેપેસીટરમાંથી પસાર થતો વિદ્યુતપ્રવાહ તેના કેપેસીટન્સ અને લાગુ પાડેલા સાઇન્યુસોઇડલ

(Sinusoidal) ઑલ્ટરનેટિંગ (alternating) વોલ્ટેજની આવૃતિ પર આધારિત હોય છે. આવૃત્તિને અચળ રાખી, વોલ્ટેજ (V) સાથે વિદ્યુત-પ્રવાહ (I)ના ફેરફારનું અવલોકન કરી, $V\!-\!I$ ના આલેખના ઢાળ પરથી કેપેસીટિવ રીએક્ટન્સ મેળવાય છે. પ્રવાહને માપવા માટે, $1000~\Omega$ ના ક્રમના કાર્બન અવરોધ $R_{\scriptscriptstyle 0}$ ને પરિપથમાં ઉમેરવામાં આવે છે (આકૃતિ P7.1) અને DMMને ac વોલ્ટેજ મોડમાં રાખી તેના બે છેડા વચ્ચેનો વોલ્ટેજ $(V_{\scriptscriptstyle p})$ માપવામાં આવે છે, તો પરિપથમાં પ્રવાહ

 $I=V_R/R_o$ ઓસિલેટરને જુદી-જુદી આવૃત્તિઓ પર ગોઠવી, જુદી-જુદી આવૃત્તિ માટે X_C શોધાય. X_C વિરુદ્ધ આવૃત્તિ v નાં આલેખને કેપેસીટરનો આવૃત્તિ પ્રતિચાર (ફ્રીકવન્સી રીસ્પોન્સ) કહેવાય છે. X_C^{-1} વિરુદ્ધ આવૃત્તિ v નો આલેખ પણ મેળવાય છે, જે ઉગમબિંદુમાંથી પસાર થતો સુરેખ હોય છે.

આકૃતિ P 7.1 : કેપેસીટરના રીએક્ટન્સનું માપન

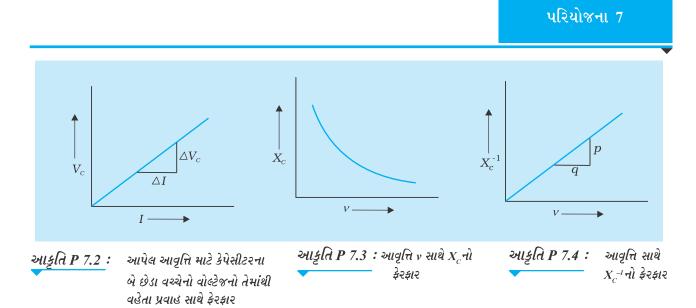
નોંધ : DMM હંમેશાં ac પ્રવાહ અને વોલ્ટેજની rms કિંમત માપે છે. હંમેશા સલાહ આપવામાં આવે છે કે DMM ને ac પ્રવાહ મોડ (Mode)માં વાપરવું નહીં. આ માપન 400 Hz કરતાં ઓછી આવૃત્તિઓ માટે જ વિશ્વસનીય છે.

પ્રયોગશાળા માર્ગદર્શિકા

પદ્ધતિ

- (1) આકૃતિ P 7.1 પ્રમાણે ઓડિયો ઓસિલેટર, કાર્બન અવરોધ $\mathbf{R}_{_0}$ અને કેપેસીટર જોડો.
- (2) ઓસિલેટરને 50 Hz આવૃત્તિ અને મહત્તમ કંપવિસ્તાર પર ગોઠવો. પહેલા Cના બંને છેડા વચ્ચે DMMને ac વોલ્ટેજ મોડમાં, પછી R_0 ના બે છેડા વચ્ચે જોડો. અનુક્રમે V_C અને V_R નું માપન કરો. લાગુ પાડેલ વોલ્ટેજના કંપવિસ્તારમાં ફેરફાર કરીને V_C અને V_R ની જોડીની જુદી- જુદી કિંમતો મેળવાય છે. આ કિંમતોને કોષ્ટક P 7.1માં નોંધાય છે.
- (3) આવૃતિઓ 100 Hz, 150 Hz, 200 Hz, 250 Hz અને 300 Hz સાથે પદ 2 નું પુનરાવર્તન કરાય છે અને $V_{\rm C}$ અને $V_{\rm R}$ ની અનુરૂપ કિંમતો કોપ્ટક P 7.1 માં નોંધાય છે.

અવલોકનો


કોષ્ટક P 7.1: v ની જુદી-જુદી કિંમતો માટે \mathbf{X}_c નું માપન

અનુક્રમ	કંપવિસ્તાર	આવૃત્તિ <i>v</i> (Hz)	V _C (V)	(V)	$I = V_{\rm R}/R_{\rm o}$ (A)	$V_{_{ m C}} ightarrow I$ નો આલેખનો ઢાળ $X_{_{ m C}}$ (Ω)
1		50 (i) (ii) (iii) (iv)				
2		100 (i) (ii)				
		(iii) (iv)				
6		300 (i) (ii) (iii) (iv)				

ગણતરીઓ અન ેઆલખો

આપેલ આવૃત્તિ માટે I ની કિંમતો X—અક્ષ પર અને $V_{\rm C}$ ની કિંમતો Y—અક્ષ પર મૂકવી. સુરેખ આલેખ (આકૃતિ P 7.2)નો પ્રચલન ($\Delta V_{\rm C}$ / ΔI) એ કેપેસીટિવ રીએક્ટેન્સ ($X_{\rm C}$) છે અને તેનું મૂલ્ય ગણી કાઢવામાં આવે. બીજી આવૃત્તિઓ માટે પણ આવું જ કરવું. જુદી-જુદી આવૃત્તિઓ માટે $X_{\rm C}$ નાં મૂલ્યો પણ કોપ્ટક P 7.1માં સમાવેલ છે. $X_{\rm C}$ ને X—અક્ષ પર અને આવૃત્તિ v ને Y—અક્ષ પર રાખી દોરેલા આલેખ (આકૃતિ P 7.3)ને કેપેસીટરનો આવૃત્તિ રીસ્પોન્સ કહે છે. હવે, $X_{\rm C}^{-1}$ ને Y—અક્ષ પર અને આવૃત્તિ v ને X—અક્ષ પર લઈને આલેખ સુરેખ મળે છે. સુરેખ આલેખ (આકૃતિ P 7.4)ના ઢાળ

પરથી કેપેસીટન્સ
$$C$$
ની ગણતરી સૂત્ર, $C = \frac{1}{2\pi} \left(\frac{p}{q} \right)$ પરથી મળે છે.

(ii) ઇન્ડક્ટરનો આવૃત્તિ રીસ્પોન્સ

સાધનો અને જરૂરી સામગ્રી

લઘુ અવરોધ ધરાવતો $0.1~\mathrm{H}$ ઇન્ડક્ટન્સવાળો ઇન્ડક્ટર (L), કાર્બન અવરોધ $R_{_0}$ $(100~\Omega)$, નીચું આઉટપુટ ઇમ્પિડેન્સવાળું ઓસિલેટર, ડિજિટલ મલ્ટિમીટર (DMM)

સિદ્ધાંત

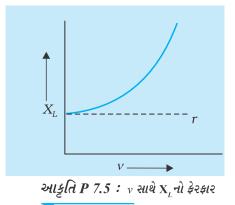
ઇન્ડક્ટરમાંથી પસાર થતો વિદ્યુતપ્રવાહ તેના ઇન્ડક્ટન્સ અને લાગુ પાડેલ સાઇન્યુસોઇડલ ઓલ્ટરનેટિંગ વોલ્ટેજ (Sinusoildal alternating Voltage) પર આધારિત છે. આવૃત્તિ અચળ રાખી, વોલ્ટેજ (V) સાથે પ્રવાહ (I)ના ફેરફારનું અવલોકન કરાય છે અને વોલ્ટેજ (V)ને Y—અક્ષ જ્યારે પ્રવાહ (I)ને X—અક્ષ પર લઈ તેમના વચ્ચેનો આલેખ દોરી તેના પરથી ઇન્ડક્ટિવ રીએક્ટેન્સ શોધી શકાય છે. આ આલેખનો ઢાળ ઇન્ડક્ટિવ રીએક્ટેન્સ $X_{\rm L}=2\pi\ v\ L$ જયાં v એ આવૃત્તિ, ${\rm L}=$ ઇન્ડક્ટરનો ઇન્ડક્ટન્સ છે, જ્યારે ઇન્ડક્ટર આદર્શ છે એટલે કે તેનો અવરોધ r શૂન્ય હોય. જ્યારે $r\neq 0$, ઇન્ડક્ટરનો ઇમ્પિડેન્સ $Z_{\rm L}=\sqrt{4\pi^2v^2L^2+r^2}$. ઓસિલેટરને બીજી આવૃત્તિઓ પર ગોઠવી, જુદી-જુદી આવૃત્તિઓ માટે ઇન્ડક્ટિવ રીએક્ટેન્સ $X_{\rm L}$ શોધાય છે. આવૃત્તિ v અને $X_{\rm L}$ વચ્ચેનો આલેખ ઇન્ડક્ટરનો આવૃત્તિ રીસ્પોન્સ બતાવે છે.

પદ્ધતિ

- (1) આકૃતિ P 7.1 પ્રમાણે જોડાણો કરી તેમાં કેપેસીટર (C) ની જગ્યાએ ઇન્ડક્ટર (L) લગાવી અને અવરોધક $R_{\scriptscriptstyle 0}$ નો અવરોધ બદલીને $100~\Omega$ કરવો.
- (2) આ જોડાણો બનાવી, 50 Hz થી 300 Hz સુધી જુદી-જુદી આવૃત્તિઓ માટે DMM વડે $V_{\rm L}$ અને $V_{\rm R}$ ની કિંમતો શોધાય છે. માહિતીને કોપ્ટક P 7.2માં મુકાય છે. દરેક આવૃત્તિ માટે,

પ્રયોગશાળા માર્ગદર્શિકા

 $V_{_{
m R}}$ અને ${
m I}=(V_{_{
m R}}\,/\,R_{_0})$ વચ્ચેનો આલેખ મેળવાય છે અને આ રેખીય આલેખના ઢાળ પરથી દરેક આવૃત્તિ માટે ઇન્ડક્ટિવ રીએક્ટેન્સ $(X_{_{
m I}})$ ની ગણતરી થાય છે.


અવલોકનો

કોષ્ટક P 7.2 : ν ની જુદી-જુદી કિંમતો માટે $\mathbf{X}_{\mathbf{L}}$ નું માપન

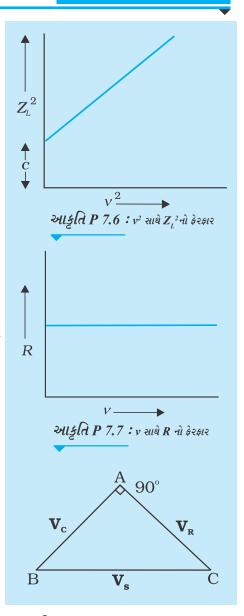
અનુક્રમ	કંપવિસ્તાર	આવૃત્તિ ∨ (Hz)	(V)	V _R (V)	$I = V_{R}/R_{o}$ (A)	$egin{aligned} \mathbf{V}_{_{\mathrm{L}}} & ightarrow \mathbf{I}$ નો આલેખનો ઢાળ $\mathbf{X}_{_{\mathrm{L}}} \; (\Omega) \end{aligned}$
1		50 (i)				
		(ii)				
		(iii)				
2		(iv) 100 (i)				
2		100 (i) (ii)				
		(iii)				
		(iv)				
6		300 (i)				
		(ii)				
		(iii)				
		(iv)				

ગણતરીઓ અને આલેખો

 $V\!\!-\!\!I$ ના સુરેખ આલેખોના ઢાળ પરથી જુદી-જુદી આવૃત્તિઓએ X_L ની કિંમત ગણી શકાય છે. હવે, X_L ને $Y\!\!-\!\!$ અક્ષ પર અને આવૃત્તિ v ને $X\!\!-\!\!$ અક્ષ પર લઈ (આકૃતિ P 7.5) ઇન્ડક્ટર માટે આવૃત્તિ રીસ્પોન્સ વક્ષ મળે છે.

આકૃતિ P 7.5 માં આવૃત્તિ v=0 પર મળતી $X_{\!\scriptscriptstyle L}$ ની કિંમત એ ઇન્ડક્ટરનો અવરોધ r આપે છે. Lની કિંમત શોધવા, $Z_{\!\scriptscriptstyle L}^{\,\,2}$ વિરુદ્ધ v^2 નો આલેખ દોરાય છે. ઇન્ડક્ટરનો ઇમ્પિડેન્સ $Z_{\!\scriptscriptstyle L}^{\,\,2}=4\pi^2\,v^2\,L^2+r^2$ છે. માટે આ આલેખ સુરેખ મળશે. (આકૃતિ P 7.6)

જો આલેખનો ઢાળ m હોય અને Y-અક્ષ પરનો છેદનબિંદુ c હોય, તો આ સ્પષ્ટ

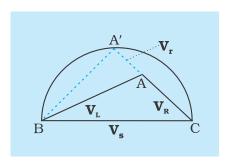

છે કે
$$L = \frac{1}{2\pi} \sqrt{m}$$
 અને $r = \sqrt{c}$

પરિયોજના 7

ચર્ચા

- (i) જો આવૃત્તિ ઘણી વધારે હોય તો $4\pi^2 \ v^2 \ L^2 >> r^2$ તો આ ઊંચી આવૃત્તિ અવિધમાં $Z_L \cong X_L$ અને X_L વિરુદ્ધ v નો આલેખ સુરેખ આવશે. ઊંચી આવૃત્તિ પર આલેખનો ઢાળ $2\pi L$ આવશે. માટે જ $X_L v$ ના આલેખ પરથી ઇન્ડક્ટરનું આત્મ પ્રેરકત્વ L નક્કી કરવાની શક્યતા છે. પણ આ આવૃત્તિ અવિધમાં પ્રયોગ કરવા માટે DMM યોગ્ય નથી. વોલ્ટેજ માપવા માટે કૅથોડ રે ઓસિલોસ્કોપ [CRO \to Cathode Ray Oscilloscope]નો ઉપયોગ કરાય. CRO સાથે વોલ્ટેજ V_L અને V_R તો ખરેખર કંપવિસ્તારનાં જ માપ છે.
- (ii) જો ઇન્ડક્ટન્સ L ધરાવતા ઇન્ડક્ટરની જગ્યાએ કાર્બન અવરોધ (અથવા કોઈ પણ ઇન્ડક્ટન્સ વગરનો અવરોધ) જોડીએ અને આ પ્રયોગનું પુનરાવર્તન કરીએ, તો બધી જ આવૃત્તિઓ માટે V/I=R એટલે જ R વિરુદ્ધ v નો આલેખ v અક્ષને સમાંતર સુરેખ મળશે. (આકૃતિ P 7.7) અવરોધ એ આવૃત્તિથી સ્વતંત્ર છે.
- (iii) ફેઝર ડાયાગ્રામ (Phasor diagram) આકૃતિ P 7.1માં બતાવેલ પરિપથમાં કેપેસીટર પર વોલ્ટેજ \mathbf{V}_{\cdot} અને અવરોધ પર વોલ્ટેજ \mathbf{V}_{\cdot} ની સાથે જો ઉદ્ગમનો વોલ્ટેજ \mathbf{V}_{\cdot} (Source voltage) પણ માપીએ અને તેને કોષ્ટક P7.1માં નોંધીએ, તો જોવા મળશે કે બધાં જ અવલોકનો માટે $\mathbf{V}_{\cdot}^{\cdot} = \mathbf{V}_{\cdot}^{\cdot} + \mathbf{V}_{\cdot}^{\cdot}$.

આનો અર્થ એ છે કે \mathbf{V}_{C} અને \mathbf{V}_{R} એ બે સિંદિશો છે અને અહીં તે પરસ્પર લંબ છે. માટે જો આપણે ત્રિકોણ ABC દોરીએ કે જેમાં બાજુ AB એ \mathbf{V}_{C} ના સપ્રમાણમાં, બાજુ AC એ \mathbf{V}_{R} ના સપ્રમાણમાં અને


આકૃતિ P 7.8 : C – R પરિપથ માટે ફેઝર ડાયાગ્રામ

બાજુ BC એ V_s ના સપ્રમાણમાં હોય તો $\angle CAB = 90^\circ$ મળે.

આ બધી જ આવૃત્તિઓ માટે સાચું છે. આ એ હકીકતનાં કારણો છે કે ${\bf V}_{\rm C}$ અને ${\bf V}_{\rm R}$ ની કળા (phase) જુદી હોય છે અને હકીકતમાં ${\bf V}_{\rm R}$ એ ${\bf V}_{\rm C}$ કરતા કળામાં 90° આગળ હોય છે એટલે જ તેમને ફેઝર કહે છે.

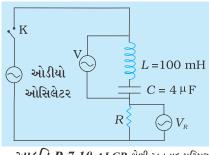
ઇન્ડક્ટરના કિસ્સામાં પણ ફેઝર ડાયાગ્રામ દોરવાની શક્યતા છે. અહીં, શુદ્ધ ઇન્ડક્ટર (જેનો પોતાનો કોઈ અવરોધ ન હોય તેવો)નો વોલ્ટેજ $\mathbf{V_L}$, જ્યારે અવરોધ \mathbf{R} અને ઓડિયો ઓસિલેટર (નાનું ઇમ્પિડેન્સ ધરાવતો) સાથે શ્રેણીમાં જોડાયો હોય ત્યારે $\mathbf{V_L}$ એ અવરોધના

પ્રયોગશાળા માર્ગદર્શિકા

આકૃતિ P 7.9 : L-R પરિપથ માટે ફ્રેઝર ડાયાગ્રામ

વોલ્ટેજ $\mathbf{V_R}$ કરતા આગળ હોય છે. માટે $\mathbf{V_S}^2 = \mathbf{V_R}^2 + \mathbf{V_L}^2$. પણ હકીકતમાં, ઇન્ડક્ટરનો અવરોધ નાનો પણ નિશ્ચિત હોય છે અને જો વોલ્ટેજ ત્રિકોણ ABC દોરવામાં આવે છે અને $\mathbf{V_S} \propto \mathbf{BC}$, $\mathbf{V_L} \propto \mathbf{AB}$ અને $\mathbf{V_R} \propto \mathbf{AC}$ તો $\angle \mathbf{BAC}$, 90° નહિ થાય. પણ જો આપણે BC વ્યાસવાળો અર્ધવર્તુળ બનાવીએ અને તેમાં વર્તુળને A' પર મળે તેવી CA બનાવીએ તો CA' એ પરિપથના કુલ અવરોધ (R+r)ના બે છેડા વચ્ચેનો વોલ્ટેજ ડ્રોપ દર્શાવશે. અહીં, $\mathbf{V_r} \propto \mathbf{AA}$ ' અને \mathbf{BA} ' એ શુદ્ધ ઇન્ડક્ટરના બે છેડા વચ્ચે વૉલ્ટેજ ડ્રોપ બતાવે તો,

 $BC^2 = BA'^2 + CA'^2$.


આ બાબતને CRO પર ચકાસી શકાય કે જે વિવિધ વોલ્ટેજ વચ્ચે કળા-તફાવત માપી શકે છે. (iii) LCR શ્રે<mark>ણી-પરિપથ માટે આવૃત્તિ રીસ્પોન્સ</mark>

સાધનો અને જરૂરી સામગ્રી

આવૃત્તિ માપક્રમવાળો ઓડિયો ઓસિલેટર, અવરોધપેટી, ડિજિટલ વોલ્ટમીટર, $4 \mu F$ વાળું કેપેસીટર (જો $4 \mu F$ વાળું કેપેસીટર ન મળે તો તેને નાની કિંમતવાળા અમુક કેપેસીટરોને સમાંતરમાં જોડીને બનાવી શકાય), આશરે 100 mH વાળું ઇન્ડક્ટર, જોડાણ માટેના તારો

પદ્ધતિ

(1) આકૃતિ P 7.10 માં બતાવ્યા પ્રમાણે પરિપથ જોડો. આશરે $100~\Omega$ ના અવરોધ R સાથે L અને Cને શ્રેણીમાં જોડો.

આકૃતિ P 7.10 :LCR શ્રેણી અનુનાદ પરિપથ

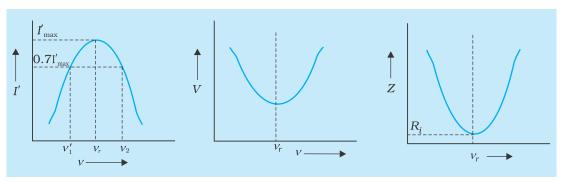
- (2) જ્યારે કળ K ખુલ્લી હોય ત્યારે સિગ્નલ આઉટપુટને નાની કિંમત દા.ત., $2\ V$ પર સેટ કરો.
 - આ ગોઠવણને સમગ્ર પ્રયોગ દરમિયાન નિયત રાખીએ તો આવૃત્તિઓની બધી જ કિંમતો પર આઉટપુટ વોલ્ટેજ $V_{\rm c}$ સમાન મળે. (આવૃત્તિઓને $400~{
 m Hz}$ ની નીચે રાખવી નહિતર ડિજિટલ મીટરનાં અવલોકનો વિશ્વસનીય નહિ રહે.)
- (3) સિગ્નલ જનરેટરને કોઈક નીચી આવૃત્તિ દા.ત., 100 Hz પર ગોઠવી તેની કિંમત નોધો.
- (4) જ્ઞાત અવરોધ R ના બે છેડા વચ્ચે વોલ્ટેજ $V_{\rm R}$ માપો, તો પરિપથમાં વહેતો પ્રવાહ $I = \frac{V_{\rm R}}{R}$ થાય.
- (5) પછી LC સંયોજનના બે છેડા વચ્ચે વોલ્ટેજ V માપો. (બધાં જ વોલ્ટેજ એ rms કિંમત જ છે), તો LC સંયોજનનું ઇમ્પિડેન્સ Z=V/I.
- (6) $I' = \frac{IV_{\rm O}}{V}$ ગણો. જ્યાં $V_{\rm O}$ એ વોલ્ટેજની કોઈ નિયત કિંમત છે. જુદી-જુદી આવૃત્તિઓ માટે પદ 4 અને 5નું પુનરાવર્તન કરો.

અવલોકન અને ગણતરીઓ

જનરેટરનો આઉટપુટ વોલ્ટેજ $V_{\mathrm{o}} = \dots$

કોષ્ટક P 7.3 : v ની જુદી-જુદી કિંમતો માટે Zનું માપન

અનુક્રમ	v (Hz)	I (mA)	V (volt)	$I' = \frac{IV_{O}}{V} (A)$	$Z = \frac{V}{I}(\Omega)$
1					
2					
-					
6					


ઇન્ડક્ટન્સ *L* =

કેપેસીટન્સ $C = \dots$

અનુનાદીય આવૃત્તિ,
$$v_r = \frac{1}{2\pi\sqrt{LC}} = \dots \, \mathrm{Hz}$$

આલેખો

(i) પ્રવાહ I' વિરુદ્ધ આવૃત્તિ (ii) વોલ્ટેજ V વિરુદ્ધ આવૃત્તિ અને (iii) ઇમ્પિડેન્સ Z વિરુદ્ધ આવૃત્તિનો આલેખ તેમના ફેરફારોનાં અવલોકનો કરવા માટે દોરો. ત્રણેય આલેખો પરથી અનુનાદીય આવૃત્તિનું અવલોકન કરી, તેમની કિંમતોની સરખામણી કરો.

આકૃતિ P 7.11 : (a) પ્રવાહ I' વિરુદ્ધ આવૃત્તિ (b) LC સંયોજનના બે છેડા વચ્ચે વોલ્ટેજ V વિરુદ્ધ આવૃત્તિ (c) LC સંયોજનના ઇમ્પિડેન્સ Z વિરુદ્ધ આવૃત્તિના આલેખોની પ્રકૃતિ

પરિણામ

- (1) I' વિરુદ્ધ v ના આલેખ પરથી અનુનાદીય આવૃત્તિ = ... Hz
- (2) V વિરુદ્ધ v ના આલેખ પરથી અનુનાદીય આવૃત્તિ = ... Hz

પ્રયોગશાળા માર્ગદર્શિકા

- (3) Z વિરુદ્ધ v ના આલેખ પરથી અનુનાદીય આવૃત્તિ = ... Hz
- (4) Zની લઘુત્તમ કિંમત એટલે કે Z વિરુદ્ધ v ના આલેખ પરથી આંતરિક અવરોધ $R_i = ...$ (આશરે $100~\Omega$ હોવું જોઈએ.)

ચર્ચા

- (1) શું તમે વિચાર્યું છે શા માટે પ્રયોગ નીચા વોલ્ટેજ પર કરીએ છીએ ? જેમ તમે અનુનાદીય આવૃત્તિ v_r પાસે પહોંચો, તેમ V_L અને V_C બંનેમાં જબરદસ્ત વધારો થાય. માટે, આને કારણે વિદ્યુતકોષ ઘટકોના અલગતા (Insulation)ને નુકસાન થઈ શકે છે. આ જ કારણથી જનરેટરને નીચા વોલ્ટેજ પર રાખીએ છીએ. ખાતરી કરો કે કેપેસીટર અને ઇન્ડક્ટરનું રેટિંગ ઓછામાં ઓછું $300~\mathrm{V}$ હોય.
- (2) $X_{\!\!\!\!/}$ અને $X_{\!\!\!\!\!/}$ વચ્ચે કળાસંબંધ : અનુનાદીય આવૃત્તિથી ઘણી દૂરની આવૃત્તિઓ પર $V_{\!\!\!\!/}$ અને $V_{\!\!\!\!/}$ ની વ્યક્તિગત કિંમતો ઓસિલેટરના આઉટપુટ વોલ્ટેજ કરતાં વધુ હોઈ શકે અને V એ તેમાંના તફાવતની કિંમતના એકદમ નજીક હોઈ શકે. એક અથવા બે આવૃત્તિઓ પર $V_{\!\!\!\!\!/}$ અને $V_{\!\!\!\!\!/}$ ની સાચે જ માપણી કરી આ બાબતને ચકાસી શકાય. દેખીતી રીતે ઇન્ડક્ટિવ અને કેપેસીટિવ રીએક્ટેન્સ એકબીજાથી વિરુદ્ધ હોય છે એટલે કે ઇન્ડક્ટર અને કેપેસીટર પરના વોલ્ટેજ કળામાં એકબીજાથી વિરુદ્ધ હોય છે. પરિપથમાં વહેતો ac વિદ્યુતપ્રવાહ $V_{\!\!\!\!\!/}$ કરતા 90° પાછળ ચાલે છે જયારે $V_{\!\!\!\!/}$ એ ac વિદ્યુતપ્રવાહ કરતા 90° પાછળ ચાલે છે. માટે $V_{\!\!\!\!/}$ અને $V_{\!\!\!\!\!\!/}$ વચ્ચે કળાનો તફાવત 180° નો હોય છે.
- (3) અનુનાદીય પરિપથનો આંતરિક અવરોધ : જ્યારે X_L અને X_C સમાન થાય ત્યારે પરિપથમાં અનુનાદ જોવા મળે છે. આદર્શ ઇન્ડક્ટર અને કેપેસીટરના કિસ્સામાં તેમનું સંયુક્ત રીએક્ટન્સ અનુનાદ પર શૂન્ય મળે છે. આને લીધે અનુનાદ પર અનંત વિદ્યુતપ્રવાહ મળે છે. સિવાય કે સિગ્નલ જનરેટરના આઉટપુટ ઇમ્પિડેન્સને કારણે તે મર્યાદિત થાય છે. ઇન્ડિક્ટવ ગૂંચળાના આંટાઓના અવરોધ અને તેના લોખંડના ગર્ભમાં અમુક હિસ્ટેરિસિસના કારણે નુકસાનના લીધે ઇન્ડિક્ટવ ગૂંચળાનો આંતરિક અવરોધ R_i હોય છે. કેપેસીટરના કિસ્સામાં ઊર્જાનું નુકસાન ડાયઇલેક્ટ્રીકમાં હોય છે. અનુનાદ પર X ની લઘુત્તમ કિંમત આ આંતરિક અવરોધ દર્શાવે છે. તેને સૂત્ર

$$R_i = rac{V_{
m min}}{I_{
m max}}$$
 વડે ગણી શકાય છે.

(4) ક્વોલિટી ફેક્ટર (**Q** – **Factor**)

અનુનાદ પર L ના બે છેડા વચ્ચે વોલ્ટેજ ડ્રોપની કિંમત

$$V_L = X_L I_{\text{max}} = 2\pi v_r L \frac{\mathbf{V}_{\text{min}}}{\mathbf{R}_i} = Q_o V_{\text{min}}$$

અહીં
$$Q_{\mathrm{o}}=rac{2\pi v_{r}L}{R_{i}}=rac{1}{2\pi v_{c}R_{i}}$$
 એ અનુનાદ વખતે ક્વોલિટી ફેક્ટર છે.

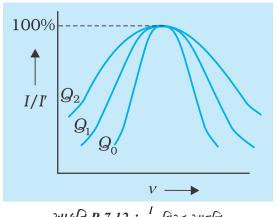
તે L (અથવા C)નું રીએક્ટેન્સ અને Xનો ગુણોત્તર છે. અહીં L અને Cનું રીએક્ટન્સ અનુનાદીય આવૃત્તિ v_μ પર લીધેલું છે.

 Q_{0} એ 1 કરતા વધુ કિંમત ધરાવતું હોઈ L અથવા C પરનું વોલ્ટેજ ડ્રોપ L અને Cના સંયોજનના બે છેડા વચ્ચેના વોલ્ટેજ ડ્રોપ $V_{\mbox{\tiny min}}$ કરતા વધુ હોય છે.

 v_r , R_i , L અને Cની કિંમતો જાણીને Q_0 નું મૂલ્ય ગણો.

સૂચવેલ વધારાના પ્રયોગો/પ્રવૃત્તિઓ

(1) જેનું કેપેસીટન્સ જ્ઞાત ન હોય તેવું કેપેસીટર લો. તેને L ઇન્ડક્ટન્સવાળા ઇન્ડક્ટર સાથે શ્રેણીમાં જોડો અને શ્રેણી અનુનાદ પરિપથથી તેની આવૃત્તાઓ માપો. સમીકરણ $v_r=1/2\pi \left(\sqrt{LC}\right)$ ના ઉપયોગથી અજ્ઞાત કેપેસીટન્સનું મૂલ્ય શોધો.

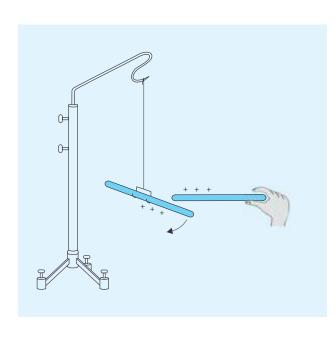

(2) અજ્ઞાત ઇન્ડક્ટન્સવાળું ઇન્ડક્ટર લો. ઉપરની રીતનું પુનરાવર્તન કરો અને તેનું મૂલ્ય શોધો.

(3) LCR શ્રેશી-પરિપથમાં અવરોધની ત્રશ જુદી-જુદી કિંમતો લો. Iને આવૃત્તિ ν ના વિધેય તરીકે લઈ અવલોકનોના ત્રણ સેટના દરેક સેટમાં Iના મૂલ્યોને I' માં રૂપાંતર કરો. જ્યાં I' એ

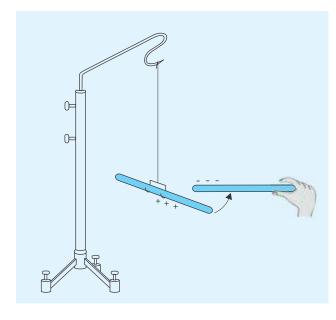
 $\mathbf{V} = \mathbf{V}_{\mathrm{O}}$ હોય ત્યારે પસાર થતો વિદ્યુતપ્રવાહ છે. પછી I^\prime ના મૂલ્યને જે-તે સેટમાં અનુનાદ વખતના મૂલ્યના સંદર્ભમાં ટકાવારીમાં રૂપાંતર કરો. આકૃતિ P 7.12માં

બતાવ્યા પ્રમાણે $\frac{I}{I'}$ (ટકામાં) વિરુદ્ધ આવૃત્તિનો આલેખ

દોરો. Q_0 , Q_1 અને Q_2 ની કિંમતોની સરખામણી કરો. શું તમને જોવા મળે છે કે જેમ Rનું મૂલ્ય ઓછું તેમ અનુનાદ વધુ તીક્ષ્ણ બને છે ? તમારા પરિણામની ચર્ચા કરો.


આકૃતિ P 7.12 : $rac{I}{I'}$ વિરુદ્ધ આવૃત્તિ

(4) અર્ધ બિંદુઓ (Half Points) :


આકૃતિ 7.11 (a)માં $I' \rightarrow v$ ના આલેખમાં બે આવૃત્તિઓ v_1 અને v_2 એવી શોધો કે જ્યાં I^\prime નું મૂલ્ય તેના અનુનાદ પરના મૂલ્યનું 70~% હોય. આ આવૃત્તિઓને અર્ધ બિંદુઓ (Half points) કહે છે. કારણ કે આ આવૃત્તિઓ એ પાવર-વપરાશ, અનુનાદ વખતેના પાવર-વપરાશ કરતા અડધું હોય છે. શરત એટલી જ કે અનુનાદ પરિપથ પર અચળ ac વિદ્યુતસ્થિતિમાનનો તફાવત લાગુ પાડેલો છે. $v_2 - v_1$ તફાવત શોધો.

નિંદર્શનો DEMONSTRATIONS

નિદર્શન 1

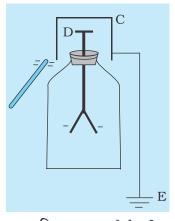
આકૃતિ D 1.1 : સમાન વિદ્યુતભારો એકબીજાને અપાકર્ષે

આકૃતિ D 1.2 : અસમાન વિદ્યુતભારો એકબીજાને આકર્ષે

વિદ્યુતભાર બે પ્રકારના હોય છે તથા સમાન (સજાતીય) વિદ્યુતભાર એકબીજાને અપાકર્ષે અને અસમાન (વિજાતીય) વિદ્યુતભાર એકબીજાને આકર્ષે છે તેનું નિદર્શન કરવું.

- i) સમાન (સજાતીય) વિદ્યુતભાર એકબીજાને અપાકર્ષે છે કાચના એક સળિયાને રેશમના કપડા પર ઘસો. આકૃતિ D 1.1માં દર્શાવ્યા પ્રમાણે રેશમી અથવા નાઇલોનની દોરી પરથી લટકાવેલી તારની ફ્રેમમાં આ સળિયાને મૂકો. આવી જ રીતે કાચના બીજા સળિયાને ઘસો અને તેના ઘસેલા છેડાને લટકાવેલ કાચના સળિયાના ઘસેલા છેડા નજીક લાવો. શું થાય છે તેનું અવલોકન કરો. કાચના બંને સળિયા એકબીજાને અપાકર્ષે તેવું જોવા મળે. વળી, એબોનાઈટ (ebonite)ના બે સળિયાને ઊનનાં કપડા પર ઘસીને આ પ્રયોગનું પુનરાવર્તન કરો. દરેક કિસ્સામાં તમે નોંધશો કે સમાન વિદ્યુતભાર એકબીજાને અપાકર્ષે છે. કાચના બંને સળિયા સમાન રીતે ઘસેલા હોઈ તેઓ સમાન વિદ્યુતભાર મેળવે છે. પ્રયોગ પરથી આપણે એવું તારણ મેળવી શકીએ કે સમાન વિદ્યુતભાર એકબીજાને અપાકર્ષે છે.
- (ii) અસમાન (વિજાતીય) વિદ્યુતભાર એકબીજાને આકર્ષે છે કાચના એક સળિયાને રેશમના કપડા પર ઘસો. આગળના નિદર્શનની જેમ જ રેશમી અથવા નાઇલોનની દોરી પરથી લટકાવેલી તારની ફ્રેમમાં આ સળિયો મૂકો. એબોનાઈટ (ebonites)ના એક સળિયાને ઊનનાં કાપડ પર ઘસો અને તે ઘસેલા છેડાને લટકાવેલા કાચના સળિયાના ઘસેલા છેડા નજીક લાવો (આકૃતિ D1.2). શું થાય છે તે નોંધો. તમને જોવા મળશે કે એબોનાઈટનો સળિયો કાચના સળિયાને આકર્ષે છે. આ પ્રયોગ દર્શાવે છે કે, અસમાન વિદ્યુતભારો એકબીજાને આકર્ષે છે.

નિદર્શન 1


નોંધ

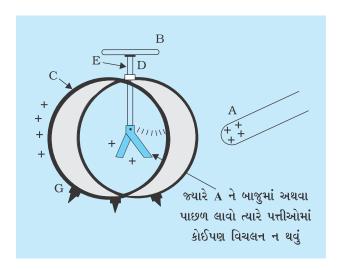
- (1) વિદ્યુતભારિત એબોનાઈટના સળિયાનું વર્તન, વિદ્યુતભારિત કાચના સળિયા કરતા જુદું છે એટલે કે એબોનાઈટનો સળિયો જુદા પ્રકારનો વિદ્યુતભાર મેળવે છે.
- (2) પ્રશાલિકાગત રીતે કાચના વિદ્યુતભારિત સળિયા અને તેના જેવું વર્તન કરતા બીજા બધા વિદ્યુતભારિત પદાર્થીને ધન વિદ્યુતભારિત છે તેમ કહે છે.
- (3) તે જ પ્રમાણે, એબોનાઈટના વિદ્યુતભારિત સળિયા અને તેના જેવું વર્તન કરતા બીજા બધા વિદ્યુતભારિત પદાર્થીને ઋણ વિદ્યુતભારિત છે તેમ કહે છે.

નિદર્શન 2

ઇલેક્ટ્રોસ્ટેટિક શિલ્ડિંગ (Electrostatic Shielding)નું નિદર્શન કરવું.

ઇલેક્ટ્રૉસ્કોપ (Electroscope)ને સંપર્કની રીતથી અથવા પ્રેરણની રીતથી વિદ્યુતભારિત કરવો. ઇલેક્ટ્રૉસ્કોપમાં વિચલન, તે વિદ્યુતભારિત હોવાનું દર્શાવે છે. વિદ્યુતભારિત એબોનાઈટનો અથવા કાચનો સળિયા (અથવા થરમૉકોલના ટુકડા)ને ઇલેક્ટ્રૉસ્કોપના હાથા / ડટ્ટા (knob)ની નજીક લાવો. વિચલનમાં થતો વધારો અથવા ઘટાડો સૂચવે છે કે સળિયા પર વિદ્યુતભારનો પ્રકાર વિદ્યુતભારિત ઇલેક્ટ્રૉસ્કોપ સાથે સમાન છે કે અસમાન છે. વિદ્યુતભારિત સળિયાને ઇલેક્ટ્રૉસ્કોપથી દૂર કરો. ઇલેક્ટ્રૉસ્કોપ હજુ પણ વિદ્યુતભારિત છે તેની ખાતરી કરી લો. જો ના હોય તો ફરી વિદ્યુતભારિત કરવું. એક તારના એક છેડાને ધાતુના પાત્ર (can) સાથે ટેપ (tape)ની મદદથી જોડવું. તારના બીજા છેડાને જમીનમાં દાટવો. હવે ધાતુના કૅનનું અર્થિંગ (earthing) થયું. હવે આ કૅનને પ્રયોગશાળા સ્ટૅન્ડ પર એવી રીતે લટકાવો કે તેનો ખુલ્લો છેડો જમીન તરફ હોય. ધાતુના કૅનને ધીમે-ધીમે નીચે લાવો કે જેથી તે વિદ્યુતભારિત ઇલેક્ટ્રૉસ્કોપના ડટ્ટાને સંપૂર્ણપણે ઢાંકી દે. ધ્યાન રાખો કે ડટ્ટાને ચારે તરફથી ઢાંકતી વખતે ધાત્, ડટ્ટાને અથવા ઇલેક્ટ્રૉસ્કોપની બોડી (body)ને ક્યાંય અડકે નહિ. (આકૃતિ D 2.1) અહીં નોંધનીય છે કે ઇલેક્ટ્રૉસ્કોપ હજુ વિદ્યુતભારિત છે જે તેની સોય અથવા પત્તીઓના વિચલનથી દેખાય છે. હવે વિદ્યુતભારિત એબોનાઈટ (ebonite) અથવા કાચના સળિયાને ફરીથી ઇલેક્ટ્રૉસ્કોપના ડટ્ટાની નજીક ધાત્ના કૅનની બહારના ભાગમાં લાવો. ધ્યાન રાખો કે વિદ્યુતભારિત સળિયો કૅનને અડકે નહિ. આ અવલોકન મળ્યું તે પ્રમાણે શું વિદ્યુતભારિત ઇલેક્ટ્રૉસ્કોપના વિચલનમાં કોઈ ફેરફાર દેખાય છે જો નહિ તો તેનો મતલબ છે કે ધાતુનું અર્થિંગવાળું કૅન વિદ્યુતભારિત ઇલેક્ટ્રૉસ્કોપના ડટ્ટાને ઇલેક્ટ્રૉસ્ટેટિક શિલ્ડિંગ આપે છે. તમારાં અવલોકનો પર, ખાસ કરીને અર્થિંગ કરેલા ધાતુના કૅને ભજવેલા ભાગની ચર્ચા કરો. વિદ્યુતભારિત એબોનાઈટ અથવા કાચના સળિયાની ઇલેક્ટ્રૉસ્કોપના ડટ્ટા નજીક અથવા કૅનની બહાર લાવતા ઇલેક્ટ્રૉસ્કોપનાં પત્તાઓ પર કોઈ અસર થતી નથી. આને ઇલેક્ટ્રૉસ્ટેટિક શિલ્ડિંગ કહેવાય. નોંધ

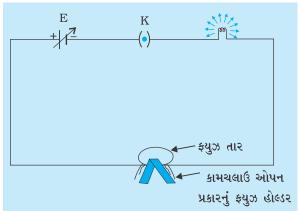
આકૃતિ D 2.1 : એબોનાઈટના સળિયાના ક્ષેત્રથી તકતી Dનું શિલ્ડિંગ કરતો ગ્રાઉન્ડેડ


કેન *C*

(1) તમે જોશો કે સોનાનાં પત્તા (વરખ) વાળા સંવેદનશીલ ઇલેક્ટ્રૉસ્કોપને વધુ ચોકસાઈથી વિદ્યુતભાર માપવા માટે ધારતા, તેને વ્યવસ્થિત રીતે શિલ્ડ (shield) કરવું પડે જેથી આસપાસમાં આવેલા વિદ્યુતભારો તેનાં પત્તાંઓને અસર ન કરે. ઇલેક્ટ્રૉસ્કોપને વ્યવસ્થિત

* કાચના ટમ્બલર અને એલ્યુમિનિયમની ફોઈલની મદદથી કામચલાઉ ઇલેક્ટ્રોસ્કોપ સહેલાઈથી બનાવી

निद्दर्शन 2


રીતે શિલ્ડ કરવા માટે તેને ધાતુના કૅન Cમાં રાખવામાં આવે છે. (આકૃતિ D 2.2) પત્તીઓને જોઈ શકાય તે માટે કૅનના ઢાંકણની જગાએ કાચની વર્તુળાકાર તકતી G મુકાય છે. એટલે જ ઇલેક્ટ્રૉસ્કોપની પાછળ અથવા તેની બાજુમાં અનિચ્છનીય વિદ્યુતભાર A લાવીએ તો પણ પત્તીઓના વિચલનમાં કોઈ ફેરફાર નથી થતો. પત્તીઓને જકડી રાખતા સ્ટેમ Eને અર્થિંગ કરેલા કૅનથી જુદો પાડવા માટે અવાહક સ્ટૉપર Dનો ઉપયોગ કરી શકાય.

આકૃતિ D 2.2 : શિલ્ડેડ ઇલેક્ટ્રૉસ્કોપ

નિદર્શન 3

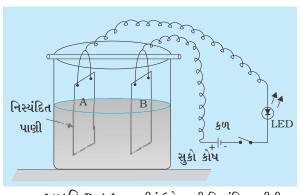
- (i) અમુક વિદ્યુતપ્રવાહના વહનથી ઓગળી જતા ધાતુના કામચલાઉ ફયુઝ (Fuse)નો ઉપયોગ અને (ii) રોજિંદી જિંદગીમાં ઉપયોગમાં લેવાતા વિવિધ પ્રકારના ફ્યુઝનું નિદર્શન કરવું.
- (i) અમુક વિદ્યુતપ્રવાહના વહનથી ઓગળી જતા કામચલાઉ ફ્યુઝ (Fuse)ના ઉપયોગનું નિદર્શન યોગ્ય ફ્યુઝ તાર (5A રેટિંગવાળો)નો નાનો ટુકડો લો અને તે કામચલાઉ ખુલ્લા પ્રકારના ફ્યુઝ (જુઓ Appedix 4) પર જોડી દો. આકૃતિ D 3.1માં બતાવ્યા પ્રમાણે આ વિદ્યુત ફ્યુઝને 6 Vનો લેડ એક્યુમ્યુલેટર (સંગ્રાહક કોષ) (accumulator), 6V (18 W અથવા 24 W) ના ગોળા (હોલ્ડરમાં લગાવેલ) અને એક પ્લગ-કી (Plug key) સાથે શ્રેણીમાં જોડો. કળને ON કરીને જુઓ કે ગોળો ચાલુ થાય છે? ફ્યુઝ વાયરનું અવલોકન કરો. જુઓ કે તે અસર રહિત છે. હવે કળ ખોલી પરિપથને બ્રેક કરો. તાંબાના જાડા તાર સાથે જોડી ગોળાને શોર્ટ સર્કિટ કરો. હવે ફરીથી થોડા સમય માટે કળને ON કરો. આ વખતે ગોળો ચાલુ થશે નહિ. શું ફ્યુઝ વાયર તરત જ બંધ થશે? ધ્યાનથી અવલોકન કરો.
- (ii) રોજિંદી જિંદગીમાં ઉપયોગ થતા વિવિધ પ્રકારના ફ્યુઝનું નિદર્શન

આકૃતિ D 3.1 : ફ્યુઝનું કાર્ય નિદર્શિત કરતી પરિપથ

(i) વિવિધ વીજળી ઉપકરણોમાં ઉપયોગમાં લેવાતા (ii) 5A પ્રવાહ રેટિંગ (rating)વાળા મેઇન્સમાં વપરાતા (iii) 15 A પ્રવાહ રેટિંગ વાળા મેઇન્સમાં વપરાતા, વિવિધ પ્રકારના ફ્યુઝ ભેગા કરો. તેમનું અવલોકન કરી તારની જાડાઈનાં તારણોની નોંધ કરો. વિદ્યુત મેઇન્સ સાથે વાપરવા માટેનું સ્વિચ બૉર્ડ લો. આ સ્વિચ બૉર્ડ (Switch Board)માં એક ફ્યુઝ સૉકેટ (Socket), એક ગોળાનું હોલ્ડર (holder) (100 W, 230 Vના વિદ્યુત્તગોળા સાથે) અને એક કળ (સ્વિચ) ફ્યુઝ સાથે શ્રેણીમાં હોવું જોઈએ. આ બૉર્ડમાં એક વિદ્યુત ઉપકરણ દા.ત., વિદ્યુત હીટર (Heater)ને શ્રેણીમાં જોડવા માટે સ્વિચ સાથેનું એક સૉકેટ જૂદું હોવું જોઈએ. સ્વિચ બૉર્ડને મેઇન્સમાં જોડતા પહેલાં ફ્યુઝ માટેના સૉકેટમાં 5Aનો ફ્યુઝ તાર લગાવવો. સ્વિચ બૉર્ડ પર આપેલી સ્વિચનો ઉપયોગ કરી ગોળાને ચાલુ (ON) કરો. ગોળો પ્રકાશિત થશે. ફ્યુઝ તારનું અવલોકન કરો. શું તે અકબંધ છે ? ગોળાને બંધ

^{*} એક કામચલાઉ ખુલ્લા પ્રકારનો ફ્યુઝ હોલ્ડર બનાવવા માટે Appendix-4 જુઓ.

કરી, સ્વિચ બૉર્ડને વિદ્યુત મેઇન્સથી અનપ્લગ (જુદું) કરવું. ટેબલ લૅમ્પને જોડવા માટે વપરાતા સામાન્ય લવચીક (flexible) કૅબલમાંથી તાંબાનો એક જ તાર કાઢી ફ્યુઝ સૉકેટમાં લગાવવો. બૉર્ડને ફરીથી મેઇન્સમાં પ્લગ કરી, ગોળાને ચાલુ કરવો. શું ગોળો હવે ચાલુ થાય છે અને ચાલુ જ રહે છે ? બૉર્ડને અનપ્લગ કરી, આપણે મૂકેલા કામચલાઉ ફ્યુઝ તાર પર અસર જુઓ. શું તેનો રંગ બદલાય છે ? હવે બૉર્ડ સાથે વિદ્યુત હીટર (1500 W અથવા 2000 W, 230 V)ને જોડો. બૉર્ડને વિદ્યુત મેઇન્સ સાથે જોડો. હીટરને સ્વિચ "ON" કરો. શું કામચલાઉ ફ્યુઝ ઊડી ગયું, તો નથી ને ? બૉર્ડને અનપ્લગ કરી ફ્યુઝનું અવલોકન કરો. શું તમને તે અંશતઃ ઓગળેલું (એટલે કે મૂળ લંબાઈ કરતાં થોડી ઓછી) મળે છે ? 6Vના ગોળાને શોર્ટસર્કિટ કર્યા પછી ઉપરના પ્રયોગમાં ઉપયોગમાં લીધેલા પરિપથમાં લાંબા ગાળા માટે વિદ્યુતપ્રવાહ શા માટે પસાર ન કરવો જોઈએ ?


નોંધ

- (1) જો તમે કામચલાઉ ઑપન પ્રકારનું ફ્યુઝ હૉલ્ડર ન બનાવ્યું હોય, તો ફ્યુઝના તારના છેડાઓને Crocodile clips માં પકડવા. Appendix 4માં વર્જાન કરેલા ઑપન પ્રકારનું ઑપન ફ્યુઝ હૉલ્ડર (Holder) જ સારું નિદર્શન આપી શકે.
- (2) ફ્યુઝની કામ કરવાની સ્થિતિ (working status) તમે અવરોધ મીટરમાં "Continuity check" પરથી ચકાસી શકો. જો બીપ (beep) સંભળાય તો ફ્યુઝ બરાબર છે અને જો બીપ ન સંભળાય તો ફ્યુઝને ઊડી ગયેલો ધારી શકાય.

નિદર્શન 4

નિસ્યંદિત પાણી વધારે અવરોધ આપે છે અને તેમાં સોડિયમ ક્લોરાઇડ (Sodium Chloride) ભેળવવાથી અવરોધ ઘટે છે તેમ નિદર્શન કરવું.

બીકર (Beaker)માં અડધે સુધી નિશ્યંદિત પાણી લેવું અને તેમાં બે ઇલેક્ટ્રોડ (લાકડાના સળિયા પર તાંબાના ખુલ્લા તાર વડે લટકાવેલી ઍલ્યુમિનિયમની બે પટ્ટીઓ અથવા તકતી ચાલશે) A અને B ડુબાડવા. પરિપથ (આકૃતિ D 4.1)માં બતાવ્યા પ્રમાણે ઇલેક્ટ્રોડને સૂકા કોષ (1.5 V) ટેપિંગ કળ (tapping key) અને એક લાઇટ એમિટિંગ ડાયોડ (LED - Light Emitting Diode) સાથે જોડાણ કરવું. LEDને પરિપથમાં બરાબર રીતે જોડ્યું છે કે નહિ તે ચકાસો. કારણ કે તે વિદ્યુતપ્રવાહ એક જ દિશામાં આપે છે. ગોળાને પ્રકાશિત થવા માટે ખાતરી કરો કે તેનો ધન છેડો કોષના ધન છેડા સાથે જોડાયેલો છે. આ ચકાસણી કરવા માટે ઇલેક્ટ્રોડ A અને Bને પાણીની બહાર લાવો.

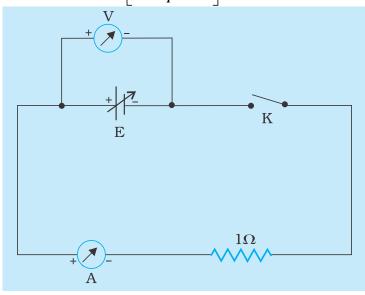
આકૃતિ D 4.1 : મીઠું ઉમેરવાથી નિસ્યંદિતપાણીની વિદ્યુતવાહકતા પર થતી અસરનું નિદર્શન કરતી ગોઠવણ

બંનેને એકબીજાના સંપર્કમાં લાવો અને જુઓ કે LED પ્રકાશિત થાય છે. પછી, આ બંને ઇલેક્ટ્રોડને પાણીમાં મૂકો અને તેમના વચ્ચેનો ગાળો (જગ્યા) મહત્તમ કરો. શું હવે LED પ્રકાશિત થાય છે? બંને ઇલેક્ટ્રોડને એકબીજાની નજીક લાવો જેથી પાણીમાં બંને વચ્ચેનું અંતર ઓછુ રહે. જુઓ, હવે LED પ્રકાશિત થાય છે? LED પ્રકાશિત ન થાય તેટલી દૂર પટ્ટીઓને રાખી પાણીમાં એક ચપટી મીઠું નાંખો. હવે શું LED પ્રકાશિત થાય છે? તમારાં અવલોકનો પરથી નિષ્કર્ષ બનાવો.

નોંધ

- (1) જો LEDની જગાએ મિલ્ટિમીટર (કે જેમાં DC પ્રવાહ માપવાની જુદી-જુદી અવિધઓ (ranges) હોય) મૂકતા અને પાણીમાં તબક્કાવાર સમાન મીઠું ઉમેરતા, તમે દરેક કિસ્સામાં મીઠાની સાંદ્રતા અને દ્રાવણનો અવરોધ શોધી શકો. પ્રયોગ દરમિયાન તકતીઓના સ્થાનની અદલા-બદલી કરવી નહિ. એટલે તમે મીઠાની સાંદ્રતા સાથે અવરોધનો ફેરફાર કેવી રીતે થાય છે તેનો અભ્યાસ કરી શકો છો. વિદ્યાર્થીઓ આ પ્રયોગને પ્રૉજેક્ટ-કાર્ય તરીકે લઈ શકે છે.
- (2) સામાન્ય રીતે, સાંદ્રતાના વધારા સાથે ઇલેક્ટ્રૉલાઇટ (મીઠાનું એવું દ્રાવણ જેમાં અશુઓ ધન આયનો અને ઋણ આયનોમાં વિભાજિત થાય છે.)ની અવરોધકતા ઘટે છે. આવું બનવા

Downloaded from https://www.studiestoday.com

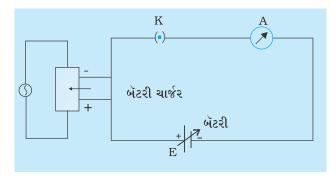

निद्दर्शन 4

- પાછળની હકીકત એ છે કે, સાંદ્રતાના વધારા સાથે, વધુ સંખ્યામાં વિદ્યુતભાર વાહકો (ધન અને ઋણ આયનો) પ્રાપ્ત થાય છે. જેઓ બંને ઇલેક્ટ્રોડ વચ્ચે વિદ્યુતસ્થિતિમાનનો તફાવત લાગુ પાડતા તેમની વચ્ચે ઉદ્ભવતા વિદ્યુતક્ષેત્રમાં ગતિ કરે છે.
- (3) ધાતુના તારમાં વિદ્યુતપ્રવાહના વહનમાં ફક્ત ઋશ વિદ્યુતભાર (ઇલેક્ટ્રૉન)નો જ ફાળો હોય છે જ્યારે ઇલેક્ટ્રૉલાઇટના કિસ્સામાં આયનો તેમજ ધન આયનોનું ડ્રિક્ટ વિદ્યુતપ્રવાહના વહનમાં ફાળો આપે છે. આ વિદ્યુતક્ષેત્રની દિશામાં ધીમા ડ્રિક્ટ સાથે વાંકીચૂંકી ગતિનું સંયોજન છે.

લેડ સંગ્રાહક કોષ (Lead Accumalator)ના કાર્યનું નિદર્શન કરવું.

આકૃતિ D 5.1માં બતાવ્યા પ્રમાણે વિદ્યુતપરિષથ ગોઠવો. સંગ્રાહક કોષ સાથે 1 Ωનો અવરોધ અને એક એમીટર શ્રેણીમાં જોડો. 6Vના સંગ્રાહક કોષને સમાંતર વોલ્ટમીટર જોડો. પરિષથ એક યા બે સેકન્ડથી વધુ સમય માટે ON ન રહેવો જોઈએ. આ હેતુ માટે, પ્લગ-કી (Key)ના બદલે ટેપિંગ-કી (Key) વાપરવી. જયારે ટેપિંગ-કી દબાવશો ત્યારે વોલ્ટમીટરમાં દર્શાવ્યા પ્રમાણે બૅટરીના વોલ્ટેજમાં મામૂલી ઘટાડો જોવા મળશે. વોલ્ટમીટરનું અવલોકન (V) અને એમીટરનું અવલોકન (I) નોંધો. પરિષથમાં વહેતા વિદ્યુતપ્રવાહમાં ફેરફાર કરો. અવલોકનોનું પુનરાવર્તન કરો. આના માટે પરિષથમાં રીઓસ્ટેટ જોડવું પડશે. તમારાં અવલોકનોને અવલોકન-કોઠામાં નોંધો અને સંગ્રાહકના

આંતરિક અવરોધની ગણતરી કરો $\left[r = \frac{E - V}{I} \text{ohm}\right]$


આકૃતિ D 5.1 : લેડ સંગ્રાહકનો લઘુ આંતરિક અવરોધનું નિદર્શન કરતો પરિપથ

નોંધ

(1) જૂના લેડ-સંગ્રાહકમાંથી કાઢેલા લેડની જાળીનું પરીક્ષણ કરો. તેના ધન અને ઋણ ધ્રુવ ને ઓળખો. લેડ ઑક્સાઇડવાળી પ્લેટ ધન ધ્રુવ તરીકે કાર્ય કરે છે. જ્યારે નરમ લેડ ઋણ ધ્રુવ તરીકે કાર્ય કરે છે.

निद्दर्शन 5

- (2) 6Vના સંગ્રાહકને નુકસાનથી બચાવવા માટે તેની સાથે શ્રેણીમાં એક નાનો અવરોધ જોડવામાં આવે છે આને કારણ જોડાણના તારનું ગરમ થવું પણ ઘટે છે જેથી દાઝવાની ઘટના ના બને.
- (3) બૅટરીને ક્યારેય શોર્ટસર્કિટ ન કરવું. આમ કરવાથી બૅટરીનું આયુષ્ય ઘટે છે. ભારે (વધારે) વિદ્યુતપ્રવાહ ઉત્પન્ન થવાથી નાની અવિધવાળા એમીટર જેવાં સાધનોને નુકસાન થઈ શકે છે.
- (4) જયારે કોઈ પણ કોષનો વોલ્ટેજ સામાન્ય અવિધ 2V થી ઘટીને 1.85 V થાય ત્યારે તેને રિચાર્જ કરવો પડે. આ હેતુ માટે તેને આકૃતિ D 5.2માં બતાવ્યા પ્રમાણે બૅટરી ચાર્જર સાથે જોડવું.
- (5) તેના ડિસ્ચાર્જિંગ / વપરાશ દરમિયાન અને ચાર્જિંગ દરમિયાન થતી રાસાયિશક પ્રક્રિયા નીચે મુજબ છે : ધન ધ્રુવ

આકૃતિ D 5.2 : બૅટરી ચાર્જરની મદદથી બૅટરીનું ચાર્જિંગ કરવાનો પરિપથ

$$PbO_2 + 4H^+ + SO_4^{-2} + 2e^- \xrightarrow{\text{ડિસ્ચાર્જિંગ } / \text{વપરાશ}} PbSO_4 + 2H_2O$$

ઋશ ઇલેક્ટ્રોડ

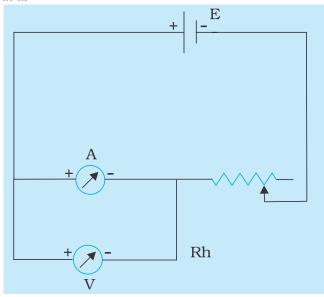
$$Pb + SO_4 \xrightarrow{\text{ ડિસ્ચાર્જિંગ } / \text{ વપરાશ} } PbSO_4 + 2e^-$$

એટલે જ વપરાશ દરમિયાન બંને ધ્રુવ પર $PbSO_4$ બને છે. વધુ પડતા વપરાયેલા કોષને સલ્ફ્રેટેડ (Sulphated) થયો છે તેમ કહેવાય. વધુમાં, પાણીનું બનવું અને સલ્ફ્યુરિક ઍસિડનો વપરાશ થવાના પરિણામે ઍસિડની ઘનતા ઘટે છે.

- (6) બૅટરીને વધુ પડતી ચાર્જિંગ કરવાની અસર ઇલેક્ટ્રૉલિસિસ દરમિયાન પાણીનો વ્યય છે એટલે જ, સતત પાણીના લેવલને ચકાસવાની જરૂર હોય છે અને તેને ઊંચુ લાવવા નિસ્યંદિત પાણી ઉમેરવામાં આવે છે. આને ક્યારેક નિસ્યંદિત પાણીથી ટોપિંગ-અપ (topping up) કરવાનું જણાવવામાં આવે છે.
- (7) ઍસિડ સંગ્રાહકને રીચાર્જિંગની જરૂર છે તે ચકાસવાની શ્રેષ્ઠ રીત તેનો વિદ્યુતચાલકબળ માપવાનું નથી. આનું કારણ છે કે સામાન્ય વોલ્ટમીટર વોલ્ટેજ વધુ ચોકસાઈથી માપી શકતા નથી. 1.85 V ને 1.9 V વાંચી શકે.

પ્રયોગશાળા માર્ગદર્શિકા

અંદર આવેલા ઍસિડની ઘનતા એ ઘણો સારો સૂચક છે. ચાર્જડ સંગ્રાહકમાં ઘનતા 1.26 kg /L હોય છે. જ્યારે તે ઘટીને 1.20 kg / L થાય ત્યારે સંગ્રાહકને રિચાર્જ કરવાની જરૂર પડે છે. સંગ્રાહકમાં આવેલા ઍસિડની ઘનતા માપવા માટે વિશિષ્ટ હાઇડ્રોમીટર (hydrometer)નો ઉપયોગ થાય છે અને તે સંગ્રાહક કોષની સ્થિતિની અટકળ કરે. નિસ્યંદિત પાણીથી ટોપિંગ-અપ (topping up) કર્યા પછી જ ઘનતા માપવી જોઈએ.

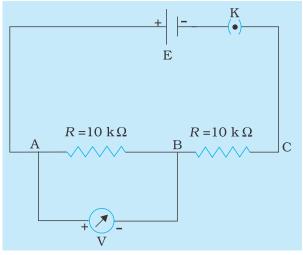

(8) નવા કોષ માટે સલ્ફ્યુરિક ઍિસડ બનાવવા માટે તેનાથી ત્રણ ગણા કદવાળા પાણીમાં જલદ ઍિસડ ઉમેરવો. જયારે આ ઍિસડ ઠંડો પડે ત્યારે તેને નવા લેડ ઍિસડ કોષ / લેડ-સંગ્રાહકમાં ભરી દેવાય છે અને પછી આખી રાતમાં કોષ ચાર્જ થાય છે.

વિદ્યુતપ્રવાહ માપક સાધનને નિશ્ચિત અશૂન્ય (non-zero) અવરોધ હોય છે તેનું નિદર્શન કરવું.

આકૃતિ D 6.1માં બતાવ્યા પ્રમાણે એક બૅટરી, કળ, રીઓસ્ટેટ, એમીટર અને ડિજિટલ મલ્ટિમીટર(DMM)નો ઉપયોગ કરી પરિપથ બનાવો. કળ બંધ કરો. રીઓસ્ટેટને એવી રીતે ગોઠવો જેથી એમીટરમાંથી 1Aના ક્રમનો વિદ્યુતપ્રવાહ વહે. dc mVની અવધિમાં વોલ્ટમીટર DMMથી એમીટરના બે છેડા વચ્ચે મળતા વોલ્ટેજ ડ્રોપ (V)નું અવલોકન કરો. તમારાં અવલોકનો નોંધો અને

વોલ્ટેજ ડ્રોપ (V) અને એમીટરના વાંચન (I)નો ગુણોત્તર $\left(R = \frac{V}{I} \text{ ohm}\right)$ લઈ એમીટરનો અવરોધ શોધો. એમીટરના જુદા-જુદા વાંચન માટે આ પદ્ધતિનું પુનરાવર્તન કરો અને અવરોધની સરેરાશ કિંમત શોધો.

આકૃતિ D 6.1 : એમીટરના અવરોધનું માપન


નોંધ

- (1) સામાન્ય રીતે એવું કહેવાય છે કે, એમીટરને અવરોધ ન હોવાના કારણે તે પરિપથમાં શ્રેણીમાં જોડાય છે પણ આ એક આદર્શ કિસ્સો છે પણ હકીકતમાં આવું હોતું નથી. એમીટરને નિશ્ચિત અશૂન્ય અવરોધ હોય છે.
- (2) ઉપરના પ્રયોગનો નિદર્શ મિલિએમીટર ($10~\Omega$ ના ક્રમમાં અવરોધ ધરાવતો) અથવા માઇક્રોએમીટર ($k\Omega$ ના ક્રમમાં અવરોધ ધરાવતો)ના ઉપયોગથી પણ કરી શકાય.

Downloaded from https://www.studiestoday.com

વોલ્ટેજમાપક સાધનનો અવરોધ અનંત નથી (non-infinite) તેનું નિદર્શન કરવું.

આકૃતિ D 7.1માં બતાવ્યા પ્રમાણે એક બૅટરી, એક કળ, વોલ્ટમીટર અને દરેક $10 \text{ k}\Omega$ અવરોધ ધરાવતા બે અવરોધકોને જોડીને એક પરિપથ બનાવો. હવે કળ બંધ કરી, વોલ્ટમીટરને કોઈ એક અવરોધકના બે છેડા વચ્ચે જોડીને વોલ્ટમીટરનાં અવલોકનો લો. સૂત્ર D 7.1નો ઉપયોગ કરી વોલ્ટમીટરના અવરોધની ગણતરી કરો. જુદા-જુદા કોષનો ઉપયોગ કરી Eની કિંમતો બદલી આ પ્રયોગનું પુનરાવર્તન કરો.

આકૃતિ D 7.1 : વોલ્ટમીટરના અવરોધનું માપન

નોંધ

સામાન્ય રીતે એવું કહેવાય છે કે, વોલ્ટમીટરને સમાંતરમાં જોડતાં તેનો અવરોધ અનંત (infinitely large) હોય છે. પણ હકીકતમાં આવું હોતું નથી કારણ કે આ એક આદર્શ કિસ્સો છે. દરેક વોલ્ટમીટર, ખાસ કરીને એનાલોગ મીટરોને બિનઅનંત અવરોધ હોય છે.

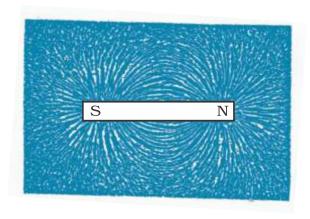
વોલ્ટમીટરના અવરોધને $R_{
m v}$ અને વિદ્યુતપ્રવાહને I વડે દર્શાવતા, પરિપથ (આકૃતિ D 7.1)નું વિશ્લેષણ નીચે મુજબ થાય :

$$I = \left[\frac{E}{R + \frac{RR_{\rm v}}{R + R_{\rm v}}} \right]$$

Downloaded from https://www.studiestoday.com

निद्दर्शन 7

માટે, વોલ્ટમીટરનું વાંચન એટલે કે ABના બે છેડા વડે વોલ્ટેજ


$$V = \left[\frac{E}{R + \frac{RR_{\rm v}}{R + R_{\rm v}}}\right] \frac{RR_{\rm v}}{R + R_{\rm v}} = \frac{ER_{\rm v}}{R + 2R_{\rm v}}$$

$$\therefore R_{v} = \frac{VR}{E - 2V}$$

જો R_V અનંત તરફ વધે તો સમીકરણ D 7.1 પ્રમાણે $V=\frac{E}{2}$ થાય. પણ હકીકતમાં, આ $\frac{E}{2}$ કરતા ઘણું નીચું મળે છે.

લોખંડની ભૂકીની મદદથી ચુંબકીયક્ષેત્ર રેખાઓનું નિદર્શન કરવું.

7.5 cm અથવા 10 cm લંબાઈવાળો એક મજબૂત ગજિયો ચુંબક લો. કાચની તકતીની નીચે તેને

આકૃતિ D 8.1 : ગજિયા ચુંબકની નજીક લોખંડની ભૂકી પોતાને ચુંબકીયક્ષેત્ર રેખાઓની દિશામાં ગોઠવી દે છે

મધ્યમાં મૂકો. લાકડાના ચાર બ્લૉકની મદદથી તકતીને સમિક્ષિતિજ મૂકો અને સ્પિરિટ લેવલની મદદથી ચકાસી લો. તકતી પર લોખંડની ઝીષ્રી ભૂકી ભભરાવવી, તકતીને હળવેથી વારંવાર ઠપકારવી. જુઓ શું થાય છે. તમે જોશો કે આકૃતિ D 8.1માં બતાવ્યા પ્રમાણે લોખંડની ભૂકી એક નિયમિત ગોઠવણ (pattern) મેળવે છે. આવું બને છે તેનું કારણ ચુંબકીયક્ષેત્રની અસર હેઠળ, લોખંડના ક્યાં નાના ચુંબકો જેવું વર્તન કરે છે અને ચુંબકીય ક્ષેત્રની રેખાઓ સાથે લાંબી સાંકળ જેવી રચના કરે છે. નોંધનીય છે કે લોખંડના ક્યાંની આ લાંબી સાંકળો ચુંબકના ઉત્તર ધ્રુવથી શરૂ થઈ, દક્ષિણ ધ્રુવ પર અંત પામે છે અને મધ્ય ભાગ સાથે સંપર્ક ટાળે છે. રેખાઓની ગોઠવણ (pattern) નું ધ્યાનપૂર્વક અવલોકન કરો અને તે પરથી

બે નજીકની રેખાઓ વચ્ચેના ગાળા અને તે ગાળામાં ચુંબકીયક્ષેત્રની પ્રબળતા (તીવ્રતા)નો નિષ્કર્ષ આપો. તમે તારવેલા નિષ્કર્ષનો અહેવાલ આપો.

નોંધ

- (1) લોખંડની ભૂકીને તકતી પર ચોંટાડી પૅટર્ન મેળવી શકાય તે માટે કાચની તકતી પર સ્વચ્છ વાર્નિશ (Lacquer) પેઇન્ટ સ્પ્રે કરો. તેને સુકાવા દો. તેને કાયમી પ્રદર્શનમાં (display) મૂકી શકાય.
- (2) ધારો કે તમે ચુંબકીય કંપાસ વડે પ્રયોગ કરો છો. તમે ગજિયા ચુંબકને કાચની પાતળી તકતી (અથવા પ્લાયવુડની પાતળી સમતલ તકતી અથવા જાડા પૂંઠા) નીચે મૂકો. તકતી પર કાગળ જડી દો અને તેને સ્પિરિટ લેવલથી સમક્ષિતિજ ગોઠવો. ચુંબકીય કંપાસની મદદથી ચુંબકીય ક્ષેત્રરેખાઓ દોરવી. તમે કેવા પ્રકારની રેખાઓની અપેક્ષા રાખો છો ? શું કોઈ પણ રેખા ચુંબક માંથી પસાર થઈને સંપૂર્ણ લુપ બનાવે છે ? પાયાની એક રીત માટે તમે Laboratory Manual of Science, class X (NCERT, 2008 પ્રયોગ 52, પાના નં. 217 થી 220)નો સંદર્ભ લો.

ગજિયા ચુંબકની આસપાસના વિસ્તારમાં વિવિધ પદાર્થો લાવી ચુંબકીયક્ષેત્રની ગોઠવણી (pattern) પર ઉદ્ભવતી અસરનો અભ્યાસ કરવો.

પદ્ધતિ

એક ડ્રૉઇંગ બૉર્ડ લઈ તેના પર મીણબત્તીના પિગળેલા મીણ વડે કોરા કાગળની શીટ (sheet) જડી દો. કાગળની શીટ મધ્યમાં બે પરસ્પર લંબ રેખાઓ NS અને EW દોરો. ચુંબકીય હોકાયંત્રને શીટની બરાબર મધ્યમાં મૂકો. ડ્રૉઇંગ બૉર્ડને એટલું પરિભ્રમણ કરાવો કે જેથી હોકાયંત્રની ચુંબકીય સોય NS રેખા સાથે એક રેખસ્થ થાય. આ કિસ્સામાં આ સોય ઉત્તર-દક્ષિણ દિશાનો નિર્દેશ કરે છે. આ પ્રક્રિયા દરમિયાન બૉર્ડને હળવેકથી ઠપકારવું જેથી કરીને સોય અને ધરી (pivot) વચ્ચેનું ઘર્ષણ લઘુત્તમ થાય અને સોય મુક્તપણે પરિભ્રમણ કરી શકે. ચોક (chalk) વડે ડ્રૉઇંગ બૉર્ડની હદ દર્શાવતી રેખાઓ (રૂપરેખા) દોરો. સમગ્ર પ્રયોગ દરમિયાન ડ્રોઇંગ બૉર્ડના સ્થાનમાં કોઈ વિક્ષેપ થવો જોઈએ નહિ. ચુંબકને NS રેખા પર મધ્ય ભાગથી સંમિત રીતે ગોઠવો જેથી તેની અક્ષ NS રેખા પર આવે અને તેનો ઉત્તર ધ્રુવ ઉત્તર દિશા તરફ નિર્દેશિત હોય. આ પરિસ્થિતિમાં ચુંબકીય અક્ષ, કાગળ પર દોરેલી રેખાઓમાંથી કોઈ એક રેખા સાથે એક રેખસ્થ થાય છે. આ રીતે તમે ગજિયા ચુંબકને ચુંબકીય મેરિડિયન (meridian) પર મૂક્યો છે. ચુંબકીય હોકાયંત્રની મદદથી ચુંબકીય ક્ષેત્ર રેખાઓનું નકશા-આલેખન (mapping) કરો. એવાં બિંદુઓ શોધો જ્યાં પૃથ્વીનું સમક્ષિતિજ ચુંબકીયક્ષેત્ર, ચુંબકના ચુંબકીયક્ષેત્રને સમતોલે. આ તટસ્થ બિંદુઓ છે. તમને નિદર્શન 8 માં મળી હતી તેવી પૅટર્ન મળશે. આ પ્રયોગનું નિદર્શન કરતી વખતે બધાં જ ચુંબકો અને ચુંબકીય પદાર્થોને ડ્રૉઇગ બૉર્ડથી દૂર રાખવા. હવે ડ્રૉઇંગ પેપર હટાવી, ચુંબકને તે જ સ્થાન પર મૂકો અને એક નરમ લોખંડના ચોસલાને ચુંબકથી થોડી દૂર ધારો કે ચુંબકના ઉત્તર ધ્રુવ પાસે મૂકો. ફરીથી, ચુંબકના ચુંબકીય ક્ષેત્રનું નકશા-આલેખન કરો. હવે પૅટર્ન કોના જેવી મળશે? તમે જોશો કે આ પૅટર્ન એકલા ચુંબકના પૅટર્ન કરતા ઘણી જુદી મળે છે. ઘણીબધી રેખાઓ નરમ લોખંડના ચોસલામાંથી અથવા તેની પાસેથી પસાર થાય છે. તટસ્થ બિંદુઓ પણ ચુંબકથી દૂર જાય છે. હોકાયંત્રની મદદથી લોખંડના ચોસલાના છેડાઓના ધ્રુવત્વનું પરીક્ષણ (testing) કરો. તમે જોશો કે તે પણ ચુંબક બની ગયો છે. આ પ્રયોગ ઍલ્યુમિનિયમ, તાંબા, નિકલ, ક્રોમિયમ અને પ્લાસ્ટિકના પદાર્થો સાથે પુનરાવર્તિત કરો. ક્ષેત્રરેખાઓની ગોઠવણીનું અવલોકન કરો.

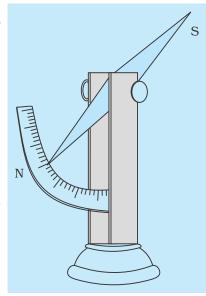
Downloaded from https://www.studiestoday.com

પ્રયોગશાળા માર્ગદર્શિકા

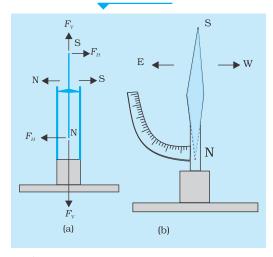
નોંધ

- (1) ચુંબકના ઉત્તર ધ્રુવથી નીકળતી ઘણી બધી રેખાઓ લોખંડના ચોસલાના જે છેડામાં પ્રવેશે, ચોસલાનો તે છેડો દક્ષિણ ધ્રુવ તરીકે વર્તે છે અને ચોસલાનો બીજો છેડો ઉત્તર ધ્રુવ તરીકે વર્તે છે. માટે લોખંડનું ચોસલું પ્રેરિત ચુંબક બને છે.
- (2) તમે જોશો કે ગજિયા ચુંબકની ચુંબકીય ક્ષેત્ર રેખાઓની પૅટર્નમાં તાંબા, ઍલ્યુમિનિયમ અને પ્લાસ્ટિકના ચોસલાઓની હાજરીથી કોઈ ફેરફાર થતો નથી. આ પદાર્થો પ્રેરિત ચુંબક બનતા નથી.
- (3) જો તમે આ પ્રયોગમાં નિકલ અથવા કોબાલ્ટના ચોસલાનો ઉપયોગ કરશો તો રેખાઓની પૅટર્નમાં ફેરફાર થશે પણ આ ફેરફાર નરમ લોખંડ કિસ્સામાં જે ફેરફાર થાય છે એટલો બધો થતો નથી હોતો.
- (4) જે પદાર્થોથી ચુંબકીયક્ષેત્ર રેખાઓમાં ફેરફાર આવે તેમને ફેરોમૅગ્નેટિક (ferromagnetic) પદાર્થી કહે છે.
- (5) બધા જ સમતલોમાં મુક્તપણે પરિભ્રમણ કરી શકે તેવી ચુંબકીય સોયને લટકાવવામાં આવે તો તે પોતાને પૃથ્વીના ચુંબકીય ઉત્તર-દક્ષિણ ધ્રુવની દિશામાં, સમિક્ષિતિજ સાથે કંઈક કોણે ગોઠવી દેશે. આ સોયની અક્ષમાંથી પસાર થતા ઊર્ધ્વ સમતલને ચુંબકીય મેરિડિયન (magnetic meridian) કહે છે.

નિદર્શન 10


પૃથ્વીના ચુંબકીયક્ષેત્રને ઊર્ધ્વ અને સમક્ષિતિજ બંને ઘટકો હોય છે તેમ દર્શાવવું.

આ પ્રયોગના નિદર્શન માટે તમને ડિપ સોય અને કંપાસ (હોકાયંત્ર)ની જરૂર પડશે. *ડિપ સોય (Dip needle) :*


ડિપ સોય એ ઊર્ધ્વ સમતલમાં મુક્તપણે પરિભ્રમણ કરી શકે તેવી હોકાયંત્રની સોય હોય છે. જે સમિક્ષિતિજ અક્ષને અનુલક્ષીને પરિભ્રમણ કરે છે, તે અક્ષ તેના ગરુત્વકેન્દ્રમાંથી પસાર થાય છે. એટલે જ ગુરુત્વાકર્ષણ બળ તેને કોઈ એક પસંદગીની દિશામાં રાખવાનું વલણ ધરાવતો નથી. સોય અને તેની ફ્રેમ ઊર્ધ્વ અક્ષને અનુલક્ષીને પરિભ્રમણ કરી શકે છે કે જેથી તેના પરિભ્રમણના ઊર્ધ્વ સમતલને ગમે તે દિશામાં ગોઠવી શકાય. (આકૃતિ D 10.1). તેની સાથે 90° માપક્રમવાળી વર્તુળાકાર માપપટ્ટી પણ જોડેલી હોય છે કે જેમાં સોય સમિક્ષતિજ સાથે કયા ખૂણે સમતોલનમાં આવી છે તે જોઈ શકો.

ઊર્ધ્વ ઘટક :

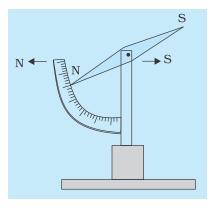
ડિપ સોયની ચાકગતિના ઊર્ધ્વ સમતલને ઉત્તર-દિક્ષણ દિશામાં (એટલે કે ચુંબકીય મેરિડિયન)માં ગોઠવી, વર્તુળાકાર માપપટ્ટી પર સોયના વાંચનનું અવલોકન કરો. પરિભ્રમણના સમતલને ચુંબકીય મેરિડિયનથી જુદા-જુદા ખૂણે રાખી ઉપરનાં અવલોકનોનું પુનરાવર્તન કરો. જ્યારે સોયનું વિચલન મહત્તમ એટલે કે 90° બને અને સોય ઊર્ધ્વ થાય. આકૃતિ D 10.2 (a)) ત્યારે સોયની પરિભ્રમણના સમતલનું અવલોકન કરો. શું તે પૂર્વ-પશ્ચિમ દિશામાં છે ? હવે સોયના સમતલને ચુંબકીય મેરિડિયનમાં પરિભ્રમણ કરાવો. વર્તુળાકાર માપક્રમના વાંચનનું અવલોકન કરો. આ સ્થિતિમાં, પૃથ્વીના ચુંબકીયક્ષેત્રનો સમિક્ષિતિજ ઘટક સંપૂર્ણ અસરકારક છે અને સોય પરિણામી ચુંબકીયક્ષેત્રની દિશામાં ગોઠવાય છે. આ

આકૃતિ D 10.1 : ડિપ સોય

આકૃતિ D 10.2 (a), (b) : જ્યારે સમતલ પૂર્વ-પશ્ચિમ દિશામાં આવે ત્યારે ડિપ સોય ઊર્ધ્વ થાય છે

પ્રયોગશાળા માર્ગદર્શિકા

પરિસ્થિતિમાં વર્ત્તળાકાર માપક્રમ પરનું વાંચન નમનકોણ (Dip Angle) આપે છે. (આકૃતિ 10.4)


સમક્ષિતિજ ઘટક :

હોકાયંત્રની સોય લેવી. અશીદાર ટેકા પર તેને સમક્ષિતિજ મૂકવી, જેથી કરીને તે સમક્ષિતિજ સમતલમાં મુક્તપશે પરિભ્રમણ કરી શકે. તમને જોવા મળશે કે તે ઉત્તર-દક્ષિણ દિશામાં જ સમતોલન અવસ્થામાં આવશે. જો તમે તેને કોઈ પણ સ્થિતિ માંથી મુક્ત કરશો તો પણ તે ઉત્તર-દક્ષિણ દિશામાં જ આવી જશે. આ સૂચવે છે કે તેના ધ્રુવો પર લાગતાં બળો આકૃતિ D 10.3માં દર્શાવ્યા પ્રમાણે હોય છે.

પૃથ્વીનું ચુંબકીય ક્ષેત્ર, સમક્ષિતિજ સમતલમાં હોકાયંત્રની સોયના ઉત્તર ધ્રુવ પર ઉત્તર દિશામાં અને દક્ષિણ ધ્રુવ પર સમાન અને વિરુદ્ધ દિશામાં બળ લગાવવા સક્ષમ હોય છે. માટે પૃથ્વીના ચુંબકીય ક્ષેત્રને સમક્ષિતિજ ઘટક હોય છે.

નોંધ

- (1) જયારે ડિપ સોય 90° એ હોય ત્યારે, પૃથ્વીનું ચુંબકીય ક્ષેત્ર સોયના ઉત્તર ધ્રુવને નીચે તરફ ખેંચે અને દક્ષિણ ધ્રુવને ઉપર તરફ ધકેલે છે. સમક્ષિતિજ ઘટક બિનઅસરકારક હોય છે. કારણ કે આકૃતિ D 10.2(b) માં દર્શાવ્યા પ્રમાણે તેના વડે સોયના ધ્રુવો પર લાગતાં બળો F એ સોયના પરિભ્રમણના સમતલને લંબ હોય છે.
- (2) હોકાયંત્ર વડે દર્શાવાતી ઉત્તર દિશા મોટે ભાગે ભૌગોલિક ઉત્તર દિશામા હોતી નથી. ભૌગોલિક ઉત્તર અને હોકાયંત્ર વડે દર્શાવતા ઉત્તર દિશા વચ્ચેના કોણને મૅગ્નેટિક ડેક્લિનેશન અથવા ડેક્લિનેશન કહે છે. જો તમને ફક્ત આ કોણ ખબર હોય, તો હોકાયંત્રની મદદથી તમે ભૌગોલિક ઉત્તર દિશા શોધી શકો છો.
- (3) એક વિસ્તૃત સાધન, ડિપ વર્તુળની મદદથી પૃથ્વીના ચુંબકીયક્ષેત્રના ઊર્ધ્વ ઘટક અને નમનકોણનું વધુ વિગતવાર નિદર્શન કરી શકાય છે.

આકૃતિ D 10.4 : મૅગ્નેટિક મેરિડિયનમાં, ડિપ સોય નમનકોણ વાંચે (દર્શાવે) છે

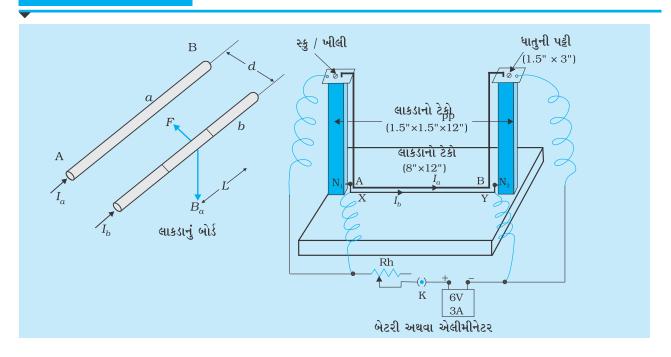
પ્રવાહધારિત બે સુવાહકોમાં વિરુદ્ધ / સમાન દિશામાં વિદ્યુતપ્રવાહના વહનને લીધે તેમની વચ્ચે લાગતાં અપાકર્ષણ / આકર્ષણ બળનું નિદર્શન કરવું.

આ પ્રયોગનું નિદર્શન કરવા માટે તમારે નીચે મુજબનાં સાધન અને સામગ્રીની જરૂર પડશે : dc વોલ્ટેજનું ઉદ્ગમસ્થાન (6V, 3A) (અથવા બૅટરી ઍલિમિનેટર), 2m લંબાઈનો તાંબાનો તાર (18 અથવા 20 SWG), લાકડાનું પાટિયું (8" × 12"), લાકડાના બે ટેકા (1.5" × 1.5" × 12"), જોડાણ માટેના તાર, 4-5 ખીલીઓ, 6 સ્કૂ, બે પાતળી પટ્ટીઓ (1.5" × 3"), એક કળ અને નીચા અવરોધવાળું રીઓસ્ટેટ (~ 10 Ω).

આકૃતિ D 11.1માં એકબીજાથી d અંતરે આવેલા અને અનુક્રમે I_a અને I_b વિદ્યુતપ્રવાહ ધારિત બે લાંબા સમાંતર સુવાહકો a (AB) અને b (XY) દર્શાવ્યા છે. જમણા હાથના નિયમ (Right Hand Rule) પ્રમાણે સુવાહક XY પર સુવાહક ABમાં પસાર થતા વિદ્યુતપ્રવાહને કારણે મળતું ચુંબકીયક્ષેત્ર અધો દિશામાં છે. એમ્પિયરના સર્કિટલ નિયમ પ્રમાણે આનું મૂલ્ય $B_a = \frac{\mu_o I_a}{2\pi d}$ થાય.

 $I_{\rm b}$ વિદ્યુતપ્રવાહ ધારિત સુવાહક પર ક્ષેત્ર $B_{\rm a}$ ને કારણે બળ બાજુઓ પર (sideways) લાગશે. આ બળની દિશા સુવાહક a તરફ હોય છે. (આકૃતિ D 11.2). સુવાહક bના L (લંબાઈના) ટુકડા પર a વડે લાગતા બળનું મૂલ્ય $F_{ba}=I_b$ LB_a

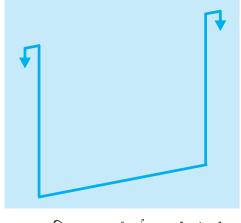
બીજા શબ્દોમાં, સમાન દિશામાં વિદ્યુતપ્રવાહ ધરાવતા બે સમાંતર સુવાહકો એકબીજાને


$$F_{ba}=rac{\mu_o I_a I_b L}{2\pi d}$$
 બળ વડે આકર્ષે છે. $ext{(D 11.2)}$

એવી જ રીતે આપણે સ્થાપિત કરી શકીએ કે, વિરુદ્ધ દિશામાં વિદ્યુતપ્રવાહ ધરાવતા સમાંતર સુવાહકો પરસ્પર અપાકર્ષે છે.

લાકડાના બંને ટેકાઓને ઊર્ધ્વ સ્થિતિમાં લાકડાના પાટિયાના છેડા પર ખીલી અથવા સ્કૂની મદદથી જડી દો. આકૃતિ D 11.2માં પ્રાયોગિક ગોઠવણ બતાવી છે. આ ટેકાઓ ઉપર ધાતુની પટ્ટીઓ (1.5" × 3") ખીલીઓ અથવા સ્કૂની મદદથી જડી દો. 80 – 85 cm લાંબા અને જાડા તાંબાના તારને આકૃતિ D 11.3માં બતાવ્યા પ્રમાણે વાળો. કાચ પેપરની મદદથી તારના છેડાઓને અણીદાર બનાવો. આ વાળેલા તારને આકૃતિ D 11.2માં બતાવ્યા પ્રમાણે ટેકા ઉપર મૂકી દો.

Downloaded from https://www.studiestoday.com


પ્રયોગશાળા માર્ગદર્શિકા

આકૃતિ D 11.1 : સ્થિત પ્રવાહો I_a અને I_b ધરાવતા બે લાંબા સુરેખ, સમાંતર સુવાહકો વચ્ચેનું અંતર d છે. સુવાહક a વડે સુવાહક b પાસે સ્થાપિત ચુંબકીય ક્ષેત્ર B_a છે.

લટકાવેલા \square આકારના તારના નીચેના ભાગ ABની નજીક બે સીધી ખીલીઓ N_1 અને N_2 જડી દો. ખીલીઓ N_1 અને N_2 વચ્ચે તાંબાનો એક જાડો તાર XY ચુસ્ત રીતે જડી દો જેથી AB અને XY વચ્ચેનું અંતર આશરે 1 થી 2 mm હોય. હવે, આકૃતિ D 11.2માં બતાવ્યા પ્રમાણે એક રીઓસ્ટેટ, એક કળ અને બૅટરીના વિદ્યુતીય જોડાણો કરો. જ્યારે કળ Kને ચાલુ કરો, ત્યારે તાર AB અને XYમાં વિદ્યુતપ્રવાહ સમાન દિશામાં વહે છે. આપણને જોવા મળશે કે તાર AB એ તાર XY તરફ આકર્ષાય છે. હવે જડિત તાર XYમાં પ્રવાહની દિશા ઊલટાવતા તારનો ટુકડો AB એ તારથી અપાકર્ષે છે. આ પ્રવૃત્તિનું પુનરાવર્તન (1) તાર XYની લંબાઈ બદલીને (2) પ્રવાહની ક્ષમતા બદલીને કરી શકાય. આપણે જોઈએ કે સમાન દિશામાં વહન પામતા વિદ્યુતપ્રવાહો એકબીજાને આકર્ષે છે જ્યારે વિરુદ્ધ દિશામાં વહન પામતા પ્રવાહ એકબીજાને અપાકર્ષે છે.

આકૃતિ D 11.2 : પ્રવાહધારિત બે સુવાહકોમાં પ્રવાહના વિરુદ્ધ / સમાન દિશામાં વહન થતા તેમની વચ્ચે અનુક્રમે અપાકર્ષણ / આકર્ષણ બળ.

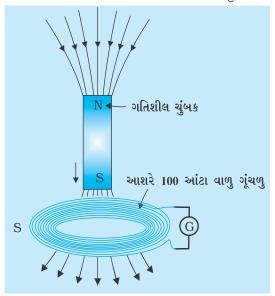
આકૃતિ D 11.3 : િ આકારનો તાંબાનો તાર

निद्दर्शन 11

નોંધ

(1) જો તારના એકમ લંબાઈ દીઠ લાગતા બળને F_{ba} વડે દર્શાવીએ, તો સમીકરણ E 11.2 પ્રમાણે

$$F_{ba} = \frac{\mu_0 I_a I_b}{2\pi d}$$


સમીકરણ D 11.3નો ઉપયોગ વિદ્યુતપ્રવાહના SI એકમ, એમ્પિયર (A)ને વ્યાખ્યાયિત કરવામાં થાય છે. એમ્પિયર એ SI એકમ પદ્ધતિના સાત મૂળભૂત એકમોમાંથી એક છે.

(2) ધ્યાન રાખવું કે પ્રવાહ વધુ લાંબા સમય સુધી પસાર ન કરવો જેથી તાર ગરમ થઈ જાય.

નિદર્શન 12

(i) કોઈ ચુંબકને ગૂંચળા તરફ અને દૂર લઈ જતા હોય ત્યારે અને (ii) વિદ્યુતપ્રવાહધારિત ગૂંચળાને એક સમાન બીજા આપેલ ગૂંચળાની તરફ અને દૂર લઈ જતાં હોય ત્યારે, તે ગૂંચળામાં ઉદ્ભવતા પ્રેરિત વિદ્યુત ચાલક બળનું નિદર્શન કરવું.

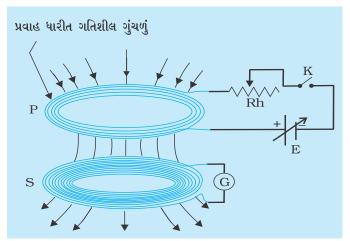
(i) કોઈ ચુંબકની ગૂંચળા તરફ અને ગૂંચળાથી દૂર તરફની ગતિને લીધે ગૂંચળામાં ઉત્પન્ન થતાં પ્રેરિત વિદ્યુતચાલકબળનું નિદર્શન :

આકૃતિ D 12.1 : ગતિશીલ ચુંબક ગૂંચળા માં પ્રેરિત વિદ્યુતચાલક બળ ઉત્પન્ન કરે છે

આકૃતિ D 12.1માં બતાવ્યા પ્રમાશે 100 આંટા ધરાવતા ગૂંચળાના બંને છેડાઓને એક સંવેદનશીલ ગૅલ્વેનોમીટરના બંને ટર્મિનલ સાથે જોડી દો. ચુંબકને હાથમાં પકડો અને ગૂંચળા તરફ ઝડપથી લઈ જાઓ. તેને ગૂંચળાની અંદર પણ લઈ જઈ શકાય. તમને ગૅલ્વેનોમીટરમાં સોયનું વિચલન દેખાશે કે જે ગૂંચળામાં ઉદ્દ્ભવતા પ્રેરિત વિદ્યુતચાલક બળને કારણે ઉત્પન્ન થતા પ્રેરિત વિદ્યુતપ્રવાહનું માપ છે. હવે ચુંબકને લગભગ તેટલી જ ઝડપથી ગૂંચળાથી દૂર લઈ જાઓ. તમને તેટલું જ વિચલન ગૅલ્વેનોમીટરમાં મળશે પણ વિરુદ્ધ દિશામાં, આગળના કિસ્સામાં ગૂંચળામાંથી પસાર થતું ચુંબકીય ફ્લક્સ વધતું હતું જયારે બીજા કિસ્સામાં તે ઘટતું જાય છે. નોંધનીય છે કે જયારે ચુંબક ગતિમાં હોય ત્યારે જ વિચલન જોવા મળે છે. આ દર્શાવે છે કે જયાં સુધી ફ્લક્સ બદલાતું રહેશે ત્યાં સુધી જ પ્રેરિત વિદ્યુતપ્રવાહનું વહન થાય છે. ઉપરનાં પદોનું પુનરાવર્તન ચુંબકની ઝડપ બદલીને કરો. અવલોકનો જુઓ અને નોંધો.

જોવા મળે છે કે જ્યારે ચુંબક ગૂંચળા તરફ ગતિ કરે છે ત્યારે ગૂંચળા

સાથે સંકળાયેલું ચુંબકીય ફ્લકસ વધે છે અને જ્યારે તેને ગૂંચળાથી દૂર લઈ જાઓ ત્યારે ફ્લકસ ઘટે છે. જો તમે આ નિદર્શનનું ચુંબકની ગિત વધુ ઝડપથી કરીને પુનરાવર્તન કરો ત્યારે દરેક કિસ્સામાં આપને વધુ વિચલન જોવા મળશે. આ દર્શાવે છે કે જેમ ચુંબકીય ફ્લક્સના ફેરફારનો દર વધુ તેમ ગૂંચળામાં વધુ વિદ્યુતચાલકબળ ઉદ્ભવે છે. આ ફેરેડેના નિયમનો ગુણાત્મક (qualitative) નિદર્શન છે જેના પ્રમાણે પ્રેરિત વિદ્યુતચાલકબળ એ પરિપથમાંથી પસાર થતા ચુંબકીય ફ્લક્સના ફેરફારના દરને સમપ્રમાણમાં હોય છે.


નોંધ

(1) N આંટાવાળા ગૂંચળાના કિસ્સામાં, દરેક આંટા સાથે સંકળાયેલું ચુંબકીય ફ્લક્સ સમાન હોય

- છે. એટલે જ કુલ પ્રેરિત વિદ્યુતચાલકબળનું સૂત્ર $E=rac{-Nd\,\phi_{_B}}{dt}$ થાય છે.
- (2) અલગીકરણ (insulation) માટે DC તાર પર સુતરાઉ દોરાના બે સ્તર હોય છે અને પ્રયોગશાળામાં નીચા વોલ્ટેજના પ્રયોગો કરવા માટે આ વધુ અનુકૂળ હોય છે.
- (ii) વિદ્યુતપ્રવાહધારિત બીજા એક સમાન ગૂંચળાને આપેલ ગૂંચળાની તરફ અને દૂર લઈ જાઓ ત્યારે તે ગૂંચળામાં ઉદ્ભવતા પ્રેરિત વિદ્યુતચાલકબળનું નિદર્શન કરવું.

ઉપરના નિદર્શન 12 (i)માં વાપરેલ ગૂંચળા Sને લઈ ગૅલ્વેનોમીટર સાથે જોડી દો. બીજું એક 50 આંટાવાળું સમાન વ્યાસ ધરાવતું ગૂંચળું P લો. આકૃતિ D 12.2માં દર્શાવ્યા પ્રમાણે તેને બૅટરી, રીઓસ્ટેટ અને કળ સાથે જોડો.

નિદર્શન 12 (i)માં ચુંબકને ગતિ કરાવી હતી તે જ રીતે ગૂંચળા P ને ગૂંચળા S તરફ અને દૂર ગતિ કરાવો. વિદ્યુતપ્રવાહ વહેતો હોવાને કારણે P ચુંબક તરીકે વર્તશે. ગૅલ્વેનોમીટરના વિચલનને જુઓ. આ ગૂંચળા Sમાં ઉદ્દભવતા પ્રેરિત વિદ્યુતચાલક બળનો પુરાવો છે. જ્યારે ગૂંચળા Pને ગૂંચળા S તરફ વધુ ઝડપથી ગતિ કરાવો ત્યારે ગૅલ્વેનોમીટરમાં વધુ વિચલન આવે તેમ તમે જોશો અને આની નોંધ પણ કરો. રીઓસ્ટેટની મદદથી Pનું સ્થાન બદલ્યા વગર તેમાંથી પસાર થતા પ્રવાહમાં ફેરફાર કરો. તમને જોવા મળશે કે વિદ્યુતપ્રવાહના મૂલ્યના ફેરફાર સાથે ગૅલ્વેનોમીટરમાં વિચલન પણ બદલાશે. હવે ગૂંચળા P ને ગૂંચળા S પર, અવાહક જેવા કે કાચની તકતી અથવા પૂંઠાથી અલગ કરીને મૂકો.

આકૃતિ D 12.2 : પ્રવાહધારિત ગતિશીલ ગૂંચળું P એ ગૂંચળા Sમાં પ્રેરિત વિદ્યુત ચાલક બળ

ગૂંચળા Pને જરા પણ ન હલાવો. Pમાં વિદ્યુતપ્રવાહને પસાર(સ્વિચ ઑન) કરો ત્યારે S સાથે જોડેલા ગૅલ્વેનોમીટરમાં થતા વિચલનનું અવલોકન કરો. હવે Pમાં વિદ્યુતપ્રવાહ બંધ (સ્વિચ ઑફ) કરો, તમને જોવા મળશે કે ગૅલ્વેનોમીટરમાં વિચલન વિરુદ્ધ દિશામાં મળશે. હવે ગૂંચળા Pમાં અચળ પ્રવાહ પસાર કરો. જો પ્રવાહમાં ફેરફાર ન થાય, તો ચુંબકીય ક્ષેત્રમાં પણ કોઈ ફેરફાર નહિ થાય. ગૂંચળું P એ Sની ઉપર જ હોવાથી, Pની ચુંબકીય બળરેખાઓ Sમાંથી પણ પસાર થાય છે. હવે Pને કાચની તકતી પર સરકાવો જેથી બંને ગૂંચળા વચ્ચેનું સામાન્ય (common) ક્ષેત્રફળ ઘટે. જયારે Pમાં પ્રવાહ સ્વિચ ઑફ કરો ત્યારે ગૅલ્વેનોમીટરમાં તે જ દિશામાં વિચલન જોવા મળશે. હવે બંને ગૂંચળાઓ વચ્ચેના સામાન્ય ક્ષેત્રફળને વધારો અને ગૅલ્વેનોમીટરના વિચલનનું અવલોકન કરો. જયારે Pમાં પ્રવાહ સ્વિચ ઑન કરો ત્યારે ગૅલ્વેનોમીટરમાં તે જ દિશામાં વિચલન જોવા મળશે.

પ્રયોગશાળા માર્ગદર્શિકા

નોંધ

- (1) જ્યારે વિદ્યુતપ્રવાહમાં ફેરફાર કરીએ ત્યારે બદલાતું ચુંબકીય ક્ષેત્ર ઉદ્ભવે છે. આને કારણે જે સુવાહકોમાંથી ચુંબકીય બળરેખાઓ પસાર થાય તેમાં વિદ્યુતચાલકબળનું પ્રેરણ થાય છે.
- (2) ઉપરનાં અવલોકનોમાંથી સ્પષ્ટ છે કે ચુંબક અથવા ગૂંચળાની ગતિ અગત્યનું પરિબળ નથી. ગૂંચળા Sના ગૂંચળા P સાથેના સામાન્ય ક્ષેત્રફળ સાથે સંકળાયેલા ચુંબકીય ફ્લક્સમાં ફેરફાર જ ગૂંચળા Sમાં ઉદ્ભવતા વિદ્યુતચાલકબળ માટે જવાબદાર છે.
- (3) P વડે ઉત્પન્ન થતો અને Sમાંથી પસાર થતો ચુંબકીય ફ્લક્સમાં ફેરફાર જ Sમાં ઉદ્ભવતા પ્રેરિત વિદ્યુતચાલકબળનું કારણ છે. આ ફેરફાર નીચેમાંથી કોઈ પણ રીતે થઈ શકે :
 - (i) Pની ગતિ જેને કારણે Sમાં ક્ષેત્ર-તીવ્રતામાં ફેરફાર આવે જેમાંથી પસાર થતા ચુંબકીય ફ્લક્સમાં ફેરફાર કરે.
 - (ii) Pમાં પસાર થતા વિદ્યુતપ્રવાહમાં ફેરફાર; અથવા
 - (iii) ગૂંચળાઓ સામેના Pના ક્ષેત્રફળમાં ફેરફાર.
- (4) બૅટરી, રીઓસ્ટેટ અને કળને ગૂંચળા S સાથે અને ગૅલ્વેનોમીટરને ગૂંચળા P સાથે જોડીને પણ આ નિદર્શન કરી શકાય.

નિદર્શન 13

ઇન્ડક્ટિવ પરિપથમાં ડાયરેક્ટ પ્રવાહ (એકદિશીય પ્રવાહ) (dc) ને જ્યારે સ્વિચ ઑફ કરીએ ત્યારે ઊંચા મૂલ્યનું વિદ્યુતચાલક બળ ઉદ્ભવે છે તેમ નિદર્શન કરવું.

આકૃતિ D 13.1માં દર્શાવ્યા પ્રમાણે પરિપથ બનાવવો. બૅટરી સાથે શ્રેણીમાં જોડેલા ગૂંચળાના બે છેડા સાથે જોડેલા હોલ્ડરમાં ફિટ કરેલા નીઓનનો ગોળો N છે. કળ K બંધ કરતા જોવા મળે છે કે ગોળો ચાલુ થતો નથી. હવે કળ K ઑપન કરો. ગોળો પ્રજ્વલિત થશે જે દર્શાવે છે કે ઇન્ડક્ટર Lમાં મોટું પ્રેરિત વિદ્યુતચાલકબળ ઉદ્દ્ભવ્યું છે. વિદ્યુતચાલકબળનું ઉદ્દગમસ્થાન સ્વિચ ઑફ કર્યા પછી પણ આ પ્રેરિત વિદ્યુતચાલકબળના ગૂંચળામાંથી પસાર થતા વિદ્યુતપ્રવાહને જાળવી રાખે છે.

નોંધ

- (1) જ્યારે વિદ્યુતપ્રવાહને સ્વિચ ઑન કર્યો હોય ત્યારે બેક વિદ્યુતચાલકબળ (Back emf) એ બૅટરીના વિદ્યુતચાલકબળ કરતા વધુ ન હોઈ શકે કારણ કે બંનેના પરિણામી એ બૅટરીના ધન છેડામાંથી (રૈવાજિક) પ્રવાહ પસાર કરવો જ પડે. જોકે સ્વિચ ઑફ કરતા, પરિસ્થિતિ કંઈક જુદી હોય છે. ઇન્ડક્ટર Lમાં ઊંચું વિદ્યુતચાલકબળ ઉદ્ભવે છે કે જે પ્રવાહના વહનને જાળવે છે. જેથી ગોળો ચાલુ થાય છે.
- (2) ફેરેડેના વિદ્યુતચુંબકીય પ્રેરણના નિયમ પ્રમાણે, જ્યારે કળ ઑપન કરો ત્યારે બૅટરીમાંથી પ્રવાહ તરત જ બંધ થાય છે અને આ હકીકતના કારણે એ ઊંચું પ્રેરિત વિદ્યુતચાલકબળ
- N (e) L K

આકૃતિ D 13.1 : જ્યારે પરિપથમાં પ્રવાહ બંધ કરીએ ત્યારે જ નીઓન ગોળો N ચાલુ થાય છે

- ઉદ્ભવે છે. એટલે જ ગૂંચળામાં ચુંબકીય ફ્લક્સના ઘટાડાનો દર ઊંચો હોઈ એક ઊંચું વિદ્યુતચાલકબળ ઉદ્ભવે અને તેથી જ ગોળામાંથી વિદ્યુતપ્રવાહ પસાર થાય.
- (3) પરિપથને સ્વિચ ઑન કર્યા પછી નીઓનનો ગોળો પ્રજ્વલિત થતો નથી. આનું કારણ નીઓન ગોળાનો સ્ટ્રાઇકિંગ (striking) વોલ્ટેજ (આશરે 150V) એ બૅટરી E ના સપ્લાય વોલ્ટેજ જે સામાન્ય રીતે 2 થી 3V હોય છે, તેના કરતા ઘણું વધારે છે.
- (4) જ્યારે વિદ્યુતચાલક બળનું ઉદ્દગમ (બૅટરી) કટ ઑફ કરીએ, ત્યારે નીઓન ગોળાને ચાલુ થવા માટેની ઊર્જા ક્યાંથી આવે છે ? જે ગૂંચળા L માં પસાર થતા પ્રવાહની સાથે સંકળાયેલા ચુંબકીય ક્ષેત્રમાંથી આવે છે. માટે આ પ્રયોગ ચુંબકીય ક્ષેત્રમાં ઊર્જા હોવાનું પણ સ્પષ્ટપણે નિદર્શન કરે છે.

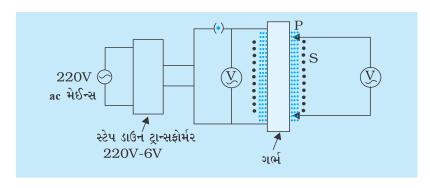
Downloaded from https://www.studiestoday.com

પ્રયોગશાળા માર્ગદર્શિકા

(5) જે ગૂંચળામાં પ્રવાહ પસાર થતો હોય તે જ ગૂંચળામાં પ્રેરિત વિદ્યુતચાલકબળની હાજરીની ઘટનાને આત્મપ્રેરણ કહે છે. ગાણિતીય રીતે ગૂંચળાના આત્મપ્રેરકત્વ (L)ને સમીકરણ

$$E = -L \; rac{dI}{dt} \;$$
વડે વ્યાખ્યાયિત કરી શકાય.

અહીં E એ પ્રેરિત વિદ્યુતચાલકબળ અને $\dfrac{dI}{dt}$ એ ગૂંચળામાંથી પસાર થતા પ્રવાહના ફેરફારનો દર છે. ઉપરના સમીકરણમાં ઋણ નિશાની પ્રેરિત વિદ્યુતચાલકબળની દિશા પ્રવાહના ફેરફારની દિશાને વિરુદ્ધ હોય છે અને પ્રવાહને અચળ જાળવવાનું વલણ દર્શાવે છે.


(6) આત્મપ્રેરકત્વની યાંત્રિક સમરૂપતા : ઉપરનું સમીકરણ યંત્રશાસ્ત્રના નીચેના સમીકરણને સમતુલ્ય છે. પોતાના જડત્વના કારણે ગિતશીલ પદાર્થનું બીજા પદાર્થ પર બળ = -m \frac{dv}{dt} જયાં m એ દ્રવ્યમાન અને \frac{dv}{dt} એ પદાર્થના વેગના ફેરફારનો દર એટલે કે પ્રવેગ છે. અહીં પણ ઋણ નિશાની દર્શાવે છે કે, બળની દિશા વેગના ફેરફાર કરતા વિરુદ્ધ અને વેગ અચળ જાળવી રાખવાનો પ્રયત્ન કરે છે. એટલે જ વિદ્યુતતંત્રમાં ઇન્ડક્ટર L એ યાંત્રિક તંત્રમાં દળ mની ભૂમિકા ભજવે છે. દા.ત., ગૂંચળામાં dc પ્રવાહને સ્વિચ ઑન કરવું એ હથોડાને પ્રવેગિત કરવું તેને સમરૂપ છે. એટલે જ dc પ્રવાહને સ્વિચ ઑફ કરવું એ હથોડી ખીલીને અથડાય અને તરત ઊભી રહી જાય તથા ખીલી ઉપર વધુ બળ લગાવે તેને સમરૂપ છે.

- (i) સ્ટીલના એક સળિયા પર પ્રાઈમરી અને સેકન્ડરીને વીંટાળી ટ્રાન્સફોર્મરના સિદ્ધાંત અને
- (ii) લેમિનેટેડ કોર (Laminated Core)નો ઉપયોગ કરીને એડી પ્રવાહોને દૂર કરવાનું નિદર્શન કરવું.
- (i) સ્ટીલના એક સળિયા પર પ્રાઇમરી અને સેકન્ડરીને વીંટાળી ટ્રાન્સફોર્મરના સિદ્ધાંતનું નિદર્શન કરવું:

15 cm લાંબો અને 13 cm વ્યાસ ધરાવતો નરમ લોખંડનો એક સળિયો લો. તેના પર એક જાડો કાગળ વીંટાળી દો. 200 આંટા ધરાવતી ઈનેમલ્ડ કોટીંગ (enamelled) તાંબાના તાર (22 SWG અથવા 20 SWG)*નું બનેલું ગૂંચળું P તેના પર વીંટાળો. આકૃતિ D 14.1માં બતાવ્યા પ્રમાણે 50 આંટા ધરાવતી ઈનેમલ્ડ તાંબાના તાર (18 SWG અથવા 16 SWG)નું બનેલું બીજું ગૂંચળું S વીંટાળો. બંને ગૂંચળાને સળિયાની સમાન લંબાઈ પર વીંટાળ્યા હોવાથી એક ગૂંચળામાં પ્રવાહ પસાર કરવાથી ઉત્પન્ન થતું ચુંબકીય ફ્લક્સ લગભગ સંપૂર્ણ રીતે બીજા ગૂંચળા સાથે સંકળાય છે. કોઈ એક સ્ટેપ ડાઉન ટ્રાન્સફોર્મર (step down transformer)માંથી મળતા 6V ac સપ્લાયને ગૂંચળા P સાથે જોડવો. ગૂંચળા Sને ac વોલ્ટમીટર (0-10V) સાથે જોડવું. એક સમાન ac વોલ્ટમીટર ગૂંચળા P સાથે પણ જોડવું. ગૂંચળા P માં પ્રવાહ ચાલુ કરો અને બંને ગૂંચળા પર મળતો વોલ્ટેજ V_p અને V_s નોંધી. V_p અને V_s નો ગુણોત્તર શોધો. તમને જોવા મળશે કે, આ ગુણોત્તર P અને Sના આંટાના

ગુણોત્તર જેટલો છે એટલે કે
$$\frac{V_{\scriptscriptstyle P}}{V_{\scriptscriptstyle S}} = \frac{N_{\scriptscriptstyle P}}{N_{\scriptscriptstyle S}}$$

આકૃતિ D 14.1 : "I" આકારના લોખંડના ગર્ભ પર બે ગૂંચળા વિંટાળી બનાવેલું સાદું ટ્રાન્સફોર્મર

^{*} પાન નંબર 289 પર કોપ્ટક D 6 જુઓ.

પ્રયોગશાળા માર્ગદર્શિકા

નોંધ

- (1) ગૂંચળા P (જેની પર ac વોલ્ટેજ આપેલું છે.)ને પ્રાઇમરી (પ્રાથમિક) અને ગૂંચળા S (જેમાં ac પ્રેરિત થાય છે.)ને સેકન્ડરી (ગૌણ) કહે છે.
- (2) ગૂંચળું S એ ગૂંચળા Pના એકદમ નજીક હોવાથી (તેઓ એકબીજા સાથે જોડાયેલા નથી પણ અવાહક ઈનેમલના કારણે અલગ છે.) પ્રાથમિકમાંથી પાવર ગૌણ ગૂંચળામાં અન્યોન્ય પ્રેરણથી ટ્રાન્સફર થાય છે.
- (3) ઉપરના સમીકરણ પરથી એ સ્પષ્ટ થાય છે કે, ટ્રાન્સફોર્મર ગુણોત્તર $\frac{N_p}{N_s}$ ની યોગ્ય પસંદગી કરી, આપણે Pની સરખામણીમાં S માં ઊંચું અથવા નીચું વોલ્ટેજ મેળવી શકીએ.
- (4) એ નોંધનીય છે કે સ્થિર dc વોલ્ટેજને ટ્રાન્સફોર્મર વડે સ્ટેપ-અપ અથવા સ્ટેપ-ડાઉન ન કરી શકાય કારણ કે સ્થિર dc વોલ્ટેજ બદલાતું ચુંબકીય ફ્લક્સ ઉત્પન્ન કરી શકતો નથી અને એટલે જ તે વોલ્ટેજ પ્રેરિત કરી શકતો નથી.
- (5) ટ્રાન્સફોર્મર એ અન્યોન્યપ્રેરણ (Mutual induction)નો મહત્ત્વનો ઉપયોગ છે. બંને ગૂંચળાના આંટાના ગુણોત્તર પર આધારિત ac વોલ્ટેજને ટ્રાન્સફોર્મર સ્ટેપ-અપ અથવા સ્ટેપ-ડાઉન કરી શકે છે.
- (ii) લેમિનેટેડ કોરનો ઉપયોગ કરી એડી પ્રવાહોને દૂર કરવાનું નિદર્શન કરવું

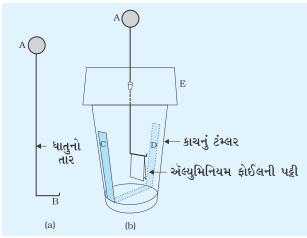
ચુંબકીય ક્ષેત્ર રેખાઓ નળાકાર કવચ ગર્ભ સીમા

આકૃતિ D 14.2 : ગર્ભની અંદર બદલાતા ચુંબકીય ફ્લક્સ એ ગર્ભની અંદર કોઈપણ નળાકાર કવચની આજુબાજુ પ્રેરિત વિદ્યુતચાલકબળ ઉત્પન્ન કરે છે.

ઉપરના નિદર્શનમાં Pને 6 V ac સાથે સતત થોડા સમય માટે રાખી હાથ વડે ગર્ભ અને ગૂંચળાની ઉષ્ણતા અનુભવો. તમને જોવા મળશે કે કોર (ગર્ભ) વધુ ગરમ બને છે જ્યારે તાંબાના તારનું ગૂંચળું પ્રમાણમાં ઠંડું હોય છે. જ્યારે ટ્રાન્સફોર્મર અડકી પણ ન શકાય એવું ગરમ થાય ત્યારે તેને સ્વિચ ઑફ કરવું. નહિતર તાંબાના તાર પરનું ઈનેમલનું પડ સળગી જશે. એડી પ્રવાહના કારણે કોર (ગર્ભ) ગરમ થાય છે (અવરોધક ઉષ્ણતા). ગર્ભને વધુ સંખ્યામાં નળાકાર કવચો (Shells)નો બનેલો માની લેતા અને તેમાંનું એક કવચ ધ્યાનમાં લઈએ (આકૃતિ D 14.2). ગુંચળાની જેમ જ કવચમાંથી પસાર થતા ચુંબકીય ફ્લક્સમાં ફેરફાર તેમાં વિદ્યુતપ્રવાહ પ્રેરિત કરે છે. ગર્ભ જેનો બનેલો છે તે બધા જ કવચોમાં પ્રેરિત વિદ્યુતપ્રવાહ ઉદ્ભવે છે. હવે લોખંડના ઘન સળિયાને બદલે ઈનેમલ કોટ વડે એકબીજાથી અલગ કરેલા પાતળા નરમ લોખંડના તારોને ભેગા દબાવીને બનાવેલ લેમિનેટેડ કોર લો. આ કોરનો ઉપયોગ કરી ઉપરના નિદર્શનનું પુનરાવર્તન કરો. તમે જોશો કે તારનો બનેલો કોર ખૂબજ ધીમે-ધીમે ગરમ થાય છે.

નિદર્શન 14

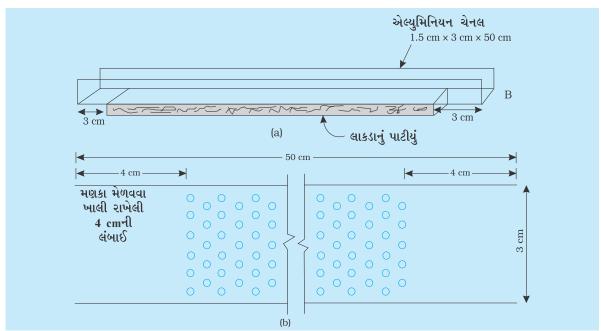
નોંધ


- (1) નરમ લોખંડના તારમાંનો ઈનેમલ એડી પ્રવાહોને સારા પ્રમાણમાં ઓછું કરે છે કારણ કે વિદ્યુતપ્રવાહ એક તારમાંથી બીજા તારમાં જતો નથી. તેમ છતાં દરેક તારની અંદર તો અમુક એડી પ્રવાહો તો હોય છે જ.
- (2) આ પ્રકારના કોર (ગર્ભ) ઊંચી આવૃત્તિ માટે નકામા છે તે ઉલ્લેખ કરવો જ પડે.

સાદુ ઇલેક્ટ્રોસ્કૉપ બનાવવું અને પદાર્થ પરના વિદ્યુતભારને પારખવા માટે તેનો ઉપયોગ કરવો

આકૃતિ A_x 1 (a)માં દર્શાવ્યા પ્રમાણે ધાતુના તારને વાળો અને તેના એક છેડે દટ્ટો બનાવો. (તમે તારના છેડા Aને ઘણી વખત વળ ચઢાવીને આવો દટ્ટો બનાવી શકો છો.) ઍલ્યુમિનિયમના પાતળા વરખની લગભગ 8 cm લાંબી અને 1/2 cm પહોળી પટ્ટી લો. તેને મધ્યમાંથી ગોળ આકારમાં વાળો. તેને ખૂબ જ હળવેકથી તારના સમક્ષિતિજ છેડા B પર મૂકો. કાચની ઊંચી બરણી અથવા ટંબ્લર લો. 2 cm પહોળી અને 10 cm લાંબી ઍલ્યુમિનિયમના વરખની બે પટ્ટી C અને D કાચના ટંમ્બ્લરની સામસામેની બાજુએ ચોંટાડો. કૉપરના તાર કે જેના B છેડે ઍલ્યુમિનિયમની વાળેલી પાતળી પટ્ટી છે તેને હળવેકથી નીચે ઉતારો. તારની દિશા એવી હોવી જોઈએ કે જેથી C એ વાળેલી ઍલ્યુમિનિયમની પટ્ટીનો અડધા ભાગની સામે આવે અને D એ બાકીના અડધા ભાગની સામે આવે. [આકૃતિ A_x 1 (b)]. E એ તારને ટેકો (આધાર) આપવા માટે પૂંઠા (કાર્ડ બૉર્ડ)ની તકતી છે. આ તમારું ઇલેક્ટ્રૉસ્કોપ છે.

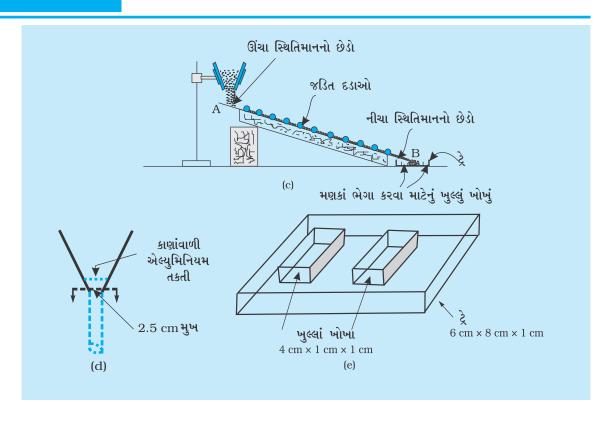
આપેલો પદાર્થ (દા.ત. કાચનો સિળયો) વિદ્યુતભારિત છે કે નહિ તે ચકાસવા માટે તેને ઇલેક્ટ્રૉસ્કોપની નજીક લાવો અને છેડા A સાથે સંપર્ક કરાવો. જો આપેલો પદાર્થ વિદ્યુતભારિત હશે તો તમે જોઈ શકો છો કે ઍલ્યુમિનિયમની પટ્ટી છૂટી પડે છે. ઇલેક્ટ્રૉસ્કોપની મદદથી દર્શાવી શકાય કે, પદાર્થોને ઘસવાથી તેના પર વિદ્યુતભાર સ્થાપિત કરી શકાય છે. તમે એ પણ દર્શાવી શકો છો કે, ઘસવાની


આકૃતિ $A_{_x} 1$ (a),(b) : ઍલ્યુમિનિયમ ફોઇલ ગોઠવેલ ઇલેક્ટ્રૉસ્કોપ

પ્રક્રિયા દરમિયાન, આ પ્રક્રિયામાં સામેલ બે પદાથો પર વિજાતિય વિદ્યુતભારો પ્રસ્થાપિત થાય છે.

URRING 2

ધાતુના તારમાં 'ઇલેક્ટ્રૉન ડ્રિફ્ટ'નું યાંત્રિક મૉડેલ બનાવવા માટેનું માર્ગદર્શન


લગભગ 3 cm પહોળી અને 50 cm લાંબી સીધી ઍલ્યુમિનિયમ ચેનલ AB લો [આકૃતિ $A_{_x}$ 2 (a)]. પરમાશુઓ કે ધન આયનોને સાઇકલના સ્ટીલના નાના છરાઓ (લગભગ 3 mm વ્યાસવાળા) વડે અને મુક્ત ઇલેક્ટ્રૉનને નાના મોતીઓ (ઈલેક્ટ્રૉસ્ટેટ મશીનમાં વાપર્યા છે તે) રજૂ કરેલ છે જયારે ચેનલને ત્રાંસી કરવામાં આવે ત્યારે નાના મોતીઓ મુક્ત રીતે ફરી શકે છે. સ્ટીલના ગોળાઓના તળિયે એરેલડાઇટ જેવું પ્રબળ એડહેસિવ લગાવી ઍલ્યુમિનિયમની સપાટી પર ચોંટાડવામાં આવે છે. એડહેસિવના કારણે, નાના મોતીઓ જયારે સ્ટીલની ગોળીઓને અથડાય ત્યારે તેના સ્થળાંતર (ઘસડાઈને)માં કોઈ અવરોધ ના આવવો જોઈએ. માટે, એડહેસિવ લગાવતાં પહેલાં, ચેનલ પરના દરેક બિંદુને સ્ફટિક લેટિસ નેટવર્કની પદ્ધતિ (આકૃતિ $A_{_X}$ 2 (b)) પ્રમાણે પુનરાવર્તિત રીતે અંકિત કરવા. આ પદ્ધતિને વધારે સારી રીતે સિદ્ધ કરવા ચેનલના માપના આલેખ પેપરની સ્ટ્રિપને ચોંટાડવી જોઈએ. દડાઓ વચ્ચેની પરસ્પર ગૅપ ઇલેક્ટ્રૉનને રજૂ કરતાં મોતીઓની (મણકાઓની) સાઇઝથી લગભગ બમણી છે.

આકૃતિ $A_x 2$: "ઇલેક્ટ્રૉન ડ્રિફ્ટ"ના યાંત્રિક મૉડેલની બનાવટ. (a) લાકડાના પૂંઠા પર ઍલ્યુમિનિયમ ચેનલની ગોઠવણી (b) બૉલબેરિંગને ફલક કેન્દ્રિય સ્ફટિક (face centred cristal) લેટિસની પદ્ધતિમાં ગોઠવવા

નોંધ: આ આકૃતિ માપક્રમિત નથી.

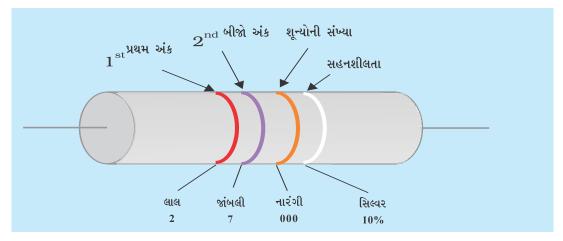
પ્રયોગશાળા માર્ગદર્શિકા

આકૃતિ A_x 2: "ઇલેક્ટ્રૉન ડ્રિફ્ટ"ના યાંત્રિક મૉડેલની બનાવટ (c) નિદર્શનની સંપૂર્ણ ગોઠવણી (d) ચેનલના ઉપર છેડે નાના મણકાઓ સતત પૂરા પડે તેવા સાધનની રચના કરવી (e) ચેનલના નીચેના છેડે મણકા ભેગા કરવા ખુલ્લા અને સૂકાં ખોખાંઓ મૂકવાં

ચેનલના પાયાને સ્થિત બનાવવા તેને તેટલી જ પહોળાઈના પરંતુ 6 cm લંબાઈમાં નાના હોય તેવા, 2.5 cm જાડાઈના લાકડાના પૂંઠા પર એડહેસિવ લગાવી ગોઠવવી વધુ સારી છે. (સ્કૂ વડે ફિક્સ ન કરવી જોઈએ).

નાના મણકાઓને ચેનલના ઉપરના છેડે ભેગા કરવા, દડાઓ (ગોળીઓ) સાથે સંઘાત કરાવવા અને ચેનલ પર ઘસડાઈને સ્થાનાંતર કરાવવા યોગ્ય એવી સુધારેલ પ્લાસ્ટિકની એક ફનેલ(નાળચું Funnel)ને મણકાઓથી ભરી છેડાની નજીક મૂકવી. જેને રિંગ સ્ટૅન્ડ પર આધાર આપી શકાય. [આકૃતિ A_x 2 (c)] ફ્નેલના સુધારા માટે તેને કાળજીપૂર્વક એવી રીતે કાપવામાં આવે કે જેથી તેની નીચેની બાજુનું મુખ લગભગ 2.5 cm વ્યાસનું થાય. તેના નીચેના છેડે લગભગ દસ કાણાં પાડેલ ઍલ્યુમિનિયમની વર્તુળાકાર તકતી મૂકવામાં આવે છે કે જેમાં કાણાંની સાઇઝ એટલી પૂરતી હોવી જોઈએ કે જેથી તેમાંથી મણકો પડી શકે. [આકૃતિ A_x 2 (d)] તમારે કેટલાંક ખોખાં / પૂંઠાઓ, જે 2 થી 3 cm જાડાં હોય તેની જરૂર પડશે, જેથી ચેનલને ઇચ્છિત ઢાળ આપી શકાય અને નાની ગોળીઓ દડાઓને અથડાઈને ડ્રિફ્ટ (ઘસડાઈને સ્થાનાંતર) થતી રહે. ચેનલના બીજા છેડે મણકાઓ ભેગા કરવા નાનાં ખુલ્લાં ખોખાંઓની જોડી સમાવતી ટ્રે (પ્લેટ)ની જરૂર પડશે. [આકૃતિ A_x 2(e)]. જયારે ઊંચા સ્થિતિમાને રહેલ ખોખું 3/4 ભરાઈ ત્યારે મણકાઓ 3 cm³ જેટલા માપે નીચા સ્થિતિમાને રાખેલ ખોખાંમાં ફેરબદલ થાય છે.

URRING 3


અવરોધકો અને તેનાં મૂલ્યો દર્શાવતા વર્શસંકેતો (Colour Codes)

કાર્બન અવરોધો કાર્બન બ્લૅક (સુવાહક)ની માટી અને રેઝિન (અવાહક)ના મિશ્રણથી બને છે. આ મિશ્રણને દબાવી, ગરમ કરી સળિયા સ્વરૂપે ઘાટ આપવામાં આવે છે. મિશ્રણની અવરોધકતા કાર્બનના પ્રમાણ પર આધારિત છે. આવા અવરોધની સ્થિરતા નબળી હોય છે અને તેનાં મૂલ્યો લગભગ \pm 10 % સુધી ચોકસાઈવાળા હોય છે પરંતુ તેઓ સસ્તાં, નાનાં અને ઘણાં બધાં કાર્યો કરવા માટે પૂરતાં સારાં હોય છે. અવરોધનાં મૂલ્યો કલરના નિશાનથી દર્શાવાય છે. [આકૃતિ A_x 3 (a)] જુદા- જુદા કલર સાથે સંકળાયેલ અંકો નીચે દર્શાવ્યા મુજબ છે :

કોઠો A_x 3.1

અંક	રંગ	અંક	રંગ
0	કાળો	5	લીલો
1	કથ્થઈ	6	વાદળી
2	લાલ	7	જાંબલી
3	નારંગી	8	ભૂખરો(રાખોડી)
4	પીળો	9	સફેદ

સહનશીલતા : સોનેરી (ગોલ્ડ) \pm 5 %, રૂપેરી (સિલ્વર) \pm 10 %, કોઈ જ કલર ના હોય તો \pm 20 %,

આકૃતિ A_x 3(a) : રંગના સંકેત સાથેનો કાર્બન-અવરોધ

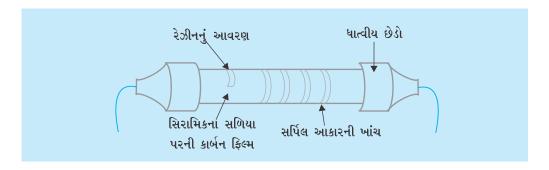
હવે આ કલર સંકેતના સ્થાને સાદા નિશાનનો ઉપયોગ થાય છે, જે નીચેના ઉદાહરણથી સમજી શકાશે.

Downloaded from https://www.studiestoday.com

પ્રયોગશાળા માર્ગદર્શિકા

			કોઠો $A_{_{\mathrm{X}}}$ 3.2	2		
મૂલ્ય	0.27Ω	1 Ω	3.3 Ω	10 Ω	220Ω	1000 Ω
નિશાન	R 27	1 RO	3 R 3	10 R	K 22	1 K0
—— મૂલ્ય	1200 Ω	68 KΩ	100 ΚΩ	1 ΜΩ	6.8 MΩ	470 ΚΩ
— નિશાન	1 K2	68 K	M10	1M0	6M8	M47

આ પદ્ધતિમાં સહનશીલતાને નીચેના અક્ષરો વડે દર્શાવાય છે :


$$F = \pm 1 \%$$
, $G = \pm 2 \%$, $J = \pm 5 \%$, $K = \pm 10 \%$, $M = \pm 20 \%$

ઉદાહરણ :5 K 6 K = 5.6 k Ω ± 10 %

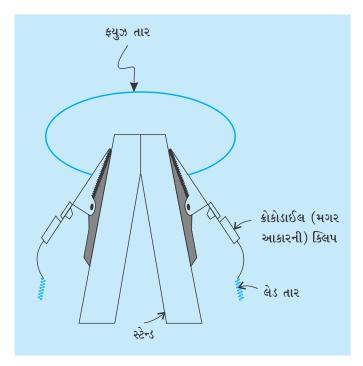
 $M 47 J = 470 k\Omega \pm 5 \%$

K10F = 100 Ω ± 1 %

કાર્બન ફિલ્મ અવરોધો તાજેતરમાં પ્રખ્યાત થયા છે. સામાન્ય રીતે આ પ્રકારના અવરોધોની સ્થિરતા અને ચોકસાઈ સામાન્ય રીતે ± 2 % છે, તથા પાવર રેટિંગ 1/8 અને 1/2 વોટ છે. તેની રચના [આકૃતિ A_r 3(b)] મુજબ છે.

આકૃતિ A_x 3(b) : કાર્બન ફિલ્મ અવરોધ

સિરામિકના સળિયાને 1000° C સુધી મિથેનની બાષ્યમાં ગરમ કરતાં સળિયા પર કાર્બનની સમાન (એકધારી) ફિલ્મ છૂટી થઈ જમા થાય છે. ફિલ્મનો અવરોધ જાડાઈ પર આધાર રાખે છે. ફિલ્મનો અવરોધ હજુ પણ સર્પિલ ખાંચાઓ કાપી વધારી શકાય છે. બે ધાત્વીય છેડાઓને જોડતી પરિણામી સર્પિલ આકારની કાર્બન ફિલ્મ જેટલી પાતળી અને લાંબી તેટલો તેનો અવરોધ વધારે. સર્પિલ આકારની ખાંચને કાપ્યા પછી, ફિલ્મને એપોક્ષી (epoxy) રેઝિનના સ્તર વડે ઢાંકવામાં આવે છે.

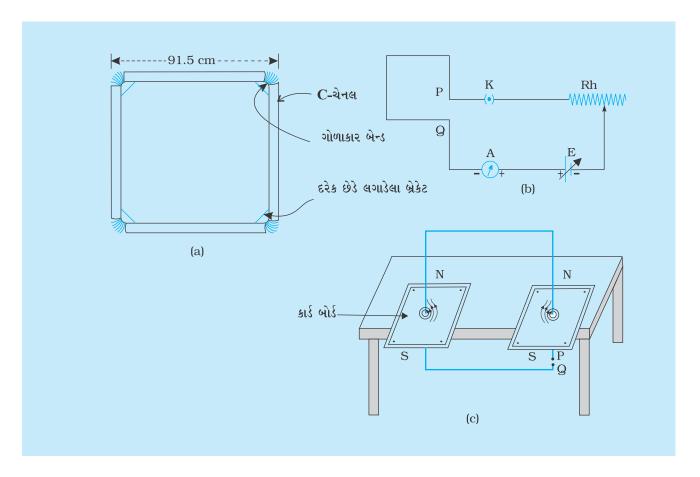

ઉચ્ચ ચોકસાઈ અને સ્થિરતા માટે અવરોધોને હંમેશાં તાર વડે બનાવાય છે, જ્યારે મોટા પાવર રેટિંગ (2 વૉટ કરતાં વધારે)ની જરૂરિયાત હોય. જેમ તાર પાતળો અને લાંબો તેમ તેનો અવરોધ વધુ, આ હકીકતનો ઉપયોગ તેઓ કરે છે. ઊંચી ચોકસાઈ માટે મૅગેનીન (મૅગેનીઝ, કૉપર, નિકલની મિશ્ર ધાતુ)ના પ્રમાણિત અવરોધનો તાર વપરાય છે કેમ કે તેનો તાપમાન અવરોધક ગુણાંક ઓછો (= 10^{-5} °C $^{-1}$) છે. કોન્સ્ટનટન (યુરેકા) જે કૉપર અને નિકલની મિશ્ર ધાતુ છે તેનો ઉપયોગ પણ જુદા-જુદા હેતુસર થાય છે. (તાપમાનનો અવરોધક ગુણાંક = \pm 2 × 10^{-5} ° C $^{-1}$ (અણધારી રીતે)). નિક્રોમ (નિકલ અને ક્રોમિયમની મિશ્રધાતુ)ના તાર વ્યાપારિક અવરોધો અને ઉષ્મીય સાધનોમાં વપરાય છે. (તાપમાનનો અવરોધક ગુણાંક = 10 × 10^{-5} °C $^{-1}$)

URRING 4

ખુલ્લા પ્રકારનું કામચલાઉ ફ્યુઝ હૉલ્ડર

ક્યુઝના કાર્યના નિદર્શન માટે, આ પ્રકારનો કયુઝ-હૉલ્ડર વર્ગખંડમાં ખૂબ જ ઉપયોગી છે. સફેદ પૃષ્ઠભૂમિ પર તૈયાર કરેલો આ ક્યુઝ તાર વિદ્યાર્થીઓને સ્પષ્ટ દેખાઈ શકે છે. બળી ગયેલો ક્યુઝ તાર 5 થી 10 સેકન્ડમાં બદલી શકાય છે.

5 cm લાંબી, 6 mm જાડી (1/4"), 25 mm પહોળી લાકડાની સરખી બે પટ્ટીઓ લો. દરેક પટ્ટીને શંકવાકાર રાખવા તેના એક છેડાને કાચ કાગળથી ઘસો. શંકવાકાર છેડાઓને સાથે મજબૂત એડહેસિવ વડે જોડો અને ઊંધો V- આકાર બનાવો. [આકૃતિ A_x (4)]. બે ક્રોકોડાઈલ ક્લિપ સોલ્ડરમાં લગાવેલા 1 m ના મુક્ત વિદ્યુતતાર વાળી બે ક્રોકોડાઈલ ક્લિપને છેડાઓ તરીકે વાપરો તેની ક્ષમતા 15 Aની હોય તેવા કૉપરના તારના બનેલા છે. બંને ક્રોકોડાઈલ ક્લિપોને મજબૂત એડહેસિવ. (જેવા કે એરેલડાઇટ) વડે ઢાળવાળા હાથા પર ચોંટાડો. હવે ફ્યુઝ-હૉલ્ડર તૈયાર થઈ ગયો.


આકૃતિ A_x 4 : ખુલ્લા પ્રકારનો ફ્યુઝ-હૉલ્ડર

ક્યુઝ તારાને ક્યુઝ-હૉલ્ડરમાં લગાવવા 12 cm લંબાઈનો ક્યુઝ તાર લો. ક્રોકોડાઈલ ક્લિપના બાહ્ય છેડે તારના એક છેડાના બે આંટાઓ વીંટાળો. આ જ રીતે બીજા છેડાને બીજી ક્રોકોડાઈલ ક્લિપ સાથે લગાવો, વચ્ચે 5 થી 6 cm તારની લૂપ રાખો.

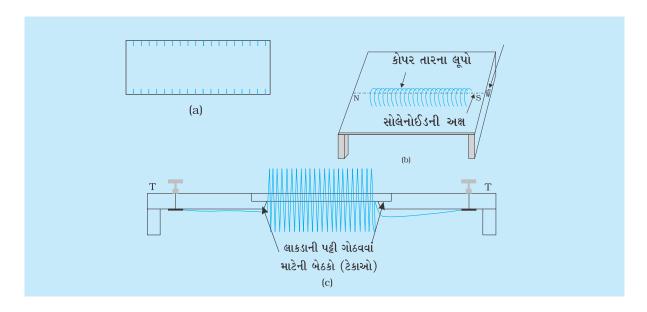
પરિશિષ્ટ 5

પ્રવાહના સ્રોત તરીકે માત્ર બે સૂકા કોષ વાપરી સુરેખ વાહક વડે ઉત્પન્ન થતા ચુંબકીયક્ષેત્રના અભ્યાસ માટે ચોરસ ગૂંચળું બનાવવું

366 cm લંબાઈની ઍલ્યુમિનિયમ curtain (પડદાની) ચેનલ લો, તેના વડે ચોરસ બનાવો જેથી દરેક બાજુની લંબાઈ કુલ લંબાઈના $\frac{1}{4}$ ગણી એટલે કે 91.5 cm થાય. [આકૃતિ A_x 5(a)] ચેનલની પહોળાઈ 6 mm કે 9 mm ઉપલબ્ધિ પ્રમાણે લઈ શકાય. દરેક ચોરસનો ખૂણો ગોળ હશે. ખૂણાની મજબૂતાઈ આપવા 90° એ યોગ્ય આકારના બ્રેકેટ મૂકવામાં આવે છે.

આકૃતિ A_x 5:

સુરેખ વાહક વડે ઉત્પન્ન થતા ચુંબકીયક્ષેત્રનો અભ્યાસ (a) મોટી ચોરસ કૉઇલ (ગૂંચળું) (b) ચુંબકીયક્ષેત્ર ઉત્પન્ન કરવા વિદ્યુતપ્રવાહ (c) વિદ્યુતપ્રવાહધારિત સુરેખ તારના લીધે, ચોરસ ગૂંચળાની મદદથી ચુંબકીયક્ષેત્ર ઉત્પન્ન કરવું


પરિશિષ્ટ 5

આ ચોરસમાં પડ ચઢાવેલ 24 SWG ના તાંબાના તારના 40 આંટાઓ છે. આ ગૂંચળાનો 20° C તાપમાને અવરોધ લગભગ 11 ohm છે. આથી 2 સૂકા કોષને સામાન્ય બૅટરી બૅાકસ કે જે 3 Vનો emf આપી શકે તેમાં ગોઠવીને તમે ગૂંચળાને 250 mAનો પ્રવાહ આપી શકો. આના કારણે બધા જ વાહકોના એક છેડા પર સંયુક્ત રીતે કુલ પ્રવાહ 10 ampere મળે છે. જે પૃથ્વીના ચુંબકીય ક્ષેત્રની હાજરીમાં 6 cmના અંતરે તટસ્થ બિંદુ આપે છે. લોખંડના ભૂકા વડે ક્ષેત્રની ભાતના નિદર્શન માટે દરેક ભૂજામાં કુલ 40 ampere નો વિદ્યુતપ્રવાહ આપવા માટે 12 volt ના dc પાવર સપ્લાય અથવા લેડ સંગ્રાહક કોષનો ઉપયોગ કરી શકો.

ટેબલ પર ગૂંચળાને શિરોલંબ [આકૃતિ A_x 5(c)] માં દર્શાવ્યા પ્રમાણે નિશ્ચિત કરો. [આકૃતિ A_x 5(b)] માં દર્શાવ્યા પ્રમાણે વિદ્યુત પરિપથ પૂર્ણ કરો. તેના શિરોલંબ છેડાઓને ટેબલ પર જિડત કરેલા બે સમક્ષિતિજ બાર્ડના કેન્દ્રમાંથી પસાર કરો. કાર્ડ બાર્ડ પર લોખંડના ભૂકાને પાથરી દો. 12 volt ના પાવર સપ્લાયની મદદથી 1 Aનો પ્રવાહ ગૂંચળામાંથી પસાર કરો અને કાર્ડ બાર્ડને ટપારો. લોખંડના કણો પ્રવાહધારિત વર્તુળાકાર લૂપની ફરતે શિરોલંબ ભૂજાઓમાં પોતાને ગોઠવશે.

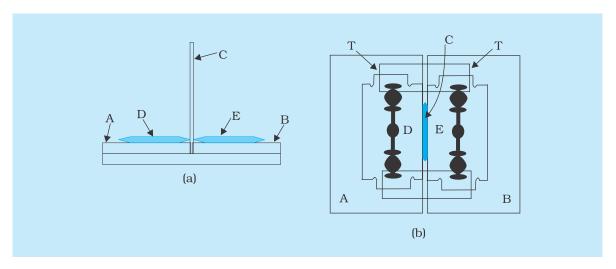
ચુંબકીય ક્ષેત્રના અભ્યાસ માટે સોલેનોઇડ બનાવવું

ઘર-વપરાશ માટેના વાયરિંગમાં સામાન્ય રીતે અર્થિંગ (earthing) જોડાણમાં વપરાતો કૉપર તાર (16 SWG) લો. પડ ચઢાવેલ તારનો ઉપયોગ વધુ યોગ્ય છે. આ તારના એકબીજાની નજીક રહે તેમ 42 આંટાઓ નળાકાર આકારની કાચની બોટલ, જેનો વ્યાસ 5 થી $5\frac{1}{2}$ cm ની વચ્ચે હોય તેના પર વીંટાળો. જ્યારે તમે બોટલને દૂર કરો ત્યારે તેના 4 આંટા નીકળી જાય છે અને માત્ર 38 આંટા જ રહે છે તથા એ જ વખતે તેનો વ્યાસ વધીને 55 mm થી 61 mm થાય છે. હવે 6 mm જાડી પ્લાયવુડની પટ્ટી લો, જેની લંબાઈ 16 થી 20 cm અને પહોળાઈ સોલેનોઇડના બાહ્ય વ્યાસ જેટલી હોય છે [આકૃતિ A_x 6(a)]. તેની લાંબી ધાર પર 1.5 mm ઊંડાઈ અને 4 mm અંતરે ખાંચ બનાવો (એટલે કે 38 ખાંચો, 152 mm લંબાઈ પર બનશે). હવે તેને સોલેનોઇડમાં એવી રીતે લગાવો કે જેથી તેની ઉપરની સપાટી સોલેનોઇડની અક્ષ પરથી પસાર થતું સમક્ષિતિજ સમતલ બને. (નીચેની સપાટી પરના લૂપની ઊંચાઈ, ઉપરની સપાટી પરના લૂપની ઊંચાઈ કરતાં 6 mm ઓછી છે.) દરેક ખાંચમાં એરેલડાઇટ (અથવા અન્ય કોઈ એડહેસિવ)નું ટપકું મૂકી તેને 24 કલાક રહેવા દઈ, સખત થવા દો. આ પ્રમાણે સોલેનોઇડને પટ્ટી પર યોગ્ય સ્થાને ગોઠવી દો.

આકૃતિ A_x 6 : યુંબકીયક્ષેત્રના અભ્યાસ માટે સોલેનોઇડ (a) અક્ષ પર સમક્ષિતિજ સમતલ ગોઠવવા માટેની પક્રી (b) સમક્ષિતિજ બૉર્ડ પર લગાવેલ સોલેનોઇડ (c) લગાડેલ સોલેનોઇડનો છેદીય દેખાવ

પરિશિષ્ટ 6

લાકડાની પટ્ટીની સાઇઝ જેટલી બારીના કેન્દ્રમાં (30 cm \times 40 cm)નું લાકડાનું બાર્ડ બનાવો. બારીના બંને છેડે લાકડાની પટ્ટી સ્થિર રહી શકે તેમ બેઠકો બનાવો. લાકડાની પટ્ટીને વીંટાળેલા સોલેનોઇડ સહિત બેઠક પર નિશ્ચિત કરો. [આકૃતિ A_x 6(b), (c)] બે ટર્મિનલો T અને T બાર્ડના છેડા પર જડિત કરો અને તેને સોલેનોઇડના બે છેડાઓ સાથે જોડો.


તમારો સોલેનોઇડ તૈયાર છે. સોલેનોઇડને રીઓસ્ટેટ, કળ, બૅટરી અને એમીટર સાથે શ્રેણીમાં જોડો. તમે તેમાંથી 0 થી 10Aનો પ્રવાહ પસાર કરી શકો છો અને તેનું તાપમાન ઓરડાના તાપમાનથી માત્ર 3° C થી 4° C જેટલું વધે છે. પછી 30 × 10⁻⁴ T જેટલું ચુંબકીયક્ષેત્ર ઉત્પન્ન થાય છે, જે ક્ષેત્રનું લોખંડના ભૂકા વડે બનતું સ્વરૂપ નિદર્શન માટે પૂરતું છે. સૂકા કોષ વડે તમે માત્ર 300 mA પ્રવાહ પસાર કરી, ચુંબકીય કંપાસની મદદથી ક્ષેત્ર સ્વરૂપ બનાવી શકો છો. 16 SWG કૉપરના ટૂંકા તારને અંદર ગોઠવી કંપાસ બનાવી શકાય છે. જેને સોલેનોઇડના આંટાઓ વચ્ચેની 2.5 mmની જગામાં મૂકી શકાય છે. તમે અંદરની બાજુએ ચુંબકીયક્ષેત્ર દોરવા માટે બાલપાઇન્ટ-રીફિલ કે નાની લંબાઈની પેન્સિલની લીડ વડે ટપકાં દોરી શકો છો.

URRIVE 7

રેઝર બ્લેડની જાડાઈ જેટલી એક સમાન પહોળાઈ ધરાવતી પાતળી સ્લિટ બનાવવી

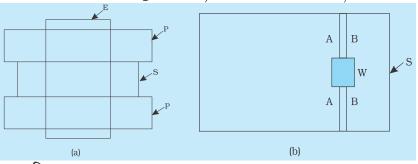
ઓછામાં ઓછી $60 \text{ mm} \times 60 \text{ mm}$ ની કાચની તકતી પર, તેટલા જ પરિમાણવાળી બીજી અન્ય કાચની પ્લેટ મૂકો, જેને બે ભાગ A અને B માં કાપો. [આકૃતિ A_x 7(a)] A અને Bને બ્લેડ Cની જાડાઈ જેટલી દૂર રાખો. બ્લેડ Cની અણીદાર ધાર શિરોલંબ રહે તેમ તેમને વચ્ચે ઊભી ગોઠવો. A અને Bના અંત્ય ભાગોને ભેગા કરી એડહેસિવ ટેપ વડે ચોંટાડો, જેથી કામ કરતી વખતે તેમને ધક્કો ન લાગે. લગભગ 50 mm લંબાઈના A અને B એડહેસિવ ટેપ પરથી સ્પષ્ટ છે.

[આકૃતિ A_x 7(b)] નવી બે બ્લેડો D અને Eનો એક-એક છેડો બ્લેડ Cને સ્પર્શ તેમ મૂકો. હવે D અને Eના અંત્ય છેડાઓને ભેગા કરી એડહેસિવ ટેપ T, T વડે ચોંટાડો.

આકૃતિ A_x 7 (a),(b) : રેઝર બ્લેડની જાડાઈ જેટલી સમાન પહોળાઈની પાતળી સ્લિટ બનાવવી

બ્લેડ Cને દૂર કરી અને D અને Eને સંયુક્ત રીતે ઉપરની તરફ નીચે મૂકો. ટેપ T, Tની વધારાની પહોળાઈને જે હવે ઉપરની તરફ છે તે બાજુએ વાળી દો. જો આ જોડાણને કાયમી બનાવવું હોય તો એડહેસિવ ટેપને વાળવાને બદલે બ્લેડના મજબૂત એડહેસિવ (એરલડાઇટ) લગાડેલા નાના ટુકડાઓનો ઉપયોગ કરો. પછી આ D અને Eના જોડાણથી બનતી સ્લિટની સમાન પહોળાઈ, રેઝર બ્લેડ Cની જાડાઈ જેટલી થશે અને લંબાઈ બ્લેડ Cની પહોળાઈથી વધારે થશે. તમે વિર્વતન ભાતનું અવલોકન એક સ્લિટની મદદથી સીધો ફિલામેન્ટ ધરાવતા કાચના વિદ્યુત બલ્બ વડે કરી શકો. (ભૌતિકવિજ્ઞાન, પાઠ્યપુસ્તક, ધોરણ XII, ભાગ 2 (NCERT, 2007), પૃ. 371 જોઈ શકો.)

Downloaded from https://www.studiestoday.com


URRIVE 8

યંગના પ્રયોગ માટે સાદી બેવડી (Double) સ્લિટ બનાવવી

માઇક્રોસ્કૉપની સ્લાઇડ લો. સાબુ અને પાણીથી તેને સાફ કરો અને તેને સુકાવા દો. કાચમાં નરી આંખે જોઈ શકાય તેવા તરંગો નથી તે ચકાસો. (તેમાંથી દૂરની વસ્તુને જુઓ અને તેને તેના સમતલમાં ખસેડો. જો દૂરની વસ્તુ હલતી દેખાય તો સ્લાઇડમાં તરંગો (રીપલ) છે અને જો ના તો (સ્લાઇડ) સારા કાચમાંથી બનેલ છે.)

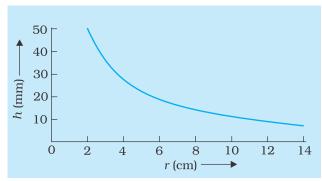
હવે સ્લાઇડને ગ્રેફાઇટના પાતળા શ્લેષ્મ સ્તર જેવો અથવા આર્ટિસ્ટ (ચિત્રકાર) દ્વારા ઉપયોગમાં લેવાતા વોટર પ્રૂફ (પાણીથી દૂર ન થાય તેવા) કાળા રંગ દ્વારા રંગ કરો અથવા મીણબત્તીની જયોત ઉપર રાખીને તેના પર મેશને જમા થવા દો. અસ્ત્રા (રેઝર)ની બે પતરી (બ્લેડ) લો. તેમને અંગૂઠા અને તર્જની (અંગૂઠા પાસેની આંગળી) વડે, (તેમના) ખૂણા પાસેથી પકડો અને આ ખૂણા વડે સ્લાઇડ પર રેખાઓની જોડ બનાવો. બે રેખાઓ, A અને B [આકૃતિ A_x 8(a)] વચ્ચેનું અંતર, એ એક બ્લેડની જાડાઈ જેટલી છે. જો તમે તેમના ખૂણાથી દૂર પકડી હશે, તો રેખાઓ દોરતી વખતે, બ્લેડ વચ્ચેનું અંતર બદલાય અને રેખાઓ વચ્ચેનું અંતર અમુક જગાએ વધી શકે કે જયાં બ્લેડ એકબીજાથી દૂર થઈ હોય.

તમારે એક જ પ્રયત્નમાં રેખાઓ દોરવાની અને એટલા દબાણથી દોરવાની કે કાચ આ રેખાએ પારદર્શક બને. આ કારણથી ચારથી પાંચ સ્લાઇડ લઈ, દરેક ઉપર રેખાઓ બનાવો અને પછી પ્રકાશના રેખીય ઉદ્ગમ તરફ દરેક વડે જોઈને સારામાં સારી એક પસંદ કરવી સલાહભરેલું છે. $[આકૃતિ \ A_x \ 8 \ (a)]$ માં દર્શાવેલ ગોઠવણી સુરેખ રેખાઓની જોડ અને યોગ્ય જગાએ અને દિશામાં દોરવામાં મદદરૂપ થશે. સ્લાઇડ S ને કાચની સહેજ જાડી પ્લેટ P, Pની વચ્ચે રાખો. આ ત્રણને તેમની નીચેની સપાટી કે જે પ્રયોગ કરવાના ટેબલ સાથે સંપર્કમાં હોય પર ચીકણી પટ્ટી (એડહેસિવ ટેપ) વડે ચોંટાડો. ત્યાર બાદ નાની સુરેખ ધાર E (તે ધારવાળી બીજી કાચની પ્લેટ અથવા પ્લાસ્ટિકની માપપટ્ટી હોઈ શકે). P P પ્લેટના આધાર પર, એવી રીતે ગોઠવો કે જેથી કૉટેડ (કાળા રંગવાળી)

આકૃતિ A_v 8 (a),(b) : રેઝર બ્લેડની જાડાઈ જેટલી સમાન પહોળાઈ પાતળી સ્લિટ બનાવવી

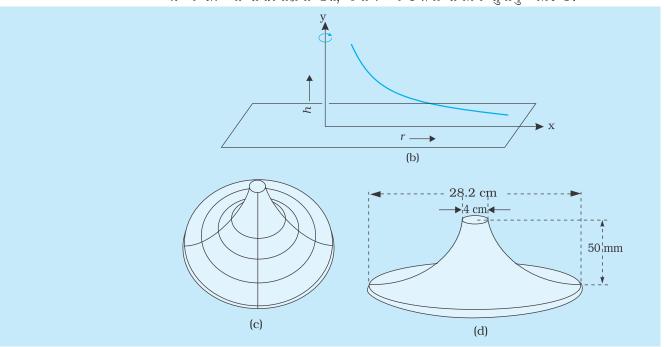
સપાટી સ્પષ્ટ રીતે ઉપર તરફ રહે. ત્યાર બાદ ધાર Eની સાથે બ્લેડ વડે રેખાઓની જોડ દોરો.

ગ્રેફાઇટના પાતળા શ્લેષ્મ સ્તર અથવા વોટર પ્રૂફ સહી વડે સ્તર બનાવેલ સ્લાઇડમાં ગમે તે બાજુએથી (સ્તર) જોઈ શકાશે. તેમ છતાં, સ્લાઇડ કે જેના મેશ જમા થયેલ છે તેનાં સ્તર વિનાની બાજુ


આંખ તરફ રાખવાથી તમારા ચહેરાના સંપર્કથી સ્લાઇડ ખરાબ થઈ શકે છે. તેમાંથી મીટર (માપ) પટ્ટી, વિવર્તન ભાત સહિત, જોવા સમર્થ થાય તે માટે રેખાઓ A અને Bની જોડની વચ્ચે $5 \text{ mm} \times 5 \text{ mm}$ (અથવા 5 mm વ્યાસ ધરાવતી વર્તુળાકાર), સ્પષ્ટ બારી W બનાવો. [આકૃતિ A_x 8(b)] બારી બનાવવા માટે સ્લાઇડને રંગ કરતાં પહેલાં એડહેસિવ ટેપનો નાનો ટુકડો ચોંટાડવો એ શ્રેષ્ઠ વિકલ્પ છે. તેને રંગ કર્યા બાદ છરીની ટોચ વડે કાળજીપૂર્વક ટેપનો ટુકડો ઉખાડી લો. ટેપ સારી ગુણવત્તાવાળી હોવી જોઈએ કે જેથી તેને ઉખાડ્યા બાદ કાચ ઉપર કોઈ નિશાની (ટપકાં) ન છોડે.

પરિશષ્ટ 9

પરમાણ્વીય ન્યુક્લિયસો માટે α-કણના પ્રકીર્ણનનું યાંત્રિક એકરૂપકરણ

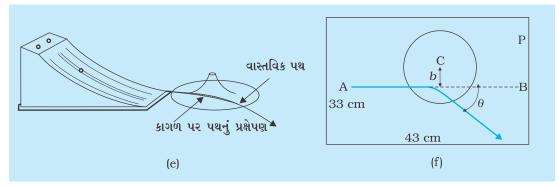

સિદ્ધાંત
વ્યસ્ત વર્ગના બળક્ષેત્રમાં
(પરમાણુના ન્યુક્લિયસમાં
હોય છે તેવા) કોઈ બિંદુ
પાસે સ્થિતિમાન એ ક્ષેત્રના
બિંદુવત ઉદ્દગમથી અંતરના
વ્યસ્ત પ્રમાણમાં હોય છે. જો
બળ અપાકર્ષી પ્રકારનું (જેવું

ન્યુક્લિયસ અને α કણ વચ્ચે

આકૃતિ A_{x} 9 (a) : અંતર સાથે સ્થિતિમાનનો ફેરફાર

હોય તેવું), હોય તો સ્થિતિમાન ધન હશે અને h વિરુદ્ધ r નો આલેખ એ અંતર સાથે સ્થિતિમાનમાં થતા ફેરફારને રજૂ કરે છે. [આકૃતિ A_x 9 (a)]. જો આપણે આ વક્રને Y-અક્ષને અનુલક્ષીને પરિક્રમિત કરીએ તો [આકૃતિ A_x 9(b)] આ વક્રના પરિભ્રમણનો ઘન મેળવી શકીએ. આ ઘનના ટોચની સપાટીએ, વક્રના પરિભ્રમણની સપાટી, યાંત્રિક મોડેલની પોર્ટેન્શિયલ ટેકરી આપે છે. [આકૃતિ A_x 9(c)] સ્થિતિમાન ટેકરી એવી રીતે રચાયેલ છે કે તેની સપાટી પહેલા કોઈ પણ બિંદુએ ઊંચાઈ h એ 1/r ના સમપ્રમાણમાં હશે, જયાં r એ કેન્દ્રથી સમતલ સુધીનું અંતર છે.

આકૃતિ A_x 9 (b),(c),(d) : સ્થિતિમાન ટેકરીનું યાંત્રિક મોડલ


એક દડો આ સ્થિતિમાન ટેકરી પર ઉપર તરફ ગબડે તો તે hના સપ્રમાણમાં ગુરુત્વીય સ્થિતિમાન (સ્થિતિ) ઊર્જા પ્રાપ્ત કરે અને તેથી r તેના સમપ્રમાણમાં હશે. આમ, તેની ગતિ એ વ્યસ્ત વર્ગના અપાકર્ષીબળ ક્ષેત્રની અસર હેઠળ દ્વિપરિમાણમાં ગતિ કરતા કણની ગતિને અનુસરે છે. આમ, તે ન્યુક્લિયસના વિદ્યુતક્ષેત્રમાં, સમતલમાં ગતિ કરતા વિદ્યુતભારની ગતિને અનુસરે છે. મૉડેલની રચના

સ્થિતિમાન ટેકરી (hill)ના લાક્ષણિક મૉડેલનો પાયાનો વ્યાસ $28.2~\mathrm{cm}$ અને ટોચનો વ્યાસ $4~\mathrm{cm}$ અને ઊંચાઈ $50~\mathrm{mm}$ જેટલો હશે. [આકૃતિ A_x 9 (d)] આ મૉડેલ $30~\mathrm{cm} \times 30~\mathrm{cm} \times 5~\mathrm{cm}$ ના લાકડાના પાટિયામાંથી પણ બનાવી શકાય. પહેલાં, નીચેનાં બિંદુઓ સાથે આલેખપત્ર ($10~\mathrm{cm} \times 15~\mathrm{cm}$ કરતાં મોટા માપના) પર h અને r વચ્ચેનો વક્ર દોરો.

		કો	NS A _x 9				
x (r) cm	14.1	12.5	11.1	10.0	9.0	8.0	7.0
y (h) mm	7.0	8.0	9.0	10.0	11.1	12.5	14.1
	6.0	5.0	4.0	3.3	3.0	2.5	2.0
	16.7	20.0	25.0	30.0	33.3	40.0	50.0

સંદર્ભ માટે આલેખ [આકૃતિ A_x 9(a)] માં દર્શાવેલ છે. વક્રને ચોક્કસ અને સરળ બનાવવો હોય તો, આર્ટિસ્ટ દ્વારા વપરાતું 'ફ્લેક્સિબલ કર્વ' (Flexibile curve) સાધનનો ઉપયોગ કરવો સારો છે. આ વક્ર સાથે બંધબેસતો નમૂનો કાપો. આ નમૂનાનો ઉપયોગ કરી, લાકડાના પાટિયાને લેથ પર જડિત કરી પરિભ્રમણનો ઘન (Solid of revolution) કાપો. વધારાની સામગ્રી

(1) 12.7 mm વ્યાસના સ્ટીલના છરા

આકૃતિ A_x 9 (e) : કેન્દ્ર C થી બહારની દિશામાં મૂકેલ રેમ્પ (ઢાળ)

આકૃતિ A_x 9 (f): b એ ઇમ્પેક્ટ પેરામિટર છે.

પ્રયોગશાળા માર્ગદર્શિકા

(2) જુદી-જુદી ઊંચાઈએથી છરાઓને ગબડાવવા માટેનો રેમ્પ (પ્રવેગક) માટે 30 cm ની પ્લાસ્ટિકની માપપટ્ટી યોગ્ય રહેશે. રેમ્પના નીચેના છેડાની ઊંચાઈએ પોર્ટેન્શિયલ હિલની નીચેની સીમાની ઊંચાઈ જેટલી હોવી જોઈએ, જેથી છરો રેમ્પ પર રોલિંગ કરતો હોય અને પોર્ટેન્શિયલ હિલમાં કોઈ કૂદકા સિવાય સરળતાથી ગબડી શકે. અહીં ગબડતો (રોલિંગ) છરો ઉચ્ચ ઊર્જાવાળા α—કણો જેવા સક્ષમ બને, તે માટે રેમ્પનો ઉપરનો છેડો 12 cm અથવા વધારે ઊંચાઈએ હોવો જોઈએ. માપપટ્ટી વકાકારમાં ચોંટાયેલી હોવી જોઈએ કે જેથી તેનો નીચેનો છેડો સમક્ષિતિજ રહે, જેથી છરો ગબડીને જ્યારે નીચેનો છેડો છોડે ત્યારે પોર્ટેન્શિયલ હિલ પર તેની ગતિ દરમિયાન સમક્ષિતિજ સમતલની સાપેક્ષે ખૂણામાં કોઈ નોંધપાત્ર ફેરફાર સિવાય સરળતાથી ગબડી શકે.

પોર્ટેન્શિયલ હિલ સાથેના પ્રયોગો

નીચે વર્શવેલ બે પ્રયોગોમાં મૉડેલ એ આલ્ફા પ્રકીર્શનનાં વિવિધ પાસાંઓને નિદર્શિત કરવા માટે પોર્ટેન્શિયલ હિલ તરીકે ઉપયોગી છે. રેમ્પને એવી રીતે રાખવામાં આવે કે તેની નીચેની સીમાઓની ધાર હિલની સપાટીને સ્પર્શે. [આકૃતિ A_x 9(e)]. સ્ટૉપર (સીધી માપપટ્ટી લઈ શકાય) વડે રેમ્પ પર યોગ્ય ઊંચાઈએ છરાને રાખી શકાય. રેમ્પને કેન્દ્ર Cની દિશા સાથે એવી રીતે AB સાથે ગોઠવો. [આકૃતિ Ax 9 (f)] છરાના પથનો લીસોટો મેળવવા, મોટા ડ્રૉઇંગ બૉર્ડ પર અથવા સમતલ અને લીસા ટેબલ કે જે સમક્ષિતિજ ગોઠવેલ છે. તેના મથાળા પર 33 cm × 43 cm માપનો કાગળ P, સમાન માપના કાર્બન કાગળ સાથે ગોઠવો. બંને પ્રયોગો માટે મૉડેલ અને રેમ્પ આ કાગળ પર ગોઠવવા પડે.

 $\mathit{y4}$ ગ $\mathit{1}$: પ્રકીર્શનકોણ (θ) નો કણની પ્રારંભિક ઊર્જા પરના આધારનો અભ્યાસ કરવો.

રેમ્પ પર જુદી-જુદી ઊંચાઈએથી છરાને મુક્ત કરો અને દર્શાવો કે જેમ પ્રારંભિક ઊર્જાના ઘટાડા સાથે પ્રકીર્શનકોણ (heta) વધે છે.

પ્રયોગ 2 : આલ્ફા કણની આપેલી ઊર્જા માટે પ્રકીર્ણનકોણ અને ઈમ્પેક્ટ પેરામીટર (અસર પ્રાચલ) વચ્ચેના સંબંધનો અભ્યાસ કરવો.

ચોક્કસ ઊંચાઈએથી છરાને મુક્ત કરો અને પ્રકીર્શનકોશ (θ) નક્કી કરો. ઈમ્પેક્ટ પેરામીટર b પણ માપો. [જુઓ આકૃતિ A_x 9 (f)] bનાં જુદાં-જુદાં મૂલ્યો માટે પ્રયોગનું પુનરાવર્તન કરો પરંતુ દરેક વખતે છરાને સમાન ઊંચાઈએથી જ મુક્ત કરો. દરેક કિસ્સામાં પ્રકીર્શનકોશ માપો અને દર્શાવો

$$\frac{1}{2} b \propto \frac{\cot \theta}{2}$$
.

ડેટા વિભાગ

કોષ્ટક $\mathbf{D}_{\!\scriptscriptstyle S}$ 1.1: કેટલાક અગત્યના અચળાંકો

નામ	નિશાની	કિંમત
શૂન્યાવકાશમાં પ્રકાશની ઝડપ	С	$2.9979 \times 10^8 \mathrm{m \ s^{-1}}$
ઇલેક્ટ્રૉનનો વિદ્યુતભાર	e	1.602×10^{-19} C
ગુરુત્વાકર્ષણ અચળાંક	G	$6.673 \times 10^{-11} \mathrm{N m^2 kg^{-2}}$
પ્લાન્ક અચળાંક	h	$6.626 \times 10^{-34} \text{J s}$
બોલ્ટ્ઝમૅન અચળાંક	k	$1.381 \times 10^{-23} \text{J K}^{-1}$
એવોગેડ્રો અચળાંક	N _A	$6.022 \times 10^{23} \mathrm{mol}^{-1}$
સાર્વત્રિક વાયુ-અચળાંક	R	8.314 J mol ⁻¹ k ⁻¹
ઇલેક્ટ્રૉનનું દ્રવ્યમાન	$m_{\rm e}$	$9.110 \times 10^{-31} \text{kg}$
ન્યુટ્રોનનું દ્રવ્યમાન	m _n	$1.675 \times 10^{-27} \text{kg}$
પ્રોટોનનું દ્રવ્યમાન	m _p	$1.673 \times 10^{-27} \text{kg}$
ઇલેક્ટ્રૉનના વિદ્યુતભાર અને દ્રવ્યમાનનો ગુણોત્તર	e/m _e	$1.759 \times 10^{11} \mathrm{C/kg}$
ફેરાડે અચળાંક	F	9.648 × 10 ⁴ C/ mol
રીડબર્ગ અચળાંક	R	$1.097 \times 10^7 \mathrm{m}^{-1}$
બોહ્ર ત્રિજ્યા	\mathbf{a}_0	$5.292 \times 10^{-11} \mathrm{m}$
સ્ટીફન-બોલ્ટ્ઝમૅન અચળાંક	σ	$5.670 \times 10^{-8} \mathrm{W m^{-2} K^{-4}}$
વીનનો અચળાંક	b	$2.898 \times 10^{-3} \mathrm{mK}$
મુક્ત અવકાશનો પરાવૈદ્યુતાંક	E ₀	$8.854 \times 10^{-12} \mathrm{C}^2 \mathrm{N}^{-1} \mathrm{m}^{-2}$
	$1/4\pi\epsilon_{0}$	$8.987 \times 10^9 \text{ N m}^2 \text{ C}^{-2}$
 મુક્ત અવકાશની પારગમ્યતા	μ _o	$4\pi \times 10^{-7} \text{ T m A}^{-1}$
		$\cong 1.257 \times 10^{-6} \text{ Wb A}^{-1} \text{ m}^{-1}$

કોષ્ટક D_{s} 1.2 : બીજા ઉપયોગી અચળાંકો

નામ	નિશાની	કિંમત
ઉષ્માનો યાંત્રિક તુલ્યાંક	J	4.186 J cal ⁻¹
પ્રમાણિત વાતાવરણ દબાણ	1 atm	$1.013 \times 10^5 \text{Pa}$
નિરપેક્ષ શૂન્ય તાપમાન	0 K	-273.15 °C
ઇલેક્ટ્રૉન વોલ્ટ	1 eV	$1.602 \times 10^{-19} \mathrm{J}$
યુનિફાઇડ પરમાણ્વીય દળ એકમ	1 u	$1.661 \times 10^{-27} \text{kg}$
ઇલેક્ટ્રૉન સ્થિર ઊર્જા	mc^2	0.511 MeV
lu દ્રવ્યમાનને સમતુલ્ય ઊર્જા	1 uc^2	931.5 MeV
આદર્શ વાયુનું કદ (0 °C અને 1 વાતાવરણ)	V	22.4 L mol ⁻¹
ગુરુત્વપ્રવેગ (વિષુવવૃત્ત પર, દરિયાઈ સપાટી)	g	9.78049 m s ⁻²

પ્રયોગશાળા માર્ગદર્શિકા

કોષ્ટક $\mathbf{D}_{_{\!S}}$ 2 : કોષના વિદ્યુતચાલક બળ

કોષ	E.M.F. (V)	કોષ	E.M.F. (V)
 ડેનિયલ	1.08 - 1.09	કેડમિયમ 20°C તાપમાને	1.018 54
ગ્રુવ	1.8 - 1.9	લેડ સંગ્રાહક કોષ	1.9 - 2.2
ગ્રુવ લેકલાન્સે	1.45	એડિસન કોષ	1.45
વૉલ્ટેઇક	1.01	ક્લાર્ક	1.43
બન્સેન	1.95	Ni-Fe	1.20

કોષ્ટક $\mathbf{D_s}$ $\mathbf{3}$: પદાર્થોના વક્રીભવનાંક $\lambda = 5896 \times 10^{-10} \mathrm{m}$ તરંગલંબાઈવાળા સોડિયમ પ્રકાશ માટે

धन	વક્રીભવનાંક	પ્રવાહી	વક્રીભવનાંક
હીરો	2.417	કેનેડા બાલ્સમ	1.53
કાચ (ક્રાઉન)	1.48-1.61	પાણી	1.333
કાચ (ફ્લિન્ટ)	1.53-1.96	આલ્કોહોલ (ઇથાઈલ)	1.362
કાચ (સોડા)	1.50	એનિલિન	1.595
		બેન્ઝિન	1.501
બરફ	1.31	દેવદા૨ તેલ	1.516
માઇકા	1.56-1.60	ક્લૉરોફૉર્મ	1.450
દરિયાઈ મીઠું	1.54	ઇથર	1.350
		િલસરિન	1.47
ક્વાંટ્ઝ (સામાન્ય કિરણ)	1.5443	ઑલિવ-જેતુન(નિલગીરી)તેલ	l 1.46
ક્વાંટ્ઝ (અસામાન્ય કિરણ)	1.5534	પૅરાફિન -	1.44
ક્વાંટ્ઝ (બળેલું)	1.458	કેરોસીન	1.39
		ટર્પેન્ટાઇન તેલ	1.44

કોષ્ટક \mathbf{D}_s 4 : વર્ણપટ રેખાઓની તરંગલંબાઈ $\overset{\circ}{\mathrm{A}}$ માં $\left(\overset{\circ}{\mathrm{I}}\overset{\circ}{\mathrm{A}} = 10^{-10}\,\mathrm{m} \right)$ દ્રશ્ય વર્ણપટના રંગ (રા ના પી લી વા ની જા)

હાઇડ્રોજન	હિલિયમ	પારો	નિયોન	સોડિયમ
3970 υ	3889 υ	4047 υ	5765 y	(D ₂) 5890 o
4102ν	4026ν	$4078 \ \nu$	5853 y	(D_1) 5896 o
4340 b	4471 <i>b</i>	4358 υ	5882 o	
4861 gb	5876 y	4916 b, g	6597 r	
6563 r	6678 r	4960 g	7245 r	
	7065 r	5461 g		
		5770 y		
		5791 <i>y</i>		
		6152 o		
		6322 o		

કોષ્ટક $\mathbf{D}_{\!s}\,\mathbf{5}:$ વિદ્યુતચુંબકીય વર્ણપટ (તરંગલંબાઈ)

વિસ્તાર		તરંગલંબાઈ	
બિનતારી તરંગો			5 m અને ઉપર
પારરક્ત	$3.0 \times 10^{-4} \text{m}$	થી	$7.5 \times 10^{-7} \text{m}$
દેશ્ય લાલ	$7.5 \times 10^{-7} \text{ m}$	થી	$6.5 \times 10^{-7} \text{ m}$
દશ્ય નારંગી	$6.5 \times 10^{-7} \text{m}$	થી	$5.9 \times 10^{-7} \text{ m}$
દશ્ય પીળો	$5.9 \times 10^{-7} \text{m}$	થી	$5.3 \times 10^{-7} \text{ m}$
દશ્ય લીલો	$5.3 \times 10^{-7} \text{ m}$	થી	$4.9 \times 10^{-7} \text{ m}$
દેશ્ય વાદળી	$4.9 \times 10^{-7} \text{m}$	થી	$4.2 \times 10^{-7} \text{ m}$
દશ્ય નીલો	$4.2 \times 10^{-7} \text{m}$	થી	$3.9 \times 10^{-7} \text{m}$
દશ્ય જાંબલી	$3.9 \times 10^{-7} \text{m}$	થી	$1.8 \times 10^{-7} \mathrm{m}$
મૃદુ ક્ષ-કિરણો	$2.0 \text{ x} 10^{-7} \text{m}$	થી	$1.0 \times 10^{-7} \text{ m}$
સખત ક્ષ-કિરણો	$1.0 \text{ x} 10^{-10} \text{ m}$	થી	$1.0 \times 10^{-11} \mathrm{m}$
ગૅમા કિરણો	$5.0 \times 10^{-11} \mathrm{m}$	થી	$5.0 \times 10^{-12} \text{m}$

કોષ્ટક \mathbf{D}_{s} $\mathbf{6}$: કોન્સ્ટનટન અને મેંગેનીન માટે પ્રમાણભૂત તારગેજ અને એકમ લંબાઈ દીઠ અવરોધ

પ્રમાણ	ભૂત તારગેજ		રેઝિસ્ટન્ટ (Ω)		
નં.	વ્યાસ (mm)	તાંબુ	કોન્સ્ટનટન (60 % Cu, 40 % Ni)	મંગેનીન (84 % Cu, 4 % Ni, 12 % Mn)	
10	3.25	0.0021	0.057	0.051	
12	2.64	0.0032	0.086	0.077	
14	2.03	0.0054	0.146	0.131	
16	1.63	0.0083	0.228	0.204	
18	1.22	0.0148	0.405	0.361	
20	0.914	0.0260	0.722	0.645	
22	0.711	0.0435	1.20	1.07	
24	0.559	0.070	1.93	1.73	
26	0.457	0.105	2.89	2.58	
28	0.374	0.155	4.27	3.82	
30	0.315	0.222	6.08	5.45	
32	0.274	0.293	8.02	7.18	
34	0.234	0.404	11.1	9.9	
36	0.193	0.590	16.2	14.5	
38	0.152	0.950	26.0	23.2	
40	0.122	1.48	40.6	36.3	
42	0.102	2.10	58.5	53.4	
44	0.081	3.30	91.4	81.7	
46	0.061	5.90	162.5	145.5	

પ્રયોગશાળા માર્ગદર્શિકા

કોષ્ટક $\mathbf{D_s}$ 7 : સામાન્ય દ્રવ્યો માટેના ડાઇઇલેક્ટ્રીક અચળાંક

દ્રવ્ય	તાપમાન (°C)	આવૃત્તિ (Hz)	ડાઇઇલેક્ટ્રીક અચળાંક
અંબર	20	10^{6}	2.8
અંબર	20	3×10^{9}	2.6
સોડા કાચ	20	10^{6}	7.5
ફ યુઝ ક્વાર્ટ્સ	20	10³થી 10 ⁸	3.8
પ્રવાહી પૅરાફ્રિન (મેડિકલ ગ્રેડ)	20	10^{3}	2.2
ટ્રાન્સફોર્મર ઑઇલ (વર્ગ B)	20	10^{3}	2.2
માર્બલ	20	10^{6}	8
રેતી (સૂકી)	20	10^{6}	3
રેતીના પથ્થર	20	10^{6}	10
કાગળ (ટીસ્યુ પેપર)	20	10^{3}	2.3
માઇકા	20	10³ થી 10 ⁸	5.4 થી 7
ઇપોક્ષી રેઝિન (દા.ત. એરેલડાઈટ)	20	10^{6}	3.3
સેલ્યુલોઝ અસિટેટ	20	10^{6}	3.5
વિનાઈલ એસિટેટ (પ્લાસ્ટિક સાઈઝડ)	20	10^{6}	4
વિનાઈલ ક્લોરાઇડ (પી.વી.સી.)	20	10^{6}	4
એબોનાઇટ (શુદ્ધ)	20	10^{6}	3
રબર (વેલ્કેનાઇઝ્ડ-મૃદુ)	20	10^{6}	3.2
રબર, સિન્થેટિક	20	10^{6}	2.5
પેરાફિન મીણ	20	10^{6}	2.2
સલ્ફર	20	3×10^{9}	3.4
વોલનટ વુડ (સૂકું)	20	10^{7}	2.0
વોલનટ વુડ (ભેજવાળું)	20	10^{7}	5
શૂન્યાવકાશ	લાગુ પડતુ નથી	ગમે તે	1.00000
હવા	20	3×10 ⁹ સુધી	1.00054
પોસેલિન	20	10^{6}	5.5
બેરિયમ ટિટેનેટ	20	10^{6}	1200
રુટાઇલ ગ્રૂપ	20	10 ⁶ થી 10 ⁹	40 - 80
પાણી	20	10 ⁹	80
પાણી	20	10 ¹⁰	64

કોષ્ટક $\mathbf{D_s}$ $\mathbf{8}$: સ્થિર વિદ્યુત ભારીય લાક્ષણિક પદાર્થો

વસ્તુ	С	V	Q	$\Im \Re E = \frac{1}{2}CV^2$
1 નાયલોનના કપડાં વડે બધી જ દિશામાં ઘસેલો 20 cm વ્યાસનો ફુગ્ગો.	11 pF	200 V	2.2 nC	0.22 μJ*
2 સિલ્ક વડે ઘસેલ, અવાહક સ્ટૅન્ડ પર રાખેલ ધાતુનો ગોળો (9 cm વ્યાસ)	5 pF	500 V	2.5 nC	0.62 μJ*
3 શાળા કક્ષા માટેના વાન-દ્-ગ્રાફ્ર જનરેટર વડે વિદ્યુતભારિત કરેલ ધાતુનો ગોળો.	5 pF	0.25 MV	1.25pF	0.16 J
4 ઈલેક્ટ્રો ફોરસ દ્વારા અવાહક ટેબલ પર રહેલ છોકરાનું વારેવાર વિદ્યુતભારણ.	50 pF	3000 V	150 nC	225 μJ*
5 મીણમાં પલાળવામાં આવેલ અવાહક કાગળ સહિતનું 30 cm x 30 cm નું (સુધારેલ) કેપેસીટર ($K=2.7$, A=700 cm અને $d=0.4$ mm) અને 9V ની બેટરી વડે વિદ્યુતભારિત કરેલ	4 nF	9 V	36 nC	162 nJ ^{**}
6 (5 મુજબ) પરંતુ 2 cm દુર રાખેલ પ્લેટો	80 pF	450 V	36 nC	$8.1\mu\text{J}^*$
7 ફ્લેશ ગન કેપેસીટર (વ્યાવસાયિક પ્રમાણેનું)	500 pF	400 V 10 ⁶ V10	0.2 nC	40 J
8 પૃથ્વી અને વાદળ વચ્ચે સરેરાશ વીજળી (h = 1 થી 5 km)		10 ° V 10	20 C	10 ⁹ થી 10 ¹⁰ J
9 (a) પૃથ્વી અને સ્ટ્રેટોસ્ફિયરના મથાળે ઊંચી વાહકતાવાળી આયનયુક્ત હવા (h = 50 km)	-	0.4 MV	$5.7 \times 10^5 \text{C}$	$10^{11} \; \mathrm{J}$
(b) સારા વાતાવરણમાં હવા અને આયનોસ્ફ્રિયર વચ્ચે આયનીકરણ પ્રવાહ	-	0.4 MV	1800 C/s	7×10^8 J/s
10 સૂકા હવામાનમાં ઊંચે ઊચકયા પછી સારા ઈલેક્ટ્રોફોરસ (20 થી 30 mm વ્યાસ)ની વિદ્યુતભારિત પ્લેટ	10 pF	3000 V	30 n C	45 μJ*

^{*} શાળાની પ્રયોગશાળામાં રાખેલા આ પદાર્થોને સ્પર્શ કરવો ભયજનક નથી.

પ્રયોગશાળા માર્ગદર્શિકા

કોષ્ટક $\mathbf{D_s}$ 9 : ચોક્કસ ધાતુઓ અને મિશ્રધાતુઓ માટે વિદ્યુતીય અવરોધકતા $\text{અવરોધકતા} \quad (10^8 \text{ohm H} 2\text{-}2)$

દ્રવ્ય	0°C	100°C	300°C	700°C	અવરોધકતાનો તાપમાન ગુણાંક (0°C - 100°C ની અવધિમાં) (10 ⁻⁴)
ઍલ્યુમિનિયમ	2.45	3.55	5.9	24.7	45
ક્રોમિયમ	12.7	16.1	25.2	47.2	
તાંબુ	1.56	2.24	3.6	6.7	43
લોખંડ	8.9	14.7	31.5	85.5	65
સીસું	19.0	27.0	50	107.6	42
સોનુ	2.04	2.84			40
પારો	94.0766*	103.5	128		10
નિકલ	6.14	10.33	22.5		68
પ્લેટિનમ પ્લેટિનમ ર્હોડિયમ	9.81	13.65	21.0	34.3	39.2
(87/13) પ્લેટિનમ ર્હોડિયમ	19.0	22.0			15.6
(90/10) પ્લેટિનમ ઇરિડિયમ	18.7	21.8			16.6
(90/10)	24.8	28.0			13
ચાંદી	1.51	2.13	3.42	6.5	41
ટિન	11.5(20° C)	15.8	50	60	46
ટંગસ્ટન	4.9	7.3	12.4	24	48
જસત	5.5	7.8	13	37 (500°C) 42

અવરોધના પ્રમાણભૂત એકમ, ઓહ્મ, ને દર્શાવવા માટે $0~^{\circ}\mathrm{C}$ તાપમાને પારાને ગૌણ પ્રમાણભૂત તરીકે વપરાય છે.

કોષ્ટક \mathbf{D}_{s} $\mathbf{10}$: સામાન્ય અવાહકો અને અર્ધવાહકોની વિદ્યુતીય અવરોધકતા

પદાર્થ	અવરોધકતા (Ω મીટર)	પદાર્થ	અવરોધકતા (Ω મીટર)
હીરો એબોનાઇટ કાચ (સોડાલાઇમ) કાચ (પાઇરેક્સ) કાચ (વાહક) માઇકા કાગળ (સૂકો) પૅરાફિન મીણ પોર્સેલિન સલ્ફર (ર્હોમ્બિક)	10^{10} ell 10^{11} 10^{14} 5×10^{9} 10^{12} 5×10^{6} $10^{11} \times 10^{15}$ 10^{10} 10^{14} 10^{10} ell 10^{13} 2×10^{21}	કાર્બન 0°C કાર્બન 500°C કાર્બન 1000°C કાર્બન 2000°C કાર્બન 2500°C જર્મેનિયમ સીલીકોન 0°C	3.5×10^{-5} 2.7×10^{-5} 2.1×10^{-5} 1.1×10^{-5} 0.9×10^{-5} 0.46 2300

કોષ્ટક $\mathbf{D}_{\!s}$ 11: અંતર્ગત અને બહિર્ગત અર્ધવાહકો માટેની માહિતી

દ્રવ્ય	એનર્જી ગેપ (eV)	_{300 K} તાપમાને ઇલેક્ટ્રૉન હોલ	ઇલેક્ટ્રોનની મોબિલિટી	હોલની મોબિલિટી	વાહકતા	ઘનતા
	(0,1)	જોડકાં માટે સંખ્યા ઘનતા પ્રતિ m ^{3*}			(S m ⁻¹)	(kg m ⁻³)
—— અર્ધવાહકો						
જર્મેનિયમ	0.76	6×10^{19}	0.39	0.19	2.18	5320
સિલિકોન	1.12	7×10^{15}	0.135	0.048	4.4×10^{-4}	2300
Pસાથેના અ અશુદ્ધિ સાથેન્	0.015	2.5×10^{21}	0.135		2.5 ×10	2300
હીરો	6 થી 12	$\approx 10^7$				

^{*}લગભગ મૂલ્ય છે, જે મૂલ્યના માત્ર ક્રમનો (ઘાતનો) ખ્યાલ આપે છે.

પ્રયોગશાળા માર્ગદર્શિકા

કોષ્ટક \mathbf{D}_{s} 12 : ઉચ્ચ અવરોધ ધરાવતી મિશ્રધાતુઓ

	3	9	
મિશ્રધાતુઓ	અવરોધકતા 20° C (10 ^s ohm)	અવરોધકતાના તાપમાન ગુષ્રાાંકનો વિસ્તાર 0 –100° C (10⁴)	મહત્તમ તાપમાન (°C)
કોન્સ્ટનટન			
(58.8 % Cu,			
40 % Ni,			
1.2 % Mn)	44 થી 52	- 0.4 થી + 0.1	500
જર્મન સિલ્વર			
(65 % Cu,			
20 % Zn,			
15 % Ni)	28 થી 35	+ 0.4	150 થી 200
મ <u>ૅ</u> ંગેનીન			
(85 % Cu,			
12 % Mn,			
3 % Ni)	42 થી 48	0.3	100
નિકેલાઇન			
(54 % Cu,			
20 % Zn,			
26 % Ni)	39 થી 45	0.2	150 થી 200
નાઇક્રોમ			
(67.5 % Ni,			
15 % Cr, 16 %			
Fe, 1.5 % Mn)	100 થી 110	2.0	1000

કોષ્ટક D_s 13 : અતિવાહકતા (સુપર કંડક્ટિંગ) અવસ્થા માટે સક્રાંતિ તાપમાન

પદાર્થ	સંક્રાંતિ તાપમાન (K)	પદાર્થ	સક્રાંતિ તાપમાન (K)
 ધાતુઓ	()	સંયોજનો	()
કેડમિયમ	0.6	NiBi	4.2
જસત	0.8	PbSe	5.0
ઍલ્યુમિનિયમ	1.2	NbB	6.0
યુરેનિયમ	1.3	Nb ₂ C	9.2
ટિન	3.7	nBC	10.1 થી 10.5
પારો	4.7	nBN	15 થી 16
સીસું	7.3	Nb ₃ Sn	18
નીઓબિયમ	9.2	YBa ₂ Cu ₃ O ₇	90

કોષ્ટક I

LOGARITHMS (લઘુગણક)

N	0	1	2	3	4	5	6	7	8	9	1	2	3	4	5	6	7	8	9
10	0000	0043	0086	0128	0170						5	9	13	17	21	26	30	34	38
						0212	0253	0294	0334	0374	4	8	12	16	20	24	28	32	36
11	0414	0453	0492	0531	0569	0607	0645	0682	0719	0755	4 4	8 7	12 11	16 15	20 18	23 22	27 26	31 29	35 33
12	0792	0828	0864	0899	0934						3	7	11	14	18	21	25	28	32
						0969	1004	1038	1072	1106	3	7	10	14	17	20	24	27	31
13	1139	1173	1206	1239	1271	1303	1335	1367	1399	1430	3	6 7	10 10	13 13	16 16	19 19	23 22	26 25	29 29
14	1461	1492	1523	1553	1584	1614	1644	1673	1703	1732	3	6 6	9 9	12 12	15 14	19 17	22 20	25 23	28 26
15	1761	1790	1818	1847	1875	1903	1931	1959	1987	2014	3 3	6 6	9 8	11 11	14 14	17 17	20 19	23 22	26 25
16	2041	2068	2095	2122	2148	2175	2201	2227	2253	2279	3 3	6 5	8	11 10	14 13	16 16	19 18	22 21	24 23
17	2304	2330	2355	2380	2405	2430	2455	2480	2504	2529	3	5 5	8	10 10	13 12	15 15	18 17	20 20	23 22
18	2553	2577	2601	2625	2648	2672	2695	2718	2742	2765	2 2	5 4	7 7	9	12 11	14 14	17 16	19 18	21 21
19	2788	2810	2833	2856	2878	2900	2923	2945	2967	2989	2 2	4	7 6	9	11 11	13 13	16 15	18 17	20 19
20	3010	3032	3054	3075	3096	3118	3139	3160	3181	3201	2	4	6	8	11	13	15	17	19
21	3222	3243	3263	3284	3304	3324	3345	3365	3385	3404	2	4	6	8	10	12	14	16	18
22	3424	3444	3464	3483	3502	3522	3541	3560	3579	3598	2	4	6	8	10	12	14	15	17
23	3617	3636	3655	3674	3692	3711	3729	3747	3766	3784	2	4	6	7	9	11	13	15	17
24	3802	3820	3838	3856	3874	3892	3909	3927	3945	3962	2	4	5	7	9	11	12	14	16
25	3979	3997	4014	4031	4048	4065	4082	4099	4116	4133	2	3	5	7	9	10	12	14	15
26	4150	4166	4183	4200	4216	4232	4249	4265	4281	4298	2	3	5	7	8	10	11	13	15
27	4314	4330	4346	4362	4378	4393	4409	4425	4440	4456	2	3	5	6	8	9	11	13	14
28	4472	4487	4502	4518	4533	4548	4564	4579	4594	4609	2	3	5	6	8	9	11	12	14
29	4624	4639	4654	4669	4683	4698	4713	4728	4742	4757	1	3	4	6	7	9	10	12	13
30	4771	4786	4800	4814	4829	4843	4857	4871	4886	4900	1	3	4	6	7	9	10	11	13
31	4914	4928	4942	4955	4969	4983	4997	5011	5024	5038	1	3	4	6	7	8	10	11	12
32	5051	5065	5079	5092	5105	5119	5132	5145	5159	5172	1	3	4	5	7	8	9	11	12
33	5185	5198	5211	5224	5237	5250	5263	5276	5289	5302	1	3	4	5	6	8	9	10	12
34	5315	5328	5340	5353	5366	5378	5391	5403	5416	5428	1	3	4	5	6	8	9	10	11
35	5441	5453	5465	5478	5490	5502	5514	5527	5539	5551	1	2	4	5	6	7	9	10	11
36	5563	5575	5587	5599	5611	5623	5635	5647	5658	5670	1	2	4	5	6	7	8	10	11
37	5682	5694	5705	5717	5729	5740	5752	5763	5775	5786	1	2	3	5	6	7	8	9	10
38	5798	5809	5821	5832	5843	5855	5866	5877	5888	5899	1	2	3	5	6	7	8	9	10
39	5911	5922	5933	5944	5955	5966	5977	5988	5999	6010	1	2	3	4	5	7	8	9	10
											1								
40	6021	6031	6042	6053	6064	6075	6085	6096	6107	6117	1	2	3	4	5	6	8	9	10
41	6128	6138	6149	6160	6170	6180	6191	6201	6212	6222	1	2	3	4	5	6	7	8	9
42	6232	6243	6253	6263	6274	6284	6294	6304	6314	6325	1	2	3	4	5	6	7	8	9
43	6335	6345 6444	6355 6454	6365	6375	6385 6484	6395	6405	6415	6425 6522	1	2	3	4	5	6	7	8	9
											1								
45	6532	6542	6551	6561	6471	6580	6590	6599	6609	6618	1	2	3	4	5	6	7	8	9
46	6628	6637	6646	6656	6665	6675	6684	6693	6702	6712	1	2	3	4	5	6	7	7	8
47	6721	6730	6739	6749	6758	6767	6776	6785	6794	6803	1	2	3	4	5	5	6	7	8
48	6812	6821	6830	6839	6848	6857	6866	6875	6884	6893	1	2	3	4	4	5	6	7	8
49	6902	6911	6920	6928	6937	6946	6955	6964	6972	6981	1	2	3	4	4	5	6	7	8

પ્રયોગશાળા માર્ગદર્શિકા

LOGARITHMS (લઘુગણક)

કોષ્ટક 1

N	0	1	2	3	4	5	6	7	8	9	1	2	3	4	5	6	7	8	9
50	6990	6998	7007	7016	7024	7033	7042	7050	7059	7067	1	2	3	3	4	5	6	7	8
51	7076	7084	7093	7101	7110	7118	7126	7135	7143	7152	1	2	3	3	4	5	6	7	8
52	7160	7168	7177	7185	7193	7202	7210	7218	7226	7235	1	2	2	3	4	5	6	7	7
53	7243	7251	7259	7267	7275	7284	7292	7300	7308	7316	1	2	2	3	4	5	6	6	7
54	7324	7332	7340	7348	7356	7364	7372	7380	7388	7396	1	2	2	3	4	5	6	6	7
55	7404	7412	7419	7427	7435	7443	7451	7459	7466	7474	1	2	2	3	4	5	5	6	7
56	7482	7490	7497	7505	7513	7520	7528	7536	7543	7551	1	2	2	3	4	5	5	6	7
57	7559	7566	7574	7582	7589	7597	7604	7612	7619	7627	1	2	2	3	4	5	5	6	7
58	7634	7642	7649	7657	7664	7672	7679	7686	7694	7701	1	1	2	3	4	4	5	6	7
59	7709	7716	7723	7731	7738	7745	7752	7760	7767	7774	1	1	2	3	4	4	5	6	7
60	7782	7789	7796	7803	7810	7818	7825	7832	7839	7846	1	1	2	3	4	4	5	6	6
61	7853	7860	7768	7875	7882	7889	7896	7903	7910	7917	1	1	2	3	4	4	5	6	6
62	7924	7931	7938	7945	7952	7959	7966	7973	7980	7987	1	1	2	3	3	4	5	6	6
63	7993	8000	8007	8014	8021	8028	8035	8041	8048	8055	1	1	2	3	3	4	5	5	6
64	8062	8069	8075	8082	8089	8096	8102	8109	8116	8122	1	1	2	3	3	4	5	5	6
65	8129	8136	8142	8149	8156	8162	8169	8176	8182	8189	1	1	2	3	3	4	5	5	6
66	8195	8202	8209	8215	8222	8228	8235	8241	8248	8254	1	1	2	3	3	4	5	5	6
67	8261	8267	8274	8280	8287	8293	8299	8306	8312	8319	1	1	2	3	3	4	5	5	6
68	8325	8331	8338	8344	8351	8357	8363	8370	8376	8382	1	1	2	3	3	4	4	5	6
69	8388	8395	8401	8407	8414	8420	8426	8432	8439	8445	1	1	2	2	3	4	4	5	6
70	8451	8457	8463	8470	8476	8482	8488	8494	8500	8506	1	1	2	2	3	4	4	5	6
71	8513	8519	8525	8531	8537	8543	8549	8555	8561	8567	1	1	2	2	3	4	4	5	5
72	8573	8579	8585	8591	8597	8603	8609	8615	8621	8627	1	1	2	2	3	4	4	5	5
73	8633	8639	8645	8651	8657	8663	8669	8675	8681	8686	1	1	2	2	3	4	4	5	5
74	8692	8698	8704	8710	8716	8722	8727	8733	8739	8745	1	1	2	2	3	4	4	5	5
75	8751	8756	8762	8768	8774	8779	8785	8791	8797	8802	1	1	2	2	3	3	4	5	5
76	8808	8814	8820	8825	8831	8837	8842	8848	8854	8859	1	1	2	2	3	3	4	5	5
77	8865	8871	8876	8882	8887	8893	8899	8904	8910	8915	1	1	2	2	3	3	4	4	5
78	8921	8927	8932	8938	8943	8949	8954	8960	8965	8971	1	1	2	2	3	3	4	4	5
79	8976	8982	8987	8993	8998	9004	9009	9015	9020	9025	1	1	2	2	3	3	4	4	5
80	9031	9036	9042	9047	9053	9058	9063	9069	9074	9079	1	1	2	2	3	3	4	4	5
81	9085	9090	9096	9101	9106	9112	9117	9122	9128	9133	1	1	2	2	3	3	4	4	5
82	9138	9143	9149	9154	9159	9165	9170	9175	9180	9186	1	1	2	2	3	3	4	4	5
83	9191	9196	9201	9206	9212	9217	9222	9227	9232	9238	1	1	2	2	3	3	4	4	5
84	9243	9248	9253	9258	9263	9269	9274	9279	9284	9289	1	1	2	2	3	3	4	4	5
85	9294	9299	9304	9309	9315	9320	9325	9330	9335	9340	1	1	2	2	3	3	4	4	5
86	9345	9350	9355	9360	9365	9370	9375	9380	9385	9390	1	1	2	2	3	3	4	4	5
87	9395	9400	9405	9410	9415	9420	9425	9430	9435	9440	0	1	1	2	2	3	3	4	4
88	9445	9450	9455	9460	9465	9469	9474	9479	9484	9489	0	1	1	2	2	3	3	4	4
89	9494	9499	9504	9509	9513	9518	9523	9528	9533	9538	0	1	1	2	2	3	3	4	4
90	9542	9547	9552	9557	9562	9566	9571	9576	9581	9586	0	1	1	2	2	3	3	4	4
91	9590	9595	9600	9605	9609	9614	9619	9624	9628	9633	0	1	1	2	2	3	3	4	4
92	9638	9643	9647	9652	9657	9661	9666	9671	9675	9680	0	1	1	2	2	3	3	4	4
93	9685	9689	9694	9699	9703	9708	9713	9717	9722	9727	0	1	1	2	2	3	3	4	4
94	9731	9736	9741	9745	9750	9754	9759	9763	9768	9773	0	1	1	2	2	3	3	4	4
95	9777	9782	9786	9791	9795	9800	9805	9809	9814	9818	0	1	1	2	2	3	3	4	4
96	9823	9827	9832	9836	9841	9845	9850	9854	9859	9863	0	1	1	2	2	3	3	4	4
97	9868	9872	9877	9881	9886	9890	9894	9899	9903	9908	0	1	1	2	2	3	3	4	4
98 99	9912 9956	9917 9961	9921 9965	9926 9969	9930 9974	9934 9978	9939	9943 9987	9948	9952 9996	0	1	1 1	2 2	2	3	3	4	4
L99	9930	9901	9903	9909	99/4	9978	9983	1998/	9997	9990	"	1	1	4		3	3	3	4

ANTILOGARITHMS (પ્રતિલઘુગણક)

કોષ્ટક 🛚

N	0	1	2	3	4	5	6	7	8	9	1	2	3	4	5	6	7	8	9
00	1000	1002	1005	1007	1009	1012	1014	1016	1019	1021	0	0	1	1	1	1	2	2	2
.01	1023	1026	1028	1030	1033	1035	1038	1040	1042	1045	0	0	1	1	1	1	2	2	2
.02	1047	1050	1052	1054	1057	1059	1062	1064	1067	1069	0	0	1	1	1	1	2	2	2
.03	1072	1074	1076	1079	1081	1084	1086	1089	1091	1094	0	0	1	1	1	1	2	2	2
.04	1096	1099	1102	1104	1107	1109	1112	1114	1117	1119	0	1	1	1	1	2	2	2	2
.05	1122	1125	1127	1130	1132	1135	1138	1140	1143	1146	0	1	1	1	1	2	2	2	2
.06	1148	1151	1153	1156	1159	1161	1164	1167	1169	1172	0	1	1	1	1	2	2	2	2
.07	1175	1178	1180	1183	1186	1189	1191	1194	1197	1199	0	1	1	1	1	2	2	2	2
.08	1202	1205	1208	1211	1213	1216	1219	1222	1225	1227	0	1	1	1	1	2	2	2	3
.09	1230	1233	1236	1239	1242	1245	1247	1250	1253	1256	0	1	1	1	1	2	2	2	3
.10	1259	1262	1265	1268	1271	1274	1276	1279	1282	1285	0	1	1	1	1	2	2	2	3
.11	1288	1291	1294	1297	1300	1303	1306	1309	1312	1315	0	1	1	1	2	2	2	2	3
.12	1318	1321	1324	1327	1330	1334	1337	1340	1343	1346	0	1	1	1	2	2	2	2	3
.13	1349	1352	1355	1358	1361	1365	1368	1371	1374	1377	0	1	1	1	2	2	2	3	3
.14	1380	1384	1387	1390	1393	1396	1400	1403	1406	1409	0	1	1	1	2	2	2	3	3
.15	1413	1416	1419	1422	1426	1429	1432	1435	1439	1442	0	1	1	1	2	2	2	3	3
.16	1445	1449	1452	1455	1459	1462	1466	1469	1472	1476	0	1	1	1	2	2	2	3	3
.17	1479	1483	1486	1489	1493	1496	1500	1503	1507	1510	0	1	1	1	2	2	2	3	3
.18	1514	1517	1521	1524	1528	1531	1535	1538	1542	1545	0	1	1	1	2	2	2	3	3
.19	1549	1552	1556	1560	1563	1567	1570	1574	1578	1581	0	1	1	1	2	2	3	3	3
.20	1585	1589	1592	1596	1600	1603	1607	1611	1614	1618	0	1	1	1	2	2	3	3	3
.21	1622	1626	1629	1633	1637	1641	1644	1648	1652	1656	0	1	1	2	2	2	3	3	3
.22	1660	1663	1667	1671	1675	1679	1683	1687	1690	1694	0	1	1	2	2	2	3	3	3
.23	1698	1702	1706	1710	1714	1718	1722	1726	1730	1734	0	1	1	2	2	2	3	3	4
.24	1738	1742	1746	1750	1754	1758	1762	1766	1770	1774	0	1	1	2	2	2	3	3	4
.25	1778	1782	1786	1791	1795	1799	1803	1807	1811	1816	0	1	1	2	2	2	3	3	4
.26	1820	1824	1828	1832	1837	1841	1845	1849	1854	1858	0	1	1	2	2	3	3	3	4
.27	1862	1866	1871	1875	1879	1884	1888	1892	1897	1901	0	1	1	2	2	3	3	3	4
.28	1905	1910	1914	1919	1923	1928	1932	1936	1941	1945	0	1	1	2	2	3	3	4	4
.29	1950	1954	1959	1963	1968	1972	1977	1982	1986	1991	0	1	1	2	2	3	3	4	4
.30	1995	2000	2004	2009	2014	2018	2023	2028	2032	2037	0	1	1	2	2	3	3	4	4
.31	2042	2046	2051	2056	2061	2065	2070	2075	2080	2084	0	1	1	2	2	3	3	4	4
.32	2089	2094	2099	2104	2109	2113	2118	2123	2128	2133	0	1	1	2	2	3	3	4	4
.33	2138	2143	2148	2153	2158	2163	2168	2173	2178	2183	0	1	1	2	2	3	3	4	4
.34	2188	2193	2198	2203	2208	2213	2218	2223	2228	2234	1	1	2	2	3	3	4	4	5
.35	2239	2244	2249	2254	2259	2265	2270	2275	2280	2286	1	1	2	2	3	3	4	4	5
.36	2291	2296	2301	2307	2312	2317	2323	2328	2333	2339	1	1	2	2	3	3	4	4	5
.37	2344	2350	2355	2360	2366	2371	2377	2382	2388	2393	1	1	2	2	3	3	4	4	5
.38	2399	2404	2410	2415	2421	2427	2432	2438	2443	2449	1	1	2	2	3	3	4	4	5
.39	2455	2460	2466	2472	2477	2483	2489	2495	2500	2506	1	1	2	2	3	3	4	5	5
.40	2512	2518	2523	2529	2535	2541	2547	2553	2559	2564	1	1	2	2	3	4	4	5	5
.41	2570	2576	2582	2588	2594	2600	2606	2612	2618	2624	1	1	2	2	3	4	4	5	5
.42	2630	2636	2642	2649	2655	2661	2667	2673	2679	2685	1	1	2	2	3	4	4	5	6
.43	2692	2698	2704	2710	2716	2723	2729	2735	2742	2748	1	1	2	3	3	4	4	5	6
.44	2754	2761	2767	2773	2780	2786	2793	2799	2805	2812	1	1	2	3	3	4	4	5	6
.45	2818	2825	2831	2838	2844	2851	2858	2864	2871	2877	1	1	2	3	3	4	5	5	6
.46	2884	2891	2897	2904	2911	2917	2924	2931	2938	2944	1	1	2	3	3	4	5	5	6
.47	2951	2958	2965	2972	2979	2985	2992	2999	3006	3013	1	1	2	3	3	4	5	5	6
.48	3020	3027	3034	3041	3048	3055	3062	3069	3076	3083	1	1	2	3	3	4	5	6	6
.49	3090	3097	3105	3112	3119	3126	3133	3141	3148	3155	1	1	2	3	3	4	5	6	6

પ્રયોગશાળા માર્ગદર્શિકા

ANTILOGARITHMS (પ્રતિલઘુગણક)

કોષ્ટક II

N	0	1	2	3	4	5	6	7	8	9	1	2	3	4	5	6	7	8	9
.50	3162	3170	3177	3184	3192	3199	3206	3214	3221	3228	1	1	2	3	4	4	5	6	7
.51	3236	3243	3251	3258	3266	3273	3281	3289	3296	3304	1	2	2	3	4	5	5	6	7
.52	3311	3319	3327	3334	3342	3350	3357	3365	3373	3381	1	2	2	3	4	5	5	6	7
.53	3388	3396	3404	3412	3420	3428	3436	3443	3451	3459	1	2	2	3	4	5	6	6	7
.54	3467	3475	3483	3491	3499	3508	3516	3524	3532	3540	1	2	2	3	4	5	6	6	7
.55	3548	3556	3565	3573	3581	3589	3597	3606	3614	3622	1	2	2	3	4	5	6	7	7
.56	3631	3639	3648	3656	3664	3673	3681	3690	3698	3707	1	2	3	3	4	5	6	7	8
.57	3715	3724	3733	3741	3750	3758	3767	3776	3784	3793	1	2	3	3	4	5	6	7	8
.58	3802	3811	3819	3828	3837	3846	3855	3864	3873	3882	1	2	3	4	4	5	6	7	8
.59	3890	3899	3908	3917	3926	3936	3945	3954	3963	3972	1	2	3	4	5	5	6	7	8
.60	3981	3990	3999	4009	4018	4027	4036	4046	4055	4064	1	2	3	4	5	6	6	7	8
.61	4074	4083	4093	4102	4111	4121	4130	4140	4150	4159	1	2	3	4	5	6	7	8	9
.62	4169	4178	4188	4198	4207	4217	4227	4236	4246	42S6	1	2	3	4	5	6	7	8	9
.63	4266	4276	4285	4295	4305	4315	4325	4335	4345	4355	1	2	3	4	5	6	7	8	9
.64	4365	4375	4385	4395	4406	4416	4426	4436	4446	4457	1	2	3	4	5	6	7	8	9
.65	4467	4477	4487	4498	4508	4519	4529	4539	4550	4560	1	2	3	4	5	6	7	8	9
.66	4571	4581	4592	4603	4613	4624	4634	4645	4656	4667	1	2	3	4	5	6	7	9	10
.67	4677	4688	4699	4710	4721	4732	4742	4753	4764	4775	1	2	3	4	5	7	8	9	10
.68	4786	4797	4808	4819	4831	4842	4853	4864	4875	4887	1	2	3	4	6	7	8	9	10
.69	4898	4909	4920	4932	4943	4955	4966	4977	4989	5000	1	2	3	5	6	7	8	9	10
.70	5012	5023	5035	5047	5058	5070	5082	5093	5105	5117	1	2	4	5	6	7	8	9	11
.71	5129	5140	5152	5164	5176	5188	5200	5212	5224	5236	1	2	4	5	6	7	8	10	11
.72	5248	5260	5272	5284	5297	5309	5321	5333	5346	5358	1	2	4	5	6	7	9	10	11
.73	5370	5383	5395	5408	5420	5433	5445	5458	5470	5483	1	3	4	5	6	8	9	10	11
.74	5495	5508	5521	5534	5546	5559	5572	5585	5598	5610	1	3	4	5	6	8	9	10	12
.75	5623	5636	5649	5662	5675	5689	5702	5715	5728	5741	1	3	4	5	7	8	9	10	12
.76	5754	5768	5781	5794	5808	5821	5834	5848	5861	5875	1	3	4	5	7	8	9	11	12
.77	5888	5902	5916	5929	5943	5957	5970	5984	5998	6012	1	3	4	5	7	8	10	11	12
.78	6026 6166	6039 6180	6053	6067 6209	6081 6223	6095 6237	6109 6252	6124 6266	6138	6152 6295	1	3	4 4	6	7 7	8 9	10 10	11 11	13 13
.19	0100	0180	6194	0209	0223	0237	0232	0200	0281	0293	1	3	4	0	,	9	10	11	13
.80	6310	6324	6339	6353	6368	6383	6397	6412	6427	6442	1	3	4	6	7	9	10	12	13
.81	6457	6471	6486	6501	6516	6531	6546	6561	6577	6592	2	3	5	6	8	9	11	12	14
.82	6607	6622	6637	6653	6668	6683	6699	6714	6730	6745	2	3	5	6	8	9	11	12	14
.83	6761	6776	6792	6808	6823	6839	6855	6871	6887	6902	2	3	5	6	8	9	11	13	14
.84	6918	6934	6950	6966	6982	6998	7015	7031	7047	7063	2	3	5	6	8	10	11	13	15
	7070	7006		7120				7104					_	_		10	١.,		
.85	7079	7096	7112	7129	7145	7161	7178	7194	7211	7228	2	3	5	7	8	10	12	13	15
.86	7244	7261	7278	7295	7311	7328	7345	7362	7379	7396	2	3	5	7	8	10	12	13	15
.87	7413	7430	7447 7621	7464	7482 7656	7499	7516	7534 7709	7551	7568	2	3	5	7	9	10	12	14	16
.88	7586	7603	7621	7638		7674	7691		7727	7745 7925	2	4	5 5	7	9	11	12 13	14	16
.89	7762	7780	1198	7816	7834	7852	7870	7889	/90/	1923	2	4	3	′	9	11	1.5	14	16
.90	7943	7962	7980	7998	8017	8035	8054	8072	8091	8110	2	4	6	7	9	11	13	15	17
.91	8128	8147	8166	8185	8204	8222	8241	8260	8279	8299	2	4	6	8	9	11	13	15	17
.92	8318	8337	8356	8375	8395	8414	8433	8453	8472	8492	2	4	6	8	10	12	14	15	17
.93	8511	8531	8551	8570	8590	8610	8630	8650	8670	8690	2	4	6	8	10	12	14	16	18
.94	8710	8730	8750	8770	8790	8810	8831	8851	8872	8892	2	4	6	8	10	12	14	16	18
						l				l				١.					
.95	8913	8933	8954	8974	8995	9016	9036	9057	9078	9099	2	4	6	8	10	12	15	17	19
.96	9120	9141	9162	9183	9204	9226	9247	9268	9290	9311	2	4	6	8	11	13	15	17	19
.97	9333	9354	9376	9397	9419	9441	9462	9484	9506	9528	2	4	7	9	11	13	15	17	20
.98	9550	9572	9594	9616	9638	9661	9683	9705	9727	9750	2	4	7	9	11	13	16	18	20
.99	9772	9795	9817	9840	9863	9886	9908	9931	9954	9977	2	5	7	9	11	14	16	18	20

NATURAL SINES (પ્રાકૃતિક સાઇન)

કોષ્ટક I

	0'	6'	12'	18'	24'	30'	36'	42'	48'	54'		M	Iean		
	0°.0	0°.1	0°.2	0°.3	0°.4	0°.5	0°.6	0°.7	0°.8	0°.9		Diffe	erence	s	
											1'	2'	3'	4'	5'
0	.0000	0017	0035	0052	0070	0087	0105	0122	0140	0157	3	6	9	12	15
1	.0175	0192	0209	0227	0244	0262	0279	0297	0314	0332	3	6	9	12	15
2	.0349	0366	0384	0401	0419	0436	0454	0471	0488	0506	3	6	9	12	15
3	.0523	0541	0558	0576	0593	0610	0628	0645	0663	0680	3	6	9	12	15
4	.0698	0715	0732	0750	0767	0785	0802	0819	0837	0854	3	6	9	12	15
5	.0872	0889	0906	0924	0941	0958	0976	0993	1011	1028	3	6	9	12	14
6	.1045	1063	1080	1097	1115	1132	1149	1167	1184	1201	3	6	9	12	14
7	.1219	1236	1253	1271	1288	1305	1323	1340	1357	1374	3	6	9	12	14
8	.1392	1409	1426	1444	1461	1478	1495	1513	1530	1547	3	6	9	12	14
9	.1564	1582	1599	1616	1633	1650	1668	1685	1702	1719	3	6	9	12	14
10	.1736	1754	1771	1788	1805	1822	1840	1857	1874	1891	3	6	9	12	14
11	.1908	1925	1942	1959	1977	1994	2011	2028	2045	2062	3	6	9	11	14
12	.2079	2096	2113	2130	2147	2164	2181	2198	2215	2232	3	6	9	11	14
13	.2250	2267	2284	2300	2317	2334	2351	2368	2385	2402	3	6	8	11	14
14	.2419	2436	2453	2470	2487	2504	2521	2538	2554	2571	3	6	8	11	14
15	.2588	2605	2622	2639	2656	2672	2689	2706	2723	2740	3	6	8	11	14
16	.2756	2773	2790	2807	2823	2840	2857	2874	2890	2907	3	6	8	11	14
17	.2924	2940	2957	2974	2990	3007	3024	3040	3057	3074	3	6	8	11	14
18	.3090	3107	3123	3140	3156	3173	3190	3206	3223	3239	3	6	8	11	14
19	.3256	3272	3289	3305	3322	3338	3355	3371	3387	3404	3	5	8	11	14
20	.3420	3437	3453	3469	3486	3502	3518	3535	3551	3567	3	5	8	11	14
21	.3584	3600	3616	3633	3649	3665	3681	3697	3714	3730	3	5	8	11	14
22	.3746	3762	3778	3795	3811	3827	3843	3859	3875	3891	3	5	8	11	14
23	.3907	3923	3939	3955	3971	3987	4003	4019	4035	4051	3	5	8	11	14
24	.4067	4083	4099	4115	4131	4147	4163	4179	4195	4210	3	5	8	11	13
25	.4226	4242	4258	4274	4289	4305	4321	4337	4352	4368	3	5	8	11	13
26	.4384	4399	4415	4431	4446	4462	4478	4493	4509	4524	3	5	8	10	13
27	.4540	4555	4571	4586	4602	4617	4633	4648	4664	4679	3	5	8	10	13
28	.4695	4710	4726	4741	4756	4772	4787	4802	4818	4833	3	5	8	10	13
29	.4848	4863	4879	4894	4909	4924	4939	4955	4970	4985	3	5	8	10	13
30	.5000	5015	5030	5045	5060	5075	5090	5105	5120	5135	3	5	8	10	13
31	.5150	5165	5180	5195	5210	5225	5240	5255	5270	5284	2	5	7	10	12
32	.5299	5314	5329	5344	5358	5373	5388	5402	5417	5432	2	5	7	10	12
33	.5446	5461	5476	5490	5505	5519	5534	5548	5563	5577	2	5	7	10	12
34	.5592	5606	5621	5635	5650	5664	5678	5693	5707	5721	2	5	7	10	12
35	.5736	5750	5764	5779	5793	5807	5821	5835	5850	5864	2	5	7	10	12
36	.5878	5892	5906	5920	5934	5948	5962	5976	5990	6004	2	5	7	9	12
37	.6018	6032	6046	6060	6074	6088	6101	6115	6129	6143	2	5	7	9	12
38	.6157	6170	6184	6198	6211	6225	6239	6252	6266	6280	2	5	7	9	11
39	.6293	6307	6320	6334	6347	6361	6374	6388	6401	6414	2	4	7	9	11
40	.6428	6441	6455	6468	6481	6494	6508	6521	6534	6547	2	4	7	9	11
41	.6561	6574	6587	6600	6613	6626	6639	6652	6665	6678	2	4	7	9	11
42	.6691	6704	6717	6730	6743	6756	6769	6782	6794	6807	2	4	6	9	11
43	.6820	6833	6845	6858	6871	6884	6896	6909	6921	6934	2	4	6	8	11
44	.6947	6959	6972	6984	6997	7009	7022	7034	7046	7059	2	4	6	8	10

પ્રયોગશાળા માર્ગદર્શિકા

NATURAL SINES (પ્રાકૃતિક સાઇન)

કોષ્ટક I

	0'	6'	12'	18'	24'	30'	36'	42'	48'	54'		N	Iean		
	0°.0	0°.1	0°.2	0°.3	0°.4	0°.5	0°.6	0°.7	0°.8	0°.9		Diff	erence	s	
											1'	2'	3'	4'	5'
45	.7071	7083	7096	7108	7120	7133	7145	7157	7169	7181	2	4	6	8	10
46	.7193	7206	7218	7230	7242	7254	7266	7278	7290	7302	2	4	6	8	10
47	.7314	7325	7337	7349	7361	7373	7385	7396	7408	7420	2	4	6	8	10
48	.7431	7443	7455	7466	7478	7490	7501	7513	7524	7536	2	4	6	8	10
49	.7547	7558	7570	7581	7593	7604	7615	7627	7638	7649	2	4	6	8	9
50	.7660	7672	7683	7694	7705	7716	7727	7738	7749	7760	2	4	6	7	9
51	.7771	7782	7793	7804	7815	7826	7837	7848	7859	7869	2	4	5	7	9
52	.7880	7891	7902	7912	7923	7934	7944	7955	7965	7976	2	4	5	7	9
53	.7986	7997	8007	8018	8028	8039	8049	8059	8070	8080	2	3	5	7	9
54	.8090	8100	8111	8121	8131	8141	8151	8161	8171	8181	2	3	5	7	8
55	.8192	8202	8211	8221	8231	8241	8251	8261	8271	8281	2	3	5	7	8
56	.8290	8300	8310	8320	8329	8339	8348	8358	8368	8377	2	3	5	6	8
57	.8387	8396	8406	8415	8425	8434	8443	8453	8462	8471	2	3	5	6	8
58	.8480	8490	8499	8508	8517	8526	8536	8545	8554	8563	2	3	5	6	8
59	.8572	8581	8590	8599	8607	8616	8625	8634	8643	8652	1	3	4	6	7
60	.8660	8669	8678	8686	8695	8704	8712	8721	8729	8738	1	3	4	6	7
61	.8746	8755	8763	8771	8780	8788	8796	8805	8813	8821	1	3	4	6	7
62	.8829	8838	8846	8854	8862	8870	8878	8886	8894	8902	1	3	4	5	7
63	.8910	8918	8926	8934	8942	8949	8957	8965	8973	8980	1	3	4	5	6
64	.8988	8996	9003	9011	9018	9026	9033	9041	9048	9056	1	3	4	5	6
65	.9063	9070	9078	9085	9092	9100	9107	9114	9121	9128	1	2	4	5	6
66	.9135	9143	9150	9157	9164	9171	9178	9184	9191	9198	1	2	3	5	6
67	.9205	9212	9219	9225	9232	9239	9245	9252	9259	9265	1	2	3	4	6
68	.9272	9278	9285	9291	9298	9304	9311	9317	9323	9330	1	2	3	4	5
69	.9336	9342	9348	9354	9361	9367	9373	9379	9385	9391	1	2	3	4	5
70	.9397	9403	9409	9415	9421	9426	9432	9438	9444	9449	1	2	3	4	5
71	.9455	9461	9466	9472	9478	9483	9489	9494	9500	9505	1	2	3	4	5
72	.9511	9516	9521	9527	9532	9537	9542	9548	9553	9558	1	2	3	3	4
73	.9563	9568	9573	9578	9583	9588	9593	9598	9603	9608	1	2	3	3	4
74	.9613	9617	9622	9627	9632	9636	9641	9646	9650	9655	1	2	2	3	4
75	.9659	9664	9668	9673	9677	9681	9686	9690	9694	9699	1	1	2	3	4
76	.9703	9707	9711	9715	9720	9724	9728	9732	9736	9740	1	1	2	3	3
77	.9744	9748	9751	9755	9759	9763	9767	9770	9774	9778	1	1	2	3	3
78	.9781	9785	9789	9792	9796	9799	9803	9806	9810	9813	1	1	2	2	3
79	.9816	9820	9823	9826	9829	9833	9836	9839	9842	9845	1	1	2	2	3
80	.9848	9851	9854	9857	9860	9863	9866	9869	9871	9874	0	1	1	2	2
81	.9877	9880	9882	9885	9888	9890	9893	9895	9898	9900	0	1	1	2	2
82	.9903	9905	9907	9910	9912	9914	9917	9919	9921	9923	0	1	1	2	2
83	.9925	9928	9930	9932	9934	9936	9938	9940	9942	9943	0	1	1	1	2
84	:9945	9947	9949	9951	9952	9954	9956	9957	9959	9960	0	1	1	1	2
85	.9962	9963	9965	9966	9968	9969	9971	9972	9973	9974	0	0	1	1	1
86	.9976	9977	9978	9979	9980	9981	9982	9983	9984	9985	0	0	1	1	1
87	.9986	9987	9988	9989	9990	9990	9991	9992	9993	9993	0	0	0	1	1
88	.9994	9995	9995	9996	9996	9997	9997	9997	9998	9998	0	0	0	0	0
89	.9998	9999	9999	9999	9999	1,000	1.000	1.000	1.000	1,000	0	0	0	0	0
90	1,000	1777	11117	11/17	1///	1.000	1.000	1.000	1.000	1.000	۲	ا ٔ	Ļ	<u> </u>	Ľ
90	1.000														

NATURAL COSINES (પ્રાકૃતિક કોસાઇન)

કોષ્ટક 🛚

	0'	6'	12'	18'	24'	30'	36'	42'	48'	54'		N	lean		
	0°.0	0°.1	0°.2	0°.3	0°.4	0°.5	0°.6	0°.7	0°.8	0°.9		Diffe	erence	s	
											1'	2'	3'	4'	5'
0	1.000	1.000	1.000	1.000	1.000	1.000	.9999	9999	9999	9999	0	0	0	0	0
1	.9998	9998	9998	9997	9997	9997	9996	9996	9995	9995	0	0	0	0	0
2	.9994	9993	9993	9992	9991	9990	9990	9989	9988	9987	0	0	0	1	1
3	.9986	9985	9984	9983	9982	9981	9980	9979	9978	9977	0	0	1	1	1
4	.9976	9974	9973	9972	9971	9969	9968	9966	9965	9963	0	0	1	1	1
5	.9962	9960	9959	9957	9956	9954	9952	9951	9949	9947	0	1	1	1	2
6	.9945	9943	9942	9940	9938	9936	9934	9932	9930	9928	0	1	1	1	2
7	.9925	9923	9921	9919	9917	9914	9912	9910	9907	9905	0	1	1	2	2
8	.9903	9900	9898	9895	9893	9890	9888	9885	9882	9880	0	1	1	2	2
9	.9877	9874	9871	9869	9866	9863	9860	9857	9854	9851	0	1	1	2	2
10	.9848	9845	9842	9839	9836	9833	9829	9826	9823	9820	1	1	2	2	3
11	.9816	9813	9810	9806	9803	9799	9796	9792	9789	9785	1	1	2	2	3
12	.9781	9778	9774	9770	9767	9763	9759	9755	9751	9748	1	1	2	3	3
13	.9744	9740	9736	9732	9728	9724	9720	9715	9711	9707	1	1	2	3	3
14	.9703	9699	9694	9690	9686	9681	9677	9673	9668	9664	1	1	2	3	4
15	.9659	9655	9650	9646	9641	9636	9632	9627	9622	9617	1	2	2	3	4
16	.9613	9608	9603	9598	9593	9588	9583	9578	9573	9568	1	2	2	3	4
17	.9563	9558	9553	9548	9542	9537	9532	9527	9521	9516	1	2	3	3	4
18	.9511	9505	9500	9494	9489	9483	9478	9472	9466	9461	1	2	3	4	5
19	.9455	9449	9444	9438	9432	9426	9421	9415	9409	9403	1	2	3	4	5
20	.9397	9391	9385	9379	9573	9367	9361	9354	9348	9342	1	2	3	4	5
21	.9336	9330	9323	9317	9311	9304	9298	9291	9285	9278	1	2	3	4	5
22	.9272	9265	9259	9252	9245	9239	9232	9225	9219	9212	1	2	3	4	6
23	.9205	9198	9191	9184	9178	9171	9164	9157	9150	9143	1	2	3	5	6
24	.9135	9128	9121	9114	9107	9100	9092	9085	9078	9070	1	2	4	5	6
25	.9063	9056	9048	9041	9033	9026	9092	9083	9003	8996	1	3	4	5	6
26	.8988	8980	8973	8965	8957	8949	8942	8934	8926	8918	1	3	4	5	6
27	.8910	8980	8894	8886	8878	8870	8862	8854	8920	8838	1	3	4	5	7
28	.8829	8821	8813	8805	8796	8788	8780	8771	8763	8755	1	3	4	6	7
29	.8746	8738	8729	8721	8712	8704	8695	8686	8678	8669	1	3	4	6	7
												3	4		7
30	.8660	8652	8643	8634	8625	8616	8607	8599	8590	8581	2	3	5	6	
31	.8572	8563	8554	8545	8536	8526	8517	8508	8499	8490				6	8
32	.8480	8471	8462	8453	8443	8434	8425	8415	8406	8396	2	3	5	6	8
33	.8387	8377	8368	8358	8348	8339	8329	8320	8310	8300	2	3	5	6	8
34	.8290	8281	8271	8261	8251	8241	8231	8221	8211	8202	2	3	5	7	8
3S	.8192	8181	8171	8161	8151	8141	8131	8121	8111	8100	2	3	5	7	8
36	.8090	8080	8070	8059	8049	8039	8028	8018	8007	7997	2	3	5	7	8
37	.7986	7976	7965	7955	7944	7934	7923	7912	7902	7891	2	4	5	7	9
38	.7880	7869	7859	7848	7837	7826	7815	7804	7793	7782	2	4	5	7	9
39	.7771	7760	7749	7738	7727	7716	7705	7694	7683	7672	2	4	6	7	9
40	.7660	7649	7638	7627	7615	7604	7593	7581	7570	7559	2	4	6	8	9
41	.7547	7536	7524	7513	7501	7490	7478	7466	7455	7443	2	4	6	8	10
42	.7431	7420	7408	7396	7385	7373	7361	7349	7337	7325	2	4	6	8	10
43	.7314	7302	7290	7278	7266	7254	7242	7230	7218	7206	2	4	6	8	10
44	.7193	7181	7169	7157	7145	7133	7120	7108	7096	7083	2	4	6	8	10

પ્રયોગશાળા માર્ગદર્શિકા

NATURAL COSINES (પ્રાકૃતિક કોસાઇન)

કોષ્ટક II

	0'	6'	12'	18'	24'	30'	36'	42'	48'	54'	Mean					
	0°.0	0°.1	0°.2	0°.3	0°.4	0°.5	0°.6	0°.7	0°.8	0°.9	Differences					
											1'	2'	3'	4'	5'	
45	.7071	7059	7046	7034	7022	7009	6997	6984	6972	6959	2	4	6	8	10	
46	.6947	6934	6921	6909	6896	6884	6871	6858	6845	6833	2	4	6	8	11	
47	.6820	6807	6794	6782	6769	6756	6743	6730	6717	6704	2	4	6	9	11	
48	.6691	6678	6665	6652	6639	6626	6613	6600	6587	6574	2	4	7	9	11	
49	.6561	6547	6534	6521	6508	6494	6481	6468	6455	6441	2	4	7	9	11	
50	.6428	6414	6401	6388	6374	6361	6347	6334	6320	6307	2	4	7	9	11	
51	.6293	6280	6266	6252	6239	6225	6211	6198	6184	6170	2	5	7	9	11	
52	.6157	6143	6129	6115	6]01	6088	6074	6060	6046	6032	2	5	7	9	11	
53	.6018	6004	5990	5976	5962	5948	5934	5920	5906	5892	2	5	7	9	12	
54	.5878	5864	5850	5835	5821	5807	5793	5779	5764	5750	2	5	7	9	12	
55	.5736	5721	5707	5693	5678	5664	5650	5635	5621	5606	2	5	7	10	12	
56	.5592	5577	5563	5548	5534	55]9	5505	5490	5476	5461	2	5	7	10	12	
57	.5446	5432	5417	5402	5388	5373	5358	5344	5329	5314	2	5	7	10	12	
58	.5299	5284	5270	5255	5240	5225	5210	5195	5180	5165	2	5	7	10	12	
59	.5150	5135	5120	5105	5090	5075	5060	5045	5030	5015	3	5	8	10	13	
60	.5000	4985	4970	4955	4939	4924	4909	4894	4879	4863	3	5	8	10	13	
61	.4848	4833	4818	4802	4787	4772	4756	4741	4726	4710	3	5	8	10	13	
62	.4695	4679	4664	4648	4633	4617	4602	4586	4571	4555	3	5	8	10	13	
63	.4540	4524	4509	4493	4478	4462	4446	4431	4415	4399	3	5	8	10	13	
64	.4384	4368	4352	4337	4321	4305	4289	4274	4258	4242	3	5	8	11	13	
65	.4226	4210	4195	4179	4163	4147	4131	4115	4099	4083	3	5	8	11	13	
66	.4067	4051	4035	4019	4003	3987	3971	3955	3939	3923	3	5	8	11	14	
67	.3907	3891	3875	3859	3843	3827	3811	3795	3778	3762	3	5	8	11	14	
68	.3746	3730	3714	3697	3681	3665	3649	3633	3616	3600	3	5	8	11	14	
69	.3584	3567	3551	3535	3518	3502	3486	3469	3453	3437	3	5	8	11	14	
70	.3420	3404	3387	3371	3355	3338	3322	3305	3289	3272	3	5	8	11	14	
71	.3256	3239	3223	3206	3190	3173	3156	3140	3123	3107	3	6	8	11	14	
72	.3090	3074	3057	3040	3024	3007	2990	2974	2957	2940	3	6	8	11	14	
73	.2924	2907	2890	2874	2857	2840	2823	2807	2790	2773	3	6	8	11	14	
74	.2756	2740	2723	2706	2689	2672	2656	2639	2622	2605	3	6	8	11	14	
75	.2588	2571	2554	2538	2521	2504	2487	2470	2453	2436	3	6	8	11	14	
76	.2419	2402	2385	2368	2351	2334	2317	2300	2284	2267	3	6	8	11	14	
77	.2250	2233	2215	2198	2181	2164	2147	2130	2113	2096	3	6	9	11	14	
78	.2079	2062	2045	2028	2011	1994	1977	1959	1942	1925	3	6	9	11	14	
79	.1908	1891	1874	1857	1840	1822	1805	1788	1771	1754	3	6	9	11	14	
80	.1736	1719	1702	1685	1668	1650	1633	1616	1599	1582	3	6	9	12	14	
81	.1564	1547	1530	1513	1495	1478	1461	1444	1426	1409	3	6	9	12	14	
82	.1392	1374	1357	1340	1323	1305	1288	1271	1253	1236	3	6	9	12	14	
83	.1219	1201	1184	1167	1149	1132	1115	1097	1080	1063	3	6	9	12	14	
84	.1045	1028	1011	0993	0976	0958	0941	0924	0906	0889	3	6	9	12	14	
85	.0872	0854	0837	0819	0802	0785	0767	0750	0732	0715	3	6	9	12	15	
86	.0698	0680	0663	0645	0628	0610	0593	0576	0558	0541	3	6	9	12	15	
87	.0523	0506	0488	0471	0454	0436	0419	0401	0384	0366	3	6	9	12	15	
88	.0349	0332	0314	0297	0279	0262	0244	0227	0209	0192	3	6	9	12	15	
89	.0175	0157	0140	0122	0105	0087	0070	0052	0035	0017	3	6	9	12	15	
90	.0000															

NATURAL TANGENTS (પ્રાકૃતિક ટેનજેન્ટ)

કોષ્ટક III

	0'	6'	12'	18'	24'	30'	36'	42'	48'	54'	Mean				
	0°.0	0°.1	0°.2	0°.3	0°.4	0°.5	0°.6	0°.7	0°.8	0°.9	Differences				
											1'	2'	3'	4'	5'
0	.0000	0017	0035	0052	0070	0087	0105	0122	0140	0157	3	6	9	12	15
1	.0175	0192	0209	0227	0244	0262	0279	0297	0314	0332	3	6	9	12	15
2	.0349	0367	0384	0402	0419	0437	0454	0472	0489	0507	3	6	9	12	15
3	.0524	0542	0559	0577	0594	0612	0629	0647	0664	0682	3	6	9	12	15
4	.0699	0717	0734	0752	0769	0787	0805	0822	0840	0857	3	6	9	12	15
5	.0875	0892	0910	0928	0945	0963	0981	0998	1016	1033	3	6	9	12	15
6	.1051	1069	1086	1104	1122	1139	1157	1175	1192	1210	3	6	9	12	15
7	.1228	1246	1263	1281	1299	1317	1334	1352	1370	1388	3	6	9	12	15
8	.1405	1423	1441	1459	1477	1495	1512	1530	1548	1566	3	6	9	12	15
9	.1584	1602	1620	1638	1655	1673	1691	1709	1727	1745	3	6	9	12	15
10	.1763	1781	1799	1817	1835	1853	1871	1890	1908	1926	3	6	9	12	15
11	.1944	1962	1980	1998	2016	2035	2053	2071	2089	2107	3	6	9	12	15
12	.2126	2144	2162	2180	2199	2217	2235	2254	2272	2290	3	6	9	12	15
13	.2309	2327	2345	2364	2382	2401	2419	2438	2456	2475	3	6	9	12	15
14	.2493	2512	2530	2549	2568	2586	2605	2623	2642	2661	3	6	9	12	16
15	.2679	2698	2717	2736	2754	2773	2792	2811	2830	2849	3	6	9	13	16
16	.2867	2886	2905	2924	2943	2962	2981	'3000	3019	3038	3	6	9	13	16
17	.3057	3076	3096	3115	3134	3153	3172	3191	3211	3230	3	6	10	13	16
18	.3249	3269	3288	3307	3327	3346	3365	3385	3404	3424	3	6	10	13	16
19	.3443	3463	3482	3502	3522	3541	3561	3581	3600	3620	3	7	10	13	16
20	.3640	3659	3679	3699	3719	3739	3759	3779	3799	3819	3	7	10	13	17
21	.3839	3859	3879	3899	3919	3939	3959	3979	4000	4020	3	7	10	13	17
22	.4040	4061	4081	4101	4122	4142	4163	4183	4204	4224	3	7	10	14	17
23	.4245	4265	4286	4307	4327	4348	4369	4390	4411	4431	3	7	10	14	17
24	.4452	4473	4494	4515	4536	4557	4578	4599	4621	4642	4	7	11	14	18
25	.4663	4684	4706	4727	4748	4770	4791	4813	4834	4856	4	7	11	14	18
26	.4877	4899	4921	4942	4964	4986	5008	5029	5051	5073	4	7	11	15	18
27	.5095	5117	5139	5161	5184	5206	5228	5250	5272	5295	4	7	11	15	18
28	.5317	5340	5362	5384	5407	5430	5452	5475	5498	5520	4	8	11	15	19
29	.5543	5566	5589	5612	5635	5658	5681	5704	5727	5750	4	8	12	15	19
30	.5774	5797	5820	5844	5867	5890	5914	5938	5961	5985	4	8	12	16	20
31	.6009	6032	6056	6080	6104	6128	6152	6176	6200	6224	4	8	12	16	20
32	.6249	6273	6297	6322	6346	6371	6395	6420	6445	6469	4	8	12	16	20
33	.6494	6519	6544	6569	6594	6619	6644	6669	6694	6720	4	8	13	17	21
34	.6745	6771	6796	6822	6847	6873	699	6924	6950	6976	4	9	13	17	21
35	.7002	7028	7054	7080	7107	7133	7159	7186	7212	7239	4	9	13	18	22
36	.7265	7292	7319	7346	7373	7400	7427	7454	7481	7508	5	9	14	18	23
37	.7536	7563	7590	7618	7646	7673	7701	7729	7757	7785	5	9	14	18	23
38	.7813	7841	7869	7898	7926	7954	7983	8012	8040	8069	5	9	14	19	24
39	.8008	8127	8156	8185	8214	8243	8273	8302	8332	8361	5	10	15	20	24
40	.8391	8421	8451	8481	8511	8541	8571	8601	8632	8662	5	10	15	20	25
41	.8693	8724	8754	8785	8816	8847	8878	8910	8941	8972	5	10	16	21	26
42	.9004	9036	9067	9099	9131	9163	9195	9228	9260	9293	5	11	16	21	27
43	.9325	9358	9391	9424	9457	9490	9523	9556	9590	9623	6	11	17	22	28
44	.9657	9691 '	9725	9759	9793	9827	9861	9896	9930	9965	6	11	17	23	29

પ્રયોગશાળા માર્ગદર્શિકા

NATURAL TANGENTS (પ્રાકૃતિક ટેનજેન્ટ)

કોષ્ટક III

	0'	6'	12'	18'	24'	30'	36'	42'	48'	54'	Mean				
	0°.0	0°.1	0°.2	0°.3	0°.4	0°.5	0°.6	0°.7	0°.8	0°.9	Differences				
											1'	2'	3'	4'	5'
45	1.0000	0035	0070	0105	0141	0176	0212	0247	0283	0319	6	12	18	24	30
46	1.0355	0392	0428	0464	0501	0538	0575	0612	0649	0686	6	12	18	25	31
47	1-0724	0761	0799	0837	0875	0913	0951	0990	1028	1067	6	13	19	25	32
48	1-1106	1145	1184	1224	1263	1303	1343	1383	1423	1463	7	13	20	27	33
49	1.1504	1544	1585	1626	1667	1708	1750	1792	1833	1875	7	14	21	28	34
50	1-1918	1960	2002	2045	2088	2131	2174	2218	2261	2305	7	14	22	29	35
51	1.2349	2393	2437	2482	2527	2572	2617	2662	2708	2753	8	15	23	30	38
52	1.2799	2846	2892	2938	2985	3032	3079	3127	3175	3222	8	16	24	31	39
53	1.3270	3319	3367	3416	3465	3514	3564	3613	3663	3713	8	16	25	33	41
54	1.3764	3814	3865	3916	3968	4019	4071	4124	4176	4229	9	17	26	34	43
55	1-4281	4335	4388	4442	4496	4550	4605	4659	4715	4770	9	18	27	36	45
56	1-4826	4882	4938	4994	5051	5108	5166	5224	5282	5340	10	19	29	38	48
57	1.5399	5458	5517	5577	5637	5697	5757	5818	5880	5941	10	20	30	40	50
58	1.6003	6066	6128	6191	6255	6319	6383	6447	6512	6577	11	21	32	43	53
59	1.6643	6709	6775	6842	6909	6977	7045	7113	7182	7251	11	23	34	45	56
60	1-7321	7391	7461	7532	7603	7.675	7747	7820	7893	7966	12	24	36	48	60
61	1.8040	8115	8190	8265	8341	8418	8495	8572	8650	8728	13	26	38	51	64
62	1.8807	8887	8967	9047	9128	9210	9292	9375	9458	9542	14	27	41	55	68
63	1.9626	9711	9797	9883	9970	2.0057	2.0145	2.0233	2.0323	2.0413	15	29	44	58	73
64	2.0503	0594	0686	0778	0872	0965	1060	1155	1251	1348	16	31	47	63	78
65	2.1445	1543	1642	1742	1842	1943	2045	2148	2251	2355	17	34	51	68	85
66	2.2460	2566	2673	2781	2889	2998	3109	3220	3332	3445	18	37	55	73	92
67	2.3559	3673	3789	3906	4023	4142	4262	4383	4504	4627	20	40	60	79	99
68	2.4751	4876	5002	5129	5257	5386	5517	5649	5782	5916	22	43	65	87	108
69	2.6051	6187	6325	6464	6605	6746	6889	7034	7179	7326	24	47	71	95	119
70	2.7475	7625	7776	7929	8083	8239	8397	8556	8716	8878	26	52	78	104	131
71	2.9042	9208	9375	9544	9714	9887	3.0061	3.0237	3.0415	3.0595	29	58	87	116	145
72	3.0777	0961	1146	1334	1524	1716	1910	2106	2305	2500	32	64	96	129	161
73	3.2709	2914	3122	3332	3544	3759	3977	4197	4420	4646	36	72	108	144	180
74	3.4874	5105	5339	5576	5816	6059	6305	6554	6806	7062	41	811	22	163	204
75	3.7321	7583	7848	8118	8391	8667	8947	9232	9520	9812	46	93	139	186	232
76	4.0108	0408	0713	1022	1335	i653	1976	2303	2635	2972	53	107	160	213	267
77	4.3315	3662	4015	4374	4737	5107	5483	5864	6252	6646	33	107	100	213	207
78	4.7046	7453	7867	8288	8716	9152	9594	5.0045	5.0504	5.0970	Mar	n diff	oranca	s cease	
79	5.1446	1929	2422	2924	3435	3955	4486	5026	5578	6140	_			accura	
80	5.6713	7297	7894	8502	9124	9758	6.0405	6.1066	6.1742	6.2432	10 (oc sulli	Cicitiy	accula	
81	6.3138	3859	4596	5350	6122	6912	7720	8548	9395	7.0264					
82	7.1154	2066	3002	3%2	4947	5958	6996	8062	9158	8.0285					
82	8.1443	2636	3863	5126	6427	7769	9152	9.0579	9.2052	9.3572					
84	9.5144	9.677	9.845	10.02	10.20	10.39		10.78	10.99	11-20	\vdash				
85	1143	11.66	9.845	12.16		12.71	10.58	13.30	13.62	13.95	\vdash				
					12.43					+					
86	14.30	14.67	15.06	15.46	15.89	16.35	16.83	17.34	17.89	18.46	-				
87	19.08	19.74	20.45	21.20	22.02	22.90	23.86	24.90	26.03	27.27					
88 89	28.64 57.29	30.14	31.82 71.62	33.69 81.85	35.80 95.49	38.19 114.6	40.92	44.07 191.0	47.74 286.5	52.08	\vdash				
90	not define	63.66	/1.62	81.83	93.49	114.0	143.2	191.0	280.3	573.0					
90	not define	u													

ડેટા વિભાગ નોંધ

પ્રયોગશાળા માર્ગદર્શિકા

નોંધ