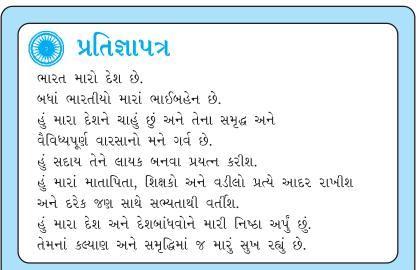
ગુજરાત રાજ્યના શિક્ષણવિભાગના પત્ર-ક્રમાંક મશબ/1219/119-125/છ, તા. 16-02-2019–થી મંજૂર

ભાગ II

ધોરણ XII



કિંમત : ₹ 117.00

राष्ट्रीय शैक्षिक अनुसंधान और प्रशिक्षण परिषद् NATIONAL COUNCIL OF EDUCATIONAL RESEARCH AND TRAINING

ગુજરાત રાજ્ય શાળા પાઠ્યપુસ્તક મંડળ 'વિદ્યાયન', સેક્ટર 10-એ, ગાંધીનગર-382010

© NCERT, નવી દિલ્લી તથા ગુજરાત રાજ્ય શાળા પાઠ્ચપુસ્તક મંડળ, ગાંધીનગર આ પાઠ્ચપુસ્તકના સર્વ હક NCERT, નવી દિલ્લી તથા ગુજરાત રાજ્ય શાળા પાઠ્ચપુસ્તક મંડળને હસ્તક છે. આ પાઠ્ચપુસ્તકનો કોઈ પણ ભાગ કોઈ પણ રૂપમાં NCERT, નવી દિલ્લી અને ગુજરાત રાજ્ય શાળા પાઠ્ચપુસ્તક મંડળની લેખિત પરવાનગી વગર પ્રકાશિત કરી શકાશે નહિ.

અનુવાદ

ડૉ. એ. પી. શાહ (કન્વીનર) શ્રી જયકૃષ્ણ એન. ભટ્ટ ડૉ. વિપુલ શાહ શ્રી રાજીવ ચોક્સી શ્રી વિજય વોરા ડૉ. રવિ બોરાણા શ્રી મુગેશ પારેખ પરામર્શન ડૉ. એ. કે. દેસાઈ ડૉ. પી. જે. ભટ્ટ ડૉ. પરેશ આઇ. અંધારિયા ડૉ. પ્રકાશ ડાભી પ્રો. એમ. જે. વચેણા શ્રી પરિમલ બી. પુરોહિત શ્રી નવરોજ બી. ગાંગાણી શ્રી કૃપાલ એસ. પરીખ શ્રી આર. વી. વૈષ્ણવ શ્રી આર. ડી. મોઢા શ્રી પી. પી. પટેલ શ્રી હેમા એસ. પંડચા શ્રી સચીન એસ. કામદાર શ્રી ભદ્રેશ જે. ભટ્ટ ભાષાશુદ્ધિ શ્રી વિજય ટી. પારેખ સંયોજન શ્રી આશિષ એચ. બોરીસાગર (વિષય-સંયોજક : ગણિત) નિર્માણ-સંયોજન શ્રી હરેન શાહ (નાયબ નિયામક : શૈક્ષણિક) મુદ્રણ-આયોજન શ્રી હરેશ એસ. લીમ્બાચીયા (नायअ नियाभङ : उत्पादन)

પ્રસ્તાવના

રાષ્ટ્રીય સ્તરે સમાન અભ્યાસક્રમ રાખવાની સરકારશ્રીની નીતિના અનુસંધાને ગુજરાત સરકાર તથા ગુજરાત માધ્યમિક અને ઉચ્ચતર માધ્યમિક શિક્ષણ બોર્ડ દ્વારા તા. 25/10/2017ના ઠરાવ ક્રમાંક મશભ/1217/1036/છ થી શાળા કક્ષાએ NCERTનાં પાઠ્યપુસ્તકોનો સીધો જ અમલ કરવાનો નિર્ણય કરવામાં આવ્યો. તેને અનુલક્ષીને NCERT, નવી દિલ્લી દ્વારા પ્રકાશિત ધોરણ XIIના ગણિત (ભાગ II) વિષયના પાઠ્યપુસ્તકનો ગુજરાતીમાં અનુવાદ કરીને વિદ્યાર્થીઓ સમક્ષ મૂકતાં ગુજરાત રાજ્ય શાળા પાઠ્યપુસ્તક મંડળ આનંદ અનુભવે છે.

આ પાઠ્યપુસ્તકનો અનુવાદ તથા તેની સમીક્ષા નિષ્ણાત પ્રાધ્યાપકો અને શિક્ષકો પાસે કરાવવામાં આવ્યા છે અને સમીક્ષકોનાં સૂચનો અનુસાર હસ્તપ્રતમાં યોગ્ય સુધારા-વધારા કર્યા પછી આ પાઠ્યપુસ્તક પ્રસિદ્ધ કરતાં પહેલાં આ પાઠ્યપુસ્તકની મંજૂરી માટે એક સ્ટેટ લેવલની કમિટીની રચના કરવામાં આવી. આ કમિટીની સાથે NCERTના પ્રતિનિધિ તરીકે RIE, ભોપાલથી ઉપસ્થિત રહેલા નિષ્ણાતોની સાથે એક દ્વિદિવસીય કાર્યશિબિરનું આયોજન કરવામાં આવ્યું અને પાઠ્યપુસ્તકને અંતિમ સ્વરૂપ આપવામાં આવ્યું. જેમાં ડૉ. એ. પી. શાહ, શ્રી રાજીવ ચોક્સી, શ્રી પરિમલ પુરોહિત, શ્રી આર. વી. વૈષ્ણવ, શ્રી પી. પી. પટેલ, શ્રી નિલેશ એમ. કા.પટેલ, ડૉ. અશ્વનીકુમાર ગર્ગ (આર.આઇ.ઇ., ભોપાલ), ડૉ. સુરેશ મકવાણા (આર.આઇ.ઇ., ભોપાલ) ઉપસ્થિત રહી પોતાનાં કીમતી સૂચનો અને માર્ગદર્શન પૂરાં પાડ્યાં છે.

પ્રસ્તુત પાઠ્યપુસ્તકને રસપ્રદ, ઉપયોગી અને ક્ષતિરહિત બનાવવા માટે મંડળ દ્વારા પૂરતી કાળજી લેવામાં આવી છે, તેમ છતાં શિક્ષણમાં રસ ધરાવનાર વ્યક્તિઓ પાસેથી ગુણવત્તા વધારે તેવાં સૂચનો આવકાર્ય છે.

NCERT, નવી દિલ્લીના સહકાર બદલ તેમના આભારી છીએ.

અવંતિકા સિંઘ (IAS)

નિયામક તા. 3-4-2019 કાર્યવાહક પ્રમુખ ગાંધીનગર

પ્રથમ આવૃત્તિ : 2019

<mark>પ્રકાશક</mark> ઃ ગુજરાત રાજ્ય શાળા પાઠ્યપુસ્તક મંડળ, 'વિદ્યાયન', સેક્ટર 10-એ, ગાંધીનગર વતી શ્રી અવંતિકા સિંઘ, નિયામક <mark>મુદ્રક</mark> ઃ

iii

Foreword

The National Curriculum Framework, 2005, recommends that children's life at school must be linked to their life outside the school. This principle marks a departure from the legacy of bookish learning which continues to shape our system and causes a gap between the school, home and community. The syllabi and textbooks developed on the basis of NCF signify an attempt to implement this basic idea. They also attempt to discourage rote learning and the maintenance of sharp boundaries between different subject areas. We hope these measures will take us significantly further in the direction of a child-centred system of education outlined in the National Policy on Education (1986).

The success of this effort depends on the steps that school principals and teachers will take to encourage children to reflect on their own learning and to pursue imaginative activities and questions. We must recognise that, given space, time and freedom, children generate new knowledge by engaging with the information passed on to them by adults. Treating the prescribed textbook as the sole basis of examination is one of the key reasons why other resources and sites of learning are ignored. Inculcating creativity and initiative is possible if we perceive and treat children as participants in learning, not as receivers of a fixed body of knowledge.

These aims imply considerable change in school routines and mode of functioning. Flexibility in the daily time-table is as necessary as rigour in implementing the annual calendar so that the required number of teaching days are actually devoted to teaching. The methods used for teaching and evaluation will also determine how effective this textbook proves for making children's life at school a happy experience, rather than a source of stress or boredom. Syllabus designers have tried to address the problem of curricular burden by restructuring and reorienting knowledge at different stages with greater consideration for child psychology and the time available for teaching. The textbook attempts to enhance this endeavour by giving higher priority and space to opportunities for contemplation and wondering, discussion in small groups, and activities requiring hands-on experience.

NCERT appreciates the hard work done by the textbook development committee responsible for this book. We wish to thank the Chairperson of the advisory group in Science and Mathematics, Professor J.V. Narlikar and the Chief Advisor for this book, Professor P.K. Jain for guiding the work of this committee.

iv

Several teachers contributed to the development of this textbook; we are grateful to their principals for making this possible. We are indebted to the institutions and organisations which have generously permitted us to draw upon their resources, material and personnel. As an organisation committed to systemic reform and continuous improvement in the quality of its products, NCERT welcomes comments and suggestions which will enable us to undertake further revision and refinement.

New Delhi 20 December 2005 Director National Council of Educational Research and Training

v

PREFACE

The National Council of Educational Research and Training (NCERT) had constituted 21 Focus Groups on Teaching of various subjects related to School Education, to review the National Curriculum Framework for School Education - 2000 (NCFSE - 2000) in face of new emerging challenges and transformations occurring in the fields of content and pedagogy under the contexts of National and International spectrum of school education. These Focus Groups made general and specific comments in their respective areas. Consequently, based on these reports of Focus Groups, National Curriculum Framework (NCF)-2005 was developed.

NCERT designed the new syllabi and constituted Textbook Development Teams for Classes XI and XII to prepare textbooks in mathematics under the new guidelines and new syllabi. The textbook for Class XI is already in use, which was brought in 2005.

The first draft of the present book (Class XII) was prepared by the team consisting of NCERT faculty, experts and practicing teachers. The draft was refined by the development team in different meetings. This draft of the book was exposed to a group of practicing teachers teaching mathematics at higher secondary stage in different parts of the country, in a review workshop organised by the NCERT at Delhi. The teachers made useful comments and suggestions which were incorporated in the draft textbook. The draft textbook was finalised by an editorial board constituted out of the development team. Finally, the Advisory Group in Science and Mathematics and the Monitoring Committee constituted by the HRD Ministry, Government of India have approved the draft of the textbook.

In the fitness of things, let us cite some of the essential features dominating the textbook. These characteristics have reflections in almost all the chapters. The existing textbook contain 13 main chapters and two appendices. Each Chapter contain the followings:

- Introduction: Highlighting the importance of the topic; connection with earlier studied topics; brief mention about the new concepts to be discussed in the chapter.
- Organisation of chapter into sections comprising one or more concepts/sub concepts.
- Motivating and introducing the concepts/sub concepts. Illustrations have been provided wherever possible.
- Proofs/problem solving involving deductive or inductive reasoning, multiplicity of approaches wherever possible have been inducted.
- Geometric viewing / visualisation of concepts have been emphasised whenever needed.
- Applications of mathematical concepts have also been integrated with allied subjects like science and social sciences.
- Adequate and variety of examples/exercises have been given in each section.

vi

- For refocusing and strengthening the understanding and skill of problem solving and applicabilities, miscellaneous types of examples/exercises have been provided involving two or more sub concepts at a time at the end of the chapter. The scope of challenging problems to talented minority have been reflected conducive to the recommendation as reflected in NCF-2005.
- For more motivational purpose, brief historical background of topics have been provided at the end of the chapter and at the beginning of each chapter relevant quotation and photograph of eminent mathematician who have contributed significantly in the development of the topic undertaken, are also provided.
- Lastly, for direct recapitulation of main concepts, formulas and results, brief summary of the chapter has also been provided.

I am thankful to Professor Krishan Kumar, Director, NCERT who constituted the team and invited me to join this national endeavor for the improvement of mathematics education. He has provided us with an enlightened perspective and a very conducive environment. This made the task of preparing the book much more enjoyable and rewarding. I express my gratitude to Professor J.V. Narlikar, Chairperson of the Advisory Group in Science and Mathematics, for his specific suggestions and advice towards the improvement of the book from time to time. I, also, thank Prof. G. Ravindra, Joint Director, NCERT for his help from time to time.

I express my sincere thanks to Professor Hukum Singh, Chief Coordinator and Head DESM, Dr. V. P. Singh, Coordinator and Professor S. K. Singh Gautam who have been helping for the success of this project academically as well as administratively. Also, I would like to place on records my appreciation and thanks to all the members of the team and the teachers who have been associated with this noble cause in one or the other form.

PAWAN K. JAIN Chief Advisor Textbook Development Committee

vii

TEXTBOOK DEVELOPMENT COMMITTEE

CHAIRPERSON, ADVISORY GROUP IN SCIENCE AND MATHEMATICS

J.V. NARLIKAR, EMERITUS PROFESSOR, INTER-UNIVERSITY CENTRE FOR ASTRONOMY AND ASTROPHYSICS (IUCAA), GANESHKHIND, PUNE UNIVERSITY, PUNE

CHIEF ADVISOR

P.K. JAIN, PROFESSOR, DEPARTMENT OF MATHEMATICS, UNIVERSITY OF DELHI, DELHI

CHIEF COORDINATOR

HUKUM SINGH, PROFESSOR AND HEAD, DESM, NCERT, NEW DELHI

MEMBERS

ARUN PAL SINGH, SR. LECTURER, DEPARTMENT OF MATHEMATICS, DAYAL SINGH COLLEGE, UNIVERSITY OF DELHI, DELHI

A.K. RAJPUT, READER, RIE, BHOPAL, M.P.

B.S.P. RAJU, PROFESSOR, RIE MYSORE, KARNATAKA

C.R. PRADEEP, ASSISTANT PROFESSOR, DEPARTMENT OF MATHEMATICS, INDIAN INSTITUTE OF

SCIENCE, BANGALORE, KARNATAKA

D.R. SHARMA, P.G.T., JNV-MUNGESHPUR, DELHI

RAM AVTAR, PROFESSOR (RETD.) AND CONSULTANT, DESM, NCERT, NEW DELHI

R.P. MAURYA, READER, DESM, NCERT, NEW DELHI

S.S. KHARE, PRO-VICE-CHANCELLOR, NEHU, TURA CAMPUS, MEGHALAYA

S.K.S. GAUTAM, PROFESSOR, DESM, NCERT, NEW DELHI

S.K. KAUSHIK, READER, DEPARTMENT OF MATHEMATICS, KIRORI MAL COLLEGE, UNIVERSITY OF DELHI, DELHI

SANGEETA ARORA, P.G.T., APEEJAY SCHOOL SAKET, NEW DELHI-110017

SHAILJA TEWARI, P.G.T., KENDRIYA VIDYALAYA, BARKAKANA, HAZARIBAGH, JHARKHAND

VINAYAK BUJADE, LECTURER, VIDARBHA BUNIYADI JUNIOR COLLEGE, SAKKARDARA CHOWK,

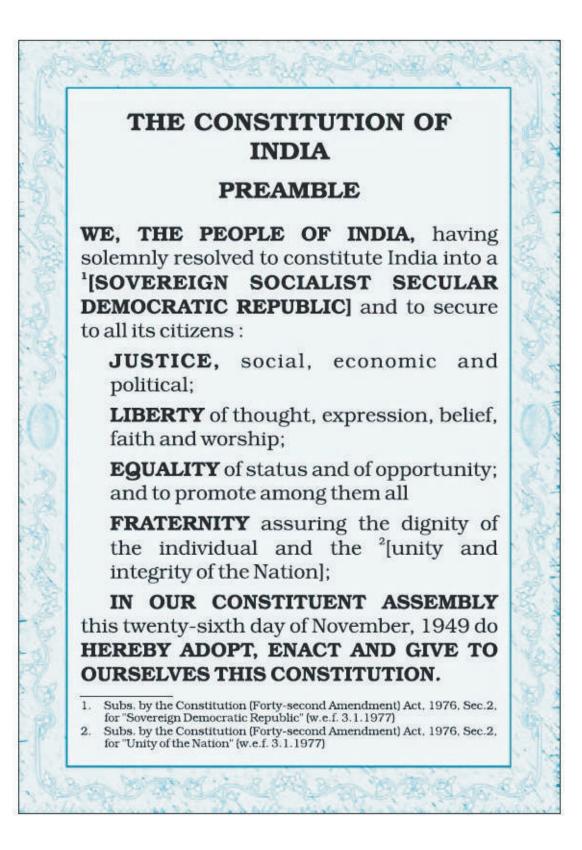
NAGPUR, MAHARASHTRA

SUNIL BAJAJ, SR. SPECIALIST, SCERT, GURGAON, HARYANA

MEMBER - COORDINATOR

V.P. SINGH, READER, DESM, NCERT, NEW DELHI

viii



ix

ACKNOWLEDGEMENTS

The Council gratefully acknowledges the valuable contributions of the following participants of the Textbook Review Workshop: Jagdish Saran, Professor, Deptt. of Statistics, University of Delhi; Quddus Khan, Lecturer, Shibli National P.G. College Azamgarh (U.P.); P.K. Tewari, Assistant Commissioner (Retd.), Kendriya Vidyalaya Sangathan; S.B. Tripathi, Lecturer, R.P.V.V. Surajmal Vihar, Delhi; O.N. Singh, Reader, RIE, Bhubaneswar, Orissa; Miss Saroj, Lecturer, Govt. Girls Senior Secondary School No.1, Roop Nagar, Delhi; P. Bhaskar Kumar, PGT, Jawahar Navodaya Vidyalaya, Lepakshi, Anantapur, (A.P.); Mrs. S. Kalpagam, PGT, K.V. NAL Campus, Bangalore; Rahul Sofat, Lecturer, Air Force Golden Jubilee Institute, Subroto Park, New Delhi; Vandita Kalra, Lecturer, Sarvodaya Kanya Vidyalaya, Vikaspuri, District Centre, New Delhi; Janardan Tripathi, Lecturer, Govt. R.H.S.S. Aizawl, Mizoram and Ms. Sushma Jaireth, Reader, DWS, NCERT, New Delhi.

The Council acknowledges the efforts of Deepak Kapoor, Incharge, Computer Station, Sajjad Haider Ansari, Rakesh Kumar and Nargis Islam, D.T.P. Operators, Monika Saxena, Copy Editor and Abhimanu Mohanty, Proof Reader.

The Contribution of APC-Office, administration of DESM and Publication Department is also duly acknowledged.

x

	અનુક્રમણિકા	
	ગણિત	
	ધોરણ ઃ 12, ભાગ I	
પ્રકરણ 1	સંબંધ અને વિધેય	1
પ્રકરણ 2	ત્રિકોણમિતીય પ્રતિવિધેયો	30
પ્રકરણ 3	શ્રેણિક	49
પ્રકરણ 4	નિશ્વાયક	84
પ્રકરણ 5	સાતત્ય અને વિકલનીયતા	120
પ્રકરણ 6	વિકલિતના ઉપયોગો	161
	પરિશિષ્ટ	205
	જવાબો	223

xi

અનુક્રમણિકા

	Foreword		iii
પ્રકરણ 7	સંકલન	(Integrals)	237
	7.1	પ્રાસ્તાવિક	237
	7.2	વિકલનની વ્યસ્તક્રિયા તરીકે સંકલન	238
	7.3	સંકલન માટેની રીતો	247
	7.4	કેટલાંક વિશિષ્ટ વિધેયોના સંકલિત	254
	7.5	આંશિક અપૂર્ણાંકની રીત	261
	7.6	ખંડશઃ સંકલનની રીત	266
	7.7	નિયત સંકલન	274
	7.8	નિયત સંકલનનો મૂળભૂત સિદ્ધાંત	278
	7.9	નિયત સંકલનની કિંમત મેળવવા માટેની આદેશની રીત	281
	7.10	નિયત સંકલનના કેટલાંક ગુણધર્મો	283
પ્રકરણ 8	8 સંકલનનો ઉપયોગ (Application of Integrals)		
	8.1	પ્રાસ્તાવિક	301
	8.2	સાદા વક્રથી આવૃત્ત પ્રદેશનું ક્ષેત્રફળ	301
	8.3	બે વક્ર વડે આવૃત્ત પ્રદેશનું ક્ષેત્રફળ	307
પ્રકરણ 9	વિકલ સમીકરણો (Differential Equations)		317
	9.1	પ્રાસ્તાવિક	317
	9.2	પાયાના સિદ્ધાંતો	317
	9.3	વિકલ સમીકરણનો વ્યાપક અને વિશિષ્ટ ઉકેલ	320
	9.4	વ્યાપક ઉકેલ આપેલો હોય તેવા વિકલ સમીકરણની રચના	322
	9.5	પ્રથમ કક્ષાના એક પરિમાણીય વિકલ સમીકરણના ઉકેલ માટેની રીતો	327
પ્રકરણ 10	સદિશ	બીજગણિત (Vector Algebra)	353
	10.1	પ્રાસ્તાવિક	353
	10.2	કેટલીક પાયાની સંકલ્પનાઓ	353
	10.3	સદિશોના પ્રકાર	356

xii

	10.4	સદિશોનો સરવાળો	357
	10.5	સદિશનો અદિશ સાથે ગુણાકાર	360
	10.6	બે સદિશોનો ગુણાકાર	369
	10.7	સદિશોનું અદિશ ત્રિગુણન (પેટી ગુણાકાર)	382
પ્રકરણ 11	ત્રિપરિમ	ાણીય ભૂમિતિ (Three Dimensional Geometry)	392
	11.1	પ્રાસ્તાવિક	392
	11.2	રેખાની દિક્કોસાઈન અને દિક્ગુણોત્તર	392
	11.3	અવકાશમાં રેખાનું સમીકરણ	396
	11.4	બે રેખા વચ્ચેનો ખૂણો	399
	11.5	બે રેખા વચ્ચેનું લઘુતમ અંતર	401
	11.6	સમતલ	406
	11.7	બે રેખા સમતલીય બને તેની શરત	414
	11.8	બે સમતલ વચ્ચેનો ખૂણો	415
	11.9	સમતલથી બિંદુનું અંતર	417
	11.10	રેખા અને સમતલ વચ્ચેનો ખૂણો	418
પ્રકરણ 12	સુરેખ ચ	માયોજન (Linear Programming)	429
	12.1	પ્રાસ્તાવિક	429
	12.2	સુરેખ આયોજનનો પ્રશ્ન અને તેનું ગાણિતિક સ્વરૂપ	430
	12.3	સુરેખ આયોજનની વિવિધ પ્રકારની સમસ્યાઓ	437
પ્રકરણ 13	સંભાવન	l (Probability)	451
	13.1	પ્રાસ્તાવિક	451
	13.2	શરતી સંભાવના	451
	13.3	સંભાવના માટેનો ગુણાકારનો પ્રમેય	458
	13.4	નિરપેક્ષ ઘટનાઓ	460
	13.5	બેય્ઝનો પ્રમેય	465
	13.6	યાદચ્છિક ચલો અને તેમનાં સંભાવના વિતરણો	473
	13.7	બર્નુલી પ્રયત્નો અને દ્વિપદી વિતરશ	482
જવાબો (Answers)			495

પ્રકરણ

સંકલન

 Just as a mountaineer climbs a mountain – because it is there, so a good mathematics student studies new material because it is there. — JAMES B. BRISTOL

7.1 પ્રાસ્તાવિક

વિકલ ગણિત એ વિકલિતની સંકલ્પના પર કેન્દ્રિત છે. વિકલિત માટે મૂળભૂત પ્રેરણાસ્રોત એ વિધેયના આલેખના સ્પર્શકો વ્યાખ્યાયિત કરવા અને તેમનો ઢાળ શોધવો તે છે. સંકલિતની પ્રેરણા કોઈ પણ વિધેયના આલેખ વડે આવૃત્ત પ્રદેશને વ્યાખ્યાયિત કરી અને તે પ્રદેશનું ક્ષેત્રફળ શોધવા પરથી મળે છે.

જો આપેલ વિધેય f એ કોઈ અંતરાલ I પર વિકલનીય હોય એટલે કે તેનો વિકલિત f' અંતરાલ I ના પ્રત્યેક બિંદુએ અસ્તિત્વ ધરાવતો હોય, તો સ્વાભાવિક રીતે એવો પ્રશ્ન ઊઠે કે જો વિધેય f' અંતરાલ I ના પ્રત્યેક બિંદુએ આપેલ હોય, તો શું આપશે વિધેય f મેળવી શકીએ ? આમ, આપેલ વિધેય એ કયા વિધેયનું વિકલિત હશે તે શોધવાની ક્રિયાને પ્રતિવિકલનની ક્રિયા કહે છે. આમ, આગળ વધતાં જે વિધેય આપેલ વિધેયના બધા જ પ્રતિવિકલિત દર્શાવતું હોય તેને આપશે

G .W. Leibnitz (C.E. 1646 - C.E. 1716)

આપેલ વિધેયનો પ્રતિવિકલિત કહીશું. આમ, પ્રતિવિકલિત શોધવાની ક્રિયાને પ્રતિવિકલન અથવા સંકલન કહે છે. આ પ્રકારની સમસ્યાઓ ઘણી વ્યાવહારિક પરિસ્થિતિઓમાં આવે છે. ઉદાહરણ તરીકે જો આપણે કોઈ ક્ષણે કોઈ પણ પદાર્થનો તાત્ક્ષણિક વેગ જાણતા હોઈએ, તો સ્વાભાવિક રીતે પ્રશ્ન થાય કે, આપણે કોઈ પણ ક્ષણે એ પદાર્થનું સ્થાન જાણી શકીએ ? તેમાં સંકલનની ક્રિયાનો ઉપયોગ થાય છે. એવા પ્રકારની ઘણી વ્યાવહારિક તેમજ સૈદ્ધાંતિક પરિસ્થિતિઓ આવે છે. સંકલનનો વિકાસ નીચે દર્શાવ્યા પ્રકારની સમસ્યાઓનો ઉકેલ મેળવવાના ફળસ્વરૂપે થયો :

- (a) જો કોઈ વિધેયનું વિકલિત જ્ઞાત હોય તો તે કયા વિધેયનું વિકલિત છે તે પ્રશ્નનો ઉત્તર શોધવાની ક્રિયા.
- (b) આપેલ નિશ્ચિત શરતોને અધીન આપેલ વિધેયના આલેખથી ઘેરાતા નિશ્ચિત પ્રદેશનું ક્ષેત્રફળ શોધવાની ક્રિયા.

ઉપર દર્શાવેલ બંને સમસ્યાઓ સંકલનનાં બે સ્વરૂપોની તરફ પ્રેરિત કરે છે : અનિયત સંકલન અને નિયત સંકલન. આ બંનેનું સંકલિત રૂપ એટલે સંકલનશાસ્ત્ર.

અનિયત સંકલન અને નિયત સંકલન વચ્ચેનો સંબંધ સંકલનના મૂળભૂત પ્રમેય તરીકે ઓળખાય છે. આ પ્રમેય વિજ્ઞાન અને ઇજનેરીશાસ્ત્રના ઘણા વ્યાવહારિક ઉપયોગોમાં પાયાના ઉપકરણ તરીકે વપરાય છે. ઘણા વ્યાવહારિક

238

ઉપયોગોમાં નિયત સંકલન દષ્ટિગોચર થાય છે. નિયત સંકલનનો ઉપયોગ અર્થશાસ્ત્ર, નાણાકીય તથા સંભાવના જેવા વિભિન્ન ક્ષેત્રોની ઘણી રસપ્રદ સમસ્યાઓના ઉકેલ મેળવવામાં થાય છે.

આ પ્રકરશમાં આપશે અનિયત સંકલન અને નિયત સંકલન તથા તેમના મૂળભૂત ગુશધર્મો અને સંકલિત મેળવવાની કેટલીક પદ્ધતિઓ શીખીશું.

7.2 વિકલનની વ્યસ્તક્રિયા તરીકે સંકલન

વિકલનની ક્રિયાની વ્યસ્ત ક્રિયા હોય તેવી ક્રિયાને સંકલન કહે છે. આપેલ વિધેયનું વિકલિત શોધવાને બદલે આપણને વિધેયનું વિકલિત આપેલ હોય અને તે વિકલિત પરથી તેનો પૂર્વગ (મૂળ વિધેય) શોધવો હોય, તો આ પ્રશ્નનો ઉત્તર શોધવાની ક્રિયાને પ્રતિવિકલન કે સંકલનની ક્રિયા કહે છે.

આ સમજવા માટે આપશે કેટલાંક ઉદાહરશો લઈએ.

આપણે જાણીએ છીએ કે,
$$\frac{d}{dx}(\sin x) = \cos x$$
, ...(1)

$$\frac{d}{dx}\left(\frac{x^3}{3}\right) = x^2 \qquad \dots (2)$$

અને
$$\frac{d}{dx}(e^x) = e^x$$
 ...(3)

આપશે જોઈ શકીએ છીએ કે, (1)માં વિધેય $\cos x$ એ $\sin x$ નું વિકલિત છે. એટલે $\sin x$ એ $\cos x$ નું પ્રતિવિકલિત (સંકલિત) છે તેમ કહી શકાય. તે જ પ્રમાશે (2) અને (3)માં $\frac{x^3}{3}$ અને e^x અનુક્રમે x^2 અને e^x ના પ્રતિવિકલિત (સંકલિત) છે. વળી, આપશે નોંધીશું કે કોઈ વાસ્તવિક સંખ્યા c માટે જો c ને અચળ વિધેય તરીકે લઈએ, તો તેનો વિકલિત શૂન્ય થશે અને તેથી આપશે પરિણામ (1), (2) અને (3) નીચે દર્શાવ્યા પ્રમાશે પણ લખી શકીએ :

$$\frac{d}{dx}(\sin x + c) = \cos x, \ \frac{d}{dx}\left(\frac{x^3}{3} + c\right) = x^2 \text{ चn} \frac{d}{dx}\left(e^x + c\right) = e^x$$

આમ, ઉપરનાં વિધેયોના પ્રતિવિકલિતો નિશ્ચિત નથી. હકીકતમાં તો આપેલ વિધેયના પ્રતિવિકલિતોની સંખ્યા અનંત હોય છે. તે પ્રત્યેક વાસ્તવિક અચળ c ની પસંદગીથી મેળવી શકાય છે. તેથી આવા અચળ c ને સ્વૈર અચળ કહે છે. તેના મૂલ્યમાં પરિવર્તન કરી આપણે વિધેયના જુદાં-જુદાં પ્રતિવિકલિતો મેળવી શકીએ છીએ.

વ્યાપક રીતે, જો કોઈ વિધેય F માટે,

$$\frac{d}{dx}(F(x)) = f(x), \quad \forall x \in I \quad (અંતરાલ)$$

તો કોઈક વાસ્તવિક અચળ c માટે, (તેને સંકલનનો અચળ પણ કહે છે)
$$\frac{d}{dx}[F(x) + c] = f(x), \quad \forall x \in I$$

આથી {F + c, c \in R} એ fના પ્રતિવિકલિતોનો સમુદાય દર્શાવે છે.

નોંધ : સમાન વિકલિત ધરાવતાં વિધેયોમાં અચળનો તફાવત હોય છે. આ સાબિત કરવા ધારો કે કોઈ અંતરાલ I પર બે વિધેયો g અને hનાં વિકલિતો સમાન છે.

ધારો કે f = g - h એટલે કે f(x) = g(x) - h(x), $\forall x \in I$ દ્વારા વ્યાખ્યાયિત છે.

Downloaded from https:// www.studiestoday.com

ગણિત

સંકલન

તો
$$\frac{df}{dx} = f' = g' - h'$$
 તેથી $f'(x) = g'(x) - h'(x), \quad \forall x \in I$

પરંતુ, પક્ષ પ્રમાશે f'(x) = 0, ∀x ∈ I એટલે અંતરાલ I પર f નો x ને સાપેક્ષ બદલાવાનો દર શૂન્ય છે અને તેથી f અચળ વિધેય છે. (ખરેખર તો મધ્યકમાન પ્રમેયના ઉપયોગથી f(x) અચળ વિધેય છે તેમ સાબિત કરી શકાય.)

ઉપરની નોંધ પરથી એવું તારણ કાઢી શકાય કે, સમુદાય {F + c, c ∈ R} એ f ના બધા જ પ્રતિવિકલિતો દર્શાવે છે.

હવે, આપણે એક નવા સંકેત ∫ f(x) dxથી પરિચિત થઈએ. તે fના પ્રતિવિકલિતોનો પૂર્ણ સમુદાય દર્શાવશે. તેને આપણે f નો x વિશે (સાપેક્ષ) અનિયત સંકલિત એમ વાંચીશું.

સંકેતમાં આપણે $\int f(x) dx = F(x) + c$ એમ લખીશું.

નોંધ : જો $\frac{dy}{dx} = f(x)$ આપેલ હોય તો $y = \int f(x) dx$ લખીશું.

સંકેત : $\frac{dy}{dx} = f(x)$ આપેલ હોય તો તેને $\int f(x) dx = y$ એમ લખીશું.

સુવિધા ખાતર નીચેના કોષ્ટકમાં કેટલાંક સંકેતો / પદો / શબ્દસમૂહો તેના અર્થ સાથે આપેલાં છે.

કોષ્ટક 7.1

સંકેત/૫દ/શબ્દસમૂહ	અર્થ	
$-\int f(x) dx$	f નો x ને સાપેક્ષ સંકલિત	
$-\int f(x) dx$ Hi $f(x)$	સંકલ્ય	
$-\int f(x) dx$ Hi x	સંકલનનો ચલ	
– સંકલન કરો	સંકલિત શોધો.	
<i>– f</i> નો સંકલિત	જેને માટે $F'(x) = f(x)$ થાય એવું એક વિધેય F	
– સંકલન	સંકલિત શોધવાની ક્રિયા	
– સંકલનનો સ્વૈર અચળ	કોઈક વાસ્તવિક સંખ્યા <i>c</i> , જેને અચળ વિધેય	
	તરીકે લઈશું.	

આપણે ઘણાં અગત્યનાં વિધેયોના વિકલિતનાં સૂત્રો જાણીએ છીએ. આ સૂત્રો પરથી તરત જ તે વિધેયોના સંકલનનાં સૂત્રો મેળવી શકીશું. તે નીચેની સૂચિમાં દર્શાવ્યા છે. તેના ઉપયોગથી આપણે બીજાં વિધેયોના સંકલિત પણ મેળવી શકીશું.

વિકલિતો સંકલિતો (પ્રતિવિકલિતો) (i) $\frac{d}{dx}\left(\frac{x^{n+1}}{n+1}\right) = x^n$ $\int x^n dx = \frac{x^{n+1}}{n+1} + c$ $(n \neq -1)$ વિશિષ્ટ રૂપે, આપણે નોંધીશું કે, $\frac{d}{dx}(x) = 1$ $\int dx = x + c$ (ii) $\frac{d}{dx}(\sin x) = \cos x$ $\int \cos x \, dx = \sin x + c$

240

ગણિત

વિકલિતો સંકલિતો (પ્રતિવિકલિતો) (iii) $\frac{d}{dx}(-\cos x) = \sin x$ $\int \sin x \, dx = -\cos x + c$ (iv) $\frac{d}{dx}(\tan x) = \sec^2 x$ $\int sec^2 x \, dx = tan \, x + c$ (v) $\frac{d}{dx}(-\cot x) = \csc^2 x$ $\int cosec^2 x \, dx = -cot \, x + c$ (vi) $\frac{d}{dx}(\sec x) = \sec x \tan x$ $\int \sec x \ \tan x \ dx = \sec x + c$ (vii) $\frac{d}{dx}(-cosec \ x) = cosec \ x \ cot \ x$ $\int cosec \ x \ cot \ x \ dx = -cosec \ x + c$ (viii) $\frac{d}{dx}(sin^{-1}x) = \frac{1}{\sqrt{1-x^2}}, |x| < 1$ $\int \frac{1}{\sqrt{1-r^2}} dx = \sin^{-1}x + c, \quad |x| < 1$ (ix) $\frac{d}{dx}(-\cos^{-1}x) = \frac{1}{\sqrt{1-x^2}}, |x| < 1$ $\int \frac{1}{\sqrt{1-r^2}} dx = -cos^{-1}x + c, |x| < 1$ (x) $\frac{d}{dx}(tan^{-1}x) = \frac{1}{1+x^2}$ $\int \frac{1}{1+x^2} dx = tan^{-1}x + c$ (xi) $\frac{d}{dx}(-cot^{-1}x) = \frac{1}{1+x^2}$ $\int \frac{1}{1+x^2} dx = -cot^{-1}x + c$ (xii) $\frac{d}{dx}(sec^{-1}x) = \frac{1}{|x|\sqrt{x^2-1}}, |x| > 1$ $\int \frac{1}{|x|\sqrt{x^2 - 1}} dx = sec^{-1}x + c, |x| > 1$ $(\text{xiii}) \frac{d}{dx}(-cosec^{-1}x) = \frac{1}{|x|\sqrt{x^2 - 1}}, |x| > 1 \qquad \int \frac{1}{|x|\sqrt{x^2 - 1}} dx = -cosec^{-1}x + c, |x| > 1$ $(\operatorname{xiv})\frac{d}{dx}(e^x) = e^x$ $\int e^x dx = e^x + c$ (xv) $\frac{d}{dx}(\log |x|) = \frac{1}{x}$ $\int \frac{1}{x} dx = \log |x| + c$ $(xvi) \frac{d}{dx} \left(\frac{a^x}{\log_a a} \right) = a^x$ $\int a^x \, dx = \frac{a^x}{\log_2 a} + c$

🖝 નોંધ : સામાન્ય રીતે વિધેય જે અંતરાલ પર વ્યાખ્યાયિત હોય તે આપણે દર્શાવતા નથી. જો કે કેટલાક વિશિષ્ટ સંજોગોમાં આ વાત ધ્યાનમાં રાખવી જોઈએ.

7.2.1 અનિયત સંકલનનું ભૌમિતિક અર્થઘટન

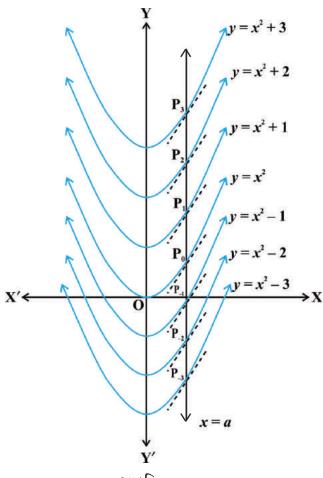
ધારો કે f(x) = 2x તો $\int f(x) dx = x^2 + c$ તથા c ની ભિન્ન કિંમતો માટે આપણને ભિન્ન સંકલિતો મળશે. પણ ભૌમિતિક રીતે આ બધા સંકલિતો સમાન છે.

આમ, સ્વૈર અચળ c માટે $y = x^2 + c$ સંકલિતોના એક સમુદાયનું નિરૂપણ કરે છે. c ની ભિન્ન કિંમતો લેતાં, આપણને તે સમુદાયના ભિન્ન સભ્યો મળશે. આ બધા સભ્યોનું એકત્રિત રૂપ એટલે અનિયત સંકલિત. આ કિસ્સામાં પ્રત્યેક સંકલિત Y-અક્ષ પ્રત્યે સંમિત પરવલય દર્શાવે છે.

સંકલન

અહીં સ્પષ્ટ છે કે c = 0 માટે આપણને $y = x^2$ મળશે. તે જેનું શીર્ષ ઊગમબિંદુ હોય એવો એક પરવલય દર્શાવે છે. આપણને પરવલય $y = x^2$ ને એક એકમ Y-અક્ષની ધન દિશામાં સ્થાનાંતરિત કરવાથી c = 1માટે, વક્ર $y = x^2 + 1$ મળશે. આપણને પરવલય $y = x^2$ ને એક એકમ Y-અક્ષની ઋ્રણ દિશામાં સ્થાનાંતરિત કરવાથી c = -1 માટે, વક્ર $y = x^2 - 1$ મળશે. આ પ્રકારે c ની પ્રત્યેક ધન કિંમત માટે સમુદાયના પ્રત્યેક પરવલયનું શીર્ષ Y-અક્ષની ધન દિશામાં હશે અને c ની પ્રત્યેક ઋ્રણ કિંમત માટે સમુદાયના પ્રત્યેક પરવલયનું શીર્ષ Y-અક્ષની ૠણ દિશામાં હશે. આ પરવલયોમાંનાં કેટલાંક પરવલયોને આકૃતિ 7.1 માં દર્શાવ્યાં છે.

આ બધાં પરવલયોના રેખા x = a સાથેના છેદ અહીં આકૃતિ 7.1માં દર્શાવ્યા છે. આપણે a > 0લીધો છે. a < 0 માટે પણ આ સત્ય છે. અહીં રેખા x = a પરવલયો $y = x^2$, $y = x^2 + 1$, $y = x^2 + 2$, $y = x^2 - 1$, $y = x^2 - 2$ ને અનુક્રમે બિંદુઓ P₀, P₁, P₂, P₋₁, P₋₂ માં છેદે છે. આ બધાં બિંદુઓ પર $\frac{dy}{dx}$ નું મૂલ્ય 2a છે. આ પરથી સ્પષ્ટ થાય છે કે, આ બધાં બિંદુઓ પર વક્રના સ્પર્શકો સમાંતર છે. આમ, $\int 2x \ dx = x^2 + c = F_c(x)$ (કહો)થી જોઈ શકાય છે કે વક્ર $y = F_c(x)$, $c \in \mathbb{R}$ અને રેખા x = a, $a \in \mathbb{R}$ નાં છેદબિંદુઓ પર દોરેલ સ્પર્શકો સમાંતર છે.



આમ, અત્રે દર્શાવેલ વિધાન ∫ *f*(*x*) *dx* = F(*x*) + *c* = *y*, વક્રોના સમુદાયનું નિરૂપણ કરે છે. *c* નાં ભિન્ન મૂલ્યો માટે આ સમુદાયના ભિન્ન સભ્યો પ્રાપ્ત થાય છે અને આ સભ્યોમાંથી કોઈ એક સભ્યને સમાંતર સ્થાનાંતરિત કરી બીજા સભ્યો મેળવી શકાય છે. આમ, આ અનિયત સંકલિતનું ભૌમિતિક નિરૂપણ છે.

242

ગણિત

7.2.2 અનિયત સંકલનના ગુણધર્મો

- આ ઉપવિભાગમાં આપશે, અનિયત સંકલનના કેટલાક ગુણધર્મો સાબિત કરીશું.
- (I) આપણે પરિણામ પરથી જોઈ શકીએ છીએ કે, વિકલન અને સંકલન એકબીજાની વ્યસ્ત ક્રિયાઓ છે. $\frac{d}{dx} \int f(x) \, dx = f(x)$ અને $\int f'(x) \, dx = f(x) + c$ જ્યાં, c એ કોઈ સ્વૈર અચળ છે.

સાબિતી : ધારો કે F એ f નો પ્રતિવિકલિત છે. જો $\frac{d}{dx}$ F(x) = f(x) હોય, તો $\int f(x) dx = F(x) + c$

તેથી,
$$\frac{d}{dx} \int f(x) dx = \frac{d}{dx}(F(x) + c)$$

= $\frac{d}{dx}(F(x)) = f(x)$
એ જ રીતે, આપણે જોઈ શકીએ કે, $f'(x) = \frac{d}{dx}f(x)$

અને તેથી
$$\int f'(x) dx = f(x) + c$$

જ્યાં, c સ્વૈર અચળ છે, તેને સંકલનનો અચળ કહે છે.

 (II) બે અનિયત સંકલિતોના વિકલિતો સમાન હોય, તો આવાં બે વિધેયો એક જ સમુદાયના વક્રો દર્શાવશે અને તેથી તે બે સમતુલ્ય છે.

સાબિતી : ધારો કે, બે વિધેયો f અને g માટે,

$$\frac{d}{dx} \int f(x) \, dx = \frac{d}{dx} \int g(x) \, dx$$

અથવા $\frac{d}{dx} \left[\int f(x) \, dx - \int g(x) \, dx \right] = 0$
તેથી, $\int f(x) \, dx - \int g(x) \, dx = c$ જ્યાં, c કોઈ વાસ્તવિક સંખ્યા છે. (કેમ?)
અથવા $\int f(x) \, dx = \int g(x) \, dx + c$
આમ, વકોના સમુદાયો { $\int f(x) \, dx + c_1, \, c_1 \in \mathbb{R}$ } અને { $\int g(x) \, dx + c_2, \, c_2 \in \mathbb{R}$ } સમતુલ્ય છે.
આમ, આ અર્થમાં $\int f(x) \, dx$ અને $\int g(x) \, dx$ સમતુલ્ય છે.

The second second

$$(\text{III}) \int [f(x) + g(x)] \, dx = \int f(x) \, dx + \int g(x) \, dx$$

$$\underset{\text{ellevel}}{\text{ellevel}} \left[f(x) + g(x) \right] \, dx = f(x) + g(x)$$

$$\underset{\text{ellevel}}{\frac{d}{dx}} \left[f(x) \, dx + \int g(x) \, dx \right] = \frac{d}{dx} \int f(x) \, dx + \frac{d}{dx} \int g(x) \, dx$$

$$= f(x) + g(x)$$

...(i)

આમ, ગુણધર્મ (II) પ્રમાશે, પરિણામ (i) અને (ii) પરથી, $\int (f(x) + g(x)) dx = \int f(x) dx + \int g(x) dx$

સંકલન

(IV) કોઈ વાસ્તવિક સંખ્યા k માટે,
$$\lceil kf(x) dx = k [f(x) dx$$

સાચિતી : ગુલવર્મ (1) પ્રમાલે,

$$\frac{d}{dx} \lceil k f(x) dx = k f(x)$$
અમે $\frac{d}{dx} [k [f(x) dx] = k \frac{d}{dx} [f(x) dx = k f(x)$
આમ, ગુલવર્મ (11), પ્રમાણે $\lceil kf(x) dx = k]f(x) dx$ મળે.
(V) જો $f_1, f_2, f_3, \dots, f_n$ નિચિત સંખ્યાનાં વિધેયો હોય અને k_1, k_2, \dots, k_n વાસ્તવિક સંખ્યાઓ હોય, તો
ગુલવર્મ (11) અને (1V) ને વ્યાપક રીતે,
 $\int [k_1 f_1(x) + k_2 f_2(x) + \dots + k_n f_n(x)] dx$
 $= k_1 \int f_1(x) dx + k_2 \int f_2(x) dx + \dots + k_n \int f_n(x) dx$ હારા દર્શાવી શકાય.
આપેલ વિધેયનો પ્રતિવિકલિત શોધવા આપણે અંતરહુરકાથી જેનું વિકલિત એ આપેલ વિધેય હોય તેવું વિધેય
શોધવાનો પ્રયત્ન કરીએ છીએ. જેનો પ્રતિવિકલિત શાત હોય તેવા વિધેય શોધવાની રીતને નિરીક્ષલ દારા
સંકલન કહે છે. આપણે આ હિયા દેટલાંક ઉદાહરશો દારા સમજ્ઞએ :
(5) cos 2x (ii) $3x^2 + 4x^3$ (iii) $\frac{1}{x}, x \neq 0$
6 કે 4 : (i) આપણે જેનો વિકલિત cos 2x હોય એવું એક વિધેય શોધવું છે.
આપણે જાશીએ છીએ કે, $\frac{d}{dx}(sin 2x) = 2cos 2x$
અથવા $cos 2x - \frac{1}{2} \frac{d}{dx}(sin 2x) = \frac{d}{dx} (\frac{1}{2} sin 2x)$
આમ, $cos 2x + 1$ એક પ્રતિવિકલિત $\frac{1}{2} sin 2x$ છે.
(ii) આપણે, જેનું વિકલિત $3x^2 + 4x^3$ થાય એવું એક વિધેય શોધવું છે.
હવે, $\frac{d}{dx}(x^3 + x^4) = 3x^2 - 4x^3$
આથી, $3x^2 + 4x^3$ નો એક પ્રતિવિકલિત $x^3 + x^4$ છે.
(iii) આપણે જાશીએ છીએ કે, $\frac{d}{dx}(\log x) = \frac{1}{x}, x > 0$ અંતે $\frac{d}{dx}[\log (-x)] = -\frac{1}{-x} = \frac{1}{x}, x < 0$
અંતે પરિલાયોને એકત્રિત કરતાં,
 $\frac{d}{dx}(\log |x|) = \frac{1}{x}, x \neq 0$ મળશે.
આમ, $\int \frac{1}{x} dx = \log |x|$, એ $\frac{1}{x}$ ના પ્રતિવિકલિતોમાંનો એક છે.

Downloaded from https:// www.studiestoday.com

243

244

ગણિત

ઉદાહરણ 2 : નીચેના સંકલિતો મેળવો :

🖝 નોંધ : હવેથી આપણે અંતિમ જવાબમાં જ સંકલનનો અચળ લખીશું.

(ii)
$$\operatorname{end} \int (x^{\frac{2}{3}} + 1) \, dx = \int x^{\frac{2}{3}} \, dx + \int 1 \, dx$$

$$= \frac{x^{\frac{2}{3}+1}}{\frac{2}{3}+1} + x + c$$

$$= \frac{3}{5} x^{\frac{5}{3}} + x + c$$
(iii) $\operatorname{end} \int \left(x^{\frac{3}{2}} + 2e^x - \frac{1}{x}\right) \, dx = \int x^{\frac{3}{2}} \, dx + \int 2e^x \, dx - \int \frac{1}{x} \, dx$

$$= \frac{x^{\frac{2}{2}+1}}{\frac{3}{2}+1} + 2e^x - \log|x| + c$$

$$= \frac{2}{5} x^{\frac{5}{2}} + 2e^x - \log|x| + c$$

ઉદાહરણ 3 : નીચેના સંકલિતો મેળવો :

(i)
$$\int (\sin x + \cos x) dx$$
 (ii) $\int \csc x (\csc x + \cot x) dx$ (iii) $\int \frac{1 - \sin x}{\cos^2 x} dx$
(i) $\forall \forall \forall, \int (\sin x + \cos x) dx = \int \sin x dx + \int \cos x dx$
 $= -\cos x + \sin x + c$
(ii) $\forall \forall \forall, \int \csc x (\csc x + \cot x) dx = \int \csc^2 x dx + \int \csc x \cot x dx$
 $= -\cot x - \csc x + c$

સંકલન

(iii) અહીં,
$$\int \frac{1-\sin x}{\cos^2 x} dx = \int \frac{1}{\cos^2 x} dx - \int \frac{\sin x}{\cos^2 x} dx$$
$$= \int \sec^2 x \, dx - \int \tan x \cdot \sec x \, dx$$
$$= \tan x - \sec x + c$$

ઉદાહરણ 4 : F(0) = 3 થાય તે શરત પ્રમાણે, $f(x) = 4x^3 - 6$ દ્વારા વ્યાખ્યાયિત વિધેય f નો પ્રતિવિકલિત F મેળવો.

ઉંકેલ :
$$f(x)$$
 નો એક પ્રતિવિકલિત $x^4 - 6x$ છે

કારણ કે
$$\frac{d}{dx}(x^4 - 6x) = 4x^3 - 6$$

તેથી, વ્યાપક પ્રતિવિકલિત F માટે,
F(x) = $x^4 - 6x + c$, જ્યાં c સ્વૈર અચળ છે.
હવે, F(0) = 3 આપેલ છે.
∴ 3 = 0 - 6 × 0 + c અથવા c = 3
આમ, માંગેલ પ્રતિવિકલિત F(x) = $x^4 - 6x + 3$ દ્વારા વ્યાખ્યાયિત અનન્ય વિધેય છે.

નોંધ ઃ

- (i) આપણે જોયું કે જો f નો પ્રતિવિકલિત F હોય તો કોઈ પણ સ્વૈર અચળ c માટે F + c પણ પ્રતિવિકલિત છે. આમ આ રીતે જો કોઈ વિધેય f નો એક પ્રતિવિકલિત F જાણતા હોઈએ, તો F માં કોઈ પણ અચળ ઉમેરી f ના અનંત પ્રતિવિકલિતો લખી શકીએ છીએ. તેમને F(x) + c, c ∈ R દ્વારા દર્શાવી શકાય છે. વ્યવહારમાં સામાન્ય રીતે c ના મૂલ્ય માટે એક વધારાની શરતનું સમાધાન કરવું જરૂરી છે. આનાથી c નું એક વિશિષ્ટ મૂલ્ય મળે છે અને તેના પરિણામ સ્વરૂપ આપેલ વિધેયનો અનન્ય સંકલિત મળે છે.
- (ii) કોઈક વાર F ને બહુપદી, લઘુગણકીય, ઘાતાંકીય, ત્રિકોણમિતીય વિધેયો અને તેનાં પ્રતિવિધેયો વગેરે જેવાં જાણીતા પ્રાથમિક વિધેય દ્વારા દર્શાવી શકાય તે શક્ય હોતું નથી. તેથી ∫f(x) dx સ્પષ્ટ સૂત્રાત્મક વિધેય તરીકે (explicit function) મેળવી શકાતું નથી. ઉદાહરણ તરીકે ∫e^{-x²} dx સ્પષ્ટ વિધેય તરીકે મેળવી શકાતું નથી, કારણ કે નિરીક્ષણની રીતે આપણે જેનો વિકલિત e^{-x²} થાય એવું વિધેય જાણતા નથી.
- (iii) જો સંકલનનો ચલ x સિવાય બીજો કોઈ ચલ હોય, તો સંકલનનાં સૂત્રો તે પ્રમાણે રૂપાંતરિત કરવામાં આવે છે. ઉદાહરણ તરીકે, $\int y^4 dy = \frac{y^{4+1}}{4+1} + c = \frac{1}{5}y^5 + c$

7.2.3 વિકલન અને સંકલનની તુલના

- (1) બંને વિધેય પરની ક્રિયાઓ છે.
- (2) બંને સુરેખીય હોવાના ગુણધર્મોનું પાલન કરે છે. એટલે કે,

(i)
$$\frac{d}{dx} [k_1 f_1(x) + k_2 f_2(x)] = k_1 \frac{d}{dx} f_1(x) + k_2 \frac{d}{dx} f_2(x)$$

- (ii) $\int [k_1 f_1(x) + k_2 f_2(x)] dx = k_1 \int f_1(x) dx + k_2 \int f_2(x) dx$
- જ્યાં, k_1 અને k_2 અચળ છે.

246

ગણિત

- (3) આપશે અગાઉ જોઈ ગયાં કે બધાં જ વિધેયો વિકલનીય નથી હોતાં. તે જ પ્રમાશે બધાં જ વિધેયો પ્રતિવિકલનીય પણ નથી હોતાં. આપશે કયાં વિધેયો વિકલનીય નથી અને કયાં વિધેયો પ્રતિવિકલનીય નથી તેના વિશે ઉચ્ચ કક્ષાએ શીખીશું.
- (4) જો કોઈ વિધેયનું વિકલિત અસ્તિત્વ ધરાવે તો તે અનન્ય છે. પરંતુ વિધેયના સંકલિત માટે આવું નથી. તેમની સમાનતામાં ફક્ત અચળનો જ તજ્ઞાવત હોય છે. એટલે કે એક વિધેયના બે સંકલિત સમતુલ્ય હોય, તો તેમની વચ્ચે ફક્ત અચળનો જ તજ્ઞાવત હોય છે.
- (5) જેની ઘાત આપેલ બહુપદી P ની ઘાત કરતાં એક ઓછી ઘાત હોય એવી બહુપદી કોઈ બહુપદી વિધેય P નું વિકલન કરવાના પરિણામે મળે છે. જેની ઘાત આપેલ બહુપદી P ની ઘાત કરતાં એક વધુ હોય એવી એક બહુપદી કોઈ બહુપદી P નું સંકલન કરવાના પરિણામે મળે છે.
- (6) આપશે વિકલિતની ચર્ચા એક બિંદુ પર કરીએ છીએ જ્યારે સંકલિતની ચર્ચા એક બિંદુ પર ક્યારેય પશ થઈ શકે નહિ. આપશે આપેલ વિધેયના સંકલિતની વાત જ્યાં સંકલિત વ્યાખ્યાયિત હોય એવા અંતરાલ પર કરીએ છીએ. આ અંગેની ચર્ચા આપશે વિભાગ 7.7 માં કરીશું.
- (7) આપેલ વિધેયના વિકલિતનો ભૌમિતિક અર્થ આપેલ વિધેયના વક્ર પર આપેલ બિંદુ આગળ સ્પર્શકનો ઢાળ એવો થાય છે. જ્યારે વિધેયનો અનિયત સંકલિત ભૌમિતિક રીતે એકબીજાને 'સમાંતર' વક્રોનો સમુદાય દર્શાવે છે. તેમાં સંકલિતના ચલ દ્વારા દર્શાવાતા અક્ષને લંબરેખા સમુદાયનાં બધાં વક્રોને જે બિંદુમાં છેદે તે બિંદુએ દોરેલ સ્પર્શકો એકબીજાને સમાંતર હોય છે.
- (8) કોઈ કણ દ્વારા સમય t માં કાપેલ અંતર જાણતા હોઈએ, તો આપેલ સમયે તેનો વેગ શોધવા વિકલિતનો ઉપયોગ થાય છે. જો કોઈ સમય t આગળ કણનો વેગ જાણતા હોઈએ તો આપેલ સમયમાં કાપેલ અંતર શોધવા સંકલિતનો ઉપયોગ થાય છે.
- (9) વિકલન એ લક્ષ પર આધારિત ક્રિયા છે અને તે જ રીતે સંકલન માટે પણ આ સત્ય છે. આ પરિણામ આપણે વિભાગ 7.7 માં જોઈશું.
- (10) વિકલન અને સંકલન એકબીજાની વ્યસ્ત પ્રક્રિયાઓ છે. તે આપશે પરિચ્છેદ 7.2.2(i) માં જોઈ ગયાં.

સ્વાધ્યાય 7.1

નીચે આપેલાં વિધેયોના પ્રતિવિકલિત (અનિયત સંકલિત) નિરીક્ષણની રીતે શોધો :

- **1.** sin 2x **2.** cos 3x **3.** e^{2x}
- 4. $(ax + b)^2$ 5. $sin 2x 4e^{3x}$

નીચેના સંકલિતો શોધો (પ્રશ્નો 6 થી 20) :

- 6. $\int (4e^{3x} + 1) dx$ 7. $\int x^2 \left(1 \frac{1}{x^2}\right) dx$ 8. $\int (ax^2 + bx + c) dx$
- 9. $\int (2x^2 + e^x) dx$ 10. $\int \left(\sqrt{x} \frac{1}{\sqrt{x}}\right)^2 dx$ 11. $\int \frac{x^3 + 5x^2 4}{x^2} dx$
- 12. $\int \frac{x^3 + 3x + 4}{\sqrt{x}} dx$ 13. $\int \frac{x^3 x^2 + x 1}{x 1} dx$ 14. $\int (1 x)\sqrt{x} dx$

સંકલન

15.
$$\int \sqrt{x} (3x^2 + 2x + 3) dx$$

16. $\int (2x - 3\cos x + e^x) dx$
17. $\int (2x^2 - 3\sin x + 5\sqrt{x}) dx$
18. $\int \sec x (\sec x + \tan x) dx$
19. $\int \frac{\sec^2 x}{\csc x^2} dx$
20. $\int \frac{2 - 3\sin x}{\cos^2 x} dx$

પ્રશ્નો 21 તથા 22 માં વિધાન સાચું બને તે રીતે આપેલ વિકલ્પોમાંથી યોગ્ય વિકલ્પ પસંદ કરો :

21.
$$\left(\sqrt{x} + \frac{1}{\sqrt{x}}\right)$$
-j utilastan છે.
(A) $\frac{1}{3}x^{\frac{1}{3}} + 2x^{\frac{1}{2}} + c$
(B) $\frac{2}{3}x^{\frac{2}{3}} + \frac{1}{2}x^{2} + c$
(C) $\frac{2}{3}x^{\frac{3}{2}} + 2x^{\frac{1}{2}} + c$
(D) $\frac{3}{2}x^{\frac{3}{2}} + \frac{1}{2}x^{\frac{1}{2}} + c$

22. જો $\frac{d}{dx}f(x) = 4x^3 - \frac{3}{x^4}$ અને f(2) = 0 હોય, તો f(x) છે.

(A)
$$x^4 + \frac{1}{x^3} - \frac{129}{8}$$

(B) $x^3 + \frac{1}{x^4} + \frac{129}{8}$
(C) $x^4 + \frac{1}{x^3} + \frac{129}{8}$
(D) $x^3 + \frac{1}{x^4} - \frac{129}{8}$

7.3 સંકલન માટેની રીતો

આગળના પરિચ્છેદમાં આપણે જે વિધેયો કોઈ વિધેયના વિકલનથી મેળવી શકાય એવાં વિધેયોના સંકલનની ચર્ચા કરી. તે રીત નિરીક્ષણ પર આધારિત રીત હતી. તેમાં આપણે જેનું વિકલિત *f* થાય એવા વિધેય F ને શોધવાનો પ્રયત્ન કરતા હતા. આથી આપણને *f*નો સંકલિત પ્રાપ્ત થાય છે. ખરેખર આ પદ્ધતિ નિરીક્ષણ પર આધારિત હોવાથી તે મોટા ભાગનાં વિધેયોના સંકલિત મેળવવા ઉચિત નથી. તેથી, આપણે આપેલ સંકલિતોને પ્રમાણિત રૂપમાં રૂપાંતરિત કરી શકીએ તેવી નવી પદ્ધતિઓ કે રીતો વિકસાવવાની આવશ્યકતા ઊભી થઈ. આ પૈકીની મુખ્ય રીતો નીચેના પર આધારિત છે :

- (1) સંકલન માટે આદેશની રીત
- (2) આંશિક અપૂર્ણાંકની રીત
- (3) ખંડશઃ સંકલનની રીત

7.3.1 સંકલન માટે આદેશની રીત

આ પરિચ્છેદમાં આપણે આદેશની રીતે સંકલન કરવા પર વિચાર કરીશું.

સ્વતંત્ર ચલ x ને t માં પરિવર્તિત કરવા x = g(t) આદેશ લેતાં, આપણે ∫ f(x) dx નું અન્ય સ્વરૂપમાં રૂપાંતર કરી શકીએ છીએ.

 $I = \int f(x) \, dx \, \text{ પર વિચાર કરીએ } :$ હવે, આદેશ x = g(t) લેતાં, $\frac{dx}{dt} = g'(t)$ આને આપણે $dx = g'(t) \, dt$ લખી શકીએ. તેથી, $I = \int f(x) \, dx = \int f(g(t)) \cdot g'(t) \, dt$

248

આ ચલ પરિવર્તનની રીત એ એક અતિઉપયોગી રીત છે અને તે આદેશની રીત તરીકે પશ પ્રચલિત છે. આ રીતમાં ઉપયોગી આદેશ શું હશે તેનું અનુમાન કરવું ઘશું મહત્ત્વનું છે. સામાન્ય રીતે આપશે જેના વિકલિતનો સંકલ્યમાં સમાવેશ થતો હોય, એવા વિધેયને આદેશ તરીકે લઈશું. નીચેનાં ઉદાહરશો દ્વારા આ સ્પષ્ટ થાય છે :

<mark>ઉદાહરણ 5 :</mark> નીચે આપેલાં વિધેયોના x વિશે સંકલિતો મેળવો :

(i)
$$sin mx$$
 (ii) $2x sin (x^2 + 1)$

(iii)
$$\frac{\tan^4 \sqrt{x} \sec^2 \sqrt{x}}{\sqrt{x}}$$
 (iv)
$$\frac{\sin(\tan^{-1}x)}{1+x^2}$$

ઉકેલ : (i) આપશે જાશીએ છીએ કે *mx* નો વિકલિત *m* થાય. તેથી, આપણે આદેશ mx = t લઈશું. તેથી, m dx = dt. $\therefore \quad \int \sin mx \, dx = \frac{1}{m} \quad \int \sin t \, dt = -\frac{1}{m} \cos t + c = -\frac{1}{m} \cos mx + c$ (ii) $x^2 + 1$ n l as a = 2x b. define the set $x^2 + 1 = t$ define a = dt:. $\int 2x \sin(x^2 + 1) dx = \int \sin t dt = -\cos t + c = -\cos(x^2 + 1) + c$ (iii) \sqrt{x} - i) વિકલિત $\frac{1}{2} x^{-\frac{1}{2}} = \frac{1}{2\sqrt{x}}$ છે. તેથી, આપણે આદેશ $\sqrt{x} = t$ લઈશું. તેથી, $\frac{1}{2\sqrt{x}} dx = dt$. $\therefore dx = 2t dt$ $\operatorname{Surt}, \quad \int \frac{\tan^4 \sqrt{x} \sec^2 \sqrt{x}}{\sqrt{x}} \, dx = \int \frac{2t \tan^4 t \sec^2 t \, dt}{t} = 2 \int \tan^4 t \sec^2 t \, dt$ ફરી, આપણે આદેશ tan t = u લઈશું. તેથી $sec^2t dt = du$ $\therefore 2 \int tan^4 t \ sec^2 t \ dt = 2 \int u^4 du = 2 \cdot \frac{u^5}{5} + c$ $=\frac{2}{5}tan^{5}t + c$ (u = tan t) $=\frac{2}{5} tan^5 \sqrt{x} + c$ $(t = \sqrt{x})$ તેથી, $\int \frac{tan^4 \sqrt{x} \sec^2 \sqrt{x}}{\sqrt{x}} dx = \frac{2}{5} tan^5 \sqrt{x} + c$

બીજી રીત : આદેશ $tan\sqrt{x} = t$ પણ લઈ શકાય.

(iv)
$$tan^{-1}x$$
 + $\frac{1}{1+x^2}$ = $\frac{1}{1+x^$

Downloaded from https:// www.studiestoday.com

ગણિત

સંકલન

હવે આપશે ત્રિકોણમિતીય વિધેયોના કેટલાક મહત્ત્વના સંકલ્યનાં પ્રમાણિત સંકલિતો આદેશની રીતે મેળવીશું.

250

$$\therefore \int \sin^3 x \cdot \cos^2 x \, dx = -\int (1-t^2) t^2 \, dt$$

$$= -\int (t^2 - t^4) \, dt$$

$$= -\left(\frac{t^3}{3} - \frac{t^5}{5}\right) + c$$

$$= -\frac{1}{3} \cos^3 x + \frac{1}{5} \cos^5 x + c$$
(ii) $x + a = t$ élai, $dx = dt$ eue.

$$\therefore \int \frac{\sin x}{\sin (x + a)} \, dx = \int \frac{\sin (t - a)}{\sin t} \, dt$$

$$= \int \frac{\sin t \cos a - \cos t \sin a}{\sin t} \, dt$$

$$= \cos a \int dt - \sin a \int \cot t \, dt$$

$$= (\cos a) t - (\sin a) [\log |\sin t| + c_1]$$

$$= (x + a) \cos a - \sin a [\log |\sin (x + a)| + c_1]$$

$$= x \cos a - \sin a \log |\sin (x + a)| - c_1 \sin a + a \cos a$$
defined, $\int \frac{\sin x}{\sin (x + a)} \, dx = x \cos a - \sin a \log |\sin (x + a)| + c$
whi, $c = -c_1 \sin a + a \cos a$ use of the expression of the expressio

$$= \frac{x}{2} + \frac{c_1}{2} + \frac{1}{2} \int \frac{\cos x - \sin x}{\cos x + \sin x} dx \qquad ...(i)$$

Downloaded from https:// www.studiestoday.com

ગણિત

સંકલન

251

સ્વાધ્યાય 7.2

પ્રશ્નો 1થી 37 માં આપેલાં વિધેયોના સંકલિત મેળવો : (જ્યાં વ્યાખ્યાયિત હોય ત્યાં)

2. $\frac{(\log x)^2}{r}$ 1. $\frac{2x}{1+x^2}$ 3. $\frac{1}{x + x \log x}$ $4. \quad sin \ x \ sin \ (cos \ x)$ 5. sin (ax + b) cos (ax + b)8. $x\sqrt{1+2x^2}$ 7. $x\sqrt{x+2}$ 6. $\sqrt{ax+b}$ 9. $(4x+2)\sqrt{x^2+x+1}$ 10. $\frac{1}{x-\sqrt{x}}$ 11. $\frac{x}{\sqrt{x+4}}, x > -4$ 12. $(x^3-1)^{\frac{1}{3}} x^5$ 14. $\frac{1}{x(\log x)^m}, x > 0, m \neq 1$ 13. $\frac{x^2}{(2+3x^3)^3}$ **16.** e^{2x+3} 17. $\frac{x}{x^2}$ 15. $\frac{x}{9-4x^2}$ 20. $\frac{e^{2x} - e^{-2x}}{e^{2x} \pm e^{-2x}}$ **18.** $\frac{e^{tan^{-1}x}}{1+x^2}$ **19.** $\frac{e^{2x}-1}{e^{2x}+1}$ 23. $\frac{\sin^{-1}x}{\sqrt{1-x^2}}$ **21.** $tan^2(2x-3)$ **22.** $sec^2(7-4x)$ 24. $\frac{2\cos x - 3\sin x}{6\cos x + 4\sin x}$ 26. $\frac{\cos\sqrt{x}}{\sqrt{x}}$ 25. $\frac{1}{\cos^2 x (1 - \tan x)^2}$ 28. $\frac{\cos x}{\sqrt{1+\sin x}}$ $27. \quad \sqrt{\sin 2x} \cos 2x$ **29.** $cot x \log sin x$ 31. $\frac{\sin x}{(1 + \cos x)^2}$ **30.** $\frac{\sin x}{1 + \cos x}$ 32. $\frac{1}{1+\cot x}$ 34. $\frac{\sqrt{\tan x}}{\sin x \cos x}$ 35. $\frac{(1+\log x)^2}{x}$ **33.** $\frac{1}{1-\tan x}$ 36. $\frac{(x+1)(x+\log x)^2}{x}$ 37. $\frac{x^3 \sin(\tan^{-1}x^4)}{1+x^8}$

ગણિત

પ્રશ્નો 38 તથા 39 માં વિધાન સાચું બને તે રીતે આપેલ વિકલ્પોમાંથી યોગ્ય વિકલ્પ પસંદ કરો :

38.
$$\int \frac{(10x^9 + 10^x \log_e 10) dx}{x^{10} + 10^x} = \dots$$
(A) $10^x - x^{10} + c$
(B) $10^x + x^{10} + c$
(C) $(10^x - x^{10})^{-1} + c$
(D) $\log (10^x + x^{10}) + c$
39. $\int \frac{dx}{\sin^2 x \cos^2 x} = \dots$
(A) $\tan x + \cot x + c$
(B) $\tan x - \cot x + c$
(C) $\tan x \cot x + c$
(D) $\tan x - \cot 2x + c$

7.3.2 ત્રિકોણમિતીય નિત્યસમોનો ઉપયોગ કરીને સંકલન

જ્યારે સંકલ્ય કોઈ ત્રિકોણમિતીય વિધેય ધરાવતું હોય, ત્યારે આપણે જાણીતા નિત્યસમનો ઉપયોગ કરી સંકલન કરી શકીએ છીએ. નીચેનાં ઉદાહરણો દ્વારા આ સમજી શકાશે :

ઉદાહરણ 7 : (i)
$$\int \cos^2 x \, dx$$
 (ii) $\int \sin 2x \cos 3x \, dx$ (iii) $\int \sin^3 x \, dx$ મેળવો.
ઉકેલ : નિત્યસમ $\cos 2x = 2\cos^2 x - 1$ યાદ કરો. તે પરથી,

$$\cos^{2}x = \frac{1+\cos 2x}{2} + \operatorname{un}\hat{\mathfrak{n}}.$$

$$\therefore \int \cos^{2}x \, dx = \int \left(\frac{1+\cos 2x}{2}\right) \, dx$$
$$= \frac{1}{2} \int dx + \frac{1}{2} \int \cos 2x \, dx$$
$$= \frac{x}{2} + \frac{1}{4} \sin 2x + c$$

(ii) નિત્યસમ $sin \ x \cdot cos \ y = \frac{1}{2} [sin \ (x + y) + sin \ (x - y)]$ યાદ કરો. (કેમ?)

આથી, $\int \sin 2x \cos 3x \, dx = \frac{1}{2} \left[\int \sin 5x \, dx - \int \sin x \, dx \right]$

$$= \frac{1}{2} \left(-\frac{1}{5} \cos 5x + \cos x \right) + c$$
$$= -\frac{1}{10} \cos 5x + \frac{1}{2} \cos x + c$$

(iii) નિત્યસમ $sin \ 3x = 3sin \ x - 4sin^3x$ પરથી, આપણને $sin^3x = \frac{3sin \ x - sin \ 3x}{4}$ મળશે.

$$\therefore \quad \int \sin^3 x \, dx = \frac{3}{4} \, \int \sin x \, dx - \frac{1}{4} \, \int \sin 3x \, dx$$
$$= -\frac{3}{4} \, \cos x + \frac{1}{12} \, \cos 3x + c$$

સંકલન

6080 €Int :
$$\int \sin^{3}x \, dx = \int \sin^{2}x \sin x \, dx = \int (1 - \cos^{2}x) \sin x \, dx$$
e\u03e5, \u03c6 cos x = t \u03e5, \u03c6, \u03c5, x = t \u03c5, \u03c6, \u03c5, x = t \u03c5, \u03c6, \u03c5, x = t \u03c5, \u03c6, \u03c5, x = t \u03c6, \u03c6, \u03c6, x = t \u03c6, \u03c6, x = t \u03c6, \u03c6, x = \u03c6, x = t \u03c6, x = \u03

Downloaded from https:// www.studiestoday.com

(D) $cot (e^{x}) + c$

(C) $tan (e^{x}) + c$

253

254

ગણિત

7.4 કેટલાંક વિશિષ્ટ વિધેયોના સંકલિત

આ વિભાગમાં આપશે સંકલન કરવા માટે નીચે દર્શાવેલ મહત્ત્વપૂર્શ સૂત્રો તારવીશું અને તેના ઉપયોગથી સંબંધિત કેટલાંક પ્રમાશિત સંકલિતો મેળવીશું :

(1)
$$\int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \log \left| \frac{x - a}{x + a} \right| + c$$

(2)
$$\int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \log \left| \frac{a + x}{a - x} \right| + c$$

(3)
$$\int \frac{dx}{x^2 + a^2} = \frac{1}{a} \tan^{-1} \left(\frac{x}{a} \right) + c$$

(4)
$$\int \frac{dx}{\sqrt{x^2 - a^2}} = \log |x + \sqrt{x^2 - a^2}| + c$$

(5)
$$\int \frac{dx}{\sqrt{a^2 - x^2}} = \sin^{-1} \left(\frac{x}{a} \right) + c$$

(6)
$$\int \frac{dx}{\sqrt{x^2 + a^2}} = \log |x + \sqrt{x^2 + a^2}| + c$$

(6)
$$\int \frac{dx}{\sqrt{x^2 + a^2}} = \log |x + \sqrt{x^2 + a^2}| + c$$

(7) $\operatorname{sell}_{n} \frac{1}{x^2 - a^2} = \frac{1}{(x - a)(x + a)}$

$$= \frac{1}{2a} \left[\frac{(x + a) - (x - a)}{(x - a)(x + a)} \right]$$

$$= \frac{1}{2a} \left[\frac{1}{x - a} - \frac{1}{x + a} \right]$$

$$\therefore \int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \left[\int \frac{dx}{x - a} - \int \frac{dx}{x + a} \right]$$

$$= \frac{1}{2a} \log |x - a| - \log |x + a| + c$$

(2) Gue-n ulcan (1) ural anual angleb select select.

$$\frac{1}{a^2 - x^2} = \frac{1}{2a} \left[\frac{(a+x) + (a-x)}{(a+x)(a-x)} \right] = \frac{1}{2a} \left[\frac{1}{a-x} + \frac{1}{a+x} \right]$$

સંકલન

$$\therefore \int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \left[\int \frac{dx}{a - x} + \int \frac{dx}{a + x} \right]$$
$$= \frac{1}{2a} \left[-\log |a - x| + \log |a + x| \right] + c$$
$$= \frac{1}{2a} \log \left| \frac{a + x}{a - x} \right| + c$$

નોંધ : (1) માં ઉપયોગમાં લીધેલ રીતને પરિચ્છેદ 7.5 માં સમજીશું.

(3)
$$x = a \tan \theta$$
 exit, $dx = a \sec^2 \theta d\theta$

$$\therefore \int \frac{dx}{x^2 + a^2} = \int \frac{a \sec^2 \theta \, d\theta}{a^2 \tan^2 \theta + a^2}$$

= $\frac{1}{a} \int d\theta$
= $\frac{1}{a} \theta + c$
= $\frac{1}{a} \tan^{-1} \left(\frac{x}{a}\right) + c$
(4) $x = a \sec \theta$ easi, $dx = a \sec \theta \tan \theta \, d\theta$ (a > 0)

$$\therefore \int \frac{dx}{\sqrt{x^2 - a^2}} = \int \frac{a \sec \theta \tan \theta}{\sqrt{a^2 \sec^2 \theta - a^2}} d\theta$$

$$= \int \sec \theta d\theta$$

$$= \log |\sec \theta + \tan \theta| + c_1$$

$$= \log \left| \frac{x}{a} + \sqrt{\frac{x^2}{a^2} - 1} \right| + c_1$$

$$= \log \left| x + \sqrt{x^2 - a^2} \right| - \log a + c_1$$

$$= \log \left| x + \sqrt{x^2 - a^2} \right| + c, \ \text{set}, \ c = c_1 - \log a$$

(5) $x = a \sin \theta$ લેતાં, $dx = a \cos \theta d\theta$

$$\therefore \int \frac{dx}{\sqrt{a^2 - x^2}} = \int \frac{a \cos \theta \, d \, \theta}{\sqrt{a^2 - a^2 \sin^2 \theta}} \qquad (a > 0)$$
$$= \int d\theta = \theta + c = \sin^{-1} \left(\frac{x}{a}\right) + c$$

(6) $x = a \tan \theta$ eati, $dx = a \sec^2 \theta d\theta$

$$\therefore \int \frac{dx}{\sqrt{x^2 + a^2}} = \int \frac{a \sec^2 \theta \, d\, \theta}{\sqrt{a^2 \tan^2 \theta + a^2}} \qquad (a > 0)$$

$$= \int \sec \theta \, d\theta$$

$$= \log \left| \sec \theta + \tan \theta \right| + c_1$$

$$= \log \left| \frac{x}{a} + \sqrt{\frac{x^2}{a^2} + 1} \right| + c_1$$

Downloaded from https:// www.studiestoday.com

255

256

ગણિત

$$= \log \left| x + \sqrt{x^2 + a^2} \right| - \log a + c_1$$
$$= \log \left| x + \sqrt{x^2 + a^2} \right| + c, \text{ sui, } c = c_1 - \log a$$

આ પ્રમાશિત રૂપોનો ઉપયોગ કરી હવે આપશે જેનો ઉપયોગ બીજા સંકલિતો શોધવા કરી શકાય એવા બીજાં કેટલાંક રૂપો મેળવીશું.

(7)
$$\int \frac{dx}{ax^2 + bx + c} \quad \text{ystem eigendentified} \quad \hat{\texttt{horegan}} = a \left[\left(x + \frac{b}{2a} \right)^2 + \left(\frac{c}{a} - \frac{b^2}{4a^2} \right) \right]$$
$$e^2 + bx + c = a \left[x^2 + \frac{b}{a} x + \frac{c}{a} \right] = a \left[\left(x + \frac{b}{2a} \right)^2 + \left(\frac{c}{a} - \frac{b^2}{4a^2} \right) \right]$$
$$e^2 + bx + c = a \left[x^2 + \frac{b}{a} x + \frac{c}{a} \right] = a \left[\left(x + \frac{b}{2a} \right)^2 + \left(\frac{c}{a} - \frac{b^2}{4a^2} \right) \right]$$
$$e^2 + bx + c = a \left[x^2 + \frac{b}{a} x + \frac{c}{a} \right] = a \left[\left(x + \frac{b}{2a} \right)^2 + \left(\frac{c}{a} - \frac{b^2}{4a^2} \right) \right]$$
$$e^2 + bx + c = a \left[x^2 + \frac{b}{a} x + \frac{c}{a} \right] = a \left[\left(x + \frac{b}{2a} \right)^2 + \left(\frac{c}{a} - \frac{b^2}{4a^2} \right) \right]$$
$$e^2 + bx + c = a \left[x^2 + \frac{b}{a} x + \frac{c}{a} \right] = a \left[\left(x + \frac{b}{2a} \right)^2 + \left(\frac{c}{a} - \frac{b^2}{4a^2} \right) \right]$$
$$e^2 + bx + c = a \left[x^2 + \frac{b}{a} x + \frac{c}{a} \right] = a \left[\left(x + \frac{b}{2a} \right)^2 + \left(\frac{c}{a} - \frac{b^2}{4a^2} \right) \right]$$
$$e^2 + bx + c = a \left[x^2 + \frac{b}{a} x + \frac{c}{a} \right] = a \left[\left(x + \frac{b}{2a} \right)^2 + \left(\frac{c}{a} - \frac{b^2}{4a^2} \right) \right]$$
$$e^2 + bx + c = a \left[x^2 + \frac{b}{a} x + \frac{c}{a} \right] = a \left[\left(x + \frac{b}{2a} \right)^2 + \left(\frac{c}{a} - \frac{b^2}{4a^2} \right) \right]$$
$$e^2 + bx + c = a \left[x^2 + \frac{b}{a} x + \frac{c}{a} \right] = a \left[\left(x + \frac{b}{2a} \right)^2 + \left(\frac{c}{a} - \frac{b^2}{4a^2} \right) \right]$$
$$e^2 + bx + c = a \left[x^2 + \frac{b}{a} x + \frac{c}{a} \right] = a \left[\left(x + \frac{b}{2a} \right)^2 + \left(\frac{c}{a} - \frac{b^2}{4a^2} \right) \right]$$
$$e^2 + bx + c = a \left[x^2 + \frac{b}{a} x + \frac{c}{a} \right] = a \left[\left(x + \frac{b}{2a} \right)^2 + \left(\frac{c}{a} - \frac{b^2}{4a^2} \right) \right]$$
$$e^2 + bx + c = a \left[x^2 + \frac{b}{a} x + \frac{c}{a} \right] = a \left[\left(x + \frac{b}{2a} \right)^2 + \left(\frac{c}{a} - \frac{b^2}{4a^2} \right) \right]$$
$$e^2 + bx + c = a \left[x^2 + \frac{b}{a} x + \frac{c}{a} \right] = a \left[x + \frac{b}{2a} \right]$$
$$e^2 + bx + c = a \left[x^2 + \frac{b}{a} x + \frac{c}{a} \right] = a \left[x + \frac{b}{2a} \right]$$
$$e^2 + bx + c = a \left[x^2 + \frac{b}{a} x + \frac{b}{a} \right]$$
$$e^2 + bx + c = a \left[x^2 + \frac{b}{a} x + \frac{b}{a} x + \frac{c}{a} \right]$$
$$e^2 + bx + c = a \left[x^2 + \frac{b}{a} x + \frac{b}{a} \right]$$
$$e^2 + bx + c = a \left[x^2 + \frac{b}{a} x + \frac{b}{a} x + \frac{b}{a} \right]$$
$$e^2 + bx + c = a \left[x^2 + \frac{b}{a} x + \frac{b}{a} x + \frac{b}{a} \right]$$
$$e^2 + bx + c = a \left[x^2 + \frac{b}{a} x + \frac{$$

(8)
$$\int \frac{dx}{\sqrt{ax^2 + bx + c}}$$
 સ્વરૂપનું સંકલિત મેળવવા આપણે આગળ આપેલ (7) પ્રમાણે આગળ વધીશું અને

પ્રમાશિત સ્વરૂપનો ઉપયોગ કરી સંકલિત મેળવીશું.

- (9) ∫ px + q/(ax² + bx + c) dx, (જ્યાં, p, q, a, b, c અચળો છે.) આ સ્વરૂપના સંકલિતો મેળવવા સૌપ્રથમ આપણે એવા બે અચળ A અને B શોધીશું કે જેથી, px + q = A d/dx (ax² + bx + c) + B = A (2ax + b) + B A અને B મેળવવા આપણે બંને બાજુએ x ના સહગુણકો અને અચળ પદ સરખાવીશું. A અને B મેળવ્યા બાદ સંકલિત જાણીતા પ્રમાણિત સ્વરૂપનો ઉપયોગ કરી મેળવી શકાય.
- (10) $\int \frac{(px+q)}{\sqrt{ax^2+bx+c}} dx$, પ્રકારનાં સંકલિતો મેળવવા આપશે (9)માં દર્શાવેલ રીતે આગળ વધીશું

અને સંકલિતને જાણીતા પ્રમાણિત સ્વરૂપમાં ફેરવીશું.

હવે, આપશે ઉદાહરશોથી ઉપરની સંકલ્પનાઓ સ્પષ્ટ કરીશું. <mark>ઉદાહરણ 8 :</mark> નીચેના સંકલિતો મેળવો :

(i)
$$\int \frac{dx}{x^2 - 16}$$
 (ii) $\int \frac{dx}{\sqrt{2x - x^2}}$
(ii) $\int \frac{dx}{x^2 - 16} = \int \frac{dx}{x^2 - 4^2} = \frac{1}{8} \log \left| \frac{x - 4}{x + 4} \right| + c$ (7.4(1) unit)

સંકલન

(ii) $\int \frac{dx}{\sqrt{2x - x^2}} = \int \frac{dx}{\sqrt{1 - (x - 1)^2}}$ x - 1 = t end, dx = dt $\therefore \int \frac{dx}{\sqrt{2x - x^2}} = \int \frac{dt}{\sqrt{1 - t^2}} = \sin^{-1}(t) + c$ (7.4(5) unue) $= \sin^{-1}(x - 1) + c$

ઉદાહરણ 9 : નીચેના સંકલિતો મેળવો :

(i)
$$\int \frac{dx}{x^2 - 6x + 13}$$
 (ii) $\int \frac{dx}{3x^2 + 13x - 10}$ (iii) $\int \frac{dx}{\sqrt{5x^2 - 2x}}$
(i) and in $x^2 - 6x + 13 = x^2 - 6x + 3^2 - 3^2 + 13 = (x - 3)^2 + 4$
And in $\int \frac{dx}{x^2 - 6x + 13} = \int \frac{1}{(x - 3)^2 + 2^2} dx$
(x - 3) = t And i, $dx = dt$
 $\therefore \int \frac{dx}{x^2 - 6x + 13} = \int \frac{dt}{t^2 + 2^2}$
 $= \frac{1}{2} tan^{-1} \left(\frac{t}{2}\right) + c$ (7.4(3) unled)
 $= \frac{1}{2} tan^{-1} \left(\frac{x - 3}{2}\right) + c$

(ii) આપેલ સંકલિત 7.4(7) પ્રકારનું છે. આપણે આપેલ સંકલ્યના છેદનો વિચાર કરીએ.

$$3x^{2} + 13x - 10 = 3\left(x^{2} + \frac{13}{3}x - \frac{10}{3}\right)$$

$$= 3\left[\left(x + \frac{13}{6}\right)^{2} - \left(\frac{17}{6}\right)^{2}\right] \qquad (\text{ugiasi sedi})$$

$$defined, \quad \int \frac{dx}{3x^{2} + 13x - 10} = \frac{1}{3}\int \frac{dx}{\left(x + \frac{13}{6}\right)^{2} - \left(\frac{17}{6}\right)^{2}}$$

$$x + \frac{13}{6} = t \quad \text{dedi}, \quad dx = dt$$

$$\therefore \quad \int \frac{dx}{3x^{2} + 13x - 10} = \frac{1}{3}\int \frac{dt}{t^{2} - \left(\frac{17}{6}\right)^{2}}$$

$$= \frac{1}{3 \times 2 \times \frac{17}{6}} \log \left| \frac{t - \frac{17}{6}}{t + \frac{17}{6}} \right| + c_{1}$$

$$= \frac{1}{17} \log \left| \frac{x + \frac{13}{6} - \frac{17}{6}}{x + \frac{13}{6} + \frac{17}{6}} \right| + c_{1}$$

Downloaded from https:// www.studiestoday.com

257

258

ગણિત

$$\begin{aligned} &= \frac{1}{17} \log \left| \frac{6x-4}{6x+30} \right| + c_1 \\ &= \frac{1}{17} \log \left| \frac{3x-2}{x+5} \right| + c_1 + \frac{1}{17} \log \frac{1}{3} \\ &= \frac{1}{17} \log \left| \frac{3x-2}{x+5} \right| + c, \text{ wit } c = c_1 + \frac{1}{17} \log \frac{1}{3} \end{aligned}$$
(iii) $\operatorname{evel}, \quad \int \frac{dx}{\sqrt{5x^2 - 2x}} = \int \frac{dx}{\sqrt{5\left(x^2 - \frac{2x}{5}\right)^2}} \\ &= \frac{1}{\sqrt{5}} \int \frac{dx}{\sqrt{\left(x - \frac{1}{5}\right)^2 - \left(\frac{1}{5}\right)^2}} \qquad (\operatorname{uglas} \ \text{seni}) \end{aligned}$

$$x - \frac{1}{5} = t \quad \text{(adi)}, \quad dx = dt$$

$$\therefore \quad \int \frac{dx}{\sqrt{5x^2 - 2x}} = \frac{1}{\sqrt{5}} \int \frac{dt}{\sqrt{t^2 - \left(\frac{1}{5}\right)^2}}$$

$$= \frac{1}{\sqrt{5}} \log \left| t + \sqrt{t^2 - \left(\frac{1}{5}\right)^2} \right| + c \quad (7.4(4) \text{ yms})$$

$$= \frac{1}{\sqrt{5}} \log \left| x - \frac{1}{5} + \sqrt{x^2 - \frac{2x}{5}} \right| + c$$

ઉદાહરણ 10 : નીચેના સંકલિતો મેળવો :

(i)
$$\int \frac{(x+2)dx}{2x^2+6x+5}$$
 (ii)
$$\int \frac{(x+3)dx}{\sqrt{5-4x-x^2}}$$

(iii)
$$\int \frac{(x+3)dx}{\sqrt{5-4x-6}}$$

(iii)

259

સંકલન

$$\begin{aligned} & \exists \mathbf{h} \ \mathbf{I}_{2} = \int \frac{dx}{2x^{2} + 6x + 5} = \frac{1}{2} \int \frac{dx}{x^{2} + 3x + \frac{5}{2}} \\ &= \frac{1}{2} \int \frac{dx}{\left(x + \frac{3}{2}\right)^{2} + \left(\frac{1}{2}\right)^{2}} \\ & x + \frac{3}{2} = t \ \hat{\mathbf{e}}(\mathbf{i}, \ dx = dt \\ \therefore \ \mathbf{I}_{2} = \frac{1}{2} \int \frac{dt}{t^{2} + \left(\frac{1}{2}\right)^{2}} = \frac{1}{2 \times \frac{1}{2}} \ tan^{1} (2t) + c_{2} \\ &= tan^{1} \ 2\left(x + \frac{3}{2}\right) + c_{2} \\ &= tan^{-1} \ (2x + 3) + c_{2} \\ &= tan^{-1} \ (2x + 3) + c_{2} \\ \end{aligned}$$
(3) $\cdot \mathbf{h} \ \hat{\mathbf{e}}(\mathbf{u}) \mathbf{u} \ \mathbf{u} \$

260

 \therefore I₂

$$I_{2} = \int \frac{dt}{\sqrt{3^{2} - t^{2}}} = \sin^{-1}\left(\frac{t}{3}\right) + c_{2}$$
(7.4(5) પ્રમાણે)
$$= \sin^{-1}\left(\frac{x + 2}{3}\right) + c_{2}$$
...(3)
(2) અને (3) નો ઉપયોગ (1)માં કરતાં,
$$\int \frac{x + 3}{\sqrt{5 - 4x - x^{2}}} dx = -\int \sqrt{5 - 4x - x^{2}} + \sin^{-1}\left(\frac{x + 2}{3}\right) + c$$
જ્યાં $c = c_{2} - \frac{c_{1}}{2}$
સ્વાધ્યાય 7.4

પ્રશ્નો 1થી 23 માં આપેલાં વિધેયોના સંકલિત મેળવો :

1. $\frac{3x^2}{x^6 + 1}$ 2. $\frac{1}{\sqrt{1+4x^2}}$ 3. $\frac{1}{\sqrt{(2-x)^2+1}}$ 6. $\frac{x^2}{1-x^6}$ 5. $\frac{3x}{1+2x^4}$ 4. $\frac{1}{\sqrt{9-25x^2}}$ 9. $\frac{\sec^2 x}{\sqrt{\tan^2 x + 4}}$ 8. $\frac{x^2}{\sqrt{x^6 + a^6}}$ 7. $\frac{x-1}{\sqrt{x^2-1}}$ 11. $\frac{1}{9x^2 + 6x + 5}$ **10.** $\frac{1}{\sqrt{x^2 + 2x + 2}}$ 12. $\frac{1}{\sqrt{7-6x-x^2}}$ **13.** $\frac{1}{\sqrt{(x-1)(x-2)}}$ **14.** $\frac{1}{\sqrt{8+3x-x^2}}$ **15.** $\frac{1}{\sqrt{(x-a)(x-b)}}$ 16. $\frac{4x+1}{\sqrt{2x^2+x-3}}$ 18. $\frac{5x-2}{1+2x+3x^2}$ 17. $\frac{x+2}{\sqrt{x^2-1}}$ **19.** $\frac{6x+7}{\sqrt{(x-5)(x-4)}}$ **20.** $\frac{x+2}{\sqrt{4x-x^2}}$ 21. $\frac{x+2}{\sqrt{x^2+2x+3}}$ 23. $\frac{5x+3}{\sqrt{x^2+4x+10}}$ 22. $\frac{x+3}{x^2-2x-5}$

પ્રશ્નો 24 તથા 25 માં વિધાન સાચું બને તે રીતે આપેલ વિકલ્પોમાંથી યોગ્ય વિકલ્પ પસંદ કરો :

24.
$$\int \frac{dx}{x^2 + 2x + 2} = \dots$$

(A) $x \tan^{-1} (x + 1) + c$
(B) $\tan^{-1} (x + 1) + c$
(C) $(x + 1) \tan^{-1}x + c$
(D) $\tan^{-1}x + c$

Downloaded from https:// www.studiestoday.com

ગણિત

સંકલન

25.
$$\int \frac{dx}{\sqrt{9x - 4x^2}} = \dots$$
(A) $\frac{1}{9} \sin^{-1} \left(\frac{9x - 8}{8} \right) + c$
(B) $\frac{1}{2} \sin^{-1} \left(\frac{8x - 9}{9} \right) + c$
(C) $\frac{1}{3} \sin^{-1} \left(\frac{9x - 8}{8} \right) + c$
(D) $\frac{1}{2} \sin^{-1} \left(\frac{9x - 8}{9} \right) + c$

7.5 આંશિક અપૂર્ણાંકની રીત

આપશે યાદ કરીએ કે, આપશે P(x) અને Q(x) એ ચલ x ની બહુપદીઓ હોય અને $Q(x) \neq 0$ હોય તેવી બે બહુપદીઓના ભાગાકાર $\frac{P(x)}{Q(x)}$ તરીકે *સંમેય વિધેય* વ્યાખ્યાયિત કર્યું હતું. હવે જો P(x) ની ઘાત એ Q(x) ની ઘાત કરતાં ઓછી હોય, તો સંમેય વિધેયને **ઉચિત સંમેય** વિધેય અને આમ ન બને તો તેને *અનુચિત સંમેય વિધેય* કહીશું. અનુચિત સંમેય વિધેયને **ભાગાકાર**ની રીતનો ઉપયોગ કરી *ઉચિત સંમેય વિધેય અને બહુપદીના સરવાળા* તરીકે પરિવર્તિત કરી શકાય. તેથી જો $\frac{P(x)}{Q(x)}$ એ અનુચિત સંમેય વિધેય હોય, તો $\frac{P(x)}{Q(x)} = T(x) + \frac{P_1(x)}{Q_1(x)}$ લખી શકાય. અહીં T(x) એ x માં વાસ્તવિક બહુપદી છે અને $\frac{P_1(x)}{Q_1(x)}$ એ ઉચિત સંમેય વિધેય છે. હવે, આપશે બહુપદીનું સંકલન કેવી રીતે કરવું તે જાશીએ છીએ તથા આપેલ કોઈ પણ સંમેય વિધેયનું સંકલિત ઉચિત સંમેય વિધેય છે. હવે, આપશે બહુપદીનું સંકલન કેવી રીતે કરવું તે જાશીએ છીએ તથા આપેલ કોઈ પણ સંમેય વિધેયનું સંકલિત ઉચિત સંમેય વિધેયના સંકલિતમાં પરિવર્તિત કરી શકાય. અહીં આપશે જે ઉચિત સંમેય વિધેયના સંકલનની ચર્ચા કરવાના છીએ તેના છેદની બહુપદીના અવયવો સુરેખ કે દિઘાત અવયવો હોય તેવો વિકલ્પ લઈશું. જો આપશે $\int \frac{P(x)}{Q(x)} dx$ મેળવવા માંગતા હોઈએ, તો $\frac{P(x)}{Q(x)}$ એ ઉચિત સંમેય વિધેય છે. એક સંમેય વિધેયને બે કે તેથી વધુ યોગ્ય પ્રકારનાં સંમેય વિધેયના સરવાળાના સ્વરૂપમાં આંશિક અપૂર્ણાંકની રીતે હંમેશાં મૂકી શકાય છે. ત્યાર બાદ સરળતાથી કોઈ જાણીતા પ્રમાણિત રૂપના ઉપયોગથી સંકલન કરી શકીએ. નીચે દર્શાવેલ કોપ્ટક 7.2 આપણને કેટલાક આપેલ ભિન્ન સંમેય વિધેય સાથે સંકળાયેલ આંશિક અપૂર્ણાંકી દર્શાવે છે.

કોષ્ટક 7.2

અનુ.નં.	સંમેય વિધેયનું સ્વરૂપ	આંશિક અપૂર્ણાંકનું સ્વરૂપ
(1)	$\frac{px+q}{(x-a)(x-b)}, \ a \neq b$	$\frac{A}{x-a} + \frac{B}{x-b}$
(2)	$\frac{px+q}{\left(x-a\right)^2}$	$\frac{A}{x-a} + \frac{B}{(x-a)^2}$
(3)	$\frac{px^2 + qx + r}{(x-a)(x-b)(x-c)}, \ a, b, c \ () + +$	$\frac{A}{x-a} + \frac{B}{x-b} + \frac{C}{x-c}$
(4)	$\frac{px^2 + qx + r}{(x-a)^2(x-b)}, \ a \neq b$	$\frac{A}{x-a} + \frac{B}{(x-a)^2} + \frac{C}{x-b}$
(5)	$\frac{px^2 + qx + r}{(x-a)(x^2 + bx + c)}$	$\frac{A}{x-a} + \frac{Bx+C}{x^2+bx+c}$
		જ્યાં x^2 + bx + c નું સુરેખ અવયવોમાં અવયવીકરણ શક્ય નથી.

Downloaded from https:// www.studiestoday.com

261

262

ગણિત

ઉપર દર્શાવેલ કોષ્ટકમાં A, B, C વાસ્તવિક સંખ્યાઓ છે. તેમનાં અનન્ય મૂલ્ય નક્કી કરી શકાય.

ઉદાહરણ 11 :
$$\int \frac{dx}{(x+1)(x+2)}$$
 મેળવો.

ઉકેલ : અહીં, આપેલ સંકલ્ય ઉચિત સંમેય વિધેય છે. તેથી, આંશિક અપૂર્ણાંકની રીતે (કોષ્ટક 7.2(i)) પ્રમાશે આપશે તેને નીચે પ્રમાશે દર્શાવી શકીએ :

$$\frac{1}{(x+1)(x+2)} = \frac{A}{x+1} + \frac{B}{x+2} \qquad \dots (1)$$

A અને B વાસ્તવિક સંખ્યાઓ છે. તે આપણે અનન્ય રીતે નક્કી કરી શકીએ છીએ.

આ પરથી 1 = A(x + 2) + B(x + 1)

હવે, બંને બાજુ x ના સહગુણક અને અચળ પદ સરખાવતાં,

A + B = 0 અને 2A + B = 1

આ સમીકરણો ઉકેલતાં A = 1 અને B = –1 મળશે.

આમ, આપેલ સંકલ્ય નીચેના સ્વરૂપમાં પ્રાપ્ત થશે :

$$\frac{1}{(x+1)(x+2)} = \frac{1}{x+1} + \frac{-1}{x+2}$$

$$\therefore \quad \int \frac{dx}{(x+1)(x+2)} = \int \frac{dx}{x+1} - \int \frac{dx}{x+2}$$

$$= \log|x+1| - \log|x+2| + c$$

$$= \log\left|\frac{x+1}{x+2}\right| + c$$

નોંધ : ઉપર્યુક્ત સમીકરશ (1) એ નિત્યસમ છે એટલે કે તે ગમે તે સંજોગોમાં (*x* ની બધી શક્ય કિંમતો માટે) સત્ય છે. કેટલાક લેખકો આ હકીકત દર્શાવવા માટે '≡' સંકેત વાપરે છે. આ દર્શાવે છે કે આપેલ વિધાન નિત્યસમ છે અને તેઓ '=' વાપરીને દર્શાવે છે કે આપેલ વિધાન સમીકરશ છે એટલે કે *x* ની માત્ર કેટલીક ચોક્કસ કિંમતો માટે તે સત્ય વિધાન છે.

ઉદાહરણ 12 :
$$\int \frac{(x^2+1)dx}{x^2-5x+6}$$
 મેળવો.

ઉકેલ : અહીં, સંકલ્ય $\frac{(x^2+1)}{x^2-5x+6}$ ઉચિત સંમેય વિધેય નથી. તેથી આપણે (x^2+1) ને x^2-5x+6 વડે

ભાગીશું.

તેથી,
$$\frac{x^2+1}{x^2-5x+6} = 1 + \frac{5x-5}{x^2-5x+6} = 1 + \frac{5x-5}{(x-2)(x-3)}$$
 થશે.
ધારો કે, $\frac{5x-5}{(x-2)(x-3)} = \frac{A}{x-2} + \frac{B}{x-3}$
તેથી, $5x-5 = A(x-3) + B(x-2)$.

સંકલન

બંને બાજુએ x ના સહગુણક અને અચળ પદ સરખાવતાં, A + B = 5 અને 3A + 2B = 5 મળશે. આ સમીકરણો ઉકેલતાં, A = -5 અને B = 10 મળશે. તેથી, $\frac{x^2 + 1}{x^2 - 5x + 6} = 1 - \frac{5}{x - 2} + \frac{10}{x - 3}$ $\therefore \int \frac{x^2 + 1}{x^2 - 5x + 6} dx = \int dx - 5 \int \frac{1}{x - 2} dx + 10 \int \frac{1}{x - 3} dx$ $= x - 5 \log |x - 2| + 10 \log |x - 3| + c$ ઉદાહરણ 13 : $\int \frac{(3x - 2)dx}{(x + 1)^2(x + 3)}$ મેળવો. ઉકેલ : અહીં, આપેલ સંકલ્ય કોષ્ટક 7.2(4) માં આપેલ પ્રકારનું સંકલ્ય છે. તેથી, આપશે

 $\frac{3x-2}{(x+1)^2(x+3)} = \frac{A}{x+1} + \frac{B}{(x+1)^2} + \frac{C}{x+3}$ લખીશું. તેથી, $3x - 2 = A(x+1)(x+3) + B(x+3) + C(x+1)^2$ $= A(x^2 + 4x + 3) + B(x+3) + C(x^2 + 2x + 1)$ હવે, બંને બાજુએ x^2 તથા *x* ના સહગુણકો અને અચળ પદ સરખાવતાં, A + C = 0, 4A + B + 2C = 3 અને 3A + 3B + C = -2. આ સમીકરણો ઉકેલતાં, $A = \frac{11}{4}, B = \frac{-5}{2}$ અને $C = \frac{-11}{4}$.

આમ, આપેલ સંકલ્ય નીચેના સ્વરૂપમાં પ્રાપ્ત થશે :

$$\frac{3x-2}{(x+1)^2(x+3)} = \frac{11}{4(x+1)} - \frac{5}{2(x+1)^2} - \frac{11}{4(x+3)}$$

$$\therefore \quad \int \frac{3x-2}{(x+1)^2(x+3)} dx = \frac{11}{4} \int \frac{dx}{x+1} - \frac{5}{2} \int \frac{dx}{(x+1)^2} dx - \frac{11}{4} \int \frac{dx}{x+3}$$
$$= \frac{11}{4} \log|x+1| + \frac{5}{2(x+1)} - \frac{11}{4} \log|x+3| + c$$
$$= \frac{11}{4} \left| \frac{x+1}{x+3} \right| + \frac{5}{2(x+1)} + c$$

ઉદાહરણ 14 : $\int \frac{x^2}{(x^2+1)(x^2+4)} dx$ મેળવો.

ઉકેલ :
$$\frac{x^2}{(x^2+1)(x^2+4)}$$
 માં $x^2 = y$ લઈએ.

264

ગણિત

તેથી
$$\frac{x^2}{(x^2+1)(x^2+4)} = \frac{y}{(y+1)(y+4)}$$

હવે, ધારો કે $\frac{y}{(y+1)(y+4)} = \frac{A}{y+1} + \frac{B}{y+4}$
 $\therefore y = A(y+4) + B(y+1)$

હવે, બંને બાજુએ y ના સહગુણક અને અચળ પદ સરખાવતાં, A + B = 1 અને 4A + B = 0 મળશે. તેમને ઉકેલતાં,

$$A = \frac{-1}{3} \quad \exists \mathbf{h} \cdot \mathbf{h} \quad \mathbf{B} = \frac{4}{3}$$

$$\widehat{d} \cdot \mathbf{a}, \quad \frac{x^2}{(x^2 + 1)(x^2 + 4)} = \frac{-1}{3(x^2 + 1)} + \frac{4}{3(x^2 + 4)}$$

$$\int \frac{x^2 \, dx}{(x^2 + 1)(x^2 + 4)} = \frac{-1}{3} \int \frac{dx}{x^2 + 1} + \frac{4}{3} \int \frac{dx}{x^2 + 4}$$

$$= \frac{-1}{3} \tan^{-1}x + \frac{4}{3} \times \frac{1}{2} \tan^{-1}\left(\frac{x}{2}\right) + c$$

$$= \frac{-1}{3} \tan^{-1}x + \frac{2}{3} \tan^{-1}\frac{x}{2} + c$$

ઉપર્યુક્ત ઉદાહરણમાં આદેશ ફ્રક્ત આંશિક અપૂર્ણાંકના ભાગ પૂરતો જ હતો. તે સંકલન માટેનો આદેશ નહોતો. હવે આપણે એક એવા ઉદાહરણની ચર્ચા કરીએ કે, જેમાં સંકલનમાં આદેશ અને આંશિક અપૂર્ણાંક બંને રીતનો સંયુક્ત રીતે ઉપયોગ થતો હોય.

ઉદાહરણ 15 :
$$\int \frac{(3sin\phi - 2)\cos\phi}{5 - \cos^2\phi - 4\sin\phi} d\phi$$
 મેળવો.
ઉદેલ : $y = sin\phi$ લેતાં, $dy = \cos\phi d\phi$

$$\therefore \int \frac{(3sin\phi - 2)\cos\phi}{5 - \cos^2\phi - 4\sin\phi} d\phi = \int \frac{(3y - 2)dy}{5 - (1 - y^2) - 4y}$$

$$= \int \frac{(3y - 2)dy}{y^2 - 4y + 4}$$

$$= \int \frac{(3y - 2)dy}{(y - 2)^2} = I (4u2i)$$
હવે, આપશે $\frac{(3y - 2)}{(y - 2)^2} = \frac{A}{y - 2} + \frac{B}{(y - 2)^2}$ લખીશું. (કોપ્ટક 7.2(2) પરથી)
 $3y - 2 = A(y - 2) + B$
હવે, બંને બાજુએ y ના સહગુશક અને અથળ પદ સરખાવતાં,

સંકલન

$$A = 3$$
 અને $B - 2A = -2$ મળશે. તેથી $A = 3$ અને $B = 4$ મળશે.

આમ, માંગેલ સંકલિત નીચેના સ્વરૂપમાં પ્રાપ્ત થશે :

$$I = \iint \left(\frac{3}{y-2} + \frac{4}{(y-2)^2} \right) dy = 3 \iint \frac{dy}{y-2} + 4 \iint \frac{dy}{(y-2)^2}$$

= $3 \log |y-2| + 4 \left(\frac{-1}{y-2} \right) + c$
= $3 \log |y-2| + \frac{4}{2-y} + c$
= $3 \log |\sin \phi - 2| + \frac{4}{2-\sin \phi} + c$
= $3 \log (2 - \sin \phi) + \frac{4}{2-\sin \phi} + c$ ($2 - \sin \phi$ sitent ter \mathfrak{D} .)

ઉદાહરણ 16 : $\int \frac{(x^2 + x + 1) dx}{(x+2)(x^2+1)}$ મેળવો.

ઉકેલ : અહીં, આપેલ સંકલ્ય ઉચિત સંમેય વિધેય છે. તેથી તેને આંશિક અપૂર્ણાંકની રીતે (કોષ્ટક 7.2(5) પ્રમાણે),

$$\frac{x^2 + x + 1}{(x+2)(x^2+1)} = \frac{A}{x+2} + \frac{Bx+C}{x^2+1} \quad \text{ewlig.}$$

$$\therefore \quad x^2 + x + 1 = A(x^2+1) + (Bx+C)(x+2)$$

હવે, બંને બાજુએ x^2 તથા xના સહગુણકો અને અચળ પદ સરખાવતાં, A + B = 1, 2B + C = 1 અને A + 2C = 1 મળે. આ સમીકરણો ઉકેલતાં, A = $\frac{3}{5}$, B = $\frac{2}{5}$ અને C = $\frac{1}{5}$ મળશે. તેથી, આપેલ સંકલ્ય,

$$\frac{x^2 + x + 1}{(x+2)(x^2+1)} = \frac{3}{5(x+2)} + \frac{\frac{2}{5}x + \frac{1}{5}}{x^2+1} = \frac{3}{5(x+2)} + \frac{(2x+1)}{5(x^2+1)}$$

$$\therefore \quad \int \frac{x^2 + x + 1}{(x+2)(x^2+1)} \, dx = \frac{3}{5} \int \frac{dx}{x+2} + \frac{2}{5} \int \frac{x \, dx}{x^2+1} + \frac{1}{5} \int \frac{dx}{x^2+1^2}$$
$$= \frac{3}{5} \log|x+2| + \frac{1}{5} \log(x^2+1) + \frac{1}{5} \tan^{-1}x + c$$

Reliver 7.5

પ્રશ્નો 1થી 21 માં આપેલાં વિધેયોના સંકલિત મેળવો :

1. $\frac{x}{(x+1)(x+2)}$ 2. $\frac{1}{x^2-9}$ 3. $\frac{3x-1}{(x-1)(x-2)(x-3)}$ 4. $\frac{x}{(x-1)(x-2)(x-3)}$ 5. $\frac{2x}{x^2+3x+2}$ 6. $\frac{1-x^2}{x(1-2x)}$

266

ગણિત

$$7. \quad \frac{x}{(x^2+1)(x-1)} \qquad 8. \quad \frac{x}{(x-1)^2(x+2)} \qquad 9. \quad \frac{3x+5}{x^3-x^2-x+1} \\ 10. \quad \frac{2x-3}{(x^2-1)(2x+3)} \qquad 11. \quad \frac{5x}{(x+1)(x^2-4)} \qquad 12. \quad \frac{x^3+x+1}{x^2-1} \\ 13. \quad \frac{2}{(1-x)(1+x^2)} \qquad 14. \quad \frac{3x-1}{(x+2)^2} \qquad 15. \quad \frac{1}{x^4-1} \\ 13. \quad \frac{2}{(1-x)(1+x^2)} \qquad 14. \quad \frac{3x-1}{(x+2)^2} \qquad 15. \quad \frac{1}{x^4-1} \\ 16. \quad \frac{1}{x(x^n+1)} \qquad (42n+1: \text{ with white bisch } x^{n-1} \text{ eds symbols white } x^n = t \text{ edd.}) \\ 17. \quad \frac{\cos x}{(1-\sin x)(2-\sin x)} \qquad (42n+1: \sin x = t \text{ edd.}) \\ 18. \quad \frac{(x^2+1)(x^2+2)}{(x^2+3)(x^2+4)} \qquad 19. \quad \frac{2x}{(x^2+1)(x^2+3)} \qquad 20. \quad \frac{1}{x(x^4-1)} \\ 21. \quad \frac{1}{(e^x-1)} \qquad (42n+1: e^x = t \text{ edd.}) \\ 18. \quad 22 \text{ rel } 23 \text{ rel feature aregines in the lease the lease$$

23.
$$\int \frac{dx}{x(x^2+1)} = \dots$$
(A) $\log |x| - \frac{1}{2} \log (x^2+1) + c$
(B) $\log |x| + \frac{1}{2} \log (x^2+1) + c$
(C) $-\log |x| + \frac{1}{2} \log (x^2+1) + c$
(D) $\frac{1}{2} \log |x| + \log (x^2+1) + c$

7.6 ખંડશઃ સંકલનની રીત

આ વિભાગમાં આપશે સંકલન માટેની એક વધુ રીતની ચર્ચા કરીશું. તે બે વિધેયના ગુણાકારના સંકલન માટેની ખૂબ જ ઉપયોગી રીત છે.

જો u અને v એ x નાં વિકલનીય વિધેયો હોય, તો વિકલનના ગુણાકારના નિયમ પ્રમાણે,

$$\frac{d}{dx}(uv) = u\frac{dv}{dx} + v\frac{du}{dx}$$

બંને બાજુ સંકલન કરતાં,

સંકલન

$$uv = \int u \frac{dv}{dx} dx + \int v \frac{du}{dx} dx$$

અથવા $\int u \frac{dv}{dx} dx = uv - \int v \frac{du}{dx} dx$...(1)
ધારો કે $u = f(x)$ અને $\frac{dv}{dx} = g(x)$.
 $\therefore \frac{du}{dx} = f'(x)$ અને $v = \int g(x) dx$
તો, સમીકરણ (1) ને નીચે પ્રમાણે લખી શકાશે :
 $\int f(x) g(x) dx = f(x) \int g(x) dx - \int [\int g(x) dx \cdot f'(x)] dx$
અથવા $\int f(x) g(x) dx = f(x) \int g(x) dx - \int [f'(x) \int g(x) dx] dx$
và આપણે f પ્રથમ વિધેય અને g ને બીજે વિધેય માની લઈએ તો આ સભને નીએ પ્રમાણે લોયેલી ગીને

હવે જો આપણે ƒ ને પ્રથમ વિધય અને g ને બીજું વિધય માની લઈએ, તો આ સૂત્રને નીચે પ્રમાણે લખેલી રીતે વ્યક્ત કરી શકીએ :

''બે વિધેયોના ગુશાકારનો સંકલિત = (પ્રથમ વિધેય) × (બીજા વિધેયનો સંકલિત) – [(પ્રથમ વિધેયનું વિકલિત) × (બીજા વિધેયનો સંકલિત)] નો સંકલિત.''

ઉદાહરણ 17 : $\int x \cos x \, dx$ મેળવો.

ઉંકેલ : f(x) = x (પ્રથમ વિધેય) અને $g(x) = \cos x$ (બીજું વિધેય) લેતાં, ખંડશઃ સંકલનના નિયમ પ્રમાણે,

$$\int x \cos x \, dx = x \int \cos x \, dx - \int \left[\frac{d}{dx}(x) \int \cos x \, dx\right] \, dx$$
$$= x \sin x - \int \sin x \, dx = x \sin x + \cos x + c$$
જો $f(x) = \cos x$ અને $g(x) = x$ લાઈએ, તો
$$\int x \cos x \, dx = \cos x \int x \, dx - \int \left[\frac{d}{dx}(\cos x) \int x \, dx\right] \, dx$$
$$= (\cos x) \frac{x^2}{2} + \int \left(\sin x \cdot \frac{x^2}{2}\right) \, dx$$

આમ, આપણે જોઈ શકીએ છીએ કે, ∫*x cos x dx* એ *x* ના વધુ ઘાતાંકવાળા મુશ્કેલ સંકલિતમાં ફેરવાય છે. આમ અહીં પ્રથમ વિધેય અને બીજા વિધેયની પસંદગી યોગ્ય રીતે થાય તે ખૂબ જ જરૂરી છે. નોં**ધ** :

- (1) કોઈ પણ બે વિધેયોના ગુણાકારમાં દરેક વખતે ખંડશઃ સંકલન વાપરી શકાય જ તેમ જરૂરી નથી તે ખાસ નોંધવું જોઈએ. જેમકે, $\int \sqrt{x} \sin x \, dx$ માં આ રીત કામ નહિ કરે કારણ કે એવું કોઈ વિધેય અસ્તિત્વમાં જ નથી કે જેનો વિકલિત $\sqrt{x} \sin x$ થાય.
- (2) અહીં, આપણે જોઈશું કે જ્યારે આપણે બીજા વિધેયનું સંકલન કર્યું ત્યારે સંકલનનો અચળ દાખલ નથી કર્યો. પણ જો આપણે $\cos x$ નું સંકલન કરતી વખતે $\sin x + k$ લખીએ, જ્યાં k કોઈ અચળ છે, તો $\int x \cos x \, dx = x (\sin x + k) - \int (\sin x + k) \, dx$ $= x (\sin x + k) - \int \sin x \, dx - \int k \, dx$ $= x (\sin x + k) + \cos x - kx + c$ $= x \sin x + \cos x + c$

268

ગણિત

આમ, આપણે જોઈ શકીએ છીએ કે, ખંડશઃ સંકલનના નિયમના ઉપયોગ વખતે જ્યારે બીજા વિધેયનું સંકલન કરીએ ત્યારે સંકલનનો સ્વૈર અચળ ઉમેરવો અર્થહીન છે. તેનાથી અંતિમ પરિણામમાં કોઈ ફરક પડતો નથી.

(3) સામાન્ય રીતે જ્યારે કોઈ વિધેય x ની ઘાતમાં કે x ની બહુપદી સ્વરૂપે હોય ત્યારે આપશે તેને પ્રથમ વિધેય તરીકે લઈશું. તેમ છતાં જો ત્રિકોશમિતીય પ્રતિવિધેય કે લઘુગાશકીય વિધેય બીજા અવયવ તરીકે હોય, તો આપશે તેમને પ્રથમ વિધેય તરીકે લઈશું.

ઉદાહરણ 18 : $\int \log x \, dx$ મેળવો.

<mark>ઉકેલ :</mark> અહીં, પહેલાં તો આપશે એવું પ્રમાશિત વિધેય નથી જાશતા કે જેનો વિકલિત log x થાય. તેથી આપશે log x ને પ્રથમ વિધેય અને અચળ વિધેય 1 ને બીજા વિધેય તરીકે લઈશું. તેથી બીજા વિધેયનો સંકલિત x થાય.

તેથી
$$\int \log x \cdot 1 \, dx = \log x \int 1 \, dx - \int \left[\frac{d}{dx}(\log x) \int 1 \, dx\right] dx$$
$$= \log x \cdot x - \int \left(\frac{1}{x} \times x\right) \, dx$$
$$= x \log x - x + c$$

ઉદાહરણ 19 : $\int x e^x dx$ મેળવો.

ઉંકેલ : x ને પ્રથમ વિધેય અને e^x ને બીજા વિધેય તરીકે લેતાં, બીજા વિધેયનો સંકલિત e^x થશે.

તેથી,
$$\int x \ e^x \ dx = x \ e^x - \int 1 \cdot e^x \ dx = xe^x - e^x + c$$

ઉદાહરણ 20 : $\int \frac{x \sin^{-1} x}{\sqrt{1-x^2}} dx$ મેળવો.

ઉકેલ : $sin^{-1}x$ ને પ્રથમ વિધેય અને $\frac{x}{\sqrt{1-x^2}}$ ને બીજા વિધેય તરીકે લો. હવે, પહેલા આપણે બીજા વિધેયનું

સંકલન કરીએ એટલે
$$\int \frac{x \, dx}{\sqrt{1-x^2}}$$
 મેળવીએ.

$$1 - x^2 = t \quad \text{err}(x), \quad dt = -2x \quad dx.$$

$$\therefore \quad \int \frac{x \, dx}{\sqrt{1-x^2}} = -\frac{1}{2} \int \frac{dt}{\sqrt{t}} = -\sqrt{t} = -\sqrt{1-x^2}$$
error error

$$\int \frac{x \sin^2 x}{\sqrt{1 - x^2}} dx = (\sin^{-1}x) \left(-\sqrt{1 - x^2}\right) - \int \frac{1}{\sqrt{1 - x^2}} \left(-\sqrt{1 - x^2}\right) dx$$
$$= -\sqrt{1 - x^2} (\sin^{-1}x) + x + c$$
$$= x - \sqrt{1 - x^2} (\sin^{-1}x) + c$$

બીજી રીત : આદેશ $sin^{-1}x = \theta$ લઈ ખંડશઃ સંકલનના નિયમથી પણ આપેલ સંકલિત મેળવી શકાય. ઉદાહરણ 21 : $\int e^x sin x$ મેળવો.

ઉકેલ : અહીં, e^x ને પ્રથમ વિધેય અને sin x ને બીજા વિધેય તરીકે લઈએ. હવે, ખંડશઃ સંકલનના નિયમ પ્રમાણે, $I = \int e^x sin x \, dx = e^x (-cos x) - \int e^x (-cos x) \, dx$ $= -e^x cos x + I_1 (ધારો ક) \qquad \dots(1)$

સંકલન

269

હવે, I_1 માં e^x અને $\cos x$ ને અનુક્રમે પ્રથમ અને બીજા વિધેય તરીકે લેતાં,

 $I_{1} = e^{x} \sin x - \int e^{x} \sin x \, dx$ I_{1} ની કિંમત (1)માં મૂકતાં, $I = -e^{x} \cos x + e^{x} \sin x - I$

અથવા $2I = e^x (sin \ x - cos \ x)$

તેથી, I =
$$\int e^x \sin x \, dx = \frac{e^x}{2} (\sin x - \cos x) + c$$

<mark>બીજી રીત</mark> : ઉપરના પ્રશ્નમાં *sin x* ને પ્રથમ વિધેય અને e^x ને બીજા વિધેય તરીકે લઈને પણ સંકલન કરી શકાય.

7.6.1 $\int e^x [f(x) + f'(x)] dx$ પ્રકારનું સંકલિત

અહીં,
$$I = \int e^x [f(x) + f'(x)] dx = \int e^x f(x) dx + \int e^x f'(x) dx$$

 $I = I_1 + \int e^x f'(x) dx$ જ્યાં $I_1 = \int e^x f(x) dx$...(1)

f(x) અને e^x ને અનુક્રમે પ્રથમ અને બીજા વિધેય તરીકે લેતાં અને I_1 નું સંકલન ખંડશઃ સંકલનની રીતથી કરતાં,

$$I_1 = f(x) e^x - \int f'(x) e^x dx + c$$

 I_1 ની કિંમત (1)માં મૂકતાં,

$$I = e^{x} f(x) - \int f'(x) e^{x} dx + \int e^{x} f'(x) dx + c = e^{x} f(x) + c$$

With, $\int e^{x} [f(x) + f'(x)] dx = e^{x} f(x) + c$

GELER 22 : (i)
$$\int e^x \left[\tan^{-1}x + \frac{1}{1+x^2} \right] dx$$
 (ii) $\int \frac{(x^2+1)e^x}{(x+1)^2} dx$ મેળવો.
GELER : (i) અહીં, $I = \int e^x \left[\tan^{-1}x + \frac{1}{1+x^2} \right] dx$
હવે, $f(x) = \tan^{-1}x$ લઈએ, તો $f'(x) = \frac{1}{1+x^2}$
તેથી, આપેલ સંકલ્પ $e^x [f(x) + f'(x)]$ પ્રકારનો છે.
 $\therefore I = \int e^x \left[\tan^{-1}x + \frac{1}{1+x^2} \right] dx = e^x \tan^{-1}x + c$
(ii) $I = \int \frac{(x^2+1)e^x}{(x+1)^2} dx = \int e^x \left[\frac{x^2-1+1+1}{(x+1)^2} \right] dx$
 $= \int e^x \left[\frac{x^2-1}{(x+1)^2} + \frac{2}{(x+1)^2} \right] dx = \int e^x \left[\frac{x-1}{x+1} + \frac{2}{(x+1)^2} \right] dx$
e d, $f(x) = \frac{x-1}{x+1}$ edi, cù $f'(x) = \frac{2}{(x+1)^2}$ evil.

270
Àql, આપેલ સંકલ્પ
$$e^x [f(x) + f'(x)]$$
 પ્રકારનો છે.

$$\therefore \int \frac{(x^2 + 1)e^x}{(x + 1)^2} dx = \left(\frac{x - 1}{x + 1}\right)e^x + c$$
Equivit 7.6
URAN 141 22 માં આપેલાં વિધેયોના સંકલિત મેળવો :
1. $x \sin x$ 2. $x \sin 3x$ 3. $x^2 e^x$
4. $x \log x$ 5. $x \log 2x$ 6. $x^2 \log x$
7. $x \sin^{-1}x$ 8. $x \tan^{-1}x$ 9. $x \cos^{-1}x$
10. $(\sin^{-1}x)^2$ 11. $\frac{x \cos^{-1}x}{\sqrt{1 - x^2}}$ 12. $x \sec^2 x$
13. $\tan^{-1}x$ 14. $x (\log x)^2$ 15. $(x^2 + 1) \log x$
16. $e^x (\sin x + \cos x)$ 17. $\frac{xe^x}{(1 + x)^2}$ 18. $e^x \left(\frac{1 + \sin x}{1 + \cos x}\right)$
19. $e^x \left(\frac{1}{x} - \frac{1}{x^2}\right)$ 20. $\frac{(x - 3)e^x}{(x - 1)^3}$ 21. $e^{2x} \sin x$
22. $\sin^{-1} \left(\frac{2x}{1 + x^2}\right)$
URAN 23 તથા 24 માં વિધાન સાચું બને તે રીતે આપેલ વિકલ્પોમાંથી યોગ્ય વિકલ્પ પસંદ કરો :
23. $\int x^2 e^{x^3} dx = \dots$
(A) $\frac{1}{3} e^{x^3} + c$ (B) $\frac{1}{3} e^{x^2} + c$

24. $\int e^x \sec x (1 + \tan x) dx = \dots$ (A) $e^x \cos x + c$ (B) $e^x \sec x + c$ (C) $e^x \sin x + c$ (D) $e^x \tan x + c$

7.6.2 સંકલનનાં કેટલાંક વધુ પ્રમાણિત રૂપો

અહીં, આપશે કેટલાક વિશિષ્ટ પ્રકારનાં પ્રમાશિત રૂપોમાં આપેલા સંકલ્યોના સંકલિતો ખંડશઃ સંકલનનો ઉપયોગ કરી મેળવીશું.

(i) $\int \sqrt{x^2 - a^2} \, dx$ (ii) $\int \sqrt{x^2 + a^2} \, dx$ (iii) $\int \sqrt{a^2 - x^2} \, dx$

(i) I =
$$\int \sqrt{x^2 - a^2} dx$$
 લઈએ.

અચળ વિધેય 1 ને બીજા વિધેય તરીકે લઈશું અને ખંડશઃ સંકલનથી સંકલિતો મેળવીશું.

Downloaded from https:// www.studiestoday.com

ગણિત

સંકલન

$$I = \int \sqrt{x^2 - a^2} \, dx$$

$$= x \sqrt{x^2 - a^2} - \int \frac{1}{2} \frac{2x}{\sqrt{x^2 - a^2}} \cdot x \, dx$$

$$= x \sqrt{x^2 - a^2} - \int \frac{x^2}{\sqrt{x^2 - a^2}} \, dx$$

$$= x \sqrt{x^2 - a^2} - \int \frac{(x^2 - a^2) + a^2}{\sqrt{x^2 - a^2}} \, dx$$

$$= x \sqrt{x^2 - a^2} - \int \sqrt{x^2 - a^2} \, dx - a^2 \int \frac{dx}{\sqrt{x^2 - a^2}}$$

$$= x \sqrt{x^2 - a^2} - I - a^2 \int \frac{dx}{\sqrt{x^2 - a^2}}$$

where $2I = x \sqrt{x^2 - a^2} - a^2 \int \frac{dx}{\sqrt{x^2 - a^2}}$
where $I = \int \sqrt{x^2 - a^2} \, dx = \frac{x}{2} \sqrt{x^2 - a^2} - \frac{a^2}{2} \log |x + \sqrt{x^2 - a^2}| + c$
where $x = x \sqrt{x^2 - a^2} \, dx = \frac{x}{2} \sqrt{x^2 - a^2} + \frac{a^2}{2} \log |x + \sqrt{x^2 - a^2}| + c$
where $x = x \sqrt{x^2 - a^2} \, dx = \frac{1}{2} x \sqrt{x^2 - a^2} + \frac{a^2}{2} \log |x + \sqrt{x^2 - a^2}| + c$

(ii)
$$\int \sqrt{x^2 + a^2} \, dx = \frac{1}{2}x\sqrt{x^2 + a^2} + \frac{a^2}{2} \log|x + \sqrt{x^2 + a^2}| + c$$

(iii) $\int \sqrt{a^2 - x^2} \, dx = \frac{1}{2}x\sqrt{a^2 - x^2} + \frac{a^2}{2} \sin^{-1}\left(\frac{x}{a}\right) + c$ (a > 0)

બીજી રીત : સંકલિતો (i), (ii) અને (iii)ને અનુક્રમે આદેશ $x = a \sec \theta$, $x = a \tan \theta$ અને $x = a \sin \theta$ લઈને પણ મેળવી શકાય.

ઉદાહરણ 23 :
$$\int \sqrt{x^2 + 2x + 5} \, dx \quad 4$$
 ખેળવો.
ઉદેલ : નોંધો કે
$$\int \sqrt{x^2 + 2x + 5} \, dx = \int \sqrt{(x+1)^2 + 4} \, dx$$

$$x + 1 = y \quad 4 \text{di}, \quad dx = dy. \quad 4 \text{dl},$$

$$\int \sqrt{x^2 + 2x + 5} \, dx = \int \sqrt{y^2 + 2^2} \, dy$$

$$= \frac{1}{2} y \sqrt{y^2 + 2^2} + \frac{4}{2} \log \left| y + \sqrt{y^2 + 4} \right| + c \qquad (7.6.2(\text{ii}) \quad 42 \text{dl})$$

$$= \frac{1}{2} (x + 1) \sqrt{x^2 + 2x + 5} + 2 \log \left| x + 1 + \sqrt{x^2 + 2x + 5} \right| + c$$

Downloaded from https:// www.studiestoday.com

271

272

ગણિત

GELEVEN 24:
$$\int \sqrt{3-2x-x^2} \, dx$$

GBA: -itili $\frac{3}{2} \int \sqrt{3-2x-x^2} \, dx = \int \sqrt{4-(x+1)^2} \, dx$
 $x + 1 = y$ êtdi, $dx = dy$. dell
dell, $\int \sqrt{3-2x-x^2} \, dx = \int \sqrt{4-y^2} \, dy$
 $= \frac{1}{2}y \sqrt{4-y^2} + \frac{4}{2} \sin^{-1}\frac{y}{2} + c$ (7.6.2(iii) usell)
 $= \frac{1}{2}(x+1) \sqrt{3-2x-x^2} + 2\sin^{-1}\left(\frac{x+1}{2}\right) + c$
7.6.3 $\int (px+q)\sqrt{ax^2+bx+c} \, dx$
and $\int (2ax+b) + B$
 $= A \left[\frac{d}{dx}(ax^2+bx+c)\right] + B$
 $= A (2ax+b) + B$
 $\int e^{\frac{1}{2}x} - 1 + \frac{1}{2}e^{\frac{1}{2}x} + \frac{1}{2$

$$x = \mathbf{A}\left[\frac{d}{dx}\left(1 + x - x^2\right)\right] + \mathbf{B}$$
 લખીશું.

સંકલન

$$\begin{array}{l} \therefore x = \Lambda \left(1 - 2x \right) + B \\ & \otimes \tilde{A}, x \ end \ \operatorname{Resident} \tilde{A} \ b \to 0 \ \operatorname{Price} u \\ & \to 0 \ \operatorname{Price} \tilde{A} \\ & \to 0 \$$

274

ગણિત

સ્વાધ્યાય 7.7

પ્રશ્નો 1થી 9 માં આપેલાં વિધેયોના સંકલિત મેળવો :

 1. $\sqrt{4-x^2}$ 2. $\sqrt{1-4x^2}$ 3. $\sqrt{x^2+4x+6}$

 4. $\sqrt{x^2+4x+1}$ 5. $\sqrt{1-4x-x^2}$ 6. $\sqrt{x^2+4x-5}$

 7. $\sqrt{1+3x-x^2}$ 8. $\sqrt{x^2+3x}$ 9. $\sqrt{1+\frac{x^2}{2}}$

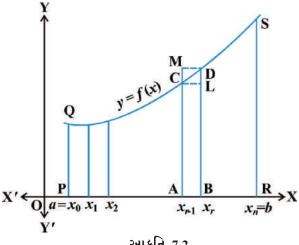
7.7 नियत संडलन

આપશે આગળના પરિચ્છેદમાં અનિયત સંકલનનો અભ્યાસ કર્યો અને આપશે કેટલાંક વિશિષ્ટ વિધેયોનાં સંકલિતો અથવા અનિયત સંકલિતો મેળવવાની કેટલીક રીતોની ચર્ચા કરી. આ પરિચ્છેદમાં આપશે વિધેયના નિયત સંકલનનો અભ્યાસ કરીશું. નિયત સંકલિતની એક નિશ્ચિત કિંમત હોય છે. નિયત સંકલિતને ∫ f(x) dx દ્વારા દર્શાવાય છે. b ને નિયત સંકલિતની ઊર્ધ્વસીમા અને a ને નિયત સંકલિતની અધઃસીમા કહે છે. આપશે નિયત સંકલિતનું મૂલ્ય સરવાળાના લક્ષ તરીકે અથવા [a, b] પર વ્યાખ્યાયિત પ્રતિવિકલિત વિધેય F હોય, તો નિયત સંકલિતનું મૂલ્ય અંતરાલનાં અંત્યબિંદુઓએ તે વિધેયના પ્રતિવિકલિતનાં મૂલ્યોનો તફાવત લેવાથી મેળવી શકીએ. અર્થાત્ તે F(b) - F(a) ના મૂલ્ય બરાબર થાય. નિયત સંકલનનાં આ બે રૂપોની આપશે અલગ-અલગથી ચર્ચા કરીશું.

સંકલન

7.7.1 સરવાળાના લક્ષ તરીકે નિયત સંકલિત

ધારો કે વિધેય f એ સંવૃત અંતરાલ $[a,\,b]$ પર વ્યાખ્યાયિત સતત વિધેય છે. ધારો કે વિધેય f એ ધારશ કરેલી બધી કિંમતો અનૃશ છે, એટલે વિધેય f નો આલેખ એ X-અક્ષની ઉપરની બાજુએ આવેલો વક્ર છે. નિયત સંકલિત $\int f(x) dx$ એટલે વક્ર y = f(x), રેખાઓ x = a, x = b તથા X-અક્ષ વડે આવૃત્ત પ્રદેશનું ક્ષેત્રફળ છે. આ ક્ષેત્રફળ શોધવા આપણે વક્ર, X-અક્ષ તથા રેખાઓ x=a અને x=b વડે આવૃત્ત પ્રદેશ PRSQP લઈએ. (આકૃતિ 7.2)



આકૃતિ 7.2

આપણે [a, b]નું n સમાન લંબાઈના ઉપ-અંતરાલોમાં વિભાજન કરીએ. [a, b]નું વિભાજન $[x_0, x_1], [x_1, x_2], ...,$ $[x_{r-1}, x_r]...[x_{n-1}, x_n]$ દારા થશે. અહીં $x_0 = a, x_1 = a + h, x_2 = a + 2h,..., x_r = a + rh$ અને $x_n = b = a + nh$, જ્યાં $h = \frac{b-a}{n}$. આપણે નોંધીશું કે જેમ $n \to \infty$ તેમ $h \to 0$.

વિચારણામાં લીધેલ પ્રદેશ PRSQP એ r = 1, 2, 3, ..., n માટે ઉપાંતરાલ $[x_{r-1}, x_r]$ પર વ્યાખ્યાયિત દરેક ઉપક્ષેત્રનો સરવાળો છે. આકૃતિ 7.2 પરથી આપણે કહી શકીએ કે,

લંબચોરસ (ABLC)નું ક્ષેત્રફળ < પ્રદેશ (ABDCA) નું ક્ષેત્રફળ < લંબચોરસ (ABDM) નું ક્ષેત્રફળ ...(1) સ્પષ્ટ છે કે $(x_r - x_{r-1})
ightarrow 0$ હોવાથી h
ightarrow 0 થાય. સમીકરણ (1)માં દર્શાવેલ ત્રણેય પ્રદેશનાં ક્ષેત્રફળ લગભગ એક સમાન થઈ જશે.

હવે, આપશે નીચે દર્શાવ્યા પ્રમાશે સરવાળાનું નિર્માશ કરીએ :

$$s_n = h \left[f(x_0) + \dots + f(x_{n-1}) \right] = h \sum_{r=0}^{n-1} f(x_r) \qquad \dots (2)$$

$$\operatorname{even} S_n = h \left[f(x_1) + f(x_2) + \dots + f(x_n) \right] = h \sum_{r=1}^n f(x_r) \qquad \dots (3)$$

અહીં, s_n અને \mathbf{S}_n એ ઉપઅંતરાલો $[x_{r-1}, x_r]$, r = 1, 2, ..., n પર અનુક્રમે બનેલા નીચેના લંબચોરસો અને ઉપરના લંબચોરસોનાં ક્ષેત્રફળોનો સરવાળો દર્શાવે છે.

આપણે અસમતા (1)ના સંદર્ભમાં કોઈ યાદચ્છિક વિભાજન $\bigcup_{r=1}^{r=n} [x_{r-1}, x_r]$ માટે જોઈ શકીએ છીએ કે, r=1 $s_n <$ પ્રદેશ PRSQPનું ક્ષેત્રફળ < S $_n$...(4)

276

ગણિત

જેમ $n \to \infty$ તેમ પટ્ટીઓ સાંકડી ને સાંકડી થતી જાય છે અને આપણે માની લઈએ છીએ કે (2) અને (3)નાં સામાન્ય લક્ષની કિંમતો સમાન થશે અને તે વક્ર દ્વારા આવૃત્ત પ્રદેશના ક્ષેત્રફળ જેટલી થશે.

તેને સાંકેતિક રીતે નીચે પ્રમાશે લખી શકાય.

$$\lim_{n \to \infty} s_n = \lim_{n \to \infty} S_n = \text{uter PRSQP - j atas and } f(x) dx \qquad \dots(5)$$

Ь

આ પરથી આપણે જોઈ શકીએ છીએ કે માંગેલ ક્ષેત્રફળ એ વક્રની નીચેના લંબચોરસોનાં ક્ષેત્રફળોના સરવાળા અને ઉપરના લંબચોરસોનાં ક્ષેત્રફળોના સરવાળા વચ્ચેના ક્ષેત્રફળનું સામાન્ય લક્ષ છે. સુવિધા માટે આપણે પ્રત્યેક ઉપઅંતરાલની ડાબી કિનારીએ આપેલા વક્રની ઊંચાઈ જેટલી લંબાઈવાળો લંબચોરસ લઈશું. હવે આપણે (5)ને પુનઃ નીચે દર્શાવ્યા પ્રમાણે લખીશું.

$$\int_{a}^{b} f(x) dx = \lim_{h \to 0} h [f(a) + f(a + h) + ... + f(a + (n - 1)h)]$$

અથવા
$$\int_{a}^{b} f(x) dx = (b - a) \lim_{n \to \infty} \frac{1}{n} [f(a) + f(a + h) + ... + f(a + (n - 1)h)](6)$$

જેમ $n \to \infty$ તેમ $h = \frac{b-a}{n} \to 0.$

ઉપરોક્ત વિધાન (6) ને નિયત સંકલિતની *સરવાળાના લક્ષ તરીકેની વ્યાખ્યા* કહે છે.

નોંધ ઃ કોઈ વિશિષ્ટ અંતરાલ પર વ્યાખ્યાયિત કોઈ વિધેયના નિયત સંકલિતનું મૂલ્ય વિધેય અને અંતરાલ પર આધારિત છે અને જેની પસંદગી આપશે સ્વતંત્ર ચલનું નિરૂપશ કરવા માટે કરીએ છીએ તે સંકલનના ચલ પર આધારિત નથી

જો સ્વતંત્ર ચલ x ને સ્થાને t કે u લેવામાં આવે તો $\int_{a}^{b} f(x) dx$ ને સ્થાને આપશે ફક્ત $\int_{a}^{b} f(t) dt$ અથવા $\int_{a}^{b} f(u) du$ લખીશું. આમ સંકલનના ચલને *આભાસી* (*3મી*) ચલ કહેવાય છે. ઉદાહરણ 26 : સરવાળાના લક્ષ તરીકે $\int_{0}^{2} (x^{2} + 1) dx$ મેળવો. ઉદેશ : વ્યાખ્યા પ્રમાણે, $\int_{a}^{b} f(x) dx = (b - a) \lim_{n \to \infty} \frac{1}{n} [f(a) + f(a + h) + ... + f(a + (n - 1) h)]$ આ ઉદાહરણમાં, $a = 0, b = 2, f(x) = x^{2} + 1, h = \frac{2 - 0}{n} = \frac{2}{n}$ આથી, $\int_{0}^{2} (x^{2} + 1) dx = 2 \lim_{n \to \infty} \frac{1}{n} [f(0) + f(\frac{2}{n}) + f(\frac{4}{n}) + ... + f(\frac{2(n - 1)}{n})]$ $= 2 \lim_{n \to \infty} \frac{1}{n} [1 + (\frac{2^{2}}{n^{2}} + 1) + (\frac{4^{2}}{n^{2}} + 1) + ... + (\frac{(2n - 2)^{2}}{n^{2}} + 1)]$

સંકલન

$$= 2 \lim_{n \to \infty} \frac{1}{n} \left[n + \frac{2^2}{n^2} (1^2 + 2^2 + ... + (n-1)^2) \right]$$
$$= 2 \lim_{n \to \infty} \frac{1}{n} \left[n + \frac{4}{n^2} \frac{(n-1)n(2n-1)}{6} \right]$$
$$= 2 \lim_{n \to \infty} \frac{1}{n} \left[n + \frac{2}{3} \frac{(n-1)(2n-1)}{n} \right]$$
$$= 2 \lim_{n \to \infty} \left[1 + \frac{2}{3} \left(1 - \frac{1}{n} \right) \left(2 - \frac{1}{n} \right) \right]$$
$$= 2 \left[1 + \frac{4}{3} \right] = \frac{14}{3}$$

ઉદાહરણ 27 : સરવાળાના લક્ષ તરીકે $\int_{0}^{2} e^{x} dx$ મેળવો. ઉકેલ : વ્યાખ્યા પ્રમાશે,

$$\int_{0}^{2} e^{x} dx = (2 - 0) \lim_{n \to \infty} \frac{1}{n} \left[e^{0} + e^{\frac{2}{n}} + e^{\frac{4}{n}} + \dots + e^{\frac{2n-2}{n}} \right]$$

$$\frac{2}{2}$$

$$a$$
 = 1, r = $e^{\ n}$ સાથે સમગુણોત્તર શ્રેણીનાં પદોના સરવાળાના સૂત્રનો ઉપયોગ કરતાં,

$$\int_{0}^{2} e^{x} dx = 2 \lim_{n \to \infty} \frac{1}{n} \left[\frac{\frac{2n}{e^{n}} - 1}{\frac{2}{e^{n}} - 1} \right] = 2 \lim_{n \to \infty} \frac{1}{n} \left[\frac{e^{2} - 1}{\frac{2}{e^{n}} - 1} \right]$$
$$= \frac{2(e^{2} - 1)}{\lim_{n \to \infty} \left[\frac{e^{2}}{n} - 1}{\frac{2}{n}} \right] \cdot 2$$
$$= e^{2} - 1 \qquad \left(\lim_{h \to 0} \frac{e^{h} - 1}{h} = 1 \text{ th Grain series} \right)$$
$$\underbrace{\text{Relative 7.8}}$$

નીચે આપેલા નિયત સંકલિતોનું મૂલ્ય સરવાળાના લક્ષ સ્વરૂપે મેળવો :

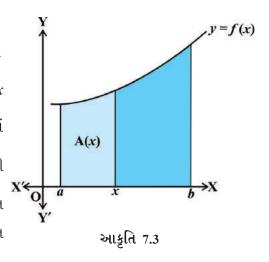
1. $\int_{a}^{b} x \, dx$ 2. $\int_{0}^{5} (x+1) \, dx$ 3. $\int_{2}^{3} x^{2} \, dx$ 4. $\int_{1}^{4} (x^{2} - x) \, dx$ 5. $\int_{-1}^{1} e^{x} \, dx$ 6. $\int_{0}^{4} (x + e^{2x}) \, dx$

278

ગણિત

7.8 નિયત સંકલનનો મૂળભૂત સિદ્ધાંત 7.8.1 ક્ષેત્રફ્ળ વિધેય

 $\int_{a}^{b} f(x) dx + i આપણે y = f(x), i આઓ x = a, x = b તથા$ X-અક્ષ વડે આવૃત્ત પ્રદેશના ક્ષેત્રફળના સ્વરૂપે વ્યાખ્યાયિત કર્યું. ધારો કે x એ [a, b] માં આવેલી કોઈ સંખ્યા છે, તો $\int_{a}^{x} f(x) dx$ આકૃતિ 7.3માં આછા રંગથી આચ્છાદિત પ્રદેશનું ક્ષેત્રફળ દર્શાવે છે. (અહીં, આપણે માની લઈએ છીએ કે $x \in [a, b]$ માટે f(x) > 0 છે. નીચે દર્શાવેલ વિધાન સામાન્ય રીતે બીજાં વિધેયો માટે પણ સત્ય છે.) આ રંગીન પ્રદેશનું ક્ષેત્રફળ x ની કિંમત પર આધારિત છે.



બીજા શબ્દોમાં કહીએ તો આ રંગીન પ્રદેશનું ક્ષેત્રફળ એ x નું વિધેય છે. આપશે x ના આ વિધેયને A(x)થી દર્શાવીશું. આપશે આ વિધેય A(x)ને ક્ષેત્રફળ વિધેય કહીશું અને તે નીચે પ્રમાશેના સૂત્રથી પ્રાપ્ત થશે :

$$A(x) = \int_{a}^{x} f(x) dx \qquad \dots (1)$$

આ વ્યાખ્યાને આધારે બે મૂળભૂત પ્રમેય આપેલા છે. આપશે તેમનાં વિધાન સ્વીકારીશું. તેમની સાબિતી આ પાઠ્યપુસ્તકની મર્યાદાની બહાર છે.

7.8.2 સંકલન ગણિતનો પહેલો મૂળભૂત પ્રમેય પ્રમેય 1 : જો વિધેય f એ [a, b] પર સતત હોય અને A(x) એ તેને સંગત ક્ષેત્રફળ વિધેય હોય, તો

 $A'(x) = f(x), \ \forall x \in [a, b]$

7.8.3 સંકલન ગણિતનો બીજો મૂળભૂત પ્રમેય

આપણે પ્રતિવિકલિતનો ઉપયોગ કરીને નિયત સંકલિતનું મૂલ્ય શોધવા માટે નીચે અગત્યનું પ્રમેય દર્શાવેલ છે. પ્રમેય 2 : ધારો કે વિધેય f એ [a, b] પર સતત છે તથા F એ f નું પ્રતિવિકલિત છે. તો,

$$\int_{a}^{b} f(x) dx = [\mathbf{F}(x)]_{a}^{b} = \mathbf{F}(b) - \mathbf{F}(a)$$

નોંધ ઃ

- (1) પ્રમેય 2 ને બીજા શબ્દોમાં કહીએ તો $\int_{a}^{b} f(x) dx = [f n] u$ તિવિકલિત F નું ઊર્ધ્વસીમા b પર મૂલ્ય] - [તે જ પ્રતિવિકલિતનું અધઃસીમા a પર મૂલ્ય.]
- (2) આ પ્રમેય ખૂબ જ ઉપયોગી છે. કારજ્ઞ કે નિયત સંકલિતનું મૂલ્ય સરવાળાના લક્ષ તરીકે મેળવવા કરતાં આ પ્રમેયથી મેળવવું ખૂબ જ સરળ છે.
- (3) નિયત સંકલિત મેળવવો એ એક જટિલ પ્રક્રિયા છે. તેમાં આપશે એક એવું વિધેય શોધવું છે કે જેનું વિકલિત એ આપેલ સંકલ્ય છે. આ પ્રક્રિયા વિકલન અને સંકલનની વચ્ચેના સંબંધને વધુ મજબૂત કરે છે.

279

સંકલન

(4) $\int_{a}^{b} f(x) dx \text{ tri } [a, b] \text{ tri } au \text{ unwallen } a \text{ triangle} is equivalent in the equivalent of the equivalent in the equivalent of the equivalent in the equivalent is equivalent. If the equivalent is equivalent is equivalent is equivalent is equivalent. The equivalent is equivalent is equivalent if the equivalent is equivalent. The equivalent is equivalent is equivalent is equivalent. The equivalent is equivalent is equivalent in the equivalent is equivalent. The equivalent is equivalent is equivalent in the equivalent is equivalent. The equivalent is equivalent is equivalent in the equivalent is equivalent is equivalent. The equivalent is equivalent is equivalent is equivalent. The equivalent is equivalent is equivalent is equivalent. The equivalent is equivalent is equivalent in the equivalent is equivalent. The equivalent is equivalent is equivalent is equivalent. The equivalent is equivalent is equivalent in the equivalent is equivalent. The equivalent is equivalent is equivalent is equivalent. The equivalent is equivalent is equivalent is equivalent. The equivalent is equivalent is equivalent in the equivalent is equivalent. The equivalent is equivalent is equivalent in the equivalent is equivalent. The equivalent is equivalent is equivalent in the equivalent is equivalent in the equivalent$

ઉદાહરણ 28 : નીચેના સંકલિતો મેળવો :

(i)
$$\int_{2}^{3} x^{2} dx$$
 (ii) $\int_{4}^{9} \frac{\sqrt{x}}{(30 - x^{2})^{2}} dx$ (iii) $\int_{1}^{2} \frac{x dx}{(x+1)(x+2)}$ (iv) $\int_{0}^{\frac{\pi}{4}} \sin^{3} 2t \cdot \cos 2t dt$
(i) $I = \int_{2}^{3} x^{2} dx$ el.
(i) $I = \int_{2}^{3} x^{2} dx$ el.
(ii) $I = F(3) - F(2) = \frac{27}{3} - \frac{8}{3} = \frac{19}{3}$ Hold.
(ii) Und do for $\frac{9}{4} \frac{\sqrt{x}}{(30 - x^{2})^{2}} dx$
(iii) Und do for $\frac{9}{4} \frac{\sqrt{x}}{(30 - x^{2})^{2}} dx$
(iv) $\int_{4}^{\frac{9}{4}} \frac{\sqrt{x}}{(30 - x^{2})^{2}} dx$
(iv) \int

280

હવે, સંકલન ગણિતના મૂળભૂત પ્રમેય 2 પ્રમાશે, I = F(9) - F(4) = $\frac{2}{3} \left[\frac{1}{(30 - x^2)} \right]^9$ $=\frac{2}{3}\left[\frac{1}{(30-27)}-\frac{1}{(30-8)}\right]=\frac{2}{3}\left[\frac{1}{3}-\frac{1}{22}\right]=\frac{19}{99}$ (iii) ધારો કે, $I = \int_{-1}^{2} \frac{x \, dx}{(x+1)(x+2)}$ આંશિક અપૂર્ણાંકનો ઉપયોગ કરતાં, $\int \frac{x \, dx}{(x+1)(x+2)} = \frac{-1}{x+1} + \frac{2}{x+2} \quad \text{Hol}.$ તેથી $\int \frac{x \, dx}{(x+1)(x+2)} = -\log |x+1| + 2\log |x+2| = F(x)$ તેથી, સંકલન ગણિતના મૂળભૂત પ્રમેય 2 પ્રમાશે, I = F(2) - F(1) $= [-\log 3 + 2\log 4] - [-\log 2 + 2\log 3]$ $= -3 \log 3 + \log 2 + 2 \log 4 = \log \left(\frac{32}{27}\right)$ (iv) ધારો કે, $I = \int_{0}^{\frac{1}{4}} sin^3 2t \cdot cos 2t dt$ હવે, $\int sin^3 2t \cdot cos 2t dt$ મેળવવા માટે, $\sin 2t = u$ લેતાં, $2\cos 2t dt = du$ અથવા $\cos 2t dt = \frac{1}{2}du$ આમ, $\int \sin^3 2t \cdot \cos 2t \, dt = \frac{1}{2} \int u^3 \, du$ $=\frac{1}{8}(u^4)=\frac{1}{8}\sin^4 2t=F(t)$ (ધારો) આમ, સંકલન ગણિતના બીજા મૂળભૂત પ્રમેય પ્રમાણે, $I = F\left(\frac{\pi}{4}\right) - F(0) = \frac{1}{8}\left[sin^4\frac{\pi}{2} - sin^40\right] = \frac{1}{8}$ સ્વાધ્યાય 7.9

પ્રશ્નો 1થી 20 માં નિયત સંકલિતની કિંમત મેળવો :

1.
$$\int_{-1}^{1} (x+1) dx$$
 2. $\int_{2}^{3} \frac{1}{x} dx$ **3.** $\int_{1}^{2} (4x^3 - 5x^2 + 6x + 9) dx$

સંકલન

4.
$$\int_{0}^{\frac{\pi}{4}} \sin 2x \, dx$$
5.
$$\int_{0}^{\frac{\pi}{2}} \cos 2x \, dx$$
6.
$$\int_{4}^{5} e^{x} \, dx$$
7.
$$\int_{0}^{\frac{\pi}{4}} \tan x \, dx$$
8.
$$\int_{\frac{\pi}{6}}^{\frac{\pi}{4}} \csc x \, dx$$
9.
$$\int_{0}^{1} \frac{dx}{\sqrt{1-x^{2}}}$$
10.
$$\int_{0}^{1} \frac{dx}{1+x^{2}}$$
11.
$$\int_{2}^{3} \frac{dx}{x^{2}-1}$$
12.
$$\int_{0}^{\frac{\pi}{2}} \cos^{2} x \, dx$$
13.
$$\int_{2}^{3} \frac{x \, dx}{x^{2}+1}$$
14.
$$\int_{0}^{1} \frac{2x+3}{5x^{2}+1} \, dx$$
15.
$$\int_{0}^{1} x \, e^{x^{2}} \, dx$$
16.
$$\int_{1}^{2} \frac{5x^{2}}{x^{2}+4x+3} \, dx$$
17.
$$\int_{0}^{\frac{\pi}{4}} (2 \sec^{2} x + x^{3} + 2) \, dx$$
18.
$$\int_{0}^{\pi} (\sin^{2} \frac{x}{2} - \cos^{2} \frac{x}{2}) \, dx$$
19.
$$\int_{0}^{2} \frac{6x+3}{x^{2}+4} \, dx$$
20.
$$\int_{0}^{1} (x \, e^{x} + \sin \frac{\pi x}{4}) \, dx$$
19.
$$\int_{0}^{2} \frac{6x+3}{x^{2}+4} \, dx$$
20.
$$\int_{0}^{1} (x \, e^{x} + \sin \frac{\pi x}{4}) \, dx$$
19.
$$\int_{1}^{3} \frac{dx}{1+x^{2}} = \dots$$
(A)
$$\frac{\pi}{3}$$
(B)
$$\frac{2\pi}{3}$$
(C)
$$\frac{\pi}{6}$$
(D)
$$\frac{\pi}{12}$$

(A) $\frac{\pi}{6}$ (B) $\frac{\pi}{12}$ (C) $\frac{\pi}{24}$ (D) $\frac{\pi}{4}$

7.9 નિયત સંકલનની કિંમત મેળવવા માટે આદેશની રીત

આપણે આગળના વિભાગમાં અનિયત સંકલિત શોધવા માટેની ઘણી રીતોનો અભ્યાસ કર્યો. તે પૈકીની $b = \int_{a}^{b} f(x) dx$ તે પૈકીની અનિયત સંકલિત શોધવા માટેની આદેશની રીત ખૂબ જ ઉપયોગી છે. $\int_{a}^{b} f(x) dx$ ની કિંમત આદેશની રીતે શોધવાનાં પગલાં નીચે પ્રમાણે છે :

- (1) સંકલિતનો સીમાઓ વગર વિચાર કરો. જેથી આપેલ સંકલિતને જાણીતા પ્રમાણિત સ્વરૂપમાં મૂકી શકાય તે માટે y = f(x) અથવા x = g(y) આદેશ લો.
- (2) સંકલનનો અચળ વાપર્યા વગર નવા સંકલ્યનું નવા ચલને સાપેક્ષ સંકલન કરો.
- (3) નવા ચલના સ્થાને મૂળ ચલ મૂકીને જવાબને મૂળ ચલના સ્વરૂપમાં લખો.
- (4) ત્રીજા પગલામાં મળેલ જવાબમાં આપેલ સંકલિતની સીમાઓને સાપેક્ષ મૂલ્ય મેળવો અને ઊર્ધ્વસીમા તથા અધઃસીમા એ બંને મૂલ્ય આગળનાં મૂલ્યનો તફાવત મેળવો.

282

ગણિત

નોંધ : આ રીતને ઝડપી બનાવવા આપશે નીચે દર્શાવ્યા પ્રમાશે પણ આગળ વધી શકીએ. પગલાં
 (1) અને (2) કર્યાં બાદ પગલું (3) કરવાની જરૂર નથી. અહીં આપશે સંકલિતને નવા ચલનાં સ્વરૂપમાં
 મૂકી તેની સીમાઓને પણ નવા ચલની સાપેક્ષ બદલીએ તો આપશે સીધા છેલ્લા પદ પર જઈ શકીએ.

હવે, આ અંગે સમજ કેળવવા કેટલાંક ઉદાહરણો જોઈએ.

ઉદાહરણ 29 :
$$\int_{-1}^{1} 5x^4 \sqrt{x^5 + 1} \, dx$$
 ની કિંમત મેળવો.
ઉકેલ : $t = x^5 + 1$ લેતાં, $dt = 5x^4 \, dx$
 $\therefore \int 5x^4 \sqrt{x^5 + 1} \, dx = \int \sqrt{t} \, dt = \frac{2}{3}t^{\frac{3}{2}} = \frac{2}{3}(x^5 + 1)^{\frac{3}{2}}$
તેથી, $\int_{-1}^{1} 5x^4 \sqrt{x^5 + 1} \, dx = \frac{2}{3}[(x^5 + 1)^{\frac{3}{2}}]_{-1}^{-1}$
 $= \frac{2}{3}[(1^5 + 1)^{\frac{3}{2}}] - ((-1)^5 + 1)^{\frac{3}{2}}]$
 $= \frac{2}{3}[2\sqrt{2}] = \frac{4\sqrt{2}}{3}$

<mark>બીજી રીત :</mark> સૌપ્રથમ આપણે આપેલ સંકલિતનું રૂપાંતરણ કરીશું અને ત્યાર બાદ રૂપાંતરિત સંકલિતનું નવી સીમાઓ અનુસાર મૂલ્ય મેળવીશું.

ધારો કે
$$t = x^5 + 1$$
, તો $dt = 5x^4 dx$ થાય.
અહીં, $x = -1$ ત્યારે $t = 0$ અને $x = 1$ ત્યારે $t = 2$
આમ, જેમ x નું મૂલ્ય –1 થી 1 થાય છે તેમ t નું મૂલ્ય 0 થી 2 થાય છે

$$\therefore \int_{-1}^{1} 5x^4 \sqrt{x^5 + 1} \, dx = \int_{0}^{2} \sqrt{t} \, dt$$
$$= \frac{2}{3} \left[t^{\frac{3}{2}} \right]_{0}^{2} = \frac{2}{3} \left(2^{\frac{3}{2}} - 0^{\frac{3}{2}} \right) = \frac{2}{3} \left(2\sqrt{2} \right) = \frac{4\sqrt{2}}{3}$$

ઉદાહરણ 30 : $\int_{0}^{1} \frac{tan^{-1}x}{1+x^{2}} dx + \frac{1}{2} dx + \frac{1}{2} dx$

ઉકેલ : ધારો કે, $t = tan^{-1}x$ તો $dt = \frac{1}{1+x^2} dx$. અહીં x = 0 ત્યારે t = 0 અને x = 1 ત્યારે $t = \frac{\pi}{4}$ આમ, xનું મૂલ્ય 0 થી 1 થાય છે, તેમ tનું મૂલ્ય 0 થી $\frac{\pi}{4}$ થાય છે.

સંકલન

$$\operatorname{even}, \int_{0}^{1} \frac{tan^{-1}x}{1+x^{2}} dx = \int_{0}^{\frac{\pi}{4}} t dt = \left[\frac{t^{2}}{2}\right]_{0}^{\frac{\pi}{4}} = \frac{1}{2}\left[\frac{\pi^{2}}{16} - 0\right] = \frac{\pi^{2}}{32}$$

$$\operatorname{even}, \int_{0}^{1} \frac{tan^{-1}x}{1+x^{2}} dx = \int_{0}^{\frac{\pi}{4}} t dt = \left[\frac{t^{2}}{2}\right]_{0}^{\frac{\pi}{4}} = \frac{1}{2}\left[\frac{\pi^{2}}{16} - 0\right] = \frac{\pi^{2}}{32}$$

નીચે આપેલ સંકલિતો 1થી 8 નું મૂલ્ય આદેશની રીતનો ઉપયોગ કરીને મેળવો :

1.
$$\int_{0}^{1} \frac{x}{x^{2}+1} dx$$
2.
$$\int_{0}^{\frac{\pi}{2}} \sqrt{\sin \phi} \cos^{5} \phi d\phi$$
3.
$$\int_{0}^{1} \sin^{-1} \left(\frac{2x}{1+x^{2}}\right) dx$$
4.
$$\int_{0}^{2} x\sqrt{x+2} dx$$
(x + 2 = t² el).)
5.
$$\int_{0}^{\frac{\pi}{2}} \frac{\sin x}{1+\cos^{2} x} dx$$
6.
$$\int_{0}^{2} \frac{dx}{x+4-x^{2}}$$
7.
$$\int_{-1}^{1} \frac{dx}{x^{2}+2x+5}$$
8.
$$\int_{1}^{2} \left(\frac{1}{x} - \frac{1}{2x^{2}}\right) e^{2x} dx$$
ysil 9 equi 10 ui fature angi ord d the andread fasculation discurves the set is is is in the formula of the set of th

7.10 નિયત સંકલનના કેટલાક ગુણધર્મો

નિયત સંકલનના કેટલાક મહત્ત્વના ગુણધર્મો નીચે પ્રમાણે છે : આ ગુણધર્મોના ઉપયોગથી નિયત સંકલનની કિંમત શોધવી વધુ સરળ બનશે.

$$P_{0}: \int_{a}^{b} f(x) dx = \int_{a}^{b} f(t) dt$$

$$P_{1}: \int_{a}^{b} f(x) dx = -\int_{b}^{a} f(x) dx. \quad \text{allive lasey del} \quad \int_{a}^{a} f(x) dx = 0$$

$$P_{2}: \int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx$$

Downloaded from https:// www.studiestoday.com

283

284

ગણિત

સંકલન

 P_4 ની સાબિતી : t = a - x લેતાં, dt = -dx. જયારે x = 0 ત્યારે t = a અને x = a ત્યારે t = 0. હવે, P_3 પ્રમાણે આગળ વધો.

 P_5 ની સાબિતી : P_2 પરથી, આપણને

$$\int_{0}^{2a} f(x) dx = \int_{0}^{a} f(x) dx + \int_{a}^{2a} f(x) dx$$
 મળશે.

હવે, જમણી બાજુના બીજા સંકલિતમાં t = 2a - x લેતાં, dt = -dx, જ્યારે x = a ત્યારે t = a અને જ્યારે x = 2a ત્યારે t = 0. વળી, x = 2a - t પણ મળશે.

તેથી બીજું સંકલિત,

^{2a}

$$\int_{a}^{a} f(x) dx = -\int_{a}^{0} f(2a - t) dt$$

$$= \int_{0}^{a} f(2a - t) dt$$

$$= \int_{0}^{a} f(2a - x) dx$$
મળશે.

તેથી, $\int_{0}^{2a} f(x) dx = \int_{0}^{a} f(x) dx + \int_{0}^{a} f(2a - x) dx$

 P_6 ની સાબિતી : P_5 પરથી આપણી પાસે,

$$\int_{0}^{2a} f(x) \, dx = \int_{0}^{a} f(x) \, dx + \int_{0}^{a} f(2a - x) \, dx \, \hat{\vartheta}. \qquad \dots (1)$$

હવે, જો $f(2a - x) = f(x), \forall x \in D_f$ તો પરિણામ (1) પરથી

$$\int_{0}^{2a} f(x) \, dx = \int_{0}^{a} f(x) \, dx + \int_{0}^{a} f(x) \, dx = 2 \int_{0}^{a} f(x) \, dx \text{ and}$$

અને જો, f(2a - x) dx = -f(x), $\forall x \in D_f$ તો પરિણામ (1) પરથી,

$$\int_{0}^{2a} f(x) \, dx = \int_{0}^{a} f(x) \, dx - \int_{0}^{a} f(x) \, dx = 0 \, \text{uril}.$$

286

ગણિત

$$\begin{aligned} \mathbf{P}_{\mathbf{y}} \cdot \mathbf{f} & \text{subid} : \mathbf{P}_{2} \text{ vexil} \\ & \prod_{-a}^{a} f(x) \, dx = \prod_{-a}^{0} f(x) \, dx + \prod_{0}^{a} f(x) \, dx \, a^{3} \text{.} \\ & \text{set, whill sugent wat a sistent i $t = -x$ idet, $dt = -dx$.
while $x = -a$ relies $t = a$ with $x = 0$ relies $t = 0$ with $x = -t$
 $\therefore \quad \int_{-a}^{0} f(x) \, dx = -\int_{0}^{0} f(-t) \, dt + \prod_{0}^{a} f(x) \, dx \\ & = \prod_{-a}^{a} f(-x) \, dx + \int_{0}^{a} f(x) \, dx \\ & = \prod_{0}^{a} f(-x) \, dx + \int_{0}^{a} f(x) \, dx \\ & = \int_{0}^{a} f(x) \, dx + \int_{0}^{a} f(x) \, dx \\ & = \int_{0}^{a} f(x) \, dx + \int_{0}^{a} f(x) \, dx \\ & = \int_{0}^{a} f(x) \, dx + \int_{0}^{a} f(x) \, dx = 2 \int_{0}^{a} f(x) \, dx \, a^{3} \text{.} \\ & = \int_{-a}^{a} f(x) \, dx = \int_{0}^{a} f(x) \, dx + \int_{0}^{a} f(x) \, dx = 2 \int_{0}^{a} f(x) \, dx \, a^{3} \text{.} \\ & = \int_{-a}^{a} f(x) \, dx = \int_{0}^{a} f(x) \, dx + \int_{0}^{a} f(x) \, dx = 2 \int_{0}^{a} f(x) \, dx \, a^{3} \text{.} \\ & = \int_{-a}^{a} f(x) \, dx = \int_{0}^{a} f(x) \, dx + \int_{0}^{a} f(x) \, dx = 0 \text{ urb.} \\ & \text{finds if with a view of use and use and use of use o$$$

સંકલન

$$= 2 \int_{0}^{\frac{\pi}{4}} \left(\frac{1-\cos 2x}{2}\right) dx$$

$$= \frac{\pi}{4} (1-\cos 2x) dx$$

$$= \left[x - \frac{1}{2} \sin 2x\right]_{0}^{\frac{\pi}{4}} = \left[\frac{\pi}{4} - \frac{1}{2} \sin \frac{\pi}{2}\right] - 0 = \frac{\pi}{4} - \frac{1}{2}$$
(SERSAN 33 : $\int_{0}^{\pi} \frac{x \sin x}{1+\cos^{2}x} dx \cdot \frac{1}{3} + \frac{1}$

288

$$\begin{aligned} e^{\frac{3}{4}}, f(x) &= \sin^{\frac{3}{4}} x \cdot \cos^{4} x \, dt \, f(-x) &= \sin^{\frac{3}{4}} (-x) = -\sin^{\frac{3}{4}} x \cdot \cos^{4} x = -f(x) \\ d^{\frac{3}{4}}, f(x) &= \sin^{\frac{3}{4}} x \cdot \cos^{4} x \, dt \, f(x) \, v^{\frac{3}{4}} | x = 0 \end{aligned}$$

$$\begin{aligned} 6^{\frac{3}{4}} 6^{\frac{3}{4}} &= 1 = \int_{0}^{\frac{\pi}{2}} \frac{\sin^{4} x}{\sin^{4} x + \cos^{4} x} \, dx \, v^{\frac{1}{4}} | x \in u \, \frac{3}{4} | n(u). \end{aligned}$$

$$\begin{aligned} 6^{\frac{3}{4}} e^{\frac{3}{4}} &= 1 = \int_{0}^{\frac{\pi}{2}} \frac{\sin^{4} x}{\sin^{4} x + \cos^{4} x} \, dx \, du. \qquad \dots(1) \end{aligned}$$

$$\begin{aligned} e^{\frac{3}{4}} P_{4} \, u^{\frac{3}{4}} |_{1} &= \int_{0}^{\frac{\pi}{2}} \frac{\sin^{4} (\frac{\pi}{2} - x)}{\sin^{4} (\frac{\pi}{2} - x) + \cos^{4} (\frac{\pi}{2} - x)} \, dx \end{aligned}$$

$$\begin{aligned} &= \int_{0}^{\frac{\pi}{2}} \frac{\cos^{4} x}{\cos^{4} x + \sin^{4} x} \, dx &= \dots(2) \end{aligned}$$

$$\begin{aligned} (1) &= \sqrt{1} \, (2) \, \frac{3}{42} u^{\frac{3}{4}} |_{1} \frac{x}{\sqrt{\cos^{4} x}} \, dx \end{aligned}$$

$$\begin{aligned} &= \int_{0}^{\frac{\pi}{2}} \frac{\sin^{4} x + \cos^{4} x}{\sin^{4} x + \cos^{4} x} \, dx \end{aligned}$$

$$\begin{aligned} &= \int_{0}^{\frac{\pi}{2}} \frac{\sin^{4} x + \cos^{4} x}{\sin^{4} x + \cos^{4} x} \, dx \end{aligned}$$

$$\begin{aligned} &= \int_{0}^{\frac{\pi}{2}} \frac{\sin^{4} x + \cos^{4} x}{\sin^{4} x + \cos^{4} x} \, dx \end{aligned}$$

$$\begin{aligned} &= \int_{0}^{\frac{\pi}{2}} \frac{\sin^{4} x + \cos^{4} x}{\sin^{4} x + \cos^{4} x} \, dx \end{aligned}$$

$$\begin{aligned} &= \int_{0}^{\frac{\pi}{2}} \frac{1}{\sqrt{\cos^{4} x + \cos^{4} x}} \, dx \end{aligned}$$

$$\begin{aligned} &= \int_{0}^{\frac{\pi}{2}} \frac{1}{\sqrt{\cos^{4} x + \cos^{4} x}} \, dx \end{aligned}$$

$$\begin{aligned} &= \int_{0}^{\frac{\pi}{2}} \frac{1}{\sqrt{\cos^{4} x + \cos^{4} x}} \, dx \end{aligned}$$

$$\begin{aligned} &= \int_{0}^{\frac{\pi}{2}} \frac{1}{\sqrt{4}} \frac{1}{1 + \sqrt{4} \tan x} - \frac{1}{\sqrt{4}} \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}$$

સંકલન

289 (1) અને (2)નો સરવાળો કરતાં, $2I = \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} dx = \left[x\right]_{\frac{\pi}{6}}^{\frac{\pi}{3}} = \frac{\pi}{3} - \frac{\pi}{6} = \frac{\pi}{6}. \text{ del } I = \frac{\pi}{12}$ ઉદાહરણ 37 : $\int_{0}^{\frac{\pi}{2}} \log(\sin x) \, dx$ નું મૂલ્ય મેળવો. (ખરેખર તો આ ''અનુચિત સંકલન''નું ઉદાહરણ છે.) ઉકેલ : ધારો કે I = $\int_{0}^{\frac{\pi}{2}} \log(\sin x) dx.$ P₄ પરથી, I = $\int_{0}^{\frac{\pi}{2}} \log \sin \left(\frac{\pi}{2} - x\right) dx = \int_{0}^{\frac{\pi}{2}} \log (\cos x) dx$ I નાં બે મૂલ્યોનો સરવાળો કરતાં, $2I = \int_{0}^{\frac{\pi}{2}} (\log \sin x + \log \cos x) \, dx$ $= \int_{0}^{\frac{\pi}{2}} (\log \sin x \cdot \cos x) \, dx$ $= \int_{0}^{\frac{\pi}{2}} (\log (\sin x \cdot \cos x) + \log 2 - \log 2) \, dx$ (log 2 ને ઉમેરી બાદ કરતાં) $= \int_{0}^{\frac{\pi}{2}} (\log (\sin 2x) dx - \int_{0}^{\frac{\pi}{2}} \log 2 dx)$ (કેમ?) પ્રથમ સંકલિતમાં 2x = t લેતાં, 2dx = dt થશે. તથા, જ્યારે x = 0 ત્યારે t = 0 અને જ્યારે $x = \frac{\pi}{2}$ ત્યારે $t = \pi$. $\therefore 2I = \frac{1}{2} \int_{0}^{\pi} \log(\sin t) dt - \frac{\pi}{2} \log 2$ $=\frac{2}{2}\int_{-\infty}^{\frac{\pi}{2}}\log(\sin t) dt - \frac{\pi}{2}\log 2$ $(P_6 \text{ uzell, } sin(\pi - t) = sint)$ $= \int_{0}^{\frac{\pi}{2}} \log(\sin x) \, dx - \frac{\pi}{2} \log 2$ = I $-\frac{\pi}{2}\log 2$ તેથી $\int_{0}^{\frac{\pi}{2}} \log \sin x \, dx = -\frac{\pi}{2} \log 2$

290

સ્વાધ્યાય 7.11

નિયત સંકલનના ગુણધર્મોનો ઉપયોગ કરી પ્રશ્નો 1થી 19 માં દર્શાવેલા સંકલિતોની કિંમત શોધો :

સંકલન

291

પ્રકીર્ણ ઉદાહરણો

ઉદાહરણ 38 : $\int \cos 6x \sqrt{1 + \sin 6x} \, dx$ મેળવો. ઉકેલ : $1 + sin \ 6x = t$ લો. તેથી $6 \ cos \ 6x \ dx = dt$ $\therefore \int \cos 6x \sqrt{1 + \sin 6x} \, dx = \frac{1}{6} \int t^{\frac{1}{2}} dt$ $=\frac{1}{6} \times \frac{2}{3}(t)^{\frac{3}{2}} + c$ $=\frac{1}{9}(1+\sin 6x)^{\frac{3}{2}}+c$ ઉદાહરણ 39 : $\int \frac{(x^4 - x)^{\frac{1}{4}}}{x^5} dx$ મેળવો. **Grage:** $\int \frac{(x^4 - x)^{\frac{1}{4}}}{x^5} dx = \int \frac{\left(1 - \frac{1}{x^3}\right)^{\frac{1}{4}}}{x^4} dx$ $\left(1-\frac{1}{x^3}\right) = (1-x^{-3}) = t$ each, $\frac{3}{x^4} dx = dt$ $\therefore \quad \left[\frac{(x^4 - x)^{\frac{1}{4}}}{x^5} \ dx = \frac{1}{3} \ \int t^{\frac{1}{4}} \ dt = \frac{1}{3} \ \times \ \frac{4}{5}(t)^{\frac{5}{4}} + c = \frac{4}{15} \left(1 - \frac{1}{x^3} \right)^{\frac{5}{4}} + c$ ઉદાહરણ 40 : $\left[\frac{x^4}{(x-1)(x^2+1)} dx \right]$ મેળવો. ઉકેલ : અહીં, $\frac{x^4}{(x-1)(x^2+1)} = (x+1) + \frac{1}{x^3 - x^2 + x - 1}$ $= (x + 1) + \frac{1}{(x-1)(x^2+1)}$...(1) હવે, $\frac{1}{(x-1)(x^2+1)} = \frac{A}{x-1} + \frac{Bx+C}{x^2+1}$ લઈએ. ...(2) તેથી, $1 = A(x^2 + 1) + (Bx + C)(x - 1)$ $1 = (A + B)x^{2} + (C - B)x + (A - C)$ હવે, બંને બાજુએ x^2 તથા x ના સહગુણકો અને અચળ પદ સરખાવતાં, A + B = 0, C - B = 0 અને A - C = 1 મળશે. આ સમીકરણો ઉકેલતાં, $A = \frac{1}{2}, B = C = -\frac{1}{2}$ હવે, A, B, C નાં મુલ્યો સમીકરણ (2) માં મુકતાં, $\therefore \quad \frac{1}{(x-1)(x^2+1)} = \frac{1}{2(x-1)} - \frac{1}{2} \frac{x}{(x^2+1)} - \frac{1}{2(x^2+1)}$...(3) સમીકરણ (3) ની કિંમત (1) માં લેતાં. $\frac{x^4}{(x-1)(x^2+1)} = (x+1) + \frac{1}{2(x-1)} - \frac{1}{2}\frac{x}{(x^2+1)} - \frac{1}{2}\frac{1}{(x^2+1)}$ $\therefore \quad \left[\frac{x^4 \, dx}{(x-1)(x^2+1)} = \frac{x^2}{2} + x + \frac{1}{2} \log |x-1| - \frac{1}{4} \log (x^2+1) - \frac{1}{2} \tan^{-1}x + c \right]$

292

ઉદાહરણ 41 :
$$\int \left[\log (\log x) + \frac{1}{(\log x)^2} \right] dx$$
 મેળવો.
ઉકેલ : I =
$$\int \left[\log (\log x) + \frac{1}{(\log x)^2} \right] dx$$
$$= \int \log (\log x) dx + \int \frac{1}{(\log x)^2} dx$$

હવે, પ્રથમ સંકલિતમાં 1 ને બીજા વિધેય તરીકે લેતાં અને ખંડશઃ સંકલન કરતાં આપણને નીચે પ્રમાણે પરિણામ પ્રાપ્ત થશે :

$$I = x \log (\log x) - \int \frac{1}{x \log x} x \, dx + \int \frac{dx}{(\log x)^2}$$
$$= x \log (\log x) - \int \frac{dx}{\log x} + \int \frac{dx}{(\log x)^2} \qquad \dots(1)$$
$$\int \frac{dx}{\log x} + \frac{1}{2} \ln x +$$

$$\int \frac{dx}{\log x} = \left[\frac{x}{\log x} - \int x \cdot \left\{\frac{-1}{(\log x)^2} \left(\frac{1}{x}\right)\right\} dx\right]$$
મળશે. ...(2)

પરિષ્ટામ (2) ને (1) માં મૂકતાં,

I =
$$x \log (\log x) - \frac{x}{\log x} - \int \frac{dx}{(\log x)^2} + \int \frac{dx}{(\log x)^2}$$

= $x \log (\log x) - \frac{x}{\log x} + c$

ઉદાહરણ 42 : $\int (\sqrt{\cot x} + \sqrt{\tan x}) dx$ મેળવો. ઉદેલ : I = $\int (\sqrt{\cot x} + \sqrt{\tan x}) dx = \int \sqrt{\tan x} (1 + \cot x) dx$ $\tan x = t^2$ લેતાં, $\sec^2 x dx = 2t dt$ અથવા $dx = \frac{2t}{1+t^4} dt$ તેથી, I = $\int t \left(1 + \frac{1}{t^2}\right) \times \left(\frac{2t}{1+t^4}\right) dt$ $= 2 \int \frac{t^2 + 1}{t^4 + 1} dt$ $= 2 \int \frac{\left(1 + \frac{1}{t^2}\right) dt}{\left(t^2 + \frac{1}{t^2}\right)}$ $= 2 \left[\frac{\left(1 + \frac{1}{t^2}\right) dt}{\left(t^2 + \frac{1}{t^2}\right)^2 + 2}\right]$

Downloaded from https:// www.studiestoday.com

ગણિત

સંકલન

Downloaded from https:// www.studiestoday.com

293

294

ગણિત

સંકલન

પ્રકીર્ણ સ્વાધ્યાય 7

પ્રશ્નો 1 થી 24 માં આપેલાં વિધેયોના સંકલિત મેળવો :

પ્રશ્નો 25 થી 33 માં આપેલ નિયત સંકલિતોની કિંમત મેળવો :

$$25. \int_{\frac{\pi}{2}}^{\pi} e^{x} \left(\frac{1-\sin x}{1-\cos x}\right) dx \qquad 26. \int_{0}^{\frac{\pi}{4}} \frac{\sin x \cos x}{\cos^{4} x + \sin^{4} x} dx \qquad 27. \int_{0}^{\frac{\pi}{2}} \frac{\cos^{2} x dx}{\cos^{2} x + 4 \sin^{2} x}$$

$$28. \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{\sin x + \cos x}{\sqrt{\sin 2x}} dx \qquad 29. \int_{0}^{1} \frac{dx}{\sqrt{1+x} - \sqrt{x}} \qquad 30. \int_{0}^{\frac{\pi}{4}} \frac{\sin x + \cos x}{9 + 16 \sin 2x} dx$$

$$31. \int_{0}^{\frac{\pi}{2}} \sin 2x \tan^{-1} (\sin x) dx \qquad 32. \int_{0}^{\frac{\pi}{4}} \frac{x \tan x}{\sec x + \tan x} dx$$

$$33. \int_{1}^{4} [|x - 1| + |x - 2| + |x - 3|] dx$$

296
yi 34 ell 39 aulon sù :
34.
$$\int_{1}^{3} \frac{dx}{x^{2}(x+1)} = \frac{2}{3} + \log \frac{2}{3}$$

35. $\int_{0}^{1} x e^{x} dx = 1$
36. $\int_{-1}^{1} x^{17} \cos^{4} x dx = 0$
37. $\int_{0}^{\frac{\pi}{2}} sin^{3} x dx = \frac{2}{3}$
38. $\int_{0}^{\frac{\pi}{4}} 2 \tan^{3} x dx = 1 - \log 2$
39. $\int_{0}^{1} sin^{-1} x dx = \frac{\pi}{2}$
40. $\int_{0}^{1} e^{2 - 3x} dx$ $dx = 1 - \log 2$
39. $\int_{0}^{1} sin^{-1} x dx = \frac{\pi}{2}$
40. $\int_{0}^{1} e^{2 - 3x} dx$ dx at even on the anticle herein the angle herein the

(C) -1 (D) $\frac{\pi}{4}$ (A) 1 (B) 0

(C) $\frac{b-a}{2} \int_{a}^{b} f(x) dx$

44. $\int_{0}^{1} tan^{-1} \left(\frac{2x-1}{1+x-x^2} \right) dx$ ig uge

Downloaded from https:// www.studiestoday.com

(D) $\frac{a+b}{2} \int_{a}^{b} f(x) dx$

29

ગણિત

- 1

:

સંકલન

સારાંશ

સંકલન એ વિકલનની વ્યસ્તક્રિયા છે. વિકલ ગણિતમાં આપેલ વિધેયનું વિકલિત શોધવાનું હોય છે.
 જ્યારે સંકલ ગણિતમાં વિધેયનું વિકલિત આપેલ હોય અને તેના પરથી આપણે મૂળ વિધેય શોધવાનું હોય છે.
 શોધવાનું હોય છે. આમ, સંકલન એ વિકલનની ક્રિયાની વ્યસ્ત ક્રિયા છે.

જો $\frac{d}{dx}(F(x)) = f(x)$ હોય, તો આપણે $\int f(x) dx = F(x) + c$. લખીએ છીએ. આ સંકલિતને અનિયત સંકલિત કે વ્યાપક સંકલિત કહે છે. c એ સંકલનનો અચળ છે. આ બધા સંકલિતોમાં અચળનો તફાવત હોય છે.

- ભૌમિતિક દ્રષ્ટિએ અનિયત સંકલિત એ વક્રોના પરિવારનો સમૂહ છે. આ સમુદાયના બધા સભ્યોને
 Y-અક્ષની સાપેક્ષ સમાંતર ઉપર કે નીચે સ્થાનાંતરિત કરી મેળવી શકાય છે.
- 🔷 અનિયત સંકલનના કેટલાક ગુણધર્મો નીચે પ્રમાણે છે :

(i)
$$\int [f(x) + g(x)] dx = \int f(x) dx + \int g(x) dx$$

(ii) કોઈ વાસ્તવિક અચળ k માટે, $\int k f(x) dx = k \int f(x) dx$ વ્યાપક રીતે, $f_1, f_2, f_3, ..., f_n$ વિધેયો હોય અને $k_1, k_2, k_3, ..., k_n$ વાસ્તવિક સંખ્યાઓ હોય, તો $\int [k_1 f_1(x) + k_2 f_2(x) + ... + k_n f_n(x)] dx$

$$= k_1 \int f_1(x) \, dx + k_2 \int f_2(x) \, dx + \dots + k_n \int f_n(x) \, dx$$

🔹 સંકલિતનાં કેટલાંક પ્રમાણિત રૂપો

- (i) $\int x^n dx = \frac{x^{n+1}}{n+1} + c, n \neq -1$. વિશિષ્ટ વિકલ્પ $\int dx = x + c$
- (ii) $\int \cos x \, dx = \sin x + c$ (iii) $\int \sin x \, dx = -\cos x + c$
- (iv) $\int \sec^2 x \, dx = \tan x + c$ (v) $\int \csc^2 x \, dx = -\cot x + c$
- (vi) $\int \sec x \tan x \, dx = \sec x + c$

(viii)
$$\int \frac{dx}{\sqrt{1-x^2}} = \sin^{-1}x + c$$

(x)
$$\int \frac{dx}{1+x^2} = tan^{-1}x + c$$

(vii)
$$\int cosec \ x \ cot \ x \ dx = -cosec \ x + c$$

(ix)
$$\int \frac{dx}{\sqrt{1-x^2}} = -\cos^{-1}x + c$$

(xi)
$$\int \frac{dx}{1+x^2} = -cot^{-1}x + c$$

(xii)
$$\int e^x dx = e^x + c$$
 (xiii) $\int a^x dx = \frac{a^x}{\log a} + c$

(xiv)
$$\int \frac{dx}{|x|\sqrt{x^2-1}} = sec^{-1}x + c$$
 (xv) $\int \frac{dx}{|x|\sqrt{x^2-1}} = -cosec^{-1}x + c$

$$\int \frac{1}{x} dx = \log |x| + c$$
(xvi) $\int \frac{1}{x} dx = \log |x| + c$

ગણિત

આંશિક અપૂર્ણાકની રીત :

આપણે યાદ કરીએ કે સંમેય વિધેય $\frac{P(x)}{Q(x)}$ એ બે બહુપદીઓનું ભાગફળ છે. P(x) અને Q(x) એ x માં બહુપદીઓ છે અને Q(x) ≠ 0. જો P(x) ની ઘાત Q(x) ની ઘાત કરતા વધુ (કે એટલી જ) હોય, તો P(x) ને Q(x) વડે ભાગીશું કે જેથી $\frac{P(x)}{Q(x)} = T(x) + \frac{P_1(x)}{Q(x)}$ સ્વરૂપમાં લખી શકાય. અહીં, T(x) એ એક બહુપદી છે અને P₁(x) ની ઘાત Q(x) ની ઘાત કરતાં ઓછી છે. T(x) બહુપદી હોવાથી તેનું સંકલન સરળતાથી કરી શકાય છે. આપણે $\frac{P_1(x)}{Q(x)}$ ને નીચે દર્શાવ્યા પ્રમાણે બે કે તેથી વધુ યોગ્ય પ્રકારનાં સંમેય વિધેયોના સરવાળાના સ્વરૂપમાં આંશિક અપૂર્ણાંકની રીતે મૂકી તેનું સંકલન કરીશું :

(1)
$$\frac{px+q}{(x-a)(x-b)} = \frac{A}{x-a} + \frac{B}{x-b} , a \neq b$$

(2)
$$\frac{px+q}{(x-a)^2} = \frac{A}{x-a} + \frac{B}{(x-a)^2}$$

(3)
$$\frac{px^2 + qx + r}{(x-a)(x-b)(x-c)} = \frac{A}{x-a} + \frac{B}{x-b} + \frac{C}{x-c}$$
 (a, b, c [Arrd])

(4)
$$\frac{px^2 + qx + r}{(x-a)^2(x-b)} = \frac{A}{x-a} + \frac{B}{(x-a)^2} + \frac{C}{x-b}, a \neq b$$

(5) જો
$$x^2 + bx + c$$
 ના આગળ સુરેખ અવયવો શક્ય ન હોય, તો

$$\frac{px^{2} + qx + r}{(x-a)(x^{2} + bx + c)} = \frac{A}{x-a} + \frac{Bx + C}{x^{2} + bx + c}$$

🔹 સંકલન માટે આદેશની રીત ઃ

સંકલનના ચલમાં પરિવર્તન કરતાં આપેલ સંકલિત પ્રમાણિત સંકલિતના રૂપમાં રૂપાંતરિત થઈ જાય છે. આમ એક ચલને બીજા ચલમાં પરિવર્તિત કરવાની આ રીતને આદેશની રીત કહે છે. જ્યાં સંકલ્ય ત્રિકોણમિતીય વિધેય ધરાવતું હોય ત્યારે આપણે સંકલન મેળવવા જાણીતા નિત્યસમોનો ઉપયોગ કરીએ છીએ. આદેશની રીતનો ઉપયોગ કરી આપણે નીચે દર્શાવેલ કેટલાંક પ્રમાણિત રૂપો મેળવીએ છીએ :

- (i) $\int tan x dx = \log |sec x| + c$
- (ii) $\int \cot x \, dx = \log |\sin x| + c$
- (iii) $\int \sec x \, dx = \log |\sec x + \tan x| + c$
- (iv) $\int cosec \ x \ dx = \log | cosec \ x cot \ x | + c$

સંકલન

🕨 કેટલાંક વિશિષ્ટ વિધેયોના સંકલિત :

(i)
$$\int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \log \left| \frac{x - a}{x + a} \right| + c$$
 (ii) $\int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \log \left| \frac{a + x}{a - x} \right| + c$

(iii)
$$\int \frac{dx}{x^2 + a^2} = \frac{1}{a} \tan^{-1} \left(\frac{x}{a}\right) + c$$
 (iv) $\int \frac{dx}{\sqrt{x^2 - a^2}} = \log|x + \sqrt{x^2 - a^2}| + c$

(v)
$$\int \frac{dx}{\sqrt{a^2 - x^2}} = \sin^{-1}\left(\frac{x}{a}\right) + c, \ a > 0$$
 (vi) $\int \frac{dx}{\sqrt{x^2 + a^2}} = \log|x + \sqrt{x^2 + a^2}| + c$

આપેલ વિધેય f_1 અને f_2 માટે

$$\int f_1(x) \cdot f_2(x) \, dx = f_1(x) \, \int f_2(x) \, dx - \int \left[\frac{d}{dx} f_1(x) \cdot \int f_2(x) \, dx\right] \, dx$$

બે વિધેયના ગુણાકારનો સંકલિત = પ્રથમ વિધેય × બીજા વિધેયનું સંકલિત

– {પ્રથમ વિધેયનું વિકલિત × બીજા વિધેયનો સંકલિત} નો સંકલિત પ્રથમ વિધેય અને બીજા વિધેયની પસંદગી યોગ્ય રીતે થાય તે જરૂરી છે. અહીં, સ્પષ્ટ છે કે જેનું સંકલિત જ્ઞાત હોય તે બીજા વિધેય તરીકે લેવાય.

•
$$\int e^x [f(x) + f'(x)] dx = e^x f(x) + c$$

🔹 કેટલાક વિશિષ્ટ પ્રકારના સંકલિત :

(i)
$$\int \sqrt{x^2 - a^2} \, dx = \frac{x}{2} \sqrt{x^2 - a^2} - \frac{a^2}{2} \log |x + \sqrt{x^2 - a^2}| + c$$

(ii)
$$\int \sqrt{x^2 + a^2} \, dx = \frac{x}{2} \sqrt{x^2 + a^2} + \frac{a^2}{2} \log |x + \sqrt{x^2 + a^2}| + c$$

(iii)
$$\int \sqrt{a^2 - x^2} \, dx = \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \sin^{-1} \frac{x}{a} + c, \quad a > 0$$

(iv)
$$\int \frac{dx}{ax^2 + bx + c}$$
 અથવા $\int \frac{dx}{\sqrt{ax^2 + bx + c}}$ પ્રકારનાં સંકલિતોને નીચે દર્શાવ્યા પ્રમાણે પ્રમાણિત

સંકલિતમાં રૂપાંતરિત કરી શકાય :

$$ax^{2} + bx + c = a\left[x^{2} + \frac{b}{a}x + \frac{c}{a}\right] = a\left[\left(x + \frac{b}{2a}\right)^{2} + \left(\frac{c}{a} - \frac{b^{2}}{4a^{2}}\right)\right]$$

 $(v) \int \frac{px+q}{ax^2+bx+c} dx \text{ અથવા} \int \frac{(px+q)}{\sqrt{ax^2+bx+c}} dx \text{ પ્રકારનાં સંકલિતોને નીચે દર્શાવ્યા પ્રમાણે } \\ \text{ પ્રમાણિત સંકલિતમાં રૂપાંતરિત કરી શકાય :} \\ px+q = A \frac{d}{dx} (ax^2+bx+c) + B = A (2ax+b) + B \\ \text{અહીં, બંને બાજુએ } x \text{ -n સહગુણક અથવા અચળ પદ સરખાવી A અને B-fl કિંમત મેળવવામાં આવે છે. }$

300

• આપણે $\int_{a}^{b} f(x) dx$ ને વક્ર $y = f(x), a \le x \le b$, X-અક્ષ અને રેખાઓ x = a અને x = b દ્વારા આવૃત્ત પ્રદેશના ક્ષેત્રફળ તરીકે વ્યાખ્યાયિત કર્યું છે. ધારો કે x એ [a, b] માં આવેલ કોઈ વાસ્તવિક સંખ્યા છે, તો $\int_{a}^{x} f(x) dx$ ક્ષેત્રફળ વિધેય A(x) દર્શાવે છે. આ ક્ષેત્રફળ વિધેયની સંકલ્પના આપણને નિયત સંકલનના મૂળભૂત પ્રમેય તરફ દોરી જાય છે.

- સંકલન ગણિતનો પહેલો મૂળભૂત પ્રમેય :
 ધારો કે ક્ષેત્રફળ વિધેય A(x) = ∫ f(x) dx એ x > a દ્વારા વ્યાખ્યાયિત છે. વિધેય f એ [a, b] પર સતત છે, તો A'(x) = f(x), ∀x ∈ [a, b].
- સંકલન ગણિતનો બીજો મૂળભૂત પ્રમેય :

ધારો કે વિધેય f એ [a, b] પર સતત છે અને F એક એવું વિધેય છે કે પ્રદેશના પ્રત્યેક x માટે, $\frac{d}{dx}F(x) = f(x), \operatorname{cli} \int_{a}^{b} f(x) dx = [F(x) + c]_{a}^{b} = F(b) - F(a).$ આને f નું [a, b] પર નિયત સંકલન કહે છે. a અને b ને સંકલનની સીમાઓ કહે છે. a ને અધઃસીમા અને b ને ઊર્ધ્વસીમા કહે છે.

Downloaded from https:// www.studiestoday.com

ગણિત

પ્રકરણ

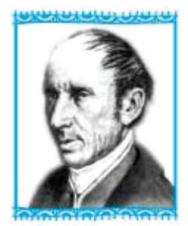
8

સંકલનનો ઉપયોગ

One should study Mathematics because it is only through Mathematics that nature can be conceived in harmonious form. – BIRKHOFF *

8.1 પ્રાસ્તાવિક

ભૂમિતિમાં આપણે ત્રિકોણ, લંબચોરસ, સમલંબ ચતુષ્કોણ અને વર્તુળ જેવી ભૌમિતિક આકૃતિઓનાં ક્ષેત્રફળ શોધવાનાં સૂત્રો શીખી ગયાં છીએ. વાસ્તવિક જીવનની અનેક સમસ્યાઓના ઉકેલમાં આ સૂત્રોનો ઉપયોગ થતો હોય છે. ભૂમિતિનાં પ્રાથમિક સૂત્રોની મદદથી આપણે સાદી આકૃતિઓનાં ક્ષેત્રફળ શોધી શકીએ છીએ, પરંતુ આ સૂત્રો વ્યાપક રીતે વક્રથી આવૃત્ત થયેલા પ્રદેશનું ક્ષેત્રફળ શોધવા પર્યાપ્ત નથી. આ માટે આપણને સંકલન ગણિતની કેટલીક મૂળભૂત સંકલ્પનાની જરૂર પડશે. આગળના પ્રકરણમાં આપણે વક્ર y = f(x), રેખાઓ x = a, x = b તથા X-અક્ષ વડે આવૃત્ત પ્રદેશનું ક્ષેત્રફળ એ નિયત સંકલિત છે અને તેની કિંમત સરવાળાના લક્ષ તરીકે કેવી રીતે શોધી શકાય તે શીખી ગયાં. હવે આપણે આ પ્રકરણમાં રેખા અને સાદા વક્રથી આવૃત્ત પ્રદેશ, વર્તુળનું ચાપ, પરવલય કે ઉપવલયથી (પ્રમાણિત સ્વરૂપમાં) ઘેરાયેલા પ્રદેશનાં ક્ષેત્રફળ શોધવા માટે

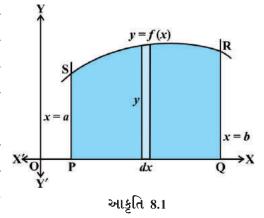


A.L. Cauchy (C.E. 1789 - C.E. 1857)

સંકલનનો કેવી રીતે ઉપયોગ થાય છે તેનો અભ્યાસ કરીશું. આપણે અહીં ઉપર દર્શાવેલ વક્રો વડે ઘેરાયેલા પ્રદેશનાં ક્ષેત્રફળ શોધીશું.

8.2 સાદા વક્રથી આવૃત્ત પ્રદેશનું ક્ષેત્રફળ

અગાઉના પ્રકરણમાં આપણે સરવાળાના લક્ષ તરીકે નિયત સંકલિતનું મૂલ્ય કેવી રીતે લખી શકાય અને નિયત સંકલિતની કિંમત મેળવવાનો મૂળભૂત સિદ્ધાંત પણ જોયો. હવે, આપણે વક્ર y = f(x), રેખાઓ x = a અને x = b તથા X-અક્ષ વડે આવૃત્ત પ્રદેશનું ક્ષેત્રફળ શોધવાની એક સરળ અને સર્જનાત્મક પદ્ધતિની વિશેષ ચર્ચા કરીશું. આકૃતિ 8.1માં દર્શાવ્યા પ્રમાણે વક્ર વડે આવૃત્ત પ્રદેશનું ક્ષેત્રફળ ઘણી ઊભી પાતળી પટ્ટીઓનું બનેલું છે તેવું માની લઈએ. હવે, તેમાંની ઊંચાઈ y અને જાડાઈ dx ધરાવતી કોઈ એક પટ્ટી માટે dA (એટલે ઘટક પટ્ટીનું ક્ષેત્રફળ) = y dx જ્યાં y = f(x).



302

આ ક્ષેત્રફળને *ઘટક ક્ષેત્રફળ* કહીશું. આ ક્ષેત્રફળને a અને b ની વચ્ચે આવેલી x ની કોઈ ચોક્કસ કિંમત દ્વારા નિર્ણિત થતા પ્રદેશની અંદર યાદચ્છિક જગ્યાએ આવેલી પટ્ટીનું ક્ષેત્રફળ કહે છે. આપણે આ ઘેરાયેલા ભાગનું કુલ ક્ષેત્રફળ એટલે વક્ર y = f(x), રેખાઓ x = a, x = b અને તથા X-અક્ષ દ્વારા ઘેરાયેલા ભાગ PQRSPનું ક્ષેત્રફળ એ આવા ઘટક ક્ષેત્રફળોના સરવાળા તરીકે વિચારી શકાય.

સાંકેતિક રીતે, $A = \int_{a}^{b} dA = \int_{a}^{b} y \, dx = \int_{a}^{b} f(x) \, dx$ દ્વારા દર્શાવી શકાય. વક્ર x = g(y), રેખાઓ y = c અને y = d તથા Y-અક્ષ દ્વારા આવૃત્ત પ્રદેશનું ક્ષેત્રફળ A નીચે દર્શાવેલ સૂત્ર દ્વારા દર્શાવી શકાય :

$$A = \int_{c}^{d} x \, dy = \int_{c}^{d} g(y) \, dy$$

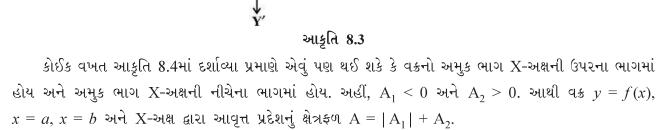
X'

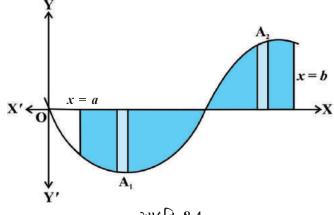
અહીં આકૃતિ 8.2 માં દર્શાવેલ સમક્ષિતિજ પટ્ટીઓ ધ્યાનમાં લઈશું.

નોંધ : આકૃતિ 8.3 માં દર્શાવ્યા પ્રમાશે વિચારશામાં લીધેલ વક્ર અક્ષની નીચેના ભાગમાં હોય, તો x = a થી x = b માં f(x) < 0 થાય. તેથી વક્ર, રેખાઓ x = a, x = b તથા X-અક્ષ વડે આવૃત્ત પ્રદેશનું ક્ષેત્રફળ દર્શાવતા સંકલિતનું મૂલ્ય ઋણ થશે. પરંતુ આપણે તેને ક્ષેત્રફળ દર્શાવતી એક સંખ્યા તરીકે લઈશું. તેથી જો તે સંકલિતનું મૂલ્ય

ઋષ્ટા હોય, તો આપણે તે કિંમતનો માનાંક લઈશું, એટલે કે $\int_{a}^{b} f(x) dx$ ને ક્ષેત્રફળ તરીકે લઈશું.

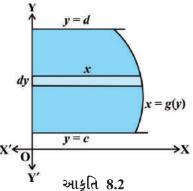
 $O |_{x=a}$





આકૃતિ 8.4

Downloaded from https:// www.studiestoday.com



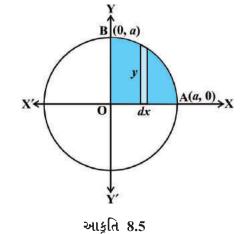
ગણિત

સંકલનનો ઉપયોગ

£

ઉદાહરણ 1 : વર્તુળ $x^2 + y^2 = a^2$ વડે આવૃત્ત પ્રદેશનું ક્ષેત્રફળ શોધો. ઉકેલ : આકૃતિ 8.5 માં દર્શાવ્યા પ્રમાણે આપેલ વર્તુળ દ્વારા આવૃત્ત પ્રદેશનું ક્ષેત્રફળ = 4 × (આપેલ વક્ર, રેખા x = 0, x = aઅને X-અક્ષ દ્વારા આવૃત્ત પ્રદેશ AOBAનું ક્ષેત્રફળ). (વર્તુળ એ X-અક્ષ અને Y-અક્ષ પ્રત્યે સંમિત છે.)

માંગેલ ક્ષેત્રફળ = $4 \int_{0}^{a} y \, dx$ (શિરોલંબ પટ્ટીઓ લેતાં) = $4 \int_{0}^{a} \sqrt{a^2 - x^2} \, dx$

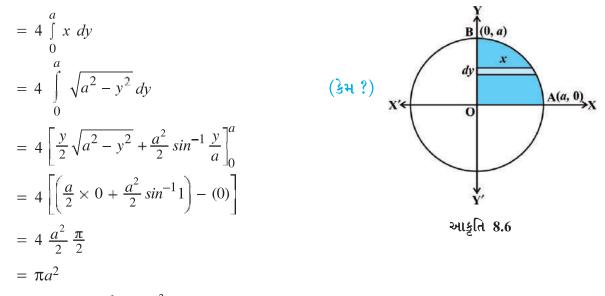


હવે $x^2 + y^2 = a^2$ પરથી $y = \pm \sqrt{a^2 - x^2}$ મળશે. અહીં પ્રદેશ AOBA પ્રથમ ચરણમાં આવેલો છે. તેથી $y = \sqrt{a^2 - x^2}$ લઈશું. આપણને વર્તુળ દ્વારા આવૃત્ત સમગ્ર પ્રદેશનું ક્ષેત્રફળ સંકલન કરતાં મળશે.

ાંગેલ ક્ષેત્રફળ =
$$4\left[\frac{x}{2}\sqrt{a^2 - x^2} + \frac{a^2}{2}\sin^{-1}\frac{x}{a}\right]_0^a$$

= $4\left[\left(\frac{a}{2} \times 0 + \frac{a^2}{2}\sin^{-1}1\right) - 0\right]$
= $4\left(\frac{a^2}{2}\right)\left(\frac{\pi}{2}\right)$
= πa^2

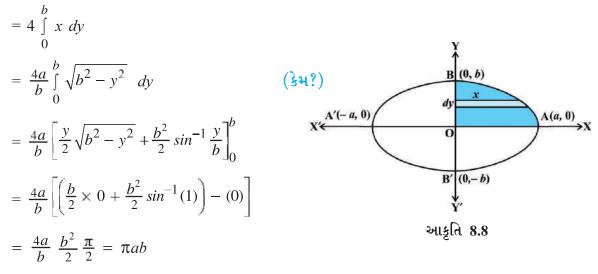
બીજી રીત : આકૃતિ 8.6 માં દર્શાવ્યા પ્રમાશે સમક્ષિતિજ પટ્ટીઓ લેતાં, આપેલ વર્તુળ દ્વારા આવૃત્ત સમગ્ર પ્રદેશનું ક્ષેત્રફળ



ઉદાહરણ 2 : ઉપવલય $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ થી આવૃત્ત પ્રદેશનું ક્ષેત્રફળ શોધો. ઉકેલ : આકૃતિ 8.7 માં દર્શાવ્યા પ્રમાશે, ઉપવલય દ્વારા આવૃત્ત પ્રદેશ ABA'B'A નું ક્ષેત્રફળ = 4 × (આપેલ વક્ર, રેખાઓ x = 0, x = a અને X-અક્ષ દ્વારા આવૃત્ત પ્રદેશનું પ્રથમ ચરણમાં આવેલ પ્રદેશ AOBAનું ક્ષેત્રફળ). (ઉપવલય એ X-અક્ષ અને Y-અક્ષ પ્રત્યે સંમિત છે.)

ગણિત

માંગેલ ક્ષેત્રફળ = 4
$$\int_{0}^{a} y \, dx$$
 (શિરોલંબ પટ્ટીઓ લેતાં)
હવે, $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$. આથી, $y = \pm \frac{b}{a} \sqrt{a^2 - x^2}$
પરંતુ, પ્રદેશ AOBA પ્રથમ ચરણમાં આવેલો હોવાથી y ને ધન લઈશું. આથી માંગેલ ક્ષેત્રફળ
= 4 $\int_{0}^{a} \frac{b}{a} \sqrt{a^2 - x^2} \, dx$
= $\frac{4b}{a} \left[\frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \sin^{-1} \frac{x}{a} \right]_{0}^{a}$ (કેમ?) $\mathbf{x} \leftarrow \mathbf{y} \leftarrow \mathbf$



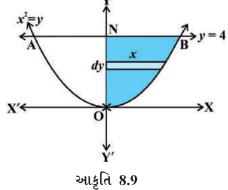
8.2.1 વક્ર અને રેખા વડે આવૃત્ત પ્રદેશનું ક્ષેત્રફળ

આ વિભાગમાં આપણે વર્તુળ અને રેખા, રેખા અને પરવલય, રેખા અને ઉપવલય દ્વારા આવૃત્ત પ્રદેશનાં ક્ષેત્રફળ શોધીશું. અહીં ઉપર દર્શાવેલ વક્રોનાં સમીકરણો પ્રમાણિત સ્વરૂપમાં જ લઈશું. આ વક્રોનાં સમીકરણોનાં બીજાં સ્વરૂપો પુસ્તકની મર્યાદાની બહાર છે.

ઉદાહરણ 3 : વક્ર
$$y = x^2$$
 અને રેખા $y = 4$ વડે આવૃત્ત પ્રદેશનું ક્ષેત્રફળ મેળવો.

ઉકેલ : અહીં y = x² દ્વારા દર્શાવાતો વક્ર એ Y-અક્ષ પરત્વે સંમિત પરવલય છે. આમ આકૃતિ 8.9 માં દર્શાવેલ પ્રદેશ AOBAનું ક્ષેત્રફળ

= 2 (આપેલ વક્ર, રેખાઓ y = 0, y = 4 અને Y-અક્ષ દ્વારા આવૃત્ત પ્રદેશ BONBનું ક્ષેત્રફળ)



Downloaded from https:// www.studiestoday.com

304

સંકલનનો ઉપયોગ

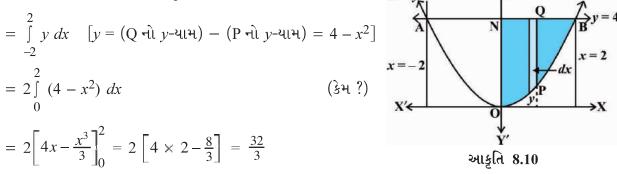
$$= 2 \int_{0}^{4} x \, dy$$

= $2 \int_{0}^{4} \sqrt{y} \, dy = 2 \times \frac{2}{3} \left[y^{\frac{3}{2}} \right]_{0}^{4} = \frac{4}{3} \times 8 = \frac{32}{3}$ (34)

અહીં, આકૃતિ 8.9 માં દર્શાવ્યા પ્રમાશે સમક્ષિતિજ પટ્ટીઓ લીધી છે.

બીજી રીત : અહીં, આપણે પ્રદેશ AOBAનું ક્ષેત્રફળ શોધવા આકૃતિ 8.10 માં દર્શાવ્યા પ્રમાણે PQ જેવી શિરોલંબ પટ્ટીઓ પણ લઈ શકીએ. આપેલ સમીકરણો $y = x^2$ અને y = 4 ઉકેલતાં આપણને x = -2 અને x = 2 મળશે.

આમ, માંગેલ પ્રદેશ AOBA એ વક્ર $y = x^2, y = 4$ તથા રેખાઓ x = -2 અને x = 2 વડે ઘેરાયેલ પ્રદેશ થશે. આથી માંગેલ પ્રદેશ AOBAનું ક્ષેત્રફળ $x^2 = y$



<mark>નોંધ ઃ</mark> ઉપરનાં ઉદાહરણો પરથી આપણે તારવી શકીએ કે કોઈ પણ પ્રદેશનું ક્ષેત્રફળ શોધવા માટે આપણે સમક્ષિતિજ કે શિરોલંબ પટ્ટીઓ પૈકી કોઈ પણ પટ્ટીઓનો ઉપયોગ કરી શકીએ. હવેથી આગળ આપણે સમક્ષિતિજ કે શિરોલંબ પટ્ટીઓ પૈકી કોઈ પણ એકની ચર્ચા કરશું. શિરોલંબ પટ્ટીઓને આપણે પ્રાથમિકતા આપીશું.

ઉદાહરણ 4 : વર્તુળ $x^2 + y^2 = 32$, રેખા y = x અને X-અક્ષ દ્વારા આવૃત્ત પ્રથમ ચરણમાં આવેલ પ્રદેશનું ક્ષેત્રફળ શોધો.

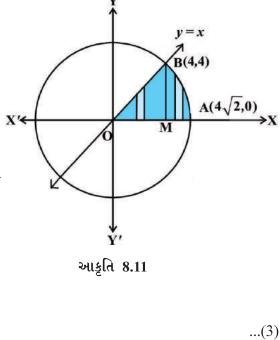
ઉકેલ : આપેલ વક્રો y = x ...(1) અને $x^2 + y^2 = 32$...(2)

સમીકરશ (1) અને (2) ઉકેલતાં, આપેલ રેખા અને વર્તુળનું પ્રથમ ચરશનું છેદબિંદુ B(4, 4) મળે. (આકૃતિ 8.11). X-અક્ષ પર લંબ BM દોરો.

∴ માંગેલ ક્ષેત્રફળ = પ્રદેશ OBMOનું ક્ષેત્રફળ + પ્રદેશ BMABનું ક્ષેત્રફળ 4

હવે, પ્રદેશ OBMOનું ક્ષેત્રફળ =
$$\int_{0}^{y} dx$$

= $\int_{0}^{4} x dx$
= $\frac{1}{2} [x^{2}]_{0}^{4} = 8$



Downloaded from https:// www.studiestoday.com

305

306

ગણિત

કવે, પ્રદેશ BMABનું લેત્રફળ

$$= \int_{4}^{4\sqrt{2}} y \, dx$$

$$= \int_{4}^{4\sqrt{2}} \sqrt{32 - x^2} \, dx$$

$$= \left[\frac{x}{2}\sqrt{32 - x^2} + \frac{1}{2} \times 32 \times \sin^{-1}\frac{x}{4\sqrt{2}}\right]_{4}^{4\sqrt{2}}$$

$$= \left[\left(\frac{1}{2} \times 4\sqrt{2} \times 0 + \frac{1}{2} \times 32 \times \sin^{-1}1\right) - \left(\frac{4}{2}\sqrt{32 - 16} + \frac{1}{2} \times 32 \times \sin^{-1}\frac{1}{\sqrt{2}}\right)\right]$$

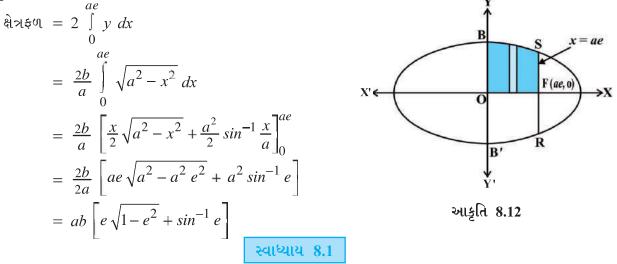
$$= 8\pi - (8 + 4\pi) = 4\pi - 8 \qquad ...(4)$$
(3) અને (4)નો સરવાળો કરતા, માંગેલ લેત્રફળ = 4π
-1ોધ : ખરેખર તો $\angle BOM = \frac{\pi}{4}$ માપના ખૂણાવાળા વૃત્તાંશનું લેત્રફળ = $\frac{1}{2}r^2\theta$

$$= \frac{1}{2}(32)\frac{\pi}{4}$$

$$= 4\pi$$

ઉદાહરણ 5 : ઉપવલય $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ અને રેખાઓ x = 0 અને $b^2 = a^2 (1 - e^2)$ માટે x = ae વડે આવૃત્ત પ્રદેશનું ક્ષેત્રફળ શોધો. (e < 1) (x = ae નાભિલંબને સમાવતી રેખા છે.)

ઉકેલ : ઉપવલય અને રેખા x = 0 અને રેખા x = ae અને X-અક્ષ વડે આવૃત્ત પ્રદેશનું માંગેલ ક્ષેત્રફળ (આકૃતિ 8.12) BOB'RFSB છે.



- **1.** વક્ર $y^2 = x$, X-અક્ષ અને રેખાઓ x = 1 અને x = 4 વડે પ્રથમ ચરણમાં આવૃત્ત પ્રદેશનું ક્ષેત્રફળ શોધો.
- 2. વક્ર $y^2 = 9x$, X-અક્ષ અને રેખાઓ x = 2 અને x = 4 દ્વારા આવૃત્ત પ્રથમ ચરણમાં આવેલ પ્રદેશનું ક્ષેત્રફળ શોધો.
- **3.** વક્ર $x^2 = 4y$, Y-અક્ષ અને રેખાઓ y = 2 અને y = 4 દ્વારા આવૃત્ત પ્રથમ ચરણમાં આવેલ પ્રદેશનું ક્ષેત્રફળ શોધો.

4. ઉપવલય
$$\frac{x^2}{16} + \frac{y^2}{9} = 1$$
 થી આવૃત્ત પ્રદેશનું ક્ષેત્રફળ શોધો.

5. ઉપવલય $\frac{x^2}{4} + \frac{y^2}{9} = 1$ થી આવૃત્ત પ્રદેશનું ક્ષેત્રફળ શોધો.

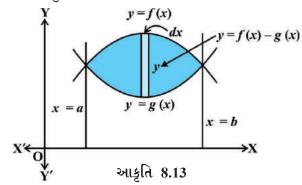
સંકલનનો ઉપયોગ

- 6. વર્તુળ $x^2 + y^2 = 4$, રેખા $x = \sqrt{3}y$ અને X-અક્ષ દ્વારા આવૃત્ત પ્રથમ ચરણમાં આવેલ પ્રદેશનું ક્ષેત્રફળ શોધો.
- 7. રેખા $x = \frac{a}{\sqrt{2}}$ દ્વારા વર્તુળાકાર પ્રદેશ $x^2 + y^2 = a^2$ માંથી કપાતા નાના પ્રદેશનું ક્ષેત્રફળ શોધો. 8. રેખા x = a એ $x = y^2$ અને x = 4 વડે આવૃત્ત પ્રદેશના ક્ષેત્રફળનું બે સમાન ભાગમાં વિભાજન કરે તો a શોધો.
- પરવલય $y = x^2$ અને y = |x| વડે આવૃત્ત પ્રદેશનું ક્ષેત્રફળ શોધો. 9.
- **10.** $a_{\pm} x^2 = 4y$ અને રેખા x = 4y 2 વડે આવૃત્ત પ્રદેશનું ક્ષેત્રફળ શોધો.
- 11. વક્ર $y^2 = 4x$ અને રેખા x = 3 વડે આવૃત્ત પ્રદેશનું ક્ષેત્રફળ શોધો.
- પ્રશ્નો 12 તથા 13 માં વિધાન સાચું બને તે રીતે આપેલ વિકલ્પોમાંથી યોગ્ય વિકલ્પ પસંદ કરો :
- **12.** વર્તુળ $x^2 + y^2 = 4$ અને રેખા x = 0 અને x = 2 વડે આવૃત્ત પ્રથમ ચરણમાં આવેલ પ્રદેશનું ક્ષેત્રફળ
- (A) π (B) $\frac{\pi}{2}$ (C) $\frac{\pi}{3}$ 13. $a_{\pm} y^2 = 4x$, Y-અક્ષ અને રેખા y = 3 as આવૃત્ત પ્રદેશનું ક્ષેત્રફળ (D) $\frac{\pi}{4}$ અન રખા y = 3 વડ આવૃત્ત પ્રદેશનું ક્ષેત્રફળ (B) $\frac{9}{4}$ (C) $\frac{9}{3}$ (D) $\frac{9}{2}$ (A) 2

8.3 બે વક્ર વડે આવૃત્ત પ્રદેશનું ક્ષેત્રફળ

લીબનીટ્ઝની અંતઃસ્ફુરણા પ્રમાણે સંકલન કોઈ એક વિસ્તારનું ક્ષેત્રફળ ગણવાની પ્રક્રિયા છે. તેમાં આ વિસ્તારને ખૂબ નાની-નાની ઘટક પટ્ટીઓમાં વહેંચી આ પટ્ટીઓનાં ક્ષેત્રફળોનો સરવાળો કરવામાં આવે છે.

ધારો કે y = f(x) અને y = g(x) દ્વારા રજૂ થતા બે વક્રો આપણને આપેલ છે અને આકૃતિ 8.13 માં દર્શાવ્યા પ્રમાણે [a, b] માં $f(x) \ge g(x)$ છે. આ બે વક્રો x = a અને x = b આગળ એકબીજાને છેદે છે. a અને b એ y ના સામાન્ય મૂલ્ય પરથી મેળવવામાં આવેલ છે. સંકલનનું સૂત્ર સ્થાપિત કરવા માટે આપશે ક્ષેત્રફળનું શિરોલંબ પટ્ટીઓમાં વિભાજન કરવું સુવિધાજનક છે. આકૃતિ 8.13માં દર્શાવ્યા પ્રમાણે ઘટક પટ્ટીની ઊંચાઈ f(x) - g(x) છે અને પહોળાઈ dx છે. જેથી ઘટક પટ્ટીનું ક્ષેત્રફળ



 $d\mathbf{A} = [f(x) - g(x)] dx$ अने કुલ क्षेत्रइण A नीचे પ્रમाણે લઈ શકाय : $A = \int_{a}^{b} [f(x) - g(x)] dx$

બીજી રીત :

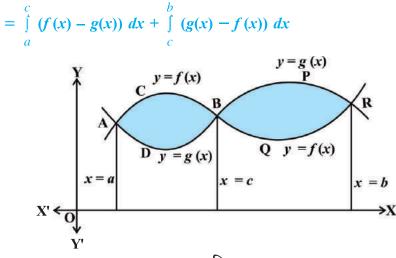
A = $[a_{\pm} y = f(x), X$ -अक्ष अने रेખाओ x = a अने x = b वડे आवृत्त प्रदेशनुं क्षेत्र $[a_{\pm} y] = f(x)$ [as y = g(x), X-અक्ष अने रेખाओ x = a अने x = b as आवृत्त प्रदेशनुं क्षेत्रsण] $= \int_{a}^{b} f(x) dx - \int_{a}^{b} g(x) dx = \int_{a}^{b} [f(x) - g(x)] dx \text{ sui } [a, b] \text{ ui } f(x) \ge g(x),$

308

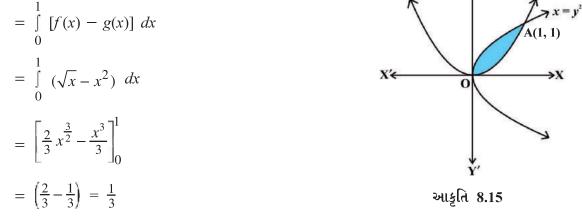
ગણિત

જો [a, c] માં $f(x) \ge g(x)$ અને [c, b]માં $f(x) \le g(x)$ અને a < c < b, તો આકૃતિ 8.14 માં દર્શાવ્યા પ્રમાણે, તે વક્ર દ્વારા આવૃત્ત પ્રદેશનું ક્ષેત્રફળ નીચે પ્રમાણે લખી શકાય :

કુલ ક્ષેત્રફળ = પ્રદેશ ACBDA નું ક્ષેત્રફળ + પ્રદેશ BPRQB નું ક્ષેત્રફળ



ઉદાહરણ 6 : બે પરવલયો $y = x^2$ અને $y^2 = x$ વડે આવૃત્ત પ્રદેશનું ક્ષેત્રફળ શોધો. ઉકેલ : આકૃતિ 8.15 માં દર્શાવ્યા પ્રમાણે બે પરવલયો O(0, 0) અને A(1, 1) માં છેદશે. અહીં $y^2 = x$ એટલે $y = \sqrt{x} = f(x)$ અને $y = x^2 = g(x)$. અહીં, [0, 1] માં $f(x) \ge g(x)$ છે. \therefore માંગેલ રંગીન પ્રદેશનું ક્ષેત્રફળ



ઉદાહરણ 7 : X-અક્ષની ઉપરના અર્ધતલમાં આવેલ વર્તુળ $x^2 + y^2 = 8x$, પરવલય $y^2 = 4x$ અને X-અક્ષથી આવૃત્ત પ્રદેશનું ક્ષેત્રફળ શોધો.

ઉંકેલ : વર્તુળના સમીકરણ $x^2 + y^2 = 8x$ ને $(x - 4)^2 + y^2 = 16$ તરીકે લખી શકાય. આ સમીકરણ (4, 0) કેન્દ્રવાળું તથા 4 ત્રિજ્યાવાળું વર્તુળ દર્શાવે છે. તેનું તથા પરવલય $y^2 = 4x$ નું છેદબિંદુ મેળવવા માટે,

$$x^2 + 4x = 8x$$

$$\therefore x^2 - 4x = 0$$

$$\therefore \quad x(x-4) = 0$$

 $\therefore x = 0$ અથવા x = 4

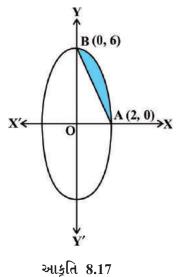
સંકલનનો ઉપયોગ

આમ, બંને વક્રો O(0, 0) અને X-અક્ષની ઉપર P(4, 4)P (4, 4) બિંદુમાં છેદે છે. આકૃતિ 8.16 માં દર્શાવ્યા પ્રમાશે બે વક્રોની વચ્ચેનો અને X-અક્ષની ઉપરના પ્રદેશ OPQCOનું ક્ષેત્રફળ = (પ્રદેશ OCPOનું ક્ષેત્રફળ) + (પ્રદેશ PCQPનું ક્ષેત્રફળ) $X' \leftarrow \mathbf{O}$ Q (8, 0) X C (4, 0) $= \int_{\alpha}^{4} y_{\text{uradu}} dx + \int_{4}^{8} y_{\text{aff}} dx$ $= 2\int_{0}^{4} \sqrt{x} dx + \int_{1}^{8} \sqrt{4^{2} - (x - 4)^{2}} dx \quad (\hat{s} + ?)$ આકૃતિ 8.16 $= 2 \times \frac{2}{3} \left[x^{\frac{3}{2}}\right]_{0}^{4} + \int_{0}^{4} \sqrt{4^{2} - t^{2}} dt, \text{ wit, } x - 4 = t$ (કેમ ?) $= \frac{32}{3} + \left[\frac{t}{2}\sqrt{4^2 - t^2} + \frac{1}{2} \times 4^2 \times \sin^{-1}\frac{t}{4}\right]_{0}^{4}$ $=\frac{32}{3} + \left[\frac{4}{2} \times 0 + \frac{1}{2} \times 4^2 \times sin^{-1}1\right]$ $=\frac{32}{3}+\left[0+8\times\frac{\pi}{2}\right]$ $=\frac{32}{3}+4\pi$ $=\frac{4}{3}(8+3\pi)$

ઉંદાહરણ 8 : આકૃતિ 8.17 માં દર્શાવેલ AOBA એ ઉપવલય $9x^2 + y^2 = 36$ નો પ્રથમ ચરણમાં આવેલો એક ભાગ છે. અહીં OA = 2 અને OB = 6 છે, તો ચાપ AB અને જીવા AB વચ્ચે ઘેરાયેલા પ્રદેશનું ક્ષેત્રફળ શોધો.

ઉકેલ : આપેલ ઉપવલયના સમીકરણ $9x^2 + y^2 = 36$ ને $\frac{x^2}{4} + \frac{y^2}{36} = 1$ અથવા $\frac{x^2}{2^2} + \frac{y^2}{6^2} = 1$ તરીકે લખી શકાય અને તેનો આકાર આકૃતિ 8.17માં દર્શાવ્યા પ્રમાણે થશે.

હવે, જીવા
$$\overline{AB}$$
 નું સમીકરણ
 $y - 0 = \frac{6 - 0}{0 - 2} (x - 2)$
 $\therefore y = -3 (x - 2)$
 $\therefore y = -3x + 6$
આકૃતિ 8.17 માં દર્શાવેલ રંગીન ભાગનું ક્ષેત્રફળ
 $= 3 \int_{0}^{2} \sqrt{4 - x^{2}} dx - \int_{0}^{2} (6 - 3x) dx$ (કેમ ?)
 $= 3 \left[\frac{x}{2} \sqrt{4 - x^{2}} + \frac{4}{2} \sin^{-1} \frac{x}{2} \right]_{0}^{2} - \left[6x - \frac{3x^{2}}{2} \right]_{0}^{2}$



310

તેથી.

 ΔABC નું ક્ષેત્રફળ

ગણિત

$$= 3\left[\frac{2}{2} \times 0 + 2\sin^{-1}1\right] - \left[12 - \frac{12}{2}\right]$$

 $= 3 \times 2 \times \frac{\pi}{2} - 6 = 3\pi - 6$

ઉદાહરણ 9 : જેનાં શિરોબિંદુઓ (1, 0), (2, 2) અને (3, 1) હોય તેવા ત્રિકોણીય પ્રદેશનું ક્ષેત્રફળ સંકલનના ઉપયોગથી શોધો.

ઉકેલ : ધારો કે A(1, 0), B(2, 2) અને C(3, 1) એ ત્રિકોણ ∆ABC નાં શિરોબિંદુઓ છે. (જુઓ આકૃતિ 8.18.)

હવે,
$$\Delta ABC$$
નું ક્ષેત્રફળ = ΔABD નું ક્ષેત્રફળ +
સમલંબ ચતુષ્કોણ BDECનું ક્ષેત્રફળ - ΔAEC નું ક્ષેત્રફળ
હવે, બાજુઓ AB, BC અને CA નાં સમીકરણો અનુક્રમે
 $y = 2(x - 1), y = 4 - x, y = \frac{1}{2}(x - 1)$ થશે.

A (1, 0) D

E

$$= \int_{1}^{2} 2(x-1) dx + \int_{2}^{3} (4-x) dx - \int_{1}^{3} \frac{x-1}{2} dx$$

= $2 \left[\frac{x^{2}}{2} - x \right]_{1}^{2} + \left[4x - \frac{x^{2}}{2} \right]_{2}^{3} - \frac{1}{2} \left[\frac{x^{2}}{2} - x \right]_{1}^{3}$
= $2 \left[\left(\frac{2^{2}}{2} - 2 \right) - \left(\frac{1}{2} - 1 \right) \right] + \left[\left(4 \times 3 - \frac{3^{2}}{2} \right) - \left(4 \times 2 - \frac{2^{2}}{2} \right) \right] - \frac{1}{2} \left[\left(\frac{3^{2}}{2} - 3 \right) - \left(\frac{1}{2} - 1 \right) \right]$
= $\frac{3}{2}$

ઉદાહરણ 10 : બે વર્તુળો $x^2 + y^2 = 4$ અને $(x - 2)^2 + y^2 = 4$ વડે આવૃત્ત સામાન્ય પ્રદેશનું ક્ષેત્રફળ શોધો. ઉકેલ : અહીં, આપેલ બે વર્તુળનાં સમીકરણો $x^2 + y^2 = 4$(1) અને $(x-2)^2 + y^2 = 4$ છે. ...(2) સમીકરણ (1) ઊગમબિંદુ O કેન્દ્રવાળું અને 2 ત્રિજ્યાવાળું વર્તુળ દર્શાવે છે અને સમીકરણ (2) C(2, 0) કેન્દ્ર અને 2 ત્રિજ્યાવાળું A(1,√3) વર્તુળ દર્શાવે છે. સમીકરણો (1) અને (2) ઉકેલતાં, $(x-2)^2 + y^2 = x^2 + y^2$ C(2, 0) >X $x^2 - 4x + 4 + y^2 = x^2 + y^2$ A' $(1, -\sqrt{3})$ \therefore x = 1 મળે અને તે પરથી $y = \pm \sqrt{3}$ આમ, આકૃતિ 8.19 માં દર્શાવ્યા પ્રમાશે બંને વર્તુળો A $(1, \sqrt{3})$ અને $A'(1, -\sqrt{3})$ બિંદુમાં છેદે છે. આકૃતિ 8.19

Downloaded from https:// www.studiestoday.com

બે વર્તુળો વચ્ચેનું ક્ષેત્રફળ એ પ્રદેશ OACA'O નું ક્ષેત્રફળ થશે.

સંકલનનો ઉપયોગ

$$\begin{aligned} &\hat{d}\hat{d} \| \text{ wide } \hat{d} \text{ stat} \\ &= 2 \left[\text{wide } \text{ODCAO-j} \; \hat{d} \text{ stat} \\ &= 2 \left[\text{wide } \text{ODAO-j} \; \hat{d} \text{ stat} \\ &= 2 \left[\text{wide } \text{ODAO-j} \; \hat{d} \text{ stat} \\ &= 2 \left[\int_{0}^{1} y_{\text{stat}} q_{\text{stat}} dx + \int_{1}^{2} y_{\text{stat}} q_{\text{stat}} dx \right] \\ &= 2 \left[\int_{0}^{1} y_{\text{stat}} q_{\text{stat}} dx + \int_{1}^{2} y_{\text{stat}} q_{\text{stat}} dx \right] \\ &= 2 \left[\frac{1}{2} (x-2)\sqrt{4 - (x-2)^2} dx + \frac{2}{1}\sqrt{4 - x^2} dx \right] \\ &= 2 \left[\frac{1}{2} (x-2)\sqrt{4 - (x-2)^2} + \frac{4}{2} \sin^{-1} \left(\frac{x-2}{2} \right) \right]_{0}^{1} + 2 \left[\frac{1}{2} x\sqrt{4 - x^2} + \frac{1}{2} \times 4 \sin^{-1} \frac{x}{2} \right]_{1}^{2} \\ &= \left[(x-2)\sqrt{4 - (x-2)^2} + 4 \sin^{-1} \left(\frac{x-2}{2} \right) \right]_{0}^{1} + \left[x\sqrt{4 - x^2} + 4 \sin^{-1} \frac{x}{2} \right]_{1}^{2} \\ &= \left[\left(-\sqrt{3} + 4 \sin^{-1} \left(-\frac{1}{2} \right) \right) - 4 \sin^{-1} (-1) \right] + \left[4 \sin^{-1} 1 - \sqrt{3} - 4 \sin^{-1} \frac{1}{2} \right] \\ &= \left[\left(-\sqrt{3} - 4 \times \frac{\pi}{6} \right) + \left(4 \times \frac{\pi}{2} \right) \right] + \left[4 \times \frac{\pi}{2} - \sqrt{3} - 4 \times \frac{\pi}{6} \right] \\ &= \left[\left(-\sqrt{3} - \frac{2\pi}{3} + 2\pi \right) + \left(2\pi - \sqrt{3} - \frac{2\pi}{3} \right) \right] \end{aligned}$$

સ્વાધ્યાય 8.2

1. પરવલય
$$x^2 = 4y$$
 અને વર્તુળ $4x^2 + 4y^2 = 9$ વડે આવૃત્ત પ્રદેશનું ક્ષેત્રફળ શોધો.
2. વક્કો $(x - 1)^2 + y^2 = 1$ અને $x^2 + y^2 = 1$ વડે આવૃત્ત પ્રદેશનું ક્ષેત્રફળ શોધો.
3. વક્કો $y = x^2 + 2$, $y = x$, $x = 0$ અને $x = 3$ વડે આવૃત્ત પ્રદેશનું ક્ષેત્રફળ શોધો.
4. શિરોબિંદુઓ (-1, 0), (1, 3) અને (3, 2) થી રચાતા ત્રિકોણીય પ્રદેશનું ક્ષેત્રફળ શોધો.
5. જો ત્રિકોણની બાજુઓનાં સમીકરણો $y = 2x + 1$, $y = 3x + 1$ અને $x = 4$ હોય, તો તેના દ્વારા રચાતા ત્રિકોણીય પ્રદેશનું ક્ષેત્રફળ સંકલનના ઉપયોગથી શોધો.
19. પ્રક્ષે 6 તથા 7 માં વિધાન સાચું બને તે રીતે આપેલ વિકલ્પોમાંથી યોગ્ય વિકલ્પ પસંદ કરો :
6. વર્તુળ $x^2 + y^2 = 4$ અને રેખા $x + y = 2$ થી આવૃત્ત નાના પ્રદેશનું ક્ષેત્રફળ છે.
(A) $2(\pi - 2)$ (B) $\pi - 2$ (C) $2\pi - 1$ (D) $2(\pi + 2)$
7. વક્કો $y^2 = 4x$ અને $y = 2x$ વડે આવૃત્ત પ્રદેશનું ક્ષેત્રફળ છે.
(A) $\frac{2}{3}$ (B) $\frac{1}{3}$ (C) $\frac{1}{4}$ (D) $\frac{3}{4}$

Downloaded from https:// www.studiestoday.com

311

312

ગણિત

પ્રકીર્ણ ઉદાહરણો

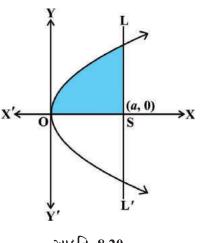
ઉદાહરણ 11 : પરવલય $y^2 = 4ax$ અને તેના નાભિલંબથી આવૃત્ત પ્રદેશનું ક્ષેત્રફળ શોધો.

ત્રફળ

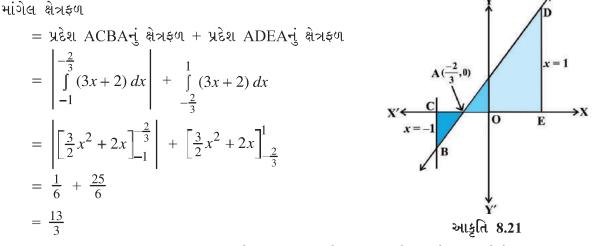
ઉકેલ : આકૃતિ 8.20 માં દર્શાવ્યા પ્રમાણે પરવલય $y^2 = 4ax$ નું શીર્ષ ઊગમબિંદુ (0, 0) છે. નાભિલંબ LSL' નું સમીકરણ x = a છે. વળી, પરવલય X-અક્ષ પરત્વે સંમિત છે.

માંગેલ ક્ષેત્રફળ એ પ્રદેશ OLL'O નું ક્ષે
= 2(પ્રદેશ OSLO નું ક્ષેત્રફળ)
= 2
$$\int_{0}^{a} y \, dx$$

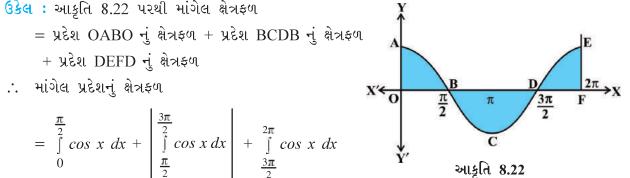
= 2 $\int_{0}^{a} \sqrt{4ax} \, dx$
= 2 $\times 2\sqrt{a} \int_{0}^{a} \sqrt{x} \, dx$
= $4\sqrt{a} \times \frac{2}{3} \left[x^{\frac{3}{2}}\right]_{0}^{a}$
= $\frac{8}{3}\sqrt{a} \left(a^{\frac{3}{2}}\right) = \frac{8}{3}a^{2}$



ઉદાહરણ 12 : રેખા y = 3x + 2, X-અક્ષ અને રેખાઓ x = -1 અને x = 1 વડે આવૃત્ત પ્રદેશનું ક્ષેત્રફળ શોધો. ઉકેલ : આકૃતિ 8.21માં દર્શાવ્યા પ્રમાણે રેખા y = 3x + 2, X-અક્ષને $\left(-\frac{2}{3}, 0\right)$ માં છેદે છે અને આ આલેખ $x \in \left(-1, -\frac{2}{3}\right)$ માટે X-અક્ષની નીચે છે અને આલેખ $x \in \left(-\frac{2}{3}, 1\right)$ માટે X-અક્ષની ઉપર છે.



ઉદાહરણ 13 : વક્ર $y = \cos x$ ના x = 0 અને $x = 2\pi$ વચ્ચે આવૃત્ત પ્રદેશનું ક્ષેત્રફળ શોધો.



સંકલનનો ઉપયોગ

$$= \left[\sin x \right]_{0}^{\frac{\pi}{2}} + \left| \left[\sin x \right]_{\frac{\pi}{2}}^{\frac{3\pi}{2}} \right| + \left[\sin x \right]_{\frac{3\pi}{2}}^{2\pi}$$

= 1 + 2 + 1
= 4

ઉદાહરણ 14 : સાબિત કરો કે વક્રો $y^2 = 4x$ અને $x^2 = 4y$ એ રેખાઓ x = 0, x = 4, y = 4 અને y = 0 થી રચાતા ચોરસનું ત્રણ સમક્ષેત્ર ભાગમાં વિભાજન કરે છે.

ઉકેલ : આકૃતિ 8.23 માં દર્શાવ્યા પ્રમાણે પરવલયો $y^2 = 4x$ અને $x^2 = 4y$ નાં છેદબિંદુઓ (0, 0) અને (4, 4) છે.

હવે, વકો
$$y^2 = 4x$$
 અને $x^2 = 4y$ વડે આવૃત્ત પ્રદેશ OAQBO નું ક્ષેત્રફળ

$$= \int_{0}^{4} \left(2\sqrt{x} - \frac{x^2}{4} \right) dx$$

$$= \left[2 \times \frac{2}{3} \times x^{\frac{3}{2}} - \frac{x^3}{12} \right]_{0}^{4}$$

$$= \frac{32}{3} - \frac{16}{3} = \frac{16}{3}$$
...(1)
\$\partial \cdot \

$$= \int_{0}^{4} x \, dy = \int_{0}^{7} \frac{y^2}{4} \, dy = \frac{1}{12} \left[y^3 \right]_{0}^{4} = \frac{16}{3} \qquad \dots (3)$$

પરિશામ (1), (2) અને (3) પરથી સાબિત થાય છે કે,

પ્રદેશ OAQBO નું ક્ષેત્રફળ = પ્રદેશ OPQAO નું ક્ષેત્રફળ = પ્રદેશ OBQRO નું ક્ષેત્રફળ

આથી, વક્રો $y^2 = 4x$ અને $x^2 = 4y$ એ રેખાઓ x = 0, x = 4, y = 4 અને y = 0 થી રચાતા ચોરસનું ત્રણ સમક્ષેત્ર ભાગમાં વિભાજન કરે છે.

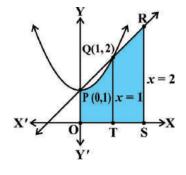
ઉદાહરણ 15 : $\{(x, y) \mid 0 \le y \le x^2 + 1, 0 \le y \le x + 1, 0 \le x \le 2\}$ થી રચાતા પ્રદેશનું ક્ષેત્રફળ શોધો. ઉકેલ : પ્રથમ આપણે જે પ્રદેશનું ક્ષેત્રફળ શોધવું છે તે પ્રદેશનું આલેખન કરીએ. આ પ્રદેશ નીચે દર્શાવેલ

પ્રદેશોથી બનતો મધ્યવર્તી પ્રદેશ છે :

$$A_{1} = \{(x, y) \mid 0 \le y \le x^{2} + 1\}$$
$$A_{2} = \{(x, y) \mid 0 \le y \le x + 1\}$$
$$A_{3} = \{(x, y) \mid 0 \le x \le 2\}$$

વક્રો $y = x^2 + 1$ અને y = x + 1 નાં છેદબિંદુઓ P(0, 1)અને Q(1, 2) છે.

આકૃતિ 8.24 માં દર્શાવેલ રંગીન પ્રદેશ OPQRSTO માંગેલ પ્રદેશ થશે.



આકૃતિ 8.24

314

માંગેલ ક્ષેત્રફળ = પ્રદેશ OTQPO નું ક્ષેત્રફળ + પ્રદેશ TSRQT નું ક્ષેત્રફળ

$$= \int_{0}^{1} (x^{2} + 1) dx + \int_{1}^{2} (x + 1) dx \qquad (34 ?)$$

$$= \left[\frac{x^{3}}{3} + x \right]_{0}^{1} + \left[\frac{x^{2}}{2} + x \right]_{1}^{2}$$

$$= \left[\left(\frac{1}{3} + 1 \right) - (0) \right] + \left[(2 + 2) - \left(\frac{1}{2} + 1 \right) \right]$$

$$= \frac{23}{6}$$

પ્રકીર્ણ સ્વાધ્યાય 8

1. આપેલ વક્ર અને રેખા વડે આવૃત્ત પ્રદેશનું ક્ષેત્રફળ શોધો :

(i)
$$y = x^2$$
; $x = 1$, $x = 2$ અને X-અક્ષ

(ii)
$$y = x^4$$
; $x = 1$, $x = 5$ અને X-અક્ષ

2. વક્રો
$$y = x$$
 અને $y = x^2$ વડે આવૃત્ત પ્રદેશનું ક્ષેત્રફળ શોધો.

3.
$$y = 4x^2$$
, $x = 0$, $y = 1$ અને $y = 4$ વડે પ્રથમ ચરણમાં આવૃત્ત પ્રદેશનું ક્ષેત્રફળ શોધો.

4.
$$y = |x + 3|$$
 - $\frac{1}{2}$ - $\frac{1}{2}$

5. વક $y = \sin x, x = 0$ અને $x = 2\pi$ દારા આવૃત્ત પ્રદેશનું ક્ષેત્રફળ શોધો.

6. વક્રો
$$y^2 = 4ax$$
 અને $y = mx$ વડે આવૃત્ત પ્રદેશનું ક્ષેત્રફળ શોધો.

7. પરવલય
$$4y = 3x^2$$
 અને રેખા $2y = 3x + 12$ વડે આવૃત્ત પ્રદેશનું ક્ષેત્રફળ શોધો.

8. ઉપવલય
$$\frac{x^2}{9} + \frac{y^2}{4} = 1$$
 અને રેખા $\frac{x}{3} + \frac{y}{2} = 1$ વડે આવૃત્ત નાના પ્રદેશનું ક્ષેત્રફળ શોધો.

9. ઉપવલય
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
 અને રેખા $\frac{x}{a} + \frac{y}{b} = 1$ વડે આવૃત્ત નાના પ્રદેશનું ક્ષેત્રફળ શોધો.

10. પરવલય
$$x^2 = y$$
, રેખા $y = x + 2$ અને X-અક્ષ વડે આવૃત્ત પ્રદેશનું ક્ષેત્રફળ શોધો.

- 11. સંકલનના ઉપયોગથી |x| + |y| = 1 વડે આવૃત્ત પ્રદેશનું ક્ષેત્રફળ શોધો. (સૂચન : માંગેલ પ્રદેશ રેખાઓ x + y = 1, x y = 1, -x + y = 1 અને -x y = 1 વડે આવૃત્ત છે.)
- 12. $\{(x, y) \mid y \ge x^2 \text{ wr} \mid y = |x|\}$ થી રચાતા પ્રદેશનું ક્ષેત્રફળ શોધો.
- 13. સંકલનની મદદથી શિરોબિંદુઓ A(2, 0), B(4, 5) અને C(6, 3) થી રચાતા ત્રિકોણ ABC નું ક્ષેત્રફળ શોધો.
- 14. સંકલનના ઉપયોગથી રેખાઓ 2x + y = 4, 3x 2y = 6 અને x 3y + 5 = 0 થી રચાતા ત્રિકોણીય પ્રદેશનું ક્ષેત્રફળ શોધો.
- 15. $\{(x, y) \mid y^2 \le 4x, 4x^2 + 4y^2 \le 9\}$ થી રચાતા પ્રદેશનું ક્ષેત્રફળ શોધો.

સંકલનનો ઉપયોગ

પ્રશ્નો 16 તથા 17 માં વિધાન સાચું બને તે રીતે આપેલ વિકલ્પોમાંથી યોગ્ય વિકલ્પ પસંદ કરો : 16. વક્ર $y = x^3$, X-અક્ષ અને રેખાઓ x = -2 તથા x = 1 વડે આવૃત્ત પ્રદેશનું ક્ષેત્રફળ (A) -9 (B) $-\frac{15}{4}$ (C) $\frac{15}{4}$ (D) $\frac{17}{4}$ 17. વક્ર y = x |x|, X-અક્ષ અને રેખાઓ x = -1 તથા x = 1 વડે આવૃત્ત પ્રદેશનું ક્ષેત્રફળ (A) 0 (B) $\frac{1}{3}$ (C) $\frac{2}{3}$ (D) $\frac{4}{3}$ [સૂચન : જો x > 0 તો, $y = x^2$ જો x < 0 તો, $y = -x^2$] 18. વર્તુળ $x^2 + y^2 = 16$ અને પરવલય $y^2 = 6x$ ના બહારના ભાગથી આવૃત્ત પ્રદેશનું ક્ષેત્રફળ (A) $\frac{4}{3}(4\pi - \sqrt{3})$ (B) $\frac{4}{3}(4\pi + \sqrt{3})$ (C) $\frac{4}{3}(8\pi - \sqrt{3})$ (D) $\frac{4}{3}(8\pi + \sqrt{3})$

(A)
$$2(\sqrt{2} - 1)$$
 (B) $\sqrt{2} - 1$ (C) $\sqrt{2} + 1$ (D) $\sqrt{2}$

સારાંશ

Downloaded from https:// www.studiestoday.com

 $= \int (f(x) - g(x)) \, dx + \int (g(x) - f(x)) \, dx$

a

316

ગણિત

Historical Note

The origin of the Integral Calculus goes back to the early period of development of Mathematics and it is related to the method of exhaustion developed by the mathematicians of ancient Greece. This method arose in the solution of problems on calculating areas of plane figures, surface areas and volumes of solid bodies etc. In this sense, the method of exhaustion can be regarded as an early method of integration. The greatest development of method of exhaustion in the early period was obtained in the works of *Eudoxus* (C.E. 440) and *Archimedes* (C.E. 300)

Systematic approach to the theory of Calculus began in the 17th century. In C.E. 1665, *Newton* began his work on the Calculus described by him as the theory of fluxions and used his theory in finding the tangent and radius of curvature at any point on a curve. *Newton* introduced the basic notion of inverse function called the anti derivative (indefinite integral) or the inverse method of tangents.

During C.E. 1684-86, *Leibnitz* published an article in the *Acta Eruditorum* which he called *Calculus summatorius*, since it was connected with the summation of a number of infinitely small areas, whose sum, he indicated by the symbol ' \int '. In C.E. 1696, he followed a suggestion made by *J. Bernoulli* and changed this article to *Calculus integrali*. This corresponded to *Newton's* inverse method of tangents.

Both *Newton* and *Leibnitz* adopted quite independent lines of approach which was radically different. However, respective theories accomplished results that were practically identical. Leibnitz used the notion of definite integral and what is quite certain is that he first clearly appreciated tie up between the antiderivative and the definite integral.

Conclusively, the fundamental concepts and theory of Integral Calculus and primarily its relationships with Differential Calculus were developed in the work of *P. de Fermat*, *I. Newton* and *G. Leibnitz* at the end of 17th century. However, this justification by the concept of limit was only developed in the works of *A. L. Cauchy* in the early 19th century. Lastly, it is worth mentioning the following quotation by *Lie Sophie's* :

"It may be said that the conceptions of differential quotient and integral which in their origin certainly go back to *Archimedes* were introduced in Science by the investigations of *Kepler*, *Descartes*, *Cavalieri*, *Fermat* and *Wallis*.... The discovery that differentiation and integration are inverse operations belongs to *Newton* and *Leibnitz*".

- & --

પ્રકરણ

9

વિકલ સમીકરણો

He who seeks for methods without having a definite problem in mind seeks for the most part in vain. – D. HILBERT *

9.1 પ્રાસ્તાવિક

આપણે ધોરણ XIમાં અને આ પુસ્તકના પ્રકરણ 5 માં આપેલ વિધેય fનું સ્વતંત્ર ચલની સાપેક્ષે કેવી રીતે વિકલન કરી શકીએ તેની ચર્ચા કરી હતી એટલે કે આપેલા વિધેય fને વ્યાખ્યાયિત કરતા પ્રદેશ પરના દરેક x આગળ f'(x) કેવી રીતે શોધી શકાય તેની ચર્ચા કરી હતી. વળી, જેનું વિકલિત આપેલ વિધેય g હોય તેવું વિધેય f કેવી રીતે શોધી શકાય તેની ચર્ચા પણ આપણે સંકલનના પ્રકરણમાં કરી હતી. તે નીચે પ્રમાણે ગાણિતિક રીતે દર્શાવી શકાય :

આપેલ વિધેય g માટે વિધેય f એવું શોધો કે જેથી,

$$\frac{dy}{dx} = g(x), \text{ sui, } y = f(x)$$

સમીકરણ (1) પ્રકારના સ્વરૂપને *વિકલ સમીકરણ* તરીકે ઓળખવામાં આવે છે. તેની ગાણિતિક અર્થસભર વ્યાખ્યા હવે પછી આપી<u>શ</u>ં. આ પ્રકારનાં સમીકરણોનો

ઉપયોગ ભૌતિકશાસ્ત્ર, રસાયણશાસ્ત્ર, જૈવિકશાસ્ત્ર, માનસશાસ્ત્ર, ભૂસ્તરશાસ્ત્ર, અર્થશાસ્ત્ર વગેરે જેવાં વિવિધ ક્ષેત્રોમાં ઉદ્ભવે છે. આથી, વિકલ સમીકરણનો ઊંડાણપૂર્વક અભ્યાસ એ આધુનિક વૈજ્ઞાનિક સંશોધન માટે અતિ મહત્ત્વનો છે એવું માનવામાં આવે છે.

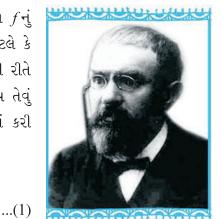
આ પ્રકરણમાં આપણે વિકલ સમીકરણને લગતા પાયાના સિદ્ધાંતો, વિકલ સમીકરણનો વ્યાપક અને વિશિષ્ટ ઉકેલ, વિકલ સમીકરણની રચના, પ્રથમ કક્ષાના એક પરિમાણી વિકલ સમીકરણના ઉકેલની કેટલીક રીતો અને વિવિધ ક્ષેત્રોમાં વિકલ સમીકરણના ઉપયોગોનો અભ્યાસ કરીશું.

9.2 પાયાના સિદ્ધાંતો

આપશે અગાઉથી નીચેનાં પ્રકારનાં સમીકરશોથી પરિચિત છીએ :

$x^2 - 3x + 3 = 0$	(1)
sin x + cos x = 0	(2)
x + y = 7	(3)

Downloaded from https:// www.studiestoday.com



Henri Poincare

(C.E. 1854 - C.E. 1912)

318

ચાલો આપશે નીચેનાં સમીકરશનો વિચાર કરીએ :

$$x \frac{dy}{dx} + y = 0 \tag{4}$$

આપણે જોઈ શકીએ છીએ કે સમીકરણો (1), (2) અને (3) ફ્રક્ત સ્વતંત્ર અને/અથવા અવલંબી ચલ ધરાવે છે. જ્યારે સમીકરણ (4) ચલ ઉપરાંત અવલંબી ચલ y નું સ્વતંત્ર ચલ x ને સાપેક્ષ વિકલિત પણ ધરાવે છે. આવા સમીકરણને વિકલ સમીકરણ કહે છે.

વ્યાપક રીતે, સ્વતંત્ર ચલને સાપેક્ષ અવલંબી ચલના વિકલિતને સમાવતા સમીકરણને વિકલ સમીકરણ (Differential Equation) કહે છે.

જે વિકલ સમીકરણ ફક્ત એક જ સ્વતંત્ર ચલની સાપેક્ષે અવલંબી ચલના વિકલિતોને સમાવતા હોય તેમને સામાન્ય વિકલ સમીકરણો (Ordinary Differential Equations) કહે છે.

ઉદાહરણ તરીકે,
$$2 \frac{d^2 y}{dx^2} + \left(\frac{dy}{dx}\right)^3 = 0$$
 એ *સામાન્ય વિકલ સમીકરણ* છે. ...(5)

અલબત્ત, એક કરતાં વધુ સ્વતંત્ર ચલની સાપેક્ષે વિકલિતો સમાવતાં વિકલ સમીકરશો પશ હોય છે. તેમને *આંશિક વિકલ સમીકરશો (Partial Differential Equations)* કહે છે. આ તબક્કે આપશે આપશો અભ્યાસ ફક્ત સામાન્ય વિકલ સમીકરશો પૂરતો સીમિત રાખીશું. હવે પછી આપશે 'સામાન્ય વિકલ સમીકરશ' માટે 'વિકલ સમીકરશ' એવા શબ્દનો પ્રયોગ કરીશું.

9.2.1 વિકલ સમીકરણની કક્ષા

વિકલ સમીકરણમાં સ્વતંત્ર ચલને સાપેક્ષ અવલંબી ચલના વિકલિતોમાં ઉચ્ચતમ કક્ષાના વિકલિતની કક્ષાને વિકલ સમીકરણની કક્ષા (order) તરીકે વ્યાખ્યાયિત કરવામાં આવે છે.

નીચેનાં વિકલ સમીકરણનો વિચાર કરો :

$$\frac{dy}{dx} = e^x \tag{6}$$

$$\frac{d^2y}{dx^2} + y = 0 \tag{7}$$

$$\left(\frac{d^3y}{dx^3}\right) + x^2 \left(\frac{d^2y}{dx^2}\right)^3 = 0 \qquad \dots (8)$$

સમીકરશ (6), (7) અને (8) માં ઉચ્ચતમ કક્ષાનું વિકલિત અનુક્રમે પ્રથમ, દ્વિતીય અને તૃતીય કક્ષાનું છે. માટે, આ સમીકરશોની કક્ષા અનુક્રમે 1, 2 અને 3 છે.

9.2.2 વિકલ સમીકરણનું પરિમાણ

વિકલ સમીકરશના પરિમાશનો અભ્યાસ કરવા માટે મહત્ત્વનો મુદ્દો એ છે કે, વિકલ સમીકરશ વિકલિતોમાં એટલે કે y', y", y"' વગેરેમાં બહુપદીય સમીકરશ જ હોવું જોઈએ.

વિકલ સમીકરણો

નીચેનાં વિકલ સમીકરણોનો વિચાર કરો :

$$\frac{d^3y}{dx^3} + 2\left(\frac{d^2y}{dx^2}\right)^2 - \left(\frac{dy}{dx}\right) + y = 0 \qquad \dots (9)$$

$$\left(\frac{dy}{dx}\right)^2 + \left(\frac{dy}{dx}\right) - \sin^2 y = 0 \qquad \dots (10)$$

$$\frac{dy}{dx} + \sin\left(\frac{dy}{dx}\right) = 0 \qquad \dots (11)$$

આપણે જોઈ શકીએ છીએ કે, સમીકરણ (9) એ y"', y" અને y' ની બહુપદી છે. સમીકરણ (10) એ y' ની બહુપદી છે (છતાં એ y ની બહુપદી નથી). આવાં વિકલ સમીકરણોનાં પરિમાણ મળી શકે છે. પરંતુ સમીકરણ (11) એ વિકલિતોમાં બહુપદીય સમીકરણ નથી અને આવા વિકલ સમીકરણનું પરિમાણ મળી શકે નહિ.

જો વિકલ સમીકરણ વિકલિતોની બહુપદી સ્વરૂપે આપેલ હોય, તો વિકલ સમીકરણનું પરિમાણ (degree) એ વિકલ સમીકરણમાં આવતા ઉચ્ચતમ કક્ષાના વિકલિતનો ઉચ્ચતમ ઘાતાંક (ધન પૂર્ણાંક ઘાતાંક) એવો અર્થ આપણે કરીએ છીએ.

ઉપરની વ્યાખ્યાના અનુસંધાનમાં, આપણે જોઈ શકીએ છીએ કે વિકલ સમીકરણ (6), (7), (8) અને (9) એ દરેકનું પરિમાણ એક છે. વિકલ સમીકરણ (10)નું પરિમાણ બે છે અને વિકલ સમીકરણ (11) નું પરિમાણ વ્યાખ્યાયિત નથી.

🖝 નોંધ : વિકલ સમીકરણના કક્ષા અને પરિમાણ (જો વ્યાખ્યાયિત હોય, તો તે) હંમેશાં ધન પૂર્ણાંક હોય છે.

ઉંદાહરણ 1 : જો વ્યાખ્યાયિત હોય, તો નીચેનાં વિકલ સમીકરણોની કક્ષા અને પરિમાણ મેળવો :

(i)
$$\frac{dy}{dx} - \cos x = 0$$
 (ii) $xy \frac{d^2y}{dx^2} + x \left(\frac{dy}{dx}\right)^2 - y \frac{dy}{dx} = 0$ (iii) $y''' + y^2 + e^{y'} = 0$

ઉકેલ :

- (i) આ વિકલ સમીકરણમાં ઉચ્ચતમ કક્ષાનું વિકલિત $\frac{dy}{dx}$ છે. આથી તેની કક્ષા એક છે. તે y'માં બહુપદીય સમીકરણ છે અને $\frac{dy}{dx}$ નો ઉચ્ચતમ ઘાતાંક એક છે. આથી તેનું પરિમાણ એક છે.
- (ii) આપેલ વિકલ સમીકરણમાં ઉચ્ચતમ કક્ષાનું વિકલિત $\frac{d^2y}{dx^2}$ છે. આથી તેની કક્ષા બે છે. તે $\frac{d^2y}{dx^2}$ તથા $\frac{dy}{dx}$ માં બહુપદીય સમીકરણ છે અને $\frac{d^2y}{dx^2}$ નો ઉચ્ચતમ ઘાતાંક એક છે, આથી તેનું પરિમાણ એક છે.
- (iii) આ વિકલ સમીકરણમાં ઉચ્ચતમ કક્ષાનું વિકલિત *y*''' છે. આથી તેની કક્ષા ત્રણ છે. આપેલ વિકલ સમીકરણ તેનાં વિકલિતોનું બહુપદીય સમીકરણ નથી અને તેથી તેનું પરિમાણ વ્યાખ્યાયિત નથી.

સ્વાધ્યાય 9.1

જો વ્યાખ્યાયિત હોય, તો પ્રશ્ન 1 થી 10 માં આપેલ વિકલ સમીકરણોની કક્ષા અને પરિમાણ નક્કી કરો :

1.
$$\frac{d^4y}{dx^4} + \sin(y''') = 0$$
 2. $y' + 5y = 0$

320

ગણિત

3.
$$\left(\frac{ds}{dt}\right)^4 + 3s \frac{d^2s}{dt^2} = 0$$

4. $\left(\frac{d^2y}{dx^2}\right)^2 + \cos\left(\frac{dy}{dx}\right) = 0$
5. $\frac{d^2y}{dx^2} = \cos 3x + \sin 3x$
6. $(y''')^2 + (y'')^3 + (y')^4 + y^5 = 0$
7. $y''' + 2y'' + y' = 0$
8. $y' + y = e^x$
9. $y'' + (y')^2 + 2y = 0$
10. $y'' + 2y' + \sin y = 0$

પ્રશ્નો 11 તથા 12 માં વિધાન સાચું બને તે રીતે આપેલ વિકલ્પોમાંથી યોગ્ય વિકલ્પ પસંદ કરો :

11. વિકલ સમીકરણ
$$\left(\frac{d^2y}{dx^2}\right)^3 + \left(\frac{dy}{dx}\right)^2 + sin\left(\frac{dy}{dx}\right) + 1 = 0$$
નું પરિમાણ છે.
(A) 3 (B) 2 (C) 1 (D) અવ્યાખ્યાયિત
12. વિકલ સમીકરણ $2x^2 \frac{d^2y}{dx^2} - 3 \frac{dy}{dx} + y = 0$ ની કક્ષા છે.
(A) 2 (B) 1 (C) 0 (D) અવ્યાખ્યાયિત

9.3 વિકલ સમીકરણનો વ્યાપક અને વિશિષ્ટ ઉકેલ

અગાઉનાં ધોરણોમાં આપણે નીચેના પ્રકારનાં સમીકરણોના ઉકેલ શોધ્યા હતા :

$$x^{2} + 1 = 0$$
 ...(1)
 $sin^{2}x - cos \ x = 0$...(2)

સમીકરશ (1) અને (2) ના ઉકેલ આપેલ સમીકરશોનું સમાધાન કરતી હોય તેવી વાસ્તવિક કે સંકર સંખ્યાઓ છે. એટલે કે જ્યારે આ સંખ્યા અજ્ઞાત *x* ના સ્થાને સમીકરશની ડાબી બાજુએ મૂકીએ ત્યારે ડાબી બાજુની અભિવ્યક્તિ જમશી બાજુને સમાન થાય.

હવે, વિકલ સમીકરણ
$$\frac{d^2 y}{dx^2} + y = 0$$
 નો વિચાર કરો. ...(3)

પ્રથમ બે સમીકરણોથી વિપરીત, આ વિકલ સમીકરણોનો ઉકેલ એટલે તેનું સમાધાન કરતું વિધેય y = ∳ થશે તેમ આપણે વ્યાખ્યા આપીશું. એટલે કે આપેલ વિકલ સમીકરણની ડાબી બાજુએ જ્યારે અજ્ઞાત y (અવલંબી ચલ)ની જગ્યાએ ∲ મૂકીએ, તો ડાબી બાજુની અભિવ્યક્તિ જમણી બાજુને સમાન થાય છે.

 $q_{s}, y = \phi(x)$ ने आपेલ विडल समीडर छानो ઉडेल वर्ड (solution curve) (संडलित वर्ड, integral curve) इ. छे.

નીચેના વિધેયનો વિચાર કરીએ :

$$y = \phi(x) = a \sin(x+b) \qquad a, b \in \mathbb{R} \qquad \dots (4)$$

જ્યારે આ વિધેય અને તેના વિકલિત સમીકરણ (3) માં મૂકીએ, ત્યારે

ડાબી બાજુ = જમશી બાજુ થાય. આથી, તે વિકલ સમીકરશ (3) નો ઉકેલ થશે.

ધારો કે a અને b ની a = 2 અને $b = \frac{\pi}{4}$ જેવી અમુક ખાસ કિંમતો લઈએ, તો

$$y = \phi_1(x) = 2 \sin\left(x + \frac{\pi}{4}\right) \qquad \dots (5)$$

વિકલ સમીકરણો

જ્યારે આ વિધેય અને તેનાં વિકલિત સમીકરણ (3) માં મૂકીએ ત્યારે ડાબી બાજુ = જમણી બાજુ થાય. માટે, φ₁ પણ એ સમીકરણ (3)નો ઉકેલ થાય.

વિધેય ϕ એ a અને b એમ બે સ્વૈર અચળો ધરાવે છે અને ϕ ને આપેલા વિકલ સમીકરણનો વ્યાપક ઉકેલ (general solution) કહે છે. જ્યારે વિધેય ϕ_1 કોઈ સ્વૈર અચળ ધરાવતું નથી, પરંતુ a અને b ખાસ કિંમતો ધારણ કરે છે અને તેથી ϕ_1 ને આપેલા વિકલ સમીકરણનો વિશિષ્ટ ઉકેલ (particular solution) કહે છે.

સ્વૈર અચળો ધરાવતા ઉકેલને વિકલ સમીકરણનો વ્યાપક ઉકેલ (પૂર્વગ) કહે છે.

સ્વૈર અચળોથી મુક્ત હોય તેવા ઉકેલને એટલે કે વ્યાપક ઉકેલમાં સ્વૈર અચળોની નિશ્ચિત કિંમત ધરાવતા ઉકેલને વિકલ સમીકરણનો વિશિષ્ટ ઉકેલ કહે છે.

322

ગણિત

સ્વાધ્યાય 9.2

પ્રશ્ન 1 થી 10 માં આપેલ વિધેયને (સ્પષ્ટ અથવા ગૂઢ રીતે) અનુરૂપ વિકલ સમીકરણોનો ઉકેલ છે તેમ ચકાસો :

1. $y = e^x + 1$: y'' - y' = 02. $v = x^2 + 2x + c$: y' - 2x - 2 = 03. $y = \cos x + c$: v' + sin x = 04. $y = \sqrt{1 + x^2}$ $: y' = \frac{xy}{1+x^2}$: xy' = y5. v = Ax $(x \neq 0)$: $xy' = y + x\sqrt{x^2 - y^2}$ $(x \neq 0 અને x > y અથવા x < -y)$ 6. $y = x \sin x$ $y' = \frac{y^2}{1-xy}$ $(xy \neq 1)$ 7. $xy = \log y + c$ 8. $y - \cos y = x$: $(y \sin y + \cos y + x) y' = y$ 9. $x + y = tan^{-1}y$: $v^2v' + v^2 + 1 = 0$ **10.** $y = \sqrt{a^2 - x^2}$, $x \in (-a, a)$: $x + y \frac{dy}{dx} = 0$ $(y \neq 0)$ પ્રશ્નો 11 તથા 12 માં વિધાન સાચું બને તે રીતે આપેલ વિકલ્પોમાંથી યોગ્ય વિકલ્પ પસંદ કરો : 11. ચતુર્થ કક્ષાના વિકલ સમીકરણના વ્યાપક ઉકેલમાં સ્વૈર અચળની સંખ્યા હશે. (A) 0(B) 2(C) 3 (D) 4 12. તૃતીય કક્ષાના વિકલ સમીકરણના વિશિષ્ટ ઉકેલમાં સ્વૈર અચળની સંખ્યા હશે. (B) 2(C) 1 (D) 0 (A) 3 9.4 વ્યાપક ઉકેલ આપેલો હોય તેવા વિકલ સમીકરણની રચના (નોંધ : જો વર્તુળનું સમીકરણ $x^2 + y^2 + 2gx + 2fy + 1 = 0$ સ્વરૂપનું હોય, તો તેના કેન્દ્રના યામ (-g, -f) તથા $g^2 + f^2 - c > 0$ હોય, તો તેની ત્રિજ્યા $\sqrt{g^2 + f^2 - c}$ થાય.) આપણે જાણીએ છીએ કે સમીકરણ $x^2 + y^2 + 2x - 4y + 4 = 0$...(1) એ 1 એકમ ત્રિજ્યાવાળું અને (-1, 2) કેન્દ્રવાળું વર્તુળ દર્શાવે છે. સમીકરણ (1) નું x ની સાપેક્ષે વિકલન કરતાં, $\frac{dy}{dx} = \frac{x+1}{2-y}$ $(y \neq 2)$...(2) આ એક વિકલ સમીકરણ છે. હવે પછી આપણે જોઈશું કે (જુઓ વિભાગ 9.5.1, ઉદાહરણ 9) આ

સમીકરણનો વ્યાપક ઉકેલ વર્તુળોની સંહતિ દર્શાવે છે અને સમીકરણ (1)નું વર્તુળ આ સંહતિનો એક સભ્ય છે. ચાલો આપણે નીચેના સમીકરણનો વિચાર કરીએ :

 $x^2 + y^2 = r^2$...(3)

r ની ભિન્ન કિંમતો લેતાં આપણને આ સંહતિના ભિન્ન સભ્યો મળશે. ઉદાહરણ પ્રમાણે, $x^2 + y^2 = 1$, $x^2 + y^2 = 4$, $x^2 + y^2 = 9$ વગેરે (જુઓ આકૃતિ 9.1). આમ, સમીકરણ (3) એ જેનું કેન્દ્ર ઊગમબિંદુ હોય અને ત્રિજ્યાઓ ભિન્ન હોય તેવાં સમકેન્દ્રી વર્તુળોની સંહતિ દર્શાવે છે.

વિકલ સમીકરણો

સંહતિનો દરેક સભ્ય જેનું સમાધાન કરે તેવું વિકલ સમીકરશ શોધવામાં આપણને રસ છે. વિકલ સમીકરણ rથી મુક્ત હોવું જ જોઈએ, કારણ કે સંહતિના ભિન્ન સભ્યો માટે r પણ ભિન્ન હશે. સમીકરણ (3) નું r ની સાપેક્ષે વિકલન કરતાં નીચેના સમીકરણ જેવું સમીકરણ મેળવી શકાશે.

એટલે કે
$$2x + 2y \frac{dy}{dx} = 0$$

∴ $x + y \frac{dy}{dx} = 0$

dx સમીકરણ (3) આપેલ સમકેન્દ્રી વર્તુળોની સંહતિ દર્શાવે છે.

પુનઃ નીચેના સમીકરણનો વિચાર કરો :

y = mx + cપ્રચલ m અને c ની ભિન્ન કિંમતો મૂકતાં આપણને સંહતિના ભિન્ન સભ્યો મળે. ઇદાહરણ તરીકે, y = x (m = 1, c = 0)

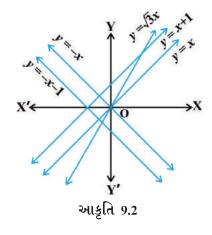
y = $\sqrt{3}x$ (m = $\sqrt{3}$, c = 0) y = x + 1 (m = 1, c = 1) y = -x (m = -1, c = 0) y = -x - 1 (m = -1, c = -1) વગેરે (જુઓ આકૃતિ 9.2.)

આમ, સમીકરણ (5) એ જ્યાં *m, c* પ્રચલો હોય તેવી રેખાઓની સંહતિ દર્શાવે છે.

સંહતિનો દરેક સભ્ય જેનું સમાધાન કરે તેવું વિકલ સમીકરશ શોધવામાં આપણને રસ છે. વળી, સમીકરશ *m* અને *c* થી મુક્ત હોવું જ જોઈએ, કારશ કે સંહતિના ભિન્ન સભ્ય માટે *m* અને *c* ની કિંમત ભિન્ન હોય છે. સમીકરશ (5)નું *x* ની સાપેક્ષે બે વખત વિકલન કરવાથી આ મેળવી શકાય છે.

$$\frac{dy}{dx} = m$$

અને $\frac{d^2y}{dx^2} = 0$...(6)



સમીકરણ (6) એ સમીકરણ (5) માં આપેલી રેખાઓની સંહતિનું વિકલ સમીકરણ દર્શાવે છે.

અહીં નોંધીશું કે સમીકરશ (3) અને (5) એ અનુક્રમે સમીકરશ (4) અને (6) નાં વ્યાપક ઉકેલો છે. 9.4.1 આપેલ વક્રોની સંહતિ દર્શાવતાં વિકલ સમીકરશોની રચનાની રીત

(a) જો આપેલ વક્રોની સંહતિ F₁માં માત્ર એક જ સ્વૈર અચળ હોય, તો તેને નીચેના જેવા સમીકરણ દ્વારા દર્શાવી શકાય :

$$F_1(x, y, a) = 0$$
 ...(1)

ઉદાહરણ તરીકે, પરવલયોની સંહતિ $y^2 = ax$ ને સમીકરણ $f(x, y, a) : y^2 = ax$ દ્વારા દર્શાવી શકાય.

Downloaded from https:// www.studiestoday.com

...(5)

324 ગણિત સમીકરણ (1) નું x પ્રત્યે વિકલન કરતાં મળતું સમીકરણ y', y, x અને a ધરાવે છે, એટલે કે g(x, y, y', a) = 0...(2)સમીકરણ (1) અને (2) માંથી a નો લોપ કરતા માંગેલ વિકલ સમીકરણ F(x, y, y') = 0 મળે છે. F(x, y, y') = 0...(3) (b) જો આપેલ વક્રોની સંહતિ F_2 માં બે સ્વૈર અચળો a, b હોય, તો તેને નીચેના જેવા સમીકરણ દ્વારા દર્શાવી શકાય : $F_2(x, y, a, b) = 0$...(4) સમીકરણ (4) નું x પ્રત્યે વિકલન કરતાં મળતું સમીકરણ y', x, y, a, b ધરાવે છે, એટલે કે g(x, y, y', a, b) = 0...(5) આ બે સમીકરણોમાંથી બે પ્રચલો *a*, *b* નો લોપ કરવો શક્ય નથી, એટલે આપણને ત્રીજા સમીકરણની જરૂર પડશે. સમીકરશ (5)નું x પ્રત્યે વિકલન કરતાં આ સમીકરશ મળે છે. તે નીચે પ્રમાશેના સ્વરૂપનું છે : h(x, y, y', y'', a, b) = 0...(6) સમીકરણ (4), (5) અને (6) માંથી a અને bનો લોપ કરતાં માંગેલ વિકલ સમીકરણ મળે છે. તે F(x, y, y', y'') = 0 છે. ...(7)વક્રોની સંહતિ દર્શાવતા વિકલ સમીકરણની કક્ષા એ વક્રોની સંહતિને દર્શાવતા સમીકરણમાં 🖝 નોંધ : આવેલા સ્વૈર અચળાંકો જેટલી હોય છે. <mark>ઉદાહરણ 4 :</mark> સંહતિ y = mx (*m* સ્વૈર અચળ છે) ને દર્શાવતા વિકલ સમીકરણની રચના કરો. **ઉકેલ** : અહીં *y* = *mx* ...(1) સમીકરણ (1) ની બંને બાજુ x ને સાપેક્ષ વિકલન કરતાં, $\frac{dy}{dx} = m$ m ની કિંમત સમીકરણ (1) માં મૂકતાં, $y = x \frac{dy}{dx}$ $\therefore x \frac{dy}{dx} - y = 0$ પ્રચલ *m* થી મુક્ત છે અને તેથી માંગેલ વિકલ સમીકરણ છે. <mark>ઉદાહરણ 5 :</mark> વક્રોની સંહતિ y = a sin (x + b) (a, b સ્વૈર અચળો છે.) ને દર્શાવતા વિકલ સમીકરણની રચના કરો. ઉકેલ : અહીં $y = a \sin (x + b)$...(1) સમીકરણ (1) ની બંને બાજુ x ની સાપેક્ષે બે વખત વિકલન કરતાં, $\frac{dy}{dx} = a \cos(x+b)$...(2) $\frac{d^2y}{dx^2} = -a \sin(x+b)$...(3) સમીકરણ (1), (2) અને (3) માંથી a અને b નો લોપ કરતા,

વિકલ સમીકરણો

$$\frac{d^2y}{dx^2} + y = 0 \qquad \dots (4)$$

આ સમીકરશ અચળો a અને b થી મુક્ત છે અને તેથી માંગેલ વિકલ સમીકરશ છે.

ઉદાહરણ 6 : જેનું કેન્દ્ર ઊગમબિંદુ હોય અને નાભિઓ X-અક્ષ પર હોય તેવા ઉપવલયોની સંહતિને દર્શાવતું વિકલ સમીકરશ મેળવો.

ઉકેલ : માંગ્યા પ્રમાશેના ઉપવલયોની સંહતિ (જુઓ આકૃતિ 9.3) નું સમીકરશ

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
 ...(1)
Ilsəv (1) - i x - Il સાપેક્ષે વિકલન કરતાં,

સર્મ (1) [.]y

$$\frac{2x}{a^2} + \frac{2y}{b^2} \frac{dy}{dx} = 0$$

$$\therefore \quad \frac{y}{x} \left(\frac{dy}{dx}\right) = \frac{-b^2}{a^2} \qquad \dots (2)$$

સમીકર(2) ની બંને બાજુ x ની સાપેક્ષે વિકલન કરતાં,

$$\left(\frac{y}{x}\right)\left(\frac{d^2y}{dx^2}\right) + \left(\frac{x\frac{dy}{dx} - y}{x^2}\right)\frac{dy}{dx} = 0$$

$$\therefore xy\frac{d^2y}{dx^2} + x\left(\frac{dy}{dx}\right)^2 - y\frac{dy}{dx} = 0 \qquad ...(3)$$

માંગેલ વિકલ સમીકરણ છે.

ઉદાહરણ 7 : X-અક્ષને ઊગમબિંદુ આગળ સ્પર્શતાં હોય તેવાં વર્તુળોની સંહતિનું વિકલ સમીકરણ શોધો.

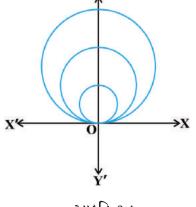
ઉકેલ : ધારો કે C એ X-અક્ષને ઊગમબિંદુ આગળ સ્પર્શતા વર્તુળોની સંહતિ છે. ધારો કે આ સંહતિના કોઈ સ્વૈર સભ્યના કેન્દ્રના યામ (0, a) છે. (આકૃતિ 9.4) માટે સંહતિ C નું સમીકરશ

$$x^{2} + (y - a)^{2} = a^{2}$$

 $\therefore x^{2} + y^{2} = 2ay$...(1)

સમીકરણ (1) ની બંને બાજુ x ને સાપેક્ષ વિકલન કરતાં,

$$2x + 2y \frac{dy}{dx} = 2a \frac{dy}{dx}$$
$$\therefore \quad x + y \frac{dy}{dx} = a \frac{dy}{dx}$$



325

326

$$\therefore \quad a = \frac{x + y \frac{dy}{dx}}{\frac{dy}{dx}} \qquad \dots (2)$$

સમીકરણ (2) માંથી મળેલ *a* ની કિંમત સમીકરણ (1) માં મૂકતાં,

$$x^{2} + y^{2} = 2y \frac{\left[x + y\frac{dy}{dx}\right]}{\frac{dy}{dx}}$$

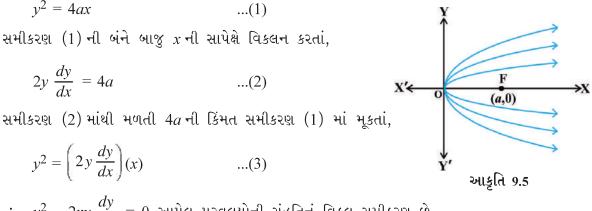
$$\therefore (x^2 + y^2)\frac{dy}{dx} = 2xy + 2y^2 \frac{dy}{dx}$$

$$\therefore \quad \frac{dy}{dx} = \frac{2xy}{x^2 - y^2}$$

આ આપેલ વર્તુળોની સંહતિ માટેનું માંગેલ વિકલ સમીકરણ છે.

ઉદાહરણ 8 : જેનું શીર્ષ ઊગમબિંદુ હોય અને અક્ષ એ X-અક્ષની ધન દિશા હોય તેવા પરવલયોની સંહતિનું વિકલ સમીકરણ શોધો.

ઉકેલ : ધારો કે P એ ઉપર પ્રમાશેની પરવલયોની સંહતિ છે (જુઓ આકૃતિ 9.5.) અને ધારો કે સ્વૈર અચળ a માટે (a, 0) એ તેના એક સભ્યની નાભિ છે, માટે સંહતિ P નું સમીકરશ



 $\therefore y^2 - 2xy \frac{dy}{dx} = 0 \text{ when vacually for a set of } x = 0.$

સ્વાધ્યાય 9.3

પ્રશ્ન 1 થી 5 ના વક્રોની સંહતિ માટે સ્વૈર અચળ a અને bનો લોપ કરીને વિકલ સમીકરણ મેળવો :

1. $\frac{x}{a} + \frac{y}{b} = 1$ 2. $y^2 = a (b^2 - x^2)$

3.
$$y = ae^{3x} + be^{-2x}$$

4. $y = e^{2x} (a + bx)$

- 5. $y = e^x (a \cos x + b \sin x)$
- _Y-અક્ષને ઊગમબિંદુ આગળ સ્પર્શતાં વર્તુળોની સંહતિનું વિકલ સમીકરણ શોધો. **6**.
- જેનું શીર્ષ ઊગમબિંદુ હોય અને અક્ષ એ Y-અક્ષની ધન દિશા હોય તેવા પરવલયોની સંહતિનું વિકલ 7. સમીકરણ શોધો.

Downloaded from https:// www.studiestoday.com

ગણિત

વિકલ સમીકરણો

- 8. જેનું કેન્દ્ર ઊગમબિંદુ હોય અને નાભિઓ Y-અક્ષ પર હોય તેવા ઉપવલયોની સંહતિનું વિકલ સમીકરણ શોધો.
- 9. જેનું કેન્દ્ર ઊગમબિંદુ હોય અને નાભિઓ X-અક્ષ પર હોય તેવા અતિવલયોની સંહતિનું વિકલ સમીકરણ શોધો.
- 10. જેનું કેન્દ્ર Y-અક્ષ પર હોય અને ત્રિજ્યા 3 એકમ હોય તેવાં વર્તુળોની સંહતિનું વિકલ સમીકરણ શોધો. પ્રશ્નો 11 તથા 12 માં વિધાન સાચું બને તે રીતે આપેલ વિકલ્પોમાંથી યોગ્ય વિકલ્પ પસંદ કરો :
- 11. નીચેનામાંથી કયા વિકલ સમીકરણનો વ્યાપક ઉકેલ $y = c_1 e^x + c_2 e^{-x}$ છે ?

(A)
$$\frac{d^2y}{dx^2} + y = 0$$
 (B) $\frac{d^2y}{dx^2} - y = 0$ (C) $\frac{d^2y}{dx^2} + 1 = 0$ (D) $\frac{d^2y}{dx^2} - 1 = 0$

12. નીચેનામાંથી કયા વિકલ સમીકરણનો વિશિષ્ટ ઉકેલ y = x છે ?

(A)
$$\frac{d^2 y}{dx^2} - x^2 \frac{dy}{dx} + xy = x$$

(B) $\frac{d^2 y}{dx^2} + x \frac{dy}{dx} + xy = x$
(C) $\frac{d^2 y}{dx^2} - x^2 \frac{dy}{dx} + xy = 0$
(D) $\frac{d^2 y}{dx^2} + x \frac{dy}{dx} + xy = 0$

9.5 પ્રથમ કક્ષાના એક પરિમાણીય વિકલ સમીકરણના ઉકેલ માટેની રીતો

આ વિભાગમાં આપણે પ્રથમ કક્ષાના એક પરિમાણીય વિકલ સમીકરણના ઉકેલ માટેની ત્રણ રીતોની ચર્ચા કરીશું.

9.5.1 વિયોજનીય ચલનાં વિકલ સમીકરણો

પ્રથમ કક્ષાના એક પરિમાણી વિકલ સમીકરણનું સ્વરૂપ નીચે પ્રમાણે છે :

$$\frac{dy}{dx} = F(x, y) \qquad \dots (1)$$

त्रो $\mathbf{F}(x, y)$ ने g(x) એ x नुं विधेय छोय अने h(y) એ y नुं विधेय छोय, ते रीते g(x) h(y) तरीडे हर्शावी शडाय तो विडल सभीडरण (1) ने वियोजनीय चल प्रडारनुं विडल सभीडरण (Differential equation with variables separable) डर्छ છे.

વિકલ સમીકરણ (1) નું સ્વરૂપ હવે નીચે પ્રમાણે થશે :

$$\frac{dy}{dx} = g(x) h(y) \qquad \dots (2)$$

જો $h(y) \neq 0$ તો ચલોને જુદા પાડીને સમીકરણ (2) નીચે પ્રમાણે થશે :

$$\frac{1}{h(y)} dy = g(x) dx \qquad \dots (3)$$

સમીકરણ (3) ની બંને બાજુ સંકલન કરતાં,

$$\int \frac{1}{h(y)} \, dy = \int g(x) \, dx \qquad \dots (4)$$

આમ, સમીકરણ (4) આપેલ વિકલ સમીકરણનો ઉકેલ નીચેના સ્વરૂપમાં પૂરો પાડે છે :

$$H(y) = G(x) + c$$

જ્યાં, H(y) અને G(x) એ અનુક્રમે $\frac{1}{h(y)}$ અને g(x) ના પ્રતિવિકલિત છે અને c સ્વૈર અચળ છે.

328

ગણિત

ઉદાહરણ 9 : વિકલ સમીકરણ
$$\frac{dy}{dx} = \frac{x+1}{2-y}, (y \neq 2)$$
નો વ્યાપક ઉકેલ શોધો.

ઉકેલ : અહીં,
$$\frac{dy}{dx} = \frac{x+1}{2-y}$$
 ...(1)

સમીકરણ (1) ને વિયોજનીય ચલના વિકલ સમીકરણ તરીકે લખતાં,

$$(2 - y) dy = (x + 1) dx \qquad ...(2)$$

$$\int (2 - y) \, dy = \int (x + 1) \, dx$$

∴ $2y - \frac{y^2}{2} = \frac{x^2}{2} + x + c_1$
∴ $x^2 + y^2 + 2x - 4y + 2c_1 = 0$
∴ $x^2 + y^2 + 2x - 4y + c = 0$ seti, $c = 2c_1$
આ સમીકરણ (1) નો વ્યાપક ઉકેલ છે.

ઉદાહરણ 10 : વિકલ સમીકરણ $\frac{dy}{dx} = \frac{1+y^2}{1+x^2}$ નો વ્યાપક ઉકેલ શોધો.

<mark>ઉકેલ</mark> : 1 + y^2 ≠ 0 હોવાથી આપેલ વિકલ સમીકરશને વિયોજનીય ચલના વિકલ સમીકરશ તરીકે નીચે પ્રમાશે લખી શકાય :

$$\frac{dy}{1+y^2} = \frac{dx}{1+x^2} ...(1)$$

સમીકરણ (1) ની બંને બાજુ સંકલન કરતાં,

$$\int \frac{dy}{1+y^2} = \int \frac{dx}{1+x^2}$$

$$\therefore \quad \tan^{-1}y = \tan^{-1}x + c$$

આ સમીકરણ (1) નો વ્યાપક ઉકેલ છે.

ઉદાહરણ 11 : જ્યારે x = 0 હોય ત્યારે y = 1 થાય તે પ્રારંભિક શરત અનુસાર વિકલ સમીકરણ $\frac{dy}{dx} = -4xy^2$ નો વિશિષ્ટ ઉકેલ શોધો.

ઉકેલ : જો $y \neq 0$ હોય, તો આપેલ વિકલ સમીકરણ નીચે પ્રમાણે લખી શકાય છે :

$$\frac{dy}{y^2} = -4x \ dx \qquad \dots (1)$$

સમીકરણ (1) ની બંને બાજુ સંકલન કરતાં,

$$\int \frac{dy}{y^2} = -4 \int x \, dx$$

$$\therefore \quad -\frac{1}{y} = -2x^2 + c$$

$$\therefore \quad y = \frac{1}{2x^2 - c} \qquad \dots(2)$$

વિકલ સમીકરણો

સમીકરણ (2) માં
$$y = 1$$
 અને $x = 0$ મૂકતાં, $c = -1$ મળે છે.

હવે, સમીકરણ (2) માં c ની કિંમત મૂકતાં આપેલા વિકલ સમીકરણનો વિશિષ્ટ ઉકેલ $y = \frac{1}{2x^2 + 1}$ મળે છે.

ઉદાહરણ 12 : જેનું વિકલ સમીકરણ $x \, dy = (2x^2 + 1)dx \ (x \neq 0)$ હોય તેવા (1, 1) માંથી પસાર થતા વક્રનું સમીકરણ શોધો.

ઉકેલ : આપેલ વિકલ સમીકરણ નીચે પ્રમાણે લખી શકાય :

$$dy^* = \left(\frac{2x^2 + 1}{x}\right) dx^*$$

$$\therefore \quad dy = \left(2x + \frac{1}{x}\right) dx \qquad \dots(1)$$

સમીકરણ (1) ની બંને બાજુ સંકલન કરતાં,

$$\int_{-\infty}^{\infty} (x - 1) dx$$

$$\int dy = \int \left(2x + \frac{1}{x}\right) dx$$

$$\therefore \quad y = x^2 + \log|x| + c \qquad \dots(2)$$

સમીકરશ (2) એ આપેલા વિકલ સમીકરશના ઉકેલના વક્રોની સંહતિ દર્શાવે છે. પરંતુ આપણને સંહતિના (1, 1) માંથી પસાર થતો હોય તેવા સભ્યના સમીકરશમાં રસ છે. માટે સમીકરશ (2) માં x = 1, y = 1 મૂકતાં c = 0 મળે.

હવે, સમીકરણ (2) માં c ની કિંમત મૂકતા આપણને માંગેલ વક્રનું સમીકરણ $y = x^2 + \log |x|$ મળે છે. ઉદાહરણ 13 : કોઈ પણ બિંદુ (x, y) આગળ વક્રના સ્પર્શકનો ઢાળ $\frac{2x}{y^2}$ આપેલ છે. (-2, 3)માંથી પસાર થતા આ સંહતિના વક્રનું સમીકરણ શોધો.

ઉકેલ : આપણે જાણીએ છીએ કે વક્રના સ્પર્શકનો ઢાળ $\frac{dy}{dx}$ છે.

$$\hat{d} x = \frac{2x}{y^2} \dots (1)$$

વિયોજનીય ચલના વિકલ સમીકરણ તરીકે લખતાં,

$$y^2 dy = 2x dx \qquad \dots (2)$$

સમીકરણ (2) ની બંને બાજુ સંકલન કરતાં,

$$\int y^2 \, dy = \int 2x \, dx$$

$$\therefore \quad \frac{y^3}{2} = x^2 + c \qquad \dots (3)$$

લીબનીટ્ઝનો સંકેત <u>dy</u> અત્યંત લચીલો છે અને ઘણીબધી ગણતરીઓમાં ઉપયોગી છે. આપણે *dy* અને *dx* ને સંખ્યા તરીકે ઉપયોગ થાય તેવા ઔપચારિક પરિવર્તનમાં વાપરીએ છીએ. *dx* અને *dy* ને ભિન્ન રાશિ તરીકે લેવાથી ઘણીબધી ગણતરીઓમાં વધુ સ્પષ્ટ રીતે અભિવ્યક્તિ કરી શકાય છે.

સંદભ્ય : Introduction to Calculus and Analysis, volume-I page 172, By Richard Courant, Fritz John Springel – Verlog New York.

330 ગણિત સમીકરણ (3) માં x = -2 અને y = 3 મૂકતાં c = 5 મળે છે. c ની કિંમત સમીકરણ (3)માં મૂકતાં, $\frac{y^3}{3} = x^2 + 5$ $\therefore y = (3x^2 + 15)^{\frac{1}{3}}$ માંગેલ વક્રનું સમીકરણ છે. ઉદાહરણ 14 : બૅન્કમાં રાખેલ મુદલ વાર્ષિક 5 % ના દરે સતત વધી રહ્યું છે. જો બૅન્કમાં ₹ 1000 ની રાશિ મૂકી હોય, તો તે કેટલાં વર્ષમાં બમણી થશે ? ઉંકેલ : ધારો કે કોઈ પણ t સમયે મુદલ P છે. પ્રશ્નમાં આપેલ માહિતી પરથી, $\frac{d\mathbf{P}}{dt} = \left(\frac{5}{100}\right) \times \mathbf{P}$ $\therefore \frac{dP}{dt} = \frac{P}{20}$...(1) સમીકરણ (1) ના ચલોનું વિયોજન કરતાં, $\frac{dP}{P} = \frac{dt}{20}$...(2) સમીકરણ (2) ની બંને બાજુએ સંકલન કરતાં, $\log P = \frac{t}{20} + c_1$ $\therefore \mathbf{P} = \rho^{\frac{t}{20}} \rho^{c_1}$ $\therefore P = c e^{\frac{t}{20}}$ (જ્યાં $e^{c_1} = c$) ...(3) હવે, જો t = 0 તો P = 1000P અને t ની કિંમતો (3) માં મૂકતાં, c = 1000 મળે. ... સમીકરણ (3) પરથી, $P = 1000 e^{\frac{t}{20}}$ ધારો કે મુદ્દલ બમશું થવા માટે લાગતો સમય t વર્ષ છે. $\therefore \quad 2000 = 1000 e^{\frac{t}{20}} \implies t = 20 \log_e 2$ સ્વાધ્યાય 9.4 પ્રશ્નો 1 થી 10 નાં વિકલ સમીકરણોના વ્યાપક ઉકેલ મેળવો : 1. $\frac{dy}{dx} = \frac{1 - \cos x}{1 + \cos x}$ 2. $\frac{dy}{dx} = \sqrt{4 - y^2}$ (-2 < y < 2)

3. $\frac{dy}{dx} + y = 1$ $(y \neq 1)$ 4. $\sec^2 x \tan y \, dx + \sec^2 y \tan x \, dy = 0$

વિકલ સમીકરણો

5. $(e^{x} + e^{-x}) dy - (e^{x} - e^{-x}) dx = 0$ 6. $\frac{dy}{dx} = (1 + x^{2}) (1 + y^{2})$ 7. $y \log y dx - x dy = 0$ 8. $x^{5} \frac{dy}{dx} = -y^{5}$ 9. $\frac{dy}{dx} = \sin^{-1}x$ 10. $e^{x} \tan y dx + (1 - e^{x}) \sec^{2}y dy = 0$

પ્રશ્નો 11 થી 14 માં આપેલી શરતનું સમાધાન કરતા વિકલ સમીકરણના વિશિષ્ટ ઉકેલ મેળવો :

- 11. $(x^3 + x^2 + x + 1)\frac{dy}{dx} = 2x^2 + x;$ જયારે x = 0 ત્યારે y = 1. 12. $x(x^2 - 1)\frac{dy}{dx} = 1;$ જયારે x = 2 ત્યારે y = 0. 13. $\cos\left(\frac{dy}{dx}\right) = a \ (a \in \mathbb{R});$ જયારે x = 0 ત્યારે y = 2. 14. $\frac{dy}{dx} = y \ tan \ x;$ જયારે x = 0 ત્યારે y = 1. 15. જેનું વિકલ સમીકરણ $y' = e^x \sin x$ હોય તેવા બિંદુ (0, 0) માંથી પસાર થતા વક્ષ્નું સમીકરણ શોધો.
- **16.** બિંદુ (1, -1) માંથી પસાર થતો વિકલ સમીકરણ $xy \frac{dy}{dx} = (x + 2)(y + 2)$ નો ઉકેલ વક્ર શોધો.
- 17. જે વક્રના કોઈ પણ બિંદુ (x, y) આગળ સ્પર્શકના ઢાળ અને તે બિંદુના y યામનો ગુણાકાર તે બિંદુના x-યામ જેટલો છે અને જે (0, -2) માંથી પસાર થાય છે તેવા વક્રનું સમીકરણ શોધો.
- 18. વક્રના કોઈ પણ બિંદુ (x, y) આગળ સ્પર્શકનો ઢાળ એ સ્પર્શબિંદુ અને બિંદુ (-4, -3) માંથી પસાર થતી રેખાના ઢાળ કરતાં બમણો છે. વક્ર (-2, 1) માંથી પસાર થતો હોય, તો આ વક્રનું સમીકરણ શોધો.
- 19. ગોળાકાર બલૂનમાં એવી રીતે હવા ભરવામાં આવે છે કે, તેનું ઘનફળ ચોક્કસ દરથી વધે છે. જો શરૂઆતમાં તેની ત્રિજ્યા 3 એકમ હોય અને 3 સેકન્ડ પછી તે 6 એકમ હોય તો t સેકન્ડ પછી બલૂનની ત્રિજ્યા શોધો.
- 20. બૅન્કમાં રાખેલ મુદલ વાર્ષિક r % ના દરે સતત વધી રહ્યું છે. જો 10 વર્ષમાં બૅન્કમાં મૂકેલા ₹ 100 બમણા થતા હોય તો r ની કિંમત શોધો. (log_e2 = 0.6931)
- 21. ઍન્કમાં રાખેલ મુદલ વાર્ષિક 5 % ના દરે સતત વધી રહ્યું છે. ઍન્કમાં ₹ 1000 થાપણ તરીકે મૂક્યા છે,
 તો 10 વર્ષ પછી તે કેટલા થશે ? (e^{0.5} = 1.648)
- 22. એક સંવર્ધન કેન્દ્રમાં બૅક્ટેરિયાની સંખ્યા 1,00,000 છે. 2 કલાકમાં તેની સંખ્યા 10 % ના દરે વધે છે. જો બૅક્ટેરિયાનો વૃદ્ધિ-દર કોઈ પણ સમયે હાજર બૅક્ટેરિયાની સંખ્યાના પ્રમાણમાં હોય, તો કેટલા કલાકમાં તેની સંખ્યા 2,00,000 થશે ?
- પ્રશ્ન 23 માં વિધાન સાચું બને તે રીતે આપેલ વિકલ્પોમાંથી યોગ્ય વિકલ્પ પસંદ કરો :

23. વિકલ સમીકરણ
$$\frac{dy}{dx} = e^{x + y}$$
નો વ્યાપક ઉકેલ થશે.

(A) $e^x + e^{-y} = c$ (B) $e^x + e^y = c$ (C) $e^{-x} + e^y = c$ (D) $e^{-x} + e^{-y} = c$

332

9.5.2 સમપરિમાણ વિકલ સમીકરણ

x અને yનાં નીચેનાં વિધેયોનો વિચાર કરીએ :

$$F_{1}(x, y) = y^{2} + 2xy, \qquad F_{2}(x, y) = 2x - 3y$$

$$F_{3}(x, y) = \cos\left(\frac{y}{x}\right), \qquad F_{4}(x, y) = \sin x + \cos y$$

ઉપરનાં વિધેયોમાં આપણે x અને yની જગ્યાએ અનુક્રમે λx અને λy (λ શૂન્યેતર અચળ) મૂકીએ, તો

$$\begin{split} F_{1}(\lambda x, \lambda y) &= \lambda^{2}(y^{2} + 2xy) = \lambda^{2}F_{1}(x, y) \\ F_{2}(\lambda x, \lambda y) &= \lambda(2x - 3y) = \lambda F_{2}(x, y) \\ F_{3}(\lambda x, \lambda y) &= \cos\left(\frac{\lambda y}{\lambda x}\right) = \cos\left(\frac{y}{x}\right) = \lambda^{o}F_{3}(x, y) \\ \text{uid shown } K \in \mathbb{N} \text{ this } F_{4}(\lambda x, \lambda y) = \sin \lambda x + \cos \lambda y \neq \lambda^{n}F_{4}(x, y) \end{split}$$

<mark>નોંધ :</mark> કોઈ પણ *n* ∈ Q માટે, *sin* λ*x* + *cos* λ*y* ≠ λⁿF(*x, y*) એ સાબિત કરવું સરળ નથી. પરંતુ, આપણે સાહજિક રીતે સ્વીકારી લઈએ છીએ.

અહીં આપણે જોઈ શકીએ છીએ કે, વિધેયો F_1 , F_2 , F_3 ને $F(\lambda x, \lambda y) = \lambda^n F(x, y)$ સ્વરૂપમાં લખી શકીએ છીએ. પરંતુ F_4 ને આ સ્વરૂપમાં લખી શકાતું નથી. તે નીચેની વ્યાખ્યા તરફ દોરી જાય છે.

જો $F(\lambda x, \lambda y) = \lambda^n F(x, y)$ (λ शून्येतर અચળ) तो विधेय F(x, y) ने n धातवाળुं समपरिमाण्डीय विधेय (Homogeneous function) કહે છે.

આપણે નોંધીશું કે ઉપરના દાખલાઓમાં F_1 , F_2 , F_3 એ અનુક્રમે 2, 1, 0 ઘાતવાળાં સમપરિમાણીય વિધેયો છે, પરંતુ F_4 એ સમપરિમાણીય વિધેય નથી.

વળી, આપશે જોઈ શકીએ છીએ કે,

$$F_{1}(x, y) = x^{2} \left(\frac{y^{2}}{x^{2}} + \frac{2y}{x}\right) = x^{2}h_{1}\left(\frac{y}{x}\right)$$
અથવા $F_{1}(x, y) = y^{2} \left(1 + \frac{2x}{y}\right) = y^{2}h_{2}\left(\frac{x}{y}\right)$
 $F_{2}(x, y) = x^{1} \left(2 - \frac{3y}{x}\right) = x^{1}h_{3}\left(\frac{y}{x}\right)$
અથવા $F_{2}(x, y) = y^{1} \left(\frac{2x}{y} - 3\right) = y^{1}h_{4}\left(\frac{x}{y}\right)$
 $F_{3}(x, y) = x^{0} \cos\left(\frac{y}{x}\right) = x^{0}h_{5}\left(\frac{y}{x}\right)$
કોઈ પણ $n \in \mathbb{N}$ માટે $F_{4}(x, y) \neq x^{n}h_{6}\left(\frac{y}{x}\right)$
અથવા કોઈ પણ $n \in \mathbb{N}$ માટે $F_{4}(x, y) \neq y^{n}h_{7}\left(\frac{x}{y}\right)$
(ઉપરની નોંધ લાગુ પડે છે.)

 $\therefore \quad \text{where } \mathbf{F}(x, y) = x^n g\left(\frac{y}{x}\right) \quad \text{where } \mathbf{h}\left(\frac{x}{y}\right) \quad \text{where } \mathbf{F}(x, y) \quad \text{where } \mathbf{h} \quad \text{where } \mathbf{h}\left(\frac{y}{y}\right) \quad \text{where } \mathbf{h}\left(\frac{y}{y}\right)$

વિકલ સમીકરણો

જો $\frac{dy}{dx} = \mathbf{F}(x, y)$ સ્વરૂપના વિકલ સમીકરણમાં, $\mathbf{F}(x, y)$ એ શૂન્ય ઘાતવાળું સમપરિમાણીય વિધેય હોય, તો તેને સમપરિમાણ વિકલ સમીકરણ કહે છે.

$$\frac{dy}{dx} = F(x, y) = g\left(\frac{y}{x}\right) \qquad \dots(1)$$

પ્રકારના સમપરિમાણ વિકલ સમીકરણનો ઉકેલ શોધવા માટે આપણે

$$y = vx \,\operatorname{elb}(y) \, ...(2)$$

સમીકરણ (2) નું x ની સાપેક્ષે વિકલન કરતાં,

$$\frac{dy}{dx} = v + x \frac{dv}{dx} \qquad \dots (3)$$

સમીકરણ (3) માંથી $\frac{dy}{dx}$ ની કિંમત સમીકરણ (1) માં મૂકતાં,

$$v + x\frac{dv}{dx} = g(v)$$

$$\therefore \quad x\frac{dv}{dx} = g(v) - v \qquad \dots (4)$$

સમીકરણ (4) ને વિયોજનીય ચલના વિકલ સમીકરણ તરીકે લખતાં,

$$\frac{dv}{g(v)-v} = \frac{dx}{x} \tag{5}$$

સમીકરણ (5) ની બંને બાજુએ સંકલન કરતાં,

$$\int \frac{dv}{g(v) - v} = \int \frac{1}{x} dx + c \qquad \dots (6)$$

જ્યારે આપણે *v* ની જગ્યાએ $rac{y}{x}$ મૂકીએ ત્યારે સમીકરણ (6) એ વિકલ સમીકરણ (1) નો વ્યાપક ઉકેલ (પ્રતિવિકલિત) આપશે.

▲ નોંધ : F(x, y) એ શૂન્ય ઘાતવાળા સમપરિમાણીય વિધેય સ્વરૂપનું હોય, તો સમપરિમાણ વિકલ સમીકરણ $\frac{dx}{dy} = F(x, y)$ ના ઉકેલ માટે આપણે $\frac{x}{y} = v$ એટલે કે x = vy લઈશું. અને ઉપર ચર્ચા કરી એ રીતે $\frac{dx}{dy} = F(x, y) = h\left(\frac{x}{y}\right)$ લખીને આપણે વ્યાપક ઉકેલ શોધવા આગળ વધીશું.

ઉદાહરણ 15 : સમીકરણ $(x - y) \frac{dy}{dx} = x + 2y$ એ સમપરિમાણ વિકલ સમીકરણ છે એમ દર્શાવો અને તેનો ઉકેલ શોધો.

ઉકેલ : આપેલ વિકલ સમીકરણ નીચે પ્રમાણે લખી શકાય :

$$\frac{dy}{dx} = \frac{x+2y}{x-y} \qquad \dots (1)$$

ગણિત

334

$$\begin{aligned} &u \hat{u} \hat{u} \hat{g} F(x, y) = \frac{x + 2y}{x - y} \\ &u \hat{d}_{x} F(\lambda x, \lambda y) = \frac{\lambda(x + 2y)}{\lambda(x - y)} = \lambda^{0} F(x, y) \\ &\therefore F(x, y) \hat{u} \frac{1}{y_{x}^{-1}} u_{x}(a) u_{x} \frac{1}{y_{x}^{-1}} \frac{1}{x_{x}^{-1}} \int_{x}^{1-\frac{2y}{x}} \int_{x}^{1-\frac{2y}{x}} \frac{1}{1-\frac{2y}{x}} \int_{x}^{1-\frac{2y}{x}} \frac{1}{1$$

વિકલ સમીકરણો

$$\therefore \quad \frac{1}{2} \log |v^2 + v + 1| = \frac{3}{2} \cdot \frac{2}{\sqrt{3}} \tan^{-1} \left(\frac{2v+1}{\sqrt{3}}\right) = -\log |x| + c_1$$

$$\therefore \quad \frac{1}{2} \log |v^2 + v + 1| + \frac{1}{2} \log x^2 = \sqrt{3} \tan^{-1} \left(\frac{2v+1}{\sqrt{3}}\right) + c_1$$

$$(au \ ui2?)$$

$$v = \frac{y}{x} \ u_{\xi}$$
 cti,
$$\therefore \quad \frac{1}{2} \log \left|\frac{y^2}{x^2} + \frac{y}{x} + 1\right| + \frac{1}{2} \log x^2 = \sqrt{3} \tan^{-1} \left(\frac{2y+x}{\sqrt{3x}}\right) + c_1$$

$$\therefore \quad \frac{1}{2} \log \left|\left(\frac{y^2}{x^2} + \frac{y}{x} + 1\right) \cdot x^2\right| = \sqrt{3} \tan^{-1} \left(\frac{2y+x}{\sqrt{3x}}\right) + c_1$$

$$\therefore \quad \log |(v^2 + xy + x^2)| = 2\sqrt{3} \tan^{-1} \left(\frac{2y+x}{\sqrt{3x}}\right) + 2c_1$$

$$\therefore \quad \log |(x^2 + xy + y^2)| = 2\sqrt{3} \tan^{-1} \left(\frac{2y+x}{\sqrt{3x}}\right) + c$$

$$(c = 2c_1)$$

$$\therefore \quad u_{\xi}$$
 and
$$(1) \ du \ u_{\xi}$$
 by the formula is the set if the s

ઉદાહરણ 16 : સાબિત કરો કે વિકલ સમીકરણ $x \cos\left(\frac{y}{x}\right) \frac{dy}{dx} = y \cos\left(\frac{y}{x}\right) + x$ એ સમપરિમાણ છે અને તેને ઉકેલો.

ઉકેલ : આપેલ વિકલ સમીકરણ આ પ્રમાણે લખી શકાય :

$$\frac{dy}{dx} = \frac{y\cos\left(\frac{y}{x}\right) + x}{x\cos\left(\frac{y}{x}\right)} \dots(1)$$

એ $\frac{dy}{dx} = F(x, y)$ પ્રકારનું વિકલ સમીકરણ છે.

અહીં,
$$F(x, y) = \frac{y \cos\left(\frac{y}{x}\right) + x}{x \cos\left(\frac{y}{x}\right)}$$

x ની જગ્યાએ λx અને y ની જગ્યાએ λy મૂકતાં,

$$F(\lambda x, \lambda y) = \frac{\lambda \left[y \cos\left(\frac{y}{x}\right) + x \right]}{\lambda \left[x \cos\left(\frac{y}{x}\right) \right]}$$
$$= \lambda^0 F(x, y)$$

આમ, F(x, y) એ શૂન્ય ઘાતવાળું સમપરિમાણ વિધેય છે. માટે આપેલ વિધેય સમીકરણ સમપરિમાણ વિકલ સમીકરણ છે. તેનો ઉકેલ શોધવા માટે આપણે,

$$y = vx$$
 લઈએ. ...(2)

336

ગણિત

...(3)

સમીકરશ (2) નું 'x' ને સાપેક્ષ વિકલન કરતાં, $\frac{dy}{dx} = v + x \frac{dv}{dx}$ y અને $\frac{dy}{dx}$ ની કિંમતો સમીકરશ (1) માં મૂકતાં, $\therefore v + x \frac{dv}{dx} = \frac{v \cos v + 1}{\cos v}$ $\therefore x \frac{dv}{dx} = \frac{v \cos v + 1}{\cos v} - v$ $\therefore x \frac{dv}{dx} = \frac{1}{\cos v}$ $\therefore \cos v \, dv = \frac{dx}{x}$ $\therefore \int \cos v \, dv = \int \frac{1}{x} \, dx$ $\therefore \sin v = \log |x| + \log |c|$ $\therefore \sin v = \log |cx|$ $v = \frac{y}{x}$ મૂકતાં, $\sin \left(\frac{y}{x}\right) = \log |cx|$

આ માંગેલ વિકલ સમીકરણ (1) નો વ્યાપક ઉકેલ છે.

ઉદાહરણ 17 : સાબિત કરો કે વિકલ સમીકરણ $2y e^{\frac{x}{y}} dx + (y - 2x e^{\frac{x}{y}}) dy = 0$ એ સમપરિમાણ વિકલ સમીકરણ છે અને તેનો વિશિષ્ટ ઉકેલ x = 0 હોય, ત્યારે y = 1 બને તે રીતે મેળવો.

ઉકેલ : આપણે વિકલ સમીકરણ આ પ્રમાણે લખી શકીએ :

$$\frac{dx}{dy} = \frac{2xe^{\frac{x}{y}} - y}{2ye^{y}} \qquad \dots (1)$$

unit is, $F(x, y) = \frac{2xe^{\frac{x}{y}} - y}{2ye^{y}}$

$$\therefore F(\lambda x, \lambda y) = \frac{\lambda(2xe^{\frac{x}{y}} - y)}{\lambda(2ye^{\frac{x}{y}})} = \lambda^{0} F(x, y)$$

વિકલ સમીકરણો

આમ, F(x, y) એ શૂન્ય ઘાતવાળું સમપરિમાણીય વિધેય છે. માટે આપેલ વિકલ સમીકરણ એ સમપરિમાણ વિકલ સમીકરણ છે. તેનો ઉકેલ શોધવા માટે આપણે

$$x = vy$$
 લઈએ. ...(2)

સમીકરણ (2) નું 'y' ની સાપેક્ષ વિકલન કરતાં,

$$\frac{dx}{dy} = v + y \frac{dv}{dy}$$

x अने $\frac{dx}{dy}$ नी डिंमत समीडरश (1) मां मूडतां,

$$v + y \frac{dv}{dy} = \frac{2ve^{v} - 1}{2e^{v}}$$

$$\therefore y \frac{dv}{dy} = \frac{2ve^{v} - 1}{2e^{v}} - v$$

$$\therefore y \frac{dv}{dy} = -\frac{1}{2e^{v}}$$

$$\therefore 2e^{v} dv = -\frac{dy}{y}$$

$$\therefore \int 2e^{v} dv = -\int \frac{dy}{y}$$

$$\therefore 2e^{v} = -\log |y| + c$$

$$v = \frac{x}{y} \text{ ysci,}$$

$$2e^{\frac{x}{y}} + \log |y| = c$$

$$\text{aulistyi} (3) \text{ ui } x = 0 \text{ auf } y = 1 \text{ ysci,}$$

$$2e^{0} + \log |1| = c \implies c = 2$$

c ની કિંમત સમીકરણ (3) માં મૂકતાં,
$$2e^{\frac{x}{y}} + \log|y| = 2$$

આ માંગેલ વિકલ સમીકરણનો વિશિષ્ટ ઉકેલ છે.

ઉદાહરણ 18 : વક્રના કોઈ પણ બિંદુ (x, y) આગળ તેના સ્પર્શકનો ઢાળ $\frac{x^2 + y^2}{2xy}$ છે. સાબિત કરો કે આવા વક્રોની સંહતિનું સમીકરણ $x^2 - y^2 = cx$ છે. ઉકેલ : આપણે જાણીએ છીએ કે, વક્રના કોઈ પણ બિંદુએ સ્પર્શકનો ઢાળ $\frac{dy}{dx}$ છે. $\therefore \quad \frac{dy}{dx} = \frac{x^2 + y^2}{2xy}$

Downloaded from https:// www.studiestoday.com

...(3)

338

$$\therefore \quad \frac{dy}{dx} = \frac{1 + \frac{y^2}{x^2}}{\frac{2y}{x}} \qquad \dots (1)$$

ગણિત

સ્પષ્ટ રીતે, (1) એ સમપરિમાણ વિકલ સમીકરણ છે. તેનો ઉકેલ શોધવા માટે આપણે y = vx લઈએ. y = vxનું 'x' ની સાપેક્ષે વિકલન કરતાં,

$$\frac{dy}{dx} = v + x \frac{dv}{dx}$$

$$\therefore v + x \frac{dv}{dx} = \frac{1 + v^2}{2v}$$

$$\therefore x \frac{dv}{dx} = \frac{1 - v^2}{2v}$$

$$\therefore \frac{2v}{1 - v^2} dv = \frac{dx}{x}$$

$$\therefore \frac{2v}{v^2 - 1} dv = -\int \frac{1}{x} dx$$

$$\therefore \log |v^2 - 1| = -\log |x| + \log |c_1|$$

$$\therefore \log |(v^2 - 1)x| = \log |c_1|$$

$$\therefore (v^2 - 1)x = \pm c_1$$

$$v = \frac{y}{x} \text{ Agsdi,}$$

$$\left(\frac{y^2}{x^2} - 1\right)x = \pm c_1$$

$$\therefore (y^2 - x^2) = \pm c_1x \text{ add} x^2 - y^2 = cx$$

Reliving 9.5

પ્રશ્નો 1થી 10 ના વિકલ સમીકરણ સમપરિમાણ વિકલ સમીકરણ છે તેમ દર્શાવો અને દરેકનો ઉકેલ શોધો :

1.
$$(x^{2} + xy) dy = (x^{2} + y^{2}) dx$$

3. $(x - y) dy - (x + y) dx = 0$
5. $x^{2} \frac{dy}{dx} = x^{2} - 2y^{2} + xy$
7. $\left\{ x \cos\left(\frac{y}{x}\right) + y \sin\left(\frac{y}{x}\right) \right\} y dx = \left\{ y \sin\left(\frac{y}{x}\right) - x \cos\left(\frac{y}{x}\right) \right\} x dy$

વિકલ સમીકરણો

8.
$$x \frac{dy}{dx} - y + x \sin\left(\frac{y}{x}\right) = 0$$

9. $y \, dx + x \log\left(\frac{y}{x}\right) dy - 2x \, dy = 0$
10. $(1 + e^{\frac{x}{y}}) \, dx + e^{\frac{x}{y}} \left(1 - \frac{x}{y}\right) \, dy = 0$
11. $(1 + e^{\frac{y}{y}}) \, dx + e^{\frac{x}{y}} \left(1 - \frac{x}{y}\right) \, dy = 0$
12. $x^2 \, dy + (x - y) \, dx = 0;$ suit $\hat{x} = 1$ cut $\hat{y} = 1$
13. $\left[x \sin^2\left(\frac{y}{x}\right) - y\right] \, dx + x \, dy = 0;$ suit $\hat{x} = 1$ cut $\hat{y} = 1$
14. $\frac{dy}{dx} - \frac{y}{x} + \csc\left(\frac{y}{x}\right) = 0;$ suit $\hat{x} = 1$ cut $\hat{y} = 0$
15. $2xy + y^2 - 2x^2 \frac{dy}{dx} = 0;$ suit $\hat{x} = 1$ cut $\hat{y} = 2$
16. $\frac{dx}{dy} = h\left(\frac{x}{y}\right)$ usitent and the fact all suit and the fact unit \hat{y} and $\hat{y} = \hat{y}$
17. $\hat{f}(\hat{x}) = h\left(\frac{x}{y}\right)$ usitent and $\hat{y} = 0$
18. $(A) \, y = vx$ (B) $v = yx$ (C) $x = vy$ (D) $x = v$
17. $\hat{f}(\hat{x}) = h\left(\frac{x}{y} + \hat{y}\right) \, dy = 0$
(A) $(4x + 6y + 5) \, dy - (3y + 2x + 4) \, dx = 0$
(B) $(xy) \, dx - (x^3 + y^3) \, dy = 0$
(C) $(x^3 + 2y^2) \, dx + (x^2 - xy - y^2) \, dy = 0$
9.5.3 $\hat{g}(\hat{y})$ Case a allocation of the sum of t

જો P અને Q અચળ વિધેયો અથવા ફક્ત ચલ x નાં વિધેયો હોય, તો વિકલ સમીકરણ $\frac{dy}{dx}$ + Py = Q ને પ્રથમ કક્ષાનું સુરેખ વિકલ સમીકરણ (Linear Differential Equation of First Order) કહે છે.

પ્રથમ કક્ષાના સુરેખ વિકલ સમીકરણનાં કેટલાંક ઉદાહરણો નીચે આપેલ છે :

$$\frac{dy}{dx} + y = \sin x$$
$$\frac{dy}{dx} + \left(\frac{1}{x}\right)y = e^{x}$$
$$\frac{dy}{dx} + \left(\frac{y}{x\log x}\right) = \frac{1}{x}$$
પ્રથમ કક્ષાના વિકલ સમીકરણનું બીજું સ્વરૂપ

$$\frac{dx}{dy} + P_1 x = Q_1$$

340

અહીં \mathbf{P}_1 અને \mathbf{Q}_1 અચળ વિધેયો અથવા ફક્ત ચલ yનાં વિધેયો છે. આ પ્રકારના વિકલ સમીકરણનાં કેટલાંક ઉદાહરણો નીચે આપેલ છે :

$$\frac{dx}{dy} + x = \cos y$$
$$\frac{dx}{dy} + \frac{-2x}{y} = y^2 e^{-y}$$
$$\frac{dy}{dx} + Py = Q \qquad \dots(1)$$

પ્રકારના વિકલ સમીકરણનો ઉકેલ શોધવા માટે સમીકરણની બંને બાજુ ચલ x ના કોઈક વિધેય g(x) વડે ગુણતાં,

$$g(x)\frac{dy}{dx} + \mathbf{P} \cdot g(x) \ y = \mathbf{Q} \cdot g(x) \qquad \dots (2)$$

સમીકરણની જમણી બાજુ એ $y \cdot g(x)$ નું વિકલિત બને તે રીતે g(x) ની પસંદગી કરો :

એટલે કે,
$$g(x)\frac{dy}{dx}$$
 + P · $g(x)$ $y = \frac{d}{dx}$ [$y \cdot g(x)$] થાય તે રીતે $g(x)$ ની પસંદગી કરો.
∴ $g(x)\frac{dy}{dx}$ + P · $g(x)$ $y = g(x)\frac{dy}{dx}$ + $y \cdot g'(x)$
∴ P · $g(x) = g'(x)$

$$\therefore \qquad \mathbf{P} = \frac{g'(x)}{g(x)}$$

બંને બાજુએ x ને સાપેક્ષે સંકલન કરતાં,

$$\int P \, dx = \int \frac{g'(x)}{g(x)} \, dx$$

$$\therefore \quad \int P \, dx = \log (g(x))$$

$$\therefore \quad g(x) = e^{\int \mathbf{P} \, dx}$$

સમીકરણ (1) ને $g(x) = e^{\int P dx}$ વડે ગુણીએ તો તેની ડાબી બાજુએ x અને ચલ y ના કોઈક વિધેયનું વિકલિત મળશે.

આ વિધેય $g(x) = e^{\int P \, dx}$ ને સંકલ્યકારક અવયવ (Integrating Factor, ટૂંકમાં I.F.) તરીકે ઓળખવામાં આવે છે.

સમીકરણ (2) માં g(x) ની કિંમત મૂકતા, $e^{\int P dx} \frac{dy}{dx} + P e^{\int P dx} y = Q e^{\int P dx}$ $\therefore \frac{d}{dx} (ye^{\int P dx}) = Q e^{\int P dx}$ બંને બાજુ x પ્રત્યે સંકલન કરતા, $ye^{\int P dx} = \int (Q e^{\int P dx}) dx + c$ $\therefore y = e^{-\int P dx} \int (Q e^{\int P dx}) dx + c e^{-\int P dx}$ આ આપેલા સુરેખ વિકલ સમીકરણનો વ્યાપક ઉકેલ છે.

341

વિકલ સમીકરણો

xau sain
$$\frac{1}{3}c^{1}$$
 and $\frac{1}{3}c^{1}$ d $\frac{1}{3}c^{1}$ and $\frac{$

342

$$\therefore \quad y = \left(\frac{\sin x - \cos x}{2}\right) + ce^x$$

આ આપેલ વિકલ સમીકરણનો વ્યાપક ઉકેલ છે.

ઉદાહરણ 20 : વિકલ સમીકરણ $x\frac{dy}{dx} + 2y = x^2$ નો વ્યાપક ઉકેલ શોધો. ઉકેલ : આપેલ વિકલ સમીકરણ

$$x\frac{dy}{dx} + 2y = x^2 \qquad \dots (1)$$

સમીકર(1) ની બંને બાજુએ x વડે ભાગતાં,

$$\frac{dy}{dx} + \frac{2}{x}y = x$$

$$\exists \mathbf{W} = \frac{2}{x} \quad \exists \mathbf{W} = x \quad \exists \mathbf{W} = \frac{dy}{dx} + \mathbf{P}y = \mathbf{Q} \quad \exists \mathbf{W} = \mathbf{W} \quad \exists \mathbf{W} \quad \exists \mathbf{W} = \mathbf{W} \quad \exists \mathbf{W} \quad \exists \mathbf{W} = \mathbf{W} \quad \exists \mathbf{W} \quad \mathbf{W} \quad \mathbf{W} \quad \exists \mathbf{W} \quad \mathbf$$

ઉદાહરણ 21 : વિકલ સમીકરણ $y dx - (x + 2y^2) dy = 0$ નો વ્યાપક ઉકેલ શોધો.

ઉકેલ : આપેલ વિકલ સમીકરણને નીચે પ્રમાણે લખી શકાય :

$$\frac{dx}{dy} - \frac{x}{y} = 2y$$

આ $\frac{dx}{dy} + P_1 x = Q_1$ પ્રકારનું સુરેખ વિકલ સમીકરણ છે.
અહીં, $P_1 = \frac{-1}{y}$ અને $Q_1 = 2y$
 \therefore સંકલ્યકારક અવયવ $= e^{\int -\frac{1}{y}dy} = e^{-\log y} = e^{\log (y)^{-1}} = \frac{1}{y}$
આથી આપેલ વિકલ સમીકરણનો ઉકેલ
 $\frac{x}{y} = \int (2y) \left(\frac{1}{y}\right) dy + c$
 $\therefore \quad \frac{x}{y} = \int 2 dy + c$
 $\therefore \quad \frac{x}{y} = 2y + c$

 \therefore $x = 2y^2 + cy$ એ આપેલ વિકલ સમીકરણનો વ્યાપક ઉકેલ છે.

Downloaded from https:// www.studiestoday.com

ગણિત

વિકલ સમીકરણો

ઉદાહરણ 22 : વિકલ સમીકરણ $\frac{dy}{dx} + y \cot x = 2x + x^2 \cot x \ (x \neq 0)$ અને જ્યારે $x = \frac{\pi}{2}$ ત્યારે y = 0 માટે વિશિષ્ટ ઉકેલ શોધો.

ઉકેલ : P = $\cot x$ અને Q = $2x + x^2 \cot x$ માટે આપેલ વિકલ સમીકરણ $\frac{dy}{dx} + Py = Q$ પ્રકારનું સુરેખ સમીકરણ છે.

$$\therefore \text{ સંકલ્સકારક અવયવ} = e^{\int \cot x \, dx} = e^{\log \sin x} = \sin x$$

આથી, વિકલ સમીકરણનો ઉકેલ નીચે પ્રમાણે થશે :
$$y \cdot \sin x = \int (2x + x^2 \cot x) \sin x \, dx + c$$

$$\therefore y \cdot \sin x = \int 2x \sin x \, dx + \int x^2 \cos dx + c$$

$$\therefore y \cdot \sin x = \left(\frac{2x^2}{2}\right) \sin x - \int \left(\frac{2x^2}{2}\right) \cos x \, dx + \int x^2 \cos x \, dx + c$$

$$\therefore y \cdot \sin x = x^2 \sin x - \int x^2 \cos dx + \int x^2 \cos dx + c$$

$$\therefore y \cdot \sin x = x^2 \sin x + c$$

$$\therefore y \cdot \sin x = x^2 \sin x + c$$

$$\therefore (1) \text{ Hi } y = 0 \text{ અન} x = \frac{\pi}{2} \text{ Hacti,}$$

$$0 = \left(\frac{\pi}{2}\right)^2 \sin\left(\frac{\pi}{2}\right) + c$$

$$\therefore \quad c = \frac{-\pi^2}{4}$$

સમીકરણ (1) માં c ની કિંમત મૂકતાં,

$$y \cdot \sin x = x^2 \sin x - \frac{\pi^2}{4}$$

$$\therefore \quad y = x^2 - \frac{\pi^2}{4 \sin x} \qquad (\sin x \neq 0)$$

આ આપેલ વિકલ સમીકરણનો વિશિષ્ટ ઉકેલ છે.

ઉદાહરણ 23 : જો વક્રના કોઈ પણ બિંદુ (x, y) આગળ સ્પર્શકનો ઢાળ એ આ બિંદુના x-યામ અને x તથા yયામના ગુણાકારના સરવાળા બરાબર હોય, તો બિંદુ (0, 1) માંથી પસાર થતા વક્રનું સમીકરણ શોધો.

63લ : આપણે જાણીએ છીએ કે, વક્રના કોઈ પણ બિંદુએ સ્પર્શકનો ઢાળ $\frac{dy}{dx}$ છે.

$$\therefore \quad \frac{dy}{dx} = x + xy$$

$$\therefore \quad \frac{dy}{dx} - xy = x$$
...(1)
$$P = -x$$
અને $Q = x$ માટે આ $\frac{dy}{dx} + Py = Q$ પ્રકારનું સુરેખ સમીકરણ છે.

$$\therefore$$
 સંકલ્યકારક અવયવ = $e^{\int -x \, dx} = e^{-\frac{x}{2}}$

344

ગણિત

આથી, સમીકરણનો ઉકેલ $ve^{-\frac{x^2}{2}} = \int x (e^{-\frac{x^2}{2}}) dx + c$...(2) ધારો કે I = $\int x e^{-\frac{x^2}{2}} dx$ ધારો કે $-\frac{x^2}{2} = t$. તેથી -x dx = dt. આથી, x dx = -dt $\therefore \quad \mathbf{I} = -\int e^t \, dt = -e^t = -e^{-\frac{x^2}{2}}$ I ની કિંમત સમીકરણ (2) માં મૂકતાં, $ve^{-\frac{x^2}{2}} = -e^{-\frac{x^2}{2}} + c$ $\therefore \quad y = -1 + c e^{\frac{x^2}{2}}$...(3) સમીકરણ (3) વક્રોની સંહતિનું સમીકરણ દર્શાવે છે. પરંતુ આપણને આ સંહતિના (0, 1) માંથી પસાર થતા સભ્યને શોધવામાં રસ છે. સમીકરણ (3) માં x = 0 અને y = 1 મૂકતાં, $1 = -1 + ce^0$ $\therefore c = 2$ સમીકરણ (3) માં c ની કિંમત મૂકતાં, $y = -1 + 2e^{\frac{x^2}{2}}$ આ માંગેલ વક્રનું સમીકરણ છે.

સ્વાધ્યાય 9.6

પ્રશ્નો 1 થી 12 માં આપેલ વિકલ સમીકરણોના વ્યાપક ઉકેલ શોધો :

1.
$$\frac{dy}{dx} + 2y = \sin x$$

3. $\frac{dy}{dx} + \frac{y}{x} = x^2$
5. $\cos^2 x \frac{dy}{dx} + y = \tan x$ ($0 \le x < \frac{\pi}{2}$)
5. $\cos^2 x \frac{dy}{dx} + y = \tan x$ ($0 \le x < \frac{\pi}{2}$)
6. $x \frac{dy}{dx} + 2y = x^2 \log x$ ($x > 0$)
7. $x \log x \frac{dy}{dx} + y = \frac{2}{x} \log x$ ($x > 0$)
8. $(1 + x^2) dy + 2xy dx = \cot x dx (x \neq 0)$
9. $x \frac{dy}{dx} + y - x + xy \cot x = 0 (x \neq 0)$
10. $(x + y) \frac{dy}{dx} = 1$
11. $y dx + (x - y^2) dy = 0$
12. $(x + 3y^2) \frac{dy}{dx} = y$ ($y > 0$)

વિકલ સમીકરણો

प्रश्नो 13 થી 15 માં આપેલ શરતને અધીન નીચેનાં વિકલ સમીકરણના વિશિષ્ટ ઉકેલ શોધો :
13.
$$\frac{dy}{dx} + 2y \tan x = \sin x$$
; જ્યારે $x = \frac{\pi}{3}$ ત્યારે $y = 0$
14. $(1 + x^2)\frac{dy}{dx} + 2xy = \frac{1}{1 + x^2}$; જ્યારે $x = 1$ ત્યારે $y = 0$
15. $\frac{dy}{dx} - 3y \cot x = \sin 2x$; જ્યારે $x = \frac{\pi}{2}$ ત્યારે $y = 2$
16. જો વકના કોઈ પણ બિંદુ (x, y) આગળ સ્પર્શકનો ઢાળ એ બિંદુના યામના સરવાળા જેટલો થતો હોય,
તો ઊગમબિંદુમાંથી પસાર થતા વકનું સમીકરણ શોધો.
17. જો વકના કોઈ પણ બિંદુના યામનો સરવાળો એ તે બિંદુ આગળ સ્પર્શકના ઢાળના મૂલ્ય કરતાં 5 વધુ
હોય, તો બિંદુ $(0, 2)$ માંથી પસાર થતા વકનું સમીકરણ શોધો.
17. જો વકના કોઈ પણ બિંદુના યામનો સરવાળો એ તે બિંદુ આગળ સ્પર્શકના ઢાળના મૂલ્ય કરતાં 5 વધુ
હોય, તો બિંદુ $(0, 2)$ માંથી પસાર થતા વકનું સમીકરણ શોધો.
18. તથા 19 માં વિધાન સાચું બને તે રીતે આપેલ વિકલ્પોમાંથી યોગ્ય વિકલ્પ પસંદ કરો :
18. વિકલ સમીકરણ $x \frac{dy}{dx} - y = 2x^2$ નો સંકલ્યકારક અવયવ છે.
(A) e^{-x} (B) e^{-y} (C) $\frac{1}{x}$ (D) x
19. વિકલ સમીકરણ $(1 - y^2) \frac{dx}{dy} + yx = ay (-1 < y < 1)$ નો સંકલ્યકારક અવયવ છે.
(A) $\frac{1}{y^2 - 1}$ (B) $\frac{1}{\sqrt{y^2 - 1}}$ (C) $\frac{1}{1 - y^2}$ (D) $\frac{1}{\sqrt{1 - y^2}}$
પ્રકીર્ણ ઉદાહરણો

ઉદાહરણ 24 : વિધેય $y = c_1 e^{ax} \cos bx + c_2 e^{ax} \sin bx$ એ

વિકલ સમીકરણ $\frac{d^2y}{dx^2} - 2a\frac{dy}{dx} + (a^2 + b^2)y = 0$ નો ઉકેલ છે તેમ ચકાસો. $(c_1, c_2$ સ્વૈર અચળો છે.) ઉકેલ : આપેલ વિધય $y = e^{ax} [c_1 \cos bx + c_2 \sin bx]$...(1) સમીકરણ (1) ની બંને બાજુએ x ની સાપેક્ષે વિકલન કરતાં,

$$\frac{dy}{dx} = e^{ax} \left[-bc_1 \sin bx + bc_2 \cos bx\right] + \left[c_1 \cos bx + c_2 \sin bx\right] e^{ax} \cdot a$$

$$\therefore \quad \frac{dy}{dx} = e^{ax} \left[(bc_2 + ac_1) \cos bx + (ac_2 - bc_1) \sin bx\right] \qquad \dots (2)$$

સમીકરણ (2)ની બંને બાજુએ x ની સાપેક્ષે વિકલન કરતાં,

$$\begin{aligned} \frac{d^2y}{dx^2} &= e^{ax} \left[(bc_2 + ac_1)(-b \sin bx) + (ac_2 - bc_1) (b \cos bx) \right] + \\ &= \left[(bc_2 + ac_1) \cos bx + (ac_2 - bc_1) \sin bx \right] e^{ax} \cdot a \\ &= e^{ax} \left[(a^2c_2 - 2abc_1 - b^2c_2) \sin bx + (a^2c_1 + 2abc_2 - b^2c_1) \cos bx \right] \\ \frac{d^2y}{dx^2}, \ \frac{dy}{dx} \quad & \exists y \text{-ll [Shal sulva [asa shllszshli h_ssal]} \end{aligned}$$

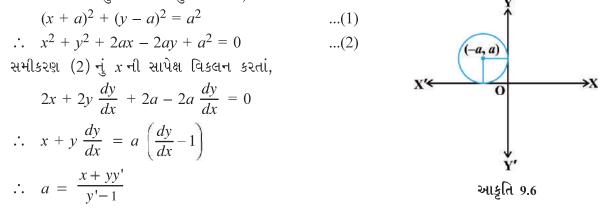
346

ગણિત

$$\begin{array}{l} \mathrm{sl.} \mathfrak{Al.} &= e^{ax} \left[(a^2c_2 - 2abc_1 - b^2c_2) \sin bx + (a^2c_1 + 2abc_2 - b^2c_1) \cos bx \right] \\ &\quad - 2ae^{ax} \left[(bc_2 + ac_1) \cos bx + (ac_2 - bc_1) \sin bx \right] \\ &\quad + (a^2 + b^2) e^{ax} \left[c_1 \cos bx + c_2 \sin bx \right] \\ &\quad + (a^2c_1 + b^2c_2 - 2abc_1 - b^2c_2 - 2a^2c_2 + 2abc_1 + a^2c_2 + b^2c_2) \sin bx + \\ &\quad (a^2c_1 + 2abc_2 - b^2c_1 - 2abc_2 - 2a^2c_1 + a^2c_1 + b^2c_1) \cos bx \\ &\quad = e^{ax} \left[0 \times \sin bx + 0 \times \cos bx \right] = e^{ax} \times 0 = 0 = \%. \mathfrak{Al.} \\ &\quad \mathfrak{Ml} \mathfrak{Al} \ \mathfrak{Al} \mathfrak{$$

સંહતિના સ્વૈર સભ્યના કેન્દ્રના યામ (-a, a) તથા ત્રિજ્યા a > 0 છે. (જુઓ આકૃતિ 9.6.)

સંહતિ C ના વર્તુળોને દર્શાવતું સમીકરણ,



સમીકરણ (1) માં a ની કિંમત મૂકતાં,

$$\left[x + \frac{x + yy'}{y' - 1}\right]^2 + \left[y - \frac{x + yy'}{y' - 1}\right]^2 = \left[\frac{x + yy'}{y' - 1}\right]^2$$

$$\therefore \quad [xy' - x + x + yy']^2 + [yy' - y - x - yy']^2 = [x + yy']^2$$

:.
$$[(x + y)y']^2 + [x + y]^2 = [x + yy']^2$$

:
$$(x + y)^2 [(y')^2 + 1] = [x + yy']^2$$

આ આપેલ વર્તુળોની સંહતિનું વિકલ સમીકરણ છે.

ઉદાહરણ 26 : જ્યારે x = 0 હોય ત્યારે y = 0 માટે વિકલ સમીકરણ $\log\left(\frac{dy}{dx}\right) = 3x + 4y$ નો વિશિષ્ટ ઉકેલ મેળવો.

ઉકેલ : આપેલ વિકલ સમીકરશ નીચે પ્રમાશે લખી શકાય :

$$\frac{dy}{dx} = e^{(3x + 4y)}$$

વિકલ સમીકરણો

$$\therefore \quad \frac{dy}{dx} = e^{3x} \cdot e^{4y} \qquad \dots (1)$$

347

વિયોજનીય ચલના વિકલ સમીકરણ તરીકે લખતાં,

$$\frac{dy}{e^{4y}} = e^{3x} dx$$

$$\therefore \quad \int e^{-4y} dy = \int e^{3x} dx$$

$$\therefore \quad \frac{e^{-4y}}{-4} = \frac{e^{3x}}{3} + c$$

...(2)

સમીકરણ (2) માં x = 0 અને y = 0 મૂકતાં,

4 + 3 + 12c = 0 અથવા $c = \frac{-7}{12}$ સમીકરણ (2) માં *c* ની કિંમત મૂકતાં,

$$4e^{3x} + 3e^{-4y} - 7 = 0$$

આ આપેલ વિકલ સમીકરશનો વિશિષ્ટ ઉકેલ છે.

ઉદાહરણ 27 : વિકલ સમીકરણ ઉકેલો : $(x \, dy - y \, dx) \, y \, sin\left(\frac{y}{x}\right) = (y \, dx + x \, dy) \, x \, cos\left(\frac{y}{x}\right)$ ઉકેલ : આપેલ વિકલ સમીકરણ નીચે પ્રમાણે લખી શકાય :

$$\begin{bmatrix} xy \sin\left(\frac{y}{x}\right) - x^2 \cos\left(\frac{y}{x}\right) \end{bmatrix} dy = \begin{bmatrix} xy \cos\left(\frac{y}{x}\right) + y^2 \sin\left(\frac{y}{x}\right) \end{bmatrix} dx$$

$$\therefore \quad \frac{dy}{dx} = \frac{xy \cos\left(\frac{y}{x}\right) + y^2 \sin\left(\frac{y}{x}\right)}{xy \sin\left(\frac{y}{x}\right) - x^2 \cos\left(\frac{y}{x}\right)}$$

જમશી બાજુ અંશ અને છેદને x^2 વડે ભાગતાં,

$$\frac{dy}{dx} = \frac{\frac{y}{x}\cos\left(\frac{y}{x}\right) + \left(\frac{y^2}{x^2}\right)\sin\left(\frac{y}{x}\right)}{\frac{y}{x}\sin\left(\frac{y}{x}\right) - \cos\left(\frac{y}{x}\right)} \dots(1)$$

સમીકરણ (1) એ $\frac{dy}{dx} = g\left(\frac{y}{x}\right)$ પ્રકારનું સમપરિમાણ વિકલ સમીકરણ છે. આ સમીકરણનો ઉકેલ મેળવવા માટે આપણે y = vx લઈશું.

$$\therefore \quad \frac{dy}{dx} = v + x \frac{dv}{dx} \qquad \dots (2)$$

$$\therefore \quad v + x \frac{dv}{dx} = \frac{v \cos v + v^2 \sin v}{v \sin v - \cos v}$$
((1) અને (2)ના ઉપયોગથી)

$$\therefore x \frac{dv}{dx} = \frac{2v \cos v}{v \sin v - \cos v}$$

$$\therefore \left(\frac{v \sin v - \cos v}{v \cos v}\right) dv = \frac{2dx}{x}$$

348

ગણિત

Huế,
$$\int \left(\frac{v \sin v - \cos v}{v \cos v}\right) dv = 2 \int \frac{1}{x} dx$$

$$\therefore \int \tan v \, dv - \int \frac{1}{v} \, dv = 2 \int \frac{1}{x} \, dx$$

$$\therefore \log |\sec v| - \log |v| = 2 \log |x| + \log |c_1|$$

$$\therefore \log \left|\frac{\sec v}{vx^2}\right| = \log |c_1|$$

$$\therefore \frac{\sec v}{vx^2} = \pm c_1$$

Hullsten (3) Hi $v = \frac{y}{x}$ High,

$$\therefore \frac{\sec \left(\frac{y}{x}\right)}{\left(\frac{y}{x}\right)(x^2)} = c \quad \text{wei, } c = \pm c_1$$

$$\therefore \sec \left(\frac{y}{x}\right) = cxy$$

Hu Hullsten (4 set Hullsten-f) curves (3 set \dot{v} .
Hullsten (4 set Hullsten-f) curves (3 set \dot{v} .

$$\frac{\sqrt{x}}{x} = \frac{\sqrt{y}}{x} \cos \frac{y}{x}$$

$$\therefore d\left(\frac{y}{x}\right)\sin \frac{y}{x} = \frac{d(xy)}{xy}\cos \frac{y}{x}$$

$$\therefore d\left(\frac{y}{x}\right)\tan \frac{y}{x} = \frac{d(xy)}{xy}$$

$$\therefore \log \left|\sec \frac{y}{x}\right| = \log |cxy|$$

$$\therefore \sec \frac{y}{x} = cxy$$

(5) $2 \mathbf{e} : [3 \sec 2\mathbf{h}] = cxy$

ઉદાહરણ 28 : વિકલ સમીકરણ ઉકેલો : $(tan^{-1}y - x) dy = (1 + y^2) dx$ ઉકેલ : આપેલ વિકલ સમીકરણ નીચે પ્રમાણે લખી શકાય :

$$\frac{dx}{dy} + \frac{x}{1+y^2} = \frac{tan^{-1}y}{1+y^2} \qquad ...(1)$$

હવે, સમીકરણ (1) એ $P_1 = \frac{1}{1+y^2}$ અને $Q_1 = \frac{tan^{-1}y}{1+y^2}$ માટે $\frac{dy}{dx} + P_1x = Q_1$ પ્રકારનું સુરેખ સમીકરણ છે.

$$\therefore \text{ is easily on a set of } = e^{\int \frac{1}{1+y^2} dy}$$
$$= e^{tan^{-1}y}$$

વિકલ સમીકરણો

આમ, આપેલ વિકલ સમીકરણનો ઉકેલ,

$$xe^{tan^{-1}y} = \int \left(\frac{tan^{-1}y}{1+y^2}\right) e^{tan^{-1}y} dy + c$$

usi $\hat{s}, I = \int \left(\frac{tan^{-1}y}{1+y^2}\right) e^{tan^{-1}y} dy$

$$tan^{-1}y = t \text{ usai,}$$

$$\left(\frac{1}{1+y^2}\right) dy = dt$$

$$\therefore I = \int te^t dt$$

$$= te^t - \int 1 \cdot e^t dt$$

$$= te^t - e^t$$

$$= e^t (t-1)$$

$$\therefore I = e^{tan^{-1}y} (tan^{-1}y - 1)$$

I ની કિંમત સમીકરણ (2)માં મૂકતાં,

$$xe^{tan^{-1}y} = e^{tan^{-1}y} (tan^{-1}y - 1) + c$$

 $\therefore x = (tan^{-1}y - 1) + ce^{-tan^{-1}y}$

આ આપેલ વિકલ સમીકરણનો વ્યાપક ઉકેલ છે.

પ્રકીર્શ સ્વાધ્યાય 9

1. નીચેનાં વિકલ સમીકરણોની કક્ષા અને પરિમાણ (શક્ય હોય, તો) મેળવો :

(i)
$$\frac{d^2 y}{dx^2} + 5x \left(\frac{dy}{dx}\right)^2 - 6y = \log x$$

(ii)
$$\left(\frac{dy}{dx}\right)^3 - 4 \left(\frac{dy}{dx}\right)^2 + 7y = \sin x$$

(iii)
$$\frac{d^4 y}{dx^4} - \sin\left(\frac{d^3 y}{dx^3}\right) = 0$$

 નીચે આપેલ દરેક પ્રશ્નમાં ચકાસો કે, આપેલ વિધેય (ગૂઢ અથવા સ્પષ્ટ) એ તેના અનુરૂપ વિકલ સમીકરણનો ઉકેલ છે :

(i)
$$y = ae^{x} + be^{-x} + x^{2}$$
 : $x \frac{d^{2}y}{dx^{2}} + 2 \frac{dy}{dx} - xy + x^{2} - 2 = 0$
(ii) $y = e^{x} (a \cos x + b \sin x)$: $\frac{d^{2}y}{dx^{2}} - 2 \frac{dy}{dx} + 2y = 0$

350

(iii)
$$y = x \sin 3x$$

(iv) $x^2 = 2y^2 \log y$
: $\frac{d^2y}{dx^2} + 9y - 6 \cos 3x = 0$
: $(x^2 + y^2) \frac{dy}{dx} - xy = 0$

3. વક્રની સંહતિ $(x - a)^2 + 2y^2 = a^2$ દર્શાવતું વિકલ સમીકરણ શોધો. $(a \, \text{સ્વૈર અચળ})$

- 4. સાબિત કરો કે પ્રચલ c માટે વિકલ સમીકરણ $(x^3 3xy^2) dx = (y^3 3x^2y) dy$ નો વ્યાપક ઉકેલ $x^2 y^2 = c(x^2 + y^2)^2$ છે.
- 5. પ્રથમ ચરણમાં આવેલાં અને બંને અક્ષોને સ્પર્શતાં વર્તુળોની સંહતિનું વિકલ સમીકરણ મેળવો.

6. વિકલ સમીકરણ
$$\frac{dy}{dx} + \sqrt{\frac{1-y^2}{1-x^2}} = 0$$
 નો વ્યાપક ઉકેલ શોધો.

7. વિકલ સમીકરણ
$$\frac{dy}{dx} + \frac{y^2 + y + 1}{x^2 + x + 1} = 0$$
 નો વ્યાપક ઉકેલ $(x + y + 1) = A(1 - x - y - 2xy)$ છે,
તેમ દર્શાવો. (A સ્વૈર અચળ)

- 8. જેનું વિકલ સમીકરણ $sin x \cos y \, dx + \cos x \sin y \, dy = 0$ હોય તેવા $\left(0, \frac{\pi}{4}\right)$ માંથી પસાર થતા વક્રનું સમીકરણ શોધો.
- 9. જ્યારે x = 0 હોય ત્યારે y = 1 માટે વિકલ સમીકરણ $(1 + e^{2x}) dy + (1 + y^2) e^x dx = 0$ નો વિશિષ્ટ ઉકેલ મેળવો.

10. વિકલ સમીકરણ
$$ye^{y}dx = (xe^{x} + y^{2}) dy$$
 નો ઉકેલ શોધો. $(y \neq 0)$

11. જ્યારે x = 0 હોય ત્યારે y = -1 માટે વિકલ સમીકરણ (x - y)(dx + dy) = dx - dy નો વિશિષ્ટઉકેલ શોધો.(સૂચન : x - y = t લો.)

12. વિકલ સમીકરણ
$$\left[\frac{e^{-2\sqrt{x}}}{\sqrt{x}} - \frac{y}{\sqrt{x}}\right] \frac{dx}{dy} = 1$$
 ઉકેલો. $(x \neq 0)$

- **13.** જ્યારે $x = \frac{\pi}{2}$ હોય ત્યારે y = 0 માટે વિકલ સમીકરણ $\frac{dy}{dx} + y \cot x = 4x \csc x \ (x \neq 0)$ નો વિશિષ્ટ ઉકેલ મેળવો.
- 14. જ્યારે x = 0 હોય ત્યારે y = 0 માટે વિકલ સમીકરણ $(x + 1) \frac{dy}{dx} = 2e^{-y} 1$ નો વિશિષ્ટ ઉકેલ મેળવો.
- 15. એક ગામની વસતીનો સતત વૃદ્ધિ-દર કોઈ પશ સમયે હાજર રહેવાસીઓની સંખ્યાના પ્રમાશમાં છે. જો 1999 માં ગામની વસતી 20,000 હોય અને 2004માં 25,000 હોય, તો 2009 માં તે ગામની વસતી કેટલી હશે ?

Downloaded from https:// www.studiestoday.com

ગણિત

વિકલ સમીકરણો

 પ્રશ્નો 16 થી 18 માં વિધાન સાચું બને તે રીતે આપેલ વિકલ્પોમાંથી યોગ્ય વિકલ્પ પસંદ કરો :

 16. વિકલ સમીકરણ $\frac{y \, dx - x \, dy}{y} = 0$ નો વ્યાપક ઉકેલ

 (A) xy = c (B) $x = cy^2$ (C) y = cx

 (A) xy = c (B) $x = cy^2$ (C) y = cx

 17. $\frac{dx}{dy} + P_1x = Q_1$ પ્રકારના વિકલ સમીકરણનો વ્યાપક ઉકેલ

 (A) $y \cdot e^{\int P_1 dy} = \int (Q_1 e^{\int P_1 dy}) dy + c$ (B) $y \cdot e^{\int P_1 dx} = \int (Q_1 e^{\int P_1 dx}) dx + c$

 (C) $x \cdot e^{\int P_1 dy} = \int (Q_1 e^{\int P_1 dy}) dy + c$ (D) $x \cdot e^{\int P_1 dx} = \int (Q_1 e^{\int P_1 dx}) dx + c$

 18. વિકલ સમીકરણ $e^x dy + (ye^x + 2x) dx = 0$ નો વ્યાપક ઉકેલ

 (A) $xe^y + x^2 = c$ (B) $xe^y + y^2 = c$

 (C) $ye^x + x^2 = c$ (D) $ye^y + x^2 = c$

સારાંશ

- સ્વતંત્ર ચલને સાપેક્ષ અવલંબી ચલના વિકલિતોને સમાવતા સમીકરણને વિકલ સમીકરણ કહે છે.
- 🔷 વિકલ સમીકરણમાં આવતા ઉચ્ચતમ કક્ષાના વિકલિતની કક્ષા એ વિકલ સમીકરણની કક્ષા છે.
- 🔷 જો વિકલ સમીકરણ વિકલિતોની બહુપદી હોય, તો તેનું પરિમાણ વ્યાખ્યાયિત થાય છે.
- વિકલ સમીકરણનું પરિમાણ (જો તે વ્યાખ્યાયિત હોય, તો) એ સમીકરણમાં આવતા ઉચ્ચતમ કક્ષાના વિકલિતનો ઉચ્ચતમ ઘાતાંક (ધન પૂર્ણાંક) છે.
- 🔷 જે વિધેય આપેલા વિકલ સમીકરશનું સમાધાન કરે તેને તેનો ઉકેલ કહે છે.
- વિકલ સમીકરણની જેટલી કક્ષા હોય તેટલા સ્વૈર અચળાંકો ધરાવતા ઉકેલને તેનો વ્યાપક ઉકેલ કહે છે
 અને સ્વૈર અચળાંકોથી મુક્ત હોય તેવા ઉકેલને વિશિષ્ટ ઉકેલ કહે છે.
- આપેલ વિધેયમાં જેટલા સ્વૈર અચળો આવેલા હોય તેટલા વખત એક પછી એક વિકલન કરીને આ સ્વૈર અચળોનો લોપ કરીને વિકલ સમીકરણની રચના કરી શકાય છે.
- જે સમીકરણમાં ચલોને સંપૂર્ણપણે અલગ કરી શકાતા હોય (એટલે કે જે પદમાં ચલ y હોય તે dy સાથે હોય અને જે પદમાં ચલ x હોય તે dx સાથે હોય) તેનો ઉકેલ શોધવા માટે વિયોજનીય ચલની રીત વપરાય છે.
- જ્યાં f(x, y) અને g(x, y) એ શૂન્ય ઘાતવાળા સમપરિમાણીય વિધેય હોય તે રીતે જે વિકલ સમીકરણને
 ^{dy}/_{dx} = f(x, y) અથવા ^{dx}/_{dy} = g(x, y) સ્વરૂપમાં લખી શકાય તેને સમપરિમાણ વિકલ સમીકરણ
 કહે છે.

352

ગણિત

Historical Note

One of the principal languages of Science is that of differential equations. Interestingly, the date of birth of differential equations is taken to be November, 11,1675, when *Gottfried Wilthelm Freiherr Leibnitz* (C.E. 1646 - C.E. 1716) first put in black and white the identity $\int y \, dy = \frac{1}{2}y^2$, thereby introducing both the symbols \int and dy.

Leibnitz was actually interested in the problem of finding a curve whose tangents were prescribed. This led him to discover the 'method of separation of variables' C.E. 1691. A year later he formulated the 'method of solving the homogeneous differential equations of the first order'. He went further in a very short time to the discovery of the 'method of solving a linear differential equation of the first-order'. How surprising is it that all these methods came from a single man and that too within 25 years of the birth of differential equations!

In the old days, what we now call the 'solution' of a differential equation, was used to be referred to as 'integral' of the differential equation, the word being coined by *James Bernoulli* (C.E. 1654 - C.E. 1705) in C.E. 1690. The word 'solution' was first used by *Joseph Louis Lagrange* (C.E. 1736 - C.E. 1813) in C.E. 1774, which was almost hundred years since the birth of differential equations. It was *Jules Henri Poincare* (C.E. 1854 - C.E. 1912) who strongly advocated the use of the word 'solution' and thus the word 'solution' has found its deserved place in modern terminology. The name of the 'method of separation of variables' is due to *John Bernoulli* (C.E. 1667 - C.E. 1748), a younger brother of *James Bernoulli*.

Application to geometric problems were also considered. It was again *John Bernoulli* who first brought into light the intricate nature of differential equations. In a letter to *Leibnitz*, dated May 20, 1715, he revealed the solutions of the differential equation

 $x^2 y'' = 2y,$

which led to three types of curves, viz., parabolas, hyperbolas and a class of cubic curves. This shows how varied the solutions of such innocent looking differential equation can be. From the second half of the twentieth century attention has been drawn to the investigation of this complicated nature of the solutions of differential equations, under the heading 'qualitative analysis of differential equations'. Now-a-days, this has acquired prime importance being absolutely necessary in almost all investigations.

પ્રકરણ

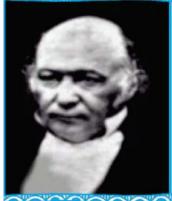
10

સદિશ બીજગણિત

 In most sciences one generation tears down what another has built and what one has established another undoes. In Mathematics alone each generation builds a new story to the old structure. – HERMAN HANKEL

10.1 પ્રાસ્તાવિક

આપશા રોજિંદા જીવનમાં નીચેના જેવા ઘણા બધા પ્રશ્નો ઉપસ્થિત થાય છે. તમારી ઊંચાઈ શું છે ? ફૂટબૉલ ટીમના ખેલાડીએ, પોતાની ટીમના ખેલાડીને 'પાસ' આપવા માટે બૉલને કઈ રીતે ધકેલવો જોઈએ? નિરીક્ષણ કરો કે પ્રથમ પ્રશ્નનો શક્ય ઉત્તર 1.6 મીટર હોઈ શકે. તે માત્ર એક વાસ્તવિક સંખ્યાના માન પર આધારિત હોય એવી રાશિ છે. આવી રાશિઓને *અદિશો* કહે છે. આમ છતાં, બીજા પ્રશ્નનો ઉત્તર જે રાશિ (બળ કહેવાય છે) છે તે સ્નાયુઓની શક્તિ (માપ) અને દિશા (કે જે દિશામાં બીજો ખેલાડી સ્થાયી છે) પર આધારિત છે. આવી રાશિઓને *સદિશો* કહે છે. ગણિતશાસ્ત્ર, ભૌતિકશાસ્ત્ર અને યંત્રશાસ્ત્રમાં આપણી પાસે અવારનવાર બંને પ્રકારની રાશિઓ ઉપસ્થિત થાય છે. અદિશ રાશિઓ જેવી કે લંબાઈ, દળ, સમય, અંતર, ઝડપ, ક્ષેત્રફળ, ઘનફળ, તાપમાન, કાર્ય, નાણું, વીજળીનું દબાણ, ઘનતા,



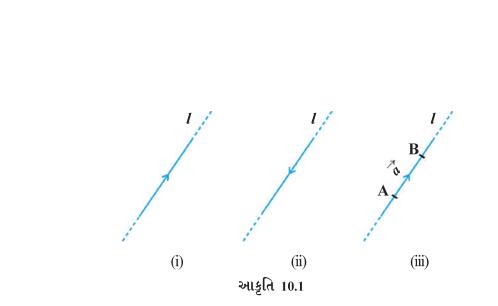
W. R. Hamilton (C.E. 1805 - C.E. 1865)

વીજળીની પ્રતિરોધક શક્તિ વગેરે અને સદિશ રાશિઓ જેવી કે સ્થાનાંતર, વેગ, પ્રવેગ, બળ, વજન, વેગમાન, વીજક્ષેત્રની તીવ્રતા વગેરે વ્યવહારમાં ઉપસ્થિત થાય છે.

આ પ્રકરણમાં સદિશો, સદિશો પરની વિવિધ ક્રિયાઓ અને તેમના બૈજિક અને ભૌમિતિક ગુણધર્મોના પાયાના સિદ્ધાંતોનો અભ્યાસ કરીશું. આ બે પ્રકારના ગુણધર્મોનો જ્યારે સંયુક્ત રીતે વિચાર કરવામાં આવે છે ત્યારે તે સદિશોની સંકલ્પનાનો સંપૂર્ણ ખ્યાલ આપે છે અને ઉપર વર્ણવેલ જુદાં-જુદાં ક્ષેત્રોમાં તેમની ઉપયોગિતાનાં અસ્તિત્વ તરફ દોરી જાય છે.

10.2 કેટલીક પાયાની સંકલ્પનાઓ

ધારો કે 'l' એ ત્રિપરિમાણીય અવકાશ અથવા સમતલની કોઈ રેખા છે. આ રેખાને તીરની નિશાની દ્વારા દિશા આપી શકાય છે. *સૂચવેલ પૈકી કોઈ એક દિશા સાથેની રેખાને દિશાયુક્ત રેખા ક*હે છે. (આકૃતિ 10.1 (i), (ii)).



હવે નિરીક્ષણ કરો કે જો આપણે રેખા /ને રેખાખંડ AB સુધી જ મર્યાદિત કરીએ, તો બેમાંથી એક દિશાવાળી રેખાને એવી રીતે માન સૂચવવામાં આવે છે, જેથી આપણને દિશાયુક્ત રેખાખંડ મળે છે. (આકૃતિ 10.1 (iii)).

વ્યાખ્યા 1 : જે રાશિને માન અને દિશા બંને હોય તે રાશિને સદિશ કહે છે.

નોંધ કરો કે દિશાયુક્ત રેખાખંડ એ સદિશ છે (આકૃતિ 10.1 (iii)). તેને \overrightarrow{AB} અથવા કેવળ \overrightarrow{a} વડે દર્શાવાય છે અને 'સદિશ \overrightarrow{AB} ' અથવા 'સદિશ \overrightarrow{a} ' એમ વંચાય છે.

જે બિંદુ A થી સદિશ A B પ્રસ્થાન કરે છે તે બિંદુ A ને સદિશ AB નું *પ્રારંભિક બિંદુ (પ્રારંભ બિંદુ)* કહે છે અને જ્યાં AB અંત પામે છે તે બિંદુ B ને સદિશ AB નું *અંત્યબિંદુ (અંતિમ બિંદુ)* કહે છે. સદિશના પ્રારંભ બિંદુ અને અંત્યબિંદુ વચ્ચેના અંતરને *સદિશનું માન (અથવા લંબાઈ*) કહે છે અને તેને |AB| અથવા |a| અથવા a દ્વારા દર્શાવવામાં આવે છે. તીરની નિશાની સદિશની દિશા સૂચવે છે.

સ્થાન સદિશ

ધોરણ XI ની, જમણા હાથની ત્રિપરિમાણીય લંબચોરસીય યામપદ્ધતિ (આકૃતિ 10.2 (i)) નું સ્મરણ કરો. ઊગમબિંદુ O (0, 0, 0) ને સાપેક્ષ જેના યામ (x, y, z) હોય તેવું અવકાશનું એક બિંદુ P લો. અહીં, પ્રારંભ બિંદુ O અને અંતિમ બિંદુ P વાળા સદિશ \overrightarrow{OP} ને બિંદુ O ને સાપેક્ષ બિંદુ P નો *સ્થાનસદિશ* કહે છે. અંતરસૂત્ર (ધોરણ XI)નો ઉપયોગ કરીને, \overrightarrow{OP} (અથવા \overrightarrow{r}) નું માન, સૂત્ર

$|\overrightarrow{OP}| = \sqrt{x^2 + y^2 + z^2}$

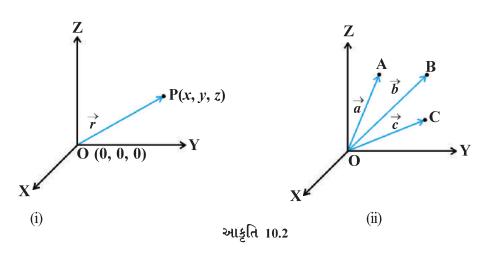
દ્વારા આપવામાં આવે છે. વ્યવહારમાં, બિંદુઓ A, B, C વગેરેના બિંદુ O ને સાપેક્ષ સ્થાન સદિશો અનુક્રમે \vec{a} , \vec{b} , \vec{c} વગેરે દ્વારા દર્શાવાય છે (આકૃતિ 10.2 (ii)).

Downloaded from https:// www.studiestoday.com

354

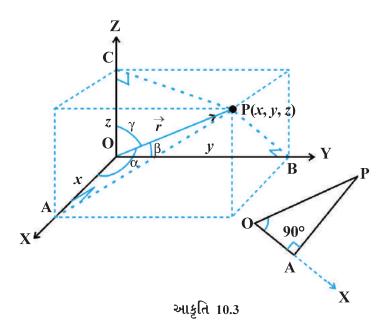
ગણિત

સદિશ બીજગણિત



દિક્કોસાઇન

આકૃતિ 10.3 પ્રમાશે બિંદુ P (x, y, z) ના સ્થાનસદિશ \overrightarrow{OP} (અથવા \overrightarrow{r}) નો વિચાર કરો. સદિશ \overrightarrow{r} એ x-અક્ષ, y-અક્ષ અને z-અક્ષની ધન દિશા સાથે અનુક્રમે α, β અને γ ખૂણાઓ આંતરે છે. તેમને સદિશ \overrightarrow{r} ના દિક્પૂણાઓ કહે છે. આ ખૂણાઓનાં કોસાઈન મૂલ્યો, એટલે કે cos α, cos β અને cos γ ને સદિશ \overrightarrow{r} ની દિક્કોસાઈનો કહેવાય છે અને તેમને સામાન્ય રીતે અનુક્રમે I, m, n વડે દર્શાવાય છે.



આકૃતિ 10.3 પરથી જોઈ શકાય કે, ત્રિકોણ OAP એ કાટકોણ ત્રિકોણ છે અને તે પરથી આપણને $\cos \alpha = \frac{x}{r} (r \ arrow | \vec{r} | \ arrow | \vec{o} | \ arrow | \vec{o} | \ arrow | \vec{o} | \ arrow |$

 \bigcirc નોંધ સામાન્ય રીતે, નોંધનીય છે કે $l^2 + m^2 + n^2 = 1$, પરંતુ $a^2 + b^2 + c^2 = 1$ હોય તે જરૂરી નથી.

356

ગણિત

10.3 સદિશોના પ્રકાર

શૂન્ય સદિશ : જે સદિશનું પ્રારંભ બિંદુ અને અંત્યબિંદુ એકનું એક જ હોય તેને શૂન્ય સદિશ કહે છે અને તેને $\vec{0}$ વડે દર્શાવાય છે. શૂન્ય સદિશનું માન શૂન્ય છે અને શૂન્ય સદિશ સાથે ચોક્કસ દિશા સંગત કરી શકાતી નથી. અથવા, બીજી રીતે વિચારતાં, તેને કોઈ પણ દિશા છે તેમ વિચારી શકાય. સદિશો \overrightarrow{AA} , \overrightarrow{BB} શૂન્ય સદિશ દર્શાવે છે.

એકમ સદિશ : જે સદિશનું માન 1 એકમ હોય તેને એકમ સદિશ કહે છે. આપેલ સદિશ \overrightarrow{a} ની દિશામાં આવેલા એકમ સદિશને $\stackrel{\frown}{a}$ વડે દર્શાવાય છે.

સમઉદ્ભવ સદિશો : બે કે તેથી વધુ સદિશોનું પ્રારંભ બિંદુ એક જ હોય, તો તે સદિશોને સમઉદ્ભવ સદિશો કહે છે.

સમરેખ સદિશો : જો બે કે તેથી વધુ સદિશો તેમના માન અને દિશાઓથી નિરપેક્ષ રીતે, એક જ રેખાને સમાંતર હોય, તો તે સદિશોને સમરેખ સદિશો કહે છે.

સમાન સદિશો : જો બે સદિશો \vec{a} અને \vec{b} નાં માન અને દિશા, તેમનાં પ્રારંભ બિંદુઓથી નિરપેક્ષ રીતે સમાન હોય, તો તેમને સમાન સદિશો કહે છે અને સમાન સદિશો \vec{a} તથા \vec{b} ને $\vec{a} = \vec{b}$ તરીકે લખાય છે.

સદિશનો ઋષ સદિશ : જે સદિશનું માન આપેલ સદિશ \overrightarrow{AB} (કહો) ના માન જેટલું જ હોય, પરંતુ દિશા આપેલ સદિશની દિશાની વિરુદ્ધ દિશા હોય તે સદિશને આપેલ સદિશનો ઋષ સદિશ કહે છે. ઉદાહરણ તરીકે, સદિશ \overrightarrow{BA} એ સદિશ \overrightarrow{AB} નો ઋષ સદિશ છે અને $\overrightarrow{BA} = -\overrightarrow{AB}$ એમ લખાય છે.

નોંધ ઃ ઉપર વ્યાખ્યાયિત કરેલા સદિશોનું દિશા તથા માન બદલ્યા વગર સમાંતર સ્થાનાંતર કરી શકાય. આવા સદિશોને *મુક્ત સદિશો* કહે છે. આ સમગ્ર પ્રકરણ દરમિયાન, આપણે માત્ર મુક્ત સદિશોનો જ ઉપયોગ કરીશું.

ઉદાહરણ 1 : દક્ષિણથી પશ્ચિમ તરફ 30° ના ખૂણે 40 કિમીનું સ્થાનાંતર આલેખ દ્વારા દર્શાવો.

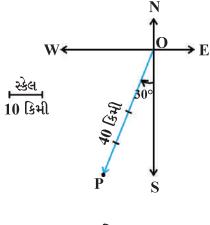
 $\overrightarrow{ ext{05}}$ કેલ : સદિશ $\overrightarrow{ ext{OP}}$ માંગેલ સ્થાનાંતર દર્શાવે છે (આકૃતિ 10.4).

ઉદાહરણ 2 : નીચે આપેલ માપને અદિશ અને સદિશમાં વર્ગીકૃત કરો :

- (i) 5 સેકન્ડ (ii) 1000 સેમી³
- (iii) 10 ન્યૂટન (iv) 30 કિમી/કલાક
- (v) 10 ગ્રામ/સેમી³ (vi) 20 મી/સે ઉત્તર તરફ

ઉકેલ : (i) સમય - અદિશ છે. (ii) ઘનફળ - અદિશ છે. (iii) બળ - સદિશ છે. (iv) ઝડપ - અદિશ છે.

(v) ઘનતા - અદિશ છે. (vi) વેગ - સદિશ છે.



આકૃતિ 10.4

સદિશ બીજગણિત 357 ઉદાહરણ 3 : આકૃતિ 10.5 માં કયા સદિશો (i) સમરેખ (iii) સમઉદ્ભવ સદિશો છે ? (ii) સમાન ઉકેલ : (i) સમરેખ સદિશો : \vec{a} , \vec{c} અને \vec{d} (ii) સમાન સદિશો : \vec{a} અને \vec{c} (iii) સમઉદ્ભવ સદિશો : \vec{b} , \vec{c} અને \vec{d} સ્વાધ્યાય 10.1 આકૃતિ 10.5 ં ઉત્તરથી પૂર્વ તરફ 30° ના ખૂણે 40 કિમીનું સ્થાનાંતર આલેખ દ્વારા દર્શાવો. 1. નીચે આપેલ માપને અદિશ અને સદિશમાં વર્ગીકૃત કરો : 2. (i) 10 કિગ્રા (ii) 2 મી ઉત્તર-પશ્ચિમ દિશામાં (iii) 40° (v) 10⁻¹⁹ કુલંબ (iv) 40 वॉट (vi) 20 H/\dot{a}^2 નીચે આપેલ રાશિને અદિશ અને સદિશ રાશિઓમાં વર્ગીકૃત કરો : 3. (i) સમયગાળો (ii) અંતર (iii) બળ (iv) वेગ (v) થયેલ કાર્ય આકૃતિ 10.6 માં (એક ચોરસ), નીચે આપેલ સદિશો ઓળખો : **4**. \overrightarrow{a} (i) સમઉદ્ભવ (ii) સમાન (iii) સમરેખ પરંતુ સમાન નહિ. \vec{b} ð નીચે આપેલ વિધાનો સત્ય છે કે અસત્ય તે જણાવો : 5. (i) \overrightarrow{a} અને $-\overrightarrow{a}$ સમરેખ છે. \overrightarrow{c} (ii) બે સમરેખ સદિશો હંમેશાં સમાન માનવાળા સદિશો હોય છે. આકૃતિ 10.6 (iii) સમાન માનવાળા બે સદિશો સમરેખ હોય છે. (iv) સમાન માનવાળા બે સમરેખ સદિશો સમાન હોય છે. 10.4 સદિશોનો સરવાળો С સદિશ \overrightarrow{AB} નો સાદો અર્થ, બિંદુ A થી બિંદુ B સુધીનું સ્થાનાંતર થાય છે. હવે, એક છોકરી બિંદુ A થી B અને પછી B થી C જાય છે તે પરિસ્થિતિનો વિચાર કરો (આકૃતિ 10.7). છોકરી દ્વારા બિંદુ A થી બિંદુ C સુધી થયેલ કુલ

 $\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{BC}$

વડે દર્શાવાય છે.

સ્થાનાંતરને સદિશ \overrightarrow{AC} દ્વારા દર્શાવવામાં આવે છે.

આ નિયમ સદિશ સરવાળા માટે ત્રિકોણના નિયમ તરીકે ઓળખાય છે.

Downloaded from https:// www.studiestoday.com

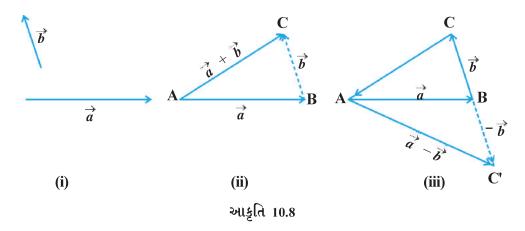
A

B

આકૃતિ 10.7

ગણિત

વ્યાપક રીતે, જો આપશી પાસે બે સદિશો \vec{a} અને \vec{b} (આકૃતિ 10.8 (i)) હોય, તો તેમનો સરવાળો કરવા માટે એક સદિશનું પ્રારંભ બિંદુ અને બીજાનું અંતિમ બિંદુ એકના એક જ હોય એ રીતે તે ગોઠવાયેલા હોવા જોઈએ (આકૃતિ 10.8 (ii)).



ઉદાહરણ તરીકે, આકૃતિ 10.8 (ii) માં, સદિશ \vec{b} ને તેનું માન અને દિશા બદલ્યા વિના સ્થાનાંતરિત કર્યો છે કે જેથી તેનું પ્રારંભ બિંદુ અને \vec{a} નું અંતિમ બિંદુ એકના એક જ રહે. ત્યાર બાદ સદિશ $\vec{a} + \vec{b}$ ને ત્રિકોણ ABCની ત્રીજી બાજુ AC દ્વારા દર્શાવ્યો છે. તે આપણને સદિશો \vec{a} અને \vec{b} નો સરવાળો (અથવા પરિણામી સદિશ) આપે છે, એટલે કે ત્રિકોણ ABC દ્વારા (આકૃતિ 10.8 (ii)) આપણને મળે છે.

$$\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$$

હવે \mathfrak{s} રીથી, $\overrightarrow{\mathrm{AC}} = - \overrightarrow{\mathrm{CA}}$ હોવાથી, ઉપર દર્શાવેલ સમીકરણ પરથી, આપણી પાસે

 \overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CA} = \overrightarrow{AA} = $\overrightarrow{0}$

આનો અર્થ એ છે કે જ્યારે ત્રિકોણની બાજુઓ ક્રમમાં લેવામાં આવે ત્યારે તેમનો સરવાળો શૂન્ય બને છે, કારણ કે પ્રારંભ અને અંતિમ બિંદુઓ એકના એક જ બને છે (આકૃતિ 10.8 (iii)).

હવે, સદિશ \overrightarrow{BC} ના માન જેટલા જ માનવાળો, પરંતુ જેની દિશા \overrightarrow{BC} ની દિશાની વિરુદ્ધ દિશા બને એવો સદિશ \overrightarrow{BC}' રચો (આકૃતિ 10.8 (iii)), એટલે કે $\overrightarrow{BC}' = -\overrightarrow{BC}$

પછી, ત્રિકોશના નિયમનો ઉપયોગ કરતાં આકૃતિ 10.8 (iii) પરથી આપશને મળે છે

$$\overrightarrow{AC}' = \overrightarrow{AB} + \overrightarrow{BC}' = \overrightarrow{AB} + \left(-\overrightarrow{BC}\right) = \overrightarrow{a} - \overrightarrow{b}$$

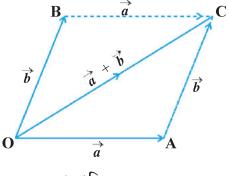
સદિશ \overrightarrow{AC} ', \overrightarrow{a} અને \overrightarrow{b} નો તફાવત દર્શાવે છે, એમ કહેવાય છે.

એક હોડી નદીના એક કિનારેથી બીજા કિનારે નદીના પ્રવાહની લંબ દિશામાં જાય છે. પછી, તેની પર બે વેગ સદિશો કાર્ય કરે છે – એક સદિશ હોડીના એન્જિન દ્વારા હોડીને મળતો વેગ અને બીજો નદીના પ્રવાહનો વેગ. આ બંને વેગના સંયુક્ત પ્રભાવ હેઠળ, હોડી વાસ્તવમાં જુદા વેગ સાથે મુસાફરી શરૂ કરે છે. હોડીની અસરકારક ગતિ

સદિશ બીજગણિત

અને દિશા (એટલે કે પરિણામી વેગ) વિશેનો ચોક્કસ ખ્યાલ મેળવવા માટે, આપણી પાસે નીચે આપેલ *સદિશ* સરવાળાનો નિયમ છે.

જો આપણે સદિશો \vec{a} અને \vec{b} ને કોઈ સ.બા.ચ.ની બે પાસ-પાસેની બાજુઓ દ્વારા માન અને દિશા સાથે દર્શાવીએ, તો તેમના સરવાળા $\vec{a} + \vec{b}$ ને માન અને દિશા સહિત તે સમાંતરબાજુ ચતુષ્કોણના તેમના સામાન્ય પ્રારંભિક બિંદુમાંથી પસાર થતા વિકર્શ દ્વારા દર્શાવાય છે (આકૃતિ 10.9). આ નિયમ સદિશ *સરવાળા માટે સમાંતરબાજુ ચતુષ્કોણના નિયમ* તરીકે ઓળખાય છે.



સદિશ સરવાળાના ગુણધર્મો ગુણધર્મ 1 : કોઈ પણ બે સદિશો $ec{a}$ અને $ec{b}$ માટે,

$$\vec{a} + \vec{b} = \vec{b} + \vec{a}$$

સાબિતી : વિચારો કે ABCD સમાંતરબાજુ ચતુષ્કોશ છે. (આકૃતિ 10.10). $\overrightarrow{AB} = \overrightarrow{a}$ અને $\overrightarrow{BC} = \overrightarrow{b}$ લો. તો ત્રિકોશના નિયમનો ઉપયોગ કરતાં, ત્રિકોશ ABC પરથી આપણને,

$$\vec{AC} = \vec{a} + \vec{b}$$
 મળે

હવે, સમાંતરબાજુ ચતુષ્કોણની સામસામેની બાજુઓ સમાન અને સમાંતર હોવાથી, આકૃતિ 10.10 પરથી આપણી પાસે, $\overrightarrow{AD} = \overrightarrow{BC} = \overrightarrow{b}$ અને $\overrightarrow{DC} = \overrightarrow{AB} = \overrightarrow{a}$ છે. ફરીથી ત્રિકોણના નિયમનો ઉપયોગ કરતાં, ત્રિકોણ ADC પરથી આપણી પાસે,

 $\overrightarrow{AC} = \overrightarrow{AD} + \overrightarrow{DC} = \overrightarrow{b} + \overrightarrow{a} \ \vartheta.$

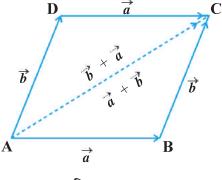
તેથી, $\vec{a} + \vec{b} = \vec{b} + \vec{a}$

ગુણધર્મ 2 : કોઈ પણ ત્રણ સદિશો \vec{a} , \vec{b} અને \vec{c} માટે,

$$\left(\overrightarrow{a} + \overrightarrow{b}\right) + \overrightarrow{c} = \overrightarrow{a} + \left(\overrightarrow{b} + \overrightarrow{c}\right)$$

સાબિતી : આકૃતિ 10.11 (i) અને (ii) માં દર્શાવ્યા પ્રમાણે અનુક્રમે \overrightarrow{PQ} , \overrightarrow{QR} અને \overrightarrow{RS} વડે દર્શાવાતા સદિશો \overrightarrow{a} , \overrightarrow{b} અને \overrightarrow{c} લો.

Downloaded from https:// www.studiestoday.com



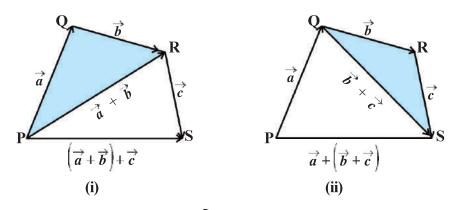
આકૃતિ 10.10

(જૂથનો ગુણધર્મ)

(ક્રમનો ગુણધર્મ)

360

ગણિત



આકૃતિ 10.11

હવે, $\overrightarrow{a} + \overrightarrow{b} = \overrightarrow{PQ} + \overrightarrow{QR} = \overrightarrow{PR}$ અને $\overrightarrow{b} + \overrightarrow{c} = \overrightarrow{QR} + \overrightarrow{RS} = \overrightarrow{QS}$ એટલે કે $(\overrightarrow{a} + \overrightarrow{b}) + \overrightarrow{c} = \overrightarrow{PR} + \overrightarrow{RS} = \overrightarrow{PS}$ તથા $\overrightarrow{a} + (\overrightarrow{b} + \overrightarrow{c}) = \overrightarrow{PQ} + \overrightarrow{QS} = \overrightarrow{PS}$ તથી, $(\overrightarrow{a} + \overrightarrow{b}) + \overrightarrow{c} = \overrightarrow{a} + (\overrightarrow{b} + \overrightarrow{c})$

નોંધ : આપણે સદિશ સરવાળા માટે જૂથના ગુણધર્મના કારણે ત્રણ સદિશો \vec{a} , \vec{b} , \vec{c} ના સરવાળાને કૌંસ વગર, \vec{a} + \vec{b} + \vec{c} સ્વરૂપે લખી શકીએ છીએ.

નોંધ કરો કે કોઈ પણ સદિશ \vec{a} માટે $\vec{a} + \vec{0} = \vec{0} + \vec{a} = \vec{a}$ સત્ય છે.

અહીં, શૂન્ય સદિશ 可 ને સદિશ સરવાળા માટે *તટસ્થ ઘટક* કહે છે.

10.5 સદિશનો અદિશ સાથેનો ગુણાકાર

આપેલ સદિશ \vec{a} અને શૂન્યેતર અદિશ λ છે. સદિશ \vec{a} નો અદિશ λ સાથેનો ગુણાકાર, $\lambda \vec{a}$ દ્વારા દર્શાવાય છે. તેને સદિશ \vec{a} નો અદિશ λ સાથેનો ગુણાકાર કહે છે. નોંધ કરો કે $\lambda \vec{a}$ પણ સદિશ છે. તે સદિશ \vec{a} ને સમરેખ છે. સદિશ $\lambda \vec{a}$ ની દિશા, એ સદિશ \vec{a} ની જ દિશા (અથવા વિરુદ્ધ દિશા) છે અને તે λ ની ધન (અથવા ઋઙ્ણ) કિંમત પ્રમાણે નક્કી થતું હોય છે. વળી, સદિશ $\lambda \vec{a}$ નું માન સદિશ \vec{a} ના માન કરતાં $|\lambda|$ ગણું હોય છે, એટલે કે

 $|\lambda \overrightarrow{a}| = |\lambda| |\overrightarrow{a}|$

સદિશના અદિશ સાથેના ગુણાકારનું ભૌમિતિક નિરૂપણ આકૃતિ 10.12માં આપેલ છે.

આકૃતિ 10.12

સદિશ બીજગણિત

જ્યારે $\lambda = -1$ હોય, ત્યારે $\lambda \vec{a} = -\vec{a}$. આ સદિશનું માન \vec{a} ના માન જેટલું જ હોય છે અને દિશા, \vec{a} ની દિશાથી વિરુદ્ધ છે. સદિશ $-\vec{a}$ ને સદિશ \vec{a} નો ઋણ (અથવા સરવાળા પ્રત્યે વ્યસ્ત) સદિશ કહે છે. અહીં હંમેશાં \vec{a} + ($-\vec{a}$) = ($-\vec{a}$) + \vec{a} = $\vec{0}$ થાય.

વળી, જો $\vec{a} \neq \vec{0}$ એટલે કે \vec{a} શૂન્ય સદિશ ન હોય અને $\lambda = \frac{1}{|\vec{a}|}$, તો

$$|\lambda \overrightarrow{a}| = |\lambda| |\overrightarrow{a}| = \frac{1}{|\overrightarrow{a}|} |\overrightarrow{a}| = 1$$

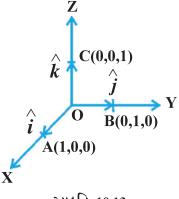
તેને આપણે $\hat{a} = \frac{1}{|\overrightarrow{a}|} \overrightarrow{a}$ સ્વરૂપે લખીએ છીએ.

 \mathcal{C} નોંધ કોઈ પણ અદિશ k માટે, $k \vec{0} = \vec{0}$

10.5.1 સદિશના ઘટકો

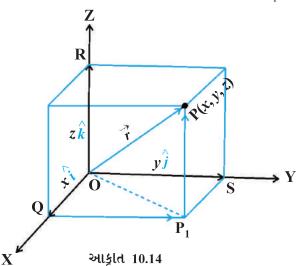
આપણે *x*-અક્ષ, *y*-અક્ષ અને *z*-અક્ષ પર અનુક્રમે બિંદુઓ A (1, 0, 0), B (0, 1, 0) અને C (0, 0, 1) લઈએ. આથી સ્પષ્ટ છે કે $|\overrightarrow{OA}| = 1$, $|\overrightarrow{OB}| = 1$ અને $|\overrightarrow{OC}| = 1$

સદિશો \overrightarrow{OA} , \overrightarrow{OB} અને \overrightarrow{OC} પૈકી પ્રત્યેકનું માન 1 છે. તેમને અનુક્રમે અક્ષો OX, OY અને OZ ની દિશામાં એકમ સદિશો કહેવાય છે અને તેમને અનુક્રમે \hat{i} , \hat{j} અને \hat{k} વડે દર્શાવાય છે (આકૃતિ 10.13).



આકૃતિ 10.13

હવે, આકૃતિ 10.14 માં દર્શાવ્યા પ્રમાશે બિંદુ P(x, y, z) નો સ્થાન સદિશ \overrightarrow{OP} લઈએ. બિંદુ P માંથી સમતલ XOY પર લંબનો લંબપાદ P_1 છે. આમ, આપશે જોઈ શકીએ છીએ કે P_1P એ z-અક્ષને સમાંતર છે.



362

ગણિત

 \hat{i}, \hat{j} અને \hat{k} અનુક્રમે x, y અને z અક્ષની દિશાના એકમ સદિશો હોવાથી અને બિંદુ P ના યામોની વ્યાખ્યા અનુસાર, આપણી પાસે $\overrightarrow{P_1P} = \overrightarrow{OR} = z\hat{k}$.

 $z\hat{k}$

આ જ પ્રમાણે, $\overrightarrow{QP_1} = \overrightarrow{OS} = y \overrightarrow{j}$ અને $\overrightarrow{OQ} = x \overrightarrow{i}$

માટે

અને

$$\overrightarrow{OP}_1 = \overrightarrow{OQ} + \overrightarrow{QP}_1 = x\hat{i} + y\hat{j}$$

$$\overrightarrow{OP} = \overrightarrow{OP_1} + \overrightarrow{P_1P} = x\hat{i} + y\hat{j} +$$

તેથી, O ના સંદર્ભમાં P નો સ્થાનસદિશ

$$\overrightarrow{OP}$$
 (અથવા \overrightarrow{r}) = $x\hat{i} + y\hat{j} + z\hat{k}$

સ્વરૂપે આપવામાં આવે છે.

કોઈ પણ સદિશના આ સ્વરૂપને તેનું *ઘટક સ્વરૂપ* કહે છે. અહીં, *x, y અને z ને 7 ના અદિશ ઘટકો કહે છે,* અને x_i, y_j અને z^ƙ ને 7 ના અનુરૂપ અક્ષોની દિશાના સદિશ ઘટકો કહે છે. કેટલીક વખત x, y અને z ને લંબચોરસીય ઘટકો તરીકે પણ પરિભાષિત કરવામાં આવે છે.

કોઈ પણ સદિશ $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$ ની લંબાઈ, પાયથાગોરસના પ્રમેયનો બે વાર ઉપયોગ કરીને સહેલાઈથી શોધી શકાય છે. આપણે નોંધ કરીશું કે કાટકોણ ત્રિકોણ OQP₁ પરથી (આકૃતિ 10.14)

$$|\overrightarrow{OP}_{1}| = \sqrt{|\overrightarrow{OQ}|^{2} + |\overrightarrow{QP}_{1}|^{2}} = \sqrt{x^{2} + y^{2}}$$

અને કાટકોણ ત્રિકોણ OP1P પરથી આપણી પાસે,

$$|\overrightarrow{OP}| = \sqrt{|\overrightarrow{OP_1}|^2 + |\overrightarrow{P_1P}|^2} = \sqrt{(x^2 + y^2) + z^2}$$

તેથી, કોઈ પણ સદિશ $\overrightarrow{r} = x\hat{i} + y\hat{j} + z\hat{k}$ ની લંબાઈ

$$|\vec{r}| = |x\hat{i} + y\hat{j} + z\hat{k}| = \sqrt{x^2 + y^2 + z^2}$$
 દ્વારા આપવામાં આવે છે.

જો કોઈ પણ બે સદિશો \vec{a} અને \vec{b} ને ઘટક સ્વરૂપમાં, અનુક્રમે $a_1\hat{i} + a_2\hat{j} + a_3\hat{k}$ અને $b_1\hat{i} + b_2\hat{j} + b_3\hat{k}$ તરીકે આપેલ હોય, તો

(i) સદિશો \overrightarrow{a} અને \overrightarrow{b} નો સરવાળો (અથવા પરિણામી સદિશ)

$$\vec{a} + \vec{b} = (a_1 + b_1)\hat{i} + (a_2 + b_2)\hat{j} + (a_3 + b_3)\hat{k}$$
 દારા આપવામાં આવે છે.

સદિશ બીજગણિત

(ii) सहिशो \vec{a} अने \vec{b} नो तझवत नीचे प्रमाशे आपवामां आवे છे :

$$\vec{a} - \vec{b} = (a_1 - b_1)\hat{i} + (a_2 - b_2)\hat{j} + (a_3 - b_3)\hat{k}$$

$$a_1 = b_1, a_2 = b_2$$
 and $a_3 = b_3$

(iv) સદિશ a નો કોઈ પણ અદિશ λ સાથેનો ગુણાકાર

 $\lambda_{a}^{\rightarrow} = (\lambda a_{1}) \hat{i} + (\lambda a_{2}) \hat{j} + (\lambda a_{3}) \hat{k} \quad \text{set out of } \hat{u}$

સદિશોનો સરવાળો અને સદિશનો અદિશ સાથેનો ગુણાકાર સાથે મળીને નીચે દર્શાવેલ વિભાજનના નિયમોનું પાલન કરે છે :

કોઈ પણ સદિશ $ec{a}$ અને $ec{b}$ અને કોઈ પણ અદિશ k તથા m આપેલા છે, તો

(i)
$$k\overrightarrow{a} + m\overrightarrow{a} = (k+m)\overrightarrow{a}$$

- (ii) $k (m \overrightarrow{a}) = (km) \overrightarrow{a}$
- (iii) $k(\vec{a} + \vec{b}) = k\vec{a} + k\vec{b}$

નોંધ ઃ

(i) એ અવલોકન કરવું સરળ છે કે λ ના કોઈ પણ શૂન્યેતર મૂલ્ય માટે, સદિશ $\lambda \vec{a}$ હંમેશાં સદિશ \vec{a} ને સમરેખ હોય છે. વાસ્તવમાં, બે સદિશો \vec{a} અને \vec{b} સમરેખ હોય, તો અને તો જ શૂન્યેતર અદિશ λ અસ્તિત્વ ધરાવે કે જેથી $\vec{b} = \lambda \vec{a}$ જો સદિશો \vec{a} અને \vec{b} ઘટક સ્વરૂપમાં આપેલ હોય એટલે કે $\vec{a} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}$ અને $\vec{b} = b_1\hat{i} + b_2\hat{j} + b_3\hat{k}$, તો તે બે સદિશો સમરેખ હોય તો અને તો જ

$$b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k} = \lambda (a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k})$$

$$\Leftrightarrow \quad b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k} = (\lambda a_1) \hat{i} + (\lambda a_2) \hat{j} + (\lambda a_3) \hat{k}$$

$$\Leftrightarrow \quad b_1 = \lambda a_1, b_2 = \lambda a_2, b_3 = \lambda a_3$$

$$\Leftrightarrow \quad \frac{b_1}{a_1} = \frac{b_2}{a_2} = \frac{b_3}{a_3} = \lambda$$

(ii) જો $\vec{a} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}$ હોય, તો a_1, a_2, a_3 ને \vec{a} ના દિક્ગુણોત્તર પણ કહે છે.

(iii) કોઈક વિકલ્પમાં, એમ આપેલ હોય કે l, m, n એ સદિશના દિક્કોસાઇન છે, તો

 $l\hat{i} + m\hat{j} + n\hat{k} = (\cos \alpha)\hat{i} + (\cos \beta)\hat{j} + (\cos \gamma)\hat{k}$ એ આપેલા સદિશની દિશામાં એકમ સદિશ છે. સદિશે *x*-અક્ષ, *y*-અક્ષ અને *z*-અક્ષ સાથે બનાવેલા ખૂણા અનુક્રમે α , β અને γ છે.

364

ઉદાહરણ 4 : જો સદિશો
$$\vec{a} = x_i^{\uparrow} + 2\hat{j} + z_k^{\uparrow}$$
 અને $\vec{b} = 2\hat{i} + y\hat{j} + \hat{k}$ સમાન હોય, તો x, y અને z નાં મૂલ્યો શોધો.

ઉંકેલ : આપણે જાણીએ છીએ કે બે સદિશો સમાન હોય તો અને તો જ તેમના અનુરૂપ ઘટકો સમાન હોય છે. આમ, આપેલ સદિશો \vec{a} અને \vec{b} સમાન થાય તો અને તો જ

$$x = 2, y = 2, z = 1$$

ઉદાહરણ 5 : જો સદિશો $\vec{a} = \hat{i} + 2\hat{j}$ અને $\vec{b} = 2\hat{i} + \hat{j}$ હોય, તો $|\vec{a}| = |\vec{b}|$ થાય ? સદિશો \vec{a} અને \vec{b} સમાન છે ?

ઉકેલ : આપણી પાસે $|\vec{a}| = \sqrt{1^2 + 2^2} = \sqrt{5}$ અને $|\vec{b}| = \sqrt{2^2 + 1^2} = \sqrt{5}$

તેથી, $|\vec{a}| = |\vec{b}|$. પરંતુ, બે સદિશો સમાન નથી, કારણ કે તેમના અનુરૂપ ઘટકો ભિન્ન છે.

ઉદાહરણ 6 : સદિશ $\overrightarrow{a} = 2 \overrightarrow{i} + 3 \overrightarrow{j} + \cancel{k}$ ની દિશામાં એકમ સદિશ શોધો.

ઉકેલ : સદિશ \vec{a} ની દિશામાં એકમ સદિશ, $\hat{a} = \frac{1}{|\vec{a}|}\vec{a}$ વડે દર્શાવાય છે.

હવે, $|\vec{a}| = \sqrt{2^2 + 3^2 + 1^2} = \sqrt{14}$

 $\hat{d} \hat{a}_{i} = \frac{1}{\sqrt{14}} \left(2\hat{i}_{i} + 3\hat{j}_{i} + \hat{k}_{i} \right) = \frac{2}{\sqrt{14}}\hat{i}_{i} + \frac{3}{\sqrt{14}}\hat{j}_{i} + \frac{1}{\sqrt{14}}\hat{k}$

ઉદાહરણ 7 : સદિશ $\vec{a} = \hat{i} - 2\dot{j}$ ની દિશામાં જે સદિશનું માન 7 એકમ હોય તેવો સદિશ શોધો.

ઉકેલ : આપેલ સદિશ \vec{a} ની દિશામાં એકમ સદિશ $\hat{a} = \frac{1}{|\vec{a}|}\vec{a} = \frac{1}{\sqrt{5}}(\hat{i} - 2\hat{j}) = \frac{1}{\sqrt{5}}\hat{i} - \frac{2}{\sqrt{5}}\hat{j}$

તેથી, \overrightarrow{a} ની દિશામાં 7 માનવાળો સદિશ

$$7\hat{a} = 7\left(\frac{1}{\sqrt{5}}\hat{i} - \frac{2}{\sqrt{5}}\hat{j}\right) = \frac{7}{\sqrt{5}}\hat{i} - \frac{14}{\sqrt{5}}\hat{j}$$

ઉદાહરણ 8 : સદિશો $\vec{a} = 2\hat{i} + 2\hat{j} - 5\hat{k}$ અને $\vec{b} = 2\hat{i} + \hat{j} + 3\hat{k}$ ના સરવાળાના સદિશની દિશામાં એકમ સદિશ શોધો.

ઉકેલ : આપેલ સદિશોનો સરવાળો

$$\vec{a} + \vec{b} (=\vec{c} \text{ sol}) = 4\hat{i} + 3\hat{j} - 2\hat{k}$$

અને $\left|\stackrel{\rightarrow}{c}\right| = \sqrt{4^2 + 3^2 + (-2)^2} = \sqrt{29}$

Downloaded from https:// www.studiestoday.com

ગણિત

સદિશ બીજગણિત

આમ, માંગેલ એકમ સદિશ

$$\hat{c} = \frac{1}{|\vec{c}|}\vec{c} = \frac{1}{\sqrt{29}}(4\hat{i} + 3\hat{j} - 2\hat{k}) = \frac{4}{\sqrt{29}}\hat{i} + \frac{3}{\sqrt{29}}\hat{j} - \frac{2}{\sqrt{29}}\hat{k}$$

ઉદાહરણ 9 : સદિશ $\vec{a} = \hat{i} + \hat{j} - 2\hat{k}$ ના દિક્ગુણોત્તરો લખો અને એ પરથી દિક્કોસાઇનની ગણતરી કરો. ઉકેલ : આપણે નોંધીએ કે સદિશ $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$ ના દિક્ગુણોત્તર *a*, *b*, *c* એ સદિશના અનુરૂપ ઘટકો *x*, *y* અને *z* જ છે. એટલે આપેલ સદિશ માટે, આપણી પાસે *a* = 1, *b* = 1 અને *c* = -2. વધુમાં, જો *l*, *m* અને *n* આપેલ સદિશના દિક્કોસાઇન હોય, તો

$$\begin{vmatrix} \overrightarrow{r} \\ \overrightarrow{r} \end{vmatrix} = \sqrt{6} \text{ signal, } l = \frac{a}{\left| \overrightarrow{r} \right|} = \frac{1}{\sqrt{6}}, \ m = \frac{b}{\left| \overrightarrow{r} \right|} = \frac{1}{\sqrt{6}}, \ n = \frac{c}{\left| \overrightarrow{r} \right|} = \frac{-2}{\sqrt{6}}$$

આમ, આપેલ સદિશના દિક્કોસાઇન $\left(\frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}, -\frac{2}{\sqrt{6}}\right)$ છે.

10.5.2 બે બિંદુઓને જોડતો સદિશ

જો $P_1(x_1, y_1, z_1)$ અને $P_2(x_2, y_2, z_2)$ કોઈ પણ બે બિંદુઓ હોય, તો P_1 ને P_2 સાથે જોડતો સદિશ P_1P_2 છે (આકૃતિ 10.15).

બિંદુઓ P₁ અને P₂ ને ઊગમબિંદુ સાથે જોડતાં અને ત્રિકોણના નિયમનો ઉપયોગ કરતાં, ત્રિકોણ OP₁P₂ પરથી,

$$\overrightarrow{OP}_1 + \overrightarrow{P_1P}_2 = \overrightarrow{OP}_2$$

સદિશ સરવાળાના ગુણધર્મોનો ઉપયોગ કરતાં, ઉપર દર્શાવેલ સમીકરણ $\overrightarrow{P_1P_2} = \overrightarrow{OP_2} - \overrightarrow{OP_1}$ સ્વરૂપે લખાય છે.

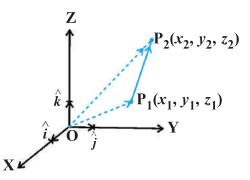
એટલે કે
$$\overrightarrow{P_1P_2} = (x_2\hat{i} + y_2\hat{j} + z_2\hat{k}) - (x_1\hat{i} + y_1\hat{j} + z_1\hat{k})$$

$$= (x_2 - x_1)\hat{i} + (y_2 - y_1)\hat{j} + (z_2 - z_1)\hat{k}$$

સદિશ $\overrightarrow{\mathbf{P}_{1}\mathbf{P}_{2}}$ નું માન, $\left|\overrightarrow{\mathbf{P}_{1}\mathbf{P}_{2}}\right| = \sqrt{(x_{2}-x_{1})^{2}+(y_{2}-y_{1})^{2}+(z_{2}-z_{1})^{2}}$ છે.

ઉદાહરણ 10 : બિંદુઓ P (2, 3, 0) અને Q (−1, −2, −4) ને જોડતો P થી Q તરફની દિશાવાળો સદિશ શોધો.

ઉકેલ ઃ સદિશની દિશા P થી Q તરફની હોવાથી, સ્પષ્ટ છે કે P એ પ્રારંભ બિંદુ અને Q એ અંતિમ બિંદુ છે, તેથી P અને Q ને જોડતો માંગેલ સદિશ PQ એ



366

$$\overrightarrow{PQ} = (-1-2)\hat{i} + (-2-3)\hat{j} + (-4-0)\hat{k}$$

એટલે કે, $\overrightarrow{PQ} = -3\hat{i} - 5\hat{j} - 4\hat{k}\hat{k}\hat{v}$.

10.5.3 વિભાજન સૂત્ર

બિંદુઓ $\mathrm P$ અને $\mathrm Q$ લો. ઊગમબિંદુ $\mathrm O$ ને સાપેક્ષ તેમના સ્થાનસદિશો અનુક્રમે $\overrightarrow{\mathrm{OP}}$ અને $\overrightarrow{\mathrm{OQ}}$ દ્વારા દર્શાવ્યા છે. ત્યાર બાદ ત્રીજું બિંદુ R, P અને Q ને જોડતા રેખાખંડનું અંતઃવિભાજન n (આકૃતિ 10.16) અને બહિર્વિભાજન (આકૃતિ 10.17) કરી શકે. અહીં, B R આપણી ઇચ્છા ઊગમબિંદુ ${
m O}$ ને સાપેક્ષ બિંદુ ${
m R}$ નો સ્થાનસદિશ $\overrightarrow{{
m OR}}$ શોધવાની 0 \overrightarrow{a} છે. આપશે એક પછી એક બે વિકલ્પો લઈશું.

વિકલ્પ I : જ્યારે R, રેખાખંડ PQ નું અંતર્વિભાજન કરે. (આકૃતિ 10.16)

 $\overrightarrow{OP} = \overrightarrow{a}, \overrightarrow{OO} = \overrightarrow{b}, \overrightarrow{OR} = \overrightarrow{r}$ eil.

R એ \overrightarrow{PQ} + \overrightarrow{I} એ રીતે વિભાજન કરે છે કે જેથી ધન અદિશ સંખ્યાઓ *m* અને *n* માટે, $\overrightarrow{mRQ} = \overrightarrow{nPR}$ અને આપશે કહીએ છીએ કે બિંદુ R એ \overrightarrow{PQ} નું m:n ગુશોત્તરમાં અંતર્વિભાજન કરે છે. હવે, ત્રિકોશો ORQ અને OPR પરથી,

આપાશી પાસે,
$$\overrightarrow{RQ} = \overrightarrow{OQ} - \overrightarrow{OR} = \overrightarrow{b} - \overrightarrow{r}$$

અને $\overrightarrow{PR} = \overrightarrow{OR} - \overrightarrow{OP} = \overrightarrow{r} - \overrightarrow{a}$
તેથી, આપાશને $m(\overrightarrow{b} - \overrightarrow{r}) = n(\overrightarrow{r} - \overrightarrow{a})$ (શા માટે ?)
મળે છે અથવા $\overrightarrow{r} = \frac{m\overrightarrow{b} + n\overrightarrow{a}}{m+n}$ (સાદું રૂપ આપતાં)

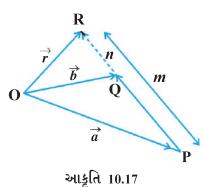
તેથી, જે બિંદુ P અને Q ને જોડતા રેખાખંડનું ગુણોત્તર *m* : *n* માં અંતર્વિભાજન કરે તે બિંદુ R નો સ્થાનસદિશ,

$$\overrightarrow{OR} = \frac{m\overrightarrow{b} + n\overrightarrow{a}}{m+n}$$
(સાદું રૂપ આપતાં)

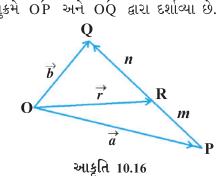
વિકલ્પ II : જ્યારે R, રેખાખંડ PQ નું બહિર્વિભાજન કરે. (આકૃતિ 10.17)

R રેખાખંડ PQ નું બહારથી ગુણોત્તર m:n માં વિભાજન કરે છે.

(એટલે કે
$$rac{\mathrm{PR}}{\mathrm{QR}}=rac{m}{n}$$
) તો બિંદુ R નો સ્થાનસદિશ $\overrightarrow{\mathrm{QR}}=rac{m\overrightarrow{b}-n\overrightarrow{a}}{m-n}$ છે.
આ કાર્ય આપણે વાચક માટે સ્વાધ્યાય તરીકે ચકાસવા માટે રાખીશું.



Downloaded from https:// www.studiestoday.com



ગણિત

સદિશ બીજગણિત

નોંધ : જો R એ રેખાખંડ PQ નું મધ્યબિંદુ હોય તો m = n મળે. અને તેથી વિકલ્પ-I પરથી, રેખાખંડ PQ ના

મધ્યબિંદુ R નો સ્થાનસદિશ
$$\overrightarrow{OR} = \frac{\overrightarrow{a} + \overrightarrow{b}}{2}$$
 થશે.

ઉદાહરણ 11 : બિંદુઓ P અને Q ના સ્થાનસદિશો અનુક્રમે $\overrightarrow{OP} = 3 \overrightarrow{a} - 2 \overrightarrow{b}$ અને $\overrightarrow{OQ} = \overrightarrow{a} + \overrightarrow{b}$ છે. બિંદુઓ P અને Q ને જોડતા રેખાખંડનું 2:1 ગુણોત્તરમાં (i) અંતર્વિભાજન અને (ii) બહિર્વિભાજન કરતાં બિંદુ R ના સ્થાનસદિશ શોધો.

ઉકેલ :

(i) બિંદુઓ P અને Q ને જોડતા રેખાખંડનું 2:1 ગુણોત્તરમાં અંતર્વિભાજન કરતા બિંદુ R નો સ્થાનસદિશ

$$\overrightarrow{OR} = \frac{2\left(\overrightarrow{a} + \overrightarrow{b}\right) + \left(3\overrightarrow{a} - 2\overrightarrow{b}\right)}{2+1} = \frac{5\overrightarrow{a}}{3}$$

(ii) બિંદુઓ P અને Q ને જોડતાં રેખાખંડનું 2:1 ગુણોત્તરમાં બહિર્વિભાજન કરતાં બિંદુ R નો સ્થાનસદિશ

$$\overrightarrow{OR} = \frac{2\left(\overrightarrow{a} + \overrightarrow{b}\right) - \left(3\overrightarrow{a} - 2\overrightarrow{b}\right)}{2-1} = 4\overrightarrow{b} - \overrightarrow{a}$$

ઉદાહરણ 12 : સાબિત કરો કે બિંદુઓ A $(2\hat{i} - \hat{j} + \hat{k})$, B $(\hat{i} - 3\hat{j} - 5\hat{k})$, C $(3\hat{i} - 4\hat{j} - 4\hat{k})$ કાટકોણ ત્રિકોણનાં શિરોબિંદુઓ છે.

ઉકેલ : અહીં,

$$\vec{AB} = (1-2)\hat{i} + (-3+1)\hat{j} + (-5-1)\hat{k} = -\hat{i} - 2\hat{j} - 6\hat{k}$$
$$\vec{BC} = (3-1)\hat{i} + (-4+3)\hat{j} + (-4+5)\hat{k} = 2\hat{i} - \hat{j} + \hat{k}$$
$$\vec{AA} = (2-3)\hat{i} + (-1+4)\hat{j} + (1+4)\hat{k} = -\hat{i} + 3\hat{j} + 5\hat{k}$$
(3uxia, gail & $|\vec{AB}|^2 = 41 = 6 + 35 = |\vec{BC}|^2 + |\vec{CA}|^2$ dul, fisher ABC a sizsher fisher છ.

સ્વાધ્યાય 10.2

1. નીચે આપેલા સદિશોનાં માનની ગણતરી કરો :

$$\vec{a} = \hat{i} + \hat{j} + \hat{k}; \ \vec{b} = 2\hat{i} - 7\hat{j} - 3\hat{k}; \ \vec{c} = \frac{1}{\sqrt{3}}\hat{i} + \frac{1}{\sqrt{3}}\hat{j} - \frac{1}{\sqrt{3}}\hat{k}$$

368 ગણિત સમાન માપવાળા બે ભિન્ન સદિશો લખો. 2. જેની દિશા સમાન હોય તેવા બે ભિન્ન સદિશો લખો. 3. સદિશો $2\hat{i} + 3\hat{j}$ અને $x\hat{i} + y\hat{j}$ સમાન થાય તેવી x અને y ની કિંમતો શોધો. 4. જે સદિશનું પ્રારંભ બિંદુ (2, 1) અને અંતિમ બિંદુ (-5, 7) હોય, તેના અદિશ અને સદિશ ઘટકો શોધો. 5. સદિશો $\vec{a} = \hat{i} - 2\hat{j} + \hat{k}$, $\vec{b} = -2\hat{i} + 4\hat{j} + 5\hat{k}$ અને $\vec{c} = \hat{i} - 6\hat{j} - 7\hat{k}$ નો સરવાળો **6**. શોધો. સદિશો $\vec{a} = \hat{i} + \hat{j} + 2\hat{k}$ ની દિશામાં એકમ સદિશ શોધો. 7. જો P અને Q અનુક્રમે બિંદુઓ (1, 2, 3) અને (4, 5, 6) હોય, તો \overrightarrow{PQ} ની દિશામાં એકમ સદિશ શોધો. 8. આપેલ સદિશો $\vec{a} = 2\hat{i} - \hat{j} + 2\hat{k}$ અને $\vec{b} = -\hat{i} + \hat{j} - \hat{k}$ હોય, તો સદિશ $\vec{a} + \vec{b}$ ની દિશામાં 9. એકમ સદિશ શોધો. **10.** $5\hat{i} - \hat{j} + 2\hat{k}$ સદિશની દિશામાં 8 એકમ માનવાળો સદિશ શોધો. **11.** દર્શાવો કે સદિશો $2\hat{i} - 3\hat{j} + 4\hat{k}$ અને $-4\hat{i} + 6\hat{j} - 8\hat{k}$ સમરેખ છે. **12.** સદિશ $\hat{i} + 2\hat{j} + 3\hat{k}$ ના દિક્કોસાઇન શોધો. 13. જે સદિશ બિંદુઓ A (1, 2, -3) અને B (-1, -2, 1) ને A થી B તરફની દિશામાં જોડતો હોય તે સદિશના દિક્કોસાઇન શોધો. 14. સાબિત કરો કે સદિશ \hat{i} + \hat{j} + \hat{k} એ અક્ષો OX, OY અને OZ સાથે સમાન ખૂણા બનાવે છે. 15. બિંદુ R એ બિંદુઓ P અને Q ને જોડતા રેખાખંડનું 2:1 ગુણોત્તરમાં (i) અંતઃ (ii) બહિર્વિભાજન કરે છે. P અને Q ના સ્થાનસદિશો અનુક્રમે $\hat{i} + 2\hat{j} - \hat{k}$ અને $-\hat{i} + \hat{j} + \hat{k}$ છે, તો બિંદુ R નો સ્થાનસદિશ શોધો. 16. બિંદુઓ P (2, 3, 4) અને Q (4, 1, -2) ને જોડતા રેખાખંડના મધ્યબિંદુનો સ્થાનસદિશ શોધો. 17. સાબિત કરો કે બિંદુઓ A, B અને C ના સ્થાનસદિશો અનુક્રમે $\vec{a} = 3\hat{i} - 4\hat{j} - 4\hat{k}$, $\vec{b} = 2\hat{i} - \hat{j} + \hat{k} \quad \text{welt} \quad \vec{c} = \hat{i} - 3\hat{j} - 5\hat{k} \quad \text{welt}, \text{ all } \vec{c} \quad \text{selence} \quad [\text{Ashen even}]$ પ્રશ્નો 18 તથા 19 માં વિધાન સાચું બને તે રીતે આપેલ વિકલ્પોમાંથી યોગ્ય વિકલ્પ પસંદ કરો : 18. ત્રિકોણ ABC (આકૃતિ 10.18) માટે નીચેનામાંથી કયાં વિધાનો સત્ય નથી : (A) $\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CA} = \overrightarrow{0}$ (B) $\overrightarrow{AB} + \overrightarrow{BC} - \overrightarrow{AC} = \overrightarrow{0}$ (C) $\overrightarrow{AB} + \overrightarrow{BC} - \overrightarrow{CA} = \overrightarrow{0}$

Downloaded from https:// www.studiestoday.com

(D) $\overrightarrow{AB} - \overrightarrow{CB} + \overrightarrow{CA} = \overrightarrow{0}$

સદિશ બીજગણિત

19. જો \vec{a} અને \vec{b} , બે સમરેખ સદિશો હોય, તો નીચે આપેલાં પૈકી કયાં વિધાનો અસત્ય છે :

- (A) કોઈક અદિશ λ માટે, $\vec{b} = \lambda \vec{a}$.
- (B) $\overrightarrow{a} = \pm \overrightarrow{b}$
- (C) \vec{a} अने \vec{b} ना अनु३५ घटકो प्रमाशमां नथी.
- (D) બંને સદિશો \vec{a} અને \vec{b} ની દિશા સમાન છે, પરંતુ માન ભિન્ન છે.

10.6 બે સદિશોનો ગુણાકાર

અત્યાર સુધી આપશે સદિશોનાં સરવાળા અને બાદબાકી વિશે અભ્યાસ કર્યો. અન્ય એક બૈજિક પ્રક્રિયાની ચર્ચા કરીશું. તેને બે સદિશોનો ગુણાકાર કહેવાય છે. આપણને યાદ છે કે બે સંખ્યાઓનો ગુણાકાર એક સંખ્યા છે, બે શ્રેણિકોનો ગુણાકાર પુનઃ શ્રેણિક મળે છે. પરંતુ વિધેયોના સંદર્ભમાં, આપશે તેમનો ગુણાકાર બે રીતે કરી શકીએ, એટલે કે બે વિધેયોનો બિંદુ દીઠ ગુણાકાર અને બે વિધેયોનું સંયોજન. આ જ રીતે, બે સદિશોનો ગુણાકાર પણ બે પ્રકારે વ્યાખ્યાયિત થાય છે, એટલે કે (i) અદિશ કે અંતઃગુણન. તેમાં પરિણામ અદિશ (સંખ્યા) છે. (ii) સદિશ ગુણાકાર અથવા બહિર્ગુણન. અહીં પરિણામ સદિશ છે. આ બે પ્રકારના સદિશોના ગુણાકારના આધાર પર આપણને ભૂમિતિ, યંત્રશાસ્ત્ર અને ઇજનેરીશાખામાં વિવિધ ઉપયોગો મળે છે. આ વિભાગમાં, આપશે આ બે પ્રકારના ગુણાકારોની ચર્ચા કરીશું.

નોંધ : ખરેખર વિધેયોનું સંયોજન તેમનો 'ગુશાકાર' છે તેમ કહેવાય નહિ.

10.6.1 બે સદિશોનું અદિશ (અથવા અંતઃ) ગુણન

 $\begin{array}{c} \text{cutwul } 2: \ \dot{\theta} \ y_{\overline{a}} + dc \ a \ b \ \overline{b} \ dc \ b \ \overline{b} \ dc \ b \ \overline{b} \ dc \ b \ \overline{b} \ cos \ \theta \ a \ cos \ b \ cos \ b \ cos \ b \ a \ cos \ b \ cos \ b \ a \ cos \ b \ cos \ cos \ b \ cos \ cos \ b \ cos \ co$

જો $\vec{a} = \vec{0}$ અથવા $\vec{b} = \vec{0}$ હોય તો θ અવ્યાખ્યાયિત છે અને આ કિસ્સામાં, $\vec{\theta}$ આપણે $\vec{a} \cdot \vec{b} = 0$ વ્યાખ્યાયિત કરીએ છીએ. આકૃતિ 10.19

અવલોકનો

- 1. $\overrightarrow{a} \cdot \overrightarrow{b}$ એક વાસ્તવિક સંખ્યા છે.
- 2. ધારો કે \vec{a} અને \vec{b} બે શૂન્યેતર સદિશો છે. જો $\vec{a} \cdot \vec{b} = 0$ તો અને તો જ \vec{a} અને \vec{b} પરસ્પર લંબ છે. એટલે કે $\vec{a} \cdot \vec{b} = 0 \Leftrightarrow \vec{a} \perp \vec{b}$
- 3. જો $\theta = 0$, તો $\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}|$. વિશેષમાં $\vec{a} \cdot \vec{a} = |\vec{a}|^2$, આ કિસ્સામાં θ એ 0 છે.
- 4. જો $\theta = \pi$, તો $\overrightarrow{a} \cdot \overrightarrow{b} = -|\overrightarrow{a}||\overrightarrow{b}|$. વિશેષમાં $\overrightarrow{a} \cdot (-\overrightarrow{a}) = -|\overrightarrow{a}|^2$, આ કિસ્સામાં θ એ π છે.
- 5. અવલોકનો 2 અને 3 ના સંદર્ભમાં, પરસ્પર લંબ એકમ સદિશો \hat{i}, \hat{j} અને \hat{k} માટે, આપણી પાસે $\hat{i} \cdot \hat{i} = \hat{j} \cdot \hat{j} = \hat{k} \cdot \hat{k} = 1, \ \hat{i} \cdot \hat{j} = \hat{j} \cdot \hat{k} = \hat{k} \cdot \hat{i} = 0.$

6. બે શૂન્યેતર સદિશો \vec{a} અને \vec{b} વચ્ચેનો ખૂણો $\cos \theta = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}$ અથવા $\theta = \cos^{-1}\left(\frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}\right)$ દ્વારા મળે છે.

7. અદિશ ગુણાકાર સમક્રમી છે, એટલે કે $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}$ (શા માટે ?)

370

ગણિત

અદિશ ગુણાકારના બે મહત્ત્વના ગુણધર્મો

ગુણધર્મ 1 (અદિશ ગુણાકારનો સરવાળા પર વિભાજનનો ગુણધર્મ)

 \vec{a} , \vec{b} અને \vec{c} કોઈ પણ ત્રણ સદિશો હોય, તો

$$\vec{a} \cdot (\vec{b} + \vec{c}) = \vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c}$$

ગુણધર્મ 2 કોઈ પણ બે સદિશો \vec{a} અને \vec{b} અને કોઈ પણ અદિશ સંખ્યા λ માટે

$$(\lambda \overrightarrow{a}) \cdot \overrightarrow{b} = \lambda (\overrightarrow{a} \cdot \overrightarrow{b}) = \overrightarrow{a} \cdot (\lambda \overrightarrow{b})$$

જો બે સદિશો \vec{a} અને \vec{b} ઘટક સ્વરૂપે $a_1\hat{i} + a_2\hat{j} + a_3\hat{k}$ અને $b_1\hat{i} + b_2\hat{j} + b_3\hat{k}$ આપેલ હોય, તો તેમનો અદિશ ગુણાકાર નીચે પ્રમાણે કરવામાં આવે છે :

$$\vec{a} \cdot \vec{b} = (a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}) \cdot (b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k})$$

$$= a_1 \hat{i} \cdot (b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k}) + a_2 \hat{j} \cdot (b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k}) + a_3 \hat{k} \cdot (b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k})$$

$$= a_1 b_1 (\hat{i} \cdot \hat{i}) + a_1 b_2 (\hat{i} \cdot \hat{j}) + a_1 b_3 (\hat{i} \cdot \hat{k}) + a_2 b_1 (\hat{j} \cdot \hat{i}) + a_2 b_2 (\hat{j} \cdot \hat{j})$$

$$+ a_2 b_3 (\hat{j} \cdot \hat{k}) + a_3 b_1 (\hat{k} \cdot \hat{i}) + a_3 b_2 (\hat{k} \cdot \hat{j}) + a_3 b_3 (\hat{k} \cdot \hat{k})$$
(JQ84 1 અને 2 નો ઉપયોગ કરતાં)

$$= a_1b_1 + a_2b_2 + a_3b_3$$
 (અવલોકન 5 નો ઉપયોગ કરતાં)

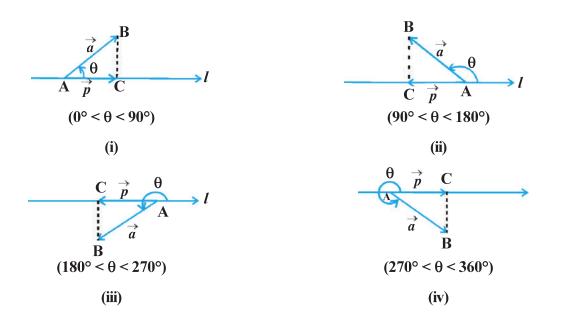
આમ, $\vec{a} \cdot \vec{b} = a_1 b_1 + a_2 b_2 + a_3 b_3$

10.6.2 રેખા પર સદિશનો પ્રક્ષેપ

ધારો કે સદિશ AB, એ I દ્વારા દર્શાવાતી એક રેખા સાથે ઘડિયાળના કાંટાની વિરુદ્ધ દિશામાં, 0 ખૂણો બનાવે છે (આકૃતિ 10.20). જેનું માન |AB|| cos0| હોય અને જેની દિશા અનુક્રમે cos0 ધન હોય કે ઋાણ હોય તે અનુસાર I ની દિશા કે તેની વિરુદ્ધની દિશા હોય તેવા સદિશ p ને AB નો I પર પ્રક્ષેપ સદિશ કહે છે. તેના માન |p] ને દિશાયુક્ત રેખા I પર સદિશ AB નો પ્રક્ષેપ કહે છે.

ઉદાહરણ તરીકે, આગળ આપેલ પ્રત્યેક આકૃતિમાં (આકૃતિ 10.20 (i) થી (iv)), \overrightarrow{AB} નો રેખા l પર, પ્રક્ષેપ સદિશ એ સદિશ \overrightarrow{AC} છે.

સદિશ બીજગણિત



અવલોકનો

- 1. જો \hat{p} એ રેખા l પર એકમ સદિશ હોય, તો સદિશ \vec{a} નો રેખા l પરનો પ્રક્ષેપ $\vec{a} \cdot \hat{p}$ દ્વારા મળે છે.
- 2. સદિશ \vec{a} નો અન્ય સદિશ \vec{b} પરનો પ્રક્ષેપ $\vec{a} \cdot \hat{b}$ અથવા $\vec{a} \cdot \left(\frac{\vec{b}}{|\vec{b}|}\right)$ અથવા $\frac{1}{|\vec{b}|}$ $(\vec{a} \cdot \vec{b})$ દ્વારા દર્શાવાય છે.
- 3. જો $\theta = 0$ હોય તો સદિશ \overrightarrow{AB} નો પ્રક્ષેપ સદિશ \overrightarrow{AB} પોતે જ થશે અને જો $\theta = \pi$ હોય, તો \overrightarrow{AB} નો પ્રક્ષેપ સદિશ \overrightarrow{BA} થશે.
- 4. જો $\theta = \frac{\pi}{2}$ અથવા $\theta = \frac{3\pi}{2}$ હોય, તો સદિશ \overrightarrow{AB} નો પ્રક્ષેપ સદિશ શૂન્ય સદિશ થશે.

નોંધ : જો α, β અને γ, સદિશ $\vec{a} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}$ ના દિક્ખૂશાઓ હોય તો તેના દિક્કોસાઇન

$$\cos \alpha = \frac{\overrightarrow{a} \cdot \overrightarrow{i}}{|\overrightarrow{a}||\overrightarrow{i}|} = \frac{a_1}{|\overrightarrow{a}|}, \ \cos \beta = \frac{a_2}{|\overrightarrow{a}|} \text{ when } \cos \gamma = \frac{a_3}{|\overrightarrow{a}|}$$

વળી, નોંધ કરો કે $|\vec{a}| \cos \alpha$, $|\vec{a}| \cos \beta$ અને $|\vec{a}| \cos \gamma$ એ અનુક્રમે અક્ષો OX, OY અને OZ પર સદિશ \vec{a} ના પ્રક્ષેપો છે. એટલે કે સદિશ \vec{a} ના અદિશ ઘટકો a_1, a_2 અને a_3 ખરેખર તો અનુક્રમે *x*-અક્ષ, *y*-અક્ષ અને *z*-અક્ષ પર સદિશ \vec{a} ના પ્રક્ષેપો છે. ઉપરાંત જો \vec{a} એકમ સદિશ હોય, તો તેને તેના દિક્કોસાઇનોના સ્વરૂપમાં $\vec{a} = \cos \alpha \hat{i} + \cos \beta \hat{j} + \cos \gamma \hat{k}$ તરીકે દર્શાવી શકાય.

372

ઉદાહરણ 13 : જો સદિશો \vec{a} અને \vec{b} નાં માન અનુક્રમે 1 અને 2 હોય તથા $\vec{a} \cdot \vec{b} = 1$ હોય, તો \vec{a} અને \vec{b} વચ્ચેનો ખૂશો શોધો. ઉકેલ : અહીં, $\vec{a} \cdot \vec{b} = 1$, $|\vec{a}| = 1$ અને $|\vec{b}| = 2$ આપેલ છે. હવે, $\theta = \cos^{-1} \left(\frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|} \right) = \cos^{-1} \left(\frac{1}{2} \right) = \frac{\pi}{3}$

ઉદાહરણ 14 : સદિશો $\vec{a} = \hat{i} + \hat{j} - \hat{k}$ અને $\vec{b} = \hat{i} - \hat{j} + \hat{k}$ વચ્ચેનો ખૂશો θ શોધો.

ઉકેલ : સદિશ, \vec{a} અને \vec{b} વચ્ચેનો ખૂણો θ , $\cos \theta = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}$ વડે દર્શાવાય છે.

હવે, $\vec{a} \cdot \vec{b} = (\hat{i} + \hat{j} - \hat{k}) \cdot (\hat{i} - \hat{j} + \hat{k}) = 1 - 1 - 1 = -1, |\vec{a}| = |\vec{b}| = \sqrt{3}$ માટે, $\cos \theta = -\frac{1}{3}$ મળે છે.

તેથી માંગેલ ખૂશો $\theta = \cos^{-1} \left(-\frac{1}{3}\right)$ છે.

ઉદાહરણ 15 : જો $\vec{a} = 5\hat{i} - \hat{j} - 3\hat{k}$ અને $\vec{b} = \hat{i} + 3\hat{j} - 5\hat{k}$ હોય, તો દર્શાવો કે સદિશો $\vec{a} + \vec{b}$ અને $\vec{a} - \vec{b}$ પરસ્પર લંબ છે.

<mark>ઉકેલ</mark> : આપણે જાણીએ છીએ કે બે શૂન્યેતર સદિશોનો અદિશ ગુણાકાર શૂન્ય હોય, તો તે સદિશો પરસ્પર લંબ હોય છે.

અહીં, $\vec{a} + \vec{b} = (5\hat{i} - \hat{j} - 3\hat{k}) + (\hat{i} + 3\hat{j} - 5\hat{k}) = 6\hat{i} + 2\hat{j} - 8\hat{k}$ અને $\vec{a} - \vec{b} = (5\hat{i} - \hat{j} - 3\hat{k}) - (\hat{i} + 3\hat{j} - 5\hat{k}) = 4\hat{i} - 4\hat{j} + 2\hat{k}$ તેથી, $(\vec{a} + \vec{b}) \cdot (\vec{a} - \vec{b}) = (6\hat{i} + 2\hat{j} - 8\hat{k}) \cdot (4\hat{i} - 4\hat{j} + 2\hat{k})$ = 24 - 8 - 16 = 0તેથી, $\vec{a} + \vec{b}$ અને $\vec{a} - \vec{b}$ પરસ્પર લંબ સદિશો છે. નોંધ : $|\vec{a}| = |\vec{b}| \Rightarrow \vec{a} + \vec{b}$ તથા $\vec{a} - \vec{b}$ પરસ્પર લંબ છે. ઉદાહરણ 16 : સદિશ $\vec{a} = 2\hat{i} + 3\hat{j} + 2\hat{k}$ નો સદિશ $\vec{b} = \hat{i} + 2\hat{j} + \hat{k}$ પરનો પ્રક્ષેપ શોધો. ઉકેલ : સદિશ \vec{a} નો સદિશ \vec{b} પરનો પ્રક્ષેપ $\frac{1}{|\vec{b}|} (\vec{a} \cdot \vec{b}) = \frac{(2 \times 1 + 3 \times 2 + 2 \times 1)}{\sqrt{(1)^2 + (2)^2 + (1)^2}} = \frac{10}{\sqrt{6}} = \frac{5}{3}\sqrt{6}$

Downloaded from https:// www.studiestoday.com

ગણિત

સદિશ બીજગણિત

ઉદાહરણ 17 : જો બે સદિશો \vec{a} અને \vec{b} માટે $|\vec{a}| = 2$, $|\vec{b}| = 3$ અને $\vec{a} \cdot \vec{b} = 4$ હોય, તો $|\vec{a} - \vec{b}|$ શોધો.

ઉકેલ : અહીં,

$$|\overrightarrow{a} - \overrightarrow{b}|^{2} = (\overrightarrow{a} - \overrightarrow{b}) \cdot (\overrightarrow{a} - \overrightarrow{b})$$

$$= \overrightarrow{a} \cdot \overrightarrow{a} - \overrightarrow{a} \cdot \overrightarrow{b} - \overrightarrow{b} \cdot \overrightarrow{a} + \overrightarrow{b} \cdot \overrightarrow{b}$$

$$= |\overrightarrow{a}|^{2} - 2(\overrightarrow{a} \cdot \overrightarrow{b}) + |\overrightarrow{b}|^{2}$$

$$= (2)^{2} - 2(4) + (3)^{2} = 5$$
defined,
$$|\overrightarrow{a} - \overrightarrow{b}| = \sqrt{5}$$

ઉદાહરણ 18 : જો \vec{a} એકમ સદિશ હોય અને $\left(\vec{x} - \vec{a}\right) \cdot \left(\vec{x} + \vec{a}\right) = 8$ હોય, તો $|\vec{x}|$ શોધો. ઉકેલ : \vec{a} એકમ સદિશ હોવાથી, $|\vec{a}| = 1$.

વળી,
$$(\overrightarrow{x} - \overrightarrow{a}) \cdot (\overrightarrow{x} + \overrightarrow{a}) = 8$$

અથવા $\overrightarrow{x} \cdot \overrightarrow{x} + \overrightarrow{x} \cdot \overrightarrow{a} - \overrightarrow{a} \cdot \overrightarrow{x} - \overrightarrow{a} \cdot \overrightarrow{a} = 8$
અથવા $|\overrightarrow{x}|^2 - 1 = 8$ એટલે કે $|\overrightarrow{x}|^2 = 9$
તેથી, $|\overrightarrow{x}| = 3$ (સદિશનું માન અનૃષ્ઠ હોવાથી)

ઉદાહરણ 19 : કોઈ પણ બે સદિશો \overrightarrow{a} અને \overrightarrow{b} માટે સાબિત કરો કે આપણને હંમેશાં

 $|\vec{a} \cdot \vec{b}| \le |\vec{a}| |\vec{b}| + n \hat{n} \hat{v}. \qquad (shear shear shea$

ઉકેલ : $\vec{a} = \vec{0}$ અથવા $\vec{b} = \vec{0}$ હોય ત્યારે આ અસમતા સ્વાભાવિક રીતે યથાર્થ છે. વાસ્તવમાં આ પરિસ્થિતિમાં આપણી પાસે $|\vec{a} \cdot \vec{b}| = 0 = |\vec{a}||\vec{b}|$ છે. તેથી માની લો કે $|\vec{a}| \neq 0, |\vec{b}| \neq 0$.

$$\exists \dot{a}, \frac{|\vec{a} \cdot \vec{b}|}{|\vec{a}||\vec{b}|} = |\cos \theta| \le 1$$

 $\widehat{dal}, |\overrightarrow{a} \cdot \overrightarrow{b}| \leq |\overrightarrow{a}| |\overrightarrow{b}|$

ગણિત

ં જો ત્રિકોણીય અસમતામાં સમતા ઉપસ્થિત થાય (ઉદાહરણ 20 જુઓ.) એટલે કે

 $|\overrightarrow{a} + \overrightarrow{b}| = |\overrightarrow{a}| + |\overrightarrow{b}|,$ $|\overrightarrow{AC}| = |\overrightarrow{AB}| + |\overrightarrow{BC}|$ તો

આ દર્શાવે છે કે બિંદુઓ A, B, C સમરેખ છે.

ઉદાહરણ 21 : સાબિત કરો કે બિંદુઓ A $(-2\hat{i} + 3\hat{j} + 5\hat{k})$, B $(\hat{i} + 2\hat{j} + 3\hat{k})$ અને C $(7\hat{i} - \hat{k})$ સમરેખ છે.

ઉકેલ : અહીં,
$$\overrightarrow{AB} = (1+2)\hat{i} + (2-3)\hat{j} + (3-5)\hat{k} = 3\hat{i} - \hat{j} - 2\hat{k}$$

 $\overrightarrow{BC} = (7-1)\hat{i} + (0-2)\hat{j} + (-1-3)\hat{k} = 6\hat{i} - 2\hat{j} - 4\hat{k}$
 $\overrightarrow{AC} = (7+2)\hat{i} + (0-3)\hat{j} + (-1-5)\hat{k} = 9\hat{i} - 3\hat{j} - 6\hat{k}$

માટે

 $|\overrightarrow{AB}| = \sqrt{14}, |\overrightarrow{BC}| = 2\sqrt{14}$ अने $|\overrightarrow{AC}| = 3\sqrt{14}$

 $|\overrightarrow{AC}| = |\overrightarrow{AB}| + |\overrightarrow{BC}|$ તેથી,

અને તેથી બિંદુઓ A, B અને C સમરેખ છે.

 $\overset{\textcircled{a}}{=}$ નોંધ ઉદાહરણ 21 માં નોંધ કરો કે \overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CA} = $\overrightarrow{0}$ હોવા છતાં પણ બિંદુઓ A, B અને C ત્રિકોણનાં શિરોબિંદુ નથી.

સદિશ બીજગણિત

375

સ્વાધ્યાય 10.3

- 1. બે સદિશોનાં માન અનુક્રમે $\sqrt{3}$ અને 2 હોય તથા $\vec{a} \cdot \vec{b} = \sqrt{6}$ આપેલ હોય, તો તે સદિશો વચ્ચેનો ખૂણો શોધો.
- 2. સદિશો $\hat{i} 2\hat{j} + 3\hat{k}$ અને $3\hat{i} 2\hat{j} + \hat{k}$ વચ્ચેનો ખૂણો શોધો.
- 3. સદિશ $\hat{i} \hat{j}$ નો સદિશ $\hat{i} + \hat{j}$ પરનો પ્રક્ષેપ શોધો.
- 4. સદિશ $\hat{i} + 3\hat{j} + 7\hat{k}$ નો $7\hat{i} \hat{j} + 8\hat{k}$ પરનો પ્રક્ષેપ શોધો.
- 5. દર્શાવો કે નીચે આપેલ ત્રણ સદિશો પૈકી પ્રત્યેક સદિશ એકમ સદિશ છે : $\frac{1}{7} (2\hat{i} + 3\hat{j} + 6\hat{k}), \frac{1}{7}(3\hat{i} - 6\hat{j} + 2\hat{k}), \frac{1}{7} (6\hat{i} + 2\hat{j} - 3\hat{k}).$ વળી, સાબિત કરો કે આ સદિશો પરસ્પર લંબ છે.
- 6. $\widehat{a} \left(\overrightarrow{a} + \overrightarrow{b}\right) \cdot \left(\overrightarrow{a} \overrightarrow{b}\right) = 8$ અને $|\overrightarrow{a}| = 8$ $|\overrightarrow{b}|$ તો, $|\overrightarrow{a}|$ અને $|\overrightarrow{b}|$ શોધો.

7.
$$(3\overrightarrow{a} - 5\overrightarrow{b}) \cdot (2\overrightarrow{a} + 7\overrightarrow{b})$$
 શોધો.

- 8. જો બે સદિશો $ec{a}$ અને $ec{b}$ નાં માન સમાન હોય અને તેમની વચ્ચેનો ખૂશો 60° તથા તેમનો અદિશ ગુણાકાર $rac{1}{2}$ હોય તો તેમનાં માન શોધો.
- 9. જો એકમ સદિશ \vec{a} માટે $\left(\overrightarrow{x}-\overrightarrow{a}\right)\cdot\left(\overrightarrow{x}+\overrightarrow{a}\right) = 12$ હોય તો $|\overrightarrow{x}|$ શોધો.
- 10. જો સદિશો $\vec{a} = 2\hat{i} + 2\hat{j} + 3\hat{k}$, $\vec{b} = -\hat{i} + 2\hat{j} + \hat{k}$ અને $\vec{c} = 3\hat{i} + \hat{j}$ માટે $\vec{a} + \lambda\vec{b}$ એ \vec{c} ને લંબ હોય, તો λ નું મૂલ્ય શોધો.
- 11. કોઈ પણ બે શૂન્યેતર સદિશો \vec{a} અને \vec{b} માટે દર્શાવો કે $|\vec{a}|\vec{b} + |\vec{b}|\vec{a}$ એ $|\vec{a}|\vec{b} |\vec{b}|\vec{a}$ ને લંબ છે.
- 12. જો $\vec{a} \cdot \vec{a} = 0$ અને $\vec{a} \cdot \vec{b} = 0$ હોય, તો સદિશ \vec{b} વિશે શું તારણ કાઢી શકાય ?
- 13. જો $\vec{a}, \vec{b}, \vec{c}$ એકમ સદિશો અને $\vec{a} + \vec{b} + \vec{c} = 0$ હોય, તો $\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}$ નું મૂલ્ય શોધો.
- 14. જો સદિશ $\vec{a} = \vec{0}$ અથવા $\vec{b} = \vec{0}$ હોય તો $\vec{a} \cdot \vec{b} = 0$. પરંતુ પ્રતીપ, સત્ય હોય તે જરૂરી નથી. તમારા જવાબનું ઉદાહરણ સહિત સમર્થન કરો.
- **15.** જો ત્રિકોણ ABCનાં શિરોબિંદુઓ A, B, C અનુક્રમે (1, 2, 3), (−1, 0, 0), (0, 1, 2) હોય, તો ∠ABC શોધો. (∠ABC એ \overrightarrow{BA} તથા \overrightarrow{BC} વચ્ચેનો ખૂણો છે.)
- **16.** સાબિત કરો કે બિંદુઓ A (1, 2, 7), B (2, 6, 3) અને C (3, 10, -1) સમરેખ છે.

376

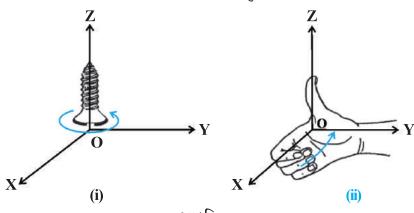
- 17. સાબિત કરો કે સદિશો $2\hat{i} \hat{j} + \hat{k}$, $\hat{i} 3\hat{j} 5\hat{k}$ અને $3\hat{i} 4\hat{j} 4\hat{k}$ કાટકોણ ત્રિકોણનાં શિરોબિંદુઓ છે.
- પ્રશ્ન 18 માં વિધાન સાચું બને તે રીતે આપેલ વિકલ્પોમાંથી યોગ્ય વિકલ્પ પસંદ કરો :
- **18.** જો \vec{a} શૂન્યેતર સદિશ હોય અને તેનું માન 'a' હોય અને λ શૂન્યેતર અદિશ હોય, તો λ ની કઈ કિંમત માટે $\lambda \vec{a}$ એકમ સદિશ થાય.

(A) $\lambda = 1$ (B) $\lambda = -1$ (C) $a = |\lambda|$ (D) $a = \frac{1}{|\lambda|}$

10.6.3 બે સદિશોનો સદિશ (અથવા ક્રૉસ) ગુણાકાર અથવા બહિંગુણાકાર

વિભાગ 10.2 માં આપશે ત્રિપરિમાણીય જમણા હાથની લંબચોરસીય યામપદ્ધતિ વિશે ચર્ચા કરી. આ પદ્ધતિમાં, ધન *x*-અક્ષને જ્યારે ઘડિયાળના કાંટાની વિરુદ્ધ દિશામાં, ધન *y*-અક્ષમાં પરિવર્તિત કરવામાં આવે ત્યારે જમણા હાથનો (પ્રમાણિત) સ્ક્રૂ *z*-અક્ષની ધન દિશામાં આગળ વધે છે. (આકૃતિ 10.22 (i))

જમણા હાથની યામપદ્ધતિમાં, જમણા હાથનો અંગૂઠો *z*-અક્ષની ધન દિશા તરફ કેન્દ્રિત અને આંગળીઓ *x*-અક્ષની ધન દિશાથી દૂર, *y*-અક્ષની ધન દિશા તરફ વળેલી રહે છે (આકૃતિ 10.22 (ii)).



व्याખ्या 3 : બे शून्येतर सहिशो \vec{a} अने \vec{b} नो सहिश गुझाडार (Vector product or cross product or outer product), $\vec{a} \times \vec{b}$ वर्ड हर्शावाय छे अने

$\vec{a} \times \vec{b} = |\vec{a}| |\vec{b}| \sin \theta \hat{n}$

દ્વારા વ્યાખ્યાયિત થાય છે, જ્યાં θ એ \vec{a} અને \vec{b} વચ્ચેનો ખૂણો $(0 \le \theta \le \pi)$ અને \hat{n} એ બંને સદિશો \vec{a} અને \vec{b} ને લંબ એકમ સદિશ છે અને \vec{a} , \vec{b} અને \hat{n} જમણા હાથની પદ્ધતિ રચે છે (આકૃતિ 10.23). એટલે કે જમણા હાથની પદ્ધતિ \vec{a} થી \vec{b} તરફ ફરતી \hat{n} ની દિશામાં આગળ જાય છે. જો $\vec{a} = \vec{0}$ અથવા $\vec{b} = \vec{0}$ હોય તો θ વ્યાખ્યાયિત નથી અને આ કિસ્સામાં, આપણે $\vec{a} \times \vec{b} = \vec{0}$ વ્યાખ્યાયિત કરીએ છીએ.

આકૃતિ 10.23

Downloaded from https:// www.studiestoday.com

ગણિત

સદિશ બીજગણિત

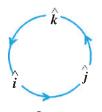
અવલોકનો

- 1. $\vec{a} \times \vec{b}$ એક સદિશ છે.
- 2. ધારો કે \vec{a} અને \vec{b} શૂન્યેતર સદિશો છે. જો $\vec{a} \times \vec{b} = \vec{0}$ હોય તો અને તો જ \vec{a} અને \vec{b} એકબીજાને સમાંતર (અથવા સમરેખ) છે. એટલે કે $\vec{a} \times \vec{b} = \vec{0} \iff \vec{a} \parallel \vec{b}$.

વિશેષમાં, $\vec{a} \times \vec{a} = \vec{0}$ અને $\vec{a} \times \left(-\vec{a}\right) = \vec{0}$, પ્રથમ પરિસ્થિતિમાં $\theta = 0$ અને દ્વિતીય પરિસ્થિતિમાં $\theta = \pi$. આથી, sin θ ની કિંમત 0 થાય છે.

- 3. $\hat{\theta} = \frac{\pi}{2}$ હોય તો $\left| \overrightarrow{a} \times \overrightarrow{b} \right| = \left| \overrightarrow{a} \right| \left| \overrightarrow{b} \right|.$
- 4. અવલોકનો 2 અને 3 ની દષ્ટિએ, પરસ્પર લંબ એકમ સદિશો \hat{i} , \hat{j} અને \hat{k} માટે (આકૃતિ 10.24). આપણી પાસે $\hat{i} \times \hat{i} = \hat{j} \times \hat{j} = \hat{k} \times \hat{k} = \vec{0}$,

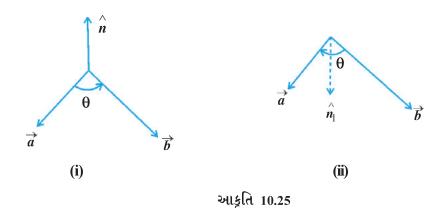
$$\hat{i} \times \hat{j} = \hat{k}, \ \hat{j} \times \hat{k} = \hat{i}, \ \hat{k} \times \hat{i} = \hat{j}$$



આકૃતિ 10.24

- 5. સદિશ ગુણાકારના સંદર્ભમાં, બે શૂન્યેતર સદિશો \vec{a} અને \vec{b} વચ્ચેનો ખૂણો $\sin \theta = \frac{|\vec{a} \times \vec{b}|}{|\vec{a}||\vec{b}|}$ સ્વરૂપે પણ દર્શાવી શકાય.
- 6. શૂન્યેતર સદિશો માટે સદિશ ગુણાકાર સમક્રમી નથી, કારણ કે $\vec{a} \times \vec{b} = -\vec{b} \times \vec{a}$. વાસ્તવમાં, $\vec{a} \times \vec{b} = |\vec{a}| |\vec{b}| \sin \theta \hat{n}$ જ્યાં \vec{a} , \vec{b} અને \hat{n} જમણા હાથની પદ્ધતિનું નિર્માણ કરે છે. θ એ \vec{a} થી \vec{b} તરફ ભ્રમણ દર્શાવે છે (આકૃતિ 10.25 (i)).

જ્યારે $\vec{b} \times \vec{a} = |\vec{a}| |\vec{b}| \sin \theta \hat{n}_1$; જ્યાં, \vec{b} , \vec{a} અને \hat{n}_1 જમણા હાથની પદ્ધતિનું નિર્માણ કરે છે એટલે કે θ એ \vec{b} થી \vec{a} તરફ ભ્રમણ કરે છે આકૃતિ 10.25 (ii).



378

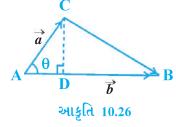
આમ, આપશે જો \vec{a} અને \vec{b} ને કાગળના સમતલ પર આવેલા સદિશો ધારી લઈએ તો $\stackrel{\wedge}{n}$ અને $\stackrel{\wedge}{n_1}$ બંને કાગળના સમતલને લંબ થશે. પરંતુ $\stackrel{\wedge}{n}$ ની દિશા કાગળની ઉપર તરફ જ્યારે $\stackrel{\wedge}{n_1}$ ની દિશા કાગળની નીચે તરફ છે. એટલે કે $\overset{\wedge}{n_1} = -\hat{n}$.

$$\vec{d} \cdot \vec{a} \times \vec{b} = |\vec{a}| |\vec{b}| \sin \theta \hat{n}$$
$$= -|\vec{a}| |\vec{b}| \sin \theta \hat{n}$$
$$= -\vec{b} \times \vec{a}$$

અવલોકનો 4 અને 5 ના સંદર્ભમાં, આપણી પાસે, $\hat{j} \times \hat{i} = -\hat{k}$, $\hat{k} \times \hat{j} = -\hat{i}$ અને $\hat{i} \times \hat{k} = -\hat{j}$ 7.

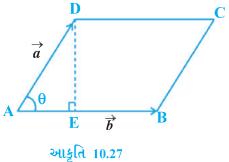
જો \vec{a} અને \vec{b} ત્રિકોણની પાસપાસેની બાજુઓ દર્શાવતા હોય તો તેનું ક્ષેત્રફળ $\frac{1}{2} \left| \vec{a} \times \vec{b} \right|$ દ્વારા મળે છે. 8.

ત્રિકોણના ક્ષેત્રફળની વ્યાખ્યાને આધારે આકૃતિ 10.26 પરથી આપણી પાસે, ત્રિકોણ ABCનું ક્ષેત્રફળ = $\frac{1}{2}$ AB \cdot CD. પરંતુ AB = $|\vec{b}|$ (પक्ष), अने CD = $|\vec{a}| \sin \theta$. આમ, त्रिકोश ABC नुं સેત્રફળ = $\frac{1}{2} |\vec{b}| |\vec{a}| \sin \theta = \frac{1}{2} |\vec{a} \times \vec{b}|.$



ે જો $ec{a}$ અને $ec{b}$ સમાંતર બાજુ ચતુષ્કોણની પાસ-પાસેની બાજુઓ દર્શાવે, તો તેનું ક્ષેત્રફળ $ec{a} imesec{b}$ સૂત્ર 9. દ્વારા આપવામાં આવે છે. આકૃતિ 10.27 પરથી આપણી પાસે С સમાંતરબાજુ ચતુષ્કોણ ABCD નું ક્ષેત્રફળ ABCD = AB · DE á $u\dot{z}_{d} AB = |\vec{b}| (ua)$ અનੇ DE = $\begin{vmatrix} \Rightarrow \\ a \end{vmatrix}$ sin θ ħ આમ, સમાંતરબાજુ ચતુષ્કોણ ABCD નું ક્ષેત્રફળ

 $= |\vec{b}| |\vec{a}| \sin \theta = |\vec{a} \times \vec{b}|.$



હવે, આપણે સદિશ ગુણાકારના બે મહત્ત્વના ગુણધર્મો દર્શાવીશું.

ગુણધર્મ 3 (સરવાળા પર સદિશ ગુણાકારનો વિભાજનનો ગુણધર્મ) : જો $ec{a}$, $ec{b}$ અને $ec{c}$ આપેલ ત્રણ સદિશો અને λ અદિશ હોય તો,

(i)
$$\vec{a} \times (\vec{b} + \vec{c}) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c}$$

(ii)
$$\lambda (\vec{a} \times \vec{b}) = (\lambda \vec{a}) \times \vec{b} = \vec{a} \times (\lambda \vec{b})$$

Downloaded from https:// www.studiestoday.com

ગણિત

સદિશ બીજગણિત

ધારો કે, બે સદિશો \vec{a} અને \vec{b} ઘટક સ્વરૂપમાં અનુક્રમે $a_1\hat{i} + a_2\hat{j} + a_3\hat{k}$ અને $b_1\hat{i} + b_2\hat{j} + b_3\hat{k}$ આપેલ છે. તેમનો સદિશ ગુણાકાર $\vec{a} \times \vec{b} = \begin{vmatrix} \hat{a} & \hat{j} & \hat{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$ સ્વરૂપે આપી શકાય. સમજૂતી : આપશી પાસે $\vec{a} \times \vec{b} = (a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}) \times (b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k})$ $=a_1b_1(\hat{i}\times\hat{i})+a_1b_2(\hat{i}\times\hat{j})+a_1b_3(\hat{i}\times\hat{k})+a_2b_1(\hat{j}\times\hat{i})+a_2b_2(\hat{j}\times\hat{j})+a_2b_2(\hat{$ $a_2b_3(\hat{j} \times \hat{k}) + a_3b_1(\hat{k} \times \hat{i}) + a_3b_2(\hat{k} \times \hat{j}) + a_3b_3(\hat{k} \times \hat{k})$ (ગુણધર્મ 1 દ્વારા) $= a_1 b_1 (\hat{i} \times \hat{j}) + a_1 b_2 (\hat{i} \times \hat{j}) - a_1 b_3 (\hat{k} \times \hat{j}) - a_2 b_1 (\hat{i} \times \hat{j}) + a_2 b_2 (\hat{j} \times \hat{j}) + a_2 b_2 (\hat{j} \times \hat{j}) + a_3 b_3 (\hat{j} \times \hat{j}) + a_3 (\hat{j} \times \hat{j})$ $a_2b_3(\hat{j} \times \hat{k}) + a_3b_1(\hat{k} \times \hat{i}) - a_3b_2(\hat{j} \times \hat{k}) + a_3b_3(\hat{k} \times \hat{k})$ (કારણ કે $\hat{i} \times \hat{k} = -\hat{k} \times \hat{i}, \ \hat{j} \times \hat{i} = -\hat{i} \times \hat{j}$ અને $\hat{k} \times \hat{j} = -\hat{j} \times \hat{k}$) $= a_1 b_2 \hat{k} - a_1 b_3 \hat{j} - a_2 b_1 \hat{k} + a_2 b_3 \hat{i} + a_3 b_1 \hat{j} - a_3 b_2 \hat{i}$ (set equals $\hat{i} \times \hat{j} = \hat{k}$, $\hat{i} \times \hat{k} = \hat{i}$ and $\hat{k} \times \hat{j} = \hat{i}$ and $\hat{j} \times \hat{j} = \hat{i} \times \hat{j} = \hat{k} \times \hat{k} = \vec{0}$ $= (a_2b_3 - a_3b_2)\hat{i} - (a_1b_3 - a_3b_1)\hat{j} + (a_1b_2 - a_2b_1)\hat{k}$ $= \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ a_1 & a_2 & a_3 \\ b & b & b \end{vmatrix}$ નોંધ : આ નિશ્વાયક નથી, માત્ર રજૂઆત છે. ઉદાહરણ 22 : જો $\vec{a} = 2\hat{i} + \hat{j} + 3\hat{k}$ અને $\vec{b} = 3\hat{i} + 5\hat{j} - 2\hat{k}$ હોય, તો $|\vec{a} \times \vec{b}|$ શોધો.

ઉકેલ : આપણી પાસે $\vec{a} \times \vec{b} = \begin{vmatrix} \hat{a} & \hat{j} & \hat{k} \\ 2 & 1 & 3 \\ 3 & 5 & -2 \end{vmatrix}$ $= (-2-15)\hat{i} - (-4-9)\hat{j} + (10-3)\hat{k}$ $= -17\hat{i} + 13\hat{j} + 7\hat{k}$ તેથી, $|\vec{a} \times \vec{b}| = \sqrt{(-17)^2 + (13)^2 + 7^2} = \sqrt{507}$

380

ઉદાહરણ 23 : જો
$$\vec{a} = \hat{i} + \hat{j} + \hat{k}$$
, $\vec{b} = \hat{i} + 2\hat{j} + 3\hat{k}$ હોય, તો સદિશ $(\vec{a} + \vec{b})$ અને $(\vec{a} - \vec{b})$ બંનેને
લંબ એકમ સદિશ શોધો.

ઉકેલ : આપણી પાસે $\vec{a} + \vec{b} = 2\hat{i} + 3\hat{j} + 4\hat{k}$ અને $\vec{a} - \vec{b} = -\hat{j} - 2\hat{k}$ છે. સદિશો $\vec{a} + \vec{b}$ અને $\vec{a} - \vec{b}$ બંનેને લંબ હોય તે સદિશ $(\vec{a} + \vec{b}) \times (\vec{a} - \vec{b})$ છે.

$$(\vec{a} + \vec{b}) \times (\vec{a} - \vec{b}) = \begin{vmatrix} \wedge & \wedge & \wedge \\ i & j & k \\ 2 & 3 & 4 \\ 0 & -1 & -2 \end{vmatrix} = -2\hat{i} + 4\hat{j} - 2\hat{k} = \vec{c}$$
(sei)

$$\exists \hat{a}, |\vec{c}| = \sqrt{4+16+4} = \sqrt{24} = 2\sqrt{6}$$

તેથી, માંગેલ એકમ સદિશ
$$\frac{\overrightarrow{c}}{|\overrightarrow{c}|} = \frac{-1}{\sqrt{6}} \stackrel{.}{i} + \frac{2}{\sqrt{6}} \stackrel{.}{j} - \frac{1}{\sqrt{6}} \stackrel{.}{k}$$

<u>નોંધ</u> કોઈ પણ સમતલને બે લંબ દિશાઓ હોય છે. આમ, $\vec{a} + \vec{b}$ અને $\vec{a} - \vec{b}$ ને લંબ અન્ય એકમ સદિશ $\frac{1}{\sqrt{6}}\hat{i} - \frac{2}{\sqrt{6}}\hat{j} + \frac{1}{\sqrt{6}}\hat{k}$ પણ લઈ શકાય. પરંતુ તે $(\vec{a} - \vec{b}) \times (\vec{a} + \vec{b})$ નું પરિણામ જ હશે.

ઉદાહરણ 24 : A(1, 1, 1), B(1, 2, 3) અને C(2, 3, 1) શિરોબિંદુઓવાળા ત્રિકોણનું ક્ષેત્રફળ શોધો.

ઉકેલ : આપણી પાસે $\overrightarrow{AB} = \hat{j} + 2\hat{k}$ અને $\overrightarrow{AC} = \hat{i} + 2\hat{j}$ છે.

આપેલ ત્રિકોણનું ક્ષેત્રફળ $\frac{1}{2} | \overrightarrow{AB} \times \overrightarrow{AC} |$.

$$\vec{\text{sq}}, \qquad \vec{\text{AB}} \times \vec{\text{AC}} = \begin{vmatrix} \uparrow & \uparrow & \uparrow \\ i & j & k \\ 0 & 1 & 2 \\ 1 & 2 & 0 \end{vmatrix} = -4\hat{i} + 2\hat{j} - \hat{k}$$

 $\operatorname{HL}\grave{z} \qquad \left| \overrightarrow{AB} \times \overrightarrow{AC} \right| = \sqrt{16 + 4 + 1} = \sqrt{21}$

આમ, માંગેલ ક્ષેત્રફળ =
$$\frac{1}{2}\sqrt{21}$$

- ઉદાહરણ 25 : જેની પાસ-પાસેની બાજુઓ સદિશો $\vec{a} = 3\hat{i} + \hat{j} + 4\hat{k}$ અને $\vec{b} = \hat{i} \hat{j} + \hat{k}$ હોય તેવા સમાંતરબાજુ ચતુષ્કોણનું ક્ષેત્રફળ શોધો.
- ઉકેલ : જેની પાસ-પાસેની બાજુઓ સદિશ \vec{a} અને \vec{b} હોય તેવા સમાંતરબાજુ ચતુષ્કોણનું ક્ષેત્રફળ $\left|\vec{a} \times \vec{b}\right|$ દ્વારા મળે છે.

Downloaded from https:// www.studiestoday.com

ગણિત

સદિશ બીજગણિત

$$\vec{a}, \vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 3 & 1 & 4 \\ 1 & -1 & 1 \end{vmatrix} = 5\hat{i} + \hat{j} - 4\hat{k}$$

 $\therefore |\vec{a} \times \vec{b}| = \sqrt{25 + 1 + 16} = \sqrt{42} \quad \text{we have } \vec{a} \text{ and } \vec{b} \text{ and } \vec$

સ્વાધ્યાય 10.4

- 1. જો $\vec{a} = \hat{i} 7\hat{j} + 7\hat{k}$ અને $\vec{b} = 3\hat{i} 2\hat{j} + 2\hat{k}$ હોય, તો $|\vec{a} \times \vec{b}|$ શોધો.
- 2. જો $\vec{a} = 3\hat{i} + 2\hat{j} + 2\hat{k}$ અને $\vec{b} = \hat{i} + 2\hat{j} 2\hat{k}$ હોય, તો સદિશ $\vec{a} + \vec{b}$ અને $\vec{a} \vec{b}$ ને લંબ એકમ સદિશ શોધો.
- 3. જો એકમ સદિશ \vec{a} , \hat{i} સાથે $\frac{\pi}{3}$ માપનો ખૂણો, \hat{j} સાથે $\frac{\pi}{4}$ માપનો ખૂણો અને \hat{k} સાથે લઘુકોણ θ બનાવે, તો θ શોધો અને તે પરથી \vec{a} ના ઘટકો શોધો.
- 4. Estimited $\dot{B} (\vec{a} \vec{b}) \times (\vec{a} + \vec{b}) = 2 (\vec{a} \times \vec{b})$
- 5. જો $(2\hat{i} + 6\hat{j} + 27\hat{k}) \times (\hat{i} + \lambda\hat{j} + \mu\hat{k}) = \vec{0}$ હોય તો λ અને μ શોધો.
- 6. $\vec{a} \cdot \vec{b} = 0$ અને $\vec{a} \times \vec{b} = \vec{0}$ આપેલ છે. સદિશો \vec{a} અને \vec{b} વિશે શું તારણ નીકળે?
- 7. સદિશો \vec{a} , \vec{b} , \vec{c} અનુક્રમે $a_1\hat{i} + a_2\hat{j} + a_3\hat{k}$, $b_1\hat{i} + b_2\hat{j} + b_3\hat{k}$ અને $c_1\hat{i} + c_2\hat{j} + c_3\hat{k}$ સ્વરૂપે આપેલ છે. સાબિત કરો કે $\vec{a} \times (\vec{b} + \vec{c}) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c}$
- 8. જો $\vec{a} = 0$ અથવા $\vec{b} = 0$, તો $\vec{a} \times \vec{b} = \vec{0}$. શું પ્રતીપ સત્ય છે ? ઉદાહરણ દ્વારા તમારા જવાબનું સમર્થન કરો.
- 9. શિરોબિંદુઓ A(1,1,2), B(2,3,5) અને C(1,5,5) વાળા ત્રિકોણનું ક્ષેત્રફળ શોધો.
- 10. જો સમાંતરબાજુ ચતુષ્કોણની પાસ-પાસેની બાજુઓ સદિશો $\vec{a} = \hat{i} \hat{j} + 3\hat{k}$ અને $\vec{b} = 2\hat{i} 7\hat{j} + \hat{k}$ હોય, તો તેનું ક્ષેત્રફળ શોધો.

પ્રશ્નો 11 તથા 12 માં વિધાન સાચું બને તે રીતે આપેલ વિકલ્પોમાંથી યોગ્ય વિકલ્પ પસંદ કરો :

- 11. ધારો કે સદિશો \vec{a} અને \vec{b} આપેલા છે. $\left|\vec{a}\right| = 3$ અને $\left|\vec{b}\right| = \frac{\sqrt{2}}{3}$ છે. જો $\vec{a} \times \vec{b}$ એકમ સદિશ હોય, તો \vec{a} અને \vec{b} વચ્ચેનો ખૂણો હોય.
 - (A) $\frac{\pi}{6}$ (B) $\frac{\pi}{4}$ (C) $\frac{\pi}{3}$ (D) $\frac{\pi}{2}$

Downloaded from https:// www.studiestoday.com

381

382

ગણિત

12. લંબચોરસનાં શિરોબિંદુઓ A, B, C, D ના સ્થાનસદિશો અનુક્રમે $-\hat{i} + \frac{1}{2}\hat{j} + 4\hat{k}, \hat{i} + \frac{1}{2}\hat{j} + 4\hat{k},$ $\hat{i} - \frac{1}{2}\hat{j} + 4\hat{k}$ અને $-\hat{i} - \frac{1}{2}\hat{j} + 4\hat{k}$ હોય, તો તે લંબચોરસનું ક્ષેત્રફળ (A) $\frac{1}{2}$ (D) 4

(B) 1 (C) 2

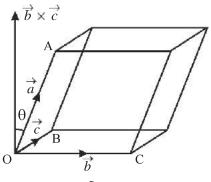
10.7 સદિશોનું અદિશ ત્રિગુણન (પેટી ગુણાકાર)

 $ec{a}$, $ec{b}$ અને $ec{c}$ કોઈ પણ ત્રણ સદિશ છે. $ec{a}$ અને $(ec{b} imes ec{c})$ નું અદિશ ત્રિગુણન અર્થાત્ સદિશ \vec{a} , \vec{b} અને \vec{c} ના આ જ ક્રમમાં ગુણાકાર $\vec{a} \cdot (\vec{b} \times \vec{c})$ ને અદિશ ત્રિગુણન (Scalar Triple Product) કહે છે અને તેને $[\vec{a}, \vec{b}, \vec{c}]$ અથવા $[\vec{a} \ \vec{b} \ \vec{c}]$ દ્વારા દર્શાવાય છે.

આમ, $\begin{bmatrix} \vec{a} & \vec{b} & \vec{c} \end{bmatrix} = \vec{a} \cdot (\vec{b} \times \vec{c})$

અવલોકન ઃ

- (1) \vec{a} તથા $\vec{b} \times \vec{c}$ સદિશ હોવાથી, $\vec{a} \cdot (\vec{b} \times \vec{c})$ અદિશ રાશિ છે. અર્થાત્ $[\vec{a}, \vec{b}, \vec{c}]$ અદિશ રાશિ છે.
- (2) ભૌમિતિક રીતે, અદિશ ત્રિગુણનનું માન એ એકબીજાને સંલગ્ન બાજુઓ સદિશ \vec{a} , \vec{b} અને \vec{c} થી બનતા \vec{a} \vec{a} \vec{c} (parallelopiped) નું ઘનફળ છે (આકૃતિ 10.28). ખરેખર તો, $|ec{b} imes ec{c}|$ એ સમાંતર ફ્લકના આધાર સમાંતરબાજુ ચતુષ્કોણનું ક્ષેત્રફળ છે. સદિશો \vec{b} અને \vec{c} ને સમાવતા સમતલના અભિલંબની દિશામાં 📅 નો પ્રક્ષેપ એ તેની ઊંચાઈ છે અને તે \vec{a} ના $\vec{b} \times \vec{c}$ ની *દિશાના ઘટક* (component) નું માન છે અર્થાત્ $\frac{\left|\vec{a}\cdot(\vec{b}\times\vec{c})\right|}{\left|(\vec{b}\times\vec{c})\right|}$.



તેથી સમાંતર ફલકનું ઘનફળ $\frac{|\vec{a} \cdot (\vec{b} \times \vec{c})|}{|(\vec{b} \times \vec{c})|} |\vec{b} \times \vec{c}| = |\vec{a} \cdot (\vec{b} \times \vec{c})|$ થશે.

(3) $\hat{a} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}, \vec{b} = b_1\hat{i} + b_2\hat{j} + b_3\hat{k}$ અને $\vec{c} = c_1\hat{i} + c_2\hat{j} + c_3\hat{k}$ હોય, તો

$$\vec{b} \times \vec{c} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$$
$$= (b_2c_3 - b_3c_2)\hat{i} + (b_3c_1 - b_1c_3)\hat{j} + (b_1c_2 - b_2c_1)\hat{k}$$
$$\text{even} \hat{d} \cdot (\vec{b} \times \vec{c}) = a_1(b_2c_3 - b_3c_2) + a_2(b_3c_1 - b_1c_3) + a_3(b_1c_2 - b_2c_1)$$
$$= \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$$

સદિશ બીજગણિત

(4) જો
$$\vec{a}$$
, \vec{b} અપે \vec{c} કોઈ પણ ત્રણ સદિશ હોય, તો
 $\begin{bmatrix} \vec{a} & \vec{b} & \vec{c} \end{bmatrix} = \begin{bmatrix} \vec{b} & \vec{c} & \vec{c} & \vec{d} \end{bmatrix} = \begin{bmatrix} \vec{c} & \vec{a} & \vec{b} \end{bmatrix}$
(ત્रણ સદિશના વૃત્તીય કમચયથી અદિશ ત્રિગુણનની કિંમત બદલાતી નથી.)
ધારો કે $\vec{a} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}$, $\vec{b} = b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k}$ અપે $\vec{c} = c_1 \hat{i} + c_2 \hat{j} + c_3 \hat{k}$ છે.
ઉપરના અવલોકન માત્રથી,
 $\begin{bmatrix} \vec{a} & \vec{b} & \vec{c} \end{bmatrix} = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} = a_1(b_2c_3 - b_3c_2) + a_2(b_3c_1 - b_1c_3) + a_3(b_1c_2 - b_2c_1) = b_1(a_3c_2 - a_2c_3) + b_2(a_1c_3 - a_3c_1) + b_3(a_2c_1 - a_1c_2) = b_1(a_3c_2 - a_2c_3) + b_2(a_1c_3 - a_3c_1) + b_3(a_2c_1 - a_1c_2) = \begin{bmatrix} \vec{b} & \vec{c} & \vec{a} \end{bmatrix} = \begin{bmatrix} \vec{b} & \vec{c} & \vec{c} \end{bmatrix} = \begin{bmatrix} \vec{c} & \vec{a} & \vec{b} \end{bmatrix}$
આ જ પ્રમાણે, વાચક ચકાસી શક્યે કે, $\begin{bmatrix} \vec{a} & \vec{b} & \vec{c} \end{bmatrix} = \begin{bmatrix} \vec{c} & \vec{a} & \vec{b} \end{bmatrix}$
(5) આદિશ ત્રિગુણન $\vec{a} \cdot (\vec{b} \times \vec{c})$ માં અંતગુણન અને બદિર્ગુણનની અદલભદલ કરી શકાય છે.
એટલે કે,
 $\vec{a} \cdot (\vec{b} \times \vec{c}) = \begin{bmatrix} \vec{a} & \vec{b} & \vec{c} \end{bmatrix} = \begin{bmatrix} \vec{c} & \vec{a} & \vec{b} \end{bmatrix}$
 $= \begin{bmatrix} \vec{c} & \vec{a} & \vec{b} \end{bmatrix} = \begin{bmatrix} \vec{c} & \vec{c} & \vec{c} \end{bmatrix}$
 $= \begin{bmatrix} \vec{c} & \vec{c} & \vec{c} \end{bmatrix} = \begin{bmatrix} \vec{c} & \vec{c} & \vec{c} \end{bmatrix}$
 $= \begin{bmatrix} \vec{c} & \vec{c} & \vec{c} \end{bmatrix} = \begin{bmatrix} \vec{c} & \vec{c} & \vec{c} \end{bmatrix}$
(6) $\begin{bmatrix} \vec{a} & \vec{b} & \vec{c} \end{bmatrix} = -\begin{bmatrix} \vec{a} & \vec{c} & \vec{c} \end{bmatrix}$ એટલે કે,
 $\begin{bmatrix} \vec{a} & \vec{c} & \vec{c} \end{bmatrix} = -\begin{bmatrix} \vec{a} & \vec{c} & \vec{c} \end{bmatrix}$
 $= -(\vec{a} \cdot (\vec{c} \times \vec{b})) = -(\vec{a} \cdot (\vec{c} \times \vec{b})) = -(\vec{a} \cdot (\vec{c} \times \vec{b})) = -(\vec{a} \cdot \vec{c} \cdot \vec{b}]$
 $= \vec{b} \cdot \vec{0} = 0$
 $\begin{bmatrix} \vec{a} & \vec{a} & \vec{b} \end{bmatrix} = \begin{bmatrix} \vec{a} & \vec{b} & \vec{a} \end{bmatrix} = \vec{b} \cdot \vec{0} = 0$
 $\begin{bmatrix} \vec{a} & \vec{a} & \vec{b} \end{bmatrix} = \vec{a} \cdot (\vec{a} \times \vec{b}) = \vec{a} \cdot \vec{c} \times \vec{b} = 0$
($\vec{a} \times \vec{a} = \vec{0} \end{pmatrix}$
($\vec{a} \times \vec{a} = \vec{0} \end{pmatrix}$

Downloaded from https:// www.studiestoday.com

383

384

ગણિત

10.7.1 ત્રણ સદિશની સમતલીયતા

પ્રમેય 1 : ત્રણ સદિશો \vec{a} , \vec{b} અને \vec{c} સમતલીય હોય, તો અને તો જ $\vec{a} \cdot (\vec{b} \times \vec{c}) = 0$.

સાબિતી : પ્રથમ આપણે ધારીએ કે સદિશ \vec{a} , \vec{b} અને \vec{c} સમતલીય છે.

- જો \vec{b} અને \vec{c} સમાંતર સદિશ હોય, તો $\vec{b} \times \vec{c} = \vec{0}$ અને તેથી $\vec{a} \cdot (\vec{b} \times \vec{c}) = 0$.
- જો \vec{b} અને \vec{c} સમાંતર ન હોય, તો \vec{a} , \vec{b} અને \vec{c} સમતલીય હોવાથી \vec{b} × \vec{c} એ \vec{a} ને લંબ છે. આથી, $\vec{a} \cdot (\vec{b} \times \vec{c}) = 0$.

આથી ઊલટું, ધારો કે $\vec{a} \cdot (\vec{b} \times \vec{c}) = 0$. જો \vec{a} અને $\vec{b} \times \vec{c}$ બંને શૂન્ચેતર હોય, તો એ નિર્શય કરી શકાય કે \vec{a} અને $\vec{b} \times \vec{c}$ પરસ્પર લંબ સદિશ છે. પરંતુ $\vec{b} \times \vec{c}$ એ \vec{b} અને \vec{c} બંનેને લંબ સદિશ છે. તેથી, \vec{a} , \vec{b} અને \vec{c} એક જ સમતલમાં આવેલાં છે. અર્થાત્ તેઓ સમતલીય છે. જો $\vec{a} = \vec{0}$ તો \vec{a} એ કોઈ પણ બે સદિશ સાથે સમતલીય છે. વિશેષ કરીને \vec{b} અને \vec{c} સાથે. જો $(\vec{b} \times \vec{c}) = \vec{0}$, તો \vec{b} અને \vec{c} સમાંતર સદિશ થશે. હવે, કોઈ પણ બે સદિશથી બનતા સમતલમાં તે સદિશ આવેલા હોય છે તથા આ બેમાંથી કોઈ પણ એક સદિશને સમાંતર હોય તેવો અન્ય સદિશ પણ આ સમતલમાં આવેલો હોવાથી \vec{a} , \vec{b} અને \vec{c} સમતલીય છે.

નોંધ : ત્રણ સદિશની સમતલીયતા પરથી ચાર બિંદુઓની સમતલીયતાની ચર્ચા કરી શકાય. ખરેખર તો, જો સદિશ \overrightarrow{AB} , \overrightarrow{AC} અને \overrightarrow{AD} સમતલીય હોય, તો ચાર બિંદુઓ A, B, C અને D સમતલીય છે.

ઉદાહરણ 26 : જો $\vec{a} = 2\hat{i} + \hat{j} + 3\hat{k}, \vec{b} = -\hat{i} + 2\hat{j} + \hat{k}$ અને $\vec{c} = 3\hat{i} + \hat{j} + 2\hat{k}$ હોય, તો $\vec{a} \cdot (\vec{b} \times \vec{c})$ શોધો.

ઉદેલ : હવે
$$\vec{a} \cdot (\vec{b} \times \vec{c}) = \begin{vmatrix} 2 & 1 & 3 \\ -1 & 2 & 1 \\ 3 & 1 & 2 \end{vmatrix} = -10$$

ઉદાહરણ 27 : સદિશ $\vec{a} = \hat{i} - 2\hat{j} + 3\hat{k}$, $\vec{b} = -2\hat{i} + 3\hat{j} - 4\hat{k}$ અને $\vec{c} = \hat{i} - \hat{j} + 5\hat{k}$ સમતલીય છે, તેમ બતાવો.

ઉકેલ : અહીં
$$\vec{a} \cdot (\vec{b} \times \vec{c}) = \begin{vmatrix} 1 & -2 & 3 \\ -2 & 3 & -4 \\ 1 & -3 & 5 \end{vmatrix} = 0$$

માટે, પ્રમેય 1 પરથી, \vec{a} , \vec{b} અને \vec{c} સમતલીય સદિશ છે.

ઉદાહરણ 28 : જો સદિશ $\vec{a} = \hat{i} + 3\hat{j} + \hat{k}$, $\vec{b} = 2\hat{i} - \hat{j} - \hat{k}$ અને $\vec{c} = \lambda\hat{i} + 7\hat{j} + 3\hat{k}$ સમતલીય હોય, તો λ શોધો.

ઉકેલ : \vec{a} , \vec{b} અને \vec{c} સમતલીય હોવાથી, $[\vec{a}, \vec{b}, \vec{c}] = 0$ અર્થાત્

$$\begin{vmatrix} 1 & 3 & 1 \\ 2 & -1 & -1 \\ \lambda & 7 & 3 \end{vmatrix} = 0$$

$$\therefore \quad 1(-3+7) - 3(6+\lambda) + 1(14+\lambda) = 0$$

$$\therefore \quad \lambda = 0$$

સદિશ બીજગણિત

3. જો સદિશ
$$\hat{i} = \hat{j} + \hat{k}$$
, $3\hat{i} + \hat{j} + 2\hat{k}$ અને $\hat{i} + \lambda\hat{j} - 3\hat{k}$ સમતલીય હોય, તો λ શોધો.

4. સદિશ $\vec{a} = \hat{i} + \hat{j} + \hat{k}$, $\vec{b} = \hat{i}$ અને $\vec{c} = c_1 \hat{i} + c_2 \hat{j} + c_3 \hat{k}$ છે.

386

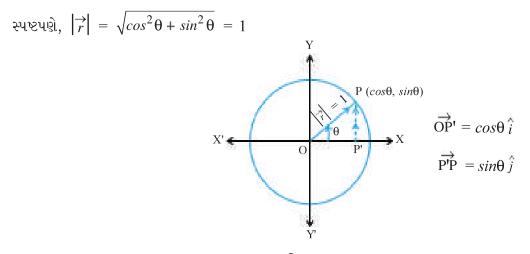
(a) જો
$$c_1=1$$
 અને $c_2=2$ હોય, તો $ec{a}$, $ec{b}$ અને $ec{c}$ સમતલીય બને તે માટે c_3 શોધો.

- (b) જો $c_2 = -1$ અને $c_3 = 1$ હોય, તો સાબિત કરો કે c_1 ની કોઈ પણ કિંમત માટે \vec{a} , \vec{b} અને \vec{c} સમતલીય નથી.
- 5. સાબિત કરો કે $4\hat{i} + 8\hat{j} + 12\hat{k}, 2\hat{i} + 4\hat{j} + 6\hat{k}, 3\hat{i} + 5\hat{j} + 4\hat{k}$ અને $5\hat{i} + 8\hat{j} + 5\hat{k}$ સ્થાનસદિશ ધરાવતાં ચાર બિંદુઓ સમતલીય છે.
- 6. ચાર બિંદુઓ A(3, 2, 1), B(4, x, 5), C(4, 2, -2) અને D(6, 5, -1) સમતલીય હોય, તો x શોધો.
- 7. જો $\vec{a} + \vec{b}$, $\vec{b} + \vec{c}$ અને $\vec{c} + \vec{a}$ સમતલીય હોય, તો સાબિત કરો કે \vec{a} , \vec{b} અને \vec{c} સમતલીય છે.

પ્રકીર્શ ઉદાહરણો

<mark>ઉદાહરણ 32 :</mark> XY સમતલના બધા જ એકમ સદિશો લખો.

ઉંકેલ : ધારો કે $\vec{r} = x_i^{\uparrow} + y_j^{\uparrow}$ એ XY સમતલમાં એકમ સદિશ છે (આકૃતિ 10.28). હવે આકૃતિ પરથી, આપણી પાસે $x = \cos\theta$ અને $y = \sin\theta$ $(|\vec{r}| = 1$ હોવાથી) તેથી આપણે સદિશ \vec{r} ને \vec{r} $(= \overrightarrow{OP}) = \cos\theta_i^{\uparrow} + \sin\theta_j^{\uparrow}$... (1) તરીકે દર્શાવી શકીએ.



આકૃતિ 10.28

વળી, θ એ [0, 2π) માં કિંમતો ધારશ કરે છે. તેથી બિંદુ P (આકૃતિ 10.28), ઘડિયાળના કાંટાની વિરુદ્ધ દિશામાં વર્તુળ $x^2 + y^2 = 1$ નિર્મિત કરે છે અને તે શક્ય તમામ દિશાઓને સાંકળે છે. તેથી, (1) XY સમતલમાં પ્રત્યેક એકમ સદિશ આપે છે.

ઉદાહરણ 33 : જો A, B, C અને D ના સ્થાનસદિશો અનુક્રમે $\hat{i} + \hat{j} + \hat{k}$ અને $2\hat{i} + 5\hat{j}$, $3\hat{i} + 2\hat{j} - 3\hat{k}$ અને $\hat{i} - 6\hat{j} - \hat{k}$ હોય, તો \overrightarrow{AB} અને \overrightarrow{CD} વચ્ચેનો ખૂણો શોધો. તારવો કે \overrightarrow{AB} અને \overrightarrow{CD} સમરેખ છે.

Downloaded from https:// www.studiestoday.com

ગણિત

સદિશ બીજગણિત

ઉકેલ : નોંધ કરો કે જો AB અને CD વચ્ચેનો ખૂશો θ હોય, તો θ એ \overrightarrow{AB} અને \overrightarrow{CD} વચ્ચેનો પશ ખૂશો છે. હવે, $\overrightarrow{AB} = B$ નો સ્થાનસદિશ -A નો સ્થાનસદિશ $= (2\hat{i} + 5\hat{j}) - (\hat{i} + \hat{j} + \hat{k}) = \hat{i} + 4\hat{j} - \hat{k}$ તેથી $\left|\overrightarrow{AB}\right| = \sqrt{(1)^2 + (4)^2 + (1)^2} = 3\sqrt{2}$ આ જ પ્રમાશે $\overrightarrow{CD} = -2\hat{i} - 8\hat{j} + 2\hat{k}$ અને $\left|\overrightarrow{CD}\right| = 6\sqrt{2}$ આમ, $\cos\theta = \frac{\overrightarrow{AB} \cdot \overrightarrow{CD}}{\left|\overrightarrow{AB}\right| \left|\overrightarrow{CD}\right|}$ $= \frac{1(-2) + 4(-8) + (-1)2}{(3\sqrt{2})(6\sqrt{2})}$ $= \frac{-36}{26} = -1$

 $0 \le \theta \le \pi \text{ shared}, \ \theta = \pi \text{ hole} \text{ block}, \ \text{one of the shared} \text{ and } \theta > \pi \text{ shared} \text{ block} \text{ block}, \ \theta = \pi \text{ hole} \text{ block}, \ \theta = \pi \text{ hole} \text{ block}, \ \theta = \pi \text{ hole} \text{ block} \text$

વૈકલ્પિક રીતે, $\overrightarrow{AB} = -\frac{1}{2} \overrightarrow{CD}$ દર્શાવે છે કે \overrightarrow{AB} અને \overrightarrow{CD} સમરેખ સદિશો છે.

ઉદાહરણ 34 : સદિશો \vec{a} , \vec{b} અને \vec{c} માટે $\left|\vec{a}\right| = 3$, $\left|\vec{b}\right| = 4$, $\left|\vec{c}\right| = 5$ છે અને તેમનામાંથી પ્રત્યેક સદિશ બાકીના બે સદિશના સરવાળાને લંબ હોય, તો $\left|\vec{a} + \vec{b} + \vec{c}\right|$ શોધો.

ઉકેલ : અહીં, \vec{a} . $(\vec{b} + \vec{c}) = 0$ અને $\vec{b} \cdot (\vec{a} + \vec{c}) = 0$, $\vec{c} \cdot (\vec{a} + \vec{b}) = 0$ આપેલ છે.

$$\begin{split} \mathfrak{s}\hat{\mathsf{q}}, \ \left| \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} \right|^2 &= \left(\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} \right) \cdot \left(\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} \right) \\ &= \overrightarrow{a} \cdot \overrightarrow{a} + \overrightarrow{a} \cdot \left(\overrightarrow{b} + \overrightarrow{c} \right) + \overrightarrow{b} \cdot \overrightarrow{b} + \overrightarrow{b} \cdot \left(\overrightarrow{a} + \overrightarrow{c} \right) + \overrightarrow{c} \cdot \left(\overrightarrow{a} + \overrightarrow{b} \right) + \overrightarrow{c} \cdot \overrightarrow{c} \\ &= \left| \overrightarrow{a} \right|^2 + \left| \overrightarrow{b} \right|^2 + \left| \overrightarrow{c} \right|^2 \\ &= 9 + 16 + 25 = 50 \end{split}$$

$$\begin{split} \mathfrak{d}\mathfrak{e}\mathfrak{l}, \ \left| \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} \right| &= \sqrt{50} = 5\sqrt{2} \end{split}$$

ઉદાહરણ 35 : ત્રણ સદિશો \vec{a} , \vec{b} અને \vec{c} શરત $\vec{a} + \vec{b} + \vec{c} = \vec{0}$ નું પાલન કરે છે. જો $|\vec{a}| = 1$, $|\vec{b}| = 4$ અને $|\vec{c}| = 2$ હોય, તો રાશિ $\mu = \vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}$ નું મૂલ્ય મેળવો.

ગણિત ઉકેલ : અહીં $\vec{a} + \vec{b} + \vec{c} = \vec{0}$ હોવાથી, આપણી પાસે $\overrightarrow{a} \cdot (\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}) = 0$ અથવા $\vec{a} \cdot \vec{a} + \vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c} = 0$ $\mathfrak{Hl}\hat{z}$ $\overrightarrow{a}\cdot\overrightarrow{b}+\overrightarrow{a}\cdot\overrightarrow{c}=-\left|\overrightarrow{a}\right|^2=-1$... (1) $\mathfrak{slal} \quad \overrightarrow{b} \cdot (\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}) = 0$ અથવા $\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} = -|\vec{b}|^2 = -16$... (2) આ જ પ્રમાશે, $\vec{a} \cdot \vec{c} + \vec{b} \cdot \vec{c} = -4$... (3) (1), (2) અને (3) નો સરવાળો કરતાં આપણી પાસે 2 $(\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{a} \cdot \vec{c}) = -21$ અથવા $2\mu = -21$, અર્થાત્ $\mu = \frac{-21}{2}$ \mathfrak{G} દાહરણ 36 ઃ પરસ્પર લંબ એકમ સદિશો \hat{i} , \hat{j} અને \hat{k} માટે જમણા હાથની પદ્ધતિના સંદર્ભમાં જો

 $\vec{\alpha} = 3\hat{i} - \hat{j}, \vec{\beta} = 2\hat{i} + \hat{j} - 3\hat{k} \text{ slue, an } \vec{\beta} = \vec{\beta} = \vec{\beta} + \vec{\beta} +$ સમાંતર છે અને $\vec{\beta}_2$ એ $\vec{\alpha}$ ને લંબ છે.

ઉકેલ : અદિશ λ માટે $\vec{\beta_1} = \lambda \vec{\alpha}$ લો, એટલે કે $\vec{\beta_1} = 3\lambda \hat{i} - \lambda \hat{j}$ seq. $\vec{\beta}_2 = \vec{\beta} - \vec{\beta}_1 = (2 - 3\lambda)\hat{i} + (1 + \lambda)\hat{j} - 3\hat{k}$ તથા $\overrightarrow{\beta_2}$ એ $\overrightarrow{\alpha}$ ને લંબ હોવાથી, આપણી પાસે $\overrightarrow{\alpha}$. $\overrightarrow{\beta_2} = 0$ એટલે કે $3(2-3\lambda) - (1+\lambda) = 0$ હોવું જોઈએ. આથી, $\lambda = \frac{1}{2}$. માટે $\overrightarrow{\beta_1} = \frac{3}{2} \stackrel{\circ}{i} - \frac{1}{2} \stackrel{\circ}{j}$ અને $\overrightarrow{\beta_2} = \frac{1}{2} \stackrel{\circ}{i} + \frac{3}{2} \stackrel{\circ}{j} - 3 \stackrel{\circ}{k}$ પ્રકીર્ણ સ્વાધ્યાય 10

- XY સમતલમાં x-અક્ષની ધન દિશા સાથે 30° નો ખૂણો બનાવતો એકમ સદિશ લખો. 1.
- બિંદુઓ $P(x_1, y_1, z_1)$ અને $Q(x_2, y_2, z_2)$ ને જોડતા સદિશના અદિશ ઘટકો અને માન શોધો. 2.
- એક છોકરી પશ્ચિમ દિશામાં 4 કિમી ચાલે છે. પછી તે ઉત્તરથી પૂર્વ તરફ 30° ના ખૂણે 3 કિમી ચાલે છે અને 3. થોભે છે. મુસાફરીમાં પ્રારંભ બિંદુથી છોકરીનું સ્થળાંતર શોધો.
- 4. જો $\vec{a} = \vec{b} + \vec{c}$, તો શું $|\vec{a}| = |\vec{b}| + |\vec{c}|$ સત્ય છે? તમારા જવાબનું સમર્થન કરો.

સદિશ બીજગણિત

- 5. x ના જે મૂલ્ય માટે $x(\hat{i} + \hat{j} + \hat{k})$ એકમ સદિશ હોય તે મૂલ્ય શોધો.
- 6. જે સદિશનું માન 5 એકમ હોય અને સદિશો $\vec{a} = 2\hat{i} + 3\hat{j} \hat{k}$ અને $\vec{b} = \hat{i} 2\hat{j} \hat{k}$ ના પરિણામી સદિશને સમાંતર હોય તે સદિશ શોધો.
- 7. જો $\vec{a} = \hat{i} + \hat{j} + \hat{k}$, $\vec{b} = 2\hat{i} \hat{j} + 3\hat{k}$ અને $\vec{c} = \hat{i} 2\hat{j} + \hat{k}$ હોય, તો સદિશ $2\vec{a} \vec{b} + 3\vec{c}$ ને સમાંતર એકમ સદિશ શોધો.
- દર્શાવો કે બિંદુઓ A(1, -2, -8), B(5, 0, -2) અને C(11, 3, 7) સમરેખ છે અને B એ AC નું વિભાજન કયા ગુણોત્તરમાં કરે છે તે શોધો.
- 9. બિંદુઓ P અને Q ના સ્થાનસદિશો (2 a + b) અને (a -3 b) છે. જો બિંદુ R એ P અને Q ને જોડતા રેખાખંડનું 1:2 ગુણોત્તરમાં બહિર્વિભાજન કરે, તો બિંદુ R નો સ્થાનસદિશ શોધો. વળી, સાબિત કરો કે P એ રેખાખંડ RQ નું મધ્યબિંદુ છે.
- 10. સમાંતરબાજુ ચતુષ્કોણની પાસપાસેની બે બાજુઓ $2\hat{i} 4\hat{j} + 5\hat{k}$ અને $\hat{i} 2\hat{j} 3\hat{k}$ છે. તેના વિકર્ણને સમાંતર એકમ સદિશ શોધો. વળી, તેનું ક્ષેત્રફળ શોધો.
- 11. સાબિત કરો કે જે સદિશ અક્ષો OX, OY અને OZ સાથે સમાન માપવાળા ખૂશા આંતરતો હોય તેના

દિક્કોસાઇન
$$\frac{1}{\sqrt{3}}$$
, $\frac{1}{\sqrt{3}}$, $\frac{1}{\sqrt{3}}$ છે.

- 12. ધારો કે $\vec{a} = \hat{i} + 4\hat{j} + 2\hat{k}$, $\vec{b} = 3\hat{i} 2\hat{j} + 7\hat{k}$ અને $\vec{c} = 2\hat{i} \hat{j} + 4\hat{k}$ છે. સદિશો \vec{a} અને \vec{b} ને લંબ હોય તથા $\vec{c} \cdot \vec{d} = 15$ થાય તેવો સદિશ \vec{d} શોધો.
- **13.** જે એકમ સદિશની દિશા સદિશો $2\hat{i} + 4\hat{j} 5\hat{k}$ અને $\lambda\hat{i} + 2\hat{j} + 3\hat{k}$ ના સરવાળાની દિશામાં હોય તે સદિશનો $\hat{i} + \hat{j} + \hat{k}$ સાથે અદિશ ગુણાકાર 1 હોય, તો λ શોધો.
- 14. જો \vec{a} , \vec{b} , \vec{c} સમાન માનવાળા પરસ્પર લંબ સદિશો હોય, તો સાબિત કરો કે $\vec{a} + \vec{b} + \vec{c}$ એ \vec{a} , \vec{b} અને \vec{c} સાથે સમાન માપવાળા ખૂણા આંતરે છે.
- 15. આપેલ $\vec{a} \neq \vec{0}$, $\vec{b} \neq \vec{0}$ માટે સાબિત કરો : $\hat{d} (\vec{a} + \vec{b}) \cdot (\vec{a} + \vec{b}) = |\vec{a}|^2 + |\vec{b}|^2$ તો અને તો જ \vec{a} અને \vec{b} પરસ્પર લંબ છે. y્રશ્નો 16 તથા 17 માં વિધાન સાચું બને તે રીતે આપેલ વિકલ્પોમાંથી યોગ્ય વિકલ્પ પસંદ કરો : 16. જો θ એ બે સદિશો \vec{a} અને \vec{b} ની વચ્ચેનો ખૂણો હોય, તો $\vec{a} \cdot \vec{b} \ge 0$ થવા માટે, (A) $0 < \theta < \frac{\pi}{2}$ (B) $0 \le \theta \le \frac{\pi}{2}$ (C) $0 < \theta < \pi$ (D) $0 \le \theta \le \pi$

(A) $0 < \theta < \frac{\pi}{2}$ (B) $0 \le \theta \le \frac{\pi}{2}$ (C) $0 < \theta < \pi$ (D) $0 \le \theta \le \pi$ **17.** \overrightarrow{a} , \overrightarrow{b} , $\overrightarrow{a} + \overrightarrow{b}$ એકમ સદિશો હોય અને \overrightarrow{a} તથા \overrightarrow{b} વચ્ચેના ખૂણાનું માપ θ હોય, તો(A) $\theta = \frac{\pi}{4}$ (B) $\theta = \frac{\pi}{3}$ (C) $\theta = \frac{\pi}{2}$ (D) $\theta = \frac{2\pi}{3}$

ગણિત

18.
$$\hat{i} \cdot (\hat{j} \times \hat{k}) + \hat{j} \cdot (\hat{i} \times \hat{k}) + \hat{k} \cdot (\hat{i} \times \hat{j})$$
 rjrjrjrj(A) 0(B) -1(C) 1(D) 3

19. જો θ એ કોઈ પણ બે સદિશો \vec{a} અને \vec{b} વચ્ચેનો ખૂણો હોય, તો θ = માટે $|\vec{a} \cdot \vec{b}| = |\vec{a} \times \vec{b}|$. (A) 0 (B) $\frac{\pi}{4}$ (C) $\frac{\pi}{2}$ (D) π

સારાંશ

- બિંદુ P(x, y, z) નો સ્થાનસદિશ \overrightarrow{OP} $(=\overrightarrow{r}) = x\hat{i} + y\hat{j} + z\hat{k}$ અને તેનું માન $\sqrt{x^2 + y^2 + z^2}$ દારા આપવામાં આવે છે.
- સદિશના અદિશ ઘટકો તેના દિક્ગુણોત્તરો છે, અને તે અનુરૂપ અક્ષોની દિશામાં પ્રક્ષેપો દર્શાવે છે.
- કોઈ પણ સદિશના માન (r), દિક્ગુણોત્તરો (a, b, c) અને દિક્કોસાઇનો (l, m, n) નીચે પ્રમાણે સંબંધિત છે : $l = \frac{a}{r}, m = \frac{b}{r}, n = \frac{c}{r}$.
- ullet ત્રિકોશની ત્રશ બાજુઓનો ક્રમમાં લીધેલ સદિશ સરવાળો ec 0 છે.
- એક જ પ્રારંભ બિંદુવાળા સદિશોનો સદિશ સરવાળો જેની પાસપાસેની બાજુઓ આપેલ સદિશો હોય તેવા સમાંતરબાજુ ચતુષ્કોણના વિકર્ણ વડે આપવામાં આવે છે.
- આપેલ સદિશનો અદિશ λ સાથેનો ગુણાકાર, સદિશના માનમાં |λ| ના ગુણિત જેટલો ફેરફાર કરે છે
 અને દિશા અનુક્રમે λ ની કિંમત ધન હોય કે ઋણ હોય તે અનુસાર તેની તે જ રહે છે અથવા વિરુદ્ધ દિશા બને છે.
- આપેલ શૂન્યેતર સદિશ \vec{a} માટે, સદિશ $\hat{a} = \frac{\vec{a}}{|\vec{a}|}$ એ \vec{a} ની દિશામાં એકમ સદિશ છે.
- જેમના સ્થાનસદિશો અનુક્રમે a અને b હોય, તેવાં બિંદુઓ P અને Q ને જોડતા રેખાખંડનું m : n ગુણોત્તરમાં વિભાજન કરતા બિંદુ R નો સ્થાનસદિશ

(i) અંતઃવિભાજન માટે,
$$\frac{\overrightarrow{n a} + \overrightarrow{m b}}{m+n}$$
 દ્વારા આપવામાં આવે છે.
(ii) બહિર્વિભાજન માટે, $\frac{\overrightarrow{m b} - \overrightarrow{n a}}{m-n}$ દ્વારા આપવામાં આવે છે.

• આપેલ સદિશો \vec{a} અને \vec{b} નો ખૂશો θ હોય, તો તેમનો અદિશ ગુશાકાર નીચે પ્રમાશે વ્યાખ્યાયિત થાય છે : $\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos\theta$

વળી, જ્યારે $\vec{a} \cdot \vec{b}$ આપેલ હોય ત્યારે સદિશો \vec{a} અને \vec{b} વચ્ચેનો ખૂણો 'θ'; $\cos\theta = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}$ પરથી શોધી શકાય છે.

સદિશ બીજગણિત

• જો θ એ બે સદિશો \vec{a} અને \vec{b} વચ્ચેનો ખૂણો હોય, તો તેમનો સદિશ ગુણાકાર $\vec{a} \times \vec{b} = |\vec{a}| |\vec{b}| \sin \theta \hat{n}$ દ્વારા આપવામાં આવે છે. અહીં, \hat{n} એ \vec{a} અને \vec{b} ને સમાવતા સમતલને લંબ એકમ સદિશ છે. \vec{a} , \vec{b} , \vec{n} અક્ષોની જમણા હાથની પદ્ધતિ રચે છે.

• જો આપણી પાસે બે સદિશો
$$\vec{a}$$
 અને \vec{b} ઘટક સ્વરૂપમાં $\vec{a} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}$ અને
 $\vec{b} = b_1\hat{i} + b_2\hat{j} + b_3\hat{k}$ હોય અને કોઈ પણ અદિશ λ આપેલ હોય, તો
 $\vec{a} + \vec{b} = (a_1 + b_1)\hat{i} + (a_2 + b_2)\hat{j} + (a_3 + b_3)\hat{k};$
 $\lambda \vec{a} = (\lambda a_1)\hat{i} + (\lambda a_2)\hat{j} + (\lambda a_3)\hat{k};$
અને $\vec{a} \cdot \vec{b} = a_1b_1 + a_2b_2 + a_3b_3;$
અને $\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$

Historical Note

The word vector has been derived from a Latin word vectus, which means "to carry". The germinal ideas of modern vector theory date from around 1800 when Caspar Wessel (C.E. 1745 -C.E. 1818) and Jean Robert Argand (C.E. 1768 - C.E. 1822) described that how a complex number a + ib could be given a geometric interpretation with the help of a directed line segment in a coordinate plane. William Rowen Hamilton (C.E. 1805 - C.E. 1865) an Irish mathematician was the first to use the term vector for a directed line segment in his book Lectures on Quaternions (C.E. 1853). Hamilton's method of quaternions (an ordered set of four real numbers given as: $a + b\hat{i} + c\hat{j} + d\hat{k}$; \hat{i} , \hat{j} , \hat{k} following certain algebraic rules) was a solution to the problem of multiplying vectors in three dimensional space. Though, we must mention here that in practice, the idea of vector concept and their addition was known much earlier ever since the time of Aristotle (384-322 B.C.E.), a Greek philosopher, and pupil of Plato (427-348 B.C.E.). That time it was supposed to be known that the combined action of two or more forces could be seen by adding them according to *parallelogram law*. The correct law for the composition of forces, that forces add vectorially, had been discovered in the case of perpendicular forces by Stevin-Simon (C.E. 1548 - C.E. 1620). In C.E. 1586, he analysed the principle of geometric addition of forces in his treatise DeBeghinselen der Weeghconst ("Principles of the Art of Weighing"), which caused a major breakthrough in the development of mechanics. But it took another 200 years for the general concept of vectors to form. In the C.E. 1880, Josaih Willard Gibbs (C.E. 1839 - C.E. 1903), an American physicist and mathematician, and Oliver Heaviside (C.E. 1850 - C.E. 1925), an English engineer, created what we now know as vector analysis, essentially by separating the real (scalar) part of quaternion from its imaginary (vector) part. In C.E. 1881 and C.E. 1884, Gibbs printed a treatise entitled *Element of Vector Analysis*. This book gave a systematic and concise account of vectors. However, much of the credit for demonstrating the applications of vectors is due to the D. Heaviside and P. G. Tait (C.E. 1831 - C.E. 1901) who contributed significantly to this subject.

પ્રકરણ

ત્રિપરિમાણીય ભૂમિતિ

★ The moving power of mathematical invention is not reasoning but imagination. – A.DEMORGAN ★

11.1 પ્રાસ્તાવિક

ધોરણ XI માં આપણે દ્વિપરિમાણીય વિશ્લેષણાત્મક ભૂમિતિ અને ત્રિપરિમાણીય ભૂમિતિનો ઔપચારિક પરિચય કર્યો. તે અભ્યાસ માત્ર કાર્તેઝિય પદ્ધતિ પૂરતો જ મર્યાદિત હતો. આ પુસ્તકના આ અગાઉના પ્રકરણમાં આપણે સદિશની કેટલીક મૂળભૂત સંકલ્પનાઓનો અભ્યાસ કર્યો. હવે આપણે સદિશ બીજગણિતનો ઉપયોગ ત્રિપરિમાણીય ભૂમિતિમાં કરીશું. આ ત્રિપરિમાણીય ભૂમિતિના અભિગમનો હેતુ એ છે કે, અભ્યાસ સરળ અને સુરુચિવાળો બને*.

આ પ્રકરણમાં આપણે, બે બિંદુઓને જોડતી રેખાની દિક્કોસાઇન અને તેના દિક્ગુણોત્તર તથા જુદી-જુદી શરતોને અધીન રેખા તથા સમતલનાં સમીકરણોની ચર્ચા કરીશું. આપણે બે રેખા, બે સમતલ, રેખા અને સમતલ વચ્ચેના ખૂણા, બે વિષમતલીય રેખાઓ વચ્ચેનું લઘુતમ અંતર અને સમતલથી બિંદુના અંતરનો અભ્યાસ પણ કરીશું. મહદંશે આપણે ઉપરનાં પરિણામો સદિશ સ્વરૂપમાં મેળવીશું. તેમ છતાં, યોગ્ય સમયે

Leonhard Euler (C.E. 1707 - C.E. 1783)

ભૌમિતિક અને વિશ્લેષણાત્મક પરિસ્થિતિનું ચિત્ર વધુ સ્પષ્ટ રજૂ કરવા માટે આપણે આ પરિણામોને કાર્તેઝિય સ્વરૂપમાં પણ વ્યક્ત કરીશું.

11.2 રેખાની દિક્કોસાઇન અને દિક્ગુણોત્તર

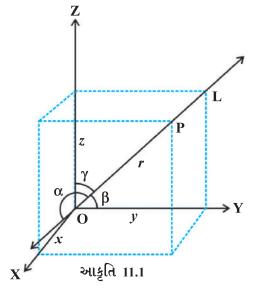
પ્રકરણ 10 માંથી, યાદ કરીએ કે,

જો દિશાયુક્ત રેખા L ઊગમબિંદુમાંથી પસાર થતી હોય અને x-અક્ષ, y-અક્ષ અને z-અક્ષ સાથે અનુક્રમે α , β અને γ ખૂણા બનાવે, તો α , β અને γ ને L ના દિક્ખૂણાઓ કહીશું તથા આ ખૂણાઓની કોસાઈન, અર્થાત્ cos α , cos β અને cos γ ને દિશાયુક્ત રેખા L ની દિક્કોસાઇન કહીશું.

જો આપશે Lની દિશાને ઉલટાવીએ, તો દિક્ખૂશાઓનાં સ્થાન તેમના પૂરકકોશ, એટલે કે $\pi - lpha, \pi - eta$ અને $\pi - \gamma$ લેશે. આમ, દિક્કોસાઇનનાં ચિદ્ધ તેમનાં મૂળ ચિદ્ધથી વિરુદ્ધ થશે.

* For various activities in three dimensional geometry, one may refer to the Book "A Hand Book for designing Mathematics Laboratory in Schools", NCERT, 2005

ત્રિપરિમાશીય ભૂમિતિ



નોંધીએ કે અવકાશમાં આપેલી રેખાને બે વિરોધી દિશા હોય અને તેથી તેની દિક્કોસાઇનના બે સમૂહ હોય છે. અવકાશમાં આપેલી રેખાની દિક્કોસાઇનનો સમૂહ અનન્ય હોય તે માટે, આપણે આપેલી રેખાને દિશાયુક્ત રેખા તરીકે જ લઈશું. આ અનન્ય દિક્કોસાઇન *I, m* અને *n* વડે દર્શાવાય છે.

નોંધ : જો અવકાશમાં આપેલી રેખા ઊગમબિંદુમાંથી પસાર થતી ન હોય, તો તેની દિક્કોસાઇન શોધવા માટે, આપણે આપેલી રેખાને સમાંતર અને ઊગમબિંદુમાંથી પસાર થતી રેખા દોરીશું. બે સમાંતર રેખાની દિક્કોસાઇનનો સમૂહ સમાન હોવાથી હવે ઊગમબિંદુમાંથી પસાર થતી એક દિશાયુક્ત રેખા લઈ તેની દિક્કોસાઇન શોધીશું.

રેખાની દિક્કોસાઇનના સમપ્રમાણમાં હોય તેવી કોઈ પણ ત્રણ સંખ્યાઓને રેખાના દિક્ગુણોત્તર કહે છે. જો *l, m, n* એ રેખાની દિક્કોસાઇન અને *a, b, c* તેના દિક્ગુણોત્તર હોય, તો કોઈક શૂન્યેતર $\lambda \in \mathbb{R}$ માટે, $a = \lambda l, \ b = \lambda m$ અને $c = \lambda n$ થાય.

🎯 નોંધ 🔹 કેટલાક લેખકો દિક્ગુણોત્તરને દિક્સંખ્યાઓ પણ કહે છે.

જો રેખાના દિક્ગુણોત્તર a, b, c હોય અને રેખાની દિક્કોસાઇન l, m અને n હોય, તો

$$\frac{l}{a} = \frac{m}{b} = \frac{n}{c} = k$$
 (ધારો), k શૂન્યેતર અચળ છે.

માટે l = ak, m = bk, n = ck

 $u\dot{z}_{l}$ $l^2 + m^2 + n^2 = 1$

માટે $k^2 (a^2 + b^2 + c^2) = 1$

અથવા

$$k = \pm \frac{1}{\sqrt{a^2 + b^2 + c^2}}$$

તેથી (1) પરથી, રેખાની દિક્કોસાઇન

$$l = \pm \frac{a}{\sqrt{a^2 + b^2 + c^2}}, \ m = \pm \frac{b}{\sqrt{a^2 + b^2 + c^2}}, \ n = \pm \frac{c}{\sqrt{a^2 + b^2 + c^2}}$$
 and

l, m અને nનું ચિદ્ધ ધન કે ઋશ લેવું, તે જરૂરિયાત પ્રમાશેના k ના ચિદ્ધ પર આધારિત છે.

Downloaded from https:// www.studiestoday.com

393

... (1)

394

ગણિત

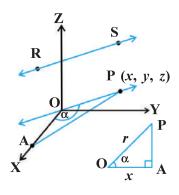
જો કોઈ રેખાના દિક્ગુણોત્તર *a*, *b*, *c* હોય, તો *ka*, *kb*, *kc*; *k* ≠ 0 એ પણ દિક્ગુણોત્તરનો સમૂહ છે. આથી, રેખાના દિક્ગુણોત્તરના કોઈ પણ બે સમૂહ પણ સમપ્રમાણમાં હોય છે. વળી, કોઈ પણ રેખાના દિક્ગુણોત્તરના સમૂહની સંખ્યા અનંત છે.

હવે, આપશે આ વિભાગમાં જે પરિશામ $l^2 + m^2 + n^2 = 1$ નો ઉપયોગ કર્યો તેની સાબિતી નીચેના વિભાગમાં જોઈએ.

11.2.1 રેખાની દિક્કોસાઇન વચ્ચેનો સંબંધ

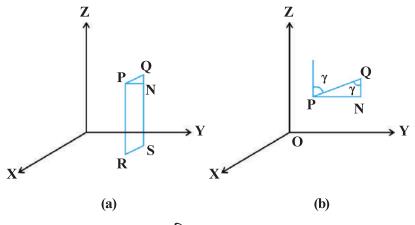
l, *m*, *n* દિક્કોસાઇનવાળી એક રેખા RS લો. આપેલ રેખાને સમાંતર ઊગમબિંદુમાંથી પસાર થતી એક રેખા દોરો (જો તે ઊગમબિંદુમાંથી પસાર થતી ન હોય, તો) અને તેના પર એક બિંદુ P(*x*, *y*, *z*) લો. બિંદુ P માંથી *x*-અક્ષ પર લંબ PA દોરો. (આકૃતિ 11.2).

OP = r લેતાં, $cos \ \alpha = \frac{OA}{OP} = \frac{x}{r}$. આથી x = lrઆ જ પ્રમાણે,y = mr અને z = nrઆમ $x^2 + y^2 + z^2 = r^2 (l^2 + m^2 + n^2)$ પરંતુ $x^2 + y^2 + z^2 = r^2$ આથી $l^2 + m^2 + n^2 = 1$



11.2.2 બે બિંદુમાંથી પસાર થતી રેખાની દિક્કોસાઇન

આપેલાં બે બિંદુમાંથી એક અને માત્ર એક જ રેખા પસાર થતી હોવાથી, આપશે આપેલાં બિંદુઓ P (x_1, y_1, z_1) અને Q (x_2, y_2, z_2) માંથી પસાર થતી રેખાની દિક્કોસાઇન નીચે પ્રમાશે મેળવીશું (આકૃતિ 11.3 (a)).



આકૃતિ 11.3

ધારો કે રેખા PQ ની દિક્કોસાઇન l, m, n છે અને તે x-અક્ષ, y-અક્ષ અને z-અક્ષ સાથે અનુક્રમે α, β અને γ ખૂણા બનાવે છે.

P અને Q માંથી સમતલ-XY ને અનુક્રમે R અને S માં છેદતા લંબ દોરો. P માંથી QS પર તેને N માં છેદતો લંબ દોરો. હવે, કાટકોણ ત્રિકોણ PNQ માં, ∠PQN = γ થશે (આકૃતિ 11.3 (b)).

 $\operatorname{Hi} \hat{z} \qquad \cos \gamma = \frac{NQ}{PQ} = \frac{z_2 - z_1}{PQ}$

આ જ પ્રમાણે $\cos \alpha = \frac{x_2 - x_1}{PQ}$ અને $\cos \beta = \frac{y_2 - y_1}{PQ}$

ત્રિપરિમાણીય ભૂમિતિ

આથી, બિંદુઓ P
$$(x_1, y_1, z_1)$$
 અને Q (x_2, y_2, z_2) ને જોડતા રેખાખંડની દિક્કોસાઇન

$$\frac{x_2 - x_1}{PQ}$$
, $\frac{y_2 - y_1}{PQ}$, $\frac{z_2 - z_1}{PQ}$ થશે.

અહીં,
$$PQ = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

<mark>ઉદાહરણ 1 :</mark> જો રેખા *x*-અક્ષ, *y*-અક્ષ અને *z*-અક્ષ સાથે અનુક્રમે 90°, 60° અને 30° ના ખૂણા બનાવે, તો તેની દિક્કોસાઇન શોધો.

ઉકેલ : ધારો કે રેખાની દિક્કોસાઇન *l*, *m*, *n* છે. આથી, $l = \cos 90^\circ = 0$, $m = \cos 60^\circ = \frac{1}{2}$, $n = \cos 30^\circ = \frac{\sqrt{3}}{2}$.

નોંધ : જુઓ કે
$$l^2 + m^2 + n^2 = 1$$
. ત્રીજો ખૂશો $\gamma = 45^{\circ}$ લીધો હોય તો ચાલે ?
ઉદાહરણ 2 : જો રેખાના દિક્ગુશોત્તર 2, -1 , -2 હોય, તો તેની દિક્કોસાઇન મેળવો.

ઉકેલ : રેખાની દિક્કોસાઇન

$$\frac{2}{\sqrt{(2)^2 + (-1)^2 + (-2)^2}}, \ \frac{-1}{\sqrt{(2)^2 + (-1)^2 + (-2)^2}}, \ \frac{-2}{\sqrt{(2)^2 + (-1)^2 + (-2)^2}} \text{ where } \frac{2}{3}, \ \frac{-1}{3}, \ \frac{-2}{3}.$$

ઉદાહરણ 3 : બે બિંદુઓ (-2, 4, -5) અને (1, 2, 3) માંથી પસાર થતી રેખાની દિક્કોસાઇન શોધો.

ઉકેલ : આપણે જાણીએ છીએ કે બે બિંદુઓ P (x_1, y_1, z_1) અને Q (x_2, y_2, z_2) માંથી પસાર થતી રેખાની દિક્કોસાઇન

$$\frac{x_2 - x_1}{PQ}, \frac{y_2 - y_1}{PQ}, \frac{z_2 - z_1}{PQ}$$
 છે
અને PQ = $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$

અહીં P (-2, 4, -5) અને Q (1, 2, 3) છે.

આથી,
$$PQ = \sqrt{(1-(-2))^2 + (2-4)^2 + (3-(-5))^2} = \sqrt{77}$$

આમ, બિંદુઓ P તથા Q ને જોડતી રેખાની દિક્કોસાઇન

$$\frac{3}{\sqrt{77}}, \frac{-2}{\sqrt{77}}, \frac{8}{\sqrt{77}}$$

ઉદાહરણ 4 : x-અક્ષ, y-અક્ષ અને z-અક્ષની દિક્કોસાઇન શોધો.

ઉકેલ : x-અક્ષ એ x-અક્ષ, y-અક્ષ અને z-અક્ષની સાથે અનુક્રમે 0°, 90° અને 90° ના ખૂણા બનાવે છે. આથી, x-અક્ષની દિક્કોસાઇન $cos 0^\circ$, $cos 90^\circ$, $cos 90^\circ$ અર્થાત્, 1, 0, 0. આ જ પ્રમાણે y-અક્ષ અને z-અક્ષની દિક્કોસાઇન અનુક્રમે 0, 1, 0 અને 0, 0, 1 છે.

396

ઉદાહરણ 5 : સાબિત કરો કે બિંદુઓ A (2, 3, -4), B (1, -2, 3) અને C (3, 8, -11) સમરેખ છે. ઉકેલ : A અને B ને જોડતી રેખાના દિક્ગુણોત્તર 1 – 2, -2 – 3, 3 + 4 અર્થાત્ –1, –5, 7 છે. B અને C ને જોડતી રેખાના દિક્ગુણોત્તર 3 – 1, 8 + 2, –11 –3 અર્થાત્ 2, 10, –14 છે. સ્પષ્ટ છે કે AB અને BC ના દિક્ગુણોત્તર સમપ્રમાણમાં છે. આથી, AB એ BC ને સમાંતર અથવા સંપાતી

છે; પરંતુ AB અને BC બંનેમાં B સામાન્ય બિંદુ છે. તેથી A, B, C સમરેખ છે.

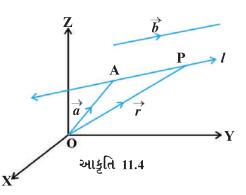
સ્વાધ્યાય 11.1

- જો કોઈ રેખા x-અક્ષ, y-અક્ષ અને z-અક્ષ સાથે અનુક્રમે 90°, 135°, 45° માપના ખૂણા બનાવે, તો તેની દિક્કોસાઇન શોધો.
- 2. યામાક્ષો સાથે સમાન ખૂણા બનાવતી રેખાની દિક્કોસાઇન શોધો.
- 3. જો રેખાના દિક્ગુણોત્તર -18, 12, -4 હોય, તો તેની દિક્કોસાઇન શોધો.
- 4. સાબિત કરો કે બિંદુઓ (2, 3, 4), (-1, -2, 1), (5, 8, 7) સમરેખ છે.
- (3, 5, -4), (-1, 1, 2) અને (-5, -5, -2) શિરોબિંદુવાળા ત્રિકોણની બાજુઓની દિક્કોસાઇન શોધો.

11.3 અવકાશમાં રેખાનું સમીકરણ

આપણે ધોરણ XI માં દ્વિપરિમાણમાં રેખાના સમીકરણનો અભ્યાસ કર્યો. આપણે હવે અવકાશમાં રેખાનાં સદિશ અને કાર્તેઝિય સમીકરણનો અભ્યાસ કરીશું.

જો (i) કોઈ રેખા આપેલા બિંદુમાંથી પસાર થતી હોય અને તેની દિશા આપી હોય, અથવા (ii) તે આપેલાં બે બિંદુમાંથી પસાર થાય, તો તે અનન્ય રીતે નક્કી થાય છે.



11.3.1 આપેલા બિંદુમાંથી પસાર થતી અને આપેલ સદિશ \overrightarrow{b} ને સમાંતર રેખાનું સમીકરણ

ધારો કે લંબચોરસ કાર્તેઝિય યામપદ્ધતિના ઊગમબિંદુ O ને સાપેક્ષ આપેલા બિંદુ A નો સ્થાનસદિશ 🛱 છે.

બિંદુ A માંથી પસાર થતી અને આપેલા સદિશ \vec{b} ને સમાંતર રેખા l છે. રેખા l પરના સ્વૈર બિંદુ P નો સ્થાન-સદિશ \vec{r} છે (આકૃતિ 11.4).

આથી, \overrightarrow{AP} એ સદિશ \overrightarrow{b} ને સમાંતર છે અર્થાત્, $\overrightarrow{AP} = \lambda \overrightarrow{b}$ જ્યાં λ એ કોઈક વાસ્તવિક સંખ્યા છે. પરંતુ $\overrightarrow{AP} = \overrightarrow{OP} - \overrightarrow{OA}$ અર્થાત્ $\lambda \overrightarrow{b} = \overrightarrow{r} - \overrightarrow{a}$

આથી ઊલટું, પ્રચલ λની પ્રત્યેક કિંમત માટે, આ સમીકરણ રેખા પરના બિંદુ P નો સ્થાનસદિશ આપે છે. આથી, રેખાનું સદિશ સમીકરણ

 $\vec{r} = \vec{a} + \lambda \vec{b}$ મળે છે. $\lambda \in \mathbb{R}$ (1)

નોંધ : જો $\vec{b} = a_i^{\hat{c}} + b_j^{\hat{c}} + c_k^{\hat{c}}$, તો રેખાના દિક્ગુણોત્તર *a*, *b*, *c* થશે અને તેથી ઊલટું, જો રેખાના દિક્ગુણોત્તર *a*, *b*, *c* હોય, તો $\vec{b} = a_i^{\hat{c}} + b_j^{\hat{c}} + c_k^{\hat{c}}$ એ રેખાને સમાંતર થશે. અહીં, *b* નો $|\vec{b}|$ સાથે ગૂંચવડો ઊભો કરશો નહિ.

Downloaded from https:// www.studiestoday.com

ગણિત

ત્રિપરિમાણીય ભૂમિતિ

સદિશ સ્વરૂપમાંથી કાર્તેઝિય સ્વરૂપ મેળવવું

ધારો કે આપેલા બિંદુ A ના યામ (x_1, y_1, z_1) અને રેખાના દિક્ગુણોત્તર a, b, c છે. રેખા પરના કોઈ પણ બિંદુ P ના યામ (x, y, z) લઈએ, તો

$$\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}; \quad \vec{a} = x_1\hat{i} + y_1\hat{j} + z_1\hat{k}$$

અને
$$\vec{b} = a\hat{i} + b\hat{j} + c\hat{k}$$

આ કિંમતો (1) માં મૂકતા અને \hat{i} , \hat{j} અને \hat{k} ના સહગુણકો સરખાવતાં, (નોંધ : ખરેખર તો 'બંને સમાન સદિશના યામ સમાન હોવાથી' એમ કહેવાય.) આપણને $x = x_1 + \lambda a$; $y = y_1 + \lambda b$, $z = z_1 + \lambda c$ મળે. ... (2) આ સમીકરણો રેખાનાં પ્રચલ સમીકરણ છે. (2) માંથી પ્રચલ λ નો લોપ કરતાં, આપણને

$$\frac{x - x_1}{a} = \frac{y - y_1}{b} = \frac{z - z_1}{c} \quad \text{ud}.$$
 (3)

આ રેખાનું કાર્તેઝિય સમીકરણ છે.

જે નોંધ જો રેખાની દિક્કોસાઇન *l, m, n* હોય, તો રેખાનું સમીકરણ $\frac{x-x_1}{l} = \frac{y-y_1}{m} = \frac{z-z_1}{n}$ થશે.

ઉંદાહરણ 6 : બિંદુ (5, 2, – 4) માંથી પસાર થતી સદિશ $3\hat{i} + 2\hat{j} - 8\hat{k}$ ને સમાંતર રેખાનું સદિશ અને કાર્તેઝિય સમીકરણ મેળવો.

ઉકેલ : આપશી પાસે

$$\vec{a} = 5\hat{i} + 2\hat{j} - 4\hat{k}$$
 અને $\vec{b} = 3\hat{i} + 2\hat{j} - 8\hat{k}$ છે.

તેથી, રેખાનું સદિશ સમીકરણ

$$\overrightarrow{r} = 5\overrightarrow{i} + 2\overrightarrow{j} - 4\overrightarrow{k} + \lambda (3\overrightarrow{i} + 2\overrightarrow{j} - 8\overrightarrow{k})$$
 થશે.

હવે, રેખા પરના બિંદુ P(x, y, z) નો સ્થાનસદિશ \vec{r} છે.

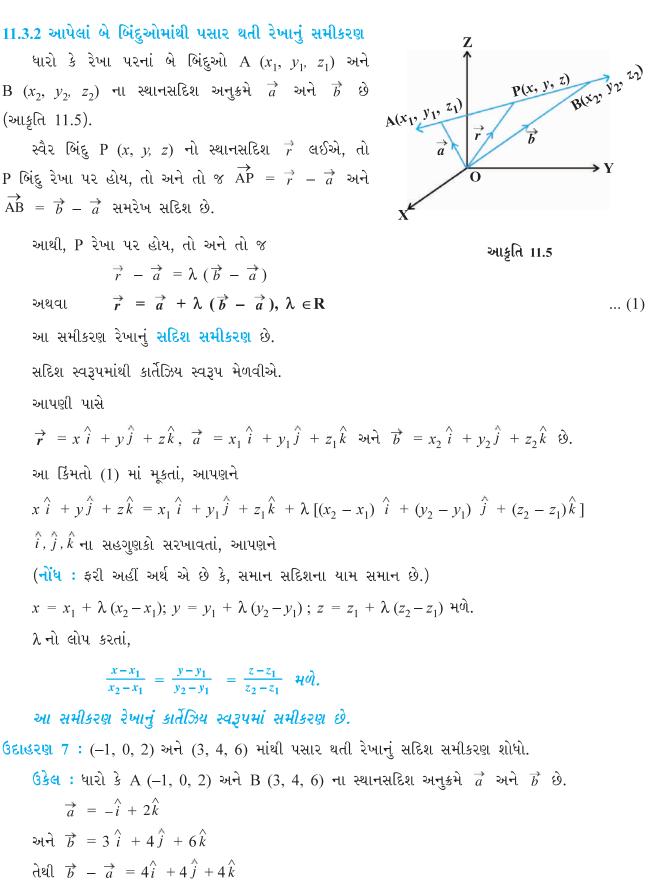
$$\hat{d} \hat{u}, \qquad x \hat{i} + y \hat{j} + z \hat{k} = 5 \hat{i} + 2 \hat{j} - 4 \hat{k} + \lambda (3 \hat{i} + 2 \hat{j} - 8 \hat{k}) \\ = (5 + 3\lambda) \hat{i} + (2 + 2\lambda) \hat{j} + (-4 - 8\lambda) \hat{k}$$

λ નો લોપ કરતાં, આપણને

$$\frac{x-5}{3} = \frac{y-2}{2} = \frac{z+4}{-8}$$
 મળે.

આ કાર્તેઝિય સ્વરૂપમાં રેખાનું સમીકરણ છે.

398



રેખા પરના કોઈ પણ બિંદુનો સ્થાનસદિશ નૅ લઈએ, તો રેખાનું સદિશ સમીકરણ

$\vec{r} = -\vec{i} + 2\vec{k} + \lambda(4\vec{i} + 4\vec{j} + 4\vec{k}), \ \lambda \in \mathbb{R}$

Downloaded from https:// www.studiestoday.com

ગણિત

ત્રિપરિમાશીય ભૂમિતિ

ઉદાહરણ 8 : રેખાનું કાર્તેઝિય સમીકરણ

$$\frac{x+3}{2} = \frac{y-5}{4} = \frac{z+6}{2}$$
 હોય, તો

આ રેખાનું સદિશ સમીકરણ શોધો.

ઉકેલ : આપેલ સમીકરશને પ્રમાશિત સ્વરૂપ

$$\frac{x-x_1}{a} = \frac{y-y_1}{b} = \frac{z-z_1}{c}$$
 સાથે સરખાવતાં,

આપશે નિરીક્ષણ કરીએ કે $x_1 = -3, y_1 = 5, z_1 = -6; a = 2, b = 4, c = 2$

આમ, માંગેલી રેખા બિંદુ (-3, 5, -6) માંથી પસાર થાય છે અને સદિશ $2\hat{i} + 4\hat{j} + 2\hat{k}$ ને સમાંતર છે. રેખા પરના કોઈ પણ બિંદુનો સ્થાનસદિશ \vec{r} લઈએ, તો આપેલી રેખાનું સદિશ સમીકરણ

$$\vec{r} = (-3\hat{i} + 5\hat{j} - 6\hat{k}) + \lambda(2\hat{i} + 4\hat{j} + 2\hat{k}) \text{ and}$$

11.4 બે રેખા વચ્ચેનો ખૂશો

ઊગમબિંદુમાંથી પસાર થતી અને જેના દિક્ગુણોત્તર અનુક્રમે a_1, b_1, c_1 તથા a_2, b_2, c_2 હોય તેવી બે રેખાઓ છે. ધારો કે L_1 પર બિંદુ P અને L_2 પર બિંદુ Q છે. આકૃતિ 11.6 માં આપેલી દિશાયુક્ત રેખાઓ OP અને OQ લઈએ. ધારો કે સદિશો OP અને OQ વચ્ચેનો લઘુકોણ θ છે. હવે યાદ કરીએ કે દિશાયુક્ત રેખાખંડો OP અને OQ એ અનુક્રમે a_1, b_1, c_1 અને a_2, b_2, c_2 ઘટકો સાથેના સદિશ છે. આથી તેમના વચ્ચેનો ખૂણો θ એ

$$\cos \theta = \left| \frac{a_1 a_2 + b_1 b_2 + c_1 c_2}{\sqrt{a_1^2 + b_1^2 + c_1^2} \sqrt{a_2^2 + b_2^2 + c_2^2}} \right| \text{ all hold is.} \qquad \dots (1)$$

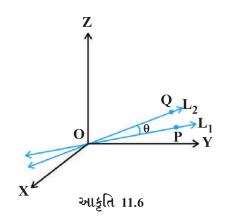
રેખાઓ વચ્ચેનો ખૂશો sin θ ના સ્વરૂપમાં,

$$\sin \theta = \sqrt{1 - \cos^2 \theta}$$

$$= \sqrt{1 - \frac{(a_1 a_2 + b_1 b_2 + c_1 c_2)^2}{(a_1^2 + b_1^2 + c_1^2)(a_2^2 + b_2^2 + c_2^2)}}$$

$$= \frac{\sqrt{(a_1^2 + b_1^2 + c_1^2)(a_2^2 + b_2^2 + c_2^2) - (a_1 a_2 + b_1 b_2 + c_1 c_2)^2}}{\sqrt{(a_1^2 + b_1^2 + c_1^2)}\sqrt{(a_2^2 + b_2^2 + c_2^2)}}$$

$$\sin \theta = \frac{\sqrt{(a_1 b_2 - a_2 b_1)^2 + (b_1 c_2 - b_2 c_1)^2 + (c_1 a_2 - c_2 a_1)^2}}{\sqrt{a_1^2 + b_1^2 + c_1^2}\sqrt{a_2^2 + b_2^2 + c_2^2}} \dots (2)$$



400

ગણિત

 \fbox નોંધ જો કોઈ વિકલ્પમાં રેખાઓ L_1 અથવા L_2 (અથવા બંને) ઊગમબિંદુમાંથી પસાર ન થાય, તો આપશે L_1 અને L_2 ને સમાંતર અને ઊગમબિંદુમાંથી પસાર થતી રેખાઓ અનુક્રમે L'_1 અને L'_2 લઈ શકીએ.

જો રેખાઓ L_1 અને L_2 માટે દિક્ગુણોત્તરને બદલે, L_1 ની દિક્કોસાઇન $l_{1,} m_{1,} n_1$ અને L_2 ની દિક્કોસાઇન $l_{2,} m_{2,} n_2$ આપી હોય, તો (1) અને (2) ને નીચેના સ્વરૂપમાં લઈશું.

$$\cos \theta = |l_1 l_2 + m_1 m_2 + n_1 n_2| \quad (\text{seven } l_1^2 + m_1^2 + n_1^2 = 1 = l_2^2 + m_2^2 + n_2^2) \quad \dots (3)$$

અने
$$\sin \theta = \sqrt{(l_1 m_2 - l_2 m_1)^2 + (m_1 n_2 - m_2 n_1)^2 + (n_1 l_2 - n_2 l_1)^2}$$
 ... (4)

हिड्गु छोत्तरो $a_{I_1} b_{I_1} c_1$ अने $a_{2_1} b_{2_2} c_2$ साथेनी जे रेणाओ

(i) પરસ્પર લંબ હોય અર્થાત્ જો $\theta = 90^\circ$, તો (1) પરથી

$$a_1a_2 + b_1b_2 + c_1c_2 = 0$$

(ii) સમાંતર હોય અર્થાત્ જો $\theta = 0$, તો (2) પરથી

$$\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$$

હવે, બે રેખાનાં સમીકરશ આપ્યાં હોય ત્યારે આપશે તેમની વચ્ચેનો ખૂશો શોધીશું. જો રેખાઓ વચ્ચેનો ખૂશો θ લઘુકોશ હોય અને

$$\vec{r} = \vec{a_1} + \lambda \vec{b_1} \quad \text{અન} \quad \vec{r} = \vec{a_2} + \mu \vec{b_2}$$

તો $\cos \theta = \left| \frac{\vec{b_1} \cdot \vec{b_2}}{|\vec{b_1}||\vec{b_2}|} \right|$
કાર્તઝિય સ્વરૂપમાં, જો રેખાઓ

$$\frac{x - x_1}{a_1} = \frac{y - y_1}{b_1} = \frac{z - z_1}{c_1} \qquad \dots (1)$$

અને

 $\frac{x - x_2}{a_2} = \frac{y - y_2}{b_2} = \frac{z - z_2}{c_2} - u \qquad \dots (2)$

દિક્ગુણોત્તરો અનુક્રમે $a_{1,} b_{1,} c_1$ અને $a_{2,} b_{2,} c_2$ હોય તથા રેખાઓ (1) અને (2) વચ્ચેનો ખૂણો θ હોય, તો

$$\cos \theta = \left| \frac{a_1 a_2 + b_1 b_2 + c_1 c_2}{\sqrt{a_1^2 + b_1^2 + c_1^2} \sqrt{a_2^2 + b_2^2 + c_2^2}} \right| \text{ and}$$

ઉદાહરણ 9 : રેખાઓ $\vec{r} = 3\hat{i} + 2\hat{j} - 4\hat{k} + \lambda(\hat{i} + 2\hat{j} + 2\hat{k})$

અને
$$\vec{r} = 5\hat{i} - 2\hat{j} + \mu (3\hat{i} + 2\hat{j} + 6\hat{k})$$
 વચ્ચેનો ખૂણો શોધો.

ઉકેલ : અહીં
$$\vec{b_1} = \hat{i} + 2\hat{j} + 2\hat{k}$$
 અને $\vec{b_2} = 3\hat{i} + 2\hat{j} + 6\hat{k}$

બે રેખાઓ વચ્ચેનો ખૂશો θ હોય, તો

ત્રિપરિમાણીય ભૂમિતિ

$$\cos \theta = \left| \frac{\vec{b_1} \cdot \vec{b_2}}{|\vec{b_1}||\vec{b_2}|} \right| = \left| \frac{(\hat{i} + 2\hat{j} + 2\hat{k}) \cdot (3\hat{i} + 2\hat{j} + 6\hat{k})}{\sqrt{1 + 4 + 4} \cdot \sqrt{9 + 4 + 36}} \right|$$
$$= \left| \frac{3 + 4 + 12}{3 \times 7} \right| = \frac{19}{21}$$

આથી $\theta = \cos^{-1}\left(\frac{19}{21}\right)$

ઉદાહરણ 10 : રેખાઓ $\frac{x+3}{3} = \frac{y-1}{5} = \frac{z+3}{4}$

અને
$$\frac{x+1}{1} = \frac{y-4}{1} = \frac{z-5}{2}$$
 વચ્ચેનો ખૂશો શોધો.

ઉકેલ : પ્રથમ રેખાના દિક્ગુશોત્તર 3, 5, 4 અને બીજી રેખાના દિક્ગુશોત્તર 1, 1, 2 છે. જો તેમની વચ્ચેનો ખૂશો θ હોય, તો

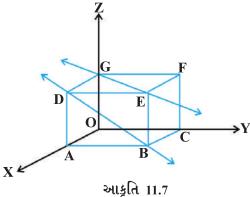
$$\cos \theta = \left| \frac{3 \cdot 1 + 5 \cdot 1 + 4 \cdot 2}{\sqrt{3^2 + 5^2 + 4^2} \sqrt{1^2 + 1^2 + 2^2}} \right|$$
$$= \frac{16}{\sqrt{50} \sqrt{6}} = \frac{16}{5\sqrt{2} \sqrt{6}} = \frac{8\sqrt{3}}{15}$$
$$\cos \theta = \cos \theta = \frac{16}{\sqrt{50} \sqrt{6}} = \frac{16}{5\sqrt{2} \sqrt{6}} = \frac{16}{\sqrt{50} \sqrt{50} \sqrt{6}} = \frac{16}{\sqrt{50} \sqrt{50} \sqrt{50} \sqrt{50}} = \frac{16}{\sqrt{50} \sqrt{50} \sqrt{50$$

આથી, માગેલો ખૂશો $\cos^{-1}\left(\frac{8\sqrt{3}}{15}\right)$ છે.

11.5 બે રેખા વચ્ચેનું લઘુતમ અંતર

જો અવકાશની બે રેખાઓ એક બિંદુમાં છેદે, તો તેમની વચ્ચેનું લઘુતમ અંતર શૂન્ય છે. વળી, જો અવકાશની બે રેખાઓ સમાંતર હોય, તો તેમની વચ્ચેનું લઘુતમ અંતર એ તેમના વચ્ચેનું લંબઅંતર થશે, અર્થાત્ એક રેખા પરના કોઈ બિંદુથી બીજી રેખા પર દોરેલા લંબની લંબાઈ જેટલું. 7

વિશેષમાં, જે રેખાઓ છેદતી ન હોય અને સમાંતર પણ ન હોય એવી રેખાઓ અવકાશમાં હોય છે. ખરેખર તો, આવી રેખાઓની જોડ અસમતલીય રેખાઓની જોડ છે. તેમને *વિષમતલીય (non coplanar* or skew) રેખાઓ કહે છે. ઉદાહરણ તરીકે, ચાલો આપણે આકૃતિ 11.7 માં દર્શાવ્યા પ્રમાણે *x*-અક્ષ, *y*-અક્ષ અને *z*-અક્ષ પર અનુક્રમે 1, 3, 2 એકમ માપવાળો એક ઓરડો લઈએ.



રેખા GE છતની એક બાજુથી બીજી બાજુ તરફ વિકર્ણ સ્વરૂપે ત્રાંસી

જાય છે અને રેખા DB એ A થી સીધા ઉપર છતના એક ખૂશાએથી દીવાલના નીચેના ભાગે વિકર્શ સ્વરૂપે ત્રાંસી જાય છે. આ રેખાઓ સમાંતર નથી અને તેઓ ક્યારેય એકબીજાને મળશે નહિ, કારશ કે તેઓ વિષમતલીય છે.

બે રેખાઓ વચ્ચેના લઘુતમ અંતરનો આપણે અર્થ કરીશું કે જેની લંબાઈ ઓછામાં ઓછી હોય, તેવા એક રેખા પરના એક બિંદુ અને બીજી રેખા પરના એક બિંદુને જોડતો રેખાખંડ હોય.

વિષમતલીય રેખાઓ માટે, લઘુતમ અંતરવાળી રેખા એ બંને રેખાઓને લંબ છે.

Downloaded from https:// www.studiestoday.com

401

402

11.5.1 બે વિષમતલીય રેખા વચ્ચેનું અંતર

હવે આપશે બે વિષમતલીય રેખા વચ્ચેનું લઘુતમ અંતર નીચે પ્રમાશે મેળવીશું :

$$\vec{r} = \vec{a_1} + \lambda \vec{b_1} \qquad \dots (1)$$

અને

ધા

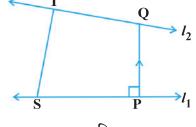
$$\vec{r} = \vec{a_2} + \mu \vec{b_2} \qquad \dots (2)$$

સમીકરણવાળી બે વિષમતલીય રેખાઓ l_1 અને l_2 આપેલી છે. (આકૃતિ 11.8).

 l_1 પર $\overrightarrow{a_1}$ સ્થાન સદિશવાળું કોઈક બિંદુ S અને l_2 પર $\overrightarrow{a_2}$ સ્થાન સદિશવાળું કોઈક બિંદુ T લો. લઘુતમ અંતરવાળા સદિશનું માન એટલે કે STનો લઘુતમ અંતરવાળી રેખાની દિશામાં પ્રક્ષેપ (જુઓ 10.6.2).

જો l_1 અને l_2 વચ્ચેનું લઘુતમ અંતર દર્શાવતો સદિશ \overrightarrow{PQ} હોય, તો તે $\overrightarrow{b_1}$ અને $\overrightarrow{b_2}$ બંનેને લંબ છે. આથી \overrightarrow{PQ} ની દિશામાં એકમ સદિશ \hat{n} એ

$$\hat{n} = \frac{\overrightarrow{b_1} \times \overrightarrow{b_2}}{\left| \overrightarrow{b_1} \times \overrightarrow{b_2} \right|} \text{ asi. } \dots (3)$$



આકૃતિ 11.8

તેથી, જો d એ લઘુતમ અંતર સદિશનું માન હોય, તો $\overrightarrow{PQ} = d\hat{n}$ \overrightarrow{ST} અને \overrightarrow{PQ} વચ્ચેનો ખૂણો θ હોય, તો $PQ = ST | \cos \theta |$ uરંતુ $|\cos \theta| = \left| \frac{\overrightarrow{PQ} \cdot \overrightarrow{ST}}{|\overrightarrow{PQ}||\overrightarrow{ST}|} \right|$ $= \left| \frac{d\hat{n} \cdot (\overrightarrow{a_2} - \overrightarrow{a_1})}{dST} \right|$ $\left| \overrightarrow{ST} = \overrightarrow{a_2} - \overrightarrow{a_1} \right|$ હોવાથી) $= \left| \frac{(\overrightarrow{b_1} \times \overrightarrow{b_2}) \cdot (\overrightarrow{a_2} - \overrightarrow{a_1})}{|\overrightarrow{ST}| |\overrightarrow{b_1} \times \overrightarrow{b_2}|} \right|$ [(3) પરથી]

આથી, માગેલું લઘુતમ અંતર

 $d = PQ = ST | \cos \theta |$ અથવા $d = \left| \frac{\left(\overrightarrow{b_1} \times \overrightarrow{b_2}\right) \cdot \left(\overrightarrow{a_2} - \overrightarrow{a_1}\right)}{|\overrightarrow{b_1} \times \overrightarrow{b_2}|} \right|$

ત્રિપરિમાણીય ભૂમિતિ

કાર્તેઝિય સ્વરૂપ

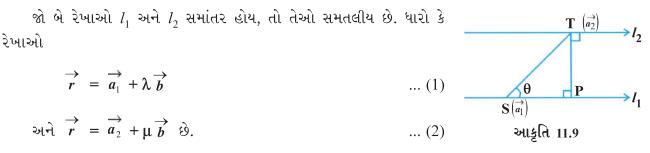
બે રેખાઓ

$$l_{1}: \frac{x-x_{1}}{a_{1}} = \frac{y-y_{1}}{b_{1}} = \frac{z-z_{1}}{c_{1}}$$

અને $l_{2}: \frac{x-x_{2}}{a_{2}} = \frac{y-y_{2}}{b_{2}} = \frac{z-z_{2}}{c_{2}}$ વચ્ચેનું લઘુતમ અંતર
$$\begin{vmatrix} x_{2}-x_{1} & y_{2}-y_{1} & z_{2}-z_{1} \\ a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \end{vmatrix}$$

 $\overline{\sqrt{(b_{1}c_{2}-b_{2}c_{1})^{2}+(c_{1}a_{2}-c_{2}a_{1})^{2}+(a_{1}b_{2}-a_{2}b_{1})^{2}}} \end{vmatrix}$ છે.

11.5.2 સમાંતર રેખાઓ વચ્ચેનું અંતર



 I_1 પરના બિંદુ S નો સ્થાનસદિશ $\overrightarrow{a_1}$ અને I_2 પરના બિંદુ T નો સ્થાનસદિશ $\overrightarrow{a_2}$ છે. (આકૃતિ 11.9) I_1, I_2 સમતલીય હોવાથી, જો T માંથી રેખા I_1 પરનો લંબપાદ P હોય, તો રેખાઓ I_1 અને I_2 વચ્ચેનું અંતર = TP

ulti કે
$$\overrightarrow{ST}$$
 અને \overrightarrow{b} વચ્ચેનો ખૂશો θ છે.
તેથી, $\overrightarrow{b} \times \overrightarrow{ST} = (|\overrightarrow{b}|| \overrightarrow{ST} | sin \theta)^{\hat{n}}$ (3)
અહીં, \widehat{n} એ રેખાઓ l_1 અને l_2 ના સમતલ પર લંબ એકમ સદિશ છે.
uરંતુ $\overrightarrow{ST} = \overrightarrow{a_2} - \overrightarrow{a_1}$
તેથી (3) પરથી
 $\overrightarrow{b} \times (\overrightarrow{a_2} - \overrightarrow{a_1}) = |\overrightarrow{b}| \operatorname{PT} \widehat{n}$ (PT = ST sin θ હોવાથી)
અર્થાત્ $|\overrightarrow{b} \times (\overrightarrow{a_2} - \overrightarrow{a_1})| = |\overrightarrow{b}| \operatorname{PT} \cdot 1$ ($|\widehat{n}| = 1$ હોવાથી)
આથી, આપેલી સમાંતર રેખાઓ વચ્ચેનું અંતર

$$d = \left| \overrightarrow{\text{PT}} \right| = \left| \frac{\overrightarrow{b} \times \left(\overrightarrow{a_2} - \overrightarrow{a_1} \right)}{\left| \overrightarrow{b} \right|} \right|$$

Downloaded from https:// www.studiestoday.com

403

404 ગણિત ઉદાહરણ 11 : રેખા l_1 અને l_2 ના સદિશ સમીકરણ $\overrightarrow{r} = \overrightarrow{i} + \overrightarrow{j} + \lambda \left(2\overrightarrow{i} - \overrightarrow{j} + \overrightarrow{k}\right)$... (1) અને $\overrightarrow{r} = 2\hat{i} + \hat{j} - \hat{k} + \mu \left(3\hat{i} - 5\hat{j} + 2\hat{k}\right)$ છે. ... (2) આ બે રેખાઓ વચ્ચેનું લઘુતમ અંતર શોધો. ઉકેલ : (1) અને (2) ને અનુક્રમે $\overrightarrow{r} = \overrightarrow{a_1} + \lambda \overrightarrow{b_1}$ અને $\overrightarrow{r} = \overrightarrow{a_2} + \mu \overrightarrow{b_2}$ સાથે સરખાવતાં, આપણને $\overrightarrow{a_1} = \hat{i} + \hat{j}, \qquad \overrightarrow{b_1} = 2\hat{i} - \hat{j} + \hat{k}$ $\overrightarrow{a_2} = 2 \overrightarrow{i} + \overrightarrow{j} - \overrightarrow{k}$ અને $\overrightarrow{b_2} = 3 \overrightarrow{i} - 5 \overrightarrow{j} + 2 \overrightarrow{k}$ મળે. માટે $\overrightarrow{a_2} - \overrightarrow{a_1} = \overrightarrow{i} - \overrightarrow{k}$ અને $\vec{b_1} \times \vec{b_2} = (2\hat{i} - \hat{j} + \hat{k}) \times (3\hat{i} - 5\hat{j} + 2\hat{k})$ $= \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & -1 & 1 \\ 2 & 5 & 2 \end{vmatrix}$ $=3\hat{i}-\hat{j}-7\hat{k}$ તેથી $\left| \overrightarrow{b_1} \times \overrightarrow{b_2} \right| = \sqrt{9+1+49} = \sqrt{59}$ આથી, આપેલી રેખાઓ વચ્ચેનું લઘુતમ અંતર $d = \frac{\left| \left(\overrightarrow{b_1} \times \overrightarrow{b_2} \right) \cdot \left(\overrightarrow{a_2} - \overrightarrow{a_1} \right) \right|}{\left| \overrightarrow{b_1} \times \overrightarrow{b_2} \right|} = \left| \frac{3 - 0 + 7}{\sqrt{59}} \right| = \frac{10}{\sqrt{59}}$ ઉદાહરણ 12 : રેખા l_1 અને l_2 $\overrightarrow{r} = \overrightarrow{i} + 2\overrightarrow{i} - 4\overrightarrow{k} + \lambda (2\overrightarrow{i} + 3\overrightarrow{i} + 6\overrightarrow{k})$ અને $\overrightarrow{r} = 3\hat{i} + 3\hat{j} - 5\hat{k} + \mu (2\hat{i} + 3\hat{j} + 6\hat{k})$ વચ્ચેનું અંતર શોધો. ઉકેલ : બે રેખાઓ સમાંતર છે. (શા માટે ?)

આપણી પાસે $\overrightarrow{a_1} = \widehat{i} + 2\widehat{j} - 4\widehat{k}, \ \overrightarrow{a_2} = 3\widehat{i} + 3\widehat{j} - 5\widehat{k}$ અને $\overrightarrow{b} = 2\widehat{i} + 3\widehat{j} + 6\widehat{k}$ છે. આથી, રેખાઓ વચ્ચેનું અંતર $d = \left| \frac{\overrightarrow{b} \times \left(\overrightarrow{a_2} - \overrightarrow{a_1}\right)}{|\overrightarrow{b}|} \right| = \left| \frac{\begin{vmatrix} \widehat{a} & \widehat{a} & \widehat{a} \\ 2 & 3 & 6 \\ 2 & 1 & -1 \end{vmatrix}}{\sqrt{4 + 9 + 36}} \right|$

ત્રિપરિમાણીય ભૂમિતિ

$$= \frac{\left|-9\hat{i} + 14\hat{j} - 4\hat{k}\right|}{\sqrt{49}} = \frac{\sqrt{293}}{\sqrt{49}} = \frac{\sqrt{293}}{7}$$

સ્વાધ્યાય 11.2

- 1. સાબિત કરો કે $\frac{12}{13}$, $\frac{-3}{13}$, $\frac{-4}{13}$; $\frac{4}{13}$, $\frac{12}{13}$, $\frac{3}{13}$; $\frac{3}{13}$, $\frac{-4}{13}$, $\frac{12}{13}$ દિક્કોસાઇનવાળી ત્રણ રેખાઓ પરસ્પર લંબ છે.
- સાબિત કરો કે (1, -1, 2), (3, 4, -2) બિંદુઓમાંથી પસાર થતી રેખા, (0, 3, 2) અને (3, 5, 6) બિંદુઓમાંથી પસાર થતી રેખાને લંબ છે.
- સાબિત કરો કે (4, 7, 8), (2, 3, 4) બિંદુઓમાંથી પસાર થતી રેખા, (-1, -2, 1), (1, 2, 5) બિંદુઓમાંથી પસાર થતી રેખાને સમાંતર છે.
- 4. બિંદુ (1, 2, 3) માંથી પસાર થતી અને સદિશ $3\hat{i} + 2\hat{j} 2\hat{k}$ ને સમાંતર રેખાનું સમીકરજ઼ શોધો.
- 5. જેનો સ્થાનસદિશ $2\hat{i} \hat{j} + 4\hat{k}$ હોય તેવા બિંદુમાંથી પસાર થતી અને $\hat{i} + 2\hat{j} \hat{k}$ દિશાવાળી રેખાનું સમીકરણ સદિશ અને કાર્તેઝિય સ્વરૂપમાં મેળવો.
- બિંદુ (-2, 4, -5) માંથી પસાર થતી અને રેખા ^{x+3}/₃ = ^{y-4}/₅ = ^{z+8}/₆ ને સમાંતર રેખાનું કાર્તેઝિય સમીકરણ શોધો.
- 7. રેખાનું કાર્તેઝિય સમીકરણ $\frac{x-5}{3} = \frac{y+4}{7} = \frac{z-6}{2}$ છે. તેનું સદિશ સ્વરૂપ લખો.
- 8. ઊગમબિંદુ અને (5, -2, 3) માંથી પસાર થતી રેખાનું સદિશ અને કાર્તેઝિય સમીકરણ શોધો.
- 9. બિંદુઓ (3, -2, -5), (3, -2, 6) માંથી પસાર થતી રેખાનું સદિશ અને કાર્તેઝિય સમીકરણ શોધો.
- 10. નીચે આપેલી રેખાઓની જોડ વચ્ચેનો ખૂશો શોધો :

(i)
$$\overrightarrow{r} = 2\hat{i} - 5\hat{j} + \hat{k} + \lambda (3\hat{i} + 2\hat{j} + 6\hat{k})$$
 અને
 $\overrightarrow{r} = 7\hat{i} - 6\hat{k} + \mu (\hat{i} + 2\hat{j} + 2\hat{k})$
(ii) $\overrightarrow{r} = 3\hat{i} + \hat{j} - 2\hat{k} + \lambda (\hat{i} - \hat{j} - 2\hat{k})$ અને
 $\overrightarrow{r} = 2\hat{i} - \hat{j} - 56\hat{k} + \mu (3\hat{i} - 5\hat{j} - 4\hat{k})$

- 11. નીચેની રેખાઓની જોડ વચ્ચેનો ખૂશો શોધો :
 - (i) $\frac{x-2}{2} = \frac{y-1}{5} = \frac{z+3}{-3}$ અને $\frac{x+2}{-1} = \frac{y-4}{8} = \frac{z-5}{4}$ (ii) $\frac{x}{2} = \frac{y}{2} = \frac{z}{1}$ અને $\frac{x-5}{4} = \frac{y-2}{1} = \frac{z-3}{8}$
- 12. રેખાઓ $\frac{1-x}{3} = \frac{7y-14}{2p} = \frac{z-3}{2}$ અને $\frac{7-7x}{3p} = \frac{y-5}{1} = \frac{6-z}{5}$ પરસ્પર લંબ હોય, તો p નું મૂલ્ય શોધો.

406

13. દર્શાવો કે રેખાઓ
$$\frac{x-5}{7} = \frac{y+2}{-5} = \frac{z}{1}$$
 અને $\frac{x}{1} = \frac{y}{2} = \frac{z}{3}$ પરસ્પર લંબ છે.

14. રેખાઓ $\overrightarrow{r} = (\hat{i} + 2\hat{j} + \hat{k}) + \lambda (\hat{i} - \hat{j} + \hat{k})$ અને $\overrightarrow{r} = 2\hat{i} - \hat{j} - \hat{k} + \mu (2\hat{i} + \hat{j} + 2\hat{k})$ વચ્ચેનું લઘુતમ અંતર શોધો.

15. રેખાઓ $\frac{x+1}{7} = \frac{y+1}{-6} = \frac{z+1}{1}$ અને $\frac{x-3}{1} = \frac{y-5}{-2} = \frac{z-7}{1}$ વચ્ચેનું લઘુતમ અંતર શોધો. 16. જે રેખાઓનાં સદિશ સમીકરણ

$$\overrightarrow{r} = (\overrightarrow{i} + 2\overrightarrow{j} + 3\overrightarrow{k}) + \lambda (\overrightarrow{i} - 3\overrightarrow{j} + 3\overrightarrow{k})$$

અને $\overrightarrow{r} = 4\hat{i} + 5\hat{j} + 6\hat{k} + \mu (2\hat{i} + 3\hat{j} + \hat{k})$ હોય, તે રેખાઓ વચ્ચેનું લઘુતમ અંતર શોધો. 17. જે બે રેખાનાં સદિશ સમીકરશ

 $2\hat{k}$)

$$\vec{r} = (1-t)\hat{i} + (t-2)\hat{j} + (3-2t)\hat{k} \quad \text{wh}$$
$$\vec{r} = (s+1)\hat{i} + (2s-1)\hat{j} - (2s+1)\hat{k} \quad \text{wh}, \quad \text{d two}$$

11.6 સમતલ

જો નીચેનામાંથી કોઈ પણ એક જ્ઞાત હોય, તો અનન્ય સમતલનું નિર્માણ થાય :

- (i) સમતલ પરનો અભિલંબ અને તેનું ઊગમબિંદુથી અંતર આપેલું હોય, અર્થાત્, સમતલનું અભિલંબ સ્વરૂપમાં સમીકરણ.
- (ii) તે એક બિંદુમાંથી પસાર થાય અને આપેલ દિશાને લંબ હોય.
- (iii) તે આપેલાં ત્રણ અસમરેખ બિંદુઓમાંથી પસાર થતું હોય.

હવે આપણે સમતલનાં સદિશ અને કાર્તેઝિય સમીકરણ શોધીશું.

11.6.1 અભિલંબ સ્વરૂપમાં સમતલનું સમીકરશ

જેનું ઊગમબિંદુથી લંબઅંતર d (d ≠ 0) હોય તેવું એક સમતલ લઈએ. (આકૃતિ 11.10)

જો ઊગમબિંદુથી સમતલ પરનો અભિલંબ \overrightarrow{ON} હોય અને $\stackrel{\wedge}{n}$ એ એકમ અભિલંબ સદિશ હોય, તો $\overrightarrow{ON}=d\stackrel{\wedge}{n}$ થાય. ધારો કે P સમતલ પરનું કોઈ પશ બિંદુ છે. આથી,

 $\overrightarrow{\mathrm{NP}}$ એ $\overrightarrow{\mathrm{ON}}$ પરનો લંબ થશે.

માટે, $\overrightarrow{NP} \cdot \overrightarrow{ON} = 0$... (1) બિંદુ P નો સ્થાન સદિશ \overrightarrow{r} લેતાં, $\overrightarrow{NP} = \overrightarrow{r} - d \stackrel{\wedge}{n} (\overrightarrow{ON} + \overrightarrow{NP} = \overrightarrow{OP}$ હોવાથી)

 $(\stackrel{\rightarrow}{r} - d\stackrel{\wedge}{n}) \cdot d\stackrel{\wedge}{n} = 0$ મળે.

 $(\stackrel{\rightarrow}{r} - d\stackrel{\wedge}{n}) \cdot \stackrel{\wedge}{n} = 0$ $(d \neq 0)$

માટે, (1) પરથી

Z P(x, y, z) r N Y Y W W

અથવા

ત્રિપરિમાશીય ભૂમિતિ

અથવા

$$\overrightarrow{r} \cdot \overrightarrow{n} - d\overrightarrow{n} \cdot \overrightarrow{n} = 0$$

 $\overrightarrow{r} \cdot \overrightarrow{n} = d$

અર્થાત્,

 $\begin{pmatrix} \stackrel{\wedge}{n} \cdot \stackrel{\wedge}{n} = 1 \text{ shared} \end{pmatrix} \dots (2)$

આ અભિલંબ સ્વરૂપમાં સદિશ સ્વરૂપે સમતલનું સમીકરશ છે.

કાર્તેઝિય સ્વરૂપ

જો \hat{n} એ સમતલને લંબ એકમ સદિશ હોય, તો સમીકરણ (2) એ સમતલનું સદિશ સમીકરણ છે. જો P (x, y, z) એ સમતલનું કોઈ પણ બિંદુ હોય, તો

$$\overrightarrow{OP} = \overrightarrow{r} = x \overrightarrow{i} + y \overrightarrow{j} + z \overrightarrow{k} \text{ and}.$$

 \hat{n} ની દિક્કોસાઇન *l, m, n* લેતાં,

$$\hat{n} = l\hat{i} + m\hat{j} + n\hat{k}$$
 થશે

તેથી, (2) પરથી

$$(x\hat{i}+y\hat{j}+z\hat{k})\cdot(l\hat{i}+m\hat{j}+n\hat{k})=d$$

અર્થાત્, lx + my + nz = d

આ અભિલંબ સ્વરૂપમાં સમતલનું કાર્તેઝિય સમીકરણ છે.

 \fbox નોંધ જો \overrightarrow{r} · $(a\hat{i} + b\hat{j} + c\hat{k}) = d$ સમતલનું સદિશ સમીકરણ હોય, તો ax + by + cz = dસમતલનું કાર્તેઝિય સમીકરણ થશે, જ્યાં a, b અને c એ સમતલના અભિલંબના દિક્ગુણોત્તર છે.

ઉદાહરણ 13 : જેનું ઊગમબિંદુથી અંતર $\frac{6}{\sqrt{29}}$ હોય અને જેની પર ઊગમબિંદુમાંથી સમતલ પરનો અભિલંબ $2\hat{i} - 3\hat{j} + 4\hat{k}$ હોય તેવા સમતલનું સદિશ સમીકરણ શોધો.

ઉકેલ : અહીં $\vec{n} = 2\hat{i} - 3\hat{j} + 4\hat{k}$ છે.

$$\hat{d} = \frac{\vec{n}}{\vec{n}} = \frac{2\hat{i} - 3\hat{j} + 4\hat{k}}{\sqrt{4+9+16}} = \frac{2\hat{i} - 3\hat{j} + 4\hat{k}}{\sqrt{29}}$$

આથી, સમતલનું માગેલું સમીકરણ,

$$\overrightarrow{r} \cdot \left(\frac{2}{\sqrt{29}} \widehat{i} + \frac{-3}{\sqrt{29}} \widehat{j} + \frac{4}{\sqrt{29}} \widehat{k}\right) = \frac{6}{\sqrt{29}}$$

Downloaded from https:// www.studiestoday.com

407

... (3)

408

<mark>ઉદાહરણ 14</mark> : ઊગમબિંદુમાંથી પસાર થતા અને $\overrightarrow{r} \cdot (6 \widehat{i} - 3 \widehat{j} - 2 \widehat{k}) + 1 = 0$ સમતલને લંબ એકમ સદિશની દિક્કોસાઇન શોધો.

ઉકેલ : આપેલ સમીકરશને

$$\overrightarrow{r} \cdot (-6\overrightarrow{i} + 3\overrightarrow{j} + 2\overrightarrow{k}) = 1$$
 સ્વરૂપમાં લખી શકાય. ... (1)

$$\dot{a}a, \qquad |-6\hat{i} + 3\hat{j} + 2\hat{k}| = \sqrt{36+9+4} = 7$$

તેથી, (1) ની બંને તરફ 7 વડે ભાગતાં, આપણને

 $\overrightarrow{r} \cdot \left(\frac{-6}{7}\overrightarrow{i} + \frac{3}{7}\overrightarrow{j} + \frac{2}{7}\overrightarrow{k}\right) = \frac{1}{7}$

આ સમીકરણ $\overrightarrow{r} \cdot \overrightarrow{n} = d$ સ્વરૂપમાં સમતલનું સમીકરણ છે.

આ દર્શાવે છે કે $\hat{n} = \frac{-6}{7} \hat{i} + \frac{3}{7} \hat{j} + \frac{2}{7} \hat{k}$ ઊગમબિંદુમાંથી સમતલ પરનો લંબ એકમ સદિશ છે. આથી, તેની દિક્કોસાઇન $\frac{-6}{7}$, $\frac{3}{7}$, $\frac{2}{7}$ થશે.

ઉદાહરણ 15 : ઊગમબિંદુથી સમતલ 2x - 3y + 4z - 6 = 0 નું અંતર શોધો.

ઉકેલ : સમતલના અભિલંબના દિક્ગુણોત્તર 2, -3, 4 હોવાથી, તેની દિક્કોસાઇન

$$\frac{2}{\sqrt{(2)^2 + (-3)^2 + (4)^2}}, \frac{-3}{\sqrt{(2)^2 + (-3)^2 + (4)^2}}, \frac{4}{\sqrt{(2)^2 + (-3)^2 + (4)^2}}$$
 $\exists talk = \frac{2}{\sqrt{29}}, \frac{-3}{\sqrt{29}}, \frac{4}{\sqrt{29}}$

આથી, સમીકરણ 2x - 3y + 4z - 6 = 0 અર્થાત્, 2x - 3y + 4z = 6 ને $\sqrt{29}$ વડે ભાગતાં, આપણને $\frac{2}{\sqrt{29}}x + \frac{-3}{\sqrt{29}}y + \frac{4}{\sqrt{29}}z = \frac{6}{\sqrt{29}}$ મળે.

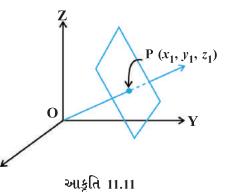
ઊગમબિંદુથી સમતલનું અંતર d હોય ત્યારે, આ સમીકરણ lx + my + nz = d સ્વરૂપમાં છે. તેથી, ઊગમબિંદુથી સમતલનું અંતર $\frac{6}{\sqrt{29}}$ છે.

ઉદાહરણ 16 : ઊગમબિંદુથી સમતલ 2x - 3y + 4z - 6 = 0 પર દોરેલા લંબના લંબપાદના યામ શોધો.

 $(\mathbf{S}_{\mathbf{S}_{\mathbf{G}}}^{\mathbf{G}}: \mathbf{u}_{\mathbf{1}}^{\mathbf{1}})$ કે ઊગમબિંદુથી સમતલ પરના લંબના લંબપાદ P ના યામ (x_1, y_1, z_1) છે. (જુઓ આકૃતિ 11.11.)

આથી રેખા OP ના દિક્ગુણોત્તર x_1, y_1, z_1 છે. અભિલંબ સ્વરૂપમાં સમતલનું સમીકરણ લખતાં, આપણને

$$\frac{2}{\sqrt{29}} x - \frac{3}{\sqrt{29}} y + \frac{4}{\sqrt{29}} z = \frac{6}{\sqrt{29}}$$
 મળે



Downloaded from https:// www.studiestoday.com

Х

ગણિત

ત્રિપરિમાણીય ભૂમિતિ

અહીં
$$\frac{2}{\sqrt{29}}$$
, $\frac{-3}{\sqrt{29}}$, $\frac{4}{\sqrt{29}}$ એ OP ની દિક્કોસાઇન છે.

રેખાની દિક્કોસાઇન અને દિક્ગુણોત્તર સમપ્રમાણમાં હોવાથી, આપણને

$$\frac{x_1}{\frac{2}{\sqrt{29}}} = \frac{y_1}{\frac{-3}{\sqrt{29}}} = \frac{z_1}{\frac{4}{\sqrt{29}}} = k$$

અર્થાત, $x_1 = \frac{2k}{\sqrt{29}}$, $y_1 = \frac{-3k}{\sqrt{29}}$, $z_1 = \frac{4k}{\sqrt{29}}$ મળે.

સમતલના સમીકરણમાં આ મૂકતાં, આપણને $k = \frac{6}{\sqrt{29}}$ મળે.

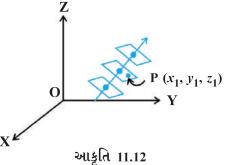
આથી, લંબપાદ $\left(\frac{12}{29}, \frac{-18}{29}, \frac{24}{29}\right)$ થાય.

જી નોંધ જો અભિલંબનું ઊગમબિંદુથી અંતર *d* અને ઊગમબિંદુમાંથી સમતલ પર દોરેલા અભિલંબની દિક્કોસાઇન *l, m, n* હોય, તો સમતલનો લંબપાદ (*ld, md, nd*) થાય.

11.6.2 આપેલા સદિશને લંબ અને આપેલા બિંદુમાંથી પસાર થતા સમતલનું સમીકરણ

અવકાશમાં આપેલા સદિશને લંબ હોય તેવા અનેક સમતલ હોય છે, પરંતુ આ શરત અનુસાર આપેલા બિંદુ P (x₁, y₁,z₁) માંથી પસાર થાય તેવું માત્ર એક સમતલ અસ્તિત્વ ધરાવે છે. (જુઓ આકૃતિ 11.12)

ધારો કે એક સમતલ \vec{a} સ્થાન સદિશવાળા બિંદુ A માંથી પસાર થાય છે અને \vec{n} ને લંબ છે.



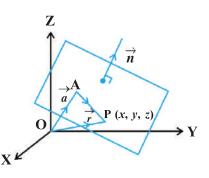
ધારો કે સમતલના કોઈ પણ બિંદુ P(x, y, z) નો સ્થાનસદિશ \overrightarrow{r} છે. (આકૃતિ 11.13)

 \overrightarrow{AP} એ \overrightarrow{n} ને લંબ હોય તો અને તો જ બિંદુ P સમતલ પર આપેલું છે. અર્થાત્, $\overrightarrow{AP} \cdot \overrightarrow{n} = 0$ એ P સમતલમાં હોવા માટેની આવશ્યક અને પર્યાપ્ત શરત છે.

પરંતુ $\vec{AP} = \vec{r} - \vec{a}$ હોવાથી $(\vec{r} - \vec{a}) \cdot \vec{n} = 0$ સમતલનું સદિશ સમીકરણ છે.

કાર્તેઝિય સ્વરૂપ

ધારો કે આપેલું બિંદુ A એ $(x_1 \ y_1, z_1)$ છે અને P એ (x, y, z) છે તથા \overrightarrow{n} ની દિક્કોસાઇન *a*, *b* અને *c* છે.



આકૃતિ 11.13

Downloaded from https:// www.studiestoday.com

... (1)

409

તેથી,
$$\overrightarrow{a} = x_1 \hat{i} + y_1 \hat{j} + z_1 \hat{k}$$
, $\overrightarrow{r} = x \hat{i} + y \hat{j} + z \hat{k}$ અને $\overrightarrow{n} = a \hat{i} + b \hat{j} + c \hat{k}$

હવે $(\overrightarrow{r} - \overrightarrow{a}) \cdot \overrightarrow{n} = 0$

આથી
$$\left[(x-x_1)\hat{i} + (y-y_1)\hat{j} + (z-z_1)\hat{k} \right] \cdot \left(a\hat{i} + b\hat{j} + c\hat{k} \right) = 0$$

અર્થાત્, $a(x - x_1) + b(y - y_1) + c(z - z_1) = 0$ માંગેલ સમીકરણ છે.

ઉકેલ : બિંદુ (5, 2, -4)નો સ્થાન સદિશ $\vec{a} = 5\hat{i} + 2\hat{j} - 4\hat{k}$ અને સમતલને લંબ અભિલંબ સદિશ $\vec{n} = 2\hat{i} + 3\hat{j} - \hat{k}$ છે.

તેથી, સમતલનું સદિશ સમીકરણ $(\overrightarrow{r} - \overrightarrow{a})$. $\overrightarrow{n} = 0$

અથવા
$$\left[\stackrel{\rightarrow}{r} - (5\stackrel{\wedge}{i} + 2\stackrel{\wedge}{j} - 4\stackrel{\wedge}{k})\right] \cdot (2\stackrel{\wedge}{i} + 3\stackrel{\wedge}{j} - \stackrel{\wedge}{k}) = 0$$
 થાય. ...(1)

(1) ને કાર્તેઝિય સ્વરૂપમાં ફેરવતાં, આપણને

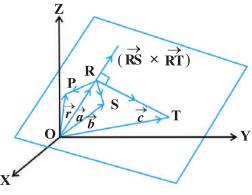
$$\left[(x-5)^{\hat{h}} + (y-2)^{\hat{j}} + (z+4)^{\hat{h}} \right] \cdot (2^{\hat{h}} + 3^{\hat{j}} - \hat{k}) = 0$$

અથવા $2(x-5) + 3(y-2) - 1(z+4) = 0$
અર્થાત્ $2x + 3y - z = 20$...(2)

આ માંગેલ સમતલનું કાતેઝિય સમીકરણ છે.

11.6.3 ત્રણ અસમરેખ બિંદુઓમાંથી પસાર થતા સમતલનું સમીકરણ

સમતલના ત્રણ અસમરેખ બિંદુઓ R, S અને T ના સ્થાન સદિશ અનુક્રમે \vec{a} , \vec{b} અને \vec{c} છે (આકૃતિ 11.14).



આકૃતિ 11.14

Downloaded from https:// www.studiestoday.com

ગણિત

ઉદાહરણ 17 : બિંદુ (5, 2, -4) માંથી પસાર થતા અને 2, 3, -1 દિક્ગુણોત્તરવાળી રેખાને લંબ સમતલનું સદિશ અને કાર્તેઝિય સમીકરણ શોધો.

ત્રિપરિમાણીય ભૂમિતિ

અથવા

સદિશો $\overrightarrow{\text{RS}}$ અને $\overrightarrow{\text{RT}}$ આપેલા સમતલમાં છે. આથી, $\overrightarrow{\text{RS}} \times \overrightarrow{\text{RT}}$ એ બિંદુઓ R, S અને T ને સમાવતા સમતલને લંબ સદિશ છે. ધારો કે સમતલના કોઈ પણ બિંદુ P નો સ્થાન સદિશ $\stackrel{
ightarrow}{r}$ છે. તેથી, R માંથી પસાર થતા અને સદિશ $\overrightarrow{\mathrm{RS}}$ imes $\overrightarrow{\mathrm{RT}}$ $\overrightarrow{\mathrm{h}}$ eion સમતલનું સમીકરણ

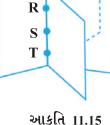
$$(\overrightarrow{r} - \overrightarrow{a}) \cdot (\overrightarrow{RS} \times \overrightarrow{RT}) = 0$$

$$(\overrightarrow{r} - \overrightarrow{a}) \cdot \left[(\overrightarrow{b} - \overrightarrow{a}) \times (\overrightarrow{c} - \overrightarrow{a}) \right] = 0 \qquad \dots (1)$$

આ સમીકરણ ત્રણ અસમરેખ બિંદુઓમાંથી પસાર થતા સમતલનું સદિશ સ્વરૂપમાં સમીકરણ છે.

🎯 નોંધ 🛛 ત્રણ બિંદુઓ અસમરેખ છે તેમ શા માટે કહેવું જરૂરી છે ? જો ત્રણ બિંદુઓ એક જ રેખા પર હોય, તો આ બિંદુઓને સમાવતાં અનેક સમતલ મળશે. (આકૃતિ 11.15).

જ્યાં રેખામાં સમાવિષ્ટ બિંદુઓ R, S અને T પુસ્તકના બંધનના સભ્યો હોય, તે રીતે આ સમતલો પુસ્તકના પૃષ્ઠને સમકક્ષ હોય છે.



કાર્તેઝિય સ્વરૂપ

ધારો કે બિંદુઓ R, S અને T ના યામ અનુક્રમે $(x_1, y_1, z_1), (x_2, y_2, z_2)$ અને (x_3, y_3, z_3) છે. \overrightarrow{r} સ્થાન સદિશવાળા સમતલ પરના કોઈ પણ બિંદુ P ના યામ (x, y, z) છે.

 $\vec{RP} = (x - x_1)\hat{i} + (y - y_1)\hat{j} + (z - z_1)\hat{k}$ તેથી $\vec{RS} = (x_2 - x_1)\hat{i} + (y_2 - y_1)\hat{j} + (z_2 - z_1)\hat{k}$ $\overrightarrow{RT} = (x_3 - x_1)\hat{i} + (y_3 - y_1)\hat{j} + (z_3 - z_1)\hat{k}$

આ કિંમતો સદિશ સ્વરૂપવાળા સમીકરણ (1)માં મૂકતાં અને નિશ્વાયક સ્વરૂપમાં તેમનું નિરૂપણ કરતાં, આપણને

$$\begin{vmatrix} x - x_1 & y - y_1 & z - z_1 \\ x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ x_3 - x_1 & y_3 - y_1 & z_3 - z_1 \end{vmatrix} = 0$$
 HØ.

આ સમીકરણ ત્રણ અસમરેખ બિંદુઓ $(x_1, y_1, z_1), (x_2, y_2, z_2)$ અને (x_3, y_3, z_3) માંથી પસાર થતા સમતલનું કાર્તેઝિય સ્વરૂપમાં સમીકરણ છે.

ઉદાહરણ 18 : બિંદુઓ R (2, 5, -3), S (-2, -3, 5) અને T (5, 3, -3) માંથી પસાર થતા સમતલનું સદિશ સમીકરણ શોધો.

ઉકેલ : ધારો કે
$$\vec{a} = 2\hat{i} + 5\hat{j} - 3\hat{k}, \vec{b} = -2\hat{i} - 3\hat{j} + 5\hat{k}, \vec{c} = 5\hat{i} + 3\hat{j} - 3\hat{k}$$
 છે.
તો \vec{a}, \vec{b} અને \vec{c} માંથી પસાર થતા સમતલનું સદિશ સમીકરણ

412

$$(\overrightarrow{r} - \overrightarrow{a}) \cdot (\overrightarrow{RS} \times \overrightarrow{RT}) = 0$$

$$(\overrightarrow{r} - \overrightarrow{a}) \cdot \left[(\overrightarrow{b} - \overrightarrow{a}) \times (\overrightarrow{c} - \overrightarrow{a}) \right] = 0$$

$$(\cancel{n} + \cancel{n2} ?)$$

અથવા

$$\operatorname{aut}_{\Lambda} \quad \left[\overrightarrow{r} - (2\overrightarrow{i} + 5\overrightarrow{j} - 3\overrightarrow{k}) \right] \cdot \left[(-4\overrightarrow{i} - 8\overrightarrow{j} + 8\overrightarrow{k}) \times (3\overrightarrow{i} - 2\overrightarrow{j}) \right] = 0$$

11.6.4 સમતલના સમીકરણનું અંતઃખંડ સ્વરૂપ

આ વિભાગમાં, આપશે સમતલ દ્વારા યામાક્ષો પર બનેલા અંતઃખંડના સ્વરૂપમાં સમતલના સમીકરશને તારવીશું. ધારો કે સમતલનું સમીકરશ

 $Ax + By + Cz + D = 0 \quad \dot{\mathfrak{O}}.$ $(D \neq 0)$...(1) ધારો કે સમતલ x-અક્ષ, y-અક્ષ અને z-અક્ષ પર અનુક્રમે અંતઃખંડ a, b, c બનાવે છે. a, b, $c \neq 0$ (આકૃતિ 11.16)

આથી, સમતલ x-અક્ષ, y-અક્ષ અને z-અક્ષને અનુક્રમે (a, 0, 0), (0, b, 0), (0, 0, c) માં છેદે છે.

તેથી
$$Aa + D = 0$$
 અથવા $A = \frac{-D}{a}$
 $Bb + D = 0$ અથવા $B = \frac{-D}{b}$
 $Cc + D = 0$ અથવા $C = \frac{-D}{c}$
આ કિંમતો સમતલના સમીકરણ (1) માં મૂકી અને
સાદું રૂપ આપતાં, આપણને
 $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$ મળે.

આ સમીકરણ સમતલનું અંતઃખંડ સ્વરૂપમાં માંગેલું સમીકરણ છે.

<mark>ઉદાહરણ 19 :</mark> જે સમતલના *x-*અક્ષ, *y-*અક્ષ, *z-*અક્ષ પરના અંતઃખંડ અનુક્રમે 2, 3 અને 4 હોય, તે સમતલનું સમીકરણ મેળવો.

ઉકેલ : સમતલનું સમીકરશ

$$\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1 \quad \dot{\mathfrak{D}}.$$

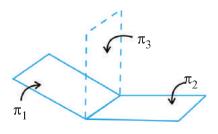
અહીં a = 2, b = 3, c = 4

a, b, c નાં મૂલ્ય (1)માં મૂકતાં, આપણને સમતલનું માંગેલ સમીકરણ

 $\frac{x}{2} + \frac{y}{3} + \frac{z}{4} = 1$ અથવા 6x + 4y + 3z = 12 મળે.

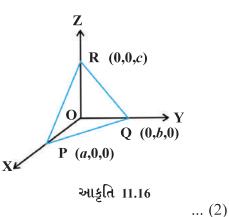
11.6.5 આપેલા બે સમતલના છેદમાંથી પસાર થતા સમતલનું સમીકરણ

 π_1 અને π_2 અનુક્રમે $\vec{r} \cdot \vec{n_1} = d_1$ અને $\vec{r} \cdot \vec{n_2} = d_2$ સમીકરણવાળા બે સમતલો છે. સમતલોની છેદરેખા પરના કોઈ પણ બિંદુનો સ્થાનસદિશ બંને સમીકરણોનું સમાધાન કરશે. (આકૃતિ 11.17)



આકૃતિ 11.17

Downloaded from https:// www.studiestoday.com



ગણિત

ત્રિપરિમાશીય ભૂમિતિ

- જો રેખા પરના બિંદુનો સ્થાનસદિશ \overrightarrow{t} હોય, તો $\overrightarrow{t} \cdot \overrightarrow{n_1} = d_1$ અને $\overrightarrow{t} \cdot \overrightarrow{n_2} = d_2$
- તેથી, λ ના પ્રત્યેક વાસ્તવિક મૂલ્ય માટે, આપણને $\vec{t} \cdot \left(\stackrel{\wedge}{n_1} + \lambda \stackrel{\wedge}{n_2} \right) = d_1 + \lambda d_2$ મળે.

λ સ્વૈર હોવાથી, રેખા પરનું પ્રત્યેક બિંદુ તેનું સમાધાન કરે છે.

આથી, સમીકરણ $\vec{r} \cdot \left(\vec{n}_1 + \lambda \vec{n}_2\right) = d_1 + \lambda d_2$ એ એક સમતલ π_3 દર્શાવે છે. π_1 અને π_2 બંનેના સમીકરણનું સમાધાન કરે તો કોઈ પણ સદિશ \vec{r} એ π_3 ના સમીકરણનું પણ સમાધાન કરે છે, અર્થાત્, સમતલો

 $\overrightarrow{r}\cdot\overrightarrow{n_1}=d_1$ અને $\overrightarrow{r}\cdot\overrightarrow{n_2}=d_2$ ના છેદમાંથી પસાર થતા કોઈ પણ સમતલનું સમીકરણ

$$\vec{r} \cdot \left(\vec{n}_1 + \lambda \vec{n}_2\right) = d_1 + \lambda \ d_2 \ \dot{\vartheta}. \qquad \dots (1)$$

નોંધ : ખરેખર તો જો $\overrightarrow{n_1} \neq -\lambda \overrightarrow{n_2}$ તો $\overrightarrow{r} \cdot \overrightarrow{n_1} = d_1$ અને $\overrightarrow{r} \cdot \overrightarrow{n_2} = d_2$ ના છેદમાંથી પસાર થતા કોઈક સમતલનું આ સમીકરણ છે. આ સમીકરણ આવો કોઈ પણ કે પ્રત્યેક સમતલ દર્શાવે છે તે સાબિત કરવું બાકી રહે છે. કાર્તેઝિય સ્વરૂપ

કાર્તઝિય પદ્ધતિમાં, ધારો કે $\vec{n_1} = a_1\hat{i} + b_1\hat{j} + c_1\hat{k}$ $\vec{n_2} = a_2\hat{i} + b_2\hat{j} + c_2\hat{k}$ $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k} \hat{\Theta}.$

અને તેથી (1)

 $(a_1 + \lambda a_2) x + (b_1 + \lambda b_2) y + (c_1 + \lambda c_2) z = d_1 + \lambda d_2$

અથવા $(a_1x + b_1y + c_1z - d_1) + \lambda (a_2x + b_2y + c_2z - d_2) = 0$ બનશે. ... (2)

આ સમીકરણ λ ની પ્રત્યેક કિંમત માટે આપેલા સમતલોના છેદમાંથી પસાર થતા માંગેલા સમતલના સમીકરણનું કાર્તેઝિય સ્વરૂપ છે.

ઉદાહરણ 20 : સમતલો $\vec{r} \cdot (\hat{i}+\hat{j}+\hat{k}) = 6$ અને $\vec{r} \cdot (2\hat{i}+3\hat{j}+4\hat{k}) = -5$ ના છેદમાંથી તથા બિંદુ (1, 1, 1) માંથી પસાર થતા સમતલનું સદિશ સમીકરણ શોધો.

ઉકેલ : અહીં $\vec{n_1} = \hat{i} + \hat{j} + \hat{k}$ અને $\vec{n_2} = 2\hat{i} + 3\hat{j} + \hat{4}\hat{k}$ તથા $d_1 = 6$ અને $d_2 = -5$ છે.

આથી, કોઈક વાસ્તવિક સંખ્યા λ માટે $\vec{r} \cdot \left(\vec{n}_1 + \lambda \vec{n}_2\right) = d_1 + \lambda d_2$ નો ઉપયોગ કરતાં, આપણને

$$\overrightarrow{r} \cdot [\overrightarrow{i} + \overrightarrow{j} + \overrightarrow{k} + \lambda(2\overrightarrow{i} + 3\overrightarrow{j} + 4\overrightarrow{k})] = 6 - 5\lambda, \ \lambda \in \mathbb{R} \qquad \dots (1)$$

$$\begin{aligned} & 414 & = \sqrt{2} \\ & = x^2 + y_1^2 + z^2 k^2 \hat{k} \hat{k}_{11}, \\ & \left(x^2 + y_1^2 + z^2 k^2 \hat{k}_{11} + (1 + 2k)^2 + (1 + 4k) \hat{k}_{11} = 6 - 5k \right) \\ & = 4 \\$$

ધારો કે બિંદુઓ A અને B ના યામ અનુક્રમે (x_1, y_1, z_1) અને (x_2, y_2, z_2) છે.

ત્રિપરિમાશીય ભૂમિતિ

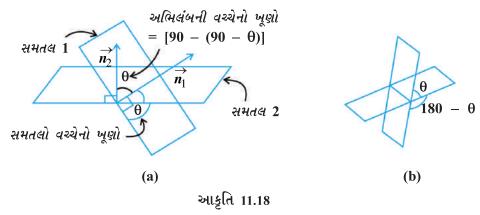
$$\vec{b}_{1} = \vec{a} \cdot \vec{b}_{2} + \vec{b}_{2} + \vec{b}_{2} = \vec{b}_{2} + \vec{b}_{1} + \vec{b}_{1} + \vec{b}_{1} + \vec{b}_{1} + \vec{b}_{1} + \vec{b}_{2} + \vec$$

$$\begin{vmatrix} x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{vmatrix} = \begin{vmatrix} 2 & 1 & 0 \\ -3 & 1 & 5 \\ -1 & 2 & 5 \end{vmatrix} = 0$$

તેથી રેખાઓ સમતલીય છે.

11.8 બે સમતલ વચ્ચેનો ખૂશો

વ્યાખ્યા 2 : બે સમતલ વચ્ચેનો ખૂણો એ તેમના અભિલંબ વચ્ચેનો ખૂણો છે તે રીતે તેને વ્યાખ્યાયિત કરીશું (આકૃતિ 11.18 (a)). નિરીક્ષણ કરો કે જો બે સમતલ વચ્ચેનો ખૂણો θ હોય, તો 180 – θ પણ તેમની વચ્ચેનો ખૂણો થાય (આકૃતિ 11.18 (b)). આપણે તે બે પૈકી લઘુકોણને બે સમતલ વચ્ચેના ખૂણા તરીકે લઈશું.



જો બે સમતલો $\overrightarrow{r} \cdot \overrightarrow{n_1} = d_1$ અને $\overrightarrow{r} \cdot \overrightarrow{n_2} = d_2$ ના અભિલંબ $\overrightarrow{n_1}$ અને $\overrightarrow{n_2}$ હોય તથા તેમના વચ્ચેનો ખૂણો θ હોય, તો

416

ગણિત

કોઈ સામાન્ય બિંદુમાંથી (છેદબિંદુમાંથી) સમતલ પર દોરેલા અભિલંબ વચ્ચેનો ખૂશો θ થશે.

આપણને
$$\cos \theta = \frac{\overrightarrow{n_1 \cdot n_2}}{|\overrightarrow{n_1}||\overrightarrow{n_2}|}$$
 મળે.

 $\overrightarrow{n_1}$ જો $\overrightarrow{n_1} \cdot \overrightarrow{n_2} = 0$ હોય, તો સમતલો પરસ્પર લંબ છે અને જો $\overrightarrow{n_1}$ અને $\overrightarrow{n_2}$ પરસ્પર સમાંતર હોય, તો સમતલો એકબીજાને સમાંતર છે.

કાતેઝિય સ્વરૂપ

ધારો કે સમતલો

$$A_1 x + B_1 y + C_1 z + D_1 = 0$$
 અને $A_2 x + B_2 y + C_2 z + D_2 = 0$

વચ્ચેનો ખૂશો θ છે. આપેલા સમતલના અભિલંબના દિક્ગુશોત્તર અનુક્રમે A_1 , B_1 , C_1 અને A_2 , B_2 , C_2 છે.

આથી, cos
$$\theta = \left| \frac{A_1A_2 + B_1B_2 + C_1C_2}{\sqrt{A_1^2 + B_1^2 + C_1^2} \sqrt{A_2^2 + B_2^2 + C_2^2}} \right|$$

🕝 નોંધ

1. જો સમતલો પરસ્પર લંબ હોય, તો $\theta = 90^{\circ}$ અને તેથી $\cos \theta = 0$. આથી, $A_1A_2 + B_1B_2 + C_1C_2 = 0$ 2. જો સમતલો એકબીજાને સમાંતર હોય, તો $\frac{A_1}{A_2} = \frac{B_1}{B_2} = \frac{C_1}{C_2}$.

ઉદાહરણ 22 : બે સમતલો 2x + y - 2z = 5 અને 3x - 6y - 2z = 7 વચ્ચેનો ખૂશો સદિશની રીતનો ઉપયોગ કરી શોધો.

<mark>ઉકેલ :</mark> બે સમતલ વચ્ચેનો ખૂશો એટલે કે તેમના અભિલંબ વચ્ચેનો ખૂશો. સમતલના સમીકરશ પરથી તેમના અભિલંબ સદિશ

$$\vec{n_1} = 2\hat{i} + \hat{j} - 2\hat{k} \quad \text{with} \quad \vec{n_2} = 3\hat{i} - 6\hat{j} - 2\hat{k}$$

આથી, $\cos \theta = \left| \frac{\vec{n_1} \cdot \vec{n_2}}{|\vec{n_1}||\vec{n_2}||} \right| = \frac{\left| \left(2\hat{i} + \hat{j} - 2\hat{k} \right) \cdot \left(3\hat{i} - 6\hat{j} - 2\hat{k} \right) \right|}{\sqrt{4 + 1 + 4}\sqrt{9 + 36 + 4}} = \frac{4}{21}$
તેથી, $\theta = \cos^{-1}\frac{4}{21}$

ઉદાહરણ 23 : બે સમતલો 3x - 6y + 2z = 7 અને 2x + 2y - 2z = 5 વચ્ચેનો ખૂશો શોધો. ઉકેલ : આપેલ સમતલનાં સમીકરશોને

$$A_1 x + B_1 y + C_1 z + D_1 = 0$$
 અને $A_2 x + B_2 y + C_2 z + D_2 = 0$ સાથે સરખાવતાં,

આપણને $A_1 = 3, B_1 = -6, C_1 = 2$

$$A_2 = 2, B_2 = 2, C_2 = -2$$
 મળે.

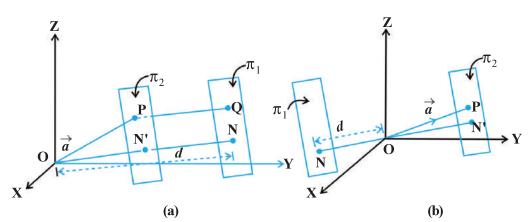
ત્રિપરિમાશીય ભૂમિતિ

$$cos \ \theta = \left| \frac{3 \times 2 + (-6)(2) + (2)(-2)}{\sqrt{\left(3^2 + (-6)^2 + (2)^2\right)} \sqrt{\left(2^2 + 2^2 + (-2)^2\right)}} \right|$$
$$= \left| \frac{-10}{7 \times 2\sqrt{3}} \right| = \frac{5}{7\sqrt{3}} = \frac{5\sqrt{3}}{21}.$$
$$\therefore \ \theta = cos^{-1} \left(\frac{5\sqrt{3}}{21} \right)$$

11.9 સમતલથી બિંદુનું અંતર

સદિશ સ્વરૂપ ઃ

ધારો કે બિંદુ P નો સ્થાન સદિશ \vec{a} છે અને સમતલ π_1 નું સમીકરણ $\vec{r} \cdot \vec{n} = d$ છે. (આકૃતિ 11.19)



આકૃતિ 11.19

P માંથી π_1 ને સમાંતર સમતલ π_2 લો. π_2 નો એકમ અભિલંબ સદિશ \hat{n} છે. આથી, તેનું સમીકરણ $\left(\overrightarrow{r}-\overrightarrow{a}\right)\cdot\hat{n}=0$ થશે.

એટલે કે, $\overrightarrow{r} \cdot \overrightarrow{n} = \overrightarrow{a} \cdot \overrightarrow{n}$

આમ, ઊગમબિંદુથી આ સમતલનું અંતર ON' એ [|] a · [^]/_n| થશે. આથી, P નું સમતલ π₁ થી અંતર PQ (આકૃતિ 11.19 (a)) એ

 $ON - ON' = |d - \vec{a} \cdot \vec{n}|$ આ લંબાઈ એ બિંદુથી આપેલા સમતલના લંબની લંબાઈ છે. આપશે આ જ પ્રમાશેનું પરિશામ (આકૃતિ 11.19 (b)) માટે પશ પ્રસ્થાપિત કરી શકીએ.

🕝 નોંધ

1. \vec{n} અભિલંબવાળા સમતલ π નું સમીકરણ $\vec{r} \cdot \vec{n} = d$ સ્વરૂપમાં હોય, તો લંબઅંતર $\frac{|\vec{a} \cdot \vec{n} - d|}{|\vec{n}|}$ થાય.

2. ઊગમબિંદુ O થી સમતલ $\vec{r} \cdot \vec{n} = d$ નું લંબઅંતર $\frac{|d|}{|\vec{n}|}$ છે. $(\vec{a} = \vec{0})$ હોવાથી)

418

ગણિત

કાર્તેઝિય સ્વરૂપ

આપેલ બિંદુ $P(x_1, y_1, z_1)$ નો સ્થાનસદિશ \overrightarrow{a} છે અને આપેલ સમતલનું કાર્તેઝિય સમીકરણ Ax + By + Cz = D છે. આથી,

$$\vec{a} = x_1 \hat{i} + y_1 \hat{j} + z_1 \hat{k}$$
$$\vec{n} = A_i \hat{i} + B_j \hat{i} + C_k \hat{k} \text{ and}.$$

આથી, નોંધ (1) પરથી, P થી સમતલનું લંબઅંતર

$$= \frac{\left| \frac{\left(x_{1}\hat{i} + y_{1}\hat{j} + z_{1}\hat{k}\right) \cdot \left(A\hat{i} + B\hat{j} + C\hat{k}\right) - D}{\sqrt{A^{2} + B^{2} + C^{2}}} \right|}{\sqrt{A^{2} + B^{2} + C^{2}}}$$
$$= \frac{\left| \frac{Ax_{1} + By_{1} + Cz_{1} - D}{\sqrt{A^{2} + B^{2} + C^{2}}} \right|}{\sqrt{A^{2} + B^{2} + C^{2}}}$$

ઉદાહરણ 24 : સમતલ $\vec{r} \cdot (6_i^{\wedge} - 3_j^{\wedge} + 2_k^{\wedge}) = 4$ થી બિંદુ (2, 5, -3) નું અંતર શોધો.

ઉદેલ : અહીં
$$\vec{a} = 2\hat{i} + 5\hat{j} - 3\hat{k}, \ \vec{n} = 6\hat{i} - 3\hat{j} + 2\hat{k}$$
 અને $d = 4$

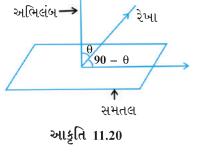
તેથી, આપેલ સમતલથી બિંદુ (2, 5, -3)નું અંતર

$$\frac{\left|(2\hat{i}+5\hat{j}-3\hat{k})\cdot(6\hat{i}-3\hat{j}+2\hat{k})-4\right|}{\left|6\hat{i}-3\hat{j}+2\hat{k}\right|} = \frac{\left|12-15-6-4\right|}{\sqrt{36+9+4}} = \frac{13}{7}$$

11.10 રેખા અને સમતલ વચ્ચેનો ખૂશો

વ્યાખ્યા 3 : રેખા અને સમતલ વચ્ચેનો ખૂણો એ રેખા અને સમતલના અભિલંબ વચ્ચેના ખૂણાનો કોટિકોણ છે. (આકૃતિ 11.20)

સદિશ સ્વરૂપ : રેખાનું સમીકરણ $\vec{r} = \vec{a} + \lambda \vec{b}$ અને સમતલનું સમીકરણ $\vec{r} \cdot \vec{n} = d$ છે, તો રેખા અને સમતલના અભિલંબ વચ્ચેનો ખૂણો θ લેતાં,



$$\cos \theta = \left| \frac{\overrightarrow{b} \cdot \overrightarrow{n}}{|\overrightarrow{b}||\overrightarrow{n}|} \right|$$

અને તેથી રેખા અને સમતલ વચ્ચેનો ખૂશો ϕ એ 90 – θ થાય. અર્થાત, $sin (90 - \theta) = cos \theta$

ત્રિપરિમાણીય ભૂમિતિ

અર્થાત્
$$\sin \phi = \left| \frac{\overrightarrow{b} \cdot \overrightarrow{n}}{|\overrightarrow{b}|| \overrightarrow{n}|} \right|$$
 અથવા $\phi = \sin^{-1} \left| \frac{\overrightarrow{b} \cdot \overrightarrow{n}}{|\overrightarrow{b}|| \overrightarrow{n}|} \right|$

ઉદાહરણ 25 : રેખા $\frac{x+1}{2} = \frac{y}{3} = \frac{z-3}{6}$ અને સમતલ 10x + 2y - 11z = 3 વચ્ચેનો ખૂણો શોધો.

ઉકેલ : ધારો કે રેખા અને સમતલ વચ્ચેનો ખૂશો φ છે.

આપેલ સમીકરણને સદિશ સ્વરૂપમાં ફેરવતાં, આપણને

$$\vec{r} = (-\vec{i} + 3\vec{k}) + \lambda (2\vec{i} + 3\vec{j} + 6\vec{k})$$

અને

$$\vec{r} \cdot (10\hat{i} + 2\hat{j} - 11\hat{k}) = 3$$
 મળે.

અહીં $\vec{b} = 2\hat{i} + 3\hat{j} + 6\hat{k}$ અને $\vec{n} = 10\hat{i} + 2\hat{j} - 11\hat{k}$

$$\sin\phi = \frac{(2\hat{i}+3\hat{j}+6\hat{k})\cdot(10\hat{i}+2\hat{j}-11\hat{k})}{\sqrt{2^2+3^2+6^2}\sqrt{10^2+2^2+11^2}}$$

$$= \left| \frac{-40}{7 \times 15} \right| = \left| \frac{-8}{21} \right| = \frac{8}{21} \quad \text{weat} \quad \phi = \sin^{-1} \left(\frac{8}{21} \right)$$

સ્વાધ્યાય 11.3

- 2. ઊગમબિંદુથી 7 એકમ અંતરે આવેલા અને જેનો અભિલંબ સદિશ $3\hat{i} + 5\hat{j} 6\hat{k}$ હોય તેવા સમતલનું સદિશ સમીકરજ્ઞ શોધો.
- 3. નીચેના પૈકી પ્રત્યેક સમતલનું કાર્તેઝિય સમીકરશ શોધો :

(a)
$$\overrightarrow{r} \cdot (\overrightarrow{i} + \overrightarrow{j} - \overrightarrow{k}) = 2$$
 (b) $\overrightarrow{r} \cdot (2\overrightarrow{i} + 3\overrightarrow{j} - 4\overrightarrow{k}) = 1$

(c)
$$\vec{r} \cdot ((s-2t)\vec{i} + (3-t)\vec{j} + (2s+t)\vec{k}) = 15$$

- 4. નીચેના પૈકી પ્રત્યેક પ્રશ્નમાં ઊગમબિંદુથી સમતલ પર દોરેલા લંબના લંબપાદના યામ શોધો :
 - (a) 2x + 3y + 4z 12 = 0 (b) 3y + 4z 6 = 0
 - (c) x + y + z = 1 (b) 5y + 8 = 0

Downloaded from https:// www.studiestoday.com

419

420	ગણિત
5.	નીચેના પૈકી પ્રત્યેક સમતલનાં સદિશ અને કાર્તેઝિય સમીકરણ શોધો :
	(a) જે (1, 0, –2) માંથી પસાર થાય અને જેનો અભિલંબ સદિશ \ddot{i} + \ddot{j} – \hat{k} હોય.
	(b) જે (1, 4, 6) માંથી પસાર થાય અને જેનો અભિલંબ સદિશ $\ddot{i} - 2\dot{j} + \dot{k}$ હોય.
6.	નીચેના પૈકી આપેલ પ્રત્યેક પ્રશ્નમાં આપેલાં ત્રણ બિંદુઓમાંથી પસાર થતા સમતલનું સમીકરણ મેળવો :
	(a) (1, 1, -1), (6, 4, -5), (-4, -2, 3)
	(b) (1, 1, 0), (1, 2, 1), (-2, 2, -1)
7.	સમતલ $2x + y - z = 5$ દ્વારા અક્ષો પર કપાતા અંતઃખંડ શોધો.
8.	<i>y</i> -અક્ષ પર 3 અંતઃખંડવાળા અને ZOX સમતલને સમાંતર સમતલનું સમીકરણ શોધો.
9.	સમતલો $3x - y + 2z - 4 = 0$ અને $x + y + z - 2 = 0$ ના છેદમાંથી તથા બિંદુ (2, 2, 1) માંથી
	પસાર થતા સમતલનું સમીકરણ શોધો.
10.	સમતલો $\vec{r} \cdot (2\vec{i} + 2\vec{j} - 3\vec{k}) = 7$ અને $\vec{r} \cdot (2\vec{i} + 5\vec{j} + 3\vec{k}) = 9$ ના છેદમાંથી તથા બિંદુ
	(2, 1, 3) માંથી પસાર થતા સમતલનું સદિશ સમીકરણ શોધો.
11.	સમતલો $x + y + z = 1$ અને $2x + 3y + 4z = 5$ ની છેદરેખામાંથી પસાર થતા તથા સમતલ
	x - y + z = 0 ને લંબ હોય તેવા સમતલનું સમીકરશ શોધો.
12.	સમતલના સદિશ સમીકરણ $\vec{r} \cdot (2\hat{i} + 2\hat{j} - 3\hat{k}) = 5$ અને $\vec{r} \cdot (3\hat{i} - 3\hat{j} + 5\hat{k}) = 3$ છે.
	તેમની વચ્ચેનો ખૂશો શોધો.
13.	નીચેના પૈકી પ્રત્યેક પ્રશ્નમાં આપેલા સમતલ સમાંતર છે કે પરસ્પર લંબ છે તે નક્કી કરો અને જો
	આ પૈકી એક પણ ન હોય, તો તેમની વચ્ચેનો ખૂણો શોધો :
	(a) $7x + 5y + 6z + 30 = 0$ અને $3x - y - 10z + 4 = 0$
	(b) $2x + y + 3z - 2 = 0$ અને $x - 2y + 5 = 0$
	(c) $2x - 2y + 4z + 5 = 0$ અને $3x - 3y + 6z - 1 = 0$
	(d) $2x - y + 3z - 1 = 0$ અને $2x - y + 3z + 3 = 0$
	(e) $4x + 8y + z - 8 = 0$ अने $y + z - 4 = 0$
14.	નીચેના પૈકી પ્રત્યેક પ્રશ્નમાં આપેલા બિંદુનું તેમને અનુરૂપ આપેલા સમતલથી અંતર શોધો ઃ
	બિંદુ સમતલ
	(a) $(0, 0, 0)$ $3x - 4y + 12z = 3$
	(b) $(3, -2, 1)$ $2x - y + 2z + 3 = 0$
	(c) $(2, 3, -5)$ $x + 2y - 2z = 9$

(d) (-6, 0, 0) 2x - 3y + 6z - 2 = 0

ત્રિપરિમાણીય ભૂમિતિ

પ્રકીર્શ ઉદાહરણો

ઉદાહરણ 26 : એક રેખા સમઘનના વિકર્ણા સાથે α , β , γ અને δ ખૂણા બનાવે છે. સાબિત કરો કે

 $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma + \cos^2 \delta = \frac{4}{3}$

ઉકેલ : સમઘન એ સમાન લંબાઈ, પહોળાઈ અને ઊંચાઈવાળો લંબ સમાંતર ફ્લક છે. ધારો કે OADB-FEGC એ પ્રત્યેક બાજુની લંબાઈ *a* એકમ હોય તેવો સમઘન છે. (આકૃતિ 11.21)

OE, AF, BG અને CD તેના ચાર વિકશો છે.
બે બિંદુઓ O અને E ને જોડતી રેખા વિકર્શ OE છે. તેની દિક્ફોસાઇન

$$\frac{a-0}{\sqrt{a^2 + a^2 + a^2}}, \frac{a-0}{\sqrt{a^2 + a^2 + a^2}}, \frac{a-0}{\sqrt{a^2 + a^2 + a^2}}$$

$$(a, 0, a) G$$

$$(a, 1, a)$$

$$= \frac{1}{3} \left[(l+m+n)^2 + (-l+m+n)^2 + (l-m+n)^2 (l+m-n)^2 \right]$$
$$= \frac{1}{3} \left[4(l^2+m^2+n^2) \right] = \frac{4}{3} \text{ H}\hat{\alpha}. \qquad (l^2+m^2+n^2=1 \text{ signal})$$

ઉદાહરણ 27 : જે સમતલ 2x + 3y - 2z = 5 અને x + 2y - 3z = 8 પૈકી પ્રત્યેકને લંબ હોય અને જે બિંદુ (1, -1, 2) માંથી પસાર થતો હોય તેવા સમતલનું સમીકરણ શોધો. **ઉકેલ :** આપેલા બિંદુમાંથી પસાર થતો સમતલ

A
$$(x - 1) + B(y + 1) + C(z - 2) = 0$$
 છે. ... (1)
સમતલો $2x + 3y - 2z = 5$ અને $x + 2y - 3z = 8$ સાથે (1)માં આપેલા સમતલ પર લંબત્વની શરત પ્રયોજતાં,

422 ગાયત
આપણને 2A + 3B - 2C = 0 અને A +2B - 3C = 0 મળે.
આ સમીકરણોને ઉકેલતાં, આપણને A = - 5C અને B = 4C મળે.
આથી, જરૂરી સમીકરણ
-5C (x - 1) + 4C (y + 1) + C (z - 2) = 0
અર્થાત,
$$5x - 4y - z = 7$$
 થશે.
6Eાહરણ 28 : A (3, -1, 2), B (5, 2, 4) અને C (-1, -1, 6) થી બનતા સમતલ અને બિંદુ P (6, 5, 9) વચ્ચેનું
અંતર શોધો.
6Eાહરણ 28 : A (3, -1, 2), B (5, 2, 4) અને C (-1, -1, 6) થી બનતા સમતલ પર દોરેલો લંબપાદ D છે. PD
માંગેલું અંતર થશે. \overrightarrow{PD} એ \overrightarrow{AP} નો $\overrightarrow{AB} \times \overrightarrow{AC}$ પરનો પ્રક્ષેપ છે.
આથી, PD = \overrightarrow{AP} નું $\overrightarrow{AB} \times \overrightarrow{AC}$ ની દિશામાં એકમ સદિશ સાથેનું અંતઃગુણન.
હવે, $\overrightarrow{AP} = 3\hat{i} + 6\hat{j} + 7\hat{k}$
 $\overrightarrow{AB} \times \overrightarrow{AC} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 3 & 2 \\ -4 & 0 & 4 \end{vmatrix} = 12\hat{i} - 16\hat{j} + 12\hat{k}$
 $\overrightarrow{AB} \times \overrightarrow{AC}$ ની દિશામાં એકમ સદિશ = $\frac{3\hat{i} - 4\hat{j} + 3\hat{k}}{\sqrt{34}}$
આથી, PD = $\begin{vmatrix} (3\hat{i} + 6\hat{j} + 7\hat{k}) + \frac{3\hat{i} - 4\hat{j} + 3\hat{k}}{\sqrt{34}} \end{vmatrix}$
 $= \frac{3\sqrt{34}}{17}$

વૈકલ્પિક રીત A, B અને C માંથી પસાર થતા સમતલનું સમીકરણ શોધો અને પછી બિંદુ P થી સમતલના અંતરની ગણતરી કરો.

ઉદાહરણ 29 : સાબિત કરો કે રેખાઓ

$$\frac{x-a+d}{\alpha-\delta} = \frac{y-a}{\alpha} = \frac{z-a-d}{\alpha+\delta}$$

અને
$$\frac{x-b+c}{\beta-\gamma} = \frac{y-b}{\beta} = \frac{z-b-c}{\beta+\gamma}$$
 સમતલીય છે.
ઉકેલ :
અહીં, $x_1 = a - d$ $x_2 = b - c$

Solve,
$$x_1 = a - d$$

 $y_1 = a$
 $z_1 = a + d$
 $a_1 = \alpha - \delta$
 $b_1 = \alpha$
 $c_1 = \alpha + \delta$
 $x_2 = b - c$
 $y_2 = b$
 $z_2 = b + c$
 $a_2 = \beta - \gamma$
 $b_2 = \beta$
 $c_2 = \beta + \gamma$

Downloaded from https:// www.studiestoday.com

ગણિત

ત્રિપરિમાશીય ભૂમિતિ

હવે નિશ્વાયક

$$\begin{vmatrix} x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{vmatrix} = \begin{vmatrix} b - c - a + d & b - a & b + c - a - d \\ \alpha - \delta & \alpha & \alpha + \delta \\ \beta - \gamma & \beta & \beta + \gamma \end{vmatrix}$$
 êtri,

ત્રીજો સ્તંભ પ્રથમ સ્તંભમાં ઉમેરતાં

$$2\begin{vmatrix} b-a & b-a & b+c-a-d \\ \alpha & \alpha & \alpha+\delta \\ \beta & \beta & \beta+\gamma \end{vmatrix} = 0$$
(પ્રથમ અને બીજો સ્તંભ સમાન હોવાથી)

:. આપેલી બંને રેખાઓ સમતલીય છે.

ઉદાહરણ 30 : બિંદુઓ A (3, 4, 1) અને B (5, 1, 6) માંથી પસાર થતી રેખા XY સમતલને જે બિંદુએ છેદે તે બિંદુના યામ શોધો.

ઉકેલ : બિંદુઓ A અને B માંથી પસાર થતી રેખાનું સદિશ સમીકરશ

$$\vec{r} = 3\hat{i} + 4\hat{j} + \hat{k} + \lambda \left[(5-3)\hat{i} + (1-4)\hat{j} + (6-1)\hat{k} \right]$$

$$= 3\hat{i} + 4\hat{j} + \hat{k} + \lambda \left(2\hat{i} - 3\hat{j} + 5\hat{k} \right) \qquad \dots (1)$$

ધારો કે રેખા AB એ XY સમતલને P બિંદુએ છેદે છે. તેથી બિંદુ P નો સ્થાનસદિશ $x\hat{i} + y\hat{j}$ સ્વરૂપમાં મળે. આ બિંદુ સમીકરણ (1)નું સમાધાન કરશે જ. (શા માટે ?)

અર્થાત્
$$x\hat{i} + y\hat{j} = (3 + 2\lambda)\hat{i} + (4 - 3\lambda)\hat{j} + (1 + 5\lambda)\hat{k}$$

 \hat{i} , \hat{j} અને \hat{k} ના સહગુણકો સરખાવતાં, (અર્થાત્ સમાન સદિશના અનુરૂપ યામ સમાન હોય.)

$$x = 3 + 2\lambda$$
$$y = 4 - 3\lambda$$
$$0 = 1 + 5\lambda$$

ઉપરનાં સમીકરણો ઉકેલતાં,

$$x = \frac{13}{5}$$
 अने $y = \frac{23}{5}$

આથી માંગેલા બિંદુના યામ $\left(\frac{13}{5}, \frac{23}{5}, 0\right)$

પ્રકીર્શ સ્વાધ્યાય 11

- સાબિત કરો કે ઊગમબિંદુને (2, 1, 1) બિંદુ સાથે જોડતી રેખા એ બિંદુઓ (3, 5, -1), (4, 3, -1) થી બનતી રેખાને લંબ છે.
- 2. જો પરસ્પર લંબ હોય તેવી બે રેખાઓની દિક્કોસાઇન l_1 , m_1 , n_1 અને l_2 , m_2 , n_2 હોય, તો તે બંનેને લંબરેખાની દિક્કોસાઇન $m_1n_2 m_2n_1$, $n_1l_2 n_2l_1$, $l_1m_2 l_2m_1$ છે.

424

ગણિત

- 3. જે રેખાઓના દિક્ગુણોત્તર a, b, c અને b c, c a, a b હોય તે રેખાઓ વચ્ચેનો ખૂણો શોધો.
- 4. x-અક્ષને સમાંતર અને ઊગમબિંદુમાંથી પસાર થતી રેખાનું સમીકરણ શોધો.
- જો બિંદુઓ A, B, C, D ના યામ અનુક્રમે (1, 2, 3), (4, 5, 7), (-4, 3, -6) અને (2, 9, 2) હોય, તો રેખાઓ AB અને CD વચ્ચેનો ખૂશો શોધો.
- 6. જો રેખાઓ $\frac{x-1}{-3} = \frac{y-2}{2k} = \frac{z-3}{2}$ અને $\frac{x-1}{3k} = \frac{y-1}{1} = \frac{z-6}{-5}$ પરસ્પર લંબ હોય, તો k શોધો.
- 7. (1, 2, 3) માંથી પસાર થતી અને સમતલ $\vec{r} \cdot (\vec{i} + 2\vec{j} 5\vec{k}) + 9 = 0$ ને લંબ રેખાનું સદિશ સમીકરણ શોધો.
- 8. (a, b, c) માંથી પસાર થતા અને સમતલ $\overrightarrow{r} \cdot (\overrightarrow{i} + \overrightarrow{j} + \overrightarrow{k}) = 2$ ને સમાંતર સમતલનું સમીકરણ શોધો.
- 9. રેખાઓ $\vec{r} = 6\hat{i} + 2\hat{j} + 2\hat{k} + \lambda(\hat{i} 2\hat{j} + 2\hat{k})$ અને $\vec{r} = -4\hat{i} \hat{k} + \mu(3\hat{i} 2\hat{j} 2\hat{k})$ વચ્ચેનું લઘુતમ અંતર શોધો.
- (5, 1, 6) અને (3, 4, 1) માંથી પસાર થતી રેખા YZ સમતલના જે બિંદુમાંથી પસાર થાય તેના યામ શોધો.
- (5, 1, 6) અને (3, 4, 1) માંથી પસાર થતી રેખા ZX સમતલના જે બિંદુમાંથી પસાર થાય તે બિંદુના યામ શોધો.
- 12. (3, -4, -5) અને (2, -3, 1) માંથી પસાર થતી રેખા 2x + y + z = 7 સમતલના જે બિંદુમાંથી પસાર થાય તે બિંદુના યામ શોધો.
- 13. (-1, 3, 2) બિંદુમાંથી પસાર થતા તથા પ્રત્યેક સમતલ x + 2y + 3z = 5 અને 3x + 3y + z = 0ને લંબ હોય તેવા સમતલનું સમીકરણ શોધો.
- **14.** જો બિંદુઓ (1, 1, p) અને (-3, 0, 1) સમતલ $\vec{r} \cdot (3\hat{i} + 4\hat{j} 12\hat{k}) + 13 = 0$ થી સમાન અંતરે આવેલાં હોય, તો p નું મૂલ્ય શોધો.
- 15. સમતલો $\vec{r} \cdot (\hat{i} + \hat{j} + \hat{k}) = 1$ અને $\vec{r} \cdot (2\hat{i} + 3\hat{j} \hat{k}) + 4 = 0$ ની છેદરેખામાંથી પસાર થતા તથા *x*-અક્ષને સમાંતર સમતલનું સમીકરણ શોધો.
- જો O ઊગમબિંદુ હોય અને P ના યામ (1, 2, -3) હોય, તો P માંથી પસાર થતા અને OP ને લંબ સમતલનું સમીકરણ શોધો.
- 17. સમતલો $\vec{r} \cdot (\hat{i} + 2\hat{j} + 3\hat{k}) 4 = 0$, $\vec{r} \cdot (2\hat{i} + \hat{j} \hat{k}) + 5 = 0$ ની છેદરેખાને સમાવતા તથા સમતલ $\vec{r} \cdot (5\hat{i} + 3\hat{j} 6\hat{k}) + 8 = 0$ ને લંબ સમતલનું સમીકરણ શોધો.

ત્રિપરિમાણીય ભૂમિતિ

- **18.** રેખા $\overrightarrow{r} = 2\hat{i} \hat{j} + 2\hat{k} + \lambda(3\hat{i} + 4\hat{j} + 2\hat{k})$ અને સમતલ $\overrightarrow{r} \cdot (\hat{i} \hat{j} + \hat{k}) = 5$ ના છેદબિંદુથી બિંદુ (-1, -5, -10) નું અંતર શોધો.
- **19.** (1, 2, 3) માંથી પસાર થતી અને સમતલો $\vec{r} \cdot (\hat{i} \hat{j} + 2\hat{k}) = 5$ તથા $\vec{r} \cdot (3\hat{i} + \hat{j} + \hat{k}) = 6$ ને સમાંતર રેખાનું સદિશ સમીકરણ શોધો.
- **20.** બિંદુ (1, 2, -4) માંથી પસાર થતી અને બે રેખાઓ $\frac{x-8}{3} = \frac{y+19}{-16} = \frac{z-10}{7}$ તથા

 $\frac{x-15}{3} = \frac{y-29}{8} = \frac{z-5}{-5}$ ને લંબ હોય તેવી રેખાનું સદિશ સમીકરણ શોધો.

21. જો સમતલના અંતઃખંડો *a*, *b*, *c* હોય અને તે ઊગમબિંદુથી *p* એકમ અંતરે આવેલું હોય, તો સાબિત કરો કે $\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{a^2} = \frac{1}{p^2}$.

22. બે સમતલો : 2x + 3y + 4z = 4 અને 4x + 6y + 8z = 12 વચ્ચેનું અંતર

(A) 2 એકમ (B) 4 એકમ (C) 8 એકમ (D) $\frac{2}{\sqrt{29}}$ એકમ

23. સમતલો : 2x - y + 4z = 5 અને 5x - 2.5y + 10z = 6

(A) પરસ્પર લંબ છે. (B) સમાંતર છે. (C) y-અક્ષને છેદે છે. (D) $\left(0, 0, \frac{5}{4}\right)$ માંથી પસાર થાય છે.

સારાંશ

- 🔶 રેખાએ અક્ષોની ધન દિશા સાથે બનાવેલા ખૂણાઓના કોસાઈનને રેખાની દિક્કોસાઇન કહે છે.
- જો રેખાની દિક્કોસાઇન *l, m, n* હોય, તો $l^2 + m^2 + n^2 = 1$
- બે બિંદુઓ P (x_1, y_1, z_1) અને Q (x_2, y_2, z_2) ને જોડતી રેખાની દિક્કોસાઇન $\frac{x_2 x_1}{PQ}, \frac{y_2 y_1}{PQ}, \frac{z_2 z_1}{PQ}$ છે. PQ = $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$

♦ જો રેખાની દિક્કોસાઇન *l, m, n* અને દિક્ગુણોત્તર *a, b, c* હોય, તો

$$l = \frac{a}{\sqrt{a^2 + b^2 + c^2}}; \ m = \frac{b}{\sqrt{a^2 + b^2 + c^2}}; \ n = \frac{c}{\sqrt{a^2 + b^2 + c^2}}$$

 અવકાશની જે રેખાઓ સમાંતર નથી તથા છેદતી નથી તેમને વિષમતલીય રેખાઓ કહે છે. તેઓ ભિન્ન સમતલમાં આવેલી હોય છે. (તેમને સમાવતું કોઈ સમતલ હોઈ જ ના શકે.)

426

ગણિત

- કોઈ પણ બિંદુ (પ્રાથમિક ધોરણે ઊગમબિંદુ)માંથી પ્રત્યેક વિષમતલીય રેખાને સમાંતર દોરેલી એકબીજાને
 છેદતી બે રેખાઓ વચ્ચેના ખૂણાને વિષમતલીય રેખાઓ વચ્ચેનો ખૂણો કહે છે.
- જો l_1 , m_1 , n_1 અને l_2 , m_2 , n_2 એ રેખાઓની દિક્કોસાઇન હોય અને તેમની વચ્ચેનો લઘુકોણ θ હોય, તો $\cos \theta = |l_1 l_2 + m_1 m_2 + n_1 n_2|$ થાય.
- જો a₁, b₁, c₁ અને a₂, b₂, c₂ એ બે રેખાઓના દિક્ગુણોત્તર હોય અને આ બે રેખાઓ વચ્ચેનો લઘુકોણ θ હોય, તો

$$\cos \theta = \frac{a_1 a_2 + b_1 b_2 + c_1 c_2}{\sqrt{a_1^2 + b_1^2 + c_1^2} \sqrt{a_2^2 + b_2^2 + c_2^2}}$$

• સ્થાન સદિશ \vec{a} વાળા આપેલા બિંદુમાંથી પસાર થતી અને આપેલ સદિશ \vec{b} ને સમાંતર રેખાનું સદિશ સમીકરણ $\vec{r} = \vec{a} + \lambda \vec{b}$ છે.

$$\frac{x-x_1}{l} = \frac{y-y_1}{m} = \frac{z-z_1}{n}$$
 થશે.

- \vec{a} અને \vec{b} સ્થાન સદિશવાળાં બે બિંદુઓમાંથી પસાર થતી રેખાનું સદિશ સમીકરણ $\vec{r} = \vec{a} + \lambda (\vec{b} - \vec{a})$ છે.
- ullet બે બિંદુ $(x_1, \ y_1, \ z_1)$ અને $(x_2, \ y_2, \ z_2)$ માંથી પસાર થતી રેખાનું કાર્તઝિય સમીકરશ

$$\frac{x-x_1}{x_2-x_1} = \frac{y-y_1}{y_2-y_1} = \frac{z-z_1}{z_2-z_1} \hat{\Theta}.$$

- જો $\overrightarrow{r} = \overrightarrow{a_1} + \lambda \overrightarrow{b_1}$ અને $\overrightarrow{r} = \overrightarrow{a_2} + \lambda \overrightarrow{b_2}$ વચ્ચેનો લઘુકોણ θ હોય, તો $\cos \theta = \left| \frac{\overrightarrow{b_1} \cdot \overrightarrow{b_2}}{|\overrightarrow{b_1}| |\overrightarrow{b_2}|} \right|$ છે.
- જો બે રેખાનાં સમીકરણ $\frac{x-x_1}{l_1} = \frac{y-y_1}{m_1} = \frac{z-z_1}{n_1}$ અને $\frac{x-x_2}{l_2} = \frac{y-y_2}{m_2} = \frac{z-z_2}{n_2}$ હોય તથા તેમની વચ્ચેનો લઘુકોણ θ હોય, તો $\cos \theta = |l_1 l_2 + m_1 m_2 + n_1 n_2|$.
- બે વિષમતલીય રેખાઓ વચ્ચેનું લઘુતમ અંતર એટલે કે બંને રેખાઓને લંબ રેખાખંડની લંબાઈ.

•
$$\overrightarrow{r} = \overrightarrow{a_1} + \lambda \overrightarrow{b_1}$$
 અને $\overrightarrow{r} = \overrightarrow{a_2} + \lambda \overrightarrow{b_2}$ વચ્ચેનું લઘુતમ અંતર
$$\frac{\left|\left(\overrightarrow{b_1} \times \overrightarrow{b_2}\right) \cdot \left(\overrightarrow{a_2} - \overrightarrow{a_1}\right)\right|}{\left|\overrightarrow{b_1} \times \overrightarrow{b_2}\right|}$$
 છે.

ત્રિપરિમાશીય ભૂમિતિ

$$\hat{\mathbf{x}} = \hat{\mathbf{x}}_{1} = \frac{y - y_{1}}{b_{1}} = \frac{z - z_{1}}{c_{1}} \quad \text{wh} \quad \frac{x - x_{2}}{a_{2}} = \frac{y - y_{2}}{b_{2}} = \frac{z - z_{2}}{c_{2}} \quad q \approx \hat{\mathbf{x}}_{2} + \hat{\mathbf{y}}_{2} + \hat{\mathbf{y}}$$

• સમાંતર રેખાઓ $\overrightarrow{r} = \overrightarrow{a_1} + \lambda \overrightarrow{b}$ અને $\overrightarrow{r} = \overrightarrow{a_2} + \mu \overrightarrow{b}$ વચ્ચેનું અંતર

$$\frac{\overrightarrow{b} \times \left(\overrightarrow{a_2} - \overrightarrow{a_1}\right)}{\left|\overrightarrow{b}\right|} \quad \hat{\Theta}.$$

- ઊગમબિંદુથી d અંતરે આવેલા અને ઊગમબિંદુમાંથી સમતલ પરના અભિલંબ એકમ સદિશ n aાળા સમતલનું સદિશ સ્વરૂપમાં સમીકરશ r .n = d છે.
- ઊગમબિંદુથી d અંતરે આવેલા અને જેના સમતલ પરના અભિલંબ સદિશની દિક્કોસાઇન l, m, n હોય તેવા સમતલનું સમીકરણ lx + my + nz = d છે.
- \overrightarrow{a} સ્થાન સદિશવાળા બિંદુમાંથી પસાર થતા અને સદિશ \overrightarrow{n} ને લંબ હોય તેવા સમતલનું સમીકરણ $(\overrightarrow{r}-\overrightarrow{a})$. $\overrightarrow{n}=0$
- A, B, C દિક્ગુણોત્તરવાળી આપેલી રેખાને લંબ અને આપેલ બિંદુ (x₁, y₁, z₁) માંથી પસાર થતા સમતલનું સમીકરણ A (x − x₁) + B (y − y₁) + C (z − z₁) = 0
- ત્રણ અસમરેખ બિંદુઓ (x₁, y₁, z₁) (x₂, y₂, z₂) અને (x₃, y₃, z₃) માંથી પસાર થતા સમતલનું સમીકરણ

$$\begin{vmatrix} x - x_1 & y - y_1 & z - z_1 \\ x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ x_3 - x_1 & y_3 - y_1 & z_3 - z_1 \end{vmatrix} = 0 \quad \mathfrak{O}.$$

- \vec{a} , \vec{b} અને \vec{c} સ્થાન સદિશવાળાં ત્રણ અસમરેખ બિંદુઓમાંથી પસાર થતા સમતલનું સદિશ સમીકરણ $(\vec{r} \vec{a}) \cdot \left[\left(\vec{b} \vec{a} \right) \times \left(\vec{c} \vec{a} \right) \right] = 0$ છે.
- યામાક્ષોને (a, 0, 0), (0, b, 0) અને (0, 0, c) માં છેદતા સમતલનું સમીકરણ $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$ છે.
- સમતલો $\vec{r} \cdot \vec{n_1} = d_1$ અને $\vec{r} \cdot \vec{n_2} = d_2$ ના છેદમાંથી પસાર થતા સમતલનું સદિશ સમીકરણ $\vec{r} \cdot \left(\vec{n_1} + \lambda \vec{n_2}\right) = d_1 + \lambda d_2$ છે, જ્યાં λ એ કોઈ પણ શૂન્યેતર અચળ છે.
- આપેલા બે સમતલો $A_1x + B_1y + C_1z + D_1 = 0$ અને $A_2x + B_2y + C_2z + D_2 = 0$ ના છેદમાંથી પસાર થતા સમતલનું કાર્તેઝિય સમીકરણ $(A_1 x + B_1 y + C_1z + D_1) + \lambda (A_2x + B_2 y + C_2 z + D_2) = 0.$

428

$$\frac{x-x_1}{a_1} = \frac{y-y_1}{b_1} = \frac{z-z_1}{c_1} \quad \text{if } \frac{x-x_2}{a_2} = \frac{y-y_2}{b_2} = \frac{z-z_2}{c_2} \text{ and } uu.$$

$$lacksim$$
 જો સદિશ સ્વરૂપે આપેલા બે સમતલો $ec r \cdot ec n_1 = d_1$ અને $ec r \cdot ec n_2 = d_2$ વચ્ચેનો ખૂણો $heta$ હોય, તો

$$\theta = \cos^{-1} \left| \frac{\overrightarrow{n_1} \cdot \overrightarrow{n_2}}{|\overrightarrow{n_1}| | \overrightarrow{n_2}|} \right|$$

રેખા $\overrightarrow{r} = \overrightarrow{a} + \lambda \overrightarrow{b}$ અને સમતલ $\overrightarrow{r} \cdot \overrightarrow{n} = d$ વચ્ચેનો ખૂણો ϕ હોય, તો $\sin \phi = \left| \frac{\overrightarrow{b} \cdot \overrightarrow{n}}{|\overrightarrow{b}| | \overrightarrow{n}|} \right|$

• સમતલો
$$A_1x + B_1y + C_1z + D_1 = 0$$
 અને $A_2x + B_2y + C_2z + D_2 = 0$ વચ્ચેનો ખૂણો

$$\cos \theta = \left| \frac{A_1 A_2 + B_1 B_2 + C_1 C_2}{\sqrt{A_1^2 + B_1^2 + C_1^2} \sqrt{A_2^2 + B_2^2 + C_2^2}} \right| \text{ GIRL H}^{0}.$$

• જે બિંદુનો સ્થાન સદિશ
$$\vec{a}$$
 હોય તેનું $\vec{r} \cdot \hat{n} = d$ થી લંબઅંતર $|d - \vec{a} \cdot \hat{n}|$ છે.

•
$$(x_1, y_1, z_1)$$
 if and $Ax + By + Cz + D = 0$ at with $\frac{Ax_1 + By_1 + Cz_1 + D}{\sqrt{A^2 + B^2 + C^2}}$ is

પ્રકરણ

સુરેખ આયોજન

★ The mathematical experience of the student is incomplete if he never had the opportunity to solve a problem invented by himself. – G. POLYA ◆

12.1 પ્રાસ્તાવિક

આપણે અગાઉના વર્ગોમાં સુરેખ સમીકરણ સંહતિ અને તેના રોજિંદી સમસ્યાઓમાં ઉપયોગોની ચર્ચા કરી હતી. ધોરણ XI માં આપણે સુરેખ અસમતાઓ અને દ્વિચલ સુરેખ અસમતા સંહતિના આલેખની રીતે મળતા ઉકેલનો અભ્યાસ કર્યો. ગણિતમાં અસમતા સંહતિ/સમીકરણ સંહતિ ઘણી ઉપયોગી છે. આ પ્રકરણમાં આપણે નીચેના જેવી કેટલીક વાસ્તવિક જીવનની સમસ્યાઓના ઉકેલ માટે અસમતા સંહતિ/ સમીકરણ સંહતિનો ઉપયોગ કરીશું :

ફર્નિચરનો એક વેપારી ફ્રક્ત બે જ વસ્તુઓ ટેબલ અને ખુરશીનું વેચાણ કરે છે. તેની પાસે રોકાણ કરવા માટે ₹ 50,000 છે અને વધુમાં વધુ 60 નંગનો સંગ્રહ કરી શકાય તેટલી જગ્યા છે. એક ટેબલની કિંમત ₹ 2500 છે અને એક ખુરશીની કિંમત ₹ 500 છે. તેનો અંદાજ એવો છે કે, એક ટેબલના વેચાણથી ₹ 250 અને

L. Kantorovich

એક ખુરશીના વેચાણથી ₹ 75 નફો મેળવી શકાય છે. તેને એ જાણવું છે કે મહત્તમ નફો મેળવવા માટે તેની પાસેની મૂડીથી તેણે કેટલાં ટેબલ અને ખુરશી ખરીદવાં જોઈએ ? આપણે સ્વીકારી લઈએ છીએ કે તે ખરીદ કરેલી બધી જ વસ્તુઓ વેચી શકે છે.

આવા પ્રકારની સમસ્યાઓ કે જેમાં મહત્તમ નરૂો (અથવા ન્યૂનતમ ખર્ચ) શોધવાનો હોય તેવા સામાન્ય વર્ગના પ્રશ્નોને ઇષ્ટતમ મૂલ્ય શોધવાના પ્રશ્નો કહેવામાં આવે છે. આમ, ઇષ્ટતમ મૂલ્ય શોધવાના પ્રશ્નોમાં મહત્તમ નરૂો મેળવવો, ન્યૂનતમ ખર્ચ અથવા સ્રોતોનો લઘુતમ ઉપયોગ કરવાનો સમાવેશ થાય છે. ઇષ્ટતમ મૂલ્ય શોધવાના પ્રશ્નો એ સુરેખ આયોજનના પ્રશ્નોનો એક વિશિષ્ટ પરંતુ અગત્યનો વિભાગ છે. ઉપર દર્શાવ્યા પ્રમાશેનો ઇષ્ટતમ મૂલ્ય શોધવાનો પ્રશ્ન એ સુરેખ આયોજનના પ્રશ્નનું એક ઉદાહરણ છે. સુરેખ આયોજનના પ્રશ્નો ખૂબ જ રસપ્રદ છે, કારણ કે તેમનો ઉપયોગ ઉદ્યોગ, વાણિજ્ય, સંચાલન, વિજ્ઞાન વગેરે ક્ષેત્રોમાં બહોળા પ્રમાણમાં થાય છે.

આ પ્રકરણમાં આપણે કેટલાક સુરેખ આયોજનના પ્રશ્નોનો અભ્યાસ કરીશું અને તેમનો ઉકેલ ફ્રક્ત આલેખની રીતે મેળવીશું. આવા પ્રકારના પ્રશ્નોના ઉકેલ માટેની અન્ય રીતો પણ છે.

430

ગણિત

...(4)

12.2 સુરેખ આયોજનનો પ્રશ્ન અને તેનું ગાણિતિક સ્વરૂપ

આપણે ચર્ચાની શરૂઆત આગળ આપેલા ફર્નિચરના વેપારીના ઉદાહરણ દ્વારા કરીશું. તે સમસ્યાને દ્વિચલ સમસ્યાના ગાણિતિક સ્વરૂપ તરફ આગળ દોરી જશે. આ પ્રશ્નમાં આપણે નીચે પ્રમાણે અવલોકન કરી શકીએ છીએ :

- (i) દુકાનદાર તેની મૂડીનું રોકાણ સંપૂર્ણપણે ટેબલ ખરીદવામાં, સંપૂર્ણપણે ખુરશી ખરીદવામાં કે કેટલાંક ટેબલ અને કેટલીક ખુરશી ખરીદવામાં કરી શકે છે. વળી, તે રોકાણની જુદી જુદી પદ્ધતિમાં જુદો જુદો નફો મેળવી શકે છે.
- (ii) અહીં દુકાનદાર પાસે ₹ 50,000 ની મૂડી છે અને તેની પાસે 60 નંગ સંગ્રહી શકાય તેટલી જગ્યા છે, તેવી કેટલીક મર્યાદાઓ છે.

ધારો કે દુકાનદાર ફક્ત ટેબલ જ ખરીદે અને ખુરશી ન ખરીદે તો તે ₹ 50,000 ÷ 2500 = 20 ટેબલ ખરીદી શકે. આ વિકલ્પમાં તેનો નફો ₹ (250 × 20) = ₹ 5000 થાય.

જો તે ફક્ત ખુરશી ખરીદે અને ટેબલ ન ખરીદે તો તેની ₹ 50,000 ની મૂડીમાંથી 50,000 ÷ 500 = 100 ખુરશી ખરીદી શકે. પરંતુ તે ફક્ત 60 વસ્તુઓ જ સંગ્રહી શકે છે. તેથી તે ફક્ત 60 ખુરશી જ ખરીદી શકે. આથી તે ₹ (60 × 75) = ₹ 4500 નો નફો મેળવી શકે.

આ સિવાય તે 10 ટેબલ અને 50 ખુરશી ખરીદી શકે તેવા બીજા વિકલ્પો પણ છે (દુકાનદાર 60 વસ્તુઓ સંગ્રહી શકે છે). આ વિકલ્પમાં તેનો નફો ₹ (10 × 250 + 50 × 75) = ₹ 6250 થાય વગેરે.

આમ, આપણે સમજી શકીએ છીએ કે, દુકાનદાર જુદી-જુદી રોકાણની પદ્ધતિઓ દ્વારા જુદો-જુદો નફો મેળવી શકે છે.

હવે પ્રશ્ન એ છે કે, દુકાનદારે તેની મૂડીનું રોકાશ કેવી રીતે કરવું જોઈએ કે જેથી તે મહત્તમ નફો મેળવી શકે ? આ પ્રશ્નનો ઉકેલ આપવા માટે આપશે તેનું ગાશિતિક સ્વરૂપ આપવાનો પ્રયત્ન કરીએ.

12.2.1 પ્રશ્નનું ગાણિતિક સ્વરૂપ

ધારો કે દુકાનદાર x નંગ ટેબલ અને y નંગ ખુરશી ખરીદે છે. સ્પષ્ટ છે કે x અને y અનૃણ છે. એટલે કે, $x \ge 0$ $(2\pi - y)$ (2) $y \ge 0$ $(2\pi - y)$ $(2\pi$

દુકાનદાર મહત્તમ રકમનું રોકાશ કરી શકે (અહીં તે ₹ 50,000 છે) અને મહત્તમ વસ્તુઓનો સંગ્રહ કરી શકે (અહીં તે 60 છે) એ તેની મર્યાદા છે.

ગાણિતિક રીતે, $2500 x + 500 y \le 50,000$ (રોકાણની મર્યાદા)

$$\therefore \quad 5x + y \le 100 \qquad \qquad \dots (3)$$

અન
$$x + y \le 60$$
 (સગ્નહમયાદા)

દુકાનદાર એવી રીતે રોકાશ કરવા માગે છે કે તે મહત્તમ નફો Z મેળવી શકે. તે x અને y ના વિધેય તરીકે નીચે પ્રમાશે આપેલ છે :

$$Z = 250x + 75y$$
 (તેને હેતુલક્ષી વિધેય કહે છે.) ...(5)

ગાણિતિક રીતે આપેલ પ્રશ્નને નીચે પ્રમાણે લખી શકાય :

 $5x + y \le 100$

$$x + y \le 60$$

$$x \ge 0, y \ge 0$$
 शरतोने अधीन ः

Z = 250x + 75y ની મહત્તમ કિંમત મેળવો.

સુરેખ આયોજન

આમ, આપણે સુરેખ વિધેય Z ને અમુક શરતોને અધીન મહત્તમ બનાવવાનું છે. આ શરતો સુરેખ અસમતાઓના સ્વરૂપમાં હોય છે. ચલરાશિઓ અનૃણ હોય છે. અમુક એવા પ્રકારના પણ પ્રશ્નો હોય છે કે, જેમાં સુરેખ વિધેયને અમુક શરતોને અધીન ન્યૂનતમ બનાવવાનું હોય છે. અહીં પણ શરતો સુરેખ અસમતાઓના સ્વરૂપમાં હોય છે અને ચલરાશિઓ અનૃણ હોય છે. આવા પ્રકારની સમસ્યાઓને સુરેખ આયોજનના પ્રશ્નો કહે છે.

આમ, સુરેખ આયોજનનો પ્રશ્ન એ એક કરતાં વધુ ચલરાશિ ધરાવતા (x કે y) સુરેખ વિધેય (હેતુલક્ષી વિધેય)નું અમુક શરતોને અધીન ઇષ્ટતમ મૂલ્ય (મહત્તમ કે ન્યૂનતમ મૂલ્ય) શોધવા સંબંધિત છે. અહીં શરતો સુરેખ અસમતાઓના સ્વરૂપમાં (સુરેખ મર્યાદા) અને ચલરાશિઓ અનૃણ (અનૃણ મર્યાદા) હોય છે. પ્રશ્નોમાં આવતા ચલ વચ્ચે ગાણિતિક સંબંધો સુરેખ સંબંધ હોવાથી 'સુરેખ' શબ્દનું પ્રયોજન થાય છે. 'આયોજન' શબ્દનો અર્થ એ સંદર્ભ થાય છે કે, કોઈ ચોક્કસ કાર્યક્રમ અથવા ક્રિયા કરવાની યોજના નક્કી કરવાની પદ્ધતિ.

આપણે આગળ વધતાં પહેલાં હવે ઔપચારિક રીતે જેનો ઉપયોગ સુરેખ આયોજનના પ્રશ્નોના ઉકેલમાં કરીશું એવા અમુક પારિભાષિક શબ્દોને (જેનો અગાઉ ઉપયોગ કર્યો) વ્યાખ્યાયિત કરીએ.

હેતુલક્ષી વિધેય (Objective Function) : જેનું મહત્તમ કે ન્યૂનતમ મૂલ્ય શોધવાનું હોય છે એવા અચળ a અને b વાળા સુરેખ વિધેય Z = ax + by ને સુરેખ હેતુલક્ષી વિધેય કહે છે.

ઉપરના ઉદાહરણમાં Z = 250x + 75y એ સુરેખ હેતુલક્ષી વિધેય છે. ચલરાશિઓ x અને y એ નિર્ણાયક ચલરાશિઓ (Decision variables) છે.

મર્યાદાઓ (પ્રતિબંધો) (Constraints) : સુરેખ અસમતાઓ અથવા સમીકરણો અથવા ચલરાશિઓ પરના પ્રતિબંધોને સુરેખ આયોજનના પ્રશ્નની મર્યાદાઓ કહે છે. શરતો x ≥ 0, y ≥ 0 ને અનૃણ મર્યાદાઓ કહે છે. ઉપરના ઉદાહરણમાં અસમતાઓ (1) થી (4) મર્યાદાઓ છે.

ઇષ્ટતમપણાનો પ્રશ્ન (Optimisation Problem) : જેમાં અસમતાઓના સ્વરૂપમાં રહેલ અમુક ચોક્કસ શરતોને અધીન સુરેખ વિધેયને (બે ચલરાશિઓ x અને y ધરાવતા) મહત્તમ કે ન્યૂનતમ બનાવવાનું હોય તેવી સમસ્યાઓને ઇષ્ટતમ મૂલ્ય શોધવાના પ્રશ્નો કહે છે. સુરેખ આયોજનના પ્રશ્નો એ વિશિષ્ટ પ્રકારના ઇષ્ટતમ મૂલ્ય શોધવાના પ્રશ્નો છે.

આગળના ઉદાહરશમાં દુકાનદારે ખુરશી અને ટેબલ ખરીદવા માટે આપેલ મૂડીનું રોકાશ કરવું એ ઇષ્ટતમ મૂલ્ય શોધવાનો તેમ જ સુરેખ આયોજનનો પ્રશ્ન છે.

હવે, આપશે સુરેખ આયોજનના પ્રશ્નનો ઉકેલ કેવી રીતે મેળવી શકાય તેની ચર્ચા કરીશું. આપશે ઉકેલ માટે ફક્ત આલેખની રીતનો ઉપયોગ કરીશું.

12.2.2 સુરેખ આયોજનના પ્રશ્નના ઉકેલ માટે આલેખની રીત

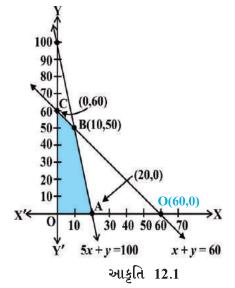
ધોરણ XIમાં આપણે બે ચલરાશિઓ x અને y ધરાવતી દ્વિચલ સુરેખ અસમતા સંહતિ અને તેના ઉકેલનો અભ્યાસ આલેખના ઉપયોગથી કર્યો. ચાલો આપણે વિભાગ 12.2 માં ચર્ચા કરેલ ટેબલ અને ખુરશીમાં મૂડીરોકાણના પ્રશ્નનો સંદર્ભ લઈએ. હવે આપણે આ પ્રશ્નને આલેખની રીતે ઉકેલીશું. ચાલો આપણે સુરેખ અસમતાઓના સ્વરૂપમાં આવેલી મર્યાદાઓના આલેખ દોરીએ :

$5x + y \le 100$	(1)
$x + y \le 60$	(2)
$x \ge 0$	(3)
$y \ge 0$	(4)
and to the design would be sight a second	(22) (22)

આકૃતિ 12.1માં દર્શાવ્યા પ્રમાણે આ સંહતિનો આલેખ (રંગીન પ્રદેશ) એ અસમતાઓ (1)થી (4) દ્વારા રચાતા અર્ધતલનાં તમામ બિંદુઓનો ગણ થશે.

432

આ પ્રદેશના દરેક બિંદુએ વેપારી ટેબલ અને ખુરશીમાં મૂડીરોકાણ કરી શકે તેવી *શક્ય પસંદગી (feasible choice)* છે. આથી આ પ્રદેશને પ્રશ્નનો *શક્ય ઉકેલનો પ્રદેશ (feasible region)* કહે છે. આ પ્રદેશના દરેક બિંદુને પ્રશ્નનો *શક્ય ઉકેલ (feasible solution)* કહેવામાં આવે છે. આમ, અહીં સુરેખ આયોજનના પ્રશ્નની તમામ મર્યાદાઓ (અનૃણ મર્યાદાઓ $x, y \ge 0$ સહિત) વડે રચાતા સામાન્ય પ્રદેશને પ્રશ્નનો *શક્ય ઉકેલનો* પ્રદેશ (અથવા ઉકેલ પ્રદેશ) કહે છે. આકૃતિ 12.1માં પ્રદેશ OABC (રંગીન) એ પ્રશ્નના શક્ય ઉકેલનો અશક્ય છે. શક્ય ઉકેલના પ્રદેશ સિવાયના પ્રદેશને *ઉકેલનો અશક્ય પ્રદેશ* (*infeasible region*) કહે છે.



શક્ય ઉકેલ (Feasible solution) : શક્ય ઉકેલના પ્રદેશની અંદર અને તેની સીમા પર આવેલાં બિંદુઓ મર્યાદાઓ માટે શક્ય ઉકેલ દર્શાવે છે.

આકૃતિ 12.1માં શક્ય ઉકેલના પ્રદેશ OABCની અંદર અને તેની સીમા પર આવેલ પ્રત્યેક બિંદુ પ્રશ્નનો શક્ય ઉકેલ દર્શાવે છે. ઉદાહરણ તરીકે બિંદુ (10, 50) એ પ્રશ્નનો એક શક્ય ઉકેલ છે અને અન્ય બિંદુઓ (0, 60), (20, 0) વગેરે પણ શક્ય ઉકેલ દર્શાવે છે. *શક્ય ઉકેલના પ્રદેશની બહાર આવેલા કોઈ પણ બિંદુને અશક્ય ઉકેલ* કહે છે. ઉદાહરણ તરીકે, બિંદુ (25, 40) એ પ્રશ્નનો અશક્ય ઉકેલ છે.

ઇષ્ટતમ શક્ય ઉકેલ (Optimal feasible solution) : શક્ય ઉકેલના પ્રદેશનું જે બિંદુ હેતુલક્ષી વિધેયને ઇષ્ટતમ (મહત્તમ અથવા ન્યૂનતમ) બનાવે તે ઉકેલને ઇષ્ટતમ ઉકેલ કહે છે.

હવે, આપણે જોઈ શકીએ છીએ કે શક્ય ઉકેલના પ્રદેશ OABC ના પ્રત્યેક બિંદુ મર્યાદાઓ (1) થી (4) નું સમાધાન કરે છે. શક્ય ઉકેલના પ્રદેશમાં અનંત બિંદુઓ આવેલાં છે તથા આપણે એક એવું બિંદુ કેવી રીતે શોધી શકીએ જે હેતુલક્ષી વિધેય Z = 250x + 75y ને મહત્તમ બનાવે તે સ્પષ્ટ નથી. આ પ્રકારની સ્થિતિમાંથી રસ્તો કાઢવા માટે આપણે નીચે પ્રમાણેના સુરેખ આયોજનના પ્રશ્નોના ઉકેલ માટેના મૂળભૂત પ્રમેયોનો ઉપયોગ કરીશું. આ પ્રમેયોની સાબિતી આ પુસ્તકના અવકાશની બહાર છે.

प्रमेय 1 : धारो કે R એ सुरेખ આયોજનના પ્રશ્ન માટેના હેતુલક્ષી વિધેય Z = ax + by માટેના શક્ય ઉકેલનો પ્રદેશ છે (તે બહિર્મુખ બહુકોણ હોય). જ્યારે Z ને ઇષ્ટતમ મૂલ્ય (મહત્તમ અથવા ન્યૂનતમ) મળે ત્યારે તે મર્યાદાઓના કારણે ચલરાશિઓ x અને y થી બનતી સુરેખ અસમતાઓથી બનતા શક્ય ઉકેલના પ્રદેશ દ્વારા રચાતા બહિર્મુખ બહુકોણના કોઈક શિરોબિંદુ* આગળ જ પ્રાપ્ત થાય છે.

પ્રમેય 2 : ધારો કે R એ સુરેખ આયોજનના પ્રશ્ન માટેના હેતુલક્ષી વિધેય Z = ax + by માટેના શક્ય ઉકેલનો પ્રદેશ છે. જો આ પ્રદેશ R સીમિત** (bounded) હોય, તો હેતુલક્ષી વિધેય Z ને મહત્તમ તથા ન્યૂનતમ મૂલ્ય પ્રદેશ R ના કોઈક શિરોબિંદુ આગળ પ્રાપ્ત થાય.

નોંધ ઃ જો R એ અસીમિત પ્રદેશ હોય, તો હેતુલક્ષી વિધેયને મહત્તમ કે ન્યૂનતમ કિંમત ન પણ મળે. તેમ છતાં જો મળે તો તે R ના કોઈક શિરોબિંદુ આગળ જ મળે. (પ્રમેય 1 પરથી)

ઉપરના ઉદાહરણના સીમિત (શક્ય ઉકેલના) પ્રદેશનાં શિરોબિંદુઓ O, A, B અને C ના યામ અનુક્રમે (0, 0), (20, 0), (10, 50) અને (0, 60) છે તે સહેલાઈથી જોઈ શકાય છે. આ બિંદુઓ આગળ આપણે Z નું મૂલ્ય શોધીએ.

Downloaded from https:// www.studiestoday.com

ગણિત

^{*} શક્ય ઉકેલના પ્રદેશનું શિરોબિંદુ એ પ્રદેશની બે સીમા રેખાઓનું છેદબિંદુ છે.

^{**} જો સુરેખ અસમતાઓથી રચાતો શક્ય ઉકેલનો પ્રદેશ એ કોઈ વર્તુળમાં ઘેરાયેલો હોય તો તેને સીમિત પ્રદેશ કહે છે. અન્યથા તેને અસીમિત પ્રદેશ કહે છે. અસીમિત એટલે કે શક્ય ઉકેલનો પ્રદેશ કોઈ દિશામાં અનંત સુધી વિસ્તરેલ છે.

સુરેખ આયોજન

શક્ય ઉકેલના પ્રદેશનાં શિરોબિંદુઓ	Z = 250x + 75y નું સંગત મૂલ્ય (₹)
O(0, 0)	0
C(0, 60)	4500
B(10, 50)	6250 → મહત્તમ
A(20, 0)	5000

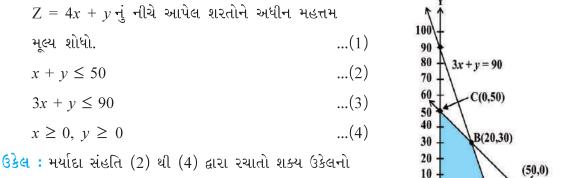
આપણે જોઈ શકીએ છીએ કે, જો દુકાનદાર (10, 50) ની રોકાણ વ્યૂહરચના અપનાવે એટલે કે 10 ટેબલ અને 50 ખુરશીની ખરીદી કરે તો તેને મહત્તમ નફો મળે.

આ પ્રકારે *સુરેખ આયોજનના પ્રશ્નો ઉકેલવાની પદ્ધતિને શિરોબિંદુની રીત (Corner point method) કહે છે.* આ પદ્ધતિ નીચે જણાવેલ મુદ્દાઓ ધરાવે છે :

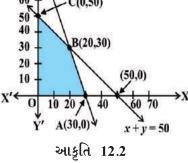
- (1) આપેલ સુરેખ આયોજનના પ્રશ્નના શક્ય ઉકેલનો પ્રદેશ શોધો. આ પ્રદેશનાં શિરોબિંદુઓ શોધો. તે નિરીક્ષણ દ્વારા અથવા બે રેખાઓનાં સમીકરણો ઉકેલીને તેમનાં છેદબિંદુ દ્વારા મેળવી શકાય.
- (2) દરેક શિરોબિંદુ આગળ હેતુલક્ષી વિધેય Z = ax + by ની કિંમત મેળવો. ધારો કે આ બિંદુઓ આગળનાં મૂલ્યો પૈકી તેની મહત્તમ કિંમત તથા ન્યૂનતમ કિંમત અનુક્રમે M તથા m છે.
- (3) (i) જો શક્ય ઉકેલનો પ્રદેશ સીમિત હોય, તો Z ની મહત્તમ તથા ન્યૂનતમ કિંમત અનુક્રમે M તથા *m* થાય.
 - (ii) જો શક્ય ઉકેલનો પ્રદેશ અસીમિત હોય, તો નીચે પ્રમાશે આગળ વધો :
- (4) (a) જો ax + by > M થી રચાતા ખુલ્લા અર્ધતલનું કોઈ પણ બિંદુ શક્ય ઉકેલના પ્રદેશ સાથે સામાન્ય ન હોય તો Z ની મહત્તમ કિંમત M થાય. નહિ તો Z ને મહત્તમ કિંમત ન મળે.
 - (b) તે જ રીતે, જો ax + by < m થી રચાતા ખુલ્લા અર્ધતલનું કોઈ પણ બિંદુ શક્ય ઉકેલના પ્રદેશ સાથે સામાન્ય ન હોય, તો Z ની ન્યૂનતમ કિંમત m થાય. નહિ તો Z ને ન્યૂનતમ કિંમત ન મળે.

હવે, આપશે શિરોબિંદુની રીતનો ઉપયોગ કરી કેટલાંક ઉદાહરશો જોઈએ.

ઉદાહરણ 1 : નીચે આપેલ સુરેખ આયોજનનો પ્રશ્ન આલેખની રીતે ઉકેલો :



પ્રદેશ આકૃતિ 12.2 માં રંગીન કરેલ છે. આપણે જોઈ શકીએ છીએ કે, શક્ય ઉકેલનો પ્રદેશ OABC સીમિત છે. આથી આપણે શિરોબિંદુની રીતથી Z નું મહત્તમ મૂલ્ય શોધીશું.



434

શિરોબિંદુઓ O, A, B અને C ના યામ અનુક્રમે (0, 0), (30, 0), (20, 30) અને (0, 50) છે. હવે, આપશે આ દરેક બિંદુ આગળ Z ની કિંમત મેળવીએ.

શક્ય ઉકેલના પ્રદેશનાં શિરોબિંદુઓ	$\mathbf{Z} = 4x + y \mathbf{j} \mathbf{\dot{x}} \mathbf{i} \mathbf{n} \mathbf{h} \mathbf{k} \mathbf{c} \mathbf{u}$
(0, 0)	0
(30, 0)	120 ightarrow મહત્તમ
(20, 30)	110
(0, 50)	50

આમ, બિંદુ (30, 0) આગળ Z નું મહત્તમ મૂલ્ય 120 મળે છે.

ઉદાહરણ 2 : નીચે આપેલ સુરેખ આયોજનનો પ્રશ્ન આલેખની રીતે ઉકેલો :

Z = 200 x + 500 yનું નીચેની શરતોને અધીન ન્યૂનતમ મૂલ્ય શોધો	.(1	1)	
--	-----	---	---	--

$$x + 2y \ge 10 \qquad \dots (2)$$

$$3x + 4y \le 24 \qquad \dots (3)$$

$$x \ge 0, \ y \ge 0 \qquad \dots (4)$$

ઉકેલ : મર્યાદા સંહતિ (2) થી (4) દ્વારા રચાતો શક્ય ઉકેલનો પ્રદેશ ABC આકૃતિ 12.3 માં રંગીન પ્રદેશ તરીકે દર્શાવેલ છે. તે સીમિત છે. શિરોબિંદુઓ A, B અને C ના યામ અનુક્રમે (0, 5), (4, 3) અને (0, 6) છે. હવે આપણે આ દરેક બિંદુ આગળ Z ની કિંમત મેળવીએ.

2500

3000

શક્ય ઉકેલના

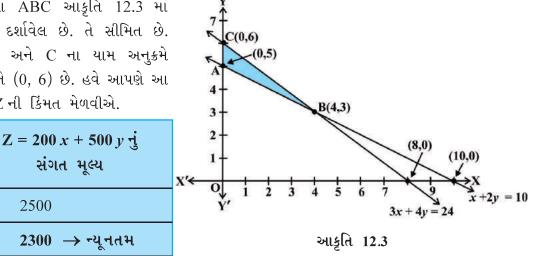
પ્રદેશનાં

શિરોબિંદુઓ

(0, 5)

(4, 3)

(0, 6)



આમ, બિંદુ (4, 3) આગળ Z નું ન્યૂનતમ મૂલ્ય 2300 મળે છે.

ઉદાહરણ 3 : નીચે આપેલ સુરેખ આયોજનનો પ્રશ્ન આલેખની રીતે ઉકેલો :

$$Z = 3x + 9y$$
 નું નીચેની શરતોને અધીન ન્યૂનતમ તેમજ મહત્તમ મૂલ્ય શોધો. ...(1)

 $x + 3y \le 60$...(2)

 $x + y \ge 10$...(3) ...

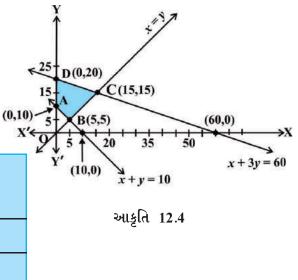
$$x \le y \qquad \dots (4)$$

$$x \ge 0, \ y \ge 0 \tag{5}$$

સુરેખ આયોજન

ઉકેલ : પ્રથમ આપશે અસમતા સંહતિ (2) થી (5) દ્વારા રચાતા શક્ય ઉકેલના પ્રદેશનો આલેખ દોરીએ. આકૃતિ 12.4 માં શક્ય ઉકેલનો પ્રદેશ ABCD દર્શાવવામાં આવેલ છે. આપશે નોંધીશું કે પ્રદેશ સીમિત છે. શિરોબિંદુઓ A, B, C અને D ના યામ અનુક્રમે (0, 10), (5, 5), (15, 15) અને (0, 20) છે.

શક્ય ઉકેલના પ્રદેશનાં શિરોબિંદુઓ	Z = 3x + 9y नुं संગत मूक्य
A(0, 10)	90
B(5, 5)	60 → ન્યૂનતમ
C(15, 15)	180
D(0, 20)	180 ∫ (એક કરતાં વધુ ઇષ્ટતમ મૂલ્ય



હવે આપશે Z ના ન્યૂનતમ અને મહત્તમ મૂલ્ય શોધીએ. કોષ્ટક પરથી જોઈ શકાય છે કે, શક્ય ઉકેલના પ્રદેશના બિંદુ B(5, 5) આગળ Z નું ન્યૂનતમ મૂલ્ય 60 છે.

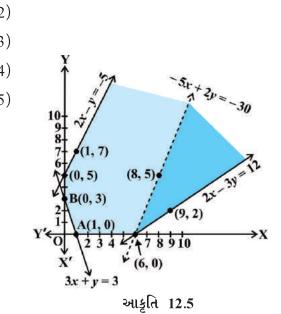
Z નું મહત્તમ મૂલ્ય 180 શક્ય ઉકેલના પ્રદેશનાં બે શિરોબિંદુ C(15, 15) અને D(0, 20) આગળ મળે છે. નોંધ : ઉપરના ઉદાહરણમાં આપણે જોઈ શકીએ છીએ કે, પ્રશ્નને એક કરતાં વધુ શિરોબિંદુઓ C અને D આગળ ઇષ્ટતમ મૂલ્ય મળે છે. એટલે કે બંને બિંદુઓએ મહત્તમ મૂલ્ય 180 મળે છે. આવી પરિસ્થિતિમાં તમે જોઈ શકો કે C અને D ને જોડતાં રેખાખંડ CD પર આવેલ દરેક બિંદુ આગળ સમાન મહત્તમ મૂલ્ય મળે. તે જ રીતે બે બિંદુઓ આગળ સમાન ન્યૂનતમ મૂલ્ય મળે તેવી પરિસ્થિતિમાં પણ આ સત્ય છે.

6દાહરણ 4 : હેતુલક્ષી વિધેય Z = -50 x + 20 y નું નીચે આપેલ શરતોને અધીન ન્યૂનતમ મૂલ્ય

આલેખની રીતે શોધો.	(1)
$2x - y \ge -5$	(2)
$3x + y \ge 3$	(3)
$2x - 3y \le 12$	(4)
$x \ge 0, y \ge 0$	(5)

ઉકેલ : પ્રથમ આપણે અસમતા સંહતિ (2) થી (5) દ્વારા રચાતા શક્ય ઉકેલના પ્રદેશનો આલેખ દોરીએ. આકૃતિ 12.5 માં શક્ય ઉકેલનો પ્રદેશ (રંગીન) દર્શાવવામાં આવેલ છે. આપણે જોઈ શકીએ છીએ કે, શક્ય ઉકેલનો પ્રદેશ અસીમિત છે.

હવે, આપશે શિરોબિંદુઓ આગળ Z ના મૂલ્ય શોધીએ.



ગણિત

...(3)

શક્ય ઉકેલના પ્રદેશનાં શિરોબિંદુઓ	Z = -50x + 20y નું સંગત મૂલ્ય
(0, 5)	100
(0, 3)	60
(1, 0)	-50
(6, 0)	-300 ightarrow न्यूनतभ

આ કોષ્ટક પરથી માલૂમ પડે છે કે બિંદુ (6, 0) આગળ Z નું ન્યૂનતમ મૂલ્ય -300 મળી શકે છે. આપણે Z નું ન્યૂનતમ મૂલ્ય -300 છે એમ કહી શકીએ ? આપણે નોંધીશું કે જો પ્રદેશ સીમિત હોત તો Z ની આ નાનામાં નાની કિંમત Z નું ન્યૂનતમ મૂલ્ય થઈ હોત (પ્રમેય 2). પરંતુ અહીં આપણે જોઈ શકીએ છીએ કે શક્ય ઉકેલનો પ્રદેશ અસીમિત છે. માટે Z ની ન્યૂનતમ કિંમત -300 હોય પણ ખરી અને ન પણ હોય. આ નક્કી કરવા માટે આપણે અસમતા -50x + 20y < -300 એટલે કે -5x + 2y < -30 (શિરોબિંદુની રીતનો મુદ્દા ક્રમાંક 3(ii) જુઓ)ને આલેખીએ અને ચકાસીશું કે અસમતાથી રચાતા ખુલ્લા અર્ધતલનાં બિંદુઓ શક્ય ઉકેલના પ્રદેશનાં બિંદુઓ સાથે સામાન્ય છે કે નહિ. જો સામાન્ય બિંદુઓ હોય, તો -300 એ Z નું ન્યૂનતમ મૂલ્ય ન હોય. અન્યથા -300એ Z નું ન્યૂનતમ મૂલ્ય હોય.

આકૃતિ 12.5 માં દર્શાવ્યા પ્રમાશે તેને સામાન્ય બિંદુઓ છે. આથી Z = –50x + 20y ને આપેલ શરતો અનુસાર ન્યૂનતમ મૂલ્ય ન મળે.

ઉપરના ઉદાહરણમાં, આપણે એવું કહી શકીએ કે (0, 5) આગળ Z = −50x + 20y ની મહત્તમ કિંમત 100 થાય ? આ માટે −50x + 20y > 100 નો આલેખ શક્ય ઉકેલના પ્રદેશનાં બિંદુઓ સાથે સામાન્ય બિંદુઓ ધરાવે છે કે નહિ તે ચકાસો (શા માટે ?).

 $GELER 5 : x + y \ge 8 \qquad \dots (1)$

$$3x + 5y \le 15 \tag{2}$$

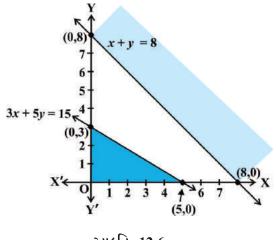
$$x \ge 0, y \ge 0$$

શરતોને અધીન Z = 3x + 2y નું ન્યૂનતમ મૂલ્ય શોધો.

ઉકેલ : અસમતાઓ (1) થી (3) ને આપશે આલેખીએ. (આકૃતિ 12.6) શક્ય ઉકેલનો પ્રદેશ મળે છે ? શા માટે આવું થાય છે ? આકૃતિ 12.6 માં તમે જોઈ શકો છો કે બધી મર્યાદાઓનું એક સાથે સમાધાન કરે તેવું કોઈ પશ બિંદુ મળતું નથી. આમ, પ્રશ્નને શક્ય ઉકેલનો પ્રદેશ મળતો નથી અને તેથી શક્ય ઉકેલ મળતો નથી.

નોંધ ઃ સુરેખ આયોજનના પ્રશ્નોની આપશે અગાઉનાં ઉદાહરણોની ચર્ચા કર્યા પછી નીચે પ્રમાશેનાં અવલોકનોની નોંધ કરીએ :

(1) શક્ય ઉકેલનો પ્રદેશ હંમેશાં બહિર્મુખ પ્રદેશ હોય છે.



આકૃતિ 12.6

સુરેખ આયોજન

(2) હેતુલક્ષી વિધેયની મહત્તમ (અથવા ન્યૂનતમ) કિંમત શક્ય ઉકેલના પ્રદેશના કોઈક શિરોબિંદુ આગળ મળી શકે છે. જો હેતુલક્ષી વિધેયની મહત્તમ (અથવા ન્યૂનતમ) કિંમત બે શિરોબિંદુ આગળ મળે તો આ બે બિંદુઓને જોડતા રેખાખંડ પરના પ્રત્યેક બિંદુ આગળ હેતુલક્ષી વિધેયની સમાન મહત્તમ (અથવા ન્યૂનતમ) કિંમત મળે.

સ્વાધ્યાય 12.1

નીચે આપેલ સુરેખ આયોજનના પ્રશ્નો આલેખની રીતે ઉકેલો :

- **1.** $x + y \le 4, x \ge 0, y \ge 0$ શરતોને અધીન Z = 3x + 4y નું મહત્તમ મૂલ્ય શોધો.
- 2. $x + 2y \le 8$, $3x + 2y \le 12$, $x \ge 0$, $y \ge 0$ શરતોને અધીન Z = -3x + 4yનું ન્યૂનતમ મૂલ્ય શોધો.
- 3. $3x + 5y \le 15$, $5x + 2y \le 10$, $x \ge 0$, $y \ge 0$ શરતોને અધીન Z = 5x + 3yનું મહત્તમ મૂલ્ય શોધો.
- 4. $x + 3y \ge 3, x + y \ge 2, x, y \ge 0$ શરતોને અધીન Z = 3x + 5y નું ન્યૂનતમ મૂલ્ય શોધો.
- 5. $x + 2y \le 10, 3x + y \le 15, x, y \ge 0$ શરતોને અધીન Z = 3x + 2y નું મહત્તમ મૂલ્ય શોધો.
- 6. 2x + y ≥ 3, x + 2y ≥ 6, x, y ≥ 0 શરતોને અધીન Z = x + 2y નું ન્યૂનતમ મૂલ્ય શોધો. Z નું ન્યૂનતમ મૂલ્ય બે કરતાં વધુ બિંદુઓએ મળે છે તેમ બતાવો.
- 7. $x + 2y \le 120, x + y \ge 60, x 2y \ge 0, x, y \ge 0$ શરતોને અધીન Z = 5x + 10y નું મહત્તમ તેમજ ન્યૂનતમ મૂલ્ય શોધો.
- 8. $x + 2y \ge 100, 2x y \le 0, 2x + y \le 200, x, y \ge 0$ શરતોને અધીન Z = x + 2y નું મહત્તમ તેમજ ન્યૂનતમ મૂલ્ય શોધો.
- 9. $x \ge 3, x + y \ge 5, x + 2y \ge 6, y \ge 0$ શરતોને અધીન Z = -x + 2y નું મહત્તમ મૂલ્ય શોધો.

10. $x - y \le -1$, $-x + y \le 0$, $x, y \ge 0$ શરતોને અધીન Z = x + y નું મહત્તમ મૂલ્ય શોધો.

12.3 સુરેખ આયોજનની વિવિધ પ્રકારની સમસ્યાઓ

સુરેખ આયોજનના કેટલાક મહત્ત્વના પ્રશ્નો નીચે સૂચિબદ્ધ કરેલા છે :

(1) ઉત્પાદનને લગતી સમસ્યાઓ (Manufacturing Problems) : આ પ્રકારના પ્રશ્નમાં મહત્તમ નફો મેળવવા માટે આપણે કંપની દ્વારા વિવિધ પ્રકારની વસ્તુઓની સંખ્યાનું ઉત્પાદન અને વેચાણ અમુક નિયંત્રણોને અધીન કરવાનું હોય છે. આ નિયંત્રણો આવાં હોઈ શકે : દરેક વસ્તુનું ઉત્પાદન કરવા ચોક્કસ માનવ-કલાકોની જરૂર, મશીન (યંત્ર)ના કલાકો, શ્રમના કલાકો, શ્રમ કરવાની જગા વગેરે.

(2) આહારસંબંધી સમસ્યાઓ (Diet Problems) : આ પ્રકારના પ્રશ્નમાં આપણે જેનો ખર્ચ લઘુતમ થાય એવી રીતે જુદા-જુદા પ્રકારના ઘટકો ધરાવતો આહાર બનાવવાનો હોય છે અને તેમાં જરૂરી દરેક પ્રકારનાં પોષક તત્ત્વોનો સમાવેશ કરવાનો હોય છે.

(3) પરિવહનને લગતી સમસ્યાઓ (Transportation Problems) : આ પ્રકારના પ્રશ્નમાં આપણે ઉત્પાદિત માલસામાનને જુદાં-જુદાં સ્થળે આવેલ ઉત્પાદન સ્થળે (કારખાના)થી જુદાં-જુદાં સ્થળે આવેલ બજારમાં પહોંચાડવા માટેનો રસ્તો, પરિવહન-ખર્ચ ન્યૂનતમ થાય એવી રીતે પસંદ કરવો જોઈએ.

ચાલો આપણે સુરેખ આયોજનની આ પ્રકારની કેટલીક સમસ્યાઓ ઉકેલીએ :

ગણિત

...(1)

ઉદાહરણ 6 : (આહાર સંબંધી સમસ્યા) : એક આહારવિજ્ઞાની આહારના એક મિશ્રણમાં વિટામિન A ના ઓછામાં ઓછા 8 એકમ હોય અને વિટામિન C ના ઓછામાં ઓછા 10 એકમ હોય એવી રીતે બે પ્રકારના ખોરાકનું મિશ્રણ કરવા ઇચ્છે છે. આહાર 'I', 2 એકમ/કિગ્રા વિટામિન A અને 1 એકમ/કિગ્રા વિટામિન C ધરાવે છે. આહાર 'II', 1 એકમ/કિગ્રા વિટામિન A અને 2 એકમ/કિગ્રા વિટામિન C ધરાવે છે. આહાર 'I' નો ખરીદ ભાવ પ્રતિ કિગ્રા ₹ 50 અને આહાર 'II' નો ખરીદ ભાવ પ્રતિ કિગ્રા ₹ 70 છે. આ પ્રશ્નને સુરેખ આયોજનના પ્રશ્ન તરીકે મિશ્રિત આહારનો ખર્ચ ન્યૂનતમ કરવા માટે ગાણિતિક સ્વરૂપમાં દર્શાવો.

<mark>ઉકેલ</mark> ઃ ધારો કે મિશ્રણમાં *x* કિલોગ્રામ 'I' પ્રકારનો આહાર અને *y* કિલોગ્રામ 'II' પ્રકારનો આહાર લેવામાં આવે છે. સ્પષ્ટ છે કે, *x* ≥ 0, *y* ≥ 0. આપેલ માહિતી પરથી આપણે નીચે પ્રમાણે કોષ્ટક બનાવીએ :

સ્રોત	આહાર		ઓછામાં ઓછી
	I (x)	II (y)	આવશ્યકતા
વિટામિન A (એકમ/કિગ્રા)	2	1	8
વિટામિન C (એકમ/કિગ્રા)	1	2	10
ખર્ચ (₹/ કિગ્રા)	50	70	-

અહીં આ મિશ્રણમાં વિટામિન A નું પ્રમાણ ઓછામાં ઓછું 8 એકમ અને વિટામિન C નું પ્રમાણ ઓછામાં ઓછું 10 એકમ હોવાથી, આ પ્રમાણે મર્યાદાઓ મળે :

 $2x + y \ge 8$

 $x + 2y \ge 10$

'I' પ્રકારના x કિલોગ્રામ આહાર અને 'II' પ્રકારના y કિલોગ્રામ આહારનો કુલ ખર્ચ

Z = 50 x + 70 y થાય.

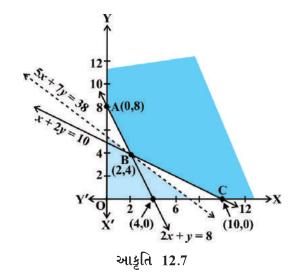
આમ, આપેલ સમસ્યાનું ગાણિતિક સ્વરૂપ આ પ્રમાણે થશે :

નીચેની શરતોને અધીન Z = 50 x + 70 yનું ન્યૂનતમ મૂલ્ય શોધો.

$$2x + y \ge 8 ...(2) x + 2y \ge 10 ...(3) x \ge 0, y \ge 0 ...(4)$$

ચાલો, આપણે અસમતાઓ (2) થી (4) ને આલેખીએ. આકૃતિ 12.7 માં આ અસમતાઓ દ્વારા રચાતો શક્ય ઉકેલનો પ્રદેશ દર્શાવ્યો છે. અહીં ફરીથી આપણે જોઈ શકીએ છીએ કે, શક્ય ઉકેલનો પ્રદેશ અસીમિત છે.

શિરોબિંદુઓ A(0, 8), B(2, 4) અને C(10, 0) આગળ Z ની કિંમત શોધીએ.



સુરેખ આયોજન

શક્ય ઉકેલના પ્રદેશનાં શિરોબિંદુઓ	Z = 50x + 70y નું સંગત મૂલ્ય
(0, 8)	560
(2, 4)	380 → ન્યૂનતમ
(10, 0)	500

કોષ્ટકમાં આપણે જોઈ શકીએ છીએ કે (2, 4) આગળ Z નું શક્ય ન્યૂનતમ મૂલ્ય 380 મળે છે. Z નું ન્યૂનતમ મૂલ્ય 380 છે તેવું આપશે કહી શકીએ ? યાદ રહે કે શક્ય ઉકેલનો પ્રદેશ અસીમિત છે. માટે આપશે અસમતા 50x + 70y < 380 એટલે 5x + 7y < 38 ને આલેખવી પડે અને ચકાસવું જોઈએ કે તેનાથી રચાતા ખુલ્લા અર્ધતલને શક્ય ઉકેલના પ્રદેશ સાથે કોઈ સામાન્ય બિંદુ મળે છે કે નહિ.

આકૃતિ 12.7 પરથી આપણે જોઈ શકીએ છીએ કે, આવું સામાન્ય બિંદુ મળશે નહિ. આથી, બિંદુ (2, 4) આગળ Z નું ન્યૂનતમ મૂલ્ય 380 પ્રાપ્ત થાય છે. તેથી આહારશાસ્ત્રી 2 કિલોગ્રામ આહાર 'I' અને 4 કિલોગ્રામ આહાર 'II' મિશ્ર કરીને ઈષ્ટતમ ખર્ચવાળું મિશ્રણ તૈયાર કરી શકે અને આ રીતથી મિશ્રણની ન્યૂનતમ કિંમત ₹ 380 થાય. <mark>ઉદાહરણ 7 : (ફાળવણી સમસ્યા) :</mark> ખેડૂતોની એક સહકારી મંડળી પાસે X અને Y એમ બે પ્રકારના પાક ઉગાડવા માટે 50 હેક્ટર જમીન છે. પાક X અને Y થી હેક્ટર દીઠ આશરે અનુક્રમે ₹ 10,500 અને ₹ 9000 નફો મળે છે. નીંદણને નિયંત્રણમાં રાખવા માટે પાક X માટે હેક્ટર દીઠ 20 લિટર અને પાક Y માટે હેક્ટર દીઠ 10 લિટર પ્રવાહી વનસ્પતિ વાપરવું પડે છે. આ જમીનની ગટર-વ્યવસ્થાનો નિકાલ એક તળાવમાં કરવામાં આવે છે. માછલી અને જંગલી જીવોના રક્ષણ માટે આ વનસ્પતિ 800 લિટરથી વધુ વાપરી શકાય નહિ. મંડળીનો કુલ નફો મહત્તમ થાય તે માટે દરેક પાક માટે કેટલી જમીન ફાળવી શકાય ?

ઉકેલ : ધારો કે x હેક્ટર જમીન પાક X માટે અને y હેક્ટર જમીન પાક Y માટે ફાળવવામાં આવે છે. સ્પષ્ટ છે કે, $x \ge 0, y \ge 0$.

પાક X માટે હેક્ટર દીઠ નફો = ₹ 10,500 પાક Y માટે હેક્ટર દીઠ નફો = ₹ 9000 ∴ કुલ न\$ो = ₹ (10,500 x + 9000 y) આપેલ પ્રશ્નનું ગાણિતિક સ્વરૂપ નીચે પ્રમાણે થશે :

(જમીનસંબંધી મર્યાદા) $x + y \leq 50$...(1) (डीटनाशङना ઉपयोगनी मर्यादा) $20x + 10y \le 800$

એટલે કે, $2x + y \leq 80$

 $x \ge 0, y \ge 0$

(अनुश मर्याहा)

શરતોને અધીન Z = 10,500 x + 9000 yનું મહત્તમ મૂલ્ય શોધો.

ચાલો આપશે અસમતા સંહતિ (1) થી (3) આલેખીએ. શક્ય ઉકેલનો પ્રદેશ OABC આકૃતિ 12.8 માં (રંગીન) દર્શાવવામાં આવેલ છે. આપશે નોંધીશું કે શક્ય ઉકેલનો પ્રદેશ સીમિત છે.

શિરોબિંદુઓ O, A, B અને C અનુક્રમે (0, 0), (40, 0), (30, 20) અને (0, 50) છે.

મહત્તમ નક્ષે મેળવવા માટે ચાલો આપણે આ બિંદુઓ આગળ હેતુલક્ષી વિધેય Z = 10,500x + 9000y નાં મૂલ્ય શોધીએ.

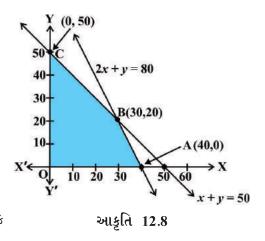
Downloaded from https:// www.studiestoday.com

...(2)

...(3)

440

શક્ય ઉકેલના પ્રદેશનાં શિરોબિંદુઓ	Z = 10,500 x + 9000 y નું સંગત મૂલ્ય
O(0, 0)	0
A(40, 0)	4,20,000
B(30, 20)	4,95,000 → મહત્તમ
C(0, 50)	4,50,000



આમ, 30 હેક્ટર જમીન પાક X માટે અને 20 હેક્ટર જમીન પાક Y માટે ફાળવવામાં આવે તો મંડળીને મહત્તમ નફો ₹ 4,95,000 થાય.

ઉદાહરણ 8 (ઉત્પાદનને લગતી સમસ્યા) : એક ઉત્પાદક એક વસ્તુના બે મૉડલ A અને B બનાવે છે. એક નંગ મૉડલ A બનાવવા લોખંડના કામની મજૂરી માટે 9 માનવ-કલાકોની અને મઠારવાની ક્રિયા માટે 1 માનવ-કલાકની જરૂર પડે છે. એક નંગ મૉડલ B બનાવવા લોખંડના કામની મજૂરી માટે 12 માનવ-કલાકોની અને મઠારવાની ક્રિયા માટે 3 માનવ-કલાકોની જરૂર પડે છે. લોખંડના કામની મજૂરી અને મઠારવાની ક્રિયા માટે અનુક્રમે મહત્તમ 180 અને 30 માનવ-કલાકો ઉપલબ્ધ છે. ઉત્પાદકને મૉડલ A ના એક નંગ પર ₹ 8000 અને મૉડલ B ના એક નંગ પર ₹ 12,000 નફો થાય છે. મહત્તમ નફો મેળવવા માટે સપ્તાહ દીઠ A પ્રકારના કેટલા નંગ અને B પ્રકારના કેટલા નંગ મૉડલનું ઉત્પાદન કરવું જોઈએ ? સપ્તાહ દીઠ મહત્તમ નફો કેટલો થશે ? ઉકેલ : ધારો કે સપ્તાહ દીઠ ઉત્પાદિત મૉડલ A ના નંગની સંખ્યા x અને મોડેલ B ના નંગની સંખ્યા y છે. આથી, કુલ નફો ₹ (8000 x + 12,000 y)

ધારો કે, Z = 8000 x + 12,000 y

 $Z = 8000 \ x + 12,000 \ y$

નું નીચે આપેલ શરતોને અધીન મહત્તમ મૂલ્ય શોધો :

 $9x + 12y \le 180$ $\therefore \quad 3x + 4y \le 60$ $x + 3y \le 30$

 $x \ge 0, y \ge 0$

(*લોખંડના કામની મર્યાદા*) ...(2)

(मठारवाना डामनी मर्याहा) ...(3)

(अनृश मर्याहा) ...(4)

અસમતાઓ (2) થી (4) દ્વારા રચાતો શક્ય ઉકેલનો પ્રદેશ (રંગીન) OABC વડે આકૃતિ 12.9 માં દર્શાવેલ છે. આપણે નોંધીશું કે શક્ય ઉકેલનો પ્રદેશ સીમિત છે.

શિરોબિંદુઓ આગળ હેતુલક્ષી વિધેય Z નાં મૂલ્ય નીચે પ્રમાશે મેળવીએ :

શક્ય ઉકેલના પ્રદેશનાં શિરોબિંદુઓ	Z = 8000 x + 12,000 y નું સંગત મૂલ્ય	$3x + 4y = 60$ x^{20} (0,15)
O(0, 0)	0	(0,10)C B (12,6)
A(20, 0)	1,60,000	(30,0)
B(12, 6)	1,68,000 → भ હत्तम	$\begin{array}{c} X' \leftarrow 0 \\ Y' \end{array} \begin{array}{c} i_0 \\ (20,0) \end{array} \begin{array}{c} A \\ x + 3y = 30 \end{array}$
C(0, 10)	1,20,000	આકૃતિ 12.9

Downloaded from https:// www.studiestoday.com

ગણિત

...(1)

સુરેખ આયોજન

શિરોબિંદુ B(12, 6) આગળ Z ની મહત્તમ કિંમત ₹ 1,68,000 મળે છે. આથી, ઉત્પાદકે મહત્તમ નફો મેળવવા માટે મૉડલ A ના 12 નંગ અને મૉડલ B ના 6 નંગનું ઉત્પાદન કરવું જોઈએ તથા તે વખતે મહત્તમ નફો ₹ 1,68,000 થશે.

સ્વાધ્યાય 12.2

- રેશ્મા જેમાં વિટામિન A ના ઓછામાં ઓછા 8 એકમ તથા વિટામિન B ના ઓછામાં ઓછા 11 એકમ હોય એવી રીતે P અને Q એમ બે પ્રકારનો ખોરાક મિશ્ર કરવા માગે છે. ખોરાક P ની કિંમત પ્રતિકિગ્રા ₹ 60 છે અને ખોરાક Q ની કિંમત પ્રતિકિગ્રા ₹ 80 છે. ખોરાક P, પ્રતિકિગ્રા 3 એકમ વિટામિન A અને પ્રતિકિગ્રા 5 એકમ વિટામિન B ધરાવે છે, જ્યારે ખોરાક Q પ્રતિકિગ્રા 4 એકમ વિટામિન A અને પ્રતિકિગ્રા 2 એકમ વિટામિન B ધરાવે છે. આ મિશ્રણની ન્યૂનતમ કિંમત શોધો.
- એક પ્રકારની કેક બનાવવા માટે 200 ગ્રામ લોટ અને 25 ગ્રામ મલાઈની જરૂર પડે છે. બીજા પ્રકારની કેક બનાવવા માટે 100 ગ્રામ લોટ અને 50 ગ્રામ મલાઈની જરૂર પડે છે. 5 કિલોગ્રામ લોટ અને 1 કિલોગ્રામ મલાઈથી વધુમાં વધુ કેટલી કેક બનાવી શકાય ? અહીં આપણે ધારી લઈશું કે, કેક બનાવવા માટેના અન્ય જરૂરી પદાર્થોની કોઈ તંગી નથી.
- એક કારખાનામાં ટેનિસના રૅકેટ અને ક્રિકેટના બૅટનું ઉત્પાદન થાય છે. ટેનિસનું એક રૅકેટ બનાવવા માટે
 1.5 કલાક યંત્ર-સમય અને 3 કલાક કસબીનો સમય લાગે છે. ક્રિકેટનું એક બૅટ બનાવવા માટે
 3 કલાક યંત્ર-સમય અને 1 કલાક કસબીનો સમય લાગે છે. કારખાનામાં એક દિવસ માટે યંત્ર-સમય
 42 કલાકથી વધુ મળતો નથી અને કસબીનો સમય 24 કલાકથી વધુ મળતો નથી.
 - (i) જો કારખાનું પૂરેપૂરી ક્ષમતાથી ચાલે તો કેટલાં રૅકેટ અને બૅટનું ઉત્પાદન થાય ?
 - (ii) જો એક રૅકેટ અને એક બૅટ પરનો નરૂો અનુક્રમે ₹ 20 અને ₹ 10 હોય, તો જ્યારે કારખાનું પૂરેપૂરી ક્ષમતાથી ચાલતું હોય ત્યારે મહત્તમ નરૂો કેટલો થાય ?
- 4. એક ઉત્પાદક ચાકી અને ખીલાનું ઉત્પાદન કરે છે. એક પૅકેટ ચાકી બનાવવા માટે મશીન A પર 1 કલાક અને મશીન B પર 3 કલાકનો સમય લાગે છે. એક પૅકેટ ખીલા બનાવવા માટે મશીન A પર 3 કલાક અને મશીન B પર 1 કલાક સમય લાગે છે. તે એક પૅકેટ ચાકી પર ₹ 17.50 અને એક પૅકેટ ખીલા પર ₹ 7.00 નફો મેળવે છે. જો તેનાં મશીનો એક દિવસમાં વધુમાં વધુ 12 કલાક કામ કરતાં હોય, તો ઉત્પાદકે મહત્તમ નફો મેળવવા માટે એક દિવસમાં કેટલાં પૅકેટ ચાકી અને કેટલાં પૅકેટ ખીલાનું ઉત્પાદન કરવું જોઈએ ?
- 5. એક કંપની A અને B એમ બે પ્રકારના સ્કૂનું ઉત્પાદન કરે છે. દરેક પ્રકારના સ્કૂ માટે સ્વયંસંચાલિત તથા હસ્તસંચાલિત એમ બે પ્રકારનાં મશીનનો ઉપયોગ થાય છે. A પ્રકારના સ્કૂનાં પૅકેટનું ઉત્પાદન કરવા માટે સ્વયંસંચાલિત મશીન પર 4 મિનિટ અને હસ્તસંચાલિત મશીન પર 6 મિનિટનો સમય લાગે છે. જ્યારે B પ્રકારના સ્કૂનાં પૅકેટનું ઉત્પાદન કરવા માટે સ્વયંસંચાલિત મશીન પર 6 મિનિટનો સમય લાગે છે. જ્યારે B પ્રકારના સ્કૂનાં પૅકેટનું ઉત્પાદન કરવા માટે સ્વયંસંચાલિત મશીન પર 6 મિનિટ અને હસ્તસંચાલિત મશીન પર 3 મિનિટનો સમય લાગે છે. કોઈ પણ દિવસે દરેક મશીન વધુમાં વધુ 4 કલાક ઉપલબ્ધ છે. ઉત્પાદકને A પ્રકારના સ્કૂનાં પૅકેટના વેચાણથી ₹ 7 નફો મળે છે અને B પ્રકારના સ્કૂનાં પૅકેટના વેચાણથી ₹ 10 નફો મળે છે. આપણે ધારી લઈશું કે તે જેટલા સ્કૂનું ઉત્પાદન કરે છે તેટલા સ્કૂનું વેચાણ કરી શકે છે. મહત્તમ નફો મેળવવા માટે કંપનીના માલિકે દરેક પ્રકારના સ્કૂના કેટલાં પૅકેટનું ઉત્પાદન કરવું જોઈએ ? મહત્તમ નફો શોધો.

442

ગણિત

- 6. એક કુટીર ઉદ્યોગ પેડેસ્ટલ ગોળા (padestal lamps) અને લાકડાના શેડ (wooden shades)નું ઉત્પાદન કરે છે. તે દરેક માટે ભૂકો કરવાના (grinding/cutting) મશીન અને છાંટવાના (sprayer) મશીનનો ઉપયોગ થાય છે. એક પેડેસ્ટલ ગોળાનું ઉત્પાદન કરવા માટે 2 કલાક જેટલો સમય ભૂકો કરવાના મશીન પર અને 3 કલાક જેટલો સમય છાંટવાના મશીન પર લાગે છે. એક શેડનું ઉત્પાદન કરવા માટે 1 કલાક જેટલો સમય ભૂકો કરવાના મશીન પર અને 3 કલાક જેટલો સમય છાંટવાના મશીન પર લાગે છે. એક શેડનું ઉત્પાદન કરવા માટે 1 કલાક જેટલો સમય ભૂકો કરવાના મશીન પર અને 4 કલાક જેટલો સમય છાંટવાના મશીન પર લાગે છે. એક શેડનું ઉત્પાદન કરવા માટે 1 કલાક જેટલો સમય ભૂકો કરવાના મશીન પર અને 2 કલાક જેટલો સમય છાંટવાના મશીન પર લાગે છે. એક શેડનું ઉત્પાદન કરવા માટે 1 કલાક જેટલો સમય ભૂકો કરવાના મશીન પર અને 2 કલાક જેટલો સમય છાંટવાના મશીન પર લાગે છે. એક શેડનાના મશીન વધુમાં વધુ 20 કલાક માટે ઉપલબ્ધ છે અને ભૂકો કરવાનું મશીન વધુમાં વધુ 12 કલાક માટે ઉપલબ્ધ છે અને ભૂકો કરવાનું મશીન વધુમાં વધુ 12 કલાક માટે ઉપલબ્ધ છે અને ભૂકો કરવાનું ગશીન વધુમાં વધુ 12 કલાક માટે ઉપલબ્ધ છે. અને ભૂકો કરવાનું ગશીન વધુમાં વધુ કે ઉત્પાદક જેટલા ગોળા અને શેડનું ઉત્પાદન કરે છે તે બધાનું વેચાણ કરી શકે છે. મહત્તમ નફો મેળવવા માટે તે કેવી રીતે દૈનિક ઉત્પાદનનું આયોજન કરી શકે ?
- 7. એક કંપની પ્લાયવૂડમાંથી બે પ્રકારની નાવીન્યભરી સ્મરણિકા (souvenir)નું ઉત્પાદન કરે છે. A પ્રકારની એક સ્મરણિકા માટે 5 મિનિટ કાપવાનો (cutting) અને 10 મિનિટ જોડાણ કરવાનો (assembling) સમય જરૂરી છે. B પ્રકારની એક સ્મરણિકા માટે 8 મિનિટ કાપવાનો અને 8 મિનિટ જોડાણ કરવાનો સમય જરૂરી છે. suurun માટે 3 કલાક 20 મિનિટ અને જોડાણ કરવા માટે 4 કલાકનો સમય ઉપલબ્ધ છે. A પ્રકારની પ્રત્યેક સ્મરણિકામાંથી ₹ 5 તેમજ B પ્રકારની પ્રત્યેક સ્મરણિકામાંથી ₹ 6 નફો મળે છે. મહત્તમ નફો મેળવવા માટે કંપનીએ બંને પ્રકારની કેટલી સ્મરણિકાનું ઉત્પાદન કરવું જોઈએ ?
- 8. એક વેપારી મેજ પર રાખી શકાય તેવા (Desktop) મૉડલ અને સુવાહ્ય (ફેરવી શકાય તેવા) (Portable) મૉડલ એમ બે પ્રકારનાં અંગત કમ્પ્યૂટર્સના વેચાણનું આયોજન કરે છે. તેમની કિંમત અનુક્રમે ₹ 25,000 અને ₹ 40,000 છે. તેનો અંદાજ એવો છે કે કમ્પ્યૂટર્સની માસિક માંગ 250 નંગથી વધશે નહિ. મેજ પર રાખવાનાં કમ્પ્યૂટર્સ દીઠ તેનો નફો ₹ 4500 છે અને સુવાહ્ય કમ્પ્યૂટર્સ દીઠ તેનો નફો ₹ 5000 છે. તે ₹ 70 લાખથી વધુ રોકાણ કરવા ઇચ્છતો નથી. તો તેણે મહત્તમ નફો મેળવવા માટે દરેક પ્રકારનાં કેટલાં કમ્પ્યૂટર્સનો સંગ્રહ કરવો જોઈએ ?
- 9. એક સમતોલ આહાર ઓછામાં ઓછા 80 એકમ વિટામિન A અને 100 એકમ ખનીજ તત્ત્વો ધરાવે છે. F₁ અને F₂ બે પ્રકારના ખોરાક ઉપલબ્ધ છે. F₁ પ્રકારના એક એકમ ખોરાકની કિંમત ₹ 4 છે અને F₂ પ્રકારના એક એકમ ખોરાકની કિંમત ₹ 4 છે અને F₂ પ્રકારના એક એકમ ખોરાક 3 એકમ વિટામિન A અને 4 એકમ ખનીજ તત્ત્વો ધરાવે છે. F₂ પ્રકારનો એક એકમ ખોરાક 6 એકમ વિટામિન A અને 4 એકમ ખનીજ તત્ત્વો ધરાવે છે. F₂ પ્રકારનો એક એકમ ખોરાક 6 એકમ વિટામિન A અને 4 એકમ ખનીજ તત્ત્વો ધરાવે છે. F₂ પ્રકારનો એક એકમ ખોરાક 3 એકમ વિટામિન A અને 4 એકમ ખનીજ તત્ત્વો ધરાવે છે. F₂ પ્રકારનો એક એકમ ખોરાક 6 એકમ વિટામિન A અને 3 એકમ ખનીજ તત્ત્વો ધરાવે છે. આ પ્રશ્નને સુરેખ આયોજનના પ્રશ્ન તરીકે ગાણિતિક સ્વરૂપમાં દર્શાવો. બંને પ્રકારના ખોરાકના મિશ્રણથી તૈયાર થયેલ ન્યૂનતમ જરૂરી પોષક તત્ત્વો ધરાવતા સમતોલ આહારની ન્યૂનતમ કિંમત શોધો.
- 10. F₁ અને F₂ બે પ્રકારનાં ખાતર પ્રાપ્ય છે. F₁માં નાઇટ્રૉજનનું પ્રમાશ 10 % અને ફૉસ્ફરિક ઍસિડનું પ્રમાશ 6 % આવેલું છે. અને F₂માં નાઇટ્રૉજનનું પ્રમાશ 5 % અને ફૉસ્ફરિક ઍસિડનું પ્રમાશ 10 % આવેલું છે. જમીનની ચકાસશી કર્યા પછી ખેડૂતને માલૂમ પડ્યું કે, તેના પાક માટે ઓછામાં ઓછું 14 કિગ્રા નાઇટ્રૉજન અને 14 કિગ્રા ફૉસ્ફરિક ઍસિડની જરૂર પડશે. જો એક કિગ્રા ખાતર F₁ની કિંમત ₹ 6 હોય અને એક કિગ્રા ખાતર F₂ની કિંમત ₹ 5 હોય, તો દરેક પ્રકારના કેટલા ખાતરનો ઉપયોગ કરવો પડશે કે જેથી ન્યૂનતમ ખર્ચમાં જરૂરી પોષક તત્ત્વો મળી રહે ? ન્યૂનતમ ખર્ચ કેટલો થશે ? પ્રશ્ન 11 માં વિધાન સાચું બને તે રીતે આપેલ વિકલ્પોમાંથી યોગ્ય વિકલ્પ પસંદ કરો :
- 11. મર્યાદાઓની અસમતા સંહતિ $2x + y \le 10, x + 3y \le 15, x \ge 0, y \ge 0$ થી રચાતા શક્ય ઉકેલના પ્રદેશનાં
શિરોબિંદુઓ (0, 0), (5, 0), (3, 4) અને (0, 5) છે. ધારો કે Z = px + qy, p, q > 0. જો Z ની મહત્તમ
કિંમત શિરોબિંદુ (3, 4) અને (0, 5) બંને આગળ મળે તો p તથા q વચ્ચેનો સંબંધ
(A) p = q(B) p = 2q(C) p = 3q(D) q = 3p

સુરેખ આયોજન

443

પ્રકીર્ણ ઉદાહરણો

ઉંદાહરણ 9 : (આહાર સંબંધી સમસ્યાઓ) એક આહાર વિજ્ઞાનીને P અને Q એમ બે પ્રકારના ખોરાકનો ઉપયોગ કરી એક વિશિષ્ટ આહાર બનાવવો છે. ખોરાક P નું 30 ગ્રામનું દરેક પૅકેટ 12 એકમ કૅલ્શિયમ (calcium), 4 એકમ લોહતત્ત્વ, 6 એકમ ચરબી (cholesterol) અને 6 એકમ વિટામિન A ધરાવે છે. તે જ વજનના ખોરાક Q નું દરેક પૅકેટ 3 એકમ કૅલ્શિયમ, 20 એકમ લોહતત્ત્વ, 4 એકમ ચરબી અને 3 એકમ વિટામિન A ધરાવે છે. આ મિશ્ર આહારમાં ઓછામાં ઓછા 240 એકમ કૅલ્શિયમ, 460 એકમ લોહતત્ત્વ અને વધુમાં વધુ 300 એકમ ચરબી આવશ્યક છે.

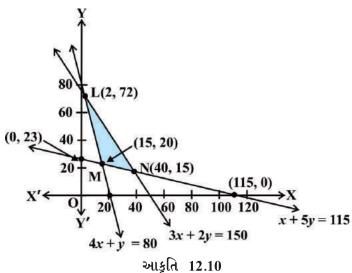
આ આહારમાં વિટામિન A નું પ્રમાશ ન્યૂનતમ રાખવું હોય, તો દરેક પ્રકારના ખોરાકના કેટલાં પૅકેટની જરૂર પડશે ? વિટામિન A નું ન્યૂનતમ પ્રમાશ કેટલું હશે ?

<mark>ઉકેલ</mark> ઃ ધારો કે ખોરાક P તથા Q ના ઉપયોગમાં લેવાતા પૅકેટ્સની સંખ્યા અનુક્રમે x અને y છે. સ્પષ્ટ છે કે x ≥ 0, y ≥ 0. આપેલા પ્રશ્નનું ગાશિતિક સ્વરૂપ નીચે પ્રમાશે થશે ઃ

 $12x + 3y \ge 240$ એટલે કે $4x + y \ge 80$ (डॅक्शियमनी मर्यादा) ...(1) $4x + 20y \ge 460$ એટલે કે $x + 5y \ge 115$ (ಡोહतत्त्वनी मर्यादा) ...(2) $6x + 4y \le 300$ એટલે કે $3x + 2y \le 150$ (खरબीनी मर्यादा) ...(3) $x \ge 0, y \ge 0$...(4)

શરતોને અધીન Z = 6x + 3y ની (વિટામિન A) ન્યૂનતમ કિંમત શોધો.

આપણે અસમતાઓ (1)થી (4) નો આલેખ દોરીએ. અસમતા (1)થી (4) દ્વારા રચાતા શક્ય ઉકેલનો પ્રદેશ (રંગીન) આકૃતિ 12.10 માં દર્શાવેલ છે અને તે સીમિત છે.



શિરોબિંદુઓ L, M અને N ના યામ અનુક્રમે (2, 72), (15, 20) અને (40, 15) છે. આપશે આ શિરોબિંદુઓ આગળ Z ની કિંમત મેળવીશું.

શક્ય ઉકેલના પ્રદેશનાં શિરોબિંદુઓ	$\mathbf{Z} = 6\mathbf{x} + 3\mathbf{y} \mathbf{j} \mathbf{k}$ ंगत मूक्य
(2, 72)	228
(15, 20)	150 → ન્યૂનતમ
(40, 15)	285

444

કોષ્ટક પરથી માલૂમ પડે છે કે, Z ની ન્યૂનતમ કિંમત (15, 20) આગળ મળે છે. આમ, વિશિષ્ટ આહાર બનાવવા માટે જો ખોરાક P નાં 15 પૅકેટ્સ અને ખોરાક Q નાં 20 પૅકેટ્સ ઉપયોગમાં લેવામાં આવે, તો આપેલ પ્રશ્નની મર્યાદાઓમાં રહીને વિટામિન A નું પ્રમાણ ન્યૂનતમ થાય. વિટામિન A નું ન્યૂનતમ પ્રમાણ 15 × 6 + 20 × 3 = 150 એકમ થાય.

ઉદાહરણ 10 : (ઉત્પાદનને લગતો પ્રશ્ન) એક ઉત્પાદકે તેના કારખાનામાં ત્રણ મશીનો I, II અને III સ્થાપિત કર્યાં છે. મશીન I અને II દૈનિક વધુમાં વધુ 12 કલાક સુધી ચાલવા માટે સક્ષમ છે અને મશીન III ને દૈનિક ઓછામાં ઓછા 5 કલાક ચલાવવું જરૂરી છે. ત્રણેય મશીનોના ઉપયોગથી તે બે પ્રકારની વસ્તુઓ M અને N નું ઉત્પાદન કરે છે. M અને N પ્રકારના એક નંગના ઉત્પાદન માટે ત્રણેય મશીનો પરનો જરૂરી સમય નીચેના કોષ્ટકમાં દર્શાવેલ છે :

વસ્તુ	મશીનો પરનો આવશ્યક સમય				
	Ι	II	III		
М	1	2	1		
N	2	1	1.25		

તે M અને N પરનો નફો અનુક્રમે પ્રત્યેક વસ્તુ દીઠ ₹ 600 અને ₹ 400 મેળવે છે. જો આપણે ધારી લઈએ કે, તે દરેક ઉત્પાદિત વસ્તુનું વેચાણ કરી શકે છે, તો મહત્તમ નફો મેળવવા માટે તેણે દરેક વસ્તુનું કેટલું ઉત્પાદન કરવું જોઈએ ? મહત્તમ નફો કેટલો મળે ? ઉકેલ : ધારો કે x અને y એ અનુક્રમે M અને N પ્રકારની ઉત્પાદિત વસ્તુઓની સંખ્યા છે. ઉત્પાદન પર કુલ નફો = ₹ (600 x + 400 y)

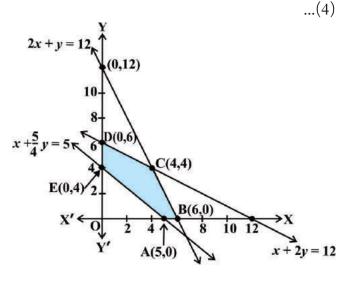
આપેલ પ્રશ્નનું ગાણિતિક સ્વરૂપ નીચે પ્રમાણે છે :

 $x + 2y \le 12$ $2x + y \le 12$ $x + \frac{5}{4}y \ge 5$ $x \ge 0, y \ge 0$

શરતોને અધીન Z = 600x + 400y ની મહત્તમ કિંમત શોધો.

આપણે અસમતાઓ (1) થી (4)નો આલેખ દોરીએ.

અસમતાઓ (1)થી (4) દ્વારા રચાતો શક્ય ઉકેલનો પ્રદેશ (રંગીન) ABCDE આકૃતિ 12.11માં દર્શાવેલ છે. આપણે જોઈ શકીએ છીએ કે, શક્ય ઉકેલનો પ્રદેશ સીમિત છે. શિરોબિંદુઓ A, B, C, D અને E ના યામ અનુક્રમે (5, 0), (6, 0), (4, 4), (0, 6) અને (0, 4) છે.



(मशीन Iनी मर्याहा) ...(1)

(मशीन IIनी मर्याहा) ...(2)

(मशीन IIIनी मर्याहा) ...(3)

15 × 6 + 20 × 3 = 150 એકમ થાય. ઉદાહરણ 10 : (ઉત્પાદનને લગતો પ્રશ્ન) એક ઉત્પાદકે તેના કારખાનામાં ત્રણ મશીનો I, II અને III સ્થાપિત

Downloaded from https:// www.studiestoday.com

ગણિત

સુરેખ આયોજન

શક્ય ઉકેલના પ્રદેશનાં શિરોબિંદુઓ	Z = 600x + 400y નું સંગત મૂલ્ય
(5, 0)	3000
(6, 0)	3600
(4, 4)	4000 → મહત્તમ
(0, 6)	2400
(0, 4)	1600

આ શિરોબિંદુઓએ Z = 600 x + 400 y ની કિંમત શોધીએ :

આપણે જોઈ શકીએ છીએ કે, Z નું મહત્તમ મૂલ્ય બિંદુ (4, 4) આગળ મળે છે. આથી, મહત્તમ નફો ₹ 4000 મેળવવા માટે ઉત્પાદકે દરેક વસ્તુના 4 નંગનું ઉત્પાદન કરવું જોઈએ.

ઉંદાહરણ 11 : (પરિવહનને લગતો પ્રશ્ન) બે કારખાનાંઓ અનુક્રમે સ્થળ P અને સ્થળ Q આગળ આવેલાં છે. આ સ્થળોએથી ઉત્પાદિત ચોક્કસ ચીજવસ્તુને ત્રણ સ્થળ A, B, C આગળ આવેલી વખારમાં પહોંચાડવાની છે. આ ત્રણે ય વખારમાં આ ચીજવસ્તુની સાપ્તાહિક જરૂરિયાત અનુક્રમે 5, 5 અને 4 નંગની છે. કારખાના P અને Q ની ઉત્પાદન-ક્ષમતા અનુક્રમે 8 અને 6 નંગની છે. એક નંગનો પરિવહન-ખર્ચ નીચે પ્રમાણે આપેલ છે :

થી/સુધી	કિંમત (₹)				
	Α	С			
Р	160	100	150		
Q	100	120	100		

પરિવહનનો ખર્ચ ન્યૂનતમ થાય તે માટે દરેક કારખાનાથી દરેક વખારમાં કેટલા નંગ પહોંચાડશો ? ન્યૂનતમ પરિવહન-ખર્ચ કેટલો થશે ?

ઉકેલ : આ સમસ્યાની સમજૂતી નીચે રેખાકૃતિ દ્વારા આપેલ છે (આકૃતિ 12.12).

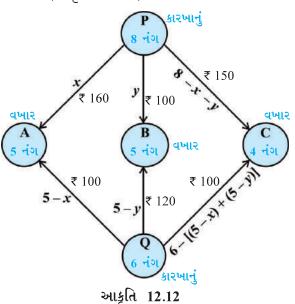
ધારો કે કારખાના P માંથી x નંગ અને y નંગ ચીજવસ્તુઓ અનુક્રમે વખાર A અને B માં પહોંચાડવામાં આવે છે. આથી (8 – x – y) નંગ વખાર C માં પહોંચાડવામાં આવશે. (શા માટે ?)

આમ, $x \ge 0$, $y \ge 0$ અને $8 - x - y \ge 0$

એટલે કે, $x \ge 0, y \ge 0$ અને $x + y \le 8$

હવે, વખાર A માં ચીજવસ્તુની સાપ્તાહિક જરૂરિયાત 5 નંગની છે. કારખાના P માંથી x નંગ પહોંચાડવામાં આવે છે તેથી બાકીના (5 – x) નંગ કારખાના Q માંથી પહોંચાડવા જરૂરી છે.

દેખીતી રીતે, $5 - x \ge 0$ એટલે કે $x \le 5$.



446

ગણિત

તે જ રીતે, કારખાના Q માંથી (5 - y) અને 6 - (5 - x + 5 - y) = x + y - 4 નંગ અનુક્રમે વખાર B અને C માં પહોંચાડશે. આમ, $5 - y \ge 0$, $x + y - 4 \ge 0$ એટલે કે $y \leq 5, x + y \geq 4$ તેથી કુલ પરિવહન-ખર્ચ Z નીચે પ્રમાશે મળે : Z = 160x + 100y + 100(5 - x) + 120(5 - y) + 100(x + y - 4) + 150(8 - x - y)= 10 (x - 7y + 190)આથી, પ્રશ્નને નીચે પ્રમાણે દર્શાવી શકાય : $x \ge 0, y \ge 0$...(1) (3,5) B(0.5) y = 5 $x + y \leq 8$...(2) D(5,3) $x \leq 5$ A(0,4) ...(3) (5,0) $v \leq 5$...(4) અને $x + y \ge 4$...(5) F(4.0) શરતોને અધીન Z = 10 (x - 7y + 190) ની આકૃતિ 12.13 ન્યૂનતમ કિંમત શોધો.

મર્યાદાઓ (1)થી (5) દ્વારા રચાતો પ્રદેશ એ શક્ય ઉકેલનો પ્રદેશ ABCDEF રંગીન પ્રદેશ તરીકે દર્શાવેલ છે. (આકૃતિ 12.13). આપણે જોઈ શકીએ છીએ કે, શક્ય ઉકેલનો પ્રદેશ સીમિત છે. શક્ય ઉકેલના પ્રદેશનાં શિરોબિંદુઓ (0, 4), (0, 5), (3, 5), (5, 3), (5, 0) અને (4, 0) છે. આપણે આ શિરોબિંદુઓ આગળ Z ની કિંમત મેળવીશું.

શક્ય ઉકેલના પ્રદેશનાં શિરોબિંદુઓ	Z = 10 (x - 7y + 190) નું સંગત મૂલ્ય
(0, 4)	1620
(0, 5)	1550 ightarrow ન્યૂનતમ
(3, 5)	1580
(5, 3)	1740
(5, 0)	1950
(4, 0)	1940

કોષ્ટક પરથી આપણે જોઈ શકીએ છીએ કે, શિરોબિંદુ (0, 5) આગળ Z ની ન્યૂનતમ કિંમત ₹ 1550 મળે છે. આમ, ઇષ્ટતમ પરિવહન વ્યૂહરચના એ કારખાના P થી અનુક્રમે 0, 5 અને 3 નંગ તથા કારખાના Q થી અનુક્રમે 5, 0 અને 1 નંગ અનુક્રમે વખાર A, B અને C માં પહોંચાડવા એ થશે. આ વ્યૂહરચનાથી પરિવહન-ખર્ચ ન્યૂનતમ થશે અને તે ₹ 1550 છે.

સુરેખ આયોજન

પ્રકીર્શ સ્વાધ્યાય 12

- ઉદાહરણ 9 ના અનુસંધાનમાં આહારમાં વિટામિન Aનું પ્રમાણ મહત્તમ હોય, તો દરેક પ્રકારના ખોરાકના કેટલાં પૅકેટનો ઉપયોગ કરવો જોઈએ ? આહારમાં વિટામિન A નું મહત્તમ પ્રમાણ કેટલું હશે ?
- 2. એક ખેડૂત P અને Q એમ બે પ્રકારની જાતના પશુઆહારનું મિશ્રણ કરે છે. P પ્રકારના પશુઆહારની એક યેલીનો ભાવ ₹ 250 છે. તેમાં 3 એકમ પોષકતત્ત્વો A, 2.5 એકમ પોષક તત્ત્વ B અને 2 એકમ પોષક તત્ત્વ C છે. Q પ્રકારના પશુઆહારની એક થેલીનો ભાવ ₹ 200 છે. તેમાં 1.5 એકમ પોષક તત્ત્વો A, 11.25 એકમ B અને 3 એકમ પોષક તત્ત્વ C છે. પોષક તત્ત્વો A, B અને C ની ન્યૂનતમ જરૂરિયાત અનુક્રમે 18 એકમ, 45 એકમ અને 24 એકમની છે. જો આ મિશ્રણની એક થેલીની કિંમત ન્યૂનતમ રાખવી હોય, તો દરેક પ્રકારની કેટલી થેલી મિશ્ર કરવી જોઈએ ? આ મિશ્રણની એક થેલીની ન્યૂનતમ કિંમત કેટલી થશે ?
- એક આહારવિજ્ઞાની, વિટામિન A ના ઓછામાં ઓછા 10 એકમ હોય, વિટામિન B ના ઓછામાં ઓછા
 12 એકમ હોય અને વિટામિન C ના ઓછામાં ઓછા 8 એકમ હોય તે રીતે X અને Y એમ બે પ્રકારનો ખોરાક મિશ્ર કરવા માંગે છે. 1 કિલોગ્રામ ખોરાકમાં વિટામિનનું પ્રમાણ નીચે પ્રમાણે આપેલ છે :

ખોરાક	વિટામિન A	વિટામિન B	વિટામિન C
X	1	2	3
Y	2	2	1

X પ્રકારના ખોરાકનો પ્રતિકિગ્રા ભાવ ₹ 16 છે અને Y પ્રકારના ખોરાકનો ભાવ પ્રતિકિગ્રા ₹ 20 છે. જરૂરી મિશ્રિત આહાર બનાવવા માટેનો ન્યૂનતમ ખર્ચ શોધો.

 એક ઉત્પાદક A અને B બે પ્રકારનાં રમકડાં બનાવે છે. આ કામ માટે ત્રણ મશીનોની જરૂર પડે છે. દરેક રમકડું બનાવવા માટે મશીન પર લાગતો સમય (મિનિટમાં) નીચે પ્રમાણે આપેલ છે :

રમકડાનો પ્રકાર	મશીન				
	I II III				
А	12 18 6				
В	6 0 9				

દરેક મશીન પ્રતિદિન મહત્તમ 6 કલાક માટે ઉપલબ્ધ છે. જો A પ્રકારના એક રમકડા પરનો નફો ₹ 7.50 અને B પ્રકારના એક રમકડા પરનો નફો ₹ 5 હોય, તો સાબિત કરો કે મહત્તમ નફો મેળવવા માટે ઉત્પાદકે A પ્રકારનાં 15 રમકડાં અને B પ્રકારનાં 30 રમકડાંનું દૈનિક ઉત્પાદન કરવું જોઈએ.

- 5. એક વિમાન વધુમાં વધુ 200 મુસાફરોને લઈ જઈ શકે છે. એક ઉચ્ચ વર્ગની ટિકિટમાંથી વિમાનકંપનીને ₹ 1000 નો નફો થાય છે અને એક સુલભ વર્ગની ટિકિટમાંથી કંપનીને ₹ 600 નફો થાય છે. વિમાનીકંપની ઓછામાં ઓછી 20 બેઠકો ઉચ્ચ વર્ગ માટે અનામત રાખે છે. આમ છતાં ઉચ્ચ વર્ગના મુસાફરો કરતાં સુલભ વર્ગમાં ઓછામાં ઓછા 4 ગણા મુસાફરો મુસાફરી કરતાં હોય છે. વિમાનીકંપનીએ દરેક વર્ગની કેટલી ટિકિટોનું વેચાણ કરવું જોઈએ કે જેથી મહત્તમ નફો થાય ? મહત્તમ નફો કેટલો થશે ?
- બે ગોડાઉન A અને B માં અનાજને રાખવા માટેની ક્ષમતા અનુક્રમે 100 ક્વિન્ટલ અને 50 ક્વિન્ટલ છે. આ અનાજને ત્રણ રેશનની દુકાન D, E અને F માં પહોંચાડવાનું હોય છે. તેમની જરૂરિયાત અનુક્રમે 60, 50 અને 40 ક્વિન્ટલની છે. ગોડાઉનથી રેશનની દુકાન સુધીનો ક્વિન્ટલ દીઠ પરિવહનનો ખર્ચ આગળ કોષ્ટકમાં આપેલ છે :

448

ગણિત

	ક્વિન્ટલ દીઠ પરિવહન-ખર્ચ (₹)		
થી / સુધી	A B		
D	6	4	
Е	3	2	
F	2.5	3	

પરિવહન-ખર્ચ ન્યૂનતમ થાય તે માટે અનાજને કેવી રીતે પહોંચાડવું જોઈએ ? ન્યૂનતમ ખર્ચ શોધો.

7. એક ક્રૂડતેલની કંપનીની પાસે બે ડેપો A અને B અનુક્રમે 7000 લીટર અને 4000 લિટરની ક્ષમતાવાળા આવેલા છે. કંપનીએ જેની જરૂરિયાત અનુક્રમે 4500 લિટર, 3000 લિટર અને 3500 લિટર છે તેવા ત્રણ પેટ્રોલ પમ્પ D, E, F ને ક્રૂડતેલ પહોંચાડે છે. ડેપો અને પેટ્રોલ પમ્પ વચ્ચેનાં અંતરો (કિમીમાં) નીચે કોષ્ટકમાં આપેલ છે :

	અંતર (કિમી)			
થી / સુધી	Α	В		
D	7	3		
Е	6	4		
F	3	2		

ધારો કે 10 લિટર ક્રૂડતેલનું પરિવહન-ખર્ચ કિલોમીટર દીઠ ₹ 1 છે. ક્રૂડતેલને ડેપોથી પેટ્રોલ પમ્પ પર કેવી રીતે પહોંચાડવાનું નક્કી કરશો કે જેથી પરિવહન-ખર્ચ ન્યૂનતમ થાય ? ન્યૂનતમ ખર્ચ કેટલો થશે ?

8. એક ફળ-ઉત્પાદક તેના બગીચામાં P અને Q એમ બે પ્રકારની બ્રાન્ડનાં ખાતરનો ઉપયોગ કરી શકે છે. દરેક બ્રાન્ડની એક થેલી દીઠ નાઇટ્રૉજન, ફૉસ્ફરિક ઍસિડ, પોટાશ અને ક્લોરિનનો જથ્થો (કિગ્રામાં) કેટલો છે તે નીચે કોષ્ટકમાં આપેલ છે. પરીક્ષણ પરથી માલૂમ પડ્યું કે, બગીચામાં ઓછામાં ઓછું 240 કિગ્રા ફૉસ્ફરિક ઍસિડ, ઓછામાં ઓછું 240 કિગ્રા ફૉસ્ફરિક ઍસિડ, ઓછામાં ઓછું 270 કિગ્રા પોટાશ અને વધુમાં વધુ 310 કિગ્રા ક્લોરિનની જરૂર છે. જો ઉત્પાદક બગીચામાં નાઇટ્રૉજનનો ન્યૂનતમ જથ્થો ઉમેરવાનું ઇચ્છે, તો દરેક બ્રાન્ડની કેટલી થેલીનો ઉપયોગ કરવો જોઈએ ? બગીચામાં નાઇટ્રૉજનનો ન્યૂનતમ જથ્થો ઉમેરવાનું ઇચ્છે, તો દરેક બ્રાન્ડની કેટલી થેલીનો ઉપયોગ કરવો

	થેલી દીઠ	થેલી દીઠ કિગ્રા				
	બ્રાન્ડ P	બ્રાન્ડ Q				
નાઇટ્રૉજન	3	3.5				
ફૉસ્ફરિક ઍસિડ	1	2				
પોટાશ	3	1.5				
ક્લોરિન	1.5	2				

 પ્રશ્ન 8ના અનુસંધાનમાં જો ઉત્પાદક બગીચામાં નાઇટ્રૉજનનો મહત્તમ જથ્થો ઉમેરવાનું ઇચ્છે તો દરેક બ્રાન્ડની કેટલી થેલીનો ઉપયોગ કરવો જોઈએ ? બગીચામાં નાઇટ્રૉજનનો મહત્તમ જથ્થો કેટલો ઉમેરવો પડશે ?

સુરેખ આયોજન

10. એક રમકડાની કંપની A અને B બે પ્રકારની ઢીંગલીઓ બનાવે છે. બજારનાં પરીક્ષણો અને ઉપલબ્ધ સ્રોતો દર્શાવે છે કે, સાપ્તાહિક સંયુક્ત ઉત્પાદનનું સ્તર 1200 ઢીંગલીઓથી વધવું ન જોઈએ અને B પ્રકારની ઢીંગલીઓની માંગ A પ્રકારની ઢીંગલીઓ કરતાં વધુમાં વધુ અડધી છે. વળી, A પ્રકારની ઢીંગલીઓનું ઉત્પાદન B પ્રકારની ઢીંગલીઓના ઉત્પાદનના ત્રણ ગણા કરતાં વધુમાં વધુ 600 જેટલું વધુ છે. જો કંપની A અને B પ્રકારની ઢીંગલી પર અનુક્રમે ₹ 12 અને ₹ 16 નફો કરતી હોય, તો મહત્તમ નફો મેળવવા માટે સાપ્તાહિક દરેક પ્રકારની ઢીંગલી ઢીંગલીનું ઉત્પાદન કરવું જોઈએ ?

સારાંશ

- સુરેખ આયોજનનો પ્રશ્ન એ એક કરતાં વધુ ચલરાશિવાળા સુરેખ વિધેય (હેતુલક્ષી વિધેય)ને અમુક શરતોને અધીન ઇષ્ટતમ મૂલ્ય (મહત્તમ કે ન્યૂનતમ મૂલ્ય) શોધવા સંબંધિત છે. ચલરાશિઓ અનૃષ્ હોય અને બધી જ સુરેખ અસમતાઓનું (મર્યાદાઓ) સમાધાન કરે છે. ચલરાશિઓને ક્યારેક નિર્ણાયક ચલરાશિઓ કહે છે અને તે અનૃષ્ હોય છે.
- 🔷 કેટલાક અગત્યના સુરેખ આયોજનની સમસ્યાઓ આ પ્રમાશે છે :
 - (i) આહારસંબંધી સમસ્યાઓ
 - (ii) ઉત્પાદનને લગતી સમસ્યાઓ
 - (iii) પરિવહનને લગતા પ્રશ્નો
- સુરેખ આયોજનના પ્રશ્નની તમામ મર્યાદાઓ, અનૃણ મર્યાદાઓ x, y ≥ 0 સહિત, વડે રચાતા સામાન્ય પ્રદેશને પ્રશ્નનો શક્ય ઉકેલનો પ્રદેશ (અથવા ઉકેલ પ્રદેશ) કહે છે.
- શક્ય ઉકેલના પ્રદેશની અંદર અને તેની સીમા પર આવેલાં બિંદુઓ મર્યાદાઓ માટે શક્ય ઉકેલ દર્શાવે છે. શક્ય ઉકેલના પ્રદેશની બહારનું કોઈ પણ બિંદુ એ અશક્ય ઉકેલ છે.
- શક્ય ઉકેલના પ્રદેશનું બિંદુ M જે હેતુલક્ષી વિધેયને ઇષ્ટતમ (મહત્તમ અથવા ન્યૂનતમ) બનાવે તે
 ઉકેલને ઇષ્ટતમ ઉકેલ કહે છે.
- 🔷 નીચે પ્રમાશેનાં પ્રમેયો એ સુરેખ આયોજનના પ્રશ્નોના ઉકેલ માટેનાં મૂળભૂત પ્રમેયો છે :

પ્રમેય 1 : ધારો કે R એ સુરેખ આયોજનના પ્રશ્ન માટેના હેતુલક્ષી વિધેય Z = ax + by માટેના શક્ય ઉકેલનો પ્રદેશ છે (તે બહિર્મુખ બહુકોણ હોય). જ્યારે Z ને ઈષ્ટતમ મૂલ્ય (મહત્તમ અથવા ન્યૂનતમ) મળે ત્યારે તે મર્યાદાઓના કારણે ચલરાશિઓ x અને y થી બનતી સુરેખ અસમતાઓથી રચાતા શક્ય ઉકેલના પ્રદેશ દ્વારા રચાતા બહિર્મુખ બહુકોણના કોઈ પણ શિરોબિંદુ આગળ જ પ્રાપ્ત થઈ શકે છે. પ્રમેય 2 : ધારો કે R એ સુરેખ આયોજનના પ્રશ્ન માટેના હેતુલક્ષી વિધેય Z = ax + by માટેના શક્ય ઉકેલનો પ્રદેશ છે. જો આ પ્રદેશ R સીમિત હોય, તો હેતુલક્ષી વિધેય Z ને મહત્તમ તથા ન્યૂનતમ મૂલ્ય પ્રદેશ R ના કોઈ પણ શિરોબિંદુ આગળ પ્રાપ્ત થાય છે.

- જો શક્ય ઉકેલનો પ્રદેશ અસીમિત હોય, તો હેતુલક્ષી વિધેયને મહત્તમ કે ન્યૂનતમ કિંમત ન પણ મળે.
 તેમ છતાં જો મળે તો તે R ના કોઈ પણ શિરોબિંદુ આગળ જ મળે.
- સુરેખ આયોજનનો પ્રશ્ન ઉકેલવાની શિરોબિંદુની રીત. આ પદ્ધતિ નીચે જણાવેલ સોપાન ધરાવે છે :
 - (1) સુરેખ આયોજનના પ્રશ્નના શક્ય ઉકેલનો પ્રદેશ શોધો અને શિરોબિંદુઓ નક્કી કરો.
 - (2) દરેક શિરોબિંદુ આગળ હેતુલક્ષી વિધેય Z = ax + by ની કિંમત મેળવો. ધારો કે આ બિંદુઓ આગળ તેની મહત્તમ કિંમત તથા ન્યૂનતમ કિંમત અનુક્રમે M તથા m છે.

Downloaded from https:// www.studiestoday.com

449

ગણિત

- (3) જો શક્ય ઉકેલનો પ્રદેશ સીમિત હોય, તો Z ની મહત્તમ તથા ન્યૂનતમ કિંમત અનુક્રમે M તથા m થાય.
 - જો શક્ય ઉકેલનો પ્રદેશ અસીમિત હોય, તો
 - (i) જો ax + by > M થી રચાતા ખુલ્લા અંતરાલનું કોઈ પણ બિંદુ શક્ય ઉકેલના પ્રદેશ સાથે સામાન્ય ન હોય તો Z ની મહત્તમ કિંમત M થાય. નહિ તો Z ને મહત્તમ કિંમત ન મળે.
 - (ii) જો ax + by < m થી રચાતા ખુલ્લા અર્ધતલનું કોઈ પણ બિંદુ શક્ય ઉકેલના પ્રદેશ સાથે સામાન્ય ન હોય, તો Z ની ન્યૂનતમ કિંમત m થાય. નહિ તો Z ને ન્યૂનતમ કિંમત ન મળે.
- જો શક્ય ઉકેલના પ્રદેશનાં બે શિરોબિંદુઓ આગળ સમાન પ્રકારનું ઇષ્ટતમ મૂલ્ય મળે એટલે કે બંને બિંદુઓ આગળ સમાન મહત્તમ કે ન્યૂનતમ મૂલ્ય મળે, તો આ બંને બિંદુઓને જોડતા રેખાખંડ પરના પ્રત્યેક બિંદુ આગળ પણ સમાન પ્રકારનું ઇષ્ટતમ મૂલ્ય મળે.

Historical Note

In the World War II, when the war operations had to be planned to economise expenditure, maximise damage to the enemy, linear programming problems came to the forefront.

The first problem in linear programming was formulated in C.E. 1941 by the Russian mathematician, *L. Kantorovich* and the American economist, *F. L. Hitchcock*, both of whom worked at it independently of each other. This was the well known transportation problem. In C.E. 1945, an English economist, *G. Stigler*, described yet another linear programming problem – that of determining an optimal diet.

In C.E. 1947, the American economist, *G*. *B. Dantzig* suggested an efficient method known as the simplex method which is an iterative procedure to solve any linear programming problem in a finite number of steps.

L. Katorovich and American mathematical economist, *T. C. Koopmans* were awarded the nobel prize in the year C.E. 1975 in economics for their pioneering work in linear programming. With the advent of computers and the necessary softwares, it has become possible to apply linear programming model to increasingly complex problems in many areas.

પ્રકરણ

સંભાવના

★ The theory of probabilities is simply the Science of logic quantitatively treated. – C. S. PEIRCE ◆

13.1 પ્રાસ્તાવિક

આગળનાં ધોરણોમાં, આપણે યાદચ્છિક પ્રયોગની સંભાવનાનો અભ્યાસ ઘટનાઓની અનિશ્ચિતતાના માપ તરીકે કર્યો છે. આપણે રશિયન ગણિતશાસ્ત્રી, *એ. એન. કોલ્મોગોરોવે* (C.E. 1903 - C.E. 1987) સૂત્રના રૂપમાં આપવામાં આવેલ પૂર્વધારણાયુક્ત અભિગમની ચર્ચા કરી છે અને યાદચ્છિક પ્રયોગનાં પરિણામો પરના વિધેય તરીકે સંભાવનાનું નિરૂપણ કર્યું છે. સમસંભાવી પરિણામોના વિકલ્પમાં આપણે સંભાવનાના પૂર્વધારણાયુક્ત સિદ્ધાંત અને પ્રશિષ્ટ સિદ્ધાંતની વચ્ચે સમાનતા પણ સ્થાપિત કરી છે. આપણે અસતત નિદર્શાવકાશો સાથે સંકળાયેલ ઘટનાઓની સંભાવનાઓ આ સંબંધના આધારે મેળવી છે. આપણે સંભાવનાના સરવાળાના નિયમનો અભ્યાસ પણ કર્યો છે. આ પ્રકરણમાં, આપણે એક મહત્ત્વની સંકલ્પના, ઘટનાની શરતી સંભાવના એટલે કે જ્યારે એક ઘટના ઉદ્ભવી ચૂકી છે એમ આપેલ

હોય તે સંજોગોમાં અન્ય ઘટના ઉદ્ભવવાની સંભાવના વિશે ચર્ચા કરીશું. તે બેય્ઝના

Pierre de Fermat (C.E. 1601 - C.E. 1665)

પ્રમેય, સંભાવનાના ગુણાકારના નિયમ અને ઘટનાઓની નિરપેક્ષતાને સમજવામાં મદદરૂપ થશે. આપણે યાદેચ્છિક ચલ અને તેના સંભાવના વિતરણની મહત્ત્વની સંકલ્પના વિશે તથા સંભાવના વિતરણના મધ્યક અને વિચરણનો પણ અભ્યાસ કરીશું. આ પ્રકરણના અંતિમ વિભાગમાં, આપણે દ્વિપદી વિતરણ તરીકે ઓળખાતા અગત્યના અસતત સંભાવના વિતરણ વિશે અભ્યાસ કરીશું. આ સમગ્ર પ્રકરણમાં જ્યાં સુધી અન્યથા ઉલ્લેખ ન હોય ત્યાં સુધી આપણે સમસંભાવી પરિણામો ધરાવતા પ્રયોગો જ લઈશું.

13.2 શરતી સંભાવના

સંભાવનામાં અત્યાર સુધી આપણે ઘટનાની સંભાવના શોધવાની રીતોની ચર્ચા કરી છે. જો આપણી પાસે એક જ નિદર્શાવકાશની બે ઘટનાઓ હોય, તો શું કોઈ એક ઘટનાના ઉદ્ભવ વિશેની માહિતી બીજી ઘટનાની સંભાવનાને અસર કરશે ? ચાલો આપણે આ પ્રશ્નનો ઉત્તર આપવા પ્રયત્ન કરીએ. તે માટે જેનાં પરિણામો ઉદ્દ્ભવવા સમસંભાવી હોય એવો એક યાદચ્છિક પ્રયોગ લઈએ.

452

ગણિત

ત્રશ સમતોલ સિક્કાઓને ઉછાળવાના પ્રયોગ વિશે વિચારો. આ પ્રયોગનો નિદર્શાવકાશ

 $S = \{HHH, HHT, HTH, THH, HTT, THT, TTH, TTT\}$ $\dot{\vartheta}$.

સિક્કાઓ સમતોલ હોવાથી આપણે પ્રત્યેક નિદર્શબિંદુને માટે સંભાવના $rac{1}{8}$ ફાળવી શકીએ. ધારો કે 'ઓછામાં ઓછી બે છાપ દેખાય' તે ઘટના E અને 'પહેલો સિક્કો કાંટો બતાવે' તે ઘટના F છે.

આથી, E = {HHH, HHT, HTH, THH} અને F = {THH, THT, TTH, TTT} છે. Huze P(E) = P ({HHH}) + P ({HHT}) + P ({HTH}) + P ({THH}) $= \frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} = \frac{1}{2}$ (au Huze ?) અને P(F) = P ({THH}) + P ({THT}) + P ({TTT}) $= \frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} = \frac{1}{2}$ avdl, E ∩ F = {THH} $\therefore P (E ∩ F) = P ({THH}) = \frac{1}{8}$

હવે, ધારો કે 'પ્રથમ સિક્કો કાંટો બતાવે છે' એમ આપેલ છે, એટલે કે ઘટના F ઉદ્દભવી છે તેમ આપેલ છે, તો પછી ઘટના E ઉદ્દભવે તેની સંભાવના કેટલી ? ઘટના F ઉદ્દભવવાની માહિતી સાથે, આપજ્ઞને ખાતરી છે કે જે વિકલ્પોનું પરિજ્ઞામ પ્રથમ સિક્કો કાંટો ન બતાવે તેમ હોય તે પરિજ્ઞામ ઘટના E ની સંભાવના શોધતી વખતે વિચારજ્ઞામાં લેવાય નહિ. ઘટના E માટે આ માહિતી આપજ્ઞા નિદર્શાવકાશને ગજ્ઞ S ને તેના ઉપગજ્ઞ F સુધી મર્યાદિત કરે છે. અન્ય શબ્દોમાં, વધારાની માહિતી ખરેખર આપજ્ઞને એવું કહેવા માટે પ્રેરે છે કે, આ સંજોગોમાં જેના માટે નિદર્શાવકાશ ઘટના F ના ઉદ્ભવવા માટે સાનુકૂળ છે, તેવાં તમામ પરિજ્ઞામો સમાવતો હોય એવા નવા યાદચ્છિક પ્રયોગનો વિચાર કરી શકાય.

હવે, Fનું જે નિદર્શબિંદુ ઘટના E માટે સાનુકૂળ છે તે THH છે. આમ, ઘટના F ને નિદર્શાવકાશ તરીકે વિચારતાં ઘટના E ની સંભાવના $\frac{1}{4}$ થાય અથવા ઘટના F ઉદ્ભવી છે તેમ આપેલ હોય ત્યારે E ની સંભાવના $\frac{1}{4}$ થાય

ઘટના F અગાઉથી ઉદ્ભવી ચૂકી છે તેમ આપેલ હોય ત્યારે ઘટના E ની સંભાવનાને E ની શરતી સંભાવના કહે છે અને તેને P(E | F) વડે દર્શાવાય છે.

આમ, $P(E | F) = \frac{1}{4}$.

નોંધ કરો કે F ના જે ઘટકો ઘટના E ને અનુકૂળ છે, તે E અને F ના સામાન્ય ઘટકો છે એટલે કે E ∩ F નાં નિદર્શબિંદુઓ છે.

આમ, આપણને આપેલ હોય કે ઘટના F ઉદ્ભવી ચૂકી છે, તે શરતે E ની શરતી સંભાવનાને નીચે પ્રમાણે પણ લખી શકીએ :

 $P(E | F) = \frac{E \cap F \text{ und} \mathbb{R}_{1}}{F \text{ und} \mathbb{R}_{2}} \frac{E \cap F \text{ und} \mathbb{R}_{2}}{F \text{ und} \mathbb{R}_{2}}$ $= \frac{n (E \cap F)}{n(F)}$

સંભાવના

અંશ અને છેદને નિદર્શાવકાશની પ્રાથમિક ઘટનાઓની કુલ સંખ્યા વડે ભાગતાં, આપણે જોઈએ છીએ કે P(E | F) ને નીચે પ્રમાશે પણ લખી શકાય છે :

$$P(E | F) = \frac{\frac{n (E \cap F)}{n(S)}}{\frac{n (F)}{n(S)}} = \frac{P (E \cap F)}{P(F)} \qquad \dots (1)$$

નોંધ કરો કે P(F) ≠ 0 એટલે કે F ≠ φ (શા માટે ?) હોય, ત્યારે જ (1) માન્ય છે. આમ, આપશે શરતી સંભાવના નીચે પ્રમાશે વ્યાખ્યાયિત કરી શકીએ :

વ્યાખ્યા 1 : જો બે ઘટનાઓ E અને F, યાદચ્છિક પ્રયોગના એક જ નિદર્શાવકાશ સાથે સંગત હોય, તો આપેલ હોય કે ઘટના F ઉદ્ભવી ચૂકી છે, તે ઘટના F ની શરતે ઘટના E ની શરતી સંભાવના જેનો સંકેત

 $P(E | F) \ \vartheta, \ P(E | F) = \frac{P(E \cap F)}{P(F)}, \ P(F) \neq 0 \ \epsilon$ iri आपवामां आवे છે.

13.2.1 શરતી સંભાવનાના ગુણધર્મો

ધારો કે E અને F, એક પ્રયોગના નિદર્શાવકાશ S ની ઘટનાઓ છે, તો આપણી પાસે નીચેના ત્રણ ગુણધર્મો છે :

ગુણધર્મ 1 : P(S | F) = P(F | F) = 1

આપણે જાણીએ છીએ કે,

$$P(S | F) = \frac{P(S \cap F)}{P(F)} = \frac{P(F)}{P(F)} = 1$$
 (size § $F \subset S$)

and, $P(F | F) = \frac{P(F \cap F)}{P(F)} = \frac{P(F)}{P(F)} = 1$

આમ, P(S | F) = P(F | F) = 1

ગુણધર્મ 2 : જો A અને B નિદર્શાવકાશ S ની બે ઘટનાઓ હોય અને F એ (P(F)≠0) ઉપર્યુક્ત S ની ઘટના હોય, તો

 $P((A \cup B) | F) = P(A | F) + P(B | F) - P((A \cap B) | F)$ વિશેષતઃ જો A અને B પરસ્પર અલગ ઘટનાઓ હોય, તો $P((A \cup B) | F) = P(A | F) + P(B | F)$

આપણી પાસે, $P((A \cup B) | F) = \frac{P[(A \cup B) \cap F]}{P(F)}$

$$= \frac{P\left[(A \cap F) \cup (B \cap F)\right]}{P(F)}$$

(ગણોના યોગના છેદક્રિયા પર વિભાજનના નિયમ દ્વારા)

$$= \frac{P(A \cap F) + P(B \cap F) - P(A \cap B \cap F)}{P(F)}$$

454

ગણિત

$$\begin{split} &= \frac{P(A \cap F)}{P(F)} + \frac{P(B \cap F)}{P(F)} - \frac{P[(A \cap B) \cap F]}{P(F)} \\ &= P(A | F) + P(B | F) - P((A \cap B) | F) \\ & \forall a A variable A variable variable variable of A variable A$$

તે જાણતા હોઈએ, તો તે યુગ્મ સંખ્યા હોય તેની સંભાવના કેટલી ?

ઉકેલ : ધારો કે ઘટના A 'યાદચ્છિક રીતે પસંદ કરેલ કાર્ડ પર યુગ્મ સંખ્યા છે', તે અને ધારો કે ઘટના B 'યાદચ્છિક રીતે પસંદ કરેલ કાર્ડ પર 3 કરતાં મોટી સંખ્યા છે' તે છે. આપણે P(A|B) શોધવાની છે.

હવે, પ્રયોગનો નિદર્શાવકાશ S = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} છે અને A = {2, 4, 6, 8, 10}, B = {4, 5, 6, 7, 8, 9, 10}

સંભાવના

તથા $A \cap B = \{4, 6, 8, 10\}$ વળી, $P(A) = \frac{5}{10}$, $P(B) = \frac{7}{10}$ અને $P(A \cap B) = \frac{4}{10}$ તેથી $P(A \mid B) = \frac{P(A \cap B)}{P(B)} = \frac{\frac{4}{10}}{\frac{7}{10}} = \frac{4}{7}$

ઉંદાહરણ 4 : એક શાળામાં 1000 વિદ્યાર્થીઓ છે. તે પૈકી 430 છોકરીઓ છે. આ 430 છોકરીઓ પૈકી 10 % ધોરણ XII માં અભ્યાસ કરે છે. યાદચ્છિક રીતે પસંદ થયેલ વિદ્યાર્થી છોકરી છે તેમ આપેલ હોય, તો પસંદ કરેલ વિદ્યાર્થી ધોરણ XII ની છે તેની સંભાવના કેટલી ?

<mark>ઉકેલ :</mark> ધારો કે ઘટના E એ યાદચ્છિક રીતે પસંદ થયેલ વિદ્યાર્થી ધોરશ XII માં અભ્યાસ કરે છે તે દર્શાવે છે અને ઘટના F એ યાદચ્છિક રીતે પસંદ થયેલ વિદ્યાર્થી છોકરી છે તે દર્શાવે છે. આપણે P(E|F) શોધવાનું છે.

હવે,
$$P(F) = \frac{430}{1000} = 0.43$$
 અને $P(E \cap F) = \frac{43}{1000} = 0.043$ (શા માટે ?)
તેથી, $P(E \mid F) = \frac{P(E \cap F)}{P(F)} = \frac{0.043}{0.43} = 0.1$

ઉદાહરણ 5 : એક પાસાને ત્રણ વાર ફેંકવામાં આવે છે. ઘટનાઓ A અને B નીચે પ્રમાણે વ્યાખ્યાયિત છે : A : પાસાને ત્રીજી વખત ફેંકતાં 4 મળે.

- B : પાસાને પહેલી વખત ફેંકતાં 6 અને બીજી વખત ફેંકતાં 5 મળે.
- ઘટના B ઉદ્ભવી ચૂકી છે તેમ આપેલ હોય ત્યારે ઘટના A ની સંભાવના શોધો.

ઉકેલ : નિદર્શાવકાશમાં 216 પરિશામો છે.

$$\begin{split} \mathfrak{s}\hat{\mathsf{q}}, \ \mathbf{A} &= \left\{ \begin{array}{l} (1, 1, 4), (1, 2, 4), \dots, (1, 6, 4), (2, 1, 4), (2, 2, 4), \dots, (2, 6, 4) \\ (3, 1, 4), (3, 2, 4), \dots, (3, 6, 4), (4, 1, 4), (4, 2, 4), \dots, (4, 6, 4) \\ (5, 1, 4), (5, 2, 4), \dots, (5, 6, 4), (6, 1, 4), (6, 2, 4), \dots, (6, 6, 4) \end{array} \right\} \\ \mathbf{B} &= \{ (6, 5, 1), (6, 5, 2), (6, 5, 3), (6, 5, 4), (6, 5, 5), (6, 5, 6) \} \\ \mathfrak{Sh}\hat{\mathsf{T}} \ \mathbf{A} \cap \mathbf{B} &= \{ (6, 5, 4) \} \end{split}$$

હવે, $P(B) = \frac{6}{216}$ અને $P(A \cap B) = \frac{1}{216}$

તેથી, માંગેલ સંભાવના
$$P(A | B) = \frac{P(A \cap B)}{P(B)} = \frac{\frac{1}{216}}{\frac{6}{216}} = \frac{1}{6}$$

ઉદાહરણ 6 ઃ એક પાસાને બે વખત ફેંકવામાં આવે છે અને તેના પર મળતી સંખ્યાઓનો સરવાળો 6 છે તેમ આપેલ છે. પાસા પર ઓછામાં ઓછી એક વખત સંખ્યા 4 મળે તેની શરતી સંભાવના શોધો.

ઉકેલ : ધારો કે ઘટના E એ 'સંખ્યા 4 ઓછામાં ઓછી એક વખત મળે' તે દર્શાવે છે અને ઘટના F એ 'પાસા પર મળતી સંખ્યાઓનો સરવાળો 6 છે' તે દર્શાવે છે.

તેથી, $E = \{(4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (4, 6), (1, 4), (2, 4), (3, 4), (5, 4), (6, 4)\}$ અને $F = \{(1, 5), (2, 4), (3, 3), (4, 2), (5, 1)\}$

Downloaded from https:// www.studiestoday.com

455

456

ગણિત

અહીં,
$$P(E) = \frac{11}{36}$$
 અને $P(F) = \frac{5}{36}$
વળી, $E \cap F = \{(2, 4), (4, 2)\}$
 $\therefore P(E \cap F) = \frac{2}{36}$
તેથી માંગેલ સંભાવના $P(E \mid F) = \frac{P(E \cap F)}{P(F)} = \frac{\frac{2}{36}}{\frac{5}{36}} = \frac{2}{5}$

ઉપર્યુક્ત ચર્ચા કરેલ શરતી સંભાવના માટે આપણે પ્રયોગની પ્રાથમિક ઘટનાઓ સમસંભાવી છે એમ વિચાર્યું હતું અને ઘટનાની અનુરૂપ સંભાવનાનો ઉપયોગ કર્યો હતો. તેમ છતાં, વ્યાપક કિસ્સામાં જ્યારે નિદર્શાવકાશની પ્રાથમિક ઘટનાઓ સમસંભાવી ન હોય ત્યારે પણ આ જ વ્યાખ્યાનો ઉપયોગ કરી શકાય છે, અને તદનુસાર સંભાવનાઓ P(E ∩ F) અને P(F) ની ગણતરી કરી શકાય છે. ચાલો, આપણે નીચેનું ઉદાહરણ લઈએ :

ઉદાહરણ 7 : સિક્કાને ઉછાળવાના પ્રયોગનો વિચાર કરો. જો સિક્કા પર છાપ મળે તો તેને ફરીથી ઉછાળો, પરંતુ જો કાંટો મળે તો પાસો ફેંકો. સિક્કા પર ઓછામાં ઓછો એક વખત કાંટો મળે છે તેમ આપેલ હોય, તો પાસા પર મળતી સંખ્યા 4 કરતાં વધુ હોય તેની શરતી સંભાવના શોધો.

ઉકેલ : પ્રયોગનાં પરિશામોને બાજુમાં આપેલી *વૃક્ષઆકૃતિ* તરીકે ઓળખાતી આકૃતિમાં દર્શાવાય.

આ પ્રયોગના નિદર્શાવકાશને

 $S = \{(H, H), (H, T), (T, 1), (T, 2), (T, 3), (T, 4), (T, 5), (T, 6)\}$ give the set of the set o

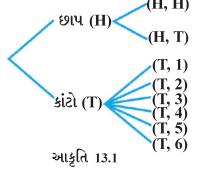
સિક્કાને બે વખત ઉછાળતાં બંને વખત છાપ મળે તેને (H, H) વડે દર્શાવીએ તથા પ્રથમ વખત કાંટો તથા પાસા ઉપર મળતી સંખ્યાને i ને (T, i) વડે દર્શાવીએ જ્યાં i = 1, 2, 3, 4, 5, 6.

આમ, 8 પ્રાથમિક ઘટનાઓ (H, H), (H, T), (T, 1), (T, 2), (T, 3), (T, 4), (T, 5), (T, 6) ની સંભાવનાઓ અનુક્રમે $\frac{1}{4}$, $\frac{1}{4}$, $\frac{1}{12}$, $\frac{1}{12}$, $\frac{1}{12}$, $\frac{1}{12}$, $\frac{1}{12}$, $\frac{1}{12}$ છે. આકૃતિ 13.2 પરથી આ સ્પષ્ટ છે.

'ઓછામાં ઓછો એક કાંટો હોય' તે ઘટના F અને 'પાસો 4 કરતાં મોટી સંખ્યા બતાવે' તે ઘટના E હોય, તો

 $F = \{(H, T), (T, 1), (T, 2), (T, 3), (T, 4), (T, 5), (T, 6)\}$ $E = \{(T, 5), (T, 6)\} \quad \exists \vec{h} \in \cap F = \{(T, 5), (T, 6)\}$ $\exists \hat{a}, P(F) = P(\{H, T\}) + P(\{T, 1\}) + P(\{T, 2\}) + P(\{T, 3\})$ $+ P(\{T, 4\}) + P(\{T, 5\}) + P(\{T, 6\})$ $= \frac{1}{4} + \frac{1}{12} + \frac{1}{12} + \frac{1}{12} + \frac{1}{12} + \frac{1}{12} + \frac{1}{12} = \frac{3}{4}$

Downloaded from https:// www.studiestoday.com



આકૃતિ 13.2

(T, 1)

(T, 2)

(T, 5)

(T, 6)

સંભાવના

અને
$$P(E \cap F) = P(\{T, 5\}) + P(\{T, 6\}) = \frac{1}{12} + \frac{1}{12} = \frac{1}{6}$$

આથી, $P(E \mid F) = \frac{P(E \cap F)}{P(F)} = \frac{\frac{1}{6}}{\frac{3}{4}} = \frac{2}{9}$
સ્વાધ્યાય 13.1

- **1.** ઘટનાઓ E અને F માટે P(E) = 0.6, P(F) = 0.3 અને $P(E \cap F) = 0.2$ આપેલ છે. P(E | F) અને P(F | E) શોધો. જો P(B) = 0.5 અને $P(A \cap B) = 0.32$ હોય, તો P(A | B) શોધો. 2. 3. જો P(A) = 0.8, P(B) = 0.5 અને P(B | A) = 0.4 હોય, તો (i) $P(A \cap B)$ (ii) $P(A \mid B)$ (iii) P(A ∪ B) શોધો. જો 2P(A) = P(B) = $\frac{5}{13}$ અને P(A | B) = $\frac{2}{5}$ હોય, તો P(A ∪ B) ની કિંમત શોધો. **4**. જો $P(A) = \frac{6}{11}$, $P(B) = \frac{5}{11}$ અને $P(A \cup B) = \frac{7}{11}$ હોય, તો **5**. (i) $P(A \cap B)$ (ii) P(A | B) (iii) P(B | A) શોધો. પ્રશ્નો 6 થી 9 માં P(E|F) શોધો : એક સિક્કાને ત્રણ વખત ઉછાળવામાં આવે છે. **6**. (i) E : ત્રીજી વખત ઉછાળતાં છાપ મળે. F : પ્રથમ બે વખત ઉછાળતાં છાપ મળે. (ii) E : ઓછામાં ઓછી બે છાપ મળે. F : વધુમાં વધુ બે છાપ મળે. F : ઓછામાં ઓછો એક કાંટો મળે. (iii) E : વધુમાં વધુ બે કાંટા મળે. 7. બે સિક્કાઓ એક વખત ઉછાળવામાં આવે છે. F : એક સિક્કા પર છાપ મળે. (i) E : એક સિક્કા પર કાંટો મળે. (ii) E : એક પણ કાંટો ન મળે. F : એક પણ છાપ ન મળે. 8. પાસાને ત્રણ વખત ફેંકવામાં આવે છે. E : ત્રીજી વખત ફેંકતા 4 મળે છે. F : પ્રથમ બે વખત ફેંકતા અનુક્રમે 6 અને 5 મળે છે. 9. કુટુંબના ફોટા માટે માતા-પિતા અને પુત્ર યાદચ્છિક રીતે એકસાથે હારમાં ઊભા રહે છે. E : પુત્ર એક છેડા પર છે. F : પિતા મધ્યમાં છે. 10. એક કાળા રંગના અને એક લાલ રંગના પાસાને ફેંકવામાં આવે છે. જો કાળા રંગના પાસા પર સંખ્યા 5 મળે છે તેમ આપેલ હોય, તો બંને પાસા પરના અંકોનો (a) સરવાળો 9 કરતાં વધુ હોય તેની શરતી સંભાવના શોધો.
 - (b) જો લાલ રંગના પાસા પર 4 કરતાં નાની સંખ્યા મળે છે તેમ આપેલ હોય, તો બંને પાસા પરના અંકોનો સરવાળો 8 મળે તેની શરતી સંભાવના શોધો.

Downloaded from https:// www.studiestoday.com

457

458

ગણિત

- 11. એક સમતોલ પાસાને ફેંકવામાં આવે છે. ઘટનાઓ E = {1, 3, 5}, F = {2, 3} અને G = {2, 3, 4, 5} નો વિચાર કરો.
 (i) P(E | F) અને P(F | E) શોધો.
 (ii) P((E ∪ F) | G) અને P((E ∩ F) | G) શોધો.
- 12. ધારો કે પ્રત્યેક જન્મેલું બાળક છોકરો અથવા છોકરી હોય તે સમસંભાવી છે. એક કુટુંબમાં બે બાળકો છે.
 (i) સૌથી નાનું બાળક છોકરી છે, (ii) ઓછામાં ઓછી એક છોકરી છે, તેમ આપેલ હોય, તો બંને

(i) સાથી નાનુ બાળક છાકરી છ, (ii) આછામાં આછા અક છાકરી છે, તમ આપલ હાય, તા બન છોકરીઓ હોય તેની શરતી સંભાવના કેટલી થાય ?

- 13. એક માર્ગદર્શક પાસે પ્રશ્નબૈક છે. તેમાં સત્ય/અસત્ય પ્રકારના 300 સરળ તથા 200 કઠિન પ્રશ્નો છે. તદુપરાંત, બહુવિકલ્પી પ્રકારના 500 સરળ તથા 400 કઠિન પ્રશ્નો છે. આ પ્રશ્નબૈકમાંથી એક પ્રશ્ન યાદચ્છિક રીતે પસંદ કરવામાં આવે છે. જો આ પ્રશ્ન બહુવિકલ્પી પ્રકારનો છે તેમ આપેલ હોય, તો તે સરળ પ્રશ્ન હોય તેની સંભાવના શોધો.
- બે પાસા ફેંકવાથી મળતી સંખ્યાઓ ભિન્ન છે તેમ આપેલ હોય, તો 'બે પાસાઓ પરની સંખ્યાઓનો સરવાળો 4 હોય' તે ઘટનાની સંભાવના શોધો.
- 15. પાસાને ફેંકવાના પ્રયોગનો વિચાર કરો. પાસા પર મળતો પૂર્ણાંક 3 નો ગુણિત હોય, તો તે પાસાને ફરીથી ફેંકો અને જો પાસા પર અન્ય કોઈ પૂર્શાંક મળે તો એક સિક્કાને ઉછાળો. પાસા પર ઓછામાં ઓછી એક વખત પૂર્શાંક 3 મળે તેમ આપેલ હોય, તો સિક્કા પર કાંટો મળે તે ઘટનાની શરતી સંભાવના શોધો.
- પ્રશ્નો 16 તથા 17 માં વિધાન સાચું બને તે રીતે આપેલ વિકલ્પોમાંથી યોગ્ય વિકલ્પ પસંદ કરો :

16.
$$\Re P(A) = \frac{1}{2}$$
, $P(B) = 0$ હોય, તો $P(A | B) =$

 (A) 0
 (B) $\frac{1}{2}$
 (C) અવ્યાખ્યાયિત
 (D)

 17. \Re ઘટનાઓ A અને B માટે $P(A | B) = P(B | A)$ હોય, તો
 (A) $A \subset B$ પરંતુ $A \neq B$
 (B) $A = B$
 (C) $A \cap B = \emptyset$
 (D) $P(A) = P(B)$

13.3 સંભાવના માટેનો ગુણાકારનો પ્રમેય

ધારો કે E અને F નિદર્શાવકાશ S સાથે સંકળાયેલ બે ઘટનાઓ છે. સ્પષ્ટ છે કે, ગણ E ∩ F એ બંને ઘટનાઓ E અને F ઉદ્ભવી છે તે દર્શાવે છે. અન્ય શબ્દોમાં, E ∩ F એ ઘટનાઓ E અને F એકસાથે ઉદ્ભવે છે તે દર્શાવે છે. ઘટના E ∩ F ને EF તરીકે પણ લખવામાં આવે છે.

વારંવાર આપણને ઘટના EF ની સંભાવના શોધવાની જરૂર પડે છે. ઉદાહરણ તરીકે, એક પછી એક બે પત્તાં પસંદ કરવાના પ્રયોગમાં, આપણને ઘટના 'એક રાજા અને એક રાણી'ની સંભાવના શોધવામાં રસ હોઈ શકે. ઘટના EF ની સંભાવના શરતી સંભાવનાનો ઉપયોગ કરીને નીચે પ્રમાણે મેળવી શકાય :

આપણે જાણીએ છીએ કે, જો આપેલ હોય કે ઘટના F ઉદ્ભવી ચૂકી છે, તો ઘટના E ની શરતી સંભાવનાને P(E | F) વડે દર્શાવાય છે અને

$$P(E \mid F) = \frac{P(E \cap F)}{P(F)}; P(F) \neq 0$$

દ્વારા આપવામાં આવે છે. આ પરિશામ પરથી, આપશે લખી શકીએ કે

 $P(E \cap F) = P(F) \cdot P(E \mid F)$

... (1)

1

સંભાવના

વળી, આપશે જાશીએ છીએ કે $P(F \mid E) = \frac{P(F \cap E)}{P(E)}; P(E) \neq 0$ અથવા $P(F \mid E) = \frac{P(E \cap F)}{P(E)}$ (E \cap F = F \cap E) આમ, $P(E \cap F) = P(E) P(F \mid E)$ (1) અને (2) પરથી, આપણને મળે છે $P(E \cap F) = \begin{cases} P(E) P(F \mid E) & P(E) \neq 0 \\ P(F) P(E \mid F), & P(F) \neq 0. \end{cases}$

ઉપરનું પરિશામ *સંભાવનાના ગુણાકારના નિયમ તરીકે ઓળખાય છે.* ચાલો, હવે આપશે ઉદાહરશ લઈએ :

ઉંદાહરણ 8 ઃ એક પાત્રમાં 10 કાળા રંગના અને 5 સફેદ રંગના દડા છે. એક પછી એક એમ બે દડા પાત્રમાંથી પુરવણી વગર યાદચ્છિક રીતે કાઢવામાં આવે છે. યાદચ્છિક રીતે પસંદ થયેલ બંને દડા કાળા રંગના હોવાની સંભાવના કેટલી ?

ઉકેલ : ધારો કે ઘટનાઓ E અને F અનુક્રમે પાત્રમાંથી પસંદ કરેલ પ્રથમ દડો કાળા રંગનો છે અને દ્વિતીય દડો કાળા રંગનો છે તેમ દર્શાવે છે. આપણે P(E ∩ F) અથવા P(EF) શોધવાની છે.

હવે, P(E) = P (પાત્રમાંથી પસંદ કરેલ પ્રથમ દડો કાળો છે.) = $\frac{10}{15}$

વળી, પાત્રમાંથી પસંદ કરેલ પ્રથમ દડો કાળા રંગનો છે તેમ આપેલ હોય, એટલે કે ઘટના E ઉદ્ભવી ચૂકી હોય, તો પાત્રમાં 9 કાળા રંગના અને 5 સફેદ રંગના દડા બાકી રહ્યા. આથી, પ્રથમ પસંદ થયેલ દડો કાળા રંગનો છે તેમ આપેલ હોય, ત્યારે બીજો પસંદ થયેલ દડો કાળા રંગનો હોય એ ઘટના E ઉદ્ભવ પામી હોય, ત્યારે ઘટના F ની શરતી સંભાવના સિવાય બીજું કંઈ નથી.

એટલે કે $P(F | E) = \frac{9}{14}$

સંભાવનાના ગુણાકારના નિયમ પરથી, આપણી પાસે,

 $P(E \cap F) = P(E) \cdot P(F \mid E) = \frac{10}{15} \times \frac{9}{14} = \frac{3}{7}$

બે કરતાં વધારે ઘટનાઓ માટે સંભાવનાનો ગુણાકારનો નિયમ ઃ જો E, F અને G નિદર્શાવકાશની ઘટનાઓ હોય, તો આપણી પાસે નીચેનો નિયમ છે ઃ

 $P(E \cap F \cap G) = P(E) P(F | E) \cdot P(G | (E \cap F)) = P(E) P(F | E) P(G | EF)$

આ જ પ્રમાણે, સંભાવનાના ગુણાકારના નિયમને ચાર કે તેથી વધુ ઘટનાઓ માટે વિસ્તૃત કરી શકાય.

નીચેનાં ઉદાહરણો ત્રણ ઘટનાઓ માટે સંભાવનાના ગુણાકારના નિયમનું વિસ્તૃતીકરણ દર્શાવે છે.

ઉંદાહરણ 9 : સારી રીતે ચીપેલાં 52 પત્તાંની થોકડીમાંથી પુરવણી વગર યાદચ્છિક રીતે ત્રણ પત્તાં એક પછી એક પસંદ કરવામાં આવે છે. પસંદ કરેલાં પત્તાં પૈકી પ્રથમ બે પત્તાં રાજાના અને ત્રીજું પત્તું એક્કો હોવાની સંભાવના કેટલી ?

ઉકેલ : ધારો કે ઘટના K₁ જોડમાંથી યાદચ્છિક રીતે પસંદ કરવામાં આવેલ પ્રથમ પત્તું રાજા છે અને ઘટના K₂ જોડમાંથી યાદચ્છિક રીતે પસંદ કરેલું બીજું પત્તું રાજા છે તે દર્શાવે છે અને A જોડમાંથી યાદચ્છિક રીતે પસંદ કરવામાં આવેલ પત્તું એક્કો છે તે ઘટના દર્શાવે છે. સ્પષ્ટ છે કે આપણે P(K₁K₂A) શોધવાની છે.

હવે,
$$P(K_1) = \frac{4}{52}$$
.

Downloaded from https:// www.studiestoday.com

459

460

વળી, યાદચ્છિક રીતે પ્રથમ પસંદ કરેલ પત્તું રાજા હોય એ શરતે $P(K_2 \,|\, K_1)$ એ યાદચ્છિક રીતે પસંદ કરેલ દ્વિતીય પત્તું રાજા હોય તેની સંભાવના છે.

હવે, (52 - 1) = 51 પત્તાંમાં ત્રણ રાજા છે.

આને કારણે, $P(K_2 | K_1) = \frac{3}{51}$

છેલ્લે, અગાઉથી પસંદ કરેલ બે પત્તાં રાજા હોય, તો P (A | K₁K₂) એ બાકીનાં 50 પત્તાંમાં રહેલ 4 એક્કા પૈકીનું પસંદ કરેલ ત્રીજું પત્તું એક્કો હોય તેની સંભાવના છે.

આને કારણે, $P(A | K_1 K_2) = \frac{4}{50}$ સંભાવનાના ગુણાકારના નિયમ પ્રમાણે, આપણી પાસે, $P(K_1 K_2 A) = P(K_1) \cdot P(K_2 | K_1) \cdot P(A | K_1 K_2)$ $= \frac{4}{52} \times \frac{3}{51} \times \frac{4}{50} = \frac{2}{5525}$

13.4 નિરપેક્ષ ઘટનાઓ

રમવાનાં 52 પત્તાંની થોકડીમાંથી એક પત્તું યાદચ્છિક રીતે પસંદ કરવાના પ્રયોગ વિશે વિચારો. તે પ્રયોગમાં પ્રાથમિક ઘટનાઓ સમસંભાવી છે તેમ માની લેવામાં આવ્યું છે. ઘટનાઓ E અને F, અનુક્રમે 'પસંદ કરેલું પત્તું કાળીનું છે' અને 'પસંદ કરેલું પત્તું એક્કો છે' તે દર્શાવે છે.

 $P(E) = \frac{13}{52} = \frac{1}{4} \text{ wh } P(F) = \frac{4}{52} = \frac{1}{13}$ agustia 'E wh F' where user 'using states and the states of th

આથી,
$$P(E | F) = \frac{P(E \cap F)}{P(F)} = \frac{\frac{1}{52}}{\frac{1}{13}} = \frac{1}{4}$$

આમ, P(E) = $\frac{1}{4}$ = P(E | F) હોવાથી, આપણે કહી શકીએ કે, ઘટના F નું ઉદ્દભવવું ઘટના E ના ઉદ્દભવવાની સંભાવનાને અસર કરતું નથી.

વળી આપણી પાસે, $P(F | E) = \frac{P(E \cap F)}{P(E)} = \frac{\frac{1}{52}}{\frac{1}{4}} = \frac{1}{13} = P(F)$

પુનઃ $P(F) = \frac{1}{13} = P(F | E)$ દર્શાવે છે કે, ઘટના E નું ઉદ્ભવવું ઘટના F ના ઉદ્ભવવાની સંભાવના માટે અસરકર્તા નથી.

આમ, E અને F એવી ઘટનાઓ છે કે જેમના પૈકી કોઈ એક ઘટનાના ઉદ્ભવવાની સંભાવના બીજી ઘટનાના ઉદ્ભવવાને અસર કરતી નથી (બીજી ઘટનાનું ઉદ્ભવવું પહેલા ઉદ્ભવેલી ઘટના માટે અસરકર્તા નથી.)

આવી ઘટનાઓને નિરપેક્ષ ઘટનાઓ કહે છે. વ્યાખ્યા 2 : જો બે ઘટનાઓ E અને F માટે P(E) ≠ 0 અને P(F | E) = P(F) અને P(F) ≠ 0 અને P(E | F) = P(E) હોય, તો E અને F નિરપેક્ષ ઘટનાઓ કહેવાય છે. આમ, આ વ્યાખ્યામાં આપણી પાસે P(E) ≠ 0 અને P(F) ≠ 0 હોવું જરૂરી છે.

Downloaded from https:// www.studiestoday.com

ગણિત

સંભાવના

હવે, સંભાવનાના ગુણાકારના નિયમ દ્વારા, આપણી પાસે, P(E ∩ F) = P(E) · P(F | E) ... (1) જો E અને F નિરપેક્ષ ઘટનાઓ હોય તો (1) પરથી P(E ∩ F) = P(E) · P(F) ... (2) આમ, (2) નો ઉપયોગ કરીને બે ઘટનાઓની નિરપેક્ષતા નીચે પ્રમાણે પણ વ્યાખ્યાયિત કરી શકાય : વ્યાખ્યા 3 : ધારો કે E અને F એક જ યાદચ્છિક પ્રયોગ સાથે સંકળાયેલ બે ઘટનાઓ છે. જો P(E ∩ F) = P(E) · P(F) હોય, તો E અને F ને નિરપેક્ષ ઘટનાઓ કહે છે. નોંધ :

(i) $\Re E$ અને F નિરપેક્ષ ના હોય, તો એટલે કે $\Re P(E \cap F) \neq P(E) \cdot P(F)$ તો બે ઘટનાઓ E અને F ને અવલંબી ઘટનાઓ કહે છે.

(ii) કેટલીક વાર નિરપેક્ષ ઘટનાઓ અને પરસ્પર નિવારક ઘટનાઓ વચ્ચે ગેરસમજ થાય છે. 'નિરપેક્ષ' શબ્દ ઘટનાઓની સંભાવનાના સંદર્ભમાં વ્યાખ્યાયિત છે. શબ્દસમૂહ 'પરસ્પર નિવારક' ઘટનાઓના (એટલે કે નિદર્શાવકાશના ઉપગણ) સંદર્ભમાં વ્યાખ્યાયિત છે. તદુપરાંત પરસ્પર નિવારક ઘટનાઓમાં ક્યારેય સામાન્ય પરિણામ હોતાં નથી, પરંતુ નિરપેક્ષ ઘટનાઓમાં સામાન્ય પરિણામ હોઈ શકે. સ્પષ્ટ છે કે 'નિરપેક્ષ' અને 'પરસ્પર નિવારક'નો અર્થ સમાન નથી. અન્ય શબ્દોમાં, શૂન્યેતર સંભાવનાઓવાળી બે નિરપેક્ષ ઘટનાઓ, પરસ્પર નિવારક ન હોઈ શકે અને એથી ઊલટું પણ સત્ય છે, એટલે કે શૂન્યેતર સંભાવનાઓ ધરાવતી બે પરસ્પર નિવારક ઘટનાઓ નિરપેક્ષ ન હોઈ શકે.

(iii) જો ઘટનાઓની પ્રત્યેક જોડ E અને F માટે, જ્યારે E એ પ્રથમ પ્રયોગ સાથે સંકળાયેલ હોય અને F એ દ્વિતીય પ્રયોગ સાથે સંકળાયેલ હોય અને જ્યારે બંને પ્રયોગો સાથે કરવામાં આવે ત્યારે ઘટનાઓ E અને F એકસાથે ઉદ્ભવે તેની સંભાવના, P (E) અને P (F) નો ગુણાકાર હોય, એટલે કે P (E ∩ F) = P(E) · P(F) અને P (E) અને P (F), બંને પ્રયોગના આધારે અલગ-અલગ ગણતરી કરી મેળવીને, તેમનો ગુણાકાર કરીને P (E ∩ F) = P(E) · P(F) તરીકે મેળવાય ત્યારે એ સંજોગોમાં બંને પ્રયોગોને નિરપેક્ષ કહેવામાં આવે છે.

(iv) $\mathfrak{N} \mathbf{P}(\mathbf{A} \cap \mathbf{B}) = \mathbf{P}(\mathbf{A}) \mathbf{P}(\mathbf{B})$

 $P(A \cap C) = P(A) P(C)$

 $P(B \cap C) = P(B) P(C)$

અને $P(A \cap B \cap C) = P(A) P(B) P(C)$ હોય, તો ત્રણ ઘટનાઓ A, B અને C પરસ્પર નિરપેક્ષ કહેવાય છે.

ઉપર્યુક્ત આપેલ ત્રણ ઘટનાઓ માટે આપેલ પૈકી ઓછામાં ઓછી એક શરતનું પણ સમાધાન ના થતું હોય, તો આપણે કહીએ છીએ કે ઘટનાઓ પરસ્પર નિરપેક્ષ નથી.

ઉદાહરણ 10 : એક પાસાને ફેંકવામાં આવે છે. જો ઘટના E એ 'પાસા પર મળતી સંખ્યા 3 નો ગુણિત છે' અને ઘટના F એ 'પાસા પર મળતી સંખ્યા યુગ્મ છે', તો E અને F નિરપેક્ષ ઘટનાઓ છે કે નહિ તે નક્કી કરો. ઉકેલ : આપણે જાણીએ છીએ કે, નિદર્શાવકાશ S = {1, 2, 3, 4, 5, 6} છે. હવે, E = {3, 6}, F = {2, 4, 6} અને E \cap F = {6}. તેથી P(E) = $\frac{2}{6} = \frac{1}{3}$, P(F) = $\frac{3}{6} = \frac{1}{2}$ અને P(E \cap F) = $\frac{1}{6}$ સ્પષ્ટ છે કે P(E \cap F) = P(E) \cdot P(F) તેથી, E અને F નિરપેક્ષ ઘટનાઓ છે.

Downloaded from https:// www.studiestoday.com

461

462

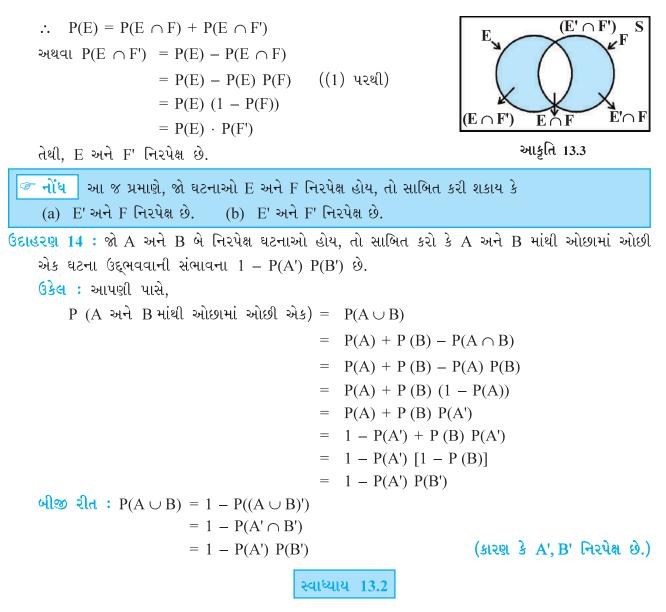
ગણિત

ઉદાહરણ 11 : એક સમતોલ પાસાને બે વખત ફેંકવામાં આવે છે. ઘટના A, 'પ્રથમ પ્રયત્ને અયુગ્મ સંખ્યા મળે' અને ઘટના B, 'બીજા પ્રયત્ને અયુગ્મ સંખ્યા મળે' તેમ હોય, તો ઘટનાઓ A અને B નિરપેક્ષ છે કે કેમ તે ચકાસો. ઉકેલ : જો પ્રયોગની તમામ 36 પ્રાથમિક ઘટનાઓ સમસંભાવી છે એવું ધારી લઈએ, તો $P(A) = \frac{18}{36} = \frac{1}{2}$ અને $P(B) = \frac{18}{36} = \frac{1}{2}$ વળી, $P(A \cap B) = P$ (બંને વખત ફેંકતા અયુગ્મ સંખ્યા મળે.) $=\frac{9}{36}=\frac{1}{4}$ $e\hat{q}, P(A) \cdot P(B) = \frac{1}{2} \times \frac{1}{2} = \frac{1}{4}$ સ્પષ્ટ છે કે $P(A \cap B) = P(A) \cdot P(B)$ આમ, A અને B નિરપેક્ષ ઘટનાઓ છે. ઉદાહરણ 12 : ત્રણ સિક્કાઓને એકસાથે ઉછાળવામાં આવે છે. ધારો કે ઘટના E 'ત્રણ છાપ અથવા ત્રણ કાંટા', ઘટના F 'ઓછામાં ઓછી બે છાપ' અને ઘટના G 'વધુમાં વધુ બે છાપ.' મળે તેમ દર્શાવે છે. જોડ (E, F), (E, G) અને (F, G) પૈકી કઈ ઘટનાઓની જોડ નિરપેક્ષ ઘટનાઓની જોડ છે ? કઈ ઘટનાઓની જોડ અવલંબી છે? ઉકેલ : અહીં, પ્રયોગનો નિદર્શાવકાશ નીચે પ્રમાણે મળે છે : $S = \{HHH, HHT, HTH, THH, HTT, THT, TTH, TTT\}$ સ્પષ્ટ છે કે, $E = \{HHH, TTT\},$ $F = \{HHH, HHT, HTH, THH\}$ अने G = {HHT, HTH, THH, HTT, THT, TTH, TTT}, and, $E \cap F = \{HHH\}, E \cap G = \{TTT\}, F \cap G = \{HHT, HTH, THH\}$ તેથી, $P(E) = \frac{2}{8} = \frac{1}{4}$, $P(F) = \frac{4}{8} = \frac{1}{2}$, $P(G) = \frac{7}{8}$ અને $P(E \cap F) = \frac{1}{8}$, $P(E \cap G) = \frac{1}{8}$, $P(F \cap G) = \frac{3}{8}$ avel, $P(E) \cdot P(F) = \frac{1}{4} \times \frac{1}{2} = \frac{1}{8}$, $P(E) \cdot P(G) = \frac{1}{4} \times \frac{7}{8} = \frac{7}{32}$ અને $P(F) \cdot P(G) = \frac{1}{2} \times \frac{7}{8} = \frac{7}{16}$ આમ, $P(E \cap F) = P(E) \cdot P(F)$, $P(E \cap G) \neq P(E) \cdot P(G)$ અને, $P(F \cap G) \neq P(F) \cdot P(G)$ તેથી, ઘટનાઓ E અને F ની જોડ નિરપેક્ષ ઘટનાઓની જોડ છે અને ઘટનાઓ F અને G ની જોડ તથા E અને G ની જોડ અવલંબી છે. ઉંદાહરણ 13 : જો E અને F નિરપેક્ષ ઘટનાઓ હોય, તો સાબિત કરો કે ઘટનાઓ E અને F' પણ નિરપેક્ષ છે. ઉકેલ : ઘટનાઓ E અને F નિરપેક્ષ હોવાથી આપણી પાસે, $P(E \cap F) = P(E) \cdot P(F)$... (1)

આકૃતિ 13.3 ની વેન આકૃતિ પરથી સ્પષ્ટ છે કે, $E \cap F$ અને $E \cap F'$ પરસ્પર નિવારક ઘટનાઓ છે અને વળી, $E = (E \cap F) \cup (E \cap F')$

સંભાવના

463



1. જો A અને B નિરપેક્ષ ઘટનાઓ હોય અને $P(A) = \frac{3}{5}$ અને $P(B) = \frac{1}{5}$ હોય, તો $P(A \cap B)$ શોધો.

- રમવાની 52 પત્તાંની થોકડીમાંથી બે પત્તાં યાદચ્છિક રીતે પુરવાી વગર પસંદ કરવામાં આવે છે. બંને પત્તાં કાળા રંગનાં હોય તેની સંભાવના શોધો.
- 3. નારંગીના ખોખામાંથી યાદચ્છિક રીતે પુરવશી વગર ત્રશ નારંગી પસંદ કરીને તે ખોખાને તપાસવામાં આવે છે. જો તમામ ત્રશ નારંગીઓ સારી હોય, તો ખોખાનો વેચાશ માટે સ્વીકાર કરાય છે, અન્યથા તેનો અસ્વીકાર કરવામાં આવે છે. જો ખોખામાં સમાવિષ્ટ 15 નારંગી પૈકી 12 સારી અને 3 ખરાબ હોય, તો તેને વેચાશ માટે મંજૂરી મળે તેની સંભાવના શોધો.
- એક સમતોલ સિક્કા અને એક સમતોલ પાસાને ઉછાળવામાં આવે છે. ધારો કે ઘટના A, 'સિક્કા પર છાપ મળે' તે અને ઘટના B 'પાસા પર 3 મળે' તે દર્શાવે છે. ઘટનાઓ A અને B નિરપેક્ષ છે કે નહિ તે ચકાસો.
- જેની ઉપર પૂર્ણાંકો 1, 2, 3 લાલ રંગથી અને 4, 5, 6 લીલા રંગથી લખેલ હોય તેવા પાસાને ફેંકવામાં આવે છે. પાસા પર મળતો પૂર્ણાંક યુગ્મ છે તે ઘટનાને A વડે તથા પાસા પરનો પૂર્ણાંક લાલ રંગથી લખેલ છે તે ઘટનાને B વડે દર્શાવીએ, તો ઘટનાઓ A અને B નિરપેક્ષ છે ?

464

ગણિત

- 6. ઘટનાઓ E અને F માટે $P(E) = \frac{3}{5}$, $P(F) = \frac{3}{10}$ અને $P(E \cap F) = \frac{1}{5}$ છે. E અને F નિરપેક્ષ છે ?
- 7. આપેલ ઘટનાઓ A અને B માટે $P(A) = \frac{1}{2}$, $P(A \cup B) = \frac{3}{5}$ અને P(B) = p આપેલ છે. જો ઘટનાઓ (i) પરસ્પર નિવારક (ii) નિરપેક્ષ હોય તો p શોધો.
- નિરપેક્ષ ઘટનાઓ A અને B માટે P(A) = 0.3 અને P(B) = 0.4. 8. (i) $P(A \cap B)$ (ii) $P(A \cup B)$ (iii) P(A | B)(iv) P(B | A) શોધો.
- 9. જો ઘટનાઓ A અને B માટે $P(A) = \frac{1}{4}$, $P(B) = \frac{1}{2}$ અને $P(A \cap B) = \frac{1}{8}$ હોય, તો P(A - નહિ અને B - નહિ) શોધો.

10. ઘટનાઓ A અને B માટે $P(A) = \frac{1}{2}$, $P(B) = \frac{7}{12}$ અને

 $P(A - \pi e) = \frac{1}{4} \cdot A = \frac$

- 11. આપેલ બે નિરપેક્ષ ઘટનાઓ A અને B માટે P(A) = 0.3 અને P(B) = 0.6 હોય, તો
 - (ii) P (A અને B નહિ.) (i) P (A અને B)
 - (iii) P (A અથવા B) (iv) P (A નહિ અને B નહિ.) શોધો.
- 12. એક પાસાને ત્રણ વખત ફેંકવામાં આવે છે. ઓછામાં ઓછી એક વખત અયુગ્મ સંખ્યા મળે તેની સંભાવના શોધો.
- 13. એક ખોખામાં 10 કાળા રંગના અને 8 લાલ રંગના દડા છે. તે ખોખામાંથી બે દડા યાદચ્છિક રીતે પુરવણી સહિત પસંદ કરવામાં આવે છે.
 - (i) બંને દડા લાલ રંગના હોય તેની સંભાવના શોધો.
 - (ii) પહેલો દડો કાળા રંગનો અને બીજો દડો લાલ રંગનો હોય તેની સંભાવના શોધો.
 - (iii) તેમાંનો એક દડો કાળા રંગનો અને અન્ય લાલ રંગનો હોય તેની સંભાવના શોધો.
- 14. A અને B એક ચોક્કસ સવાલને સ્વતંત્ર રીતે ઉકેલે તેની સંભાવના અનુક્રમે $rac{1}{2}$ અને $rac{1}{3}$ છે. જો A અને B બંને સ્વતંત્ર રીતે સવાલને ઉકેલવાનો પ્રયત્ન કરે, તો
 - (ii) બેમાંથી એકને જ સવાલનો ઉકેલ મળે તેની સંભાવના શોધો. (i) સવાલનો ઉકેલ મળે.
- 15. સારી રીતે ચીપેલાં 52 પત્તાંની થોકડીમાંથી એક પત્તું યાદચ્છિક રીતે પસંદ કરવામાં આવે છે. નીચેનાંમાંથી કયા કિસ્સાઓમાં ઘટનાઓ E અને F નિરપેક્ષ છે ?
 - F : 'પસંદ કરેલ પત્તું એક્કો છે'.
 - (i) E : 'પસંદ કરેલ પત્તું કાળીનું છે'.F : 'પસંદ કરેલ પત્તું એક્કો છે(ii) E : 'પસંદ કરેલ પત્તું કાળા રંગનું છે'.F : 'પસંદ કરેલ પત્તું રાજા છે'.
 - (iii) E : 'પસંદ કરેલ પત્તું રાજા અથવા રાશી છે'. F : 'પસંદ કરેલ પત્તું રાશી અથવા ગુલામ છે'.
- 16. એક છાત્રાલયમાં 60 % વિદ્યાર્થીઓ હિન્દી સમાચારપત્ર વાંચે છે, 40 % અંગ્રેજી સમાચારપત્ર વાંચે છે અને 20 % હિન્દી અને અંગ્રેજી બંને સમાચારપત્ર વાંચે છે. એક વિદ્યાર્થી યાદચ્છિક રીતે પસંદ કરવામાં આવ્યો.

સંભાવના

- (a) તે હિન્દી કે અંગ્રેજી પૈકી એક પણ સમાચારપત્ર વાંચતો ન હોય તેની સંભાવના શોધો.
- (b) જો તે હિન્દી સમાચારપત્ર વાંચતો હોય, તો તે અંગ્રેજી સમાચારપત્ર વાંચે છે તેની સંભાવના શોધો.
- (c) જો તે અંગ્રેજી સમાચારપત્ર વાંચતો હોય, તો તે હિન્દી સમાચારપત્ર વાંચે છે તેની સંભાવના શોધો.
- પ્રશ્નો 17 તથા 18 માં વિધાન સાચું બને તે રીતે આપેલ વિકલ્પોમાંથી યોગ્ય વિકલ્પ પસંદ કરો :
- 17. પાસાઓની જોડને ફેંકવામાં આવે, તો પ્રત્યેક પાસા પર યુગ્મ અવિભાજ્ય સંખ્યા મળે તેની સંભાવના છે.
- (A) 0(B) $\frac{1}{3}$ (C) $\frac{1}{12}$ (D) $\frac{1}{36}$ **18.** નીચેના પૈકી વિકલ્પ માટે ઘટનાઓ A અને B નિરપેક્ષ થશે :(A) A અને B પરસ્પર નિવારક છે.(C) P(A) = P(B)(B) P(A'B') = [1 P(A)] [1 P(B)](D) P(A) + P(B) = 1

13.5 બેય્ઝનો પ્રમેય

ધારો કે બે થેલા I અને II આપેલા છે. થેલા I માં 2 સફેદ રંગના અને 3 લાલ રંગના દડા છે તથા થેલા II માં 4 સફેદ રંગના અને 5 લાલ રંગના દડા છે. બે પૈકી એક થેલામાંથી યાદચ્છિક રીતે એક દડો પસંદ કરવામાં આવ્યો. બેમાંથી કોઈ પણ થેલાને પસંદ કરવાની સંભાવના (એટલે કે $\frac{1}{2}$) અથવા એક ચોક્કસ થેલામાંથી (કહો થેલો I) કોઈ ચોક્કસ રંગનો દડો (કહો સફેદ) પસંદ કરવાની સંભાવના શોધી શકીએ. અન્ય રીતે કહેતાં, જો આપણને આપેલ હોય કે કયા થેલામાંથી દડો કાઢચો છે, તો પસંદ કરવામાં આવેલ દડો કયા ચોક્કસ રંગનો છે તેની સંભાવના આપણે શોધી શકીએ. પરંતુ, જો પસંદ કરવામાં આવેલ દડાનો રંગ આપવામાં આવેલ હોય, તો શું આપણે દડો એક ચોક્કસ થેલામાંથી (કહો થેલો II) પસંદ કરવામાં આવેલ દડાનો રંગ આપવામાં આવેલ હોય, તો શું આપણે દડો એક ચોક્કસ થેલામાંથી (કહો થેલો II) પસંદ કરવામાં આવ્યો છે એની સંભાવના શોધી શકીએ ? અહીં, તે ઘટના ઉદ્ભવી તે પછી આપણે થેલા II પસંદ થવાની (ઊલટા ક્રમની) પ્રતિસંભાવના શોધવાની છે. સુવિખ્યાત ગણિતશાસ્ત્રી, જ્હૉન બેય્ઝે શરતી સંભાવનાનો ઉપયોગ કરીને પ્રતિસંભાવના શોધવાનો કોયડો ઉકેલ્યો. તેમના દ્વારા વિકસાવવામાં આવેલ સૂત્ર 'બેય્ઝના પ્રમેય' તરીકે ઓળખાય છે. તે તેમના મરણોત્તર C.A. 1763 માં પ્રકાશિત થયું. બેય્ઝના પ્રમેયનું વિધાન કરતાં અને સાબિત કરતાં પહેલાં, ચાલો આપણે એક વ્યાખ્યા અને કેટલાંક મૂળભૂત પરિણામો લઈએ.

13.5.1 નિદર્શાવકાશનું વિભાજન

- \hat{M} (a) $E_i \cap E_j = \emptyset, i \neq j, i, j = 1, 2, 3,..., n$
 - (b) $E_1 \cup E_2 \cup \dots \cup E_n = S$ અને
 - (c) પ્રત્યેક i = 1, 2, 3, ..., n માટે $P(E_i) > 0$, તો ઘટનાઓ $E_1, E_2, ..., E_n$ નિદર્શાવકાશ S નું વિભાજન કરે છે એમ કહેવાય.

નોંધ : n ગણ E_1 , E_2 , E_3 ,..., E_n માટે,

 $E_1 \cup E_2 \cup E_3 \cup ... \cup E_n = \{x : ઓછામાં ઓછા એક x માટે, x \in E_i; i = 1, 2, 3,..., n\}$ બીજા શબ્દોમાં, જોડયુક્ત પરસ્પર નિવારક શૂન્યેતર સંભાવનાવાળી નિઃશેષ ઘટનાઓ $E_{1,} E_2, ..., E_n$ નિદર્શાવકાશનું વિભાજન દર્શાવે છે.

ઉદાહરશ તરીકે, આપશે જોઈએ છીએ કે કોઈ પશ અરિક્તગણ E અને તેનો પૂરકગણ E', E ∩ E' = ∳ અને E ∪ E' = S નું સમાધાન કરતાં હોવાથી તે નિદર્શાવકાશ S નું વિભાજન નિર્મિત કરે છે.

આકૃતિ 13.3 ની વેન આકૃતિઓ પરથી, આપ સહેલાઈથી નિરીક્ષણ કરી શકો છો કે જો E અને F નિદર્શાવકાશ S સાથે સંકળાયેલ કોઈ પણ બે ઘટનાઓ હોય, તો ગણ {E∩F', E∩F, E'∩F, E'∩F'} એ નિદર્શાવકાશ S નું વિભાજન છે. અત્રે એ પણ ઉલ્લેખનીય છે કે, નિદર્શાવકાશનું વિભાજન અનન્ય નથી. એક જ નિદર્શાવકાશનાં કેટલાંય વિભાજનો હોઈ શકે.

466

ગણિત

 $\{E_1, E_2,...,E_n\}$ એ નિદર્શાવકાશ S નું વિભાજન છે. ધારો કે ઘટનાઓ $E_1, E_2,...,E_n$ પૈકી પ્રત્યેક ઘટના ઉદ્ભવવાની સંભાવના શૂન્યેતર છે. S ની કોઈ પણ ઘટના A લો. તો

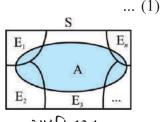
 $P(A) = P(E_1) P(A | E_1) + P(E_2) P(A | E_2) + ... + P(E_n) P(A | E_n)$

 $= \sum_{i=1}^{n} \mathbf{P}(\mathbf{E}_{j}) \mathbf{P}(\mathbf{A} | \mathbf{E}_{j})$

સાબિતી : E_1 , E_2 ,..., E_n નિદર્શાવકાશ S નું વિભાજન છે એમ આપેલ છે (આકૃતિ 13.4). તેથી

 $S = E_1 \cup E_2 \cup \dots \cup E_n$ S અને $E_i \cap E_i = \emptyset$, $i \neq j$. i, j = 1, 2, ..., nF હવે, આપશે જાણીએ છીએ કે કોઈ પણ ઘટના A માટે, A $A = A \cap S$ E $= A \cap (E_1 \cup$ આકૃતિ 13.4 = (A)

$$\cap (E_1 \cup E_2 \cup \dots \cup E_n) \cap E_1) \cup (A \cap E_2) \cup \dots \cup (A \cap E_n)$$



વળી, $A \cap E_i$ અને $A \cap E_i$ એ અનુક્રમે E_i અને E_i ના ઉપગણો છે. આપણે જાણીએ છીએ કે. E_i અને E_i પરસ્પર અલગ ગણ છે. આથી, $A \cap E_i$ અને $A \cap E_j$ પણ તમામ $i \neq j, i, j = 1, 2, ... n$ માટે પરસ્પર અલગ ગણ છે.

આમ, $P(A) = P[(A \cap E_1) \cup (A \cap E_2) \cup ... \cup (A \cap E_n)]$ $= P (A \cap E_1) + P (A \cap E_2) + ... + P (A \cap E_n)$

હવે, સંભાવનાના ગુણાકારના નિયમને આધારે, આપશી પાસે

 $P(A \cap E_i) = P(E_i) P(A | E_i),$ step is $P(E_i) \neq 0, \forall i = 1, 2,...n$

તેથી, $P(A) = P(E_1) P(A | E_1) + P(E_2) P(A | E_2) + ... + P(E_n) P(A | E_n)$

અથવા
$$P(A) = \sum_{j=1}^{n} P(E_j) P(A | E_j)$$

ઉદાહરણ 15 : એક વ્યક્તિએ બાંધકામના નિશ્ચિત કામની બાંયધરી આપી છે. કામ દરમિયાન હડતાલ પડશે તેની સંભાવના 0.65 છે. જો હડતાલ નહિ પડે તો સમયસર બાંધકામ પૂર્ણ થવાની સંભાવના 0.80 અને જો હડતાલ પડે તો સમયસર બાંધકામ પૂર્ણ થવાની સંભાવના 0.32 છે. બાંધકામનું કાર્ય સમયસર પૂર્ણ થાય તેની સંભાવના શોધો.

ઉકેલ ઃ ધારો કે ઘટના A : બાંધકામનું કાર્ય સમયસર પૂર્ણ થઈ જશે તે અને ઘટના B : હડતાળ પડશે તેમ દશાંવે છે. આપણે P(A) શોધવાનું છે.

આપણી પાસે P(B) = 0.65, P (હડતાળ નહી) = P(B') = 1 - P(B) = 1 - 0.65 = 0.35

ઘટનાઓ B અને B' નિદર્શાવકાશ S નું વિભાજન રચે છે, તેથી સંપૂર્ણ સંભાવનાના પ્રમેય પરથી, આપશી પાસે

P(A) = P(B) P(A | B) + P(B') P(A | B')

 $= 0.65 \times 0.32 + 0.35 \times 0.80$

= 0.208 + 0.280 = 0.488

સંભાવના

467

આમ, બાંધકામનું કાર્ય સમયસર પૂર્શ થઈ જશે તેની સંભાવના 0.488 છે.

હવે, આપશે બેય્ઝનો પ્રમેય લખીશું અને સાબિત કરીશું.

બેય્ઝનો પ્રમેય : E_1 , E_2 ,..., E_n નિદર્શાવકાશ S ના વિભાજનનું નિર્ધારણ કરતી અરિક્ત ઘટનાઓ છે. એટલે કે E_1 , E_2 ,..., E_n પરસ્પર અલગ ઘટનાઓ છે અને $E_1 \cup E_2 \cup ... \cup E_n = S$ તથા A એ શૂન્યેતર સંભાવના ધરાવતી ઘટના છે, તો

$$\mathcal{U}_{i} \neq i = 1, 2, 3, \dots n \quad \mathcal{H}_{i} \stackrel{2}{\mathcal{E}} P(\mathbf{E}_{i} \mid \mathbf{A}) = \frac{P(\mathbf{E}_{i})P(\mathbf{A} \mid \mathbf{E}_{i})}{\sum_{j=1}^{n} P(\mathbf{E}_{j})P(\mathbf{A} \mid \mathbf{E}_{j})}$$

સાબિતી : શરતી સંભાવનાના સૂત્ર પરથી, આપશે જાણીએ છીએ કે,

$$P(E_i | A) = \frac{P(A \cap E_i)}{P(A)}$$

$$= \frac{P(E_i)P(A | E_i)}{P(A)}$$
(સંભાવનાના ગુણાકારના નિયમના આધારે)
$$= \frac{P(E_i)P(A | E_i)}{\sum_{j=1}^{n} P(E_j)P(A | E_j)}$$
(સંપૂર્ણ સંભાવનાના પ્રમેય પરથી)

નોંધ : જ્યારે બેય્ઝના પ્રમેયનો ઉપયોગ કરીએ છીએ ત્યારે સામાન્ય રીતે નીચેની પરિભાષાનો ઉપયોગ કરાય છે :

ઘટનાઓ $E_1, E_2, ..., E_n$ ને પૂર્વ ઘટના અથવા પક્ષ કહેવાય છે. સંભાવના $P(E_i)$ ને પૂર્વઘટના E_i ની પૂર્વ-સંભાવના કહેવાય છે. શરતી સંભાવના $P(E_i | A)$ ને પૂર્વઘટના E_i ની ઉત્તર-સંભાવના કહેવાય છે.

બેય્ઝના પ્રમેયને 'કારજ્ઞો'ની સંભાવનાઓનું સૂત્ર પજ્ઞ કહે છે. તમામ E_i નિદર્શાવકાશ S નું વિભાજન કરતા હોવાથી, એક અને માત્ર એક જ ઘટના E_i ઉદ્ભવે (એટલે કે ઘટનાઓ E_i પૈકી એક ઘટના ઉદ્ભવવી જ જોઈએ અને કેવળ એક જ ઉદ્દભવી શકે). તેથી, ઉપરનું સૂત્ર જ્યારે ઘટના A ઉદ્દભવી ચૂકી છે તેમ આપેલ હોય ત્યારે એક ચોક્કસ E_i (એટલે કે 'કારજ્ઞ')ની સંભાવના આપજ્ઞને આપે છે.

વિવિધ પરિસ્થિતિઓમાં બેય્ઝના પ્રમેયનો ઉપયોગ છે. તેમાંનાં કેટલાંક નીચેનાં ઉદાહરણોમાં સદ્દષ્ટાંત દર્શાવ્યા છે.

ઉદાહરણ 16 ઃ થેલા I માં 3 લાલ રંગના અને 4 કાળા રંગના દડા અને થેલા II માં 5 લાલ રંગના અને 6 કાળા રંગના દડા છે. કોઈ એક થેલામાંથી એક દડો યાદચ્છિક રીતે પસંદ કરવામાં આવે છે અને તે લાલ રંગનો હોવાનું માલૂમ પડે છે, તો તે થેલા II માંથી પસંદ થયેલ હોય તેની સંભાવના શોધો.

ઉકેલ : થેલો I પસંદ થવાની ઘટનાને E_1 , થેલો II પસંદ થવાની ઘટનાને E_2 અને લાલ રંગનો દડો પસંદ થાય તે ઘટનાને A લઈએ, તો $P(E_1) = P(E_2) = \frac{1}{2}$

વળી, $P(A | E_1) = P$ (થેલા I માંથી લાલ રંગનો દડો પસંદ થાય.) $=\frac{3}{7}$

અને $P(A | E_2) = P$ (થેલા II માંથી લાલ રંગનો દડો પસંદ થાય.) = $\frac{5}{11}$

468

ગણિત

હવે, દડો લાલ રંગનો છે તેમ આપેલ હોય ત્યારે, તે દડો થેલા II માંથી પસંદ કરેલ હોય, તેની સંભાવના P(E₂ | A) થાય.

બેય્ઝના પ્રમેયનો ઉપયોગ કરતાં, આપશી પાસે

$$P(E_2 | A) = \frac{P(E_2)P(A|E_2)}{P(E_1)P(A|E_1) + P(E_2)P(A|E_2)} = \frac{\frac{1}{2} \times \frac{5}{11}}{\frac{1}{2} \times \frac{3}{7} + \frac{1}{2} \times \frac{5}{11}} = \frac{35}{68}$$

ઉદાહરણ 17 : ત્રણ એકસરખી પેટીઓ I, II અને III આપેલ છે. પ્રત્યેકમાં બે સિક્કા છે. પેટી I માં બંને સિક્કા સોનાના છે, પેટી II માં બંને સિક્કા ચાંદીના છે અને પેટી III માં એક સોનાનો અને એક ચાંદીનો સિક્કો છે. એક વ્યક્તિ યાદચ્છિક રીતે એક પેટી પસંદ કરે છે અને તેમાંથી એક સિક્કો બહાર કાઢે છે. જો તે સિક્કો સોનાનો હોય તો પેટીમાં રહેલ બીજો સિક્કો પણ સોનાનો હોય તેની સંભાવના કેટલી ?

ઉંકેલ : પેટીઓ I, II અને III પસંદ થાય તેને અનુક્રમે ઘટનાઓ $E_{1,} E_{2}$ અને E_{3} વડે દર્શાવીએ,

$$dt P(E_1) = P(E_2) = P(E_3) = \frac{1}{3}$$

વળી, 'પસંદ કરવામાં આવેલ સિક્કો સોનાનો છે' તે ઘટનાને A લઈએ, તો

 $P(A | E_1) = P$ (થેલા I માંથી સોનાનો સિક્કો) $= \frac{2}{2} = 1$

 $P(A | E_2) = P$ (थेला II मांथी सोनानो सिड्डो) = 0

 $P(A | E_3) = P$ (થેલા III માંથી સોનાનો સિક્કો) = $\frac{1}{2}$

હવે, પેટીમાં રહેલ બીજો સિક્કો સોનાનો હોય તેની સંભાવના

= પેટી I માંથી કાઢવામાં આવેલ સિક્કો સોનાનો હોય તેની સંભાવના

$$= P(E_1 | A)$$

બેય્ઝના પ્રમેય પરથી, આપશે જાણીએ છીએ કે

$$P(E_1 | A) = \frac{P(E_1)P(A | E_1)}{P(E_1)P(A | E_1) + P(E_2)P(A | E_2) + P(E_3)P(A | E_3)}$$
$$= \frac{\frac{1}{3} \times 1}{\frac{1}{3} \times 1 + \frac{1}{3} \times 0 + \frac{1}{3} \times \frac{1}{2}} = \frac{2}{3}$$

ઉંદાહરણ 18 : ધારો કે એક HIV કસોટીની વિશ્વસનીયતાની વિગતો નીચે દર્શાવી છે : HIV ગ્રસ્ત લોકોમાંથી, પરીક્ષણના 90 ટકામાં રોગની જાણ થાય છે પરંતુ 10 % માં જાણ થતી નથી. HIV મુક્ત લોકોમાંથી, 99 % પરીક્ષણોના નિર્ણય HIV –ve હોય છે, પરંતુ 1 % નું નિદાન HIV +ve બતાવે છે. ઘણી મોટી વસતીમાંથી માત્ર 0.1 % લોકોને HIV છે. એક વ્યક્તિ યાદચ્છિક રીતે પસંદ કરવામાં આવે છે, તે HIV પરીક્ષણ આપે છે અને રોગવિજ્ઞાનીનું નિદાન તેને HIV +ve મળે છે. તે વ્યક્તિ ખરેખર HIV ગ્રસ્ત હોય તે ઘટનાની સંભાવના કેટલી ?

ઉકેલ : ધારો કે ઘટના E દર્શાવે છે કે પસંદ થયેલ વ્યક્તિ ખરેખર HIV ગ્રસ્ત છે અને ઘટના A દર્શાવે છે કે વ્યક્તિનાં HIV પરીક્ષણનું નિદાન +ve આવ્યું છે. આપણને P(E | A) શોધવાની આવશ્યકતા છે. વળી, ઘટના E' દર્શાવે છે કે પસંદ થયેલ વ્યક્તિ ખરેખર HIV ગ્રસ્ત નથી.

સંભાવના

સ્પષ્ટપણે, {E, E'} એ વસતીના તમામ લોકોના નિદર્શાવકાશનું વિભાજન છે. આપણને આપેલ છે, P(E) = $0.1\% = \frac{0.1}{100} = 0.001$ P(E') = 1 - P(E) = 0.999P(A | E) = P(આપેલ છે કે તે ખરેખર HIV ગ્રસ્ત છે, તો વ્યક્તિનું પરીક્ષણ HIV+ve તરીકે થયું છે.) = $90\% = \frac{90}{100} = 0.9$ અને P(A | E') = P(આપેલ છે કે તે ખરેખર HIV ગ્રસ્ત નથી, તો વ્યક્તિનું પરીક્ષણ HIV+ve તરીકે થયું છે.) = $1\% = \frac{1}{100} = 0.01$ હવે, બેંય્ઝના પ્રમેય પરથી, P(E | A) = $\frac{P(E) \cdot P(A | E)}{P(E) P(A | E) + P(E') P(A | E')}$ = $\frac{0.001 \times 0.9}{0.001 \times 0.9 + 0.999 \times 0.01} = \frac{90}{1089} = 0.083$ લગભગ

આમ, આપેલ હોય કે વ્યક્તિનું પરીક્ષણ HIV+ve છે, તો યાદચ્છિક રીતે પસંદ કરેલ વ્યક્તિ HIVગ્રસ્ત છે, તેની સંભાવના 0.083 છે.

ઉંદાહરણ 19 : એક ફેક્ટરી બોલ્ટ્સનું ઉત્પાદન કરે છે. યંત્રો A, B અને C અનુક્રમે 25 %, 35 % અને 40 % બોલ્ટ્સનું ઉત્પાદન કરે છે. તેમણે ઉત્પાદિત કરેલા બોલ્ટ્સ પૈકી અનુક્રમે, 5 %, 4 % અને 2 % ખામીયુક્ત હોય છે. એક બોલ્ટ યાદચ્છિક રીતે પસંદ કર્યો અને તે ખામીયુક્ત માલૂમ પડ્યો. તે યંત્ર B દ્વારા ઉત્પાદિત થયેલો હોવાની સંભાવના કેટલી ?

ઉકેલ : ઘટનાઓ B₁, B₂, B₃ નીચે પ્રમાશે લો :

B₁ : બોલ્ટનું ઉત્પાદન યંત્ર A દ્વારા થયું છે.

B₂ : બોલ્ટનું ઉત્પાદન યંત્ર B દ્વારા થયું છે.

B₃ : બોલ્ટનું ઉત્પાદન યંત્ર C દ્વારા થયું છે.

સ્પષ્ટ છે કે B₁, B₂, B₃ પરસ્પર નિવારક અને નિઃશેષ ઘટનાઓ છે અને તેથી તેઓ નિદર્શાવકાશનું વિભાજન દર્શાવે છે. ઘટના E 'બોલ્ટ ખામીયુક્ત છે' તે લો.

ઘટના E, \mathbf{B}_1 ની સાથે અથવા \mathbf{B}_2 ની સાથે અથવા \mathbf{B}_3 ની સાથે ઉદ્ભવે છે.

આપેલ છે $P(B_1) = 25 \% = 0.25$, $P(B_2) = 0.35$ અને $P(B_3) = 0.40$

કરીથી ખામીયુક્ત બોલ્ટ કાઢવામાં આવ્યો છે. આપેલ છે કે તે યંત્ર A વડે ઉત્પાદિત થયો હોય, તો તે ઘટનાની સંભાવના $P(E \mid B_1) = 5 \% = 0.05$

આ જ પ્રમાશે P(E | B₂) = 0.04, P(E | B₃) = 0.02

તેથી, બૅયૂઝના પ્રમેય દ્વારા,

 $P(B_2 | E) = \frac{P(B_2) \cdot P(E | B_2)}{P(B_1) \cdot P(E | B_1) + P(B_2) \cdot P(E | B_2) + P(B_3) \cdot P(E | B_3)}$ $= \frac{0.35 \times 0.04}{0.25 \times 0.05 + 0.35 \times 0.04 + 0.40 \times 0.02}$ $= \frac{0.0140}{0.0345} = \frac{28}{69}$

470

ઉંદાહરણ 20 : એક તબીબે દર્દીની મુલાકાત લેવાની છે. ભૂતકાળના અનુભવ પરથી આપશે એ જાણીએ છીએ કે તેના ટ્રેન, બસ, સ્કૂટર અથવા અન્ય કોઈ પરિવહન દ્વારા આવવાની સંભાવના અનુક્રમે $\frac{3}{10}$, $\frac{1}{5}$, $\frac{1}{10}$ અને $\frac{2}{5}$ છે. જો તે અનુક્રમે ટ્રેન, બસ અને સ્કૂટર દ્વારા આવે તો તેના મોડા પડવાની સંભાવનાઓ અનુક્રમે $\frac{1}{4}$, $\frac{1}{3}$ અને $\frac{1}{12}$ છે. પરંતુ જો તે અન્ય કોઈ પરિવહન દ્વારા આવે, તો તે મોડા પડશે નહિ. જ્યારે તે આવી પહોંચે છે ત્યારે તે મોડા પડે છે. તે ટ્રેન દ્વારા આવ્યા હશે તેની સંભાવના કેટલી ? ઉકેલ : આપશે ડૉક્ટર દર્દીની મુલાકાત લેવામાં મોડા પડે છે તે ઘટનાને E વડે તેમજ ડૉક્ટર ટ્રેન, બસ, સ્કૂટર અથવા અન્ય પરિવહન દ્વારા આવે છે તે ઘટનાઓને અનુક્રમે T₁, T₂, T₃, T₄ વડે દર્શાવીએ.

અહીં, $P(T_1) = \frac{3}{10}$, $P(T_2) = \frac{1}{5}$, $P(T_3) = \frac{1}{10}$ અને $P(T_4) = \frac{2}{5}$ (આપેલ છે.) ડૉક્ટર ટ્રેન દ્વારા આવતાં મોડા પહોંચે છે, તે ઘટનાની સંભાવના $P(E | T_1) = \frac{1}{4}$ આ જ પ્રમાણે, $P(E | T_2) = \frac{1}{3}$, $P(E | T_3) = \frac{1}{12}$ અને $P(E | T_4) = 0$ કારણ કે જો તે અન્ય કોઈ પરિવહન દ્વારા આવે તો તે મોડા પડતા નથી. માટે, બૅય્ઝના પ્રમેય દ્વારા,

$$P(T_1 | E) =$$
 જો ડૉક્ટર મોડા પડ્યા હોય, તો તે ટ્રેન દ્વારા આવ્યા હોય તેની સંભાવના

$$= \frac{P(T_1) \cdot P(E \mid T_1)}{P(T_1) P(E \mid T_1) + P(T_2) P(E \mid T_2) + P(T_3) P(E \mid T_3) + P(T_4) P(E \mid T_4)}$$

$$= \frac{\frac{3}{10} \times \frac{1}{4}}{\frac{3}{10} \times \frac{1}{4} + \frac{1}{5} \times \frac{1}{3} + \frac{1}{10} \times \frac{1}{12} + \frac{2}{5} \times 0}$$

$$= \frac{3}{40} \times \frac{120}{18} = \frac{1}{2}$$

તેથી, માંગેલ સંભાવના $\frac{1}{2}$ છે.

<mark>ઉદાહરણ 21 :</mark> એક માશસ 4 માંથી 3 વાર સત્ય બોલે છે તે જ્ઞાત છે. તે પાસાને ફેંકે છે અને જણાવે છે કે તેને છ મળે છે. ખરેખર તેને પૂર્ણાંક છ મળ્યા છે તેની સંભાવના શોધો.

ઉકેલ : 'માણસ જાણ કરે છે કે તેને પાસાને ફેંકતાં પૂર્ણાંક છ મળે છે.' તેને ઘટના E અને 'ખરેખર પૂર્ણાંક છ મળે છે.' તેને ઘટના S_1 અને 'પૂર્ણાંક છ મળતા નથી' તેને ઘટના S_2 લેતાં,

તો
$$P(S_1) = \chi$$
ર્ણાંક છ ઉદ્દભવે છે તેની સંભાવના $= \frac{1}{6}$

- $P(S_2)$ = પૂર્ણાંક છ ઉદ્ભવતો નથી તેની સંભાવના = $\frac{5}{6}$
- P(E | S₁) = જ્યારે ખરેખર પૂર્ણાંક 6 ઉદ્ભવે છે ત્યારે વ્યક્તિ પૂર્ણાંક 6 ઉદ્ભવે છે તેની જાણ કરે છે તેની સંભાવના

= માશસ સત્ય બોલે છે તેની સંભાવના =
$$\frac{3}{4}$$

P(E | S₂) = જ્યારે ખરેખર પાસા પર પૂર્ણાંક છ ઉદ્ભવતા નથી ત્યારે માણસ જાણ કરે છે કે પૂર્ણાંક છ ઉદ્ભવે છે તેની સંભાવના

= માણસ સત્ય બોલતો નથી તેની સંભાવના = $1 - \frac{3}{4} = \frac{1}{4}$

Downloaded from https:// www.studiestoday.com

ગણિત

સંભાવના

471

આમ, બૅય્ઝના પ્રમેય દ્વારા આપણને મળે છે.

P(S1|E) = માણસ જાણ કરે છે કે, પૂર્ણાંક છ ઉદ્ભવ્યો છે તો ખરેખર પૂર્ણાંક 6 ઉદ્ભવ્યો હોય, તેની સંભાવના

$$= \frac{P(S_1).P(E \mid S_1)}{P(S_1) P(E \mid S_1) + P(S_2) P(E \mid S_2)}$$
$$= \frac{\frac{1}{6} \times \frac{3}{4}}{\frac{1}{6} \times \frac{3}{4} + \frac{5}{6} \times \frac{1}{4}} = \frac{1}{8} \times \frac{24}{8} = \frac{3}{8}$$

આથી, માંગેલ સંભાવના $\frac{3}{8}$ છે.

સ્વાધ્યાય 13.3

- એક પાત્રમાં 5 લાલ રંગના અને 5 કાળા રંગના દડા છે. યાદચ્છિક રીતે એક દડો પસંદ કરવામાં આવે
 છે. તેનો રંગ નોંધીને તેને પાત્રમાં પાછો મૂકી દેવાય છે. તદુપરાંત, જે રંગ નોંધ્યો હતો તે રંગના 2 વધારાના દડા પાત્રમાં મૂકવામાં આવે છે અને ત્યાર બાદ એક દડો યાદચ્છિક રીતે પસંદ કરવામાં આવે છે. બીજો દડો લાલ રંગનો હોય તેની સંભાવના કેટલી ?
- એક થેલામાં 4 લાલ રંગના અને 4 કાળા રંગના દડા છે. બીજા થેલામાં 2 લાલ રંગના અને 6 કાળા રંગના દડા છે. બેમાંથી એક થેલો યાદચ્છિક રીતે પસંદ કરવામાં આવે છે અને એક દડો તે થેલામાંથી યાદચ્છિક રીતે પસંદ કરવામાં આવે છે. તે લાલ રંગનો માલૂમ પડે છે. દડો પહેલા થેલામાંથી પસંદ કર્યો હોય તેની સંભાવના શોધો.
- 3. કૉલેજના વિદ્યાર્થીઓ પૈકી 60 % વિદ્યાર્થીઓ છાત્રાલયમાં રહે છે અને 40 % વિદ્યાર્થીઓ છાત્રાલયમાં રહેતા નથી તેમ જ્ઞાત છે. આગળના વર્ષના પરિણામ પરથી માહિતી મળે છે કે, છાત્રાલયમાં રહેતા વિદ્યાર્થીઓ પૈકી 30 % વિદ્યાર્થીઓએ વાર્ષિક પરીક્ષામાં A ગ્રેડ મેળવ્યો છે અને છાત્રાલયમાં નહિ રહેનારા વિદ્યાર્થીઓ પૈકી 30 % વિદ્યાર્થીઓએ વાર્ષિક પરીક્ષામાં A ગ્રેડ મેળવ્યો છે અને છાત્રાલયમાં નહિ રહેનારા વિદ્યાર્થીઓ પૈકીના 20 % વિદ્યાર્થીઓએ તેમની વાર્ષિક પરીક્ષામાં A ગ્રેડ મેળવ્યો છે અને છાત્રાલયમાં નહિ રહેનારા વિદ્યાર્થીઓ પૈકીના 20 % વિદ્યાર્થીઓએ તેમની વાર્ષિક પરીક્ષામાં A ગ્રેડ મેળવ્યો છે. વર્ષાન્તે કૉલેજમાંથી એક વિદ્યાર્થી યાદચ્છિક રીતે પસંદ કરવામાં આવ્યો અને તેણે A ગ્રેડ મેળવ્યો છે તેમ આપેલ હોય, તો આ વિદ્યાર્થી છાત્રાલયનો હોવાની સંભાવના કેટલી ?
- 4. બહુવિકલ્પ કસોટીમાં પ્રશ્નનો જવાબ આપવામાં, વિદ્યાર્થી કાં તો જવાબ જાશે છે અથવા અનુમાન કરે છે. વિદ્યાર્થી જવાબ જાશે છે તેની સંભાવના ³/₄ અને અનુમાન કરે છે તેની સંભાવના ¹/₄ છે. માની લો કે વિદ્યાર્થી જે જવાબનું અનુમાન કરે છે તે સાચો હોય તેની સંભાવના ¹/₄ છે. આપેલ હોય કે તેશે તે જવાબ સાચો આપ્યો છે ત્યારે વિદ્યાર્થીએ આપેલ જવાબ તે જાણતો હતો તેની સંભાવના કેટલી ?
- 5. એક પ્રયોગશાળા ૨ક્ત પરીક્ષણમાં, જ્યારે તે ખરેખર રોગ હોય ત્યારે તે રોગને શોધી કાઢવામાં 99 % અસરકારક છે. તેમ છતાં, સ્વસ્થ વ્યક્તિનો પરીક્ષણ અહેવાલ ખોટો અને હકારાત્મક 0.5 % સુધી પણ આપે છે. (એટલે કે, જો સ્વસ્થ વ્યક્તિનું પરીક્ષણ કરાય, તો 0.005 સંભાવના સાથે પરીક્ષણ નિદાન કરશે કે તેને બીમારી છે.) જો વસતીના 0.1 % લોકોને ખરેખર બીમારી હોય, તો આપેલ હોય કે તેના પરીક્ષણનું પરિણામ હકારાત્મક છે તે પરિસ્થિતિમાં તેને બીમારી હોવાની સંભાવના કેટલી ?
- 6. ત્રણ સિક્કા આપેલ છે. એક સિક્કાની બંને બાજુ છાપ છે. બીજો અસમતોલ સિક્કો છે. તેમાં છાપ મળવાની સંભાવના 75 % છે અને ત્રીજો સમતોલ સિક્કો છે. ત્રણમાંથી એક સિક્કો યાદચ્છિક રીતે પસંદ કરીને ઉછાળ્યો. તે છાપ બતાવે છે, તો તે બે છાપ ધરાવતો સિક્કો હોય તેની સંભાવના કેટલી ?

ગણિત

- એક વીમાકંપનીએ 2000 સ્કૂટર-ચાલકો, 4000 કાર-ચાલકો અને 6000 ટ્રક-ચાલકોનો વીમો ઉતાર્યો. તેમના દ્વારા થતા અકસ્માતોની સંભાવના અનુક્રમે 0.01, 0.03 અને 0.15 છે. વીમાધારકો પૈકીના એક વ્યક્તિને અકસ્માત થયો. તે સ્કૂટર-ચાલક હોવાની સંભાવના કેટલી ?
- 8. એક ફેક્ટરી પાસે બે યંત્રો A અને B છે. ભૂતકાળની નોંધ બતાવે છે કે, યંત્ર A ઉત્પાદિત વસ્તુઓ પૈકી 60 % વસ્તુઓનું અને યંત્ર B 40 % વસ્તુઓનું ઉત્પાદન કરે છે. વધુમાં, યંત્ર A દ્વારા ઉત્પાદિત વસ્તુઓ પૈકી વસ્તુઓ પૈકી 2 % અને યંત્ર B દ્વારા ઉત્પાદિત વસ્તુઓ પૈકી 1 % વસ્તુઓ ખામીયુક્ત હતી. આ બધી વસ્તુઓ એક પૂરવઠાગારમાં મૂકી દીધી અને ત્યાર બાદ આમાંથી એક વસ્તુ યાદચ્છિક રીતે પસંદ કરી અને તે ખામીયુક્ત માલૂમ પડી, તો તે યંત્ર B દ્વારા ઉત્પાદિત ઉત્પાદિત હોવાની સંભાવના કેટલી ?
- 9. એક નિગમમાં નિયામકોની સમિતિમાં હોદો મેળવવા માટે બે સમૂહો હરીફાઈ કરી રહ્યા છે. પ્રથમ અને દ્વિતીય સમૂહો જીતશે તેની સંભાવનાઓ અનુક્રમે 0.6 અને 0.4 છે. વધુમાં, જો પ્રથમ સમૂહ જીતશે તો નવી ઉત્પાદિત વસ્તુ રજૂ કરવાની સંભાવના 0.7 છે અને દ્વિતીય સમૂહ માટે અનુરૂપ સંભાવના 0.3 છે. નવી ઉત્પાદિત વસ્તુ દ્વિતીય સમૂહ દ્વારા રજૂ થઈ હોય તેની સંભાવના કેટલી ?
- 10. ધારો કે એક છોકરી પાસો ઉછાળે છે. જો તેને 5 કે 6 મળે તો, તે સિક્કાને ત્રણ વખત ઉછાળે છે અને છાપની સંખ્યા નોંધે છે. જો તેને 1, 2, 3 અથવા 4 મળે તો તે સિક્કાને એક વખત ઉછાળે છે અને છાપ અથવા કાંટો મળ્યો તે નોંધે છે. જો બરાબર એક છાપ મળી હોય, તો તે પાસા પર 1, 2, 3 અથવા 4 મળ્યા હોવાની સંભાવના કેટલી ?
- 11. એક કારખાનાદાર પાસે ત્રણ યંત્ર ચાલકો A, B અને C છે. પ્રથમ ચાલક A, 1 % ખામીયુક્ત વસ્તુઓનું ઉત્પાદન ઉત્પાદન કરે છે. બીજા બે ચાલકો B અને C અનુક્રમે 5 % અને 7 % ખામીયુક્ત વસ્તુઓનું ઉત્પાદન કરે છે. A કામના નિશ્ચિત સમયનો, 50 % સમય કામ પર રહે છે, B 30 % સમય કામ પર રહે છે અને C 20 % સમય કાર્ય કરે છે. ખામીયુક્ત વસ્તુનું ઉત્પાદન થયું છે. તેનું ઉત્પાદન A દ્વારા થયું હોવાની સંભાવના કેટલી ?
- 12. 52 પત્તાંની થોકડીમાંથી એક પત્તું ખોવાઈ ગયું છે. બાકી રહેલાં પત્તાંની થોકડીમાંથી બે પત્તાં યાદચ્છિક રીતે પસંદ કરવામાં આવ્યાં અને માલૂમ પડ્યું કે તે બંને ચોકટનાં પત્તાં છે. ખોવાયેલ પત્તું ચોકટનું હોય તેની સંભાવના શોધો.
- પ્રશ્નો 13 તથા 14 માં વિધાન સાચું બને તે રીતે આપેલ વિકલ્પોમાંથી યોગ્ય વિકલ્પ પસંદ કરો :
- **13.** A સત્ય બોલે છે તેની સંભાવના $\frac{4}{5}$ છે. એક સિક્કો ઉછાળ્યો છે. A માહિતી આપે છે કે છાપ મળી છે. ખરેખર છાપ હતી તેની સંભાવના હોય.

(A) $\frac{4}{5}$ (B) $\frac{1}{2}$ (C) $\frac{1}{5}$ (D) $\frac{2}{5}$

14. જો $P(B) \neq 0$ અને A ⊂ B હોય તેવી બે ઘટનાઓ A અને B માટે નીચેનામાંથી કયું સત્ય છે?

(A) P(A | B) = P(B)/P(A)
(B) P(A | B) < P(A)
(C) P(A | B) ≥ P(A)
(D) આમાંથી એક પણ નહિ.

સંભાવના

13.6 યાદચ્છિક ચલો અને તેમનાં સંભાવના વિતરણો

આપણે યાદચ્છિક પ્રયોગો અને નિદર્શાવકાશો વિશે અભ્યાસ કર્યો છે. આ પ્રકારના મોટા ભાગના પ્રયોગોમાં, આપણે માત્ર અમુક ચોક્કસ પરિણામ ઉદ્ભવે તેમાં જ રસ ધરાવતા ન હતા, પરંતુ નીચેનાં ઉદાહરણો/પ્રયોગોમાં બતાવ્યા પ્રમાણે, તે પરિણામો સાથે કોઈ સંખ્યા સંકળાય તેમાં પણ આપણને રસ હતો.

- (i) આપશો રસ બે પાસાને ઉછાળવામાં, તેમની પર મળતી સંખ્યાઓના સરવાળામાં હોઈ શકે.
- (ii) સિક્કાને 50 વાર ઉછાળવામાં, આપશે મળેલ છાપની સંખ્યા જાણવા ઇચ્છતા હોઈએ.
- (iii) જેમાં 6 વસ્તુ ખામીયુક્ત છે તેવી 20 ચીજવસ્તુઓના ઢગલામાંથી યાદચ્છિક રીતે ચાર ચીજવસ્તુઓ
 (એક પછી એક) લેવાના પ્રયોગમાં, આપણે ચારના નિદર્શમાં ખામીયુક્ત વસ્તુની સંખ્યા જાણવા માંગીએ છીએ અને નહિ કે ખામીયુક્ત તથા ખામીરહિત ચીજવસ્તુઓની શ્રેણીમાં.

ઉપરના તમામ પ્રયોગોમાં, આપણી પાસે નિયમ છે અને તે પ્રયોગના પ્રત્યેક પરિણામને એક વાસ્તવિક સંખ્યા સાથે સંગત કરે છે. આ એક વાસ્તવિક સંખ્યા પ્રયોગના જુદાં-જુદાં પરિણામો સાથે બદલાઈ શકે છે. આને કારણે, તે ચલ છે. વળી, તેનું મૂલ્ય યાદચ્છિક પ્રયોગના પરિણામ પર આધારિત છે અને તેથી, તેને યાદચ્છિક ચલ કહે છે. યાદચ્છિક ચલને સામાન્ય રીતે X દ્વારા દર્શાવાય છે.

જો તમે વિધેયની વ્યાખ્યા યાદ કરશો તો તમે સ્પષ્ટપણે સમજી શકશો કે, યાદચ્છિક ચલ X, ખરેખર કહીએ તો જેનો પ્રદેશ યાદચ્છિક પ્રયોગનાં પરિણામોનો ગણ (અથવા નિદર્શાવકાશ) હોય તેવું વિધેય છે. યાદચ્છિક ચલ કોઈ પણ વાસ્તવિક સંખ્યા ધારણ કરી શકે છે. એના પરિણામરૂપે તેનો સહપ્રદેશ વાસ્તવિક સંખ્યાઓનો ગણ છે અને તેથી, યાદચ્છિક ચલને નીચે પ્રમાણે વ્યાખ્યાયિત કરી શકાય છે :

વ્યાખ્યા 4 : જેનો પ્રદેશ યાદૈચ્છિક પ્રયોગનો નિદર્શાવકાશ છે એવા વાસ્તવિક મૂલ્યોના વિધેયને યાદૈચ્છિક ચલ કહે છે.

ઉદાહરણ તરીકે, ચાલો આપણે એક સિક્કાને ક્રમશઃ બે વખત ઉછાળવાના પ્રયોગ વિશે વિચારીએ.

આ પ્રયોગનો નિદર્શાવકાશ S = {HH, HT, TH, TT} છે.

જો X મેળવેલ છાપની સંખ્યા દર્શાવે, તો X એ યાદચ્છિક ચલ છે અને પ્રત્યેક પરિશામ માટે તેનું મૂલ્ય નીચે આપ્યા પ્રમાશે છે :

X(HH) = 2, X(HT) = 1, X(TH) = 1, X(TT) = 0

એક જ નિદર્શાવકાશ પર એક કરતાં વધારે યાદચ્છિક ચલ વ્યાખ્યાયિત કરી શકાય છે. ઉદાહરણ તરીકે, ધારો કે ઉપરના નિદર્શાવકાશ S ના પ્રત્યેક પરિણામ માટે Y એ છાપની સંખ્યામાંથી કાંટાની સંખ્યાની બાદબાકી દર્શાવે છે. તો,

Y(HH) = 2, Y(HT) = 0, Y(TH) = 0, Y(TT) = -2

આમ, X અને Y એક જ નિદર્શાવકાશ S પર વ્યાખ્યાયિત બે જુદા-જુદા યાદચ્છિક ચલ છે.

ઉદાહરણ 22 ઃ એક વ્યક્તિ એક સિક્કાને ત્રણવાર ઉછાળવાની રમત રમે છે. પ્રત્યેક છાપ માટે, આયોજક દ્વારા તેને ₹ 2 આપવામાં આવે છે અને પ્રત્યેક કાંટા માટે, તે ₹ 1.50 આયોજકને આપે છે. X વ્યક્તિએ મેળવેલી અથવા ગુમાવેલી રકમ દર્શાવે છે. દર્શાવો કે X યાદચ્છિક ચલ છે અને તેને પ્રયોગના નિદર્શાવકાશ પરના વિધેય તરીકે દર્શાવો.

ઉકેલ : X એ સંખ્યા છે. તેનાં મૂલ્યો યાદચ્છિક પ્રયોગનાં પરિશામો પર વ્યાખ્યાયિત છે. આથી, X એ યાદચ્છિક ચલ છે.

474

હવે, પ્રયોગનો નિદર્શાવકાશ $S = \{HHH, HHT, HTH, THH, HTT, THT, TTH, TTT\}$ પછી, X(HHH) = ₹ 2 × 3 *=* ₹ 6 X(HHT) = X(HTH) = X(THH) = ₹ (2 × 2 - 1 × 1.50) = ₹ 2.50X(HTT) = X(THT) = X(TTH) = ₹ $(1 \times 2 - 2 \times 1.50)$ = - ₹ 1 અને X(TTT) = - ₹ (3 × 1.50) = - ₹ 4.50 અત્રે ઋશ નિશાની ખેલાડીનું નુકસાન બતાવે છે. આમ, નિદર્શાવકાશના પ્રત્યેક ઘટક માટે, X અનન્ય કિંમત લે છે. આ ઉપરથી, X એ નિદર્શાવકાશ પરનું વિધેય છે. તેનો વિસ્તાર {–1, 2.50, –4.50, 6} છે. <mark>ઉદાહરણ 23 :</mark> એક થેલામાં 2 સફેદ રંગના દડા અને 1 લાલ રંગનો દડો છે. એક દડો યાદચ્છિક રીતે પસંદ કર્યો અને પછી તેનો રંગ નોંધીને થેલામાં પરત મૂકી દીધો. ફરીથી તે પ્રક્રિયાનું પુનરાવર્તન કર્યું. જો X, બંને વખત યાદચ્છિક રીતે પસંદ કરેલ લાલ દડાની સંખ્યા દર્શાવે, તો X નું વર્શન કરો. \mathbf{G} કેલ : થેલામાં રહેલા દડાઓને w_1, w_2, r વડે દર્શાવો. પછી નિદર્શાવકાશ $S = \{w_1w_1, w_1w_2, w_2w_1, w_2w_2, w_1r, w_2r, rw_1, rw_2, rr\} \text{ Hol} \ \emptyset.$ હવે, ω ∈ S માટે, X(ω) = લાલ રંગના દડાની સંખ્યા એના પરિણામ રૂપે, $X(\{w_1w_1\}) = X(\{w_1w_2\}) = X(\{w_2w_2\}) = X(\{w_2w_1\}) = 0$ $X(\{w_1r\}) = X(\{w_2r\}) = X(\{rw_1\}) = X(\{rw_2\}) = 1 \text{ wr} X(\{rr\}) = 2$ આમ, X એ યાદચ્છિક ચલ છે અને તે કિંમતો 0, 1, 2 લે છે. 13.6.1 યાદેચ્છિક ચલનું સંભાવના વિતરણ ચાલો આપણે દસ કુટુંબ $f_1, f_2, ..., f_{10}$ પૈકી એક કુટુંબ યાદચ્છિક પસંદ કરવાનો પ્રયોગ લઈએ. પ્રત્યેક કુટુંબ પસંદ થવાની ઘટના સમસંભાવી છે. ધારો કે કુટુંબ $f_1, f_2, ..., f_{10}$ માં અનુક્રમે 3, 4, 3, 2, 5, 4, 3, 6, 4, 5 સભ્યો છે. ચાલો એક કુટુંબ પસંદ કરીએ અને તે કુટુંબમાં સભ્યોની સંખ્યાને X વડે દર્શાવીએ. સ્પષ્ટ છે કે X એ નીચે પ્રમાશે વ્યાખ્યાયિત યાદચ્છિક ચલ છે : $X(f_1) = 3, X(f_2) = 4, X(f_3) = 3, X(f_4) = 2, X(f_5) = 5, X(f_6) = 4, X(f_7) = 3, X(f_8) = 6,$ $X(f_9) = 4, X(f_{10}) = 5$ આમ, X એ પસંદ થયેલ કુટુંબને આધારે 2, 3, 4, 5 અથવા 6 પૈકી કોઈ પણ કિંમત લઈ શકે છે. હવે, જ્યારે કુટુંબ f_4 પસંદ થાય ત્યારે X કિંમત 2 લેશે. જ્યારે કુટુંબો f_1, f_3, f_7 પૈકી કોઈ પશ એક કુટુંબ પસંદ થાય ત્યારે X કિંમત 3 લે છે. આ જ પ્રમાશે, જ્યારે કુટુંબો f_2, f_6 અથવા f_9 પૈકી કોઈ કુટુંબ પસંદ થાય ત્યારે ${\rm X}=4$ જ્યારે કુટુંબો f_5 અથવા f_{10} પૈકી કોઈ કુટુંબ પસંદ થાય ત્યારે $\mathbf{X}=5$ અને જ્યારે કુટુંબ f_8 પસંદ થાય ત્યારે $\mathbf{X} = 6$ આપણે માની લીધું હતું કે પ્રત્યેક કુટુંબ પસંદ થાય તે ઘટના સમસંભાવી છે, માટે કુટુંબ f_4 પસંદ થયું હોય તેની

આપણ માની લીધુ હતુ ક પ્રત્યક કુટુબ પસદ થાય ત ઘટના સમસભાવી છ, માટ કુટુબ f_4 પસદ થયુ હાય તની સંભાવના $\frac{1}{10}$ છે. આમ, ચલ X કિંમત 2 લઈ શકે તેની સંભાવના $\frac{1}{10}$ છે. આપણે લખીએ $P(X = 2) = \frac{1}{10}$. વળી, કુટુંબો f_1, f_3 અથવા f_7 માંથી કોઈ એક પસંદ થાય તેની સંભાવના $P(\{f_1, f_3, f_7\}) = \frac{3}{10}$.

સંભાવના

475

આપણે લખીએ $P(X = 3) = \frac{3}{10}$. આ જ પ્રમાણે, આપણને મળે છે.

$$P(X = 4) = P(\{f_2, f_6, f_9\}) = \frac{3}{10}$$
$$P(X = 5) = P(\{f_1, f_1\}) = \frac{2}{10}$$

$$P(X = 5) = P(\{f_5, f_{10}\}) = \frac{1}{10}$$

અને $P(X = 6) = P({f_8}) = \frac{1}{10}$

યાદચ્છિક ચલનાં મૂલ્યોને તેમની અનુરૂપ સંભાવનાઓ સાથે રજૂ કરતા આ વર્ષાનને યાદચ્છિક ચલ X નું સંભાવના વિતરણ કહે છે.

વ્યાપક રૂપે, યાદચ્છિક ચલ X ના સંભાવના વિતરણને નીચે પ્રમાણે વ્યાખ્યાયિત કરાય છે : વ્યાખ્યા 5 : *યાદચ્છિક ચલ* X નું સંભાવના વિતરણ એ સંખ્યાઓની પદ્ધતિ છે :

X: $x_1 \quad x_2 \quad ... \quad x_n$ P(X): $p_1 \quad p_2 \quad ... \quad p_n$ $\Im \mathcal{A}i, \ p_i > 0, \ \sum_{i=1}^n p_i = 1, \ i = 1, 2, ..., n$

વાસ્તવિક સંખ્યાઓ $x_1, x_2, ..., x_n$ એ યાદચ્છિક ચલ X નાં સંભવિત મૂલ્યો છે અને p_i (i = 1, 2, ..., n)એ યાદચ્છિક ચલ X ની સંભાવનાઓ છે. તે કિંમતો x_i લઈ રહી છે, એટલે કે $P(X = x_i) = p_i$.

સમજૂતી : યાદચ્છિક ચલ X ની કોઈ શક્ય કિંમત x_i હોય, તો વિધાન X = x_i નિદર્શાવકાશનાં કેટલાંક બિંદુઓ આગળ સત્ય છે. આથી X એ કિંમત x_i ધારણ કરે તેની સંભાવના હંમેશાં શૂન્યેતર છે. P(X = x_i) ≠ 0.

ઉપરાંત, યાદચ્છિક ચલ X ની તમામ શક્ય કિંમતો માટે, નિદર્શાવકાશના તમામ ઘટકોને આવરી લેવાય છે. આને કારણે, સંભાવના વિતરણમાં તમામ સંભાવનાઓનો સરવાળો હંમેશાં 1 થવો જોઈએ.

ઉંદાહરણ 24 : સરખી રીતે ચીપેલાં 52 પત્તાંની થોકડીમાંથી બે પત્તાં પુરવણી સહિત ક્રમશઃ પસંદ કરવામાં આવે છે. એક્કાઓની સંખ્યાઓનું સંભાવના વિતરણ શોધો.

ઉકેલ : એક્કાઓની સંખ્યા યાદચ્છિક ચલ છે. તેને X વડે દર્શાવીએ. સ્પષ્ટ છે કે X એ 0, 1 અથવા 2 કિંમતો લઈ શકે છે.

હવે, પત્તાં પસંદ કરવાનો પ્રયોગ પુરવણી સહિત થયો છે. આથી બે વાર પસંદ કરવાની પ્રક્રિયા નિરપેક્ષ ઘટનાનું નિર્માણ કરે છે.

આથી,
$$P(X = 0) = P$$
 (એક્કો નહિ અને એક્કો નહિ) = $P($ એક્કો નહિ) × $P($ એક્કો નહિ)

$$= \frac{48}{52} \times \frac{48}{52} = \frac{144}{169}$$
 $P(X = 1) = P($ એક્કો અને એક્કો નહિ અથવા એક્કો નહિ અને એક્કો)

$$= P($$
એક્કો અને એક્કો નહિ) + $P($ એક્કો નહિ અને એક્કો)

$$= P($$
એક્કો) · $P($ એક્કો નહિ) + $P($ એક્કો નહિ) · $P($ એક્કો)

$$= \frac{4}{52} \times \frac{48}{52} + \frac{48}{52} \times \frac{4}{52} = \frac{24}{169}$$
અને $P(X = 2) = P($ એક્કો અને એક્કો) = $\frac{4}{52} \times \frac{4}{52} = \frac{1}{169}$
આમ, માંગેલ સંભાવના વિતરણ છે : $X = 0$ 1 2

P(X)

Downloaded from https:// www.studiestoday.com

169

169

169

476

0.15.

ઉદાહરણ 25 : બે પાસાઓને ત્રણ વખત ફેંકતાં મળતી સમાન જોડની સંખ્યાનું સંભાવના વિતરણ શોધો. ઉકેલ : ધારો કે X સમાન જોડની સંખ્યા દર્શાવે છે. શક્ય સમાન જોડ (1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6) છે. સ્પષ્ટ છે કે X, કિંમતો 0, 1, 2 અથવા 3 લઈ શકે છે. સમાન જોડ મેળવવાની સંભાવના = $\frac{6}{36} = \frac{1}{6}$ સમાન જોડ ન મળવાની સંભાવના = $1 - \frac{1}{6} = \frac{5}{6}$ હવે, P(X = 0) = P(એક પણ વખત સમાન જોડ નહિ) = $\frac{5}{6} \times \frac{5}{6} \times \frac{5}{6} = \frac{125}{216}$ P(X = 1) = P(એક સમાન જોડ અને બે સમાન જોડ નહિ) = $\frac{1}{6} \times \frac{5}{6} \times \frac{5}{6} + \frac{5}{6} \times \frac{1}{6} \times \frac{5}{6} + \frac{5}{6} \times \frac{1}{6}$ = $3\left(\frac{1}{6} \times \frac{5^2}{6^2}\right) = \frac{75}{216}$ P(X = 2) = P(બે સમાન જોડ અને એકસમાન જોડ નહિ) = $\frac{1}{6} \times \frac{1}{6} \times \frac{5}{6} + \frac{1}{6} \times \frac{5}{6} \times \frac{1}{6} + \frac{5}{6} \times \frac{1}{6} \times \frac{1}{6}$ = $3\left(\frac{1}{6^2} \times \frac{5}{6}\right) = \frac{15}{216}$ અને P(X = 3) = P(ત્રણ સમાન જોડ) = $\frac{1}{6} \times \frac{1}{6} \times \frac{1}{6} = \frac{1}{216}$ આમ, માંગેલ સંભાવના વિતરણ છે : X 0 1 2 3

Х	0	1	2	3
P(X)	<u>125</u> 216	$\frac{75}{216}$	$\frac{15}{216}$	$\frac{1}{216}$

ચકાસણી : સંભાવનાનો સરવાળો

 $\sum_{i=1}^{n} p_i = \frac{125}{216} + \frac{75}{216} + \frac{15}{216} + \frac{1}{216} = \frac{125 + 75 + 15 + 1}{216} = \frac{216}{216} = 1$

ઉદાહરણ 26 : ધારો કે X યાદચ્છિક રીતે પસંદ કરેલા શાળાના દિવસ દરમિયાન તમારા અભ્યાસના કલાકો દર્શાવે છે. X એ મૂલ્ય x લે તેની સંભાવના નીચેના સ્વરૂપમાં આપેલ છે. k એ કોઈક અજ્ઞાત અચળ છે.

$$P(X = x) = \begin{cases} 0.1, & x = 0 \\ kx, & x = 1 \text{ add } 2 \\ k(5 - x), & x = 3 \text{ add } 4 \\ 0, & \text{areal} \end{cases}$$

- (a) *k* નું મૂલ્ય શોધો.
- (b) તમે ઓછામાં ઓછા બે કલાક અભ્યાસ કરો છો તેની સંભાવના કેટલી ? બરાબર બે કલાક અભ્યાસ કરો છો તેની સંભાવના કેટલી ? વધુમાં વધુ બે કલાક અભ્યાસ કરો છો તેની સંભાવના કેટલી ?

ઉકેલ : X નું સંભાવના વિતરશ	X	0	1	2	3	4	છે.
	P(X)	0.1	k	2 <i>k</i>	2 <i>k</i>	k	
(a) આપણે જાણીએ છીએ કે $\sum_{i=1}^n$	$p_i = 1.$	માટે 0.1	+ k +	2k + 2k	k + k =	1 એટલે	<i>k</i> =

સંભાવના

13.6.2 યાદેચ્છિક ચલનો મધ્યક

ઘણા પ્રશ્નોમાં, એ ઇચ્છનીય હોય છે કે યાદેચ્છિક ચલનાં કેટલાંક વિશિષ્ટ લક્ષણની ગણતરી સંભાવના વિતરણ પરથી કરી શકાય અને એક જ સંખ્યા દ્વારા વર્ણવી શકાય. આવી કેટલીક સંખ્યાઓ છે – મધ્યક, મધ્યસ્થ અને બહુલક. આ વિભાગમાં, આપણે માત્ર મધ્યકની ચર્ચા કરીશું. મધ્યક એ સ્થાનનું માપ અથવા મધ્યવર્તી સ્થિતિમાનનું માપ છે. તેનો અર્થ એ છે કે મધ્યક યાદચ્છિક ચલની સરેરાશ અથવા મધ્ય મૂલ્યનું સ્થાન નક્કી કરે છે.

વ્યાખ્યા 6 : ધારો કે X એ યાર્ટચ્છિક ચલ છે. તેનાં શક્ય મૂલ્યો $x_1, x_2, x_3, ..., x_n$ અનુક્રમે સંભાવનાઓ $p_1, p_2, ..., p_n$ સાથે ઉદ્દભવે છે. X નો મધ્યક μ દ્વારા દર્શાવાય છે. તે સંખ્યા $\sum_{i=1}^n x_i p_i$ છે, એટલે કે X નો મધ્યક એ Xની શક્ય કિંમતોની ભારિત સરેરાશ છે. પ્રત્યેક કિંમત જે સંભાવના સાથે તે ઉદ્દભવી છે તે સંભાવનાથી ભારિત છે.

યાદેચ્છિક ચલ X ના મધ્યકને X ની ગાણિતિક અપેક્ષા પણ કહે છે. તેને
$$E(X)$$
 વડે દર્શાવાય છે.
આમ, $E(X) = \mu = \sum_{i=1}^{n} x_i p_i = x_1 p_1 + x_2 p_2 + ... + x_n p_n$

બીજા શબ્દોમાં, યાદચ્છિક ચલ X નો મધ્યક અથવા તેની ગાણિતિક અપેક્ષા એ X નાં તમામ શક્ય મૂલ્યના તેમને અનુરૂપ સંભાવનાઓ સાથેના ગુણાકારોનો સરવાળો છે.

<mark>ઉદાહરણ 27 :</mark> ધારો કે પાસાની જોડને ઉછાળવામાં આવે છે અને યાદચ્છિક ચલ X એ બંને પાસાઓ પર મળતી સંખ્યાઓનો સરવાળો છે. X નો મધ્યક અથવા ગાણિતિક અપેક્ષા શોધો.

63લ : પ્રયોગનો નિદર્શાવકાશ 36 મૂળભૂત ઘટનાઓ, ક્રમયુક્ત જોડ (x_i, y_i) ,

જ્યાં $x_i = 1, 2, 3, 4, 5, 6$ અને $y_i = 1, 2, 3, 4, 5, 6$ નું સ્વરૂપ ધરાવે છે.

યાદચ્છિક ચલ X એટલે કે બંને પાસાઓ પર મળતી સંખ્યાઓનો સરવાળો મૂલ્યો 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 અથવા 12 લે છે.

$$\begin{aligned} & \&\hat{\mathsf{q}}, \ \mathsf{P}(\mathsf{X}=2) = \mathsf{P}(\{1,\,1\}) = \frac{1}{36} \\ & \mathsf{P}(\mathsf{X}=3) = \mathsf{P}(\{(1,\,2),\,(2,\,1)\}) = \frac{2}{36} \\ & \mathsf{P}(\mathsf{X}=4) = \mathsf{P}(\{(1,\,3),\,(2,\,2),\,(3,\,1)\}) = \frac{3}{36} \end{aligned}$$

478

$$P(X = 5) = P(\{(1, 4), (2, 3), (3, 2), (4, 1)\}) = \frac{4}{36}$$

$$P(X = 6) = P(\{(1, 5), (2, 4), (3, 3), (4, 2), (5, 1)\}) = \frac{5}{36}$$

$$P(X = 7) = P(\{(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)\}) = \frac{6}{36}$$

$$P(X = 8) = P(\{(2, 6), (3, 5), (4, 4), (5, 3), (6, 2)\}) = \frac{5}{36}$$

$$P(X = 9) = P(\{(3, 6), (4, 5), (5, 4), (6, 3)\}) = \frac{4}{36}$$

$$P(X = 10) = P(\{(4, 6), (5, 5), (6, 4)\}) = \frac{3}{36}$$

$$P(X = 11) = P(\{(5, 6), (6, 5)\}) = \frac{2}{36}$$

$$P(X = 12) = P(\{(6, 6)\}) = \frac{1}{36}$$

X નું સંભાવના વિતરણ છે.

$X = x_i$	2	3	4	5	6	7	8	9	10	11	12
$P(X = x)$ અથવા p_i	$\frac{1}{36}$	$\frac{2}{36}$	$\frac{3}{36}$	$\frac{4}{36}$	$\frac{5}{36}$	$\frac{6}{36}$	$\frac{5}{36}$	$\frac{4}{36}$	$\frac{3}{36}$	$\frac{2}{36}$	$\frac{1}{36}$
$\text{outell, } \mu = \mathrm{E}(\mathrm{X}) = \sum_{i=1}^{n} x_i p_i = 2 \times \frac{1}{36} + 3 \times \frac{2}{36} + 4 \times \frac{3}{36} + 5 \times \frac{4}{36} + 6 \times \frac{5}{36} + 7 \times \frac{6}{36}$											
$+ 8 \times \frac{5}{36} + 9 \times \frac{4}{36} + 10 \times \frac{3}{36} + 11 \times \frac{2}{36} + 12 \times \frac{1}{36}$											
$= \frac{2+6+12+20+30+42+40+36+30+22+12}{36} = 7$											

આમ, બંને સમતોલ પાસાઓને ઉછાળતાં તેમના પર મળતી સંખ્યાઓના સરવાળાનો મધ્યક 7 છે. 13.6.3 યાદચ્છિક ચલનું વિચરણ

યાદચ્છિક ચલનો મધ્યક આપણને યાદચ્છિક ચલની કિંમતોમાં પરિવર્તનશીલતા વિશે કોઈ માહિતી આપતો નથી. વાસ્તવમાં, જો *વિચરણ (Variance)* નાનું હોય, તો યાદચ્છિક ચલની કિંમતો મધ્યકની નજીક હોય છે. વળી, જુદી-જુદી સંભાવના વિતરણોવાળા યાદચ્છિક ચલોના મધ્યક સમાન હોઈ શકે છે. ઉદાહરણ તરીકે, નીચે આપેલાં ચલ X અને Y નાં વિતરણો પ્રમાણે,

		Σ	K	1	Į	2	2		3	Z	ļ	
		P(.	X)	<u>1</u> 8	3	28	<u>2</u> 3	28		<u>2</u> 8	23	
	•	Y	_	-1	()	4	4	-	5	(5
	P(Y)		<u>1</u> 8		<u>2</u> 8		<u>3</u> 8		<u>L</u> 3		<u>1</u> 3
Ĩ		1		~			2		2	22		

 $\underbrace{\text{ever b}}_{\text{s}} \hat{\textbf{b}}, \ \textbf{E}(\textbf{X}) = 1 \times \frac{1}{8} + 2 \times \frac{2}{8} + 3 \times \frac{3}{8} + 4 \times \frac{2}{8} = \frac{22}{8} = 2.75$

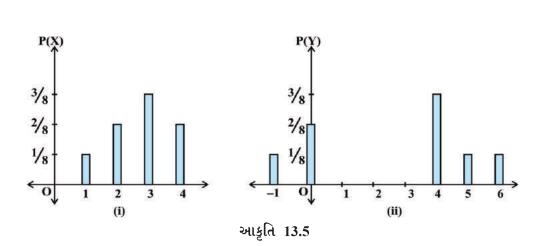
 $\mathfrak{Wr} E(Y) = -1 \times \frac{1}{8} + 0 \times \frac{2}{8} + 4 \times \frac{3}{8} + 5 \times \frac{1}{8} + 6 \times \frac{1}{8} = \frac{22}{8} = 2.75$

ચલ X અને Y જુદા-જુદા છે, તેમ છતાં તેમનાં મધ્યકો સમાન છે. તે આ વિતરણોની આકૃતિ દ્વારા ચિત્રણની પ્રસ્તુતિથી સહેલાઈથી જોઈ શકાય તેમ છે. (આકૃતિ 13.5)

Downloaded from https:// www.studiestoday.com

ગણિત

સંભાવના



X અને Y વચ્ચેનો ભેદ ઓળખવા, યાદચ્છિક ચલોની કિંમતો કઈ સીમા સુધી ફેલાયેલી છે, તેનું માપ જાણવાની આપણને જરૂર છે. આંકડાશાસ્ત્રમાં, આપણે અભ્યાસ કર્યો છે કે, વિચરણ એ માહિતીના પ્રસાર અથવા વિખેરાવનું માપ છે. એ જ પ્રમાણે યાદચ્છિક ચલની કિંમતોમાં પરિવર્તનશીલતા અથવા પ્રસાર વિચરણ દ્વારા માપી શકાય છે.

વ્યાખ્યા 7 : ધારો કે X એ યાદચ્છિક ચલ છે તેની શક્ય કિંમતો $x_1, x_2, ..., x_n$ ની સંભાવનાઓ અનુક્રમે $p(x_1), p(x_2), ..., p(x_n)$ છે.

X नो मध्य $\mu = E(X)$ लो. X ना वियर छाने Var(X) अथवा σ_x^2 दारा हर्शावाय છे अने ते

 $\sigma_x^2 = \operatorname{Var}(\mathbf{X}) = \sum_{i=1}^n (x_i - \mu)^2 p(x_i) \quad \text{weat attended} \quad \sigma^2 = \operatorname{E}((\mathbf{X} - \mu)^2) \quad \text{attended} \quad \text{weather and } \quad \vartheta.$

અનૃણ સંખ્યા $\sigma_x = \sqrt{\operatorname{Var}(X)} = \sqrt{\sum_{i=1}^n (x_i - \mu)^2 p(x_i)}$ ને યાદચ્છિક ચલ X નું પ્રમાણિત વિચલન (Standard Deviation) કહે છે.

યાદેચ્છિક ચલનું વિચરણ શોધવાનું અન્ય સૂત્ર : આપણે જાણીએ છીએ કે,

$$\begin{aligned} \text{Var} \left(\mathbf{X} \right) &= \sum_{i=1}^{n} \left(x_{i} - \mu \right)^{2} p(x_{i}) \\ &= \sum_{i=1}^{n} \left(x_{i}^{2} + \mu^{2} - 2\mu x_{i} \right) p(x_{i}) \\ &= \sum_{i=1}^{n} x_{i}^{2} p(x_{i}) + \sum_{i=1}^{n} \mu^{2} p(x_{i}) - \sum_{i=1}^{n} 2\mu x_{i} p(x_{i}) \\ &= \sum_{i=1}^{n} x_{i}^{2} p(x_{i}) + \mu^{2} \sum_{i=1}^{n} p(x_{i}) - 2\mu \sum_{i=1}^{n} x_{i} p(x_{i}) \\ &= \sum_{i=1}^{n} x_{i}^{2} p(x_{i}) + \mu^{2} - 2\mu^{2} \qquad (\text{seven } \mathbf{\hat{s}}, \sum_{i=1}^{n} p(x_{i}) = 1 \text{ with } \mu = \sum_{i=1}^{n} x_{i} p(x_{i})) \\ &= \sum_{i=1}^{n} x_{i}^{2} p(x_{i}) - \mu^{2} \end{aligned}$$
where $\text{Var} \left(\mathbf{X} \right) = \sum_{i=1}^{n} x_{i}^{2} p(x_{i}) - \left(\sum_{i=1}^{n} x_{i} p(x_{i}) \right)^{2}$

480

ગણિત

ઉદાહરણ 28 : સમતોલ પાસાને ઉછાળતાં તેના પર મળતી સંખ્યાનું વિચરણ શોધો.

ઉકેલ : પ્રયોગનો નિદર્શાવકાશ $S = \{1, 2, 3, 4, 5, 6\}$ છે.

ધારો કે X એ પાસાને ઉછાળવાથી મળતી સંખ્યા દર્શાવે છે. તેથી X એ 1, 2, 3, 4, 5 અથવા 6 કિંમતો લઈ શકતો યાદચ્છિક ચલ છે.

avil,
$$P(1) = P(2) = P(3) = P(4) = P(5) = P(6) = \frac{1}{6}$$

આને, કારશે X નું સંભાવના વિતરશ	X	1	2	3	4	5	6	છે.
	P(X)	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	
$\exists \hat{q}, E(X) = \sum_{i=1}^{n} x_i p(x_i) = 1 \times \frac{1}{6} + 2 \times \frac{1}{6} + 3 \times \frac{1}{6} + 4 \times \frac{1}{6} + 5 \times \frac{1}{6} + 6 \times \frac{1}{6} = \frac{21}{6}$								
and, $E(X^2) = 1^2 \times \frac{1}{6} + 2^2 \times \frac{1}{6} + 3^2 \times \frac{1}{6} + 4^2 \times \frac{1}{6} + 5^2 \times \frac{1}{6} + 6^2 \times \frac{1}{6} = \frac{91}{6}$								
		•						

આમ, Var (X) = E(X²) - (E(X))² = $\frac{91}{6} - \left(\frac{21}{6}\right)^2 = \frac{91}{6} - \frac{441}{36} = \frac{35}{12}$

ઉદાહરણ 29 : સરખી રીતે ચીપેલાં 52 પત્તાંની થોકડીમાંથી એકસાથે બે પત્તાં (અથવા એક પછી એક એમ પુરવણીરહિત) પસંદ કરવામાં આવે છે. રાજાઓની સંખ્યાનો મધ્યક, વિચરણ અને પ્રમાણિત વિચલન શોધો.

ઉકેલ : ધારો કે પસંદ કરવામાં આવેલ બે પત્તાંમાં, X એ રાજાઓની સંખ્યા દર્શાવે છે. X એ યાદચ્છિક ચલ છે અને તે કિંમતો 0, 1 અથવા 2 ધારણ કરે છે. હવે,

$$\begin{split} \mathsf{P}(\mathsf{X}=0) &= \mathsf{P}(\mathsf{a}\mathfrak{M} \ \mathsf{rl}\mathfrak{K}) = \frac{4^8 C_2}{5^2 C_2} = \frac{\frac{48!}{2!(48-2)!}}{\frac{52!}{2!(52-2)!}} = \frac{48 \times 47}{52 \times 51} = \frac{188}{221} \\ \mathsf{P}(\mathsf{X}=1) &= \mathsf{P}(\mathfrak{A}\mathfrak{S} \ \mathfrak{a}\mathfrak{M} \ \mathfrak{A}\mathfrak{T}) \ \mathfrak{A}\mathfrak{S} \ \mathfrak{a}\mathfrak{M} \ \mathfrak{rl}\mathfrak{K}) = \frac{4 C_1 \ 4^8 C_1}{5^2 C_2} = \frac{4 \times 48 \times 2}{52 \times 51} = \frac{32}{221} \\ \mathfrak{A}\mathfrak{R}\mathfrak{T} \ \mathsf{P}(\mathsf{X}=2) &= \mathsf{P}(\mathfrak{A} \ \mathfrak{a}\mathfrak{M}) = \frac{4 C_2}{5^2 C_2} = \frac{4 \times 3}{52 \times 51} = \frac{1}{221} \\ \mathfrak{A}\mathfrak{M}\mathfrak{R} \ \mathsf{R}(\mathsf{X}=2) = \mathsf{P}(\mathfrak{A} \ \mathfrak{a}\mathfrak{M}) = \frac{4 C_2}{5^2 C_2} = \frac{4 \times 3}{52 \times 51} = \frac{1}{221} \\ \mathfrak{A}\mathfrak{M}\mathfrak{R}, \ \mathsf{X} \ \mathfrak{rj} \ \mathfrak{A}\mathfrak{M}\mathfrak{I}\mathfrak{R} \ \mathfrak{M}\mathfrak{R} \ \mathfrak{M} \ \mathfrak{R}\mathfrak{M} \ \mathfrak{R} \ \mathfrak{M} \ \mathfrak{R} \ \mathfrak{R} \ \mathfrak{K} \ \mathfrak{K} \ \mathfrak{R} \ \mathfrak{K} \ \mathfrak{K}$$

સંભાવના

સ્વાધ્યાય 13.4

 નીચેના પૈકી કયાં વિતરણ યાદચ્છિક ચલનાં સંભાવના વિતરણ નથી તે લખો. તમારા જવાબનું સમર્થન કરો :

(i)	Х	0	1	2
	P(X)	0.4	0.4	0.2
(iii)	Y	-1	0	1
	P(Y)	0.6	0.1	0.2

(ii)	Х	0	1	2	3	4
	P(X)	0.1	0.5	0.2	-0.1	0.3
(iv)	Ζ	3	2	1	0	-1
	P(Z)	0.3	0.2	0.4	0.1	0.05

- એક પાત્રમાં 5 લાલ રંગના અને 2 કાળા રંગના દડા છે. બે દડા યાદચ્છિક રીતે પસંદ કરવામાં આવે છે. ધારો કે X એ કાળા રંગના દડાઓની સંખ્યા દર્શાવે છે. X ની શક્ય કિંમતો કઈ-કઈ છે ? શું X યાદચ્છિક ચલ છે ?
- ધારો કે જ્યારે સિક્કાને 6 વખત ઉછાળવામાં આવે છે ત્યારે X એ છાપની સંખ્યા અને કાંટાની સંખ્યાનો તફાવત દર્શાવે છે. X ની શક્ય કિંમતો શું છે ?
- 4. (i) સિક્કાને બે વખત ઉછાળતાં મળતી છાપની સંખ્યા
 - (ii) ત્રણ સિક્કાઓને એકસાથે ઉછાળતાં મળતી કાંટાની સંખ્યા
 - (iii) સિક્કાને ચાર વખત ઉછાળતાં મળતી છાપની સંખ્યા
 - હોય, તો આ ત્રણેય કિસ્સાઓમાં સંભાવના વિતરણ શોધો.
- જો સફળતા (i) 4 કરતાં મોટી સંખ્યા (ii) ઓછામાં ઓછા એક પાસા પર પૂર્ણાંક 6 મળે, એ પ્રમાણે વ્યાખ્યાયિત થતી હોય તો પાસાને બે વખત ઉછાળવામાં સફળતા મળવાની સંખ્યાઓનું સંભાવના વિતરણ શોધો.
- 30 વીજળીના ગોળાઓમાંથી 6 ગોળા ખામીયુક્ત છે. પુરવા સહિત 4 ગોળાઓનો નિદર્શ યાદચ્છિક રીતે લીધો છે. ખામીયુક્ત ગોળાઓની સંખ્યા માટેનું સંભાવના વિતરા શોધો.
- એક સિક્કો અસમતોલ છે. તેને ઉછાળતાં છાપ મળવાની સંભાવના તે કાંટો મળે તેની સંભાવના કરતાં ત્રણ ગણી છે. જો સિક્કાને બે વાર ઉછાળવામાં આવે, તો કાંટાની સંખ્યા માટેનું સંભાવના વિતરણ શોધો.
- 8. એક યાદચ્છિક ચલ X નું સંભાવના વિતરણ નીચે પ્રમાણે છે :

X	0	1	2	3	4	5	6	7
P(X)	0	k	2 <i>k</i>	2 <i>k</i>	3 <i>k</i>	<i>k</i> ²	$2k^{2}$	$7k^2 + k$

મૂલ્ય નક્કી કરો : (i) k (ii) P(X < 3) (iii) P(X > 6) (iv) P(0 < X < 3)

9. યાદચ્છિક ચલ X નું સંભાવના વિતરણ P(X) નીચે આપેલ સ્વરૂપનું છે. k કોઈક સંખ્યા છે :

$$P(X) = \begin{cases} k, & x = 0 \\ 2k, & x = 1 \\ 3k, & x = 2 \\ 0, & \text{or-uent} \end{cases}$$

(a) $k \neq j$ $k \neq j$ $k \neq j$

(b) P(X < 2), P(X ≤ 2), P(X ≥ 2) શોધો.

482

ગણિત

- 10. એક સમતોલ સિક્કાને ત્રણ વખત ઉછાળતાં મળતી છાપની સંખ્યાનો મધ્યક શોધો.
- બે પાસાને એકસાથે ફેંકવામાં આવે છે. જો X 6 મળવાની કુલ સંખ્યા દર્શાવે તો X ની ગાણિતિક અપેક્ષા શોધો.
- પ્રથમ છ ધન પૂર્ણાંકોમાંથી યાદચ્છિક રીતે બે સંખ્યાઓ પસંદ (પુરવણીરહિત) કરી છે. ધારો કે X એ બે મેળવેલી સંખ્યાઓ પૈકી મોટી સંખ્યા દર્શાવે છે. E(X) શોધો.
- ધારો કે X એ બે સમતોલ પાસાઓને ઉછાળતાં મળતી સંખ્યાઓનો સરવાળો દર્શાવે છે. તો X નું વિચરણ અને પ્રમાણિત વિચલન શોધો.
- 14. એક વર્ગમાં 15 વિદ્યાર્થીઓ છે. તેમની વય 14, 17, 15, 14, 21, 17, 19, 20, 16, 18, 20, 17, 16, 19 અને 20 વર્ષ છે. એક વિદ્યાર્થી પસંદ કરવામાં આવ્યો છે. પ્રત્યેક વિદ્યાર્થી પસંદ થવાની સમાન સંભાવના હતી અને પસંદ થયેલા વિદ્યાર્થીની વય X નોંધી છે. યાદચ્છિક ચલ X નું સંભાવના વિતરણ શું છે ? X નો મધ્યક, વિચરણ અને પ્રમાણિત વિચલન શોધો.
- 15. એક બેઠકમાં, એક નિશ્ચિત દરખાસ્તની તરફેણમાં 70 % સભ્યો અને તેની વિરોધમાં 30 % સભ્યો છે. એક સભ્ય યાદચ્છિક રીતે પસંદ કર્યો અને જો તે વિરોધ કરે, તો આપણે X = 0 અને જો તે તરફેણમાં હોય તો X = 1 લઈએ. E(X) અને Var (X) શોધો.
- પ્રશ્નો 16 તથા 17 માં વિધાન સાચું બને તે રીતે આપેલ વિકલ્પોમાંથી યોગ્ય વિકલ્પ પસંદ કરો :
- 16. એક પાસાના ત્રણ પૃષ્ઠ પર 1, બે પૃષ્ઠ પર 2 અને એક પૃષ્ઠ પર 5 અંકિત હોય, તો તેને ઉછાળતાં મળતી સંખ્યાઓનો મધ્યક છે.
 - (A) 1 (B) 2 (C) 5 (D) $\frac{8}{3}$
- 17. ધારો કે પત્તાંની થોકડીમાંથી બે પત્તાં યાદચ્છિક રીતે પસંદ કરવામાં આવે છે. ધારો કે X એ મળેલ એક્કાઓની સંખ્યા દર્શાવે છે, તો E(X) નું મૂલ્ય છે.
 - (A) $\frac{37}{221}$ (B) $\frac{5}{13}$ (C) $\frac{1}{13}$ (D) $\frac{2}{13}$

13.7 બર્નુલી પ્રયત્નો અને દ્વિપદી વિતરણ

13.7.1 બર્નુલી પ્રયત્નો

ઘણા પ્રયોગો મૂળભૂત રીતે દ્વિભાજનકારક હોય છે. દાખલા તરીકે, ઉછાળેલો સિક્કો 'છાપ' અથવા 'કાંટો' બતાવે છે. ઉત્પાદિત વસ્તુ 'ક્ષતિયુક્ત' અથવા 'ક્ષતિરહિત', પ્રશ્નનો પ્રતિભાવ 'હા' અથવા 'ના' હોઈ શકે. ઇંડાએ 'બચ્ચું આપ્યું' અથવા 'બચ્ચું ન આપ્યું', નિર્ણય 'હા છે' અથવા 'ના છે' વગેરે. આવા કિસ્સાઓમાં, તે રોજિંદુ છે કે એક પરિણામને 'સફળ' કહેવું અને બીજાને 'સફળ-નહિ' અથવા 'અસફળ'. ઉદાહરણ તરીકે, સિક્કાને ઉછાળવામાં, જો છાપનું ઉદ્ભવવું એ ઘટનાને સફળતા તરીકે વિચારીએ, તો કાંટાનું ઉદ્ભવવું એ નિષ્ફળતા છે.

દરેક વખતે જ્યારે આપણે સિક્કો ઉછાળીએ અથવા પાસાને ઉછાળીએ કે અન્ય કોઈ પ્રયોગ કરીએ, ત્યારે આપણે તેને *પ્રયત્ન* કહીએ છીએ. જો સિક્કાને 4 વખત ઉછાળીએ, તો પ્રયત્નોની સંખ્યા 4 છે. દરેક પ્રયત્નને બે પરિણામો છે; 'સફળતા' અથવા 'નિષ્ફળતા'.

દરેક પ્રયત્નનું પરિણામ બીજા કોઈ પણ પ્રયત્નના પરિણામથી નિરપેક્ષ છે. આવા પ્રયત્નોમાં સફળતા અથવા નિષ્ફળતાની સંભાવના અચળ રહે છે. આવા જે સ્વતંત્ર પ્રયત્નોનાં બે જ પરિણામ 'સફળતા' અને 'નિષ્ફળતા' હોય તેમને બર્નુલી પ્રયત્નો કહે છે.

વ્યાખ્યા 8 : નીચેની શરતોનું સમાધાન કરતા યાદૈચ્છિક પ્રયોગના પ્રયત્નોને બર્નુલી પ્રયત્નો કહે છે.

(i) પ્રયત્નોની સંખ્યા સાન્ત હોવી જોઈએ.

(ii) प्रयत्नो निरपेक्ष डोवा कोઈએ.

સંભાવના

(iii) પ્રત્યેક પ્રયત્નને ચોક્કસપણે બે અને બે જ પરિણામો છે : સફળતા અથવા નિષ્ફળતા (iv) સફળતાની સંભાવના પ્રત્યેક પ્રયત્નમાં સમાન રહે છે.

ઉદાહરણ તરીકે, પાસાને 50 વખત ફેંકવો એ 50 બર્નુલી પ્રયત્નોનો કિસ્સો છે. તેમાં પ્રત્યેક પ્રયત્નનું પરિણામ સફળતા (યુગ્મ સંખ્યા કહો) છે અથવા નિષ્ફળતા (અયુગ્મ સંખ્યા) હોય છે અને સફળતાની સંભાવના (p) એ પાસાને 50 વખત ફેંકવાના તમામ પ્રયત્નો માટે સમાન છે. સ્પષ્ટરૂપે, વારાફરતી પાસાને ફેંકવાના પ્રયત્નો નિરપેક્ષ પ્રયોગો છે. જો પાસો સમતોલ હોય અને તેનાં છ પૃષ્ઠો પર સંખ્યાઓ 1 થી 6 અંકિત હોય, તો $p = \frac{1}{2}$ અને $q = 1 - p = \frac{1}{2} =$ નિષ્ફળતાની સંભાવના.

<mark>ઉદાહરણ 30 :</mark> 7 લાલ રંગના અને 9 કાળા રંગના દડા ધરાવતા પાત્રમાંથી છ દડા વારાફરતી ક્રમિક રીતે પસંદ કરવામાં આવે છે. દરેક પ્રયત્ન પછી પસંદ કરેલ દડાને પાત્રમાં (i) પરત મૂક્યો છે (ii) પરત મૂક્યો નથી, ત્યારે દડાઓને પસંદ કરવાના પ્રયત્નો બર્નુલી પ્રયત્નો છે કે નહિ તે કહો.

ઉકેલ : (i) પ્રયત્નોની સંખ્યા સાન્ત છે. જ્યારે પુરવશી સહિત દડો પસંદ કરવાનું થાય, ત્યારે સફળતાની સંભાવના (લાલ રંગનો દડો કહો) $p = rac{7}{16}$ છે. આથી પુરવશી સહિત દડા પસંદ કરવાના પ્રયત્ન બર્નુલી પ્રયત્ન છે.

(ii) જ્યારે દડા પસંદ કરવાનું પુરવશીરહિત થાય છે, ત્યારે સફળતાની સંભાવના (એટલે કે લાલ રંગનો દડો) પ્રથમ પ્રયત્નમાં $\frac{7}{16}$ છે. જો પ્રથમ પસંદ કરવામાં આવેલ દડો લાલ રંગનો હોય તો બીજા પ્રયત્નમાં $\frac{6}{15}$ છે અને જો પ્રથમ પસંદ કરવામાં આવેલ દડો કાળા રંગનો હોય, તો તે $\frac{7}{15}$ છે અને આમ આગળ ગણી શકાય. સ્પષ્ટ છે કે સફળતાની સંભાવના બધા જ પ્રયત્નો માટે સમાન નથી. આને કારણે આ પ્રયત્નો, બર્નુલી પ્રયત્નો નથી. 13.7.2 **દિપદી વિતરણ**

સિક્કાને ઉછાળવાના પ્રયોગનો વિચાર કરો. તેમાં પ્રત્યેક પ્રયત્નનું પરિશામ સફળતા (કહો છાપ) અથવા નિષ્ફળતા (કાંટો) છે. પ્રત્યેક પ્રયત્નમાં S અને F અનુક્રમે સફળતા અને નિષ્ફળતા દર્શાવે છે. ધારો કે આપશો રસ જે ઘટનામાં આપશને છ પ્રયત્નોમાં એક સફળતા મળે એ ઘટના શોધવામાં છે.

સ્પષ્ટ છે કે છ જુદા-જુદા વિકલ્પો નીચે યાદી રૂપે આપ્યા છે :

SFFFFF, FSFFFF, FFFSFF, FFFFSF, FFFFFSF, FFFFFSF.

આ જ પ્રમાણે, બે સફળતાઓ અને ચાર નિષ્ફળતાઓ માટે $\frac{6!}{4! \times 2!}$ ક્રમચયો હોઈ શકે છે. આ બધા પ્રકારોની યાદી કરવી ખૂબ લાંબી પ્રક્રિયા થઈ જશે. આથી, સફળતાઓ 0, 1, 2, 3,..., *n* સંખ્યાની સંભાવનાઓની ગણતરી લાંબી અને ઘણો સમય માંગી લે તેવી હોઈ શકે છે. લાંબી ગણતરી અને તમામ શક્ય કિસ્સાઓની યાદી તૈયાર કરવાથી દૂર રહેવા, *n* બર્નુલી પ્રયત્નોમાં સફળતાઓની સંખ્યાની સંભાવનાઓ માટે એક સૂત્ર મેળવવામાં આવ્યું છે. ચાલો આપણે જે ત્રણ બર્નુલી પ્રયત્નો દ્વારા નિર્મિત થયો હોય એવો એક પ્રયોગ આ હેતુ માટે લઈએ. તેમાં પ્રત્યેક પ્રયત્ન માટે સફળતા અને નિષ્ફળતાની સંભાવના અનુક્રમે *p* અને q = 1 - p છે. આ પ્રયોગનો નિદર્શાવકાશ ગણ

 $S_1 = \{SSS, SSF, SFS, FSS, SFF, FSF, FFS, FFF\}$ $\dot{\Theta}$.

સફળતાઓની સંખ્યા યાદચ્છિક ચલ X છે અને તે કિંમતો 0, 1, 2 અથવા 3 લે છે. સફળતાઓની સંખ્યાનું સંભાવના વિતરણ નીચે પ્રમાણે છે :

P(X = 0) = P(સફળતા નહિ) = P({FFF}) = P(F) P(F) P(F) = $q \cdot q \cdot q = q^3$ કારણ કે પ્રયત્નો નિરપેક્ષ છે.

$$P(X = 1) = P(\Im s i)$$

= $P(\{SFF, FSF, FFS\})$
= $P(\{SFF\}) + P(\{FSF\}) + P(\{FFS\})$
= $P(S) P(F) P(F) + P(F) P(S) P(F) + P(F) P(F) P(S)$
= $pqq + qpq + qqp = 3pq^2$
 $P(X = 2) = P(\Im i)$
= $P(\{SSF, SFS, FSS\})$
= $P(\{SSF\}) + P(\{SFS\}) + P(\{FSS\})$
= $P(S) P(S) P(F) + P(S) P(F) P(S) + P(F) P(S) P(S)$
= $ppq + pqp + qpp = 3p^2q$
અને $P(X = 3) = P(\Im i)$ is a solution in the solution in the solution is a solution in the solution is a solution in the solution is a solution in the solution in the solution is a solution in the solution in the solution is a solution in the solution in the solution is a solution in the solution in the solution is a solution in the solution in the solution in the solution is a solution in the solution in the solution in the solution is a solution in the s

વળી, $(q + p)^3$ નું દ્વિપદી વિસ્તરણ છે,

 $q^3 + 3q^2p + 3qp^2 + p^3$

આપણે નોંધીએ કે સફળતાઓ 0, 1, 2 અથવા 3 ની સંભાવનાઓ $(q + p)^3$ ના વિસ્તરણનાં અનુક્રમે પ્રથમ, દ્વિતીય, તૃતીય અને ચતુર્થ પદ છે.

વળી, q + p = 1 હોવાથી, આ બધી સંભાવનાઓનો સરવાળો, અપેક્ષા પ્રમાણે 1 છે, તેવો નિષ્કર્ષ મળે છે. આમ, આપણે તારવી શકીએ કે *n* બર્નુલી પ્રયત્નોના પ્રયોગમાં 0, 1, 2,..., *n* સફળતાઓની સંભાવનાઓ $(q + p)^n$ ના વિસ્તરણમાં પ્રથમ, દ્વિતીય,..., (n + 1)મા પદ તરીકે મેળવી શકાય. આ દાવો સાબિત કરવા માટે, ચાલો આપણે *n* બર્નુલી પ્રયત્નોના પ્રયોગમાં *x* સફળતાઓની સંભાવના શોધીએ.

સ્પષ્ટ છે કે x સફળતાઓ (S) ના કિસ્સામાં, (n - x) નિષ્ફળતાઓ (F) મળશે.

હવે, x સફળતાઓ (S) અને (n - x) નિષ્ફળતાઓ (F), $\frac{n!}{x!(n-x)!}$ પ્રકારે મેળવી શકાય. આ પ્રકારો પૈકીના પ્રત્યેકમાં, x સફળતા અને (n - x) નિષ્ફળતાની સંભાવના

$$= P(x \text{ asynchial}) \cdot P((n - x) \text{ frequencies})$$

$$= \underbrace{P(S) \cdot P(S) \dots, P(S)}_{x-q \text{ ucc}} \underbrace{P(F) \cdot P(F) \dots, P(F)}_{(n - x) \text{ quad}} = p^x \cdot q^{n - x}$$

આમ, n બર્નુલી પ્રયત્નોમાં x સફળતાઓની સંભાવના $\frac{n!}{x!(n-x)!} p^x \cdot q^{n-x}$ આથવા ${}^{n}C_{x}p^{x} q^{n-x}$ છે. આમ, P(x સફળતાઓ) = ${}^{n}C_{x}p^{x} q^{n-x}$, x = 0, 1, 2, ..., n (q = 1 - p)

સંભાવના

સ્પષ્ટ છે કે, P(x સફળતાઓ), એટલે કે ${}^{n}C_{x}p^{x}q^{n-x}$ એ $(q+p)^{n}$ ના દ્વિપદી વિસ્તરણમાં (x+1) મું પદ છે.

આમ, *n*-બર્નુલી પ્રયત્નો ધરાવતા પ્રયોગમાં સફળતાઓની સંખ્યાનું સંભાવના વિતરણ $(q + p)^n$ ના દ્વિપદી વિસ્તરણ દ્વારા મેળવી શકાય અને તેથી, આ સફળતાઓની સંખ્યા Xનું વિતરણ નીચે પ્રમાણે લખી શકાય છે :

X	0	1	2		x		п
P(X)	${}^{n}\mathrm{C}_{0} q^{n}$	${}^{n}\mathrm{C}_{1}q^{n-1}p^{1}$	${}^{n}\mathrm{C}_{2} q^{n-2} p^{2}$		${}^{n}\mathrm{C}_{x} q^{n-x} p^{x}$		$^{n}\mathrm{C}_{n}p^{n}$
				_		· ·	

ઉપર્યુક્ત સંભાવના વિતરણ, એ પ્રચલો n અને p સાથેના દ્વિપદી વિતરણ તરીકે ઓળખાય છે, કારણ કે આપેલ કિંમતો n અને p પરથી આપણે સંપૂર્ણ સંભાવના વિતરણ શોધી શકીએ છીએ.

x સફળતાની સંભાવના P(X = x) ને પણ P(x) વડે દર્શાવાય છે અને તેથી

$$P(x) = {}^{n}C_{x} q^{n-x} p^{x}, x = 0, 1, 2, ..., n \qquad (q = 1 - p)$$

આ P(x) ने द्विपही वितरशनुं संભावना विधेय डखेवामां आवे છे.

જો પ્રત્યેક પ્રયત્નમાં સફળતાની સંભાવના p હોય, તો n-બર્નુલી પ્રયત્નો સાથેના દ્વિપદી વિતરણને B(n, p) દ્વારા દર્શાવાય છે.

ચાલો, આપશે હવે કેટલાંક ઉદાહરશો લઈએ.

ઉદાહરણ 31 : જો સમતોલ સિક્કાને 10 વાર ઉછાળવામાં આવે, તો નીચેની સંભાવના શોધો :

(i) બરાબર છ વખત છાપ મળે. (ii) ઓછામાં ઓછી છ વખત છાપ મળે. (iii) વધુમાં વધુ છ વખત છાપ મળે.

<mark>ઉકેલ</mark> : સિક્કાને ઉછાળવાની પુનરાવર્તિત પ્રક્રિયા બર્નુલી પ્રયત્નો છે. ધારો કે X એ પ્રયોગના 10 પ્રયત્નોમાં મળતી છાપની સંખ્યા દર્શાવે છે.

સ્પષ્ટ છે કે X એ n = 10 અને $p = \frac{1}{2}$ સાથેનું દ્વિપદી વિતરણ ધરાવે છે. આથી,

$$P(X = x) = {}^{n}C_{x}q^{n-x}p^{x}, x = 0, 1, 2, ..., n$$

અહીં,
$$n = 10, p = \frac{1}{2}, q = 1 - p = \frac{1}{2}$$

તેથી,
$$P(X = x) = {}^{10}C_x \left(\frac{1}{2}\right)^{10-x} \left(\frac{1}{2}\right)^x = {}^{10}C_x \left(\frac{1}{2}\right)^{10}$$

eq. (i)
$$P(X = 6) = {}^{10}C_6 \left(\frac{1}{2}\right)^{10} = \frac{10!}{6! \times 4!} \cdot \frac{1}{2^{10}} = \frac{105}{512}$$

(ii)
$$P(\text{Wilseries Wilseries 0} 6 \text{ and serve}) = P(X \ge 6)$$

$$= P(X = 6) + P(X = 7) + P(X = 8) + P(X = 9) + P(X = 10)$$

$$= {}^{10}C_6 \left(\frac{1}{2}\right)^{10} + {}^{10}C_7 \left(\frac{1}{2}\right)^{10} + {}^{10}C_8 \left(\frac{1}{2}\right)^{10} + {}^{10}C_9 \left(\frac{1}{2}\right)^{10} + {}^{10}C_{10} \left(\frac{1}{2}\right)^{10}$$

$$= \left[\left(\frac{10!}{6! \times 4!}\right) + \left(\frac{10!}{7! \times 3!}\right) + \left(\frac{10!}{8! \times 2!}\right) + \left(\frac{10!}{9! \times 1!}\right) + \left(\frac{10!}{10!}\right) \right] \frac{1}{2^{10}} = \frac{193}{512}$$
(iii) $P(\text{agenicage order one)} = P(X \le 6)$

$$= P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) + P(X = 4) + P(X = 5) + P(X = 6)$$

486

$$= \left(\frac{1}{2}\right)^{10} + {}^{10}C_1 \left(\frac{1}{2}\right)^{10} + {}^{10}C_2 \left(\frac{1}{2}\right)^{10} + {}^{10}C_3 \left(\frac{1}{2}\right)^{10} + {}^{10}C_4 \left(\frac{1}{2}\right)^{10} + {}^{10}C_5 \left(\frac{1}{2}\right)^{10} + {}^{10}C_6 \left(\frac{1}{2}\right)^{10}$$

$$= \frac{848}{1024} = \frac{53}{64}$$

ઉદાહરણ 32 : એક જથ્થામાં 10 % ઈંડાં ખામીયુક્ત છે અને આ જથ્થામાંથી ક્રમશઃ 10 ઈંડાં પુરવણી સહિત કાઢવામાં આવે છે. ઓછામાં ઓછું એક ઈંડું ખામીયુક્ત હોય તેની સંભાવના શોધો.

ઉકેલ : ધારો કે X એ પસંદ કરેલાં 10 ઈંડાંમાંથી ખામીયુક્ત ઈંડાંઓની સંખ્યા દર્શાવે છે. ઈંડાં કાઢવાની પ્રક્રિયા પુરવણી સહિત કરવામાં આવી હોવાથી, પ્રયત્નો બર્નુલી પ્રયત્નો છે. સ્પષ્ટ છે કે આ X નું n = 10 અને $p = \frac{10}{100} = \frac{1}{10}$ સાથેનું બર્નુલી વિતરણ છે.

આથી,
$$q = 1 - p = \frac{9}{10}$$
.
હવે, P(ઓછામાં ઓછું એક ખામીયુક્ત ઇંડું) = P(X ≥ 1) = 1 - P(X = 0)
= $1 - \frac{10}{10}C_0 \left(\frac{9}{10}\right)^{10} = 1 - \frac{9^{10}}{10^{10}}$

સ્વાધ્યાય 13.5

- એક પાસાને 6 વખત ફેંકવામાં આવે છે. જો 'અયુગ્મ સંખ્યા મળવી' એ સફળતા હોય, તો (i) 5 સફળતાઓ મળે ? (ii) ઓછામાં ઓછી 5 સફળતાઓ મળે. (iii) વધુમાં વધુ 5 સફળતાઓ મળે તેની સંભાવના કેટલી ?
- પાસાઓની જોડને 4 વાર ફેંકવામાં આવે છે. જો સમાન સંખ્યાનું જોડકું મળે તેને સફળતા ગણીએ, તો બે સફળતાઓ મળવાની સંભાવના શોધો.
- વસ્તુઓના મોટા જથ્થામાં 5 % ખામીયુક્ત વસ્તુઓ છે. 10 વસ્તુઓનો નિદર્શ એક કરતાં વધારે ખામીયુક્ત વસ્તુનો સમાવેશ કરશે નહિ, તેની સંભાવના કેટલી ?
- સરખી રીતે ચીપેલી 52 પત્તાંની થોકડીમાંથી ક્રમશઃ પાંચ પત્તાં પુરવણી સહિત ખેંચવામાં આવે છે.
 (i) બધાં જ પાંચ પત્તાં કાળીના હોય (ii) માત્ર 3 પત્તાં જ કાળીના હોય (iii) એક પણ પત્તું કાળીનું ન હોય તેની સંભાવના કેટલી ?
- એક ફેક્ટરી દ્વારા ઉત્પાદિત વીજળીના ગોળા 150 દિવસના વપરાશ પછી ઊડી જાય તેની સંભાવના 0.05 છે. વીજળીના 5 ગોળાઓ પૈકી (i) એક પણ નહિ (ii) એક કરતાં વધુ નહિ (iii) એક કરતાં વધારે (iv) ઓછામાં ઓછો એક વીજળીનો ગોળો, 150 દિવસના વપરાશ પછી ઊડી જાય તેની સંભાવના શોધો.
- એક થેલામાં 10 દડા છે. પ્રત્યેક પર 0 થી 9 માંથી એક સંખ્યા અંકિત છે. જો થેલામાંથી 4 દડા વારાફરતી પુરવણી સહિત કાઢવામાં આવે, તો એક પણ દડા પર સંખ્યા 0 અંકિત ન હોય તેની સંભાવના કેટલી ?
- એક પરીક્ષામાં, 20 પ્રશ્નો સત્ય-અસત્ય પ્રકારના પુછાયા છે. ધારો કે એક વિદ્યાર્થી પોતાના જવાબ નક્કી કરવા માટે એક સમતોલ સિક્કાને પ્રત્યેક પ્રશ્નના ઉત્તર માટે ઉછાળે છે. જો સિક્કા પર છાપ પડે, તો તે જવાબ 'સત્ય' આપે છે; જો સિક્કા પર કાંટો પડે, તો તે જવાબ 'અસત્ય' આપે છે. તે ઓછામાં ઓછા 12 પ્રશ્નોના જવાબ બરાબર આપે તેની સંભાવના શોધો.
- 8. ધારો કે X નું દ્વિપદી વિતરણ $B\left(6,\frac{1}{2}\right)$ છે. સાબિત કરો કે X = 3 એ સૌથી વધુ મળતું પરિણામ છે. (સૂચન : P(X = 3) એ બધા જ P(x_i), x_i = 0, 1, 2, 3, 4, 5, 6 માં મહત્તમ છે.)

Downloaded from https:// www.studiestoday.com

ગણિત

સંભાવના

 પાંચ પ્રશ્નો પૈકી પ્રત્યેક માટે ત્રણ શક્ય જવાબો ધરાવતી બહુવિકલ્પ પસંદગી પરીક્ષામાં ઉમેદવાર માત્ર અટકળ કરીને ચાર અથવા ચાર કરતાં વધારે સાચા જવાબો મેળવશે તેની સંભાવના કેટલી ?

- 10. એક વ્યક્તિ 50 લૉટરીમાં એક લૉટરી ટિકિટ ખરીદે છે. તેમાંથી પ્રત્યેકમાં તેની ઈનામ જીતવાની તક ¹/₁₀₀ છે. તે (a) ઓછામાં ઓછી એકવાર (b) ફક્ત એક જ વાર (c) ઓછામાં ઓછી બે વાર ઈનામ જીતશે તેની સંભાવના કેટલી ?
- 11. પાસાને 7 વાર ફેંકવામાં બરાબર બે વખત 5 મળે તેની સંભાવના શોધો.
- 12. એક પાસાને 6 વાર ફેંકવામાં વધુમાં વધુ બે વખત 6 મળવાની સંભાવના શોધો.
- 13. એ જાણીતું છે કે નિશ્ચિત ચીજવસ્તુઓના ઉત્પાદનમાં 10 % ખામીયુક્ત હોય છે. 12 પ્રકારની ચીજવસ્તુઓના યાદચ્છિક નિદર્શમાં 9 ખામીયુક્ત હોય તેની સંભાવના કેટલી ?
- પ્રશ્નો 14 તથા 15 માં વિધાન સાચું બને તે રીતે આપેલ વિકલ્પોમાંથી યોગ્ય વિકલ્પ પસંદ કરો ઃ
- 14. 100 વીજળીના ગોળા ધરાવતા ખોખામાં, 10 ખામીયુક્ત છે. 5 ગોળાના નિદર્શમાંથી, એક પણ ખામીયુક્ત ન હોય તેની સંભાવના છે.
 - (A) 10^{-1} (B) $\left(\frac{1}{2}\right)^5$ (C) $\left(\frac{9}{10}\right)^5$ (D) $\frac{9}{10}$
- 15. વિદ્યાર્થી તરવૈયો નથી તેની સંભાવના ¹/₅ છે, તો આપેલ પાંચ વિદ્યાર્થીઓમાંથી ચાર તરવૈયા હોય તેની સંભાવના છે.
 - (A) ${}^{5}C_{4} \left(\frac{4}{5}\right)^{4} \frac{1}{5}$ (B) $\left(\frac{4}{5}\right)^{4} \frac{1}{5}$ (C) ${}^{5}C_{1} \frac{1}{5} \left(\frac{4}{5}\right)^{4}$ (D) આમાંથી કોઈ પણ નહિ.

પ્રકીર્ણ ઉદાહરણો

<mark>ઉદાહરણ 33 :</mark> નીચેના કોષ્ટકમાં દર્શાવ્યા પ્રમાશે ચાર ખાનાંઓમાં રંગીન દડા વહેંચેલા છે :

ખાના	રંગ						
	કાળા	સફેદ	લાલ	ભૂરા			
Ι	3	4	5	6			
II	2	2	2	2			
III	1	2	3	1			
IV	4	3	1	5			

એક ખાનું યાદચ્છિક રીતે પસંદ કરવામાં આવે છે અને પછી એક દડો પસંદ કરેલા ખાનામાંથી યાદચ્છિક રીતે લેવામાં આવે છે. આ પસંદ કરેલા દડાનો રંગ કાળો છે. દડો ખાના નંબર III માંથી કાઢવામાં આવ્યો હોય તેની સંભાવના કેટલી ?

E₁ : ખાનું III પસંદ થયું હોય.

ઉકેલ : ધારો કે A, E₁, E₂, E₃ અને E₄ એ નીચે પ્રમાણે વ્યાખ્યાયિત ઘટનાઓ છે :

- \mathbf{A} : કાળા રંગનો દડો પસંદ થયો હોય. \mathbf{E}_1 : ખાનું I પસંદ થયું હોય.
- E_2 ઃ ખાનું II પસંદ થયું હોય.

 E_4 : ખાનું IV પસંદ થયું હોય.

ખાનાઓ યાદચ્છિક રીતે પસંદ કરાયાં હોવાથી, $P(E_1) = P(E_2) = P(E_3) = P(E_4) = \frac{1}{4}$

488

ગણિત

વળી, $P(A | E_1) = \frac{3}{18}$, $P(A | E_2) = \frac{2}{8}$, $P(A | E_3) = \frac{1}{7}$ અને $P(A | E_4) = \frac{4}{13}$ છે. P(પસંદ થયેલ દડો કાળા રંગનો છે તેમ આપેલ હોય, તો ખાનું III પસંદ થાય તે $) = P(E_3 | A)$. આથી, બૅય્ઝના પ્રમેય દ્વારા,

$$P(E_3 | A) = \frac{P(E_3) \cdot P(A | E_3)}{P(E_1) \cdot P(A | E_1) + P(E_2) \cdot P(A | E_2) + P(E_3) \cdot P(A | E_3) + P(E_4) \cdot P(A | E_4)}$$
$$= \frac{\frac{1}{4} \times \frac{1}{7}}{\frac{1}{4} \times \frac{3}{18} + \frac{1}{4} \times \frac{1}{4} + \frac{1}{4} \times \frac{1}{7} + \frac{1}{4} \times \frac{4}{13}} = 0.165$$

ઉદાહરણ 34 : દ્વિપદી વિતરણ $B\left(4,\frac{1}{3}\right)$ નો મધ્યક શોધો.

ઉકેલ : ધારો કે X એ યાદચ્છિક ચલ છે અને તેનું સંભાવના વિતરણ $B\left(4,\frac{1}{3}\right)$ છે. અહીં, $n = 4, p = \frac{1}{3}$ અને $q = 1 - \frac{1}{3} = \frac{2}{3}$. આપણે જાણીએ છીએ કે, $P(X = x) = {}^{4}C_{x} \left(\frac{2}{3}\right)^{4-x} \left(\frac{1}{3}\right)^{x}$, x = 0, 1, 2, 3, 4. એટલે કે X નું વિતરણ છે.

x _i	$\mathbf{P}(x_i)$	$x_i \mathbf{P}(x_i)$
0	${}^{4}\mathrm{C}_{0}\left(\frac{2}{3}\right)^{4}$	0
1	${}^{4}\mathrm{C}_{1}\left(\frac{2}{3}\right)^{3}\left(\frac{1}{3}\right)$	${}^{4}\mathrm{C}_{1}\left(\frac{2}{3}\right)^{3}\left(\frac{1}{3}\right)$
2	${}^{4}\mathrm{C}_{2}\left(\frac{2}{3}\right)^{2}\left(\frac{1}{3}\right)^{2}$	$2\left({}^{4}\mathrm{C}_{2}\left(\frac{2}{3}\right)^{2}\left(\frac{1}{3}\right)^{2}\right)$
3	${}^{4}\mathrm{C}_{3}\left(\frac{2}{3}\right)\left(\frac{1}{3}\right)^{3}$	$3\left({}^{4}\mathrm{C}_{3}\left(\frac{2}{3}\right)\left(\frac{1}{3}\right)^{3}\right)$
4	${}^{4}C_{4}\left(\frac{1}{3}\right)^{4}$	$4\left({}^{4}C_{4}\left(\frac{1}{3}\right)^{4}\right)$

$$\begin{aligned} \mathfrak{s}^{\hat{\mathbf{q}}}, \ \mathfrak{H}^{\mathfrak{s}_{\mathbf{q}}}\mathfrak{s} \ \mu &= \sum_{i=0}^{4} x_{i} \ p(x_{i}) \\ &= 0 + {}^{4}\mathrm{C}_{1} \left(\frac{2}{3}\right)^{3} \left(\frac{1}{3}\right) + 2 \cdot {}^{4}\mathrm{C}_{2} \left(\frac{2}{3}\right)^{2} \left(\frac{1}{3}\right)^{2} + 3 \cdot {}^{4}\mathrm{C}_{3} \left(\frac{2}{3}\right) \left(\frac{1}{3}\right)^{3} + 4 \cdot {}^{4}\mathrm{C}_{4} \left(\frac{1}{3}\right)^{4} \\ &= 4 \times \frac{2^{3}}{3^{4}} + 2 \times 6 \times \frac{2^{2}}{3^{4}} + 3 \times 4 \times \frac{2}{3^{4}} + 4 \times 1 \times \frac{1}{3^{4}} = \frac{32 + 48 + 24 + 4}{3^{4}} \\ &= \frac{108}{81} = \frac{4}{3} \end{aligned}$$

ઉદાહરણ 35 : એક નિશાનબાજ લક્ષ્ય પર નિશાન તાકવામાં સફળ થાય તેની સંભાવના ³/₄ છે. ઓછામાં ઓછી કેટલી વાર તેણે નિશાન લગાવવું જોઈએ, જેથી ઓછામાં ઓછી એક સફળતા મળે તેની સંભાવના 0.99 થી વધારે હોય ?

ઉકેલ : ધારો કે નિશાનબાજ n વખત ગોળીઓ છોડે છે. સ્પષ્ટ છે કે n વખત ગોળીઓ છોડવી એ n બર્નુલી પ્રયત્નો છે. પ્રત્યેક પ્રયત્નમાં, p = નિશાન લક્ષ્ય પર લાગવાની સંભાવના $\frac{3}{4}$ છે અને q = નિશાન લક્ષ્ય પર ન લાગવાની સંભાવના $\frac{1}{4}$ છે.

સંભાવના

તેથી,
$$P(X = x) = {}^{n}C_{x} q^{n-x} p^{x} = {}^{n}C_{x} \left(\frac{1}{4}\right)^{n-x} \left(\frac{3}{4}\right)^{x} = {}^{n}C_{x} \frac{3^{x}}{4^{n}}$$

હવે, આપેલ છે કે P(ઓછામાં ઓછું એકવાર લક્ષ્ય નિશાન પર લાગે) > 0.99
એટલે કે $P(X \ge 1) > 0.99$
આથી, $1 - P(X = 0) > 0.99$ અથવા $1 - {}^{n}C_{0} \frac{1}{4^{n}} > 0.99$
અથવા ${}^{n}C_{0} \frac{1}{4^{n}} < 0.01$
એટલે કે $\frac{1}{4^{n}} < 0.01$
અથવા $4^{n} > \frac{1}{0.01} = 100$...(1)

અસમતા (1) નું સમાધાન કરે તેવી n ની ન્યૂનતમ કિંમત 4 છે.

આમ, નિશાનબાજે 4 વખત લક્ષ્યને નિશાન તાકવું જોઈએ.

ઉંદાહરણ 36 ઃ જ્યાં સુધી તેમનામાંથી એકને '6' ન મળે ત્યાં સુધી A અને B વારાફરતી પાસાને ફેંકે છે અને પ્રથમ 6 મેળવનાર રમત જીતી જાય. A પાસો ફેંકવાની પ્રથમ શરૂઆત કરે, તો અનુક્રમે તેમની જીતવાની સંભાવના શોધો.

ઉકેલ : ધારો કે S એ સફળતા ('6' મળે તે) અને F એ નિષ્ફળતા ('6' ન મળે તે) દર્શાવે છે.

આમ, $P(S) = \frac{1}{6}, P(F) = \frac{5}{6}$

P(A) પ્રથમ વખત ફેંકતા જ જીતે છે) = $P(S) = \frac{1}{6}$

જ્યારે A દ્વારા પ્રથમ વખત પાસો ફેંકતા નિષ્ફળતા મળે અને B દ્વારા બીજી વખત પાસો ફેંકતા નિષ્ફળતા મળે ત્યારે A ને ત્રીજી વખત પાસો ફેંકવાની તક મળે છે.

આથી, P(A ત્રીજી વખત ફેંકવામાં જીતે છે) = P(FFS)

$$= P(F) P(F) P(S)$$

$$= \frac{5}{6} \times \frac{5}{6} \times \frac{1}{6} = \left|\frac{5}{6}\right|^2 \times \frac{1}{6}$$
અને આમ આગળ ગણતા $P(A \ \text{Sod} \ \hat{\vartheta}) = \frac{1}{6} + \left|\frac{5}{6}\right|^2 \left|\frac{1}{6}\right| + \left|\frac{5}{6}\right|^4 \left|\frac{1}{6}\right| + \dots$

$$= \frac{\frac{1}{6}}{1 - \frac{25}{36}} = \frac{6}{11}$$

$$P(B \ \text{Sod} \ \hat{\vartheta}) = 1 - P(A \ \text{Sod} \ \hat{\vartheta}) = 1 - \frac{6}{11} = \frac{5}{11}$$
Hull : So $a + ar + ar^2 + \dots + ar^{n-1} + \dots$ Sui $|r| < 1$ હોય તો આ અનંત સમગુણ

નોંધ : જો $a + ar + ar^2 + ... + ar^{n-1} + ... જ્યાં <math>|r| < 1$ હોય તો આ અનંત સમગુણોત્તર શ્રેઢીનો સરવાળો $\frac{a}{1-r}$ દ્વારા આપવામાં આવે છે. (ધોરણ 11 ના પાઠ્યપુસ્તકનો A.1.3 જુઓ.)

ઉદાહરણ 37 ઃ જો યંત્ર યોગ્ય રીતે સ્થાપિત થયેલ હોય, તો તે 90 % સ્વીકાર્ય વસ્તુઓનું ઉત્પાદન કરે છે. જો તે યોગ્ય રીતે સ્થાપિત થયેલ ન હોય તો તે માત્ર 40 % સ્વીકાર્ય વસ્તુઓનું ઉત્પાદન કરે છે. ભૂતકાળનો અનુભવ બતાવે છે કે યંત્ર યોગ્ય રીતે સ્થાપિત થયેલ હોય તેની સંભાવના 80 % છે. જો એક નિયત ગોઠવણ પછી, યંત્ર 2 સ્વીકાર્ય વસ્તુઓનું ઉત્પાદન કરે, તો યંત્ર યોગ્ય રીતે સ્થાપિત થયું હોય તેની સંભાવના શોધો.

Downloaded from https:// www.studiestoday.com

489

490

ગણિત

ઉકેલ : ધારો કે ઘટના A દર્શાવે છે કે યંત્ર 2 સ્વીકાર્ય વસ્તુઓનું ઉત્પાદન કરે છે.

વળી, \mathbf{B}_1 એ મશીન યોગ્ય રીતે સ્થાપિત થયું છે તે ઘટના અને \mathbf{B}_2 એ મશીન યોગ્ય રીતે સ્થાપિત થયું નથી તે ઘટના દર્શાવે છે.

હવે,
$$P(B_1) = 0.8$$
, $P(B_2) = 0.2$
 $P(A | B_1) = 0.9 \times 0.9$ અને $P(A | B_2) = 0.4 \times 0.4$
આથી, $P(B_1 | A) = \frac{P(B_1) P(A | B_1)}{P(B_1) P(A | B_1) + P(B_2) P(A | B_2)}$
 $= \frac{0.8 \times 0.9 \times 0.9}{0.8 \times 0.9 \times 0.9 + 0.2 \times 0.4 \times 0.4} = \frac{648}{680} = 0.95$
પ્રકીર્ણ સ્વાધ્યાય 13

- બે ઘટનાઓ A અને B માટે જો P(A) ≠ 0 અને (i) A એ B નો ઉપગણ હોય (ii) A ∩ B = \$\overline\$, તો P(B | A) શોધો.
- એક યુગલને બે બાળકો છે. (i) ઓછામાં ઓછું એક બાળક છોકરો છે તેમ આપેલ હોય, તો બંને બાળકો છોકરા હોવાની સંભાવના શોધો. (ii) જો મોટું બાળક છોકરી હોય, તો બંને બાળકો છોકરી હોવાની સંભાવના શોધો.
- ધારો કે 5 % પુરુષો અને 0.25 % સ્ત્રીઓને ભૂખરા રંગના વાળ હોય છે. ભૂખરા વાળવાળી વ્યક્તિને યાદચ્છિક રીતે પસંદ કરી છે. આ વ્યક્તિ પુરુષ હોવાની સંભાવના કેટલી ? સ્વીકારી લો કે પુરુષો અને સ્ત્રીઓની સંખ્યા સમાન છે.
- 4. ધારો કે 90 % લોકો જમણેરી છે. 10 વ્યક્તિના યાદચ્છિક નિદર્શમાં વધુમાં વધુ 6 લોકો જમણેરી હોવાની સંભાવના કેટલી ?
- એક પાત્રમાં 25 દડા છે. તેમાંથી 10 દડા પર નિશાની 'X' છે અને બાકીના 15 દડા પર નિશાની 'Y' છે. પાત્રમાંથી એક દડો યાદચ્છિક રીતે કાઢ્યો અને તેના પરની નિશાની નોંધીને તેને પાત્રમાં પરત મૂક્યો. જો આ રીતે 6 દડા કાઢવામાં આવ્યા હોય, તો (i) બધા પર નિશાની 'X' હોય. (ii) 2 કરતાં વધારે પર નિશાની 'Y' ન હોય. (iii) ઓછામાં ઓછા એક દડા પર નિશાની 'Y' હોય (iv) નિશાની 'X' અને નિશાની 'Y' વાળા દડાઓની સંખ્યા સમાન હોય તેની સંભાવના શોધો.
- 6. એક વિઘ્ન દોડમાં, ખેલાડીએ 10 વિઘ્નો પસાર કરવાના હોય છે. તે દરેક વિઘ્નને સફળતાપૂર્વક પસાર કરે તેની સંભાવના ⁵/₆ છે. તે બે કરતાં ઓછાં વિઘ્નોને પસાર કરશે તેની સંભાવના કેટલી ?
- જ્યાં સુધી ત્રણ વખત પૂર્ણાંક 6 ન મળે ત્યાં સુધી એક પાસાને વારંવાર ઉછાળવામાં આવે છે. છઢીવાર પાસાને ફેંકતાં ત્રીજી વખત પૂર્ણાંક 6 મળે તેની સંભાવના શોધો.
- 8. યાદચ્છિક રીતે પસંદ કરેલ લીપ વર્ષમાં 53 મંગળવાર હોય તેની સંભાવના કેટલી ?
- એક પ્રયોગ જેટલી વાર નિષ્ફળ જાય છે તેના કરતાં બમણી વખત સફળ થાય છે. હવે પછીના 6 પ્રયત્નોમાં તેને ઓછામાં ઓછી 4 વખત સફળતા મળશે તેની સંભાવના શોધો.
- એક માણસે એક સમતોલ સિક્કાને કેટલી વાર ઉછાળવો જોઈએ કે જેથી ઓછામાં ઓછી એક વખત
 છાપ મળે તેની સંભાવના 90 % કરતાં વધારે હોય ?
- 11. સમતોલ પાસાને ફેંકવાની રમતમાં, એક માણસ પાસા પર પૂર્ણાંક 6 મળે તો એક રૂપિયો જીતે છે અને અન્ય કોઈ પણ પૂર્ણાંક મળે ત્યારે એક રૂપિયો ગુમાવે છે. એ માણસે પાસાને ત્રણ વખત ફેંકવાનો નિર્ણય

સંભાવના

કર્યો છે, પરંતુ જેવો એને પૂર્ણાંક 6 મળશે કે તરત જ તે રમતને છોડી દેશે. તે રમત જીતે/ગુમાવે તેની અપેક્ષિત કિંમત શોધો.

12. ધારો કે ચાર ખોખાં A, B, C અને D માં નીચે પ્રમાશે રંગીન લખોટીઓ છે :

ખોખું	લખોટીના રંગ			
	લાલ	સફેદ	કાળી	
А	1	6	3	
В	6	2	2	
С	8	1	1	
D	0	6	4	

કોઈ એક ખોખાને યાદચ્છિક રીતે પસંદ કરી તેમાંથી એક લખોટી પસંદ કરવામાં આવી. જો લખોટી લાલ રંગની હોય તો તે ખોખા A માંથી પસંદ કરી હોય ? B માંથી પસંદ કરી હોય ? C માંથી પસંદ કરી હોય તેની સંભાવના કેટલી ?

- 13. ધારો કે દર્દીને હૃદયરોગનો હુમલો થવાની શક્યતા 40 % છે. એ પણ ધારેલ છે કે ધ્યાન અને યોગાસનોનો અભ્યાસ હૃદયરોગના હુમલાનું જોખમ 30 % ઘટાડે છે અને નિયત દવાઓ માટે દાક્તરની દવાચિઢી તેની શક્યતાઓ 25 % સુધી ઘટાડે છે. એક જ સમયે દર્દી બે સમાન સંભાવનાઓવાળા વિકલ્પોમાંથી કોઈ પણ એકની પસંદગી કરી શકે છે. બેમાંથી એક વિકલ્પમાંથી પસાર થયા પછી, યાદચ્છિક રીતે પસંદ કરેલ વ્યક્તિ હૃદયરોગના હુમલાથી પીડિત છે તેમ આપેલ હોય, તો દર્દી ધ્યાન અને યોગાભ્યાસનો કાર્યક્રમ અનુસર્યો છે તેની સંભાવના શોધો.
- 14. દ્વિહાર નિશ્વાયકનો પ્રત્યેક ઘટક શૂન્ય અથવા એક હોય, તો નિશ્વાયકનું મૂલ્ય ધન હોવાની સંભાવના કેટલી ? (ધારો કે નિશ્વાયકનો દરેક ઘટક નિરપેક્ષ રીતે પસંદ કરાયો હોય, તો પ્રત્યેક ઘટકની સંભાવના 1/2 છે).
- 15. વિદ્યુત યંત્રના ભાગોનું જોડાણ બે ઉપરચનાઓ A અને B ધરાવે છે. અગાઉની ચકાસવાની કાર્યપ્રણાલી પરથી નીચેની સંભાવનાઓ જ્ઞાત છે તેમ ધારેલ છે :

P(A નિષ્ફળ જાય) = 0.2

P(ફક્ત B નિષ્ફળ જાય) = 0.15

P(A અને B નિષ્ફળ જાય) = 0.15

- નીચેની સંભાવનાઓ શોધો :
- (i) P(A નિષ્ફળ જાય | B નિષ્ફળ ગઈ છે) (ii) P(A એકલી નિષ્ફળ જાય)
- 16. થેલા I માં 3 લાલ રંગના અને 4 કાળા રંગના દડા તથા થેલા II માં 4 લાલ રંગના અને 5 કાળા રંગના દડા છે. એક દડો થેલા I માંથી થેલા II માં મૂક્યો છે અને પછી થેલા II માંથી એક દડો પસંદ કરેલ છે. આ રીતે પસંદ કરેલ દડો લાલ રંગનો માલૂમ પડે તો, થેલા I માંથી થેલા II માં મૂકેલ દડો કાળા રંગનો હોવાની સંભાવના શોધો.

ગણિત પ્રશ્નો 17 થી 19 માં વિધાન સાચું બને તે રીતે આપેલ વિકલ્પોમાંથી યોગ્ય વિકલ્પ પસંદ કરો : **17.** જો A અને B બે ઘટનાઓ માટે $P(A) \neq 0$ અને P(B | A) = 1, તો (B) $B \subset A$ (C) $B = \phi$ (D) $A = \phi$ (A) $A \subset B$ 18. જો P(A | B) > P(A) હોય, તો નીચેનામાંથી કયો વિકલ્પ સત્ય છે ? (B) $P(A \cap B) \leq P(A) \cdot P(B)$ (A) $P(B \mid A) < P(B)$ (C) $P(B \mid A) > P(B)$ (D) $P(B \mid A) = P(B)$ **19.** જો A અને B કોઈ પણ બે ઘટનાઓ માટે P(A) + P(B) - P(A) અને B) = P(A) હોય, તો (A) P(B | A) = 1(B) P(A | B) = 1 (C) P(B | A) = 0 (D) P(A | B) = 0

સારાંશ

પ્રકરણના સ્પષ્ટ દેખાઈ આવતા લાક્ષણિક મુદ્દાઓ :

- આપેલ હોય કે ઘટના F ઉદ્ભવી ચૂકી છે, તો ઘટના E ની શરતી સંભાવના $P(E | F) = \frac{P(E \cap F)}{P(F)}, P(F) \neq 0$
- $0 \le P(E | F) \le 1$, P(E' | F) = 1 P(E | F) $P((E \cup F) | G) = P(E | G) + P(F | G) - P((E \cap F) | G)$
- $P(E \cap F) = P(E) P(F | E), P(E) \neq 0$ $P(E \cap F) = P(F) P(E | F), P(F) \neq 0$
- જો E અને F નિરપેક્ષ ઘટનાઓ હોય, તો
 - $P(E \cap F) = P(E) P(F)$
 - $P(E \mid F) = P(E), P(F) \neq 0$
 - $P(F \mid E) = P(F), P(E) \neq 0$
- સંપૂર્શ સંભાવનાનો પ્રમેય :

ધારો કે $\{E_1, E_2, ..., E_n\}$ નિદર્શાવકાશનું વિભાજન છે અને પ્રત્યેક $E_1, E_2, ..., E_n$ ની સંભાવના શૂન્યેતર છે. ધારો કે A એ S ની કોઈક ઘટના છે, તો

 $P(A) = P(E_1) P(A | E_1) + P(E_2) P(A | E_2) + ... + P(E_n) P(A | E_n)$

બૅય્ઝનો પ્રમેય : જો $E_1, E_2,..., E_n$ ઘટનાઓ નિદર્શાવકાશ Sનું વિભાજન કરે એટલે કે $\mathbf{E}_1, \mathbf{E}_2, \dots, \mathbf{E}_n$ જોડયુક્ત અલગ ઘટનાઓ હોય તથા $\mathbf{E}_1 \cup \mathbf{E}_2 \cup \dots \cup \mathbf{E}_n = \mathbf{S}$ અને A શૂન્યેતર સંભાવનાવાળી કોઈ ઘટના હોય, તો

$$P(E_i | A) = \frac{P(E_i) P(A | E_i)}{\sum_{j=1}^{n} P(E_j) P(A | E_j)}$$

યાદચ્છિક ચલ, જેનો પ્રદેશ યાદચ્છિક પ્રયોગનો નિદર્શાવકાશ હોય તેવું વાસ્તવિક મૂલ્યોવાળું વિધેય છે.

સંભાવના

પાર્દચ્છિક ચલ X નું સંભાવના વિતરણ એ સંખ્યાઓની વ્યવસ્થા છે.
X : x₁ x₂ ... x_n
P(X) : p₁ p₂ ... p_n
જ્યાં, p_i > 0, ∑_{i=1} p_i = 1, i = 1, 2,..., n
પારો કે યાદચ્છિક ચલ X ની શક્ય કિંમતો x₁, x₂, ..., x_n છે અને x₁, x₂, ..., x_n ની સંભાવનાઓ અનુકંમે p₁, p₂, p₃, ..., p_n છે.
X નો મધ્યક એ µ વડે દર્શાવાતી સંખ્યા ∑_{i=1}ⁿ x_ip_i છે. યાદચ્છિક ચલ X ના મધ્યકને X ની ગાઊતિક અપેક્ષ પદ્ય કહે છે. તેને E(X) વડે દર્શાવાય છે.
ધારો કે યાદચ્છિક ચલ X ની શક્ય કિંમતો x₁, x₂, ..., x_n છે અને x₁, x₂, ..., x_n ની સંભાવનાઓ અનુકંમે p₁, p₂, p₃, ..., p_n છે.
X નો મધ્યક એ µ વડે દર્શાવાતી સંખ્યા ∑_{i=1}ⁿ x_ip_i છે. યાદચ્છિક ચલ X ના મધ્યકને X ની ગાઊતિક અપેક્ષ પદ્ય કહે છે. તેને E(X) વડે દર્શાવાય છે.
ધારો કે યાદચ્છિક ચલ X ની શક્ય કિંમતો x₁, x₂, ..., x_n છે અને x₁, x₂, ..., x_n ની સંભાવનાઓ અનુકંમે p(x₁), p(x₂), ..., p(x_n) છે.
ધારો કે μ = E(X) એ X નો મધ્યક છે. X ના વિચરશને Var (X) અથવા σ²_x વડે દર્શાવાય છે.
σ²_x = Var (X) = ∑_{i=1}ⁿ (x_i - µ)² p(x_i) અથવા σ²_x = E((X - µ)²) તરીકે વ્યાખ્યાયિત છે.
અનુણ સંખ્યા σ_x = √Var(X) =
$$\sqrt{\sum_{i=1}^{n} (x_i - µ)^2 p(x_i)}$$
 ને યાદચ્છિક ચલ X નું પ્રમાણિત વિચલન કહે છે.
Var (X) = E(X²) - [E(X)]²
જો યાદચ્છિક પ્રયોગના પ્રયત્નો, નીચેની શરતોનું પાલન કરે તો તેમને બનુંલી પ્રયત્નો કહે છે :
(i) પ્રયત્નો ની સંખ્યા નિચિત હોવા જોઈએ.
(ii) પ્રયત્નો નિરયેક્ષ હોવા જોઈએ.
(iii) પ્રત્યેક પ્રયત્ને માત્ર બે ને જ પરિશામો છે : સફળતા અથવા નિષ્ફળતા
(iv) પ્રવેક પ્રયત્નમાં સફળતાની સંભાવના સમાન રહે છે. બનુંલી વિતરક્ષ B(n, p) માટે, P(X = x) = ⁿC_xq^{n - x}p^x, x = 0, 1, 2, ..., n

Historical Note

The earliest indication on measurement of chances in game of dice appeared in C.E. 1477 in a commentary on Dante's Divine Comedy. A treatise on gambling named *liber de Ludo Alcae*, by *Geronimo Carden* (C.E. 1501 - C.E. 1576) was published posthumously in C.E. 1663. In this treatise, he gives the number of favourable cases for each event, when two dice are thrown.

Galileo (C.E. 1564 - C.E. 1642) gave casual remarks concerning the correct evaluation of chance in a game of three dice. *Galileo* analysed that when three dice are thrown, the sum of the number that appear is more likely to be 10 than the sum 9, because the number of cases favourable to 10 are more than the number of cases for the appearance of number 9.

Downloaded from https:// www.studiestoday.com

493

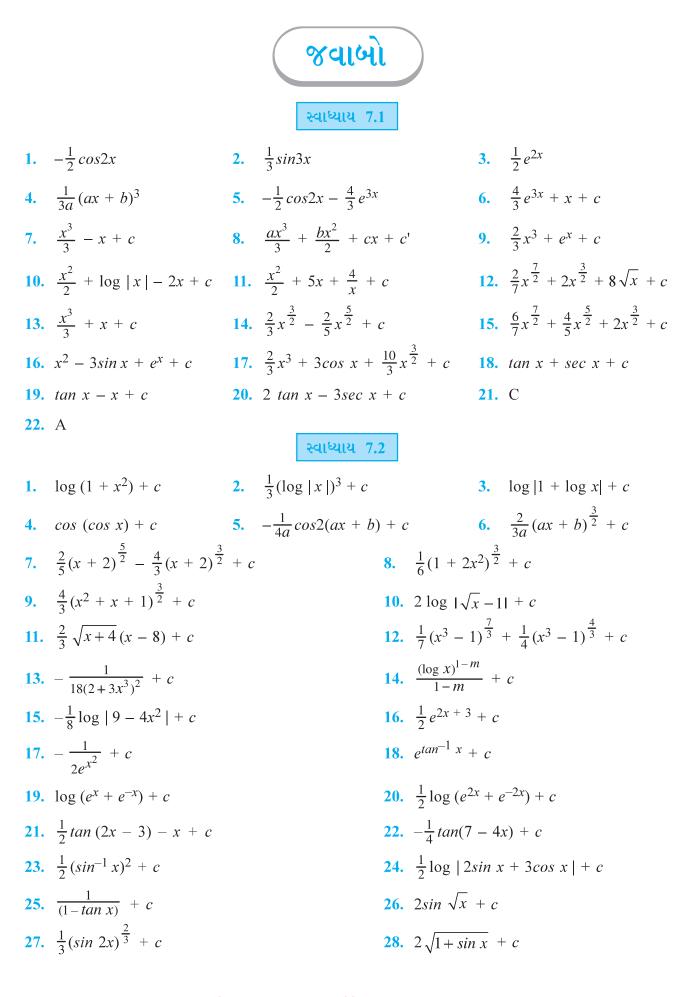
494

ગણિત

Apart from these early contributions, it is generally acknowledged that the true origin of the science of probability lies in the correspondence between two great men of the seventeenth century, *Pascal* (C.E. 1623 - C.E. 1662) and *Pierre de Fermat* (C.E. 1601 - C.E. 1665). A French gambler, *Chevalier de Metre* asked *Pascal* to explain some seeming contradiction between his theoretical reasoning and the observation gathered from gambling. In a series of letters written around C.E. 1654, *Pascal* and *Fermat* laid the first foundation of science of probability. *Pascal* solved the problem in algebraic manner while *Fermat* used the method of combinations.

Great Dutch Scientist, *Huygens* (C.E. 1629 - C.E. 1695), became acquainted with the content of the correspondence between *Pascal* and *Fermat* and published a first book on probability, *"De Ratiociniis in Ludo Aleae"* containing solution of many interesting rather than difficult problems on probability in games of chances.

The next great work on probability theory is by *Jacob Bernoulli* (C.E. 1654 - C.E. 1705), in the form of a great book, *"Ars Conjectendi"* published posthumously in C.E. 1713 by his nephew, *Nicholes Bernoulli*. To him is due the discovery of one of the most important probability distribution known as *Binomial distribution*. The next remarkable work on probability lies in C.E. 1993. *A. N. Kolmogorov* (C.E. 1903 - C.E. 1987) is credited with the axiomatic theory of probability. His book, *'Foundations of probability'* published in C.E. 1933, introduces probability as a set function and is considered a 'classic!'.



30. $-\log |1 + \cos x| + c$

496

29. $\frac{1}{2}(\log \sin x)^2 + c$

31. $\frac{1}{1+\cos x} + c$

9. $x - tan \frac{x}{2} + c$

21. $\frac{\pi x}{2} - \frac{x^2}{2} + c$

1. $tan^{-1}x^3 + c$

23. A

32. $\frac{x}{2} - \frac{1}{2}\log|\cos x + \sin x| + c$ **33.** $\frac{x}{2} - \frac{1}{2}\log|\cos x - \sin x| + c$ **34.** $2\sqrt{\tan x} + c$ 36. $\frac{1}{3}(x + \log x)^3 + c$ 35. $\frac{1}{3}(1 + \log x)^3 + c$ **37.** $-\frac{1}{4}\cos(\tan^{-1}x^4) + c$ 38. D **39.** B સ્વાધ્યાય 7.3 1. $\frac{x}{2} - \frac{1}{8}sin(4x + 10) + c$ 2. $-\frac{1}{14}\cos 7x + \frac{1}{2}\cos x + c$ 3. $\frac{1}{4} \left[\frac{1}{12} \sin 12x + x + \frac{1}{8} \sin 8x + \frac{1}{4} \sin 4x \right] + c$ 4. $-\frac{1}{2} \cos (2x+1) + \frac{1}{6} \cos^3 (2x+1) + c$ 6. $\frac{1}{4} \left[\frac{1}{6} \cos 6x - \frac{1}{4} \cos 4x - \frac{1}{2} \cos 2x \right] + c$ 5. $\frac{1}{6}\cos^6 x - \frac{1}{4}\cos^4 x + c$ 7. $\frac{1}{2} \left[\frac{1}{4} \sin 4x - \frac{1}{12} \sin 12x \right] + c$ 8. $2tan\frac{x}{2} - x + c$ 10. $\frac{3x}{8} - \frac{1}{4}\sin 2x + \frac{1}{32}\sin 4x + c$ 11. $\frac{3x}{8} + \frac{1}{8}\sin 4x + \frac{1}{64}\sin 8x + c$ **12.** x - sin x + c**14.** $-\frac{1}{\cos x + \sin x} + c$ **13.** $2(\sin x + x \cos \alpha) + c$ 15. $\frac{1}{6}sec^3 2x - \frac{1}{2}sec 2x + c$ **16.** $\frac{1}{3}tan^3x - tan x + x + c$ **17.** sec x - cosec x + c**18.** tan x + c**19.** $\log |\tan x| + \frac{1}{2} \tan^2 x + c$ **20.** $\log |\cos x + \sin x| + c$ 22. $\frac{1}{\sin(a-b)} \log \left| \frac{\cos(x-a)}{\cos(x-b)} \right| + c$ **24.** B સ્વાધ્યાય 7.4 2. $\frac{1}{2}\log \left|2x + \sqrt{1 + 4x^2}\right| + c$ 3. $\log \left| \frac{1}{2 - x + \sqrt{x^2 - 4x + 5}} \right| + c$ 4. $\frac{1}{5}sin^{-1}\frac{5x}{3} + c$ 6. $\frac{1}{6} \log \left| \frac{1+x^3}{1-x^3} \right| + c$ 5. $\frac{3}{2\sqrt{2}} \tan^{-1}\sqrt{2} x^2 + c$ 7. $\sqrt{x^2 - 1} - \log \left| x + \sqrt{x^2 - 1} \right| + c$ 8. $\frac{1}{3} \log \left| x^3 + \sqrt{x^6 + a^6} \right| + c$

Downloaded from https:// www.studiestoday.com

ગણિત

જવાબો

9.
$$\log |\tan x + \sqrt{\tan^2 x + 4}| + c$$

10. $\log |x + 1 + \sqrt{x^2 + 2x + 2}| + c$
11. $\frac{1}{6} \tan^{-1} \left(\frac{3x + 1}{2}\right) + c$
12. $\sin^{-1} \left(\frac{x + 3}{4}\right) + c$
13. $\log |x - \frac{3}{2} + \sqrt{x^2 - 3x + 2}| + c$
14. $\sin^{-1} \left(\frac{2x - 3}{\sqrt{41}}\right) + c$
15. $\log |x - \frac{a + b}{2} + \sqrt{(x - a)(x - b)}| + c$
16. $2\sqrt{2x^2 + x - 3} + c$
17. $\sqrt{x^2 - 1} + 2 \log |x + \sqrt{x^2 - 1}| + c$
18. $\frac{5}{6} \log |3x^2 + 2x + 1| - \frac{11}{3\sqrt{2}} \tan^{-1} \left(\frac{3x + 1}{\sqrt{2}}\right) + c$
19. $6\sqrt{x^2 - 9x + 20} + 34 \log |x - \frac{9}{2} + \sqrt{x^2 - 9x + 20}| + c$
20. $-\sqrt{4x - x^2} + 4\sin^{-1} \left(\frac{x - 2}{2}\right) + c$
21. $\sqrt{x^2 + 2x + 3} + \log |x + 1 + \sqrt{x^2 + 2x + 3}| + c$
22. $\frac{1}{2} \log |x^2 - 2x - 5| + \frac{2}{\sqrt{6}} \log \left|\frac{x - 1 - \sqrt{6}}{x - 1 + \sqrt{6}}\right| + c$
23. $5\sqrt{x^2 + 4x + 10} - 7 \log |x + 2 + \sqrt{x^2 + 4x + 10}| + c$
24. B
25. B
26. $\frac{|x - 1| - 5}{|x - 1|} + c$
2. $\frac{1}{6} \log \left|\frac{x - 3}{x + 3}\right| + c$
3. $\log |x - 1| - 5 \log |x - 2| + 4 \log |x - 3| + c$
4. $\frac{1}{2} \log |x - 1| - 2 \log |x - 2| + \frac{3}{2} \log |x - 3| + c$
5. $4 \log |x + 2| - 2 \log |x + 1| + c$
6. $\frac{x}{2} + \log |x| - \frac{3}{4} \log |1 - 2x| + c$
7. $\frac{1}{2} \log |x - 1| - \frac{1}{4} \log (x^2 + 1) + \frac{1}{2} \tan^{-1} x + c$
8. $\frac{2}{9} \log \left|\frac{x - 1}{|x + 2|} - \frac{1}{3(x - 1)} + c$
9. $\frac{1}{2} \log \left|\frac{x + 1}{x - 1}\right| - \frac{4}{x - 1} + c$
10. $\frac{5}{2} \log |x + 1| - \frac{1}{10} \log |x - 1| - \frac{12}{5} \log |2x + 3| + c$
11. $\frac{5}{3} \log |x + 1| - \frac{5}{2} \log |x + 2| - \frac{5}{6} \log |x - 2| + c$
12. $\frac{x^2}{2} + \frac{1}{2} \log |x + 1| + \frac{3}{2} \log |x - 1| + c$
13. $-\log |x - 1| + \frac{1}{2} \log (1 + x^2) + \tan^{-1} x + c$
14. $3 \log |x + 2| + \frac{7}{x + 2} + c$

Downloaded from https:// www.studiestoday.com

497

498

ગણિત

જવાબો

5.
$$\frac{5}{2} \sin^{-1}\left(\frac{x+2}{\sqrt{5}}\right) + \frac{x+2}{2} \sqrt{1-4x-x^2} + c$$

6. $\frac{(x+2)}{2} \sqrt{x^2+4x-5} - \frac{9}{2} \log \left|x+2+\sqrt{x^2+4x-5}\right| + c$
7. $\frac{(2x-3)}{4} \sqrt{1+3x-x^2} + \frac{13}{8} \sin^{-1}\left(\frac{2x-3}{\sqrt{13}}\right) + c$
8. $\frac{2x+3}{4} \sqrt{x^2+3x} - \frac{9}{8} \log \left|x+\frac{3}{2}+\sqrt{x^2+3x}\right| + c$
9. $\frac{x}{6} \sqrt{x^2+9} + \frac{3}{2} \log \left|x+\sqrt{x^2+9}\right| + c$
10. A
11. D
12. $\frac{1}{3}(x^2+x)^{\frac{3}{2}} - \frac{(2x+1)\sqrt{x^2+x}}{8} + \frac{1}{16} \log \left|x+\frac{1}{2}+\sqrt{x^2+x}\right| + c$
13. $\frac{1}{6}(2x^2+3)^{\frac{3}{2}} + \frac{x}{2}\sqrt{2x^2+3} + \frac{3\sqrt{2}}{4} \log \left|x+\sqrt{x^2+\frac{3}{2}}\right| + c$
14. $-\frac{1}{3}(3-4x-x^2)^{\frac{3}{2}} + \frac{7}{2}\sin^{-1}\left(\frac{x+2}{\sqrt{7}}\right) + \frac{(x+2)\sqrt{3-4x-x^2}}{\sqrt{7}} + c$
15. $\frac{2}{2}(b^2-a^2)$
16. $\frac{27}{2}$
17. $\frac{1}{2}\log 2$
18. $\log \left(\frac{\sqrt{2}-1}{2-\sqrt{3}}\right)$
19. $\frac{\pi}{4}$
11. $\frac{1}{2}\log 2$
10. $\frac{\pi}{4}$
11. $\frac{1}{2}\log 2$
12. $\frac{\pi}{4}$
13. $\frac{1}{2}\log 2$
14. $\frac{1}{3}\log 6 + \frac{3}{\sqrt{5}}\tan^{-1}\sqrt{5}$
15. $\frac{1}{2}(e-1)$
16. $5-\frac{5}{2}\left(9\log \frac{5}{4}-\log \frac{3}{2}\right)$
17. $\frac{\pi^4}{1024} + \frac{\pi}{2} + 2$
18. 0
19. $3\log 2 + \frac{3\pi}{8}$
20. $1+\frac{4}{\pi} - \frac{2\sqrt{2}}{\pi}$
21. D
22. C

Downloaded from https:// www.studiestoday.com

499

500

ગણિત

	54	વાધ્યાય 7.10				
1. $\frac{1}{2} \log 2$	2. $\frac{e}{2}$	<u>54</u> 31	3.	$\frac{\pi}{2} - \log 2$		
4. $\frac{16\sqrt{2}}{15}(\sqrt{2} + 1)$	5. $\frac{\pi}{4}$	<u>[</u>	6.	$\frac{1}{\sqrt{17}} \log \frac{21+5\sqrt{17}}{4}$	-	
7. $\frac{\pi}{8}$	<u>8.</u> <u>e</u>	$\frac{e^2(e^2-2)}{4}$	9.	A 10.	В	
	5	વાધ્યાય 7.11				
1. $\frac{\pi}{4}$	2. $\frac{\pi}{4}$	<u>r</u>	3.	<u>π</u> 4		
4. $\frac{\pi}{4}$	5. 2	9	6.	9		
7. $\frac{1}{(n+1)(n+2)}$	8. $\frac{\pi}{8}$	$\log 2$	9.	$\frac{16\sqrt{2}}{15}$		
10. $\frac{\pi}{2}\log\frac{1}{2}$	11. $\frac{\pi}{2}$	<u> </u>	12.	π		
13. 0	14. 0		15.	0		
16. $-\pi \log 2$	17. $\frac{a}{2}$		18.	5		
20. C	21. C					
પ્રકીર્શ સ્વાધ્યાય 7						
1. $\frac{1}{2} \log \left \frac{x^2}{1 - x^2} \right + c$		2. $\frac{2}{3(a-b)} [(x+a)]$	$)^{\frac{3}{2}}$ –	$(x+b)^{\frac{3}{2}}]+c$		
$3. -\frac{2}{a}\sqrt{\frac{(a-x)}{x}} + c$		4. $-\left(1+\frac{1}{x^4}\right)^{\frac{1}{4}} + c$				
5. $2\sqrt{x} - 3x^{\frac{1}{3}} + 6x^{\frac{1}{6}} - 6\log(1)$	$(x+x^{\frac{1}{6}})$	+ <i>c</i>				
6. $-\frac{1}{2} \log x+1 + \frac{1}{4} \log (x^2 +$	$(9) + \frac{3}{2}$	$tan^{-1} \frac{x}{3} + c$				
7. $\sin a \log \sin (x - a) + x \cos (x - a)$	a + c	8. $\frac{x^3}{3} + c$				
9. $sin^{-1}\left(\frac{sin x}{2}\right) + c$		10. $-\frac{1}{2}sin^2x + c$				
11. $\frac{1}{\sin(a-b)} \log \left \frac{\cos(x+b)}{\cos(x+a)} \right +$	С	12. $\frac{1}{4}sin^{-1}(x^4) + c$				
13. $\log\left(\frac{1+e^x}{2+e^x}\right) + c$		14. $\frac{1}{3}tan^{-1}x - \frac{1}{6}tan^{-1}x$	$n^{-1} \frac{x}{2}$	+ c		
15. $-\frac{1}{4}\cos^4 x + c$		16. $\frac{1}{4} \log(x^4 + 1) +$	- c			

501

જવાબો

18. $\frac{-2}{\sin \alpha} \sqrt{\frac{\sin (x+\alpha)}{\sin x}} + c$ 17. $\frac{[f(ax+b)]^{n+1}}{a(n+1)} + c$ 19. $\frac{2(2x-1)}{\pi} \sin^{-1}\sqrt{x} + \frac{2\sqrt{x-x^2}}{\pi} - x + c$ **20.** $-2\sqrt{1-x} + \cos^{-1}\sqrt{x} + \sqrt{x-x^2} + c$ **22.** $-2 \log |x+1| - \frac{1}{x+1} + 3 \log |x+2| + c$ **21.** $e^x \tan x + c$ 24. $-\frac{1}{3}\left(1+\frac{1}{r^2}\right)^{\frac{3}{2}}\left[\log\left(1+\frac{1}{r^2}\right)-\frac{2}{3}\right]+c$ **23.** $\frac{1}{2} \left[x \cos^{-1} x - \sqrt{1 - x^2} \right] + c$ 25. $e^{\frac{\pi}{2}}$ 26. $\frac{\pi}{8}$ **28.** $2sin^{-1} \frac{(\sqrt{3}-1)}{2}$ 27. $\frac{\pi}{6}$ **29.** $\frac{4\sqrt{2}}{3}$ **30.** $\frac{1}{40} \log 9$ **31.** $\frac{\pi}{2} - 1$ **32.** $\frac{\pi}{2}(\pi - 2)$ **40.** $\frac{1}{3}\left(e^2 - \frac{1}{e}\right)$ **33.** $\frac{19}{2}$ **41.** A **42.** B **44.** B **43.** D સ્વાધ્યાય 8.1 2. $(16 - 4\sqrt{2})$ ચો એકમ 3. $\frac{32 - 8\sqrt{2}}{3}$ ચો એકમ 1. $\frac{14}{3}$ ચો એકમ **6**. <u>π</u> ચો એકમ **4.** 12π ચો એકમ **5.** 6π ચો એકમ 7. $\frac{a^2}{2}(\frac{\pi}{2}-1)$ ચો એકમ 8. $(4)^{\frac{2}{3}}$ **9.** <u>1</u> ચો એકમ 10. $\frac{9}{8}$ ચો એકમ **11.** $8\sqrt{3}$ ચો એકમ **12.** A **13.** B સ્વાધ્યાય 8.2 **1.** $\left(\frac{\sqrt{2}}{6} + \frac{9}{4}\sin^{-1}\frac{2\sqrt{2}}{3}\right)$ all where **2.** $\left(\frac{2\pi}{3} - \frac{\sqrt{3}}{2}\right)$ all where **3.** $\frac{21}{2}$ all where **4.** 4 ચો એકમ 5. 8 ચો એકમ **6.** B 7. В

502

ગણિત

	પ્રકીર્ણ સ્વાધ્યાય 8
1. (i) $\frac{7}{3}$ ચો એકમ (ii) 624.8 ચો એકમ	2. $\frac{1}{6}$ ચો એકમ 3. $\frac{7}{3}$ ચો એકમ
4. 9	5. 4 ચો એકમ 6. $\frac{8a^2}{3m^3}$ ચો એકમ
7. 27 ચો એકમ	8. $\frac{3}{2}(\pi - 2)$ ચો એકમ 9. $\frac{ab}{4}(\pi - 2)$ ચો એકમ
10. 9/2 ચો એકમ	11. 2 ચો એકમ 12. $\frac{1}{3}$ ચો એકમ
13. 7 ચો એકમ	14. <u>7</u> ચો એકમ
15. $\left(\frac{9\pi}{8} - \frac{9}{4}\sin^{-1}\left(\frac{1}{3}\right) + \frac{1}{3\sqrt{2}}\right)$ ચો એક	ડમ 16. D 17. C
18. C	19. B
	સ્વાધ્યાય 9.1
1. કક્ષા 4; પરિમાણ અવ્યાખ્યાયિત	2. કક્ષા 1; પરિમાણ 1
3. કક્ષા 2; પરિમાણ 1	4. કક્ષા 2; પરિમાણ અવ્યાખ્યાયિત
5. કક્ષા 2; પરિમાણ 1	6. કક્ષા 3; પરિમાણ 2
7. કક્ષા 3; પરિમાણ 1	8. કક્ષા 1; પરિમાણ 1
9. કક્ષા 2; પરિમાણ 1	10. કક્ષા 2; પરિમાણ 1
11. D	12. A
	સ્વાધ્યાય 9.2
11. D	12. D
	સ્વાધ્યાય 9.3
1. $y'' = 0$	2. $xy y'' + x(y')^2 - yy' = 0$
3. $y'' - y' - 6y = 0$	4. y'' - 4y' + 4y = 0
5. $y'' - 2y' + 2y = 0$	6. $2xyy' + x^2 = y^2$
7. xy' - 2y = 0	8. $xyy'' + x(y')^2 - yy' = 0$
9. $xyy'' + x(y')^2 - yy' = 0$	10. $(x^2 - 9)(y')^2 + x^2 = 0$
11. B	12. C
	સ્વાધ્યાય 9.4
1. $y = 2 \tan \frac{x}{2} - x + c$	2. $y = 2sin(x + c)$
3. $y = 1 + Ae^{-x}$	$4. tan \ x \ tan \ y = c$
5. $y = \log (e^x + e^{-x}) + c$	6. $tan^{-1}y = x + \frac{x^3}{3} + c$
7. $y = e^{cx}$	8. $x^{-4} + y^{-4} = c$

જવાબો

9. $y = x \sin^{-1}x + \sqrt{1 - x^2} + c$ **10.** $tan y = c (1 - e^x)$ 11. $y = \frac{1}{4} \log \left[(x+1)^2 (x^2+1)^3 \right] - \frac{1}{2} \tan^{-1} x + 1$ 12. $y = \frac{1}{2} \log \left(\frac{x^2 - 1}{x^2} \right) - \frac{1}{2} \log \frac{3}{4}$ 13. $cos\left(\frac{y-2}{x}\right) = a$ **15.** $2y - 1 = e^x (\sin x - \cos x)$ **14.** y = sec x17. $y^2 - x^2 = 4$ 16. $y - x + 2 = \log (x^2 (y + 2)^2)$ **19.** $(63t + 27)^{\frac{1}{3}}$ **18.** $(x + 4)^2 = y + 3$ 21. ₹ 1648 20. 6.93 % **22.** $\frac{2 \log 2}{\log \left(\frac{11}{10}\right)}$ 23. A સ્વાધ્યાય 9.5 1. $(x - y)^2 = cx e^{\frac{-y}{x}}$ 2. $y = x \log |x| + cx$ 3. $tan^{-1}\left(\frac{y}{x}\right) = \frac{1}{2}\log(x^2 + y^2) + c$ 4. $x^2 + y^2 = cx$ 5. $\frac{1}{2\sqrt{2}} \log \left| \frac{x + \sqrt{2}y}{x - \sqrt{2}y} \right| = \log |x| + c$ 6. $y + \sqrt{x^2 + y^2} = cx^2$ 7. $xy \cos \left| \frac{x}{y} \right| = c$ 8. $x\left[1-\cos\left(\frac{y}{x}\right)\right] = c\sin\left(\frac{y}{x}\right)$ 9. $cy = \log \left| \frac{y}{x} \right| - 1$ **10.** $ve^{\frac{x}{y}} + x = c$ 11. $\log (x^2 + y^2) + 2tan^{-1} \frac{y}{r} = \frac{\pi}{2} + \log 2$ **13.** $cot\left(\frac{y}{x}\right) = \log |ex|$ 12. $y + 2x = 3x^2y$ 14. $cos\left(\frac{y}{x}\right) = \log |ex|$ **15.** $y = \frac{2x}{1 - \log |x|}$ $(x \neq 0, x \neq e)$ **16.** C **17.** D સ્વાધ્યાય 9.6 1. $y = \frac{1}{5}(2\sin x - \cos x) + ce^{-2x}$ 2. $v = e^{-2x} + ce^{-3x}$ 3. $xy = \frac{x^4}{4} + c$ 4. y (sec x + tan x) = sec x + tan x - x + c6. $y = \frac{x^2}{16} (4 \log |x| - 1) + cx^{-2}$ 5. $y = (tan x - 1) + ce^{-tan x}$

Downloaded from https:// www.studiestoday.com

503

504

ગણિત

(iii) સદિશ \overrightarrow{a} અને \overrightarrow{c} સમરેખ છે પરંતુ સમાન નથી.

3. (i) સત્ય (ii) અસત્ય (iii) અસત્ય (iv) અસત્ય

જવાબો

505

સ્વાધ્યાય 10.2

1.
$$|\vec{a}| = \sqrt{3}, |\vec{b}| = \sqrt{62}, |\vec{c}| = 1$$

2. અપશિત શક્ય જવાબો
4. $x = 2, y = 3$
5. -7 અને $6; -7\hat{i}$ અને $6\hat{j}$
6. $-4\hat{j} - \hat{k}$
7. $\frac{1}{\sqrt{6}}\hat{i} + \frac{1}{\sqrt{6}}\hat{j} + \frac{2}{\sqrt{6}}\hat{k}$
8. $\frac{1}{\sqrt{3}}\hat{i} + \frac{1}{\sqrt{3}}\hat{j} + \frac{1}{\sqrt{3}}\hat{k}$
10. $\frac{40}{\sqrt{30}}\hat{i} - \frac{8}{\sqrt{30}}\hat{j} + \frac{16}{\sqrt{30}}\hat{k}$
11. $-\frac{1}{3}, -\frac{2}{3}, \frac{2}{3}$
15. (i) $-\frac{1}{3}\hat{i} + \frac{4}{3}\hat{j} + \frac{1}{3}\hat{k}$ (ii) $-3\hat{i} + 3\hat{k}$
16. $3\hat{i} + 2\hat{j} + \hat{k}$
18. C
19. C
3. 0
4. $\frac{60}{\sqrt{114}}$
6. $\frac{16\sqrt{2}}{3\sqrt{7}}, \frac{2\sqrt{2}}{3\sqrt{7}}$
7. $6|\vec{a}|^2 + 11\vec{a}\cdot\vec{b} - 35|\vec{b}|^2$
8. $|\vec{a}| = 1, |\vec{b}| = 1$
9. $\sqrt{13}$
10. 8
12. $alEa \vec{b}$ Siv us alfan eisu siv a.
13. $-\frac{3}{2}$
14. bib us a gradat vezete aim alfan \vec{a} nut \vec{b} waite sol.
15. $\cos^{-1}(\frac{10}{\sqrt{102}})$
18. D
3. 0
14. $19\sqrt{2}$
2. $\pm \frac{2}{3}\hat{i} \pm \frac{2}{3}\hat{j} \pm \frac{1}{3}\hat{k}$
3. $\frac{\pi}{3}, \frac{1}{2}, \frac{1}{\sqrt{2}}, \frac{1}{2}$
4. $3, \frac{27}{2}$
6. $|\vec{a}| = 0$ wat $|\vec{b}| = 0$
8. π_1, \sin^3b us a gradat we are a when algonia al.
9. $\frac{\sqrt{61}}{4}$
10. $15\sqrt{2}$
11. B
12. C
3. $x = 5$
3. $y = y_1, z_2 - z_1; \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$

506

ગણિત

3. $\frac{-5}{2}\hat{i} + \frac{3\sqrt{3}}{2}\hat{j}$	4. ના, \overrightarrow{a} , \overrightarrow{b} અને \overrightarrow{c} િ	ત્રેકોણની બાજુઓ દર્શાવતા સદિશો લો.
5. $\pm \frac{1}{\sqrt{3}}$	6. $\frac{3}{2}\sqrt{10}\hat{i} + \frac{\sqrt{10}}{2}\hat{j}$	7. $\frac{3}{\sqrt{22}}\hat{i} - \frac{3}{\sqrt{22}}\hat{j} + \frac{2}{\sqrt{22}}\hat{k}$
8. 2:3	9. $3\vec{a} + 5\vec{b}$	10. $\frac{1}{7}(3\hat{i} - 6\hat{j} + 2\hat{k}); 11\sqrt{5}$
12. $\frac{1}{3}(160\hat{i} - 5\hat{j} - 70\hat{k})$	13. $\lambda = 1$	16. B
17. D	18. C	19. B
	સ્વાધ્યાય 11.1	
1. 0, $\frac{-1}{\sqrt{2}}$, $\frac{1}{\sqrt{2}}$	2. $\pm \frac{1}{\sqrt{3}}$, $\pm \frac{1}{\sqrt{3}}$, $\pm \frac{1}{\sqrt{3}}$	3. $\frac{-9}{11}$, $\frac{6}{11}$, $\frac{-2}{11}$
5. $\frac{-2}{\sqrt{17}}, \frac{-2}{\sqrt{17}}, \frac{3}{\sqrt{17}}; \frac{-2}{\sqrt{17}}, \frac{-3}{\sqrt{17}}, \frac{-3}{\sqrt{17}}$	$\frac{2}{17}$; $\frac{4}{\sqrt{42}}$, $\frac{5}{\sqrt{42}}$, $\frac{-1}{\sqrt{42}}$	
	સ્વાધ્યાય 11.2	
4. $\overrightarrow{r} = \hat{i} + 2\hat{j} + 3\hat{k} + \lambda(2\hat{j})$	$3\hat{i}+2\hat{j}-2\hat{k}),\ \lambda$ કોઈ પણ વ	ાસ્તવિક સંખ્યા છે.
5. $\overrightarrow{r} = 2\hat{i} - \hat{j} + 4\hat{k} + \lambda(\hat{i})$	$+2\hat{j}-\hat{k}$) અને	
કાર્તેઝિય સ્વરૂપ $\frac{x-2}{1} = \frac{y+1}{2}$	$=\frac{z-4}{-1}$ $\dot{\mathfrak{G}}.$	
6. $\frac{x+2}{3} = \frac{y-4}{5} = \frac{z+5}{6}$		
7. $\overrightarrow{r} = (5 \stackrel{\wedge}{i} - 4 \stackrel{\vee}{j} + 6 \stackrel{\wedge}{k}) + \lambda$	$(3\hat{i} + 7\hat{j} + 2\hat{k})$	
8. રેખાનું સદિશ સમીકરણ : \overrightarrow{r} =	$\lambda(5\hat{i} - 2\hat{j} + 3\hat{k});$	
રેખાનું કાર્તેઝિય સમીકરણ : <u>*</u>	$=\frac{y}{-2}=\frac{z}{3}$	
9. રેખાનું સદિશ સમીકરણ : \overrightarrow{r} =	$3\hat{i} - 2\hat{j} - 5\hat{k} + \lambda(11\hat{k})$	
રેખાનું કાર્તેઝિય સમીકરણ : <u>x-</u> 0	$\frac{3}{2} = \frac{y+2}{0} = \frac{z+5}{11}$	
10. (i) $\theta = cos^{-1}\left(\frac{19}{21}\right)$	(ii) $\theta = cos^{-1} \left(\frac{1}{5} \right)$	$\left(\frac{8}{\sqrt{3}}\right)$
11. (i) $\theta = cos^{-1} \left(\frac{26}{9\sqrt{38}} \right)$	(ii) $\theta = cos^{-1} \left(\frac{2}{3}\right)$)
12. $p = \frac{70}{11}$	14. $\frac{3\sqrt{2}}{2}$	15. $2\sqrt{29}$
16. $\frac{3}{\sqrt{19}}$	17. $\frac{8}{\sqrt{29}}$	

507

જવાબો

સ્વાધ્યાય 11.3 (b) $\frac{1}{\sqrt{3}}$, $\frac{1}{\sqrt{3}}$, $\frac{1}{\sqrt{3}}$; $\frac{1}{\sqrt{3}}$ **1.** (a) 0, 0, 1; 2 (c) $\frac{2}{\sqrt{14}}$, $\frac{3}{\sqrt{14}}$, $\frac{-1}{\sqrt{14}}$; $\frac{5}{\sqrt{14}}$ (d) 0, -5, 0; $\frac{8}{5}$ 2. $\overrightarrow{r} \cdot \left(\frac{3\hat{i}+5\hat{j}-6\hat{k}}{\sqrt{70}}\right) = 7$ (b) 2x + 3y - 4z = 13. (a) x + y - z = 2(c) (s-2t) x + (3-t) y + (2s+t) z = 15(b) $\left(0, \frac{18}{25}, \frac{24}{25}\right)$ 4. (a) $\left(\frac{24}{29}, \frac{36}{29}, \frac{48}{29}\right)$ (d) $\left(0, \frac{-8}{5}, 0\right)$ (c) $\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$ 5. (a) $[\overrightarrow{r} - (\widehat{i} - 2\widehat{k})] \cdot (\widehat{i} + \widehat{j} - \widehat{k}) = 0; x + y - z = 3$ (b) $\begin{bmatrix} \overrightarrow{r} - (\overrightarrow{i} + 4\overrightarrow{j} + 6\overrightarrow{k}) \end{bmatrix} \cdot (\overrightarrow{i} - 2\overrightarrow{j} + \overrightarrow{k}) = 0; x - 2y + z + 1 = 0$ (a) બિંદુઓ સમરેખ છે. તેમનામાંથી અગણિત સમતલો પસાર થાય. (b) 2x + 3y - 3z = 57. $\frac{5}{2}$, 5, -5 8. v = 39. 7x - 5y + 4z - 8 = 0**10.** $\overrightarrow{r} \cdot (38\,\overrightarrow{i} + 68\,\overrightarrow{j} + 3\,\overrightarrow{k}) = 153$ 11. x - z + 2 = 012. $\cos^{-1}\frac{15}{\sqrt{731}}$ **13.** (a) $cos^{-1}\left(\frac{2}{5}\right)$ (b) સમતલો પરસ્પર લંબ છે. (c) સમતલો સમાંતર છે. (d) સમતલો સમાંતર છે. (e) 45° 14. (a) $\frac{3}{13}$ (b) $\frac{13}{3}$ (c) 3 (d) 2 પ્રકીર્શ સ્વાધ્યાય 11 4. $\frac{x}{1} = \frac{y}{0} = \frac{z}{0}$ 5. 0° અથવા 180° **3.** 90° 7. $\overrightarrow{r} = \hat{i} + 2\hat{j} + 3\hat{k} + \lambda(\hat{i} + 2\hat{j} - 5\hat{k})$ 6. $k = \frac{-10}{7}$ 8. x + y + z = a + b + c9. 9 **10.** $\left(0, \frac{17}{2}, \frac{-13}{2}\right)$ **11.** $\left(\frac{17}{3}, 0, \frac{23}{3}\right)$ **12.** (1, -2, 7)

508

1.

3.

5.

6.

7.

8.

9.

1.

2.

3.

4.

5.

6.

7.

14. *p* = 1 અથવા 7<u></u> 13. 7x - 8y + 3z + 25 = 0**15.** y - 3z + 6 = 0**16.** x + 2y - 3z - 14 = 0**17.** 33x + 45y + 50z - 41 = 0**18.** 13 **19.** $\overrightarrow{r} = \hat{i} + 2\hat{j} + 3\hat{k} + \lambda(-3\hat{i} + 5\hat{j} + 4\hat{k})$ **20.** $\overrightarrow{r} = \overrightarrow{i} + 2\overrightarrow{j} - 4\overrightarrow{k} + \lambda(2\overrightarrow{i} + 3\overrightarrow{j} + 6\overrightarrow{k})$ **22.** D **23.** B સ્વાધ્યાય 12.1 **2.** (4, 0) આગળ ન્યૂનતમ Z = -12 (0, 4) આગળ મહત્તમ Z = 16 $\left(\frac{20}{19},\frac{45}{19}\right)$ આગળ મહત્તમ $Z = \frac{235}{19}$ 4. $\left(\frac{3}{2},\frac{1}{2}\right)$ આગળ न्यूनतम Z = 7(4, 3) આગળ મહત્તમ Z = 18 (6, 0) અને (0, 3) બિંદુઓને જોડતા રેખાખંડ પરનાં બધાં જ બિંદુએ ન્યૂનતમ Z = 6 (60, 0) આગળ ન્યૂનતમ Z = 300 (120, 0) અને (60, 30) બિંદુઓને જોડતા રેખાખંડ પરનાં બધાં જ બિંદુએ મહત્તમ Z = 600(0, 50) અને (20, 40) ને જોડતા રેખાખંડ પરનાં બધાં બિંદુએ ન્યૂનતમ Z = 100(0, 200) આગળ મહત્તમ Z = 400 Z ને મહત્તમ કિંમત નથી. 10. શક્ય ઉકેલનો કોઈ પ્રદેશ નથી. Z ને મહત્તમ કિંમત નથી. સ્વાધ્યાય 12.2 (⁸/₃, 0) તથા (2, ¹/₂)ને જોડતા રેખાખંડ પરનાં બધાં જ બિંદુએ ન્યૂનતમ કિંમત ₹ 160. કેકની મહત્તમ સંખ્યા 30 (એક પ્રકારની 20 કેક અને બીજા પ્રકારની કેકની સંખ્યા 10). (i) 4 ટેનિસ રૅકેટ્સ, 12 ક્રિકેટ બૅટ (ii) मહत्तम नझे ₹ 200 ખીલાના 3 તથા ચાકીના 3 પૅકેટ્સ, મહત્તમ નફો ₹ 73.50 A પ્રકારના સ્ક્રૂના 30 તથા B પ્રકારના સ્ક્રૂના 20 પૅકેટ્સ, મહત્તમ નફો ₹ 410 4 બેઠકવાળા લૅમ્પ્સ તથા 4 લાકડાંના શેડ્સ, મહત્તમ નફો ₹ 32 A પ્રકારની 8 સ્મરશિકા તથા B પ્રકારની 20 સ્મરશિકા, મહત્તમ નફો ₹ 160

200 એકમો મેજ પર રાખી શકાય તેવા (Desktop) અને 50 એકમો સુવાહ્ય (Portable) પ્રકારના કમ્પ્યૂટર્સ, 8. મહત્તમ નફો ₹ 11,50,000

Downloaded from https:// www.studiestoday.com

ગણિત

જવાબો

9. Z = 4x + 6y નું નીચે આપેલ શરતોને અધીન ન્યૂનતમ મૂલ્ય :
3x + 6y ≥ 80 અને 4x + 3y ≥ 100, x ≥ 0 અને y ≥ 0, જ્યાં x અને y અનુક્રમે ખોરાક F₁ તથા
F₂ ના એકમોની સંખ્યા છે. ન્યૂનતમ ખર્ચ ₹ 104

10. ખાતર F_1 100 કિગ્રા તથા ખાતર F_2 80 કિગ્રા, ન્યૂનતમ ખર્ચ ₹ 1000

11. D

પ્રકીર્શ સ્વાધ્યાય 12

- 1. ખોરાક P ના 40 પૅકેટ્સ અને ખોરાક Q ના 15 પૅકેટ્સ. વિટામિન A નો મહત્તમ જથ્થો 285 એકમ
- 2. P પ્રકારની 3 થેલી અને Q પ્રકારની 6 થેલી, મિશ્રણની ન્યૂનતમ કિંમત ₹ 1950 છે.
- 3. ખોરાક X 2 કિગ્રા તથા ખોરાક Y 4 કિગ્રા લેતાં મિશ્રણની ન્યૂનતમ કિંમત ₹ 112 છે.
- 5. ઉચ્ચ વર્ગની 40 ટિકિટ તથા સુલભ વર્ગની 160 ટિકિટ; મહત્તમ નફો ₹ 1,36,000
- 6. A માંથી 10, 50 તથા 40 ક્વિન્ટલ તથા B માંથી 50, 0 તથા 0 ક્વિન્ટલ અનુક્રમે D, E તથા F તરફ,
 ન્યૂનતમ ખર્ચ ₹ 510
- 7. A માંથી 500, 3000 અને 3500 લિટર તથા B માંથી 4000, 0 તથા 0 લિટર અનુક્રમે D, E તથા F તરફ,
 ન્યૂનતમ ખર્ચ ₹ 4400
- 8. P પ્રકારની 40 થેલી તથા Q પ્રકારની 100 થેલી, નાઇટ્રૉજનનો લઘુતમ જથ્થો 470 કિગ્રા
- 9. P પ્રકારની 140 થેલી તથા Q પ્રકારની 50 થેલી, નાઇટ્રૉજનનો મહત્તમ જથ્થો 595 કિગ્રા
- 10. A પ્રકારની 800 ઢિંગલી તથા B પ્રકારની 400 ઢિંગલી, મહત્તમ નફો ₹ 16,000

		સ્વાધ્યાય 13.1		
1.	$P(E F) = \frac{2}{3}, P(F E) = \frac{1}{3}$	2. $P(A B) = \frac{16}{25}$		
3.	(i) 0.32	(ii) 0.64	(iii) 0.98	
4.	$\frac{11}{26}$			
5.	(i) $\frac{4}{11}$	(ii) $\frac{4}{5}$	(iii) $\frac{2}{3}$	
6.	(i) $\frac{1}{2}$	(ii) $\frac{3}{7}$	(iii) $\frac{6}{7}$	
7.	(i) 1	(ii) 0		
8.	$\frac{1}{6}$	9. 1	10. (a) $\frac{1}{3}$, (b) $\frac{1}{9}$	
11.	(i) $\frac{1}{2}, \frac{1}{3}$	(ii) $\frac{1}{2}, \frac{2}{3}$	(iii) $\frac{3}{4}, \frac{1}{4}$	
12.	(i) $\frac{1}{2}$	(ii) $\frac{1}{3}$	13. $\frac{5}{9}$	
14.	$\frac{1}{15}$	15. 0	16. C	17. D

510

ગણિત

સ્વાધ્યાય 13.2

1. $\frac{3}{25}$	-				2. $\frac{1}{1}$	<u>25</u> 02		3. $\frac{44}{91}$		
4. A	અને B નિ	નેરપેક્ષ દં	છે.		5. A	્રઅને B	<mark>ક</mark> નિરપેક્ષ નધ્	યી.		
6. E અને F નિરપેક્ષ નથી.										
7. (i)	$p = \frac{1}{10}$			(ii) <i>p</i> =	$\frac{1}{5}$				
8. (i)	0.12			(ii	0.58			(iii) 0.3		(iv) 0.4
9. $\frac{3}{8}$				10	. A અ	ાને B નિ	વરપેક્ષ નથી.			
11. (i)	0.18			(ii) 0.12			(iii) 0.72		(iv) 0.28
12. $\frac{7}{8}$				13	6. (i) $\frac{1}{8}$	$\frac{16}{31}$ (ii)	$\frac{20}{81}$ (iii)	$\frac{40}{81}$		
14. (i)	$\frac{2}{3}$ (ii)	$\frac{1}{2}$		15	5. (i),	(ii)		16. (a) $\frac{1}{5}$	(b) $\frac{1}{3}$ (c)	$\frac{1}{2}$
17. D				18	в. В					
					સ્	વાધ્યાય	13.3			
1. $\frac{1}{2}$			2.	$\frac{2}{3}$			3. $\frac{9}{13}$		4. $\frac{12}{13}$	
5. $\frac{2!}{13}$	<u>2</u> 3		6.	$\frac{4}{9}$			7. $\frac{1}{52}$		8. $\frac{1}{4}$	
9. $\frac{2}{9}$			10.	$\frac{8}{11}$			11. $\frac{5}{34}$		12. $\frac{11}{50}$	
13. A			14.				51		50	
					\$	વાધ્યાય	13.4			
1. (ii), (iii) અ	ને (iv)	2.	$\mathbf{X} = 0$, 1, 2;	હા	3. X = 6	5, 4, 2, 0		
4. (i)	Х	0	1	2						
	P(X)	$\frac{1}{4}$	$\frac{1}{2}$	$\frac{1}{4}$						
(ii)	Х	0	1	2	3					
	P(X)	$\frac{1}{8}$	$\frac{3}{8}$	$\frac{3}{8}$	$\frac{1}{8}$					
(iii) X	0	1	2	3	4				
	P(X)	$\frac{1}{16}$	$\frac{1}{4}$	$\frac{3}{8}$	$\frac{1}{4}$	$\frac{1}{16}$				
5. (i)	X	0	1	2			I			
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	P(X)	$\frac{4}{9}$	$\frac{4}{9}$	$\frac{1}{9}$						
		9	9	9						

જવાબો

	(ii)	Х	0	1							
		P(X)	$\frac{25}{36}$	$\frac{11}{36}$							
6.		X	0	1	2	3	4				
		P(X)	$\frac{256}{625}$	$\frac{256}{625}$	$\frac{96}{625}$	$\frac{16}{625}$	$\frac{1}{625}$				
7.		Х	0	1	2						
		P(X)	$\frac{9}{16}$	$\frac{6}{16}$	$\frac{1}{16}$						
8.	(i)	$k = \frac{1}{10}$	((ii) P(X	(< 3)	$=\frac{3}{10}$	(iii)) P(X >	> 6) =	$\frac{17}{100}$	(iv) $P(0 < X < 3) = \frac{3}{10}$
9. (a) $k = \frac{1}{6}$ (b) $P(X < 2) = \frac{1}{2}$, $P(X \le 2) = 1$, $P(X \ge 2) = \frac{1}{2}$											
10.	1.5			11.	$\frac{1}{3}$			12. $\frac{14}{3}$	<u>L</u>		
13.	Var	(X) = 5	.833,	S.D. =	2.415						
14.		X	14	15	16	17	18	19	20	21	
		P(X)	$\frac{2}{15}$	$\frac{1}{15}$	$\frac{2}{15}$	$\frac{3}{15}$	$\frac{1}{15}$	$\frac{2}{15}$	$\frac{3}{15}$	$\frac{1}{15}$	
	મધ્ય	ક = 17.	53, Va	ar(X) =	4.78	અને S.I	D.(X) =	= 2.19			
15.	E(X	(x) = 0.7	અને V	ar(X) =	= 0.21			16. B			17. D
						\$	વાધ્યાય	13.5			
1.	(i)	$\frac{3}{32}$	(ii) -	<u>7</u> 54	(iii) <u>63</u>	<u>3</u> 4					
2.	$\frac{25}{216}$				3.	$\left(\frac{29}{20}\right)$	$\left(\frac{19}{20}\right)^9$				
4. (i) $\frac{1}{1024}$ (ii) $\frac{45}{512}$ (iii) $\frac{243}{1024}$											
5. (i) $(0.95)^5$ (ii) $(0.95)^4 \times 1.2$ (iii) $1 - (0.95)^4 \times 1.2$											
(iv) $1 - (0.95)^5$											
6. $\left(\frac{9}{10}\right)^4$ 7. $\left(\frac{1}{2}\right)^{20} \left[{}^{20}C_{12} + {}^{20}C_{13} + \dots + {}^{20}C_{20}\right]$ 9. $\frac{11}{243}$											
10.	(a)	$1 - \left(\frac{99}{10}\right)$	$\left(\frac{9}{0}\right)^{50}$		(b	$\frac{1}{2}\left(\frac{9}{10}\right)$	$(9){00}^{49}$		(c) 1 –	$\frac{149}{100} \left(\frac{99}{100}\right)^{49}$
11.	$\frac{7}{12}$	$\left(\frac{5}{6}\right)^5$			12	$\frac{35}{18}$	$(\frac{5}{6})^4$		1	3. $\frac{22}{10}$	$\frac{\times 9^3}{9^{11}}$
14.	С				15	. A					

Downloaded from https:// www.studiestoday.com

511

512

ગણિત

		પ્રકીર્ણ સ્વાધ્યાય 13	
1.	(i) 1	(ii) 0	
2.	(i) $\frac{1}{3}$	(ii) $\frac{1}{2}$	
3.	$\frac{20}{21}$		
4.	$1 - \sum_{r=7}^{10} {}^{10}\mathrm{C}_r \ (0.9)^r \ (0.1)^{10}$	— <i>r</i>	
5.	(i) $\left(\frac{2}{5}\right)^6$ (ii) $7\left(\frac{2}{5}\right)^4$	(iii) $1 - \left(\frac{2}{5}\right)^6$ (iv) $\frac{86}{31}$	54 25
6.	$\frac{5^{10}}{2 \times 6^9}$	7. $\frac{625}{23328}$	8. $\frac{2}{7}$
9.	$\frac{31}{9}\left(\frac{2}{3}\right)^4$	10. $n \ge 4$	11. $\frac{-91}{54}$
12.	$\frac{1}{15}$, $\frac{2}{5}$, $\frac{8}{15}$	13. $\frac{14}{29}$	14. $\frac{3}{16}$
15.	(i) 0.5 (ii) 0.05	16. $\frac{16}{31}$	
17.	А	18. C	19. B

. . .