ગુજરાત રાજ્યના શિક્ષણવિભાગના પત્ર-ક્રમાંક મશબ/1118/1565/છ, તા.02-11-2018-થી મંજૂર

પ્રયોગશાળા માર્ગદર્શિકા

રસાયણવિજ્ઞાન

ધોરણ XII

鸍 પ્રતિજ્ઞાપત્ર

ભારત મારો દેશ છે.

બધા ભારતીયો મારાં ભાઈ-બહેન છે.

- હું મારા દેશને ચાહું છું અને તેના સમૃદ્ધ અને વૈવિધ્યપૂર્ણ વારસાનો મને ગર્વ છે.
- હું સદાય તેને લાયક બનવા પ્રયત્ન કરીશ.
- હું મારા માતાપિતા, શિક્ષકો અને વડીલો પ્રત્યે આદર રાખીશ અને દરેક જણ સાથે સભ્યતાથી વર્તીશ.
- હું મારા દેશ અને દેશબાંધવોને મારી નિષ્ઠા અર્પું છું. તેમનાં કલ્યાણ અને સમૃદ્ધિમાં જ મારું સુખ રહ્યું છે.

રાજ્ય સરકારની વિનામુલ્યે યોજના હેઠળનું પુસ્તક

राष्ट्रीय शैक्षिक अनुसंधान और प्रशिक्षण परिषद् NATIONAL COUNCIL OF EDUCATIONAL RESEARCH AND TRAINING

ગુજરાત રાજ્ય શાળા પાઠ્યપુસ્તક મંડળ 'વિદ્યાયન', સેક્ટર 10-એ, ગાંધીનગર-382010

© NCERT નવી દિલ્લી તથા ગુજરાત રાજ્ય શાળા પાઠ્યપુસ્તક મંડળ, ગાંધીનગર આ પ્રયોગશાળા માર્ગદર્શિકાના સર્વ હક NCERT તથા ગુજરાત રાજ્ય શાળા પાઠ્યપુસ્તક મંડળને હસ્તક છે. આ પ્રયોગશાળા માર્ગદર્શિકાનો કોઈ પણ ભાગ કોઈ પણ રૂપમાં NCERT તથા ગુજરાત રાજ્ય શાળા પાઠ્યપુસ્તક મંડળની લેખિત પરવાનગી વગર પ્રકાશિત કરી શકાશે નહિ.

અનુવાદ

ડૉ. આઇ. એમ. ભક્ટ ડૉ. મયૂર સી. શાહ

સમીક્ષા

શ્રી મુકેશ બી. પટેલ શ્રી શેખર બી. ગોર શ્રી નરેશ પી. બોહરા શ્રી દીપક એમ. પટેલ

ભાષાશુદ્ધિ

શ્રી વિજય ટી. પારેખ

સંયોજન

ડૉ. ચિરાગ એચ. પટેલ (વિષય-સંયોજક : ભૌતિકવિજ્ઞાન)

નિર્માણ-સંયોજન

શ્રી હરેન શાહ

(નાયબ નિયામક : શૈક્ષણિક)

મુદ્રણ-આયોજન

શ્રી હરેશ એસ. લીમ્બાચીયા (નાયબ નિયામક : ઉત્પાદન)

પ્રસ્તાવના

રાષ્ટ્રીય સ્તરે સમાન અભ્યાસક્રમ રાખવાની સરકાશ્રીની નીતિના અનુસંધાને ગુજરાત સરકાર તથા ગુજરાત માધ્યમિક અને ઉચ્ચતર માધ્યમિક શિક્ષણ બોર્ડ દ્વારા તા. 25-10-2017ના ઠરાવ-ક્રમાંક મશબ/1217/1036/છ-થી શાળા કક્ષાએ NCERTનાં પાઠ્યપુસ્તકોનો સીધો જ અમલ કરવાનો નિર્ણય કરવામાં આવ્યો. તેને અનુલક્ષીને NCERT, નવી દિલ્લી દ્વારા પ્રકાશિત ધોરણ XII રસાયણવિજ્ઞાન પ્રયોગશાળા માર્ગદર્શિકાનો ગુજરાતીમાં અનુવાદ કરીને વિદ્યાર્થીઓ સમક્ષ મૂકતાં ગુજરાત રાજ્ય શાળા પાઠ્યપુસ્તક મંડળ આનંદ અનુભવે છે.

આ પ્રયોગશાળા માર્ગદર્શિકાનો અનુવાદ તથા તેની સમીક્ષા નિષ્ણાત પ્રાધ્યાપકો અને શિક્ષકો પાસે કરાવવામાં આવ્યા છે અને સમીક્ષકોનાં સૂચનો અનુસાર હસ્તપ્રતમાં યોગ્ય સુધારા-વધારા કર્યા પછી આ પ્રયોગશાળા માર્ગદર્શિકા પ્રસિદ્ધ કરતાં પહેલાં આ પ્રયોગશાળા માર્ગદર્શિકાની મંજૂરી માટે એક સ્ટેટ લેવલની કમિટીની રચના કરવામાં આવી. આ કમિટીની સાથે NCERTના પ્રતિનિધિ તરીકે RIE, ભોપાલથી ઉપસ્થિત રહેલા નિષ્ણાતોની એક દ્વિદિવસીય કાર્યશિબિરનું આયોજન કરવામાં આવ્યું અને પ્રયોગશાળા માર્ગદર્શિકાને અંતિમ સ્વરૂપ આપવામાં આવ્યું. જેમાં ડૉ. એસ. કે. મકવાણા (RIE, ભોપાલ), ડૉ. કલ્પના મસ્કી (RIE, ભોપાલ), ડૉ. આઇ. એમ. ભટ્ટ, ડૉ. મયૂર સી. શાહ, શ્રી મુકેશ બી. પટેલ, શ્રી શેખર બી. ગોર અને શ્રી કિરણ કે. પુરોહિતે ઉપસ્થિત રહી પોતાનાં કીમતી સૂચનો અને માર્ગદર્શન પૂરા પાડ્યા છે.

પ્રસ્તુત પ્રયોગશાળા માર્ગદર્શિકાને રસપ્રદ, ઉપયોગી અને ક્ષતિરહિત બનાવવા માટે મંડળ દ્વારા પૂરતી કાળજી લેવામાં આવી છે, તેમ છતાં શિક્ષણમાં રસ ધરાવનાર વ્યક્તિઓ પાસેથી ગુણવત્તા વધારે તેવાં સૂચનો આવકાર્ય છે.

NCERT, નવી દિલ્લીના સહકાર બદલ તેમના આભારી છીએ.

અવંતિકા સિંઘ(IAS)

નિયામક તા.03-04-2019 કાર્યવાહક પ્રમુખ ગાંધીનગર

પ્રથમ આવૃત્તિ : 2019

પ્રકાશક : ગુજરાત રાજ્ય શાળા પાઠચપુસ્તક મંડળ, 'વિદ્યાયન', સેક્ટર 10-એ, ગાંધીનગર વતી

અવંતિકા સિંઘ, નિયામક

મુદ્રક

FOREWORD

The National Council of Educational Research and Training (NCERT) is the apex body concerning all aspects of refinement of School Education. It has recently developed textual material in Chemistry for Higher Secondary stage which is based on the National Curriculum Framework (NCF)2005. NCF recommends that childrens experience in school education must be linked to the life outside school so that learning experience is joyful and fills the gap between the experience at home and in community. It recommends to diffuse the sharp boundaries between different subjects and discourages rote learning. The recent development of syllabi and textual material is an attempt to implement this basic idea. The present Laboratory Manual will be complementary to the textbook of Chemistry for Class XII. It is in continuation to the NCERTs efforts to improve upon comprehension of concepts and practical skills among students. The purpose of this manual is not only to convey the approach and philosophy of the practical course to students and teachers but to provide them appropriate guidance for carrying out experiments in the laboratory. The manual is supposed to encourage children to reflect on their own learning and to pursue further activities and questions. Of course the success of this effort also depends on the initiatives to be taken by the principals and teachers to encourage children to carry out experiments in the laboratory and develop their thinking and nurture creativity.

The methods adopted for performing the practicals and their evaluation will determine how effective this practical book will prove to make the childrens life at school a happy experience, rather than a source of stress and boredom. The practical book attempts to provide space to opportunities for contemplation and wondering, discussion in small groups, and activities requiring hands-on experience. It is hoped that the material provided in this manual will help students in carrying out laboratory work effectively and will encourage teachers to introduce some open-ended experiments at the school level.

Jack Tel

Professor Yash Pal Chairperson National Steering Committee National Council of Educational Research and Training

New Delhi 21 May 2008

PREFACE

The development of the present laboratory manual is in continuation to the NCERTs efforts to improve upon comprehension of concepts and practical skills among the students. The present laboratory manual will be complementary to the textbook of Chemistry for Class XII.

The expansion of scientific knowledge and consequently the change in the system of education has led to the development of new methods of instructions. Today the stress is laid on the enquiry approach and discussion method instead of lecture method of teaching. Unfortunately, it is believed that study of chemistry means abstract thinking, writing long formulas and complex structures and handling complicated equipments. The reason behind such endeavour is that even well-endowed schools tend to give only the cosmetic importance to the laboratory work. Childrens natural spirit of inquiry is often not nurtured.

The new syllabus of practical work in chemistry has been designed to cater to the needs of pupil who are desirous of pursuing science further. The fundamental objective of this course is to develop scientific attitude and desired laboratory skills required at this level. The practical syllabus includes content based experiments, which help in comprehension of the concepts.

The project work is expected to provide thrill in learning chemistry. It is expected to serve the real purpose of practical work, which means inculcating the ability to design an experiment, to make observations methodically and to draw conclusions out of experimental data. The real purpose of practical work should be to enable the students to represent the outcome of experiments logically to conclusion, with genuine appreciation of its limitation.

For each practical work, brief theory, material required, procedure, precautions and the questions for discussion are given in the book. The questions are aimed at testing learners understanding of the related problems. However, teacher may provide help in case the problem is found to be beyond the capability of the learner. Precautions must be well understood by the learners before proceeding with the experiments and projects.

In order to provide some basic idea about the investigatory projects, a brief description of some investigatory projects is given in the book. However, this list is only suggested and not exhaustive. The students may select projects from subject area of chemistry, interdisciplinary areas or from the environment. While selecting a project, care should be taken to see that the facilities for carrying it out are available.

Appendices related to the chemical data and logarithmic tables are attached at the end of the book. International symbols for hazards and hazard warnings are given at several places in the book. It is expected that this will make the learners more careful about the environment and make them careful while dealing with the chemicals. Some non-evaluative learning material has been given in the boxes to provide interesting information related to the practical work.

It is a pleasure to express my thanks to all those who have been associated at various stages of development of this laboratory manual. It is hoped that this practical book will improve teaching learning process in chemistry to a great extent. The learners will be able to understand the subject well and will be able to apply the acquired knowledge in new situations. I acknowledge with thanks the dedicated efforts and valuable contribution of Dr Alka Mehrotra, *Coordinator* of this programme and other team members who contributed and finalised the manuscript. I especially thank Professor Krishna Kumar, *Director*, and Professor G. Ravindra, *Joint Director*, NCERT for their administrative support and keen interest in the development of this laboratory manual. I am also grateful to the participating teachers and subject experts who participated in the review workshop and provided their comments and suggestions which helped in the refinement of this manual and make it learner friendly. We warmly welcome comments and suggestions from our readers for further improvement of this manual.

Hukum Singh
Professor and Head
Department of Education in
Science and Mathematics

New Delhi

LABORATORY MANUAL DEVELOPMENT TEAM

MEMBERS

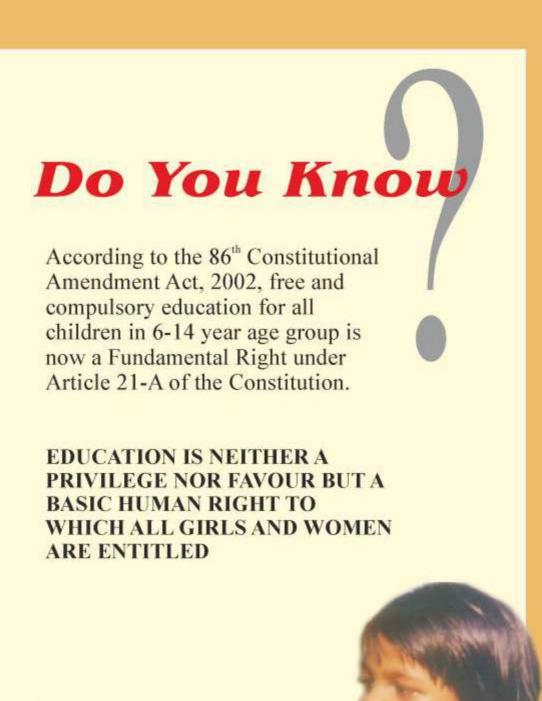
Anjni Koul, *Senior Lecturer*, DESM, NCERT, New Delhi Brahm Parkash, *Professor*, DESM, NCERT, New Delhi I. P. Aggarwal, *Professor*, Regional Institute of Education, NCERT, Bhopal R. S. Sindhu, *Professor*, DESM, NCERT, New Delhi Ruchi Verma, *Lecturer*, DESM, NCERT, New Delhi

MEMBER-COORDINATOR

Alka Mehrotra, Reader, DESM, NCERT, New Delhi

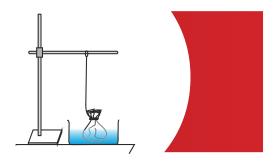
ACKNOWLEDGEMENT

The National Council of Educational Research and Training (NCERT) acknowledges the valuable contributions of the individuals and the organisations involved in the development of Manual for Chemistry Practicals for Class XII. The following academicians contributed very effectively for the review of the manuscript of this manual: D. S. Rawat, Reader, Department of Chemistry, University of Delhi; Haritima Chopra, Reader, Maitreyi College, New Delhi; K. G. Trikha, Reader (Retired), A.R.S.D. College, New Delhi; M. S. Frank, Vice Principal, St. Stephens College, Delhi; Samta Goel, Reader, Zakir Hussain College, New Delhi; S. G. Warkar, Lecturer, Delhi College of Engenering, Delhi; Sunita Bhagat, Reader, A.R.S.D. College, New Delhi; K. K. Singh, PGT, Kendriya Vidyalaya, Pushp Vihar, New Delhi; Mona Rastogi, Senior Headmistress, ITL Public School, Dwarka, New Delhi; Nivedita Bose, PGT, Bluebells School, New Delhi, Nishi Saraswat, PGT, Kendriya Vidyalaya No.1, Delhi Cantt. We are thankful to them. We also acknowledge the contribution of Sunita Kumari, JPF. Special thanks are due to Hukum Singh, Professor and Head, DESM, NCERT for his administrative support.


The Council also acknowledges the support provided by the administrative staff of DESM; Deepak Kapoor, *Incharge*, Computer Station, Ishwar Singh, Nargis Islam *DTP Operator* for refining and drawing some of the illustrations; Ritu Jha, *DTP Operator*; K. T. Chitralekha, *Copy Editor*. The efforts of the Publication Department are also highly appreciated.

અનુક્રમણિકા

Foreword Preface	iii v
એકમ - 1 : કલિલ • (a) દ્રવઅનુરાગી અને (b) દ્રવિવરાગી સોલ બનાવવા • બનાવેલા સોલને પારશ્લેષણ વડે શુદ્ધ કરવું • જુદા જુદા તેલના પાયસોના સ્થાયીકરણમાં પાયસીકારકોના ફાળાનો (role) અભ્યાસ કરવો.	1 1 4 5
એકમ - 2 ઃ રાસાયણિક ગતિકી	8
 સોડિયમ થાયોસલ્ફેટ અને હાઇડ્રૉક્લોરિક ઍસિડ વચ્ચેની પ્રક્રિયાના વેગ (દર) પર અનુક્રમે સાંદ્રતા અને તાપમાનના ફેરફારની અસરનો અભ્યાસ કરવો. 	8
 ઓરડાના તાપમાને આયોડાઇડ આયન અને હાઇડ્રૉજન પેરૉક્સાઇડ વચ્ચેની પ્રક્રિયાના વેગ પર આયોડાઇડ આયનની સાંદ્રતામાં ફેરફારની અસરનો અભ્યાસ કરવો. 	12
• પોટૅશિયમ આયોડેટ ($\mathrm{KIO_3}$) અને સોડિયમ સલ્ફાઇટ ($\mathrm{Na_2SO_3}$) વચ્ચેની પ્રક્રિયાના પ્રક્રિયા- વેગનો અભ્યાસ કરવો.	15
એકમ - 3 : ઉષ્મારાસાયણિક માપન	19
 કૉપર સલ્ફેટ/પોટૅશિયમ નાઇટ્રેટની વિલયન એન્થાલ્પી નક્કી કરવી. પ્રબળ ઍસિડની (HCl) પ્રબળ બેઈઝ (NaOH) સાથેના તટસ્થીકરણની એન્થાલ્પી નક્કી 	20
કરવી. ● ઍસિટોન અને ક્લોરોફોર્મ વચ્ચેની (હાઇડ્રૉજનબંધ રચના) પારસ્પરિક ક્રિયા માટે એન્થાલ્પી	24
ફેરફાર નક્કી કરવો.	26
એકમ - 4 : વિદ્યુતરસાયણવિજ્ઞાન	30
• $Zn/Zn^{2+} \mid \mid Cu^{2+}/Cu$ કોષનો વિદ્યુત વિભાજ્ય $(CuSO_4/ZnSO_4)$ ની સાંદ્રતામાં ફેરફાર સાથે કોષ પોટૅન્શિયલનો ઓરડાના તાપમાને અભ્યાસ કરવો.	
તામ કાર માઠા સામાના વારાના (ાામમાન વ્યવસાર કરવા.	31

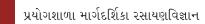

એકમ	 5 : વર્ણલેખિકી (ક્રોમેટોગ્રાફી) પાલકની ભાજીનાં પાંદડાંમાં રહેલા અને ગુલાબના ફૂલની પાંખડીમાં રહેલા તથા હજારીગ રહેલા રંજકોનું પેપર ક્રોમેટોગ્રાફી વડે અલીગકરણ અને ઘટકોનાં R_p મૂલ્યોનું નિર્ધારણ ક ક્રોમેટોગ્રાફિક પ્રવિધિનો ઉપયોગ કરીને Pb²+ અને Cd²+ બે ધનાયનો ધરાવતા અકાર્બ 	કરવું. 34 રિનક
	સંયોજનોના મિશ્રણના ઘટકોનું અલગીકરણ.	37
એકમ	- 6 ઃ અનુમાપનીય પૃથક્કરણ (રેડોક્ષ પ્રક્રિયાઓ) ● KMnO₄ના દ્રાવણની સાંદ્રતા/મોલારિટી, ઓક્ઝેલિક ઍસિડના 0.1 M પ્રમાણિત દ્રાવણ	40
	અનુમાપન કરીને નક્કી કરવી.	40
	 KMnO₄ દ્રાવણની સાંદ્રતા/મોલારિટી, પ્રમાણિત ફેરસ એમોનિયમ સલ્ફેટના દ્રાવણ સા અનુમાપનથી નક્કી કરવી. 	.થના 45
એકમ	- 7 : પદ્ધતિસર ગુણાત્મક પૃથક્કરણ	49
	 આપેલા ક્ષારમાં રહેલા એક ધનાયન અને એક ૠશાયનની પરખ કરવી. 	50
	 ૠણાયનોનું પદ્ધતિસર પૃથક્કરણ 	51
	 મંદ સલ્ક્યુરિક ઍસિડ સાથેની પ્રાથમિક કસોટી 	51
	 મંદ સલ્ફ્યુરિક ઍસિડ સાથેની ૠુુુાાયનોની નિર્ણાયક કસોટી 	52
	 સાંદ્ર સલ્ફ્યુરિક ઍસિડ સાથેની પ્રાથમિક કસોટી 	56
	 સાંદ્ર સલ્ફ્યુરિક ઍસિડ સાથે ૠુણાયનોની નિર્ણાયક કસોટીઓ 	57
	• સલ્ફેટ અને ફૉસ્ફેટની કસોટીઓ	62
	 ધનાયનોનું પદ્ધતિસર પૃથક્કર 	63
	• ધનાયનોની પરખ માટેનું ક્ષારનું પ્રાથમિક પરીક્ષણ	63
	• ધનાયનોની પરખ માટેની ભીની કસોટીઓ	69
	• શૂન્ય સમૂહ ધનાયનોનું પૃથક્કરણ	69
	● સમૂહ-Iના ધનાયનોનું પૃથક્કરણ	71
	● સમૂહ-IIના ધનાયનોનું પૃથક્કરણ	72
	● સમૂહ-IIIના ધનાયનોનું પૃથક્કરણ	75
	● સમૂહ-IVના ધનાયનોનું પૃથક્કરશ	76
	● સમૂહ-Vના ધનાયનોનું પૃથક્કરણ	79
	● સમૂહ-VIના ધનાયનોનું પૃથક્કરણ	81
	 ક્ષારના પૃથક્કરણ માટે નમૂનાની નોંધ 	84

એકમ	8 ઃ કાર્બનિક સંયોજનોમાં ક્રિયાશીલ સમૂહો માટેની કસોટીઓ	86
	 અસંતૃપ્તતા માટેની કસોટીઓ 	86
	આલ્કોહૉલિય સમૃહની કસોટીઓ	88
	C.	90
	• ફિનોલિક સમૂહની કસોટીઓ	92
	• આલ્ડિહાઇડ અને કિટોન સમૂહની કસોટીઓ	95
	 કાર્બોક્સિલ સમૂહની કસોટીઓ 	97
	• એમિનો સમૂહની કસોટીઓ	,
એકમ	- 9 : અકાર્બનિક સંયોજનોની બનાવટ	100
	 દિક્ષાર સંયોજનો બનાવવા : ફેરસ એમોનિયમ સલ્ફેટ (મોહ્ર ક્ષાર) અને પોટાશ એલમ 	100
	• પોર્ટેશિયમ ટ્રાયઓક્ઝેલેટોફેરેટ (III) બનાવવો.	102
એકમ	10 : કાર્બનિક સંયોજનોની બનાવટ	
	• એસિટેનિલાઇડ બનાવવો	104
	 ડાયબેન્ઝાલ એસિટોન (ડાયબેન્ઝાઇલિડીન એસિટોન) બનાવવો. 	104
	• p - નાઇટ્રોએસિટેનિલાઇડ બનાવવો.	106
	 ફ્રિનાઇલ-એઝો - β - નેપ્થોલ (એઝોરંગક) બનાવવો. 	107
		109
	 એનિલીન પીળો (p - એમિનોએઝોબેન્ઝિન) બનાવવો. 	111
એકમ	- 11 ઃ કાર્બોહાઇડ્રેટ, ચરબી અને પ્રોટીન સંયોજનોની કસોટીઓ	114
	 કાર્બોહાઇડ્રેટ સંયોજનો માટે કસોટીઓ 	114
	• તૈલી પદાર્થો અને ચરબીયુક્ત પદાર્થો માટે કસોટી	120
	 પ્રોટીન સંયોજનો માટે કસોટીઓ 	121
	પરિયોજનાઓ	125
	પરિશિષ્ટ	132

Give Girls Their Chance!

એકમ 1 કલિલ (Colloids)

વાસ્તવિક (સાચું) દ્રાવણમાં દ્રાવ્યના કશો દ્રાવકના અણુઓ સાથે સમાંગ રીતે મિશ્ર થાય છે અને એકલ કલા (single phase) રચે છે, તેમ છતાં પણ કલિલ દ્રાવણ વિષમાંગ પ્રણાલી છે. જેમાં એક પદાર્થના ઝીશા (fine) કશો (પરિક્ષેપિત કલા) (dispersed phase) બીજા પદાર્થમાં જેને પરિક્ષેપન માધ્યમ (dispersion medium) કહે છે તેમાં પરિક્ષેપિત થયેલા હોય છે. પરિક્ષેપિત કલાના કણો પરિક્ષેપન માધ્યમ સાથે એકલ કલા બનાવતા નથી. કારણ કે હકીકતમાં તેઓ ઘણા મોટા અણુઓ છે અથવા નાના અણુઓના આવશ્યક સમુચ્ચય છે. કલિલ કશો સાદા અણુઓ કરતાં કદમાં (size) વધારે મોટા હોય છે પણ એટલા નાના છે કે પરિક્ષેપન માધ્યમમાં નિલંબિત હોય છે (10⁻⁹ - 10⁻⁶ m). ઘણા મોટા અણુઓ જે કલિલમય પરિક્ષેપન રચે છે તેનાં ઉદાહરણો સ્ટાર્ચ, ગુંદર અને પ્રોટીન છે. જ્યારે કલિલમય સલ્ફર નાના અશુઓના સમુચ્ચયનું ઉદાહરણ છે. વળી, ઘનની વિષમાંગ પ્રશાલી પરિક્ષેપિત કલા તરીકે અને પ્રવાહી પરિક્ષેપિત માધ્યમમાં હોય તેને સોલ (sol) કહે છે. પરિક્ષેપન માધ્યમ અને પરિક્ષેપિત કલા વચ્ચેની પારસ્પરિક ક્રિયાના સ્વભાવ પ્રમાણે સોલને બે વિભાગમાં વહેંચવામાં આવ્યા છે તેમનાં નામ છે **દ્રવઅનુરાગી** (દ્રાવક-ચાહક) (lyophilic) અને **દ્રવવિરાગી** (દ્રાવકવિરોધી) (lyophobic). જો પરિક્ષેપન માધ્યમ પાણી હોય તો તેને અનુક્રમે જળઅનુરાગી (hydrophilic) અને જળવિરાગી (hydrophobic) કહે છે. ઈડાની જરદી, સ્ટાર્ચ અને ગુંદર દ્રવઅનુરાગી સોલ છે. તાજા જ બનાવેલ ફેરિક હાઈડ્રૉક્સાઇડ, ઍલ્યુમિનિયમ હાઈડ્રૉક્સાઇડ અને આર્સેનિક સલ્ફાઇડ દ્રવવિરાગી સોલના ઉદાહરણ છે. કલિલોની બનાવટની કેટલીક પદ્ધતિ - રાસાયશિક પદ્ધતિઓ, વૈદ્યુતીય વિઘટન અને પેપ્ટીકરશ છે. આ એકમમાં તમે બંને પ્રકારના સોલ બનાવવાનું શીખશો અને સોલની શુદ્ધીકરણની પદ્ધતિ પણ શીખશો.


પ્રયોગ 1.1

હેતુ :

(a) દ્રવઅનુરાગી અને (b) દ્રવવિરાગી સોલ બનાવવા.

સિદ્ધાંત :

દ્રવઅનુરાગી સોલમાંના પરિક્ષેપિત કલામાંના કણોને પરિક્ષેપન માધ્યમના કણોને માટે અનુરાગ (આકર્ષણ) હોવાથી આ સોલ દ્રવિરાગી સોલ કરતાં વધારે સ્થાયી હોય છે. સોલની સ્થાયીતા માટે બે પરિબળો જવાબદાર છે : ભાર (charge) અને દ્રાવક વડે કલિલમય કણોનું દ્રાવકયોજન. દ્રવઅનુરાગી સોલની સ્થાયીતા માટે મુખ્યત્વે દ્રાવક વડે કલિલમય કણોનું દ્રાવકયોજન (solvation) જવાબદાર હોય છે. જયારે દ્રવિવરાગી સોલ કલિલમય કણોના ભારથી સ્થાયીતા પ્રાપ્ત કરે છે. તેમના ભારને લીધે, કલિલમયકણો દ્રાવણમાં નિલંબિત રહે છે અને તેથી સ્કંદન થતું નથી. આ ભાર ધન અથવા ઋણ હોઈ શકે છે. ઋણભારવાળા સોલના કેટલાક ઉદાહરણો સ્ટાર્ચ અને આર્સનિઅસ સલ્ફાઇડ છે.

ધનભારવાળા સોલનાં ઉદાહરણોમાં જળયુક્ત ફેરિક ઑક્સાઇડ છે જે વિશેષ પ્રમાણમાં લીધેલા ગરમ પાણીમાં FeCl₃ ધીમે-ધીમે ઉમેરવાથી મળે છે. જળયુક્ત ફેરિક ઑક્સાઇડનો ઋણ ભારવાળો સોલ FeCl્નના દ્રાવણને NaOHના દ્રાવણમાં ઉમેરવાથી મળે છે. દ્રવઅનુરાગી સોલ સીધા જ યોગ્ય પ્રવાહી સાથે પદાર્થને મિશ્ર કરવાથી અને હલાવવાથી બનાવી શકાય છે. દ્રવવિરાગી સોલ સીધા જ મિશ્રણ કરીને અને હલાવવાથી બનાવી શકાતા નથી. તેમની બનાવટ માટે વિશિષ્ટ પદ્ધતિનો ઉપયોગ કરવામાં આવે છે.

જરૂરી સામગ્રી:

ઍલ્યુમિનિયમ

ક્લોરાઈડ

આર્સેનિક

સંયોજનો

• બીકર (250 mL)

• વૉચગ્લાસ

 \(\psi_{\frac{1}{2}} \)

• સોડિયમ ક્લોરાઇડ

: એક : 5g

• પોર્સેલિન ડિશ : એક • ફેરિક ક્લોરાઇડ

• સ્ટાર્ચ/ગુંદર

: 2g

• અંકિત નળાકાર (100 mL) : એક • ઍલ્યુમિનિયમ ક્લોરાઇડ

: 2g : 500mg

• પિપેટ (10 ml)

: એક : એક

: એક

: એક

: 0.2g

• અંકિત પિપેટ (20 mL)

• આર્સેનિયસ ઑક્સાઇડ

પદ્ધતિ :

દ્રવઅનુરાગી સોલની બનાવટ

I. ઈડાની સફેદીનો સોલ

- (i) 250 mL બીકરના પાણીમાં 5 % (w/V) NaClનું 100 mLદ્રાવણ બનાવો.
 - (ii) પોર્સેલિન ડિશમાં એક ઈંડું તોડો અને પિપેટ વડે સફેદીને ખેંચી લો અને તેને સોડિયમ ક્લોરાઇડના દ્રાવણમાં ઉમેરી દો. સારી રીતે હલાવો જેથી ખાતરી થાય કે સોલ સારી રીતે બનેલ છે.

II. સ્ટાર્ચ/ગુંદર સોલ

- (i) અંકિત નળાકારની મદદથી 100 mL નિસ્યંદિત પાણી માપો અને તેને 250 mL બીકરમાં લઈ લો અને તેને ઉકાળો.
- (ii) 500 mg સ્ટાર્ચ અથવા ગુંદરની ગરમ પાણીમાં લુગદી (paste) બનાવો અને તેને 100 mL ઉકળતા પાણીમાં સતત હલાવતા જાવ અને ઉમેરતા જાવ. લુગદી ઉમેર્યા પછી પાણીને 10 મિનિટ માટે ઉકાળતા રહો અને હલાવતા રહો. સોલ બન્યાની ખાતરી માટે મૂળ બનાવેલ લુગદી સાથે તેને સરખાવતા રહો.

(જોખમકારક ચેતવણી • પ્રયોગ દરમિયાન ખાશો નહિ.

પીશો નહિ અથવા ધૂમ્રપાન કરશો નહિ.

દ્રવવિરાગી સોલની બનાવટ В.

- ફેરિક હાઈડ્રૉક્સાઇડ/ઍલ્યુમિનિયમ હાઈડ્રૉક્સાઇડ I.
 - 250 mL બીકરમાં 100 mL નિસ્યંદિત પાણી લો અને તેને ઉકાળો.
 - ઉકળતા પાણીમાં 2 g ફેરિક ક્લોરાઇડ/ઍલ્યુમિનિયમ ક્લોરાઇડ ઉમેરો અને સારી રીતે હલાવો.

2

કલિલ

- (iii) બીજા 250 mL બીકરમાં 100 mL નિસ્યંદિત પાણી લો અને તેને ઉકાળો.
- (iv) તબક્કા (ii)માં બનાવેલા ફેરિક ક્લોરાઇડ/ઍલ્યુમિનિયમ ક્લોરાઇડના 10 mLને ઉકળતા પાણીમાં સતત હલાવતા જાવ અને ટીપે-ટીપે ઉમેરતા જાવ. જ્યાં સુધી અનુક્રમે કથ્થાઈ/સફેદ સોલ મળે નહિ ત્યાં સુધી પાણીને ઉકાળવાનું ચાલુ રાખો.

II. આર્સેનિયસ સલ્ફાઇડ સોલ

- (i) 250 mL ગુંજાશવાળા (ધારિતાવાળા) બીકરમાં 100 mL નિસ્યંદિત પાણી લો.
- (ii) તેમાં 0.2 g આર્સેનિયસ ઑક્સાઇડ ઉમેરો અને બીકરમાં દ્રાવણને ઉકાળો.
- (iii) દ્રાવશને ઠંડું પાડો અને ગાળી લો.
- (iv) ગાળેલા દ્રાવણમાં H_2S ની વાસ આવે ત્યાં સુધી હાઈડ્રૉજન સલ્ફાઇડ (H_2S) વાયુ પસાર કરો. (કિપ્સ સાધનનો ઉપયોગ હાઇડ્રૉજન સલ્ફાઇડ વાયુ પસાર કરવા માટે કરો).
- (v) વધારાને H_2S વાયુને સોલમાંથી ધીમેથી ગરમ કરીને બહાર કાઢી નાંખો અને તેને ગાળી લો.
- (vi) ગાળણને આર્સેનિયસ સલ્ફાઇડ સોલ એમ ચિહ્નિત કરો.

સાવચેતીઓ :

- (a) સ્ટાર્ચ, ગુંદર, ફ્રેરિક ક્લોરાઇડ, ઍલ્યુમિનિયમ ક્લોરાઇડ વગેરેના કલિલમય દ્રાવણો બનાવતી વખતે લુગદી અથવા દ્રાવણને ઉકળતા પાણીમાં ધીમ-ધીમે ઉમેરતા જાવ અને સતત હલાવતા રહો. આ પદાર્થો જો વધુ પ્રમાણમાં ઉમેરવામાં આવે તો અવક્ષેપન પરિણમશે.
- (b) આર્સેનિયસ ઑક્સાઇડ સ્વભાવે ઝેરી છે તેથી આ રસાયણનો ઉપયોગ કર્યા પછી દરેક વખતે તરત જ હાથ ધોઈ નાંખો.

🛱 ચર્ચાત્મક પ્રશ્નો :

- (i) તમે વાસ્તવિક (સાચું) દ્રાવણ અને કલિલમય વિક્ષેપન વચ્ચે કેવી રીતે વિભેદન કરશો ?
- (ii) તમારા રોજિંદા જીવનમાં ઉપયોગ કરતાં હોવ તેવા કેટલાક સોલને (કલિલમય) ઓળખી બતાવો અને તેમની અગત્ય જણાવો.
- (iii) કલિલ કેવી રીતે ભાર પ્રાપ્ત કરે છે ? પ્રયોગ દરમિયાન બનાવેલા ફેરિક હાઈડ્રૉક્સાઇડ/ઍલ્યુમિનિયમ હાઈડ્રૉક્સાઇડ સોલ શા માટે ધનભાર ધરાવે છે જ્યારે આર્સેનિયસ સલ્ફાઇડ ઋણભાર ધરાવે છે ?
- (iv) સ્કંદન એટલે શું ? સ્કંદન પેપ્ટિકરણથી કેવી રીતે અલગ છે ?
- (v) સલ્ફરના કલિલમય નિલંબનને વાસ્તવિક દ્રાવણમાં કેવી રીતે ફેરવી શકો ?
- (vi) દ્રવઅનુરાગી અને દ્રવિવરાગી સોલમાંથી કયા સોલને જેલમાં (gel) ફેરવી શકાય અને શા માટે ?
- (vii) જેલ અને સોલ વચ્ચે તફાવત દર્શાવો.
- (viii) ઔષધોના ક્ષેત્રમાં, સંરક્ષણમાં અને રૉકેટ પ્રાવૈધિક વિજ્ઞાનમાં કલિલોના અનુપ્રયોગો કયા છે ?

1

પ્રયોગશાળા માર્ગદર્શિકા રસાયણવિજ્ઞાન

પ્રયોગ 1.2

હેતુ :

બનાવેલા સોલને પારશ્લેષણ (dialysis) વડે શુદ્ધ કરવું.

જરૂરી સામગ્રી:

• पार्थभेन्ट (यर्भपत्र)/

સેલોફેન પેપર : એક શીટ (sheet)

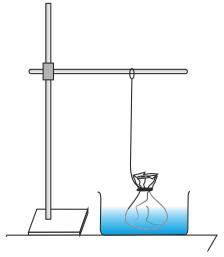
 $(30 \text{ cm} \times 30 \text{ cm})$

• ટ્રફ (trough) : એક

(કાચનું પાત્ર) • દોરી : જરૂર પ્રમાણે

• કસનળી : બે

• ઇંડાની સફેદીનું


કલિલમય પરિક્ષેપન : પ્રયોગ 1.1માં બતાવ્યા પ્રમાણે

નિસ્યંદિત પાણી : જરૂરિયાત પ્રમાણેયુરેનાઇલ ઝિંક એસિટેટ: જરૂરિયાત પ્રમાણે

• સિલ્વર નાઇટ્રેટ : જરૂરિયાત પ્રમાણે

પદ્ધતિ :

- (i) પાર્ચમેન્ટ/સેલોફ્રેન પેપરની 30 cm x 30 cmની ચોરસ શીટ લો.
- (ii) શીટને પાણીમાં પલાળો અને તેને શંકુ આકાર આપો.
- (iii) પાર્ચમેન્ટ/સેલોફ્રેન પેપરના શંકુમાં ઈંડાની જરદીના કલિલમય પરિક્ષેપનને રેડો.
- (iv) શંકુને દોરી વડે બાંધો અને આકૃતિ 1.1 માં દર્શાવ્યા પ્રમાણે નિસ્યંદિત પાણીભરેલા ટ્રફમાં લટકાવો.

આકૃતિ 1.1 : કલિલનું શુદ્ધીકરણ

(v) આશરે અડધો કલાક પછી ટ્રફ્રના પાણીમાં આયનોની હાજરી માટેની કસોટી કરો.

કલિલ

- (vi) ટ્રફમાંના પાણીને દર અડધા કલાકે બદલતા રહો અને જ્યાં સુધી તે Na⁺ અને Cl- આયનોની અશુદ્ધિઓથી મુક્ત ન થાય ત્યાં સુધી ચાલુ રાખો. Na⁺ અને Cl⁻ આયનોની કસોટી માટે બે કસનળીમાં ટ્રફમાંનું પાણી લો. એક કસનળીમાં યુરેનાઇલ ઝિંક એસિટેટ ઉમેરો અને બીજી કસનળીમાં સિલ્વર નાઇટ્રેટ દ્રાવણ ઉમેરો. યુરેનાઇલ ઝિંક એસિટેટ સાથે પીળા અવક્ષેપ $\mathrm{Na}^{\scriptscriptstyle +}$ આયનોની હાજરી સૂચવે છે. જ્યારે સિલ્વર નાઇટ્રેટ સાથે સફ્રેદ અવક્ષેપ ક્લોરાઇડ આયનોની હાજરી સૂચવે છે.
- (vii) કલિલમય વિક્ષેપનના શુદ્ધીકરણનો સમય નોંધો.
- **નોંધ**ઃ કેટલાક કિસ્સાઓમાં પારશ્લેષણ ઘણું ધીમું હોય છે. તેથી આવા કિસ્સાઓમાં એ સલાહભરેલું છે કે જ્યાં સુધી કલિલમય વિક્ષેપન આયનોથી મુક્ત થાય ત્યાં સુધી ટ્રફમાંનું પાણી બેવાર કે ત્રણવાર બદલી નાંખો.

સાવચેતીઓ :

- (a) પારશ્લેષણ માટે પાર્ચમેન્ટની બૅગ હવાચુસ્ત બનાવો. જેથી પાણીનું બૅગમાં દાખલ થવું રોકી શકાય. પાર્ચમેન્ટ બૅગનો ગરદનનો (મુખ) ભાગ પાણીની સપાટીથી ઉપર રાખો.
- (b) પારશ્લેષણ દરમિયાન સમયાંતરે ટ્રફમાંનું પાણી બદલો.

(i) પારશ્લેષણની પ્રક્રિયા તમે કેવી રીતે ઝડપી બનાવી શકો. આ કાર્યપદ્ધતિની મર્યાદાઓ શું છે ?

પ્રયોગ 1.3

હેતુ :

જુદા-જુદા તેલના પાયસોના (emulsion) સ્થાયીકરણમાં પાયસીકારકોના ફાળાનો (role) અભ્યાસ કરવો.

સિદ્ધાંત :

પાયસ એવા પ્રકારનો કલિલ છે જેમાં પરિક્ષેપિત કલા અને પરિક્ષેપન માધ્યમ બંને પ્રવાહી હોય છે. અહીંયા, પરિક્ષેપિત કલા અને પરિક્ષેપન માધ્યમને સાપેક્ષ પ્રમાણ પરથી વિભેદિત કરવામાં આવે છે. જે ઓછા પ્રમાણમાં હાજર હોય તેને **પરિક્ષેપિત કલા** કહે છે. જ્યારે જે સાપેક્ષ રીતે વધારે પ્રમાણમાં હાજર હોય તેને પરિક્ષેપન માધ્યમ કહે છે.

જ્યારે તેલને પાણી સાથે હલાવવામાં આવે છે ત્યારે આછું દૂધિયું દ્રાવણ જોવા મળે છે જે અસ્થાયી હોય છે અને તેને **પાણીમાં તેલનું પાયસ** કહે છે. થોડો સમય રાહ જોતાં તે તેલ અને પાણી એમ બે સ્તરોમાં અલગ પડી જાય છે. જુદા-જુદા તેલની પાણીમાં મિશ્ર થવાની ક્ષમતા જુદી-જુદી હોય છે. તેલની મિશ્ર

પ્રયોગશાળા માર્ગદર્શિકા રસાયણવિજ્ઞાન

થવાની ક્ષમતા તેના સ્વભાવ અને તે ઉપરાંત તેને હલાવવાની પદ્ધતિ (એટલે કે ખૂબ જોરથી હલાવવું અથવા વમળ થાય તેમ હલાવવું) પર આધાર રાખે છે.

તેલ અને પાણીના પાયસની સ્થાયીતા યોગ્ય પાયસકારક ઉમેરવાથી વધારી શકાય છે. આવા પાયસકારકોમાં સાબુનું દ્રાવણ છે. સાબુ લાંબી શૃંખલા ધરાવતા કાર્બોક્સિલિક ઍસિડનો સોડિયમ ક્ષાર ધરાવે છે, જેમાં કાર્બોક્સિલ સમૂહ ધ્રુવીય હોય છે જે તેલ અને પાણી વચ્ચેનું અંતરાપૃષ્ઠીય (interfacial) પૃષ્ઠતાણ ઘટાડે છે. તેથી તેલ પાણીમાં દ્રાવ્ય થાય છે અને પાયસીકરણ થાય છે. સંપૂર્ણ પાયસીકરણ માટે જરૂરી સાબુની સાંદ્રતાને અનુકૂળતમ (optimum) સાંદ્રતા કહે છે. આ અનુકૂળતમ સાંદ્રતાથી ઓછું અથવા વધારે પ્રમાણ અસરકારક પાયસીકરણ કરી શકતું નથી. અનુકૂળતમ જથ્થાના સાબુના દ્રાવણની હાજરીમાં તેલમાં પાણીનું પાયસ વધારે સ્થાયી હોય છે અને તેલ તથા પાણીના સ્તરોનું અલગીકરણ વધુ સમય લે છે.

જરૂરી સામગ્રી :

કસનળી : છ • સાબ્/પ્રક્ષાલક : 5 g ડ્રૉપર પાંચ સરસવ તેલ, અળસી કસનળી સ્ટૅન્ડ એક તેલ, દીવેલ અને કાચનો સળિયો એક મશીન તેલ ઃ દરેક બ્રાન્ડના 10 mL સ્ટૉપ વૉચ : એક

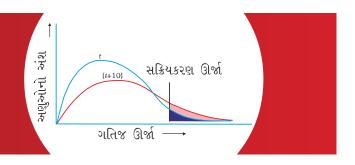
પદ્ધતિ :

- (i) 1 g સાબુ/પ્રક્ષાલકને 10 mL નિસ્યંદિત પાણીમાં કસનળીમાં ઓગાળો અને સખત હલાવો જરૂર જણાય તો કસનળીમાંના દ્રાવણને ગરમ કરો. તેને 'A' વડે ચિહ્નિત કરો.
- (ii) ચાર કસનળી લો. તેમના પર B, C, D અને E એમ નિશાન કરો. દરેક કસનળીમાં 5 mL નિસ્યંદિત પાણી લો અને તેમાં કસનળી B માં 10 ટીપાં સરસવ તેલ, કસનળી C માં અળસી તેલના 10 ટીપાં, કસનળી D માં દીવેલના 10 ટીપાં અને કસનળી E માં મશીન તેલ અનુક્રમે ઉમેરો.
- (iii) કસનળી B ને પાંચ મિનિટ માટે સખત રીતે હલાવો અને પછી તેને કસનળી સ્ટૅન્ડમાં મૂકો અને તરત જ સ્ટૉપવૉચ ચાલુ કરી દો. બંને સ્તર અલગ પડવા માટે લાગતો સમય નોંધો.
- (iv) C, D અને E કસનળી માટે પણ પદ્ધતિનું પુનરાવર્તન કરો અને દરેક કિસ્સામાં બે સ્તર અલગ પડવા માટે લાગતો સમય નોંધો.
- (v) હવે કસનળી Aમાંના સાબુ/પ્રક્ષાલક દ્રાવણનાં બે ટીપાં દરેક કસનળી B, C, D અને Eમાં વારાફરતી ઉમેરો. દરેક કસનળીને પાંચ મિનિટ માટે હલાવો અને ફરીથી દરેક કિસ્સામાં સ્તર અલગ પડવાનો સમય નોંધો.
- (vi) કોષ્ટક 1.1 માં દર્શાવેલ પદ્ધતિ પ્રમાણે તમારાં અવલોકનો નોંધો.

કલિલ

કોષ્ટક 1.1 : જુદા-જુદા તેલનું સાબુ/પ્રક્ષાલક વડે પાયસીકરણ

કસનળીની વિગત	्रायाचेल नेलनं नाम ———————————————————————————————————	સ્તરોના અલગીકરણ માટે લાગતો સમય		
		સાબુ/પ્રક્ષાલક સિવાય	સાબુ/પ્રક્ષાલક સાથે	
В				
С				
D				
Е				


સાવચેતીઓ :

- (a) સાબુ/પ્રક્ષાલક દ્રાવણનાં ટીપાં બધી જ કસનળીમાં સરખી સંખ્યામાં નાખો.
- (b) જુદી જુદી પ્રણાલીમાં અલગીકરણ માટે લાગતા સમયની નોંધ કરવામાં ભૂલને (ત્રુટિ) નિમ્નતમ કરવા માટે બધી જ કસનળીઓને એકસરખા સમયગાળા માટે હલાવો.
- (c) હલાવવાનું બંધ થાય કે તરત જ સ્ટૉપવૉચ ચાલુ કરી દો અને બંને સ્તર અલગ પડે એટલે તેને તરત જ બંધ કરી દો.

- પાણીમાં તેલ પાયસ માટે પાયસીકારક તરીકે સાબુ સિવાય બીજો કયો પ્રક્રિયક વાપરી શકાય તેનું નામ આપો. (i)
- દ્ધને સ્થાયી પાયસ કહેવાય છે ? દૂધને કોણ સ્થાયીતા પૂરી પાડે છે ? (ii)
- બે મિશ્ર થતા પ્રવાહી પાયસ બનાવી શકે છે ? (iii)
- પાણી સાથે પાયસ બનાવતા જુદા-જુદા તેલ, સ્તરના અલગીકરણ માટે જુદા-જુદા સમય શા માટે લે છે ? (iv)
- સોલ, જૅલ અને પાયસ વચ્ચે સરખામણી અને બિનસરખામણીના (તફાવત) મુદ્દાઓ કયા છે ? (v)
- પાણીમાં તેલ અને તેલમાં પાણી પ્રકારના પાયસ વચ્ચે ભેદ પાડી શકવાની કસોટીનું સૂચન કરો. (vi)
- (vii) તમે રોજિંદા જીવનમાં સંપર્કમાં આવતા હોવ તેવા પાયસનાં કેટલાંક ઉદાહરણો આપો.
- (viii) ડેટોલ પાણીમાં પાયસ બનાવે છે. આ પાયસ કેવી રીતે સ્થાયી થાય છે ?

એકમ 2 રાસાયણિક ગતિકી (Chemical Kinetics)

પ્રક્રિયાનો વેગ (દર) સમય સાથે કોઈ પણ પ્રક્રિયકની સાંદ્રતાના ઘટાડાના પર્યાયમાં અથવા કોઈ પણ નીપજની સાંદ્રતાના વધારાના પર્યાયમાં માપી શકાય છે. એક પરિકલ્પિત (hypothetical) પ્રક્રિયા A → B માટે

પ્રક્રિયાનો વેગ = -
$$\frac{\Delta[A]}{\Delta T}$$
 = $\frac{\Delta[B]}{\Delta T}$

સાંદ્રતા, તાપમાન અને ઉદ્ઘીપક જેવાં પરિબળો પ્રક્રિયાના વેગને અસર કરે છે. આ એકમમાં તમે પ્રક્રિયાનો વેગ નક્કી કરવાની કાર્યપદ્ધતિ તથા સાંદ્રતા અને તાપમાનની પ્રક્રિયા વેગ પર અસર નક્કી કરવાની કાર્યપદ્ધતિ શીખશો.

પ્રયોગ 2.1

હેતુ :

$$\mathrm{S_2O_3^{2-}}\left(\mathrm{aq}\right) + 2\mathrm{H^+}\left(\mathrm{aq}\right) \rightarrow \mathrm{H_2O}(l) + \mathrm{SO_2}(\mathrm{g}) + \mathrm{S}(\mathrm{s})$$

સોડિયમ થાયોસલ્ફેટ અને હાઇડ્રૉક્લોરિક ઍસિડ વચ્ચેની પ્રક્રિયાના વેગ પર અનુક્રમે સાંદ્રતા અને તાપમાનના ફેરફારની અસરનો અભ્યાસ કરવો.

સિદ્ધાંત :

સોડિયમ થાયોસલ્ફેટ હાઇડ્રૉક્લોરિક ઍસિડ સાથે પ્રક્રિયા કરે છે અને સલ્ફરનું કલિલમય દ્રાવણ નીપજે છે જે દ્રાવણને પારભાસક (translucent) બનાવે છે. પ્રક્રિયા નીચે પ્રમાણે થાય છે :

$$Na_2S_2O_3(aq) + 2HCl(aq) \rightarrow 2NaCl(aq) + H_2O(l) + SO_2(g) + S(s)$$
 ઉપરની પ્રક્રિયાને આયનીય સ્વરૂપમાં નીચે પ્રમાણે લખી શકાય :

સલ્ફરના કલિલમય દ્રાવણનો પ્રણાલીને પારભાસિત બનાવવાનો ગુણધર્મ સલ્ફરના અવક્ષેપનના વેગના અભ્યાસ માટે ઉપયોગમાં લેવાય છે. સલ્ફરની અવક્ષેપન પ્રક્રિયાનો વેગ પ્રક્રિયા કરતાં પદાર્થોની સાંદ્રતામાં વધારા સાથે તથા તાપમાનના વધારા સાથે વધે છે. સાંદ્રતાના વધારા સાથે પ્રતિ સમય આણ્વીય સંઘાતની (અથડામણ) (Collision) સંખ્યા વધે છે અને પરિણામે નીપજની બનાવટમાં વધારો થાય છે. આને પરિણામે સલ્ફરના અવક્ષેપનનો વેગ વધે છે. તે જ પ્રમાણે તાપમાનમાં વધારાથી પ્રક્રિયા કરતી સ્પીસિઝની ગતિજ ઊર્જા વધે છે અને તેને પરિણામે, સંઘાત કરતાં અણુઓ જે નીપજમાં પરિણમે છે તે પણ વધે છે અને તે વધુ ઝડપી પ્રક્રિયા-વેગ તરફ દોરી જાય છે.

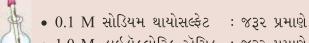
: એક

રાસાયણિક ગતિકી

જરૂરી સામગ્રી :

• બીકર (100 mL)

• બ્યુરેટ (50 mL) : એક


• पिपेट (25 mL) : એક

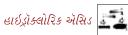
• पिपेट (5 mL) : એક

• બ્યુરેટ સ્ટૅન્ડ : એક • સ્ટૉપવૉચ : એક

: એક

• थ२मॉभिट२ (110 °C)

• 1.0 M હાઇડ્રૉક્લોરિક ઍસિડ : જરૂર પ્રમાણે


પદ્ધતિ :

A. પ્રક્રિયા વેગ પર સાંદ્રતાની અસર

- એક ટ્રફ લો અને તેની અડધે સુધી પાણીથી ભરી દો. આ ઓરડાના તાપમાનને જાળવી રાખતું અચળ તાપમાન જળઉષ્મક તરીકે કાર્ય કરશે.
- બ્યુરેટને 1.0 M HCl દ્રાવણ વડે વીંછળો અને પછી તેમાં HCl ભરો. (ii)
- (iii) 100 mLનું એક બીકર લો અને તેના પર તળિયાની બહારની સપાટીની મધ્યમાં 'X' નિશાની ગ્લાસ માર્કિંગ પેન્સિલ વડે કરો. તેમાં 50 mL 0.1 M સોડિયમ થાયોસલ્ફેટ દ્રાવણ ભરો. બીકરને ટ્રફમાં મૂકો. પ્રણાલી પારદર્શક હોવાથી બીકર પરની 'X' નિશાની નરી આંખે જોઈ શકાશે. બીકરને થોડી મિનિટો માટે ટ્રફમાં રાખી મૂકો. જેથી તે જળઉષ્મક જેટલું તાપમાન પ્રાપ્ત કરે.
- (iv) બ્યુરેટની મદદ વડે 1.0 mL 1.0 M HClનું દ્રાવણ ઉમેરો. જ્યારે અડધું દ્રાવણ (એટલે કે 0.5 mL) ઉમેરી દીધું હોય ત્યારે સ્ટૉપવૉચ ચાલુ કરો. HCl ઉમેરતી વખતે બીકરને ગોળ-ગોળ ફેરવતા રહો.
- જ્યારે બીકરના તળિયા પર કરેલ નિશાની 'X' દેખાતી બંધ થાય ત્યારે થયેલો સમય નોંધો. (આને પ્રક્રિયા પૂર્ણ થયાના તબક્કા તરીકે ગણવામાં આવે છે.)
- (vi) દરેક વખતે તાજું નવેસરથી સોડિયમ થાયોસલ્ફેટનું દ્રાવણ લઈ 2 mL, 4 mL, 8 mL અને 16 mL 1.0 M હાઇડ્રૉક્લોરિક ઍસિડ ઉમેરીને પ્રયોગનું પુનરાવર્તન કરો અને દરેક કિસ્સામાં અલગ રીતે નિશાની 'X' અદશ્ય થવા માટે લાગતા સમય નોંધો.

B. પ્રક્રિયા દર પર તાપમાનની અસર

- 100 mL બીકર જેમાં તળિયે 'X' નિશાની કરી હતી તેમાં 50 mL 0.1 M સોડિયમ થાયોસલ્ફેટ દ્રાવણ લો. બીકરને 30 °C તાપમાને રાખેલા તાપસ્થાયીમાં (thermostat) મૂકો. 0.1 M હાઇડ્રૉક્લોરિક ઍસિડનું 5 mL દ્રાવણ ઉમેરો અને બીકરને ગોળ-ગોળ ફેરવતા જઈ હલાવતા રહો. જ્યારે હાઇડ્રૉક્લોરિક ઍસિડનું અડધું પ્રમાણ ઉમેર્યું હોય ત્યારે (એટલે કે 2.5 mL) સ્ટૉપવૉચ ચાલુ કરી દો.
- નિશાની 'X' અદેશ્ય થાય ત્યારનો સમય નોંધો.
- (iii) દરેક વખતે તાજું સોડિયમ થાયોસલ્ફેટનું દ્રાવણ લઈ પ્રયોગનું 40 °C,

પ્રયોગશાળા માર્ગદર્શિકા રસાયણવિજ્ઞાન

50 °C, 60 °C અને 70 °C તાપમાને પુનરાવર્તન કરો અને દરેક વખતે નિશાની 'X' અદશ્ય થાય તે સમય નોંધો.

- (iv) તમારાં અવલોકનો કોષ્ટક 2.1 અને 2.2માં નોંધો.
- (v) બે આલેખ દોરો. એકમાં ઉમેરેલા HClનું કદ (જે HClની સાંદ્રતા નક્કી કરે છે) અને નિશાની અદશ્ય થવા માટે લાગતો સમય લઈને આલેખ દોરો. બીજો આલેખ તાપમાન અને નિશાની અદશ્ય થવા માટે લાગતા સમયનો દોરો. આલેખ માટે સમયમાં વિચરણ X-ધરી પર અને કદમાં અથવા તાપમાનમાં વિચરણ Y-ધરી પર દોરો.

નોંધ: જો પ્રક્રિયાના વેગનો અભ્યાસ કરવા માટે તાપસ્થાયી (એટલે કે અચળ તાપમાન ઉષ્મક) પ્રાપ્ય ન હોય તો અચળ તાપમાન રાખવા માટે સામાન્ય જળઉષ્મકનો ઉપયોગ કરી શકાય, પરંતુ આ કિસ્સામાં ઉષ્મકનું અચળ તાપમાન જાળવી રાખવા માટે બહારથી ગરમ કરવું પડે. ઉષ્મકમાંના પાણીને પણ સતત હલાવતા રહેવું પડે.

કોષ્ટક 2.1 : સોડિયમ થાયોસલ્ફેટ અને હાઇડ્રૉક્લોરિક ઍસિડ વચ્ચેની પ્રક્રિયાના વેગ પર HCIની સાંદ્રતાની અસર

દરેક વખતે વાપરેલ $Na_2S_2O_3$ દ્રાવશનો જથ્થો = 50 mL $Na_2S_2O_3$ દ્રાવશની સાંદ્રતા = 0.1 M, ઓરડાનું તાપમાન = $_$ °C પ્રક્રિયા મિશ્રણમાં વાપરેલ HCl દ્રાવશની સાંદ્રતા = 1.0 M

અનુક્રમ	ઉમેરેલા HClનું કદ mLમાં	નિશાની 'X' અદેશ્ય થવા માટે લાગેલો સમય 't' સેકન્ડમાં
1	1.0	
2	2.0	
3	4.0	
4	8.0	
5	16.0	

કોષ્ટક 2.2 : સોડિયમ થાયોસલ્ફેટ અને હાઇડ્રૉક્લોરિક ઍસિડ વચ્ચેની પ્રક્રિયાના વેગ પર તાપમાનની અસર

દરેક વખતે લીધેલ સોડિયમ થાયોસલ્ફેટનું કદ = 50 mL દરેક વખતે લીધેલ HClનું કદ = 5 mL

અનુક્રમ	પ્રક્રિયા મિશ્રણનું તાપમાન/∘C	નિશાની 'X' અદેશ્ય થવા માટે લાગેલો સમય 't' સેકન્ડમાં
1	30	
2	40	
3	50	
4	60	
5	70	

પરિણામ :

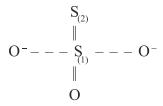
કોષ્ટક 2.1 અને 2.2ની માહિતીના આધારે તમારાં તારણો લખો.

રાસાયણિક ગતિકી

- (a) પ્રક્રિયા ફ્લાસ્કમાં ઉમેરેલ દ્રાવણ અડધું થાય ત્યારે સ્ટૉપવૉચ ચાલુ કરી દો અને નિશાની 'X' અદશ્ય થાય ત્યારે સ્ટૉપવૉચ બંધ કરી દો.
- (b) જો અચળ તાપમાન ઉષ્મક પ્રાપ્ય ન હોય તો અચળ તાપમાન જાળવી રાખવા માટે ઉષ્મકમાંના પાણીને ગરમ કરો જેમાં બીકરને સમયાંતરે સતત હલાવતા રહો અને જેવું તાપમાન આવી જાય કે તરત જ બર્નર ખસેડી નાંખશો.
- (c) આલેખ દોરવા માટે યોગ્ય માપક્રમ પસંદ કરો.

પરીક્ષણ હેઠળની પ્રક્રિયા નીચે પ્રમાણે છે : (i)

$$S_2O_3^{2-}$$
 (aq) + 2H⁺ (aq) $\rightarrow H_2O(l) + SO_2(g) + S(s)$


આ પ્રક્રિયા-વેગ નિયમની રજૂઆત નીચેની રીતે લખીએ તો કઈ શરતો હશે તે લખો :

સલ્ફરનો અવક્ષેપન વેગ $= k [S_2 O_3^{2-}] [H^+]^2$

- ધારો કે ઉપરની સલ્ફરના અવક્ષેપન માટેના વેગ નિયમની રજૂઆત વાજબી છે તો $\mathbf{S}_2\mathbf{O}_3^{2-}$ આયન અને \mathbf{H}^+ આયનની (ii) સાંદ્રતા બમણી કરવામાં આવે તો પ્રક્રિયાનો વેગ કેટલા ગણો થશે ?
- આપેલ પ્રક્રિયા માટે પ્રક્રિયાનો વેગ વધે છે, પરંતુ કોઈ એક તાપમાને વેગ અચળાંક અચળ રહે છે આ નિવેદન પર આલોચના કરો.
- પ્રક્રિયાનો વેગ અચળાંક તાપમાન સાથે કેવી રીતે બદલાય છે ?
- નીચે આપેલી પ્રક્રિયા માટે એકબેઝિક ઍસિડ સલ્ફરના અવક્ષેપનનો વેગ કેવી રીતે આધારિત છે તેનો અભ્યાસ (v) કરવા માટેના પ્રયોગની રચના કરો :

$$S_2O_3^{2-}$$
 (aq) + 2H⁺ (aq) \rightarrow H₂O(l) + SO₂(g) + S(s)

- બીકરમાં પ્રક્રિયકનું અડધું પ્રમાણ ઉમેરવામાં આવે ત્યારે જ સ્ટૉપવૉચ/સ્ટૉપ ક્લૉક શા માટે ચાલુ કરવી જોઈએ ? (vi)
- $S_2O_3^{2-}$ આયનની રચના નીચે પ્રમાણે વર્ણવી છે : (vii)

પ્રયોગશાળા માર્ગદર્શિકા રસાયણવિજ્ઞાન

અહીંયા, બે સલ્ફર પરમાણુઓને (1) અને (2) એમ ચિહ્નિત કર્યા છે. તમારા મત પ્રમાણે આ બે સલ્ફર પરમાણુઓમાંથી કયો સલ્ફર પરમાણુ કલિલમય સલ્ફર તરીકે અવક્ષેપિત થયો હશે ? તમે તમારા ઉત્તરને પ્રાયોગિક રીતે કેવી રીતે ચકાસશો ?

- (viii) પ્રક્રિયાનો ક્રમ અને પ્રક્રિયાની આણ્વીયતા વચ્ચે શું તફાવત છે ?
- (ix) પ્રક્રિયાની આણ્વીયતા શૂન્ય હોઈ શકે નહિ પરંતુ પ્રક્રિયા ક્રમ શૂન્ય હોઈ શકે ? સમજાવો.
- (x) શું પ્રક્રિયાનો ક્રમ અપૂર્ણાંક રાશિ હોઈ શકે ?
- (xi) ધારો કે ઉપરની પ્રક્રિયા તૃતીય ક્રમની ગતિકીને અનુસરે છે તો પ્રક્રિયા વેગ અને વેગ-અચળાંકના એકમો કેવી રીતે દર્શાવાય ?

પ્રયોગ 2.2

હેતુ :

ઓરડાના તાપમાને આયોડાઇડ આયન અને હાઇડ્રૉજન પેરૉક્સાઇડ વચ્ચેની પ્રક્રિયાના વેગ પર આયોડાઇડ આયનની સાંદ્રતામાં ફેરફારની અસરનો અભ્યાસ કરવો.

સિદ્ધાંત :

આયોડાઇડ આયનો અને હાઇડ્રૉજન પેરૉક્સાઇડ વચ્ચેની પ્રક્રિયા ઍસિડિક માધ્યમમાં થાય છે અને તેને નીચે પ્રમાણે રજૂ કરી શકાય.

2 (aq) +
$$H_2O_2(l)$$
 + $2H^+$ (aq) $\rightarrow I_2(g)$ + $2H_2O(l)$

આ પ્રક્રિયામાં હાઈડ્રૉજન પેરૉક્સાઈડ આયોડાઈડ આયનોનું (I⁻) આણ્વીય આયોડિનમાં ઑક્સિડેશન કરે છે. જો સોડિયમ થાયોસલ્ફેટનો ગણતરી કરેલ જથ્થો સ્ટાર્ચ સૂચકની હાજરીમાં ઉપરના પ્રક્રિયા મિશ્રણમાં ઉમેરવામાં આવે તો મુક્ત થતો આયોડિન જે ઝડપે બને છે તે ઝડપે થાયોસલ્ફેટ સાથે પ્રક્રિયા કરે છે અને થાયોસલ્ફેટ આયન જયાં સુધી ઑક્સિડેશન પામી ટેટ્રાથાયોનેટ આયનોમાં રૂપાંતર થતો રહે છે ત્યાં સુધી તે આયોડાઇડ આયનોમાં ફરી રિડક્શન પામતો રહે છે.

$$I_2(g) + S_2O_3^{2-}(aq) \rightarrow S_4O_6^{2-}(aq) + 2I^-(aq)$$

થાયોસલ્ફેટ આયનોનો સંપૂર્ણ વપરાશ થઈ ગયા પછી હાઈડ્રૉજન પેરૉક્સાઇડની આયોડાઇડ આયનો સાથેની પ્રક્રિયાથી મુક્ત થતો આયોડિન ઝડપથી વધે છે અને આયોડિન સ્ટાર્ચ સાથે ઘેરો વાદળી સંકીર્ણ બનાવે છે. થાયોસલ્ફેટ આયનોના નિશ્ચિત જથ્થાના વપરાશ માટે લાગતો સમય પુનરૂત્પાદીય હોય છે. રંગ દેખાવા માટે લાગતો સમય નોંધવામાં આવે છે તેથી પ્રક્રિયાને કેટલીક વખત ઘડિયાળ (Clock) પ્રક્રિયા કહે છે.

રાસાયણિક ગતિકી

જરૂરી સામગ્રી :

- કોનિકલ ફ્લાસ્ક (250 mL) : પાંચ
- કોનિકલ ફ્લાસ્ક (500 mL) : એક
- સ્ટૉપવૉચ : એક
- અંકિત નળાકાર (100 mL) : એક
 - ट्रेई

•

- સ્ટાર્ચ દ્રાવણ : જ
 - ઃ જરૂર પ્રમાણે
- 2.5 M સલ્ફ્યુરિક ઍસિડ દ્રાવણ : જરૂર પ્રમાણે
- 0.1 M પોટૅશિયમ આયોડાઇડ દ્રાવશ : જરૂર પ્રમાશે
- 0.04 M સોડિયમ થાયોસલ્ફેટ દ્રાવણ : જરૂર પ્રમાણે
- 3 % હાઇડ્રૉજન પેરૉક્સાઇડ દ્રાવણ : જરૂર પ્રમાણે

પદ્ધતિ :

- (i) 500 mL કોનિકલ ફ્લાસ્ક જેને A વડે ચિહ્નિત કર્યો છે, તેમાં 3 % હાઇડ્રૉજન પેરૉક્સાઇડના 2.5 mL, 2.5 M ${\rm H_2SO_4}$ દ્રાવણના 25 mL, 5 mL તાજું બનાવેલું સ્ટાર્ચનું દ્રાવણ અને 195 mL પાણી લો. આ દ્રાવણને હલાવો અને ઓરડાનું તાપમાન જાળવેલ જળઉષ્મકમાં ગોઠવો.
- (ii) ચાર 250 mL કોનિકલ ફ્લાસ્ક લો અને તેમને B, C, D અને E એમ ચિહ્નિત કરો.
- (iii) સોડિયમ થાયોસલ્ફેટ દ્રાવણ, પોટૅશિયમ આયોડાઇડ દ્રાવણ અને નિસ્યંદિત પાણી ફ્લાસ્ક B, C અને D માં નીચેના તબક્કામાં જણાવ્યા પ્રમાણેના જથ્થામાં લો અને ફ્લાસ્ક Eને પ્રક્રિયા કરવા માટે રાખો.
- (iv) B ચિહ્નિત કરેલ ફ્લાસ્કમાં 10 mL 0.04 M સોડિયમ થાયોસલ્ફેટ દ્રાવણ, 0.1 M પોટૅશિયમ આયોડાઇડ દ્રાવણના 10 mL અને 80 mL નિસ્યંદિત પાણી લો. ફ્લાસ્કમાં પદાર્થોને હલાવો અને જળઉષ્મકમાં મૂકો.
- (v) C ચિહ્નિત કરેલા ફ્લાસ્કમાં 0.04 M સોડિયમ થાયોસલ્ફેટ દ્રાવણના 10 mL, 0.1 M પોટૅશિયમ આયોડાઇડ દ્રાવણના 20 mL અને 70 mL નિસ્યંદિત પાણી લો. પરિણમતા દ્રાવણને હલાવો અને તેને તબક્કા (iv)માંના ફ્લાસ્કને રાખેલ છે તે જ જળઉષ્મકમાં મૂકો.
- (vi) D ચિહ્નિત કરેલા ફલાસ્કમાં 0.04 M સોડિયમ થાયોસલ્ફ્રેટના 10 mL, 0.1 M પોટેશિયમ આયોડાઇડ દ્રાવણના 30 mL અને 60 mL નિસ્યંદિત પાણી લો. દ્રાવણને સારી રીતે હલાવો અને ફ્લાસ્કને ઉપર પ્રમાણેના જળઉષ્મકમાં મૂકો.
- (vii) ફ્લાસ્ક E લો. અંકિત નળાકારની મદદ વડે માપીને 25 mL દ્રાવણ A ફ્લાસ્કમાંથી લઈ ઉમેરો. હવે સતત હલાવતા રહીને ફ્લાસ્ક Bમાંથી 25 mL દ્રાવણ તેમાં ઉમેરો. જયારે B ફ્લાસ્કમાંનું દ્રાવણ અડધું ઉમેરાઈ જાય ત્યારે સ્ટૉપવૉચ ચાલુ કરો. ફ્લાસ્ક E ને જળઉષ્મકમાં રાખો તેથી અચળ તાપમાન જાળવી શકાય. હવે વાદળી રંગ દેખાય તે માટે લાગેલો સમય નોંધો.
- (viii) સંપૂર્ણ રીતે ઉપર પ્રમાણે જ ફ્લાસ્ક C અને D નાં દ્રાવણોનો ઉપયોગ કરી અલગ અલગ રીતે, આ ફ્લાસ્ક્રમાંનાં દ્રાવણોના 25 mL અને ફ્લાસ્ક્ર

હાઇડ્રૉજન પેરૉક્સાઇડ

જોખમ-ચેતવણી

 હાઇડ્રૉજન પેરૉક્સાઇડનો દહનશીલ દ્રવ્ય સાથેનો સંપર્ક આગનું કારણ બની શકે છે.

પ્રયોગશાળા માર્ગદર્શિકા રસાયણવિજ્ઞાન

Aમાંથી 25 mL દ્રાવણ ઉમેરી પ્રયોગનું પુનરાવર્તન કરો. દરેક કિસ્સામાં વાદળી રંગ દેખાવા માટે લાગતો સમય નોંધો.

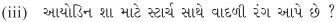
- ફ્લાસ્ક B, C અને Dના દ્રાવણો લઈને બેવાર પ્રયોગનું પુનરાવર્તન કરો (ix) અને વાદળી રંગ દેખાવાના સમયની સરેરાશ લો.
- તમારાં અવલોકનો આપેલ કોષ્ટક 2.3માં નોંધો. (x)
- બધી જ ત્રણેય પ્રણાલી માટે વાદળી રંગ દેખાવા માટે લાગેલા સમયની સરખામણી કરો અને આયોડાઇડ આયનોની સાંદ્રતાના ફેરફારની પ્રક્રિયાના વેગ પર થતી અસર અંગે સામાન્યીકરણ કરો.

કોષ્ટક 2.3 : ઍસિડિક માધ્યમમાં આયોડાઇડ આયન અને હાઇડ્રૉજન પેરૉક્સાઇડ વચ્ચેની પ્રક્રિયા વેગનો અભ્યાસ

અનુ-	પ્રણાલીનું સંઘટન	વાદળી રંગ દેખાવા માટે લાગેલો સમય		સરેરાશ
ક્રમ		પ્રથમ વાચન-આંક	દ્વિતીય વાચન-આંક	સમય
1.	ફ્લાસ્ક Aમાંથી 25 mL દ્રાવણ +			
	ફ્લાસ્ક Bમાંથી 25 mL દ્રાવણ			
2.	ફ્લાસ્ક Aમાંથી 25 mL દ્રાવણ +			
	ફ્લાસ્ક Cમાંથી 25 mL દ્રાવણ			
3.	ફ્લાસ્ક Aમાંથી 25 mL દ્રાવણ +			
	ફ્લાસ્ક Dમાંથી 25 mL દ્રાવણ			

પરિણામ :

કોષ્ટક 2.3 માં નોંધેલી માહિતીને આધારે તમારાં તારણો લખો.


સાવચેતીઓ :

- (a) હંમેશાં પોટેશિયમ આયોડાઈડના દ્રાવણની સાંદ્રતા કરતાં સોડિયમ થાયોસલ્ફેટની સાંદ્રતા ઓછી રાખો.
- (b) હંમેશાં તાજું જ બનાવેલું સ્ટાર્ચ દ્રાવણ વાપરો.
- (c) હાઇડ્રૉજન પેરૉક્સાઇડ અને પોટૅશિયમ આયોડાઇડના તાજા જ નમૂના વાપરો.
- (d) અવલોકનોના બંને અલગ-અલગ સેટમાં માપીને લેવાનાં દ્રાવણો માટે હંમેશા એક જ અંકિત નળાકાર વાપરો. જો દ્રાવણ લીધા પછી નળાકારનો ફરી ઉપયોગ કરવાનો થાય ત્યારે તેનો ઉપયોગ કરતાં પહેલાં બરાબર સાફ કરો.
- (e) વાદળી રંગ દેખાય કે તરત જ સમય નોંધી લો.

- આ પ્રયોગમાં આયોડિન અને આયોડાઇડ આયનોના ફાળા (role) વચ્ચે વિભેદન કરો.
- ટેટ્રાથાયોનેટ આયન $(\mathrm{S}_4\mathrm{O}_6^{2-})$ માં સલ્ફરનો ઑક્સિડેશન આંક ગણો. શું ઑક્સિડેશન આંક અપૂર્ણાંક સંખ્યા હોઈ શકે ?

રાસાયણિક ગતિકી

- આ પ્રયોગમાં $\mathrm{H_{2}O_{2}}$ ને બદલે બીજા કોઈ ઑક્સિડેશનકર્તાના ઉપયોગની શક્યતાને માટે અન્વેષણ કરો. (iv)
- આ પ્રક્રિયાને ઘડિયાળ (clock) પ્રક્રિયા નામ શા માટે આપવામાં આવ્યું છે ? (v)
- (vi) હંમેશા સોડિયમ થાયોસલ્ફેટ દ્રાવણની સાંદ્રતા શા માટે પોટૅશિયમ આયોડાઇડ દ્રાવણની સાંદ્રતા કરતાં ઓછી રાખવામાં આવે છે ?

પ્રયોગ 2.3

હેતુ :

પોટૅશિયમ આયોડેટ (KIO₃) અને સોડિયમ સલ્ફાઇટ (Na₃SO₃) વચ્ચેની પ્રક્રિયાના પ્રક્રિયા-વેગનો અભ્યાસ કરવો.

સિદ્ધાંત :

KIO, અને Na,SO, વચ્ચેની પ્રક્રિયા આડકતરી રીતે આયોડાઇડ આયનની બનાવટને સમાવિષ્ટ કરે છે. જેનું ઍસિડિક માધ્યમમાં IO, આયન દ્વારા આયોડિનમાં ઑક્સિડેશન થાય છે. એકંદર પ્રક્રિયા નીચેના બે તબક્કામાં આગળ વધે છે:

$$IO_3^- + 3SO_3^{2-} \rightarrow I^- + 3SO_4^{2-}$$
 (1)

$$5I^{-} + 6H^{+} + IO_{3}^{-} \rightarrow 3H_{2}O + 3I_{2}$$
 (2)

ઉત્પન્ન થયેલો આયોડિન અગાઉના પ્રયોગમાં વર્ણવ્યા પ્રમાણે સ્ટાર્ચ સાથે વાદળી રંગ પેદા કરે છે. આ પ્રક્રિયા પણ અગાઉની પ્રક્રિયાની જેમ 'ઘડિયાળ (clock) પ્રક્રિયા' તરીકે ઓળખાય છે.

જરૂરી સામગ્રી :

- કોનિકલ ફ્લાસ્ક
- અંકિત નળાકાર (100 mL)
- સ્ટૉપવૉચ : એક
- · 25

- : એક

: એક

- 2M સલ્ફ્યુરિક ઍસિડ : જરૂરિયાત પ્રમાણે
- 5 % સ્ટાર્ચ દ્રાવણ ઃ જરૂરિયાત પ્રમાણે
- 6 % પોટૅશિયમ આયોડેટ
 - દ્રાવણ ઃ જરૂરિયાત પ્રમાણે
- 6 % સોડિયમ સલ્ફાઈટ
 - ઃ જરૂરિયાત પ્રમાણે દ્રાવણ

પદ્ધતિ :

- (i) 250 mL કોનિકલ ફ્લાસ્ક લો અને તેને A ચિહ્નિત કરો. તેમાં 6 % પોટૅશિયમ આયોડેટ દ્રાવશના 25 mL, $2.0 \text{ M H}_2\text{SO}_4$ ના 25 mL અને 50 mL નિસ્યંદિત પાણી લો. ફ્લાસ્કમાંના દ્રાવણને હલાવો. ફ્લાસ્કને પાણીથી અડધા ભરેલા ટ્રફમાં મૂકો. આ અચળ તાપમાન જળઉષ્મક તરીકે કાર્ય કરશે.
- (ii) પાંચ 250 mL કોનિકલ ફ્લાસ્ક લો અને તેમને અનુક્રમે B, C, D, E અને F એમ ચિહ્નિત કરો. નીચેના તબક્કામાં દર્શાવ્યા પ્રમાણે ફ્લાસ્ક B, C, D અને Eમાં 6 % સોડિયમ સલ્ફાઇટ દ્રાવણ, સ્ટાર્ચ દ્રાવણ અને નિસ્યંદિત પાણી લો. ફ્લાસ્ક F ને પ્રક્રિયા કરવા માટે રાખો.
- (iii) કોનિકલ ફ્લાસ્ક 'B' માં 250 mL સોડિયમ સલ્ફાઇટ દ્રાવણ, 5 mL સ્ટાર્ચ દ્રાવણ અને 75 mL નિસ્યંદિત પાણી લો. પરિણમતા દ્રાવણને બરાબર હલાવો અને તેને જળઉષ્મકમાં રાખો.
- (iv) કોનિકલ ફ્લાસ્ક 'C' માં 15 mL સોડિયમ સલ્ફાઇટ દ્રાવણ, 5 mL સ્ટાર્ચ દ્રાવણ અને 80 mL નિસ્યંદિત પાણી લો. પરિણમતા દ્રાવણને બરાબર હલાવો અને જળઉષ્મકમાં મૂકો.
- (v) કોનિકલ ફ્લાસ્ક 'D' માં 10 mL સોડિયમ સલ્ફાઇટ દ્રાવણ, 5 mL સ્ટાર્ચ દ્રાવણ અને 85 mL નિસ્યંદિત પાણી લો. પરિણમતા દ્રાવણને બરાબર હલાવો અને જળઉષ્મકમાં મૂકો.
- (vi) કોનિકલ ફ્લાસ્ક 'E' માં 5 mL સોડિયમ સલ્ફાઇટ દ્રાવણ, 5 mL સ્ટાર્ચ દ્રાવણ અને 90 mL નિસ્યંદિત પાણી લો. દ્રાવણને બરાબર હલાવો અને જળઉષ્મકમાં મૂકો.
- (vii) કોનિકલ ફ્લાસ્ક 'F' લો. આ ફ્લાસ્કમાં 'A' યિહ્ન કરેલા કોનિકલ ફ્લાસ્કમાંથી 25 mL દ્રાવણ લો અને 'B' યિહ્ન કરેલા ફ્લાસ્કમાંથી 25 mL દ્રાવણ ઉમેરો. જ્યારે ફ્લાસ્ક 'B'માંનું દ્રાવણ અડધું ઉમેરાય ત્યારે સ્ટૉપવૉચ ચાલુ કરો. બંને દ્રાવણોને સતત હલાવીને સારી રીતે મિશ્ર કરો અને જળઉષ્મકમાં રાખો. વાદળી રંગ દેખાવા માટે લાગતો સમય નોંધો. (તમે સ્ટૉપવૉચ/કાંડા ઘડિયાળનો ઉપયોગ સમય માપવા માટે કરી શકો છો.)
- (viii) આ જ પ્રમાણે ફ્લાસ્ક 'B' માંના દ્રાવણ માટે કર્યા પ્રમાણે દરેક ફ્લાસ્ક C, D અને Eમાંથી અનુક્રમે 25 mL દ્રાવણ લઈને પ્રયોગનું પુનરાવર્તન કરો અને દરેક કિસ્સામાં વાદળી રંગ દેખાવા માટે લાગતો સમય નોંધો. (ફરી એકવાર સાવચેતી રાખવાની કે દરેક પ્રયોગના પુનરાવર્તનમાં વાદળી રંગ દેખાવા માટે લાગતા સમયના બે વાચનઆંક લેવાના જેથી કરીને તેમનું સરેરાશ વાચનઆંક મેળવી શકાય.)

નોંધ :

- દરેક ફ્લાસ્કમાં વ્રાવણનો કુલ જથ્થો 100 mL છે.
- સૂચકના સમાન જથ્થાનો ઉપયોગ કરવામાં આવ્યો છે.

રાસાયણિક ગતિકી

- (ix) તમારાં અવલોકનો કોષ્ટક 2.4 માં નોંધો.
- (x) કોષ્ટકમાં નોંધેલાં પરિશામો પરથી સોડિયમ સલ્ફાઇટની સાંદ્રતામાં ફેરફાર અને વાદળી રંગ દેખાવા માટે લાગતા સમય વચ્ચેનો સંબંધ શોધી કાઢો.

કોષ્ટક 2.4 : ઍસિડિક માધ્યમમાં પોટૅશિયમ આયોડેટ ($\mathrm{KIO_3}$) અને સોડિયમ સલ્ફાઇટ ($\mathrm{Na_2SO_3}$) વચ્ચેની પ્રક્રિયાના પ્રક્રિયા-વેગનો અભ્યાસ

અનુ- ક્રમ	પ્રણાલીનું સંઘટન	વાદળી રંગ દેખાવા માટે લાગતો સમય (સેકન્ડમાં)		સરેરાશ સમય/સેકન્ડ
1.	ફ્લાસ્ક Aમાંથી 25 mL દ્રાવણ + ફ્લાસ્ક Bમાંથી 25 mL દ્રાવણ	પ્રથમ વાચન-આંક	દ્વિતીય વાચન-આંક	
2.	ફ્લાસ્ક Aમાંથી 25 mL દ્રાવણ + ફ્લાસ્ક Cમાંથી 25 mL દ્રાવણ			
3.	ફ્લાસ્ક Aમાંથી 25 mL દ્રાવણ + ફ્લાસ્ક Dમાંથી 25 mL દ્રાવણ			
4.	ફ્લાસ્ક Aમાંથી 25 mL દ્રાવણ + ફ્લાસ્ક Eમાંથી 25 mL દ્રાવણ			

પરિણામ :

કોષ્ટક 2.4 માં નોંધેલી માહિતીના આધારે તમારાં તારણો લખો.

સાવચેતીઓ :

- (a) સોડિયમ સલ્ફાઇટની હવામાં ઑક્સિડેશન પામવાની શક્યતા હોવાને કારણે હંમેશાં તેનું તાજું જ દ્રાવણ વાપરવું.
- (b) સોડિયમ સલ્ફાઇટના દ્રાવણની સાંદ્રતા કરતાં પોટેશિયમ આયોડેટ દ્રાવણની સાંદ્રતા વધારે રાખવી.
- (c) તાજું જ બનાવેલું સ્ટાર્ચ દ્રાવણ વાપરો.
- (d) ફ્લાસ્ક A માંના 25 mL દ્રાવણ ધરાવતા કોનિકલ ફ્લાસ્ક F માં ફ્લાસ્ક B, C, D અથવા Eમાંથી ઉમેરવાના દ્રાવણમાંથી અડધું દ્રાવણ ઉમેરાય ત્યારે સ્ટૉપવૉચ ચાલુ કરવી.

उट्टा थथ

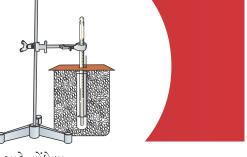
⁾ ચર્ચાત્મક પ્રશ્નો :

- (i) જો ઉપરના કિસ્સામાં તાપમાનનો ફેરફાર 10 °C વધારવામાં આવે, તો વાદળી રંગ દેખાવામાં લાગતો સમય કેવી રીતે ચલિત થશે ?
- (ii) પ્રવર્તમાન અભ્યાસમાં પ્રક્રિયા-વેગને અસર કરતાં પરિબળો જણાવો.

- પ્રયોગશાળા માર્ગદર્શિકા રસાયણવિજ્ઞાન
- (iii) આ પ્રયોગમાં હાઇડ્રૉક્લોરિક અથવા નાઇટ્રિક ઍસિડમાંથી કયો ઍસિડ માધ્યમને ઍસિડિક બનાવવામાં યોગ્ય રહેશે ? તમારા જવાબને કારણ સહિત સમજાવો.
- (iv) નીચે આપેલી પ્રક્રિયાઓ (1) અને (2) માંથી

$$IO_3^- +3SO_3^{2-} \rightarrow I^- +3SO_4^{2-}$$
 (1)


$$5I^- + IO_3^- + 6H^+ \rightarrow 3H_2O + 3I_2$$
 (2)


કઈ પ્રક્રિયા-વેગ નિર્ધારિત કરનારી પ્રક્રિયા હશે ?

પ્રક્રિયાવેગ નિર્ધારિત કરતી પ્રક્રિયાની આશ્વીયતા કેટલી હશે ?

- (v) ઉપરની પ્રક્રિયામાં SO_3^{2-} ને બદલે AsO_3^{3-} નો ઉપયોગ કરી શકાય ? યોગ્ય કારણો સાથે તમારા ઉત્તરને અનુમોદન આપો.
- (vi) શા માટે સોડિયમ સલ્ફાઇટ દ્રાવણની સાંદ્રતા કરતાં પોટૅશિયમ આયોડેટ દ્રાવણની સાંદ્રતા વધારે રાખવામાં આવે છે ?

એકમ 3 ઉષ્મારાસાયણિક માપન (Thermochemical Measurement)

મોટા ભાગની પ્રક્રિયાઓ વાતાવરણના દબાણે કરવામાં આવે છે. આથી આ પ્રક્રિયાઓ માટે નોંધેલા ઉષ્મા ફેરફારો એન્થાલ્પી ફેરફારો હોય છે. એન્થાલ્પી ફેરફાર તાપમાનના ફેરફાર સાથે સીધા જ નીચેના સંબંધ દ્વારા સંકળાયેલા છે :

$$\Delta H = q_p$$

$$= mC_p \Delta T$$

$$= VdC_p \Delta T$$

$$\forall V =$$
 દ્રાવણનું કદ
$$d =$$
 દ્રાવણની ઘનતા
$$C_p =$$
 ઉષ્માધારિતા
$$\Delta T =$$
 તાપમાનમાં ફેરફાર

ઉષ્મા ફેરફારનું માપન જે પાત્રમાં કરવામાં આવે છે તેને **ઉષ્મામાપક (કૅલરીમીટર)** કહે છે. થરમૉસ ફ્લાસ્કમાં મુકેલા બીકરમાં પણ પ્રક્રિયાઓ કરી શકાય છે અથવા ઉષ્મીય રીતે ઉષ્મારોધક (insulated) પેટી અથવા સ્ટાયરોફોર્મના કપમાં કરી શકાય છે. ધાત્વીય કૅલરીમીટરનો ઉપયોગ ઉષ્મારાસાયણિક ફેરફારના માપન માટે કરી શકાતો નથી. કારણ કે ધાતુઓ રસાયણો સાથે પ્રક્રિયા કરે છે. સ્ટેનલેસ સ્ટીલ અથવા સોનાનો ઢોળ ચઢાવેલ કોપર કૅલરીમીટર વાપરી શકાય છે. ઉષ્મા ફેરફારના માપન દરમિયાન કૅલરીમીટર, થરમૉમિટર અને વિલોડક (હલામણું) (stirrer) પણ કેટલીક ઉષ્મા શોષે છે. આ શોષાતી ઉષ્માની જાણકારી હોવી જોઈએ. તેને **કૅલરીમીટર અચળાંક** કહે છે. કાચના પાત્રનો (દા.ત., બીકર) જેટલો ભાગ પ્રક્રિયા મિશ્રણ સાથે સીધા જ સંપર્કમાં હોય તેનો કૅલરીમીટર અચળાંક શોધવામાં આવે છે. આ એટલા માટે કે કેલરીમીટરના દ્રવ્ય માટે ઉષ્માધારિતા નીચી હોય છે. પ્રક્રિયા મિશ્રણ સાથે સંપર્કમાં હોય તેટલા કૅલરીમીટરનું ક્ષેત્રફળ મહત્તમ ઉષ્મા શોષે છે. કૅલરીમીટર અચળાંક નક્કી કરવા માટે મિશ્રણની પદ્ધતિ ઉપયોગમાં લેવાય છે. કૅલરીમીટર અચળાંક નક્કી કરવા માટે નિશ્ચિત તાપમાને ગરમ પાણીનું જાણીતું કદ ઓરડાના તાપમાને કૅલરીમીટરમાં લેવામાં આવે છે. ઉષ્માનો સંચય થતો હોવાથી કૅલરીમીટર અને ઠંડા પાણીએ મેળવેલી ઉષ્મા ગરમ પાણીએ આપેલી ઉષ્માના બરાબર થશે. આથી આપણે નીચેનું સમીકરણ લખી શકીએ :

ધારો કે tૂ, tૣ અને tૣ અનુક્રમે ઠંડું પાણી, ગરમ પાણી અને મિશ્રણના તાપમાન છે. પછી એન્થાલ્પી ફેરફારની વ્યાખ્યાની દેષ્ટિએ એન્થાલ્પી ફેરફાર જે સમીકરણ (1)માં દર્શાવેલ છે તેને ફરી સમીકરણ (2) તરીકે લખી શકીએ.

પ્રયોગશાળા માર્ગદર્શિકા રસાયણવિજ્ઞાન

$$\begin{split} m_{_{1}}C_{_{p_{_{1}}}}(t_{_{m}}-t_{_{c}})+m_{_{2}}C_{_{p}}(t_{_{m}}-t_{_{c}})+m_{_{3}}C_{_{p}}(t_{_{m}}-t_{_{h}})=0 & ...(3) \\ \text{જયાં } m_{_{1}},m_{_{2}} \text{ અને } m_{_{3}} \text{ કેલરીમીટર, ઠંડું પાણી અને ગરમ પાણીના અનુક્રમે \\ દળ છે અને <math>C_{_{p_{_{1}}}}$$
 અને $C_{_{p}}$ અનુક્રમે કેલરીમીટરની અને પાણીની ઉષ્માધારિતા છે. કાચની ઉષ્મીય વાહકતા ઓછી હોવાથી બીકરનો તેટલો જ ભાગ જે પાણીના સંપર્કમાં આવે છે તે જ મહત્તમ ઉષ્મા મેળવશે. આપણે અસરકારક $m_{_{1}}C_{p_{_{1}}}$ (એટલે કે કેલરીમીટર અચળાંક W) ગણી શકીએ. સમીકરણ (3) ને ફરીથી લખીએ તો આપણને મળશે,

$$W(t_{m} - t_{c}) + m_{2}C_{p}(t_{m} - t_{c}) + m_{3}C_{p}(t_{m} - t_{h}) = 0$$

$$W = \frac{m_{2}C_{p}(t_{m} - t_{c}) + m_{3}C_{p}(t_{m} - t_{h})}{(t_{m} - t_{c})} \qquad ...(4)$$

પરંતુ ${\rm mC_p}={\rm VdC_p}$, જ્યાં V, d અને ${\rm C_p}$ અનુક્રમે પાણીના કદ, ઘનતા અને ઉષ્માધારિતા છે. પદાર્થની ઉષ્માધારિતાની વ્યાખ્યા પ્રમાણે તે 1g પદાર્થનું 1K (અથવા 1°C) તાપમાન વધારવા માટે જરૂરી ઊર્જાનો જથ્થો છે. 1g પાણીનું 1K (અથવા 1°C)તાપમાન વધારવા માટે જરૂરી ઊર્જા 4.184 જૂલ છે. આનો અર્થ એમ થાય છે કે, 1g પાણી માટે 1 કેલ્વિન તાપમાન વધારવા માટે ${\rm VdC_p}=4.184~{\rm JK^{-1}}$ થશે. આથી ઘનતા અને ઉષ્માધારિતાનો ગુણાકાર 4.184 ${\rm JmL^{-1}K^{-1}}$ લઈ શકાય. આથી સમીકરણ (4) નીચે પ્રમાણે લખી શકાય :

$$W = \frac{(4.184) \left[V_{c} \left(t_{m} - t_{c} \right) + V_{h} \left(t_{m} - t_{h} \right) \right]}{(t_{m} - t_{c})} JK^{-1} \qquad ... (5)$$

જ્યાં $V_c = \dot{\delta}$ ડા પાણીનું કદ છે.

 V_h = ગરમ પાણીનું કદ છે.

એન્થાલ્પી ફેરફાર માપવાની કાર્યપદ્ધતિ નીચેના પ્રયોગમાં આપેલ છે :

પ્રયોગ 3.1

હેતુ :

કૉપર સલ્ફેટ/પોટૅશિયમ નાઇટ્રેટની વિલયન (dissolution) એન્થાલ્પી નક્કી કરવી.

સિદ્ધાંત :

ઉષ્મારાસાયણિક માપનોમાં સામાન્ય રીતે જલીય દ્રાવણો મિશ્ર કરવામાં આવે છે. આથી પ્રક્રિયા માધ્યમમાં પાણી અને તાપમાન ફેરફાર દ્રાવણોમાં થતી રાસાયણિક પ્રક્રિયાઓને લીધે હોય છે.

ઉષ્મારાસાયણિક માપન

• કૉપર સલ્ફેટ/પોટૅશિયમ નાઇટ્રેટ

ઊર્જા સંચયના નિયમ પ્રમાણે કૅલરીમીટરમાં થતા એન્થાલ્પી ફેરફારનો સરવાળો (ઊર્જાનું ગુમાવવું અને મેળવવું) શૂન્ય થવો જોઈએ. આથી આપણે નીચેનું સમીકરણ લખી શકીએ :

$$(\Delta H_1)$$
 (ΔH_2) (ΔH_3) (ΔH_4) = 0 ... (6) કેલરીમીટર, થરમૉમિટર + કેલરીમીટરમાં + કેલરીમીટરમાં + પ્રક્રિયાનો

અને વિલોડકે દ્રાવણ/પાણીનો ઉમેરેલ દ્રાવણ/પાણીનો એન્થાલ્પી ફેરફાર

મેળવેલી ઉષ્મા એન્થાલ્પી ફેરફાર એન્થાલ્પી ફેરફાર

આ પ્રક્રિયામાં આપણે ઘનતા અને દ્રાવણોની ઉષ્માધારિતાનો ગુણાકાર dC_p ને $4.184~JmL^{-1}K^{-1}$ લઈએ છીએ જે શુદ્ધ પાણી*ની નજીક હોય છે.

ત્રાવણની રચના મુખ્યત્વે ઉષ્મા ફેરફાર સાથે સંકળાયેલ છે. દ્રાવણની એન્થાલ્પી એટલે જ્યારે એક મોલ દ્રાવ્યને (ઘન/પ્રવાહી) દ્રાવકના (સામાન્ય રીતે પાણી) એટલા વિશાળ જથ્થામાં ઓગાળવામાં આવે છે કે જેથી વધુ મંદન કરતાં તેમાં કોઈ ઉષ્મા ફેરફાર થાય નહિ.

જરૂરી સામગ્રી:

• બીકર (250 mL)

• બીકર (500 mL)

• થરમૉમિટર (110 °C)

• કાચનો સળિયો

• કોટન વૂલ

• નાનો લાકડાનો બ્લૉક

• કાર્ડબૉર્ડનો નાનો ટુકડો

• વિલોડક (હલામણું)

: ત્રણ

: એક

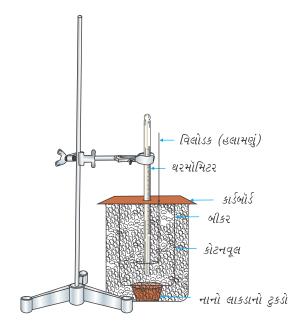
: એક

: એક

ઃ જરૂર પ્રમાણે

: એક : એક

: અક : એક


પદ્ધતિ :

A. કૅલરીમીટરના (બીકર) કૅલરીમીટર અચળાંકનું નિર્ધારણ

- (i) A ચિહ્ન કરેલ 250 mL ગુંજાશ (ધારિતા)વાળા બીકરમાં 100 mL પાણી લો.
- (ii) 500 mL ગુંજાશવાળા (capacity) બીકરમાં મૂકેલા લાકડાના બ્લૉક પર બીકરને ગોઠવો (આકૃતિ 3.1).
- (iii) મોટા બીકર અને નાના બીકર વચ્ચેની ખાલી જગ્યાને કોટન વૂલથી પૅક કરી દો. બીકરને કાર્ડબૉર્ડ વડે ઢાંકી દો. તેની મધ્યમાંથી બીકરમાં થરમૉમિટર અને વિલોડક દાખલ કરો.

^{*} દ્રાવણોની ઘનતા શુદ્ધ પાણીની ઘનતા કરતાં 4 થી 6 % વધારે હોય છે અને ઉષ્માધારિતા શુદ્ધ પાણીની ઉષ્માધારિતા કરતાં આશરે 4 થી 8 % જેટલી ઓછી હોય છે, તેથી ઘનતા અને ઉષ્માધારિતાનો (dC_p) ગુણાકાર, લગભગ શુદ્ધ પાણીના ગુણાકાર જેટલો હોય છે.

પ્રયોગશાળા માર્ગદર્શિકા રસાયણવિજ્ઞાન

આકૃતિ 3.1 : કૅલરીમીટર અચળાંકનું નિર્ધારણ

- (iv) પાણીનું તાપમાન નોંધો. આ તાપમાનને tૂ°C કહો.
- (v) B ચિહ્ન કરેલા બીજા 250 mL ગુંજાશવાળા બીકરમાં 100 mL ગરમ પાણી (50-60 °C) લો.
- (vi) ગરમ પાણીનું ચોક્કસ તાપમાન નોંધો. આ તાપમાનને t_h °C કહો.
- (vii) કાર્ડબૉર્ડને ઊંચું કરીને બીકર B માંનું ગરમ પાણી બીકર A ના પાણીમાં ઉમેરી દો. મિશ્ર કરેલા પાણીને હલાવો અને તેનું તાપમાન નોંધો. તેને તાપમાન t ^C કહો.
- (viii) ઉપર આપેલ સમીકરણ (5) પ્રમાણેનો ઉપયોગ કરી કેલરીમીટર અચળાંક (W) નક્કી કરો.

(યાદ રાખો કે ત્રણેય તાપમાન $t_{\rm h} > t_{\rm m} > t_{\rm c}$ ક્રમમાં છે.)

B. વિલયનની એન્થાલ્પીનું નિર્ધારણ

- (i) જેનો કેલરીમીટર અચળાંક નક્કી કર્યો છે તે બીકરમાં 100 mL નિસ્યંદિત પાણી લો. તેને 500 mL ગુંજાશવાળા બીકરમાં મૂકેલ લાકડાના બ્લૉક પર ગોઠવો (આકૃતિ 3.1).
- (ii) મોટા બીકર અને નાના બીકર વચ્ચેની ખાલી જગાને કોટનવૂલની મદદથી ભરી દો અને બીકરને કાર્ડબૉર્ડ વડે ઢાંકી દો.
- (iii) નાના બીકરમાં લીધેલા પાણીનું તાપમાન નોંધો. તેને t_1' °Cકહો.
- (iv) સારી રીતે ભૂકો કરેલા કૉપર સલ્ફેટનો W₁ g વજન કરેલો જથ્થો ઉમેરો અને વિલોડક વડે દ્રાવણને હલાવો. જેથી કૉપર સલ્ફેટનો બધો જ જથ્થો ઓગળી જાય.

ઉષ્મારાસાયણિક માપન

નોંધ : પોટૅશિયમ નાઇટ્રેટનો એન્થાલ્પી

ઉપયોગ આ પ્રયોગમાં કરવો.

ફેરફાર નક્કી કરવા માટે કોપર

સલ્ફેટના સ્થાને પોટૅશિયમ નાઇટ્રેટનો

(v) કૉપર સલ્ફેટ ઉમેર્યા પછી મળેલા દ્રાવણ વડે પ્રાપ્ત થયેલ તાપમાન નોંધો.

તેને tં, °C કહો. કૉપર સલ્ફેટની વિલયન એન્થાલ્પી નીચે પ્રમાણે ગણો :

$$= (100 + W_1) g$$

(પ્રયોગના તાપમાને પાણીની ઘનતા 1gmL-1 ધારી લો.

તાપમાનમાં ફેરફાર = (t', -t') °C.

કેલરીમીટરનો (બીકર) એન્થાલ્પી ફેરફાર = W (t', -t')

જ્યાં W = કેલરીમીટર અચળાં ક

 $(t_{2}^{'}-t_{1}^{'})$ °C તાપમાન વધારા માટે

દ્રાવણનો એન્થાલ્પી ફેરફાર $= [(100 + W_1) (t_2' - t_1')] \times 4.184J$

કૅલરીમીટર (બીકર) અને

દ્રાવણનો કુલ એન્થાલ્પી

=
$$[W(t'_2 - t'_1) + (100 + W_1)(t'_2 - t'_1)] 4.184 J$$

કેરફાર

1 ગ્રામ કૉપર સલ્ફેટના

વિલયન • દરમિયાન
$$= \frac{[W(t_{_2}^{'}-t_{_1}^{'})+(100+W_{_1})(t_{_2}^{'}-t_{_1}^{'})]\times 4.184J}{W_{_1}}$$
 મુક્ત થયેલી ઉખા

1 mol કૉપર સલ્ફેટનું વજન 249.5 g છે. તેથી,

$$CuSO_{_{4}} \, 5H_{_{2}}O \text{--ll} \, \, \Delta_{_{sol}}H \, = \, 249.5 \, \times \, \, \frac{[W(t_{_{2}}^{'} \, - \, t_{_{1}}^{'}) \, + \, (100W \, + \, W_{_{1}})(t_{_{2}}^{'} \, - \, t_{_{1}}^{'}) \,] \times \, 4.184J}{W_{_{1}}} \, \, Jmol^{-1}$$

પરિણામ :

કૉપર સલ્ફ્રેટ/પોટૅશિયમ નાઇટ્રેટના વિલયનમાં એન્થાલ્પી ફેરફાર Jmol-1 છે.

સાવચેતીઓ :

- (a) પાણીનું તાપમાન માપવા માટે 0.1 °C અંશાંકનવાળું થરમૉમિટર વાપરો.
- (b) કૅલરીમીટરનો અચળાંક નક્કી કરવા માટે ગરમ પાણીનું તાપમાન મિશ્ર કરતાં પહેલાં તરત જ નોંધો.
- (c) કૉપર સલ્ફેટ/પોટૅશિયમ નાઇટ્રેટનું વધુ પ્રમાણ (જથ્થો) વાપરવાનું ટાળો (ન વાપરો).
- (d) ઘન પદાર્થને સારી રીતે ઓગળવા દ્રાવણને હલાવો અને પછી તાપમાન નોંધો. વધારેપડતું હલાવવાનું ટાળો, કારણ કે ઘર્ષણને કારણે ઉખ્મા ઉત્પન્ન કરે.
- (e) કૉપર સલ્ફેટનું વજન ચોકસાઈપૂર્વક કરો. કારણ કે તે સ્વભાવે ભેજગ્રાહી છે.
- (f) બંને બીકર વચ્ચે ઉષ્મારોધન માટે કોટન વુલનો ઉપયોગ કરો.

પ્રયોગશાળા માર્ગદર્શિકા રસાયણવિજ્ઞાન

- (i) કૅલરીમીટર અચળાંક પર્યાયનો અર્થ શું થાય છે ?
- (ii) શા માટે $\Delta_{\rm sol} {
 m H}$ કેટલાક પદાર્થી માટે ૠણ છે, જ્યારે કેટલાક પદાર્થી માટે ધન છે ?
- (iii) તાપમાનના વધારા સાથે $\Delta_{
 m sol}{
 m H}$ કેવી રીતે બદલાય છે ?
- (iv) નિર્જળ કૉપર સલ્ફેટ અને સજળ કૉપર સલ્ફેટના સરખા જથ્થા માટે સરખા જથ્થાના દ્રાવકમાં એન્થાલ્પી ફેરફાર સરખો રહેશે કે અલગ હશે ? સમજાવો.
- (v) કૉપર સલ્ફેટ અને પોટૅશિયમ નાઇટ્રેટની દ્રાવ્યતા તાપમાનના વધારા સાથે કેવી રીતે અસર પામશે ? સમજાવો.

પ્રયોગ 3.2

હેતુ :

પ્રબળ ઍસિડ (HCl)ની પ્રબળ બેઈઝ (NaOH) સાથેના તટસ્થીકરણની એન્થાલ્પી નક્કી કરવી.

સિદ્ધાંત :

તટસ્થીકરણ પ્રક્રિયામાં ઍસિડ દ્વારા મળતા $H^+(aq)$ ની બેઈઝ દ્વારા મળતા $OH^-(aq)$ સાથેની સંયોગીકરણ પ્રક્રિયા સમાવિષ્ટ છે. જેથી $H_2O(I)$ નું સર્જન થાય છે. આ પ્રક્રિયામાં બંધ રચનાની ધારણા હોવાથી આ પ્રક્રિયા હંમેશાં ઉષ્માક્ષેપક હોય છે. તટસ્થીકરણ એન્થાલ્પીની વ્યાખ્યા આ પ્રમાણે આપી શકાય. ઍસિડ દ્વારા પૂરા પાડવામાં આવતા $1 \mod OH^-$ સાથે સંયોજાવાથી મુક્ત થતી ઉષ્માનો જથ્થો છે. આમ,

$$\mathrm{H^+(aq)} + \mathrm{OH^-(aq)} \longrightarrow \mathrm{H_2O}(\mathit{l}), \quad \Delta_{\mathrm{neut}} \mathrm{H}$$
 ૠણ છે. (ઍસિડ) (બેઈઝ)

જ્યાં $\Delta_{ ext{neut}}$ H તટસ્થીકરણ એન્થાલ્પી તરીકે ઓળખાય છે.

જો ઍસિડ અને બેઈઝ બંને પ્રબળ હોય તો $1 \text{mol H}_2\text{O}(I)$ બનવા માટેની ઉષ્માનો જથ્થો નિશ્ચિત છે. જેમકે 57 k $J \text{mol}^{-1}$ ઉષ્મા મુક્ત થાય છે. જો ઍસિડ કે બેઈઝમાંથી ગમે તે એક નિર્બળ હોય અથવા બંને નિર્બળ હોય તો મુક્ત થતી ઉષ્માનો કેટલોક જથ્થો નિર્બળ ઍસિડ કે બેઈઝ અથવા બંનેના (જેવી પરિસ્થિતિ હોય તેવી) આયનીકરણ માટે વપરાય છે અને તેથી મુક્ત થતી ઉષ્મા 57 k $J \text{mol}^{-1}$ થી ઓછી હોય છે.

ઉષ્મારાસાયણિક માપન

જરૂરી સામગ્રી:

• બીકર (250 mL) : ત્રણ : એક • બીકર (500 mL)

• થરમૉમિટર (110 °C) : એક

• કાચનો સળિયો : એક

• કોટન વુલ ઃ જરૂર પ્રમાણે

• નાનો લાકડાનો બ્લૉક : એક

• કાર્ડબૉર્ડનો ટુકડો : એક

• વિલોડક (હલામણું) : એક

• કૅલરીમીટર : એક

• 1M HCl

: 100 mL

: 100 mL

પદ્ધતિ :

A. કેલરીમીટર અચળાંકનું નિર્ધારણ

પ્રયોગ 3.1 માં આપેલ વિગત પ્રમાશેની પદ્ધતિને અનુસરીને આ નક્કી કરી શકાય.

B. તટસ્થીકરણની એન્થાલ્પીનું નિર્ધારણ

- 100 mL 1.0M HCl દ્રાવણ કૅલરીમીટર (બીકર)માં લો અને તેને કાર્ડબૉર્ડ વડે ઢાંકી દો. બીજા 250 mL ગુંજાશવાળા બીકરમાં 1.0M NaOH દ્રાવણના 100 mL લો.
- બંને દ્રાવશોના તાપમાન નોંધો. તે બંને સરખા જ હોવાની શક્યતા છે. (ii) ધારો કે તે t, ℃ છે.
- 100 mL 1.0 M HCl દ્રાવણ ધરાવતા કૅલરીમીટરમાં 100 mL 1.0 (iii) M NaOHનું દ્રાવણ ઉમેરી દો.
- દ્રાવશોને હલાવીને મિશ્ર કરો અને મિશ્રણનું અંતિમ તાપમાન માપો. ધારો કે તે t, ℃ છે.

નીચે પ્રમાણે તટસ્થીકરણ એન્થાલ્પીની ગણતરી કરો :

- મિશ્રણના તાપમાનનો વધારો નોંધો. જે આ કિસ્સામાં (t_2-t_1) °C છે.
- નીચેનું સમીકરણ વાપરીને તટસ્થીકરણ પ્રક્રિયા દરમિયાન ઉત્પન્ન થયેલી (ii) ઉષ્માનો કુલ જથ્થો ગણો : ઉત્પન્ન થયેલી ઉષ્મા = $(100 + 100 + W) (t_2 - t_1) \times 4.18 J$ (જ્યાં W કૅલરીમીટર અચળાંક છે.)
- છેવટે 1M HCl ના 1000 mLનું 1M NaOHના 1000 mL વડે તટસ્થીકરણ કરતાં ઉત્પન્ન થતી ઉષ્મા ગણો. આ જથ્થો તબક્કા (ii)માં મેળવેલ જથ્થાનો દસ ગણો થશે.
- (iv) ઉત્પન્ન થયેલી ઉષ્માના જથ્થાને kJmol⁻¹ એકમમાં દર્શાવો.

પરિણામ :

હાઇડ્રૉક્લોરિક ઍસિડ દ્રાવણના સોડિયમ હાઇડ્રૉક્સાઇડ દ્રાવણ વડે તટસ્થીકરણનો એન્થાલ્પી ફેરફાર kJmol⁻¹.

પ્રયોગશાળા માર્ગદર્શિકા રસાયણવિજ્ઞાન

સાવચેતીઓ :

- (a) 0.1 °C સુધી અંશાંકન કરેલ થરમૉમિટરની મદદથી કાળજીપૂર્વક તાપમાન નોંધો.
- (b) પ્રયોગ માટે લેવાના હાઇડ્રૉક્લોરિક ઍસિડ અને સોડિયમ હાઇડ્રૉક્સાઇડ દ્રાવણના કદ કાળજીપૂર્વક માપો.
- (c) બંને બીકર વચ્ચે યોગ્ય ઉષ્મારોધકનો ઉપયોગ કરવો.
- (d) બિનજરૂરી અને વધુપડતું હલાવવાનું ટાળો જેથી ઘર્ષણથી ઉત્પન્ન થતી ઉખ્મા રોકી શકાય.

- શા માટે આપણે (1M) ઍસિડના 1000 mL ને (1 M) એકઍસિડિક (monoacidic) બેઈઝના 1000 mL વડે તટસ્થીકરણ માટે ઉત્પન્ન થયેલી ઉષ્માની ગણતરી કરીએ છીએ ?
- પ્રબળ ઍસિડ અને પ્રબળ બેઈઝની તટસ્થીકરણ પ્રક્રિયામાં ઉત્પન્ન થયેલી ઉષ્માની સરખામણીમાં ઍસિડ અથવા (ii) બેઈઝ બંનેમાંથી એક નિર્બળ હોય તો ઉત્પન્ન થતી ઉષ્માનો જથ્થો શા માટે ઓછો હોય છે અને જ્યારે બંને નિર્બળ હોય ત્યારે તેનાથી પણ ઓછો હોય છે ?
- શા માટે પ્રક્રિયા H,O(l) \Longrightarrow $H^+(aq) + OH^-(aq)$ પ્રણાલીના તાપમાનમાં વધારા સાથે પુરોગામી દિશામાં આગળ વધે છે ?

પ્રયોગ : 3.3

હેતુ :

એસિટોન અને ક્લૉરોફૉર્મ વચ્ચેની (હાઇડ્રૉજન બંધ નિર્માણ) પારસ્પરિક ક્રિયા માટે એન્થાલ્પી ફેરફાર નક્કી કરવો.

સિદ્ધાંત :

પ્રવાહી યુગ્મોનું મિશ્રણ કરતાં તે આદર્શ વર્તણૂકમાંથી વિચલન દર્શાવે છે. એસિટોન અને ક્લૉરોફૉર્મ બિનઆદર્શ પ્રવાહી યુગ્મ પ્રશાલી રચે છે. જે રાઉલ્ટના નિયમથી ૠ્રણ વિચલન દર્શાવે છે. રાઉલ્ટના નિયમથી આ ૠ્રણ વિચલન એમ સૂચવે છે કે બંને ઘટકો પ્રવાહી અવસ્થામાં મિશ્ર કરતાં હાઇડ્રૉજન બંધથી પ્રબળ રીતે જોડાયા છે. બીજી બાજુ - શુદ્ધ અવસ્થામાં માત્ર વાન્ ડર વાલ્સ બળો ક્લોરોફોર્મ તેમજ એસિટોનના અણુઓને સાથે રાખે છે. એસિટોનના અણુ અને ક્લોરોફૉર્મના અણુ વચ્ચે હાઇડ્રૉજન બંધન નીચે પ્રમાણે દર્શાવેલ છે :

ક્લોરોફોર્મ અને એસિટોન વચ્ચે હાઇડ્રૉજન બંધન

ઉષ્મારાસાયણિક માપન

આ પ્રક્રમમાં એન્થાલ્પી ફેરફાર હાઇડ્રૉજન બંધની રચનાના કારણે થાય છે. એન્થાલ્પી ફેરફાર માત્રાત્મક ઉષ્માગતિકીય ગુણધર્મ છે. તેથી પ્રણાલીમાંથી ઉત્પન્ન થતી ઉષ્મા મિશ્ર થતાં પ્રવાહી ઘટકોના જથ્થા પર આધાર રાખે છે. આ જ કારણને લીધે ઉષ્મા ફેરફાર નિર્દિષ્ટ (specified) જથ્થા માટે રજૂ કરવામાં આવે છે. એટલા માટે 1 mol ક્લોરોફોર્મ સાથે 1 mol એસિટોન મિશ્ર કરતાં થતો એન્થાલ્પી ફેરફાર રજૂ કરવામાં આવે છે.

$$(\Delta H_4) = -(\Delta H_1 + \Delta H_2 + \Delta H_3)$$

જરૂરી સામગ્રી:

• બીકર (250 mL) : એક

• ઉત્કલન નળી : એક

• થરમૉમિટર (110 °C) : એક

• કોટનવુલ : જરૂર પ્રમાણે

• કાચનો સળિયો : એક

• અંકિત નળાકાર (250 mL) : એક : એક

• કાર્ડબૉર્ડનો ટુકડો

• વિલોડક (હલામણું) : એક

• ક્લૉરોફૉર્મ

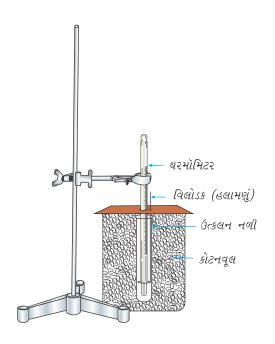
• એસિટોન

:20 mL

:10 mL

પદ્ધતિ :

A. કૅલરીમીટર અચળાંકનું નિર્ધારણ


અગાઉના પ્રયોગોમાં આપેલી વિગતો પ્રમાણે આ નક્કી કરી શકાય છે; ફેરફાર એટલો જ છે કે અહીંયાં બીકરને બદલે ઉત્કલન નળી લેવાની હોય છે અને 100 mL પાણીને બદલે 8 mL ઠંડા અને 7.5 mL ગરમ પાણીનો ઉપયોગ કરી શકાય.

પ્રયોગશાળા માર્ગદર્શિકા રસાયણવિજ્ઞાન

આકૃતિ 3.2 : ક્લૉરોફૉર્મ અને એસિટોનની પારસ્પરિક ક્રિયાની એન્થાલ્પીનું નિર્ધારણ

B. ક્લૉરોફૉર્મ અને એસિટોનને મિશ્ર કરતાં થતા એન્થાલ્પી ફેરફારનું નિર્ધારણ

- (i) ક્લૉરોફૉર્મના 0.1 mol (≈ 8.14 mL) ને સમતુલ્ય કદ અંકિત નળાકાર દ્વારા માપીને તેને ઉષ્મારોધક કરેલી ઉત્કલન નળીમાં લો. ક્લૉરોફૉર્મનું દળ m, ગ્રામ ગણો.
- (ii) ક્લૉરોફૉર્મનું તાપમાન નોંધો. તેને t, °C ગણો.
- (iii) $0.1 \text{ mol } \hat{\text{oh}}$ સિટોનને સમતુલ્ય એસિટોનનું કદ ($\approx 7.34 \text{ mL}$) એક સાફ કરેલા અંકિત નળાકારમાં લો. તેનું દળ m_2 ગ્રામ ગણો.
- (iv) એસિટોનનું તાપમાન નોંધો. તેને t, °C ગણો.
- (v) ઉષ્મારોધક કરેલી ઉત્કલન નળીમાંના ક્લૉરોફૉર્મમાં અંકિત નળાકારમાંના એસિટોનને ઉમેરો.
- (vi) વિલોડકની મદદથી સાવધાનીપૂર્વક ક્લૉરોફૉર્મ અને એસિટોનના મિશ્રણને ધીરેથી હલાવો.
- (vii) ક્લૉરોફૉર્મ અને એસિટોનના મિશ્રણનું તાપમાન નોંધો. તેને t્°C કહો.

* 1 મોલ
$$\mathrm{CHCl}_3$$
નું કદ $=\frac{\mathrm{CHCl}_3$ નું મોલર દળ CHCl_3 ની ઘનતા

$$0.1$$
 મોલના કદ $= \frac{1}{10} imes$ ઉપરનું કદ

(આ જ પ્રમાણે તમે 0.1 મોલ એસિટોનનું કદ ગણી શકશો.)

ક્લૉરોફૉર્મની ઘનતા = 1.47 g/mL

ક્લોરોફૉર્મનું મોલર દળ = 119.5 g

 $1.47 \text{ g} = 1 \text{ mL } \text{s} \epsilon$

119.5 g = $\frac{119.5}{1.47}$ mL

1 મોલ = 81.4 mL

0.1 Hie = 8.14 mL

એસિટોનની ઘનતા = 0.79 g/mL

એસિટોનનું મોલર દળ = 58.0 g

0.79 g = 1 mL

 $58 \text{ g} = \frac{58}{0.79} \text{ mL}$

1 મોલ = 73.4 mL

0.1 Hie = 7.34 mL

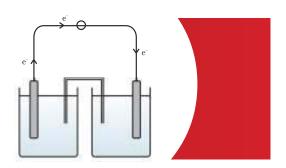
ક્લૉરોફૉર્મ અને એસિટોનનું કુલ કદ = 8.14 + 7.34 = 15.48 mL

ઉષ્મારાસાયણિક માપન

પારસ્પરિક ક્રિયાની એન્થાલ્પીની નીચે પ્રમાણે ગણતરી કરો :

- ધારો કે ઓરડાનું તાપમાન t °C છે, તો કૅલરીમીટર (ઉત્કલન નળી) દ્વારા મેળવાયેલી ઉષ્મા W imes (t, -t) છે. જ્યાં W કેલરીમીટર અચળાંક એટલે કે આ પ્રયોગમાં ઉત્કલન નળી છે.
- માહિતી સાહિત્યમાંથી ક્લૉરોફૉર્મની વિશિષ્ટ ઉષ્માનું મૂલ્ય નોંધો. ધારો કે તે $\mathbf{q}_{_1}$ છે. તો, ક્લૉરોફૉર્મ દ્વારા મેળવાયેલ ઉષ્મા = $\mathbf{m}_{_1} \times \mathbf{q}_{_1} \times (\mathbf{t}_{_3} - \mathbf{t}_{_1})$
- એસિટોનની વિશિષ્ટ ઉષ્માનું મૂલ્ય માહિતી સાહિત્યમાંથી નોંધો. ધારો કે તે (iii) \mathbf{q} , છે. એસિટોન દ્વારા મેળવાયેલ ઉષ્મા = $\mathbf{m}_2 \times \mathbf{q}_2 \times (\mathbf{t}_3 - \mathbf{t}_2)$
- ત્રણેય ઘટકો એટલેકે ઉત્કલન નળી, ક્લૉરોફૉર્મ અને એસિટોન દ્વારા મેળવાયેલ કુલ $\text{(344)} = -\{W \times (t_1 - t_1) + m_1 \times q_1 \times (t_1 - t_1) + m_2 \times q_2 \times (t_1 - t_2)\}$ હકીકતમાં આ 0.1 mol ક્લૉરોફૉર્મ અને 0.1 mol એસિટોનને મિશ્ર કરતાં થતી પારસ્પરિક ક્રિયાનો એન્થાલ્પી ફેરફાર છે. ૠ઼્રશ સંજ્ઞા સૂચવે છે કે ક્લૉરોફૉર્મ અને એસિટોનની મિશ્ર થવાની ક્રિયા ઉષ્માક્ષેપક છે.

નોંધ: અહીં એ કાળજી રાખવી જરૂરી છે કે લીધેલા એસિટોન અને ક્લૉરોફૉર્મનું કુલ કદ કેલરીમીટર માટે જળતુલ્યાંક ગણવા માટે લીધેલા પાણીના કદ સરખા હોવા જોઈએ.


સાવચેતીઓ :

- (a) ક્લૉરોફૉર્મ અને એસિટોનનું કાળજીપૂર્વક માપન કરો.
- (b) 0.1°C અંશાંકન કરેલા થરમૉમિટર વડે કાળજીપૂર્વક તાપમાન નોંધો.

- ક્લૉરોફૉર્મ અને એસિટોન આદર્શ પ્રવાહીની જોડ બનાવતું નથી જ્યારે એસિટોન અને બેન્ઝિન બનાવે છે. (i) શા માટે ?
- શા માટે ઈથેનોલ અને પાણીની પ્રવાહી જોડ રાઉલ્ટના નિયમથી ધન વિચલન દર્શાવે છે ? (ii)
- પ્રવાહી જોડના એવાં બે ઉદાહરણો આપો જેમાંના દરેકના $\Delta_{ ext{mixing}} H$ અનુક્રમે ૠણ અને ધન મૂલ્ય હોય.
- પ્રવાહી મિશ્રણનાં ઘટકોના અણુઓ વચ્ચે પારસ્પરિક ક્રિયાની ભાત (pattern) પ્રવાહીના બાષ્પ દબાણ સાથે સંબંધિત છે ?
- પ્રણાલીમાંથી ઉત્પન્ન થયેલી ઉષ્માને હાઇડ્રૉજન બંધની પ્રબળતા સાથે કેવી રીતે સુસંબંધિત કરશો ? (v)

એકમ 4 વિદ્યુતરસાયણવિજ્ઞાન (Electrochemistry)

ગેલ્વેનિક કોષના બે વિદ્યુત ધ્રુવો વચ્ચેના પોટૅન્શિયલ તફાવતને કોષ પોટૅન્શિયલ (વિભવ) કહે છે અને તે વોલ્ટમાં મપાય છે. તે કેથોડ અને ઍનોડના રિડક્શન પોટૅન્શિયલનો (અથવા ઑક્સિડેશન પોટૅન્શિયલ) તફાવત છે. જ્યારે કોષમાંથી પ્રવાહ મેળવવામાં ન આવે ત્યારે તેને કોષનું વીજચાલક બળ (emf) કહેવામાં આવે છે.

$$E_{cell} = E_{cathode} - E_{anode}$$

વ્યક્તિગત અર્ધકોષનો પોર્ટેન્શિયલ માપી શકાય નહિ. આપણે માત્ર બે અર્ધકોષ પોર્ટેન્શિયલોના તફાવત માપી શકીએ જે કોષનું વીજચાલક બળ આપે છે. પ્રણાલિકા પ્રમાણે, પ્રમાણિત હાઇડ્રૉજન ધ્રુવ જેને $\text{Pt/H}_2(g, 1 \text{ bar})/\text{H}^+(\text{aq } 1\text{M})$ તરીકે દર્શાવાય છે. નીચે પ્રમાણેની પ્રક્રિયા માટે તેનો પોર્ટેન્શિયલ બધા જ તાપમાને શૂન્ય લેવામાં આવ્યો છે. પ્રક્રિયા નીચે પ્રમાણે છે :

$$H^+(aq) + e^- \rightarrow \frac{1}{2} H_2(g)$$

અર્ધકોષ પોટૅન્શિયલ પ્રમાણિત હાઈડ્રૉજન ધ્રુવના સંદર્ભમાં માપવામાં આવે છે.

કોષની રચના પ્રમાણિત હાઈડ્રૉજન વિદ્યુતધ્રુવને ઍનોડ તરીકે (સંદર્ભ અર્ધકોષ) અને પ્રમાણિત પરિસ્થિતિમાં જેનો પોટૅન્શિયલ માપવાનો છે તેને કૅથોડ તરીકે બીજો અર્ધકોષ બનાવીને કરવામાં આવે છે. આથી કોષનો પોટૅન્શિયલ બીજા અર્ધકોષનો પ્રમાણિત પોટૅન્શિયલ બને છે.

$$E_{cell}^{\Theta} = E_{cathode}^{\Theta}$$
 કારણ કે $E_{anode}^{\Theta} = 0$

નર્ન્સ્ટ દર્શાવ્યું કે પ્રમાણિત હાઇડ્રૉજન વિદ્યુત ધ્રુવના સંદર્ભમાં કોઈ પણ સાંદ્રતાએ પોટૅન્શિયલ માપી શકીએ છીએ. નીચે પ્રમાણેના વિદ્યુત ધ્રુવની પ્રક્રિયા માટે

$$M^{n+}(aq) + ne^- \rightarrow M(s)$$

કોઈ પણ સાંદ્રતાએ પ્રમાણિત હાઇડ્રૉજન વિદ્યુત ધ્રુવની સાપેક્ષમાં માપેલ પોટેન્શિયલને નીચે પ્રમાણે ૨૪૪ કરી શકાય :

$$E_{M^{n+}/M}^{\Theta} = E_{M^{n+}/M}^{\Theta} - \frac{RT}{nF} \ln \frac{[M]}{[M^{n+}]}$$

ઘનની સાંદ્રતા M ને એક તરીકે લેવામાં આવે છે અને તેથી આપણને મળશે

$$E_{M^{n+}/M} = E_{M^{n+}/M}^{\Theta} - \frac{RT}{nF} \ln \frac{1}{[M^{n+}]}$$

વિદ્યુતરસાયણવિજ્ઞાન

અહીંયાં, R વાયુ અચળાંક (8.314 $JK^{-1}mol^{-1}$), F ફેરાડે અચળાંક (96487 $Cmol^{-1}$), T તાપમાન કેલ્વિનમાં અને $[M^{n+}]$ એ M^{n+} સ્પીસિઝની સાંદ્રતા છે. નીચેના પ્રયોગમાં $Zn/Zn^{2+} \parallel Cu^{2+}/Cu$ કોષમાં વિદ્યુત વિભાજયોની સાંદ્રતામાં ફેરફાર સાથે કોષ પોટેન્શિયલના ફેરફારનો અભ્યાસ કરવામાં આવશે.

પ્રયોગ ઃ 4.1ે

હેતુ :

 $Zn/Zn^{2+} \parallel Cu^{2+}/Cu$ કોષનો વિદ્યુત વિભાજ્યની ($CuSO_4/ZnSO_4$) સાંદ્રતામાં ફેરફાર સાથે કોષ પોર્ટેન્શિયલના ફેરફારનો ઓરડાના તાપમાને અભ્યાસ કરવો.

સિદ્ધાંત :

પ્રયોગમાંના અભ્યાસ હેઠળના કોષને નીચે પ્રમાણે રજૂ કરી શકાય :

$$(Zn(s)/Zn^{2+}(aq., 1.0M) \parallel Cu^{2+}(aq., xM)/Cu(s)$$

અહીંયાં, $x \, M \, Cu^{2+}(aq)$ આયનની બદલાતી સાંદ્રતા દર્શાવે છે. બીજા શબ્દોમાં કહીએ તો સાંદ્રતા સાથે કોષ પોટૅન્શિયલમાં તફાવતનો અભ્યાસ છે. $Cu^{2+}(aq)$ ની સાંદ્રતા બદલતા રહીએ છીએ અને $Zn^{2+}(aq)$ ની સાંદ્રતા અચળ રાખીએ છીએ. Cu(II) આયનની દરેક સાંદ્રતા માટે Cu^{2+}/Cu વિદ્યુત ધ્રુવના વિદ્યુત ધ્રુવ પોટૅન્શિયલ કોષનો પોટૅન્શિયલ માપીને ગણી શકીએ છીએ. આ ફેરફારને સૈદ્ધાંતિક રીતે નીચેના સમીકરણથી દર્શાવી શકાય :

$$E_{Cu^{2+}/Cu} = E_{Cu^{2+}/Cu}^{\Theta} + \frac{0.059}{2} \log[Cu^{2+}]$$
 (1)

Cu²⁺/Cu વિદ્યુતધ્રુવના પોર્ટેન્શિયલમાં ફેરફાર પરિશામરૂપે નીચેના સંબંધ પ્રમાશે કોષ પોર્ટેન્શિયલમાં ફેરફાર લાવે છે :

$$E_{\text{Cell}} = E_{\text{Cu}^{2+}/\text{Cu}} - E_{\text{Zn}^{2+}/\text{Zn}}^{\Theta}$$
 (2)

સમીકરણ (2) સ્પષ્ટ રીતે સૂચવે છે કે $E_{Zn^{2+}\!/\!Zn}^{\Theta}$ અચળ રાખ્યો છે, છતાં પણ $E_{Cu^{2+}\!/\!Cu}$ માં ફેરફાર તેને અનુરૂપ E_{Cell} (કોષનો પોર્ટેન્શિયલ)માં ફેરફાર લાવશે.

આ જ પ્રમાણે Cu^{2^+} આયનોની સાંદ્રતા અચળ રાખી Zn^{2^+} આયનોની સાંદ્રતામાં ફેરફાર સાથે કોષ પોટૅન્શિયલમાં તફાવતનો અભ્યાસ કરી શકીએ.

પ્રયોગશાળા માર્ગદર્શિકા રસાયણવિજ્ઞાન

જરૂરી સામગ્રી :

• ઝિંક પ્લેટ

• કૉપર પ્લેટ

• બીકર (50 mL)

• વોલ્ટમીટર (પોટૅન્શિયોમીટર)

• ક્ષાર સેત્

: એક

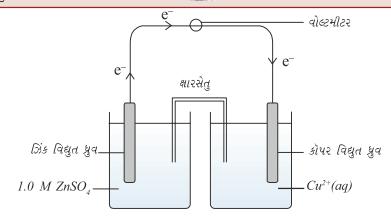
: એક

: છ

: એક

: એક

• 1.0 M ઝિંક સલ્ફેટ દ્રાવણ


: 40 mL

• 0.25 M, 0.1 M, 0.05 M,

0.025 M અને 0.0125 M

કૉપર સલ્ફેટ દ્રાવણ

: દરેકના 40 mL

આકૃતિ 4.1 : Zn(s)/Zn²+(aq), 1.0 M || Cu²+(aq, x M)/Cu(s) કોષની રચના

પદ્ધતિ :

- $1.0~\mathrm{M}~\mathrm{ZnSO_4}$ અને $0.2~\mathrm{M}~\mathrm{CuSO_4}$ દ્રાવણનો ઉપયોગ કરી (i) આકૃતિ 4.1 માં દર્શાવ્યા પ્રમાણે કોષ ગોઠવો.
- કોષનો પોર્ટેન્શિયલ તફાવત માપો અને વીજધ્રુવોની ધ્રુવીયતા (polarity)ની (ii) પણ નોંધ રાખો. (આ આપણને કોષ પોર્ટેન્શિયલ $\mathbf{E}_{\scriptscriptstyle{\mathrm{cell}}}$ ને સંજ્ઞા આપવામાં મદદરૂપ થશે.)
- (iii) કોષ પોટૅન્શિયલ નું માપન પૂર્ણ થઈ જાય કે તરત જ ક્ષારસેતુને દૂર કરો.
- $0.2~\mathrm{M}~\mathrm{CuSO_4}$ દ્રાવણ ધરાવતા બીકરના સ્થાને $0.1~\mathrm{M}~\mathrm{CuSO_4}$ દ્રાવણ (iv) ધરાવતું બીકર ગોઠવો. ક્ષારસેતુને યોગ્ય સ્થાને ગોઠવો અને કોષ પોટૈન્શિયલ માપો.
- કૉપર સલ્ફેટ દ્રાવશની સાંદ્રતાના ઊતરતા ક્રમમાંનાં દ્રાવશો વડે આ (v) પદ્ધતિનું પુનરાવર્તન કરો.
- $\log \left[Cu^{2+}(aq) \right]$ ની ગણતરી કરો અને પછી Cu(II)ની સાંદ્રતામાંના કેરફાર માટેના દરેક માટે $E_{Cu^{2+}/Cu}$ ગણો.
- (vii) કોષ્ટક 4.1 માં દર્શાવ્યા મુજબ Cu²+ આયનની જુદી-જુદી સાંદ્રતાએ Cu²+(aq)/Cu(s) વિદ્યુત ધ્રુવના વિદ્યુત ધ્રુવ પોટૅન્શિયલનાં મૂલ્યો નોંધો.
- (viii) $(E_{Cu^{2+}/Cu})$ ને y ધરી પર અને $\log[Cu^{2+}(aq)]$ ને x ધરી પર લઈ સાંદ્રતા સાથે વિદ્યુત ધ્રુવ પોર્ટેન્શિયલના ફેરફારનો આલેખ દોરો.

વિદ્યુતરસાયણવિજ્ઞાન

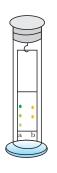
કોષ્ટક 4.1 : કોષ પોટૅન્શિયલની માહિતીની નોંધ

અનુક્રમ	[Cu ²⁺ (aq)]/mol L ⁻¹	log [Cu ²⁺ (aq)]/mol L ⁻¹	E _{cell} /V	E _(Cu²⁺/Cu) પ્રાયોગિક મૂલ્ય
1	0.2			
2	0.1			
3	0.05			
4	0.025			
5	0.0125			

પરિણામ :

મળેલી માહિતીના આધારે તારણ લખો.

સાવચેતીઓ :


- (a) કૉપર અને ઝિંકની પટ્ટીઓ તથા જોડાણ માટેના તારને ઉપયોગ કરતાં પહેલાં રેત પત્ર (કાચપેપર) વડે ઘસીને સાફ કરો.
- (b) ક્ષારસેત્નો ઉપયોગ કર્યા પછી તરત જ નિસ્યંદિત પાણીમાં મૂકો.
- (c) દ્રાવણનું એકમાંથી બીજામાં મંદન ખૂબ જ સાવચેતીપૂર્વક કરો.
- (d) આલેખ દોરવા માટે યોગ્ય માપની પસંદગી કરો.

ચર્ચાત્મક પ્રશ્નો :

- (i) નીચે આપેલી પ્રક્રિયા માટે લ-શેટેલિયરનો નિયમ લાગુ પાડો અને તમે નોંધેલાં પરિણામોને વાજબી ઠેરવો અને તમારાં પરિણામોમાં ગાણિતીય યુક્તિ સંગતિકરણ (rationalization) પણ મેળવો.
 - $Zn(s) + Cu^{2+}(aq) \rightleftharpoons Zn^{2+}(aq) + Cu(s)$
- (ii) આલેખનો ઢાળ નક્કી કરો. પ્રાયોગિક મૂલ્યને સૈદ્ધાંતિક મૂલ્ય સાથે સરખાવો. કયાં પરિબળો પર ઢાળનું મૂલ્ય આધાર રાખે છે ?
- (iii) કોષ પ્રક્રિયામાં સમાવિષ્ટ આયનોમાંથી કોઈ એકની સાંદ્રતા સાથે કોષ પોર્ટેન્શિયલમાં ફેરફારના અભ્યાસ માટે બીજા પ્રયોગની રચના કરો.
- (iv) ક્ષારસેતુની રચના માટે વિદ્યુતવિભાજય દ્રાવણની પસંદગી કરવા માટે કયાં પરિબળને ધ્યાનમાં રાખશો ?
- (v) એકાકી વિદ્યુતધ્રુવનો પોટેન્શિયલ માપવાનું શક્ય છે ?

એકમ 5 વર્શલેખિકી (Chromatography)

ક્રોમેટોગ્રાફ્રી (વર્ણલેખિકી) કાર્યપદ્ધતિ સંયોજનોના અલગીકરણ, શુદ્ધીકરણ અને ઓળખ માટે વિપુલ પ્રમાણમાં વપરાય છે. IUPAC ના મત પ્રમાણે ક્રોમેટોગ્રાફ્રી અલગીકરણની એક ભૌતિક પદ્ધતિ છે. જેમાં અલગ કરવાનાં ઘટકોનું બે કલા વચ્ચે વિતરણ થાય છે જેમાંની એક કલા સ્થિર હોય છે, જ્યારે બીજી કલા ચોક્કસ દિશામાં ખસે છે.

સ્થિર કલા સામાન્ય રીતે ભરેલા (pack) સ્તંભના (સ્તંભ ક્રોમેટોગ્રાફ્રી) સ્વરૂપમાં હોય છે, પણ તે બીજા સ્વરૂપે લઈ શકાય છે. જેવા કે સપાટ શીટ અથવા પાતળું સ્તર જે કોઈ યોગ્ય આધાર આપતા પદાર્થના સ્વરૂપમાં હોય છે. આવા આધાર આપતા પદાર્થોમાં કાચ (પાતળું - સ્તર ક્રોમેટોગ્રાફ્રી) હોય છે. સ્તંભ ક્રોમેટોગ્રાફ્રીમાં ગતિશીલ (mobile) કલા ભરેલા સ્તંભમાંથી વહે છે, જ્યારે પાતળા સ્તર ક્રોમેટોગ્રાફ્રીમાં ગતિશીલ કલા કેશાકર્ષણ ક્રિયાથી ખસે છે. આમાં સ્થિર કલામાં પાતળું પડ (film) પ્રવાહી અથવા ઘન હોઈ શકે છે. ગતિશીલ કલા પ્રવાહી અથવા વાયુ હોઈ શકે છે. આવી કલાઓના જુદા-જુદા શક્ય જોડાણ ક્રોમેટોગ્રાફ્રીની મુખ્ય કાર્યપદ્ધતિનો ઉદય કરે છે. આમાંની બેનું વર્ણન નીચે આપવામાં આવ્યું છે :

વિભાગીય (partition) ક્રોમેટોગ્રાફીમાં સ્થિર કલા એક નિષ્ક્રિય આધાર પર અધિશોષિત પ્રવાહીનું પાતળું પડ (film) હોય છે. જ્યારે ગતિશીલ કલા પ્રવાહી અથવા વાયુ હોઈ શકે છે. જ્યારે પેપર (paper) ક્રોમેટોગ્રાફી એવું ઉદાહરણ છે જેમાં પેપરમાંનાં છિદ્રોમાં હાજર પ્રવાહી સ્થિર કલા છે અને બીજું કોઈ પ્રવાહી ગતિશીલ કલા હોય છે. અલગીકરણનો આધાર બે કલાઓ વચ્ચે પદાર્થનું વિતરણ થાય છે અને નિષ્ક્રિય આધાર પર પદાર્થોના અધિશોષણ અસરોને લીધે ક્રોમેટોગ્રાફિક અલગીકરણ થાય છે.

અધિશોષણ ક્રોમેટોગ્રાફ્રીમાં સ્થિર કલા ખૂબ ઝીણો ઘન અધિશોષક હોય છે અને ગતિશીલ કલા સામાન્ય રીતે પ્રવાહી હોય છે. અલગીકરણ પ્રકમ (process) મિશ્રણનાં ઘટકોના ઘનની સપાટી પર પસંદગીયુક્ત (selective) અધિશોષણ પર આધાર રાખે છે.

ક્રોમેટોગ્રાફ્રીમાં પદાર્થ સ્થિર અને ગતિશીલ કલાઓ વચ્ચે સંતુલિત થાય છે. સ્થિર કલા સાથે પદાર્થની પારસ્પરિક ક્રિયા જેટલી વધારે તેટલી ધીમી તેની ગતિ હોય છે.

આ એકમમાં તમે પેપર ક્રોમેટોગ્રાફીનો ઉપયોગ કરી મિશ્રણમાંનાં ઘટકોના અલગીકરણનો અભ્યાસ કરશો.

પ્રયોગ 5.1

હેતુ :

પાલકની ભાજી (spinach)નાં પાંદડાંમાં રહેલા અને ગુલાબનાં ફૂલની પાંખડીમાં રહેલા તથા હજારીગલમાં રહેલા રંજકોનું પેપર ક્રોમેટોગ્રાફી વડે અલગીકરણ અને ઘટકોનાં R, મૂલ્યોનું નિર્ધારણ કરવું.

વર્શલેખિકી

મિથેનોલ

એસિટોન

ક્લૉરોફૉર્મ

પેટ્રોલિયમ ઈથર

સિદ્ધાંત :

પેપર ક્રોમેટોગ્રાફીમાં ગાળણપત્રનાં છિદ્રોમાં રહેલા પાણીના અણુ સ્થિર કલા તરીકે કાર્ય કરે છે અને ગતિશીલ કલા તરીકે દ્રાવક જેવાં કે હેકઝેન, ટોલ્યુઇન, એસિટોન અથવા દ્રાવકોનું મિશ્રણ જેવાં કે મિથેનોલ - પાણી મિશ્રણ વગેરે હોઈ શકે છે. જ્યારે ગતિશીલ કલા એ બિંદુમાંથી પસાર થાય છે જેના પર નમૂનો અધિશોષિત થયેલો હોય છે તે ધીમે કે તરત જ તેમાંનાં ઘટકોને ઓગાળે છે જે તેમની દ્રાવ્યતા પર આધાર રાખે છે અને તે જ્યારે આધાર પર ખસે છે ત્યારે પોતાની સાથે લઈ જાય છે.

આપેલા તાપમાને અને આપેલા દ્રાવક માટે ક્રોમેટોગ્રાફિક પેપર પર ગતિશીલ કલા ખસે છે તેમ દરેક પદાર્થની ગતિનો લાક્ષણિક દર નક્કી કરવું શક્ય બને છે. આને સાપેક્ષ અગ્ર (front) અથવા પ્રતિવેગ (retaradation) અવયવ એટલે કે \mathbf{R}_f મૂલ્ય તરીકે દર્શાવાય છે. ગતિશીલ કલા (દ્રાવક) એક જ હોય તોપણ જુદા જુદા સંયોજનનાં \mathbf{R}_f મૂલ્યો અલગ-અલગ હોય છે. વળી, જુદા-જુદા દ્રાવકોમાંના એક જ પદાર્થનાં \mathbf{R}_f મૂલ્યો અલગ-અલગ હોય છે. \mathbf{R}_f મૂલ્યો નીચેના સમીકરણનો ઉપયોગ કરીને ગણી શકાય છે :

 $R_{f}=rac{lpha i \epsilon \acute{n}$ રેખાથી પદાર્થ વડે પસાર કરાયેલું અંતર (cm) સંદર્ભ રેખાથી દ્રાવક વડે પસાર કરાયેલું અંતર (cm)

દ્રાવક અગ્ર સંયોજનો કરતાં વધારે ઝડપથી ખસતા હોવાને કારણે પદાર્થોનાં \mathbf{R}_f મૂલ્યો એક કરતાં ઓછાં હોય છે. આ સાથે એ પણ નોંધો કે \mathbf{R}_f મૂલ્યોને કોઈ એકમ નથી.

જો સંયોજન રંગીન હોય તો ક્રોમેટોગ્રાફિક પેપર પર તેમનું સ્થાન સહેલાઈથી નક્કી કરી શકાય છે. તેમ છતાં પણ જો પદાર્થ રંગવિહીન હોય તો તેને કોઈ પ્રક્રિયક સાથે પ્રક્રિયા કરવામાં આવે છે જે તેને લાક્ષણિક રંગ આપે છે. આ પ્રક્રિયકને વિકાસક - ડેવલપર (developer) કહે છે. પેપર ક્રોમેટોગ્રાફીમાં આયોડિન સૌથી વધારે સામાન્ય રીતે ઉપયોગ થતો ડેવલપર છે. બીજી કેટલીક પદ્ધતિઓ બિંદુનાં સ્થાન નક્કી કરવા માટે પ્રાપ્ય છે.

જરૂરી સામગ્રી :

• વોટમેન ગાળણ પત્ર નં. 1

4 cm × 17 cm માપનો : એક

• 5 cm × 20 cm માપની એક

ગૅસ જાર (વાયુ બરણી) ઃ એક કેન્દ્રમાં હૂક બેસાડેલો હોય

તેવો રબરનો બૂચ : એક

• કસનળી : જરૂર પ્રમાણે

• ફૂલનું નિષ્કર્ષ અને

પાંખડીના નિષ્કર્ષ : જરૂર પ્રમાણે

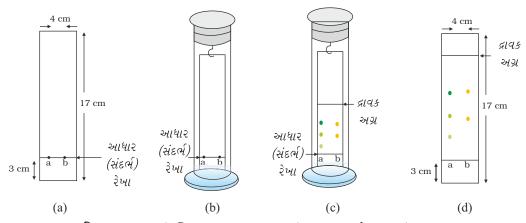
• નિસ્યંદિત પાણી : જરૂર પ્રમાણે

• મિથેનોલ/એસિટોન ઃ જરૂર પ્રમાણે

• (60-80 °C) ઉત્કલન ગાળાવાળું

પેટ્રોલિયમ ઈથર : જરૂર પ્રમાણે

• ક્લૉરોફૉર્મ/એસિટોન : જરૂર પ્રમાણે


પદ્ધતિ :

- (i) ખલમાં ફૂલો/પાંખડીઓને લસોટો અને લુગદીને કસનળીમાં લો.
- (ii) લસોટેલા પદાર્થમાં થોડા પ્રમાણમાં મિથેનોલ અથવા એસિટોન ઉમેરો.

પ્રયોગશાળા માર્ગદર્શિકા રસાયણવિજ્ઞાન

- યોગ્ય બૂચ વડે કસનળીને બંધ કરી દો અને તેને સારી રીતે હલાવો. તેને ગાળી લો અને ગાળણને એક કસનળીમાં એકઠું કરો અને કસનળીને બૂચ વડે બંધ કરી દો.
- (iii) 4 cm × 17 cm માપનો વોટમેન ગાળણ પત્ર નં. 1 મેળવો. પેન્સિલની મદદ વડે બેમાંથી એક છેડાથી 3 cm ઊંચે એક રેખા દોરો (આકૃતિ 5.1(a)).
- (iv) ખૂબ ઝીણી કેશનળીનો ઉપયોગ કરીને પાંદડાના નિષ્કર્ષનું એક ટીપું 'a' અને ફૂલના નિષ્કર્ષનું એક ટીપું 'b' મૂકો. આકૃતિ 5.1 (a)માં દર્શાવ્યા પ્રમાણે બંને ટીપાંને સુકાવા દો.
- (v) 20 mL પેટ્રોલિયમ ઈથર (ઉત્કલન ગાળો 60-80 °C) અને ક્લૉરોફૉર્મનું મિશ્રણ જે 19 mL પેટ્રોલિયમ ઈથર અને 1 mL ક્લૉરોફૉર્મનું બનાવેલું હોય છે અને એસિટોન 9:1ના ગુણોત્તરમાં (18 mL પેટ્રોલિયમ ઈથર + 2 mL એસિટોન) ભરેલી બરણી (જાર)માં ગાળણપત્રને એવી રીતે લટકાવો કે જેથી દ્રાવક આકૃતિ 5.1 (b)માં દર્શાવ્યા પ્રમાણે સંદર્ભ રેખાને અડકે નહિ.
- (vi) આ બરણી (જાર)ને ત્યાં સુધી સ્થિર સ્થિતિમાં રાખો કે જ્યાં સુધી ગતિશીલ કલા (દ્રાવક) ગાળણપત્રની આશરે 2/3 ભાગની ઊંચાઈ સુધી ઉપર ચઢે (આકૃતિ 5.1 (c)).
- (vii) બરણી (જાર)માંથી ગાળણપત્રને બહાર કાઢી લો અને દ્રાવક અગ્રને ચિહ્નિત કરો. પેન્સિલની મદદ વડે બિંદુઓને રૂપરેખિત (outline) કરો અને ગાળણપત્રને સુકાવા દો.
- (viii) દ્રાવક અગ્ર વડે પસાર કરાયેલું અંતર માપો અને આકૃતિ 5.1 (d)માં આપ્યા પ્રમાણે જુદાં-જુદાં બિંદુઓના કેન્દ્રોનું સંદર્ભ રેખાથી અંતર માપો.
- (ix) પાંદડાના અને ફૂલોના નિષ્કર્ષમાં રહેલા રંજકોની સંખ્યા નિશ્ચિત કરો.
- (x) અગાઉ જણાવેલ સમીકરણની મદદથી જુદાં-જુદાં બિંદુઓનાં R, મૂલ્યો ગણો.
- (xi) કોષ્ટક 5.1માં તમારાં અવલોકનો નોંધો.

આકૃતિ 5.1 : (a) ચિહ્નિત પત્ર (b) વ્રાવકમાં ગાળણપત્રને ડુબાડવું (c) ક્રોમેટોગ્રામ વિકસિત કરવો (d) વિકસિત કોમેટોગ્રામ

કોષ્ટક 5.1 : પાંદડાં અને ફૂલોના રંજકોનું અલગીકરણ

અનુ- ક્રમ	નિષ્કર્ષનું નામ	બિંદુનો રંગ	સંદર્ભ રેખાથી 'a' અને 'b' બિંદુઓનાં ઘટકોએ પસાર કરેલું અંતર cmમાં	દ્રાવક વડે સંદર્ભ રેખાથી પસાર કરાયેલ અંતર cmમાં	R _f મૂલ્ય
1			_		
2					
3					
4					

પરિણામ :

- (i) ફૂલની પાંખડીનાં ઘટકોનાં R_r મૂલ્યો છે.
- (ii) ભાજીનાં પાંદડાંનાં ઘટકોનાં R_f મૂલ્યો છે.

સાવચેતીઓ :

- (a) સંદર્ભ રેખાને દોરવા માટે સારી ગુણવત્તાવાળી ડ્રૉઇંગ પેન્સિલનો ઉપયોગ કરો જેથી કરીને કરેલી નિશાની TLC પ્રક્રમ ચાલુ હોય તે દરમિયાન દ્રાવકમાં ઓગળી ન જાય.
- (b) પેપરની પટ્ટીને દ્રાવકમાં એ રીતે ડૂબાડો કે જેથી મિશ્રણનું બિંદુ દ્રાવક સ્તરથી ઉપર રહે અને દ્રાવકની ગતિ વાંકીચૂંકી ન હોય.
- (c) નમૂનાના દ્રાવશનું બિંદુ મૂકતી વખતે ધ્યાન રાખો કે બિંદુ ફેલાઈ ન જાય. સારી રીતે ઝીશી બનાવેલી કેશનળીનો ઉપયોગ પેપર પર બિંદુ મૂકવા માટે કરો.
- (d) એની પણ ખાતરી કરો કે ગાળણપત્રની પટ્ટી બરણીમાં મુક્ત રીતે લટકે છે.
- (e) એકવાર પ્રયોગ સેટ (ચાલુ) થાય એટલે જ્યાં સુધી કોમેટોગ્રામ વિકસે નહિ ત્યાં સુધી બરણીને ખલેલ ન પહોંચાડશો.
- (f) જ્યારે ક્રોમેટોગ્રામ વિકસિત થતો હોય ત્યારે બરણીને ઢાંકેલી રાખશો.
- (g) બિંદુઓને વિકસાવતાં પહેલાં પેપરની પટ્ટીને સંપૂર્ણ રીતે સૂકવશો.
- (h) કાર્બનિક દ્રાવક/દ્રાવકો સાથે કાળજીપૂર્વક કાર્ય કરો.

પ્રયોગ 5.2

હેતુ :

ક્રોમેટોગ્રાફિક પ્રવિધિનો ઉપયોગ કરીને Pb²+ અને Cd²+ બે ધનાયનો ધરાવતા અકાર્બનિક સંયોજનોના મિશ્રણનાં ઘટકોનું અલગીકરણ.

પ્રયોગશાળા માર્ગદર્શિકા રસાયણવિજ્ઞાન

સિદ્ધાંત :

ધનાયનોના અલગીકરણનો સિદ્ધાંત પ્રયોગ 5.1 માં સમજાવ્યા પ્રમાણેના જેવો જ છે. આ કિસ્સામાં જે બે ધનાયનોને અલગ કરવાના છે તે રંગવિહીન છે અને તેથી વિકાસક (ડેવલપર)ની જરૂર પડે છે. વર્તમાન કિસ્સામાં એમોનિયમ સલ્ફાઇડ $(NH_4)_2S^*$ ને કોમેટોગ્રાફિક પેપર અથવા પ્લેટ પર આ આયનોનાં સ્થાન નક્કી કરવા માટે વાપરી શકાય.

જરૂરી સામગ્રી :

• 4 cm × 17 cm માપનું વોટમેન ગાળણપત્ર નં. 1

ગાળણપત્ર નં. 1 : એક • 5 cm × 20 cm માપની વાયુ-બરણી (જાર) : એક

• કેન્દ્રમાં બેસાડેલા હૂકવાળો રબરનો બૂચ : એક

• કસનળી : જરૂર પ્રમાણે

• 1-2 % Pb(NO₃), અને

Cd(NO₃)₂નું દ્રાવશ : જરૂર પ્રમાણે

• ઈથેનોલ : જરૂર પ્રમાણે

• 6.0 M HNO₃ : જરૂર પ્રમાણે

પદ્ધતિ :

- (i) 4 cm × 17 cm માપનું વોટમેન નં. 1નું ગાળણપત્ર લો. પેન્સિલની મદદથી આ પત્રના બેમાંના એક છેડાથી 3 cm ઊંચે નિશાની કરો.
- (ii) ઝીણી કેશનળી વડે મિશ્રણનું એક બિંદુ નિશાની કરેલ રેખા પર મૂકો.
- (iii) ઈથેનોલ, 6.0 M HNO₃ અને નિસ્યંદિત પાણીનું 8:1:1 ગુણોત્તરમાં બનાવેલા દ્રાવણ ભરેલી બરણીમાં ગાળણપત્રને લટકાવો.
- (iv) પત્રની 2/3 લંબાઈ (ઊંચાઈ) સુધી દ્રાવક ઉપર સુધી ચઢે નહિ ત્યાં સુધી બરણીને ખલેલ પહોંચાડ્યા વગર રાખી મૂકો.
- (v) બરણીમાંથી ગાળણપત્રને કાઢી લો. દ્રાવક અગ્રની (front) નિશાની કરો.
- (vi) પીળા અને કાળા રંગનાં બિંદુઓ મેળવવા માટે કોમેટોગ્રાફી પેપર પર એમોનિયમ સલ્ફાઇડ દ્રાવણનો છંટકાવ કરો. પેન્સિલની મદદ વડે બિંદુઓના સ્થાન ચિહ્નિત કરો અને પત્રને સુકાવા દો.
- (vii) દ્રાવક અગ્ર દ્વારા પસાર કરાયેલું અંતર અને સંદર્ભ રેખાથી ધનાયનના જુદાં-જુદાં બિંદુઓ સુધીના અંતર માપો. આ અંતર સંદર્ભ રેખા અને જુદાં-જુદાં બિંદુઓ વચ્ચેના સૌથી ઓછા અંતર હશે.
- (viii) કોષ્ટક 5.2માં દર્શાવ્યા પ્રમાણે અવલોકનોને કોષ્ટક રૂપે નોંધો. દરેક ધનાયન માટે R, મૂલ્યની ગણતરી કરો.

^{*} 100~mL પાણી અને 10~mL લીકર એમોનિયા ધરાવતા મિશ્રણમાંથી $H_{\scriptscriptstyle 2}\!S$ વાયુને આશરે 45~મિનિટ સુધી પસાર કરીને એમોનિયમ સલ્ફાઇડ બનાવવામાં આવે છે.

કોષ્ટક 5.2 : પેપર ક્રોમેટોગ્રાફી વડે Pb²+ અને Cd²+ આયનોનું અલગીકરણ

અનુ- ક્રમ	બિંદુનો રંગ	સંદર્ભ રેખાથી ઘટકો વડે પસાર કરાયેલ અંતર/cm	સંદર્ભ રેખાથી દ્રાવક વડે પસાર કરાયેલ અંતર/cm	\mathbf{R}_f भूस्य
1.				
2.				
3.				

પરિણામ :

- (i) Pb²⁺ આયનનું R, મૂલ્ય..... છે.
- (ii) Cd^{2+} આયનનું R_f મૂલ્ય...... છે.

સાવચેતીઓ :

- (a) સંદર્ભ રેખા દોરવા માટે સારી ગુણવત્તાવાળી પેન્સિલનો ઉપયોગ કરવો જેથી જે દ્રાવકમાં TLC પ્રક્રમ ચાલુ હોય તે દરમિયાન નિશાની દ્રાવકમાં ઓગળી ન જાય.
- (b) પેપરની પટ્ટીને દ્રાવકમાં એવી રીતે ડુબાડો કે જેથી મિશ્રણનું બિંદુ દ્રાવક સ્તરથી ઉપર રહે અને દ્રાવકની ગતિ વાંકીચૂંકી ન હોય.
- (c) જ્યારે નમૂનાના દ્રાવણનું બિંદુ મૂકતી વખતે ધ્યાન રાખો કે બિંદુ ફેલાઈ ન જાય. સારી રીતે ઝીણી બનાવેલી કેશનળીનો ઉપયોગ પટ્ટી પર બિંદુ મૂકવા માટે કરો.
- (d) એની પણ ખાતરી કરો કે ગાળણપત્રની પટ્ટી બરણીમાં મુક્ત રીતે લટકે છે.
- (e) એકવાર પ્રયોગ સેટ (ચાલુ) થાય એટલે જ્યાં સુધી ક્રોમેટોગ્રામ વિકસે નહિ ત્યાં સુધી બરણીને ખલેલ ન પહોંચાડશો.
- (f) જ્યારે ક્રોમેટોગ્રામ વિકસિત થતો હોય ત્યારે બરણીને ઢાંકેલી રાખશો.
- (g) બિંદુઓને વિકસાવતા પહેલાં પેપરની પટ્ટીને સંપૂર્ણ રીતે સૂકવશો.
- (h) કાર્બનિક દ્રાવક/દ્રાવકો સાથે કાળજીપૂર્વક કાર્ય કરો.

- (i) ક્રોમેટોગ્રામ શું છે ? જે સિદ્ધાંત પર ક્રોમેટોગ્રાફ્રીની કાર્યપદ્ધતિ આધારિત છે તેને સમજાવો.
- (ii) વિકાસક તરીકે ઉપયોગ કરેલા પદાર્થની આવશ્યક ખાસિયતો શું છે ?
- (iii) ક્રોમેટોગ્રાફી વડે સંયોજનોના અલગીકરણમાં અધિશોષણ ઘટના કઈ રીતે લાગુ પાડવામાં આવે છે ?

એકમ 6 અનુમાપનીય પૃથક્કરણ (રેડોક્ષ પ્રક્રિયાઓ) Titrimetric Analysis (Redox Reactions)

જલીય દ્રાવણોમાં ઑક્સિડેશન અને રિડક્શન પ્રક્રિયાઓ એક સ્પીસિઝમાંથી બીજી સ્પીસિઝમાં ઇલેક્ટ્રૉનના સ્થાનાંતરણનો (transfer) સમાવેશ કરે છે. પદાર્થના ઑક્સિડેશનમાં ઇલેક્ટ્રૉન સ્પીસિઝમાંથી ઇલેક્ટ્રૉનનું સ્થાનાંતર (ગુમાવાય) થાય છે અને રિડક્શનમાં સ્પીસિઝ વડે ઇલેક્ટ્રૉન પ્રાપ્ત થાય છે. ઑક્સિડેશન અને રિડક્શન પ્રક્રિયાઓ એક સાથે જ (સમક્ષણિક) થાય છે. એ પ્રક્રિયા જેમાં ઑક્સિડેશન અને રિડક્શન એક સાથે જ થાય છે તેને રેડોક્ષ પ્રક્રિયા કહે છે. રેડોક્ષ પ્રક્રિયાનો સમાવેશ કરતાં અનુમાપનને રેડોક્ષ અનુમાપન કહે છે. તમે જાણો છો કે ઍસિડ-બેઈઝ અનુમાપનમાં અંતિમ બિંદુની નોંધ માટે pH પ્રત્યે સંવેદનશીલ હોય તેવા સૂચકો વાપરવામાં આવે છે. એ જ પ્રમાણે રેડોક્ષ પ્રક્રિયામાં પ્રણાલીના ઑક્સિડેશન પોટૅન્શિયલ (વિભવ)માં ફેર થતો હોય છે. રેડોક્ષ પ્રક્રિયામાં વપરાતા સૂચકો ઑક્સિડેશન પોટૅન્શિયલ તફાવત પ્રત્યે સંવેદનશીલ હોય છે. આદર્શ ઑક્સિડેશન - રિડક્શન સૂચકોનો ઑક્સિડેશન પોટૅન્શિયલ જેનું અનુમાપન કરવાનું છે તે દ્રાવણ અને અનુમાપકનાં પોટેન્શિયલ મૂલ્યોની મધ્યમાં હોય છે અને આ સહેલાઈથી સ્પષ્ટ પરખ કરી શકાય તેવો રંગ ફેરફાર દર્શાવે છે.

પ્રયોગ 6.1

હેતુ :

 $\mathrm{KMnO_4}$ દ્રાવણની સાંદ્રતા/મોલારિટી, ઑકઝેલિક ઍસિડના $0.1\mathrm{M}$ પ્રમાણિત દ્રાવણ સાથે અનુમાપન કરીને નક્કી કરવી.

સિદ્ધાંત :

આ પ્રયોગમાં પોટેશિયમ પરમૅગેનેટ એક પ્રબળ ઑક્સિડેશનકર્તા તરીકે વર્તે છે. KMnO_4 ઑક્સિડેશનકર્તા તરીકે આલ્કલાઇન માધ્યમમાં પણ વર્તે છે, પરંતુ જથ્થાત્મક (માત્રાત્મક) પૃથક્કરણમાં મુખ્યત્વે ઍસિડિક માધ્યમનો ઉપયોગ થાય છે. KMnO_4 નું ઍસિડિક માધ્યમમાં ઑક્સિડેશનકર્તા તરીકેનું વર્તન નીચેના સમીકરણથી રજૂ કરી શકાય :

$$MnO_4^- + 8H^+ + 5e^- \rightarrow Mn^{2+} + 4H_2O$$

આ અનુમાપનમાં વપરાતો ઍસિડ, મંદ સલ્ફ્ચુરિક ઍસિડ છે. નાઇટ્રિક ઍસિડનો ઉપયોગ કરી શકતો નથી કારણ કે તે પોતે જ ઑક્સિડેશનકર્તા તરીકે વર્તે છે અને હાઇડ્રૉક્લોરિક ઍસિડનો ઉપયોગ સામાન્ય રીતે ટાળવામાં આવે છે કારણ કે તે KMnO₄ સાથે નીચે આપેલા સમીકરણ પ્રમાણે પ્રક્રિયા કરે છે અને ક્લોરિન ઉત્પન્ન કરે છે અને ક્લોરિન પોતે પણ જલીય દ્રાવણમાં ઑક્સિડેશનકર્તા તરીકે વર્તે છે.

$$2KMnO_4 + 16HCl \rightarrow 2KCl + 2MnCl_2 + 5Cl_2 + 8H_2O$$

અનુમાપનીય પૃથક્કરણ (રેડોક્ષ પ્રક્રિયાઓ)

ઑક્ઝેલિક ઍસિડ રિડક્શનકર્તા તરીકે વર્તે છે. તેથી ઍસિડિક માધ્યમમાં પોટૅશિયમ પરમેંગેનેટ સાથે નીચેના સમીકરણ પ્રમાણે અનુમાપન કરી શકાય છે:

ઑકઝેલિક ઍસિડની પ્રક્રિયાઓ

A. રાસાયણિક સમીકરણ

િરડક્શન અર્ધપ્રક્રિયા : $2\text{KMnO}_4 + 3\text{H}_2\text{SO}_4 \longrightarrow \text{K}_2\text{SO}_4 + 2\text{MnSO}_4 + 3\text{H}_2\text{O} + 5\text{O}_4$ ઑક્સિડેશન અર્ધપ્રક્રિયા : $[\text{H}_2\text{C}_2\text{O}_4 + [\text{O}] \xrightarrow{60~^\circ\text{C}} 2\text{CO}_2 + \text{H}_2\text{O}] \times 5$

$$2KMnO_4 + 3H_2SO_4 + 5H_2C_2O_4 \longrightarrow K_2SO_4 + 2MnSO_4 + 8H_2O + 10CO_2$$

B. આયનીય પ્રક્રિયા

િરડક્શન અર્ધપ્રક્રિયા : $[MnO_4^- + 5e^- + 8H^+ \longrightarrow Mn^{2+} + 4H_2O] \times 2$ ઑક્સિડેશન અર્ધપ્રક્રિયા : $[C_2O_4^{\ 2-} \longrightarrow 2CO_2 + 2e^-] \times 5$

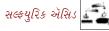
$$2MnO_4^- + 5C_2O_4^{2-} + 16H^+ \longrightarrow 2Mn^{2+} + 10CO_2 + 8H_2O_3$$

આ સમીકરણોમાં $\mathrm{MnO_4^-}$ નું $\mathrm{Mn^{2+}}$ માં રિડક્શન થાય છે અને $\mathrm{C_2O_4^{2-}}$ નું $\mathrm{CO_2}$ માં ઑક્સિડેશન થાય છે. $\mathrm{C_2O_4^{2-}}$ માંના કાર્બનનો ઑક્સિડેશન આંક +3થી +4માં ફેરવાય છે.

આ અનુમાપનોમાં પોટૅશિયમ પરેમૅંગેનેટ સ્વયંસૂચક તરીકે વર્તે છે. શરૂઆતમાં પોટૅશિયમ પરમૅંગેનેટનું ઑક્ઝેલિક ઍસિડ વડે રિડક્શન થવાથી રંગ દૂર થાય છે. ઓક્ઝેલેટ આયનોના સંપૂર્ણ વપરાશ પછી થોડા પ્રમાણમાં ઉમેરેલા અને પ્રક્રિયા ન પામેલા પોટૅશિયમ પરમૅંગેનેટ દ્વારા ઉત્પન્ન થતો આછો ગુલાબી રંગ અંતિમબિંદુ સૂચવે છે. ઑક્ઝેલિક ઍસિડના દ્રાવણને (50 – 60 °C) તાપમાને મંદ સલ્ફ્યુરિક ઍસિડ સાથે ગરમ કરવામાં આવે છે. આ જરૂરી છે કારણ કે પ્રક્રિયા ઊંચા તાપમાને પરિણમે છે. અનુમાપન દરમિયાન શરૂઆતમાં મેંગેનસ સલ્ફેટ બને છે. જે ઑક્ઝેલિક ઍસિડ વડે KMnO્રના રિડક્શન માટે ઉદ્દીપક તરીકે વર્તે છે. આથી શરૂઆતમાં પ્રક્રિયાન્વેગ ધીમો હોય છે અને જેમ-જેમ પ્રક્રિયા આગળ વધે છે તેમ-તેમ પ્રક્રિયાનો વેગ વધે છે.

પ્રયોગશાળા માર્ગદર્શિકા રસાયણવિજ્ઞાન

જરૂરી સામગ્રી :


પદ્ધતિ :

A. 0.1 M પ્રમાણિત ઑક્ઝેલિક ઍસિડના દ્રાવણની બનાવટ

0.1 M ઑક્ઝેલિક ઍસિડનું દ્રાવણ પ્રયોગ 2.1 (એકમ 2, ધોરણ XI પ્રાયોગિક માર્ગદર્શિકા) પ્રમાણે બનાવો.

- B. ઑક્ઝેલિક ઍસિડ દ્રાવણનું પોટૅશિયમ પરમૅંગેનેટ દ્રાવણ સામે અનુમાપન
- (i) બ્યુરેટને દ્રાવણ વડે વીંછળો અને સ્વચ્છ બ્યુરેટમાં પોટૅશિયમ પરમૅંગેનેટનું દ્રાવણ ભરો. આ બ્યુરેટના નોઝલ (નાળચા)માં જો હવાના પરપોટા રહ્યા હોય તો કેટલુંક દ્રાવણ તેમાંથી પસાર કરી તેને દૂર કરો. પરમૅંગેનેટ સાથેના અનુમાપનમાં કાચના સ્ટૉપકોકવાળી બ્યુરેટનો ઉપયોગ કરવો જોઈએ. કારણ કે પરમૅંગેનેટ આયન રબર પર હુમલો (પ્રક્રિયા) કરે છે.
- (ii) કોનિકલ ફ્લાસ્કમાં $0.1~\mathrm{M}$ ઑક્ઝેલિક ઍસિડના $10~\mathrm{mL}$ લો અને તેમાં $1.0~\mathrm{M}~\mathrm{H_2SO_4}$ નું દ્રાવણ અડધી કશનળી જેટલું (5 mL) ઉમેરો જેથી અનુમાપન પ્રક્રિયા દરમિયાન મેંગેનીઝ ડાયૉક્સાઇડના કોઈ પણ અવક્ષેપના નિર્માણને અટકાવી શકાય.
- (iii) બ્યુરેટમાં લીધેલા પરમેંગેનેટ દ્રાવણ સાથે ઑક્ઝેલિક ઍસિડના દ્રાવણને અનુમાપન કરતાં પહેલાં 50 60 °C તાપમાને ગરમ કરો. રંગ-પરિવર્તનને સારી રીતે જોઈ શકાય તે માટે જે દ્રાવણનું અનુમાપન કરવાનું છે તે દ્રાવણ ધરાવતા કોનિકલ ફ્લાસ્કને ગ્લેઝ્ડ ટાઇલ પર સીધી રીતે ગોઠવેલી બ્યુરેટના નોઝલ નીચે મૂકો.
- (iv) બ્યુરેટમાંના પરમૅંગેનેટ દ્રાવણના કદનું શરૂઆતનું માપન નોંધો અને તેનું થોડું-થોડું કદ ગરમ કરેલા ઑક્ઝલિક ઍસિડના દ્રાવણમાં ઉમેરતા જાવ અને ફ્લાસ્કમાંના દ્રાવણને હલાવતા રહો. ઑક્ઝેલિક ઍસિડ સાથેની

અનુમાપનીય પૃથક્કરણ (રેડોક્ષ પ્રક્રિયાઓ)

પ્રક્રિયાથી પરમૅંગેનેટ દ્રાવણનો જાંબલી રંગ દૂર થશે. થોડાક વધારે પરમૅંગેનેટ દ્રાવણને લીધે કાયમી આછો ગુલાબી રંગ દેખાય તે અંતિમ બિંદુનું સૂચન કરે છે.

- (v) જ્યાં સુધી ત્રણ સુસંગત (concordant) વાચન-આંક મળે નહિ ત્યાં સુધી પ્રયોગ ફરી કરો. KMnO₄ નું દ્રાવણ ઘેરા રંગનું હોવાથી બ્યુરેટનું વાચન કરતી વખતે ઉપરની વક્રસપાટીને (મેનિસ્ક્સ) ધ્યાનમાં રાખવી.
- (vi) અવલોકન-કોષ્ટક 6.1માં દર્શાવ્યા પ્રમાણે વાચન-આંક નોંધો અને પોટેશિયમ પરમેંગેનેટ દ્રાવણની પ્રબળતા (સાંદ્રતા) mol/litre માં ગણો.

કોષ્ટક 6.1 : પોટૅશિયમ પરમૅંગેનેટ દ્રાવણનું પ્રમાણિત ઑક્ઝેલિક ઍસિડ દ્રાવણ સામે અનુમાપન

અનુક્રમ	ઑક્ઝેલિક ઍસ્ટિયન હ્લ	બ્યુરેટ વાચન-આંક		વપરાયેલ KMnO₄નું કદ
	ઍસિડનું કદ mLમાં	પ્રારંભિક (x)	અંતિમ (૪)	V = (y - x) mL

ગણતરી :

અજ્ઞાત દ્રાવણની પ્રબળતા (સાંદ્રતા) મોલારિટી પર્યાયમાં નીચેના સમીકરણથી નક્કી કરી શકાય :

 $a_1 M_1 V_1 = a_2 M_2 V_2$ (6.1)

ઑક્ઝેલિક ઍસિંડ વિરુદ્ધ પોટૅશિયમ પરમૅંગેનેટ દ્રાવણ માટે :

- a₁ = 2 (સમતોલિત અર્ધકોષ પ્રક્રિયામાં ઑક્ઝેલિક ઍસિડના પ્રતિ સૂત્ર એકમમાંથી ગુમાવેલા ઇલેક્ટ્રૉનની સંખ્યા)
- a₂ = 5 (સમતોલિત અર્ધકોષ પ્રક્રિયામાં પોટૅશિયમ પરમેંગેનેટના પ્રતિસૂત્ર એકમમાં મેળવેલા ઇલેક્ટ્રૉનની સંખ્યા)

 $\mathbf{M}_{_{1}}$ અને $\mathbf{M}_{_{2}}$ અનુમાપનમાં વાપરેલ ઑક્ઝેલિક ઍસિડ અને પોટેશિયમ પરમેંગેનેટ દ્રાવણોની મોલારિટી છે.

 \mathbf{V}_1 અને \mathbf{V}_2 અનુક્રમે ઑક્ઝેલિક ઍસિડ અને પોટૅશિયમ પરમેંગેનેટ દ્રાવણના કદ છે.

પ્રયોગશાળા માર્ગદર્શિકા રસાયણવિજ્ઞાન

સમીકરણ 6.1 માં a, અને a, નાં મૂલ્યો મૂકતાં આપણને મળશે, ઑક્ઝેલિક ઍસિડ KMnO₄ $2M_1V_1 = 5M_2V_2$ $M_2 = \frac{2M_1V_1}{5V_2}$ (6.2)

આપશે સમીકરણ 6.2 નો ઉપયોગ કરીને પોટૅશિયમ પરમૅંગેનેટ દ્રાવશની મોલારિટી ગણી શકીએ. દ્રાવણની સાંદ્રતા (પ્રબળતા) નીચેના સમીકરણથી આપી શકાયઃ સાંદ્રતા (પ્રબળતા) = મોલારિટી × મોલર દળ

પરિણામ :

- (i) $KMnO_4$ દ્રાવણની મોલારિટી છે.
- (ii) KMnO₄ દ્રાવશની સાંદ્રતા (પ્રબળતા) છે.

સાવચેતીઓ :

- (a) હંમેશાં બ્યુરેટ અને પિપેટને તેમાં લેવાનાં દ્રાવણો વડે વીંછળો.
- (b) પ્રયોગમાં વાપરવાના દ્રાવશ વડે કોનિકલ ફ્લાસ્કને ક્યારેય પણ વીંછળશો નહિ.
- (c) બ્યુરેટમાં હવાથી કોઈ ખાલી જગા હોય તો તેને દૂર કરો.
- (d) બ્યુરેટનું પ્રારંભિક વાચન-આંક નોંધતા પહેલા બ્યુરેટ ઉપરથી ગળણી દૂર કરવાનું ક્યારેય પણ ભૂલશો નહિ.
- (e) અંતિમ બિંદુ અને બ્યુરેટનું વાચન-આંક નોંધતી વખતે બ્યુરેટના છેડે દ્રાવણનું ટીપું લટકવું જોઈએ નહિ.
- (f) બધાં જ રંગીન દ્રાવણોની બાબતમાં હંમેશાં બ્યુરેટ વાચન-આંક સમયે ઉપરની વક્ર સપાટી (મેનિસ્ક્સ)ને ધ્યાનમાં લેશો.
- (g) તૂટેલા નોઝલ (નાળચા)વાળી બ્યુરેટ કે પિપેટનો ઉપયોગ ક્યારેય પણ કરશો નહિ.
- (h) પ્રવાહીને જ્યારે ચૂસો (ખેંચો) ત્યારે પિપેટનો પાતળો છેડો હંમેશાં દ્રાવણમાં ડૂબેલો હોવો જોઈએ.
- (i) પિપેટના જેટ છેડા (પાતળા છેડા)માંના દ્રાવશના ટીપાંને ફૂંક મારીને બહાર કાઢશો નહિ.
- (j) દ્રાવણની સાંદ્રતા (પ્રબળતા) ચોથા દશાંશસ્થળ સુધી ગણવી જોઈએ.
- (k) ઑક્ઝેલિક ઍસિડ અને H_2SO_4 દ્રાવશના મિશ્રશનું અનુમાપન કરતાં હોય ત્યારે તેને 50-60~C વચ્ચે ગરમ કરવાનું ભૂલશો નહિ.

ચર્ચાત્મક પ્રશ્નો :

- (i) પરમૅંગેનેટ અનુમાપનને કયું વિશિષ્ટ નામ આપવામાં આવેલ છે ?
- (ii) પરમૅંગેનેટ અનુમાપનમાં કયો સૂચક વપરાય છે ?

અનુમાપનીય પૃથક્કરણ (રેડોક્ષ પ્રક્રિયાઓ)

- (iii) પરમૅંગેનેટ અનુમાપનમાં રબરના બૂચવાળી બ્યુરેટ શા માટે વાપરવી જોઈએ નહિ ?
- (iv) પરમૅગેનેટ અનુમાપનમાં સલ્ફ્યુરિક ઍસિડ ધરાવતા ઑક્ઝેલિક ઍસિડ દ્રાવણને શા માટે 50-60 °C તાપમાને ગરમ કરીએ છીએ ?

પ્રયોગ 6.2

હેતુ :

 KMnO_4 દ્રાવણની સાંદ્રતા/મોલારિટી પ્રમાણિત ફેરસ એમોનિયમ સલ્ફેટના દ્રાવણ સાથેના અનુમાપનથી નક્કી કરવી.

સિદ્ધાંત :

ઑક્ઝેલિક ઍસિડની જેમ ફેરસ એમોનિયમ સલ્ફેટ, પોટૅશિયમ પરમૅંગેનેટ સામેના અનુમાપનમાં રિડક્શનકર્તા તરીકે વર્તે છે. આ પ્રક્રિયા નીચે દર્શાવ્યા મુજબ થાય છે:

(a) રાસાયણિક સમીકરણ

િરડક્શન અર્ધપ્રક્રિયા :
$$2\text{KMnO}_4 + 3\text{H}_2\text{SO}_4 \longrightarrow \text{K}_2\text{SO}_4 + 2\text{MnSO}_4 + 3\text{H}_2\text{O} + 5[\text{O}]$$

ઑક્સિડેશન અર્ધપ્રક્રિયા : $[2\text{FeSO}_4 \ (\text{NH}_4)_2 \ \text{SO}_4 \ . \ 6\text{H}_2\text{O} + \text{H}_2\text{SO}_4 + [\text{O}] \longrightarrow \text{Fe}_2(\text{SO}_4)_3 + 2(\text{NH}_4)_2 \ \text{SO}_4 + 13\text{H}_2\text{O}] \times 5$

$$2KMnO_4 + 8H_2SO_4 + 10FeSO_4 (NH_4)_2SO_4 . \ 6H_2O \longrightarrow K_2SO_4 + 2MnSO_4 + 5Fe_2(SO_4)_3 \\ + 10(NH_4)_2 \ SO_4 + 68H_2O$$

(b) આયનીય સમીકરણ

િરેડક્શન અર્ધપ્રક્રિયા :
$$MnO_4^- + 5e^- + 8H^+ \longrightarrow Mn^{2+} + 4H_2O$$

ઑક્સિડેશન અર્ધપ્રક્રિયા : $[Fe^{2+} \longrightarrow Fe^{3+} + e^-] \times 5$

$$MnO_{4}^{\;-} + \; 5Fe^{2+} + \; 8H^{+} \longrightarrow Mn^{2+} + \; 5Fe^{3+} + \; 4H_{2}O$$

મોહ્ર ક્ષારમાં આયર્નનો ઑક્સિડેશન-આંક +2 છે. આયર્ન પ્રક્રિયા દરમિયાન ઑક્સિડેશન પામે છે અને તેનો ઑક્સિડેશન-આંક +2થી +3માં ફેરવાય છે. આ અનુમાપનમાં ફેરસ એમોનિયમ સલ્ફેટ દ્રાવણને ગરમ કરવાની જરૂર નથી. કારણ કે પ્રક્રિયાનો વેગ ઓરડાના તાપમાને પણ ઘણો ઊંચો છે. વળી, ઊંચા તાપમાને ફેરસ આયનો હવામાંના ઑક્સિજનથી ફેરિક આયનોમાં ઑક્સિડેશન પામે તો પ્રયોગમાં ત્રુટિ (ભૂલ) દાખલ થાય છે.

: એક

: એક

: એક

: એક

: એક

: એક

પ્રયોગશાળા માર્ગદર્શિકા રસાયણવિજ્ઞાન

જરૂરી સામગ્રી :

માપક ફ્લાસ્ક (250 mL) : એક
 બ્યુરેટ (50 mL) : એક

• બ્યુરેટ સ્ટૅન્ડ

પિપેટકોનિકલ ફ્લાસ્ક

• ગ્લેઝ્ડ ટાઇલ (સફ્રેદ)

• ગળણી

• વજન કરવાની શીશી

• પોટૅશિયમ પરમૅંગેનેટ દ્રાવશ : જરૂર પ્રમાશે

• મંદ સલ્ફ્વારિક ઍસિડ : જરૂર પ્રમાણે

• ફેરસ એમોનિયમ સલ્ફેટ : જરૂર પ્રમાણે

પદ્ધતિ :

- A. ફેરસ એમોનિયમ સલ્ફેટના 0.05 M પ્રમાણિત દ્રાવણની બનાવટ $(\text{FeSO}_4 (\text{NH}_4)_2 \text{ SO}_4 \cdot 6\text{H}_2\text{O}_{\overline{1}})$ મોલર દળ = 392 g mol⁻¹)
- (i) 4.9000 g ફેરસ એમોનિયમ સલ્ફેટનું વજન કરો અને તેને ગળણીની મદદ વડે 250 mL માપક ફ્લાસ્કમાં લો.
- (ii) ગળણીને ચોંટી રહેલા ઘન પદાર્થને નિસ્યંદિત પાણીની મદદ વડે ફ્લાસ્કમાં લઈ લો અને મંદ સલ્ફ્યુરિક ઍસિડ ટીપે ટીપે ફ્લાસ્કમાં ઉમેરો જેથી ચોખ્ખું દ્રાવણ મળે.
- (iii) ક્લાસ્કને હલાવો અને જ્યારે બધો પદાર્થ ઓગળી જાય ત્યારે દ્રાવણને નિસ્યંદિત પાણી વડે નિશાની સુધી ભરી દો.
- B. ફેરસ એમોનિયમ સલ્ફેટનું પોટૅશિયમ પરમૅંગેનેટ દ્રાવણ સામે અનુમાપન
- (i) બ્યુરેટને પોટૅશિયમ પરમૅંગેનેટ દ્રાવણ વડે વીંછળો અને સ્વચ્છ બ્યુરેટમાં પોટૅશિયમ પરમૅંગેનેટ દ્રાવણ ભરી દો. જો બ્યુરેટમાં હવાના પરપોટા હોય તો દ્રાવણને થોડોક સમય બહાર જવા દઈ તેને દૂર કરો.
- (ii) કોનિકલ ફ્લાસ્કમાં 10 mL ફેરસ એમોનિયમ સલ્ફેટનું દ્રાવણ લો અને અડધી કસનળી (5 mL) $1.0 \text{ M H}_2\text{SO}_4$ દ્રાવણ તેમાં ઉમેરો.
- (iii) ઉપરના દ્રાવશનું પોટૅશિયમ પરમૅગેનેટ સાથે ગુલાબી રંગ દેખાય ત્યાં સુધી અનુમાપન કરતાં રહો. અનુમાપન દરમિયાન ફ્લાસ્કમાંના દ્રાવશને હલાવતા રહો.
- (iv) પ્રયોગનું પુનરાવર્તન જ્યાં સુધી ત્રણ સુસંગત વાચન-આંક મળે નહિ ત્યાં સુધી ચાલુ રાખો.
- (v) અવલોકન-કોષ્ટક 6.2માં દર્શાવ્યા પ્રમાણે વાયન-આંક નોંધો અને પોટૅશિયમ પરમેંગેનેટ દ્રાવણની પ્રબળતા mol/litreમાં ગણો.

કોષ્ટક 6.2 : પોટૅશિયમ પરમૅંગેનેટ દ્રાવણનું પ્રમાણિત ફેરસ એમોનિયમ સલ્ફેટ દ્રાવણ સામેનું અનુમાપન

	અનુક્રમ	ાનુક્રમ દરેક અનુમાપન માટે ઉપયોગમાં લીધેલ ફેરસ એમોનિયમ સલ્ફેટ દ્રાવણનું કદ mLમાં	બ્યુરેટ વાચન-આંક		વપરાયેલા KMnO₄નું કદ (V)
			પ્રારંભિક (x)	અંતિમ (૪)	V = (y - x) mL
L					
L					

ગણતરી :

અજ્ઞાત દ્રાવણની સાંદ્રતા (પ્રબળતા) મોલારિટીના પર્યાયમાં નીચેના સમીકરણથી નક્કી કરી શકાય :

 $a_1 M_1 V_1 = a_2 M_2 V_2$

જ્યાં, $\mathbf{M_1}$ અને $\mathbf{M_2}$ ફેરસ એમોનિયમ સલ્ફેટ અને પોટૅશિયમ પરમૅંગેનેટ દ્રાવણોની મોલારિટી છે અને $\mathbf{V_1}$ અને $\mathbf{V_2}$ અનુક્રમે ફેરસ એમોનિયમ સલ્ફેટ અને પોટૅશિયમ પરમૅંગેનેટ દ્રાવણોના કદ છે.

 $a_1 = 1$ (અર્ધકોષ પ્રક્રિયામાં ફેરસ એમોનિયમ સલ્ફેટના પ્રતિ એક સૂત્ર એકમમાં ગુમાવેલા ઇલેક્ટ્રૉનની સંખ્યા છે)

 $a_2 = 5$ (અર્ધકોષ પ્રક્રિયામાં પોટૅશિયમ પરમૅંગેનેટના પ્રતિ સૂત્ર એકમમાં મેળવેલા ઇલેક્ટ્રૉનની સંખ્યા છે.)

નીચે આપેલા સૂત્ર વડે સાંદ્રતા (પ્રબળતા) ગણી શકાય :

સાંદ્રતા (પ્રબળતા) = મોલારિટી × મોલર દળ

પરિણામ :

આપેલ પોટૅશિયમ પરમૅંગેનેટ દ્રાવશની સાંદ્રતા (પ્રબળતા) g/L છે.

સાવચેતીઓ :

- (a) પ્રમાશિત દ્રાવશ બનાવવા માટે હંમેશાં તાજો જ ફેરસ એમોનિયમ સલ્ફેટ વાપરવો.
- (b) અન્ય સાવચેતીઓ પ્રયોગ 6.1 પ્રમાણેની જ છે.

પ્રયોગશાળા માર્ગદર્શિકા રસાયણવિજ્ઞાન

ચર્ચાત્મક પ્રશ્નો :

- ફેરસ એમોનિયમ સલ્ફેટના દ્રાવણને અનુમાપન કરતા પહેલાં શા માટે ગરમ કરવામાં આવતું નથી ?
- પરમેંગેનેટ અનુમાપનમાં નાઇટ્રિક ઍસિડ અથવા હાઇડ્રૉક્લોરિક ઍસિડ શા માટે વપરાતા નથી ? સમજાવો. (ii)
- ફેરસ એમોનિયમ સલ્ફેટનું પ્રમાણિત દ્રાવણ બનાવવામાં મંદ સલ્ફ્યુરિક ઍસિડ શા માટે ઉમેરવામાં આવે છે ? (iii)
- તમે 0.1M ફેરસ એમોનિયમ સલ્ફેટનું પ્રમાશિત 100 mL દ્રાવશ કેવી રીતે બનાવશો ? (iv)
- પોટૅશિયમ પરમૅંગેનેટને શા માટે પ્રાથમિક માનક (standard) ગણવામાં આવતો નથી ? (v)
- કયા પ્રકારના અનુમાપનને રેડોક્ષ અનુમાપન નામ આપવામાં આવેલ છે ? બીજા કેટલાક રેડોક્ષ અનુમાપનોનાં નામ (vi) આપો.

પૃથક્કરણનો હંમેશાં એવો અર્થ નથી થતો કે પદાર્થને તેના અંતિમ ઘટકોમાં તોડી નાંખવો. પદાર્થનો સ્વભાવ શોધી કાઢવો અને તેનાં ઘટકોની ઓળખાણને પણ પૃથક્કરણ તરીકે ઓળખવામાં આવે છે અને તેને ગુણાત્મક પૃથક્કરણ કહે છે. અકાર્બનિક ક્ષારોનું ગુણાત્મક પૂથક્કરણ એટલે ક્ષારમાં અથવા ક્ષારના મિશ્રણમાં રહેલા ધનાયન અને ઋશાયનની ઓળખ. અકાર્બનિક ક્ષાર ઍસિડના બેઈઝ વડે સંપૂર્ણ અથવા આંશિક તટસ્થીકરણથી અથવા તેની ઊલટી રીતે મેળવી શકાય છે. ક્ષારની બનાવટમાં ઍસિડ તરફથી મળતા ભાગને ઋશાયન કહે છે અને બેઈઝ તરફથી મળતા ભાગને ધનાયન કહે છે. દા.ત., $CuSO_4$ અને NaCl ક્ષારમાં Cu^{2+} અને Na^+ આયનો ધનાયન છે અને SO_4^{2-} અને CI^- આયનો ઋશાયન છે. ગુશાત્મક પૂથક્કરણ જુદાં-જુદાં માપના આધારે કરવામાં આવે છે. આમાં લેવાયેલા પદાર્થના જ્થ્થા અલગ-અલગ હોય છે. સ્થૂળ (macro) પૃથક્કરણમાં 0.1 થી 0.5 g પદાર્થ અને આશરે 20 mL જેટલું દ્રાવણ વપરાય છે. અર્ધસૂક્ષ્મ (semimicro) પૃથક્કરણમાં 0.05 g પદાર્થ અને 1 mL દ્રાવણની જરૂર પડે છે, જ્યારે સૂક્ષ્મ (micro) પૃથક્કરણમાં જરૂરી જ્થ્થો ઘણો ઓછો હોય છે. ગુણાત્મક પૃથક્કરણ એવી પ્રક્રિયાઓ દ્વારા કરવામાં આવે છે, કે જે આપણી દે-ય અને વાસ સંદર્ભી જ્ઞાનેન્દ્રિયોને સરળતાથી અવગત કરે. નીચે જ્ઞાવેલ પ્રક્રિયાઓનો તેમાં સમાવેશ થાય છે :

- (a) અવક્ષેપનું નીપજવું.
- (b) રંગમાં ફેરફાર.
- (c) વાયુની ઉત્પત્તિ વગેરે. અકાર્બનિક ક્ષારનાં પદ્ધતિસર પૃથક્કરણમાં નીચેનાં સોપાનોનો સમાવેશ થાય છે.
- (i) ઘન ક્ષાર અને તેના દ્રાવણની પ્રાથમિક કસોટી.
- (ii) દ્રાવણમાં થતી પ્રક્રિયાઓ (ભીની કસોટીઓ) દ્વારા ઋણાયનોનું નિર્ધારણ અને નિર્શાયક કસોટીઓ.
- (iii) દ્રાવણમાં થતી પ્રક્રિયાઓ (ભીની કસોટીઓ) દ્વારા ધનાયનોનું નિર્ધારણ અને નિર્શાયક કસોટીઓ.

ક્ષારની પ્રાથમિક કસોટીઓ અગત્યની માહિતી પૂરી પાડે છે, જે આગળના પૃથક્કરણને સરળ બનાવે છે. જોકે આ કસોટીઓ પરિણામી હોતી નથી, પરંતુ તે કેટલીક વખત કેટલાક ધનાયન અથવા ઋણાયનની હાજરી માટે અગત્યની કડી (clue) આપે છે. આ કસોટીઓ 10-15 મિનિટમાં કરી શકાય છે. આમાં ક્ષારનો સામાન્ય દેખાવ અને ભૌતિક ગુણધર્મો જેવા કે રંગ, વાસ, દ્રાવ્યતા વગેરેની નોંધનો સમાવેશ થાય છે. આને સૂકી કસોટીઓ કહે છે.

શુષ્ક ક્ષારને ગરમ કરવો, ફૂંકણી કસોટી, જ્યોત કસોટી, બોરેક્સ મણકા કસોટી, સોડિયમ કાર્બોનેટ મણકા કસોટી, કોલસા પોલાણ કસોટી વગેરેનો સૂકી કસોટીઓમાં સમાવેશ થાય છે. આ કસોટીઓ આ એકમમાં આપેલ છે.

પાણીમાં ક્ષારની દ્રાવ્યતા અને જલીય દ્રાવણની pH ક્ષારમાં હાજર આયનોના સ્વભાવ અંગેની અગત્યની માહિતી આપે છે. જો દ્રાવણ ઍસિડિક અથવા બેઝિક સ્વભાવ દર્શાવે, તો ક્ષારનું જળવિભાજન થયેલું છે તેમ સૂચવે છે. જો દ્રાવણ સ્વભાવમાં બેઝિક હોય તો, તે ક્ષાર કોઈ કાર્બોનેટ અથવા સલ્ફાઇડ વગેરે હોવો જોઈએ. જો દ્રાવણ ઍસિડિક સ્વભાવ દર્શાવે તો તે ઍસિડ ક્ષાર હોવો જોઈએ અથવા પ્રબળ ઍસિડ અને નિર્બળ બેઈઝનો ક્ષાર હોવો જોઈએ. આ પરિસ્થિતમાં ઋણાયનની કસોટી કરતાં પહેલાં દ્રાવણને સોડિયમ કાર્બોનેટ વડે તટસ્થ કરવું ઉત્તમ છે.

પ્રાથમિક કસોટીઓમાં મંદ ${\rm H_2SO_4}$ / મંદ HCl અને સાંદ્ર ${\rm H_2SO_4}$ સાથેની કસોટીમાં વાયુ ઉત્પન્ન થાય, તો તે ઍસિડ મૂલકની (radical) હાજરી વિશે અગત્યનો સંકેત આપે છે (જુઓ કોષ્ટક 7.1 અને 7.3). આયનોની નિર્ણાયક કસોટીઓ કરતાં પહેલાં પ્રાથમિક કસોટીઓ કરવી જ જોઈએ.

પ્રયોગ 7.1

હેતુ :

નીચે આપેલા આયનોમાંથી આપેલા ક્ષારમાં રહેલા એક ધનાયન અને એક ઋણાયનની પરખ કરવી :

ધનાયન :
$$Pb^{2+}$$
, Cu^{2+} , As^{3+} , Al^{3+} , Fe^{3+} , Mn^{2+} , Ni^{2+} , Zn^{2+} , Co^{2+} , Ca^{2+} , Sr^{2+} , Ba^{2+} , Mg^{2+} , NH_4^+
ઋણાયન : CO_3^{2-} , S^{2-} , SO_3^{2-} , SO_4^{2-} , NO_2^- , NO_3^- , Cl^- , Br^- , I^- , PO_4^{3-} , $C_2O_4^{2-}$, CH_3COO^-
(અદ્રાવ્ય ક્ષારને બાકાત રાખવા.)

સિદ્ધાંત :

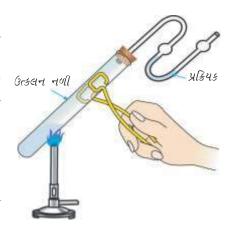
પૃથક્કરણમાં ખૂબ જ ઉપયોગી બે પાયાના સિદ્ધાંતો નીચે મુજબ છે :

- (i) દ્રાવ્યતા ગુણાકાર અને
- (ii) સમાન આયન અસર

જયારે ક્ષારનો આયનીય ગુણાકાર તેના દ્રાવ્યતા ગુણાકાર કરતાં વધી જાય ત્યારે અવક્ષેપન થાય છે. ક્ષારના આયનીય ગુણાકારનું નિયંત્રણ સમાન આયનની અસરના ઉપયોગ વડે કરી શકાય છે, જેનો અભ્યાસ તમોએ રસાયણવિજ્ઞાનના પાઠ્યપુસ્તકમાં કરેલો છે.

જરૂરી સામગ્રી :

પદ્ધતિસર ગુણાત્મક પૃથક્કરણ


ઋણાયનનું પદ્ધતિસર પૃથક્કરણ

સોપાન I : મંદ સલ્ફ્યુરિક ઍસિડ સાથેની પ્રાથમિક કસોટી

આ કસોટીમાં ક્ષાર પર મંદ સલ્ફ્ચુરિક ઍસિડની ઓરડાના તાપમાને ગરમ કરતાં અસર નોંધવામાં આવે છે (પદ્ધતિ નીચે આપેલ છે). કાર્બોનેટ ($\mathrm{CO}_3^{2^-}$), સલ્ફાઇડ (S^{2^-}), સલ્ફાઇટ (SO_3^2), નાઇટ્રાઇટ (NO_2^-) અને એસિટેટ ($\mathrm{CH}_3\mathrm{COO}^-$) મંદ સલ્ફ્ચુરિક ઍસિડ સાથે પ્રક્રિયા કરે છે અને જુદા-જુદા વાયુઓ ઉત્પ ન્ન કરે છે. ઉત્પન્ન થયેલા વાયુઓની લાક્ષણિકતાના અભ્યાસ પરથી ઋણાયન વિશે માહિતી મેળવાય છે. વાયુઓના લાક્ષણિક ગુણધર્મોનો સારાંશ નીચે કોષ્ટક 7.1માં દર્શાવેલ છે :

પદ્ધતિ :

(a) કસનળીમાં 0.1 g ક્ષાર લો અને 1-2 mL મંદ સલ્ફ્ચુરિક ઍસિડ ઉમેરો. ઓરડાના તાપમાને કોઈ ફેરફાર હોય, તો નોંધો. જો કોઈ વાયુ ઉત્પન્ન થયો ન હોય, તો કસનળીમાંનાં મિશ્રણને ગરમ કરો. જો વાયુ ઉત્પન્ન થતો હોય, તો આકૃતિ 7.1માં દર્શાવ્યા મુજબના સાધનોનો ઉપયોગ કરી કસોટી કરો અને ઉત્પન્ન થયેલા વાયુને ઓળખી કાઢો (જુઓ કોષ્ટક 7.1).

આકૃતિ 7.1 : વાયુની કસોટી

કોષ્ટક 7.1 : મંદ સલ્ફ્યુરિક ઍસિડ સાથે પ્રાથમિક કસોટી

અવલોકનો	અનુમાન		
	ઉત્પન્ન થયેલો વાયુ	સંભવિત ઋણાયન	
રંગવિહીન, વાસવિહીન વાયુ સત્વરે ઊભરા સાથે ઉત્પન્ન થાય છે, જે ચૂનાના પાણીને દૂધિયું બનાવે છે.	CO_2	કાર્બોનેટ (CO_3^{2-})	
રંગવિહીન, સડેલાં ઈંડા જેવી વાસવાળો વાયુ ઉત્પન્ન થાય છે, જે લેડ એસિટેટ પત્રને કાળો બનાવે છે.	H ₂ S	સલ્ફાઇડ (S²-)	
સલ્ફરના બળવા જેવી તીવ્ર વાસવાળો રંગવિહીન વાયુ, જે ઍસિડમય પોટૅશિયમ ડાયક્રોમેટના દ્રાવણને લીલું બનાવે છે.	SO ₂	સલ્ફાઇટ (SO_3^{2-})	
કથ્થાઈ ધુમાડો જે સ્ટાર્ચ દ્રાવણ ધરાવતા ઍસિડમય પોટૅશિયમ આયોડાઇડ દ્રાવણને વાદળી બનાવે છે.	NO_2	નાઇટ્રાઇટ (NO_2^-)	
સરકા જેવી વાસવાળી રંગવિહીન બાષ્ય. બાષ્ય વાદળી લિટમસને લાલ બનાવે છે.	CH₃COOH બાષ્ય	ઍસિટેટ (CH₃COO⁻)	

${\rm CO_3^{2-}, S^{2-}, SO_3^{2-}, NO_2^{-}}$ અને ${\rm CH_3COO^{-}}$ ની નિર્ણાયક કસોટીઓ

ઋણાયન માટેની નિર્ણાયક કસોટીઓ (ભીની) ક્ષાર પાણીમાં દ્રાવ્ય હોય, ત્યારે જળનિષ્કર્ષ અને જયારે ક્ષાર પાણીમાં અદ્રાવ્ય હોય, ત્યારે સોડિયમ કાર્બોનેટ નિષ્કર્ષનો ઉપયોગ કરી કરવામાં આવે છે. \mathbb{CO}_3^{2-} ની નિર્ણાયક કસોટી ક્ષારના જલીયદ્રાવણ અથવા ઘનક્ષાર સાથે કરવામાં આવે છે કારણ કે સોડિયમ કાર્બોનેટ નિષ્કર્ષ કાર્બોનેટ આયન ધરાવે છે. જળનિષ્કર્ષ ક્ષારને પાણીમાં ઓગાળીને બનાવવામાં આવે છે. સોડિયમ કાર્બોનેટ નિષ્કર્ષની બનાવટ નીચે આપેલી છે.

સોડિયમ કાર્બોનેટ નિષ્કર્ષની બનાવટ

1 g ક્ષારને પોર્સેલિન ડિશ અથવા ઉત્કલન નળીમાં લો. આશરે 3 g ઘન સોડિયમ કાર્બોનેટને ક્ષાર સાથે તેને મિશ્ર કરો. તેમાં 15 mL નિસ્યંદિત પાણી ઉમેરો, હ્લાવો અને મિશ્રણને 10 મિનિટ સુધી ઉકાળો, ઠંડું પાડો, ગાળી લો અને ગાળણને કસનળીમાં એકઠું કરો. તેને સોડિયમ કાર્બોનેટ નિષ્કર્ષ એમ લેબલ લગાવો.

મંદ સલ્ફ્ચુરિક ઍસિડ સાથે પ્રક્રિયા કરે છે, તેવા ઍસિડ મૂલકોની નિર્ણાયક કસોટીઓ નીચે કોષ્ટક 7.2 માં આપેલી છે :

કોષ્ટક 7.2 : $CO_3^{2-}, S^{2-}, SO_3^{2-}, NO_2^-, CH_3COO^-$ માટેની નિર્ણાયક કસોટીઓ

ઋશાયન	નિર્ણાયક કસોટી	
કાર્બોનેટ (CO ₃ -)	કસનળીમાં 0.1 g ક્ષાર લો, તેમાં મંદ સલ્ફ્ચુરિક ઍસિડ ઉમેરો. તીવ્ર ઉભરા સાથે CC વાયુ ઉત્પન્ન થાય છે જે ચૂનાના પાણીને દૂધિયું બનાવે છે. થોડા વધારે સમય માટે વા પસાર કરતાં દૂધિયાપણું દૂર થાય છે.	
સલ્ફાઇડ (S²-)	1 mL જળનિષ્કર્ષ લો અને તેમાં ઍમોનિયમ હાઇડ્રૉક્સાઇડ અથવા સોડિયમ કાર્બોનેટ નિષ્કર્ષ ઉમેરી તેને આલ્કલાઇન બનાવો. તેમાં સોડિયમ નાઇટ્રોપ્રુસાઇડનું ટીપું ઉમેરો. જાંબુડિયો અથવા જાંબલી રંગ દેખાય છે.	
* સલ્ફાઈટ (SO3²-)	(a) કસનળીમાં 1 mL જળિનષ્કર્ષ અથવા સોડિયમ કાર્બોનેટ નિષ્કર્ષ લો અને તેમાં બેરિયમ ક્લોરાઈડનું દ્રાવણ ઉમેરો. સફેદ અવક્ષેપ મળે છે જે મંદ હાઇડ્રોક્લોરિક ઍિસડમાં દ્રાવ્ય થાય છે અને સલ્ફર ડાયૉક્સાઇડ વાયુ ઉત્પન્ન થાય છે. (b) એક કસનળીમાં તબક્કા(a)માં મળેલા અવક્ષેપ લો અને તેમાં મંદ H_2SO_4 વડે ઍિસડિક બનાવેલા પોટૅશિયમ પરમૅંગેનેટના થોડાં ટીપાં ઉમેરો. પોટૅશિયમ પરમૅંગેનેટ દ્રાવણનો રંગ દૂર થાય છે.	
નાઇટ્રાઇટ (NO½)	 (a) કસનળીમાં 1 mL જળિનષ્કર્ષ લો. તેમાં થોડાં ટીપાં પોટૅશિયમ આયોડાઇડ દ્રાવણનાં અને થોડાં ટીપાં સ્ટાર્ચના દ્રાવણના ઉમેરો. ઍિસટિક ઍિસડ વડે ઍિસિડિક બનાવો. વાદળી રંગ જોવા મળે છે. (b) 1 mL જળિનષ્કર્ષને ઍિસિટિક ઍિસડ વડે ઍિસિડિક બનાવો. તેમાં સલ્ફાનિલિક ઍિસડના દ્રાવણના 2-3 ટીપાં ઉમેરો. બાદમાં 1-નેપ્થાઈલએમાઈન પ્રક્રિયકના 2-3 ટીપાં ઉમેરો. લાલ રંગ દેખાશે. જે નાઇટ્રાઇટ આયનની હાજરી સૂચવે છે. 	

CO₂ ની જેમ સલ્ફર ડાયૉક્સાઇડ પણ ચૂનાના પાણીને દૂધિયું બનાવે છે. પરંતુ CO₂ વાસવિહીન વાયુ છે જ્યારે SO₂ ને _____ લાક્ષણિક વાસ હોય છે.

પદ્ધતિસર ગુણાત્મક પૃથક્કરણ

એસિટેટ (CH,COO-)

- (a) ચાઈના ડિશમાં $0.1~\mathrm{g}$ ક્ષાર લો. તેમાં $1~\mathrm{mL}$ ઈથેનોલ અને $0.2~\mathrm{mL}$ સાંદ્ર $\mathrm{H_2SO_4}$ ઉમેરો અને ગરમ કરો. ફળ જેવી વાસ ઍસિટેટ આયનની હાજરીને નિશ્ચિત કરે છે.
- (b) કસનળીમાં 0.1 g ક્ષાર લો. તેમાં 1-2 mL નિસ્યંદિત પાણી ઉમેરો. બરાબર હ્લાવો, જરૂર જ્ણાય તો ગાળી લો. ગાળણમાં 1 થી 2 mL તટસ્થ** ફેરિક ક્લૉરાઇડ દ્રાવણમાં ઉમેરો. ધેરો લાલ રંગ દેખાય છે, જે ઉકાળતાં દૂર થાય છે અને કથ્થાઈ લાલ અવક્ષેપ બને છે.
- ** તટસ્થ ફેરિક ક્લોરાઇડની બનાવટ : ફેરિક ક્લોરાઇડના દ્રાવણમા મંદ NaOH નું દ્રાવણ ટીપે-ટીપે ત્યાં સુધી ઉમેરો અને હલાવતા રહ્યે, જ્યાં સુધી થોડા પણ કાયમી અવક્ષેપ મળે. અવક્ષેપને ગાળી લો અને ગાળણને પૃથક્કરણ માટે ઉપયોગમાં લો.

નિર્ણાયક કસોટીઓનું રસાયણવિજ્ઞાન

1. કાર્બોનેટ આયન $[CO_3^{2-}]$ ની કસોટી

જો ઘન ક્ષારમાં મંદ H_2SO_4 ઉમેરતાં, રંગવિહીન અને વાસવિહીન વાયુ ઉભરા સાથે ઉત્પન્ન થાય, તો તે કાર્બોનેટ આયનની હાજરી સૂચવે છે. વાયુ ચૂનાના પાણીને દૂધિયું બનાવે છે, કારણ કે $CaCO_3$ બને છે (આકૃતિ 7.1).

$$Na_2CO_3 + H_2SO_4 \longrightarrow Na_2SO_4 + H_2O + CO_2$$

 $Ca(OH)_2 + CO_2 \longrightarrow CaCO_3 + H_2O$

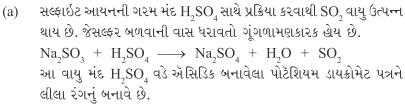
જો CO₂ વાયુને ચૂનાના દૂધિયા પાણીમાંથી વધારે સમય પસાર કરવામાં આવે તો ઉત્પન્ન થયેલું દૂધિયાપણું દૂર થાય છે. કારણ કે આ દરમિયાન કૅલ્શિયમ હાઇડ્રોજન કાર્બોનેટ બને છે, જે પાણીમાં દ્રાવ્ય હોય છે.

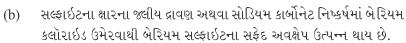
$$CaCO_3 + CO_2 + H_2O \longrightarrow Ca(HCO_3)_2$$

2. સલ્ફાઇડ આયન [S²⁻]ની કસોટી

(a) સલ્ફાઇડ ગરમ મંદ H_2SO_4 સાથે હાઇડ્રોજન સલ્ફાઇડ વાયુ ઉત્પન્ન કરે છે જે સડેલા ઇંડા જેવી વાસ ધરાવે છે. લેડ એસિટેટમાં બોળેલ ગાળણપત્રની પટ્ટીને વાયુ સામે ધરતાં તે કાળા રંગની બને છે. કારણ કે લેડ સલ્ફાઇડ બને છે, જે રંગમાં કાળો હોય છે.

$$Na_2S + H_2SO_4 \longrightarrow Na_2SO_4 + H_2S$$
 $(CH_3COO)_2Pb + H_2S \longrightarrow PbS + 2CH_3COOH$
લેડ સલ્ફાઈડ
કાળા અવક્ષેપ


(b) જો ક્ષાર પાણીમાં દ્રાવ્ય હોય, તો ક્ષારનું પાણીમાં બનાવેલું દ્રાવણ લો અને તેને ઍમોનિયમ હાઇડ્રૉક્સાઇડ વડે આલ્કલાઈન બનાવી તેમાં સોડિયમ નાઇટ્રોપ્રુસાઇડનું દ્રાવણ ઉમેરો. જો ક્ષાર પાણીમાં અદ્રાવ્ય હોય, તો સોડિયમ કાર્બોનેટ નિષ્કર્ષ લો અને તેમાં થોડાં ટીપાં સોડિયમ નાઇટ્રોપ્રુસાઇડના ઉમેરો. જાંબુડિયો અથવા જાંબલી રંગ દેખાય છે, જે


સંકીર્શ સંયોજન $Na_4[Fe(CN)_5NOS]$ બનવાના કારણે છે, તે ક્ષારમાં સલ્ફાઇડ આયનની હાજરી નિશ્ચિત કરે છે.

$$Na_2S + Na_2[Fe(CN)_5NO] \longrightarrow Na_4[Fe(CN)_5NOS]$$

સોડિયમ નાઇટ્રોપ્રુસાઇડ જાંબુડિયા રંગનો સંકીર્ણ

3. સલ્ફાઇટ આયન $[SO_3^{2-}]$ ની કસોટી

$$K_2Cr_2O_7 + H_2SO_4 + 3SO_2 \longrightarrow K_2SO_4 + Cr_2 (SO_4)_3 + H_2O$$
 ક્રોમિયમ સલ્ફેટ (લીલો રંગ)

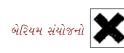
$$Na_2SO_3 + BaCl_2 \longrightarrow 2NaCl + BaSO_3$$

આ અવક્ષેપ નીચે જ્યાવેલી કસોટીઓ આપે છેઃ

(i) આ અવક્ષેપની મંદ HCl સાથે પ્રક્રિયા કરવાથી, મંદ HCl વડે સલ્ફાઈટનું વિઘટન થવાથી અવક્ષેપ દ્રાવ્ય થાય છે. ઉત્પન્ન થતાં SO_2 વાયુને કસોટી દ્વારા પારખી શકાય છે.

$$BaSO_3 + 2HCl \longrightarrow BaCl_2 + H_2O + SO_2$$

(ii) સલ્ફાઇટના અવક્ષેપ ઍસિડિક પોટૅશિયમ પરમૅંગેનેટના દ્રાવણનો રંગ દૂર કરે છે.


$$BaSO_3 + H_2SO_4 \longrightarrow BaSO_4 + H_2O + SO_2$$

$$2KMnO_4 + 3H_2SO_4 \longrightarrow K_2SO_4 + 2MnSO_4 + 3H_2O + 5 [O]$$

$$SO_2 + H_2O + [O] \longrightarrow H_2SO_4$$

4. નાઇટ્રાઇટ આયન $[NO_2^-]$ ની કસોટી

- (a) ઘન નાઇટ્રાઇટને મંદ H₂SO₄ સાથે મિશ્ર કરી ગરમ કરતાં, NO₂ વાયુનો લાલાશપડતો કથ્થાઈ રંગનો ઘુમાડો ઉત્પન્ન થાય છે. નાઇટ્રાઇટના ક્ષારના દ્રાવણમાં પોટૅશિયમ આયોડાઇડનું દ્રાવણ ઉમેર્યા બાદ, તેમાં તાજું બનાવેલું સ્ટાર્ચનું દ્રાવણ ઉમેરવામાં આવે છે. આ દ્રાવણને ઍસિટિક ઍસિડ વડે ઍસિડિક બનાવવાથી વાદળી રંગ ઉત્પન્ન થાય છે. અન્ય રીતમાં ગાળણપત્રને પોટૅશિયમ આયોડાઇડ અને સ્ટાર્ચના દ્રાવણ વડે ભીંજવવામાં આવે છે. આ ગાળણપત્ર પર ઍસિટિક ઍસિડનાં થોડાં ટીપાં મૂકીને તેને ઉત્પન્ન થતાં વાયુના સંપર્કમાં લાવતા મુક્ત થતો આયોડિન, સ્ટાર્ચ સાથે પારસ્પરિક ક્રિયા કરીને વાદળી રંગ આપે છે.
 - (i) $2\text{NaNO}_2 + \text{H}_2\text{SO}_4 \longrightarrow \text{Na}_2\text{SO}_4 + 2\text{HNO}_2$ $3\text{HNO}_2 \longrightarrow \text{HNO}_3 + 2\text{NO} + \text{H}_2\text{O}$ $2\text{NO} + \text{O}_2 \longrightarrow 2\text{NO}_2$ કથ્થાઈ રંગનો વાયુ

પદ્ધતિસર ગુણાત્મક પૃથક્કરણ

- (ii) $NO_2^- + CH_3COOH \rightarrow HNO_2 + CH_3COO^ 2HNO_2 + 2KI + 2CH_3COOH \rightarrow 2CH_3COOK + 2H_2O + 2NO + I_2$ $I_2 + સ્ટાર્ચ \rightarrow$ વાદળી સંક્રીર્ણ સંયોજન
- (b) સલ્ફાનિલિક ઍસિડ -1- નેપ્થાઇલએમાઇન પ્રક્રિયક કસોટી (ગ્રીસ ઇલોસ્વાય કસોટી) (Griss Ilosvay Test) સલ્ફાનિલિક ઍસિડ અને 1- નેપ્થાઇલ ઍમાઇન પ્રક્રિયકને જળનિષ્કર્ષમાં ઉમેરતાં અથવા ઍસિટિક ઍસિડ વડે ઍસિડિક બનાવતા ઉત્પન્ન થતા નાઇટ્રસ ઍસિડ વડે સલ્ફાનિલિક ઍસિડનું ડાયએઝોટાઇઝેશન થાય છે. ડાયએઝોટાઇટેશન પામેલ ઍસિડ 1- નેપ્થાઇલ ઍમાઇન સાથે યુગ્મન કરી લાલ એઝો રંગક બનાવે છે.

$$NO_2^- + CH_3COOH \longrightarrow HNO_2 + CH_3COO^-$$

$$\begin{array}{c} \stackrel{+}{\text{NH}_3}.\text{CH}_3\text{COO}^{-} \\ \\ \downarrow \\ \text{SO}_3\text{H} \end{array} + \text{HNO}_2 \\ \begin{array}{c} \text{N = N - OOCCH}_3 \\ \\ \text{SO}_3\text{H} \\ \end{array}$$

$$N = N - OOCCH_3$$

 $+ OOCCH_3$
 $+ OOCCH_3$

1-નેપ્થાઇલ એમાઇન

લાલ એઝોરંગક

આ કસોટી માટેનું દ્રાવણ અતિ મંદ હોવું જોઈએ. સાંદ્ર દ્રાવણોમાં પ્રક્રિયા ડાયએઝોટા ઇઝેશનથી આગળ થતી નથી.

5. એસિટેટ આયન [CH,COO-]ની કસોટી

(a) ક્ષારની પ્રક્રિયા મંદ ${
m H_2SO_4}$ સાથે કરવાથી, જો વિનેગરની વાસ આવે, તો તે એસિટેટ આયનની હાજરી સૂચવે છે. ચાઈના ડિશમાં $0.1~{
m g}$ જેટલો ક્ષાર લઈ, તેમાં $1~{
m mL}$ ઈથેનોલ ત્યાર બાદ તેમાં $0.2~{
m mL}$ સાંદ્ર ${
m H_2SO_4}$ ઉમેરી તેને ગરમ કરો. જો ઈથાઈલઍસિટેટની મીઠી વાસ આવે તો તે ${
m CH_3COO^-}$ આયનની હાજરી સૂચવે છે.

2CH
$$_3$$
COONa + H $_2$ SO $_4$ Na $_2$ SO $_4$ + 2CH $_3$ COOH CH $_3$ COOC $_2$ H $_5$ + H $_2$ O ઈથાઈલ એસિટેટ (મીઠી વાસ)

પ્રયોગશાળા માર્ગદર્શિકા રસાયણવિજ્ઞાન

(b) ઍિસટેટ આયન તટસ્થ ફેરિક કલૉઇરાઇડના દ્રાવણ સાથે પ્રક્રિયા કરી સંકીર્ણ આયન બનાવીને ઘેરો લાલ રંગ આપે છે. આ સંકીર્ષ આયનને ગરમ કરવાથી આયર્ન (III) ડાયહાઇડ્રૉક્સિ ઍિસટેટના કથ્થાઈ લાલ રંગના અવક્ષેપ બને છે.

6 CH₃COO[−] + 3Fe³⁺ + 2H₂O \longrightarrow [Fe₃(OH)₂ (CH₃COO)₆]⁺ + 2H⁺ [Fe₃(OH)₂ (CH₃COO)₆]⁺ + 4H₂O \longrightarrow 3[Fe(OH)₂ (CH₃COO)] + 3CH₃COOH + H⁺ આયર્ન (III) ડાયહા ઇડ્રૉડિસ એસિટેટ (કથ્થાઈ-લાલ-અવક્ષેપ)

સોપાન-II : સાંદ્ર સલ્ફ્યુરિક ઍસિડ સાથેની પ્રાથમિક કસોટી

જો મંદ H_2SO_4 સાથે કોઈ હકારાત્મક પરિણામો ન મળે તો કસનળીમાં 0.1~g ક્ષાર લઈ તેમાં સાંદ્ર H_2SO_4 નાં 3-4 ટીપાં ઉમેરો. ઠંડી સ્થિતિમાં પ્રક્રિયા મિશ્રણમાં થતો ફેરફાર નોંધો. બાદમાં આ મિશ્રણને ગરમ કરો અને ઉત્પન્ન થતા વાયુને ઓળખો (જુઓ કોપ્ટક 7.3).

કોષ્ટક 7.3 : સાંદ્ર સલ્ફ્યુરિક ઍસિડ સાથેની પ્રાથમિક કસોટીઓ

	અનુમાન		
અવલોકનો	ઉત્પન્ન થતા વાયુ / બાષ્પ	શક્ય ઋણાયન	
રંગવિહીન તીવ્ર વાસવાળો વાયુ ઉત્પન્ન થાય છે, જે એમોનિયમ હાઇડ્રૉકસાઇડમાં ડુબાડેલા સળિયાને કસનળીના મુખ નજીક લાવતા ઘટ્ટ સફેદ ધુમાડા આપે છે.	HCl	કલૉરાઈડ (CI⁻)	
લાલાશપડતાં કથ્થાઈ રંગનો તીવ્ર વાસવાળો વાયુ ઉત્પન્ન થાય છે. પ્રિક્રિયા મિશ્રણમાં ઘન MnO_2 ઉમેરીને ગરમ કરતાં લાલાશ-પડતા વાયુની તીવ્રતા વધે છે. દ્રાવણ પણ લાલ રંગ ધરાવે છે.	Br _₂ બાષ્પ	બ્રોમાઇડ (Br-)	
જાંબલી બાષ્પ ઉત્પન્ન થાય છે જે સ્ટાર્ચપત્રને વાદળી બનાવે છે અને કસનળીની અંદરની દીવાલો પર જાંબલી ઊર્ધ્વપાતીનું સ્તર બનાવે છે. પ્રક્રિયા મિશ્રણમાં MnO_2 ઉમેરતાં ધુમાડો ઘટ્ટ બને છે.	I ₂ બાષ્પ	આયોડાઇડ (I⁻)	
કથ્થાઈ રંગનો ધુમાડો ઉત્પન્ન થાય છે, જે પ્રક્રિયા મિશ્રણમાં તાંબાની પાતળી વળાંકવાળી પટ્ટીઓ ઉમેરીને ગરમ કરતાં વધુ ઘટ્ટ બને છે તથા દ્રાવણ વાદળી રંગનું બને છે.	NO_2	નાઇટ્રેટ (NO-3)	
રંગવિહીન, વાસવિહીન વાયુ ઉત્પન્ન થાય છે જે ચૂનાના નિતર્યાં પાણીને દૂધિયું બનાવે છે અને ચૂનાના પાણીમાંથી નીકળતા વાયુને સળગાવતા તે વાદળી રંગની જ્યોતથી સળગે છે.	CO અને CO ₂	ઑક્ઝેલેટ ($\mathrm{C_2O_4^{2-}})$	

પદ્ધતિસર ગુણાત્મક પૃથક્કરણ

ઋશાયનની નિર્શાયક કસોટીઓ કોપ્ટક 7.4 માં દર્શાવેલી છે. આ કસોટીઓમાં ઋશાયન સાંદ્ર સલ્ફ્યુરિક ઍસિડ સાથે પ્રક્રિયા કરે છે.

કોષ્ટક $7.4: \mathbf{Cl}^{\mathsf{-}}, \mathbf{Br}^{\mathsf{-}}, \mathbf{l}^{\mathsf{-}}, \mathbf{NO}_{3}^{\mathsf{-}}$ અને $\mathbf{C}_{2}\mathbf{O}_{4}^{2\mathsf{-}}$ ની નિર્ણાયક કસોટીઓ

ઋણાયન	ઋશાયન નિર્ણાયક કસોટી		
કલૉરાઈડ (Cl⁻)	(a)	એક કસનળીમાં 0.1 g ક્ષાર લો. તેમાં એક ચપટી જેટલો મૅગેનીઝ ડાયૉક્સાઇડ અને 3-4 ટીપાં સાંદ્ર સલ્ફ્ચુરિક ઍસિડના ઉમેરો. પ્રક્રિયા મિશ્રણને ગરમ કરો. લીલાશપડતો પીળો ક્લોરિન વાયુ ઉત્પન્ન થાય છે, જેને તેની તીવ્ર વાસ અને વિરંજન (bleaching) અસરથી ઓળખી શકાય છે.	
	(b)	એક કસનળીમાં 1 mL સોડિયમ કાર્બોનેટ નિષ્કર્ષ લો. તેને મંદ HNO ₃ વડે ઍસિડિક બનાવો અથવા જળનિષ્કર્ષ લો અને તેમાં સિલ્વર નાઇટ્રેટનું દ્રાવણ ઉમેરો. દર્હીના ફોદા જેવા સફેદ અવક્ષેપ મળે છે, જે એમોનિયમ હાઇડ્રૉક્સાઇડના દ્રાવણમાં દ્રાવ્ય થાય છે.	
	(c)	એક કસનળીમાં $0.1~\mathrm{g}$ ક્ષાર અને એક ચપટી જેટલો પોટૅશિયમ ડાયક્રોમેટ લો. તેમાં સાંદ્ર $\mathrm{H_2SO_4}$ ઉમેરીને ગરમ કરો. ઉત્પન્ન થતાં વાયુને સોડિયમ હાઇડ્રૉક્સાઇડના દ્રાવણમાંથી પસાર કરો. આ દ્રાવણ પીળા રંગનું બનશે. આ દ્રાવણને બે ભાગમાં વહેંચો. એક ભાગને ઍસિટિક ઍસિડ ઉમેરી ઍસિડિક બનાવી તેમાં લેડ એસિટેટનું દ્રાવણ ઉમેરો. પીળા રંગના અવક્ષેપ ઉત્પન્ન થશે. બીજા ભાગને મંદ સલ્ફ્યુરિક ઍસિડ વડે ઍસિડિક કરીને $1~\mathrm{mL}$ એમાઈલ આલ્કોહૉલ ઉમેરવામાં આવે છે. ત્યાર બાદ તેમાં $1~\mathrm{mL}$ $10~\%$ હાઇડ્રૉજન પેરૉક્સાઇડ ઉમેરવામાં આવે છે. આ મિશ્રણને યોગ્ય પ્રમાણમાં હ્લાવવાથી કાર્બનિક સ્તર વાદળી રંગનું બને છે.	
બ્રોમાઇડ(Br¯)	(a)	એક કસનળીમાં $0.1~\mathrm{g}$ ક્ષાર અને એક ચપટી જેટલો $\mathrm{MnO_2}$ લો. તેમાં 3 -4 ટીપાં સાંદ્ર સલ્ફ્ર્યુરિક ઍસિડ ઉમેરો અને ગરમ કરો. તીવ્ર કથ્થાઈ રંગનો ધુમાડો ઉત્પન્ન થશે.	
	(b)	1 mL સોડિયમ કાર્બોનેટ નિષ્કર્ષને હાઇડ્રૉક્લોરિક ઍસિડ વડે તટસ્થ કરો (અથવા જળનિષ્કર્ષ લો). તેમાં 1 mL કાર્બન ટેટ્રાક્લોરાઇડ (CCl ₄) / ક્લૉરોફોર્મ (CHCl ₃)/ કાર્બન ડાયસલ્ફાઇડ ઉમેરો. હવે તેમાં વધુ પ્રમાણમાં ક્લોરિનજળને ટીપે-ટીપે ઉમેરો અને કસનળીને હ્લાવો. કાર્બનિક સ્તરનો કથ્થાઈ રંગ બ્રોમાઇડ આયનની હાજરી નક્કી કરે છે.	
	(c)	1 mL સોડિયમ કાર્બોનેટ નિષ્કર્ષને મંદ HNO ₃ વડે ઍસિડિક બનાવો (અથવા 1 mL જળનિષ્કર્ષ લો). તેમાં સિલ્વર નાઇટ્રેટનું દ્રાવણ ઉમેરો. આછાપીળા અવક્ષેપ મળે છે જે એમોનિયમ હાઇડ્રૉકસાઇડના દ્રાવણમાં મુશ્કેલીથી દ્રાવ્ય થાય છે.	
આયોડાઇડ (I⁻)	(a)	1 mL ક્ષારનું દ્રાવણ લઈ તેને HCl વડે તટસ્થ બનાવો. તેમાં 1 mL કલૉરોફોર્મ / કાર્બન ટેટ્રાકલોરાઈડ / કાર્બન ડાયસલ્ફાઇડ ઉમેરો. હવે તેમાં વધુ પ્રમાણમાં ક્લોરિન જળને ટીપે-ટીપે ઉમેરો અને કસનળીને હ્લાવો. કાર્બનિક સ્તરમાં જાંબલી રંગ જોવા મળે છે.	
	(b)	$1~\mathrm{mL}$ સોડિયમ કાર્બોનેટ નિષ્કર્ષ લઈ, તેને મંદ HNO $_3$ વડે ઍસિડિક બનાવો (અથવા જળિનષ્કર્ષ લો). તેમાં સિલ્વર નાઇટ્રેટનું દ્રાવશ ઉમેરો. પીળા અવક્ષેપ મળે છે, જે $\mathrm{NH_4OH}$ ના દ્રાવશમાં અદ્રાવ્ય હોય છે.	

પ્રયોગશાળા	માર્ગદર્શિકા	રસાયણવિજ્ઞાન
70 00 000 00	00 0000000	C CCC C 300 C CCC C

* નાઇટ્રેટ (NO₃)		એક કસનળીમાં પાણીમાં બનાવેલા ક્ષારનું $1~\mathrm{mL}$ દ્રાવણ લો. તેમાં $2~\mathrm{mL}$ સાંદ્ર $\mathrm{H_2SO_4}$ ઉમેરી તેને બરાબર મિશ્ર કરો. આ મિશ્રણને પાણીના નળની નીચે ઠંડું કરો. હવે તાજા બનાવેલા ફેરસ સલ્ફેટના દ્રાવણને કસનળીમાં તેની દીવાલને અડકીને, મિશ્રણ હાલે નહિ તે રીતે ઉમેરો. જ્યાં બે દ્રાવણો ભેગા થાય છે ત્યાં ઘેરા કથ્થાઈ રંગની વીંટી જોવા મળે છે.
ઑક્ઝેલેટ (C ₂ O ₄) ²⁻	(a)	જળનિષ્કર્ષ અથવા સોડિયમ કાર્બોનેટ નિષ્કર્ષ લઈ તેને ઍસિટિક ઍસિડ વડે ઍસિડિક બનાવી તેમાં કૅલ્શિયમ ક્લોરાઇડનું દ્રાવશ ઉમેરો. સફેદ અવક્ષેપ ઉત્પન્ન થાય છે, જે ઍમોનિયમ ઑક્ઝેલેટ અને ઑક્ઝેલિક ઍસિડના દ્રાવશમાં અદ્રાવ્ય તથા મંદ હાઇડ્રૉક્લોરિક ઍસિડ અને મંદ નાઇટ્રિક ઍસિડમાં દ્રાવ્ય હોય છે.
	(b)	(a) દરમિયાન પ્રાપ્ત થયેલા અવક્ષેપને લો, તેને મંદ $\mathrm{H_2SO_4}$ માં દ્રાવ્ય કરો. તેમાં અતિ મંદ $\mathrm{KMnO_4}$ નું દ્રાવણ ઉમેરો અને તેને ગરમ કરો. $\mathrm{KMnO_4}$ નાં દ્રાવણનો રંગ દૂર થશે. ઉત્પન્ન થતા વાયુને ચૂનાના પાણીમાં પસાર કરો, જે ચૂનાના પાણીને દૂધિયું બનાવે છે.

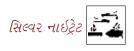
નિર્ણાયક કસોટીઓનું રસાયણવિજ્ઞાન

1. ક્લોરાઇડ આયન [CI⁻]ની કસોટી

(a) જો ક્ષારની ગરમ સાંદ્ર H_2SO_4 સાથે પ્રક્રિયા કરવામાં આવે તો તે તીવ્ર વાસવાળો રંગિવહીન વાયુ ઉત્પન્ન કરે છે. જો આ વાયુ એમોનિયાના દ્રાવણ સાથે ઘ ε સફેદ ધુમાડો આપે તો આ ક્ષારમાં CI^- હાજર હશે અને નીચે દર્શાવેલી પ્રક્રિયાઓ થશે :

$$\begin{array}{ccccc} \operatorname{NaCl} + \operatorname{H}_2 \operatorname{SO}_4 & \longrightarrow & \operatorname{NaHSO}_4 & + & \operatorname{HCl} \\ & (\operatorname{C}_2\operatorname{O}_4^{2^-}) & & \operatorname{kil} \operatorname{Suh} & & \operatorname{sub} \operatorname{xing} & \operatorname{sell rub} \\ & & & \operatorname{sub} \operatorname{xing} & & \operatorname{toldel} & \operatorname{lug} \\ & & & \operatorname{Sub} & & \operatorname{hCl} & & \operatorname{hCl} & & \\ & & & & \operatorname{hCl} & & & \\ & & & & & \operatorname{hCl} & & \\ & & & & & \operatorname{hCl} & & \\ & & & & & \operatorname{hCl} & & \\ & & & & & & \operatorname{hCl} & & \\ & & & & & & \operatorname{hCl} & & \\ & & & & & & \operatorname{hCl} & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & & \\ & &$$

(b) જો ક્ષારને સાંદ્ર ${
m H_2SO_4}$ અને ${
m MnO_2}$ સાથે ગરમ કરતાં ઊભરા મળે અને આછે લીલાશપડતો પીળો તીવ્ર વાસવાળો વાયુ ઉત્પન્ન થાય, તો તે ક્લોરાઈડ આયનની હાજરી સૂચવે છે.


$$\mathrm{MnO_2} + 2\mathrm{NaCl} + 2\mathrm{H_2SO_4} {\longrightarrow} \mathrm{Na_2SO_4} + \mathrm{MnSO_4} + 2\mathrm{H_2O} + \mathrm{Cl_2}$$

(c) ક્ષારના દ્રાવણને મંદ HNO₃ વડે ઍસિડિક કરી તેમાં સિલ્વર નાઇટ્રેટનું દ્રાવણ ઉમેરતાં તે એમોનિયમ હાઇડ્રૉક્સાઇડમાં દ્રાવ્ય હોય તેવા દર્હીના ફોદા જેવા સફ્રેદ અવક્ષેપ આપે છે, જે ક્ષારમાં Cl⁻ આયનની હાજરી સૂચવે છે.

NaCl + AgNO
$$_3$$
 \longrightarrow NaNO $_3$ + AgCl સિલ્વર ક્લોરાઈડ (સફેદ અવક્ષેપ)

AgCl + 2NH $_4$ OH \longrightarrow [Ag(NH $_3$) $_2$]Cl + 2H $_2$ O ડાયએમ્માઇન સિલ્વર (I) ક્લોરાઇડ

^{*} આ કસોટીમાં પ્રથમ ફેરસ સલ્ફેટ ઉમેરીને બાદમાં સાંદ્ર H,SO, ઉમેરી શકાય છે.

પદ્ધતિસર ગુણાત્મક પૃથક્કરણ

(d) એક કસનળીમાં ક્ષારનું થોડું પ્રમાણ લઈ, તેટલા જપ્રમાણમાં ઘન પોટૅશિયમ ડાયક્રોમેટ (K₂Cr₂O₂) ઉમેરી મિશ્ર કરી, તેમાં સાંદ્ર H₂SO₄ ઉમેરો. આ કસનળીને ગરમ કરો અને ઉત્પન્ન થતાં વાયુને સોડિયમ હાઇડ્રૉક્સાઇડના દ્રાવણમાં પસાર કરો. જો પીળા રંગનું દ્રાવણ મળે તો તેને બે ભાગમાં વહેંચો. પહેલા ભાગને ઍસિટિક ઍસિડ વડે ઍસિડિક બનાવી તેમાં લેડ એસિટેટનું દ્રાવણ ઉમેરો. લેડ ક્રોમેટના પીળા રંગના અવક્ષેપની ઉત્પત્તિ ક્ષારમાં ક્લોરાઇડ આયનની હાજરી નિશ્ચિત કરે છે. આ કસોટીને ક્રોમાઈલ ક્લોરાઇડ કસોટી* કહે છે.

$$4 \text{NaCl} + \text{K}_2 \text{Cr}_2 \text{O}_7 + 6 \text{H}_2 \text{SO}_4 \longrightarrow 2 \text{KHSO}_4 + 2 \text{CrO}_2 \text{Cl}_2 + 4 \text{NaHSO}_4 + 3 \text{H}_2 \text{O}$$
 (ક્રોમાઈલ ક્લોરાઇડ)

$$CrO_2Cl_2 + 4NaOH \longrightarrow Na_2CrO_4 + 2NaCl + 2H_2O$$

$$(CH_3COO)_2Pb + Na_2CrO_4 \longrightarrow PbCrO_4 + 2CH_3COONa$$

સોડિયમ લેડ ક્રોમેટ
ક્રોમેટ (પીળા અવક્ષેપ)

બીજા ભાગને મંદ સલ્ફ્યુરિક ઍસિડ વડે ઍસિડિક કરી તેમાં થોડા પ્રમાણમાં એમાઇલ આલ્કોહૉલ ઉમેરો અને ત્યાર-બાદ તેમાં $1~\mathrm{mL}~10~\%$ હાઇડ્રોજન પેરૉક્સાઇડનું દ્રાવણ ઉમેરો. તેને યોગ્ય પ્રમાણમાં હ્લાવવાથી કાર્બનિક સ્તર વાદળી રંગનું બને છે. ક્રોમાઇલ ક્લોરાઇડની સોડિયમ હાઇડ્રૉક્સાઇડ સાથેની પ્રક્રિયામાં $\mathrm{CrO}_4^{2^-}$ બને છે, જે હાઇડ્રૉજન પેરૉક્સાઇડ સાથે પ્રક્રિયા કરી ક્રોમિયમ પેન્ટૉક્સાઇડ (CrO_5) બનાવે છે (જુઓ બંધારણ). આ ક્રોમિયમ પેન્ટૉક્સાઇડ એમાઇલ આલ્કોહૉલમાં દ્રાવ્ય થઈને વાદળી રંગ આપે છે.

$$\mathrm{CrO_4^{2^-}} + 2\mathrm{H^+} + 2\mathrm{H_2O_2} \longrightarrow \mathrm{CrO_5} + 3\mathrm{H_2O}$$
 ક્રોમિયમ પેન્ટૉક્સાઈડ

2. બ્રોમાઇડ આયન (Br⁻)ની કસોટી

જો ક્ષારને સાંદ્ર H_2SO_4 સાથે ગરમ કરતાં બ્રોમિનનો લાલાશપડતો કથ્થાઈ ધુમાડો વધુ પ્રમાણમાં ઉત્પન્ન થાય તો તે Br^- આયનની હાજરી સૂચવે છે. MnO_2 ના ઉમેરણથી આ ધુમાડો વધુ તીવ્ર બને છે. બ્રોમિનની બાષ્પ સ્ટાર્ચપત્રને પીળું બનાવે છે.

$$\begin{split} 2\text{NaBr} + 2\text{H}_2\text{SO}_4 & \longrightarrow \text{Br}_2 + \text{SO}_2 + \text{Na}_2\text{SO}_4 + 2\text{H}_2\text{O} \\ 2\text{NaBr} + \text{MnO}_2 + 2\text{H}_2\text{SO}_4 & \longrightarrow \text{Na}_2\text{SO}_4 + \text{MnSO}_4 + 2\text{H}_2\text{O} + \text{Br}_2 \end{split}$$

(a) ક્ષારના પાણીમાં બનાવેલા દ્રાવેશમાં અથવા મંદ HCl વડે તટસ્થ કરેલા સોડિયમ કાર્બોનેટ નિષ્કર્ષમાં 1 mL કાર્બન ટેટ્રાક્લોરાઇડ (CCl₄) / ક્લૉરોફૉર્મ (CHCl₃)** અને તાજા બનાવેલા ક્લોરિનજળને ટીંપે-ટીપે વધુ પ્રમાણમાં ઉમેરો. કસનળીને વધુ શક્તિપૂર્વક હ્લાવો. તેમાં કાર્બનિક સ્તર નારંગી કથ્થાઈ રંગનું દેખાય છે, જે બ્રોમાઇડ આયનની હાજરી નિશ્ચિત કરે છે. નારંગી કથ્થાઈ રંગ બ્રોમિનના વિલયનના (dissolution) કારણે જોવા મળે છે.

$$2NaBr + Cl_{2} \longrightarrow 2NaCl + Br_{2}$$

^{*} ક્રોમાઈલ કોલારાઇડ કસોટીને પદાર્થના ઓછામાં ઓછા જથ્થાથી કરવી જોઈએ, જેથી Cr³+ આયનો દ્વારા થતાં પ્રદૂષણને ટાળી શકાય.

^{**} કાર્બન ટેટ્રાક્લોરાઇડ અથવા ક્લૉરોફૉર્મના સ્થાને કાર્બન ડાયસલ્ફાઇડ અથવા ડાયક્લોરોમિથેન (CH₂Cl₂) પણ વાપરી શકાય છે. **59**

(b) ક્ષારના સોડિયમ કાર્બોનેટ નિષ્કર્ષને મંદ HNO₃ વડે ઍસિડિક બનાવો. તેમાં સિલ્વર નાઇટ્રેટનું (AgNO₃) દ્રાવણ ઉમેરો અને કસનળીને હ્લાવો. આછા પીળા અવક્ષેપ મળે છે, જે એમોનિયમ હાઇડ્રૉક્સાઇડમાં મુ-કેલીથી દ્રાવ્ય થાય છે.

$${
m NaBr} + {
m AgNO_3} \longrightarrow {
m NaNO_3} + {
m AgBr}$$
 સિલ્વર બ્રોમાઇડ આછા પીળા અવક્ષેપ

3. આયોડાઇડ આયન (I⁻)ની કસોટી

(a) જ્યારે ક્ષારને સાંદ્ર H₂SO₄ સાથે ગરમ કરવામાં આવે છે, ત્યારે તીવ્ર વાસવાળી ઘેરા જાંબલી રંગની બાષ્પ ઉત્પન્ન થાય છે. આ બાષ્પ સ્ટાર્ચપત્રને વાદળી બનાવે છે અને જાંબલી ઊર્ધ્વપાતી પદાર્થ કસનળીની અંદરની દીવાલ પર જમા થાય છે. આ આયોડાઇડ આયનની હાજરી સૂચવે છે. કેટલાક HI, સલ્ફર ડાયૉક્સાઇડ, હાઇડ્રૉજન સલ્ફાઇડ અને સલ્ફર પણ નીચે જ્ણાવેલ પ્રક્રિયાઓના કારણે ઉત્પન્ન થાય છે:

$$\begin{aligned} 2\text{NaI} + 2\text{H}_2\text{SO}_4 &\to \text{Na}_2\text{SO}_4 + \text{SO}_2 + 2\text{H}_2\text{O} + \text{I}_2 \\ \text{I}_2 + & \text{સ્ટાર્ચનું દ્રાવણ } \to \text{વાદળી રંગ} \\ \text{NaI} + \text{H}_2\text{SO}_4 &\to \text{NaHSO}_4 + \text{HI} \\ 2\text{HI} + \text{H}_2\text{SO}_4 &\to 2\text{H}_2\text{O} + \text{I}_2 + \text{SO}_2 \\ 6\text{ NaI} + 4\text{H}_2\text{SO}_4 &\to 3\text{I}_2 + 4\text{H}_2\text{O} + \text{S} + 3\text{Na}_2\text{SO}_4 \\ 8\text{NaI} + 5\text{H}_2\text{SO}_4 &\to 4\text{I}_2 + \text{H}_2\text{S} + 4\text{Na}_2\text{SO}_4 + 4\text{H}_2\text{O} \end{aligned}$$

પ્રક્રિયા મિશ્રણમાં MnO_2 ઉમેરવામાં આવે, તો જાંબલી રંગની બાષ્પ ઘટ્ટ બને છે.

2NaI +
$$MnO_2$$
 + $2H_2SO_4 \rightarrow I_2$ + $MnSO_4$ + Na_2SO_4 + $2H_2O_4$ પાણીમાં બનાવેલા ક્ષારના દ્રાવણમાં અથવા મંદ HCI વડે તટસ્થ કરેલા સોડિયમ કાર્બોનેટના નિષ્કર્ષમાં 1 mL CHCI_3 અથવા CCI_4 અને વધુ પ્રમાણમાં ક્લોરિન જળ ઉમેરો અને કસનળીને વધુ હ્લાવો. કાર્બનિક સ્તરમાં જાંબલી રંગની હાજરી આયોડાઇડ આયનની હાજરી નિશ્ચિત કરે છે.

$$2NaI + Cl_2 \rightarrow 2NaCl + I_2$$

આયોડિન કાર્બનિક સ્તરમાં ઓગળે છે અને દ્રાવણને જાંબલી રંગનું બનાવે છે.

(c) ક્ષારના સોડિયમ કાર્બોનેટના નિષ્કર્ષને મંદ $\mathrm{HNO_3}$ વડે ઍસિડિક બનાવો અને તેમાં $\mathrm{AgNO_3}$ નું દ્રાવશ ઉમેરો. જો પીળા અવક્ષેપ જોવા મળે અને તે વધુ પ્રમાશમાં $\mathrm{NH_4OH}$ માં અદ્રાવ્ય રહે, તો આયોડાઇડ આયનની હાજરી નિશ્ચિત થાય છે.

$$NaI + AgNO_3 \rightarrow AgI + NaNO_3$$
 સિલ્વર આયોડાઇડ (પીળા અવક્ષેપ)

આયોડિન શ્વાસમાં લેવાય કે ચામડીના સંપર્કમાં આવે તો નુકસાનકારક

ક્લૉરોફૉર્મ શ્વાસમાં લેવાય તો નુકસાનકારક અને ઝેરી

R.

પદ્ધતિસર ગુણાત્મક પૃથક્કરણ

4. નાઇટ્રેટ આયન (NO3)ની કસોટી

(a) જો ક્ષારને સાંદ્ર H_2SO_4 સાથે ગરમ કરવાથી આછા કથ્થાઈ રંગનો ધુમાડો ઉત્પન્ન થાય, તો આપેલા ક્ષારના ઓછા જથ્થાને તથા ઓછા પ્રમાણમાં તાંબાની પાતળી વળાંકવાળી પટ્ટીઓ અથવા ટુકડાઓને સાંદ્ર H_2SO_4 સાથે ગરમ કરો. વધુ પ્રમાણમાં કથ્થાઈ રંગનો ધુમાડો ઉત્પન્ન થાય, તો તે નાઇટ્રેટ આયનની હાજરી સૂચવે છે. દ્રાવણમાં કૉપર સલ્ફેટ બનવાના કારણે તે વાદળી રંગનું બને છે.

NaNO
$$_3$$
 + H $_2$ SO $_4$ \rightarrow NaHSO $_4$ + HNO $_3$
4HNO $_3$ \rightarrow 4NO $_2$ + O $_2$ + 2H $_2$ O
2NaNO $_3$ + 4H $_2$ SO $_4$ + 3Cu \rightarrow 3CuSO $_4$ + Na $_2$ SO $_4$ + 4H $_2$ O + 2NO
ક્રૉપર સલ્ફેટ
(વાદળી)

$$2NO + O_2 \rightarrow 2NO_2$$
 (કથ્થાઈ ધુમાડો)

(b) 1 mL ક્ષારનું જલીય દ્રાવણ લો અને તેમાં 2 mL સાંદ્ર H₂SO₄ ધીમે-ધીમે ઉમેરો. આ દ્રાવણોને બરાબર મિશ્ર કરો અને આ કસનળીને પાણીના નળની નીચે ઠંડી પાડો. હવે તાજા બનાવેલા ફેરસ સલ્ફેટના દ્રાવણને કસનળીમાં તેની દીવાલને અડકીને ટીપે-ટીપે ઉમેરો, જે કસનળીમાં અગાઉથી રહેલા પ્રવાહીના ઉપરના ભાગમાં સ્તર બનાવે છે. અહીં, જ્યાં બે દ્રાવણો ભેગા થાય છે, ત્યાં નાઇટ્રોસો ફેરસ સલ્ફેટ (આકૃતિ 7.2) બનવાને કારણે ઘેરા કથ્થાઈ રંગની વીંટી રચાય છે. અન્ય રીતમાં પ્રથમ ફેરસ સલ્ફેટ ઉમેરવામાં આવે છે.

આકૃતિ 7.2 : કથ્થાઈ રંગની વીંટી બનવી

NaNO
$$_3$$
 + H $_2$ SO $_4$ \rightarrow NaHSO $_4$ + HNO $_3$
6 FeSO $_4$ + 3H $_2$ SO $_4$ + 2HNO $_3$ \rightarrow 3Fe $_2$ (SO $_4$) $_3$ + 4H $_2$ O + 2NO
FeSO $_4$ + NO \rightarrow [Fe(NO)]SO $_4$
નાઇટ્રોસો ફેરસ સલ્ફેટ
(કથ્થાઈ રંગ)

5. ઑક્ઝેલેટ આયન ($C_2O_4^{2-}$)ની કસોટી

સાંદ્ર સલ્ફ્યુરિક ઍસિડ સાથેના પ્રાથમિક પરીક્ષણમાં જો કાર્બન ડાયૉક્સાઇડ વાયુ સાથે કાર્બન મોનૉક્સાઇડ વાયુ ઉત્પન્ન થાય, તો તે ઑક્ઝેલેટ આયનની હાજરી સૂચવે છે. $(\text{COONa})_{2} + \text{સાંદ્ર H}_{2}\text{SO}_{4} \rightarrow \text{Na}_{2}\text{SO}_{4} + \text{H}_{2}\text{O} + \text{CO}_{2} \uparrow + \text{CO} \uparrow$

સલ્ફેટ

પ્રયોગશાળા માર્ગદર્શિકા રસાયણવિજ્ઞાન

ઑક્ઝેલેટ આયનની હાજરી નીચે દર્શાવેલી કસોટીઓ દ્વારા નિશ્ચિત થાય છે:

(a) સોડિયમ કાર્બોનેટ નિષ્કર્ષને ઍિસટિક ઍિસડ વડે ઍિસડિક બનાવી તેમાં કૅલ્શિયમ ક્લોરાઈડનું દ્રાવણ ઉમેરો. ઉત્પન્ન થતાં કેલ્શિયમ ઑક્ઝેલેટના સફ્રેદ અવક્ષેપ, જે એમોનિયમ ઑક્ઝેલેટ અને ઑક્ઝેલિક ઍિસડના દ્રાવણમાં અદ્રાવ્ય હોય છે. આ પરિણામ ઑક્ઝેલેટ આયનની હાજરી સૂચવે છે.

(b) KMnO₄ કસોટી

કસોટી (a)માં મળતાં અવક્ષેપને ગાળો. તેમાં મંદ $\mathrm{H_2SO_4}$ ઉમેરી મંદ $\mathrm{KMnO_4}$ નું દ્રાવશ ઉમેરો અને મિશ્રશને ગરમ કરો. $\mathrm{KMnO_4}$ નો ગુલાબી રંગ દૂર થાય છે.

$${\rm CaC_2O_4} + {\rm H_2SO_4} \quad {
ightarrow} \quad {\rm CaSO_4} \quad + \quad {\rm H_2C_2O_4}$$

કેલ્શિયમ સલ્ફેટ ઑક્ઝેલિક ઍસિડ

 $2 \ \text{KMnO}_4 + 3 \text{H}_2 \text{SO}_4 + 5 \text{H}_2 \text{C}_2 \text{O}_4 \rightarrow 2 \text{MnSO}_4 + \text{K}_2 \text{SO}_4 + 8 \text{H}_2 \text{O} + 10 \text{CO}_2$ ઉત્પન્ન થતાં વાયુને ચૂનાના પાણીમાં પસાર કરો. સફેદ રંગના અવક્ષેપ ઉત્પન્ન થાય છે, જેમાં ઉત્પન્ન થતા વાયુને વધુ સમય પસાર કરવાથી તે દ્રાવ્ય થાય છે.

સોપાન III : સલ્ફેટ અને ફૉસ્ફેટની કસોટી

જો સોપાન I અને II દરમિયાન કોઈ હકારાત્મક પરિણામો ન મળે તો સલ્ફેટ અને ફૉસ્ફેટ આયનોની હાજરીની કસોટી કરવામાં આવે છે. આ કસોટીઓને કોષ્ટક 7.5 માં ટૂંકમાં દર્શાવેલી છે.

કોષ્ટક 7.5 : સલ્ફેટ અને ફૉસ્ફેટ આયનોની નિર્ણાયક કસોટીઓ

આયન	નિર્ણાયક કસોટી
સલ્ફેટ(SO ₄ ²⁻)	(a) 1 mL ક્ષારનું જળનિષ્કર્ષ અથવા મંદ હાઇડ્રૉક્લોરિક ઍસિડ વડે તટસ્થ કરેલ સોડિયમ કાર્બોનેટના નિષ્કર્ષમાં BaCl ₂ નું દ્રાવણ ઉમેરો. સાંદ્ર HCl અથવા સાંદ્ર HNO ₃ માં અદ્રાવ્ય હોય, તેવા સફેદ અવક્ષેપ મળે છે.
	(b) ક્ષારના જલીય દ્રાવણ અથવા સોડિયમ કાર્બોનેટ નિષ્કર્ષને ઍસિટિક ઍસિડ વડે ઍસિડિક બનાવો અને તેમાં લેડ એસિટેટનું દ્રાવણ ઉમેરો. ઉત્પન્ન થતાં સફ્રેદ અવક્ષેપ SO_4^{2-} આયનની હાજરીને નિશ્ચિત કરે છે.
इॉस्केंट (PO ₄ ³-)	(a) સોડિયમ કાર્બોનેટ નિષ્કર્ષ અથવા ક્ષારના પાણીમાં બનાવેલા દ્રાવણને સાંદ્ર HNO ₃ વડે ઍસિડિક બનાવી તેમાં એમોનિયમ મોલિબ્ડેટનું દ્રાવણ ઉમેરો. આ મિશ્રણને ઉકાળો આછા પીળા રંગના અવક્ષેપ ઉત્પન્ન થાય છે.

પદ્ધતિસર ગુણાત્મક પૃથક્કરણ

નિર્ણાયક કસોટીઓનું રસાયણવિજ્ઞાન

1. સલ્ફેટ આયન (SO_4^{2-})ની કસોટી

(a) ક્ષારનું જલીય દ્રાવણ અથવા ક્ષારના સોડિયમ કાર્બોનેટ નિષ્કર્ષને ઍસિટિક ઍસિડ વડે ઍસિડિક બનાવી, તેમાં બેરિયમ ક્લોરાઇડ ઉમેરતાં તે બેરિયમ સલ્ફેટના સફેદ અવક્ષેપ આપે છે, જે સાંદ્ર HCl અથવા સાંદ્ર HNO₃ માં અદ્રાવ્ય હોય છે.

$$Na_2SO_4 + BaCl_2 \longrightarrow BaSO_4 + 2NaCl$$
 બેરિયમ સલ્ફેટ (સફેદ અવક્ષેપ)

(b) જ્યારે ક્ષારના જલીય દ્રાવશમાં અથવા ઍસિટિક ઍસિડ વડે તટસ્થ બનાવેલા સોડિયમ કાર્બોનેટ નિષ્કર્ષમાં લેડ એસિટેટનું દ્રાવશ ઉમેરવામાં આવે છે, ત્યારે સલ્ફેટ આયન લેડ સલ્ફેટના સફેદ અવક્ષેપ આપે છે.

$$Na_2SO_4 + (CH_3COO)_2Pb \longrightarrow PbSO_4 + 2CH_3COONa$$

લેડ સલ્ફેટ
(સફેદ અવક્ષેપ)

2. ફૉસ્ફેટ આયન (PO³⁻)ની કસોટી

(a) ફૉસ્ફેટ આયન ધરાવતા મૂળ દ્રાવણમાં (કસોટી માટેના દ્રાવણમાં) સાંદ્ર $\mathrm{HNO_3}$ અને એમોનિયમ મોલિબ્ડેટનું દ્રાવણ ઉમેરી, ઉકાળો. તેથી દ્રાવણ પીળા રંગનું બને છે અથવા એમોનિયમ - ફૉસ્ફોમોલિબ્ડેટના $(\mathrm{NH_4})_3[\mathrm{P}(\mathrm{Mo_3O_{10}})_4]$ આછા પીળા અવક્ષેપ ઉત્પન્ન થાય છે. ફૉસ્ફેટનો દરેક ઑક્સિજન $\mathrm{Mo_3O_{10}}$ સમૂહ વડે વિસ્થાપિત થાય છે.

$$\label{eq:Na2HPO4} {\rm Na_2HPO_4} + 12 ({\rm NH_4})_2 \; {\rm MoO_4} + 23 \; {\rm HNO_3} \\ \\ \rightarrow ({\rm NH_4})_3 [{\rm P} \; ({\rm Mo_3O_{10}})_4] + 2 {\rm NaNO_3} + 21 {\rm NH_4NO_3} + 12 {\rm H_2O_4} \\ \\ \\ \rightarrow {\rm Mee} \; \text{ પીળા અવક્ષેપ}$$

ધનાયનનું પદ્ધતિસર પૃથક્કરણ

ધનાયનની કસોટીઓ નીચે દર્શાવેલી યોજના (Scheme) મુજબ કરવામાં આવે છે :

સોપાન I : ધનાયનની પરખ માટે ક્ષારનું પ્રાથમિક પરીક્ષણ

1. રંગ-કસોટી

ક્ષારના રંગનું કાળજીપૂર્વક અવલોકન કરો, જે ધનાયન વિશે ઉપયોગી માહિતી આપી શકે છે. કોષ્ટક 7.6 કેટલાક ધનાયનોના ક્ષારોના લાક્ષણિક રંગો દર્શાવે છે.

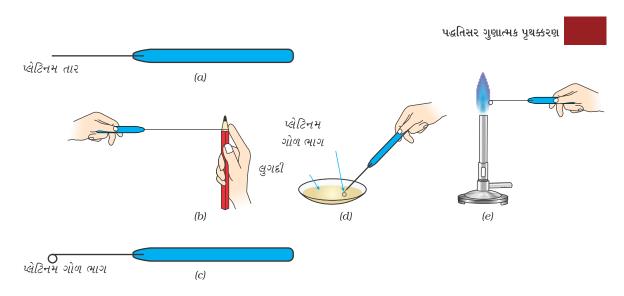
પ્રયોગશાળા માર્ગદર્શિકા રસાયણવિજ્ઞાન

કોષ્ટક 7.6 : કેટલાક ધાતુ આયનોના લાક્ષણિક રંગો

રંગ	ધનાયન
આછે લીલો, પીળો, કથ્થાઈ	Fe^{2+}, Fe^{3+}
વાદળી	Cu^{2+}
ચળકતો લીલો	Ni ²⁺
વાદળી, લાલ, જાંબલી, ગુલાબી	Co ²⁺
આછો ગુલાબી	Mn^{2+}

2. શુષ્ક ગરમી કસોટી

- (i) ચોખ્ખી અને શુષ્ક કસનળીમાં 0.1 g શુષ્ક ક્ષાર લો.
- (ii) ઉપરની કસનળીને એક મિનિટ માટે ગરમ કરો અને કસનળીમાં રહેલા અવશેષ જયારે ગરમ હોય ત્યારે અને જયારે ઠંડા પડે ત્યારે, તેના રંગનું અવલોકન કરો. રંગમાં થતા આ ફેરફારનું અવલોકન ચોક્કસ ધનાયનની હાજરીનું સૂચન કરે છે, જેને નિર્ણયાત્મક પુરાવા તરીકે લઈ શકાશે નહિ (જુઓ કોષ્ટક 7.7).


કોષ્ટક : 7.7 : ક્ષાર ઠંડા હોય ત્યારે અને ગરમ હોય ત્યારે તેઓના રંગના આધારે અનુમાન

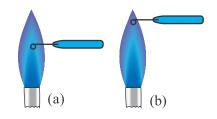
ઠંડા હોય ત્યારે રંગ	ગરમ હોય ત્યારે રંગ	અનુમાન
વાદળી	સફેદ	Cu ²⁺
લીલો	ગંદો સફ્રેદ અથવા પીળો	$\mathrm{Fe^{2+}}$
સફેદ	પીળો	Zn^{2+}
ગુલાબી	વાદળી	Co^{2+}

3. જ્યોત કસોટી

કેટલીક ધાતુઓનાં ક્લોરાઇડ સંયોજનો જ્યોતમાં લાક્ષણિક રંગ દર્શાવે છે, કારણ કે તેઓ જ્યોતિહીન (non-luminous) જ્યોતમાં બાષ્પશીલ હોય છે. આ કસોટીને પ્લેટિનમ તારની મદદથી નીચે દર્શાવ્યા મુજબ કરવામાં આવે છે:

- (i) પ્લેટિનમ તારના એક છેડે અતિ નાનો ગોળ ભાગ (1oop) બનાવો.
- (ii) તારના ગોળ ભાગને સાંદ્ર હાઇડ્રૉક્લોરિક ઍસિડમાં ડુબાડીને સાફ કરો અને તેને જયોતિહીન જયોતમાં ધરી રાખો (આકૃતિ 7.3).
- (iii) જ્યાં સુધી પ્લેટિનમ તાર જ્યોત સાથે રંગ આપતો બંધ થાય, ત્યાં સુધી સોપાન (ii) નું પુનરાવર્તન કરો.
- (iv) ચોખ્ખા વૉચ ગ્લાસમાં સાંદ્ર સલ્ફ્ચુરિક ઍસિડના 2-3 ટીપાં મૂકો અને તેમાં ક્ષારના ઓછ જથ્થાની લુગદી (paste) બનાવો.
- (v) પ્લેટિનમ તારના ચોખ્ખા ગોળ ભાગને આ લુગદીમાં ડુબાડો અને આ ગોળ ભાગને જ્યોતિહીન (ઑક્સિડેશનકર્તા) જ્યોતમાં રાખો (આકૃતિ 7.3).
- (vi) પ્રથમ આ જ્યોતના રંગનું અવલોકન નરી આંખ વડે કરો અને ત્યાર બાદ વાદળી રંગના કાચ વડે કરો. કોષ્ટક 7.8ની મદદથી ધાતુ આયનને ઓળખો.

આકૃતિ 7.3 : જ્યોત કસોટી કરવાની રીત


કોષ્ટક 7.8 : જ્યોત કસોટીના આધારે અનુમાન

	_	
નરી આંખ વડે અવલોકન કરવામાં આવેલી જ્યોતનો રંગ	વાદળી કાચ વડે અવલોકન કરવામાં આવેલી જ્યોતનો રંગ	અનુમાન
મધ્યમાં વાદળી રંગ હોય તેવી લીલી જ્યોત કિરમજી લાલ લીલા સફરજન જેવો રંગ ઇંટ જેવો લાલ	કાચની મદદ સિવાય જે રંગ જોવા મળે છે તે જ રંગ જાંબુડિયો વાદળી પડતો લીલો લીલો	$\begin{bmatrix} Cu^{2+} \\ Sr^{2+} \\ Ba^{2+} \\ Ca^{2+} \end{bmatrix}$

4. બોરેક્સ મણકા કસોટી

આ કસોટી માત્ર રંગીન ક્ષારો માટે ઉપયોગી બને છે. કારણ કે બોરેક્સ ધાતુ ક્ષારો સાથે પ્રક્રિયા કરી, ધાતુ બોરેટ સંયોજનો અથવા ધાતુઓ બનાવે છે, જે લાક્ષણિક રંગ ધરાવે છે.

- (i) આ કસોટી કરવા માટે પ્લેટિનમ તારના એક છેડે ગોળ ભાગ બનાવો અને તેને લાલચોળ ગરમ થાય, ત્યાં સુધી જ્યોતમાં ગરમ કરો.
- (ii) ગરમ ગોળ ભાગને બોરેક્સ પાઉડરમાં ડુબાડો અને તેને ફરીથી ત્યાં સુધી ગરમ કરો, જેથી ગોળ ભાગ પર રંગવિહીન પારદર્શક મણકો બને. આ બોરેક્સ મણકાને કસોટી માટેના ક્ષાર અથવા મિશ્રણમાં ડુબાડતા અગાઉ ચકાસીને નક્કી કરો કે બોરેક્સ મણકો પારદર્શક અને રંગવિહીન છે. જો તે રંગીન માલૂમ પડે, તો તેનો અર્થ એ થાય કે પ્લેટિનમ તાર સ્વચ્છનથી. હવે પ્લેટિનમ તારને સાફ કર્યા બાદ તાજો બોરેક્સ મણકો બનાવો.
- (iii) મણકાને શુષ્ક ક્ષારના થોડા જથ્થામાં ડુબાડો અને તેને ફરીથી જ્યોતમાં રાખો.
- (iv) હવે આ મણકાને જ્યોતિમય જ્યોત અને જ્યોતિહીન જ્યોતમાં અલગ-અલગ ગરમ કર્યા બાદ તે ગરમ હોય ત્યારે અને તે ઠંડો હોય ત્યારે તેના રંગનું અવલોકન કરો (આકૃતિ 7.4).
- (v) પ્લેટિનમ તારમાંથી મણકાને દૂર કરવા, તારને લાલચોળ ગરમ કરી તેના પર તમારી આંગળી ઠપકારો (આકૃતિ 7.5).

આકૃતિ 7.4: બોરેક્સ મણકા કસોટી
(a) રિડક્શનકર્તા જ્યોતમાં
ગ૨મ ક૨વાની પ્રક્રિયા
(b) ઑકિસડેશનકર્તા જ્યોતમાં ગ૨મ ક૨વાની પ્રક્રિયા

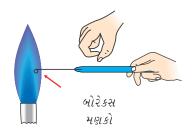
ગરમ કરવાથી બોરેક્સ સ્ફટિકજળ ગુમાવે છે અને તેનું વિઘટન થઈ સોડિયમ મેટાબોરેટ અને બોરિક એનહાઇડ્રાઇડ બને છે.

$$Na_2B_4O_7.10~H_2O \longrightarrow Na_2B_4O_7 + 10H_2O$$
 બોરેકસ

$$\mathrm{Na_2B_4O_7} \longrightarrow \mathrm{2NaBO_2} + \mathrm{B_2O_3}$$
 સોડિયમ મેટાબોરેટ બોરિક એનહાઇડ્રાઇડ

ધાતુક્ષારની બોરિક એનહાઇડ્રાઇડ સાથેની પ્રક્રિયાથી ધાતુના મેટાબોરેટ બને છે, જે ઓક્સિડેશનકર્તા અને રિડક્શનકર્તા જયોતમાં જુદા-જુદા રંગો આપે છે. દા.ત., કૉપર સલ્ફેટના કિસ્સામાં નીચે દર્શાવેલી પ્રક્રિયાઓ થાય છે.

$$\begin{array}{c} \operatorname{CuSO}_4 + \operatorname{B}_2\operatorname{O}_3 & \xrightarrow{\quad \text{જયોતિહીન જયોત} \quad} \operatorname{Cu(BO}_2)_2 & + & \operatorname{SO}_3 \\ & \quad \text{કયુપ્રિક મેટાબોરેટ} \\ & \quad \text{વાદળી-લીલો રંગ} \end{array}$$


રિડક્શનકર્તા જ્યોતમાં બે પ્રક્રિયાઓ થઈ શકે છે :

(i) વાદળી $\mathrm{Cu(BO_2)_2}$ નીચે દર્શાવ્યા પ્રમાણે રંગવિહીન ક્યુપ્રસ મેટાબોરેટમાં રિડક્શન પામે છે.

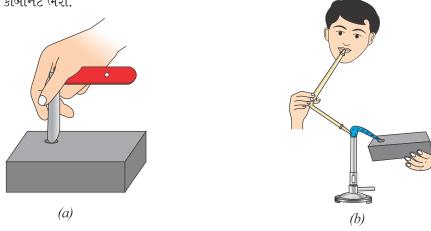
$$2\text{Cu(BO}_2)_2 + 2\text{NaBO}_2 + \text{C} \xrightarrow{\text{જયોતિમય જયોત}} 2\text{CuBO}_2 + \text{Na}_2\text{B}_4\text{O}_7 + \text{CO}$$

અથવા (ii) કૉપર મેટાબોરેટ ધાત્વીય કૉપરમાં રિડક્શન પામી શકે છે અને મણકો લાલ અને અપારદર્શક જોવા મળે છે.

 $2\mathrm{Cu(BO}_2)_2 + 4\mathrm{NaBO}_2 + 2\mathrm{C} \xrightarrow{\text{sulfahu sula}} 2\mathrm{Cu} + 2\mathrm{Na}_2\mathrm{B_4O}_7 + 2\mathrm{CO}$ ધાતુ આયનની પ્રાથમિક ઓળખ કોપ્ટક 7.9 ના આધારે નક્કી કરી શકાય છે :

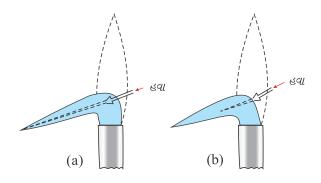
આકૃતિ 7.5 : બોરેક્સ મણકાને દૂર કરવાની રીત

કોષ્ટક 7.9 : બોરેક્સ મણકા કસોટીના આધારે અનુમાન


ઑક્સિડેશનકર્તા (જ્યોતિહીન) જ્યોતમાં ગરમ કરવાથી			રિડક્શનકર્તા (જ્યે ગરમ ક		
	ક્ષારના મણકાનો રંગ		ક્ષારના મણ	અનુમાન	
	ઠંડો હોય ત્યારે	ગરમ હોય ત્યારે	ઠંડો હોય ત્યારે	ગરમ હોય ત્યારે	
	વાદળી	લીલો	લાલ અપારદર્શક	રંગવિહીન	Cu ²⁺
	લાલાશ પડતો કથ્થાઈ	જાંબલી	રાખોડી	રાખોડી	Ni ²⁺
	આછો જાંબલી	આછો જાંબલી	રંગવિહીન	રંગવિહીન	Mn ²⁺
	પીળો	પીળાશપડતો કથ્થાઈ	લીલો	લીલો	Fe ³⁺

પદ્ધતિસર ગુણાત્મક પૃથક્કરણ

5. કોલસા પોલાણ કસોટી


જ્યારે ધાત્વીય કાર્બોનેટને કોલસાના પોલાણમાં ગરમ કરવામાં આવે છે, ત્યારે તે વિઘટન પામી અનુવર્તી ઑક્સાઈડ આપે છે. આ ઑક્સાઈડ પોલાણમાં રંગીન અવશેષ તરીકે જોવા મળે છે. કેટલીક વાર ઑક્સાઈડ કોલસાના પોલાણના કાર્બન દ્વારા ધાતુમાં રિડક્શન પામી શકે છે. આ કસોટીને નીચે દર્શાવ્યા મુજબ કરી શકાય છે:

- (i) કોલસાના ચોસલામાં કોલસા વેધક વડે નાનું પોલાણ બનાવો. વધુ દબાણ લગાવવું નહિ, નહિ તો તે તૂટી જશે [આકૃતિ 7.6 (a)].
- (ii) આ પોલાણમાં આશરે 0.2 g ક્ષાર અને આશરે 0.5 g નિર્જળ સોડિયમ કાર્બોનેટ ભરો.

આકૃતિ 7.6 : (a) કોલસામાં પોલાણ બનાવવું (b) પોલાણમાં ક્ષારને ગરમ કરવો

- (iii) પોલાણમાં રહેલા ક્ષારને પાણીના એક કે બે ટીપાં વડે ભીંજવો, નહિ તો ક્ષાર / મિશ્રણ દૂર ફૂંકાઈ જશે.
- (iv) ક્ષારને ફૂંકણીની (blowpipe) મદદથી જયોતિમય (રિડક્શનકર્તા) જયોતમાં ગરમ કરો અને પોલાણમાં રચાતા ઑક્સાઈડ / ધાત્વીય મણકાના રંગનું જયારે તે ગરમ અને ઠંડો હોય ત્યારે એમ બંને સ્થિતિમાં તેનું અવલોકન કરો [આકૃતિ 7.6 (b)]. આકૃતિ 7.7 (a) અને (b)માં દર્શાવ્યા મુજબ ઑક્સિડેશનકર્તા અને રિડક્શનકર્તા જયોત મેળવો.
- (v) નવા ક્ષારની કસોટી માટે હંમેશાં નવું પોલાણ બનાવવું.

આકૃતિ 7.7 : ઑક્સિડેશનકર્તા અને રિડક્શનકર્તા જ્યોતની પ્રાપ્તિ (a) ઑક્સિડેશનકર્તા જ્યોત અને (b) રિડક્શનકર્તા જ્યોત

- નોંધ: ફૂંકણીના મોંઢિયાને જ્યોતના એક તૃતીયાંશ ભાગની અંદર રાખીને ઑક્સિડેશનકર્તા જ્યોત મેળવો.
 - ફૂંકણીના મોંઢિયાને જયોતની બહારની બાજુરા ખીને રિડકશનકર્તા જયોત મેળવો.

પ્રયોગશાળા માર્ગદર્શિકા રસાયણવિજ્ઞાન

જ્યારે આ કસોટી CuSO₄ સાથે કરવામાં આવે છે, ત્યારે નીચે દર્શાવેલા ફ્રેરફારો થાય છે ઃ

$$\begin{array}{c} \text{CuSO}_4 + \text{Na}_2\text{CO}_3 & \xrightarrow{\text{ગરમી}} & \text{CuCO}_3 + \text{Na}_2\text{SO}_4 \\ \\ \text{CuCO}_3 & \xrightarrow{\text{ગરમી}} & \text{CuO} + \text{CO}_2 \\ \\ \text{CuO} + \text{C} & \xrightarrow{\text{ગરમી}} & \text{Cu} & + & \text{CO} \\ \\ & & \text{લાલ કેંગ} \end{array}$$

ZnSO₄ ના કિસ્સામાં ∶

$$ZnSO_4 + Na_2CO_3 \xrightarrow{\text{ગરમી}} ZnCO_3 + Na_2SO_4$$

$$ZnCO_3 \xrightarrow{\text{ગરમી}} ZnO + CO_2$$
ગરમ હોય ત્યારે પીળો
ઠંડો હોય ત્યારે સફેદ

ધાતુ આયનનું અનુમાન કોષ્ટક 7.10 ના આધારે કરી શકાય છે.

કોષ્ટક 7.10 : કોલસા પોલાણ કસોટીના આધારે અનુમાન

	9
અવલોકન	અનુમાન
ગરમ હોય ત્યારે પીળા અવશેષ અને ઠંડા હોય ત્યારે રાખોડી ધાતુ	Pb ²⁺
લસણની વાસવાળા સફેદ અવશેષ	As^{3+}
કથ્થાઈ અવશેષ	Cd^{2+}
ગરમ હોય ત્યારે પીળા અવશેષ અને ઠંડા હોય ત્યારે સફેદ અવશેષ	Zn^{2+}

6. કોબાલ્ટ નાઇટ્રેટ કસોટી

જો કોલસાના પોલાણમાં રહેલો અવશેષ સફેદ હોય, તો કોબાલ્ટ નાઇટ્રેટ કસોટી કરવામાં આવે છે.

- (i) અવશેષ પર કોબાલ્ટ નાઇટ્રેટ દ્રાવણના બે કે ત્રણ ટીપાં મૂકો.
- (ii) આ અવશેષને ફૂંકણીની મદદથી જ્યોતિહીન જ્યોતમાં ગરમ કરો અને અવશેષના રંગનું અવલોકન કરો.

ગરમ કરવાથી કોબાલ્ટ નાઇટ્રેટ, કોબાલ્ટ (II) ઑક્સાઈડમાં વિઘટન પામે છે, જે પોલાણમાં રહેલા ધાતુ ઑક્સાઈડ સાથે લાક્ષણિક રંગ આપે છે.

આમ, ZnO, Al₂O₃ અને MgO સાથે નીચે દર્શાવ્યા મુજબની પ્રક્રિયાઓ થાય છે :

$$2\text{Co (NO}_3)_2 \xrightarrow{\text{ગરમી}} 2\text{CoO} + 4\text{NO}_2 + \text{O}_2$$

$$\text{CoO} + \text{ZnO} \rightarrow \text{CoO} \cdot \text{ZnO}$$
લીલો રંગ
$$\text{CoO} + \text{MgO} \rightarrow \text{CoO} \cdot \text{MgO}$$
ગુલાબી રંગ
$$\text{CoO} + \text{Al}_2\text{O}_3 \rightarrow \text{CoO} \cdot \text{Al}_2\text{O}_3$$
વાદળી રંગ

પદ્ધતિસર ગુણાત્મક પૃથક્કરણ

સોપાન II : ધનાયનોની પરખ માટે ભીની કસોટીઓ

ઉપર દર્શાવેલી પ્રાથમિક કસોટીઓ જે ધનાયનની હાજરીનું સૂચન કરે છે તેઓને નીચે દર્શાવેલી પધ્ધતિસરની પૃથક્કરણ પદ્ધતિ દ્વારા નિશ્ચિત કરવામાં આવે છે :

આ માટે સૌપ્રથમ આવ-યક સોપાન ક્ષારનું ચોખ્ખું અને પારદર્શક દ્રાવણ બનાવવાનું છે. તેને **મૂળ દ્રાવણ** કહેવામાં આવે છે. તેને નીચે દર્શાવ્યા મુજબ બનાવી શકાય છે:

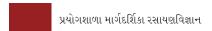
મૂળ દ્રાવણની (મૂ.દ્રા) બનાવટ

મૂળ દ્રાવણને બનાવવા માટે નીચે દર્શાવેલા સોપાનને પદ્ધતિસરના ક્રમમાં એક પછી એક અનુસરવામાં આવે છે. જો ક્ષાર કોઈ ચોક્કસ દ્રાવકમાં ગરમી આપવા છતાં પણ દ્રાવ્ય ન થાય, તો બીજા દ્રાવક વડે પ્રયત્ન કરો.

નીચે દર્શાવેલાં દ્રાવકો માટે પ્રયત્ન કરવામાં આવે છે :

- 1. સ્વચ્છ કસનળીમાં ક્ષારનો થોડો જથ્થો લો અને તેમાં થોડા mL નિસ્યંદિત પાણી ઉમેરી તેને હલાવો. જો ક્ષાર દ્રાવ્ય ન થાય તો, કસનળીમાં ર હેલો ક્ષાર સંપૂર્ણપણે દ્રાવ્ય થાય, ત્યાં સુધી કસનળીને ગરમ કરો.
- 2. ઉપર દર્શાવ્યા મુજબ ક્ષાર જો પાણીમાં અદ્રાવ્ય ર હે તો, અન્ય સ્વચ્છ કસનળીમાં ફરીથી ક્ષારને લો અને મંદ HCl ના થોડા mL તેમાં ઉમેરો. જો ક્ષાર ઠંડામાં અદ્રાવ્ય રહે તો, કસનળીને ક્ષાર સંપૂર્ણપણે દ્રાવ્ય થાય ત્યાં સુધી ગરમ કરો.
- 3. જો ક્ષાર પાણી અથવા મંદ HCl માં ગરમ કરવા છતાં દ્રાવ્ય ન થતો હોય, તો તેને સાંદ્ર HCl ના થોડા mL સાથે ગરમ કરી દ્રાવ્ય કરવાનો પ્રયત્ન કરો.
- 4. જો ક્ષાર સાંદ્ર HCl માં દ્રાવ્ય ન થાય તો તેને મંદ નાઇટ્રિક ઍસિડમાં દ્રાવ્ય કરો.
- 5. જો ક્ષાર ના ઇટ્રિક ઍસિડમાં પણ દ્રાવ્ય ન થાય તો, સાંદ્ર HCl અને સાંદ્ર HNO $_3$ ના 3:1 પ્રમાણના મિશ્રણનો પ્રયત્ન કરવામાં આવે છે. આ મિશ્રણને એકવારિજીઆ (અમ્લરાજ) કહે છે. જે ક્ષાર એકવારિજીઆમાં દ્રાવ્ય થતો નથી તેને અદ્રાવ્ય ક્ષાર તરીકે ગણવામાં આવે છે.

સમૂહ પૃથક્કરણ


(I) શૂન્ય સમૂહ ધનાયન (NH_4^+ આયન)નું પૃથક્કરણ

- (a) કસનળીમાં 0.1 g ક્ષાર લો અને તેમાં 1-2 mL NaOH નું દ્રાવણ ઉમેરી ગરમ કરો. જો એમોનિયાની વાસ આવે, તો તે એમોનિયમ આયનની હાજરી સૂચવે છે. હાઇડ્રૉક્લોરિક ઍસિડમાં બોળેલા કાચના સળિયાને કસનળીના મુખ આગળ લાવો. સફેદ ધુમાડો જોવા મળે છે.
- (b) આ વાયુને નેસ્લર પ્રક્રિયકમાંથી પસાર કરો. કથ્થાઈ રંગના અવક્ષેપ પ્રાપ્ત થાય છે.

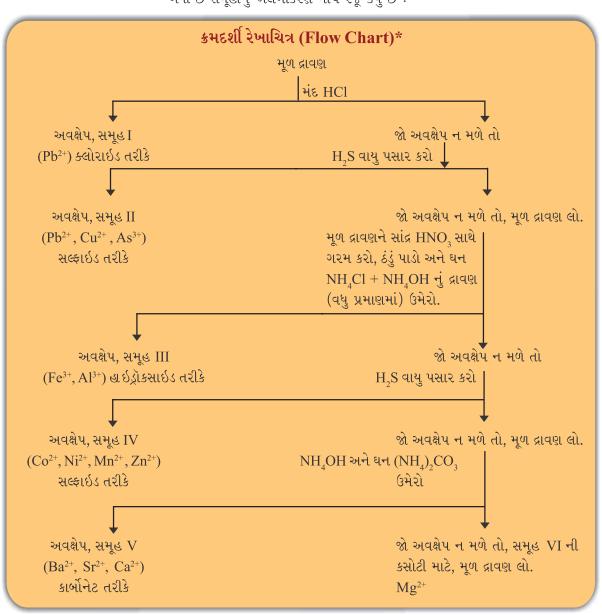
NH4 આયનની નિર્ણાયક કસોટીઓનું રસાયણવિજ્ઞાન

(a) એમોનિયમ ક્ષારની સોડિયમ હાઇડ્રૉક્સાઇડ સાથેની પ્રક્રિયાથી એમોનિયા વાયુ ઉત્પન્ન થાય છે. તે હાઇડ્રૉકલોરિક ઍસિડ સાથે પ્રક્રિયા કરી, એમોનિયમ ક્લોરાઇડ બનાવે છે, જે ઘટ્ટ સફેદ ધુમાડા તરીકે જોવા મળે છે.

$$(NH_4)_2SO_4 + 2NaOH \rightarrow Na_2SO_4 + 2NH_3 + 2H_2O$$

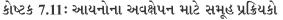
 $NH_3 + HCl \rightarrow NH_4Cl$

મરક્યુરી ક્ષાર


આ વાયુને નેસ્લર પ્રક્રિયકમાંથી પસાર કરતાં દ્રાવણ કથ્થાઈ રંગનું અથવા બેઝિક મરક્યુરી (II) એમિડો-આયોડિનના અવક્ષેપ બને છે.

 $2K_2HgI_4 + NH_3 + 3KOH \longrightarrow HgO \bullet Hg(NH_2)I + 7KI + 2H_2O$ બેઝિક મરક્યુરી (II) એમિડો-આયોડિન

(કથ્થાઈ અવક્ષેપ)


સમૂહો I - VI માં રહેલા ધનાયનના પૃથક્કરણ માટે, નીચે દર્શાવેલા ક્રમદર્શી રેખાચિત્રમાં (Flow chart) સૂચવ્યા મુજબની યોજના અનુસાર સમૂહ પ્રક્રિયકોની (જુઓ કોષ્ટક 7.11) મદદથી મૂળ દ્રાવણમાંથી ધનાયનોને અવક્ષેપિત કરવામાં આવે છે.

બધા છ સમૂહોનું અલગીકરણ નીચે રજૂ કર્યું છે :

^{*} આ ક્રમદર્શી રેખાચિત્ર માત્ર એક ધનાયની પરખ માટે છે. એક કરતાં વધુ ધનાયનની પરખ માટે તેમાં સુધારો જરૂરી બને છે.

પદ્ધતિસર ગુણાત્મક પૃથક્કરણ

સમૂહ	ધનાયન*	સમૂહ પ્રક્રિયક
સમૂહ શૂન્ય	NH ₄ ⁺	કોઈ નહિ
 સમૂહ - I	Pb^{2+}	મંદ HCl
સમૂહ - II	Pb^{2+} , Cu^{2+} , As^{3+}	મંદ HCl ની હાજરીમાં $ mH_{2}S$ વાયુ
સમૂહ - III	Al^{3+} , Fe^{3+}	NH ₄ Cl ની હાજરીમાં NH ₄ OH
સમૂહ - IV	Co^{2+} , Ni^{2+} , Mn^{2+} , Zn^{2+}	$\mathrm{NH_4OH}$ ની હાજરીમાં $\mathrm{H_2S}$ વાયુ
સમૂહ-V	$Ba^{2+}, Sr^{2+}, Ca^{2+}$	NH ₄ OH ની હાજરીમાં (NH ₄) ₂ CO ₃
સમૂહ-VI	${ m Mg^{2+}}$	કોઈ નહિ

(II) સમૂહ-I ના ધનાયનોનું પૃથક્કરણ

કસનળીમાં થોડા પ્રમાણમાં મૂળ દ્રાવણ લો અને (જો ગરમ સાંદ્ર HCl માં દ્રાવણ બનાવેલું હોય તો) તેમાં ઠંડું પાણી ઉમેરો. આ કસનળીને પાણીના નળ નીચે ઠંડી કરો. જો સફેદ અવક્ષેપ જોવા મળે, તો તે સમૂહ - I ના Pb²+ આયનની હાજરી સૂચવે છે. અન્ય રીતમાં જો મૂળ દ્રાવણ પાણીમાં બનાવેલું હોય અને તેમાં મંદ HCl ઉમેરવામાં આવતાં સફેદ અવક્ષેપ જોવા મળે, તો તે પણ Pb²+ ની હાજરી સૂચવે છે. તેની નિર્ણાયક કસોટીઓ નીચે કોષ્ટક 7.12 માં વર્ણવી છે:

કોષ્ટક 7.12 : સમૂહ-I ના ધનાયન (Pb2+)ની નિર્ણાયક કસોટીઓ

	પ્રયોગ	અવલોકન
	ક્ષેપને ગરમ પાણીમાં દ્રાવ્ય કરો અને આ ા દ્રાવણને ત્રણ ભાગમાં વહેંચો :	
1.	પહેલા ભાગમાં પોટૅશિયમ આયોડાઇડનું દ્રાવશ ઉમેરો.	પીળા અવક્ષેપ મળે છે.
2.	બીજા ભાગમાં પોટૅશિયમ ક્રોમેટનું દ્રાવણ ઉમેરો.	પીળા અવક્ષેપ મળે છે, જે NaOH માં દ્રાવ્ય અને એમોનિયમ એસિટેટના દ્રાવણમાં અદ્રાવ્ય હોય છે.
3.	ગરમ દ્રાવણના ત્રીજા ભાગમાં આલ્કોહૉલના થોડાં	સફ્રેદ અવક્ષેપ મળે છે, જે એમોનિયમ એસિટેટ
	ટીંપાં અને મંદ સલ્ફ્ચુરિક ઍસિડ ઉમેરો.	દ્રાવણમાં દ્રાવ્ય થાય છે.

Pb²⁺ આયનની નિર્ણાયક કસોટીનું રસાયણવિજ્ઞાન

પ્રથમ સમૂહમાં લેડ, લેડ ક્લોરાઇડ તરીકે અવક્ષેપિત થાય છે. આ અવક્ષેપ ગરમ પાણીમાં દ્રાવ્ય થાય છે.

1. પોટૅશિયમ આયોડાઇડ (KI)નું દ્રાવણ ઉમેરવાથી લેડ આયોડાઇડના પીળા અવક્ષેપ મળે છે. જે Pb²+ આયનની હાજરી નિશ્ચિત કરે છે.

$$\operatorname{PbCl}_2 + 2\operatorname{KI} \longrightarrow \operatorname{PbI}_2 + 2\operatorname{KCl}$$
 (ગરમ દ્રાવણ) પીળા અવક્ષેપ

^{*} અહીંયાં, જે ધનાયનો અભ્યાસક્રમમાં છે તે જ આપ્યા છે.

આ પીળા અવક્ષેપ (PbI,) ઉકળતા પાણીમાં દ્રાવ્ય થાય છે અને ઠંડા પાડતાં ચળકતા સ્ફટિક સ્વરૂપે પુનઃ પ્રાપ્ત થાય છે.

પોટૅશિયમ ક્રોમેટ ($\mathrm{K_2CrO_4}$)નું દ્રાવણ ઉમેરવાથી લેડ ક્રોમેટના પીળા અવક્ષેપ મળે છે, જે 2. Pb²⁺ આયનની હાજરી નિશ્ચિત કરે છે.

$$PbCl_{2}$$
 + $K_{2}CrO_{4}$ \longrightarrow $PbCrO_{4}$ + $2KCl$ (ગરમ દ્રાવણ) લેડ ક્રોમેટ (પીળા અવક્ષેપ)

આ પીળા અવક્ષેપ (PbCrO₄) ગરમ NaOHના દ્રાવણમાં દ્રાવ્ય હોય છે.

PbCrO
$$_4$$
 + 4NaOH \Longrightarrow Na $_2$ [Pb(OH) $_4$] + Na $_2$ CrO $_4$ સોડિયમ ટેટ્રા -

હા ઇડ્રૉક્સોપ્લમ્બેટ(II)

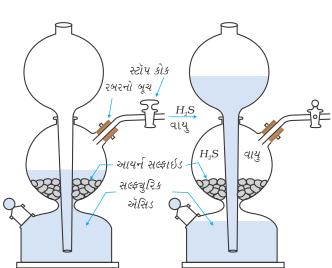
આલ્કોહૉલ અને ત્યાર બાદ મંદ H,SO4 ઉમેરવાથી, લેડ સલ્ફેટ (PbSO4)ના સફેદ 3. અવક્ષેપ બને છે.

$$PbCl_{2} + H_{2}SO_{4} \longrightarrow PbSO_{4} + 2HCl$$
 લેડ સલ્ફેટ (સફેદ અવક્ષેપ)

લેડ સલ્ફેટ, એમોનિયમ એસિટેટ દ્રાવણમાં દ્રાવ્ય છે, કારણ કે તેઓની વચ્ચે પ્રક્રિયા થઈ ટેટ્રાએસિટોપ્લમ્બેટ(II) આયન બને છે. એસિટિક ઍસિડના થોડા ટીપાં ઉમેરવાથી પ્રક્રિયા સરળતાથી આગળ વધી શકે છે.

$$PbSO_4 + 4CH_3COONH_4 \longrightarrow (NH_4)_2 \ [Pb(CH_3COO)_4] + (NH_4)_2 \ SO_4$$
 એમોન્યિમ ટેટાએસિટોપ્લમ્બેટ (II)

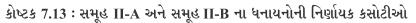
(III) સમૂહ-II ના ધનાયનોનું પૃથક્કરણ


જો સમૂહ- I ગેરહાજર હોય, તો તે જ કસનળીમાં વધુ પાણી ઉમેરો. દ્રાવણને સ હેજ ગરમ કરો અને

તેમાં 1-2 મિનિટ માટે H₂S વાયુ પસાર કરો (આકૃતિ 7.8). કસનળીને હ્લાવો. જો અવક્ષેપ જોવા મળે, તો તેસમૂહ-II ના ધનાયનોની હાજરી સૂચવે છે. હવે તે દ્રાવણમાં વધુ H₂S વાયુ પસાર કરો, જેથી સંપૂર્ણ અવક્ષેપન થાય. આ અવક્ષેપને અલગ તારવી લો. જો અવક્ષેપ કાળા રંગના હોય, તો તે Cu^{2+} અથવા Pb²+ આયનોની હાજરી સૂચવે છે. જો અવક્ષેપ પીળા રંગના હોય તો તે As^{3+} ની હાજરી સૂચવે છે.

સમૂહ -II ના અવક્ષેપને કસનળીમાં લો અને તેમાં વધ્ પ્રમાણમાં પીળા એમોનિયમ સલ્ફાઇડના દ્રાવણને ઉમેરો. કસનળીને હલાવો. જો અવક્ષેપ અદ્રાવ્ય રહે, તો **સમૂહ II - A** (કૉપર સમુહ) હાજર છે. જો અવક્ષેપ દ્રાવ્ય થાય, તો તે સમુહ II - B ની (આર્સેનિક સમૂહ) હાજરી સૂચવે છે.

સમૂહ II-A અને સમૂહ II-B ની નિર્ણાયક કસોટીઓ કોષ્ટક 7.13માં આપેલી છે.



આકૃતિ 7.8 : H₂S વાયુ બનાવવા માટે કિપનું ઉપકરણ

પદ્ધતિસર ગુણાત્મક પૃથક્કરણ

જો પીળા અવક્ષેપ મળે અને તે પીળા એમોનિયમ

સલ્ફાઇડના દ્રાવણમાં દ્રાવ્ય હોય, તો $\mathrm{As}^{\scriptscriptstyle 3+}$ આયન

સમૂહ II-A (Pb^{2+}, Cu^{2+}) ના કાળા અવક્ષેપ મળે છે, એમોનિયમ સલ્ફાઇડમાં અદ્રાવ્ય હોય છે.

સમૂહ II-A ના અવક્ષેપને મંદ નાઇટ્રિક ઍસિડ સાથે ઉકાળો અને તેમાં આલ્કોહૉલનાં થોડાં ટીપાં અને મંદ H,SO, ઉમેરો.

સફેદ અવક્ષેપ Pb²⁺ આયનની હાજરી નિશ્ચિત કરે છે. પ્રમાણમાં એમોનિયમ અવક્ષેપને એસિટેટના દ્રાવણમાં દ્રાવ્ય કરો. | ઉમેરો. વાદળી રંગનું દ્રાવણ આ દ્રાવણને એસિટિક ઍસિડ | મળે છે. તેને એસિટિક વડે ઍસિડિક કરી તેને બે ભાગમાં વહેંચો :

- (i) પહેલા ભાગમાં પોટૅશિયમ ક્રોમેટનું દ્રાવણ ઉમેરો, પીળા અવક્ષેપ ઉત્પન્ન થાય છે.
- (ii) બીજા ભાગમાં પોટૅશિયમ આયોડાઇડનું દ્રાવશ ઉમેરો, પીળા અવક્ષેપ ઉત્પન્ન થાય છે.

આ દ્રાવણને મંદ HCl વડે ઍસિડિક બનાવો. તેથી પીળા અવક્ષેપ મળે છે. અવક્ષેપને સાંદ્ર નાઇટ્રિક ઍસિડ સાથે ગરમ કરો અને તેમાં એમોનિયમ મોલિબ્ડેટનું દ્રાવણ ઉમેરો. તેથી આછા પીળા રંગના અવક્ષેપ ઉત્પન્ન થાય છે.

હાજર હોય.

જો અવક્ષેપ ન મળે, તો વધુ એમોનિયમ | હાઇડ્રૉક્સાઇડનું દ્રાવણ ઍસિડ વડે ઍસિડિક કરો પોટૅશિયમ ફેરોસાયનાઇડનું દ્રાવશ ઉમેરો. અહીં કથ્થાઈ ચોકલેટ રંગના અવક્ષેપ મળે છે. જે Cu²+ની હાજરી

નિશ્ચિત કરે છે.

સમૂહ-II A (ક્રોપર સમૂહ)

સમૂહ-II Aના ધનાયનોની નિર્ણાયક કસોટીનું રસાયણવિજ્ઞાન

1. લેડ આયન (Pb²+)ની કસોટી

લેડ સલ્ફાઇડના અવક્ષેપ મંદ HNO¸માં દ્રાવ્ય થાય છે. આ દ્રાવણમાં મંદ H,SO₄ અને આલ્કોહૉલનાં થોડાં ટીંપા ઉમેરતાં લેડ સલ્ફેટના સફેદ અવક્ષેપ મળે છે. તે લેડ આયનની હાજરી સૂચવે છે.

$$3PbS + 8HNO_3 \longrightarrow 3Pb (NO_3)_2 + 2NO + 4H_2O + 3S$$

 $Pb(NO_3)_2 + H_2SO_4 \longrightarrow PbSO_4 + 2HNO_3$

આ સફેદ અવક્ષેપને એમોનિયમ એસિટેટના દ્રાવણમાં ઉકાળતા ઓગળે છે. જ્યારે આ દ્રાવશને એસિટિક ઍસિડ વડે ઍસિડિક બનાવીને તેમાં પોટૅશિયમ ક્રોમેટનું દ્રાવશ ઉમેરતાં PbCrO, ના પીળા અવક્ષેપ મળે છે. જો પોટૅશિયમ આયોડાઇડનું દ્રાવણ ઉમેરવામાં આવે, તો લેડ આયોડાઇડના પીળા અવક્ષેપ મળે છે.

$$\begin{array}{c} {\rm PbSO_4 + 4CH_3COONH_4} \longrightarrow ({\rm NH_4})_2 [{\rm Pb(CH_3COO)_4}] + ({\rm NH_4})_2 {\rm SO_4} \\ & \qquad \qquad \qquad \\ & \qquad \qquad \qquad \\ {\rm id} {\rm Hilham} \\ {\rm id} {\rm id} {\rm id} {\rm id} \\ {\rm id} \\$$

પ્રયોગશાળા માર્ગદર્શિકા રસાયણવિજ્ઞાન

2. કૉપર આયન (Cu²+)ની કસોટી

(a) કૉપર સલ્ફાઇડ, નાઇટ્રિક ઍસિડમાં દ્રાવ્ય થાય છે કારણ કે તેમની વચ્ચે પ્રક્રિયા થઈ કૉપર નાઇટ્રેટ બને છે.

$$3CuS + 8HNO_3 \longrightarrow 3Cu(NO_3)_2 + 2NO + 3S + 4H_2O$$

પ્રક્રિયા મિશ્રણને લાંબો સમય ગરમ કરવાથી સલ્ફરનું સલ્ફેટમાં ઑક્સિડેશન થાય છે અને કૉપર સલ્ફેટ બને છે. જે દ્રાવણને વાદળી રંગનું બનાવે છે. થોડા જથ્થામાં ઉમેરેલા NH₄OH બેઝિક કૉપર સલ્ફેટના અવક્ષેપ ઉત્પન્ન કરે છે. જે વધુ એમોનિયમ હાઇડ્રૉક્સાઇડમાં ટેટ્રાએમ્માઇન કૉપર (II) સંકીર્ણ બનવાના કારણે દ્રાવ્ય થાય છે.

(b) આ વાદળી દ્રાવણને એસિટિક ઍસિડ વડે ઍસિડિક કરી તેમાં પોટૅશિયમ ફેરોસાયનાઇડ ($[K_4Fe(CN)_6]$)નું દ્રાવણ ઉમેરતાં કૉપર ફેરોસાયનાઇડ એટલે કે Cu_2 $[Fe(CN)_6]$ બનવાના કારણે દ્રાવણ ચોકલેટ રંગનું બને છે.

$$\begin{split} &[\operatorname{Cu(NH_3)_4}]\operatorname{SO_4} + 4\operatorname{CH_3COOH} \longrightarrow \operatorname{CuSO_4} + 4\operatorname{CH_3COONH_4} \\ &2\operatorname{CuSO_4} + \operatorname{K_4}[\operatorname{Fe(CN)_6}] \longrightarrow \operatorname{Cu_2}[\operatorname{Fe(CN)_6}] + 2\operatorname{K_2SO_4} \\ &\quad \text{પોટૅશિયમ} \qquad \qquad \text{કૉપર} \\ &\quad \text{હેક્ઝાસાયનોફેરેટ(II)} \qquad \text{હેક્ઝાસાયનોફેરેટ(II)} \\ &\quad (ચોકલેટ કથ્થાઈ અવક્ષેપ) \end{split}$$

સમૂહ-II B (આર્સેનિક સમૂહ)

જો સમૂહ- II ના અવક્ષેપ પીળા એમોનિયમ સલ્ફાઇડમાં દ્રાવ્ય થાય અને દ્રાવશ પીળા રંગનું રહે, તો તે As^{3+} આયનની હાજરી સૂચવે છે. As_2S_3 ના વિલયનથી એમોનિયમ થાયોઆર્સેનાઇડ બને છે. જે મંદ HCl સાથે વિઘટન પામી આર્સેનિક (V) સલ્ફાઇડના પીળા અવક્ષેપ બનાવે છે. આ અવક્ષેપને સાંદ્ર નાઇટ્રિક ઍસિડ સાથે ગરમ કરવાથી બનતા આર્સેનિક ઍસિડના કારણે તે દ્રાવ્ય થાય છે. આ પ્રક્રિયા મિશ્રણમાં એમોનિયમ મોલિબ્ડેટનું દ્રાવણ ઉમેરતાં આછા પીળા રંગના અવક્ષેપ મળે છે. આ As^{3+} આયનની હાજરી નિશ્ચિત કરે છે.

$$As_2S_3 + 3 (NH_4)_2S_2 \longrightarrow 2 (NH_4)_3AsS_4 + S$$
 પીળો એમોનિયમ સલ્ફાઇડ
$$2(NH_4)_3AsS_4 + 6HCl \longrightarrow As_2S_5 + 3H_2S + 6NH_4Cl$$
 $3As_2S_5 + 10HNO_3 + 4H_2O \longrightarrow 6H_3AsO_4 + 10NO + 15S$ આર્સેનિક એસિડ

પદ્ધતિસર ગુણાત્મક પૃથક્કરણ

$${
m H_3AsO_4 + 12(NH_4)_2MoO_4 + 21HNO_3} \longrightarrow (NH_4)_3[{
m As(Mo_3O_{10})_4}] + 21NH_4NO_3 + 12H_2O$$
 અર્સિનિક એમોનિયમ એમોનિયમ અમિલિબ્ડેટ પાર્થિનોમોલિબ્ડેટ (પીળા અવક્ષેપ)

(IV) સમૂહ-IIIના ધનાયનોનું પૃથક્કરણ

જો સમૂહ- II ગેરહાજર હોય, તો મૂળ દ્રાવણ લો અને તેમાં સાંદ્ર $\mathrm{HNO_3}$ નાં 2-3 ટીપાં ઉમેરો, જેથી જો તેમાં $\mathrm{Fe^{2+}}$ હોય, તો તે $\mathrm{Fe^{3+}}$ માં ઑક્સિડેશન પામી શકે. આ દ્રાવણને થોડી મિનિટ માટે ગરમ કરો. દ્રાવણને ઠંડું પાડ્યા બાદ, તેમાં થોડા પ્રમાણમાં ઘન એમોનિયમ ક્લોરાઇડ ($\mathrm{NH_4CI}$) ઉમેરી, એમોનિયાની વાસ આવે, ત્યાં સુધી તેમાં વધુ પ્રમાણમાં એમોનિયમ હાઇડ્રૉક્સાઇડ ($\mathrm{NH_4OH}$)નું દ્રાવણ ઉમેરો. કસનળીને હ્લાવો. જો કથ્થાઈ અથવા સફેદ રંગના અવક્ષેપ મળે તો તે સમૂહ-III ના ધનાયનોની હાજરી સૂચવે છે. સમૂહ-IIIના ધનાયનોની નિર્ણાયક કસોટીઓને કોપ્ટક 7.14માં સંક્ષિપ્ત રીતે દર્શાવેલ છે.

અવક્ષેપના રંગ અને તેની પ્રકૃતિનું અવલોકન કરો. શ્લેષીય (gelatinous) સફેદ અવક્ષેપ ઍલ્યુમિનિયમ આયન (Al³+)ની હાજરીનું સૂચન કરે છે. જો અવક્ષેપ કથ્થાઈ રંગના હોય, તો તે ફેરિક આયન (Fe³+)ની હાજરી સૂચવે છે.

કોષ્ટક 7.14 : સમૂહ-III ના ધનાયનોની નિર્ણાયક કસોટીઓ

કથ્થાઈ અવક્ષેપ Fe ³⁺			સફેદ અવક્ષેપ Al ³⁺			
અવક્ષેપને મંદ HClમાં દ્રાવ્ય કરો અને દ્રાવણના બે		અવક્ષેપને મંદ HCIમાં દ્રાવ્ય કરો અને દ્રાવણના બે				
ભાગ	પાડો :	ભાગ	પાડો ઃ			
(a)	પહેલા ભાગમાં પોટૅશિયમ ફેરોસાયનાઇડ (પોટૅશિયમ હેક્ઝાસાયનોફેરેટ(II))નું દ્રાવણ ઉમેરો. વાદળી અવક્ષેપ / રંગ જોવા મળે છે.	(a)	પહેલા ભાગમાં સોડિયમ હાઇડ્રૉક્સાઇડ ઉમેરો અને ગરમ કરો. સફેદ શ્લેષીય અવક્ષેપ વધુ સોડિયમ હાઇડ્રૉક્સાઇડના દ્રાવણમાં દ્રાવ્ય થાય છે.			
(b)	બીજા ભાગમાં પોટૅશિયમ થાયોસાયનેટનું દ્રાવણ ઉમેરો. લોહી જેવો લાલ રંગ જોવા મળે છે.	(b)	બીજા ભાગમાં સૌપ્રથમ વાદળી લિટમસનું દ્રાવણ ઉમેરો અને કસનળીની દીવાલને અડકાડીને ટીપે-ટીપે એમોનિયમ હાઇડ્રૉક્સાઇડનું દ્રાવણ ઉમેરો. તેથી રંગવિહીન દ્રાવણમાં વાદળી તરતું દ્રવ્ય જોવા મળે છે.			

સમૂહ-IIIના ધનાયનોની નિર્ણાયક કસોટીઓનું રસાયણવિજ્ઞાન

જ્યારે મૂળ દ્રાવણને સાંદ્ર નાઇટ્રિક ઍસિડ સાથે ગરમ કરવામાં આવે છે, ત્યારે તેમાં જો ફેરસ આયન હાજર હોય, તો તે ફેરિક આયનમાં ઑક્સિડેશન પામે છે.

$$2FeCl_2 + 2HCl + [O] \rightarrow 2FeCl_3 + H_2O$$

ત્રીજા સમૂહના ધનાયનો તેના હાઇડ્રૉક્સાઇડ તરીકે અવક્ષેપિત થાય છે. જે મંદ હાઇડ્રૉક્લોરિક ઍસિડમાં તેઓના અનુવર્તી ક્લોરાઇડ બનવાને કારણે દ્રાવ્ય થાય છે.

1. ઍલ્યુમિનિયમ આયન(Al³+)ની કસોટી

(a) જ્યારે ઍલ્યુમિનિયમ ક્લોરાઇડ ધરાવતાં દ્રાવણની પ્રક્રિયા સોડિયમ હાઇડ્રૉક્સાઇડ સાથે કરવામાં

આવે છે, ત્યારે ઍલ્યુમિનિયમ હાઇડ્રૉક્સાઇડના સફેદ શ્લેષીય અવક્ષેપ બને છે. જે વધુ સોડિયમ હાઇડ્રૉક્સાઇડના દ્રાવણમાં સોડિયમ મેટા એલ્યુમિનેટ બનવાના કારણે દ્રાવ્ય હોય છે.

AlCl
$$_3$$
 + 3NaOH \longrightarrow Al(OH) $_3$ + 3NaCl Al(OH) $_3$ + NaOH \longrightarrow NaAlO $_2$ + 2H $_2$ O સફેદ શ્લેષીય સોડિયમ મેટા એલ્યુમિનેટ

(b) બીજી કસોટીમાં જ્યારે દ્રાવણમાં વાદળી લિટમસપત્ર નાંખવામાં આવે છે, ત્યારે દ્રાવણ ઍિસડિક હોવાથી તે લાલ રંગનું બને છે. તેમાં ટીપે-ટીપે NH₄OH નું દ્રાવણ ઉમેરવાથી દ્રાવણ બેઝિક બને છે અને ઍલ્યુમિનિયમ હાઇડ્રૉક્સાઇડ અવક્ષેપિત થાય છે. ઍલ્યુમિનિયમ હાઇડ્રૉક્સાઇડ અવક્ષેપિત થાય છે. ઍલ્યુમિનિયમ હાઇડ્રૉક્સાઇડ દ્રાવણમાંથી વાદળી રંગનું શોષણ કરે છે અને 'લેક' નામનું અદ્રાવ્ય અધિશોષિત સંકીર્ણ બનાવે છે. આમ, રંગવિહીન દ્રાવણમાં વાદળી રંગનું તરતું દ્રવ્ય જોવા મળે છે. તેથી આ કસોટીને લેક કસોટી કહેવામાં આવે છે.

2. ફેરિક આયન (Fe³+)ની કસોટી

ફેરિક હાઇડ્રૉક્સાઇડના લાલાશ પડતા કથ્થાઈ અવક્ષેપ હાઇડ્રૉક્લોરિક ઍસિડમાં ઓગળે છે અને ફેરિક ક્લોરાઇડ બને છે.

$$Fe(OH)_3 + 3HCl \longrightarrow FeCl_3 + 3H_2O$$

(a) જ્યારે ફેરિક ક્લોરાઇડ ધરાવતા દ્રાવણની પોટૅશિયમ ફેરોસાયનાઇડ દ્રાવણ સાથે પ્રક્રિયા કરવામાં આવે છે, ત્યારે વાદળી અવક્ષેપ / રંગ મળે છે. આ અવક્ષેપનો રંગ પ્રુસિયન બ્લૂ (Prussian blue) હોય છે. તે ફેરિક ફેરોસાયનાઇડ છે. આ પ્રક્રિયા નીચે દર્શાવ્યા મુજબ થાય છે:

$$4 \operatorname{FeCl}_3 + 3 \operatorname{K}_4 [\operatorname{Fe(CN)}_6] \longrightarrow \operatorname{Fe}_4 [\operatorname{Fe(CN)}_6]_3 + 12 \operatorname{KCl}$$
 પોટેશિયમ પ્રુસિયન બ્લૂ ફેરોસાયનાઇડ અવક્ષેપ

જો પોટૅશિયમ હેક્ઝાસાયનોફ્રેરેટ(II) ને (એટલે કે પોટૅશિયમ ફ્રેરોસાયનાઇડ) વધુ પ્રમાણમાં ઉમેરવામાં આવે, તો KFe [Fe(CN),] સંયોજન નીપજ તરીકે બને છે. આ કલિલ દ્રાવણ (દ્રાવ્ય પ્રુસિયન બ્લૂ) બનાવે છે અને તેનું ગાળણ કરી શકાતું નથી.

$$\operatorname{FeCl}_3 + \operatorname{K}_4[\operatorname{Fe}(\operatorname{CN})_6] \longrightarrow \operatorname{KFe}[\operatorname{Fe}(\operatorname{CN})_6] + 3\operatorname{KCl}$$
 (દ્રાવ્ય પ્રસિયન બ્લ્)

(b) દ્રાવણના બીજા ભાગમાં પોટૅશિયમ થાયોસાયનેટ (પોટૅશિયમ સલ્ફ્રોસાયનાઇડ) ઉમેરો. લોહી જેવા લાલ રંગનું ઉત્પન્ન થવું Fe³+ આયનની હાજરી નિશ્ચિત કરે છે.

Fe³⁺ + SCN
$$^ \longrightarrow$$
 [Fe(SCN)]²⁺ લોહી જેવો લાલ રંગ

(V) સમૂહ-IVના ધનાયનોનું પૃથક્કરણ

જો સમૂહ-III ગેરહાજર હોય, તો સમૂહ- III ના દ્રાવણમાં $\mathrm{H}_2\mathrm{S}$ વાયુ થોડી મિનિટ માટે પસાર કરો. જો અવક્ષેપ (સફેદ, કાળા અથવા માંસવર્ણી) મળે, તો તે સમૂહ- IV ના ધનાયનોની હાજરી સૂચવે

પદ્ધતિસર ગુણાત્મક પૃથક્કરણ

છે. કોષ્ટક 7.15 સમૂહ-IVના ધનાયનોની નિર્ણાયક કસોટીઓને સંક્ષિપ્તમાં દર્શાવે છે.

કોષ્ટક 7.15 : સમૂહ-IVના ધનાયનોની નિર્ણાયક કસોટીઓ

સફેદ અવક્ષેપ	માંસવર્ણી અવક્ષેપ	કાળા અવક્ષેપ
(Zn²+)	(Mn²+)	(Ni²+, Co²+)
અવક્ષેપને મંદ HCI માં ઉકાળીને દ્રાવ્ય કરો. આ દ્રાવણને બે ભાગમાં વહેંચો : (a) પહેલા ભાગમાં સોડિયમ હાઇ ડ્રૉકસાઈડનું દ્રાવણ ઉમેરો. બનતા સફેદ અવક્ષેપ વધુ સોડિયમ હાઇ ડ્રૉકસાઇડના દ્રાવણમાં દ્રાવ્ય થાય છે, જે Zn²+ આયનની હાજરી નિશ્ચિત કરે છે. (b) બીજા ભાગને એમોનિયમ હાઇ ડ્રૉક્સાઇડના દ્રાવણ વડે તટસ્થ કરો અને તેમાં પોટેશિયમ ફેરોસાયનાઇડનું દ્રાવણ ઉમેરો. વાદળી પડતાં સફેદ અવક્ષેપ ઉત્પન્ન થાય છે.	અવક્ષેપને મંદ HCl માં ઉકાળીને દ્રાવ્ય કરો. બાદમાં સોડિયમ હાઇડ્રૉક્સાઇડના દ્રાવણને વધુ પ્રમાણમાં ઉમેરો. સફેદ અવક્ષેપ ઉત્પન્ન થાય છે, જેને રાખી મૂકવાથી કથ્થાઈ રંગમાં ફેરવાય છે.	અવક્ષેપને એકવારિજીયામાં દ્રાવ્ય કરો. દ્રાવણને શુષ્ક થાય ત્યાં સુધી, ગરમ કરો અને ઠંડું પાડો. અવશેષને પાણીમાં દ્રાવ્ય કરો અને દ્રાવણને બે ભાગમાં વહેંચો : (a) દ્રાવણના પહેલા ભાગમાં દ્રાવણ બેઝિક થાય, ત્યાં સુધી એમોનિયમ હાઇ ડ્રૉક્સાઇડનું દ્રાવણ ઉમેરો. ડાયમિથાઈલ ગ્લાયોક્ઝાઈમના થોડાં ટીપાં ઉમેરો અને કસનળીને હલાવો. ચળકતા લાલ અવક્ષેપનું બનવુ Ni²+ આયનની હાજરી નિશ્ચિત કરે છે. (b) બીજા ભાગને એમોનિયમ હાઇ ડ્રૉક્સાઇડના દ્રાવણ વડે તટસ્થ કરો. તેને એસિટિક ઍસિડ વડે ઍસિડિક બનાવો અને ઘન પોટેશિયમ નાઇટ્રાઇટ ઉમેરો. મળતા પીળા અવક્ષેપ Co²+ આયનની હાજરી નિશ્ચિત કરે છે.

સમૂહ-IV ના ધનાયનોની નિર્ણાયક કસોટીનું રસાયણવિજ્ઞાન

ચોથા સમૂહના ધનાયનો તેમના સલ્ફાઇડ તરીકે અવક્ષેપિત થાય છે. અવક્ષેપના રંગનું અવલોકન કરો. અવક્ષેપનો સફેદ રંગ ઝિંક આયનની હાજરી સૂચવે છે, માંસ જેવો (માંસવર્ણી) રંગ મૅંગેનીઝની હાજરી સૂચવે છે અને કાળો રંગ Ni²⁺ અથવા Co²⁺ ની હાજરી સૂચવે છે.

1. ઝિંક આયન (Zn²+)ની કસોટી

ઝિંક સલ્ફાઇડ હાઇડ્રૉક્લોરિક ઍસિડમાં દ્રાવ્ય થઈ ઝિંક ક્લોરાઇડ બનાવે છે.

$$ZnS \ + \ 2HCl \longrightarrow \ ZnCl_2 \ + \ H_2S$$

પ્રયોગશાળા માર્ગદર્શિકા રસાયણવિજ્ઞાન

(a) દ્રાવણમાં સોડિયમ હાઇડ્રૉક્સાઇડનું દ્રાવણ ઉમેરવાથી ઝિંક હાઇડ્રૉક્સાઇડના સફેદ અવક્ષેપ મળે છે, જે વધુ NaOHના દ્રાવણમાં ગરમ કરવાથી દ્રાવ્ય થાય છે. તે Zn^{2+} આયનની હાજરી નિશ્ચિત કરે છે.

$$ZnCl_2 + 2NaOH \longrightarrow Zn(OH)_2 + 2NaCl$$
 $Zn(OH)_2 + 2NaOH \longrightarrow Na_2ZnO_2 + 2H_2O$
સોડિયમ ઝિંકેટ

(b) જ્યારે દ્રાવશને NH_4OH ના દ્રાવશ વડે તટસ્થ કર્યા બાદ તેમાં પોટેશિયમ ફેરોસાયનાઇડનું $K_4[Fe(CN)_6]$ દ્રાવશ ઉમેરવામાં આવે છે, ત્યારે ઝિંક ફેરોસાયનાઇડના સફેદ અથવા વાદળી પડતાં સફેદ અવક્ષેપ મળે છે.

$$2ZnCl_2 + K_4[Fe(CN)_6] \longrightarrow Zn_2[Fe(CN)_6] + 4KCl$$
 િઝંક ફેરોસાયનાઇડ

2. મૅગેનીઝ આયન (Mn²+)ની કસોટી

મૅગેનીઝ સલ્ફાઇડના અવક્ષેપને મંદ HCl માં ઉકાળીને દ્રાવ્ય કરો. NaOH ના દ્રાવશને વધુ પ્રમાશમાં ઉમેરવાથી મૅગેનીઝ હાઇડ્રૉક્સાઇડના સફેદ અવક્ષેપ ઉત્પન્ન થાય છે, જે વાતાવરશીય ઑક્સિડેશન દ્વારા જળયુક્ત મૅગેનીઝ ડાયૉક્સાઇડમાં રૂપાંતર પામવાના કારશે કથ્થાઈ રંગના બને છે.

3. નિકલ આયન (Ni²+)ની કસોટી

નિકલ સલ્ફાઇડના કાળા અવક્ષેપ એકવારિજીયામાં દ્રાવ્ય થાય છે અને નીચે જ્યાવેલી પ્રક્રિયા થાય છે :

$$3NiS + 2HNO_3 + 6HCl \longrightarrow 3NiCl_2 + 2NO + 3S + 4H_2O$$
 એકવારિજીયા સાથે પ્રક્રિયા કર્યા બાદ નિકલ ક્લોરાઇડ મળે છે, જે પાણીમાં દ્રાવ્ય હોય છે. નિકલ ક્લોરાઇડના જલીય દ્રાવણને NH_4OH ઉમેરીને બેઝિક બનાવીને, તેમાં ડાયમિથાઈલ ગ્લાયોક્ઝાઇમ ઉમેરવામાં આવે, તો ચળકતા લાલ અવક્ષેપ મળે છે.

પદ્ધતિસર ગુણાત્મક પૃથક્કરણ

4. કોબાલ્ટ આયન (Co²+)ની કસોટી

નિકલ સલ્ફાઇડની જેમ કોબાલ્ટ સલ્ફાઇડ પણ એકવારિજીયામાં દ્રાવ્ય થાય છે. એકવારિજીયાની પ્રક્રિયા થયા બાદ મળતા અવશેષના જલીય દ્રાવણને એમોનિયમ હાઇ ડ્રૉક્સાઇડ વડે તટસ્થીકરણ કર્યા બાદ તેમાં પોટેશિયમ નાઇટ્રાઇટનું દ્રાવણ ઉમેરીને એસિટિક ઍસિડ વડે ઍસિડિક કરવામાં આવે, તો પોટેશિયમ હેકઝાનાઇટ્રાઇટોકોબાલ્ટેટ (III) નામના કોબાલ્ટના સંકીર્ણના પીળા અવક્ષેપ મળે છે.

$$\begin{split} \text{CoS} + \text{HNO}_3 + 3\text{HCl} &\longrightarrow \text{CoCl}_2 + \text{NOCl} + \text{S} + 2\text{H}_2\text{O} \\ \text{CoCl}_2 + 7\text{KNO}_2 + 2\text{CH}_3\text{COOH} &\longrightarrow \text{K}_3[\text{Co(NO}_2)_6] + 2\text{KCl} + 2\text{CH}_3\text{COOK} + \text{NO} + \text{H}_2\text{O} \\ &\qquad \qquad \text{પોટૅશિયમ} \\ &\qquad \qquad \text{હેક્ઝાનાઇટ્રાઇટોકોબાલ્ટેટ(III)} \\ &\qquad \qquad (પીળા અવક્ષેપ) \end{split}$$

(VI) સમૂહ-Vના ધનાયનોનું પૃથક્કરણ

જો સમૂહ- IV ગેરહાજર હોય, તો મૂળ દ્રાવશ લો અને તેમાં થોડા પ્રમાશમાં ઘન $\mathrm{NH_4Cl}$ અને વધુ પ્રમાશમાં $\mathrm{NH_4OH}$ નું દ્રાવશ ઉમેર્યા બાદ ઘન એમોનિયમ કાર્બોનેટ $(\mathrm{NH_4})_2\mathrm{CO}_3$ ઉમેરો. જો સફેદ અવક્ષેપ મળે, તો તે સમૂહ- V ના ધનાયનોની હાજરી સૂચવે છે.

સફેદ અવક્ષેપને મંદ એસિટિક ઍસિડ સાથે ઉકાળીને દ્રાવ્ય કરો અને દ્રાવશને Ba^{2+} , Sr^{2+} અને Ca^{2+} આયનોના પરીક્ષણ માટે ત્રણ ભાગમાં વહેંચો. **અવક્ષેપનો થોડો જથ્થો જયોત કસોટી માટે સાચવી રાખો.** નિર્ણાયક કસોટીઓને સંક્ષિપ્તમાં કોષ્ટક 7.16 માં દર્શાવવામાં આવી છે.

કોષ્ટક 7.16 : સમૂહ-V ના ધનાયનોની નિર્ણાયક કસોટી

	અવક્ષેપને મંદ એસિટિક ઍસિડ સાથે ઉકાળીને દ્રાવ્ય કરો અને દ્રાવણને Ba²+, Sr²+ અને Ca²+ આયનોના પરીક્ષણ માટે ત્રણ ભાગમાં વહેંચો						
	Ba ²⁺ આયન	Sr ²⁺ આયન		Ca ²⁺ આયન			
(a) (b)	પહેલા ભાગમાં પોટૅશિયમ ક્રોમેટનું દ્રાવણ ઉમેરો. પીળા અવક્ષેપ મળે છે. સાચવી રાખેલા અવક્ષેપની જ્યોત કસોટી કરો. ઘાસ જેવા લીલા	(a)	જો બેરિયમ ગેરહાજર હોય, તો દ્રાવણનો બીજો ભાગ લો અને તેમાં એમોનિયમ સલ્ફેટનું દ્રાવણ ઉમેરો. દ્રાવણને ગરમ કરો અને કસનળીની અંદરની દીવાલોને કાચના સળિયા વડે ઘસો અને ઠંડું	(a)	જો બેરિયમ અને સ્ટ્રૉન્શિયમ ગેરહાજર હોય, તો દ્રાવણનો ત્રીજો ભાગ લો. તેમાં એમોનિયમ ઑક્ઝેલેટ દ્રાવણ ઉમેરો અને બરાબર હ્લાવો. કૅલ્શિયમ ઑક્ઝેલેટના સફેદ અવક્ષેપ મળે છે.		
	રંગની જયોત મળે છે.	(b)	કરો. સફેદ અવક્ષેપ મળે છે. સાચવી રાખેલા અવક્ષેપથી જયોત કસોટી કરો. કિરમજી લાલ જયોત Sr ²⁺ આયનની હાજરી નિશ્ચિત કરે છે.	(b)	સાચવી રાખેલા અવક્ષેપથી જયોત કસોટી કરો. ઇંટ જેવા લાલ રંગની જયોત મળે છે, જેને વાદળી કાચથી જોતાં લીલાશપડતી પીળી જોવા મળે છે. આ Ca ²⁺ આયનની હાજરી નિશ્ચિત કરે છે.		

સમૂહ- Vના ધનાયનોની નિર્ણાયક કસોટીઓનું રસાયણવિજ્ઞાન

સમૂહ-Vના ધનાયનો તેમના કાર્બોનેટ તરીકે અવક્ષેપિત થાય છે, જે એસિટિક ઍસિડમાં તેમના અનુવર્તી એસિટેટ બનવાના કારણે દ્રાવ્ય થાય છે.

1. બેરિયમ આયન (Ba²+)ની કસોટી

(a) જ્યારે પાંચમા સમૂહના અવક્ષેપને એસિટિક ઍસિડમાં લઈને પોટૅશિયમ ક્રોમેટના (K_2CrO_4) દ્રાવણ સાથે પ્રક્રિયા કરતાં, બેરિયમ ક્રોમેટના પીળા અવક્ષેપ મળે છે.

BaCO₃ + 2CH₃COOH
$$\longrightarrow$$
 (CH₃COO)₂Ba + H₂O + CO₂
(CH₃COO)₂Ba + K₂CrO₄ \longrightarrow BaCrO₄ + 2CH₃COOK બેરિયમ ક્રોમેટ
(પીળા અવક્ષેપ)

(b) જયોત કસોટી: પ્લેટિનમનો તાર લો અને સાંદ્ર HCl માં ડુબાડો. તેને ત્યાં સુધી વધુ ગરમ કરો જયાં સુધી તે જયોતિહીન જયોતમાં રંગ આપવાનું બંધ કરી દે. હવે તારને સાંદ્ર HClમાં બનાવેલી અવક્ષેપની (સમૂહ-V) લુગદીમાં ડુબાડો. તેને જયોતમાં ગરમ કરો. ઘાસ જેવા લીલા રંગની જયોત Ba²⁺ આયનની હાજરી નિશ્ચિત કરે છે.

2. સ્ટ્રૉન્શિયમ આયન (Sr^{2+})ની કસોટી

(a) પાંચમા સમૂહના અવક્ષેપોનું એસિટિક ઍસિડમાં બનાવેલા દ્રાવણને એમોનિયમ સલ્ફેટના $[(NH_4)_2SO_4]$ દ્રાવણ સાથે ગરમ કરવાથી અને કસનળીની અંદરની દીવાલોને કાચના સળિયા વડે ઘસવાથી સ્ટ્રૉન્શિયમ સલ્ફેટના સફેદ અવક્ષેપ મળે છે.

$$SrCO_3 + 2CH_3COOH \longrightarrow (CH_3COO)_2Sr + H_2O + CO_2$$
 $(CH_3COO)_2Sr + (NH_4)_2SO_4 \longrightarrow SrSO_4 + 2CH_3COONH_4$
સ્ટ્રૉન્શિયમ
સલ્ફેટ
(સફેદ અવક્ષેપ)

(b) જયોત કસોટી : Ba^{2+} માં દર્શાવ્યા મુજબ જયોત કસોટી કરો. કિરમજી લાલ જયોત Sr^{2+} ની હાજરી નિશ્ચિત કરે છે.

3. કૅલ્શિયમ આયન (Ca²⁺)ની કસોટી

(a) પાંચમા સમૂહના અવક્ષેપોનું એસિટિક ઍસિડમાં બનાવેલું દ્રાવણ એમોનિયમ ઑક્ઝેલેટના દ્રાવણ સાથે પ્રક્રિયા કરી સફેદ અવક્ષેપ આપે છે.

$$CaCO_3 + 2CH_3COOH \longrightarrow (CH_3COO)_2Ca + H_2O + CO_2$$
 $(CH_3COO)_2Ca + (NH_4)_2C_2O_4 \longrightarrow (COO)_2Ca + 2CH_3COONH_4$
એમોનિયમ કૅલ્શિયમ ઑક્ઝેલેટ
ઑક્ઝેલેટ (સફેદ અવક્ષેપ)

(b) જયોત કસોટી : ઉપર જશાવ્યા મુજબ જયોત કસોટી કરો. કૅ લ્શિયમના કારણે ઇંટ જેવી લાલ જયોત મળે છે, જેને વાદળી કાચથી જોતાં લીલાશપડતી પીળી જયોત દેખાય છે.

પદ્ધતિસર ગુણાત્મક પૃથક્કરણ

(VII) સમૂહ-VI ના ધનાયનોનું પૃથક્કરણ

જો સમૂહ-V ગેરહાજર હોય તો Mg²+ આયનની નીચે દર્શાવેલી કસોટી કરો :

સમૂહ- VI ના ધનાયનોની નિર્ણાયક કસોટીનું રસાયણિવજ્ઞાન $ilde{\mathsf{H}}^{\mathsf{o}}$ નેશિયમ આયનની ($\mathbf{M}\mathbf{g}^{2+}$) કસોટી

(a) જો સમૂહ-V ગેરહાજર હોય, તો દ્રાવણમાં મૅગ્નેશિયમ કાર્બોનેટ હોઈ શકે છે, જે એમોનિયમ ક્ષારની હાજરીમાં પાણીમાં દ્રાવ્ય હોય છે, કારણ કે સંતુલન જમણી તરફ સ્થાનાંતર પામે છે.

$$NH_4^+ + CO_3^{2-} \rightleftharpoons NH_3^- + HCO_3^-$$

અવક્ષેપ ઉત્પન્ન કરવા માટે કાર્બોનેટ આયનોની જરૂરી સાંદ્રતા પ્રાપ્ત થતી નથી. જયારે ડાયસોડિયમ હાઇડ્રોજન ફૉ સ્ફેટનું દ્રાવણ ઉમેરવામાં આવે છે અને કસનળીની અંદરની દીવાલને કાચના સળિયા વડે ઘસવામાં આવે છે ત્યારે મૅગ્નેશિયમ એમોનિયમ ફૉસ્ફેટના સફેદ અવક્ષેપ મળે છે, જે Mg²+ આયનની હાજરી સૂચવે છે.

 $Mg^{2+} + Na_2HPO_4 \rightarrow Mg (NH_4)PO_4 + NH_4OH + 2Na^+ + H_2O$

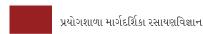
મૅગ્નેશિયમ એમોનિયમ

इास्डेट (सड़ेह अवक्षेप)

ગુણાત્મક પૃથક્કરણનાં અવલોકનો અને અનુમાનોને પછીનાં પાનાઓમાં પ્રશ્નોની યાદી પછી દર્શાવેલા નમૂનાની નોંધ (specimen record) મુજબ કોષ્ટક સ્વરૂપે નોંધો.

નોંધ :

કેટલીક વાર મૅગ્ને શિયમ એમોનિયમ ફૉસ્ફેટના અવક્ષેપ થોડા સમય બાદ જોવા મળે છે. તેથી સોડિયમ હાઇડ્રોજન ફૉસ્ફેટનું દ્રાવણ ઉમેર્યા બાદ દ્રાવણને ગરમ કરો અને કસનળીની અંદરની દીવાલને ઘસો.


સાવચેતીઓ :

- (a) રસાયણવિજ્ઞાનની પ્રયોગશાળામાં કામ કરતી વખતે હંમેશાં એપ્રોન, આંખ રક્ષક તરીકે ચ-માં અને હાથના મોજાંનો ઉપયોગ કરો.
- (b) કોઈ પણ પ્રક્રિયક કે રસાયણનો ઉપયોગ કરતા પહેલાં બોટલ પરના લેબલને કાળજીપૂર્વક વાંચો. લેબલ વિનાના પ્રક્રિયકનો ઉપયોગ કરવો નહિ.
- (c) રસાયણો અને પ્રક્રિયકોને બિનજરૂરી રીતે મિશ્ર ન કરો. કોઈ પણ રસાયણનો સ્વાદ ચાખશો નહિ.
- (d) રસાયણો કે બાષ્યને સૂંઘતી વખતે સાવચેતી રાખો. બાષ્યને હંમેશાં હાથ વડે પવન નાંખીને ધીમેથી તમારા નાક સુધી પહોંચાડો (આકૃતિ 7.9).
- (e) સોડિયમ ધાતુને પાણીમાં નાંખશો નહિ કે સિંક અથવા કચરાપેટીમાં ફેંકશો નહિ.
- (f) મંદન માટે હંમેશાં પાણીમાં ઍસિડ ઉમેરો. ઍસિડમાં પાણી નહિ.
- (g) જ્યારે કસનળીને ગરમ કરો, ત્યારે સાવચેતી રાખો. ગરમ કરતી વખતે કે પ્રક્રિયક ઉમેરતી વખતે, કસનળીનું મુખ તમારી કે તમારા પડોશી તરફ રાખવું જોઈએ નહિ.
- (h) વિસ્ફોટક સંયોજનો, જ્વલનશીલ પદાર્થો, ઝેરી વાયુઓ, વિદ્યુત

આકૃતિ 7.9 : વાયુને કેવી રીતે સૂંઘવો

81

ઉપકરણો, કાચનાં પાત્રો, જ્યોત અને ગરમ પદાર્થીનો ઉપયોગ કરતી વખતે સાવચેતી રાખો.

- તમારા કાર્યસ્થળને સાફ રાખો. કાગળ અને કાચને સિંકમાં નાખશો નહિ. તે માટે હંમેશાં કચરાપેટીનો ઉપયોગ કરો.
- 🍗 (j) 🔻 પ્રયોગશાળાનું કાર્ય પૂર્શ થયા બાદ હંમેશાં તમારા હાથ ધુઓ.
 - હંમેશાં પ્રક્રિયકના ઓછામાં ઓછા જથ્થાનો ઉપયોગ કરો. પ્રક્રિયકનો વધુ ઉપયોગ માત્ર રસાયણોનો બગાડ જ નહિ પણ પર્યાવરણને નુકસાન પણ પહોંચાડે છે.

ચર્ચાત્મક પ્રશ્નો ઃ

- (i) ગુણાત્મક અને જથ્થાત્મક પૃથક્કરણ વચ્ચે શું તફાવત છે ?
- (ii) શું આપણે જ્યોત કસોટી કરવા માટે પ્લેટિનમ તારના બદલે કાચનો સળિયો વાપરી શકીએ ? તમારો ઉત્તર સમજાવો.
- (iii) જ્યોત કસોટી માટે અન્ય ધાતુઓની સાપેક્ષે પ્લેટિનમ ધાતુને શા માટે અગ્રિમતા આપવામાં આવે છે ?
- (iv) મંદ H₂SO₄ ની મદદથી પારખી શકાતા હોય, તેવા ઋણાયનોનાં નામ જણાવો.
- (v) ઋણાયનોની કસોટી માટે મંદ HCl ની સાપેક્ષે મંદ H_2SO_4 ને શા માટે અગ્રિમતા આપવામાં આવે છે ?
- (vi) સાંદ્ર H₂SO₄ વડે પારખી શકાતા ૠશાયનોનાં નામ લખો.
- (vii) સોડિયમ કાર્બોનેટ નિષ્કર્ષ કેવી રીતે તૈયાર કરવામાં આવે છે ?
- (viii) ચૂનાનું પાણી એટલે શું ? તેમાં કાર્બન ડાયૉક્સાઇડ વાયુ પસાર કરવાથી શું થાય છે ?
- (ix) કાર્બન ડાયૉક્સાઇડ અને સલ્ફર ડાયૉક્સાઇડ બંને વાયુઓ ચૂનાના પાણીને દૂધિયું બનાવે છે. તમે તે બંને વચ્ચેનો ભેદ કેવી રીતે પારખશો ?
- (x) તમે કાર્બોનેટ આયનની હાજરીની કસોટી કેવી રીતે કરશો ?
- (xi) નાઇટ્રેટ માટેની વીંટી કસોટીમાં બે સ્તરોના સંગમ સ્થાને રચાતી ઘેરા કથ્થાઈ રંગની વીંટીનું સંઘટન (composition) શું હોય છે ?
- (xii) સોડિયમ નાઇટ્રૉપ્રુસાઇડ કસોટી દ્વારા નિશ્ચિત થતા આયનના (મૂલક) નામ જ્ણાવો.
- (xiii) ક્રોમાઇલ ક્લોરાઇડ કસોટી એટલે શું ? તમે CrO₂Cl₂ ના ઍસિડિક સ્વભાવનું વાજબીપણું કેવી રીતે નક્કી કરશો ?
- (xiv) 👤 બ્રોમાઇડ અને આયોડાઇડ ક્રોમાઇલ ક્લોરાઇડ જેવી કસોટીઓ શા માટે નથી આપતા ?
- (xv) બ્રોમાઇડ અને આયોડાઇડ આયનો માટેની સ્તર કસોટી વર્ણવો.

પદ્ધતિસર ગુણાત્મક પૃથક્કરણ સિલ્વર નાઇટ્રેટના દ્રાવશને શા માટે ઘેરા રંગની બોટલમાં ભરવામાં આવે છે ? (xvi) સલ્ફાઇડ આયનની હાજરી પારખવા માટે તમે કઈ કસોટી કરશો ? (xvii) આયોડિન સ્ટાર્ચના દ્રાવણ સાથે શા માટે વાદળી રંગ આપે છે ? (xviii) નેસ્લર પ્રક્રિયક એટલે શું ? (xix) ધનાયનો માટેનું મૂળ દ્રાવણ શા માટે સાંદ્ર HNO, અથવા H,SO, માં બનાવવામાં આવતું નથી ? (xx)પ્રથમ સમૂહના ધનાયનોના અવક્ષેપન માટે સમૂહ પ્રક્રિયક તરીકે મંદ HCl ના બદલે સાંદ્ર HCl નો ઉપયોગ શા માટે કરી શકાતો (xxi) નથી ? દ્વિતીય સમૂહની સાથે સમૂહ- IV નાં આયનોનું (મૂલક) અવક્ષેપન કેવી રીતે રોકી શકાય છે ? (xxii) સમૂહ-III નાં આયનોના (મૂલક) અવક્ષેપન અગાઉ દ્રાવણમાંથી શા માટે H₂S વાયુને ઉકાળીને દૂર કરવામાં આવે છે ? (xxiii) સમૂહ-III ના અવક્ષેપન અગાઉ દ્રાવણને શા માટે સાંદ્ર નાઇટ્રિક ઍસિડ સાથે ગરમ કરવામાં આવે છે ? (xxiv) શું સમૂહ-III માં આપણે એમોનિયમ ક્લોરાઇડના સ્થાને એમોનિયમ સલ્ફેટ વાપરી શકીએ ? (xxv) સમૂહ-V ના ધનાયનોનું અવક્ષેપન કરવા માટે (NH₂),CO₃ નું દ્રાવણ ઉમેરતાં અગાઉ શા માટે NH₂OH ઉમેરવામાં (xxvi) આવે છે ? કયારેક-ક્યારેક ક્ષારમાં $\mathrm{Mg^{2+}}$ ન હોવા છતાં સમૂહ- VI માં સફેદ અવક્ષેપ શા માટે જોવા મળે છે ?(xxvii) એકવાયરિજીયા(અમ્લરાજ) એટલે શું ? (xxviii) એવા એક ધનાયનનું નામ જ્યાવો જે ધાતુમાંથી મેળવવામાં આવતું નથી. (xxix) એમોનિયમ આયનની હાજરીની કસોટી તમે કેવી રીતે કરશો ? (xxx) સમૂહ-V નાં આયનોની (મૂલક) કસોટીમાં શા માટે Ba^{2+} , Sr^{2+} અને Ca^{2+} ના ક્રમમાં કરવામાં આવે છે ? (xxxi) બોટલમાં રાખેલો સાંદ્ર HNO, શા માટે પીળો થઈ જાય છે ? (xxxii) સમૂહ-V ની કસોટી કરતાં અગાઉ દ્રાવણને શા માટે સંકેન્દ્રિત કરવું જોઈએ ? (xxxiii) સોડિયમ હાઇડ્રૉક્સાઇડ દ્રાવણની પ્રક્રિયક બોટલને શા માટે બંધ કરવામાં આવતી નથી ? (xxxiv) સમાન આયન અસર અંગે તમારી સમજ શું છે ? (xxxv) સમૂહ-II માં ઝિંક સલ્ફાઇડ શા માટે અવક્ષેપિત થતો નથી ? (xxxvi)

પ્રયોગશાળા માર્ગદર્શિકા રસાયણવિજ્ઞાન

ક્ષારના પૃથક્કરણ માટે નમૂનાની નોંધ

હેતુ :

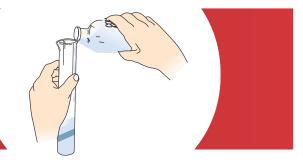
આપેલા ક્ષારમાં રહેલા એક ધનાયન અને એક ઋણાયનને જાણવા માટે પૃથક્કરણ કરવું.

જરૂરી સામગ્રી :

• ઉત્કલન નળીઓ, કસનળીઓ, કસનળી હોલ્ડર, કસનળી સ્ટૅન્ડ, નિકાસ નળી, કોર્ક, ગાળણપત્ર, પ્રક્રિયકો

અનુક્રમ	પ્રયોગ	અવલોકન	અનુમાન
1.	આપેલા ક્ષારનો રંગ નોંધ્યો.	સફેદ	Cu ²⁺ , Fe ²⁺ , Ni ²⁺ , Co ²⁺ , Mn ²⁺ ગેરહાજર છે.
2.	ક્ષારની વાસ નોંધી.	કોઈ વિશિષ્ટ વાસ નથી.	S²-, SO ₃²-, CH₃COO- ગેરહાજર હોઈ શકે છે.
3.	0.5 g ક્ષારને શુષ્ક કસનળીમાં ગરમ કર્યો અને ઉત્પન્ન થતાં વાયુનો રંગ નોંધ્યો તથા અવશેષના રંગને ગરમ અને ઠંડી સ્થિતિમાં નોંધ્યો.	(i) કોઈ વાયુ નીકળ્યો નહિ. (ii) ગરમ અને ઠંડી સ્થિતિમાં અવશેષના રંગમાં કોઈ ફેરફાર જોવા મળ્યો નથી.	(i) CO ₃ ^{2−} હાજર હોઈ શકે છે. NO ₃ [−] , NO ₂ [−] , Br [−] ગેરહાજર હોઈ શકે છે. (ii) Zn ²⁺ ગેરહાજર હોઈ શકે છે.
4.	ક્ષારની સાંદ્ર HCl સાથે લુગદી બનાવી અને જ્યોત કસોટી કરી.	જ્યોતમાં કોઈ વિશેષ રંગ જોવા મળ્યો નહિ.	Ca ²⁺ , Sr ²⁺ , Ba ²⁺ , Cu ²⁺ ગેરહાજર હોઈ શકે છે.
5.	ક્ષારનો રંગ સફેદ હોવાથી બોરેક્સ મણકા કસોટી કરી નહિ.	-	-
6.	$0.1 { m g}$ ક્ષારને $1 { m mL}$ મંદ ${ m H_2SO_4}$ સાથે ગરમ કર્યો.	ઊભરા જોવા મળતા નથી અને કોઈ બાષ્પ નીકળી નહિ.	CO ₃ ²⁻ , SO ₃ ²⁻ ,S ²⁻ ,NO ₂ ² CH ₃ COO ⁻ ગેરહ્યજર
7.	$0.1~{ m g}$ ક્ષારને $1~{ m mL}$ સાંદ્ર ${ m H_{2}SO_{4}}$ સાથે ગરમ કર્યો.	કોઈ વાયુ ઉત્પન્ન થયો નહિ.	Cl ⁻ , Br ⁻ , I ⁻ , NO ₃ ⁻ , C ₂ O ₄ ²⁻ ગેરહાજર
8.	1 mL ક્ષારના જ્લીય દ્રાવણને સાંદ્ર HNO ₃ વડે ઍસિડિક કર્યું. આ મિશ્રણને ગરમ કરી તેમાં એમોનિયમ મોલિબ્ડેટ દ્રાવણનાં 4 - 5 ટીપાં ઉમેર્યાં.	પીળા અવક્ષેપ પ્રાપ્ત થયા નહિ.	PO ₄ ³⁻ ગેરહાજર

પદ્ધતિસર ગુણાત્મક પૃથક્કરણ


9.	ક્ષારના જળનિષ્કર્ષને મંદ HCl વડે ઍસિડિક બનાવી તેમાં 2mL BaCl ₂ નું દ્રાવણ ઉમેર્યું.	સફેદ અવક્ષેપ મળ્યા જે સાંદ્ર HNO ₃ અને સાંદ્ર HCl માં અદ્રાવ્ય રહે છે.	SO ₄ ²⁻ હાજ
10.	0.1 g ક્ષારને 2 mL NaOH ના દ્રાવણ સાથે ગરમ કરો.	એમોનિયા વાયુ ઉત્પન્ન થયો નહિ.	NH ₄ ગેરહ્યજર
11.	1 g ક્ષારને 20 mL પાણીમાં દ્રાવ્ય કરી મૂળ દ્રાવણ બનાવ્યું.	પારદર્શક દ્રાવણ બન્યું.	પાણીમાં દ્રાવ્ય ક્ષાર હાજર
12.	ઉપરના ક્ષારના થોડા દ્રાવણમાં 2 mL મંદ HCl ઉમેર્યું.	સફેદ અવક્ષેપ ઉત્પન્ન થયા નહિ.	સમૂહ-I ગેરહાજર
13.	તબક્કા- 12 ના દ્રાવણના એક ભાગમાં $ m H_2S$ વાયુ પસાર કર્યો.	અવક્ષેપ ઉત્પન્ન થયા નહિ.	સમૂહ-II ગેરહાજર
14.	ક્ષાર સફેદ છે તેથી તેને સાંદ્ર HNO ₃ સાથે ગરમ કરવાની જરૂર નથી. તબક્કા-12 ના દ્રાવણમાં 0.2 g ઘન એમોનિયમ ક્લોરાઇડ ઉમેર્યા બાદ, વધુ પ્રમાણમાં એમોનિયમ હાઇડ્રૉકસાઇડનું દ્રાવણ ઉમેર્યું.	કોઈ અવક્ષેપ ઉત્પન્ન થતા નથી.	સમૂહ-III ગેરહાજર
15.	ઉપરના દ્રાવશમાં $\mathrm{H_{2}S}$ વાયુ પસાર કર્યો.	કોઈ અવક્ષેપ ઉત્પન્ન થતા નથી.	સમૂહ-IV ગેરહાજર
16.	મૂળ દ્રાવણમાં વધુ પ્રમાણમાં એમોનિયમ હાઇડ્રૉકસાઈડ ઉમેર્યા બાદ તેમાં 0.5 g એમોનિયમ કાર્બોનેટ ઉમેર્યો.	અવક્ષેપ ઉત્પન્ન થતા નથી.	સમૂહ-V ગેરહાજર
17.	ક્ષારના મૂળ દ્રાવણમાં એમોનિયમ હાઇડ્રૉક્સાઇડનું દ્રાવણ ઉમેરી તેમાં ડાયસોડિયમ હાઇડ્રૉજન ફૉસ્ફેટનું દ્રાવણ ઉમેર્યું, ગરમ કર્યુ અને કસનળીની અંદરની દીવાલને ઘસી.	સફેદ અવક્ષેપ	Mg ²⁺ નિશ્ચિત હાજર

પરિણામ :

આપેલા ક્ષારમાં નીચે દર્શાવેલા આયનો હાજર છે:

ઋણાયન $: SO_4^{2-}$ ધનાયન $: Mg^{2+}$

એકમ 8 કાર્બનિક સંયોજનોમાં ક્રિયાશીલ સમૂહો માટેની કસોટીઓ (Tests for Functional Groups in Organic Compounds)

પ્રયોગ 8.1

હેતુ :

કાર્બનિક સંયોજનમાં હાજર ક્રિયાશીલ સમૂહોની પરખ કરવી.

1. અસંતૃપ્તતા માટેની કસોટીઓ

સિદ્ધાંત :

> C = C < અને / અથવા $-C \equiv C -$ બંધ ધરાવતા કાર્બનિક સંયોજનોને અસંતૃપ્ત સંયોજનો કહે છે. આ સંયોજનો બ્રોમિનજળ અથવા બ્રોમિનનું કાર્બન ટેટ્રાક્લોરાઈડ, ક્લૉરોફૉર્મ અથવા ગ્લેસિઅલ એસિટિક ઍસિડમાં બનાવેલ દ્રાવશ સાથે યોગશીલ પ્રક્રિયા અનુભવે છે. આલ્કીન સંયોજનમાં બ્રોમિનના ઉમેરશથી વિસિનલ બ્રોમાઇડ બને છે. આલ્કીન સંયોજનની બ્રોમિનના કાર્બન ટેટ્રાક્લોરાઇડમાં બનાવેલા દ્રાવશ સાથે પ્રક્રિયા થવાથી બ્રોમિનના દ્રાવશનો લાલાશપડતો નારંગી રંગ અદૃશ્ય થાય છે. આ પ્રક્રિયા નીચે મુજબ છે :

આલ્કીન સંયોજનો તટસ્થ / બેઝિક $\mathrm{KMnO_4}$ ના દ્રાવણનો રંગ દૂર કરે છે અને વિસિનલ ગ્લાયકોલ સંયોજનો બનાવે છે (બેયર કસોટી). આ પ્રક્રિયા નીચે મુજબ થાય છે :

$$\begin{array}{c} \text{OH} \\ | \\ 3\text{CH}_2 = \text{CH}_2 + 4\text{H}_2\text{O} + 2\text{MnO}_4^- \longrightarrow 3 \text{ CH}_2 - \text{CH}_2 + 2\text{OH}^- + 2\text{MnO}_2 \\ & \text{(જાંબુડિયો રંગ)} \\ & \text{OH} \end{array}$$

ઉપરની બંને પ્રક્રિયાઓ અસંતૃપ્તતા માટેની કસોટીઓ તરીકે ઉપયોગમાં લેવાય છે.

કાર્બનિક સંયોજનોમાં ક્રિયાશીલ સમૂહો માટેની કસોટીઓ

જરૂરી સામગ્રી:

કસનળીઓ કસનળી હોલ્ડર : એક

પોટૅશિયમ હાઇડ્રૉક્સાઈડનું દ્રાવણ

કાર્બન ટેટ્રાક્લોરાઇડ / ક્લૉરોફૉર્મ

• બ્રોમિનજળ / બ્રોમિનનું CCl₄

અથવા ક્લૉરોફૉર્મમાં દ્રાવશ

• પોટૅશિયમ પરમૅગેનેટનું દ્રાવશ : જરૂરિયાત મુજબ જે સંયોજનની કસોટી કરવાની છે તે

: જરૂરિયાત મુજબ

: 1-2 mL

: 2 mL

: 2 mL

પદ્ધતિ :

A. બ્રોમિન જળ કસોટી

એક કસનળીમાં 2 mL કાર્બન ટેટ્રાક્લોરાઇડમાં 0.1 g અથવા 5 ટીપાં કાર્બનિક સંયોજનના ઓગાળો અને તેમાં કાર્બન ટેટ્રાક્લોરાઇડમાં બનાવેલ 2 % બ્રોમિનનું દ્રાવણ અથવા બ્રોમિનજળ ટીપે-ટીપે સતત હલાવતા રહી ઉમેરો. બ્રોમિન જળનું રંગવિહીન બનવું તે કાર્બનિક સંયોજનમાં અસંતૃપ્તતાની હાજરીનું સૂચન કરે છે.

B. બેયર કસોટી

2 mL પાણી અથવા એસિટોનમાં (આલ્કોહૉલ મુક્ત) 25-30 mg કાર્બનિક પદાર્થ ઓગાળો અને તેમાં 1 % સોડિયમ કાર્બોનેટના દ્રાવણના સમાન કદ ધરાવતા 1 % પોટૅશિયમ પરમૅંગેનેટના દ્રાવણને ઉમેરો. પોટૅશિયમ પરમૅંગેનેટના દ્રાવણના એકથી વધુ ટીપાંના રંગ દૂર થવા તે કાર્બનિક સંયોજનમાં અસંતૃપ્તતાની હાજરી સૂચવે છે. બેઝિક પરિસ્થિતિમાં થતી આ પ્રક્રિયા એરોમેટિક સંયોજનોમાં વિસ્થાપનને કારણે થતી મુંઝવણની સંભાવના દ્ર કરે છે.

નોંધઃ (i) જ્યારે ઉપર દર્શાવેલી બંને કસોટીઓ હકારાત્મક પરિણામ આપે ત્યારે જ કાર્બનિક સંયોજનમાં અસંતૃપ્તતા નિશ્ચિત થાય છે.

(ii) પ્રક્રિયા કરવા માટે કાર્બનિક સંયોજનને વ્રાવ્ય કરવા CCl,ના સ્થાને અન્ય કોઈ પણ દ્રાવક જેવા કે CHCl ્ર/ડાયૉકઝેન અને પાણી પણ ઉપયોગમાં લઈ શકાય છે.

પોટૅશિયમ હાઇડ્રૉક્સાઇડ

સાવચેતીઓ :

- (a) આ કસોટીઓ ઓરડાના તાપમાને કરવી જોઈએ.
- (b) બ્રોમિન દ્રાવણને કાળજીપૂર્વક લેવું. તેની બાષ્ય શાસમાં ન લેવી અને ચામડી સાથે તેનો સંપર્ક ન થવા દેવો.

પ્રયોગશાળા માર્ગદર્શિકા રસાયણવિજ્ઞાન

II. આલ્કોહૉલિય (R–OH) સમૂહની કસોટી

સિદ્ધાંત:

આલ્કોહૉલિય સંયોજનોની સિરિક એમોનિયમ નાઇટ્રેટ સાથેની પ્રક્રિયાથી સંકીર્ણ બનવાના કારણે લાલ રંગ આપે છે.

$$(NH_4)_2[Ce(NO_3)_6] + 3ROH \longrightarrow [Ce(NO_3)_4 (ROH)_3] + 2NH_4NO_3$$
 સિરિક એમોનિયમ લાલ સંકીર્ણ નાઇટ્રેટ

આયોડોફોર્મ કસોટી અને લુકાસ કસોટીના આધારે પ્રાથમિક, દ્વિતીયક અને તૃતીયક આલ્કોહૉલ સંયોજનોને અલગ પારખી શકાય છે.

ઇથેનોલ અને દ્વિતીયક આલ્કોહૉલ સંયોજનો કે જે CH₃ – CH(OH) R સમૂહ (આયોડોફોર્મ પ્રક્રિયા) ધરાવે છે તે આયોડોફોર્મ કસોટી આપે છે. પ્રક્રિયા કરવા માટે સંયોજનમાં સોડિયમ હાઇડ્રૉક્સાઇડ દ્રાવણની હાજરીમાં પોટૅશિયમ આયોડાઇડ અને સોડિયમ હાઇપોક્લોરાઇટ ઉમેરવામાં આવે છે. સોડિયમ હાઇપોક્લોરાઇટ પ્રથમ પોટૅશિયમ આયોડાઇડનું પોટૅશિયમ હાઈપોઆયોડાઇટમાં ઑક્સિડેશન કરે છે, જે CH₃–CH(OH)R સમૂહનું CH₃COR સમૂહમાં ઑક્સિડેશન કરે છે અને ત્યાર બાદ પ્રક્રિયા મિશ્રણના બેઝિક માધ્યમમાં કાર્બોનિલ કાર્બનને સંલગ્ન કાર્બન પરમાણુ સાથે જોડાયેલા α-હાઇડ્રૉજન પરમાણુનું વિસ્થાપન આયોડિન દ્વારા થઈને આયોડિનેશન થાય છે. C–C બંધ તુટ્યા બાદ આયાડોફોર્મ બને છે.

$$CH_{3}CH_{2}OH \xrightarrow{\text{ulikuah eighl onivalsib2}} CH_{3}CHO \xrightarrow{\text{ulikuah eighl onivalsib2}} CI_{3}CHO \xrightarrow{\text{NaOH}} CHI_{3} + HCOONa$$

લુકાસ કસોટી

લુકાસ પ્રક્રિયક ઝિંક ક્લોરાઇડ અને સાંદ્ર હાઇડ્રૉક્લોરિક ઍસિડ ધરાવે છે. આ પ્રક્રિયક પ્રાથમિક, દ્વિતીયક, તૃતીયક આલ્કોહૉલ સંયોજનો સાથે જુદા-જુદા વેગથી પ્રક્રિયા કરે છે. તૃતીયક આલ્કોહૉલ સંયોજનો લગભગ ત્વરિત પ્રક્રિયા આપે છે, દ્વિતીયક આલ્કોહૉલ સંયોજનો આશરે 1-5 મિનિટમાં પ્રક્રિયા આપે છે અને પ્રાથમિક આલ્કોહૉલ સંયોજનો અતિ ધીમે પ્રક્રિયા આપે છે. આ પ્રક્રિયા 10 મિનિટથી માંડીને કેટલાક દિવસો લઈ શકે છે.

RCH₂OH + HCl
$$\xrightarrow{ZnCl_2}$$
 પ્રક્રિયા થતી નથી / ધીમી પ્રક્રિયા
$$R_2CHOH + HCl\xrightarrow{ZnCl_2} R_2CHCl + H_2O$$

$$R_3COH + HCl\xrightarrow{ZnCl_2} R_3CCl + H_2O$$

આલ્કોહૉલ સંયોજનો લુકાસ પ્રક્રિયકમાં દ્રાવ્ય થાય છે પરંતુ બનેલા આલ્કાઈલ હેલાઇડ સંયોજનો દ્રાવ્ય હોતાં નથી. તેથી પ્રક્રિયા માધ્યમમાં બે સ્તરોનું બનવું, પ્રક્રિયા થયાનું સૂચવે છે.


પ્રાથમિક આલ્કોહૉલ સંયોજનો - સ્તરો અલગ પડતા નથી.

દ્વિતીયક આલ્કોહૉલ સંયોજનો - 1-5 મિનિટમાં સ્તરો અલગ પડે છે.

તૃતીયક આલ્કોહૉલ સંયોજનો - સ્તરો ત્વરિત અલગ પડે છે.

કાર્બનિક સંયોજનોમાં ક્રિયાશીલ સમૂહો માટેની કસોટીઓ

જરૂરી સામગ્રી:

• કસનળી હોલ્ડર

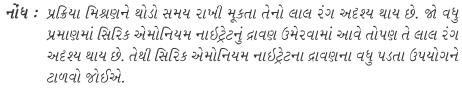
• કસનળીઓ ઃ જરૂરિયાત મુજબ

: એક

• સિરિક એમોનિયમ નાઇટ્રેટ દ્રાવણ : જરૂરિયાત મુજબ

• સોડિયમ હાઇડ્રૉક્સાઇડ : જરૂરિયાત મુજબ

• આયોડિન દ્રાવણ : જરૂરિયાત મુજબ


• લુકાસ પ્રક્રિયક : જરૂરિયાત મુજબ

• ડાયૉક્ઝેન : જરૂરિયાત મુજબ

પદ્ધતિ :

A. સિરિક એમોનિયમ નાઇટ્રેટ કસોટી

1 mL કાર્બનિક પદાર્થ લઈ તેને યોગ્ય દ્રાવકમાં દ્રાવ્ય કરો. તેમાં સિરિક એમોનિયમ નાઇટ્રેટ દ્રાવણનાં થોડાં ટીપાં ઉમેરો. દશ્યમાન થતો લાલ રંગ આલ્કોહૉલિય –OH સમૂહની હાજરી દર્શાવે છે.

B. આયોડોફોર્મ કસોટી

પ્રથમ પદ્ધતિ :

કસનળીમાં 0.2 mL સંયોજન લો, તેમાં 10 % જલીય KI દ્રાવશના 10 mL અને તાજા બનાવેલા NaOCl દ્રાવશના 10 mL ઉમેરો. થોડુંક ગરમ કરો, આયોડોફોર્મના પીળા સ્ફટિકો અલગ પડશે.

બીજી પદ્ધતિ :

સંયોજનના 0.1 g અથવા 4 થી 5 ટીપાંને 2 mL પાણીમાં દ્રાવ્ય કરો. જો સંયોજન દ્રાવ્ય ન થાય તો દ્રાવણ સમાંગી બને ત્યાં સુધી તેમાં ટીપે-ટીપે ડાયૉક્ઝેન ઉમેરો. તેમાં 2 mL 5 % સોડિયમ હાઇડ્રૉક્સાઇડનું દ્રાવણ ઉમેરો ત્યાર બાદ આયોડિનનો નિશ્ચિત ઘેરો રંગ આવે ત્યાં સુધી દ્રાવણને સતત હલાવતા રહી તેમાં ટીપે-ટીપે પોટૅશિયમ આયોડાઇડ-આયોડિન પ્રક્રિયક* ઉમેરો. આ પ્રક્રિયકોને 2-3 મિનિટ માટે ઓરડાના તાપમાને રાખી મૂકો. જો આયોડોફોર્મ અલગ ન પડે તો પ્રક્રિયા મિશ્રણને જળઉષ્મક પર 60 °C તાપમાને ગરમ કરો. તેમાં પોટૅશિયમ આયોડાઇડ-આયોડિન પ્રક્રિયકના વધુ ટીપાં ઉમેરો. જો આયોડિનનો રંગ દૂર થાય તો પ્રક્રિયકને ત્યાં સુધી ઉમેરતા રહો કે જયાં સુધી દ્રાવણને 60 °C પર બે મિનિટ સુધી ગરમ કર્યા બાદ પણ આયોડિનનો રંગ ટકી રહે. વધારાના આયોડિનને દૂર કરવા માટે તેમાં દ્રાવણને હલાવતા જઈ સોડિયમ હાઇડ્રૉક્સાઇડનાં થોડાં ટીપાં ઉમેરો. મિશ્રણને સમાન કદના પાણી વડે મંદ કરો અને તેને 10-15 મિનિટ માટે ઓરડાના તાપમાને રહેવા દો. જો કસોટી હકારાત્મક રીતે થાય તો આયોડોફોર્મના પીળા અવક્ષેપ મળે છે.

^{* 100} mL પાણીમાં 20 g પોટૅશિયમ આયોડાઇડ અને 10 g આયોડિનને દ્રાવ્ય કરીને પોટૅશિયમ આયોડાઇડ - આયોડિન પ્રક્રિયક બનાવાય છે.

C. લુકાસ કસોટી

એક કસનળીમાં 1 mL સંયોજન લો. 10 mL લુકાસ પ્રક્રિયક ઉમેરો. વધુ હલાવો અને બે જુદા સ્તરોને અલગ થવા માટેનો સમય નોંધો.

નોંધ: લુકાસ કસોટી માત્ર એવાં આલ્કોહૉલ સંયોજનોને લાગુ પડે છે જે પ્રક્રિયકમાં દ્રાવ્ય હોય છે કારણ કે આ કસોટી આલ્કાઇલ હેલાઇડ સંયોજનોના અલગ સ્તર તરીકેના અલગીકરણ પર આધારિત હોય છે.

III. ફિનોલિક (Ar – OH) સમૂહ

સિદ્ધાંત :

ઍરોમેટિક વલયના કાર્બન સાથે સીધે સીધા જોડાયેલા –OH સમૂહને ફિનોલિક – OH સમૂહ કહે છે. ફિનોલ સંયોજનો નિર્બળ ઍસિડ છે, તેથી તેઓ NaOHના દ્રાવણમાં દ્રાવ્ય થાય છે, પરંતુ તેઓ એટલા પૂરતા ઍસિડિક નથી હોતા કે સોડિયમ હાઇડ્રૉજન કાર્બોનેટમાં દ્રાવ્ય થઈ શકે. ફિનોલ સંયોજનો તટસ્થ ફેરિક ક્લૉરાઇડ દ્રાવણ સાથે રંગીન સંકીર્ણ બનાવે છે. ઉદાહરણ તરીકે, ફિનોલ નીચે દર્શાવ્યા મુજબ જાંબલી રંગનો સંકીર્ણ બનાવે છે:

$$6C_6H_5OH + FeCl_3 \longrightarrow [Fe(C_6H_5O)_6]^{3-} + 3HCl + 3H^+$$

જાંબલી સંક્રીર્ણ

રિસોર્સિનોલ, o–, m– અને p– ક્રેસોલ જાંબલી અથવા વાદળી રંગ આપે છે, કેટેચોલ લીલો રંગ આપે છે જે ઝડપથી ઘેરો બને છે. 1 અને 2 - નેપ્થોલ સંયોજનો લાક્ષણિક રંગો આપતાં નથી. ફ્રિનોલ સાંદ્ર H_2SO_4 ની હાજરીમાં પ્યેલિક એનહાઇડ્રાઇડ સાથે સંઘનિત થઈને ફ્રિનોલ્ફ્થેલીન બનાવે છે, જે NaOHના દ્રાવણ સાથે ઘેરો ગુલાબી રંગ આપે છે. આને પ્યેલીન રંગક કસોટી કહે છે.


90

કાર્બનિક સંયોજનોમાં ક્રિયાશીલ સમૂહો માટેની કસોટીઓ

1	સંયોજન	રંગ	સંયોજન	રંગ
	o – ક્રેસોલ m – ક્રેસોલ	લાલ વાદળી પડતો જાંબુડિયો	કેટેચોલ	સામાન્ય રીતે વાદળી રંગ જે દશ્યમાન થવામાં વધુ સમય લે છે.
	<i>p</i> − ક્રેસોલ	રંગવિહીન	રિસોર્સિનોલ	ફ્લોરેસિનનો પ્રતિદિપ્ત લીલો (Green Fluorescent) રંગ

જરૂરી સામગ્રી:

કસનળી હોલ્ડર

કસનળીઓ

: એક

: જરૂરિયાત મુજબ

- વાદળી લિટમસ પત્ર
- ફેરિક ક્લોરાઇડ દ્રાવણ
 - સાંદ્ર સલ્ફ્ચરિક ઍસિડ
- સોડિયમ હાઇડ્રૉક્સાઇડ
- પ્થેલિક એનહાઇડ્રાઇડ
- ફ્રિનોલિક –OH સમૂહ ધરાવતું કાર્બનિક સંયોજન -

: જરૂરિયાત મુજબ

પદ્ધતિ :

A. કેરિક ક્લોરાઇડ કસોટી

કાર્બનિક સંયોજનના 2 mL જલીય અથવા આલ્કોહૉલિય દ્રાવણને કસનળીમાં લો, તેમાં ટીપે-ટીપે તટસ્થ ફેરિક ક્લોરાઇડનું દ્રાવણ ઉમેરો અને રંગનો ફેરફાર નોંધો. દશ્યમાન થતો વાદળી, લીલો, જાંબલી અથવા લાલ રંગ ફિનોલિક –OH સમૂહની હાજરી સૂચવે છે.

B. પ્થેલીન રંગક કસોટી

એક શુષ્ક કસનળીમાં $0.1~\mathrm{g}$ કાર્બનિક સંયોજન અને $0.1~\mathrm{g}$ પ્યેલિક એનહાઇડ્રાઇડ લો તથા તેમાં $1-2~\mathrm{clui}$ સાંદ્ર $\mathrm{H_2SO_4}$ ઉમેરો. આ કસનળીને તેલઉષ્મકમાં $1~\mathrm{hha}$ ટ સુધી ગરમ કરો. આ પ્રિક્રેયા મિશ્રણને ઠંડું પાડો અને તેને $15~\mathrm{mL}$ મંદ સોડિયમ હાઇડ્રૉક્સાઇડનું દ્રાવણ ધરાવતા બીકરમાં કાળજીપૂર્વક રેડો. ગુલાબી, વાદળી, લીલો, લાલ વગેરે રંગનું દેશ્યમાન થવું, કાર્બનિક સંયોજનમાં ફિનોલિક $-\mathrm{OH}$ સમૂહની હાજરી સૂચવે છે. જોકે વધુ પ્રમાણમાં સોડિયમ હાઇડ્રૉક્સાઇડનું દ્રાવણ ઉમેરવાથી રંગ અદેશ્ય થાય છે.

- **નોંધ :** (i) તટસ્થ ફેરિક ક્લોરાઇડ વ્રાવણ બનાવવા માટે ફેરિક ક્લોરાઇડ વ્રાવણમાં થોડા પરંતુ કાયમી કથ્થાઈ રંગના અવક્ષેપ મળે ત્યાં સુધી તેમાં ટીપે-ટીપે મંદ સોડિયમ હાઇડ્રૉક્સાઇડનું વ્રાવણ ઉમેરવામાં આવે છે. વ્રાવણને ગાળવામાં આવે છે અને મળતા ચોખ્ખા ગાળણનો ઉપયોગ કસોટી માટે કરવામાં આવે છે.
 - (ii) કેટલાંક ફિનોલ સંયોજનો જેવા કે 2, 4, 6 દ્રાયનાઇટ્રોફિનોલ અને 2, 4 ડાયનાઇટ્રોફિનોલ જે ઇલેક્ટ્રૉન આકર્ષક સમૂહો ધરાવે છે. તે પ્રબળ ઍસિડ સંયોજનો છે અને તેઓ સોડિયમ હાઇડ્રૉજન કાર્બોનેટનાં દ્રાવણમાં પણ ઓગળે છે.

પ્રયોગશાળા માર્ગદર્શિકા રસાયણવિજ્ઞાન

સાવચેતીઓ :

- (a) હંમેશાં તાજું બનાવેલું, તટસ્થ અને અતિમંદ ફેરિક ક્લોરાઇડનું દ્રાવણ વાપરો.
- (b) ફિનોલ સ્વભાવે ઝેરી અને ક્ષારણ કરનારો હોય છે અને તેનો ઉપયોગ કાળજીપૂર્વક કરવો જોઈએ.

$ext{IV.}$ આલ્ડિહાઇડ અને કિટોન સમૂહો ($ext{-CHO}$ અને $ext{-} \overset{\parallel}{ ext{C}} ext{-}$

સિદ્ધાંત :

આલ્ડિહાઇડ અને કિટોન બંને સંયોજનો કાર્બોનિલ સમૂહ (>C=O) ધરાવે છે અને સામાન્ય રીતે તેઓ કાર્બોનિલ સંયોજનો તરીકે ઓળખાય છે. આલ્ડિહાઇડ અને કિટોન સંયોજનોની ઓળખ કાર્બોનિલ સમૂહની બે અગત્યની પ્રક્રિયાઓ દ્વારા થાય છે એટલે કે,

- (i) > C = O સમૂહના દ્વિબંધ પર યોગશીલ પ્રક્રિયા અને
- (ii) કાર્બોનિલ સમૂહનું ઑક્સિડેશન

કાર્બોનિલ સંયોજનોની ઓળખ માટેના દેષ્ટિકોશ મુજબ એમોનિયાના વ્યુત્પન્નોની યોગશીલ પ્રક્રિયાઓ અગત્યની છે. સામાન્ય રીતે યોગશીલ પ્રક્રિયા પછી વિલોપન પ્રક્રિયા પણ થાય છે. જેના પરિણામે અસંતૃપ્ત સંયોજન બને છે.

$$>C = O + RNH_2 \longrightarrow C \xrightarrow{OH} \xrightarrow{-H_2O} >C = NR$$

(R =આલ્કાઇલ, એરાઈલ અથવા C_6H_5NH વગેરે)

આ પ્રક્રિયાઓ ઍસિડ અથવા બેઈઝ દ્વારા ઉદીપિત થાય છે અને પ્રક્રિયાઓ પ્રબળ ઍસિડિક અથવા બેઝિક પરિસ્થિતિઓમાં થતી નથી. દરેક પ્રક્રિયા થવા માટે અનુકૂળતમ pH જરૂરી હોય છે. તેથી જ્યારે આ પ્રક્રિયાઓ કરવામાં આવે છે ત્યારે pH નિયંત્રણ ખૂબ જ અગત્યનું હોય છે.

જ્યાં સુધી ઑક્સિડેશન સાથે સંબંધ છે ત્યાં સુધી આલ્ડિહાઇડ સંયોજનો સહેલાઈથી કાર્બોક્સિલિક ઍસિડ સંયોજનોમાં ઑક્સિડેશન પામે છે, જ્યારે કિટોન સંયોજનોના ઑક્સિડેશન માટે સાપેક્ષીય વધુ પ્રબળ ઑક્સિડેશનકર્તાની જરૂર પડે છે. આ બે પ્રકારનાં કાર્બોનિલ સંયોજનોને તેમની પ્રતિક્રિયાત્મકતાના તફાવતના આધારે વિભેદિત કરી શકાય છે.

આલ્ડિહાઇડ અને કિટોન સમૂહોની ઓળખ માટે નીચે દર્શાવેલી કસોટીઓ કરવામાં આવે છે :

$$>C = O + H_2N - NH$$
 $>C = N - NH$
 $>O_2$
 $>O_3$
 $>O_4$
 O_4
 O_4

2, 4 - ડાયનાઇટ્રોફિનાઇલહાઇડ્રેઝીન

કાર્બોનિલ સંયોજનનો 2, 4 -ડાયનાઇટ્રોફિનાઇલહાઇડ્રેઝોન

92

કાર્બનિક સંયોજનોમાં ક્રિયાશીલ સમૂહો માટેની કસોટીઓ

આ બે કાર્બોનિલ સંયોજનોને (આલ્ડિહાઇડ અને કિટોન સંયોજનો) મંદ ઑક્સિડેશનકર્તા પ્રક્રિયકો જેવા કે ટોલેન્સ પ્રક્રિયક અને ફેહલિંગ પ્રક્રિયક અથવા બેનેડિક્ટ પ્રક્રિયકનો ઉપયોગ કરી કરવામાં આવતી કસોટીઓના આધારે વિભેદિત કરવામાં આવે છે. ટોલેન્સ પ્રક્રિયક સિલ્વર ધનાયનનું એમોનિયા સાથેના સંકીર્ષનું બેઝિક દ્રાવણ છે તથા ફેહલિંગ અને બેનેડિક્ટ પ્રક્રિયકો ક્યુપ્રિક આયનોના અનુક્રમે ટાર્ટરેટ અને સાઇટ્રેટ આયનો સાથે સંકીર્શોના બેઝિક દ્રાવણ છે. ફેહલિંગ પ્રક્રિયકને તાજું બનાવવા માટે ફેહલિંગ દ્રાવણ A અને ફેહલિંગ દ્રાવણ Bના સમાન જથ્થાને મિશ્ર કરવામાં આવે છે. ફેહલિંગ પ્રક્રિયકને રાખી મૂકવાથી ખરાબ થઈ જાય છે જ્યારે ફેહલિંગ દ્રાવશો A અને B પ્રમાણમાં સ્થાયી હોય છે. ફેહલિંગ દ્રાવણ A કૉપર સલ્ફેટનું જલીય દ્રાવણ છે, જ્યારે ફેહલિંગ દ્રાવણ B સોડિયમ પોટૅશિયમ ટાર્ટરેટનું (રોશેલ ક્ષાર) બેઝિક દ્રાવણ છે. આ પ્રક્રિયક Cu^{2+} આયનનું ટાર્ટરેટ આયનો સાથેનું સંકીર્શ છે. આ સંકીર્શનું બંધારણ નીચે દર્શાવ્યું છે :

કૉપર ટાર્ટરેટ સંકીર્ણ

બેનેડિક્ટ એક જ દ્રાવણ કે જે કસોટી માટે વધુ અનુકૂળ હોય છે તેના ઉપયોગ દ્વારા મૂળ ફેહલિંગ કસોટીમાં સુધારો કર્યો હતો. બેનેડિક્ટ દ્રાવણ, ફેહલિંગ દ્રાવણ કરતા વધુ સ્થાયી હોય છે અને તેને લાંબો સમય સુધી સંગ્રહી શકાય છે. તે કૉપર સલ્ફેટ અને સોડિયમ સાઇટ્રેટનું (2Na₂C₂H₅O₂ • 11H₂O) મિશ્રણ ધરાવતું બેઝિક દ્રાવણ છે.

સંકીર્જાની બનાવટ ક્યુપ્રિક આયનની સાંદ્રતાને ક્યુપ્રિક હાઇડ્રૉકસાઇડના અવક્ષેપન માટે તેની જરૂરી સાંદ્રતાથી ઘટાડી દે છે. આ બે પ્રક્રિયકો આલ્ડિહાઇડ સંયોજનોનું ઑક્સિડેશન કરે છે જ્યારે કિટોન સંયોજનો પર કોઈ અસર થતી નથી. આ કસોટીઓનું રસાયણવિજ્ઞાન નીચે દર્શાવ્યું છે :

RCHO + $2[Ag(NH_3)_2]^+ + 2OH^- \rightarrow 2Ag + 3NH_3 + H_2O + RCOONH_4$ ટોલેન્સ પ્રક્રિયકમાંથી

RCHO + $2Cu^{2+}$ (સંકીર્ણકૃત) + $5OH^- \rightarrow RCOO^- + Cu_2O + 3H_2O$ ફેહલિંગ દ્રાવણ

જોકે, ઍરોમેટિક આલ્ડિહાઇડ સંયોજનો ફેહલિંગ કસોટીમાં હકારાત્મક પરિણામ આપતા નથી. ફેહલિંગ પ્રક્રિયકની જેમ જ બેનેડિક્ટ કસોટીમાં પણ Cu²+ આયનો Cu⁺ આયનોમાં રિડક્શન પામે છે.

આલ્ડિહાઇડ સંયોજનો સ્કિફ પ્રક્રિયક સાથે ગુલાબી રંગ આપે છે. (આ પ્રક્રિયક બનાવવા માટે p - રોઝેનિલીન હાઇડ્રૉક્લોરાઇડ રંગકના જલીય દ્રાવણને તેમાં સોડિયમ સલ્ફાઇટ ઉમેરીને અથવા SO, વાયુ પસાર કરીને રંગવિહીન કરવામાં આવે છે). કિટોન સંયોજનો આ કસોટીમાં પ્રતિક્રિયા આપતાં નથી.

પ્રયોગશાળા માર્ગદર્શિકા રસાયણવિજ્ઞાન

જરૂરી સામગ્રી:

પદ્ધતિ

A. આલ્ડિહાઇડ અને કિટોન બંને સંયોજનો આપી શકતા હોય તેવી કસોટી 2, 4 ડાયનાઇટ્રોફિનાઇલહાઇડ્રેઝિન કસોટી (2, 4 - DNP કસોટી)

એક કસનળીમાં પ્રવાહી સંયોજનનાં 2-3 ટીપાં લો અથવા ઘન સંયોજનના કિસ્સામાં 2-3 mL આલ્કોહૉલમાં તેનાં થોડાં સ્ફટિકોને ઓગાળો. તેમાં 2, 4 ડાયનાઇટ્રોફિનાઇલહાઇડ્રેઝિનના આલ્કોહૉલિય દ્રાવણનાં થોડાં ટીપાં ઉમેરો. પીળા, નારંગી અથવા નારંગી-લાલ અવક્ષેપની ઉત્પત્તિ કાર્બોનિલ સમૂહની હાજરી નિશ્ચિત કરે છે. જો ઓરડાના તાપમાને અવક્ષેપ ન જોવા મળે તો મિશ્રણને જળઉષ્મક પર થોડી મિનિટો માટે ગરમ કરો અને ઠંડું પાડો.

B. માત્ર આલ્ડિહાઇડ સંયોજનો આપી શકતા હોય તેવી કસોટીઓ

માત્ર આલ્ડિહાઇડ સંયોજનો નીચે દર્શાવેલી કસોટીઓ જેવી કે સ્કિફ કસોટી, ફેહલિંગ કસોટી અને ટોલેન્સ કસોટી આપે છે.

સ્કિફ કસોટી

પ્રવાહી સંયોજનનાં 3-4 ટીપાં લો અથવા કાર્બનિક સંયોજનનાં થોડાં સ્ફટિકોને આલ્કોહૉલમાં ઓગાળો અને તેમાં 2-3 ટીપાં સ્કિફ પ્રક્રિયકના ઉમેરો. ઉત્પન્ન થતો ગુલાબી રંગ આલ્ડિહાઇડની હાજરી સૂચવે છે.

ફેહલિંગ કસોટી

સ્વચ્છ શુષ્ક કસનળીમાં ફ્રેહલિંગ દ્રાવણ Aના આશરે 1 mL અને ફ્રેહલિંગ દ્રાવણ Bના 1 mL લો. તેમાં 2-3 ટીપાં પ્રવાહી સંયોજનના અથવા ઘન સંયોજનના પાણી અથવા આલ્કોહૉલમાં બનાવેલા દ્રાવણના આશરે 2 mL ઉમેરો. આ કસનળીમાં રહેલા પદાર્થોને આશરે 2 મિનિટ માટે જળઉષ્મકમાં ગરમ કરો. કૉપર (I) ઑક્સાઇડના ઇંટ જેવા લાલ રંગના અવક્ષેપનું બનવું આલ્ડિહાઇડની હાજરી સૂચવે છે. ઍરોમેટિક આલ્ડિહાઇડ સંયોજનો આ કસોટી આપતા નથી.

કાર્બનિક સંયોજનોમાં ક્રિયાશીલ સમૂહો માટેની કસોટીઓ

બેનેડિક્ટ કસોટી

2 mL બેનેડિક્ટ પ્રક્રિયકમાં 5 ટીપાં પ્રવાહી સંયોજન અથવા 2 mL ઘન કાર્બનિક સંયોજનનું પાણી અથવા આલ્કોહૉલમાં બનાવેલું દ્રાવણ ઉમેરો. આ કસનળીને ઉકળતા જળઉષ્મકમાં 5 મિનિટ માટે રાખી મૂકો. નારંગી-લાલ અવક્ષેપ આલ્ડિહાઇડની હાજરી સૂચવે છે.

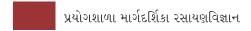
ટોલેન્સ કસોટી

- (i) એક કસનળીમાં તાજું બનાવેલ (~2%) સિલ્વર નાઇટ્રેટનું દ્રાવણ લો. તેમાં 1-2 ટીપાં સોડિયમ હાઇડ્રૉક્સાઇડ દ્રાવણના ઉમેરો અને હલાવો, સિલ્વર ઑક્સાઇડના ઘેરા કથ્થાઈ રંગના અવક્ષેપ જોવા મળે છે. આ અવક્ષેપને એમોનિયમ હાઇડ્રૉક્સાઇડના દ્રાવણને ટીપે-ટીપે ઉમેરી ઓગાળો.
- (ii) આ ઉપરના દ્રાવણમાં કાર્બનિક સંયોજનનું જલીય અથવા આલ્કોહૉલિય દ્રાવણ ઉમેરો.
- (iii) તબક્કા (ii)ના પ્રક્રિયા મિશ્રણને આશરે 5 મિનિટ સુધી જળઉષ્મકમાં ગરમ કરો. કસનળીની અંદરની સપાટી પર અરીસાની જેમ ચળકતું ચાંદીની ધાતુના સ્તરનું બનવું આલ્ડિહાઇડની હાજરી સૂચવે છે.

સાવચેતીઓ :

- (a) કસોટીઓ કરવા માટે હંમેશાં તાજા બનાવેલા પ્રક્રિયકોનો ઉપયોગ કરવો.
- (b) પ્રક્રિયામિશ્રણને સીધા જ્યોત પર ગરમ ન કરવા.
- (c) કસોટી કર્યા બાદ, મંદ નાઇટ્રિક ઍસિડ ઉમેરીને રજત દર્પણનો નાશ કરવો અને વધુ પ્રમાણમાં પાણીનો ઉપયોગ કરી દ્રાવણને વહેવડાવી દો.

V. કાર્બોક્સિલ સમૂહ (–COOH)


સિદ્ધાંત :

કાર્બોક્સિલ સમૂહો ધરાવતા કાર્બનિક સંયોજનોને કાર્બોક્સિલિક ઍસિડ સંયોજનો કહે છે.

કાર્બોક્સિલ (Carboxyl) શબ્દ કાર્બોનિલ (carbonyl) અને હાઇડ્રૉક્સિલ (hydroxyl) શબ્દોના સંયોગથી બનેલો છે કારણ કે કાર્બોક્સિલિક ક્રિયાશીલ

સમૂહ (-C-OH) આ બંને સમૂહો ધરાવે છે. આ ઍસિડ સંયોજનો વાદળી લિટમસ પત્રને લાલ બનાવે છે અને સોડિયમ હાઇડ્રૉજન કાર્બોનેટ દ્રાવણ સાથે પ્રક્રિયા કરીને કાર્બન ડાયૉક્સાઈડ બનવાના કારણે ઊભરા ઉત્પન્ન કરે છે. આ કસોટી એવી છે કે જે કાર્બોક્સિલિક ઍસિડ સંયોજનોને ફ્રિનોલ સંયોજનોથી વિભેદિત કરે છે.

 $RCOOH + NaHCO_3 \longrightarrow RCOONa + H_2O + CO_2$

કાર્બોક્સિલિક સંયોજનો ઍસિડિક માધ્યમમાં આલ્કોહૉલ સંયોજનો સાથે પ્રક્રિયા

કરી એસ્ટર સંયોજનો બનાવે છે

ા અસ્ટર સંવાજના બનાવ છ
$$\frac{\text{RCOOH}}{\text{RCOOR}} + \text{R'OH} \qquad \frac{\text{સાંદ્ર}}{\Delta} \frac{\text{H}_2\text{SO}_4}{\Delta} \rightarrow \text{RCOOR'} + \text{H}_2\text{O}$$
 કાર્બોક્સિલિક આલ્કોહૉલ એસ્ટર એસડ

જરૂરી સામગ્રી :

- કસનળી હોલ્ડર
- કાચનો સળિયો
- કસનળીઓ

: એક : એક

: જરૂરિયાત મુજબ

- વાદળી લિટમસ
 - પત્ર / દ્રાવણ : જરૂરિયાત મુજબ
- ઈથાઈલ આલ્કોહૉલ : જરૂરિયાત મુજબ
- સોડિયમ હાઇડ્રૉજન
 - કાર્બોનેટ દ્રાવણ ઃ જરૂરિયાત મુજબ

ઇથાઈલ આલ્કોહૉલ

પદ્ધતિ :

A. લિટમસ કસોટી

એક કાચના સળિયાની મદદથી પ્રવાહી સંયોજન અથવા સંયોજનના દ્રાવણનું એક ટીપું ભીના વાદળી લિટમસ પત્ર પર મૂકો. જો લિટમસ પત્રનો વાદળી રંગ લાલ થાય તો તે કાર્બોક્સિલિક સમૂહ અથવા ફિનોલિક સમૂહની હાજરી સૂચવે છે.

B. સોડિયમ હાઇડ્રૉજનકાર્બોનેટ કસોટી

એક સ્વચ્છ કસનળીમાં 2 mL સોડિયમ હાઇડ્રૉજનકાર્બોનેટનું સંતૃપ્ત જલીય દ્રાવણ લો. તેમાં પ્રવાહી સંયોજનનાં થોડાં ટીપાં અથવા ઘન સંયોજનના થોડા સ્ફટિક લો. ઝડપથી CO,ના ઊભરાનું નીકળવું કાર્બોક્સિલ સમૂહની હાજરી સૂચવે છે.

C. એસ્ટર કસોટી

એક કસનળીમાં આશરે 0.1 g સંયોજન લો. તેમાં 1 mL ઈથેનોલ અથવા મિથેનોલ અને 2-3 ટીપાં સાંદ્ર સલ્ફ્યુરિક ઍસિડ ઉમેરો. આ પ્રક્રિયા મિશ્રણને ગરમ જળઉષ્મકમાં આશરે 50 °C તાપમાને 10-15 મિનિટ માટે ગરમ કરો. આ પ્રક્રિયા મિશ્રણને સોડિયમ કાર્બોનેટ ભરેલા બીકરમાં ઉમેરીને વધારાના સલ્ફ્યુરિક ઍસિડ અને વધારાના કાર્બોક્સિલિક ઍસિડને તટસ્થ કરો. તેમાં બનતા પદાર્થની મીઠી સુગંધ સંયોજનમાં કાર્બોક્સિલ ક્રિયાશીલ સમૃહની હાજરી સૂચવે છે.

સાવચેતી :

સંયોજનને સોડિયમ હાઇડ્રૉજનકાર્બોનેટના દ્રાવણમાં ધીમેથી ઉમેરો કે જેથી તેના ઊભરા સ્પષ્ટ જોઈ શકાય.

કાર્બનિક સંયોજનોમાં ક્રિયાશીલ સમૂહો માટેની કસોટીઓ

VI. એમિનો સમૂહ (-NH,)

સિદ્ધાંત :

એમિનો સમૂહ ધરાવતાં કાર્બનિક સંયોજનો સ્વભાવે બેઝિક હોય છે. તેથી તેઓ ઍસિડ સંયોજનો સાથે સહેલાઈથી પ્રક્રિયા કરી ક્ષાર બનાવે છે, જે પાણીમાં દ્રાવ્ય હોય છે.

એલિફેટિક અને ઍરોમેટિક બંને એમાઈન સંયોજનોને નાઇટ્રોજન પરમાશુની સાથે જોડાયેલ હાઇડ્રૉજન પરમાશુઓની સંખ્યાના આધારે ત્રણ વર્ગોમાં જેવા કે પ્રાથમિક ($-NH_2$), દ્વિતીયક ($-NH_-$) અને તૃતીયકમાં (-N<) વર્ગીકૃત કરવામાં આવે છે. પ્રાથમિક એમાઈનમાં નાઇટ્રોજન સાથે બે હાઇડ્રૉજન પરમાશુઓ, દ્વિતીયક એમાઈનમાં એક હાઇડ્રૉજન પરમાશુ જોડાયેલા હોય છે, જ્યારે તૃતીયક એમાઈનમાં એક પશ હાઇડ્રૉજન પરમાશુ જોડાયેલો હોતો નથી.

(i) કાર્બાઈલએમાઈન કસોટી

એલિફેટિક અને ઍરોમેટિક પ્રાથમિક એમાઈન સંયોજનો કાર્બાઇલએમાઇન કસોટી આપે છે, જેમાં એમાઈન સંયોજનને ક્લૉરોફૉર્મ સાથે ગરમ કરવામાં આવે છે.

 $R-NH_2+CHCl_3+3KOH$ \longrightarrow $NC + 3KCl+3H_2O$ (R = આલ્કાઇલ અથવા એરાઇલ સમૂહ) (કાર્બાઇલએમાઈન)

ચેતવણી!

બનતો કાર્બાઈલએમાઈન વધુ ઝેરી હોય છે, તેથી કસોટી બાદ તરત જ તેનો નાશ કરવો જોઈએ. આ માટે કસનળીને ઠંડી કરો અને તેમાં કાળજીપૂર્વક વધુ પ્રમાણમાં સાંદ્ર HCl ઉમેરો.

(ii) એઝોરંગક કસોટી

ઍરોમેટિક પ્રાથમિક એમાઈન સંયોજનોની હાજરીને એઝો રંગક કસોટી વડે નિશ્ચિત કરી શકાય છે. પ્રાથમિક એમાઈન દા.ત., એનિલિન 0-5 °C તાપમાને સોડિયમ નાઇટ્રાઇટની HCl સાથેની પ્રક્રિયાથી સ્વસ્થાને બનતા નાઇટ્રસ ઍસિડ સાથે પ્રક્રિયા કરીને ડાયએઝોનિયમ ક્ષાર બનાવે છે. આ β - નેપ્યોલ સાથે જોડાઈને સિંદુરિયા લાલ રંગનો રંગક બનાવે છે, જે પાણીમાં અતિઅલ્ય પ્રમાણમાં દ્રાવ્ય હોય છે.

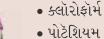
$$NH_{2} \xrightarrow{NaNO_{2} + HCl} \longrightarrow N=NCl^{-}$$
 બેન્ઝિન ડાયએઝોનિયમ ક્લોરાઇડ
$$HO \longrightarrow N=N-$$

$$\beta - નેપ્યોલ$$

β - નેપ્થોલ એઝોરંગક (સિંદુરિયો લાલ)

પ્રયોગશાળા માર્ગદર્શિકા રસાયણવિજ્ઞાન

જરૂરી સામગ્રી:



• કસનળીઓ

: જરૂરિયાત મુજબ : એક

• કસનળી હોલ્ડર

• બન્સેન બર્નર

- પોટૅશિયમ હાઇડ્રૉક્સાઇડ
- સોડિયમ નાઇટ્રાઇટ દ્રાવણ
- એનિલિન
- β નેપ્થોલ
- મંદ હાઇડ્રૉક્લોરિક ઍસિડ
- સોડિયમ હાઇડ્રૉક્સાઇડ દ્રાવણ

જરૂરિયાત

મુજબ

બરફ

પદ્ધતિ :

A. દ્રાવ્યતા કસોટી

એક કસનળીમાં 1 mL આપેલું કાર્બનિક સંયોજન લો અને તેમાં મંદ HClના થોડાં ટીપાં ઉમેરો. કસનળીમાં રહેલા પદાર્થોને વધુ સારી રીતે હલાવો. જો કાર્બનિક સંયોજન દ્રાવ્ય થઈ જાય તો તે એમાઈન સંયોજનની હાજરી દર્શાવે છે**.**

$$C_6H_5NH_2 + HCl \rightarrow C_6H_5 \stackrel{+}{N}H_3Cl$$
 (ઍનિલિનિયમ ક્લોરાઇડ) (પાણીમાં દ્રાવ્ય)

B. કાર્બાઇલએમાઇન કસોટી

એક કસનળીમાં સંયોજનનાં 2-3 ટીપાં લો અને તેમાં ક્લૉરોફૉર્મનાં 2-3 ટીપાં ઉમેરો, ત્યાર બાદ તેમાં સમાન કદનું 0.5 M આલ્કોહૉલિય પોટૅશિયમ હાઇડ્રૉક્સાઇડનું દ્રાવણ ઉમેરો. આ મિશ્રણને પ્રમાણસર ગરમ કરો. કાર્બાઈલએમાઈનની દુર્ગંધ સંયોજનમાં પ્રાથમિક એમિનો સમૂહની હાજરી નિશ્ચિત કરે છે.

ચેતવણી!

બાષ્યને શ્વાસમાં ન લો. મળતી નીપજમાં સાંદ્ર હાઇડ્રૉક્લોરિક ઍસિડ ઉમેરીને તેનો તરત જ નાશ કરો અને તે માટે તેને સિંકમાં વહેવડાવી દો.

C. એઝોરંગક કસોટી

- એક કસનળીમાં આશરે 0.2 g સંયોજનને 2 mL મંદ હાઇડ્રૉક્લોરિક ઍસિડમાં દ્રાવ્ય કરો. આ કસનળીમાંના પદાર્થોને બરફમાં ઠંડા કરો.
- (ii) બરફમાં ઠંડા કરેલા દ્રાવણમાં 2 mL 2.5 % વાળું ઠંડું જલીય સોડિયમ નાઇટ્રાઈટનું દ્રાવણ ઉમેરો.
- (iii) બીજી અન્ય કસનળીમાં મંદ સોડિયમ હાઇડ્રૉક્સાઇડ દ્રાવણમાં 0.2 g β - નેપ્થોલને ઓગાળો.
- (iv) તબક્કા (ii)માં બનાવેલા ડાયએઝોનિયમ ક્લોરાઇડ દ્રાવણને ઠંડા β - નેપ્થોલના દ્રાવણમાં હલાવવાની સાથે ધીમે-ધીમે ઉમેરો.

સિંદુરિયા લાલ રંગકની ઉત્પત્તિ ઍરોમેટિક પ્રાથમિક એમાઈનની હાજરી નિશ્ચિત કરે છે.

ક્લૉરોફૉર્મ

પોટૅશિયમ હાઇડ્રૉક્સાઇડ

સોડિયમ નાઇટ્રાઇટ

β - નેપ્થોલ

સાવચેતીઓ :

- (a) કાર્બાઇલએમાઈન કસોટી કરતી વખતે તમે પોતાની જાતને તેની બાષ્યના સંપર્કમાં ન આવવા દો કારણ કે આઇસોસાયનાઇડ વધુ ઝેરી હોય છે. તેનો ઉપર વર્ણવ્યા મુજબ તરત જ નાશ કરો.
- (b) ડાયએઝોટાઇઝેશન દરમિયાન પ્રક્રિયા મિશ્રણનું તાપમાન 5 °Cથી નીચું જાળવી રાખો, કારણ કે ડાયએઝોનિયમ ક્લોરાઇડ ઊંચા તાપમાને અસ્થાયી હોય છે.
- (c) હંમેશા ડાયએઝોનિયમ ક્લોરાઇડના દ્રાવણને β નેપ્થોલના બેઝિક દ્રાવણમાં ઉમેરો અને તેનાથી ઊલટું ન કરવું.

ચર્ચાત્મક પ્રશ્નો :

- (i) બેયર પ્રક્રિયક એટલે શું ?
- (ii) આલ્કીન અને આલ્કાઇન સંયોજનો શા માટે બ્રોમિન જળ અને બેઝિક $\mathrm{KMnO_4}$ નો રંગ દૂર કરે છે ?
- (iii) સંયોજનમાં અસંતૃપ્તતા નિશ્ચિત કરવા માટે બ્રોમિન જળ સાથેની કસોટી તથા બેયર પ્રક્રિયક સાથેની કસોટી એમ બંને કસોટીઓ શા માટે કરવી જોઈએ ? સમજાવો.
- (iv) ફિનોલ, બ્રોમિન જળનો રંગ શા માટે દૂર કરે છે ?
- (v) તમે ફિનોલ અને બેન્ઝોઇક ઍસિડને કેવી રીતે વિભેદિત કરશો ?
- (vi) બેન્ઝિન વધુ અસંતૃપ્ત હોવા છતાં તે શા માટે બ્રોમિન જળને રંગવિહીન કરતો નથી ?
- (vii) શા માટે ફોર્મિક ઍસિડ ટોલેન્સ પ્રક્રિયક સાથે હકારાત્મક પરિણામ આપે છે ?
- (viii) રોગનિદાન પ્રયોગશાળામાં (Pathological laboratory) પેશાબના નમૂનામાં ગ્લુકોઝની કસોટી માટેના સિદ્ધાંતને સંક્ષિપ્તમાં વર્ણવો.
- (ix) ફેહલિંગ પ્રક્રિયક કરતા બેનેડિક્ટ પ્રક્રિયક શા માટે વધુ સ્થાયી છે ?
- (x) તમે રાસાયણિક કસોટીઓ દ્વારા આલ્ડિહાઇડને કિટોનથી કેવી રીતે વિભેદિત કરશો ?
- (xi) પ્રયોગશાળામાં અલગીકરણની રાસાયણિક પદ્ધતિ દ્વારા ફ્રિનોલ અને બેન્ઝોઈક ઍસિડના મિશ્રણને તમે કેવી રીતે અલગ કરશો ?
- (xii) ડાયએઝોટાઇઝેશન અને યુગ્મન (coupling) પ્રક્રિયાઓનું રસાયણવિજ્ઞાન લખો.
- (xiii) તમે હેક્ઝાઇલએમાઈન ($C_6H_{13}NH_2$) અને એનિલિનને ($C_6H_4NH_2$) કેવી રીતે વિભેદિત કરશો ?
- (xiv) તમે ઇથાઈલએમાઈન અને ડાયઇથાઈલએમાઈનને કેવી રીતે વિભેદિત કરશો ?
- (xv) CH₄OH અને C₂H₄OHને રાસાયણિક રીતે કેવી રીતે વિભેદિત કરશો ?
- (xvi) આયોડિનનું દ્રાવર્ણ પાણીમાં નહિ પણ પોટૅશિયમ આયોડાઇડમાં શા માટે બનાવવામાં આવે છે ?
- (xvii) હેલોફોર્મ પ્રક્રિયા એટલે શું ? સામાન્ય રીતે આ પ્રક્રિયા કયા પ્રકારનાં સંયોજનો આપે છે ?
- (xviii) સામાન્ય રાસાયિશક કસોટી દ્વારા $CH_3 C C_2H_5$ અને $C_2H_5 C C_2H_5$ સંયોજનોને તમે કેવી રીતે વિભેદિત કરશો ?

એકમ 9 અકાર્બનિક સંયોજનોની બનાવટ (Preparation of Inorganic Compounds)

પ્રયોગ 9.1

હેતુ :

દિક્ષાર સંયોજનો બનાવવા : ફેરસ એમોનિયમ સલ્ફેટ (મોહ્ર ક્ષાર) અને પોટાશએલમ

સિદ્ધાંત :

જ્યારે પોટૅશિયમ સલ્ફેટ અને ઍલ્યુમિનિયમ સલ્ફેટ અથવા ફેરસ સલ્ફેટ અને એમોનિયમ સલ્ફેટના સમમોલર પ્રમાણ ધરાવતા મિશ્રણનું તેમના દ્રાવણમાંથી સ્ફટિકીકરણ કરવામાં આવે, તો દ્વિક્ષાર બને છે. દ્વિક્ષારના નિર્માણને નીચે મુજબ દર્શાવી શકાશે :

$$K_2SO_4 + Al_2(SO_4)_3 + 24H_2O \rightarrow K_2SO_4 \cdot Al_2(SO_4)_3 \cdot 24H_2O \text{ or } 2KAl(SO_4)_2 \cdot 12H_2O$$
 (પોટાશ એલમ)

$$\begin{split} \text{FeSO}_4 + (\text{NH}_4)_2 & \text{SO}_4 + 6\text{H}_2\text{O} \longrightarrow \text{FeSO}_4 \bullet (\text{NH}_4)_2 & \text{SO}_4 \bullet 6\text{H}_2\text{O} \\ & \text{ફેરસ એમોનિયમ સલ્ફેટ (મોહ્ર ક્ષાર)} \end{split}$$

Fe²⁺ અને Al³⁺ આયનોનું જળવિભાજન થાય છે, તેથી જ્યારે ફેરસ સલ્ફેટ અને ઍલ્યુમિનિયમ સલ્ફેટનું પાણીમાં જલીય દ્રાવણ બનાવવાનું હોય ત્યારે તેમાં 2-3 mL મંદ સલ્ફ્ર્યુરિક ઍસિડ ઉમેરવામાં આવે છે, જે આ ક્ષારોનું જળવિભાજન થતું રોકે છે.

જરૂરી સામગ્રી :

પોટૅશિયમ સલ્ફેટ : જરૂરિયાત મુજબ
 ઍલ્યુમિનિયમ સલ્ફેટ : જરૂરિયાત મુજબ
 ફેરસ સલ્ફેટ : જરૂરિયાત મુજબ
 એમોનિયમ સલ્ફેટ : જરૂરિયાત મુજબ
 મંદ સલ્ફ્ર્યુરિક ઍસિડ : જરૂરિયાત મુજબ
 ઇથેનોલ : જરૂરિયાત મુજબ

પદ્ધતિ :

- (a) દિક્ષારની બનાવટ : પોટેશિયમ ઍલ્યુમિનિયમ સલ્ફેટ (પોટાશ એલમ)
- (i) એક 50 mLના બીકરમાં 10 mL નિસ્યંદિત પાણી લો અને તેને આશરે 40 °C સુધી ગરમ કરો. તેમાં 6.6 g ઍલ્યુમિનિયમ સલ્ફેટને દ્રાવ્ય કરો અને તેમાં આશરે 0.4 mL મંદ સલ્ફ્ર્યુરિક ઍસિડ ઉમેરો.
- (ii) પોટૅશિયમ સલ્ફેટના પાઉડરનું 2.4 g વજન કરો અને તેને ઉપરના દ્રાવણમાં ઉમેરો.

Downloaded from https://www.studiestoday.com

અકાર્બનિક સંયોજનોની બનાવટ

- (iii) પોટૅશિયમ સલ્ફેટ સંપૂર્ણપણે ઓગળી જાય ત્યાં સુધી દ્રાવણને સતત હલાવતા જઈ ગરમ કરો.
- (iv) ધીમેથી ઠંડું કરવા માટે દ્રાવણને ઓરડાના તાપમાને રહેવા દો.
- (v) દ્રાવણ ઠંડું પડવાની સાથે પોટાશ એલમનાં સફેદ સ્ફટિકો અલગ પડતા જાય છે.
- (vi) માતૃદ્રાવશને નિતારી લો અને સ્ફ્રટિકોને 1 : 1 ઠંડું પાણી અને આલ્કોહૉલના મિશ્રણ વડે યોગ્ય પ્રમાણમાં હલાવીને ધુઓ.
- (vii) સ્ફટિકોને ગાળી લો. ગાળણપત્રની ગડીઓ વચ્ચે રાખીને તેને શુષ્ક કરો અને નીપજની પ્રાપ્તિ (જથ્થો) નોંધો.

(b) દ્વિક્ષારની બનાવટ : ફેરસ એમોનિયમ સલ્ફેટ

- (i) 3.5 g ફેરસ સલ્ફેટ અને 1.7 g એમોનિયમ સલ્ફેટને (અલગથી વજન કરેલા) 50 mLના કોનિકલ ફ્લાસ્કમાં ભરેલા 5 mL નિસ્યંદિત પાણીમાં ગરમ કરીને દ્રાવ્ય કરો. ફ્લાસ્કમાં આશરે 0.5 mL મંદ સલ્ફ્યુરિક ઍસિડ ઉમેરો અને દ્રાવણ સ્ફટિકીકરણ બિંદુ સુધી પહોંચે ત્યાં સુધી તેને ગરમી દ્વારા સાંદ્ર બનાવો.
- (ii) ધીમેથી ઠંડું કરવા માટે દ્રાવણને ઓરડાના તાપમાને રહેવા દો.
- (iii) દ્રાવણ ઠંડું પડવાથી ફેરસ એમોનિયમ સલ્ફેટના આછા લીલા સ્ફટિકો અલગ પડે છે.
- (iv) માતૃદ્રાવણને નિતારી લો અને સ્ફટિકોને ચોંટેલ માતૃદ્રાવણને દૂર કરવા માટે તેને 1:1 ઠંડા પાણી અને આલ્કોહૉલના મિશ્રણના ઓછા જથ્થા વડે હલાવીને ધુઓ.
- (v) ગાળણક્રિયાથી સ્ફ્રટિકોને અલગ કરો. આલ્કોહૉલ વડે ધુઓ, ગાળણપત્રની ગડીઓ વચ્ચે રાખી તેને શુષ્ક કરો અને નીપજની પ્રાપ્તિ (જથ્થો) નોંધો.

પરિણામ:

પોટાશ એલમ / મોહ્ર ક્ષારની પ્રાપ્તિ (જથ્થો) g છે.

સાવચેતીઓ :

- (a) સારા સ્ફટિકો મેળવવા માટે દ્રાવણને ધીમેથી ઠંડું પાડો. ઝડપી ઠંડું પડવાની ક્રિયાને ટાળો.
- (b) જ્યારે દ્રાવણ ઠંડું પડતું હોય ત્યારે તેને ખલેલ ન પહોંચાડો.
- (c) ફેરસ એમોનિયમ સલ્ફેટના સ્ફટિકો બનાવતી વખતે લાંબો સમય ગરમ કરવાની પ્રક્રિયાને ટાળવી જોઈએ. તે ફેરસ આયનોનું ફેરિક આયનોમાં ઑક્સિડેશન કરે છે અને સ્ફટિકોની તત્ત્વયોગમિતિયતા બદલે છે.

ચર્ચાત્મક પ્રશ્નો :

- (i) આપણે દ્વિક્ષાર બનાવવા માટે પ્રક્રિયા પામતાં સંયોજનોનો સમમોલર જથ્થો શા માટે લઈએ છીએ ?
- (ii) ફેરસ એમોનિયમ સલ્ફેટની બનાવટમાં શું મંદ સલ્ફ્ચુરિક ઍસિડના સ્થાને સાંદ્ર સલ્ફ્ચુરિક ઍસિડનો ઉપયોગ કરી શકાય ? સમજાવો.
- (iii) $K_4[Fe(CN)_6]$ અને $FeSO_4 \cdot (NH_4)_2SO_4 \cdot 6H_2O$ આયર્નનાં સંયોજનો વચ્ચે શું તફાવત છે ?
- (iv) પોટાશ એલમ પર ગરમીની ક્રિયાથી શું થાય છે ?

- પ્રયોગશાળા માર્ગદર્શિકા રસાયણવિજ્ઞાન
- (v) પોટાશ એલમનું જલીય દ્રાવણ શા માટે વાદળી લિટમસને લાલ બનાવે છે ?
- (vi) સમાકૃતિક (isomorphous) પદાર્થો એટલે શું ?
- (vii) Al³+ સિવાયના ધનાયનો ધરાવતાં કેટલાંક એલમ સંયોજનોનાં નામ જણાવો.
- (viii) સંકીર્શ સંયોજન અને દ્વિક્ષાર વચ્ચે શું તફાવત છે ?

પ્રયોગ 9.2

હેતુ :

પોટૅશિયમ ટ્રાયઑક્ઝેલેટોફ્રેરેટ(III) બનાવવો.

સિદ્ધાંત:

જ્યારે જળયુક્ત ફેરિક ક્લોરાઇડને પોટૅશિયમ હાઇડ્રૉક્સાઇડ ધરાવતા ઑક્ઝેલિક ઍસિડના જલીય દ્રાવણમાં દ્રાવ્ય કરવામાં આવે છે ત્યારે પોટેશિયમ ટ્રાયઓક્ઝેલેટોફેરેટ(III)ના લીલા રંગના સ્ફટિકો પ્રાપ્ત થાય છે. લીલા રંગના સ્ફટિકોના નિર્માણમાં સમાયેલી પ્રક્રિયા નીચે મુજબ છે:

 $FeCl_3 + 6KOH + 3H_2C_2O_4 \rightarrow K_3[Fe(C_2O_4)_3] + 3KCl + 6H_2O$

જરૂરી સામગ્રી:

- બીકર (50 mL)
- પોર્સેલિન ડિશ
- જળઉષ્મક
- કાચનો સળિયો
- ગળણી

: એક

: એક : એક

· અડ : એક

: એક

- ફેરિક ક્લોરાઇડ
- પોટૅશિયમ હાઇડ્રૉક્સાઇડ : 3.8 g
- ઑક્ઝેલિક ઍસિડ : 3.0 g
- ઇથેનોલ : જરૂરિયાત મુજબ

: 2.5 g

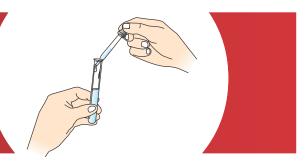
પદ્ધતિ :

- (i) 12.5 mL ગરમ પાણી ધરાવતા સ્વચ્છ 50 mLના બીકરમાં 3.0 g ઑક્ઝેલિક ઍસિડનું દ્રાવણ બનાવો.
- (ii) ઉપર્યુક્ત દ્રાવણમાં 3.8 g પોટૅશિયમ હાઇડ્રૉક્સાઇડને ધીમે-ધીમે થોડો-થોડો ઉમેરો. દ્રાવણને સતત હલાવતા રહો જેથી તે સંપૂર્ણપણે દ્રાવ્ય થાય.
- (iii) ઉપર્યુક્ત દ્રાવણમાં 2.5 g ફેરિક ક્લોરાઇડ ઉમેરો. તે સંપૂર્ણપણે દ્રાવ્ય થાય ત્યાં સુધી દ્રાવણને સતત હલાવતા રહો.
- (iv) દ્રાવણને ગાળો અને લીલા રંગના ગાળણને પોર્સેલિન ડિશમાં જળઉષ્મક ઉપર ગરમી દ્વારા સાંદ્ર કરો. મિશ્રણને ધીમે-ધીમે ઠંડું પડવા દો.
- (v) આ રીતે મળતા સ્ફટિકોને ગાળો. ઠંડા પાણી અને આલ્કોહૉલના 1:1 મિશ્રણ વડે ધુઓ અને ગાળણપત્રની ગડીઓ વચ્ચે દબાવીને તેમને શુષ્ક કરો.

પરિણામ :

પોટૅશિયમ ટ્રાયઓક્ઝેલેટોફેરેટ(III)ની પ્રાપ્તિ (જથ્થો) g છે.

અકાર્બનિક સંયોજનોની બનાવટ


સાવચેતીઓ :

- (a) જ્યારે દ્રાવણને સાંદ્ર બનાવો ત્યારે બધા જ દ્રાવકનું બાષ્પીભવન ન કરો.
- (b) જુદા-જુદા પદાર્થોના જરૂરી જથ્થાનું ચોકસાઈપૂર્વક વજન કરો.
- (c) ગરમ પાણીનું તાપમાન 40 °Cની આસપાસ જાળવી રાખો.
- (d) ઑક્ઝેલિક ઍસિડના દ્રાવણમાં પોટૅશિયમ હાઇડ્રૉક્સાઇડને થોડો-થોડો ઉમેરો.

- પોટૅશિયમ ફેરિઑક્ઝેલેટ નામના સંયોજનનું IUPAC નામ લખો. (i)
- (ii) પોટૅશિયમ ટ્રાયઑક્ઝેલેટોફેરેટ(III)માં આયર્નનો સવર્ગાંક કેટલો છે ?
- ઑક્ઝેલેટ આયન સિવાયના દ્વિદંતીય લિગેન્ડોનાં બે ઉદાહરણો આપો. (iii)
- પોટૅશિયમ ટ્રાયઓક્ઝેલેટોફેરેટ(III) શા માટે ફેરિક આયનની કસોટીઓ આપતું નથી ? (iv)
- કીલેટ (Chelates) એટલે શું ? (v)

એકમ 10 કાર્બનિક સંયોજનોની બનાવટ (Preparation of Organic Compounds)

પ્રયોગ 10.1

હેતુ :

એસિટેનિલાઇડ બનાવવો.

સિદ્ધાંત :

ગ્લેસિઅલ એસિટિક ઍસિડની હાજરીમાં એનિલીનના $-NH_2$ સમૂહના એક હાઇડ્રૉજન પરમાણુનું વિસ્થાપન CH_3CO- સમૂહ વડે થવાથી એસિટેનિલાઇડ બને છે. પ્રયોગશાળામાં એસિટાઇલેશન સામાન્ય રીતે એસિટિક એનહાઇડ્રાઇડ વડે કરવામાં આવે છે. જો એસિટિક એનહાઇડ્રાઇડ પ્રાપ્ય ન હોય તો એસિટાઇલેશનના હેતુ માટે એસિટાઇલ ક્લોરાઇડનો પણ ઉપયોગ થઈ શકે છે. CH_3COC ી દ્વારા એસિટાઇલેશન સામાન્ય રીતે પિરિડીનની હાજરીમાં કરવામાં આવે છે.

જરૂરી સામગ્રી:

• ગળણી : એક

• ગોળ તળિયાવાળો ફ્લાસ્ક (100 mL) : એક

બીકર (250 mL) : એક

• હવા સંઘનિત્ર : એક

• રેત્ઉષ્મક ઃ એક

• ક્લેમ્પ અને લોખંડનું સ્ટૅન્ડ : એક

• હલકા વજનના (Pumice)

પથ્થર : જરૂરિયાત મુજબ

• ગલનબિંદુ માટેની

સાધનસામગ્રી : એક

• એનિલીન

: 5 mL

• એસિટિક એનહાઇડ્રાઇડ/

એસિટાઇલ ક્લોરાઇડ : 5 mL

• એસિટિક ઍસિડ/પિરિડીન : 5 mL

પદ્ધતિ :

(i) 100 mLના ગોળ તિળયાવાળા ફ્લાસ્કમાં 5 mL એનિલીન લો. તેમાં 5 mL એસિટિક એનહાઇડ્રાઇડ અને 5 mL ગ્લેસિઅલ એસિટિક ઍસિડ ધરાવતા એસિટાઇલેશનકર્તા મિશ્રણને ઉમેરો. વૈકલ્પિક રીતે તમે 5 mL એસિટાઇલ ક્લોરાઇડ અને 5 mL શુષ્ક પિરિડીનનો એસિટાઇલેશનકર્તા મિશ્રણ તરીકે ઉપયોગ કરી શકો છો.

કાર્બનિક સંયોજનોની બનાવટ

- ગોળ તળિયાવાળા ફ્લાસ્કમાં વજનમાં હલકા થોડા પથ્થરો (pumice stones) (ii)નાખ્યા બાદ તેના મુખ પર હવા સંઘનિત્રને જોડો. મિશ્રણને રેત ઉષ્મક પર ધીમે-ધીમે 10-15 મિનિટ સુધી રિફ્લક્સ કરો.
- પ્રક્રિયા મિશ્રણને ઠંડું પાડો અને તેને હલાવવાની સાથે 150-200 mL (iii) બરફ જેવા ઠંડા પાણીમાં ધીમે-ધીમે રેડો.
- ઘન ભાગને ગાળી લો. ઠંડા પાણી વડે તેને ધુઓ અને મિથેનોલ અથવા ઇથેનોલનાં થોડાં ટીપાં ધરાવતા ગરમ પાણી દ્વારા નમૂનાના થોડા જથ્થાનું પુનઃ સ્ફટિકીકરણ કરો.
- નીપજની પ્રાપ્તિ (જથ્થો) અને તેનું ગલનબિંદુ નોંધો. (v)

પરિણામ :

566666

- (a) એસિટેનિલાઇડની પ્રાપ્તિ (જથ્થો) g.
- (b) એસિટેનિલાઇડનું ગલનબિંદુ °C છે.

એસિટિક ઍસિડ ગંભીર રીતે દઝાડે છે

પિરિડીન

સાવચેતીઓ :

- (a) એસિટિક એનહાઇડ્રાઇડ અને એસિટાઇલ ક્લોરાઇડનો ઉપયોગ કાળજીપૂર્વક કરવો કારણ કે તેનાથી આંખમાં બળતરા થાય છે તથા એસિટાઇલ ક્લોરાઇડ હવામાં વધુ ધુમાડો ફેલાવે છે.
- (b) એસિટાઇલ ક્લોરાઇડનો શુષ્ક પરિસ્થિતિઓમાં સંગ્રહ કરો.
- (c) પિરિડીનનો અત્યંત સાવચેતીપૂર્વક ઉપયોગ કરવો જોઈએ. તેનો યોગ્ય ક્ષમતાવાળા ધૂમ (fuming)કબાટમાં રાખીને ઉપયોગ કરવો તથા તેનો ઉપયોગ કરતા સમયે એકવાર વાપરી તેનો નિકાલ કરી શકાય તેવા (disposable) ચશ્માં પહેરો.
- (d) પિરિડીનનો ઉપયોગ કરતા પહેલાં તેનું નિસ્યંદન કરો કારણ કે તે ભેજને શોષે છે અને ભેજવાળી સ્થિતિમાં તે પ્રક્રિયા કરતું નથી.
- (e) ઘન પદાર્થને ઠંડા પાણી વડે 2-3 વખત ત્યાં સુધી ધુઓ કે જ્યાં સુધી ગાળણ લિટમસ પત્ર પ્રત્યે તટસ્થ ન થાય.
- સંપૂર્શપશે શુષ્ક થયેલ અને પુનઃસ્ફટિકીકરણ પામેલા નમૂનાનું ગલનબિંદુ માપો.

એસિટેનિલાઇડની બનાવટ માટેની વૈકલ્પિક પદ્ધતિ

જ્યારે એસિટિક એનહાઇડ્રાઇડ અથવા પિરિડીન પ્રાપ્ય ન હોય ત્યારે એસિટેનિલાઈડની બનાવટ માટે નીચેની પદ્ધતિનો ઉપયોગ કરી શકાય છે :

જરૂરી સામગ્રી :

• ઉત્કલન નળી

: એક • જળઉષ્મક : એક

• ગલનબિંદુ માટેની સાધનસામગ્રી : એક

• ગળણી

: એક

• એનિલીન

• ગ્લેસિઅલ એસિટિક ઍસિડ • એસિટાઇલ ક્લોરાઇડ

: 1 mL : 1 mL

: 1 mL

પ્રયોગશાળા માર્ગદર્શિકા રસાયણવિજ્ઞાન

પદ્ધતિ :

- (i) એક શુષ્ક ઉત્કલન નળીમાં 1 mL એનિલીન લો. તેમાં 1 mL ગ્લેસિઅલ ઍસિટિક ઍસિડ ઉમેરો અને બંનેને સારી રીતે મિશ્ર કરો.
- (ii) ઉપર્યુક્ત મિશ્રણમાં 1 mL એસિટાઇલ ક્લોરાઇડ થોડો-થોડો (એક વખતમાં 0.3 mL) ઉમેરો. મિશ્રણ ગરમ થશે. જો ઉત્કલન નળીને અડકી શકાય તેમ ન હોય તો તેને નળના પાણી નીચે ઠંડી કરો.
- (iii) એસિટાઇલ ક્લોરાઇડના બધા જથ્થાના ઉમેરણ બાદ, આ મિશ્રણને ઉકળતા જળઉષ્મકમાં પાંચ મિનિટ માટે ગરમ કરો.
- (iv) ઉત્કલન નળીને ઠંડી પાડો અને તેમાં સતત હલાવતા રહી બરફ જેવું ઠંડું પાણી ($\sim 10~\mathrm{mL}$) ઉમેરો.
- (v) સફ્રેદ પાઉડર તરીકે અલગ પડેલા એસિટેનિલાઇડને ગાળી લો અને તેને પાણી વડે ત્યાં સુધી ધુઓ કે જ્યાં સુધી ગાળણ લિટમસ પત્ર પ્રત્યે તટસ્થ ન બને.
- (vi) અપરિષ્કૃત (crude) એસિટેનિલાઈડનું ગરમ પાણી દ્વારા સ્ફટિકીકરણ કરો. સફેદ ચળકતા સોયાકાર સ્ફટિકો મળે છે.
- (vii) નીપજની પ્રાપ્તિ (જથ્થો) અને તેનું ગલનબિંદુ નોંધો.

સાવચેતીઓ :

- (a) જો એનિલીન વધારે ઘેરા રંગનું હોય તો પ્રયોગ કરતા પહેલાં તેને નિસ્યંદિત કરો, કારણ કે અશુદ્ધ એનિલીન નીપજની પ્રાપ્તિ ઘટાડે છે.
- (b) સંપૂર્ણપણે શુષ્ક સાધનસામગ્રી વાપરો.
- (c) એસિટાઈલ ક્લોરાઇડના ઉમેરણ દરમિયાન બહાર નીકળતી બાષ્યને શ્વાસમાં ન લો.
- (d) સંપૂર્ણપણે શુષ્ક થયેલ અને પુનઃ સ્ફટિકીકરણ પામેલા નમૂનાનું ગલનબિંદુ માપો.

પ્રયોગ 10.2

હેતુ :

ડાયબેન્ઝાલએસિટોન (ડાયબેન્ઝાઈલિડીનએસિટોન) બનાવવો

સિદ્ધાંત :

એલિફેટિક આલ્ડિહાઇડ અને કિટોન સંયોજનોનો α-હાઇડ્રૉજન પરમાશુ ઍસિડિક સ્વભાવનો હોવાના કારશે મંદ બેઈઝની હાજરીમાં આવું આલ્ડિહાઇડ અને કિટોન સંયોજન એક ઍરોમેટિક આલ્ડિહાઇડ સંયોજન સાથે સંઘનન કરીને α, β - અસંતૃપ્ત આલ્ડિહાઇડ અથવા કિટોન બનાવે છે. આ પ્રક્રિયાને ક્લેસન સ્મિટ પ્રક્રિયા (Claisen - Schmidt reaction) કહે છે. ઉદાહરણ તરીકે, બેન્ઝાલ્ડિહાઇડ જલીય સોડિયમ હાઇડ્રૉક્સાઇડની (NaOH) હાજરીમાં એસિટોન સાથે સંઘનન પામીને ડાયબેન્ઝાલએસિટોન બનાવે છે.

કાર્બનિક સંયોજનોની બનાવટ

: 3.15 g

: 3.2 mL

S

જરૂરી સામગ્રી:

• કોનિકલ ફ્લાસ્ક (250 mL)

• બીકર (250 mL)

• ગળણી

• ગલનબિંદુ માટેની સાધનસામગ્રી

*

: એક

: એક

: એક

: એક

• ઇથેનોલ

: 25 mL

• NaOH

• બેન્ઝાલ્ડિહાઇડ

• એસિટોન : 2.3 mL

• બરફ : જરૂરિયાત મુજબ

• ઇથાઇલ એસિટેટ : જરૂરિયાત મુજબ

પદ્ધતિ :

- (i) એક 250 mLના બીકરમાં લીધેલા 25 mL ઇથેનોલ અને 30 mL નિસ્યંદિત પાણીના મિશ્રણમાં 3.15 g સોડિયમ હાઇડ્રૉસાઇડનું દ્રાવણ બનાવો. બીકરને આશરે 20-25 °C તાપમાન જાળવી રાખેલા બરફ ભરેલા પાત્રમાં (ice bath) ઠંડું કરો.
- (ii) 3.2 mL બેન્ઝાલ્ડિહાઈડ અને 2.3 mL એસિટોનનું મિશ્રણ બનાવો અને આ મિશ્રણના અડધા ભાગને ધીમે-ધીમે તબક્કા (i)માં બનાવેલા બરફ જેવા ઠંડા NaOHના દ્રાવણમાં સતત હલાવતા રહીને ઉમેરો. 1-2 મિનિટમાં પોચા અવક્ષેપ બનશે. આ મિશ્રણને ધીમે-ધીમે પંદર મિનિટ સુધી હલાવતા રહો.
- (iii) 15 મિનિટ પછી બાકી રહેલા બેન્ઝાલ્ડિહાઈડ અને એસિટોનના મિશ્રણને ઉમેરો અને વધુ 30 મિનિટ સુધી મિશ્રણને હલાવો.
- (iv) આ રીતે મળતા આછા પીળા રંગના ઘન પદાર્થને ગાળો અને ઠંડા પાણી વડે ધુઓ. તેને શુષ્ક કરો અને તેના ઓછા જથ્થાનું ઇથેનોલ અથવા ઈથાઇલ એસિટેટ દ્વારા પુનઃ સ્ફટિકીકરણ કરો.
- (v) નીપજની પ્રાપ્તિ (જથ્થો) અને તેનું ગલનબિંદુ નોંધો.

પરિણામ :

- (a) ડાયબેન્ઝાલએસિટોનની પ્રાપ્તિ (જથ્થો) g છે.
- (b) ડાયબેન્ઝાલએસિટોનનું ગલનબિંદુ°C છે.

સાવચેતીઓ :

- (a) જ્યારે પ્રક્રિયા મિશ્રણને હલાવતા હોવ ત્યારે તાપમાન આશરે 20 ℃ જાળવો.
- (b) હંમેશાં તાજો નિસ્યંદિત કરેલો બેન્ઝાલ્ડિહાઇડ અથવા નવી બોટલ ખોલીને મેળવેલ નમૂનાનો ઉપયોગ કરો.

પ્રયોગ 10.3

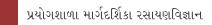
હેતુ :

p - નાઇટ્રોએસિટૅનિલાઇડ બનાવવો.

ઇથેનોલ

NaOH

બેન્ઝાલ્ડિહાઇડ



એસિટોન

ઇથાઈલ એસિટેટ

સિધ્ધાંત :

સાંદ્ર નાઇટ્રિક ઍસિડ અને સાંદ્ર સલ્ફયુરિક ઍસિડના મિશ્રણનો નાઇટ્રેશનકર્તા તરીકે ઉપયોગ કરી એસિટેનિલાઇડના નાઈટ્રેશન દ્વારા p - નાઈટ્રોએસિટેનિલાઈડ બનાવવામાં આવે છે. ઉપરોક્ત બે ઍસિડ સંયોજનોનું મિશ્રણ નાઇટ્રોનિયમ આયન (\mathbf{NO}_2^+) મુક્ત કરે છે, જે આ પ્રક્રિયામાં ઇલેક્ટ્રોન અનુરાગી પ્રક્રિયક તરીકે વર્તે છે.

$$HNO_3 + 2H_2SO_4 \longrightarrow + H_3O^+ + 2HSO_4^-$$

નાઇટ્રોનિયમ આયન એનિલાઇડ સમૂહ ધરાવતા બેન્ઝિન વલયના મુખ્યત્વે પેરા સ્થાન પર હુમલો કરીને મુખ્ય નીપજ તરીકે p - નાઇટ્રોએસિટેનિલાઈડ બનાવે છે. આ એરોમેટિક ઇલેક્ટ્રોન અનુરાગી વિસ્થાપન પ્રક્રિયાનું એક ઉદાહરણ છે.

ગમcoch
$$_3$$
 સાંદ્ર $_4$ મા $_2$ SO $_4$ $_4$ $_2$ SO $_4$ $_4$ ગમcoch એસિટેનિલાઇડ p - નાઇટ્રોએસિટેનિલાઇડ (મૃખ્ય નીપજ)

જરૂરી સામગ્રી:

- બીકર (100 mL)
- ગળણી
- કાચનો સળિયો
- બરફ રાખેલું પાત્ર

: એક

: એક

: એક : એક

• એસિટેનિલાઇડ

: 2 g

• ગ્લેસિઅલ એસિટિક ઍસિડ: 2 mL

• સાંદ્ર H₂SO₄ : 5 mL

• સાંદ્ર HNO₃ : 1.5 mL

બરફ : જરૂરિયાત મુજબ ઇથેનોલ / મિથેનોલ : જરૂરિયાત મુજબ

પદ્ધતિ :

(i) 2 g એસિટેનિલાઈડને $100 \, \text{mL}$ બીકરમાં લીધેલા $2 \, \text{mL}$ ગ્લેસિઅલ એસિટિક ઍસિડમાં ઓગાળો.

(ii) ઉપરોક્ત મિશ્રણમાં 4 mL સાંદ્ર સલ્ફયુરિક ઍસિડને મિશ્રણ હલાવતા રહી ધીમેધીમે ઉમેરો. મિશ્રણ ગરમ થશે અને પારદર્શક દ્રાવણ મળે છે. પ્રક્રિયા મિશ્રણને 0-5 ℃ તાપમાન જાળવી રાખેલા બરફ ભરેલા પાત્રમાં ઠંડું કરો.

(iii) $1.0 \, \mathrm{mL}$ સાંદ્ર $\mathrm{HNO_3}$ અને $1.0 \, \mathrm{mL}$ સાંદ્ર $\mathrm{H_2SO_4}$ ના ઠંડા મિશ્રણને ઘટ્ટ પ્રક્રિયા મિશ્રણમાં ટીપે ટીપે સતત હલાવતા રહીને ઉમેરો, જેથી પ્રક્રિયા મિશ્રણનું તાપમાન $10 \, ^{\mathrm{o}}\mathrm{C}$ થી વધી ન જાય.

(iv) બીકરને બરફ ભરેલા પાત્રમાંથી દૂર કરો અને પ્રક્રિયા મિશ્રણને ઓરડાના તાપમાને આવવા દો. તેને 30 મિનિટ સુધી ઓરડાના તાપમાને રહેવા દો. પ્રક્રિયા મિશ્રણને સતત હલાવો અને તેને 100 g બરફની છીણ (Curshed ice) પર રેડો.

(v) મિશ્રણને ખૂબ હલાવો અને મળતા સંયોજનને ગાળી લો.

એસિટિક ઍસિડ ગંભીર રીતે દઝાડે છે.

કાર્બનિક સંયોજનોની બનાવટ

- (vi) આ સંયોજનને ઠંડા પાણી વડે ધુઓ અને તેને શુષ્ક કરો.
- (vii) આછા પીળા રંગના ઘન પદાર્થના ઓછા જથ્થાનું આલ્કોહૉલ દ્વારા પુનઃ સ્ફટિકીકરણ કરો. p-નાઇટ્રોએસિટેનિલાઇડના રંગવિહીન સ્ફટિકો મળે છે. થોડી માત્રામાં બનેલો પીળો ઓર્થો-નાઇટ્રોએસિટેનિલાઇડ માતૃદ્રાવણમાં ઓગળેલો રહે છે.

(viii) નીપજની પ્રાપ્તિ (જથ્થો) અને શુદ્ધ સંયોજનનું ગલનબિંદુ નોંધો.

પરિણામ :

- (a) p નાઇટ્રોએસિટેનિલાઈડની પ્રાપ્તિ (જથ્થો) g છે.
- (b) p નાઇટ્રોએસિટેનિલાઈડનું ગલનબિંદુ ${}^{0}\!C$ છે.

સાવચેતીઓ :

- (a) નાઇટ્રેશનકર્તા મિશ્રણને ઉમેરતા સમયે પ્રક્રિયા મિશ્રણનું તાપમાન 10 °Cથી વધવા ન દો.
- (b) એસિટેનિલાઇડના દ્રાવણમાં સાંદ્ર નાઇટ્રિક ઍસિડ અને સલ્ફ્યુરિક ઍસિડના મિશ્રણને ધીમેથી અને કાળજીપૂર્વક ઉમેરો.

પ્રયોગ 10.4

હેતુ :

ફિનાઈલ - એઝો - β – નેપ્થોલ (એઝોરંગક) બનાવવો.

સિદ્ધાંત :

એનિલીન એક ઍરોમેટિક પ્રાથમિક એમાઈન છે. જ્યારે તેની 0-5 °C તાપમાને નાઇટ્રસ ઍસિડ સાથે પ્રક્રિયા કરવામાં આવે છે ત્યારે તે ડાયએઝોનિયમ ક્ષાર બનાવે છે. નાઇટ્રસ ઍસિડને સોડિયમ નાઇટ્રાઇટની હાઇડ્રૉક્લોરિક ઍસિડ સાથેની પ્રક્રિયાથી સ્વસ્થાને બનાવવામાં આવે છે. આ પ્રક્રમને ડાયએઝોટાઇઝેશન કહે છે. આ ડાયએઝોનિયમ ક્ષાર β–નેપ્થોલના બેઝિક દ્રાવણ સાથે યુગ્મિત થઈને નારંગી-લાલ એઝો રંગક બનાવે છે.

$$NH_{2} \xrightarrow{NaNO_{2} + HCl} \longrightarrow N=NCl$$

$$N=NCl^{-} + \longrightarrow N=N$$

$$\beta - નેપ્થોલ$$
ફિનાઇલ - એઝો - β - નેપ્થોલ
$$(નારંગી-લાલ રંગક)$$

પ્રયોગશાળા માર્ગદર્શિકા રસાયણવિજ્ઞાન

જરૂરી સામગ્રી :

• બીકર (250 mL)

કોનિકલ ફ્લાસ્ક (100 mL): એક

કાચનો સળિયો

થરમૉમિટર (210 °C)

• ગાળણપત્ર ઃ જરૂરિયાત મુજબ

ગળણી

• ગલનબિંદુ માટેની

સાધનસામગ્રી : એક • એનિલીન : 2 mL

 સાંદ્ર HC1 : 6.5 mL

• સોડિયમ નાઇટ્રાઈટ : 1.6 g

 β–નેપ્થોલ : 3.2 g

• સોડિયમ હાઇડ્રૉક્સાઇડ : 2.0 g

ગ્લેસિઅલ એસિટિક ઍસિડ : 12 mL

બરફ : જરૂરિયાત મુજબ

• નિસ્યંદિત પાણી : જરૂરિયાત મુજબ

પદ્ધતિ :

: એક

: એક

: એક

: એક

- 100 mLના બીકરમાં 6.5 mL સાંદ્ર હાઇડ્રૉક્લારિક ઍસિડ લો. તેને (i) 6.5 mL પાણી વડે મંદ કરો અને 2 mL એનિલીન તેમાં દ્રાવ્ય કરો.
- (ii) ઉપર્યુક્ત મિશ્રણવાળા બીકરને 0-5 °C તાપમાન જાળવી રાખેલા બરફ ભરેલા પાત્રમાં રાખીને તેમાંના મિશ્રણને ઠંડું કરો.
- 8 mL પાણીમાં 1.6 g સોડિયમ નાઇટ્રાઇટના બનાવેલા દ્રાવણના ઉમેરણ દ્વારા ઉપર્યુક્ત મિશ્રણનું ડાયએઝોટાઈટેશન કરો.
- 3.2 g β–નેપ્થોલને 18 mL 10 % સોડિયમ હાઇડ્રૉક્સાઇડના દ્રાવણમાં (iv)ઓગાળો. તેમાં 25 g બરફના નાના ટુકડા ઉમેરો.
- β–નેપ્થોલના દ્રાવણને વધુ સમય હલાવો અને દ્રાવણને સતત હલાવતા રહી (v)તેમાં ખૂબ ઠંડા કરેલા ડાયએઝોનિયમ ક્લોરાઇડના દ્રાવશને ખૂબ જ ધીમે-ધીમે ઉમેરો.
- ફિનાઇલ એઝો β–નેપ્થોલનો નારંગી લાલ રંગક બને છે.
- (vii) આ મિશ્રણને બરફ પાત્રમાં 30 મિનિટ સુધી રહેવા દો. સમયાંતરે તેને હલાવતા રહો.
- (viii) મળેલાં સ્ફટિકોને ગાળો અને ઠંડા પાણી વડે તેમને સારી રીતે ધુઓ.
- અપરિષ્કૃત નીપજના ચોથા ભાગનું ગ્લેસિઅલ એસિટિક ઍસિડ વડે પુનઃ (ix)સ્ફટિકીકરણ કરો.
- (x) પુનઃ સ્ફટિકીકરણ પામેલા નમૂનાને ગાળો, એસિટિક ઍસિડને દૂર કરવા માટે થોડા આલ્કોહૉલ વડે સ્ફટિકોને ધુઓ. પુનઃ સ્ફટિકીકરણ પામેલા નમૂનાને ગાળણપત્રની ગડીઓ વચ્ચે શુષ્ક કરો.
- નીપજની પ્રાપ્તિ (જથ્થો) અને સંયોજનનું ગલનબિંદુ નોંધો.

પરિણામ :

- (a) ફિનાઇલ એઝો β નેપ્યોલની પ્રાપ્તિ (જથ્થો) g છે.
- (b) ફિનાઇલ એઝો β નેપ્થોલનું ગલનબિંદુ $^{\circ}$ C છે.

કાર્બનિક સંયોજનોની બનાવટ

સાવચેતીઓ :

- (a) ડાયએઝોટાઇઝેશન દરમિયાન તાપમાનનો ગાળો 0-5 °Cનો જાળવો.
- (b) રંગક બનાવવા માટે હંમેશાં ડાયએઝોનિયમ ક્લોરાઇડના દ્રાવણને બેઝિક β–નેપ્થોલમાં ઉમેરો, પરંતુ તેનાથી વિપરીત નહિ.
- (c) ગલનબિંદુના માપન માટે પુનઃ સ્ફટિકીકરણ પામેલા નમૂનાને સંપૂર્ણપણે શુષ્ક કરો.

નોંધ : એઝો રંગક સંશ્લેષણ મુખ્યત્વે એટલું જથ્થાત્મક હોય છે કે તેથી પ્રક્રિયકોનો જથ્થો સમીકરણો મુજબ લેવો જોઈએ. કેટલાક પ્રક્રિયકોના વધુ પડતા પ્રમાણના કારણે બિનવપરાયેલા પદાર્થનું વિઘટન થઈ શકે છે અને ડામર (tar) પદાર્થ બને છે.

પ્રયોગ 10.5

હેતુ :

એનિલીન પીળો (p - એમિનો-એઝોબેન્ઝિન) બનાવવો

સિદ્ધાંત :

એનિલીનની દ્રાવક તરીકેની હાજરીમાં ડાયએઝોએમિનોબેન્ઝિનની એનિલીન હાઇડ્રૉક્લોરાઇડના થોડા જથ્થા સાથેની પુનર્વિન્યાસ પ્રક્રિયા દ્વારા p - એમિનો બેન્ઝિનને વધુ જથ્થામાં બનાવી શકાય છે. આ પરિવર્તનનું રસાયણવિજ્ઞાન નીચે મુજબ છે :

ઉપર્યુક્ત પ્રક્રિયાને માત્ર નિર્બળ ઍસિડિક પરિસ્થિતિઓમાં જ કરવામાં આવે છે.

જરૂરી સામગ્રી:

• કોનિકલ ફ્લાસ્ક (100 mL) : એક

• થરમૉમિટર : એક

• ગળણી : એક

• ગલનબિંદુ માટેની સાધનસામગ્રી : એક • જળઉષ્મક : એક

• ડાયએઝોએમિનોબેન્ઝિન

: 3 g • એનિલીન : 7 mL

• એનિલીન હાઇડ્રૉક્લોરાઇડ : 1.5 g

• ગ્લેસિઅલ એસિટિક ઍસિડ :9 mL

• કાર્બન ટેટ્રાક્લોરાઇડ : 9 mL

પ્રયોગશાળા માર્ગદર્શિકા રસાયણવિજ્ઞાન

પદ્ધતિ :

- (i) 100 mLના કોનિકલ ફ્લાસ્કમાં લીધેલા 7 mL એનિલીનમાં 3 g ડાયએઝોએમિનોબેન્ઝિનના બારિક પાઉડરને ઓગાળો.
- (ii) ઉપર્યુક્ત મિશ્રણમાં 1.5 g એનિલીન હાઇડ્રૉક્લોરાઇડના બારિક પાઉડરને ઉમેરો.
- (iii) મિશ્રણને થોડા-થોડા સમયે હલાવતા રહીને જળઉષ્મક પર 40-45 °C તાપમાને એક કલાક સુધી ગરમ કરો.
- (iv) જળઉષ્મકમાંથી ફ્લાસ્કને દૂર કરો અને તે પ્રક્રિયા મિશ્રણને ઓરડાના તાપમાને30 મિનિટ સુધી સ્થિર સ્થિતિમાં રહેવા દો.
- (v) વધુ પ્રમાણમાં એનિલીનને તેના પાણીમાં દ્રાવ્ય એસિટેટ સંયોજનમાં રૂપાંતરિત કરવા માટે 9 mL ગ્લેસિઅલ એસિટિક ઍસિડને તેટલા જ કદના પાણીમાં મંદ કરીને પ્રક્રિયા મિશ્રણને સતત હલાવતા રહો.
- (vi) મિશ્રણને 15 મિનિટ સુધી રહેવા દો. થોડા-થોડા સમયે મિશ્રણને હલાવતા રહો.
- (vii) p-એમિનોએઝોબેન્ઝિનને ગાળો, થોડા ઠંડા પાણી વડે ધુઓ અને ગાળણપત્રની ગડીઓ વચ્ચે તેને શુષ્ક કરો.
- (viii) અપરિષ્કૃત p એમિનોએઝોબેન્ઝિનના થોડા જથ્થાનું કાર્બન ટેટ્રાક્લોરાઇડ દ્વારા પુનઃ સ્ફટિકીકરણ કરો.
- (ix) નીપજની પ્રાપ્તિ (જથ્થો) અને p-એમિનોએઝોબેન્ઝિનનું ગલનબિંદુ નોંધો.

પરિણામ :

p - એમિનોએઝોબેન્ઝિનની પ્રાપ્તિ (જથ્થો) g છે અને તેનું ગલનબિંદુ $^{\circ}$ C છે.

સાવચેતીઓ :

- (a) પ્રક્રિયા મિશ્રણનું તાપમાન આશરે 40-50 °C જેટલું જાળવો.
- (b) અપરિષ્કૃત નીપજને પાણીના થોડા-થોડા જથ્થાથી વારંવાર ધુઓ.
- (c) સંપૂર્ણપણે શુષ્ક નમૂનાનું ગલનબિંદુ નોંધો.

એનિલીન પીળો બનાવવા માટેની વૈકલ્પિક પદ્ધતિ

સિદ્ધાંત :

એનિલીન પીળાને પણ ફિનાઇલ - એઝો - β – નેપ્થોલની જેમ સીધા જ ડાયએઝોટાઈઝેશન અને યુગ્મન દ્વારા બનાવી શકાય છે. જોકે ડાયએઝોનિયમ ક્ષારનું એનિલીન અથવા અન્ય કોઈ ઍરોમેટિક એમાઈન સાથેનું યુગ્મન નિર્બળ ઍસિડિક માધ્યમમાં કરવામાં આવે છે.

એનિલીન

એસિટિક ઍસિડ

ગંભીર રીતે

કાર્બનિક સંયોજનોની બનાવટ

જરૂરી સામગ્રી:

• ગુળણી

• કોનિકલ ફ્લાસ્ક (100 mL) : એક

• થરમૉમિટર : એક

• ગલનબિંદુ માટેની સાધનસામગ્રી : એક

: એક

• એનિલીન

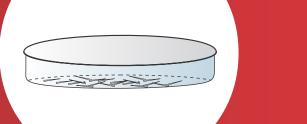
નેલીન ∶ 6 mL

• 1.0 M HCl : 4 mL

• કાર્બન ટેટ્રાક્લોરાઇડ ઃ જરૂરિયાત મુજબ

પદ્ધતિ :

- (i) 2 mL એનિલીનનો ઉપયોગ કરીને ફિનાઇલ-એઝો β નેપ્થોલ રંગકની બનાવટ માટે વર્ષવેલ પદ્ધતિ (જુઓ પ્રયોગ 10.4) મુજબ બેન્ઝિન ડાયએઝોનિયમ ક્લોરાઇડનું દ્રાવણ બનાવો.
- (ii) 4 mL 1.0 M HClમાં 4 mL એનિલીનનું દ્રાવણ બનાવો.
- (iii) એનિલીન હાઇડ્રૉક્લૉરાઇડના ઠંડા દ્રાવણને ધીમે-ધીમે બેન્ઝિન ડાયએઝોનિયમ ક્લોરાઇડના ઠંડા દ્રાવણમાં ઉમેરો.
- (iv) પીળા સંયોજનને ગાળો અને તેને ગાળશપત્રની ગડીઓ વચ્ચે શુષ્ક કરો.
- (v) અપરિષ્કૃત નમૂનાના થોડા જથ્થાનું કાર્બન ટેટ્રાક્લોરાઇડ દ્વારા પુનઃ સ્ફટિકીકરણ કરો તથા નીપજની પ્રાપ્તિ (જથ્થા) અને ગલનબિંદુ નોંધો.



ચર્ચાત્મક પ્રશ્નો :

- (i) એસિટાઇલેશન પ્રક્રિયા માટે એસિટિક એનહાઇડ્રાઇડને એસિટાઇલ ક્લોરાઇડની સાપેક્ષે શા માટે વધુ પસંદ કરવામાં આવે છે ?
- (ii) p-નાઇટ્રોએસિટેનિલાઇડની બનાવટમાં અન્ય અલ્પનીપજ (Minor product) કઈ બને છે ? આ સંયોજન કયું છે અને તેને p-નાઇટ્રોએસિટેનિલાઇડથી કેવી રીતે અલગ કરી શકાય છે ?
- (iii) શું પ્રક્રિયા દ્વારા મળેલા સંયોજનનું પુનઃ સ્ફટિકીકરણ કરવું આવશ્યક છે ? શા માટે ? સમજાવો.
- (iv) કાર્બનિક સંયોજનનું પુનઃ સ્ફટિકીકરણ કેવી રીતે કરવામાં આવે છે ?
- (v) એસિટાઇલેશનમાં એસિટિક ઍસિડ અથવા પિરિડીનની શું ભૂમિકા હોય છે ?
- (vi) અપરિષ્કૃત ઘન સંયોજનને કેવી રીતે શુદ્ધ કરવામાં આવે છે ?
- (vii) નીચે દર્શાવેલાં સંયોજનો પૈકી કોની સાથે ડાયએઝોટાઇઝેશન કર્યા બાદ β–નેપ્થોલ સાથે યુગ્મન કરવાથી એઝોરંગક બનશે ? (a) p - ટોલ્યુડિન (b) બેન્ઝાઇલએમાઇન (c) N - મિથાઇલએનિલીન
- (viii) સામાન્ય રીતે ડાયએઝોનિયમ ક્લોરાઇડ સંયોજનો શા માટે પાણીમાં દ્રાવ્ય હોય છે ?
- (ix) પ્રયોગશાળામાં મિથાઈલ ઓરેન્જને કેવી રીતે બનાવવામાં આવે છે ?
- (x) ફિનોલ અને એનિલીનને રાસાયણિક રીતે કેવી રીતે વિભેદિત કરી શકાય છે ?
- (xi) એનિલીન હાઇડ્રૉક્લોરિક ઍસિડમાં દ્રાવ્ય છે જ્યારે પાણીમાં તે અદ્રાવ્ય છે. શા માટે ?
- (xii) એનિલીન, એમોનિયા કરતાં શા માટે નિર્બળ બેઈઝ છે ?
- (xiii) ઍરોમેટિક એમાઈન સંયોજનોથી વિપરીત એલિફેટિક એમાઈન સંયોજનો સ્થાયી ડાયએઝોનિયમ ક્ષાર બનાવતા નથી. શા માટે ?

એકમ 11 કાર્બોહાઇડ્રેટ, ચરબી અને પ્રોટીન સંયોજનોની કસોટીઓ (Tests for Carbohydrates, Fats and Proteins)

પ્રયોગ 11.1

શુદ્ધ સ્વરૂપમાં રહેલા કાર્બોહાઇડ્રેટ, ચરબી અને પ્રોટીન સંયોજનોની લાક્ષણિકતાઓનો અભ્યાસ અને આપેલા ખાદ્યપદાર્થોમાં તેમની હાજરીની પરખ.

1. શુદ્ધ સ્વરૂપમાં રહેલા કાર્બોહાઇડ્રેટ, ચરબી અને પ્રોટીન સંયોજનોની કસોટી

A. કાર્બોહાઇડ્રેટ સંયોજનો માટેની કસોટીઓ સિદ્ધાંત :

કાર્બોહાઇડ્રેટ સંયોજનો પ્રકાશક્રિયાશીલ પોલિહાઇડ્રૉક્સિ આલ્ડિહાઇડ સંયોજનો, પોલિહાઈડ્રૉક્સિ કિટોન સંયોજનો અથવા એવાં સંયોજનો છે કે જેના જળવિભાજનથી આવા એકમો નીપજે છે. સ્ટાર્ચ, સેલ્યુલોઝ અને શર્કરાઓ કાર્બોહાઇડ્રેટ સંયોજનોના જાણીતા ઉદાહરણો છે. કાર્બોહાઇડ્રેટ સંયોજનોને તેમના જળવિભાજનથી મળતા પોલિહાઇડ્રૉક્સિ આલ્ડિહાઇડ અથવા કિટોન એકમોની સંખ્યાના આધારે વર્ગીકૃત કરવામાં આવે છે. ત્રણ મુખ્ય વર્ગો નીચે દર્શાવ્યા મુજબના છે :

- (i) મોનોસેકેરાઇડ સંયોજનો : આ સંયોજનો વધુ આગળ પોલિહાઇડ્રૉક્સિ આલ્ડિહાઇડ અથવા કિટોન સંયોજનોમાં જળવિભાજન પામતા નથી.
- (ii) ઓલિગોસેકેરાઇડ સંયોજનો : આ સંયોજનો જળવિભાજન દ્વારા 2-10 મોનોસેકેરાઇડ એકમો નીપજાવે છે. આ પૈકી ડાયસેકેરાઇડ સંયોજનો વધુ સામાન્ય છે, જે બે મોનોસેકેરાઇડ એકમો નીપજાવે છે.
- (iii) પોલિસેકેરાઇડ સંયોજનો : આ સંયોજનો જળવિભાજન દ્વારા મોટી સંખ્યામાં મોનોસેકેરાઇડ એકમો નીપજાવે છે.

મોનોસેકેરાઇડ સંયોજનોનું વધુ આગળ વર્ગીકરણ તેમનામાં હાજર રહેલા કાર્બન પરમાણુઓની સંખ્યા અને ક્રિયાશીલ સમૂહના આધારે કરવામાં આવે છે. જો મોનોસેકેરાઇડ સંયોજનો આલ્ડિહાઇડ સમૂહ ધરાવતા હોય તો તે આલ્ડોઝ કહેવાય છે. જો કિટો સમૂહ ધરાવે તો તેને ક્રિટોઝ કહેવાય છે. કાર્બોહાઇડ્રેટ સંયોજનોના બધા વર્ગો મોલિશ કસોટી (Molisch's test) આપે છે. જે કાર્બોહાઈડ્રેટ સંયોજનો સ્વાદમાં મીઠાં હોય છે તે શર્કરાઓ કહેવાય છે. ગ્લુકોઝ, ફ્રુકટોઝ (ફળશર્કરા) અને સુક્રોઝ (ખાંડ) શર્કરાઓનાં ઉદાહરણો છે. શર્કરાઓને બે મુખ્ય પ્રકારો : રિડક્શનકર્તા શર્કરાઓ અને બિનરિડક્શનકર્તા શર્કરાઓમાં વર્ગીકૃત કરવામાં આવે છે. શર્કરાઓનાં રિડક્શનકર્તા ગુણધર્મને ત્રણ કસોટીઓ ફેહલિંગ કસોટી, બેનેડિક્ટ કસોટી અને ટોલેન્સ કસોટી દ્વારા પારખી શકાય છે.

્લુકોઝ, ફ્રુકટોઝ અને સુક્રોઝના 1 % ધરાવતા સંગ્રહ દ્રાવણને જુદા-જુદા બીકરમાં બનાવો તથા દરેક દ્રાવણને A, B, C અને D વગેરેથી ચિહ્નિત કરેલી કસનળીઓમાં વહેંચો અને નીચે દર્શાવેલી કસોટીઓ કરો.

કાર્બોહાઇડ્રેટ, ચરબી અને પ્રોટીન સંયોજનોની કસોટીઓ

I. મોલિશ કસોટીનો સિદ્ધાંત

1-નેપ્યોલનું આલ્કોહૉલિય દ્રાવણ ધરાવતા કાર્બોહાઇડ્રેટના જલીય દ્રાવણમાં સાંદ્ર સલ્ફ્યુરિક ઍસિડ ઉમેરતા બે પ્રવાહીઓના સંગમ સ્થાને ઘેરો જાંબલી રંગ જોવા મળે છે. સાંદ્ર સલ્ફ્યુરિક ઍસિડ કાર્બોહાઇડ્રેટના ગ્લાયકોસિડિક બંધનું જળવિભાજન કરીને મોનોસેકેરાઈડ સંયોજનો બનાવે છે, જેઓ ફુરફુરાલ તરીકે ઓળખાતા એક આલ્ડિહાઇડમાં નિર્જળીકરણ પામે છે, જે 1-નેપ્યોલ સાથે પ્રક્રિયા કરીને ઘેરા જાંબલી રંગની અસ્થાયી સંઘનન નીપજ બનાવે છે. આ કસોટી કેટલાંક અન્ય કાર્બનિક સંયોજનો પણ આપે છે. આ પ્રક્રિયા નીચે મુજબ થાય છે:

R = H; આલ્ડોપેન્ટોઝ $R = CH_2OH$; આલ્ડોહેક્સોઝ

CH₂OH
C=O R O CH₂OH
$$\xrightarrow{H^+}$$
 OH $\xrightarrow{-H_2O}$ R O CHO $\xrightarrow{-2H_2O}$ R O CHO $\xrightarrow{1-$ નેપ્યોલ $\xrightarrow{}$ જાંબલી રંગની નીપજ CHOH HO OH $\xrightarrow{}$ R = H; ફરફરાલ R = CH₂OH; 5-હાઇદ્રૉકિસમિથાઇલ ફ્રુરફ્રરાલ R = H; ફિટોપેન્ટોઝ

$R = CH_2OH;$ િકટોહેક્સોઝ

• કસનળીઓ

: જરૂરિયાત મુજબ

• કસનળી સ્ટૅન્ડ

: એક

• કસનળી હોલ્ડર

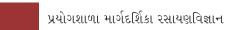
. -7.

● બીકર (100 mL)

: એક : એક

• alic 1

• ગ્લુકોઝ, ફ્રુકટોઝ, ખાંડ (સુક્રોઝ): જરૂરિયાત મુજબ


• 1-નેપ્થોલનું આલ્કોહૉલિય

દ્રાવણ : જરૂરિયાત મુજબ

• સાંદ્ર H,SO₄ : જરૂરિયાત મુજબ

પદ્ધતિ :

કસનળી 'A'માં 1%1-નેપ્થોલના આલ્કોહૉલિય દ્રાવણનાં 2-3 ટીપાં ઉમેરો. ત્યાર બાદ તેમાં $2\,\mathrm{mL}$ સાંદ્ર $\mathrm{H_2SO_4}$ ને કસનળીની દીવાલને અડકાડીને રેડો, જેથી કસનળીના તળિયે અલગ સ્તર બનાવે છે. બે સ્તરોના સંગમસ્થાને રચાતું જાંબુડિયા રંગનું વલય કાર્બોહાઇડ્રેટ સંયોજનોની હાજરી નિશ્ચિત કરે છે.

II રિડકશનકર્તા શર્કરાઓની કસોટીનો સિદ્ધાંત

A. ફેહલિંગ કસોટી અને બેનેડિક્ટ કસોટી

આલ્ક્લાઇન દ્રાવણમાં કૉપર હાઇડ્રૉક્સાઇડના નિલંબનને ગરમ કરતા કાળો કૉપર (II) ઑક્સાઇડ બને છે.

$$\operatorname{Cu(OH)}_2 \longrightarrow \operatorname{CuO} + \operatorname{H}_2\operatorname{O}$$

કૉપર (II) ઑક્સાઇડ
(કાળો)

જો પ્રક્રિયા માધ્યમમાં કોઈ રિડક્શનકર્તા હાજર હોય તો નારંગી-લાલ રંગનો કૉપર (I) ઑક્સાઇડ અવક્ષેપિત થાય છે.

$$2Cu(OH)_2 \longrightarrow Cu_2O + 2H_2O + [O]$$

કૉપર (I) ઑક્સાઇડ
(નારંગી-લાલ)

રિડક્શનકર્તા શર્કરાઓ આલ્ડિહાઇડ સમૂહ અથવા α – હાઇડ્રૉક્સિ કિટોન સમૂહ ધરાવે છે તેથી આલ્ક્લાઇન માધ્યમમાં Cu^{2+} આયનોનું રિડક્શન થાય છે. પરંતુ જો પ્રક્રિયા સીધી આલ્ક્લીની હાજરીમાં કરવામાં આવે તો કૉપર (II) હાઇડ્રૉક્સાઇડ અવક્ષેપિત થાય છે. આ મુશ્કેલીના નિવારણ માટે, કૉપર (II) આયનોનું ટાર્ટરેટ આયનો (ફેહલિંગ પ્રક્રિયક) અથવા સાઇટ્રેટ આયનો (બેનેડિકટ પ્રક્રિયક) સાથે સંકીર્ણ સંયોજન બનાવવામાં આવે છે. બંને સંકીર્ણ આયનો આલ્ક્લાઇન માધ્યમમાં દ્રાવ્ય છે અને તે Cu^{2+} આયનોની એટલી નીચી સાંદ્રતા ઉત્પન્ન કરે છે કે જે ક્યુપ્રિક હાઇડ્રૉકસાઇડના દ્રાવ્યતા ગુણાકાર સુધી પહોંચતી નથી.

રિડક્શનકર્તા શર્કરાઓ ફેહલિંગ પ્રક્રિયક સાથે નીચે દર્શાવ્યા મુજબ પ્રક્રિયા કરે છે :

RCHO +
$$2Cu^{2+}$$
 + $5OH^- \longrightarrow RCOO^- + Cu_2O + 3H_2O$
(નારંગી-લાલ
અવક્ષેપ)

 Cu^{2+} આયનોના કારણે જોવા મળતા વાદળી રંગનું દૂર થવું અને Cu_2O ના નારંગી-લાલ અવક્ષેપનું બનવું તે શર્કરાઓનો રિડક્શનકર્તા ગુણધર્મ સૂચવે છે.

સુક્રોઝ (ડાયસેકેરાઇડ) $\frac{}{}$ ફહલિંગ \rightarrow પ્રક્રિયા થતી નથી.

NaOH (aq)

કેટલીક વખત ક્યુપ્રસ અવક્ષેપ પીળા ક્યુપ્રસ હાઇડ્રૉકસાઇડ તરીકે બને છે, પરંતુ તેને સહેજ ગરમ કરતાં તે નારંગી-લાલ કૉપર (I) ઑક્સાઇડમાં રૂપાંતર પામે છે.

આલ્કોહૉલ

 H_2SO_4

જોખમી ચેતવણી

 1-ને પ્યોલની ઊંચી સાંદ્રતા શરીરની બધી પેશીઓ માટે આત્યંતિક વિનાશક છે.

કાર્બોહાઇડ્રેટ, ચરબી અને પ્રોટિન સંયોજનોની કસોટીઓ

કેટલાક કિસ્સાઓમાં, આ પ્રક્રિયાને રુધિર અને પેશાબ વગેરેમાં રિડક્શનકર્તા શર્કરાઓના માપન માટે જથ્થાત્મક વૈશ્લેષિક પ્રક્રમ તરીકે ઉપયોગમાં લઈ શકાય છે.

બધા મોનોસેકેરાઇડ રિડક્શનકર્તા શર્કરાઓ છે. મુક્ત હેમી-એસિટાલ સમૂહ

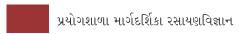
કુદરતી રીતે મળતી મોટા ભાગની ડાયસેકેરાઇડ શર્કરાઓ રિડક્શનકર્તા શર્કરાઓ છે (સુક્રોઝ અપવાદ છે.)

B. ટોલેન્સ કસોટી

ટોલેન્સ પ્રક્રિયક સિલ્વર નાઇટ્રેટનું એમોનિયામય દ્રાવણ છે. રિડક્શનકર્તા શર્કરા સિલ્વર આયનોનું ધાત્વીય સિલ્વરમાં રિડક્શન કરે છે, જે કસનળીની અંદરની સપાટી પર જમા થઈને રજત દર્પણ (Silver mirror) બનાવે છે. આ પ્રક્રિયા નીચે મુજબ થાય છે:

 $RCHO + 2[Ag(NH_3)_2]^+ + 2OH^- \longrightarrow 2Ag + RCOONH_4 + H_2O + 3NH_3$

જરૂરી સામગ્રી:


પદ્ધતિ :

A. ફેહલિંગ કસોટી

એક કસનળીમાં ફેહલિંગ દ્રાવણો A અને B બંનેના 1 mL મિશ્ર કરો અને તેને કસનળી Bમાં ઉમેરો. કસનળીમાંના મિશ્રણને જળઉષ્મકમાં ગરમ કરો. બનતા નારંગી-લાલ અવક્ષેપ રિડક્શનકર્તા શર્કરાની હાજરી સૂચવે છે.

B. બેનેડિક્ટ કસોટી

કસનળી Cમાં 1 mL બેનેડિક્ટ પ્રક્રિયક ઉમેરો અને મિશ્રણને ઉકળે ત્યાં સુધી જળઉષ્મકમાં 2 મિનિટ માટે ગરમ કરો. કૉપર (I) ઑક્સાઇડ બનવાના કારણે ઉત્પન્ન થતા નારંગી-લાલ અવક્ષેપ રિડક્શનકર્તા શર્કરાની હાજરી સૂચવે છે.

રિસોર્નિસોલ

ફરફરાલ

C. ટોલેન્સ કસોટી

ટોલેન્સ પ્રક્રિયક બનાવવા માટે 1 mL સિલ્વર નાઇટ્રેટના જલીય દ્રાવણમાં જ્યાં સુધી સિલ્વર ઑક્સાઇડના અવક્ષેપ ન મળે ત્યાં સુધી ટીપે-ટીપે સોડિયમ હાઇડ્રૉક્સાઇડનું દ્રાવણ ઉમેરો. હવે આ મિશ્રણને હલાવતા જઈ તેમાં એમોનિયમ હાઇડ્રૉક્સાઇડનું દ્રાવણ ઉમેરો કે જેથી શરૂઆતમાં મળેલા સિલ્વર ઑક્સાઈડના અવક્ષેપ ઓગળી જાય. આ પ્રક્રિયકને શર્કરાનું દ્રાવણ ધરાવતી D કસનળીમાં ઉમેરો અને આ પ્રક્રિયા મિશ્રણને જળઉષ્મક પર ગરમ કરો. કસનળીની અંદરની દીવાલ પર બનતું રજતદર્પણ રિડક્શનકર્તા શર્કરાની હાજરી દર્શાવે છે.

ચેતવણી!

આ કસનળીને સીધી જયોત પર કદી ગરમ ન કરવી, તેનાથી **વિસ્ફોટન** થઈ શકે છે.

III. મોનોસેકેરાઇડને ડાયસેકેરાઇડથી વિભેદિત કરવાની કસોટીનો સિદ્ધાંત

બારફોડ કસોટી

આ પ્રક્રિયક ક્યુપ્રિક એસિટેટનું એસિટિક ઍસિડમાં દ્રાવણ છે. તે નિર્બળ ઍસિડિક છે અને તે માત્ર મોનોસેકેરાઈડ શર્કરાઓ દ્વારા રિડકશન પામે છે. ડાયસેકેરાઇડને લાંબા સમય સુધી ઉકાળવાથી તેનું જળવિભાજન થાય છે અને ખોટી હકારાત્મક કસોટી મળી શકે છે. મોનોસેકેરાઇડ શર્કરાઓ આ પ્રક્રિયક સાથે 5 મિનિટમાં જ પ્રક્રિયા કરીને કૉપર (I) ઑક્સાઇડના ઇંટ જેવા લાલ રંગના અવક્ષેપ આપે છે. ડાયસેકેરાઇડ શર્કરાઓ આ પ્રક્રિયા કરવા માટે લાંબો સમય લે છે કારણ કે આલ્ડિહાઇડ સમૂહ, એસિટાલ સાંકળમાં જોડાયેલો હોય છે.

RCHO + $2Cu^{2+} \longrightarrow RCOOH + Cu_2O$ મોનોસેકેરાઇડ ઇંટ જેવો લાલ

મળતાં ક્યુપ્રસ ઑક્સાઇડના અવક્ષેપ ઓછા ભારે હોય છે અને તેનો રંગ નારંગી-લાલના બદલે ઈંટ જેવો લાલ હોય છે.

જરૂરી સામગ્રી:

પદ્ધતિ :

1 % શર્કરાના દ્રાવણનાં 10 ટીપાંને એક કસનળીમાં લો અને તેમાં 1 mL બારફોડ પ્રક્રિયક ઉમેરો. કસનળીમાંના મિશ્રણને ઉકળે ત્યાં સુધી જળઉષ્મકમાં 5 મિનિટ માટે ગરમ કરો. નારંગી-લાલ અવક્ષેપનું બનવું મોનોસેકેરાઇડ શર્કરાઓની હકારાત્મક કસોટી સૂચવે છે. ડાયસેકેરાઇડ શર્કરાઓ આ કસોટી આપતા નથી.

કાર્બોહાઇડ્રેટ, ચરબી અને પ્રોટિન સંયોજનોની કસોટીઓ

સુક્રોઝ માટે કસોટી

આ કસોટી કરવા માટે સુક્રોઝનું જળવિભાજન કરવામાં આવે છે. આ માટે 5 mL 1 % સુક્રોઝના દ્રાવણમાં સાંદ્ર HClનાં 5 ટીપાં ઉમેરવામાં આવે છે અને આ મિશ્રણને ઉકળતા પાણીવાળા જળઉષ્મકમાં ગરમ કરો. મિશ્રણને ઠંડું કરો અને તેને તટસ્થ અથવા સહેજ બેઝિક દ્રાવણ બનાવવા માટે તેમાં NaOHનું દ્રાવણ ઉમેરો. રિડક્શનકર્તા શર્કરા માટે આ કસોટી કરો તથા જળવિભાજિત નીપજ સાથે નીચે દર્શાવેલી સેલિવાનોફ કસોટી (Seliwanoff's test) કરો અને તમારાં પરિણામો નોંધો.

IV. કિટોઝને આલ્ડોઝથી વિભેદિત કરવાની કસોટી

સેલિવાનોફ કસોટી

કિટોઝ સંયોજનો ઍસિડિક પરિસ્થિતિમાં વધુ ઝડપી નિર્જળીકરણ પામીને ફુરફુરાલ આપે છે, જે રિસોર્સિનોલ (1, 3 - ડાયહાઇડ્રૉક્સિ બેન્ઝિન) સાથે પ્રક્રિયા કરીને રંગીન નીપજ આપે છે.

CH₂OH
$$C=O$$
 R CH_2OH H^+ $-H_2O$ H $CHOH$ HO $CHOH$ HO $CHOH$ HO $CHOH$ HO $CHOH$ HO $CHOH$ $R=H;$ ફરફરાલ $R=CH_2OH;$ $5-હાઇ$ દ્રોક્સ મિથાઇલ ફરફરાલ

R = H; કિટોપેન્ટોઝ $<math>R = CH_2OH;$ કિટોહેક્સોઝ

કિટોહેક્સોઝ સંયોજનો લાલ રંગ આપે છે અને કિટોપેન્ટોઝ સંયોજનો વાદળી-લીલો રંગ આપે છે. આલ્ડોઝ સંયોજનો આ રંગ આપવા માટે લાંબો સમય લે છે કારણ કે આવી જ પરિસ્થિતિઓમાં આલ્ડોઝ સંયોજનો ધીમેથી ફુરફુરાલ બનાવે છે. જેનું સંભવિત કારણ એ છે કે નિજળીંકરણથી ફુરફુરાલ બનતા પહેલાં β – વિલોપન જરૂરી છે. તેથી લાંબો સમય ગરમ કરવાનું ટાળવું જોઈએ.

R = H; આલ્ડોપેન્ટોઝ R = $\mathrm{CH_2OH}$; આલ્ડોહેક્સોઝ

પ્રયોગશાળા માર્ગદર્શિકા રસાયણવિજ્ઞાન

જરૂરી સામગ્રી :

• કસનળીઓ : જરૂરિયાત મુજબ

• કસનળી સ્ટૅન્ડ : એક

: એક • કસનળી હોલ્ડર

• બીકર (100 mL) : એક : એક

• જળઉષ્મક : એક • બુન્સેન બર્નર

• ગ્લુકોઝ, ફ્રૂક્ટોઝ, શર્કરા

: જરૂરિયાત મુજબ (સુક્રોઝ)

: જરૂરિયાત મુજબ • સેલિવાનોફ પ્રક્રિયક

પદ્ધતિ :

એક કસનળીમાં લીધેલા 1 % શર્કરા દ્રાવણનાં 10 ટીપાંમાં 2 mL સેલિવાનોફ પ્રક્રિયક ઉમેરો. આ કસનળીને 2 મિનિટ માટે ઉકળતા પાણીમાં ગરમ કરો. કિટોહેક્સોઝ સંયોજનો લાલ રંગ આપે છે. કિટોપેન્ટોઝ સંયોજનો વાદળી-લીલો રંગ આપે છે. આલ્ડોઝ સંયોજનો 2 મિનિટમાં રંગ આપતા નથી.

${f V}$. પોલિસેકેરાઇડસંયોજનો (સ્ટાર્ચ) માટેની કસોટીનો સિદ્ધાંત

સ્ટાર્ચ, આયોડિનના દ્રાવણ સાથે સ્ટાર્ચ આયોડાઇડ સંકીર્ણ સંયોજન બનવાને કારણે વાદળી રંગ આપે છે. ઘઉં, ચોખા, મકાઈ, બટાટા વગેરેમાં સ્ટાર્ચ રહેલો હોય છે.

જરૂરી સામગ્રી:

• કસનળીઓ : જરૂરિયાત મુજબ

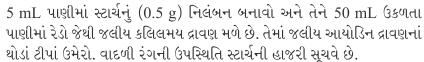
• કસનળી સ્ટૅન્ડ : એક

: એક • કસનળી હોલ્ડર

: એક • બીકર (100 mL)

• જળઉષ્મક : એક

• બુન્સેન બર્નર : એક


• સ્ટાર્ચ દ્રાવણ

ઃ જરૂરિયાત મુજબ

• આયોડિન દ્રાવણ : જરૂરિયાત મુજબ

પદ્ધતિ :

આયોડિન કસોટી

B. તૈલીપદાર્થો અને ચરબીયુક્ત પદાર્થો માટે કસોટી

સિદ્ધાંત :

આ પદાર્થો ગ્લિસરોલ અને લાંબી શુંખલાવાળા ફેટિઍસિડનાં ઍસ્ટર સંયોજનો છે અને તેઓ ટ્રાયગ્લિસરાઇડ સંયોજનો તરીકે ઓળખાય છે. જે ટ્રાયગ્લિસરાઇડ સંયોજનો ઓરડાના તાપમાને પ્રવાહી સ્વરૂપે છે તેઓ તૈલી પદાર્થો અને ઘનસ્વરૂપે છે તેઓ

કાર્બોહાઇડ્રેટ, ચરબી અને પ્રોટિન સંયોજનોની કસોટીઓ

ચરબીયુક્ત પદાર્થો કહેવાય છે. તૈલીપદાર્થો વનસ્પતિજ ઉત્પત્તિ છે અને ચરબીયુક્ત પદાર્થો પ્રાશિજ ઉત્પત્તિ છે. ટ્રાયગ્લિસરાઈડ સંયોજનો કે જેમાં ત્રશેય એસાઇલ સમૂહો સમાન હોય છે તેને સાદાં ટ્રાયગ્લિસરાઈડ સંયોજનો કહે છે અને જેમાં ત્રશ એસાઇલ સમૂહો જુદા-જુદા હોય તેને મિશ્ર ટ્રાયગ્લિસરાઇડ સંયોજનો કહે છે. કુદરતી રીતે મળતા અનેક ફેટિઍસિડ સંયોજનો બે અથવા ત્રશ દ્વિબંધો ધરાવે છે. ચરબીયુક્ત પદાર્થોમાંથી મળી આવતાં આ સંયોજનોને પોલિઅસંતૃપ્ત ચરબીયુક્ત પદાર્થો અથવા તૈલીપદાર્થો કહે છે, જ્યારે તૈલીપદાર્થો અસંતૃપ્ત ફેટિઍસિડ સંયોજનોના ગ્લિસરાઇડ સંયોજનો છે. ચરબીયુક્ત પદાર્થો અને તૈલીપદાર્થો પાશીમાં અદ્રાવ્ય હોય છે.

તૈલીપદાર્થો અને ચરબીયુક્ત પદાર્થીને પોટૅશિયમ હાઇડ્રૉજનસલ્ફેટ સાથે ગરમ કરતા એક્રોલીનની લાક્ષણિક વાસ આપે છે. આ ગ્લિસરોલ માટેની કસોટી છે, જે મુક્ત અથવા સંયોજિત સ્વરૂપે એસ્ટર તરીકે હોય છે. પોટૅશિયમ હાઇડ્રૉજન સલ્ફેટ સાથે ગરમ કરવાથી ગ્લિસરોલ નિર્જળીકરણ પામે છે અને એક્રોલિન બનાવે છે, જે તીવ્ર વાસ ધરાવે છે. આ પ્રક્રિયા નીચે મુજબ છે:

$$\begin{array}{c|cccc} CH_2OH & & CH_2 \\ & & & \\ CHOH & & & \\ \hline & & & \\ CH_2OH & & & \\ & & & \\ CH_2OH & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ & & \\ & \\ & & \\ & \\ & & \\$$

જરૂરી સામગ્રી:

પદ્ધતિ :

એક કસનળીમાં લીધેલા 3 mL સરસવ તેલ/ઘીમાં શુષ્ક પોટૅશિયમ હાઇડ્રૉજન સલ્ફેટના થોડા સ્ફટિકો (0.5 g) ઉમેરો અને કસનળીમાં રહેલા મિશ્રણને ધીમે-ધીમે ગરમ કરો. તીવ્રવાસ તૈલીપદાર્થ અથવા ચરબીયુક્ત પદાર્થની હાજરી નિશ્ચિત કરે છે.

C. પ્રોટીન સંયોજનો માટે કસોટીઓ

સિદ્ધાંત :

પ્રોટીન સંયોજનો નાઇટ્રોજન ધરાવતા અને એમિનોઍસિડ સંયોજનોમાંથી બનેલા જટિલ કાર્બનિક સંયોજનો છે. ઇંડાના આલ્બ્યુમિન, સોયાબીન, કઠોળ, માછલી, દૂધ વગેરેમાં પ્રોટીન સંયોજનો રહેલાં હોય છે. તેમની હાજરી ઘણી કસોટીઓ દ્વારા નિશ્ચિત કરી શકાય છે. એમિનોઍસિડ સંયોજનોમાં રહેલી લાક્ષણિક શૃંખલાઓના કારણે તેઓ વિશિષ્ટ રંગ પ્રક્રિયાઓ દર્શાવે છે કે જે તેમની ઓળખ માટેના આધાર બને છે. પ્રોટીન સંયોજનો પણ એમિનોઍસિડની રંગપ્રક્રિયાઓ આપે છે પરંતુ તેમને બાયયુરેટ પ્રક્રિયા અને સ્કંદન પ્રક્રિયા દ્વારા એમિનોઍસિડ સંયોજનોથી વિભેદિત કરી શકાય છે.

I. પેપ્ટાઇડ બંધ માટે બાયયુરેટ કસોટી

આલ્ક્લાઈન કૉપર સલ્ફ્રેટ, બે કે તેથી વધુ પેપ્ટાઇડ બંધ ધરાવતા સંયોજનો સાથે પ્રક્રિયા કરી જાંબલી રંગના સંકીર્ણ સંયોજનો બનાવે છે.

આ કસોટીનું નામ બાયયુરેટ સંયોજનના નામ પરથી પડ્યું છે જે આ કસોટી આપે છે. આ પ્રક્રિયા સંપૂર્ણપણે પેપ્ટાઇડ બંધ માટે વિશિષ્ટ નથી કારણ કે અનેક સંયોજનો કે જેઓમાં બે કાર્બોનિલ સમૂહો નાઇટ્રોજન અથવા કાર્બન પરમાણુઓ દ્વારા જોડાયેલા હોય છે તેઓ પણ હકારાત્મક પરિણામ આપે છે.

II. નીનહાઇડ્રિન પ્રક્રિયા

નીનહાઇડ્રિન શક્તિશાળી ઑક્સિડેશનકર્તા છે અને તે પ્રોટીન સાથે પ્રક્રિયા કરી વાદળી-જાંબલી સંયોજન બનાવે છે તેને ર્હુમાન જાંબુડિયો (Rhumann's Purple) કહે છે.

નીનહાઇડ્રિન

ર્હુમાન જાંબુડિયો (વાદળી જાંબલી)

નોંધ: એમોનિયા, પ્રાથમિક એમાઈન સંયોજનો, એમિનોઍસિડ સંયોજનો અને પેપ્ટાઇડ સંયોજનો પણ નીનહાઇડ્રિન સાથે પ્રક્રિયા કરે છે.

III. ઝેન્થોપ્રોટિક પ્રક્રિયા

મુક્ત એમિનોઍસિડ સંયોજન અથવા પ્રોટીન સંયોજનને સાંદ્ર નાઇટ્રિક ઍસિડ સાથે ગરમ કરતા તેમના ઍરોમેટિક સમૂહો નાઇટ્રેશન પ્રક્રિયા અનુભવે છે. આ વ્યુત્પન્નોના ક્ષાર નારંગી રંગના હોય છે.

જરૂરી સામગ્રી:

કાર્બોહાઈડ્રેટ, ચરબી અને પ્રોટિન સંયોજનોની કસોટીઓ

પદ્ધતિ :

A. બાયયુરેટ કસોટી

કેસીન અથવા ઈંડાના આલ્બ્યુમિનનું 0.5% (w/V)નું દ્રાવણ 0.1 M NaOHના દ્રાવણમાં બનાવો. આ દ્રાવણના 2-3 mL લો અને તેમાં આશરે 2 mL 10% સોડિયમ હાઇડ્રૉક્સાઇડનું દ્રાવણ ઉમેરો. તેમાં કૉપર પ્રક્રિયકના થોડા ટીપાં ઉમેરો અને મિશ્રણને આશરે 5 મિનિટ સુધી ગરમ કરો. Cu^{2+} આયનો સાથે -CONH- સમૂહની સંકીર્ણ સ્પીસિઝ બનવાના કારણે ઉદ્ભવતો જાંબલી રંગ નમૂનામાં પ્રોટીન સંયોજનની હાજરી નિશ્ચિત કરે છે.

B. નીનહાઇડ્રિન પ્રક્રિયા

એક કસનળીમાં 2-3 mL ઈંડાના આલ્બ્યુમિનનું જલીય દ્રાવણ લો. તેમાં 2-3 ટીપાં નીનહાઇડ્રિન દ્રાવણ ઉમેરો અને ગરમ કરો. ઉદ્ભવતો વાદળી રંગ પ્રોટીનની હાજરી સ્થવે છે.

C. ઝેન્થોપ્રોટિક કસોટી

એક કસનળીમાં 1 mL ઇંડાના આલ્બ્યુમિનનું જલીય દ્રાવણ લો અને તેમાં સાંદ્ર નાઇટ્રિક ઍસિડનાં થોડાં ટીપાં ઉમેરો. પ્રક્રિયા મિશ્રણને થોડી મિનિટો માટે બુન્સેન બર્નર પર ગરમ કરો. પીળો રંગ ઉદ્ભવે છે. નળના પાણી નીચે કસનળીને ઠંડી કરો અને 10M સોડિયમ હાઇડ્રૉકસાઇડનાં થોડા ટીપાં ઉમેરો. નારંગી રંગ ઉદ્ભવે છે.

II. ખાદ્યપદાર્થોમાં કાર્બોહાઈડ્રેટ, ચરબી અને પ્રોટીન પદાર્થો માટે કસોટી

- (i) દૂધ, ઘઉંનો લોટ, ચોખા, ચણાનો લોટ અને કઠોળના પાઉડરના નમૂનાઓ, તેમાં કાર્બોહાઈડ્રેટ, ચરબી અને પ્રોટીન પદાર્થોની હાજરી જાણવા માટે લો.
- (ii) આ કસોટીઓ કરવા માટે 0.5 mL દૂધનો નમૂનો લો.
- (iii) ઘઉંનો લોટ, ચોખાનો લોટ, ચણાનો લોટ અને કઠોળ પાઉડર માટે 100 mg નમૂનાને 10 mL નિસ્યંદિત પાણીમાં ઉમેરો અને નિલંબનને ઉકાળો જેથી કલિલમય દ્રાવણ મળે છે. આ કલિલમય દ્રાવણ સાથે આ કસોટીઓ કરો અને પરિણામોને કોષ્ટક 11.1માં નોંધો.

કોષ્ટક 11.1 : ખાદ્યપદાર્થોના જુદા-જુદા નમૂનાઓમાં કાર્બોહાઇડ્રેટ, ચરબી અને પ્રોટીન પદાર્થોની કસોટી

નમૂનો	કાર્બોહાઇડ્રેટ સંયોજનો હાજર / ગેરહાજર	ચરબીયુક્ત પદાર્થો હાજર / ગેરહાજર	પ્રોટીન સંયોજનો હાજર / ગેરહાજર
દૂધ			
ઘઉંનો લોટ			
ચોખાનો લોટ			
ચણાનો લોટ			
કઠોળનો પાઉડર			

પ્રયોગો પરથી તે જોવા મળશે કે ઘઉંનો લોટ, ચણાનો લોટ અને કઠોળના પાઉડર જેવા ખાદ્યપદાર્થો કાર્બોહાઇડ્રેટ સંયોજનો અને પ્રોટીન સંયોજનો ધરાવે છે. ચોખાનો લોટ કાર્બોહાઇડ્રેટ પદાર્થો ધરાવે છે, જ્યારે દૂધ ચરબીયુક્ત પદાર્થો અને પ્રોટીન પદાર્થો ધરાવે છે. તેવી જ રીતે અન્ય ખાદ્યપદાર્થોની કાર્બોહાઇડ્રેટ, ચરબી અને પ્રોટીન સંયોજનોની હાજરી તપાસવા કસોટી કરી શકાય છે.

સાવચેતીઓ :

- (a) ચણા, ઘઉં અને ચોખાના લોટનું નિષ્કર્ષ બનાવતી વખતે મિશ્રણને સંપૂર્ણપણે હલાવો.
- (b) કસોટીઓ કરવા માટે હંમેશાં તાજા બનાવેલા પ્રક્રિયકોનો ઉપયોગ કરો.
- (c) પ્રક્રિયકોના માત્ર જરૂરી જથ્થાનો જ ઉપયોગ કરો.

- તમે સુક્રોઝ અને ગ્લુકોઝને કેવી રીતે વિભેદિત કરશો ? (i)
- કિટોન સમૂહની હાજરીના કારણે ફ્રુક્ટોઝ શા માટે ફેહલિંગ દ્રાવણ અને ટોલેન્સ પ્રક્રિયકનું રિડક્શન કરે છે ? (ii)
- ફેહલિંગ પ્રક્રિયક અને બેનેડિક્ટ પ્રક્રિયકમાં અનુક્રમે ટાર્ટરેટ અને સાઇટ્રેટ આયોનોની શું ભૂમિકા છે ? (iii)

પરિયોજનાઓ

પરિયોજના 1

શીર્ષક :

જામફળમાં રહેલા ઑક્ઝેલેટ આયનોનું તેના પાકવાના જુદા-જુદા તબક્કે થતા વિચરણ (ફેરફાર) (Variation)નો અભ્યાસ કરવો.

હેતુ :

આ પ્રૉજેક્ટનો ઉદ્દેશ્ય જામફળમાં રહેલા ઑક્ઝેલેટ આયનમાં તેના પાકવા દરમિયાન થતા વિચરણનો (ફેરફાર) અભ્યાસ કરવાનો છે (એટલે કે કાચા, અશંતઃ પાકેલા અને પૂર્ણ પાકેલા)

ટૂંકમાં પદ્ધતિ :

જામફળના જુદા-જુદા નમૂનાઓ (લીલા, આછા લીલા, પીળાશપડતા સફેદ અને પીળા એટલે કે કાચામાંથી પૂર્શ પાકેલા નમૂનાઓ) એકઠા કરો. આમાંના કોઈ પણ નમૂનાના 100 ગ્રામ લો. તેને ખલમાં કચરીને મળતી લુગદીને (paste) 100~mL પાણીમાં લઈ લો. આ મિશ્રણને 10-15 મિનિટ માટે ઉકાળો અને પછી ગાળો. ગાળણ લો અને તેમાં આશરે 5~mL મંદ સલ્ફ્યુરિક ઍસિડ ઉમેરો અને તેનું 0.001~M KMnO $_4$ દ્રાવણ સામે અનુમાપન કરો. જામફળના બીજા નમૂનાઓ સાથે આ પ્રયોગનું પુનરાવર્તન કરો અને તારણો મેળવો.

પરિયોજના 2

શીર્ષક :

દૂધના જુદા-જુદા નમૂનાઓમાં રહેતા કેસીનના પ્રમાણની સરખામણીનો અભ્યાસ કરવો.

હેતુ :

દૂધના જુદા-જુદા નમૂનાઓની ગુણવત્તા તેમનામાં રહેલા કેસીનના જથ્થા શોધીને સરખામણી કરવી.

ટૂંકમાં પદ્ધતિ :

જુદા-જુદા 500 mL બીકરમાં દૂધના દરેક નમૂનાના 200 mL લો. દૂધના નમૂનાને 50-60 °C તાપમાને ગરમ કરો. મંદ હાઇડ્રૉક્લોરિક ઍસિડનાં થોડાં ટીપાં ધીમે-ધીમે ઉમેરતા જાવ અને સતત 5-10 મિનિટ માટે હલાવતા રહો. કેસીન અસ્ફટિકમય પદાર્થ તરીકે સ્કંદન પામશે. પદાર્થને ગાળી લો અને અવક્ષેપને નળના પાણીથી વધુ વખત ધૂઓ. ચરબીને યોગ્ય કાર્બનિક દ્રાવકનો ઉપયોગ કરીને લઈ લો. આ રીતે મળેલા કેસીનનું સૂકવ્યા પછી વજન કરો.

પ્રયોગશાળા માર્ગદર્શિકા રસાયણવિજ્ઞાન

પરિયોજના 3

શીર્ષક :

સોયાબીન દૂધની બનાવટ અને તેની કુદરતી દૂધ સાથે સરખામણી

હેતુ :

સોયાબીન દૂધ બનાવવું અને તેને કુદરતી દૂધની સાથે દહીંની બનાવટ, તાપમાનની અસર, સ્વાદ વગેરેના અનુસંધાનમાં સરખામણી કરવી.

ટૂંકમાં પદ્ધતિ :

સોયાબીનના બીજને ગરમ પાણીમાં લઈને તેને પાણીમાં રાતભર રાખી મૂકો અને પછી તેનું દૂધ બનાવો. બીજને કચરીને અને છેવટે દળીને બીજની લુગદી બનાવો. સોયા દૂધ મેળવવા માટે આ લુગદીને ગરમ પાણીમાં મિશ્ર કરો. મિશ્રણને ગાળી લો અને ન ઓગળેલા ભાગને ફેંકી દો. સોયા દૂધને કુદરતી દૂધ સાથે સરખાવો અને તારણ પર આવો કે સોયા દૂધ કુદરતી દૂધનો વિકલ્પ થઈ શકે તેમ છે? સરખામણી તેમાં રહેલાં પોષક તત્ત્વો, રંગ, વાસ, તાપમાનની અસર, દહીંની બનાવટ વગેરેના સંદર્ભમાં કરો.

પરિયોજના 4

શીર્ષક :

જુદી-જુદી પરિસ્થિતિમાં પોટેશિયમ મેટાબાયસલ્ફાઇટનો ખાદ્ય (ખોરાક) પરિરક્ષક તરીકે અભ્યાસ કરો.

હેતુ :

ખાદ્યપદાર્થના પરિરક્ષણ પર પોટૅશિયમ મેટાબાયસલ્ફાઇટની (પરિરક્ષક) સાંદ્રતા, તાપમાન અને સમયની અસરનો અભ્યાસ કરવો.

ટૂંકમાં પદ્ધતિ :

આમળા ફળ લો અને તેમને પાણીથી ધોઈ નાખો. તેને નાના ટુકડામાં કાપો અને કેટલાક કલાક માટે સૂર્યના તડકામાં સૂકવો. ટુકડામાં મીઠું અને મસાલા ઉમેરો. 1, 2, 3, વગેરે નંબર આપેલી છ ઉત્કલન નળીમાં 25 g આમળાના ટુકડા લો. પોટેશિયમ મેટાબાયસલ્ફાઇટનું 500 mg વજન કરો અને તેને 20 mL નિસ્યંદિત પાણીમાં ઓગાળો. ઉત્કલન નળી નં. 1ને પરિરક્ષક અને તેલ ઉમેર્યા વગર રાખો. ઉત્કલન નળી નં. 2 અને 3માં 1 mL પરિરક્ષક અને 2 mL તેલ ઉમેરીને કાચના સળિયા વડે મિશ્રણને મિશ્ર કરો. ઉત્કલન નળી નં. 2ને ઓરડાના તાપમાને (25-35 °C) રાખો અને ઉત્કલન નળી નં. 3ને 40 °C તાપમાને રાખો. ઉત્કલન

પરિયોજનાઓ

નળી 4,5 અને 6માં અનુક્રમે 2 mL, 4 mL અને 8 mL પરિરક્ષકનું દ્રાવણ અને 2 mL સરસવનું તેલ ઉમેરો. ઉત્કલન નળીઓને ઓરડાના તાપમાને રાખો. બીજી ઉત્કલન નળી નં. 4, 5, 6માં ફરીથી તાજું મિશ્રણ ઉમેરો અને તેમને 40 °C તાપમાને રાખો.

આ બધી જ ઉત્કલન નળીઓને 3થી 5 દિવસ માટે મૂકી રાખો. આ નળીઓમાં જો કોઈ ફૂગ થયેલી જણાય તો નોંધો. તમારાં અવલોકનો નોંધો અને તારણો મેળવો.

પરિયોજના 5

શીર્ષક :

સ્ટાર્ચના ઉત્સેચકીય જળવિભાજનનો અભ્યાસ

હેતુ :

સ્ટાર્ચનું લાળમય એમાઇલેઝ વડે જળવિભાજન અને તેના પર pH અને તાપમાનની અસરનો અભ્યાસ

ટૂંકમાં પદ્ધતિ :

20-30 mL ગરમ (30 °C - 40 °C) નિસ્યંદિત પાણી મોઢામાં લો અને મોઢામાં ગગળાવીને તેને લાળ સાથે મિશ્ર કરો. પાણી સાથે મિશ્ર લાળને એક બીકરમાં લો. **લાળ દ્રાવણ વડે સ્ટાર્ચનું પાચન**

ઉત્કલન નળીમાં $10 \, \text{mL}$ સ્ટાર્ચનું દ્રાવણ લો અને તેમાં $1 \, \%$ સોડિયમ ક્લોરાઇડનું $2 \, \text{mL}$ દ્રાવણ ઉમેરો. $30 - 40 \, ^{\circ}\text{C}$ તાપમાને રાખેલા જળઉષ્મકમાં ઉત્કલન નળીને આશરે $15 \,$ મિનિટ માટે રાખો. ઉત્કલન નળીમાં લાળના દ્રાવણના $2 \, \text{mL}$ ઉમેરો અને તરત જ સ્ટોપ વૉચ ચાલુ કરી લો. એક મિનિટ પછી $2 - 3 \,$ ટીપાં મિશ્રણમાંથી લો અને આયોડિન દ્રાવણ ધરાવતી કસનળીમાં ઉમેરો. કસનળીમાંના મિશ્રણને હલાવો અને દ્રાવણનો રંગ નોંધો. આ જ પ્રમાણે દર એક મિનિટના અંતે $2 - 3 \,$ ટીપાં ઉત્કલન નળીમાંના મિશ્રણને લઈને આયોડિન દ્રાવણ ધરાવતી કસનળીઓમાં ઉમેરતા જાઓ. દરેક કિસ્સામાં દ્રાવણનો રંગ જ્યાં સુધી રંગમાં ફેરફાર ન થાય ત્યાં સુધી નોંધતા રહો. અવલોકનોને કોષ્ટક સ્વરૂપે નોંધો.

સ્ટાર્ચના લાળ વડે થતાં પાચનમાં તાપમાનની અસરનો અભ્યાસ કરવા માટે ઉપરનો પ્રયોગ 50 °C તાપમાને કરો.

પ્રક્રિયા માધ્યમની pH અસરના અભ્યાસ માટે ઉપર દર્શાવ્યા પ્રમાણેના અલગ પ્રયોગો મંદ HClના અને મંદ NaOHના દ્રાવણનો થોડો જથ્થો વાપરીને કરી શકાય.

પ્રયોગશાળા માર્ગદર્શિકા રસાયણવિજ્ઞાન

પરિયોજના 6

શીર્ષક :

નીચેના પદાર્થોના આથવણના દરનો તુલનાત્મક અભ્યાસ કરવો : (a) ઘઉંનો લોટ (b) ચણાનો લોટ (c) બટાકાનો જ્યૂસ (d) ગાજરનો જ્યૂસ (રસ) (e) નારંગીનો જ્યૂસ (રસ) (f) સફરજનનો જ્યૂસ (રસ) અને (g) શેરડીનો જ્યૂસ (રસ).

હેતુ :

જુદા-જુદા પદાર્થોના આથવણના દર નક્કી કરવા અને આ પદાર્થોના આથવણના દર પર સાંદ્રતા, સમય અને તાપમાનની અસરનો અભ્યાસ કરવો.

ટૂંકમાં પદ્ધતિ :

આકૃતિ 12.1માં દર્શાવ્યા પ્રમાશે નિકાસ (delivery) નળી બેસાડેલો કોનિકલ ફ્લાસ્ક (100 mL) લો. નિકાસ નળીને દૂર કરો અને 10 g ઘઉંનો લોટ અને 80 mL નિસ્યંદિત પાણી ફ્લાસ્કમાં ઉમેરો. કાચના સળિયા વડે ફ્લાસ્કમાંના પદાર્થોને હલાવો અને 2 g ખમીર (યીસ્ટ) ઉમેરો. ફ્લાસ્કમાંના મિશ્રણને ફરી હલાવો. ફ્લાસ્કના ઉપરના ભાગમાં (ગરદનમાં) નિકાસ નળીને બંધ બેસાડો. આકૃતિ 12.1માં દર્શાવ્યા પ્રમાણે નિકાસ નળીના ઉપરના છેડા પર દોરીની મદદ વડે ફ્રુગ્ગો બાંધી દો. જેવું આથવણ આગળ વધે છે તેમ કાર્બન ડાયોક્સાઇડ વાયુ ઉત્પન્ન થાય છે અને ફ્રુગ્ગો ફૂલે છે. આપેલા સમયમાં ફ્રુગ્ગાના ફૂલવાના પ્રમાણ પ્રક્રિયાના દરનું માપન આપે છે. પ્રયોગનું બીજા પદાર્થો જેવાં કે બટાકાનો જયૂસ, નારંગીનો જયૂસ, સફરજનનો જયૂસ અને શેરડીનો જયૂસ વાપરીને પુનરાવર્તન કરો.

આકૃતિ 12.1 : આથવણના દરનું નિર્ધારણ

ખમીર (યીસ્ટ)ની સાંદ્રતાની અસર

ઉપરમાંના ગમે તે એક પદાર્થ પર ખમીરની સાંદ્રતાની આથવણના દર પરની અસરનો અભ્યાસ કરો. આ માટે પહેલાં 2, 3 અને 4 ગ્રામ ખમીર વાપરીને પ્રક્રિયા કરો અને નિશ્ચિત સમયગાળામાં દરેક કિસ્સામાં ફ્રગાના ફ્લવાનું પ્રમાણ નોંધો

પરિયોજનાઓ

સમયની અસર

જુદા-જુદા સમયગાળા માટે ઉપરના જ પદાર્થોના ઉપયોગ કરી પ્રક્રિયા કરો અને ફુગ્ગાના ફૂલવાના માપનું અવલોકન કરો.

તાપમાનની અસર

નિશ્ચિત જુદા-જુદા સમયગાળા માટે ઉપરના જ પદાર્થોનો ઉપયોગ કરીને પરંતુ જુદાં-જુદાં તાપમાને (25 °C, 30 °C અને 35 °C) પ્રક્રિયા કરો. પ્રક્રિયાનું પ્રમાણ આ પ્રક્રિયાઓમાં ફુગ્ગાના ફૂલવાના પ્રમાણ પરથી નોંધો.

પરિયોજના 7

શીર્ષક :

વરિયાળી (Aniseed), અજમો (Carum) અને ઇલાયચીમાં (Cardamon) રહેલા બાષ્પશીલ તેલનું (essential oil) નિષ્કર્ષણ.

હેતુ :

વરિયાળી, અજમો અને ઇલાયચીમાંથી બાષ્પશીલ તેલનું પેટ્રોલિયમ ઇથરનો દ્રાવક તરીકે ઉપયોગ કરીને નિષ્કર્ષણ કરવું.

ટૂંકમાં પદ્ધતિ :

કોનિકલ ફ્લાસ્કમાં $100 \, \mathrm{g}$ કચરેલી વરિયાળીને લો અને તેમાં $100 \, \mathrm{mL}$ પેટ્રોલિયમ ઇથર (ઉત્કલન ગાળો $60 \, ^{\circ}\mathrm{C}$ - $80 \, ^{\circ}\mathrm{C}$) ઉમેરો. રબરના બૂચ વડે ફ્લાસ્કનું મુખ બંધ કરો અને થોડા સમય માટે તેને હલાવો. ફ્લાસ્કને એક દિવસ માટે રાખી મૂકો. પેટ્રોલિયમ ઇથરને $60 \, ^{\circ}\mathrm{C}$ - $80 \, ^{\circ}\mathrm{C}$ તાપમાને નિસ્યંદિત કરી લો. પેટ્રોલિયમ ઇથર ખૂબ જ જવલનશીલ પ્રવાહી છે. તેની નજીક કોઈ પણ જયોત લાવશો નહિ. ફ્લાસ્કને ગરમ કરવા માટે હીટિંગ મેન્ટલ વાપરો. તેને જયોત ઉપર સીધા જ ગરમ કરશો નહિ. પ્રવાહી (તેલ) જે ફ્લાસ્કમાં રહેલ છે તેને ઉત્કલન નળીમાં લઈ લો અને ઉત્કલન નળીના મુખને રબરના બૂચથી બંધ કરો. આ રીતે એકઠા કરેલ બાષ્પશીલ તેલના રંગ, વાસ અને કદ નોંધો.

આ જ પ્રમાણે અજમો અને ઇલાયચીના બાષ્પશીલ તેલનું નિષ્કર્ષણ કરો.

પરિયોજના 8

શીર્ષક :

કેટલાક સામાન્ય ખાદ્ય અપમિશ્રકોનો (ભેળસેળ કરેલા પદાર્થો) અભ્યાસ કરવો.

હેતુ :

ચરબી, તેલ, માખણ, ખાંડ, હળદર પાઉડર, મરચાં પાઉડર અને મરીમાં ખાદ્ય અપમિશ્રકોને ઓળખી કાઢવા.

પૃષ્ઠભૂમિ (Background) માહિતી

ખાદ્યપદાર્થનું અપિમશ્રણનો અર્થ થાય છે કે વાસ્તવિક (genuine) ખાદ્ય- પદાર્થનું સંપૂર્ણપણે અથવા અંશતઃ બીજા કોઈ સસ્તા અથવા ઊતરતી કક્ષાના પદાર્થ વડે વિસ્થાપન (substitution) અથવા તેનાં ઘટકોને સંપૂર્ણ કે અંશતઃ દૂર કરવાં, જે ખૂબ જ ખરાબ રીતે ખાદ્યપદાર્થની પ્રકૃતિ, પદાર્થ અથવા ગુણવત્તાને અસર કરે છે. ભારતીય ખાદ્ય અપિમશ્રણ પરિરક્ષકધારો (Indian Preservation of Food Adultration Act) (PFA) 1965 પ્રમાણે કોઈ પણ ઘટક જે ખાદ્યપદાર્થમાં હાજર હોય અને આરોગ્યને હાનિકારક હોય તે અપિમશ્રક છે.

ભારતમાં કેટલાક ખાદ્યપદાર્થો જે સામાન્ય રીતે અપમિશ્રિત કરાયેલા હોય છે અને તેમાંથી મળેલા અપમિશ્રકો નીચે પ્રમાણે છે :

ખેસરી દાળને (દાણા / પાપડી / લોટ) દાળ જેવી કે મસૂર, બંગાળી ચણા દાળ, લાલ ચણાદાળ, કાળા ચણા અને ચણા વગેરેમાં મિશ્ર કરવામાં આવે છે. ખેસરી દાળનો લાંબો સમય માટે વપરાશ નીચલા હોઠના લકવામાં પરિણમે છે.

કેટલીક વખત બીજ, છાલ, પાંદડાં અને બીજાં દ્રવ્યો જેને મૂળ (વાસ્તવિક) ખાદ્યપદાર્થ જેવા દેખાવમાં બનાવવામાં આવે છે અને તેમનો ઉપયોગ વાસ્તવિક (મૂળ) પદાર્થોને અપમિશ્રિત કરવા માટે વપરાય છે. ઉદાહરણ તરીકે વપરાયેલી ચાની પત્તીઓ અથવા રંગીન વહેર તાજી ચામાં ભેળવવામાં આવે છે. ચૂર્ણ કરેલ ભૂસું, લાકડાંનો વહેર દળેલા મસાલામાં હાજર હોય છે. સહેલાઈથી મળતા બીજને જીરું, ઇલાયચી, કાળા મરી, રાઈ (સરસવ) વગેરેમાં વિસ્થાપિત (મિશ્ર) કરવામાં આવે છે (ભેળસેળ કરવામાં આવે છે.).

ખાદ્ય તેલ અને ચરબીને સસ્તા ખાદ્ય અને અખાદ્ય તેલ વડે અપિમિશ્રિત કરવામાં આવે છે. Argemone maxicanના બીજ સરસવના જેવા હોય છે અને આ બીજમાંથી નિષ્કર્ષિત કરેલ તેલ કોપરા, સરસવ, સીસમ અને મગફળીના તેલને અપિમિશ્રિત કરવામાં વપરાય છે. આર્જમોન મેક્સિકન (દારૂડા) (Argemone maxican) તેલ ઝેરી છે અને તેનો ઉપયોગ મનુષ્યમાં જલશોફમાં (dropsy)પરિશમે છે. તેલ અને ચરબીને પણ પેટ્રોલિયમ પેદાશોથી અપિમિશ્રિત કરવામાં આવે છે, જે જઠરાંત્ર ગેરવ્યવસ્થા (gastrointestinal disorder) માટે કારણભૃત બને છે.

શંખજીરું અને ચાકનો ભૂકો, ઘઉંનો લોટ, આરા રૂટનો (Arrowroot) લોટ (પાઉડર) અને મીઠાઈમાં અપમિશ્રિત કરવાના ઉપયોગમાં લેવામાં આવે છે. દૂધ અને દૂધની બનાવટોમાં સ્ટાર્ચ પૂરક (filler) તરીકે વપરાય છે.

કોલટાર રંગકો અને ખનીજમય વર્શકો જેવા કે લેડ ક્રોમેટ અને લાલ અથવા પીળી માટી (earth) સામાન્ય ખાદ્ય અપમિશ્રકો છે જેનો ઉપયોગ દૂધની બનાવટો, મીઠાઈ, ઠંડાં પીણાં, બેવરેજ, ચા, મસાલા, બેકરી પેદાશો, ફળો અને શાકભાજીને સારો દેખાવ આપવામાં થાય છે.

પરિયોજનાઓ

કેટલાક ખાદ્યપદાર્થોમાં ખાદ્ય અપમિશ્રકોના પરીક્ષણ માટેની ટૂંકી પદ્ધતિઓ નીચે આપવામાં આવી છે :

ટૂંકમાં પદ્ધતિ :

માખણમાં વનસ્પતિ ઘી

કસનળીમાં 0.5 g માખણનો નમૂનો લો અને તેને ધીમેથી ગરમ કરીને ઓગાળો. આ પ્રવાહીમાં ખાંડનો થોડો જથ્થો અને HClનાં થોડાં ટીપાં ઉમેરો અને મિશ્રણને પાંચ મિનિટ માટે હલાવો. ગુલાબી રંગ દેખાય તે સૂચવે છે કે માખણમાં વનસ્પતિ ઘીની હાજરી છે.

ચરબી અને તેલમાં રંગકો

કનસળીમાં 1 mL ચરબી/તેલ લો. તેમાં સલ્ફ્યુરિક ઍસિડ અને ગ્લેસિઅલ એસિટિક ઍસિડના 1:4 પ્રમાણનું મિશ્રણ 1 mL ઉમેરો. મિશ્રણને ગરમ કરો. ગુલાબી રંગ દેખાય તો ચરબી અને તેલમાં રંગકની હાજરી સૂચવે છે.

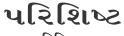
ખાંડમાં ચાક

કસનળીમાં 1 g ખાંડ લો અને તેમાં 2 mL મંદ $\mathrm{H_2SO_4}$ ઉમેરો. ઊભરા આવે તો ખાંડમાં ચાકની હાજરી સૂચવે છે.

લાલ મરચામાં કૃત્રિમ રંગ

એક પાણી ભરેલું કાચનું ટંબલર લો અને તેમાં થોડા ગ્રામ લાલ મરચાનો ભૂકો ઉમેરો. કાચના સળિયા વડે મિશ્રણને હલાવો અને કેટલીક મિનિટ માટે રહેવા દો. પાણીમાં લાલ ઇંટ જેવો રંગ દર્શાવે છે કે લાલ મરચામાં કૃત્રિમ રંગ હાજર છે.

હળદરમાં રંગીન ચાક (Chalk) પાઉડર


કસનળીમાં આશરે $0.5~\mathrm{g}$ હળદર પાઉડર લો અને તેમાં $1~\mathrm{mL}$ મંદ $\mathrm{H_2SO_4}$ ઉમેરો. ઊભરો આવે તો દર્શાવે છે કે હળદરમાં રંગીન ચાક હાજર છે.

હળદર પાઉડરમાં કોલટાર રંગક વડે રંગીન બનાવેલ વહેર

કસનળીમાં આશરે $1.0\,\mathrm{g}$ હળદર પાઉડર લો અને સાંદ્ર $\mathrm{H_2SO_4}$ નાં થોડાં ટીપાં ઉમેરો. તરત જ જાંબલી રંગ દેખાય અને જેનું નિસ્યંદિત પાણી વડે મંદન કરવા છતાં પણ રંગ રહી જ જાય છે તો વહેર મેટાનીલ યલો જે એક કોલટાર રંગક છે તેના વડે રંગીન કરીને વપરાયા છે તે હાજર છે.

કાળા મરીમાં પપૈયાંનાં બીજ

એક પાણી ભરેલું બીકર લો અને એક ચમચી ભરીને મરી નાંખો. પપૈયાંનાં બીજ પાણી પર તરશે અને મરી નીચે બેસી જશે.

પરિશિષ્ટ I

કેટલાંક ઉપયોગી કોષ્ટકો

કોષ્ટક 1 : મૂળભૂત ભૌતિક અચળાંકો

ભૌતિક અચળાંક	સંજ્ઞા	મૂલ્ય
ગુરુત્વપ્રવેગ	g	9.81 ms^{-3}
પરમાણ્વીય દળ એકમ	amu	$1.66053 \times 10^{-27} \text{ kg}$
એવોગેડ્રૉ અચળાંક	$N_{_{ m A}}$	$6.02217 \times 10^{23} \text{ mol}^{-1}$
બોલ્ટ્ઝમૅન અચળાંક	k	$1.38062 \times 10^{-23} \text{ J K}^{-1}$
ઇલેક્ટ્રૉન વીજભાર	e	$1.602192 \times 10^{-19} \text{ C}$
ફેરાડે અચળાંક	F	$9.64867 \times 10^4 \text{ C mol}^{-1}$
વાયુ-અચળાંક	R	$8.314 \ J \ K^{-1} \ mol^{-1}$
હિમાંક (Ice-point) તાપમાન	T_{ice}	273.150 K
STPએ આદર્શવાયુનું મોલરકદ	$V_{\rm m}$	$2.24136 \times 10^{-2} \text{ m}^3 \text{ mol}^{-1}$
શૂન્યાવકાશનો પરાવૈદ્યુતાંક	E_0 8.854185 × 10^{-12}	
		$kg^{-1} m^{-3}s^4 A^2$
પ્લાન્ક અચળાંક	h	$6.62620 \times 10^{-34} \text{ J s}$
રીડબર્ગ અચળાંક	$R_{_{ m w}}$	$1.973731 \times 10^7 \text{ m}^{-1}$
પ્રમાણિત દબાણ (વાતાવરણ)	p	1.1325 N m ⁻²
પાણીનું ત્રિકબિંદુ (ત્રિબિંદુ)		273.16 K
શૂન્યાવકાશમાં પ્રકાશનો વેગ	c	$2.997925 \times 10^8 \text{ m s}^{-1}$

કોષ્ટક 2 ઃ કેટલાંક કાર્બનિક સંયોજનોના સામાન્ય ગુણધર્મો

સંયોજન	ગલનબિંદુ ℃	ઉત્કલન બિંદુ _° C	ઘનતા/ _{kg m⁻³ (298 K)}	વક્રીભવનાંક/(n _D) (293 K)	10⁴× સ્નિગ્ધતા/ N s m⁻² (298 K)	10³ × યુષ્કતાણ/ N m ⁻¹ (293 K)
એસિટિક ઍસિડ	16.7	117.9	1044.0	1.3716	11.55	27.8
એસિટેનિલાઇડ	114.0	_	-	-	-	-
એસિટોન	-94.7	56.1	785.0	1.3588	3.16	23.7
p-એમિનોબેન્ઝિન (એનિલીન યલો)	125.0	-	-	-	-	-
એનિલીન	-6.3	184.1	1022.0(293)	1.5863	3.71	42.9
બેન્ઝોઇક ઍસિડ	122.4	249.0	1266.0(288)	1.504(405)	-	-
કાર્બન ટેટ્રાક્લોરાઇડ	-22.9	76.5	1584.0	1.4601	8.8	26.95
ક્લોરોબેન્ઝિન	-45.2	132.0	1106.0	1.5241	7.97	33.56
ક્લૉરોફૉર્મ	-63.5	61.7	1480.0	1.4459	5.42	27.14
સાયક્લોહેક્ઝેન	6.6	80.7	774.0	1.42662	9.8	25.5
ડાયબેન્ઝાલ એસિટોન	112.0	-	-	-	-	-
ડાયઇથાઇલઇથર	-116.2	34.51	714.0	1.3526	2.22	17.01
ઈથાઈલ એસિટેટ	-82.4	77.1	900.0(293)	1.3723	4.41	23.9
ઈથેનોલ	-114.1	78.3	785.0	1.3611	10.6	22.75
િલસરોલ	18.07	290.0	1264.4	1.4746	942.0	63.4
હેક્ઝેન	-95.3	68.7	655.0	1.37506	2.94	18.43
મિથેનોલ	-97.7	64.5	787.0	1.3288	5.47	22.61
નેપ્યેલીન	80.3	218.0	1180.0	1.4003(297)	-	-
p-નાઇટ્રોએસિટેનિલાઇડ	214.0	-	-	-	-	-
ફિનોલ	40.9	181.8	1132.0	1.5509	-	-
ફિનાઇલ-એઝો- β-નેપ્થો (એઝોડાય)	લ 113.0	-	-	-	-	-
ટોલ્યુઇન	-95.1	110.6	862.0	1.4961	5.50	28.5

પરિશિષ્ટ I

કોષ્ટક 3 : સામાન્ય અકાર્બનિક સંયોજનોની પાણીમાં દ્રાવ્યતા

એનાયનનું નામ	સંજ્ઞા	આ આયનો ધનાયનો સાથે દ્રાવ્ય સંયોજનો બનાવે છે. (દ્રાવ્યતા 0.1 M કરતાં વધુ)	અલ્પદ્રાવ્ય સંયોજનો બનાવે છે. (દ્રાવ્યતા 0.1 M કરતાં ઓછી)
નાઇટ્રેટ	NO ₃	મોટા ભાગનાં ધનાયનો	કોઈ પણ નહિ
એસિટેટ	CH ₃ COO-	મોટા ભાગનાં ધનાયનો	$\mathrm{Ag}^{\scriptscriptstyle +}$
ક્લોરાઇડ	C1 ⁻	મોટા ભાગનાં ધનાયનો	Ag^+ , Pb^{2+} ,
બ્રોમાઇડ	Br-	મોટા ભાગનાં ધનાયનો	$Ag^{+}, Pb^{2+},$
આયોડાઇડ	I ⁻	મોટા ભાગનાં ધનાયનો	$Ag^{+}, Pb^{2+},$
સલ્ફેટ	SO_4^{2-}	મોટા ભાગનાં ધનાયનો	Ba ²⁺ , Sr ²⁺ , Pb ²⁺ , Ag ⁺
ક્રોમેટ	CrO_4^{2-}	મોટા ભાગનાં ધનાયનો	Ba ²⁺ , Sr ²⁺ , Pb ²⁺ , Ag ⁺
સલ્ફાઇડ	S^{2-}	NH_{4}^{+} , આલ્કલી ધાતુ ધનાયનો, આલ્કલાઇન અર્થ ધાતુ ધનાયનો	મોટા ભાગનાં અન્ય ધનાયનો
હાઇડ્રૉક્સાઇડ	OH-	${ m NH_4^+}$, આલ્કલી ધાતુ અને આલ્કલાઇન અર્થધાતુ તથા ${ m Ba^{2+}}, { m Sr^{2+}}$	મોટા ભાગનાં અન્ય ધનાયનો
કાર્બોનેટ	CO_3^{2-}	અને આલ્કલી ધાતુ ધનાયનો	મોટા ભાગનાં અન્ય ધનાયનો
ડફેકોફ	PO ₄ ³⁻	Li ⁺ સિવાય	

પરિશિષ્ટ II તત્ત્વો, તેમના પરમાણ્વીય ક્રમાંક અને મોલર દળ

•		٦.
સંજ્ઞા		મોલર દળ
	ક્રમાંક	(gmol ⁻¹)
Ac	89	227.03
Al	13	26.98
Am	95	(243)
Sb		121.75
Ar	18	39.95
As		74.92
Αt	85	210
Ba	56	137.34
Bk	97	(247)
Be	4	9.01
Bi	83	208.98
Bh	107	(264)
В	5	10.81
Br	35	79.91
Cd	48	112.40
Cs	55	132.91
Ca	20	40.08
		251.08
		12.01
		140.12
		35.45
		52.00
		58.93
		63.54
		247.07
		(263)
		\ /
		162.50 (252)
		` /
		167.26
		151.96
		(257.10)
		19.00
		(223)
		157.25
Ga		69.72
Ge		72.61
Au	79	196.97
Hf	72	178.49
		(269)
Не		4.00
Но	67	164.93
H	1	1.0079
In	49	114.82
I	53	126.90
Ir	77	192.2
Fe	26	55.85
Kr	36	83.30
La	57	138.91
Lr	103	(262.1)
Pb		207.19
Li	3	6.94
		174.96
		24.31
		54.94
		(268)
Md	101	258.10
	Al Am Sb Ar As At Ba Bk Be Bi Bh Br Cd Cs Ca Cf C Cu Cm Db Dy Es Er Eu Fm F F Gd Ga Ge Au Hf Hs He Ho H I I I I I I I I I I I I I I I I I	### Ac 89 Al 13 Am 95 Sb 51 Ar 18 As 33 At 85 Ba 56 Bk 97 Be 4 Bi 83 Bh 107 B 55 Br 35 Cd 48 Cs 55 Ca 20 Cf 98 C 6 Ce 58 Cl 17 Cr 24 Co 27 Cu 29 Cm 96 Db 105 Dy 66 Es 99 Er 68 Eu 63 Fm 100 F 9 Fr 87 Gd 64 Ga 31 Ge 32 Au 79 Hf 72 Hs 108 He 2 Ho 67 H 1 In 49 I 53 Ir 77 Fe 26 Kr 36 La 57 Lr 103 Pb 82 Li 3 Lu 71 Mg 12 Mn 25

<u>કૌંસમાં દર્શાવેલ મોલર દળનું મૂલ્ય સૌથી વધુ અર્ધ આયુષ્ય ધરાવતા સમસ્થાનિકોનું છે.</u>

પરિશિષ્ટ III

કેટલાંક ઉપયોગી રૂપાંતર ગુણકો

દળ અને વજનના સામાન્ય એકમો

1 pound = 453.59 gram

1 pound = 453.59 gram = 0.45359 kilogram

1 kilogram = 1000 gram = 2.205 pound

1 gram = 10 decigram = 100 centigram

= 1000 milligram

1 gram = 6.022×10^{23} atomic mass unit or u

1 atomic mass unit = 1.6606×10^{-24} gram

1 metric tonne = 1000 kilo gram

= 2205 pound

કદના સામાન્ય એકમો

1 quart = 0.9463 litre

1 litre = 1.056 quart

1 litre = 1 cubic decimetre = 1000 cubic

centimetre = 0.001 cubic metre

1 millilitre = 1 cubic centimetre = 0.00 1 litre

 $=1.056 \times 10^{-3}$ quart

1 cubic foot = 28.316 litre = 29.902 quart

= 7.475 gallon

ઊર્જાના સામાન્ય એકમો

1 joule = 1×10^7 erg

1 thermochemical calorie** = 4.184 joule

 $= 4.184 \times 10^7 \text{ erg}$

 $= 4.129 \times 10^{-2}$ litre-atmosphere

 $= 2.612 \times 10^{19}$ electron volt

 $1 \text{ erg} = 1 \times 10^{-1} \text{ joule} = 2.390.1 \times 10^{-8} \text{ calorie}$

1 electron volt = 1.6022×10^{-19} joule

 $= 1.6022 \times 10^{-12} \,\mathrm{erg}$

 $= 96.487 \, kJ/mol^{+}$

1 litre-atmosphere = 24.217 calorie

= 101.32 joule

 $= 1.0132 \times 10^9 \text{ erg}$

1 British thermal unit = 1055.06 joule

 $= 1.5506 \times 10^{10} \text{ erg}$

= 252.2 calorie

લંબાઈના સામાન્ય એકમો

1 inch = 2.54 centimetre (exactly)

1 mile = 5280 feet = 1.609 kilometre

1 yard = 36 inch = 0.9144 metre

1 metre = 100 centimetre

= 39.37 inch

= 3.281 feet

= 1.094 yard

1 kilometre = 100 metre

= 1094 yard

= 0.6215 mile

1 Angstrom = 1.0×10^{-8} centimetre

= 0.10 nanometre

 $= 3.937 \times 10^{-9}$ inch

બળ* અને દબાણના સામાન્ય એકમો

1 atmosphere = 760 millimetre of mercury

 $= 1.013 \times 10^5$ pascal

= 14.70 pound per square inch

 $1 \text{ bar} = 10^5 \text{ pascal}$

1 torr = 1 millimetre of mercury

 $1 \text{ pascal} = 1 \text{kg/ms}^2 = 1 \text{ N/m}^2$

તાપમાન

SI આધારિત એકમ : કૅલ્વિન (K)

 $K = -273.15 \, ^{\circ}C$

 $K = {}^{\circ}C + 273.15$

 $^{\circ}F = 1.8(^{\circ}C) + 32$

$$^{\circ}C = \frac{^{\circ}F - 32}{1.8}$$

^{*} બળ : 1 ન્યૂટન N = 1 kg m/s²; એટલે કે બળ એટલે જ્યારે તેને 1 સેકન્ડ માટે લગાડવામાં આવે, તો 1 કિલોગ્રામ દળને 1 મીટર પ્રતિસેકન્ડ જેટલો વેગ આપે છે.

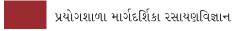
^{**} એક ગ્રામ પાણીના તાપમાનમાં 14.5 °C થી 15.5 °Cના વધારા માટે જરૂરી ઉષ્માનો જથ્થો

⁺ નોંધવું જોઈએ કે અન્ય એકમો પ્રતિ ક્રણ છે અને તેઓની સરખામણી કરવા માટે 6.022×10^{23} વડે ગુણવા

પરિશિષ્ટ IV 298 K તાપમાને વિદ્યુત રાસાયણિક શ્રેણીમાં પ્રમાણિત પોટૉન્શિયલ

રિડક્શન અર્ધ-પ્રક્રિયા	E° / V	રિડક્શન અર્ધ-પ્રક્રિયા	E°/V
$H_4 XeO_6 + 2H^+ + 2e^- \rightarrow XeO_3 + 3H_2O$	+ 3.0	$Pu^{4+} + e^- \rightarrow Pu^{3+}$	+ 0.97
$F_2 + 2e^- \rightarrow 2F^-$	+ 2.87	$NO_3^- + 4H^+ + 3e^- \rightarrow NO + 2H_2O$	+ 0.96
$O_3 + 2H^+ + 2e^- \rightarrow O_2 + H_2O$	+ 2.07	$2Hg^{2+} + 2e^{-} \rightarrow Hg_{2}^{2+}$	+ 0.92
$S_2O_8^{2-} + 2e^- \rightarrow 2SO_4^{2-}$	+ 2.05	$ClO^- + H_2O + 2e^- \rightarrow Cl^- + 2OH^-$	+0.89
$Ag^+ + e \longrightarrow Ag$	+ 1.98	$Hg^{2+} + 2e^- \rightarrow Hg$	+ 0.86
$Co^{3+} + e^- \rightarrow Co^{2+}$	+ 1.81	$NO_3^- + 2H^+ + e^- \rightarrow NO_2^- + H_2^-O$	+ 0.80
$H_2O_2 + 2H^+ + 2e^- \rightarrow 2H_2O$	+ 1.78	$Ag^+ + e^- \rightarrow Ag$	+ 0.80
$Au^+ + e^- \rightarrow Au$	+ 1.69	$Hg_2^{2+} + 2e^- \rightarrow 2Hg$	+ 0.79
$Pb^{4+} + 2e^- \rightarrow Pb^{2+}$	+ 1.67	$Fe^{3+} + e^- \rightarrow Fe^{2+}$	+ 0.77
$2\text{HCIO} + 2\text{H}^+ + 2\text{e}^- \rightarrow \text{Cl}_2 + 2\text{H}_2\text{O}$	+ 1.63	$BrO^- + H_2O + 2e^- \rightarrow Br^- + 2OH^-$	+ 0.76
$Ce^{4+} + e^- \rightarrow Ce^{3+}$	+ 1.61	$Hg_2SO_4 + 2e^- \rightarrow 2Hg + SO_4^{2-}$	+ 0.62
$2HBrO + 2H^{+} + 2e^{-} \rightarrow Br_{2} + 2H_{2}O$	+ 1.60	$MnO_4^{2-} + 2H_2O + 2e^- \rightarrow MnO_2 + 4OH^-$	+ 0.60
$MnO_4^- + 8H^+ + 5e^- \rightarrow Mm^{2+} + 4H_2O$	+ 1.51	$MnO_4^- + e^- \rightarrow MnO_4^{2-}$	+ 0.56
$Mn^{3+} + e^- \rightarrow Mn^{2+}$	+ 1.51	$I_2 + 2e^- \rightarrow 2I^-$	+ 0.54
$Au^{3+} + 3e^- \rightarrow Au$	+ 1.40	$I_3^- + 2e^- \rightarrow 3I^-$	+ 0.53
$Cl_2 + 2e^- \rightarrow 2Cl^-$	+ 1.36	$Cu^+ + e^- \rightarrow Cu$	+ 0.52
$Cr_2O_7^{2-} + 14H^+ + 6e^- \rightarrow 2Cr^{3+} + 7H_2O$	+ 1.33	$NiOOH + H_2O + e^- \rightarrow Ni(OH)_2 + OH^-$	+ 0.49
$O_3 + H_2O + 2e^- \rightarrow O_2 + 2OH^-$	+ 1.24	$Ag_2CrO_4 + 2e^- \rightarrow 2Ag + CrO_4^{2-}$	+ 0.45
$O_2 + 4H^+ + 4e^- \rightarrow 2H_2O$	+ 1.23	$O_2 + 2H_2O + 4e^- \rightarrow 4OH^-$	+ 0.40
$ClO_4^- + 2H^+ + 2e^- \rightarrow ClO_3^- + 2H_2O$	+ 1.23	$ClO_4^- + H_2O + 2e^- \rightarrow ClO_3^- + 2OH^-$	+ 0.36
$MnO_2 + 4H^+ + 2e^- \rightarrow Mn^{2+} + 2H_2O$	+ 1.23	$[Fe(CN)_6]^{3-} + e^- \rightarrow [Fe(CN)_6]^{4-}$	+ 0.36
$Pt^{2+} + 2e^- \rightarrow Pt$	+ 1.20	$Cu^{2+} + 2e^{-} \rightarrow Cu$	+ 0.34
$Br_2 + 2e^- \rightarrow 2Br^-$	+ 1.09	$Hg_2Cl_2 + 2e^- \rightarrow 2Hg + 2Cl^-$	+ 0.27

			પરિશિષ્ટ IV
$AgCl + e^{-} \rightarrow Ag + CI^{-}$	+ 0.27	$S + 2e^- \rightarrow S^{2-}$	- 0.48
$Bi^{3+} + 3e^- \rightarrow Bi$	+ 0.20	$In^{3+} + e^- \rightarrow In^{2+}$	- 0.49
$SO_4^{2-} + 4H^+ + 2e^- \rightarrow H_2SO_3^+$	$-H_2O$ + 0.17	$\mathrm{U}^{4+} + \mathrm{e}^- \rightarrow \mathrm{U}^{3+}$	- 0.61
$Cu^{2+} + e^- \rightarrow Cu^+$	+ 0.16	$Cr^{3+} + 3e^- \rightarrow Cr$	- 0.74
$\operatorname{Sn}^{4+} + 2e^{-} \rightarrow \operatorname{Sn}^{2+}$	+ 0.15	$Zn^{2+} + 2e^- \rightarrow Zn$	- 0.76
$AgBr + e^- \rightarrow Ag + Br^-$	+ 0.07	$Cd(OH)_2 + 2e^- \rightarrow Cd + 2OH^-$	- 0.81
$Ti^{4+} + e^- \rightarrow Ti^{3+}$	0.00	$2H_{2}O + 2e^{-} \rightarrow H_{2} + 2OH^{-}$	- 0.83
$2H^+ + 2e^- \rightarrow H_2$	(વ્યાખ્યા દ્વારા) 0.0	$Cr^{2+} + 2e^{-} \rightarrow Cr$	- 0.91
$Fe^{3+} + 3e^{-} \rightarrow Fe$	- 0.04	$Mn^{2+} + 2e^{-} \rightarrow Mn$	- 1.18
$O_2 + H_2O + 2e^- \rightarrow HO_2^- + O_2^-$	-0.08	$V^{2+} + 2e^{-} \rightarrow V$	- 1.19
$Pb^{2+}+2e^- \rightarrow Pb$	- 0.13	$Ti^{2+} + 2e^- \rightarrow Ti$	- 1.63
$In^+ + e^- \rightarrow In$	- 0.14	$AI^{3+} + 3e^{-} \rightarrow AI$	- 1.65 - 1.66
$\operatorname{Sn}^{2+} + 2e^{-} \rightarrow \operatorname{Sn}$	-0.14	$U^{3+} + 3e^{-} \rightarrow U$	
$AgI + e^- \rightarrow Ag + I^-$	-0.15	$Sc^{3+} + 3e^{-} \rightarrow Sc$	- 1.79
$Ni^{2+}+2e^- \rightarrow Ni$	- 0.23		- 2.09 2.26
V^{3+} + $e^ \rightarrow$ V^{2+}	-0.26	$Mg^{2+} + 2e^{-} \rightarrow Mg$	- 2.36 2.49
$\text{Co}^{3+} + 2\text{e}^- \rightarrow \text{Co}$	-0.28	$Ce^{3+} + 3e^{-} \rightarrow Ce$	- 2.48
$In^{3+} + 3e^- \rightarrow In$	- 0.34	$La^{3+} + 3e^{-} \rightarrow La$	- 2.52
$TI^+ + e^- \rightarrow T1$	- 0.34	$Na^+ + e^- \rightarrow Na$	- 2.71
$PbSO_{4} + 2e^{-} \rightarrow Pb + SO_{4}^{2-}$	- 0.36	$Ca^{2+} + 2e^- \rightarrow Ca$	- 2.87
$Ti^{3+} + e^{-} \rightarrow Ti^{2+}$		$Sr^{2+} + 2e^- \rightarrow Sr$	- 2.89
$Cd^{2+} + 2e^{-} \rightarrow Cd$	- 0.37	$Ba^{2+} + 2e^- \rightarrow Ba$	- 2.91
	- 0.40	$Ra^{2+} + 2e^- \rightarrow Ra$	- 2.92
$\ln^{2+} + e^- \rightarrow \ln^+$	- 0.40	$Cs^+ + e^- \rightarrow Cs$	- 2.92
$Cr^{3+} + e^- \rightarrow Cr^{2+}$	-0.41	$Rb^+ + e^- \rightarrow Rb$	- 2.93
$Fe^{2+} + 2e^{-} \rightarrow Fe$	- 0.44	$K^+ + e^- \rightarrow K$	- 2.93
$In^{3+} + 2e^- \rightarrow In +$	- 0.44	$Li^+ + e^- \rightarrow Li$	- 3.05



લઘુગણક કોપ્ટક 1

N	0	1	2	3	4	5	6	7	8	9	1	2	3	4	5	6	7	8	9
10	0000	0043	0086	0128	0170	0212	0253	0294	0334	0374	5	9	13	17	21	26	30	34	38
											4	8	12	16	20	24	28	32	36
11	0414	0453	0492	0531	0569	0607	0645	0682	0719	0755	4	8	12	16	20	23	27	31	35
											4	7	11	15	18	22	26	29	33
12	0792	0828	0864	0899	0934	0969	1004	1038	1072	1106	3	7	11	14	18	21	25	28	32
12	1120	1170	1206	1000	1071	1202	1225	10.67	1200	1.420	3	7	10	14	17	20	24	27	31
13	1139	1173	1206	1239	1271	1303	1335	1367	1399	1430	3	6 7	10 10	13 13	16 16	19 19	23 22	26 25	29 29
14	1461	1492	1523	1553	1584	1614	1614	1673	1703	1732	3	6	9	12	15	19	22	25	28
17	1401	1472	1323	1555	1304	1014	1014	10/3	1703	1732	3	6	9	12	14	17	2	023	26
15	1791	1790	1818	1847	1875	1903	1931	1959	1987	2014	3	6	9	11	14	17	20	23	26
"	1,71	1,50	1010	1017	10,0	1700	1501	1303	130,		3	6	8	11	14	17	19	22	25
16	2041	2068	2098	2122	2148	2175	2201	2227	2253	2279	3	6	8	11	14	16	19	22	24
											3	5	8	10	13	16	18	21	23
17	2304	2330	2365	2380	2405	2430	2455	2480	2504	2529	3	5	8	10	13	15	18	20	23
											3	5	8	10	12	15	17	20	22
18	2553	2577	2601	2625	2648	2672	2695	2718	2742	2765	2	5	7	9	12	14	17	19	21
											2	4	7	9	11	14	16	18	21
19	2788	·2810	2833	2856	2878	2900	2923	2945	2967	2989	2	4	7	9	11	13	16	18	20
20	2010	2022	2054	2075	2006	2110	2120	21.00	2101	2201	2	4	6	8	11	13	15	17	19
20	3010	3032	3054	3075	3096	3118	3139	3160	3181	3201	2	4	6	8	11	13	15	17	19
21 22	3222 3424	3243 3444	3263 3464	3284 3483	3304 3502	3324 3522	3345 3540	3365 3560	3385 3579	3404 3598	2 2	4 4	6 6	8 8	10 10	12 12	14 14	16 15	18 17
23	3617	3636	3655	3675	3692	3711	3729	3747	3766	3784	2	4	6	7	9	11	13	15	17
24	3802	3820	3838	3856	3874	3892	3909	3927	3945	3962	2	4	5	7	9	11	2	14	16
25	3979	3997	4014	4031	4048	4065	4082	4099	4116	4133	2	3	5	7	9	10	12	14	15
26	4150	4166	4182	4200	4216	4232	4279	4265	4281	4298	2	3	5	7	8	10	11	13	15
27 28	4314 4472	4330 4487	4346 4502	4362 4518	4378 4533	4393 1548	4409 4564	4425 4579	4440 4594	4456 4609	2 2	3	5 5	6	8	9 9	11 11	13 12	14 14
29	4624	4639	4654	4669	4683	4698	4713	4728	4742	4757	1	3	4	6 6	8 7	9	10	12	13
30	4771	4786	4800	4814	4829	4843	4857	4871	4886	4900	1	3	4	6	7	9	10	11	13
31	4914	4928	4942	4955	4969	4983	4997	5011	5024	5038	î	3	4	6	7	8	10	11	12
32	5051	5065	5079	5092	5105	5119	5132	5142	5159	5172	1	3	4	5	7	8	9	11	12
33	5185	5198	5211	5224	5238	5250	5263	5276	5289	5302	1	3	4	5	6	8	9	10	12
34	5315	5328	5340	5353	5366	5378	5391	5403	5416	5428	1	3	4	5	6	8	9	10	11
35	5441	5453	5465	5478	5490	5502	5514	5527	5539	5551	1	2	4	5	6	7	9	10	11
36	5563	5575	5587	5599	5611	5623	5635	5647	5658	5670	1	2 2	4 3	5 5	6	7 7	8	10 9	11
37 38	5682 5798	5694 5809	5705 5821	5717 532	5729 5843	5740 5855	5752 5866	5763 5877	5775 5888	5786 5899	1	2	3	5 5	6 6	7	8 8	9	10 10
39	5911	5922	5933	5944	5922	5966	5977	5988	5999	6010	1	2	3	4	5	7	8	9	10
40	6021	6031	6042	6053	6064	6075	6085	6096	6107	6117	1	2	3	4	5	6	8	9	10
41	6128	6138	6149	6160	6170	6180	6191	6201	6212	6222	1	2	3	4	5	6	7	8	9
42	6232	6243	6253	6263	6274	6284	6294	6304	6314	6325	1	2	3	4	5	6	7	8	9
43	6335	6345	6355	6365	6375	6385	6395	6405	6415	6425	1	2	3	4	5	6	7	8	9
44	6435	6444	6454	6464	6474	6484	6493	6503	6513	6522		2	3	4	5	6	7	8	9
45 46	6235 6628	6542 6637	6551	6561	6571	6580 6675	6590 6684	6599	6609	6618 6712	1	2	3	4	5 5	6	7	8	9 8
46	6721	6730	6646	6656 6749	6758	6767	6776	6693 6785	6702 6794	6803	1 1	2 2	3	4	5 5	6 5	6	7 7	8
48	6812	6821	6830	6839	6848	6857	6866	6875	6884	6893	1	2	3	4	4	5	6	7	8
49	6902	6911	6920	6928	6937	6946	6955	6964	6972	6981	1	2	3	4	4	5	6	7	8
									1		l								

લઘુગણક કોષ્ટક 1 પરિશિષ્ટ

N	0	1	2	3	4	5	6	7	8	9	1	2	3	4.	5	6	7	8	9
50	6990	6998	7007	7016	7024	7033	7042	7050	7059	7067	1	2	3	3	4	5	6	7	8
51	7076	7084	7093	7101	7110	7118	7126	7135	7143	7152	1	2	3	3	4	5	6	7	8
52 53	7160	7168	7177	7185	7193 7275	7202 7284	7210	7218	7226	7235 7316	1 1	2	2 2	3	4	5 5	6	7	7 7
54	7243 7324	7251 7332	7259 7340	7267 7348	7356	7364	7292 7372	7300	7308 7388	7396	1	2 2	2	3	4 4	<i>5</i>	6	6 6	7
55	7404	7412	7419	7127	7435	7443	7451	7459	7466	7474	1	2	2	3	4	5	5	6	7
56	7482	7490	7497	7505	7513	7530	7528	7536	7543	7551	1 1	2	2	3	4	5	5	6	7
57	7559	7566	7574	7582	7589	7597	7604	7612	7619	7627	1	2	2	3	4	5	5	6	7
58	7634	7642	7649	7657	7664	7672	7679	7686	7fi94	7701	1	1	2	3	4	4	5	6	7
59	7709	7716	7723	7731	7738	7745	7752	7760	7767	7774	1	1	2	3	4	4	5	6	7
60	7782	7789	7796	7803	7810	7818	7825	7832	7839	7846	1	1	2	3	4	4	5	6	6
61	7853	7860 7931	7768 7938	7875	7882 7952	7889 7959	7896	7903 7973	7910 7980	7917 7987	1 1	1 1	2	3	4	4 4	5 5	6	6
62	7924 7993	8000	8007	7945 8014	8021	8028	7966 8035	8041	8048	8055	1	1	2 2	3	3	4	5	6 6	6
64	8062	8069	8075	8082	8089	8096	8102	8109	8116	8122	1	1	2	3	3	4	5	5	6
65	8129	8136	8142	8149	8156	8162	8169	8176	8182	8189	1	1	2	3	3	4	5	5	6
66	8195	8202	8209	8215	8222	8228	8235	8241	8248	8254	1	î	2	3	3	4	5	5	6
67	8261	8267	8274	8280	8287	8293	8299	8306	8312	8319	1	1	2	3	3	4	5	5	6
68	8325	8331	8338	8344	8351	8357	8367	8370	8376	8382	1	1	2	3	3	4	4	5	6
69	8388	8395	8401	8407	8414	8420	8426	8432	8439	8445	1	1	2	2	3	4	4	5	6
70	8451	8457	8463	8470	8476	8482	8488	8494	8500	8506	1	1	2	2	3	4	4	.5	6
71 72	8513	8519	8525	8531	8537 8597	8543	8549 8609	8555	8561	8567	1	1 1	2	2	3	4 4	4	.5 5	5 5
73	8573 8633	8579 8639	8585 8645	8591 8651	8657	8603 8663	8669	8615 8675	8621 8681	8627 8686	1	1	2 2	2 2	3	4	4 4	5	5
74	8692	8698	8704	8710	8716	8722	8727	8733	8739	8745	1	1	2	2	3	4	4	5	5
75	8751	8756	8762	8768	8774	8779	8785	8791	8797	8802	1	1	2	2	3	3	4	5	5
76	8808	8814	8820	8825	8831	8837	8842	8848	8854	8859	1	1	2	2	3	2	4	5	6
77	8865	8871	8876	8882	8887	8893	8899	8904	8910	8915	1	1	2	2	3	3	4	4	5
78 79	8921 8976	8927 8982	8932 8987	8938 8993	8943 8998	8949 9004	8954 9009	8960 9015	8965 9020	8971 9025	1 1	1 1	2 2	2 2	3	3	4 4	4 4	5 5
								1	1									-	
80 81	9031 9085	9036	9042 9096	9047 9101	9053	9058 9112	9063	9069 9122	9074 9128	9079 9133	1 1	1 1	2 2	2 2	3	3	4 4	4 4	5 5
82	9138	9143	9149	9154	9159	9165	9170	9175	9180	9186	1	1	2	$\frac{2}{2}$	3	3	4	4	5
83	9191	9196	9201	9206	9212	9217	9222	9227	9232	9238	1	1	2	2	3	3	4	4	5
84	9243	9248	9253	9258	9263	9267	9274	9279	9284	9289	1	1	2	2	3	3	4	4	5
85	9294	9299	9304	9309	9315	9320	9325	9330	9335	9340	1	1	2	2	3	3	4	4	5
86	9345	9350	9355	9360	9365	9370	9375	9380	9385	9390	1	1	2	2	3	3	4	4	5
87 88	9395 9445	9400 9450	9405 9455	9410	9415 9465	9420 9469	9425 9474	9430 9479	9435 9484	9440 9489	0	1	1	2	2	3	3 3	4	4
89	9443	9450	9504	9509	9513	9469	9523	9528	9533	9489	0	1	1 1	2 2	2 2	3	3	4	4 4
90	9542	9547	9552	9557	9562	9566	9571	9576	9581	9586	0	1	1	2	2	3	3	4	4
91	9590	9595	9600	9605	9609	9614	9619	9624	9628	9633	0	1	1	2	2	3	3	4	4
92	9638	9643	9647	9652	9657	9661	9666	9671	9675	9680	0	1	1	2	2	3	3	4	4
93 94	9685	9689	9694	9699	9703	9708	9713	9717	9722	9727	0	1	1	2	2	3	3	4	4
	9731	9736	9741	9745	9750	9754	9759	9763	9768	9773	0	1	1	2	2	3	3	4	4
95 96	9777 9823	9782 9827	9786 9832	9791	9795 9841	9800 9845	9809 8509	9809 9854	9814 9859	9818 9863	0	1 1	1 1	2 2	2 2	3	3	4 4	4 4
90	9823 9868	9827	9832	9881	9886	9845	8949	9899	9839	9803	0	1	1	2	2	3	3	4	4
98	9912	9917	9921	9926	9930	9934	9399	9943	9948	9952	0	1	1	2	2	3	3	4	4
99	9956	9961	9965	9969	9974	9978	9983	9987	9997	9996	0	1	1	2	2	3	3	3	4

પ્રતિ લઘુગણક કોપ્ટક 2

N	0	1	2	3	4	5	6	7	8	9	1	2	3	4	5	6	7	8	9
.00	1000	1002	1005	1007	1009	1012	1014	1016	1019	1021	0	0	1	1	1	1	2	2	2
.01	1023	1026	1028	1030	1033	1035	1038	1040	1042	1045	0	0	1	1	1	1	2	2	2
.02	1047	1050	1052	1054	1057	1059	1062	1064	1067	1069	0	0	1	1	1	1	2	2	2
.03	1072	1074	1076	1079	1081	1084	1086	1089	1091	1094	0	0	1	1	1	1	2	2	2
.04	1096	1099	1102	1104	1107	1109	1112	1114	1117	1119	0	1	1	l	1	2	2	2	2
.05	1122	1125	1127	1130	1132	I135	1138	1140	1143	1146	0	1	1	1	1	2	2	2	2
.06	1148 1175	1151 1178	1153 1180	1156 1183	1159	1161	1164 1191	1167	1169 1197	1172 1199	0	1	1 1	1	1	2 2	2	2	2
.07	1202	1205	1208	1211	1186 1213	1189 1216	1219	1194 1222	1225	1227	0	1 1	1	1	1 1	2	2 2	2 2	2 3
.08	1202	1203	1236	1239	1213	1245	1219	1250	1253	1256	0	1	1	1	1	2	$\frac{1}{2}$	2	3
.07											_	1	1	1	1				
.10	1259	1262	1265	1268	1271	1274	1276	1279	1282	1285	0	1	1	1	1	2	2	2	3
.11	1288	1291	1294	1297	1300	1303	1306	1309	1312	1315	0	1	1	1	2	2	2	2	3
.12	1318	1321	1324	1327	1330	1334	1337	1340	1343	1346	0	1	1	1	2	2	2	2	3
.13	1349	1352	1355	1358	1361	1365	1368	1371	1374	1377	0	1	1	1	2	2	2	3	3
.14	1380	1384	1387	1390	1393	1396	1400	1403	1406	1409	0	1	1	1	2	2	2	3	3
.15	1413	1416	1419	1422	1426	1429	1432	1435	r439	1442	0	1	1	1	2	2	2	3	3
.16	1445	1449	1452	1455	1459	1462	1466	1469	1472	1479	0	1	1	1	2	2	2	3	3
.17	1479	1483	1486	1489	1493	1496	1500	1503	1507	1510	0	1	1	1	2	2	2	3	3
.18	1514 1549	1517 1552	1521 1556	1524 1560	1528 1563	1531 1567	1535 1570	1538 1574	1542 1578	1545 1581	0	1 1	1 1	1 1	2 2	2 2	2 3	3	3 3
.19	1349	1332	1550	1500	1303	1507	1570	13/4	1576	1301	0	1	1	1	2	2)	3	3
.20	1585	1589	1592	1596	1600	1603	1607	1611	1614	1618	0	1	1	1	2	2	3	3	3
.21	1622	1626	1629	1633	1637	1641	1644	1648	1652	1656	0	1	1	2	2	2	3	3	3
.22	1660	1663	1667	1671	1675	1679	1683	1687	1690	1694	0	1	1	2	2	2	3	3	3
.23	1698	1702	1706	1710	.1714	1718	1722	1726	1730	1734	0	1	1	2	2	2	3	3	4
.24	1738	1742	1746	1750	1754	1758	1762	1766	1770	1774	0	1	1	2	2	2	3	3	4
.25	1778	1782	1786	1791	1795	1799	1803	1807	1811	1816	0	1	1	2	2	2	3	3	4
.26	1820	1824	1828	1832	1837	1841	1845	1849	1854	1858	0	1	1	2	2	3	3	3	4
.27	1862	1866	1871	1875	1879	1884	1888	1892	1897	1901	0	1	1	2	2	3	3	3	4
.28	1905	1910	1914	1919	1923	1928	1932	1936	1941	1945	0	1	1	2	2	3	3	4	4
.29	1950	1954	1959	1963	1968	1972	1977	1982	1986	1991	0	1	1	2	2	3	3	4	4
.30	1995	2000	2004	2009	2014	2018	2023	2028	2032	2037	0	1	1	2	2	3	3	4	4
.31	2042	2046	2051	2056	2061	2065	2070	2075	2080	2084	0	1	1	2	2	3	3	4	4
.32	2089	2094	2099	2104	2109	2113	2118	2123	2128	2133	0	1	1	2	2	3	3	4	4
.33	2138	2143	2148	2153	2158	2163	2168	2173	2178	2183	0	1	1	2	2	3	3	4	4
.34	2188	2193	2198	2203	2208	2213	2218	2223	2228	2234	1	1	2	2	3	3	4	4	5
.35	2239	2244	2249	2254	2259	2265	2270	275	2280	2286	1	1	2	2	3	3	4	4	5
.36	2291	2296	2301	2307	2312	2317	2323	2328	2333	2339	1	1	2	2	3	3	4	4	5
.37	2344	2350	2355	2360	2366	2371	2377	3822	2388	2393	1	1	2	2	3	3	4	4	5
.38	2399	2404	2410	2415	2421	2427	2432	4382	2443	2449	1	1	2	2	3	3	4	4	5
.39	2455	2460	2466	2472	2477	2483	2489	4952	2500	2506	1	1	2	2	3	3	4	5	5
.40	2512	2518	2523	2529	2535	2541	2547	2553	2559	2564	1	1	2	2	3	4	4	5	5
.41	2570	2576	2582	2588	2594	2600	2606	2612	2618	2624	ĺ	1	2	2	3	4	4	5	5
.42	2630	2636	2642	2649	2655	2661	2667	2673	2679	2685	1	î	2	2	3	4	4	5	6
.43	2692	2698	2704	2710	2716	2723	2729	2735	2742	2748	1	1	2	3	3	4	4	5	6
.44	2754	2761	2767	2773	2780	2786	2793	2799	2805	2812	1	1	2	3	3	4	4	5	6
.45	2818	2825	2831	2838	2844	2851	2858	2864	2871	2877	1	1	2	3	3	4	5	5	6
.46	2884	2891	2897	2904	2911	2917	2924	2931	2938	2944	1	1	2	3	3	4	5	5	6
.47	2951	2958	2965	2972	2979	2985	2992	2999	3006	3013	1	1	2	3	3	4	5	5	6
.48	3020	3027	3034	3041	3048	3055	3062	3069	3076	3083	1	1	2	3	3	4	5	6	6
.49	3090	3097	3105	3112	3119	3126	3133	3141	3148	3155	1	I	2	3	3	4	5	6	6
/	2000	2071	5105			5120	5155	2111	51 10	5155	1	1	-		2	'	l	3	٠

પ્રતિ લઘુગણક કોષ્ટક 2

N	0	1	2	3	4	5	6	7	8	9	1	2	3	4	5	6	7	8	9
.50	3162	3170	3177	3184	3192	3199	3206	3214	3221	3228	1	1	2	3	4	4	5	6	7
.51	3236	3243	3251	3258	3266	3273	3281	3289	3296	3304	1	2	2	3	4	5	5	6	7
.52	3311	3319	3327	3334	3342	3350	3357	3365	3373	3381	1	2	2	3	4	5	5	6	7
.53	3388	3396	3404	3412	3420	3428	3436	3443	3451	3459	1	2	2	3	4	5	6	6	7
.54	3467	3475	3483	3491	3499	3508	3513	3524	3532	3540	1	2	2	3	4	5	6	6	7
.55	3548	3556	3565	3573	3581	3589	3597	3606	3614	3622	1	2	2	3	4	5	6	7	7
.56	3631	3639	3648	3656	3664	3673	3681	3690	3698	3707	1	2	3	3	4	5	6	7	8
.57	3715	3724	3733	3741	3750	3758	3767	3776	3784	3793	1	2	3	3	4	5	6	7	8
.58	3802	3811	3819	3828	3837	3846	3855	3864	3873	3882	1	2	3	4	4	5	6	7	8
.59	3890	3899	3908	3917	3926	3936	3945	3954	3963	3972	1	2	3	4	5	5	6	7	8
.60	3981	3990	3999	4009	4018	4027	4036	4046	4055	4064	1	2	3	4	5	6	6	7	8
.61	4074	4083	4093	4102	4111	4121	4130	4140	4150	4159	l 1	2	3	4	5	6	7	8	9
.62	4169	4178	4188	4198	.4207	4217	4227	4236	4246	4256	1	2	3	4	5	6	7	8	9
1.63	4266	4276	4285	4295	4305	4315	4325	4335	4345	4355		2	3	4	5	6	7	8	9
.64	4365	4375	4385	4395	4406	4416	4426	4436	4446	4457	1 1	2	3	4	5	6	7	8	9
.65	4467	4477	4487	4498	4508	4519	4529	4539	4550	4560	1 1	2	3	4	5	6	7	8	9
.66	4571	4581	4592 4699	4603	4613 4721	4624	4634 4742	4645	4656	4667	1 1	2	3	4	5	6 7	7 8	9 9	10
.67	4677 4786	4688	l	4710 4819	4831	4732 4842	4853	4753 4864	4764 4875	4775 4887	1 1	2 2	3	4	5	7	8	9	10
.68	4898	4797 4909	4808 4920	4932	4943	4955	4966	4977	4989	5000	1 1	2	3	4	5 5	7	8	9	10 10
1											1							-	
.70	5012	5023	5035	5047	5058	5070	5082	5093	S105	5117	l 1	2	4	5	6	7	8	9	11
.71	5129	5140	5152	5164	5176	5188	5200	5212	5224	5236	I	2	4	5	6	7	8	10	11
.72	5248	5260	5272	5284	5297	5309	5321	5333	5346	5358		2	4	5	6	7	9	10	11
.73	5370	5383	5395	5408	5420	5433	5445	5458	5470	5483		3	4	5	6	8	9	10	11
.74	5495 5623	5508	5521 5649	5534 5662	5546 5675	5559 5689	5572 5702	5585 5715	5598	5610	1 1	3	4	5	6	8	9	10	12 12
.75	5754	5636 5768	5781	5794	5808	5821	5834	5848	5728 5861	5741	1 1	3	4	5 5	7 7	8	9	10 11	12
77	5888	5902	5916	5929	5943	5957	5970	5984	5998	6012	1 1	3	4	5	7	8	10	11	12
.78	6026	6039	6053	6067	6082	6095	6109	6124	6138	6152	1	3	4	6	7	8	10	11	13
.79	6166	6180	6194	6209	6223	6237	6252	6266	6281	6295	1	3	4	6	7	9	10	11	13
.80	6310	6324	6339	6353	6368	6383	6397	6412	6427	6442	1	3	4	6	7	9	10	12	13
.81	6457	6471	6486	6501	6516	6531	6546	6561	6577	6592	2	3	5	6	8	9	11	12	14
.82	6607	6622	6637	6653	6668	6683	6699	6714	6730	6745	2	3	5	6	8	9	11	12	14
.83	6761	6776	6792	6808	6823	6839	6855	6871	6887	6902	2	3	5	6	8	9	11	13	14
.84	6918	6934	6950	6966	6982	6998	7015	7031	7047	7063	2	3	5	6	8	10	11	13	15
.85	7079	7096	7112	7129	7145	7617	7178	7194	7211	7228	2	3	5	7	8	10	12	13	15
.86	7244	7261	7278	7295	7311	3287	7345	7362	7379	7396	2	3	5	7	8	10	12	13	15
.87	7413	7430	7447	7464	7482	4997	7516	7534	7551	7568	2	3	5	7	9	10	12	14	16
.88	7586	7603	7621	7638	7656	6747	7691	7709	7727	7745	2	4	5	7	9	11	12	14	16
.89	7765	7780	7798	7816	7834	7852	7870	7889	7907	7925	2	4	5	7	9	11	13	14	16
.90	7943	7962	7980	7998	8017	8035	8054	8072	8091	8110	2	4	6	7	9	11	13	15	17
.91	8128	8147	8166	8185	8204	8222	8241	8260	8279	8299	2	4	6	8	9	11	13	15	17
.92	8318	8337	8356	8375	8395	8414	8433	8453	8472	8492	2	4	6	8	10	12	14	15	17
.93	8511	8531	8551	8570	8590	8610	8630	8650	8670	8690	2	4	6	8	10	12	14	16	18
.94	8710	8730	8750	8770	8790	8810	8831	8851	8872	8892	2	4	6	8	10	12	14	16	18
.95	8913	8933	8954	8974	8995	9016	9036	9057	9078	9099	2	4	6	8	10	12	15	17	19
.96	9120	9141	9162	9186	9204	9226	9247	9268	9290	9311	2	4	6	8	11	13	15	17	19
.97	9333	9354	9376	9397	9419	9441	9462	9484	9506	9525	2	4	7	9	11	13	15	17	20
.98	9550	9575	9594	9616	9638	9661	9683	9705	9727	9750	2	4	7	9	11	13	16	18	20
.99	9772	9795	9817	9840	9863	9886	9908	9931	9954	9977	2	5	7	9	11	14	16	18	20

141

