ગુજરાત રાજ્યના શિક્ષણવિભાગના પત્ર-ક્રમાંક મશબ / 1211 / 414 / છ, તા.15-9-2011-થી મંજૂર

ધોરણ 11

(સિમેસ્ટર II)

પ્રતિજ્ઞાપત્ર

ભારત મારો દેશ છે.
બધાં ભારતીયો મારાં ભાઈબહેન છે.
હું મારા દેશને ચાહું છું અને તેના સમૃદ્ધ અને
વૈવિધ્યપૂર્ણ વારસાનો મને ગર્વ છે.
હું સદાય તેને લાયક બનવા પ્રયત્ન કરીશ.
હું મારાં માતાપિતા, શિક્ષકો અને વડીલો પ્રત્યે આદર રાખીશ અને દરેક જણ સાથે સભ્યતાથી વર્તીશ.
હું મારા દેશ અને દેશબાંધવોને મારી નિષ્ઠા અર્પું છું.
તેમનાં કલ્યાણ અને સમૃદ્ધિમાં જ મારું સુખ રહ્યું છે.

રાજ્ય સરકારની વિનામૂલ્યે યોજના હેઠળનું પુસ્તક

ગુજરાત રાજ્ય શાળા પાઠ્યપુસ્તક મંડળ 'વિદ્યાયન', સેક્ટર 10-એ, ગાંધીનગર-382010

© ગુજરાત રાજ્ય શાળા પાઠ્યપુસ્તક મંડળ, ગાંધીનગર આ પાઠ્યપુસ્તકના સર્વ હક ગુજરાત રાજ્ય શાળા પાઠ્યપુસ્તક મંડળને હસ્તક છે. આ પાઠ્યપુસ્તકનો કોઈ ભાગ કોઈ પણ રૂપમાં ગુજરાત રાજ્ય શાળા પાઠ્યપુસ્તક મંડળના નિયામકની લેખિત પરવાનગી વગર પ્રકાશિત કરી શકાશે નહિ.

લેખન

ડૉ. પી. એન. ગજ્જર (કન્વીનર)

ડૉ. વી. પી. પટેલ

પ્રો. એમ. એસ. રામી

ડૉ. એ. પી. પટેલ

ડૉ. ડી. એચ. ગદાણી

શ્રી પંકજ જે. ચાવડા

અનુવાદ

ડૉ. પી. એન. ગજ્જર

ડૉ. વી. પી. પટેલ

પ્રો. એમ. એસ. રામી

ડૉ. એ. પી. પટેલ

ડૉ. ડી. એચ. ગદાણી

શ્રી પંકજ જે. ચાવડા

સમીક્ષા

શ્રી દિનેશભાઈ વી. સુથાર

શ્રી રજનીકાન્ત એન. ચૌધરી

શ્રી મુકેશભાઈ એચ. ભટ્ટ

શ્રી એસ. જી. પટેલ

શ્રી મયુર એમ. રાવલ

શ્રી શાન્તિલાલ એસ. પટેલ

શ્રી જે. પી. જોષી

શ્રી વાસુદેવ બી. રાવલ

શ્રી જયંતીભાઈ એમ. પટેલ

શ્રી કલ્પેશ ડી. પટેલ

ભાષાશુદ્ધિ

શ્રી ઓ. બી. દવે

ચિત્રાંકન

શ્રી જી. વી. મેવાડા

સંયોજન

શ્રી ચિરાગ એચ. પટેલ

(વિષય-સંયોજક : ભૌતિકવિજ્ઞાન)

નિર્માણ-આયોજન

શ્રી હરેશ એસ. લીમ્બાચીયા (નાયબ નિયામક : શૈક્ષણિક)

મુદ્રણ-આયોજન

શ્રી હરેશ એસ. લીમ્બાચીયા (નાયબ નિયામક : ઉત્પાદન)

પ્રસ્તાવના

કૉર-કરિક્યુલમ અને એન.સી.ઈ.આર.ટી. દ્વારા એન.સી.એફ.-2005 મુજબ તૈયાર કરવામાં આવેલા નવા રાષ્ટ્રીય અભ્યાસક્રમોના અનુસંધાનમાં ગુજરાત રાજ્ય માધ્યમિક અને ઉચ્ચતર માધ્યમિક શિક્ષણ બોર્ડે નવા અભ્યાસક્રમો તૈયાર કર્યા છે. આ અભ્યાસક્રમો ગુજરાત સરકાર દ્વારા મંજૂર કરવામાં આવે છે.

ગુજરાત સરકાર દ્વારા મંજૂર થયેલા ધોરણ 11 (સિમેસ્ટર II)ના ભૌતિકવિજ્ઞાન વિષયના નવા અભ્યાસક્રમ અનુસાર તૈયાર કરવામાં આવેલું આ પાઠ્યપુસ્તક વિદ્યાર્થીઓ સમક્ષ મૂકતાં મંડળ આનંદ અનુભવે છે.

આ પાઠ્યપુસ્તક પ્રસિદ્ધ કરતાં પહેલાં એની હસ્તપ્રતની આ સ્તરે શિક્ષણકાર્ય કરતા શિક્ષકો અને તજ્જ્ઞો દ્વારા સર્વાંગી સમીક્ષા કરાવવામાં આવી છે. શિક્ષકો તથા તજ્જ્ઞોનાં સૂચનો અનુસાર હસ્તપ્રતમાં યોગ્ય સુધારાવધારા કર્યા પછી આ પાઠ્યપુસ્તક પ્રસિદ્ધ કરવામાં આવ્યું છે.

આ મૂળ અંગ્રેજીમાં લખાયેલ પાઠ્યપુસ્તકનો આ ગુજરાતી અનુવાદ છે. ગુજરાતી અનુવાદની વિષય અને ભાષાના નિષ્ણાતો દ્વારા સમીક્ષા કરવામાં આવી છે.

પ્રસ્તુત પાઠ્યપુસ્તકને રસપ્રદ, ઉપયોગી અને ક્ષતિરહિત બનાવવા માટે મંડળે પૂરતી કાળજી લીધી છે; તેમ છતાં શિક્ષણમાં રસ ધરાવનાર વ્યક્તિઓ પાસેથી પુસ્તકની ગુણવત્તા વધારે તેવાં સૂચનો આવકાર્ય છે.

ડૉ. ભરત પંડિત નિયામક **સુજીત ગુલાટી _{IAS}** કાર્યવાહક પ્રમુખ

તા.05-08-2015

ગાંધીનગર

પ્રથમ આવૃત્તિ : 2011, પુન:ર્મુદ્રણ : 2012, 2013, 2014, 2014, 2015

પ્રકાશક : ગુજરાત રાજ્ય શાળા પાઠ્યપુસ્તક મંડળ, 'વિદ્યાયન', સેક્ટર 10-એ, ગાંધીનગર વતી ભરત પંડિત, નિયામક

મુદ્રક

મૂળભૂત કરજો

ભારતના દરેક નાગરિકની ફરજ નીચે મુજબ રહેશે :*

- (ક) સંવિધાનને વફાદાર રહેવાની અને તેના આદર્શો અને સંસ્થાઓનો, રાષ્ટ્રધ્વજનો અને રાષ્ટ્રગીતનો આદર કરવાની;
- (ખ) આઝાદી માટેની આપશી રાષ્ટ્રીય લડતને પ્રેરણા આપનારા ઉમદા આદર્શોને હૃદયમાં પ્રતિષ્ઠિત કરવાની અને અનુસરવાની;
- (ગ) ભારતનાં સાર્વભૌમત્વ, એકતા અને અખંડિતતાનું સમર્થન કરવાની અને તેમનું રક્ષણ કરવાની;
- (ઘ) દેશનું રક્ષણ કરવાની અને રાષ્ટ્રીય સેવા બજાવવાની હાકલ થતાં, તેમ કરવાની;
- (ચ) ધાર્મિક, ભાષાકીય, પ્રાદેશિક અથવા સાંપ્રદાયિક ભેદોથી પર રહીને, ભારતના તમામ લોકોમાં સુમેળ અને સમાન બંધુત્વની ભાવનાની વૃદ્ધિ કરવાની, સ્ત્રીઓના ગૌરવને અપમાનિત કરે તેવા વ્યવહારો ત્યજી દેવાની;
- (છ) આપણી સમન્વિત સંસ્કૃતિના સમૃદ્ધ વારસાનું મૂલ્ય સમજી તે જાળવી રાખવાની;
- (જ) જંગલો, તળાવો, નદીઓ અને વન્ય પશુપક્ષીઓ સહિત કુદરતી પર્યાવરણનું જતન કરવાની અને સુધારણા કરવાની અને જીવો પ્રત્યે અનુકંપા રાખવાની;
- (ઝ) વૈજ્ઞાનિક માનસ, માનવતાવાદ અને જિજ્ઞાસા તથા સુધારણાની ભાવના કેળવવાની;
- (ટ) જાહેર મિલકતનું રક્ષણ કરવાની અને હિંસાનો ત્યાગ કરવાની;
- (ઠ) રાષ્ટ્ર પુરુષાર્થ અને સિદ્ધિનાં વધુ ને વધુ ઉન્નત સોપાનો ભણી સતત પ્રગતિ કરતું રહે એ માટે, વૈયક્તિક અને સામૂહિક પ્રવૃત્તિનાં તમામ ક્ષેત્રે શ્રેષ્ઠતા હાંસલ કરવાનો પ્રયત્ન કરવાની;
- (ડ) માતા-પિતાએ અથવા વાલીએ 6 વર્ષથી 14 વર્ષ સુધીની વયના પોતાના બાળક અથવા પાલ્યને શિક્ષણની તકો પૂરી પાડવી.

^{*} ભારતનું સંવિધાન : કલમ 51-क

અનુક્રમણિકા						
1. ક્ણોના તંત્રનું ડાઇનેમિક્સ	1-16					
2. ચાકગતિ	17-45					
3. ગુરુત્વાકર્ષણ	46-71					
4. ઘન પદાર્થોના યાંત્રિક ગુણધર્મો	72-90					
5. તરલનું મિકેનિક્સ	91-121					
6. થરમાંડાઇનેમિક્સ	122-155					
7. દોલનો	156-179					
8. તરંગો	180-211					
• ઉકેલો	212					
• પરિશિષ્ટ	228					
• સંદર્ભગ્રંથો	230					
• પારિભાષિક શબ્દો	231					
• લઘુગુણકો	241					

આ પાઠ્યપુસ્તક વિશે...

National Curriculum Framwork (NCF), Core-Curriculum અને National Council of Educational Research and Training (NCERT)ના અભ્યાસક્રમોને ધ્યાનમાં રાખી રાષ્ટ્રીય શિક્ષણનીતિના ઉપલક્ષ્યમાં રાજ્ય સરકાર તરફથી મંજૂર કરવામાં આવેલ ધોરણ 11ના ભૌતિકવિજ્ઞાન વિષયના અભ્યાસક્રમ અનુસાર તૈયાર કરવામાં આવેલું આ પાઠ્યપુસ્તક આપની સમક્ષ રજૂ કરતાં અમે આનંદ અનુભવીએ છીએ.

રાજ્ય સરકારે ધોરણ 11માં સિમેસ્ટર પદ્ધતિનો અમલ કર્યો છે. સિમેસ્ટર પદ્ધતિ વિદ્યાર્થીઓના ભણતરનો ભાર ઘટાડનાર થશે તથા અભ્યાસ પ્રત્યે રુચિ વધારનાર થશે.

ધોરણ-11ના ભૌતિકવિજ્ઞાનના આ પાઠ્યપુસ્તકમાં, સિમેન્ટર I અને સિમેન્ટર II દરેકમાં આઠ પ્રકરણોનો સમાવેશ વિષયવસ્તુની ગહનતા, વર્ગખંડમાં અભ્યાસ માટે મળવાપાત્ર સમય વગેરેને ધ્યાનમાં રાખીને કરવામાં આવ્યો છે.

ભૌતિકવિજ્ઞાનના કોઈ પણ વાદ (Theory)ની સ્પષ્ટ સમજણ તો જ પ્રાપ્ત થાય જો તેની સાથે-સાથે તેના આનુષંગિક કોયડાનો ઉકેલ મેળવતાં વિદ્યાર્થી શીખે. આથી જ દરેક પ્રકરણમાં કોઈ પણ નવા વાદને અનુરૂપ કોયડા ગણીને આપેલ છે. પ્રસ્તુત પાઠ્યપુસ્તકનું એક જમા પાસું એ પણ છે કે, દરેક પ્રકરણના અંતે સવિસ્તૃત સારાંશ આપવામાં આવેલ છે, જેના પરથી સમગ્ર પ્રકરણના વિષયવસ્તુ પર ઝડપથી એક નજર કરી શકાય.

સમગ્ર દેશમાં લેવામાં આવતી વિવિધ પ્રવેશ પરીક્ષાના પરિરૂપને ધ્યાનમાં રાખી આ પુસ્તકમાં MCQs, Short questions, Objective questions અને Problemsનો સમાવેશ કરેલ છે. Problemsના ઉકેલ માટે પુસ્તકના અંતે Hints પણ આપવામાં આવેલ છે કે જેથી વિદ્યાર્થીઓ સ્વ-પ્રયત્ને આ કોયડા ઉકેલી શકે. પુસ્તકને અંતે આપેલ Appendices પણ અતિ મહત્ત્વનાં બની રહેશે.

આ પુસ્તક એક નવા જ પરિરૂપ તથા ચાર કલરના પ્રિન્ટિંગમાં પ્રસિદ્ધ કરવામાં આવ્યું છે, તેથી તેમાં રહેલી આકૃતિઓ વધુ સ્પષ્ટ બની રહે છે. સામાન્ય રીતે વિદ્યાર્થીઓ એક ધોરણ પૂરું કરીને આગળના ધોરણમાં જાય ત્યારે જૂનાં પાઠ્યપુસ્તકો જાળવી રાખતાં ન હોવાનું વલણ નોંધાયેલું છે. પરંતુ સિમેસ્ટર પદ્ધતિમાં દરેક સિમેસ્ટરનું મહત્ત્વ હોવાથી તથા પાઠ્યપુસ્તકનું સ્વરૂપ જ અતિસુંદર હોવાથી તે દરેક વિદ્યાર્થીઓને સાચવી રાખવું ગમશે અને તે સંદર્ભ પુસ્તક તરીકે ઉપયોગી બનશે.

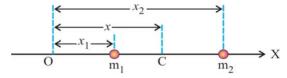
આ અગાઉના પાઠ્યપુસ્તકને વિદ્યાર્થીઓ, શિક્ષકો તથા તજ્જ્ઞો દ્વારા ખૂબ જ સારો પ્રતિભાવ મળ્યો હતો. આથી તે પુસ્તકમાંની ઘણા વિષયવસ્તુને આ પુસ્તકમાં મૂળ સ્વરૂપે કે થોડાક ફેરફાર સાથે લેવામાં આવેલ છે. અત્રે અગાઉના લેખકોની ટીમનો અમે ૠણ સ્વીકાર કરીએ છીએ. Review workshopમાં ઉપસ્થિત રહીને જે શિક્ષકમિત્રોએ આ પુસ્તકને ક્ષતિરહિત બનાવવા સૂચનો કર્યાં છે તે બદલ તેમનો પણ આભાર.

પુસ્તક તૈયાર કરતી વખતે તે ક્ષતિરહિત બને તેમજ હકીકતદોષ ન રહી જાય તેની જરૂરી કાળજી વિષય-સલાહકારો, લેખકો અને પરામર્શકો દ્વારા લેવામાં આવી છે. છતાં પણ કોઈ ક્ષતિ રહી ગઈ હોય તો, તે માટે ધ્યાન દોરવા આગ્રહ છે.

લેખકો/સંપાદકો

પ્રકરણ 1

કશોના તંત્રનું ડાઇનેમિક્સ


- 1.1 પ્રસ્તાવના
- 1.2 એક-પરિમાણમાં ક્રણોના તંત્રનું દ્રવ્યમાનકેન્દ્ર
- 1.3 ત્રિ-પરિમાણમાં *n*-કણોના તંત્રનું દ્રવ્યમાનકેન્દ્ર
- 1.4 રેખીય વેગમાનના સંરક્ષણનો નિયમ
- 1.5 દઢ પદાર્થનું દ્રવ્યમાનકેન્દ્ર
- 1.6 નિયમિત ઘનતાવાળા પાતળા સળિયાનું દ્રવ્યમાનકેન્દ્ર
 - સારાંશ
 - સ્વાધ્યાય

1.1 પ્રસ્તાવના (Introduction)

સિમેસ્ટર-I માં આપશે ક્શની રેખીય ગતિનો અભ્યાસ કર્યો હતો. હવે આ પ્રકરણમાં આપશે બે ક્શોના તંત્રનું દ્રવ્યમાનકેન્દ્ર, n-ક્શોના તંત્રનું દ્રવ્યમાનકેન્દ્ર, તથા દઢ પદાર્થનું દ્રવ્યમાનકેન્દ્ર કેવી રીતે શોધી શકાય તે વિશે અભ્યાસ કરીશું. આ ઉપરાંત આપશે ક્શોના તંત્રની ગતિ સાથે સંકળાયેલ ન્યૂટનનો ગતિનો બીજો નિયમ તારવીશું. ક્શોના તંત્ર માટે ભૌતિકવિજ્ઞાનના સાર્વત્રિક નિયમો પૈકીનો એક એવો વેગમાનના સંરક્ષણનો નિયમ પણ તારવીશું.

1.2 એક-પરિમાણમાં કર્ણાના તંત્રનું દ્રવ્યમાનકેન્દ્ર (Centre of Mass of a System of Particles in One Dimension)

આકૃતિ 1.1માં દર્શાવ્યા મુજબ, ધારો કે m_1 અને m_2 દ્રવ્યમાન ધરાવતા બે કણો X-અક્ષ પર ઊગમબિંદુ (O) થી અનુક્રમે x_1 અને x_2 અંતરે રહેલા છે.

બે કશોના તંત્રનું દ્રવ્યમાનકેન્દ્ર

આકૃતિ 1.1

આ તંત્રનું દ્રવ્યમાનકેન્દ્ર એક એવું બિંદુ છે કે જેનું ઊગમબિંદુ O થી અંતર,

$$\therefore x = \frac{m_1 x_1 + m_2 x_2}{m_1 + m_2} \tag{1.2.1}$$

સૂત્ર વડે આપી શકાય છે.

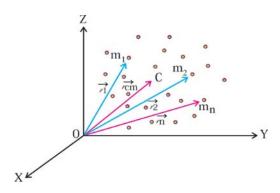
અહીં, x એ x_1 અને x_2 નું દળભારિત સરેરાશ સ્થાન ધરાવે છે. જો બન્ને ક્યો સમાન દ્રવ્યમાનના હોય, તો $m_1=m_2=m$.

$$\therefore x = \frac{mx_1 + mx_2}{m + m}$$

$$\therefore x = \frac{x_1 + x_2}{2} \tag{1.2.2}$$

આમ, સમાન દ્રવ્યમાન ધરાવતા બે ક્યોનું દ્રવ્યમાનકેન્દ્ર (બન્ને ક્યોને જોડતા રેખાખંડ પર) બન્ને ક્યોની મધ્યમાં આવેલું હોય છે.

આ જ રીતે, જો $m_1,\ m_2,...,\ m_n$ દ્રવ્યમાન ધરાવતા n કણો X-અક્ષ પર ઊગમબિંદુ 'O' થી અનુક્રમે $x_1,\ x_2,$, x_n અંતરે રહેલા હોય, તો n કણોના તંત્રનું દ્રવ્યમાનકેન્દ્ર,


$$x = \frac{m_1 x_1 + m_2 x_2 + \ldots + m_n x_n}{m_1 + m_2 + \ldots + m_n}$$

$$\therefore x = \frac{\sum m_i x_i}{\sum m_i} \tag{1.2.3}$$

$$\therefore x = \frac{\sum m_i x_i}{M} \tag{1.2.4}$$

જ્યાં $\mathbf{M} = \Sigma m_i = n$ ક્ષ્ણોના તંત્રનું કુલદ્રવ્યમાન.

1.3 ત્રિ-પરિમાણમાં *n*-કણોના તંત્રનું દ્રવ્યમાનકેન્દ્ર (Centre of Mass of a System of *n*-Particles in Three Dimensions)

ત્રિપરિમાણમાં *n-*કણોનું તંત્ર આકૃતિ 1.2

આકૃતિ 1.2 માં n-ક્ષોનું તંત્ર ત્રિપરિમાણમાં દર્શાવ્યું છે. યામપદ્ધતિના ઊગમબિંદુ 'O'ને અનુલક્ષીને m_1, m_2, \ldots, m_n દ્રવ્યમાન ધરાવતા ક્ષ્ણોના સ્થાનસિંદશો અનુક્રમે $\overrightarrow{r_1}$, $\overrightarrow{r_2}$,, $\overrightarrow{r_n}$ છે. આ તંત્રના દ્રવ્યમાનકેન્દ્રનો સ્થાનસિંદશ નીચે આપેલા સુત્ર વડે દર્શાવી શકાય.

$$\overrightarrow{r}_{cm} = \frac{m_1 \overrightarrow{r_1} + m_2 \overrightarrow{r_2} + \dots + m_n \overrightarrow{r_n}}{m_1 + m_2 + \dots + m_n}$$
(1.3.1)

$$\therefore \quad \overrightarrow{r}_{cm} = \frac{m_1 \overrightarrow{r_1} + m_2 \overrightarrow{r_2} + \dots + m_n \overrightarrow{r_n}}{M}$$

અથવા

$$\mathbf{M} \overrightarrow{r_{cm}} = m_1 \overrightarrow{r_1} + m_2 \overrightarrow{r_2} + \dots + m_n \overrightarrow{r_n}$$
 (1.3.2)

$$\mathbf{M} = m_1 + m_2 + \dots + m_n$$
 (1.3.3)
$$= n$$
- કણોના તંત્રનું કુલ દ્રવ્યમાન.

1.3.1 દ્રવ્યમાનકેન્દ્રની ગતિ અને ન્યૂટનનો ગતિનો બીજો નિયમ (Motion of Centre of Mass and Newton's Second Law of Motion) :

n-કણોના તંત્રમાં રહેલા દરેક કણનું દ્રવ્યમાન સમય સાથે બદલાતું ન હોય તો, સમીકરણ (1.3.2) નું સમયની સાપેક્ષે વિકલન કરતાં,

$$\mathbf{M} \frac{d\overrightarrow{r_{cm}}}{dt} = m_1 \frac{d\overrightarrow{r_1}}{dt} + m_2 \frac{d\overrightarrow{r_2}}{dt} + \dots + m_n \frac{d\overrightarrow{r_n}}{dt}$$

$$\therefore \ \overrightarrow{\mathbf{M}_{V_{Cm}}} = m_1 \overrightarrow{v}_1 + m_2 \overrightarrow{v}_2 + \ldots + m_n \overrightarrow{v}_n$$

અહીં,
$$\overrightarrow{v_{cm}}=\dfrac{d\overrightarrow{r_{cm}}}{dt}$$
 એ દ્રવ્યમાનકેન્દ્રનો વેગ છે, તથા

 $\overrightarrow{v}_1, \ \overrightarrow{v}_2$, એ અનુરૂપ ક્શોના વેગ છે.

$$\therefore \overrightarrow{M}_{v_{cm}} = \overrightarrow{P}_1 + \overrightarrow{P}_2 + \dots + \overrightarrow{P}_n \quad (1.3.4)$$

$$\therefore \mathbf{M}_{v_{cm}}^{\rightarrow} = \overrightarrow{\mathbf{P}} \tag{1.3.5}$$

જ્યાં $\overrightarrow{P_1}$, $\overrightarrow{P_2}$, વગેરે અનુરૂપ ક્ષ્ણોના વેગમાન છે, તથા

 $\overrightarrow{P}=\overrightarrow{P_1}+\overrightarrow{P_2}+....+\overrightarrow{P_n}$ એ n-કર્ણોના તંત્રનું કુલ રેખીય વેગમાન છે.

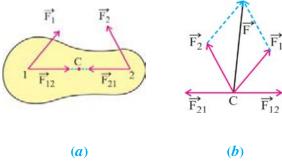
સમીકરણ (1.3.5) દર્શાવે છે કે ક્યોના તંત્રનું કુલ રેખીય વેગમાન, તંત્રના કુલ દળ અને તંત્રના દ્રવ્યમાનકેન્દ્રના વેગનાગુણાકાર જેટલું હોય છે.

સમીકરણ (1.3.4)નું સમય સાપેક્ષ વિકલન કરતાં,

ક્શોના તંત્રનું ડાઇનેમિક્સ

$$\mathbf{M} \frac{d\overrightarrow{v}_{cm}}{dt} = \frac{d\overrightarrow{P}_{1}}{dt} + \frac{d\overrightarrow{P}_{2}}{dt} + \dots + \frac{d\overrightarrow{P}_{n}}{dt}$$

$$\therefore \mathbf{M} \frac{d\overrightarrow{v}_{cm}}{dt} = \overrightarrow{F}_{1} + \overrightarrow{F}_{2} + \dots + \overrightarrow{F}_{n} = \overrightarrow{F} \qquad (1.3.6)$$


$$= m_{1} \overrightarrow{a}_{1} + m_{2} \overrightarrow{a}_{2} + \dots + m_{n} \overrightarrow{a}_{n} \qquad (1.3.7)$$

સમીકરણ (1.3.6)માં $\overrightarrow{F_1}$, $\overrightarrow{F_2}$,, $\overrightarrow{F_n}$ એ તંત્રના અનુરૂપ કણો પર પ્રવર્તતાં બળો છે તથા \overrightarrow{F} એ પરિણામી બળ છે. સમીકરણ (1.3.7)માં $\overrightarrow{a_1}$, $\overrightarrow{a_2}$,, $\overrightarrow{a_n}$ એ આ બળો વડે ઉદ્ભવતા અનુરૂપ કણોના પ્રવેગ છે.

સમીકરણ (1.3.5) પરથી,

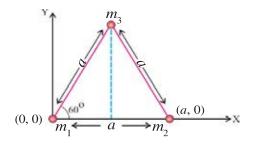
$$M \frac{d\vec{v}_{cm}}{dt} = \frac{d\vec{P}}{dt} = M\vec{a}_{cm}$$
 (1.3.8)

તંત્રમાં કર્યો પર પ્રવર્તતાં બળો બે પ્રકારનાં હોય છે :
(1) તંત્રમાં કર્યો વચ્ચે પ્રવર્તતાં આંતરિક બળો અને
(2) બાહ્ય બળો.

બે ક્ણોથી બનેલા તંત્ર પર લાગતાં વિવિધ બળો આકૃતિ 1.3

આકૃતિ $(1.3\ a)$ માં દર્શાવ્યા મુજબ, ધારો કે બે ક્શોથી બનેલા તંત્રમાં, ક્શ 1 અને 2 પર લાગતાં બાહ્ય બળો અનુક્રમે $\overrightarrow{F_1}$ અને $\overrightarrow{F_2}$ છે તથા તેમની વચ્ચે પ્રવર્તતાં આંતિરક બળો $\overrightarrow{F_{12}}$ અને $\overrightarrow{F_{21}}$ છે.

સમગ્ર તંત્રની ગતિનો અભ્યાસ કરીએ ત્યારે આ બધાં જ બળો દ્રવ્યમાનકેન્દ્ર 'C' પર લાગે છે તેમ ગણી શકાય (જુઓ આકૃતિ 1.3-b). ન્યૂટનના ગતિના ત્રીજા નિયમ મુજબ $\overrightarrow{F}_{12} = -\overrightarrow{F}_{21}$ હોવાથી, આંતરિક બળોનું પરિણામી બળ શૂન્ય થાય છે. આમ, સમીકરણ (1.3.6)માં ક્ણોના તંત્ર પર લાગતું પરિણામી બળ \overrightarrow{F} એ ફક્ત બાહ્ય બળોનું જ પરિણામી બળ છે. સમીકરણ (1.3.6) અને (1.3.8) પરથી,


$$M \frac{\overrightarrow{d_{v_{cm}}}}{dt} = M\overrightarrow{a_{cm}} = \overrightarrow{F} = \frac{\overrightarrow{dP}}{dt}$$
 (1.3.9)

સમીકરણ (1.3.9) દર્શાવે છે કે તંત્ર પર લાગતું પરિણામી બાહ્ય બળ તંત્રના કુલ રેખીય વેગમાનના ફેરફારના દર બરાબર હોય છે, જે કણોના તંત્ર માટે ન્યૂટનનો ગતિનો બીજો નિયમ છે. આ ઉપરાંત સમીકરણ (1.3.9) દર્શાવે છે કે તંત્રનું દ્રવ્યમાનકેન્દ્ર જાણે કે તંત્રનું સમગ્ર દળ તેના પર કેન્દ્રિત થયું હોય તેમ, પરિણામી બાહ્ય બળ F ની અસર હેઠળ ગતિ કરે છે.

ન્યૂટનનો ગતિનો બીજો નિયમ કોઈ એક ક્શ માટે ત્રીજા નિયમની મદદ વગર સ્વતંત્ર રીતે લખી શકાય છે. પણ ક્શોના તંત્ર માટે બીજો નિયમ મેળવવા માટે આપણે ન્યૂટનના ત્રીજા નિયમની મદદ લેવી પડે છે. આ હકીકતને ન્યૂટનના ગતિના નિયમોનું પરસ્પર અવલંબન કહે છે.

ઉદાહરણ 1 : 'a' બાજુવાળા એક સમબાજુ ત્રિકોણનાં શિરોબિંદુઓ પર $m_1,\,m_2$ અને m_3 દ્રવ્યમાન ધરાવતા કણો મૂક્યા છે. m_1 દ્રવ્યમાનવાળા કણની સાપેક્ષે આ તંત્રનું દ્રવ્યમાનકેન્દ્ર શોધો.

ઉકેલ :

આકૃતિ 1.4

સમબાજુ ત્રિકોણના ત્રણે ખૂણાઓનાં માપ એકસરખાં (60°) હોય છે. આથી આકૃતિ (1.4) માં દર્શાવ્યા મુજબ m_1 દ્રવ્યમાનવાળા કણને ઊગમબિંદુ $(0,\,0)$ પર, તથા m_2 દ્રવ્યમાનવાળા કણને X-અક્ષ પર ઊગમબિંદુથી 'a' અંતરે $(a,\,0)$ સ્થાન પર દર્શાવીએ, તો m_3 દ્રવ્યમાન ધરાવતા કણના યામ

$$(a \cos 60^\circ, a \sin 60^\circ) = \left(\frac{a}{2}, \frac{\sqrt{3}a}{2}\right)$$

આમ, $m_{_1},\,m_{_2}$ અને $m_{_3}$ દ્રવ્યમાનવાળા કણોના સ્થાન- સિંદિશ અનુક્રમે

$$\overrightarrow{r}_3 = \left(\frac{a}{2}, \frac{\sqrt{3}a}{2}\right)$$

આથી વ્યાખ્યા મુજબ ત્રણ કણોના આ તંત્રના દ્રવ્યમાન-કેન્દ્રનો સ્થાનસદિશ

$$\vec{r}_{cm} = \frac{m_1 \vec{r}_1 + m_2 \vec{r}_2 + m_3 \vec{r}_3}{m_1 + m_2 + m_3}$$

$$= \frac{m_1(0,0) + m_2(a,0) + m_3\left(\frac{a}{2}, \frac{\sqrt{3}a}{2}\right)}{m_1 + m_2 + m_3}$$

$$=\frac{\left(m_{2}a+\frac{m_{3}a}{2},\ \frac{\sqrt{3}}{2}m_{3}a\right)}{m_{1}+m_{2}+m_{3}}$$

$$\therefore \vec{r}_{cm} = \left[\frac{\left(m_2 + \frac{m_3}{2} \right) a}{m_1 + m_2 + m_3}, \frac{\sqrt{3} m_3 \frac{a}{2}}{m_1 + m_2 + m_3} \right]$$

ઉદાહરણ 2 : ત્રણ ક્યાના તંત્રમાં ક્યાનાં રેખીય વેગમાન અનુક્રમે (1, 2, 3), (4, 5, 6) અને (5, 6, 7) છે. આ ઘટકો $kg\ m\ s^{-1}$ માં છે. જો તંત્રના દ્રવ્યમાન-કેન્દ્રનો વેગ (30, 39, 48) $m\ s^{-1}$ હોય, તો તંત્રનું કુલ દળ શોધો.

ઉકેલ: અહીંયાં
$$\overrightarrow{P}_1 = (1, 2, 3) \text{ kg m s}^{-1}$$
 $\overrightarrow{P}_2 = (4, 5, 6) \text{ kg m s}^{-1}$ $\overrightarrow{P}_3 = (5, 6, 7) \text{ kg m s}^{-1}$

તથા
$$\vec{v}_{cm} = (30, 39, 48) \text{ m s}^{-1}$$

હવે,
$$M\overrightarrow{v}_{cm} = \overrightarrow{P} = \overrightarrow{P}_1 + \overrightarrow{P}_2 + \overrightarrow{P}_3$$

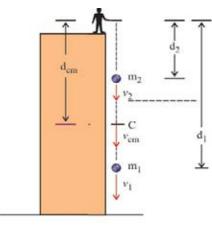
∴ M(30, 39 48) = (1, 2, 3) + (4, 5, 6) + (5, 6, 7)
 ∴ (30 M, 39 M, 48 M) = (10, 13, 16)
 સમીકરણની બન્ને બાજુના અનુરૂપ ઘટકો સરખાવતાં

$$30 \text{ M} = 10 \Rightarrow \text{M} = \frac{1}{3} \text{ kg}$$

$$39 \text{ M} = 13 \Rightarrow \text{M} = \frac{1}{3} \text{ kg}$$

$$48 \text{ M} = 16 \Rightarrow \text{M} = \frac{1}{3} \text{ kg}$$

આમ, તંત્રનું કુલ દળ
$$\frac{1}{3}$$
 kg છે.


ઉદાહરણ 3: t = 0 સમયે, 0.1 kg ના એક પથ્થરને ઊંચા બિલ્ડિંગ પરથી મુક્ત રીતે પડતો મૂકવામાં આવે છે. બીજા 0.2 kg ના પથ્થરને તે જ સ્થાન પરથી 0.1s બાદ મુક્ત રીતે પડતો મૂકવામાં આવે છે.

- (1) t = 0.3s સમયે આ બન્ને પથ્થરનું દ્રવ્યમાનકેન્દ્ર મૂળ સ્થાનથી કેટલા અંતરે હશે ? (બેમાંથી એક પણ પથ્થર આ સમયે જમીન પર પડતો નથી.)
- (2) આ સમયે બન્ને પથ્થરનું દ્રવ્યમાનકેન્દ્ર કેટલી ઝડપથી ગતિ કરતું હશે ?
- (3) આ સમયે બન્ને પથ્થર વડે બનતા તંત્રનું કુલ વેગમાન કેટલું હશે ?

ઉકેલ : પથ્થર 1નું દ્રવ્યમાન $m_1=0.1~{\rm kg}$ પથ્થર 2નું દ્રવ્યમાન $m_2=0.2~{\rm kg}$ પથ્થર 1ની પ્રારંભિક ઝડપ $v_{01}=0~{\rm m~s^{-1}}$ પથ્થર 2ની પ્રારંભિક ઝડપ $v_{02}=0~{\rm m~s^{-1}}$

(1) અહીં બન્ને પથ્થરો એક જ દિશામાં ગતિ કરતા હોવાથી તેમના વેગ અને વેગમાન સદિશો અદિશ સ્વરૂપે લઈ શકાશે. $t=0.3~\mathrm{s}$ સમયે પથ્થર 1 વડે કપાયેલ અંતર

કર્ણોના તંત્રનું ડાઇનેમિક્સ 5

આકૃતિ 1.5

$$d_{1} = v_{01} t + \frac{1}{2} g t^{2}$$

$$= 0 + \frac{1}{2} (9.8) (0.3)^{2}$$

$$d_{1} = 0.441 m$$
(1)

પથ્થર 2ને $0.1~\mathrm{s}$ પછી છોડવામાં આવે છે. આથી $t=0.3~\mathrm{s}$, સમયે, પથ્થર 2એ પડવા માટે લીધેલ સમય $t'=0.3~\mathrm{s}-0.1~\mathrm{s}=0.2~\mathrm{s}$.

આમ t' = 0.2 s સમયમાં (એટલે કે t = 0.3 s સમયે), પથ્થર 2 વડે કપાયેલ અંતર

$$d_2 = v_{02}t' + \frac{1}{2} g t'^2$$

$$= 0 + \frac{1}{2} (9.8) (0.2)^2$$

$$d_2 = 0.196 \text{ m}$$
(2)

આથી, $t=0.3~\mathrm{s}$, સમયે મૂળ સ્થાનથી બન્ને પથ્થર વડે બનતા તંત્રના દ્રવ્યમાનકેન્દ્રનું અંતર

$$d_{cm} = \frac{m_1 d_1 + m_2 d_2}{m_1 + m_2}$$

$$= \frac{(0.1)(0.441) + (0.2)(0.196)}{0.1 + 0.2}$$

$$\therefore d_{cm} = 0.277 \text{ m}$$
(3)

(2)
$$t = 0.3 \text{ s}$$
, સમયે પથ્થર 1ની ઝડપ

$$v_1 = v_{01} + gt = 0 + (9.8)(0.3)$$

$$\therefore v_1 = 2.94 \text{ m s}^{-1}$$
(4)

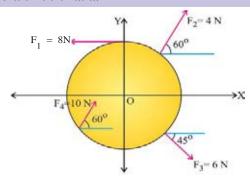
 $t=0.3~\mathrm{s}$, સમયે પથ્થર 2નો પડવાનો સમય અંતરાલ $t'=0.2~\mathrm{s}$ છે. આથી $t'=0.2~\mathrm{s}$ સમય પછી પથ્થર $2~\mathrm{fl}$ ઝડપ

$$v_2 = v_{02} + gt' = 0 + (9.8)(0.2)$$

$$\therefore v_2 = 1.96 \text{ m s}^{-1}$$
(5)

આથી, $t=0.3~\mathrm{s}$, સમયે બન્ને પથ્થર વડે બનતા તંત્રના દ્રવ્યમાનકેન્દ્રની ઝડપ

$$v_{cm} = \frac{m_1 v_1 + m_2 v_2}{m_1 + m_2}$$


$$\therefore v_{cm} = \frac{(0.1)(2.94) + (0.2)(1.96)}{0.1 + 0.2}$$

$$v_{cm} = 2.29 \text{ ms}^{-1}$$
 (6)

(3) t = 0.3 s, સમયે બન્ને પથ્થરો વડે બનતા તંત્રનું કુલ વેગમાન

P = P₁ + P₂ =
$$m_1v_1 + m_2v_2$$

∴ P = (0.1) (2.94) + (0.2) (1.96)
∴ P = 0.686 kg m s⁻¹
= 0.69 kg m s⁻¹ (7)

ઉદાહરણ 4: આકૃતિ (1.6)માં દર્શાવ્યા મુજબ 2 kg દ્રવ્યમાનવાળા એક દ્વિપારિમાણિક પદાર્થ પર વિવિધ બળો લાગે છે. આ પદાર્થના દ્રવ્યમાનકેન્દ્રનો રેખીય પ્રવેગ શોધો.

આકૃતિ 1.6

ઉકેલ: બધાં બળોને તેમના ઘટકોના રૂપમાં લખતાં,

$$\overrightarrow{F_1} = (-8, 0) \text{ N}$$

$$\overrightarrow{F}_2 = (4 \cos 60^{\circ}, 4 \sin 60^{\circ}) = (2, 2\sqrt{3})N$$

$$\vec{F}_3 = [6 \cos (-45^\circ), 6 \sin (-45^\circ)]$$

= $(6 \cos 45^\circ, -6 \sin 45^\circ)$

$$\therefore \overrightarrow{F_3} = \left(\frac{6}{\sqrt{2}}, \frac{-6}{\sqrt{2}}\right) N$$

$$\overrightarrow{F}_4 = (10 \cos 60^{\circ}, 10 \sin 60^{\circ}) = (5, 5\sqrt{3})$$
N

હવે

$$\mathbf{M} \stackrel{\rightarrow}{a}_{cm} = \stackrel{\rightarrow}{\mathbf{F}}_1 + \stackrel{\rightarrow}{\mathbf{F}}_2 + \stackrel{\rightarrow}{\mathbf{F}}_3 + \stackrel{\rightarrow}{\mathbf{F}}_4$$
 જ્યાં $\mathbf{M} = 2 \ \mathrm{kg}$

$$\therefore \vec{a}_{cm} = \frac{1}{2} (\vec{F}_1 + \vec{F}_2 + \vec{F}_3 + \vec{F}_4)
= \frac{1}{2} [(-8+2+\frac{6}{\sqrt{2}}+5),(2\sqrt{3}-\frac{6}{\sqrt{2}}+5\sqrt{3})]$$

$$\vec{a}_{cm} = \frac{1}{2} \left[(-1 + \frac{6}{\sqrt{2}}), (7\sqrt{3} - \frac{6}{\sqrt{2}}) \right] \text{m s}^{-2}$$

1.4 રેખીય વેગમાનના સંરક્ષણનો નિયમ (Law of Conservation of Linear Momentum)

જો તંત્ર પર લાગતું પરિણામી બાહ્ય બળ શૂન્ય હોય, તો સમીકરણ (1.3.9) પરથી

$$\overrightarrow{F} = \frac{d\overrightarrow{P}}{dt} = 0 \tag{1.4.1}$$

$$\vec{P} = \vec{P}_1 + \vec{P}_2 + \dots + \vec{P}_n =$$
અંચળ (1.4.2)

જે દર્શાવે છે કે, "જો તંત્ર પરનું પરિણામી બાહ્ય બળ શૂન્ય હોય, તો તંત્રનું કુલ રેખીય વેગમાન અચળ રહે છે." આ વિધાનને રેખીય વેગમાનના સંરક્ષણનો નિયમ કહે છે. પરિણામી બાહ્યબળ શૂન્ય હોય ત્યારે તંત્રના જુદા-જુદા કણોના વેગમાન $\overrightarrow{P_1}$, $\overrightarrow{P_2}$, …..માં વ્યક્તિગત ફેરફારો થઈ શકે છે, પરંતુ આ ફેરફારો એવી રીતે જ થાય છે કે જેથી વેગમાનના ફેરફારોનો સદિશ સરવાળો શૂન્ય જ થાય. આમ, કણોના વેગમાનમાં થતો કુલ ફેરફાર શૂન્ય થવાથી, તંત્રનું કુલ વેગમાન અચળ રહે છે.

દા. ત., બંધ પાત્રમાં રહેલા હવાના અશુઓ પાત્રમાં અસ્તવ્યસ્ત ગિત કરતા હોય છે, તેમની વચ્ચે અશુ-અશુ અથડામણ અથવા અશુની પાત્રની દીવાલ સાથેની અથડામણ દરમિયાન તેમનું વ્યક્તિગત વેગમાન બદલાય છે, પરંતુ તેમના વેગમાનના ફેરફારોનો સદિશ સરવાળો શૂન્ય હોય છે. એટલે કે તેમનું કુલ વેગમાન અચળ રહે છે.

(જો વાયુના અશુઓના વેગમાનના ફેરફારોનો સદિશ સરવાળો કોઈ ચોક્કસ દિશામાં હોય તો શું થાય ? વિચારો)

રેખીય વેગમાનના સંરક્ષણનો નિયમ મૂળભૂત અને સાર્વત્રિક છે. આ નિયમ ગ્રહોના બનેલા તંત્રો, તેમજ ઇલેક્ટ્રૉન, પ્રોટોન વગેરે જેવા સૂક્ષ્મ ક્યોનાં બનેલાં તંત્રો માટે પણ સમાન રીતે સાચો છે. સમીકરણ (1.3.9) પરથી,

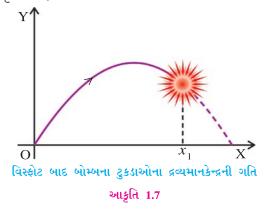
$$\overrightarrow{F} = M \overrightarrow{a}_{cm} = M \frac{d\overrightarrow{v}_{cm}}{dt} = 0$$

$$\vec{a}_{cm} = 0$$
 અને $\vec{v}_{cm} =$ અચળ

જે દર્શાવે છે કે જો પરિણામી બાહ્ય બળ શૂન્ય હોય, તો દ્રવ્યમાનકેન્દ્રનો પ્રવેગ શૂન્ય હોય છે. એટલે કે દ્રવ્યમાનકેન્દ્રનો વેગ અચળ રહે છે. આમ બાહ્યબળની ગેરહાજરીમાં તંત્રનું દ્રવ્યમાનકેન્દ્ર સ્થિર હોય તો સ્થિર રહે છે અથવા ગતિમાં હોય તો અચળ વેગથી ગતિ ચાલુ રાખે છે.

હવે નીચેનું ઉદાહરણ જોઈએ :

ધારો કે એક રાસાયણિક બૉમ્બ સ્થિર પડેલો છે. બૉમ્બના પ્રારંભિક વેગમાન અને ગતિઊર્જા શૂન્ય છે. બૉમ્બનો વિસ્ફોટ થતાં બૉમ્બના ટુકડાઓ હવામાં ફંગોળાય છે. આ ટુકડાઓ જુદા-જુદા વેગમાન સાથે જુદી-જુદી દિશાઓમાં ફંગોળાશે, પરંતુ તેમનાં વેગમાનોના સદિશો એવા જ હશે કે જેથી.

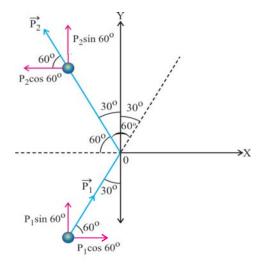

$$\overrightarrow{P}_1 + \overrightarrow{P}_2 + \dots + \overrightarrow{P}_n = 0$$

અહીં $\overrightarrow{P_1}$, $\overrightarrow{P_2}$, વગેરે, ટુકડાઓનાં વેગમાન દર્શાવે છે

અહીં ટુકડાઓના તંત્રનું દ્રવ્યમાનકેન્દ્ર, મૂળ બૉમ્બનું દ્રવ્યમાનકેન્દ્ર જે બિંદુ પર સ્થિર હતું તે જ બિંદુ પર રહેશે. પરંતુ ટુકડાઓની ગતિ ઊર્જાનો સરવાળો શૂન્ય નથી. વિસ્ફોટ અગાઉ બૉમ્બની ગતિ-ઊર્જા શૂન્ય હતી, પરંતુ વિસ્ફોટ બાદ તે શૂન્ય નથી. આમ, તંત્રની ગતિ-ઊર્જામાં ફેરફાર થયો. કાર્ય, ઊર્જા અને પાવરના પ્રકરણમાં તમે જાણ્યું હશે કે તંત્રની ગતિ-ઊર્જામાં થતો ફેરફાર, તેના પરના પરિણામી બાહ્ય બળ વડે થતા કાર્ય જેટલો હોય છે. અહીં, પરિણામી બાહ્ય બળ શૂન્ય છે. તો પછી તેની ગતિ ઊર્જામાં ફેરફાર કેવી રીતે થયો ? હકીકત એમ છે કે, રાસાયણિક બૉમ્બ પોતાના જટિલ અણુઓ વચ્ચે રાસાયણિક બંધોને લીધે (અને બીજાં કેટલાંક કારણોને લીધે) આંતરિક ઊર્જા ધરાવે છે. જ્યારે બૉમ્બનો વિસ્ફોટ થાય ત્યારે રાસાયણિક બંધો તૂટે છે અને તેમની સાથે સંકળાયેલી આંતરિક ઊર્જાના અમુક ભાગનું ઉષ્માઊર્જામાં રૂપાંતરણ થાય છે તથા બાકીની ઊર્જા ટ્રકડાઓને ગતિ-ઊર્જા સ્વરૂપે પ્રાપ્ત થાય છે. આમ, અહીં આંતરિક ઊર્જાના ભોગે યાંત્રિક કાર્ય થાય છે, જે કાર્ય-ઊર્જા પ્રમેયના વ્યાપક સ્વરૂપ તરફ દોરી જાય છે.

ક્શોના તંત્રનું ડાઇનેમિક્સ 7

અહીં તો બૉમ્બ પ્રારંભમાં સ્થિર હતો, પરંતુ, જો બૉમ્બ ગિત કરતો હોત અને ગિત દરમિયાન તે ફૂટ્યો હોત તો રેખીય વેગમાનના સંરક્ષણના નિયમ મુજબ ફૂટ્યા પછી તેના ટુકડાઓ એવી દિશામાં ગિત કરતા હોત કે જેથી તેમનાં વેગમાનોનો સિદશ સરવાળો મૂળ બોમ્બના વેગમાન જેટલો હોય અને તેનું દ્રવ્યમાનકેન્દ્ર, તેનો મૂળ વેગ $(\overrightarrow{v}_{cm})$ અચળ જળવાઈ રહે તેવી દિશામાં ગિત કરે (જુઓ આકૃતિ 1.7).


ઉદાહરણ 5 : 50 kgનો એક બૉમ્બ 10 m/sના અચળ વેગથી ગતિ કરે છે. એકાએક તે 40 kg અને 10 kgના બે ટુકડાઓમાં વિભાજિત થાય છે. જો મોટા ટુકડાનો વેગ શૂન્ય હોય, તો નાના ટુકડાનો વેગ શોધો.

ઉકેલ: બૉમ્બ અચળ વેગથી ગતિ કરે છે. આથી તેના પરનું બાહ્ય બળ શૂન્ય છે. આથી રેખીય વેગમાનના સંરક્ષણના નિયમ મુજબ,

પ્રારંભિક રેખીય વેગમાન = અંતિમ રેખીય વેગમાન $\therefore \ \mathbf{M}_{\overrightarrow{v}} = m_1 \overrightarrow{v}_1 + m_2 \overrightarrow{v}_2$ જ્યાં, \mathbf{M} = બોમ્બનું કુલ દળ = 50 kg $m_1 = \text{મોટા ટુકડાનું દળ = 40 kg}$ $m_2 = \text{નાના ટુકડાનું દળ = 10 kg}$ $\overrightarrow{v} = \text{બોમ્બનો વેગ = 10 m/s}$ $\overrightarrow{v}_1 = \text{મોટા ટુકડાનો વેગ = 0}$ $\overrightarrow{v}_2 = \text{નાના ટુકડાનો વેગ = ?}$ આથી, $\mathbf{M}_{\overrightarrow{v}} = m_2 \overrightarrow{v}_2$ $\therefore \overrightarrow{v}_2 = \frac{\mathbf{M}}{m_2} \overrightarrow{v} = \frac{50}{10} \times 10 = 50 \text{ m/s}$

ઉદાહરણ 6 : 4 kg દળનો એક ગોળો દીવાલ સાથે 30° ખૂશે અથડાઈને પોતાની ગતિની મૂળ દિશા સાથે 60° કોણ બનાવતી દિશામાં પરાવર્તિત થાય છે. જો ગોળાનો દીવાલ સાથે સંપર્કસમય 0.1 s હોય, તો દીવાલ પર લાગતું બળ શોધો. ગોળાનો પ્રારંભિક અને અંતિમ વેગ 1 m s⁻¹ છે.

ઉકેલ: ઉદાહરણમાં આપેલ પરિસ્થિતિ આકૃતિ 1.8માં દર્શાવી છે.

આકૃતિ 1.8

અહીંયા
$$\overrightarrow{P_1}$$
 = ગોળાનું પ્રારંભિક વેગમાન
$$= mv \cos 60\,\widehat{i} + mv \sin 60\,\widehat{j}$$

$$\overrightarrow{P_2} = \text{ગોળાનું અંતિમ વેગમાન}$$

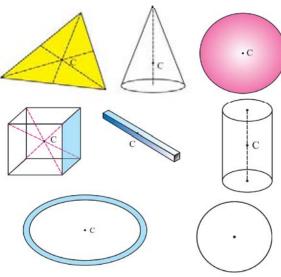
$$= -mv \cos 60\,\widehat{i} + mv \sin 60\,\widehat{j}$$
 આથી, ગોળાના વેગમાનમાં થતો ફેરફાર

$$\Delta \overrightarrow{P} = \overrightarrow{P_2} - \overrightarrow{P_1}$$

$$= -mv \cos 60 \hat{i} + mv \sin 60 \hat{j}$$

$$-mv \cos 60 \hat{i} - mv \sin 60 \hat{j}$$

$$= -2mv \cos 60 \hat{i}$$


$$∴ \Delta \overrightarrow{P} = -2 \times 4 \times 1 \times \frac{1}{2} \hat{i}$$

$$= -4 \hat{i} \text{ kg m s}^{-1}$$
આથી દીવાલને મળતું વેગમાન
$$= 4 \hat{i} \text{ kg m s}^{-1}$$
∴ દીવાલ પર લાગતું બળ

$$= \frac{\text{દીવાલને મળતું વેગમાન}}{\text{સંપર્કસમય}}$$
$$= \frac{4\hat{i}}{0.1} = 40\hat{i} \text{ N}$$


આમ, દીવાલ પર ધન X-દિશામાં 40 N બળ લાગે છે. 1.5 દેઢ પદાર્થનું દ્રવ્યમાનકેન્દ્ર (Centre of Mass of a Rigid Body)

કણોના જે તંત્રમાં કણો વચ્ચેના સાપેક્ષ સ્થાન (relative positions) અકર જળવાઈ રહેતાં હોય તેને દેઢ પદાર્થ કહે છે. દેઢ પદાર્થના દ્રવ્યમાનકેન્દ્રનું સ્થાન તેના દ્રવ્યનું વિતરણ અને તેના આકાર પર આધાર રાખે છે. દ્રવ્યમાનકેન્દ્ર દેઢ પદાર્થના દ્રવ્યની અંદર કે બહાર એમ ગમે ત્યાં હોઈ શકે છે. ઉદાહરણ તરીકે નિયમિત ઘનતાવાળી વર્તુળાકાર તકતીનું દ્રવ્યમાનકેન્દ્ર તકતીના ભૌમિતિક કેન્દ્ર પર, તકતીના દ્રવ્યની અંદર હોય છે, જયારે નિયમિત ઘનતાવાળી રિંગનું દ્રવ્યમાનકેન્દ્ર રિંગના કેન્દ્ર પર પણ રિંગના દ્રવ્યની બહાર હોય છે. નિયમિત ઘનતા અને સમાન આડછેદવાળા સળિયાનું દ્રવ્યમાનકેન્દ્ર તેના ભૌમિતિક કેન્દ્ર પર હોય છે. સંમિતિ ધરાવતા અને નિયમિત દળ-વિતરણવાળા દઢ પદાર્થોનાં દ્રવ્યમાનકેન્દ્રનાં સ્થાન સહેલાઈથી સૈદ્ધાંતિક રીતે શોધી શકાય છે. કેટલાક સંમિત પદાર્થો માટેનાં દ્રવ્યમાનકેન્દ્રો 'C' આકૃતિ 1.9માં દર્શાવ્યા છે.

નિયમિત આકારના કેટલાક દેઢ પદાર્થોનાં દ્રવ્યમાનકેન્દ્ર આકૃતિ 1.9

1.5.1 ઘન પદાર્થનું દ્રવ્યમાનકેન્દ્ર નક્કી કરવાની સૈદ્ધાંતિક રીત (Theoretical Method for Estimation of the Centre of Mass of a Solid Body):

હવે આપણે જાણીએ છીએ કે ઘન પદાર્થ સૂક્ષ્મ ક્યો (અયુઓ, પરમાયુઓ કે આયનો)નો બનેલો છે. આ ક્યો પદાર્થમાં સતત રીતે વિતરિત થયેલા હોય છે. આકૃતિ 1.10 માં દર્શાવ્યા મુજબ ધારો કે ઘન પદાર્થમાં $d\mathbf{V}$ જેટલું સૂક્ષ્મ કદ ધરાવતા કદ ખંડમાં સમાયેલ દળ dm છે. અહીં dm ને $\mathbf{E}_{\mathbf{V}}$ -ખંડ કહે છે. જેનો સ્થાનસદિશ,

$$\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$$

આ રીતે સમગ્ર ઘન પદાર્થને આવા દળ-ખંડોનો બનેલો ગણી શકાય. ધારો કે ઘન પદાર્થ $dm_1,\ dm_2$ dm_n દળ ખંડોમાં વહેંચાયેલો છે જેમના સ્થાન સદિશો અનુક્રમે $\stackrel{\rightarrow}{r_1},\stackrel{\rightarrow}{r_2},\ldots,\stackrel{\rightarrow}{r_n}$ છે. આથી વ્યાખ્યા અનુસાર ઘન પદાર્થના દ્રવ્યમાનકેન્દ્રનો સ્થાન સદિશ

$$\vec{r}_{cm} = \frac{dm_1 \vec{r}_1 + dm_2 \vec{r}_2 + \dots + dm_n \vec{r}_n}{dm_1 + dm_2 + \dots + dm_n}$$
(1.5.1)

અહીં દ્રવ્યમાન વિતરણ સતત હોવાથી સરવાળાને સંકલનના રૂપમાં દર્શાવી શકાય.

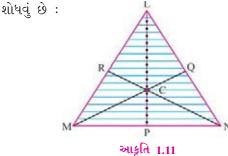
$$(x_{cm}\hat{i} + y_{cm}\hat{j} + z_{cm}\hat{k})$$

$$= \frac{1}{M} \int (x\hat{i} + y\hat{j} + z\hat{k})dm$$
(1.5.3)

ક્રણોના તંત્રનું ડાઇનેમિક્સ

$$\therefore x_{cm} = \frac{1}{M} \int x dm$$

$$y_{cm} = \frac{1}{M} \int y dm$$


$$z_{cm} = \frac{1}{M} \int z dm$$
(1.5.4)

1.5.2 નિયમિત ઘનતાવાળા ચોક્કસ ભૌમિતિક આકારના ઘન પદાર્થનું દ્રવ્યમાનકેન્દ્ર નક્કી કરવાની સૈદ્ધાંતિક રીત (Theoretical method for the estimation of centre of mass of a solid body of uniform density and specific geometrical shape):

નિયમિત ઘનતાવાળા ચોક્કસ ભૌમિતિક આકારના પદાર્થનું દ્રવ્યમાનકેન્દ્ર શોધવા માટે પદાર્થના આકારની સંમિતિ (symmetry)નો ઉપયોગ કરવામાં આવે છે. સંમિતિના નિયમોનો ઉપયોગ કરીને આપણે સહેલાઈથી સાબિત કરી શકીએ કે આવા પદાર્થોનું દ્રવ્યમાનકેન્દ્ર તેમના ભૌમિતિક કેન્દ્ર પર આવેલું હોય છે.

હવે આપેલું ઉદાહરણ જોઈએ :

આકૃતિમાં દર્શાવેલ ત્રિકોણાકાર તકતીનું દ્રવ્યમાનકેન્દ્ર

આકૃતિ 1.11 દર્શાવ્યા મુજબ ત્રિકોણાકાર તકતીને સાંકડી સમાંતર પટ્ટીઓમાં વિભાજિત થઈ ગયેલી ધારો. સંમિતિના નિયમ મુજબ દરેક પટ્ટીઓનું દ્રવ્યમાનકેન્દ્ર તેમના ભૌમિતિક કેન્દ્ર પર આવેલું હશે. આ દરેક ભૌમિતિક કેન્દ્રને જોડતો રેખાખંડ LP દોરો. આમ, આ ત્રિકોણાકાર તકતીનું દ્રવ્યમાનકેન્દ્ર મધ્યગા LP પર આવેલું હશે. તે જ રીતે ત્રિકોણાકાર તક્તીને ML અને LN બાજુઓને સમાંતર સાંકડી પટ્ટીઓમાં વિભાજિત થયેલી માનીને મધ્યગાઓ અનુક્રમે NR અને MQ દોરી શકીએ. આમ, ત્રિકોણાકાર તક્તીનું દ્રવ્યમાનકેન્દ્ર ત્રણેય મધ્યગાઓના સામાન્ય બિંદુ 'C' પર આવેલું હશે.

1.6 નિયમિત ઘનતાવાળા પાતળા સળિયાનું દ્રવ્યમાનકેન્દ્ર (Centre of Mass of a Thin Rod of Uniform Density)

આકૃતિ 1.12 માં દર્શાવ્યા પ્રમાણે 'M' દળ તથા 'L' લંબાઈ ધરાવતો એક નિયમિત આડછેદવાળો અને નિયમિત

રેખીય દળ ઘનતા 'λ' ધરાવતો પાતળો સળિયો ધ્યાનમાં લો. સળિયાનો એક છેડો ઉદ્ગમબિંદુ પર મૂકી સળિયાના ભૌમિતિક અક્ષ એ X-અક્ષ પર સંપાત થાય તે રીતે મૂકો.

X-અક્ષ પર રહેલો L-લંબાઈનો પાતળો સળિયો આકૃતિ 1.12

હવે ઊગમબિંદુથી x અંતરે 'dx' લંબાઈ ધરાવતો સૂક્ષ્મ ખંડ સળિયા પર વિચારો.

સળિયાની એકમલંબાઈ દીઠ દળ,
$$\lambda=rac{M}{L}$$

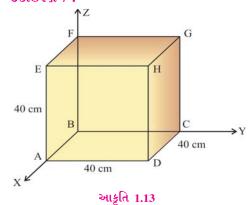
 $\therefore dx$ લંબાઈના ખંડનું દળ $dm = \lambda dx = \frac{M}{L} dx$ વ્યાખ્યા મુજબ આપેલા સળિયાના દ્રવ્યમાનકેન્દ્રનું સ્થાન,

$$x_{cm} = \frac{1}{M} \int x dm$$

$$= \frac{1}{M} \int_{0}^{L} x \cdot \frac{M}{L} dx$$

$$= \frac{1}{L} \int_{0}^{L} x dx$$

$$= \frac{1}{L} \left[\frac{x^{2}}{2} \right]_{0}^{L}$$


$$= \frac{1}{L} \left[\frac{L^{2}}{2} - 0 \right]$$

$$L$$

$$\therefore x_{cm} = \frac{L}{2}$$

આમ, નિયમિત ઘનતાવાળા પાતળા સળિયાનું દ્રવ્યમાનકેન્દ્ર એ સળિયાની લંબાઈના મધ્યમાં એટલે કે તેના ભૌમિતિક કેન્દ્ર પર છે.

ઉદાહરણ 7:

આકૃતિ 1.13 માં એક સમઘન ખોખું દર્શાવ્યું છે કે જે સમાન ઘનતા ધરાવતા તથા અવગણી શકાય તેવી જાડાઈના ધાતુના પતરાનું બનેલું છે. સમઘન ખોખાની દરેક ધારની લંબાઈ 40 cm હોય તો,

- (a) ખોખાના દ્રવ્યમાનકેન્દ્રના યામ (x_{cm}, y_{cm}, z_{cm}) શોધો.
- (b) જો ખોખું ઉપરથી ખુલ્લું હોય (EFGH પતરું ન હોય) તો ખોખાના દ્રવ્યમાનકેન્દ્રના યામ (x'_{cm} , y'_{cm} , z'_{cm}) શોધો.

ઉકેલ: બૉક્ષની દરેક પ્લેટ એકસરખી ઘનતા ધરાવે છે તથા ખૂબ જ પાતળી છે. આથી દરેક પ્લેટનું દ્રવ્યમાનકેન્દ્ર સંમિતિના નિયમ મુજબ તે પ્લેટના મધ્યબિંદુ પર હશે. આમ, દરેક પ્લેટનું દ્રવ્યમાનકેન્દ્ર શોધતાં :

પ્લેટનું નામ	દ્રવ્યમાનકેન્દ્રના યામ
ABCD	(20, 20, 0) cm
EFGH	(20, 20, 40) cm
ABFE	(20, 0, 20) cm
DCGH	(20, 40, 20) cm
BCGF	(0, 20, 20) cm
ADHE	(40, 20, 20) cm

(a) આ દરેક પ્લેટના દ્રવ્યમાનકેન્દ્ર પર પ્લેટનું દ્રવ્યમાન, ધારો કે M, કેન્દ્રિત થયેલું માનીએ, તો (દરેક પ્લેટનું ક્ષેત્રફળ અને પૃષ્ઠ ઘનતા એકસરખી હોવાથી દરેક પ્લેટનું દ્રવ્યમાન પણ એક સરખું $\mathbf{M} = \mathbf{\rho} imes \mathbf{A}$ હશે) બનતા તંત્રનું દ્રવ્યમાનકેન્દ્ર

$$r_{cm} = (x_{cm}, y_{cm}, z_{cm})$$

$$=\frac{\begin{cases}M(20,20,0)+M(20,20,40)\\+M(20,0,20)+M(20,40,20)\\+M(0,20,20)+M(40,20,20)\end{cases}}{6M}$$

$$=\frac{M(120, 120, 120)}{6M}$$

$$\therefore r_{cm} = (20, 20, 20) \text{ cm}$$

(b) જો ખોખું ઉપરથી ખુલ્લું હોય, તો EFGH પ્લેટ ન હોય, આથી બનતા તંત્રનું દ્રવ્યમાનકેન્દ્ર

$$r'_{cm} = (x'_{cm}, y'_{cm}, z'_{cm})$$

$$= \frac{\begin{cases} M(20, 20, 0) + M(20, 0, 20) \\ + M(20, 40, 20) + M(0, 20, 20) \\ + M(40, 20, 20) \end{cases}}{5M}$$

$$= \frac{M(100, 100, 80)}{5M}$$
$$= (20, 20, 16) \text{ cm}$$

સારાંશ

1. બે ક્શોના તંત્રનું દ્રવ્યમાનકેન્દ્ર : m_1 અને m_2 દ્રવ્યમાન ધરાવતા બે ક્શો X-અક્ષ પર ઊગમબિંદુથી અનુક્રમે x_1 અને x_2 અંતરે રહેલા હોય, તો તેમનું દ્રવ્યમાનકેન્દ્ર એવું બિંદુ છે કે ઊગમબિંદુથી તેનું

અંતર
$$x_{cm}=rac{m_1x_1+m_2x_2}{m_1+m_2}$$
 વડે અપાય છે.

2. n–કર્શોના તંત્રનું દ્રવ્યમાનકેન્દ્ર : જો કોઈ તંત્રમાં n–કશો આવેલા હોય, અને C તંત્રનાં દ્રવ્યમાનકેન્દ્રનું સ્થાન દર્શાવતું હોય, તો 'C' એવું બિંદુ છે કે જ્યાં n-કશોના તંત્રનું કુલ દ્રવ્યમાન જાશે કે કેન્દ્રિત થયેલું છે તેમ ગણી શકાય. ત્રિ-પરિમાણમાં રહેલા n–કશોના તંત્રમાં રહેલા m_1 , m_2 ,, m_n દ્રવ્યમાન ધરાવતા કશોના સ્થાનસદિશો અનુક્રમે $\overset{\rightarrow}{r_1}$, $\overset{\rightarrow}{r_2}$,, $\overset{\rightarrow}{r_n}$ હોય, તો તેમના દ્રવ્યમાનકેન્દ્રનો સ્થાનસદિશ

$$\vec{r}_{cm} = \frac{m_1 \vec{r}_1 + m_2 \vec{r}_2 + \dots + m_n \vec{r}_n}{m_1 + m_2 + \dots + m_n}.$$

ક્શોના તંત્રનું ડાઇનેમિક્સ

3. n–કણોના તંત્રના દ્રવ્યમાનકેન્દ્રનો વેગ : $\frac{1}{v_{cm}} = \frac{m_1 \overset{
ightarrow}{v_1} + m_2 \overset{
ightarrow}{v_2} + \ldots + m_n \overset{
ightarrow}{v_n}}{M}$, જ્યાં, $M = m_1 + m_2 + \ldots + m_n$.

4. કણોના તંત્રના દ્રવ્યમાનકેન્દ્રનો પ્રવેગ

$$\overset{\rightarrow}{a_{cm}} = \frac{m_1 \overset{\rightarrow}{a_1} + m_2 \overset{\rightarrow}{a_2} + \dots + m_n \overset{\rightarrow}{a_n}}{\mathsf{M}}.$$

5. કણોના તંત્ર માટે ન્યૂટનનો ગતિનો બીજો નિયમ

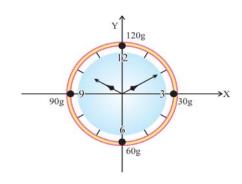
$$\overrightarrow{F} = \frac{\overrightarrow{dP}}{dt} = M \frac{\overrightarrow{dv_{cm}}}{dt} = M \overrightarrow{a_{cm}}.$$

- 6. રેખીય વેગમાનનું સંરક્ષણ : જો તંત્ર પરનું પરિણામી બાહ્ય બળ શૂન્ય હોય, તો તંત્રનું કુલ રેખીય વેગમાન અચળ રહે છે. બાહ્ય બળની ગેરહાજરીમાં તંત્રનું દ્રવ્યમાનકેન્દ્ર સ્થિર હોય તો સ્થિર રહે છે અને ગતિમાં હોય તો અચળ વેગથી ગતિ ચાલુ રાખે છે.
- દઢ વસ્તુ : કહ્યોના જે તંત્રમાં કહ્યો વચ્ચેનાં સાપેક્ષ અંતરો અફ્રર જળવાઈ રહેતાં હોય તેને દઢ વસ્તુ કહે છે.
- 8. દઢ પદાર્થનું દ્રવ્યમાનકેન્દ્ર: દઢ પદાર્થના દ્રવ્યમાનકેન્દ્રનું સ્થાન તેમાં દ્રવ્યના વિતરણ અને તેના આકાર પર આધાર રાખે છે. સંમિત પદાર્થો માટે તેમનું દ્રવ્યમાનકેન્દ્ર તેમના ભૌમિતિક કેન્દ્ર પર હોય છે.
- 9. વ્યાપક સ્વરૂપે દઢ પદાર્થના દ્રવ્યમાનકેન્દ્રના યામ :

$$x_{cm} = \frac{1}{M} \int x dm, \ y_{cm} = \frac{1}{M} \int y dm, \ z_{cm} = \frac{1}{M} \int z dm$$

સ્વાધ્યાય

નીચેનાં વિધાનો માટે આપેલા વિકલ્પોમાંથી યોગ્ય વિકલ્પ પસંદ કરો :

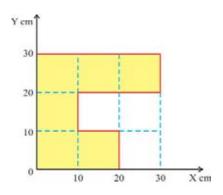

- ધારો કે તમારું દ્રવ્યમાન 50 kg છે. તમારે કેટલી ઝડપથી દોડવું પડે કે જેથી તમારું રેખીય વેગમાન 20 km/h ની ઝડપથી સીધા રસ્તા પર ગતિ કરતા 100 kg સાઇકલ સવાર જેટલું થાય ?
 - (A) 40 m/s
- (B) 11.11 m/s
- (C) 20 km/h
- (D) 10 km/h
- 2. 2400 kgની એક બસ સીધા રસ્તા પર 60 km/h ની ઝડપથી જાય છે. બસની પાછળ 1600 kg ની એક કાર 80 km/h ની ઝડપથી આવી રહી છે. બન્ને વાહનોનું દ્રવ્યમાનકેન્દ્ર કેટલી ઝડપથી ગતિ કરતું હશે ?
 - (A) 70 km/h
- (B) 75 km/h
- (C) 72 km/h
- (D) 68 km/h
- 3. જો 't' સમયે કોઈ પથ્થરનું વેગમાન $[(0.5 \text{ kg m/s}^3)t^2 + (3.0 \text{ kg m/s})]\hat{i} + [1.5 \text{ kg m/s}^2]t\hat{j}]$ હોય, તો તેના પર લાગતું બળ કેટલું હોય ?
 - (A) $(t\hat{i} + 1.5\hat{j}) \text{ N}$

- (B) $(0.5t\hat{i} + 1.5\hat{j})$ N
- (C) $[(0.5t + 3)\hat{i} + 1.5\hat{j}]$ N
- (D) $(0.5\,\hat{i} + 1.5\,\hat{j})$ N

> $2 \text{ kgનું એક પક્ષી } (2\hat{i} - 4\hat{j}) \text{ m/sના અચળ વેગથી તથા } 3 \text{ kgનું બીજું પક્ષી } (2\hat{i} + 6\hat{j})$ m/sથી ઊડતાં હોય, તો બન્ને પક્ષી વડે બનતા તંત્રના દ્રવ્યમાનકેન્દ્રનો વેગ m/s હોય.

- $2\hat{i} + 5.2\hat{j}$ (B) $2\hat{i} + 2\hat{j}$ (C) $2\hat{i} 2\hat{j}$ (D) $10\hat{i} + 10\hat{j}$ (A)
- $0.100~{
 m g}$ નું એક પીંછું $(-0.05~\hat{j})~{
 m m/s}$ વેગથી નીચે પડે છે. નીચેથી તેના પર ફૂંક મારતાં તેનો વેગ $(0.20\,\hat{i} + 0.15\,\hat{j})$ m/s થાય છે, તો તેના વેગમાનમાં થતો ફેરફાર kg m/s હશે.
 - (A)
- $2 \times 10^{-2} \hat{i} + 2 \times 10^{-2} \hat{j}$ (B) $2 \times 10^{-5} \hat{i} + 2 \times 10^{-5} \hat{j}$
 - (C)
- $2 \times 10^{-2}\hat{i} + 1 \times 10^{-2}\hat{j}$ (D) $2 \times 10^{-2}\hat{i} 2 \times 10^{-2}\hat{j}$
- એક ઝાડની ડાળી પર બેઠેલ વાંદરો બરાબર તેની નીચે બેઠેલા મગર પર જાંબુનો 10 gનો ઠળિયો પડતો મૂકે છે. ઠળિયો 2 s સમયમાં મગરના મોઢામાં પડીને સ્થિર થઈ જતો હોય, તો મગરને (ઠળિયા ઉપરાંત) મળતું વેગમાન kg m/s હોય. (g = 9.8 m s^{-2})
 - (A) 0.196
- (B) -0.196
- (C) 19.6
- (D) -19.6

આકૃતિ 1.14માં દર્શાવેલ નહીંવત્ વજન ધરાવતા ઘડિયાળના 10 cm ત્રિજ્યાના ડાયલ પર 3, 6, 9 અને 12 કલાકની નિશાનીઓ પર અનુક્રમે 30, 60, 90 અને 120 gના પથ્થર મુકવામાં આવે, તો બનતા આ તંત્રના દ્રવ્યમાનકેન્દ્રના યામ શોધો.



આકૃતિ 1.14

- (A) (2, -2) cm (B) (0, 0) cm (C) (-2, 2) cm (D) (-4, 4) cm
- ક્રિકેટમૅચમાં બૉલર 0.5 kgના દડાને 20 m/sની ઝડપથી ફેંકે છે. બૅટ્સમેન બૅટ ઉગામે ત્યારે દડો બૅટની સપાટીને લંબરૂપે અથડાઈને વિરુદ્ધ દિશામાં 30 m/sની ઝડપથી પાછો ફરે છે. જો દડાનો બેટ સાથેનો સંપર્ક સમય $0.1~\mathrm{s}$ હોય, તો બૅટ પર લાગતું બળ N હોય.
 - (A) 250
- (B) 25
- (C) 50
- (D) 125
- ાં 10 માળના મકાનની અગાશીમાં ઊભેલો એક છોકરો જુદા-જુદા વજનના ચાર પથ્થર જમીન તરફ પડતા મૂકે છે. જો કોઈ સમયે 500 gનો પથ્થર 8મા માળે, 400 gનો પથ્થર 6ઠા માળે, 1 kgનો પથ્થર 3જા માળે અને 600 gનો પથ્થર 1લા માળે પહોંચ્યા હોય, તો તે સમયે ચાર પથ્થરો વડે બનતા તંત્રનું દ્રવ્યમાનકેન્દ્ર માળે હશે.
 - (A) 7મા
- (B) 5_Hเ
- (C) 3%1
- (D) 4था

કર્ણોના તંત્રનું ડાઇનેમિક્સ 13

- આકૃતિ 1.15માં દર્શાવેલ નિયમિત ઘનતા-વાળા પાતળા પતરાનું દ્રવ્યમાનકેન્દ્ર cm છે.
 - (A) (10.00, 14.28)
 - (B) (11.67, 16.67)
 - (C) (8.75, 12.50)
 - (D) (7.78, 11.11)

આકૃતિ 1.15

જવાબો

1. (B) **2.** (D) **3.** (A) **4.** (B) **5.** (B) **6.** (A) **7.** (C) **8.** (A) **9.** (D) **10.** (B)

નીચે આપેલ પ્રશ્નોના જવાબ ટૂંકમાં આપો :

- ન્યૂટનના ગતિના નિયમોનું પરસ્પર અવલંબન એટલે શું ?
- 2. દઢ વસ્તુની વ્યાખ્યા આપો.
- 3. જે દઢ પદાર્થોના દ્રવ્યમાનકેન્દ્ર, દઢ પદાર્થના દ્રવ્યની બહાર હોય તેવાં બે ઉદાહરણો આપો.
- 4. નિયમિત ઘનતાવાળા પાતળા સળિયાનું દ્રવ્યમાનકેન્દ્ર ક્યાં આવેલું હોય છે ?
- 5. ઘન પદાર્થનો દળ-ખંડ dm એટલે શું ?
- સ્થિર પડેલા રાસાયિ ક બૉમ્બનો વિસ્ફોટ થાય ત્યારે તેના ટુકડાઓને ગતિ-ઊર્જા ક્યાંથી પ્રાપ્ત થાય છે ?

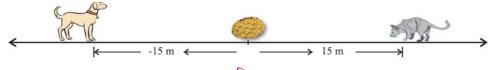
નીચેના પ્રશ્નોના જવાબ આપો :

- 1. ત્રિપરિમાણમાં *n-ક*ણોના તંત્રના દ્રવ્યમાનકેન્દ્રનું સૂત્ર લખો અને તેના વેગનું સૂત્ર મેળવો.
- રેખીય વેગમાનના સંરક્ષણનો નિયમ લખો અને સમજાવો.
- 3. રાસાયણિક બૉમ્બનું ઉદાહરણ કાર્ય-ઊર્જા પ્રમેયના વ્યાપક સ્વરૂપ તરફ કેવી રીતે દોરી જાય છે, તે સમજાવો.
- 4. *n*-કશોના તંત્ર માટે દ્રવ્યમાનકેન્દ્રના વેગનું સૂત્ર લખો અને ન્યૂટનનો ગતિનો બીજો નિયમ મેળવો.
- 5. ઘન પદાર્થનું દ્રવ્યમાનકેન્દ્ર નક્કી કરવાની સૈદ્ધાંતિક રીત ઉદાહરણ આપીને સમજાવો.
- 6. નિયમિત ઘનતાવાળા પાતળા સળિયાના દ્રવ્યમાનકેન્દ્રનું સ્થાન તેના કોઈ એક છેડાની સાપેક્ષે મેળવો.

નીચેના દાખલા ગણો :

1. કાર્બન મોનૉક્સાઇડ (CO) વાયુના અણુ માટે જો કાર્બન પરમાણુ તથા ઑક્સિજન પરમાણુનાં કેન્દ્રો વચ્ચેનું અંતર $1.130 \times 10^{-10} \text{ m}$ હોય, તો કાર્બન પરમાણુની સાપેક્ષે CO અણુના દ્રવ્યમાનકેન્દ્રનું સ્થાન શોધો.

(કાર્બનનો પરમાણુભાર = 12 g mol^{-1} , તથા ઑક્સિજનનો પરમાણુભાર = 16 g mol^{-1})


[**જવાબ**: 0.64 Å]

- 3. 1000 kgની એક કાર ટ્રાફિક સિગ્નલ પાસે ઊભી છે. લીલી લાઇટ થતાં કાર 4.0 m s^{-2} ના પ્રવેગથી ગતિ શરૂ કરે છે. તે જ વખતે 2000 kgની એક ટ્રક, 8.0 m s^{-1} ની અચળ ઝડપથી કારને ઓવરટેઇક કરીને આગળ નીકળે છે.
 - (a) 3 sec પછી કાર-ટ્રક વડે બનતા તંત્રનું દ્રવ્યમાનકેન્દ્ર ટ્રાફિક સિગ્નલથી કેટલે દૂર હશે ?
 - (b) તે વખતે કાર-ટ્રક વડે બનતા તંત્રના દ્રવ્યમાનકેન્દ્રની ઝડપ કેટલી હશે ?

[**જવાબ :** (a) 22.0 m, (b) 9.33 m s⁻¹]

4. 40 kg દળ ધરાવતો એક કૂતરો અને 20 kg દળવાળી એક બિલાડી, રોટલીની બન્ને બાજુ 15–15 m મીટરના અંતરે ઊભાં છે (જુઓ આકૃતિ 1.16). બન્ને રોટલી ખાવા માટે એક સાથે એવી રીતે દોડે છે કે જેથી કોઈ પણ સમયે કૂતરા અને બિલાડી વડે બનતા તંત્રનું દ્રવ્યમાનકેન્દ્ર સ્થિર જ રહે. કોષ્ટકમાં જુદા-જુદા સમયે રોટલી પરના ઊગમબિંદુની સાપેક્ષે કૂતરાનું સ્થાન દર્શાવ્યું છે. દરેક સમયે બિલાડીનું સ્થાન તથા બંનેના વેગ, વેગમાન અને તેમના વેગમાનનો સરવાળો શોધો.

કોણ રોટલી પાસે પહેલું પહોંચશે ? કૂતરો કે બિલાડી ? આ કિસ્સામાં વેગમાનનું સંરક્ષણ થાય છે ? કેમ ?

આકૃતિ 1.16

સમય	રોટલીથી અંતર		કૂતરા અને બિલાડીનું	વેગ ms-1		વેગ માન I	kgms ⁻¹	કુલ વેગમાન
t			દ્રવ્યમાનકેન્દ્રથી અંતર	કૂતરો	બિલાડી	કૂતરો	બિલાડી	D = D + D
sec	કૂતરો	બિલાડી	$\mathbf{r}_{\mathbf{r}}}}}}}}}}$	<i>v</i> ₁	<i>v</i> ₂	\mathbf{P}_{1}	P ₂	$P = P_1 + P_2$ $kg ms^{-1}$
Sec	$x_1(m)$	$x_2(m)$						
0	-15.0	15	(અચળ)					
2	-12.5		,,					
4	-10.0		,,					
6	-7.5		,,					

જવાબ:

			દ્રવ્યમાનકેન્દ્ર	વેગ ms ⁻¹		વેગમાન		કુલ વેગમાન
	કૂતરો	બિલાડી	પ્રવ્યમાપકપ્ર	કૂતરો	બિલાડી	કૂતરો	બિલાડી	Total
t	$x_1(m)$	$x_2(m)$	(11)	v_{1}	v_2	P_1	\mathbf{P}_{2}	$\mathbf{P} = \mathbf{P}_1 + \mathbf{P}_2$
sec			$x_{cm}(m)$	ms ⁻¹	ms ⁻¹	kg ms ⁻¹	kg ms ⁻¹	kg ms ⁻¹
0	-15.0	15.0	-5.0 <i>m</i> (અચળ)	0	0	0	0	0
2	-12.5	10.0	−5.0 m	1.25	-2.5	50	-5 0	0
4	-10.0	5.0	−5.0 <i>m</i>	1.25	-2.5	50	-50	0
6	-7.5	0	−5.0 <i>m</i>	1.25	-2.5	50	-5 0	0

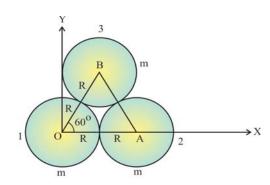
ક્રણોના તંત્રનું ડાઇનેમિક્સ 15

 $t=6~{
m sec}~{
m and}$ સમયે, $x_1=-7.5~m,~x_2=0~m$ અને રોટલી ઊગમબિંદુ x=0 પર છે, આથી બિલાડી પહેલા પહોંચશે.

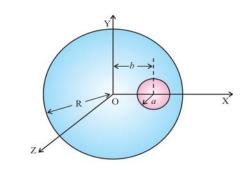
કુલ વેગમાન અચળ રહે છે, આથી વેગમાનનું સંરક્ષણ થાય છે. આનું કારણ એ છે કે દ્રવ્યમાનકેન્દ્ર અહીં સ્થિર રહે છે.

5. m_1 અને m_2 દળ ધરાવતા બે કહ્યો વચ્ચેનું અંતર r છે. જો આ કહ્યોના દ્રવ્યમાનકેન્દ્રથી અંતર અનુક્રમે r_1 અને r_2 હોય, તો દર્શાવો કે

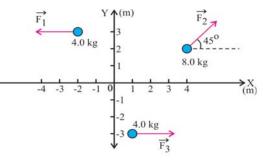
$$r_1 = r \bigg[\frac{m_2}{m_1 + m_2} \bigg] \mbox{ અને } r_2 = r \bigg[\frac{m_1}{m_1 + m_2} \bigg]. \label{eq:r1}$$


6. આકૃતિ 1.17માં દર્શાવ્યા પ્રમાણે R મીટર ત્રિજયાના 3 ગોળા પરસ્પર એકબીજાને અડકે તેમ સમક્ષિતિજ સપાટી પર ગોઠવ્યા છે. જો દરેક ગોળાનું દળ m હોય, તો ગોળા 1ના કેન્દ્રને ઊગમબિંદુ તરીકે લઈને દ્રવ્યમાન-કેન્દ્રનું સ્થાન નક્કી કરો. Z-અક્ષ પુસ્તકના પાનાને લંબરૂપે છે.

[જવાબ : (R,
$$\frac{R}{\sqrt{3}}$$
, 0) m]

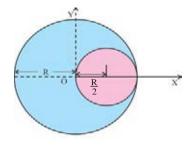

 આકૃતિ 1.18માં દર્શાવેલ નિયમિત ઘનતા ρ ધરાવતા R ત્રિજ્યાના એક સમાંગ ગોળામાંથી a ત્રિજ્યાની ગોળી કાપી લેવામાં આવે છે, તો બાકીના ભાગનું, મૂળ ગોળાના કેન્દ્રની સાપેક્ષમાં દ્રવ્યમાનકેન્દ્ર શોધો.

[જવાબ :
$$\left(\frac{-a^3b}{\left(R^3-a^3\right)}, 0, 0\right)$$
]


8. આકૃતિ 1.19માં ત્રણ સ્થિર 'કણો'નાં સ્થાન દર્શાવ્યાં છે. કણોના આ તંત્ર માટે દ્રવ્યમાનકેન્દ્રના યામ શોધો. આ કણો પર આકૃતિમાં દર્શાવ્યા મુજબ બાહ્ય બળો $F_1=6.0~\mathrm{N},\,F_2=12.0~\mathrm{N}$ અને $F_3=14.0~\mathrm{N}$ લાગે છે, તો દ્રવ્યમાનકેન્દ્રના પ્રવેગ તથા પ્રવેગની દિશા શોધો.

આકૃતિ 1.17

આકૃતિ 1.18



આકૃતિ 1.19

[જવાબ :
$$\overrightarrow{r_{cm}}=(1.75,\ 1.00)$$
 m, $\overrightarrow{a_{cm}}=(1.03,\ 0.53)$ m s $^{-2}$, $|\overrightarrow{a}|=a=1.16$ m s $^{-2}$ X—અક્ષ સાથે $\theta=27^{\circ}$ ખૂશો બનાવતી દિશા]

16 ભૌતિકવિજ્ઞાન

9. આકૃતિ 1.20માં દર્શાવેલ ρ જેટલી સમાન પૃષ્ઠ ઘનતાવાળી અને R ત્રિજ્યાની અત્યંત પાતળી તકતીમાંથી $\frac{R}{2}$ ત્રિજ્યાવાળી તકતી જેટલો ભાગ કાપી લેવામાં આવે, તો મૂળ તકતીના કેન્દ્રને અનુલક્ષીને બાકી રહેલા ભાગનું દ્રવ્યમાનકેન્દ્ર શોધો.

આકૃતિ 1.20

[**જવાબ** :
$$(-\frac{R}{6}, 0)$$
]

પ્રો. સત્યેન્દ્રનાથ બોઝ (1894-1974)

સત્યેન્દ્રનાથ બોઝનો જન્મ 1 જાન્યુઆરી, 1894ના રોજ કોલકાતા ખાતે થયો હતો. તેમણે યુનિવર્સિટી ઑફ કોલકાતા ખાતે અભ્યાસ કર્યો હતો અને ત્યાર બાદ 1916 સુધી ભણાવ્યું હતું. યુનિવર્સિટી ઑફ ડેકા ખાતે તેમણે 1921-45 સુધી ભણાવ્યું અને ત્યાર બાદ 1945-46માં કોલકાતા પાછા ફર્યા. તેમણે ક્વોન્ટમ થિયરીમાં પ્લાન્કના બ્લૅક બોડી રેડિયેશનના નિયમ પર

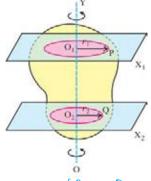
કાર્ય કર્યું. 1924માં તેમણે પ્લાન્કના સિદ્ધાંત અને પ્રકાશના કણવાદ પરનું તેમનું કાર્ય આઇન્સ્ટાઇનને મોકલ્યું. જેને આઇન્સ્ટાઇને ખૂબ વખાણ્યું. આઇન્સ્ટાઇને આ કાર્યનો જર્મન ભાષામાં અનુવાદ કર્યો. બોઝે, બોઝ-આઇન્સ્ટાઇન સ્ટેટીસ્ટિક્સ પર પણ કાર્ય કર્યું હતું. ડિરાકે આ સ્ટેટીસ્ટિક્સનું પાલન કરતાં કણોને બોઝોન નામ આપ્યું. સત્યેન્દ્રનાથ બોઝ અને આઇન્સ્ટાઇને ભેગા મળીને integer spins (bosons) પર ઘણાં પેપરો પબ્લિશ કર્યાં હતાં. 1974માં તેમનું અવસાન થયું.

પ્રકરણ 2

ચાકગતિ

- 2.1 પ્રસ્તાવના
- 2.2 રોટેશીલ કાઇનેમેટિક્સ અને ડાઇનેમિક્સ
- 2.3 ચાકગતિની ચલરાશિઓ અને રેખીય ગતિની ચલરાશિઓ વચ્ચેનો સંબંધ
- 2.4 અચળ કોણીય પ્રવેગ સાથેની ચાકગતિનાં સમીકરણો
- 2.5 ટૉર્ક
- 2.6 કોણીય વેગમાન
- 2.7 કોણીય વેગમાનના સંરક્ષણનું ભૌમિતિક નિરૂપણ
- 2.8 જડત્વની ચાકમાત્રા
- 2.9 જડત્વની ચાકમાત્રાની ગણતરી
- 2.10 ચક્રાવર્તન ત્રિજયા
- 2.11 સરક્યા વિના ગબડતા દઢ પદાર્થો
 - સારાંશ
 - સ્વાધ્યાય

2.1 પ્રસ્તાવના (Introduction)

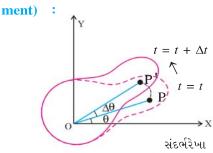

વિદ્યાર્થીમિત્રો, તમે પંખાની ગતિ, ભમરડાની ગતિ તેમજ ચકડોળની ગતિ જોઈ હશે. પૃથ્વી પોતાની અક્ષની આસપાસ ભ્રમણ કરે છે, જેનો તમને ખ્યાલ છે. પ્રસ્તુત પ્રકરણમાં આપણે આવા પ્રકારની ગતિનો અભ્યાસ કરીશું. આવી ગતિ ચાકગતિ છે.

પ્રથમ આપણે દંઢ પદાર્થની સ્થિર ભ્રમણાને અનુલક્ષીને ચાકગતિની ચર્ચા કરીશું અને છેલ્લે સરક્યા વિના ગબડતા દંઢ પદાર્થની ગતિની ચર્ચા કરીશું.

ક્રણોના જે તંત્રમાં ક્રણો વચ્ચેના સાપેક્ષ અંતરો અફર જળવાઈ રહેતા હોય તેને દેઢ પદાર્થ (Rigid body) કહે છે.

દઢ પદાર્થ એક આદર્શ વિભાવના છે. ભૌતિકવિજ્ઞાનની દિષ્ટિએ દઢ પદાર્થ અને ઘન પદાર્થ તદન સમાન નથી. ઘન પદાર્થનું વિરૂપણ થઈ શકે છે, પરંતુ દઢ પદાર્થનું વિરૂપણ થઈ શકે નહિ. ઘણા વ્યાવહારિક હેતુઓ પૂરતું ઘન પદાર્થને દઢ પદાર્થ ગણી શકાય છે.

2.2 રોટેશનલ કાઇનેમેટિક્સ અને ડાઇનેમિક્સ (Ratational Kinematics and Dynamics)



દેઢ પદાર્થની ચાકગતિ આકૃતિ 2.1 જો દંઢ પદાર્થના બધા જ કણો વર્તુળગતિ કરતાં હોય અને આ વર્તુળોના કેન્દ્રો કોઈ એક x નિશ્ચિત સુરેખા પર સ્થિર હોય, તો દંઢ પદાર્થની તેવી ગતિને ચાકગતિ કહે છે. આ નિશ્ચિત સુરેખા (જે ભૌમિતિક રેખા છે)ને ભ્રમણાક્ષ કહે છે. આકૃતિ 2.1માં કોઈ એક દંઢ પદાર્થના બે ક્યો P અને Q ને દર્શાવ્યા છે. તથા દંઢ પદાર્થ ભ્રમણાક્ષ OYને અનુલક્ષીને ચાકગતિ કરે છે. O અને r ક્યા P જે વર્તુળ પર ગતિ કરે છે, તેના અનુક્રમે કેન્દ્ર તથા

ત્રિજ્યા છે. તેવી જ રીતે O_2 અને r_2 ક્શ Q જે વર્તુળ પર ગિત કરે છે, તેના અનુક્રમે કેન્દ્ર તથા ત્રિજ્યા છે. ક્શ P અને Q જે વર્તુળમાર્ગો પર ગિત કરે છે, તે ભ્રમશાક્ષ OYને લંબસમતલોમાં આવેલા હોય છે.

આપણે પ્રથમ ચાકગતિનાં કારણોનો ઉલ્લેખ કર્યા સિવાય માત્ર ચાકગતિનું વર્ણન કરીશું. ભૌતિકવિજ્ઞાનના આ વિષયાંગને રોટેશનલ કાઇનેમેટિક્સ કહે છે. પદાર્થની ચાકગતિ માટે જવાબદાર કારણો તથા વસ્તુના ગુણધર્મો સાથે ચાકગતિનું વર્ણન કરવામાં આવે, તો તે વિષયાંગને રોટેશનલ ડાઇનેમિક્સ કહે છે.

- 2.3 ચાકગતિની ચલરાશિઓ અને રેખીય ગતિની ચલ રાશિઓ વચ્ચેના સંબંધો (Relation Between Variables of Rotational Motion and the Variables of Linear Motion)
 - (a) કોણીય સ્થાનાંતર (Angular Displace-

કોણીય સ્થાનાંતર આકૃતિ 2.2

ધારો કે કોઈ દઢ પદાર્થ આકૃતિ 2.2માં દર્શાવ્યા પ્રમાણે પુસ્તકના પાનને લંબ રૂપે આવેલ સ્થિર ભ્રમણાક્ષ OZને અનુલક્ષીને ચાકગતિ કરે છે. અત્રે સ્પષ્ટ છે કે આ ભ્રમણાક્ષને લંબસમતલ (X–Y) પુસ્તકના પાનમાં આવેલ છે.

દઢ પદાર્થના પુસ્તકના પાન સાથેના આડછેદના t અને $t+\Delta t$ સમયે સ્થાન અનુક્રમે ત્રુટક રેખા અને સળંગ રેખા વડે દર્શાવાય છે.

દઢ પદાર્થના કોઈ એક કણ P ને ધ્યાનમાં લો. કોઈ એક સમયે (આકૃતિમાં દર્શાવ્યા પ્રમાણે) આ કણને તેના વર્તુળમાર્ગના કેન્દ્ર (O) સાથે જોડતી રેખાએ (જે તેના વર્તુળમાર્ગની ત્રિજ્યા છે.) આપેલી નિશ્ચિત સંદર્ભરેખા સાથે બનાવેલા કોણને તે સમયે તે કણનું કોણીય સ્થાન કહે છે. આકૃતિમાં દર્શાવ્યા પ્રમાણે કણ P, t સમયે સંદર્ભરેખા OX સાથે θ કોણ રચે છે, જે કણ Pનું t સમયે કોણીય સ્થાન છે. $t + \Delta t$ સમયે કણ XY સમતલમાં વર્તુળગિત કરી P થી P' બિંદુએ પહોંચે છે. આ સમયે કણનું કોણીય સ્થાન $\theta + \Delta \theta$ છે.

કણના કોણીય સ્થાનમાં થતા ફેરફારને કોણીય સ્થાનાંતર કહે છે. આમ કણ Pનું Δt જેટલા સમયગાળામાં કોણીય સ્થાનાંતર $\Delta \theta$ છે. (સંદર્ભરેખા તરીકે કોઈ પણ

રેખા લઈ શકાય છે. સામાન્ય રીતે ધન X-અક્ષને સંદર્ભરેખા તરીકે લેવાય છે.)

દઢ પદાર્થમાં કણો વચ્ચેનાં સાપેક્ષ અંતરો અફ્રર રહેતાં હોવાથી ચાકગતિ દરમિયાન બધા જ કણો સરખા સમયમાં સરખું કોણીય સ્થાનાંતર અનુભવે છે. માટે દઢ પદાર્થની ચાકગતિનું વર્ણન અસંખ્ય કણોમાંના કોઈ એક પ્રતિનિધિ કણની ગતિ પરથી કરી શકાય છે. આમ, ઉપર્યુક્ત ચર્ચામાં કોણીય સ્થાનાંતર $\Delta\theta$ એ દઢ વસ્તુનું કોણીય સ્થાનાંતર છે. તેનો SI એકમ radian છે.

(b) કોણીય ઝડપ અને કોણીય વેગ (Angular speed and angular velocity):

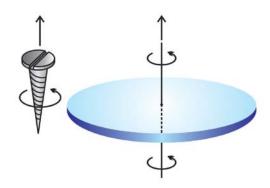
 Δt સમયગાળામાં ક્શનું $\Delta heta$ જેટલું કોણીય સ્થાનાંતર થતું હોવાથી સરેરાશ કોણીય ઝડપની વ્યાખ્યા અનુસાર

$$<\omega>=\frac{\text{sign a equation}}{\text{analysis}}$$

$$<\omega> = \frac{\Delta\theta}{\Delta t}$$
 (2.3.1)

હવે $\Delta t \to 0$ લક્ષમાં આ ગુણોત્તરનું મૂલ્ય કણ Pની, t સમયે તત્કાલીન કોણીય ઝડપ થશે.

$$\therefore \omega = \lim_{\Delta t \to 0} \frac{\Delta \theta}{\Delta t}$$


$$\therefore \ \omega = \frac{d\theta}{dt} \tag{2.3.2}$$

જે સમગ્ર દઢ પદાર્થની પણ t સમયે કોણીય ઝડપ છે. હવે પછી કોણીય ઝડપ, એટલે તત્કાલીન કોણીય ઝડપ સમજીશું, સિવાય કે વિશેષ ઉલ્લેખ કરેલો હોય. ω નો એકમ rad s⁻¹ અથવા rotation s⁻¹ કોણીય ઝડપ સાથે જ્યારે યોગ્ય દિશા સાંકળવામાં આવે છે, ત્યારે તેને કોણીય વેગ કહે છે. રૈવાજિક રીતે કોણીય વેગ $\overrightarrow{\omega}$ ની દિશા જમણા હાથના સ્કૂના નિયમથી નક્કી કરવામાં આવે છે.

જમણા હાથના સ્કૂને આકૃતિ 2.3માં દર્શાવ્યા અનુસાર ભ્રમણાક્ષને સમાંતર ગોઠવી વસ્તુ જે રીતે ભ્રમણ કરતી હોય તે જ રીતે ભ્રમણ આપતાં સ્કૂ જે દિશામાં ખસે તેને કોણીય વેગ $\overrightarrow{\omega}$ ની દિશા ગણવામાં આવે છે.

ચાકગતિ 19

 $\stackrel{
ightarrow}{\omega}$ ની દિશા

જમણા હાથના સ્ક્રૂનો નિયમ આકૃતિ 2.3

(c) કોણીય વેગ અને રેખીય વેગ વચ્ચેનો અદિશ સંબંધ (Scalar Relation between Angular Velocity and Linear Velocity):

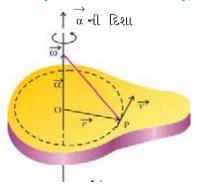
આકૃતિ 2.2માં દર્શાવ્યા પ્રમાણે કણ $P, \Delta t$ સમયગાળામાં ચાપ PP જેટલું રેખીય અંતર કાપે છે. આથી,

સરેરાશ રેખીય ઝડપ
$$<\!\!v\!\!> = \frac{$$
ચાપ $\mathrm{PP'}}{\mathrm{સ}$ સ્યગાળો Δt

જો કણ Pના વર્તુળપથની ત્રિજ્યા (ભ્રમણાક્ષથી કણ Pનું લંબઅંતર) r હોય તો, ચાપ PP' = r $\Delta \theta$

$$\therefore \langle v \rangle = \frac{r\Delta\theta}{\Delta t}$$

$$= r \langle \omega \rangle \qquad (2.3.3)$$


 $\Delta t \to 0$ લક્ષમાં ઉપર્યુક્ત ગુણોત્તરનું મૂલ્ય t સમયે કણ Pના તત્કાલીન રેખીય વેગનું મૂલ્ય આપે છે.

$$\therefore v = \lim_{\Delta t \to 0} \frac{r\Delta\theta}{\Delta t}$$

$$= r\frac{d\theta}{dt}$$

$$\therefore v = r\omega \tag{2.3.4}$$

જે પદાર્થના રેખીય વેગ અને કોણીય વેગ વચ્ચેનો અદિશ સંબંધ છે. (d) કોણીય વેગ અને રેખીય વેગ વચ્ચેનો સદિશ સંબંધ (Vector Releation between Angular Velocity and Linear Velocity):

કોણીય વેગ અને રેખીય વેગ વચ્ચેનો સદિશ સંબંધ આકૃતિ 2.4

ચાકગતિ કરતા દઢ પદાર્થના કોઈ કણ Pના ભ્રમણાક્ષને લંબ આવેલ સમતલમાંના વર્તુળમાર્ગના કેન્દ્રને અનુલક્ષીને તેના સ્થાનસદિશ \overrightarrow{r} તથા રેખીય વેગ \overrightarrow{v} ની સ્થિતિ આકૃતિ 2.4માં દર્શાવ્યા પ્રમાણે હોય છે તથા કોણીય વેગ $\overrightarrow{\omega}$ જમણા હાથના નિયમ અનુસાર (આકૃતિમાં દર્શાવ્યા અનુસાર) ભ્રમણાક્ષને સમાંતર છે.

 $\overrightarrow{\omega} \times \overrightarrow{r}$ ની દિશા જમણા હાથના સ્કૂના નિયમ પરથી શોધતાં તે \overrightarrow{v} ની દિશામાં મળે છે. તેમજ $\overrightarrow{\omega} \perp \overrightarrow{r}$ હોવાથી $\overrightarrow{\omega} \times \overrightarrow{r} = \omega r \sin 90 = \omega r = \overrightarrow{v}$ નું મૂલ્ય. રેખીય વેગ સદિશ છે. વર્તુળગતિમાં કોઈ પણ બિંદુએ રેખીય વેગની દિશા તે બિંદુએ વર્તુળને દોરેલા સ્પર્શકની દિશામાં હોય છે.

સમીકરણ $v=r\omega$ માં ડાબી બાજુ રેખીય વેગનું મૂલ્ય જ્યારે જમણી બાજુએ આવતા r અને ω એ સિંદશ રાશિઓ \vec{r} અને $\overset{\rightarrow}{\omega}$ નાં મૂલ્યો છે. આ હકીકત સૂચવે છે કે સિંદશ રાશિઓ \vec{r} અને $\overset{\rightarrow}{\omega}$ નાં એવો ગુણાકાર લેવામાં આવે કે જેનું ગણનફળ પણ સિંદશ જ હોય. જેને આપણે બે સિંદશોના સિંદશ ગુણાકાર (ક્રોસ ગુણાકાર) તરીકે ઓળખીએ છીએ. અત્રે $\overset{\rightarrow}{\omega}$ × \vec{r} ની દિશા જમણા હાથના સ્કૂના નિયમ પરથી શોધતાં તે \vec{v} ની દિશામાં મળે છે. તેમજ $\overset{\rightarrow}{\omega}$ \perp \vec{r} હોવાથી \vec{l} $\overset{\rightarrow}{\omega}$ × \vec{r} \vec{l} હિશામાં મળે છે. તેમજ $\overset{\rightarrow}{\omega}$ \perp \vec{r} હોવાથી વેગ $\overset{\rightarrow}{\omega}$ સિંદશ સંબંધના સ્વરૂપમાં મૂકી શકાય. (તમે \vec{r} × $\overset{\rightarrow}{\omega}$ ની દિશા કઈ હશે તે વિચારો.)

$$\overrightarrow{v} = \overrightarrow{\omega} \times \overrightarrow{r} \tag{2.3.5}$$

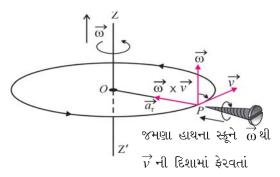
(e) કોણીય પ્રવેગ (Angular Acceleration) : ધારો કે t અને $t+\Delta t$ સમયે ક્લ Pના તત્કાલીન કોણીય વેગ $\overrightarrow{\omega}$ અને $\overrightarrow{\omega}+\Delta \overrightarrow{\omega}$ છે.

તેથી વ્યાખ્યા અનુસાર,

સરેરાશ કોણીય પ્રવેગ
$$<\stackrel{\rightarrow}{\alpha}>=\frac{\Delta\stackrel{\rightarrow}{\omega}}{\Delta t}$$
 (2.3.6)

 $\Delta t
ightarrow 0$, લક્ષમાં ઉપર્યુક્ત ગુણોત્તરનું મૂલ્ય એ t સમયે કણ Pનો તત્કાલીન કોણીય પ્રવેગ આપે $\stackrel{
ightarrow}{lpha}$ છે.

$$\therefore \vec{\alpha} = \lim_{\Delta t \to 0} \frac{\Delta \vec{\omega}}{\Delta t}$$


$$\therefore \vec{\alpha} = \frac{d \vec{\omega}}{dt} \tag{2.3.7}$$

 $<\overrightarrow{\alpha}>$ ની દિશા એ $\overrightarrow{\Delta_{\omega}}$ (કોણીય વેગનો ફેરફાર) ની દિશામાં હોય છે. સ્થિર ભ્રમણાક્ષના કિસ્સામાં $\overrightarrow{\Delta_{\omega}}$ ની દિશા ભ્રમણાક્ષને સમાંતર હોય છે, તેથી $<\overrightarrow{\alpha}>$ ની દિશા પણ ભ્રમણાક્ષને સમાંતર હોય છે. (જુઓ આકૃતિ 2.4) $\overrightarrow{\alpha}$ નો એકમ rad s⁻² અથવા rotation s⁻² છે.

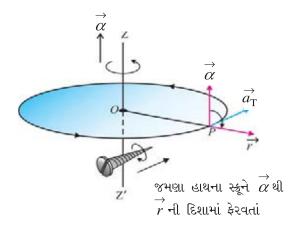
(f) રેખીય પ્રવેગ અને કોણીય પ્રવેગ વચ્ચેનો સંબંધ (Relation between Linear Acceleration and Angular Acceleration):

રેખીય વેગનું સમય સાપેક્ષે વિકલન રેખીય પ્રવેગ (\overrightarrow{a}) આપે છે. સમીકરણ (2.3.5)નું સમય સાપેક્ષે વિકલન કરતાં,

$$\frac{d\overrightarrow{v}}{dt} = \overrightarrow{a} = \overrightarrow{\omega} \times \frac{d\overrightarrow{r}}{dt} + \frac{d\overrightarrow{\omega}}{dt} \times \overrightarrow{r}$$
અત્રે $\frac{d\overrightarrow{r}}{dt} = \overrightarrow{v}$ અને $\frac{d\overrightarrow{\omega}}{dt} = \overrightarrow{\alpha}$ હોવાથી
$$\overrightarrow{a} = \overrightarrow{\omega} \times \overrightarrow{v} + \overrightarrow{\alpha} \times \overrightarrow{r}$$
 (2.3.8)

રેખીય પ્રવેગનો ત્રિજ્યાવર્તી ઘટક

આકૃતિ 2.4 (a)


આમ રેખીય પ્રવેગ \overrightarrow{a} ના બે સદિશ ઘટકો $\overrightarrow{\omega} imes \overrightarrow{v}$ અને $\overrightarrow{\alpha} imes \overrightarrow{r}$ છે.

આકૃતિ 2.4(a) અનુસાર જમણા હાથના સ્કૂના નિયમનો ઉપયોગ કરી $\overrightarrow{\omega} \times \overrightarrow{v}$ ની દિશા શોધતાં તે કેન્દ્ર તરફ ત્રિજ્યાવર્તી દિશામાં મળે છે. તેથી $\overrightarrow{\omega} \times \overrightarrow{v}$ ને રેખીય પ્રવેગ \overrightarrow{a} નો ત્રિજ્યાવર્તી ઘટક કહે છે. તેને $\overrightarrow{a_r}$ વડે દર્શાવાય

છે. તેનું મૂલ્ય
$$\omega v \sin \frac{\pi}{2} = \omega v = \frac{v^2}{r} = r\omega^2$$
 $(\because v = r\omega)$

આ જ પ્રમાણે $\vec{\alpha} \times \vec{r}$ ની દિશા વર્તુળમાર્ગના સ્પર્શકની દિશામાં મળતી હોઈ તેને રેખીય પ્રવેગનો સ્પર્શીય ઘટક કહે છે (જુઓ આકૃતિ 2.4 (b)). તેને $\vec{a}_{\rm T}$ વડે દર્શાવાય છે. તેનું મૂલ્ય $\alpha r \sin \frac{\pi}{2} = \alpha r$ છે.

$$\vec{a} = \vec{a}_r + \vec{a}_T$$

રેખીય પ્રવેગનો સ્પર્શીય ઘટક આકૃતિ 2.4(b)

ત્રિજ્યાવર્તી ઘટક $\overrightarrow{a_r}$ અને સ્પર્શીય ઘટક $\overrightarrow{a_{\mathrm{T}}}$ પરસ્પર લંબ હોવાથી \overrightarrow{a} નું મૃલ્ય

$$a = \sqrt{a_{\rm r}^2 + a_{\rm T}^2} = \sqrt{\omega^2 v^2 + \alpha^2 r^2}$$
 (2.3.9)

જો દઢ પદાર્થ અચળ કોશીય વેગથી ચાકગતિ કરતો હોય એટલે કે કોશીય પ્રવેગ $\alpha=0$ હોય, તો તેનો રેખીય પ્રવેગનો સ્પર્શીય ઘટક શૂન્ય બને, પરંતુ તેનો ત્રિજ્યાવર્તી ઘટકનો અશૂન્ય જ હોય છે.

ચાકગતિ 21

ઉપર્યુક્ત ચર્ચામાં આપણે જોયું કે કોણીય સ્થાનાંતર (θ) , કોણીય વેગ $(\overrightarrow{\omega})$, કોણીય પ્રવેગ $\overrightarrow{\alpha}$ દઢ વસ્તુના દરેક કણ માટે સમાન છે. આમ, θ , $\overrightarrow{\omega}$ અને $\overrightarrow{\alpha}$ દઢ વસ્તુની લાક્ષણિકતાઓ છે અને તેમને રોટેશનલ કાઇનેમેટિક્સની યલ રાશિઓ કહે છે.

અત્રે નોંધો કે સ્થિર ભ્રમણાક્ષને અનુલક્ષીને ચાકગતિ કરતી દઢ પદાર્થના કોઈ એક કણની ગતિનું વર્શન રેખીય ચલો $(\overrightarrow{r}\,,\,\overrightarrow{v}\,$ અને $\overrightarrow{a}\,)$ અને કોણીય ચલો $(\theta,\,\overrightarrow{\omega}\,,\,\overrightarrow{\alpha}\,)$ ના સંદર્ભમાં કરી શકાય છે, પરંતુ જ્યારે દઢ પદાર્થના બધા કણોનો એક સાથે વિચાર કરવાનો હોય ત્યારે કોણીય ચલો (જે બધા જ કણો માટે સમાન છે.) વાપરવાથી સમગ્ર પદાર્થની ગતિનું વર્શન સરળતાથી થઈ શકે છે.

ઉદાહરણ 1 : એક ઘડિયાળના સેકન્ડ-કાંટાની લંબાઈ 20 cm છે, તો તેની ટોચ પરના કણનાં (1) કોણીય વેગ (2) રેખીય વેગ (3) કોણીય પ્રવેગ (4) ત્રિજયાવર્તી પ્રવેગ (5) સ્પર્શીય પ્રવેગ (6) રેખીય પ્રવેગનાં મૂલ્યો શોધો.

ઉકેલ :

r = 20 cm

(1) સેકન્ડ-કાંટો એક મીનીટ (60 seconds)માં 2π rad કોણીય સ્થાનાંતર કરે છે. આથી કોણીય વેગ

$$\therefore \omega = \frac{2\pi}{60} = \frac{\pi}{30} \text{ rad s}^{-1}$$

(2) રેખીય વેગ
$$v = \omega r = \frac{\pi}{30} \times 20$$
$$= \frac{2}{3}\pi \text{ cm s}^{-1}$$

(3) ઘડિયાળનો સેકન્ડ-કાંટો અચળ કોણીય ઝડપથી ગતિ કરતો હોઈ \therefore $\alpha=0$ rad s $^{-1}$

(4) ત્રિજ્યાવર્તી પ્રવેગ =
$$a_r = \frac{v^2}{r}$$

$$=\left(\frac{2\pi}{3}\right)^2 \times \left(\frac{1}{20}\right) = \frac{\pi}{45}^2 \text{ cm s}^{-2}$$

(5) સ્પર્શીય પ્રવેગ =
$$a_{\mathrm{T}} = \alpha r = 0$$

(6) રેખીય પ્રવેગ
$$a = \sqrt{a_r^2 + a_{\rm T}^2} = a_r =$$

$$\frac{\pi}{45}^2\,\text{cms}^{-2}$$

(15 cm લંબાઈના મિનિટ તથા 10 cm લંબાઈના કલાકકાંટા માટે આવી જ ગણતરી જાતે કરી જુઓ.)

2.4 નિયમિત (અચળ) કોણીય પ્રવેગ સાથેની ચાકગતિનાં સમીકરણો (Equations of Rotational Motion with Constant Angular Acceleration)

ધારો કે t=0 સમયે દઢ પદાર્થના કોઈ કણનું કોણીય સ્થાન $\theta=0$ અને કોણીય વેગ એ ω_0 છે.

t=t સમયે તેનું કોણીય સ્થાન એ $\theta=\theta$ અને કોણીય વેગ એ ω છે.

જો દેઢ પદાર્થ સ્થિર ભ્રમણાક્ષને અનુલક્ષીને ચાકગતિ કરતો હોય, તો $\overset{\rightarrow}{\omega_0}$, $\overset{\rightarrow}{\omega}$ અને તેનો અચળ કોણીય પ્રવેગ $\overset{\rightarrow}{\alpha}$ ની દિશા સ્થિર ભ્રમણાક્ષની દિશા પર હોય છે. આથી θ , $\overset{\rightarrow}{\omega}$ અને $\overset{\rightarrow}{\alpha}$ ના સંબંધોને અદિશ સ્વરૂપમાં લખી શકાય છે. α અચળ હોવાથી

$$\alpha = \frac{\Delta \omega}{\Delta t} = \frac{\omega - \omega_0}{t} \tag{2.4.1}$$

અથવા
$$\omega = \omega_0 + \alpha t$$
 (2.4.2)

આ સમીકરણ રેખીય ગતિના સમીકરણ $v=v_0+at$ સાથે સામ્યતા ધરાવે છે.

અત્રે કોણીય પ્રવેગ અચળ હોવાથી, સરેરાશ કોણીય વેગનો ઉપયોગ કરી કોણીય સ્થળાંતર શોધી શકાય.

∴ કોણીય સ્થાનાંતર

 $\theta = (સરેરાશ કોણીય વેગ) (t)$

$$\therefore \ \theta = \left(\frac{\omega + \omega_0}{2}\right)t \tag{2.4.3}$$

આ સમીકરણ રેખીય ગતિના સમીકરણ

$$x = \left(\frac{v + v_0}{2}\right)t$$
 સાથે સામ્યતા ધરાવે છે.

સમીકરણ (2.4.2)માંથી ω નું મૂલ્ય સમીકરણ (2.4.3)માં મૂકતાં

$$\theta = \left(\frac{\omega_0 + \alpha t + \omega_0}{2}\right) t$$

$$\therefore \theta = \omega_0 t + \frac{1}{2} \alpha t^2$$
(2.4.5)

આ સમીકરણ રેખીય ગતિના સમીકરણ $x=v_0t+\frac{1}{2}at^2$ સાથે સામ્યતા ધરાવે છે.

સમીકરણ (2.4.1)માંથી tનું મૂલ્ય સમીકરણ (2.4.3)માં મૂકતાં

$$\theta = \left(\frac{\omega + \omega_0}{2}\right) \! \left(\frac{\omega - \omega_0}{\alpha}\right)$$

$$\therefore 2\alpha\theta = \omega^2 - \omega_0^2 \qquad (2.4.6)$$

આ સમીકરણ રેખીય ગતિના સમીકરણ $2ax = v^2 - v_0^2$ સાથે સામ્યતા ધરાવે છે.

ઉદાહરણ 2: ચિલ્ડ્રનપાર્કમાં 18 km/hના રેખીય વેગથી દોડતી એક મીનીટ્રેનને બ્રેક લગાડતાં તેમાં અચળ કોણીય પ્રતિપ્રવેગ ઉત્પન્ન થઈ તે 10 sમાં સ્થિર થઈ જાય છે. જો મીની ટ્રેનના પૈડાની ત્રિજ્યા 30 cm, હોય, તો પૈડાનો કોણીય પ્રવેગ શોધો.

ઉકેલ:

 $v_0 = 18 \text{ km/h} = 5 \text{ m/s}; r = 30 \text{ cm} = 0.3 \text{ m}$

$$\omega_1 = \frac{v_1}{r} = \frac{5}{0.3} = \frac{50}{3} \text{ rad s}^{-1}$$

$$\omega_2 = 0$$
, $t = 10 \text{ s}$

$$\therefore \alpha = \frac{\omega_2 - \omega_1}{t} = \frac{0 - \frac{50}{3}}{10}$$

$$=\frac{-5}{3} = -1.666 \text{ rad s}^{-2}$$

ઉદાહરણ 3: એક ટ્રક 54 km/hની ઝડપથી દોડે છે. તેના પૈડાની ત્રિજ્યા 50 cm છે. બ્રેક લગાડતાં પૈડાં 20 બ્રમણ કરીને સ્થિર થાય છે, તો તે દરમિયાન ટ્રક કેટલું રેખીય અંતર કાપશે ? પૈડાનો કોણીય પ્રવેગ પણ શોધો.

ઉકેલ : અગે $v_1=54$ km/h = 15 m/s; r=50 cm = 0.5 m, $\theta=20$ ભ્રમણ = $20\times 2\pi$ rad = 40π rad; d=?, $\alpha=?$

$$v_1 = r\omega_1 : \omega_1 = \frac{v_1}{r} = \frac{15}{0.5} = 30 \text{ rad/s}$$

$$\omega_2 = 0; \ \alpha = \frac{{\omega_2}^2 - {\omega_1}^2}{2\theta} = \frac{0 - 900}{2 \times 40\pi}$$

= -3.58 rad/s²

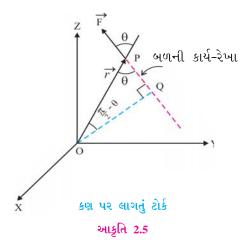
હવે 1 પરિભ્રમણ $=2\pi r$ રેખીય અંતર

 \therefore 20 પરિભ્રમણ = $20 \times 2\pi r$ અંતર

∴ ટ્રકે કાપેલું રેખીય અંતર

$$d = 20 \times 2 \times 3.14 \times 0.5$$

= 62.8 m


2.5 टॉर्ड (Torque)

અત્યાર સુધી આપણે દઢ પદાર્થની ચાકગતિની ચાકગતિનાં કારણોની ચિંતા કર્યા સિવાય કરી. હવે આપણે તેના કારણ વિષે પણ વિચારીએ.

ટૉર્ક એ રોટેશનલ ડાઇનેમિક્સની અગત્યની ભૌતિક રાશિ છે. રેખીય ગતિમાં બળ જે ભાગ ભજવે છે, તેવો જ ભાગ ચાક ગતિમાં ટૉર્ક ભજવે છે.

પ્રથમ આપણે એક કણ પર લાગતા ટૉર્કની ચર્ચા કરીશું. ત્યાર બાદ કણોના તંત્ર પર લાગતા ટૉર્ક વિષે ચર્ચા કરીશું.

(a) કણ પર લાગતું ટોર્ક (Torque Acting on a Particle) :

આકૃતિ 2.5માં દર્શાવ્યા પ્રમાણે ધારો કે, કોઈ ક્રણ P પર બળ \overrightarrow{F} લાગે છે. આ બળની કાર્યરેખા QP છે. ઊગમબિંદુ Oના સાપેક્ષે Pનો સ્થાનસિંદશ \overrightarrow{r} છે. \overrightarrow{r} અને \overrightarrow{F} વચ્ચેનો કોણ Θ છે. અત્રે ક્રણ P કોઈ દઢ પદાર્થનો ક્રણ હોવો જરૂરી નથી.

 $\stackrel{
ightarrow}{r}$ અને $\stackrel{
ightarrow}{F}$ ના સિંદશ ગુણાકારને $\stackrel{
ightarrow}{O}$ બિંદુની સાપેક્ષે કણ $\stackrel{
ightarrow}{P}$ પર લાગતું ટૉર્ક $\stackrel{
ightarrow}{(\tau)}$ કહે છે.

$$\vec{\tau} = \vec{r} \times \vec{F} \tag{2.5.1}$$

 $\therefore \tau = r F \sin \theta$

આકૃત્તિ 2.5 પરથી, $r \sin \theta = OQ =$ બળની કાર્યરેખાનું O થી લંબઅંતર

 \therefore τ = (F) (બળની કાર્યરેખાનું Oથી લંબઅંતર)

= બિંદુ O ને અનુલક્ષીને બળની ચાકમાત્રા

(moment of force) (વ્યાખ્યા અનુસાર)

ચાકગતિ 23

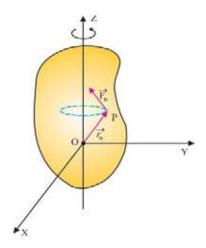
આમ, ટૉર્ક એ આપેલ સંદર્ભબિંદુને અનુલક્ષીને બળની ચાકમાત્રા છે. તેનું પરિમાણિક સૂત્ર M^1 L^2 T^{-2} છે અને તેનો SI એકમ N m છે.

યાદ રાખો કે,

- (i) $\overset{\longrightarrow}{\tau}$ ની દિશા સદિશ ગુણાકાર માટેના જમણા હાથના સ્કૂના નિયમ અનુસાર $\overset{\longrightarrow}{r}$ અને $\overset{\longrightarrow}{F}$ વડે રચાતા સમતલને લંબ હોય છે.
- (ii) τ નું મૂલ્ય સંદર્ભબિંદુ પર આધાર રાખતું હોવાથી તેની વ્યાખ્યામાં સંદર્ભબિંદુનો ઉલ્લેખ અનિવાર્ય છે.

(b) કેણોના તંત્ર પર લાગતું ટોર્ક (Torque Acting on the System of Particles) :

તંત્રના કશો વચ્ચે લાગતાં પરસ્પર આંતરિક બળો સમાન અને વિરુદ્ધ દિશામાં હોવાથી તેમના વડે ઉદ્ભવતું પરિશામી બળ અને તેથી ટૉર્ક શૂન્ય બને છે.


તેથી ચર્ચામાં આપણે આંતરિક બળોને ધ્યાનમાં લઈશું નહિ. ધારો કે $\overrightarrow{r_1}$, $\overrightarrow{r_2}$,, $\overrightarrow{r_n}$ સ્થાનસદિશ ધરાવતા કણોના તંત્ર માટે કણો પર લાગતાં બાહ્ય બળો અનુક્રમે $\overrightarrow{F_1}$, $\overrightarrow{F_2}$, ..., $\overrightarrow{F_n}$. તંત્ર પરનું પરિણામી ટૉર્ક એટલે તંત્રના દરેક કણ પર લાગતા ટૉર્કનો સદિશ સરવાળો.

∴ પરિણામી ટૉર્ક

$$\overrightarrow{\tau} = (\overrightarrow{r_1} \times \overrightarrow{F_1}) + (\overrightarrow{r_2} \times \overrightarrow{F_2}) + \dots + (\overrightarrow{r_n} \times \overrightarrow{F_n})$$

$$= \sum_{i=1}^{n} (\overrightarrow{r_i} \times \overrightarrow{F_i})$$
 (2.5.3)

(c) દેઢ પદાર્થ પર લાગતું ટોર્ક (Torque Acting on the Rigid Body) :

દઢ પદાર્થ પર લાગતું ટૉર્ક આકૃતિ 2.6

આકૃતિ 2.6માં દર્શાવ્યા અનુસાર ધારો કે કોઈ એક દઢ પદાર્થ સ્થિર ભ્રમણાક્ષ OZને અનુલક્ષીને ચાકગતિ કરે છે. $\overrightarrow{r_1}$, $\overrightarrow{r_2}$,, $\overrightarrow{r_n}$ સ્થાનસિંદશ ધરાવતા કણો પર લાગતાં બળો અનુક્રમે $\overrightarrow{F_1}$, $\overrightarrow{F_2}$, ..., $\overrightarrow{F_n}$ છે. હવે $\overrightarrow{r_n}$ સિંદશ ધરાવતા કણ પર લાગતા બળ $\overrightarrow{F_n}$ ને ધ્યાનમાં લઈએ તો વ્યાખ્યા અનુસાર તેના પર લાગતું ટૉર્ક $\overrightarrow{\tau_n}$

$$\overrightarrow{\tau}_{n} = \overrightarrow{r}_{n} \times \overrightarrow{F}_{n}$$

$$= \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ x_{n} & y_{n} & z_{n} \\ F_{nx} & F_{ny} & F_{nz} \end{vmatrix}$$

$$\therefore \overrightarrow{\tau}_{n} = (y_{n} F_{nz} - z_{n} F_{ny}) \hat{i} + (z_{n} F_{nx} - x_{n} F_{nz}) \hat{j} + (x_{n} F_{ny} - y_{n} F_{nx}) \hat{k} \qquad (2.5.4)$$

સમીકરણ (2.5.4) પરથી સમગ્ર પદાર્થ પરનું ટૉર્ક બધા કણો પર લાગતા ટૉર્કના સિંદશ સરવાળા સ્વરૂપે નીચે મુજબ થાય :

$$\vec{\tau} = \sum_{n} (y_{n} F_{nz} - z_{n} F_{ny}) \hat{i} + (z_{n} F_{nx} - x_{n} F_{nz}) \hat{j} + (x_{n} F_{ny} - y_{n} F_{nx}) \hat{k}$$
 (2.5.5)

દઢ પદાર્થની Z-અક્ષને અનુલક્ષીને ચાકગતિ માટે ઉપર્યુક્ત ટૉર્કનો Z ઘટક જ જવાબદાર છે. X-અક્ષ અથવા Y-અક્ષને અનુલક્ષીને થતી ચાકગતિ માટે અનુક્રમે ટૉર્કના X અને Y ઘટક જવાબદાર હોય. વ્યાપક રીતે પરિભ્રમણ અક્ષ પરનો એકમસદિશ \hat{n} હોય, તો $\overset{\longrightarrow}{\tau} \cdot \hat{n}$ ઘટક ચાક ગતિ માટે જવાબદાર હોય છે.

દઢ પદાર્થની ચાકગતિ ઉત્પન્ન કરવા તેના બધા જ કણો પર બાહ્ય બળ લગાડવાં જરૂરી નથી. જેમકે બારણું ખોલવા કે બંધ કરવા માટે આપણે તેના બધા જ કણો પર બળ લગાડતાં નથી.

દઢ પદાર્થના બધા જ ક્શો વચ્ચેનાં સાપેક્ષ અંતરો અફર રહેતા હોવાથી કોઈ એક જ ક્રણ પર બળ લગાડતાં

ઉદ્દભવતું ટૉર્ક સમગ્ર દઢ પદાર્થ પર લાગતું ટૉર્ક જ કહેવાય. કોઈ સંદર્ભબિંદુને અનુલક્ષીને $\overset{
ightarrow}{r}$ સ્થાનસદિશ ધરાવતા કોઈ એક જ કણ પર લાગતું બળ $\overset{
ightarrow}{F}$ હોય, તો દઢ પદાર્થ પર લાગતું ટૉર્ક $\overset{
ightarrow}{\tau}=\overset{
ightarrow}{r}\times\overset{
ightarrow}{F}.$

ઉદાહરણ 4: એક દઢ પદાર્થના $\vec{r}=(4,\,6,\,12)$ m સ્થાનસદિશ ધરાવતા કણ પર લાગતું બળ $\vec{F}=(6,\,8,\,10)$ N છે, તો દઢ પદાર્થ કે જેના પરનો એકમસદિશ $\frac{1}{\sqrt{3}}$ $(1,\,1,\,1)$ તેવી ભ્રમણાક્ષને અનુલક્ષીને ચાકગતિ કરે છે. આ ચાકગતિ કરાવનાર ટૉર્કનું મૂલ્ય શોધો.

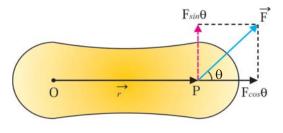
ઉકેલ :
$$\tau = \vec{r} \times \vec{F}$$

જેના પર એકમસદિશ \hat{n} હોય તેવા અક્ષને અનુલક્ષીને ટૉર્કનું મૂલ્ય

$$\tau_n = (\stackrel{\rightarrow}{r} \times \stackrel{\rightarrow}{F}) \cdot \hat{n}$$

હવે
$$\overrightarrow{r} \times \overrightarrow{F} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 4 & 6 & 12 \\ 6 & 8 & 10 \end{vmatrix}$$

$$= (-36)\hat{i} - (-32)\hat{j} + (-4)\hat{k}$$


$$\overrightarrow{\tau_n} = (-36, 32, -4) \text{ N m}$$
ચાકગિતિ માટે જવાબદાર ટૉર્કનું મૂલ્ય.
હવે, $(\overrightarrow{r} \times \overrightarrow{F}) \cdot \hat{n}$

$$= (-36, 32, -4) \cdot \frac{1}{\sqrt{3}} (1, 1, 1)$$

$$= \frac{1}{\sqrt{3}} (-36 + 32 - 4)$$

$$= -\frac{8}{\sqrt{3}} \text{ N m}$$

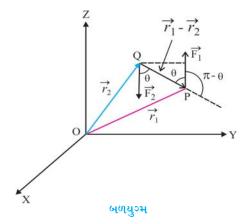
(a) ટૉર્કની વ્યાખ્યા ભૌતિક સમજૂતી (Physical interpretation of the definition of torque)

ટૉર્કનો અસરકારક ઘટક

આકૃતિ 2.7

P નો પોતાના વર્તુળમાર્ગના કેન્દ્રને અનુલક્ષીને સ્થાનસદિશ \overrightarrow{r} છે. \overrightarrow{F} અને \overrightarrow{r} વચ્ચેનો કોણ θ છે. ચાકગતિ ઉત્પન્ન કરવામાં \overrightarrow{F} ની અસરકારકતા જોવા માટે \overrightarrow{F} ના બે ઘટકો વિચારો.

 $(ii) \ \ F_2 = F \sin\theta \ \ \vec{v} \ \vec{r} \ \vec{n} \ \ \vec{e}$ લંબ છે. આ ઘટક ચાકગિત ઉત્પન્ન કરે છે. જો Fનું અને/અથવા θ નું મૂલ્ય વધારે હશે, તો \overrightarrow{F} વધારે અસરકારક બનશે. વળી, આપણો સામાન્ય અનુભવ કહે છે જો \overrightarrow{F} ના લાગબિંદુનો સ્થાનસિંદશ \overrightarrow{r} મોટો હોય તોપણ ચાકગિત ઉત્પન્ન કરવામાં \overrightarrow{F} વધારે અસરકારક બને છે. આમ, ચાકગિત માટે જવાબદાર રાશિ માત્ર \overrightarrow{F} નહિ, પરંતુ $r F \sin\theta$ છે.


આ રાશિને આપણે ટૉર્ક કહીએ છીએ. આ સૂત્ર સદિશ સ્વરૂપે લખતાં,

$$\vec{\tau} = \vec{r} \times \vec{F} \tag{2.5.6}$$

યાદ રાખો કે, ટૉર્ક એ ચાકગતિ ઉત્પન્ન કરવા માટે બળની અસરકારકતાનું માપ છે.

(e) બળયુગ્મ (Couple) : બે સમાન મૂલ્યના અને પરસ્પર વિરુદ્ધ દિશામાંના એકરેખસ્થ ન હોય તેવાં બળો બળયુગ્મની રચના કરે છે. આકૃતિ 2.8માં દર્શાવ્યા પ્રમાણે ધારો કે ઊગમબિંદુ Oને અનુલક્ષીને કોઈ એક દઢ પદાર્થના $\overrightarrow{r_1}$ અને $\overrightarrow{r_2}$ સ્થાનસદિશ ધરાવતા બે કણો P અને Q પર અનુક્રમે $\overrightarrow{F_1}$ અને $\overrightarrow{F_2}$ બળો લાગે છે. અહીં $|\overrightarrow{F_1}| = |\overrightarrow{F_2}|$ તથા $\overrightarrow{F_1}$ અને $\overrightarrow{F_2}$ ની દિશાઓ પરસ્પર વિરુદ્ધ છે. હવે $\overrightarrow{F_1}$ અને $\overrightarrow{F_2}$ બળોના કારણે ઉત્પન્ન થતા ટૉર્ક $\overrightarrow{\tau_1}$ અને $\overrightarrow{\tau_2}$ ના પરિણામી ટૉર્કને બળયુગ્મની ચાકમાત્રા $(\overrightarrow{\tau})$ કહે છે.

ચાકગતિ 25

આકૃતિ 2.8

$$\vec{\tau} = \vec{\tau}_1 + \vec{\tau}_2$$

$$\vec{\tau} = (\vec{r}_1 \times \vec{F}_1) + (\vec{r}_2 \times \vec{F}_2)$$

$$= (\vec{r}_1 \times \vec{F}_1) - (\vec{r}_2 \times \vec{F}_1)$$

$$(\because \vec{F}_2 = -\vec{F}_1)$$

$$\therefore \overrightarrow{\tau} = (\overrightarrow{r_1} - \overrightarrow{r_2}) \times \overrightarrow{F_1}$$

$$= |\overrightarrow{r_1} - \overrightarrow{r_2}|(F_1) \sin (\pi - \theta)$$

$$= |\overrightarrow{r_1} - \overrightarrow{r_2}|(F_1) \sin \theta$$

જ્યાં $(\pi-\theta)$ એ $(\stackrel{
ightarrow}{r_1}-\stackrel{
ightarrow}{r_2})$ અને $\stackrel{
ightarrow}{F_1}$ વચ્ચેનો ખૂણો છે.

આકૃતિ પરથી | $\overrightarrow{r_1} - \overrightarrow{r_2}$ | $\sin \theta =$ બે બળો વચ્ચેનું લંબ-અંતર

 \therefore બળયુગ્મની ચાકમાત્રા $= (F_1)$ (બે બળો વચ્ચેનું લંબ અંતર)

= (બેમાંથી એક બળનો માનાંક) (બે બળો વચ્ચેનું લંબ અંતર) (2.5.8)

વિદ્યાર્થીમિત્રો, વ્યવહારમાં તમે બળયુગ્મનો ઉપયોગ કરો છો તે તમે જાણો છો ? તમે સાઇકલ, સ્કૂટર કે કાર ચલાવો ત્યારે આ વાહનને વાળવા માટે બે હાથે સ્ટિયરિંગ પર જે બળો લગાડો છો, તે બળયુગ્મ રચે છે.

(f) દેઢ પદાર્થનું સંતુલન (Equilibrium of a rigid body) :

હવે આપણે દઢ પદાર્થ પર લાગતાં અનેક બળોની અસર હેઠળ દઢ પદાર્થના સંતુલનના ચર્ચા કરીશું. જો દઢ પદાર્થ પર લાગતાં બાહ્ય બળો $\overrightarrow{F_1}$, $\overrightarrow{F_2}$,, $\overrightarrow{F_n}$ હોય અને જો પરિણામી $\overrightarrow{F} = \overrightarrow{F_1} + \overrightarrow{F_2} + \ldots + \overrightarrow{F_n} = 0$ (2.5.9) થાય તો દઢ પદાર્થ રેખીય સંતુલનમાં રહે છે.

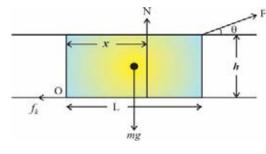
ઉપર્યુક્ત સમીકરણને બળોના ઘટકોના સ્વરૂપમાં લખતાં

$$\sum_i \ {
m F}_{xi} = 0; \ \sum_i \ {
m F}_{yi} = 0; \ \ \mbox{ਅਜੇ} \ \sum_i \ {
m F}_{zi} = 0.$$

(2.5.9 a)

જો ઉપર્યુક્ત બળોને કારણે ઉદ્ભવતાં ટૉર્ક અનુક્રમે

$$\stackrel{
ightarrow}{ au_1}, \stackrel{
ightarrow}{ au_2}, \;, \stackrel{
ightarrow}{ au_n}$$
 હોય, તો જ્યારે


$$\overrightarrow{\tau} = \overrightarrow{\tau_1} + \overrightarrow{\tau_2} + \dots + \overrightarrow{\tau_n} = 0. \quad (2.5.10)$$

ત્યારે દઢ પદાર્થ **ચાકગતીય સંતુલનમાં** રહે છે. એટલે કે જો દઢ પદાર્થ સ્થિર હોય તો સ્થિર રહે અને જો ચાક-ગતિ કરતો હોય તો અચળ કોણીય વેગથી ચાકગતિ ચાલુ રાખે છે.

ઉપર્યુક્ત સમીકરણને ઘટકોના સ્વરૂપમાં લખતાં,

 $(2.5.10 \ a)$

ઉદાહરણ 5: આકૃતિ 2.9માં દર્શાવ્યા પ્રમાણે m દળનો એક બ્લૉક સમિક્ષિતિજ સાથે θ કોણ બનાવતી દિશામાં લાગતા બળ F ની અસર હેઠળ અચળ વેગથી ગતિ કરે છે. જો બ્લૉકની સપાટી અને સમિક્ષિતિજ સપાટી વચ્ચે ઘર્ષણબળ f_k હોય, તો લંબ પ્રત્યાઘાતી બળ Nની કાર્યરેખાનું Oથી અંતર શોધો. બ્લૉકની લંબાઈ L અને ઊંચાઈ h છે.

આકૃતિ 2.9

ઉકેલ : બ્લોક અત્રે જુદાં-જુદાં બળોની અસર હેઠળ હોવા છતાં ચાકગતિ કરતો નથી. પરિણામે તે ચાકગતિય સંતુલનમાં છે. આ સ્થિતિમાં જુદાં-જુદાં બળોને લીધે લાગતા ટૉર્કનો સદિશ સરવાળો શૂન્ય થવો જોઈએ. બિંદુ Oને અનુલક્ષીને બધાં ટૉર્ક લેતાં, $\tau = f_k(0) - (mg) \left(\frac{L}{2}\right) + N(x) - (Fcos\theta) (h) + Fsin<math>\theta(L) = 0$.

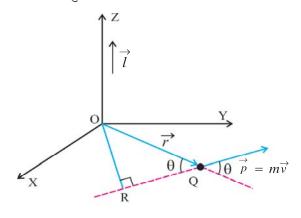
(અત્રે સમઘડી દિશામાં ટૉર્ક ૠણ અને વિષમઘડી દિશામાં ટૉર્ક ધન લીધેલ છે).

$$\therefore N(x) = (mg) \left(\frac{L}{2}\right) + (F\cos\theta)(h)$$

$$- F\sin\theta (L)$$
 (1)

હવે રેખીય સંતુલન માટે,

$$mg = N + F \sin\theta$$
અને $F \cos\theta = f_k$


$$\therefore N = mg - F \sin\theta$$

આ મૂલ્યને સમીકરણ (1)માં મૂકતાં અને xને સૂત્રનો કર્તા બનાવતાં,

$$x = \frac{(mg)\left(\frac{L}{2}\right) + (F\cos\theta)(h) - (F\sin\theta)(L)}{mg - F\sin\theta}$$

2.6 કોણીય વેગમાન (Angular Momentum)

(a) કણાનું કોણીય વેગમાન (Angular Momentum of a Particle) : ધારો કે આકૃતિ 2.10માં દર્શાવ્યા પ્રમાણે m દળવાળા કોઈ કણ Qનો કાર્તેઝીય યામ-પદ્ધતિમાં સ્થાનસદિશ $\overrightarrow{OQ} = \vec{r}$ છે. આ કણાનો રેખીય વેગ \vec{v} છે. અને તેનું રેખીય વેગમાન $\vec{p} = \vec{m}\vec{v}$ છે. અહીં કણ Q કોઈ દઢ પદાર્થનો કણ હોવો જરૂરી નથી. ધારો કે \vec{p} અને \vec{r} વચ્ચેનો કોણ θ છે. માત્ર સરળતા ખાતર જ કણ અને તેની ગતિને (x-y) સમતલમાં લીધેલ છે. \vec{r} અને \vec{p} ના સદિશ ગુણાકારને O બિંદુના સંદર્ભમાં કણાનું કોણીય વેગમાન \vec{l} કહે છે.

કણનું કોણીય વેગમાન

$$\overrightarrow{l} = \overrightarrow{r} \times \overrightarrow{p}$$
 (2.6.1)
 તેનો SI એકમ kg m² s⁻¹ અથવા J s.

- (i) $\stackrel{\rightarrow}{l}$ નું મૂલ્ય સંદર્ભબિંદુની પસંદગી પર આધારિત હોવાથી તેની વ્યાખ્યામાં સંદર્ભબિંદુનો ઉલ્લેખ અનિવાર્ય છે.
- (ii) $\stackrel{\rightarrow}{l}$ ની દિશા સદિશગુણાકારના જમણાહાથના સ્કુના નિયમ વડે મળે છે. પ્રસ્તુત કિસ્સામાં $\stackrel{\rightarrow}{l}$ ની દિશા OZ દિશામાં છે.

$$(iii)$$
 eq $|\overrightarrow{l}| = |\overrightarrow{r} \times \overrightarrow{p}| = r p \sin\theta$

પણ આકૃતિ 2.10 પરથી, $r \sin\theta = OR$

આમ, કણનું કોણીય વેગમાન = (રેખીય વેગમાન) (સંદર્ભબિંદુથી રેખીય વેગમાનના સદિશનું લંબઅંતર)

= બિંદુ Oને અનુલક્ષીને રેખીય વેગમાનની ચાકમાત્રા (વ્યાખ્યા પ્રમાણે)

(iv) ક્શના કોશીય વેગમાનના કાર્તેઝીય ઘટકો : કોશીય વેગમાનની વ્યાખ્યા આ પ્રમાણે છે.

$$\vec{l} = \vec{r} \times \vec{p}$$

$$= \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ x & y & z \\ p_x & p_y & p_z \end{vmatrix}$$

$$= (yp_z - zp_y)\hat{i} + (zp_x - xp_z)\hat{j}$$

$$+ (xp_y - yp_y)\hat{k}$$

$$\overrightarrow{l} = l_{y} \hat{i} + l_{y} \hat{j} + l_{z} \hat{k}$$

અત્રે l_{x} , l_{y} અને l_{z} અનુક્રમે \mathbf{X} , \mathbf{Y} અને \mathbf{Z} અક્ષને અનુલક્ષીને ક્શના કોણીય વેગમાનના ઘટકો છે.

(b) કણનું કોણીય વેગમાન અને તેના પર લાગતા ટૉર્ક વચ્ચેનો સંબંધ (The relation between angular momentum of a particle and torque acting on it):

સમીકરણ (2.6.1)નું સમયની સાપેક્ષે વિકલન કરતાં,

$$\frac{d\overrightarrow{l}}{dt} = \overrightarrow{r} \times \frac{d\overrightarrow{p}}{dt} + \frac{d\overrightarrow{r}}{dt} \times \overrightarrow{p}$$

પરંતુ $\frac{d\overrightarrow{p}}{dt}$ = રેખીય વેગમાનના ફેરફારનો દર

$$=\stackrel{\rightarrow}{F}$$
 (બળ) અને $\frac{d\overrightarrow{p}}{dt}=\stackrel{\rightarrow}{v}$ (વેગ)

ચાકગતિ 27

$$\therefore \frac{d\overrightarrow{p}}{dt} = \overrightarrow{r} \times \overrightarrow{F} + \overrightarrow{v} \times \overrightarrow{p}$$

પરંતુ \overrightarrow{v} અને \overrightarrow{p} એક જ દિશામાં હોવાથી સદિશ

ગુણાકાર \overrightarrow{v} × \overrightarrow{p} = 0

$$\therefore \frac{d\overrightarrow{p}}{dt} = \overrightarrow{r} \times \overrightarrow{F} = \overrightarrow{\tau}$$
 (2.6.2)

આમ, કોણીય વેગમાનના ફેરફારનો સમય દર ટૉર્ક બરાબર હોય છે.

આ પરિણામ ન્યૂટનના ગતિના બીજા નિયમ 'રેખીય વેગમાનના ફેરફારનો સમયદર બળ બરાબર હોય છે.' સાથે સામ્ય ધરાવે છે.

(c) કણોના તંત્રનું કોણીય વેગમાન (Angular momentum of system of particles) :

ધારો કે n કણોના બનેલા તંત્રના કણોનાં કોણીય વેગમાન $\overrightarrow{l_1}$, $\overrightarrow{l_2}$,.... $\overrightarrow{l_n}$ છે.

તેથી તંત્રનું કુલ કોણીય વેગમાન $\stackrel{
ightarrow}{
m L}$

$$\overrightarrow{L} = \overrightarrow{l_1} + \overrightarrow{l_2} + \dots + \overrightarrow{l_n}$$
 (2.6.3)

$$\therefore \frac{d\overrightarrow{L}}{dt} = \frac{d\overrightarrow{l_1}}{dt} + \frac{d\overrightarrow{l_2}}{dt} + \dots + \frac{d\overrightarrow{l_n}}{dt} (2.6.4)$$

સમીકરણ (2.6.2)નો ઉપયોગ કરતાં

$$\frac{d\overrightarrow{L}}{dt} = \overrightarrow{\tau_1} + \overrightarrow{\tau_2} + \dots + \overrightarrow{\tau_n}$$

$$\therefore \frac{d\overrightarrow{L}}{dt} = \overrightarrow{\tau} \tag{2.6.5}$$

આમ, ક્શોના તંત્રના કોણીય વેગમાનના ફેરફારનો દર તંત્ર પર પ્રવર્તતા પરિણામી બાહ્ય ટૉર્ક બરાબર હોય છે.

(d) દઢ પદાર્થનું કોણીય વેગમાન (Angular momentum of a rigid body) :

દઢ વસ્તુમાં કર્ણો વચ્ચેનાં સાપેક્ષ અંતરો અફર રહેતાં હોવાથી તે ક્શોના તંત્રનો ખાસ કિસ્સો છે. આપશે જાણીએ છીએ કે દઢ વસ્તુનો દરેક ક્શ ભ્રમશાક્ષને લંબ એવા સમતલમાં વર્તુળગતિ કરે છે. તેથી દરેક ક્શનું રેખીય વેગમાન પણ આ વર્તુળના સમતલમાં હોય છે. દરેક કણના વર્તુળમાર્ગના કેન્દ્રને સંદર્ભબિંદુ લઈને દરેક કણ માટે કોણીય વેગમાન મેળવતાં તે ભ્રમણાક્ષને સમાંતર

મળે છે. વળી, દરેક કણ માટે \overrightarrow{r} અને \overrightarrow{p} પરસ્પર લંબ હોય છે.

આપણે જાણીએ છીએ કે,

$$\vec{L} = \vec{l_1} + \vec{l_2} + \dots + \vec{l_n}$$

સમીકરણ (2.6.1)નો ઉપયોગ કરતાં

$$\overrightarrow{L} = \overrightarrow{r_1} \times \overrightarrow{p_1} + \overrightarrow{r_2} \times \overrightarrow{p_2} + ... + \overrightarrow{r_n} \times \overrightarrow{p_n}$$

અત્રે સદિશો $_{\stackrel{
ightarrow}{r}}$ અને $_{\stackrel{
ightarrow}{p}}$ પરસ્પર લંબ હોવાથી

$$\overrightarrow{L} = r_1 m_1 v_1 + r_2 m_2 v_2 + \dots + r_n m_n v_n$$

$$(\because p = mv)$$

આમ દરેક કણની કોણીય ઝડપ સમાન હોવાથી

ાં
$$\vec{L} = m_1 r_1^2 \omega + m_2 r_2^2 \omega + \dots + m_n r_n^2 \omega$$
(\(\therefore\) $v = r \omega$)
$$= (m_1 r_1^2 + m_2 r_2^2 + \dots + m_n r_n^2) \omega$$

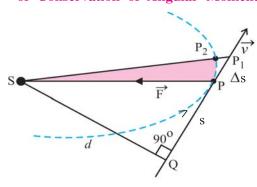
$$\therefore |\vec{L}| = \vec{L} |\vec{\omega}| \qquad (2.6.6)$$
અત્રે $\vec{L} = m_1 r_1^2 + m_2 r_2^2 + \dots + m_n r_n^2$

$$= \sum_{i=1}^{n} m_i r_i^2$$

I ને દઢ પદાર્થની આપેલ ભ્રમણાક્ષને અનુલક્ષીને જડત્વની ચાકમાત્રા કહે છે, જેના વિશે વધુ માહિતી પરિચ્છેદ 2.9માં આપેલ છે. પ્રસ્તુત કિસ્સામાં $\stackrel{\rightarrow}{\omega}$ અને $\stackrel{\rightarrow}{L}$ બન્ને ભ્રમણાક્ષને સમાંતર હોવાથી I ને અદિશ લઈ શકાય. આ સંજોગોમાં સમીકરણ (2.6.6)ને સદિશ સ્વરૂપે નીચે પ્રમાણે લખી શકાય :

$$\stackrel{\rightarrow}{L} = \stackrel{\rightarrow}{I_{\omega}}. \tag{2.6.7}$$

$$\therefore \frac{d\overrightarrow{L}}{dt} = I \frac{d\overrightarrow{\omega}}{dt}$$
 (2.6.8)


સમીકરણ (2.6.5) અને (2.6.8)નો સમન્વય કરતાં,

$$\frac{d\overrightarrow{L}}{dt} = I \frac{d\overrightarrow{\omega}}{dt} = I \overrightarrow{\alpha} = \overrightarrow{\tau}$$
 (2.6.9)

કોણીય વેગમાનના સંરક્ષણનો નિયમ (Law of conservation of angular momentum):

સમીકરણ (2.6.9)માં જો $\overrightarrow{\tau} = 0$, ($\overrightarrow{L} =$ અચળ) એટલે કે, 'જો દઢ પદાર્થ પર લાગતું પરિણામી બાહ્ય ટૉર્ક શૂન્ય હોય તો તે દઢ પદાર્થનું કોણીય વેગમાન અચળ રહે છે.' આ વિધાનને કોણીય વેગમાનના સંરક્ષણનો નિયમ કહે છે.

2.7 કોણીય વેગમાનના સંરક્ષણનું ભૌમિતિક નિરૂપણ (Geometrical Representation of the Law of Conservation of Angular Momentum)

કોણીય વેગમાનના સંરક્ષણના નિયમનું ભૌમિતિક નિરૂપણ આકૃતિ 2.11

આકૃતિ 2.11માં દર્શાવ્યા પ્રમાણે સૂર્યની ફરતે કોઈ એક ગ્રહ P લંબવૃત્તીય (elliptical) કક્ષામાં ગતિ કરે છે. (જે તૂટક રેખા વડે દર્શાવેલ છે.) ધારો કે P પાસે ગ્રહનો રેખીય વેગ $\stackrel{\rightarrow}{\nu}$ છે.

$$A = \frac{1}{2}(SQ) (PQ)$$

$$= \frac{1}{2}(d) (s) \qquad (\because PQ = s)$$

 Δt સમયમાં ગ્રહ Pથી P_2 પર જાય છે. તે દરમિયાન ત્રિકોણ SQPના ક્ષેત્રફળમાં થતો વધારો ΔA હોય તો,

$$\Delta A = \frac{1}{2} (d)(\Delta s)$$

હવે $\lim \Delta t \to 0$ લક્ષમાં ત્રિકોણ SPP_2 અને ત્રિકોણ SPP_1 નાં ક્ષેત્રફળો સમાન બને છે.

∴ ગ્રહને સૂર્ય સાથે જોડતી રેખા વડે આંતરાતાં ક્ષેત્રફળના ફેરફારનો સમયદર

$$\frac{d\mathbf{A}}{dt} = \frac{1}{2}(d) \left(\frac{ds}{dt}\right) = \frac{1}{2}(d)(v)$$

બંને બાજુને
$$m$$
 વડે ગુણતાં $m\frac{d\mathbf{A}}{dt}=\frac{1}{2}mvd$ (2.7.2)

સમીકરણ (2.7.1)માંથી mvdનું મૂલ્ય મૂકતાં,

$$m\frac{dA}{dt} = \frac{1}{2}L \tag{2.7.3}$$

હવે ગ્રહ પર સૂર્યને કારણે લાગતાં ગુરુત્વાકર્ષણ બળની કાર્ય રેખા Sમાંથી પસાર થતી હોવાથી આ બળ વડે મળતું સૂર્યને અનુલક્ષીને ટૉર્ક શૂન્ય થાય છે. પરિણામે ગ્રહનું કોણીય વેગમાન L અચળ હોય છે.

$$\therefore \frac{d\mathbf{A}}{dt} =$$
અથળ (2.7.4)

સમીકરણ (2.7.4) ગ્રહોની ગતિ માટેના કૅપ્લરનો બીજો નિયમ રજૂ કરે છે. "સૂર્ય અને ગ્રહને જોડતી રેખાએ એકમસમયમાં આંતરેલ ક્ષેત્રફળ (જેને ક્ષેત્રીય વેગ કહે છે.) અચળ હોય છે."

આમ, ક્ષેત્રીય વેગ અચળ હોવો એ કોણીય વેગમાનના સંરક્ષણના નિયમની ભૌમિતિક રજૂઆત છે.

2.8 જડત્વની ચાકમાત્રા (Moment of Inertia)

ધારો કે કોઈ દઢ પદાર્થના ક્યોના દળ m_1 , m_2 ,, m_n છે. તથા કોઈ આપેલ અક્ષથી તેમના લંબઅંતરો અનુક્રમે r_1 , r_2 , ..., r_n છે તો $m_1r_1^2+m_2r_2^2+\ldots+m_nr_n^2$ ને તે પદાર્થની તે અક્ષને અનુલક્ષીને જડત્વની ચાકમાત્રા (I) કહે છે.

એટલે કે, I =
$$m_1 r_1^2 + m_2 r_2^2 + \dots + m_n r_n^2$$

$$= \sum_i m_i r_i^2$$

જડત્વની ચાકમાત્રાનું મૂલ્ય અક્ષની પસંદગી અને તેને અનુલક્ષીને દ્રવ્યના વિતરણ પર આધારિત છે. ચાકગતિ 29

ચાકમાત્રાનો SI એકમ kg m^2 છે. તેનું પારિમાણિક સૂત્ર $\mathbf{M}^1\mathbf{L}^2\mathbf{T}^0$ છે.

સમીકરણ $\overrightarrow{L} = \overrightarrow{I_{\omega}}$ એ, રેખીય ગતિના સમીકરણ $\overrightarrow{P} = \overrightarrow{m_{V}}$ સાથે સામ્યતા ધરાવે છે. ત્યા $\overrightarrow{\tau} = \overrightarrow{I_{\alpha}}$ એ રેખીય ગતિના સમીકરણ $\overrightarrow{F} = \overrightarrow{m_{a}}$ સાથે સામ્યતા ધરાવે છે. આ સામ્યતાના સંદર્ભમાં કહી શકાય કે, રેખીય ગતિમાં દળ જે ભાગ ભજવે છે, તેવો જ ભાગ ચાકગતિમાં જડત્વની ચાકમાત્રા ભજવે છે. દળ એ રેખીય ગતિ માટે જડત્વ છે અને જડત્વની ચાકમાત્રા એ ચાકગતિ માટે જડત્વ છે.

ઉદાહરણ 6: પૃથ્વીને નિયમિત ઘનતા ધરાવતા નક્કર ગોળા તરીકે સ્વીકારી લઈએ અને માનીએ કે તેનું એકાએક સંકોચન થઈ દળમાં ફેરફાર વગર તેની ત્રિજ્યા અડધી થઈ જાય છે, તો હાલનો 24 કલાકનો દિવસ કેટલા કલાકનો થઈ જાય ?

ઉકેલ: પૃથ્વી પર કોઈ બાહ્ય ટૉર્ક લાગતું નથી એમ સ્વીકારીએ તો કોણીય વેગમાન અચળ લઈ શકાય. સમીકરણ (2.6.6) નો ઉપયોગ કરી બંને વખતના પૃથ્વીના કોણીય વેગમાન સરખાવતાં,

$$I_1 \omega_1 = I_2 \omega_2 \tag{1}$$

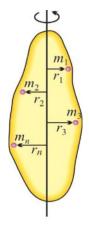
હવે નક્કર ગોળા માટે તેના વ્યાસને અનુલક્ષીને

 $I=rac{2}{5}MR^2$ હોય છે. જ્યાં M= ગોળાનું દળ છે અને

R =ગોળાની ત્રિજ્યા છે. (જુઓ ટેબલ - 1).

$$\therefore I_1 = \frac{2}{5}MR_1^2 \text{ અને } I_2 = \frac{2}{5}MR_2^2$$

પરંતુ, ${\bf R}_1 = 2{\bf R}_2$ આ મૂલ્યો સમીકરણ (1)માં મૂકતાં $\omega_2 = 4\omega_1$.


આમ, પૃથ્વીનો નવો ભ્રમણદર ω_2 તેના હાલના ભ્રમણ દર ω_1 કરતાં ચાર ગણો થઈ જાય અને 24 કલાકનો દિવસ 6 કલાકનો થઈ જાય.

2.9 ચક્રાવર્તનની ત્રિજ્યા (Radius of Gyration)

ધારો કે કોઈ દઢ પદાર્થનું દળ M છે. તેના દરેક ક્શનું દળ m હોય તેવા n ક્શોનો બનેલો છે.

$$\therefore m_1 = m_2 = \ldots = m_n = m \ \therefore \ \mathbf{M} = nm$$
 આકૃતિ 2.12માં દર્શાવ્યા પ્રમાણે આપેલ ભ્રમણાક્ષને અનુલક્ષીને પદાર્થની જડત્વની ચાકમાત્રા

$$I = mr_1^2 + mr_2^2 + ... + mr_n^2$$

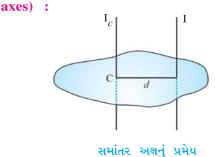
ચક્રાવર્તનની ત્રિજ્યા આકૃતિ 2.12

અત્રે r_1 , r_2 , ... r_n અનુક્રમે પદાર્થના કણોના આપેલ અક્ષથી લંબઅંતરો છે.

$$\therefore I = \frac{mn(r_1^2 + r_2^2 + \dots + r_n^2)}{n}$$

$$= M \frac{(r_1^2 + r_2^2 + \dots + r_n^2)}{n}$$

$$= MK^2$$
 (2.9.1)

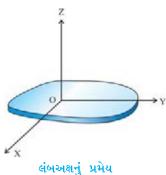

જ્યાં,
$$K^2 = \frac{r_1^2 + r_2^2 + \dots + r_n^2}{n}$$

$$= \langle r^2 \rangle$$
 (2.9.2)

$$\therefore K = \sqrt{\frac{r_1^2 + r_2^2 + \dots + r_n^2}{n}}$$
 (2.9.3)

અહીં, K² એ આપેલ ભ્રમણાક્ષથી પદાર્થના ક્ણોના લંબઅંતરોના વર્ગોનું સરેરાશ (mean) મૂલ્ય દર્શાવે છે. K ને આપેલ ભ્રમણાક્ષને અનુલક્ષીને દઢ પદાર્થની ચક્રાવર્તન ત્રિજ્યા કહે છે. તેનો SI એકમ m છે.

2.10 જડત્વની ચાકમાત્રા અંગેના બે પ્રમેયો (Two Theorems Regarding Moment of Inertia) (i) સમાંતર અક્ષનું પ્રમેય (Theorem of parallel

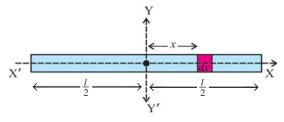

સમાંતર અક્ષનું પ્રમેય આકૃતિ 2.13

આ પ્રમેયનું કથન આ પ્રમાણે છે. ''પદાર્થની કોઈપણ અક્ષને અનુલક્ષીને જડત્વની ચાકમાત્રા \mathbf{I} એ તેના દ્રવ્યમાન કેન્દ્રમાંથી પસાર થતી સમાંતર અક્ષને અનુલક્ષીને જડત્વની ચાકમાત્રા \mathbf{I}_c તથા પદાર્થના દળ \mathbf{M} અને બે સમાંતર અક્ષો વચ્ચેના લંબઅંતર d ના વર્ગના ગુણાકારના સરવાળા બરાબર થાય છે.'' (જુઓ આકૃતિ 2.13)

$$I = I_c + Md^2 (2.10.1)$$

(ii) લંબઅક્ષનું પ્રમેય (Theorem of perpendicular axes) :

આ પ્રમેય સમતલીય (planar) પદાર્થોને જ લાગુ પડે છે. સમતલીય પદાર્થના સમતલમાં X અને Y-અક્ષો લઈએ (જુઓ આકૃતિ 2.14) તો સમતલને લંબ એવી Z-અક્ષને અનુલક્ષીને પદાર્થની જડત્વની ચાકમાત્રા I_Z એ X-અક્ષને અને Y-અક્ષને અનુલક્ષીને મળતી જડત્વની ચાકમાત્રાઓના સરવાળા બરાબર હોય છે.


લબઅક્ષનુ પ્રમય આકૃતિ 2.14

$$I_Z = I_X + I_Y$$
 (2.10.2)

જયાં I_X અને I_Y અનુક્રમે X અને Y અક્ષને અનુલક્ષીને પદાર્થની જડત્વની ચાકમાત્રાઓ છે. જો સમતલીય પદાર્થ YZ સમતલમાં હોય તો $I_X = I_Y + I_Z$ અને જો તે XZ સમતલમાં હોય તો $I_Y = I_X + I_Z$ થશે. 2.11 જડત્વની ચાકમાત્રા અને ચકાવર્તનની ત્રિજ્યાની ગણતરી (Calculation of moment of inertia

ગણતરા (Calculation of moment of inertia and radius of gyration)

નિયમિત પાતળા સળિયાની તેના કેન્દ્રમાંથી પસાર થતી તથા તેની લંબાઈને લંબઅક્ષને અનુલક્ષીને જડત્વની ચાકમાત્રા.

પાતળા સળિયાની જડત્વની ચાકમાત્રા આકૃતિ 2.15

આકૃતિ 2.15 દર્શાવ્યા પ્રમાણે M દળ તથા l લંબાઈ ધરાવતો એક નિયમિત આડછેદ તથા નિયમિત દળ વિતરણ ધરાવતો સળિયો છે. સળિયાના કેન્દ્રમાંથી પસાર થતી તથા સળિયાની લંબાઈને લંબ હોય તેવા અક્ષ YY' ધ્યાનમાં લો. યામપદ્ધતિનું ઊગમબિંદુ સળિયાના કેન્દ્ર O પર સંપાત થાય છે અને X—અક્ષ સળિયાની લંબાઈ પર સંપાત થાય છે. ઊગમબિંદુથી x અંતરે dx લંબાઈ ધરાવતો સળિયાનો સૂક્ષ્મ ખંડ વિચારો.

સળિયાની એકમલંબાઈ દીઠ દળ
$$\lambda = \frac{M}{l}$$

$$dx$$
 લંબાઈના ખંડનું દળ $\lambda dx = \frac{\mathbf{M}}{l} dx$

આ ખંડ માટે, Y-અક્ષની સાપેક્ષે જડત્વની ચાકમાત્રા

$$d\mathbf{I} = \frac{\mathbf{M}}{l} dx \cdot x^2 \tag{2.11.1}$$

અક્ષ Y ની સાપેક્ષે સમગ્ર સળિયાના જડત્વની ચાકમાત્રા શોધવા માટે સમીકરણ (2.11.1)નું x = -l/2 થી x = l/2 ના અંતરાલ વચ્ચે સંકલન કરતાં,

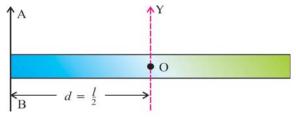
$$\therefore I = \int_{-l/2}^{l/2} \frac{M}{l} dx \quad x^2 = \frac{M}{l} \left[\frac{x^3}{3} \right]_{-l/2}^{+l/2}$$
$$= \frac{M}{3l} \left[\frac{l^3}{8} + \frac{l^3}{8} \right]$$

$$I = \frac{Ml^2}{12}$$
 (2.11.2)

નિયમિત પાતળા સળિયા માટે તેનું દ્રવ્યમાનકેન્દ્ર એ ભૌમિતિક કેન્દ્ર પર છે. આથી, આ જડત્વની ચાકમાત્રાને તેના દ્રવ્યમાનકેન્દ્રમાંથી પસાર થતા અક્ષને અનુલક્ષીને જડત્વની ચાકમાત્રા (I_) પણ કહે છે.

ચક્રાવર્તનની ત્રિજ્યા : સમીકરણ 2.11.2ને $I = MK^2$ સાથે સરખાવતાં,

$$K^2 = \frac{l^2}{12}$$


$$\therefore K = \frac{l}{\sqrt{12}}$$

ઉદાહરણ 7: M દળવાળા તથા *l* લંબાઈ અને નિયમિત આડછેદવાળા સળિયાની તેના એક છેડામાંથી પસાર થતી લંબાઈને લંબ એવી અક્ષને અનુલક્ષીને જડત્વની ચાકમાત્રા અને ચક્રાવર્તનની ત્રિજ્યા શોધો.

ઉકેલ : ધારો કે સળિયાનું દળ M અને લંબાઈ lછે. સળિયાના કેન્દ્રથી છેડા સુધીનું અંતર d=l/2 છે. ચાકગતિ 31

સમીકરણ (2.11.2) અનુસાર આવા સળિયાની તેના કેન્દ્રમાંથી પસાર થતી તથા લંબાઈને લંબ એવી અક્ષને

અનુલક્ષીને જડત્વની ચાકમાત્રા $I_c = \frac{M l^2}{12}$.

આકૃતિ 2.16

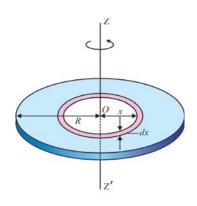
સમાંતર અક્ષના પ્રમેયનો ઉપયોગ કરતાં સળિયાના છેડામાંથી પસાર થતી તથા લંબાઈને લંબ અક્ષને અનુલક્ષીની જડત્વની ચાકમાત્રા

$$I = I_c + Md^2$$

$$= \frac{Ml^2}{12} + \frac{Ml^2}{4} \quad (\because d = l/2)$$

$$\therefore I = \frac{Ml^2}{3}$$

હવે ઉપર્યુક્ત સમીકરણને $I=MK^2$ સાથે સરખાવતાં


$$K^2 = \frac{l^2}{3}$$

$$\therefore$$
 ચક્રાવર્તનની ત્રિજ્યા $K = \frac{l}{\sqrt{3}}$

ઉદાહરણ 8 : નિયમિત વર્તુળાકાર તકતીની તેના ભૌમિતિક કેન્દ્રમાંથી પસાર થતી અને તેના સમતલને લંબ અક્ષને અનુલક્ષીને જડત્વની ચાકમાત્રા તથા ચક્રાવર્તનની ત્રિજયા શોધો :

ઉકેલ

આકૃતિ 2.17માં દર્શાવ્યા મુજબ M દ્રવ્યમાન તથા R ત્રિજયા ધરાવતી નિયમિત વર્તુળાકાર તકતીને તેના ભૌમિતિક કેન્દ્ર Oમાંથી પસાર થતી તથા તેના સમતલને લંબ આવેલી ZZ' અક્ષને અનુલક્ષીને જડત્વની ચાકમાત્રા શોધવી છે.

આકૃતિ 2.17

અત્રે તકતીનું ક્ષેત્રફળ $A=\pi R^2$ તથા તકતીનું એકમ ક્ષેત્રફળ દીઠ દ્રવ્યમાન

$$\sigma = \frac{\text{તકતીનું દ્રવ્યમાન}}{\text{તકતીનું ક્ષેત્રફળ}} = \frac{M}{\pi R^2}$$

આ તકતીને જુદી જુદી ત્રિજ્યાઓવાળી ઘણી બધી સમકેન્દ્રીય રિંગોની બનેલી કલ્પો તથા તેમનું કેન્દ્ર આકૃતિમાં દર્શાવ્યા મુજબ O છે. આકૃતિ 2.17માં દર્શાવ્યા મુજબ આવી કોઈ એક

આકૃતિ 2.17માં દર્શાવ્યા મુજબ આવી કોઈ એક રિંગ ધ્યાન લો. ધારો કે તેની ત્રિજયા x છે તથા પહોળાઈ dx છે. આ રિંગનું ક્ષેત્રફળ $a=2\pi x\cdot dx$ તથા

દ્રવ્યમાન
$$m=\sigma\cdot a=rac{\mathrm{M}}{\pi\mathrm{R}^2}$$
 $(2\pi x\cdot dx)$
$$=rac{2\mathrm{M}x}{\mathrm{R}^2}\ dx.$$

આ રિંગની ZZ' અક્ષને અનુલક્ષીને જડત્વની ચાકમાત્રા dI કહીએ તો

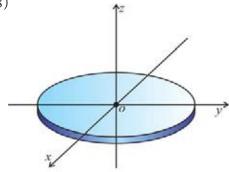
$$dI = ($$
રિંગનું દ્રવ્યમાન $)($ રિંગની ત્રિજ્યા $)^2$
$$= \frac{2Mx}{D^2} dx \cdot x^2 \tag{1}$$

આમ, આવી જુદી-જુદી ત્રિજ્યાઓવાળી સમકેન્દ્રીય રિંગોની ZZ'ને અનુલક્ષીને ચાકમાત્રાઓ શોધી તેનો સરવાળો કરતાં સમગ્ર વર્તુળાકાર ZZ'ને અનુલક્ષીને જડત્વની ચાકમાત્રા મળે.

આ માટે સમીકરણ (1)નું x=0 થી x=Rના અંતરાલ વચ્ચે સંકલન કરતાં,

$$I = \int dI = \int_{0}^{R} \frac{2Mx^{3}}{R^{2}} \cdot dx$$

$$I = \frac{2M}{R^{2}} \int_{0}^{R} x^{3} \cdot dx$$


$$= \frac{2M}{R^{2}} \left[\frac{x^{4}}{4} \right]_{0}^{R}$$

$$= \frac{2M}{R^{2}} \left[\frac{R^{4}}{4} - 0 \right]$$

$$\therefore I = \frac{1}{2}MR^{2}$$
સમીકરણ (2)ને $I = MK^{2}$ સાથે સરખાવતાં
$$K^{2} = \frac{1}{2}R^{2}$$
ચકાવર્તનની ત્રિજ્યા $K = \frac{R}{\sqrt{2}}$.

ઉદાહરણ 9: નિયમિત ઘનતા ધરાવતી તકતીની તેના વ્યાસ સાથે સંપાત થતી કોઈ એક અક્ષને અનુલક્ષીને જડત્વની ચાકમાત્રા શોધો.

ધારો કે M દળ અને R ત્રિજ્યા ધરાવતી તકતી XY સમતલમાં છે. તકતીના કેન્દ્રમાંથી પસાર થતી તથા તેના સમતલને લંબ Z અક્ષ છે. (જુઓ આકૃતિ 2.18)

આકૃતિ 2.18

આ અક્ષને અનુલક્ષીને જડત્વની ચાકમાત્રા

$$I_z = \frac{MR^2}{2} \ \dot{\otimes}$$

લંબઅક્ષોના પ્રમેય અનુસાર

$$I_z = I_x + I_y$$

તકતી X અને Y અક્ષોને સંમિત હોવાથી

$$\therefore I_x = I_y$$

$$\therefore I_x = I_y \qquad \qquad \therefore I_z = 2I_x$$

વળી,
$$I_z = \frac{MR^2}{2}$$

$$\therefore \frac{MR^2}{2} = 2I_x$$

$$\therefore I_x = \frac{MR^2}{4}$$

ઉદાહરણ 10 : એક પોલા નળાકારનું દળ 4 kg અને ત્રિજયા 0.1 m છે. તેની ભૌમિતિક અક્ષને અનુલક્ષીને તે ભ્રમણ કરી શકે છે. તેની ફરતે એક પાતળી દોરી વીંટાળી દોરડાના છૂટાછેડા પર નળાકારની સપાટીએ સ્પર્શક રૂપે રહે તેમ 50 N બળ લગાડતાં તે ચાકગતિ શરૂ કરે છે, તો નીચેના જવાબ શોધો.

(1) નળાકાર પર લાગતું ટૉર્ક (2) નળાકારનો કોણીય પ્રવેગ (3) 4 sના અંતે કોણીય વેગ (4) 4 sના અંતે કોણીય વેગમાન (5) 4 sના અંતે ચાકગતિ ઊર્જા (6) 4 sમાં કરેલું કોણીય સ્થાનાંતર (7) 4 s દરમિયાન નળાકાર પર થતું કાર્ય (8) 4 sના અંતે પાવર.

ઉકેલ :

(1) નળાકાર પર લાગતું ટૉર્ક :

$$\vec{\tau} = \vec{r} \times \vec{F} = rF \sin \theta \hat{n}$$

$$\therefore |\overrightarrow{\tau}| = rF \qquad (\because \theta = \frac{\pi}{2})$$

$$= (0.1) (50) = 5 N m$$

(2) નળાકારનો કોણીય પ્રવેગ (α) :

અત્રે
$$\tau = I\alpha = mr^2\alpha$$

$$\therefore$$
 5 = (4) $(0.1)^2$ (α) = 0.04 α

$$\therefore \alpha = 125 \text{ rad s}^{-2}$$

(3) કોણીય વેગ (ω) :

$$\omega = \omega_0 + \alpha t = 0 + (125)$$
 (4)
= 500 rad s⁻¹

(4) કોણીય વેગમાન (L) :

$$L = I\omega = mr^2\omega$$

$$\therefore L = (4) (0.1)^2 (500) = (0.04) (500)$$
$$= 20 \text{ kg } m^2 \text{ s}^{-1}$$

(5) ચાકગતિ-ઊર્જા:

$$E = \frac{1}{2}I\omega^{2} = \frac{1}{2}mr^{2} \omega^{2}$$
$$= \frac{1}{2}(4) (0.1)^{2} (500)^{2}$$
$$= 5000 J$$

(6) 4 sમાં કરેલું કોણીય સ્થાનાંતર :

$$\theta = \left[\frac{\omega_0 + \omega}{2}\right]t$$
$$= \left[\frac{0 + 500}{2}\right]4$$

$$= 1000 \text{ rad}$$

(7) 4 s + i s +મળેલી ગતિ-ઊર્જા = 5000 J

અથવા કાર્ય
$$\omega = \tau \theta = 5 \times 1000 = 5000 \text{ J}$$

(8) 4 sના અંતે પાવર

$$P = \tau \omega = 5 \times 500 = 2500$$
 watt

ચાકગતિ

ટેબલ 2.1 : કેટલાક સંમિત પદાર્થોની જડત્વની ચાકમાત્રા અને ચક્રાવર્તનની ત્રિજ્યા

પદાર્થ	અક્ષ	આકૃતિ	I	K
L લંબાઈનો પાતળો સળિયો	તેના કેન્દ્રમાંથી પસાર થતી તથા સળિયાને લંબ		$\frac{1}{12}$ ML ²	$\frac{L}{2\sqrt{3}}$
R ત્રિજ્યાની વીંટી	કોઈ પણ વ્યાસ		$\frac{1}{2}MR^2$	$\frac{R}{\sqrt{2}}$
R ત્રિજયાની વીંટી	કેન્દ્રમાંથી પસાર થતી અને વીંટીના સમતલને લંબ		MR^2	R
R ત્રિજ્યાની વર્તુળાકાર તકતી	કેન્દ્રમાંથી પસાર થતી અને તેના પૃષ્ઠને લંબ	}	$\frac{1}{2}MR^2$	$\frac{R}{\sqrt{2}}$
R ત્રિજ્યાની વર્તુળાકાર તકતી	કોઈ પણ વ્યાસ		$\frac{1}{4}MR^2$	<u>R</u> 2
R ત્રિજ્યાનો પોલો નળાકાર	નળાકારની ભૌમિતિક અક્ષ	*	MR^2	R
R ત્રિજ્યાનો નક્કર નળાકાર	નળાકારની ભૌમિતિક અક્ષ		$\frac{1}{2}MR^2$	$\frac{R}{\sqrt{2}}$
R ત્રિજ્યાનો નક્કર ગોળો	કોઈ પણ વ્યાસ		$\frac{2}{5}$ MR ²	$\sqrt{\frac{2}{5}}$ R
R ત્રિજ્યાનો પોલો ગોળો	કોઈ પણ વ્યાસ		$\frac{2}{3}$ MR ²	$\sqrt{\frac{2}{3}}$ R

ટેબલ 2.2 : રેખીય ગતિ અને ચાકગતિની ભૌતિક રાશિઓની સરખામણી

રેખીય ગતિ	ચાકગતિ
રેખીય સ્થાનાંતર, \overrightarrow{d}	કોણીય સ્થાનાંતર, θ
રેખીય વેગ, $\stackrel{ ightarrow}{ u}$	કોણીય વેગ, $\stackrel{ ightarrow}{\omega}$
રેખીય પ્રવેગ, $\overset{ ightarrow}{a}=\frac{d\overset{ ightarrow}{v}}{dt}$	કોણીય પ્રવેગ, $\overset{ ightarrow}{lpha}=\frac{d\overset{ ightarrow}{\omega}}{dt}$
દળ, <i>m</i>	જડત્વની ચાકમાત્રા, I
રેખીય વેગમાન, $\stackrel{ ightarrow}{p} = m \stackrel{ ightarrow}{v}$	કોણીય વેગમાન, $\overset{ ightarrow}{ m L} = I\overset{ ightarrow}{ec{\omega}}$
બળ, $\overset{ ightarrow}{ ext{F}}=\overset{ ightarrow}{a}$ ન્યૂટનનો બીજો નિયમ;	ટૉર્ક, $\overset{ ightarrow}{ au}=\operatorname{I}\overset{ ightarrow}{lpha}$ ન્યૂટનના બીજા નિયમ જેવું જ પરિણામ,
$\overrightarrow{F} = \frac{d\overrightarrow{p}}{dt}$	$\frac{\vec{\tau}}{\tau} = \frac{d\vec{L}}{dt}$
રેખીય ગતિ-ઊર્જા, $\mathrm{K} = rac{1}{2} m v^2$	ચાકગતિ-ઊર્જા K $=rac{1}{2} ext{I}\omega^2$
કાર્ય, $W = \overrightarrow{F} \cdot \overrightarrow{d}$	કાર્ય, $W= au heta$
પાવર, P = F <i>v</i>	પાવર, P = τω
અચર્ળ પ્રવેગી રેખીય ગતિનાં સમીકરણો :	અચળ કોણીય પ્રવેગવાળી ચાકગતિનાં સમીકરણો :
$v = v_0 + at$	$\omega = \omega_0 + \alpha t$
$d = v_0 t + \frac{1}{2}at^2$	$\Theta = \omega_0 t + \frac{1}{2} \alpha t^2$
$2ad = v^2 - v_0^2$	$2\alpha\theta = \omega^2 - \omega_0^2$

ઉદાહરણ 11 : એક વર્તુળાકાર ટર્નટેબલ 20 rpm કોણીય ઝડપથી તેના કેન્દ્રમાંથી પસાર થતી ઊર્ધ્વ અક્ષને અનુલક્ષીને સમક્ષિતિજ તલમાં ભ્રમણ કરે છે. 60 kg દળવાળો માણસ આ ટેબલની કિનારી પર ઊભો છે. આ માણસ કિનારી પરથી કેન્દ્ર પર જાય, તો ટર્નટેબલ હવે કેટલી કોણીય ઝડપથી ભ્રમણ કરશે ? માણસને બિંદુવત્ પદાર્થ ગણો અને ટર્ન ટેબલને નિયમિત તકતી ગણો. ટર્નટેબલનું દળ 200 kg છે.

ઉકેલ : વ્યક્તિનું દળ $m=60~{
m kg},~{
m z}$ નંટેબલનું દળ $M=200~{
m kg},~\omega_1=20~{
m rpm}.$

અત્રે તંત્ર પરનું બાહ્ય ટૉર્ક શૂન્ય છે. તેથી કોણીય વેગમાન અચળ રહે છે.

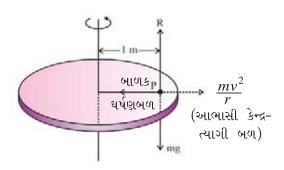
∴(ટર્નટેબલનું + વ્યક્તિનું)પ્રારંભિક કોણીય વેગમાન = તેમનું અંતિમ કોણીય વેગમાન

$$\left(\frac{MR^2}{2} + mR^2\right)\omega_1 = \frac{MR^2}{2}\omega_2$$

$$\therefore \left(\frac{M}{2} + m\right)\omega_1 = \frac{M}{2}\omega_2$$

$$\therefore (100 + 60) (20) = 100\omega_2$$

$$\therefore \omega_2 = 32 \text{ rpm}$$


નોંધ : આ ઉદાહરણમાં અંતિમ ગતિ ઊર્જા, પ્રારંભિક ગતિ-ઊર્જા કરતાં વધારે મળશે તે ચકાસી જુઓ. ગતિ- ચાકગતિ 35

ઊર્જાનો આ વધારો માણસ વડે કિનારી પરથી કેન્દ્ર તરફ આવતાં થતું કાર્ય છે. આ ગણતરી કરવા ટર્ન ટેબલની ત્રિજયા R=1.5~m લો.

ઉદાહરણ 12: ચાકગતિ કરતા ચકડોળના પાટિયા પર તેના કેન્દ્રમાંથી પસાર થતી અને તેના સમતલને લંબ એવી ભ્રમણાક્ષથી 1 m દૂર m દળનો એક બાળક બેઠેલ છે. આ ચકડોળને કેટલા કોણીય વેગથી ભ્રમણ કરાવીએ, તો આ બાળક ચકડોળના પાટિયા પર સરકવાની તૈયારીમાં હોય ? બાળક અને પાટિયાની સપાટી વચ્ચેનો ઘર્ષણાંક 0.25 છે.

$$g = 10 \text{ m s}^{-2} \text{ eli.}$$

ઉકેલ : P બિંદુએ બાળક પર લાગતાં જુદાં-જુદાં બળો આકૃતિ 2.19માં દર્શાવ્યાં છે.

આકૃતિ 2.19

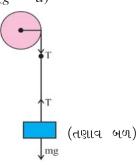
અહીં, R= લંબપ્રત્યાઘાતી બળ તથા $\frac{mv^2}{r}$ = કેન્દ્રત્યાગી (આભાસી) બળ છે. જ્યારે ઘર્ષણબળ $\mu R=\frac{mv^2}{r}$ થાય, ત્યારે બાળક ચકડોળના પાટિયા પર સરકવાની તૈયારીમાં હોય.

$$\frac{mv^2}{r} = \mu R = \mu mg \qquad (: R = mg)$$

$$\therefore r^2 \omega^2 = r \mu g \qquad (\because v = r \omega)$$

$$\therefore \omega = \sqrt{\frac{\mu g}{r}}$$

$$= \sqrt{\frac{0.25 \times 10}{1}}$$


 $= 1.58 \text{ rad s}^{-1}$.

ઉદાહરણ 13 : R ત્રિજ્યા અને દળ M વાળી લીસી તકતીને ફરતે દોરી વીંટાળી તેના મુક્ત છેડે m દળવાળો પદાર્થ લટકાવવામાં આવેલ છે. હવે આ પદાર્થને નીચે ઊતરવા દેવામાં આવે છે. દર્શાવો કે

તકતીનો કોણીય પ્રવેગ
$$\alpha = \frac{mg}{R\left(m + \frac{M}{2}\right)}$$
 છે.

ઉંકેલ : લટકાવેલ દળ અને તકતી પર લાગતાં બળો આકૃતિ 2.20માં દર્શાવ્યા છે. લટકાવેલ પદાર્થની રેખીય ગતિનું સમીકરણ

ma = mg - T (જ્યાં, T =દોરીમાં તણાવ) ∴ T = m (g - a)

આકૃતિ 2.20

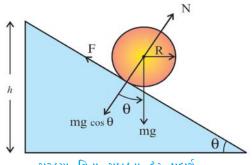
હવે તકતી પર લાગતું ટૉર્ક $\tau=RT$

$$(\because \overrightarrow{\tau} = \overrightarrow{r} \times \overrightarrow{F})$$

$$\therefore I \alpha = R T \therefore \alpha = \frac{RT}{I} = \frac{Rm(g-a)}{I}$$

$$\therefore \alpha = \frac{Rm(g-a)}{MR^2/2} \therefore \alpha = \frac{2m}{RM} (g-a)$$

પરંતુ
$$a = R\alpha$$


$$\therefore \alpha = \frac{2mg}{RM} - \frac{2mR\alpha}{RM}$$

$$=\frac{mg}{R\left(m+\frac{M}{2}\right)}$$

2.12 સરક્યા વિના ગબડતા દેઢ પદાર્થો (Rigid Bodies Rolling Without Slipping)

દઢ પદાર્થ જ્યારે સરક્યા વિના ગબડતો હોય છે ત્યારે તેની ગતિ, રેખીય ગતિ અને ચાકગતિની મિશ્રિત ગતિ હોય છે. દઢ પદાર્થનું દ્રવ્યમાનકેન્દ્ર રેખીય ગતિ કરતું હોય છે તથા પદાર્થ પોતે તેની અક્ષને અનુલક્ષીને ચાકગતિ કરતો હોય છે.

આવી મિશ્રિત ગતિનાં વર્શનમાં ઉપર્યુક્ત બંને ગતિનું વર્શન એકબીજાથી સ્વતંત્ર રીતે કરી શકાય છે.

સરક્યા વિના ગબડતા દઢ પદાર્થ

આકૃતિ 2.21

આકૃતિ 2.21માં દર્શાવ્યા પ્રમાણે ધારો કે કોઈ એક દઢ પદાર્થ h ઊંચાઈ અને સમક્ષિતિજ સાથે θ કોણ ધરાવતા ઢાળની ટોચ પરથી સરક્યા વિના ગબડે છે. અત્રે પદાર્થનું દળ m, જડત્વની ચાકમાત્રા I, ભૌમિતિક ત્રિજ્યા R અને ચક્રાવર્તન ત્રિજ્યા K છે. જ્યારે પદાર્થ ઢાળના તળિયે પહોંચે છે, ત્યારે તેની સ્થિતિ ઊર્જામાં mgh જેટલો ઘટાડો થાય છે. યાંત્રિક ઊર્જાસંરક્ષણના નિયમ અનુસાર સ્થિતિ-ઊર્જાનો આ ઘટાડો ગતિ-ઊર્જામાં વધારા તરીકે રૂપાંતરિત થતો હોય છે. અત્રે,

પદાર્થની ગતિ-ઊર્જા = રેખીય ગતિ-ઊર્જા + ચાક ગતિ-ઊર્જા

$$= \frac{1}{2}mv^2 + \frac{1}{2}I\omega^2$$

યાંત્રિક ઊર્જાના સંરક્ષણના નિયમ અનુસાર,

$$mgh = \frac{1}{2}mv^2 + \frac{1}{2}I\omega^2$$
 (2.12.1)

હવે, $\omega = \nu/R$ અને $I = MK^2$ નો ઉપયોગ સમીકરણ (2.12.1)માં કરતાં,

(નોંધ : $\omega = v/R$ પદાર્થ સરક્યા વિના ગબડતો હોય ત્યારે જ લાગુ પડે છે. ગબડવા સાથે સરકતા પદાર્થ માટે આ સમીકરણ વાપરી શકાય નહીં.)

$$v^2 = \frac{2gh}{\left[1 + \frac{K^2}{R^2}\right]}$$
 (2.12.2)

જો ઢાળની લંબાઈ d હોય અને પદાર્થ સ્થિર સ્થિતિમાંથી ગતિની શરૂઆત કરી a જેટલા રેખીય પ્રવેગ સાથે ઢાળના તળિયે પહોંચે તો,

$$∴ v2 = 2ad$$
આકૃતિની ભૂમિતિ પરથી,

$$d = \frac{h}{\sin \theta}$$

$$\therefore v^2 = \frac{2ah}{\sin \theta} \tag{2.12.3}$$

સમીકરણ (2.11.2) અને (2.12.3)નો સમન્વય કરતાં,

$$a = \frac{g\sin\theta}{\left[1 + \frac{K^2}{R^2}\right]}$$
 (2.12.4)

અત્રે રેખીય પ્રવેગ a ઢાળની સપાટીને સમાંતર હોવાથી તેનું મૂલ્ય gના ઢાળને સમાંતર ઘટક $g \sin\theta$ જેટલું થવું જોઈએ. પરંતુ સમીકરણ (2.12.4) અનુસાર

આ મૂલ્ય
$$\frac{g \sin \theta}{\left[1 + \frac{K^2}{R^2}\right]}$$
 મળે છે.

∴ રેખીય પ્રવેગમાં થતો ઘટાડો

$$= g\sin\theta - \frac{g\sin\theta}{\left[1 + \frac{K^2}{R^2}\right]}$$

$$= g \sin \theta \left[\frac{K^2}{K^2 + R^2} \right]$$

રેખીય પ્રવેગમાં થતો આ ઘટાડો ગબડતા પદાર્થ પર લાગતાં ઘર્ષણબળ Fને આભારી છે.

આ ઘર્ષણ બળની વિરુદ્ધ થતું કાર્ય ચાકગતિમાં પરિણમે છે અને તેથી જ ઘર્ષણબળની હાજરીમાં પણ આપણે યાંત્રિક-ઊર્જાના સંરક્ષણનો નિયમ વાપરી શક્યા છીએ.

આમ, ઘર્ષણબળ

$$F = mg\sin\theta \left[\frac{K^2}{K^2 + R^2} \right]$$
 (2.12.5)

હવે આકૃતિ 2.21માં દર્શાવ્યા પ્રમાણે લંબપ્રત્યાઘાતી બળ N અને $mg\cos\theta$ એકબીજાને સમતોલતાં હોવાથી N = $mg\cos\theta$ (2.22.6)

સમીકરણ (2.11.5)ને સમીરણ (2.11.6) વડે ભાગતાં,

$$\frac{F}{N} = \left[\frac{K^2}{K^2 + R^2}\right] tan\theta$$

ચાકગતિ 37

પરંતુ,
$$\frac{F}{N} = \mu_s$$
 (સ્થિત-ઘર્ષણાંક)

$$\therefore \ \mu_{s} = \left[\frac{K^{2}}{K^{2} + R^{2}}\right] tan\theta$$

$$\therefore \ \mu_{s} = \frac{1}{\left[1 + \frac{R^{2}}{K^{2}}\right]} tan\theta \tag{2.12.7}$$

અત્રે ગબડતાં પદાર્થની સપાટી પરની જે રેખા આપેલી ક્ષણે ઢાળને અટકે છે, તે તત્ક્ષણ પૂરતી સ્થિર હોય છે અને તેથી ઉપરના સમીકરણ (2.11.7)માં સ્થિત ઘર્ષણાંક વાપર્યો છે.

ઘર્ષણનાં કારણે પદાર્થ સરક્યા વિના ગબડતો હોવાથી સમીકરણ (2.12.7) પરથી કહી શકાય કે જો,

$$\mu_{\rm s} \ge \frac{1}{\left\lceil 1 + \frac{{\rm R}^2}{{\rm K}^2} \right\rceil} tan\theta$$
(2.12.8)

શરત પળાય તો જ પદાર્થ ઢાળ પરથી સરક્યા સિવાય ગબડી શકે છે.

ખાસ કિસ્સા :

(1) પાતળી વીંટી :

ટેબલ 1માંથી પાતળી વીંટી માટે K=R Kમું આ મૂલ્ય સમીકરણ (2.12.8)માં મૂકતાં, $\mu_s \geq \frac{1}{2} \tan \theta \qquad \qquad (2.12.9)$

(2) વર્તુળાકાર તકતી : $K = \frac{R}{\sqrt{2}}$ (ટેબલ 1માંથી) Kનું આ મૂલ્ય સમીકરણ (2.12.8)માં મૂકતાં, $\mu_{\rm s} \geq \frac{1}{3} \tan \theta$ (2.12.10)

(3) નક્કર ગોળો : $K = \sqrt{\frac{2}{5}} R$ (ટેબલ 1માંથી) આ મૂલ્ય સમીકરણ (2.12.8)માં મૂકતાં

$$\mu_{\rm s} \ge \frac{2}{7} tan\theta \tag{2.12.11}$$

સારાંશ

1. દઢ પદાર્થ : જે તંત્રમાં ક્શો વચ્ચેનાં સાપેક્ષ અંતરો અફ્રર જળવાઈ રહેતાં હોય તેને દઢ પદાર્થ (rigid body) કહે છે.

<mark>રોટેશનલ કાઇનેમેટિક્સ :</mark> જ્યારે દઢ પદાર્થની ચાકગતિનાં કારણોની ચિંતા કર્યા સિવાય માત્ર ચાકગતિનું વર્ણન કરવામાં આવે, ત્યારે તે વિષયાંગને રોટેશનલ કાઇનેમેટિક્સ કહે છે.

<mark>રોટેશનલ ડાઇનેમિક્સ :</mark> દઢ પદાર્થની ચાકગતિનું, તે માટે જવાબદાર કારણો તેમજ પદાર્થના ગુણધર્મો સાથે વર્ણન કરીએ, તો તે વિષયાંગને રોટેશનલ ડાઇનેમિક્સ કહે છે.

2. કોણીય ઝડપ : $\omega = \frac{d\theta}{dt}$ તેનો SI એકમ rad s $^{-1}$ અથવા rotation s $^{-1}$ કોણીય વેગ અને રેખીય વેગ વચ્ચેનો અદિશ સંબંધ

 $v = r\omega$

કોણીય વેગ અને રેખીય વેગ વચ્ચેનો સદિશ સંબંધ

$$\stackrel{\rightarrow}{v} = \stackrel{\rightarrow}{\omega} \times \stackrel{\rightarrow}{r}$$

% अपशा डाथना स्कूनो नियमः

જમણા હાથના સ્કૂને ભ્રમણાક્ષને સમાંતર ગોઠવી, વસ્તુ જે રીતે ભ્રમણ કરતી હોય તે જ રીતે સ્કૂને ભ્રમણ આપતાં સ્કૂ જે દિશામાં ખસે, તેને $\overrightarrow{\omega}$ ની દિશા ગણવામાં આવે છે.

કોણીય પ્રવેગનું સૂત્ર :

 $\vec{\alpha} = \frac{d\vec{\omega}}{dt}$ તેનો SI એકમ rad s⁻² અથવા rotation s⁻²

રેખીય પ્રવેગ $\stackrel{
ightarrow}{a}$ અને કોણીય પ્રવેગ $\stackrel{
ightarrow}{a}$ વચ્ચેનો સંબંધ

$$\stackrel{\rightarrow}{a} = \stackrel{\rightarrow}{\omega} \times \stackrel{\rightarrow}{v} + \stackrel{\rightarrow}{\alpha} \times \stackrel{\rightarrow}{r} = \stackrel{\rightarrow}{\alpha_r} + \stackrel{\rightarrow}{\alpha_T}$$

 $\stackrel{
ightarrow}{\omega} \times \stackrel{
ightarrow}{v}$ ને રેખીય પ્રવેગનો ત્રિજ્યાવર્તી ઘટક a_r કહે છે.

$$a_r = \omega v = \frac{v^2}{r} = r\omega^2$$

 \vec{lpha} \times \vec{r} ને રેખીય પ્રવેગનો સ્પર્શીય ઘટક a_{T} કહે છે.

 $a_{\rm T} = \alpha r$

રેખીય પ્રવેગનાં માનાંક

$$a = \sqrt{a_r^2 + a_T^2} = \sqrt{\omega^2 v^2 + \alpha^2 r^2}$$

3. અચળ કોણીય પ્રવેગવાળી ચાકગતિ અને અચળ રેખીય પ્રવેગવાળી રેખીય ગતિનાં સૂત્રો વચ્ચેની સામ્યતા.

રેખીય ગતિ	ચાક ગતિ
$v = v_0 + at$	$\omega = \omega_0 + \alpha t$
$d = v_0 t + \frac{1}{2}at^2$	$\theta = \omega_0 t + \frac{1}{2} t^2$
$d = \left(\frac{v + v_0}{2}\right)t$	$\theta = \left(\frac{\omega + \omega_0}{2}\right) \cdot t$
$d = \left(\frac{v^2 - {v_0}^2}{2a}\right)$	$\theta = \left(\frac{\omega^2 - \omega_0^2}{2\alpha}\right)$

4. રેખીય ગતિમાં જે ભાગ બળ ભજવે છે, તે જ ભાગ ચાકગતિમાં ટૉર્ક ભજવે છે.

ટૉર્ક
$$\overset{
ightarrow}{ au}=\overset{
ightarrow}{r}\times\overset{
ightarrow}{
m F}=$$
 બળની ચાકમાત્રા.

તેની દિશા જમણા હાથના સ્ક્રૂના નિયમ પરથી મળે છે.

જો સ્થિર ભ્રમણાક્ષ પરનો એકમસદિશ \hat{n} હોય, તો ટૉર્કનો $\overrightarrow{ au} \cdot \hat{n}$ ઘટક ચાકગતિ માટે જવાબદાર હોય છે.

ટૉર્ક એ ચાકગતિ ઉત્પન્ન કરવા માટે બળની અસરકારકતાનું માપ છે.

બળયુગ્મની ચાકમાત્રા = (બેમાંથી એક બળનું માન)(બે બળો વચ્ચેનું લંબઅંતર)

દઢ પદાર્થના રેખીય સંતુલન માટે જો દઢ પદાર્થ પર લાગતાં બળો

$$\vec{F_1}$$
, $\vec{F_2}$ $\vec{F_n}$ હોય, તો $\vec{F_1}$ + $\vec{F_2}$ + + $\vec{F_n}$ = 0, થવું જરૂરી છે.

ઉપર્યુક્ત બળોને કારણે ઉદ્ભવતાં ટૉર્ક $\overset{
ightarrow}{ au_1}$, $\overset{
ightarrow}{ au_2}$, $\overset{
ightarrow}{ au_n}$ અને $\overset{
ightarrow}{ au_1}$ + $\overset{
ightarrow}{ au_2}$ + + $\overset{
ightarrow}{ au_n}$ = 0 ચાકગતીય સંતુલનની શરત છે.

5. રેખીય વેગમાનની ચાકમાત્રાને કોણીય વેગમાન કહે છે.

કોણીય વેગમાન
$$\overrightarrow{l}=\overrightarrow{r}\times\overrightarrow{p}$$

કોણીય વેગમાનના ફેરફારનો સમયદર ટૉર્ક દર્શાવે છે.

$$\frac{d\overrightarrow{l}}{dt} = \overrightarrow{r} \times \overrightarrow{F} = \overrightarrow{\tau}$$

ચાકગતિ

કશોના તંત્ર પર પ્રવર્તતું ટૉર્ક

$$\frac{d\overrightarrow{L}}{dt} = \overrightarrow{\tau}$$

દઢ વસ્તુ માટે

$$\vec{L} = I \vec{\omega}$$

જ્યાં I જડત્વની ચાકમાત્રા છે.

જડત્વની ચાકમાત્રા I = $m_1 r_{-1}^2 + m_2 r_{-2}^2 + \dots + m_n r_{-n}^2$

$$\frac{d\overrightarrow{L}}{dt} = I\overrightarrow{\alpha} = \overrightarrow{\tau}$$

6. કોણીય વેગમાનના સંરક્ષણનો નિયમ :

''જો દઢ પદાર્થ પર લાગતું પરિણામી ટૉર્ક શૂન્ય હોય, તો દઢ પદાર્થનું કોણીય વેગમાન અચળ રહે છે.''

$$\frac{d\overrightarrow{L}}{dt} = 0 \Rightarrow \overrightarrow{L} =$$
અચળ

 કોણીય વેગમાનના સંરક્ષણના નિયમની ભૌમિતિક રજૂઆત પરથી પ્રહોની ગતિ માટેનો કેપ્લરનો બીજો નિયમ મળી શકે છે, જે નીચે મુજબ છે :

''સૂર્ય અને ગ્રહને જોડતી રેખાએ એકમસમયમાં આંતરેલ ક્ષેત્રફળ અચળ હોય છે.''

સૂત્ર સ્વરૂપે લખતાં $\frac{d\mathbf{A}}{dt}$ = અચળ. અત્રે $\frac{d\mathbf{A}}{dt}$ ને ક્ષેત્રીય વેગ કહે છે.

8. $\epsilon_{\rm c}$ પદાર્થ માટે વ્યાપક સ્વરૂપે $I = MK^2$

જ્યાં, K =
$$\sqrt{\frac{{r_1}^2 + {r_2}^2 + \dots + {r_n}^2}{n}}$$

અહીં K ને ચક્રાવર્તનની ત્રિજ્યા કહે છે.

9. જડત્વની ચાકમાત્રા માટેનું સમાંતર અક્ષનું પ્રમેય :

 ${
m I}={
m I}_{
m C}+{
m M}d^2$ અહીં ${
m I}_{
m C}$ દ્રવ્યમાનકેન્દ્રમાંથી પસાર થતી અક્ષને અનુલક્ષીને જડત્વની ચાકમાત્રા છે. ${
m M}$ એ વસ્તુનું દળ છે અને ${
m I}$ એ ઉપર્યુક્ત અક્ષને સમાંતર તથા તેનાથી (d) જેટલા લંબઅંતરે આવેલી અક્ષને અનુલક્ષીને જડત્વની ચાકમાત્રા છે.

જડત્વની ચાકમાત્રા માટેનું લંબઅક્ષનું પ્રમેય:

જો \mathbf{I}_x , \mathbf{I}_y અને \mathbf{I}_z , \mathbf{X} , \mathbf{Y} અને \mathbf{Z} , અક્ષોને અનુલક્ષીને જડત્વની ચાકમાત્રાઓ હોય તો, $\mathbf{I}_z = \mathbf{I}_x + \mathbf{I}_y$.

10. સરક્યા વિના ઘન પદાર્થને ગબડવાની શરત,

$$\mu_{\rm s} \ge \left[\frac{1}{1 + \frac{{\rm R}^2}{{\rm K}^2}} \right] \tan \theta$$

ઉપરાંત ઢાળ પર સરક્યા સિવાય ગબડતા પદાર્થ માટે રેખીય વેગ અને રેખીય પ્રવેગનાં સૂત્રો અનુક્રમે,

$$v = \left[\frac{2gh}{1 + \frac{K^2}{R^2}}\right]^{\frac{1}{2}}$$
 અને $a = \left[\frac{g\sin\theta}{\left(1 + \frac{K^2}{R^2}\right)}\right]$.

	સ્વાધ્યાય	
નીચે	નાં વિધાનો માટે આપેલા વિકલ્પોમાંથી યોગ્ય વિકલ	ત્ય પસંદ કરો ઃ
1.	દઢ પદાર્થની ભ્રમણાક્ષથી 10 cm અંતરે આવેલ તે ભ્રમણાક્ષથી 20 cm અંતરે આવેલા કણની	
	(A) 2 rad s^{-1} (B) 15 rad s^{-1}	(C) 12 rad s^{-1} (D) 10 rad s^{-1}
2.	ભ્રમણાક્ષથી 10 cm અંતરે આવેલા કણની કોણ ઝડપ કેટલી ?	ીય ઝડપ $20~\mathrm{rad~s^{-1}}$ છે, તો તેની રેખીય
	(A) 1 cm s ⁻¹ (B) 20 cm s ⁻¹	(C) 200 cm s^{-1} (D) 400 cm s^{-1}
3.	ઘડિયાળના મિનિટ-કાંટાની કોણીય ઝડપ કેટલી	?
	(A) $\frac{\pi}{43200}$ rad s ⁻¹	(B) $\frac{\pi}{1800}$ rad s ⁻¹
	(C) $\frac{\pi}{6}$ rad s ⁻¹	(D) $\frac{\pi}{12}$ rad s ⁻¹
4.	એક વ્હીલ સ્થિર સ્થિતિમાંથી ગતિ શરૂ કરી 4 પ્રાપ્ત કરે છે, તો તેનો અચળ કોણીય પ્રવેગ	_
	(A) $64 \text{ rad } \text{s}^{-2}$ (B) $128 \text{ rad } \text{s}^{-2}$	(C) 16 rad s^{-2} (D) 4 rad s^{-2}
5.	પૃથ્વીની ફરતે ભ્રમણ કરતાં એક કૃત્રિમ ઉપગ્રહ $4 imes 10^7~ m J~s$ હોય, તો તેનો ક્ષેત્રીય વેગ શં	
	(A) $2 \times 10^4 \text{ m}^2 \text{ s}^{-1}$	(B) 0
	(C) $2 \times 10^7 \text{ m}^2 \text{ s}^{-1}$	(D) $4 \times 10^4 \text{ m}^2 \text{ s}^{-1}$
6.	ધારો કે પૃથ્વીનું દળ અચળ રહે તેમ એકાએક તો પૃથ્વી પરનો 24 કલાકનો દિવસ કેટલા કલ ત્રિજયા છે.	
	(A) 1.5 h (B) 6 h	(C) 48 h (D) 36 h
7.	બે સમાન ઈંડામાં એક ઈંડુ કાચું છે તથા બી ભ્રમણ કરે છે. કયું ઈંડુ વહેલું સ્થિર થશે ?	જું બાફેલું છે. બંને સમાન કોણીય ઝડપથી
	(A) કંઈ કહી શકાય નહિ.	(B) બંને ઇંડા એકી સાથે સ્થિર થશે.
	(C) બાફેલું	(D) કાચું
8.	સમાન દળ અને ત્રિજ્યા ધરાવતાં એક પોલો બંને પર સરખું ટૉર્ક સમાન સમય માટે લગાડીને તેની ભૌમિતિક અક્ષને તથા ગોળો તેના વ્યાસ કોની કોણીય ઝડપ વધારે હશે ?	ો ભ્રમણ કરાવવામાં આવે છે, ત્યારે નળાકાર
	(A) કહી ન શકાય.	(B) બંનેની ઝડપ સમાન હશે.

(C) નળાકાર

(D) ગોળો

ચાકગતિ 41

9.	એક ઢાળનો કોણ 30° છે. આ ઢાળ પર ગતિ ઘર્ષણાંક 0.35 છે, તો આ નળાકાર ઢાળ પર	
	(A) નળાકાર ઢાળ પર સ્થિર રહેશે.	(B) કશું કહી શકાય નહિ.
	(C) હા.	(D) ત્યા.
10.	ઘર્ષણયુક્ત ઢાળ પર સરક્યા સિવાય ગબડીને પર આધારિત છે ?	તળિયે આવતા નક્કર નળાકારનો વેગ શાના
	(A) નળાકારનું દળ	(B) નળાકારની લંબાઈ
	(C) ઢાળની ઊંચાઈ	(D) નળાકારની ત્રિજયા
11.	એક વર્તુળાકાર તકતીનું દળ 4 kg અને તેની િ થતી તથા તેના સમતલને લંબ એવી છે.	
	(A) 24 kg m^2 (B) 8 kg m^2	(C) 16 kg m^2 (D) 11 kg m^2
12.	પૃથ્વીના ધ્રુવપ્રદેશોનો બરફ પીગળીને વિષુવવૃત્ત કલાક) પર શી અસર થાય ?	ા પર આવે, તો દિવસની લંબાઈ (હાલ 24
	(A) દિવસ ટૂંકો બને.	(B) દિવસ લાંબો બને.
	(C) કોઈ જ ફેરફાર થાય નહિ.	
	(D) દિવસ અને રાતની લંબાઈ સમાન બને.	
13.	જો દઢ પદાર્થ પર લાગતું ટૉર્ક શૂન્ય હોય, રહેશે ?	તો નીચેનામાંથી કઈ ભૌતિક રાશિ અચળ
	(A) રેખીય વેગમાન	(B) કોણીય વેગમાન
	(C) બળ	(D) રેખીય બળનો આઘાત
14.	(C) બળ એક ફ્લાયવ્હીલ સ્થિર સ્થિતિમાંથી ભ્રમણ કરવાનું કોણીય ઝડપ પ્રાપ્ત કરે છે, તો તેનો સરેરાશ	શરૂ કરી 4 મિનિટમાં 240 પરિભ્રમણ s ⁻¹ ની
14.	એક ફ્લાયવ્હીલ સ્થિર સ્થિતિમાંથી ભ્રમણ કરવાનું	શરૂ કરી 4 મિનિટમાં 240 પરિભ્રમણ s ⁻¹ ની
14.	એક ફ્લાયવ્હીલ સ્થિર સ્થિતિમાંથી ભ્રમણ કરવાનું કોણીય ઝડપ પ્રાપ્ત કરે છે, તો તેનો સરેરાશ	શરૂ કરી 4 મિનિટમાં 240 પરિભ્રમણ s ^{–1} ની . કોણીય પ્રવેગ કેટલો હશે ?
	એક ફ્લાયવ્હીલ સ્થિર સ્થિતિમાંથી ભ્રમણ કરવાનું કોણીય ઝડપ પ્રાપ્ત કરે છે, તો તેનો સરેરાશ (A) 1 પરિભ્રમણ s^{-2}	શરૂ કરી 4 મિનિટમાં 240 પરિભ્રમણ s ⁻¹ ની . કોણીય પ્રવેગ કેટલો હશે ? (B) 3 પરિભ્રમણ s ⁻² (D) 2 પરિભ્રમણ s ⁻² નો એક નક્કર છે અને બીજો પોલો છે, તો
	એક ફ્લાયવ્હીલ સ્થિર સ્થિતિમાંથી ભ્રમણ કરવાનું કોણીય ઝડપ પ્રાપ્ત કરે છે, તો તેનો સરેરાશ (A) 1 પરિભ્રમણ s^{-2} (C) 4 પરિભ્રમણ s^{-2} બે સમાન ગોળાઓ ઢાળ પર ગબડે છે. તેમાં નક્કર ગોળાની જડત્વની ચાકમાત્રા અને પો (વ્યાસને અનુલક્ષીને ભ્રમણાક્ષ લેતાં).	શરૂ કરી 4 મિનિટમાં 240 પરિભ્રમણ s ⁻¹ ની . કોણીય પ્રવેગ કેટલો હશે ? (B) 3 પરિભ્રમણ s ⁻² (D) 2 પરિભ્રમણ s ⁻² નો એક નક્કર છે અને બીજો પોલો છે, તો
15.	એક ફ્લાયવ્હીલ સ્થિર સ્થિતિમાંથી ભ્રમણ કરવાનું કોણીય ઝડપ પ્રાપ્ત કરે છે, તો તેનો સરેરાશ (A) 1 પરિભ્રમણ s^{-2} (C) 4 પરિભ્રમણ s^{-2} બે સમાન ગોળાઓ ઢાળ પર ગબડે છે. તેમાં નક્કર ગોળાની જડત્વની ચાકમાત્રા અને પો (વ્યાસને અનુલક્ષીને ભ્રમણાક્ષ લેતાં).	શરૂ કરી 4 મિનિટમાં 240 પરિભ્રમણ s^{-1} ની કોણીય પ્રવેગ કેટલો હશે ? (B) 3 પરિભ્રમણ s^{-2} (D) 2 પરિભ્રમણ s^{-2} નો એક નક્કર છે અને બીજો પોલો છે, તો લા ગોળાની જડત્વની ચાકમાત્રાનો ગુણોત્તર (C) $\frac{2}{3}$ (D) $\frac{2}{5}$ બીજો પોલો છે. જો તેમની ભ્રમણાક્ષો તરીકે કર નળાકારની ચકાવર્તન ત્રિજયા (radius of

> 17. M દ્રવ્યમાન અને R ત્રિજ્યાવાળી એક પાતળી વીંટી તેના કેન્દ્રમાંથી પસાર થતી અને તેના સમતલને લંબ એવી અક્ષને અનુલક્ષીને ω જેટલા કોણીય વેગથી ગતિ કરે છે. હવે જો બિલકુલ હળવેથી બે બિંદુવત્ m દળવાળા ક્રણ તેના વ્યાસના સામ સામેના છેડાઓ પર લાગડતા તેનો કોણીય વેગ કેટલો બનશે ?

(A)
$$\left(\frac{M}{M+2m}\right)\omega$$
 (B) $\left(\frac{M}{M+m}\right)\omega$

(C)
$$\left(\frac{\mathbf{M}+2m}{\mathbf{M}}\right)\omega$$
 (D) $\left(\frac{\mathbf{M}-2m}{\mathbf{M}+2m}\right)\omega$

- **18.** r ત્રિજ્યા તથા m દળવાળી એક વીંટી તેના કેન્દ્રમાંથી પસાર થતી તથા તેના સમતલને લંબભ્રમણાક્ષને અનુલક્ષીને ચાક ગતિ કરે છે. તો તેની ચાકગતિ-ઊર્જા કેટલી હશે ?
 - (A) $\frac{1}{2}mr^2\omega^2$ (B) $\frac{1}{2}mr\omega^2$ (C) $mr^2\omega^2$ (D) $mr\omega^2$
- 19. ભૂસ્થિત ઉપગ્રહ (geostationary statellite)ના કક્ષીય કોણીય વેગના મૂલ્ય અને પૃથ્વીના તેની અક્ષને અનુલક્ષીને ભ્રમણગતિના કોણીય વેગના મૂલ્યનો ગુણોત્તર કેટલો હશે ? (D) 1:2
- (B) 4:3(C) 1 : 120. સૂર્યને ફરતે ભ્રમણ કરતાં ગ્રહનો ક્ષેત્રીય-વેગ (areal velocity)
 - (A) વધ્યા કરે છે. (B) અચળ રહે છે.
 - (C) ઘટ્યા કરે છે. (D) કશું કહી શકાય નહિ.

જવાબો

- **1.** (C) 2. (C) **3.** (B) **4.** (C) 5. (D) **6.** (A)
- **7.** (C) **8.** (D) **9.** (C) **10.** (C) **11.** (B) **12.** (B)
- **13.** (B) **14.** (A) **15.** (B) **16.** (B) **17.** (A) **18.** (A)
- **19.** (C) **20.** (B)

(A) 3 : 1

નીચે આપેલ પ્રશ્નોના જવાબ ટૂંકમાં આપો :

- કોણીય વેગના અને કોણીય પ્રવેગના SI એકમ જણાવો.
- અચળ કોણીય વેગથી ચાકગતિ કરતી દઢ પદાર્થના પ્રતિનિધિ કણના રેખીય પ્રવેગના સ્પર્શીય ઘટકનું મૂલ્ય કેટલું હશે ?
- શું દઢ પદાર્થની ચાકગતિ માટે બધા ક્રણોના રેખીય ચલો સમાન હોય છે ?
- રેખીય ગતિમાં જે ભાગ બળ ભજવે છે, તેવો જ ભાગ ચાકગતિમાં કઈ ભૌતિક રાશિ ભજવે છે ?
- ટૉર્કની દિશા કેવી રીતે શોધવામાં આવે છે ?
- Z-અક્ષને અનુલક્ષીને ચાકગતિ માટે ટૉર્કનો કયો ઘટક જવાબદાર હશે ?
- ચાકગતિ ઉત્પન્ન કરવા માટે બળની અસરકારકતાના માપને શું કહે છે ?
- બળયુગ્મની ચાકમાત્રાનું સૂત્ર આપો.
- રેખીય વેગમાનની ચાકમાત્રાને શું કહે છે ?
- 10. કોણીય વેગમાનના ફેરફારનો સમયદર શું દર્શાવે છે ?
- 11. કોણીય વેગમાનના સંરક્ષણનો નિયમ લખો.
- 12. ગ્રહને સૂર્ય સાથે જોડતી રેખા વડે આંતરાતા ક્ષેત્રફળના સમયદરને શું કહે છે ?
- 13. જડત્વની ચાકમાત્રા માટેના સમાંતર અક્ષના પ્રમેયનું વિધાન લખો.
- 14. જડત્વની ચાકમાત્રા માટેના લંબઅક્ષના પ્રમેયનું વિધાન લખો.
- 15. ઢાળ પર પદાર્થ સરક્યા સિવાય ગબડે તે માટેની શરત સૂત્ર સ્વરૂપે લખો.

ચાકગતિ 43

નીચેના પ્રશ્નોના જવાબ આપો :

1. દઢ પદાર્થના કોણીય સ્થાનાંતરને વ્યાખ્યાયિત કરી તેમની તત્કાલીન કોણીય ઝડપનું સૂત્ર મેળવો.

- 2. ચાકગતિ કરતા દઢ પદાર્થના કોઈ એક પ્રતિનિધિ ક્રેશ માટે રેખીય ઝડપ અને કોશીય ઝડપ વચ્ચેનો સંબંધ મેળવો.
- કોણીય વેગની દિશા માટેનો જમણા હાથના સ્ક્રૂનો નિયમ લખી કોણીય વેગ અને રેખીય વેગ વચ્ચેનો સદિશ સંબંધ પ્રસ્થાપિત કરો.
- 4. રેખીય પ્રવેગ અને કોણીય પ્રવેગ વચ્ચેનો સંબંધ મેળવો.
- 5. અચળ કોણીય પ્રવેગ સાથેની ચાકગતિનાં સમીકરણો તારવો.
- 6. દઢ પદાર્થના સંતુલન માટેની શરતો જણાવો.
- 7. ટૉર્કની ભૌતિક સમજૂતી આપો.
- 8. બળયુગ્મ એટલે શું ? બળયુગ્મની ચાકમાત્રાનું સૂત્ર મેળવો.
- 9. કોણીય વેગમાન અને ટૉર્ક વચ્ચેનો સંબંધ મેળવો.
- 10. દંઢ વસ્તુના કોણીય વેગમાનનું સૂત્ર $\overset{
 ightharpoonup}{\Gamma}=\overset{
 ightharpoonup}{\omega}$ મેળવો.
- 11. θ કોણવાળા ઢાળ પર સરક્યા સિવાય ગબડતા પદાર્થ માટે $v^2 = \left[\frac{2gh}{1 + \frac{K^2}{R^2}} \right]$ સૂત્ર મેળવો.
- 12. θ કોશવાળા ઢાળની ટોચ પરથી સરક્યા સિવાય પદાર્થ ગબડીને તળિયે આવતાં તેનો વેગ

$$v = \sqrt{\frac{2gh}{1 + \frac{K^2}{R^2}}}$$
 મળે છે, તેમ સ્વીકારી તેના રેખીય પ્રવેગ અને ઘર્ષણબળનું સૂત્ર મેળવો.

13. ઢાળ પરથી સરક્યા સિવાય ગબડતા પદાર્થનો પ્રવેગ $a=rac{g\sin heta}{1+rac{ ext{K}^2}{ ext{R}^2}}$ સ્વીકારી સ્થિત ઘર્ષણાંકનું સૂત્ર મેળવો.

નીચેના દાખલા ગણો :

1. એક દઢ પદાર્થ 12 sમાં 600 radનું કોણીય સ્થાનાંતર અનુભવી 100 rad s^{-1} ની કોણીય ઝડપ પ્રાપ્ત કરે છે, તો તેના અચળ કોણીય પ્રવેગ અને પ્રારંભિક કોણીય ઝડપ શોધો.

2. એક ચક્રની પ્રારંભિક કોણીય ઝડપ 20 rad s^{-1} છે. 10 s દરમિયાન તે 100 radનું કોણીય સ્થાનાંતર કરે છે, તો પ્રારંભથી માંડીને તે અટકી જાય ત્યાં સુધીમાં કેટલાં પરિભ્રમણ કરશે ? તેનો કોણીય પ્રવેગ કેટલો હશે ?

[જવાબ :
$$\theta = \frac{50}{\pi}$$
 પરિભ્રમણો; $\alpha = -2 \text{ rad s}^{-2}$]

3. 1 m ત્રિજ્યાવાળી 20 kg દળની એક રિંગ તેના કેન્દ્રમાંથી પસાર થતી અને તેના સમતલને લંબઅક્ષને અનુલક્ષીને ભ્રમણ કરે છે. આ રિંગની કોણીય ઝડપ 4 s માં 5 rad s⁻¹ થી વધીને 25 rad s^{-1} થાય છે, તો (1) રિંગ પર પ્રવર્તતા ટૉર્કનું મૂલ્ય શોધો. (2) 4 s દરમિયાન આ ટૉર્ક પર થયેલું કાર્ય શોધો. [જવાબ: $\tau = 100 \text{ N m}$; W = 6000 J]

4. એક ક્ષાનો જ્યારે સ્થાનસદિશ (4, 6, 12) એકમ છે, ત્યારે તેનો વેગ-સદિશ (2, 3, 6) એકમ છે. જો ક્ષાનું દળ 50 એકમ હોય, તો આ ક્ષ્મનું કોણીય વેગમાન શોધો.

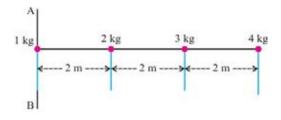
[જવાબ : શૂન્ય]

- 5. એક પોલો નળાકાર θ કોણવાળા ઢાળ પરથી સરક્યા સિવાય ગબડે છે, તો ઢાળની સપાટીને સમાંતર તેનો રેખીય પ્રવેગ શોધો. [જવાબ : $0.5 \ g \sin \theta$)]
- 6. 100 kg અને 200 kg ના બિંદુવત્ પદાર્થોના સ્થાનસદિશો અનુક્રમે (2, 4, 6) m અને (3, 5, 7) m છે, તો આ તંત્રની Z-અક્ષને અનુલક્ષીને જડત્વની ચાકમાત્રા શોધો.

[**જવાબ :** 8800 kg m²]

7. એક નક્કર ગોળાનું દળ 8 kg છે. તે 70 m ઊંચાઈના ઢાળ પરથી સરક્યા વિના ગબડીને તિળયે આવે છે, તો ઢાળના તિળયે તેનો રેખીય વેગ કેટલો હશે ? તથા તે વખતે તેની ચાકગતિ-ઊર્જા શોધો. (g = 10 m s^{-2} લો.)

[જવાબ : રેખીય વેગ $v = 10\sqrt{10} \text{ m s}^{-1}$; ચાકગતિ-ઊર્જા = $16 \times 10^2 \text{ J}$]

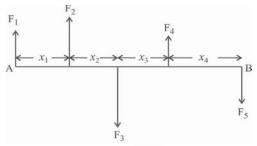

8. પૃથ્વીની પોતાની ધરીને અનુલક્ષીને ચાકગતિ માટે કોણીય વેગમાન શોધો. પૃથ્વીનું દળ $= 6 \times 10^{24} \; \mathrm{kg}$ તથા પૃથ્વીની ત્રિજ્યા $= 6400 \; \mathrm{km}$ છે.

[જવાબ : $7.15 \times 10^{33} \text{ kg m}^2 \text{ s}^{-1}$]

9. 200 kg દળ ધરાવતા એક પદાર્થ માટે દ્રવ્યમાનકેન્દ્રથી 3 m અંતરે રહેલી અક્ષને અનુલક્ષીને જડત્વની ચાકમાત્રા 8200 kg m^2 છે, તો આ અક્ષને સમાંતર એવી દ્રવ્યમાનકેન્દ્રથી 5 m અંતરે રહેલી અક્ષને અનુલક્ષીને પદાર્થની જડત્વની ચાકમાત્રા શોધો.

[જવાબ : 11400 kg m²]

- 10. m જેટલા સમાન દળ ધરાવતા ચાર બિંદુવત્ ક્શ 'a' બાજુ ધરાવતા એક ચોરસના ચાર ખૂશાઓ પર મૂકેલા છે, તો આ ચોરસના કેન્દ્રમાંથી પસાર થતી તેના સમતલને લંબ આવેલ અક્ષને અનુલક્ષીને આ તંત્રની જડત્વની ચાકમાત્રા શોધો. [જવાબ : 2 ma²]
- 11. M દળ તથા R ત્રિજ્યાવાળા ચાર નક્કર ગોળાઓ એક ચોરસના ચાર ખૂશાઓ પર મૂકેલા છે. જો ચોરસની બાજુનું માપ 'a' હોય, તો ચોરસની કોઈ એક બાજુને અક્ષ તરીકે લેતાં તેને અનુલક્ષીને આ તંત્રની જડત્વની ચાકમાત્રા શોધો. [જવાબ : $2\left(\frac{4}{5}\mathrm{MR}^2+\mathrm{M}a^2\right)$]
- 12. ચાર બિંદુવત્ કણના દળ 1 kg, 2 kg, 3kg અને 4 kg છે. તેમને એક વજનરહિત સળિયા સાથે આકૃતિમાં દર્શાવ્યા પ્રમાણે જોડેલા છે. તો આ તંત્રની AB અક્ષને અનુલક્ષીને જડત્વની ચાકમાત્રા શોધો.



આકૃતિ 2.22

[જવાબ : 200 kg *m*²]

ચાકગતિ 45

- 14. M દળ ધરાવતી તથા R ત્રિજ્યા ધરાવતી નિયમિત રિંગની જડત્વની ચાકમાત્રા તેની $^{\circ}$ ભૌમિતિક અક્ષને અનુલક્ષીને $^{\circ}$ હોય છે, તેમ સાબિત કરો.
- 15. આકૃતિ 2.25માં દર્શાવ્યા પ્રમાણ એક હલકા સળિયા પર બળો લાગે છે. આ બળોના પરિણામી બળનું સૂત્ર લખો. આ પરિણામી બળ Aથી કેટલા અંતરે હશે ?

આકૃતિ 2.25

[જવાબ :
$$\overrightarrow{F} = F_1(\hat{j}) + F_2(\hat{j}) + F_3(-\hat{j}) + F_4(\hat{j}) + F_5(-\hat{j})$$

$$x = \frac{x_1 F_2 - (x_1 + x_2) F_3 + (x_1 + x_2 + x_3) F_4 - (x_1 + x_2 + x_3 + x_4) F_5}{F_1 + F_2 + F_4 - F_5 - F_5}$$

સર જગદીશચંદ્ર બોઝ (1858-1937)

જગદીશચંદ્રનો જન્મ બંગાળમાં 30 નવેમ્બર, 1858ના રોજ થયો હતો. તેમણે કૅમ્બ્રિજથી બી.એ.ની પદવી મેળવી, તથા બી.એસ.સી.ની પદવી લંડન યુનિવર્સિટીમાંથી મેળવી. તેમણે વક્કીભવન, નિવર્તન અને ધ્રુવીભવનના પ્રયોગો કર્યા. તેમણે વિજ્ઞાનનું મુખ્ય કાર્ય માઇક્રોવેલ્ઝમાં કર્યું. તેમણે ખૂબ નાની તરંગલંબાઈના તરંગો ઉત્પન્ન કર્યા અને હર્ટ્ઝના વિદ્યુતતરંગોના

ડિરેક્ટરમાં સુધારો કર્યો. તેમણે 25 થી 5mm તરંગલંબાઈના તરંગો ઉત્પન્ન કરવા માટેનું નાનું સાધન બનાવ્યું. 19મી સદીના અંત દરમિયાન તેમણે વિદ્યુતચુંબકીય તરંગોની વનસ્પતિ પર થતી અસર તરફ ધ્યાન કેન્દ્રિત કર્યું. પ્રોફેસર તરીકે પ્રેસિડન્સિ કૉલેજમાં 1915માં નિયુક્તિ મળી. 1920માં રૉયલ સોસાયટીના ફેલો તરીકે ચૂંટાયા. 23 નવેમ્બર, 1937ના રોજ ગિરિધર (બિહાર)માં તેમનું અવસાન થયું.

Downloaded from https://www.studiestoday.com

પ્રકરણ 3

ગુરુત્વાકર્ષણ

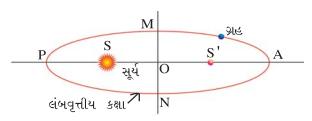
- 3.1 પ્રસ્તાવના
- 3.2 કેપ્લરના નિયમો
- 3.3 ન્યૂટનનો ગુરુત્વાકર્ષણનો સાર્વત્રિક નિયમ
- 3.4 ગુરુત્વાકર્ષણનો સાર્વત્રિક અચળાંક
- 3.5 ગુરૂત્વપ્રવેગ
- 3.6 ગુરૂત્વતીવ્રતા
- પૃથ્વીના ગુરુત્વક્ષેત્રમાં ગુરુત્વ
 સ્થિતિમાન અને ગુરૂત્વ સ્થિતિ-ઊર્જા
- 3.8 નિષ્ક્રમણ ઊર્જા અને નિષ્ક્રમણ ઝડપ
- 3.9 ઉપગ્રહો
 - સારાંશ
 - સ્વાધ્યાય

3.1 પ્રસ્તાવના (Introduction)

વિદ્યાર્થીમિત્રો, આકાશમાંના તારાઓ અને સૂર્યની આસપાસ ઘૂમતા ગ્રહો પ્રાચીન સમયથી વિજ્ઞાનીઓનું ધ્યાન આકર્ષતા રહ્યા છે.

સૂર્યમંડળનો વૈજ્ઞાનિક પદ્ધતિથી અભ્યાસ કરનાર સૌપ્રથમ ગ્રીક લોકો હતા. લગભગ 2000 વર્ષ અગાઉ ટોલેમી (Ptolemy) નામના વિજ્ઞાનીએ ગ્રીક ખગોળશાસ્ત્રનો જે સિદ્ધાંત રજૂ કર્યો, તેને ટોલેમીનો પૃથ્વી-કેન્દ્રીય વાદ (geocentric theory) કહે છે.

આ વાદ અનુસાર પૃથ્વી વિશ્વના કેન્દ્રમાં સ્થિર છે અને બધા આકાશી પદાર્થોનારાઓ, સૂર્ય અને ગ્રહો એ બધા – પૃથ્વીની આસપાસ ભ્રમણ કરે છે. ટોલેમીએ આ પદાર્થોની ગિત વર્તુળમય હોવાનો મત રજૂ કર્યો હતો. તેના મત મુજબ ગ્રહો વર્તુળમાર્ગે ગિત કરે છે અને એ વર્તુળોનાં કેન્દ્ર વધુ મોટાં વર્તુળોમાં ગિત કરે છે. પરંતુ પાંચમી સદીમાં આર્યભટ્ટે, સૂર્યને કેન્દ્ર તરીકે રાખી બધા ગ્રહો તેની આસપાસ વર્તુળમય ગિત કરે છે, તેવો સિદ્ધાંત રજૂ કર્યો.


ત્યાર બાદ લગભગ એક હજાર વર્ષ પછી પોલૅન્ડના નિકોલસ કૉપરનિકસે (1473-1543) કેન્દ્રમાં સૂર્ય હોય અને તેની આસપાસ બધા ગ્રહો વર્તુળમાર્ગો પર ભ્રમણ કરતા હોય તે અંગેનું સચોટ મૉડેલ રજૂ કર્યું. આને કૉપરનિકસનો સૂર્ય-કેન્દ્રીય વાદ (helio-centric theory) કહે છે. આમ, આર્યભક્ટના સિદ્ધાંતને સમર્થન મળ્યું. જોકે કોપરનિકસના મૉડેલને તે સમયની માન્ય સંસ્થાઓ તરફથી સમર્થન-સ્વીકૃતિ મળ્યાં ન હતાં, પરંતુ ગેલિલિયોએ તેના સિદ્ધાંતને ટેકો આપ્યો હતો.

ડેન્માર્કના ટાઇકો બ્રાહે (Tyco Brahe, 1546-1601) એ પોતાના સમગ્ર જીવન દરમ્યાન ગ્રહોની ગતિ અંગે નરી આંખે મેળવેલાં અવલોકનોનો અભ્યાસ જહૉન કૅપ્લરે (1571-1640) કર્યો અને ગ્રહોની ગતિ અંગેના ત્રણ નિયમો પ્રતિપાદિત કર્યા, જે કૅપ્લરના નિયમો તરીકે ઓળખાય છે. આ પ્રકરણમાં આપણે આ નિયમો, ન્યૂટનનો ગુરુત્વાકર્ષણનો નિયમ અને ઉપગ્રહો વિષે અભ્યાસ કરીશું.

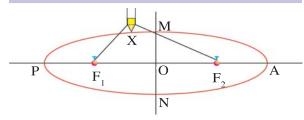
3.2 કૅપ્લરના નિયમો (Kepler's Laws)

ટાઇકો બ્રાહેએ મેળવેલાં અવલોકનોના અભ્યાસ પરથી જહૉન કૅપ્લરે ગ્રહોની ગતિ અંગે ત્રણ નિયમો આપ્યા, જેને કૅપ્લરના નિયમો કહે છે. આ નિયમો નીચે મુજબ છે.

પહેલો નિયમ (કક્ષાનો નિયમ) First law (law of orbits) : "બધા ગ્રહો એવી લંબવૃત્તીય કક્ષાઓમાં ભ્રમણ કરે છે કે જેના એક કેન્દ્ર પર સૂર્ય હોય."

ગ્રહની લંબવૃત્તીય કક્ષા આકૃતિ 3.1

$$PA = 2a, MN = 2b$$

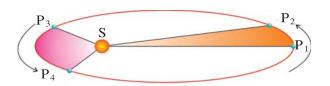

$$OP = OA = a = અર્ધ-દીર્ઘ અક્ષ$$

આકૃતિ 3.1માં કોઈ ગ્રહનો ગતિપથ દર્શાવતા લંબવૃત્ત P N A Mનાં બે કેન્દ્રો S અને S' છે.

કૉપરનિક્સે વર્તુળકક્ષા સૂચવી હતી, તેના કરતાં આ કક્ષાનો નિયમ અલગ આકાર સૂચવે છે.

[**માત્ર જાણકારી માટે** : લંબવૃત્ત નીચે પ્રમાણે દોરી શકાય.

એક l લંબાઈની દોરીના બે છેડાઓને F_1 અને F_2 બિંદુઓ પર સ્થિર રાખો, જ્યાં $F_1F_2 < l$. હવે એક પેન્સિલની અણીને દોરી સાથે રાખી દોરી કડક રહે તેમ ફેરવતાં મળતો વક P N A M આકૃતિ 3.2 મુજબનો લંબવૃત્ત બને છે.


લંબવૃત્ત આ રીતે દોરી શકાય આકૃતિ 3.2

$$OP = a = OA$$

$$OM = b = ON$$

અહીં $F_1X + F_2X =$ અચળ. તે લંબવૃત્તની લાક્ષણિકતા દર્શાવે છે. વળી, જ્યારે a=b; બને ત્યારે લંબવૃત્ત એ વર્તુળ બને છે.]

બીજો નિયમ (ક્ષેત્રફળનો નિયમ) Second Law (Law of Areas): "સૂર્ય અને ગ્રહને જોડતી રેખાએ સમાન સમયગાળામાં આંતરેલ ક્ષેત્રફળ સમાન હોય છે." જુઓ આકૃતિ 3.3.

ક્ષેત્રીય વેગ અચળ હોય છે આકૃતિ 3.3

જયારે ગ્રહ સૂર્યથી દૂર હોય છે, ત્યારે અમુક Δt સમયગાળામાં $\mathbf{P_1}$ થી $\mathbf{P_2}$ સ્થાને જાય છે અને સૂર્યની નજીક હોય ત્યારે તેટલા જ સમયગાળામાં $\mathbf{P_3}$ થી $\mathbf{P_4}$ પર જાય છે. આથી આ નિયમ મુજબ,

 SP_1P_2 નું ક્ષેત્રફળ = SP_3P_4 નું ક્ષેત્રફળ

ત્રહ જ્યારે સૂર્યથી દૂર હોય ત્યારે તેની કક્ષામાં ધીમે ફરતા હોય છે અને નજીક હોય ત્યારે વધારે ઝડપથી ફરતા હોય છે, તેવાં અવલોકનો પરથી આ નિયમ મળેલ છે.

એકમસમયમાં આંતરેલ ક્ષેત્રફળને આપણે ક્ષેત્રીય વેગ (= ક્ષેત્રફળ/સમય) areal velocity કહી શકીએ અને આ નિયમ ક્ષેત્રીય વેગ અચળ રહે છે તેમ દર્શાવે છે. આ બાબત પ્રકરણ 2માં પણ તમે જોઈ ગયા છો.

ત્રીજો નિયમ (આવર્તકાળનો નિયમ) Third Law (Law of Period) : "કોઈ પણ ગ્રહના પરિભ્રમણના આવર્તકાળ (T)નો વર્ગ તેની લંબવૃત્તીય કક્ષાની અર્ધ-દીર્ઘ અક્ષ (a)ના ઘનના સમપ્રમાણમાં હોય છે." એટલે કે \mathbf{T}^2 α a^3 .

આવર્તકાળ (T) એટલે એક પરિભ્રમણ પૂરું કરવા લાગતો સમય.

નીચેના ટેબલમાં નમૂનારૂપે આપેલ કેટલાક ગ્રહોના ઉદાહરણ પરથી $T^2/a^3 =$ અચળ અને તેથી T^2 α a^3 હોય છે, તેમ તમે જોઈ શકશો.

ટેબલ 3.1 : (કેટલાક ગ્રહો માટે T^2/a^3 નાં મૂલ્ય) (આ ટેબલ માત્ર જાણકારી માટે છે.)

ગ્રહ	а	T	T^2/a^3	
	m	year	year ² /m ³	
બુધ	5.79×10^{10}	0.24	2.95×10^{-34}	
પૃથ્વી	15×10^{10}	1.0	2.96×10^{-34}	
મંગળ	22.8×10^{10}	1.88	2.98×10^{-34}	
શનિ	143×10^{10}	29.5	2.98×10^{-34}	

[ગુર્ત્વાકર્ષણની શોધ : માત્ર જાણકારી માટે :

ન્યૂટને સફરજનને નીચે પડતું જોયું આકૃતિ 3.4

એક દંતકથા પ્રમાણે ઝાડ નીચે બેઠેલા ન્યૂટને ઝાડ પરથી સફરજનને નીચે પડતું જોયું. (તે ખાઈ જવાને બદલે !) ''તે નીચે જ કેમ પડ્યું ?'' – તેના ગહન ચિંતનમાં તે ડૂબી ગયો. આવા ચિંતનના પરિણામ-સ્વરૂપે ન્યૂટને ગુરુત્વાકર્ષણના નિયમની શોધ કરી. તેની વિચારયાત્રા કંઈક અંશે આવી હતી : (i) પૃથ્વીની સપાટી નજીક મુક્તપતન કરતા પદાર્થનો પ્રવેગ 9.8 m/ s^2 છે, તે જાણીતું હતું. તેથી સફરજનનો પ્રવેગ $a_{\rm apple}=9.8~{\rm m/s^2}.$ (ii) પૃથ્વીની આસપાસ વર્તુળભ્રમણ કરતા યંદ્રનો પ્રવેગ $a_{\rm moon}=v^2/r_m$ પૃથ્વીના કેન્દ્ર તરફ હોય છે. જયાં $r_m=$ ચંદ્રની કક્ષાની ત્રિજયા = 3.84×10^5 km. ચંદ્રનો પૃથ્વીની આસપાસના ભ્રમણનો આવર્તકાળ $T_m=27.3$ દિવસ છે. આ પરથી $v=2\pi~r_m/T_m$ મેળવીને તેને ઉપરના સમીકરણમાં મૂક્તાં $a_{\rm moon}=0.0027~{\rm m/s^2}$ મળે છે.

$$\therefore \frac{a_{apple}}{a_{moon}} = \frac{9.8}{0.0027} = 3600 \tag{1}$$

વળી પૃથ્વીના કેન્દ્રથી તેમનાં અંતરોનો ગુણોત્તર

$$\frac{r_{apple}}{r_{moon}} = \frac{6400 \ km}{3.84 \times 10^5 km} = \frac{1}{60}$$
 (2)

જ્યાં r_{apple} = પૃથ્વીની ત્રિજ્યા જેટલું અંતર. પરિણામ (1) અને (2) પરથી ન્યૂટનને જણાયું કે, પદાર્થનો પ્રવેગ, પૃથ્વીના કેન્દ્રથી તેના અંતરના વર્ગના α વ્યસ્ત પ્રમાણમાં હોય છે, $(a \propto \frac{1}{r^2})$. તેથી પૃથ્વી વડે m દળના પદાર્થ પર લાગતું બળ $\alpha = \frac{m}{r^2}$.

હવે ન્યૂટનના ગતિના ત્રીજા નિયમ અનુસાર આ પદાર્થ પણ તેટલા જ મૂલ્યનું બળ પૃથ્વી પર વિરુદ્ધ દિશામાં લગાડે, તેથી બળનું મૂલ્ય પૃથ્વીના દળ (M)ને પણ સમપ્રમાણમાં હશે. આમ, $F \propto \frac{Mm}{r^2}$ અથવા $F = \frac{GMm}{r^2}$ મળે, જ્યાં G = અચળાંક.

આ મહાન વૈજ્ઞાનિક શોધના પાયામાં ન્યૂટનની કેટલીક ક્રાંતિકારી માન્યતા હતી. ન્યૂટને એમ માન્યું હતું કે પૃથ્વી પરના પદાર્થો માટે તેમજ આકાશી પદાર્થો માટે કુદરતના નિયમો (laws of nature) એકસમાન છે.

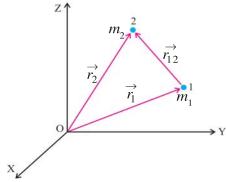
આથી પૃથ્વી અને સફરજન વચ્ચેનું બળ તથા પૃથ્વી અને ચંદ્ર વચ્ચેનું બળ એક જ નિયમને અનુસરતા હોવા જોઈએ. આજે તો આપણને આ વિધાન બહુ સાહજિક (obvious) લાગે પણ ન્યૂટનના તે સમયમાં પૃથ્વી પરના પદાર્થો માટેના અને આકાશી પદાર્થો માટેના નિયમો અલગ-અલગ હોવાની માન્યતા હતી. તેથી ન્યૂટનની માન્યતા ખરેખર ક્રાંતિકારી હતી.]

3.3 ન્યૂટનનો ગુરુત્વાકર્ષણનો સાર્વત્રિક નિયમ (Newton's Universal Law of Gravitation)

ન્યૂટને આપેલો ગુરુત્વાકર્ષણનો સાર્વત્રિક નિયમ નીચે મુજબ છે :

"વિશ્વમાંનો દરેક કણ બીજા દરેક કણ પર આકર્ષી બળ લગાડે છે, જેનું મૂલ્ય તેમનાં દળોના ગુણાકારના સમપ્રમાણમાં અને તેમની વચ્ચેના અંતરના વર્ગના વ્યસ્ત પ્રમાણમાં હોય છે." આ બળની દિશા તેમને જોડતી રેખા પર હોય છે. આ બળને ગુરુત્વાકર્ષણ બળ, અથવા ગુરુત્વાકર્ષી બળ અથવા ગુરુત્વાકર્ષી બળ અથવા ગુરુત્વાકર્ષી બળ અથવા ગુરુત્વાકર્ષી છે.

આ નિયમ મુજબ દળ $m_{_1}$ ધરાવતા $rac{ {f s} {f v}}{1}$ પર તેનાથી r અંતરે રહેલા બીજા દળ $m_{_2}$ ધરાવતા ${f s} {f v}$ 2 વડે લાગતા ગુરુત્વાકર્ષણ બળનું મૂલ્ય


$$|\overrightarrow{F}_{12}| = \frac{G m_1 m_2}{r^2}$$
 (3.3.1)

આ બળની દિશા કણ 1થી કણ 2 તરફ ($\overrightarrow{r_{12}}$ ની દિશામાં) છે. (જુઓ આકૃતિ 3.5)

અત્રે, G એ અચળાંક છે અને તેને ગુરુત્વાકર્ષણનો સાર્વત્રિક અચળાંક કહે છે, કારણ કે તેનું મૂલ્ય સમગ્ર વિશ્વમાં બધાં સ્થળે અને બધા સમયે એકસમાન જ હોય

છે. Gનું મૃલ્ય સૌપ્રથમ કૅવેન્ડિશ નામના વિજ્ઞાનીએ પ્રયોગ પરથી મેળવ્યું હતું. ત્યાર બાદ ઘણા વિજ્ઞાનીઓએ પણ વધુ ચોકસાઈપૂર્વક મેળવ્યું હતું. હાલમાં Gનું સ્વીકૃત મૂલ્ય $6.67 \times 10^{-11} \text{ N } m^2/\text{kg}^2$ છે. Gનું પારિમાણિક સૂત્ર M^{-1} L³ T⁻² $\dot{\Theta}$.

સમીકરણ (3.3.1)ને સદિશ સ્વરૂપમાં લખવા માટે આકૃતિ 3.5 ને ધ્યાનમાં લો.

ગુરુત્વબળના સૂત્રનું સદિશ સ્વરૂપ મેળવવું આકૃતિ 3.5

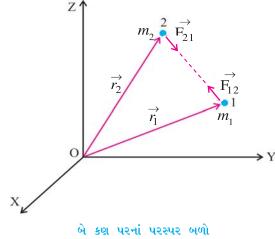
આકૃતિ પરથી,

$$\overrightarrow{r_{12}} = \overrightarrow{r_2} - \overrightarrow{r_1}$$

$$\stackrel{\wedge}{r_{12}} = \frac{\overrightarrow{r_{12}}}{|\overrightarrow{r_{12}}|} = \frac{\overrightarrow{r_2} - \overrightarrow{r_1}}{|\overrightarrow{r_{12}}|}$$

$$= \frac{\overrightarrow{r_2} - \overrightarrow{r_1}}{r}$$
(3.3.2)

અહીં $r = \mathsf{I} \stackrel{
ightarrow}{r_{12}} \mathsf{I}$


આકૃતિ પરથી સ્પષ્ટ છે કે,

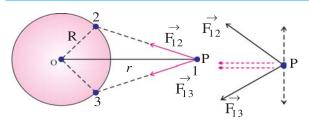
$$\begin{bmatrix} \vec{F}_{12} \\ 1 & \text{q.2 q.3} \\ \text{eliq q.40} \end{bmatrix} = \frac{G m_1 m_2}{r^2} \hat{r}_{12}$$
 (3.3.3)

ગ્રુત્વાકર્ષણ બળો પરસ્પર ક્રિયાગત બળો છે. તેથી જેટલું બળ કણ 1 પર કણ 2 વડે $\left(\stackrel{
ightarrow}{F_{12}} \right)$ લાગે છે. તેટલું જ બળ કણ 2 પર કણ 1 વડે $\left(\stackrel{
ightarrow}{F_{21}}\right)$ વિરુદ્ધ દિશામાં લાગે છે.

$$\therefore \left[\overrightarrow{F}_{21} \right] = \frac{-G \, m_1 \, m_2}{r^2} \, \hat{r}_{12} = \frac{G \, m_1 \, m_2}{r^2} \, \hat{r}_{21}$$
 (3.3.4)

આ બંને બળો $\overrightarrow{F_{12}}$ અને $\overrightarrow{F_{21}}$ આકૃતિ 3.6માં દર્શાવ્યાં છે.

આકૃતિ 3.6


વિસ્તૃત પદાર્થ (extended object) વડે લાગતું બળ : વિસ્તૃત પદાર્થને આપશે બિંદુવત્ કશોના સમૂહ તરીકે લઈ શકીએ. આવા વિસ્તૃત પદાર્થ વડે કોઈ એક <mark>બિંદુવત્ કણ</mark> પર લાગતું કુલ બળ, વિસ્તૃત પદાર્થમાંના દરેક બિંદુવત્ કણ દ્વારા તે કણ પર લાગતા વ્યક્તિગત બળોના સદિશ સરવાળા જેટલું થાય છે. એટલે કે ક્રણ 1 પર વિસ્તૃત પદાર્થ દ્વારા લાગતું કુલ બળ,

$$\vec{F}_1 = \vec{F}_{12} + \vec{F}_{13} + \vec{F}_{14} + \dots$$
 (3.3.5)

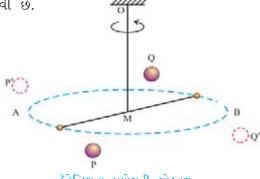
$$= \frac{G m_1 m_2}{r_{12}^2} \hat{r}_{12} + \frac{G m_1 m_3}{r_{13}^2} \hat{r}_{13} + \frac{G m_1 m_4}{r_{14}^2} \hat{r}_{14} + \dots (3.3.6)$$

આ જ રીતે આપણે એક વિસ્તૃત પદાર્થના દરેક કણ વડે બીજા વિસ્તૃત પદાર્થના દરેક કણ પર લાગતાં બળોના સદિશ સરવાળા પરથી તે પદાર્થ પર લાગતું કુલ બળ શોધી શકીએ છીએ. કલનશાસ્ત્રની મદદથી આવી ક્રિયા સહેલાઈથી કરી શકીએ છીએ. ખાસ કિસ્સાઓ તરીકે આપણે બે બાબતોની નોંધ લઈશું : (1) સમાન ઘનતાવાળા પોલા ગોળાકાર કવચ વડે કવચની બહાર આવેલા બિંદુવત્ કણ પર લાગતું ગુરુત્વબળ, જાણે કે કવચનું બધું દળ તેના કેન્દ્ર પર કેન્દ્રિત થયું હોય તેમ ગણીને મળતા બળ જેટલું હોય છે.

[ગુણાત્મક સમજૂતી – માત્ર જાણકારી માટે]

 $r>{f R},$ માટે કવચ વડે લાગતું બળ કવચના કેન્દ્ર તરફ છે ${f N}_{\bf S} = {f R} {f N}_{\bf S} + {f N}_{\bf S}$

કવચ પરના કણ 2 અને 3 વડે કણ 1 પર લાગતા


બળો $\overrightarrow{F_{12}}$ અને $\overrightarrow{F_{13}}$ ના બે ઘટકો (i) OPને સમાંતર અને (ii) OP ને લંબ વિચારો. OPને લંબઘટકો નાબૂદ થશે અને OPને સમાંતર ઘટકોનો સરવાળો થશે. આવી ક્રિયા OP રેખાને અનુલક્ષીને સંમિત સ્થાનો ધરાવતા કવચના કણો માટે વિચારતાં P પરનું પરિણામી બળ કવચના કેન્દ્ર પર લાગતું જોઈ શકાય છે. આપણે સાબિતિ આપ્યા વિના એમ સ્વીકારી લઈશું કે આ બળનું મૂલ્ય ઉપર જણાવ્યા મુજબ મેળવી શકાય છે.]

(2) સમાન ઘનતાવાળા પોલા ગોળાકાર કવચ વડે કવચની અંદરના કોઈ પણ બિંદુએ આવેલ કણ પર લાગતું ગ્રુત્વાકર્ષણ બળ શૂન્ય હોય છે.

[ગુણાત્મક સમજૂતી -- માત્ર જાણકારી માટે : કવચના જુદા-જુદા કણો આપેલ કણ પર જુદી-જુદી બધી દિશાઓમાં આકર્ષણબળ લગાડે છે અને આવાં બધાં બળોનું પરિણામી બળ શૂન્ય થાય છે. આને પણ આપણે સાબિતી વિના સ્વીકારી લઈશું.]

3.4 ગુરુત્વાકર્ષણનો સાર્વત્રિક અચળાંક (Universal Constant of Gravitation)

ન્યૂટનના ગુરુત્વાકર્ષણના સાર્વત્રિક નિયમને રજૂ કરતા સૂત્ર (3.3.1)માં આવતા અચળાંક Gનું મૂલ્ય સૌપ્રથમ ઇંગ્લિશ વિજ્ઞાની કૅવેન્ડીશે 1798માં પ્રાયોગિક રીતે મેળવ્યું હતું. તેની પ્રાયોગિક ગોઠવણ સંજ્ઞાત્મક રીતે આકૃતિ 3.8માં દર્શાવી છે.

કૅવેન્ડિશના પ્રયોગની ગોઠવણ આકૃતિ 3.8 એક સ્થિર આધાર પરથી ધાતુના પાતળા તાર વડે લટકાવેલા લાંબા સિળયાના બે છેડે સીસાના નાના સમાન ગોળા A અને B લગાડેલા છે. સીસાના બીજા બે મોટા સમાન ગોળા નાના ગોળાઓની નજીક વિરુદ્ધ બાજુએ સમાન અંતરે લાવવામાં આવે છે. મોટા ગોળા વડે નાના ગોળા પર લાગતાં ગુરુત્વબળો સમાન મૂલ્યનાં અને વિરુદ્ધ દિશામાં છે. આ બળોથી ટૉર્ક રચાય છે, આથી સિળયો તાર OMની આસપાસ ભ્રમણ કરે છે. આમ તાર OM માં વળ ચઢે છે અને તેનો વિરોધ કરતું પુનઃસ્થાપક ટૉર્ક તારમાં (સ્થિતિસ્થાપકતાને લીધે) ઉત્પન્ન થાય છે.

ગુરુત્વબળોથી રચાતું ટૉર્ક, પુનઃસ્થાપક ટૉર્ક જેટલું બને ત્યારે તંત્ર સંતુલનમાં આવે છે અને સ્થિર થાય છે. આ સ્થિતિમાં તારમાં ચઢેલો વળ θ માપવામાં આવે છે. વળી, આ સ્થિતિમાં મોટા ગોળાના સ્થાન P અને Q (અથવા P' અને Q') AB રેખાને લંબરેખાઓ પર છે.

ધારો કે દરેક મોટા ગોળાનું દળ = M દરેક નાના ગોળાનું દળ = m

સંતુલનસ્થિતિમાં તેમનાં કેન્દ્રો વચ્ચેનું અંતર = AP = BQ = r.

સંતુલનસ્થિતિમાં તારમાં ચઢેલ વળ (કોણ) = θ તારમાં એકમ વળ દીઠ ઉદ્ભવતું પુનઃસ્થાપક ટૉર્ક = k

સળિયાની લંબાઈ AB = l.

અત્રે મોટા ગોળા વડે નાના ગોળા પરનું ગુરુત્વબળ

$$= \frac{GMm}{r^2} \tag{3.4.1}$$

આવાં બંને બળોથી રચાતું કુલ ટૉર્ક

$$= \left(\frac{GMm}{r^2}\right) (l) \tag{3.4.2}$$

અને પુનઃસ્થાપક ટૉર્ક
$$\tau = k\theta$$
 (3.4.3)

સંતુલનસ્થિતિમાં
$$\left(\frac{\operatorname{GM} m}{r^2}\right)(l) = k\theta$$
 (3.4.4)

$$\therefore G = \frac{k\theta r^2}{Mml}$$
 (3.4.5)

[અહીં θ નું મૂલ્ય તાર પર લગાડેલા એક નાના અરીસાની મદદથી લેમ્પ અને સ્કેલની રીતે મેળવવામાં આવે છે. આ બાબતો આકૃતિમાં દર્શાવેલ નથી. વળી, kનું મૂલ્ય એક અન્ય પ્રકારના બીજા પ્રયોગમાં જાણીતું ટૉર્ક

au લગાડીને ઉદ્ભવતો વળ heta માપીને $k=rac{ au}{ heta}$ પરથી મેળવાય છે.]

આમ θના માપન પરથી Gનું મૂલ્યાંકન થઈ શકે છે.

ઉદાહરણ 1 : 25 kg અને 10 kg દળના પદાર્થોના સ્થાનસિંદશો અનુક્રમે (4, 7, 5) m અને (1, 3, 5) m છે, તો 25 kgના પદાર્થ પર 10 kgના પદાર્થ વડે લાગતા બળનો સિંદશ મેળવો. ($G = 6.67 \times 10^{-11} \text{ Nm}^2/\text{kg}^2$ લો.)

ઉંકેલ : અત્રે
$$m_1 = 25$$
 kg, $m_2 = 10$ kg,

$$\overrightarrow{r_1} = (4, 7, 5)m, \overrightarrow{r_2} = (1, 3, 5)m, \overrightarrow{F_{12}} = ?$$

$$\begin{bmatrix} \overrightarrow{F}_{12} \\ 1 & \text{q.} & 2 & \text{q.} \\ \text{e.i. o.d.} & \text{q.} \end{bmatrix} = \frac{G m_1 m_2}{r^2} \stackrel{\wedge}{r_{12}}$$
 (1)

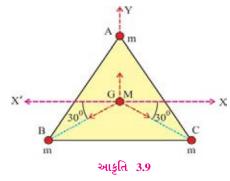
$$\vec{r}_{12} = \vec{r}_2 - \vec{r}_1 = (1, 3, 5) - (4, 7, 5) = (-3, -4, 0) m$$

$$\therefore r = |\overrightarrow{r_{12}}| = \sqrt{(-3)^2 + (-4)^2 + (0)^2} = 5m$$

અને
$$\stackrel{\wedge}{r_{12}} = \frac{\stackrel{\rightarrow}{r_{12}}}{\stackrel{\rightarrow}{r_{12}}} = \frac{(-3, -4, 0)}{5}$$

$$= (-0.6, -0.8, 0) m$$

સમીકરણ (1) માં આ મૂલ્યો મૂકતાં,


$$\vec{F}_{12} = (6.67 \times 10^{-11}) \frac{(25 \times 10)}{5^2} (-0.6, -0.8, 0)$$
$$= (6.67 \times 10^{-10}) (-0.6\hat{i} - 0.8\hat{j}) N$$

ઉદાહરણ 2: સમબાજુ ત્રિકોશના દરેક શિરોબિંદુ પર m kg દળ ધરાવતો કશ રહેલ છે. આ ત્રિકોશના મધ્યકેન્દ્ર પર M kg દળનો કશ મૂકવામાં આવે, તો તેના પર લાગતું ગુરુત્વાકર્ષણ બળ શોધો. મધ્યકેન્દ્રથી શિરોબિંદુ વચ્ચેનું અંતર 1 m છે.

ઉકેલ : આકૃતિ 3.9માં દર્શાવ્યા મુજબ ત્રિકોણના મધ્યકેન્દ્ર પર જેનું ઊગમબિંદુ હોય તેવી યામાક્ષ પદ્ધતિ સ્વીકારતાં $\angle XGC = \angle X'GB = 30^\circ$.

G આગળના કણ પર A આગળના કણ વડે લાગતું

$$\forall \emptyset, \ \overrightarrow{F}_{GA} = \frac{G m (M)}{1^2} \hat{j}$$
 (1)

તે જ રીતે B અને C આગળના ક્ણોને લીધે લાગતાં બળો અનુક્રમે

$$\vec{F}_{GB} = \frac{G(m) (M)}{1^2} [-\hat{i} \cos 30^\circ - \hat{j} \sin 30^\circ]$$
 (2)

$$\vec{F}_{GC} = \frac{G(m) (M)}{(1^2)} [\hat{i} \cos 30^\circ - \hat{j} \sin 30^\circ]$$
 (3)

∴ G બિંદુએ રહેલા ક્રણ પર લાગતું પરિણામી બળ

$$\overrightarrow{F} = \overrightarrow{F}_{GA} + \overrightarrow{F}_{GB} + \overrightarrow{F}_{GC}$$

$$= \frac{G m (M)}{1^2} \hat{j}$$

$$+ \frac{G m (M)}{1^2} [-\hat{i} \cos 30^\circ - \hat{j} \sin 30^\circ]$$

$$+ \frac{G m (M)}{1^2} [\hat{i} \cos 30^\circ - \hat{j} \sin 30^\circ]$$

નોંધ: સિંદશોના સરવાળા માટેનો ત્રિકોશનો નિયમ વાપરીને પણ તમે ઉપર મુજબનું પરિશામ મેળવી શકો. ઉપરાંત અહીં બળોને દર્શાવતા સિંદશો વડે બંધ ગાળો રચાતો હોવાનું જોઈ શકાય છે અને તે પરથી પણ પરિશામી બળ શૂન્ય હોવાનું કહી શકાશે.

3.5 ગુરુત્વપ્રવેગ અને તેમાં ફેરફારો (Gravitational Acceleration and Variations in it)

3.5 (a) ગુરુત્વપ્રવેગ (Gravitational Acceleration) : ગુરુત્વાકર્ષી બળને લીધે પદાર્થમાં ઉદ્ભવતા પ્રવેગને ગુરુત્વપ્રવેગ (g) કહે છે.

પૃથ્વીને સંપૂર્શ ગોળાકાર ગણીને અને પૃથ્વીની અંદર ઘનતા બધે એકસમાન છે એમ માનીને આપણે જુદાં-જુદાં બિંદુઓએ પૃથ્વીને લીધે ઉદ્ભવતા ગુરુત્વપ્રવેગ અંગે વિચારીશું. આપણે પૃથ્વીને અસંખ્ય પોલી સંકેન્દ્રિય ગોળાકાર

કવચોની બનેલી કલ્પી શકીએ. હવે પૃથ્વીની બહારના બિંદુએ આવેલો કશ આ બધી કવચોની પણ બહાર છે અને તેથી તેવા ક્યા પર દરેક કવચથી લાગતું બળ શોધવામાં દરેક કવચનું દળ પૃથ્વીના કેન્દ્ર પર કેન્દ્રિત થયેલું ગયી શકીએ (પરિચ્છેદ 3.3માં જણાવ્યા મુજબ). આમ, સમગ્ર પૃથ્વી વડે તે ક્યા પર લાગતું બળ શોધવા માટે સમગ્ર પૃથ્વીનું દળ તેના કેન્દ્ર પર કેન્દ્રિત થયેલું ગયી શકીએ.

ધારો કે પૃથ્વીનું દળ \mathbf{M}_{ϱ} અને ત્રિજ્યા \mathbf{R}_{ϱ} છે. પૃથ્વીના કેન્દ્રથી r અંતરે, પૃથ્વીની બહાર આવેલા (અહીં $r > \mathbf{R}_{\varrho}$) m દળના કણ પર લાગતું પૃથ્વીનું ગુરૂત્વબળ

$$F = \frac{GM_e m}{r^2} \ \dot{\vartheta}.$$

તેથી ન્યૂટનના ગતિના બીજા નિયમ પરથી આપણે

ગુરુત્વપ્રવેગ
$$g = \frac{F}{m} = \frac{GM_e}{r^2}$$
 લખી શકીએ. (3.5.1)

ગુરુત્વપ્રવેગ
$$g_e = \frac{GM_e}{R_e^2}$$
 (3.5.2)

આપણે પૃથ્વીને સંપૂર્શ ગોળાકાર ધારી હોવાથી આ g_{p} નું મૂલ્ય પૃથ્વીની સમગ્ર સપાટી પરનાં બધાં સ્થળોએ એકસમાન મળે. વાસ્તવમાં પૃથ્વી સંપૂર્શ ગોળાકાર નથી. પણ વિષુવવૃત્ત પાસે થોડીક ઉપસેલી છે અને ધ્રુવો પાસે સહેજ ચપટી છે. ધ્રુવો પાસેની પૃથ્વીની ત્રિજ્યા લગભગ 21 km વધુ છે. આથી ધ્રુવો પાસેનું g_{p} નું મૂલ્ય વિષુવવૃત્ત પાસેના g_{p} ના મૂલ્ય કરતાં સહેજ વધારે હોય છે, પરંતુ પૃથ્વીની સમગ્ર સપાટી પરનાં જુદાં-જુદાં સ્થળોએ g_{p} ના મૂલ્યમાં જુણાતો તફાવત અત્યંત સૂક્ષ્મ હોવાથી પૃથ્વીની સમગ્ર સપાટી પરનાં બધાં સ્થળો માટે વ્યાવહારિક હેતુઓ માટે g_{p} નું મૂલ્ય એક-સમાન લેવામાં આવે છે. આ g_{p} નું પ્રાયોગિક મૂલ્ય 9.8 m/s^{2} માલ્મ પડેલ છે.

તમે ઉપરના સમીકરણમાં ${
m M}_e=6 imes10^{24}~{
m kg}$ અને ${
m R}_e=6400~{
m km}$ લઈ g_e નું મૂલ્ય ગણતરીથી મેળવો.

ઉદાહરણ 3 : જો કોઈ કારણસર પૃથ્વીનું સંકોચન થઈ (તેનું દળ અચળ રહે તે રીતે) પૃથ્વીની ત્રિજ્યા હાલની ત્રિજ્યાના 60% થઈ જાય, તો પૃથ્વીની સપાટી પરના ગુરુત્વપ્રવેગના મૂલ્યમાં કેટલા ટકાનો ફેરફાર થાય ?

ઉકેલ : ગુરુત્વપ્રવેગનું મૂળ મૂલ્ય
$$g_e=rac{\mathrm{GM}_e}{\mathrm{R}^2_e}$$

પૃથ્વીની નવી ત્રિજ્યા R' =
$$\frac{60}{100}$$
R_e = 0.6 R_e

$$\therefore$$
 ગુરુત્વપ્રવેગનું નવું મૂલ્ય $g'=rac{\mathrm{GM}_e}{\mathrm{R}^{'2}}$

$$= \frac{GM_e}{(0.6 R_e)^2} = \frac{g_e}{0.36}$$

$$= \frac{25}{9} g_e$$

∴ ગુરુત્વપ્રવેગમાં થતો વધારો

$$= g' - g_e = \frac{25}{9}g_e - g_e = \frac{16}{9}g_e$$

∴ ગુરુત્વપ્રવેગના મૂલ્યમાં ટકાવાર વધારો

$$= \frac{\text{quil}}{\text{µm µeu}} \times 100$$

$$= \frac{16}{9} \times \frac{g_e}{g_e} \times 100$$

= 177.8 %

ઉદાહરણ 4 : જો પૃથ્વીના દળ અને ત્રિજ્યા બંનેમાં 1 ટકાનો ઘટાડો થાય તો સપાટી પરના ગુરુત્વપ્રવેગમાં કેટલા ટકાનો ફેરફાર થાય ?

ઉકેલ : ગુરુત્વપ્રવેગનું મૂળ મૂલ્ય
$$g=rac{\mathrm{GM}_e}{\mathrm{R}_e^2}$$

હવે જો ${\rm M_e}^{\prime}=0.99~{\rm M_e}$ અને ${\rm R_e}^{\prime}=0.99~{\rm R_e}$, થાય તો ગુરુત્વપ્રવેગનું નવું મૂલ્ય

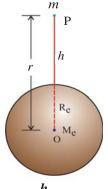
$$g' = \frac{GM'_e}{R'_e^2} = \frac{G \times 0.99 M_e}{(0.99 R_e)^2}$$

$$= 1.01 \left(\frac{GM_e}{R_e^2} \right)$$

= 1.01 g

∴ ગુરુત્વપ્રવેગમાં ફેરફાર =
$$g' - g$$

= 1.01 $g - g = 0.01 g$


∴ ગુરુત્વપ્રવેગમાં ટકાવાર ફેરફાર
$$= \frac{1}{4} \frac{1}{4} \frac{1}{4} \frac{1}{4} \times 100$$
$$= \frac{0.01 \, g}{g} \times 100$$

= 1 %

આમ, gના મૂલ્યમાં 1 ટકાનો વધારો થાય.

3.5(b) ગુરુત્વપ્રવેગ gમાં ઊંચાઈ સાથે ફેરફાર (Variation in Gravitational Acceleration g with Altitude):

પૃથ્વીની સપાટી પર ગુરુત્વપ્રવેગ $g_e = \frac{\mathrm{GM}_e}{\mathrm{R}_e^{\ 2}}$

પૃથ્વીની સપાટીથી *h* ઊંચાઈએ ગુરુત્વપ્રવેગ <mark>આકૃતિ 3.10</mark>

પૃથ્વીની સપાટીથી h ઊંચાઈએ આવેલા બિંદુ Pનું પૃથ્વીના કેન્દ્રથી અંતર $r=\mathrm{R}_{_{\varrho}}+h$ છે.

 \therefore આ બિંદુએ m દળના પદાર્થ પર લાગતું પૃથ્વીનું ગુરુત્વબળ

$$F(h) = \frac{GM_e m}{(R_e + h)^2}$$
 (3.5.3)

∴ P બિંદુએ ગુરુત્વપ્રવેગ

$$g(h) = \frac{GM_e}{(R_e + h)^2}$$
 (3.5.4)

$$\therefore \frac{g(h)}{g_e} = \frac{R_e^2}{(R_e + h)^2}$$

$$= \frac{{R_e}^2}{{R_e}^2 \left[1 + \frac{h}{R_e}\right]^2}$$
 (3.5.5)

$$\therefore g(h) = \frac{g_e}{\left[1 + \frac{h}{R_e}\right]^2}$$
 (3.5.6)

આ પરથી સ્પષ્ટ છે કે $g(h) < g_e$ સમીકરણ (3.5.6)

પરથી
$$g(h) = g_e \left[1 + \frac{h}{R_e} \right]^{-2}$$
 (3.5.7)

$$= g_e \left[1 - \frac{2h}{R_e} + \frac{h}{R_e} \right] + \frac{h}{R_e} + \frac{h}{R_e}$$

જો $h << \mathbf{R}_e$, હોય તો $\frac{h}{\mathbf{R}_e}$ નાં એક કરતાં મોટી ઘાતનાં પદોને અવગણી શકાય છે. એ સંજોગોમાં

$$g(h) = g_e \left[1 - \frac{2h}{R_e} \right] \tag{3.5.9}$$

સમીકરણ (3.5.6) કોઈ પણ ઊંચાઈ (h) માટે વાપરી શકાય છે. જ્યારે સમીકરણ (3.5.9) \$ક્ત $h << R_e$ હોય ત્યારે જ વાપરી શકાય છે.

જોકે પૃથ્વીની સપાટીથી થોડી ઊંચાઈ માટે gનું મૂલ્ય g_e જેટલું લગભગ લઈ શકાય છે. આ બાબત એક ઉદાહરણથી સમજીએ. પૃથ્વીની સપાટીથી $h=10~\mathrm{km}$ ઊંચાઈ માટે g શોધવા માટે ઉપરના સમીકરણ (3.5.9)માં $R_e=6400~\mathrm{km}$ અને $g_e=9.8~\mathrm{m/s^2}$ મૂકતાં,

$$\therefore g(h = 10 \text{ km}) = 9.8 \left[1 - \frac{(2)(10)}{6400} \right]$$

$$= 9.8 - 0.028$$

$$= 9.772$$

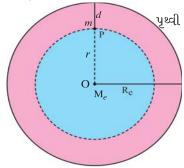
$$\approx 9.8 \text{ m/s}^2.$$

આમ, પૃથ્વીની સમગ્ર સપાટી પર તેમજ સપાટીની $+\infty$ ક થોડીક ઊંચાઈના વિસ્તારમાં પણ $g=g_e=9.8~\mathrm{m/s^2}$ વ્યાવહારિક હેતુઓ પૂરતું લઈ શકાય છે.

ઉદાહરણ 5 : સાબિત કરો કે પૃથ્વીની સપાટીથી પૃથ્વીની ત્રિજ્યા જેટલી ઊંચાઈએ આવેલા સ્થળે gમાં થતા ફેરફારનો દર અને પૃથ્વીની સપાટી પરના gના મૂલ્યનો ગુણોત્તર $\frac{-1}{4R_e}$.

ઉકેલ : પૃથ્વીના કેન્દ્રથી $r \geq R_e$ જેટલા અંતરે ગુરુત્વપ્રવેગ $g(r) = GM/r^2$ છે.

આ સમીકર \mathfrak{g} નું અંતર r સાપેક્ષે વિકલન કરતાં,


$$\left[\frac{dg(r)}{dr} \right] = \frac{-2GM_e}{r^3}$$
 વળી, $r = R_e + h = R_e + R_e = 2R_e$

$$\therefore \left[\frac{dg(r)}{dr} \right]_{2R_e} = \frac{-2GM_e}{(2R_e)^3} = \frac{-2GM_e}{8R_e^3}$$

પરંતુ પૃથ્વીની સપાટી પર ગુરુત્વપ્રવેગ $g_e = rac{\mathrm{GM}_e}{\mathrm{R}_e^{\;2}}$

$$\therefore \frac{\left[\frac{dg(r)}{dr}\right]_{2R_e}}{g_e} = \frac{-2GM_e}{8R_e^3} \times \frac{R_e^2}{GM_e} = \frac{-1}{4R_e}$$

3.5(c) ગુરુત્વપ્રવેગ g માં પૃથ્વીની સપાટીથી ઊંડાઈ સાથે ફેરફાર (Variation in the Gravitational Acceleration g with Depth from the Surface of the Earth) :

પૃથ્વીની સપાટીથી ઊંડાઈ સાથે gમાં ફેરફાર આકૃતિ 3.11

પૃથ્વીની સપાટીથી d ઊંડાઈએ P બિંદુએ રહેલ m દળના ક્શનો વિચાર કરો. તેનું પૃથ્વીના કેન્દ્રથી અંતર $r=\mathrm{R}_e-d$ છે.

આ ક્યા પર લાગતું પૃથ્વીનું ગુરુત્વાકર્ષણ બળ શોધવા માટે આપણે પૃથ્વીને $r=\mathrm{R}_e-d$ ત્રિજયાના નાના નક્કર ગોળા અને તેની ઉપર d જાડાઈની ગોળાકાર કવચની બનેલી કલ્પી શકીએ. P બિંદુ આગળનો આ ક્યા આ ગોળાકાર કવચની અંદર આવેલો છે. તેથી આ ગોળાકાર કવચને લીધે તે ક્યા પર લાગતું બળ શૂન્ય છે (પરિચ્છેદ 3.3માં સમજાવ્યા મુજબ). વળી, આ ક્યા r ત્રિજયાના નાના (છાયાંકિત કરેલા) ગોળાની બહારની સપાટી પર છે. આથી તે ક્યા પર લાગતું બળ નાના ગોળાનું સમગ્ર દળ (M') તેના કેન્દ્ર O પર કેન્દ્રિત થયેલું ગણીને મેળવી શકાય છે.

જો પૃથ્વીની સમાન ઘનતા ρ હોય તો,

$$\rho = \frac{\text{set } \epsilon^{0}}{\text{set } \epsilon^{0}} = \frac{M_{e}}{\frac{4}{3}\pi R_{e}^{3}}$$
 (3. 5.10)

 \therefore અને r ત્રિજ્યાના નાના ગોળાનું દળ

$$M' = (£) (ધનતા)$$

$$= \left(\frac{4}{3}\pi r^3\right)(\rho) \tag{3.5.11}$$

∴ P આગળ ગુરુત્વપ્રવેગ,

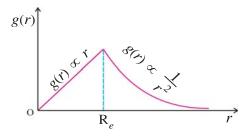
$$g(r) = \frac{GM'}{r^2}$$

$$= \frac{G}{r^2} \left(\frac{4}{3}\pi r^3\right)(\rho)$$

$$= \frac{4}{3}\pi G\rho r \qquad (3.5.12)$$

આ સમીકરણ પરથી પૃથ્વીની સપાટી $(r=\mathbf{R}_{_{arrho}})$ પર ગુરૂત્વપ્રવેગ

$$g_e = \frac{4}{3}\pi G\rho R_e \qquad (3.5.13)$$


સમીકરણ (3.5.12) અને (3.5.13) પરથી,

$$\frac{g(r)}{g_e} = \frac{r}{R_e} \tag{3.5.14}$$

$$\therefore g(r) = g_e \left(\frac{r}{R_e}\right) \tag{3.5.15}$$

સમીકરણ (3.5.12) અને (3.5.15) પરથી સ્પષ્ટ છે કે પૃથ્વીના કેન્દ્રથી સપાટી સુધી g(r)એ rના સમપ્રમાણમાં છે એટલે કે પૃથ્વીની અંદરના વિસ્તારમાં આવેલ બિંદુએ ગુરુત્વપ્રવેગ gનું મૂલ્ય પૃથ્વીના કેન્દ્રથી તે બિંદુના અંતરના સમપ્રમાણમાં હોય છે. વળી, પૃથ્વીની સપાટીની બહારના

વિસ્તારમાં $g(r) = \mathrm{GM}_{\ell}/r^2$ પરથી $g(r) \propto \frac{1}{r^2}$. મુજબ બદલાય છે. આથી પૃથ્વીના કેન્દ્ર (0)થી શરૂ કરતાં સપાટી સુધી અંતર (r)ના સમપ્રમાણમાં g(r)નું મૂલ્ય વધે છે. પછી સપાટીની બહાર g(r)નું મૂલ્ય અંતરના વ્યસ્ત વર્ગ મુજબ ઘટે છે. હુમાં થતા આવા ફેરફાર નીચેની આકૃતિ 3.12માં દર્શાવ્યા છે.

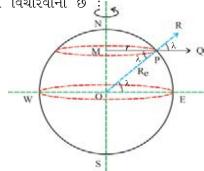
પૃથ્વીના કેન્દ્રથી અંતર r સાથે gમાં ફેરફાર

આકૃતિ 3.12

સમીકરણ (3.5.15)માં $r=\mathbf{R}_e-d$ મૂકતા ગુરુત્વપ્રવેગનું મૂલ્ય પૃથ્વીની સપાટીથી ઊંડાઈ dના પદમાં મળે છે. તેને g(d), તરીકે દર્શાવીશું.

$$\therefore g(d) = \frac{g_e}{R_e} (R_e - d)$$

$$= g_e \left[1 - \frac{d}{R_e} \right] \tag{3.5.16}$$


આ દર્શાવે છે કે d ઊંડાઈએ ગુરુત્વપ્રવેગનું મૂલ્ય સપાટી પરના મૂલ્ય કરતાં ઓછું છે.

આમ, પૃથ્વીના ગુરુત્વપ્રવેગનું મૂલ્ય તેની સપાટી પર સૌથી વધુ છે અને ત્યાંથી ઉપર કે નીચે જતાં તે ઘટતું જાય છે અને પૃથ્વીના કેન્દ્ર પર શૂન્ય બને છે. આ નોંધપાત્ર બાબત છે.

3.5 (d) પૃથ્વીના ભ્રમણને લીધે અક્ષાંશ સાથે અસરકારક ગુરુત્વપ્રવેગ g'માં થતો ફેરફાર (Variation in effective Gravitational Acceleration g' with Lattitute Due to Earth's Rotation) :

પૃથ્વીની સપાટી પરના આપેલા સ્થળને પૃથ્વીના કેન્દ્ર સાથે જોડતી રેખાએ વિષુવવૃત્તીય રેખા સાથે બનાવેલા ખૂણાને તે સ્થળનો અક્ષાંશ (lattitude) (λ) કહે છે. આથી વિષુવવૃત્ત પર અક્ષાંશ $\lambda=0^\circ$ અને ધ્રુવ પર અક્ષાંશ $\lambda=90^\circ$ થાય.

આકૃતિ (3.13)માં દર્શાવ્યા મુજબ પૃથ્વીની સપાટી પરના P સ્થાને અક્ષાંશ $\lambda = \angle POE$ છે. આ સ્થાને m દળના કણનો વિચાર કરો. તેના પર લાગતાં બળો તરીકે બે બળો વિચારવાનાં છે :

પૃથ્વીના ભ્રમણને લીધે અક્ષાંશ સાથે અસરકારક g'માં ફેરફાર આકૃતિ 3.13

(1) પૃથ્વીનું ગુરુત્વબળ = mg, \overrightarrow{PO} દિશામાં(3.5.17)

(2) બીજું બળ સમજવા પૃથ્વીની ચાકગતિને ધ્યાનમાં લો. પૃથ્વી તેની ચાકગતિને કારણે પ્રવેગ ધરાવે છે. એટલે આ કણ પ્રવેગી નિર્દેશફ્રેમમાં છે. આ બિંદુએ તે નિર્દેશ-

ફ્રેમનો પ્રવેગ = $\frac{v^2}{r}$ જેટલો \overrightarrow{PM} દિશામાં (એટલે કે વર્તુળમાર્ગના કેન્દ્ર તરફ) છે. આથી તેની વિરુદ્ધ દિશામાં એટલે કે \overline{MPQ} દિશામાં $\frac{v^2}{r}$ જેટલો ક્શનો આભાસી

પ્રવેગ અને તેથી $\frac{mv^2}{r}$ જેટલું તેના પર આભાસી બળ

ગણવાનું છે. આ બળનો $\overset{
ightarrow}{\mathrm{PR}}$ દિશામાંનો ઘટક

$$= \frac{mv^2}{r} \cos \lambda \tag{3.5.18}$$

જે બીજું બળ આપશે ગણવાનું છે તે આ છે.

આમ સમીકરણ (3.5.17) અને (3.5.18) મુજબનાં બે બળો ગણતરીમાં લેતાં, P આગળના કણ પર પૃથ્વીના કેન્દ્ર તરફ લાગતું અસરકારક બળ

$$mg' = mg - \frac{mv^2}{r}\cos\lambda \qquad (3.5.19)$$

જ્યાં g'= આ સ્થાને પૃથ્વીની ચાકગતિને ધ્યાનમાં લઈને મળતો અસરકારક ગુરૂત્વપ્રવેગ

g = પૃથ્વીની ચાકગતિ ધ્યાનમાં લીધા સિવાય આ સ્થાને ગુરૂત્વપ્રવેગ

$$\therefore g' = g - \frac{v^2}{r} \cos \lambda \tag{3.5.20}$$

પરંતુ $v=r\omega$ જયાં $\omega=$ પૃથ્વીની કોણીય ઝડપ

$$\therefore g' = g - \frac{(r\omega)^2}{r} \cos\lambda \qquad (3.5.21)$$

$$= g - r\omega^2 \cos \lambda \qquad (3.5.22)$$

આકૃતિ પરથી,
$$r = MP = R_e cos \lambda$$
 (3.5.23)

$$\therefore g' = g - R_e \omega^2 \cos^2 \lambda \qquad (3.5.24)$$

અથવા
$$g' = g \left[1 - \frac{R_e \omega^2 \cos^2 \lambda}{g} \right]$$
 (3.5.25)

આ સમીકરણ (3.5.24) અથવા (3.5.25) પરથી પૃથ્વીના ભ્રમણને લીધે અક્ષાંશ સાથે gમાં થતા ફેરફારની માહિતી મળે છે. બે વિશિષ્ટ કિસ્સાઓની નોંધ લઈએ :

(i) વિષુવવૃત્ત માટે, $\lambda=0^{\rm o}$, $\therefore\cos\lambda=1$, $\therefore g'=g-{\rm R}_e\omega^2, \ \$ અસરકારક ગુરુત્વપ્રવેગનું લઘુતમ મૂલ્ય દર્શાવે છે.

(ii) ધ્રુવ પર, $\lambda = 90^{\circ}$, $\cos \lambda = 0$, g' = g; જે અસરકારક ગુરુત્વપ્રવેગનું મહત્તમ મૂલ્ય દર્શાવે છે.

ઉદાહરણ 6 : પૃથ્વીના વિષુવવૃત્ત પર અસરકારક ગુરુત્વપ્રવેગ શૂન્ય થવા માટે પૃથ્વીની તેની અક્ષની આસપાસની ચાકગતિનો આવર્તકાળ કેટલો હોવો જોઈએ ?

ઉકેલ : વિષુવવૃત્ત પર અક્ષાંશ $\lambda=0^{\circ}$. પૃથ્વીની સપાટી પરના λ અક્ષાંશ ધરાવતા સ્થળે અસરકારક ગુરુત્વપ્રવેગ $g'=g-\mathrm{R}_e\omega^2\mathrm{cos}^2\lambda$... (સમીકરણ 3.5.24 પરથી). $\mathrm{R}_e=$ પૃથ્વીની ત્રિજ્યા,

g = ચાકગતિ ધ્યાનમાં લીધા સિવાય પૃથ્વીની સપાટી પર ગુરુત્વપ્રવેગ.

$$\omega =$$
પૃથ્વીની ચાકગતિની કોણીય ઝડપ $= \frac{2\pi}{T}$.

વિષુવવૃત્ત પર g'=0 થવા માટે આવર્તકાળ T શોધવાનો છે.

$$\therefore 0 = g - R_e \omega^2 \cos^2(0^\circ)$$

$$\therefore g = R_e \omega^2 \quad ...(\cos 0^\circ = 1)$$

$$= R_e \left(\frac{4\pi^2}{T^2}\right)$$

$$\therefore T^2 = 4\pi^2 \frac{R_e}{g} \quad \therefore T = 2\pi \sqrt{\frac{R_e}{g}}$$

3.6 ગુરૂત્વાકર્ષી તીવ્રતા (Gravitational Intensity)

એક પદાર્થ વડે બીજા પદાર્થ પર લાગતું ગુરુત્વાકર્ષી બળ ન્યૂટનના ગુરુત્વાકર્ષણના નિયમ (સમીકરણ 3.3.1)પરથી મળે છે. એકબીજાથી દૂર રહેલા બે પદાર્થો વચ્ચે બળ લાગવાની આ પ્રક્રિયા (action at a distance)ને નીચે મુજબ ક્ષેત્ર દ્વારા થતી હોય તેમ સમજાવવામાં આવે છે.

(1) દરેક પદાર્થ તેના દળને લીધે પોતાની આસપાસ ગુરુત્વક્ષેત્ર ઉત્પન્ન કરે છે. (2) આ ક્ષેત્રમાં આવતા (કે રહેલા) બીજા પદાર્થ પર આ ક્ષેત્ર બળ લગાડે છે. આથી આવા ગુરુત્વક્ષેત્રની તીવ્રતા (પ્રબળતા) વિશે જાણવાનું મહત્ત્વનું છે.

"આપેલા પદાર્થ વડે આપેલા બિંદુએ એકમદળના પદાર્થ પર લાગતા ગુરુત્વાકર્ષી બળને તે બિંદુએ ગુરુત્વાકર્ષી ક્ષેત્રની તીવ્રતા (I) કહે છે." તેને ઘણી વાર ટૂંકમાં ગુરુત્વાકર્ષી ક્ષેત્ર, અથવા ગુરુત્વક્ષેત્ર અથવા ગુરુત્વીય તીવ્રતા અથવા ગુરુત્વાકર્ષી તીવ્રતા અથવા ગુરુત્વતીવ્રતા પણ કહે છે.

ન્યૂટનના ગુરુત્વાકર્ષણના નિયમનો ઉપયોગ કરીને આપણે ગુરુત્વતીવ્રતાનું સૂત્ર લખી શકીએ. યામાક્ષોના ઊગમબિંદુએ M દળના પદાર્થનો વિચાર કરો. તેના લીધે કોઈ P બિંદુએ ઉદ્ભવતી ગુરુત્વતીવ્રતા

$$\vec{I} = \frac{-GM(1)}{r^2} \hat{r} = \frac{-GM}{r^2} \hat{r}$$
 ...(3.6.1), જ્યાં

 $\overrightarrow{OP} = \hat{r}$ અને $\hat{r} = \overrightarrow{r}$ ની દિશા (એટલે \overrightarrow{OP})માંનો એકમ સદિશ. મૂલ્યમાં આપણે $I = \frac{GM}{r^2}$...(3.6.2) લખી શકીએ. તેનો એકમ N/kg અને પારિમાણિક સૂત્ર $M^0L^1T^{-2}$ છે.

હવે જો કોઈ m દળના પદાર્થને આ P બિંદુ પર લાવીએ (અથવા ત્યાં રહેલો હોય) તો ગુરૂત્વક્ષેત્ર વડે તેના

પર લાગતું બળ
$$\overrightarrow{F} = \overrightarrow{I}m = \frac{-GMm}{r^2}\hat{r}..(3.6.3)$$

સમીકરણ (3.6.2) દર્શાવે છે કે પૃથ્વીને લીધે આપેલા બિંદુએ ગુરુત્વતીવ્રતાનું મૂલ્ય તે બિંદુ આગળના ગુરુત્વ પ્રવેગ જેટલું હોય છે. પરંતુ આ બે રાશિઓ અલગ-અલગ છે. અને તેમના એકમ જુદા-જુદા પરંતુ સમતુલ્ય છે, $[N/kg=m/s^2]$. આમ, એ સ્પષ્ટ છે કે પૃથ્વીના ગુરુત્વક્ષેત્ર માટે I-r આલેખ g-r આલેખ જેવો જ હોય (આકૃતિ 3.12 જેવો) [ભવિષ્યમાં તમે વિદ્યુતના કિસ્સામાં વિદ્યુતબળ = (વિદ્યુતક્ષેત્રની તીવ્રતા $\stackrel{\rightarrow}{E}$) \times (વિદ્યુતભાર q) એવું સૂત્ર ભણશો.]

ઉદાહરણ 7: એક બિંદુએ ગુરુત્વાકર્ષી ક્ષેત્રની તીવ્રતા $\overrightarrow{I}=10^{-9}\,(\hat{i}\,+\,\hat{j}\,)$ N/kg છે. તો તે બિંદુએ $10~{\rm kg}$ દળના પદાર્થ પર લાગતા બળનું મૂલ્ય અને તેના પ્રવેગનું મૂલ્ય શોધો.

ઉકેલ :

$$\vec{F} = (\vec{I})(m)$$

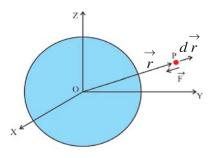
$$= (10^{-9})(\hat{i} + \hat{j})(10)$$

$$= 10^{-8}\hat{i} + 10^{-8}\hat{j} N$$

$$\therefore |\vec{F}| = \sqrt{(10^{-8})^2 + (10^{-8})^2}$$

$$= 10^{-8}\sqrt{2}$$

$$= 1.414 \times 10^{-8} N$$


$$g = \frac{|\vec{F}|}{m} = \frac{1.414 \times 10^{-8}}{10}$$

$$= 1.414 \times 10^{-9} \text{ m/s}^2.$$

3.7 પૃથ્વીના ગુરુત્વક્ષેત્રમાં ગુરુત્વસ્થિતિમાન અને ગુરુત્વ સ્થિતિ-ઊર્જા (Gravitational Potential and Gravitational Potential Energy in the Earth's Gravitational Field)

(a) ગુરુત્વસ્થિતિમાન : દરેક પદાર્થ પોતાની આસપાસ ગુરુત્વક્ષેત્ર ઉત્પન્ન કરે છે. આવા ક્ષેત્રની એક લાક્ષણિકતાને ગુરુત્વસ્થિતિમાન (gravitational potential) નામની રાશિ તરીકે નીચે મુજબ વ્યાખ્યાયિત કરવામાં આવે છે :

"એકમ દળના પદાર્થને અનંત અંતરેથી ગુરુત્વક્ષેત્રમાંના આપેલા બિંદુએ લાવવા દરમિયાન ગુરુત્વબળે કરેલા કાર્યના ૠણ મૂલ્યને તે બિંદુ આગળનું ગુરુત્વ સ્થિતિમાન (ϕ) કહે છે." … ગુરુત્વસ્થિતિમાનનો એકમ J kg $^{-1}$ છે અને તેનું પારિમાણિક સૂત્ર $\mathbf{M}^0\mathbf{L}^2\mathbf{T}^{-2}$ છે.

સૂક્ષ્મ સ્થાનાંતરમાં ગુરુત્વ બળ વડે થતું કાર્ય <mark>આકૃતિ 3.14</mark>

પૃથ્વીના ગુરુત્વક્ષેત્રમાં ગુરુત્વસ્થિતિમાનનું સૂત્ર મેળવવા આકૃતિ 3.14ને ધ્યાનમાં લો.

પૃથ્વીના કેન્દ્ર પર આપણે યામતંત્રનું ઊગમબિંદુ 0 મૂકીશું. પૃથ્વીનું દળ \mathbf{M}_{ρ} અને ત્રિજ્યા \mathbf{R}_{ρ} છે. પૃથ્વીના કેન્દ્રથી r અંતરે આવેલા \mathbf{P} બિંદુનો સ્થાનસદિશ

 $\overrightarrow{\mathrm{OP}} = \overrightarrow{r}$. અત્રે $r \geq \mathrm{R}_e$ છે. આ બિંદુએ એકમદળના પદાર્થ પર લાગતું પૃથ્વીનું ગુરુત્વબળ

$$\vec{F} = \frac{-GM_e(1)}{r^2}\hat{r}$$

$$= \frac{-GM_e}{r^2}\hat{r}$$
(3.7.1)

આ બળ અચળ નથી પણ અંતર સાથે બદલાય છે, પરંતુ સૂક્ષ્મ સ્થાનાંતર $d\stackrel{\rightarrow}{r}$ દરમ્યાન બળને અચળ ગણી શકાય છે. આથી આ સૂક્ષ્મ સ્થાનાંતરમાં ગુરુત્વબળ વડે થતું કાર્ય

$$dW = \overrightarrow{F} \cdot \overrightarrow{dr} = \left(\frac{-GM_e}{r^2} \hat{r}\right) (dr \hat{r}) (3.7.2)$$

$$= \frac{-GM_e}{r^2} dr ag{3.7.3}$$

P બિંદુથી અનંત અંતર સુધીના સમગ્ર ગાળાને મોટી સંખ્યાના સૂક્ષ્મ ગાળાઓમાં વિભાગેલો કલ્પી શકાય. આ દરેક સૂક્ષ્મ ગાળામાં બળ અચળ ગણીને તે ગાળા દરમિયાન થતું કાર્ય ગણી શકાય અને એવા બધા કાર્યનો સરવાળો કરવાથી કુલ કાર્ય \mathbf{W} મળે. આ પ્રક્રિયા સતત હોવાથી સરવાળાને સંકલન રૂપે લખી શકાય. આથી, આ કિસ્સામાં આ પદાર્થને r અંતરે રહેલા બિંદુ \mathbf{P} થી અનંત અંતરે લઈ જવા દરમિયાન ગુરુત્વબળ વડે થતું કાર્ય.

$$W_{r \to \infty} = \int dW = \int_{r}^{\infty} \left(-\frac{GM_e}{r^2} \right) dr \qquad (3.7.4)$$

$$= -GM_e \int_{r}^{\infty} \frac{1}{r^2} dr$$
 (3.7.5)

$$= -GM_e \left[-\frac{1}{r} \right]_r^{\infty} \tag{3.7.6}$$

$$= \frac{-GM_e}{r} \tag{3.7.7}$$

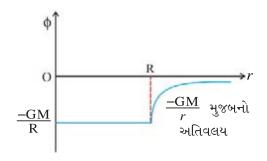
હવે આ પદાર્થને અનંત અંતરેથી r અંતરના P બિંદુએ લાવીએ, તો તે દરમિયાન ગુરુત્વબળ વડે થતું કાર્ય $(\mathbf{W}_{\infty \to r})$ એ સમીકરણ (3.7.7) થી મળતા કાર્ય જેટલું જ પણ વિરુદ્ધ ચિક્ષ ધરાવતું હશે.

 $[\mathbf{W}_{\infty \,
ightarrow \, r} \, = - \, \mathbf{W}_{r \,
ightarrow \, \infty}]$, કારણ કે ગુરુત્વબળ એ સંરક્ષી બળ છે.

$$\therefore W_{\infty \to r} = \frac{GM_e}{r}$$
 (3.7.8)

આ કાર્ય $(\mathbf{W}_{\infty \to r})$ ના ૠણ મૂલ્યને વ્યાખ્યા મુજબ \mathbf{P} બિંદુ આગળનું ગુરુત્વસ્થિતિમાન ϕ કહે છે.

∴ P આગળનું ગુરુત્વસ્થિતિમાન


$$\phi = \frac{-GM_e}{r} \tag{3.7.9}$$

આ પરથી પૃથ્વીની સપાટી પર ($r=\mathrm{R}_{_{\ell}}$ મૂકતાં) ગુરુત્વસ્થિતિમાન

$$\phi_e = \frac{-GM_e}{R_e} \tag{3.7.10}$$

આપણે ગુરુત્વસ્થિતિમાન અંગેની કેટલીક બાબતોની નોંધ લઈએ :

- (1) પૃથ્વીના કેન્દ્રથી અનંત અંતરે ગુરૂત્વસ્થિતિમાન = 0.
- (2) ગોળાકાર નિયમિત કવચની અંદરના ભાગમાં બધા બિંદુએ ગુરુત્વસ્થિતિમાન એકસમાન છે અને તે તેની સપાટી પરના મૂલ્ય જેટલું જ એટલે કે $\frac{-GM}{R}$ જેટલું છે, જ્યાં M =કવચનું દળ, R =કવચની ત્રિજ્યા. આનું કારણ એ છે કે કવચની અંદર બધા બિંદુએ ગુરુત્વબળ શૂન્ય હોવાથી કવચની અંદરના ભાગમાંની પદાર્થની ગતિ દરમિયાન કોઈ કાર્ય કરવું પડતું નથી. માત્ર જથી સપાટી સુધીની ગતિમાંનું કાર્ય જ ગણતરીમાં આવે છે.
- (3) M દળની અને R ત્રિજ્યાની કવચના કેન્દ્રથી અંતર r સાથે સ્થિતિમાન ϕ નો ફેરફાર આકૃતિ 3.15માં દર્શાવેલ છે.

 ϕ માં અંતર r સાથે ફેરફાર આકૃતિ 3.15

(b) ગુરુત્વસ્થિતિ-ઊર્જા : "આપેલા (m દળના) પદાર્થને પૃથ્વીના ગુરુત્વાકર્ષી ક્ષેત્રમાં અનંત અંતરેથી આપેલા બિંદુએ લાવવા દરમિયાન ગુરુત્વબળે કરેલા કાર્યના ૠણ મૂલ્યને તે બિંદુ પાસે તે પદાર્થની ગુરુત્વસ્થિતિ-ઊર્જા U કહે છે. તે ખરેખર તો પૃથ્વી + તે પદાર્થના તંત્રની ગુરુત્વસ્થિતિ-ઊર્જા છે.

ગુરુત્વસ્થિતિમાન અને ગુરુત્વસ્થિતિ-ઊર્જાની વ્યાખ્યાઓને ધ્યાનમાં લેતાં, સમીકરણ (3.7.8) પરથી, પૃથ્વીના કેન્દ્રથી $r(\geq R_{\rho})$ અંતરે, m દળના પદાર્થની ગુરુત્વસ્થિતિ-ઊર્જા

$$U = \phi m = \frac{-GM_e m}{r}$$
 (3.7.10)

આથી પૃથ્વીની સપાટી પર $(r=\mathbf{R}_e)$ રહેલા m દળના પદાર્થની ગુરુત્વસ્થિતિ-ઊર્જા

$$U_e = \frac{-GM_e m}{R_e}$$
 (3.7.11)

ગુરુત્વસ્થિતિમાન એ એકમદળના પદાર્થની સ્થિતિ-ઊર્જા છે, એમ પણ આપણે કહી શકીએ.

પૃથ્વીના કેન્દ્રથી અનંત અંતરે તે પદાર્થ પરનું પૃથ્વીનું ગુરુત્વબળ શૂન્ય છે અને ઉપરની વ્યાખ્યા મુજબ આપણે કહી શકીએ કે તેની ગુરુત્વસ્થિતિ-ઊર્જા પણ શૂન્ય છે.

સ્થિતિ-ઊર્જા (કે સ્થિતિમાન)ના નિરપેક્ષ મૂલ્યનું કોઈ મહત્ત્વ નથી, માત્ર તેના મૂલ્યમાં થતા ફેરફારનું જ મહત્ત્વ છે. એટલે શૂન્ય સ્થિતિ-ઊર્જા (કે શૂન્ય સ્થિતિમાન) માટેનું સંદર્ભિલંદુ આપશે ગમે ત્યાં લઈ શકીએ છીએ. (યાદ કરો, ''કાર્ય, ઊર્જા અને પાવર''ના પ્રકરણમાં આપણે પૃથ્વીની સપાટી પર સ્થિતિ-ઊર્જા શૂન્ય લીધી હતી, જ્યારે અહીં આપણે અનંત અંતરે સ્થિતિ-ઊર્જા શૂન્ય લીધી છે. પરંતુ બંને કિસ્સામાં માત્ર ફેરફારો જ મહત્ત્વના હોવાથી કોઈ વિરોધાભાસ સર્જાતો નથી.)

અત્રે સ્થિતિ-ઊર્જા U એ પૃથ્વી અને પદાર્થથી બનેલા તંત્રની છે પણ આ ક્રિયામાં પૃથ્વીના સ્થાનમાં કે વેગમાં ખાસ કંઈ ફેરફાર થતો ન હોવાથી તેને રૂઢિગત રીતે પદાર્થની સ્થિતિ-ઊર્જા તરીકે પણ ઉલ્લેખવામાં આવે છે. જ્યારે પણ આવો ઉલ્લેખ થાય ત્યારે આપણે એમ સમજવાનું છે કે આ સ્થિતિ-ઊર્જા તત્ત્વતઃ તો એ તંત્રની છે પણ તે સ્થિતિ-ઊર્જાનો બધો ફેરફાર માત્ર પદાર્થ જ અનુભવતો દેખાય છે.

આગળ ઉપર આપશે ઉપગ્રહનો પણ વિચાર કરવાના છીએ. તે કિસ્સામાં સ્થિતિ-ઊર્જા પૃથ્વી અને ઉપગ્રહથી બનેલા તંત્રની હોય છે. પણ આપણે ઉપગ્રહની સ્થિતિ-ઊર્જા તરીકે તેનો ઉલ્લેખ કરીશું.

ઉદાહરણ 8: આકૃતિ (3.16) માં દર્શાવ્યા મુજબ જેની પ્રત્યેક બાજુનું માપ *l* છે તેવા ચોરસના દરેક શિરોબિંદુ પર *m* દળ ધરાવતા કણ રહેલ છે. આ ચાર કણોથી બનતા તંત્રની ગુરુત્વસ્થિતિ-ઊર્જા શોધો. આ ચોરસના કેન્દ્ર પર ગુરુત્વસ્થિતિમાન પણ શોધો.

 m_i અને m_j એ અનુક્રમે i અને j ક્રમનાં ક્રણોનાં દળ છે અને r_{ij} તેમની વચ્ચેનું અંતર છે. $m_i=m_j=m$.

∴ કુલ સ્થિતિ-ઊર્જા

$$U = -Gm^{2} \left[\sum_{i < j} \frac{1}{r_{ij}} \right]$$

$$= -Gm^{2} \left[\frac{1}{r_{12}} + \frac{1}{r_{13}} + \frac{1}{r_{14}} + \frac{1}{r_{23}} + \frac{1}{r_{24}} + \frac{1}{r_{34}} \right]$$

$$= -Gm^{2} \left[\frac{1}{l} + \frac{1}{\sqrt{2}l} + \frac{1}{l} + \frac{1}{l} + \frac{1}{\sqrt{2}l} + \frac{1}{l} \right]$$

$$= -Gm^{2} \left[\frac{4 + \sqrt{2}}{l} \right]$$

$$l$$

$$l$$

આકૃતિ 3.16

$$r_{13} = r_{24} = \sqrt{2} l$$

 $r_{01}=r_{02}=r_{03}=r_{04}=r$ ચોરસના કેન્દ્ર પર કુલ ગુરુત્વસ્થિતિમાન $\phi=4$ (દરેક કણથી ઉદ્ભવતું સ્થિતિમાન)

$$= 4 \left(\frac{-Gm}{r}\right); \text{ wi } r = \frac{\sqrt{2}l}{2}$$

$$\therefore \phi = \frac{-4\sqrt{2}Gm}{l}$$

3.8 નિષ્ક્રમણ-ઊર્જા અને નિષ્ક્રમણ-ઝડપ (Escape Energy and Escape Speed)

આપણે હાથથી કોઈ પથ્થરને ઊર્ધ્વ દિશામાં ફેંકીએ તો તે અમુક ઊંચાઈએ જઈને ફરી પાછો પૃથ્વી તરફ પડે છે. જો પ્રારંભિક ઝડપ વધુ ને વધુ આપીએ, તો તે પથ્થરને આપણે વધુ ને વધુ ઊંચે મોકલી શકીએ. આ પરથી એવો સ્વાભાવિક પ્રશ્ન ઉદ્ભવે કે શું આપણે પથ્થરને એટલી પ્રારંભિક ઝડપથી ફેંકી શકીએ કે જેથી તે ફરી પાછો પૃથ્વી

તરફ આવે જ નહિ ? એટલે કે તે કાયમ માટે પૃથ્વીથી દૂર અનંત અંતરે જતો રહે અને તેના પર પૃથ્વીનું કોઈ આકર્ષણબળ રહે નહિ. આનો ઉકેલ મેળવવા તેની ઊર્જાનો વિચાર કરીએ.

પૃથ્વીની સપાટી પર સ્થિર રહેલા m દળના પદાર્થની

સ્થિતિ-ઊર્જા =
$$\frac{-\mathrm{GM}_e m}{\mathrm{R}_e}$$
 અને ગતિ-ઊર્જા શૂન્ય હોય છે

તેથી તેની કુલ ઊર્જા
$$=rac{-\mathrm{GM}_{e}m}{\mathrm{R}_{e}}$$
 છે. જો આ પદાર્થને

આપણે
$$\frac{+\mathrm{GM}_e m}{\mathrm{R}_e}$$
 જેટલી ઊર્જા ગતિ-ઊર્જા સ્વરૂપે પૂરી

પાડીએ, તો તે એવા બિંદુ સુધી જઈ શકે કે જ્યાં તેની

કુલ ઊર્જા
$$\frac{+\mathrm{GM}_e m}{\mathrm{R}_e}$$
 + $\left(\frac{-\mathrm{GM}_e m}{\mathrm{R}_e}\right)$ = 0 બને.

એટલે કે તે પૃથ્વીથી અનંત અંતરે પહોંચી જાય અને ત્યાં તેની સ્થિતિ-ઊર્જા અને ગતિ-ઊર્જા બંને શૂન્ય હોય. આ સ્થિતિમાં પદાર્થ કાયમ માટે પૃથ્વીના બંધનમાંથી છૂટી જાય છે અને કરી પાછો આવતો નથી. (જો આપણે પદાર્થને $GM_{\rho}m/R_{\rho}$ કરતાં વધુ ગતિ-ઊર્જા આપીએ તો અનંત અંતરે તેની સ્થિતિ-ઊર્જા તો શૂન્ય હોય પણ તેની પાસે અમુક ગતિ-ઊર્જા પણ બચેલી હોય છે.)

"પૃથ્વીના ગુરુત્વાકર્ષી ક્ષેત્રમાંથી (બીજા શબ્દોમાં પૃથ્વીના બંધનમાંથી) પદાર્થને મુક્ત કરવા માટે તેને આપવી પડતી લઘુતમ ઊર્જાને તે પદાર્થની નિષ્ક્રમણ ઊર્જા (Escape energy) કહે છે." અને તેને ઘણીવાર પદાર્થની બંધન-ઊર્જા (Binding energy) પણ કહે છે.

આમ, પૃથ્વીની સપાટી પર સ્થિર રહેલા m દળના

પદાર્થની નિષ્ક્રમણ-ઊર્જા =
$$\frac{GM_em}{R_e}$$
 (3.8.1)

આ નિષ્ક્રમણ-ઊર્જા જેટલી ગતિ-ઊર્જા પદાર્થને આપવા માટે તેને આપવી પડતી ઝડપને નિષ્ક્રમણ-ઝડપ (v_p) કહે છે, જેને ઘણીવાર નિષ્ક્રમણ-વેગ પણ કહે છે.

$$\therefore \frac{1}{2} m v_e^2 = \frac{GM_e m}{R_e}$$
 (3.8.2)

∴ નિષ્ક્રમણ–ઝડપ
$$v_e = \sqrt{\frac{2GM_e}{R_e}}$$
 (3.8.3)

$$= \sqrt{2gR_e} \quad (3.8.3a)$$

સમીકરણ (3.8.3) પરથી સ્પષ્ટ છે કે પદાર્થની નિષ્ક્રમણ-ઝડપ (v_{ρ}) નું મૂલ્ય તેના પોતાના દળ પર આધારિત નથી. (પણ જેના બંધનમાંથી-ત્રાસમાંથી ! - તેને છૂટવાનું છે, તે પદાર્થના દળ અને ત્રિજ્યા પર આધારિત છે.)

ઉપરના સમીકરણ (3.8.3) માં \mathbf{G} , \mathbf{M}_e અને \mathbf{R}_e નાં મૂક્તાં, $v_e=11.2$ km/s મળે છે. જો પદાર્થની પ્રારંભિક ઝડપ v_e જેટલી કે વધુ હોય, તો પદાર્થ હંમેશ માટે પૃથ્વીના ગુરૂત્વક્ષેત્રમાંથી છટકી જાય છે.

ચંદ્રની સપાટી પરના સ્થિર પદાર્થને આ પ્રમાણે ચંદ્રથી $ext{મુક્ત કરાવી દેવા માટે જરૂરી ઝડપ <math>v_{
ho}$ ' હોય, તો

$$v_e' = \sqrt{\frac{2GM_m}{R_m}}$$
, જ્યાં $M_m =$ ચંદ્રનું દળ,

 $R_m=$ ચંદ્રની ત્રિજ્યા. આ કિસ્સામાં $v_e^{\,\,\prime}=2.3\,$ km/s મળે છે, જે પૃથ્વીની સપાટી પર રહેલા પદાર્થ માટેના નિષ્ક્રમણ-

ઝડપના મૂલ્ય કરતાં લગભગ $\left(\frac{1}{6}\right)$ ગશું છે. આ કારણથી

ચંદ્રને વાતાવરણ નથી. તેની સપાટી પર જો વાયુના અણુઓ નિર્માણ પામે, તો ત્યાંના તાપમાને તે અણુઓની ઝડપ ઉપર જણાવેલ મૂલ્ય કરતાં વધુ હોય છે. તેથી તેઓ ચંદ્રના ગુરુત્વક્ષેત્રમાંથી કાયમ માટે છટકી જાય છે.

જો કોઈ પદાર્થની ઘનતાનું મૂલ્ય એટલું બધું વધારે હોય કે જેથી તેની સપાટી પરના બિંદુએ $v_e > C$ (પ્રકાશનો વેગ) હોય, તો તેની સપાટી પરથી કંઈ પણ કાયમ માટે છટકી શકશે નહિ. (પ્રકાશ પણ નહિ!) આવા પદાર્થને black hole કહે છે. આપણે ખ્યાલમાં રાખવાનું છે કે કોઈ પણ દ્રવ્ય કણનો વેગ પ્રકાશના વેગ જેટલો કે તેથી વધુ હોઈ શક્તો નથી. ($C=3\times 10^8~{\rm m~s^{-1}}$)

ઉદાહરણ 9: પૃથ્વી પરના સ્થિર પદાર્થ માટે નિષ્ક્રમણ-ઝડપનું મૂલ્ય $v_e=11.2~\mathrm{km/s}$ છે. જો પૃથ્વીની સપાટી પરના કોઈ સ્થિર પદાર્થને આના કરતાં ત્રણ ગણી ઝડપથી દૂર તરફ ફેંકવામાં આવે તો પૃથ્વીના ગુરુત્વક્ષેત્રમાંથી છટકયા પછી તે પદાર્થની ઝડપ કેટલી હશે ?

ઉકેલ : ફેંકેલા પદાર્થની પ્રારંભિક ઝડપ = $v=3v_e$, જ્યાં $v_e=$ નિષ્ક્રમણ-ઝડપ = 11.2 km/s

પૃથ્વીના ગુરુત્વક્ષેત્રમાંથી છટક્યા પછી (એટલે કે અનંત અંતરે), ધારો કે આ પદાર્થની ઝડપ = v'

યાંત્રિક-ઊર્જાના સંરક્ષણના નિયમ પરથી,

$$\therefore \frac{1}{2}mv^2 + \left(\frac{-\mathrm{GM}_e m}{\mathrm{R}_e}\right) = \left[\frac{1}{2}mv^{\prime 2} + 0\right]...(1)$$

 $(\because$ અનંત અંતરે સ્થિતિ-ઊર્જા = 0)

પરંતુ,
$$v_e = \sqrt{\frac{2 \text{GM}_e}{\text{R}_e}}$$
 \therefore $\frac{\text{GM}_e}{\text{R}_e} = \frac{{v_e}^2}{2}$

આ મૂલ્ય સમીકરણ (1) માં મૂકતાં અને $v=3v_e$ (આપેલ છે) લખતાં

$$\frac{1}{2}m(9v_e^2) + \left(\frac{-v_e^2m}{2}\right) = \frac{1}{2}mv^{1/2}$$

$$\therefore 9v_e^2 - v_e^2 = v'^2$$

$$\therefore \quad v' = \sqrt{8} \, v_e = \left(\sqrt{8}\right) (11.2)$$

= 31.63 km/s

ઉદાહરણ 10 : પૃથ્વીના કેન્દ્રથી r (>R $_{p}$) અંતરે રહેલા એક પદાર્થને મુક્ત પતન કરાવવામાં આવે, તો તે પદાર્થ પૃથ્વીની સપાટી પર અથડાય ત્યારે તેની ઝડપ શોધો.

ઉકેલ : પૃથ્વીના કેન્દ્રથી $r > R_{\rho}$ અંતરે રહેલા પદાર્થને મુક્ત પતન કરાવતાં તેનો પ્રારંભિગ વેગ શૂન્ય હોવાથી તેની ગતિ-ઊર્જા = 0 અને સ્થિતિ-ઊર્જા =

$$\frac{-GM_em}{r}$$
; જ્યાં $m =$ પદાર્થનું દળ.

પદાર્થ પૃથ્વીની સપાટી પર પડે ત્યારે તેનો વેગ v હોય તો ગતિ-ઊર્જા $=\frac{1}{2}mv^2$, અને અહીં તેની

સ્થિતિ-ઊર્જા =
$$\frac{-GM_e m}{R_e}$$

હવાનો અવરોધ અવગણતાં, યાંત્રિક-ઊર્જાના સંરક્ષણના નિયમ મુજબ,

$$\therefore \left\{ 0 + \left(\frac{-\mathrm{GM}_e m}{r} \right) \right\} \ = \ \left\{ \frac{1}{2} m v^2 + \left(\frac{-\mathrm{GM}_e m}{\mathrm{R}_e} \right) \right\}$$

$$\therefore v^2 = 2GM_e \left[\frac{1}{R_e} - \frac{1}{r} \right]$$
 (1)

આ પરથી માંગેલ ઝડપ v મળે છે. પરંતુ જો gના પદમાં જવાબ મેળવવો હોય તો,

$$g = \frac{\mathrm{GM}_e}{\mathrm{R}_e^{\ 2}}$$
 પરથી $\mathrm{GM}_e = g\mathrm{R}_e^{\ 2}$

ઉપરના સમીકરણમાં મૂકતાં,

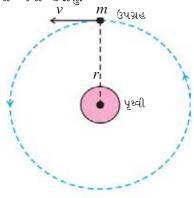
$$v^2 = 2g R_e^2 \left[\frac{1}{R_e} - \frac{1}{r} \right]$$
 (2)

$$\therefore v = \left[2gR_e^2 \left(\frac{1}{R_e} - \frac{1}{r}\right)\right]^{\frac{1}{2}} \tag{3}$$

 $\frac{1}{1}$: જો પદાર્થને ખૂબ જ ઊંચેથી $(r o \infty)$ મુક્ત-પતન કરાવેલ હોય તો સમીકરણ (1) અને (2) પરથી

$$v=\sqrt{rac{2\mathrm{GM}_e}{\mathrm{R}_e}}~=~\sqrt{2\mathrm{R}_e g}$$
 . આ નિષ્ક્રમણ-ઝડપનું જ

સૂત્ર છે.


3.9 ઉપગ્રહો (Satellites)

કોઈ પણ ગ્રહની આસપાસ પરિભ્રમણ કરતા પદાર્થને તેનો ઉપગ્રહ (satellite) કહે છે. ઉપગ્રહની કક્ષીય ગતિ ગ્રહના ગુરુત્વાકર્ષણ બળ અને પ્રારંભિક શરતો પર આધારિત હોય છે. ઉપગ્રહોને બે વર્ગોમાં વહેંચી શકાય : (1) કુદરતી ઉપગ્રહ (2) કૃત્રિમ ઉપગ્રહ.

ચંદ્ર એ પૃથ્વીનો કુદરતી ઉપગ્રહ છે. વળી, ગુરૂને અને બીજા ગ્રહોને પણ તેમના ચંદ્રો (એટલે કે ઉપગ્રહો) છે. આપણા ચંદ્રનો પૃથ્વીની આસપાસના પરિભ્રમણનો આવર્તકાળ 27.3 દિવસ છે અને ચંદ્રનો પોતાની ધરીની આસપાસનો આવર્તકાળ પણ લગભગ આટલો જ છે.

1957માં રશિયન વિજ્ઞાનીઓએ પૃથ્વીની આસપાસ તરતો મૂકેલો 'સ્પુટનિક' નામનો ઉપગ્રહ એ માનવજાતે બનાવેલો સૌપ્રથમ કૃત્રિમ ઉપગ્રહ હતો. આપણા ભારતીય વિજ્ઞાનીઓએ પણ અવકાશ ક્ષેત્રે હરણફાળ ભરીને 'આર્યભટ્ટ' અને 'ઇન્સેટ' શ્રેણીના ઘણા ઉપગ્રહો સફળતાપૂર્વક તરતા

મૂક્યા છે. હાલમાં તો વિશ્વના ઘણા બધા દેશો દ્વારા તરતા મૂકાયેલા સેંકડો ઉપગ્રહો પૃથ્વીની આસપાસ અવકાશમાં ભ્રમણ કરી રહ્યા છે, જેમનો ઉપયોગ વૈજ્ઞાનિક, એન્જિનિયરિંગ, હવામાનની આગાહી, જાસુસી, લશ્કરી, સંદેશા વ્યવહાર, વગેરે હેતુઓ માટે કરાય છે. પ્રસ્તુત પરિચ્છેદમાં આપણે ઉપગ્રહોના ગતિવિજ્ઞાનની અને ભૂસ્થિર તેમજ ધ્રુવીય ઉપગ્રહોની ચર્ચા કરીશું.

ઉપગ્રહની કક્ષીય ગતિ

આકૃતિ 3.17

ધારો કે m દળના એક ઉપગ્રહને પૃથ્વીના કેન્દ્રથી r અંતરે તરતો મૂકેલો છે, અને તેની વર્તુળ કક્ષામાંની ઝડપ v_0 છે. તેને કક્ષીય ઝડપ અથવા કક્ષીય વેગ કહે છે. અહીં, $r=\mathbf{R}_e+h$ જ્યાં, $\mathbf{R}_e=$ પૃથ્વીની ત્રિજ્યા અને h= પૃથ્વીની સપાટીથી ઉપગ્રહની ઊંચાઈ. તેની આ વર્તુળગતિ માટેનું જરૂરી કેન્દ્રગામી બળ (mv_0^2/r) , એ તેના પરના પૃથ્વીના ગુરૂત્વાકર્ષણ બળ દ્વારા પૂરું પડાય છે.

$$\therefore \frac{m{v_0}^2}{r} = \frac{GM_e m}{r^2}$$
 (3.9.1)

$$\cdot$$
ે. ઉપગ્રહની કક્ષીય ઝડપ $v_0 = \sqrt{rac{\mathrm{GM}_e}{r}}$ (3.9.2)

સમીકરણ (3.9.1), પરથી ઉપગ્રહની ગતિ-ઊર્જા

$$K = \frac{1}{2}mv_0^2 = \frac{GM_e m}{2r}.$$
 (3.9.3)

સમીકરણ (3.7.10) પરથી આ ઉપગ્રહની (ખરેખર તો પૃથ્વી + ઉપગ્રહના તંત્રની) સ્થિતિ-ઊર્જા

$$U = \frac{-GM_e m}{r} \tag{3.9.4}$$

∴ ઉપગ્રહની કુલ ઊર્જા

E = ગતિ-ઊર્જા K + સ્થિતિ-ઊર્જા U

$$= \frac{GM_em}{2r} - \frac{GM_em}{r}$$
 (3.9.5)

$$= \frac{-GM_e m}{2r} \tag{3.9.6}$$

આ કુલ ઊર્જા ઋષ્ય છે, તેથી તે આ ઉપગ્રહ બંધિત અવસ્થામાં હોવાનું સૂચવે છે. સમીકરણ (3.9.3), (3.9.4) અને (3.9.6) પરથી તમે જોઈ શકશો કે જો ઉપગ્રહની ગતિ-ઊર્જા x હોય તો તેની સ્થિતિ-ઊર્જા -2x અને કુલ ઊર્જા -x થાય છે. તેથી તેની બંધન-ઊર્જા (નિષ્ક્રમણ-ઊર્જા) x થશે.

ઉપગ્રહનો આવર્તકાળ (T): ઉપગ્રહને પૃથ્વીની આસપાસ એક પરિભ્રમણ પૂરું કરતાં લાગતો સમય એ તેનો આવર્તકાળ (T) છે અને આ સમય દરમિયાન તેણે કાપેલું અંતર વર્તુળમાર્ગના પરિઘ $(2\pi r)$ જેટલું છે.

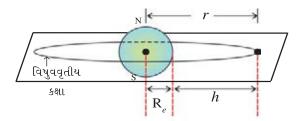
$$\therefore$$
 ક્ક્ષીય ઝડપ $v_0 = \frac{2\pi r}{T}$ (3.9.7)

∴ સમીકરણ (3.9.1) પરથી,

$$\frac{m}{r} \left(\frac{4\pi^2 r^2}{T^2} \right) = \frac{GM_e m}{r^2}$$
 (3.9.8)

$$\therefore T^2 = \left(\frac{4\pi^2}{GM_e}\right) r^3 \tag{3.9.9}$$

કૌંસમાંની બધી રાશિઓ અચળ હોવાથી T^2 α r^3 (3.9.10)

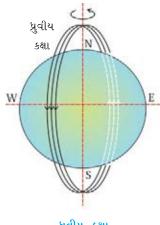

આમ, "ઉપગ્રહના કક્ષીય આવર્તકાળનો વર્ગ તેની કક્ષીય ત્રિજ્યાના ઘનના સમપ્રમાણમાં હોય છે." આ વિધાન ઉપગ્રહની વર્તુળકક્ષાના સંદર્ભમાં કેપ્લરનો ત્રીજો નિયમ છે.

સમીકરણ (3.9.9) પરથી,

$$T = \left(\frac{4\pi^2 r^3}{GM_e}\right)^{\frac{1}{2}} \tag{3.9.11}$$

ભૂસ્થિર ઉપગ્રહ : પૃથ્વીના જે ઉપગ્રહનો કક્ષીય આવર્તકાળ 24 hour (એટલે કે પૃથ્વીની પોતાની અક્ષની આસપાસની ચાકગતિના આવર્તકાળ જેટલો) હોય તેને ભૂસ્થિર ઉપગ્રહ (geo-stationary અથવા geo-synchronous satellite) કહે છે, કારણ કે પૃથ્વી પરથી જોતાં તે કાયમ સ્થિર દેખાય છે. આવા ભૂસ્થિર ઉપગ્રહ

પૃથ્વીની આસપાસ વિષુવવૃતીય સમતલમાં ભ્રમણ કરતા હોય છે. જુઓ આકૃતિ 3.18(a).

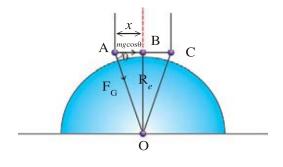


ભૂસ્થિર ઉપગ્રહ આકૃતિ 3.18(a)

ભૂસ્થિર ઉપગ્રહ માટે સમીકરણ (3.9.11)માં $G=6.67 \times 10^{-11}~\mathrm{N}m^2~\mathrm{kg}^{-2},~\mathrm{M}_e=5.98 \times 10^{24}~\mathrm{kg}$ અને $T=24 \times 3600~\mathrm{s},~\mathrm{h}$ મળે છે. આથી પૃથ્વીની સપાટીથી આ ભૂસ્થિર ઉપગ્રહની ઊંચાઈ $h=r-\mathrm{R}_e=42260-6400=35860~\mathrm{km}$ મળે છે. આ સિવાયની બીજી કોઈ ઊંચાઈ માટે ઉપગ્રહ ભૂસ્થિર રહી શકતો નથી.

આવા ઉપગ્રહ દૂર સંચાર (tele communication)માં વપરાય છે. ઉપરાંત તેમનો ઉપયોગ Global Positioning System (GPS)માં પણ થાય છે, જેમાં વ્યક્તિને આપેલા સ્થાનેથી તેના ગંતવ્યસ્થાન (destination) સુધી જવા માટેના વિવિધ રસ્તાઓની અને તેમાંથી સૌથી ટૂંકા રસ્તા અંગેની માહિતી નકશાસહિત મૉનિટરના screen પર દર્શાવવામાં આવે છે.

ધુવીય ઉપગ્રહ (Polar Satellite): આવા ઉપગ્રહ પૃથ્વીની ફરતે ઉત્તર-દક્ષિણ દિશામાં ભ્રમણ કરતા હોય છે. તેઓ પૃથ્વીની સપાટીથી લગભગ 800 km ઊંચાઈએ હોય છે. પૃથ્વીનું ભ્રમણ પૂર્વ-પશ્ચિમ દિશામાં થતું હોવાથી આવા ઉપગ્રહ (તેમનો આવર્તકાળ T લગભગ 100 મિનિટ હોય છે.) પૃથ્વીના દરેક વિભાગને દરરોજ કેટલીય વાર જોઈ શકે છે. તેમાં રાખેલા કૅમેરાની મદદથી દર એક ભ્રમણમાં પૃથ્વીનો એક પાતળી પટ્ટી જેવો વિસ્તાર જોઈ શકે છે. બીજા ભ્રમણમાં તેની બાજુની પટ્ટીનો વિસ્તાર જોઈ શકે છે. આમ સમગ્ર દિવસ દરમિયાન સમગ્ર પૃથ્વીનું અવલોકન ઘણીવાર કરી શકે છે. આ પરથી મળેલી માહિતી દૂર-સંવેદન (remote sensing)માં, હવામાનશાસ્ત્રમાં, પર્યાવરણના અભ્યાસમાં, જાસૂસીમાં વગેરેમાં થાય છે.


ધ્રુવીય કક્ષા આકૃતિ 3.18(*b*)

ઉદાહરણ 11 : એક કાલ્પનિક સાદા લોલકનું આધારબિંદુ પૃથ્વીની સપાટીથી અનંત ઊંચાઈએ છે અને લોલકનો ગોળો પૃથ્વીની સપાટીથી તદ્દન નજીક છે. આ લોલકનો (એટલે કે અનંત લંબાઈના લોલકનો)

આવર્તકાળ
$$T=2\pi\sqrt{\frac{R_e}{g}}$$
 છે. તેમ દર્શાવો.

ઉકેલ : અહીં લોલકનું આધારબિંદુ અનંત ઊંચાઈએ હોવાથી ગોળાનો સૂક્ષ્મ ગતિપથ લગભગ સુરેખ લઈ શકાય. ગોળાનું દળ = m.

અહીં ગુરુત્વબળ F_G (= mg)નો $mg\cos\theta$ ઘટક ગોળાને પુનઃસ્થાપક બળ પૂરું પાડે છે. તેથી ગોળા પરનું પુનઃસ્થાપક બળ $F=-mg\cos\theta$ (બળ પુનઃસ્થાપક હોવાથી ઋષ્ણ ચિક્ષ મૂક્યું છે.)

આકૃતિ 3.19

આકૃતિ 3.19 પરથી $\cos\theta=rac{x}{R_e}$. (ગોળો પૃથ્વીની સપાટીની તદન નજીક હોવાથી $\mathrm{AO}=\mathrm{BO}=\mathrm{R}_e$ લઈ શકાય.)

$$\therefore F = -mg\left(\frac{x}{R_e}\right)$$

$$\therefore F = -kx \tag{1}$$

જ્યાં,
$$k = \omega$$
ળ-અચળાંક $= \frac{mg}{R_{e}}$

∴ સમીકરણ (1) સૂચવે છે કે લોલકની ગતિ સરળ આવર્તગતિ છે.

$$T = 2\pi \sqrt{\frac{m}{k}} \text{ gives,}$$

$$T = 2\pi \sqrt{\frac{m}{mg} / R_e}$$

$$= 2\pi \sqrt{\frac{R_e}{g}}$$

ઉદાહરણ 12 : સાબિત કરો કે પૃથ્વીની સપાટીની તદ્દન નજીક રહીને પૃથ્વીની આસપાસ ભ્રમણ કરતા ઉપગ્રહ માટે બંધન-ઊર્જા $\frac{1}{2} mg R_e$ જેટલી હોય છે.

ઉંકેલ : અહીં, ઉપગ્રહ (દળ = m), વર્તુળ ગતિ માટે જરૂરી કેન્દ્રગામી બળ એ પૃથ્વીનું તેના પરનું ગુરુત્વાકર્ષી બળ છે.

∴ કુલ ઊર્જા = ગતિ-ઊર્જા + સ્થિતિ-ઊર્જા

$$= \frac{1}{2} m g R_e - g m R_e$$
$$= -\frac{1}{2} m g R_e$$

$$\therefore$$
 ઉપગ્રહની બંધન-ઊર્જા = $\frac{1}{2} mg R_e$

ઉદાહરણ 13 : એકબીજાથી 10m અંતરે રહેલા 1 kg અને 2 kg દળના પદાર્થો સ્થિર સ્થિતિમાંથી મુક્ત કરવામાં આવે છે. તેમના પર પરસ્પર ગુરુત્વબળો જ લાગતા હોવાનું સ્વીકારીને જ્યારે તેમની વચ્ચેનું અંતર 5m થાય, ત્યારે તે દરેકના વેગ શોધો.

$$(G = 6.66 \times 10^{-11} \text{ N}m^2/\text{kg}^2 \text{ ell.})$$

ઉકેલ : પ્રારંભમાં બંને પદાર્થોની વેગ શૂન્ય છે, તેથી ગતિ-ઊર્જાઓ શૂન્ય છે. (એટલે કે, $v_1=v_2=0;$ $\mathbf{K}_1=\mathbf{K}_2=0)$

જયારે તેમની વચ્ચેનું અંતર 5m થાય ત્યારે તેમના વેગ અનુક્રમે v_1 ' અને v_2 ' છે અને ગતિ-ઊર્જાઓ $\mathbf{K_1}$ ' અને $\mathbf{K_2}$ ' છે.

આ તંત્રની પ્રારંભિક સ્થિતિ-ઊર્જા
$${
m U}_1=rac{-{
m G}m_1m_2}{r_1}$$

$$= \frac{-(6.67 \times 10^{-11})(1 \times 2)}{10}$$

$$= -13.32 \times 10^{-12} \text{ J}.$$

અંતિમ સ્થિતિ-ઊર્જા
$$U_2 = \frac{-Gm_1m_2}{r_2}$$

$$= \frac{-(6.66 \times 10^{-11})(1 \times 2)}{5}$$

$$= -26.64 \times 10^{-12} \text{ J}.$$

$$\therefore$$
 સ્થિતિ-ઊર્જાનો ફેરફાર $\Delta U = U_2 - U_1$
$$= -26.64 \times 10^{-12} - (-13.32 \times 10^{-12})$$

$$= -13.32 \times 10^{-12} \text{ J}$$

યાંત્રિક-ઊર્જાના સંરક્ષણના નિયમ મુજબ K+U= અચળ \therefore ΔK + ΔU = 0.

$$\therefore \Delta K = -\Delta U$$

$$\therefore (K_1' + K_2') - 0 = - (U_2 - U_1)$$

$$\therefore \left(\frac{1}{2}m_1v_1^{'2} + \frac{1}{2}m_2v_2^{'2}\right) - (0) = 13.32$$

$$\times 10^{-12} \text{ J}$$

$$\therefore \frac{v_1'^2}{2} + v_2'^2 = 13.32 \times 10^{-12} \tag{1}$$

વેગમાનસંરક્ષણના નિયમ મુજબ પ્રારંભિક કુલ વેગમાન = અંતિમ કુલ વેગમાન

$$\therefore m_1 \overset{\rightarrow}{v_1}' + m_2 \overset{\rightarrow}{v_2}' = 0$$

$$\therefore m_1 \overset{\rightarrow}{v_1}' = -m_2 \overset{\rightarrow}{v_2}'$$

$$\therefore \overrightarrow{v_1}' = -\frac{m_2}{m_1} \overrightarrow{v_2}'$$

∴
$$|\overrightarrow{v_1}'| = \left(\frac{m_2}{m_1}\right)(|\overrightarrow{v_2}'|)$$

∴ $v_1' = 2v_2'$ (2)
સમીકરણ (1) અને (2) પરથી
$$\frac{4v_2'^2}{2} + v_2'^2 = 13.32 \times 10^{-12}$$
∴ $3v_2'^2 = 13.32 \times 10^{-12}$
∴ $v_2'^2 = 4.44 \times 10^{-12} = 444 \times 10^{-14}$
∴ $v_2' = 21.07 \times 10^{-7}$ m/s

ઉદાહરણ 14: એક ગ્રહની આસપાસ બે ઉપગ્રહો S_1 અને S_2 એક સમતલસ્થ એવી બે જુદી-જુદી વર્તુળાકાર કક્ષાઓમાં ભ્રમણ કરે છે. જો તેમના આવર્તકાળ અનુક્રમે $31.4\ h$ અને $62.8\ h$ હોય અને S_1 ની કક્ષાની ત્રિજ્યા $4000\ \mathrm{km}$ હોય, તો (i) S_2 ની કક્ષાની ત્રિજ્યા શોધો. (ii) બંને ઉપગ્રહોનાં કક્ષીય વેગનાં મૃલ્ય શોધો.

 $v_1' = 42.14 \times 10^{-7} \text{ m/s}$

ઉકેલ :

(i)
$$T^2 \alpha r^3$$

$$\therefore \frac{{\rm T_1}^2}{{\rm T_2}^2} = \frac{{\it r_1}^3}{{\it r_2}^3}$$

$$\therefore r_2^3 = r_1^3 \left(\frac{T_2^2}{T_1^2} \right)$$

$$= (4000)^3 \left(\frac{62.8^2}{31.4^2} \right)$$

$$\therefore r_2 = (4000)(4)^{\frac{1}{3}} = (4000)(1.588)$$
$$= 6352 \text{ km}$$

(ii)
$$v_1 = \frac{2\pi r_1}{T_1} = \frac{(2)(3.14)(4000)}{31.4}$$

= 800 km/h

$$v_2 = \frac{2\pi r_2}{T_2} = \frac{(2)(3.14)(6352)}{62.8}$$

= 635.2 km/h

સમુદ્રમાં ભરતી (માત્ર જાણકારી માટે)

વિદ્યાર્થીમિત્રો,

તમને કદાચ એવો ખ્યાલ હશે કે સમુદ્રમાં આવતી ભરતીનું કારણ ગુરુત્વાકર્ષણ છે. આ ઘટનામાં સૂર્ય અને ચંદ્ર બંનેનાં ગુરુત્વબળ ભાગ ભજવે છે. હવે સૂર્ય વડે પૃથ્વી પર લાગતું ગુરુત્વબળ, ચંદ્ર વડે પૃથ્વી પર લાગતા ગુરુત્વબળ કરતાં લગભગ 175 ગણું છે, તેમ છતાં ભરતીની ઘટનામાં સૂર્ય કરતાં ચંદ્રનો ફાળો વધુ છે - સૂર્ય કરતાં લગભગ 2.17 ગણો છે. આ હકીકત છે. આનું કારણ શું હશે ?

આનું કારણ એવું છે કે ગણતરીઓ પરથી ભરતી-જનકબળ (tidal force-ટાઇડ્લ ફોર્સ) ગુરુત્વબળના અંતર સાથેના ફેરફારના દર પર આધારિત હોવાનું જણાય છે, નહિ કે ગુરુત્વબળના મૂલ્ય પર. એટલે $F_{34^{\circ}43} > F_{34^{\circ}43}$ હોવા છતાં $\frac{d}{dr}(F_{34^{\circ}43}) > \frac{d}{dr}(F_{34^{\circ}43})$ હોય છે, તેથી ભરતીની ઘટનામાં ચંદ્રનો ફાળો વધુ છે. $F = \frac{GMm}{r^2}$ પરથી $\frac{d}{dr}(F) = \frac{-2GMm}{r^3}$. આ સૂત્રોમાં m =એકમ દળનું પાણી વિચારીને તમે જાતે આ બાબતને ચકાસી શકશો. આ માટે ઉપરનાં સૂત્રોમાં $(M_S = 2 \times 10^{30} \text{ kg}, r_S = 1.5 \times 10^{11} \text{ m}, M_m = 7.36 \times 10^{22} \text{ kg}, r_m = 3.84 \times 10^8 \text{m}$ લો.)

(આ તો માત્ર સાદી સમજૂતી છે, બાકી ભરતીની ઘટના ઘણી જટિલ છે. તેમાં સ્થાનિક પરિબળો-જેવાં કે સમુદ્ર તટથી સમુદ્રના તળિયાનું અંતર, સમુદ્રની નીચેનું નજીકનું પૃથ્વીનું બંધારણ, ઉપરાંત પૃથ્વીની ચાકગતિ વગેરે પણ અમુક અંશે ભાગ ભજવે છે.)

આપણે માત્ર ભરતી-જનક-બળ $\frac{1}{r^3}$ પર આધારિત હોવાની નોંધ લઈશું અને આ કારણથી ઉપરનાં સૂત્રો મુજબ ચંદ્રનો ફાળો સૂર્ય કરતાં વધુ છે.

સારાંશ

- 1. ટોલેમીના પૃથ્વી-કેન્દ્રીય વાદ અને કૉપરનિક્સના સૂર્ય-કેન્દ્રીય વાદમાંથી હાલમાં સૂર્ય-કેન્દ્રીયવાદની સત્યતા સ્વીકારવામાં આવી છે.
- 2. કૅપ્લરના નિયમો : (1) ''બધા ગ્રહો એવી લંબવૃતીય કક્ષાઓમાં ભ્રમણ કરે છે કે જેના એક કેન્દ્ર પર સૂર્ય હોય.'' (2) ''સૂર્ય અને ગ્રહને જોડતી રેખાએ સમાન સમયગાળામાં આંતરેલ ક્ષેત્રફળ સમાન હોય છે.'' (3) કોઈ પણ ગ્રહના પરિભ્રમણના આવર્તકાળ (T)નો વર્ગ તેની લંબવૃત્તીય કક્ષાની અર્ધ-દીર્ઘ અક્ષ (a) ના ઘનના સમપ્રમાણમાં હોય છે. $(T^2 \alpha a^3)$
- 3. ન્યૂટનનો ગુરુત્વાકર્ષણનો સાર્વત્રિક નિયમ : ''વિશ્વમાંનો દરેક પદાર્થ બીજા દરેક પદાર્થ પર આકર્ષી બળ લગાડે છે. જેનું મૂલ્ય તેમનાં દળોના ગુણાકારના સમપ્રમાણમાં અને તેમની વચ્ચેના અંતરના વર્ગના વ્યસ્ત પ્રમાણમાં હોય છે.'' એટલે કે, $F=rac{Gm_1m_2}{r^2}$.

સંદિશ સ્વરૂપમાં
$$\begin{bmatrix} 1 & \overrightarrow{F_{12}} \\ u \cdot 2 & a \cdot \zeta \end{bmatrix} = \frac{Gm_1m_2}{r^2} \, \hat{r}_{12}$$

જયાં
$$\hat{r}_{12} = \frac{\stackrel{\rightarrow}{r_2} - \stackrel{\rightarrow}{r_1}}{\stackrel{\rightarrow}{\mid r_{12} \mid}}$$
 અને $\stackrel{\rightarrow}{r_{12}} = (\stackrel{\rightarrow}{r_2} - \stackrel{\rightarrow}{r_1}); \stackrel{\rightarrow}{\mid r_{12} \mid} = r$

વળી,
$$\overrightarrow{F}_{12} = -\overrightarrow{F}_{21}$$

નોંધપાત્ર મુદા : (i) પોલા ગોળાકાર કવચને લીધે તેની બહારના બિંદુએ આવેલા કશ પર લાગતું ગુરૂત્વબળ, જાશે કે તે કવચનું બધું દળ તેના કેન્દ્ર પર કેન્દ્રિત થયું હોય તેમ ગશીને, મળતા બળ જેટલું હોય છે. (ii) પોલા ગોળાકાર કવચની અંદરના કોઈ પણ બિંદુએ આવેલ કશ પર લાગતું ગુરૂત્વબળ શૂન્ય હોય છે.

- 4. G નું મૂલ્ય સૌપ્રથમ કેવેન્ડિશે પ્રાયોગિક રીતે મેળવ્યું હતું. હાલમાં Gનું સ્વીકૃત મૂલ્ય $6.67 \times 10^{-11} \ N \ m^2/kg^2$ છે.
- 5. ગુરુત્વાકર્ષી બળને લીધે પદાર્થમાં ઉદ્ભવતા પ્રવેગને ગુરુત્વપ્રવેગ g કહે છે. પૃથ્વીની સપાટી

પરના બિંદુ માટે ગુરુત્વપ્રવેગનું સૂત્ર
$$g_e = rac{\mathrm{GM}_e}{\mathrm{R}_e^{-2}}$$
 છે. તેનું મૂલ્ય 9.8 m/s² છે.

વિષુવવૃત્ત કરતાં ધ્રુવ પર g_{ρ} નું મૂલ્ય થોડું વધારે હોય છે, પરંતુ તફાવત અત્યંત અલ્પ છે.

પૃથ્વીની સપાટીથી h ઊંચાઈએ ગુરુત્વપ્રવેગ $g(h)=\dfrac{g_e}{\left[1+\dfrac{h}{R_e}\right]^2}$ છે. સપાટીથી થોડી ઊંચાઈ

માટે $g(h) \approx g_e$ લઈ શકાય છે.

પૃથ્વીની સપાટીથી d ઊંડાઈએ પૃથ્વીની અંદર આવેલા બિંદુએ ગુરુત્વપ્રવેગ $g(d)=\left[1-rac{d}{\mathrm{R}_e}
ight]$

છે. પૃથ્વીના કેન્દ્ર પર ગુરુત્વપ્રવેગ શૂન્ય છે.

પૃથ્વીના ભ્રમણને લીધે λ અક્ષાંશ ધરાવતા સ્થળે પૃથ્વીની સપાટી પર અસરકારક ગુરુત્વપ્રવેગ

$$g' = g \left[1 - \frac{R_e \omega^2 \cos^2 \lambda}{g} \right] \hat{\omega}.$$

- - પર લાગતું ગુરુત્વબળ F = (I)(m). પૃથ્વીના કેન્દ્ર પર ગુરુત્વતીવ્રતા શૂન્ય છે. I અને gનાં મૂલ્યો સમાન હોય છે.
- 7. એકમદળના પદાર્થને અનંત અંતરેથી ગુરુત્વક્ષેત્રમાંના આપેલા બિંદુએ લાવવા દરમિયાન ગુરુત્વ- બળે કરેલા કાર્યના ઋણ મૂલ્યને તે બિંદુ આગળનું ગુરુત્વસ્થિતિમાન (ϕ) કહે છે. $\phi = \frac{GM_e}{r}$

પૃથ્વીના કેન્દ્રથી r (> \mathbf{R}_e) અંતરે $\mathbf{\phi}_e = \frac{-\mathbf{G}\mathbf{M}_e}{\mathbf{R}_e}$ અને પૃથ્વીની સપાટી પર ગુરુત્વસ્થિતિમાન

 $φ_e = rac{-GM_e}{R_e}$. ગુરુત્વસ્થિતિમાનનો એકમ J kg $^{-1}$ અને પારિમાણિક સૂત્ર $M^0L^2T^{-2}$ છે.

 $\mathrm{U} \; = \; rac{-\mathrm{GM}_e m}{r} \; = \; \mathrm{\phi} m \;$ અને પૃથ્વીની સપાટી પરના પદાર્થની ગુરુત્વસ્થિતિ-ઊર્જા

$$\mathbf{U}_e \; = \; \frac{-\mathbf{G}\mathbf{M}_e m}{\mathbf{R}_e} \; = \; \boldsymbol{\phi}_e m.$$

ગુરુત્વસ્થિતિમાન અને ગુરુત્વસ્થિતિ-ઊર્જાનાં મૂલ્યોનું કોઈ મહત્ત્વ નથી, માત્ર તેમના ફેરફારનું જ મહત્ત્વ છે.

8. પૃથ્વીની સપાટી પરના સ્થિર પદાર્થ માટે કુલ ઊર્જા = તેની સ્થિતિ-ઊર્જા = $\dfrac{-\mathrm{GM}_e m}{\mathrm{R}_e}$.

$$\therefore$$
 તેની નિષ્ક્રમણ-ઊર્જા = બંધન-ઊર્જા = $\dfrac{\mathrm{GM}_e m}{\mathrm{R}_e}$ અને નિષ્ક્રમણ-વેગ $v_e = \sqrt{\dfrac{2\mathrm{GM}_e}{\mathrm{R}_e}}$ =

11.2 km/s.

ચંદ્રની સપાટી પરના સ્થિર પદાર્થ માટે નિષ્ક્રમણ-વેગ 2.3 km/s.

9. પૃથ્વીની આસપાસ ફરતા ઉપગ્રહનો કક્ષીય વેગ $v_0 = \sqrt{\frac{{
m GM}_e}{r}}$ અને ઉપગ્રહની કુલ ઊર્જા

$$=rac{-\mathrm{GM}_{e}m}{2r}$$
. તેની બંધન-ઊર્જા $=rac{\mathrm{GM}_{e}m}{2r}$. ભૂસ્થિર ઉપગ્રહનો આવર્તકાળ T $=24$ hour

 $=24 \times 3600 \text{ s.}$ તેઓ વિષુવવૃત્તીય સમતલમાં પૂર્વ-પશ્ચિમ દિશામાં ભ્રમણ કરે છે. પૃથ્વીની સપાટીથી તેની ઊંચાઈ h=35800 km (લગભગ) છે. ધ્રુવીય ઉપગ્રહ ઉત્તર-દક્ષિણ દિશામાં ભ્રમણ કરે છે.

સ્વાધ્યાય

નીચેનાં વિધાનો માટે આપેલા વિકલ્પોમાંથી યોગ્ય વિકલ્પ પસંદ કરો :

- 1. N m^2/kg^2 એ નીચેનામાંથી શાનો એકમ છે ?
 - (A) રેખીય વેગમાન

- (B) ગુરુત્વબળ
- (C) ગુર્ત્વાકર્ષણનો સાર્વત્રિક અચળાંક
- (D) ગુરૂત્વપ્રવેગ
- 2. કોઈ ગ્રહની આસપાસ ભ્રમણ કરતા જુદા જુદા ઉપગ્રહોની કક્ષીય ત્રિજયા r અને અનુરૂપ આવર્તકાળ T પરથી મળતા $\log r \log T$ ના આલેખનો ઢાળ કેટલો હશે ?
 - (A) $\frac{3}{2}$
- (B) 3
- (C) $\frac{2}{3}$
- (D) 2

 $oldsymbol{3}$. પૃથ્વીની સપાટી પર ગુરુત્વપ્રવેગનું મૂલ્ય $9.81~\mathrm{m/s^2}$ હોય તો પૃથ્વીની સપાટીથી પૃથ્વીના

	વ્યાસ જેટલી ઊંચાઈએ ગુરુત્વપ્રવેગ કેટલો હશે ?
	(A) 4.905 m/s^2 (B) 2.452 m/s^2 (C) 3.27 m/s^2 (D) 1.09 m/s^2
4.	પૃથ્વીની સપાટી પર ગુરુત્વસ્થિતિમાન $\Phi_{_{ m Z}}$ હોય, તો સપાટીથી પૃથ્વીની ત્રિજ્યા જેટલી ઊંચાઈએ
	ગુરુત્વસ્થિતિમાન કેટલું હશે ?
	(A) $\frac{\Phi_e}{2}$ (B) $\frac{\Phi_e}{4}$ (C) Φ_e (D) $\frac{\Phi_e}{3}$
	2 4
5.	પૃથ્વીની સપાટી પર ગુરુત્વપ્રવેગ 10 m/s² અને પૃથ્વીની ત્રિજ્યા 6400 km લેતાં, સપાટીથી
	64 km ઊંડાઈએ જતાં ગુરુત્વપ્રવેગ g ના મૂલ્યમાં થતો ઘટાડો m/s^2 હશે. (A) 0.1 (B) 0.2 (C) 0.05 (D) 0.3
6.	(A) 0.1 (B) 0.2 (C) 0.05 (D) 0.3 પૃથ્વીની ચાકગતિને લીધે તેના વિષ્વવૃત્ત પર રહેલા પદાર્થનો પૃથ્વીના કેન્દ્રથી દૂર તરફની
	ત્રિજ્યાવર્તી દિશામાંનો આભાસી પ્રવેગ કેટલો હશે ?
	(A) ωR_e (B) $\omega^2 R_e$ (C) ωR_e^2 (D) $\omega^2 R_e^2$
	જ્યાં, $\omega = $ પૃથ્વીની કોણીય ઝડપ,
	Rૂ = પૃથ્વીની ત્રિજ્યા
7.	ત્રહની આસપાસ જુદી-જુદી વર્તુળકક્ષાઓમાં ભ્રમણ કરતા જુદા-જુદા ઉપગ્રહો માટે કોણીય
	વેગમાન L અને કક્ષીય ત્રિજ્યા r વચ્ચેનો સંબંધ નીચેનામાંથી કયો છે ?
	(A) L $\alpha \frac{1}{\sqrt{r}}$ (B) L αr^2 (C) L $\alpha \sqrt{r}$ (D) L $\alpha \frac{1}{r^2}$
8.	ગોળાકાર નિયમિત કવચની અંદરના વિસ્તારમાં બધાં બિંદુઓએ
0.	પાગાડાર ભવાના કવવના અઠરના વિસારના ખવા ખિટુઆએ (A) ગુરુત્વતીવ્રતા અને ગુરુત્વસ્થિતિમાન બંને શૂન્ય હોય છે.
	(//) યુડુત્વતીવ્રતા અને ગુરુત્વસ્થિતિમાન બંને અશૂન્ય હોય છે.
	(C) ગુરુત્વતીવ્રતા અશૂન્ય અને ગુરુત્વસ્થિતિમાન શૂન્ય હોય છે.
	(D) ગુરૂત્વતીવ્રતા શૂન્ય અને ગુરૂત્વસ્થિતિમાન અશૂન્ય પણ સમાન હોય છે.
9.	નીચેનામાંથી કયો વિકલ્પ અનુક્રમે ગુરુત્વસ્થિતિમાન અને ગુરુત્વસ્થિતિ-ઊર્જાનાં પારિમાણિક
	સૂત્રો રજૂ કરે છે ?
	(A) $M^{1}L^{1}T^{-1}$, $M^{1}L^{2}T^{-2}$ (B) $M^{0}L^{2}T^{-2}$, $M^{1}L^{2}T^{-2}$
	(C) $M^0L^2T^{-2}$, $M^1L^2T^2$ (D) $M^1L^2T^{-1}$, $M^2L^1T^{-1}$
10.	સૂર્યની આસપાસ પરિભ્રમણ કરતા ગ્રહ માટે
	(A) રેખીય ઝડપ અને કોણીય ઝડપ અચળ હોય છે.
	(B) ક્ષેત્રીય વેગઅને કોણીય વેગમાન અચળ હોય છે.
	(C) રેખીય ઝડપ અને ક્ષેત્રીય વેગ અચળ હોય છે. (D) ક્ષેત્રીય વેગ અચળ હોય છે, પણ કોણીય વેગમાન બદલાય છે.
11.	ગ્રહની આસપાસ એક જ કક્ષામાં ઘૂમતા બે ઉપગ્રહોનાં દળોનો ગુણોત્તર $\frac{m_1}{m_2}=\frac{1}{2}$ હોય,
	તો તેમના કક્ષીય વેગોનો ગુણોત્તર $\frac{v_1}{v_2} = \dots$
	(A) 1 (B) $\frac{1}{2}$ (C) 2 (D) 4
	(A) 1 (B) $\frac{1}{2}$ (C) $\frac{1}{2}$ (D) $\frac{1}{4}$
12.	એક ગ્રહની આસપાસ r ત્રિજ્યાની કક્ષામાં રહેલા ઉપગ્રહનો આવર્તકાળ ${ m T}$ હોય, તો $4r$
	ત્રિજ્યાની કક્ષામાંના ઉપગ્રહનો આવર્તકાળ T' =
	(A) 4T (B) 2T (C) 8T (D) 16T
	Joaded from https://www.etudicatedov.co

Downloaded from https://www.studiestoday.com

ગુરુત્વાકર્ષણ 69

> 13. બે ગ્રહોની ત્રિજ્યાઓ અનુક્રમે r_1 અને r_2 તથા તેમની ઘનતાઓ અનુક્રમે ho_1 અને ho_2 છે. તેમની સપાટી પરના ગુરુત્વપ્રવેગ અનુક્રમે g_1 અને g_2 છે, તો. $\frac{g_1}{g_2} = \dots$

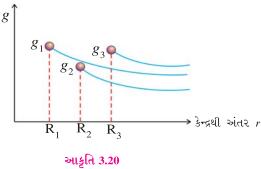
- (A) $\frac{r_1 \rho_1}{r_2 \rho_2}$
- (B) $\frac{r_2 \rho_2}{r_1 \rho_1}$ (C) $\frac{r_1}{r_2} \cdot \frac{\rho_2}{\rho_1}$ (D) $\frac{r_2}{r_1} \cdot \frac{\rho_1}{\rho_2}$
- **14.** પૃથ્વીની આસપાસ ભ્રમણ કરતા ઉપગ્રહોની ગતિ-ઊર્જા (E_{ι}) અને તેમની કક્ષીય ત્રિજ્યા (r) વચ્ચેનો સંબંધ કેવા પ્રકારનો હશે ?

- (A) $E_k \propto r$ (B) $E_k \propto \frac{1}{r}$ (C) $E_k \propto r^2$ (D) $E_k \propto \frac{1}{r^2}$
- **15.** પૃથ્વીની ત્રિજ્યા \mathbf{R}_e માંથી $\dfrac{\mathbf{R}_e}{2}$ થાય તેમ પૃથ્વીનું સંકોચન થાય (પણ કપાઈ જતી નથી !) તો તે બે સ્થિતિમાં તેના કેન્દ્રથી \mathbf{R}_{p} અંતરે આવેલા બિંદુએ ગુરુત્વપ્રવેગ gનાં મૂલ્ય અને ગુરુત્વસ્થિતિમાન ¢નાં મૂલ્ય અંગે શું કહી શકાય ?
 - (A) g અને ϕ બંનેનાં મૂલ્ય અડધાં થાય છે.
 - (B) gનું મૂલ્ય અડધું થાય અને φનું મૂલ્ય અગાઉ જેટલું જ છે.
 - (C) gનું મૂલ્ય અગાઉ જેટલું જ અને ϕ નું મૂલ્ય અડધું થાય છે.
 - (D) g અને φ ના બંનેનાં મૂલ્ય અગાઉ જેટલાં જ રહે છે.

જવાબો

- **2.** (C) **3.** (D) **4.** (A) **1.** (C)
 - **5.** (A) **6.** (B)

11. (A)


- **7.** (C) **8.** (D)
- **9.** (B) **10.** (B)
- **12.** (C)

- **14.** (B) **13.** (A)
- **15.** (D)

નીચે આપેલ પ્રશ્નોના જવાબ ટૂંકમાં આપો :

- પૃથ્વીના વિષુવવૃત્ત અને ધ્રુવમાંથી કયા સ્થળે ગુરુત્વપ્રવેગ gનું મૂલ્ય વધારે હોય છે ? શા માટે ?
- પૃથ્વીના કેન્દ્ર પર ગુરુત્વપ્રવેગ અને ગુરુત્વતીવ્રતાનાં મૂલ્યો જણાવો.
- એક બિંદુએ ગુરુત્વતીવ્રતાનું મૂલ્ય 0.7 N/kg છે, તો તે બિંદુએ 5 kg દળના પદાર્થ પર લાગતા ગુરુત્વબળનું મૂલ્ય કેટલું હશે ? [**જવાબ** : 3.5 N]
- ત્રિજ્યાના સમપ્રમાણમાં હોય છે.'' – આ વિધાન સાચું છે ? જો ન હોય તો સુધારીને લખો.
- ધ્રુવીય ઉપગ્રહના કોઈ બે ઉપયોગો જણાવો.
- જો કોઈ ઉપગ્રહની ગતિ-ઊર્જા $6 imes 10^9 \, \mathrm{J}$ હોય તો તેની સ્થિતિ-ઊર્જા કેટલી હશે ? કુલ ઊર્જા કેટલી હશે ?
- એક ઉપગ્રહની સ્થિતિ-ઊર્જા $-8 \times 10^9 \, \mathrm{J}$ છે. તો તેની બંધન-ઊર્જા (અથવા નિષ્ક્રમણ-ઊર્જા) કેટલી હશે ?

8. જુદા-જુદા ગ્રહોનાં દળ $\mathbf{M_1}$, $\mathbf{M_2}$, $\mathbf{M_3}$ ત્રિજ્યાઓ $\mathbf{R_1}$, $\mathbf{R_2}$, $\mathbf{R_3}$ અને સપાટી પરના ગુરુત્વ- પ્રવેગ $\mathbf{g_1}$, $\mathbf{g_2}$, $\mathbf{g_3}$ છે, તો તેમને માટેના નીચેના આલેખ પરથી તેમનાં દળનાં મૂલ્યોને ઊતરતા ક્રમમાં ગોઠવો.

(**Hint :** કોઈક નિશ્ચિત અંતર $r > R_3$ માટે $g = \frac{GM}{r^2}$ પરથી વિચારો.]

[જવાબ : $M_3 > M_1 > M_2$]

નીચેના પ્રશ્નોના જવાબ આપો :

- ન્યૂટનનો ગુરુત્વાકર્ષણનો સાર્વત્રિક નિયમ જણાવો અને તેના સૂત્રને સિંદેશ સ્વરૂપમાં લખો અને સમજાવો.
- 2. પૃથ્વીના ઉપગ્રહ માટે કક્ષીય વેગનું સૂત્ર મેળવો.
- પૃથ્વીના ઉપગ્રહ માટે આવર્તકાળનું સૂત્ર તારવો.
- 4. પૃથ્વીની સપાટી પર રહેલા સ્થિર પદાર્થ માટે નિષ્ક્રમણ-ઝડપ (નિષ્ક્રમણ-વેગ)નું સૂત્ર મેળવો.
- 5. પૃથ્વીની સપાટીથી *d* ઊંડાઈએ ગુરુત્વપ્રવેગનું સૂત્ર મેળવો.
- ઉપગ્રહની કુલ ઊર્જાનું સૂત્ર મેળવો.
- 7. ગુરુત્વાકર્ષી તીવ્રતાની વ્યાખ્યા આપો અને તેનું સૂત્ર લખો. તેનો એકમ અને પારિમાણિક સૂત્ર જણાવો.
- 8. ગુરુત્વસ્થિતિમાનની વ્યાખ્યા આપો. તેનો એકમ અને પારિમાણિક સૂત્ર જણાવો.
- 9. ગુરુત્વ સ્થિતિ-ઊર્જાની વ્યાખ્યા આપો. તેનો એકમ અને પારિમાણિક સૂત્ર જણાવો.
- 10. પૃથ્વીના કેન્દ્રથી $r \ (> R_e)$ અંતરે તેના ગુરુત્વસ્થિતિમાનનું સૂત્ર મેળવો.
- 11. પૃથ્વીના ભ્રમણને લીધે અક્ષાંશ સાથે અસરકારક ગુરુત્વપ્રવેગ g' માં થતાં ફેરફારનું સૂત્ર મેળવો.
- 12. સૂર્યની આસપાસ ઘૂમતા ગ્રહની અર્ધ-દીર્ઘ અક્ષ a છે અને આટલા અંતરે ગ્રહની યાંત્રિક ઊર્જા

 $\frac{-\mathrm{GM}m}{2a}$; જ્યાં, $\mathrm{M}=\mathrm{A}$ સૂર્યનું દળ; $m=\mathrm{A}$ હનું દળ. જ્યારે A હનું સૂર્યથી અંતર r હોય ત્યારે તેનો વેગ શોધો.

[જવાબ :
$$v = \sqrt{GM\left(\frac{2}{r} - \frac{1}{a}\right)}$$
]

[Hint : યાંત્રિક ઊર્જા-સંરક્ષણના નિયમનો ઉપયોગ કરો.].

13. g અને G વચ્ચેના તફાવતના મુદ્દા આપો.

નીચેના દાખલા ગણો :

1. એક અવકાશયાન પૃથ્વીથી સીધું સૂર્ય તરફ જાય છે. તો પૃથ્વીના કેન્દ્રથી કેટલે દૂર અવકાશયાન પર લાગતાં સૂર્ય અને પૃથ્વીનાં ગુરુત્વાકર્ષી બળો સમાન મૂલ્યનાં થશે ? સૂર્ય અને પૃથ્વી વચ્ચેનું અંતર 1.49×10^8 km, સૂર્ય અને પૃથ્વીનાં દળ અનુક્રમે 2×10^{30} kg અને 6×10^{24} kg લો. [જવાબ : 25.7×10^4 km]

ગુરુત્વાકર્ષણ 71

2. પૃથ્વી જો સમગ્રપણે સોનાનો જ બનેલો ગોળો હોત (!) તો પૃથ્વીની સપાટી પર ગુરુત્વપ્રવેગનું મૂલ્ય કેટલું હોત ? પૃથ્વીની ત્રિજ્યા = 6400 km., સોનાની ઘનતા = 19.3×10^3 kg/ m^3 , G = 6.67×10^{-11} Nm²/kg². [જવાબ : 34.49 m s $^{-2}$]

3. સૂર્યની આસપાસ પૃથ્વીની વર્તુળાકાર ભ્રમણકક્ષાની ત્રિજ્યા $1.5 \times 10^8~\mathrm{km}$ છે. પૃથ્વીની કક્ષીય ઝડપ 30 km/s છે, તો સૂર્યનું દ્રવ્યમાન શોધો. $G = 6.67 \times 10^{-11}~\mathrm{Nm^2/kg^2}$.

[જવાબ :
$$2.02 \times 10^{30}$$
kg]

4. પૃથ્વીની સપાટીથી, પૃથ્વીની ત્રિજ્યા જેટલી ઊંચાઈએ એક ઉપગ્રહ પૃથ્વીની આસપાસ પરિભ્રમણ કરે છે, તો તેના (i) કક્ષીય ઝડપ અને (ii) આવર્તકાળ શોધો. $G=6.67\times 10^{-11}$ Nm^2/kg^2 , પૃથ્વીની ત્રિજ્યા =6400~km અને પૃથ્વીનું દળ $=6\times 10^{24}~kg$ લો.

[જવાબ :
$$v_0 = 5.59 \times 10^3$$
 m/s, $T = 14376$ s]

- 5. 200 kg નો એક ઉપગ્રહ, પૃથ્વીની સપાટીથી 1000 km ઊંચાઈએ પૃથ્વીની આસપાસ પરિભ્રમણ કરે છે, તો આ ઉપગ્રહની (i) બંધન-ઊર્જા અને (ii) નિષ્ક્રમણ-ઝડપ શોધો. પૃથ્વીનું દળ $G=6.67\times 10^{-11}\ \mathrm{Nm^2/kg^2}$ અને પૃથ્વીની ત્રિજ્યા = 6400 km લો. પૃથ્વીનું દળ = $6\times 10^{24}\ \mathrm{kg}$. [જવાબ : $5.4\times 10^9\ \mathrm{J};\ v_e=7.35\times 10^3\ \mathrm{m/s}$]
- 6. એક કૃત્રિમ ઉપગ્રહ પૃથ્વીની આસપાસ, પૃથ્વીની સપાટીથી તદ્દન નજીક રહીને ભ્રમણ કરે $\dot{\Theta}, \ \, {\rm all} \ \, {\rm all} \ \, \dot{\Theta} = 2\pi \sqrt{\frac{{\rm R}_e}{g}} \, .$
- 7. સાબિત કરો કે પૃથ્વીની સપાટીની તદ્દન નજીક રહીને પૃથ્વીની આસપાસ ભ્રમણ કરતા ઉપગ્રહની રેખીય (કક્ષીય) ઝડપ અને પૃથ્વી પરના સ્થિર પદાર્થની નિષ્ક્રમણ-ઝડપનો ગુણોત્તર $\frac{1}{\sqrt{2}}$ જેટલો છે.
- 8. પૃથ્વી અને ચંદ્રનાં દળો અને ત્રિજ્યાઓ અનુક્રમે $\mathbf{M_1}$, $\mathbf{R_1}$ અને $\mathbf{M_2}$, $\mathbf{R_2}$ છે. તેમનાં કેન્દ્રો વચ્ચેનું અંતર d છે, તો તેમને જોડતી રેખાના મધ્યબિંદુ પરથી m દળના ક્શને કેટલા વેગથી $\hat{\mathbf{s}}$ કેવો જોઈએ કે જેથી તે અનંત અંતરે નાસી જાય ?

[જવાબ :
$$v_e = \sqrt{\frac{4G}{d}(M_1 + M_2)}$$
]

9. ખૂબ જ મોટા દળવાળા તારા (star)ની આસપાસ જુદી-જુદી વર્તુળાકાર કક્ષામાં ભ્રમણ કરતા $\frac{-5}{2}$ અનુસાર લાગતું હોય તો કક્ષીય આવર્તકાળનો વર્ગ r ના કયા ઘાતાંક પર આધાર રાખતો હશે ?

[894 :
$$T^2 \propto r^{7/2}$$
]

•

Downloaded from https://www.studiestoday.com

પ્રકરણ 4

ઘન પદાર્થોના યાંત્રિક ગુણધર્મો

- 4.1 પ્રસ્તાવના
- 4.2 ઘન પદાર્થો
- 4.3 સ્થિતિસ્થાપકતા
- 4.4 પ્રતિબળ અને વિકૃતિ વચ્ચેનો સંબંધ
- 4.5 હુકનો નિયમ અને સ્થિતિસ્થાપકતા અંક
- 4.6 પોઇસનનો ગુણોત્તર
- 4.7 સ્થિતિસ્થાપકીય સ્થિતિ-ઊર્જા
- 4.8 દ્રવ્યની સ્થિતિસ્થાપક વર્તણૂકના ઉપયોગ
 - સારાંશ
 - સ્વાધ્યાય

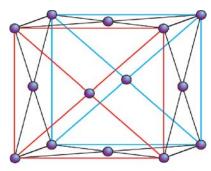
4.1 પ્રસ્તાવના (Introduction)

આ પ્રકરણમાં આપણે, ઘન પદાર્થનું બંધારણ અને તેના યાંત્રિક ગુણધર્મોનો અભ્યાસ કરીશું. આ ગુણધર્મો પૈકી એક સ્થિતિ સ્થાપકતાનો વિસ્તૃત અભ્યાસ આપણે આ પ્રકરણમાં કરીશું. વીસમી સદીના છેલ્લા બે દાયકામાં સોલિડ સ્ટેટ ભૌતિકવિજ્ઞાન અને લિક્વિડ સ્ટેટ ભૌતિકવિજ્ઞાનમાં ઘણી પ્રગતિ સધાઈ છે. હવે ઘણા પદાર્થો માટે સ્થિતિસ્થાપકતાને લગતી ભૌતિક રાશીઓના મૂલ્ય કમ્પ્યૂટરની મદદથી ગણી કાઢવાનું શક્ય બન્યું છે. પ્રસ્તુત પ્રકરણમાં આપણે સ્થિતિસ્થાપકતાને લગતી પ્રાથમિક માહિતીની ચર્ચા કરીશું અને છેલ્લે ઘન પદાર્થની સ્થિતિસ્થાપકતાના વ્યાવહારિક ઉપયોગોની ચર્ચા કરીશું.

4.2 ઘન પદાર્થો (Solids)

ઘન પદાર્થીનો એક અગત્યનો ગુણધર્મ એ છે કે, નિશ્ચિત ભૌતિક પરિસ્થિતિઓમાં ઘટકકણો વચ્ચેનું અંતર અચળ હોય છે. પદાર્થના તાપમાનને અનુરૂપ હોય તેવા કંપવિસ્તારથી આ ઘટક ક્ણો પોતાના મધ્યમાન સ્થાનની આસપાસ દોલનો કરતાં હોય છે. પરંતુ કોઈ પણ બે ક્ણ વચ્ચેનું સરેરાશ અંતર હંમેશાં અચળ રહે છે. સંતુલન સ્થાનમાં રહેલા ક્ણો વચ્ચેના અંતરોમાં વધારો ઘટાડો કરવામાં આવે, તો આ ક્યો વચ્ચે પ્રવંતતાં આંતરઅશુ બળો એ રીતે બદલાય છે જેથી ક્યો વચ્ચેના સરેરાશ અંતરો જળવાઈ રહે. આમ, જયારે ક્યોને તેમના મધ્યમાન સ્થાનથી વિચલિત કરવામાં આવે તો તેમને તેમના મૂળ સ્થાન તરફ ખેંચી જતું બળ અસ્તિત્વમાં આવે છે. આવા બળને પુનઃસ્થાપક બળ કહે છે.

ઘન પદાર્થોમાં બંધારણીય કણોની ગોઠવણને આધારે તેમના ત્રણ પ્રકાર પાડવામાં આવે છે. આવુ વર્ગીકરણ અન્ય કોઈ ગુણધર્મને આધારે પણ કરી શકાય. આ પ્રકારો છે : (i) સ્ફટિકમય પદાર્થો (ii) અસ્ફટિકમય પદાર્થો અને (iii) અર્ધસ્ફટિકમય પદાર્થો.


(i) સ્ફટિકમય ઘન પદાર્થો (Crystalline Solids): આ પ્રકારના ઘન પદાર્થોમાં ઘટકકણોની નિયમિત ભૌમિતિક હારબદ્ધ ગોઠવણી હોય છે. આ બાબત સમજવા માટે આકૃતિ 4.1 માં બિન્દુઓની દ્વિપરિમાણમાં અનંત ગોઠવણીનો અંશમાત્ર છે. અહીં કોઈ પણ બિન્દુ 1, 2, કે 3 પર રહીને અવલોકન કરતાં તમને સમાન ભાત જોવા મળશે. ત્રિપરિમાણમાં બિન્દુઓની આવી ગોઠવણીને 'લૅટિસ' કહે છે. લૅટિસ ગાણિતિક ખ્યાલ છે. જો બધી રીતે સમાન અશુઓ, પરમાણુઓ કે આયનો અથવા તેમના સમૂહો (કે જેમને બેસિસ કહેવાય છે.) લૅટિસ બિન્દુઓ પર મૂકતાં સ્ફટિકનું

ઘન પદાર્થોના યાંત્રિક ગુણધર્મો 73

થાય છે. ઘટકકણો વચ્ચે પ્રર્વતમાન આંતરક્રિયાઓને અનુલક્ષીને જુદા જુદા પ્રકારના સ્ફ્રિટિકનું નિર્માણ થાય છે. પરંતુ ઘન પદાર્થ આપેલ પરિસ્થિતિમાં, એવું જ બંધારણ અપનાવે છે, જેથી તેની આંતરિક ઊર્જા લઘુતમ થાય.

સ્ફટિકને એક કરતાં વધુ એકસમાન એકમોનો બનેલો વિચારી શકાય. આવો જ એક કૉપરના ઘટકક્શો (આયનો)નો બનેલો 'એકમ' આકૃતિ 4.2માં દર્શાવેલ છે. અહીં આ ગોઠવણીમાં સમઘનના દરેક શિરોબિન્દુ પર અને સમઘનની બાજુઓનાં કેન્દ્રો પર એક-એક આયન ગોઠવાયેલા હોય છે. હવે જો આવા એકમોને ત્રિપરિમાણમાં એકબીજાની પાસેપાસે ગોઠવતા જઈએ તો કૉપરનો સ્ફટિક તૈયાર થાય છે.

કૉપરના સ્ફ્રટિકનો એકમકોષ આકૃતિ 4.2

સ્ફટિકના બંધારણનો અભ્યાસ કરતી ભૌતિકવિજ્ઞાનની શાખોને ક્રિસ્ટલોગ્રાફી કહે છે. સ્ફટિક બંધારણનો અભ્યાસ X—કિરણો, ઇલેક્ટ્રૉન-કિરણો (electron beam) અને ન્યુટ્રૉન કિરણો (neutron beam) વડે કરી શકાય છે.

સ્ફટિકમય પદાર્થોમાં લાંબા ગાળાની વ્યવસ્થા (long range order) જોવા મળે છે. પરિણામે સ્ફટિકમય પદાર્થો નિશ્ચિત તાપમાને પીગળે છે.

સ્ફ્રિટિકમય પદાર્થોને તેમના બંધારણીય ક્શોના પ્રકાર અને તેમની વચ્ચેના પ્રવર્તમાન બંધન (bonding)ના આધારે ચાર વર્ગોમાં વહેંચવામાં આવે છે.

આણ્વિક ઘન (Molecular Solids) : આવા ઘન પદાર્થોમાં બંધારણીય ક્ણો તરીકે અણુઓ હોય છે. આવા પદાર્થના અણુઓ ઇલેક્ટ્રૉનની ભાગીદારીને કારણે બનતા સહસંયોજક-બંધને કારણે નિર્માણ પામે છે. અણુઓ ધ્રુવીય કે અધ્રુવીય કોઈ શકે. (જો અણુઓમાં ધન વીજભાર અને ૠણ વીજભારનાં કેન્દ્ર એકબીજાં સાથે સંપાત થતાં કોય તો અણુ-અધ્રુવીય (non-polar) કહેવાય, નહીં તો ધ્રુવીય (polar) કહેવાય, આયોડિન (I_2) , ફૉસ્ફરસ (P_4) અને સલ્ફર (S_8) અને કાર્બન ડાયૉક્સાઇડ (CO_2) ના અણુઓ અધ્રુવીય છે. જયારે પાણી (H_2O) ના ધ્રુવીય અણુ છે. જો ઘન પદાર્થ ધ્રુવીય અણુઓનો બનેલો હોય, તો આવા ઘન પદાર્થના નિર્માણ માટે ડાયપોલ-ડાયપોલ આકર્ષણબળ જવાબદાર હોય છે. જયારે અન્ય પ્રકારના આણ્વિક ઘન પદાર્થના નિર્માણ માટે વાન-ડર-વાલ બળો જવાબદાર હોય છે. આ આંતર-અણુબળો નબળા હોવાથી આવા ઘન પદાર્થોના ગલનબિન્દુ અન્ય ઘન પદાર્થોની સરખામણીમાં નીચા (ઓછા મૂલ્યના) હોય છે. આ પદાર્થો ઉપ્મા અને વિદ્યુતના અવાહક હોય છે.

આયનિક ઘન પદાર્થો (Ionic Solids): આ પ્રકારના ઘન પદાર્થોમાં બંધારશીય કશો આયન હોય છે. આ આયનો વચ્ચે ઉદ્ભવતા સ્થિતવિદ્યુતીય આકર્ષણ અને જેના મૂળ ક્વૉન્ટમ મિકેનિક્સમાં છે, તેવા અપાકર્ષણના સંયુક્ત પરિણામે બંધ રચાતા હોય છે. આ આકર્ષી બળો ઘણાં જ પ્રબળ હોવાથી આવા પદાર્થો સખત (hard) હોય છે. અને તેમનાં ગલનબિન્દુ ઊંચાં હોય છે. આવા ઘન પદાર્થો વિદ્યુતના અવાહક હોય છે. દા.ત., NaCl.

સહસંયોજક ઘન પદાર્થો (Covalent Solids): આવા પદાર્થોના બંધારણીય કણો તરીકે પરમાણુ હોય છે. દરેક પરમાણુ તેના નિકટતમ પડોશી પરમાણુઓ સાથે સહસંયોજક-બંધથી જોડયેલો હોય છે. જો કોઈ પરમાણુને સમચતુષ્કલક (tetrahedron)ના કેન્દ્ર પર રહેલો વિચારીએ તો તેના ચાર નિકટતમ પડોશી પરમાણુઓ સમચતુષ્કલકના શિરોબિન્દુ પર હોય છે. આવી રચનાનું ત્રિપરિમાણમાં પુનરાવર્તન કરતાં સહસંયોજક ઘન પદાર્થો તૈયાર થાય છે. ડાયમંડ, સિલિકોન, જર્મેનિયમ વગેરે આ પ્રકારના પદાર્થો છે. આવા પદાર્થો પણ ઘણા સખત હોય છે અને તેમનાં ગલનબિન્દુઓ પણ ઊંચાં હોય છે. આવા પદાર્થો અર્ધવાહકો તરીકે વર્તે છે. આવા ઘન પદાર્થો 'નેટવર્ક સોલિડ' તરીકે પણ ઓળખાય છે.

ધાત્ત્વિક ઘન પદાર્થો (Metallic Solids) : જો લૅટિસ બિન્દુઓ પર ધન આયનો ગોઠવવામાં આવે, તો ધાત્વિક ઘન પદાર્થનું નિર્માણ થાય. ધાત્વિક ઘન પદાર્થોના નિર્માણ સમયે ધાતુના અશુઓ તેમના વેલેન્સ ઇલેક્ટ્રૉન ગુમાવીને ઘન આયન બને છે. આ રીતે મળેલાં મુક્ત ઇલેક્ટ્રૉન આયનો વચ્ચેના અવકાશમાં અસ્તવ્યસ્ત ગતિ કરે છે. તેથી આવા ઘન પદાર્થો ઉષ્મા અને વિદ્યુતના સુવાહકો હોય છે.

(ii) અસ્ફટિકમય પદાર્થો (Non-crystalline substances) : અમુક ઘન પદાર્થોના બંધારણીય ક્યાંની ગોઠવણી વ્યવસ્થિત હોતી નથી. આવા ઘન પદાર્થોને અસ્ફટિકમય ઘન પદાર્થો કહે છે. ઉદાહરણ તરીકે લાકડું.

અમુક ઘન પદાર્થો એવા પણ હોય છે જે કે સ્ફટિકમય રૂપ ધારણ કરી શકે તેમ છે. પરંતુ આવા પદાર્થને પીગળેલ અવસ્થામાં તેના ઘનીકરણ તાપમાન કરતો ઊંચા તાપમાન રાખી જો એકાએક તેનું તાપમાન ખૂબ નીચું લાવી દેવામાં આવે, તો તેના ઘટકકણોને યોગ્ય રીતે ગોઠવાઈને સ્ફટિકરચના કરવાની તક મળે તે પહેલાં જ તેઓ ફક્ત ટૂંકા ગાળાની વ્યવસ્થા (short range order) સાથે ગોઠવાઈને જે ઘન પદાર્થ રચે છે, તેને ગ્લાસી અથવા એમોરફસ પદાર્થ કહે છે. અહીં short range order નો અર્થ એ છે કે કોઈ કણ તેની નજીકના અમુક (ચાર-પાંચ) કણો સાથે બંધ બનાવી તેમની વચ્ચે ચોક્કસ ભૌમિતિક ગોઠવણને ગ્લાસી પદાર્થની રચના કહે છે.

એ નોંધો કે ગ્લાસી પદાર્થોને જો પૂરતી તક આપવામાં આવી હોત, તો તેઓ સ્ફ્રિટિકમય પદાર્થ તરીકે પોતાની હાજરી જરૂર નોંધાવી શક્યા હોત. જયારે અમુક પદાર્થો તો એવા છે કે જેમને ગમે તેટલી તક પૂરી પાડવામાં આવી હોત તોપણ તેઓ અસ્ફ્રિટિકમય જ રહ્યા હોત.

અહીં પ્રશ્ન એ ઉપસ્થિત થાય કે જે રીતે ગ્લાસી પદાર્થીમાં long range order હોતો નથી, તે જ રીતે પ્રવાહીમાં પણ long range order હોતો નથી, તો પછી તે પદાર્થો પ્રવાહીની જેમ વહન પામતા કેમ નથી ? ઉત્તર એ છે કે પ્રવાહી કરતાં ગ્લાસી પદાર્થોમાં આંતર-અણુબળો વધુ પ્રબળ હોય છે. આથી જ તો પ્રવાહીની માફક ગ્લાસી પદાર્થ સામાન્ય સંજોગોમાં વહી શકતો નથી. હવે તમને પાકી ખાતરી થશે કે દ્રવ્યની અવસ્થા નક્કી કરવામાં આંતરઅણુ (કે પરમાણ) બળો જ અગત્યનો ભાગ ભજવે છે.

ગ્લાસી પદાર્થમાં જુદા-જુદા બંધોની મજબૂતી જુદી જુદી હોવાના કારણે તેનું તાપમાન વધારતાં નબળા બંધો પહેલાં તૂટે છે અને મજબૂત બંધો પછી તૂટે છે. આથી તાપમાન વધારતાં પ્રથમ તે ઢીલો પડે છે, પછી તેનો જાડો રગડો થાય છે અને છેવટે સંપૂર્ણ પીગળી જાય છે.

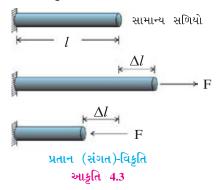
(iii) અર્ધસ્ફટિકમય પદાર્થો (Semi-crystalline substances) : રોજબરોજના વપરાશમાં આવતા પોલિઇથિલિનના અશુને રાસાયણિક સૂત્ર ($-CH_2-)_n$, વડે દર્શાવાય છે. અહીં CH_2 જેવો ઘટકો n વખત પુનરાવર્તન પામી લાંબી ચેઇન જેવા અશુની રચના કરે છે. આવા અશુને મેક્રોઅશુ કહે છે. પ્રોટીનના અશુઓ પણ આ વર્ગમાં આવે છે. જ્યારે આવા અશુથી બનેલા પદાર્થને

તેના પ્રવાહી સ્વરૂપ કે પીગળેલ સ્વરૂપમાંથી ઠંડા પાડવામાં આવે છે, ત્યારે તેમના અશુઓ એવી રીતે ગોઠવાય છે કે ઘનીકરણ પામેલા પદાર્થના અમુક ભાગમાં અશુઓની ચેઇનની ગોઠવણી વ્યવસ્થિત હોય છે અને બીજા ભાગોમાં આવી વ્યવસ્થિત ગોઠવણી હોતી નથી. આવા પદાર્થોને અર્ધસ્ફ્રટિકમય પદાર્થો કહે છે. આ પદાર્થો જેને વ્યાપક રીતે પોલિમર કહે છે. તેની આધુનિક મટીરીયલ સાયન્સમાં ઘણી અગત્ય છે.

4.3 સ્થિતિસ્થાપકતા (Elasticity)

મિકેનિક્સમાં આપણે જોયું કે બળ પદાર્થની ગતિની અવસ્થા તેમજ તેનો આકાર બદલી શકે છે. પરંતુ આ બે પૈકી બળની બીજી અસરનો અભ્યાસ હજી સુધી આપણે કર્યો નથી. વાસ્તવમાં આદર્શ દઢ પદાર્થ એક કલ્પના માત્ર છે. વાસ્તવમાં દરેક ઘન પદાર્થમાં બાહ્ય વિરૂપક બળ દ્વારા વિરૂપણ ઉત્પન્ન કરી શકાય છે. પદાર્થમાં કેટલી માત્રામાં વિરૂપણ ઉત્પન્ન થશે. તેના આધાર પદાર્થની આ ફેરફારનો વિરોધ કરવાની ક્ષમતા પર રહેલો છે. દરેક પદાર્થ આવા ફેરફારનો વિરોધ એકસરખી માત્રામાં નથી કરી શકતા. બાહ્ય બળ દ્વારા વિરૂપણ પામેલા કેટલાંક વિરૂપક બળ દૂર થતાં પોતાનો મૂળ આકાર પ્રાપ્ત કરે છે. કેટલી માત્રામાં વિરૂપક પામેલો પદાર્થ, વિરૂપક બળ દૂર થતાં, પોતાના આકાર પુનઃપ્રાપ્ત કરશે તેનો આધાર પદાર્થ પર રહેલો છે. જે ગુણધર્મને કારણે પદાર્થ તેના પર લાગતા વિરૂપક બળનો પ્રતિકાર કરે છે અથવા તેની મૂળ સ્થિતિ પ્રાપ્ત કરવાનો પ્રયત્ન કરે છે, તેને સ્થિતિસ્થાપકતા કહે છે.

વિરૂપક બળ દૂર કરતાં જો પદાર્થ પોતાની મૂળ સ્થિતિ સંપૂર્ણપશે પ્રાપ્ત કરી શકે તો તેવા પદાર્થને સંપૂર્ણ સ્થિતિ સ્થાપક પદાર્થ કહે છે. જો પદાર્થ, વિરૂપક બળ દૂર કર્યા બાદ, પોતાની મૂળ સ્થિતિ અંશતઃ પણ પ્રાપ્ત ન કરી શકે તો તેવા પદાર્થને સંપૂષ્ણ અસ્થિતિસ્થાપક પદાર્થ કે પ્લાસ્ટિક કહે છે. જો પદાર્થ પોતાની મૂળ-સ્થિતિ અંશતઃ પુનઃપ્રાપ્ત કરી શકતો હોય, તો તે પદાર્થને અંશતઃ સ્થિતિસ્થાપક પદાર્થો કહે છે. મોટા ભાગના પદાર્થો અંશતઃ સ્થિતિસ્થાપક પદાર્થો હોય છે.

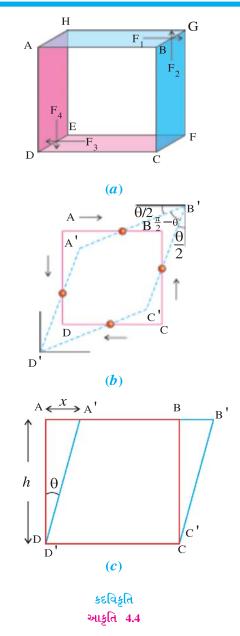

સ્થિતિસ્થાપકતાના અભ્યાસ માટે આપણે પ્રતિબળ (stress) અને વિકૃતિ (strain) નામની બે ભૌતિક રાશીઓ વ્યાખ્યાયિત કરવી પડશે. શરૂઆત વિકૃતિથી કરીએ.

4.3.1 विકृति (Strain) :

પદાર્થ પર બાહ્ય બળ લગાડતાં તેની લંબાઈ કદ કે આકાર બદલાય છે. આ દરેક ફેરફારને અનુરૂપ ત્રણ પ્રકારની વિકૃતિ(ε)ની વ્યાખ્યા આપવામાં આવે છે.

ઘન પદાર્થોના યાંત્રિક ગુષ્કધર્મો 75

(i) પ્રતાન(સંગત)-વિકૃતિ (Logitudinal Strain) : પદાર્થ પર બાહ્ય બળ લગાડતાં તેની લંબાઈમાં થતાં ફેરફાર અને મૂળ લંબાઈના ગુણોત્તરને (લંબાઈમાં થતાં આંશિક ફેરફારને) પ્રતાન-વિકૃતિ કહે છે.


આમ, પ્રતાન-વિકૃતિ
$$\varepsilon_l = \frac{\Delta l}{l}$$
 (4.3.1)

જો બાહ્ય બળને કારણે સળિયાની લંબાઈમાં વધારો થતો હોય, તો પ્રતાન-વિકૃતિને તણાવ-વિકૃતિ (tensile strain) કહે છે. જો બાહ્ય બળને કારણે લંબાઈમાં ઘટાડો થતો હોય, તો અનુરૂપ વિકૃતિને દાબીય વિકૃતિ (compressive strain) કહે છે.

(ii) કદ વિકૃતિ (Volume Strain) : કોઈ પદાર્થની સપાટી પર બધે જ, સપાટીને લંબરૂપ બળ લગાડવામાં આવે તો તેના કદમાં ફેરફાર થાય છે. પદાર્થના કદમાં થતા આંશિક ફેરફારને કદ-વિકૃતિ કહે છે. જો પદાર્થનું મૂળ કદ V હોય અને તેના કદમાં થતો ફેરફાર ΔV હોય, તો કદ-વિકૃતિ

$$\varepsilon_{V} = \frac{\Delta V}{V} \tag{4.3.2}$$

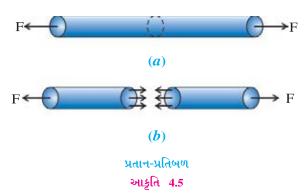
(iii) આકાર-વિકૃતિ (Shearing Strain) : કોઈ પદાર્થના કોઈ આડછેદ પર આડછેદને સ્પર્શીય બળ લગાડવામાં આવે, તો તેના આકારમાં ફેરફાર થાય છે. લંબાઈ અને કદની જેમ આકારને માપી શકાતો ન હોઈ આકાર-વિકૃતિ સમજવા માટે આકૃતિ 4.4a ધ્યાનમાં લો. અત્રે કોઈ સમઘન આકારનો પદાર્થ પર તેના સમતલો AHGB, BGFC, DEFC અને DAHE પર સ્પર્શક રૂપે સમાન મૂલ્યનાં બળો લગાડેલ છે. આ સ્થિતિમાં પદાર્થ પરનું કુલ બળ અને કુલ ટૉર્ક શૂન્ય હોવાથી પદાર્થ રેખીય તેમજ ચાકગતીય એમ બંને પ્રકારના સંતુલનમાં છે. પરંતુ આ પદાર્થ પર પરસ્પર વિરોધી દિશામાંના બળયુગમો લાગતાં હોવાથી તેમાં આકારનું વિરૂપણ ઉદ્ભવે છે. અહીં આકારના વિરૂપણને કારણે સમતલ ABCD કેવો આકાર ધારણ કરશે તે આકૃતિ 4.4(b)માં દર્શાવ્યું છે. સરળતા ખાતર આકૃતિમાં વિરૂપણ વિવર્ધિત કરીને દર્શાવ્યું છે.

વિરૂપણના કારણે AB અને BC વચ્ચેનો ખૂશો $\frac{\pi}{2}$ ન રહેતાં $\frac{\pi}{2}$ – θ થાય છે. આ વિરૂપણ માપવા માટે ત્રુટક રેખાથી દર્શાવેલ વિરૂપિત આકાર A'B'C'D' (તેના સમતલને લંબ હોય તેવી અક્ષની આસપાસ) ભ્રમણ આપી તેને એવી રીતે ગોઠવીએ કે જેથી તેની ધાર D'C' અવિરૂપિત અવસ્થામાંની ધાર DC સાથે સંપાત થાય. આ હકીકત આકૃતિ 4.4(c)માં દર્શાવેલ છે. અહીં $\tan \theta$ ને આકારની અથવા દઢતાની વિકૃતિ કહે છે. જો θ નું મૂલ્ય (રેડિયનમાં) નાનું હોય તો $\tan \theta \simeq \theta$ અને આ સ્થિતિમાં θ ને આકાર-વિકૃતિ કહે છે. $\theta = (\varepsilon_{\varsigma})$.

આમ, આકાર-વિકૃતિ, $\varepsilon_{\rm S}=\frac{x}{h}=\tan\theta$ (4.3.3)

તથા θ ના નાના મૂલ્ય માટે $\epsilon_{
m S}=\theta$ બધા પ્રકારની વિકૃતિ પરિમાણરહિત ભૌતિક રાશિઓ છે.

4.3.2 પ્રતિબળ (Stress) :

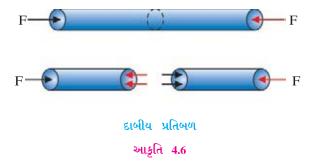

સ્થિતિસ્થાપક પદાર્થ પર લાગેલું વિરૂપક બળ દૂર કરતાં તે પોતાની મૂળ સ્થિતિ પ્રાપ્ત કરે છે. આ ત્યારે જ શક્ય બને જ્યારે, વિરૂપણનો વિરોધ કરનારું પુનઃસ્થાપક બળ તેમાં ઉત્પન્ન થાય. પદાર્થમાં આડછેદના એકમ ક્ષેત્રફળ દીઠ ઉદ્ભવતું પુનઃસ્થાપક બળ પ્રતિબળ કહેવાય છે. જો પદાર્થ પોતે સંતુલનમાં હોય, તો બાહ્ય બળનું મૂલ્ય પુનઃસ્થાપક બળના મૂલ્ય જેટલું થાય. જો પુનઃસ્થાપક બળ F અને આડછેદનું ક્ષેત્રફળ A હોય, તો પ્રતિબળ (σ) નીચેના સૂત્ર પરથી મળે.

પ્રતિબળ
$$\sigma = \frac{\text{બળ}}{\hat{\aleph} \log \hat{\wp}} = \frac{F}{A}$$
 (4.3.4)

પ્રતિબળનો SI એકમ Nm^{-2} અથવા પાસ્કલ (Pa) છે. તેનું પરિમાશિક સૂત્ર $M^1L^{-1}T^{-2}$ છે.

(i) પ્રતાન-પ્રતિબળ (Longitudinal Stress)

આકૃતિ 4.5(a)માં એક સળિયો અને તેનો એક આડછેદ (ત્રુટક રેખાથી) દર્શાવેલ છે.


સળિયો બે સરખા અને પરસ્પર વિરુદ્ધ દિશામાં લાગતાં બાહ્ય બળોની અસર હેઠળ સંતુલનમાં છે. આ સંજોગોમાં આડછેદની ડાબી અને જમણી બાજુએ રહેલા સળિયાના ભાગ આ આડછેદને સમાન મૂલ્યના બળથી પરસ્પર વિરુદ્ધ દિશામાં ખેંચે છે.

જો આડછેદ સળિયાના છેડા પાસે ન હોય તો તેવા બધા આડછેદો પાસે આવાં ખેંચાણબળો સમગ્ર આડછેદ પર સમાન રીતે વહેંચાયેલાં હોય છે. આવાં વહેંચાયેલાં બળો આકૃતિ 4.5(b)માં દર્શાવ્યાં છે. અહીં સુગમતાખાતર આડછેદ પાસેના બંને વિભાગો જુદા-જુદા દર્શાવ્યા છે.

જ્યારે સળિયા પર બાહ્ય બળ લગાડવામાં આવે છે ત્યારે આંતર-અણુ અંતરોમાં ફેરફાર થાય છે. આથી અશુઓ વચ્ચે એવી રીતે બળો ઉદ્દભવે છે કે જેના કારણે તેઓ ફરીથી પોતાની સમતોલન સ્થિતિમાં આવવાનો પ્રયત્ન કરે છે. આ બળોને પુનઃસ્થાપક બળો કહે છે. આકૃતિ 4.5(b)માં પુનઃસ્થાપક બળો નાના તીર વડે આડછેદ પર દર્શાવ્યાં છે. પુનઃસ્થાપક બળો દરેક જોડકાનાં અશુઓ વચ્ચે ઉદ્દભવતાં હોવાથી તે સમગ્ર આડછેદ પર સમાન રીતે વહેંચાયેલ હોય છે. બાહ્ય બળની અસર હેઠળ પદાર્થમાં પેદા થતા વિરૂપણને કારણે ઉદ્દભવતું પુનઃસ્થાપક બળ જુદા-જુદા આડછેદ માટે સમાન જ હોય છે, પરંતુ આવા આડછેદનાં ક્ષેત્રફળ જુદા હોવાથી આડછેદનો ઉલ્લેખ અનિવાર્ય છે.

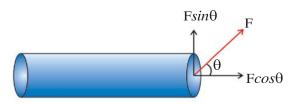
આપણી ચર્ચામાં આપણે અત્યાર સુધી એવાં બાહ્ય બળ ધ્યાનમાં લીધાં છે, જેના કારણે સળિયાની લંબાઈમાં વધારો જ થાય છે. પરિણામે ઉદ્ભવતા પ્રતિબળને તણાવ-પ્રતિબળ કહે છે.

જો પદાર્થ પર બાહ્ય બળ લગાડતાં પદાર્થની લંબાઈમાં ઘટાડો થાય, તો પરિણામે ઉદ્ભવતા પ્રતિબળને દાબીય પ્રતિબળ કહે છે. (આકૃતિ 4.6)

(ii) કદ-પ્રતિબળ (Volume Hydraulic Stress): ધારો કે પદાર્થ પર લાગતું બળ પદાર્થની સમગ્ર સપાટી પર લાગે છે. સ્થાનીક રીતે આ બળો સપાટીને લંબ છે અને ક્ષેત્રફળ-ખંડના સમપ્રમાણમાં છે. પદાર્થ પર આવાં બળો લાગતાં પદાર્થના કદમાં ફેરફાર થાય છે અને પરિણામે કદ-પ્રતિબળ ઉદ્ભવે છે. જ્યારે પદાર્થને કોઈ તરલમાં ડુબાડવામાં આવે, ત્યારે આવી પરિસ્થિતિનું નિમાર્શ થાય છે.

જો તરલમાં રહેલા પદાર્થ પર લાગતું દબાણ P હોય તો, ક્ષેત્રફળ A પર લંબ રૂપે લાગતું બળ PA હોય. સંતુલન-અવસ્થામાં એકમક્ષેત્રફળ દીઠ લાગતું બળ કદ-પ્રતિબળ છે. આમ,

કદ-પ્રતિબળ
$$\sigma_{\nu} = \frac{F}{A} = \frac{PA}{A} = P$$
 (4.3.5)

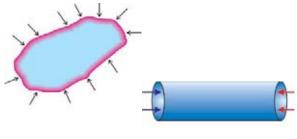

ઘન પદાર્થોના યાંત્રિક ગુણધર્મો 77

આમ, દાબીય પ્રતિબળ અને દબાણ સમાન છે. તેથી કહી શકાય કે અહીં દબાણ એક વિશિષ્ટ પ્રકારનું પ્રતિબળ છે. જેને કારણે પદાર્થનું માત્ર કદ બદલાય છે.

(iii) આકાર-પ્રતિબળ (Shearing Stress Tangential Stress): આકૃતિ 4.4માં દર્શાવ્યા મુજબ જો બળ પદાર્થની સપાટીને સમાંતર લાગતું હોય, તો પદાર્થમાં આકાર વિકૃતિ ઉત્પન્ન થાય છે અને ઉત્પન્ન થતું અનુરૂપ પ્રતિબળ આકાર-પ્રતિબળ કહેવાય છે. આમ,

આકાર-પ્રતિબળ =
$$\frac{\text{સ્પશીય બળ }(\mathbf{F}_t)}{\text{ક્ષેત્રફળ }(\mathbf{A})}$$
 (4.3.6)

એવું પણ શક્ય છે કે પદાર્થ પર લાગતું બળ પદાર્થની સપાટીને લંબ કે સમાંતર ન હોય. આ કિસ્સામાં આકૃતિ 4.7માં દર્શાવ્યા મુજબ બળનો સપાટીને લંબદિશામાં અને સમાંતર ઘટકો વિચારી શકાય.



આકૃતિ 4.7

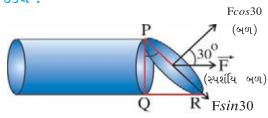
અહીં આકૃતિમાં સળિયા પર લાગતું બળ દર્શાવેલ છે. બળ ક્ષેત્રફળ સદિશ (ક્ષેત્રફળ જેટલું મૂલ્ય ધરાવતો ક્ષેત્રફળને લંબ બહારની તરફનો સદિશ) સાથે θ ખૂણો બનાવે છે. આકૃતિમાં દર્શાવ્યા મુજબ $Fcos\theta$ સપાટીને લંબ ઘટક છે અને $Fsin\theta$ સપાટીને સ્પર્શીય ઘટક છે, તેથી $Fcos\theta$ ને કારણે પદાર્થમાં તણાવની અસર પેદા થશે, જયારે $Fsin\theta$ ને કારણે પદાર્થના આકારમાં ફેરફાર થશે. આ કિસ્સામાં પદાર્થમાં તણાવ-પ્રતિબળ અને આકાર-પ્રતિબળ (અને આકાર-વિકૃતિ અને તણાવ-વિકૃતિ પણ) બન્ને પેદા થશે.

દબાણ અને પ્રતિબળ વચ્ચેનો તફાવત (Difference between pressure and stress): દબાણ એટલે એકમક્ષેત્રફળ દીઠ લાગતું બળ. આમ, દબાણ અને પ્રતિબળ બન્નેનાં પરિમાણ સમાન હોવા છતાં તેઓ એક જ ભૌતિક રાશિ નથી.

જયારે પદાર્થની સમગ્ર સપાટીને લંબરૂપે બળ લગાડવામાં આવે છે, ત્યારે એકમ ક્ષેત્રફળ દીઠ લાગતા બળને દબાણ કહે છે. (જુઓ આકૃતિ 4.8)

આકૃતિ 4.8

આકૃતિ 4.9


પ્રતિભળ પણ એકમક્ષેત્રફળ દીઠ બળ હોવા છતાં પદાર્થના જુદાં-જુદાં પૃષ્ઠો પર તે જુદું-જુદું હોઈ શકે. વળી અહીં બળ એ પૃષ્ઠને લંબ હોવું પણ જરૂરી નથી. એવું પણ શક્ય છે કે એક સપાટી પર પ્રતિબળ હોય બીજી સપાટી પર ન પણ હોય. (આકૃતિ 4.9).

ઉદાહરણ 1 : આકૃતિ 4.9માં દર્શાવ્યા મુજબ 10 N બળ સળિયાના બે છેડા પર લગાડવામાં આવે છે, તો આડછેદ PR પર તણાવ-પ્રતિબળ અને સ્પર્શીય પ્રતિબળ શોધો. PQ આડછેદનું ક્ષેત્રફળ 10 cm² છે.

આકૃતિ 4.10

ઉકેલ :

આકૃતિ 4.11

અહીં આડછેદ PQ અને PR વચ્ચેનો ખૂશો 30° છે. તેથી,

$$\frac{PQ}{PR}$$
 આડછેદનું ક્ષેત્રફળ = $\cos 30 = \frac{\sqrt{3}}{2}$.

PR આડછેદનું ક્ષેત્રફળ

$$=$$
 $\frac{\left(\text{આડછેદ PQનું & &} \right)}{\frac{\sqrt{3}}{2}}$

$$= \frac{2 \times 10 \times 10^{-4}}{\sqrt{3}}$$

$$=\frac{2}{\sqrt{3}}\times 10^{-3}m^2$$

વળી, બળ F અને PR છેદના ક્ષેત્રફળ સદિશ વચ્ચેનો ખૂણો પણ 30° છે. (કેવી રીતે ? વિચારો.)

તેથી, છેદ PR માટે તણાવબળ

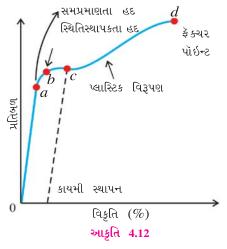
$$F_l = Fcos30^\circ = 10 \times \frac{\sqrt{3}}{2} = 5\sqrt{3} N$$

તથા સ્પર્શીય બળ

$$F_t = Fsin30^\circ = 10 \times \frac{1}{2} = 5N$$

∴ છેદ PR માટે

તણાવ-પ્રતિબળ
$$(\sigma^l)=rac{$$
તણાવબળ $}{\mathrm{PR}}$ છેદનું ક્ષેત્રફળ $=rac{5\sqrt{3}}{rac{2}{\sqrt{3}}\times 10^{-3}}$


સ્પર્શીય પ્રતિબળ
$$\sigma_t=rac{ ext{Rullu on}}{ ext{PR છેદનું क्षेत्ररूण}}$$

$$=rac{5}{rac{2}{\sqrt{3}} imes 10^{-3}}$$

$$= \frac{5\sqrt{3}}{2} \times 10^3 = 4.33 \text{N/}m^2$$

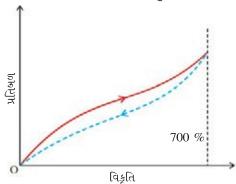
 $= 7.5 \times 10^3 \text{ N/m}^2$

4.4 પ્રતાન-પ્રતિબળ અને પ્રતાન-વિકૃતિ વચ્ચેનો સંબંધ (Relation Between Longitudinal Stress and Longitudinal Strain)

પ્રતાન-વિકૃતિ અને પ્રતાન-પ્રતિબળ વચ્ચેના સંબંધનો અભ્યાસ કરવા માટે તારને બાહ્ય બળની મદદથી ખેંચવામાં આવે છે. જુદા-જુદા પ્રતિબળ માટે વિકૃતિનું મૂલ્ય (અથવા તેનું પ્રતિશત મૂલ્ય) મેળવવામાં આવે છે. પ્રતિબળ અને વિકૃતિ વચ્ચેના સંબંધનો અભ્યાસ પ્રતિબળ-વિકૃતિ(%) આલેખ દોરીને કરી કાય છે. આવો એક આલેખ આકૃતિ 4.12માં દર્શાવેલ છે.

આલેખના શરૂઆતના ભાગમાં (0 થી a સુધી) વિકૃતિ 1% થી ઓછી છે. પ્રતિબળ અને વિકૃતિ એકબીજાના સમપ્રમાણમાં છે. અહીં બિંદુ aને સપ્રમાણતાની હદ કહે છે.

આલેખ પરના a થી b બિન્દુ સુધી પ્રતિબળ એ વિકૃતિના સમપ્રમાણમાં નથી. આમ છતાં 0થી b વચ્ચે ગમે તે બિન્દુ પાસે વિરૂપક બળ દૂર કરતાં પદાર્થ પોતાની મૂળ સ્થિતિ પ્રાપ્ત કરે છે. આ અર્થમાં પદાર્થ છેક બિન્દુ b સુધી સ્થિતિસ્થાપક વર્તણૂક ધરાવે છે. બિન્દુ b ને સ્થિતિસ્થાપકતાની હદ (elastic limit) અથવા આધીન બિન્દુ (yield point) કહે છે.


બિન્દુ b અને c વચ્ચે વિકૃતિમાં ઝડપથી વધારો થાય છે. b અને c વચ્ચેના કોઈ પણ બિન્દુ પાસેથી વિરૂપક બળ હટાવી લેતાં પદાર્થ, આકૃતિમાં ત્રુટક રેખાથી દર્શાવેલ માર્ગે એવી સ્થિતિ પ્રાપ્ત કરે છે કે જેથી તેમાં કંઈક કાયમી ત્રુટી રહી જાય છે. આ સ્થિતિમાં પદાર્થ કાયમી સ્થાપન (permanent set) સ્થિતિમાં હોવાનું કહેવાય છે.

બિન્દુ c આગળથી વધારે વિરૂપક બળ લગાડતાં વિકૃતિમાં ઝડપથી વધારો થાય છે. આ સ્થિતિમાં પદાર્થમાં મહત્તમ આકાર વિકૃતિ ધરાવતા સમતલો એકબીજા પર સરકતાં હોય છે. આ ઘટનાને પ્લાસ્ટિક વિરૂપણ કહે છે.

d બિન્દુ પાસે પદાર્થ તૂટી જાય છે. બિન્દુ d ને ફ્રેકચર બિન્દુ કહે છે. આ બિન્દુને અનુરૂપ પ્રતિબળને બ્રેકિંગ પ્રતિબળ કહે છે. સ્થિતિસ્થાપક હદ b અને બિન્દુ d વચ્ચે જો ખૂબ જ મોટું પ્લાસ્ટિક વિરૂપણ થતું હોય, તો ધાતુને તન્ય (ductile) કહે છે. જો પદાર્થ સ્થિતિસ્થાપકતાની હદ પછી તરત જ ભાંગી જતો હોય, તો તેવા પદાર્થને બટકશો (brittle) કહે છે.

ઘન પદાર્થોના યાંત્રિક ગુણધર્મો 79

જોકે કેટલાક પદાર્થો (જેવા કે રબર), અત્યાર સુધી કરેલા વર્ણન કરતાં જુદી-જુદી વર્તાશૂક ધરાવે છે, આપશે જાણીએ છીએ કે રબરની લંબાઈમાં અનેક ગણો વધારો કરવાં છતાં તે મૂળ અવસ્થા પ્રાપ્ત કરે છે. આકૃતિ 4.13 એક પ્રકારના વલ્કેનાઇઝ્ડ રબર માટે પ્રતિબળ-વિકૃતિનો આલેખ દર્શાવ્યો છે. અહીં દર્શાવેલ 700% વિકૃતિ આશ્ચર્યજનક છે. જે પદાર્થમાં ખૂબ મોટા પ્રમાણમાં વિકૃતિ પેદા કરી શકાય છે તેવા પદાર્થને ઇલાસ્ટોમર (elastomers) કહે છે. આપણા શરીરમાં મહાધમની (હૃદયમાંથી શરીરના જુદા-જુદા ભાગમાં રૂપિર લઈ જતી ધમની)ની પેશીઓ એ ઇલાસ્ટોમરનું ઉદાહરણ છે.

વલ્કેનાઇઝ્ડ રબર માટે હિસ્ટરિસીસ આકૃતિ 4.13

આ આલેખની બે બાબતો નોંધપાત્ર છે : (i) આલેખના કોઈ પણ ભાગમાં પ્રતિબળ વિકૃતિના સમપ્રમાણમાં નથી. (ii) વિરૂપક બળ દૂર કરતાં પદાર્થ પોતાની મૂળ સ્થિતિ પ્રાપ્ત કરે છે પણ મૂળ માર્ગ નહીં. મૂળ સ્થિતિમાં પાછા ફરતી વખતે પદાર્થ વડે થતું કાર્ય, તેમાં વિરૂપણ ઉત્પન્ન કરતી વખતે વિરૂપક બળ વડે થયેલા કાર્યથી ઓછું હોય છે. આનો અર્થ એ થાય છે કે પદાર્થમાં અમુક ઊર્જા શોષાય છે. આ ઊર્જા ઉષ્મા-ઊર્જા સ્વરૂપે વિખેરણ પામે છે. આ ઘટનાને સ્થિતિસ્થાપક હિસ્ટેરિસીસ કહે છે. સ્થિતિસ્થાપક હિસ્ટેરિસીસનો ઉપયોગ શોક-એબ્સોબરમાં થાય છે. જો વલ્કેનાઇઝ્ડ રબરનું સ્તર (પેડ) કંપન પામતા તંત્ર અને આધાર વચ્ચે મૂકવામાં આવે, તો દરેક કંપન દરમિયાન રબરનું સ્તર સંકોચન પામે છે અને વિસ્તરે છે અને કંપન-ઊર્જાનો થોડો જ ભાગ આધાર સુધી પહોંચે છે, તેથી કંપનની અસર ઘટી જાય છે.

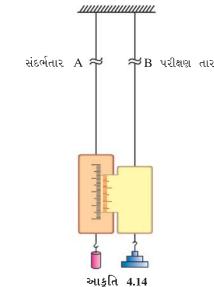
4.5 હુકનો નિયમ અને સ્થિતિસ્થાપકતા અંકો (Hooke's Law and Elastic Moduli)

ઈ.સ. 1678માં રૉબર્ટ હુકે પ્રાયોગિક રીતે દર્શાવ્યું કે ''નાના વિરૂપણ માટે પ્રતિબળ અને વિકૃતિ એકબીજાના સમપ્રમાણમાં હોય છે'' આ વિધાન હુકના નિયમ તરીકે ઓળખાય છે. આમ,

$$\therefore \quad \sigma = k\varepsilon \tag{4.5.1}$$

સમીકરણ 4.5.1 માં k સ્થિતિસ્થાપકતા-અંક તરીકે ઓળખાય છે. તેનો એકમ Nm^{-2} અથવા Pa છે.

હુકનો નિયમ આનુભવિક નિયમ છે અને મોટાં ભાગનાં દ્રવ્યો માટે (આકૃતિ 4.12માં દર્શાવ્યા મુજબ) લગભગ 1% વિકૃતિ માટે સાચો છે. રબર જેવા પદાર્થો માટે આવો રેખીય સંબંધ મળતો નથી.


4.5.1 યંગ મૉડચુલસ (Young's Modulus) :

આપણે જોયું કે નાની વિકૃતિ માટે પ્રતિબળ અને વિકૃતિ એકબીજાના સમપ્રમાણમાં હોય છે. જો પ્રતિબળ અને વિકૃતિ તરીકે પ્રતાન-પ્રતિબળ અને પ્રતાન વિકૃતિ લેવામાં આવે, તો સમીકરણ 4.5.1 નીચે મુજબ લખી શકાય :

$$\sigma_l = Y \varepsilon_l \tag{4.5.2}$$

અહીં સ્થિતિસ્થાપકતા-અંક યંગ મૉડ્યુલસ (Y) તરીકે ઓળખાય છે.

યંગ મૉડ્યુલસના માપન માટેની પ્રાયોગિક ગોઠવણ આકૃતિ 4.14 માં દર્શાવી છે.

તાર A સંદર્ભતાર અને તાર B પરીક્ષણ તાર કહેવાય છે. તાર Aના છેડે લગાવેલ હુક સાથે નિયત દળ લટકાવવામાં આવે છે. જયારે પરીક્ષણ તાર (B)ના છેડે રહેલા હુક સાથે જુદાં-જુદાં દળ (m) લટકાવીને પરિણામે મળતા જુદા-જુદા તણાવબળ (mg)ને અનુરૂપ લંબાઈમાં થતો વધારો (ΔI) તેની સાથે રહેલા વર્નિયર સ્કેલની મદદથી માપવામાં આવે છે.

અહીં
$$\sigma_l = \frac{\text{distance}(F_l)}{\text{ક્ષેત્રફળ (A)}} = \frac{mg}{\pi r^2}$$
 (4.5.3)

જ્યાં r પરીક્ષણ તારની ત્રિજ્યા છે.

અને પ્રતાન વિકૃતિ
$$\varepsilon_l = \frac{\Delta l}{l}$$
 (4.5.4)

જ્યાં l પરીક્ષણ તારની મૂળ લંબાઈ છે. સમીકરણો (4.5.2) (4.5.3) અને (4.5.4) પરથી

$$\frac{mg}{\pi r^2} = Y \frac{\Delta l}{l}$$

$$\therefore Y = \frac{mgl}{\pi r^2 \Lambda l} \tag{4.5.5}$$

યંગ મૉડ્યુલસ પદાર્થના દ્રવ્યનો ગુણધર્મ છે. મોટા ભાગના પદાર્થોમાં પ્રતાન-પ્રતિબળ અને દાબીય પ્રતિબળ માટે યંગ મૉડ્યુલસનાં મૂલ્યો સમાન મળે છે. જ્યારે હાડકા તથા કોંકીટ જેવા પદાર્થી માટે આમ હોતું નથી.

ઉદાહરણ 2:2 m લંબાઈના અને 5 mm વ્યાસવાળા તાંબાના તારના છેડે 5 kg વજન લટકાવ્યું છે, તો તારની લંબાઈમાં થતો વધારો શોધો. તારનો લઘુતમ વ્યાસ કેટલો રાખવો જોઈએ કે જેથી સ્થિતિસ્થાપક હદ વટાવી ન જવાય ? કૉપર માટે સ્થિતિસ્થાપક હદ = 1.5×10^9 dyne/cm², યંગનો મૉડયુલસ $(Y) = 1.1 \times 10^{12}$ dyne/cm²

ઉકેલ :

 $Y = 1.1 \times 10^{12} \text{ dyne/cm}$

L = 2 m = 200 cm

d = 5 mm = 0.5 cm

 $\therefore r = 0.25 \text{ cm}$

 $F = mg = 5 \times 10^3 \times 980 \text{ dyne}$

l = લંબાઈમાં થતો વધારો

$$Y = \frac{FL}{\pi r^2 I}$$

$$l = \frac{FL}{\pi r^2 Y}$$

$$= \frac{5.0 \times 10^3 \times 980 \times 200}{3.14 \times (0.25)^2 \times 1.1 \times 10^{12}}$$

$$= 4.99 \times 10^{-3} \text{ cm}$$

તાંબા માટે સ્થિતિસ્થાપક હદ = 1.5×10^9 dyne/cm² આપેલ છે.

જો માંગેલ લઘુતમ વ્યાસ d' હોય તો, તારમાં ઉત્પન્ન થતું મહત્તમ પ્રતિબળ

$$= \frac{F}{\pi \left(\frac{d'}{2}\right)^2} = \frac{4F}{\pi d'^2} = 1.5 \times 10^9$$

(Bulk Modulus)

સમીકરણ 4.5.1માંના કદ પ્રતિબળ અને કદ વિકૃતિના ગુણોત્તરને કદ સ્થિતિસ્થાપકતા-અંક કહે છે. તેથી,

કદ સ્થિતિસ્થાપકતા-અંક (બલ્ક મૉડચુલસ) (B)

$$=rac{s \varepsilon - પ્રતિબળ}{s \varepsilon વિકૃતિ$$

∴ બલ્ક મોડ્યુલસ B =
$$-\frac{P}{\left(\frac{\Delta V}{V}\right)}$$
 (4.5.6)

અહીં સમીકરણમાં આવતી ૠણ નિશાની કદવિકૃતિ ૠણ અને બલ્ક મૉડ્યુલસ ધન હોવાને કારણે આવે છે. બલ્ક મૉડ્યુલસના વ્યસ્તને દબનીયતા compressibility કહે છે. જેનો સંકેત (K) છે.

4.5.3 આકાર સ્થિતિસ્થાપકતા-અંક (Modulus of Rigidity (shear modulus))

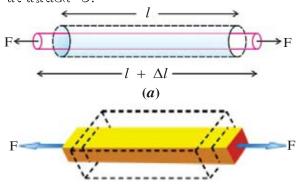
સ્પર્શીય પ્રતિબળ અને આકાર-વિકૃતિના ગુણોત્તરને આકાર સ્થિતિસ્થાપકતા-અંક (modulus of rigidity) (ŋ) કહે છે.

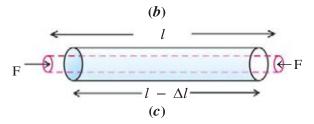
આમ, સમીકરણ (4.3.3) અને (4.3.6) પરથી,

મો ડ્યુલસ ઑફ રિજીડીટી(
$$\eta$$
) $=\frac{સ્પશીય-પ્રતિબળ}{આકારવિકૃતિ}$
$$=\frac{F_t}{A}$$

$$\therefore \ \eta = \frac{F_t/A}{x/h}$$

$$\therefore \ \eta = \frac{F_t h}{Ax} \tag{4.5.7}$$


4.6. પોઇસનનો ગુણોત્તર (Poisson's Ratio)


જ્યારે પદાર્થ પર તણાવબળ (અક્ષીય બળ) લગાડવામાં આવે, ત્યારે તેની લંબાઈમાં વધારો થાય છે. પરંતુ લંબાઈને લંબ એવાં પરિમાણો (પાર્શ્વિક પરિમાણો અથવા

ઘન પદાર્થોના યાંત્રિક ગુષ્કધર્મો 81

lateral dimension)નાં મૂલ્યોમાં ઘટાડો થાય છે. તે જ રીતે જ્યારે પદાર્થ પર દાબીય બળ લગાડવામાં આવે, ત્યારે તેની લંબાઈમાં ઘટાડો થાય પણ પાર્સિક પરિમાણોનાં મૂલ્યોમાં વધારો થાય છે. પાર્સિક પરિમાણમાં થતો ફેરફાર અને પાર્સિક પરિમાણના મૂળ મૂલ્યના ગુણોત્તરને પાર્સિક વિકૃતિ-lateral strain કહે છે.

પાર્શ્વિક વિકૃતિ અને પ્રતાન (કેદાબીય) વિકૃતિનો ગુણોત્તર પોઇસનનો ગુણોત્તર કહેવાય છે. તેનો સંકેત μ છે. તે બે વિકૃતિનો ગુણોત્તર હોવાથી પોઇસનનો ગુણોત્તર પરિમાણરહિત છે.

લંબાઈમાં ફેરફારને કારણે પાર્શ્વિક પરિમાણોમાં ફેરફાર આકૃતિ 4.15

આકૃતિ 4.15 માં દર્શાવ્યા મુજબ નળાકાર સળિયાના કિસ્સામાં પ્રતાન બળની અસર હેઠળ,

પ્રતાન-વિકૃતિ =
$$\frac{\Delta l}{l}$$
 અને પાર્શ્વિક વિકૃતિ = $\frac{\Delta d}{d}$, જ્યાં d સળિયાનો વ્યાસ છે. વ્યાખ્યા અનુસાર

$$\mu = rac{ ext{પાર્શ્વિક વિકૃતિ }\left(rac{\Delta d}{d}
ight)}{ ext{પ્રતાન-વિકૃતિ }\left(rac{\Delta l}{l}
ight)}$$

$$\therefore \frac{\Delta d}{d} = -\mu \frac{\Delta l}{l}$$
 અથવા $\frac{\Delta r}{r} = -\mu \frac{\Delta l}{l}$ (4.6.1)

અહીં પાર્શ્વિક પરિમાણ અને અક્ષીય પરિમાણમાં થતા ફેરફાર વિરુદ્ધ પ્રકારના હોવાથી સમીકરણ (4.6.1)માં ૠણ નિશાની આવે છે. જો સળિયાનો આડછેદ લંબચોરસ હોય અને તે પ્રતાનબળની અસર હેઠળ હોય, તો તેની લંબાઈમાં વધારો થશે અને પહોળાઈ અને જાડાઈમાં ઘટાડો થશે. જો પહોળાઈ bમાં થતો ફેરફાર Δb અને જાડાઈ hમાં થતો ફેરફાર Δh હોય, તો અનુસંગત પાર્શ્વિક વિકૃતિનાં મૂલ્યો $\frac{\Delta b}{b}$ અને $\frac{\Delta h}{h}$ થાય.

તેથી,
$$\frac{\Delta b}{b} = -\mu \frac{\Delta l}{l}$$
 અને $\frac{\Delta h}{h} = -\mu \frac{\Delta l}{l}$ (4.6.2)

પ્રતાનબળોને કારણે કદમાં ફેરફાર :

પદાર્થ પર પ્રતાનબળો લાગતાં તેની લંબાઈમાં વધારો થાય છે અને પાર્સિક પરિમાણોમાં ઘટાડો થાય છે, તેથી તેના કદમાં ફેરફાર થાય છે. (સામાન્ય રીતે કદમાં વધારો થાય છે.)

નળાકાર સળિયાનો કિસ્સો ધ્યાનમાં લેતાં તેની લંબાઈ l અને ત્રિજ્યા r હોય તો, કદ $\mathbf{V}=\pi r^2 l$ હોવાથી

$$\therefore \frac{\Delta V}{V} = 2 \frac{\Delta r}{r} + \frac{\Delta l}{l}$$
 (નાના ફેરફારો માટે)

સમીકરણ 4.6.1 પરથી

$$\therefore \frac{\Delta V}{V} = -2\mu \frac{\Delta l}{l} + \frac{\Delta l}{l}$$
 (4.6.3)

$$\therefore \frac{\Delta V}{V} = \frac{\Delta l}{l} (1 - 2\mu)$$

$$\therefore \frac{\Delta V}{V} = \varepsilon_l (1 - 2\mu) \tag{4.6.4}$$

સમીકરણ 4.6.4 સૂચવે છે કે $\Delta V > 0$ હોવાથી μ નું મૂલ્ય 0.5થી વધી શકે નહીં.

અહીં આપણે નળાકાર સળિયાનો કિસ્સો ધ્યાનમાં લીધો છે. જોકે સમીકરણ કોઈ પણ આડછેદ ધરાવતા સળીયા માટે સાચું છે.

ઉદાહરણ 3 : એક સળિયા પર પ્રતાન-બળ લગાડવામાં આવે છે, તો નાના ફેરફારો માટે કદમાં થતા ફેરફારનો લંબાઈ સાપેક્ષ દર

$$\frac{\Delta V}{\Delta l} = A(1 - 2\mu)$$
 છે, તેમ દર્શાવો. અહીં A આડછેદનું ક્ષેત્રફળ છે.

ઉકેલ : સમીકરણ 4.6.3 પરથી,

$$\frac{\Delta V}{V} = \varepsilon_l (1 - 2\mu)$$

કદ V= આડછેદનું ક્ષેત્રફળ (A) imes લંબાઈ (l) હોવાથી

$$\therefore \frac{\Delta V}{Al} = \frac{\Delta l}{l} (1 - 2\mu)$$

$$\therefore \frac{\Delta V}{\Delta l} = A (1 - 2\mu)$$

અહીં ટેબલ 4.1માં કેલાક દ્રવ્યો માટે સ્થિતિસ્થાપકતા-અંકનાં મૂલ્યો આપેલ છે.

ટેબલ 4.1 સ્થિતિસ્થાપકતા-અંક (માત્ર જાણકારી માટે)

દ્રવ્ય	યંગ મૉડ્યુલ્સ ×10 ¹¹ Pa	દેઢતા મૉડ્યુલ્સ ×10 ¹¹ Pa	બલ્ક મૉડ્યુલ્સ ×10 ¹¹ Pa	પોઇસનનો ગુણોત્તર
ઍલ્યુમિનિયમ	0.7	0.3	0.7	0.16
પિત્તળ	0.91	0.36	0.61	0.26
તાંબું	1.1	0.42	1.4	0.32
લોખંડ	1.9	0.70	1.0	0.27
સ્ટીલ	2.0	0.84	1.6	0.19
ટંગસ્ટન	3.6	1.5	2.0	0.20

4.7 સ્થિતિસ્થાપકીય સ્થિતિ-ઊર્જા

પદાર્થ પર બાહ્ય બળ લાગે ત્યારે પદાર્થમાં વિરૂપણ ઉત્પન્ન થાય અને પુનઃસ્થાપક બળ પણ પેદા થાય. આમ, વિરૂપણ પુનઃસ્થાપક બળની વિરુદ્ધ થાય છે. તેથી વિરૂપણ ઉત્પન્ન કરવા માટે પુનઃસ્થાપક બળની વિરુદ્ધ કાર્ય કરવું પડે. આ કાર્ય પદાર્થમાં સ્થિતિ-ઊર્જાના સ્વરૂપમાં સંગૃહીત થાય છે. યાદ રાખો, કે સ્થિતિ-ઊર્જા પદાર્થને પ્રાપ્ત થતી નવી સંરચનાને કારણે છે.

આપણે પદાર્થ પર પ્રતાનબળ કાર્ય કરે ત્યારે પદાર્થને મળતી સ્થિતિ-ઊર્જા માટે સમીકરણ મેળવીશું.

L જેટલી લંબાઈનો અને A જેટલા આડછેદવાળો એક સિળિયો ધ્યાનમાં લો. ધારો કે પ્રતાનબળને કારણે તેની લંબાઈમાં x જેટલો વધારો થાય છે. જો દ્રવ્યનો યંગ મૉડ્યુલસ Y હોય તો,

$$Y = \frac{F_A}{x_L}$$

તેથી પુનઃસ્થાપક બળ

$$F = \frac{YA}{L}x$$

હવે પુનઃસ્થાપક બળ વિરુદ્ધ લંબાઈમાં ΔL જેટલો વધારો કરવા માટે કરવું પડતું કાર્ય

$$\mathbf{w} = \int_{0}^{\Delta L} \left(\frac{\mathbf{Y}\mathbf{A}}{\mathbf{L}}\right) x dx$$

$$= \frac{AY}{L} \int_{0}^{\Delta L} x dx$$

$$=\frac{AY}{L}\left[\frac{x^2}{2}\right]_0^{\Delta L}$$

આ કાર્યનું મૂલ્ય સળિયામાં સંગૃહીત થતી સ્થિતિ-સ્થાપકીય સ્થિતિ-ઊર્જાનું મૂલ્ય છે.

$$\therefore U = \frac{AY}{2L} (\Delta L)^2 \tag{4.7.1}$$

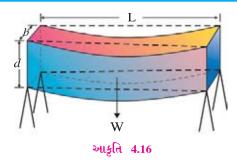
થોડું વધું વિચારતાં, સમીકરણ 4.7.1 નીચે મુજબ પણ લખી શકાય.

$$\frac{U}{\text{પદાર્થનું કદ}} = \frac{U}{LA}$$

$$= \frac{1}{2} Y \left(\frac{\Delta L}{L} \right)^2 = \frac{1}{2} Y \left(\frac{\Delta L}{L} \right)^2$$

$$= \frac{1}{2} \left(\frac{\text{ylawn}}{\text{laska}} \right) \times (\text{laska})^2$$

∴ એકમકદમાં સંગ્રહિત સ્થિતિસ્થાપકીય-ઊર્જા


$$=\frac{1}{2}$$
 પ્રતિબળ \times વિકૃતિ (4.7.2)

એકમકદમાં સંગૃહીત ઊર્જાને ઊર્જાઘનતા પણ કહે છે.

4.8 સ્થિતિસ્થાપક દ્રવ્યોની વ્યાવહારિક ઉપયોગિતા (Applications of Elastic Behaviour of Materials)

(i) દ્રવ્ય જ્યારે વ્યાવહારિક હેતુઓ માટે વપરાશમાં હોય ત્યારે તે કોઈક ને કોઈક રીતે પ્રતિબળની અસર હેઠળ હોય છે. ઉદાહરણ તરીકે, ક્રેઇનમાં ધાતુના 'દોરડા' (કેબલ) દ્વારા જ્યારે કોઈ વસ્તુ ઊંચકાતી હોય છે. ત્યારે આ 'કેબલ'માં તણાવ-પ્રતિબળ હોય છે. આ સ્થિતિમાં આપેલ કેબલ વડે વધારેમાં વધારે એટલો જ ભાર ઊંચકી શકાય અથવા આપેલા ભારને વધારેમાં વધારે એટલો પ્રવેગિત ગતિ કરાવી શકાય કે જેથી સ્થિતિસ્થાપક હદ પર પ્રતિબળનું મૂલ્ય $30 \times 10^7 \ N \ m^{-2}$ છે. જો સ્ટીલના કેબલના આડછેદનું ક્ષેત્રફળ A હોય અને તેના વડે ઊંચકવાનો બોજ M હોય, તો

ઘન પદાર્થોના યાંત્રિક ગુણધર્મો 83

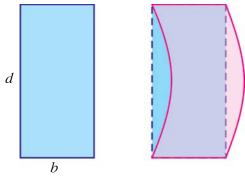
પ્રતાન-પ્રતિબળ
$$\sigma_n = \frac{F_n}{A} = \frac{Mg}{A}$$

$$\therefore A = \frac{Mg}{\sigma_n} \tag{4.8.1}$$

અહીં કેબલનો આડછેદ એટલો લેવો જોઈએ કે તેનું $\frac{{\rm M}\,g}{\sigma_n} \mbox{ કરતાં સારું એવું વધારે હોય. જો <math>{\rm M}=10^4~{\rm kg}$ હોય, તો $g=3.1\pi~{\rm m~s^{-2}}$ લેતાં,

$$A = \pi r^2 = \frac{(10^4)(3.1\pi)}{(30 \times 10^7)}$$

 \therefore કેબલની ત્રિજ્યા $r \approx 10^{-2} \text{ m} = 1 \text{ cm}$


આથી, આવા કૅબલની ત્રિજયા 1 cm કરતાં સારી એવી મોટી રાખવી જોઈએ. આટલી ત્રિજયાનું કૅબલ તો ઘણું જ દઢ બની જાય, માટે ઘણા બધા પાતળા તારને એકબીજાની સાથે ગૂંથીને આવું કૅબલ બનાવવામાં આવતું હોય છે.

હવે, કોઈ પુલ(bridge)નું ઉદાહરણ ધ્યાનમાં લો. પુલની ડિઝાઇન એવી રીતે કરવી જોઈએ કે જેથી તે ટ્રાફિકના ભારને લીધે, પોતાના જ ભારને લીધે અને પવનના સપાટાઓને લીધે એટલો બધો ન વળી જાય કે જેથી તે તૂટી જાય. આ જ રીતે સિમેન્ટ-ક્રોંક્રીટનાં મકાનો બાંધતી વખતે બીમ-કૉલમનો ઉપયોગ જાણીતો છે. આમાં પણ ભારને લીધે બીમનું થતું વંકન ધ્યાનમાં લેવું જ પડે છે.

આ હકીકત સમજવા માટે આકૃતિ 4.16માં દર્શાવેલું લંબચોરસ આડછેદવાળા સિળયાનું ઉદાહરણ ઉપયોગી થઈ પડશે. અહીં સિળયાની લંબાઈ L, પહોળાઈ b, અને જાડાઈ (ઊંડાઈ) d છે. તેને બે છેડેથી ટેકવીને તેના મધ્યબિંદુ પર W જેટલું વજન લટકાવતાં, ધારો કે તેનું મધ્યબિંદુ δ જેટલું નીચે ઊતરે છે તેને સિળાયનું વંકન કહે છે. તેના વડે સિળયો કેટલો વાંકો વળ્યો તે જાણી શકાય છે. હવે,

$$\delta = \frac{WL^3}{4hd^3Y} \tag{4.8.2}$$

નોંધ : આ સૂત્ર તમારે સાબિતી વિના સ્વીકારવાનું

આકૃતિ 4.17

આ સમીકરણ દર્શાવે છે સળિયાનું વંકન ઘટાડવા માટે યંગના મૉડ્યુલસનું મોટું મૂલ્ય ધરાવતા દ્રવ્યનો સળિયો વાપરવો જોઈએ. ઉપરાંત આપેલા દ્રવ્યના સળિયા માટે છેદમાં d^{-3} આવતો હોવાથી સળિયાની જાડાઈ d વધારે રાખીને δ ને ઘણો જ નાનો બનાવી શકાય છે. પણ, અહીં એક તકલીફ છે. સળિયાની જાડાઈ d વધારે રાખવાથી આકૃતિ 4.17માં દર્શાવ્યા પ્રમાણે સળિયામાં વિરૂપણ ઉત્પન્ન થાય છે. આને બકલિંગ કહે છે. આવું બકલિંગ ન થાય તે માટે સળિયાનો આડછેદ I આકારનો રાખવામાં આવે છે. જુઓ આકૃતિ 4.18. આમ, કરવાથી ભાર વહન કરતી સપાટીનું ક્ષેત્રફળ વધી જાય છે અને સાથોસાથ જરૂરી ઊંડાઈ પણ મળે છે.

આકૃતિ 4.18

(ii) અંતમાં આપણે કુદરતનું એક રસપ્રદ ઉદાહરણ જોઈએ.

h જેટલી ઊંચાઈ અને ρ જેટલી અચળ ઘનતાવાળો પર્વત વિચારો. તેના તળિયે એકમક્ષેત્રફળ દીઠ લાગતું બળ $h\rho g$ થાય. અને તે અધોદિશામાં લાગે. પર્વતની બાજુઓ મુક્ત હોવાથી તેમાં આકાર પ્રતિબળ ઉત્પન્ન થાય છે અને તેનું મૂલ્ય લગભગ $h\rho g$ જેટલું થાય. જો પર્વતના ખડકોની સ્થિતિસ્થાપકતા હદ $3\times 10^8~{
m N~m}^{-2}$ અને ઘનતા $ho=3\times 10^3~{
m kg~m}^{-3}$ લેવામાં આવે, તો

$$h_{max} \rho g = 3 \times 10^8 \text{ N m}^{-2}$$

છે.

$$\therefore h_{max} = \frac{3 \times 10^8}{3 \times 10^3 \times 9.8} \simeq 10^4 \text{ m}$$
$$= 10 \text{ km}$$

આમ, ખડકોની સ્થિતિસ્થાપકતાની હદ (મર્યાદા)ને કારણે પર્વતોની મહત્તમ ઊંચાઈ પર મર્યાદા લદાય છે. માઉન્ટ એવરેસ્ટની ઊંચાઈ 8848 m એટલે કે 8.848 km છે.

ઉદાહરણ 4 : F_1 જેટલા તણાવબળની અસર હેઠળ એક તારની લંબાઈ l_1 અને F_2 બળની અસર હેઠળ તેની લંબાઈ l_2 છે, તો સાબિત કરો કે તેની મૂળ લંબાઈ $l = \frac{F_2 l_1 - F_1 l_2}{F_2 - F_1}$ છે.

ઉકેલ :

$$\Delta l = \frac{\mathrm{F}l}{\mathrm{AY}}$$
 હોવાથી,

$$l_1 = l + \frac{F_1 l}{AY} \tag{1}$$

અને
$$l_2 = l + \frac{F_2 l}{AY}$$
 (2)

સમીકરણ (1) ને \mathbf{F}_2 અને સમીકરણ (2) ને \mathbf{F}_1 વડે ગુણીને સમીકરણ (1)માંથી (2) બાદ કરતાં,

$$\begin{aligned} \mathbf{F}_{2}l_{1} - \mathbf{F}_{1}l_{2} &= \mathbf{F}_{2}l + \frac{\mathbf{F}_{1}\mathbf{F}_{2}l}{\mathbf{A}\mathbf{Y}} - \mathbf{F}_{1}l - \frac{\mathbf{F}_{1}\mathbf{F}_{2}l}{\mathbf{A}\mathbf{Y}} \\ \therefore \mathbf{F}_{2}l_{1} - \mathbf{F}_{1}l_{2} &= (\mathbf{F}_{2} - \mathbf{F}_{1})l \\ \therefore l &= \frac{\mathbf{F}_{2}l_{1} - \mathbf{F}_{1}l_{2}}{\mathbf{F}_{2} - \mathbf{F}_{1}} \end{aligned}$$

ઉદાહરણ 5: દરિયાની અંદર અમુક ઊંડાઈએ દબાણ 80 atm છે. જો દરિયાની સપાટી પર પાણીની ઘનતા 1.03×10^3 kg/m³ હોય અને પાણીની દબનીયતા 45.8×10^{-11} P a^{-1} , હોય, તો ઉપર્યુક્ત ઊંડાઈએ પાણીની ઘનતા શોધો.

1 atm =
$$1.013 \times 10^5 \text{ Pa}$$
.

ઉકેલ : ધારો કે કથિત ઊંડાઈએ પાણીની ઘનતા ρ' અને સપાટી પર પાણીની ઘનતા ρ છે. પાણીના આપેલા દ્રવ્યમાન M માટે ધારો કે સપાટી પર અને ઊંડાઈએ કદ અનુક્રમે V અને V' છે.

$$\therefore V = \frac{M}{\rho}$$
 અને $V' = \frac{M}{\rho'}$

∴ કદમાં થતો ઘટાડો
$$= \Delta V$$

$$= V - V'$$

$$= M \left[\frac{1}{\rho} - \frac{1}{\rho'} \right]$$
∴ કદ-વિકૃતિ $= \frac{\Delta V}{V} = M \left[\frac{1}{\rho} - \frac{1}{\rho'} \right] \times \frac{\rho}{M}$

$$= 1 - \frac{\rho}{\rho'}$$
પણ, દબનીયતા $K = \frac{\Delta V}{PV} = \frac{1}{P} \left[1 - \frac{\rho}{\rho'} \right]$
∴ 45.8 \times 10⁻¹¹ $= \frac{1}{80 \times 1.013 \times 10^5}$

$$\left[1 - \frac{1.03 \times 10^3}{\rho'} \right]$$

 $\therefore \rho' = 1.034 \times 10^3 \text{ kg/m}^3$

ઉદાહરણ 6:0.1 m ત્રિજયાવાળો અને $8 \pi \text{ kg}$ દળવાળો સ્ટીલનો એક ગોળો 5 m લાંબા અને 10^{-3} m વ્યાસવાળા શિરોલંબ તારના છેડે લટકાવ્યો છે. આ તારને 5.22 m ઊંચાઈવાળી છત પરથી લટકાવેલ છે. જ્યારે આ ગોળાને સાદા લોલકની જેમ દોલનો કરાવવામાં આવે છે, ત્યારે તે રૂમના તળિયાને સ્પર્શે છે, તો દોલન દરમિયાન સૌથી નીચેના સ્થાને ગોળાનો વેગ શોધો. સ્ટીલનો યંગ મૉડ્યુલસ = $1.994 \times 10^{11} \text{ Nm}^{-2}$ છે.

ઉકેલ :

ગોળાની ત્રિજયા
$$r=0.1~\mathrm{m}$$
 પ્રારંભિક લંબાઈ $L=5~\mathrm{m}$ તારની લંબાઈમાં થતો વધારો
$$\Delta L=5.22-(L+2r)$$

$$=5.22-(5+2\times0.1)$$

$$=0.02~\mathrm{m}$$
 તારની ત્રિજયા $r_{\mathrm{o}}=5\times10^{-4}~\mathrm{m}$ જો દોલન દરમિયાન નીચેના છેડે તારમાં ઉત્પન્ન થતો તણાવ T હોય તો,

$$Y = \frac{T/A}{\Delta L/L}$$

$$\therefore T = \frac{YA\Delta L}{L} = \frac{Y(\pi r_0^2)\Delta L}{L}$$

$$= \frac{1.994 \times 10^{11} \times \pi \times (5 \times 10^{-4})^2 \times 0.02}{5}$$

$$= 199.4\pi \text{ N}$$

ઘન પદાર્થોના યાંત્રિક ગુણધર્મો 85

પણ, ચોખ્ખું બળ
$$T - Mg = \frac{Mv^2}{R}$$
,

જયાં, R = ગોળાના ગતિપથની ત્રિજ્યા = 5.22 - 0.1 = 5.12 m

$$\therefore 199.4\pi - 8\pi \times 9.8 = \frac{8\pi \times v^2}{5.12}$$

$$\therefore 199.4 - 78.4 = \frac{8v^2}{5.12}$$

$$\therefore 121 = \frac{8v^2}{5.12}$$

$$v = 8.8 \text{ ms}^{-1}$$

ઉદાહરણ 7 : 15 kg દળનો એક પદાર્થ 1 m લંબાઈ ધરાવતા સ્ટીલના તારના છેડે બાંધ્યો છે, અને તેને શિરોલંબ સમતલમાં 1 rad/sના કોણીય વેગથી ભ્રમણ આપવામાં આવે છે. જો તારના આડછેદનું ક્ષેત્રફળ 0.06 cm² હોય, તો પદાર્થના નિમ્નતમ સ્થાન માટે તારની લંબાઈમાં થતો વધારો શોધો.

$$Y_{\text{steel}} = 2 \times 10^{11} \text{ N m}^{-2}$$

ઉકેલ

m = 15 kg, l = 1m, $\omega = 1$ rad/s A = 0.06 cm² = 6 × 10⁻⁶m²

$$Y_{\text{steel}} = 2 \times 10^{11} \text{ N m}^{-2}$$

પદાર્થના નિમ્નતમ સ્થાન માટે પદાર્થ પર લાગતું કુલ બળ ગુરુત્વાકર્ષણ બળ અને કેન્દ્રત્યાગી બળનો સરવાળો થાય.

F = $mg + mv^2/r$ માં $v = l\omega$ અને r = l મૂકતાં, ∴ F = $mg + ml\omega^2$ = $15(9.8 + 1 \times (1)^2)$

= 15 (10.8) = 162 N

$$\therefore$$
 હવે પ્રતિબળ $\sigma=rac{F}{A}=rac{162}{6 imes10^{-6}}$ = $27 imes10^6$ N m $^{-2}$

વળી
$$Y = \frac{\sigma}{\epsilon_I}$$

$$\therefore \frac{\Delta l}{l} Y = \sigma$$

$$\therefore \Delta l = \frac{\sigma l}{\mathbf{Y}}$$

$$= \frac{27 \times 10^6 \times 1}{2 \times 10^{11}} = 13.5 \times 10^{-5} \text{ m}$$

$$= 0.135 \times 10^{-3} \text{ m}$$

$$= 0.135 \text{ mm}$$

ઉદાહરણ 8: એક તારની લંબાઈ 5 m અને તેના આડછેદનું ક્ષેત્રફળ 2.5 mm² છે. જો તેની લંબાઈમાં 1 mmનો વધારો કરવો હોય તો કરવું પડતું કાર્ય શોધો. દ્રવ્યનો યંગ મૉડ્યુલસ $= 2 \times 10^{11}$ N m $^{-2}$.

ઉકેલ :
$$l=5\text{m}, \ \Delta l=1\text{mm}=10^{-3}\text{m}$$

$$A=2.5 \quad \text{mm}^2=2.5 \quad \times \quad 10^{-6} \quad \text{m}^2,$$

$$Y=2 \times 10^{11} \ \text{N} \ \text{m}^{-2}$$
અહીં થતું કાર્ય,

$$W = \frac{1}{2}$$
 પ્રતિબળ \times વિકૃતિ \times કદ
$$= \frac{1}{2}(Y \times \varepsilon_l) \times \varepsilon_l \times V$$

$$= \frac{1}{2}Y \times \left(\frac{\Delta l}{l}\right)^2 \times V$$

$$= \frac{1}{2} \times 2 \times 10^{11} \times \left(\frac{10^{-3}}{5}\right)^2 \times 2.5 \times 10^{-6} \times 5 \qquad (\therefore V = Al)$$

$$= 5 \times 10^{-2} \text{ J.}$$

સારાંશ

- 1. ઘન પદાર્થોનું વર્ગીકરણ નીચે મુજબ ત્રણ સમૂહમાં કરી શકાય : (i) સ્ફટિકમય પદાર્થો (ii) અસ્ફટિકમય પદાર્થો અને (iii) અર્ધ સ્ફટિકમય પદાર્થો.
- 2. સ્ફ્રિટિકમય પદાર્થોમાં અશુ આયનો કે પરમાશુઓની અવકાશમાં હારબદ્ધ બિંદુઓ પર ગોઠવાયેલાં છે. અવકાશમાં બિંદુઓની આવી હારબદ્ધ ગોઠવણીને લૅટિસ કહે છે.
- 3. સ્ફટિકમય પદાર્થ એક કરતાં વધુ એકસમાન એકમોનો બનેલો હોય છે.
- 4. સ્ફટિકમય પદાર્થો તેમાં રહેલા લૉંગરેન્જ ઑર્ડરને કારણે નિયત તાપમાને પીગળે છે.
- 5. અસ્ફટિકમય પદાર્થોમાં અશુઓની ગોઠવણી હારબદ્ધ હોતી નથી. આવા પદાર્થોના નિર્માણ સમયે આવી ગોઠવણી માટે જરૂરી સમયના અભાવે આમ બને છે.
- 6. અર્ધસ્ફ્રિટિકમય પદાર્થોમાં અમુક ભાગમાં ઘટકક્શો નિયમિત હારબદ્ધ ગોઠવણી અને અમુક ભાગમાં અનિયમિત ગોઠવણી ધરાવે છે.
- 7. પદાર્થ પર બાહ્યબળ લાગતાં તેમાં વિરૂપણ થાય છે. પદાર્થના આવા વિરૂપણનો પ્રતિકાર કરવાના ગુણને સ્થિતિસ્થાપકતા કહે છે.
- 8. જે પદાર્થ બાહ્ય વિરૂપણ બળ દૂર કરતાં પોતાની મૂળ સ્થિતિ સંપૂર્ણપણે પરત મેળવી શકે તેવા પદાર્થને સંપૂર્ણ સ્થિતિસ્થાપક પદાર્થ કહે છે.
- 9. જે પદાર્થ બાહ્ય વિરૂપણ બળ દૂર થતાં પોતાની મૂળ સ્થિતિ અંશતઃ પણ પ્રાપ્ત ન કરી શકે તેવા પદાર્થને અસ્થિતિસ્થાપક પદાર્થ કહે છે.
- 10. પદાર્થ પર બાહ્યબળ લગાડતાં તેના પરિમાણમાં ફેરફાર થાય છે. પરિમાણમાં થતા ફેરફાર અને મૂળ પરિમાણનાં મૂલ્યોના ગુણોત્તરને વિકૃતિ કહે છે. વિકૃતિ ત્રણ પ્રકારની હોય છે. વિકૃતિ પરિમાણરહિત છે.
- 11. પ્રતાન અથવા દાબીય વિકૃતિ (ε_l) પદાર્થની લંબાઈમાં થતો ફેરફાર અને મૂળ લંબાઈનો ગુણોત્તર છે.
- 12. પદાર્થના કદમાં થતા ફેરફાર અને મૂળ કદના ગુણોત્તરને કદ-વિકૃતિ કહે છે.
- 13. પદાર્થની સપાટી પર સ્પર્શીય બળ લાગતાં તેમાં આવતી વિકૃતિને આકાર-વિકૃતિ કહે છે.
- 14. પદાર્થ પર બાહ્ય વિરૂપક બળ લાગતાં તેમાં ઉત્પન્ન થતાં એકમક્ષેત્રફળ દીઠ પુનઃસ્થાપક બળને પ્રતિબળ કહે છે. તેનો એકમ Nm^{-2} છે.
- 15. લંબાઈ, આકાર અને કદની વિકૃતિને અનુરૂપ ઉદ્ભવતાં પ્રતિબળને અનુક્રમે પ્રતાન-પ્રતિબળ, આકાર-પ્રતિબળ અને કદ પ્રતિબળ કહે છે.
- 16. પદાર્થ પર બાહ્ય બળ લાગતાં તેમાં ઉત્પન્ન થતાં પુનઃસ્થાપક બળ માટે આંતરઅણુ બળો જવાબદાર છે.
- 17. પદાર્થની સપાટી પર લાગતું બળ જો લંબરૂપે ન લાગતું હોય તો બળનો સપાટીને લંબ ઘટક પ્રતાન-વિકૃતિ ઉત્પન્ન કરે છે. જ્યારે સપાટીને સમાંતર ઘટક આકાર-વિકૃતિ ઉત્પન્ન કરે છે.
- 18. પ્રતિબળ અને દબાણ બંને એકમ ક્ષેત્રફળ પર લંબરૂપે લાગતું બળ હોવા છતાં બંને ભિન્ન ભૌતિકરાશી છે.
- 19. પ્રતાન વિકૃતિ જો 1 %થી ઓછી હોય, તો પ્રતિબળ વિકૃતિના સમપ્રમાણમાં હોય છે. જે પ્રતિબળના જે મહત્તમ મૂલ્ય સુધી પદાર્થ બાદ્ય બળ દૂર થયા બાદ પોતાની મૂળ સ્થિતિ મૂળ માર્ગે પ્રાપ્ત કરે તેના મૂલ્યને સપ્રમાણતાની હદ કહે છે. જે પ્રતિબળના મૂલ્ય માટે પદાર્થ પોતાની મૂળ સ્થિતિ પ્રાપ્ત કરી શકે તે મૂલ્યને સ્થિતિસ્થાપકતાની હદ કહે છે.
- 20. જો પદાર્થમાં પ્લાસ્ટિક વિરૂપણ મોટા પ્રમાણમાં પેદા કરી શકાય તો પદાર્થ તન્ય પદાર્થ કહેવાય. જયારે સ્થિતિસ્થાપકતા હદથી પ્રતિબળ વધતાં જો પદાર્થ તૂટી જાય, તો પદાર્થ બટકણો કહેવાય.

ઘન પદાર્થોના યાંત્રિક ગુણધર્મો 87

21. રબર જેવા પદાર્થમાં 700 % વિકૃતિ પેદા કરી શકાય છે. આવા પદાર્થોને ઇલાસ્ટોમર કહે છે.

- 22. રબર જેવા પદાર્થને બાહ્ય બળ આપી મોટા પ્રમાણ વિરૂપણ પેદા કર્યા બાદ, વિરૂપક બળ દૂર કરતાં પદાર્થ પોતાની મૂળ સ્થિતિ પ્રાપ્ત કરે છે, પણ મૂળ માર્ગે નહીં. અહીં વિરૂપણ આપવા માટે કરવું પડતું કાર્ય પદાર્થ મૂળ સ્થિતિ પ્રાપ્ત કરે તે દરમિયાન મુક્ત થતી ઊર્જાથી વધુ હોય છે, આ ઘટનાને ઇલાસ્ટિક હિસ્ટેરીસીસ કહે છે. આ હકીકતનો ઉપયોગ શોક એબ્સોર્બરમાં થાય છે.
- 23. હુકનો નિયમ : નાના વિરૂપણ માટે પ્રતિબળ વિકૃતિના સમપ્રમાણમાં હોય છે.
- 24. નાના વિરૂપણ માટે પ્રતિબળ અને વિકૃતિનો ગુણોત્તર સ્થિતિસ્થાપકતા-અંક કહેવાય છે. પ્રતાન-વિકૃતિ, કદ-વિકૃતિ અને આકાર-વિકૃતિને અનુરૂપ સ્થિતિસ્થાપકતા-અંક અનુક્રમે યંગ મૉડ્યુલસ (Y) બલ્ક મૉડ્યુલસ (B) અને આકાર-સ્થિતિસ્થાપકતા-અંક અથવા દેઢતાઅંક (η) કહેવાય છે. સ્થિતિસ્થાપકતા–અંકનો એકમ N m^{-2} છે.
- 25. પદાર્થ પર અક્ષીયબળ (તણાવબળ કે દાબીય બળ) લગાડતાં તેની લંબાઈમાં તથા પાર્શ્વિક પરિમાણોમાં ફેરફાર થાય છે. પાર્શ્વિક પરિમાણોમાં આંશિક ફેરફાર અને અક્ષીય પરિમાણમાં થતાં આંશિક ફેરફારનો ગુણોત્તર પોઇસનના ગુણોત્તર તરીકે ઓળખાય છે. તેનો સંકેત μ છે. તે એકમરહિત છે. μનું મૂલ્ય 0.5 ઓછું હોય છે.
- 26. પદાર્થ પર બાહ્ય બળ લાગતાં પદાર્થ વિરૂપણને કારણે નવી સંરચના મેળવે છે, તેને કારણે તે સ્થિતિ-ઊર્જા ધરાવે છે. આ સ્થિતિ-ઊર્જાને સ્થિતિસ્થાપકીય સ્થિતિ-ઊર્જા કહેવાય છે.

તેનું મૂલ્ય $U = \frac{1}{2}$ પ્રતિબળ \times વિકૃતિ \times કદ જેટલું થાય છે.

સ્વાધ્યાય

નીચેનાં વિધાનો માટે આપેલા વિકલ્પોમાંથી યોગ્ય વિકલ્પ પસંદ કરો :

1.	એક તારને	ખેંચીને	તેની	લંબાઈ	બમણી	કરવામાં	આવે	છે.	નીચેનાં	પૈકી	કયું	વિધાન	આ
	સંદર્ભમાં ખં	ોટું છે	?										

(A) તેનું કદ વધે છે.

- (B) પ્રતાન-વિકૃતિ 1 થાય છે.
- (C) પ્રતિબળ = યંગ મૉડ્યુલસ
- (D) પ્રતિબળ = 2 (યંગ મૉડ્યુલસ)
- દઢતાઅંક (આકાર-સ્થિતિસ્થાપકતા-અંક)નું પારિમાણિક સૂત્ર કયું છે ?
 - (A) $M^{1}L^{1}T^{-2}$
- (B) $M^1L^{-1}T^{-2}$
- (C) $M^1L^{-2}T^{-1}$ (D) $M^1L^{-2}T^{-2}$
- 3. એક તાર પર 20 kgથી વધુ દળ લટકાવતાં તે તૂટી જાય છે. આ જ દ્રવ્યના બનેલા બીજા અડધી ત્રિજ્યાવાળા તાર પર લટકાવી શકાતું મહત્તમ દળ કેટલું હશે ?
 - (A) 20 kg
- (B) 5 kg
- (C) 80 kg
- (D) 160 kg
- એક ધાતુના બનેલ L લંબાઈના અને m જેટલા દળના સળિયાના આડછેદનું ક્ષેત્ર \sharp ળ A છે.

આ સળિયા નીચેના છેડે M દળ લટકાવવામાં આવે છે, તો સળિયાના ઉપરના છેડેથી $\frac{3L}{4}$ અંતરે આવેલા આડછેદ પર પ્રતિબળ કેટલું હશે ?

(A) Mg/A

(B) (M + m/4) g/A

(C) $(M + \frac{3}{4}m)g/A$

(D) M + m) g/A

5.	અહીં સમાન દ્રવ્યના ચાર તારને દળ લટકાવતાં કયા તારની લં		-		છેડે સમાન
	(A) $l = 0.5$ m, $d = 0.05$	mm	(B) $1 = 1$	lm, d = 1mm	
	(C) $l = 2m, d = 2mm$				
6.	$10^{-6} \mathrm{m}^2$ જેટલું આડછેદનું ક્ષે				.પતાં તેની
	લંબાઈમાં 1 % વધારો થાય દં				
	(A) 10^{12} Pa (B)		-		P <i>a</i>
7.	સમાન પરિમાણના કૉપર અને				
	સંયુક્ત તારના છેડે વજન લટ				
	$Y_{\text{effet}} = \frac{20}{7} Y_{\text{stur}}$				
	(A) 20 : 7 (B)	10 : 7	(C) 7 : 2	(D) 1 : '	7
8.	100 m ઊંડા તળાવના તળિયે છે, તો રબરનો બલ્ક મૉડ્યુલસ				યટાડો થાય
	(A) 10^6 Pa (B)	10^8 Pa	(C) 10^7 I	Pa (D) 10^9	P <i>a</i>
9.	દઢ પદાર્થનો યંગ મૉડ્યુલસ	હોય છે.			
	(A) 0 (B)	1	(C) ∞	(D) 0.5	
10.	એક પદાર્થ પરનું દબાણ 1.01 : તાપમાને 10% જેટલું ઘટે છે,	તો દ્રવ્યનો બલ	ક મૉડચુલસ	છે.	કદ અચળ
	(A) $1.55 \times 10^5 \text{ Pa}$		(B) 51.2	$\times 10^5 \text{ Pa}$	
	(C) $102.4 \times 10^5 \text{ Pa}$		(D) 204.8	$\times 10^5 \text{ Pa}$	
11.					9ે. તો આ
	ફેરફારને કારણે તેમાં સંગૃહીત	સ્થિતિસ્થાપકીય	સ્થિતિ-ઊર્જા	છે.	
	(A) 0.2 J (B)				
12.	જડ આધાર સાથે બાંધેલા તારન્ વધારો કરવા માટે કરવું પડતું			ગાડતાં તેની લંબાઈમ	ાાં <i>l</i> જેટલો
	(A) $\frac{F}{2L}$ (B)	F <i>l</i>	(C) 2F <i>l</i>	(D) $\frac{1}{2}$ F l	
13.	સંપૂર્ણ પ્લાસ્ટિક પદાર્થ માટે યં	ગ મૉડ્યુલસની	કિંમત	. છે.	
	(A) l (B)	શૂન્ય	(C) ∞	(D) 2	
14.	સ્થિતિસ્થાપકતા-અંક પારિમાણિક	દષ્ટિએ	ને સમતુલ્ય	છે.	
	(A) 역에 (B)	પ્રતિબળ	(C) વિકૃતિ	(D) એક	પણ નહીં.
15.	L લંબાઈના એક મેટલ-વાયરના	. આડછેદનું ક્ષેત્રઃ	ફળ A છે અ	ને તેના દ્રવ્યનો યંગ	. મૉડ્યુલસ
	Y છે. આ તાર સ્પ્રિંગ તરીકે	વર્તતો હોય, તે	ો તેનો બળ-	અચળાંક કેટલો થાય	ι?
	$(A) \frac{YA}{L} $ (B)	$\frac{YA}{2L}$	(C) $\frac{2YA}{L}$	$\frac{A}{A}$ (D) $\frac{YL}{A}$	
16.	જ્યારે મેટલ વાયરમાં 10 Nન	ો તણાવ પેદા	કરવામાં આવે	. છે, ત્યારે તેની 💡	કુલ લંબાઈ
	5.001 m અને 20 N તણાવ : m છે.	માટે તેની કુલ લ	ાંબાઈ 5.002	m છે, તો તારની ^ર	મૂળ લંબાઈ
	(A) 5.001 (B)	4.009	(C) 5.0	(D) 4.008	3

ઘન પદાર્થોના યાંત્રિક ગુ**ણધર્મો**

જવાબો

1. (D)	2. (B)	3. (B)	4. (B)	5. (A)	6. (C)
7. (A)	8. (B)	9. (C)	10. (A)	11. (D)	12. (D)
13 (R)	1/ (R)	15 (A)	16 (C)		

નીચે આપેલ પ્રશ્નોનો જવાબ ટૂંકમાં આપો :

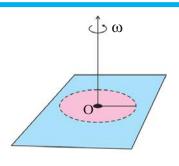
- 1. આણ્વિક સ્ફટિકોના નિર્માણ માટે કયાં બળો જવાબદાર છે ?
- 2. સંપૂર્ણ સ્થિતિસ્થાપક પદાર્થની વ્યાખ્યા આપો.
- 3. વિકૃતિનું પારિમાણિક સૂત્ર લખો.
- 4. પદાર્થ પર બાહ્ય બળ લાગતાં તેમાં પુનઃસ્થાપક બળો ઉત્પન્ન થવાનું કારણ સમજાવો.
- દબનીયતાની વ્યાખ્યા અને પારિમાણિક સૂત્ર આપો.
- **6.** કયો પદાર્થ વધુ સ્થિતિસ્થાપક છે, રબર કે સ્ટીલ ?
- 7. કારણ આપો : સ્પ્રિંગ સ્ટીલમાંથી બનાવવામાં આવે છે, કૉપરમાંથી નહીં.
- 8. સ્થિતિસ્થાપક પદાર્થના પરિમાણમાં ફેરફાર કરવા માટે ખર્ચાતી ઊર્જાનું શું થાય છે ?
- 9. એક સળિયાને ખેંચીને લંબાઈમાં ΔI વધારો કરતાં તેની સ્થિતિ-ઊર્જામાં U જેટલો વધારો થાય છે. જો તેના પર દાબીય બળ લગાડીને તેની ΔI જેટલો ઘટાડો કરતાં સ્થિતિ-ઊર્જામાં શું ફેરફાર થાય ?
- 10. એક તાર માટે બ્રેકિંગ ફોર્સ F છે. જો તારની જાડાઈ બમણી કરવામાં આવે, તો બ્રેકિંગ ફોર્સનું મૂલ્ય કેટલું થાય ?

નીચેના પ્રશ્નોના જવાબ આપો :

- 1. આયનીક સ્ફટિકમય પદાર્થો પર ટૂંક નોંધ લખો.
- 2. વિકૃતિ એટલે શું ? યોગ્ય ઉદાહરણની મદદથી આકાર વિકૃતિ સમજાવો.
- પદાર્થની સપાટીને દોરેલો લંબ સાથે θ ખૂર્શો બનાવતા બળને કારણે પદાર્થ પર થતી અસર ચર્ચો.
- 4. યંગ મૉડ્યુલસનું મૂલ્ય મેળવવાની પ્રાયોગિક રીત સમજાવો.
- 5. પ્રતિબળ અને દબાણ વચ્ચેનો ભેદ સ્પષ્ટ કરો.
- પોઇસનના ગુણોત્તરની વ્યાખ્યા આપો અને દર્શાવો કે તેનું મૂલ્ય 0.5થી ઓછું હોય છે.
- 7. સ્થિતિસ્થાપકીય સ્થિતિ-ઊર્જાનું સૂત્ર મેળવો.

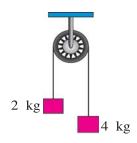
નીચેના દાખલા ગણો :

- 1. એક સ્ટીલનો તાર શિરોલંબ દિશામાં લટકાવેલ છે. આ તાર પોતાના વજનથી જ તૂટી જાય તેના માટે તેની મહત્તમ લંબાઈ કેટલી હોવી જોઈએ ? સ્ટીલની ઘનતા $= 7.8 \times 10^3 \text{ kg m}^{-3} \text{ સ્ટીલ માટે બ્રેકિંગ પ્રતિબળ} = 7.8 \times 10^9$ $\text{dyne/cm}^2 \text{ છે}. \qquad \qquad [\text{જવાબ: } L = 1.02 \times 10^4 \text{ m}]$
- 2. આકૃતિમાં $10^{-4}~\text{m}^2$ જેટલો એકસરખો આડછેદ ધરાવતો AB, BC અને CDનો બનેલો સંયુક્ત સળિયો દર્શાવ્યો છે અને છેડે 10~kgનું દળ લટકાવેલ છે. જો $L_{\text{AB}}=0.1~\text{m},~L_{\text{BC}}=0.2~\text{m}$ અને $L_{\text{CD}}=0.15~\text{m}$ તથા $Y_{\text{AB}}=2.5~\times~10^{10}~\text{Pa},~Y_{\text{BC}}=4~\times~10^{10}~\text{Pa}$ અને $Y_{\text{CD}}=1~\times~10^{10}~\text{Pa}$ તો બિંદુ B, C અને Dના સ્થાનાંતર ગણો. [જવાબ: Bનું સ્થાનાંતર = $3.9~\times~10^{-6}~\text{m},~\text{Cનું}$ સ્થાનાંતર =


િ **જવાબ :** Bનુ સ્થાનાતર = 3.9×10^{-6} m, Cનુ સ્થાનાતર = 8.8×10^{-6} m અને Dનું સ્થાનાંતર = 2.3×10^{-5} m]

Downloaded from https:// www.studiestoday.com

90 ભૌતિકવિજ્ઞાન


3. L લંબાઈ અને A આડછેદનું ક્ષેત્રફળ ધરાવતા તારને છેડે m દળનો પદાર્થ બાંધીને તેને ω કોણીય ઝડપથી સમક્ષિતિજ સમતલમાં ભ્રમણ આપવામાં આવે છે, તો તેની લંબાઈમાં વધારો $\Delta l = \frac{m\omega^2 L^2}{AY}$ છે તેમ દર્શાવો. Y યંગ મૉડ્યુલસ છે.

આકૃતિ 4.21

4. આકૃતિમાં દર્શાવ્યા મુજબ 2 kg અને 4 kgના બે પદાર્થ 2 cm² જેટલા આડછેદના એક તારના બે છેડે લટકાવેલ છે. તાર આકૃતિમાં દર્શાવ્યા મુજબ ઘર્ષણરહિત ગરગડી પરથી પસાર થાય છે, તો તારમાં ઉત્પન્ન થતી વિકૃતિ શોધો. $g=10~{\rm m~s^{-2}~Y}=2\times 10^{11}~{\rm Pa}$.

[$800 : 6.6 \times 10^{-7}$]

આકૃતિ 4.22

5. 5 m લંબાઈનો અને 2 mm વ્યાસવાળો એક તાર છત પરથી લટકે છે, તેના વડે 5 kg દળ લટકાવતાં તેના કદમાં કેટલો વધારો થાય. દ્રવ્ય માટે પોઇસનનો ગુણોત્તર 0.2 છે. $Y=2\times 10^{11}~{\rm Pa},~g=10~{\rm m~s^{-2}}.~{\rm cli}$ સ્થિતિ-ઊર્જામાં થતો વધારો પણ શોધો.

[8414 : $\Delta V = 7.5 \times 10^{-10} \text{ m}^3, 10^{-2} \text{ J}$]

6. 1 mm^2 આડછેદ ધરાવતા એક સ્ટીલના વાયરને 60° તાપમાન સુધી ગરમ કરીને બે છેડા વચ્ચે તાર તંગ રહે તેમ બાંધ્યો છે. તાપમાન 30°C થાય, ત્યારે તેમાં રહેલ તણાવમાં શું ફેરફાર થાય ? સ્ટીલ માટે રેખીય પ્રસરણાંક $\alpha = 1.1 \times 10^{-5} \, ^\circ\text{C}^{-1}$, $Y = 2 \times 10^{11} \, \text{Pa}$. (તાપમાનમાં Δt ફેરફાર થતાં તારની લંબાઈમાં થતો ફેરફાર $\alpha = \alpha l \Delta t$)

•

પ્રકરણ 5

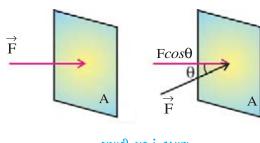
तरवनुं भिडेनिड्स

- 5.1 પ્રસ્તાવના
- 5.2 દબાણ અને ઘનતા
- 5.3 પાસ્કલનો નિયમ અને તેના ઉપયોગો
- 5.4 તરલ સ્તંભને કારણે દબાણ
- 5.5 આર્કિમિડિઝનો સિદ્ધાંત
- **5.6** તરલ ડાઇનેમિક્સ
- **5.7** સાતત્ય સમીકરણ
- 5.8 બર્નુલીનું સમીકરણ અને તેના ઉપયોગો
- **5.9** શ્યાનતા
- 5.10 સ્ટૉક્સનો નિયમ
- 5.11 રેનોલ્ડ્ઝ-અંક અને ક્રાંતિવેગ
- 5.12 પૃષ્ઠ-ઊર્જા અને પૃષ્ઠતાણ
- 5.13 સંપર્કકોણ
- 5.14 કેશાકર્ષણ
 - સારાંશ
 - સ્વાધ્યાય

5.1 પ્રસ્તાવના (Introduction)

વહી શકે તેવા દ્રવ્યને તરલ કહે છે. પ્રવાહીઓ અને વાયુઓ વહી શકે છે, તેથી તેઓને તરલ કહે છે. પીગળેલ કાચ અને ડામર પણ ધીમેથી વહી શકે છે. તેથી તેઓનો પણ સમાવેશ તરલમાં થાય છે.

તરલ મિકેનિક્સ એ તરલ સ્ટેટીક્સ અને તરલ ડાઇનેમિક્સનું બનેલું છે. તરલ સ્ટેટીક્સમાં સ્થિર તરલ પર લાગતાં બળો અને દબાણનો અભ્યાસ કરવામાં આવે છે. તરલ ડાઇનેમિક્સમાં તરલના ગુણધર્મો અને તરલની ગતિનો અભ્યાસ કરવામાં આવે છે. તરલ ડાઇનેમિક્સનો અભ્યાસ બે ભાગમાં કરવામાં આવે છે. હાઇડ્રોડાઇનેમિક્સ અને ઍરોડાઇનેમિક્સ.


આપણે દબાણ અને પાસ્કલના નિયમનો અભ્યાસ તરલ સ્ટેટીક્સનો કરીશું. તરલ ડાઇનેમિક્સમાં પ્રવાહની લાક્ષણિકતાઓ, બર્નુલીનું સમીકરણ અને તેના ઉપયોગો અને શ્યાનતાનો અભ્યાસ કરીશું, અને છેલ્લે સ્થિર પ્રવાહીના પૃષ્ઠતાણની ચર્ચા પણ કરીશું. તો ચાલો શરૂઆત તરલ સ્ટેટીક્સથી કરીએ.

5.2 દબાણ અને ઘનતા

''પદાર્થની સપાટી પર એકમક્ષેત્રફળ દીઠ સપાટીને લંબરૂપે લાગતા બળને સપાટી પર લાગતું દબાણ કહે છે.''

દબાણ
$$(P) = \frac{\text{બળ}(F)}{\hat{\aleph}$$
ગફળ (A) (5.2.1)

જો બળ સપાટીને લંબ ન હોય, તો બળનો સપાટીને લંબઘટક આ સપાટી પર લાગતા દબાણ માટે ધ્યાનમાં લેવામાં છે. (જુઓ આકૃતિ 5.1)

સપાટી પરનું દબાણ આકૃતિ 5.1

જો બળ (\overrightarrow{F}) , સપાટીને દોરેલા લંબ સાથે θ ખૂણો બનાવે તો $Fcos\theta$ જેટલું બળ સપાટીને લંબ દિશામાં લાગે. તેથી દબાણની વ્યાખ્યા અનુસાર, દબાણ

$$P = \frac{F cos \theta}{A}$$
 (5.2.2)

દબાણનો એકમ newton/(metre) 2 , (N/m 2) છે, જે પ્રસિદ્ધ ફ્રેન્ચ ભૌતિકવિજ્ઞાની બ્લેઇસ પાસ્કલ (1623—1662)ના માનમાં pascal (P_a) પણ ઓળખાય છે. દબાણ અદિશ રાશિ છે.

પાસ્કલ સિવાયના દબાણના એકમો બાર, વાતાવરણ (atm) અને ટોર (torr) છે.

$$1 P_a = 1 N m^{-2}$$

1 bar =
$$10^5 P_a$$

અને 1 વાતાવરણ (atm) = $1.013 \times 10^5 P_a$

1 torr = 133.28 P_a

1 atm દબાણ દરિયાની સપાટીએ વાતાવરણ દ્વારા ઉત્પન્ન થતું દબાણ છે. તેને પારાના સ્તંભની ઊંચાઈના સ્વરૂપમાં cm – Hg કે mm – Hgમાં પણ દર્શાવાય છે.

1 atm = 76 cm - Hg = 760 mm - Hg

ઘનતા : કોઈ પણ પદાર્થના દળ અને કદના ગુણોત્તરને તે પદાર્થની ઘનતા કહે છે. જો m દળના પદાર્થનું કદ V હોય, તો ઘનતા (ρ) નીચેના સૂત્રથી મળે.

$$\rho = \frac{m}{V} \tag{5.2.3}$$

સ્પષ્ટ છે કે ઘનતાનો એકમ $kg\ m^{-3}$ થાય. સામાન્ય રીતે પ્રવાહીઓ અદબનીય હોય છે. (મોટા ભાગના પ્રવાહી કદમાં થતા પ્રતિશત ફેરફાર 0.005 ટકાના ક્રમનો હોય છે.) તેથી આપેલ તાપમાને તેમની ઘનતા અચળ હોય છે. વાયુઓની ઘનતા તેમના દબાણ પર આધારિત હોય છે. ટેબલ 5.1 માં કેટલાક તરલની ઘનતા આપેલ છે.

ટેબલ 5.1 : સામાન્ય તાપમાને અને દબાણે તરણોની ઘનતા (માત્ર જાણકારી માટે)

0	ઘનતા		ઘનતા	
પ્રવાહી	$(kg m^{-3})$	વાયુ	$(kg m^{-3})$	
પાણી	1×10^{3}	હવા	1.29	
દરિયાનું પાણી	1.03×10^{3}	ઑક્સિજન	1.43	
પારો	13.6×10^{3}	હાઇડ્રોજન	9.0×10^{-2}	
ઇથાઇલ	0.806×10^{3}	ઇન્ટર	$10^{-18} - 10^{-21}$	
આલ્કોહૉલ		સ્ટેલર		
		સ્પેસ		
રુધિર	1.06×10^{3}			

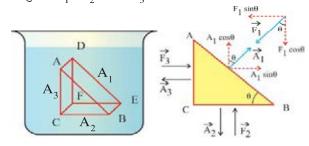
કેટલીક વાર, આપેલ પદાર્થની ઘનતાને તેની વિશિષ્ટ ઘનતાનું મૂલ્ય આપી વર્શવવામાં આવે છે. "કોઈ પણ પદાર્થની વિશિષ્ટ ઘનતા એ પદાર્થની ઘનતા અને પાણીની 277 K તાપમાને ઘનતાનો ગુણોત્તર છે." આમ,

વિશિષ્ટ ઘનતા =
$$\frac{\text{પદાર્થની ઘનતા}}{277 \text{ K તાપમાને પાણીની ઘનતા}}$$

વિશિષ્ટ ઘનતા પરિમાણરહિત છે. તેને સાપેક્ષ ઘનતા કે વિશિષ્ટ ગુરુત્વ પણ કહે છે. ઘનતાના વ્યસ્તને વિશિષ્ટ કદ કહે છે.

જો આપણે આપેલા પદાર્થના કદ જેટલું જ પાણી લઈએ, તો વિશિષ્ટ ઘનતા નીચે મુજબ મેળવી શકાય.

પદાર્થની વિશિષ્ટ ઘનતા =


277 K तापमाने तेटला ४ अहना पाष्ट्रीनुं हण

પદાર્થની વિશિષ્ટ ઘનતા શોધવા માટે ઉપર્યુક્ત સમીકરણ ખૂબ ઉપયોગી છે. આ રીતે પદાર્થની વિશિષ્ટ ઘનતા માટે પદાર્થની ઘનતા મેળવવાની જરૂરી રહેતી નથી.

5.3 પાસ્કલનો નિયમ અને તેના ઉપયોગો

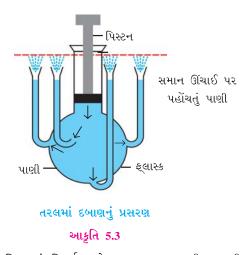
પાસ્કલનો નિયમ : ''જો ગુરુત્વાકર્ષણની અસરોને અવગણવામાં આવે તો સંતુલન-અવસ્થામાં રહેલા અદબનીય તરલમાં પ્રત્યેક બિંદુએ દબાણ સમાન હોય છે.'

આ વિધાનને સહેલાઈથી નીચે મુજબ ચકાસી શકાય : સ્થિર અવસ્થામાં રહેલા પ્રવાહીના અંદરના ભાગમાં એક પ્રવાહી ખંડ વિચારો. આ ખંડ એક કાટકોણ ત્રિકોણની બનેલી બે બાજુ ધરાવતો એક પ્રિઝમ છે. આ ખંડની સપાટીઓ ADEB, CFEB અને ADFC ના ક્ષેત્રફળ અનુક્રમે A_1 , A_2 અને A_3 .

પાસ્કલના નિયમની ચકાસણી આકૃતિ 5.2

આકૃતિ 5.2 પરથી સ્પષ્ટ છે કે,

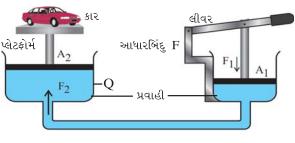
 $A_2 = A_1 cos\theta$ and $A_3 = A_1 sin\theta$ વળી, પ્રવાહી ખંડ સંતુલનમાં હોવાથી, તરલનું મિકેનિક્સ


 $F_2=F_1cos\theta$ અને $F_3=F_1sin\theta$ હવે સપાટી ADEB પરનું દબાણ $P_1=rac{F_1}{A_1}$ સપાટી CFEB પરનું દબાણ

$$P_2 = \frac{F_2}{A_2} = \frac{F_1 cos\theta}{A_1 cos\theta} = \frac{F_1}{A_1}$$
અને સપાટી ADFC પરનું દબાણ

$$P_3=rac{F_3}{A_3}=rac{F_1cos heta}{A_1cos heta}=rac{F_1}{A_1}$$
 આમ, $P_1=P_2=P_3$

વળી, θ ખૂશો યાદેચ્છિક હોવાથી આ પરિણામ કોઈ પણ સપાટી માટે સાચું છે. આમ, પાસ્કલનો નિયમ સાબિત થયો.


પાસ્કલના નિયમની એક સીધી અસર એ છે કે, ''બંધ પાત્રમાં ભરેલા અદબનીય તરલ પરના દબાણમાં કરેલો ફેરફાર, તરલના પ્રત્યેક ભાગમાં અને પાત્રની દીવાલ પર એક સરખી રીતે પ્રસરે છે.'' આ દબાણ પાત્રની દીવાલને લંબ રૂપે હોય છે. આ વિધાનને પાસ્કલના તરલ-દબાણના પ્રસરણનો નિયમ કહે છે.

આ પરિણામનું નિદર્શન એક કાચના ફ્લાસ્કની મદદથી કરી શકાય. આ ફ્લાસ્કમાંથી બધી બાજુએ નાની નળીઓ બહાર નીકળે છે (આકૃતિ 5.3). આ પાત્રમાં થોડું રંગીન પાણી ભરો. આ ફ્લાસ્કના ઉપરના ભાગમાં જોડાયેલા પિસ્ટનને થોડો નીચે તરફ ધકેલો. પાત્ર સાથે જોડાયેલ દરેક નળીમાં પાણી સમાન ઊંચાઈએ ઉપર ચઢશે. આ દર્શાવે છે કે પ્રવાહીના કોઈ પણ ભાગમાં દબાણમાં કરેલો ફેરફાર પ્રવાહીમાં દરેક દિશામાં સમાન રીતે પ્રસરે છે.

હાઇડ્રોલિક લિફ્ટ : હાઇડ્રોલિક લિફ્ટ પાસ્કલના નિયમ પર કાર્ય કરે છે. તે A_1 અને A_2 , $(A_1 << A_2)$ જેટલા

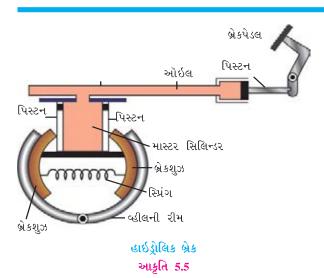
આડછેદના ક્ષેત્રફળ ધરાવતા બે નળાકારનું બનેલું સાધન છે (આકૃતિ 5.4). આ બે નળાકારમાં ઘર્ષણરહિત રીતે સરકી શકે તેવા હવાચુસ્ત પિસ્ટન પર ફીટ કરેલા છે. આ સાધનમાં આકૃતિમાં દર્શાવ્યા મુજબ પ્રવાહી ભરવામાં આવે છે.

હાઇડ્રોલિક જેક આકૃતિ 5.4

ધારો કે \mathbf{A}_1 જેટલો આડછેદ ધરાવતા પિસ્ટન પર \mathbf{F}_1 જેટલું બળ લગાડવામાં આવે છે. તેને કારણે આ આડછેદ પર દબાણ.

$$P = \frac{F_1}{A_1}$$

આ દબાશ બંધ પાત્રમાંના પ્રવાહીમાં સમાન રીતે પ્રસરિત થતું હોવાથી મોટા આડછેદવાળા પિસ્ટન પર પણ આટલું જ દબાશ લાગશે. આમ, બીજા પિસ્ટન પરનું દબાશ, આમ,

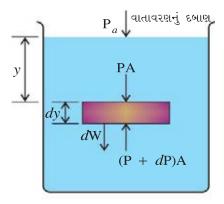

$$P = \frac{F_2}{A_2}$$

$$\therefore \frac{F_2}{A_2} = \frac{F_1}{A_1}$$

$$\therefore F_2 = F_1 \left(\frac{A_2}{A_1}\right)$$

અત્રે, $A_1 << A_2$ હોવાથી $F_1 << F_2$. આમ, ઓછા પ્રયત્નબળ (F_1) વડે ભારે પદાર્થને ઊંચકી શકાય છે.

હાઇડ્રોલિક બ્રેક: મોટા ભાગનાં ઑટોમોબાઇલ્સ આ નિયમ પર કામ કરતી હાઇડ્રોલિક બ્રેક ધરાવે છે. જ્યારે વાહનચાલક બ્રેક-પેડલ પર થોડું બળ લગાડે છે. ત્યારે માસ્ટર પિસ્ટન એ માસ્ટર સિલિન્ડરમાં ધકેલાય છે. આથી ઉદ્ભવતું દબાણ બ્રેકઑઇલ મારફતે ઘટ્યા વિના મોટા ક્ષેત્રફળવાળા પિસ્ટન પર લાગુ પડે છે. આથી પિસ્ટન પર મોટું બળ લાગે છે. જે બ્રેકશુઝને ધકેલીને બ્રેક લાઇનરના સંપર્કમાં લાગે છે. આમ, પેડલ પર લગાડેલા નાના બળ વડે પૈડાં પર મોટું અવરોધક બળ લાગે છે.



ડોર ક્લોઝર અને વાહનોના શૉક ઍબ્સોર્બર પણ પાસ્કલના નિયમ પર કાર્ય કરે છે.

(આકૃતિ 5.5 માત્ર જાણકારી માટે છે.)

5.4 તરલસ્તંભને કારણે ઉત્પન્ન થતું દબાણ (Pressure Due to Fluid Column)

ધારો કે કોઈ પાત્રમાં ρ ઘનતાવાળું પ્રવાહી સ્થિત સંતુલનમાં છે. આ પ્રવાહીમાં y ઊંડાઈએ રહેલા dy જાડાઈનો અને A જેટલા આડછેદવાળો નળાકાર તરલ-ખંડ વિચારો. આકૃતિ 5.6માં દર્શાવ્યા મુજબ આ તરલ-ખંડનું કદ Ady છે, અને તેના દળ અને વજન અનુક્રમે $\rho \cdot A \cdot dy$ અને $dW = \rho g \cdot Ady$ થશે.

તરલસ્તંભ વડે ઉદ્દભવતું દબાણ આકૃતિ 5.6

ધારો કે આકૃતિ 5.6માં દર્શાવ્યા મુજબ આ નળાકાર ખંડની ઉપરની અને નીચેની સપાટી પર દબાણ અનુક્રમે P અને P+dp છે. તેથી ઉપરની સપાટી પર અધોદિશામાં લાગતું બળ PA થશે અને નીચેની સપાટી પર ઊર્ધ્વદિશામાં લાગતું બળ (P+dp)A થશે.

$$PA + dW = (P + dp)A$$

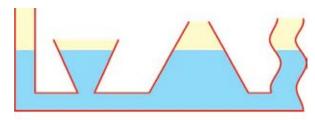
 $\therefore PA + \rho gAdy = PA + Adp$

$$\therefore \rho g A dy = A dp.$$

$$\therefore \frac{dp}{dy} = \rho g \qquad (5.4.1)$$

આ સમીકરણ દર્શાવે છે કે દબાણમાં ઊંડાઈ (કે ઊંચાઈ) સાથે થતો ફેરફાર ભૌતિક રાશિ ρg પર આધારિત છે. ρg ને વજનઘનતા (એકમકદવાળા પદાર્થનું વજન) કહે છે. મોટા ભાગના પ્રવાહીઓ અદબનીય હોવાથી ρg ઓછી ઊંચાઈના તરલસ્તંભ માટે અચળ રહે છે. હવા જેવા તરલ માટે ઘનતા ρ પૃથ્વીની ઊંચાઈ, તાપમાન વગેરે પર આધારિત છે. તેથી હવા માટે વજન ઘનતાનું મૂલ્ય અચળ ગણી ન શકાય.

આકૃતિ 5.6માં દર્શાવ્યા મુજબ પાત્ર ખુલ્લું હોવાથી પ્રવાહીની મુક્ત સપાટી પર વાતાવરણનું દબાણ હોય છે. તેથી y=0 માટે $\mathbf{P}=\mathbf{P}_a$ અને y=h ઊંડાઈએ દબાણ \mathbf{P} સમીકરણ 5.4.1નું સંકલન કરીને મેળવી શકાય.


$$\int_{P_a}^{P} dP = \int_{0}^{h} \rho g dy$$

$$\therefore P - P_a = \rho g h$$

$$\therefore P = P_a + \rho g h \qquad (5.4.2)$$

અહીં, $\mathbf{P}=\mathbf{P}_a+\rho gh$ એ નિરપેક્ષ દબાણ છે, જયારે $\mathbf{P}-\mathbf{P}_a$ ને તે બિન્દુએ ગેજદબાણ અથવા હાઇડ્રોસ્ટેટિક દબાણ કહેવાય છે.

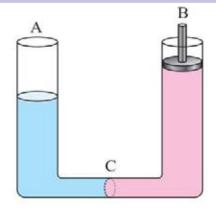
પ્રવાહીમાં કોઈ પણ બિન્દુએ દબાણ પાત્રના આકાર કે ક્ષેત્રફળ પર આધારિત નથી. આ હકીકતને હાઇડ્રોસ્ટેટિક પેરાડોક્સ કહે છે. (જુઓ આકૃતિ 5.7) જુદા-જુદા આકાર ધરાવતાં પણ એકબીજાં સાથે જોડાયેલાં પાત્રોમાં જ્યારે પ્રવાહી ભરવામાં આવે છે, ત્યારે દરેક પાત્રમાં પ્રવાહીની ઊંચાઈ સમાન હોય છે.

હાઇડ્રોસ્ટેટિક પેરોડોક્સ આકૃતિ 5.7

સમીકરણ (5.4.2) સૂચવે છે કે જો બે બિંદુઓ સ્થિર પ્રવાહીમાં એક જ સમક્ષિતિજ સમતલમાં આવેલાં હોય, તો આ બંને બિંદુ આગળ દબાણ સમાન હોય છે.

તરલનું મિકેનિક્સ 95

5.5 આર્કિમિડિઝનો સિદ્ધાંત : "જ્યારે કોઈ પદાર્થને પ્રવાહીમાં આંશિક કે સંપૂર્ણપણે ડુબાડવામાં આવે, ત્યારે તેના પર લાગતું ઉત્પ્લાવક બળ તેણે વિસ્થાપિત કરેલ પ્રવાહીના વજન જેટલું હોય છે અને તે વિસ્થાપિત કરેલા પ્રવાહીના દ્રવ્યમાનકેન્દ્ર પર ઊર્ધ્વ દિશામાં લાગે છે."


જો પ્રવાહીની ઘનતા ho_f અને ડુબાડેલ પદાર્થનું કદ m Vહોય, તો ઉત્પ્લાવક બળ $F_b =
ho_f Vg$ થાય.

જે પદાર્થના વજનમાં થતા ઘટાડા જેટલું છે.

ફ્લોટેશનનો નિયમ : જ્યારે પદાર્થનું વજન (W) એ તરતા પદાર્થના આંશિક ડૂબેલા ભાગ દ્વારા વિસ્થાપિત પ્રવાહીના વજન જેટલું હોય, ત્યારે પદાર્થ પ્રવાહીની સપાટી પર તરે છે.

- (i) જો $W > F_b$ હોય, તો પદાર્થ પ્રવાહીમાં ડૂબે છે.
- (ii) જો $W = F_h$ હોય, તો પદાર્થ પ્રવાહીમાં કોઈ પણ ઊંડાઈએ સમતોલ રહે છે.
- (iii) જો ${\bf W} < {\bf F}_{\!h}$ હોય, તો પદાર્થ પ્રવાહીની સપાટી પર તરે છે, અને તે પદાર્થ અંશતઃ ડુબેલો રહે છે.

ઉદાહરણ 1 : આકૃતિ 5.8માં દર્શાવ્યા મુજબ બે નળાકાર પાત્રો A અને B એકબીજાં સાથે જોડાયેલાં છે. પાત્ર Aમાં 2 mની ઊંચાઈ સુધી પાણી ભરેલ છે. પાત્ર Bમાં કેરોસીન ભરેલું છે. આ બે પ્રવાહી હવાચુસ્ત તકતી C દ્વારા જુદા પાડેલાં છે. જો કેરોસીનના સ્તંભની ઊંચાઈ 2 m રાખવી હોય, તો પાત્ર Bમાં રહેલા પિસ્ટન પર કેટલું દળ મૂકવું પડે. આ દળ વડે તકતી C પર લાગતું બળ પણ શોધો. પિસ્ટનનું ક્ષેત્રફળ $= 100 \text{ cm}^2$, તકતીનું ક્ષેત્રફળ $10~{
m cm}^2$ પાણીની ઘનતા $10^3~{
m kg~m}^{-3}$ અને કેરોસીનની વિશિષ્ટ ઘનતા = 0.8 છે.

આકૃતિ 5.8

ઉંકેલ : પિસ્ટનનું ક્ષેત્રફળ A₁ = 100 cm² = 10⁻² m² તકતીનું ક્ષેત્રફળ $A_2 = 10 \text{ cm}^2 = 10^{-3} \text{ m}^2$

પાણીની ધનતા
$$ho_{\omega}=10^3~{
m kg}~{
m m}^{-3}$$

હવે
$$\frac{\hat{y}}{\text{uighth uphal}} = 0.8$$

 \therefore કેરોસીનની ઘનતા $ho_k=0.8 imes$ પાણીની ઘનતા $= 0.8 \times 10^3 = 800 \text{ kg m}^{-3}$

કેરોસીનની ઊંચાઈ 2 m છે.

પાણીના સ્તંભનું દબાણ $=rac{mg}{\mathrm{A_1}}$ + કેરોસીન સ્તંભનું દબાણ

$$\therefore h\rho_{\omega}g = h\rho_kg + \frac{mg}{A_1}$$

$$\therefore 2 \times 10^3 = 2 \times 800 + \frac{m}{10^{-2}}$$

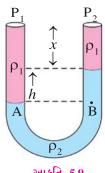
$$\therefore 2000 - 1600 = \frac{m}{10^{-2}}$$

$$\therefore 400 \times 10^{-2} = m$$

$$\therefore$$
 m = 4 kg

હવે દળ m દ્વારા ઉત્પન્ન થતું દબાણ કોઈ ફેરફાર વિના તકતી C પર પણ લાગે છે, તેથી

$$4 \text{ kg દળને કારણે દબાણ} = \frac{\text{dsdl } \mathbf{C} \, \mathbf{V} \, \mathbf{c} \, \, \mathbf{v}}{\text{dsdl } \mathbf{C} \, \mathbf{f}_{\mathbf{f}_{\mathbf{f}}} \, \, \mathbf{k}_{\mathbf{f}} \, \mathbf{r} \, \mathbf{s}_{\mathbf{f}}}$$


$$\therefore \frac{mg}{A_1} = \frac{F_C}{A_2}$$

$$\therefore F_C = mg \frac{A_2}{A_1}$$

$$= \frac{4 \times 9.8 \times 10^{-3}}{10^{-2}}$$

$$= 3.92 \text{ N}$$

ઉદાહરણ 2 : આકૃતિ 5.9માં દર્શાવ્યા મુજબ મેનોમીટરના નીચેના ભાગમાં ρ, ઘનતાવાળું તરલ અને ઉપરના ભાગમાં $ho_{_1}$ ઘનતાવાળું તરલ ભરેલું છે. મેનોમીટરના બે ભુજની ટોચ પરના દબાણ P₁ અને P₂ હોય તો, દબાણનો તફાવત $P_1 - P_2$ ગણો.

આકૃતિ 5.9

ઉકેલ : આકૃતિમાં દર્શાવ્યા મુજબ તળીયેથી સમાન ઊંચાઈ ધરાવતાં બે બિંદુઓ A અને B વિચારો.

આ બિંદુઓ માટે,

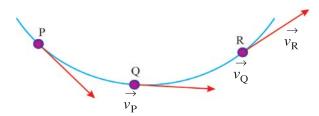
$$P_A = P_B$$

:.
$$P_1 + (h + x)\rho_1 g = x\rho_1 g + h\rho_2 g + P_2$$

$$\therefore P_1 - P_2 = x\rho_1 g + h\rho_2 g - h\rho_1 g - x\rho_1 g$$

$$\therefore P_1 - P_2 = (\rho_2 - \rho_1)gh$$

5.6 તરલ ડાઇનેમિક્સ


કણની ગતિનો અભ્યાસ કરતી વખતે આપણે કોઈ એક જ કણની ગતિ પર ધ્યાન કેન્દ્રિત કરવાનું હતું, તેથી ખાસ મુશ્કેલી પડતી ન હતી. પરંતુ તરલની ગતિમાં તો તરલના 'જથ્થાબંધ' કણો એકસાથે ગતિ કરતાં હોય, તો તે દરેકની ગતિ પર એકસાથે ધ્યાન કેવી રીતે આપી શકાય ? જે. એલ. લાગ્રાન્જે કણના ગતિવિજ્ઞાનના ખ્યાલોને વ્યાપક બનાવી તરલના દરેક કણ સાથે કેવી રીતે કામ પાર પાડવું તે સમજાવ્યું છે. જોકે અત્યારે આપણે આ અભિગમની ચિંતા કરીશું નહિ. વિજ્ઞાની ઑઇલરે વિકસાવેલો બીજો અભિગમ સગવડભર્યો છે. આ અભિગમમાં આપણે તરલના દરેક કણની ચિંતા કરતાં નથી, તેને બદલે તરલમાં દરેક બિંદુએ દરેક ક્ષણે તરલની ઘનતા, દબાણ અને વેગનો વિચાર કરવાનો હોય છે. આમ છતાં, તરલના ક્ણોને સર્વથા ભૂલી જવાનું તો પોસાય નહિ, કારણ કે છેવટે તો તરલની ગતિ તેના ક્ણોની ગતિને જ આભારી છે.

અહીં, આપણે તરલની ગતિના અભ્યાસમાં ઘણી આદર્શ અને સરળ પરિસ્થિતિઓનો જ વિચાર કરીશું. આ માટે સૌપ્રથમ તરલ વહનની કેટલીક લાક્ષણિકતાઓ જાણી લઈએ.

તરલ વહનની લાક્ષણિકતાઓ (Characteristics of Fluid Flow) :

(1) સ્થાયી વહેન (Steady flow) : જો તરલ વહનમાં દરેક બિંદુ પાસે તરલનો વેગ સમય સાથે અફર (અચળ) રહેતો હોય, તો તેવા વહનને સ્થાયી વહન કહે છે. આનો અર્થ એવો થયો કે આવા વહનમાં કોઈ એક આપેલા બિંદુ પાસેથી પસાર થતા તરલ કણોનો વેગ એકસરખો જ રહે છે. આ બાબત સમજવા માટે આકૃતિ 5.10 માં દર્શાવ્યા પ્રમાણે નમૂના તરીકે ત્રણ બિંદુઓ P, Q અને R ધ્યાનમાં લો. આ બિંદુઓ પરથી પસાર થતા દરેક કણના વેગ અનુક્રમે $\stackrel{\rightarrow}{v_P}$, $\stackrel{\rightarrow}{v_Q}$ અને $\stackrel{\rightarrow}{v_R}$ છે. વળી, આ વેગો સમય સાથે અચળ રહે છે. યાદ રાખો કે સ્થાયી વહનમાં જુદાં- જુદાં બિંદુઓ પરથી પસાર થતા કણના વેગ એકસરખા હોવા જરૂરી નથી, પરંતુ જે-તે બિંદુ પરથી પસાર થતા કણોના વેગ સમય સાથે બદલાતા નથી. એટલે કે $\stackrel{\rightarrow}{v_P}$ = $\stackrel{\rightarrow}{v_Q}$ = $\stackrel{\rightarrow}{v_R}$ હોવું જરૂરી નથી. પરંતુ $\stackrel{\rightarrow}{v_P}$, $\stackrel{\rightarrow}{v_Q}$

અને $\overrightarrow{v_R}$ સમય સાથે અચળ રહે તે જરૂરી છે. બહુ જ ઓછા વેગથી ગતિ કરતા તરલની ગતિને સ્થાયી વહન કહી શકાય. જેમકે ખૂબ ધીમે વહેતું ઝરશું.

સ્થાયી વહનની લાક્ષણિકતાઓ આકૃતિ 5.10

- (2) અસ્થાયી વહન (Unsteady flow): જો તરલ વહનમાં દરેક બિંદુ પાસે તરલનો વેગ સમય સાથે બદલાતો રહેતો હોય, તો તેવા વહનને અસ્થાયી વહન કહે છે. જેમકે ભરતી અને ઓટ વખતે દરિયાના પાણીની ગતિ.
- (3) પ્રક્ષુબ્ધ વહેન (Turbulent flow) : જો તરલ વહનમાં દરેક બિંદુ પાસે તરલના વેગમાં સમય સાથે અનિયમિત તેમજ ઝડપી ફેરફાર થતો હોય, તો તેવા વહનને પ્રક્ષુબ્ધ વહન કહે છે. આવા વહનમાં એક બિંદુએથી બીજા બિંદુએ જતાં કણના વેગમાં અનિયમિત અને ઝડપી ફેરફાર થતો હોય છે. જેમકે ધોધ રૂપે પડતા પાણીની ગતિ, કિનારા પરના ખડકો સાથે અફળાતાં દરિયાનાં મોજામાંના પાણીની ગતિ.
- (4) અચક્રીય વહન (Irrotational flow) : તરલ વહનમાં દરેક બિંદુ પાસે જો તરલના અંશને (તરલના નાના ભાગને) તે બિંદુને અનુલક્ષીને કોઈ પરિણામી કોણીય વેગ ન હોય, તો તરલનું વહન અચક્રીય વહન કહેવાય છે.

વહેણમાં નાના હળવા ચક્રની ગતિ આકૃતિ 5.11

જો તરલ વહન અચક્રીય હોય, તો આકૃતિ 5.11માં દર્શાવ્યા મુજબ વહેણમાં એક નાનું હળવું પાંખિયાંવાળું ચક્ર મૂકીએ, તો તે ચક્રીય ગતિ કર્યા સિવાય ફક્ત રેખીય ગતિ જ કરશે.

- (5) ચક્રીય વહન (Rotational—flow): જો તરલ વહનમાં દરેક બિંદુ પાસે તરલના નાના અંશને તે બિંદુને અનુલક્ષીને કંઈક ચોખ્ખો કોણીય વેગ હોય, તો વહન ચક્રીય કહેવાય છે. આવા વહનમાં મૂકેલ પાંખિયાંવાળું ચક્ર ગોળ-ગોળ ફરતું-ફરતું રેખીય ગતિ કરે છે. ચક્રીય વહન વમળયુક્ત હોય છે. જેમકે ઘૂમરીવાળા પાણીના પ્રવાહો, એગ્ઝોસ્ટ ફેનમાંથી બહાર આવતી હવાની ગતિ.
- (6) અદબનીય વહન (Incompressible flow) : જો તરલ વહનમાં દરેક બિંદુ પાસે દરેક ક્ષણ તરલની ઘનતા અચળ રહેતી હોય, તો તેવા વહનને અદબનીય

તરલનું મિકેનિક્સ

વહન કહે છે. આમ, અદબનીય વહનમાં સમય કે સ્થાન સાથે તરલની ઘનતામાં કોઈ ફેરફાર થતો નથી. સામાન્ય રીતે પ્રવાહીરૂપ તરલ અદબનીય વહન કરે છે. વાયુરૂપ તરલ માટે અમુક પરિસ્થિતિમાં ઘનતામાં થતા ફેરફારો બહુ અગત્યના હોતા નથી. આવા કિસ્સાઓમાં વાયુરૂપ તરલ અદબનીય વહન કરે છે તેમ કહી શકાય. જેમકે ધ્વનિની ઝડપ કરતાં ઘણી ઓછી ઝડપે ઊડતા વિમાનની પાંખોની સાપેક્ષે હવાની ગતિ લગભગ અદબનીય ગણી શકાય.

- (7) **દબનીય વહન (Compressible flow) :** જો તરલ વહનમાં સ્થાન અને સમય સાથે તરલની ઘનતા બદલાતી રહેતી હોય, તો તેવા વહનને દબનીય વહન કહે છે.
- (8) અશ્યાન વહન (Non-viscous flow) : જે તરલ માટે શ્યાનતા-ગુણાંક (co-efficient of viscosity) નું મૂલ્ય ઓછું હોય, તેવા તરલના વહનને અશ્યાન વહન કહે છે. સામાન્ય શબ્દોમાં કહીએ તો સહેલાઈથી વહેતા વહનને અશ્યાન વહન કહે છે. જેમકે સામાન્ય સ્થિતિમાં પાણીનું વહન.
- (9) શ્યાન વહન (Viscous flow) : જે તરલ માટે શ્યાનતા-ગુણાંકનું મૂલ્ય વધારે હોય, તેવા તરલના વહનને શ્યાન વહન કહે છે. સામાન્ય શબ્દોમાં કહીએ તો સહેલાઈથી ન વહી શકતા તરલના વહનને શ્યાન વહન કહે છે. જેમકે દિવેલનું, મધનું વહન.

અહીં પ્રારંભમાં, આપણે સ્થાયી, અચક્રીય, અદબનીય અને અશ્યાન વાહનનો જ વિચાર કરીશું. જોકે વાસ્તવિક પરિસ્થિતિ કરતાં આપણી ધારણા વધારે પડતી આદર્શ છે. શું આપણી આ ધારણા પ્રમાણેનું તરલ પ્રવાહી મળે ખરું ? વિચારો.

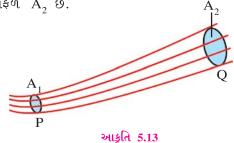
5.6.1 ધારારેખાઓ (Streamlines), વહનનળી (Tube of flow) :

તરણકણના ગતિમાર્ગને પ્રવાહરેખા (line of flow) કહેવામાં આવે છે. સામાન્ય રીતે પોતાના ગતિમાર્ગ પર કણના વેગનું મૂલ્ય અને દિશા બદલાતી જતી હોય છે, અને એક જ બિંદુ પાસેથી પસાર થતા બધા કશો એક જ માર્ગ ગતિ કરતા ન પણ હોય. આમ છતાં, સ્થાયી વહનમાં પરિસ્થિતિ રસપ્રદ છે.

સ્થાયી વહનમાં, દરેક બિંદુ પાસેથી પસાર થતા કણનો વેગ સમય સાથે અફર હોય છે. આકૃતિ 5.10 માં, સ્થાયી વહનમાં, ધારો કે P પાસેથી પસાર થતા કણનો વેગ $\stackrel{\rightarrow}{v_P}$ છે. તે સમય સાથે બદલાતો નથી. આમ, P પાસેથી પસાર થતા દરેક કણનો વેગ $\stackrel{\rightarrow}{v_P}$ છે અને આ દરેક કણ P પાસેથી એકસરખી દિશામાં જ આગળ વધે છે. જ્યારે P પાસેથી પસાર થતો દરેક કણ Q પાસે જાય છે, ત્યાં તેનો વેગ $\stackrel{\rightarrow}{v_Q}$ પણ સમય સાથે અફર છે અને ત્યાંથી તે આગળ વધીને R પાસે જાય છે. ત્યાં પણ તેનો વેગ $\stackrel{\rightarrow}{v_R}$ સમય સાથે અફર હોય છે. આમ, P પાસેથી પસાર થતા દરેક કણનો ગતિમાર્ગ PQR બને છે. સમય જતાં આ માર્ગ બદલાતો નથી. સ્થાયી વહનમાંના આવા સ્થિર ગતિમાર્ગને ધારારેખા કહે

છે. અહીં સ્પષ્ટ છે કે સ્થાયી વહનમાં પ્રવાહ રેખા અને ધારારેખા એકાકાર બની જાય છે. આ ચર્ચા પરથી ધારારેખાની વ્યાખ્યા બીજી રીતે પણ આપી શકાય. જે વક પરના દરેક બિંદુ પાસેનો સ્પર્શક તે બિંદુ પાસેથી પસાર થતા કણના વેગની દિશામાં હોય તેવા વક્રને ધારારેખા કહે છે. જે વહન માટે આવી ધારારેખાઓ વ્યાખ્યાયિત કરી શકાય છે, તેવા વહનને ધારારેખી વહન (Streamline flow) પણ કહેવાય છે. અસ્થાયી વહનમાં પ્રવાહરેખાઓ વ્યાખ્યાયિત કરી શકાય પણ ધારારેખાઓ વ્યાખ્યાયિત કરી શકાય નહિ.

સ્થાયી વહનમાં ધારારેખાઓ એકબીજીને છેદી શકે નહિ. જો તેઓ છેદે તો છેદનબિંદુ પાસેના બે સ્પર્શકોમાંના કોઈ પણ સ્પર્શકની દિશામાં કણ ગતિ કરે, જે સ્થાયી વહનમાં શક્ય નથી..


વહનનળી (પ્રવાહનળી) (Tube of flow): સૈદ્ધાંતિક રીતે દરેક બિંદુમાંથી પસાર થતી ધારારેખા દોરી શકાય. આકૃતિ 5.12માં દર્શાવ્યા પ્રમાણે કોઈ પૃષ્ઠની પરિસીમામાંથી પસાર થતી ધારારેખાઓનું બંડલ વિચારીએ, તો આ બંડલ વડે ઘેરાતા નળી જેવા ભાગને વહનનળી કહે છે. વહનનળીની દીવાલ ધારારેખાઓની બનેલી હોય છે. સ્થાયી વહનમાં બે ધારારેખાઓ છેદી શકતી ન હોવાથી કોઈ તરલ કણ વહન નળીની દીવાલમાંથી પસાર થઈ શકતો નથી અને વહનનળીને ખરેખર નળી ગણવામાં વાંધો આવતો નથી.

વહનનળી આકૃતિ 5.12

5.7 સાતત્ય-સમીકરણ (Equation of Continuity)

આકૃતિ 5.13માં દર્શાવ્યા મુજબ એક પ્રવાહનળી વિચારો. P બિંદુ આગળ તરલનો વેગ v_1 છે. P આગળ પ્રવાહનળી આડછેદનું ક્ષેત્રફળ A_1 છે, તથા બિંદુ Q, આગળ વેગ v_2 છે. Q આગળ પ્રવાહનળીના આડછેદનું ક્ષેત્રફળ A_2 છે.

આમ, P આગળના આડછેદમાંથી પસાર થતું તરલ એકમ સમયમાં $v_{\scriptscriptstyle \parallel}$ જેટલું અંતર કાપશે. તેથી P આગળના

આડછેદમાંથી પસાર થતા તરલનું કદ $\mathbf{A_1} v_1$ થશે. જો અદબનીય તરલની ઘનતા $\mathbf{\rho}$ હોય તો \mathbf{P} આગળના આડછેદમાંથી એકમસમયમાં પસાર થતું તરલનું દળ $\mathbf{\rho} \mathbf{A_1} v_1$.

કોઈ આડછેદમાંથી એકમસમયમાં પસાર થતા તરલનું દળ દળ-ફલક્સ કહેવાય છે. આમ,

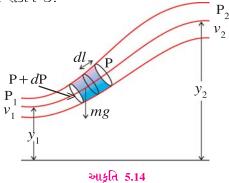
P આગળ દળ ફલક્સ =
$$\rho A_1 v_1$$
. (5.7.1)

આ જ રીતે Q આગળ દળ ફલક્સ = $\rho A_2 v_2$ (5.7.2)

તરલ પ્રવાહનળીની દીવાલમાંથી પસાર થઈ શકતું નથી વળી તરલનો નાશ કે નવા તરલનું સર્જન પ્રવાહનળીમાં શક્ય નથી. તેથી P અને Q આગળના આડછેદ માટે દળ ફલક્સ સમાન હોવાં જોઈએ. આમ, સમીકરણ 5.7.1 અને 5.7.2 પરથી,

$$\rho A_1 v_1 = \rho A_2 v_2$$

$$\therefore A_1 v_1 = A_2 v_2$$
(5.7.3)


અથવા પ્રવાહનળીના કોઈ પણ આડછેદ માટે

$$Av = અચળ$$
 (5.7.4)

સમીકરણ 5.7.3 અથવા 5.7.4 સાતત્યનું સમીકરણ કહેવાય છે. કોઈ પણ આડછેદ પાસેના વેગ અને ક્ષેત્રફળના ગુણાકારને કદ ફલક્સ (volume—flux) કહે છે. સમીકરણ 5.7.4 દર્શાવે છે કે વહનનળીના સાંકડા વિભાગમાં ધારા રેખાઓ ગીચોગીચ થઈ જાય છે. જે દર્શાવે છે કે જ્યાં ધારા રેખાઓ ગીચ હોય ત્યાં વેગ વધારે હોય છે. પહોળા વિભાગમાં આથી ઊલટું હોય છે. આમ, ગીચ ધારારેખાઓ વધારે વેગનો અને છુટ્ટીછુટ્ટી ધારાઓ ઓછા વેગનો નિર્દેશ કરે છે.

5.8 બનુંલીનું સમીકરણ અને તેના ઉપયોગો (Bernoulli's Equations and its Applications)

બર્નુલીનું સમીકરણ તરલ-મિકેનિક્સમાં પાયાનું સમીકરણ છે. આ સમીકરણ તરલ-મિકેનિક્સમાં કોઈ નવો સિદ્ધાંત રજૂ નથી કરતું. આ સમીકરણ કાર્ય-ઊર્જાપ્રમેયથી મેળવી શકાય છે.

આપણે અહીં ધારારેખી, સ્થાયી, અચક્રીય અદબનીય અને અશ્યાન પ્રવાહ ધ્યાનમાં લઈશું. આ પ્રવાહ આકૃતિમાં દર્શાવ્યા મુજબ વહનનળીમાંથી પસાર થઈ રહ્યો છે. A ક્ષેત્રફળ અને dl લંબાઈનો નાનો તરલખંડ વિચારો. આ તરલખંડના મધ્યમાંથી પસાર થતી મધ્યમાન ધારારેખા સંદર્ભસપાટીને સાપેક્ષ y_1 અને y_2 ઊંચાઈએથી પસાર થાય છે. $y_{_{1}}$ ઊંચાઈએ દબાણ $\mathbf{P}_{_{1}}$ અને તરલનો વેગ $v_{_{1}}$ જ્યારે $y_{_{2}}$ ઊંચાઈએ દબાણ \mathbf{P}_{2} અને વેગ v_{2} છે. આ તરલખંડ પર બે બળો લાગે છે : (1) દબાશના તફાવતને કારણે લાગતું બળ (AdP) અને (2) ગુરુત્વાકર્ષણ બળ mg ધારો કે આ તરલ-ખંડ dl જેટલું અંતર કાપે છે. આ દરમિયાન પ્રથમ બળ દ્વારા થતું કાર્ય A*dl d*P છે અને ગુરુત્વાકર્ષણ બળ વિરુદ્ધ થતું કાર્ય (સ્થિતિ-ઊર્જામાં થતો ફેરફાર)–mgdy છે. જ્યાં dy તરલખંડની ઊંચાઈમાં થતો ફેરફાર છે. જો શરૂઆતમાં તેની ગતિ-ઊર્જા $\frac{1}{2}mv^2$ હોય, તો આ સ્થાનાંતર dyદરમિયાન ગતિ-ઊર્જામાં થતો ફેરફાર $d(\frac{1}{2}mv^2) = mvdv$

કાર્ય-ઊર્જા પ્રમેય અનુસાર,
$$mvdv = AdldP - mg \ dy \eqno(5.8.1)$$

Adl તરલખંડનું કદ હોવાથી સમીકરણ 5.8.1 નીચે મુજબ લખી શકાય.

$$\frac{m}{Adl}vdv = dP - \frac{m}{Adl}gdy$$
 (5.8.2)

અહીં m/Adl તરલની ઘનતા છે અને તરલ અદબનીય હોવાથી તે અચળ છે. આમ, સમીકરણ 5.8.2 નીચે મુજબ લખી શકાય :

$$\rho v dv = -dp - \rho g dy$$

$$\therefore \rho \int_{v_1}^{v_2} v dv = -\int_{P_1}^{P_2} dP - \rho g \int_{y_1}^{y_2} dy$$

$$\therefore \rho \left[\frac{v^2}{2} \right]_{v_1}^{v_2} = - \left[P \right]_{P_1}^{P_2} - \rho g \left[y \right]_{y_1}^{y_2}$$

$$\therefore \frac{1}{2} \rho(v_2^2 - v_1^2) = -[P_2 - P_1] - \rho g (y_2 - y_1)$$

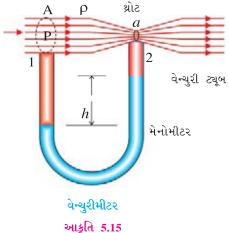
$$P_1 + \rho g y_1 + \frac{1}{2} \rho v_1^2 = P_2 + \rho g y_2 + \frac{1}{2} \rho v_2^2$$
(5.8.3)

$$\therefore P + \rho g y + \frac{1}{2} \rho v^2 = અચળ$$
 (5.8.4)

તરલનું મિકેનિક્સ

સમીકરણ 5.8.3 અથવા 5.8.4 બર્નુલીના સમીકરણ તરીકે ઓળખાય છે. અત્રે નોંધવું જરૂરી છે. આ સમીકરણના બધાં પદો એક જ ધારારેખા પર ગણવાં જોઈએ. જો વહન અચક્રીય હોય તો એવું સાબિત કરી શકાય કે સમીકરણ 5.8.4માં આવતો અચળાંક બધી જ ધારારેખાઓ માટે સમાન છે.

સમીકરણ 5.8.4ને ρg વડે ભાગતાં


$$\frac{P}{\rho g} + \frac{v^2}{2g} + y = અથળ \tag{5.8.5}$$

આ સમીકરણ બર્નુલીના સમીકરણનું વૈકલ્પિક સ્વરૂપ છે. આ સમીકરણમાં પ્રથમ પદ પ્રેસરહેડ, બીજું પદ વેલોસિટી હેડ અને ત્રીજું પદ એલિવેશન હેડ તરીકે ઓળખાય છે.

બર્નુલીના સમીકરણના ઉપયોગો

(1) વેન્ચુરીમીટર : આ સાધનનો ઉપયોગ તરલનો વેગ જાણવા માટે થાય છે. વેન્ચુરીમીટરની રચના આકૃતિ 5.15માં દર્શાવી છે. વેન્ચુરીમીટરમાં ખાસ પ્રકારની વેન્ચુરી-ટ્યુબ સાથે મેનોમીટર જોડેલું છે. વેન્ચુરી ટ્યૂબનો સાંકડો ભાગ થ્રોટ તરીકે ઓળખાય છે.

પહોળા ભાગના આડછેદનું ક્ષેત્રફળ 'A' અને થ્રોટના આડછેદનું ક્ષેત્રફળ 'a' છે. પહોળા ભાગ આગળ તરલનો વેગ v_1 અને થ્રોટ પાસે તેનો વેગ v_2 છે. આ સ્થાનો પર દબાણ \mathbf{P}_1 અને \mathbf{P}_2 છે. મેનોમીટરમાં રહેલા પ્રવાહીની ઘનતા ρ_2 અને જેનો વેગ માપવાનો છે, તે તરલની ઘનતા ρ_1 છે.

બિન્દુ '1' અને '2' માટે બર્નુલીનું સમીકરણ વાપરતાં,

$$P_1 + \frac{1}{2}\rho_1 v_1^2 + \rho_1 g y_1 = P_2 + \frac{1}{2}\rho_1 g v_2^2 + \rho_1 g y_2$$

બિન્દુ '1' અને '2'ની સંદર્ભસપાટીથી ઊંચાઈ સરખી હોવાથી $\boldsymbol{y}_1 = \boldsymbol{y}_2$

$$\therefore P_1 + \frac{1}{2}\rho_1 v_1^2 = P + \frac{1}{2}\rho_1 g v_2^2$$

$$\therefore P_1 - P_2 = \frac{1}{2} \rho_1 (v_2^2 - v_1^2)$$
 (5.8.6)

અહીં મેનોમીટર માટે $\mathbf{P}_1 - \mathbf{P}_2 = (\mathbf{\rho}_2 - \mathbf{\rho}_1)gh$ (ઉદાહરણ 2 જુઓ)

 ${f P}_1 - {f P}_2$ ની આ કિંમત સમીકરણ 5.8.6માં મૂકતાં,

$$(\rho_2 - \rho_1) gh = \frac{1}{2} \rho_1 (v_2^2 - v_1^2)$$
 (5.8.7)

પણ, $Av_1 = av_2$ (: સાતત્ય સમીકરણ)

$$\therefore v_2 = \frac{Av_1}{a}$$

 v_2 ની કિંમત સમીકરણ 5.8.7માં મૂકતાં,

$$(\rho_2 - \rho_1)gh = \frac{1}{2}\rho_1(\frac{A^2}{a^2} v_1^2 - v_1^2)$$

$$\therefore v_1^2 = \frac{2(\rho_2 - \rho_1)gh}{\rho_1} \cdot \frac{a^2}{A^2 - a^2}$$

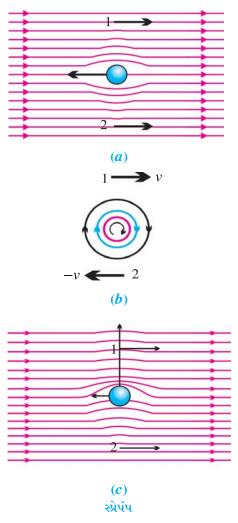
$$\therefore v_1 = a \sqrt{\frac{2(\rho_2 - \rho_1)gh}{\rho_1(A^2 - a^2)}}$$
 (5.8.8)

કદ-ફ્લક્સ અથવા પ્રવાહદર શોધવા માટે $\mathbf{R}=v_1\mathbf{A}$ અથવા v_2a શોધવું જોઈએ.

વાહનોના કાર્બ્યુરેટરમાં રહેલ વેન્ચુરી ચેનલમાંથી હવાનું વહન થાય છે. થ્રોટ પાસે દબાશ ઓછું હોવાથી બળતણ અંદર ખેંચાઈ આવે છે અને દહન માટે આવશ્યક પ્રમાણમાં હવા અને બળતણ પૂરાં પાડે છે.

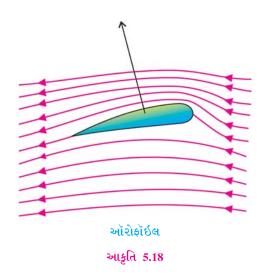
આકૃતિ 5.16

આકૃતિ 5.16માં દર્શાવેલ સ્પ્રેપંપમાં પણ આજ સિદ્ધાંતનો ઉપયોગ થાય છે. પિસ્ટનને ધક્કો મારતાં પંપના નાના કાણામાંથી વધુ ઝડપે હવા બહાર આવે છે. પરિણામે કાણા પાસે દબાણ ઓછું થાય છે. અને તેથી પ્રવાહી સાંકડી નળીમાંથી ઉપર તરફ ખેંચાઈ આવે છે અને હવા સાથે તેનો છંટકાવ થાય છે.


(2) ઊંડાઈ સાથે દબાણમાં થતો ફેરફાર : અગાઉ આપણે $P-P_a=h\rho g$ સમીકરણ મેળવ્યું છે. આ સમીકરણ બર્નુલીના સમીકરણની મદદથી પણ મેળવી શકાય. જો તરલ સ્થિર હોય તો $v_1=v_2=0,\,P_2=P_a$ (પ્રવાહીની મુક્ત સપાટી પરનું દબાણ, જુઓ આકૃતિ 5.6) જો ઊંચાઈનો તફાવત $y_2-y_1=h$ લેવામાં આવે, તો બર્નુલીના સમીકરણ પરથી $P_1=P_a+\rho gh$.

(3) ડાયનેમિક લિફ્ટ (Dynamic Lift) અને સ્વિંગ-બૉલિંગ (Swing Bowling): આપણે શીખી ગયાં કે જ્યારે કોઈ વસ્તુને તરલમાં મૂકવામાં આવે છે ત્યારે આર્કિમિડિઝના સિદ્ધાંત અનુસાર તેના પર ઉત્પ્લાવક બળ લાગે છે. આ બળને સ્ટેટીક લિફ્ટ (static lift) પણ કહે છે. હવે, જ્યારે વસ્તુ તરલની સાપેક્ષે ગતિ કરે ત્યારે એક બીજું બળ ઉદ્ભવે છે, જેને ડાયનેમિક લિફ્ટ કહે છે.

આ હકીકત સમજવા માટે આકૃતિ 5.17(a) ધ્યાનમાં લો. આકૃતિમાં હવામાં ગતિ કરતો એક દડો બતાવ્યો છે. આ દડાની સાપેક્ષમાં હવાની ધારારેખાઓ દડાને અનુલક્ષીને સંમિત છે. (કારણ કે દડો પોતે જ સંમિત છે.) બિંદુ 1 અને 2 પાસે હવાના વેગ એકસમાન છે. બર્નુલીના સમીકરણ અનુસાર 1 અને 2 પાસે દબાણ સરખાં થાય છે અને દડા પરનો ડાયનેમિક લિફ્ટ શૂન્ય બને છે.


હવે, આકૃતિ 5.17(b)માં દર્શાવ્યા પ્રમાણે ધારો કે પુસ્તકના પાનને લંબ અને દડાના કેન્દ્રમાંથી પસાર થતી અક્ષને અનુલક્ષીને દડો સ્પિનગતિ કરે છે. દડો સંપૂર્શ રીતે લીસો ન હોતાં તેની સાથે થોડી હવાને ઘસડે છે, જેને લીધે મળતી ધારારેખાઓ આકૃતિમાં દર્શાવેલ છે.

આકૃતિ 5.17(c)માં દડો જ્યારે સ્પિનગતિ અને રેખીય ગતિ એમ બંને ગતિ કરે ત્યારે તેની આસપાસ હવાની ધારારેખાઓ કેવી હોય તે દર્શાવ્યું છે. અહીં બિંદુ 1 પાસે ગીચ થઈ જતી ધારારેખાઓ વધારે વેગ અને ઓછું દબાણ સૂચવે છે, જ્યારે 2 પાસે ઓછો વેગ અને વધારે દબાણ હોય છે. પરિણામે દડા પર ઊર્ધ્વ દિશામાં ધક્કો લાગે છે. એટલે કે દડાને ડાયનેમિક લિફ્ટ મળે છે. આમ, આ રીતે સ્પિન કરી ફેંકેલો દડો તેના ગતિ પથ પર ધારણા કરતાં ઊંચો રહી જાય છે. (બૉલરે દડો સાથે છેડછાડ કરવા કેમ લલચાય છે તે હવે તમને સમજાયું હશે.)

આકૃતિ 5.17

હવે, જો પુસ્તકના પાનના સમતલમાં રહેલી અને દડાની રેખીય ગતિને લંબ એવી અક્ષની સાપેક્ષે દડાને સ્પિન કરતો ફેંકવામાં આવે, તો દડો ઑફ કે લેગ સ્ટમ્પ બાજુ વળે છે. ઝડપી બૉલિંગમાં સ્વિંગનું મુખ્ય કારણ આ છે.

તરલનું મિકેનિક્સ

(4) ઍરોફૉઇલ: આકૃતિ 5.18માં દર્શાવ્યા મુજબના વિશિષ્ટ આકારના ઘન ટુકડાને ઍરોફૉઈલ કહે છે. તેના આ વિશિષ્ટ આકારના કારણે જયારે ઍરોફૉઇલ હવામાં સમક્ષિતિજ દિશામાં ગતિ કરતો હોય ત્યારે પણ ઊર્ધ્વ દિશામાં બળ લાગે છે. પરિણામે તે હવામાં તરી શકે છે.

વિમાનની પાંખનો આકાર (પાંખની લંબાઈને લંબ આડછેદનો આકાર) ઍરોફૉઇલ જેવો રાખવામાં આવે છે. આકૃતિમાં દર્શાવ્યા મુજબ પાંખની આસપાસ હવાનું ધારારેખીય વહન થતું હોય છે. (જોકે વિમાનની પાંખ અને ગતિની દિશા વચ્ચેનો ખૂશો-angle of attack નાનો હોય ત્યારે જ ધારારેખી વહન શક્ય છે.) આકૃતિ 5.18માં પાંખની આસપાસની ધારારેખાઓ દર્શાવેલ છે. પાંખના ઉપરના ભાગની ગીચ ધારારેખાઓ વધારે વેગ અને ઓછું દબાણ દર્શાવે છે, જયારે પાંખની નીચેના ભાગની છૂટી ધારારેખાઓ એછો વેગ અને વધારે દબાણ દર્શાવે છે. દબાણાના આ તફાવતના કારણે ઊર્ધ્વ દિશામાં બળ લાગે છે. આથી ગતિ કરતા વિમાન પરની ડાયનેમિક લિફ્ટને કારણે તે હવામાં તરી શકે છે.

ઉદાહરણ 3: પાણીનું વહન કરતી નળીના એક છેડાનો વ્યાસ 2 cm અને બીજા છેડાનો વ્યાસ 3 cm છે. સાંકડા છેડા પાસે પાણીનો વેગ 2 ms^{-1} અને દબાણ $1.5 \times 10^5 \text{ Nm}^{-2}$ છે. જો નળીના પહોળા અને સાંકડા છેડા વચ્ચેનો ઊંચાઈનો તફાવત 2.5 m હોય, તો નળીના પહોળા છેડા પાસે પાણીનો વેગ અને દબાણ શોધો. (પાણીના ઘનતા $1 \times 10^3 \text{ kg m}^{-3}$ લો.) નળીનો સાંકડો છેડો વધુ ઊંચાઈએ લો.

ઉકેલ :

વહનનળીનો સાંકડો છેડો

$$d_1 = 2 \text{ cm}$$

$$r_1 = 1 \text{ cm} = 1 \times 10^{-2} \text{ m}$$

$$v_1 = 2 \text{ ms}^{-1}$$

$$P_1 = 1.5 \times 10^5 \text{ Nm}^{-2}$$

વહનનળીનો પહોળો છેડો

$$d_2 = 3 \text{ cm}$$

$$\therefore r_2 = 1.5 \text{ cm} = 1.5 \times 10^{-2} \text{ m}$$

$$v_2 = ?$$

$$P_2 = ?$$

$$\mathbf{A}_1 \mathbf{v}_1 = \mathbf{A}_2 \mathbf{v}_2$$

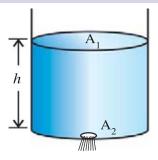
$$v_2 = \frac{A_1}{A_2} \cdot v_1$$

$$= \frac{\pi r_1^2}{\pi r_2^2} \cdot v_1 = \frac{r_1^2}{r_2^2} \cdot v_1$$

$$= \frac{(1 \times 10^{-2})^2}{(1.5 \times 10^{-2})^2} \times 2$$

$$= 0.89 \text{ ms}^{-1}$$

બર્નુલીના સમીકરણ મુજબ,


$$P_1 + \frac{1}{2}\rho v_1^2 + \rho g y_1 = P_2 + \frac{1}{2}\rho v_1^2 + \rho g y_2$$

$$\therefore P_2 = P_1 + \frac{1}{2}\rho(v_1^2 - v_2^2) + \rho g(y_1 - y_2)$$

$$= (1.5 \times 10^5) + \frac{1}{2} \times 1 \times 10^3 \times [(2)^2 - (089)^2] + 1 \times 10^3 \times 9.8 \times 2.5$$

$$P_2 = 1.76 \times 10^5 \text{ Nm}^{-2}$$

ઉદાહરણ 4: આકૃતિ 5.19માં દર્શાવ્યા પ્રમાણે મોટો આડછેદ A_1 ધરાવતા એક નળાકાર પાત્રમાં ρ જેટલી ઘનતા ધરાવતું પ્રવાહી ભરેલ છે. પાત્રના તળિયે A_2 જેટલા આડછેદનું ક્ષેત્રફળ ધરાવતું નાનું હોલ (છિદ્ર) છે. જ્યારે આડછેદ A_2 થી પ્રવાહીના સ્તંભની ઊંચાઈ h હોય ત્યારે તેમાંથી બહાર આવતા પ્રવાહીનો વેગ શોધો. (અહીં, $A_1 >> A_2$)

આકૃતિ 5.19

ઉકેલ : ધારો કે A_1 અને A_2 આડછેદો પાસે પ્રવાહીનો વેગ અનુક્રમે v_1 અને v_2 છે. બંને આડછેદ વાતાવરણમાં ખુલ્લા હોવાથી ત્યાં વાતાવરણના દબાણ P_a જેટલું જ દબાણ પ્રવર્તે છે. બંને આડછેદો માટે બર્નુલીનું સમીકરણ લાગુ પાડતાં,

$$\therefore Pa + \frac{1}{2}\rho v_1^2 + \rho gh = Pa + \frac{1}{2}\rho v_2^2$$
 (1)

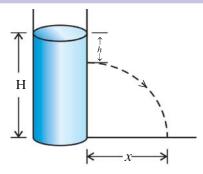
સાતત્યના સમીકરણ અનુસાર,

$$A_1 v_1 = A_2 v_2$$

$$\therefore v_1 = \frac{A_2 v_2}{A_1}$$
(2)

સમીકરણ (2)માંથી સમીકરણ (1)માં v_1 નું મૂલ્ય મૂકતાં,

$$\frac{1}{2} \left(\frac{A_2}{A_1} \right)^2 v_2^2 + gh = \frac{1}{2} v_2^2$$


$$\therefore v_2^2 = \frac{2gh}{\left[1 - \left(\frac{A_2}{A_1}\right)^2\right]} \cong 2gh$$

 $(:: A_2 << A_1)$

$$\therefore v_2 = \sqrt{2gh}$$

નોંધ : પ્રવાહીની મુક્ત સપાટીથી h ઊંડાઈએ રહેલા હોલમાંથી બહાર આવતા પ્રવાહીનો વેગ, તેટલી જ ઊંચાઈ પરથી મુક્તપતન કરતા કણના અંતિમ વેગ જેટલો હોય છે. આ વિધાનને ટોરીસિલિ(Torriceli)નો નિયમ કહે છે.

ઉદાહરણ 5: આકૃતિ 5.20માં દર્શાવેલ એક પાત્રમાં H જેટલી ઊંચાઈ સુધી પાણી ભરેલ છે. પાણીની સપાટીથી h જેટલી ઊંડાઈએ પાત્રની દીવાલમાં એક હોલ પાડવામાં આવે છે. તો હોલમાંથી બહાર આવતી પાણીની ધાર જમીન પર દીવાલથી કેટલા સમક્ષિતિજ અંતરે પડતી હશે ? hના કયા મૂલ્ય માટે આ અંતર મહત્તમ થશે ? આ મહત્તમ અંતર શોધો.

આકૃતિ 5.20

6કેલ : પાણીની સપાટીથી h ઊંડાઈ પર રહેલા હોલમાંથી બહાર આવતા પાણીનો સમક્ષિતિજ દિશામાં વેગ

$$v = \sqrt{2gh} \tag{1}$$

અહીં, બહાર આવતા પાણી પર માત્ર અધોદિશામાં પ્રવેગ (ગુરુત્વપ્રવેગ g) લાગતો હોવાથી સમક્ષિતિજ દિશામાં તે અચળ વેગથી ગતિ કરે છે અને અધોદિશામાં અચળ પ્રવેગી ગતિ કરે છે. (પ્રક્ષિપ્ત ગતિ જેવું)

ગતિનાં સમીકરણો પરથી,

અધોદિશામાં કપાયેલ અંતર,
$$H - h = \frac{1}{2}gt^2$$
 (2)

જ્યાં, t = હોલમાંથી બહાર નીકળતા પાણીએ જમીન પર પહોંચવા લીધેલ સમય.

સમક્ષિતિજ દિશામાં કપાયેલ અંતર
$$x = vt$$
 (3)

સમીકરણ (1) અને (2)માંથી v અને tનાં મૂલ્યો સમીકરણ (3)માં મૂકતાં,

$$x = \sqrt{2gh} \left(\frac{2(H-h)}{g} \right)^{\frac{1}{2}}$$

$$= (4hH - 4h^2)^{\frac{1}{2}}$$

$$= [H^2 - (H - 2h)^2]^{\frac{1}{2}}$$
 (4)

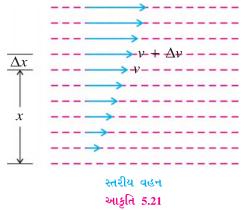
સમીકરણ (4) દર્શાવે છે કે $\mathbf{H}=2h$ માટે x મહત્તમ થાય.

$$\therefore h = \frac{H}{2}$$

આ માટે $h=\frac{\mathrm{H}}{2}$ સમીકરણ (4)માં મૂકતાં,

$$\therefore x = H$$

5.9 શ્યાનતા


આપણે જાણીએ છીએ કે પાણી કે કેરોસીન જેવાં પ્રવાહીઓ આસાનીથી વહી શકે છે, જ્યારે મધ કે દિવેલ (castor oil) જેવાં પ્રવાહીઓનું વહન આસાનીથી થતું નથી. જો બર્નુલીના સમીકરણમાં સમક્ષિતિજ પ્રવાહ માટે $y_1=y_2$ મૂકીએ,

$$\operatorname{di} \ P_1 \ + \ \frac{1}{2} \, \rho {v_1}^2 \ = \ P_2 \ + \ \frac{1}{2} \, \rho {v_2}^2$$

આ સમીકરણ દર્શાવે છે કે સમિક્ષિતિજ તરલ-વહન માટે અચળ ઝડપથી $(v_1=v_2)$ તરલના વહન માટે દબાણનો તફાવત જરૂરી નથી એટલે કે $P_1=P_2$. પરંતુ વાસ્તવમાં આવું બનતું નથી. અચળ ઝડપથી તરલનું વહન શક્ય બનાવવા માટે દબાણનો તફાવત જરૂરી બને છે. આ દર્શાવે છે કે તરલના વહનનો વિરોધ કરતું બળ હોવું જ જોઈએ.

તરલનું મિકેનિક્સ

આ બાબત સમજવા માટે કોઈ સ્થિર સમક્ષિતિજ સપાટી પર તરલનો સ્થાયી પ્રવાહ ધ્યાનમાં લો.

અહીં સપાટી અને પ્રવાહીના અશુઓ વચ્ચે લાગતાં આસક્તિ બળોને કારણે સપાટીના સંસર્ગમાં રહેલો પ્રવાહીનું સ્તર સપાટીને ચીટકી રહે છે. સૌથી ઉપરના સ્તરનો વેગ સૌથી વધુ હોય છે.

આકૃતિ 5.21માં પ્રવાહીના કેટલાક સ્તર અને તેમના વેગસદિશો દર્શાવ્યા છે. આમ, સ્થાયી પ્રવાહમાં પ્રવાહીના જુદા જુદા સ્તર એકબીજામાં ભળી ગયા સિવાય એકબીજા પર સરકે છે. આવા વહનને સ્તરીય વહન (laminar flow) કહે છે.

સ્તરીય વહનમાં તરલના કોઈ પણ બે ક્રમિક સ્તરો વચ્ચે સાપેક્ષ ગિત હોય છે. પરિણામે તેમની સંપર્કસપાટી પર સ્પર્શીય અવરોધક બળ ઉદ્દ્ભવે છે. આવા આંતરિક અવરોધક બળને શ્યાનતાબળ (viscous force) કહે છે. તરલના જે ગુણધર્મને કારણે બે ક્રમિક સ્તરો વચ્ચેની સાપેક્ષ ગિત અવરોધાય છે, તેને તરલની શ્યાનતા કહે છે. આથી જો સ્તરો વચ્ચેની સાપેક્ષ ગિત જાળવી રાખવી હોય તો શ્યાનતાબળોને સમતોલે તેટલું ઓછામાં ઓછું બળ લગાડવું જરૂરી છે. આવાં બાહ્ય બળોની ગેરહાજરીમાં શ્યાનતા બળોને લીધે સ્તરો વચ્ચેની સાપેક્ષ ગિત સમય જતાં મંદ પડે છે અને તરલ સ્થિર થઈ જાય છે. આ કારણને લીધે પ્યાલામાં રાખેલ દૂધ ચમચીથી હલાવ્યા પછી થોડી વારમાં સ્થિર થઈ જાય છે.

વેગપ્રચલન (Velocity gradient) : સ્તરીય વહનમાં વહનની દિશાને લંબ એવી દિશામાં એકબીજાથી એકમ અંતરે રહેલા બે સ્તરોના વેગના તફાવતને વેગપ્રચલન કહે છે.

આકૃતિ 5.21માં દર્શાવ્યા મુજબ એકબીજાથી Δx જેટલા અંતરે આવેલા બે સ્તરોના વેગમાં તફાવત Δv છે. આમ,

 $\frac{\Delta v}{\Delta x}$ वेगप्रयक्षन थाय. श्रे Δx नुं भूस्य भूभ ४ नानुं होय

તો વેગપ્રચલન
$$\lim_{\Delta x \to 0} \frac{\Delta v}{\Delta x} = \frac{dv}{dx}$$
 થાય.

સ્તરીય વહન માટે વેગપ્રચલન કોઈ પણ સ્તરો માટે સમાન હોય છે. તેનો એકમ s^{-1} છે.

હવે શ્યાનતા પર આપશું ધ્યાન ફરીથી કેન્દ્રિત કરીએ. અહીં શ્યાનતાબળ ગતિનો વિરોધ કરતું બળ છે. ન્યૂટનના પ્રાયોગિક કાર્ય અનુસાર અચળ તાપમાને શ્યાનતાબળનું મૂલ્ય નીચેના સૂત્રથી મળે.

$$F = \eta A \frac{dv}{dx}$$
 (5.9.1)

અહીં F શ્યાનતાબળ અને A બે સ્તર વચ્ચેની સંપર્ક સપાટીનું ક્ષેત્રફળ છે. η સપ્રમાણતાનો અચળાંક છે. જે શ્યાનતા-ગુણાંક તરીકે પણ ઓળખાય છે. ηનું મૂલ્ય તરલના પ્રકાર અને તાપમાન પર આધાર રાખે છે.

આમ, ηનું મૂલ્ય વધુ હોય તો શ્યાનતાબળનું મૂલ્ય વધુ હોય છે, અને તેને કારણે તરણનું વહન ધીમું થાય છે. આમ, શ્યાનતા-ગુણાંક તરલની શ્યાનતાનું માપ છે. વળી, η નું મૂલ્ય પ્રવાહીમાં તાપમાન સાથે ઘટે છે જ્યારે વાયુમાં તેનું મૂલ્ય તાપમાન સાથે વધે છે. સમીકરણ 5.9.1 પરથી,

$$\eta = \frac{F}{A \frac{dv}{dx}}$$

જો ${\bf A}=1$ એકમ અને $\frac{dv}{dx}=1$ એકમ લેવામાં આવે તો, ${\bf \eta}={\bf F}$

આમ, "સ્તરીય વહનમાં તરલના કોઈ પણ બે ક્રમિક સ્તરો વચ્ચે એકમ વેગપ્રચલન અને એકમ સંપર્ક-ક્ષેત્રફળ દીઠ ઉદ્ભવતા શ્યાનતાબળને તરલનો શ્યાનતા-ગુણાંક કહે છે."

શ્યાનતા-ગુણાંકનો CGS એકમ dyne s cm $^{-2}$, છે અને તે તબીબ અને ભૌતિકવિજ્ઞાની Jean Lois Poiseuilleની સ્મૃતિમાં 'poise' તરીકે ઓળખાય છે. તેનો SI એકમ N s m $^{-2}$ અથવા Pa s છે. તેનું પારિમાણિક સૂત્ર $M^1L^{-1}T^{-1}$.

કેટલાક તરલ માટે શ્યાનતા-ગુણાંકનાં મૂલ્યો નીચે ટેબલ 5.2માં આપ્યા છે.

ટેબલ 5.2 તરલના શ્યાનતા-ગુણાંક (માત્ર જાણકારી માટે)

(1000 10 000 100 3500 (1000 0050000 100)					
તરલ	તાપમાન	શ્યાનતા-ગુણાંક (N s m ⁻²)			
પાણી	20°C	1×10^{-3}			
	100°C	2.8×10^{-4}			
હવા	0°C	1.71×10^{-5}			
	340°C	1.9×10^{-5}			
લોહી	38°C	1.5×10^{-3}			
તલનું તેલ		4.0×10^{-2}			
એન્જિન ઑઇલ	16°C	1.13×10^{-1}			
	38°C	3.4×10^{-2}			
મધ		2.0×10^{-1}			
પાણીની બાષ્પ	100°C	1.25×10^{-5}			
િલસરીન	20°C	8.30×10^{-1}			
એસિટોન	25°C	3.6×10^{-4}			

ઉદાહરણ $6:10^{-2}~\text{m}^2$ ક્ષેત્રફળ ધરાવતી ધાતુની એક તકતી $2\times10^{-3}~\text{m}$ જાડાઈના તેલના સ્તર પર મૂકી છે. તેલનો શ્યાનતા-ગુષ્ણાંક $1.55~\text{N}~\text{s}~\text{m}^{-2}$ હોય, તો તકતીને $3\times10^{-2}~\text{ms}^{-1}$ ના વેગથી ગતિ કરાવવા માટે જરૂરી સમક્ષિતિજ (સ્પર્શીય) બળની ગણતરી કરો.

ઉકેલ :

$$A = 10^{-2} \text{ m}^2$$

$$\Delta v = 3 \times 10^{-2} \text{ ms}^{-1}$$

$$\Delta x = 2 \times 10^{-3} \text{ m}$$

$$\eta = 1.55 \text{ N s m}^{-2}$$

$$F = \eta A \frac{\Delta v}{\Delta x}$$

$$= 1.55 \times 10^{-2} \times \frac{3 \times 10^{-2}}{2 \times 10^{-3}}$$

$$\therefore F = 2.32 \times 10^{-1} \text{ N}$$

ઉદાહરણ 7: એક નળીમાં વહેતા પ્રવાહીના અક્ષથી 0.8 cm અને 0.82 cm અંતરે રહેલા બે નળાકાર સ્તરોના વેગ અનુક્રમે 3 cm s^{-1} અને 2.5 cm s^{-1} છે. જો નળીની લંબાઈ 10 cm હોય અને પ્રવાહીનો શ્યાનતા-ગુણાંક 8 પોઇસ હોય, તો આ બે સ્તરો વચ્ચે લાગતું શ્યાનતાબળ શોધો.

ઉકેલ :

$$r_1 = 0.8 \text{ cm}$$
 $r_1 = 0.82 \text{ cm}$
 $\Delta v = 3 - 2.5 = 0.5 \text{ cm s}^{-1}$
 $\Delta x =$ બે સ્તરો વચ્ચેનું અંતર
 $= 0.02 \text{ cm}$
 $L = 10 \text{ cm}$
 $A =$ સ્તરોનું સંપર્ક ક્ષેત્રફળ
 $= 2\left(\frac{r_1 + r_2}{2}\right)L$
 $\eta = 8$ પોઇસ
 $F_v = \eta A \frac{\Delta v}{\Delta x}$
 $= \eta \left[2\pi\left(\frac{r_1 + r_2}{2}\right)L\right] \frac{\Delta v}{\Delta x}$
 $= 8\left[2 \times 3.14\left(\frac{0.8 + 0.82}{2}\right)10\right] \frac{0.5}{0.02}$
 $= 16 \times 3.14 \times 0.81 \times 10 \times \frac{0.5}{0.02}$

5.10 સ્ટોક્સનો નિયમ (Stokes' Law)

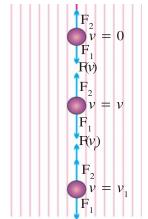
= 10173.6 dyne

જયારે કોઈ વસ્તુ શ્યાન માધ્યમમાં ગતિ કરે ત્યારે વસ્તુના સંપર્કમાં રહેલા માધ્યમના સ્તર તેની સાથે ઘસડાય છે. તેથી આ સ્તર વસ્તુના વેગ જેટલા જ વેગથી ગતિ કરે છે. પરંતુ વસ્તુથી અતિ દૂરનો સ્તર સ્થિર રહે છે. આમ, વસ્તુ અને અતિ દૂરના સ્થિર સ્તર વચ્ચેના વિસ્તારમાં સ્તરીય વહન ઉદ્ભવે છે. અહીં પણ માધ્યમના બે ક્રમિક સ્તરો વચ્ચે શ્યાનતાબળ ઉદ્ભવે છે, જે આખરે માધ્યમમાં ગતિ કરતાં પદાર્થ પરના અવરોધક બળમાં પરિણમે છે. સ્ટોક્સ નામના વિજ્ઞાનીએ દર્શાવ્યું કે,

 η જેટલો શ્યાનતા-ગુણાંક ધરાવતા મોટા વિસ્તારવાળા શ્યાન માધ્યમમાં v જેટલા વેગથી ગતિ કરતી r ત્રિજ્યાવાળી નાની લીસી ગોળાકાર ઘન વસ્તુ પર લાગતું ગતિ અવરોધક બળ, (શ્યાનતાબળ)

$$F(v) = 6\pi\eta v \tag{5.10.1}$$

તરલનું મિકેનિક્સ


હોય છે. આ સૂત્રને સ્ટોક્સનો નિયમ કહે છે.

સ્ટોક્સનો નિયમ વેગ આધારિક બળનું એક રસપ્રદ ઉદાહરણ છે. માધ્યમમાં ગતિ કરતી વસ્તુ પર વસ્તુના વેગને સમપ્રમાણમાં ગતિ વિરુદ્ધ બળ લાગે છે.

તરલમાં ગોળાની ગતિ અને ટર્મિનલ વેગ (Motion of the sphere in a fluid and terminal velocity):

આકૃતિ 5.22માં દર્શાવ્યા મુજબ ધારો કે r ત્રિજયા ધરાવતો, ρ જેટલી દ્રવ્યની ઘનતા ધરાવતો એક નાનો લીસો ઘન ગોળો તરલમાં ધારો કે શૂન્ય વેગ સાથે ગતિ શરૂ કરે છે. તરલનો શ્યાનતા-ગુષ્ઠાંક η તથા ઘનતા ρ , છે. અહીં $\rho > \rho$, છે.

આકૃતિ 5.22માં ગતિ દરમિયાન ત્રણ જુદી-જુદી ક્ષણે ગોળા પર લાગતાં બળો દર્શાવ્યાં છે. આ બળો નીચે પ્રમાણે છે : (1) ગોળાનું વજન F_1 (અધોદિશામાં) (2) તરલ ઉત્પ્લાવક બળ, F_2 (ઊર્ધ્વ દિશામાં) (3) ગતિ-અવરોધક બળ F(v) (ઊર્ધ્વ દિશામાં).

શ્યાન-માધ્યમમાં નાની લીસી ગોળાકાર વસ્તુનું પતન

આકૃતિ 5.22

(1) ગોળાનું કદ
$$V=rac{4}{3}\pi r^3$$

$$\therefore$$
 ગોળાનું દળ $m=\mathrm{V}
ho=rac{4}{3}\pi r^3
ho$

$$\therefore$$
 ગોળાનું વજન $F_1 = mg = \frac{4}{3}\pi r^3 \rho g$

(2) તરલનું ઉત્પ્લાવક બળ ગોળા વડે વિસ્થાપિત થયેલા તરલના વજન જેટલું હોય છે. ગોળા વડે વિસ્થાપિત થયેલા તરલનું કદ,

$$V = \frac{4}{3}\pi r^3$$

∴ ગોળા વડે વિસ્થાપિત થયેલા તરલનું દળ

$$m_{\rm o} = V\rho_{\rm o} = \frac{4}{3}\pi r^3 \rho_{\rm o}$$

 \therefore ગોળા વડે વિસ્થાપિત થયેલા તરલનું વજન = $m_{\alpha}g$

$$= \frac{4}{3}\pi r^3 \rho_{\rm o} g.$$

$$\therefore$$
 ઉત્પ્લાવક બળ $\mathbf{F}_2=rac{4}{3}\pi r^3 \mathbf{\rho}_{\mathrm{o}} g$ (5.10.3)

(3) સ્ટોક્સના નિયમ પ્રમાણે ગતિ અવરોધક બળ F(v)= $6\pi\eta rv$ (5.10.4)

 \therefore ગોળા પર લાગતું પરિણામી બળ $F = F_1 - F_2 - F(\nu)$

:.
$$F = \frac{4}{3}\pi r^3 \rho g - \frac{4}{3}\pi r^3 \rho_0 g - 6\pi \eta r v$$
 (5.10)

સમીકરણ 5.10.5 ગોળાની ગતિનું સમીકરણ દર્શાવે છે. t=0 સમયે તરલમાં ગોળાની ગતિ શરૂ થાય ત્યારે ગોળાનો વેગ v=0 છે. તેથી આ વખતે ગતિ-અવરોધક બળ $\mathbf{F}(v)=0$ થશે.

$$\therefore F = \frac{4}{3}\pi r^{3}\rho g - \frac{4}{3}\pi r^{3}\rho_{o}g = \frac{4}{3}\pi r^{3}g(\rho - \rho_{o})$$
(5.10.6)

જો t=0 સમયે ગોળાનો પ્રવેગ a_{0} હોય, તો

$$F = ma_{o} = \frac{4}{3}\pi r^{3}\rho a_{o}$$
 (5.10.7)

(5.10.6) અને (5.10.7) સરખાવતાં,

$$\frac{4}{3}\pi r^3 \rho a_0 = \frac{4}{3}\pi r^3 g(\rho - \rho_0)$$

$$a_{o} = \frac{\rho - \rho_{o}}{\rho} \tag{5.10.8}$$

ગોળો તરલમાં પ્રવેગી ગિત શરૂ કરે છે. સમય જતાં ગોળાનો વેગ જેમજેમ વધતો જાય છે, તેમતેમ તેના પર ઊર્ધ્વ દિશામાં લાગતું ગિત-અવરોધક બળ વધતું જાય છે. F_1 અને F_2 બળો અચળ છે. તેથી પરિણામી બળ અને તેથી પ્રવેગ ઘટતો જાય છે. આમ, ગોળાનો વેગ વધતો જાય છે અને પ્રવેગ ઘટતો જાય છે. જયારે $F_1 = F_2 + F(v)$ થાય ત્યારે ગોળા પર લાગતું પરિણામી બળ શૂન્ય બને છે અને તેથી પ્રવેગ પણ શૂન્ય થાય છે. આ ક્ષણથી ગોળો અચળ વેગથી ગિત શરૂ કરે છે. આ વેગને ગોળાનો ટર્મિનલ વેગ (terminal velocity) v_i કહે છે. હવે પછીની સમગ્ર ગિત દરમિયાન ગોળાનો વેગ અચળ જળવાઈ રહે છે. ગોળો ટર્મિનલ વેગ પ્રાપ્ત કરે ત્યારે સમીકરણ (5.10.8) F=0 અને $v=v_i$ થશે.

$$\therefore 0 = \frac{4}{3}\pi r^3 \rho g - \frac{4}{3}\pi r^3 \rho_0 g - 6\pi \eta r v_t$$

$$\therefore 6\pi\eta r v_t = \frac{4}{3}\pi r^3 g(\rho - \rho_0)$$

$$\therefore v_t = \frac{2}{9} \frac{r^2 g}{\eta} (\rho - \rho_0) \tag{5.10.9}$$

ગોળાને તરલમાં મુક્ત પતન કરાવી તેનો ટર્મિનલ વેગ પ્રાયોગિક રીતે માપી લેવામાં આવે, તો સમીકરણ (5.10.9)નો ઉપયોગ કરી તરલનો શ્યાનતા-ગુણાંક શોધી શકાય છે.

પ્રવાહીમાં રચાતા હવાના પરપોટાને હવાનો ગોળો ગણી શકાય. આ કિસ્સામાં $\rho_0 > \rho$ થાય છે. પરિણામે પ્રારંભથી જ $F_1 < F_2$ થતા પરપોટાને ઊર્ધ્વ દિશામાં પ્રવેગ મળે છે. પરિણામે તે પ્રવાહીમાં ઊંચે ચડે છે અને અમુક સમય પછી ટર્મિનલ વેગ પ્રાપ્ત કરે છે. આ અંતિમ વેગ સમીકરણ (5.10.9)નો ઉપયોગ કરી શોધી શકાય છે. અહીં v_{ρ} ઋણ મળે છે જે સૂચવે છે કે પરપોટાનો ટર્મિનલ વેગ ઊર્ધ્વ દિશામાં છે. સોડાવૉટરની બૉટલમાં ઊંચે ચઢતા પરપોટા તમે જોયાં હશે.

ઉદાહરણ 8: સમાન કદના વરસાદનાં બે ટીપાં હવામાં $10~{\rm cm~s^{-1}}$ ના અંતિમ વેગથી ગતિ કરતાં-કરતાં એકબીજાંમાં ભળી જઈ એક મોટું ટીપું બનાવે છે, તો આ મોટા ટીપાનો અંતિમ વેગ શોધો.

ઉકેલ :

બંને ટીપાંની ત્રિજ્યા ધારો કે r અને કદ V છે. જ્યારે તે બંને એકત્ર થઈ એક ટીપું બનાવે ત્યારે (કુલ દળ અને ઘનતા અચળ હોવાથી) તે નવા ટીપાનું કદ V' તે દરેકના કદ કરતાં બમણું થશે.

ધારો કે નવા ટીપાની ત્રિજ્યા R છે.

$$\frac{4}{3}\pi R^3 = 2\left(\frac{4}{3}\pi r^3\right)$$

$$R^3 = 2r^3$$

$$\therefore R = (2^{\frac{1}{3}})r$$

નાના ટીપાનો ટર્મિનલ વેગ v અને મોટા ટીપાનો ટર્મિનલ વેગ v' કહીએ, તો

$$v=rac{2}{9}rac{r^2g}{\eta}$$
 $(
ho-
ho_{
m o})$ અને

$$v' = \frac{2}{9} \frac{R^2 g}{n} (\rho - \rho_0)$$

$$\therefore \frac{v'}{v} = \frac{R^2}{r^2}$$

$$v' = v \frac{R^2}{r^2} = 10(2^{\frac{1}{3}})^2 = 15.87 \text{ cm s}^{-1}$$

5.11 રેનોલ્ડ્-અંક અને ક્રાંતિવેગ (Reynold's Number and Critical Velocity)

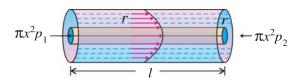
નળીમાંથી વહેતા તરલનું વહન ધારારેખી કે વમળયુક્ત કે મિશ્ર પ્રકારનું હોઈ શકે. શ્યાનતા-ગુણાંકના લગભગ બધા જ પ્રયોગો વહન ધારારેખી હોવું જરૂરી છે. આથી કયા સંજોગોમાં ધારારેખી વહન મળે તે જાણવું જરૂરી છે.

બ્રિટિશ ગણિતશાસ્ત્રી અને ભૌતિકવિજ્ઞાની ઓસબોર્ન રેનોલ્ડ્ઝે દર્શાવ્યું કે નળીમાંથી વહેતા તરલના વહનનો પ્રકાર નીચેની બાબતો પર આધારિત છે : (1) તરલનો શ્યાનતા-ગુણાંક (η) (2) તરલની ઘનતા (ρ) (3) તરલનો સરેરાશ વેગ (ν) (4) નળીનો વ્યાસ (D)

આ ચાર ભૌતિક રાશિના સમન્વયથી બનતા અંકને N_p ને રેનોલ્ડ્ઝ-અંક કહે છે.

રેનોલ્ડ્ઝ અંક
$$N_R = \frac{\rho \nu D}{\eta}$$
 (5.11.1)

 N_R નું મૂલ્ય તરલ વહનના પ્રકાર પર આધાર રાખે છે. N_R પરિમાણરહિત અંક છે. પ્રયોગો દર્શાવે છે કે જો $N_R < 2000$ હોય, તો વહન ધારારેખી વહન હોય છે. જો $N_R > 3000$ તો તરલ વહન વમળયુક્ત હોય છે અને જે $2000 < N_R < 3000$ હોય, તો તરલ વહન અસ્થિર હોય છે અને વહનનો પ્રકાર બદલાતો જાય છે.


ક્રાંતિ વેગ (Critical Velocity): સમીકરણ 5.11.1 પરથી સ્પષ્ટ છે કે વેગ વધવા સાથે રેનોલ્ડ્ઝ-અંકનું મૂલ્ય વધે છે. વેગના જે મહત્તમ મૂલ્ય સુધી તરલ વહન ધારા રેખી રહે તે વેગના મૂલ્યને ક્રાંતિવેગ કહે છે. ક્રાંતિવેગને અનુસંગત રેનોલ્ડ્ઝ અંકના મૂલ્યને ક્રિટીકલ રેનોલ્ડ્ઝ-અંક કહે છે.

એ સ્પષ્ટ છે કે જો $\eta=0$ (એટલે કે અશ્યાન તરલ માટે) N_R નું મૂલ્ય અનંત બને. આમ અશ્યાન તરલનું વહન કદી ધારારેખીય ન હોઈ શકે.

ઉદાહરણ 9: આકૃતિ 5.23માં દર્શાવ્યા પ્રમાણે, નિયમિત આંતરિક ત્રિજ્યા r ધરાવતી l લંબાઈની એક નળીમાં η જેટલો શ્યાનતા-ગુણાંક ધરાવતા એક તરલનું સ્તરીય વહન થઈ રહ્યું છે. નળીમાં આવું વહન જાળવી

Downloaded from https:// www.studiestoday.com

તરલનું મિકેનિક્સ

આકૃતિ 5.23

ઉકેલ : આકૃતિ 5.23માં દર્શાવ્યા પ્રમાણે x જેટલી ત્રિજયાવાળો અક્ષ પરનો પ્રવાહીનો નળાકાર ધ્યાનમાં લો. તેના પર લાગતાં બળો નીચે મુજબ છે :

- (1) દબાણાના તફાવત p વડે ઉદ્ભવતું બળ, $\mathbf{F_1} = \boldsymbol{\pi} x^2 p$
 - (2) શ્યાનતાબળ, ${
 m F}_2=\eta {
 m A} {dv\over dx}$ $=\eta (2\pi x l) \Big(-{dv\over dx}\Big)$

જ્યાં, $\mathbf{A}=$ વિચારેલ નળાકારની વક્રસપાટીનું ક્ષેત્રફળ $=2\pi x l$

અત્રે, x વધતાં v ઘટતો હોવાથી વેગ-પ્રચલન ઋણ લીધેલ છે. અહીં, નળાકારના અચળવેગી વહન માટે

$$F_1 = F_2$$

$$\therefore \pi x^2 p = -\eta \cdot 2\pi x l \cdot \frac{dv}{dx}$$

$$\therefore -dv = \frac{p}{2\eta l} x dx$$

x=r પર વેગ v=0 છે અને $x=x,\ v=v$ હોવાથી આ limitsમાં સંકલન કરતાં

$$-\int_{v}^{0} dv = \int_{x}^{r} \frac{p}{2\eta l} x dx$$

$$\therefore -[v]_v^0 = \frac{p}{4\eta l} \left[x^2 \right]_x^r$$

$$\therefore -[0 - v] = \frac{p}{4nl}[r^2 - x^2]$$

$$\therefore v = \frac{p}{4\eta l} (r^2 - x^2)$$

ઉદાહરણ 10 : ઉપર્યુક્ત ઉદાહરણમાં નળીમાંથી દર સેકન્ડે વહેતા પ્રવાહીનું કદ શોધો. [Hint : નળીમાંથી વહેતા પ્રવાહીનો વેગ તેની અક્ષ અને દીવાલ પાસેના વેગોના સરેરાશ જેટલો લો.]

ઉકેલ :

$$v = \frac{p}{4nl}(r^2 - x^2)$$

$$\therefore$$
 અક્ષ $(x=0)$, પર વેગ $v=\frac{pr^2}{4\eta l}$

દીવાલ (x = r), પર વેગ v = 0

$$\therefore$$
 સરેરાશ વેગ = $\frac{pr^2}{8\eta l}$

હવે, નળીમાંથી દર સેકન્ડે વહેતા પ્રવાહીનું કદ

$$V = (\hat{q}) (આડછેદનું ક્ષેત્રફળ)$$

$$= \left(\frac{p r^2}{8 \eta l}\right) (\pi r^2)$$

$$\therefore V = \frac{\pi p r^4}{8\eta l}$$

[**નોંધ** : આ સમીકરણને Poiseiulleનો નિયમ કહે છે.]

ઉદાહરણ 11 : એક પાઇપલાઇનના આડછેદની ત્રિજયા $r=r_0e^{-\alpha x}$; સૂત્ર પ્રમાણે ઘટતી જાય છે, જ્યાં $\alpha=0.50~\mathrm{m}^{-1}$ અને x એ પાઇપલાઇનના પ્રથમ છેડાથી (x=0)થી આડછેદનું અંતર છે, તો એકબીજાથી $2~\mathrm{m}$ જેટલા અંતરે રહેલા બે આડછેદ માટે રેનોલ્ડ્ઝ-અંકનો ગુણોત્તર શોધો. $(e=2.718~\mathrm{eh})$

ઉકેલ : રેનોલ્ડ્ઝ-અંક
$$N_R = \frac{\rho v D}{\eta}$$

 \therefore આપેલ પ્રવાહી માટે N_R α vD

$$\therefore \frac{(N_R)_1}{(N_R)_2} = \frac{v_1}{v_2} \times \frac{D_1}{D_2}$$
 (1)

સાતત્યના સમીકરણ પરથી,

$$\mathbf{A}_1 \mathbf{v}_1 = \mathbf{A}_2 \mathbf{v}_2$$

$$\therefore \pi r_1^2 v_1 = \pi r_2^2 v_2$$

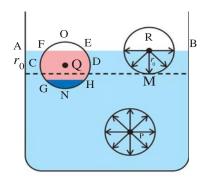
$$\therefore \frac{v_1}{v_2} = \left(\frac{r_2}{r_1}\right)^2 = \left(\frac{D_2}{D_1}\right)^2$$

સમીકરણ (1) અને (2) પરથી,

$$\frac{(N_R)_1}{(N_R)_2} = \left(\frac{D_2}{D_1}\right)^2 \times \frac{D_1}{D_2} = \frac{D_2}{D_1} = \frac{r_2}{r_1} = \frac{r_0 e^{-\alpha x_2}}{r_0 e^{-\alpha x_1}}$$

$$\frac{(N_R)_1}{(N_R)_2} = e^{-\alpha(x_2 - x_1)} = e^{-(0.5)(2)} = e^{-1}$$

= 0.368


5.12 પૃષ્ઠ-ઊર્જા અને પૃષ્ઠતાણ (Surface Energy and Surface Tension)

આપ સૌએ એક બાબતની નોંધ લીધી હશે કે પાણીથી કાચ ભીંજાય છે, પણ કમળ કે તેનું પર્ણ નહીં. દીવામાં તેલ ગુરુત્વાકર્ષણ વિરુદ્ધ ઉપર ચઢે છે. પાણી પર અમુક કિટકો ચાલી શકે છે. જો પૂરતી કાળજી લેવામાં આવે, તો પાણી પર સમિક્ષિતિજ મૂકેલ સોય પાણી પર તરે છે. આવી ઘટનાઓ માટે પ્રવાહીનો પૃષ્ઠતાણ નામનો ગુણધર્મ જવાબદાર છે. પૃષ્ઠતાણને કારણે પ્રવાહી એક ખેંચી રાખેલા પડની જેમ વર્તે છે. પૃષ્ઠતાણ માત્ર પ્રવાહીનો ગુણધર્મ છે.

5.12.1 પૃષ્ઠ-ઊર્જા (Surface energy):

એક જ દ્રવ્યના અશુઓ વચ્ચે લાગતા આકર્ષણબળને સંસક્તિ (cohesive) બળ અને જુદાં-જુદાં દ્રવ્યના અશુઓ વચ્ચે લાગતા આકર્ષણબળને આસક્તિ (adhesive) બળ કહે છે.

જે ગુરુતમ અંતર સુધી બે અણુઓ એકબીજા પર આકર્ષણબળ લગાડી શકે તે અંતરને અણુઓની અણુક્રિયા-અવિધ જેટલી ત્રિજયાનો ગોળો વિચારીએ, તો તેને તે અણુનો અણુક્રિયા-ગોળો કહે છે. આવા ગોળાની અંદર રહેલા અણુઓ જ કેન્દ્ર પર રહેલા અણુ પર આકર્ષણબળ લગાડી શકે છે. ગોળાની બહાર રહેલા અણુઓ કેન્દ્ર પર રહેલા અણુ પર આકર્ષણબળ લગાડી શકતા નથી.

અણુક્રિયા-ગોળાઓ આકૃતિ 5.24

આંતર-અશુબળોને લીધે ઉદ્ભવતી પૃષ્ઠ-અસર સમજવા માટે આકૃતિ 5.23માં દર્શાવ્યા પ્રમાશે એક પ્રવાહીમાંના ત્રણ અશુઓ P, Q, અને R તેમના અશુક્રિયા ગોળાઓ સાથે ધ્યાનમાં લો.

ધારો કે અણુક્રિયા-અવધિ r_0 છે. AB પ્રવાહીની મુક્ત સપાટી દર્શાવે છે. P અણુનો અણુક્રિયા-ગોળો પ્રવાહીમાં સંપૂર્ણપણે ડૂબેલો છે. તેથી તે સમાન રીતે પ્રવાહીના અણુઓથી ભરાયેલો છે. પરિણામે P અણુ પર બધી જ દિશાઓમાંથી એકસરખું આકર્ષણબળ લાગે છે. તેથી તેના પર લાગતું પરિણામી બળ શૂન્ય થાય છે અને તે સંતુલનમાં રહે છે. પ્રવાહીની મુક્ત સપાટીથી r_0 કરતાં વધારે ઊંડાઈએ આવેલા બધા જ અણુઓની પરિસ્થિતિ આવી હોય છે.

હવે r_0 કરતાં ઓછી ઊંડાઈએ આવેલા અશુ Q અને તેના અણુક્રિયા-ગોળાને ધ્યાન પર લો. આ અણુક્રિયા-ગોળાનો FOEF ભાગ પ્રવાહીની બહાર છે. આ ભાગમાં હવા અને બાષ્પના અણુઓ રહેલા હોય છે. હવા અને પ્રવાહીની બાષ્યની ઘનતા પ્રવાહીની ઘનતાં કરતાં ઘણી ઓછી હોય છે. ઉપરાંત હવા અને પ્રવાહીના અણુઓ વચ્ચેનાં આસક્તિબળો પ્રમાણમાં નબળાં હોય છે. આથી GNHG ભાગમાંના પ્રવાહીના અણુઓ વડે Q પર લાગતું અધોદિશામાંનું સમાસબળ પ્રવાહીની બહાર રહેલા તેના જેવા જ FOEF ભાગમાંના હવા અને બાષ્પના અણુઓ વડે લાગતા ઊર્ધ્વ દિશામાંના સમાસબળ કરતાં વધારે હોય છે. અણુક્રિયા-ગોળાના CDHG અને CDEF ભાગોમાં તો પ્રવાહીના અણુઓની સંખ્યા સમાન છે. પરિણામે તે ભાગોમાંના અશુઓ વડે Q પર લાગતું સમાસબળ શૂન્ય હોય છે. આમ, Q અશુ પર સમાસ આંતર-અશુબળ અધોદિશામાં લાગે છે. મુક્ત સપાટીથી $r_{
m o}$ જેટલી જાડાઈના સ્તરને પ્રવાહીનું પૃષ્ઠ કહે છે. આમ, પ્રવાહીના પૃષ્ઠમાં રહેલા અણુઓ પર અધોદિશામાં સમાસબળ લાગે છે. પૃષ્ઠમાં જેમ-જેમ ઉપર આવતાં જઈએ તેમ આ સમાસબળનું મૂલ્ય વધતું જાય છે. મુક્ત સપાટી AB પરના અશુઓ માટે તે મહત્તમ હોય છે. આથી પ્રવાહીના પૃષ્ઠમાં રહેલા અણુઓ પ્રવાહીની અંદર જવાનું વલણ ધરાવે છે.

આ સંજોગોમાં કેટલાક અશુઓ પ્રવાહીની અંદર (પૃષ્ઠ નીચે) જવા શક્તિમાન પણ બને છે. આમ થતાં પૃષ્ઠની નીચે પ્રવાહીની ઘનતા વધી જાય છે અને અમુક કરતાં વધારે અશુઓ પૃષ્ઠની નીચે જઈ શકતા નથી. પરિણામે પ્રવાહીના પૃષ્ઠ નીચે પ્રવાહીની ઘનતા વધારે હોય છે. જ્યારે તરલનું મિકેનિક્સ

પૃષ્કમાં ઉપર જઈ એ તેમ ક્રમશઃ તે ઘટતી જાય છે. બીજી રીતે કહીએ, તો પ્રવાહીમાં તેના પૃષ્ઠની નીચે આંતર-અશુ-અંતરો ઓછાં હોય છે. જયારે પૃષ્ઠમાં તે વધારે હોય છે. હવે આંતર-અશુબળોને આંતર-અશુ-અંતરોના વિધેય તરીકે લઈને સાબિત કરી શકાય છે કે, પૃષ્ઠમાં આંતર-અશુ-અંતરો વધારે હોવાથી તેમાં રહેલા પ્રવાહીના અશુઓ વચ્ચે પૃષ્ઠને સમાંતર ખેંચાશબળ ઉદ્ભવે છે.

આથી પ્રવાહીનું પૃષ્ઠ ખેંચાયેલી સ્થિતિસ્થાપક કપોટી (film)ની માફક સંકોચાવાનું વલશ ધરાવે છે. તેમાં પૃષ્ઠને સમાંતર તશાવબળ પ્રવર્તતું હોય છે. આ તશાવબળનું માપ પૃષ્ઠતાશ નામની ભૌતિક રાશિ વડે આપવામાં આવે છે.

પ્રવાહીની મુક્ત સપાટી પર કલ્પેલી એકમલંબાઈની રેખાની એક બાજુ પર રહેલા પ્રવાહીના અશુઓ રેખાની બીજી બાજુ પર રહેલા અશુઓ પર, રેખાને લંબ અને સપાટીને સમાંતર જે બળ લગાડે છે તેને પ્રવાહીનું પૃષ્ઠતાશ કહે છે.

$$\therefore \text{ yishill } T = \frac{F}{L} \tag{5.12.1}$$

$$\therefore F = TL \tag{5.12.2}$$

પૃષ્ઠતાણનો એકમ $N m^{-1}$ છે.

યાદ રાખો કે પૃષ્ઠતાણનું બળ પ્રવાહીની સપાટી પરના અણુઓ વચ્ચે લાગતું સમાસ-આંતર-અણુબળ નથી. સપાટી પર રહેલા અણુઓ પર લાગતાં સમાસ-આંતર-અણુબળો તો સપાટીને લંબરૂપે પ્રવાહીની અંદર તરફ હોય છે. જ્યારે પૃષ્ઠતાણનું બળ સપાટીને સમાંતર હોય છે.

જો એકમલંબાઈની રેખા સપાટીના મધ્ય ભાગમાં કલ્પવામાં આવે, તો તેની બંને બાજુના અશુઓ એકબીજા પર સમાન મૂલ્યના પરંતુ પરસ્પર વિરુદ્ધ દિશાનાં બળો લગાડતાં હોવાથી સપાટીના મધ્ય ભાગમાં પૃષ્ઠતાશનું બળ અસરકારક જણાતું નથી. સપાટીના કિનારીની બીજી બાજુ પ્રવાહીના અશુઓ ન હોવાથી કિનારી પર પૃષ્ઠતાશનું બળ સપાટીને સમાંતર અને કિનારીને લંબ અંદર તરફનું અનુભવાય છે.

સ્થિતિ-ઊર્જાના સંદર્ભમાં પૃષ્ઠતાણ

આપણે જોયું કે પ્રવાહીના પૃષ્ઠમાં રહેલા અશુઓ પ્રવાહીની અંદર જવાનું વલણ ધરાવે છે. આ વલણ અશુઓની સ્થિતિ-ઊર્જાના સંદર્ભમાં પણ સમજી શકાય છે. આકૃતિ 5.24માં જો P જેવા અશુને પૃષ્ઠમાં લાવવો હોય તો તે પૃષ્ઠમાં જેટલું અંતર (ઊર્ધ્વ દિશામાં) કાપે તે દરમિયાન

તેના પર અધોદિશામાં લાગતા બળની વિરુદ્ધ કાર્ય કરવું પડે છે. આથી આવો અશુ પૃષ્ઠમાં આવે ત્યારે સ્થિતિ-ઊર્જા પ્રાપ્ત કરે છે. આ હકીકત દર્શાવે છે કે પૃષ્ઠમાં રહેલા અશુઓની સ્થિતિ-ઊર્જા પૃષ્ઠની નીચે રહેલા અશુઓની સ્થિતિ-ઊર્જા કરતાં વધારે હોય છે. હવે, કોઈ પણ તંત્ર પોતાની સ્થિતિ-ઊર્જા લઘુતમ રહે તેવી સ્થિતિમાં રહેવા હંમેશાં પ્રયત્ન કરે છે. આથી, પૃષ્ઠમાંના અશુઓ પોતાની સ્થિતિ-ઊર્જા ઘટાડવાનું વલશ ધરાવે છે અને પ્રવાહીનું પૃષ્ઠ પોતાનું ક્ષેત્રફળ લઘુતમ બને તે રીતે સંકોચાવાનું વલશ ધરાવે છે.

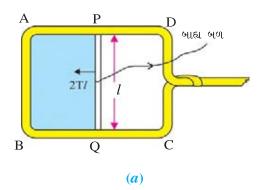
પૃષ્ઠતાણનું મૂલ્ય અણુઓની સ્થિતિ-ઊર્જાના સંદર્ભમાં પણ માપી શકાય છે. આપણે જોયું કે અણુઓને પ્રવાહીની અંદરની સપાટી પર લાવવા માટે કાર્ય કરવું પડે છે જે તેમાં સ્થિતિ-ઊર્જાના રૂપમાં સંગ્રહ પામે છે. નોંધનીય વાત તો એ છે કે આ રીતે સપાટી પર આવતો અણુ સપાટી પર રહેલા મૂળ બે અણુઓની વચ્ચે ગોઠવાતો હોતો નથી. સપાટી પર આવતા અણુઓ નવી સપાટીનું નિર્માણ કરે છે. અર્થાત્ સપાટીનું વિસ્તરણ થાય છે. પ્રવાહીની સમગ્ર સપાટી આ રીતે જ નિર્માણ પામેલી ગણી શકાય. આમ, પ્રવાહીની સપાટીમાંના અણુઓ, તેમને સપાટી પર લાવતાં તેમના પર થયેલ કાર્ય જેટલી સ્થિતિ-ઊર્જા મેળવતા હોય છે.

''પ્રવાહીની મુક્ત સપાટીના એકમ ક્ષેત્રફળ દીઠ રહેલી સ્થિતિ-ઊર્જાને પ્રવાહીનું પૃષ્ઠતાણ (T) કહે છે.''

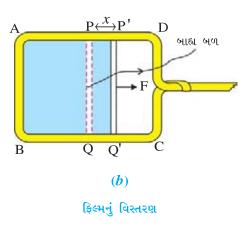
આ વ્યાખ્યા મુજબ, પૃષ્ઠતાણ $T=rac{E}{A}$ આ સંદર્ભમાં પૃષ્ઠતાણનો એકમ $J\ m^{-2}$ થશે.

હવે,
$$\frac{\text{જૂલ}}{\text{મીટર}^2} = \frac{\text{-યૂટન મીટર}}{\text{મીટર}^2} = \frac{\text{-યૂટન}}{\text{મીટર}}$$
 છે.

આથી બંને વ્યાખ્યાઓથી મળતા એકમો સમાન જ છે. પ્રવાહીનું પૃષ્ઠતાણ પ્રવાહીની જાત તેમજ તાપમાન પર આધાર રાખે છે. તાપમાન વધતાં પૃષ્ઠતાણ ઘટે છે અને ક્રાંતિ તાપમાને તે શૂન્ય બને છે. વળી, પ્રવાહીનું પૃષ્ઠતાણ પ્રવાહી જે માધ્યમનાં સંપર્કમાં હોય તે માધ્યમ પર પણ આધાર રાખે છે.


પૃષ્ઠ-ઊર્જા (Surface energy) : ધારો કે એક પ્રવાહીનું આપેલા તાપમાને પૃષ્ઠતાણ T છે. અચળ તાપમાને પ્રવાહીની સપાટીના ક્ષેત્રફળમાં એકમવધારો કરવો હોય તો T જેટલું કાર્ય કરવું પડે. આપણે જાશીએ છીએ કે સપાટીનું વિસ્તરણ થતાં તેનું તાપમાન ઘટે છે. આથી તાપમાન અચળ

રાખવું હોય, તો વિસ્તરણ દરમિયાન તેને બહારથી ઉષ્મા-ઊર્જા આપવી પડે છે. આમ, પ્રવાહીની સપાટીના ક્ષેત્રફળમાં એક એકમ જેટલો વધારો થતાં આ એક એકમ જેટલી નવી સપાટીને સ્થિતિ-ઊર્જા (=T) ઊર્જા ઉપરાંત ઉષ્મા-ઊર્જા પણ મળે છે.


∴ એકમક્ષેત્રફળ દીઠ કુલ પૃષ્ઠ-ઊર્જા = સ્થિતિ-ઊર્જા (પૃષ્ઠતાણ) + ઉષ્મા-ઊર્જા

આમ, આપેલા તાપમાને પૃષ્ઠ-ઊર્જાનું મૂલ્ય પૃષ્ઠતાશ કરતાં વધારે હોય છે. તાપમાન વધારતાં પૃષ્ઠતાશ અને પૃષ્ઠ-ઊર્જા ઘટે છે અને ક્રાંતિ-તાપમાને તેઓ શૂન્ય બને છે.

અત્યાર સુધીની આપણી ચર્ચા ઘટનાત્મક પ્રકારની (phenomenological) છે. હવે આ ચર્ચાના નિષ્કર્ષોને આપણે પ્રયોગની એરણ પર ચઢાવીને ચકાસીએ. આ માટે આકૃતિ 5.25માં દર્શાવ્યા મુજબની તારમાંથી બનાવેલી એક લંબચોરસ ફ્રેમ ABCD પર ધ્યાન કેન્દ્રિત કરો. તાર PQ આ ફ્રેમની AD અને BC ભુજાઓ પર ઘર્ષણરહિત સરકી શકે છે. તાર PQ સાથે એક પાતળી દોરી બાંધેલી છે.

લંબચોરસ ફ્રેમ પર રચેલ પ્રવાહીની ફિલ્મ

આકૃતિ 5.25 મના હાવણમાં બોળીને

જો ફ્રેમને સાબુના દ્રાવણમાં બોળીને, દોરી વડે તાર PQ ને યોગ્ય રીતે ખેંચી રાખીને, ફ્રેમને દ્રાવણમાંથી બહાર કાઢીએ, તો ફ્રેમ પર દ્રાવણની ફિલ્મ (film) ABQP મેળવી શકાય છે. જો દોરી છોડી દઈએ, તો PQ તાર AB બાજુ તરફ સરકી જતો જણાય છે, એટલે કે ફ્રિલ્મ સંકોચાય છે. આ પ્રયોગ દર્શાવે છે કે પ્રવાહીની મુક્ત સપાટીની કિનારી પર, કિનારીને લંબ અને સપાટીને સમાંતર પૃષ્ઠતાણનું બળ લાગે છે.

હવે ફિલ્મ ABQP ફરીથી તૈયાર કરી, દોરીને તાર PQ પર લાગતાં બળ કરતાં સહેજ વધારે બળથી ખેંચીને તાર PQને આકૃતિ 5.25(b)માં દર્શાવ્યા મુજબ x જેટલું સ્થાનાંતર કરાવીએ, તો થતું કાર્ય નીચે પ્રમાણે ગણી શકાય :

ધારો કે દ્રાવણનું પૃષ્ઠતાણ T અને તાર PQની લંબાઈ l છે.

તેથી તાર પર લાગતું પૃષ્ઠતાણનું બળ 2Tl; અહીં ફિલ્મને બે મુક્ત સપાટીઓ હોવાથી બળના સૂત્રમાં 2 આવે છે. (5.12.4)

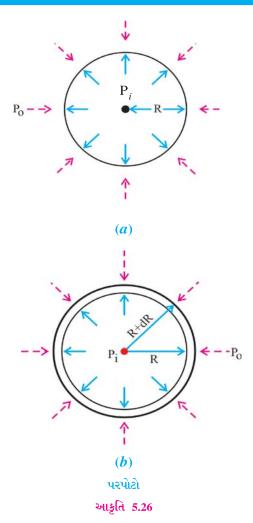
 \therefore લગાડેલું બાહ્ય બળ $\mathbf{F}=2\mathbf{T}l$

કાર્ય = બાહ્ય બળ × સ્થાનાંતર

 \therefore W = 2Tlx

પણ, ફિલ્મની સપાટીના ક્ષેત્રફળમાં થતો વધારો = $\Delta \mathbf{A} = 2lx \tag{5.12.5}$

 \therefore W = T Δ A


જો $\Delta A = 1$ એકમ થાય, તો W = T

∴ સપાટીના ક્ષેત્રફળમાં એક એકમ જેટલો વધારો કરવા માટે કરવું પડતું કાર્ય પૃષ્ઠતાણના માપ જેટલું હોય છે.

5.13 બુંદ અને પરપોટાઓ (Drops and Bubbles)

પ્રવાહીનાં નાનાં બુંદ કે પરપોટા હંમેશાં ગોળાકાર હોય છે. તમને સ્વાભાવિક રીતે જ પ્રશ્ન થાય કે આમ શા કારણે થતું હશે ? પૃષ્ઠતાણને કારણે પ્રવાહીની મુક્ત સપાટી તેનું ક્ષેત્રફળ લઘુતમ રહે તેવી સ્થિતિમાં રહે છે. આપેલા કદ માટે ગોળાકાર સપાટીનું ક્ષેત્રફળ લઘુતમ હોય છે. આથી પ્રવાહીનાં નાનાં બુંદ હંમેશાં ગોળાકાર હોય છે.

બુંદ કે પરપોટાની સપાટીઓ વકાકાર હોય છે. પ્રવાહીની આ વકાકાર સપાટીના અંતર્ગોળ ભાગ પર લાગતું દબાણ, બહિર્ગોળ ભાગ પર લાગતા દબાણ કરતાં વધારે હોય છે. આથી જ પ્રવાહીનાં બુંદ કે પરપોટાની અંદરનું દબાણ બહારના દબાણ કરતાં વધારે હોય છે. તરલનું મિકેનિક્સ

આકૃતિ 5.26a માં દર્શાવ્યા મુજબ R ત્રિજ્યા ધરાવતા હવામાં રહેલા કોઈ એક પરપોટાને ધ્યાનમાં લો. તેની અંદર અને બહારના દબાણ અનુક્રમે \mathbf{P}_i અને \mathbf{P}_0 છે. અહીં $\mathbf{P}_i > \mathbf{P}_0$ છે. પરપોટાની દીવાલ રચતા પ્રવાહી (દ્રાવણ)નું પૃષ્ઠતાણ ધારો કે T છે.

હવે, ધારો કે પરપોટાને ફુલાવતાં તેની ત્રિજ્યા Rથી વધીને (R+dR) થાય છે. (જુઓ આકૃતિ 5.26b) અને આમ કરવાથી તેની મુક્ત સપાટીનું ક્ષેત્રફળ ધારો કે S થી વધીને S+dS થાય છે. આ માટેનું કાર્ય બે રીતે ગણી શકાય.

(1) પરપોટાની ફૂલવાની પ્રક્રિયામાં તેની $4\pi R^2$ ક્ષેત્રફળની સપાટી પર દબાણના તફાવત (P_i-P_0) ના લીધે (P_i-P_0) $4\pi R^2$ બળ લાગે છે અને આ બળની અસર હેઠળ સપાટી dR અંતર ખસે છે. આથી સપાટી પર થતું કાર્ય,

$$W = બળ \times સ્થાનાંતર$$

= $(P_i - P_0) 4\pi R^2 dR$ (5.13.1)

(2) પરપોટાની ત્રિજ્યા R હોય ત્યારે સપાટીનું ક્ષેત્રફળ $S = 4\pi R^2$.

હવે, પરપોટાની ત્રિજ્યા (R + dR) થાય, ત્યારે ક્ષેત્રફળમાં થતો વધારો.

 $dS = 8\pi R dR$

પરંતુ હવામાં રહેલા પરપોટાને બે મુક્ત સપાટીઓ હોય છે.

> ∴ ક્ષેત્રફળમાં થતો કુલ વધારો = $2 \times 8\pi RdR$ = $16\pi RdR$

તેથી, આ માટે જરૂરી કાર્ય,

 $\mathbf{W} = \mathbf{y}$ ષ્ઠતાણ imes ક્ષેત્રફળમાં થતો કુલ વધારો

$$\therefore W = 16\pi TR dR \qquad (5.13.2)$$

(5.13.1) અને (5.13.2) સરખાવતાં,

$$4\pi(P_i - P_0)R^2 dR = 16\pi TR dR$$

$$\therefore P_i - P_0 = \frac{4T}{R} \tag{5.13.3}$$

જો પરપોટો પ્રવાહીની અંદર રહેલો હોય, તો તેને એક જ મુક્ત સપાટી હોય છે.

$$\therefore P_i - P_0 = \frac{2T}{R} \tag{5.13.4}$$

નોંધ : પ્રવાહીના બુંદને પણ એક જ મુક્ત સપાટી હોવાથી દબાણનો તફાવત સમીકરણ (5.13.4) ની મદદથી શોધી શકાય.

ઉદાહરણ 12 : પાણીમાં તેની મુક્ત સપાટીથી 5 cm ઊંડાઈએ બનતા 0.2 cm ત્રિજ્યાના પરપોટાની અંદરનું દબાણ શોધો. પાણીનું પૃષ્ઠતાણ 70 dyne cm $^{-1}$ અને ઘનતા $1~{\rm g}~{\rm cm}^{-3}$ છે. વાતાવરણનું દબાણ 10^6 dyne cm $^{-2}$ લો. ગુરુવપ્રવેગનું મૂલ્ય $980~{\rm cm}~{\rm s}^{-2}$ છે.

ઉકેલ :

h = 5 cm

R = 0.2 cm

 $T = 70 \text{ dyne cm}^{-1}$

 $\rho = 1 \text{ g cm}^{-3}$

P = વાતાવરણનું દબાણ

 $= 10^6$ dyne cm⁻²

 $g = 980 \text{ cm s}^{-2}$

પાણીમાં બનતા હવાના પરપોટાનું અંદરનું અને બહારનું દબાણ અનુક્રમે \mathbf{P}_i અને \mathbf{P}_0 હોય, તો

$$P_i - P_0 = rac{2T}{R}$$
 (પરપોટો પાણીમાં બનતો હોવાથી તેને એક જ મુક્ત સપાટી છે.)

$$\therefore P_i = P_0 + \frac{2T}{R}$$
 (1)

પરંતુ $\mathbf{P}_0 =$ વાતાવરણનું દબાણ + h ઊંડાઈના પાણીના સ્તંભનું દબાણ

$$\therefore P_0 = P + h\rho g \tag{2}$$

સમીકરણ (1) અને (2) પરથી,

$$P_i = P + h\rho g + \frac{2T}{R}$$

$$= 10^6 + (5 \times 1 \times 980) + \frac{2 \times 70}{0.2}$$

$$= 10^6 + 4900 + 700$$

 $P_i = 1.0056 \times 10^6 \text{ dyne cm}^{-2}$

ઉદાહરણ 13 : એક છિદ્રવાળો પોલો ગોળો જ્યારે પાણીની સપાટીની નીચે 40 cm ઊંડાઈએ લઈ જવામાં આવે છે, ત્યારે જ છિદ્રમાંથી પાણી દાખલ થવા લાગે છે. જો પાણીનું પૃષ્ઠતાણ 70 dyne cm $^{-1}$ હોય, તો છિદ્રની ત્રિજયા શોધો. $g=10~\mathrm{ms}^{-2}$.

ઉકેલ : ધારો કે કાણાની ત્રિજયા r છે. અહીં ગોળાની ઊંડાઈ $h=40~{\rm cm}$ છે. આ ઊંડાઈએ પાણીનું દબાણ = $hdg=40\times1\times1000=40000~{\rm dyne~cm}^{-2}$.

જ્યારે પાણી ગોળામાં પ્રવેશશે, ત્યારે ગોળાના છિદ્રમાંથી છિદ્રની ત્રિજ્યા જેટલી જ ત્રિજ્યા ધરાવતો હવાનો પરપોટો ગોળામાંથી બહાર આવશે. આ પરપોટાની અંદરનું વધારાનું દબાણ $=\frac{2T}{r}=\frac{2\times70}{r}$.

$$\therefore$$
 સમતોલન સ્થિતિમાં $hdg = \frac{2T}{r}$

$$\therefore 40000 = \frac{2 \times 70}{r}$$

$$\therefore r = 3.5 \times 10^{-3} \text{ cm}$$

ઉદાહરણ 14 : r ત્રિજ્યાવાળાં એકસરખાં n ટીપાં એકત્ર થઈ R ત્રિજ્યાનું એક મોટું ટીપું રચે છે. જો પ્રવાહીનું પૃષ્ઠતાણ T હોય, તો વિમુક્ત થતી ઊર્જા શોધો.

6કેલ : r ત્રિજ્યાવાળાં n ટીપાનું કુલ કદ = R ત્રિજ્યાનાં ટીપાનું કદ

$$\therefore \left(n\frac{4}{3}\pi r^3\right) = \frac{4}{3}\pi R^3$$

$$\therefore nr^3 = \mathbb{R}^3$$
 (1)
$$n$$
 ટીપાની સપાટીનું ક્ષેત્રફળ $\mathbf{A}_1 = n(4\pi r^2)$

અને એક મોટા ટીપાનું ક્ષેત્રફળ $\mathbf{A}_2 = 4\pi \mathbf{R}^2$

$$\therefore$$
 ક્ષેત્રફળમાં ઘટાડો $=\Delta A$

$$= A_1 - A_2 = n \cdot 4\pi r^2 - 4\pi R^2$$

$$= 4\pi (nr^2 - R^2)$$

$$\therefore$$
 વિમુક્ત થતી ઊર્જા $\mathrm{W} \,=\, \mathrm{T} \Delta \mathrm{A} \,=\, 4\pi \mathrm{T}$

$$(nr^2 - R^2) \tag{2}$$

(પરિશામ (2) મેળવવા માટે પરિશામ (1) મેળવવાની જરૂર નથી, પરંતુ પરિશામ (2) ને નીચે જશાવેલ વિશિષ્ટ સ્વરૂપમાં દર્શાવવા માટે પરિશામ (1) જરૂરી છે.)

$$W = T\Delta A = 4\pi TR^3 \left(\frac{nr^2 - R^2}{R^3}\right)$$
$$= 4\pi TR^3 \left(\frac{nr^2}{nr^3} - \frac{R^2}{R^3}\right)$$
$$= 4\pi TR^3 \left(\frac{1}{r} - \frac{1}{R}\right)$$
...(3)

ઉદાહરણ 15 : R_1 અને R_2 ત્રિજ્યાવાળા સાબુના બે પરપોટા એકત્રિત થઈને R ત્રિજ્યાવાળો એક પરપોટો રચે છે. જો વાતાવરણનું દબાણ P અને સાબુના દ્રાવણનું પૃષ્ઠતાણ T હોય, તો સાબિત કરો કે,

 $P(R_1^3 + R_2^3 - R^3) = 4T(R^2 - R_1^2 - R_2^2)$ આ ક્રિયા દરમિયાન તાપમાન અચળ રહે છે, તેમ ધારો.

ઉકેલ :

પહેલા પરપોટાની અંદરનું દબાણ = P_1 = $P + rac{4T}{R_1}$ બીજા પરપોટાની અંદરનું દબાણ = P_2

$$= P + \frac{4T}{R_2}$$

અને સંયુક્ત પરપોટાની અંદરનું દબાણ = P_3 = $P+\frac{4T}{R}$.

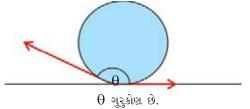
અત્રે $P = \varepsilon \lambda + \varepsilon$ માટે બહારનું દબાણ ε વાતાવરણનું દબાણ જે સમાન છે.

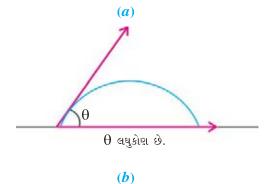
જો આ ત્રણ પરપોટાનાં કદ અનુક્રમે $oldsymbol{
m V}_1, \, oldsymbol{
m V}_2$ અને $oldsymbol{
m V}_3$ હોય તો,

Downloaded from https:// www.studiestoday.com

તરલનું મિકેનિક્સ

અત્રે તાપમાન અચળ છે. બૉઇલના નિયમ મુજબ,
$$\begin{aligned} &P_1V_1 \,+\, P_2V_2 = \,P_3V_3\\ &\therefore \, \left(P + \frac{4T}{R_1}\right)\!\left(\frac{4}{3}\pi R_1^{\ 3}\right)\!+\! \left(P + \frac{4T}{R_2}\right)\!\left(\frac{4}{3}\pi R_2^{\ 3}\right)\\ &= \left(P + \frac{4T}{R}\right)\!\left(\frac{4}{3}\pi R^3\right) \end{aligned}$$

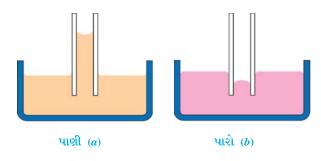

 $V_1 = \frac{4}{3}\pi R_1^3$; $V_2 = \frac{4}{3}\pi R_2^3$; $V_3 = \frac{4}{3}\pi R^3$


$$\therefore \frac{4}{3}\pi P(R_1^3 + R_2^3 - R^3) = \frac{4}{3}\pi \times 4T$$

$$(R^2 - R_1^2 - R_2^2)$$

$$P(R_1^3 + R_2^3 - R^3) = 4T(R^2 - R_1^2 - R_2^2)$$
5.14 સંપર્કાણ (Angle of Contact)

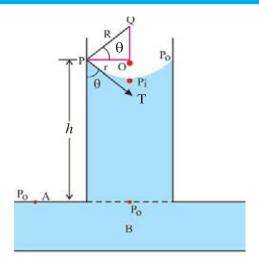
આપ સૌએ ઝાકળનાં બિંદુઓ જોયાં હશે. તેઓ ગોળાકાર હોય છે. જ્યારે પ્રવાહી ઘન પદાર્થના સંપર્કમાં આવે ત્યારે તેની સપાટી વક્ર બને છે. આ બાબત વધુ સારી રીતે સમજવા આકૃતિ 5.27(a) અને 5.27(b)માં દર્શાવેલા પ્રવાહીનાં ટીપાં ધ્યાનમાં લો.


સંપર્કકોણ

આકૃતિ 5.27

પ્રવાહી અને ઘન પદાર્થના સંપર્કબિંદુએ પ્રવાહીની સપાટીને દોરેલો સ્પર્શક અને પ્રવાહીમાં રહેલા ઘન સપાટી વચ્ચેનો ખૂણો સંપર્કકોણ કહેવાય છે. સંપર્કકોણ સંપર્કમાં રહેલ પ્રવાહી અને ઘન પદાર્થ પર આધાર રાખે છે. જો સંપર્કકોશ 90°થી ઓછો હોય, તો પ્રવાહી ઘન પદાર્થને ભીંજવે છે, ઘન પદાર્થ સાથે ચોંટી જાય છે, અને આપેલ ઘન પદાર્થની બનલી કેશનળીમાં ઉપર ચઢે છે. જો સંપર્ક કોણ 90°થી વધુ હોય તો પ્રવાહી ઘન પદાર્થને ભીંજવતું નથી, ઘન પદાર્થ સાથે ચોંટી જતું નથી અને પદાર્થની બનેલી કેશનળીમાં નીચે ઉતરે છે. ઉદાહરણ તરીકે જો પાણીનું ટીપું કમળના પાન પર હોય તો (આકૃતિ 5.27a) સંપર્કકોણ ગુરુકોણ છે. પણ જો પાણીનું ટીપું કાચના સંપર્કમાં હોય તો (આકૃતિ 5.27b) સંપર્કકોણ લઘુકોણ છે.

5.15 ริยเรษ์ย (Capillarity)


પ્રવાહીમાં ઊભી રાખવામાં આવેલી કેશનળીમાં પ્રવાહીની ઊંચે ચડવાની કે નીચે ઊતરવાની ઘટનાને કેશાકર્ષણ કહે છે. આ ઘટનામાં પ્રવાહીનું પૃષ્ઠતાણ મુખ્ય ભાગ ભજવે છે.

કાચની કેશનળીમાં કેશાકર્ષણની ઘટના

આકૃતિ 5.28

આકૃતિ 5.28(a)માં દર્શાવ્યા મુજબ પાણીમાં કાચની કેશનળી (નાના વેહવાળી નળી) ઊભી રાખતાં કેશનળીમાં પાણી ઊંચે ચઢે છે. જ્યારે આકૃતિ 5.28(b)માં દર્શાવ્યા મુજબ પારામાં કાચની કેશનળી ઊભી રાખતાં કેશનળીમાં પારો નીચે ઊતરે છે. વળી, એ પણ અહીં નોંધો કે પાણી કાચને ભીંજવે છે, જ્યારે પારો કાચને ભીંજવતો નથી. અહીં તમે ધ્યાનથી જોશો તો ખ્યાલ આવશે કે કેશનળીમાં ઉપર ચડેલા પાણીની મુક્ત સપાટી (મેનિસ્ક્સ – meniscus) અંતર્ગોળ હોય છે, જ્યારે કેશનળીમાં નીચે ઊતરેલા પારાની મુક્ત સપાટી બહિર્ગોળ હોય છે.

કેશનળીમાં પ્રવાહીનો સ્તંભ આકૃતિ 5.29

આકૃતિ 5.29માં દર્શાવ્યા મુજબ ધારો કે r ત્રિજ્યાની એક કેશનળીને પ્રવાહીમાં ઊભી ગોઠવતાં પ્રવાહી કેશનળીમાં h ઊંચાઈ સુધી ઉપર ચડે છે. આ સ્થિતિમાં કેશનળીમાં પ્રવાહીના અંતર્ગોળ મેનિસ્ક્સની વક્રતા ત્રિજ્યા ધારો કે \mathbf{R} છે.

મેનિસ્કસની ત્રિજ્યા R અને કેશનળીની ત્રિજ્યા r વચ્ચેનો સંબંધ નીચે મુજબ મેળવી શકાય :

આકૃતિ 5.29 ની ભૂમિતિ પરથી $\angle {\rm OPQ}=\theta$ માં $\Delta {\rm OPQ},$

∴
$$cos\theta$$
 = $\frac{OP}{PQ}$
= $\frac{\frac{}{}}{\frac{}{}}$ કેશનળીની ત્રિજ્યા $\frac{}{}(r)}{\frac{}{}}$ $\frac{}{}$ \frac

હવે, આકૃતિમાં દર્શાવેલ સ્થિતિમાં પ્રવાહી સમતોલનમાં છે. અહીં મેનિસ્કસની અંતર્ગોળ બાજુ પર દબાણ ધારો કે \mathbf{P}_{i} અને બહિર્ગોળ બાજુ પર દબાણ ધારો કે \mathbf{P}_{i} છે. આ

કિસ્સામાં $P_o > P_i$ તેમજ $P_o - P_i = \frac{2T}{R}$ (: અહીં પ્રવાહીની એક જ મુક્ત સપાટી છે.) (5.15.2)

નોંધો કે P_0 એ વાતાવરણનું દબાણ છે. આટલું જ દબાણ પ્રવાહીની સમતલ સપાટી પર A બિંદુએ અને સમક્ષિતિજ એવા B બિંદુએ પણ લાગે છે.

B બિંદુ આગળનું દબાશ $P_o = P_i + h\rho g$ અહીં, ρ એ પ્રવાહીની ઘનતા અને g ગુરુત્વપ્રવેગ છે. $\therefore P_o - P_i = h\rho g \qquad (5.15.3)$ સમીકરશો (5.15.2) અને (5.15.3)

$$\frac{2T}{R} = h\rho g$$

$$\therefore T = \frac{Rh\rho g}{2}$$

(5.15.1) માંથી Rનું મૂલ્ય કરતાં,

$$T = \frac{2Tcos\theta}{r\rho g}$$
 (5.15.4)

ઉપરોક્ત સમીકરણ પરથી પ્રવાહીનું પૃષ્ઠતાણ શોધી શકાય છે. આ સમીકરણ પરથી,

$$h = \frac{rh\rho g}{2cos\theta}$$

- (i) જો $\theta < 90^{\circ}$ હશે, તો $\cos\theta$ ધન થશે અને આ સમીકરણ પરથી h ધન મળશે. આથી, પ્રવાહી કેશનળીમાં ઊંચે ચઢે છે. (દા.ત., કાચ-પાણી).
- (ii) જો $\theta > 90^{\circ}$ હશે તો $\cos\theta$ ૠ઼ણ થશે અને આ સમીકરણ પરથી h ૠ઼ણ મળશે. આથી, પ્રવાહી કેશનળીમાં નીચે ઊતરે છે. (દા.ત., કાચ-પારો).

આ કિસ્સામાં મેનિસ્ક્સ બહિર્ગાળ હોય છે. વળી, $P_i > P_o.$ હોય છે, તેથી (5.15.2)માં $P_i - P_o = \frac{2T}{R}$ લેવું જોઈએ. વળી, $P_i - P_o = h\rho g$ મળશે. તેથી અંતિમ પરિણામ (5.15.4) માં કશો ફેર પડતો નથી.

ડિટરજન્ટ કે સાબુ પાણીમાં ઓગાળતાં દ્રાવણનું પૃષ્ઠતાણ પાણીના પૃષ્ઠતાણથી ઓછું થાય છે. પરિણામે પ્રક્ષાલન ક્ષમતામાં વધારો થાય છે.

ઉદાહરણ 16: કાચની એક કેશનળીની ત્રિજ્યા $0.5~\mathrm{mm}$ છે. તેને પાણીમાં ઊભી ગોઠવતાં કેશનળીમાં પાણીના સ્તંભની ઊંચાઈ શોધો. પાણીની ઘનતા $10^3~\mathrm{kg}~\mathrm{m}^{-3}$ તથા પાણીનો કાચ સાથેનો સંપર્કકોણ 0° છે. ગુરુત્વપ્રવેગ $g=9.8~\mathrm{ms}^{-2}$ લો. પાણીનું પૃષ્ઠતાણ $T=0.0727~\mathrm{Nm}^{-1}$.

ઉકેલ :

$$r = 0.5 \text{ mm} = 5 \times 10^{-4} \text{ m}$$

 $\rho = 103 \text{ kg m}^{-3}$
 $\theta = 0^{\circ} \therefore \cos 0^{\circ} = 1$

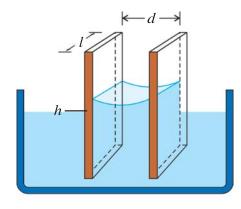
$$g = 9.8 \text{ ms}^{-2}$$

$$T = 0.0727 \text{ Nm}^{-1}$$

તરલનું મિકેનિક્સ

$$T = \frac{rh\rho g}{2cos\theta}$$

$$\therefore h = \frac{2Tcos\theta}{r\rho g}$$


$$= \frac{2 \times 0.0727 \times 1}{5 \times 10^{-4} \times 10^{3} \times 9.8}$$

$$\therefore h = 0.0296 \text{ m} = 2.96 \text{ cm}$$

ઉદાહરણ 17: બે લંબચોરસ કાચની તકતીઓને એકબીજાથી 1 mm દૂર રાખેલી છે. આકૃતિ 5.30માં દર્શાવ્યા પ્રમાણે તેમને પાણીમાં અંશતઃ ડુબાડી છે કે જેથી તેમની વચ્ચેનો હવા (તથા પાણી)નો સ્તંભ ઊર્ધ્વ રહે, તો તેમની વચ્ચેની જગ્યામાં પાણી કેટલું ઊંચે ચડશે ?

 $T = 70 \text{ dyn cm}^{-1}$.

ઉકેલ : ધારો કે પ્લેટની પહોળાઈ l છે. આ સ્થિતિમાં બંને પ્લેટની મળીને 2l જેટલી લંબાઈ પર પાણી અને કાચ એકબીજાના સંપર્કમાં હશે. પાણીનો કાચના સંદર્ભમાં સંપર્કકોણ શૂન્ય છે. ધારો કે પાણી h cm ઊંચે ચઢે છે.

આકૃતિ 5.30

 \therefore પાણીના ઉપર ચઢેલા સ્તંભનું કદ = ldh. જ્યાં d =બે પ્લેટ વચ્ચેનું અંતર

પાણીની ઘનતા ρ હોય અને ગુરુત્વપ્રવેગ g હોય, તો પાણીના આ સ્તંભનું નીચે તરફ લાગતું વજનબળ = (ldh) ρg . આ બળ 2l લંબાઈ પર લાગતા પૃષ્ઠતાણના બળ જેટલું હોવું જોઈએ.

$$\therefore 2Tl = (ldg)h\rho$$

$$h = \frac{2T}{dg\rho} = 1.43 \text{ cm}$$

સારાંશ

- 1. વહી શકે તેવા પદાર્થને તરલ કહે છે.
- 2. પદાર્થની એકમક્ષેત્રફળવાળી સપાટીને લંબ રૂપે લાગતા બળના મૂલ્યને દબાણ કહે છે. દબાણ અદિશ રાશિ છે. તેનો એકમ ${
 m Nm}^{-2}$ અથવા ${
 m P}_a$ છે.
- 3. જો બળ સપાટીને દોરેલા લંબ સાથે θ ખૂશો બનાવે તેમ લાગતું હોય, તો બળના $Fcos\theta$ ઘટકને કારણે દબાણ પેદા થાય છે અને તેથી દબાણ

$$P = \frac{Fcos\theta}{A}$$

- 4. પદાર્થ દળ અને કદના ગુણોત્તરને ઘનતા કહે છે. ઘનતાને એકમ ${
 m kg~m}^{-3}$ છે.
- 5. પદાર્થની ઘનતા અને 277K તાપમાને પાણીની ઘનતાના ગુણોત્તરને વિશિષ્ટ ઘનતા કહે છે. વિશિષ્ટ ઘનતા પરિમાણ રહિત છે.
- 6. **પાસ્કલનો નિયમ :** જો ગુરુત્વાકર્ષણની અસરો અવગણવામાં આવે, તો તરલમાં સર્વત્ર દબાણ સમાન હોય છે.
- 7. **પાસ્કલનો દબાણ-પ્રસરણનો નિયમ :** બંધ પાત્રમાં ભરેલા અદબનીય તરલ પરના દબાણમાં કરેલો ફેરફાર, તરલના પ્રત્યેક ભાગમાં અને પાત્રની દીવાલ પર એકસરખી રીતે પ્રસરે છે. આ દબાણ પાત્રની દીવાલને લંબ હોય છે.
- 8. હાઇડ્રોલિક લિફ્ટ, હાઇડ્રોલિક બ્રેક, ડોર-ક્લોઝર અને વાહનોના શૉક એબ્સોર્બર પાસ્કલના નિયમ પર કાર્ય કરે છે.
- 9. તરલમાં ઊંડાઈ સાથે દબાણમાં થતો ફેરફારનો દર ρg જેટલો છે.

- **10.** અદબનીય તરલ સ્તંભને કારણે તિળયે ઉદ્ભવતું h
 ho g જેટલું હોય છે.
- 11. તરલ સ્તંભને કારણે ઉદ્ભવતું દબાણ પાત્રના આકાર કે ક્ષેત્રફળ પર આધારિત નથી.
- 12. **આર્કિમિડિઝનો સિદ્ધાંત :** જયારે કોઈ પદાર્થને પ્રવાહીમાં આંશિક કે સંપૂર્ણપણે ડુબાડવામાં આવે ત્યારે તેના પર લાગતું ઉત્લાવક બળ તેણે વિસ્થાપિત કરેલા પ્રવાહીના વજન જેટલું હોય છે અને વિસ્થાપિત પ્રવાહીના દ્રવ્યમાન કેન્દ્ર પર ઊર્ધ્વ દિશામાં લાગે છે.
- 13. ફ્લોટેશનનો નિયમ : જ્યારે પદાર્થનું વજન એ તરતા પદાર્થના ડૂબેલા ભાગ દ્વારા વિસ્થાપિત કરાયેલા પ્રવાહીના વજન જેટલું હોય ત્યારે તે પદાર્થ પ્રવાહીમાં તરે છે.
- 14. સ્થાયી વહન : જે તરલ વહનમાં દરેક બિંદુ પાસે તરલનો વેગ સમય સાથે અચળ રહેતો હોય તેવા વહનને સ્થાયી વહન કહે છે.
- 15. પ્ર**ક્ષુબ્ધ વહન :** જો તરલ વહનમાં દરેક બિન્દુ પાસે તરલના વેગમાં સમય સાથે અનિયમિત તેમજ ઝડપી ફેરફાર થાય, તો તેવા વહનને પ્રક્ષુબ્ધ વહન કહે છે.
- 16. અચક્રીય વહન : જો તરલ વહનમાં દરેક બિંદુ પાસે તરલના અંશને તે બિંદુને અનુલક્ષીને કોઈ પરિણામી કોણીય વેગ ન હોય, તો તરલનું વહન અચક્રીય વહન કહેવાય.
- 17. અદબનીય વહન : જો તરલ વહનમાં દરેક બિંદુ પાસે તરલની ઘનતા અચળ રહેતી હોય, તો તેવા વહનને અદબનીય વહન કહે છે.
- **18. અશ્યાન વહન :** જે તરલ માટે શ્યાનતા-ગુણાંક મૂલ્ય ઓછું હોય તેવા તરલના વહનને અશ્યાન વહન કહે છે.
- 19. આદર્શ તરલનું વહન સ્થાયી, અચક્રિય, અદબનીય અને અશ્યાન પ્રકારનું હોય છે.
- **20. પ્રવાહરેખા** : વહેતા તરલમાં તરલકણના ગતિમાર્ગને પ્રવાહરેખા કહે છે.
- 21. ધારારેખા : જે વક્ર પરના દરેક બિંદુ પાસેનો સ્પર્શક તે બિંદુ પાસેથી પસાર થતા કણના વેગની દિશામાં હોય, તેવા વક્રને ધારારેખા કહે છે.
- 22. ધારારેખાના સમૂહથી બનતી કાલ્પનિક નળીને વહનનળી કહે છે.
- 23. કદ ફ્લક્સ : કોઈ પણ આડછેદમાંથી એકમસમયમાં પસાર થતા તરલના કદને કદ ફ્લક્સ કહે છે. તેનું મૂલ્ય આડછેદના ક્ષેત્રફળ અને વેગના ગુણાકાર જેટલું હોય છે.
- 24. ડાયનેમિક લિફ્ટ : જ્યારે કોઈ વસ્તુ તરલને સાપેક્ષ ગતિ કરે ત્યારે એક બીજું બળ ઉદ્ભવે છે. જે વસ્તુને તેના મૂળ માર્ગ પરથી વિચલિત કરે છે. આ ઘટનાને ડાયનેમિક લિફ્ટ કહે છે.
- 25. ઍરોફોઇલ : જે ઘન પદાર્થ હવામાં સમક્ષિતિજ દિશામાં ગતિ કરતો, ત્યારે તેના પર તેના આકારને કારણે ઊર્ધ્વ દિશામાં બળ લાગે તેવા પદાર્થને ઍરોફોઇલ કહે છે.
- 26. સ્તરીય વહન : સ્થાયી પ્રવાહમાં તરલના જુદા-જુદા સ્તર એકબીજામાં ભળી ગયા વિના એકબીજા પર સરકે છે. આવા વહનને સ્તરીય વહન કહે છે.
- 27. શ્યાનતાબળ : સ્તરીય વહનમાં તરલના કોઈ પણ બે ક્રમિક સ્તરો વચ્ચે સાપેક્ષ ગતિ હોય છે. પરિણામે તેમની સંપર્કસપાટી પર સ્પર્શીય અવરોધક બળ ઉત્પન્ન થાય છે. આવા અવરોધક બળને શ્યાનતાબળ કહે છે.

તરલનું મિકેનિક્સ

- **28. વેગ-પ્રચલન :** તરલમાં સ્તરીય વહન દરમિયાન વહનને લંબ દિશામાં એકબીજાથી એકમઅંતરે રહેલા બે સ્તરોના વેગના તફાવતને વેગ-પ્રચલન કહે છે. તેનો એકમ s^{-1} છે.
- 29. શ્યાનતા-ગુણાંક : તરલના સ્તરીય વહનમાં કોઈ પણ બે ક્રમિક સ્તરો વચ્ચે એકમ વેગ-પ્રચલન અને એકમ ક્ષેત્રફળ દીઠ ઉદ્ભવતા શ્યાનતાબળને તરલનો શ્યાનતા-ગુણાંક કહે છે.
- 30. સ્ટોક્સનો નિયમ : મોટા વિસ્તારવાળા અને η જેટલો શ્યાનતા-ગુણાંક ધરાવતા શ્યાન માધ્યમમાં ν જેટલા વેગથી ગતિ કરતા r ત્રિજ્યાવાળા ગોળાકાર પદાર્થ પર લાગતું શ્યાનતાબળ $6\pi\eta rv$ જેટલું હોય છે.
- 31. જ્યારે નળીમાંથી તરલનું વહન થતું હોય ત્યારે વહનનો પ્રકાર તરલની ઘનતા ρ , વેગ v, નળીના વ્યાસ D અને તરલની શ્યાનતા η પર આધારિત છે. જે રેનોલ્ડ્ઝ-અંકથી નક્કી કરી શકાય છે.

રેનોલ્ડ્ઝ-અંક
$$N_R = \frac{\rho D \nu}{\eta}$$

જો $N_{\rm R} < 2000$ તો પ્રવાહ, ધારારેખી $N_{\rm R} > 3000$ તે પ્રક્ષુબ્ધ પ્રવાહ અને $2000 < N_{\rm R} < 3000$ તો પ્રવાહ અનિશ્ચિત હોય છે.

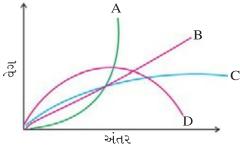
- 32. વેગના જે મહત્તમ મૂલ્ય સુધી પ્રવાહ ધારારેખી રહે છે તે વેગને ક્રાંતિ વેગ કહે છે.
- **33. આસક્તિ બળ :** જુદા-જુદા પ્રવાહના અણુઓ વચ્ચે લાગતાં આકર્ષણબળોને આસક્તિ બળ કહે છે.
- **34. સંસક્તિ બળ** : એક જ દ્રવ્યના અશુઓ વચ્ચે લાગતા આકર્ષણબળને સંસક્તિ બળ કહે છે.
- 35. અશુ જે મહત્તમ અંતર સુધી રહેલા બીજા અશુ પર બળ લગાડી શકે તે અંતરને અશુક્રિયા અવિ કહે છે. અશુક્રિયા અવિધ જેટલી ત્રિજયાવાળો ગોળા કે જેના કેન્દ્ર પર અશુ હોય તેવા ગોળાને અશુનો અશુક્રિયા-ગોળા કહે છે.
- 36. અચળ તાપમાને પ્રવાહીની સપાટીના ક્ષેત્રફળમાં એક એકમ જેટલો વધારો કરવા માટે કરવા પડતા કાર્યને પૃષ્ઠતાણ કહે છે. વળી, પ્રવાહીની મુક્ત સપાટી પર એકમલંબાઈની કાલ્પનિક રેખાની એક બાજુ રહેલા પ્રવાહીના અશુઓ રેખાની બીજી બાજુ પર રહેલા અશુઓ પર રેખાને લંબ અને સપાટીને સમાંતર જે બળ લગાડે છે, તેને પ્રવાહીનું પૃષ્ઠતાણ કહે છે. પૃષ્ઠતાણનો એકમ N/m અથવા J/m² છે.
- 37. પ્રવાહીની મુક્ત સપાટીનો આકાર તેની બે બાજુ લાગતાં દબાણ પર આધારિત છે. જો ઉપરની દિશામાં દબાણ વધુ હોય તો સપાટી અંતર્ગોળ હોય છે અને જો નીચેની દિશાનું દબાણ વધુ હોય તો સપાટી બહિર્ગોળ હોય છે.
- 38. પરપોટાની અંદરનું દબાણ P_i અને બહારનું દબાણ $P_{_0}$ હોય, તો હવામાં રહેલા પરપોટા માટે $P_i P_{_0} = \frac{4T}{R} \, .$

જ્યાં T પૃષ્ઠતાણ અને R પરપોટાની ત્રિજ્યા છે.

પ્રવાહીના બુંદ કે પ્રવાહીમાં રહેલા પરપોટા માટે $P_i - P_o = \frac{2T}{R}$

- 39. પ્રવાહી અને ઘન પદાર્થ એકબીજાના સંપર્કમાં આવતા પ્રવાહીની સપાટી વક્ર બને છે. પ્રવાહી ઘન પદાર્થને જ્યાં સ્પર્શે ત્યાં પ્રવાહીની સપાટીને દોરેલો સ્પર્શક અને પ્રવાહીમાં રહેલી ઘનસપાટી વચ્ચેનો ખૂશો સંપર્કકોશ કહેવાય છે.
- 40. પ્રવાહીમાં ઊભી રાખવામાં આવેલી કેશનળીમાં પ્રવાહીની ઊંચે ચઢવાની કે નીચે ઊતરવાની ઘટનાને કેશાકર્ષણ કહે છે.
- 41. પાણીમાં સાબુ કે ડિટરજન્ટ ઓગાળતાં પ્રવાહીની પૃષ્ઠતાણ ઘટે છે અને પ્રક્ષાલન-ક્ષમતા વધે છે.

સ્વાધ્યાય


નીચેનાં વિધાનો માટે આપેલા વિકલ્પોમાંથી યોગ્ય વિકલ્પ પસંદ કરો :

- 1. ઍરોપ્લેનની સમક્ષિતિજ સમતલમાં રહેલી પાંખ ઉપર હવાની ઝડપ $120~{\rm ms}^{-1}$ અને નીચે તે $90~{\rm ms}^{-1}$ છે. જો હવાની ઘનતા $1.3~{\rm kgm}^{-3}$ હોય તો પાંખ ઉપર અને નીચે દબાણનો તફાવત છે. (પાંખની જાડાઈ અવગણો.)
 - (A) 156 Pa
- (B) 39 Pa
- (C) 4095 Pa
- (D) 6300 Pa
- 2. m દળ અને r ત્રિજ્યાવાળી એક ગોળી શ્યાન માધ્યમમાં પતન કરે છે, તો તેનો અંતિમ વેગ (ટર્મિનલ વેગ)ના સમપ્રમાણમાં છે.
 - (A) भात्र $\frac{1}{r}$
- (B) भात्र *m*
- (C) $\sqrt{\frac{m}{r}}$
- (D) $\frac{m}{r}$
- 3. $10~{\rm cm}^2$ ક્ષેત્રફળ ધરાવતી એક પ્લેટ બીજી મોટી પ્લેટ પર મૂકેલ છે. બે પ્લેટ વચ્ચે $1~{\rm mm}$ જાડું ગ્લિસરિનનું પાતળું સ્તર છે. ઉપરની પ્લેટને $10~{\rm ms}^{-1}$ જેટલા વેગથી ગતિ કરાવવા માટે જરૂરી બાહ્ય બળ છે. (η ગ્લિસરીનનો શ્યાનતા-ગુણાંક $=20~{\rm poise}$)
 - (A) 80 dyne

(B) $200 \times 10^{3} \text{ dyne}$

(C) 800 dyne

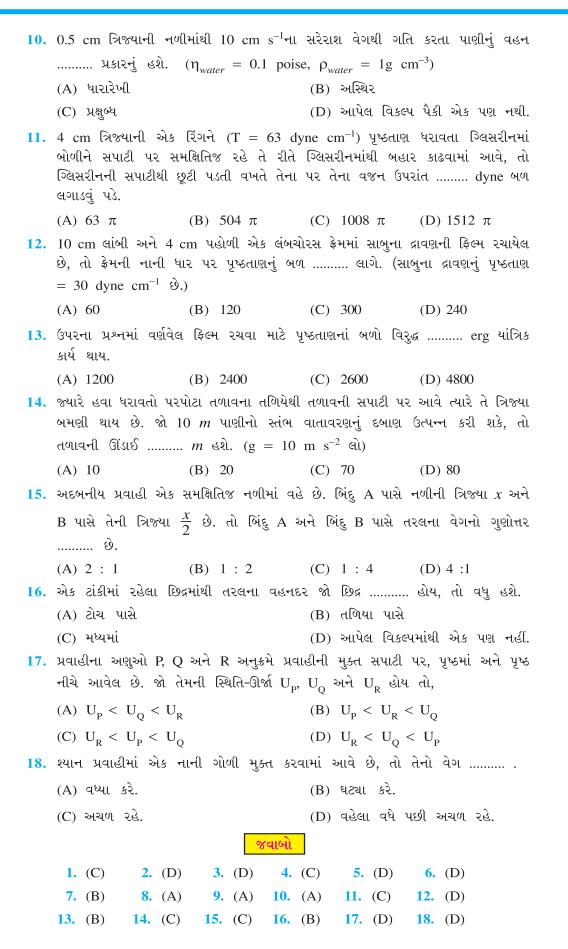
- (D) 2000×10^3 dyne
- શ્યાન માધ્યમમાં એક નાની ગોળી પતન કરે છે, તો આકૃતિ 5.31માંનો વક્ર તેની ગતિનું નિરૂપણ કરે છે.
 - (A) A
 - (B) B
 - (C) C
 - (D) D

આકૃતિ 5.31

- 5. રેનોલ્ડ્ઝ-અંકનું મૂલ્ય ધરાવતા તરલ માટે ઓછું છે.
 - (A) ઓછા વેગ વિકલ્પ
- (B) ઓછી ઘનતા
- (C) વધુ શ્યાનતા (D) આપેલા
- (D) આપેલા ત્રણે
- રેનોલ્ડ્ઝ અંકના સંદર્ભમાં નીચેનામાંથી કયા માટે ધારારેખી વહનની શક્યતા સૌથી વધુ છે ?
 - (A) ઓછી ρ

(B) ઊંચી ρ, ઊંચી η

(C) ઊંચી ρ, ઓછી η


- (D) ઓછી ρ , ઊંચી η
- 7. સાબુના દ્રાવશનું પૃષ્ઠતાશ $1.9 \times 10^{-2} \; \mathrm{Nm^{-1}}$ છે, તો $2.0 \; \mathrm{cm}$ વ્યાસનો પરપોટો ફુલાવવા માટે કરવું પડતું કાર્ય છે.
 - (A) $17.6 \times 10^{-6} \,\pi$ J

(B) $15.2 \times 10^{-6} \,\pi$ J

(C) $19 \times 16^{-6} \pi J$

- (D) $10^{-4} \pi J$
- 8. બે પરપોટા માટે અંદરના વધારાના દબાણના મૂલ્ય 1.01 atm અને 1.02 atm છે, તો તેમની સપાટીનાં ક્ષેત્રફળોનો ગુણોત્તર છે.
 - (Δ) $A \cdot 1$
- (B) 1:26
- (C) 8 : 1
- (D) 1:8
- 9. એક કેશનળીમાં h ઊંચાઈ સુધી પ્રવાહી ઉપર ચઢે છે. નીચેના પૈકી કયા કિસ્સામાં પ્રવાહીની ઊંચાઈ h થી વધુ હશે ?
 - (A) અધોદિશામાં પ્રવેગિત લિક્ટમાં
 - (B) ઊર્ધ્વ-દિશામાં પ્રવેગિત લિક્ટમાં
 - (C) ધ્રુવો પર
 - (D) અચળ રહેશે

તરલનું મિકેનિક્સ

નીચે આપેલ પ્રશ્નોનો જવાબ ટૂંકમાં આપો :

- પાસ્કલના દબાણ પ્રસરણનો નિયમ લખો.
- 2. કોને કારણે વધુ દબાણ ઉત્પન્ન થાય ? 75 cm ઊંચાઈવાળા પારાના સ્તંભથી કે 10 m ઊંચાઈવાળા પાણીના સ્તંભથી ? (પારાની વિશિષ્ટ ઘનતા = 13.6)
- 3. પાણીના છંટકાવ માટે વપરાતા 'સ્પ્રિંકલર'ના સિદ્ધાંત જણાવો.
- 'તરલના વહન માટે બર્નુલીનું સમીકરણ ઊર્જા-સંરક્ષણના નિયમનું એક સ્વરૂપ છે.' વિધાન સાચું છે કે ખોટું ?
- 5. પ્રેસરહેડ, વેલોસિટી હેડ અને એલિવેશન હેડના એકમો જણાવો.
- 6. રેલ્વે-પ્લેટફૉર્મ પર પાટાની નજીક ઊભા હોઈએ ત્યારે ઝડપથી પસાર થતી ટ્રેન તરફ ખેંચાણ કેમ અનુભવાય છે ?
- 7. ઍરોફ્રોઇલ શું છે ?
- 8. તરલની શ્યાનતામાં તાપમાન સાથે શું ફેરફાર થાય છે ?
- 9. પહોળી નળીમાંથી વહેતું તરલ સાંકડી નળીમાં પ્રવેશતાં રેનોલ્ડ્ઝ-અંકના મૂલ્યમાં શું ફેરફાર થશે ? (નળી સમક્ષિતિજ છે.)
- 10. અમુક કિટકો પાણી પર ચાલી શકે છે. કારણ આપો.
- 11. પાણીનાં ટીપાં અને રેઇનકોટના મટીરિયલ વચ્ચે સંપર્કકોણ લઘુકોણ હશે કે ગુરૂકોણ ?
- 12. પૃષ્ઠતાણની વ્યાખ્યા આપો અને તેનાં એકમો અને પરિમાણ જણાવો.
- 13. એક પાતળી નળીના બે છેડાઓ પર એક નાનો અને એક મોટો એમ બે પરપોટા છે. આ સ્થિતિમાં પરપોટાઓનું શું થશે ?

નીચેના પ્રશ્નોના જવાબ આપો :

- 1. પાસ્કલનો નિયમ લખો અને સાબિત કરો.
- $oldsymbol{2}$. h ઊંચાઈવાળા અને ho ઘનતાવાળા તરલ સ્તંભને કારણે ઉદ્ભવતા દબાણનું સૂત્ર મેળવો.
- 3. ધારારેખી પ્રવાહ એટલે શું ? સ્થાયી અદબનીય પ્રવાહ માટે સાતત્ય-સમીકરણ મેળવો.
- 4. સ્થાયી, અદબત્તીય, અચક્રીય, અશ્યાન તરલ પ્રવાહ માટે બર્નુલીનું સમીકરણ મેળવો.
- 5. યોગ્ય આકૃતિ અને સમીકરણની મદદથી વેન્ચુરીમીટરનું કાર્ય સમજાવો.
- 6. સ્તરીય પ્રવાહ એટલે શું ? આવા પ્રવાહ માટે શ્યાનતાબળની સમજૂતી આપો.
- 7. સ્ટોક્સનો નિયમ લખો અને તેનો ઉપયોગ કરીને શ્યાન પ્રવાહીમાં પતન કરતાં નાના લીસા ગોળાનો પ્રારંભિક પ્રવેગનું સુત્ર મેળવો.
- 8. રેનોલ્ડ્ઝ-અંક પર ટૂંક નોંધ લખો.
- 9. હવામાં રહેલા પરપોટા માટે પરપોટાની અંદરના વધારાના દબાણનું સૂત્ર મેળવો.
- 10. કેશાકર્ષણ એટલે શું ? કેશનળીને પ્રવાહીમાં ઊભી રાખતાં કેશનળીમાં ઉપર ચઢતા પ્રવાહીની ઊંચાઈ માટે સમીકરણ મેળવો.

નીચેના દાખલા ગણો :

1. સમક્ષિતિજ દિશામાં રાખેલ એક સિરિંજના પિસ્ટન અને નોઝલના વ્યાસ અનુક્રમે 5 mm અને 1 mm છે. પિસ્ટનને $0.2~{\rm m~s^{-2}}$ ના અચળ વેગથી અંદર તરફ ધકેલવામાં આવે છે. નોઝલમાંથી બહાર આવતા પાણી દ્વારા જમીનને સ્પર્શે તે પહેલાં કપાતું સમક્ષિતિજ અંતર ગણો. $(g=10~{\rm m~s^{-1}})$ સિરિંજ જમીનથી $1~{\rm m}$ ઊંચાઈએ છે. [જવાબ: $\sqrt{5}~{\rm m}$]

તરલનું મિકેનિક્સ

એક U ટ્યૂબમાં પાણી અંશતઃ ભરેલું છે અને તેને ઊર્ધ્વ સમતલમાં રાખેલ છે. બેમાંથી એક ભુજમાં પાણીમાં ભળી ન જાય તેવું બીજું પ્રવાહી રેડવામાં આવે છે. આથી બીજા ભુજમાં પાણી 'd' એકમ ઊંચાઈ જેટલું ચઢે છે. આ સમયે પ્રવાહીની મુક્ત સપાટી પાણીની મુક્ત સપાટીથી 'h' એકમ જેટલી વધુ ઊંચાઈએ છે, તો પ્રવાહીની ઘનતા શોધો. પાણીની ઘનતા

$$ho$$
 એકમ છે. [જવાબ : $\left(rac{2d}{2d+h}
ight)$ ho]

- 3. સમક્ષિતિજ રાખેલ એક અસમાન આડછેદવાળી પાઇપમાંથી પાણી પસાર થઈ રહ્યું છે. તેમાં કોઈ એક બિંદુ પાસે પાણીનો વેગ $0.2 \, \mathrm{ms}^{-1}$ અને દબાણ $30 \, \mathrm{mm} \mathrm{Hg}$ જેટલું છે. જે બિંદુ પાસે પાણીનો વેગ $1.2 \, \mathrm{ms}^{-1}$ હોય ત્યાં દબાણ કેટલું હશે ? (પારાની ઘનતા = $13.6 \, \mathrm{g} \, \mathrm{cm}^{-3}$, $\mathrm{g} = 1000 \, \mathrm{cm} \, \mathrm{s}^{-2}$, પાણીની ઘનતા = $1 \, \mathrm{g} \, \mathrm{cm}^{-3}$) [જવાબ : $24.85 \, \mathrm{mm} \mathrm{Hg}$]
- સાબુના દ્રાવણના 1 cm ત્રિજ્યાના પરપોટાનું કદ આઠ ગણું કરવા માટે કરવું પડતું કાર્ય શોધો. સાબુના દ્રાવણનું પૃષ્ઠતાણ 30 dyne cm⁻¹ છે. [જવાબ : 2261 erg.]
- 5. એક U ટ્યૂબની ભુજાઓના વ્યાસ અનુક્રમે 10 mm અને 1 mm છે. તે અંશતઃ પાણીથી ભરેલી છે અને ઊર્ધ્વ સમતલમાં રાખેલ છે. તો તેની બંને ભુજામાંના પાણીના સ્તંભની ઊંચાઈનો તફાવત શોધો. પાણીનું પૃષ્ઠતાણ = 70 dyne cm $^{-1}$. અને સંપર્કકોણ = 0° છે. g = 980 cm s $^{-2}$) [જવાબ : 2.8571 cm]
- 6. 0.2 cm વ્યાસનો હવાનો પરપોટો પાણીમાં 200 cm/sના અચળ વેગથી ઉપર ચઢે છે. જો પાણીની ઘનતા 1 g cm^{-3} હોય, તો પાણીનો શ્યાનતા–ગુણાંક શોધો. અહીં હવાની ઘનતાને પાણીની ઘનતાની સાપેક્ષ અવગણો. પરપોટાના કદમાં થતો ફેરફારને અવગણો. $(g = 9.8 \text{ ms}^{-2})$ [જવાબ : 0.0109 poise)
- 7. $0.5~{\rm cm}$ ત્રિજ્યાની નળીમાં અક્ષથી $0.4~{\rm cm}$ અંતરે નળાકાર પ્રવાહી સ્તરનો વેગ $3.6~{\rm cm/s}$ છે, તો અક્ષથી $0.3~{\rm cm}$ અંતરે પ્રવાહી સ્તરનો વેગ શોધો. [સૂચન : $v=\frac{{\rm P}}{4\eta l}(r^2-x^2)$] [જવાબ : $6.4~{\rm cm/s}$]
- 8. 8 cm વ્યાસ ધરાવતી 4km લંબાઈની એક સમક્ષિતિજ સુરેખ પાઇપલાઇનમાંથી 20 litre/secondના દરથી પાણીનું વહન જાળવી રાખવા માટે તેના બે છેડા વચ્ચે કેટલો દબાણ તફાવત લગાડવો જોઈએ ? પાણીનો શ્યાનતા–ગુણાંક $\eta_{water}=10^{-2}$ MKS એકમ, શ્યાનતા બળ સિવાયનાં બળો અવગણો. (સૂચન : $V=\frac{\pi p r^4}{8nl}$) [જવાબ : 7.96×10^5 P_a]
- 9. $10^5~{\rm Nm^{-2}}$ દબાણ ધરાવતી હવા ભરેલ એક નળાકારમાં $2.4\times10^{-4}{\rm m}$ ત્રિજ્યાનો સાબુના દ્રાવણનો એક પરપોટો છે. હવે નળાકારની હવાનું તાપમાન અચળ રાખીને સંકોચન કરતાં પરપોટાની ત્રિજ્યા અડધી થાય છે, તો નળાકારમાં હવાનું નવું દબાણ શોધો. સાબુના દ્રાવણનું પૃષ્ઠતાણ $0.03~{\rm Nm^{-1}}$ છે. [જવાબ : $8.03\times10^5~{\rm P}_a$]

•

પ્રકરણ 6

થરમાંડાઇનેમિક્સ

- 6.1 પ્રાસ્તાવિક
- 6.2 થરમૉડાઇનેમિક તંત્ર અને પરિસરનું અર્થઘટન
- 6.3 તાપીય સંતુલન અને તાપમાનની વ્યાખ્યા (થરમૉડાઇનેમિક્સનો શૂન્ય ક્રમનો નિયમ)
- 6.4 ફેઝ (અવસ્થા) ડાયાગ્રામ
- 6.5 ઉષ્મીય પ્રસરણ
- 6.6 રૂપાંતરણની ઉષ્મા (ગુપ્ત ઉષ્મા)
- 6.7 ઉષ્મા, આંતરિક ઊર્જા અને કાર્ય
- 6.8 થરમૉડાઇનેમિક્સનો પ્રથમ નિયમ
- 6.9 ઉષ્માધારિતા અને વિશિષ્ટ ઉષ્મા
- 6.10 કેટલીક થરમૉડાઇનેમિક પ્રક્રિયાઓ
- 6.11 પ્રતિવર્તી અને અપ્રતિવર્તી પ્રક્રિયાઓ
- 6.12 કેલોરીમેટ્રી
- 6.13 ઉષ્મા-એન્જિન અને તેની કાર્યક્ષમતા
- 6.14 રેફ્રિજરેટર–હીટપંપ અને પરફૉર્મન્સ ગુણાંક
- 6.15 થરમૉડાઇનેમિક્સનો બીજો નિયમ
- 6.16 કાર્નાચક્ર અને કાર્નો-એન્જિન
 - ઉપસંહાર
 - સ્વાધ્યાય

6.1 પ્રસ્તાવના (Introduction)

શિયાળાની કડકડતી ઠંડી રાત હોય કે ઉનાળાની પરસેવે રેબઝેબ કરી નાખતી બપોર, આપણા શરીરનું તાપમાન 98.60 °F એટલે કે 37.00 °C જેટલું જળવાઈ રહે તે જરૂરી છે. આપણા શરીરની આંતરિક રચના એવી છે કે જેથી સામાન્ય સંજોગોમાં આપણા શરીરના તાપમાનનું નિયમન જૈવિક પ્રક્રિયાઓ દ્વારા થાય છે, પરંતુ જ્યારે વાતાવરણમાં ખૂબ જ ઠંડી કે ગરમી હોય ત્યારે આપણે શરીરને બહારથી રક્ષણ આપવું પડે છે.

તમે અનુભવ્યું હશે કે જ્યારે કોલ્ડ (ઠંડી) કૉફ્રીનો કપ અને ગરમ ચાનો કપ થોડા સમય માટે ખુલ્લો રાખવામાં આવે, તો કૉફ્રી ગરમ થાય છે, જ્યારે ચા ઠંડી થાય છે અને છેવટે બન્નેનું તાપમાન ઓરડાના તાપમાન જેટલું થઈ જાય છે. આ પ્રકારની પ્રક્રિયાઓ થરમૉડાઇનેમિક્સના શૂન્ય ક્રમના નિયમ સુધી દોરી જાય છે.

પ્રસ્તુત પ્રકરણમાં અમુક ચોક્કસ તાપમાન અને દબાણે દ્રવ્યના અમુક ચોક્કસ સ્વરૂપનું અસ્તિત્વ ફેઝ ડાયાગ્રામ વડે સમજાવેલ છે.

તાપમાન અને ઉષ્મા જેવા શબ્દો દરરોજની જીવનશૈલીમાં એકસરખા અર્થમાં ઉપયોગમાં લેવાય છે, પરંતુ ભૌતિકવિજ્ઞાનમાં આ બન્ને શબ્દોના અર્થ તદન જુદા છે. આ પ્રકરણમાં તાપમાનની વ્યાખ્યા, દ્રવ્યના ભૌતિક (ઉષ્મીય) ગુણધર્મોના વિધેયના રૂપમાં તથા જુદાં-જુદાં માપક્રમ અને તેમની વચ્ચેના સંબંધોના રૂપમાં આપવામાં આવી છે. બે પદાર્થો વચ્ચે તાપમાનના તફાવત સાથે સંકળાયેલ ઉષ્મા એટલે કે વિનિમય પામતી ઉષ્મા-ઊર્જાની પણ ચર્ચા કરેલ છે.

થરમૉડાઇનેમિક્સનો પહેલો નિયમ ઊર્જા-સંરક્ષણના નિયમનું વ્યાપક સ્વરૂપ છે, જે મુજબ ઊર્જાનો વિનિમય એ ઉષ્માના વિનિમય, યાંત્રિક ઊર્જાના રૂપમાં કાર્ય, અને તંત્રની આંતરિક ઊર્જા સાથે સંકળાયેલ છે. વિશિષ્ટ ઉષ્મા તેમજ ઉષ્માધારિતાની ચર્ચા પણ આ પ્રકરણમાં કરેલ છે.

આજે આપણે ગૃહઉપયોગી સાધનો જેવા કે રેફ્રિજરેટર અને ઍરકંડિશનરની ગુણવત્તાના સ્ટાર રેટિંગ જોઈએ છીએ, વાહનોની ગુણવત્તા વાહન ઉત્પાદકો, પેટ્રોલ કે ડીઝલના સંદર્ભમાં km/litre ની વાહનની ઈંધણ ક્ષમતા વડે દર્શાવે છે. આ બધાં સાધનો એક પ્રકારની ઊર્જાનું બીજા પ્રકારની ઊર્જામાં રૂપાંતરણ થરમાં ડાઇનેમિક્સ 123

કરવાની તેમની કાર્યક્ષમતા દર્શાવે છે. થરમૉડાઇનેમિક્સનો બીજો નિયમ આ પ્રક્રિયાઓની મર્યાદા વ્યાખ્યાયિત કરે છે.

ઉષ્મા-એન્જિન અને કાર્નોટ-એન્જિનની કાર્યપદ્ધતિ પ્રસ્તુત પ્રકરણમાં સમજાવેલ છે.

6.2 થરમાંડાઇનેમિક તંત્ર અને પરિસરનું અર્થઘટન (Concept of Thermodynamic System and Environment)

થરમૉડાઇનેમિક્સમાં 'વસ્તુ'ને બદલે વ્યાપક રીતે તંત્ર શબ્દ પ્રયોજવામાં આવે છે. વિશ્વના જે ભાગનો થરમૉડાઇનેમિક અભ્યાસ કરવાનો હોય તે ભાગને **થરમૉડાઇનેમિક તંત્ર (system)** કહે છે. તંત્ર એક પારિમાણિક, દ્વિ-પારિમાણિક કે ત્રિ-પારિમાણિક હોઈ શકે છે. તે એક જ વસ્તુ કે પછી અનેક વસ્તુઓનું બનેલું હોઈ શકે. તંત્ર જે વસ્તુઓનું બનેલું હોય તે વસ્તુઓને તંત્રના **ઘટકો** કહેવાય. તંત્ર વિકિરણ (radiation)નું બનેલું પણ હોઈ શકે અથવા વિકિરણ એ તંત્રનો કોઈ ઘટક હોઈ શકે છે.

તંત્રની આસપાસના બાકીના ભાગ (વિશ્વ) કે જેની સીધી અસર તંત્ર પર થતી હોય, તેને તંત્રનું પરિસર કે વાતાવરણ (surrounding or environment) કહે છે. તંત્ર અને તેના પરિસરને જુદા પાડતી હદને તંત્રની પરિસીમા (સરહદ) કહે છે. તંત્ર તેના પરિસર સાથે કેવા પ્રકારની આંતરક્રિયા (interaction) કરશે, તેનો આધાર પરિસીમાના પ્રકાર પર રહેલો છે.

ભૌતિકવિજ્ઞાનની દરેક શાખામાં કોઈ પણ તંત્રનું સ્થૂળ (macroscopic) વર્ણન તેના અમુક માપી શકાય તેવા ગુણધર્મોના આધારે કરવામાં આવે છે. દા. ત., દઢ વસ્તુની ચાકગતિનો અભ્યાસ કરતી વખતે તેના આંતરિક પાસાની ચિંતા કર્યા સિવાય, કોઈ યામાક્ષોની સાપેક્ષે જુદા-જુદા સમયે તેના દ્રવ્યમાનકેન્દ્રના સ્થાન અને વેગ જેવી સ્થૂળ રાશિઓનો અભ્યાસ કરવામાં આવે છે. આવી રાશિઓને યાંત્રિક યામો (mechanical co—ordinates) કહે છે. યાંત્રિક યામોની મદદથી કોઈ યામાક્ષોની સાપેક્ષે દઢ વસ્તુની સ્થિતિ-ઊર્જા અને ગતિ-ઊર્જાનાં મૂલ્યો અને તે પરથી યાંત્રિક-ઊર્જાનું મૂલ્ય નક્કી થાય છે.

થરમૉડાઇનેમિક્સમાં તંત્રની આંતરિક અવસ્થા પર સીધી રીતે અસર કરનાર સ્થૂળ રાશિઓને ધ્યાનમાં લેવામાં આવે છે. આવી રાશિઓને **થરમૉડાઇનેમિક યામો** (thermodynamic co-ordinates) કહે છે. થરમાંડાઇનેમિક યામો વડે રજૂ થતા તંત્રને થરમાંડાઇનેમિક તંત્ર કહે છે.

તંત્રના યાંત્રિક અને ઉષ્મીય ગુણધર્મોનાં મૂલ્યો પરથી તંત્રની થરમૉડાઇનેમિક અવસ્થા (state) નક્કી થાય છે. દા. ત., કોઈ વાયુતંત્રનું દબાણ, કદ જેવા યાંત્રિક ગુણધર્મો તથા તાપમાન, ઉષ્મા ઊર્જા નો જથ્થો જેવા ઉષ્મીય ગુણધર્મો તંત્રની થરમૉડાઇનેમિક અવસ્થા નક્કી કરે છે.

તંત્ર અને તેના પરિસર વચ્ચે થતી આંતરક્રિયાને થરમૉડાઇનેમિક પ્રક્રિયા (process) કહે છે.

જો તંત્ર પોતાના પરિસર સાથે આંતરક્રિયા ન કરતું હોય તો તે અલગ કરેલું તંત્ર (isolated system) કહેવાય છે. આવા તંત્રના ઉષ્મીય અને યાંત્રિક ગુણધર્મો અચળ રહે છે અને તંત્ર કોઈ ચોક્કસ સંતુલિત થરમૉડાઇનેમિક અવસ્થામાં છે તેમ કહેવાય.

તંત્ર પોતાના પરિસર સાથે આંતરક્રિયા કરીને ઉષ્મા-ઊર્જા અને/અથવા યાંત્રિક-ઊર્જાનો વિનિમય કરે ત્યારે તેના ઉષ્મીય અને/અથવા યાંત્રિક ગુણધર્મોમાં સતત ફેરફાર થાય છે. આવી અનેક અવસ્થાઓમાંથી પસાર થતું-થતું તંત્ર અંતે બીજી કોઈ નિશ્ચિત સંતુલિત થરમૉડાઇનેમિક અવસ્થા પ્રાપ્ત કરે છે. તંત્રની પરિસર સાથેની આંતરક્રિયા દરમિયાન વિનિમય પામતી ઉષ્મા-ઊર્જાને ઉષ્મા (Q) અને વિનિમય પામતી યાંત્રિક-ઊર્જાને કાર્ય (W) કહે છે.

થરમૉડાઇનેમિક તંત્રની સંતુલિત અવસ્થા અમુક ચલ-રાશિઓ વડે નક્કી થતી હોય છે. આવી રાશિઓને થરમૉડાઇનેમિક ચલરાશિઓ કે અવસ્થા **ચલરાશિઓ** (state variables) કહે છે. અવસ્થા ચલરાશિઓ વચ્ચેના સંબંધને અવસ્થા-સમીકરણ (equation of state) કહે છે. દા. ત., 'વાયુનો ગતિવાદ'ના પ્રકરણમાં તમે ભણ્યા તે મુજબ આદર્શ વાયુનાં દબાણ, કદ, તાપમાન અને વાયુના જથ્થાને સાંકળતું સમીકરણ PV = μRT એ આદર્શ વાયુનું અવસ્થા સમીકરણ છે.

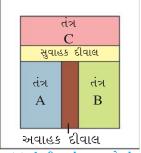
થરમૉડાઇનેમિક અવસ્થા ચલરાશિઓ બે પ્રકારની હોય છે:

- (i) એક્સ્ટેન્સિવ ચલરાશિઓ (Extensive Variables): તંત્રના પરિમાણ પર આધારિત હોય તેવી રાશિઓને એક્સ્ટેન્સિવ ચલરાશિઓ કહે છે. દા. ત., દળ, કદ, આંતરિક ઊર્જા વગેરે.
- (ii) ઇન્ટેન્સિવ ચલરાશિઓ (Intensive Variables): તંત્રના પરિમાણ પર આધારિત ન હોય તેવી

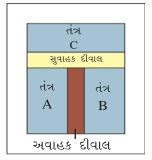
રાશિઓને ઇન્ટેન્સિવ ચલરાશિઓ કહે છે. દા. ત., દબાણ, તાપમાન વગેરે.

6.3 તાપીય સંતુલન અને તાપમાનની વ્યાખ્યા (થરમૉડાઇનેમિક્સનો શૂન્યક્રમનો નિયમ) Thermal Equilibrium and Definition of Temperature (Zeroth Law of Thermodynamics)

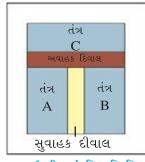
જયારે જુદા-જુદા તાપમાન ધરાવતાં બે તંત્રોને એકબીજાના ઉષ્મીય સંપર્કમાં લાવવામાં આવે છે, ત્યારે ઉષ્માનું વહન વધારે તાપમાનવાળા તંત્ર તરફથી ઓછા તાપમાનવાળા તંત્ર તરફ થાય છે. જયારે બન્ને તંત્રોનાં તાપમાન સરખાં થઈ જાય ત્યારે તેમની વચ્ચે વિનિમય પામતી ઉષ્માનું મૂલ્ય શૂન્ય થાય છે. આ વખતે બન્ને તંત્રો એકબીજાં સાથે તાપીય (ઉષ્મીય) સંતુલનમાં છે, તેમ કહેવાય.


જયારે જુદા-જુદા તાપમાન ધરાવતા તંત્ર અને તેના પરિસરને જુદા પાડતી પરિસીમા (દીવાલ) ઉષ્મીય અવાહક (insulating or adiabatic wall) હોય ત્યારે તંત્ર અને પરિસર વચ્ચે ઉષ્માનો વિનિમય થતો નથી, પરંતુ જયારે આ તંત્ર અને તેના પરિસરને જુદા પાડતી સીમા ઉષ્માની સુવાહક (conducting or diathermic wall) હોય ત્યારે તંત્ર અને પરિસર વચ્ચે ઉષ્માનો વિનિમય થાય છે અને જયારે તંત્ર અને પરિસરનાં તાપમાન સરખાં થઈ જાય, ત્યારે ઉષ્માનો વિનિમય શન્ય થાય છે.

જ્યારે તંત્ર અને તેના પરિસર વચ્ચે કોઈ અસંતુલિત બળ ન લાગતું હોય ત્યારે તંત્ર યાંત્રિક સંતુલનમાં છે તેમ કહેવાય. જ્યારે તંત્રમાં કોઈ રાસાયણિક પ્રક્રિયા ન થતી હોય અને તંત્રના એક ભાગથી બીજા ભાગ તરફ કોઈ રાસાયણિક ઘટકની ગતિ ન થતી હોય ત્યારે તંત્ર રાસાયણિક સંતુલનમાં છે તેમ કહેવાય. જ્યારે તંત્ર ઉષ્મીય, યાંત્રિક અને રાસાયણિક સંતુલનમાં હોય ત્યારે તે થરમૉડાઇનેમિક સંતુલનમાં છે, તેમ કહેવાય.


6.3.1 થરમાંડાઇનેમિક્સનો શૂન્ય ક્રમનો નિયમ (Zeroth Law of Thermodynamics):

કોઈ તંત્ર અને તેનું પરિસર અથવા કોઈ બે તંત્રો એકબીજાની સાથે ઉષ્મીય સંતુલનમાં છે કે નહીં તે જાણવા માટે કોઈ એક ત્રીજી વસ્તુ (દા. ત., થરમૉમીટર)નો ઉપયોગ કરી શકાય (આદર્શ રીતે આ ત્રીજી વસ્તુ, બન્ને તંત્રો સાથે ઉષ્માનો વિનિમય (શોષણ કે ઉત્સર્જન) ન કરતું હોવું જોઈએ).


આકૃતિ 6.1(a)માં દર્શાવ્યા મુજબ, ધારો કે કોઈ બે તંત્રો A અને B ને એકબીજાંથી ઉષ્મીય અવાહક દીવાલ વડે જુદાં પાડેલ છે તથા આ બન્ને તંત્રો ત્રીજા એક તંત્ર C સાથે સુવાહક દીવાલ દ્વારા સંપર્કમાં છે. આ સમગ્ર રચનાની આજુબાજુ અવાહક દીવાલ છે. આકૃતિ 6.1(b)માં દર્શાવ્યા મુજબ અમુક સમય બાદ આ બન્ને તંત્રો A અને B, તંત્ર C સાથે ઉષ્મીય સંતુલન પ્રાપ્ત કરે છે.

(a) ઉષ્મીય સંતુલન પહેલાં

(b) ઉષ્મીય સંતુલિત સ્થિતિ

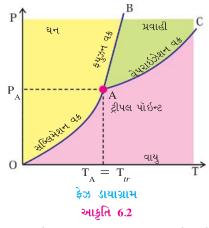
(c) ઉષ્મીય સંતુલિત સ્થિતિ

તંત્ર A, B અને C વચ્ચે સ્થપાતું ઉષ્મીય સંતુલન આકૃતિ 6.1

હવે આકૃતિ 6.1(c)માં દર્શાવ્યા મુજબ A અને Bને જુદા પાડતી અવાહક દીવાલ દૂર કરી તેના સ્થાને સુવાહક દીવાલ રાખવામાં આવે અને તંત્ર Cને A અને Bથી અવાહક દીવાલ વડે અલગ કરવામાં આવે તોપણ તેમની સંતુલિત સ્થિતિમાં કોઈ ફેરફાર નોંધાતો નથી.

હવે આ તંત્રો A અને Bને એક જ સમયે C સાથે ઉખીય સંતુલન પ્રાપ્ત કરવા દેવાને બદલે તેમને વારાફરતી C સાથે સંતુલન પ્રાપ્ત કરવા દેવાય અને ત્યાર બાદ A, B અને C ને સુવાહક દીવાલ દ્વારા સંપર્કમાં લાવવામાં આવે, તો પણ પહેલાંની માફક જ ઉખીય સંતુલન સ્થપાશે. આમ,

"જો તંત્ર A અને B કોઈ ત્રીજા તંત્ર C સાથે ઉષ્મીય સંતુલનમાં હોય, તો A અને B પણ એકબીજા સાથે ઉષ્મીય સંતુલનમાં હોય છે."


આ વિધાનને <mark>થરમૉડાઇનેમિક્સનો શૂન્ય ક્રમનો નિયમ</mark> કહે છે. થરમૉડાઇનેમિક્સ 125

વ્યવહારમાં આપણે વસ્તુના ગરમ કે ઠંડાપણાની માત્રા સાથે, તાપમાન નામના ખ્યાલનો ઉપયોગ કરીએ છીએ. શૂન્ય ક્રમનો નિયમ આ ખ્યાલના સંદર્ભમાં દર્શાવે છે કે તાપમાન એ તંત્રનો ગુણધર્મ છે. એકબીજા સાથે ઉખીય સંપર્કમાં રહેલી વસ્તુઓ ઉખીય સંતુલન પ્રાપ્ત કરે, ત્યારે તેમનાં તાપમાન સરખાં થઈ જાય છે. સ્થૂળ રીતે વિચારતાં શૂન્ય ક્રમના નિયમ પરથી લખી શકાય કે ''તાપમાન નામની એક અગત્યની ભૌતિક રાશિ અસ્તિત્વ ધરાવે છે."

6.4 ફેઝ (અવસ્થા) ડાયાગ્રામ (Phase Diagram)

દ્રવ્ય કયા (ઘન, પ્રવાહી કે વાયુ) સ્વરૂપમાં રહેશે, તેનો આધાર દબાણ અને તાપમાન જેવાં પરિબળો પર હોય છે. કેટલીક ખાસ પરિસ્થિતિઓમાં દ્રવ્યનાં બે અથવા ત્રણ સ્વરૂપો એકીસાથે પણ સંતુલનમાં અસ્તિત્વ ધરાવે છે. દબાણ અને તાપમાનનાં જુદાં-જુદાં મૂલ્યો માટે આપેલ દ્રવ્ય કેવું સ્વરૂપ ધરાવે છે, તે દર્શાવતાં દબાણ (P) વિરુદ્ધ તાપમાન (T)ના આલેખને તે દ્રવ્યનો ફેઝ ડાયાગ્રામ કહે છે. આકૃતિ 6.2માં કોઈ એક પદાર્થ માટે ફેઝ ડાયાગ્રામ દર્શાવેલ છે.

ફેઝ ડાયાગ્રામ પરના વક AB પરનાં બિંદુઓ વડે મળતાં દબાણ-તાપમાનનાં મૂલ્યો માટે પદાર્થની ઘન અને પ્રવાહી અવસ્થાઓ સંતુલનમાં સહ-અસ્તિત્વ ધરાવે છે. માટે AB વક્રને ફ્યુઝન-વર્ક કહે છે.

આ જ રીતે વક્ર OA પરનાં બિંદુઓ વડે મળતાં દબાણ-તાપમાનનાં મૂલ્યો માટે પદાર્થનાં ઘન અને વાયુ અવસ્થા સ્વરૂપો સંતુલનમાં સહ-અસ્તિત્વ ધરાવે છે. માટે વક્ર OA ને સબ્લિમેશન-વક્ર કહે છે.

વક AC પરનાં બિંદુઓ વડે મળતાં દબાણ-તાપમાનનાં મૂલ્યો માટે પદાર્થનાં વાયુ અને પ્રવાહી અવસ્થા સ્વરૂપો સંતુલનમાં સહ-અસ્તિત્વ ધરાવે છે. માટે વક ACને વેપરાઇઝેશન (બાષ્પીકરણ) વક કહે છે.

વેપરાઇઝેશન વક્ર, ફ્યુઝન-વક્ર અને સબ્લિમેશન-વક્ર A બિંદુ પર મળે છે, એટલે કે દબાણ-તાપમાનનાં જે મૂલ્યો માટે પદાર્થનાં ત્રણેય સ્વરૂપો સહ-અસ્તિત્વમાં અને સંતુલનમાં હોય છે. તે બિંદુને તે દ્રવ્ય(પદાર્થ)નું <mark>ટ્રીપલ પૉઇન્ટ</mark> કહે છે. આકૃતિમાં બિંદુ A આપેલ દ્રવ્યનું ટ્રીપલ પૉઇન્ટ છે.

જુદાં-જુદાં દ્રવ્યો માટે ચોક્કસ દબાશે અને તાપમાને જ તેમના બે અથવાં ત્રણ સ્વરૂપો સંતુલનમાં સહ-અસ્તિત્વ ધરાવતાં હોય તેવી પરિસ્થિતિ મેળવી શકાય છે. પાણીનું ટ્રીપલ પૉઇન્ટ 4.58 mm પારાના દબાશે અને 273.16 K તાપમાને મળે છે. પાણીના ટ્રીપલ પૉઇન્ટનો ઉપયોગ થરમૉમિટરનો સ્કેલ નક્કી કરવામાં થાય છે.

6.4.1 તાપમાનનું માપન : થરમાં મેટ્રી (Measurement of temperature thermometry) :

કોઈ પણ પદાર્થ ઠંડો છે કે ગરમ તે, ચોકસાઈપૂર્વક, ફક્ત સ્પર્શ કરીને નક્કી કરી શકાતું નથી. દા.ત., ડાબા હાથને ગરમ તથા જમણા હાથને ઠંડા પાણીમાં થોડીવાર રાખ્યા બાદ, બંને હાથને નવશેકા પાણીમાં રાખવામાં આવે, તો નવશેકું પાણી ડાબા હાથને ઠંડું તથા જમણા હાથને ગરમ અનુભવાય છે. આ ઉપરાંત સ્પર્શથી અનુભવેલ પરિણામ વ્યક્તિલક્ષી પણ હોય છે.

કોઈ વસ્તુની ઉષ્મીય સંતુલનની પરિસ્થિતિમાં તેના તાપમાનને કોઈ ચોક્કસ વાસ્તિવિક સંખ્યા વડે સાંકળીએ, અને આ પ્રમાણે તેની જુદી-જુદી ઉષ્મીય સંતુલનની સ્થિતિઓ વખતના તાપમાનને અનન્ય એવી વાસ્તિવિક સંખ્યાઓ વડે સાંકળીએ, તો આ રીતે ઉષ્મીય (તાપીય) સંતુલન પર વ્યાખ્યાયિત થતાં વિધેયને તાપમાન-વિધેય કહે છે.

થરમૉડાઇનેમિક્સનો શૂન્યક્રમનો નિયમ દર્શાવે છે કે તાપમાન વિષેય એક-એક વિષેય છે.

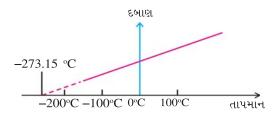
જે સાધન વડે આપેલા ઉષ્મીય સંતુલન સાથે સંકળાયેલી નિશ્ચિત અનન્ય વાસ્તવિક સંખ્યા (એટલે કે તાપમાન) માપી શકાય, તેવા સાધનને થરમૉમીટર કહે છે.

સામાન્ય રીતે થરમૉમીટર તૈયાર કરવા માટે તાપમાન સાથે પ્રવાહીના કદમાં થતાં ફેરફારના ગુણધર્મનો ઉપયોગ કરવામાં આવે છે. મોટા ભાગે પ્રવાહી સહિત કાચના થરમૉમીટરમાં પારો અને આલ્કોહૉલ જેવા પ્રવાહીનો ઉપયોગ કરવામાં આવે છે.

થરમૉમીટરનું કેલિબરેશન (અંકન) એવી રીતે કરવામાં આવે છે કે જેથી તાપમાનના દરેક ચોક્કસ મૂલ્ય સાથે કોઈ નિશ્ચિત અંક સાંકળી શકાય. સર્વમાન્ય માપક્રમનું કેલિબરેશન

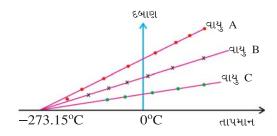
(અંકન) કરવા માટે, તાપમાનના બે ચોક્કસ (જાણીતા) મૂલ્યો જરૂરી છે. સરળતા માટે 1 વાતાવરણના દબાણે પાણીનું કારણબિંદુ (32°F અથવા 0°C) અને પાણીનું ઉત્કલનબિંદુ (212°F અથવા 100°C) ચોક્કસ મૂલ્ય તરીકે લેવામાં આવે છે.

જુદા-જુદા પ્રવાહીના ઉષ્મીય પ્રસરણના ગુણધર્મો જુદા-જુદા હોવાથી બે ચોક્કસ બિંદુઓ પરના તાપમાન સિવાય બીજા તાપમાનનાં મૂલ્યો માટે પ્રવાહી-સહિત-થરમૉમીટરો જુદાં-જુદાં અવલોકન આપે છે. પરંતુ, જેમાં પૂરતા ઓછા દબાણે કોઈ પણ વાયુઓ ભરેલા હોય તેવા અચળ કદ થરમૉમીટર એક જ તાપમાન માટે એકસમાન અવલોકનો જ આપે છે.


પૂરતાં ઓછા દબાણે રહેલો આપેલ જથ્થાનો વાયુ આદર્શવાયુ અવસ્થા-સમીકરણ,

 $PV = \mu RT$ નું પાલન કરે છે.

જ્યાં, µ = વાયુના મોલની સંખ્યા,


અને $R = 8.31 \text{ J mol}^{-1} \text{ K}^{-1}$

આથી વાયુનું કદ અચળ રાખીએ, તો $P \alpha T$. આમ, અચળ કદ વાયુ થરમૉમીટર વડે તાપમાનનું માપન તેના દબાણના સંદર્ભમાં કરી શકાય છે. આકૃતિ 6.3માં દર્શાવ્યા મુજબ P-T નો આલેખ સીધી રેખા મળે છે.

ઓછી ઘનતાવાળા અચળ કદના વાયુ માટે દબાણ વિરુદ્ધ તાપમાનનો આલેખ આકૃતિ 6.3

નીચા તાપમાને વાસ્તિવિક વાયુઓ વડે કરેલું તાપમાનનું માપન આદર્શ વાયુ માટે અનુમાન કરેલ માપન કરતાં થોડું જુદું પડે છે. પરંતુ આપેલ તાપમાનના ગાળા માટે આ સંબંધ સુરેખ જ હોય છે. જો વાયુ પોતાનું વાયુસ્વરૂપ જાળવી રાખે, તો તાપમાનના ઘટાડા સાથે દબાણ શૂન્ય સુધી પહોંચે છે. આ સુરેખ આલેખને આગળ લંબાવવામાં આવે તો આદર્શવાયુ માટે તેનું મૂલ્ય તાપમાન અક્ષને –273.15°C પાસે મળે છે, જેને નિરપેક્ષ શૂન્ય તાપમાન કહે છે. (જુઓ આકૃતિ 6.4).

P – T નો આલેખ અને ઓછી ઘનતાવાળા વાયુઓ માટે સુરેખાઓને લંબાવતા તે એકસરખું નિરપેક્ષ શૂન્ય તાપમાન દર્શાવે છે આકૃતિ 6.4

આકૃતિ 6.4 પરથી જોઈ શકાય છે કે, ઓછી ઘનતા વાળા અને જુદા-જુદા ઉષ્મીય પ્રસરણ ધરાવતા વાયુઓ માટે એકસરખું નિરપેક્ષ શૂન્ય તાપમાન મળે છે. નિરપેક્ષ શૂન્ય એ કૅલ્વિન માપક્રમ અથવા નિરપેક્ષ માપક્રમનો પાયો છે, જેનું મૂલ્ય 0 K જેટલું લેવામાં આવે છે.

વ્યવહારમાં તાપમાનના માપન માટે સેલ્સિયસ માપક્રમ અને ફેરનહીટ માપક્રમ પ્રચલિત છે, જે આ મુજબ છે.

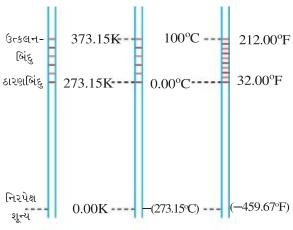
સેલ્સિયસ માપક્રમ : જો સેલ્સિયસ માપક્રમનું તાપમાન \mathbf{T}_{C} વડે અને કૅલ્વિન માપક્રમ પરનું તાપમાન \mathbf{T} વડે દર્શાવવામાં આવે તો,

$$T_C = T - 273.15$$

પાણીના ટ્રીપલ પૉઇન્ટ તાપમાનને સેલ્સિયસ માપક્રમમાં માપતાં.

 $T_C = 273.16 - 273.15 = 0.01$ °C તાપમાન મળે છે.

આ માપક્રમમાં વાતાવરણના દબાણે શુદ્ધ પાણી અને તેની બાષ્ય વચ્ચે સંતુલન રચાય ત્યારે તાપમાન 100°C લેવામાં આવે છે, જેનું મૂલ્ય કૅલ્વિન માપક્રમમાં,


$$T = 100 + 273.15 = 373.15 K$$

ફેરનહીટ માપક્રમ : ફેરનહીટ માપક્રમ પરના તાપમાન \mathbf{T}_{F} અને સેલ્સિયસ માપક્રમ પરના તાપમાન \mathbf{T}_{C} વચ્ચેનો સંબંધ આ મુજબ છે.

$$T_F = \frac{9}{5}T_C + 32^{\circ}$$

એક માપક્રમમાં પાણીનું ઉત્કલનબિંદુ અને ઠારણબિંદુ (Freezing point) જાણતા હોઈએ, તો તાપમાનનું માપન કર્યા પછી તેને બીજા કોઈ માપક્રમમાં સહેલાઈથી દર્શાવી શકાય છે. આકૃતિ 6.5 માં કૅલ્વિન, સેલ્સિયસ અને ફેરનહીટ માપક્રમની સરખામણી દર્શાવી છે.

થરમોડાઈનેમિક્સ 127

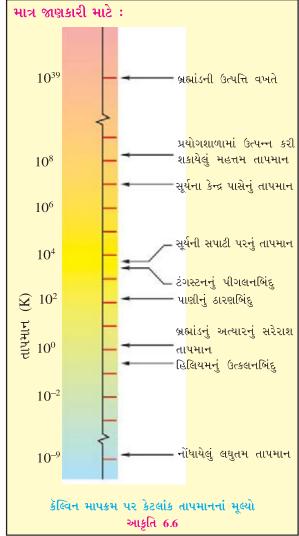
પાણી માટે કૅલ્વિન, સેલ્સિયસ અને ફેરનહીટ માપક્રમની સરખામણી આકૃતિ 6.5

સેલ્સિયસ અને ફેરનહીટ માપક્રમમાં તાપમાનનું માપન દર્શાવવા માટે અનુક્રમે C અને F અક્ષરો લખવામાં આવે છે. દા.ત., $0^{\circ}C=32^{\circ}F$

એટલે કે સેલ્સિયસ માપક્રમમાં 0° એટલે ફેરનહીટ માપક્રમ મુજબ તેટલું જ તાપમાન 32°, પરંતુ તાપમાનનો તફાવત આ બંને માપક્રમમાં જુદી રીતે દર્શાવવામાં આવે છે.

 $5 \text{ C}^{\circ} = 9 \text{ F}^{\circ}$ નો મતલબ એ કે, સેલ્સિયસ માપક્રમ મુજબ 5 સેલ્સિયસ ડિગ્રી (નોંધો કે ડિગ્રીની સંજ્ઞા C પછી આવે છે)નો તફાવત અને 9 ફેરનહીટ ડિગ્રીનો તફાવત સમતુલ્ય છે.

માત્ર જાણકારી માટે :

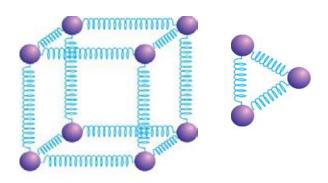

પાણીનાં ઉત્કલનબિંદુ અને ઠારણબિંદુ વચ્ચે તફાવત 100 કેલ્વિન (100 K) અને 100 સેલ્સિયસ ડિગ્રી (100 C°) હોય છે. પરંતુ પાણીનાં ઉત્કલનબિંદુ અને ઠારણબિંદુ વચ્ચે ફેરનહીટનો તફાવત 180 F° છે. આમ,

$$\Delta T = 180 \text{ F}^{0} = 100 \text{ K} = 100 \text{ C}^{0}$$

એટલે કે એક ફ્રેરનહીટનું મૂલ્ય સેલ્સિયસ કે કૅલ્વિનના

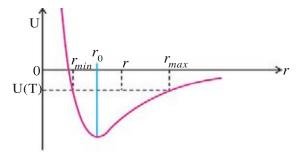
 $\left(\frac{100}{180} = \frac{5}{9}\right) \frac{5}{9}$ ભાગ જેટલું હોય છે, જે દર્શાવે છે કે ફેરનહીટમાં દર્શાવેલો તાપમાનનો તફાવત સેલ્સિયસ કે કેલ્વિન માપક્રમના તફાવત કરતાં $\frac{9}{5}$ ગણો હોય છે.

તાપમાન અને તાપમાનનો તફાવત બંને અલગ છે. 10 K તાપમાન એ 10°C કે 18°F નથી, પરંતુ 10 K તાપમાનનો તફાવત એ 10 C° કે 18 F° જેટલો હોય છે.



6.5 ઉષ્મીય પ્રસર્ણ (Thermal Expansion)

આપણે જાણીએ છીએ કે કોઈ પદાર્થનું તાપમાન વધારતાં (ઉષ્મા આપતાં) તેના પરિમાણમાં વધારો થાય છે અને તાપમાન ઘટાડતાં (ઉષ્મામુક્ત કરીને) તેના પરિમાણમાં ઘટાડો થાય છે. આમ, પદાર્થ દ્વારા ઉષ્માનું શોષણ કરીને તેના પરિમાણમાં થતા વધારાને ઉષ્મીય પ્રસરણ અને ઉષ્મામુક્ત કરીને પદાર્થના પરિમાણમાં થતા ઘટાડાને ઉષ્મીય સંકોચન કહે છે.


ઘન પદાર્થની આંતર-રચનામાં તેના ઘટકક્શો (અશુ, પરમાશુ કે આયનો) ચોક્ક્સ રીતે ગોઠવાયેલા હોય છે. તેઓ એકબીજા પર આકર્ષણ અને અપાકર્ષણ બળો લગાડીને પોતપોતાના મધ્યમાન સ્થાનની આસપાસ દોલનો કરતા હોય છે. આમ, આ ઘટકક્શો જાશે કે સ્પ્રિંગથી જોડાયેલા હોય તેમ કલ્પી શકાય છે (જુઓ આકૃતિ 6.7).

તાપમાનના વધવા સાથે આ દોલનોનો કંપવિસ્તાર વધે છે અને અશુઓ વચ્ચેનાં સરેરાશ અંતરો વધે છે. આમ, ઘન પદાર્થનું તાપમાન વધતાં તેના કદમાં વધારો થાય છે.

કાલ્પનિક સ્પ્રિંગ વડે જોડાયેલા ઘટકક્ણો <mark>આકૃતિ 6.7</mark>

આકૃતિ 6.8માં આંતરઅશું-સ્થિતિ-ઊર્જા વિરુદ્ધ અંતરનો આલેખ દર્શાવ્યો છે, જેના પરથી સ્પષ્ટ થાય છે કે આ વક આંતરઅશુ સંતુલન-અંતર (r_0) ને અનુલક્ષીને સંમિત નથી. r_0 કરતાં વધારે અંતરે આકર્ષી સ્થિતિ-ઊર્જા જે દરે વધે છે, તે દરથી r_0 કરતાં ઓછા અંતર માટે અપાકર્ષીય સ્થિતિ-ઊર્જા વધતી નથી.

આંતરઅણુ સ્થિત-ઊર્જા વિરુદ્ધ અંતરનો આલેખ આકૃતિ 6.8

આપેલા તાપમાને (એટલે કે સ્થિતિ-ઊર્જા U(T)ના કોઈ એક મૂલ્ય માટે) ઘટકકણો r_{\min} અને r_{\max} ની વચ્ચે દોલનો કરતાં હોય છે (જુઓ આકૃતિ 6.8). જો આ તાપમાને પાસપાસેના ઘટકકણો વચ્ચેનું સરેરાશ અંતર r હોય તો

$$r = \frac{r_{\min} + r_{\max}}{2}$$

આમ, આ વક્રની અસંમિતતા પરથી સ્પષ્ટ થાય છે કે તાપમાનના વધારા સાથે આ સરેરાશ અંતરો વધતાં જાય છે. આ અસંમિતતા ઉષ્મીય પ્રસરણ માટે જવાબદાર છે.

રેખીય પ્રસરણ (Linear Expansion)

તાપમાનમાં થતા વધારા સાથે પદાર્થની લંબાઈમાં થતા વધારાને રેખીય પ્રસરણ કહે છે. તાપમાનના નાના ફેરફારો માટે વસ્તુની લંબાઈમાં થતો વધારો (ΔI) એ વસ્તુની મૂળ

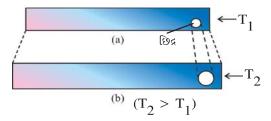
લંબાઈ 'l' અને તાપમાનના વધારા ' Δ T'ના સમપ્રમાણમાં હોય છે.

$$\Delta l \propto l$$
, અને

 $\Delta l \propto \Delta T$

 $\Delta l \propto l\Delta T$

$$\therefore \Delta l = \alpha l \Delta T \tag{6.5.1}$$


અહીં ' α ' એ સમપ્રમાણતા અચળાંક છે, જેને વસ્તુના દ્રવ્યનો રેખીય પ્રસરણાંક (coefficient of linear expansion) કહે છે. ' α 'નું મૂલ્ય પદાર્થની જાત પર અને તેના તાપમાન પર આધારિત છે. જો તાપમાનનો ગાળો મોટો ન હોય તેવા સંજોગોમાં ' α ' તાપમાન પર આધારિત નથી.

 α નો એકમ $(C^{\circ})^{-1}$ અથવા K^{-1} છે કેટલાક પદાર્થોના રેખીય પ્રસરણાંકના મૂલ્યો ટેબલ 6.1માં (માત્ર જાણ સારુ) આપ્યા છે.

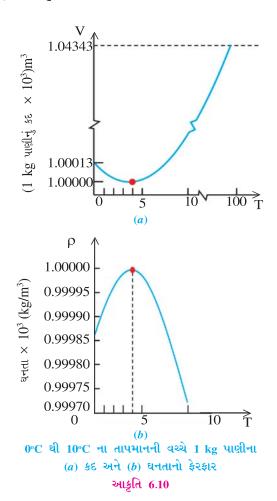
ટેબલ 6.1 કેટલાક ઉષ્મીય પ્રસરણાંકનાં મૂલ્યો (માત્ર જાણકારી માટે)

6 '			
પદાર્થ	$\alpha (10^{-5} C^{0-1})$	$\begin{array}{ccc} \gamma & (10^{-5}C^{o-1} \\ & or & K^{-1}) \end{array}$	
ઍલ્યુમિનિયમ	2.4	7.2	
બ્રાસ (કાંસુ)	2.0	6.0	
લોખંડ	1.2	3.6	
સામાન્ય કાચ	0.4 - 0.9	1.2 - 2.7	
પાયરેક્ષ કાચ	0.32		

કેટલાક પદાર્થો દરેક દિશામાં એકસરખું ઉષ્મીય પ્રસરણ ધરાવતા હોય છે. આવા પદાર્થો ને આઇસોટ્રોપિક (isotropic) પદાર્થ કહે છે. તાપમાન વધવા સાથે આવા પદાર્થની લંબાઈમાં જેટલા ગણો વધારો થાય છે, તેટલા જ ગણો વધારો પહોળાઈ અને જાડાઈમાં થાય છે. આથી તેનું પ્રસરણ જાણે કે ફોટોગ્રાફિક વિવર્ધન થયું હોય તેમ લાગે છે (જુઓ આકૃતિ 6.9).

સ્ટીલની ફૂટપટ્ટીનું તાપમાન વધારતાં તેનું આઇસોટ્રોપિક પ્રસરણ (વધારીને બતાવેલું છે.) આકૃતિ 6.9

થરમાં ડાઇનેમિક્સ 129


આથી,

ક્ષેત્રફળમાં થતો વધારો $\Delta A=2$ α $A\Delta T$, અને કદમાં થતો વધારો $\Delta V=3\alpha V\Delta T=\gamma V\Delta T$ કેટલાક પદાર્થોના કદ પ્રસરણાંક ($\gamma=3\alpha$)નાં મૂલ્યો ટેબલ 6.1માં (માત્ર જાણકારી માટે) આપ્યાં છે.

કદમાં થતો વધારો ઘન પદાર્થ કરતાં પ્રવાહીમાં વધારે હોય છે અને આ વધારો વાયુમાં મહત્તમ હોય છે.

પાણીનું અનિયમિત ઉષ્મીય પ્રસરણ

તાપમાન સાથે પાણીનું ઉષ્મીય પ્રસરણ અનિયમિત હોય છે. પાણીનું તાપમાન 4° C સુધી ઘટાડવામાં આવે, તો પાણીનું કદ ઘટતું જાય છે, પરંતુ જ્યારે તાપમાન 4° Cથી 0° C, સુધી ઘટાડવામાં આવે, તો પાણીના કદમાં વધારો થાય છે (જુઓ આકૃતિ 6.10(a)). આમ, પાણીના આપેલ જથ્થા માટે, 4° C તાપમાને પાણીનું કદ લઘુતમ હોય છે. આથી, 4° C તાપમાને પાણીની ઘનતા મહત્તમ હોય છે (જુઓ આકૃતિ 6.10(b)).

પાણીની આ પ્રકારની વર્તણૂકના કારણે તળાવનાં પાણીની ઉપરની સપાટી, નીચેની સપાટી કરતાં વહેલી કારણ પામે છે. (નીચેથી ઉપરના બદલે ઉપરથી નીચે તરફ કારણ પામે છે). જેમ પાણીના ઉપરના સ્તરનું તાપમાન (ધારો કે 10° C થી) ઘટતું જાય છે, તેમ ઉપરનું સ્તરનીચેના સ્તર કરતાં વધુ ઘટ્ટ બને છે અને તેથી તે નીચે જાય છે. આ પ્રક્રિયા ત્યાં સુધી ચાલુ રહે છે કે જ્યાં સુધી તળાવનું સંપૂર્ણ પાણી 4° C તાપમાને પહોંચે. હવે જ્યારે પાણીના ઉપરના સ્તરનું તાપમાન 4° Cથી ઓછું થાય ત્યારે તેની ઘનતા ઘટે છે (જુઓ આકૃતિ $6.5\ b$), અને તેથી તે પાણીની સપાટી પર જ રહે છે અને વધુ ને વધુ ઠંડું થતું જાય છે. આ રીતે પાણીની ઉપરની સપાટી થીજી જાય છે જ્યારે નીચેનું પાણી પ્રવાહી સ્વરૂપમાં જ રહે છે.

પાણીની આવી અનિયમિત વર્તણૂકના કારણે જ પાણીમાં રહેલી જળસૃષ્ટિ ઘણા નીચા તાપમાને પણ જીવી શકે છે.

ઉદાહરણ 1: એક લુહાર લોખંડની રિંગને ગાડાના પૈડાની ધાર પર જડે છે. 27° C તાપમાને પૈડાની ધાર અને રિંગના વ્યાસ અનુક્રમે 1.5 m અને 1.495 m છે. રિંગને કેટલા તાપમાન સુધી તપાવવી પડે કે જેથી તે પૈડાની ધાર પર ચઢાવી શકાય ? લોખંડ માટે $\alpha=12 \times 10^{-6} \ \mathrm{K}^{-1}.$

ઉકેલ :

અહીં,
$$T = 27^{\circ}C = 273 + 27 = 300 \text{ K}$$
 T' = ?

 $\alpha = 12 \times 10^{-6} \text{ K}^{-1}$
પૈડાની ધારનો વ્યાસ $d_1 = 1.5 \text{ m}$
લોખંડની રિંગનો વ્યાસ $d_2 = 1.495 \text{ m}$
ધારની કુલ લંબાઈ $l_1 = \pi d_1$
રિંગની કુલ લંબાઈ $l_2 = \pi d_2$

$$\therefore \Delta l = l_1 - l_2 = \pi d_1 - \pi d_2$$
પરંતુ, $\Delta l = \alpha l \Delta T$

$$\therefore \pi (d_1 - d_2) = \alpha \pi d_2 (T' - T)$$

$$\therefore T' - T = \frac{d_1 - d_2}{\alpha d_2}$$

$$\therefore T' = \frac{d_1 - d_2}{\alpha d_2} + T$$

$$= \frac{1.5 - 1.495}{12 \times 10^{-6} \times 1.495} + 300$$

$$= 278.7 + 300$$

$$T' = 578.7 \text{ K}$$

$$T' = 578.7 - 273 = 305.7$$
°C

આમ, રિંગને 305.7°C સુધી તપાવવી જોઈએ. (વાસ્તવમાં આનાથી થોડી વધારે તપાવવી જોઈએ.)

ઉદાહરણ 2 : જો બ્રાસ અને ઍલ્યુમિનિયમના સિળયાઓની લંબાઈ વચ્ચેનો તફાવત કોઈ પણ તાપમાને 5 cm જેટલો રાખવો હોય, તો 0°C તાપમાને આ સિળયાઓની લંબાઈ કેટલી રાખવી જોઈએ ?

(બ્રાસ માટે $lpha=18 imes10^{-6}~{
m C}^{{
m o}-1}$, ઍલ્યુમિનિયમ માટે $lpha=24 imes10^{-6}~{
m C}^{{
m o}-1})$

ઉકેલ : ધારો કે 0° C તાપમાને બ્રાસ અને ઍલ્યુમિનિયમ સિળયાઓની લંબાઈ અનુક્રમે l_1 અને l_2 છે. અહીં કોઈ પણ તાપમાને આ સિળયાઓની લંબાઈ વચ્ચેનો તફાવત સરખો રહે છે. તેથી તાપમાનના સરખા વધારા સાથે બંને સિળયાની લંબાઈમાં થતો વધારો સરખો હોવો જોઈએ.

$$\therefore \ \Delta l_1 = \Delta l_2$$

$$\therefore \alpha_1 l_1 \Delta T = \alpha_2 l_2 \Delta T$$

$$\therefore \frac{l_1}{l_2} = \frac{\alpha_2}{\alpha_1} = \frac{24 \times 10^{-6}}{18 \times 10^{-6}} = \frac{4}{3}$$
 (1)

હવે, આપેલ શરત મુજબ $l_1-l_2=5~{
m cm}$ (2) પરિશામ (1) અને (2) પરથી,

$$\frac{l_1}{l_1 - 5} = \frac{4}{3}$$

$$\therefore 3l_1 = 4l_1 - 20$$

$$\therefore l_1 = 20 \text{ cm}$$
 અને $l_2 = 15 \text{ cm}$

આમ, 0°C તાપમાને બ્રાસ અને ઍલ્યુમિનિયમના સળિયાઓની લંબાઈ અનુક્રમે 20 cm અને 15 cm લેવી જોઈએ.

ઉદાહરણ 3: T તાપમાને V કદની ઘન વસ્તુની ઘનતા ρ છે. સાબિત કરો કે તાપમાનમાં dT જેટલો સૂક્ષ્મ વધારો કરવાથી વસ્તુની ઘનતામાં $\gamma \rho dT$ જેટલો ઘટાડો થાય છે. (સૂચન : $\frac{dx^n}{dx} = n \ x^{n-1}$)

ઉકેલ :

ધનતા
$$\rho = \frac{M}{V}$$
, (1) જયાં, $M = \text{વસ્તુનું }$ દળ, અને $V = \text{વસ્તુનું }$ કદ વસ્તુનું કદ dV , તાપમાન પર આધારિત છે. તાપમાનમાં dT જેટલો વધારો કરવાથી તેના કદમાં વધારો થાય છે.

$$\therefore dV = \gamma V dT \tag{2}$$

સ્પષ્ટ છે કે કદમાં વધારો થવાથી વસ્તુની ઘનતામાં ઘટાડો થાય છે. ધારો કે ઘનતામાં થતો ઘટાડો d
ho છે.

∴ સમીકરણ (1) પરથી,

$$d\rho = -\frac{M}{V^2} dV$$

$$= -\frac{M}{V^2} \cdot \gamma V dT$$
(3)

$$=-\frac{M}{V} \gamma \cdot dT$$

$$\therefore d\rho = -\rho \gamma dT \tag{4}$$

અહીં, ૠણ નિશાની સૂચવે છે કે તાપમાનના વધારા સાથે ρ ઘટે છે.

ઉદાહરણ 4: સાબિત કરો કે અચળ દબાણે તાપમાનના વધારા સાથે આદર્શ વાયુનો કદ-પ્રસરણાંક ઘટે છે. આદર્શવાયુ માટે 0°C તાપમાને કદ-પ્રસરણાંક કેટલો હશે ?

ઉકેલ : આદર્શવાયુ માટે, $PV = \mu RT$ (1)

અચળ દબાણે તાપમાનમાં ΔT જેટલો વધારો કરવાથી કદમાં થતો વધારો, ધારો કે ΔV છે.

$$\therefore$$
 P Δ V = μ R Δ T (2) સમીકરણ (2)ને સમીકરણ (1) વડે ભાગતાં,

$$\frac{\Delta V}{V} = \frac{\Delta T}{T}$$

$$\therefore \ \frac{\Delta V}{V\Delta T} \ = \ \frac{1}{T}$$

$$\therefore \ \gamma = \frac{1}{T} \ (\because \Delta V = \gamma V \Delta T) \tag{3}$$

સમીકરણ (3) દર્શાવે છે કે આદર્શ વાયુ માટે તાપમાનના વધારા સાથે કદ-પ્રસરણાંક ઘટે છે.

$$T = 0^{\circ}C = 273.15 \text{ K}$$
 તાપમાને

$$\gamma = \frac{1}{273.15} = 3.66 \times 10^{-3} \text{ K}^{-1}$$

ઉદાહરણ 5 : ગ્લિસરિન (glycerine)નો કદ-પ્રસરણાંક 49×10^{-5} C⁰⁻¹ છે, તો તેના તાપમાનમાં 30 C⁰ નો વધારો કરતાં તેની ઘનતામાં થતો પ્રતિશત ઘટાડો શોધો.

ઉંકેલ :
$$V = V_0 (1 + \gamma \Delta T)$$

 હવે, $V = \frac{M}{\rho}$, $V_0 = \frac{M}{\rho_0}$
 $\therefore \frac{M}{\rho} = \frac{M}{\rho_0} (1 + \gamma \Delta T)$

થરમૉડાઇનેમિક્સ 131

$$\therefore \frac{\rho_0}{\rho} = 1 + \gamma \Delta T$$

$$\therefore \frac{\rho}{\rho_0} = \frac{1}{1 + \gamma \Delta T}$$

$$\therefore \frac{\rho - \rho_0}{\rho_0} = \frac{-\gamma \Delta T}{1 + \gamma \Delta T}$$

$$= -\frac{(49)(10^{-5})(30)}{1 + (49)(10^{-5})(30)}$$

$$= -0.0145$$

∴ ઘનતામાં થતો પ્રતિશત ઘટાડો = 1.45 %

નોંધ : γ નું મૂલ્ય પ્રમાણમાં ઘણું નાનું હોવાથી, આ ઉદાહરણ તમે ઉદાહરણ 3માં મેળવેલ સૂત્ર પરથી પણ ઉકેલી શકો છો.

ઉદાહરણ 6: જ્યારે પૃથ્વી અસ્તિત્વમાં આવી ત્યારે તેનું સરેરાશ તાપમાન 300 K હતું. હાલમાં તેનું સરેરાશ તાપમાન 3000 K છે. (પૃથ્વીના પેટાળમાં રહેલા રેડિયો- ઍક્ટિવ તત્ત્વોના વિભંજનના કારણે જે ઉખ્મા ઉત્પન્ન થઈ તેના કારણે આમ બન્યું છે). તો પૃથ્વીના જન્મકાળ વખતે તેની ત્રિજયા કેટલી હશે ? પૃથ્વીના દ્રવ્ય માટે $\gamma=3\times 10^{-5}~{\rm K}^{-1}$ લો. હાલની, પૃથ્વીની ત્રિજયા = 6400 km.

ઉકેલ :

$$V = V_0 (1 + \gamma \Delta T)$$

$$\therefore \frac{4}{3} \pi R^3 = \frac{4}{3} \pi R_0^3 (1 + \gamma \Delta T)$$

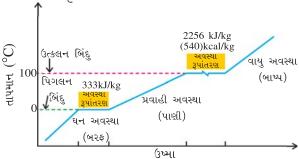
$$\therefore R = R_0 (1 + \gamma \Delta T)^{\frac{1}{3}}$$

$$\therefore R_0 = \frac{R}{(1 + \gamma \Delta T)^{\frac{1}{3}}}$$

$$= \frac{6400}{[1 + (3 \times 10^{-5})(2700)]^{\frac{1}{3}}}$$

$$= 6236 \text{ km}$$

6.6 રૂપાંતરણની ઉષ્મા (ગુપ્ત ઉષ્મા) (Heat of Transformation (Latent Heat))


જયારે કોઈ ઘન કે પ્રવાહી પદાર્થને ઉષ્મા આપવામાં આવે, ત્યારે તેનું તાપમાન વધે જ તેવું જરૂરી નથી. ક્યારેક પદાર્થ ઉષ્માનું શોષણ કરીને બીજી અવસ્થા પ્રાપ્ત કરે છે. કોઈ ઘન પદાર્થને પિગાળીને પ્રવાહી અવસ્થામાં લાવવા માટે, એટલે કે ઘન પદાર્થના દઢ માળખામાં રહેલા અણુઓને મુક્ત કરવા માટે, ઉષ્મા આપવી પડે છે (દા.ત., બરફનું પાણીમાં રૂપાંતરણ). તે જ રીતે જ્યારે પ્રવાહી થીજીને ઘન અવસ્થામાં રૂપાંતરણ પામે ત્યારે પ્રવાહીમાંથી ઊર્જા મુક્ત (ઓછી) થાય છે.

કોઈ પ્રવાહીનું વરાળ (વાયુ)માં રૂપાંતરણ કરવા માટે ઉષ્મા આપવી પડે છે (દા.ત., પાણીનું વરાળમાં રૂપાંતરણ). તે જ રીતે જ્યારે વાયુના અણુઓ ભેગા થઈને પ્રવાહી સ્વરૂપમાં ઠારણ પામે ત્યારે વાયુમાંથી ઊર્જા મુક્ત (ઓછી) થાય છે. વ્યાપક રીતે, એકમ દળના કોઈ પદાર્થનું એક અવસ્થા (ઘન, પ્રવાહી કે વાયુ)માંથી બીજી અવસ્થામાં રૂપાંતર કરવા માટે આપવી પડતી ઉષ્માને રૂપાંતરણની ઉષ્મા (ગુપ્ત ઉષ્મા) (Latent heat) L કહે છે. m દળના પદાર્થનું સંપૂર્ણ રીતે બીજી અવસ્થામાં રૂપાંતરણ કરવા માટે જરૂરી ઉષ્મા Q = Lm

કોઈ પ્રવાહીનું વાયુ (વરાળ)માં અથવા વાયુ (વરાળ)નું પ્રવાહીમાં રૂપાંતરણ કરવા માટે જરૂરી ઉષ્માને બાષ્પાયન ગુપ્ત ઉષ્મા (ઉત્કલન ગુપ્ત ઉષ્મા) $\mathbf{L}_{\mathbf{v}}$ કહે છે.

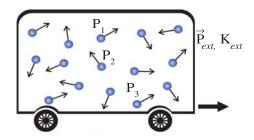
સામાન્ય રીતે પાણી માટે $L_V=2256~{
m kJ/kg}$ છે. એકમ દળના ઘન પદાર્થનું પ્રવાહીમાં રૂપાંતરણ કરવા (ત્યારે પદાર્થ ઉષ્મા મેળવશે) અથવા પ્રવાહીનું ઘનમાં રૂપાંતરણ કરવા (ત્યારે પદાર્થ ઉષ્મા ગુમાવશે) માટે જરૂરી ઉષ્માને ગલનગુષ્ત ઉષ્મા L_F કહે છે.

સામાન્ય રીતે પાણી માટે $L_F=333~{
m kJ/kg}$ પાણીના અમુક જથ્થા માટે તાપમાન વિરુદ્ધ ઉષ્માનો આલેખ આકૃતિ 6.11માં દર્શાવ્યો છે.

1 વાતાવરણના દબાણે પાણી માટે તાપમાન વિરુદ્ધ ઉષ્માનો આલેખ (સ્કેલમાપ મુજબ નથી.) આકૃતિ 6.11

આકૃતિ દર્શાવે છે કે જ્યારે અવસ્થા રૂપાંતરણ દરમ્યાન ઉષ્મા ઉમેરવામાં (કે ઘટાડવામાં) આવે તોપણ તાપમાન અચળ રહે છે. બધી ફેઝ રેખાઓના ઢાળ એકસરખા નથી, જે દર્શાવે છે કે જુદી-જુદી અવસ્થાઓની વિશિષ્ટ ઉષ્મા એક સરખી નથી. પાણી માટે $L_F=333~{\rm kJ/kg}$ દર્શાવે છે કે $1~{\rm kg}$ બરફને 0°C તાપમાને પિગાળવા માટે $333~{\rm kJ}$ જેટલી ઉષ્મા જોઈએ છે, અને $L_V=2256~{\rm kJ/kg}$ દર્શાવે છે કે $1~{\rm kg}$ પાણીને 100°C તાપમાને વરાળમાં રૂપાંતરિત કરવા માટે

2256 kJ ઉષ્મા આપવી પડે છે. આથી 100°C તાપમાને રહેલી વરાળ, 100°C તાપમાને રહેલા પાણી કરતાં 2256 kJ/kg જેટલી વધુ ઉષ્મા ધરાવે છે. આ જ કારણથી મોટા ભાગે ઊકળતા પાણી કરતાં વરાળ વધારે નુકસાનકારક (દઝાડે) છે.


6.7 ઉષ્મા, આંતરિક ઊર્જા અને કાર્ય (Heat, Internal Energy and Work)

સ્થિર વાયુપાત્રમાં વાયુના અશુઓની વાયુના દ્રવ્યમાન-કેન્દ્રને અનુલક્ષીને અસ્તવ્યસ્ત ગતિના કારણે તેમને વેગમાન અને ગતિ-ઊર્જા હોય છે. વાયુના અશુઓની અસ્તવ્યસ્ત ગતિની સંભાવના દરેક દિશામાં સમાન હોવાના કારણે વાયુના અશુઓનું આ અસ્તવ્યસ્ત ગતિ સાથે સંકળાયેલ કુલ વેગમાન

શૂન્ય થશે ($\overrightarrow{\mathbf{P}}_{\mathrm{int}}=0$), પરંતુ અશુઓની આ અસ્તવ્યસ્ત ગતિ સાથે સંકળાયેલ કુલ ગતિ-ઊર્જા શૂન્ય થશે નહીં ($K_{\mathrm{int}}\neq0$).

વાયુના અશુઓની અસ્તવ્યસ્ત ગતિ સાથે સંકળાયેલ (કુલ વેગમાન શૂન્ય હોય તેવી ગતિ) કુલ ગતિ-ઊર્જાને વાયુમાં રહેલ ઉષ્મા-ઊર્જા કહે છે.

હવે જો વાયુના અણુઓ વચ્ચે આંતરક્રિયા થતી હોય તો અણુઓ આ આંતરક્રિયા સાથે સંકળાયેલ સ્થિતિ-ઊર્જા ($U_{\rm int}$) પણ ધરાવતા હોય. બીજું, વાયુ પર જો કોઈ બહારનું પરિબળ (જેમકે ગુરુત્વાકર્ષણ) આંતરક્રિયા કરતું હોય, તો સમગ્ર વાયુ વધારાની સ્થિતિ-ઊર્જા $U_{\rm ext}$ પણ ધરાવતો હોય.

વાયુ ભરેલ વાયુપાત્રની ગતિ આકૃતિ 6.12

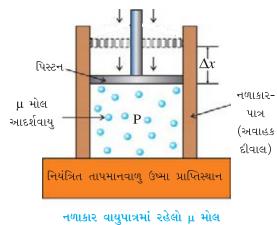
આકૃતિ 6.12માં દર્શાવ્યા મુજબ ધારો કે વાયુ ભરેલું એક વાયુપાત્ર ગતિ કરે છે. આ કિસ્સામાં વાયુપાત્ર સાથે વાયુ પણ ગતિ કરે છે. આથી વાયુના અણુઓ અસ્તવ્યસ્ત ગતિ ઉપરાંત સરેરાશ વેગમાન $\overrightarrow{P}_{\rm ext}$ અને ગતિ-ઊર્જા $\mathbf{K}_{\rm ext}$ ધરાવે છે.

આમ, વાયુ કુલ ચાર પ્રકારની ઊર્જા ધરાવી શકે છે : $(1) \ \mathbf{K}_{\mathrm{int}} \ , \ (2) \ \mathbf{U}_{\mathrm{int}} \ , \ (3) \ \mathbf{K}_{\mathrm{ext}} \ , \ (4) \ \mathbf{U}_{\mathrm{ext}}$ પ્રથમ બે ઊર્જાઓના સરવાળા $(\mathbf{K}_{\mathrm{int}} + \mathbf{U}_{\mathrm{int}})$ ને વાયુની આંતરિક ઊર્જા $(\mathbf{E}_{\mathrm{int}})$ કહે છે, જ્યારે છેલ્લી બે ઊર્જાના સરવાળા $(\mathbf{K}_{\mathrm{ext}} + \mathbf{U}_{\mathrm{ext}})$ ને વાયુની યાંત્રિક-ઊર્જા કહે છે.

વાયુ સાથે સંકળાયેલ ઊર્જાની આ પરિસ્થિતિ પદાર્થના કોઈ પણ સ્વરૂપ માટે સાચી છે.

આપણે જાણીએ છીએ કે જ્યારે બે અસમાન તાપમાન-વાળા પદાર્થો એકબીજાના ઉષ્મીય સંપર્કમાં આવે ત્યારે વધુ તાપમાનવાળા પદાર્થના તાપમાનમાં ઘટાડો થાય છે અને ઓછા તાપમાનવાળા પદાર્થના તાપમાનમાં વધારો થાય છે. આમ બંને પદાર્થો વચ્ચે ઉષ્મા-ઊર્જાનો વિનિમય થાય છે. વિનિમય પામતી આ ઉષ્મા-ઊર્જા એટલે જ ઉષ્મા. એટલે કે તંત્ર અને પરિસર વચ્ચે, માત્ર તાપમાનના તફાવતના કારણે થતા ઊર્જાના વિનિમયને ઉષ્મા કહે છે.

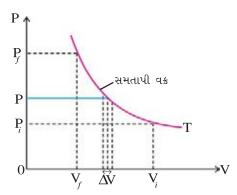
આ પરથી સ્પષ્ટ થાય છે કે કોઈ તંત્ર ઉષ્મા-ઊર્જા ધરાવી શકે પણ ઉષ્મા ધરાવી શકે નહિ.


તંત્ર જો ઉષ્માનું શોષણ કરે, તો તેને ધન અને જો ઉષ્મા ગુમાવે તો ઋણ ગણવામાં આવે છે.

6.7.1 થરમાં ડાઇનેમિક્સમાં કાર્ય (Work in Thermodynamics):

બે વસ્તુઓ વચ્ચે થતી યાંત્રિક આંતરક્રિયાને કારણે જે યાંત્રિક-ઊર્જાનો વિનિમય થાય છે, તેને કાર્ય કહે છે. આમ, કાર્ય એ યાંત્રિક આંતરક્રિયા સાથે સંકળાયેલી રાશી છે. તંત્ર યાંત્રિક-ઊર્જા ધરાવી શકે પણ કાર્ય ધરાવી શકે નહિં.

અગાઉ તમે કાર્ય વિશે ભણ્યા છો તે મુજબ તંત્ર વડે બળની વિરુદ્ધમાં થતાં કાર્યને ઋણ અને તંત્ર પર થતા કાર્યને ધન ગણાય છે. પરંતુ **થરમાંડાઇનેમિક્સમાં તંત્ર વડે થતા** કાર્યને ધન અને તંત્ર પર થતા કાર્યને ઋણ લેવામાં આવે છે. આવી સંજ્ઞા પ્રણાલીનું કારણ ઉષ્માયંત્ર (heat engine)ની કાર્યપદ્ધતિ છે કે જેમાં એન્જિન પરિસરમાંથી Q જેટલી ઉષ્મા શોષી તેનું કાર્ય W માં રૂપાંતર કરે છે. એટલે કે W જેટલી ઊર્જા તંત્રમાંથી ઓછી થાય છે.


6.7.2 અચળ તાપમાને વાયુનું સંકોચન કરતાં વાયુ પર થતા કાર્યનું સૂત્ર :

નળાકાર વાયુપાત્રમાં રહેલો μ મોલ આદર્શવાયુ આકૃતિ 6.13

થરમૉડાઇનેમિક્સ 133

આકૃતિ 6.13માં દર્શાવ્યા મુજબ એક નળાકાર પાત્રમાં પૂરતી ઓછી ઘનતાવાળો μ મોલ આદર્શવાયુ ભરી તેમાં હવા યુસ્ત અને ઘર્ષણરહિત સરકી શકે તેવો A આડછેદના ક્ષેત્રફળવાળો પિસ્ટન રાખેલો છે. નળાકારના સુવાહક તળિયે તાપમાનનું નિયંત્રણ કરી શકાય તેવું ઉષ્મા-પ્રાપ્તિસ્થાન રાખેલ છે. અચળ તાપમાને વાયુના જુદા-જુદા દબાણને અનુરૂપ કદનાં અવલોકનો લઈ આકૃતિ 6.14માં દર્શાવ્યા મુજબ P-V નો આલેખ દોરી શકાય. આવી પ્રક્રિયાઓ સમતાપી પ્રક્રિયાઓ કહેવાય, તથા P-V ના વક્રને સમતાપી વક્ર કહેવાય.

આપેલ વાયુ માટે P=V નો આલેખ (અચળ તાપમાને) આકૃતિ 6.14

ધારો કે પ્રારંભિક અવસ્થા iમાં વાયુના દબાણ અને કદ અનુક્રમે P_i અને V_i છે. વાયુનું તાપમાન T અચળ રહે તે રીતે પિસ્ટન પર બળ લગાડીને ધીમે-ધીમે વાયુનું કદ ઘટાડતાં, ધારો કે વાયુનું અંતિમ દબાણ P_f અને અંતિમ કદ V_f થાય છે.

આ પ્રક્રિયા દરમિયાન કોઈ એક તબક્કે જ્યારે વાયુનું દબાણ P હોય અને કદ V હોય, ત્યારે ધારો કે પિસ્ટન Δx જેટલું અંતર અંદરની તરફ ખસે છે. જેના કારણે વાયુના કદમાં ΔV જેટલો ઘટાડો થાય છે. આ સ્થાનાંતર એટલું સૂક્ષ્મ છે કે વાયુના દબાણ Pમાં ખાસ નોંધપાત્ર ફેરફાર થતો નથી. આથી, વાયુ પર બાહ્ય બળ વડે થતું કાર્ય,

$$\Delta W = F\Delta x \qquad (6.7.1)$$

$$= PA\Delta x \quad (\because F = PA)$$

$$\therefore \Delta W = P\Delta V \quad (\because A\Delta x = \Delta V)$$

આવા સૂક્ષ્મ ફેરફારોના લીધે વાયુનું કદ \mathbf{V}_i થી ઘટીને \mathbf{V}_f થતું હોય, તો આ માટે વાયુ પર થતું કુલ કાર્ય

$$W = \Sigma \Delta W = \sum_{V_i}^{V_f} P \Delta V$$
 (6.7.2)

આ સરવાળામાં $\dfrac{lim}{\Delta V o 0}$ લેતાં, સરવાળો સંકલનમાં પરિણમે છે.

$$\therefore W = \int_{V_i}^{V_f} P dV$$
 (6.7.3)

પરંતુ અચળ તાપમાને μ મોલ વાયુના જથ્થા માટે આદર્શવાયુ અવસ્થા-સમીકરણ મુજબ

$$PV = \mu RT$$

$$\therefore P = \frac{\mu RT}{V}$$

દબાણની આ કિંમત સમીકરણ (6.7.3)માં મૂકતાં,

$$W = \int_{V_i}^{V_f} \frac{\mu RT}{V} dV$$
 (6.7.4)

$$\therefore W = \mu RT \int_{V_{i}}^{V_{f}} \frac{dV}{V}$$

$$= \mu RT [ln V]_{V_{i}}^{V_{f}}$$

$$= \mu RT [ln V_{f} - ln V_{i}]$$

$$\therefore W = \mu RT ln \frac{V_{f}}{V_{i}}$$
(6.7.5)

સમીકરણ (6.7.5)માં $\mathbf{V}_f < \mathbf{V}_i$ હોવાથી $\ln \frac{\mathbf{V}_f}{\mathbf{V}_i} < 0.$ આથી કાર્ય \mathbf{W} નું મૂલ્ય ઋણ મળે છે, જે દર્શાવે છે કે અચળ તાપમાને વાયુનું સંકોચન કરતાં વાયુ પર કાર્ય થાય છે.

જો અચળ તાપમાને વાયુનું પ્રસરણ કરવામાં આવે (કદ વધતું હોય), તો $\mathbf{V}_f > \mathbf{V}_i$ થવાથી સમીકરણ (6.7.5)માં

$$\ln \frac{\mathbf{V}_f}{\mathbf{V}_i} > 0$$
 મળે. જેથી \mathbf{W} નું મૂલ્ય ધન મળે છે. જે દર્શાવે છે કે વાયુના કદપ્રસરણ દરમિયાન વાયુ વડે કાર્ય થાય છે.

6.7.3 અચળ કદ અને અચળ દબાણે થતું કાર્ય:

સમીકરણ (6.7.5) આદર્શ વાયુ માટે દરેક થરમોડાઇનેમિક પ્રક્રિયા દરમિયાન થતું કાર્ય W નથી આપતું, પરંતુ તે ફક્ત સમતાપી પ્રક્રિયા માટે થતું કાર્ય જ આપે છે. જો તાપમાન બદલાતું હોય તો સમીકરણ (6.7.4)માં તાપમાન Tને સંકલનની બહાર ન લઈ શકાય અને પરિણામે સમીકરણ (6.7.5) મળે નહિ.

સમીકરણ (6.7.3)માં જો વાયુનું કદ V અચળ રાખવામાં આવે, તો $(dV = \Delta V = 0 \,\,$ થવાથી)

$$W = 0 \text{ (અan se Hiz)} \tag{6.7.6}$$

તે જ રીતે જો કદ બદલાતું હોય, પરંતુ દબાણ P અચળ રહેતું હોય તો સમીકરણ (6.7.3) પરથી,

$$W = P \int_{V_i}^{V_f} dV = P[V]_{V_i}^{V_f}$$
$$= P[V_f - V_i]$$

∴
$$W = P\Delta V$$
 (અચળ દબાણ માટે) (6.7.7)

ઉદાહરણ 7:(a) એક મોલ ઑક્સિજન (આદર્શ વાયુ તરીકે ગણતાં)નું $310~\mathrm{K}$ જેટલા અચળ તાપમાને પ્રસરણ કરતાં તેનું કદ $\mathrm{V}_i=12~\mathrm{L}$ થી વધીને $\mathrm{V}_f=19~\mathrm{L}$ થાય છે. આ પ્રસરણ દરમિયાન વાયુ વડે કેટલું કાર્ય થયું હશે ?~(b) આ તાપમાન અચળ રાખીને 1 મોલ ઑક્સિજનનું કદ $19~\mathrm{L}$ થી ઘટાડીને $15~\mathrm{L}$ કરવા માટે બાહ્ય બળ વડે વાયુતંત્ર પર કેટલું કાર્ય કરવું પડે ?

$$(R = 8.31 \text{ J mol}^{-1} \text{ K}^{-1})$$

ઉકેલ :

$$\mu = 1$$
 મોલ $T = 310 \text{ K}$

$$V_i = 12 L$$
 $V_f = 19 L$

અહીંયા, ઑક્સિજનનું પ્રસરણ સમતાપી પ્રક્રિયા હોવાથી,

$$\therefore W = \mu RT \ln \frac{V_f}{V_i}$$

$$= 1 \times 8.31 \times 310 \times \ln \frac{19}{12}$$

$$\therefore W = 1183.6 \text{ J}$$

જે દર્શાવે છે કે સમતાપી પ્રસરણ દરમ્યાિન ઑક્સિજન વડે 1183.6 Joule જેટલું કાર્ય થયું હશે.

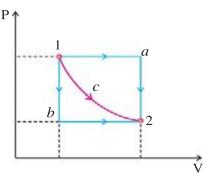
(b) બીજા કિસ્સામાં,

$$\mu = 1$$
 મોલ $T = 310 \text{ K}$

$$V_i = 19L$$
 $V_f = 15 L$

અહીંયા ઑક્સિજનનું સંકોચન પણ સમતાપી પ્રક્રિયા હોવાથી,

$$\therefore W = \mu RT \ln \frac{V_f}{V_i}$$


$$\therefore W = 1 \times 8.31 \times 310 \times ln \left(\frac{15}{19}\right)$$

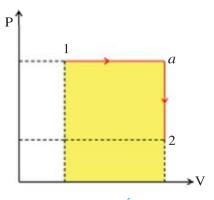
$$W = -608.7 \text{ J}$$

એટલે કે સમતાપી સંકોચન દરમિયાન ઑક્સિજન વડે થયેલું કાર્ય -608.7~J છે. એટલે કે, બાહ્ય બળ વડે ઑક્સિજનનું સંકોચન (19 L થી 15 L) કરવા માટે થયેલું કાર્ય 608.7~Joule જેટલું હશે.

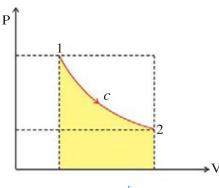
6.7.4 ઉષ્મા અને કાર્યની વિશેષ સમજૂતી (More understanding of Heat and Work) :

ધારો કે કોઈ એક તંત્રને ધીમે-ધીમે (દરેક તબક્કે તંત્ર અને પરિસર વચ્ચે તાપીય સંતુલન જળવાતું રહે તે રીતે) પ્રારંભિક અવસ્થા 1માંથી અંતિમ અવસ્થા 2 સુધી લઈ જવામાં આવે છે. આ માટેના જુદા-જુદા માર્ગો (પ્રક્રિયાઓ) આકૃતિ 6.15માં દર્શાવ્યા છે.

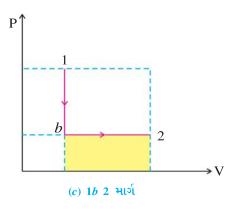
તંત્રને પ્રારંભિક અવસ્થાથી અંતિમ અવસ્થા સુધી લઈ જવાના જુદા-જુદા માર્ગો


આકૃતિ 6.15

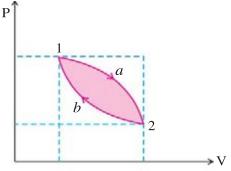
આ પ્રક્રિયાઓ દરમિયાન થતું કાર્ય સમીકરણ (6.7.3)


પરથી $\mathbf{W}=\int\limits_{1}^{2}\mathbf{P}d\mathbf{V}$, મુજબ શોધી શકાય છે. સંકલનનું આ મૂલ્ય અવસ્થા 1 અને 2 ને જોડતા માર્ગ વડે \mathbf{V} -અક્ષ સાથે ઘેરાયેલા ક્ષેત્રફળ જેટલું હોય છે. આમ, તંત્રને પ્રારંભિક અવસ્થા 1 થી અંતિમ અવસ્થા 2 સુધી 1a2, 1c2 અને 1b2

થરમાંડાઇનેમિક્સ 135


માર્ગ લાવતાં તંત્ર વડે થતું કાર્ય આકૃતિ 6.16માં પ્રક્રિયા માર્ગ વડે ઘેરાયેલા ક્ષેત્રફળ વડે અનુક્રમે દર્શાવેલ છે.

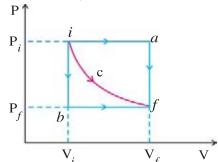
(a) 1a 2 માર્ગ


(b) 1c 2 માર્ગ

જુદા-જુદા માર્ગે થતું કાર્ય આકૃતિ 6.16

આકૃતિ 6.16 દર્શાવે છે કે તંત્રને અવસ્થા 1થી અવસ્થા 2 સુધી લાવતાં તંત્ર વડે થતું કાર્ય 1a2 માર્ગ પર મહત્તમ (મહત્તમ ક્ષેત્રફળ) થાય છે, જ્યારે લઘુતમ કાર્ય 1b2 માર્ગ પર (લઘુતમ ક્ષેત્રફળ) થાય છે.

જો તંત્રને 2a1, 2c1 અથવા 2b1 માર્ગ અવસ્થા 2 પરથી અવસ્થા 1 પર લઈ જવામાં આવે તો (કદમાં ઘટાડો થતો હોવાથી ΔV ૠુણ થશે) થતું કાર્ય ૠુણ મળે છે, જે દર્શાવે છે કે તંત્ર પર બાહ્ય બળ વડે કાર્ય થાય છે.


તંત્રની ચક્રીય પ્રક્રિયા દરમિયાન 1a2b1 માર્ગે લાવતાં થતું કુલ કાર્ય આકૃતિ 6.17

આકૃતિ 6.17માં દર્શાવ્યા મુજબ કોઈ તંત્રને પ્રારંભિક અવસ્થા 1થી 1a2 માર્ગે અવસ્થા 2 સુધી લઈ જઈને પાછું 2b1 માર્ગે પ્રારંભિક અવસ્થા 1 સુધી લાવવામાં આવે, તો આવી પ્રક્રિયા ચક્રીય પ્રક્રિયા કહેવાય. આ ચક્રીય પ્રક્રિયા દરમિયાન તંત્ર વડે થતું કુલ કાર્ય બંધ વક વડે ઘેરાયેલા ક્ષેત્રફળ જેટલું હોય છે. (1a2 માર્ગે તંત્ર વડે થતું કાર્ય ધન હોય છે, જ્યારે 2b1 માર્ગે તંત્ર પર કાર્ય થતું હોવાથી તંત્ર વડે થતું કાર્ય શ્ર્લ કાર્ય કાર્ય થતું કુલ

6.8 થરમૉડાઇનેમિક્સનો પ્રથમ નિયમ (First Law of Thermodynamics)

કાર્ય બંધ વક વડે ઘેરાયેલ ક્ષેત્રફળ જેટલું હોય છે.)

ધારો કે કોઈ એક તંત્ર ઉષ્માનું શોષણ કરે છે અને તેના વડે (તંત્ર વડે) કાર્ય થાય છે. તંત્રને પ્રારંભિક અવસ્થા i માંથી અંતિમ અવસ્થા f માં લઈ જવા માટે જુદા-જુદા અનેક માર્ગો (પ્રક્રિયાઓ) વિચારી શકાય.

તંત્રને પ્રારંભિક અવસ્થા *i*માંથી અંતિમ અવસ્થા *f*માં લઈ જવા માટેના માર્ગો

આકૃતિ 6.18

આકૃતિ 6.18માં દર્શાવ્યા મુજબ ધારો કે માર્ગો iaf, ibf, icf દરમિયાન તંત્ર દ્વારા શોષાતી ઉપ્મા અનુક્રમે Q_a , Q_b , Q_c અને તંત્ર વડે થતા કાર્યનાં મૂલ્યો અનુક્રમે W_a , W_b , W_c છે. અહીંયાં $Q_a \neq Q_b \neq Q_c$ તથા $W_a \neq W_b \neq W_c$ હોય છે, પરંતુ આ દરેક માર્ગ માટે ઉપ્મા અને કાર્યનો તફાવત લેવામાં આવે તો તેનું મૂલ્ય એકસરખું આવે છે. એટલે કે,

$$\mathbf{Q}_a - \mathbf{W}_a = \mathbf{Q}_b - \mathbf{W}_b = \mathbf{Q}_c - \mathbf{W}_c.$$

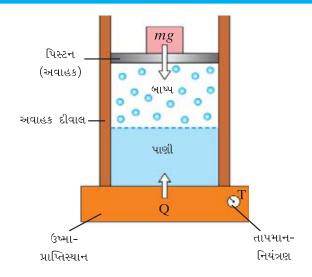
આમ, તંત્રને કોઈ પ્રારંભિક અવસ્થા i પરથી અંતિમ અવસ્થા f સુધી લઈ જવામાં આવે, તો ઉષ્મા Q અને કાર્ય W નાં મૂલ્યો, પ્રક્રિયા (માર્ગ) પર આધાર રાખે છે. પરંતુ Q - Wનું મૂલ્ય પ્રક્રિયા પર આધાર રાખતું નથી. Q - Wનું મૂલ્ય ફક્ત તંત્રની પ્રારંભિક અને અંતિમ અવસ્થા પર જ આધાર રાખે છે.

આ ચર્ચા પરથી કહી શકાય કે તંત્રની જુદી-જુદી થરમોડાઇનેમિક અવસ્થા માટે એક એવું થરમોડાઇનેમિક અવસ્થા-વિધેય વ્યાખ્યાયિત કરી શકાય કે કોઈ પણ બે અવસ્થા વચ્ચે તેના મૂલ્યનો તફાવત Q-W જેટલો થાય. આ વિધેયને તંત્રની આંતરિક ઊર્જા (internal energy) $E_{\rm int}$ કહે છે.

તંત્રને Q જેટલી ઊર્જા, ઉષ્મા-ઊર્જા રૂપે મળે છે અને W જેટલી ઊર્જા તંત્ર દ્વારા કાર્ય થતાં તંત્રમાંથી ઓછી થાય છે. આમ, તંત્રની આંતરિક ઊર્જામાં Q-W જેટલો ફેરફાર થાય છે.

તંત્રની પ્રારંભિક અવસ્થા i અને અંતિમ અવસ્થા f માં તંત્રની આંતરિક ઊર્જાઓ અનુક્રમે \mathbf{E}_i અને \mathbf{E}_f હોય તો,

$$E_f - E_i = \Delta E_{int} = Q - W$$
 (6.8.1)
જે થરમોડાઇનેમિક્સનો પ્રથમ નિયમ છે.


જો તંત્રને Q જેટલી ઉષ્મા મળતી હોય, તો તેની આંતરિક ઊર્જા $E_{\rm int}$ વધે છે, જ્યારે તંત્ર વડે થતાં કાર્ય W દરમિયાન તેની આંતરિક ઊર્જા ઘટે છે.

કુદરતમાં થતા કોઈ પણ ફેરફારો દરમિયાન થરમૉડાઇનેમિક્સનો પ્રથમ નિયમ પળાય છે.

ઉદાહરણ 8: આકૃતિ 6.19માં દર્શાવ્યા મુજબ 100 °C તાપમાને રહેલ 1.00 kg પાણીનું 1.00 વાતાવરણના દબાણે ગરમ કરીને 100 °C તાપમાને વરાળમાં રૂપાંતર કરવામાં આવે છે. આ પ્રક્રિયા દરમ્યાન પાણીનું પ્રારંભિક કદ $1.00 \times 10^{-3} \ m^3$ થી વધીને વરાળના કદ $1.671 \ m^3$ જેટલું થાય છે.

(a) આ પ્રક્રિયા દરમિયાન તંત્ર વડે કેટલું કાર્ય થયું હશે ? (b) આ પ્રક્રિયા દરમિયાન કેટલી ઉષ્માનો વિનિમય થયો હશે ? (c) આ પ્રક્રિયા દરમિયાન તંત્રની આંતરિક ઊર્જામાં કેટલો ફેરફાર થયો હશે ?

પાણી માટે
$$L_{
m V} = 2256 \; rac{{
m kJ}}{{
m kg}}$$

અચળ દબાણે ઊકળતું પાણી આકૃતિ 6.19

ઉકેલ :

(a)
$$V_i = 1.00 \times 10^{-3} m^3$$
, $V_f = 1.671 m^3$

$$P = 1.00 \text{ atm} = 1.01 \times 10^5 P_a$$

અહીંયા અચળ દબાણે કદમાં વધારો થતો હોવાથી તંત્ર વડે થતું કાર્ય ધન હશે, જેનું મૂલ્ય

$$W = \int_{V_i}^{V_f} P dV = P \int_{V_i}^{V_f} dV$$

(P અચળ હોવાથી સંકલનની બહાર લઈ શકાય.)

$$= \ \mathbf{P[V]}_{\mathbf{V}_i}^{\mathbf{V}_f} \ = \mathbf{P[V}_f - \mathbf{V}_i]$$

$$\therefore W = 1.01 \times 10^5 \times [1.671 - 1.00 \times 10^{-3}]$$
$$= 1.69 \times 10^5$$

$$\therefore W = 169 \text{ kJ} \tag{1}$$

(b) 100°C તાપમાને ઊકળતા પાણીનું 100°C તાપમાને રહેલી બાષ્યમાં રૂપાંતર થતું હોવાથી, તંત્રને મળતી ઉખ્મા,

Q =
$$L_V m$$

= 2256 × 1.00
∴ Q = 2256 kJ (2)

(c) થરમૉડાઇનેમિક્સના પ્રથમ નિયમ મુજબ, તંત્રની આંતરિક ઊર્જામાં થતો ફેરફાર

$$\Delta E_{int} = Q - W = 2256 - 169$$

= 2087 kJ (3)

થરમૉડાઇનેમિક્સ 137

 ΔE_{int} ધન છે, જે દર્શાવે છે કે તંત્રની આંતરિક ઊર્જામાં વધારો થાય છે. આ ઊર્જા પાણીના અશુઓને પાણીની સપાટી પરથી મુક્ત કરીને બાષ્પ (વરાળ)માં રૂપાંતરિત કરવામાં વપરાય છે.

6.9 ઉષ્માધારિતા અને વિશિષ્ટ ઉષ્મા (Heat Capacity and Specific Heat)

પદાર્થમાં જેમ વધારે અને વધારે ઉષ્મા ઉમેરતાં જઈએ તેમ તેનું તાપમાન પણ વધતું જાય છે. જુદા-જુદા પદાર્થો માટે તાપમાનનો સમાન ફેરફાર કરવા માટે જરૂરી ઉષ્માનો જથ્થો જુદો-જુદો હોય છે. વિજ્ઞાનીઓએ એક કિલોગ્રામ શુદ્ધ પાણીનું તાપમાન 14.5 °Cથી 15.5 °C સુધી વધારવા માટે જરૂરી ઉષ્માના જથ્થાને એક કિલો કૅલરી તરીકે વ્યાખ્યાયિત કરેલ છે. એક કિલો કૅલરીના હજારમા ભાગને એક કૅલરી કહે છે.

પદાર્થને આપેલ ઉષ્મા Q અને તદ્નુરૂપ તેના તાપમાનના ફેરફાર ΔT ના ગુણોત્તરને પદાર્થની ઉષ્માધારિતા (heat capacity, H_C) કહે છે. એટલે કે,

$$H_{C} = \frac{Q}{\Delta T} \tag{6.9.1}$$

 $\mathbf{H}_{\mathbf{C}}$ નો \mathbf{SI} એકમ $\mathbf{J} \ \mathbf{K}^{-1}$ અથવા cal/ \mathbf{K}

પદાર્થની ઉષ્માધારિતાનું મૂલ્ય પદાર્થની જાત તેમજ પદાર્થના દળ પર પણ આધારિત છે. એક જ દ્રવ્યના બનેલા જુદા-જુદા દળવાળા પદાર્થોની ઉષ્માધારિતા જુદી-જુદી હોય છે.

ઉપ્માધારિતા (heat capacity)નો મતલબ કાંઈ ડોલની કેપેસિટી (ધારિતા) જેવો નથી કે તે કેટલું પાણી ધારણ કરી શકશે. પદાર્થ અમુક ઉપ્મા ધરાવી શકતો હશે કે શોષી શકતો હશે તેવો અર્થ પણ નથી. ઉપ્માનું શોષણ કે ઉત્સર્જન ત્યાં સુધી ચાલુ રહે છે કે જ્યાં સુધી જરૂરી તાપમાનનો તફાવત જળવાઈ રહે. આ પ્રક્રિયા દરમિયાન પદાર્થ પીગળી કે બાપ્પમાં રૂપાંતરિત પણ થઈ શકે છે.

પદાર્થના એકમ દળ દીઠ તેના તાપમાનમાં એક એકમ જેટલો ફેરફાર કરવા માટે જરૂરી ઉષ્માના જથ્થાને તે પદાર્થના દ્રવ્યની વિશિષ્ટ ઉષ્મા (C) કહે છે. વિશિષ્ટ ઉષ્માનો એકમ cal $g^{-1}K^{-1}$ અથવા $J kg^{-1}K^{-1}$ છે. આમ,

વિશિષ્ટ ઉષ્મા =
$$\frac{$$
 ઉષ્માધારિતા $}{ \epsilon \sigma}$
$$\therefore C = \frac{Q/\Delta T}{m} = \frac{Q}{m\Delta T}$$
 (6.9.2)

યાદ રહે કે તાંબાના સિક્કા માટે ઉષ્માધારિતા સિક્કાની છે તેમ કહેવાય, પરંતુ વિશિષ્ટ ઉષ્મા તો તાંબાની જ કહેવાય. ઉષ્મા ધારિતા કે વિશિષ્ટ ઉષ્મા એ બંનેમાંથી કોઈ રાશિ અચળ નથી અને તેમનાં મૂલ્યો તાપમાનનો ગાળો ΔT કયા તાપમાને લેવાયો છે, તેના પર આધાર રાખે છે. સમીકરણો (6.9.1) અને (6.9.2) તે ગાળા દરમિયાનનાં તેમના સરેરાશ મૂલ્યો આપે છે. સમીકરણ (6.9.2) પરથી,

$$Q = mC\Delta T (6.9.3)$$

ટેબલ 6.2 માં ઓરડાના તાપમાને કેટલાક પદાર્થોની વિશિષ્ટ ઉષ્માનાં મૂલ્યો માહિતી માટે આપેલ છે.

ટેબલ <mark>6.2</mark> ઓરડાના તાપમાને પદાર્થોની વિશિષ્ટ ઉષ્મા (માત્ર જાણકારી માટે)

પદાર્થ	વિશિષ્ટ ઉષ્મા		મોલર વિશિષ્ટ ઉષ્મા
	Cal g ⁻¹ K ⁻¹	J kg ⁻¹ K ⁻¹	J mol ⁻¹ K ⁻¹
ચાંદી	0.0564	236	25.5
તાંબું	0.0923	386	24.5
ઍલ્યુમિનિયમ	0.215	900	24.4
બરફ(-10°C)	0.530	2220	_
પાણી	1.00	4190	_
સમુદ્રનું પાણી	0.93	3900	_

6.9.1 વાયુની વિશિષ્ટ ઉષ્માઓ (Specific heats of gases):

સિમેસ્ટર Iમાં વાયુનો ગતિવાદ પ્રકરણમાં તમે વિશિષ્ટ ઉષ્મા અને વાયુની મોલર વિશિષ્ટ ઉષ્માનો અભ્યાસ કર્યો હતો. આ વ્યાખ્યાઓ ફરીથી યાદ કરીને વાયુની વિશિષ્ટ ઉષ્માઓ વચ્ચેનો સંબંધ પ્રસ્થાપિત કરીશું.

મોલર વિશિષ્ટ ઉપ્મા : વાયુના એક મોલ દીઠ તેના તાપમાનમાં 1K (અથવા 1 C°) જેટલો ફેરફાર કરવા માટે જરૂરી ઉષ્માના જથ્થાને તે વાયુની મોલર વિશિષ્ટ ઉષ્મા કહે છે.

કેટલાક પદાર્થોની મોલર વિશિષ્ટ ઉષ્માનાં મૂલ્યો ટેબલ 6.2 માં જાણ સારું આપેલ છે.

અચળ કદે વિશિષ્ટ ઉષ્મા (C_v)

એક મોલ વાયુનું કદ અચળ રાખી તેના તાપમાનમાં એક કૅલ્વિન જેટલો ફેરફાર કરવા માટે જરૂરી ઉષ્માના જથ્થાને તે વાયુની અચળ કદે વિશિષ્ટ ઉષ્મા $\mathbf{C}_{\mathbf{V}}$ કહે છે.

અચળ દબાણે વિશિષ્ટ ઉષ્મા $(\mathbf{C}_{\mathbf{p}})$

એક મોલ વાયુનું દબાશ અચળ રાખી તેના તાપમાનમાં એક કૅલ્વિન જેટલો ફેરફાર કરવા માટે જરૂરી ઉષ્માના જથ્થાને તે વાયુની અચળ દબાશે વિશિષ્ટ ઉષ્મા $C_{\rm p}$ કહે છે.

$\mathbf{C}_{\mathbf{p}}$ અને $\mathbf{C}_{\mathbf{V}}$ વચ્ચેનો સંબંધ :

થરમૉડાઇનેમિક્સના પ્રથમ નિયમ મુજબ, અતિ સૂક્ષ્મ ફ્રેરફારો માટે

$$dE_{\text{int}} = dQ - dW$$
∴ $dQ = dE_{\text{int}} + dW$
∴ $dQ = dE_{\text{int}} + PdV$ (6.9.4)
પરંતુ અચળ કંદે $dV = 0$ હોવાથી
 $dQ = dE_{\text{int}}$

$$\therefore \left(\frac{dQ}{dT}\right)_{V} = \left(\frac{dE_{int}}{dT}\right)_{V}$$

વાયુનો ગતિવાદ પ્રકરણ (સિમેસ્ટર I)માં તમે ભણ્યા, તે મુજબ જે વાયુના અશુઓની મુક્તતાના અંશો f હોય તેવા એક મોલ વાયુની આંતરિક ઊર્જા

$$E_{int} = \frac{fRT}{2} \; (\mu = 1)$$
 (6.9.5) આવી.

$$\left(\frac{dQ}{dT}\right)_{V} = C_{V} = \left(\frac{dE_{int}}{dT}\right)_{V} = \frac{fR}{2}$$
 (6.9.6)

તે જ રીતે સમીકરણ (6.9.4)માં અચળ દબાણે એક મોલ વાયુને ઉષ્મા આપતાં,

$$(dQ)_{p} = dE_{int} + PdV$$
 પરંતુ, એક મોલ (આદર્શ) વાયુ માટે
$$PV = RT \quad (\mu = 1)$$
 ∴ $PdV = RdT$ આથી,

$$(dQ)_{P} = dE_{int} + RdT$$

$$\therefore \left(\frac{dQ}{dT}\right)_{P} = \left(\frac{dE_{int}}{dT}\right)_{P} + R$$

અહીં સમીકરણ (6.9.5)નો ઉપયોગ કરતાં,

$$\left(\frac{dQ}{dT}\right)_{P} = C_{P} = \frac{fR}{2} + R \tag{6.9.7}$$

સમીકરણ (6.9.6) અને (6.9.7) પરથી,

$$C_{p} - C_{V} = R \tag{6.9.8}$$

અચળ દબાણે વિશિષ્ટ ઉષ્મા $C_{\rm p}$ અને અચળ કદે વિશિષ્ટ ઉષ્મા $C_{\rm V}$ ના ગુણોત્તરને γ વડે દર્શાવવામાં આવે છે. આથી,

$$\gamma = \frac{C_{\rm P}}{C_{\rm V}} = \frac{\frac{f{\rm R}}{2} + {\rm R}}{\frac{f{\rm R}}{2}} = \frac{f{\rm R} + 2{\rm R}}{f{\rm R}}$$

$$\therefore \gamma = \frac{f+2}{f} = 1 + \frac{2}{f} \tag{6.9.9}$$

એક પરમાણ્વિક વાયુની મુક્તતાના અંશો f=3 હોય છે. આથી એક પરમાણ્વિક અશુવાળા વાયુ માટે

$$C_V = \frac{3R}{2}, C_P = \frac{5R}{2}, \gamma = \frac{5}{3}$$

દ્વિ-પરમાણ્વિક વાયુ (rigid rotator) માટે f=5

$$\mathrm{C_{_{V}}}=\frac{5\mathrm{R}}{2}\,,\,\mathrm{C_{_{P}}}=\frac{7\mathrm{R}}{2}\,,\,\gamma=\frac{7}{5}$$

તથા દ્વિ-પરમાણ્વિક વાયુ (with vibrations) માટે f=7

$$\therefore C_{V} = \frac{7R}{2}, C_{P} = \frac{9R}{2}, \gamma = \frac{9}{7}$$

દ્ધિ-પરમાણ્વિક અને બહુ-પરમાણ્વિક વાયુઓ માટે વિશિષ્ટ ઉષ્માનાં મૂલ્યો પ્રમાણમાં ઊંચાં છે. વાયુના અણુમાં પરમાણુઓની સંખ્યા વધવાની સાથે વિશિષ્ટ ઉષ્માનાં મૂલ્યોમાં પણ વધારો જોવા મળે છે. આનો અર્થ એ થાય કે બહુ-પરમાણ્વિક અણુઓને ગરમ કરવા માટે વધારે ઉષ્મા જોઈએ છે, જેનું કારણ આ મુજબ છે. એક-પરમાણ્વિક અણુઓ ફક્ત રેખીય ગતિ-ઊર્જા ધરાવતા હોય છે. આથી તેમને ઉષ્મા આપતાં તેમની રેખીય ગતિ ઊર્જા વધે છે. જયારે બહુ પરમાણ્વિક અણુઓ તેમની મુક્ત રેખીય ગતિ ઉપરાંત ચાકગતિ અને દોલનગતિ પણ ધરાવતા હોય છે. આથી આ વાયુઓને ઉષ્મા આપતાં તે ઉષ્મા અણુઓની ઉપરોક્ત ત્રણેય પ્રકારની ગતિઓની ઊર્જા વધારવા માટે વપરાતી હોવાથી તેમને વધુ ઉષ્મા આપવી પડે છે. આમ, બહુપરમાણ્વિક અણુઓની વિશિષ્ટ ઉષ્મા વધુ હોય છે.

ઉદાહરણ $9:(a)-10^{\circ}$ C તાપમાને રહેલા 720 gના બરફના એક ટુકડાને 0° C તાપમાને પાણીમાં રૂપાંતરિત કરવા માટે કેટલી ઉપ્મા આપવી પડે ?

થરમાં ડાઇનેમિક્સ 139

 $(b) \ 0^{\circ}\mathrm{C}$ તાપમાને રહેલા આ પાણીનું તાપમાન વધારીને $100^{\circ}\mathrm{C}$ કરવા માટે કેટલી ઉખ્મા આપવી પડે ?

- (c) 100°C તાપમાને રહેલા પાણીને સંપૂર્ણપણે બાષ્યમાં રૂપાંતરિત કરવા માટે કેટલી ઉષ્મા આપવી પડે?
- $(d) -10^{\circ}$ C તાપમાને રહેલા 720 g બરફનું સંપૂર્ણ રીતે બાષ્પમાં રૂપાંતરણ કરવા માટે કુલ કેટલી ઉષ્મા આપવી પડે ?

$$(C_{ice} = 2220 \text{ J kg}^{-1} \text{ K}^{-1}, C_{water} = 4190 \text{ J kg}^{-1} \text{ K}^{-1},$$

 $L_F = 333 \text{ kJ/kg}, L_V = 2256 \text{ kJ/kg})$

ઉકેલ : (a) જયાં સુધી બરફનું તાપમાન ગલનબિંદુ સુધી નહીં જાય, ત્યાં સુધી બરફ ઓગળશે નહિ. આથી બરફનું તાપમાન $T_i=-10^{\circ}\mathrm{C}$ થી $T_f=0^{\circ}\mathrm{C}$ સુધી લઈ જવા (ત્યાર બાદ બરફ પીગળવાનું શરૂ થશે) માટે આપવી પડતી ઉષ્મા

$$Q_1 = C_{ice} m (T_f - T_i)$$

જ્યાં,

 ${
m C}_{
m ice} = -10^{
m o}{
m C}$ તાપમાને રહેલા બરફની વિશિષ્ટ ઉષ્મા $= 2220 \;\; {
m \frac{J}{k\,g~K}} \label{eq:cice}$

$$\therefore Q_1 = (2220) (0.720) [0 - (-10)]$$
$$= 15,984 J$$

$$\therefore Q_1 = 15.98 \text{ kJ} \tag{1}$$

જ્યાં સુધી બરફ પૂરેપૂરો પીગળી નહિ જાય ત્યાં સુધી તેનું તાપમાન 0°C થી વધશે નહિ. આથી બરફને પૂરેપૂરો પિગાળવા માટે આપવી પડતી ઉષ્મા

$$Q_2 = L_F m = (333) (0.720)$$

 $\therefore Q_2 = 239.8 \text{ kJ}$ (2)

(b) હવે ${
m T}_i=0$ °C તાપમાને રહેલા $0.720~{
m kg}$ પાણીનું તાપમાન ${
m T}_f=100$ °C સુધી વધારવા માટે આપવી પડતી ઉષ્મા

$$Q_3 = C_{\text{water}} m(T_f - T_i)$$

$$\therefore$$
 Q₃ = (4190) (0.720) (100 -0)

$$\therefore Q_3 = 301680$$

$$\therefore Q_3 = 301.68 \text{ kJ}$$
 (3)

(c) 100°C તાપમાને રહેલા પાણીનું સંપૂર્ણપણે બાષ્યમાં રૂપાંતરણ કરવા માટે આપવી પડતી ઉષ્મા

$$Q_4 = L_V m$$

= (2256) (0.720)
 $\therefore Q_4 = 1624.32 \text{ kJ}$ (4)

(d) -10° C તાપમાને રહેલા 720 g બરફનું સંપૂર્ણપણે બાષ્યમાં રૂપાંતર કરવા માટે આપવી પડતી કુલ ઉષ્મા

$$Q = Q_1 + Q_2 + Q_3 + Q_4$$

 $\therefore Q = 2181.78 \text{ kJ}$ (5)

ઉદાહરણ $10:-10^{\circ}$ C તાપમાને રહેલા 1 kg બરફને 210 kJ ઉષ્મા આપવામાં આવે, તો મળતા પાણીનું દ્રવ્યમાન અને તાપમાન કેટલું હશે ?

$$(C_{ice} = 2220 \text{ J kg}^{-1} \text{ K}^{-1})$$

ઉકેલ : બરફનું દળ m=1 kg

બરફનું તાપમાન $\mathbf{T}_i = -10^{\rm o}\mathrm{C}$ થી $\mathbf{T}_f = 0^{\rm o}\mathrm{C}$, સુધી લઈ જવા માટે આપવી પડતી ઉષ્મા

$$Q_{1} = C_{ice} m(T_{f} - T_{i})$$

$$= 2220 \times 1 \times [0 - (-10)]$$

$$= 22200 J$$

$$\therefore Q_{1} = 22.2 kJ$$
 (1)

જયાં સુધી બરફ પૂરેપૂરો પીગળી ન જાય ત્યાં સુધી તેનું તાપમાન 0° C થી વધશે નિષ્ઠ. બરફને આપવામાં આવેલી ઉષ્મા $Q_1=210~\mathrm{kJ}$ છે. જેમાંથી $Q_1=22.2~\mathrm{kJ}$ જેટલી ઉષ્મા બરફનું તાપમાન -10° C થી 0° C સુધી લઈ જવામાં વપરાઈ ગઈ છે. આથી 0° C તાપમાને આવ્યા પછી બરફને મળેલી ચોષ્ખી ઉષ્મા

$$Q' = Q - Q_1 = 210 \text{ kJ} - 22.2 \text{ kJ}$$

$$\therefore Q' = 188.8 \text{ kJ}$$
(2)

આ ઉષ્મા વડે પીગળેલો બરફનો જથ્થો (દળ)

$$m = \frac{Q'}{L_E} = \frac{188.8}{333}$$

$$m = 0.564 \text{ kg}$$
 (3)

જે દર્શાવે છે કે 1 kg બરફમાંથી 0.564 kg જેટલો બરફ પીગળ્યો છે. (એટલે કે 0.564 kg જેટલું પાણી બન્યું છે) અને 1 kg - 0.564 kg = 0.436 kg જેટલો બરફ પીગળ્યા વગરનો છે. આમ 1 kg બરફમાંથી મળતાં પાણીનું દ્રવ્યમાન m = 0.564 kg (4)

અને તેનું તાપમાન
$$T=0^{\circ}C$$
 (5) 6.10 કેટલીક થરમાંડાઇનેમિક પ્રક્રિયાઓ (Some

Thermodynamic Processes)

એકનું એક પરિણામ મેળવવાની રીતો ઘણી વખત જુદી-જુદી હોઈ શકે છે. થરમૉડાઇનેમિક્સમાં પણ કેટલીક વખત એકનું એક પરિણામ ઘણી રીતે મેળવી શકાય છે. જેમકે નળાકાર અને હવાચુસ્ત, ઘર્ષણરહિત સરકતા પિસ્ટનની સંરચનામાં ભરેલા વાયુનું તાપમાન વધારવું હોય તો પિસ્ટન પર ઝડપથી દબાણ વધારી વાયુનું તાપમાન વધારી શકાય અથવા બહારથી જયોત વડે નળાકારને ગરમ કરી તેમાં રહેલા વાયુનું તાપમાન વધારી શકાય. આમ, થરમૉડાઇનેમિક્સમાં તંત્ર અને પરિસર વચ્ચે થતી આંતરક્રિયાઓ પરની શરતો ઘણી અગત્યની છે અને તેવી શરતો મુજબ તેને ચોક્કસ પ્રક્રિયા તરીકે ઓળખવામાં આવે છે, તો ચાલો આવી કેટલીક પ્રક્રિયાઓનો આપણે અભ્યાસ કરીએ.

સમદાબ પ્રક્રિયા (Isobaric process) : ''જે પ્રક્રિયા દરમિયાન તંત્રનું દબાણ અચળ રહે છે, તે પ્રક્રિયાને સમદાબ પ્રક્રિયા કહે છે.''

આ પ્રક્રિયા દરમિયાન તંત્રની થરમૉડાઇનેમિક સંતુલન અવસ્થાઓ બદલાતી જશે. વચગાળાની સંતુલિત અવસ્થાઓ દરમિયાન તંત્રના થરમૉડાઇનેમિક વિધેયોનાં ચોક્કસ મૂલ્યો અસ્તિત્વ ધરાવતાં હોય છે. તે પરથી આ પ્રક્રિયા માટે P - V આલેખ દોરતાં તે V-અક્ષને સમાંતર સુરેખા મળશે.

સમીકરણ (6.7.3) પરથી
$$\mathbf{W} = \int\limits_{\mathbf{V}_i}^{\mathbf{V}_f} \mathbf{P} d\mathbf{V}$$

P અચળ હોવાથી, W =
$$\Pr_{V_i}^{V_f} dV$$
 = $\Pr(V_f - V_i)$ (6.10.1)

સમકદ પ્રક્રિયા (Isochoric process): આ પ્રક્રિયા દરમિયાન તંત્રનું કદ અચળ રહેતું હોય છે. આવી પ્રક્રિયા દરમિયાન તંત્ર પર કે તંત્ર વડે કોઈ કાર્ય થતું ન હોવાથી થરમૉડાઇનેમિક્સના પ્રથમ નિયમ મુજબ $Q=\Delta E_{int}$ થશે. આમ, સમકદ ફેરફાર દરમિયાન તંત્રની આંતરિક ઊર્જાનો ફેરફાર તંત્ર વડે વિનિમય પામતી ઉષ્મા જેટલો હોય છે.

સમોષ્મી પ્રક્રિયા (Adiabatic process): આવી પ્રક્રિયા દરમિયાન તંત્ર અને તેના પરિસર વચ્ચે ઉષ્મા-ઊર્જાનો વિનિમય થતો હોતો નથી. આવી પ્રક્રિયા કરવા માટે (1) તંત્રની પરિસીમા ઉષ્માની અવાહક હોવી જોઈએ અથવા તો (2) પ્રક્રિયા અત્યંત ઝડપથી થવી જોઈએ.

ધ્વનિ-તરંગોના પ્રસરણ દરમિયાન માધ્યમમાં સંઘનન અને વિઘનન રચાવાની પ્રક્રિયા ઘણી ઝડપી હોવાથી તેને સમોષ્મી ગણી શકાય. સાઇકલમાં હવા પૂરવાનો પંપ ઝડપથી ચલાવતાં શા માટે તે ગરમ થઈ જાય છે તેનો ખ્યાલ હવે તમને આવશે. સમોષ્મી પ્રક્રિયા દરમિયાન $\Delta Q = 0$ હોવાથી થરમૉડાઇનેમિક્સના પ્રથમ નિયમ મુજબ $\Delta {
m E}_{
m int} = -{
m W}$ થશે. એટલે કે જો તંત્ર વડે કાર્ય થાય (W>0) તો તંત્રની આંતરિક ઊર્જામાં ઘટાડો થાય છે અને જો તંત્ર પર કાર્ય થાય, તો તંત્રની આંતરિક ઊર્જામાં વધારો થાય છે.

આદર્શવાયુ માટે સમોષ્મી પ્રક્રિયા દરમિયાન દબાણ અને કદ વચ્ચેનો સંબંધ નીચે મુજબ છે :

(તારવણીની ચિંતા ભવિષ્ય પર છોડો.)

$$PV^{\gamma}$$
 = અચળ, જ્યાં $\gamma = \frac{C_P}{C_V}$

સમતાપી પ્રક્રિયા (Isothermal process): "જે થરમૉડાઇનેમિક પ્રક્રિયા દરમિયાન તંત્રનું તાપમાન અચળ જળવાઈ રહેતું હોય તેવી પ્રક્રિયાને સમતાપી પ્રક્રિયા કહે છે."

આદર્શવાયુના સમતાપી વિસ્તરણ દરમિયાન થતું <mark>કાર્ય ઃ</mark> ધારો કે μ મોલ આદર્શવાયુનું કદ, અચળ તાપમાને \mathbf{V}_1 માંથી વધીને \mathbf{V}_2 થાય છે. સમીકરણ (6.7.3) પરથી,

$$W=\int\limits_{V_{1}}^{V_{2}}PdV$$
આદર્શવાયુના અવસ્થા-સમીકરણ PV = μ RT પરથી,

 $P = \frac{\mu RT}{V}$ (6.10.2)

$$\therefore W = \int_{V_1}^{V_2} \frac{\mu RT}{V} dV$$
$$= \mu RT \int_{V_1}^{V_2} \frac{1}{V} dV$$

(સમતાપી પ્રક્રિયામાં તાપમાન અચળ હોવાથી Tને સંકલનની નિશાનીની બહાર લીધેલ છે.)

$$= \mu RT [ln V]_{V_1}^{V_2}$$

$$= \mu RT [ln V_2 - ln V_1]$$

$$\therefore W = \mu RT ln \left(\frac{V_2}{V_1}\right)$$
(6.10.3)

આદર્શવાયુની આંતરિક ઊર્જા ફક્ત તાપમાન પર આધારિત હોવાથી સમતાપી ફેરફાર દરમિયાન આંતરિક ઊર્જાનો ફેરફાર

થરમૉડાઇનેમિક્સ 141

શૂન્ય હોય છે. તેથી થરમૉડાઇનેમિક્સના પ્રથમ નિયમ $(Q=W+\Delta E_{\rm int})$ માં $\Delta E_{\rm int}=0$ મૂકતાં, Q=W થાય છે અને પરિશામે સમીકરણ (6.10.3)ને નીચે મુજબ લખી શકાય :

$$W = Q = \mu RT \ln \left(\frac{V_2}{V_1}\right) \tag{6.10.4}$$

ચક્રીય પ્રક્રિયા (Cyclic process): "જે થરમૉડાઇનેમિક પ્રક્રિયા દરમિયાન તંત્રને તેની એક થરમૉડાઇનેમિક સંતુલન અવસ્થામાંથી શ્રેણીબદ્ધ પ્રક્રિયાઓ કરી અંતે મૂળ અવસ્થામાં પાછું લાવવામાં આવે છે, તેવી પ્રક્રિયાને ચક્રીય પ્રક્રિયા કહે છે."

ચક્રીય પ્રક્રિયામાં તંત્રની પ્રારંભિક અને અંતિમ અવસ્થાઓ એક જ હોવાથી તંત્રની આંતરિક ઊર્જામાં કોઈ ફેરફાર થતો નથી. (અર્થાત્ $\Delta E_{\rm int}=0$) અને તેથી થરમૉડાઇનેમિક્સના પ્રથમ નિયમ મુજબ Q=W હોય છે. આમ, ચક્રીય પ્રક્રિયા દરમિયાન તંત્ર અને પરિસર વચ્ચે વિનિમય પામતી ઉષ્મા-ઊર્જાનો ચોષ્ખો જથ્થો તંત્ર વડે થતા ચોષ્ખા કાર્ય જેટલો હોય છે.

6.11 પ્રતિવર્તી અને અપ્રતિવર્તી પ્રક્રિયાઓ (Reversible and Irreversible Processes)

ધારો કે સિલિન્ડર-પિસ્ટન રચનામાં વાયુ ભરેલ વાયુતંત્ર કોઈ પ્રારંભિક સંતુલિત અવસ્થા *i*માં છે કે જેમાં તેના દબાણ, કદ અને તાપમાનનાં મૂલ્યો અનુક્રમે P, V અને T છે. આ તંત્રનું અચળ તાપમાને કદ અડધું કરીને બીજી કોઈ સંતુલિત અવસ્થા *f*માં લઈ જવું હોય, તો તે માટેની ઘણી શક્ય પ્રક્રિયાઓ વિચારી શકાય.

આવી એક પ્રક્રિયામાં પિસ્ટનને ઝડપથી નીચે ધકેલી દઈ શકાય અને પછી તંત્ર, તેના પરિસર સાથે સંતુલન પ્રાપ્ત કરી પાછું પોતાનું તાપમાન T સ્થાપિત કરી લે ત્યાં સુધી રાહ જોઈ શકાય. પરંતુ આ રીતે વાયુનું ઝડપથી સંકોચન કરતાં તેમાં અસંતુલન પેદા કરતી અસરો ઉત્પન્ન થાય છે. પરિણામે તંત્ર અવસ્થા i અને f વચ્ચે અનેક અસંતુલિત સ્થિતિઓમાંથી ઝડપથી પસાર થાય છે. જોકે ઉપર જણાવ્યું તેમ સારી એવી રાહ જોયા પછી તંત્ર અંતે સંતુલિત અવસ્થા fમાં આવે છે ખરું.

હવે આ પ્રક્રિયાને ઉલટાવીએ એટલે કે પિસ્ટનને પાછો ઝડપથી ઊંચે લઈ જઈ વાયુનું કદ \mathfrak{s} રી V જેટલું (પ્રારંભિક કદ જેટલું) કરી નાખીએ તો સંકોચન વખતે વાયુ વચગાળાની જે-જે અસંતુલિત અવસ્થાઓમાંથી પસાર થયો હતો, તે જ અસંતુલિત અવસ્થાઓમાંથી પાછો પસાર થઈને અવસ્થા f માંથી i માં જશે નહિ. આવી પ્રક્રિયાને અપ્રતિવર્તી પ્રક્રિયા કહે છે.

હવે એક બીજા પ્રકારની પ્રક્રિયા વિચારીએ કે જેમાં વાયુના કદમાં અત્યંત સૂક્ષ્મ ઘટાડો કરતાં કરતાં છેવટે વાયુનું કદ અડધું કરી શકીએ. વાયુના કદમાં અત્યંત સૂક્ષ્મ ઘટાડો કરતાં તેમાં સહેજ ક્ષણિક અસંતુલન જરૂર ઉત્પન્ન થશે, તાપમાન પણ સહેજ જરૂર વધશે, પરંતુ પ્રક્રિયા અત્યંત ધીમી હોવાથી મળતા પૂરતા સમયમાં તંત્ર વધારાની ઉષ્મા પરિસરને આપી દઈને પાછું સંતુલન અવસ્થામાં આવી જશે અને વચગાળાના દરેક તબક્કે તંત્રનું તાપમાન T જેટલું જ જળવાઈ રહેશે. આમ, કદ ઘટાડાના દરેક તબક્કે તંત્ર સંતુલિત અવસ્થાઓમાંથી જ પસાર થાય છે તેમ કહેવાય. આ રીતે થતી પ્રક્રિયાને ક્વોસાઈ-સ્ટેટિક (quasi-static) પ્રક્રિયા કહે છે. આ રીતે તંત્રનું તાપમાન અચળ રહે તેમ તેનું કદ અડધું કરી શકાય છે. આ જ રીતે આ પ્રક્રિયાને ઉલટાવીને એટલે કે તંત્ર પરના દબાણમાં અત્યંત સૂક્ષ્મ ઘટાડો કરતાં-કરતાં ધીરે-ધીરે તંત્રનું કદ વધારીને તંત્રને મૂળ માર્ગે જ (એટલે કે પ્રક્રિયા થઈ ત્યારે તંત્ર વચગાળાની જે-જે સંતુલિત અવસ્થાઓમાંથી પસાર થયું હતું તેમાંથી જ પાછું પસાર કરાવીને) પ્રારંભિક અવસ્થા i માં પાછું લાવી શકાય છે. આવી પ્રક્રિયાને પ્ર<mark>તિવર્તી પ્રક્રિયા</mark> કહેવાય છે. પરંતુ એ વાતનું સ્મરણ રાખવું ઘટે કે પ્રસ્તુત ઉદાહરણમાં આપણે સમતાપી પ્રતિવર્તી પ્રક્રિયાનો વિચાર કર્યો છે અને ઊર્જાનો કોઈ રીતે વ્યય ન થાય તેમ પિસ્ટનને ઘર્ષણરહિત ગતિ કરતો ધાર્યો છે. જ્યારે પ્રતિવર્તી પ્રક્રિયા ઉલટાવીએ ત્યારે માત્ર તંત્ર જ નહિ, પરંતુ પરિસર પણ પોતાની મૂળ અવસ્થામાં આવી જાય છે.

આટલી ચર્ચા પછી એ તો સ્પષ્ટ થશે જ કે ઊર્જાનો વ્યય કરે તેવાં પરિબળોની ગેરહાજરી એ તો એક આદર્શ પરિસ્થિતિ હોવાથી વ્યવહારમાં સંપૂર્ણપણે પ્રતિવર્તી પ્રક્રિયા શક્ય નથી. બધી જ કુદરતી પ્રક્રિયાઓ (એટલે કે આપમેળે થતી પ્રક્રિયાઓ) અપ્રતિવર્તી છે. દા.ત., લોખંડનું કટાવું, ખડકોનું ઘસાવું, પ્રાણીમાત્રને વૃદ્ધત્વ આવવું વગેરે.

ઉદાહરણ $\mathbf{11}$: સાબિત કરો કે જ્યારે આદર્શ વાયુતંત્ર સમોષ્મી પ્રક્રિયા દ્વારા પ્રારંભિક અવસ્થા (P_1, V_1, T_1) માંથી અંતિમ અવસ્થા (P_2, V_2, T_2) માં જાય ત્યારે તેના વડે થતું કાર્ય.

$$W = \frac{P_1 V_1 - P_2 V_2}{\gamma - 1} = \frac{\mu R (T_1 - T_2)}{\gamma - 1}$$
 જેટલું

હોય છે.

[સમોષ્મી પ્રક્રિયા માટે $PV^{\gamma} = A$ અચળાંક]

ઉકેલ : સમોષ્મી પ્રક્રિયા માટે

$$W = \int_{V_1}^{V_2} P dV$$

$$= A \int_{V_{1}}^{V_{2}} \frac{1}{V^{\gamma}} dV \qquad (\because P = \frac{A}{V^{\gamma}})$$

$$\therefore W = A \int_{V_{1}}^{V_{2}} V^{-\gamma} dV$$

$$= A \left[\frac{V^{-\gamma+1}}{-\gamma+1} \right]^{V_{2}}$$

$$= A \left[\frac{V_{2}^{-\gamma+1} - V_{1}^{-\gamma+1}}{(1-\gamma)} \right]$$

$$= \frac{AV_{2}^{-\gamma+1} - AV_{1}^{-\gamma+1}}{(1-\gamma)}$$

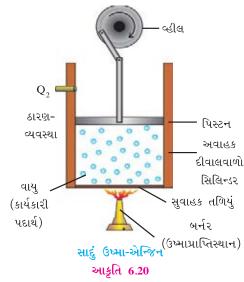
$$= \frac{P_{2}V_{2}^{\gamma}V_{2}^{-\gamma+1} - P_{1}V_{1}^{\gamma}V_{1}^{-\gamma+1}}{(1-\gamma)}$$

$$= \frac{P_{2}V_{2} - P_{1}V_{1}}{(1-\gamma)} \qquad (1)$$

$$\therefore W = \frac{P_{1}V_{1} - P_{2}V_{2}}{\gamma-1} \qquad (2)$$

$$\forall \dot{q}, PV = \mu RT$$

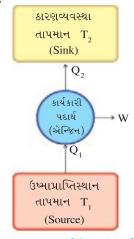
$$\therefore W = \frac{\mu R T_1 - \mu R T_2}{\gamma - 1} = \frac{\mu R (T_1 - T_2)}{\gamma - 1}$$
 (3)


6.12 કૅલોરીમેટ્રી (Calorimetry)

કેલોરીમેટ્રી એટલે ઉષ્માનું માપન : જ્યારે ઊંચા તાપમાને રહેલા પદાર્થને નીચા તાપમાને રહેલા બીજા પદાર્થના સંપર્કમાં લાવવામાં આવે, ત્યારે ગરમ પદાર્થ ગુમાવેલી ઉષ્મા બરાબર ઠંડા પદાર્થે મેળવેલી ઉષ્મા થાય છે (જો ઉષ્માનો પરિસરમાં વ્યય ન થવા દેવાય તો). આ ત્યારે જ શક્ય બને કે જ્યારે તંત્ર અલગ કરેલું (isolated) હોય, એટલે કે તંત્ર અને પરિસર વચ્ચે ઉષ્માનો વિનિમયન થતો હોય.

જે સાધન ઉષ્માનું માપન કરે તેને કૅલોરીમીટર કહે છે. તે તાંબું કે ઍલ્યુમિનિયમ જેવી ધાતુના પાત્ર અને હલાવવા માટેના તે જ ધાતુના સળીયાનું બનેલું હોય છે. આ પાત્રને લાકડાના ખોખામાં એક આવરણમાં મૂકવામાં આવે છે, જે ઉષ્માના અવાહક પદાર્થો જેવા કે કાચ, ઊન વગેરેનું બનેલું હોય છે. બહારનું આવરણ (ખોખું) ઉષ્માના અવાહક તરીકે વર્તે છે અને અંદરના પાત્રમાંથી થતો ઉષ્માનો વ્યય ઘટાડે છે. બહારના આવરણમાં એક છિદ્ર હોય છે, જેમાંથી કેલોરીમીટરમાં થરમૉમીટર દાખલ કરી શકાય છે.

6.13 ઉષ્મા-એન્જિન અને તેની કાર્યક્ષમતા (Heat Engine and its Efficiency)


ઉષ્માનું કાર્યમાં રૂપાંતર કરતી રચનાને ઉષ્મા-એન્જિન કહે છે.

આકૃતિ 6.20માં સાદું ઉષ્મા-એન્જિન (heat engine) દર્શાવ્યું છે. અહીં પિસ્ટન સાથેના સિલિન્ડરમાંના વાયુને બર્નરની જ્યોત વડે ગરમ કરતાં વાયુ ઉષ્મા મેળવે છે. આ ઉષ્માને લીધે વાયુનું પ્રસરણ થાય છે અને પિસ્ટન પર દબાણ લગાડી વાયુ પિસ્ટનને ઉપર ધકેલે છે. પરિણામે વ્હીલ ચાકગતિ કરે છે. વ્હીલની આવી ચાકગતિ ચાલુ રાખવા માટે ઉષ્મા-એન્જિનમાં પિસ્ટન પુનરાવર્તિત રીતે ઉપર-નીચે સરકી શકે તેવી વ્યવસ્થા કરવામાં આવે છે. આ માટે પિસ્ટન વધુ ઉપર સરકે ત્યારે ઉપર આવેલા છિદ્રમાંથી ગરમ વાયુ (ઠારણવ્યવસ્થામાં) બહાર નીકળે છે.

અહીં વાયુને કાર્યકારી પદાર્થ (working substance) કહે છે. બર્નરની જયોતને ઉષ્મા-પ્રાપ્તિસ્થાન (source) કહે છે, અને પ્રસરણ બાદ વાયુને (ઉષ્માને) જેમાં છોડી મૂકવામાં આવે છે, તેને ઠારણવ્યવસ્થા (sink) કહે છે.

આકૃતિ 6.21માં ઉષ્મા-એન્જિનની કાર્યપદ્ધતિ રેખાચિત્ર દ્વારા દર્શાવી છે.

રેખાચિત્ર દ્વારા ઉષ્મા-એન્જિનની કાર્યપદ્ધતિ આકૃતિ 6.21

થરમૉડાઇનેમિક્સ 143

ઉખ્મા-એન્જિનમાં કાર્યકારી પદાર્થ ચક્રિય પ્રક્રિયા અનુભવે છે. આ માટે કાર્યકારી પદાર્થ ઊંચા તાપમાન T_1 વાળા ઉખ્માપ્રાપ્તિસ્થાનમાંથી ઉખ્મા Q_1 શોષે છે. તેમાંથી અમુક ઉખ્મા-ઊર્જાનું યાંત્રિક-ઊર્જા (W)માં રૂપાંતર થાય છે, જ્યારે બાકીની ઉખ્મા Q_2 ઠારણવ્યવસ્થામાં છોડી દેવામાં આવે છે.

આથી, કાર્યકારી પદાર્થે શોષેલ ઉષ્માનો ચોખ્ખો જથ્થો, $\mathbf{Q} = \mathbf{Q}_1 - \mathbf{Q}_2 \tag{6.13.1}$

ચક્રીય પ્રક્રિયા દરમિયાન તંત્ર દ્વારા શોષાતી ચોખ્ખી ઉષ્મા, તંત્ર દ્વારા થતાં ચોખ્ખા કાર્ય જેટલી હોય છે. આથી,

$$Q = W$$

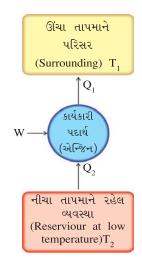
$$\therefore Q_1 - Q_2 = W \qquad (6.13.2)$$

ચક્રીય પ્રક્રિયા દરમિયાન એક ચક્ર દીઠ મળતા ચોખ્ખા કાર્ય (W) અને ચક્ર દીઠ શોષાતી ઉષ્માના ગુણોત્તરને ઉષ્મા- એન્જિનની કાર્યક્ષમતા (ŋ) કહે છે. એટલે કે,

કાર્યક્ષમતા,
$$\eta = \frac{\mbox{4s દીઠ મળતું ચોખ્ખું કાર્ય}}{\mbox{4s દીઠ શોષાતી ઉષ્મા}}$$

$$\therefore \ \eta = \frac{W}{Q_1} = \frac{Q_1 - Q_2}{Q_1}$$

$$\therefore \ \eta = 1 - \frac{Q_2}{Q_1} \eqno(6.13.3)$$


સમીકરણ (6.13.3) પરથી કહી શકાય કે જો $\mathbf{Q}_2=0$ હોય, તો એન્જિનની કાર્યક્ષમતા $\mathbf{\eta}=1$ મળે. એટલે કે એન્જિનની કાર્યક્ષમતા 100% મળે અને કાર્યકારી પદાર્થને આપવામાં આવેલી બધી જ ઉષ્માનું કાર્યમાં રૂપાંતર થાય. વ્યવહારમાં કોઈ પણ એન્જિન માટે $\mathbf{Q}_2\neq 0$. એટલે કે, થોડી ઉષ્મા \mathbf{Q}_2 હંમેશાં વેડફાય છે. આથી $\mathbf{\eta}<1$.

સામાન્ય રીતે ઉષ્મા-એન્જિન બે પ્રકારનાં બનાવવામાં આવે છે :

- (1) બાહ્ય દહન (External combustion) એન્જિન, જેમ કે, સ્ટીમ એન્જિન.
- (2) અંતર્દહન (Internal combustion) એન્જિન, જેમ કે ડીઝલ એન્જિન, પેટ્રોલ એન્જિન.

6.14 રેફ્રિજરેટર/હીટપંપ અને પરફૉર્મન્સ-ગુણાંક Refrigeratior/Heat Pump and Coefficient of Performance

ઉષ્મા-એન્જિનમાં કાર્યકારી પદાર્થ પર થતી ચક્રીય પ્રક્રિયાને જો ઉલટાવવામાં આવે, તો તે તંત્ર રેફ્રિજરેટર કે હીટપંપ તરીકે કાર્ય કરે છે. આકૃતિ 6.22માં રેફ્રિજરેટર/ હીટપંપની કાર્યપદ્ધતિને રેખાચિત્ર દ્વારા દર્શાવેલ છે.

રેખાચિત્ર દ્વારા રેફ્રિજરેટર / હીટપંપની સમજ આકૃતિ 6.22

રેફ્રિજરેટરમાં કાર્યકારી પદાર્થ, \mathbf{T}_2 જેટલા નીચા તાપમાનવાળી વ્યવસ્થામાંથી \mathbf{Q}_2 ઉષ્મા શોષે છે. કાર્યકારી પદાર્થ પર \mathbf{W} જેટલું કાર્ય કરવામાં આવે છે. કાર્યકારી પદાર્થ, \mathbf{Q}_1 જેટલી ઉષ્મા \mathbf{T}_1 જેટલા ઊંચા તાપમાનવાળા પરિસરમાં છોડી દે (મુક્ત કરે) છે.

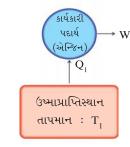
કાર્યકારી પદાર્થે શોષેલી ઉષ્મા \mathbf{Q}_2 અને તેના પર કરવામાં આવેલા કાર્ય Wના ગુણોત્તરને રેફ્રિજરેટરનો પરફોર્મન્સ-ગુણાંક (α) કહે છે. એટલે કે,

$$\alpha = \frac{Q_2}{W} \tag{6.14.1}$$

અહીં, પરિસરમાં છોડી દેવાતી ઉષ્મા

$$Q_1 = W + Q_2$$

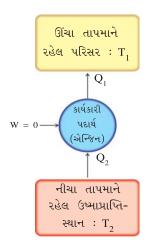
$$\therefore W = Q_1 - Q_2 \tag{6.14.2}$$


$$\therefore \alpha = \frac{Q_2}{Q_1 - Q_2} \tag{6.14.3}$$

અહીં α નું મૂલ્ય 1 કરતાં વધુ હોઈ શકે ($\because Q_2 > Q_1 - Q_2$), પરંતુ અનંત ન હોઈ શકે.

6.15 થરમાંડાઇનેમિક્સનો બીજો નિયમ (Second Law of Thermodynamics)

ઉખ્મા-એન્જિન અને રેફ્રિજરેટરના સંદર્ભમાં વિવિધ વિજ્ઞાનીઓએ કરેલાં વિધાનોને થરમૉડાઇનેમિક્સના બીજા નિયમનાં વિધાનો કહે છે, જે આ મુજબ છે :


આદર્શ ઉષ્મા-એન્જિન (Q₁ = W) આકૃતિ 6.23

કૅલ્વિન-પ્લાન્કનું વિધાન :

એવું એન્જિન બનાવવું અશક્ય છે કે જે, ચક્રીય પ્રક્રિયા દરમિયાન ઉષ્માપ્રાપ્તિસ્થાનમાંથી ઉષ્માનું શોષણ કર્યા બાદ પૂરેપૂરી ઉષ્માનું તેટલા જ કાર્યમાં રૂપાંતર કરે. (જુઓ આકૃતિ 6.23)

ક્લોસિયસનું વિધાન (Statement of Rudolf Clausius):

એવું એન્જિન બનાવવું અશક્ય છે કે જેમાં કાર્ય દ્વારા એન્જિનને ઉષ્મા (ઊર્જા) આપ્યા વગર, ઉષ્માનો વિનિમય સતત, ઓછા તાપમાનવાળા પ્રાપ્તિસ્થાનમાંથી વધુ તાપમાનવાળા પરિસરમાં થયા કરે (જુઓ આકૃતિ 6.24).

અશક્ય એવું આદર્શ રેફ્રિજરેટર (ઉષ્મા-એન્જિન કે જેમાં $\mathbf{Q}_{_1} = \mathbf{Q}_{_2}$ હોય, તથા $\mathbf{W} = \mathbf{0}$ હોય) આકૃતિ 6.24

ઉદાહરણ 12 : એક ઉષ્મા-એન્જિન ઉષ્મા પ્રાપ્તિસ્થાનમાંથી 360 J ઉષ્મા મેળવે છે અને 25 J જેટલું કાર્ય કરે છે. તો (a) ઉષ્મા-એન્જિનની કાર્યક્ષમતા શોધો. (b) ચક્રીય પ્રક્રિયાના દરેક ચક્ર દરમિયાન ઉષ્મા-એન્જિન પરિસરને કેટલી ઉષ્મા આપશે ?

(a) ઉષ્મા-એન્જિનની કાર્યક્ષમતા

$$\eta = \frac{W}{Q_1} = \frac{25J}{360J} = 0.07 = 7\%$$

(b) દરેક ચક્ર દરમિયાન પરિસરને મળતી ઉષ્મા

$$Q_2 = Q_1 - W = 360 - 25 = 335 J$$

<mark>ઉદાહરણ 13 :</mark> એક ઉષ્મા-એન્જિન તેણે કરેલા કાર્ય કરતાં ત્રણ ગણી ઉષ્માનું શોષણ કરે છે તો,

- (a) તેની કાર્યક્ષમતા કેટલી હશે ?
- (b) તેણે શોષેલી ઉષ્માનો કેટલામો ભાગ તે ઠારણ-વ્યવસ્થામાં મુક્ત કરશે ?

ઉકેલ : અહીંયાં $Q_1 = 3W$ છે. આથી,

(a)
$$\eta = \frac{W}{Q_1} = \frac{W}{3W} = \frac{1}{3} = 0.333$$

આથી, કાર્યક્ષમતા $\eta = 33.3\%$

(b) એન્જિને દરેક ચક્ર દરમિયાન પરિસરને આપેલી ઉષ્મા

$$Q_2 = Q_1 - W = 3W - W = 2W$$

આમ, $\frac{Q_2}{Q_1} = \frac{2W}{3W} = \frac{2}{3}$

આથી, એન્જિન તેણે શોષેલી ઉષ્માનો $\frac{2}{3}$ ભાગ ઠારણ-વ્યવસ્થામાં મુક્ત કરશે.

ઉદાહરણ 14: એક રેફ્રિજરેટરનો પરફૉર્મન્સ-ગુણાંક 5 છે. જો રેફ્રિજરેટર દરેક ચક્ર દરમિયાન ઠંડા ઉષ્મા-પ્રાપ્તિસ્થાનમાંથી 120 J જેટલી ઉષ્મા શોષતું હોય, તો દરેક ચક્ર દરમિયાન

- (a) તે કેટલું કાર્ય કરતું હશે ?
- (b) તે કેટલી ઉષ્મા ઊંચા તાપમાને રહેલા પરિસરમાં મુક્ત કરતું હશે ?

ઉકેલ : અહીં
$$\alpha = 5$$
, $Q_2 = 120 \text{ J}$

(a)
$$\alpha = \frac{Q_2}{W}$$

આથી, કાર્ય W =
$$\frac{Q_2}{\alpha}$$
 = $\frac{120J}{5}$ = 24 J

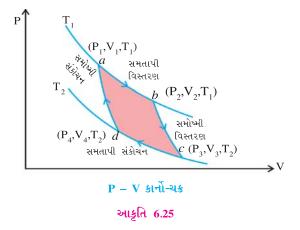
(b) પરિસરમાં મુક્ત કરેલી ઉષ્મા

$$Q_1 = W + Q_2 = 24 J + 120 J = 144 J$$

થરમૉડાઇનેમિક્સ 145

6.16 કાર્નો-ચક્ર અને કાર્નો-એન્જિન (Carnot Cycle and Carnot Engine)

સિમેસ્ટર Iમાં આપણે વાસ્તિવિક વાયુઓની વર્તણૂકનો અભ્યાસ, આદર્શવાયુઓનાં પૃથક્કરણ પરથી કર્યો કે જેઓ $PV = \mu RT$ સમીકરણનું પાલન કરે છે. ભલે વાસ્તવમાં આદર્શવાયુઓ હોતા નથી, પરંતુ જ્યારે વાસ્તિવિક વાયુની ઘનતા પૂરતી ઓછી હોય ત્યારે તે આદર્શ વાયુ જેવી વર્તણૂક ધરાવે છે.


આદર્શ એન્જિનમાં બધી જ પ્રક્રિયાઓ પ્રતિવર્તી હોય છે અને કોઈ પણ પ્રકારની ઊર્જાનો વ્યય (ઘર્ષણ કે પ્રક્ષુબ્ધતા વગેરે કારણે) થતો નથી.

આ મુદ્દામાં આપણે કાર્નો-એન્જિનનો અભ્યાસ કરીશું કે જેની સૌપ્રથમ રજૂઆત 1824માં ફ્રેન્ચ વૈજ્ઞાનિક અને એન્જિનિયર સાડી કાર્નોએ કરી હતી.

કાર્નો-એન્જિન, બે સમોષ્મી પ્રક્રિયાઓ અને બે સમતાપી પ્રક્રિયાઓ દ્વારા પૂરી થતી ચક્રીય પ્રતિવર્તી પ્રક્રિયા દ્વારા ઉષ્મા-ઊર્જાનું યાંત્રિક-ઊર્જામાં રૂપાંતરણ કરે છે. આમ, જે પ્રતિવર્તી ઉષ્મા-એન્જિન બે તાપમાન વચ્ચે કાર્ય કરે, તેને કાર્નો-એન્જિન કહે છે.

કાર્નો-એન્જિનમાં તળિયા સિવાય બધી જ અવાહક બાજુઓ ધરાવતા એક સિલિન્ડરમાં ઘર્ષણરહિત સરકતો પિસ્ટન હોય છે. આ એન્જિનનો કાર્યકારી પદાર્થ μ મોલ જેટલો પૂરતા ઓછા દબાણે રહેલો વાયુ છે. (જે આદર્શ-વાયુ તરીકે વર્તે છે). એન્જિનના દરેક ચક્ર દરમિયાન, અચળ તાપમાને રહેલા ઉષ્માપ્રાપ્તિસ્થાનમાંથી કાર્યકારી પદાર્થ ઉષ્મા શોષે (મેળવે) છે અને નીચા અચળ તાપમાન $T_2 < T_1$ પર રહેલ ઠારણવ્યવસ્થામાં ઉષ્મા મુક્ત કરે (ગુમાવે) છે.

આકૃતિ 6.25 માં દર્શાવેલ P – Vના આલેખ મુજબ આ ચક્રીય પ્રક્રિયા અને તેના જુદા-જુદા તબક્કા આકૃતિ 6.25માં દર્શાવ્યા છે.

(i) પ્રથમ તબક્કો : વાયુનું સમતાપી વિસ્તરણ (a o b)

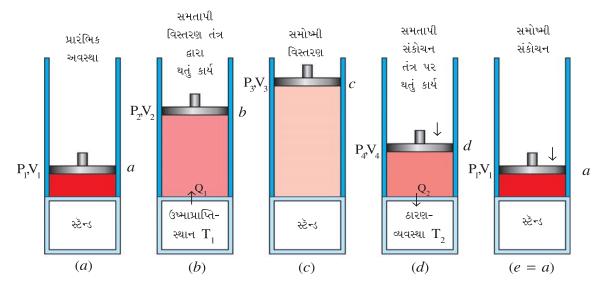
આકૃતિ $(6.26\ a)$ માં દર્શાવ્યા મુજબ, સૌપ્રથમ કાર્યકારી પદાર્થ થરમૉડાઇનેમિક સંતુલન અવસ્થા $(P_1,\ V_1,\ T_1)$ માં છે.

હવે, સિલિન્ડરના સુવાહક તળિયાને T_1 તાપમાને રહેલા ઉષ્માપ્રાપ્તિસ્થાન પર મૂકી, વાયુનું ધીમે-ધીમે સમતાપી વિસ્તરણ કરીને થરમોં ડાઇનેમિક સંતુલન અવસ્થા $b\ (P_2,\ V_2,\ T_1)$ માં લાવવામાં આવે છે (જુઓ આકૃતિ $6.26\ b$) ધારો કે $a\to b$ પ્રક્રિયા દરમિયાન વાયુ Q_1 ઉષ્મા શોષે છે. આથી સમીકરણ (6.10.4) અનુસાર, વાયુ વડે થયેલું કાર્ય

$$W_1 = Q_1 = \mu RT_1 ln \left(\frac{V_2}{V_1}\right)$$
 (6.16.1)

આ ઉપરાંત, સમતાપી પ્રક્રિયા માટે

$$P_1 V_1 = P_2 V_2 \tag{6.16.2}$$


(ii) બીજો તબક્કો : વાયુનું સમોષ્મી વિસ્તરણ (b o c)

હવે સિલિન્ડરના તળિયાને ઉષ્માના અવાહક સ્ટૅન્ડ પર મૂકી વાયુનું સમોષ્મી વિસ્તરણ થવા દઈને થરમૉડાઇનેમિક સંતુલન અવસ્થા c (P_3 , V_3 , T_2)માં લાવવામાં આવે છે (જુઓ આકૃતિ 6.26(c)). આ સમોષ્મી પ્રક્રિયા દરમિયાન વાયુ ઉષ્માનું શોષણ કરતો નથી, પરંતુ વિસ્તરણ દરમિયાન કાર્ય કરે છે, આથી તેનું તાપમાન ઘટે છે. આ પ્રક્રિયા માટે

$$P_2 V_2^{\ \gamma} = P_3 V_3^{\ \gamma} \tag{6.16.3}$$

(iii) ત્રીજો તબક્કો : વાયુનું સમતાપી સંકોચન(c o d)

હવે, સિલિન્ડરના સુવાહક તળિયાને T_2 તાપમાને રહેલી ઠારણવ્યવસ્થાના સંપર્કમાં લાવીને તેનું ધીમે-ધીમે સમતાપી સંકોચન કરવામાં આવે છે કે જેથી વાયુ સંતુલિત અવસ્થા $d\ (P_4,\,V_4,\,T_2)$ પર આવે છે (જુઓ આકૃતિ (6. 26d)). $c\ \to\ d$ અવસ્થા સુધીના વાયુના સમતાપી સંકોચન દરમિયાન વાયુ પર થતું કાર્ય

કાર્નોટ-એન્જિનના વિવિધ તબક્કા આકૃતિ 6.26

$$W_2 = Q_2 = - \mu RT_2 \ln \left(\frac{V_4}{V_3} \right)$$

(અહીં વાયુ તંત્ર પર કાર્ય થતું હોવાથી ઋણ સંજ્ઞા મૂકેલ છે.)

:.
$$W_2 = Q_2 = \mu RT_2 ln \left(\frac{V_3}{V_4} \right)$$
 (6.16.4)

અહીં, $\mathbf{Q}_2 =$ વાયુ વડે ઠારણવ્યવસ્થામાં છોડી દેવાયેલી ઉખ્મા

આ ઉપરાંત, સમતાપી પ્રક્રિયા માટે

$$P_3 V_3 = P_4 V_4 \tag{6.16.5}$$

(iv) ચોથો તબક્કો : વાયુનું સમોષ્મી સંકોચન (d
ightarrow a)

હવે સિલિન્ડરના તળિયાને ઉષ્મા અવાહક સ્ટૅન્ડ પર મૂકી વાયુનું સમોષ્મી સંકોચન કરી પોતાની મૂળ અવસ્થા a (P_1 , V_1 , T_1) માં લઈ જવામાં આવે છે. આ પ્રક્રિયા સમોષ્મી છે, આથી વાયુ પરિસર સાથે ઉષ્માનો વિનિમય કરતો નથી, પરંતુ વાયુ પર કાર્ય થાય છે અને તેનું તાપમાન T_2 થી વધીને T_1 જેટલું થાય છે.

આ સમોષ્મી પ્રક્રિયા માટે

$$P_4 V_4^{\ \gamma} = P_1 V_1^{\ \gamma} \tag{6.16.6}$$

આ સમગ્ર ચક્રીય પ્રક્રિયા દરમિયાન વાયુ વડે શોષાતી ઉખ્મા \mathbf{Q}_1 છે અને છોડી દેવાતી ઉખ્મા \mathbf{Q}_2 છે તે નોંધો. આથી, કાર્નોટ-એન્જિનની કાર્યક્ષમતા $\boldsymbol{\eta}$ નું મૂલ્ય,

$$\eta = 1 - \frac{Q_2}{Q_1}$$

$$\therefore \eta = 1 - \frac{T_2 \ln\left(\frac{V_3}{V_4}\right)}{T_1 \ln\left(\frac{V_2}{V_1}\right)}$$
(6.16.7)

સમીકરણો (6.16.2), (6.16.3) (6.16.5) અને (6.16.6)નો ગુણાકાર કરતાં

$$P_1V_1P_2V_2^{\gamma} P_3V_3P_4V_4^{\gamma} = P_2V_2P_3V_3^{\gamma}P_4V_4P_1V_1^{\gamma}$$

$$(V_2V_4)^{\gamma-1} = (V_3V_1)^{\gamma-1}$$

$$\therefore V_2 V_4 = V_3 V_1$$

$$\therefore \frac{V_2}{V_1} = \frac{V_3}{V_4} \tag{6.16.8}$$

$$\therefore \ln\left(\frac{\mathbf{V}_2}{\mathbf{V}_1}\right) = \ln\left(\frac{\mathbf{V}_3}{\mathbf{V}_4}\right) \tag{6.16.9}$$

આ કિંમત સમીકરણ (6.16.7)માં મુકતાં,

$$\eta = 1 - \frac{T_2}{T_1} \tag{6.16.10}$$

સમીકરણ (6.16.10) દર્શાવે છે કે કાર્નોટ-એન્જિનની કાર્યક્ષમતા ઉષ્માપ્રાપ્તિસ્થાન અને ઠારણવ્યવસ્થાના તાપમાન પર જ આધાર રાખે છે. તેની કાર્યક્ષમતા કાર્યકારી પદાર્થ પર આધારિત નથી (જો તે આદર્શ વાયુ હોય તો). જો ઉષ્માપ્રાપ્તિસ્થાનનું તાપમાન (T_1) અનંત હોય અથવા ઠારણવ્યવસ્થાનું તાપમાન (T_2) નિરપેક્ષ શૂન્ય હોય (જે શક્ય નથી) તો જ કાર્નોટ-એન્જિનની કાર્યક્ષમતા 100~% મળે, જે અશક્ય છે.

થરમૉડાઇનેમિક્સ 147

ઉદાહરણ 15 : એક કાર્નો-એન્જિનમાં ઠારણ-વ્યવસ્થાનું તાપમાન 280 K છે અને તેની કાર્યક્ષમતા 40 % છે. ઠારણવ્યવસ્થાનું તાપમાન અચળ રાખીને, ઉષ્માપ્રાપ્તિસ્થાનનું તાપમાન કેટલું વધારતા એન્જિનની કાર્યક્ષમતા વધીને 50 % જેટલી થાય ?

ઉકેલ :
$$T_2 = 280 \text{ K}$$
, $\eta_1 = 0.4$, $\eta_2 = 0.5$
$$\eta_1 = 1 - \frac{T_2}{T_1}$$

$$\therefore \frac{T_2}{T_1} = 1 - \eta_1 = 1 - 0.4 = 0.6 \qquad (1)$$

$$\therefore T_1 = \frac{T_2}{0.6} = \frac{280}{0.6} = 466.6 \text{ K}$$

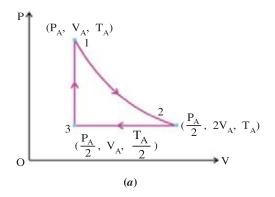
$$\eta_2 = 1 - \frac{T_2}{T_1 + x} \quad (જ્યાં \ x = ઉષ્માપ્રાપ્તિ-$$

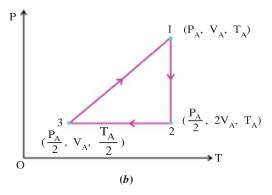
સ્થાનના તાપમાનનો વધારો)

$$\therefore \frac{T_2}{T_1 + x} = 1 - \eta_2 = 1 - 0.5 = 0.5 \quad (2)$$
સમીકરણ (1) અને (2) ગુણોત્તર લેતાં,

$$\frac{T_1 + x}{T_1} = \frac{0.6}{0.5}$$

$$\therefore 5T_1 + 5x = 6T_1$$


$$\therefore T_1 = 5x$$


$$\therefore x = \frac{T_1}{5} = \frac{466.6}{5} = 93.32 \text{ K}$$

ઉદાહરણ 16 : 1 mole આદર્શવાયુનું દબાણ $\mathbf{P}_{\mathbf{A}}$ અને તાપમાન $\mathbf{T}_{\mathbf{A}}$ છે. પ્રથમ તેનું સમતાપી વિસ્તરણ કરી કદ બમણું કરવામાં આવે છે. હવે તેનું અચળ

દબાશે સંકોચન કરી મૂળ કદ પ્રાપ્ત કરવામાં આવે છે અને ત્યાર પછી અચળ કદે દબાણ વધારી મૂળ દબાણ P_A પ્રાપ્ત કરવામાં આવે છે, તો આ સંપૂર્ણ પ્રક્રિયા માટે P - V અને P - T આલેખો સ્કેચ કરો.

ઉકેલ :

આકૃતિ 6.27

સારાંશ

- તંત્ર : વિશ્વના જે ભાગનો થરમૉડાઇનેમિક અભ્યાસ કરવાનો હોય તે ભાગને થરમૉડાઇનેમિક તંત્ર કહે છે.
- પરિસર : તંત્રની આસપાસના બાકીના ભાગ (વિશ્વ) કે જેની સીધી અસર તંત્ર પર થતી હોય, તેને તંત્રનું પરિસર (કે વાતાવરણ) કહે છે.
- પરિસીમા : તંત્ર અને તેના પરિસરને જુદા પાડતી હદને તંત્રની પરિસીમા (સરહદ) કહે છે.
- <mark>થરમૉડાઇનેમિક પ્રક્રિયા :</mark> તંત્ર અને તેના પરિસર વચ્ચે થતી આંતરક્રિયાને થરમૉડાઇનેમિક પ્રક્રિયા કહે છે.
- 5. **અલગ કરેલું તંત્ર :** જો તંત્ર પોતાના પરિસર સાથે આંતરક્રિયા ન કરતું હોય તો તે અલગ કરેલું તંત્ર કહેવાય છે.
- 6. **થરમાંડાઇનેમિક્સનો શૂન્ય ક્રમનો નિયમ** : જો તંત્ર A અને B કોઈ ત્રીજા તંત્ર C સાથે ઉષ્મીય સંતુલનમાં હોય, તો A અને B પણ એકબીજા સાથે ઉષ્મીય સંતુલનમાં હોય.
- 7. ફેઝ ડાયાગ્રામ ઃ દબાણ અને તાપમાનનાં જુદાં-જુદાં મુલ્યો માટે આપેલ દ્રવ્ય કેવું સ્વરૂપ ધરાવે છે, તે દર્શાવતા દબાણ (P) વિરુદ્ધ તાપમાન (T)ના આલેખને તે દ્રવ્યનો ફેઝ ડાયાગ્રામ કહે છે.

- 8. ટ્રીપલ પૉઇન્ટ : દબાણ-તાપમાનનાં જે મૂલ્યો માટે પદાર્થના ઘન, પ્રવાહી અને વાયુ એમ ત્રણેય સ્વરૂપો સહ-અસ્તિત્વમાં અને સમતોલનમાં હોય, તે બિંદુને તે દ્રવ્ય (પદાર્થ)નું ટ્રીપલ પૉઇન્ટ કહે છે.
- 9. ઉષ્મીય પ્રસરણ / સંકુચન : કોઈ પદાર્થનું તાપમાન વધારતાં (ઉષ્મા આપતાં) તેના પરિમાણમાં વધારો થાય છે અને તાપમાન ઘટાડતાં (ઉષ્મા મુક્ત કરીને) તેના પરિમાણમાં ઘટાડો થાય છે. આમ, પદાર્થ દ્વારા ઉષ્માનું શોષણ થતાં તેના પરિમાણમાં થતા વધારાને ઉષ્મીય પ્રસરણ અને ઉષ્મા મુક્ત કરીને પદાર્થના પરિમાણમાં થતા ઘટાડાને ઉષ્મીય સંકુલન કહે છે.
- 10. રેખીય પ્રસરણ : તાપમાનમાં થતા વધારા સાથે પદાર્થની લંબાઈમાં થતા વધારાને તેનું રેખીય પ્રસરણ કહે છે. જે પદાર્થો દરેક દિશામાં એકસરખું ઉષ્મીય પ્રસરણ ધરાવતા હોય તેવા પદાર્થોને આઇસોટ્રોપિક પદાર્થો કહે છે.
- 11. ઉષ્મા-ઊર્જા : વાયુના અશુઓની અસ્તવ્યસ્ત ગતિ સાથે સંકળાયેલ (કુલ વેગમાન શૂન્ય હોય તેવી ગતિ) કુલ ગતિ-ઊર્જાને વાયુમાં રહેલ ઉષ્મા-ઊર્જા કહે છે.
- 12. ઉષ્મા : તંત્ર અને પરિસર વચ્ચે, માત્ર તાપમાનના તફાવતના કારણે થતાં ઊર્જાના વિનિમયને ઉષ્મા કહે છે.
- 13. **થરમૉડાઇનેમિક કાર્ય** : બે વસ્તુઓ વચ્ચે થતી યાંત્રિક આંતરક્રિયાને કારણે જે યાંત્રિક-ઊર્જાનો વિનિમય થાય છે, તેને થરમૉડાઇનેમિક કાર્ય કહે છે.
- 14. થરમાંડાઇનેમિક્સનો પ્રથમ નિયમ : જો તંત્રને પ્રારંભિક અવસ્થા i પરથી અંતિમ અવસ્થા f સુધી લઈ જવામાં આવે, તો તેની આંતરિક ઊર્જામાં થતો ફેરફાર (ΔE_{int}) તેણે મેળવેલ ઉષ્મા Q અને તંત્ર દ્વારા થયેલ કાર્ય Wના તફાવત જેટલો હોય છે. એટલે કે,

$$\Delta E_{int} = Q - W$$

- **15. સમોષ્મી પ્રક્રિયા :** જો તંત્ર અને તેના પરિસર વચ્ચે ઉષ્માનો વિનિમય ન થતો હોય (Q=0), તો તેવી પ્રક્રિયાને સમોષ્મી પ્રક્રિયા કહે છે.
- 16. સમકદ પ્રક્રિયા : જે થરમૉડાઇનેમિક પ્રક્રિયા દરમિયાન તંત્રનું કદ અચળ રાખવામાં આવે તેવી પ્રક્રિયા સમકદ પ્રક્રિયા કહેવાય.
- 17. <mark>ચક્રીય પ્રક્રિયા :</mark> જે થરમૉડાઇનેમિક પ્રક્રિયા દરમિયાન તંત્રને તેની એક થરમૉડાઇનેમિક સંતુલન અવસ્થામાંથી શ્રેણીબદ્ધ પ્રક્રિયાઓ દ્વારા બીજી સંતુલિત અવસ્થામાં લઈ જઈને અંતે મૂળ અવસ્થામાં પાછું લાવવામાં આવે, તેવી પ્રક્રિયાને ચક્રીય પ્રક્રિયા કહે છે.
- 18. <mark>કેલરી</mark> : એક કિલોગ્રામ શુદ્ધ પાણીનું તાપમાન 14.5 °Cથી 15.5 °C સુધી વધારવા માટે જરૂરી ઉષ્માના જથ્થાને એક કિલો કૅલરી કહે છે. તેના હજારમા ભાગને કૅલરી કહે છે.
- 19. ઉષ્માધારિતા : પદાર્થને આપેલ ઉષ્મા Q અને તદ્નુરૂપ તેના તાપમાનના ફેરફાર ΔT ના ગુણોત્તરને પદાર્થની ઉષ્માધારિતા H_C કહે છે.
- 20. વિશિષ્ટ ઉષ્મા : પદાર્થના એકમ દળ દીઠ તેના તાપમાનમાં એક એકમ જેટલો ફેરફાર કરવા માટે જરૂરી ઉષ્માના જથ્થાને તે પદાર્થના દ્રવ્યની વિશિષ્ટ ઉષ્મા કહે છે.
- 21. મોલર વિશિષ્ટ ઉષ્મા : વાયુના એક મોલ દીઠ તેના તાપમાનમાં 1 કૅલ્વિન (કે 1 C°) જેટલો ફેરફાર કરવા માટે જરૂરી ઉષ્માના જથ્થાને તે વાયુની મોલર વિશિષ્ટ ઉષ્મા કહે છે.
- **22. અચળ કદે વિશિષ્ટ ઉપ્મા** $(C_{\mathbf{v}})$: એક મોલ વાયુનું કદ અચળ રાખી તેના તાપમાનમાં એક કૅલ્વિન જેટલો ફેરફાર કરવા માટે જરૂરી ઉષ્માના જથ્થાને તે વાયુની અચળ કદે વિશિષ્ટ ઉષ્મા કહે છે.

થરમૉડાઇનેમિક્સ 149

- 23. અચળ દબાણે વિશિષ્ટ ઉષ્મા (C_p) : એક મોલ વાયુનું દબાણ અચળ રાખી તેના તાપમાનમાં એક કૅલ્વિન જેટલો ફેરફાર કરવા માટે જરૂરી ઉષ્માના જથ્થાને તે વાયુની અચળ દબાણે વિશિષ્ટ ઉષ્મા કહે છે.
- 24. રૂપાંતરણની ઉષ્મા (ગુપ્ત ઉષ્મા L) : એકમદળના કોઈ પદાર્થનું એક અવસ્થા (ઘન, પ્રવાહી કે વાયુ)માંથી બીજી અવસ્થામાં રૂપાંતર કરવા માટે આપવી પડતી ઉષ્માને રૂપાંતરણની ઉષ્મા (ગુપ્ત ઉષ્મા) કહે છે.
- **25. ગલનગુપ્ત ઉષ્મા** (L_p) : એકમદળના ઘન પદાર્થનું પ્રવાહીમાં રૂપાંતરણ થાય (ત્યારે પદાર્થ ઉષ્મા મેળવે છે.) અથવા પ્રવાહીનું ઘનમાં રૂપાંતરણ થાય (ત્યારે પદાર્થ ઉષ્મા ગુમાવે છે), ત્યારે રૂપાંતરણની આ ઉષ્માને ગલનગુપ્ત ઉષ્મા કહે છે.
- 26. અપ્રતિવર્તી પ્રક્રિયા : જો કોઈ પ્રક્રિયા એવી રીતે ઉલટાવવામાં આવે કે જેથી તે તંત્ર પોતાની પ્રારંભિક અવસ્થામાંથી અંતિમ અવસ્થામાં વચગાળાની જે અસંતુલિત અવસ્થાઓમાંથી પસાર થયું હોય તેવી જ અસંતુલિત અવસ્થાઓ અંતિમ અવસ્થામાંથી પ્રારંભિક અવસ્થા દરમિયાન ન આવે, તો તેને અપ્રતિવર્તી પ્રક્રિયા કહે છે.
- 27. પ્રતિવર્તી પ્રક્રિયા : જો કોઈ પ્રક્રિયાને ખૂબ ધીમેથી એવી રીતે ઉલટાવવામાં આવે કે જેથી પ્રારંભિક અવસ્થામાં તે પોતાના મૂળ માર્ગે જ પાછી ફરે (તંત્ર પોતાની પ્રારંભિક અવસ્થામાંથી અંતિમ અવસ્થા સુધી વચગાળાની જે-જે સંતુલિત અવસ્થામાંથી પસાર થયું હતું, તેમાંથી જ પાછું પસાર કરાવીને), તો તેવી પ્રક્રિયાને પ્રતિવર્તી પ્રક્રિયા કહે છે.
- 28. ઉ<mark>ષ્મા-એન્જિન :</mark> ઉષ્માનું કાર્યમાં રૂપાંતર કરતી રચનાને ઉષ્મા-એન્જિન કહે છે.
- 29. ઉષ્મા-એન્જિનની કાર્યક્ષમતા : ચક્રીય પ્રક્રિયા દરમિયાન એક ચક્ર દીઠ મળતા ચોખ્ખા કાર્ય (W) અને ચક્ર દીઠ શોષાતી ચોખ્ખી ઉષ્માના ગુણોત્તરને ઉષ્મા-એન્જિનની કાર્યક્ષમતા કહે છે.
- 30. **રેફ્રિજરેટરનો પરફૉર્મન્સ-ગુણાંક** : કાર્યકારી પદાર્થે (એન્જિને) શોષેલી ઉષ્મા અને તેના પર કરવામાં આવેલા કાર્યના ગુણોત્તરને રેફ્રિજરેટરનો પરફૉર્મન્સ-ગુણાંક કહે છે.
- 31. થરમાંડાઇનેમિક્સનો બીજો નિયમ :
 - (1) **કૅલ્વિન-પ્લાન્કનું કથન :** એવું એન્જિન બનાવવું અશક્ય છે કે જે, ચક્રીય પ્રક્રિયા દરમિયાન ઉષ્માપ્રાપ્તિસ્થાનમાંથી ઉષ્માનું શોષણ કર્યા બાદ પૂરેપૂરી ઉષ્માનું તેટલા જ કાર્યમાં રૂપાંતર કરે.
 - (2) ક્લોસિયસનું કથન : એવું એન્જિન બનાવવું અશક્ય છે કે જેમાં કાર્ય દ્વારા એન્જિનને ઉષ્મા (ઊર્જા) આપ્યા વગર, ઉષ્માનો વિનિમય સતત ઓછા તાપમાનવાળા પ્રાપ્તિસ્થાનમાંથી વધુ તાપમાનવાળા પરિસરમાં થયા કરે.
- 32. કેલોરીમેટ્રી : કેલોરીમેટ્રી એટલે ઉષ્માનું માપન.
- 33. <mark>કેલોરીમીટર</mark> : જે સાધન ઉષ્માનું માપન કરે તેને કેલોરીમીટર કહે છે.
- 34. કાર્નોટ-એન્જિન : કાર્નોટ-એન્જિન, બે સમોષ્મી પ્રક્રિયાઓ અને બે સમતાપી પ્રક્રિયાઓ દ્વારા પૂરી થતી પ્રતિવર્તી ચક્રીય પ્રક્રિયા દ્વારા ઉષ્મા-ઊર્જાનું યાંત્રિક-ઊર્જામાં રૂપાંતરણ કરે છે.
- 35. કાર્નોટ-એન્જિનની કાર્યક્ષમતા : કાર્નોટ-એન્જિનની કાર્યક્ષમતા નીચેના સમીકરણ દ્વારા આપવામાં આવે છે. $\eta=1-\frac{T_2}{T_1}$. જે દર્શાવે છે કે કાર્નોટ-એન્જિનની કાર્યક્ષમતા ઉષ્માપ્રાપ્તિસ્થાનના તાપમાન (T_1) અને ઠારણવ્યવસ્થાના તાપમાન (T_2) પર જ આધાર રાખે છે. તેની કાર્યક્ષમતા કાર્યકારી પદાર્થ પર આધારિત નથી.

સ્વાધ્યાય

નીચેનાં વિધાનો માટે આપેલા વિકલ્પોમાંથી યોગ્ય વિકલ્પ પસંદ કરો :

એક આદર્શવાયુનું પ્રારંભિક દબાણ 3 એકમ અને પ્રારંભિક કદ 4 એકમ છે. કોઠામાં વાયુના અંતિમ દબાણ અને કદના પાંચ પ્રક્રિયાઓ માટેનાં મૂલ્યો તે જ એકમોમાં દર્શાવ્યા છે. કઈ પ્રક્રિયા સમતાપી પ્રક્રિયા હશે ?

		i	ii	iii	iv	v
P	•	12	6	5	4	1
V	7	1	2	7	3	12

(A) i, ii, iii, iv (B) ii, iii, iv, v (C) i, iii, iv, v (D) i, ii, iv, v

2.	Q જેટલી ઉષ્મા વડે 1 g જેટલા પદ	.ાર્થ A નું તાપમાન $3 \ { m C}^{ m o}$ જેટલું વધે અને $1 \ { m g}$ જેટલા	પદાર્થ
	B નું તાપમાન 4 C° જેટલું વધે છે.	, તો કયા પદાર્થની વિશિષ્ટ ઉખ્મા વધારે હશે ?	

(A) A

(B) B

(C) A अने B

(D) A અને Bમાંથી એકેય નહિ.

 પાણીના ટ્રીપલ પોઇન્ટ તાપમાનને સેલ્સિયસ માપક્રમમાં માપતાંºC તાપમાન મળે છે.

(B) -273.16

(C) 100

(D) 0.01

4. વાતાવરણના દબાણે શુદ્ધ પાણી અને તેની બાષ્ય વચ્ચે સંતુલન રચાય ત્યારે તાપમાનK લેવામાં આવે છે.

(A) 100

(B) 273.15

(C) 373.15

(D) 273.16

નિરપેક્ષ શૂન્ય તાપમાનનું મૂલ્ય ફેરનહીટ માપક્રમ મુજબ ⁰F હોય છે.

(B) -273.15

(C) -459.67

(D) -356.67

તાપમાનના કયા મુલ્ય માટે °C અને °F માપક્રમનાં મુલ્યો સરખાં આવે છે ?

(A) 0

(B) 40

(C) -40

(D) 32

એક વાયુતંત્ર 450 cal ઉષ્માનું શોષણ કરે છે અને તંત્ર વડે 200 cal કાર્ય થાય છે, તો તંત્રની આંતરિક ઊર્જામાં થતો ફેરફાર cal થશે.

(A) 250

(B) 650

(C) 325

(D) शून्य

8. તંત્ર ધરાવી શકે, પણ ધરાવી શકે નહિ.

(A) ઉષ્મા, ઉષ્મા-ઊર્જા

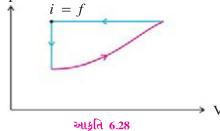
(B) ઉષ્મા-ઊર્જા, ઉષ્મા

(C) ઉષ્મા, યાંત્રિક-ઊર્જા

(D) કાર્ય, ઉષ્મા-ઊર્જા

9. પદાર્થની ઉષ્માધારિતાનું મૂલ્ય તેમજ પર આધારિત છે.

(A) પદાર્થની જાત, પદાર્થના દળ


(B) પદાર્થની જાત, પદાર્થના તાપમાન

(C) પદાર્થના દળ, પદાર્થના તાપમાન

(D) પદાર્થના કદ, પદાર્થના દળ

10. આપેલ આકૃતિમાં P – V ના આલેખમાં એક ચક્રીય પ્રક્રિયા દર્શાવી છે. ચક્રીય પ્રક્રિયા બાદ (a) વાયુની આંતરિક ઊર્જા $\Delta {
m E}_{
m int}$ અને (b) ચોખ્ખો ઉષ્માનો

વિનિમય.

(A) ધન, ઋશ

(B) धन, शून्य

(C) शून्य, ऋश

(D) शून्य, धन

Downloaded from https://www.studiestoday.com

થરમૉડાઇનેમિક્સ 151

> 11. થરમૉડાઇનેમિક્સમાં તંત્ર વડે થતા કાર્યને અને તંત્ર પર થતા કાર્યને ગણવામાં આવે છે.

- (A) धन, शुन्य
- (B) ધન, ઋશ
- (C) ઋগ, ધન
- (D) શૂન્ય, અનંત

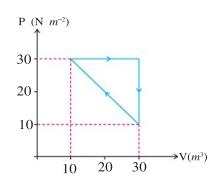
12. 20°C તાપમાને પાણીની ઘનતા 998 kg/m³ છે અને 40°C તાપમાને 992 kg/m³ છે, તો પાણીનો કદ-પ્રસરણાંક C^{o-1} છે.

- (A) $\overline{992 \times 20}$
- (B) $\frac{992}{998 \times 20}$
 - (C) $\frac{6}{998 \times 20}$ (D) $\frac{6}{992 \times 20}$

13. આદર્શવાયુની સમોષ્મી પ્રક્રિયા માટે દબાશ-તાપમાનનો સંબંધ છે.

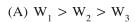
(A) $P^{1-\gamma} T^{\gamma} = અચળ$

(B) $P^{\gamma-1}$ $T^{\gamma}=$ અথળ


(C) $P^{\gamma} T^{1-\gamma} =$ અথળ

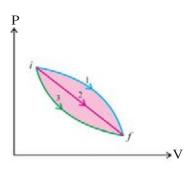
(D) $P^{\gamma} T^{\gamma-1} =$ અথળ

14. આકૃતિમાં દર્શાવેલ ચક્રીય પ્રક્રિયાના પ્રત્યેક ચક્ર દીઠ તંત્ર J જેટલી ચોખ્ખી ઉષ્માનું શોષણ કરશે.



- (B) 900
- (C) 200
- (D) 300


આકૃતિ 6.29


15. આકૃતિમાં દર્શાવ્યા મુજબ આદર્શવાયુ 1, 2 અને 3 આંક વડે રજૂ કરેલ અલગ-અલગ પથ પર પ્રારંભિક અવસ્થા iથી અંતિમ અવસ્થા f સુધી જાય છે. આ પથો પર થતું કાર્ય અન્ $\mathfrak s$ મે W_1, W_2 અને W_3 હોય તો,

(B)
$$W_1 = W_2 = W_3$$

(C)
$$W_1 < W_2 < W_3$$

આકૃતિ 6.30

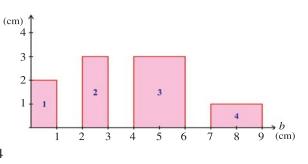
16. 0°C તાપમાને રહેલ 100 g બરફને 100°C તાપમાને રહેલ 100 g પાણીમાં મૂકતાં મિશ્રણનું અંતિમ તાપમાન થાય. (બરફની ગલનગુપ્ત ઉખ્મા 80 cal/g અને પાણીની વિશિષ્ટ ઉષ્મા 1 cal/g C°) છે.

- (A) 10°C
- (B) 20°C
- (D) 30°C
- (D) 50°C

17. આદર્શવાયુની કોઈ પ્રક્રિયામાં dW=0 અને dQ<0 છે, તો વાયુ માટે

(A) તાપમાન વધશે

(B) કદ વધશે


(C) દબાણ અચળ રહેશે

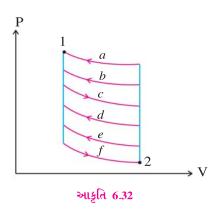
(D) તાપમાન ઘટશે

18.	1	મોલ	આદર્શવાયુનું	તાપમાન	અચળ	દબાણે	0°Cથી	100°C	જેટલું	વધારતાં	થતું	કાર્ય
			છે.									

- (A) $8.3 \times 10^{-3} \text{ J}$ (B) $8.3 \times 10^{-2} \text{ J}$ (C) $8.3 \times 10^{2} \text{ J}$ (D) $8.3 \times 10^{3} \text{ J}$
- 19. એક આદર્શવાયુના સમોષ્મી પ્રસરણ દરમિયાન તેના કદમાં 24 % જેટલો વધારો થાય છે, તો તેના દબાણમાં ઘટાડો થાય. $(\gamma = \frac{3}{3})$
 - (A) 24%
- (B) 76%
- (C) 48%
- (D) 30%
- 20. 27°C જેટલા અચળ તાપમાને 10 mole આદર્શવાયુના સમતાપી વિસ્તરણ દરમિયાન તેનું દબાણ 8 atm માંથી 4 થતું હોય, તો વાયુએ શોષેલ ઉષ્મા J હોય.
 - (A) 2079 R
- (B) 903 R
- (C) 187 R
- 21. એક ઉષ્મા-એન્જિન ઉષ્માપ્રાપ્તિસ્થાનમાંથી 50 kJ ઉષ્મા પ્રાપ્ત કરતું હોય અને તેની કાર્યક્ષમતા 40 % હોય, તો તેના પરિસરને તે કેટલી ઉષ્મા આપશે ?
 - (A) 40 kJ
- (B) 20 J
- (C) 30 k J
- (D) 20 k J
- 22. એક ઉષ્મા-એન્જિનની કાર્યક્ષમતા 30 % છે તે પરિસરને 30 kJ જેટલી ઉષ્મા આપતું હોય, તો તે ઉષ્માપ્રાપ્તિસ્થાનમાંથી kJ ઉષ્મા મેળવતું હશે.
- (B) 39
- (C) 29
- 23. જો ઉષ્મા-એન્જિન, ઉષ્માપ્રાપ્તિસ્થાનમાંથી 2 kJ ઉષ્મા મેળવતું હોય, અને તે 1.5 kJ ઉષ્મા ઠારણવ્યવસ્થામાં છોડી દેતું હોય, તો તેની કાર્યક્ષમતા હશે.
 - (A) 25%
- (B) 50%
- (C) 75%
- (D) 0.5%
- 24. તાપમાનના કયા મૂલ્ય માટે ફેરનહીટ માપક્રમ અને કેલ્વિન માપક્રમ પર એક સરખા મૂલ્યો મળશે ?
 - (A) 459.67
- (B) 574.32
- (D) -32
- 25. એક દ્વિ-પરમાણ્વિક (rigid rotator) આદર્શવાયુનો કાર્નોટ-એન્જિનમાં કાર્યકારી પદાર્થ તરીકે ઉપયોગ કરવામાં આવ્યો છે. ચક્રીય પ્રક્રિયામાં વાયુના સમોષ્મી પ્રસરણ દરમિયાન વાયુનું કદ Vથી વધીને 32 V જેટલું હોય તો કાર્નોટ-એન્જિનની કાર્યક્ષમતા હશે.
 - (A) 0.35
- (B) 0.25
- (C) 0.5
- (D) 0.75
- 26. એક ગરમ દિવસે અમદાવાદથી એક ટ્રકવાળા 37,000 L ડીઝલ ભરે છે. તે ડીઝલને શ્રીનગર (કશ્મીર) પહોંચાડે છે, જ્યાંનું તાપમાન અમદાવાદના તાપમાન કરતાં 23 K નીચું છે. તેણે કેટલું ડીઝલ પહોંચાડ્યું (આપ્યું) હશે ? ડીઝલ માટે $\gamma=3\alpha=9.50\times 10^{-4}~{
 m C}^{
 m o-1}$ (ટ્રકની સ્ટીલ ટૅન્કનું ઉષ્મીય પ્રસરણ-સંકુચન અવગણો.)
 - (A) 808 L
- (B) 36,190 L
- (C) 37,808 L
- (D) 37,000 L

- 27. આકૃતિ 6.30 માં એકસરખી જાડાઈ ધરાવતી એક જ દ્રવ્યની બનેલી ચાર (cm) લંબચોરસ પ્લેટ દર્શાવી છે. જો તેમનું તાપમાન Tથી વધારીને $T + \Delta T$ કરવામાં આવે, તો (a) તેમની ઊંચાઈમાં થતા વધારા અને (b) તેમના ક્ષેત્રફળમાં થતા વધારાને ઊતરતા ક્રમમાં ગોઠવો.
 - (A) 2, 3, 1, 4
- (B) 1, 2, 3, 4
- (C) 4, 1, 2, 3
- (D) 3, 2, 1, 4

આકૃતિ 6.31

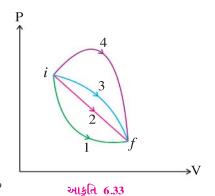

થરમૉડાઇનેમિક્સ 153

જવાબો

1. (D)	2. (A)	3. (D)	4. (C)	5. (C)	6. (C)
7. (A)	8. (B)	9. (A)	10. (C)	11. (B)	12. (D)
13. (A)	14. (C)	15. (A)	16. (A)	17. (D)	18. (C)
19. (D)	20. (A)	21. (C)	22. (D)	23. (A)	24. (B)
25. (D)	26. (B)	27. (D)			

નીચે આપેલ પ્રશ્નોનો જવાબ ટૂંકમાં આપો :

- 1. ફેઝ ડાયાગ્રામ એટલે શું ?
- 2. એક કિલો કૅલરી કોને કહેવાય ?
- 3. અપ્રતિવર્તી પ્રક્રિયા કોને કહેવાય ?
- 4. આઇસોટ્રોપિક પદાર્થ કોને કહે છે ?
- 5. ઊકળતા પાણી કરતાં વરાળથી કેમ વધારે દઝાય છે ?
- 6. ક્વોસાઈ સ્ટેટીક પ્રક્રિયા કોને કહેવાય ?
- 7. કાર્નોટ-એન્જિનની કાર્યક્ષમતા કયા સંજોગોમાં 100% થાય છે ?
- 8. બે તંત્રો થરમૉડાઇનેમિક સંતુલનમાં છે તેમ ક્યારે કહેવાય ?
- 9. સમોષ્મી પ્રક્રિયા એટલે શું ?
- 10. ચક્રીય પ્રક્રિયા સમજાવો.
- 11. શા માટે બહુ પરમાણ્વિક અશુઓની વિશિષ્ટ ઉષ્મા વધુ હોય છે ?
- 12. રેક્રિજરેટરનો પરફૉર્મન્સ-ગુણાંક એટલે શું ?
- 13. સમદાબ પ્રક્રિયા એટલે શું ?
- 14. આપેલ આકૃતિમાં એક તંત્રની 1-2-1 માર્ગ ચક્રીય પ્રક્રિયા (દરેક વખતે તંત્ર અને પરિસર વચ્ચે તાપીય સંતુલન સ્થપાય તે રીતે) માટેના જુદા-જુદા માર્ગ P Vના આલેખમાં દર્શાવ્યા છે. કયા બંધ માર્ગ માટે તંત્ર વડે થતું કુલ કાર્ય મહત્તમ ધન મળશે ?



15. તાપમાનના કયા મૂલ્ય માટે ફેરનહીટ માપક્રમ પરનું અવલોકન (a) સેલ્સિયસ માપક્રમની બમણી કિંમત જેટલું મળશે ? (b) સેલ્સિયસ માપક્રમની અડધી કિંમત જેટલું મળશે ?

નીચે આપેલ પ્રશ્નોના જવાબ આપો :

- થરમૉડાઇનેમિક્સનો શૂન્ય ક્રમનો નિયમ સમજાવો.
- 2. થરમૉડાઇનેમિક્સનો પ્રથમ નિયમ લખો અને સમજાવો.
- 3. ઉષ્મા-એન્જિનનું કાર્ય તથા તેની કાર્યક્ષમતાની સમજૂતી આપો.
- 4. અચળ તાપમાને વાયુનું સંકોચન કરતાં વાયુ પર થતા કાર્યનું સૂત્ર મેળવો.
- 5. કોઈ તંત્રને તેની પ્રારંભિક અવસ્થાથી અંતિમ અવસ્થા સુધી જુદા-જુદા માર્ગે લઈ જતાં થતા કાર્યની સમજૂતી P V ના આલેખો દ્વારા આપો. ચક્રીય પ્રક્રિયા દરમિયાન થતું કુલ કાર્ય સમજાવો.

- 6. પ્રતિવર્તી અને અપ્રતિવર્તી પ્રક્રિયાઓ સમજાવો.
- 7. થરમૉડાઇનેમિક્સના બીજા નિયમનાં માત્ર કથનો લખો.
- 8. આકૃતિમાં તંત્રને પ્રારંભિક અવસ્થા iથી અંતિમ f સુધી લઈ જવા માટેના ચાર માર્ગ દર્શાવ્યા છે :
 - (a) કયા માર્ગ પર આંતરિક ઊર્જાનો ફેરફાર $\Delta {
 m E}_{
 m int}$ મહત્તમ હશે ${
 m ?}$
 - (b) કયા માર્ગ (પ્રક્રિયા) પર તંત્ર વડે મહત્તમ કાર્ય W થશે ?
 - (c) કયા માર્ગ પર ઉષ્માનો વિનિમય મહત્તમ હશે ?

નીચેના દાખલા ગણો :

- 1. 200 g દળના ઍલ્યુમિનિયમના એક ગોળાને 26°C તાપમાનથી 66°C તાપમાન સુધી લઈ જવા માટે કેટલી ઉખ્મા આપવી પડશે ? ઍલ્યુમિનિયમના આ ગોળાની ઉખ્માધારિતા કેટલી થશે ? $C = 0.215 \text{ cal g}^{-1} C^{o-1}$. [જવાબ: 1720 cal, 43 cal C^{o-1}]
- 2. $10~{\rm g}~{\rm O}_2$ ના દબાણ અને તાપમાન અનુક્રમે $3\times 10^5~{\rm N}~{\rm m}^{-2}$ અને $10~{\rm ^oC}$ છે. જ્યારે અચળ દબાણે આ વાયુને તપાવવામાં આવે છે, ત્યારે તેનું કદ $10~{\rm L}$ થાય છે, તો
 - (a) વાયુએ મેળવેલ ઉષ્મા
 - (b) વાયુની આંતરિક ઊર્જામાં થતો ફેરફાર
 - (c) વાયુ વડે વિસ્તરણ દરમિયાન થતું કાર્ય શોધો. $R=8.3~\mathrm{J~mol^{-1}~K^{-1}.~O_2}$ એ દ્વિ–પરમાણ્વિક (rigid rotator) છે. [જવાબ: (a) 7929 J (b) 5664 J (c) 2265 J]
- 3. એક કાર્નો-એન્જિનમાં ઠારણવ્યવસ્થાનું તાપમાન 300 K છે અને તેની કાર્યક્ષમતા 40% છે. જો આ એન્જિનની કાર્યક્ષમતા 50 % કરવી હોય, તો ઉષ્માપ્રાપ્તિસ્થાનનું તાપમાન અચળ રાખીને ઠારણવ્યવસ્થાનું તાપમાન કેટલું ઘટાડવું પડે ? [જવાબ: 50 K]
- 4. એક કાર્નો-એન્જિનમાં ઉષ્માપ્રાપ્તિસ્થાનનું તાપમાન 500 K અને ઠારણવ્યવસ્થાનું તાપમાન 375 K છે. જો એન્જિન તેના પ્રત્યેક ચક્ર દીઠ 600 k cal ઉષ્મા શોષતું હોય, તો (i) કાર્યક્ષમતા ગણો. (ii) પ્રત્યેક ચક્ર દીઠ થતું ચોખ્ખું કાર્ય શોધો. (iii) ઠારણવ્યવસ્થામાં પાછી મેળવાતી ઉષ્માની ગણતરી કરો. (J = 4.2 J/cal)

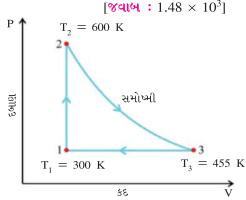
[જવાબ : (i) 25% (ii) $6.3 \times 10^5 \text{ J (iii) } 450 \text{ k cal}$

- 5. 27° C તાપમાને અને 2 atm દબાણે 1 મોલ આદર્શવાયુનું સમોષ્મી સંકોચન કરતાં તેનું કદ પ્રારંભિક કદના આઠમા ભાગનું થાય છે, તો વાયુના અંતિમ દબાણ અને તાપમાન શોધો. વાયુ માટે $\gamma=1.5$ લો. [જવાબ: 45.2 atm, 848 K]
- **6.** ઉપર્યુક્ત દાખલા 5માં વાયુ પર થતું કુલ કાર્ય શોધો. $R = 8.3 \text{ J mol}^{-1} \text{ K}^{-1}$.

[**જવાબ**: 9097 J]

7. એક પરમાણ્વિક આદર્શવાયુને $1.6 \times 10^6 \; \mathrm{Pa}$ ના દબાશે, $300 \; \mathrm{K}$ તાપમાને $0.0083 \; m^3$ કદ ધરાવતા બંધ પાત્રમાં રાખેલો છે. આ વાયુને $2.49 \times 10^4 \; \mathrm{J}$ ઉષ્મા આપવામાં આવે છે, તો તેના અંતિમ તાપમાન અને દબાશ શોધો. પાત્રનું કદ પ્રસરણ અવગણો.

 $R = 8.3 \text{ J mol}^{-1} \text{ K}^{-1}.$ [84] [84] $: 675 \text{ K}, 3.6 \times 10^6 \text{ Pa}]$


Downloaded from https://www.studiestoday.com

થરમૉડાઇનેમિક્સ 155

> 8. 1 મોલ આદર્શવાયુનું તાપમાન 30 C° જેટલું વધારવા માટે કરવું પડતું કાર્ય શોધો. આ આદર્શવાયુનું પ્રસરણ V α $T^{\frac{2}{3}}$ સંબંધ અનુસાર થાય છે. $R=8.3~\mathrm{J~mol^{-1}~K^{-1}}$.

9. સમોષ્મી પ્રક્રિયા માટે PV^{γ} = અચળ હોય છે. એક સમોષ્મી પ્રક્રિયા માટે આ અચળાંકનું મૂલ્ય શોધો કે જેમાં 2 મોલ આદર્શવાયુ (rigid rotator) 1.0 atmના દબાણે અને 300 K તાપમાને ભરેલો છે. આદર્શવાયુ દ્વિ-પરમાણ્વિક (rigid rotator) ધારો.

10. આકૃતિ 6.34માં દર્શાવ્યા મુજબ એક મોલ જેટલા એક પરમાણ્વિક વાયુ માટે પ્રક્રિયા $1 \rightarrow 2$ અચળ કદ રાખીને, પ્રક્રિયા $2 \rightarrow 3$ સમોષ્મી રીતે, અને પ્રક્રિયા $3 \rightarrow 1$ અચળ દબાશ રાખીને કરવામાં આવે છે, તો પ્રક્રિયા $1 \rightarrow 2$ અને $3 \rightarrow 1$ માટે જરૂરી ઉખ્મા Q, આંતરિક ઊર્જાનો ફેરફાર $\Delta \mathrm{E}_{\mathrm{int}}$ અને થયેલ કાર્ય W શોધો. $R = 8.314 \text{ J mol}^{-1} \text{ K}^{-1}$.

આકૃતિ 6.34

જવાબ :

પ્રક્રિયા	Q	$\Delta \mathbf{E}_{ ext{int}}$	W
$1 \rightarrow 2$	3741 J	3741 J	0
$3 \rightarrow 1$	-3221.7 J	-1933 J	-1288.7 J

11. એક ઉષ્મા એન્જિનની કાર્યક્ષમતા 22% છે. જો દરેક ચક્ર દરમિયાન તેણે મેળવેલ ઉષ્મા અને ગુમાવેલ ઉષ્માનો તફાવત 75 J રહેતો હોય, તો ચક્ર દીઠ તેણે ઉષ્માપ્રાપ્તિસ્થાનમાંથી મેળવેલ ઉષ્મા અને ઠારણવ્યવસ્થામાં ગુમાવેલ ઉષ્માનાં મૂલ્યો મેળવો.

[**જવાબ :** 341 J, અને 266 J]

- 12. ગૅસોલિનમાંથી ઉખ્મા પ્રાપ્ત કરતું એક ઉષ્મા-એન્જિન 10,000 J ઉષ્મા મેળવીને તેમાંથી 2000 J ઉષ્માનું કાર્યમાં રૂપાંતર કરે છે. ગૅસોલિનની (combustion) ગુપ્ત ઉષ્મા $L_C = 5.0 \times 10^4 \text{ J/g } \hat{\Theta}.$
 - (a) ઉષ્મા-એન્જિનની કાર્યક્ષમતા કેટલી હશે ?
 - (b) દરેક ચક્ર દરમિયાન કેટલી ઉખ્મા, એન્જિન ઠારણવ્યવસ્થામાં આપતું હશે ?
 - (c) દરેક ચક્ર દરમિયાન કેટલા ગ્રામ ગેસોલિન વપરાતું હશે ?
 - (d) એન્જિન એક સેકન્ડમાં 25 વખત ચક્રીય પ્રક્રિયા કરતું હોય, તો એક કલાકમાં કેટલું ગૅસોલિન વપરાશે ?
 - (e) એક સેકન્ડમાં એન્જિન કેટલા વૉટ (watt) પાવર ઉત્પન્ન કરતું હશે ? હૉર્સ પાવરમાં ? (1 hp = 746 W)

[**%대어**: (a) 20% (b) 8000 J (c) 0.2 g (d) 18 kg/h (e) 50 kW, 67 hp]

Downloaded from https://www.studiestoday.com

પ્રકરણ 7

દોલનો

- 7.1 પ્રસ્તાવના
- 7.2 આવર્તગતિ અને દોલિતગતિ
- 7.3 સરળ આવર્તગતિ (સ.આ.ગ.)
- 7.4 સરળ આવર્તગતિ માટે બળનો નિયમ
- 7.5 સરળ આવર્તગતિનું વિકલ સમીકરણ
- 7.6 ભારિત સ્પ્રિંગોમાં દોલનો
- 7.7 સરળ આવર્તદોલકની કુલ યાંત્રિક-ઊર્જા
- 7.8 સરળ આવર્તગતિ અને નિયમિત વર્તુળમય ગતિ
- 7.9 સાદું લોલક
- 7.10 અવમંદિત સરળ આવર્તગતિ
- 7.11 પ્રાકૃતિક દોલનો, પ્રણોદિત દોલનો અને અનુનાદ
 - સારાંશ
 - સ્વાધ્યાય

7.1 પ્રસ્તાવના (Introduction)

વહાલા વિદ્યાર્થીઓ, વર્તુળમય ગતિ અને પ્રક્ષિપ્ત ગતિના અભ્યાસ દરમિયાન તમે એ શીખ્યા છો કે ક્શ પર વિશિષ્ટ પ્રકારે લાગતાં બળો તેના ગતિપથને કેવી અસર કરે છે. તરંગગતિ, આવર્તગતિ (પ્રસંવાદી ગતિ) અને દોલિત ગતિના ખ્યાલો, તેમની લાક્ષણિક્તાઓ જેવી કે આવૃત્તિ, આવર્તકાળ, કંપ વિસ્તાર વગેરે વિશે પણ તમે ધોરણ 9માં શીખ્યા છો.

ભૌતિકવિજ્ઞાનમાં આવર્તગતિનું ખૂબ જ મહત્ત્વ છે. ધ્વનિ અને વિદ્યુતચુંબકીય તરંગોની ઉત્પત્તિ અને તેના પ્રસરણને સમજવામાં આ ગતિ મુખ્ય ભાગ ભજવે છે. ઘટક કણો જેવા કે અણુ, પરમાણુ કે આયનો પણ દોલિત ગતિ ધરાવે છે.

આ પ્રકરણમાં પ્રથમ આપણે આવર્ત (પ્રસંવાદી)ગતિ અને દોલિત ગતિના આપણા ખ્યાલોને તાજા કરીશું અને સ્થાન આધારિત બળોની અસર હેઠળ આવી ગતિનો અભ્યાસ કરીશું. સ્થિતિ-ઊર્જા, ગતિ-ઊર્જા અને કુલ યાંત્રિક-ઊર્જાના આવર્તગતિ માટેનાં ગાણિતિક નિરૂપણોને જોઈશું. આપણે અવમંદિત દોલનો, પ્રણોદિત દોલનો અને અનુનાદની ઘટનાનો પણ અભ્યાસ કરીશું.

7.2 આવર્તગતિ અને દોલિત ગતિ (Periodic Motion and Oscillatory Motion)

જો કોઈ પદાર્થ કોઈ નિશ્ચિત પથ પર, કોઈ નિશ્ચિત બિંદુને અનુલક્ષીને, નિયત સમયગાળે પોતાની ગતિનું પુનરાવર્તન કરતો હોય, તો આવી ગતિને આવર્તગતિ કહે છે.

ઘડિયાળના કાંટાઓની ગતિ, ચંદ્રની પૃથ્વીની આસપાસની ગતિ અને પૃથ્વીનું સૂર્યની આસપાસનું ભ્રમણએ આવર્તગતિનાં સુંદર ઉદાહરણો છે.

જો કોઈ પદાર્થ કોઈ નિયત બિંદુની આસપાસ આગળ-પાછળ કે ઉપર -નીચે નિયત સમયમાં પુનરાવર્તિત ગતિ કરતો હોય, તો આવી ગતિને દોલિત ગતિ કહે છે. જે પદાર્થ આવી ગતિ કરે છે, તેને **દોલક** કહે છે.

લોલકના ગોળાની ગતિ તથા સ્પ્રિંગ સાથે લટકાવેલ દળદાર પદાર્થની ગતિ એ દોલિત ગતિનાં જાણીતાં ઉદાહરણો છે.

દરેક દોલિત ગતિઓ આવર્તગતિઓ છે પરંતુ દરેક આવર્તગતિઓ દોલિત ગતિઓ ન પણ હોય. જેમકે ઘડિયાળના કાંટાની ગતિ, પૃથ્વીની સૂર્યની આસપાસની ગતિએ આવર્તગતિઓ છે, પરંતુ દોલિત ગતિ નથી. નિયતબિંદુની આસપાસ, આગળ પાછળ કે ઉપર નીચેની ગતિનો ખ્યાલ આ કિસ્સાઓમાં નથી.

આપણે જોઈશું કે દોલિત ગતિને sine અને cosine વિધેયો વડે દર્શાવાય છે. ત્રિકોણમિતિના વિધેયો sine અને cosineએ 2π રેડિયન આવર્તકાળ ધરાવતા આવર્ત વિધયો છે. ગણિતમાં આ વિધેયો પ્રસંવાદી વિધેયો (harmonic functions) તરીકે ઓળખાય છે. આથી દોલિત ગતિને પ્રસંવાદી ગતિ પણ કહેવાય છે.

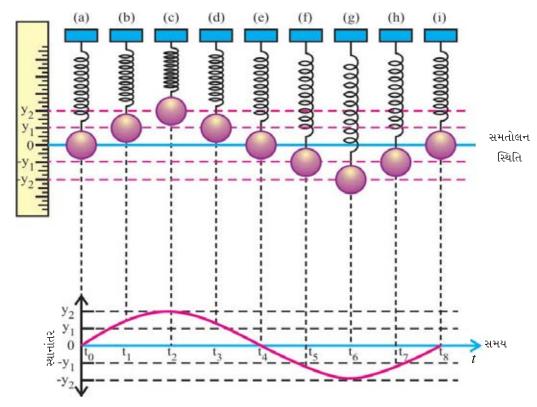
7.3 સરળ આવર્તગતિ (સ.આ.ગ) (Simple Harmonic Motion (SHM))

સરળ આવર્તગતિ એ આવર્તગતિનો સાદામાં સાદો પ્રકાર છે.

જ્યારે કોઈ પદાર્થ નિયતબિંદુથી સ્થાનાંતરના સમપ્રમાણમાં અને નિયતબિંદુ તરફ લાગતા બળની અસર હેઠળ નિયતબિંદુની આસપાસ સુરેખ પથ પર આવર્તગતિ કરતો હોય, તો તેવી ગતિને સરળ આવર્તગતિ કહે છે. સરળ આવર્તગતિ કરતા પદાર્થને સરળ આવર્તદોલક (સ.આ.દો) કહે છે.

હુકના નિયમનું પાલન કરતી વજનરહિત સ્પ્રિંગને આપશે હવે ધ્યાનમાં લઈશું. આ સ્પ્રિંગને દઢ આધાર પરથી આકૃતિ 7.1માં દર્શાવ્યા પ્રમાશે શિરોલંબ લટકાવેલ છે. હવે m દળવાળો પદાર્થને તેના નીચેના છેડે બાંધો. જ્યારે આપશે આ પદાર્થને નીચે તરફ ખેંચીને છોડી દઈશું, ત્યારે તે (લગભગ) સરળ આવર્તગતિ કરશે.

સરળ આવર્તગતિ સાથે સંકળાયેલ કેટલીક મૂળભૂત રાશિઓને સમજવા હવે આકૃતિ7.1નો ઉપયોગ કરો.


સમતોલન સ્થિતિ (મધ્યમાન સ્થિતિ) (Equilibrium position / Mean position) :

સરળ આવર્તદોલક જે બિંદુની સાપેક્ષે સરળ આવર્તગતિ કરતું હોય તે બિંદુને સમતોલન સ્થાન કે મધ્યમાન સ્થાન કહે છે.

આકૃતિ 7.1માં (a), (e) અને (i)એ પદાર્થ સમતોલન સ્થાન પર છે.

સ્થાનાંતર (Displacement)

સમતોલનબિંદુથી કોઈ પણ ક્ષણે દોલકના અંતરને તે ક્ષણે દોલકનું સ્થાનાંતર કહે છે.

સ્પ્રિંગ સાથે જોડેલા દળદાર પદાર્થની સરળ આવર્તગતિ તથા તેના સ્થાનાંતર-સમયનો આલેખ આકૃતિ 7.1

આકૃતિ 7.1 (b)માં $t=t_1$ સમયે દોલકનું સ્થાંનાંતર y_1 છે. $t=t_5$ સમયે દોલકનું સ્થાંનાંતર $-y_1$ છે. (આકૃતિ 7.1 (f)).

કંપવિસ્તાર (Amplitude)

મધ્યમાન સ્થાનથી કોઈ એક તરફ્રના દોલકના અધિકતમ સ્થાનાંતરને દોલકનો **કંપવિસ્તાર** કહે છે.

આકૃતિ 7.1 (c, g)માં બતાવ્યા પ્રમાણે, y_2 એ દોલક વડે પ્રાપ્ત થતું મહતમ સ્થાનાંતર છે. આથી y_2 એ આ દોલકનો કંપવિસ્તાર થશે.

આવર્તકાળ (Periodic Time, Time period or period)

એક દોલન પૂર્ણ કરવા માટે લાગતા સમયને તે દોલકનો આવર્તકાળ (T) કહે છે.

બીજા શબ્દોમાં, જે લઘુતમ સમયનાં અંતરાલમાં દોલક આવર્તગતિનું પુનરાવર્તન કરે તે સમયને તે દોલકનો આવર્તકાળ કહે છે.

આવર્તકાળનો SI એકમ second (s) છે.

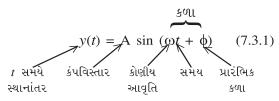
આકૃતિ 7.1ના દોલક માટે t_8-t_0 એ આવર્તકાળ છે.

આવૃત્તિ (Ferquency)

એક સેકન્ડમાં પૂર્ણ થતાં દોલનોની સંખ્યાને તે સરળ આવર્ત દોલકની **આવૃત્તિ** તરીકે વ્યાખ્યાયિત કરવામાં આવે છે.

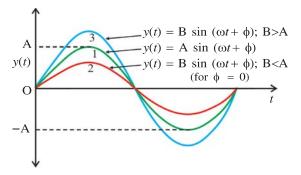
તેનો SI એકમ S^{-1} અથવા H_z છે.

તેને f વડે દર્શાવાય છે, અને f=1/T.


કોણીય આવૃત્તિ (Angular frequency)

દોલકની આવૃત્તિના 2π ગણાને તે દોલકની કોણીય આવૃત્તિ કહે છે.

તેને ω (= $2\pi f$) વડે દર્શાવાય છે.


તેનો SI એકમ rad s^{-1} છે.

જો આપણે સરળ આવર્ત દોલક માટે સ્થાનાંતર વિરુદ્ધ સમયનો આલેખ દોરીએ, તો આકૃતિ 7.1ના નિમ્ન ભાગમાં દર્શાવ્યા પ્રમાણેનો મળે. આવી ગતિને સમય સાથેના ગાણિતિક વિધેય તરીકે નીચે મુજબ દર્શાવી શકાય.

આપણે જાણીએ છીએ કે sine વિધેયનો વિસ્તાર [-1, 1] છે. આથી સ.આ.ગ.નું સ્થાનાંતર y(t) એ $\pm A$ વચ્ચે બદલાશે. (આકૃતિ 7.2 જુઓ)

જો બીજી સ.આ.ગ. $y(t) = B \sin(\omega t + \phi)$ જયાં B < A વડે દર્શાવાય, તો તે આકૃતિ 7.2 ના વક 2 મુજબ હશે અને જો B > A હોય, તો તે વક 3 મુજબનો હોય.

સમયવિધેય તરીકે સ.આ.ગ.નું સ્થાનાંતર આકૃતિ 7.2

રાશિ $(\omega t + \phi)$ ને સ.આ.ગ.ની t સમયની કળા કહે છે. જે દોલકની તે સમયની ગતિની અવસ્થા દર્શાવે છે.

t=0 સમયની સ.આ.દો.ની કળાને પ્રારંભિક કળા (ϕ) (intial phase or ephoch) કે કળા-અચળાંક (ϕ) કહે છે.

એક પૂર્શ દોલનમાં સ.આ.ગ.ની કળામાં 2π rad જેટલો વધારો થાય છે અને આથી n દોલનોના અંતે કળામાં $2n\pi$ rad જેટલો વધારો થાય.

આવર્તગતિનો આવર્તકાળ T છે, તેથી (t+T) સમયનું દોલકનું સ્થાનાંતર એ કોઈ પણ t સમયે દોલકના સ્થાનાંતર જેટલું જ હોય.

એટલે કે,
$$y(t) = y(t + T)$$

$$A \sin(\omega t + \phi) = A \sin[\omega(t + T) + \phi]$$

$$\sin(\omega t + \phi + 2\pi) = \sin(\omega t + \omega T + \phi)$$

$$\omega t + \phi + 2\pi = \omega t + \omega T + \phi$$

$$\therefore \omega = \frac{2\pi}{T} = 2\pi f \left(\because T = \frac{1}{f}\right) \quad (7.3.2)$$

વેગ (Velocity)

હવે દોલકનો વેગ

$$v(t) = \frac{dy(t)}{dt}$$

$$v(t) = \omega A \cos(\omega t + \phi) \qquad (7.3.3)$$
સમીકરણ (7.3.3) પરથી,
$$v = \pm A \omega \sqrt{1 - \sin^2(\omega t + \phi)}$$

$$v = \pm \omega \sqrt{A^2 - A^2 \sin^2 (\omega t + \phi)}$$

$$v = \pm \omega \sqrt{A^2 - y^2}$$
(7.3.4)

$$y = 0$$
 એ, $v = \pm A\omega = \pm v_m$

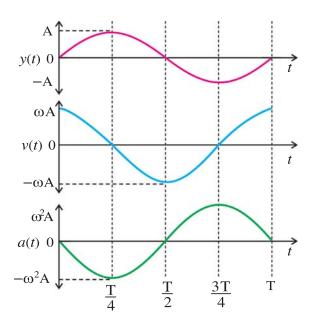
સ.આ.ગ.ની આ મહત્તમ વેગ કે વેગ-કંપવિસ્તાર (v_m) છે.

 $y = \pm A$ (સ.આ.ગ.નાં અંત્યબિંદુ) આગળ, v = 0.

પ્રવેગ (Acceleration)

સ.આ.દો.નો પ્રવેગ એ,

$$a(t) = \frac{dv(t)}{dt} = \frac{d^2y(t)}{dt^2}$$


$$a(t) = -\omega^2 A \sin(\omega t + \phi)$$

$$a(t) = -\omega^2 y(t) \qquad (7.3.5)$$

$$y = 0$$
આગળ, $a(t) = 0$ અને

 $y = \pm A$ આગળ, $a(t) = \mp \omega^2 A$.

સ.આ.ગ.ના કશના સ્થાનાંતર y(t), ગતિ v(t) અને પ્રવેગ a(t)ના સમય વિરુદ્ધના આલેખો આકૃતિ 7.3માં દર્શાવેલ છે.

સ.આ.દો.નાં સ્થાનાંતર, ગતિ અને પ્રવેગના સમય વિરુદ્ધના આલેખો ($\phi=0$ માટે)

આકૃતિ 7.3

y(t), v(t) અને a(t)ના સમય સાથેનાં મૂલ્યો ટેબલ 7.1માં સંકલિત કરેલ છે.

ટેબલ 7.1 y(t), v(t) અને a(t)નાં મૂલ્યો

t	0	$\frac{\mathrm{T}}{4}$	$\frac{\mathrm{T}}{2}$	3T 4	Т
સ્થાનાંતર $y(t)$	0	A	0	-A	0
વેગ <i>v</i> (<i>t</i>)	ωΑ	0	-ωΑ	0	ωΑ
પ્રવેગ <i>a(t)</i>	0	$-\omega^2 A$	0	$\omega^2 A$	0

ઉદાહરણ 1 :

 $y=0.40 \sin(440t+0.61)$ દ્વારા સરળ આવર્ત-દોલકનું સ્થાનાંતર આપવામાં આવેલ છે. આ માટે,

(i) કંપવિસ્તાર (ii) કોણીય આવૃત્તિ (iii) આવર્તકાળ અને (iv) પ્રારંભિક કળાનાં મૂલ્યો શું હશે ? અહીં *v* મીટરમાં અને *t* secondમાં છે.

ઉકેલ:

 $y = 0.40 \sin(440t + 0.61) \hat{\eta}$

 $y = A\sin(\omega t + \phi)$ સાથે સરખાવતાં,

(i) કંપવિસ્તાર $A = 0.40 \ m$

(ii) કોણીય આવૃત્તિ $\omega=440~{
m rad/s}$

(iii) આવર્તકાળ T
$$=\frac{2\pi}{\omega}=2\times\frac{22}{7}\times\frac{1}{440}$$
 $=0.0143 \text{ s}$

(iv) પ્રારંભિક કળા $\phi = 0.61$ rad

7.4 સરળ આવર્તગતિ માટે બળનો નિયમ

સમીકરણ (7.3.5) પરથી એ જોઈ શકાય છે કે સરળ આવર્ત દોલકનો પ્રવેગ એ સમયનું વિધેય છે આથી, આ પ્રવેગ માટે કેટલા બળની જરૂર પડે ? આ પ્રશ્નના ઉત્તર આપવા આપણે ન્યૂટનના ગતિના બીજા નિયમનો ઉપયોગ કરી શકીએ.

આપણે જાણીએ છીએ કે

$$F = ma$$

$$\therefore F = -m\omega^2 y(t), \qquad (7.4.1)$$

આ પુનઃસ્થાપક બળ છે.

હુકના નિયમ અનુસાર, પુનઃસ્થાપક બળ

$$F = -ky(t) \tag{7.4.2}$$

વડે આપવામાં આવે છે, જ્યાં k સ્પ્રિંગ અચળાંક છે.

સમીકરણો (7.4.1) અને (7.4.2)ને સરખાવતાં, $k=m\omega^2$

∴ કોણીય આવૃત્તિ

$$\omega = \sqrt{\frac{k}{m}} \tag{7.4.3}$$

અને દોલકની આવૃત્તિ

$$f = \frac{1}{2\pi} \sqrt{\frac{k}{m}} \quad . \tag{7.4.4}$$

દોલકનો આવર્તકાળ

$$T = \frac{1}{f} = 2\pi \sqrt{\frac{m}{k}} \quad . \tag{7.4.5}$$

ઘણા બધા કિસ્સાઓમાં સ્પ્રિંગ વગર પણ સરળ આવર્તગતિ ઉદ્ભવે છે. આ કિસ્સામાં kને સ.આ.ગ.નો બળઅચળાંક કહે છે અને તે એકમ સ્થાનાંતર દીઠ લાગતું પુનઃસ્થાપક બળ છે $(k=-rac{F}{v})$.

7.5 સરળ આવર્તગતિનું વિકલ સમીકરણ (Differential Equation of Simple Harmonic Motion)

ન્યૂટનના ગતિના બીજા નિયમ પ્રમાણે,

$$F = ma = m \frac{dv(t)}{dt} = m \frac{d^2y(t)}{dt^2}.$$
 (7.5.1)

આને $\mathbf{F} = -k\mathbf{y}(t)$ સાથે સરખાવતાં

$$m\frac{d^2y(t)}{dt^2} = -ky(t)$$

$$\therefore \frac{d^2y(t)}{dt^2} = -\frac{k}{m}y(t)$$

$$\frac{d^2y(t)}{dt^2} = -\omega^2y(t) \qquad (\because 7.4.3)$$

$$\therefore \frac{d^2 y(t)}{dt^2} + \omega^2 y(t) = 0$$
 (7.5.2)

આ સરળ આવર્તગતિનું દ્વિતીય ક્રમનું વિકલ સમીકરણ

છે. આ સમીકરણનો ઉકેલ

$$y(t) = A \sin \omega t$$

અથવા

 $y(t) = B \cos \omega t$

અથવા

sine અને cosine નું કોઈ રેખીય સંયોજન,

$$y(t) = A \sin \omega t + B \cos \omega t$$
 જેવું હોય છે.

ઉદાહરણ 2: એક સ્થિતિસ્થાપક સ્પ્રિંગના નીચેના છેડે 14.4 gનો પદાર્થ લટકાવતાં તેની લંબાઈમાં 9 cm વધારો થાય છે. આ સ્થિતિમાંથી તેને 3 cm નીચે તરફ ખેંચીને છોડી દેતાં તે સરળ આવર્તગતિ શરૂ કરે છે, તો આ ગતિ માટે

- (1) કંપવિસ્તાર અને પ્રારંભિક કળા
- (2) કોણીય આવૃત્તિ અને આવર્તકાળ
- (3) t = 3 s પર કળા
- (4) સ્થાનાંતરનું સમીકરણ અને
- (5) t = 1.5 s ક્ષણે દોલકનું સ્થાનાંતર શોધો.

 $g = 100\pi^2 \text{ cm s}^{-2} \text{ ell.}$

ઉકેલ:

(1) પદાર્થને 3 cm નીચે તરફ ખેંચવામાં આવે છે, આથી તેનો કંપવિસ્તાર 3 cm થાય.

વળી, અહીં દોલનની શરૂઆત ગતિ પથના નીચેના છેડેથી થાય છે.

$$t = 0, y = -A.$$

$$\therefore y = A \sin(\omega t + \phi)$$
 પરથી,

$$-A = A \sin \phi$$

$$\therefore \sin \phi = -1$$

$$\therefore \ \phi = \frac{3\pi}{2} \ \text{rad}.$$

(2)
$$\omega = \sqrt{\frac{k}{m}}$$

$$= \sqrt{\frac{mg}{\Delta l} \times \frac{1}{m}} = \sqrt{\frac{g}{\Delta l}}$$

$$= \sqrt{\frac{100\pi^2}{9}}$$

$$= \frac{10\pi}{3} \text{ rad s}^{-1}.$$

વળી,
$$T = \frac{2\pi}{\omega}$$

$$\therefore T = \frac{2\pi}{\left(10\frac{\pi}{3}\right)}$$

$$=\frac{3}{5}$$
 s.

(3) આપણે જાણીએ છીએ કે કળા

$$\theta = \omega t + \phi$$

$$=\frac{10\pi}{3}\times 3+\frac{3\pi}{2}$$

$$\theta = \frac{23\pi}{2}$$
 rad.

(4)
$$t$$
 સમયે સ્થાનાંતર માટે
 $y = A \sin (\omega t + \phi)$
 $= 3 \sin \left(\frac{10\pi}{3}t + \frac{3\pi}{2}\right) (\text{in cm}).$
(5) $t = 1.5 \text{ sec}$
 $y = 3 \sin \left(\frac{10\pi}{3} \times 1.5 + \frac{3\pi}{2}\right)$
 $= 3 \sin(5\pi + \frac{3\pi}{2})$
 $y = 3 \text{ cm}$

ઉદાહરણ 3: એક સરળ આવર્તગતિને $y = 3 \sin 314 \ t + 4 \cos 314 \ t$ વડે દર્શાવવામાં આવેલ છે. y cm અને t secondમi છે. આ સ.આ.ગ. માટે કંપવિસ્તાર, પ્રારંભિક કળા, આવર્તકાળ અને મહત્તમ વેગ શોધો.

ઉકેલ :
$$y = A \sin(\omega t + \phi)$$

∴ $y = A \cos \phi \sin\omega t + A \sin \phi \cos\omega t$
અહીં, $y = 3\sin 314t + 4\cos 314t$ ને ઉપરોક્ત
સમીકરણ સાથે સરખાવતાં,

કરણ સાથે સરખાવતાં,
$$3 = A \cos \phi \text{ અને}$$

$$4 = A \sin \phi$$

$$\therefore A^2 \cos^2 \phi + A^2 \sin^2 \phi = 3^2 + 4^2$$

$$\therefore A^2 = 25$$

$$A = 5 \text{ cm.}$$
પ્રારંભિક કળા મેળવવા,
$$\tan \phi = \frac{\sin \phi}{\cos \phi} = \frac{4}{3}$$

$$\therefore \phi = \tan^{-1} \left(\frac{4}{3}\right)$$

$$\therefore \phi = 53^\circ 8'.$$

હવે T
$$=\frac{2\pi}{\omega}$$

 $=\frac{2\pi}{314}=0.02 \text{ s}$

મહત્તમ વેગ

$$v_{\text{max}} = \omega A$$

= 314 × 5
= 1570 cm/s

ઉદાહરણ 4: એક કણ સુરેખ પથ પર સ.આ.ગ. કરે છે. દોલકનો કંપવિસ્તાર 2 cm છે. મધ્યમાન સ્થિતિથી જ્યારે કણનું સ્થાનાંતર 1 cm હોય ત્યારે તેનો પ્રવેગ અને વેગના મૂલ્યો સમાન છે. આ સ.આ.ગ. માટે આવર્તકાળ, મહત્તમ વેગ અને મહત્તમ પ્રવેગ શોધો.

ઉકેલ:
અહીં
$$A = 2 \text{ cm.}$$
જયારે $y = 1 \text{ cm,}$
{ વેગનું મૂલ્ય} = {પ્રવેગનું મૂલ્ય}
$$∴ ω \sqrt{A^2 - y^2} = ω^2 y$$

$$A^2 - y^2 = ω^2 y^2$$

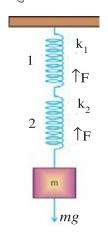
$$2^2 - 1^2 = ω^2 \times 1^2$$

$$∴ ω = \sqrt{3} \text{ rad/s.}$$

$$∴ આવર્તકાળ $T = \frac{2\pi}{ω} = \frac{2\pi}{\sqrt{3}} \text{ s}$
હવે મહત્તમ વેગ
$$v_m = ωA$$

$$= \sqrt{3} \times 2 = 2\sqrt{3} \text{ cm s}^{-1}$$
મહત્તમ પ્રવેગ = $Aω^2$$$

= 6 cm s⁻²
ઉદાહરણ 5 : એક સ્પ્રિંગકાંટાનો માપક્રમ
50 kg આંક દેખાડે છે. આ માપક્રમની લંબાઈ 20 cm છે. આ સ્પ્રિંગ સાથે લટકાવેલ પદાર્થને જ્યારે ખેંચીને છોડતાં તે 0.6 sના આવર્તકાળથી દોલન કરે છે. આ પદાર્થનું વજન શોધો.


ઉકેલ :

અહીં
$$m=50~\mathrm{kg}$$
. સ્પ્રિંગનું મહત્તમ ખેંચાણ $y=20-0$ $=20~\mathrm{cm}=0.2~\mathrm{m}$ આવર્તકાળ $T=0.6~\mathrm{s}$ મહત્તમ બળ $F=\mathrm{mg}$ $=50\times9.8=490~\mathrm{N}$ $\therefore k=\frac{F}{y}$ $=\frac{490}{0.2}=2450~\mathrm{N}~\mathrm{m}^{-1}.$ પણ $T=2\pi\sqrt{\frac{m}{k}}$ $m=\frac{T^2k}{4\pi^2}$ $=\frac{(0.6)^2\times2450}{4\times(3.14)^2}=22.36~\mathrm{kg}$ \therefore પદાર્થનું વજન $=mg=22.36\times9.8$ $=219.1~\mathrm{N}=22.36~kgf$

[1 kgf (kilogram force) = g N; જયાં g = ગુરુત્વપ્રવેગ]

7.6 ભારિત સ્પ્રિંગોમાં દોલનો (Oscillations in Loaded Springs)

(i) k_1 અને k_2 બળ-અચળાંકવાળી બે વજનરહિત સ્પ્રિંગોના શ્રેશી જોડાશને એક છેડેથી આકૃતિ 7.4માં દર્શાવ્યા પ્રમાશે દેઢ આધાર પરથી શિરોલંબ લટકાવેલ છે. તેના બીજા મુક્ત છેડા સાથે m દળ લટકાવેલ છે. હવે પદાર્થને y જેટલા નાના અંતર સુધી નીચે તરફ ખેંચી તે શિરોલંબ દોલન કરી શકે તેમ મુક્ત કરો.

બે સ્પ્રિંગોનું શ્રેણીજોડાણ આકૃતિ 7.4

જો સ્પ્રિંગ 1ની લંબાઈમાં y_1 અને સ્પ્રિંગ 2ની લંબાઈમાં y_2 જેટલો વધારો થાય છે તો,

$$y = y_1 + y_2$$

પરંતુ દરેક સ્પ્રિંગ પર લાગતું પુનઃ સ્થાપક બળ (=mg) સરખું જ છે.

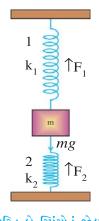
આમ બે સ્ત્રિંગોનાં શ્રેણીજોડાણ માટેનો સમતુલ્ય બળ-અચળાંક

$$k = \frac{k_1 k_2}{k_1 + k_2} \tag{7.6.2}$$

હવે દોલનનો આવર્તકાળ

$$T = 2\pi \sqrt{\frac{m}{k}}$$

$$\therefore T = 2\pi \sqrt{m \left(\frac{k_1 + k_2}{k_1 k_2}\right)}$$
જો $k_1 = k_2 = k'$
ત્યારે $k = \frac{k'k'}{k' + k'}$
આથી સમતુલ્ય સ્પ્રિંગ-અચળાંક


$$k = \frac{k'}{2}$$

અને દોલનનો આવર્તકાળ

$$T = 2\pi \sqrt{\frac{2m}{k'}}$$
 થશે.

(ii) હવે આકૃતિ 7.5માં બતાવ્યા પ્રમાણેની પરિસ્થિતિ લો, જ્યાં m દળવાળો પદાર્થ k_1 અને k_2 સ્થિંગ-અચળાંક ધરાવતી બે સ્થિંગો વચ્ચે જોડેલ છે. દળ mને કોઈ એક તરફ ખેંચી તેને ઊર્ધ્વતલમાં સ.આ.ગ. કરે તેમ મુક્ત કરો.

આ સ્થિતિમાં જ્યારે પદાર્થને કોઈ એક તરફ y જેટલું નાનું સ્થાનાંતર આપવામાં આવે, ત્યારે એક સ્પ્રિંગની લંબાઈમાં y જેટલો વધારો થશે. જ્યારે બીજી સ્પ્રિંગમાં y જેટલો ઘટાડો થશે. આથી ઉત્પન્ન થતા પુનઃસ્થાપક બળો \mathbf{F}_1 અને \mathbf{F}_2 બન્ને એક જ દિશામાં લાગશે.

ભારિત બે સ્પ્રિંગોનું જોડાણ આકૃતિ 7.5

∴ કુલ પુનઃસ્થાપક બળ એ

$$F = F_1 + F_2$$

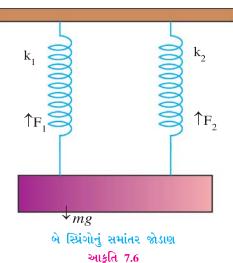
$$= -k_1 y - k_2 y$$

$$= -(k_1 + k_2) y$$

$$= -k y$$

આમ આ કિસ્સામાં સમત્લ્ય સ્પ્રિંગ-અચળાંક એ

$$k = k_1 + k_2. (7.6.4)$$


હવે આવર્તકાળ

$$T = 2\pi \sqrt{\frac{m}{k}} = 2\pi \sqrt{\frac{m}{k_1 + k_2}}$$
 (7.6.5)

જો
$$k_1=k_2=k$$
 'ત્યારે
$$k=2k$$
' અને

$$T = 2\pi \sqrt{\frac{m}{2k!}}.$$

(iii) વજનરહિત અને સમાન લંબાઈ ધરાવતી અને k_1 અને k_2 બળ-અચળાંકવાળી બે સ્પ્રિંગોને આકૃતિ 7.6માં દર્શાવ્યા પ્રમાણે શિરોલંબ લટકાવેલી છે. તેમના મુક્ત છેડે \mathbf{m} દળવાળો અને અસમાન ઘનતા વિતરણવાળો બ્લૉક લટકાવેલ છે, આથી તેમની લંબાઈઓમાં સમાન વધારો થાય છે.

આ પરિસ્થિતિમાં પદાર્થને નીચે તરફ y જેટલા નાના અંતર સુધી ખેંચીને તેને મુક્ત કરવામાં આવે છે, જેથી તંત્ર ઊર્ધ્વતલમાં સ.આ.ગ. કરે છે.

અહીં બંને સ્પ્રિંગોના બળ-અચળાંકો જુદા-જુદા છે. વળી, બંને સ્પ્રિંગોની લંબાઈમાં સમાન વધારો થયેલ હોવાથી બળથી ઉદ્ભવતો બોજો દરેક સ્પ્રિંગ પર જુદો-જુદો વહેંચાય છે. આથી બંને સ્પ્રિંગમાં પુનઃસ્થાપક બળ જુદું-જુદું હોય છે.

જો \mathbf{F}_1 અને \mathbf{F}_2 એ સ્પ્રિંગના ખેંચાણને લીધે ઉત્પન્ન થયેલ પુનઃસ્થાપક બળો હોય તો,

$$F_1 = -k_1 y$$
 અને
$$F_2 = -k_2 y$$
 પણ કુલ પુનઃસ્થાપક બળ (= mg)
$$F = F_1 + F_2$$

$$= -k_1 y - k_2 y$$

$$-ky = -(k_1 + k_2) y$$

જ્યાં, બે સ્પ્રિંગોના સમાંતર જોડાશનો સમતુલ્ય સ્પ્રિંગ-અચળાંક છે.

$$\therefore k = k_1 + k_2.$$
 (7.6.6) દોલકનો આવર્તકાળ

$$T = 2\pi \sqrt{\frac{m}{k}}$$

$$T = 2\pi \sqrt{\frac{m_1}{k_1 + k_2}}$$
(7.6.7)
$$\Re k_1 = k_2 = k', \text{ di}$$

$$k = 2k' \text{ अने}$$

$$T = 2\pi \sqrt{\frac{m}{2k'}}.$$

ઉદાહરણ 6:0.1 m દબાયેલ એક સ્પ્રિંગમાં 10 N પુનઃસ્થાપક બળ ઉદ્ભવે છે. 4 kg દળવાળો એક પદાર્થ તેના પર મૂકેલ છે. જો આ સ્પ્રિંગ સ.આ.દો. કરે તો (i) આ સ્પ્રિંગનો બળ-અચળાંક, (ii) પદાર્થના વજનથી સ્પ્રિંગમાં ઉદ્ભવતું સંકોચન અને (iii) આ દોલકનો આવર્તકાળ ગણો (g=10 N/kg).

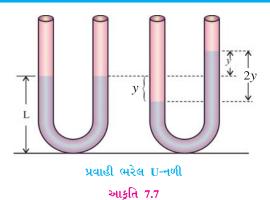
ઉકેલ:

અહીં,
$$F = 10 \text{ N}$$

સ્થાનાંતર $\Delta y = 0.1 \text{ m}$

$$m = 4 \text{ kg.}$$

આપણે જાણીએ છીએ,


(i)
$$k = \frac{F}{\Delta y}$$
$$= \frac{10}{0.1}$$

$$k = 100 \text{ Nm}^{-1}.$$

(ii)
$$y = \frac{mg}{k} = \frac{4 \times 10}{100} = 0.4$$
m

(iii)
$$T = 2\pi \sqrt{\frac{m}{k}}$$
$$= 2\pi \sqrt{\frac{4}{100}}$$
$$= \frac{4\pi}{10}$$
$$T = 0.4\pi \text{ s.}$$

ઉદાહરણ 7: એક U નળી ρ જેટલી ઘનતાવાળા પ્રવાહીથી આંશિક ભરેલી છે. U નળીની દરેક ભુજામાં પ્રવાહીની ઊંચાઈ L છે. એક ભુજામાં પ્રવાહીની મુક્ત સપાટીને y જેટલું સ્થાનાંતર આપી પ્રવાહીને દોલિત કરવામાં આવે, તો સાબિત કરો કે આ દોલનો સરળ આવર્ત પ્રકારનાં છે. આ સ.આ.ગ.નો આવર્તકાળ શોધો.

ઉકેલ :

 \mathbf{U} —નળીની એક ભુજામાં પ્રવાહી y જેટલું સ્થાનાંતર નીચે તરફ પામે, તો બીજી ભુજામાં પ્રવાહી y જેટલું સ્થાનાંતર ઉપર તરફ અનુભવે.

- ∴ આકૃતિ 7.7માં દર્શાવ્યા પ્રમાણે બંને ભુજાઓમાં પ્રવાહીની મુક્ત સપાટીઓ વચ્ચે ઊંચાઈનો તફાવત = 2y.
- \therefore 2y ઊંચાઈના પ્રવાહીના સ્તંભથી ઉદ્ભવતું દબાણ $\mathbf{P}=2y\mathbf{\rho}g$

જ્યાં, ρ = પ્રવાહીની ઘનતા, g = ગુરુત્વપ્રવેગ.

આ દબાશને કારશે ઉદ્ભવતું બળ F = PA

$$\therefore$$
 F = 2 $y \rho g A = (2\rho g A)y = ky$

∴ F α y

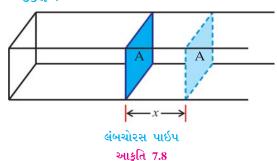
વળી, આ બળ સ્થાનાંતર yની વિરુદ્ધ દિશામાં લાગતું હોવાથી F $\alpha - y$.

∴ આ દોલનો સરળ આવર્ત પ્રકારનાં છે.

દોલકનો આવર્તકાળ

$$T = 2\pi \sqrt{\frac{m}{k}}$$

$$=2\pi\sqrt{\frac{m}{2\rho g A}}.$$


પ્રવાહીનું દળ $m=\mathrm{LA}\rho=2y\mathrm{A}\rho$

$$=2\pi\sqrt{\frac{2yA\rho}{2\rho gA}}$$

$$T = 2\pi \sqrt{\frac{y}{g}} .$$

ઉદાહરણ 8 : A જેટલું આડછેદનું ક્ષેત્રફળ ધરાવતી એક લંબચોરસ પાઇપનો એક છેડો બંધ છે અને બીજો છેડો હવાયુસ્ત રહે તેમ તેટલા જ આડછેદવાળો બ્લૉક મૂક્યો છે. બ્લૉકની સમતોલન સ્થિતિમાં પાઇપમાં હવાનું દબાણ P અને કદ V છે. જો બ્લૉકને અંદર તરx જેટલું અતિ નાનું સ્થાનાંતર આપી છોડી દેવામાં આવે, તો સાબિત કરો કે તે સ.આ.ગ. કરે છે અને તેનો આવર્તકાળ પણ શોધો. હવાનું સંકોચન સમતાપી ગણો.

ઉકેલ :

ધારો કે હવાનું સૂક્ષ્મ સંકોચન થતાં દબાણમાં થતો વધારો = ΔP અને કદમાં થતો ઘટાડો = ΔV

સમતાપી સંકોચન માટે,

 $(P+\Delta P)\;(V-\Delta V)=PV$ (બૉઇલના નિયમ PV = અચળ પરથી)

$$\therefore PV - P\Delta V + V\Delta P - \Delta P\Delta V = PV$$

હવે $\Delta P\Delta V$ અત્યંત સૂક્ષ્મ હોવાથી બીજાં પદોની સરખામણીમાં $\Delta P\Delta V$ અવગણતાં અને ΔP સૂત્રોનો કર્તા બનાવતાં,

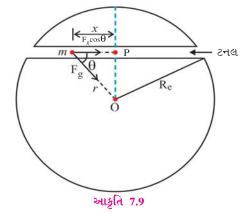
$$\Delta P = \frac{P\Delta V}{V} = \frac{PAx}{V} \ (\because \Delta V = Ax) \ (1)$$

આ વધારાના દબાણને લીધે બ્લૉક પર તેના સ્થાનાંતરના વિરુદ્ધ દિશામાં લાગતું (પુનઃસ્થાપક) બળ,

$$F = A\Delta P \tag{2}$$

સમીકરણ (1)માંથી ΔP નું મૂલ્ય સમીકરણ (2)માં મૂકતાં,

$$F = \left(\frac{PA^2}{V}\right)x = kx$$


જ્યાં
$$k = \frac{PA^2}{V} = અચળ$$

આ બળ સ્થાનાંતરની વિરુદ્ધ અને સ્થાનાંતરના સમપ્રમાણમાં હોવાથી અત્રે બ્લૉક સ.આ.ગ. કરે છે.

હવે આવર્તકાળ, T =
$$2\pi\sqrt{\frac{m}{k}}$$

$$\therefore T = 2\pi \left(\frac{mV}{PA^2}\right)^{\frac{1}{2}}$$

ઉદાહરણ 9 : આકૃતિ 7.9માં દર્શાવ્યા પ્રમાણે પૃથ્વીમાં કોઈ એક ટનલ (બોગદું) ખોદીને તેમાં પદાર્થને મુક્ત પતન કરાવવામાં આવે છે. સાબિત કરો કે આ પદાર્થ સ.આ.ગ. કરે છે. પૃથ્વીને સમાન ઘનતા ρ ધરાવતો ગોળો ધારો. આ સ.આ.ગ.નો આવર્તકાળ કેટલો હશે ?

ઉકેલ : આકૃતિમાં 7.9માં દર્શાવ્યા પ્રમાણે ધારો કે આપેલી ટનલમાં m દળનો પદાર્થ, પૃથ્વીના કેન્દ્ર Oથી r જેટલા અંતરે છે. આ વખતે તેના પર ρ ઘનતાવાળા r ત્રિજ્યાના ગોળાના, પૃથ્વીના કેન્દ્ર પર સંકેન્દ્રિત મનાતા દળના કારણે ગુરુત્વાકર્ષી બળ F_g લાગશે. F_g નો cosine ઘટક પદાર્થની ટનલમાં ગતિ માટે જવાબદાર છે.

$$\therefore F = F_g \cos \theta$$

$$= \frac{Gm(\frac{4}{3}\pi r^3 \rho)}{r^2} \cos \theta \tag{1}$$

જ્યારે પદાર્થ પૃથ્વીના કેન્દ્રથી r અંતરે છે, ત્યારે ટનલના મધ્યબિંદુ $\operatorname{Pથl}$ ધારો કે તેનું અંતર x છે.

∴
$$\cos\theta = \frac{x}{r}$$
 (2) સમીકરણ (1) અને (2) પરથી
$$F = \left(\frac{4}{3}\pi G \rho m\right) x$$
 \Rightarrow F α x અને $k = \frac{4}{3}\pi G \rho m$ વળી, આ બળની દિશા મધ્યબિંદુ P તરફ છે. ∴ પદાર્થ ટનલમાં સ.આ.ગ. કરે છે. હવે આવર્તકાળ, $T = 2\pi \sqrt{\frac{m}{k}}$
$$T = 2\pi \sqrt{\frac{3}{4\pi G \rho m}}$$

$$T = 2\pi \sqrt{\frac{3}{4\pi G \rho m}}$$

7.7 સરળ આવર્તદોલકની કુલ યાંત્રિક-ઊર્જા (Total Mechanical Energy in Simple Harmonic Osallator)

સ.આ.ગ. કરતો કણ બે પ્રકારની ઊર્જા ધરાવે છે :

- (i) કણની ગતિ થકી ગતિ-ઊર્જા (Kinetic Enrgy) (KE) અને
- (ii) કણના સ્થાન થકી સ્થિતિ-ઊર્જા (Potential Energy) (PE).

વહાલા વિદ્યાર્થીઓ, તમે જાણો છો કે કણની ગતિ-ઊર્જાએ

$$K=rac{1}{2}mv^2$$
 સમીકરણ $v=\omega\sqrt{A^2-y^2}$ નો ઉપયોગ કરતાં
$$K=rac{1}{2}m\omega^2(A^2-y^2) \eqno(7.7.1)$$

જો કણનું સ્થાનાંતર $y = A \sin(\omega t + \phi)$ હોય તો $v = A\omega\cos(\omega t + \phi)$

$$\therefore K = \frac{1}{2}m\omega^2 A^2 \cos^2(\omega t + \phi) \qquad (7.7.2)$$

અત્રે પ્રસ્તુત કિસ્સામાં, દોલક પરનું બળ F = -ky (જેને પુનઃસ્થાપક બળ કહે છે). આવા કિસ્સામાં સ્થિતિ- ઊર્જા

$$U = \frac{1}{2}ky^2 (7.7.3)$$

વડે આપવામાં આવે છે. (જે તમે સિમેસ્ટર I માં ભણ્યા છો.)

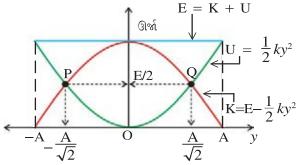
 \therefore સ.આ.ગ. કરતા કણની સ્થિતિ-ઊર્જા $U = \frac{1}{2}kA^2\sin^2(\omega t + \phi)$

હવે દોલકની કુલ યાંત્રિક-ઊર્જા (Mechanical Energy)

(7.7.4)

E = K + U
=
$$\frac{1}{2}mv^2 + \frac{1}{2}ky^2$$

= $\frac{1}{2}m\omega^2(A^2 - y^2) + .\frac{1}{2}m\omega^2y^2$
(: $k = m\omega^2$)

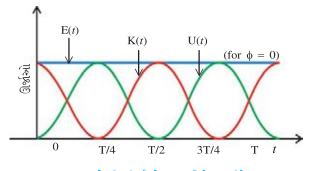

$$E = \frac{1}{2}m\omega^2 A^2 \tag{7.7.5}$$

અથવા

$$E = \frac{1}{2}kA^2 (7.7.6)$$

આ સમીકરણો (7.7.5) અને (7.7.6) સૂચવે છે કે રેખીય સરળ આવર્તદોલકની કુલ યાંત્રિક-ઊર્જા અચળ છે. તથા સમય t અને સ્થાનાંતર yથી સ્વતંત્ર છે. E α A².

આકૃતિ 7.10 સ.આ.દો.ની ગતિ-ઊર્જા, સ્થિતિ-ઊર્જા અને કુલ યાંત્રિક-ઊર્જાના સ્થાનાંતર વિધેય તરીકેના આલેખો દર્શાવે છે. (સમીકરણો (7.7.1), (7.7.3) અને (7.7.6)નો ઉપયોગ કરો.)


સ.આ.દો.ની ઊર્જાઓ વિરુદ્ધ સ્થાનાંતર આકૃતિ 7.10

આકૃતિ 7.10 પરથી નીચેના મુદ્દાઓ નોંધવા રહ્યા : (i) મધ્યમાન સ્થિતિ y=0 એ, સ્થિતિ-ઊર્જા ન્યૂનતમ (U=0) અને ગતિ-ઊર્જા મહત્તમ ($K=\frac{1}{2}kA^2=E$) હોય છે.

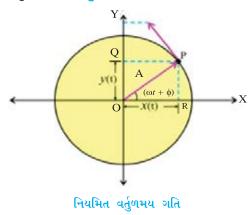
- (ii) $y=\pm A$ (ગતિપથનાં અંત્યબિંદુઓ) આગળ સ્થિતિ- \Im ર્જા મહત્તમ (U = $\frac{1}{2}kA^2=E$) અને ગતિ- \Im ર્જા ન્યૃન્યતમ (K = 0) છે.
- (iii) બિંદુઓ P અને Q કે જ્યાં U અને K ના આલેખો એકબીજાને છેદે છે, ત્યારે $U=K=rac{1}{2}E$.

(iv) P અને Qના યામો (
$$\mp \frac{A}{\sqrt{2}}, \frac{E}{2}$$
).

આકૃતિ 7.11 એ સ.આ.દો.ની ગતિ-ઊર્જા, સ્થિતિ-ઊર્જા અને યાંત્રિક-ઊર્જાના સમયવિધયના આલેખો બતાવે છે. (સમીકરણો (7.7.2), (7.7.4) અને (7.7.6)નો ઉપયોગ કરો.)

સ.આ.દો.ની ઊર્જાઓ સમયવિધેય તરીકે **આકૃતિ 7.11**

આલેખો 7.11 પરથી જોઈ શકાય છે કે દોલક જ્યારે એક દોલન પૂર્ણ કરે છે, ત્યારે K અને U બે દોલનો પૂર્ણ કરે છે. આમ, ગતિ-ઊર્જા અને સ્થિતિ-ઊર્જાની આવૃત્તિ સ.આ.ગ. કરતાં બમણી છે.


ઉદાહરણ 10 : મધ્યમાન સ્થિતિથી ગતિ શરૂ કર્યાની એક સેકન્ડ બાદ 10 kg દળ ધરાવતા એક પદાર્થનો વેગ 6 ms⁻¹ છે. જો સ.આ.દો.નો આવર્તકાળ 6 s હોય તો સ.આ.દો.ની ગતિ-ઊર્જા, સ્થિતિ-ઊર્જા અને કુલ યાંત્રિક-ઊર્જા શોધો.

ઉકેલ :

અહીં,
$$m = 10 \text{ kg}$$
, $v = 6 \text{ ms}^{-1}$, $T = 6 \text{ s}$.
હવે $K = \frac{1}{2}mv^2 = \frac{1}{2} \times 10 \times 36 = 180 \text{ J}$. $v = \omega A \cos \omega t = \omega A \cos \left(\frac{2\pi}{T} \cdot t\right)$. $6 = A\omega \cos \left(\frac{2\pi}{6} \times 1\right)$. $= A\omega/2$. $\therefore A\omega = 12$. હવે $E = \frac{1}{2}mA^2\omega^2$. $= \frac{1}{2} \times 10 \times 144$. $E = 720 \text{ J}$. $\therefore U = E - K = 720 - 180$. $\therefore U = 540 \text{ J}$.

7.8 સરળ આવર્તગતિ અને નિયમિત વર્તુળમય ગતિ (Simple Harmonic Motion and Uniform Circular Motion)

O કેન્દ્ર અને A ત્રિજયાવાળા વર્તુળાકાર માર્ગ પર ω જેટલી અચળ કોણીય ઝડપથી વિષમઘડી દિશામાં ગતિ કરતો એક કણ P લો (જુઓ આકૃતિ 7.12). અહીં કણને સંદર્ભકણ અને વર્તુળને સંદર્ભવર્તુળ તરીકે વર્ણવામાં આવે છે.

આકૃતિ 7.12

સંદર્ભરેખા OXની સાપેક્ષે t સમયે કણનું કોણીય સ્થાન $(\omega t + \phi)$ જયાં ϕ એ પ્રારંભિક કળા છે. Q એ Pનો Y-અક્ષ પરનો પ્રક્ષેપ છે, જે t સમયે સ્થાનસદિશ OPનો પ્રક્ષેપ = OQ = y(t) આપે છે.

આકૃતિ 7.12ની ભૂમિતિ પરથી,

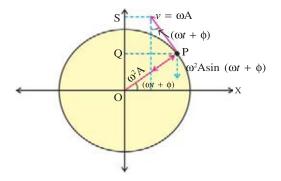
$$\sin(\omega t + \phi) = \frac{OQ}{OP}$$

$$\therefore y(t) = A \sin(\omega t + \phi)$$
 (7.8.1)

આ સમીકરણ (7.8.1) એ Y-અક્ષ પર સ.આ.ગ. કરતાં કણનું સ્થાનાંતર બતાવે છે.

જો OPનો પ્રક્ષેપ X-અક્ષ પર OR તરીકે લેવામાં આવે, તો

$$\cos(\omega t + \phi) = \frac{OR}{OP}$$


$$x(t) = A \cos(\omega t + \phi) \tag{7.8.2}$$

આ સમીકરણ (7.8.2) એ X-અક્ષ પર સ.આ.ગ. કરતાં કણનું સ્થાનાંતર બતાવે છે.

આમ આપણે તારવી શકીએ કે,

સરળ આવર્તગતિ એ નિયમિત વર્તુળમય ગતિની, સંદર્ભવર્તુળના વ્યાસ પરના પ્રક્ષેપની ગતિ છે.

હવે A જેટલી ત્રિજ્યાના વર્તુળ પર ω જેટલી કોણીય ઝડપથી ગતિ કરતા સંદર્ભકણ Pની ગતિ $\stackrel{\rightarrow}{v}$ નું મૂલ્ય $v=\omega A$ છે. t સમયે vનો Y-અક્ષ પરનો પ્રક્ષેપ આકૃતિ 7.13માં બતાવેલ છે.

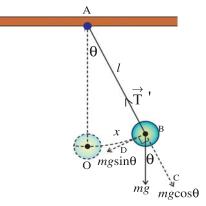
નિયમિત વર્તુળમય ગતિનો વેગ અને પ્રવેગ

આકૃતિ 7.13

આકૃતિ 7.13 ની ભૂમિતિ પરથી,

$$\cos(\omega t + \phi) = \frac{SQ}{\omega A}$$

$$\therefore v(t) = \omega A \cos(\omega t + \phi)$$
 (7.8.3)


જયારે દોલક ધન y-દિશામાં ગતિ કરતો હોય ત્યારે v ધન હોય છે અને ઋણ y-દિશા તરફ ગતિ કરતો હોય તો v ઋણ હોય છે.

આ જ રીતે સંદર્ભકણનો કેન્દ્રગામી પ્રવેગ $\omega^2 A$ નો y-દિશામાંનો ઘટક $\omega^2 A \sin(\omega t + \phi)$ છે.

7.9 સાદું લોલક (Simple Pendulum)

કોઈ એક સ્થિર (દઢ) આધાર પરથી વજનરહિત અને ખેંચી ન શકાય તેવી વળરહિત દોરી વડે લટકતી નાની દળદાર વસ્તુથી બનતી રચનાને સાદું લોલક કહે છે.

આકૃતિ 7.14ને ધ્યાનમાં લો. સાદા લોલકના સમગ્ર દળને લટકાવેલા ગોળાના દ્રવ્યમાનકેન્દ્ર પર એકત્રિત થયેલ ગણવામાં આવે છે. આધારબિંદુથી ગોળાના દ્રવ્યમાનકેન્દ્ર સુધીનું અંતર તે સાદા લોલકની (અસરકારક) લંબાઈ (1) છે.

સાદું લોલક આકૃતિ 7.14

હવે વિચારો કે લોલકના ગોળાને તેના સમતુલન-સ્થાન Oમાંથી θ જેટલું નાનું કોણીય સ્થાનાંતર આપી બિંદુ B આગળથી મુક્ત કરતાં તે એ ઊર્ધ્વ સમતલમાં દોલનો કરે છે. m દળ ધરાવતા આ ગોળા પર લાગતાં બળો નીચે મુજબ થશે :

- (1) નિમ્ન દિશામાં લાગતું ગોળાનું વજન (= mg)
- (2) \overrightarrow{BA} દિશામાં દોરીમાં લાગતું તણાવ \overrightarrow{T} '.

બળ mgના ઘટકો :

- (i) mg $\cos\theta$ એ \overrightarrow{BC} તરફ લાગશે અને
- (ii) mg $\sin\theta$ એ \dot{BD} તરફ લાગશે.

દોરી ખેંચાયેલી રહે છે તેથી.

$$T' = mg \cos\theta \tag{7.9.1}$$

બળનો બીજો ઘટક $\operatorname{mg} \sin \hspace{-0.05cm} heta$ ગોળાને તેની સમતોલન સ્થિતિ Oમાં પાછો લાવે છે. આથી ગોળા પર લાગતું આ પુનઃ સ્થાપક બળ છે.

$$F = -mg \sin \theta.$$
 (7.9.2)
જો ગોળાનું કોશીય સ્થાનાંતર θ નાનું હોય, તો
$$F = -mg\theta \qquad (\mathring{\sigma} + \theta \to 0, \sin \theta \approx \theta)$$
$$= -mg\frac{\text{ચાપ OB}}{l}$$

$$= -mg\frac{x}{l} \qquad (\because \text{ and } OB = x)$$

$$\therefore F = -\left(\frac{mg}{l}\right)x\tag{7.9.3}$$

પણ m, g અને l અચળ છે.

$$F = -kx$$

$$\operatorname{vui}, \quad k = \frac{mg}{l} \tag{7.9.4}$$

સમીકરણ (7.9.4) એ સાદા લોલકનો બળ અચળાંક આપે છે.

હવે સાદા લોલકનો આવર્તકાળ,

$$T = 2\pi \sqrt{\frac{m}{k}} = 2\pi \sqrt{\frac{m}{mg/l}}$$

$$\therefore T = 2\pi \sqrt{\frac{l}{g}}$$
 (7.9.5)

દોલકની આવૃત્તિ

$$f = \frac{1}{T} = \frac{1}{2\pi} \sqrt{\frac{g}{l}}$$
 (7.9.6)

અને કોણીય આવૃત્તિ

$$\omega = 2\pi f = \sqrt{\frac{g}{l}} \tag{7.9.7}$$

વહાલા વિદ્યાર્થીઓ, એ યાદ રાખો કે નાના ખૂણા hetaમાટે સાદા લોલકનો આવર્તકાળ

- (i) ગોળાના દળથી સ્વતંત્ર છે.
- (ii) દોલકના કંપવિસ્તારથી સ્વતંત્ર છે.
- (iii) તે લોલકની લંબાઈ પર આધાર રાખે છે.

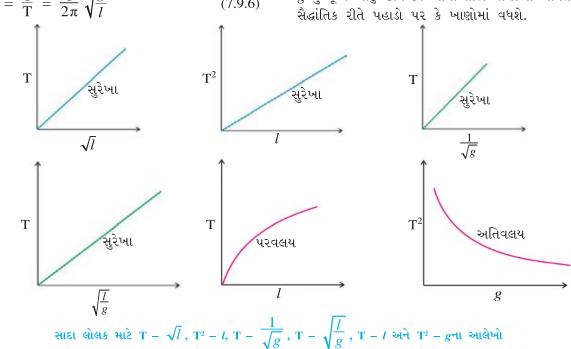
T α \sqrt{l} અને

(iv) તે ગુરુત્વીય પ્રવેગ પર આધારિત છે.

T
$$\alpha \frac{1}{\sqrt{g}}$$
.

સમીકરણ (7.9.5) પરથી આકૃતિ 7.15 મુજબના આલેખો દોરી શકાય .

વહાલા વિદ્યાર્થીઓ, નીચેના મુદ્દાઓ નોંધો ઃ


(i) T α \sqrt{l} એનો અર્થ એવો નથી કે જેમ $l \to \infty$, $T \to \infty$.

આ સંબંધ $l \ge$ પૃથ્વીની ત્રિજ્યા માટે લાગું પડતું નથી.

(ii) સુતરાઉ દોરીની જગ્યાએ જો ગોળો ધાત્ના તાર વડે લટકાવેલ હોય તો લોલકની લંબાઈ તાપમાનના વધવાથી વધશે અને તાપમાન ઘટવાથી ઘટશે.

આનો અર્થ એમ કે સાદા લોલકનો આવર્તકાળ વધે કે ઘટે તેનો આધાર તાપમાન વધશે કે ઘટશે તેના પર છે. આ જ કારણથી લોલક ઘડિયાળ શિયાળામાં ઝડપી અને ઉનાળામાં ધીમી પડે છે.

(iii) પૃથ્વીની સપાટી કરતાં પહાડો ઉપર કે ખાણોમાં g નું મૂલ્ય ઓછું હોય છે. આથી સાદા લોલકનો આવર્તકાળ

આકૃતિ 7.15

(A) લિફ્ટમાં સાદું લોલક :

જો a જેટલા પ્રવેગથી ગતિ કરતી લિફ્ટમાં સાદું લોલક દોલન કરતું હોય, તો તેના પર લાગતું અસરકારક g એ,

$$g_{eff} = g \pm a$$

'+' નિશાની લિફ્ટ ઉપર જતી હોય ત્યારે અને

'–' નિશાની લિફ્ટ નીચે આવતી હોય ત્યારે લેવામાં આવે છે.

આથી સાદા લોલકનો આવર્તકાળ

$$T = 2\pi \sqrt{\frac{l}{g \pm a}}.$$

હવે, ધારો કે લિફ્ટ મુક્તપતન કરે છે.

$$\therefore a = g$$

અને
$$T = 2\pi \sqrt{\frac{l}{g-g}} = \infty$$
.

એટલે કે લોલક દોલન નહીં કરે.

(B) ટ્રેનના ડબામાં સાદું લોલક :

a જેટલા પ્રવેગ કે પ્રતિપ્રવેગની ગતિ કરતાં ટ્રેનના ડબામાં જો સાદું લોલક દોલન કરતું હોય, તો gનું અસરકારક મૃલ્ય

$$g_{eff} = \sqrt{g^2 + a^2}$$

$$\therefore T = 2\pi \sqrt{\frac{l}{(g^2 + a^2)^{\frac{1}{2}}}}.$$

(C) સેકન્ડ લોલક :

જે લોલકનો આવર્તકાળ બે સેકન્ડ હોય છે તેવા લોલકને સેકન્ડ લોલક કહે છે. આવું લોલક તેના દોલન દરમિયાન એક અંતિમ સ્થાનેથી બીજા અંતિમ સ્થાન સુધી જતાં એક સેકન્ડ જેટલો સમય લે છે. તે સમતોલન સ્થિતિ આગળથી દર સેકન્ડે પસાર થાય છે.

ઉદાહરણ 10 : એક સેકન્ડ લોલકની લંબાઈ જો બમણી કરવામાં આવે, તો તેનો આવર્તકાળ શું થશે ?

ઉકેલ :

આપણે જાણીએ છીએ કે,

$$T = 2\pi \sqrt{\frac{l}{g}} = 2 \text{ s}$$

$$\therefore T' = 2\pi \sqrt{\frac{2l}{g}}$$

$$= \sqrt{2} \times 2\pi \sqrt{\frac{l}{g}}$$
$$= \sqrt{2} \times 2$$
$$T' = 2.828 \text{ s.}$$

ઉદાહરણ 11 : પૃથ્વીની સપાટી પર એક સેકન્ડ લોલકની લંબાઈ l_1 છે અને પૃથ્વીની સપાટીથી 'h' જેટલી ઊંચાઈએ સેકન્ડ લોલકની લંબાઈ l_2 છે, તો સાબિત કરો કે

પૃથ્વીની ત્રિજ્યા
$$\mathbf{R}_e = rac{h\sqrt{l_2}}{\sqrt{l_1}-\sqrt{l_2}}$$
 છે.

ઉકેલ :

સેકન્ડ લોલકનો આવર્તકાળ 2 s હોય છે.

સેકન્ડ લોલક માટે પૃથ્વીની સપાટી પર, $2=2\pi\sqrt{\frac{l_1}{g_1}}$,

જ્યાં, $g_1 =$ પૃથ્વીની સપાટી પર ગુરુત્વપ્રવેગ. સેકન્ડ લોલક માટે, પૃથ્વીની સપાટીથી 'h' ઊંચાઈ પર,

$$2=2\pi\sqrt{\frac{l_2}{g_2}}\,,$$

જ્યાં, $\boldsymbol{g}_2 =$ પૃથ્વીની સપાટીથી \boldsymbol{h} ઊંચાઈએ ગુરુત્વપ્રવેગ

$$\therefore \frac{l_1}{g_1} = \frac{l_2}{g_2} \Rightarrow \frac{g_2}{g_1} = \frac{l_2}{l_1} \tag{1}$$

પરંતુ, ગુરુત્વમ્રવેગ
$$g=rac{\mathrm{GM}_e}{r^2}$$
 -----(A)

જયાં, r= પૃથ્વીના કેન્દ્રથી જે-તે સ્થાનનું અંતર હવે $r_{\rm l}=$ R $_{e}=$ પૃથ્વીની ત્રિજયા,

$$r_2 = R_e + h$$

સમીકરણ (A) પરથી,

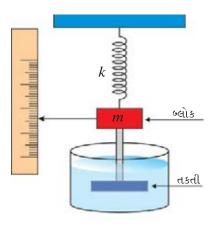
$$\frac{g_2}{g_1} = \frac{R_e^2}{(R_e + h)^2} \tag{2}$$

સમીકરણ (1) અને (2) પરથી,

$$\begin{split} \sqrt{\frac{l_2}{l_1}} &= \frac{\mathbf{R}_e}{\mathbf{R}_e + h} \\ \sqrt{l_2} &\, \mathbf{R}_e + \sqrt{l_2} \, h = \sqrt{l_1} \, \mathbf{R}_e \\ (\sqrt{l_1} - \sqrt{l_2}) \mathbf{R}_e &= \sqrt{l_2} \, h \\ & \therefore \, \mathbf{R}_e = \frac{h\sqrt{l_2}}{\sqrt{l_1 - \sqrt{l_2}}} \, . \end{split}$$

7.10 અવમંદિત સરળ આવર્તગતિ (Damped Simple Harmonic Motion)

સરળ આવર્તગતિ એ અતિ આદર્શ પરિસ્થિતિ વર્ણવે છે. યાંત્રિક તંત્ર પર જ્યારે કોઈ અવરોધક બળ કે ઘર્ષણબળ લાગતું ન હોય, ત્યારે જ સ.આ.ગ. કરે છે.


વ્યવહારમાં કોઈ પણ યાંત્રિક પ્રણાલી અવરોધ પેદા કરતાં માધ્યમમાં જ દોલનો કરે છે. તદુપરાંત યાંત્રિક પ્રણાલીમાં આંતરિક ઘર્ષણબળો પણ હોય છે. અવરોધક બળની વિરુદ્ધમાં દોલન કરતાં તંત્રને કાર્ય કરવું પડતું હોવાથી તેની યાંત્રિક-ઊર્જા એ ઊષ્મા-ઊર્જા સ્વરૂપે ઊર્જા મુક્ત કરે છે.

સ.આ.ગ.ની યાંત્રિક-ઊર્જા સમીકરણ $\mathbf{E}=\frac{1}{2}k\mathbf{A}^2$ એ દર્શાવે છે કે જેમ યાંત્રિક-ઊર્જા ઘટશે, તેમ તેનો કંપવિસ્તાર પણ ઘટશે. આમ, અંતે ગતિ બંધ પડશે.

આમ, જ્યારે સરળ આવર્ત તંત્ર સમય સાથે ઘટતાં કંપવિસ્તારથી દોલન કરે, તો આવા દોલનોને અવમંદિત દોલનો કહે છે.

હવામાં દોલન કરતું સાદું લોલક હવાનું અવરોધક બળ અનુભવે છે. જ્યારે સ્વરકાંટો દોલન કરે છે ત્યારે તેની ધાતુમાં આંતરિક ઘર્ષણબળ લાગતું હોય છે.

આકૃતિ 7.16માં બતાવ્યા પ્રમાણે k સ્પ્રિંગ-અચળાંકવાળી સ્પ્રિંગ સાથે m દળવાળો બ્લૉક ઊર્ધ્વતલમાં દોલન કરે છે. બ્લૉકના નીચેના છેડે એક સળિયા સાથે એક તકતી લગાડી તેને વાસણમાં ભરેલ પ્રવાહીમાં ડુબાડો. જ્યારે તકતી ઉપર નીચે ગતિ કરે છે, ત્યારે પ્રવાહી દોલન કરતા સમગ્ર તંત્ર પર અવરોધક બળ લગાડશે. આથી દોલન કરતા તંત્રની યાંત્રિક ઊર્જા ઘટશે.

અવમંદિત સરળ આવર્તદોલક આકૃતિ 7.16

પ્રાયોગિક અભ્યાસો દર્શાવે છે કે, તરલ માધ્યમોમાં લાગતું અવરોધક બળ દોલકના વેગ પર આધારિત છે.

આથી દોલક પર લાગતું અવરોધક બળ કે અવમંદિત બળ એ (બહુ મોટો વેગ ન હોય ત્યારે)

$$F_d \propto v$$

$$\therefore F_d = -bv \tag{7.10.1}$$

અહીં b એ અવમંદન અચળાંક છે અને તેનો SI એકમ kg / second છે. અહીં ૠણ નિશાની દર્શાવે છે કે બળ F_d એ ગતિને વિરોધે છે.

આમ, અવમંદિત દોલક બે પ્રકારનાં બળોની અસર નીચે દોલનો કરશે :

- (i) પુનઃસ્થાપક બળ $F_y = -ky$ અને
- (ii) અવરોધક બળ $F_d = -bv$

$$\therefore$$
 કુલ બળ $F = F_v + F_d$

ન્યૂટનના ગતિના બીજા નિયમ અનુસાર,

$$ma = -ky -bv$$

$$m\frac{d^2y}{dt^2} = -ky - b\frac{dy}{dt}$$

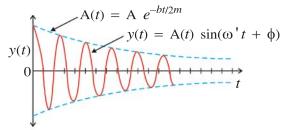
$$m\frac{d^2y}{dt^2} + b\frac{dy}{dt} + ky = 0 (7.10.2)$$

આ અવમંદિત દોલનો માટેનું દ્વિતીય ક્રમનું વિકલ સમીકરણ છે અને તેનો ઉકેલ છે,

$$y(t) = A e^{-bt/2m} \sin (\omega' t + \phi)$$
 (7.10.3)
અથવા

$$y(t) = A(t) \sin(\omega' t + \phi).$$
 (7.10.4)

અહીં $A(t) = A e^{-bt/2m}$ એ અવમંદિત દોલનનો t સમયે કંપ વિસ્તાર છે. જે સમય સાથે ચરઘાતાંકીય રીતે ઘટતો જાય છે.


અવમંદિત દોલકની કોણીય આવૃત્તિ

$$\omega' = \sqrt{\frac{k}{m} - \frac{b^2}{4m^2}} \tag{7.10.5}$$

વડે આપવામાં આવે છે.

જો $b=0,\;\omega'=\sqrt{\frac{k}{m}}$ એ આદર્શ સ.આ.ગ.

અવમંદિત દોલકના સ્થાનાંતર y(t) - tનો આલેખ આકૃતિ 7.17માં બતાવ્યો છે.

અવમંદિત દોલકનો સ્થાનાંતર-સમયનો આલેખ ($\phi = \frac{\pi}{2}$ માટે)

આકૃતિ 7.17

આપણે જાણીએ છીએ કે દોલકની યાંત્રિક-ઊર્જા

$$E = \frac{1}{2}kA^{2}$$

$$\therefore E(t) = \frac{1}{2}kA^{2}(t)$$

$$E(t) = \frac{1}{2}kA^{2} e^{-bt/m}$$
(7.10.6)

સમીકરણ (7.10.6) પરથી એ પણ સ્પષ્ટ છે કે અવમંદિત દોલકની યાંત્રિક-ઊર્જા પણ સમય સાથે ચરઘાતાંકીય રીતે ઘટતી જાય છે. સમીકરણ (7.10.6) એ નાના અવમંદન, $b << \sqrt{km}$ માટે જ સાચું છે.

ઉદાહરણ 12 : સાદા લોલકમાં દોરીના છેડે પિત્તળનો નાનો ગોળો લટકાવી તેનાં હવામાં સરળ આવર્તદોલનો મેળવીએ, તો તેનો આવર્તકાળ T મળે છે. હવે આ પિત્તળના ગોળાને પ્રવાહીમાં ડૂબે તેમ રાખીને તેનાં સરળ આવર્તદોલનો મેળવીએ, તો નવો આવર્તકાળ √2 T મળે છે, તેમ સાબિત કરો. પ્રવાહીની ઘનતા પિત્તળની ઘનતા કરતાં 1/2 ભાગની છે. અહીં દરેક પ્રકારનું અવરોધકતાબળ અવગણો.

ઉકેલ :

ગોળો પ્રવાહીમાં ડૂબેલો હોય ત્યારે તેની પર લાગતું ઉત્પ્લાવક બળ $=m_0 g;$ જ્યાં, m_0 ગોળાએ ખસેડેલ પ્રવાહીનું દળ.

જો ગોળાનું હવામાં વજન mg હોય, તો પ્રવાહીમાં તેનું અસરકારક વજન = $mg - m_0 g$

અહીં,
$$m_0 = V\rho_0 = \frac{V\rho}{2} = \frac{m}{2}$$
;

જ્યાં V= ગોળાનું કદ = ગોળાએ ખસેડેલ પ્રવાહીનું કદ. $ho_0=$ પ્રવાહીની ઘનતા અને ho= પિત્તળની ઘનતા.

$$\therefore$$
 પ્રવાહીમાં ગોળાનું અસરકારક વજન = $mg - \frac{mg}{2}$
$$= \frac{1}{2}mg.$$

 \therefore પ્રવાહીમાં અસરકારક ગુરુત્વપ્રવેગ = $g' = \frac{1}{2}g$.

હવે,
$$\mathbf{T} = 2\pi \sqrt{\frac{l}{g}}$$
 પરથી $\mathbf{T} \ \alpha \ \sqrt{\frac{1}{g}}$.

$$\therefore \frac{T'}{T} = \sqrt{\frac{g}{g'}} = \sqrt{\frac{2g}{g}}$$

$$\therefore$$
 T' = $\sqrt{2}$ T.

ઉદાહરણ 13: અવમંદિત દોલનોમાં કંપવિસ્તાર

 $\frac{A}{2^n}$ થતાં લાગતા સમયની ગણતરી કરો.

જ્યાં, A એ મૂળ કંપવિસ્તાર છે.

ઉકેલ :
$$A(t) = Ae^{-bt/2m}$$

પણ,
$$A(t) = \frac{A}{2^n}$$

$$\therefore \frac{A}{2^n} = Ae^{-bt/2m}$$

 \therefore બંને બાજુ eના બેઇઝ પર log લેતાં,

$$\therefore \frac{bt}{2m} = n \ln 2$$

(Natural log ને ln વડે લખાય છે.)

$$\therefore t = \frac{2mn}{b} (2.303) \log_{10}(2)$$

$$(\because \ln x = 2.303 \log_{10} x)$$

$$= \frac{2mn}{b} (2.303)(0.3010)$$

$$\therefore t = \frac{2mn}{b} (0.693).$$

7.11 પ્રાકૃતિક દોલનો, પ્રણોદિત (બળપ્રેરિત) દોલનો અને અનુનાદ (Natural Oscillations, Forced Oscillations and Resonance)

દોલન કરી શકે તેવા તંત્રને જ્યારે તેની સમતોલન-સ્થિતિથી થોડુંક પ્રારંભિક સ્થાનાંતર આપી છોડતાં તે દોલનો શરૂ કરશે. આમ, કોઈ પણ પ્રકારના અવરોધક બળની ગેરહાજરીમાં થતાં દોલનોને પ્રાકૃતિક દોલનો કહે છે. પ્રાકૃતિક દોલનોની આવૃત્તિને તેની પ્રાકૃતિક આવૃત્તિ f_0 કહે છે. ઉહરણ તરીકે સાદા લોલકના ગોળાને સહેજ ચલિત કરીને મુક્ત કરતાં તે $f_0 = \frac{1}{2\pi} \sqrt{\frac{g}{I}}$ જેટલી પ્રાકૃતિક આવૃત્તિ

સાથે પ્રાકૃતિક દોલનો કરે છે. (અહીં, હવાના અવરોધક બળને અવગણેલ છે.)

વહાલા વિદ્યાર્થીઓ, તમે હીંચકામાં હીંચકા ખાવાનો આનંદ માણ્યો જ હશે. તમે એ પણ અનુભવ્યું હશે કે જો તમારે અવિરત ઝૂલવું હોય, તો તમારે તમારા પગ વડે જમીનને વારે વારે ધક્કા મારવા પડે અથવા કોઈએ તમને વારેવારે ધક્કો મારવો પડે (આકૃતિ 7.18). આમ, બાહ્ય આવર્તબળની શરતને આધીન હીંચકો અવિરત ઝૂલતો રહેશે.

હીંચકા ખાતું બાળક આકૃતિ 7.18

મોટા ભાગના કિસ્સામાં અવમંદિત બળો હાજર જ હોય છે અને આખરે સમય સાથે દોલનો બંધ પડે છે. આથી દોલનો ચાલુ રાખવા બાહ્ય આવર્ત બળો જરૂરી છે.

આમ, જ્યારે તંત્ર બાહ્ય આવર્ત બળની મદદથી દોલનો કરે, તો તેને પ્રણોદિત (બળપ્રેરિત) દોલનો કહે છે.

તંત્રને દોલિત કરી શકે તેવું તંત્ર પર લાગતું કોઈ એક બાહ્ય આવર્તબળ $F=F_0 \sin \omega t$ લો.

આથી સમીકરણ (7.10.2) ને નીચેના સ્વરૂપે લખી શકાય.

$$m\frac{d^2y}{dt^2} = -ky - b\frac{dy}{dt} + F_0 \sin\omega t$$

$$\therefore \frac{d^2y}{dt^2} + \frac{b}{m}\frac{dy}{dt} + \frac{ky}{m} = \frac{F_0}{m}\sin\omega t$$

(7.11.1)

આ પ્રણોદિત દોલનો માટેનું દ્વિતીય ક્રમનું વિકલ સમીકરણ છે. સમીકરણ (7.11.1) નો ઉકેલ નીચે મુજબ આપી શકાય છે.

 $y = A \sin (\omega t + \phi)$

અહીં, A અને φ એ ઉકેલના અચળાંકો છે, જે નીચે મુજબ મળે છે.

$$A = \frac{F_0}{\left[m^2(\omega_0^2 - \omega^2)^2 + b^2\omega^2\right]^{\frac{1}{2}}}$$
 (7.11.2)

અને
$$\phi = \tan^{-1} \frac{\omega y_0}{v_0}$$
 . (7.11.3)

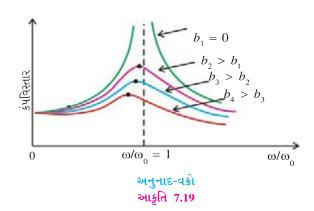
અહીં m એ દોલકનું દળ, v_0 અને y_0 એ જ્યારે આવર્તબળ લગાડવામાં આવે, ત્યારે તેનો ક્રમિક વેગ અને સ્થાનાંતર છે.

પ્રારંભમાં દોલક પોતાની પ્રાકૃતિક આવૃત્તિથી દોલનો કરે છે. જ્યારે આપણે બાહ્ય આવર્તબળ લગાડીએ, ત્યારે પ્રાકૃતિક આવૃત્તિ સાથેનાં દોલનો નાશ પામશે અને પદાર્થ બાહ્ય આવર્તબળની આવૃત્તિ સાથે દોલનો કરશે.

સમીકરણ (7.11.2) પરથી જોઈ શકાય છે કે પ્રણોદિત દોલનોનો કંપવિસ્તાર (i) $(\omega_0^2 - \omega^2)$ તફાવત અને (ii) અવરોધક-ગુણાંક (અવમંદિત અચળાંક)ના વ્યસ્ત પ્રમાણમાં ચલે છે.

નાના અવરોધક-ગુણાંક માટે $b\omega << m \ (\omega_0^2 - \omega^2)$ આથી સમીકરણ (7.11.2)ને નીચે મુજબ લખી શકાય.

$$A = \frac{F_0}{m (\omega_0^2 - \omega^2)}.$$
 (7.11.4)


 $\omega \approx \omega_0$ માટે

 $m(\omega_0^2-\omega^2)<< b\omega$, આથી

$$A = \frac{F_0}{h\omega}. (7.11.5)$$

જેમ ω નું મૂલ્ય ω 0 તરફ જાય છે તેમ કંપવિસ્તાર વધતો જાય છે અને ω ના કોઈ લાક્ષણિક મૂલ્ય માટે કંપવિસ્તાર મહત્તમ થાય છે. આ ઘટનાને અનુનાદ કહે છે. ω ના જે મૂલ્ય માટે અનુનાદ ઉદ્ભવે છે તે મૂલ્યને અનુનાદીય કોણીય આવૃત્તિ કહે છે.

અવરોધક ગુણાંક b ના વિવિધ મૂલ્યો માટે કંપવિસ્તાર– ω/ω_0 નો આલેખો આકૃતિ 7.19માં બતાવેલ છે.

Downloaded from https://www.studiestoday.com

જો b=0 હોય તો $\omega=\omega_0$ માટે કંપવિસ્તાર અનંત થાય છે. જેમ અવમંદન વધે છે તેમ આલેખમાં કંપવિસ્તારનું મહત્તમ મૂલ્ય ડાબી તરફ ખસે છે.

વ્યવહારમાં એવાં યાંત્રિક તંત્રો મળે છે કે જેનાં દોલનોની એક કરતાં વધારે પ્રાકૃતિક આવૃત્તિઓ હોય છે. જો તંત્ર પર લાગતાં બાહ્ય આવર્તબળની આવૃત્તિ તે તંત્રની પ્રાકૃતિક આવૃત્તિ જેટલી (અથવા લગભગ સમાન) થાય ત્યારે તંત્ર અતિ મોટા કંપવિસ્તાર સાથે દોલનો કરે છે અને તંત્ર તૂટી કે ફસકાઈ પણ પડે.

આથી ઝૂલતા પુલ પર જતાં સૈનિકોને માર્ચિંગ ન કરવાની સલાહ આપવામાં આવે છે. વળી, પુલ-ડિઝાઇન કરતી વખતે, ત્યાંથી વહેતા પવનને કારણે લાગતા બાહ્ય બળની આવૃત્તિ અને પુલનાં દોલનોની પ્રાકૃતિક આવૃત્તિનાં મૂલ્યો સરખાં કે લગભગ સરખાં ન થાય તેની કાળજી લેવામાં આવે છે. કેટલીક વખત એવું પણ જોવામાં આવ્યું છે કે ધરતીકંપ વખતે ઓછી ઊંચાઈ અને મોટી ઊંચાઈવાળા બાંધકામ (structure)ને ઓછું નુકસાન થાય છે, જયારે મધ્યમ ઊંચાઈવાળાં બાંધકામો નીચે પડી જાય છે. કારણ કે સેસ્મિક તરંગોની આવૃત્તિ કરતાં ઓછી ઊંચાઈવાળા બાંધકામની પ્રાકૃતિક આવૃત્તિઓ વધુ હોય છે અને વધુ ઊંચાઈવાળાં બાંધકામની પ્રાકૃતિક આવૃત્તિઓ ઓછી હોય છે.

સારાંશ

- જો કોઈ પદાર્થ કોઈ નિશ્ચિત પથ પર, કોઈ નિશ્ચિતબિંદુને અનુલક્ષીને, નિયત સમયગાળે પોતાની ગતિનું પુનરાવર્તન કરતો હોય, તો આવી ગતિને આવર્તગતિ કહે છે.
- 2. જો કોઈ પદાર્થ કોઈ નિયતબિંદુની આસપાસ, આગળ-પાછળ કે ઉપર નીચે નિયત સમયમાં ગતિ કરતો હોય, તો આવી ગતિને દોલિત ગતિ કહે છે.
- 3. જયારે કોઈ પદાર્થ નિયતિબંદુથી સ્થાનાંતરના સમપ્રમાણમાં અને નિયતિબંદુ તરફ લાગતા બળની અસર નીચે, નિયતિબંદુની આસપાસ સુરેખ પથ પર આવર્તગિત કરતો હોય, તો તેવી ગિતને સરળ આવર્તગિત કહે છે.
- 4. મધ્યમાન સ્થાનથી કોઈ એક તરફના દોલકના અધિકતમ સ્થાનાંતરને તે દોલકનો કંપવિસ્તાર કહે છે.
- 5. એક દોલન પૂર્ણ કરવા માટે દોલકે લીધેલ સમયને તે દોલકનો આવર્તકાળ (T) કહે છે.
- **6.** એક સેકન્ડમાં પૂર્ણ થતાં દોલનોની સંખ્યાને તે સરળ આવર્ત દોલકની આવૃત્તિ (f) કહે છે.
- 7. દોલકની આવૃત્તિના 2π ગણાને તે દોલકની કોણીય આવૃત્તિ (ω) કહે છે.

8.
$$T = \frac{1}{f} = \frac{2\pi}{\omega} \ \ \ \ \ f = \frac{1}{T} \ \ \ \ \ \omega = \frac{2\pi}{T}$$

9. સરળ આવર્તગતિ માટે, મધ્યમાન સ્થિતિથી ક્યાનું સ્થાનાંતર y(t)ને sine, cosine અથવા તેના રેખીય સંયોજનથી દર્શાવવામાં આવે છે. જેમકે,

$$y(t) = A \sin(\omega t + \phi),$$

$$y(t) = B \cos(\omega t + \phi),$$

$$y(t) = A' \sin \omega t + B' \cos \omega t$$

- **10.** સ.આ.દો.નો વેગ $v = \pm \omega \sqrt{A^2 y^2}$ વડે આપવામાં આવે છે.
- **11.** સ.આ.દોનો પ્રવેગ $a = -\omega^2 y$ વડે આપવામાં આવે છે.

12. હુકના નિયમની અસર હેઠળ દોલન કરતાં m દળવાળો કણ સરળ આવર્તગતિ કરે છે તથા $\omega = \sqrt{rac{k}{m}} \; ; \; \mathrm{T} = 2\pi \sqrt{rac{m}{k}}$

- **13.** $\frac{d^2y}{dt^2} + \omega^2y = 0$ એ સ.આ.ગ. માટેનું વિકલ સમીકરણ છે.
- 14. $k_1,\ k_2,\ k_3\\ k_n$ સ્ત્રિંગ-અચળાંકો ધરાવતી n સ્ત્રિંગોનાં શ્રેણીજોડાણનો સમતુલ્ય સ્ત્રિંગ-અચળાંક k હોય તો, $\frac{1}{k} = \frac{1}{k_1} + \frac{1}{k_2} + \frac{1}{k_3} + \ldots + \frac{1}{k_n}$ અને આવર્તકાળ $\mathbf{T} = 2\pi\sqrt{\frac{m}{k}}$ છે.
- 15. $k_1,\ k_2,\ k_3$ k_n સ્ત્રિંગ-અચળાંકો ધરાવતી n સ્ત્રિંગોના સમાંતર જોડાણનો સમતુલ્ય સ્ત્રિંગ-અચળાંક $k=k_1+k_2+k_3+$ $+k_n$ અને આવર્તકાળ $\mathrm{T}=2\pi\sqrt{\frac{m}{k}}$ છે.
- **16.** $K = \frac{1}{2}m\omega^2 (A^2 y^2)$ એ સ.આ.દો.ની ગતિ-ઊર્જા છે.
- **17.** $U = \frac{1}{2}ky^2$ એ સ.આ.દો.ની સ્થિતિ-ઊર્જા છે.
- 18. E = K + U = $\frac{1}{2}m\omega^2 A^2 = \frac{1}{2}kA^2$ એ સ.આ.દો.ની કુલ યાંત્રિક-ઊર્જા છે.
- 19. સ.આ.દો. માટે, y=0 એ, સ્થિતિ-ઊર્જા ન્યૂનતમ (U = 0) અને ગતિ-ઊર્જા મહત્તમ $(\mathrm{K}=\frac{1}{2}k\mathrm{A}^2=\mathrm{E})$ હોય છે.
- **20.** સ.આ.દો. માટે, $y=\pm A$ એ, સ્થિતિ-ઊર્જા મહત્તમ ($U=\frac{1}{2}kA^2=E$) અને ગતિ-ઊર્જા ન્યૂનત્તમ (K=0) છે.
- 21. સરળ આવર્તગતિ એ નિયમિત વર્તુળમય ગતિની, સંદર્ભ વર્તુળના વ્યાસ પરના પ્રક્ષેપની ગતિ છે.
- 22. સાદા લોલક માટે, નાના કોણીય સ્થાનાંતર માટે

$$T=2\pi\sqrt{rac{l}{g}}$$
 ਅਜੇ $\omega=2\pi f=rac{2\pi}{T}=\sqrt{rac{g}{l}}$

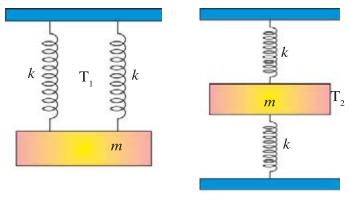
- 23. સાદા લોલકનો આવર્તકાળ T એ ગોળાના દળ તેમજ દોલનના કંપવિસ્તારથી સ્વતંત્ર છે.
- 24. સરળ આવર્તતંત્ર સમય સાથે ઘટતાં કંપવિસ્તારથી દોલન કરે, તો આવાં દોલનોને અવમંદિત દોલનો કહે છે.

$$m \frac{d^2 y}{dt^2} + b \frac{dy}{dt} + ky = 0$$
. એ અવમંદિત દોલનો માટેનું વિકલ સમીકરણ છે,

જ્યાં સ્થાનાંતર $y(t)=\mathrm{A}e^{-bt/2m}\,\sin(\omega'\,t+\,\phi)$ અને કોણીય આવૃત્તિ $\omega'=\sqrt{\frac{k}{m}-\frac{b^2}{4m^2}}$ છે.

25.
$$\mathrm{E}(t) = \frac{1}{2}k\mathrm{A}^2 \; e^{\frac{-bt}{m}}$$
 એ અવમંદિત દોલનની t -સમયની યાંત્રિક-ઊર્જા આપે છે.

26. જયારે તંત્ર બાહ્ય આવર્ત બળની મદદથી દોલનો કરે, તો તેને પ્રણોદિત (બળપ્રેરિત) દોલનો કહે છે.


$$\frac{d^2y}{dt^2} + \frac{b}{m}\frac{dy}{dt} + \frac{k}{m}y = \frac{F_0}{m}\sin\omega t$$
 એ પ્રણોદિત દોલનો માટેનું વિકલ સમીકરણ છે.

$${
m A}=rac{{
m F}_0}{[m^2({\omega_0}^2-{\omega^2})^2+b^2{\omega^2}]^{rac{1}{2}}}$$
 એ પ્રણોદિત દોલનનો કંપવિસ્તાર છે.

	$[m^2(\omega_0^2 - \omega^2)^2 + b^2\omega^2]^{\overline{2}}$
	સ્વાધ્યાય
નીચે	નાં વિધાનો માટે આપેલા વિકલ્પોમાંથી યોગ્ય વિકલ્પ પસંદ કરો ઃ
1.	સ.આ.ગ.માં કણનો પ્રવેગ શૂન્ય થાય જ્યારે કે તેની,
	(A) ગતિ શૂન્ય હોય.
	(B) સ્થાનાંતર શૂન્ય હોય.
	(C) ગતિ અને સ્થાનાંતર બંને શૂન્ય હોય.
	(D) ગતિ અને સ્થાનાંતર બંને મહત્તમ હોય.
2.	સ.આ.ગ. કરતાં પદાર્થનું મહત્તમ પ્રવેગ $a_{\scriptscriptstyle max}$ અને મહત્તમ વેગ $v_{\scriptscriptstyle max}$ છે, તો તેનો
	કંપવિસ્તાર
	(A) v_{max}^2 / a_{max} . (B) a_{max}^2 / v_{max} .
	(C) v_{max}^2 / a_{max}^2 (D) v_{max} / a_{max}
3.	નીચેનામાંથી ગતિ એ સરળ આવર્ત બને તે માટેની આવશ્યક શરત કઈ છે ?
	(A) અચળ બળ
	(B) બળ ચલે છે સ્થાનાંતરને
	(C) સ્થાનાંતરની વિરુદ્ધ બળ
	(D) બળ સ્થાનાંતરના સમપ્રમાણમાં અને તેની વિરુદ્ધ દિશામાં હોય છે.
4.	સાદા લોલકની લંબાઈ l અને તેના આવર્તકાળ T નો આલેખ એ
	(A) સુરેખા છે. (B) ઉપવલય છે. (C) પરવલય છે. (D) અતિવલય છે.
5.	બે દોલકના આવર્તકાળ અનુક્રમે T અને $\frac{5T}{4}$ છે. તેઓ તેમનાં ગતિપથના મધ્યમાનસ્થાનેથી
	એકસાથે દોલનો શરૂ કરે છે. જ્યારે T આવર્તકાળ ધરાવતા દોલકનું એક દોલન પૂર્ણ થયું હોય,
	ત્યારે તેમની કળાનો તફાવત છે.

- $(A) 45^{\circ}$
- (B) 72°
- (C) 90°
- (D) 112°
- એક સ.આ.દો.નો આવર્તકાળ ${
 m T}$ છે. નિયતબિંદુથી શરૂ કરીને $rac{3}{8}$ જેટલા દોલન પૂરું કરતાં તેને કેટલો સમય લાગશે ?
 - (A) $\frac{3}{9}$ T
- (B) $\frac{5}{8}$ T (C) $\frac{5}{12}$ T (D) $\frac{8}{3}$ T
- નિયતબિંદુ પરથી પસાર થતા એક 0.5 m લંબાઈવાળા સાદા લોલકના ગોળાનો વેગ 3 m/s છે. જ્યારે લોલક શિરોલંબ સાથે 60° નો કોણ બનાવે, ત્યારે તેના ગોળાનો વેગ હશે. $(g = 10 \text{ m/s}^2 \text{ ell.})$
 - (A) $\frac{1}{3}$ m/s (B) $\frac{1}{2}$ m/s (C) 2 m/s (D) 3 m/s

> આકૃતિ 7.20માં બતાવ્યા પ્રમાણે સમાન સ્પ્રિંગ-અચળાંક ધરાવતી બે સ્પ્રિંગોને m દળ લટકાવેલ છે. $\frac{T_1}{T_2}$ શું થશે ?

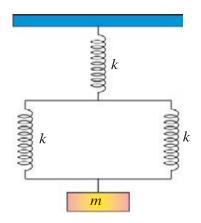
આકૃતિ 7.20

(A) 1

(B) 2

(C) 3

(D) 4


આકૃતિ 7.21માં બતાવ્યા પ્રમાણે mદળને ત્રણ સ્પ્રિંગો સાથે જોડેલ છે, તો T શું થશે ?

(A)
$$2\pi \sqrt{\frac{m}{k}}$$

(B)
$$2\pi \sqrt{\frac{m}{3k}}$$

(C)
$$2\pi \sqrt{\frac{3m}{2k}}$$

(D)
$$2\pi \sqrt{\frac{2k}{3m}}$$

આકૃતિ 7.21

10. જો સ્પ્રિંગનો પુનઃસ્થાપક બળ F અને સ્પ્રિંગ-અચળાંક k હોય, તો સ્પ્રિંગને વજન લટકાવતાં yજેટલી ખેંચાય, ત્યારે સ્પ્રિંગમાં સંગૃહીત યાંત્રિક-ઊજા-કેટલી હશે ?

$$(A) \frac{F^2}{2y}$$

(B)
$$\frac{F^2}{2k}$$

(B)
$$\frac{F^2}{2k}$$
 (C) $\frac{2y}{F^2}$ (D) $\frac{2k}{F^2}$

(D)
$$\frac{2k}{F^2}$$

11. અવમંદિત દોલનના કિસ્સામાં કંપવિસ્તાર, મૂળ કંપવિસ્તારના *e*મા ભાગનો થવા લાગતો સમય

(B) $\frac{2m}{h}$ (C) $e^{-bt/2m}$

(D) $e^{2m/b}$

12. એક સ.આ.દો. તેનાં દોલનો તેના ગતિપથના નીચેના અંતિમ છેડેથી શરૂ કરે છે. 10 દોલનોના અંતે તેની કળા હશે. ગતિ Y-અક્ષ પર અને સંદર્ભદિશા ધન X-અક્ષ લો.

(A) $\frac{1}{2}\pi$ rad

(B) 5π rad (C) 10π rad

13. એક દોલક પર બાહ્ય આવર્તબળ $F=F_0\sin\omega t$ લાગે છે. જો દોલકનો કંપવિસ્તાર $\omega=\omega_1$ માટે મહત્તમ અને ઊર્જા એ $\omega=\omega_2$ માટે મહત્તમ હોય ત્યારે $(\omega_0$ એ પ્રાકૃતિક કોણીય આવૃત્તિ છે.)

(A) $\omega_1 = \omega_0$ अने $\omega_2 \neq \omega_0$

(B) $\omega_1 \neq \omega_0$ અਜੇ $\omega_2 = \omega_0$

(C) $\omega_1 \neq \omega_0$ ਅਜੇ $\omega_2 \neq \omega_0$

(D) $\omega_1 = \omega_0$ અਜੇ $\omega_2 = \omega_0$

Downloaded from https://www.studiestoday.com

દોલનો 177

> 14. સ્પ્રિંગના નીચેના છેડે 1 kg દળ લગાડેલ છે, જેના દોલનની એક ચોક્કસ આવૃત્તિ છે. આમાં કેટલું દળ ઉમેરતાં તેની આવૃત્તિમાં અડધો ઘટાડો થાય.

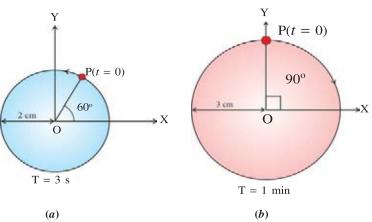
- (A) 1 kg
- (B) 2 kg
- (C) 3 kg
- (D) 4 kg
- 15. જ્યારે ટ્રેન 10 m s^{-2} થી પ્રવેગી ગતિ કરે છે, ત્યારે ટ્રેનના ડબ્બાની છત પરથી લટકાવેલ લોલકનો આવર્તકાળ $2 \mathrm{~s}$ છે. આ લોલકનો આવર્તકાળ જ્યારે ટ્રેન $10 \mathrm{~m~s}^{-2}$ ના પ્રતિપ્રવેગથી ગતિ કરશે ત્યારે કેટલો હશે ?
 - (A) 2 s(B)
- $\sqrt{2}$ s
- (C) $2\sqrt{2}$ s (D) $\frac{2}{\sqrt{2}}$ s

જવાબો

- **4.** (C) **1.** (B) **2.** (A) **3.** (D) **5.** (B) **6.** (C)
- 7. (C) **8.** (A) **9.** (C) **10.** (B) **11.** (B) **12.** (D)
- **13.** (D) **14.** (C) **15.** (A)

નીચે આપેલ પ્રશ્નોના જવાબ ટૂંકમાં આપો :

- એક પૂર્ણ દોલનમાં સાદા લોલક વડે થતું કાર્ય કેટલું હશે ?
- મુક્તપતન કરતી લિફ્ટમાં લોલકનો આવર્તકાળ કેટલો થશે ? 2.
- U–ટ્યૂબમાં પ્રવાહીના દોલનના આવર્તકાળનું સમીકરણ લખો. 3.
- પ્રારંભિક કળા શું છે ? તે કયા એકમમાં મપાય છે ?
- એક સ.આ.દો.નો કંપવિસ્તાર 4 cm છે. નિયતબિંદુથી કેટલા અંતરે તેની સ્થિતિ-ઊર્જા અને ગતિ-ઊર્જા સરખી થશે.
- બળ અચળાંકનો SI એકમ શું છે ?
- સ.આ.ગ માટે પ્રવેગ(a)-કંપવિસ્તાર , સ્થાનાંતર કંપવિસ્તાર (A) અને કોણીય આવૃત્તિ (ω) વચ્ચેનો સંબંધ લખો.
- સાદું લોલક આખરે કેમ થંભી જાય છે ?
- $b << \sqrt{km}$ માટે અવમંદિત દોલક માટેની યાંત્રિક-ઊર્જાનું સૂત્ર લખો.
- 10. પ્રશોદિત દોલનો માટેનું વ્યાપક સ્વરૂપનું દ્વિતીય ક્રમનું વિકલ સમીકરશ લખો.

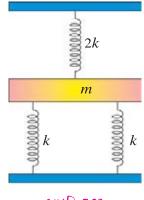

નીચેના પ્રશ્નોના જવાબ આપો :

- આવર્તગતિ અને દોલિત ગતિ વ્યાખ્યાયિત કરો. તેનાં યોગ્ય ઉદાહરણો આપો.
- સાદા લોલકના આવર્તકાળ માટેનું સૂત્ર તારવો. 2.
- અવમંદિત દોલનો એટલે શું ? તેની ગતિને અસર કરતાં પરિબળો ક્યાં છે ? 3.
- અવમંદિત આવર્ત દોલનની કુલ ઊર્જાનો સંબંધ તારવો. 4.
- પ્રશોદિત દોલનો અને અનુનાદ સમજાવો. 5.
- રેખિય સ.આ.ગ. માટે એક આવર્તકાળ પરની સરેરાશ KE અને તેટલા જ આવર્તકાળ પરની સરેરાશ PEનાં મૂલ્યો સમાન છે, તેમ બતાવો.

- KE અને PE વિરુદ્ધ સ્થાનાંતર આલેખો જે બિંદુઓએ છેદે તેના યામો મેળવો.
- 8. સ.આ.ગ. માટે પ્રવેગ વિરુદ્ધ સ્થાનાંતરનો વક્ર કેવો હશે ? આ વક્રનો ઢાળ શું હશે ?
- 9. સ.આ.ગ. કરતાં કણનો આવર્તકાળ $T=2\pi\sqrt{\frac{m}{k}}$ છે, તો સાદા લોલકનો આવર્તકાળ લોલકના દળથી સ્વતંત્ર કેમ છે ? સમજાવો.
- 10. સરળ આવર્તદોલકોના નીચેના કિસ્સાઓમાં પુનઃસ્થાપક બળ કોણ પૂરું પાડે છે ?(i) સાદું લોલક (ii) સ્પ્રિંગ (iii) U ટ્યૂબના કૉલમમાં પારો.

નીચેના દાખલા ગણો :

 આકૃતિ 7.22 (a) અને (b)ના કિસ્સામાં ભ્રમણ કરતાં કણ Pના ત્રિજ્યા સિંદશના y-પ્રક્ષેપની સરળ આવર્તગતિનાં સમીકરણો મેળવો.



આકૃતિ 7.22

[**જવાબ**: (a)
$$y = 2 \sin\left(\frac{2\pi t}{3} + \frac{\pi}{3}\right)$$
 (b) $y = 3 \cos\left(\frac{\pi}{30}t\right)$]

2. આકૃતિ 7.23 માં બતાવ્યા પ્રમાણે એક m=80~g દળ ત્રણ સ્પ્રિંગો સાથે લગાડેલ છે. જો $k=2~\mathrm{N~m^{-1}}$ હોય તો, સમતુલ્ય સ્પ્રિંગ-અચળાંક અને આવર્તકાળ કેટલો હશે ?

[જવાબ :
$$k = 8 \text{ Nm}^{-1}$$
, $T = 0.628 \text{ s}$]

આકૃતિ 7.23

3. l લંબાઈની અને k જેટલો બળ-અચળાંક ધરાવતી સ્પ્રિંગના l_1 અને l_2 લંબાઈના બે ભાગ કરવામાં આવે છે. જો $l_1=nl_2$ હોય, તો અત્રે મળતી બંને સ્પ્રિંગના બળ-અચળાંક k_1 અને k_2 નાં સૂત્રો n અને k ના સ્વરૂપમાં મેળવો. [જવાબ : $k_1=\left(1+\frac{1}{n}\right)k,\ k_2=(n+1)k]$

દોલનો 179

4. 100 g દળ ધરાવતો એક દોલક અવમંદિત દોલનો કરે છે. જ્યારે 100 દોલનો પૂરાં થાય ત્યારે દોલનનો કંપવિસ્તાર મૂળ કંપવિસ્તાર કરતાં અડધો બને છે. જો આવર્તકાળ 2 s હોય, તો અવરોધક–ગુણાંક શોધો. [જવાબ : $0.693 \ dyn \text{ s. cm}^{-1}$]

- 5. સ.આ.ગ. કરતા એક દોલકનો કંપવિસ્તાર A છે. જયારે આ દોલક તેના ગતિપથના મધ્યબિંદુથી y અંતરે હોય છે, ત્યારે તેની ગતિની દિશામાં એક ફટકો મારીને તેનો તાત્ક્ષણિક વેગ બમણો કરવામાં આવે છે, તો નવો કંપવિસ્તાર શોધો. [જવાબ : $\sqrt{4A^2-3y^2}$]
- 6. સ.આ.ગ. માટે સાબિત કરો કે, $a^2T^2 + 4\pi^2v^2 = અચળ, જ્યાં <math>a$ અને v એ અનુક્રમે કોઈ ક્ષણે પ્રવેગ અને વેગ છે. T એ આવર્તકાળ છે.

- 9. એક રેખીય આવર્તદોલકનો બળ-અચળાંક 2×10^6 N/m અને કુલ યાંત્રિક ઊર્જા $160~\mathrm{J}$ છે. કોઈ ક્ષણે તેનું સ્થાનાંતર 0.01~m હોય તો તે સ્થાને તેની સ્થિતિ-ઊર્જા અને ગતિ-ઊર્જા શોધો. [જવાબ : $100~\mathrm{J}$, $60~\mathrm{J}$]
- 10. રેખીય સ.આ.ગ. માટે જયારે દોલક મધ્યમાન સ્થિતિથી y_1 અને y_2 જેટલું અંતર હોય, ત્યારે તેની ગતિ v_1 અને v_2 છે. બતાવો કે દોલનનો આવર્તકાળ $T=2\pi \left[\frac{{y_2}^2-{y_1}^2}{{v_1}^2-{v_2}^2}\right]^{\frac{1}{2}}$ છે.

Downloaded from https://www.studiestoday.com

પ્રકરણ 8

તરંગો

8.1	ิ	ાસ્તા	ાવના

- **8.2** તરંગો
- 8.3 તરંગોનું વર્ગીકરણ
- 8.4 તરંગનો કંપવિસ્તાર, તરંગમાં ઊર્જાનું પ્રસરણ, તરંગલંબાઈ અને આવૃતિ
- 8.5 તરંગ-સમીકરણ
- 8.6 તરંગ-ઝડપ અને કળા-ઝડપ
- 8.7 માધ્યમમાં તરંગ-ઝડપ
- 8.8 સંપાતપશાનો સિદ્ધાંત અને તરંગનું પરાવર્તન
- 8.9 સ્થિત-તરંગો
- 8.10 નળીમાં સ્થિત-તરંગો
- 8.11 **સ્પંદ**
- **8.12** ડૉપ્લર-અસર
 - સારાંશ
 - સ્વાધ્યાય

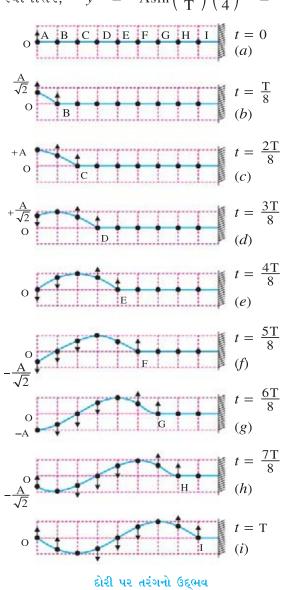
8.1 પ્રસ્તાવના (Introduction)

વિદ્યાર્થીમિત્રો, અગાઉ આપશે ભણી ગયા કે બ્રહ્માંડ એ દ્રવ્ય અને વિકિરણનું બનેલું છે. આ વિકિરણ એ તરંગ સ્વરૂપે પ્રસરણ પામે છે. ભૌતિકવિજ્ઞાનની લગભગ બધી જ શાખાઓમાં તરંગો પાયાની અગત્ય ધરાવે છે. પ્રકાશ અને ધ્વનિ-ઊર્જાનું પ્રસરણ તરંગ સ્વરૂપે થાય છે. સૂર્યમાંથી ઉદ્ભવતી અલગ-અલગ પ્રકારની વિકિરણ-ઊર્જાઓ એ તરંગ સ્વરૂપે આપણા સુધી પહોંચે છે. વાજિંત્રોમાંથી ઉદ્ભવેલું સંગીત આપણા કાન સુધી 'ધ્વનિ-તરંગો' સ્વરૂપે પહોંચે છે. રેડિયો, ટેલિવિઝન અને મોબાઇલ ફોન દ્વારા થતો આધુનિક સંદેશાવ્યવહાર એ તરંગોને આભારી છે. 20મી સદીમાં ભૌતિકવિજ્ઞાનમાં પ્રવેશેલી દ્રવ્યતરંગ (matter waves)ની વિભાવનાને પરિણામે તરંગોનું મહત્ત્વ અનેક ગણું વધી ગયું છે.

પ્રસ્તુત પ્રકરણમાં આપણે તરંગો, તરંગોના પ્રકાર, જુદા-જુદા માધ્યમમાં તરંગોની ઝડપ, તરંગોનું પરાવર્તન અને તેમનું સંપાતીકરણ, સ્પંદ અને ડૉપ્લર અસર જેવી ઘટનાઓનો અભ્યાસ કરીશું.

8.2 તરંગ (Waves)

અવકાશમાં જ્યારે ક્શ ગતિ કરે ત્યારે તેની સાથે સંકળાયેલી ગતિ-ઊર્જાનું પણ પરિવહન થાય છે. અવકાશમાં ઊર્જા એ બીજી રીતે પણ વહન પામે છે. જેમાં ક્શ પોતાના સ્થાન નજીક દોલનો કરી દૂર સુધી ઊર્જા પહોંચાડે છે.


હવામાં ધ્વનિ આ રીતે પ્રસરણ પામે છે. જ્યારે તમે તમારા મિત્રને 'Hello' કહો છો, ત્યારે તમારા હોઠ આગળના માધ્યમના કણો ગતિ કરીને તમારા મિત્રના કાન સુધી પહોંચતા નથી, પરંતુ તમે તમારા હોઠની નજીક રહેલા માધ્યમમાં વિક્ષોભ ઉત્પન્ન કરો છો, જે તરંગ સ્વરૂપે પ્રસરણ પામીને મિત્રના કાન સુધી પહોંચે છે.

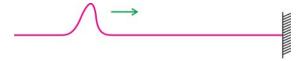
તરંગનો ખ્યાલ સ્પષ્ટ રીતે મેળવવા માટે લાંબી, સ્થિતિસ્થાપક અને જડિત આધારે બાંધેલી તણાવવાળી દોરીને ધ્યાનમાં લો. ધારો કે, આ દોરીને કોઈ વ્યક્તિએ ખેંચીને તણાવવાળી સ્થિતિમાં રાખેલી છે. અહીં દોરી એ એક પારિમાણિક સ્થિતિસ્થાપક માધ્યમ છે. આકૃતિ 8.1માં દર્શાવ્યા અનુસાર A, B, C, I એ દોરીના માધ્યમના કણ છે. પ્રારંભમાં માધ્યમના બધા જ કણો સમતોલનની અવસ્થામાં છે. (આકૃતિ 8.1a.)

(i) ધારો કે t=0 સમયે વ્યક્તિ દ્વારા ક્રણ Aમાં એવો વિક્ષોભ ઉત્પન્ન કરવામાં આવે છે, જેથી તે $y=A\sin\omega t$ અનુસાર સરળ આવર્તદોલન કરે છે. આ દોલનનો આવર્તકાળ T છે.

(ii) માધ્યમના સ્થિતિસ્થાપકતાના ગુણધર્મને લીધે t=0 સમયે A પાસે ઉદ્ભવેલ વિક્ષોભની અસર $\frac{T}{8}$ સમયે ધારો કે કણ B પર પહોંચે છે. $\frac{T}{8}$ સમય દરમિયાન કણ Aનું સ્થાનાંતર $y=\mathrm{Asin}\Big(\frac{2\pi}{T}\Big)\Big(\frac{T}{8}\Big)=\frac{A}{\sqrt{2}}$ જેટલું થયું હશે ત્યારે કણ B એ સ.આ.ગ. શરૂ કરવાની તૈયારીમાં હશે. (આકૃતિ 8.1b)

(iii) હવે, વધારાનો $\frac{T}{8}$ જેટલો સમયગાળો પસાર થતાં એટલે કે $\frac{T}{8} + \frac{T}{8} = \frac{T}{4}$ જેટલા સમયગાળા બાદ A કણના દોલનની અસર કણ C પર પહોંચે છે અને તે દોલન શરૂ કરવાની તૈયારીમાં આવે છે. $\frac{T}{4}$ સમય દરમિયાન કણ Aનું સ્થાનાંતર, $y = A\sin\left(\frac{2\pi}{T}\right)\left(\frac{T}{4}\right) = A$

આકૃતિ 8.1


એટલે કે કંપવિસ્તાર જેટલું થાય છે અને ક્ર \mathbf{B} નું સ્થાનાંતર $\frac{\mathbf{A}}{\sqrt{2}}$ જેટલું થાય છે (જુઓ આકૃતિ 8.1c).

(iv) આમ, A પર ઉત્પન્ન કરેલ વિક્ષોભને લીધે ક્રમશઃ આવતા કર્યો એક પછી એક દોલનો શરૂ કરતા જાય છે અને પોતાના દોલનોની અસર પોતાનાથી આગળના કર્યો પર પહોંચાડતા જાય છે અને વિક્ષોભ માધ્યમમાં આગળ પ્રસરતો જાય છે.

(v) આ રીતે વિક્ષોભ આગળ વધતા $\frac{3T}{8}$ સમયે તે D ક્રણ પર, $\frac{4T}{8}$ સમયે તે E ક્રણ પર, અને T સમયે તે ક્રણ I પર પહોંચે છે. આ T સમયમાં ક્રણ Aનું એક દોલન પૂરું થાય છે ત્યારે ક્રણ I દોલન શરૂ કરવાની તૈયારીમાં હોય છે.


આ સમગ્ર પરિસ્થિતિ આકૃતિ 8.1માં દર્શાવી છે. યાદ રાખો કે, માધ્યમના કશો સ્થિર સમતુલન અવસ્થામાં હતાં. તેમાં t=0 સમયે કશ A પર આપશે સરળ આવર્તદોલન પ્રકારનો વિક્ષોભ ઉત્પન્ન કર્યો, જે $t=\mathrm{T}$ સમયે માધ્યમમાં પ્રસરશ પામતો, I પર પહોંચે છે.

(vi) અહીં, કણ Aને આપેલ વિક્ષોભ સરળ આવર્તગતિ (sine પ્રકારની) પ્રકારનો હતો, તેથી દોરીમાં ઉત્પન્ન થતો આકાર sine વક જેવો જોવા મળે છે. જો કણ Aનું સ્થાનાંતર કે દોલન બીજા કોઈ પ્રકારનું હોત, તો દોરી પર રચાતો આકાર તે દોલનના પ્રકાર અનુસાર મળે. અર્થાત્, દોરી (માધ્યમ)માં રચાતો આકાર તેમાં ઉત્પન્ન કરેલ વિક્ષોભના પ્રકારને દર્શાવે છે. ઉદાહરણ તરીકે, જો દોરીના મુક્ત છેડાને ફક્ત એક વાર ઝડપથી ઉપર-નીચે કરવામાં આવે, તો આકૃતિ 8.2માં દર્શાવ્યા અનુસાર આકાર ઉત્પન્ન થાય છે, જેને તરંગસ્પંદ (pulse) કહે છે.

વિક્ષોભ અનુરૂપ દોરીમાં ઉદ્દભવતો આકાર આકૃતિ 8.2

જેમજેમ સમય પસાર થાય છે તેમ આકૃતિ 8.1માં દર્શાવેલ વિક્ષોભ (કે આકાર) ક્રેશ J, K, L,..... વગેરે પરથી પસાર થતો જાય છે. t=T સમયે sine વક્ક જેવો આકાર A અને I ક્રેશ વચ્ચે રહેલો હતો. આ આકાર દોરી પર આગળ વધે છે અને t=2T સમયે તે આકૃતિ 8.3માં દર્શાવ્યા પ્રમાણે I અને Q ક્રેશ વચ્ચે આવી જાય છે. આ દરમિયાન Aથી I વચ્ચેના દોલનો બંધ પડી જાય છે અને દોરી તે વિભાગમાં મૂળ સ્થિતિમાં આવી જાય છે.

t = 2T સમયે દોરીનો આકાર આકૃતિ 8.3

આમ, દોરી પર કોઈ કણ પાસે વિક્ષોભ ઉત્પન્ન કરતાં તે વિક્ષોભના પ્રકાર અનુસાર આકાર ઉત્પન્ન થઈ તે આકાર 'પોતાનું સ્વરૂપ' જાળવી રાખી દોરી પર ગતિ કરે છે. એટલે કે દોરીના માધ્યમમાં વિક્ષોભ પ્રસરણ પામતો જાય છે. માધ્યમ (અવકાશ)માં વિક્ષોભની આવી ગતિને તરંગ-સ્પંદ અથવા સામાન્ય રીતે તરંગ કહે છે.

અહીં યાદ રાખો કે દોરીના કણો A, B, C... એ સમગ્રપણે એક એકમ તરીકે માધ્યમમાં ગિત કરતા નથી, પરંતુ તેઓ સમતુલન સ્થાનની આસપાસ માત્ર દોલન કે સ્થાનાંતર જ કરે છે. આમ, તરંગ એ માધ્યમમાં આગળ વધતી કોઈ ભૌતિક 'વસ્તુ' નથી. માધ્યમના કોઈ એક ભાગમાં ઉદ્દભવેલ વિક્ષોભની અસર માધ્યમના જુદા-જુદા કણો દ્વારા કમશઃ જેમજેમ અનુભવાતી જાય તેમતેમ તરંગ આગળ વધતું જાય છે, તેમ કહેવાય. કોઈ પણ કણ પાસેથી વિક્ષોભ પસાર થઈ ગયા પછી તે કણ ફરી પાછો પોતાની સમતુલિત અવસ્થામાં આવી જાય છે.

રેલવે ટ્રેન સાથે જયારે એન્જિનનું જોડાણ થાય છે, ત્યારે એન્જિન પાસેનો પ્રથમ ડબો ધ્રૂજે છે. ત્યાર પછી બીજો અને ત્યાર પછી ત્રીજો ડબો ધ્રુજારી અનુભવે છે. આમ, ધ્રુજારી પ્રથમ ડબાથી લઈને છેલ્લા ડબા સુધી આગળ વધે છે. આ ઘટના 'રેલવેના ડબાઓથી બનતા' માધ્યમમાં પ્રસરતા તરંગની જ કહેવાય.

તરંગમાળા (Wavetrain)

ઉપરોક્ત ચર્ચામાં જો કણ Aના સરળ આવર્તદોલન સતત નિયમિત ચાલુ રાખવામાં આવે, તો પ્રથમ દોલનને કારણે ઉત્પન્ન થયેલ આકાર આગળ વધે તેની તરત પાછળ બીજા દોલનને કારણે ઉદ્દભવતો આકાર ગોઠવાઈ જાય છે. આમ, માધ્યયમાં એક પછી એક આકારો સતત ગતિ કરતા જણાય છે. વિક્ષોભોની આવી હારમાળાને તરંગમાળા કહે છે.

આપણે જે કિસ્સાની ચર્ચા કરી તેમાં તરંગ-ઘટનામાં ભાગ લેતાં કણો સરળ આવર્તગતિ કરતા હોય (અથવા તરંગને લીધે માધ્યમમાં ઉદ્ભવતા આકાર sine અથવા cosine વક્કો હોય) તેવા તરંગોને હાર્મોનિક તરંગો (harmonic wave) કહે છે.

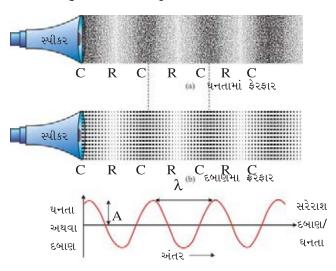
જો માધ્યમમાં તરંગો સતત આગળ ને આગળ ગતિ કરતા હોય તેવા તરંગોને પ્રગામીતરંગો (progressive waves) કહે છે.

8.3 તરંગોનું વર્ગીકરણ (Classification of Waves)

- (i) યાંત્રિક તરંગો (Mechanical waves): જે તરંગોને પ્રસરણ માટે સ્થિતિસ્થાપક માધ્યમની જરૂર છે તેવા તરંગોને યાંત્રિક તરંગો કહે છે. આવા તરંગો માધ્યમના સ્થિતિસ્થાપક ગુણધર્મને લીધે પ્રસરે છે. દા. ત., દોરી પરના તરંગો, પાણીની સપાટી પર પ્રસરતા તરંગો, ધ્વનિના તરંગો, ધરતીકંપના તરંગો (seismic waves). આ તરંગોની ખાસિયત એ છે કે તેઓ ન્યૂટનના નિયમોને અનુસરે છે.
- (ii) વિદ્યુતચુંબકીય તરંગો (Electromagnetic waves): વિદ્યુતચુંબકીય તરંગોના પ્રસરણ માટે માધ્યમની જરૂર નથી. તે શૂન્યાવકાશમાં પણ પ્રસરણ પામે છે. આ પ્રકારના તરંગમાં, અવકાશમાં વિદ્યુત અને ચુંબકીય ક્ષેત્રો સાથે સંકળાયેલ વિક્ષોભ પ્રસરણ પામે છે. તેમાં કણોને બદલે બધા બિંદુઓ પર વિદ્યુત અને ચુંબકીય ક્ષેત્રની તીવ્રતાના સદિશો 'દોલન' કરે છે.

પ્રકાશના તરંગો, રેડિયો-તરંગો, માઇક્રોવેવ તરંગો, X-ray વિગેરે એ વિદ્યુતચુંબકીય તરંગોના ઉદાહરણો છે. (આ તરંગોની વધારે સમજૂતી ધોરણ 12માં મેળવશો.)

(iii) દ્રવ્ય-તરંગો (Matter waves) : દ્રવ્ય-તરંગો એ ગતિમાન ઇલેક્ટ્રૉન, પ્રોટોન, ન્યુટ્રૉન અને બીજા મૂળભૂત કણો તેમજ અશુ અને પરમાશુઓ સાથે સંકળાયેલ છે. આ કણો દ્રવ્યની રચના કરતા હોવાથી તેને દ્રવ્ય-તરંગો કહે છે. આ પ્રકારના તરંગની વિભાવનાનો અભ્યાસ તમે ધોરણ 12માં કરશો. આધુનિક ટેક્નોલૉજીમાં આ તરંગની વિભાવના પરથી આધુનિક વૈજ્ઞાનિક ઉપકરણો બનાવવામાં આવ્યાં છે. ઉદાહરણ તરીકે, ઇલેક્ટ્રૉન સાથે સંકળાયેલ દ્રવ્ય-તરંગની વિભાવના પરથી ઇલેક્ટ્રૉન માઇક્રોસ્કૉપ વિકસાવવામાં આવેલ છે.


પ્રસ્તુત પ્રકરણમાં આપણે ફ્રક્ત યાંત્રિક-તરંગો વિશે અભ્યાસ કરીશું.

લંબગત તરંગ (Transverse wave) : જે તરંગમાં માધ્યમના કણોના સ્થાનાંતરની દિશા તરંગના પ્રસરણની દિશાને લંબ હોય, તેવા તરંગને લંબગત તરંગ કહે છે. પરિચ્છેદ 8.2 માં ચર્ચેલા દોરી પરના તરંગો એ લંબગત તરંગો છે. વિદ્યુતચુંબકીય તરંગો (દા. ત. પ્રકાશના તરંગો) એ લંબગત તરંગો છે. આ તરંગોમાં એક તરફના મહત્તમ સ્થાનાંતરોને શૃંગ (crest) અને તેની વિરુદ્ધ દિશામાંના

મહત્તમ સ્થાનાંતરોને ગર્ત (trough) કહે છે. આ તરંગો માધ્યમમાં ક્રમશઃ શુંગ અને ગર્ત રચીને પ્રસરણ પામે છે.

સંગત તરંગો (Longitudinal wave): જે તરંગમાં માધ્યમના કર્ણોનું સ્થાનાંતર તરંગ-પ્રસરણ દિશા પર જ હોય, તેવા તરંગને સંગત તરંગ કહે છે. દા. ત., હવામાં પ્રસરતા ધ્વનિના તરંગો. આ તરંગો માધ્યમમાં ક્રમશઃ સંઘનન અને વિઘનન રચીને પ્રસરણ પામતા હોય છે. માધ્યમમાં પ્રસરતા તરંગોમાં માધ્યમના કર્ણો તરંગ-પ્રસરણની દિશા પર પોતાના સમતોલન સ્થાનની આસપાસ દોલન કરતા હોય છે.

સરળતા ખાતર હવામાંથી પસાર થતાં સંગત તરંગોના કિસ્સામાં માધ્યમના કશોની સ્થિતિ, કોઈ એક ક્ષણે કેવી હોય તે આકૃતિ 8.4માં દર્શાવ્યું છે.

હવામાં પ્રસરતા સંગત તરંગો આકૃતિ 8.4

સંગત તરંગો (ધ્વનિ-તરંગો) હવામાંથી પસાર થાય ત્યારે અમુક વિભાગમાં હવાના અણુઓ તેમનાં દોલનો દરમિયાન એકબીજાની ખૂબ નજીક ધકેલાય છે. પરિણામે તે વિભાગોમાંથી હવાની ઘનતામાં અને પરિણામે હવાના દબાણમાં વધારો થાય છે અને આ વિભાગમાં સંઘનન (condensation) રચાયું છે તેમ કહેવાય. બે ક્રમિક સંઘનનો વચ્ચેના વિભાગમાં હવાના અણુઓ છૂટા પડેલા દેખાય છે. આ વિભાગમાં હવાની ઘનતા અને દબાણમાં ઘટાડો થાય છે અને આ વિભાગમાં હવાની ઘનતા અને દબાણમાં ઘટાડો થાય છે અને આ વિભાગમાં વિઘનન (rarefaction) રચાયું છે, તેમ કહેવાય. (જુઓ આકૃતિ 8.4).

આમ, ધ્વનિના પ્રસરણ દરમિયાન માધ્યમના સ્તરો પોતાના મધ્યમાન સ્થાનની આસપાસ દોલનો ચાલુ રાખે છે અને આ પ્રક્રિયા દરમિયાન ક્રમિક રીતે માધ્યમમાં સંઘનનો અને વિઘનનો રચાતાં જાય છે. જેમજેમ દોલનોની અસર એક પછી એક સ્તર પર પહોંચતી જાય છે, તેમ સંઘનનો અને વિઘનનો માધ્યમમાં આગળ વધતાં જાય છે. આ રીતે માધ્યમમાં ધ્વનિના તરંગોનું પ્રસરણ થાય છે. સંગત તરંગોના પ્રસરણ દરમિયાન માધ્યમના જુદા-જુદા વિભાગોનું દબાણ, સમય અને સ્થાન સાથે બદલાતું જતું હોવાથી આવા તરંગોને દબાણ-તરંગો (pressure waves) પણ કહે છે.

લંબગત તરંગોના કિસ્સામાં માધ્યમના કશોનાં દોલનો તરંગના પ્રસરશની દિશાને લંબ હોવાથી જયારે આવા તરંગો માધ્યમમાં પ્રસરે છે, ત્યારે માધ્યમનો દરેક ખંડ કે ઘટક આકાર-વિકૃતિ (shearing strain) અનુભવે છે. માત્ર ઘન માધ્યમમાં જ આકાર-પ્રતિબળ (shearing stress) સંભવ હોવાથી લંબગત તરંગો દોરી, તાર કે સળિયા જેવાં ઘન માધ્યમોમાં જ પ્રસરશ પામી શકે છે અને પ્રવાહી કે વાયુમાં લંબગત તરંગો શક્ય નથી.

સંગત તરંગના પ્રસરણમાં માધ્યમના ક્યોનાં દોલનો પ્રસરણની દિશામાં જ થતાં હોવાથી આવા તરંગના પ્રસરણ દરમિયાન દાબીય વિકૃતિ (compressive strain) ઉત્પન્ન થાય છે અને દાબ-પ્રતિબળ (compressive stress) તો ઘન, પ્રવાહી કે વાયુ એમ દરેક માધ્યમમાં શક્ય હોવાથી સંગત તરંગો બધાં જ માધ્યમોમાં શક્ય છે.

આમ, ઘન માધ્યમમાં લંબગત અને સંગત એમ બંને પ્રકારના તરંગોનું પ્રસરણ શક્ય છે અને તરલ માધ્યમમાં માત્ર સંગત યાંત્રિક તરંગોનું જ પ્રસરણ શક્ય છે.

[ધરતીકંપના લીધે પૃથ્વીમાં લંબગત અને સંગત એમ બંને પ્રકારના તરંગો ઉદ્ભવે છે, જેને અનુક્રમે S-તરંગ (secondary wave) અને P-wave (primary wave) કહે છે. પૃથ્વીની સપાટીના અંદરના ભાગમાં ધ્વનિ-તરંગ જેવા સંગત તરંગ (P-તરંગ) ઉદ્ભવે છે, જેની ઝડપ આશરે 4—8 km/s જેટલી હોય છે અને S-તરંગની ઝડપ આશરે 2—5 km/s જેટલી હોય છે. S-તરંગમાં પૃથ્વીની સપાટીનો અંદરનો ભાગ તરંગ પ્રસરણની દિશાને લંબ દિશામાં દોલન કરે છે. સિસ્મોગ્રાફ્રમાં પહેલું P-તરંગ એ પહેલા S-તરંગ કરતાં કેટલું વહેલું નોંધાય છે. તે પરથી સિસ્મોગ્રાફ્રથી ધરતીકંપનું ઉદ્ગમસ્થાન (epi-centre)નું અંતર નક્કી કરી શકાય છે.]

8.4 તરંગોમાં કંપવિસ્તાર, તરંગમાં ઊર્જાનું પ્રસરણ, તરંગલંબાઈ અને આવૃત્તિ (Amplitude of a Wave, Propagation of Energy in a Wave, Wavelength and Frequency)

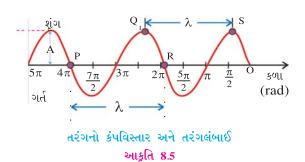
તરંગનો કંપવિસ્તાર (Amplitude of a wave) : તરંગમાં 'કણો'ના દોલનના કંપવિસ્તારને તરંગનો

કંપવિસ્તાર કહે છે. આકૃતિ 8.5માં દર્શાવ્યા મુજબ તરંગનો કંપવિસ્તાર A છે.

તરંગમાં ઊર્જાનું પ્રસરણ (Propagation of energy in a wave) :

માધ્યમમાં તરંગ ઉત્પન્ન કરવા માટે તો કોઈ કણ (વિભાગ)ને દોલિત અથવા સ્થાનાંતરિત કરવો પડે છે. આ માટે તેના પર કાર્ય કરવું પડે છે. આ કાર્ય જેટલી ઊર્જા કણને મળે છે. જે તેના દોલન દરમિયાન તેની સ્થિતિ-ઊર્જા અને ગતિ-ઊર્જાના સ્વરૂપમાં હોય છે. ક્રમશઃ આવતા કશો જેમજેમ વિક્ષોભ અનુભવતા જાય, તેમતેમ આ ઊર્જા માધ્યમના આગળને આગળના કશોને મળતી જાય છે. આમ, તરંગમાં ઊર્જાનું પ્રસરણ થાય છે. માધ્યમમાં આંતરિક ઘર્ષણબળ હોય તો ઊર્જાનું ઉષ્મા ઊર્જા સ્વરૂપે વિખેરણ થતું જાય છે અને આગળ વધતું તરંગ મંદ પડતું જાય છે.

તરંગની પ્રસરણની દિશાને લંબ એવી એકમ ક્ષેત્રફળ-વાળી સપાટીમાંથી એક સેકન્ડમાં પસાર થતી ઊર્જાને તરંગની તીવ્રતા (intensity) કહે છે.


તરંગની તીવ્રતા (I) =
$$\frac{$$
 ઊર્જા/સમય $}{}$ ક્ષેત્રફળ

તરંગની તીવ્રતાનો SI એકમ $\dfrac{J/s}{m^2}$ અથવા $\dfrac{W}{m^2}$ છે. તેનું પારિમાણિક સૂત્ર $M^{\rm I}L^{\rm O}T^{-3}$ છે.

કણના દોલનની ઊર્જા $\mathbf{E}=\frac{1}{2}k\mathbf{A}^2$, હોવાથી તરંગની તીવ્રતા, તરંગના કંપવિસ્તારના વર્ગના સમપ્રમાણમાં હોય છે. (I $\propto \mathbf{A}^2$).

તરંગલંબાઈ (Wavelength)

તરંગપ્રસરણમાં જે બે ક્રમિક ક્યો (બિંદુઓ)ના દોલનની કળાનો તફાવત 2π rad હોય છે તેમની વચ્ચેના અંતરને તરંગની તરંગલંબાઈ (λ) કહે છે. તેનો SI એકમ m છે.

આકૃતિ 8.5 દર્શાવ્યા અનુસાર ક્રણ P અને Rની વચ્ચે દોલનની કળાનો તફાવત $4\pi-2\pi=2\pi$ rad છે. આથી, તેમની વચ્ચેનું અંતર એ તરંગની તરંગલંબાઈ (λ) દર્શાવે

છે. આકૃતિ પરથી સ્પષ્ટ છે કે બે ક્રિમિક શૃંગ અથવા બે ક્રિમિક ગર્ત વચ્ચે દોલનનો કળા તફાવત 2π rad હોવાથી તેમની વચ્ચેનું અંતર પણ એ તરંગની તરંગલંબાઈ (λ) દર્શાવે છે. આ જ રીતે ધ્વનિ-તરંગોના કિસ્સામાં બે ક્રિમિક સંઘનન અથવા વિઘનન વચ્ચેના અંતરને ધ્વનિ-તરંગની તરંગલંબાઈ કહે છે.

તરંગ-સંખ્યા અને તરંગ-સદિશ (Wave number and wave veetor) :

એકમઅંતર દીઠ તરંગોની સંખ્યા $\left(\frac{1}{\lambda}\right)$ ને તરંગ-સંખ્યા કહે છે. તરંગ-સંખ્યાનો એકમ \mathbf{m}^{-1} છે.

તરંગ-પ્રસરણમાં λ અંતરે આવેલા બે ક્યોના દોલનની કળાનો તફાવત 2π rad હોય છે. આથી એકમઅંતરે રહેલા બે ક્યોના દોલનની કળાનો તફાવત $\frac{2\pi}{\lambda}$ rad થાય. $\frac{2\pi}{\lambda}$ ને તરંગ-સદિશ અથવા કોય્યીય તરંગ-સંખ્યા અથવા પ્રસરણ-અચળાંક (propagation constant) (k) કહે છે.

$$k = \frac{2\pi}{\lambda}$$

k નો SI એકમ rad/m છે. તેનું પરિમાણિક સૂત્ર $\mathbf{M}^0\mathbf{L}^{-1}\mathbf{T}^0$ છે. તરંગ-સદિશની દિશા તરંગ-પ્રસરણની દિશામાં લેવાય છે.

તરંગની આવૃત્તિ (Frequency of a wave):

એક સેકન્ડમાં માધ્યમના કશે પૂર્શ કરેલ દોલનોની સંખ્યાને કશની આવૃત્તિ (f) કહે છે. તરંગની આવૃત્તિ (f) એ માધ્યમના કશોના દોલનની આવૃત્તિ જ છે. તરંગ-પ્રસરણમાં કોઈ સ્થાન (કે બિંદુ) પાસેથી એક સેકન્ડમાં પસાર થતા તરંગોની સંખ્યાને તરંગની આવૃત્તિ કહે છે.

તેનો SI એકમ s^{-1} અથવા Hz (Hertz) છે.

 $\omega=2\pi f$ ને તરંગની કોણીય આવૃત્તિ કહે છે. $\mathrm{T}=\frac{1}{f} \ \ \text{ને તરંગનો આવર્તકાળ કહે છે}.$

8.5 તરંગ-સમીકરણ (Wave Equation)

તરંગ-પ્રસરણની ઘટનામાં ભાગ લેતાં દરેક કશોના સ્થાનાંતર દરેક સમયે જાશી શકાય, તો તરંગ-પ્રસરણની ઘટનાનું વર્શન કરી શકાય. એક પારિમાણિક તરંગો માટે x-યામ ધરાવતા કોઈ પણ કણનું કોઈ પણ t સમયે સ્થાનાંતર આપતું આપણે સમીકરણ મેળવીશું. આ સમીકરણમાં x અને tનાહ જુદાં-જુદાં મૂલ્યો મૂકીને જુદા-જુદા કણોનાં જુદા- જુદા સમયે ક્શોનાં સ્થાનાંતરો જાણી શકાય છે અને સમગ્ર

ઘટનાનું વર્ણન મેળવી શકાય છે. આવા સમીકરણને (પ્રસ્તુત કિસ્સામાં એક પારિમાણિક) **તરંગ-સમીકરણ** કહે છે.

આપણે પ્રગામી, હાર્મોનિક, એક-પારિમાણિક તરંગનું સમીકરણ મેળવીશું. ઘન x દિશામાં ગતિ કરતા તરંગ માટે તરંગ-સમીકરણ આકૃતિ 8.6માં દર્શાવેલા કોઈક માધ્યમના કણોને ધ્યાનમાં લો.

P Q R S T U V W
$$x = 0 \qquad \delta = \frac{2\pi x}{\lambda} \qquad x = x$$

તરંગ-સમીકરણ આકૃતિ 8.6

ધારો કે, t=0 સમયે ક્શ P શૂન્ય પ્રારંભિક કળા સાથે સરળ આવર્તદોલનો શરૂ થાય છે. એટલે કે P પાસેથી t=0 સમયે તરંગ ઉદ્ભવે છે.

કણ Pનો x-યામ શૂન્ય અને પ્રારંભિક કળા શૂન્ય હોવાથી t=0 સમયે તેનું સ્થાનાંતર,

$$y = A\sin\omega t \tag{8.5.1}$$

હવે, Pમાંથી ઉદ્દ્ભવેલ તરંગ જ્યારે x અંતર કાપશે ત્યારે, P થી x અંતરે આવેલો માધ્યમનો કણ (U) એ સરળ આવર્તગતિની શરૂઆત કરશે. તેના દોલનની કળા Pના દોલનની કળા કરતાં ઓછી હશે. ધારો કે તેની કળા P કણની કળા કરતાં δે જેટલી ઓછી છે. આથી, x અંતરે આવેલ કણની સરળ આવર્તગતિનું સમીકરણ,

$$y = A \sin(\omega t - \delta) \tag{8.5.2}$$

ધારો કે તરંગની તરંગલંબાઈ λ છે. આપણે જાણીએ છીએ કે Pથી λ અંતરે આવેલા કણની કળા એ કણ Pની કળા કરતાં 2π જેટલી ઓછી હોય છે. આથી Pથી x અંતરે આવેલા કણની કળા Pની પ્રારંભિક કળા કરતાં $\frac{2\pi x}{\lambda}$ જેટલી ઓછી હશે.

$$\therefore \delta = \frac{2\pi x}{\lambda} \tag{8.5.3}$$

δનું મૂલ્ય સમીકરણ (8.5.2)માં મૂકતાં,

$$y = A \sin\left(\omega t - \frac{2\pi x}{\lambda}\right)$$

પરંતુ $\frac{2\pi}{\lambda} = k$

$$\therefore y = A \sin(\omega t - kx) \tag{8.5.4}$$

અહીં $(\omega t - kx)$ ને ઉદ્ગમથી x અંતરે t જેટલા સમયે તરંગની કળા કહે છે. k સદિશની દિશા તરંગ- પ્રસરણની દિશામાં લેવામાં આવે છે.

સમીકરણ (8.5.4) એ xના વધતા મૂલ્યની દિશામાં ગિત કરતાં પ્રગામી હાર્મોનિક તરંગ માટેનું તરંગ-સમીકરણ છે. જો તરંગ xના ઘટતા મૂલ્યની દિશામાં ગિત કરતા હોય તો ઉપરના સમીકરણમાં $\omega t - kx$ ને બદલે $\omega t + kx$ લેવું.

$$y = A \sin(\omega t + kx) \tag{8.5.5}$$

સમીકરણ (8.5.4)માં $\omega=rac{2\pi}{\Gamma}$ અને $k=rac{2\pi}{\lambda}$

મૂકતાં

$$y = A \sin 2\pi \left(\frac{t}{T} - \frac{x}{\lambda}\right)$$
 (8.5.6)

ઉપર્યુક્ત સમીકરણમાં $\lambda = \nu T$ મૂકતાં

$$y = A \sin 2\pi \left(\frac{t}{T} - \frac{x}{vT}\right)$$

$$y = A \sin 2\pi f \left(t - \frac{x}{v}\right) \left(\because \frac{1}{T} = f\right) \quad (8.5.7)$$

$$\&\hat{q},$$

$$y = A \sin 2\pi \frac{f}{v} (vt - x)$$

$$\therefore y = A \sin \frac{2\pi}{\lambda} (vt - x) (\because v = f \lambda) \quad (8.5.8)$$

ઉપર્યુક્ત સમીકરણો (8.5.6), (8.5.7) અને (8.5.8) એ પ્રગામી હાર્મોનિક તરંગો માટેના તરંગ-સમીકરણનાં જુદાં-જુદાં સ્વરૂપો છે.

જો કણ Pની પ્રારંભિક કળા φ હોય તો તરંગ-સમીકરણ (8.5.4)ને નીચે મુજબ લખી શકાય :

$$y = A \sin(\omega t - kx + \phi) \tag{8.5.9}$$

8.6 તરંગ-ઝડપ અને કળા-ઝડપ (Wave Speed and Phase Speed)

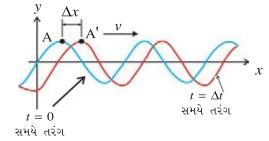
તરંગ તેના એક આવર્તકાળ T દરમિયાન λ જેટલું અંતર કાપે છે. આથી, તરંગ-ઝડપ

પરંતુ,
$$2\pi f = \omega$$
 અને $\frac{2\pi}{\lambda} = k$

$$\therefore v = \frac{\omega}{k} \tag{8.6.2}$$

અત્યાર સુધીની ચર્ચામાં આપશે જોયું કે તરંગ-પ્રસરણની ઘટનામાં ભાગ લેતા કણનો કંપવિસ્તાર (A) તેનાં દોલનોનો આવર્તકાળ (T) અને આવૃત્તિ (f) અનુક્રમે એ જ તરંગનો

કંપવિસ્તાર, તરંગનો આવર્તકાળ અને તરંગની આવૃત્તિ છે. પરંતુ દોલન કરતાં કણનો વેગ અને તરંગનો વેગ જુદો છે.


યાદ રાખો કે તરંગની આવૃત્તિ એ ઉદ્દ્રગમનો ગુષ્ધર્મ છે, જ્યારે તરંગલંબાઈ એ માધ્યમનો ગુષ્ધર્મ છે. જુદા-જુદા માધ્યમમાં તરંગની ઝડપ જુદી-જુદી હોય છે. આથી તરંગલંબાઈ પણ જુદી-જુદી હોય છે, પરંતુ આપેલ માધ્યમમાં તરંગની ઝડપ અચળ હોય છે.

કળા-ઝડપ

આકૃતિ 8.7માં દર્શાવ્યા અનુસાર તરંગ એ xના વધતા મૂલ્યની દિશામાં ગિત કરે છે. અહીં સંપૂર્ણ તરંગભાત (wave pattern)એ Δt સમયમાં Δx જેટલું સ્થાનાંતર કરે છે. તરંગભાત પરના દરેક બિંદુઓ (દા. ત., બિંદુ A)એ ગિત દરમિયાન તેમનું સ્થાનાંતર જાળવી રાખે છે.(યાદ રાખો કે દોરી પરના બિંદુઓનું સ્થાનાંતર બદલાય છે, પરંતુ તરંગભાત પરના નહિ) તરંગભાત પરના દરેક બિંદુઓની કળા અચળ હોય છે. આકૃતિ 8.7માં A અને A'ની કળા સમાન છે. આથી,

$$\therefore \omega t - kx = અચળ$$
 (8.6.3)

અહીં, x અને t બંને બદલાય છે. જેમ t વધે છે તેમ x પણ એવી રીતે વધવો જોઈએ કે જેથી $\omega t - kx$ એ અચળ રહે. જે દર્શાવે છે કે તરંગભાત xના વધતા મૂલ્યની દિશામાં ગતિ કરે છે.

તરંગ-ગતિ આકૃતિ 8.7

ઉપર્યુક્ત સમીકરણનું tની સાપેક્ષે વિકલન કરતાં,

$$\frac{d}{dt}(\omega t - kx) = 0$$

$$\therefore \ \omega - k \frac{dx}{dt} = 0$$

$$\therefore \ \frac{dx}{dt} = v = \frac{\omega}{k}$$
(8.6.4)

અહીં v ને તરંગની **કળા-ઝડેપ** (phase speed) કહે છે.

ઉપર્યુક્ત સમીકરણ (8.6.4) એ સમીકરણ (8.6.2)જેવું જ છે. આમ, આપણે જે તરંગ-ઝડપ શોધીએ છીએ તે ખરેખર તો તરંગની કળા ઝડપ છે.

ઉદાહરણ 1 : અમદાવાદ વિવિધભારતી પરથી પ્રસારિત રેડિયો-તરંગની આવૃત્તિ 96.7 MHz છે. આ તરંગોની તરંગલંબાઈ, તરંગ-સદિશ અને કોણીય આવૃત્તિ શોધો. રેડિયો-તરંગોની હવામાં ઝડપ 3×10^8 m/s છે.

ઉકેલ :

$$f = 96.7 \text{ MHz} = 96.7 \times 10^6 \text{ Hz}$$
 $v = 3 \times 10^8 \text{ m/s}$ તરંગ-ઝડપ, $v = f\lambda$

∴
$$\lambda = \frac{v}{f} = \frac{3 \times 10^8}{96.7 \times 10^6} = 3.102 \text{ m}$$

લરંગ-સંદિશ, $k = \frac{2\pi}{\lambda}$
$$= \frac{2 \times 3.14}{3.102}$$
$$= 2.024 \text{ rad/m}$$

કોણીય આવૃત્તિ, $\omega = 2\pi f$ = $2 \times 3.14 \times 96.7 \times 10^6$ = 6.07×10^8 rad/s

ઉદાહરણ 2 : એક તરંગનું તરંગ-સમીકરણ

 $y = 0.5\sin(x - 60t) \text{ cm } \vartheta.$

(i) તરંગનો કંપવિસ્તાર (ii) તરંગ-સદિશ (iii) તરંગલંબાઈ (iv) તરંગની કોણીય આવૃત્તિ અને આવૃત્તિ (v) આવર્તકાળ અને (vi) તરંગની ઝડપ શોધો.

ઉંકેલ : તરંગ-સમીકરણ,
$$y = -0.5 \sin(60t - x)$$
 ને $y = A \sin(\omega t - kx)$ સાથે સરખાવતાં,

- (i) તરંગનો કંપવિસ્તાર A = -0.5 cm
- (ii) તરંગ-સદિશ k=1 rad/cm

(iii) તરંગ-લંબાઈ
$$\lambda=\frac{2\pi}{k}$$

$$=\frac{2\times 3.14}{1}=6.28~\mathrm{cm}$$

(iv) તરંગની કોણીય આવૃતિ $\omega=60$ rad/s હવે, $\omega=2\pi f$, પરથી તરંગની આવૃત્તિ $f=\frac{\omega}{2\pi}=\frac{60}{2\times3.14}=9.55~\mathrm{Hz}$

(v) આવર્તકાળ
$$T = \frac{1}{f} = \frac{1}{9.55} = 0.105 \text{ s}$$

(vi) તરંગ-ઝડપ
$$v = \frac{\omega}{k} = \frac{60}{1} = 60$$
 cm/s.

ઉદાહરણ 3: એક સ્વરકાંટાની આવૃત્તિ 250 Hz છે. જ્યારે સ્વરકાંટો 50 દોલનો પૂરાં કરશે, ત્યારે તેમાંથી ઉદ્ભવતો ધ્વનિએ કેટલું અંતર કાપ્યું હશે ? હવામાં ધ્વનિનો વેગ 340 m/s છે.

ઉકેલ : સ્વરકાંટામાંથી ઉદ્ભવતા તરંગની તરંગલંબાઈ,

$$\lambda = \frac{v}{f} = \frac{340}{250} = 1.36 \text{ m}$$

હવે, એક દોલન દરમિયાન તરંગ એ તરંગલંબાઈ

(λ) જેટલું અંતર કાપે છે, આથી 50 દોલનો બાદ, તરંગે કાપેલું અંતર = $50 \times \lambda$

$$= 50 \times 1.36 = 68 \text{ m}.$$

ઉદાહરણ 4: એક વ્યક્તિ 100 m ઊંચા ટાવર પરથી એક પથ્થરને મુક્તપતન કરાવતાં તે તળાવમાં પડે છે. આ પથ્થર તળાવના પાણી સાથે અથડાતાં, તેમાંથી ઉત્પન્ન થતો ધ્વનિ એ વ્યક્તિએ પથ્થરને મુક્ત પતન કર્યા પછી કેટલા સમય પછી સંભળાશે ? ધ્વનિનો હવામાં વેગ 340 m/s છે.

ઉકેલ : ધારો કે પથ્થર ટાવરની ટોચ પરથી તળાવમાં પડતા t_1 જેટલો સમય લે છે. અને પથ્થર પાણી સાથે ટકરાતા ઉત્પન્ન થતો ધ્વનિ એ ટાવરની ટોચ સુધી પહોંચતા t_2 જેટલો સમય લે છે. આથી, ટાવર પર ઊભેલી વ્યક્તિને $t=t_1+t_2$ સમય બાદ અથડામણનો ધ્વનિ સંભળાશે.

હવે, પથ્થરને પાણીની સપાટી સુધી પહોંચતાં લાગતા સમય $t_{\scriptscriptstyle 1}$ નીચેના સૂત્ર પરથી શોધી શકાય.

s =
$$v_0 t_1 + \frac{1}{2} g t_1^2$$

s = 100 m, $v_0 = 0$, $g = 9.8$ m/s²
∴ 100 = 0 + $\frac{1}{2} (9.8) t_1^2$
∴ $t_1 = 4.52$ s.

હવે, પાણીની સપાટી આગળથી ઉદ્ભવતા ધ્વનિને ટાવરની ટોચ સુધી પહોંચતાં લાગતો સમય,

$$t_2 = \frac{{ અંતર}}{તરંગ-ઝડપ} = \frac{100}{340} = 0.29 \text{ s}$$

$$\therefore t = t_1 + t_2 = 4.52 + 0.29 = 4.81 \text{ s}$$

ઉદાહરણ 5 : એક પરિમાણિક પ્રગામી, હાર્મોનિક લંબગત તરંગનું સમીકરણ,

$$y = 5\sin 30\pi \left(t - \frac{x}{240}\right) \ \dot{\vartheta}.$$

અહીં y મીટરમાં અને t સેકન્ડમાં છે.

- (i) ઉદ્દગમબિંદુએ શૂન્ય સમયે ક્ષ્મ ધન Y કે ૠ્રશ Y માંથી કઈ દિશામાં ગતિ કરવાની શરૂઆત કરતું હશે ? એટલે ત્યાં પ્રથમ ગર્ત ઉત્પન્ન થશે કે શ્રૃંગ ?
- (ii) t=2 s ને અંતે ઉદ્ગમબિંદુથી 480 m અંતરે આવેલ કણનું સ્થાનાંતર, કણના દોલનનો વેગ અને તરંગનો ઢાળ શોધો.
 - (iii) તરંગની ઝડપ શોધો.

ઉકેલ:

(i) x = 0 પાસે t = 0 સમયથી શરૂ કરી y જો ૠણ દિશામાં વધતો હોય, તો ગર્ત ઉત્પન્ન થશે અને જો y ધન દિશામાં વધતો હોય, તો શૂંગ ઉત્પન્ન થશે.

અહીં, x=0, પર $y=5\mathrm{sin}30\pi t$ માટે t=0 સમયથી શરૂ કરતાં y ધન દિશામાં વધતો હોવાથી પહેલાં શુંગ ઉત્પન્ન થશે.

(ii) t=2 sના અંતે ઉદ્ગમબિંદુથી $x=480~{
m m}$ અંતરે સ્થાનાંતર

$$y = 5\sin 30\pi \left(2 - \frac{480}{240}\right)$$

= $5\sin 30\pi(0) = 0$ m
કણના દોલનનો વેગ,
 $v = \frac{dy}{dt} = 150\pi\cos 30\pi \left(t - \frac{x}{240}\right)$
= $150\pi\cos 30\pi \left(2 - \frac{480}{240}\right)$
= 150π m/s

તરંગનો ઢાળ,

$$\frac{dy}{dx} = -\frac{5\pi}{8}\cos 30\pi \left(t - \frac{x}{240}\right)$$
$$= -\frac{5\pi}{8}\cos 30\pi \left(2 - \frac{480}{240}\right)$$
$$= -\frac{5\pi}{8}$$

(iii) આપેલ સમીકરણને,

$$y = A \sin 2\pi f \left(t - \frac{x}{v} \right)$$
સાથે સરખાવતાં
∴ તરંગ-ઝડપ $v = 240$ m/s

અહીં, નોંધો કે તરંગ-ઝડપ અને તરંગ-પ્રસરણમાં ભાગ લેતાં કણના દોલનનાં વેગનું મૂલ્ય સરખું નથી.

8.7 માધ્યમમાં તરંગ-ઝડપ (Speed of Waves in a Medium)

8.7.1 તણાવવાળી દોરી પર લંબગત તરંગની ઝડપ (Speed of Transverse Wave on Streched String) :

અગાઉ આપણે જોયું કે દોરીના કણો વિક્ષોભ પસાર થયા બાદ દોલન કરી, મૂળ સ્થાને પાછા આવે છે. આ માટે માધ્યમમાં પુનઃસ્થાપક બળ અને તેથી માધ્યમની સ્થિતિસ્થાપકતા આવશ્યક છે. તરંગની અસર હેઠળ દોલિત કણ કેટલું સ્થાનાંતર કરશે તે માધ્યમના જડત્વ પર આધારિત છે. આમ, યાંત્રિક તરંગોના પ્રસરણ માટે માધ્યમમાં સ્થિતિસ્થાપકતા અને જડત્વ જરૂરી છે. માધ્યમના આ બે ગુણધર્મો વડે તરંગની ઝડપ નક્કી થાય છે.

અભ્યાસો પરથી જણાયું છે કે, તણાવવાળી દોરી જેવા માધ્યમમાં લંબગત તરંગોની ઝડપ બે બાબતો (i) દોરીની રેખીય દળ ઘનતા (µ) અને (ii) દોરીમાંના તણાવબળ T પર આધાર રાખે છે.

અહીં, આપણે દોરી પર તરંગ-ઝડપ એ પારિમાણિક વિશ્લેષણની મદદથી મેળવીશું.

દોરીની રેખીય દળ ઘનતા એટલે એકમલંબાઈ દીઠ દોરીનું દળ.

μનું પારિમાણિક સૂત્ર,

$$\mu = \frac{\text{દોરીનું કુલ દળ}}{\text{દોરીની લંબાઈ}} = \frac{\mathbf{M}^1}{\mathbf{L}^1}$$

$$= \mathbf{M}^{1} \mathbf{L}^{-1} \mathbf{T}^{0}$$

તણાવબળ Tનું પારિમાણિક સૂત્ર = $M^1L^1T^{-2}$ ધારો કે તરંગ-ઝડપ,

$$v = k \mu^a T^b \tag{8.7.1}$$

અહીં, k= એ પરિમાણરહિત અંક અને $[a,\ b]\in \mathbf{R}$ છે.

બન્ને બાજુનાં પરિમાણો લખતાં

$$\mathbf{M}^{0}\mathbf{L}^{1}\mathbf{T}^{-1} = [\mathbf{M}^{1}\mathbf{L}^{-1}\mathbf{T}^{0}]^{a} [\mathbf{M}^{1}\mathbf{L}^{1}\mathbf{T}^{-2}]^{b}$$

= $\mathbf{M}^{a+b} \mathbf{L}^{-a+b} \mathbf{T}^{-2b}$

બન્ને બાજુના પરિમાણો સરખાવતાં, a+b=0, -a+b=1 અને -2b=-1

આ પરથી,
$$a = -\frac{1}{2}$$
 અને $b = \frac{1}{2}$

સમીકરણ (8.7.1)માં a અને bનાં મૂલ્યો મૂકતાં,

$$v = k \mu^{-\frac{1}{2}} T^{\frac{1}{2}}$$

પ્રાયોગિક અને અન્ય અભ્યાસો પરથી k=1 મળે છે.

$$\therefore v = \sqrt{\frac{T}{\mu}}$$
 (8.7.2)

ઉપરોક્ત સમીકરણ દર્શાવે છે કે તરંગની ઝડપએ તરંગની આવૃત્તિ કે કંપવિસ્તાર પર આધારિત નથી.

ઉદાહરણ 6: સમાન ત્રિજયાઓ ધરાવતા બે તાર PQ અને QRને જોડીને તાર PQR બનાવેલ છે. તાર PQની લંબાઈ 4.8 m અને દળ 0.06 kg છે. તાર QRની લંબાઈ 2.56 m અને દળ 0.2 kg છે. તાર PQRમાં પ્રવર્તતું તણાવ 80 N છે. P છેડે ઉત્પન્ન કરેલ તરંગને R છેડે પહોંચતાં કેટલો સમય લાગશે ?

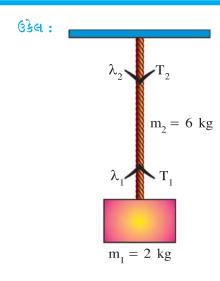
ઉકેલ : તાર PQ માટે એકમલંબાઈ દીઠ દળ,

$$\mu_1 = \frac{0.06}{4.8} = \frac{1}{80} \frac{\text{kg}}{\text{m}}$$

તાર QR માટે એકમલંબાઈ દીઠ દળ,

$$\mu_2 = \frac{0.2}{2.56} = \frac{10}{128} \frac{\text{kg}}{\text{m}}$$

∴ તાર PQમાં તરંગ-ઝડપ


$$v_1 = \sqrt{\frac{T}{\mu_1}} = \sqrt{\frac{80}{180}} = 80 \text{ m/s}$$

∴ તાર QR માં તરંગ-ઝડપ

$$v_2 = \sqrt{\frac{T}{\mu_2}} = \sqrt{\frac{80}{128}} = 32 \text{ m/s}$$

∴ તરંગને Pથી R પહોંચવા લાગતો સમય $t = t_1 + t_2$ $= \frac{PQ}{v_1} + \frac{QR}{v_2}$ $= \frac{4.8}{80} + \frac{2.56}{32}$ = 0.14 s

ઉદાહરણ 7: જડિત આધાર પરથી લટકાવેલ નિયમિત દોરડાની લંબાઈ 12 m અને દળ 6 kg છે. દોરડાના મુક્ત છેડે 2 kg દળનો બ્લૉક લટકાવેલ છે. દોરડાના નીચેના છેડે 0.06 m જેટલી તરંગલંબાઈવાળું એક તરંગ ઉત્પન્ન કરવામાં આવે છે. આ તરંગ દોરડાના ઉપરના છેડે (જડિત આધાર આગળ) પહોંચે ત્યારે તેની તરંગલંબાઈ કેટલી હશે ?

આકૃતિ 8.8

અહીં દોરડું ભારે હોવાથી દોરડાના નીચેના છેડે અને ઉપરના છેડે તણાવબળ (T) અલગ–અલગ હશે.

દોરડાનું દળ $m_2=6~\mathrm{kg}$ બ્લોકનું દળ $m_1=2~\mathrm{kg}$ દોરડાના નીચેના છેડે તણાવબળ, $T_1=m_1g=2g$ દોરડાના ઉપરના છેડે તણાવબળ,

$$T_2 = (m_1 + m_2)g$$

= $(6 + 2)g = 8g$

હવે દોરડામાં તરંગની ઝડપ $v=\sqrt{rac{T}{\mu}}$

$$\therefore f\lambda = \sqrt{\frac{T}{\mu}} \qquad (\because v = f\lambda)$$

દોરડામાં પ્રસરતા તરંગની આવૃત્તિ દોરડાના દરેક ભાગમાં સમાન હોય છે. તેમજ μ પણ દોરડાના દરેક ભાગમાં સમાન છે. આથી,

$\lambda \alpha \sqrt{T}$

દોરડાના નીચેના છેડે તરંગલંબાઈ $\lambda_1 \ \alpha \ \sqrt{T_1}$ દોરડાના ઉપરના છેડે તરંગલંબાઈ $\lambda_2 \ \alpha \ \sqrt{T_2}$

$$\therefore \frac{\lambda_2}{\lambda_1} = \sqrt{\frac{T_2}{T_1}}$$

અને
$$\lambda_2=\lambda_1\sqrt{\frac{T_2}{T_1}}$$

$$=(0.06)\sqrt{\frac{8g}{2g}}$$

$$=0.12~\mathrm{m}$$

ઉદાહરણ 8: એક તારની લંબાઈ 50 cm, અને આડછેદનું ક્ષેત્રફળ 1 mm અને દળ 5.0 g છે. તારનો યંગ મૉડ્યુલસ $16 \times 10^{11} \text{ N/m}^2$ છે. તારમાંથી પસાર થતાં તરંગની ઝડપ 80 m/s છે. આ તરંગ પ્રસરણને લીધે તારની મૂળ લંબાઈમાં થતો વધારો શોધો.

ઉકેલ :

તારની લંબાઈ $L=50~\mathrm{cm}=50\times 10^{-2}~\mathrm{m}$ તારનું દળ $m=5g=5\times 10^{-3}~\mathrm{kg}$ તારના આડછેદનું ક્ષેત્રફળ $A=1\mathrm{mm}^2=1\times 10^{-6}~\mathrm{m}^2$ તારનો યંગ મૉડચુલસ $Y=16\times 10^{11}~\mathrm{N/m}^2$ તારમાં તરંગની-ઝડપ $v=80~\mathrm{m/s}$. તારનું એકમ લંબાઈ દીઠ દળ

$$\mu = \frac{m}{L} = \frac{5 \times 10^{-3}}{50 \times 10^{-2}} = 1 \times 10^{-2} \text{ kg/m}$$

તારમાં તરંગ-ઝડપ
$$v=\sqrt{\frac{T}{\mu}}$$

 \therefore તારમાં તજ્ઞાવબળ $=T=F=\mu v^2$ $=(1\times 10^{-2})~(80)^2$ $=64~N$

યંગ મૉડચુલસ
$$Y = \frac{F_A}{\Delta L_L}$$

∴ આથી, તારની લંબાઈમાં વધારો

$$\Delta L = \frac{FL}{AY}$$

$$= \frac{(64)(50 \times 10^{-2})}{(1 \times 10^{-6})(16 \times 10^{11})}$$

$$= 0.02 \text{ mm}$$

8.7.2 માધ્યમમાં ધ્વનિ-તરંગો (સંગત-તરંગો)ની ઝડપ (Speed of sound waves (longitudinal wave) in a medium) :

અભ્યાસો પરથી જાણી શકાયું છે કે માધ્યમમાં ધ્વનિ (સંગત-તરંગ) તરંગોની ઝડપ (i) માધ્યમના સ્થિતિસ્થાપક અંક E અને (ii) માધ્યમની ઘનતા ρ પર આધાર રાખે છે.

આ હકીકતનો ઉપયોગ કરી અને પારિમાણિક વિશ્લેષણની મદદથી સંગત તરંગોની ઝડપ નીચે પ્રમાણે મેળવી શકાય:

તરંગ-ઝડપ $v = kE^a \rho^b$

અહીં, k એ પરિમાણરહિત અચળાંક અને $[a, b] \in \mathbb{R}$ છે.

હવે,
$$[E] = M^1 L^{-1} T^{-2}$$
, $[\rho] = M^1 L^{-3} T^0$ બંને બાજુએ પારિમાણિક સૂત્રો લખતાં,

$$\begin{split} \mathbf{M}^{0}\mathbf{L}^{1}\mathbf{T}^{-1} &= [\mathbf{M}^{1}\mathbf{L}^{-1}\mathbf{T}^{-2}]^{a} \ [\mathbf{M}^{1}\mathbf{L}^{-3}\mathbf{T}^{0}]^{b} \\ &= \mathbf{M}^{a+b} \ \mathbf{L}^{-a-3b} \ \mathbf{T}^{-2a} \end{split}$$

બંને બાજુનાં પરિમાણો સરખાવતાં,

$$a + b = 0$$
, $-a - 3b = 1$ અને $-2a = -1$

$$\therefore a = \frac{1}{2} \text{ અને } b = -\frac{1}{2}$$

$$\therefore v = k E^{\frac{1}{2}} \rho^{-\frac{1}{2}}$$

પ્રાયોગિક તેમજ બીજા અભ્યાસો પરથી k=1મળે છે.

$$\therefore v = \sqrt{\frac{E}{\rho}}$$
 (8.7.3)

તરલ માધ્યમમાં ધ્વનિ જેવા સંગત-તરંગોનું પ્રસરણ સંઘનન-વિઘનન વડે થતું હોય છે. આ પરિસ્થિતિમાં માધ્યમમાં જુદા-જુદા વિસ્તારોમાં દબાણના ફેરફારોના કારણે અહીં સ્થિતિસ્થાપક-અંક તરીકે બલ્ક મૉડ્યુલસ (B) લેવામાં આવે છે.

$$\therefore v = \sqrt{\frac{B}{\rho}}$$
 (8.7.4)

સળિયા જેવા રેખીય માધ્યમમાં સંગત-તરંગોનાં પ્રસરણ દરમિયાન રેખીય વિકૃતિ જોવા મળે છે. આથી સમીકરણ(8.7.3)માં સ્થિતિસ્થાપક-અંક તરીકે યંગ મૉડ્યુલસ (Y) લેતાં,

$$\therefore v = \sqrt{\frac{Y}{\rho}} \tag{8.7.5}$$

ટેબલ 8.1માં જુદાં-જુદાં માધ્યમમાં ધ્વનિ-તરંગોની ઝડપ દર્શાવી છે. **ટેબલ 8.1**

કેટલાંક માધ્યમોમાં ધ્વનિની ઝડપ (માત્ર જાણકારી માટે)

માધ્યમ	ઝડપ (m/s)
વાયુઓ	
હવા (0°C)	331
હવા (20°C)	343
હિલિયમ	965
હાઇડ્રોજન	1284
પ્રવાહી	
પાણી (0°C)	1402
પાણી (20°C)	1482
દરિયાનું પાણી	1522
ઘન પદાર્થ	
ઍલ્યુમિનિયમ	6420
કૉપર	3560
સ્ટીલ	5941
રબર	54

ટેબલ (8.1) પરથી સ્પષ્ટ છે કે પ્રવાહી અને ઘન પદાર્થોની ઘનતા, વાયુ કરતાં વધુ હોવા છતાં તે માધ્યમોમાં તરંગની ઝડપ વધુ છે. કારણ કે વાયુની સરખામણીમાં પ્રવાહી અને ઘન પદાર્થો ઓછા દબનીય હોય છે. એટલે કે તેમનો બલ્ક મૉડ્યુલસ (B) વધુ હોય છે.

ન્યૂટનનું સૂત્ર : ન્યૂટને અનુમાન કર્યું કે વાયુ (હવા)માં ધ્વિનના પ્રસરણ દરમિયાન વાયુમાં ઉદ્ભવતાં સંઘનન અને વિઘનનની ઘટના સમતાપી હોવી જોઈએ. આથી સમીકરણ 8.7.4માં આઇસોથર્મલ (સમતાપી) બલ્ક મૉડ્યુલસ-અંક વાપરવો જોઈએ.

સમતાપી પ્રક્રિયા માટે PV = અચળ,

 $(T અચળ હોવાથી PV = \mu RT = અચળ)$

Vની સાપેક્ષે વિકલન કરતાં,

$$P\frac{dV}{dV} + V\frac{dP}{dV} = 0$$

$$\therefore$$
 P = $-V\frac{dP}{dV}$ = $-\frac{dP}{dV/V}$ = બલ્ક મોડ્યુલસ B

P = બલ્ક મૉડચુલસ B
$$(\because B = -\frac{dP}{dV/V})$$

આમ, વાયુનો આઇસોથર્મલ બલ્ક મૉડ્યુલસ (B) એ વાયુના દબાણ P જેટલો હોય છે.

$$\therefore v = \sqrt{\frac{B}{\rho}} = \sqrt{\frac{P}{\rho}}$$
 (8.7.6)

આ સૂત્ર હવામાં ધ્વનિની ઝડપ શોધવા માટેનું ન્યૂટનનું સૂત્ર છે.

ઉદાહરણ 9 : ન્યૂટનના સૂત્રનો ઉપયોગ કરી STP એ હવામાં ધ્વનિની ઝડપ મેળવો.

એક મોલ હવાનું દળ = 29.0×10^{-3} kg.

$$(P = 1.01 \times 10^5 \text{ Pa})$$

ઉંકેલ : STPએ 1 mole હવાનું કદ = 22.4 L = $22.4 \times 10^{-3} \text{ m}^3$

આથી, STPએ હવાની ઘનતા $\rho = \frac{\varepsilon \sigma}{\varepsilon}$

$$\therefore \rho = \frac{29.0 \times 10^{-3}}{22.4 \times 10^{-3}} = \frac{29.0}{22.4} = 1.29 \text{kg/m}^2$$

∴ ન્યૂટનના સૂત્ર અનુસાર,

STP એ હવામાં ધ્વનિની ઝડપ
$$v=\sqrt{\frac{P}{
ho}}$$

$$= \sqrt{\frac{1.01 \times 10^5}{1.29}} = 279.3 \text{ m/s}$$

લાપ્લાસનો સુધારો :

ન્યૂટનના સૂત્રથી મળતું ધ્વનિની ઝડપનું મૂલ્ય 279.3 m/s છે. પ્રાયોગિક રીતે STP એ મળતું મૂલ્ય 332 m/s છે. જે દર્શાવે છે કે સમીકરણ (8.7.6)માં કંઈક ક્ષતિ છે.

લાપ્લાસે સૂચવ્યું કે, જ્યાં સંઘનન રચાય છે, તે ભાગનું તાપમાન વધે છે અને જ્યાં વિઘનન રચાય છે, ત્યાં તાપમાન ઘટે છે. આથી ધ્વનિના પ્રસરણની ઘટના સમતાપી ન ગણી શકાય.

માધ્યમમાં સંઘનન અને વિઘનન રચાવાની પ્રક્રિયા એટલી ઝડપી હોય છે કે સંઘનન દરમિયાન ઉત્પન્ન થયેલ ઉષ્મા બહાર વિખેરણ પામે તે પહેલા તે સ્થાને રચાતા વિઘનન દરમિયાન શોષાઈ જાય છે. તેમજ વાયુઓની પ્રમાણમાં ઓછી ઉષ્માવાહકતા પણ ઉષ્માને બહાર ન જવા દેવામાં મદદ કરે છે. આમ, વાયુમાં ધ્વનિ-પ્રસરણની ઘટના સમતાપી નહિ, પરંતુ સમોષ્મી છે. આથી સમીકરણ (8.7.6)માં વાયુનો સમોષ્મી (adiabatic) બલ્ક મોડ્યુલસ વાપરવો જોઈએ.

આદર્શવાયુની સમોષ્મી પ્રક્રિયા માટે

 $PV^{\gamma} = અચળ$

જ્યાં, γ એ વાયુની બે વિશિષ્ટ ઉષ્માઓ \mathbf{C}_{p} અને \mathbf{C}_{v} નો ગુણોત્તર છે.

Vની સાપેક્ષે સમીકરણનું વિકલન કરતાં,

$$P \cdot \gamma V^{\gamma - 1} + V^{\gamma} \frac{dP}{dV} = 0$$

$$\therefore \ \gamma P + V \frac{dP}{dV} = 0$$

$$\therefore \frac{-d\mathbf{P}}{d\mathbf{V}_{\mathbf{V}}'} = \gamma \mathbf{P}$$

$$\therefore B = \gamma P$$

આમ, સમોષ્મી પ્રક્રિયા માટે બલ્ક મૉડ્યુલસ $B=\gamma P.$

સમીકરણ (8.7.4) માં Bનું મૂલ્ય મૂકતાં, તરંગ-ઝડપ

$$v = \sqrt{\frac{\gamma P}{\rho}} \tag{8.7.7}$$

હવા માટે $\gamma=1.41$ છે અને STP એ ઝડપ ν શોધતાં તે 331.6 m/s મળે છે, જે પ્રાયોગિક મૂલ્ય સાથે મળતું આવે છે. આદર્શવાયુ જેવા માધ્યમમાં તરંગ-ઝડપ

મેળવવા માટે ન્યૂટનના સૂત્રને બદલે લાપ્લાસના સૂત્ર (સમીકરણ 8.7.7)નો ઉપયોગ કરવો જોઈએ.

ધ્વનિની ઝડપ પર અસર કરતાં વિવિધ પરિબળો ઃ

એક મોલ આદર્શવાયુ માટે અવસ્થા-સમીકરણ

$$PV = RT \ (\mu = 1 \ mol)$$

$$\therefore P = \frac{RT}{V}$$

ધ્વિનની ઝડપના સૂત્ર $v=\sqrt{\frac{\gamma P}{
ho}}$ માં Pનું મૂલ્ય મૂકતાં,

$$\therefore \ v = \sqrt{\frac{\gamma RT}{\rho V}}$$

પરંતુ, ho V = એક મોલ વાયુનું દળ = વાયુનો અણુભાર M

$$\therefore \text{ ssy } v = \sqrt{\frac{\gamma RT}{M}}$$
 (8.7.9)

ઉપર્યુક્ત સમીકરણ પરથી સ્પષ્ટ છે કે વાયુમાં ધ્વિનની ઝડપ તેના નિરપેક્ષ તાપમાનના વર્ગમૂળના સમપ્રમાણમાં હોય છે.

એટલે કે,
$$v \alpha \sqrt{T}$$

જો તાપમાન અચળ રાખીને જો વાયુનું દબાણ (P) બદલવામાં આવે, તો વાયુની ઘનતા ρ પણ દબાણના સમપ્રમાણમાં બદલાતી હોવાથી $\frac{P}{\rho}$ અચળ રહે છે. આથી અચળ તાપમાને અને આર્દ્રતા (humidity) એ વાયુમાં ધ્વિનિની ઝડપ વાયુના દબાણ પર આધારિત નથી.

અચળ દબાશે પાણીની બાષ્યની ઘનતા સૂકી હવાની ઘનતા કરતાં ઓછી હોય છે. આથી, વાતાવરણમાં ભેજ વધતા $v=\sqrt{\frac{\gamma P}{\rho}}$ સૂત્ર પ્રમાણે ધ્વનિની ઝડપ વધે છે.

ઉદાહરણ 10 : સાબિત કરો કે t તાપમાને વાયુમાં ધ્વિનિ-તરંગની ઝડપ $v_t=v_0\left(1+\frac{t}{546}\right)$ હોય છે. v_0 એ 0 °C તાપમાને વાયુમાં ધ્વિનિની ઝડપ છે. (t<<273)

ઉકેલ : આપણે જાણીએ છીએ કે વાયુમાં ધ્વિનની $\label{eq:volume} \text{ઝડપ } v = \sqrt{\frac{\gamma R \, T}{M}} \ \ \, \dot{\Theta}.$

એટલે કે,
$$v \alpha \sqrt{T}$$

 $v_t = t$ °C તાપમાને વાયુમાં ધ્વનિની ઝડપ

 $v_0^{}=0$ °C તાપમાને વાયુમાં ધ્વનિની ઝડપ

$$\therefore \frac{v_t}{v_0} = \sqrt{\frac{273 + t}{273}}$$

$$(\because T(K) = t(^{\circ}C) + 273)$$

$$\therefore v_t = v_0 \left(1 + \frac{t}{273} \right)^{\frac{1}{2}}$$

હવે, દ્વિપદી વિસ્તરણનો ઉપયોગ કરતાં અને ઉચ્ચ ઘાતવાળાં પદો અવગણતાં,

$$v_t = v_0 \left(1 + \frac{1}{2} \times \frac{t}{273} \right)$$
$$v_t = v_0 \left(1 + \frac{t}{546} \right)$$

િનોંધ : જો 0 °C તાપમાને વાયુમાં ધ્વનિની ઝડપ 332 m/s હોય, તો 1 °C તાપમાને ધ્વનિની ઝડપ, $v_t = 332 \left(1 + \frac{1}{546}\right) = v_0 \left(1 + \frac{t}{546}\right) = 332.61$ m/s.

આમ, તાપમાનમાં 1 $^{\circ}$ C જેટલો વધારો થતાં વાયુમાં ધ્વિનની ઝડપમાં 332.61 - 332 = 0.61 m/s જેટલો વધારો થાય છે.]

ઉદાહરણ 11 : 27 °C તાપમાન અને 76 cm દબાણે વાયુમાં ધ્વનિની ઝડપ 345 m/s છે, તો 127 °C તાપમાન અને 75 cm દબાણે વાયુમાં ધ્વનિની ઝડપ શોધો.

ઉકેલ : યાદ રાખો કે વાયુમાં દબાણ બદલાતા ધ્વનિની ઝડપ બદલાતી નથી. આથી,

જો v_1 અને v_2 એ અનુક્રમે 27°C અને 127°C તાપમાને ધ્વનિની ઝડપ હોય તો,

$$\frac{v_2}{v_1} = \sqrt{\frac{T_2}{T_1}} = \sqrt{\frac{273 + 127}{273 + 27}} = \sqrt{\frac{4}{3}}.$$

∴ 127°C તાપમાને ધ્વનિની ઝડપ,

$$v_2 = v_1 \times \sqrt{\frac{4}{3}} = 345 \times \sqrt{\frac{4}{3}} = 398.4 \text{ m/s}$$

ઉદાહરણ 12 : STP એ સૂકી હવામાં ધ્વિનની 332 m s^{-1} છે. ધારો કે હવામાં કદની દષ્ટિએ 4 ભાગ નાઇટ્રોજન અને એક ભાગ ઑક્સિજન છે. STP એ નાઇટ્રોજન અને ઑક્સિજનની ઘનતાનો ગુણોત્તર

16 : 14 હોય, તો આ સ્થિતિમાં ઑક્સિજનમાં ધ્વનિની ઝડપ શોધો.

ઉકેલ : હવાની ઘનતા =
$$\frac{\frac{1}{3} e \cdot \epsilon m}{\frac{1}{3} e \cdot s \cdot \epsilon}$$

$$\rho_a = \frac{\text{ઑક્સેજનનું } \epsilon m + \text{ਜાઇદ્રોજનનું } \epsilon m}{\text{ઑક્સેજનનું } s \epsilon + \text{નાઇદ્રોજનનું } s \epsilon}$$

$$\rho_a = \frac{(V \times \rho_0) + (4V \times \rho_N)}{V + 4V}$$

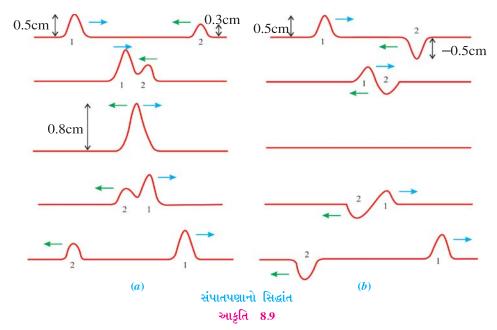
$$= \frac{\rho_0 + 4\rho_N}{5}$$

$$= \frac{\rho_0 \left(1 + 4 \times \frac{\rho_N}{\rho_0}\right)}{5}$$

$$= \frac{\rho_0 \left(1 + 4 \times \frac{14}{16}\right)}{5}$$

$$= 0.9\rho_0$$
ધ્વિનિની ઝડપ $v \propto \frac{1}{\sqrt{\rho}} \qquad (\because v = \sqrt{\frac{\gamma P}{\rho}})$

$$\therefore \text{ઑક્સેજનમાં ધ્વિનિની ઝડપ } v_0 \propto \frac{1}{\sqrt{\rho_0}}$$
અને હવામાં ધ્વિનિની ઝડપ $v_a = \frac{1}{\sqrt{\rho_a}}$


$$\therefore \frac{v_0}{v_a} = \sqrt{\frac{\rho_a}{\rho_0}} = \sqrt{\frac{0.9\rho_0}{\rho_0}} = 0.9487$$

$$\therefore v_0 = v_a \times 0.9487 = 332 \times 0.9487$$

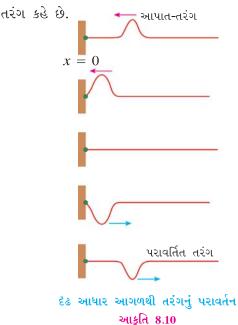
8.8 સંપાતપણાનો સિદ્ધાંત (Principle of Superposition)

= 314.77 m/s

અત્યાર સુધી આપણે માધ્યમ (દોરી)માં પ્રસરતા ફક્ત એક જ તરંગની ચર્ચા કરી. ધારો કે બે વ્યક્તિઓ દોરીના બંને છેડેથી પકડીને દોરીને હલાવે, તો આકૃતિ 8.9(a)માં દર્શાવ્યા અનુસાર દોરી પર બે તરંગ-સ્પંદો એકબીજા તરફ ગતિ કરતા જણાશે. અહીં માધ્યમ એક જ હોવાથી બંને તરંગ-સ્પંદની ઝડપ સમાન હશે.

ધારો કે પહેલા તરંગમાં કણનું મહત્તમ સ્થાનાંતર 0.5 cm છે અને બીજા તરંગમાં તે 0.3 cm છે. અહીં બંને તરંગો એકબીજા તરફની દિશામાં ગતિ કરે છે. આથી કોઈ એક ક્ષણે તેઓ દોરીના કોઈ વિભાગ આગળ એકબીજા પર સંપાત થાય છે અને ત્યાર બાદ તેઓ પોતાની મૂળ દિશામાં પોતાનો આકાર જાળવી રાખીને ગતિ કરે છે. બંને તરંગો દોરીના જે વિભાગમાં સંપાત થાય છે, ત્યાં કણનું મહત્તમ સ્થાનાંતર 0.5 cm + 0.3 cm = 0.8 cm જેટલું થાય છે.

આકૃતિ 8.9(b)માં દર્શાવ્યા અનુસાર જો બંને વ્યક્તિઓ દોરીને એવી રીતે દોલિત કરે જેથી દોરીના એક છેડે ઉત્પન્ન થયેલ તરંગ-સ્પંદમાં મહત્તમ સ્થાનાંતર ઊર્ધ્વ દિશામાં 0.5 cm જેટલું મળે અને બીજા છેડે ઉત્પન્ન થયેલા તરંગ-સ્પંદમાં આ સ્થાનાંતર અધોદિશામાં 0.5 cm જેટલું મળે. જ્યારે આ બંને તરંગો દોરી પર ગતિ કરતાં, દોરીના કોઈ એક વિભાગમાં કોઈ એક સમયે સંપાત થશે. ત્યારે બધા કણોનું સ્થાનાંતર 0.5cm + (-0.5 cm) = 0 થશે. અહીં કણનું સ્થાનાંતર શૂન્ય થાય છે, પરંતુ કણનો વેગ શૂન્ય થતો નથી. આ સ્થિતિમાં દોરી સીધી થઈ જાય છે. ત્યાર બાદ બંને તરંગ-સ્પંદ છૂટા પડી પોતાની મૂળ દિશામાં ગતિ કરે છે.


ઉપરનાં અવલોકનો પરથી સંપાતપશાનો સિદ્ધાંત નીચે મજબ લખી શકાય.

"જ્યારે માધ્યમનો કોઈ ક્ય એકીસાથે બે કે તેથી વધારે તરંગોની અસર હેઠળ આવે છે, એટલે કે કોઈ ક્યા પાસે બે કે બે કરતાં વધારે તરંગો સંપાત થાય છે, ત્યારે તે ક્યાનું સ્થાનાંતર તે દરેક તરંગ વડે ઉદ્દભવતાં સ્વતંત્ર સ્થાનાંતરોના સદિશ સરવાળા જેટલું હોય છે."

તરંગનું પરાવર્તન (Reflection of Waves):

(a) જડિત આધાર પાસેથી તરંગનું પરાવર્તન (Reflection of waves from a rigid support) :

આકૃતિ 8.10માં દર્શાવ્યા પ્રમાણે ધારો કે $y = A\sin(\omega t + kx)$ વડે રજૂ થતું એક પ્રગામી તરંગ xના ઘટતાં મૂલ્યની દિશામાં ગતિ કરતાં x = 0 બિંદુ પાસે આવે છે. તરંગ જિંદત આધાર પાસે આવતાં તે જિંદત આધાર (દીવાલ) પર બળ લગાડે છે. ન્યૂટનના ત્રીજા નિયમ અનુસાર દીવાલ એ દોરી પર પ્રતિક્રિયા બળ લગાડે છે. જે જિંદત આધાર આગળ દોરી પર તરંગ ઉત્પન્ન કરે છે. આ તરંગ એ આપાત તરંગની વિરુદ્ધ દિશામાં ગતિ કરે છે, જેને પરાવર્તિત

આપાત-તરંગ $y = \mathrm{Asin}(\omega t + kx)$ ને કારણે x = 0 બિંદુ પરનાં દોલનો

$$y_i = A \sin \omega t \tag{8.8.1}$$

વડે રજૂ કરી શકાય. x=0 આગળનો છેડો જડિત હોવાથી તેનું સ્થાનાંતર તો શૂન્ય જ રહેવાનું છે. આથી સંપાતપણાના સિદ્ધાંત અનુસાર x=0 આગળ પરાવર્તિત તરંગનું સ્થાનાંતર નીચે મુજબ આપી શકાય.

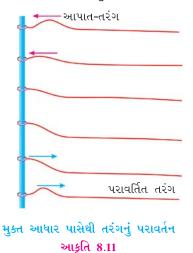
$$y_r = - {\rm A} \, \sin \! \omega t$$
 (8.8.2) સમીકરણ (8.8.2) ને નીચે મુજબ લખી શકાય :

$$y_r = A\sin(\omega t + \pi) \tag{8.8.3}$$

આ દર્શાવે છે કે તરંગ જ્યારે દેઢ આધાર પરથી પરાવર્તન પામે છે, ત્યારે તેની કળામાં π , જેટલો વધારો થાય છે. પરાવર્તન પામતી વખતે તરંગનો 'આકાર' ઉલટાઈ જાય છે. અર્થાત્ ગર્ત એ શૃંગરૂપે અને શૃંગ એ ગર્તરૂપે પરાવર્તિત થાય છે.

આ પરાવર્તિત તરંગ xના વધતા મૂલ્યની દિશામાં ગતિ કરતો હોવાથી તેનું તરંગ-સમીકરણ નીચે મુજબ મળે,

$$y_r = A \sin(\omega t + \pi - kx)$$


$$\therefore y_r = -A \sin(\omega t - kx) \tag{8.8.4}$$

જો આપાત તરંગ વધતા xની દિશામાં ગતિ કરતું હોય, તો

$$y_i = {
m A} \, \sin(\omega t - k x)$$
 (8.8.5)
અને પરાવર્તિત તરંગનું સમીકરણ નીચે મુજબ લખી શકાય.
 $y_r = -{
m A} \, \sin(\omega t + k x)$ (8.8.6)

(b) મુક્ત આધાર પાસેથી તરંગનું પરાવર્તન (Reflection of waves from a free end):

આકૃતિ 8.11માં દર્શાવ્યા પ્રમાણે દોરીનો એક છેડો ખૂબ જ હળવી રિંગ સાથે બાંધેલ છે અને આ રિંગ શિરોલંબ રાખેલ સળિયા પર ઘર્ષણરહિત સરકી શકે છે. અહીં દોરીનો આ છેડો મુક્ત છે તેમ કહેવાય અને આવા મુક્ત છેડેથી તરંગનું પરાવર્તન થાય ત્યારે શું થાય છે તે સમજીશું.

દોરીના બીજા છેડેથી ઉત્પન્ન કરેલ તરંગનો ધારો કે શૃંગ જેવો વિભાગ રિંગ પાસે પહોંચે છે. રિંગ દઢ આધાર સાથે બાંધેલી ન હોવાથી રિંગ ઉપર તરફ ધકેલાય છે. આથી તેની સાથે બાંધેલી દોરી પણ ઉપર તરફ ખેંચાય છે. પરિણામે દોરીમાં આ છેડેથી પરાવર્તિત તરંગ ઉત્પન્ન થાય છે, જેની કળા આપાત તરંગ જેટલી જ હોય છે. અર્થાત્ આ પ્રકારના પરાવર્તનમાં આકાર ઊલટાતો નથી અને શૃંગ એ શૃંગરૂપે તથા ગર્ત એ ગર્તરૂપે જ પરાવર્તન પામે છે. આવી પરિસ્થિતિમાં રિંગ પર બંને તરંગો સાથે હોવાથી રિંગનું સળિયા પરનું સ્થાનાંતર આપાત-તરંગના કંપવિસ્તારથી બમણું હોય છે.


આ ચર્ચા પરથી સ્પષ્ટ છે કે જો આપાત-તરંગનું સમીકરણ $y_i = A \sin(\omega t + kx)$ હોય, તો મુક્ત છેડેથી તેના પરાવર્તિત તરંગનું સમીકરણ નીચે મુજબ લખી શકાય :

$$y_r = A \sin (\omega t - kx) \tag{8.8.7}$$

આમ, પ્રગામી તરંગ જ્યારે દેઢ આધાર અથવા બંધ છેડા પરથી પરાવર્તન પામે છે ત્યારે તેની કળામાં π rad જેટલો વધારો થાય છે અને મુક્ત છેડા પરથી પરાવર્તન પામે ત્યારે તેની કળામાં કોઈ તફાવત ઉદ્દભવતો નથી.

8.9 સ્થિત-તરંગો (Stationary or Standing Waves)

સમાન કંપવિસ્તારવાળા અને સમાન તરંગલંબાઈવાળાં પરસ્પર વિરુદ્ધ દિશામાં ગિત કરતાં અને સંપાતીકરણ અનુભવતાં તરંગોની સમાસ અસર રૂપે મળતાં તરંગો પ્રગામીપણાનો ગુણધર્મ ગુમાવી બેસે છે. આ રીતે રચાતા સમાસ-તરંગો માધ્યમમાં સ્થિત ભાત ઊપજાવે છે. આવાં તરંગોને સ્થિત-તરંગો કહે છે.

આકૃતિ 8.12માં દર્શાવ્યા મુજબ બંને છેડે દૃઢ આધાર પર જડિત કરેલી, L લંબાઈની તણાવવાળી દોરીને ધ્યાનમાં લો. આ દોરીમાં હાર્મોનિક તરંગ ઉત્પન્ન કરતાં તેનું દૃઢ આધારો પરથી વારંવાર પરાવર્તન થાય છે અને દોરીનો દૃરેક કૃષ્ણ આપાત-તરંગ અને પરાવર્તિત તરંગની અસર હેઠળ આવે છે.

ધારો કે, દોરી પર x ના વધતાં મૂલ્યોની દિશામાં ગતિ કરતું તરંગ (આપાત-તરંગ),

$$y_1 = A \sin(\omega t - kx) \tag{8.9.1}$$

વળી, દઢ આધાર આગળથી પરાવર્તન પામી xનાં ઘટતાં મૂલ્યોની દિશામાં ગતિ કરતું તરંગ (પરાવર્તિત તરંગ)

$$y_2 = -A \sin(\omega t + kx) \tag{8.9.2}$$

સંપાતપણાના સિદ્ધાંત અનુસાર દોરીના કોઈ પણ કણનું સ્થાનાંતર,

$$y = y_1 + y_2$$

= $A\sin(\omega t - kx) - A\sin(\omega t + kx)$
 $\therefore y = -2A\cos\omega t \sin kx$ (જુઓ ફૂટનોટ)
= $-2A\sin kx \cos\omega t$ (8.9.3)

સમીકરણ (8.9.3)માં તરંગ-વિધેયનું સ્વરૂપ એ $f(\omega t \pm kx)$ પ્રકારનું નથી એટલે કે આ તરંગ પ્રગામી તરંગ નથી. સમીકરણ (8.9.3)એ સ્થિત-તરંગનું સમીકરણ છે. આવા તરંગ દ્વારા ઊર્જાનું વહન થતું નથી, આથી તેને સ્થિત-તરંગ કહે છે.

સમીકરણ (8.9.3)માંનું પદ ' $\cos \omega t$ ' સૂચવે છે કે દોરીનો દરેક કણ સરળ આવર્તગતિ કરે છે અને તેમના કંપવિસ્તારો $2A\sin kx$ અનુસાર કણના સ્થાન x પર આધાર રાખે છે. અહીં બધા જ કણનો કંપવિસ્તાર સમાન હોતો નથી. જે કણોના સ્થાન x એવાં છે, જેથી $\sin kx = 0$ થાય, તેવા કણોના કંપવિસ્તાર શૂન્ય છે. આવા ક્ણોનું સ્થાનાંતર હંમેશાં શૂન્ય જ રહે છે. આવા બિંદુઓને નિસ્પંદ-બિંદુઓ (Nodes) કહે છે.

સ્થિત-તરંગમાં જે સ્થાનોએ કંપવિસ્તાર હંમેશા શૂન્ય રહે છે. તે સ્થાનોને નિસ્પંદ-બિંદુઓ કહે છે.

હવે,
$$\sin kx = 0$$

$$\therefore kx = n\pi$$
 જયાં, $n = 1, 2, 3$

$$\therefore x = \frac{n\pi}{k} = \frac{n\pi}{2\pi/\lambda}$$

$$\therefore x = \frac{n\lambda}{2}$$
(8.9.4)

આ દર્શાવે છે કે x=0 થી $x=\frac{\lambda}{2}$, $\lambda,\ \frac{3\lambda}{2}$,

.... $\frac{n\lambda}{2}$ વગેરે અંતરોએ રહેલા બિંદુઓ નિસ્પંદ-બિંદુઓ છે. બે અનુક્રમે આવતા નિસ્પંદ-બિંદુઓ વચ્ચેનું અંતર $\frac{\lambda}{2}$ છે.

$$\frac{}{\text{ Ectil } : \sin C - \sin D = 2 \cos \left(\frac{C+D}{2}\right) \sin \left(\frac{C-D}{2}\right)}$$

હવે, જે ક્શોના સ્થાન $\sin kx = \pm 1$ વડે આપી શકાય છે, તેવા ક્શો મહત્તમ કંપવિસ્તાર સાથે દોલનો કરે છે. તે બિંદુઓને પ્રસ્પંદ-બિંદુઓ (Antinodes) કહે છે.

સ્થિત-તરંગમાં જે સ્થાનોએ કંપવિસ્તાર હંમેશા મહત્તમ રહે છે તે સ્થાનોને પ્રસ્પંદ-બિંદુઓ કહે છે. આવાં બિંદુઓનો કંપવિસ્તાર 2A હોય છે.

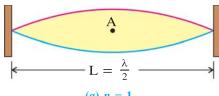
હવે,
$$\sin kx = \pm 1$$

આમ, દોરીના x=0 છેડાથી પ્રસ્પંદ-બિંદુઓ અનુક્રમે $x=\frac{\lambda}{4}$, $\frac{3\lambda}{4}$, $\frac{5\lambda}{4}$, અંતરે આવેલાં છે. અહીં પણ બે અનુક્રમે આવતાં પ્રસ્પંદ-બિંદુઓ વચ્ચેનું અંતર $\frac{\lambda}{2}$ છે. વળી, અનુક્રમે આવતાં નિસ્પંદ-બિંદુઓ અને પ્રસ્પંદ-બિંદુઓ વચ્ચેનું અંતર $\frac{\lambda}{4}$ હોય છે.

આકૃતિ 8.13માં પ્રસ્પંદ-બિંદુઓને (Antinodes) A વડે અને નિસ્પંદ-બિંદુઓને (Nodes) N વડે દર્શાવ્યા છે.

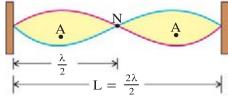
અહીં, દોરીના બંને છેડા x=0 તેમજ x=L પાસે દઢ આધાર સાથે બાંધેલી હોવાથી તે છેડાનું સ્થાનાંતર પણ બધા જ સમયે શૂન્ય રહેવું જોઈએ.

$$\therefore \sin k L = 0$$
 થવું જોઈએ.


$$\therefore \frac{2\pi}{\lambda} L = n\pi$$

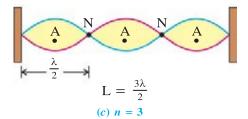
$$\therefore \ \lambda_n = \frac{2L}{n} \tag{8.9.6}$$

આ સમીકરણ દર્શાવે છે કે, nના જુદાં-જુદાં મૂલ્યો અનુસાર, અત્રે આપેલ L લંબાઈની દોરીમાં 2L, L, $\frac{2L}{3}$, $\frac{L}{2}$, જેવી અમુક નિશ્ચિત તરંગલંબાઈનાં તરંગો માટે સ્થિતતરંગો જોવા મળશે. આમ, આપેલી તણાવવાળી દોરીમાં ગમે તે તરંગલંબાઈના તરંગો ઉત્પન્ન કરી સ્થિત-તરંગોની રચના મેળવી શકાય નહિ.


દોરી પર ઉત્પન્ન થતા સ્થિત-તરંગોની શક્ય એવી તરંગલંબાઈઓને અનુરૂપ આવૃત્તિ,

$$f_n=rac{v}{\lambda_n}$$

સમીકરણ 8.9.6 પરથી, $f_n=rac{nv}{2 ext{L}}$ (8.9.7)


(a) n = 1

મૂળભૂત આવૃત્તિ

(b) n = 2

દ્વિતીય હાર્મોનિક અથવા પ્રથમ ઓવરટોન

તૃતીય હાર્મોનિક અથવા દ્વિતીય ઓવરટોન દોરી પર સ્થિત-તરંગો આકૃતિ 8.13

અથવા
$$f_n = \frac{n}{2L} \sqrt{\frac{T}{\mu}}$$
 (8.9.8)

જ્યાં, v= દોરી પર તરંગની ઝડપ = $\sqrt{\frac{T}{\mu}}$ સમીકરણ (8.9.7)માં n=1 મૂકતાં,

$$f_1 = \frac{v}{2L}$$

અહીં, f_1 ને દોરીની મૂળભૂત આવૃત્તિ અથવા પ્રથમ હાર્મોનિક કહે છે.

$$n=2$$
 elai,

$$f_2 = \frac{2v}{2L} = 2f_1$$

 f_2 ને દ્વિતીય (second) હાર્મોનિક અથવા પ્રથમ ઓવરટોન કહે છે.

$$n=3$$
 elai.

$$f_3 = \frac{3v}{2L} = 3f_1$$

 f_3 ને તૃતીય હાર્મોનિક અથવા દ્વિતીય ઓવરટોન કહે છે.

આમ, સમીકરણ (8.9.7)માં *n*ના જુદાં-જુદાં મૂલ્યો લઈને દોરીના શક્ય પ્રકારનાં દોલનો મેળવી શકાય અને તેને અનુરૂપ આવૃત્તિઓ શોધી ચતુર્થ.....વગેરે હાર્મોનિક્સ મેળવી શકાય.

પ્રથમ, દ્વિતીય અને તૃતીય હાર્મોનિક્સ સાથે દોરી પર થતાં દોલનો આકૃતિ 8.13માં દર્શાવ્યાં છે. આકૃતિ પરથી સ્પષ્ટ છે કે દોરી પર ઉત્પન્ન થતાં ગાળાઓની સંખ્યા n જેટલી છે.

આમ, જુદી-જુદી નિશ્ચિત આવૃત્તિઓ સાથેના શક્ય દોલનોને દોરીનાં પ્રસામાન્યરીતિ દોલનો (Normal Modes of Vibration) કહે છે.

જુદા-જુદા નૉર્મલ મોડ્સ ઑફ વાઇબ્રેશનને અનુરૂપ આવૃત્તિઓ નીચેના સૂત્રથી મેળવી શકાય.

$$f_n = \frac{nv}{2L} = nf_1 \text{ wii, } n = 1, 2, 3....$$

જ્યાં, દોરી પર ઉત્પન્ન થતી આવૃત્તિ f_n ને n-મી હાર્મોનિક અથવા (n-1)મો ઓવરટોન કહે છે. અહીં, n એ દોરી પર રચાતા ગાળાઓની સંખ્યા પણ દર્શાવે છે.

ઉદાહરણ 13 : 60 cm લાંબી એક દોરીમાં ઉત્પન્ન કરેલા સ્થિત-તરંગો $y=4\sin\left(\frac{\pi x}{15}\right)\cos\left(96\pi t\right)$ સમીકરણ વડે રજૂ કરવામાં આવે છે. અહીં x અને y cmમાં અને t સેકન્ડમાં છે.

- (1) નિસ્પંદ-બિંદુઓનાં સ્થાન શોધો.
- (2) પ્રસ્પંદ-બિંદુઓનાં સ્થાન શોધો.
- (3) x = 5 cm અંતરે રહેલા કણનું મહત્તમ સ્થાનાંતર શોધો.
- (4) આ સ્થિત-તરંગ જે ઘટક-તરંગોનું બનેલું હોય તે ઘટક-તરંગોનાં સમીકરણો શોધો.

ઉકેલ :
$$y = 4\sin\left(\frac{\pi x}{15}\right)\cos\left(96\pi t\right)$$
 ને $y = 2A\sin\left(kx\right)\cos\left(\omega t\right)$ સાથે સરખાવતાં,

A = 2 cm,
$$k = \frac{\pi}{15} \frac{\text{rad}}{\text{cm}}$$
 with $\omega = 96\pi$ rad/s.

પરંતુ,
$$k = \frac{2\pi}{\lambda}$$

$$\therefore \frac{2\pi}{\lambda} = \frac{\pi}{15} \Rightarrow \lambda = 30 \text{ cm}$$

(1) નિસ્પંદ-બિંદુઓનાં સ્થાન

$$=\frac{n\lambda}{2}$$
, જ્યાં, $n=1,\,2,...$

= 15 cm, 30 cm, 45 cm

(0 cm અને 60 cm અંતરે રહેલા કણો તો જકડેલા રાખેલા છે, એટલે ગણતરીમાં તેમનો સમાવેશ કર્યો નથી.)

(2) પ્રસ્પંદ-બિંદુઓનાં સ્થાન
$$= (2n-1)\frac{\lambda}{4}, \text{ જયાં, } n=1, 2, 3,...$$

$$= 7.5 \text{ cm, } 22.5 \text{ cm, } 37.5 \text{ cm, } 52.5 \text{ cm}$$

(3)
$$x = 5$$
 cm અંતરે રહેલ કણનું મહત્તમ સ્થાનાંતર
$$= 2A\sin kx$$

$$= 4\sin\left(\frac{\pi x}{15}\right)$$

$$= 4\sin\left(\frac{\pi}{3}\right) (\because x = 5 \text{ cm})$$

$$= 4\frac{\sqrt{3}}{2}$$

$$= 2\sqrt{3} \text{ cm}$$

(4)
$$y = 4\sin\left(\frac{\pi x}{15}\right) \cos(96\pi t)$$

= $2\sin\left(\frac{\pi x}{15} + 96\pi t\right) + 2\sin\left(\frac{\pi x}{15} - 96\pi t\right)$

$$\therefore$$
 ઘટક-તરંગ $y_1=2\sin\Bigl(rac{\pi x}{15}+96\pi t\Bigr)$ cm અને,
$$y_2=2\sin\Bigl(rac{\pi x}{15}-96\pi t\Bigr)$$
cm

ઉદાહરણ 14: એક માધ્યમમાં પ્રસરતા પ્રગામી, હાર્મોનિક તરંગનું સમીકરણ $y_i = A\cos{(ax+bt)}$ છે, જ્યાં A, a અને b ધન અચળાંકો છે. x=0 સ્થાને રાખેલ દેઢ આધારથી આ તરંગનું પરાવર્તન થાય છે અને પરાવર્તિત તરંગની તીવ્રતા એ આપાત-તરંગની તીવ્રતાથી 0.64 ગણી છે, તો

- (a) આપાત-તરંગની તરંગલંબાઈ અને આવૃત્તિ શોધો.
- (b) પરાવર્તિત તરંગનું સમીકરણ મેળવો.
- (c) આપાત અને પરાવર્તિત તરંગોના સંપાતીકરણથી મળતા પરિણામી તરંગને પ્રગામી તરંગ અને સ્થિત-તરંગનાં સમીકરણો રૂપે દર્શાવો.

ઉકેલ :

(a) આપાત-તરંગ $y_i = \mathrm{Acos}\;(ax+bt)$ આ સમીકરણને તરંગ-સમીકરણ $y = \mathrm{Acos}\;(kx+\omega t)$ સાથે સરખાવતાં,

$$\therefore$$
 તરંગ-સદિશ $k=a$

$$\therefore \frac{2\pi}{\lambda} = a$$

$$\lambda = \frac{2\pi}{a}$$

કોણીય આવૃત્તિ $\omega=2\pi f=b$

$$\therefore f = \frac{b}{2\pi}$$

(b) તરંગ-તીવ્રતા I α A², જ્યાં A = કંપવિસ્તાર.

અહીં $\mathbf{A_1}$ અને $\mathbf{A_2}$ આપાત અને પરાવર્તિત તરંગોના કંપવિસ્તાર તથા $\mathbf{I_1}$ અને $\mathbf{I_2}$ અનુક્રમે તેઓની તીવ્રતાઓ છે.

$$\therefore \frac{I_2}{I_1} = \frac{(A_2)^2}{(A_1)^2}$$

$$\therefore \frac{A_2}{A_1} = \left(\frac{I_2}{I_1}\right)^{\frac{1}{2}} = (0.64)^{\frac{1}{2}}$$

 $\therefore \ \, {\rm A}_2 = 0.8 \, \, {\rm A} \, \, (\because \, \, {\rm A}_1 = \,$ આપાત તરંગનો કંપવિસ્તાર = A)

.. પરાવર્તિત તરંગનો કંપવિસ્તાર ${\bf A}_2 = 0.8~{\bf A}$ પરાવર્તિત તરંગનું સમીકરણ

$$y_r = -A_2 \cos(bt - ax)$$

$$\therefore y_r = -0.8 \text{ A } \cos(bt - ax)$$

(c) પરિણામી તરંગ
$$y = y_i + y_r$$

$$= A \cos(bt + ax) - 0.8 A \cos(bt - ax)$$

$$= 0.8 A \left[\cos(bt + ax) - \cos(bt - ax)\right]$$

$$+ 0.2 \text{ Acos } (bt + ax)$$

$$= -1.6 \text{ A}\sin(ax)\cdot\sin(bt) + 0.2 \text{ A}\cos(bt + ax),$$
 જ્યાં સ્થિત-તરંગ

$$y_s = -1.6 \; \mathrm{Asin} \; (ax) \cdot \sin \; (bt) \;$$
 અને પ્રગામી તરંગ $y_p = 0.2 \; \mathrm{Acos} \; (bt + ax) \; \dot{\Theta}.$

ઉદાહરણ 15 : સોનોમીટરના તારના મુક્ત છેડે એક બ્લૉક લટકાવેલ છે. આ પરિસ્થિતિમાં તારનાં દોલનો માટે મૂળભૂત f_1 Hz છે. આ બ્લૉકને પાણીમાં ડુબાડતાં તે જ તાર માટે મૂળભૂત આવૃત્તિ f_2 Hz થાય છે. તે પછી બ્લૉકને એક પ્રવાહીમાં ડુબાડતાં આ તાર માટે f_3 Hz મૂળભૂત આવૃત્તિ મળે છે, તો બ્લૉકના દ્રવ્યની અને પ્રવાહીની વિશિષ્ટ ઘનતાઓ શોધો.

ઉકેલ: બ્લૉકને હવામાં, પાણીમાં અને પ્રવાહીમાં રાખતાં તેના પર જુદું-જુદું ઉત્પ્લાવક બળ (force of buoyancy) લાગે છે. આથી દરેક કિસ્સામાં અસરકારક વજન બદલાતાં તારમાં તણાવ બદલાય છે અને પરિણામે આપેલ લંબાઈના એક જ દ્રવ્યના તાર માટે આવૃત્તિ પણ બદલાય છે.

ધારો કે બ્લૉકનું વજન, હવામાં \mathbf{W}_1 , પાણીમાં \mathbf{W}_2 અને પ્રવાહીમાં \mathbf{W}_3 છે.

મૂળભૂત આવૃત્તિનું સૂત્ર $f=rac{1}{2\mathrm{L}}\,\sqrt{rac{T}{\mu}}$ છે. અહીં, L અને μ અચળ હોવાથી,

 $f \propto \sqrt{T}$

 \therefore T = kf^2 જયાં, k = સમપ્રમાણતાનો અચળાંક પરંતુ તણાવ T = W

 $\therefore W = kf^2$

∴ $W_1 = kf_1^2$; $W_2 = kf_2^2$; $W_3 = kf_3^2$ આર્કિમિડિઝના સિદ્ધાંત અનુસાર,

બ્લૉકના (ઘન પદાર્થના) દ્રવ્યની વિશિષ્ટ ઘનતા

$$=\frac{\text{હવામાં બ્લૉકનું વજન}}{\text{પાણીમાં બ્લૉકના વજનમાં ઘટાડો}}$$
$$=\frac{W_1}{W_1-W_2}=\frac{f_1^2}{f_1^2-f_2^2}$$

પ્રવાહીની વિશિષ્ટ ઘનતા

 $= \frac{\text{પ્રવાહીમાં બ્લૉકના વજનમાં ઘટાડો}}{\text{પાણીમાં બ્લૉકના વજનમાં ઘટાડો}} \\ W_1 - W_3 \qquad k{f_1}^2 - k{f_3}^2$

$$= \frac{W_1 - W_3}{W_1 - W_2} = \frac{kf_1^2 - kf_3^2}{kf_1^2 - kf_2^2}$$
$$= \frac{f_1^2 - f_3^2}{f_1^2 - f_2^2}$$

8.10 નળીમાં સ્થિત-તરંગો (Stationary Wave in Pipes)

જેમ દોરીમાં નિશ્ચિત આવૃત્તિવાળા લંબગત તરંગોનું પરાવર્તન થતાં, આપાત અને પરાવર્તિત તરંગોના સંપાતીકરણને લીધે સ્થિત-તરંગો રચાય છે તેવી જ રીતેનળી (pipe) માં રહેલા હવાના સ્તંભમાં પણ નિશ્ચિત આવૃત્તિવાળા સંગત-તરંગોના નળીના છેડેથી થતાં પરાવર્તનના કારણે સ્થિત-તરંગો રચાય છે. વાંસળી, ટ્રમ્પેટ (trumpet), ક્લેરિનેટ (clarinet) જેવાં સંગીતનાં વાદ્યો પણ આવી નળીઓ-ઑર્ગન પાઇપ્સ છે. જેમાં સ્થિર-તરંગો રચાય છે.

નળીઓ બે પ્રકારની હોય છે : (1) જે નળીમાં બંને છેડા ખુલ્લા હોય તેવી નળીને ઓપન પાઇપ (open pipe) કહે છે. દા.ત., વાંસળી. (2) જેમાં એક છેડો ખુલ્લો અને બીજો છેડો બંધ હોય તેવી નળીને ક્લોઝ્ડ પાઇપ (closed pipe) કહે છે. દા.ત., ક્લેરિનેટ.

જેમ દોરીના કિસ્સામાં જિંડત છેડે હંમેશા નિસ્પંદ બિંદુ જ હોય છે, તેવી જ રીતે પાઇપના બંધ છેડેથી સંગત-તરંગનું પરાવર્તન એવી રીતે થાય છે કે તે છેડો નિસ્પંદ-બિંદુ જ બને. પરંતુ સંગત-તરંગની તરંગલંબાઈની સરખામણીમાં પાઇપ સાંકડી હોય, તો ખુલ્લા છેડે (કે તેની સહેજ બહાર) પ્રસ્પંદ બિંદુ મળે છે. (પાઇપના ખુલ્લા છેડેથી થતા સંગત તરંગોના પરાવર્તનની પ્રક્રિયા થોડી જિટલ હોય છે.)

ક્લોઝુડ પાઇપમાં સ્થિર-તરંગો :

એવી હોય કે જેથી.

ક્લોઝ્ડ પાઇપમાં સ્થિત-તરંગો મળે તે માટે તરંગલંબાઈ (λ) એવી હોવી જોઈએ કે જેથી પાઇપના બંધ છેડે નિસ્પંદ બિંદુ અને ખુલ્લા છેડે પ્રસ્પંદ-બિંદુ મળે. સ્થિત-તરંગોમાં નિસ્પંદ અને પ્રસ્પંદ-બિંદુઓ વચ્ચેનું અંતર $\frac{\lambda}{4}$, $\frac{3\lambda}{4}$, $\frac{5\lambda}{4}$,(2n-1) $\frac{\lambda}{4}$ હોય છે. આથી વ્યાપક રીતે, ક્લોઝ્ડ પાઇપની આપેલી લંબાઈ L માટે તરંગોની તરંગલંબાઈ λ

 $\label{eq:L} {\rm L} = (2n-1)\frac{\lambda}{4} \ \, {\rm sui}, \ n=1,\,2,\,3,.... \ \, (8.10.1)$ થાય તો જ નળીમાં સ્થિત-તરંગો ઉદ્ભવે.

આથી, ક્લોઝ્ડ પાઇપમાં ઉદ્ભવતાં સ્થિત-તરંગોની શક્ય એવી તરંગલંબાઈઓ નીચેના સૂત્રમાં nનાં જુદાં-જુદાં

મૂલ્યો મૂકવાથી મળે છે.
$$\lambda_n = \frac{4L}{(2n-1)}$$
 (8.10.2)

પાઇપમાં સ્થિત-તરંગોની આવૃત્તિ $f_n = \frac{v}{\lambda_n}$, n = 1n = 2n = 3(*a*) (*b*) (*c*) મૂળભૂત આવૃત્તિ પાંચમી હાર્મોનિક તૃતીય હાર્મોનિક (પ્રથમ (પ્રથમ (દ્વિતીય હાર્મોનિક) ઓવરટોન) ઓવરટોન)

> ક્લોઝ્ડ પાઇપમાં સ્થિત-તરંગો આકૃતિ 8.14

$$\therefore f_n = \frac{v}{4L} (2n - 1)$$
 (8.10.3)
જયાં, v એ તરંગની ઝડપ છે.

(i) n = 1 eadi,

$$f_1 = \frac{v}{4L}$$

 f_1 ને મૂળભૂત આવૃત્તિ અથવા પ્રથમ હાર્મોનિક કહે છે (જુઓ આકૃતિ 8.14(a)).

(ii) n=2 eadi,

$$f_2 = \frac{3v}{4L} = 3f_1 \qquad (\because f_1 = \frac{v}{4L})$$

 f_2 ને તૃતીય હાર્મોનિક અથવા પ્રથમ ઓવરટોન કહે છે (જુઓ આકૃતિ 8.14(b)).

(iii) આ જ રીતે n=3 લેતાં

$$f_3 = \frac{v}{4L}(2(3) - 1) = \frac{5v}{4L} = 5f_1$$

 f_3 ને **પાંચમી હાર્મોનિક** અથવા **દિતીય ઓવરટોન** કહે છે. આમ, વ્યાપક રીતે ક્લોઝ્ડ પાઇપમાં nમાં પ્રસામાન્ય, રીતી દોલનોની આવૃત્તિ નીચે મુજબ આપી શકાય.

$$f_n = \frac{v}{4L}(2n-1) = (2n-1)f_1$$
 (8.10.4) vi , $n = 1, 2, 3,...$

જ્યાં, f_n એ (2n-1)મી હાર્મોનિક અથવા (n-1)મો ઓવરટોન દર્શાવે છે.

આમ, ક્લોઝ્ડ પાઇપ માટે બધા જ હાર્મોનિક શક્ય \mathbf{r} થી, મૂળભૂત આવૃત્તિના એકી પૂર્ણાંક હાર્મોનિક $(f_1, 3f_1, 5f_1,)$ જ શક્ય છે.

[આ સંદર્ભમાં સમીકરણ (8.10.3)ને નીચે મુજબ પણ લખી શકાય.

$$f_n = n f_1 = \frac{n v}{4 L}$$
 wei, $n = 1, 3, 5...$

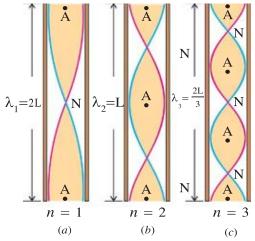
જ્યાં, f_n એ nમી હાર્મોનિક અથવા $\left(\frac{n-1}{2}\right)$ મી ઓવરટોન કહે છે.]

નળીમાં જે આવૃત્તિઓવાળાં સ્થિત-તરંગો રચાય છે, તે આવૃત્તિઓનો (જુદા-જુદા હાર્મોનિક્સને) નળીની પ્રાકૃતિક આવૃત્તિઓ (natural or characteristics frequencies) કહે છે.

ઓપન પાઇપ (ખુલ્લી નળી)માં સ્થિત-તરંગો : ઓપન પાઇપમાં બંને છેડે પ્રસ્પંદ-બિંદુઓ રચાય છે. આપણે જાણીએ છીએ કે પ્રસ્પંદ-બિંદુઓ વચ્ચેનું અંતર $\frac{\lambda}{2}$, λ , $\frac{3\lambda}{2}$ $\frac{n\lambda}{2}$ હોય છે. જ્યાં, $n=1,\ 2,\ 3,...$

આથી વ્યાપક રીતે, ઓપન પાઇપની આપેલી લંબાઈ L માટે તરંગોની તરંગલંબાઈ λ એવી હોય કે જેથી,

$$L = \frac{n\lambda}{2}$$


થાય તો જ નળીમાં સ્થિત-તરંગો ઉદ્ભવે,

આથી,
$$\lambda_n = \frac{2L}{n}$$
 (8.10.5)

ઓપન પાઇપમાં સ્થિત-તરંગોની આવૃત્તિ,

$$f_n = \frac{v}{\lambda_n} = \frac{nv}{2L} \tag{8.10.6}$$

જ્યાં, v એ તરંગની ઝડપ છે.

મૂળભૂત આવૃત્તિ દ્વિતીય હાર્મોનિક તૃતીય હાર્મોનિક (પ્રથમ હાર્મોનિક) (પ્રથમ ઓવરટોન) (દ્વિતીય ઓવરટોન)

ઓપન પાઇપમાં સ્થિત-તરંગો આકૃતિ 8.15

(i) સમીકરણ (8.10.6)માં n=1 મૂકતાં,

$$f_1 = \frac{v}{2L} \tag{8.10.7}$$

અહીં, f_1 ને મૂળભૂત આવૃત્તિ અથવા પ્રથમ હાર્મોનિક કહે છે. (જુઓ આકૃતિ 8.15a) જે ક્લોઝ્ડ પાઇપની મૂળભૂત આવૃત્તિ કરતાં બમણી છે. ($\because f_1 = \frac{v}{4\Gamma}$).

(ii) n = 2 elai,

$$f_2 = \frac{2v}{2L} = \frac{v}{L} = 2f_1$$

 f_2 ને **દ્વિતીય હાર્મોનિક** અથવા **પ્રથમ ઓવરટોન** કહે છે. (જુઓ આકૃતિ 8.15b)

આમ, સમીકરણ (8.10.6)માં nનાં જુદાં-જુદાં મૂલ્યો લઈને તૃતીય, ચતુર્થ હાર્મોનિક્સ મેળવી શકાય છે. વ્યાપક રૂપે ઓપન પાઇપમાં nમી હાર્મોનિક અથવા (n-1)માં ઓવરટોન માટે,

$$f_n = \frac{nv}{2L} = nf_1$$
 (8.10.8)
vai, $n = 1, 2, 3...$

આમ, ઓપન પાઇપ માટે દરેક હાર્મોનિક $(f_1, 2f_1, 3f_1...)$ શક્ય છે.

આમ, બંને પ્રકારની પાઇપ્સમાં પણ હવાના સ્તંભ માટે નૉર્મલ મોડ્સ ઑફ વાઇબ્રેશન મળે છે.

ઉદાહરણ 16 : ક્લોઝ્ડ પાઇપનો દ્વિતીય ઓવરટોન અને ઓપન પાઇપનો તૃતીય ઓવરટોન સમાન હોય, તો બંને પાઇપની લંબાઈનો ગુણોત્તર શોધો.

ઉકેલ:

ક્લોઝ્ડ પાઇપ માટે દ્વિતીય ઓવરટોન એટલે પાંચમી હાર્મોનિક્સ. આથી નીચેના સમીકરણમાં n=5 મૂકતાં,

$$f = \frac{nv}{4L} = \frac{5v}{4L_1}.$$

ઓપન પાઇપ માટે ત્રીજી ઓવરટોન એટલે ચોથી હાર્મોનિક્સની આવૃત્તિ આથી નીચેના સમીકરણમાં n=4

મૂકતાં,
$$f = \frac{nv}{2L} = \frac{4v}{2L_2}$$
.

હવે, બંને પાઇપ્સની આવૃત્તિ સમાન હોવાથી,

$$\frac{5v}{4L_1} = \frac{4v}{2L_2}$$

$$\therefore \frac{L_1}{L_2} = \frac{5}{8} \text{ OR } L_1 : L_2 = 5 : 8$$

ઉદાહરણ 17: અનુનાદ-નળીના પ્રયોગમાં જ્યારે હવાના સ્તંભની (નળીની) લંબાઈ 9.75 cm હોય, ત્યારે 800 Hz આવૃત્તિવાળા સ્વરકાંટા સાથે પ્રથમ અનુનાદ થાય છે. હવે હવાના સ્તંભની (નળીની) લંબાઈ વંધારીને 31.25 cm કરવામાં આવે ત્યારે પાછો તેજ સ્વરકાંટા સાથે અનુનાદ સર્જાય છે. આ અવલોકનો પરથી હવામાં ધ્વનિની ઝડપ શોધો.

ઉકેલ: અનુનાદ-નળીના પ્રયોગમાં ઓપન પાઇપનો એક છેડો પાણીમાં ડુબાડેલો રાખીને ક્લોઝ્ડ પાઇપની રચના મેળવી શકાય છે.

જો નળીમાંના હવાના સ્તંભને તેની પ્રાકૃતિક આવૃત્તિ જેટલી જ આવૃત્તિ ધરાવતા સ્વરકાંટાથી દોલિત કરવામાં આવે તો હવાનો સ્તંભ મોટા કંપવિસ્તાર સાથે દોલનો કરે છે. આ સ્થિતિમાં પ્રબળ અવાજ સંભળાય છે. આને અનુનાદની ઘટના કહે છે.

અહીંયા, $f=800~{
m Hz},~{
m L_1}=9.75~{
m cm},$ ${
m L_2}=31.25~{
m cm}.$

અનુનાદ-નળી એ ક્લોઝ્ડ પાઇપ છે. ક્લોઝ્ડ પાઇપ

માટે પ્રાકૃતિક આવૃત્તિ નીચેના સમીકરણ વડે અપાય છે.

$$f = (2n - 1) \frac{v}{4L}$$

પ્રથમ અનુનાદ વખતે ઉપર્યુક્ત સમીકરણમાં n=1 લેતાં,

$$f = \frac{v}{4L_1}$$

$$\therefore L_1 = \frac{v}{4f}$$

બીજા અનુનાદ માટે n=2 મૂકતાં,

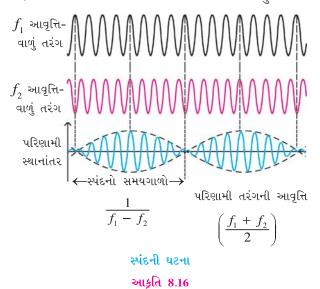
$$f = (2 \times 2 - 1) \frac{v}{4L_2} = \frac{3v}{4L_2}$$

$$\therefore L_2 = \frac{3v}{4f}$$

$$\therefore L_2 - L_1 = \frac{3v}{4f} - \frac{v}{4f} = \frac{2v}{4f} = \frac{v}{2f}$$

∴ ધ્વિનિની ઝડપ
$$v = (L_2 - L_1) (2f)$$

= (31.25 – 9.75) (2 × 800)


= 34400 cm/s

= 344 m/s

8.11 स्पंह (Beats)

આગળના પરિચ્છેદમાં આપણે એકસમાન કંપવિસ્તાર વાળા, સમાન આવૃત્તિવાળા અને પરસ્પર વિરુદ્ધ દિશામાં ગતિ કરતાં તરંગો માટે સંપાતપણાનો સિદ્ધાંત લાગુ પાડ્યો, જે માધ્યમમાં અપ્રગામી એવા સ્થિત-તરંગો રચે છે.

હવે, સંપાતપણાના સિદ્ધાંતથી આપણે સમાન કંપવિસ્તારવાળાં પણ સહેજ જુદી પડતી આવૃત્તિવાળાં હાર્મોનિક તરંગો માધ્યમમાં એક જ દિશામાં ગતિ કરે, તો માધ્યમનું કણ કેવી દોલિત ગતિ કરશે તેનો અભ્યાસ કરીશું.

ધારો કે માધ્યમમાં પ્રસરતાં બે હાર્મોનિક તરંગો,

 $y_1 = A \sin \omega_1 t = A \sin 2\pi f_1 t$ અને

 $y_2 = A \sin \omega_2 t = A \sin 2\pi f_2 t$

અહીં, સરળતા ખાતર આપણે બંને તરંગોની પ્રારંભિક કળા શૂન્ય લીધી છે. f_1 અને f_2 એ અનુક્રમે પ્રથમ અને બીજા તરંગની આવૃત્તિઓ છે. યાદ રાખો કે આપણે અહીં બંને તરંગોની અસર હેઠળ માધ્યમના કોઈ એક કણનું અવલોકન કરી રહ્યા છીએ.

સંપાતપશાના સિદ્ધાંત અનુસાર t સમયે કથિત કશનું સ્થાનાંતર y હોય તો,

$$y = y_1 + y_2$$

= A sin $2\pi f_1 t$ + A sin $2\pi f_2 t$

$$\therefore y = \left[2A\cos 2\pi \left(\frac{f_1 - f_2}{2}\right)t\right] \sin 2\pi \left(\frac{f_1 + f_2}{2}\right)t$$
(8.11.1)

$$y = A' \sin 2\pi \left(\frac{f_1 + f_2}{2}\right) t$$

અથવા $y = A' \sin 2\pi ft$ (8.11.2) ઉપર્યુક્ત સમીકરણ દર્શાવે છે કે કથિત કણનું પરિણામી

દોલન $f=\left(\frac{f_1+f_2}{2}\right)$ આવૃત્તિ સાથેનાં આવર્તદોલનો છે.

fએ બંને તરંગોની સરેરાશ આવૃત્તિ દર્શાવે છે. આ દોલનોનો કંપવિસ્તાર,

$$A' = 2A\cos 2\pi \left(\frac{f_1 - f_2}{2}\right)t$$
 (8.11.3)

કંપવિસ્તાર સમય સાથે આવર્ત રીતે બદલાતો જાય છે. કંપવિસ્તારનું આ પદ સમયમાં આવર્ત-વિધેય છે. આ

વિધેયની આવૃત્તિ $\left(\frac{f_1-f_2}{2}\right)=f$ ' છે. આથી, તેનો આવર્તકાળ,

$$T = \frac{1}{f'} = \frac{2}{f_1 - f_2} \tag{8.11.4}$$

હવે, એક આવર્તકાળ (T) જેટલા સમયગાળા દરમિયાન cosine વિધેય બેવાર મહત્તમ મૂલ્યો અને બે વાર શૂન્ય મૂલ્ય ધારણ કરે છે. તેથી એકમસમયમાં આ વિધેય f_1-f_2 વખત મહત્તમ મૂલ્ય ધારણ કરે છે. અર્થાત્ ક્ણનાં પરિણામી દોલનોનો કંપવિસ્તાર એકમસમયમાં f_1-f_2 વખત મહત્તમ અને f_1-f_2 વખત શૂન્ય બને છે.

ફૂટનોટ :
$$\sin C + \sin D = 2\sin \left(\frac{C+D}{2}\right)\cos \left(\frac{C-D}{2}\right)$$

જો તરંગો ધ્વિન-તરંગો હોય તો ધ્વિનિની પ્રબળતા કંપવિસ્તારના વર્ગ ના સમપ્રમાણમાં (I α A²) હોવાથી બંને તરંગો માધ્યમના જે વિસ્તારમાં સંપાત થાય છે, ત્યાં એકમસમયમાં ધ્વિનિ f_1-f_2 વખત મહત્તમ અને f_1-f_2 વખત શૂન્ય થાય છે.

આમ, સમાન કંપવિસ્તારવાળા પણ સહેજ જુદી પડતી આવૃત્તિઓવાળાં તરંગોના સંપાતીકરણને કારણે આવર્ત રીતે કંપવિસ્તાર અને પરિણામે ધ્વનિની પ્રબળતા મહત્તમ બનવાની ઘટનાને સ્પંદ કહે છે. એકમસમય દીઠ સ્પંદની સંખ્યા $f_1 - f_2$ છે. જેને સ્પંદની આવૃત્તિ પણ કહે છે.

નોંધ : ધ્વિનના કિસ્સામાં સ્પંદ સ્પષ્ટ રીતે અનુભવાય તે માટે f_1-f_2 આશરે 6થી 7 કરતાં વધારે ન હોવો જોઈએ.

સ્પંદનો અનુભવ કરવા માટે સમાન આવૃત્તિવાળા બે સ્વરકાંટા લો. તેમાંથી એક સ્વરકાંટાનાં પાંખિયાં પર મીણ ચોંટાડો. આમ, કરવાથી તેની આવૃત્તિ થોડી ઘટશે. (જો તેના પાંખિયાને ઘસવામાં આવે તો સ્વરકાંટાની આવૃત્તિ વધે છે.) હવે બંને સ્વરકાંટાને કંપિત કરી પાસ પાસે રાખતા તમને નિયમિત સમયાંતરે ધ્વનિમાં થતી પ્રબળતાના ફેરફારનો અનુભવ થશે. સંગીતકારો તેમનાં જુદાં-જુદાં વાંજિત્રોને tune કરવા માટે સ્પંદની ઘટનાનો ઉપયોગ કરે છે.

ઉદાહરણ 18: સ્વરકાંટો A અને સ્વરકાંટો B ને એક સાથે કંપિત કરતાં 8 સેકન્ડમાં 20 સ્પંદ ઉત્પન્ન થાય છે. કોઈ એક સ્વરકાંટા પર મીણ લગાડતાં તેઓ 8 સેકન્ડમાં 32 સ્પંદ ઉત્પન્ન કરે છે. જે સ્વરકાંટા પર મીણ લગાવ્યું નથી, તેની આવૃત્તિ 512 Hz હોય, તો બીજા સ્વરકાંટાની આવૃત્તિ શોધો.

ઉકેલ : ધારો કે સ્વરકાંટા B પર મીણ લગાવવામાં આવે છે. સ્વરકાંટા Aની આવૃત્તિ

$$f_{\rm A} = 512 \, {\rm Hz}.$$

સ્વરકાંટાની B મૂળ આવૃત્તિ $f_{\mathrm{B}}=?$

મીણ લગાડ્યા પહેલા, એકમસમયમાં ઉત્પન્ન થતાં,

સ્પંદોની સંખ્યા =
$$\frac{20}{8}$$
 = 2.5 Hz.

∴ આથી, મીણ લગાવ્યા પહેલાં સ્વરકાંટા Bની આવૃત્તિ

$$512 + 2.5 = 514.5 \text{ Hz}$$

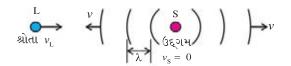
હવે, સ્વરકાંટા B પર મીણ લગાવ્યા બાદ એકમ સમયમાં ઉત્પન્ન થતાં સ્પંદોની સંખ્યા $= \frac{32}{8} = 4 \text{ Hz}.$

આથી મીણ લગાવ્યા બાદ સ્વરકાંટા Bની આવૃત્તિ, 512 + 4 = 516 Hz

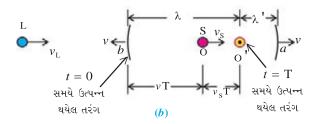
અથવા 512 - 4 = 508 Hz

પરંતુ, મીણ લગાવ્યા બાદ સ્વરકાંટા Bની આવૃત્તિ ઘટશે. ઉપર્યુક્ત ગણતરીમાં જોઈ શકાય છે કે મીણ લગાવ્યા પહેલાં સ્વરકાંટા Bની આવૃત્તિ 509.5 Hz અને ત્યાર બાદ તે 508 Hz થાય છે.

આથી, સ્વરકાંટા Bની મૂળ આવૃત્તિ 509.5 Hz હશે. **8.12 ડૉપ્લર-અસર (Doppler Effect**)


જયારે ધ્વનિ-ઉદ્ગમ અથવા શ્રોતા અથવા બંને હવાના માધ્યમની સાપેક્ષે અને એકબીજાની સાપેક્ષે ગતિ કરે ત્યારે શ્રોતા દ્વારા અનુભવાતી ધ્વનિની આવૃત્તિ, ઉદ્ગમ દ્વારા ઉત્સર્જાતી ધ્વનિની આવૃત્તિ કરતાં જુદી સંભળાય છે. આ ઘટનાને ડૉપ્લર અસર કહે છે. આ અસર ક્રિશ્ચયન જહૉન ડૉપ્લર (1803–1853) નામના ઑસ્ટ્રિયન વિજ્ઞાનીએ શોધી હતી.

આપણી તરફ ગતિ કરતી ટ્રેનની વ્હીસલની આવૃત્તિ મૂળ આવૃત્તિ કરતાં વધુ અનુભવાતાં વ્હીસલનો ધ્વનિ વધુ તીક્ષ્ણ લાગે છે. ટ્રેન બરાબર આપણી પાસેથી પસાર થાય ત્યારે અનુભવાતી આવૃત્તિ એ મૂળ ઉત્સર્જાતિ આવૃત્તિ જેટલી અનુભવાય છે અને ટ્રેન આપણાથી દૂર જાય ત્યારે અનુભવાતી આવૃત્તિ એ મૂળભૂત આવૃત્તિ કરતાં ઓછી હોઈ અવાજ ઓછો તીક્ષ્ણ લાગે છે.


ડૉપ્લર અસર સમજવા માટે આપણે આકૃતિ 8.17 માં દર્શાવ્યા અનુસાર સુરેખ પથ પર, સ્થિર હવા (માધ્યમ)ની સાપેક્ષે શ્રોતાનો વેગ $v_{\rm L}$ અને ધ્વનિ ઉદ્દગમનો વેગ $v_{\rm S}$ લઈશું. તેમજ શ્રોતાથી ઉદ્દગમ તરફ જતી દિશામાંના વેગોને ધન ગણીશું અને તેનાથી વિરુદ્ધ દિશામાંના વેગોને ૠૃણ ગણીશું. ધ્વનિની ઝડપ v હંમેશાં ધન ગણીશું. આવી પ્રણાલિકા સ્વીકારવાથી એક વ્યાપક પરિણામ મેળવી શકાય છે અને બીજા કિસ્સાઓ તેના ખાસ કિસ્સા તરીકે ચર્ચી શકાય છે.

ગતિમાન શ્રોતા : ધારો કે શ્રોતા L એ v_L વેગથી સ્થિર ધ્વનિ ઉદ્ગમ S તરફ ગતિ કરે છે. (જુઓ આકૃતિ 8.17) ધ્વનિ-ઉદગમમાંથી ઉત્સર્જાતાં તરંગોની આવૃત્તિ $f_{\rm S}$

છે. આથી તેમની તરંગલંબાઈ $\lambda = \frac{v}{f_{\rm S}}$ થશે. જ્યાં v એ ધ્વનિ-તરંગનો વેગ છે.

(a) શ્રોતા ગતિમાં અને ધ્વનિ-ઉદ્ગમ સ્થિર

શ્રોતા અને ધ્વનિ-ઉદ્ગમ બંને ગતિમાં ડૉપ્લર અસર

આકૃતિ 8.17

આ તરંગો શ્રોતા તરફ ગતિ કરતાં હોવાથી, શ્રોતાની સાપેક્ષે ધ્વનિ-તરંગોનો વેગ $v+v_{\rm L}$ થશે. આથી, શ્રોતા વડે અનુભવાતી આવૃત્તિ

$$f_{\rm L} = \frac{v + v_{\rm L}}{\lambda} \tag{8.12.1}$$

ગતિમાન ઉદ્ગમ અને ગતિમાન શ્રોતા : હવે, ધારો કે ધ્વનિ ઉદ્ગમ એ v_s જેટલા વેગથી L થી \mathbf{S} તરફ્રની દિશામાં ગતિ કરે છે. (જુઓ આકૃતિ 8.17~b).

t=0 સમયે ધ્વનિ-ઉદ્ગમ (S) એ O સ્થાન પર અને

$$t=\mathrm{T}$$
 સમયે તે O'સ્થાન પર છે, જ્યાં $\mathrm{T}=rac{1}{f_{\mathrm{S}}}$ એ

ઉદ્ભવતાં તરંગનો આવર્તકાળ છે.

આ T સમયમાં ધ્વિનિ ઉદ્દ્રગમે કાપેલું અંતર, $OO' = v_S T$ થશે અને ધ્વિનિ ઉદ્દ્રગમે t=0 સમયે ઉત્પન્ન કરેલું તરંગ (શૃંગ) એ T સમયમાં vT અંતર કાપશે. આકૃતિ પરથી, Oa=Ob=vT.

હવે, t = T સમયે ઉદ્દેગમ O' પાસે હશે ત્યારે તે બીજું ક્રમિક ધ્વિન તરંગ (શૃંગ) ઉત્પન્ન કરે છે અને શ્રોતા તરફ ગતિ કરતું તરંગ O'b વચ્ચે અને શ્રોતાથી દૂર જતું તરંગ O'a વિસ્તારમાં હશે.

શ્રોતા તરફ જતાં તરંગની તરંગલંબાઈ,

 $\lambda = O'b$ વિસ્તારમાં બે ક્રમિક તરંગ (શૃંગ) વચ્ચેનું અંતર

$$= v_{s}T + vT$$

$$\therefore \lambda = \frac{v_S + v}{f_S} \ (\because \ T = \frac{1}{f_S}) \tag{8.12.3}$$

સમીકરણ (8.12.1) માંથી λ નું મૂલ્ય મૂકતાં,

$$f_{\rm L} = \frac{v + v_{\rm L}}{v + v_{\rm S}} \cdot f_{\rm S}$$
 (8.12.3)

અથવા
$$\frac{f_{\rm L}}{v + v_{\rm L}} = \frac{f_{\rm S}}{v + v_{\rm S}}$$
 (8.12.4)

આકૃતિ (8.17) પરથી સ્પષ્ટ છે કે ધ્વનિ-ઉદ્ગમની ગતિને લીધે ઉદ્ગમના આગળના વિસ્તાર (O'a) માં તરંગો દબાય છે અને તરંગલંબાઈ ઘટે છે, જ્યારે પાછળના વિસ્તારમાં (O'b) તરંગ ફેલાય છે અને તેની તરંગલંબાઈ વધે છે. અહીં, તરંગ એક જ માધ્યમ (હવા)માં પ્રસરતું હોવા છતાં તેની તરંગલંબાઈ બદલાય છે ? કેમ આમથયું ? આ માટે તરંગ અને ધ્વનિ-ઉદ્ગમનું સાપેક્ષ સ્થાનાંતર જવાબદાર છે.

કેટલાક ખાસ કિસ્સાઓ :

(i) શ્રોતા સ્થિર હોય અને ધ્વનિ-ઉદ્ગમ શ્રોતા તરફ ગતિ કરતું હોય, તો આપણે ઉપર આપેલી વેગોની સંજ્ઞાની પ્રણાલિકા અનુસાર સમીકરણ (8.12.3)માં $v_{\rm L}=0$ અને $v_{\rm S}=-v_{\rm S}$ લેતાં,

શ્રોતાને સંભળાતી આવૃત્તિ
$$f_{\mathrm{L}} = \frac{v}{v - v_{\mathrm{S}}} \; f_{\mathrm{S}}$$

આ દર્શાવે છે કે શ્રોતાને સંભળાતી આવૃત્તિ એ મૂળ આવૃત્તિ કરતાં ઊંચી આવૃત્તિ સંભળાશે. $(f_{\rm L}>f_{\rm S})$

(ii) શ્રોતા સ્થિર હોય અને ધ્વનિ-ઉદ્ગમ શ્રોતાથી દૂર થાય તે કિસ્સામાં $v_{\rm L}=0$ અને $v_{\rm S}=+v_{\rm S}$ થશે.

શ્રોતાને સંભળાતી આવૃત્તિ
$$f_{\rm L}=rac{v}{v+v_{
m S}}f_{
m S}.$$

આ દર્શાવે છે કે $f_{\rm L} < f_{\rm S}$ એટલે કે શ્રોતાને મૂળ આવૃત્તિ કરતાં નીચી આવૃત્તિ સંભળાશે.

(iii) શ્રોતા અને ધ્વનિ-ઉદ્ગમ બંને એકબીજાં તરફ ગતિ કરતાં હોય, તો $v_{\rm L}=+v_{\rm L}$ અને $v_{\rm S}=-v_{\rm S}$ થશે. આથી શ્રોતાને સંભળાતી આવૃત્તિ,

$$f_{\rm L} = \frac{v + v_{\rm L}}{v - v_{\rm S}} f_{\rm S}$$

આ કિસ્સામાં પણ $f_{\scriptscriptstyle
m L} > f_{\scriptscriptstyle
m S}$ થશે.

(iv) શ્રોતા અને ધ્વનિ-ઉદ્ગમ એકબીજાંથી દૂર જતાં હોય તે કિસ્સામાં $v_{\rm L} = -v_{\rm L}$ અને $v_{\rm S} = +v_{\rm S}$ લેવા પડે.

$$\therefore f_{\rm L} = \frac{v - v_{\rm L}}{v + v_{\rm S}} f_{\rm S}$$

આ કિસ્સામાં $f_{\rm I} < f_{\rm S}$ થશે.

આ ગણતરીમાં આપણે માધ્યમ (હવા)ને સ્થિર ધારેલ છે. જો પવન ધ્વનિની ગતિની દિશામાં જ (ઉદ્દગમથી શ્રોતા તરફ) $v_{\rm w}$ જેટલા વેગથી ગતિ કરતો હોય, તો સમીકરણ 8.12.3માં ધ્વનિ-તરંગોનો વેગ vને બદલે $v+v_{\rm w}$ અને જો પવન ધ્વનિ-તરંગોની વિરુદ્ધ દિશામાં (શ્રોતાથી ઉદ્દગમ તરફ) ગતિ કરતો હોય તો ધ્વનિ-તરંગોનો વેગ $v-v_{\rm w}$ લેવો.

આવા બધા કિસ્સાઓમાં આપશે શ્રોતા અને ઉદ્ગમનો વેગ ધ્વનિના વેગ કરતાં ઓછો ધાર્યો છે.

ઉદાહરણ 19: એક પોલીસકારની સાઇરનમાંથી ઉદ્ભવતાં ધ્વનિની આવૃત્તિ 300 Hz છે. ધ્વનિની હવામાં ઝડપ 340 m/s છે. (a) પોલીસકાર સ્થિર હોય, ત્યારે સાયરનમાંથી ઉદ્ભવતા તરંગની તરંગલંબાઈ શોધો. (b) જો પોલીસકાર 108 km/hની ઝડપે ગતિ કરતી હોય તો કારની આગળના વિસ્તારમાં અને કારની પાછળના વિસ્તારમાં ધ્વનિ-તરંગોની તરંગલંબાઈ શોધો.

ઉકેલ : (a) પોલીસકાર સ્થિર હોય ત્યારે, $f_{\rm S} = 300~{\rm Hz},~v = 340~{\rm m/s}.$ સાયરનમાંથી ઉદ્ભવતાં તરંગની તરંગલંબાઈ

$$\lambda = \frac{v}{f_S} = \frac{340}{300} = 1.13 \text{ m}.$$

(b) પોલીસકારની ઝડપ $v_{\rm S}=108$ km/h = 30 m/s.

હવે
$$f_{\rm L} = \frac{v + v_{\rm L}}{v + v_{\rm S}} f_{\rm S}$$

ગતિમાન કારની આગળના વિસ્તારમાં શ્રોતા ઊભો હોય, તો $v_{\rm L}=0$ થશે અને $v_{\rm S}=-v_{\rm S}$

$$\therefore f_{\text{front}} = \frac{v}{v - v_{\text{S}}} f_{\text{S}}$$

$$\therefore \frac{v}{\lambda_{\text{front}}} = \frac{v}{v - v_{\text{S}}} f_{\text{S}}$$

$$\therefore \ \lambda_{\text{front}} = \frac{v - v_{\text{S}}}{f_{\text{S}}} = \frac{340 - 30}{300} = 1.033 \text{ m}$$

હવે, ગતિમાન પોલીસકારની પાછળના વિસ્તાર માટે

$$v_{\rm L} = 0$$
 અને $v_{\rm S} = +v_{\rm S}$.

$$f_{\text{behind}} = \frac{v}{v + v_{\text{S}}} f_{\text{S}}$$

$$\therefore \lambda_{\text{behind}} = \frac{v + v_{\text{S}}}{f_{\text{S}}} = \frac{340 + 30}{300} = 1.233 \text{m}.$$

ઉદાહરણ 20 : દરિયામાં સ્થિર રહેલી સબમરીનમાં ગોઠવેલ SONAR તંત્રમાંથી ઉદ્ભવતાં ધ્વનિ-તરંગોની આવૃત્તિ $40~\mathrm{kHz}$ છે. દુશ્મનની સબમરીન એ SONAR તંત્ર તરફ $360~\mathrm{kmh^{-1}}$ ની ઝડપે ગતિ કરી રહી છે. દુશ્મનની સબમરીન દ્વારા પરાવર્તિત થતાં ધ્વનિની આવૃત્તિ કેટલી હશે ? પાણીમાં ધ્વનિ-તરંગોની ઝડપ $1450~\mathrm{m\ s^{-1}}$ છે.

ઉકેલ : $f_S = 40$ kHz, v = 1450 m/s.

અહીં, SONAR માંથી ઉદ્ભવતાં ધ્વનિ-તરંગની આવૃત્તિ બે તબક્કામાં બદલાય છે.

(i) SONAR થી દુશ્મનની ગતિમાન સબમરીન તરફ જતાં આવૃત્તિ બદલાશે. આ કિસ્સામાં SONAR એ ધ્વનિ ઉદ્ગમ (S) તરીકે અને સબમરીન એ શ્રોતા (L) તરીકે વર્તશે.

આથી,
$$v_{\rm S}=0$$
 અને
$$v_{\rm L}=360~{\rm km/h}=\frac{360\times1000}{3600}=100~{\rm m/s}$$
 હવે, $f_{\rm L_1}=\frac{v+v_{\rm L}}{v+v_{\rm S}}\times f_{\rm S}=\frac{1450+100}{1450+0}\times40\times10^3$
$$=42.758~{\rm kHz}$$

(ii) બીજા તબક્કામાં દુશ્મન સબમરીન એ 42.758 kHzની આવૃત્તિને પરાવર્તિત કરે છે. આ કિસ્સામાં સબમરીન એ ધ્વનિ-ઉદ્ગમ (S) તરીકે અને SONAR એ શ્રોતા (L) તરીકે વર્તશે.

 $f_{\rm S} =$ 42.758 kHz, $v_{\rm L} =$ 0, $v_{\rm S} = -100$ m/s પરાવર્તિત તરંગની આવૃત્તિ,

$$\begin{split} f_{\rm L_2} &= \frac{v + v_{\rm L}}{v + v_{\rm S}} \times f_{\rm S} \\ &= \frac{1450 + 0}{1450 - 100} \times 42.758 \times 10^3 \\ &= 45.92 \text{ kHz} \end{split}$$

આમ, સબમરીનથી પરાવર્તિત થઈ SONAR તરફ જતાં ધ્વનિની આવૃત્તિ 45.92 kHz હશે.

સારાંશ

- 1. તરંગ : માધ્યમ (કે અવકાશ)માં વિક્ષોભની ગતિને તરંગ-સ્પંદ અથવા સામાન્ય રીતે તરંગ કહે છે.
- 2. તરંગનો કંપવિસ્તાર : તરંગમાં 'ક્ણો'ના દોલનના કંપવિસ્તારને તરંગનો કંપવિસ્તાર (A) કહે છે.
- 3. તરંગલંબાઈ અને આવૃત્તિ : તરંગ-પ્રસરણમાં જે બે ક્રમિક ક્રણોના દોલનની કળાનો તફાવત 2π rad હોય, તેમની વચ્ચેના અંતરને તરંગની તરંગલંબાઈ (λ) કહે છે.

તરંગ-પ્રસરણમાં માધ્યમના ક્રણોના દોલનની આવૃત્તિને તરંગની આવૃત્તિ (f) કહે છે.

$$v = f \lambda = \frac{\omega}{k}$$

જ્યાં, *v* એ માધ્યમમાં તરંગની ઝડપ છે.

- 4. **યાંત્રિક-તરંગો :** જે તરંગોને પ્રસરવા માટે સ્થિતિસ્થાપક માધ્યમની જરૂર પડે છે, તેને યાંત્રિક-તરંગો કહે છે.
- 5. લંબગત અને સંગત-તરંગો : તરંગમાં માધ્યમના ક્યાનાંતર (દોલન)ની દિશા તરંગ પ્રસર્યાની દિશાને લંબ હોય તેવા તરંગને લંબગત તરંગ કહે છે.

જે તરંગમાં માધ્યમના ક્શોનું સ્થાનાંતર તરંગ-પ્રસરશની દિશા પર જ હોય, તેવા તરંગને સંગત-તરંગ કહે છે.

6. તરંગ-સમીકરણ : એક પારિમાણિક તરંગ-પ્રસરણની ઘટનામાં ભાગ લેતાં દરેક કણનું કોઈ પણ સમયે સ્થાનાંતર દર્શાવતા સમીકરણને તરંગ-સમીકરણ કહે છે. તરંગ-સમીકરણનાં જુદાં-જુદાં સ્વરૂપો નીચે મુજબ છે :

(i)
$$y = A \sin(\omega t - kx)$$
, (ii) $y = A \sin(\frac{t}{T} - \frac{x}{\lambda})$,

(iii)
$$y = A \sin 2\pi f \left(t - \frac{x}{v}\right)$$
, (iv) $y = A \sin \frac{2\pi}{\lambda} (vt - x)$.

ઉપર્યુક્ત સમીકરણો
$$x$$
નાં વધતાં મૂલ્યોની દિશામાં ગતિ કરતાં તરંગ માટે છે. જો તરંગ x નાં ઘટતાં મૂલ્યોની દિશામાં પ્રસરતું હોય, તો સમીકરણમાં ' $-$ ' ને બદલે ' $+$ ' મૂકવું.

- 7. યાંત્રિક-તરંગોના પ્રસરણ માટે માધ્યમની સ્થિતિસ્થાપકતા અને જડત્વ જરૂરી છે.
- 8. તણાવવાળી દોરી જેવા માધ્યમમાં લંબગત તરંગનો વેગ $v=\sqrt{\frac{T}{\mu}}$. જ્યાં, T= દોરીમાં તણાવ, $\mu=$ એકમલંબાઈ દીઠ દોરીનું દળ $=\frac{m}{T}$
- 9. સ્થિતિસ્થાપક માધ્યમમાં ધ્વનિ-તરંગનો વેગ $v=\sqrt{\frac{E}{\rho}}$. જ્યાં, E= માધ્યમનો સ્થિતિસ્થાપક-અંક, ho= માધ્યમની ઘનતા

વાયુ જેવા તરલ માધ્યમમાં સંગત-તરંગનો વેગ
$$v=\sqrt{\frac{B}{\rho}}=\sqrt{\frac{\gamma P}{\rho}}$$
. જયાં, $B=$ બલ્ક મૉડ્યુલસ $\gamma=\frac{C_P}{C_V}=1.41$ (હવા માટે)

સળિયા જેવા રેખીય માધ્યમમાં સંગત-તરંગોનો વેગ :
$$v=\sqrt{\frac{\gamma}{\rho}}$$

જ્યાં, $\gamma=$ યંગ મૉડ્યુલસ, $\rho=$ માધ્યમની ઘનતા, વાયુમાં ધ્વિનનો વેગ (અચળ દબાણે અને આદ્રતાએ) તેના નિરપેક્ષ તાપમાનના વર્ગમૂળના સમપ્રમાણમાં હોય છે. $v=\sqrt{\frac{\gamma RT}{M}}$ $\therefore v \propto \sqrt{T}$. ધ્વિનનો વેગ દબાણના ફેરફાર સાથે બદલાતો નથી.

- 10. સંપાતપણાનો સિદ્ધાંત : જ્યારે માધ્યમના કોઈ કણ પાસે બે કે બે કરતાં વધારે તરંગો સંપાત થાય છે, ત્યારે તે કણનું સ્થાનાંતર તે દરેક તરંગ વડે ઉદ્ભવતા સ્વતંત્ર સ્થાનાંતરોના સદિશ સરવાળા જેટલું હોય છે.
- 11. સ્થિત-તરંગો : સમાન કંપવિસ્તારવાળાં અને સમાન આવૃત્તિઓવાળાં પણ પરસ્પર વિરુદ્ધ દિશામાં ગતિ કરતા અને સંપાતીકરણ અનુભવતાં તરંગોની સમાસ અસર રૂપે મળતાં તરંગો પ્રગામીપણાના ગુણધર્મ ગુમાવી બેસે છે. આવાં તરંગોને સ્થિત-તરંગો કહે છે.

સ્થિત-તરંગનું સમીકરણ $y=-2\mathrm{A}\mathrm{sin}kx\cos\omega t$, આ સ્થિત-તરંગનો કંપવિસ્તાર $2\mathrm{A}\,\sin kx$ સ્થિત-તરંગમાં નિસ્પંદ-બિંદુઓનાં સ્થાન $x_n=\frac{n\lambda}{2}$.

જ્યાં, $n=1,\,2,\,3....$ આ બિંદુઓ પાસે કંપવિસ્તાર શૂન્ય હોય છે.

સ્થિત-તરંગમાં પ્રસ્પંદ-બિંદુઓનાં સ્થાન $x_n=(2n-1)\frac{\lambda}{4}$

જ્યાં, n = 1, 2, 3,... આ બિંદુઓ પાસે કંપવિસ્તાર 2A હોય છે.

12. બંને છેડે તણાવ સાથે બાંધેલી દોરીમાં ઉદ્ભવતા નૉર્મલ મોડ્સ ઑફ વાઇબ્રેશનને અનુરૂપ શક્ય આવૃત્તિઓ,

$$f_n = \frac{nv}{2L} = \frac{n}{2L} \sqrt{\frac{T}{\mu}}$$
 wei, $n = 1, 2, 3...$

13. ક્લોઝ્ડ પાઇપમાં સ્થિત તરંગભાત મેળવવા માટે શક્ય તરંગલંબાઈઓ,

$$\lambda_n=rac{4{
m L}}{(2n-1)}$$
 અને પાઇપની લંબાઈ શક્ય આવૃત્તિઓ $f_n=(2n-1)rac{v}{4{
m L}}=(2n-1)f_1$

જ્યાં, $n=1,\,2,\,3,...$. અને L= પાઇપની લંબાઈ

ક્લોઝ્ડ પાઇપમાં f_1 , $3f_1$, $5f_1$, જેવી હાર્મોનિક જ શક્ય છે.

14. ઓપન પાઇપમાં સ્થિત તરંગભાત મેળવવા માટે શક્ય તરંગલંબાઈઓ,

$$\lambda_n=rac{2{
m L}}{n}$$
 જ્યાં, $n=1,\,2,\,3,\,...$ અને ${
m L}=$ પાઇપની લંબાઈ

શક્ય આવૃત્તિઓ
$$f_n = \frac{nv}{2L} = nf_1$$

ઓપન પાઇપમાં f_1 , $2f_1$, $3f_1$, જેવી બધી જ હાર્મોનિક શક્ય છે.

15. સ્પંદ : સમાન કંપવિસ્તારવાળા પણ સહેજ જુદી પડતી આવૃત્તિઓવાળાં તરંગોના સંપતીકરણને કારણે આવર્ત રીતે કંપવિસ્તાર અને પરિણામે ધ્વનિની પ્રબળતા મહત્તમ બનવાની ઘટનાને સ્પંદ કહે છે.

એક સેકન્ડમાં ઉત્પન્ન થતાં સ્પંદોની સંખ્યા $=f_1-f_2$

16. ડૉપ્લર-અસર : જયારે ધ્વિનિ-ઉદ્દગમ કે શ્રોતા કે બંને હવાના માધ્યમની સાપેક્ષે અને એકબીજાની સાપેક્ષે ગિત કરે છે, ત્યારે શ્રોતા દ્વારા અનુભવાતી ધ્વિનિની આવૃત્તિ, ઉદ્દગમ દ્વારા ઉત્સર્જાતી ધ્વિનિની આવૃત્તિ કરતાં જુદી હોય છે. આ ઘટનાને ડૉપ્લર-અસર કહે છે.

શ્રોતાને સંભળાતી આવૃત્તિ,
$$f_{
m L}=rac{v\pm v_{
m L}}{v\pm v_{
m S}}f_{
m S}$$

જ્યાં, v =ધ્વનિનો વેગ

 $v_{\mathrm{L}}=$ શ્રોતાનો વેગ

 $v_{\mathrm{S}} =$ ઉદ્ગમનો વેગ

 $f_{
m S}=$ ઉદ્ગમ દ્વારા ઉત્સર્જાતા ધ્વનિની આવૃત્તિ

સ્વાધ્યાય

નીચેનાં વિધાનો માટે આપેલા વિકલ્પોમાંથી યોગ્ય વિકલ્પ પસંદ કરો :

		. `				_	_
1.	યાત્રિક	പാവി		4	as4	50	60
1.	666763	(C C - CC	• • • • • • • • • • • • • • • • • • • •	્ડ	· CC · C	5	O .

(A) ઊર્જા

(B) દ્રવ્ય

(C) ઊર્જા અને દ્રવ્ય બંને

(D) એક પણ નહિ

2. એક સ્વરકાંટો (tunign fork) એ એક સેકન્ડમાં 256 વાર ધ્રુજારી અનુભવે છે. જો માધ્યમમાં ધ્વિનિની ઝડપ 330 m/s હોય, તો સ્વરકાંટાની ઉત્પન્ન થતાં તરંગની તરંગલંબાઈ હશે.

(A) 0.56 cm

(B) 0.89 m

(C) 1.11 m

(D) 1.29 m

3. જ્યારે 300 Hz આવૃત્તિવાળો ધ્વિન માધ્યમમાંથી પસાર થાય છે, ત્યારે માધ્યમના કણનું મહત્તમ સ્થાનાંતર 0.1 cm છે. આ કણનો મહત્તમ વેગ હશે.

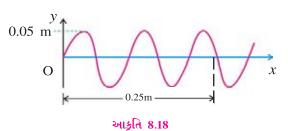
(A) 60π cm/s

(B) 30π cm/s

(C) 30 cm/s

(D) 60 cm/s

4. 500 Hz આવૃત્તિવાળા એક તરંગની ઝડપ 360 m s $^{-1}$ છે. તેના પર 60 $^{\circ}$ જેટલો કળા-તફાવત ધરાવતા બે ક્શો વચ્ચેનું લઘુતમ અંતર છે.


(A) 0.23 m

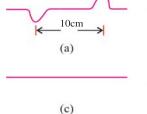
(B) 0.12 m

(C) 8.33 m

(D) 60 m

5. આકૃતિમાં દર્શાવેલ તરંગની માધ્યમમાં ઝડપ 330 m/s છે. આ તરંગ ધન x-દિશામાં ગતિ કરતું હોય તો તેનું તરંગ સમીકરણ

- (A) $y = 0.05 \sin 2\pi (4000 t 12.5x) \text{ m}$
- (B) $y = 0.05 \sin 2\pi (4000 t 122.5x) \text{ m}$
- (C) $y = 0.05 \sin 2\pi (3300 t 10x) \text{ m}$
- (D) $y = 0.05 \sin 2\pi (3300 t 10t) \text{ m}$
- 6. $y = A\sin^2(kx \omega t)$ તરંગ-સમીકરણ ધરાવતા તરંગનો કંપવિસ્તાર અને આવૃત્તિ હશે.


(A) A, $\omega/2\pi$

(B) $\frac{A}{2}$, $\frac{\omega}{\pi}$

(C) 2A, $\frac{\omega}{4\pi}$

(D) \sqrt{A} , $\frac{\omega}{2\pi}$

7. આકૃતિમાં દર્શાવ્યા અનુસાર બે સમાન તરંગ-સ્પંદો, દોરી પર પરસ્પર વિરુદ્ધ દિશામાં 2.5 cm/sની ઝડપથી ગતિ કરે છે. પ્રારંભમાં આ બે તરંગ-સ્પંદ વચ્ચેનું અંતર 10 cm છે. બે સેકન્ડ બાદ દોરીની સ્થિતિ કેવી હશે ?

5cm (b)

આકૃતિ 8.19

8. $y = 10\sin(100\ t)\cos(0.01x)$ થી રજૂ થતાં સ્થિત તરંગનાં ઘટક-તરંગોની ઝડપ છે. અહીં, x એ yમાં અને t એ sમાં છે.

(A) 1 m s^{-1}

(B) 10^2 m s^{-1}

(C) 10^3 m s^{-1}

(D) 10^4 m s^{-1}

208

9.	7 m લાંબી દોરીનું દળ તરંગની ઝડપ	0.035 kg છે. જો દોરી	l પરનો તણાવ 60.5	N હોય, તો દોરી પર	
	(A) 77 m s^{-1}	(B) 102 m s^{-1}	(C) 110 m s ⁻¹	(D) 165 m s^{-1}	
10.	બે તરંગોના સંપાતીકરણ	થી ઉદ્ભવતા સ્પંદમાં મહ	કત્તમ તીવ્રતા એ આપ્	ાત થતા મૂળ તરંગોની	
	તીવ્રતાથી x ગણી હોય,	તો $x = \dots$.			
	(A) 1	(B) $\sqrt{2}$	(C) 2	(D) 4	
11.	2.00 m અને 2.02 m લ	તરંગલંબાઈ ધરાવતા બે	તરંગો એકબીજા પર	સંપાત થઈને 1 s માં 2	
	સ્પંદ ઉત્પન્ન કરે છે. જો	. બંને તરંગોની ઝડપ સમ	માન હોય, તો સમાન	ઝડપ	
	(A) 400 m/s	(B) 402 m/s	(C) 404 m/s	(D) 406 m/s	
12.	એક માધ્યમમાં 1200 m	/s જેટલા ઘટક–તરંગોની	ઝડપ ધરાવતા સ્થિત-	તરંગોમાં ક્રમિક પ્રસ્પંદ-	
	બિંદુ અને નિસ્પંદ-બિંદુ વ	વચ્ચેનું અંતર 1 m હોય,	, તો સ્થિત તરંગની ર	બાવૃત્તિ	
	(A) 300 Hz	(B) 400 Hz	(C) 600 Hz	(D) 1200 Hz	
13.	ધ્વનિ ઉદ્ગમ અને શ્રોતા	. બંને એકબીજાની સામે :	50 m/s ની સમાન ઝ	ડપે સુરેખ પથ પર ગતિ	
	કરી રહ્યા છે. જો શ્રોતાને સંભળાતી આવૃત્તિ 440 Hz હોય, તો ધ્વનિની મૂળ આવૃત્તિ કેટલ				
	હશે ? (હવામાં ધ્વનિની	ઝડપ 340 m/s છે.)			
	(A) 327 s^{-1}	(B) 367 s^{-1}	(C) 390 s^{-1}	(D) 591 s^{-1}	
14.	એક ક્લોઝ્ડ પાઇપ માટે	: હવાના સ્તંભની મૂળભૂ	ત આવૃત્તિ 512 Hz	છે. જો આ પાઇપ બંને	
	છેડેથી ખુલ્લી હોય, તો મ	મૂળભૂત આવૃત્તિ	Hz થાય.		
	(A) 1024	(B) 512	(C) 256	(D) 128	
15.	ક્લોઝ્ડ પાઇપમાં હવાના આવૃત્તિવાળા સ્વરકાંટા સ				
	(A) 31.25	(B) 62.50	(C) 93.75	(D) 125	
16.	ે.' એક આદર્શવાયુના તાપમ				
	પ્રારંભિક ઝડપ કરતાં √	_			
	(A) −73 °C	(B) 27 °C	(C) 127 °C	(D) 327 °C	
17 .	બે તરંગો $y_1 = A\sin \theta$	$(2000\pi)t$ (m) अने y_2	$A\sin (2008\pi)t$	(m)ના સંપાતીકરણથી	
	માધ્યમમાં સ્પંદ ઉત્પન્ન	થાય છે. એક સેકન્ડમાં ઃ	અનુભવતાં સ્પંદોની સં	ખ્યા હશે.	
	(A) 0	(B) 1	(C) 4	(D) 8	
18.	એક સ્થિર શ્રોતા તરફ, ધ	વ્વનિ ઉદ્ગમ એ ધ્વનિની	ઝડપના 1/10 ગણી	ઝડપે ગતિ કરી રહ્યું છે.	
	શ્રોતાને સંભળાતી આવૃત્તિ	ત્તે અને સાચી આવૃત્તિનો	્રાુણોત્તર		
	(A) 10/9	(B) 11/10	(C) $(11/10)^2$	(D) $(9/10)^2$	
19.	એક લંબગત તરંગનું સ	.મીકરણ $y = A \sin 2 au$	$\operatorname{tr}\left(\frac{t}{\mathrm{T}} - \frac{x}{\lambda}\right)$ છે. તો	. કઈ તરંગલંબાઈ માટે	
	ક્શનો મહત્તમ વેગ એ તરંગ-વેગથી બમણો થાય ?				
	(A) $\lambda = \frac{\pi A}{1}$	(B) $\lambda = \frac{\pi A}{2}$	(C) $\lambda = \pi A$	(D) $\lambda = 2\pi A$	

20. કયા તાપમાને હવામાં ધ્વનિની ઝડપ એ $0^{\circ}\mathrm{C}$ તાપમાને ઝડપ હોય તેના કરતાં બમણી થશે ?

(A) 273 K

- (B) 546 K
- (C) 1092 K
- (D) 0 K

જવાબો

- **1.** (A) **2.** (D) **3.** (A) **4.** (B) **5.** (C) **6.** (B)
- 7. (C) 8. (D) 9. (C) 10. (D) 11. (C) 12. (A)
- **13.** (A) **14.** (A) **15.** (A) **16.** (B) **17.** (C) **18.** (A)
- **19.** (C) **20.** (C)

નીચે આપેલ પ્રશ્નોના જવાબ ટૂંકમાં આપો :

- 1. તરંગ તીવ્રતાની વ્યાખ્યા લખો અને તેનો SI એકમ જણાવો.
- 2. તરંગની કોણીય તરંગસંખ્યા (તરંગસદિશ) એટલે શું ?
- 3. એક પ્રગામી તરંગની તરંગલંબાઈ λ અને આવૃત્તિ f હોય, તો t સેકન્ડમાં તરંગે કાપેલું અંતર કેટલું થશે ?
- 4. યાંત્રિક તરંગના પ્રસરણ માટે માધ્યમના કયા ગુણધર્મો જરૂરી છે ?
- દબાણના તરંગો કોને કહેવાય ?
- 6. માધ્યમના તાપમાન સાથે તેમાં પ્રસરતા તરંગની ઝડપ કેવી રીતે બદલાય છે ?
- જો તારમાં રહેલું તણાવબળ ચાર ગણું કરવામાં આવે, તો તારમાં તરંગની ઝડપમાં શો ફેરફાર થશે ?
- 8. માધ્યમમાં દબાણમાં થતો ફેરફાર તેમાંથી પસાર થતાં તરંગની ઝડપ પર શું અસર કરશે ?
- 9. એક તરંગનું તરંગ સમીકરણ $y = 5 \sin(0.01x 2t)$ છે. જ્યાં x અને y એ cmમાં છે. આ તરંગની ઝડપ કેટલી હશે ?
- 10. દોરી પર પ્રસરતું તરંગ જ્યારે જડિત આધારથી પરાવર્તિત થાય, તો તેની કળામાં કેટલો ફેરફાર થાય ?
- 11. સ્થિત-તરંગમાં નિસ્પંદ-બિંદુ અને પ્રસ્પંદ-બિંદુનો કંપવિસ્તાર કેટલો હશે ?
- 12. સ્થિત-તરંગમાં ક્રમિક નિસ્પંદ-બિંદુ અને પ્રસ્પંદ-બિંદુ વચ્ચેનું અંતર 5 cm હોય, તો બે ક્રમિક પ્રસ્પંદ-બિંદુ વચ્ચેનું અંતર કેટલું હશે ?
- 13. ક્લોઝ્ડ પાઇપની મૂળભૂત આવૃત્તિ 300 Hz છે, તો તેના દ્વિતીય ઓવરટોનની આવૃત્તિ કેટલી હશે ?
- 14. ધ્વનિઉદ્ગમની આવૃત્તિ 440 Hz છે. જો ધ્વનિઉદ્ગમ અને શ્રોતાનો સાપેક્ષ વેગ શૂન્ય હોય તો શ્રોતાને કઈ આવૃત્તિ સંભળાશે ?
- 15. સ્પંદ એટલે શું ?

નીચેના પ્રશ્નોના જવાબ આપો :

- 1. તરંગોનું વર્ગીકરણ સમજાવો. પ્રત્યેક તરંગનાં ઉદાહરણ આપો.
- 2. તરંગની તરંગલંબાઈ, તરંગસંખ્યા અને આવૃત્તિ સમજાવો.
- 3. પારિમાણિક વિશ્લેષણની મદદથી તણાવવાળી દોરી પર પ્રસરતા તરંગના વેગનું સૂત્ર મેળવો.
- 4. માધ્યમમાં ધ્વનિ-તરંગોનું પ્રસરણ કેવી રીતે થાય છે તે સમજાવો.
- હવામાં ધ્વનિની ઝડપ માટે ન્યૂટનનું સૂત્ર લખો. ન્યૂટનના સૂત્રમાં લાપ્લાસે કરેલો સુધારો સમજાવો.

- 6. xના વધતા મૂલ્યની દિશામાં ગતિ કરતા એક પારિમાણિક પ્રગામી તરંગનું તરંગ-સમીકરણ $y = \mathrm{Asin}\; (\omega t kx)$ મેળવો.
- 7. તરંગોના સંપાતપણાનો સિદ્ધાંત લખો અને સમજાવો.
- સ્થિત-તરંગો એટલે શું ? બે છેડેથી જડિત કરેલ દોરીમાં ઉદ્ભવતા સ્થિત-તરંગનું સમીકરણ મેળવો.
- 9. દર્શાવો કે ક્લોઝ્ડ પાઇપમાં રચાતા સ્થિત-તરંગમાં ફક્ત મૂળભૂત આવૃત્તિના એકી પૂર્ણાંક હાર્મોનિક જ શક્ય છે.
- 10. ડૉપ્લર-અસર એટલે શું ? ધ્વિનિઉદ્દગમ સ્થિર હોય અને શ્રોતા ઉદ્દગમ તરફ ગિત કરતો હોય તે કિસ્સામાં શ્રોતા તરફ જતાં તરંગની તરંગલંબાઈનું સૂત્ર મેળવો.

નીચેના દાખલા ગણો :

- પ્રગામી હાર્મોનિક તરંગના કિસ્સામાં સાબિત કરો કે કોઈ પણ કણના દોલનના તાત્ક્ષણિક વેગના મૂલ્ય અને તરંગ-ઝડપનો ગુણોત્તર તરંગથી રચાતા આકારના આ બિંદુ પાસેના તે સમયના ઢાળના ઋણ મૂલ્ય જેટલો હોય છે.
- ધરતીકંપના કારણે પૃથ્વીમાં લંબગત (S) અને સંગત (P) એમ બંને પ્રકારના ધ્વિનિના તરંગો ઉદ્ભવે છે. S તરંગની ઝડપ લગભગ 4.0 km/s અને P તરંગની ઝડપ લગભગ 8.0 km/s હોય છે. ધરતીકંપ નોંધાતા સિસ્મોગ્રાફ પર પહેલું P તરંગ એ પહેલાં S તરંગ કરતાં 4 મિનિટ વહેલું નોંધાય છે. તરંગો સુરેખપથ પર પ્રસરે છે, તેવું ધારીને આ સિસ્મોગ્રાફથી કેટલા અંતરે ધરતીકંપનું ઉદ્ગમસ્થાન હશે તેનક્કી કરો. [જવાબ: લગભગ 1920 km.]
- 3. એક પ્રગામી હાર્મોનિક તરંગનો કંપવિસ્તાર 10 m છે. આ તરંગ-પ્રસરણની ઘટનામાં ઉદ્દગમથી 2 m અંતરે આવેલા કણનું 2 સેકન્ડને અંતે સ્થાનાંતર 5 m છે અને ઉદ્દગમથી 16 m અંતરે આવેલા કણનું 8 સેકન્ડના અંતે સ્થાનાંતર $5\sqrt{3} \text{ m}$ છે. આ તરંગની કોણીય આવૃત્તિ અને તરંગસદિશ શોધો. [જવાબ: $\omega = \pi/8 \text{ rad/s}, k = \pi/24 \text{ rad/m}]$
- 4. તણાવવાળી દોરી પર x—દિશામાં ગિત કરતાં તરંગનું તરંગ સમીકરણ, $y = 3 \sin \left[(3.14)x (314)t \right] \ \dot{\vartheta}. \ \ \text{જ્યાં} \ x \ \dot{\vartheta} \ \ \text{cm} \ \ \dot{\vartheta} + \dot{\vartheta} \ \dot{\varkappa} + \dot{\vartheta} + \dot{\vartheta} \ \dot{\varkappa} + \dot{\vartheta} +$
 - (i) દોરી પરના ક્શની મહત્તમ ઝડપ શોધો.
 - (ii) ઊગમબિંદુથી $x=6.0~{\rm cm}$ અંતરે આવેલા દોરી પરના કણનો =t=0.11 સેકન્ડે પ્રવેગ શોધો. [જવાબ: મહત્તમ વેગ $=9.4~{\rm m/s},~a=0$]
- 5. 0°C તાપમાને 250 Hz આવૃત્તિવાળો એક ધ્વનિઉદ્દગમ હવામાં 1.32 m તરંગ લંબાઈવાળા તરંગો ઉત્પન્ન કરે છે, તો 27°C તાપમાને તેની તરંગલંબાઈમાં કેટલો વધારો થયો હશે ?

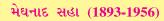
[**%વાબ**: 0.06 m]

- 6. હાઇડ્રોજન વાયુના કેટલા તાપમાને તેમાંથી પસાર થતાં ધ્વિનની ઝડપ એ 1200 °C તાપમાને રહેલા ઑક્સિજન વાયુમાં ધ્વિનની ઝડપ જેટલી હશે ? ઑક્સિજનની ઘનતા, હાઇડ્રોજનની ઘનતા કરતાં 16 ગણી છે.
 [જવાબ: -180.9 °C]
- 7. બે છેડે તણાવ સાથે બાંધેલા એક તારની લંબાઈ $110~{\rm cm}$ છે. બે ટેકાઓ ${\rm s_1}$ અને ${\rm s_2}$ યોગ્ય સ્થાનોએ મૂકીને તારને એવી રીતે કંપિત કરવામાં આવે છે, કે તેના ત્રણ વિભાગોમાં રચાતા સ્થિત-તરંગોની મૂળભૂત આવૃત્તિઓ $f_1:f_2:f_3=1:2:3$ હોય, તો ટેકાઓનાં સ્થાન (કે તારના વિભાગોની લંબાઈઓ) શોધો.

[8414 : $L_1 = 60$ cm, $L_2 = 30$ cm, $L_3 = 20$ cm]

8. બે છેડે તણાવ સાથે બાંધેલા તારની રેખીય ઘનતા 0.05 g/cm છે. તારમાં તણાવ 450 N છે. આ તાર 420 Hz આવૃત્તિવાળા સ્વરકાંટા સાથે અનુવાદ અનુભવે છે. ત્યાર બાદ તે જ તાર 490 Hz આવૃત્તિ સાથે અનુનાદ અનુભવે છે. આ તારની લંબાઈ શોધો. [જવાબ : 2.1 m]

9. એક દોરીની લંબાઈ 100 cm છે. તેના પર રચાયેલ સ્થિત-તરંગોમાં બે ક્રમિક હાર્મોનિક્સની આવૃત્તિઓ અનુક્રમે 300 Hz અને 400 Hz છે. જ્યારે દોરી મૂળભૂત આવૃત્તિથી દોલનો કરે છે ત્યારે મહત્તમ કંપવિસ્તાર 10 cm છે, તો તે વખતના સ્થિત-તરંગનું સમીકરણ મેળવો.

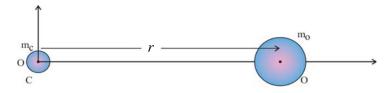

[**જવાબ**:
$$y = -10\sin\left(\frac{\pi x}{100}\right)$$
. $\cos(200\pi)t$ (cm)]


10. 54 km/4ની ઝડપે ગિત કરતી એક કાર જ્યારે એક સ્થિર શ્રોતા તરફ આવે છે અને તેનાથી દૂર જાય છે, ત્યારે શ્રોતાને અનુભવાતા હૉર્નના ધ્વનિની આવૃત્તિઓ વચ્ચેનો તફાવત શોધો. હૉર્નની આવૃત્તિ 500 Hz છે અને હવામાં ધ્વનિની ઝડપ 340 m/s છે.

[**જવાબ**: 44.2 Hz]

11. એક ટેકરી તરફ 10 m/s ની ઝડપે ગતિ કરતાં એન્જિનની વ્હીસલ 660 Hz આવૃત્તિવાળો ધ્વનિ ઉત્પન્ન કરે છે. ટેકરી પરથી પરાવર્તન પામીને આવતા ધ્વનિની આ એન્જિનના ડ્રાઇવરને અનુભવાતી આવૃત્તિ શોધો. ધ્વનિની હવામાં ઝડપ 340 m/s છે. [જવાબ: 700 Hz]

•


મેઘનાદ સહાનો જન્મ 6 ઑક્ટોબર, 1893માં સાઓરાટોલી, ઢાકામાં (અત્યારે બાંગ્લાદેશમાં) થયો હતો. 1911માં પ્રેસિડન્સી કૉલેજમાં ભણવા માટે તે કોલકાતા આવ્યા. તે પદાર્થવિજ્ઞાની તરીકે જાણીતા થયા. તે પ્રક્રિયા સમીકરણની થિયરી ગ્લોબલ સાયન્ટિફિક કૉમ્યુનિટીમાં રજૂ કરવા 1920માં ઇંગ્લેન્ડ ગયા, જે પાછળથી સહાનું થરમાં આયોનાઇઝેશન

સમીકરણ તરીકે ઓળખાયું. 1927માં તે રોયલ સોસાયટી ઑફ લંડનના ફેલો તરીકે ચૂંટાયા. તેમણે સોલાર રે (સૂર્યકિરણો)નું વજન દબાણ માપવાના સાધનની શોધ કરી હતી. તેમની યાદમાં 1943માં કોલકાતામાં સહા ઇન્સ્ટિટ્યૂટ ઑફ ન્યુક્લિઅર ફિઝિક્સની સ્થાપના થઈ. સહાનું અવસાન 16 ફેબ્રુઆરી, 1956ના રોજ થયું.

ઉકેલો (SOLUTION)

પ્રકરણ 1

1.

અહીં ઊગમબિંદુ કાર્બન (C)ના કેન્દ્ર પર લીધું છે :

$$r=$$
 ઑક્સિજનનું કાર્બન-પરમાણુથી અંતર = $1.130 imes 10^{-10} \, \mathrm{m}$,

$$m_{O}^{-} = \text{ઑક્સિજનનું દળ} = 16 \text{ g mol}^{-1}, m_{C}^{-} = \text{કાર્બનનું દળ} = 12 \text{ g mol}^{-1},$$

 $r_{\mathrm{C}}=$ કાર્બનનું ઊગમબિંદુથી અંતર =0,

 $r_{
m O} =$ ઑક્સિજનનું ઊગમબિંદુથી અંતર = $r = 1.130 imes 10^{-1} {
m m},$

$$\therefore r_{cm} = \frac{m_{\rm C}r_{\rm C} + m_{\rm o}r_{\rm o}}{m_{\rm C} + m_{\rm o}}$$

- 2. દ્રવ્યમાનકેન્દ્રનો વેગ $\overrightarrow{v}_{cm} = \frac{\overrightarrow{m_1} \overrightarrow{v_1} + \overrightarrow{m_2} \overrightarrow{v_2} + \overrightarrow{m_3} \overrightarrow{v_3}}{\overrightarrow{m_1} + \overrightarrow{m_2} + \overrightarrow{m_3}}$
- 3. અહીંયાં કાર માટે $m_1=1000~{\rm kg},~a_1=4.0~{\rm m~s^{-2}},~$ પ્રારંભિક ઝડપ $v_{0_1}=0~{\rm m~s^{-1}},$ ટ્રક માટે $m_2=2000~{\rm kg},~a_2=0~{\rm m~s^{-2}},~v_{0_2}=v_2=8.0~{\rm m~s^{-1}},$ 3 સેકન્ડ પછી કારની ઝડપ $v_1=v_{0_1}+a_1t,~$ 3 સેકન્ડમાં કાર વડે કપાયેલ અંતર $d_1=v_{0_1}t+\frac{1}{2}a_1t^2,~$ 3 સેકન્ડમાં ટ્રક વડે કપાયેલ અંતર $d_2=v_2t~$ (∵ $a_2=0$)
 - (a) કાર-ટ્રક વડે બનતા તંત્રના દ્રવ્યમાનકેન્દ્રનું ટ્રાફિક સિગ્નલથી અંતર

$$d_{cm} = \frac{m_1 d_1 + m_2 d_2}{m_1 + m_2}$$

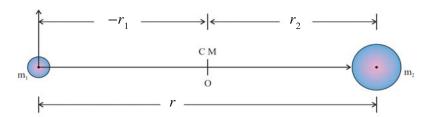
$$(b) \qquad \mathbf{M} \, \overset{\rightarrow}{\mathbf{v}_{cm}} \, = \, m_1 \overset{\rightarrow}{\mathbf{v}_1} \, + \, m_2 \overset{\rightarrow}{\mathbf{v}_2}$$

$$\therefore \overrightarrow{v_{cm}} = \frac{\overrightarrow{m_1} \overrightarrow{v_1} + \overrightarrow{m_2} \overrightarrow{v_2}}{\overrightarrow{m_1} + \overrightarrow{m_2}} \quad (\because \mathbf{M} = \overrightarrow{m_1} + \overrightarrow{m_2})$$

4. $t=0~{
m sec}$ સમયે $x_1=-15~m,~ x_2=15~m, \\ m_1=40~{
m kg},~ m_2=20~{
m kg},$

$$\therefore x_{cm} = \frac{m_1 x_1 + m_2 x_2}{m_1 + m_2}$$

 x_{cm} નું આ મૂલ્ય અચળ રહેતું હોવાથી $t=2,\,4,\,6$ sec માટે x_1 અને x_{cm} નાં મૂલ્યો પરથી x_2 શોધો. t=0 sec માટે કૂતરો અને બિલાડી ઊભાં હોવાથી


$$\therefore v_1 = v_2 = 0 \implies p_1 = p_2 = 0$$
$$\implies p = p_1 + p_2 = 0$$

$$t = 2 \sec \tilde{u} + \tilde{v}_1 = \frac{x_1(2 \text{ s}) - x_1(0 \text{ s})}{2 \text{ s}} = \frac{\Delta x}{\Delta t}$$

$$v_2 = \frac{x_2(2 \text{ s}) - x_2(0 \text{ s})}{2 \text{ s}}$$

આ પરથી, $p_1=m_1v_1$, $p_2=m_2v_2$ અને $p=p_1+p_2$ શોધો. તે ૪ રીતે t=4 sec અને t=6 sec માટે બાકીની ગણતરી કરો.

5.

આકૃતિમાં ઊગમબિંદુને દ્રવ્યમાનકેન્દ્ર પર લીધું છે.

 \therefore ઊગમબિંદુથી m_1 નું સ્થાન = $-r_1$, ઊગમબિંદુથી m_2 નું સ્થાન = r_2

$$\therefore r_{cm} = 0 = \frac{m_1(-r_1) + m_2 r_2}{m_1 + m_2}, \quad \therefore m_1 r_1 = m_2 r_2, \quad \therefore \quad \frac{m_1}{m_2} = \frac{r_2}{r_1}$$
 (1)

છેદમાં યોગ કરતાં
$$\frac{m_1}{m_1+m_2}=\frac{r_1}{r_1+r_2}=\frac{r_2}{r} \quad (\because r=r_1+r_2)$$

$$\therefore r_2 = r \left[\frac{m_1}{m_1 + m_2} \right]$$

સમીકરણ (1) માં અંશમાં યોગ કરતાં $\frac{m_1+m_2}{m_2}=\frac{r_1+r_2}{r_1}=\frac{r}{r_1}$

$$\therefore r_1 = r \left[\frac{m_2}{m_1 + m_2} \right]$$

6. ત્રણ ગોળાઓ વડે બનતા તંત્રનું દ્રવ્યમાનકેન્દ્ર $\overset{\rightarrow}{r_{cm}} = \frac{m \overset{\rightarrow}{r_{cm_1}} + m \overset{\rightarrow}{r_{cm_2}} + m \overset{\rightarrow}{r_{cm_3}}}{m + m + m}$

જ્યાં $\overset{
ightarrow}{r_{c\,m}}$ = ગોળા 1નું દ્રવ્યમાનકેન્દ્ર, વગેરે.

7. અહીંયા R ત્રિજ્યાના ગોળાની ઘનતા ho છે. માટે મૂળ ગોળાનું દળ

$$M = \rho V = \rho \times \frac{4}{3}\pi R^3 \tag{i}$$

'a' ત્રિજ્યાની નાની ગોળીનું દળ
$$m_1=
ho imesrac{4}{3}\pi a^3$$
 (ii)

'R' ત્રિજ્યાના ગોળામાંથી 'a' ત્રિજ્યાની ગોળી કાપી લીધા પછી બાકીના ગોળાનું દળ

$$m_2 = M - m_1 : m_2 = \frac{4}{3}\pi\rho (R^3 - a^3)$$
 (iii)

મૂળ ગોળાનું દ્રવ્યમાનકેન્દ્ર $\stackrel{
ightarrow}{r_{cm}} = (0, \, 0, \, 0)$

'a' ત્રિજ્યાની ગોળીનું દ્રવ્યમાનકેન્દ્ર $\overrightarrow{r_1}=(b,\,0,\,0)$ બાકીના ગોળાની X-અક્ષ માટે સંમિતિ છે, પરંતુ Y અને Z-અક્ષ માટે નથી. આથી બાકીના ગોળાનું દ્રવ્યમાનકેન્દ્ર ધારો કે $\overrightarrow{r_2}=(-x,\,0,\,0)$ હવે R ત્રિજ્યાનો મૂળ ગોળો 'a' ત્રિજ્યાની નાની ગોળી અને બાકીના (નાની ગોળી સિવાયના)

ગોળાનો બનેલો હોવાથી $\stackrel{\rightarrow}{Mr_{cm}}=m_1\stackrel{\rightarrow}{r_1}+m_2\stackrel{\rightarrow}{r_2}$ \therefore $M(0,\ 0,\ 0)=m_1(b,\ 0,\ 0)+m_2(-x,\ 0,\ 0)$ x-યામ સરખાવતાં $M(0)=m_1b-m_2x$

$$\therefore x = \frac{m_1}{m_2}b \tag{iv}$$

અહીં સમીકરણો (ii) અને (iii), પરથી x શોધો.

 આકૃતિ પરથી ત્રણ ક્યોના દ્રવ્યમાન તથા સ્થિર સ્થિતિ દરમિયાન તેમના સ્થાન અને તેમના પર લાગતાં બળો અનુક્રમે

$$m_1 = 4.0 \text{ kg},$$
 $\overrightarrow{r_1} = (-2, 3) m,$ $\overrightarrow{F_1} = (-6, 0) \text{ N}$
 $m_2 = 8.0 \text{ kg},$ $\overrightarrow{r_2} = (4, 2) m,$ $\overrightarrow{F_2} = (12 \cos 45^\circ, 12 \sin 45^\circ) \text{ N}$
 $m_3 = 4.0 \text{ kg},$ $\overrightarrow{r_3} = (1, -2) m,$ $\overrightarrow{F_3} = (14, 0) \text{ N}$

$$\therefore \vec{r}_{cm} = \frac{\vec{m}_1 \vec{r}_1 + \vec{m}_2 \vec{r}_2 + \vec{m}_3 \vec{r}_3}{\vec{m}_1 + \vec{m}_2 + \vec{m}_3}$$

ન્યૂટનના બીજા નિયમ મુજબ $\overset{
ightarrow}{{
m F}}={
m M}\,\overset{
ightarrow}{a_{cm}}$, ${
m M}=m_1^{}+m_2^{}+m_3^{}$

$$\therefore \overrightarrow{F}_1 + \overrightarrow{F}_2 + \overrightarrow{F}_3 = M\overrightarrow{a}_{cm}, \overrightarrow{a}_{cm} = \frac{\overrightarrow{F}_1 + \overrightarrow{F}_2 + \overrightarrow{F}_3}{M}, \therefore \overrightarrow{a}_{cm} = (a_{x_{cm}}, a_{y_{cm}})$$

પ્રવેગનું મૂલ્ય
$$|\stackrel{
ightarrow}{a_{cm}}|=\sqrt{\left(a_{x_{cm}}\right)^2+\left(a_{y_{cm}}\right)^2}$$

પ્રવેગની X-અક્ષ સાથેની દિશા $\theta = tan^{-1}\left(rac{a_{ycm}}{a_{xcm}}
ight)$

9. આકૃતિ પરથી, 'R' ત્રિજ્યાની સમાન પૃષ્ઠ ઘનતાવાળી તકતીનું દ્રવ્યમાનકેન્દ્ર સંમિતિ મુજબ

ʻρ' ઊગમબંદુ પર હશે.
$$\overset{
ightarrow}{r_{cm}}=(0,\,0)$$

ફક્ત $\frac{R}{2}$ ત્રિજ્યાની તકતી હોય, તો તેનું દ્રવ્યમાનકેન્દ્ર તકતીના ભૌમિતિક કેન્દ્ર પર હોય, જેને

$$\overrightarrow{r}_{cm_1}$$
 વડે દર્શાવીએ તો, $\overrightarrow{r}_{cm_1} = \left(\frac{\mathbf{R}}{2}, 0\right)$ (2)

 $rac{R}{2}$ ત્રિજ્યાની તકતીને R ત્રિજ્યાની તકતીમાંથી કાપતાં, બનતી તકતીની સંમિતિ X-અક્ષની

સાપેક્ષે જળવાતી હોવાથી તેનું દ્રવ્યમાનકેન્દ્ર X-અક્ષ પર હશે, પરંતુ Y-અક્ષની સાપેક્ષે સંમિતિ ન જળવાતી હોવાથી તકતીનું દ્રવ્યમાનકેન્દ્ર ઊગમબિંદુથી દૂર X-અક્ષ પર હશે. ધારો કે તે ઊગમબિંદુથી

$$(-x) \ \forall \exists \ \grave{\vartheta}. \ \therefore \ \overset{\rightarrow}{r_{cm_2}} = (-x, \ 0) \tag{3}$$

સંપૂર્ણ તકતી, એ તકતી 1 અને 2 થી બનતી હોવાથી

$$\therefore \overrightarrow{r_{cm}} = \frac{\overrightarrow{M_1 r_{cm_1}} + \overrightarrow{M_2 r_{cm_2}}}{\overrightarrow{M_1} + \overrightarrow{M_2}}$$

$$(4)$$

જ્યાં, $\mathbf{M}_1=$ તકતી 1નું દ્રવ્યમાન $=\pi \Big(rac{\mathbf{R}}{2}\Big)^2 t
ho$ તથા $\mathbf{M}_2=$ તકતી 2નું દ્રવ્યમાન =

$$\pi R^2 t \rho \, - \, M_1 \, = \, \pi R^2 t \rho \, - \, \pi \bigg(\frac{R}{2} \bigg)^2 \, t \rho, \, \, M_2 \, \ \, = \, \pi t \rho \bigg[\, R^{\, 2} \, - \bigg(\frac{R}{2} \bigg)^2 \, \, \bigg]$$

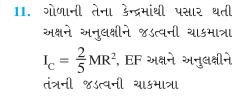
જ્યાં, ρ = તકતીની ઘટના, t = તકતીની જાડાઈ.

આથી સમીકરણ (4) પરથી $\stackrel{
ightarrow}{r_{cm2}}$ શોધો.

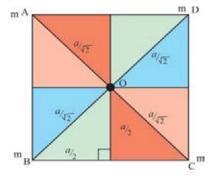
પ્રકરણ 2

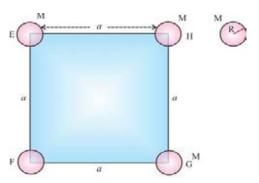
- 1. સમીકરણ $\theta=\left(\frac{\omega+\omega_0}{2}\right)t$ નો ઉપયોગ કરી ω_0 મેળવો અને $\theta=\omega_0t+\frac{1}{2}t^2$ પરથી α મેળવો.
- 2. $\theta = \omega_0 t + \frac{1}{2}\alpha t^2$ પરથી α મેળવો. હવે $\theta = \frac{\omega^2 {\omega_0}^2}{2\alpha}$ પરથી θ મેળવો અને તેને પરિભ્રમણમાં દર્શાવો. $(2\pi \text{ rad} = 1 \text{ પરિભ્રમણ})$
- 3. $\alpha=\frac{\omega-\omega_0}{t}$ નો ઉપયોગ કરી α મેળવો. હવે I=m r^2 અને $\tau=I\alpha$ નો ઉપયોગ કરી τ મેળવો. $\theta=\frac{\omega^2-{\omega_0}^2}{2\alpha}$ પરથી θ મેળવો. હવે કાર્ય $=\tau\cdot\theta$
- 4. $\overrightarrow{l} = \overrightarrow{r} \times \overrightarrow{p}$ નો ઉપયોગ કરો. $\overrightarrow{r} = 4\hat{i} + 6\hat{j} + 12\hat{k}$ અને $\overrightarrow{p} = \overrightarrow{mv}$ $= 50 \ (2\hat{i} + 3\hat{j} + 6\hat{k})$
- 5. θ કોણવાળા ઢાળ પર સરક્યા સિવાય ગબડતા પદાર્થના પ્રવેગનું સૂત્ર $a=rac{g\sin heta}{\left[1+rac{ extbf{K}^2}{ extbf{R}^2}
 ight]}$ માં

પોલા નળાકાર માટે K = R મૂકી a મેળવો.


6. તંત્રની જડત્વની ચાકમાત્રા $\mathbf{I}_z = \mathbf{I}_{1z} + \mathbf{I}_{2z}; \ \mathbf{I}_{1z} = 100 \ \mathrm{kg}$ પદાર્થની \mathbf{Z} -અક્ષને અનુલક્ષીને જડત્વની ચાકમાત્રા; $\mathbf{I}_{2z} = 200 \ \mathrm{k}$ પદાર્થની \mathbf{Z} -અક્ષને અનુલક્ષીને જડત્વની ચાકમાત્રા છે.

$$\mathbf{I}_z = \mathbf{I}_x + \mathbf{I}_y = \mathbf{m}(x^2 + y^2)$$
 (1) અત્રે અંતરો \mathbf{Z} -અક્ષની સાપેક્ષે લેવાના હોવાથી \mathbf{Z} -યામ ગણતરીમાં આવતો નથી.
$$\therefore \ \mathbf{I}_{1z} = \mathbf{I}_{1x_1} + \mathbf{I}_{2y_1} = 100 \ (x^2_1 + y^2_1)$$
 તે જ રીતે,
$$\mathbf{I}_{2z} = \mathbf{I}_{1x_2} + \mathbf{I}_{2y_2}$$


- 7. $v^2 = \frac{g \sin \theta}{\left[1 + \frac{K^2}{R^2}\right]}$ અને નક્કર ગોળા માટે $K = \sqrt{\frac{2}{5}}$ Rનો ઉપયોગ કરી v મેળવો.
 - હવે $mgh=\frac{1}{2}mv^2+\frac{1}{2}\mathrm{I}\omega^2$ નો ઉપયોગ કરી ચાકગતિ-ઊર્જા $\frac{1}{2}\mathrm{I}\omega^2$ મેળવો.
- 8. પૃથ્વીને નક્કર ગોળા તરીકે સ્વીકારી તેની જડત્વની ચાકમાત્રા $I=\frac{2}{5}MR^2$ લઈ $L=I\omega$ માં $\omega=\frac{2\pi}{T}=\frac{2\pi}{24\times3600}$ મૂકી L મેળવો.
- 9. $I_1 = I_C + Md_1^2$ $\therefore I_C = I_1 Md_1^2$ હવે, $I_2 = I_C + Md_2^2 = I_1 Md_1^2 + Md_2^2$ $= I_1 + M(d_2^2 d_1^2)$ પરથી I_2 મેળવો.
- આકૃતિ પરથી Oમાંથી પસાર થતી અક્ષને અનુલક્ષીને આ તંત્રની જડત્વની ચાકમાત્રા I.


આ મુલ્યો (1)માં મુકો.

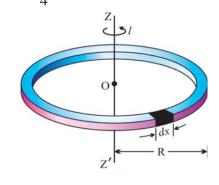
$$I = \frac{ma^{2}}{2} + \frac{ma^{2}}{2} + \frac{ma^{2}}{2} + \frac{ma^{2}}{2} + \frac{ma^{2}}{2} = 2ma^{2}$$

$$I = I_E + I_F + I_G + I_H$$

 $I = I_C + Md^2$ ઉપયોગમાં લેતાં,
 $I_E = \frac{2}{5}MR^2$; $I_F = \frac{2}{5}MR^2$;

$$I_{G} = \frac{2}{5}MR^{2} + Ma^{2}; I_{H} = \frac{2}{5}MR^{2} + Ma^{2}$$

$$\therefore I = \frac{2}{5}MR^{2} + \frac{2}{5}MR^{2} + \frac{2}{5}MR^{2} + Ma^{2} + \frac{2}{5}MR^{2} + Ma^{2}$$


$$= 2\left(\frac{4}{5}MR^{2} + Ma^{2}\right)$$

- 12. $r_1 = 0$, $r_2 = 2$ m, $r_3 = 4$ m, $r_4 = 6$ m, $m_1 = 1$ kg, $m_2 = 2$ kg, $m_3 = 3$ kg, $m_4 = 4$ kg, હવે, $I_{AB} = m_1 r_1^2 + m_2 r_2^2 + m_3 r_3^2 + m_4 r_4^2$ નો ઉપયોગ કરો.
- 13. કુલ ગતિ-ઊર્જા = રેખીય ગતિ-ઊર્જા + ચાક ગતિ-ઊર્જા

$$= \frac{1}{2}mv^2 + \frac{1}{2} I\omega^2$$
 તકતી માટે $I = \frac{mr^2}{2}$ તથા $\omega = \frac{v}{r}$ (: $v = r\omega$) કુલ ગતિ-ઊર્જા $= \frac{1}{2}mv^2 + \frac{1}{2}\frac{mr^2}{2}\frac{v^2}{r^2} = \frac{3}{4}mv^2$ યાક ગતિ-ઊર્જા $= \frac{1}{4}mv^2$

કુલ ગતિ-ઊર્જાનો, ચાકગતિ-ઊર્જા રૂપે રહેલો ભાગ =
$$\frac{\frac{1}{4}mv^2}{\frac{3}{4}mv^2}$$
 = $\frac{1}{3}$

14. પાતળી વર્તુળાકાર વીંટી (circular ring) અથવા વર્તુળાકાર તાર (circular wire)ની તેના કેન્દ્રમાંથી પસાર થતી અને સમતલને લંબઅક્ષને અનુલક્ષીને જડત્વની ચાકમાત્રા તથા ચક્રાવર્તનની ત્રિજ્યા શોધવા માટે આકૃતિ (2.29)માં દર્શાવ્યા પ્રમાણે R ત્રિજ્યા તથા M દળવાળી એક પાતળી રીંગ (વીંટી) ધ્યાન લો. આ રિંગની લંબાઈ l એટલે કે

તેનો પરિઘ = $2\pi R$ થશે.

તથા રિંગનું એકમલંબાઈ દીઠ દ્રવ્યમાન
$$\lambda=\dfrac{$$
રિંગનું દળ $}{$ રિંગની લંબાઈ (પરિઘ) $}=\dfrac{M}{2\pi R}$ આકૃતિમાં દર્શાવ્યા પ્રમાણે dx લંબાઈના ખંડનું દ્રવ્યમાન $=\lambda\cdot dx$ $=\dfrac{M}{2\pi R}dx$

આ ખંડની ZZ'-અક્ષને અનુલક્ષીને જડત્વની ચાકમાત્રાને dI કહીએ તો,

$$d{
m I}=$$
 (ખંડનું દ્રવ્યમાન) (ખંડનું ZZ' અક્ષથી લંબઅંતર) $^2=\left(rac{{
m M}}{2\pi{
m R}}\cdot dx
ight)({
m R}^2)$

$$dI = \frac{M}{2\pi} R \cdot dx \tag{1}$$

ZZ'-અક્ષની સાપેક્ષે સમગ્ર રિંગની જડત્વની ચાકમાત્રા શોધવા માટે સમીકરણ(1)નું x=0થી $x=2\pi R$ ના અંતરાલ વચ્ચે સંકલન કરતાં

$$\therefore I = \int dI = \int_{0}^{2\pi R} \frac{M}{2\pi} R \cdot dx$$

$$\therefore I = \frac{M}{2\pi} R \int_{0}^{2\pi R} dx$$

$$= \frac{M}{2\pi} R [x]_{0}^{2\pi R}$$

$$= \frac{M}{2\pi} R[2\pi R - 0]$$

$$I = MR^{2}$$
(2)

સમીકરણ (2)ને $I = MK^2$ સાથે સરખાવતાં $K^2 = R^2$. ચક્રાવર્તનની ત્રિજ્યા K = R.

15. હલકા સળિયા પર લાગતાં બળોનો સદિશ સરવાળો પરિણામી બળ F આપશે.

$$\vec{F} = + \vec{F_1} + \vec{F_2} + \vec{F_3} + \vec{F_4} + \vec{F_5} (\vec{F} \text{ ulrell on } \vec{\Theta}.)$$

$$\vec{F} = \vec{F_1} \hat{j} + \vec{F_2} \hat{j} + \vec{F_3} (-\hat{j}) + \vec{F_4} \hat{j} + \vec{F_5} (-\hat{j})$$

 \overrightarrow{A} ને અનુલક્ષીને \overrightarrow{F} ની ચાકમાત્રા = ઘટકબળોની ચાકમાત્રાનો સદિશ સરવાળો

$$\therefore F \cdot x = [F_1 \times 0] + [F_2 \times x_1] - [F_3 \times (x_1 + x_2)] + [F_4 \times (x_1 + x_2 + x_3)] - [F_5 \times (x_1 + x_2 + x_3 + x_4)]$$

$$\therefore x = \frac{x_1 F_2 - (x_1 + x_2) F_3 + (x_1 + x_2 + x_3) F_4 - (x_1 + x_2 + x_3 + x_4) F_5}{F_1 + F_2 + F_4 - F_3 - F_5}$$

પ્રકરણ 3

1. પૃથ્વીના કેન્દ્રથી x અંતરે બંને બળો સમાન મૂલ્યનાં થતાં હોય તો,

$$\frac{GM_em}{x^2} = \frac{GM_sm}{(r-x)^2},$$

 $\mathbf{M}_{e} =$ પૃથ્વીનું દળ, $\mathbf{M}_{s} =$ સૂર્યનું દળ, r = પૃથ્વી અને સૂર્ય વચ્ચેનું અંતર આ પરથી x શોધો

2.
$$M_e = 3\varepsilon \times ધનતા = \left(\frac{4}{3}\pi R_e^3\right)(\rho)$$

$$\therefore g = \frac{GM_e}{R_e^2} = \frac{4}{3}\pi G\rho R_e$$
 આ પરથી g શોધો.

$$\therefore M_s = \frac{rv_0^2}{G}$$

4. ઉપગ્રહની વર્તુળગતિમાં
$$v_0=\sqrt{\frac{{
m GM}_e}{r}}=\sqrt{\frac{{
m GM}_e}{2{
m R}_e}}$$
 $(\because r={
m R}_e+{
m R}_e=2{
m R}_e)$ આ પરથી v_0 શોધો.

હવે,
$$\mathrm{T}^2=\left(\frac{4\pi^2}{\mathrm{GM}_e}\right)\!r^3$$
 આ પરથી T શોધો.

5. ઉપગ્રહની વર્તુળગતિ માટે $mv^2/r = GM_{_{\it P}} \ m/r^2$

$$\therefore$$
 ઉપગ્રહની ગતિ-ઊર્જા $\frac{1}{2}mv^2=\frac{\mathrm{GM}_e m}{2r}$.

પરંતુ સ્થિતિ-ઊર્જા =
$$\frac{-GM_em}{r}$$

$$\therefore$$
 કુલ ઊર્જા = ગતિ-ઊર્જા + સ્થિતિ-ઊર્જા = $\frac{-\mathrm{GM}_e m}{2r}$

$$\therefore$$
 નિષ્ક્રમણ-ઊર્જા = $\frac{\mathrm{GM}_e m}{2r}$

$$\therefore \frac{1}{2}m{v_e}^2 = \frac{GM_em}{2r}$$
 આ પરથી v_e શોધો.

6. ઉપગ્રહની વર્તુળગતિ માટે
$$\frac{mv^2}{\mathrm{R}_e} = \frac{\mathrm{GM}_e m}{\mathrm{R}_e^2} = (g)m \tag{1}$$

$$(\because g = \frac{GM_e}{R_e^2}) \qquad \therefore v^2 = gR_e \text{ ugl } v = \frac{2\pi R_e}{T}$$

આ મૂલ્ય સમીકરણ (1)માં મૂકી T શોધો.

7. ઉપગ્રહની વર્તુળગતિ માટે
$$\frac{m{v_0}^2}{{\rm R}_e} = \frac{{\rm GM}_e m}{{\rm R}_e^2} \ \therefore \ v_0 = \sqrt{\frac{{\rm GM}_e}{{\rm R}_e}}$$

પૃથ્વી પર સ્થિર રહેલા પદાર્થ માટે
$$v_e = \sqrt{\frac{2 \mathrm{GM}_e}{\mathrm{R}_e}}$$
 હવે $\frac{v_0}{v_e}$ શોધો.

8. આપેલ બિંદુએ કુલ ઊર્જા =
$$\left[-\frac{GM_1m}{d/2} \right] + \left[\frac{-GM_2m}{d/2} \right] = \frac{-2G(M_1+M_2)m}{d}$$

$$\therefore$$
 નિષ્ક્રમણ-ઊર્જા = $\frac{2\mathrm{G}(\mathrm{M_1}+\mathrm{M_2})m}{d}$

જો નિષ્ક્રમણ-વેગ
$$v_e$$
 હોય તો, $\frac{1}{2}m{v_e}^2=\frac{2G(M_1+M_2)m}{d}$, આ પરથી v_e શોધો.

9. આ ખાસ કિસ્સામાં, વર્ત્ળગતિ માટે

(કેન્દ્રગામી બળ
$$\frac{mv^2}{r}$$
) = (ગુરુત્વ બળ $\frac{GMm}{r^{5/2}}$) હવે $v=\frac{2\pi r}{T}$ મૂકીને T^2 શોધો.

પ્રકરણ 4

- 1. અહીં તારનું વજન = પ્રતાન બળ = Aldg, બ્રેકિંગ પ્રતિબળ = $\frac{\text{પ્રતાનબળ}}{\hat{\aleph}} = ldg$ $\therefore l = \frac{\hat{\aleph} \hat{\mathcal{S}} \hat{\mathcal{S}} \cdot \text{પ્રતિબળ}}{dg}$
- 2. જો AB, BC અને CD માં લંબાઈમાં વધારો $\Delta l_{\rm AB}$, $\Delta l_{\rm BC}$ અને $\Delta l_{\rm CD}$ હોય, તો ત્રણેયનાં મૂલ્ય $\Delta l=rac{\mathrm{F} l}{\mathrm{AY}}$ સૂત્રથી મેળવો.

Bનું સ્થાનાંતર =
$$\Delta l_{
m AB}$$
, Cનું સ્થાનાંતર = $\Delta l_{
m AB}$ + $\Delta l_{
m BC}$, Dનું સ્થાનાંતર = $\Delta l_{
m AB}$ + $\Delta l_{
m BC}$ + $\Delta l_{
m CD}$

વર્તુળગતિ માટે જરૂરી કેન્દ્રગામી બળ પુનઃસ્થાપકબળ દ્વારા પૂરું પડાય છે.

$$m Y = rac{FL}{A\Delta l}$$
 $m : F = rac{YA\Delta L}{L}$ અને $m F = rac{mv^2}{L} = rac{m\omega^2L^2}{L}$ બંને $m F$ ને સરખાવો.

4. બંને દળના F.B.D. બનાવી તારમાં તણાવ T શોધો.

અહીં પ્રતિબળ
$$=rac{\mathrm{T}}{\mathrm{A}}$$
 અને $rac{\Delta l}{l}=rac{\mathrm{L}}{\mathrm{Y}}$

5. સૌપ્રથમ $\mathrm{Y}=rac{\mathrm{F}l}{\mathrm{A}\Delta\mathrm{L}}$ નો ઉપયોગ કરી Δl મેળવો. હવે ઉદાહરણ 3નો ઉપયોગ કરો.

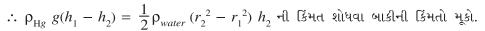
$$U = \frac{1}{2}Y \times \mu$$
તિબળ \times વિકૃતિ \times કદનો ઉપયોગ કરો.

6. $\Delta l=l \; \alpha \; \Delta t, \; \therefore \; \frac{\Delta l}{l}=\alpha \Delta t \;$ હવે $\; {
m Y}=\frac{{
m F}}{{
m A}} \frac{l}{\Delta t}\; ; \;$ જ્યાં અહીં $\; {
m F} \;$ તણાવમાં થતો ફેરફાર છે. હવે $\; {
m F} \;$ ગણો.

પ્રકરણ 5

1. $A_1v_1 = A_2v_2$ ની મદદથી નોઝલમાંથી બહાર આવતા પાણીનો વેગ શોધો. શિરોલંબ ગતિ માટે $y = \frac{1}{2}gt^2$ અને y = 1 m અને સમક્ષિતિજ ગતિ માટે $x = v_{L2}t$ $\therefore y = \frac{1}{2}g\left(\frac{x}{v_2}\right)^2$ $\therefore x = \sqrt{\frac{2yv_2^2}{g}}$

ઉકેલો 221


2. A આગળનું દબાણ = B આગળનું દબાણ

$$\therefore$$
 $(h+2d)\rho_e g+P_a=P_a+1(2d)g$ હવે ρ_I મેળવો.

3. સમિક્ષતિજ પ્રવાહ માટે

$$P_1 + \frac{1}{2}\rho v_1^2 = P_2 + \frac{1}{2}\rho v_2^2$$

$$\therefore P_1 - P_2 = \frac{1}{2}\rho(v_2^2 - v_2^2)$$

4. stá = TΔA = T2π
$$(r_2^2 - r_1^2)$$

$$\mathbf{5.} \quad \mathbf{T} = \frac{rh\rho g}{2cos\theta}$$

$$\therefore h = \frac{2 \mathrm{T} cos \theta}{r \rho g}$$
 પરથી બીજા ભુજ માટે ઊંચાઈ મેળવો અને તફાવત શોધો.

6.
$$\eta = \frac{2}{9} \frac{v^2}{v_t} (\rho - \rho_0) g$$

અહીં પરપોટાનો અચળ વેગ તેનો અંતિમ વેગ છે.

7. અને 8. સૂચનમાં આપેલ સૂત્રનો ઉપયોગ કરો.

9.
$$P_i - P_o = \frac{4T}{R}$$
 પરથી P_i શોધો. $P_o = 10^5 \ Pa$ હવે સમતાપી સંકોચન માટે ત્રિજ્યા અડધી થાય માટે કદ આઠમા ભાગનું થાય. $P_i V = P_i' \frac{V}{8}$ પરથી P_i' મેળવો. હવે $P_i' - P_o' = \frac{4T}{R'}$ માટે $R' = \frac{R}{2}$ લઈને P_o' મેળવો.

1.
$$m=200$$
 g, $\Delta T=T_f-T_i$, $C=0.215$ cal g $^{-1}$ C $^{o-1}$, $Q=mC\Delta T$ ਅਜੇ $H_C=\frac{Q}{\Delta T}$

2. (a)
$$32 \text{ g } O_2 = 1 \text{ when}$$

$$\therefore 10 \text{ g } O_2 = \frac{10}{32} = \frac{5}{6} \text{ when}$$

$$\therefore \mu = \frac{5}{6} \text{ when}$$

$$P = 3 \times 10^5 \text{ N m}^{-2}, T = 273 + 10 = 283 \text{ K}$$
where we have the sequence of the sequenc

$$C_V = \frac{5}{2}R$$

તથા $PV_2 = \mu RT_2 \Rightarrow T_2 = \frac{PV_2}{\mu R}$
∴ $\Delta E_{int} = \mu C_V (T_2 - T_1)$

(c)
$$\Delta E_{int} = Q - W$$

$$\therefore Q = \Delta E_{int} + W$$

3. અહીં,
$$T_2=300$$
 K, $\eta=40$ % $=0.4$, $\eta=1-\frac{T_2}{T_1}$, પરથી T_1 શોધો.
$$T_1=$$
 અચળ રાખીને $\eta'=50$ % $=0.5$ કરવા $T_2=$?
$$\eta'=1-\frac{T_2}{T_1}$$
 પરથી T_2' શોધો.

4.
$$T_1 = 500 \text{ K}, T_2 = 375 \text{ K}, Q_1 = 600 \text{ k cal}$$

(i) કાર્યક્ષમતા
$$\eta=1-rac{T_2}{T_1},$$
 (ii) $rac{Q_2}{Q_1}=rac{T_2}{T_1}$ \therefore $Q_2=rac{T_2}{T_1} imes Q_1$

ચોખ્ખું કાર્ય ${
m W}=({
m Q}_1-{
m Q}_2) imes 4.2rac{{
m J}}{{
m cal}}$ (iii) ઠારણ-વ્યવસ્થામાં પાછી મેળવાતી ઉષ્મા $={
m Q}_2$

5.
$$T_i = 27$$
 °C = 27 + 273 = 300 K

$$P_i = 2 \text{ atm}, \ \mu = 1 \text{ mol}, \ \Upsilon = 1.5, \ V_f = \frac{1}{8} V_i$$

(a) સમોષ્મી સંકોચન માટે $PV^{\gamma} =$ અચળ

$$\therefore P_i V_i^{\gamma} = P_f V_f^{\gamma} \Rightarrow P_f = P_i \left(\frac{V_i}{V_f}\right)^{\gamma}$$

(b) આદર્શ વાયુ અવસ્થા-સમીકરણ મુજબ, $\mathbf{P}_i\mathbf{V}_i = \mathbf{\mu}\mathbf{R}\mathbf{T}_i$

$$P_f V_f = \mu R T_f :: \frac{P_i V_i}{P_f V_f} = \frac{T_i}{T_f} \Rightarrow T_f = T_i \frac{P_f V_f}{P_i V_i}$$

6. સમોષ્મી પ્રક્રિયા માટે $\mathbf{W} = \frac{\mu \mathbf{R}(\mathbf{T}_i - \mathbf{T}_f)}{\gamma - 1}$, પરંતુ અહીંયાં કદ સંકોચન થતું હોવાથી કાર્ય ઋણ મળે છે.

$$\therefore \mathbf{W} = \frac{-\mu \mathbf{R}(\mathbf{T}_i - \mathbf{T}_f)}{\gamma - 1} = \frac{\mu \mathbf{R}(\mathbf{T}_f - \mathbf{T}_i)}{\gamma - 1}$$

7. થરમૉડાઇનેમિકના પ્રથમ નિયમ મુજબ \therefore $\Delta E_{\rm int} = Q - W$ પરંતુ બંધ વાયુપાત્ર માટે કદ અચળ હોવાથી \Rightarrow $\Delta V = 0$ \therefore W = 0

$$\Delta E_{int} = Q = \mu C_{V} \Delta T = \frac{PV}{RT} C_{V} \Delta T \quad (\because PV = \mu RT, \therefore \mu = \frac{PV}{RT})$$

$$\Delta T = \frac{QRT}{PVC_V}$$
 (એક-પરમાણ્વિક વાયુ માટે $C_V = \frac{3}{2}R$)

 \therefore અંતિમ તાપમાન $\mathbf{T}_f = \mathbf{T}_i + \Delta \mathbf{T}$, આ ઉપરાંત આદર્શવાયુ માટે $\mathbf{P}_i \mathbf{V}_i = \mu \mathbf{R} \mathbf{T}_i$

$$P_f V_f = \mu RT_f (:: V_f = V_i)$$

$$\therefore \frac{P_f}{P_i} = \frac{T_f}{T_i} \implies P_f = P_i \frac{T_f}{T_i}$$

8. અહીંયાં
$$\mu = 1$$
 મોલ, $\Delta T = 30 \text{ C}^{\circ} = 30 \text{ K}$, V $\alpha T^{\frac{2}{3}}$

$$\therefore$$
 V = AT ^{$\frac{2}{3}$} , A = અંચળ \therefore d V = A $\frac{2}{3}$ T ^{$-\frac{1}{3}$} d T

આથી
$$W = \int_{T}^{T+\Delta T} P dV = \int_{T}^{T+\Delta T} \frac{RT}{V} dV$$
 ($\because PV = \mu RT$, $\therefore PV = RT$, $\mu = 1$)
$$= \int_{T}^{T+\Delta T} \frac{RT}{AT^{\frac{2}{3}}} A^{\frac{2}{3}} T^{-\frac{1}{3}} dT = \frac{2R}{3} \int_{T}^{T+\Delta T} dT = \frac{2}{3} R [T]_{T}^{T+\Delta T}$$
$$= \frac{2}{3} R[T + \Delta T - T] \therefore W = \frac{2}{3} R\Delta T$$

9. અહીંયાં $P=1.0~atm=1.01\times 10^5~N~m^{-2},~T=300~K,~\mu=2~mol,~R=8.31~J~mol^{-1}~K^{-1}$

દ્ધિ-પરમાણ્વિક (rigid rotator) માટે $\gamma=\frac{7}{5}$ આદર્શવાયુ અવસ્થા-સમીકરણ મુજબ $PV=\mu RT$

$$\therefore V = \frac{\mu RT}{P}$$

સમોષ્મી પ્રક્રિયા માટે $PV^{\gamma} =$ અચળ

$$\therefore$$
 અચળાંક = $P\left(\frac{\mu RT}{P}\right)^{\gamma}$

10. અહીંયાં $T_1=300~{\rm K},\,T_2=600~{\rm K},\,T_3=455~{\rm K},$ એક-પરમાણ્વિક વાયુ માટે f=3 આથી 1 મોલ વાયુ માટે

$$\mathbf{E}_{\mathrm{int'}~1}=\frac{f\mathbf{RT_1}}{2}$$
, $\mathbf{E}_{\mathrm{int'}~2}=\frac{f\mathbf{RT_2}}{2}$ અને $\mathbf{E}_{\mathrm{int'}~3}=$ બિંદુ 3 પાસે આંતરિક ઊર્જા $=\frac{f\mathbf{RT_3}}{2}$

પ્રક્રિયા $\mathbf{1} \to \mathbf{2}$: સમકદ પ્રક્રિયા હોવાથી $\Rightarrow \mathbf{W}_1 = 0$

$$\therefore Q_1 = \Delta E_{int', 12} = E_{int', 2} - E_{int', 1}$$

પ્રક્રિયા 3 o 1 : સમદાબ પ્રક્રિયા હોવાથી

$$\therefore \Delta E_{int',31} = Q_3 - W_3, W_3 = PdV$$

પરંતુ વાયુનું કદ સંકોચન થતું હોવાથી W ઋણ હોય છે.

$$\therefore$$
 $W_3 = -PdV = -\mu R(T_3 - T_1)$ અને $\Delta E_{\text{int'} 31} = \Delta E_{\text{int'} 1} - \Delta E_{\text{int'} 3}$ આવી, $Q_3 = \Delta E_{\text{int'} 31} + W_3$

11.
$$\eta=22\%=0.22,\ Q_1-Q_2=75\ J,\ \eta=\frac{Q_1-Q_2}{Q_1}\Rightarrow Q_1=\frac{Q_1-Q_2}{\eta}$$
 અને $Q_2=Q_1-75\ J$

12. અહીંયા
$$Q_1 = 10{,}000 \text{ J}, W = 2000 \text{ J}, L_C = 5.0 \times 10^4 \text{ J/g}$$

$$(a)$$
 એન્જિનની કાર્યક્ષમતા $\eta = rac{W}{Q_1},$

$$(b)$$
 દરેક ચક્ર દરમિયાન ઠારણ-વ્યવસ્થામાં આપેલી ઉષ્મા $Q_2 = Q_1 - W$,

(c) ધારો કે દરેક ચક્ર દરમિયાન m ગ્રામ ગૅસોલિન વપરાય છે.

$$\therefore Q_1 = mL_C \therefore m = \frac{Q_1}{L_C}$$

- (d) એક ચક્ર દરમિયાન વપરાતું ગૅસોલિન = m ગ્રામ, \therefore 1 સેકન્ડમાં 25 ચક્ર દરમિયાન વપરાતું ગૅસોલિન, $M=25\times m$ ગ્રામ, \therefore 1 કલાકમાં વપરાતું ગૅસોલિન $=60\times 60\times M$ g/h = kg/h
- (e) 1 સેકન્ડમાં એન્જિને ઉત્પન્ન કરેલ પાવર = 1 સેકન્ડમાં થતા ચક્ર imes 1 ચક્ર દીઠ થતું કાર્ય

પ્રકરણ 7

1. (a)
$$T = 3$$
 s, $A = 2$ cm, $\omega = \frac{2\pi}{T} = \frac{2\pi}{3}$, $\phi = 60^{\circ} = \frac{\pi}{3}$
 $\therefore y = 2 \sin\left(\frac{2\pi}{3}t + \frac{\pi}{3}\right)$

(b) T = 1 min = 60 s, A = 3 cm,
$$\omega = \frac{2\pi}{T} = \frac{2\pi}{60}$$
, $\phi = -90^{\circ} = -\frac{\pi}{2}$
 $\therefore y = 3 \cos(\frac{\pi}{30}t)$

2.
$$K = k + 2k + k = 8 \text{ N m}^{-1}, T = 2\pi \sqrt{\frac{m}{K}} = 0.628 \text{ s}$$

3. અહીં
$$\mathbf{F} = -kl = -k(l_1 + l_2)$$
, ઉપરાંત $\mathbf{F}_1 = -k_1 l_1 = -k(l_1 + \frac{l_1}{n})$... $k_1 = (1 + \frac{l_1}{n})$ k , અને $\mathbf{F}_2 = -k_2 l_2 = -k(l_2 + l_2)$... $k_2 (n+1) k$

4.
$$m = 100 \text{ g}$$
, A $(t) = \frac{A}{2}$, $t = 100 \times 2 = 200 \text{ s}$, A $(t) = A^{-bt/2m}$

5.
$$v = \pm \omega \sqrt{4A^2 - 3y^2}$$
, $v_{new} = \pm \omega \sqrt{A_1^2 - y_1^2}$ $v_{new} = 2 v$,
 $2\sqrt{A_{new}^2 - y^2} = \sqrt{A_{new}^2 - y^2}$, $4(A^2 - y^2) = A_{new}^2 - y^2$

$$\therefore A^{2}_{new} A4^{2} - 4y^{2} + y, A_{new} = \sqrt{4A^{2} - 3y^{2}}$$

6.
$$v = \omega \sqrt{A^2 - y^2}$$
, $a = -\omega^2 y$, $T = \frac{2\pi}{\omega}$, $a^2 T^2 + 4\pi^2 v^2 = 4\pi^2 \omega^2 A^2 =$ અંચળ

7.
$$T - mg \cos\theta = mv^2/L$$
, $\therefore T = mg \cos\theta + mv^2/L$ જ્યારે $\cos\theta = 1$ અને v મહત્તમ હોય, તો $T = T_{max}$
$$v^2_{max} = 2 \ hg = 2g \ L \ \frac{\theta_0^2}{2}, \ v^2_{max} = 2 \ hg = 2g \ L \ (1 - \cos\theta_1),$$

$$= 2g \ L \ (\sin^2\frac{\theta_0}{2}) \ (\because \sin^2\theta = \frac{1 - \cos^2\theta}{2}) = 2g \ L \ \frac{\theta_0^2}{2}$$

$$gL\left(\frac{A}{L}\right)^2 \ T_{max} = mg \ \left[1 + \left(\frac{A}{L}\right)^2\right]$$

8.
$$y_1 = 10 \sin (3\pi t + \frac{\pi}{4}), A_1 = 10, \omega_1 = 3\pi \Rightarrow T_1 = \frac{2}{3} \text{ s.}$$

$$y_2 = 5 (\sin 3\pi t + \sqrt{3}\cos 3\pi t) = A_2\cos \phi \sin 3\pi t + A_2\sin \phi \cos 3\pi t$$

$$y_2 = A_2 \sin (3\pi t + \phi)$$

$$A_2 = \sqrt{(5)^2 + (5\sqrt{3})^2} = 10, \omega_2 = 3\pi, T_2 = \frac{2}{3} \text{ s. Fig. } \frac{A_1}{A_2} = 1$$

9. PE = $\frac{1}{2}ky^2$, કુલ યાંત્રિક-ઊર્જા E = K + U : K = E - U

10.
$$v_1 = \omega \sqrt{A^2 - y_1^2}$$
, $v_2 = \omega \sqrt{A^2 - y_2^2}$, $v_1^2 - v_2^2 = \omega^2 (y_2^2 - y_1^2)$, $T = \frac{2\pi}{\omega}$.

પ્રકરણ 8

- 1. તરંગ-સમીકરણ $y=\mathrm{Asin}\;(\omega t-kx)$ નું t સાપેક્ષે વિકલન કરતાં, t સમયે કણનો તત્કાલીન વેગ મળશે. $v_p=\dfrac{dy}{dt}=\mathrm{A}\omega\;\cos\;(\omega t-kx)$ હવે તરંગ-ઝડપ $v=\omega/k$ તરંગનો x અંતરે ઢાળ $=\dfrac{dy}{dx}=-k\mathrm{Acos}\;(\omega t-kx)$ ઉપર્યુક્ત ત્રણેય સમીકરણો પરથી $\dfrac{v_\mathrm{P}}{v}=-\dfrac{dy}{dx}$
- 2. P તરંગનો વેગ $v_{\rm P}=\frac{d}{t}$, S તરંગનો વેગ $v_{\rm S}=\frac{d}{t+240}$, $(\because 4 મિનિટ=60\times 4=240 \text{ s}) \text{ આ બંને સમીકરણોને ઉકેલતાં, } t=240 \text{ s} \text{ મળશે.}$ હવે $v_{\rm P}=\frac{d}{t}$ સમીકરણમાં t નું અને $v_{\rm P}$ નું મૂલ્ય મૂકી d શોધો.
- 3. A = 10 m, $x_1 = 2$ m, $t_1 = 2$ s અને $y_1 = 5$ m, $x_2 = 16$ m, $t_2 = 8$ s અને $y_z = 5\sqrt{3}$ m.

હવે,
$$y_1 = A \sin (\omega t_1 - kx_1)$$
માં કિંમતો મૂકતાં, $\omega - k = \frac{\pi}{12}$ (1)

$$y_2 = A\sin(\omega t_2 - kx_2)$$
 માં કિંમતો મૂકતાં, $\omega - 2k = \frac{\pi}{24}$ (2)

સમીકરણ (1) માંથી (2) બાદ કરતાં, $k=\frac{\pi}{24}$ rad/m, k નું મૂલ્ય સમીકરણ (1)માં મૂકતાં, $\omega=\pi/8$ rad/s

4. $y = 3 \sin ((3.14)x - (314)t)$ નું t સાપેક્ષે વિકલન કરતાં, $v = \frac{dy}{dx} = -(3) (314) \cos ((3.14)x - (314)t)$ ∴ કણનો મહત્તમ વેગ = (3) (314) = 9.4 m s⁻¹ ઉપર્યુક્ત સમીકરણનું tની સાપેક્ષે વિકલન કરતાં,

$$a=rac{dv}{dt}=-(3)(314)(314)\,\sin{((3.14)x-(314)t)}$$
 હવે $x=6$ cm અને $t=0.11$ s મૂકતાં,
$$a=-(3)\,(314)^2\,\sin{(6\pi-11\pi)}=(-3)\,(314)^2\,\sin{(-5\pi)}=0.$$

5. $T_1 = 0. + 273 = 273 \text{ K}, \lambda_1 = 1.32 \text{ m}, T_2 = 27 + 273 = 300 \text{ K}, \lambda_2 = ?$

હવે,
$$\frac{v_1}{v_2} = \sqrt{\frac{T_1}{T_2}}$$
 \therefore $\frac{\lambda_1}{\lambda_2} = \sqrt{\frac{T_1}{T_2}}$ $(\because v = f\lambda)$

ઉપર્યુક્ત સમીકરણમાં કિંમતો મૂકતાં, $\lambda_2=1.384~\mathrm{m}$

તરંગલંબાઈમાં વધારો $\Delta\lambda=\lambda_{_2}-\lambda_{_1}=0.064~\mathrm{m}$

6. $T_0 = 1200 + 273 = 1473$ K, $ρ_0 = 16$ $ρ_H$, $T_H = ? હવੇ, <math>ν_0 = ν_H$

$$\therefore \sqrt{\frac{\gamma R T_0}{\rho_0 V}} = \sqrt{\frac{\gamma R T_H}{\rho_H V}} \therefore T_H = T_0 \times \frac{\rho_H}{\rho_0} = 1473 \times \frac{1}{16} = 92.06 \text{ K}$$

$$T_{H} = 92.06 - 273 = -180.94^{\circ}C$$

7. અહીં $\mathbf{L}_1 + \mathbf{L}_2 + \mathbf{L}_3 = 100$ cm છે. સમગ્ર તાર એક જ માધ્યમ હોવાથી બધા વિભાગોમાં તરંગ ઝડપ v સમાન હોય છે. $\therefore v = f_1 \lambda_1 = f_2 \lambda_2 = f_3 \lambda_3$

તારનો દરેક વિભાગ મૂળભૂત આવૃત્તિથી (f=2L) દોલનો કરે છે.

$$\therefore f_1(2L_1) = f_2(2L_2) = f_3(2L_3)$$

આ સમીકરણમાં $f_1:f_2=1:2$ અને $f_1:f_3=1:3$ મૂકીને $\mathbf{L_1},\,\mathbf{L_2}$ અને $\mathbf{L_3}$ શોધો.

8. $\mu = 0.05$ g/cm, $f_n = 420$ Hz, $f_{n+1} = 490$ Hz, T = 490 N

ધારો કે તાર એ 420 Hz આવૃત્તિ માટે nમી હાર્મોનિક સાથે અને 490 Hz આવૃત્તિ માટે (n+1)મી હાર્મોનિક સાથે અનુનાદ કરે છે.

$$f = \frac{n}{2L} \sqrt{\frac{T}{\mu}}$$
 અનુસાર, $f_n = \frac{n}{2L} \sqrt{\frac{T}{\mu}}$ (1) અને $f_{n+1} = \frac{n+1}{2L} \sqrt{\frac{T}{\mu}}$ (2)

બંને સમીકરણોનો ગુણોત્તર લેતાં,

$$\frac{f_{n+1}}{f_n} = \frac{n+1}{n}$$
 $\therefore n=6$ (f_{n+1}) અને f_n ની કિંમતો મૂકતાં)

$$420 = \frac{6}{2L} \sqrt{\frac{450}{5 \times 10^{-3}}} = \frac{900}{L}$$

$$\therefore L = \frac{900}{420} = 2.1 \text{ m}$$

9. L = 100 cm, f_n = 300 Hz, f_{n+1} = 400 Hz, 2A = 10 cm

eq.,
$$f_{n+1} - f_n = (n+1) f_1 - n f_1$$
, $\therefore f_1 = 100 \text{ Hz}$, $\lambda_1 = \frac{2L}{1} = 200 \text{ cm}$, $\therefore k = \frac{2\pi}{\lambda} = \frac{\pi}{100} \text{ rad/cm}$, $\omega = 2\pi f_1 = 2\pi (100) \text{ rad/s}$

 $\lambda = \lambda = 100$ Taureni, $\omega = 2ig_1 = 2ik(100)$ Taure

આથી, સ્થિત તરંગનું સમીકરણ, $y=-10\sin(\frac{\pi}{100}x)\cos(200\pi)t$ cm

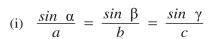
10. કાર શ્રોતા તરફ ગતિ કરે ત્યારે, $f_{\mathrm{L}_1} = \left(\frac{v+0}{v-v_{\mathrm{S}}}\right)f_{\mathrm{s}}$

ઉકેલો 227

કાર શ્રોતાથી દૂર તરફ ગતિ કરે ત્યારે
$$f_{\mathrm{L}_2} = \left(rac{v+0}{v+v_{\mathrm{S}}}
ight) \! f_{\mathrm{S}}$$

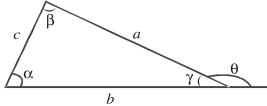
$$\therefore f_{\rm L_1} - f_{\rm L_2} = \left(\frac{v}{v - v_{\rm S}} - \frac{v}{v + v_{\rm S}}\right) f_{\rm S}$$
 સમીકરણમાં, $v = 340$ m/s, $v_{\rm S} = 15$ m/s અને $f_{\rm S} = 500$ Hz મૂકતાં, $f_{\rm L_1} - f_{\rm L_2} = 44.2$ Hz

11. $f_{\rm S} = 600$ Hz, v = 340 m/s, $v_{\rm L} = 10$ m s⁻¹


એન્જિન જ્યારે ટેકરી તરફ $10~{\rm m~s^{-1}}$ ના વેગથી ગતિ કરે છે ત્યારે તેનું પ્રતિબિંબ તેનાથી વિરુદ્ધ દિશામાં ગતિ કરતું ગણી શકાય. શ્રોતા એન્જિનમાં બેઠેલો છે અને એન્જિન ટેકરી તરફ ગતિ કરે છે. આથી $v_{_{\rm L}}$ ની દિશા L થી S તરફ અને $v_{_{\rm S}}$ ની દિશા S થી L તરફ થશે.

$$\therefore f_{\rm L} = \frac{v + v_{\rm L}}{v - v_{\rm S}} \times f_{\rm S} = \frac{340 + 10}{340 - 10} \times 660 = 700 \text{ Hz}$$

•


પરિશિષ્ટ

SINE અને COSINEના નિયમો

(ii) $c^2 = a^2 + b^2 - 2 \ abcos \ \gamma$

(iii) બહિકોંશ $\theta = \alpha + \beta$

ત્રિકોણમિતીય સૂત્રો (TRIGONOMETRIC IDENTITIES)

(i)
$$sin^2\theta + cos^2\theta = 1$$

(ii)
$$1 + tan^2\theta = sec^2\theta$$

(iii)
$$1 + \cot^2\theta = \csc^2\theta$$

(iv)
$$sec^2\theta - tan^2\theta = 1$$

(v)
$$cosec^2\theta - cot^2\theta = 1$$

(vi)
$$sin2\theta = 2sin\theta cos\theta$$

(vii)
$$cos2\theta = cos^2\theta - sin^2\theta = 2cos^2\theta - 1 = 1 - 2sin^2\theta$$

(viii)
$$sin(\alpha \pm \beta) = sin\alpha cos\beta \pm cos\alpha sin\beta$$

(ix)
$$cos(\alpha \pm \beta) = cos\alpha cos\beta \mp sin\alpha sin\beta$$

(x)
$$\sin\alpha \pm \sin\beta = 2\sin \frac{\alpha \pm \beta}{2} \cos \frac{\alpha \mp \beta}{2}$$

(xi)
$$\cos\alpha + \cos\beta = 2\cos \frac{\alpha + \beta}{2} \cos \frac{\alpha - \beta}{2}$$

(xii)
$$\cos\alpha - \cos\beta = -2\sin \frac{\alpha + \beta}{2} \sin \frac{\alpha - \beta}{2}$$

ખાસ ખૂશાઓ માટે sine અને cosineનાં મુલ્યો

62	0 °	30°	45°	60°	90°	180°	270°	360°
વિધેય	0 rad.	$\frac{\pi}{6}$ rad	$\frac{\pi}{4}$ rad	$\frac{\pi}{3}$ rad	$\frac{\pi}{2}$ rad	πrad	$\frac{3\pi}{2}$ rad	2π rad
sin	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1	0	-1	0
cos	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0	-1	0	1
tan	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	∞	0	∞	0

દ્વિઘાત સમીકરણનાં બીજ :

જો
$$ax^2 + bx + c = 0$$
, હોય તો, $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

લોગ (Log) નાં સૂત્રો :

- 1. $\% \log a = x, \text{ di } a = 10^x$
- **4.** $log(a^n) = n log a$
- log(ab) = log(a) + log(b)
- **5.** $log_a a = 1$
- $log\left(\begin{array}{c} \frac{a}{b} \end{array}\right) = log(a) log(b)$
- **6.** $ln\ a = log_e a = 2.303\ log_{10} a$

અગત્યનાં વિસ્તરણો :

1. દિયદી વિસ્તરણ :
$$(1 \pm x)^n = 1 \pm nx + \frac{n(n-1)x^2}{2!} + \dots (x^2 < 1)$$

$$(1 \pm x)^{-n} = 1 \mp nx + \frac{n(n+1)x^2}{2!}$$
 $(x^2 < 1)$

2.
$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots$$
 જયારે $x < < 1$, હોય ત્યારે $e^x = 1 + x$

3.
$$ln(1+x) = x - \frac{x^2}{2} + \frac{x^2}{3} +(|x| < 1)$$

જયારે x << 1, હોય, ત્યારે $ln(1 \pm x) = \pm x$

ત્રિકોણમિતીય વિસ્તરણો (θ રેડિયનમાં છે.)

(i)
$$\sin\theta = \theta - \frac{\theta^3}{3!} + \frac{\theta^5}{5!} + \dots$$
 (ii) $\cos\theta = 1 - \frac{\theta^2}{2!} + \frac{\theta^4}{4!} + \dots$

(ii)
$$\cos\theta = 1 - \frac{\theta^2}{2!} + \frac{\theta^4}{4!} + \dots$$

(iii)
$$\tan\theta = \theta + \frac{\theta^3}{3} + \frac{2\theta^5}{15} + \dots$$

જો θ ખૂબ જ નાનો હોય, તો $sin\theta$ \approx θ ; $cos\theta$ \approx 1 and $tan\theta$ \approx θ rad

у	$\frac{dy}{dx}$	у	$\frac{dy}{dx}$
x^n	nx^{n-1}	sec x	sec x tan x
sin x	cos x	cosec x	-cosec x cot x
cos x	$-\sin^{-2} x$	lnx	$\frac{1}{x}$
cot x	−cosec² x	tan x	$sec^2 x$
cos kx	−k sin x	e^x	e^x
sin kx	k cos x	a^x	a^x ln a

વિકલિતના કાર્ય-નિયમો :

(1)
$$\frac{d}{dx}(k) = 0$$
 (જ્યાં, k અચળ છે.

$$(2) \ \frac{d}{dx}(x) = 1$$

(3)
$$\frac{d}{dx}(ky) = k\frac{dy}{dx}$$
 (જ્યાં, k અચળ છે.) (4) $\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$

(4)
$$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$$

(5) જો
$$y = u \pm v$$
, હોય, તો $\frac{dy}{dx} = \frac{du}{dx} \pm \frac{dv}{dx}$ (6) જો $y = uv$ હોય, તો $\frac{dy}{dx} = u\frac{dv}{dx} \pm v\frac{du}{dx}$

(6) જો
$$y = uv$$
 હોય, તો $\frac{dy}{dx} = u\frac{dv}{dx} \pm v\frac{du}{dx}$

(7) જો
$$y = \frac{u}{v}$$
 હોય, તો $\frac{dy}{dx} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$

230 ભૌતિકવિશાન

અમુક પ્રમાણિત વિધેયોનાં સંકલિતો :

f(x)	$\mathbf{F}(x) = f(x)dx$	f(x)	$\mathbf{F}(x) = f(x)dx$
x^{n} $(n \neq -1)$	$\frac{x^{n+1}}{n+1}+c$	$(ax + b)^n$	$\frac{1}{a}\frac{(ax+b)^{n+1}}{n+1} + c$
$\frac{1}{x}$	$ln \ x + c$	sin x	$-\cos x + c$
e^x	$e^x + c$	cos x	$\sin x + c$
e^{kx}	$\frac{1}{k}e^{kx} + c$	sin kx	$-\frac{1}{k}\cos x + c$
a^{x}	$\frac{a^x}{\ln a} + c$	cos kx	$\frac{1}{k}\sin kx + c$

સંદર્ભ ગ્રંથો (REFERENCE BOOKS)

- 1. PHYSICS, Part 1 and 2, Std. XI, GSBST
- 2. PHYSICS, Part 1 and 2, Std. XI, NCERT
- 3. Fundamentals of PHYSICS by Halliday, Resnick and Walker
- 4. University Physics by Young, Zemansky and sears
- 5. CONCEPTS OF PHYSICS by H. C. Verma
- 6. Advanced PHYSICS by Tom Duncan
- 7. Advanced LEVEL PHYSICS by Nelkon and Parker
- 8. FUNDAMENTAL UNIVERSITY PHYSICS by Alonso and Finn
- 9. COLLEGE PHYSICS by Weber, Manning, White and Weygand
- 10. PHYSICS FOR SCIENTIST AND ENGINEERS by Fishbane, Gasiorowicz, Thornton
- 11. PHYSICS by Cutnell and Johnson
- 12. COLLEGE PHYSICS by Serway and Faughn
- 13. UNIVERSITY PHYSICS by Ronald Reese
- 14. CONCEPTUAL PHYSICS by Hewitt
- 15. PHYSICS FOR SCIENTIST AND ENGINEERS by Giancoli
- 16. Heat Transfer by Holman

•

પારિભાષિક શબ્દો

પારિભાષિક શબ્દો

(સિમેસ્ટર I)

પ્રકરણ 1 ભૌતિક જગત

ગાણિતીય વાદ	Mathematical	(મેથેમેટિકલ	આંતરક્રિયા	Interaction	(ઇન્ટરેક્શન)
	theory	થીયરી)	તારાવિશ્વો	Galaxies	(ગૅલેક્સિઝ)
તર્ક	Logic	(લૉજિક)	ઉપગ્રહ	Satellite	(સેટેલાઇટ)
ઘટના	Event	(ઇવેન્ટ)	ગુરુત્વાકર્ષણ	Gravitational	(ગ્રેવિટેશનલ
દ્રવ્ય	Matter	(મેટર)	બળ	force	ફૉર્સ)
વિકિરણ	Radiation	(રેડિયેશન)	વિદ્યુતચુંબકીય	Electromagnetic	(ઇલેક્ટ્રૉમૅગ્નેટિક
મૂળભૂત	Fundamental	(ફ્રન્ડામેન્ટલ)	બળ	force	ફૉર્સ)
પરમાંશુ	Atom	(એટમ)	લઘુઅંતરી	Short range	(શોર્ટ રેન્જ)
અણુ	Molecule	(મોલેક્યુલ)	ગુરુઅંતરી	Long range	(લૉન્ગ રેન્જ)
સંક્રાંતિ	Transition	(ટ્રાન્ઝિશન)	સંરક્ષણ	Conservation	(કૉન્ઝર્વેશન)
ઇલેક્ટ્રૉન	Electronic	(ઇલેક્ટ્રૉનિક	સમાંગ	Homogeneous	(હોમોજિનિયસ)
સંરચના	configuration	કન્ફ્રિગ્યુરેશન)	સમદિગધર્મી	Isotropic	(આઇસોટ્રોપિક)
વાયુ	Gas	(ગૅસ)	રેખીય વેગમાન	Linear	(લિનિયર
પ્રવાહી	Liquid	(લિક્વિડ)		momentum	મોમેન્ટમ)
ઘન	Solid	(સોલિડ)	કોણીય વેગમાન	Angular	(ઍન્ગ્યુલર
તાપમાન	Temperature	(ટેમ્પરેચર)		momentum	મોમેન્ટ)
સ્રોત	Source	(સોર્સ)	ઊર્જા	Energy	(ઍનર્જી)

પ્રકરણ 2 માપન તથા એકમપદ્ધતિ

ભૌતિકરાશિ	Physical quantity	(ફ્રિઝિકલ	આણ્વિક સ્તર	Molecular layer	(મોલેક્યુલર લેયર)
		ક્વૉન્ટિટી)	માપન	Measurement	(મેઝરમેન્ટ)
એકમ	Unit	(યુનિટ)	ચોકસાઈ	Accuracy	(એક્યુરસી)
એકમપદ્ધતિ	System of Units	(સિસ્ટમ ઑફ	ત્રુટિ	Error	(એ૨૨)
		યુનિટ્સ)	વ્યવસ્થિત	Systematic	(સિસ્ટેમેટિક)
પ્રતિકૃતિ	Replica	(રેપ્લિકા)	અવ્યવસ્થિત	Random	(રેન્ડમ)
મૂળભૂત	Fundamental	(ફ્રન્ડામેન્ટલ)	અંદાજ	Estimation	(એસ્ટિમેશન)
સાધિત	Derived	(ડિરાઇવ્ડ)	નિરપેક્ષ	Absolute	(એબ્સોલ્યુટ)
વિદ્યુતપ્રવાહ	Electric current	(ઇલેક્ટ્રિક કરન્ટ)	સાપેક્ષ	Relative	(રિલેટિવ)
અધિસૂક્ષ્મ	Hyperfine	(હાઇપરફાઇન)	પ્રતિશત	Percentage	(પરસન્ટેજ)
ગલનબિંદુ	Melting point	(મેલ્ટિંગ પૉઇન્ટ)	સાદું લોલક	Simple pendulum (સિમ્પલ	
દબાણ	Pressure	(પ્રેશ૨)			પેન્ડચુલમ)
દળ	Mass	(માસ)	આવર્તકાળ	Periodic time	(પિરિયોડિક ટાઇમ
લંબાઈ	Length	(લેન્થ)		(or Period)	(ઓર પિરિયડ))
સમય	Time	(ટાઇમ)	ઘાત	Index	(ઇન્ડેક્સ)
સમતલ કોણ	Plane angle	(પ્લેન ઍન્ગલ)	શૂન્યેતર	Non-zero	(નોન-ઝીરો)
ઘન કોણ	Solid angle	(સોલિક ઍન્ગલ)	સાર્થક	Significant	(સિગ્નિફિકન્ટ)
પૂરક	Supplementary	(સપ્લિમેન્ટરી)	દશાંશચિક્ષ	Decimal point	(ડેસિમલ પૉઇન્ટ)
દષ્ટિસ્થાનભેદ	Parallax	(પેરેલેક્સ)	પરિણામો	Dimensions	(ડાઇમેન્શન્સ)
ગ્રહ	Planet	(પ્લેનેટ)	પારિમાણિક	Dimensional	(ડાઇમેન્શનલ
કોણીય વ્યાસ	Angular diameter	: (ઍન્ગ્યુલર ડાયામીટર)	વિશ્લેષણ	analysis	એનાલિસિસ)

પ્રકરણ 3 સુરેખ પથ પર ગતિ પ્રકરણ 4 સમતલમાં ગતિ

પરિમાણ	Dimension	(ડાઇમેન્શન)	ક્ષેત્રફળ	Area	(ઍરિયા)
ગતિ	Motion	(મોશન)	કાર્ય	Work	(વર્ક)
રેખીય ગતિ	Linear motion	(લિનિયર મોશન)	વેગમાન	Mometum	(મોમેન્ટમ)
ચાકગતિ	Rotational motion	(રોટેશનલ મોશન)	પરિણામી	Resultant	(૨ઝિલ્ટન્ટ)
કંપનગતિ	Vibrational motion	n(વાઇબ્રેશનલ	ગુણધર્મો	Properties	(પ્રોપર્ટિઝ)
		મોશન)	એકમ સદિશ	Unit vector	(યુનિટ વેક્ટર)
દોલનગતિ	Oscillatory motion	ı (ઓસ્સિલેટરી	શૂન્ય સદિશ	Null vector	(નલ વેક્ટર)
		મોશન)	સ્થાનસદિશ	Position vector	(પોઝિશન વેક્ટર)
સ્થાનાંતર	Displacement	(ડિસ્પ્લેસમેન્ટ)	મૂલ્ય	Magnitude	(મેગ્નિટ્યૂડ)
વેગ	Velocity	(વેલોસિટી)	દિશા	Direction	(ડાઇરેક્શન)
પ્રવેગ	Acceleration	(એક્સલરેશન)	ઘટકો	Components	(કૉમ્પોનેન્ટ્સ)
ભૌતિકરાશિ	Physical quantity	(ફિઝિકલ	વિભાજન	Resolution	(રિઝોલ્યુશન)
		ક્વૉન્ટિટી)	સરેરાશ	Average	(એવરેજ)
અદિશ રાશિઓ	Scalar quantities	(સ્કેલર	તત્કાલીન	Instantaneous	(ઇન્સ્ટેન્ટેનિયસ)
		ક્વૉન્ટિટીઝ)	સમતલ	Plane	(પ્લેન)
સદિશ રાશિઓ	Vector quantities	(વેક્ટર	ગતિપથ	Path of motion	(પાથ ઑફ
		ક્વૉન્ટિટીઝ)			મોશન)
નિર્દેશ ફ્રેમ	Reference frame	(રેફરન્સ ફ્રેમ)	સ્પર્શક	Tangent	(ેન્જન્ટ)
જડત્વીય	Inertial reference		વિધેય	Function	(ફંક્શન)
નિર્દેશફ્રેમ	frame	રેફરન્સ ફ્રેમ)	નિયમિત	Uniform circular	(યુનિફોર્મ
અજડત્વીય	Non-inertial	(નોન ઇનર્શિયલ	વર્તુળાકાર	motion	સરક્યુલર
નિર્દેશફ્રેમ	reference frame	રેફરન્સ ફ્રેમ)	ગતિ		મોશન)
અવલોકનકાર	Observer	(ઑબ્ઝરર્વ૨)	કેન્દ્રગામી	Centripetal	(સેન્ટ્રિપીટલ)
ક્શ	Particle	(પાર્ટિકલ)	ત્રિજ્યાવર્તી	Radial	(રેડિયલ)
સ્થાન	Position	(પોઝિશન)	સાપેક્ષ	Relative	(રીલેટિવ)
પથલંબાઈ	Pathlength	(પાથલેન્થ)	પ્રક્ષિપ્ત ગતિ	Projectile motion	(પ્રોજેક્ટાઇલ
યામો	Co-ordinates	(કો-ઑર્ડિનેટ્સ)			મોશન)
દળ	Mass	(માસ)	મહત્તમ	Maximum	(મેક્સિમમ)
ઘનતા	Density	(ડેન્સિટી)	અવધિ	Rance	(ź - %)
કદ	Volume	(વૉલ્યુમ)	ઉડચન	Flight	(ફ્લાઇટ)
તાપમાન	Temperature	(ટેમ્પરેચર)			

પ્રકરણ 5 ગતિના નિયમો

પ્રાચલો	Parameters	(પેરામીટર્સ)	અસંતુલિત બળ	Unbalanced force	
બળ	Force	(ફોર્સ)			ફોર્સ)
સંપર્કબળ	Contact force	(કોન્ટેક્ટ ફોર્સ)	સ્થિર	Stationary	(સ્ટેશનરી)
લોહચુંબક	Magnet	(મૅગ્નેટ)	વેગ	Velocity	(વેલોસિટી)
ક્ષેત્ર	Field	(िई ८८)	અચળવેગી ગતિ	Uniform motion	(યુનિફૉર્મ
ઘર્ષણબળ	Frictional force	(ફ્રિક્શનલ ફોર્સ)			મોશન)
બાહ્યબળ	External force	(એક્સટર્નલ	જડત્વ	Inertia	(ઇનર્શિયા)
		ફોર્સ)	સંતુલન	Equilibrium	(ઇક્વિલિબ્રિયમ)
ગતિના નિયમો	Laws of motion	(લોઝ ઑફ	પ્રવેગી ગતિ	Accelerated	(એક્સલરેટેડ
		મોશન)		motion	મોશન)

પારિભાષિક શબ્દો

વેગમાન પરિણામી બળ	Momentum Resultant force	(મોમેન્ટમ) (રીઝલ્ટન્ટ ફોર્સ)	તણાવ લંબબળ	Tension Normal force	(ટેન્શન) (નોર્મલ ફોર્સ)
પારણામાં બળ સમિક્ષિતિજ બળનો આઘાત આંતરિક્રિયા આઘાત અને પ્રત્યાઘાત આંતરિક બળ સંરક્ષણનો નિયમ અલગ કરેલ તંત્ર ઊર્જા વર્ણપટ ઘટક	Horizontal Impulse of a force Interaction Action and reaction Internal force Law of conservation Isolated system Energy spectrum Component Concurrent	(હોરિઝોન્ટલ) (ઇમ્પલ્સ ઑફ અ ફોર્સ) (ઇન્ટરેક્શન) (એક્શન ઍન્ડ રિએક્શન) (ઇન્ટર્નલ ફોર્સ) (લૉ ઑફ કોન્ઝરવેશન) (આઇસોલેટેડ સિસ્ટમ)	અપેક્ષિત ગતિ (ઇમ્પેન્ડિંગ ઘર્ષણાંક સ્થિત ગતિક મહત્તમ સલામત ઝડપ કેન્દ્રગામી બળ કેન્દ્રત્યાગી બળ આભાસી બળ	Co-efficient of friction Static Kinetic Maximum safe Speed Centripetal force Centrifugal force	n મોશન) (કો-એફિસિયન્ટ ઑફ ફિક્શન) (સ્ટેટિક) (કાઇનેટિક) (મેક્સિમમ સેફ સ્પિડ) (સેન્ટ્રિપીટલ ફોર્સ) (સેન્ટ્રિક્યુગલ ફોર્સ) (સુડો ફોર્સ)
બળો	forces	ફોર્સિસ)	ચલ દહન	Variable Combustion	(વેરિયેબલ) (કમ્બશન)

પ્રકરણ 6 કાર્ય, ઊર્જા અને પાવર

કાર્ય ઊર્જા કાર્યત્વરા (પાવર) સંખ્યાત્મક સ્થાનાંતર સમક્ષિતિજ ઘટક કેન્દ્રગામી બળ પરિણામી બળ ઘર્ષણબળ ગતિનું સમીકરણ ઘર્ષણાંક	Work Energy Power Quantitative Displacement Horizontal Component Centripetal force Resultant force Frictional force Equation of motion Co-efficient of friction Projection	(વર્ક) (એનર્જી) (પાવર) (ક્વૉન્ટિટેટિવ) (ડિસ્પ્લેસમેન્ટ) (હોરિઝોન્ટલ) (કોમ્પોનન્ટ) (સેન્ટ્રિપીટલ ફોર્સ) (રિઝલ્ટન્ટ ફોર્સ) (ફિક્શનલ ફોર્સ) (ઇક્વેશન ઑફ મોશન) (કો-ઍફિસિયન્ટ ઑફ ફ્રિક્શન) (પ્રોજેક્શન)	સંરચના સંરક્ષી બળ સંદર્ભસપાટી યાદચ્છિક યાંત્રિક-ઊર્જા રેખાખંડ સ્થિતિસ્થાપકતા બળ-અચળાંક વિકલિત વિદ્યુત-ઊર્જા સંઘાત સ્થિતિસ્થાપક	Configuration Conservative force Reference level Arbitrary Mechanical energy Line element Elasticity Force constant Derivative Electric energy Collision Elastic collision	(કન્ફિગ્યુરેશન) (કોન્ઝર્વેટિવ ફોર્સ) (રેફરન્સ લેવલ) (આર્બિટ્રરી) (મિકેનિકલ ઍનર્જી) (લાઇન એલીમેન્ટ) (ઇલાસ્ટિસિટી) (ફોર્સ કોન્સ્ટન્ટ) (ડેરિવેટિવ) (ઇલેક્ટ્રિક ઍનર્જી) (કોલિઝન)
સમક્રમી વિભાજનનો ગુણધર્મ વર્ગમૂળ ચલ બળ એકમ સદિશો વક્રમાર્ગ ખંડ ગતિ-ઊર્જા ક્ષમતા	Commutative Distributive property Square root Variable force Unit vectors Curved path Element Kinetic energy Capacity Potential energy	(કમ્યુટેટિવ) (ડિસ્ટ્રિબ્યુટિવ પ્રોપટી) (સ્ક્વેર રૂટ) (વેરિયેબલ ફોર્સ) (યુનિટ વેક્ટર્સ) (કર્વ્ડ પાથ) (એલીમેન્ટ) (કાઇનેટિક ઍનર્જી) (કેપેસિટી) (પોર્ટેન્શિયલ ઍનર્જી)	સંઘાત આંતરિક ઊર્જા	Inelastic collision Internal energy Chemical energy Heat (or thermal) energy) Mass Equivalence Binding energy Conservation	કોલિઝન) (ઇન્ટર્નલ ઍનર્જી) (કેમિકલ ઍનર્જી)

પ્રકરણ 7 ઉષ્મા-પ્રસરણ

ઉષ્માવહન	Thermal	(થર્મલ કન્ડક્શન)	ઉષ્માનયન	Convection	(કન્વેક્શન)
	conduction		ઉષ્મીય વિકરણ	Thermal radiation	(થર્મલ રેડિયેશન)
સંતુલનસ્થાન	Equilibrium	(ઈક્વિલિબ્રિયમ	શોષકતા	Absorptivity	(એબ્સોર્પ્ટિવિટી)
	position	પોઝિશન)	કુલ ઉત્સર્જન	Total emissive	(ટોટલ એમિસિવ
લંબઘન ચોસલું	Slab	(સ્લેબ)	પાવર	power	પાવર)
તાપમાન પ્રચલન	Temperature	(ટેમ્પરેચર	સ્પેક્ટ્રલ ઉત્સર્જન	Total emissive	(સ્પેક્ટ્રલ
	gradient	ગ્રેડિયન્ટ)	પાવર	power	એમિસિવ પાવર)
ઉષ્માપ્રવાહ	Heat current	(હીટ કરન્ટ)	તરંગલંબાઈ	Wavelength	(વેવલેન્થ)
ઉષ્મવાહકતા	Thermal	(થર્મલ	સપાટી	Surface	(સરફેસ)
	conductivity	કન્ડ્ક્ટિવિટી)	શોષક	Absorber	(એબ્સોર્બર)
ઉષ્મીય રીતે	Thermally isolated		ઉત્સર્જક	Emitter	(એમિટર)
અલગ		આઇસોલેટેડ)	પરાવર્તક	Reflector	(રિફ્લેક્ટર)
સ્થાયી	Steady thermal	(સ્ટેડી થર્મલ સ્ટેટ)			
ઉષ્મા-અવસ્થા	state		સ્થળાંતરનો	Displacement law	(ડિસ્પોસમેન્ટ લો)
ઉષ્મીય અવરોધ	Thermal resistance	e (થર્મલ રેઝિસ્ટન્સ)	નિયમ		
ઉષ્મીય વાહક	Thermal conducto	or (થર્મલ કન્ડકટર)	ઉત્સર્જકતા	Emissivity	(એમિસિવિટી)
ગોળાકાર કવચ	Sqherical shell	(સ્ફ્રેરિકલ શેલ)	વિખેરણ	Dissipation	(ડિસિપેશન)

પ્રકરણ 8 વાયુનો ગતિવાદ

ઉષ્માવહન	Thermal	(થર્મલ કન્ડક્શન)	વાયુ-નિયતાંક	contant	કોન્સટન્ટ)
સ્થૂળ રાશિ	Macroscopic	(મેક્રોસ્કોપિક	એવોગેડ્રો	Avogadro's	(એવોગેડ્રો
	quantitay	ક્વોન્ટિટી)	અધિતક	hypothesis	હાઇપોથેસિસ)
સ્થૂળ વર્શન	Macroscopic	(મેક્રોસ્કોપિક	પરમાણુભાર	Atomic mass	(એટોમિક માસ)
	description	ડિસ્ક્રિપ્શન)	અશુભાર	Molecular mass	(મોલિક્યુલર
સૂક્ષ્મ રાશિ	Microscopic	(માઇક્રોસ્કોપિક			માસ)
	quantity	ક્વોન્ટિટી)	એક-પરમાણુક	Monoatomic	(મોનોએટમિત)
સૂક્ષમ વર્શન	Microscopic	(માઇક્રોસ્કોપિક	દ્ધિ-પરમાણુક	Diatomic	(ડાય એટમિક)
	description	ડિસ્કિપ્શન)	દોલનીય ગતિ	Vibrational motion	ı (વાઇબ્રેશનલ
આદર્શ વાયુ	Ideal gas	(આઇડિયલ ગૅસ)			મોશન)
થર્મોડાઈનેમિક	Thermodynamic	(થરમૉડાઈનેમિક	મુક્તતાન અંશો	Degrees of	(ડિગ્રીઝ ઑફ
ચલ	variable	વેરિયેબલ)		freedom	इ उभ)
વાસ્તવિક વાયુ	Real gas	(રિયલ ગૅસ)	સંઘાત ગોળો	Sphere of collision	ı (સ્કિયર ઓફ
સાર્વત્રિક	Universal gas	(યુનિવર્સલ ગૅસ			કોલિઝન)

પારિભાષિક શબ્દો

(સિમેસ્ટર II)

પ્રકરણ 1 કણોના તંત્રનું ગતિવિજ્ઞાન

કણ	Particle	(પાર્ટિકલ)		acceleration	એક્સલરેશન)
તંત્ર	System	(સિસ્ટમ)	સંરક્ષણનો	Law of	(લો ઓફ
રેખીય વેગમાન	Linear	(લિનિયર	નિયમ	conservation	કોન્ઝર્વેશન)
	momentum	મોમેન્ટમ)	પ્રારંભિક	Initial	(ઇનિશયલ)
મૂળભૂત	Fundamental	(ફ્રન્ડામેન્ટલ)	કાર્ય-ઊર્જા પ્રમેય	Work energy	(વર્ક એનર્જી
સાર્વત્રિક	Universal	(યુનિવર્સલ)		theorem	થીઅરામ
દ્રવ્યમાન કેન્દ્ર	Centre of mass	(સેન્ટર ઓફ	જટિલ અશુઓ	Complex	(કોમ્પલેક્સ
		માસ)		molecules	મોલેક્યુલ્સ
યામપદ્ધતિ	Co-ordinate	(કો-ઓર્ડિનેટ	ટુકડાઓ	Fragments	(ફ્રેગ્મેન્ટ્સ)
	system	સિસ્ટમ)	સમિતિ	Symmetry	(સીમેટ્રી)
સ્થાનસદિશ	Position vector	(પોઝિશન વેક્ટર)	સાપેક્ષ સ્થાન	Relative	(રીલેટિવ
બાહ્યબળ	External force	(એક્સટર્નલ ફોર્સ)		position	પોઝિશન)
આંતરિક બળ	Internal force	(ઇન્ટર્નલ ફોર્સ)	નિયમિત ઘનતા	Uniform density	(યુનિફોર્મ ડેન્સિટી)
પરિણામી	Resultant	(રિઝલ્ટન્ટ)	સમાન આડછેદ	Uniform cross	(યુનિફોર્મ ક્રોસ
અવલંબન	Dependence	(ડીપેન્ડન્સ)		section	સેક્શન)
શિરોબિંદુઓ	Vertices	(વર્ટાઇસીસ)	સૈદ્ધાંતિક રીતે	Theoretically	(થીઅરેટિકલી)
સમબાજુ ત્રિકોણ	Equilaternal	(ઇક્વિલેટરલ	સતત વિતરણ	Continuous	(કન્ટિન્યુઅસ
	triangle	ટ્રાઇન્ગલ)		distribution	ડિસ્ટ્રિબ્યુશન)
રેખીય પ્રવેગ	Linear	(લિનિયર	દળ ખંડ	Mass element	(માસ એલિમેન્ટ)

પ્રકરણ 2 ચાકગતિ

		પ્રકરણ 2	યાકગાત		
દઢ વસ્તુ	Particle	(રિજિડ બોડી)	કાર્યરેખા	Line of	(લાઇન ઑફ
ચાકગતિ	System	(રોટેશનલ મોશન)		action	એકશન
ભ્રમણાક્ષ	Linear	(એક્સિઝ ઑફ	બળયુગ્મ	Couple	(કપલ)
	momentum	રોટેશન)	બળની ચાક-	Moment of	(મોમેન્ટ ઑફ
ભ્રમણ	Rotation	(રોટેશન)	માત્રા	force	ફોર્સ)
કોણીય	Angular	(એંગ્યુલર	રેખીય વેગમાન-	Moment of	(મોમેન્ટ ઑફ
સ્થાનાંતર	displacement	ડિસ્પ્લેસમેન્ટ)	ચાકમાત્રા	linear moment	ફોર્સ)
સંદર્ભ રેખા	Reference line	(રેફ્રરન્સ લાઇન)	જડત્વની	Moment of	(મોમેન્ટ ઑફ
કોણીય ઝડપ	Angular speed	(એંગ્યુલ૨ સ્પીડ)	ચાકમાત્ર	inertia	લનિયરમોમેન્ટમ)
ત્રિજ્યા	Radius	(રેડિયસ)	ક્ષેત્રિય વેગ	Arial velocity	(એરિયલ
ચાપ	Arc	(આર્ક)		·	વેલોસિટી)
ખૂશો (કોશ)	Angle	(એંગલ)	ચક્રાવર્તનની	Radius of	(રેડિયસ ઑફ
સ્પર્શક	Tangent	(2-8-5)	ત્રિજ્યા	gyration	ગાયરેશન)
જમણા હાથના	Right hand	(રાઇટ હેન્ડ	પાતળો સળિયો	Thin rod	(ધિન રોડ)
સ્કૂનો નિયમ	Screw rule	(સ્ક્રૂ રૂલ)	વીંટી	Ring	(રિંગ)
ત્રિજયાવર્તી	Radial	(રેડિયલ)	વર્તુળાકાર તકતી	=	(સરકર્યુલર ડિસ્ક)
સ્પર્શીય	Tangential	(ટેન્જન્શિયલ)	પોલો નળાકાર	Hollow cylinder	(હોલો સિલિન્ડર)
લાક્ષણિકતાઓ	Characteristics	(કેરેક્ટરીસ્ટિક્સ)	નક્કર નળાકાર	Solid cylinder	(સોલિડ સિલિન્ડર)
કોણીય ચલો	Angular	(એંગ્યુલર	પોલો ગોળો	Spherical shell	(સ્ફેરિકલ શેલ)
ລີຂະດີນ ລາວນີ	variables	વેરિયેબલ્સ)	નક્કર ગોળો	Solid sphere	(સોલિડ સ્ફ્રીયર)
રેખીય ચલો	Linear	(લિનિયર વેરિયેબલ્સ	શંકુ	Cone	(કૉન)
	variables	વારવળલ્લ	~~3	Conc	(300)

પ્રકરણ 3 ગુરુત્વાકર્ષણ

			90
પૃથ્વી-કેન્દ્રિય	Geo-centric	(જીઓ સેન્ટ્રિક	
વાદ	theory	થીયરી)	
સૂર્ય-કેન્દ્રિય	Helio-centric	(હિલિયો-સેન્ટ્રિક	
વાદ	theory	થીયરી)	
લંબવૃતીય કક્ષા	Elliptical	(ઇલિપ્ટિકલ	
	orbit	ઓરબિટ)	
લંબવૃત્ત	Ellipse	(ઇલિપ્સ)	
અર્ધ-દીર્ઘ અક્ષ	Semi-major	(સેમિ-મેજર	
	axis	એક્સિસ)	
ક્ષેત્રીય વેગ	Areal velocity	(એરિયલ	
		વેલોસિટી)	
આવર્તકાળ	Time-period	(ટાઈમ-પિરિયડ)	
પરસ્પર ક્રિયાગત	Mutually	(મ્યુચ્યુઅલી	
	interacting	ઇન્ટરએક્ટિંગ)	
ગુરુત્વાકર્ષણ	Gravitation	(ગ્રેવિટેશનલ)	
ગુરુત્વાકર્ષણનો	Universal	(યુનિવર્સલ	
સાર્વત્રિક	constant of	કોન્સ્ટન્ટ ઑફ	
નિયતાંક	gravitation	ગ્રેવિટેશન)	
ગુરુત્વ પ્રવેગ	Gravitational	(ગ્રેવિટેશન	
	acceleration	એક્સેલરેશન)	
	or (acceleration	અથવા	
	due to gravity)	(એક્સેલરેશન ડ્યુ	
		ટુ ગ્રેવિટી)	
			_

ગુરુત્વ બળ	Gravitational force	(ગ્રેવિટેશનલ ફોર્સ)
ગોળાકાર કવચ વળ	Spherical shell Twist	સ્ફ્રેરિકલ શેલ ટ્વિસ્ટ)
ગુરુત્વ સ્થિતિ- માન	Gravitational potential	(ગ્રેવિટેશનલ પોટેન્શ્યલ)
ા પ ગુરુત્વ સ્થિતિ- ઊર્જા	Garavotational	(ગ્રેવિટેશનલ પોટે- ન્શ્યલ એનર્જી)
નિષ્ક્રમણ ઊર્જા	potential energy Escape energy	(એસ્કેમ એનર્જી)
નિષ્ક્રમણ ઝડપ બંધન ઊર્જા	Escape speed Binding energy	(એસ્કેમ સ્પીડ) (બાઇન્ડિંગ
ગુરુત્વતીવ્રતા	Gravitational intensity	એનર્જી) (ગ્રેવિટેશનલ ઇન્ટે- સિટી)
ઉપગ્રહ	Satellite	(સેટેલાઇટ)
ભૂસ્થિર ઉપગ્રહ	Geo-stationary satellite	(જીઓ સ્ટેશનરી સેટેલાઇટ)
વિષુવવૃત્તિય કક્ષ	l Equatorial orbit	(ઇક્વેટોરિયલ ઓરબિટ)
ધ્રુવીય કક્ષા કક્ષીય ગતિ કક્ષીય ઝડપ	Polar orbit Orbital motion Orbital speed	(પોલર ઓરબિટ) (ઓરબિટલમોશન) (ઓરબિટલ ઝડપ)

પ્રકરણ 4 ઘન પદાર્થના ગુણધર્મો

ઘન પદાર્થ	Solid	(સોલિડ)
સ્થિતિસ્થાપકતા	Elasticity	(ઇલોસ્ટિસિટી)
આંતર પરમાણુ	Inter atomic	(ઇન્ટર એટમિક
બળ	force	ફોર્સ)
આંતર અશુબળ	Inter molecular	(ઇન્ટર મોલેક્યુલર
	force	ફોર્સ)
પ્રવાહી	Liquid	(લિક્વિડ)
વાયુ	Gas	(ગૅસ)
પરમાણુ	Atom	(એટમ)
અશુ	Molecule	(મોલેક્યુલ)
સ્ફટીક	Crystal	(ક્રિસ્ટલ)
સ્ફ્ટીકમય પદાર્થ	Crystallive	(ક્સ્ટિલાઇન
	substance	સબસ્ટન્સ)
અસ્ <mark>ફ</mark> ટીકમય	Non-crystalline	(નોન ક્રિસ્ટલાઇન
પદાર્થ	substance	સબસ્ટન્સ)
વિકૃતિ	Strain	(સ્ટ્રેન)
પ્રતિબળ	Stress	(સ્ટ્રેસ)

દબાણ	Pressure	(પ્રેસ૨)
પ્રતાન(સંગત	Longitudinal	(લોઝિટ્યુડિનલ
વિકૃતિ)	strain	સ્ટ્રેન)
કદ વિકૃતિ	Volume strain	(વોલ્યુમ સ્ટ્રેન)
સ્પર્શીય પ્રતિબળ	Shearing stress	(શિયરિંગ સ્ટ્રેસ)
દાબીય પ્રતિબળ	Compressive	(કોમ્પ્રેસિવ
	stress	સ્ટ્રેસ)
કદ પ્રતિબળ	Volume strain	(વોલ્યુમ સ્ટ્રેસ)
આકાર વિકૃતિ	Shearing strain	(શિયરિંગ સ્ટ્રેન)
તન્ય	Ductile	(ડકટાઇલ)
કદ સ્થિતિસ્થા-	Bulk modulus	(બલ્ક મોડ્યુલસ)
પકતા અંક		
આકાર સ્થિતિ-	Shear modulus	(શિયર મોડ્યુલસ)
સ્થાપકતા અંક	(Modulus	(મોડ્યુલસ ઑફ
(દઢતાઅંક)	rigidity)	રિઝિડિટી)
પાર્શ્વિક	Lateral	(લેટરલ)
ઊર્જાઘનતા	Energy density	(એનર્જી ડેન્સિટી)

પારિભાષિક શબ્દો

પ્રકરણ 5 તરલનું મિકેનિક્સ

		NSEST 3 (TEST	पु स्पन्नाराजस		
તરલ	Fluid	(ફ્લુઇડ)	સ્થિર વહન	Steady flow	(સ્ટેડી ફ્લો)
ઘનતા	Density	(ડેન્સિટી)	પૃ <u>ષ</u> ્ઠતાશ	Surface force	(સરફ્રેશ ઇન્સન)
દબનીય	Compressible	(કોમ્પ્રિસિબલ)	સંસક્તી બળ	Cohasive force	(કોહેસિલ ફોર્સ)
અદબન્તીય	Incompressible	(ઇનકોમ્પ્રિસિબલ)	આસક્તી બળ	Adhasive force	(એડહેસિલ ફોર્સ)
તરલસ્તંભ	Fluid column	(ફ્લુઇડ કૉલમ)	અશુક્રિયા અવધી	Range of inter	(રેન્જ ઑફ ઇન્ટર
કદખંડ	Volume element	.લ (વોલ્યુમ એલિમેન્ટ)	અશુક્રિયા ગોળો	molecular force Sphere of molecular action	મોલેક્યુલર ફોર્સ) (સ્ફિયર ઓફ મોલેક્યુલર એક્શન)
ઉત્પ્લાવક્તા	Buoyancy	(બોયન્ટ ફોર્સ)	મુક્ત સપાટી	Free surface	(સરફ્રેશ)
વિસ્થાપિત	Byoyant force	(ડિસ્પલેસ્ડ)	આંતર અણ્	Inter molecular	(ઇન્ટર મોલેક્યુલર
સમધન	Cube	(ક્યુબ)	અંતર	distance	(૩૨૨ નસ.) ડિસ્ટન્સ)
શ્યાનતાબળ	Viscous force	(વિસ્કસ ફોર્સ)	પ્ર પ્ ઠઊર્જા	Surface energy	(સરફેશ એનર્જી)
શ્યાનતા ગુણાંક	Co-efficient	(કો-એફિશિયન્ટ	કાંતીબેગ કાંતીબેગ	Critical velocity	(ક્રિટિકલ
	of viscocity	ઑફ વિસ્કોસિટી)		•	વેલોસિટી)
વેગ પ્રચલન	Velocity	(વેલોસિટી	અંર્તગોળ	Concave	(કોન્ટકવ)
	gradient	ગ્રેડિયન્ટ)	બર્હિગોળ	Conrex	(કોનવેક્ષ)
ટર્મિનલ વેગ	Terminal	(ટર્મિનલ	કેશાકર્ષણ	Capillarity	(કેપિલારિટી)
	velocity	વેલોસિટી)	સંપર્કકોણ	Angle of	(એંગલ ઑફ
વમળયુક્ત વહન	Turbulent flow	(ટરબ્યુલન્ટ		contact	કોન્ટેક્ટ)
		ફ્લો)	વક્રતાત્રિજ્યા	Radius of	(રેડિયસ ઑફ
				curveture	કર્વેચર)
		પ્રકરણ 6 થરમ	ૉડાઇનેમિક્સ 		
વિકિરણ	Radiation	(રેડિએશન)		Freezing/	(ફ્રીઝિંગ

વિકિરણ	Radiation	(રેડિએશન)	ઠારણ	Freezing/	(ફ્રીઝિંગ
પરિસર	Surrounding	(સરાઉન્ડિંગ)		condensation	કંન્ડેશેશન)
વાતાવરણ	Environment	(એનવાયર્નમેન્ટ)	અલગ કરેલું	Isolated	(આઇસોલેટેડ)
યાંત્રિક યામો	Mechanical	` (મિકેનિકલ	રૂપાંતરણની	Heat of Trans-	(હીટ ઑફ
000 00 00	co-ordinates	કો-ઓર્ડિનેટ્સ)	ઉષ્મા	formation	ટ્રાન્સફોર્મેશન)
		```	ગુપ્ત ઉષ્મા	Latent heat	(લેટેન્ટ હીટ)
દઢવસ્તુ	Rigid body	(રિઝિડ બોડી)	તંત્ર	System	(સિસ્ટમ)
વિનિમય	Transfer	(ટ્રાન્સફર)	અવસ્થા	State	(સ્ટેટ)
બાષ્પીકરણ	Vaporization	(વેપરાઇઝેશન)	ઉષ્મા	Heat	(હીટ)
ઉષ્મીય સંકુચન	Termal	(થર્મલ	ઉષ્મા-ઊર્જા	Heat energy	(હીટ એનર્જી)
	contraction	કોન્ટ્રેક્શન)	કાર્ય	Work	(વર્ક)
વિવર્ધન	Magnification	(મેગ્નિફ્રિકેશન)	ઉષ્મીય સંતુલન	Thermal	(થર્મલ
અનિયમિત	Anomalous	(આનોમાલસ)		equilibrium	ઇક્વિલિબ્રિયમ)

238

ભૌતિકવિજ્ઞાન

238					ભાતકાવજ્ઞાન
તાપમાન	Temperature	(ટેમ્પરેચર)	થરમૉડાઇનેમિક	Thermodynamic	(થરમૉડાઇનેમિક
ઉષ્મા-સંવેદી	Thermo-	(થર્મોસેન્સેટીવ	પ્રક્રિયા	process	પ્રોસેસ)
પદાર્થ	sensitive object	ઓબ્જેક્ટ)	સમદાબ પ્રક્રિયા	Isobaric process	(આઇસોબેરિક
નિરપેક્ષ	Absolute	(એબ્સોલ્યુટ			પ્રોસેસ)
તાપમાન	Temperature	ટેમ્પરેચર)	સમકદ પ્રક્રિયા	Isochoric process	(આઇસોકોરિક
ઉત્કલનબિંદુ	Boiling point	(બોઇલિંગ			પ્રોસેસ)
		પૉઇન્ટ)	સમોષ્મી પ્રક્રિયા	Adiabatic process	(એડિયાબેટિક
ઉષ્મીય પ્રસરણ	Thermal	(થર્મલ			પ્રોસેસ)
	expansion	એક્સ્પાન્શન)	સમતાપી પ્રક્રિયા	Isothermal process	s (આઇસોથપ્રોસેસ)
રેખીય પ્રસરણ	Linear expansion	(લિનિયર	ચક્રીય પ્રક્રિયા	Cyclic process	(સાઇક્લિક
		એક્સ્પાન્શન)			પ્રોસેસ)
પરિસીમા	Boundary	(બાઉન્ડ્રી)	પ્રતિવર્તી પ્રક્રિયા	Reversible	(રિવર્સિબલ
સ્થૂળ રાશિ	Macroscopic	(મેક્રોસ્કોપિક		process	પ્રોસેસ)
	quantity	ક્વોન્ટિટી)	અપ્રતિવર્તી	Irrversible	(ઇર્રિવર્સિબલ
સૂક્ષ્મ રાશિ	Microscpic	(માઇક્રોસ્કોપિક	પ્રક્રિયા	process	પ્રોસેસ)
	quantity	ક્વોન્ટિટી)	અસંતુલિત	Inequilibrium	(ઇનઇક્વિલિબ્રિ-
આંતરક્રિયા	Interaction	(ઇન્ટરેક્શન)	અવસ્થા	state	યમ સ્ટેટ)
	Equation of		કાર્યકારી પદાર્થ	Working substance	e(વર્કિંગ સબસ્ટન્સ)
	state		ઠારણ-વ્યવસ્થા	Cooling system or	r (કુલિંગ સિસ્ટમ
-	Scale			sink	ઓર સિંક)
-	Constituent particle	les	ઉષ્માપ્રાપ્તિસ્થાન	Heat source	(હીટ સોર્સ)
-	Internal energy		કાર્યક્ષમતા	Efficiency	(એફિશિયન્સી)
ઉષ્મીય	Thermal	(થર્મલ	પરફોર્મન્સ-	C-oefficient of	(કો-એફિશિયન્ટ
આંતરક્રિયા	interaction	ઇન્ટરેક્શન)	ગુણાંક	performance	ઑફ પરફોર્મન્સ)
યાંત્રિક	Mechanical	(મિકેનિકલ	સમતાપી	Isothermal	(આઇસોથર્મલ
આંતરક્રિયા	interaction	ઇન્ટરેક્શન)	વિસ્તરણ	expansion	એક્સ્પાન્શન)
અવસ્થા વિધેય	State function	(સ્ટેટ ફંક્શન)	સમોષ્મી	Adiabatic	(એડિયાબેટિક
ઉષ્માધારિતા	Heat capacity	(હીટ કૅપેસિટી)	વિસ્તરણ	expansion	એક્સપાન્શન)
વિશિષ્ટ ઉષ્મા	Specific heat	(સ્પેસિફિક હીટ)	સમતાપી	Isthermal	(આઇસોથર્મલ
અચળ કદે-	Specific heat at	(સ્પેસિફિક હીટ	સંકોચન	compression	કોમ્પ્રેશન)
દબાણે વિશિષ્ટ	constant	(એટ કોન્સ્ટન્ટ	સમોષ્મી	Adiabatic	(એડિયાબેટિક
ઉષ્મા	volume/pressure	વોલ્યુમ-પ્રેશન)	સંકોચન	compression	કોમ્પ્રેશન)

પારિભાષિક શબ્દો

પ્રકરણ	7	દોલનો

દોલન	Oscillation	(ઓસ્સિલેશન)	શિરોલંબ	Vertical	(વર્ટિકલ)
આવર્તગતિ	Periodic motion	(પિરિયોડિક	યાંત્રિક-ઊર્જા	Mechanical	(મિકેનિકલ
		મોશન)		energy	એનર્જી)
દોલકગતિ	Oscillatory motion	ı (ઓસ્સિલેટરી	ગતિ-ઊર્જા	Kinetic energy	(કાયનેટિક
		મોશન)			એનર્જી)
દોલક	Oscillator	(ઓસ્સિલેટર)	સ્થિતિ-ઊર્જા	Potential energy	(પોટેન્શિયલ
પ્રસંવાદિ	Harmonic	(હારમોનિક)			એનર્જી)
સરળ	Simple harmonic	(સિમ્પલ હાર્મોનિક	પ્રક્ષેપ	Projection	(પ્રોજેક્શન)
આવર્તગતિ	motion	મોશન)	સંદર્ભક્ર	Reference particle	(રેફરન્સ પાર્ટિકલ)
(સ.આ.દો.)		/// 6.5	સંદર્ભવર્તુળ	Reference circle	(રેફરન્સ સર્કલ)
સમતોલ સ્થિતિ	Equillibrium	(ઇક્વિલિબ્રિયમ	સાદુ લોલક	Simple pendulum	(સિમ્પલ
18111 1 Cal	Position  Mean position	પોઝિશન) (મીન પોઝિશન)	9		પેન્ડ્યુલમ)
મપ્યમાન ાસ્યાત સ્થાનાંતર	Displacement	(ડિસ્પ્લેસમેન્ટ)	અવમંદિત	Damped	(ડેમ્પૂડ
કંપવિસ્તાર કંપવિસ્તાર	Amplitude	(એમ્પ્લિટ્યુડ)	દોલનો	oscillations	ે ઓસ્સિલેશન્સ)
આવર્તકાળ	Periodic time,	(પિરિયોડિક ટાઈમ	અવમંદન	Damping	(ડેમ્પિંગ)
	time period,	ટાઈમ પિરિયડ	અવરોધક બળ	Resistive force	(રેસિસ્ટીવ ફોર્સ-
	period	પિરિયડ)		damping force	ડેમ્પિંગ ફોર્સ)
આવૃત્તિ	Frequency	(ફિક્વન્સી)	અવરોધક	Damping	(ડેમ્પિંગ
કોણીય આવૃત્તિ	Angular	(એંગ્યુલર	ગુણાંક	co-efficient	કો-એફ્રિશિયન્ટ-
	frequency	ફ્રિક્વન્સી)		damping constant	t ડેમ્પિંગ કોન્સ્ટન્ટ)
કળા	Phase	(ફેઝ)	ચરઘાતાકીય	Exponentially	(એક્સ્યોનેન્શિયલી)
કલા-અચળાંક	Phase constant	(ફેઝ કોન્સ્ટન્ટ)	પ્રાકૃતિક	Natural	(નેચરલ
પ્રારંભિક કળા	Initial phase	(ઇનિશિયલ ફ્રેઝ	દોલનો	oscillations	ઓસ્સિમેશન્સ)
	epoch	એપોક)	પ્રશોદિત્ત દોલનો	Forced	(ફોર્સ્ડ
પુનઃસ્થાપક બળ	Restoring force	(રિસ્ટોરિંગ ફોર્સ)	(બળ-પ્રેરિત	oscillation	એસ્સિલેશન્સ)
-	Force constant		દોલનો)		
ાસ્પ્રગ અચળાક વિકલ સમીકરણ	Spring constant	(સ્પ્રિંગ કોન્સ્ટન્ટ) (ડિફરન્શિયલ	અનુનાદ	Resonance	(રેઝોનન્સ)
ાપકલ સમાકરણ		(ાડફરાન્સવલ ઇક્વેશન)	તરલ માધ્યમ	Fluid medium	(ફ્લુઇડ મિડિયમ)
રેખિય સંશોજન	equation Linear combi-	ઇક્વરાન <i>)</i> (સિનિયર	સ્વરકાંટો	Tuning fork	(ટ્યૂનિંગ ફોર્ક)
	nation	(ાસા વર કોમ્બિનેશન)	અનુનાદીય	Resonant	(રેઝોનન્ટ
ગતિપથ	Trejectory	(ટ્રેજેક્ટરી)	આવૃત્તિ	frequency	ફ્રિક્વન્સી)

240 ભૌતિકવિજ્ઞાન

## પ્રકરણ 8 તરંગો

તરંગો	Wave	(વેવ)	રેખીય દળ	Linear mass	(લિનિયર માસ
સ્થિતિસ્થાપક	Elastic medium	(ઇલાસ્ટિક	ઘનતા	denisity	ડેન્સિટી)
માધ્યમ		મિડિયમ)	સંઘનન	Condensation	(કન્ડેન્સેશન)
વિક્ષોભ	Disturbance	(ડિસ્ટર્બન્સ)	વિઘનન	Rarefaction	(રેરફ્રેક્શન)
પ્રસરણ	Propagation	(પ્રોપેગેશન)	પ્રગામી તરંગ	Progressive or	(પ્રોગ્રેસિવ ઓર
તરંગમાળા	Wave train	(વેલ ટ્રેન)		propagating wav	e પ્રોપેગેટિંગ વેવ)
તરંગતીવ્રતા	Wave intensity	(વેવ ઇન્ટેન્સિટી)	કળાઝડપ	Phase speed	(ફ્રેઝ સ્પીડ)
યાંત્રિક તરંગો	Mechanical waves	s (મિકેનિકલ વેવ્ઝ)	સ્થિત-તરંગ	Stationary or	(સ્ટેશનરી ઓર
વિદ્યુત ચુંબકીય	Electromagnetic	(ઇલેક્ટ્રોમેગ્નેટ		standing wave	સ્ટેન્ડિંગ વેવ)
0 0	Waves	વેવ)	સ્પંદબિંદુ	Node	(નોડ)
દ્રવ્ય તરંગો	Matter waves	(મેટર વેવ)	પ્રસ્પંદ બિંદુ	Antinode	(એન્ટિનોડ)
લંબગત તરંગ	Transverse wave	(ટ્રાન્સવર્ઝ વેવ)	મૂળભૂત	Fundamental	(ફન્ડામેન્ટલ
સંગત તરંગ	Longitudinal	 (લોંગિટ્યુડિનલ	આવૃત્તિ	frequency	ફ્રિક્વન્સી)
	wave	वेव)	બંધ નળી ખુલ્લી નળી	Colsed pipe	(ક્લોઝ્ડ પાઇપ)
શુંગ	Crest	્ર (ક્રેસ્ટ)	ખુલ્લા <b>ન</b> ળા તરંગ સ્પંદ	Open pipe Wave pulse	(ઓપન પાઇપ) (વેવ પલ્સ)
ગર્ત	Trough	(३\$)	સ્પંદ	Beat	(લવ વલ્સ) (બીટ)
જડિત આધાર	Rigid support	(રિઝિડ સપોર્ટ)	શ્રોતા	Listner	(લાટ) (લિસનર)
તરંગ ઝડપ	Wave speed	(વેવ સ્પીડ)	ઉદ્ગમ	Source	(સોર્સ)

લોગેરિધમ

[		6	7	V V V V 9	00000	00000	വവവവ	വവവവവ	ນນນນນ	04444	4 4 4 4 4	4 4 4 4	တ
			9	00000	202200	20222	2 2 2 2 2	04444	4 4 4 4 4	4 4 4 4 4	4 4 4 4 4	4 4 4 6	∞
	Difference	6 7	5 5	0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0 <td>7 4 4 4 4</td> <td>2 4 4 4 4 0 0 4 4 4</td> <td>4 4 4 4 4</td> <td>ω ω ω ω ω   4 4 4 4 4   4 4 4 4   4 4 4 4</td> <td>ω ω ω ω ω   4 4 4 4 4</td> <td>4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6</td> <td>00000</td> <td>0000</td> <td>9</td>	7 4 4 4 4	2 4 4 4 4 0 0 4 4 4	4 4 4 4 4	ω ω ω ω ω   4 4 4 4 4   4 4 4 4   4 4 4 4	ω ω ω ω ω   4 4 4 4 4	4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	00000	0000	9
	Diffe	2	4	4 4 4 4 4	4 0 0 0 0	00000	00000	00000	00000	m a a a a	0 0 0 0 0	0 0 0 0	2
	Mean	4	က	ო ო ო ო ო	<u>ოოოო</u>		0 0 0 0 0	0 0 0 0 0	00000	0 0 0 0 0	00000	0000	4
	Σ	2 3	2 2	221122	00000	00000	00000	00000	00000	7			3
		-	-							-0000	00000	0000	-
		6	7474	7551 7627 7701 7774 7846	7917 7987 8055 8122 8189	8254 8319 8382 8445 8506	8567 8627 8686 8745 8802	8859 8915 8971 9025 9079	9133 9186 9238 9289 9340	9390 9440 9489 9538 9586	9633 9680 9727 9773 9818	9863 9908 9952 9996	6
တ													-
Σ		8	7466	7543 7619 7694 7767 7839	7910 7980 8048 8116 8182	8248 8312 8376 8439 8500	8561 8621 8681 8739 8797	8854 8910 8965 9020 9074	9128 9180 9232 9284 9335	9385 9435 9484 9533 9581	9628 9675 9722 9768 9814	9859 9903 9948 9991	8
FI		7	7459	7536 7612 7686 7760 7832	7903 7973 8041 8109 8176	8241 8306 8370 8432 8494	8555 8615 8675 8733 8731	8848 8904 8960 9015	9122 9175 9227 9279 9330	9380 9430 9479 9528 9576	9624 9671 9717 9763 9809	9854 9899 9843 9987	7
~			_										
۷		9	745										_
0		2	7443	7520 7597 7672 7745 7818	7889 7959 8028 8096 8162	8228 8293 8357 8420 8482	8543 8603 8663 8722 8779	8837 8893 8949 9004 9058	9112 9165 9217 9269 9320	9370 9420 9469 9518 9566	9614 9661 9708 9754 9800	9845 9890 9934 9978	2
-1		4	7435	7513 7589 7664 7738 7810	7882 7952 8021 8089 8156	8222 8287 8351 8414 8476	8537 8597 8657 8716 8774	8831 8887 8943 8998 9053	9106 9159 9212 9263 9315	9365 9415 9465 9513 9562	9609 9657 9703 9750 9750	9841 9886 9930 9974	4
ŀ													4
		က	742	7505 7582 7657 7731 7803	7875 7945 8014 8082 8149	8215 8280 8344 8407 8470	8531 8591 8651 8710 8768	8825 8882 8938 8993 9047	9101 9154 9206 9258 9309	9360 9410 9460 9509 9557	9605 9652 9699 9745 9791	9836 9881 9926 9969	3
		2	7419	7497 7574 7649 7723 7769	7868 7938 8007 8075 8142	8209 8274 8338 8401 8463	8525 8585 8645 8704 8762	8820 8876 8932 8987 9042	9096 9149 9201 9253 9304	9355 9405 9455 9504 9552	9600 9647 9694 9741 9786	9832 9877 9921 9965	2
ŀ		_	7412 7	7490 7566 77642 7716 7789 7789									
-		_											Ä
		٥	7404	7482 7559 7634 7709 7782	7853 7924 7993 8062 8129	8195 8261 8325 8388 8451	8513 8573 8633 8692 8751	8808 8865 8921 8976 9031	9085 9138 9191 9243 9294	9345 9395 9445 9494 9542	9590 9638 9685 9731 9777	9823 9868 9912 9956	0
Į			52	56 57 58 59 60	61 62 63 64 65	66 63 69 69 70	72 73 74 75	76 77 78 79 79 80	81 82 83 84 85	86 87 88 89 89 90	91 92 93 94 95	96 98 98 99	
l	_												
l		6 8	37	34 31 29 27 25	22 22 21 20 19	18 17 17 16	<del>2</del> 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	10000	88 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	7 8 92 7 8 93 7 8 93 7 8 94 7 8 94	8 / / /	6 8
l	осе	-							10000	<b>თთთთ</b>	∞ ∞ ∞ ∞ ∞	8 7 7 7	
	ifference	8 2 9	25 29 33 37	23 26 30 34 21 24 28 31 19 23 26 29 18 21 24 27 17 20 22 25	16 18 21 24 15 17 20 22 14 16 19 21 13 16 18 20 13 15 17 19	12 14 16 18 12 14 15 17 11 13 15 17 11 12 14 16 10 12 14 15	0 11 13 15 9 11 12 14 9 9 10 12 13 9 10 12 13 13 13 13 14 13 15 15 15 15 15 15 15 15 15 15 15 15 15	8 9 11 12 8 9 10 11 12 8 9 10 12 12 12 12 12 12 12 12 12 12 12 12 12	7 8 10 11 7 8 9 10 7 8 9 10 7 8 9 10 6 8 9 10	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5 5 6 6 7 7 8 8 8 8 8 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 8 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	5555	6 7 8
	an Difference	2 8	29 33 37	19 23 26 30 34 17 21 24 28 31 16 19 23 26 29 15 18 21 24 27 14 17 20 22 25	13 16 18 21 24 12 15 17 20 22 12 14 16 19 21 11 13 16 18 20 11 13 15 17 19	14 16 18 14 15 17 13 15 17 12 14 16 12 14 15	11 13 15 11 12 14 10 12 13 10 12 13	0 11 12 9 10 11 12 9 10 12 10 10 10 11 11 11 11 11 11 11 11 11 11	8 10 11 8 9 10 8 9 10 8 9 10 8 9 10	V V V V V	7 7 8 8 7 7 8 8 7 7 8 8 7 7 8 8 8 7 8	4 5 6 7 8 4 5 6 7 8 6 7 7 8 6 7 7 7 7 7 7 7 7 7 7 7 7	7 8
Į	Mean Difference	5 6 7 8	25 29 33 37	23 26 30 34 21 24 28 31 19 23 26 29 18 21 24 27 17 20 22 25	16 18 21 24 15 17 20 22 14 16 19 21 13 16 18 20 13 15 17 19	10 12 14 16 18 10 12 14 15 17 9 11 13 15 17 9 10 12 14 16 9 10 12 14 16	8 10 11 13 15 8 9 11 13 14 8 9 11 12 14 7 9 10 12 13 7 9 10 11 13	7 8 10 11 12 7 8 9 11 12 6 8 9 10 12 6 7 9 10 11	6 7 8 10 11 6 7 8 9 10 6 7 8 9 10 6 7 8 9 10 8 9 10 9 10	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 2 4 4 4 0 2 2 2 4 7 7 0 0 2 8 8 8 8 8	3 4 4 5 6 7 8 4 5 6 7 7 8 6 7 7 8 7 7 8 7 7 8 9 9 9 9 9 9 9 9 9 9 9	5 6 7 8
		2 3 4 5 6 7 8	8 12 17 21 25 29 33 37	8 11 15 19 23 26 30 34 7 10 14 17 21 24 28 31 6 10 13 16 19 23 26 29 6 9 12 15 18 21 24 27 6 8 11 14 17 20 22 25	5 8 11 13 16 18 21 24 5 7 10 12 15 17 20 22 5 7 9 12 14 16 19 21 4 7 9 11 13 16 18 20 4 6 8 11 13 15 17 19	4 6 8 10 12 14 16 18 4 6 8 10 12 14 15 17 4 6 7 9 11 13 15 17 4 5 7 9 11 12 14 16 3 5 7 9 10 12 14 15	3 5 7 8 10 11 13 15 3 5 6 8 9 11 13 14 3 5 6 8 9 11 12 14 3 4 6 7 9 10 12 13 4 6 7 9 10 11 13	3 4 6 7 8 10 11 12 3 4 5 7 8 9 11 12 3 4 5 6 8 9 10 12 2 4 5 6 8 9 10 11 5 6 7 9 10 11	5 6 7 8 10 11 5 6 7 8 9 10 5 6 7 8 9 10 5 6 7 8 9 10 8 9 10 8 9 10	4 4 4 4 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	4 5 6 7 8
		1 2 3 4 5 6 7 8	4 8 12 17 21 25 29 33 37	55 4 8 11 15 19 23 26 30 34 56 3 7 10 14 17 21 24 28 31 50 3 6 10 13 16 19 23 26 29 52 3 6 9 12 15 18 21 24 27 54 3 6 8 11 14 17 20 22 25	79 3 5 8 11 13 16 18 21 24 29 2 5 7 10 12 15 17 20 22 55 2 5 7 9 12 14 16 19 21 39 2 4 7 9 11 13 16 18 20 31 2 4 6 8 11 13 15 17 19	38     2     4     6     8     10     12     14     16     18       38     2     4     6     8     10     12     14     15     17       34     2     4     6     7     9     11     13     15     17       52     2     4     5     7     9     11     12     14     16       33     2     3     5     7     9     10     12     14     15	2 3 5 7 8 10 11 13 15 2 3 5 6 8 9 11 13 14 2 3 5 6 8 9 11 12 14 1 3 4 6 7 9 10 12 13 1 3 4 6 7 9 10 12 13	1 3 4 6 7 8 10 11 12 1 3 4 5 7 8 9 11 12 1 3 4 5 6 8 9 10 12 1 3 4 5 6 8 9 10 11 2 4 5 6 7 9 10 11	70 1 2 4 5 6 7 8 10 11 36 1 2 3 5 6 7 8 9 10 39 1 2 3 5 6 7 8 9 10 10 1 2 3 4 5 7 8 9 10 17 1 2 3 4 5 6 8 9 10	22 1 2 3 4 5 6 7 8 9 25 1 2 3 4 5 6 7 8 9 25 1 2 3 4 5 6 7 8 9 25 1 2 3 4 5 6 7 8 9 22 1 2 3 4 5 6 7 8 9 8 1 2 3 4 5 6 7 8 9	1 2 3 3 4 4 4 5 5 6 7 8 8 7 7 8 6 7 8 8 8 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	35 1 2 3 3 4 5 6 7 8 35 1 2 2 3 4 5 6 7 7 16 1 2 2 3 4 5 6 6 7 36 1 2 2 3 4 5 6 6 7 37 1 2 2 3 4 5 6 6 7	3 4 5 6 7 8
		2 3 4 5 6 7 8	0374 4 8 12 17 21 25 29 33 37	0755 4 8 11 15 19 23 26 30 34 1106 3 7 10 14 17 21 24 28 31 1430 3 6 10 13 16 19 23 26 29 1732 3 6 9 12 15 18 21 24 27 2014 3 6 8 11 14 17 20 22 25	2529 2 5 7 10 12 15 17 20 22 2765 2 5 7 9 12 14 16 19 21 28 2 5 7 9 12 14 16 19 21 2989 2 4 7 9 11 13 16 18 20 3201 2 4 6 8 11 13 15 17 19	3598 2 4 6 8 10 12 14 16 18 3598 2 4 6 8 10 12 14 15 17 3784 2 4 6 7 9 11 13 15 17 3962 2 4 5 7 9 11 12 14 16 4133 2 3 5 7 9 10 12 14 15	4298       2       3       5       7       8       10       11       13       15         4456       2       3       5       6       8       9       11       13       14         4609       2       3       5       6       8       9       11       12       14         4757       1       3       4       6       7       9       10       12       13         4900       1       3       4       6       7       9       10       11       13	5038	5670 1 2 4 5 6 7 8 10 11 5786 1 2 3 5 6 7 8 9 10 5899 1 2 3 5 6 7 8 9 10 6010 1 2 3 4 5 7 8 9 10 6117 1 2 3 4 5 6 8 9 10	6222 1 2 3 4 5 6 7 8 9 6325 1 2 3 4 5 6 7 8 9 6425 1 2 3 4 5 6 7 8 9 6522 1 2 3 4 5 6 7 8 9 6618 1 2 3 4 5 6 7 8 9	6712 1 2 3 4 5 6 7 7 8 6803 1 2 3 4 5 5 6 7 8 6893 1 2 3 4 4 5 6 6 7 8 6981 1 2 3 4 4 5 6 7 8 7067 1 2 3 3 4 5 6 7 8	7152 1 2 3 3 4 5 6 7 8 7235 1 2 2 3 4 5 6 7 7 7316 1 2 2 3 4 5 6 6 7 7396 1 2 2 3 4 5 6 6 7	3 4 5 6 7 8
M S		1 2 3 4 5 6 7 8	74 4 8 12 17 21 25 29 33 37	55 4 8 11 15 19 23 26 30 34 56 3 7 10 14 17 21 24 28 31 50 3 6 10 13 16 19 23 26 29 52 3 6 9 12 15 18 21 24 27 54 3 6 8 11 14 17 20 22 25	79 3 5 8 11 13 16 18 21 24 29 2 5 7 10 12 15 17 20 22 55 2 5 7 9 12 14 16 19 21 39 2 4 7 9 11 13 16 18 20 31 2 4 6 8 11 13 15 17 19	38     2     4     6     8     10     12     14     16     18       38     2     4     6     8     10     12     14     15     17       34     2     4     6     7     9     11     13     15     17       52     2     4     5     7     9     11     12     14     16       33     2     3     5     7     9     10     12     14     15	2 3 5 7 8 10 11 13 15 2 3 5 6 8 9 11 13 14 2 3 5 6 8 9 11 12 14 1 3 4 6 7 9 10 12 13 1 3 4 6 7 9 10 12 13	38 1 3 4 6 7 8 10 11 12 72 1 3 4 5 7 8 9 11 12 32 1 3 4 5 6 8 9 10 12 28 1 3 4 5 6 8 9 10 11 51 1 2 4 5 6 7 9 10 11	70 1 2 4 5 6 7 8 10 11 36 1 2 3 5 6 7 8 9 10 39 1 2 3 5 6 7 8 9 10 10 1 2 3 4 5 7 8 9 10 17 1 2 3 4 5 6 8 9 10	22 1 2 3 4 5 6 7 8 9 25 1 2 3 4 5 6 7 8 9 25 1 2 3 4 5 6 7 8 9 25 1 2 3 4 5 6 7 8 9 22 1 2 3 4 5 6 7 8 9 8 1 2 3 4 5 6 7 8 9	1 2 3 3 4 4 4 5 5 6 7 7 8 8 7 7 8 6 7 8 8 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	35 1 2 3 3 4 5 6 7 8 35 1 2 2 3 4 5 6 7 7 16 1 2 2 3 4 5 6 6 7 36 1 2 2 3 4 5 6 6 7 37 1 2 2 3 4 5 6 6 7	3 4 5 6 7 8
		9 1 2 3 4 5 6 7 8	0334 0374 4 8 12 17 21 25 29 33 37	0719 0755 4 8 11 15 19 23 26 30 34 1072 1106 3 7 10 14 17 21 24 28 31 1399 1430 3 6 10 13 16 19 23 26 29 1703 1732 3 6 9 12 15 18 21 24 27 1987 2014 3 6 8 11 14 17 20 22 25	2253 2279 3 5 8 11 13 16 18 21 24 2504 2529 2 5 7 10 12 15 17 20 22 2742 2765 2 5 7 9 12 14 16 19 21 2967 2989 2 4 7 9 11 13 16 18 20 3181 3201 2 4 6 8 11 13 15 17 19	3385 3404 2 4 6 8 10 12 14 16 18 3579 3598 2 4 6 8 10 12 14 15 17 3766 3784 2 4 6 7 9 11 13 15 17 3945 3962 2 4 5 7 9 11 12 14 16 4116 4133 2 3 5 7 9 10 12 14 15	4281 4298 2 3 5 7 8 10 11 13 15 4440 4456 2 3 5 6 8 9 11 13 14 4594 4609 2 3 5 6 8 9 11 12 14 4742 4757 1 3 4 6 7 9 10 12 13 4886 4900 1 3 4 6 7 9 10 11 13	5024 5038 1 3 4 6 7 8 10 11 12 5159 5172 1 3 4 5 7 8 9 11 12 5289 5302 1 3 4 5 6 8 9 10 12 5416 5428 1 3 4 5 6 8 9 10 11 5539 5551 1 2 4 5 6 7 9 10 11	5658 5670 1 2 4 5 6 7 8 10 11 5775 5786 1 2 3 5 6 7 8 9 10 5888 5899 1 2 3 5 6 7 8 9 10 5999 6010 1 2 3 4 5 7 8 9 10 6107 6117 1 2 3 4 5 6 8 9 10	6212 6222 1 2 3 4 5 6 7 8 9 6314 6325 1 2 3 4 5 6 7 8 9 6415 6425 1 2 3 4 5 6 7 8 9 6513 6522 1 2 3 4 5 6 7 8 9 6609 6618 1 2 3 4 5 6 7 8 9	6702 6712 1 2 3 4 5 6 7 7 8 6884 6893 1 2 3 4 4 5 6 7 7 8 6972 6981 1 2 3 4 4 5 6 7 8 7 8 6972 6981 1 2 3 4 4 5 6 7 8 7 7 8 7 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 7 8 7 7 7 8 7 7 7 8 7 7 7 8 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	7143 7152 1 2 3 3 4 5 6 7 8 7226 7235 1 2 2 3 4 5 6 7 7 7308 7316 1 2 2 3 4 5 6 6 7 7388 7396 1 2 2 3 4 5 6 6 7	3 4 5 6 7 8
RITHM		7 8 9 1 2 3 4 5 6 7 8	0294 0334 0374 4 8 12 17 21 25 29 33 37	0682 0719 0755 4 8 11 15 19 23 26 30 34 1038 1072 1106 3 7 10 14 17 21 24 28 31 1367 1399 1430 3 6 10 13 16 19 23 26 29 1673 1703 1732 3 6 9 12 15 18 21 24 27 1959 1987 2014 3 6 8 11 14 17 20 22 25	2227 2253 2279 3 5 8 11 13 16 18 21 24 2480 2504 2529 2 5 7 10 12 15 17 20 22 2718 2742 2765 2 5 7 9 12 14 16 19 21 2945 2967 2989 2 4 7 9 11 13 16 18 20 3160 3181 3201 2 4 6 8 11 13 15 17 19	3365 3385 3404 2 4 6 8 10 12 14 16 18 3560 3579 3598 2 4 6 8 10 12 14 15 17 3747 3766 3784 2 4 6 7 9 11 13 15 17 3927 3945 3962 2 4 5 7 9 11 12 14 16 4099 4116 4133 2 3 5 7 9 10 12 14 15	4265 4281 4298 2 3 5 7 8 10 1113 15 4425 4440 4456 2 3 5 6 8 9 11 13 14 4579 4594 4609 2 3 5 6 8 9 11 12 14 4728 4742 4757 1 3 4 6 7 9 10 12 13 4871 4886 4900 1 3 4 6 7 9 10 11 13	5011 5024 5038 1 3 4 6 7 8 10 11 12 5145 5159 5172 1 3 4 5 7 8 9 11 12 5276 5289 5302 1 3 4 5 6 8 9 10 12 5403 5416 5428 1 3 4 5 6 8 9 10 11 5527 5539 5551 1 2 4 5 6 7 9 10 11	5647 5658 5670 1 2 4 5 6 7 8 10 11 5763 5775 5786 1 2 3 5 6 7 8 9 10 5877 5888 5899 1 2 3 5 6 7 8 9 10 5988 5999 6010 1 2 3 4 5 7 8 9 10 6096 6107 6117 1 2 3 4 5 6 8 9 10	6201 6212 6222 1 2 3 4 5 6 7 8 9 6304 6314 6325 1 2 3 4 5 6 7 8 9 6405 6415 6425 1 2 3 4 5 6 7 8 9 6503 6513 6522 1 2 3 4 5 6 7 8 9 6599 6609 6618 1 2 3 4 5 6 7 8 9	6693 6702 6712 1 2 3 4 5 6 7 7 8 6785 6794 6803 1 2 3 4 5 5 6 7 8 6875 6884 6893 1 2 3 4 4 5 6 7 8 6964 6972 6981 1 2 3 4 4 5 6 7 8 7050 7059 7067 1 2 3 3 4 5 6 7 8	7135 7143 7152 1 2 3 3 4 5 6 7 8 7218 7226 7235 1 2 2 3 4 5 6 7 7 7300 7308 7316 1 2 2 3 4 5 6 6 7 7380 7388 7396 1 2 2 3 4 5 6 6 7	3 4 5 6 7 8
ITHM		6 7 8 9 1 2 3 4 5 6 7 8	0253 0294 0334 0374 4 8 12 17 21 25 29 33 37	0645 0682 0719 0755 4 8 11 15 19 23 26 30 34 1004 1038 1072 1106 3 7 10 14 17 21 24 28 31 1335 1367 1399 1430 3 6 10 13 16 19 23 26 29 1644 1673 1703 1732 3 6 9 12 15 18 21 24 27 1931 1959 1987 2014 3 6 8 11 14 17 20 22 25	2201 2227 2253 2279 3 5 8 11 13 16 18 21 24 2455 2480 2504 2529 2 5 7 10 12 15 17 20 22 2695 2718 2742 2765 2 5 7 9 12 14 16 19 21 2923 2945 2967 2989 2 4 7 9 11 13 16 18 20 3139 3160 3181 3201 2 4 6 8 11 13 15 17 19	3345 3365 3385 3404 2 4 6 8 10 12 14 16 18 3541 3560 3579 3598 2 4 6 8 10 12 14 15 17 3729 3747 3766 3784 2 4 6 7 9 11 13 15 17 3909 3927 3945 3962 2 4 5 7 9 11 12 14 16 4082 4099 4116 4133 2 3 5 7 9 10 12 14 15	4249 4265 4281 4298 2 3 5 7 8 10 1113 15 4409 4425 4440 4456 2 3 5 6 8 9 11 13 14 4564 4579 4594 4609 2 3 5 6 8 9 11 12 14 4713 4728 4742 4757 1 3 4 6 7 9 10 12 13 4857 4871 4886 4900 1 3 4 6 7 9 10 11 13	4997 5011 5024 5038 1 3 4 6 7 8 10 11 12 5263 5263 5276 5289 5302 1 3 4 5 6 8 9 10 12 5391 5403 5416 5428 1 3 4 5 6 8 9 10 11 5514 5527 5539 5551 1 2 4 5 6 7 9 10 11	5635 5647 5658 5670 1 2 4 5 6 7 8 10 11 5752 5763 5775 5786 1 2 3 5 6 7 8 9 10 5866 5877 5888 5899 1 2 3 5 6 7 8 9 10 5977 5988 5999 6010 1 2 3 4 5 7 8 9 10 6085 6096 6107 6117 1 2 3 4 5 6 8 9 10	6191 6201 6212 6222 1 2 3 4 5 6 7 8 9 6294 6304 6314 6325 1 2 3 4 5 6 7 8 9 6395 6405 6415 6425 1 2 3 4 5 6 7 8 9 6493 6503 6513 6522 1 2 3 4 5 6 7 8 9 6590 6599 6609 6618 1 2 3 4 5 6 7 8 9	6684 6693 6702 6712 1 2 3 4 5 6 7 7 8 6776 6785 6794 6803 1 2 3 4 5 5 6 7 8 6866 6875 6884 6893 1 2 3 4 4 5 6 7 8 6955 6964 6972 6981 1 2 3 4 4 5 6 7 8 7042 7050 7059 7067 1 2 3 3 4 5 6 7 8	7126 7135 7143 7152 1 2 3 3 4 5 6 7 8 7210 7218 7226 7235 1 2 2 3 4 5 6 7 7 7292 7300 7308 7316 1 2 2 3 4 5 6 6 7 7 7372 7380 7388 7396 1 2 2 3 4 5 6 6 7	3 4 5 6 7 8
ARITHM		7 8 9 1 2 3 4 5 6 7 8	0212 0253 0294 0334 0374 4 8 12 17 21 25 29 33 37	0607 0645 0682 0719 0755 4 8 11 15 19 23 26 30 34 0969 1004 1038 1072 1106 3 7 10 14 17 21 24 28 31 1303 1335 1367 1399 1430 3 6 10 13 16 19 23 26 29 1614 1644 1673 1703 1732 3 6 9 12 15 18 21 24 27 1903 1931 1959 1987 2014 3 6 8 11 14 17 20 22 25	2175 2201 2227 2253 2279 3 5 8 11 13 16 18 21 24 2430 2455 2480 2504 2529 2 5 7 10 12 15 17 20 22 2672 2695 2718 2742 2765 2 5 7 9 12 14 16 19 21 2900 2923 2945 2967 2989 2 4 7 9 11 13 16 18 20 3118 3139 3160 3181 3201 2 4 6 8 11 13 15 17 19	3224 3345 3365 3386 3404 2 4 6 8 10 12 14 16 18 3522 3541 3560 3579 3598 2 4 6 8 10 12 14 15 17 3711 3729 3747 3766 3784 2 4 6 7 9 11 13 15 17 3892 3909 3927 3945 3962 2 4 5 7 9 11 12 14 16 4065 4082 4099 4116 4133 2 3 5 7 9 10 12 14 15	4232 4249 4265 4281 4298 2 3 5 7 8 10 1113 15 4393 4409 4425 4440 4456 2 3 5 6 8 9 11 13 14 4548 4564 4579 4594 4609 2 3 5 6 8 9 11 12 14 4698 4713 4728 4742 4757 1 3 4 6 7 9 10 12 13 4843 4857 4871 4886 4900 1 3 4 6 7 9 10 11 13	4983 4997 5011 5024 5038 1 3 4 6 7 8 10 11 12 5130 5132 5145 5159 5172 1 3 4 5 7 8 9 11 12 5250 5263 5276 5289 5302 1 3 4 5 6 8 9 10 12 5378 5391 5403 5416 5428 1 3 4 5 6 8 9 10 11 5502 5514 5527 5539 5551 1 2 4 5 6 7 9 10 11	5623 5635 5647 5658 5670 1 2 4 5 6 7 8 10 11 5740 5752 5763 5775 5786 1 2 3 5 6 7 8 9 10 5855 5866 5877 5888 5899 1 2 3 5 6 7 8 9 10 5966 5977 5988 5999 6010 1 2 3 4 5 7 8 9 10 6075 6085 6086 6107 6117 1 2 3 4 5 6 8 9 10	6180 6191 6201 6212 6222 1 2 3 4 5 6 7 8 9 6284 6294 6304 6314 6325 1 2 3 4 5 6 7 8 9 6385 6395 6405 6415 6425 1 2 3 4 5 6 7 8 9 6484 6493 6503 6513 6522 1 2 3 4 5 6 7 8 9 6580 6590 6599 6609 6618 1 2 3 4 5 6 7 8 9	6675 6684 6693 6702 6712 1 2 3 4 5 6 7 7 8 6767 6778 6776 6778 6857 6868 6875 6884 6893 1 2 3 4 4 5 6 7 7 8 6946 6955 6964 6972 6981 1 2 3 4 4 5 6 7 8 7033 7042 7050 7059 7067 1 2 3 3 4 5 6 7 8	7118 7126 7135 7143 7152 1 2 3 3 4 5 6 7 8 7202 7210 7218 7226 7235 1 2 2 3 4 5 6 7 7 7284 7292 7300 7308 7316 1 2 2 3 4 5 6 6 7 7 7364 7372 7380 7388 7396 1 2 2 3 4 5 6 6 7	3 4 5 6 7 8
OGARITHM		6 7 8 9 1 2 3 4 5 6 7 8	0170 0212 0253 0294 0334 0374 4 8 12 17 21 25 29 33 37	0569 0607 0645 0682 0719 0755 4 8 11 15 19 23 26 30 34 0934 0969 1004 1038 1072 1106 3 7 10 14 17 21 24 28 31 1271 1303 1335 1367 1399 1430 3 6 10 13 16 19 23 26 29 1584 1614 1644 1673 1703 1732 3 6 9 12 15 18 21 24 27 1875 1903 1931 1959 1987 2014 3 6 8 11 14 17 20 22 25	2148 2175 2201 2227 2253 2279 3 5 8 11 13 16 18 21 24 2405 2430 2455 2480 2504 2529 2 5 7 10 12 15 17 20 22 2648 2672 2695 2718 2742 2765 2 5 7 9 12 14 16 19 21 2878 2900 2923 2945 2967 2989 2 4 7 9 11 13 16 18 20 3096 3118 3139 3160 3181 3201 2 4 6 8 11 13 15 17 19	3304 3324 3345 3365 3385 3404 2 4 6 8 10 12 14 16 18 3502 3522 3541 3560 3579 3598 2 4 6 8 10 12 14 15 17 3692 3711 3729 3747 3766 3784 2 4 6 7 9 11 13 15 17 3874 3892 3909 3927 3945 3962 2 4 5 7 9 11 12 14 16 4048 4065 4082 4099 4116 4133 2 3 5 7 9 10 12 14 15	4216 4232 4249 4265 4281 4298 2 3 5 7 8 10 1113 15 4378 4393 4409 4425 4440 4456 2 3 5 6 8 9 11 13 14 4533 4548 4564 4579 4594 4609 2 3 5 6 8 9 11 12 14 4683 4698 4713 4728 4742 4757 1 3 4 6 7 9 10 12 13 4829 4843 4857 4871 4886 4900 1 3 4 6 7 9 10 11 13	4969 4983 4997 5011 5024 5038 1 3 4 6 7 8 10 11 12 5105 5119 5132 5145 5159 5172 1 3 4 5 7 8 9 11 12 5237 5250 5263 5276 5289 5302 1 3 4 5 6 8 9 10 12 5366 5378 5391 5403 5416 5428 1 3 4 5 6 8 9 10 11 5490 5502 5514 5527 5539 5551 1 2 4 5 6 7 9 10 11	5611     5623     5635     5647     5658     5670     1     2     4     5     6     7     8     10     11       5729     5740     5752     5763     5775     5786     1     2     3     5     6     7     8     9     10       5843     5855     5866     5877     5888     5899     1     2     3     5     6     7     8     9     10       5955     5966     5977     5988     5999     6010     1     2     3     4     5     7     8     9     10       6064     6075     6076     6107     6117     1     2     3     4     5     6     8     9     10	6770 6180 6191 6201 6212 6222 1 2 3 4 5 6 7 8 9 6274 6284 6294 6304 6314 6325 1 2 3 4 5 6 7 8 9 6375 6385 6395 6405 6415 6425 1 2 3 4 5 6 7 8 9 6474 6484 6493 6503 6513 6522 1 2 3 4 5 6 7 8 9 6571 6580 6590 6699 6618 1 2 3 4 5 6 7 8 9	6665 6675 6684 6693 6702 6712 1 2 3 4 5 6 7 7 8 6758 6767 6776 6785 6794 6803 1 2 3 4 5 5 6 7 8 6848 6857 6866 6875 6884 6893 1 2 3 4 4 5 6 7 8 6937 6946 6955 6964 6972 6981 1 2 3 4 4 5 6 7 8 7024 7033 7042 7050 7059 7067 1 2 3 3 4 5 6 7 8	7110 7118 7126 7135 7143 7152 1 2 3 3 4 5 6 7 8 7193 7202 7210 7218 7226 7235 1 2 2 3 4 5 6 7 7 7275 7284 7292 7300 7308 7316 1 2 2 3 4 5 6 6 7 7 7356 7364 7372 7380 7388 7396 1 2 2 3 4 5 6 6 7	3 4 5 6 7 8
OGARITHM		5 6 7 8 9 1 2 3 4 5 6 7 8	0212 0253 0294 0334 0374 4 8 12 17 21 25 29 33 37	0531 0569 0607 0645 0682 0719 0755 4 8 11 15 19 23 26 30 34 0899 0934 0969 1004 1038 1072 1106 3 7 10 14 17 21 24 28 31 1239 1271 1303 1335 1367 1399 1430 3 6 10 13 16 19 23 26 29 1553 1584 1614 1644 1673 1703 1732 3 6 9 12 15 18 21 24 27 1847 1875 1903 1931 1959 1987 2014 3 6 8 11 14 17 20 22 25	2122         2148         2175         2201         2227         2253         2279         3         5         8         11         13         16         18         21         24           2380         2405         2456         2480         2504         2529         2         5         7         10         12         15         17         20         22           2625         2648         2672         2695         2718         2742         2765         2         5         7         9         12         14         16         19         21           2856         2878         2900         2923         2945         2967         2989         2         4         7         9         11         13         16         18         20           3075         3096         3118         3139         3160         3181         3201         2         4         6         8         11         13         15         17         19	3284 3304 3324 3345 3365 3385 3404 2 4 6 8 10 12 14 16 18 3674 3502 3522 3541 3560 3579 3598 2 4 6 8 10 12 14 15 17 3854 3574 3692 3711 3729 3747 3766 3784 2 4 6 7 9 11 13 15 17 3856 3874 3892 3909 3927 3945 3962 2 4 5 7 9 11 12 14 16 4031 4048 4065 4082 4099 4116 4133 2 3 5 7 9 10 12 14 15	4200 4216 4232 4249 4265 4281 4298 2 3 5 7 8 10 1113 15 4362 4378 4393 4409 4425 4440 4456 2 3 5 6 8 9 11 13 14 4669 4683 4598 4713 4728 4742 4757 1 3 4 6 7 9 10 12 13 4814 4829 4843 4857 4871 4886 4900 1 3 4 6 7 9 10 11 13	4955     4969     4983     4997     5011     5024     5038     1     3     4     6     7     8     10     11     12       5022     5105     5119     5132     5145     5159     5172     1     3     4     5     7     8     9     11     12       5353     5363     5263     5263     5276     5289     5302     1     3     4     5     6     8     9     10     12       5353     5366     5378     5391     5406     5428     1     3     4     5     6     8     9     10     11       5478     5490     5502     5539     5551     1     2     4     5     6     7     9     10     11	5566     5611     5623     5635     5647     5658     5670     1     2     4     5     6     7     8     10     11       5717     5729     5740     5752     5763     5775     5786     1     2     3     5     6     7     8     9     10       5832     5843     5855     5866     5877     5888     5899     1     2     3     5     6     7     8     9     10       5944     5955     5966     5977     5988     5999     6010     1     2     3     4     5     7     8     9     10       6053     6063     6076     6107     6117     1     2     3     4     5     6     8     9     10	6160 6170 6180 6191 6201 6212 6222 1 2 3 4 5 6 7 8 9 6263 6274 6284 6294 6304 6314 6325 1 2 3 4 5 6 7 8 9 6365 6375 6385 6395 6405 6415 6425 1 2 3 4 5 6 7 8 9 6444 6474 6484 6493 6503 6513 6522 1 2 3 4 5 6 7 8 9 6514 6571 6580 6590 6690 6618 1 2 3 4 5 6 7 8 9	6656 6665 6675 6684 6693 6702 6712 1 2 3 4 5 6 7 7 8 6739 6739 6839 6838 6848 6857 6866 6875 6884 6893 1 2 3 4 5 5 6 7 8 6928 6937 6946 6955 6964 6972 6981 1 2 3 4 4 5 6 7 8 7016 7024 7033 7042 7050 7059 7067 1 2 3 3 4 5 6 7 8	7101 7110 7118 7126 7135 7143 7152 1 2 3 3 4 5 6 7 8 7185 7193 7202 7210 7218 7226 7235 1 2 2 3 4 5 6 7 7 7 7267 7275 7284 7292 7300 7308 7316 1 2 2 3 4 5 6 6 7 7 7348 7356 7364 7372 7380 7388 7396 1 2 2 3 4 5 6 6 7	3 4 5 6 7 8
OGARITHM		4 5 6 7 8 9 1 2 3 4 5 6 7 8	0170 0212 0253 0294 0334 0374 4 8 12 17 21 25 29 33 37	0569 0607 0645 0682 0719 0755 4 8 11 15 19 23 26 30 34 0934 0969 1004 1038 1072 1106 3 7 10 14 17 21 24 28 31 1271 1303 1335 1367 1399 1430 3 6 10 13 16 19 23 26 29 1584 1614 1644 1673 1703 1732 3 6 9 12 15 18 21 24 27 1875 1903 1931 1959 1987 2014 3 6 8 11 14 17 20 22 25	2148 2175 2201 2227 2253 2279 3 5 8 11 13 16 18 21 24 2405 2430 2455 2480 2504 2529 2 5 7 10 12 15 17 20 22 2648 2672 2695 2718 2742 2765 2 5 7 9 12 14 16 19 21 2878 2900 2923 2945 2967 2989 2 4 7 9 11 13 16 18 20 3096 3118 3139 3160 3181 3201 2 4 6 8 11 13 15 17 19	3304 3324 3345 3365 3385 3404 2 4 6 8 10 12 14 16 18 3502 3522 3541 3560 3579 3598 2 4 6 8 10 12 14 15 17 3692 3711 3729 3747 3766 3784 2 4 6 7 9 11 13 15 17 3874 3892 3909 3927 3945 3962 2 4 5 7 9 11 12 14 16 4048 4065 4082 4099 4116 4133 2 3 5 7 9 10 12 14 15	4216 4232 4249 4265 4281 4298 2 3 5 7 8 10 1113 15 4378 4393 4409 4425 4440 4456 2 3 5 6 8 9 11 13 14 4533 4548 4564 4579 4594 4609 2 3 5 6 8 9 11 12 14 4683 4698 4713 4728 4742 4757 1 3 4 6 7 9 10 12 13 4829 4843 4857 4871 4886 4900 1 3 4 6 7 9 10 11 13	4969 4983 4997 5011 5024 5038 1 3 4 6 7 8 10 11 12 5105 5119 5132 5145 5159 5172 1 3 4 5 7 8 9 11 12 5237 5250 5263 5276 5289 5302 1 3 4 5 6 8 9 10 12 5366 5378 5391 5403 5416 5428 1 3 4 5 6 8 9 10 11 5490 5502 5514 5527 5539 5551 1 2 4 5 6 7 9 10 11	5611     5623     5635     5647     5658     5670     1     2     4     5     6     7     8     10     11       5729     5740     5752     5763     5775     5786     1     2     3     5     6     7     8     9     10       5843     5855     5866     5877     5888     5899     1     2     3     5     6     7     8     9     10       5955     5966     5977     5988     5999     6010     1     2     3     4     5     7     8     9     10       6064     6075     6076     6107     6117     1     2     3     4     5     6     8     9     10	6770 6180 6191 6201 6212 6222 1 2 3 4 5 6 7 8 9 6274 6284 6294 6304 6314 6325 1 2 3 4 5 6 7 8 9 6375 6385 6395 6405 6415 6425 1 2 3 4 5 6 7 8 9 6474 6484 6493 6503 6513 6522 1 2 3 4 5 6 7 8 9 6571 6580 6590 6699 6618 1 2 3 4 5 6 7 8 9	6665 6675 6684 6693 6702 6712 1 2 3 4 5 6 7 7 8 6758 6767 6776 6785 6794 6803 1 2 3 4 5 5 6 7 8 6848 6857 6866 6875 6884 6893 1 2 3 4 4 5 6 7 8 6937 6946 6955 6964 6972 6981 1 2 3 4 4 5 6 7 8 7024 7033 7042 7050 7059 7067 1 2 3 3 4 5 6 7 8	3 7101 7110 7118 7126 7135 7143 7152 1 2 3 3 4 5 6 7 8 7 185 7185 7193 7202 7210 7218 7226 7235 1 2 2 3 4 5 6 7 7 7 7 185 7275 7284 7292 7300 7308 7316 1 2 2 3 4 5 6 6 7 7 0 7348 7356 7364 7372 7380 7388 7396 1 2 2 3 4 5 6 6 7	3 4 5 6 7 8
OGARITHM		3 4 5 6 7 8 9 1 2 3 4 5 6 7 8	0086 0128 0170 0212 0253 0294 0334 0374 4 8 12 17 21 25 29 33 37	0492 0531 0569 0607 0645 0682 0719 0755 4 8 11 15 19 23 26 30 34 0864 0899 0934 0969 1004 1038 1072 1106 3 7 10 14 17 21 24 28 31 1206 1239 1271 1303 1335 1367 1399 1430 3 6 10 13 16 19 23 26 29 1523 1584 1614 1644 1673 1703 1732 3 6 9 12 15 18 21 24 27 1818 1847 1875 1903 1931 1959 1987 2014 3 6 8 11 14 17 20 22 25	2095     2122     2148     2175     2201     2227     2253     2279     3     5     8     11     13     16     18     21     24       2355     2380     2405     2480     2504     2529     2     5     7     10     12     15     17     20     22       2601     2625     2648     2672     2695     2718     2742     2765     2     5     7     9     12     14     16     19     21       2833     2856     2878     2900     2923     2945     2967     2989     2     4     7     9     11     13     16     18     20       3054     3075     3096     3118     3180     3181     3201     2     4     6     8     11     13     15     17     19	3263 3284 3304 3324 3345 3365 3385 3404 2 4 6 8 10 12 14 16 18 3464 3483 3502 3522 3541 3560 3579 3598 2 4 6 8 10 12 14 15 17 3655 3674 3692 3711 3729 3747 3766 3784 2 4 6 7 9 11 13 15 17 3838 3856 3874 3892 3909 3927 3945 3962 2 4 5 7 9 11 12 14 16 14 14 4031 4048 4065 4082 4099 4116 4133 2 3 5 7 9 10 12 14 15	4183         4200         4216         4285         4286         4286         4286         4286         4286         4286         4286         4286         4286         4286         4286         4486         4486         4486         4486         4486         4486         4486         4486         4486         4579         4594         4609         2         3         5         6         8         9         11113         14           4502         4583         4684         4579         4579         4757         1         3         4         6         7         9         10         12         13           4800         4814         4829         4843         4857         4871         4886         4900         1         3         4         6         7         9         10         11         13	4942         4955         4969         4988         4997         5011         5024         5038         1         3         4         6         7         8         10         11         12           5079         5092         5105         5119         5132         5145         5159         5172         1         3         4         5         7         8         9         11         12           5211         5224         5237         5260         5263         5276         5289         5302         1         3         4         5         6         8         9         10         12           5340         5353         5396         5378         5391         5403         5416         5428         1         3         4         5         6         8         9         10         11           5465         5478         5498         5502         5514         5527         5539         5551         1         2         4         5         6         7         9         10         11	5587     5568     5611     5623     5635     5647     5658     5670     1     2     4     5     6     7     8     10     11       5705     5717     5729     5740     5752     5763     5775     5786     1     2     3     5     6     7     8     9     10       5821     5632     5843     5855     5866     5877     5888     5999     1     2     3     5     6     7     8     9     10       5933     5944     5955     5966     5977     5988     5999     6010     1     2     3     4     5     7     8     9     10       6042     6053     6064     6075     6085     6107     6117     1     2     3     4     5     6     8     9     10	6149 6160 6170 6180 6191 6201 6212 6222 1 2 3 4 5 6 7 8 9 6253 6263 6274 6284 6294 6304 6314 6325 1 2 3 4 5 6 7 8 9 6355 6365 6375 6385 6395 6405 6415 6425 1 2 3 4 5 6 7 8 9 6454 6464 6474 6484 6493 6503 6513 6522 1 2 3 4 5 6 7 8 9 6551 6561 6571 6580 6590 6599 6609 6618 1 2 3 4 5 6 7 8 9	6646 6656 6656 6675 6684 6693 6702 6712 1 2 3 4 5 6 7 7 8 6739 6749 6758 6767 6776 6785 6794 6803 1 2 3 4 5 5 6 7 8 6830 6839 6848 6857 6866 6875 6884 6893 1 2 3 4 4 5 6 7 8 6920 6928 6937 6946 6955 6964 6972 6981 1 2 3 4 4 5 6 7 8 7007 7016 7024 7033 7042 7050 7059 7067 1 2 3 3 4 5 6 7 8	7093 7101 7110 7118 7126 7135 7143 7152 1 2 3 3 4 5 6 7 8 7177 7185 7193 7202 7210 7218 7226 7235 1 2 2 3 4 5 6 7 7 7 7259 7267 7275 7284 7292 7300 7308 7316 1 2 2 3 4 5 6 6 7 7 7340 7348 7356 7364 7372 7380 7388 7396 1 2 2 3 4 5 6 6 7	3 4 5 6 7 8 9 1 2 3 4 5 6 7 8
OGARITHM		2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8	0043 0086 0128 0170 0212 0253 0294 0334 0374 4 8 12 17 21 25 29 33 37	0453 0492 0531 0569 0607 0645 0682 0719 0755 4 8 11 15 19 23 26 30 34 0828 0864 0899 0934 0969 1004 1038 1072 1106 3 7 10 14 17 21 24 28 31 1173 1206 1239 1271 1303 1335 1367 1399 1430 3 6 10 13 16 19 23 26 29 1492 1523 1553 1564 1614 1644 1673 1703 1732 3 6 9 12 15 18 21 24 27 1790 1818 1847 1875 1903 1931 1959 1987 2014 3 6 8 11 14 17 20 22 25	2068         2095         2122         2148         2175         2201         2227         2253         2279         3         5         8         1113         16         18         21         24           2330         2355         2380         2405         2430         2455         2480         2504         2529         2         5         7         10         12         15         17         20         22           2577         2601         2625         2648         2672         2695         2718         2742         2765         2         5         7         9         12         14         16         19         21           2810         2833         2866         2878         2900         2923         2945         2967         2989         2         4         7         9         11         13         16         18         20           3032         3054         3075         308         3118         3139         3160         3181         3201         2         4         6         8         1113         15         17         19	3243 3263 3284 3304 3324 3345 3365 3385 3404 2 4 6 8 10 12 14 16 18 3444 3464 3483 3502 3522 3541 3560 3579 3598 2 4 6 8 10 12 14 15 17 3536 3556 3555 3674 3692 3711 3729 3747 3766 3784 2 4 6 7 9 11 13 15 17 3820 3838 3856 3874 3892 3909 3927 3945 3962 2 4 5 7 9 11 12 14 16 3997 4014 4031 4048 4065 4082 4089 4116 4133 2 3 5 7 9 10 12 14 15	4166         4183         4200         4216         4282         4249         4265         4281         4298         2         3         5         7         8 10         1113         15           4330         4346         4382         4409         4426         4440         4456         2         3         5         6         8         9         1113         14           4487         4502         4518         4564         4579         4594         4609         2         3         5         6         8         9         1112         14           4639         4654         4669         4713         4728         4745         4757         1         3         4         6         7         9         10         12         13           4639         480         481         4857         4871         4886         4900         1         3         4         6         7         9         10         11         13	4928 4942 4955 4969 4983 4997 5011 5024 5038 1 3 4 6 7 8 10 11 12 5065 5079 5092 5105 5119 5132 5145 5159 5172 1 3 4 5 7 8 9 11 12 5198 5211 5224 5237 5250 5263 5276 5289 5302 1 3 4 5 6 8 9 10 12 5328 5340 5353 5366 5378 5391 5403 5416 5428 1 3 4 5 6 8 9 10 11 5453 5465 5478 5490 5502 5514 5527 5539 5551 1 2 4 5 6 7 9 10 11	5575     5587     5568     5611     5623     5635     5647     5658     5670     1     2     4     5     6     7     8     10     11       5694     5705     5717     5729     5740     5752     5763     5775     5786     1     2     3     5     6     7     8     9     10       5809     5821     5822     5845     5866     5877     5888     5999     1     2     3     5     6     7     8     9     10       5922     5933     5944     5955     5966     5977     5988     5999     6010     1     2     3     4     5     7     8     9     10       6031     6031     604     6075     6085     6010     6117     1     2     3     4     5     6     8     9     10	6138 6149 6160 6170 6180 6191 6201 6212 6222 1 2 3 4 5 6 7 8 9 6243 6253 6263 6274 6284 6294 6304 6314 6325 1 2 3 4 5 6 7 8 9 6345 6355 6365 6375 6385 6395 6405 6415 6425 1 2 3 4 5 6 7 8 9 6345 645 6446 6474 6484 6493 6503 6513 6522 1 2 3 4 5 6 7 8 9 6542 6551 6561 6571 6580 6590 6599 6609 6618 1 2 3 4 5 6 7 8 9	6637 6646 6656 6655 6675 677 6778 6792 6712 1 2 3 4 5 6 7 7 8 6730 6739 6739 6739 6749 6855 675 6776 6785 6794 6803 1 2 3 4 5 5 6 7 8 6821 6830 6839 6848 6857 6866 6875 6884 6893 1 2 3 4 4 5 6 7 8 6911 6920 6928 6937 6946 6955 6964 6972 6981 1 2 3 4 4 5 6 7 8 6998 7007 7016 7024 7033 7042 7050 7059 7067 1 2 3 3 4 5 6 7 8	7084 7093 7101 7110 7118 7126 7135 7143 7152 1 2 3 3 4 5 6 7 8 7168 7177 7185 7193 7202 7210 7218 7226 7235 1 2 2 3 4 5 6 7 7 7 7325 7257 7257 7257 7325 7340 7348 7356 7364 7375 7380 7388 7396 1 2 2 3 4 5 6 6 7 7	3 4 5 6 7 8 9 1 2 3 4 5 6 7 8
OGARITHM		1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8	0086 0128 0170 0212 0253 0294 0334 0374 4 8 12 17 21 25 29 33 37	0492 0531 0569 0607 0645 0682 0719 0755 4 8 11 15 19 23 26 30 34 0864 0899 0934 0969 1004 1038 1072 1106 3 7 10 14 17 21 24 28 31 1206 1239 1271 1303 1335 1367 1399 1430 3 6 10 13 16 19 23 26 29 1523 1584 1614 1644 1673 1703 1732 3 6 9 12 15 18 21 24 27 1818 1847 1875 1903 1931 1959 1987 2014 3 6 8 11 14 17 20 22 25	2095         2122         2148         2175         2201         2227         2253         2279         3         5         8         11         13         16         18         21         24           2355         2380         2405         2480         2504         2529         2         5         7         10         12         15         17         20         22           2601         2625         2648         2672         2695         2718         2742         2765         2         5         7         9         12         14         16         19         21           2833         2856         2878         2900         2923         2945         2967         2989         2         4         7         9         11         13         16         18         20           3054         3075         3096         3118         3139         3160         3181         3201         2         4         6         8         11         13         15         17         19	3263 3284 3304 3324 3345 3365 3385 3404 2 4 6 8 10 12 14 16 18 3464 3483 3502 3522 3541 3560 3579 3598 2 4 6 8 10 12 14 15 17 3655 3674 3692 3711 3729 3747 3766 3784 2 4 6 7 9 11 13 15 17 3838 3856 3874 3892 3909 3927 3945 3962 2 4 5 7 9 11 12 14 16 14 14 4031 4048 4065 4082 4099 4116 4133 2 3 5 7 9 10 12 14 15	4183         4200         4216         4285         4286         4286         4286         4286         4286         4286         4286         4286         4286         4286         4286         4486         4486         4486         4486         4486         4486         4486         4486         4486         4579         4594         4609         2         3         5         6         8         9         11113         14           4502         4583         4684         4579         4579         4757         1         3         4         6         7         9         10         12         13           4800         4814         4829         4843         4857         4871         4886         4900         1         3         4         6         7         9         10         11         13	4942         4955         4969         4988         4997         5011         5024         5038         1         3         4         6         7         8         10         11         12           5079         5092         5105         5119         5132         5145         5159         5172         1         3         4         5         7         8         9         11         12           5211         5224         5237         5260         5263         5276         5289         5302         1         3         4         5         6         8         9         10         12           5340         5353         5396         5378         5391         5403         5416         5428         1         3         4         5         6         8         9         10         11           5465         5478         5498         5502         5514         5527         5539         5551         1         2         4         5         6         7         9         10         11	5587     5568     5611     5623     5635     5647     5658     5670     1     2     4     5     6     7     8     10     11       5705     5717     5729     5740     5752     5763     5775     5786     1     2     3     5     6     7     8     9     10       5821     5632     5843     5855     5866     5877     5888     5999     1     2     3     5     6     7     8     9     10       5933     5944     5955     5966     5977     5988     5999     6107     1     2     3     4     5     7     8     9     10       6042     6053     6064     6075     6085     6107     6117     1     2     3     4     5     6     8     9     10	6149 6160 6170 6180 6191 6201 6212 6222 1 2 3 4 5 6 7 8 9 6253 6263 6274 6284 6294 6304 6314 6325 1 2 3 4 5 6 7 8 9 6355 6365 6375 6385 6395 6405 6415 6425 1 2 3 4 5 6 7 8 9 6454 6464 6474 6484 6493 6503 6513 6522 1 2 3 4 5 6 7 8 9 6551 6561 6571 6580 6590 6599 6609 6618 1 2 3 4 5 6 7 8 9	6646 6656 6656 6675 6684 6693 6702 6712 1 2 3 4 5 6 7 7 8 6739 6749 6758 6767 6776 6785 6794 6803 1 2 3 4 5 5 6 7 8 6830 6839 6848 6857 6866 6875 6884 6893 1 2 3 4 4 5 6 7 8 6920 6928 6937 6946 6955 6964 6972 6981 1 2 3 4 4 5 6 7 8 7007 7016 7024 7033 7042 7050 7059 7067 1 2 3 3 4 5 6 7 8	6         7084         7093         7101         7116         7118         7126         7135         7143         7152         1         2         3         4         5         6         7         8           0         7168         7177         7185         7193         7202         7210         7218         7226         7235         1         2         2         3         4         5         6         7         7           3         7251         7259         7284         7292         7300         7308         7316         1         2         2         3         4         5         6         7         7           4         7332         7340         7348         7372         7380         7388         7396         1         2         3         4         5         6         7	1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8

	0		~ ~ ~ ~ ~ ~	$\infty$ $\infty$ $\infty$ $\infty$	00000	00001	<b>###</b>	5 5 5 5 5	<u>4 4 4 5 5</u>	15 16 16 17	71 81 81 61	19 20 20 20	6
	9 ×		55 6 6 6 6 7	7 9 7 9 7 9 7 9 7 9 9 7	7 7 7 8 8 8 7 8 8 8 8 8 8 8 8 8 8 8 8 8	00000	8 10 9 10 9 10 9 10	9 111 0 111 0 112 0 12	11 12 11 12 11 13 11 13	2 2 2 2 2 4 4 4 4 4 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5	3 15 4 15 4 16 4 16 5 17	5 17 5 17 6 18 6 18	7 8
	Difference 5 6 7		טטטטט	0 0 0 0 0	00000	9 / / / /		88800	00000	55111	± 4 4 4 4	1000	9
		4	44444	4 4 4 10 10	ນ ນ ນ ນ ນ	0 0 0 2	9 9 9 6	~ ~ ~ ~ ~ ~	<b>∞ ∞ ∞ ∞ ∞</b>	<b>&amp; o o o o</b>	00000	====	2
	Mean 3	_	00000	ω ω ω ω ω   ω ω 4 4 4	44444	44400	00000	0000	7 6 6 6 7 6 9 7 9 9 9 9 9 9 9 9 9 9 9 9	55 7 7 7 6 7 7 7 9	00000	6 8 7 9 7 9	4
	2 0		00000	00000	00000	000004	00000	00000	00000	00444	4444	4440	2
	-	-							0 0 0 0 0	00000	0 0 0 0 0	0000	-
S	<b>o</b>	3228	3304 3381 3459 3540 3622	3707 3793 3882 3972 4064	4159 4256 4355 4457 4560	4667 4775 4887 5000 5117	5236 5358 5483 5610 5741	5875 6012 6152 6295 6442	6592 6745 6902 7063 7228	7396 7568 7745 7925 8110	8299 8492 8690 8892 9099	9311 9528 9750 9977	6
h m	00	3221	3296 3373 3451 3532 3614	3698 3784 3873 3963 4055	4150 4246 4345 4446 4550	4656 4764 4875 4989 5105	5224 5346 5470 5598 5728	5861 5998 6138 6281 6427	6577 6730 6887 7047 7211	7379 7551 7727 7907 8091	8279 8472 8670 8872 9078	9290 9506 9727 9954	œ
rit	7	3214	3289 3365 3443 3524 3606	3690 3776 3864 3954 4046	4140 4236 4335 4436 4539	4645 4753 4864 4977 5093	5212 5333 5458 5585 5715	5848 5984 6124 6266 6412	6561 6715 6871 7031 7194	7362 7534 7709 7889 8072	8260 8453 8650 8851 9057	9268 9484 9705 9931	7
o g a	9	3206	3281 3357 3436 3516 3597	3681 3767 3855 3945 4036	4130 4227 4325 4426 4529	4634 4742 4853 4966 5082	5200 5321 5445 5572 5702	5834 5970 6109 6252 6397	6546 6699 6855 7015 7178	7345 7516 7691 7870 8054	8241 8433 8630 8831 9036	9247 9462 9683 9908	9
T ;	rc	3199	3273 3350 3428 3508 3589	3673 3758 3846 3936 4027	4121 4217 4315 4416 4519	4624 4732 4842 4955 5070	5188 5309 5433 5559 5689	5821 5957 6095 6237 6383	6531 6683 6839 6998 7161	7328 7499 7674 7852 8035	8222 8414 8610 8810 9016	9226 9441 9661 9886	2
An	4	3192	3266 3342 3420 3499 3581	3664 3750 3837 3926 4018	4111 4207 4305 4406 4508	4613 4721 4831 4943 5058	5176 5297 5420 5546 5675	5808 5943 6081 6223 6368	6516 6668 6823 6982 7145	7311 7482 7656 7834 8017	8204 8395 8590 8790 8995	9204 9419 9638 9863	4
	က	3184	3258 3334 3412 3491 3573	3656 3741 3828 3917 4009	4102 4198 4295 4395 4498	4603 4710 4819 4932 5047	5164 5284 5408 5534 5662	5794 5929 6067 6209 6353	6501 6653 6808 6966 7129	7295 7464 7638 7816 7998	8185 8375 8570 8770 8974	9183 9397 9616 9840	3
	2	3177	3251 3327 3404 3483 3565	3648 3733 3819 3908 3999	4093 4188 4285 4385 4487	4592 4699 4808 4920 5035	5152 5272 5395 5521 5649	5781 5916 6053 6194 6339	6486 6637 6792 6950 7112	7278 7447 7621 7798 7980	8166 8356 8551 8750 8954	9162 9376 9594 9817	2
	-	3170	3243 3319 3396 3475 3556	3639 3724 3811 3899 3990	4083 4178 4276 4375 4477	4581 4688 4797 4909 5023	5140 5260 5383 5508 5636	5768 5902 6039 6180 6324	6471 6622 6776 6934 7096	7261 7430 7603 7780 7962	8147 8337 8531 8730 8933	9141 9354 9572 9795	-
	0	3162	3236 3311 3388 3467 3548	3631 3715 3802 3890 3981	4074 4169 4266 4365 4467	4571 4677 4786 4898 5012	5129 5248 5370 5495 5623	5754 5888 6026 6166 6310	6457 6607 6761 6918 7079	7244 7413 7586 7762 7943	8128 8318 8511 8710 8913	9120 9333 9550 9772	0
		20	51 53 54 55	56 57 58 59 60	62 63 64 65	66 68 69 69 70	12 2 2 4 2 4 5 4 5 4 5 4 5 4 5 5 5 5 5 5	76 77 78 79 80	81 83 84 85	86 88 89 90	91 92 93 94 95	96 97 98 99	
											12 12 12 12 12	10 10 10 10	
	6		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	0 0 0 0 0 0 0 0 0 0 0 0		<pre></pre>		0 0 4 4 4 4 4 4 4 4	4 4 4 4 0 C	4 4 4 th th	00000	0000	6 8
	000	0			0 0 0 0 0								· I
	000	1 2 2	20 20 20 20	0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<ul><li>w w w w w</li><li>w w w w w</li><li>w w 4 4 4</li></ul>	<pre>w w w w w w w w 4 4 4 4 4 4 4</pre>	ω ω ω ω 4 4 4 4 4 4 4 4 4 το το	4 4 4 4 4 C	4 4 4 4	8 2 9
	Difference 5 6 7 8	1 1 2 2	0 0 0 0 0 0 0 0 0 0 0 0	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	0 0 0 0 0 0 0 0 0 0 0 0	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	თ თ თ თ თ თ თ თ თ თ	<pre>w w w w w w w 4 4 4</pre>	ω ω ω 4 4 4 4 4 4 4	4 4 4 4 0 0	4 4 4 4 to	2 2 2 2	7 8
	Difference	1 1 1 2 2	0 0 0 0 0 0 0 0 0 0 0 0	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	<ul><li>\( \text{A} \) \( \text{A} \</li></ul>	0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 4 4 4 4 4	<ul><li>w w w w w</li><li>w w w w w</li><li>4 4 4 4 4</li><li>4 4 4 70 70</li></ul>	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6 6 4 4 4 4 4 4 5 6 6 6 6 6 6 6 6 6 6 6	5 6 7 8
	Mean Difference 2 3 4 5 6 7 8	0 1 1 1 1 2 2	110000					1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 4 4 4 4 4	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 4 4 4 4 4 4 4 4 4	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	4 5 6 7 8
	Mean Difference	1 0 0 1 1 1 1 2 2	00000			000000000000000000000000000000000000000		8 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4 10 8 8 7 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 C C C C C C C C C C C C C C C C C C C	1 2 3 4 5 6 7 8
n S	Mean Difference 2 3 4 5 6 7 8	1021 0 0 1 1 1 1 2 2	1045 0 0 1 1 1 1 2 2 2 1094 0 0 1 1 1 1 2 2 2 1119 0 1 1 1 1 2 2 2 1146 0 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1172 0 1 1 1 1 2 2 2 2 1199 0 1 1 1 1 1 2 2 2 2 1257 0 1 1 1 1 1 2 2 2 2 1256 0 1 1 1 1 1 2 2 2 2 1256 0 1 1 1 1 1 2 2 2 2 1258 0 1 1 1 1 2 2 2 2 1258 0 1 1 1 1 1 2 2 2 2 1258 0 1 1 1 1 1 2 2 2 2 1 1 1 1 1 1 1 1 1 1	1315 0 1 1 1 2 2 2 2 2 1 1346 0 1 1 1 1 2 2 2 2 3 1409 0 1 1 1 1 2 2 2 3 3 1442 0 1 1 1 2 2 2 3 3	1476 0 1 1 1 2 2 2 3 1510 0 1 1 1 2 2 2 3 1510 0 1 1 1 1 2 2 2 3 1510 0 1 1 1 1 2 2 3 3 1510 0 1 1 1 2 2 3 3 3 1618 0 1 1 1 2 2 3 3 3	1656 0 1 1 2 2 2 3 3 3 1734 0 1 1 2 2 2 2 3 3 3 1734 0 1 1 2 2 2 2 3 3 3 1816 0 1 1 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	1858 0 1 1 2 2 3 3 3 3 1991 0 1 1 2 2 2 3 3 4 4 4 2 2 3 3 4 4 4 4 4 4 4 4	2084 0 1 1 1 2 2 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	23339 1 1 1 2 2 2 3 3 4 4 4 2 2564 1 1 2 2 2 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	2624 1 1 2 2 3 4 4 5 2814 1 1 2 2 3 4 4 5 2814 1 1 2 3 3 4 4 5 2817 1 1 2 3 3 4 4 5 5 2877 1 1 2 3 3 4 5 5 5	2944 1 1 2 3 3 4 5 5 3 3 15 5 5 3 3 15 5 1 1 2 3 3 4 5 5 6 6 6 1 1 2 3 4 4 5 6 6 6 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	1 2 3 4 5 6 7 8
t h m	Mean Difference	1019 1021 0 0 1 1 1 1 2 2	1042 1045 0 0 1 1 1 1 2 2 1067 1069 0 0 1 1 1 1 1 2 2 1091 1094 0 0 1 1 1 1 1 2 2 1117 1119 0 1 1 1 1 1 2 2 2 1143 1146 0 1 1 1 1 1 2 2 2	1169 1172 0 1 1 1 1 2 2 2 1 125 129 125 125 125 125 125 125 125 125 125 125	1312 1315 0 1 1 1 2 2 2 2 2 1345 1344 0 1 1 1 2 2 2 2 2 3 1406 1409 0 1 1 1 2 2 2 3 3 1439 1442 0 1 1 1 2 2 2 3	1472 1476 0 1 1 1 2 2 2 3 1507 1510 0 1 1 1 2 2 2 3 1578 1545 0 1 1 1 2 2 2 3 1578 1581 0 1 1 1 2 2 3 3 1614 1618 0 1 1 1 2 2 3 3	1652 1656 0 1 1 2 2 2 3 3 1690 1694 0 1 1 2 2 2 3 3 3 1730 1734 0 1 1 2 2 2 2 3 3 1811 1816 0 1 1 2 2 2 3 3 3	1854 1858 0 1 1 2 2 3 3 3 3 1897 1901 0 1 1 2 2 3 3 3 4 1941 1945 0 1 1 2 2 3 3 4 4 2032 2037 0 1 1 2 2 3 3 4	2080 2084 0 1 1 2 2 3 3 4 4 2 2 2 8 2 2 8 4 4 4 4 4 4 4 4 4 4 4	2333 2339 1 1 2 2 3 3 4 4 4 2438 2393 1 1 2 2 3 3 4 4 4 2449 1 1 2 2 2 3 3 4 4 4 2500 2566 1 1 2 2 3 3 4 5 5 5 5 5 5 5 5 5 6 5 6 6 6 6 6 6 6 6	2618 2624 1 1 2 2 3 4 4 5 2742 2742 2748 1 1 2 3 3 4 4 5 2805 2812 1 1 2 3 3 4 4 5 2871 2817 1 1 2 3 3 4 5 5	2938 2944 1 1 2 3 3 4 5 5 3 3 6 6 9 3 14 8 15 5 1 1 2 3 4 4 5 6 9 3 148 3155 1 1 2 3 4 4 5 6	1 2 3 4 5 6 7 8
h m	Mean Difference 9 1 2 3 4 5 6 7 8	1016 1019 1021 0 0 1 1 1 1 2 2	1040 1042 1045 0 0 1 1 1 1 2 2 1064 1067 1069 0 0 1 1 1 1 1 2 2 1089 1091 1094 0 0 1 1 1 1 1 2 2 1114 1117 1119 0 1 1 1 1 1 2 2 2 1140 1143 1146 0 1 1 1 1 1 2 2 2	1167 1169 1172 0 1 1 1 1 2 2 2 1194 1197 1199 0 1 1 1 1 1 2 2 2 2 122 1225 1225 1225	1309 1312 1315 0 1 1 1 2 2 2 2 2 135 0 1 1 1 1 2 2 2 2 2 137 1374 1377 0 1 1 1 1 2 2 2 3 3 1435 1449 0 1 1 1 2 2 2 3 3 1435 1449 0 1 1 1 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3	1469     1472     1476     0     1     1     2     2     3       1503     1507     1510     0     1     1     2     2     2     3       1538     1545     0     1     1     2     2     3     3       1574     1578     1581     0     1     1     2     2     3     3       1611     1614     1618     0     1     1     2     2     3     3	1648 1652 1656 0 1 1 2 2 2 3 3 1687 1690 1694 0 1 1 2 2 2 2 3 3 1756 1770 1774 0 1 1 2 2 2 2 3 3 1807 1811 1816 0 1 1 2 2 2 2 3 3	1892 1854 1858 0 1 1 2 2 3 3 3 3 1892 1897 1901 0 1 1 2 2 3 3 3 4 1982 1988 1991 0 1 1 2 2 3 3 4 4 2028 2032 2037 0 1 1 2 2 3 3 4 4	2075 2080 2084 0 1 1 2 2 3 3 4 4 2123 2128 2133 0 1 1 2 2 3 3 4 4 2133 2223 2228 2241 1 1 2 2 3 3 4 4 4 2275 2280 2286 1 1 1 2 2 3 3 4 4 4	2328     2333     2339     1     1     2     2     3     3     4     4       2382     2388     2393     1     1     2     2     3     3     4     4       2498     2499     1     1     2     2     3     3     4     4     4       2495     2560     2564     1     1     2     2     3     4     5       2553     2559     2564     1     1     2     2     3     4     5	2612 2618 2624 1 1 2 2 3 4 4 5 2073 2673 2679 2685 1 1 2 2 3 4 4 5 2738 2739 2805 214 1 1 2 3 3 4 4 5 5 2864 2871 2877 1 1 2 3 3 4 5 5	2999 3006 3013 1 1 2 3 3 4 5 5 5 3069 3076 3083 1 1 2 3 3 4 4 5 6 6 3141 3148 3155 1 1 2 3 4 4 5 6	9 1 2 3 4 5 6 7 8
rithm	Mean Difference 1 2 3 4 5 6 7 8	1014 1016 1019 1021 0 0 1 1 1 1 2 2	1038 1040 1042 1045 0 0 1 1 1 1 2 2 1082 1064 1067 1069 0 0 1 1 1 1 2 2 1086 1089 1091 1094 0 0 1 1 1 1 2 2 1112 1114 1117 1119 0 1 1 1 1 2 2 2 1138 1140 1143 1146 0 1 1 1 1 2 2 2	1164 1167 1169 1172 0 1 1 1 1 2 2 2 1191 1191 1194 1197 1199 0 1 1 1 1 1 1 2 2 2 2 129 1225 1225 1225	1306 1309 1312 1315 0 1 1 1 2 2 2 2 2 1337 1344 1377 0 1 1 1 1 2 2 2 2 3 3 1400 1435 1442 0 1 1 1 2 2 2 3 3	1466     1469     1472     1476     0     1     1     2     2     3       1500     1503     1507     1510     0     1     1     2     2     2     3       1535     1534     1545     0     1     1     1     2     2     3       1570     1574     1578     1584     0     1     1     1     2     2     3       1607     1611     1614     1618     0     1     1     2     2     3	1644 1648 1652 1656 0 1 1 2 2 2 3 3 1683 1687 1690 1694 0 1 1 2 2 2 3 3 3 1722 1756 1770 1774 0 1 1 2 2 2 2 3 3 1803 1807 1811 1816 0 1 1 2 2 2 3 3 3	1845     1849     1854     1858     0     1     1     2     2     3     3     3       1888     1892     1897     1901     0     1     1     2     2     3     3     3       1972     1986     1941     1     1     2     2     3     3     4       2023     2028     2032     2037     0     1     1     2     2     3     4	2070 2075 2080 2084 0 1 1 2 2 3 3 4 4 2 18 2123 2128 2133 0 1 1 2 2 3 3 4 4 2 18 2218 2223 2224 1 1 2 2 3 3 4 4 4 4 2 2 2 2 2 3 3 4 4 4 4 4	2323         2328         2333         2339         1         1         2         2         3         3         4         4           2377         2382         2383         2493         1         1         2         2         3         3         4         4           2492         2498         2449         1         1         2         2         3         3         4         4           2492         2495         2500         2506         1         1         2         2         3         3         4         4           2547         2553         2559         2564         1         1         2         2         3         4         5	2606 2612 2618 2624 1 1 2 2 3 4 4 5 2 267 2672 2673 2679 2685 1 1 2 2 3 4 4 5 2 2729 2735 2749 1 1 2 3 3 4 4 5 2 2 2 2 3 4 4 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2924 2931 2938 2944 1 1 2 3 3 4 5 5 2 2 2 2 2 2 3 3 0 0 3 0 1 1 1 2 3 3 4 5 5 3 0 0 2 3 0 0 0 3 0 1 1 1 2 3 4 4 5 6 3 1 3 1 3 1 1 1 2 3 4 4 5 6	8 9 1 2 3 4 5 6 7 8
tilogarithm	Mean Difference 7 8 9 1 2 3 4 5 6 7 8	1012 1014 1016 1019 1021 0 0 1 1 1 1 2 2	1035     1038     1040     1042     1045     0     0     1     1     1     2     2       1059     1062     1064     1067     1069     0     0     1     1     1     2     2       1084     1086     1081     1094     0     0     1     1     1     2     2       1109     1112     1114     1117     1119     0     1     1     1     2     2       1135     1136     1140     1143     1146     0     1     1     1     2     2	1161     1164     1167     1169     1172     0     1     1     1     2     2       1189     1191     1194     1197     1199     0     1     1     1     2     2       1216     1219     1222     1225     1     1     1     2     2       1246     1247     1250     1253     1256     0     1     1     1     2     2       1274     1276     1282     1285     0     1     1     1     2     2	1303     1306     1309     1312     1315     0     1     1     2     2     2     2       1334     1337     1340     1343     1346     0     1     1     2     2     2     2       1366     136     1377     0     1     1     1     2     2     3       1429     1432     1442     0     1     1     1     2     2     3	1462     1466     1469     1472     1476     0     1     1     2     2     3       1496     1500     1503     1507     1510     0     1     1     2     2     2     3       1531     1536     1538     1542     0     1     1     1     2     2     3       1607     1570     1574     1578     1581     0     1     1     2     2     3       1603     1607     1611     1614     1618     0     1     1     2     2     3     3	1641         1644         1648         1652         1656         0         1         1         2         2         3         3           1679         1683         1687         1690         1694         0         1         1         2         2         2         3         3           1718         1722         1726         1734         0         1         1         2         2         2         3         3           1789         1803         1807         1811         1816         0         1         1         2         2         2         3         3	1841     1845     1849     1854     1858     0     1     1     2     2     3     3     3       1984     1888     1892     1897     1901     0     1     1     2     2     3     3     3       1928     1932     1935     1941     1     1     2     2     3     3     4       1972     1977     1986     1991     0     1     1     2     2     3     4       2018     2023     2028     2037     0     1     1     2     2     3     4	2065         2070         2075         2080         2084         0         1         1         2         3         3         4           2113         2118         2123         2128         2133         0         1         1         2         2         3         3         4           2163         2168         2178         2183         0         1         1         2         2         3         3         4           213         2218         2228         2228         2234         1         1         2         2         3         3         4         4           2265         2270         2275         2280         2286         1         1         2         2         3         3         4         4	2317         2323         2328         2333         2339         1         1         2         3         3         4         4           2371         2377         2382         2388         2393         1         1         2         3         3         4         4           2427         2432         2443         2449         1         1         2         2         3         3         4         4           483         2483         2496         2500         2506         1         1         2         2         3         3         4         4           2541         2547         2553         2559         2564         1         1         2         2         3         4         5	2600         2606         2612         2618         2624         1         1         2         3         4         4         5           2661         2667         2673         2679         2685         1         1         2         3         4         4         5           2723         2729         2736         2748         1         1         2         3         3         4         4         5           2783         2799         2805         2811         1         1         2         3         3         4         4         5           2851         2856         2867         2871         2877         1         1         2         3         3         4         5         5	2917 2924 2931 2938 2944 1 1 2 3 3 4 5 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	7 8 9 1 2 3 4 5 6 7 8
ilogarithm	Mean Difference	99 1012 1014 1016 1019 1021 0 0 1 1 1 1 2 2	1033     1035     1036     1040     1042     1045     0     0     1     1     1     2     2       1057     1059     1062     1064     1067     1069     0     0     1     1     1     2     2       1081     1084     1086     1089     1091     1094     0     0     1     1     1     2     2       1107     1109     1112     1114     1117     1119     0     1     1     1     2     2       1132     1135     1136     1140     1143     1146     0     1     1     1     2     2	1159     1161     1164     1167     1169     1172     0     1     1     1     2     2       1186     1189     1191     1194     1197     1199     0     1     1     1     2     2       1121     1219     1222     1225     1225     1     1     1     2     2       1242     1245     1245     1250     1253     1256     0     1     1     1     2     2       1271     1274     1276     1282     1286     0     1     1     1     2     2	1300     1303     1306     130     1312     1315     0     1     1     2     2     2     2       1330     1334     1337     1340     1343     1346     0     1     1     2     2     2     2       1361     1366     1368     1377     0     1     1     1     2     2     3       1393     1396     1400     1403     1404     1442     0     1     1     2     2     3       1426     1429     1432     1432     1442     0     1     1     2     2     3	1459     1462     1466     1469     1472     1476     0     1     1     2     2     3       1493     1496     1500     1503     1507     1510     0     1     1     2     2     2     3       1528     1531     1536     1545     0     1     1     2     2     3       1563     1570     1574     1578     1581     0     1     1     2     2     3       1600     1603     1607     1611     1614     1618     0     1     1     2     2     3	1637     1641     1644     1648     1652     1656     0     1     1     2     2     3     3       1675     1679     1683     1687     1690     1694     0     1     1     2     2     2     3     3       1744     1718     1722     1726     1730     1774     0     1     1     2     2     2     3     3       1754     1781     1803     1807     1811     1816     0     1     1     2     2     2     3     3	1837     1841     1845     1849     1854     1858     0     1     1     2     2     3     3     3       1879     1884     1888     1892     1897     1901     0     1     1     2     2     3     3     3       1923     1928     1936     1941     1945     0     1     1     2     2     3     3     4       204     2023     2028     2032     2037     0     1     1     2     2     3     4	2061         2065         2070         2075         2080         2084         0         1         1         2         3         3         4           2109         2113         2118         2123         2128         2133         0         1         1         2         2         3         4           2158         2168         2178         2178         2183         0         1         1         2         2         3         4           2209         2213         2218         2228         2228         2234         1         1         2         2         3         4         4           2509         2265         2270         2275         2280         2286         1         1         2         2         3         4         4	2312     2317     2323     2328     2333     2339     1     1     2     2     3     3     4     4       2366     2371     2377     2382     238     2393     1     1     2     2     3     3     4     4       2471     2482     2482     2483     2449     1     1     2     2     3     3     4     4       2477     2483     2489     2500     2506     2506     1     1     2     2     3     4     5       253     2541     2547     2547     2567     2564     1     1     2     2     3     4     5	2594 2600 2606 2612 2618 2624 1 1 2 2 3 4 4 5 2655 2661 2667 2673 2679 2685 1 1 2 2 3 4 4 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2911 2917 2924 2931 2938 2944 1 1 2 3 3 4 5 5 2 9 2 2999 3006 3013 1 1 2 3 3 4 5 5 3 0 4 8 3055 3062 3069 3076 3083 1 1 2 3 4 4 5 6 3 119 3126 3133 3141 3148 3155 1 1 2 3 4 4 5 6	6 7 8 9 1 2 3 4 5 6 7 8
ntilogarithm	Mean Difference 5 6 7 8 9 1 2 3 4 5 6 7 8	1007 1009 1012 1014 1016 1019 1021 0 0 1 1 1 1 2 2	1030         1033         1035         1036         1040         1042         1045         0         1         1         1         2         2           1054         1057         1069         1062         1064         1067         1069         0         1         1         1         2         2           1079         1081         1084         1091         1094         0         1         1         1         2         2           1104         1107         1109         1112         1114         1117         1119         0         1         1         1         2         2           1130         1132         1136         1138         1140         1143         1146         0         1         1         1         2         2	1156     1159     1161     1164     1167     1169     1172     0     1     1     1     2     2       1183     1186     1189     1191     1194     1197     1199     0     1     1     1     2     2       1211     1219     1222     1225     1227     0     1     1     1     2     2       1239     1244     1245     1247     1250     1253     1256     0     1     1     1     2     2       1268     1271     1274     1276     1282     1285     0     1     1     1     2     2	1297         1300         1303         1306         1309         1312         1315         0         1         1         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         3         3         3         3         3         3         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4	1455     1459     1462     1466     1469     1472     1476     0     1     1     2     2     3       1489     1493     1496     1500     1503     1507     1510     0     1     1     2     2     2     3       1524     1528     1536     1538     1545     0     1     1     1     2     2     3       1560     1563     1567     1578     1578     1584     0     1     1     2     2     3       1596     1600     1603     1607     1611     1614     1618     0     1     1     2     2     3     3	1633         1637         1641         1644         1648         1652         1656         0         1         1         2         2         2         3         3           1671         1675         1679         1683         1687         1690         1694         0         1         1         2         2         3         3           1770         1744         1748         1722         1726         1730         1734         0         1         1         2         2         2         3         3           1750         1754         1880         1807         1811         1816         0         1         1         2         2         2         3         3	1832     1837     1841     1845     1849     1854     1858     1 1     2     2     3     3       1875     1879     1884     1888     1892     1897     1901     0     1     1     2     2     3     3       1919     1923     1928     1936     1945     0     1     1     2     2     3     3     4       1963     1972     1977     1986     1991     0     1     1     2     2     3     4       2009     2014     2018     2023     2025     2037     0     1     1     2     2     3     4	2056         2061         2065         2070         2075         2080         2084         0         1         1         2         3         3         4           2104         2109         2113         2118         2123         2128         2133         0         1         1         2         2         3         4           2163         2168         2173         2178         2183         0         1         1         2         2         3         4           2203         2208         2213         2218         2228         2228         2228         1         1         2         2         3         4         4           2554         2259         2265         2270         2275         2280         2286         1         1         2         2         3         4         4	2307         2312         2317         2323         2328         2333         2339         1         1         2         3         3         4         4           2360         2366         2371         2377         2382         2388         2393         1         1         2         2         3         4         4           2415         2421         2421         2432         2448         2449         1         1         2         3         3         4         4           2477         2477         2488         2489         2495         2500         2506         1         1         2         3         3         4         5           2529         2536         2547         2547         2553         2559         2564         1         1         2         2         3         4         5	2588 2594 2600 2606 2612 2618 2624 1 1 2 2 3 4 4 5 249 2655 2661 2667 2673 2679 2685 1 1 2 2 3 4 4 5 2710 2710 2728 2799 2795 2795 2795 2795 2795 2795 2795	2904 2911 2917 2924 2931 2938 2944 1 1 2 3 3 4 5 5 2972 2979 2985 2999 3006 3013 1 1 2 3 3 4 5 5 3041 3048 3055 3062 3069 3076 3083 1 1 2 3 4 4 5 6 3112 3119 3126 3133 3141 3148 3155 1 1 2 3 4 4 5 6	5 6 7 8 9 1 2 3 4 5 6 7 8
ntilogarithm	4 5 6 7 8 9 1 2 3 4 5 6 7 8	1005 1007 1009 1012 1014 1016 1019 1021 0 0 1 1 1 1 2 2	1028         1030         1033         1035         1036         1040         1042         1045         105         1         1         1         2         2           1052         1054         1057         1059         1062         1064         1067         1069         0         1         1         1         2         2           1076         1079         1081         1086         1089         1091         1094         0         1         1         1         2         2           1102         1104         1107         1109         1112         1114         1117         1119         0         1         1         1         2         2           1127         1130         1132         1136         1149         1143         1146         0         1         1         1         2         2	1153     1156     1159     1161     1164     1167     1169     1172     0     1     1     1     2     2       1180     1183     1186     1189     1191     1194     1197     1199     0     1     1     1     2     2       1280     1211     1219     1222     1225     1225     1227     0     1     1     1     2     2       1236     1239     1245     1245     1247     1250     1253     1256     0     1     1     1     2     2       1265     1268     1271     1274     1276     1279     1282     1285     0     1     1     1     2     2	1294         1297         1300         1303         1306         1309         1312         1315         0         1         1         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         3         3         135         137         10         1         1         2         2         2         3         3         3         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4 <td< td=""><td>1452     1455     1459     1462     1466     1469     1472     1476     0     1     1     2     2     3       1486     1489     1493     1496     1500     1503     1507     1540     0     1     1     2     2     2     3       1556     1560     1560     1574     1578     1584     0     1     1     2     2     3       1556     1560     1567     1579     1578     1584     0     1     1     2     2     3       1559     1560     1660     1660     1660     1660     1660     1660     1661     1661     1661     1661     1661     1661     1661     1661     1661     1661     1661     1661     1661     1661     1661     1661     1661     1661     1661     1661     1661     1661     1661     1661     1661     1661     1661     1661     1661     1661     1661     1661     1661     1661     1661     1661     1661     1661     1661     1661     1661     1661     1661     1661     1661     1661     1661     1661     1661     1661     1661     1661     1661</td><td>1629         1633         1637         1641         1644         1648         1652         1656         0         1         1         2         2         3         3           1667         1671         1675         1679         1683         1687         1690         1694         0         1         1         2         2         3         3           1706         1701         1714         1718         1726         1734         0         1         1         2         2         3         3           1746         1750         1754         1758         1762         1760         1         1         2         2         3         3           1786         1791         1803         1807         1811         1816         0         1         1         2         2         3         3</td><td>1828         1832         1837         1841         1845         1849         1854         1858         0         1         1         2         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         4         1         1         2         2         3         3         4         1         1         1         2         2         3         3         4         1         1         1         2         2         3         3         4         1         1         2         2         3         3         4         1         1         2         2         3         3         4         1         3         3         4         1         3         4         4         3         4         4         3         4         4         3         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4<td>2051         2056         2061         2065         2070         2075         2080         2084         0         1         1         2         3         3         4           2099         2104         2109         2113         2118         2123         2128         2133         0         1         1         2         2         3         4           2108         2168         2168         2173         2178         2183         0         1         1         2         2         3         4           2198         2208         2213         2218         2228         2228         2234         1         1         2         2         3         4         4           2198         2208         2216         2216         2276         2278         2284         1         1         2         2         3         4         4           2198         2269         2266         2270         2275         2286         1         1         2         2         3         4         4</td><td>2301         2307         2312         2317         2323         2333         2339         1         1         2         3         3         4         4           2355         2360         2366         2371         2377         2382         2383         1         1         2         2         3         4         4           240         2415         2421         2432         2438         2443         2449         1         1         2         3         3         4         4           2466         2477         2488         2489         2496         2500         2506         1         1         2         3         3         4         5           2523         2529         2536         2541         2553         2559         2564         1         1         2         2         3         4         5</td><td>2582         2588         2594         2600         2606         2612         2618         2624         1         1         2         3         4         5           2642         2649         2655         2661         2667         2673         2679         2685         1         1         2         3         4         4         5           2704         2716         2716         2729         2735         2742         2748         1         1         2         3         3         4         4         5           2767         2773         2786         2786         2789         2789         2885         2812         1         1         2         3         4         4         5           2831         2838         2844         2851         2865         2867         2877         1         1         2         3         4         5         5</td><td>2897 2904 2911 2917 2924 2931 2938 2944 1 1 2 3 3 4 5 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2</td><td>2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8</td></td></td<>	1452     1455     1459     1462     1466     1469     1472     1476     0     1     1     2     2     3       1486     1489     1493     1496     1500     1503     1507     1540     0     1     1     2     2     2     3       1556     1560     1560     1574     1578     1584     0     1     1     2     2     3       1556     1560     1567     1579     1578     1584     0     1     1     2     2     3       1559     1560     1660     1660     1660     1660     1660     1660     1661     1661     1661     1661     1661     1661     1661     1661     1661     1661     1661     1661     1661     1661     1661     1661     1661     1661     1661     1661     1661     1661     1661     1661     1661     1661     1661     1661     1661     1661     1661     1661     1661     1661     1661     1661     1661     1661     1661     1661     1661     1661     1661     1661     1661     1661     1661     1661     1661     1661     1661     1661     1661	1629         1633         1637         1641         1644         1648         1652         1656         0         1         1         2         2         3         3           1667         1671         1675         1679         1683         1687         1690         1694         0         1         1         2         2         3         3           1706         1701         1714         1718         1726         1734         0         1         1         2         2         3         3           1746         1750         1754         1758         1762         1760         1         1         2         2         3         3           1786         1791         1803         1807         1811         1816         0         1         1         2         2         3         3	1828         1832         1837         1841         1845         1849         1854         1858         0         1         1         2         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         4         1         1         2         2         3         3         4         1         1         1         2         2         3         3         4         1         1         1         2         2         3         3         4         1         1         2         2         3         3         4         1         1         2         2         3         3         4         1         3         3         4         1         3         4         4         3         4         4         3         4         4         3         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4 <td>2051         2056         2061         2065         2070         2075         2080         2084         0         1         1         2         3         3         4           2099         2104         2109         2113         2118         2123         2128         2133         0         1         1         2         2         3         4           2108         2168         2168         2173         2178         2183         0         1         1         2         2         3         4           2198         2208         2213         2218         2228         2228         2234         1         1         2         2         3         4         4           2198         2208         2216         2216         2276         2278         2284         1         1         2         2         3         4         4           2198         2269         2266         2270         2275         2286         1         1         2         2         3         4         4</td> <td>2301         2307         2312         2317         2323         2333         2339         1         1         2         3         3         4         4           2355         2360         2366         2371         2377         2382         2383         1         1         2         2         3         4         4           240         2415         2421         2432         2438         2443         2449         1         1         2         3         3         4         4           2466         2477         2488         2489         2496         2500         2506         1         1         2         3         3         4         5           2523         2529         2536         2541         2553         2559         2564         1         1         2         2         3         4         5</td> <td>2582         2588         2594         2600         2606         2612         2618         2624         1         1         2         3         4         5           2642         2649         2655         2661         2667         2673         2679         2685         1         1         2         3         4         4         5           2704         2716         2716         2729         2735         2742         2748         1         1         2         3         3         4         4         5           2767         2773         2786         2786         2789         2789         2885         2812         1         1         2         3         4         4         5           2831         2838         2844         2851         2865         2867         2877         1         1         2         3         4         5         5</td> <td>2897 2904 2911 2917 2924 2931 2938 2944 1 1 2 3 3 4 5 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2</td> <td>2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8</td>	2051         2056         2061         2065         2070         2075         2080         2084         0         1         1         2         3         3         4           2099         2104         2109         2113         2118         2123         2128         2133         0         1         1         2         2         3         4           2108         2168         2168         2173         2178         2183         0         1         1         2         2         3         4           2198         2208         2213         2218         2228         2228         2234         1         1         2         2         3         4         4           2198         2208         2216         2216         2276         2278         2284         1         1         2         2         3         4         4           2198         2269         2266         2270         2275         2286         1         1         2         2         3         4         4	2301         2307         2312         2317         2323         2333         2339         1         1         2         3         3         4         4           2355         2360         2366         2371         2377         2382         2383         1         1         2         2         3         4         4           240         2415         2421         2432         2438         2443         2449         1         1         2         3         3         4         4           2466         2477         2488         2489         2496         2500         2506         1         1         2         3         3         4         5           2523         2529         2536         2541         2553         2559         2564         1         1         2         2         3         4         5	2582         2588         2594         2600         2606         2612         2618         2624         1         1         2         3         4         5           2642         2649         2655         2661         2667         2673         2679         2685         1         1         2         3         4         4         5           2704         2716         2716         2729         2735         2742         2748         1         1         2         3         3         4         4         5           2767         2773         2786         2786         2789         2789         2885         2812         1         1         2         3         4         4         5           2831         2838         2844         2851         2865         2867         2877         1         1         2         3         4         5         5	2897 2904 2911 2917 2924 2931 2938 2944 1 1 2 3 3 4 5 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8
ntilogarithm	3 4 5 6 7 8 9 1 2 3 4 5 6 7 8	1002 1005 1007 1009 1012 1014 1016 1019 1021 0 0 1 1 1 1 2 2	1026         1028         1030         1033         1035         1038         1040         1042         1045         0         1         1         1         2         2           1050         1052         1054         1057         1059         1062         1064         1067         1069         0         1         1         1         2         2           1074         1076         1079         1081         1084         1086         1089         1091         1094         0         1         1         1         2         2           1099         1102         1107         1109         1112         1114         1117         1119         0         1         1         1         2         2           1125         1127         1130         1132         1138         1140         1143         1146         0         1         1         1         2         2	1151         1153         1156         1159         1161         1164         1167         1169         1172         0         1         1         1         2         2         2           1178         1180         1183         1186         1189         1191         1194         1197         1199         0         1         1         1         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2	1291         1294         1297         1300         1303         1306         1309         1312         1315         0         1         1         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         3         3         13         13         13         1         1         1         2         2         2         3         3         13         1         1         1         2         2         3         3         1         1         1         2         2         2         3         3         1         1         1         2         2         3         3         1         1         1         2         2         3         3         3         1         1         1         2         2         3         3         3         1         1         1         2         2         3         3         <	1449         1452         1455         1459         1462         1469         1472         1476         0         1         1         2         2         3           1483         1486         1489         1496         1500         1503         1507         1510         0         1         1         2         2         2         3           157         1521         1524         1528         1531         1538         1545         0         1         1         2         2         3           1552         1566         1560         1567         1570         1578         1578         1581         0         1         1         2         2         3           1289         1592         1560         1600         1603         1607         1611         1614         1618         0         1         1         2         2         3         3	1626         1629         1633         1647         1644         1648         1652         1656         0         1         1         2         2         3         3           1663         1667         1671         1675         1679         1683         1687         1690         1         1         2         2         3         3           1702         1706         1701         1744         1718         1722         1756         1734         0         1         1         2         2         3         3           1742         1746         1756         1758         1758         1756         1770         1770         1         1         2         2         3         3           1782         1796         1796         1803         1807         1811         1816         0         1         1         2         2         3         3	1824         1828         1828         1845         1845         1845         1854         1856         187         184         184         184         185         1897         1901         101         1         2         2         3         3         3         3         3         3         3         3         3         3         3         3         4         1         1         2         2         3         3         3         4         1         1         2         2         3         3         4         1         2         2         3         3         4         3         4         4         1         1         2         2         3         3         4         4         1         3         4         4         1         3         4         4         1         3         4         4         3         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4 <td>2046         2051         2056         2061         2065         2070         2075         2080         2084         0         1         1         2         3         4           2094         2099         2104         2109         2113         2118         2123         2128         2133         0         1         1         2         2         3         4           2143         2148         2158         2168         2173         2178         2183         0         1         1         2         2         3         4           2193         2198         2203         2208         2213         2218         2228         2224         1         1         2         3         3         4         4           2244         2249         2254         2259         2265         2270         2275         2286         1         1         2         2         3         4         4</td> <td>2296         2301         2307         2312         2317         2323         2328         2333         2339         1         1         2         3         3         4         4           2350         2355         2360         2366         2371         2377         2382         2388         2393         1         1         2         3         3         4         4           2404         2410         2411         2427         2432         2438         2449         1         1         2         3         3         4         4           2460         2466         2477         2478         2489         2495         2495         250         250         3         4         5           2518         2529         2529         2541         2547         2553         2559         2564         1         1         2         2         3         4         5</td> <td>2576         2582         2588         2594         2600         2606         2612         2618         2624         1         1         2         2         3         4         5           2636         2642         2645         2665         2661         2667         2673         2679         2685         1         1         2         2         3         4         4         5           2698         2704         2716         2716         2778         2778         1         1         2         3         4         4         5           2761         2767         2777         2786         2786         2789         2789         2805         2812         1         1         2         3         4         4         5           2825         2831         2838         2844         2851         2865         2817         2877         1         1         2         3         4         5         5</td> <td>2891 2897 2904 2911 2917 2924 2931 2938 2944 1 1 2 3 3 4 5 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2</td> <td>2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8</td>	2046         2051         2056         2061         2065         2070         2075         2080         2084         0         1         1         2         3         4           2094         2099         2104         2109         2113         2118         2123         2128         2133         0         1         1         2         2         3         4           2143         2148         2158         2168         2173         2178         2183         0         1         1         2         2         3         4           2193         2198         2203         2208         2213         2218         2228         2224         1         1         2         3         3         4         4           2244         2249         2254         2259         2265         2270         2275         2286         1         1         2         2         3         4         4	2296         2301         2307         2312         2317         2323         2328         2333         2339         1         1         2         3         3         4         4           2350         2355         2360         2366         2371         2377         2382         2388         2393         1         1         2         3         3         4         4           2404         2410         2411         2427         2432         2438         2449         1         1         2         3         3         4         4           2460         2466         2477         2478         2489         2495         2495         250         250         3         4         5           2518         2529         2529         2541         2547         2553         2559         2564         1         1         2         2         3         4         5	2576         2582         2588         2594         2600         2606         2612         2618         2624         1         1         2         2         3         4         5           2636         2642         2645         2665         2661         2667         2673         2679         2685         1         1         2         2         3         4         4         5           2698         2704         2716         2716         2778         2778         1         1         2         3         4         4         5           2761         2767         2777         2786         2786         2789         2789         2805         2812         1         1         2         3         4         4         5           2825         2831         2838         2844         2851         2865         2817         2877         1         1         2         3         4         5         5	2891 2897 2904 2911 2917 2924 2931 2938 2944 1 1 2 3 3 4 5 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8
ntilogarithm	2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8	0 1002 1005 1007 1009 1012 1014 1016 1019 1021 0 0 1 1 1 1 2 2	1023         1026         1028         1028         1030         1033         1035         1038         1040         1042         1045         0         0         1         1         1         2         2           1047         1050         1052         1054         1057         1059         1062         1064         1067         1069         0         1         1         1         2         2           1072         1074         1076         1079         1081         1084         1086         1089         1091         1094         0         1         1         1         2         2           1096         1099         1102         1104         1107         1109         1112         1114         1117         1119         0         1         1         1         2         2           1122         1125         1127         1130         1132         1138         1140         1143         1146         0         1         1         1         2         2	1148         1151         1153         1156         1159         1161         1164         1167         1169         1172         0         1         1         1         2         2           1175         1178         1180         1181         1186         1189         1191         1194         1197         1199         0         1         1         1         2         2         2           1202         1205         1208         1211         1219         1222         1225         1227         1217         0         1         1         1         2         2         2           1203         1236         1249         1245         1245         1245         1247         1253         1253         1266         1         1         1         2         2         2           1259         1262         1266         1276         1277         1276         1289         1281         1         1         1         2         2	1294         1297         1300         1303         1306         1309         1312         1315         0         1         1         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         3         3         135         137         10         1         1         2         2         2         3         3         3         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4 <td< td=""><td>1445         1449         1452         1455         1459         1462         1469         1472         1476         0         1         1         2         2         3           1479         1483         1486         1489         1493         1496         1500         1503         1507         1510         0         1         1         2         2         2         3           1514         1571         1521         1528         1531         1538         1538         1545         0         1         1         2         2         3           1549         1552         1566         1560         1567         1570         1578         1578         158         1         1         2         2         3         3           1585         1589         1592         1560         1600         1603         1607         1611         1614         1618         0         1         1         2         3         3</td><td>1622         1626         1629         1639         1637         1641         1644         1648         1652         1656         0         1         1         2         2         3         3           1660         1663         1667         1671         1675         1679         1683         1687         1690         1694         0         1         1         2         2         3         3           1698         1702         1706         1741         1748         1722         1730         1734         0         1         1         2         2         3         3           1738         1742         1746         1756         1754         1758         1756         1770         1770         1777         1770         1774         1         2         2         3         3           1778         1782         1786         1791         1795         1803         1807         1811         1816         0         1         1         2         2         3         3</td><td>1820         1824         1828         1824         1845         1849         1854         1854         1856         187         184         184         184         185         1897         1901         10         1         2         2         3         3         3         3         3         3         3         3         3         3         3         3         4         10         10         1         1         2         2         3         3         3         4         10         10         1         1         2         2         3         3         4         10         10         1         1         2         2         3         3         4         10         10         1         1         2         2         3         3         4         10         1         2         2         3         4         4         10         1         1         2         2         3         4         4         10         1         1         2         3         3         4         4         10         1         1         2         3         3         4         4         4         1         3</td><td>2042         2046         2051         2056         2061         2065         2070         2075         2080         2084         0         1         1         2         3         4           2089         2094         2099         2104         2109         2113         2118         2123         2138         1         1         2         2         3         4           2138         2143         2148         2158         2168         2173         2178         2183         0         1         1         2         2         3         4           2138         2143         2148         2158         2168         2173         2178         2183         0         1         1         2         3         3         4           2188         2193         2198         2203         2208         2208         2228         2228         2228         1         1         2         3         3         4         4           2239         2244         2249         2256         2276         2278         2286         1         1         2         3         3         4         4</td><td>2291 2296 2301 2307 2312 2317 2323 2328 2333 2339 1 1 2 2 3 3 4 4 4 2340 2350 2365 2371 2377 2382 2388 2393 1 1 2 2 3 3 3 4 4 4 2399 2399 2404 2410 2415 2477 2427 2478 2498 2499 2495 2496 2466 2476 2477 2477 2477 2497 2495 2495 2495 2560 2560 2560 2560 2560 2664 1 1 2 2 3 3 4 5 5 2512 2518 2528 2529 2535 2541 2547 2547 2547 2547 2547 2549 2495 2550 2560 2664 1 1 2 2 3 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5</td><td>2570 2576 2582 2588 2594 2600 2606 2612 2618 2624 1 1 2 2 3 4 4 5 2630 2685 2642 2649 2655 2661 2667 2673 2679 2685 1 1 2 2 3 4 4 5 2692 2698 2704 2710 2716 2728 2798 2799 2895 2814 1 2 3 3 4 4 5 2769 2778 2778 2780 2788 2799 2895 2814 1 1 2 3 3 4 4 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2</td><td>2884 2891 2897 2904 2911 2917 2924 2931 2938 2944 1 1 2 3 3 4 5 5 2951 2958 2955 2956 3013 1 1 2 3 3 4 5 5 3 3 2 0 3 3 2 0 3 0 3 0 3 0 3 0 3 0 3 0</td><td>2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8</td></td<>	1445         1449         1452         1455         1459         1462         1469         1472         1476         0         1         1         2         2         3           1479         1483         1486         1489         1493         1496         1500         1503         1507         1510         0         1         1         2         2         2         3           1514         1571         1521         1528         1531         1538         1538         1545         0         1         1         2         2         3           1549         1552         1566         1560         1567         1570         1578         1578         158         1         1         2         2         3         3           1585         1589         1592         1560         1600         1603         1607         1611         1614         1618         0         1         1         2         3         3	1622         1626         1629         1639         1637         1641         1644         1648         1652         1656         0         1         1         2         2         3         3           1660         1663         1667         1671         1675         1679         1683         1687         1690         1694         0         1         1         2         2         3         3           1698         1702         1706         1741         1748         1722         1730         1734         0         1         1         2         2         3         3           1738         1742         1746         1756         1754         1758         1756         1770         1770         1777         1770         1774         1         2         2         3         3           1778         1782         1786         1791         1795         1803         1807         1811         1816         0         1         1         2         2         3         3	1820         1824         1828         1824         1845         1849         1854         1854         1856         187         184         184         184         185         1897         1901         10         1         2         2         3         3         3         3         3         3         3         3         3         3         3         3         4         10         10         1         1         2         2         3         3         3         4         10         10         1         1         2         2         3         3         4         10         10         1         1         2         2         3         3         4         10         10         1         1         2         2         3         3         4         10         1         2         2         3         4         4         10         1         1         2         2         3         4         4         10         1         1         2         3         3         4         4         10         1         1         2         3         3         4         4         4         1         3	2042         2046         2051         2056         2061         2065         2070         2075         2080         2084         0         1         1         2         3         4           2089         2094         2099         2104         2109         2113         2118         2123         2138         1         1         2         2         3         4           2138         2143         2148         2158         2168         2173         2178         2183         0         1         1         2         2         3         4           2138         2143         2148         2158         2168         2173         2178         2183         0         1         1         2         3         3         4           2188         2193         2198         2203         2208         2208         2228         2228         2228         1         1         2         3         3         4         4           2239         2244         2249         2256         2276         2278         2286         1         1         2         3         3         4         4	2291 2296 2301 2307 2312 2317 2323 2328 2333 2339 1 1 2 2 3 3 4 4 4 2340 2350 2365 2371 2377 2382 2388 2393 1 1 2 2 3 3 3 4 4 4 2399 2399 2404 2410 2415 2477 2427 2478 2498 2499 2495 2496 2466 2476 2477 2477 2477 2497 2495 2495 2495 2560 2560 2560 2560 2560 2664 1 1 2 2 3 3 4 5 5 2512 2518 2528 2529 2535 2541 2547 2547 2547 2547 2547 2549 2495 2550 2560 2664 1 1 2 2 3 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	2570 2576 2582 2588 2594 2600 2606 2612 2618 2624 1 1 2 2 3 4 4 5 2630 2685 2642 2649 2655 2661 2667 2673 2679 2685 1 1 2 2 3 4 4 5 2692 2698 2704 2710 2716 2728 2798 2799 2895 2814 1 2 3 3 4 4 5 2769 2778 2778 2780 2788 2799 2895 2814 1 1 2 3 3 4 4 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2884 2891 2897 2904 2911 2917 2924 2931 2938 2944 1 1 2 3 3 4 5 5 2951 2958 2955 2956 3013 1 1 2 3 3 4 5 5 3 3 2 0 3 3 2 0 3 0 3 0 3 0 3 0 3 0 3 0	2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8

નેચરલ સાઇન

		5	10	01 00 0	0 0 0 0 0	8 8 8 7 7	V V 9 9 9 9	22200		m m m m N	0000-	0 0
	ences	4	8	8 8 8 8 7	~ ~ ~ ~ ~	9999	2222	rv 4 4 4 4	4 % % % %	m m n n n	00	-00
	Mean Deifferences	3	9	9999	വവവവ	00044	4 4 4 4 4		m m a a a	~ ~ ~ ~ ~		
	an D	2	4	4 4 4 4 4	4 4 0 0 0	00000		0 0 0 0 0	~ ~ ~ ~ ~		0	0000
	ž	<del>-</del>	2	00000	0 0 0 0 0	~ ~ ~ ~ ~				0	00000	000
	54'	0.9°	7181	7302 7420 7536 7649 7760	7869 7976 8080 8181 8281	8377 8471 8563 8652 8738	8821 8902 8980 9056 9128	9198 9265 9330 9391 9449	9505 9558 9608 9655 9699	9740 9778 9813 9845 9874	9900 9923 9943 9960 9974	9993 9998 1.000
S	48	0.80	7169	7290 7408 7524 7638 7749	7859 7965 8070 8171 8271	8368 8462 8554 8643 8729	8813 8894 8973 9048 9121	9191 9259 9323 9385 9444	9500 9553 9603 9650 9694	9736 9774 9810 9842 9871	9898 9921 9942 9959 9973	9993
INE	42'	0.7°	7157	7278 7396 7513 7627 7738	7848 7955 8059 8161 8261	8358 8453 8545 8634 8721	8805 8886 8965 9041 9114	9184 9252 9317 9379 9438	9494 9548 9598 9646 9690	9732 9770 9806 9839 9869	9895 9919 9940 9957 9972	9992 9997 1.000
ALS	36	0.6°	7145	7266 7385 7501 7615	7837 7944 8049 8151 8251	8348 8443 8536 8625 8712	8796 8878 8957 9033 9107	9178 9245 9311 9373 9432	9489 9542 9593 9641 9686	9728 9767 9803 9836 9866	9893 9917 9938 9956 9971	9991 9997 1.000
TUR	30,	0.5°	7133	7254 7373 7490 7604 7716	7826 7934 8039 8141 8241	8339 8434 8526 8616 8704	8788 8870 8949 9026 9100	9171 9239 9304 9367 9426	9483 9537 9588 9636 9681	9724 9763 9799 9833 9863	9890 9914 9936 9954 9969	9990 9997 1.000
N	24'	0.40	7120	7242 7361 7478 7593 7705	7815 7923 8028 8131 8231	8329 8425 8517 8607 8695	8780 8862 8942 9018 9092	9164 9232 9298 9361 9421	9478 9532 9583 9632 9677	9720 9759 9796 9829 9860	9888 9912 9934 9952 9968	9666 0666
	18	0.3°	7108	7230 7349 7466 7581 7694	7804 7912 8018 8121 8221	8320 8415 8508 8599 8686	8771 8854 8934 9011 9085	9157 9225 9291 9354 9415	9472 9527 9578 9627 9673	9715 9755 9792 9826 9857	9885 9910 9932 9951 9966	9666
	12'	0.20	9602	7218 7337 7455 7570 7683	7793 7902 8007 8111 8211	8310 8406 8499 8590 8678	8763 8846 8926 9003 9078	9150 9219 9285 9348 9409	9466 9521 9573 9622 9668	9711 9751 9789 9823 9854	9882 9907 9930 9949 9965	99988
	9	0.10	7083	7206 7325 7443 7559 7672	7782 7891 7997 8100 8202	8300 8396 8490 8581 8669	8755 8838 8918 8996 9070	9143 9212 9278 9342 9403	9461 9516 9568 9617 9664	9707 9748 9785 9820 9851	9880 9905 9928 9947 9963	9995
	.0	0.00	.7071	.7193 .7314 .7431 .7547 .7660	7771 7880 7986 8090 8192	.8290 .8387 .8480 .8572 .8660	.8746 .8829 .8910 .8988 .9063	.9135 .9205 .9272 .9336	9455 9511 9563 9613 9659	.9703 .9744 .9781 .9816 .9848	.9976 .9925 .9945 .9962 .9962	.99986 .9994 .9998
	991	Deg	45	46 47 49 49 50	51 52 53 54 55	56 57 58 59 60	61 62 63 64 65	69 69 70	71 72 73 74 75	77 78 78 79 80	81 82 83 84 85 86	888
	0.0.		_	4 4 4 4 10	u) u) u) u)	4) 4) 4) 4)		0 0 0 0 1	15 15 15 15 15	13 13 13 13 6	w w w w w	
			,	4 4 4 4 10	4) 4) 4) 4)	4, 4, 4, 4,		9 9 9 9 1	12 12 12 12	14 14 14 3		
		5-	15	51 51 54 44 41 51	4 4 4 4 4	4 4 4 4 4	4 4 4 4 4	4 4 4 E E E	£ £ £ £ £	5 5 5 5 5	1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
		4' 5'									22111	
			15	7	4 4 4 4 4	<u>+ + + + + + </u>	<u>4 4 4 4 4</u>	4 4 7 E E	£ £ £ £ £	2 2 2 2 2	22111	: + + 9
		-4	12 15	21 21 21 21 21 21 21 21 21 21 21 21 21 2	21 21 4 4 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1	1	1	1	10 13 10 13 10 13 10 13 10 13 10 13 10 13 10 13 10 13 10 13 10 10 10 10 10 10 10 10 10 10 10 10 10	10 12 10 12 10 12 10 12 10 12 10 12 12 12 12 12 12 12 12 12 12 12 12 12	22111	6 6 6 9 11 11 11 11 11 11 11 11 11 11 11 11 1
	Mean Deifferences	3' 4'	9 12 15	21 21 21 21 21 21 41 41 41 41 41 41 41 41 41 41 41 41 41	6 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8 8 8 8 8 8 8 4 4 4 4 4 4 4 4 4 4 4 4 4	8 8 8 8 8 8 8 4 5 5 5 5 5 5 5 5 5 5 5 5	8 8 8 8 8 8 9 0 0 0 0 0 0 0 0 0 0 0 0 0	7 10 12 7 10 12 7 10 12 7 10 12 9 12	7 5 7 7 8 12 7 7 8 12 7 7 8 12 7 7 8 11 11 6 7 7 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6 6 6 9 11 11 11 11 11 11 11 11 11 11 11 11 1
		2' 3' 4'	6 9 12 15	6 6 9 12 15 16 6 9 9 9 12 15 15 15 15 15 15 15 15 15 15 15 15 15	6 6 9 6 9 9 12 12 14 14 15 15 15 15 15 15 15 15 15 15 15 15 15	2062     3     6     9     11     14       2233     3     6     9     11     14       2402     3     6     8     11     14       2571     3     6     8     11     14       2740     3     6     8     11     14	6 6 6 6 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	3730 3 5 8 11 14 3891 3 5 8 11 14 4051 3 5 8 11 14 4210 3 5 8 11 13 4368 3 5 8 11 13	8 8 10 13 13 13 14 10 13 15 15 15 15 15 15 15 15 15 15 15 15 15	5 7 10 12 5 7 10 12 5 7 10 12 5 7 9 12	7 5 7 7 8 12 7 7 8 12 7 7 8 12 7 7 8 11 11 6 7 7 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6807 2 4 6 9 11 6934 2 4 6 8 11 7059 2 4 6 8 10
S	Mean Deifferences	1' 2' 3' 4'	3 6 9 12 15	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	1184         1201         3         6         9         12         14           1357         1374         3         6         9         12         14           1530         1547         3         6         9         12         14           1702         1719         3         6         9         12         14           1874         1891         3         6         9         11         14	2045         2062         3         6         9         11         14           2215         2233         3         6         9         11         14           2385         2402         3         6         8         11         14           2554         2571         3         6         8         11         14           2723         2740         3         6         8         11         14	2890     2907     3     6     8     11     14       3057     3074     3     6     8     11     14       3223     3239     3     6     8     11     14       3387     3404     3     5     8     11     14       3551     3567     3     5     8     11     14	8 8 8 8 8 8 8 4 4 4 4 5 5 5 5	2	5270 5284 2 5 7 10 12 5417 5432 2 5 7 10 12 5563 5577 2 5 7 10 12 5707 5721 2 5 7 10 12 5850 5864 2 5 7 9 12	5990         6004         2         5         7         9         12           6129         6143         2         5         7         9         12           6266         6280         2         5         7         9         11           6401         6414         2         4         7         9         11           6534         6547         2         4         7         9         11           6665         6678         2         4         7         9         11	6794 6807 2 4 6 9 11 6921 6934 2 4 6 8 10 7046 7059 2 4 6 8 10
ш	54' Mean Deifferences	0.90 1' 2' 3' 4'	0157 3 6 9 12 15	0332 3 6 9 12 15 0506 3 6 9 12 15 0680 3 6 9 12 15 0854 3 6 9 12 14 1028 3 6 9 12 14	1201 3 6 9 12 14 1374 3 6 9 12 14 1547 3 6 9 12 14 1719 3 6 9 12 14 1891 3 6 9 11 14	2062     3     6     9     11     14       2233     3     6     9     11     14       2402     3     6     8     11     14       2571     3     6     8     11     14       2740     3     6     8     11     14	2907 3 6 8 11 14 3074 3 6 8 11 14 3239 3 6 8 11 14 3404 3 5 8 11 14 3567 3 5 8 11 14	3730 3 5 8 11 14 3891 3 5 8 11 14 4051 3 5 8 11 14 4210 3 5 8 11 13 4368 3 5 8 11 13	4524     3     5     8     10     13       4679     3     5     8     10     13       4833     3     5     8     10     13       4985     3     5     8     10     13       5135     3     5     8     10     13	5284 2 5 7 10 12 5432 2 5 7 10 12 5577 2 5 7 10 12 5721 2 5 7 10 12 5864 2 5 7 9 12	6004 2 5 7 9 12 6280 2 5 7 9 12 6414 2 4 7 9 11 6547 2 4 7 9 11 6678 2 4 7 9 11	6794 6807 2 4 6 9 11 6921 6934 2 4 6 8 10 7046 7059 2 4 6 8 10
AL SINE	48' 54' Mean Deifferences	0.8° 0.9° 1' 2' 3' 4'	0140 0157 3 6 9 12 15	0314 0332 3 6 9 12 15 0488 0506 3 6 9 12 15 0663 0680 3 6 9 12 15 0837 0854 3 6 9 12 14 1011 1028 3 6 9 12 14	1184         1201         3         6         9         12         14           1357         1374         3         6         9         12         14           1530         1547         3         6         9         12         14           1702         1719         3         6         9         12         14           1874         1891         3         6         9         11         14	2045         2062         3         6         9         11         14           2215         2233         3         6         9         11         14           2385         2402         3         6         8         11         14           2554         2571         3         6         8         11         14           2723         2740         3         6         8         11         14	2890     2907     3     6     8     11     14       3057     3074     3     6     8     11     14       3223     3239     3     6     8     11     14       3387     3404     3     5     8     11     14       3551     3567     3     5     8     11     14	3714     3730     3     5     8     11     14       3875     3891     3     5     8     11     14       4035     4051     3     5     8     11     14       4195     4210     3     5     8     11     13       4352     4368     3     5     8     11     13	4509         4524         3         5         8         10         13           4664         4679         3         5         8         10         13           4818         4833         3         5         8         10         13           4970         4985         3         5         8         10         13           5120         5135         3         5         8         10         13	5270 5284 2 5 7 10 12 5417 5432 2 5 7 10 12 5563 5577 2 5 7 10 12 5707 5721 2 5 7 10 12 5850 5864 2 5 7 9 12	5990         6004         2         5         7         9         12           6129         6143         2         5         7         9         12           6266         6280         2         5         7         9         11           6401         6414         2         4         7         9         11           6534         6547         2         4         7         9         11           6665         6678         2         4         7         9         11	6769 6782 6794 6807 2 4 6 9 11 6896 6909 6921 6934 2 4 6 8 11 7022 7034 7046 7059 2 4 6 8 10
TURAL SINE	42' 48' 54' Mean Deifferences	0.7° 0.8° 0.9° 1' 2' 3' 4'	0122 0140 0157 3 6 9 12 15	0297         0314         0332         3         6         9         12         15           0471         0488         0506         3         6         9         12         15           0645         0663         0680         3         6         9         12         15           0819         0837         0854         3         6         9         12         14           0993         1011         1028         3         6         9         12         14	1167         1184         1201         3         6         9         12         14           1340         1357         1374         3         6         9         12         14           1513         1530         1547         3         6         9         12         14           1685         1702         1719         3         6         9         12         14           1857         1874         1891         3         6         9         11         14	2028         2045         2062         3         6         9         11         14           2198         2215         2233         3         6         9         11         14           2368         2365         2402         3         6         8         11         14           2538         2554         2571         3         6         8         11         14           2706         2723         2740         3         6         8         11         14	2874         2890         2907         3         6         8         11         14           3040         3057         3074         3         6         8         11         14           3206         3223         3239         3         6         8         11         14           3371         3387         3404         3         5         8         11         14           3535         3551         3567         3         5         8         11         14	3697     3714     3730     3     5     8     11     14       3859     3875     3891     3     5     8     11     14       4019     4035     4051     3     5     8     11     14       4179     4195     4210     3     5     8     11     13       4337     4362     4368     3     5     8     11     13	4493         4509         4524         3         5         8         10         13           4648         4664         4679         3         5         8         10         13           4802         4818         4833         3         5         8         10         13           4955         4970         4985         3         5         8         10         13           5105         5120         5135         3         5         8         10         13	5255         5270         5284         2         5         7         10         12           5402         5417         5432         2         5         7         10         12           5548         5563         5577         2         5         7         10         12           5693         5707         5721         2         5         7         10         12           5835         5860         5864         2         5         7         9         12	5976     5990     6004     2     5     7     9     12       6115     6129     6143     2     5     7     9     12       6252     6266     6280     2     5     7     9     11       638     6401     6414     2     4     7     9     11       6521     6534     6547     2     4     7     9     11       6652     6665     6678     2     4     7     9     11	6769 6782 6794 6807 2 4 6 9 11 6896 6909 6921 6934 2 4 6 8 11 7022 7034 7046 7059 2 4 6 8 10
RAL SINE	36' 42' 48' 54' Mean Deifferences	0.6° 0.7° 0.8° 0.9° 1' 2' 3' 4'	0105 0122 0140 0157 3 6 9 12 15	0279         0297         0314         0332         3         6         9         12         15           0454         0471         0488         0506         3         6         9         12         15           0628         0645         0663         0680         3         6         9         12         15           0802         0819         0837         0854         3         6         9         12         14           0976         0993         1011         1028         3         6         9         12         14	1149         1167         1184         1201         3         6         9         12         14           1323         1340         1357         1374         3         6         9         12         14           1495         1513         1530         1547         3         6         9         12         14           1668         1685         1702         1719         3         6         9         12         14           1840         1857         1874         1891         3         6         9         11         14	2011         2028         2045         2062         3         6         9         11         14           2181         2198         2215         2233         3         6         9         11         14           2351         2368         2385         2402         3         6         8         11         14           2521         2538         2554         2571         3         6         8         11         14           2689         2706         2723         2740         3         6         8         11         14	2857         2874         2890         2907         3         6         8         11         14           3024         3040         3057         3074         3         6         8         11         14           3190         3206         3223         3239         3         6         8         11         14           3355         3371         3387         3404         3         5         8         11         14           3518         3535         3551         3567         3         5         8         11         14	3681         3692         3714         3730         3         5         8         11         14           3843         3859         3875         3891         3         5         8         11         14           4003         4019         4051         3         5         8         11         14           4163         4195         4210         3         5         8         11         13           4321         4352         4368         3         5         8         11         13	4478         4493         4509         4524         3         5         8         10         13           4633         4648         4664         4679         3         5         8         10         13           4787         4802         4818         4833         3         5         8         10         13           4936         4956         4970         4986         3         5         8         10         13           5090         5105         5120         5135         3         5         8         10         13	5240         5256         5270         5284         2         5         7         10         12           5388         5402         5417         5432         2         5         7         10         12           5534         5548         5563         5577         2         5         7         10         12           5678         5693         5707         5721         2         5         7         10         12           5821         5850         5864         2         5         7         9         12	5962         5976         5990         6004         2         5         7         9         12           6101         6115         6129         6143         2         5         7         9         12           6239         6252         6266         6280         2         5         7         9         11           6508         6501         6414         2         4         7         9         11           6639         6651         6534         6547         2         4         7         9         11           6639         6652         6665         6678         2         4         7         9         11	6756 6769 6782 6794 6807 2 4 6 9 11 6884 6896 6909 6921 6934 2 4 6 8 11 7009 7022 7034 7046 7059 2 4 6 8 10
ATURAL SINE	30' 36' 42' 48' 54' Mean Deifferences	0.5° 0.6° 0.7° 0.8° 0.9° 1' 2' 3' 4'	0087 0105 0122 0140 0157 3 6 9 12 15	0262         0279         0297         0314         0332         3         6         9         12         15           0436         0454         0471         0488         0506         3         6         9         12         15           0610         0628         0645         0663         0680         3         6         9         12         15           0785         0802         0819         0837         0854         3         6         9         12         14           0958         0976         0993         1011         1028         3         6         9         12         14	1132         1149         1167         1184         1201         3         6         9         12         14           1305         1323         1340         1357         1374         3         6         9         12         14           1478         1495         1513         1530         1547         3         6         9         12         14           1650         1668         1685         1702         1719         3         6         9         12         14           1822         1840         1857         1874         1891         3         6         9         11         14	1994         2011         2028         2045         2062         3         6         9         11         14           2164         2181         2198         2215         2233         3         6         9         11         14           2334         2351         2386         2385         2402         3         6         8         11         14           2504         2521         2538         2554         2571         3         6         8         11         14           2672         2689         2706         2723         2740         3         6         8         11         14	2840         2857         2874         2890         2907         3         6         8         11         14           3007         3024         3040         3057         3074         3         6         8         11         14           3173         3190         3206         3223         3239         3         6         8         11         14           3338         3355         3871         3387         3404         3         5         8         11         14           3502         3518         3551         3551         3         5         8         11         14	3665         3681         3697         3714         3730         3         5         8         11         14           3827         3843         3859         3875         3891         3         5         8         11         14           3987         4003         4019         4035         4051         3         5         8         11         14           4147         4163         4179         4195         4210         3         5         8         11         13           4305         4362         4362         4368         3         5         8         11         13	4462         4478         4493         4509         4524         3         5         8         10         13           4617         4633         4648         4664         4679         3         5         8         10         13           4772         4772         4787         4802         4818         4833         3         5         8         10         13           4924         4939         4955         4970         4985         3         5         8         10         13           5075         5090         5105         5120         5136         3         5         8         10         13	5225         5240         5256         5270         5284         2         5         7         10         12           5373         5388         5402         5417         5432         2         5         7         10         12           5519         5534         5548         5563         5577         2         5         7         10         12           5664         5678         5670         5721         2         5         7         10         12           5807         5807         5867         5864         2         5         7         9         12	5948         5962         5976         5990         6004         2         5         7         9         12           6088         6101         6115         6129         6143         2         5         7         9         12           6225         6239         6252         6266         6280         2         5         7         9         11           6361         6374         6388         6401         6414         2         4         7         9         11           6494         6508         6521         6534         6547         2         4         7         9         11           6626         6639         6662         6665         6678         678         2         4         7         9         11	6730 6743 6756 6769 6782 6794 6807 2 4 6 9 11 6858 6871 6884 6896 6909 6921 6934 2 4 6 8 11 6984 6897 7009 7022 7034 7046 7059 2 4 6 8 10
ATURAL SINE	24' 30' 36' 42' 48' 54' Mean Deifferences	0.4° 0.5° 0.6° 0.7° 0.8° 0.9° 1' 2' 3' 4'	0070 0087 0105 0122 0140 0157 3 6 9 12 15	0209         0227         0244         0262         0279         0297         0314         0332         3         6         9         12         15           0384         0401         0419         0436         0454         0471         0488         0506         3         6         9         12         15           0558         0576         0593         0610         0628         0645         0663         0680         3         6         9         12         15           0732         0750         0767         0785         0802         0819         0837         0864         3         6         9         12         14           0906         0924         0946         0993         1011         1028         3         6         9         12         14	115         1132         1149         1167         1184         1201         3         6         9         12         14           1288         1305         1323         1340         1357         1374         3         6         9         12         14           1461         1478         1495         1513         1530         1547         3         6         9         12         14           1633         1650         1668         1685         1702         1719         3         6         9         12         14           1805         1822         1840         1857         1874         1891         3         6         9         11         14	1942         1959         1977         1994         2011         2028         2045         2062         3         6         9         11         14           2113         2130         2147         2164         2181         2196         2215         2233         3         6         9         11         14           2284         2300         2317         2341         2361         2368         2385         2402         3         6         8         11         14           2453         2470         2487         2541         2531         2536         2554         2571         3         6         8         11         14           2622         2639         2666         2672         2689         2706         2723         2740         3         6         8         11         14	2823         2840         2857         2874         2890         2907         3         6         8         11         14           2990         3007         3024         3040         3057         3074         3         6         8         11         14           3156         3173         3190         3206         3223         3239         3         6         8         11         14           3322         3338         3355         3371         3387         3404         3         5         8         11         14           3486         3502         3518         3555         3551         3567         3         5         8         11         14	3649         3665         3681         3697         3714         3730         3         5         8         11         14           3811         3827         3843         3859         3875         3891         3         5         8         11         14           3971         3987         4003         4019         4035         4051         3         5         8         11         14           4131         4147         4163         4179         4195         4210         3         5         8         11         13           4289         4305         4352         4362         4368         3         5         8         11         13	4415         4436         4466         4478         4449         4504         4504         4504         4504         3         5         8         10         13           4571         4586         4602         4617         4633         4648         4664         4679         3         5         8         10         13           4726         4741         4756         4772         4787         4802         4818         4833         3         5         8         10         13           4879         4894         4994         4956         4956         4970         4986         3         5         8         10         13           5030         5046         5056         5056         5105         5105         5135         3         5         8         10         13	5180         5195         5271         5225         5240         5255         5270         5284         2         5         7         10         12           5329         5344         5358         5373         5388         5402         5417         5432         2         5         7         10         12           5476         5490         5505         5519         5534         5548         5563         5577         2         5         7         10         12           5621         5623         5664         5678         5693         5707         5721         2         5         7         10         12           5764         5779         5781         2         5         7         10         12           5764         5678         5891         5891         5891         5891         5         7         10         12	5934         5948         5962         5976         5990         6004         2         5         7         9         12           6074         6088         6101         6115         6129         6143         2         5         7         9         12           6211         6225         6239         6252         6266         6280         2         5         7         9         11           6347         6361         6374         6388         6401         6414         2         4         7         9         11           6481         6494         6508         6521         6524         6547         2         4         7         9         11           6613         6626         6665         6665         6678         5         4         7         9         11	6717 6730 6743 6756 6769 6782 6794 6807 2 4 6 9 11 6845 6858 6871 6884 6896 6909 6921 6934 2 4 6 8 11 6972 6984 6997 7009 7022 7034 7046 7059 2 4 6 8 10
ATURAL SINE	18' 24' 30' 36' 42' 48' 54' Mean Deifferences	0.3° 0.4° 0.5° 0.6° 0.7° 0.8° 0.9° 1' 2' 3' 4'	0017 0035 0052 0070 0087 0105 0122 0140 0157 3 6 9 12 15	0192         0209         0227         0244         0262         0279         0271         0314         0332         3         6         9         12         15           0366         0384         0401         0419         0436         0454         0471         0488         0506         3         6         9         12         15           0541         0558         0576         0593         0610         0628         0665         0683         0680         3         6         9         12         15           0715         0730         0767         0785         0802         0819         0837         0854         3         6         9         12         14           0889         0906         0924         0941         0956         0997         1011         1028         3         6         9         12         14	1083         1080         1197         1115         1132         1149         1167         1184         1201         3         6         9         12         14           1236         1253         1271         1288         1305         1323         1340         1357         1374         3         6         9         12         14           1409         1426         1441         1478         1495         1513         1530         1547         3         6         9         12         14           1582         159         161         1653         1650         1668         1665         1702         1719         3         6         9         12         14           1754         1774         1788         1805         1822         1840         1857         1874         1891         3         6         9         11         14	1925         1942         1957         1994         2011         2028         2045         2062         3         6         9         11         14           2096         2113         2130         2147         2164         2181         2198         2215         2233         3         6         9         11         14           2267         2284         2300         2317         2346         2351         2368         2385         2402         3         6         9         11         14           2436         2436         2436         2521         2538         2554         2571         3         6         8         11         14           2605         2672         2689         2706         2723         2740         3         6         8         11         14	2773         2790         2807         2823         2874         2897         2874         2890         2907         3 6         8         11         14           2940         2957         2974         2990         3007         3024         3040         3057         3074         3 6         8         11         14           3107         3123         3140         3156         3173         3190         3206         3223         3239         3 6         8         11         14           3272         3289         3365         3371         3387         3444         3 5         8         11         14           4337         3453         3456         3518         3551         3511         3 5         8         11         14	3600         3616         3633         3649         3665         3681         3697         3714         3730         3         5         8         11         14           3762         3778         3795         3811         3827         3843         3859         3875         3891         3         5         8         11         14           3923         3936         3971         3987         4003         4019         4035         4051         3         5         8         11         14           4083         4099         4115         4147         4163         4179         4195         4210         3         5         8         11         13           4242         4258         4274         4289         4305         431         4377         4352         4368         3         5         8         11         13	4399         4415         4446         4462         4478         4493         4509         4524         3         5         8         10         13           4555         4571         4586         4602         4617         4633         4648         4664         4679         3         5         8         10         13           4710         4726         4772         4772         4787         4802         4818         4833         3         5         8         10         13           4863         4863         4894         4909         4924         4939         4955         4970         4986         3         5         8         10         13           5015         5030         5045         5090         5105         5120         5136         3         5         8         10         13	5165         5180         5195         5271         5226         5270         5284         2         5         7         10         12           5314         5329         5344         538         5373         538         5402         5417         5432         2         5         7         10         12           5461         5476         5476         5432         2         5         7         10         12           5606         5621         5650         5664         5678         5673         577         2         5         7         10         12           5750         5754         577         5721         2         5         7         10         12	6932         5906         5924         5948         5962         5976         5990         6004         2         5         7         9         12           6032         6046         6060         6074         6088         6101         6115         6129         6143         2         5         7         9         12           6170         6184         6198         6211         6225         6266         6280         2         5         7         9         11           6307         6324         6341         6374         6386         6401         6414         2         5         7         9         11           6441         6456         6391         6374         6508         6521         6534         6547         2         4         7         9         11           6574         6587         6669         6521         6534         6547         2         4         7         9         11	6704 6717 6730 6743 6756 6769 6782 6794 6807 2 4 6 9 11 6833 6845 6858 6871 6884 6896 6909 6921 6934 2 4 6 8 11 6959 6972 6984 6997 7009 7022 7034 7046 7059 2 4 6 8 10
ATURAL SINE	12' 18' 24' 30' 36' 42' 48' 54' Mean Deifferences	0.2° 0.3° 0.4° 0.5° 0.6° 0.7° 0.8° 0.9° 1' 2' 3' 4'	0035 0052 0070 0087 0105 0122 0140 0157 3 6 9 12 15	0209         0227         0244         0262         0279         0297         0314         0332         3         6         9         12         15           0384         0401         0419         0436         0454         0471         0488         0506         3         6         9         12         15           0558         0576         0593         0610         0628         0645         0663         0680         3         6         9         12         15           0732         0750         0767         0785         0802         0819         0837         0864         3         6         9         12         14           0906         0924         0946         0993         1011         1028         3         6         9         12         14	1046         1063         1080         119         1115         1132         1149         1167         1184         1201         3         6         9         12         14           .1219         1236         1251         1271         1288         1305         1323         1340         1357         1374         3         6         9         12         14           .1392         1409         1424         1461         1478         1495         1513         1530         1547         3         6         9         12         14           .1564         1582         1650         1668         1685         1702         1719         3         6         9         12         14           .1736         1774         1771         1788         1805         1822         1840         1857         1874         1891         3         6         9         11         14	1942         1959         1977         1994         2011         2028         2045         2062         3         6         9         11         14           2113         2130         2147         2164         2181         2196         2215         2233         3         6         9         11         14           2284         2300         2317         2341         2361         2368         2385         2402         3         6         8         11         14           2453         2470         2487         2541         2531         2536         2554         2571         3         6         8         11         14           2622         2639         2666         2672         2689         2706         2723         2740         3         6         8         11         14	2790         2807         2823         2840         2857         2874         2890         2907         3         6         8         11         14           2957         2974         2990         3007         3024         3040         3057         3074         3         6         8         11         14           3123         3140         3156         3173         3190         3206         3223         3239         3         6         8         11         14           3289         3365         3371         3387         3404         3         5         8         11         14           3453         3463         3562         3518         3536         3551         3567         3         5         8         11         14	3616         3653         3649         3665         3681         3697         3714         3730         3         5         8         11         14           3778         3795         3811         3827         3843         3859         3875         3891         3         5         8         11         14           3939         3956         3971         3987         4003         4019         4035         4051         3         5         8         11         14           4099         4115         4131         4147         4163         4179         4195         4210         3         5         8         11         13           4258         4274         4289         4305         4321         4337         4352         4368         3         5         8         11         13	4415         4436         4466         4478         4449         4503         4504         4524         3         5         8         10         13           4571         4586         4602         4617         4638         4664         4679         3         5         8         10         13           4726         4741         4756         4772         4787         4802         4818         4833         3         5         8         10         13           4879         4894         4999         4956         4970         4986         3         5         8         10         13           5030         5046         5056         5056         5105         5105         5135         3         5         8         10         13	5180         5195         5271         5225         5240         5255         5270         5284         2         5         7         10         12           5329         5344         5358         5373         5388         5402         5417         5432         2         5         7         10         12           5476         5490         5505         5519         5534         5548         5563         5577         2         5         7         10         12           5621         5623         5664         5678         5693         5707         5721         2         5         7         10         12           5764         5779         5781         2         5         7         10         12           5764         5678         5891         5891         5891         5891         5         7         10         12	5906         5924         5948         5962         5976         5990         6004         2         5         7         9         12           6046         6060         6074         6088         6101         6115         6129         6143         2         5         7         9         12           6184         6198         6211         6225         6269         6266         6280         2         5         7         9         11           6320         6334         6347         6368         6401         6414         2         4         7         9         11           6455         6468         6481         6494         6508         6521         6534         6547         2         4         7         9         11           6587         6600         6613         6626         6639         6652         6665         6678         2         4         7         9         11	6704 6717 6730 6743 6756 6769 6782 6794 6807 2 4 6 9 11 6833 6845 6858 6871 6884 6896 6909 6921 6934 2 4 6 8 11 6959 6972 6984 6997 7009 7022 7034 7046 7059 2 4 6 8 10

	ences	4 5	24 30		27 33		30 38						43 53			55 68 58 73				87 108 95 119	104 131	116 145	144 180	163 204 186 232	213 267			ences	itly	<u> </u>			
	Main Deifferences	1 2 3	6 12 18	6 12 18	5 5 5			3 16 24				50	11 21 32	24	26	14 27 41 15 29 44	3 6 6	27 6	40	22 43 65 24 47 71	6 52 78	29 58 87	72	41 81 122 46 93 139	53 107 160			Mean Differences	no longer sufficiently	accurate			
	54	0.90	0319 (	0686 6		2305		3222 8			5340 1		6577 1			9542 1 2.413 1		_		5916 2 7326 2		3.0595 2		7062 4 9812 4	2972 5	5.0970	6.2432	7.0264	9.3572	13.95	18.46	52.08 573.0	
T S	48	0.8°	0283 (	1028				3175			5282		6512 (			9458 9		-		5782		3.0415 3		9520	2635		5578 ( 6.1742 6	9395 7 9158 8			17.89 1		_
GEN	42	0.70	0247	0612	1383	2218			4124		5224		6447			9375				5649 7034		3.0237 3		6554 9232	2303		5026 6.1066	8548 8062	9 0579 9		17.34		_
TAN	36	0.6°	0212	0575	1343	2174	2617	3079	3564 4071	4605	5166	2757	6383	7747		9292		_		5517 6889		3.0061		6305 8947	1976		4486 6.0405	7720	9152 9		16.83		_
RAL	30	0.5°	0176	0538	1303	2131	2572	3032	4019	4550	5108	2692	6319	7675	8418	9210		0000	4142	5386 6746		9887	3759	8667	1653		3955 9758 (6	6912 5958			16.35		_
ATU	24	0.40	0141	0501	1263	2088	2527	2985	3968	4496	5051	5637	6255	2002	8341	9128		240	4023	5257 6605	8083	9714	3544	5816 8391	1335	8716	3465 9124	6122	6427	12.43	15.89		
Z	18	0.3°	0105	0464	1224	2045	2482	2938	3916	4442	4994	2227	6191	7532	8265	9047	0778	2701	3906	5129 6464	7929	9544	3332	55/6 8118	1022	8288	2924 8502	5350	5126	12.16	15.46		
	12	0.20	0200	0428	1184	2002	2437	2892	3865	4388	4938	5517	6128	7461	8190	7968	0686	2401	3789	5002 6325	7776	9375	3122	5339 7848	0713	7867	2422 7894	4596	3863	11.91	15.06	31.82	
	9	0.10	9800	0392	1145	1960	2393	2846	3814	4335	4882	5458	9909	7391	8115	9711	0594	240	3673	4876 6187	7625	9208	2914	5105 7583	0408	7453	1929	3859	2636	11.66	14.67	30.14	
	0	0.0	1.0000	1.0355	1.1106	1.1918	1.2349	1.2799	1.3270	1.4281	1.4826	1.5399	1.6003	1.7321	1.8040	1.8807	2.0503	09700	2.3559	2.4751 2.6051	2.7475	2.9042	3.2709	3.4824	4.0108	4.7046	5.1446	6.3138	8.1443 9.514	11.43	14.30	28.64	
	ree	Ded	45	46	8 4	50	51	52	5.45	55	99	22	28	09	61	63 63	64			69 69			73				79		83	85	86	88	
	es	5	2 15		15				15					9 16		3 16			3 17	17	18			5 19			7 21 3 22		9 24			28	
	ifferences	4	9 12 15	12	7 7	9 12 15 9 12 15		9 12 15	7 5				2 5	9 12 16		£ 5	<u>5</u> 6	23	<del>ε</del> 4	14 17	14 18	11 15 18	15	15	16	2   16   20  3   17   21	17	<del>2</del> <del>2</del> <del>2</del>	6 6	20	25	22	3
	Aain Deifferences		12	12	9 6	5 5			7 5	7 2			2 5	<u>ν</u> ε	13	£ 5	<u>5</u> 6	23	<del>ε</del> 4	17	14 18		11 15		12 16	16			14 19	15 20	25	17 22	62
	1 Main Deifferences	1 2 3 4	3 6 9 12	3 6 9 12	3 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	3 6 9 12	3 6 9 12	3 6 9 12	3 6 9	3 c 0 0 0 0	3 6 9 12	3 6 9 12	3 6 9 12	3 6 9 13 12	3 6 9 13	3 6 10 13	3 7 10 13	3 7 10 13	3 7 10 13	3 7 10 14 17 4 7 11 14 18	4 7 11 14 18	4 7 11 15	4 7 11 15 4 8 11 15	4 8 12 15 4 8 12 16	4 8 12 16	4 8 12 16	4 9 13 17 4 9 13 18	5 9 14 18	5 9 14 19	5 10 15 20	5 10 16 21	6 11 17 22	67 /1 11 0
S	54	0.9° 1 2 3 4	0157 3 6 9 12	0332 3 6 9 12	0682 3 6 9 12	0857         3         6         9         12           1033         3         6         9         12	1210 3 6 9 12	1388 3 6 9 12	1566 3 6 9 12	1926 3 6 9 12	2107 3 6 9 12	2290 3 6 9 12	2475 3 6 9 12	2849 3 6 9 13	3038 3 6 9 13	3230 3 6 10 13	3620 3 7 10 13	3819 3 7 10 13	4224 3 7 10 14 4224 3 7 10 14	4431 3 7 10 14 17 4642 4 7 11 14 18	4856 4 7 11 14 18	5073 4 7 11 15	5520 4 7 11 15	5750         4         8         12         15           5985         4         8         12         16	6224 4 8 12 16	6720 4 8 13 17	6976 4 9 13 17 7239 4 9 13 18	7508 5 9 14 18 7785 5 9 14 18	8069 5 9 14 19	8662 5 10 15 20	8972 5 10 16 21	9623 6 11 17 22 0065 6 11 17 22	23 /1 11 0 0066
ENTS	48 54	0.8° 0.9° 1 2 3 4	0140 0157 3 6 9 12	0314 0332 3 6 9 12	0664 0682 3 6 9 12	0840         0857         3         6         9         12           1016         1033         3         6         9         12	1192 1210 3 6 9 12	1370 1388 3 6 9 12	1548 1566 3 6 9 12	1908 1926 3 6 9 12	2089 2107 3 6 9 12	2272 2290 3 6 9 12	2456 2475 3 6 9 12	2642         2661         3         6         9         12           2830         2849         3         6         9         13	3019 3038 3 6 9 13	3211 3230 3 6 10 13	3600 3620 3 7 10 13	3799 3819 3 7 10 13	4204 4224 3 7 10 13 4204 4224 3 7 10 14	4411     4431     3     7     10     14     17       4621     4642     4     7     11     14     18	4834 4856 4 7 11 14 18	5051 5073 4 7 11 15	5498 5520 4 8 11 15	5727     5750     4     8     12     15       5961     5985     4     8     12     16	6200 6224 4 8 12 16	6445         6469         4         8         12         16           6694         6720         4         8         13         17	6950         6976         4         9         13         17           7212         7239         4         9         13         18	7481 7508 5 9 14 18 7757 7785 5 9 14 18	8040 8069 5 9 14 19 8332 8361 5 10 15 20	8632 8662 5 10 15 20	8941 8972 5 10 16 21	9500 9533 6 11 17 22 9590 9623 6 11 17 22 9930 9965 6 11 17 23	000000000000000000000000000000000000000
NGENT	54	0.7° 0.8° 0.9° 1 2 3 4	0122 0140 0157 3 6 9 12	0297 0314 0332 3 6 9 12	0647 0664 0682 3 6 9 12	0822         0840         0857         3         6         9         12           0998         1016         1033         3         6         9         12	1175 1192 1210 3 6 9 12	1352 1370 1388 3 6 9 12	1530 1548 1566 3 6 9 12	1709 1727 1745 3 6 9 12 1890 1908 1926 3 6 9 12	2071 2089 2107 3 6 9 12	2254 2272 2290 3 6 9 12	2438 2456 2475 3 6 9 12	2623         2642         2661         3         6         9         12           2811         2830         2849         3         6         9         13	3000 3019 3038 3 6 9 13	3191 3211 3230 3 6 10 13	3581 3600 3620 3 7 10 13	3779 3799 3819 3 7 10 13	3979   4000   4020   3 7 10   13   4183   4204   4224   3 7 10   14	4390 4411 4431 3 7 10 14 17 4599 4621 4642 4 7 11 14 18	4813 4834 4856 4 7 11 14 18	5029 5051 5073 4 7 11 15	5250 5272 5295 4 7 11 15 5475 5498 5520 4 8 11 15	5704         5727         5750         4         8         12         15           5938         5961         5985         4         8         12         16	6176 6200 6224 4 8 12 16	6420         6445         6469         4         8         12         16           6669         6694         6720         4         8         13         17	6924         6950         6976         4         9         13         17           7186         7212         7239         4         9         13         18	7454 7481 7508 5 9 14 18 7729 7757 7785 5 9 14 18	8012 8040 8069 5 9 14 19 8302 8332 8361 5 10 15 20	8601 8632 8662 5 10 15 20	8910 8941 8972 5 10 16 21	9556 9590 9623 6 11 17 22 9896 9930 9965 6 11 17 22	3630 9930 9930 0 11 / 23
GENT	48 54	0.8° 0.9° 1 2 3 4	0140 0157 3 6 9 12	0279 0297 0314 0332 3 6 9 12	0629 0647 0664 0682 3 6 9 12	0805         0822         0840         0857         3         6         9         12           0981         0998         1016         1033         3         6         9         12	1157 1175 1192 1210 3 6 9 12	1334 1352 1370 1388 3 6 9 12	1512 1530 1548 1566 3 6 9 12	1691 1709 1727 1745 3 6 9 12 1871 1890 1908 1926 3 6 9 12	2053 2071 2089 2107 3 6 9 12	2235 2254 2272 2290 3 6 9 12	2419 2438 2456 2475 3 6 9 12	2505         2623         2642         2661         3         6         9         12           2792         2811         2830         2849         3         6         9         13	2981 3000 3019 3038 3 6 9 13	3172 3191 3211 3230 3 6 10 13	3561 3581 3600 3620 3 7 10 13	3759 3779 3799 3819 3 7 10 13	3959 3979 4000 4020 3 7 10 13 4163 4183 4204 4224 3 7 10 14	4369 4599 4621 4642 4 7 11 14 18	4791 4813 4834 4856 4 7 11 14 18	5008 5029 5051 5073 4 7 11 15	5228 5250 5272 5295 4 7 11 15 5452 5475 5498 5520 4 8 11 15	5681         5704         5727         5750         4         8         12         15           5914         5938         5961         5985         4         8         12         16	6152 6176 6200 6224 4 8 12 16	6395 6420 6445 6469 4 8 12 16 6644 6669 6694 6720 4 8 13 17	6899         6924         6950         6976         4         9         13         17           7159         7186         7212         7239         4         9         13         18	7427 7454 7481 7508 5 9 14 18 7701 7720 7757 7785 5 9 14 18	7983 8102 8040 8069 5 9 14 19 8273 8302 8339 8341 F 10 15 20	8571 8601 8632 8662 5 10 15 20	8878 8910 8941 8972 5 10 16 21	9193 9526 9590 9623 6 11 17 22 9623 9656 9690 9623 6 11 17 22	23 /1   0   2325   3320   3325
AL TANGENT	42 48 54	0.7° 0.8° 0.9° 1 2 3 4	0087 0105 0122 0140 0157 3 6 9 12	0262 0279 0297 0314 0332 3 6 9 12	0612 0629 0647 0664 0682 3 6 9 12	0787         0805         0822         0840         0857         3         6         9         12           0963         0981         0998         1016         1033         3         6         9         12	1139 1157 1175 1192 1210 3 6 9 12	1317 1334 1352 1370 1388 3 6 9 12	1495 1512 1530 1548 1566 3 6 9 12	16/3         1691         1/09         1/2/1         1/45         3         6         9         12           1853         1871         1890         1908         1926         3         6         9         12	2035 2053 2071 2089 2107 3 6 9 12	2217 2235 2254 2272 2290 3 6 9 12	2401 2419 2438 2456 2475 3 6 9 12	2086         2003         2623         2042         2001         3         9         12           2773         2792         2811         2830         2849         3         6         9         13	2962 2981 3000 3019 3038 3 6 9 13	3153 3172 3191 3211 3230 3 6 10 13	3541 3561 3581 3600 3620 3 7 10 13	3739 3759 3779 3799 3819 3 7 10 13	3939 3959 3979 4000 4020 3 7 10 13 4142 4163 4183 4204 4224 3 7 10 14	4748         4369         4390         4411         4431         3         7         10         14         17           4557         4578         4599         4621         4642         4         7         11         14         18	4770 4791 4813 4834 4856 4 7 11 14 18	4986 5008 5029 5051 5073 4 7 11 15	5200 5228 5250 5272 5295 4 7 11 15 5430 5452 5475 5498 5520 4 8 11 15	5658         5681         5704         5727         5750         4         8         12         15           5890         5914         5938         5961         5985         4         8         12         16	6128 6152 6176 6200 6224 4 8 12 16	6619 6644 6669 6694 6720 4 8 13 17	6873         6899         6924         6950         6976         4         9         13         17           7133         7159         7186         7212         7239         4         9         13         18	7400 7427 7454 7481 7508 5 9 14 18 7673 7701 7720 7767 7786 6 0 14 18	7954 7983 8012 8040 5 9 14 19 8243 8372 8372 8372 8375 17 17 17 20	8541 8571 8601 8632 8662 5 10 15 20	8847 8878 8910 8941 8972 5 10 16 21	9490 9523 9556 9590 9683 6 11 17 22 0897 0861 0808 0000	2007   3000   3000   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   3007   30
ATURAL TANGENT	36 42 48 54	0.6° 0.7° 0.8° 0.9° 1 2 3 4	7 0105 0122 0140 0157 3 6 9 12	0262 0279 0297 0314 0332 3 6 9 12	0612 0629 0647 0664 0682 3 6 9 12	0805         0822         0840         0857         3         6         9         12           0981         0998         1016         1033         3         6         9         12	1139 1157 1175 1192 1210 3 6 9 12	1317 1334 1352 1370 1388 3 6 9 12	1477 1495 1512 1530 1548 1566 3 6 9 12	1655   1673   1691   1709   1727   1745   3 6 9   12   1835   1853   1871   1890   1908   1926   3 6 9   12	2035 2053 2071 2089 2107 3 6 9 12	2199 2217 2235 2254 2272 2290 3 6 9 12	2382 2401 2419 2438 2456 2475 3 6 9 12	2508         2605         2602         2623         2642         2601         3         6         9         12           2754         2773         2792         2811         2830         2849         3         6         9         13	2943 2962 2981 3000 3019 3038 3 6 9 13	3134 3153 3172 3191 3211 3230 3 6 10 13	3522 3541 3561 3581 3600 3620 3 7 10 13	3719 3739 3759 3779 3799 3819 3 7 10 13	3919 3939 3959 3979 4000 4020 3 7 10 13 4122 4142 4163 4183 4204 4224 3 7 10 14	4327         4748         4369         4390         4411         4431         3         7         10         14         17           4536         4577         4578         4599         4691         4691         4692         4         7         11         14         18	4748 4770 4791 4813 4834 4856 4 7 11 14 18	4986 5008 5029 5051 5073 4 7 11 15	5184 5206 5228 5250 5272 5295 4 7 11 15 5407 5430 5452 5475 5498 5520 4 8 11 15	5635         5658         5681         5704         5727         5750         4         8         12         15           5867         5890         5914         5938         5961         5985         4         8         12         16	6104 6128 6152 6176 6200 6224 4 8 12 16	6395 6420 6445 6469 4 8 12 16 6644 6669 6694 6720 4 8 13 17	6899         6924         6950         6976         4         9         13         17           7159         7186         7212         7239         4         9         13         18	7373 7400 7427 7454 7481 7508 5 9 14 18 7646 7673 7701 7720 7757 7785 5 9 14 18	7926 794 7983 8012 8040 8069 5 9 14 19 8914 8914 8914 8914 8917 8919 8919 8 10 15 90	8511 8541 8571 8601 8632 8662 5 10 15 20	8816 8847 8878 8910 8941 8972 5 10 16 21	9457 9490 9523 9556 9590 9623 6 11 17 22 97703 0827 0824 0800	22   1   1   0   0   0   0   0   0   0   0
TURAL TANGENT	30 36 42 48 54	0.5° 0.6° 0.7° 0.8° 0.9° 1 2 3 4	0087 0105 0122 0140 0157 3 6 9 12	0262 0279 0297 0314 0332 3 6 9 12	0419 0437 0434 0472 0489 0507 3 6 9 12 0594 0612 0629 0647 0664 0682 3 6 9 12	0787         0805         0822         0840         0857         3         6         9         12           0963         0981         0998         1016         1033         3         6         9         12	. 1122 1139 1157 1175 1192 1210 3 6 9 12	1299         1317         1334         1352         1370         1388         3         6         9         12	1495 1512 1530 1548 1566 3 6 9 12	1655   1673   1691   1709   1727   1745   3 6 9   12   1835   1853   1871   1890   1908   1926   3 6 9   12	2016 2035 2053 2071 2089 2107 3 6 9 12	2199 2217 2235 2254 2272 2290 3 6 9 12	2382 2401 2419 2438 2456 2475 3 6 9 12	2086         2003         2623         2042         2001         3         9         12           2773         2792         2811         2830         2849         3         6         9         13	2943 2962 2981 3000 3019 3038 3 6 9 13	3153 3172 3191 3211 3230 3 6 10 13	3527 3547 3561 3581 3600 3620 3 7 10 13	3719 3739 3759 3779 3799 3819 3 7 10 13	3939 3959 3979 4000 4020 3 7 10 13 4142 4163 4183 4204 4224 3 7 10 14	4748         4369         4390         4411         4431         3         7         10         14         17           4557         4578         4599         4621         4642         4         7         11         14         18	4748 4770 4791 4813 4834 4856 4 7 11 14 18	4964 4986 5008 5029 5051 5073 4 7 11 15	5184 5206 5228 5250 5272 5295 4 7 11 15 5407 5430 5452 5475 5498 5520 4 8 11 15	5658         5681         5704         5727         5750         4         8         12         15           5890         5914         5938         5961         5985         4         8         12         16	6104 6128 6152 6176 6200 6224 4 8 12 16	6619 6644 6669 6694 6720 4 8 13 17	6873         6899         6924         6950         6976         4         9         13         17           7133         7159         7186         7212         7239         4         9         13         18	7400 7427 7454 7481 7508 5 9 14 18 7673 7701 7720 7767 7786 6 0 14 18	7926 794 7983 8012 8040 8069 5 9 14 19 8914 8914 8914 8914 8917 8919 8919 8 10 15 90	8511 8541 8571 8601 8632 8662 5 10 15 20	8847 8878 8910 8941 8972 5 10 16 21	9457 9490 9523 9556 9590 9623 6 11 17 22 97703 0827 0824 0800	22   1   1   0   0   0   0   0   0   0   0
ATURAL TANGENT	24 30 36 42 48 54	0.4° 0.5° 0.6° 0.7° 0.8° 0.9° 1 2 3 4	0070 0087 0105 0122 0140 0157 3 6 9 12	0244 0262 0279 0297 0314 0332 3 6 9 12	0402 0419 0447 0467 0468 0507 3 6 9 12	0769         0787         0805         0822         0840         0857         3         6         9         12           0945         0963         0981         0998         1016         1033         3         6         9         12	1104 1122 1139 1157 1175 1192 1210 3 6 9 12	1281         1299         1317         1334         1352         1370         1388         3         6         9         12	1477 1495 1512 1530 1548 1566 3 6 9 12	1638   1655   1673   1691   1709   1727   1745   3 6 9   12	1998 2016 2035 2053 2071 2089 2107 3 6 9 12	2180 2199 2217 2235 2254 2272 2290 3 6 9 12	2364 2382 2401 2419 2438 2456 2475 3 6 9 12	2508         2605         2602         2623         2642         2601         3         6         9         12           2754         2773         2792         2811         2830         2849         3         6         9         13	2924 2943 2962 2981 3000 3019 3038 3 6 9 13	3134 3153 3172 3191 3211 3230 3 6 10 13	3502 3522 3541 3561 3581 3600 3620 3 7 10 13	3699 3719 3739 3759 3779 3799 3819 3 7 10 13	3919 3939 3959 3979 4000 4020 3 7 10 13 4122 4142 4163 4183 4204 4224 3 7 10 14	4327         4748         4369         4390         4411         4431         3         7         10         14         17           4536         4577         4578         4599         4691         4691         4629         4         7         11         14         18	4727         4748         4770         4791         4813         4834         4856         4         7         11         14         18	4942 4964 4986 5008 5029 5051 5073 4 7 11 15	5161 5184 5206 5228 5250 527/2 5295 4 / 11 15 5384 5407 5430 5452 5475 5498 5520 4 8 11 15	5635         5658         5681         5704         5727         5750         4         8         12         15           5867         5890         5914         5938         5961         5985         4         8         12         16	6080 6104 6128 6152 6176 6200 6224 4 8 12 16	6346 6371 6395 6420 6445 6469 4 8 12 16 6594 6619 6644 6669 6694 6720 4 8 13 17	6847         6873         6899         6924         6950         6976         4         9         13         17           7107         7133         7159         7186         7212         7239         4         9         13         18	7373 7400 7427 7454 7481 7508 5 9 14 18 7646 7673 7701 7720 7757 7785 5 9 14 18	7898 7926 7954 7983 8012 8040 8069 5 9 14 19 8185 8014 8044 8044 8044 8044 8044 8044 8040 8069 5 9 14 19	8481 8511 8541 8571 8601 8632 8662 5 10 15 20	8816 8847 8878 8910 8941 8972 5 10 16 21	9039 9101 9103 9193 9220 9233 5 11 10 21 9424 9457 9490 9553 9556 9590 9623 6 11 17 22 9750 9750 9750 9770 9881 9886 9990 9653 6 11 17 22	87.92 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02
ATURAL TANGENT	18 24 30 36 42 48 54	0.3° 0.4° 0.5° 0.6° 0.7° 0.8° 0.9° 1 2 3 4	0052 0070 0087 0105 0122 0140 0157 3 6 9 12	0209 0227 0244 0262 0279 0297 0314 0332 3 6 9 12	0559 0577 0594 0612 0629 0647 0664 0682 3 6 9 12	0752         0769         0787         0805         0822         0840         0857         3         6         9         12           0928         0945         0963         0981         0998         1016         1033         3         6         9         12	1086 1104 1122 1139 1157 1175 1192 1210 3 6 9 12	1263         1281         1299         1317         1334         1352         1370         1388         3         6         9         12	1459 1477 1495 1512 1530 1548 1566 3 6 9 12	1520   1538   1553   1573   1691   1709   1727   1745   3 6 9   12   1799   1817   1835   1853   1871   1890   1908   1926   3 6 9   12	1980 1998 2016 2035 2053 2071 2089 2107 3 6 9 12	2162 2180 2199 2217 2235 2254 2272 2290 3 6 9 12	2345 2364 2382 2401 2419 2438 2456 2475 3 6 9 12	2549         2508         2605         2623         2642         2601         3         6         9         12           2736         2754         2773         2792         2811         2830         2849         3         6         9         13	2905 2924 2943 2962 2981 3000 3019 3038 3 6 9 13	3115 3134 3153 3172 3191 3211 3230 3 6 10 13	3268 3307 3327 3349 3369 3389 3600 3620 3 7 10 13	3679 3699 3719 3739 3759 3779 3799 3819 3 7 10 13	3899 3919 3939 3959 3979 4000 4020 3 7 10 13 4101 4122 4142 4163 4183 4204 4224 3 7 10 14	4307         4327         4748         4369         4390         4411         4431         3         7         10         14         17           4515         4536         4578         4599         4691         4621         4642         4         7         11         14         18	4706         4727         4748         4770         4791         4813         4834         4856         4         7         11         14         18	4921 4942 4964 4986 5008 5029 5051 5073 4 7 11 15	5139         5161         5184         5206         5228         5250         5272         5289         4         7         11         15           5362         5384         5407         5430         5452         5475         5498         5520         4         8         11         15	5612         5635         5658         5681         5704         5727         5750         4         8         12         15           5844         5867         5890         5914         5938         5961         5985         4         8         12         16	6056 6080 6104 6128 6152 6176 6200 6224 4 8 12 16	65322         6346         6341         6389         6420         6448         6469         4         8         12         16           6569         6594         6669         6669         6669         670         4         8         13         17	6822         6847         6873         6899         6924         6950         6976         4         9         13         17           7080         7107         7133         7159         7186         7212         7239         4         9         13         18	7346 7373 7400 7427 7454 7481 7508 5 9 14 18 7618 7645 7673 7701 7700 7757 7785 5 9 14 18	7869 7898 7926 7934 7933 8012 8040 8069 5 9 14 19 8156 8185 814 89473 8473 8473 8473 8475 8475 8475 8475 8475 8475 8475 8475	8451 8481 8541 8571 8601 8632 8662 5 10 15 20	8785 8816 8847 8878 8910 8941 8972 5 10 16 21	900/ 9009 9131 9102 9189 9220 9220 9233 5 11 10 21 9391 9444 9457 9490 9523 9556 9590 9623 6 11 17 22 9735 9776 9770 9871 9881 9886 9987 9987 9881 9886	27.5   1. 1. 0   COSS   OSSS
ATURAL TANGENT	12 18 24 30 36 42 48 54	0.2° 0.3° 0.4° 0.5° 0.6° 0.7° 0.8° 0.9° 1 2 3 4	0035 0052 0070 0087 0105 0122 0140 0157 3 6 9 12	0209 0227 0244 0262 0279 0297 0314 0332 3 6 9 12	0367 0354 0402 0419 0445 0452 0488 0507 3 6 9 12	0734 0752 0769 0787 0805 0822 0840 0857 3 6 9 12 0910 0928 0945 0963 0981 0998 1016 1033 3 6 9 12	1069 1086 1104 1122 1139 1157 1175 1192 1210 3 6 9 12	1246         1263         1281         1299         1317         1334         1352         1370         1388         3         6         9         12	1441 1459 1477 1495 1512 1530 1548 1566 3 6 9 12	1602   1620   1638   1655   1673   1691   1709   1727   1745   3 6 9   12   1781   1799   1817   1835   1853   1871   1890   1908   1926   3 6 9   12	1962 1980 1998 2016 2035 2053 2071 2089 2107 3 6 9 12	2144 2162 2180 2199 2217 2235 2254 2272 2290 3 6 9 12	2327 2345 2364 2382 2401 2419 2438 2456 2475 3 6 9 12	2530         2549         2566         2606         2603         2623         2642         2661         3         0         9         12           2717         2736         2754         2773         2792         2811         2830         2849         3         6         9         13	2886         2905         2924         2943         2962         2981         3000         3019         3038         3         6         9         13	3096 3115 3134 3153 3172 3191 3211 3230 3 6 10 13	3463 3482 3502 3522 3541 3561 3581 3600 3620 3 7 10 13	3659 3679 3699 3719 3739 3779 3779 3819 3 7 10 13	3879 3899 3919 3939 3959 3959 4000 4020 3 7 10 13 4081 4101 4122 4142 4163 4183 4204 4224 3 7 10 14	8286 4307 4327 4748 4369 4390 4411 4431 3 7 10 14 17 4494 4815 4538 4557 4578 4599 4881 4649 4 7 11 14 18	4684 4706 4727 4748 4770 4791 4813 4834 4856 4 7 11 14 18	4899 4921 4942 4964 4986 5008 5029 5051 5073 4 7 11 15	511/ 5139 5161 5184 5206 5228 5250 527/2 5295 4 / 11 15 5340 5362 5384 5407 5430 5452 5475 5498 5520 4 8 11 15	5589         5612         5636         5658         5681         5704         5727         5750         4         8         12         15           5820         5844         5867         5890         5914         5938         5961         5985         4         8         12         16	6032 6056 6080 6104 6128 6152 6176 6200 6224 4 8 12 16	6297 6322 6346 6371 6395 6420 6445 6469 4 8 12 16 6544 6569 6594 6619 6644 6669 6694 6720 4 8 13 17	6796         6822         6847         6873         6899         6924         6950         6976         4         9         13         17           7054         7080         7107         7133         7159         7186         7212         7239         4         9         13         18	7319 7346 7373 7400 7427 7454 7481 7508 5 9 14 18 7500 7618 7618 7613 7701 7720 7757 7785 5 0 14 18	7841 7869 7898 7926 7954 7983 8012 8040 8069 5 9 14 19 8175 8156 8186 8041 8043 8373 8372 8361 5 10 15 20	8421 8451 8481 8511 8541 8571 8601 8632 8662 5 10 15 20	8754 8785 8816 8847 8878 8910 8941 8972 5 10 16 21	90.00 90.07 90.99 91.51 910.5 912.0 92.00 92.95 5 11 10 21 93.58 93.91 94.24 94.57 94.00 95.90 95.00 96.23 6 11 17 22 96.01 97.95 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97	8031 8732 8733 8027 8030 8330 8330 8733 8036 8330