ગુજરાત રાજ્યના શિક્ષણવિભાગના પત્ર-ક્રમાંક થી મંજૂર



# ધોરણ XI



## 🖺 પ્રતિજ્ઞાપત્ર

ભારત મારો દેશ છે.

બધાં ભારતીયો મારાં ભાઈબહેન છે.

હું મારા દેશને ચાહું છું અને તેના સમૃદ્ધ અને

વૈવિધ્યપૂર્ણ વારસાનો મને ગર્વ છે.

હું સદાય તેને લાયક બનવા પ્રયત્ન કરીશ.

હું મારાં માતાપિતા, શિક્ષકો અને વડીલો પ્રત્યે આદર રાખીશ

અને દરેક જણ સાથે સભ્યતાથી વર્તીશ.

હું મારા દેશ અને દેશબાંધવોને મારી નિષ્ઠા અર્પું છું.

તેમનાં કલ્યાણ અને સમૃદ્ધિમાં જ મારું સુખ રત્યું છે.

કિંમત₹: .00



राष्ट्रीय शैक्षिक अनुसंधान और प्रशिक्षण परिषद् NATIONAL COUNCIL OF EDUCATIONAL RESEARCH AND TRAINING.



ગુજરાત રાજ્ય શાળા પાઠ્યપુસ્તક મંડળ 'વિદ્યાયન', સેક્ટર 10-એ, ગાંધીનગર-382010

© NCERT, નવી દિલ્હી તથા ગુજરાત રાજ્ય શાળા પાઠ્યપુસ્તક મંડળ, ગાંધીનગર આ પાઠ્યપુસ્તકના સર્વ હક NCERT, નવી દિલ્હી તથા ગુજરાત રાજ્ય શાળા પાઠ્યપુસ્તક મંડળને હસ્તક છે. આ પાઠ્યપુસ્તકનો કોઈ પણ ભાગ કોઈ પણ રૂપમાં NCERT, નવી દિલ્હી અને ગુજરાત રાજ્ય શાળા પાઠ્યપુસ્તક મંડળની લેખિત પરવાનગી વગર પ્રકાશિત કરી શકાશે નહિ.

#### અનુવાદ

ડૉ. એ. પી. શાહ(કન્વિનર)

શ્રી જયકૃષ્ણ એન. ભટ્ટ

ડૉ. વિપુલ આર. શાહ

શ્રી રાજીવ એસ. ચોક્સી

ડૉ. રવિ બોરાણા

શ્રી વિજય વોરા

#### સમીક્ષક

ડૉ. એ. એચ. હાસમણી

ડૉ. મહેશ એમ. ત્રિવેદી

શ્રી પરિમલ બી. પુરોહિત

શ્રી એન. બી. ગાંગાણી

શ્રી પોપટલાલ પી. પટેલ

શ્રી મૃગેશ બી. પારેખ

ડૉ. કૃષ્ણકુમાર એમ. મહેતા

#### ભાષાશુદ્ધિ

શ્રી વિજય પારેખ

#### સંયોજન

શ્રી આશિષ એચ. બોરીસાગર

(વિષય-સંયોજક: ગણિત)

#### નિર્માણ-આયોજન

શ્રી આશિષ એચ. બોરીસાગર

(નાયબ નિયામક : શૈક્ષણિક)

#### મુદ્રણ-આયોજન

શ્રી હરેશ એસ. લીમ્બાચીયા

(નાયબ નિયામક : ઉત્પાદન)

#### પ્રસ્તાવના

રાષ્ટ્રીય સ્તરે સમાન અભ્યાસક્રમ રાખવાની સરકારશ્રીની નીતિના અનુસંધાને ગુજરાત સરકાર તથા ગુજરાત માધ્યમિક અને ઉચ્ચતર માધ્યમિક શિક્ષણ બોર્ડ દ્વારા ઠરાવ ક્રમાંકઃ મશબ/1217/1036/છ તા.25/10/2017 થી શાળા કક્ષાએ NCERT ના પાઠ્યપુસ્તકોનો સીધો જ અમલ કરવાનો નિર્ણય કરવામાં આવ્યો. તેને અનુલક્ષીને NCERT, નવી દિલ્હી દ્વારા પ્રકાશિત ધોરણ 11 ના ગણિત વિષયના પાઠ્યપુસ્તકનો ગુજરાતીમાં અનુવાદ કરાવીને વિદ્યાર્થીઓ સમક્ષ મૂકતાં ગુજરાત રાજ્ય શાળા પાઠ્યપુસ્તક મંડળ આનંદ અનુભવે છે.

આ પાઠ્યપુસ્તકનો અનુવાદ તથા તેની સમીક્ષા નિષ્ણાત પ્રાધ્યાપકો અને શિક્ષકો પાસે કરાવવામાં આવ્યા છે અને સમીક્ષકોનાં સૂચનો અનુસાર હસ્તપ્રતમાં યોગ્ય સુધારા-વધારા કર્યા પછી આ પાઠ્યપુસ્તક પ્રસિદ્ધ કરતાં પહેલાં આ પાઠ્યપુસ્તકની મંજૂરી માટે એક રાજ્ય કક્ષાની સમિતિની રચના કરવામાં આવી. આ સમિતિની સાથે NCERT ના પ્રતિનિધિ તરીકે આર.આઇ.ઇ. ભોપાલથી ઉપસ્થિત રહેલા નિષ્ણાતોની સાથે એક ત્રિદિવસીય કાર્યશિબિરનું આયોજન કરવામાં આવ્યું અને પાઠ્યપુસ્તકને અંતિમ સ્વરૂપ આપવામાં આવ્યું, જેમાં ડૉ. એ. પી. શાહ, ડૉ. રિવ બોરાણા, શ્રી નવરોજ ગાંગાણી, શ્રી પરિમલ પુરોહીત, ડૉ. સુરેશ મકવાના (આર.આઇ.ઇ. ભોપાલ), શ્રી અજી થોમસ (આર.આઇ.ઇ. ભોપાલ) ઉપસ્થિત રહ્યા હતા અને તેમણે પોતાના કિંમતી સૂચનો અને માર્ગદર્શન પૂરા પાડ્યા છે.

પ્રસ્તુત પાઠ્યપુસ્તકને રસપ્રદ, ઉપયોગી અને ક્ષતિરહિત બનાવવા માટે માન. અગ્રસચિવશ્રી(શિક્ષણ) દ્વારા અંગત રસ લઈને જરૂરી માર્ગદર્શન આપવામાં આવ્યું છે. આ પાઠ્યપુસ્તકની ગુણવત્તા જાળવવા માટે મંડળ દ્વારા પૂરતી કાળજી લેવાઇ છે, તેમ છતાં શિક્ષણમાં રસ ધરાવનાર વ્યક્તિઓ પાસેથી પુસ્તકની ગુણવત્તા વધારે તેવાં સૂચનો આવકાર્ય છે.

NCERT, નવી દિલ્હીના સહકાર બદલ તેમના આભારી છીએ.

ડૉ. એમ. આઇ. જોષી

નિયામક

ડૉ. નીતિન પેથાણી

કાર્યવાહક પ્રમુખ

તા. 26-10-2017

ગાંધીનગર

પ્રથમ આવૃત્તિ : 2018

પ્રકાશક : ગુજરાત રાજ્ય શાળા પાઠ્ચપુસ્તક મંડળ, 'વિદ્યાયન', સેક્ટર 10-એ, ગાંધીનગર વતી

ડૉ. એમ. આઇ. જોષી, નિયામક

મુદ્રક

#### **Foreword**

The National Curriculum Framework (NCF), 2005, recommends that children's life at school must be linked to their life outside the school. This principle marks a departure from the legacy of bookish learning which continues to shape our system and causes a gap between the school, home and community. The syllabi and textbooks developed on the basis of NCF signify an attempt to implement this basic idea. They also attempt to discourage rote learning and the maintenance of sharp boundaries between different subject areas. We hope these measures will take us significantly further in the direction of a child-centred system of education outlined in the National Policy on Education (1986).

The success of this effort depends on the steps that school principals and teachers will take to encourage children to reflect on their own learning and to pursue imaginative activities and questions. We must recognise that given space, time and freedom, children generate new knowledge by engaging with the information passed on to them by adults. Treating the prescribed textbook as the sole basis of examination is one of the key reasons why other resources and sites of learning are ignored. Inculcating creativity and initiative is possible if we perceive and treat children as participants in learning, not as receivers of a fixed body of knowledge.

These aims imply considerable change in school routines and mode of functioning. Flexibility in the daily time-table is as necessary as rigour in implementing the annual calendar so that the required number of teaching days are actually devoted to teaching. The methods used for teaching and evaluation will also determine how effective this textbook proves for making children's life at school a happy experience, rather than a source of stress or boredom. Syllabus designers have tried to address the problem of curricular burden by restructuring and reorienting knowledge at different stages with greater consideration for child psychology and the time available for teaching. The textbook attempts to enhance this endeavour by giving higher priority and space to opportunities for contemplation and wondering, discussion in small groups, and activities requiring hands-on experience.

The National Council of Educational Research and Training (NCERT) appreciates the hard work done by the Textbook Development Committee responsible for this book. We wish to thank the Chairperson of the advisory group in Science and Mathematics, Professor J.V. Narlikar and the Chief Advisor for this book Professor P.K. Jain for guiding the work of this committee. Several teachers contributed to the development of this textbook; we are grateful to their principals for making this possible. We are indebted to the institutions and organisations which have

generously permitted us to draw upon their resources, material and personnel. We are especially grateful to the members of the National Monitoring Committee, appointed by the Department of Secondary and Higher Education, Ministry of Human Resource Development under the Chairpersonship of Professor Mrinal Miri and Professor G.P. Deshpande, for their valuable time and contribution. As an organisation committed to the systemic reform and continuous improvement in the quality of its products, NCERT welcomes comments and suggestions which will enable us to undertake further revision and refinement.

New Delhi 20 December 2005

Director
National Council of Educational
Research and Training

## **Textbook Development Committee**

#### CHAIRPERSON, ADVISORY GROUP IN SCIENCE AND MATHEMATICS

J.V. Narlikar, *Emeritus Professor*, Chairman, Advisory Committee Inter University Centre for Astronomy & Astrophysics (IUCCA), Ganeshkhind, Pune University, Pune

#### CHIEF ADVISOR

P.K. Jain, Professor, Department of Mathematics, University of Delhi, Delhi

#### CHIEF COORDINATOR

Bangalore, Karnataka.

Hukum Singh, Professor, DESM, NCERT, New Delhi

#### **Members**

A.K. Rajput, Associate Professor, RIE Bhopal, M.P.

A.K. Wazalwar, Associate Professor, DESM NCERT, New Delhi

B.S.P. Raju, Professor, RIE Mysore, Karnataka

C.R. Pradeep, Assistant Professor, Department of Mathematics, Indian Institute of Science,

Pradeepto Hore, Sr. Maths Master, Sarla Birla Academy Bangalore, Karnataka.

S.B. Tripathy, Lecturer, Rajkiya Pratibha Vikas Vidyalaya, Surajmal Vihar, Delhi.

S.K.S. Gautam, Professor, DESM, NCERT, New Delhi

Sanjay Kumar Sinha, P.G.T., Sanskriti School Chanakyapuri, New Delhi.

Sanjay Mudgal, Lecturer, CIET, New Delhi

Sneha Titus, Maths Teacher, Aditi Mallya School Yelaharika, Bangalore, Karnataka

Sujatha Verma, Reader in Mathematics, IGNOU, New Delhi.

Uaday Singh, Lecturer, DESM, NCERT, New Delhi.

### Acknowledgements

The Council gratefully acknowledges the valuable contributions of the following participants of the Textbook Review Workshop: P. Bhaskar Kumar, *P.G.T.*, Jawahar Navodaya Vidyalaya, Ananthpur, (A.P.); Vinayak Bujade, *Lecturer*, Vidarbha Buniyadi Junior College, Sakkardara Chowk Nagpur, Maharashtra; Vandita Kalra, *Lecturer*, Sarvodaya Kanya Vidyalaya Vikashpuri District Centre, New Delhi; P.L. Sachdeva Deptt. of Mathematics, Indian Institute of Science, Bangalore, Karnataka; P.K.Tiwari *Assistant Commissioner (Retd.)*, Kendriya Vidyalaya Sangathan; Jagdish Saran, Department of Statistics, University of Delhi; Quddus Khan, *Lecturer*, Shibli National P.G. College Azamgarh (U.P.); Sumat Kumar Jain, *Lecturer*, K.L. Jain Inter College Sasni Hathras (U.P.); R.P. Gihare, *Lecturer* (BRC), Janpad Shiksha Kendra Chicholi Distt. Betul (M.P.); Sangeeta Arora, *P.G.T.*, A.P.J. School Saket, New Delhi; P.N. Malhotra, *ADE* (Sc.), Directorate of Education, Delhi; D.R. Sharma, *P.G.T.*, J.N.V. Mungespur, Delhi; Saroj, *P.G.T.* Government Girls Sr. Secondary School, No. 1, Roop Nagar, Delhi, Manoj Kumar Thakur, *P.G.T.*, D.A.V. Public School, Rajender Nagar, Sahibabad, Ghaziabad (U.P.) and R.P. Maurya, *Reader*, DESM, NCERT, New Delhi.

Acknowledgements are due to Professor M. Chandra, *Head*, Department of Education in Science and Mathematics for her support.

The Council acknowledges the efforts of the Computer Incharge, Deepak Kapoor; Rakesh Kumar, Kamlesh Rao and Sajjad Haider Ansari, D.T.P. Operators; Kushal Pal Singh Yaday, Copy Editor and Proof Readers, Mukhtar Hussain and Kanwar Singh.

The contribution of APC-Office, administration of DESM and Publication Department is also duly acknowledged.

# અનુક્રમણિકા

| 1. | ગુણ                              |                                                          | 1   |
|----|----------------------------------|----------------------------------------------------------|-----|
|    | 1.1                              | પ્રાસ્તાવિક                                              | 1   |
|    | 1.2                              | ગણ અને તેમનું નિરૂપણ                                     | 1   |
|    | 1.3                              | ખાલી ગણ                                                  | 6   |
|    | 1.4                              | સાન્ત અને અનંત ગણો                                       | 7   |
|    | 1.5                              | સમાન ગણ                                                  | 8   |
|    | 1.6                              | ઉપગણ                                                     | 10  |
|    | 1.7                              | ઘાતગણ                                                    | 13  |
|    | 1.8                              | સાર્વત્રિક ગણ                                            | 13  |
|    | 1.9                              | વેન-આકૃતિ                                                | 15  |
|    | 1.10                             | ગણક્રિયાઓ                                                | 16  |
|    | 1.11                             | પૂરકગણ                                                   | 20  |
|    | 1.12                             | બે ગણના યોગગણ અને છેદગણ પરના વ્યાવહારિક કૂટપ્રશ્નો       | 22  |
| 2. | સંબંધ                            | ા અને વિધેયો                                             | 32  |
|    | 2.1                              | પ્રાસ્તાવિક                                              | 32  |
|    | 2.2                              | ગણોનો કાર્તેઝિય ગુણાકાર                                  | 32  |
|    | 2.3                              | સંબંધ                                                    | 36  |
|    | 2.4                              | વિધેય                                                    | 38  |
| 3. | ત્રિકોણમિતિય વિધેયો              |                                                          | 49  |
|    | 3.1                              | પ્રાસ્તાવિક                                              | 49  |
|    | 3.2                              | ખૂણા                                                     | 50  |
|    | 3.3                              | ત્રિકોણમિતિય વિધેયો                                      | 55  |
|    | 3.4                              | બે ખૂણાના સરવાળા અને બાદબાકી સ્વરૂપે ત્રિકોણમિતિય વિધેયો | 62  |
|    | 3.5                              | ત્રિકોણમિતિય સમીકરણો                                     | 72  |
|    | 3.6                              | Sine અને Cosine સૂત્રોની સાબિતી અને સરળ ઉપયોગ            | 76  |
| 4. | ગાણિતિક અનુમાનનો સિદ્ધાંત        |                                                          | 88  |
|    | 4.1                              | પ્રાસ્તાવિક                                              | 88  |
|    | 4.2                              | વિષયાભિમુખ                                               | 89  |
|    | 4.3                              | ગાણિતિક અનુમાનનો સિદ્ધાંત                                | 90  |
| 5. | સંકર સંખ્યાઓ અને દ્વિઘાત સમીકરણો |                                                          | 99  |
|    | 5.1                              | પ્રાસ્તાવિક                                              | 99  |
|    | 5.2                              | સંકર સંખ્યાઓ                                             | 99  |
|    | 5.3                              | સંકર સંખ્યાઓનું બીજગણિત                                  | 100 |

|     | 5.4      | સંકર સંખ્યાનો માનાંક તથા અનુબદ્ધ સંકર સંખ્યા               | 104 |
|-----|----------|------------------------------------------------------------|-----|
|     | 5.5      | આર્ગન્ડ આકૃતિ અને ધ્રુવીય સ્વરૂપ                           | 106 |
|     | 5.6      | દ્વિઘાત સમીકરણો                                            | 109 |
|     | 5.7      | સંકર સંખ્યાનું વર્ગમૂળ                                     | 110 |
| 6.  | સુરેખ    | અસમતાઓ                                                     | 117 |
|     | 6.1      | પ્રાસ્તાવિક                                                | 117 |
|     | 6.2      | અસમતાઓ                                                     | 117 |
|     | 6.3      | એક ચલમાં સુરેખ અસમતાનો બૈજિક ઉકેલ અને તેનું આલેખ પર નિરૂપણ | 119 |
|     | 6.4      | બે ચલમાં સુરેખ અસમતાનો આલેખ પરથી ઉકેલ                      | 124 |
|     | 6.5      | બે ચલમાં સુરેખ અસમતાઓની સંહતિનો ઉકેલ                       | 128 |
| 7.  | ક્રમચ    | ય અને સંચય                                                 | 134 |
|     | 7.1      | પ્રાસ્તાવિક                                                | 134 |
|     | 7.2      | ગણતરીનો મૂળભૂત સિદ્ધાંત                                    | 135 |
|     | 7.3      | ક્રમચયો                                                    | 138 |
|     | 7.4      | સંચય                                                       | 146 |
| 8.  | દ્વિપર્દ | l પ્રમેય                                                   | 156 |
|     | 8.1      | પ્રાસ્તાવિક                                                | 156 |
|     | 8.2      | ધનપૂર્ણાંક ઘાતાંકો માટેનું દ્વિપદી પ્રમેય                  | 156 |
|     | 8.3      | વ્યાપક અને મધ્યમપદો                                        | 163 |
| 9.  | શ્રેણી   | અને શ્રેઢી                                                 | 171 |
|     | 9.1      | પ્રાસ્તાવિક                                                | 171 |
|     | 9.2      | શ્રેણીઓ                                                    | 172 |
|     | 9.3      | શ્રેઢી                                                     | 173 |
|     | 9.4      | સમાંતર શ્રેણી (A.P.)                                       | 175 |
|     | 9.5      | સમગુણોત્તર શ્રેણી (G.P.)                                   | 179 |
|     | 9.6      | સમાંતર મધ્યક અને ગુણોત્તર મધ્યક વચ્ચેનો સંબંધ              | 184 |
|     | 9.7      | વિશિષ્ટ શ્રેણીઓનાં <i>n</i> પદોના સરવાળા                   | 187 |
|     | 9.8      | અનંત સમગુષ્પોત્તર શ્રેષ્ટ્રી અને તેનો સરવાળો               | 190 |
| 10. | રેખાર    | મો                                                         | 197 |
|     | 10.1     | પ્રાસ્તાવિક                                                | 197 |
|     | 10.2     | રેખાનો ઢાળ                                                 | 199 |
|     | 10.3     | રેખાના સમીકરણનાં વિવિધ સ્વરૂપ                              | 205 |
|     | 10.4     | રેખાનું વ્યાપક સમીકરણ                                      | 212 |
|     | 10.5     | બિંદુથી રેખાનું લંબઅંતર                                    | 215 |

|     | 10.6 બ રખાંઆના છંદાબદુમાંથા પંસાર થતા રખા-સહાતનું સમાકરણ | 218 |
|-----|----------------------------------------------------------|-----|
|     | 10.7 ઊગમબિંદુનું સ્થાનાંતર                               | 219 |
| 11. | શાંકવો                                                   | 227 |
|     | 11.1 પ્રાસ્તાવિક                                         | 227 |
|     | 11.2 શંકુનો પરિચ્છેદ                                     | 227 |
|     | 11.3 વર્તુળ                                              | 230 |
|     | 11.4 પરવલય                                               | 232 |
|     | 11.5 ઉપવલય                                               | 236 |
|     | 11.6 અતિવલય                                              | 243 |
| 12. | ત્રિપરિમાણીય ભૂમિતિનો પરિચય                              | 252 |
|     | 12.1 પ્રાસ્તાવિક                                         | 252 |
|     | 12.2 ત્રિપરિમાણીય અવકાશમાં યામાક્ષો અને યામ સમતલો        | 253 |
|     | 12.3 અવકાશમાં બિંદુના યામ                                | 253 |
|     | 12.4 બે બિંદુઓ વચ્ચેનું અંતર                             | 255 |
|     | 12.5 વિભાજન સૂત્ર                                        | 257 |
| 13. | લક્ષ અને વિકલન                                           | 263 |
|     | 13.1 પ્રાસ્તાવિક                                         | 263 |
|     | 13.2 વિકલનનો સાહજિક ખ્યાલ                                | 263 |
|     | 13.3 લક୍ષ                                                | 265 |
|     | 13.4 ત્રિકોણમિતિય વિધેયનાં લક્ષ                          | 275 |
|     | 13.5 ઘાતાંકીય અને લઘુગણકીય વિધેય                         | 279 |
|     | 13.6 વિકલન                                               | 281 |
| 14. | ગાણિતિક તર્ક                                             | 296 |
|     | 14.1 પ્રાસ્તાવિક                                         | 296 |
|     | 14.2 વિધાન                                               | 297 |
|     | 14.3 જૂનાં વિધાનોમાંથી નવાં વિધાનો                       | 299 |
|     | 14.4 વિશિષ્ટ શબ્દો/શબ્દસમૂહો                             | 304 |
|     | 14.5 પ્રેરણ                                              | 309 |
|     | 14.6 વિધાનોની યથાર્થતા                                   | 313 |
| 15. | આંકડાશાસ્ત્ર                                             | 321 |
|     | 15.1 પ્રાસ્તાવિક                                         | 321 |
|     | 15.2 પ્રસારનાં માપ                                       | 322 |
|     | 15.3 વિસ્તાર                                             | 323 |
|     | 15.4 સરેરાશ વિચલન                                        | 323 |

|     | 15.5 વિચરણ અને પ્રમાણિત વિચલન          | 333 |
|-----|----------------------------------------|-----|
|     | 15.6 આવૃત્તિ વિતરણનું વિશ્લેષણ         | 342 |
| 16. | સંભાવના                                | 351 |
|     | 16.1 પ્રાસ્તાવિક                       | 351 |
|     | 16.2 યાદચ્છિક પ્રયોગો                  | 352 |
|     | 16.3 ઘટના                              | 355 |
|     | 16.4 સંભાવનાનો પૂર્વધારણાયુક્ત અભિગમ   | 362 |
|     | પરિશિષ્ટ 1: અનંત શ્રેઢી                | 378 |
|     | A.1.1 પ્રાસ્તાવિક                      | 378 |
|     | A.1.2 કોઈપણ ઘાતાંક માટે દ્વિપદી પ્રમેય | 378 |
|     | A.1.3 અનંત સમગુશોત્તર શ્રેઢી           | 380 |
|     | A.1.4 ઘાતાંકીય શ્રેઢી                  | 381 |
|     | A.1.5 લઘુગણકીય શ્રેઢી                  | 384 |
|     | પરિશિષ્ટ 2: ગાણિતિક નમૂના              | 385 |
|     | A.2.1 પ્રાસ્તાવિક                      | 385 |
|     | A.2.2 પ્રાથમિકતાઓ                      | 385 |
|     | A.2.3 ગાણિતિક નમૂના શું છે ?           | 389 |
|     | જવાબો                                  | 396 |

### ગુણ

❖ In these days of conflict between ancient and modern studies; there must surely be something to be said for a study which did not begin with Pythagoras and will not end with Einstein; but is the oldest and the youngest. — G. H. HARDY ❖

#### 1.1 પ્રાસ્તાવિક

ગણની સંકલ્પના એ આધુનિક ગણતિનો મૂળભૂત ભાગ છે. આજે આ સંકલ્પનાનો ગણતિની લગભગ બધી જ શાખાઓમાં ઉપયોગ થાય છે. સંબંધ અને વિધેયોના સિદ્ધાંતો વ્યાખ્યાયિત કરવા માટે ગણનો ઉપયોગ થાય છે. ભૂમિતિ, શ્રેણીઓ, સંભાવના વગેરેના અભ્યાસ માટે ગણનું જ્ઞાન જરૂરી છે.

જર્મન ગણિતશાસ્ત્રી *Georg Cantor* એ (1845-1918) ગણની સંકલ્પનાનો સૈદ્ધાંતિક વિકાસ કર્યો. તેમણે ત્રિકોણિમિતિય શ્રેઢીઓના કોયડાઓના ઉકેલ માટે પ્રથમ વખત ગણનો ઉપયોગ કર્યો. આ પ્રકરણમાં આપણે ગણ સંબંધિત પાયાની વ્યાખ્યાઓ અને ગણ પરની ક્રિયાઓ વિશે ચર્ચા કરીશું.



Georg Cantor (1845-1918)

### 1.2 ગણ અને તેમનું નિરૂપણ

દૈનિક જીવનમાં, આપણે ઘણી વખત ચોક્કસ પ્રકારની વસ્તુઓના સમૂહ વિશે બોલતા હોઈએ છીએ, જેમકે પત્તાંનો ઢગ, વ્યક્તિઓનું ટોળું, ક્રિકેટ-ટીમ વગેરે. ગણતમાં પણ આપણે કેટલાક સમૂહો વિશે વાત કરતાં હોઈએ

છીએ જેમકે, પ્રાકૃતિક સંખ્યાઓનો સમૂહ, બિંદુઓનો સમૂહ, અવિભાજ્ય સંખ્યાઓનો સમૂહ વગેરે. આપણે વિશેષ રૂપે નીચેના સમૂહોનું નિરીક્ષણ કરીશું :

- (i) 10 થી નાની અયુગ્મ પ્રાકૃતિક સંખ્યાઓ, એટલે કે 1, 3, 5, 7, 9.
- (ii) ભારતની નદીઓ
- (iii) અંગ્રેજી મૂળાક્ષરોના સ્વરો, એટલે કે a, e, i, o, u
- (iv) વિવિધ પ્રકારના ત્રિકોણો
- (v) 210 ના અવિભાજ્ય અવયવો, એટલે કે 2, 3, 5 અને 7
- (vi) સમીકરણ :  $x^2 5x + 6 = 0$  નો ઉકેલ, એટલે કે 2 અને 3.

આપણે નોંધીશું કે ઉપરનું દરેક ઉદાહરણ એ આપેલી સુવ્યાખ્યાયિત વસ્તુઓ કે સંખ્યાઓનો સમૂહ છે. એટલે કે આપેલી વસ્તુ કે સંખ્યા જે-તે સમૂહનો સભ્ય છે કે નહિ તે ચોક્કસપણે નક્કી કરી શકીએ તેવો જથ્થો છે. દાખલા તરીકે આપણે કહી શકીએ કે, નાઈલ નદી એ ભારતની નદીઓના સમૂહનો સભ્ય નથી, પરંતુ ગંગા નદી આ સમૂહનો સભ્ય છે જ.

હવે, આપણે કહી શકીએ કે, ગણ એ સુવ્યાખ્યાયિત વસ્તુઓનો સમૂહ છે.

ખાસ કરીને ગણિતમાં ઉપયોગ થતો હોય તેવાં કેટલાંક વધારે ઉદાહરણો આપીશું, જેમકે,

N : બધી જ પ્રાકૃતિક સંખ્યાઓનો ગણ

Z : બધી જ પૂર્ણાંક સંખ્યાઓનો ગણ

Q : બધી જ સંમેય સંખ્યાઓનો ગણ

R : વાસ્તવિક સંખ્યાઓનો ગણ

Z+ : ધન પૂર્શાંક સંખ્યાઓનો ગણ

 $\mathbf{Q}^+$ : ધન સંમેય સંખ્યાઓનો ગણ

 $\mathbf{R}^+$  : ધન વાસ્તવિક સંખ્યાઓનો ગણ

ઉપર દર્શાવેલા વિશિષ્ટ ગણોને જે-તે સંકેત વડે દર્શાવેલ છે. તે સંકેતોનો ઉપયોગ આપણે આ સમગ્ર અભ્યાસ દરમિયાન કરીશું. અલબત્ત, દુનિયાના પાંચ નામાંકિત ગણિતશાસ્ત્રીઓનો સમૂહ એ સુવ્યાખ્યાયિત નથી, કારણ કે કોઈ ગણિતશાસ્ત્રી નામાંકિત છે કે નહિ તે માટેનો અભિપ્રાય વ્યક્તિ-વ્યક્તિએ બદલાતો રહેશે.

આમ, આ સ્વ્યાખ્યાયિત સમૂહ નથી.

નીચેના મુદ્દાઓ નોંધીશું :

- (i) ગણની વસ્તુઓ, ઘટકો અને સભ્યો એ ગણ સંબંધિત સમાનાર્થી શબ્દો છે.
- (ii) સામાન્ય રીતે ગણને અંગ્રેજી મૂળાક્ષરોના કૅપિટલ અક્ષરો A, B, C, X, Y, Z વગેરે વડે દર્શાવાય છે.
- (iii) ગણના સભ્યોને અંગ્રેજી મૂળાક્ષરોના નાના અક્ષરો a, b, c, x, y, z વડે દર્શાવાય છે.

ગણ

જો 'a' એ ગણ 'A' નો ઘટક હોય તો "a એ A નો સભ્ય છે." (a belongs to A) એમ કહીશું. શબ્દસમૂહ "નો સભ્ય છે" (belongs to)ને ગ્રીક સંકેત  $\in$  વડે દર્શાવીશું. આમ આપણે  $a \in A$  લખીશું. જો b એ ગણ A નો સભ્ય ન હોય, તો તેને આપણે  $b \notin A$  વડે દર્શાવીશું અને 'b એ ગણ A નો સભ્ય નથી.'' (b does not belong to A) પ્રમાણે વાંચીશું.

આમ, અંગ્રેજી મૂળાક્ષરોના સ્વરોના ગણ V માટે  $a\in V$ , પરંતુ  $b\notin V$ . 30 ના અવિભાજ્ય અવયવોના ગણ P માટે  $3\in P$ , પરંતુ  $15\notin P$ .

ગણને દર્શાવવા માટે બે પદ્ધતિ છે:

- (i) યાદીની રીત (Roster or tabular form)
- (ii) ગુણધર્મની રીત (Set-builder form)
- (i) યાદીની રીતમાં ગણના બધા જ ઘટકોની યાદી બનાવાય છે. બે ઘટકોને દર્શાવતા સંકેત વચ્ચે અલ્પવિરામ મૂકીને તેમને જુદા પાડવામાં આવે છે અને તેમને ધનુષ્કૌંસ { } માં મુકાય છે. ઉદાહરણ તરીકે 7 થી નાના ધન યુગ્મ પૂર્ણાંકોના ગણને યાદીની રીતમાં {2, 4, 6} પ્રમાણે દર્શાવાય. યાદીની રીત દર્શાવતાં કેટલાંક વધારે ઉદાહરણો નીચે પ્રમાણે છે:
  - (a) જેના વડે 42 વિભાજ્ય છે તેવી પ્રાકૃતિક સંખ્યાઓનો ગણ {1, 2, 3, 6, 7, 14, 21, 42}

િ નોંધ : યાદીની રીતમાં ઘટકોના ક્રમનું મહત્ત્વ નથી. આમ, ઉપરના ગણને {1, 3, 7, 21, 2, 6, 14, 42}રીતે પણ ૨જૂ કરી શકાય.

- (b) અંગ્રેજી મૂળાક્ષરોના બધા જ સ્વરનો ગણ {a, e, i, o, u} છે.
- (c) અયુગ્મ પ્રાકૃતિક સંખ્યાઓના ગણને {1, 3, 5,...} રીતે દર્શાવી શકાય. ટપકાં આપણને કહે છે કે, અયુગ્મ પ્રાકૃતિક સંખ્યાઓનો સમૂહ અનંત સુધી ચાલશે.

નોંધઃ એમ પણ નોંધીએ કે, યાદીની રીતે ગણ લખીએ તો ઘટકોનું પુનરાવર્તન કરવામાં આવતું નથી. એટલે કે બધા ભિન્ન ઘટકો જ લેવામાં આવે છે. ઉદાહરણ તરીકે 'SCHOOL' શબ્દ બનાવતા મૂળાક્ષરોનો ગણ{ S, C, H, O, L} અથવા {H, O, L, C, S} થશે. અહીં ઘટકોના ક્રમનું કોઈ મહત્ત્વ નથી.

(ii) ગુણધર્મની રીતમાં ગણના બધા જ ઘટકો એક સામાન્ય ગુણધર્મ ધરાવે છે અને તે ગુણધર્મ ન ધરાવતા ઘટકો તે ગણમાં હોતા નથી. ઉદાહરણ તરીકે  $\{a, e, i, o, u\}$  ના બધા જ ઘટકો એક સામાન્ય ગુણધર્મ ધરાવે છે. ગણના બધા જ ઘટકો અંગ્રેજી મૂળાક્ષરોના સ્વર છે અને બીજા કોઈ મૂળાક્ષર આ ગુણધર્મ ધરાવતા નથી. આ ગણને V વડે દર્શાવીએ તો આપણે  $V = \{x : x \$ એ અંગ્રેજી મૂળાક્ષરો પૈકીનો સ્વર છે. $\}$  પ્રમાણે લખીશું.

આપણે નોંધીશું કે ગણનો સભ્ય બતાવવા માટે સંકેત x (કોઈ પણ બીજા સંકેત y, z વગેરેનો ઉપયોગ કરી શકાય.)નો ઉપયોગ કર્યો છે અને તેના પછી '': '' કૉલન લખેલ છે. કૉલનની સંજ્ઞા કર્યા પછી, ગણના બધા જ ઘટકોનો સમાવેશ થાય તેવો લાક્ષણિક ગુણધર્મ લખીએ છીએ અને પછી આપણે આ સમગ્ર વર્ણનને ધનુષ્કૌં સથી બંધ કરીએ છીએ. ઉપર વર્ણવેલ ગણ V ને ''x એ અંગ્રેજી મૂળાક્ષરનો સ્વર હોય તેવા બધા જ x નો ગણ છે'' તરીકે વાંચી શકાય. આ વર્શનમાં કૌંસ એ ''બધા જ ઘટકોનો ગણ'' માટે વપરાય છે. કૉલન ''કે જ્યાં'' માટે ઉપયોગમાં લેવાય છે. ઉદાહરણ તરીકે ગણ

વ માસ્ત્રિત : ધોરણ 11

 $A = \{x: x \ \$ એ પ્રાકૃતિક સંખ્યા છે અને  $3 < x < 10\}$  ને ''જ્યાં x એ પ્રાકૃતિક સંખ્યા છે અને x એ 3 અને 10 ની વચ્ચે આવેલી સંખ્યા છે.'' રીતે વાંચીશું. આથી, સંખ્યાઓ 4,5,6,7,8 અને 9 ગણ A ના ઘટકો થાય.

જો આપણે ઉપર (a), (b) અને (c) માં વર્ણવેલ ગણોને અનુક્રમે સંજ્ઞા A, B અને C આપીએ, તો A, B અને C ને ગુણધર્મની રીતે નીચે પ્રમાણે રજૂ કરી શકાય :

 $\mathbf{B} = \{y : y$ એ અંગ્રેજી મૂળાક્ષરો પૈકીનો સ્વર છે.}

 $C = \{z : z \text{ એ અયુગ્મ પ્રાકૃતિક સંખ્યા છે.}\}$ 

**ઉદાહરણ 1** : સમીકરણ  $x^2 + x - 2 = 0$  ના ઉકેલગણને યાદીની રીતે લખો.

ઉકેલ : આપેલ સમીકરણને (x-1) (x+2)=0 તરીકે લખી શકીએ. આમ x=1 અથવા -2.

તેથી આપેલ સમીકરણના ઉકેલગણને યાદીની રીતે  $\{1,-2\}$  સ્વરૂપે લખી શકાય.

ઉદાહરણ 2 : ગણ  $\{x: x \ \text{એ ધન પૂર્ણાંક સંખ્યા છે અને } x^2 < 40\}$  ને યાદીની રીતે લખો.

ઉક્રેલ : માંગેલ સંખ્યાઓ 1, 2, 3, 4, 5, 6 છે. તેથી આપેલ ગણ યાદીની રીતે {1, 2, 3, 4, 5, 6} છે.

ઉદાહરણ 3: ગણ A = {1, 4, 9, 16, 25, ...} ને ગુણધર્મની રીતે લખો.

ઉકેલ : આપેલ ગણ એ  $A = \{x : x એ પ્રાકૃતિક સંખ્યાનો વર્ગ છે.\}$ 

નોંધ : આ ઉકેલ અનન્ય નથી. ઉદાહરણ તરીકે  $\mathbf{B} = \{x : x \ \mathrm{ag}$ ન્યેતર પૂર્ણાંકનો વર્ગ છે. $\}$  પણ ઉકેલ થાય.

ઉદાહરણ 4 : ગણ  $\left\{\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \frac{5}{6}, \frac{6}{7}\right\}$  ને ગુણધર્મની રીતે દર્શાવો.

ઉકેલ : અહીં આપેલ ગણના દરેક ઘટકનો અંશ તેના છેદ કરતાં એક જેટલો ઓછો છે. અંશની શરૂઆત 1 થી થાય છે અને તે 6 થી વધારે નથી. આથી આપેલ ગણને ગુણધર્મની રીતે

$$\left\{x:x=rac{n}{n+1}, \ ext{જ્યાં}\ n$$
 એ પ્રાકૃતિક સંખ્યા છે અને  $1\leq n\leq 6 
ight\}$ લખી શકાય.

ઉદાહરણ 5: ડાબી બાજુએ યાદીની રીતે દર્શાવેલ દરેક ગણના જમણી બાજુએ ગુણધર્મની રીતે દર્શાવેલા ગણ સાથે યોગ્ય જોડકાં બનાવો.

- (i) {P, R, I, N, C, A, L} (a) { x : x એ ધન પૂર્ણાંક છે અને 18 નો ભાજક છે.}
- (ii) { 0 } (b) {  $x : x \text{ degn} \text{ ughs } \hat{\Theta} \text{ degn} \text{ } x^2 9 = 0$ }
- (iii) {1, 2, 3, 6, 9, 18} (c) {x : x એ પૂર્ણાંક છે અને x + 1= 1}
- (iv)  $\{3, -3\}$  (d)  $\{x : x \ એ \ PRINCIPAL શબ્દનો મૂળાક્ષર છે.\}$

ગણ 5

ઉકેલ : (d) માં PRINCIPAL શબ્દના 9 અક્ષરો છે અને તેમાં બે અક્ષરો P અને I પુનરાવર્તિત થાય છે. આથી (i) એ (d) સાથે જોડાશે. તે જ પ્રમાણે x+1=1 તો x=0 હોવાથી (ii) એ (c) સાથે જોડી બનાવશે. 1,2,3,6,9,18 એ 18 ના ધન અવયવો છે અને આ સિવાય 18 ને કોઇ ધન અવયવ નથી અને તેથી (iii) એ (a) સાથે જોડાશે. છેલ્લે  $x^2-9=0$  તો અને તો જ x=3 અથવા -3. આથી (iv) એ (b) સાથે જોડકું બનાવશે.

#### સ્વાધ્યાય 1.1

- 1. નીચેનામાંથી કયા સમૂહ ગણ દર્શાવે છે ? તમારો જવાબ ચકાસો.
  - (i) J અક્ષરથી શરૂ થતા અંગ્રેજી કૅલેન્ડરના વર્ષના તમામ મહિનાઓનો સમૂહ
  - (ii) ભારતના દસ અતિ પ્રતિભાશાળી લેખકોનો સમ્હ
  - (iii) દુનિયાના ક્રિકેટના ઉત્તમ અગિયાર બૅટ્સમેનોની ટીમ
  - (iv) તમારા વર્ગના બધા જ છોકરાઓનો સમ<u>્</u>હ
  - (v) 100 થી નાની બધી જ પ્રાકૃતિક સંખ્યાઓનો સમૂહ
  - (vi) લેખક મુન્શી પ્રેમચંદે લખેલી બધી જ નવલકથાઓનો સમૂહ
  - (vii) બધા જ યુગ્મ પૂર્ણાકોનો સમૂહ
  - (viii) આ પ્રકરણના બધા પ્રશ્નોનો સમૂહ
  - (ix) દુનિયાનાં ખૂબ જ ભયાનક પ્રાણીઓનો સમૂહ
- 2. A = {1, 2, 3, 4, 5, 6} લો. ખાલી જગ્યામાં યોગ્ય સંજ્ઞા ∈ અથવા ∉ મૂકો.
  - (i) 5...A

(ii) 8...A

(iii) 0...A

(iv) 4...A

(v) 2...A

(vi) 10...A

- 3. નીચેના ગણોને યાદીની રીતે લખો :
  - (i)  $A = \{x : x એ પૂર્શાંક છે અને <math>-3 < x < 7.\}$

  - $(iii) C = \{x : x \ \text{એ} \ \text{જેના અંકોનો સરવાળો } 8 \ \text{થતો હોય તેવી બે અંકોની સંખ્યા છે.} \}$
  - (iv) D =  $\{x : x \ \text{એ } 60 \ \text{નો } ધ \text{ન અવયવ હોય તેવી અવિભાજય સંખ્યા છે.}\}$
  - (v) E = TRIGONOMETRY શબ્દના મુળાક્ષરોનો ગણ
  - (vi) F = BETTER શબ્દના મુળાક્ષરોનો ગણ
- 4. નીચેના ગણોને ગુણધર્મની રીતે લખો :
  - (i) {3, 6, 9, 12}

(ii) {2, 4, 8, 16, 32}

(iii) {5, 25, 125, 625}

(iv)  $\{2, 4, 6, \ldots\}$ 

 $(v) \{1, 4, 9, \dots 100\}$ 

- નીચેના ગણોના બધા જ ઘટકો લખો :
  - (i)  $A = \{x : x એ અયુગ્મ પ્રાકૃતિક સંખ્યા છે.\}$
  - (ii) B =  $\{x : x \text{ wh ughts } \dot{\mathfrak{G}}, -\frac{1}{2} < x < \frac{9}{2}\}$
  - (iii) C =  $\{x : x \text{ id } y \text{ with } \theta, x^2 \le 4\}$
  - (iv) D =  $\{x : x એ "LOYAL" શબ્દનો મુળાક્ષર છે.\}$
  - (v)  $E = \{x : x એ વર્ષનો 31 દિવસનો ન હોય તેવો મહિનો છે.\}$
  - (vi)  $F = \{x : x એ અંગ્રેજી મૂળાક્ષરોની ક્રમાનુસાર યાદીમાં <math>k$  પહેલાંનો વ્યંજન છે. $\}$
- 6. ડાબી બાજુએ યાદીની રીતે દર્શાવેલ ગણોને જમણી બાજુએ તેના જ ગુણધર્મની રીતે દર્શાવેલા ગણો સાથે સાંકળો.
  - (i)  $\{1, 2, 3, 6\}$
- (a)  $\{x : x \$ એ અવિભાજ્ય સંખ્યા છે અને  $6 \$ નો અવયવ છે. $\}$
- $(ii) \{2, 3\}$
- (b)  $\{x : x \$ એ 10 કરતાં નાની અયુગ્મ પ્રાકૃતિક સંખ્યા છે. $\}$
- (iii)  $\{M,A,T,H,E,I,C,S\}$  (c)  $\{x:x \ એ \ \text{પ્રાકૃતિક સંખ્યા છે અને 6 નો અવયવ છે.}$
- (iv)  $\{1, 3, 5, 7, 9\}$
- (d)  $\{x: x$ એ MATHEMATICS શબ્દનો મૂળાક્ષર છે. $\}$

### 1.3 ખાલીગણ

ગણ  $A = \{x : x \rightarrow a$  અત્યારે એક ચોક્કસ શાળાના ધોરણ XI માં અભ્યાસ કરતો વિદ્યાર્થી છે. $\}$  લો.

આપણે શાળાએ જઈશું અને ત્યાં ધોરણ XI માં અભ્યાસ કરતા વિદ્યાર્થીઓની સંખ્યા ગણીશું. આમ, ગણ A નિશ્ચિત સંખ્યાના ઘટકો ધરાવે છે.

આપણે હવે નીચે પ્રમાણે બીજો ગણ B લઈએ:

 $\mathbf{B} = \{ x : x \$ એ અત્યારે ધોરણ  $\mathbf{X}$  અને  $\mathbf{X}\mathbf{I}$  બંનેમાં અભ્યાસ કરતો વિદ્યાર્થી છે.}

આપણે નિરીક્ષણ કરીએ કે એક પણ વિદ્યાર્થી બંને વર્ગ X અને XI માં એક સાથે અભ્યાસ કરી શકે નહિ.

આમ, ગણ B માં એક પણ ઘટક નથી.

<mark>વ્યાખ્યા 1</mark> જે ગણ એક પણ ઘટક ન ધરાવતો હોય તેવા ગણને ખાલીગણ (null set) અથવા રિક્ત ગણ (Empty set or the void set) કહે છે.

આ વ્યાખ્યા પ્રમાણે B ખાલીગણ છે, જ્યારે A ખાલીગણ નથી. ખાલીગણને સંકેતમાં φ અથવા { } વડે દર્શાવાય છે. આપણે નીચે ખાલીગણનાં કેટલાંક ઉદાહરણ આપીએ :

- (i) જો  $A = \{x : 1 < x < 2, x \ \text{એ પ્રાકૃતિક સંખ્યા છે.}\}$ , તો A એ ખાલીગણ છે, કારણ કે 1 અને 2 ની વચ્ચે એક પણ પ્રાકૃતિક સંખ્યા નથી.
- (ii) જો  $B = \{x : x^2 2 = 0 \text{ અને } x \text{ એ સંમેય સંખ્યા છે.}\}$ , તો B ખાલીગણ છે, કારણ કે કોઈ પણ સંમેય સંખ્યા x એ સમીકરણ  $x^2 - 2 = 0$  નું સમાધાન કરતી નથી.

ગાણુ 7

(iii) જો  $C = \{x : x \ \ \text{એ 2 કરતાં} \ \text{મોટી અવિભાજય યુગ્મ સંખ્યા છે.}\}$ , તો C ખાલીગણ છે કારણ કે યુગ્મ અવિભાજય સંખ્યા \$s\$-\$c જ છે.

(iv) જો  $D = \{ x : x^2 = 4, x એ અયુગ્મ છે. \}$ , તો D ખાલીગણ છે, કારણ કે કોઈ પણ અયુગ્મ x એ સમીકરણ  $x^2 = 4$  નું સમાધાન ન કરે.

#### 1.4 સાન્ત અને અનંત ગણો

 $A = \{1, 2, 3, 4, 5\}, B = \{a, b, c, d, e, g\}$  અને  $C = \{$  હાલમાં દુનિયાના જુદા જુદા ભાગમાં રહેતા પુરુષો $\}$ 

આપણે જોઈએ છીએ કે, A એ 5 ઘટકો ધરાવે છે અને B એ 6 ઘટકો ધરાવે છે. ગણ C કેટલા ઘટકો ધરાવે છે ? C ના ઘટકોની સંખ્યા આપણે જાણતાં નથી, પરંતુ તે કોઈક પ્રાકૃતિક સંખ્યા છે અને તે ખૂબ મોટી સંખ્યા હોઈ શકે. ગણ S ના ઘટકોની સંખ્યા, એટલે ગણ S ના ભિન્ન ઘટકોની સંખ્યા એમ આપણે સમજીશું અને તેને આપણે n (S) દ્વારા દર્શાવીશું. જો n (S) એ પ્રાકૃતિક સંખ્યા હોય, તો S એ અરિક્ત સાન્ત ગણ (non-empty finite set) કહેવાય છે.

પ્રાકૃતિક સંખ્યાઓનો ગણ લો. આપણે જોઈ શકીએ છીએ કે, આ ગણના ઘટકોની સંખ્યા સાન્ત નથી, કારણ કે પ્રાકૃતિક સંખ્યાઓની સંખ્યા અનિશ્ચિત, અસીમિત છે. આપણે કહીશું કે પ્રાકૃતિક સંખ્યાઓનો ગણ અનંત ગણ (infinite set) છે. ઉપર આપેલા ગણ A, B અને C સાન્ત ગણ છે અને n(A) = 5, n(B) = 6 અને n(C) = એક નિશ્ચિત ધનપૂર્ણાંક.

વ્યાખ્યા 2 જે ગણ ખાલી હોય અથવા નિશ્ચિત ધન પૂર્ણાંક જેટલી સભ્ય સંખ્યા ધરાવે, તે ગણને સાન્ત ગણ કહે છે, અન્યથા તે ગણને અનંત ગણ કહીશું.

કેટલાંક ઉદાહરણ લઈએ :

- (i) જો ગણ W એ અઠવાડિયાના દિવસોનો ગણ લઈએ, તો W સાન્ત ગણ છે.
- (ii) જો S એ સમીકરણ  $x^2 16 = 0$  ના ઉકેલોનો ગણ લઈએ, તો S એ સાન્ત ગણ છે.
- (iii) G એ રેખા પરનાં બિંદુઓનો ગણ લઈએ, તો G અનંત ગણ થશે.

જયારે આપણે ગણને યાદીની રીતે દર્શાવીએ, ત્યારે આપણે ગણના બધા જ ઘટકોને { }કૌંસમાં લખીશું. અનંત ગણના બધાં જ ઘટકોને { } કૌંસમાં લખવાનું શક્ય નથી, કારણ કે આવા ગણની સભ્ય સંખ્યા સીમિત નથી. આથી આપણે કેટલાક અનંત ગણને યાદીની રીતે દર્શાવવા માટે તે ગણનું સ્પષ્ટ માળખું દર્શાવતા થોડાક સભ્યો લખી તે પછીના સભ્યો માટે (અથવા તે પૂર્વેના સભ્યો માટે) ત્રણ ટપકાં મૂકીશું.

ઉદાહરણ તરીકે  $\{1,2,3...\}$  એ પ્રાકૃતિક સંખ્યાઓનો ગણ છે,  $\{1,3,5,7,...\}$  એ અયુગ્મ પ્રાકૃતિક સંખ્યાનો ગણ છે,  $\{...,-3,-2,-1,0,1,2,3,...\}$  એ પૂર્ણાંક સંખ્યાઓનો ગણ છે. આ બધા જ ગણો અનંત ગણ છે.

નાંધ બધા જ અનંત ગણને યાદીની રીતે દર્શાવી શકાતા નથી. દાખલા તરીકે, વાસ્તવિક સંખ્યાઓના ગણને આ રીતે દર્શાવી શકાય નહિ, કારણ કે આ ગણનાં ઘટકો કોઈ નિશ્ચિત ભાતને અનુસરતાં નથી.

ઉદાહરણ 6: નીચેના ગણોમાંથી કયા સાન્ત અને કયા અનંત ગણ છે તે નક્કી કરો :

- (i)  $\{x : x \in \mathbb{N} \text{ even}(x-1)(x-2) = 0\}$
- (ii)  $\{x : x \in \mathbb{N} \text{ even} \ x^2 = 4\}$
- (iii)  $\{x : x \in \mathbb{N} \ \text{અનો} \ 2x 1 = 0\}$
- (iv)  $\{x: x \in \mathbb{N} \text{ અને } x \text{ અવિભાજય સંખ્યા છે.}\}$
- $(v) \{x : x \in \mathbb{N} \text{ અને } x અયુગ્મ પૂર્ણાં ક છે.\}$

ઉંકેલ : (i) આપેલ ગણ =  $\{1, 2\}$ . આથી, તે સાન્ત ગણ છે.

- (ii) આપેલ ગણ = {2}. આથી, તે સાન્તગણ છે.
- (iii) આપેલ ગણ = ♦. આથી, તે સાન્તગણ છે.
- (iv) આપેલ ગણ એ બધી જ અવિભાજય સંખ્યાઓનો ગણ છે અને અવિભાજય સંખ્યાઓની સંખ્યા અનંત છે. આથી આપેલ ગણ અનંત ગણ છે.
- (v) અયુગ્મ ધન પૂર્ણા કોની સંખ્યા અનંત હોવાથી, આપેલ ગણ અનંત ગણ છે.

#### 1.5 સમાન ગણ

આપેલ બે ગણ A અને B માટે, જો A નો પ્રત્યેક ઘટક એ B નો પણ ઘટક હોય તથા B નો પ્રત્યેક ઘટક એ A નો પણ ઘટક હોય, તો ગણ A અને B ને સમાન ગણ કહેવાય. એ સ્પષ્ટ છે કે, બંને ગણમાં યથાર્થ રીતે એકના એક જ ઘટકો છે.

વ્યાખ્યા 3 જો બે ગણ A અને B ને યથાર્થ રીતે એકના એક જ ઘટકો હોય, તો A અને B સમાન ગણો કહેવાય અને આપણે A = B પ્રમાણે લખીશું. નહિ તો, આ ગણોને અસમાન ગણ કહીશું અને આપણે  $A \neq B$  લખીશું.

આપણે નીચેનાં ઉદાહરણ લઈશું :

- (i) A = {1, 2, 3, 4} અને B = {3, 1, 4, 2} લઈએ તો A = B.
- (ii) ધારો કે A એ 6 કરતાં નાની અવિભાજય સંખ્યાઓનો ગણ છે અને P એ 30 ના અવિભાજય અવયવોનો ગણ છે. ફક્ત 2, 3 અને 5 એ 30 ના અવિભાજય અવયવો છે તથા તેઓ 6 કરતાં નાના છે. વળી 6 કરતાં નાની પ્રત્યેક અવિભાજય સંખ્યા એ 30 નો અવયવ છે. આથી A અને Pસમાન છે.

ાંધ : જો ગણમાં એક અથવા વધારે ઘટકોનું પુનરાવર્તન થાય, તો ગણ બદલાતો નથી. દાખલા તરીકે, ગણ  $A = \{1, 2, 3\}$  અને  $B = \{2, 2, 1, 3, 3\}$  સમાન છે, કારણ કે ગણ A નો દરેક ઘટક ગણ B માં છે અને આથી ઊલટું પણ સત્ય છે. આ કારણે આપણે ગણ દર્શાવતી વખતે મહદંશે ઘટકનું પુનરાવર્તન કરતાં નથી.

ઉદાહરણ 7 : સમાન ગણોની જોડી શોધો (જો હોય તો). તમારા ઉત્તર માટે કારણ આપો.

$$A = \{0\}, B = \{x : x > 15 \text{ or } x < 5\},$$

$$C = \{x : x - 5 = 0 \}, D = \{x : x^2 = 25\},\$$

ગુણ

ઉકેલઃ  $0 \in A$  અને B, C, D અને E પૈકી કોઈ પણ ગણમાં 0 આવેલો નથી. આથી આ દર્શાવે છે કે  $A \neq B, A \neq C, A \neq D,$   $A \neq E$ .

 $B = \phi$  પરંતુ બાકીના કોઈ પણ ગણ ખાલીગણ નથી. માટે  $B \neq C, B \neq D$  અને  $B \neq E. C = \{5\}$ , પરંતુ  $-5 \in D$  પણ છે. આથી  $C \neq D$ .

 $E = \{5\}, C = E$  તથા  $D = \{-5, 5\}$  અને  $E = \{5\}$ . આપણે જોઈ શકીએ કે  $D \neq E$ . આમ, સમાન ગણોની ફક્ત એક જ જોડી C અને E ની છે.

ઉદાહરણ 8: નીચેનામાંથી કઈ જોડીના ગણ સમાન છે ? તમારા જવાબની યથાર્થતા ચકાસો.

- (i) "ALLOY" ના મૂળાક્ષરોનો ગણ X અને "LOYAL" ના મૂળાક્ષરોનો ગણ B છે.
- (ii)  $A = \{n : n \in \mathbb{Z} \text{ def} \mid n^2 \le 4\} \text{ def} B = \{x : x \in \mathbb{R} \text{ def} \mid x^2 3x + 2 = 0\}.$

ઉકેલ : (i) અહીં,  $X = \{A, L, L, O, Y\}$ ,  $B = \{L, O, Y, A, L\}$ . ગણમાં ઘટકોનું પુનરાવર્તન ગણને બદલતું ન હોવાથી X અને B સમાન ગણ છે. આમ,  $X = \{A, L, O, Y\} = B$ .

(ii)  $A = \{-2, -1, 0, 1, 2\}, B = \{1, 2\}.$   $0 \in A$  અને  $0 \notin B$ , હોવાથી A અને B સમાન ગણો નથી.

#### સ્વાધ્યાય 1.2

- 1. નીચેનામાંથી કયા ગણ ખાલીગણનાં ઉદાહરણ છે ?
  - (i) 2 વડે વિભાજય અયુગ્મ પ્રાકૃતિક સંખ્યાઓનો ગણ
  - (ii) યુગ્મ અવિભાજય પ્રાકૃતિક સંખ્યાઓનો ગણ
  - (iii)  $\{x : x એ પ્રાકૃતિક સંખ્યા છે, x < 5 અને <math>x > 7 \}$
  - (iv) { y : y એ બે ભિન્ન સમાંતર રેખાઓનું સામાન્ય બિંદુ છે.}
- 2. નીચેનામાંથી કયા ગણ સાન્ત ગણ અને કયા ગણ અનંત ગણ છે ?
  - (i) વર્ષના મહિનાઓનો ગણ
  - (ii)  $\{1, 2, 3, ...\}$
  - (iii) {1, 2, 3, ...99, 100}
  - (iv) 100 કરતાં મોટા ધન પૂર્શાંકોનો ગણ
  - (v) 99 કરતાં નાની અવિભાજય સંખ્યાઓનો ગણ
- 3. નીચેના ગણોમાંથી કયા ગણ સાન્ત અને કયા ગણ અનંત છે તે શોધો.
  - (i) x-અક્ષને સમાંતર રેખાઓનો ગણ
  - (ii) અંગ્રેજી મૂળાક્ષરોનો ગણ

- (iii) 5 ની ગુણિત સંખ્યાઓનો ગણ
- (iv) પૃથ્વી પર વસતાં પ્રાણીઓનો ગણ
- (v) ઊગમબિંદુ (0,0) માંથી પસાર થતાં વર્તુળોનો ગણ
- 4. નીચેનામાંથી નક્કી કરો કે A = B છે કે નહિ :
  - (i)  $A = \{ a, b, c, d \}, B = \{ d, c, b, a \}$
  - (ii)  $A = \{4, 8, 12, 16\}, B = \{8, 4, 16, 18\}$
  - (iii)  $A = \{2, 4, 6, 8, 10\}, B = \{x : x એ યુગ્મ ધન પૂર્ણાંક છે અને <math>x \le 10\}$
  - (iv)  $A = \{x : x \text{ id } 10 \text{ rli } \text{ og} \{\text{blot } \theta\}, B = \{10, 15, 20, 25, 30, \ldots\}$
- 5. નીચે આપેલી જોડીઓના ગણ સમાન છે ? કારણ આપો :
  - (i)  $A = \{2, 3\}, B = \{x : x \text{ if } x^2 + 5x + 6 = 0 \text{ the Green}\}$
  - (ii)  $A = \{ x : x એ FOLLOW શબ્દનો મૂળાક્ષર છે \}, B = \{ y : y એ WOLF શબ્દનો મૂળાક્ષર છે. \}$
- 6. નીચે આપેલ ગણમાંથી સમાન ગણ પસંદ કરો :

$$A = \{ 2, 4, 8, 12 \}, B = \{ 1, 2, 3, 4 \}, C = \{ 4, 8, 12, 14 \}, D = \{ 3, 1, 4, 2 \}$$

$$E = \{-1, 1\},$$
  $F = \{0, a\},$   $G = \{1, -1\},$   $H = \{0, 1\}$ 

### 1.6 ઉપગણ

ધારો કે ગણ  $X = \alpha$ મારી શાળાના તમામ વિદ્યાર્થીઓનો ગણ તથા  $Y = \alpha$ મારા વર્ગના તમામ વિદ્યાર્થીઓનો ગણ.

આપણે નોંધીશું કે ગણ Y નો દરેક ઘટક એ ગણ X નો પણ ઘટક છે. આપણે કહીશું કે, ગણ Y એ X નો ઉપગણ છે. Y એ X નો  $\mathcal{G}$  પગણ (Subset) છે તે હકીકતને આપણે સંકેતમાં Y  $\subset$  X થી દર્શાવીશું. સંકેત  $\subset$  એ શબ્દસમૂહ ''ઉપગણ છે'' અથવા ''માં સમાવિષ્ટ છે'' (''is a subset of " અથવા ''is contained in'') માટે ઉપયોગ કરીશું.

વ્યાખ્યા 4 જો ગણ A નો પ્રત્યેક ઘટક એ ગણ B નો પણ ઘટક હોય તો ગણ A ને ગણ B નો ઉપગણ કહેવાય. બીજી રીતે કહીએ તો, જ્યારે  $a\in A$  હોય ત્યારે  $a\in B$  હોય તો  $A\subset B$  થાય.

ઘણી વખત સંજ્ઞા "⇒" વાપરવી અનુકૂળ હોય છે. તેનો અર્થ પ્રેરણ (implies) કરીશું. આ સંજ્ઞાનો ઉપયોગ કરી, આપણે ઉપગણની વ્યાખ્યા નીચે પ્રમાણે લખીશું:

જો  $a \in A \Rightarrow a \in B$ , તો  $A \subset B$ .

આપણે ઉપરનું વાક્ય આ પ્રમાણે વાંચીશું. ''*જો પ્રત્યેક a માટે, a એ A નો ઘટક હોય, તો a એ B નો પણ ઘટક છે*'' એવું બને તો A એ B નો ઉપગણ છે. જો A એ B નો ઉપગણ ન હોય તો આપણે A ⊄ B લખીશું.

ગોદો

આપણે નોંધીશું કે, A ને B નો ઉપગણ થવા માટે એ જરૂરી છે કે A નો દરેક ઘટક B માં હોવો જોઈએ. B નો દરેક ઘટક A માં હોય અથવા ન પણ હોય તેમ શક્ય છે. જો B નો દરેક ઘટક A માં પણ હોય તેવું શક્ય બને તો આપણે  $B \subset A$  લખીશું. આવા કિસ્સામાં A અને B સમાન ગણો થશે, એટલે કે  $A \subset B$  અને  $B \subset A \Leftrightarrow A = B$ ,

અહીં "⇔" એ *હિપ્રેરણ (two way implication)* માટેનો સંકેત છે. તેને આપણે સામાન્ય રીતે ''તો અને તો જ'' (if and only if ટૂંકમાં, "iff") પ્રમાણે વાંચીશું.

ઉપરની વ્યાખ્યા પરથી ફલિત થાય છે કે, દરેક ગણ A પોતે પોતાનો ઉપગણ છે, એટલે કે  $A \subset A$ . ખાલીગણ  $\phi$  ને એક પણ ઘટક નથી. આથી આપણે સંમત થઈશું કે,  $\phi$  એ દરેક ગણનો ઉપગણ છે. હવે આપણે કેટલાંક ઉદાહરણ જોઈશું :

- (i) સંમેય સંખ્યાઓનો ગણ  ${\bf Q}$  એ વાસ્તિવિક સંખ્યાઓના ગણ  ${\bf R}$  નો ઉપગણ છે અને આપણે  ${\bf Q} \subset {\bf R}$  લખીશું.
- (ii) જો 56 ના ધન પૂર્ણાંક અવયવોનો ગણ A અને 56ના ધન અવિભાજય પૂર્ણાંક અવયવોનો ગણ B હોય, તો B એ A નો ઉપગણ થશે અને આપણે  $B \subset A$  લખીશું.
- (iii) જો  $A = \{1, 3, 5\}$  અને  $B = \{x : x \ \text{એ} \ 6 \ \text{sરતાં} \ \text{નાની અયુગ્મ પ્રાકૃતિક સંખ્યા છે.} \}$  લઈએ, તો  $A \subseteq B$  અને  $B \subseteq A$  અને આથી A = B.
- (iv)  $A = \{ a, e, i, o, u \}$  અને  $B = \{ a, b, c, d \}$  લેતાં, A એ B નો ઉપગણ નથી. B પણ A નો ઉપગણ નથી. ધારો કે A અને B બે ગણ છે. જો  $A \subset B$  અને  $A \neq B$  હોય, તો A ને B નો *ઉચિત ઉપગણ (Proper Subset)* કહે

છે અને B ને A નો **અધિગણ** (superset) કહે છે. ઉદાહરણ તરીકે,

 $A = \{1, 2, 3\}$  એ ગણ  $B = \{1, 2, 3, 4\}$  નો ઉચિત ઉપગણ છે.

જો ગણ A ને એક જ સભ્ય હોય તો તેને **એકાકી** (singleton) કહે છે. આમ,  $\{a\}$  એ એકાકી છે.

ઉદાહરણ 9 : ગણ  $\phi$ ,  $A = \{1, 3\}$ ,  $B = \{1, 5, 9\}$ ,  $C = \{1, 3, 5, 7, 9\}$  આપેલા છે.

નીચે દર્શાવેલી દરેક ગણની જોડીની વચ્ચે સંજ્ઞા ⊂ અથવા ⊄ સમાવિષ્ટ કરો :

- (i) \$...B
- (ii) A...B
- (iii) A...C
- (iv) B...C

ઉકેલઃ (i)  $\phi$  એ દરેક ગણનો ઉપગણ છે, આથી  $\phi \subset B$ .

- (ii) 3 ∈ A અને 3 ∉ B. આથી A ⊄ B.
- (iii)  $A \subset C$  કારણ કે 1, 3 ∈ A અને 1, 3 એ C માં પણ છે.
- (iv) B  $\subset$  C કારણ કે B નો દરેક ઘટક એ C નો પણ ઘટક છે.

ઉદાહરણ  $10: A = \{a, e, i, o, u\}$  અને  $B = \{a, b, c, d\}$  લો. A એ B નો ઉપગણ છે ? ના (શા માટે ?). B એ Aનો ઉપગણ છે ? ના (શા માટે ?)

ઉદાહરણ 11:A, B અને C ત્રણ ગણ છે. જો  $A\in B$  અને  $B\subset C$  તો  $A\subset C$  સાચું છે ? જો તમારો ઉત્તર 'ના' હોય, તો ઉદાહરણ આપો.

ઉકેલ : ના. ધારો કે  $A=\{1\},\,B=\{\{1\},\,2\}$  અને  $C=\{\{1\},\,2,\,3\}$ . અહીં  $A=\{1\}$  હોવાથી  $A\in B$  અને  $B\subset C$ . પરંતુ  $A\not\subset C$  કારણ કે  $1\in A$  અને  $1\not\in C$ .

આપણે નોંધીશું કે ગણનો ઘટક એ પોતે પોતાનો ઉપગણ નથી.

#### 1.6.1 વાસ્તવિક સંખ્યાઓના ગણના ઉપગણો

વિભાગ 1.6 માં નોંધ્યા પ્રમાણે  ${f R}$  ને ઘણા અગત્યના ઉપગણો છે. આપણે આવા કેટલાક ઉપગણોનું નીચે પ્રમાણે નામકરણ કરીશું :

પ્રાકૃતિક સંખ્યાઓનો ગણ  $N = \{1, 2, 3, 4, 5, \ldots\}$ 

પૂર્ણાંક સંખ્યાઓનો ગણ  $\mathbf{Z} = \{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\}$ 

સંમેય સંખ્યાઓનો ગણ  $\mathbf{Q}=\{\;x:x=rac{p}{q}\,,p,\,q\in\mathbf{Z}$  અને  $q
eq0\}$ 

તેને આ પ્રમાણે વાંચીશું "p અને q પૂર્ણાંક હોય તથા q શૂન્યેતર હોય તેવા અપૂર્ણાંકો  $\frac{p}{q}$ નો ગણ  $\mathbf{Q}$  છે."  $\mathbf{Q}$  માં -5 છે. (તેને  $\frac{-5}{1}$  સ્વરૂપે અભિવ્યક્ત કરી શકાય.)  $\frac{5}{7}$ ,  $3\frac{1}{2}$ (તેને  $\frac{7}{2}$ સ્વરૂપે અભિવ્યક્ત કરી શકાય.) અને  $-\frac{11}{3}$  સભ્યોનો સમાવેશ પણ  $\mathbf{Q}$  માં કરી શકાય.

અસંમેય સંખ્યાઓના ગણને  $\mathbf{T}$  દ્વારા દર્શાવીશું. ગણ  $\mathbf{T}$  એ સંમેય સંખ્યાઓ સિવાયની બધી વાસ્તવિક સંખ્યાઓનો બનેલો છે. આમ,  $\mathbf{T} = \{x : x \in \mathbf{R}$  અને  $x \notin \mathbf{Q}\}$ , એટલે કે  $\mathbf{T}$  સંમેય ન હોય તેવી વાસ્તવિક સંખ્યાઓનો ગણ છે. સભ્યો $\sqrt{2}$ ,  $\sqrt{5}$  અને  $\pi$  નો  $\mathbf{T}$  માં સમાવેશ થાય છે.

આ ઉપગણોના કેટલાક સ્વયંસ્પષ્ટ સંબંધો :

 $N \subset Z \subset Q$ ,  $Q \subset R$ ,  $T \subset R$ ,  $N \not\subset T$ .

#### 1.6.2 R ના ઉપગણો તરીકે અંતરાલ

ધારો કે  $a, b \in \mathbf{R}$  અને a < b. વાસ્તવિક સંખ્યાઓના ગણ  $\{y : a < y < b\}$  ને **વિવૃત્ત અંતરાલ (open interval)** કહે છે અને તેને (a, b) વડે દર્શાવાય છે. a અને b વચ્ચેનાં તમામ બિંદુઓ વિવૃત્ત અંતરાલ (a, b) માં આવેલાં છે. પરંતુ a અને b પોતે આ અંતરાલમાં નથી.

જે અંતરાલમાં તેનાં અંત્યબિંદુઓનો પણ સમાવેશ થાય છે તેને સંવૃત્ત અંતરાલ (closed interval) કહે છે અને તેને [a, b] વડે દર્શાવાય છે. આમ,  $[a, b] = \{x : a \le x \le b\}$ .

એક અંત્યબિંદુએ સંવૃત્ત અને બીજા અંત્યબિંદુએ વિવૃત્ત હોય એવા અંતરાલો પણ આપણી પાસે છે. એટલે કે,

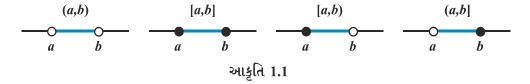
ગાંદ્રા

 $[a,\ b)=\{x:a\leq x< b\}$  એ a નો સમાવેશ કરતો હોય અને b નો સમાવેશ કરતો ના હોય તેવો a થી b સુધીનો વિવૃત્ત અંતરાલ  $[a,\ b)$  છે.

 $(a, b] = \{ x : a < x \le b \}$  એ b ને સમાવતો અને a ને ન સમાવતો a થી b સુધીનો વિવૃત્ત અંતરાલ છે.

વાસ્તવિક સંખ્યાઓના ગણના ઉપગણને નિર્દેશિત કરવા માટે આ સંજ્ઞાઓ બીજું ભિન્ન સ્વરૂપ પૂરું પાડે છે. ઉદાહરણ તરીકે જો A=(-3,5) અને B=[-7,9], તો  $A\subset B$ . ગણ  $[0,\infty)$  એ અનૃણ વાસ્તવિક સંખ્યાઓનો ગણ વ્યાખ્યાયિત કરે છે. ગણ  $(-\infty,0)$  એ ઋણ વાસ્તવિક સંખ્યાઓના ગણને વ્યાખ્યાયિત કરે છે. ગણ  $(-\infty,\infty)$  એ વાસ્તવિક સંખ્યાઓનો ગણ દર્શાવે છે. તે  $-\infty$  થી  $\infty$  સુધી લંબાવેલ રેખા પરનાં બિંદુઓનો ગણ દર્શાવે છે.

ઉપર વર્શવેલા R ના જુદાં-જુદાં અંતરાલોને સંખ્યારેખા પર આકૃતિ 1.1 પ્રમાણે રજૂ કરી શકાય.



અહીં, આપણે નોંધીશું કે, અંતરાલ એ અનંત સંખ્યામાં બિંદુઓનો સમાવેશ કરે છે.

ઉદાહરણ તરીકે, ગુણધર્મની રીતે દર્શાવેલ ગણ  $\{x:x\in\mathbf{R},-5< x\leq 7\}$ , ને અંતરાલ સ્વરૂપમાં (-5,7] અને અંતરાલ [-3,5) ને ગુણધર્મની રીતે  $\{x:x\in\mathbf{R},-3\leq x<5\}$  પ્રમાણે લખી શકાય.

સંખ્યા (b-a) ને કોઈ પણ અંતરાલ (a, b), [a, b], [a, b) અથવા (a, b) ની લંબાઈ કહે છે.

### **1.7** ઘાતગણ

ગણ  $\{1,2\}$  લો. ગણ  $\{1,2\}$  ના બધા જ ઉપગણ લખીએ. આપણે જાણીએ છીએ કે  $\phi$  એ દરેક ગણનો ઉપગણ છે. આથી  $\phi$  એ  $\{1,2\}$  નો ઉપગણ છે. આપણે જોઈ શકીએ કે  $\{1\}$  અને  $\{2\}$  પણ ગણ  $\{1,2\}$  ના ઉપગણ છે. આપણે એ પણ જાણીએ છીએ કે, દરેક ગણ પોતે એ પોતાનો ઉપગણ છે. આથી  $\{1,2\}$  એ  $\{1,2\}$  નો ઉપગણ છે. આમ, એકંદરે ગણ  $\{1,2\}$  ને ચાર ઉપગણો,  $\{0,4\}$  ને  $\{1,2\}$  અને  $\{1,2\}$  છે. આ તમામ ઉપગણોના ગણને  $\{1,2\}$  નો ઘાતગણ કહીશું. વ્યાખ્યા  $\{1,2\}$  ગણ  $\{1,4\}$  ના તમામ ઉપગણોથી બનતા ગણને  $\{1,4\}$  નો **ઘાતગણ (power set)** કહે છે. તેને  $\{1,4\}$  વડે દર્શાવાય છે.  $\{1,4\}$  નો દરેક ઘટક એ ગણ છે.

આમ, ઉપર જણાવ્યા પ્રમાણે, જો  $A = \{1, 2\}$ , તો

$$P(A) = \{ \phi, \{ 1 \}, \{ 2 \}, \{ 1,2 \} \}$$

એ પણ નોંધીશું કે  $n [P(A)] = 4 = 2^2$ 

વ્યાપક સ્વરૂપે, જો ગણ A માટે n(A)=m, તો n [ P(A)] =  $2^m$  બતાવી શકાય.

#### 1.8 સાર્વત્રિક ગણ

સામાન્યતઃ કોઈ વિશિષ્ટ સંદર્ભમાં આપણે એક નિશ્ચિત મૂળભૂત ગણના ઉપગણો અને ઘટકો સાથે કામ કરતા હોઇએ છીએ અને તે વિશિષ્ટ સંદર્ભમાં સુસંગત હોય છે. ઉદાહરણ તરીકે, જ્યારે સંખ્યા સંહતિનો અભ્યાસ કરતાં

હોઈએ ત્યારે આપણે પ્રાકૃતિક સંખ્યાઓના ગણ અને તેના ઉપગણો જેમકે, અવિભાજય સંખ્યાઓના ગણ, યુગ્મ સંખ્યાઓનો ગણ અને આવા બધામાં આપણે રસ લેતાં હોઈએ છીએ. આવા મૂળભૂત ગણને ''સાર્વિત્રિક ગણ'' (Universal Set) કહે છે. સાર્વિત્રિક ગણને સામાન્ય રીતે U દ્વારા અને તેના બધા ઉપગણોને A, B, C વગેરે મૂળાક્ષરો દ્વારા દર્શાવીએ છીએ.

ઉદાહરણ તરીકે, પૂર્ણાંક સંખ્યાઓના ગણ માટે સાર્વત્રિક ગણ તરીકે સંમેય સંખ્યાઓનો ગણ અથવા વાસ્તવિક સંખ્યાઓનો ગણ R હોઈ શકે. બીજા ઉદાહરણ તરીકે વસતી-ગણતરીના અભ્યાસમાં દુનિયાની બધી જ વ્યક્તિઓના ગણને સાર્વત્રિક ગણ તરીકે લઈ શકાય.

#### સ્વાધ્યાય 1.3

- 1. નીચેનાં વિધાનો સત્ય બને તે રીતે ખાલી જગ્યામાં સંજ્ઞા ⊂ અથવા ⊄ પૂરો :
  - (i)  $\{2, 3, 4\} \dots \{1, 2, 3, 4, 5\}$
  - (ii)  $\{a, b, c\}$  ...  $\{b, c, d\}$
  - (iii)  $\{x:x\}$  એ તમારી શાળાનો ધોરણ XI નો વિદ્યાર્થી છે. $\}$  ...  $\{x:x\}$  એ તમારી શાળાનો વિદ્યાર્થી છે. $\}$
  - (iv)  $\{x:x\}$  સમતલમાં વર્ત્ળ છે. $\}$  ...  $\{x:x\}$  એ આ જ સમતલનું 1 એકમ ત્રિજ્યાવાળું વર્ત્ળ છે. $\}$
  - (v)  $\{x: x \ એ \$ સમતલમાં ત્રિકોણ છે. $\} \dots \{x: x \ એ \$ સમતલમાં લંબચોરસ છે. $\}$
  - (vi)  $\{x : x \ \$  એ સમતલમાં સમબાજુ ત્રિકોશ છે. $\} \dots \{x : x \ \$  એ આ જ સમતલનો ત્રિકોશ છે. $\}$
- 2. નીચેનાં વિધાનો સત્ય છે કે અસત્ય તેની ચકાસણી કરો :
  - (i)  $\{a, b\} \not\subset \{b, c, a\}$
  - (ii)  $\{a, e\} \subset \{x : x \ \text{એ અંગ્રેજી મૂળાક્ષરો પૈકીનો એક સ્વર છે.}\}$
  - (iii)  $\{1, 2, 3\} \subset \{1, 3, 5\}$
  - (iv)  $\{a\} \subset \{a, b, c\}$
  - (v)  $\{a\} \in \{a, b, c\}$
- 3.  $A = \{1, 2, \{3, 4\}, 5\}$  છે. નીચેનાં વિધાનો પૈકી કયાં વિધાનો અસત્ય છે અને શા માટે ?
  - (i)  $\{3, 4\} \subset A$

- (ii)  $\{3, 4\} \in A$
- (iii)  $\{\{3,4\}\}\subset A$

(iv)  $1 \in A$ 

(v)  $1 \subset A$ 

(vi)  $\{1, 2, 5\} \subset A$ 

- (vii)  $\{1, 2, 5\} \in A$
- (viii)  $\{1, 2, 3\} \subset A$
- $(ix) \phi \in A$

 $(x) \phi \subset A$ 

 $(xi) \{ \phi \} \subset A$ 

ગાણ 15

- નીચે આપેલા ગણોના તમામ ઉપગણો લખો :
  - (i)  $\{a\}$

- (ii)  $\{a, b\}$
- (iii)  $\{1, 2, 3\}$
- (iv)

- 5. જો  $A = \phi$  હોય, તો P(A) ને કેટલા ઘટકો હશે ?
- 6. નીચેનાને અંતરાલ સ્વરૂપે લખો :
  - (i)  $\{x : x \in \mathbb{R}, -4 < x \le 6\}$

(ii)  $\{x : x \in \mathbb{R}, -12 \le x \le -10\}$ 

(iii)  $\{x : x \in \mathbb{R}, 0 \le x < 7\}$ 

- (iv)  $\{x : x \in \mathbb{R}, 3 \le x \le 4\}$
- 7. નીચે આપેલા અંતરાલોને ગુણધર્મની રીતે લખો :
  - (i)(-3,0)
- (ii) [6, 12]
- (iii)(6, 12]
- (iv) [-23, 5)
- 8. નીચેનાં વિધાનો માટે તમે કયા ગણને સાર્વત્રિક ગણ તરીકે પસંદ કરશો :
  - (i) કાટકોણ ત્રિકોણોનો ગણ

- (ii) સમદ્વિભુજ ત્રિકોણોનો ગણ
- 9. A = {1, 3, 5}, B = {2, 4, 6} અને C = {0, 2, 4, 6, 8}, આપેલ ગણ છે. આ ત્રણ ગણ A, B અને C માટે નીચેનામાંથી કયા ગણને સાર્વત્રિક ગણ તરીકે લઈ શકાય.
  - (i)  $\{0, 1, 2, 3, 4, 5, 6\}$

- (ii)  $\phi$
- (iii) {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
- (iv)  $\{1, 2, 3, 4, 5, 6, 7, 8\}$

### 1.9 વેન-આકૃતિ

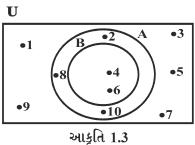
ગણો વચ્ચેના ઘણાખરા સંબંધોને આકૃતિઓ દ્વારા રજૂ કરવામાં આવે છે. તેમને આપણે *વેન આકૃતિઓ (Venn diagrams)* થી જાણીએ છીએ. અંગ્રેજી તર્કશાસ્ત્રી *John Venn* (1834-1883) ના નામ પરથી તેમને વેન આકૃતિ નામ આપ્યું છે. આ આકૃતિઓ લંબચોરસ અને બંધ વક્રો, મહદંશે વર્તુળોની બનેલી છે. સામાન્ય રીતે સાર્વત્રિક ગણને લંબચોરસ અને તેના ઉપગણોને વર્તુળ દ્વારા દર્શાવાય છે.

U •3 •1 •5 •7 •9 આકૃતિ 1.2

વેન-આકૃતિઓમાં ગણના ઘટકોને તેમને અનુરૂપ વર્ત્વામાં દર્શાવાય છે. (આકૃતિ 1.2 અને 1.3.)

દ્રષ્ટાંત 1: આકૃતિ 1.2 માં,  $U = \{1, 2, 3, ..., 10\}$  એ સાર્વત્રિક ગણ છે અને  $A = \{2,4,6,8,10\}$  એ તેનો ઉપગણ છે.

 $\mathbf{g}$ ષ્ટાંત 2: આકૃતિ 1.3 માં,  $\mathbf{U} = \{1, 2, 3, ..., 10\}$  એ સાર્વિંગિક ગણ છે અને  $A=\{2,4,6,8,10\}$  અને  $B=\{4,\,6\}$  તેના ઉપગણો છે તથા  $B\subset A$ પણ છે.



જ્યારે આપણે યોગગણ, છેદગણ અને તફાવત ગણની ચર્ચા કરીશું, ત્યારે વેન-આકૃતિનો વ્યાપક ઉપયોગ જોઈ શકીશું. 1.10 <mark>ગણક્રિયાઓ</mark>

આગળના વર્ગોમાં આપણે સંખ્યાઓ પર સરવાળા, બાદબાકી, ગુણાકાર અને ભાગાકારની ક્રિયાઓ કેવી રીતે કરવી તેનો અભ્યાસ કર્યો. આપણે દરેક ક્રિયા કરવા માટે બે સંખ્યાઓની જોડ લઈ તે પરથી અન્ય સંખ્યા મેળવતા હતા. ઉદાહરણ તરીકે, જ્યારે આપણે સંખ્યાઓ 5 અને 13 ની જોડ પર સરવાળાની ક્રિયા કરીએ તો આપણને સંખ્યા 18 મળે. ફરીથી જોતાં આપણે સંખ્યાઓ 5 અને 13 ની જોડ પર ગુણાકારની ક્રિયા કરીએ તો આપણને 65 મળે. તે જ પ્રમાણે બે ગણ પર કેટલીક ક્રિયાઓ કરવાથી એક ગણ મળે. હવે આપણે ગણ પર ચોક્કસ ક્રિયાઓ કરીએ અને તેમના ગુણધર્મ ચકાસીએ. હવેથી આપણે બધા જ ગણોનો સંદર્ભ કોઈક સાર્વત્રિક ગણના ઉપગણ તરીકે લઈશું.

**1.10.1 યોગગણ** : ધારો કે A અને B કોઈક ગણ છે. A અને B નો *યોગગણ (union set )* એટલે કે A ના તમામ ઘટકો તથા B ના તમામ ઘટકો તથા તેમના સામાન્ય ઘટકોને ફક્ત એક વખત લેવાથી બનતો ગણ. યોગગણ દર્શાવવા માટે સંકેત ' $\cup$ ' નો ઉપયોગ થાય છે. સાંકેતિક રીતે, આપણે A તથા B ના યોગગણ માટે  $A \cup B$  લખીશું.  $A \cup B$  ને આપણે A યોગ  $B(A \ union \ B)$  વાંચીશું.

ઉદાહરણ 12 :  $A = \{ 2, 4, 6, 8 \}$  અને  $B = \{ 6, 8, 10, 12 \}$  છે.  $A \cup B$  મેળવો.

ઉકેલ : આપણને  $A \cup B = \{ 2, 4, 6, 8, 10, 12 \}$  મળશે. આપણે નોંધીએ કે  $A \cup B$  લખતી વખતે સામાન્ય ઘટકો 6 અને 8 ને એક જ વખત લીધા છે.

ઉદાહરણ 13 :  $A = \{ a, e, i, o, u \}$  અને  $B = \{ a, i, u \}$  છે. બતાવો કે  $A \cup B = A$ .

ઉકેલ : આપણને  $A \cup B = \{ \ a, \ e, \ i, \ o, \ u \ \}$  મળશે. આ ઉદાહરણ દર્શાવે છે કે, ગણ A અને તેના ઉપગણનો યોગ A પોતે જ છે, એટલે કે  $B \subset A$ , તો  $A \cup B = A$  થાય.

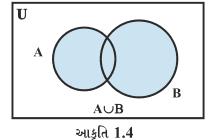
ઉદાહરણ 14: શાળાની હૉકી ટીમમાં રમતા ધોરણ XI ના વિદ્યાર્થીઓનો ગણ  $X = \{$  રામ, ગીતા, અકબર $\}$  છે. શાળાની ફૂટબૉલની ટીમમાં રમતા ધોરણ XI ના વિદ્યાર્થીઓનો ગણ  $Y = \{$ ગીતા, ડેવિડ, અશોક $\}$  છે.  $X \cup Y$  શોધો, અને તેનું અર્થઘટન કરો.

6કેલ :  $X \cup Y = \{ રામ, ગીતા, અકબર, ડેવિડ, અશોક \} થશે. ધોરણ <math> XI$ ના જે વિદ્યાર્થીઓ હૉકી ટીમમાં અથવા ક્ટબૉલ ટીમમાં અથવા બંનેમાં છે તેવા વિદ્યાર્થીઓનો આ ગણ છે.

આમ, આપણે બે ગણના યોગગણને નીચે પ્રમાણે વ્યાખ્યાયિત કરીશું :

**વ્યાખ્યા 6** ગણ A અથવા ગણ B માં આવેલા (બંને ગણમાં હોય તે સહિત) a તમામ ઘટકોથી બનતા ગણને A અને B નો યોગગણ કહે છે. સંકેતમાં આપણે  $A \cup B = \{x \colon x \in A \text{ અથવા } x \in B\} \text{ લખીશું}.$ 

બંને ગણના યોગગણને આકૃતિ 1.4. માં દર્શાવ્યા પ્રમાણેની વેન-આકૃતિ દ્વારા રજુ કરીશું.



આકૃતિ 1.4 નો રંગીન કરેલ ભાગ  $A \cup B$  દર્શાવે છે.

ગણ 17

## યોગક્રિયાના કેટલાક ગુણધર્મો

(i)  $A \cup B = B \cup A$ 

(ક્રમનો નિયમ) (Commutative law)

(ii)  $(A \cup B) \cup C = A \cup (B \cup C)$ 

(જૂથનો નિયમ) (Associative law)

(iii)  $A \cup \phi = A$ 

(એકમ ઘટકનો નિયમ, φ એ ∪ નો એકમ ઘટક છે.) (identity element)

(iv)  $A \cup A = A$ 

(स्वयंघाती नियम - Idempotent law)

(v)  $U \cup A = U$ 

(U નો નિયમ)

**1.10.2** છે**દગણ** : ગણ A અને B નો *છેદગણ (Intersection set* ) એ બંને ગણ A અને B ના તમામ સામાન્ય ઘટકોથી બનતો ગણ છે. છેદગણ દર્શાવવા સંકેત ' $\cap$ ' નો ઉપયોગ થાય છે. A અને B નો છેદગણ એ A અને B બંનેમાં આવેલા હોય એવા ઘટકોથી બનતો ગણ છે. સાંકેતિક રીતે A  $\cap$  B =  $\{x: x \in A \text{ અને } x \in B\}$  લખાય.

ઉદાહરણ 15 : ઉદાહરણ 12 માં આપેલા ગણ A અને B માટે  $A \cap B$  શોધો.

ઉકેલ : આપણે જોઈ શકીએ છે કે ફક્ત 6, 8 એ બંને ગણ A અને B ના સામાન્ય ઘટકો છે. આથી  $A \cap B = \{6, 8\}$ .

ઉદાહરણ 16: ઉદાહરણ 14 ના ગણો X અને Y માટે  $X \cap Y$  શોધો.

6કેલ : આપણે જોઈશું ''ગીતા'' એ બંને ગણોનો એક માત્ર સામાન્ય ઘટક છે. આથી  $X \cap Y = \{$ ગીતા $\}$ .

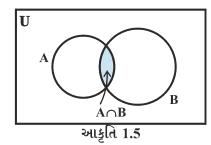
ઉદાહરણ  $17: A = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$  અને  $B = \{2, 3, 5, 7\}$  માટે  $A \cap B$  શોધો અને તે પરથી બતાવો કે  $A \cap B = B$ .

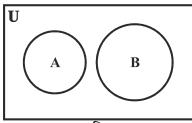
ઉકેલ :  $A \cap B = \{ 2, 3, 5, 7 \} = B$  મળશે. આપણે નોંધીએ કે  $B \subset A$  છે અને તેથી  $A \cap B = B$ .

વ્યાખ્યા 7 બે ગણ A અને B નો છેદગણ એટલે કે A અને B બંને ગણમાં આવેલા તમામ ઘટકોથી બનતો ગણ. સંકેતમાં આપણે  $A \cap B = \{x : x \in A \text{ અને } x \in B\}$  લખીશું. આકૃતિ 1.5 માં રંગીન ભાગ A અને B નો છેદગણ બતાવે છે.

જો ગણો A અને B માટે  $A\cap B=\phi$ , તો A અને B ને પરસ્પર *અલગગણ* (disjoint sets) કહેવાય.

ઉદાહરણ તરીકે,  $A = \{ 2, 4, 6, 8 \}$  અને  $B = \{ 1, 3, 5, 7 \}$  તો A અને B પરસ્પર અલગગણ છે. કારણ કે, A અને B માં સામાન્ય હોય તેવો એક પણ ઘટક નથી. પરસ્પર અલગગણની વેન-આકૃતિ, આકૃતિ 1.6 પ્રમાણે દર્શાવી શકાય.





આકૃતિ 1.6

(i)  $A \cap B = B \cap A$ 

છેદક્રિયાના કેટલાક ગુણધર્મો

(ii)  $(A \cap B) \cap C = A \cap (B \cap C)$ 

(iii)  $\phi \cap A = \phi$ ,  $U \cap A = A$ 

(iv)  $A \cap A = A$ 

(ક્રમનો નિયમ)

(જૂથનો નિયમ)

(**♦** અને U નો નિયમ)

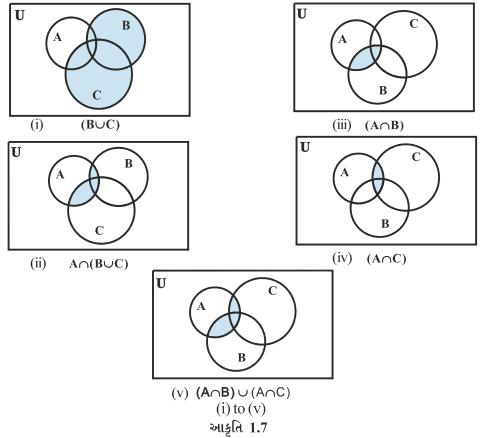
(સ્વયંઘાતી નિયમ)

ાશિત : ધોરણ 11

(v)  $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$  એટલે કે છેદક્રિયા એ યોગક્રિયા પર વિભાજન કરે છે.

(વિભાજનનો નિયમ, Distributive law)

નીચે દર્શાવેલ વેન-આકૃતિઓ પરથી ઉપરના નિયમો વધુ સ્પષ્ટ થશે.



**1.10.3 તફાવત ગણ** : ગણ A અને ગણ B નો આ ક્રમમાં **તફાવત ગણ** (Difference set) એટલે ગણ B માં ન હોય તેવા ગણ A ના ઘટકોથી બનતો ગણ. સાંકેતિક રીતે આપણે તેને A-B દ્વારા દર્શાવીશું અને "A minus B" વાંચીશું.

ઉદાહરણ 18 : A = { 1, 2, 3, 4, 5, 6}, B = { 2, 4, 6, 8 } લો. A – B અને B – A શોધો.

ઉંકેલ : ઘટકો 1, 3, 5 ગણ A માં છે, પરંતુ B માં નથી. આથી આપણને  $A - B = \{1, 3, 5\}$  મળશે અને  $B - A = \{8\}$  થશે,

કારણ કે 8 એ B માં છે પરંતુ A માં નથી. આપણે નોંધીશું કે  $A-B \neq B-A$ .

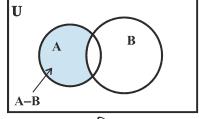
ઉદાહરણ 19 :  $V = \{ a, e, i, o, u \}$  અને  $B = \{ a, i, k, u \}$  છે. V - B અને B - V શોધો.

ઉકેલ : ઘટકો e, o, V માં છે, પરંતુ B માં નથી. આથી  $V - B = \{e, o\}$  મળશે અને ઘટક k ગણ B માં છે, પરંતુ V માં નથી. આથી  $B - V = \{k\}$ .

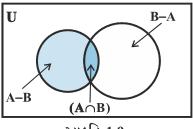
આપણે નોંધીશું કે  $V-B\neq B-V$ . ગુણધર્મની રીતે આપણે તફાવત ગણની વ્યાખ્યાને ફરીથી  $A-B=\{\;x:x\in A\; \text{અન}\;x\not\in B\}$  લખીશું.

બે ગણ A અને B ના તફાવત ગણની વેન-આકૃતિને આકૃતિ 1.8 પ્રમાણે રજૂ કરી શકાય.

આકૃતિ 1.8 માં રંગીન ભાગ એ ગણો A અને B નો તફાવત ગણ દર્શાવે છે.



આકૃતિ 1.8



આકૃતિ 1.9

ગણ 19

**ટિપ્પણી** : ગણો A - B,  $A \cap B$  અને B - A પરસ્પર અલગગણ છે. એટલે કે, આકૃતિ 1.9 માં બતાવ્યા પ્રમાણે આ ગણોમાંથી કોઈ પણ બે ગણનો છેદગણ ખાલીગણ છે.

### સ્વાધ્યાય 1.4

- 1. નીચે આપેલી જોડીઓના ગણોનો યોગગણ લખો :
  - (i)  $X = \{1, 3, 5\}, Y = \{1, 2, 3\}$
  - (ii)  $A = [a, e, i, o, u], B = \{a, b, c\}$
  - (iii)  $A = \{x : x \ \text{એ} \ 3 \ \text{ની ગુણિત પ્રાકૃતિક સંખ્યા છે.}\}, B = \{x : x \ \text{એ} \ 6 \ \text{થી નાની પ્રાકૃતિક સંખ્યા છે.}\}$

  - (v)  $A = \{1, 2, 3\}, B = \emptyset$
- 2.  $A = \{ a, b \}, B = \{ a, b, c \}$  લો.  $A \subset B$  છે ?  $A \cup B$  શું થશે ?
- $\mathbf{3}$ . જો  $\mathbf{A} \subset \mathbf{B}$  હોય તેવા બે ગણ આપ્યા હોય, તો  $\mathbf{A} \cup \mathbf{B}$  શું થશે ?
- 4. જો A = {1, 2, 3, 4}, B = {3, 4, 5, 6}, C = {5, 6, 7, 8} અને D = {7, 8, 9, 10} હોય, તો નીચેના ગણ શોધો :
  - (i)  $A \cup B$
- (ii)  $A \cup C$
- (iii)  $B \cup C$
- (iv)  $B \cup D$

- (v)  $A \cup B \cup C$
- (vi)  $A \cup B \cup D$
- (vii)  $B \cup C \cup D$
- 5. પ્રશ્ન 1 માં આપેલી જોડીઓના ગણોનો છેદગણ શોધો.
- 6. જો A = { 3, 5, 7, 9, 11 }, B = {7, 9, 11, 13}, C = {11, 13, 15} અને D = {15, 17}; હોય, તો નીચેના ગણ શોધો :
  - $\text{(i)}\, A \cap B$
- (ii)  $B \cap C$
- (iii)  $A \cap C \cap D$

- (iv)  $A \cap C$
- (v)  $B \cap D$
- (vi)  $A \cap (B \cup C)$

- (vii)  $A \cap D$
- $(viii) A \cap (B \cup D)$
- $(ix)(A \cap B) \cap (B \cup C)$

- $(x) (A \cup D) \cap (B \cup C)$
- 7. જો  $A = \{x : x એ પ્રાકૃતિક સંખ્યા છે\}, B = \{x : x એ યુગ્મ પ્રાકૃતિક સંખ્યા છે\}, C = \{x : x એ અયુગ્મ પ્રાકૃતિક સંખ્યા છે} અને <math display="block">D = \{x : x એ અવિભાજય સંખ્યા છે\}, તો નીચેના ગણ મેળવો :$ 
  - (i)  $A \cap B$
- (ii)  $A \cap C$
- $(iii) A \cap D$

- (iv)  $B \cap C$
- (v)  $B \cap D$
- (vi)  $C \cap D$
- 8. નીચેના ગણોની જોડીઓમાંથી કઈ જોડના ગણ પરસ્પર અલગગણ છે ?
  - (i)  $\{1, 2, 3, 4\}$  અને  $\{x : x$  એ અયુગ્મ પ્રાકૃતિક સંખ્યા છે,  $4 \le x \le 6$   $\}$
  - (ii) { a, e, i, o, u } અને { c, d, e, f }
  - (iii)  $\{x : x \ \text{ol} \ \text{યુગમ પૂર્શાંક } \hat{\mathcal{O}}\}$  અને  $\{x : x \ \text{ol} \ \text{old} \text{vision}\}$

9.  $\Re A = \{3, 6, 9, 12, 15, 18, 21\}, B = \{4, 8, 12, 16, 20\},$ 

 $C = \{ 2, 4, 6, 8, 10, 12, 14, 16 \}, D = \{ 5, 10, 15, 20 \};$  તો નીચેના ગણ મેળવો :

- (i) A B
- (ii) A C
- (iii) A D
- (iv) B A

- (v) C A
- (vi) D A
- (vii) B C
- (viii) B D

- (ix) C B
- (x) D B
- (xi) C D
- (xii) D C

**10.** જો  $X = \{ a, b, c, d \}$  અને  $Y = \{ f, b, d, g \}$ , તો નીચેના ગણ મેળવો :

- (i) X Y
- (ii) Y X
- (iii)  $X \cap Y$
- 11. જો  ${f R}$  એ વાસ્તવિક સંખ્યાઓનો ગણ અને  ${f Q}$  સંમેય સંખ્યાઓનો ગણ હોય, તો  ${f R}-{f Q}$  શું થશે ?
- 12. નીચેનાં વિધાનો સત્ય છે કે અસત્ય તે જણાવો. તમારા જવાબની યથાર્થતા ચકાસો :
  - (i) { 2, 3, 4, 5 } અને { 3, 6} પરસ્પર અલગગણ છે.
  - (ii)  $\{a, e, i, o, u\}$  અને  $\{a, b, c, d\}$ પરસ્પર અલગગણ છે.
  - (iii) { 2, 6, 10, 14 } અને { 3, 7, 11, 15} પરસ્પર અલગગણ છે.
  - (iv) { 2, 6, 10 } અને { 3, 7, 11} પરસ્પર અલગગણ છે.

#### 1.11 પૂરકગણ

તમામ અવિભાજય સંખ્યાઓના ગણને સાર્વત્રિક ગણ U તરીકે લો અને 42 નો ધન અવયવ ન હોય તેવી અવિભાજય સંખ્યાઓનો ગણ A એ ગણ U નો ઉપગણ છે. આમ,  $A = \{x : x \in U \text{ અને } x \text{ એ } 42 \text{ નો } ધન અવયવ નથી}\}$ . આપણે જોઈશું કે  $2 \in U$ , પરંતુ  $2 \notin A$ , કારણ કે 2 એ 42 નો ધન અવયવ છે. તે જ પ્રમાણે  $3 \in U$  પરંતુ  $3 \notin A$ , અને  $7 \in U$  પરંતુ  $7 \notin A$ . હવે માત્ર 2, 3 અને 42 નો ધન અવયવ છે. તે જ પ્રમાણે 42 નો પાસેલું 43 તે માત્ર 43 તે માત્ર 43 તે માત્ર 44 તે માત્ર 44 તે માત્ર 44 તે માત્ર હોય તેવા ઘટકો છે. આ ત્રણ અવિભાજય સંખ્યાઓના ગણ એટલે કે 44 તે માત્ર 44 નો પ્રક ગણ (Complement of A) કહે છે. અને તેને 44 વડે દર્શાવાય છે. આથી આપણને 44 ને 44 તે અમ, આપણે જોઈશું કે 44 ને 44 તે સ્વર્શ પરથી નીચેની વ્યાખ્યા મળશે :

<u>વ્યાખ્યા 8</u>: ધારો કે U એ સાર્વત્રિક ગણ છે અને A એ U નો ઉપગણ છે. ગણ A માં ન હોય તેવા U ના તમામ ઘટકોથી બનતા ગણને A નો પૂરક ગણ કહે છે. સંકેતમાં આપણે U ના સંદર્ભમાં A ના પૂરક ગણને A' દ્વારા દર્શાવીશું.

આમ, 
$$A' = \{x : x \in U \ \text{અનો} \ x \notin A \}$$
. સ્વયં સ્પષ્ટ છે કે  $A' = U - A$ 

આપણે નોંધીએ કે A ના પૂરક ગણ વિશે બીજી રીતે વિચારીએ, તો A નો પૂરક ગણ એ U અને A નો તફાવત ગણ છે. ગુણ 21

ઉદાહરણ **20**: U = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} અને A = {1, 3, 5, 7, 9}. તો A' શોધો.

ઉકેલ : આપણે નોંધીએ કે A માં ન હોય તેવા Uના ઘટકો માત્ર 2,4,6,8,10 છે અને તે U માં તો છે જ. આથી  $A' = \{2,4,6,8,10\}$ .

ઉદાહરણ 21 : એક સહિશક્ષણ આપતી શાળાના ધોરણ XI ના વિદ્યાર્થીઓના ગણને સાર્વત્રિક ગણ U તરીકે લો અને ધોરણ XI ની છાત્રાઓનો ગણ A લો. A' શોધો.

ઉકેલ: વર્ગની છાત્રાઓનો ગણ A હોવાથી સ્વયં સ્પષ્ટ છે કે વર્ગના છાત્રોનો ગણ A' છે.

િ નોંધ જો ગણ A એ સાર્વત્રિક ગણ U નો ઉપગણ હોય તો તેનો પૂરક ગણ A' પણ U નો ઉપગણ છે. ઉદાહરણ 20 માં  $A' = \{\ 2,\ 4,\ 6,\ 8,\ 10\ \}$  મળે છે. આથી  $(A'\ )' = \{x: x \in U\ અને\ x \not\in A'\}$ 

$$= \{1, 3, 5, 7, 9\} = A$$

પૂરક ગણની વ્યાખ્યા પરથી સ્પષ્ટ છે કે, સાર્વત્રિક ગણ U ના કોઈ પણ ઉપગણ A માટે ( A' )' = A થાય.

હવે આપણે (  $A \cup B$  )' અને  $A' \cap B'$  વિષયક પરિણામો નીચેનાં ઉદાહરણો પરથી મેળવીએ :

ઉદાહરણ 22 : U = {1, 2, 3, 4, 5, 6}, A = {2, 3} અને B = {3, 4, 5}.

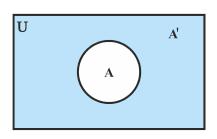
 $A', B', A' \cap B', A \cup B$  શોધો અને તે પરથી બતાવો કે (  $A \cup B$  )' =  $A' \cap B'$ .

ઉકેલ :  $A' = \{1, 4, 5, 6\}$  અને  $B' = \{1, 2, 6\}$  છે તે સ્પષ્ટ છે. આથી  $A' \cap B' = \{1, 6\}$ 

વળી, A  $\cup$  B = { 2, 3, 4, 5 }. આથી (A  $\cup$  B )' = { 1, 6 }

$$(A \cup B)' = \{1, 6\} = A' \cap B'$$

ઉપરનાં પરિણામો વ્યાપક રીતે સત્ય છે તેમ બતાવી શકાય. જો A અને B એ સાર્વિત્રિક ગણ U ના ઉપગણ હોય તો (A ∪ B)' = A' ∩ B'. તે જ રીતે (A ∩ B)' = A' ∪ B'. આ બે પરિણામોને ભાષામાં નીચે પ્રમાણે રજૂ કરી શકાયઃ બે ગણના યોગગણનો પૂરક ગણ એ તેમના પૂરકગણનો છેદગણ છે અને બે ગણના છેદગણનો પૂરક ગણ એ તેમના પૂરક ગણનો યોગગણ છે. આ નિયમોને De Morgan's laws કહે છે. ગણિતશાસ્ત્રી De Morgan ના નામ પરથી આ નામ આપવામાં આવ્યું છે. ગણ A ના પૂરક ગણ A' ને વેન- આકૃતિ 1.10 માં દર્શાવેલ છે.



આકૃતિ 1.10

રંગીન ભાગ A નો પૂરકગણ દર્શાવે છે.

### પૂરક ગણના કેટલાક ગુણધર્મો

- 1. પૂરક ગણનો નિયમ : (i)  $A \cup A' = U$  (ii)  $A \cap A' = \phi$
- **2.** દ'મોર્ગનના નિયમ : (i)  $(A \cup B)' = A' \cap B'$  (ii)  $(A \cap B)' = A' \cup B'$
- **3.** દ્વિપૂરક ગણનો નિયમ : (A')' = A
- 4. ખાલીગણ અને સાર્વત્રિક ગણના નિયમો :  $\phi$  ' = U અને U' =  $\phi$

આ નિયમોને વેન-આકૃતિ દ્વારા ચકાસી શકાય.

#### સ્વાધ્યાય 1.5

- 1. U = { 1, 2, 3, 4, 5, 6, 7, 8, 9 }, A = { 1, 2, 3, 4}, B = { 2, 4, 6, 8 } અને C = { 3, 4, 5, 6 } છે. નીચેના ગણ શોધો :
  - (i) A'
- (ii) B'
- (iii)  $(A \cup C)'$
- (iv)  $(A \cup B)'$
- (v) (A')'
- (vi) (B C)'

- 2. જો  $U = \{ a, b, c, d, e, f, g, h \}$  હોય, તો નીચેના ગણના પૂરક ગણ શોધો :
  - (i)  $A = \{a, b, c\}$

(ii)  $B = \{d, e, f, g\}$ 

(iii)  $C = \{a, c, e, g\}$ 

- (iv)  $D = \{ f, g, h, a \}$
- 3. પ્રાકૃતિક સંખ્યાઓના ગણને સાર્વત્રિક ગણ તરીકે લઈ, નીચે આપેલા ગણના પૂરક ગણ શોધો :
  - (i)  $\{x : x એ યુગ્મ પ્રાકૃતિક સંખ્યા છે.\}$
- (ii)  $\{x : x એ અયુગ્મ પ્રાકૃતિક સંખ્યા છે.\}$
- (iii)  $\{x : x એ 3 નો ધન ગુણિત છે.\}$
- $(iv) \{ x : x એ અવિભાજ્ય સંખ્યા છે. \}$
- $(v) \{x : x એ 3 અને 5 વડે વિભાજય પ્રાકૃતિક સંખ્યા છે.\}$
- (vi)  $\{x : x એ પૂર્ણવર્ગ છે.\}$
- (vii) { *x* : *x* એ પૂર્ણ ઘન છે.}

(viii)  $\{x: x+5=8\}$ 

(ix)  $\{x: 2x+5=9\}$ 

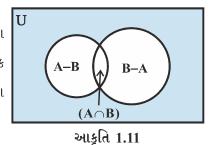
 $(x) \{ x : x \ge 7 \}$ 

- (xi)  $\{x : x \in \mathbb{N} \ \text{અને} \ 2x + 1 > 10 \}$
- 4. જો U = {1, 2, 3, 4, 5, 6, 7, 8, 9}, A = {2, 4, 6, 8} અને B = { 2, 3, 5, 7} હોય, તો
  - (i)  $(A \cup B)' = A' \cap B'$

- (ii)  $(A \cap B)' = A' \cup B'$  ચકાસો.
- 5. નીચેના દરેક માટે યોગ્ય વેન-આકૃતિ દોરો :
  - (i)  $(A \cup B)'$
- (ii)  $A' \cap B'$
- $(iii)(A \cap B)'$
- (iv)  $A' \cup B'$
- 6. સમતલના તમામ ત્રિકોશના ગણને U તરીકે લો. જો ઓછામાં ઓછો એક ખૂશો 60° થી ભિન્ન હોય તેવા ત્રિકોશોનો ગણ A હોય, તો A' શું થશે ?
- 7. નીચેના વિધાનો સત્ય થાય તે રીતે ખાલી જગ્યા પૂરો :
  - (i)  $A \cup A' = ...$
- (ii)  $\phi' \cap A = \dots$
- (iii)  $A \cap A' = ...$
- (iv)  $U' \cap A = ...$

### 1.12 બે ગણના યોગગણ અને છેદગણ પરના વ્યાવહારિક કૂટપ્રશ્નો

આગળના વિભાગમાં આપણે બે ગણના યોગગણ, છેદગણ અને તફાવત ગણ વિશે અભ્યાસ કર્યો. આ વિભાગમાં આપણે દૈનિક જીવનને સ્પર્શતા કેટલાક વ્યાવહારિક પ્રશ્નો જોઈશું. આ વિભાગમાં ફ્લિત થતાં કેટલાંક સૂત્રોનો પાછળના પ્રકરણ સંભાવના(પ્રકરણ 16) માં પણ ઉપયોગ કરીશું.



ગાલુ 23

ધારો કે, A અને B સાન્ત ગણો છે. જો  $A \cap B = \emptyset$  હોય, તો

(i) 
$$n(A \cup B) = n(A) + n(B)$$
 ... (1)

 $A \cup B$  ના ઘટકો A અથવા B ના ઘટકો છે, પરંતુ  $A \cap B = \emptyset$  હોવાથી કોઈ ઘટક બંને ગણમાં નથી.આથી, (1) તરત જ ફલિત થાય છે. વ્યાપક સ્વરૂપે, જો A અને B સાન્ત ગણ હોય, તો

(ii) 
$$n(A \cup B) = n(A) + n(B) - n(A \cap B)$$
 ... (2)

 $A-B,A\cap B$  અને B-A પરસ્પર અલગ ગણો છે તેમ નોંધીશું અને તેમનો યોગ  $A\cup B$  છે (આકૃતિ 1.11). માટે

$$n (A \cup B) = n (A - B) + n (A \cap B) + n (B - A)$$
  
=  $n (A - B) + n (A \cap B) + n (B - A) + n (A \cap B) - n (A \cap B)$   
=  $n (A) + n (B) - n (A \cap B)$ .

આમ સૂત્ર(2) ની ચકાસણી થઈ.

(iii) જો A, B અને C સાન્ત ગણો હોય તો,

 $n(A \cup B \cup C) = n(A) + n(B) + n(C) - n(A \cap B) - n(B \cap C) - n(A \cap C) + n(A \cap B \cap C)$ ... (3) ખરેખર તો આપણને,

$$n(A \cup B \cup C) = n(A) + n(B \cup C) - n[A \cap (B \cup C)]$$
 [(2) પરથી]  
=  $n(A) + n(B) + n(C) - n(B \cap C) - n[A \cap (B \cup C)]$  [(2) પરથી]

વળી,  $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$  હોવાથી, આપણને

$$n[A \cap (B \cup C)] = n(A \cap B) + n(A \cap C) - n[(A \cap B) \cap (A \cap C)]$$
$$= n(A \cap B) + n(A \cap C) - n(A \cap B \cap C)$$

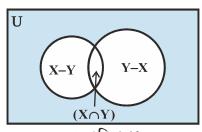
$$\therefore n(A \cup B \cup C) = n(A) + n(B) + n(C) - n(A \cap B) - n(B \cap C) - n(A \cap C) + n(A \cap B \cap C)$$

આમ (3) સાબિત થયું.

<mark>ઉદાહરણ 23 : X  $\cup$  Y માં 50</mark> ઘટકો, X માં 28 ઘટકો અને Y માં 32 ઘટકો હોય તેવા બે ગણો X અને Y આપેલા છે, તો  $X \cap Y$  માં કેટલા ઘટક હશે ?

ઉકેલ : 
$$n(X \cup Y) = 50$$
,  $n(X) = 28$ ,  $n(Y) = 32$  આપ્યા છે,  $n(X \cap Y) = ?$  સૂત્ર  $n(X \cup Y) = n(X) + n(Y) - n(X \cap Y)$  નો ઉપયોગ કરતાં, 
$$n(X \cap Y) = n(X) + n(Y) - n(X \cup Y)$$
$$= 28 + 32 - 50 = 10$$

બીજી રીતે વિચારતાં ધારો કે  $n(X \cap Y) = k \vartheta$ , તો



આકૃતિ 1.12

$$n\left( {\left| {{\rm{X - Y}}} \right| = 28 - k} \,,\, n\left( {\left| {{\rm{Y - X}}} \right| = 32 - k} \right)$$
 (આકૃતિ 1.12 ની વેન-આકૃતિ દ્વારા) આથી,  $50 = n\left( {\left| {{\rm{X - Y}}} \right| + n\left( {{\rm{X - Y}}} \right) + n\left( {{\rm{Y - X}}} \right)}$   $= \left( {28 - k} \right) + k + \left( {32 - k} \right)$  આથી,  $k = 10$ 

ઉદાહરણ 24:એક શાળામાં 20 શિક્ષકો ગણિત અથવા ભૌતિકવિજ્ઞાન શીખવે છે. આ શિક્ષકો પૈકી 12 ગણિત શીખવે છે અને 4 ભૌતિકવિજ્ઞાન અને ગણિત બંને વિષય શીખવે છે. કેટલા શિક્ષકો ભૌતિકવિજ્ઞાન શીખવતા હશે ?

ઉંકેલ : ધારો કે ગણિત શીખવતા શિક્ષકોનો ગણ M અને ભૌતિકવિજ્ઞાન શીખવતા શિક્ષકોનો ગણ P છે. કૂટપ્રશ્નનાં વિધાનોમાં ''અથવા'' શબ્દ આપણને યોગગણ તથા ''અને'' શબ્દ છેદગણનો ઉપયોગ કરવાનું સૂચન આપે છે. હવે, n (  $M \cup P$  ) = 20, n ( M ) = 12 અને n (  $M \cap P$  ) = 4 છે.

આપણે, n ( P ) મેળવવા ઇચ્છિએ છીએ.

પરિણામ  $n (M \cup P) = n (M) + n (P) - n (M \cap P)$  નો ઉપયોગ કરતાં,

20 = 12 + n (P) - 4 મળશે.

આમ, n (P) = 12

આથી 12 શિક્ષકો ભૌતિકવિજ્ઞાન શીખવે છે.

ઉદાહરણ 25: 35 વિદ્યાર્થીઓના વર્ગમાં 24 ને ક્રિકેટ રમવું ગમે છે અને 16 ને ફ્રૂટબૉલ રમવું ગમે છે. દરેક વિદ્યાર્થી બે રમતોમાંથી ઓછામાં ઓછી એક રમત રમવાનું પસંદ કરે છે. ક્રિકેટ અને ફ્રૂટબૉલ બંને રમત રમવાનું કેટલા વિદ્યાર્થીઓ પસંદ કરતાં હશે ?

 $oldsymbol{6}$ કેલ ઃ ધારો કે ક્રિકેટ રમવાનું પસંદ કરતાં વિદ્યાર્થીઓનો ગણ X અને ફૂટબૉલ રમવાનું પસંદ કરતાં વિદ્યાર્થીઓનો ગણ Y છે.  $X \cup Y$  એ ઓછામાં ઓછી એક રમત રમવાનું પસંદ કરતાં વિદ્યાર્થીઓનો ગણ થશે અને  $X \cap Y$  એ બંને રમત રમવાનું પસંદ કરતાં વિદ્યાર્થીઓનો ગણ થશે.

$$n\left( {\left| {X} \right| = 24,n\left( {\left| {Y} \right| = 16,n\left( {\left| {X \cup Y} \right|} \right) = 35} \right.}$$
 આપ્યું છે,  $n\left( {X \cap Y} \right) = ?$  સૂત્ર  $n\left( {\left| {X \cup Y} \right|} \right) = n\left( {\left| {X} \right|} \right) + n\left( {\left| {Y} \right|} \right) - n\left( {\left| {X \cap Y} \right|} \right)$  નો ઉપયોગ કરતાં,  $35 = 24 + 16 - n\left( {X \cap Y} \right)$  મળે. આમ,  $n\left( {X \cap Y} \right) = 5$ 

એટલે કે 5 વિદ્યાર્થીઓ બંને ૨મત ૨મવાનું પસંદ કરે છે.

ઉદાહરણ 26:એક શાળાના 400 વિદ્યાર્થીઓની મોજણી કરી. 100 વિદ્યાર્થી સફરજનનો રસ પીએ છે, 150 નારંગીનો રસ પીએ છે અને 75 વિદ્યાર્થીઓ સફરજન તેમજ નારંગી બંનેનો રસ પીએ છે. કેટલા વિદ્યાર્થીઓ સફરજન અને નારંગી પૈકી એકપણનો રસ પીતા નથી?

ગણ 25

ઉકેલ: ધારો કે જે વિદ્યાર્થીઓની મોજણી કરવામાં આવી તેમનો ગણ U છે અને સફરજનનો રસ પીનાર વિદ્યાર્થીઓનો ગણ A તથા નારંગીનો રસ પીનાર વિદ્યાર્થીઓનો ગણ B છે.

$$n ext{ (U)} = 400, n ext{ (A)} = 100, n ext{ (B)} = 150 અને  $n ext{ (A \cap B)} = 75$  થશે. 
$$n ext{ (A' \cap B')} = n ext{ ((A \cup B)')}$$
$$= n ext{ (U)} - n ext{ (A \cup B)}$$
$$= n ext{ (U)} - n ext{ (A)} - n ext{ (B)} + n ext{ (A \cap B)}$$
$$= 400 - 100 - 150 + 75 = 225$$$$

આથી, 225 વિદ્યાર્થીઓ સફરજન અને નારંગી પૈકી કોઈનો પણ રસ પીતા નથી.

ઉદાહરણ 27 : ચામડીની વ્યાધિવાળી 200 વ્યક્તિઓ છે. 120 વ્યક્તિઓને રસાયણ  $C_1$  અને 50 વ્યક્તિઓને રસાયણ  $C_2$ ની અસર માલૂમ પડી અને 30 ને બંને રસાયણો  $C_1$  અને  $C_2$ ની અસર માલૂમ પડી.

- (i) રસાયણ  $C_1$  ની અસર હોય, પરંતુ રસાયણ  $C_2$  ની અસર ન હોય.
- (ii) રસાયણ  $C_2$  ની અસર હોય, પરંતુ રસાયણ  $C_1$  ની અસર ન હોય.
- (iii) રસાયણ  $C_1$  અથવા રસાયણ  $C_2$ ની અસર માલૂમ પડી હોય તેવી વ્યક્તિઓની સંખ્યા શોધો.

 ${\bf 6\hat{s}}$ લ ઃ ધારો કે ચામડીના દર્દની બીમારીવાળી વ્યક્તિઓનો ગણ સાર્વત્રિક ગણ  ${\bf U}$  છે. રસાયણ  ${\bf C_1}$  ની અસરવાળી

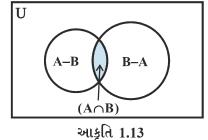
વ્યક્તિઓનો ગણ A તથા રસાયણ  $C_2$  ની અસરવાળી વ્યક્તિઓનો ગણ B છે.

$$n$$
 ( U) = 200,  $n$  ( A ) = 120,  $n$  ( B ) = 50 अने  $n$  ( A  $\cap$  B ) = 30

(i) આકૃતિ 1.13 ની વેન-આકૃતિ પરથી,

$$A = (A - B) \cup (A \cap B).$$

$$n(A) = n(A - B) + n(A \cap B)$$



(A-B) અને  $A\cap B$  અલગ ગણ હોવાથી)

આથી 
$$n(A-B) = n(A) - n(A \cap B) = 120 - 30 = 90$$

આથી રસાયણ  $\mathbf{C}_1$  ની અસર હોય, પરંતુ રસાયણ  $\mathbf{C}_2$ ની અસર ન હોય તેવી વ્યક્તિઓની સંખ્યા 90 છે.

(ii) આકૃતિ 1.13 પરથી

$$B = (B - A) \cup (A \cap B).$$

અને આથી, 
$$n(B) = n(B - A) + n(A \cap B)$$

(B-A) અને  $A\cap B$  અલગ ગણ હોવાથી)

આથી 
$$n$$
 ( B - A ) =  $n$  ( B ) -  $n$  ( A  $\cap$  B ) =  $50 - 30 = 20$ 

આમ, રસાયણ  $C_2$  ની અસર હોય, પરંતુ રસાયણ  $C_1$  ની અસર ન હોય તેવી વ્યક્તિઓની સંખ્યા 20 છે.

(iii) રસાયણ  $C_1$  અથવા રસાયણ  $C_2$ ની અસર માલૂમ પડી હોય તેવી વ્યક્તિઓની સંખ્યા એટલે કે,

$$n (A \cup B) = n (A) + n (B) - n (A \cap B)$$
  
= 120 + 50 - 30 = 140.

#### સ્વાધ્યાય 1.6

- 1. જો બે ગણ X અને Y માટે n ( X ) = 17, n ( Y ) = 23 અને n (  $X \cup Y$  ) = 38 હોય, તો n (  $X \cap Y$  ) શોધો.
- f 2. જો બે ગણ f X અને f Y માટે  $f X \cup f Y$  માં f 18 ઘટકો, f X માં f 8 ઘટકો અને f Y માં f 15 ઘટકો હોય, તો  $f X \cap f Y$  માં કેટલા ઘટકો હશે f ?
- 3. 400 વ્યક્તિઓના સમૂહમાં, 250 હિન્દી બોલી શકે છે અને 200 અંગ્રેજી બોલી શકે છે, તો કેટલી વ્યક્તિઓ હિન્દી અને અંગ્રેજી બંને બોલી શકે ? 400 પૈકી દરેક વ્યક્તિ આ બે પૈકી ઓછામાં ઓછી એક ભાષા બોલી શકે છે.
- 4. જો બે ગણો S અને T માટે S માં 21 ઘટકો, T માં 32 ઘટકો અને  $S \cap T$  માં 11 ઘટકો હોય, તો  $S \cup T$  માં કેટલા ઘટકો હશે ?
- 5. બે ગણ X અને Y એવા છે કે ગણ X માં 40 ઘટકો,  $X \cup Y$  માં 60 ઘટકો અને  $X \cap Y$  માં 10 ઘટકો હોય, તો Y માં કેટલા ઘટકો હશે?
- 6. 70 વ્યક્તિઓના જૂથમાં, 37 કૉફી પસંદ કરે છે અને 52 વ્યક્તિને ચા પસંદ છે. તથા દરેક વ્યક્તિ આ બે પીણાંમાંથી ઓછામાં ઓછું એક પીણું પસંદ કરે છે. કેટલી વ્યક્તિઓ કૉફી અને ચા બંને પસંદ કરે છે?
- 7. 65 વ્યક્તિઓના જૂથમાં, 40 ક્રિકેટ પસંદ કરે છે, 10 ક્રિકેટ અને ટેનિસ બંને પસંદ કરે છે. કેટલી વ્યક્તિઓ માત્ર ટેનિસ પસંદ કરે છે પરંતુ ક્રિકેટ પસંદ કરતા નથી ? કેટલા ટેનિસ પસંદ કરે છે ? 65 પૈકી દરેક વ્યક્તિ આ બે પૈકી ઓછામાં ઓછી એક રમત પસંદ કરે છે.
- 8. એક સિમિતિમાં 50 વ્યક્તિઓ ફ્રેંચ બોલે છે, 20 સ્પેનિશ બોલે છે અને 10 વ્યક્તિઓ બંને સ્પેનિશ અને ફ્રેંચ બંને બોલે છે. કેટલી વ્યક્તિઓ આ બે ભાષાઓમાંથી ઓછામાં ઓછી એક ભાષા બોલી શકે છે?

#### પ્રકીર્ણ ઉદાહરણો

<mark>ઉદાહરણ 28</mark> : ચકાસો કે " CATARACT " શબ્દ લખવા માટેના જરૂરી મૂળાક્ષરો અને " TRACT" શબ્દ લખવા માટેના જરૂરી મૂળાક્ષરોનો ગણ સમાન છે.

ઉંકેલ : "CATARACT" શબ્દના અક્ષરોનો ગણ  $X = \{ C, A, T, R \}$  થશે.

જો "TRACT" ના અક્ષરોનો ગણ Y લઈએ તો,

$$Y = \{ T, R, A, C \}$$

X નો દરેક ઘટક Y માં અને Y નો દરેક ઘટક X માં હોવાથી X=Y.

ઉદાહરણ  $29: \{-1, 0, 1\}$  ગણના બધા જ ઉપગણોની યાદી બનાવો.

6કેલ : ધારો કે ગણ  $A = \{-1, 0, 1\}$  છે. એક પણ સભ્ય ન હોય તેવો ગણ ખાલીગણ  $\phi$  એ A નો ઉપગણ છે. જેમાં એક સભ્ય

ગુણ 27

હોય તેવા A ના ઉપગણો  $\{-1\}$ ,  $\{0\}$ ,  $\{1\}$  છે. જેમાં બે ઘટકો હોય તેવા A ના ઉપગણો  $\{-1,0\}$ ,  $\{-1,1\}$ ,  $\{0,1\}$  છે. ત્રણ ઘટકોવાળો A નો ઉપગણ A પોતે જ છે. આથી ગણ A ના તમામ ઉપગણો  $\emptyset$ ,  $\{-1\}$ ,  $\{0\}$ ,  $\{1\}$ ,  $\{-1,0\}$ ,  $\{-1,1\}$ ,  $\{0,1\}$  અને  $\{-1,0,1\}$  છે.

ઉદાહરણ 30 : સાબિત કરો કે જો  $A \cup B = A \cap B$  હોય, તો A = B.

ઉક્રેલ : ધારો કે  $a \in A$ . આથી  $a \in A \cup B$ . હવે  $A \cup B = A \cap B$  હોવાથી,  $a \in A \cap B$ . આથી  $a \in B$ .

માટે,  $A \subset B$ . એ જ રીતે જો  $b \in B$ , તો  $b \in A \cup B$ .

 $A \cup B = A \cap B$  હોવાથી,  $b \in A \cap B$ . આથી  $b \in A$ . માટે,  $B \subset A$ . આમ A = B

ઉદાહરણ 31 : કોઈપણ ગણ A અને B માટે સાબિત કરો કે,  $P(A \cap B) = P(A) \cap P(B)$ .

ઉકેલ : જો  $X \in P(A \cap B)$ , તો  $X \subset (A \cap B)$ . આથી,  $X \subset A$  અને  $X \subset B$ .

માટે  $X \in P(A)$  અને  $X \in P(B)$ . તેથી  $X \in P(A) \cap P(B)$ . આથી  $P(A \cap B) \subset P(A) \cap P(B)$ .

ધારો કે  $Y \in P(A) \cap P(B)$ . તો  $Y \in P(A)$  અને  $Y \in P(B)$ . આથી,  $Y \subset A$  અને  $Y \subset B$ .

માટે,  $Y \subset (A \cap B)$ . તે પરથી  $Y \in P(A \cap B)$  થાય.

આથી,  $(P(A) \cap P(B)) \subset P(A \cap B)$ 

આમ,  $P(A \cap B) = P(A) \cap P(B)$ .

ઉદાહરણ 32 : એક બજાર-સંશોધન જૂથે 1000 ઉપભોક્તાઓની મોજણી કરી અને શોધ્યું કે 720 ગ્રાહકો ઉત્પાદન A પસંદ કરે છે અને 450 ઉત્પાદન B પસંદ કરે છે. બંને ઉત્પાદન પસંદ કરનાર ઉપભોક્તાની ન્યૂનતમ સંખ્યા કેટલી હશે ?

ઉકેલ : ધારો કે જેમને ઉત્પાદન સંબંધી પ્રશ્ન પૂછ્યા હોય તેવા ઉપભોક્તાઓનો ગણ U છે. ઉત્પાદન A પસંદ કરનારા ઉપભોક્તાઓનો ગણ S છે અને ઉત્પાદન B પસંદ કરનારા ઉપભોક્તાઓનો ગણ T છે.

$$n(U) = 1000, n(S) = 720, n(T) = 450$$

આથી 
$$n(S \cup T) = n(S) + n(T) - n(S \cap T)$$

$$= 720 + 450 - n (S \cap T) = 1170 - n (S \cap T)$$

માટે, જો n (S  $\cap$  T) ન્યૂનતમ હોય તો અને તો જ n (S  $\cup$  T) મહત્તમ થશે. પરંતુ (S  $\cup$  T)  $\subset$  U હોવાથી n (S  $\cup$  T)  $\leq$  n (U) = 1000. આથી n (S  $\cup$  T) નું મહત્તમ મૂલ્ય 1000 છે. આમ, n (S  $\cap$  T) નું ન્યૂનતમ મૂલ્ય 170 છે. આથી બંને ઉત્પાદન પસંદ કરનારા ઉપભોક્તાની ન્યૂનતમ સંખ્યા 170 છે.

ઉદાહરણ 33:500 મોટરમાલિક વિષયક સંશોધનમાં માલૂમ પડ્યું કે A પ્રકારની મોટરના માલિકોની સંખ્યા 400 અને B પ્રકારની મોટરના માલિકોની સંખ્યા 200 છે. જ્યારે 50 મોટર માલિકો A અને B બંને પ્રકારની મોટર ધરાવે છે. શું આ માહિતી સાચી છે ?

28 ગણિત : ધોરણ 11

ઉકેલ : ધારો કે મોટરમાલિકોના સર્વેક્ષણનો ગણ U છે, A પ્રકારની મોટરના માલિકોનો ગણ M અને B પ્રકારની મોટર ધરાવતા માલિકોનો ગણ S છે.

$$n$$
 ( U ) = 500,  $n$  (M ) = 400,  $n$  ( S ) = 200 અને  $n$  ( S  $\cap$  M ) = 50 આપ્યું છે.

હવે 
$$n(S \cup M) = n(S) + n(M) - n(S \cap M) = 200 + 400 - 50 = 550$$

પરંતુ  $(S \cup M) \subset U$ . તેથી  $n (S \cup M) \le n (U)$  થવું જોઈએ.

આ વિરોધાભાસ છે. આથી આપેલ માહિતી સાચી નથી.

ઉદાહરણ 34 : એક કોલેજ દ્વારા પુરુષોની રમતમાં 38 ચંદ્રકો ફૂટબૉલમાં, 15 બાસ્કેટબૉલમાં અને 20 ક્રિકેટમાં એનાયત કરવામાં આવ્યાં. જો આ ચંદ્રકો કુલ 58 પુરુષોને મળ્યા હોય અને માત્ર 3 પુરુષોને ત્રણેય રમતના ચંદ્રકો મળ્યાં હોય. તો કેટલી વ્યક્તિને ત્રણમાંથી બરાબર બે ચંદ્રક મળ્યાં હશે ?

ઉકેલ : ધારો કે F, B અને C અનુક્રમે ફૂટબૉલ, બાસ્કેટબૉલ અને ક્રિકેટમાં પુરુષોને મળેલા ચંદ્રકોના ગણ છે.

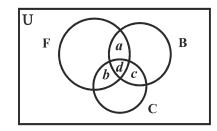
dì, 
$$n(F) = 38$$
,  $n(B) = 15$ ,  $n(C) = 20$ 

$$n (F \cup B \cup C) = 58$$
 અને  $n (F \cap B \cap C) = 3$  છે.

માટે, 
$$n(F \cup B \cup C) = n(F) + n(B) + n(C)$$

$$-n (F \cap B) - n (F \cap C) - n (B \cap C) + n (F \cap B \cap C),$$

પરથી 
$$n(F \cap B) + n(F \cap C) + n(B \cap C) = 18$$
 મળે.



આકૃતિ 1.14

આકૃતિ 1.14 માં બતાવેલી વેન-આકૃતિ જોઇએ.

અહીં, માત્ર ફૂટબૉલ અને બાસ્કેટબૉલમાં ચંદ્રકો મેળવતા પુરુષોની સંખ્યાને a વડે દર્શાવીએ, માત્ર ફૂટબૉલ અને ક્રિકેટમાં ચંદ્રકો મેળવતા પુરુષોની સંખ્યાને b થી દર્શાવીએ. માત્ર બાસ્કેટબૉલ અને ક્રિકેટમાં ચંદ્રકો મેળવતા પુરુષોની સંખ્યાને c વડે દર્શાવીએ અને ત્રણેય રમતમાં ચંદ્રકો મેળવતા પુરુષોની સંખ્યાને d વડે દર્શાવીએ.

આમ, 
$$d = n( F \cap B \cap C ) = 3$$
 અને  $a + d + b + d + c + d = 18$ 

માટે, 
$$a + b + c = 9$$

આમ, આપેલ ત્રણ રમતોમાંથી બરાબર બે જ રમતમાં ચંદ્રકો મેળવનાર પુરુષોની સંખ્યા 9 છે.

### પ્રકીર્ણ સ્વાધ્યાય 1

1. નીચે આપેલ ગણો પૈકી ક્યા ગણ આપેલ ગણો પૈકી કયા ગણના ઉપગણ છે તે નક્કી કરો :

$$A = \{ x : x \in \mathbb{R} \text{ અને } x \text{ એ સમીકરણ } x^2 - 8x + 12 = 0 \text{ નું સમાધાન કરે છે} \},$$

$$B = \{ 2, 4, 6 \}, C = \{ 2, 4, 6, 8, \dots \}, D = \{ 6 \}.$$

ગુણ

- 2. નીચેના પૈકી દરેક વિધાનમાંથી કયું સત્ય અને કયું અસત્ય છે તે નક્કી કરો :
  - (i) જો  $x \in A$  અને  $A \in B$  , તો  $x \in B$
  - (ii) જો  $A \subset B$  અને  $B \in C$  , તો  $A \in C$
  - (iii) જો  $A \subset B$  અને  $B \subset C$  , તો  $A \subset C$
  - (iv)જો  $A \not\subset B$  અને  $B \not\subset C$  , તો  $A \not\subset C$
  - (v) જો  $x \in A$  અને  $A \not\subset B$ , તો  $x \in B$
  - (vi)જો  $A \subset B$  અને  $x \notin B$ , તો  $x \notin A$
- 3. ગણ A, B અને C માટે  $A \cup B = A \cup C$  અને  $A \cap B = A \cap C$  છે. સાબિત કરો કે, B = C.
- 4. સાબિત કરો કે નીચે આપેલી ચારેય શરતો સમકક્ષ છે :
  - (i)  $A \subset B$  (ii)  $A B = \emptyset$  (iii)  $A \cup B = B$  (iv)  $A \cap B = A$  નોંધ : આનો અર્થ એ કે (i)  $\Rightarrow$  (ii) અને (ii)  $\Rightarrow$  (i) વગેરે. તે માટે (i)  $\Rightarrow$  (ii)  $\Rightarrow$  (iii)  $\Rightarrow$  (iv)  $\Rightarrow$  (i) સાબિત કરો.
- **5.** સાબિત કરો કે  $A \subset B$ , તો  $(C B) \subset (C A)$
- 6. જો P(A) = P(B) હોય, તો સાબિત કરો કે A = B.
- 7. કોઈપણ ગણ A અને B માટે  $P(A) \cup P(B) = P(A \cup B)$  સત્ય છે ? તમારા જવાબની યથાર્થતા ચકાસો.
- 8. કોઈપણ ગણ A અને B માટે સાબિત કરો કે,  $A = (A \cap B) \cup (A B) \text{ અને } A \cup (B A) = (A \cup B).$
- 9. ગણના ગુણધર્મોનો ઉપયોગ કરીને સાબિત કરો કે
  - (i)  $A \cup (A \cap B) = A$  (ii)  $A \cap (A \cup B) = A$ .
- 10. સાબિત કરો કે  $A \cap B = A \cap C$  પરથી B = C કહી શકાય નહિ.
- 11. A અને B ગણો છે. કોઈ ગણ X માટે જો  $A \cap X = B \cap X \neq \emptyset$  અને  $A \cup X = B \cup X$  તો સાબિત કરો કે A = B. (સૂચન:  $A = A \cap (A \cup X)$ ,  $B = B \cap (B \cup X)$  અને વિભાજનના નિયમનો ઉપયોગ કરો.)
- 12. ગણ A, B અને C એવા શોધો કે જેથી  $A \cap B, B \cap C$  અને  $A \cap C$  અરિક્ત ગણો થાય અને  $A \cap B \cap C = \emptyset$  બને.
- 13. એક શાળાના 600 વિદ્યાર્થીઓના સર્વેક્ષણમાં 150 વિદ્યાર્થીઓ ચા પીતા હતા અને 225 કૉફી પીતા હતા.
  100 વિદ્યાર્થીઓ ચા અને કૉફી બંને પીતા હતા. કૉફી અને ચા બંને પૈકી કંઈપણ નહિ પીનારા વિદ્યાર્થીઓની સંખ્યા શોધો.
- 14. વિદ્યાર્થીઓના એક જૂથમાં, 100 વિદ્યાર્થીઓ હિન્દી જાણે છે, 50 અંગ્રેજી જાણે છે અને 25 બંને ભાષા જાણે છે. આ જૂથમાં કેટલા વિદ્યાર્થીઓ હશે ?
- 15. 60 વ્યક્તિઓના સર્વેક્ષણમાં, 25 વ્યક્તિઓ સમાચારપત્ર H વાંચતા, 26 સમાચારપત્ર T વાંચતા, 26 સમાચારપત્ર I વાંચતા,9 H અને I વાંચતા, 11 H અને T બંને વાંચતા, 8 T અને I વાંચતા તથા 3 તમામ સમાચારપત્ર વાંચતા માલૂમ પડ્યા.

ગણિત : ધોરણ 11

- (i) ઓછામાં ઓછું એક સમાચારપત્ર વાંચનાર
- (ii) માત્ર એક જ સમાચારપત્ર વાંચનાર વ્યક્તિઓની સંખ્યા શોધો.
- 16. એક સર્વેક્ષણમાં 21 વ્યક્તિ ઉત્પાદન A પસંદ કરે છે, 26 ઉત્પાદન B પસંદ કરે છે અને 29 ઉત્પાદન C પસંદ કરે છે. જો 14 વ્યક્તિઓ ઉત્પાદન A અને B બંને પસંદ કરતી હોય, 12 વ્યક્તિઓ ઉત્પાદન C અને A પસંદ કરતી હોય, 14 વ્યક્તિઓ ઉત્પાદન B અને C પસંદ કરતી હોય તથા 8 વ્યક્તિઓ ત્રણેય ઉત્પાદન પસંદ કરતી હોય, તો માત્ર ઉત્પાદન C પસંદ કરતી વ્યક્તિઓની સંખ્યા શોધો.

#### સારાંશ

આ પ્રકરણમાં ગણને આવરી લેતી કેટલીક પાયાની વ્યાખ્યાઓ અને પ્રક્રિયાઓ આપવામાં આવી છે. તેમનો સારાંશ નીચે પ્રમાણે છે :

- 🔷 ગણ એ સુનિશ્ચિત વસ્તુઓનો સમૂહ છે.
- 🔷 જે ગણ એક પણ સભ્ય ધરાવતો નથી, તેને ખાલીગણ કહે છે.
- ♦ જે ગણમાં નિશ્ચિત સંખ્યાના ઘટકો આવેલા હોય, તેને સાન્તગણ કહે છે. અન્યથા ગણને અનંત ગણ કહે છે.
- ♦ જો ગણ A અને B માં બરાબર એકના એક જ ઘટકો હોય, તો તેમને સમાન ગણ કહે છે.
- ♦ જો ગણ A નો પ્રત્યેક ઘટક ગણ B નો ઘટક હોય, તો ગણ A ને B નો ઉપગણ કહે છે. અંતરાલ એ R ના ઉપગણો છે.
- ♦ A ના તમામ ઉપગણોના ગણને A નો ઘાતગણ કહે છે. તેને P(A)થી દર્શાવાય છે.
- ♦ ગણ A માં હોય અથવા ગણ B માં હોય તેવા તમામ ઘટકોના ગણને A અને B નો યોગગણ કહે છે.
- ♦ ગણ A અને ગણ B ના બધા જ સામાન્ય ઘટકોથી બનતા ગણને A અને B નો છેદગણ કહે છે. ગણ A અને B નો આ જ ક્રમમાં તફાવત ગણ એટલે ગણ A માં હોય પરંતુ B માં ન હોય તેવા ઘટકોનો ગણ.
- ♦ સાર્વત્રિક ગણ U ના સંદર્ભમાં A નો પૂરક ગણ U માં હોય પરંતુ A માં ન હોય તેવા તમામ ઘટકોનો ગણ.
- lack કોઈપણ બે ગણ A અને B માટે  $(A \cup B)' = A' \cap B'$  અને  $(A \cap B)' = A' \cup B'$
- A ∩ B = \$\phi\$ હોય તેવા સાન્તગણો A અને B હોય, તો n (A ∪ B) = n (A) + n (B). જો A ∩ B ≠ \$\phi\$, તો n (A ∪ B) = n (A) + n (B) n (A ∩ B).

#### Historical Note

The modern theory of sets is considered to have been originated largely by the German mathematician Georg Cantor (1845-1918). His papers on set theory appeared sometimes during 1874 to 1897. His study of set theory came when he was studying trigonometric series of the form  $a_1 \sin x + a_2 \sin 2x + a_3 \sin 3x + ...$  He published in a paper in 1874 that the set of real numbers could not be put into one-to-one correspondence with the integers. From 1879 onwards, he published several papers showing various properties of abstract sets.

Cantor's work was well received by another famous mathematician Richard Dedekind (1831-1916). But Kronecker (1810-1893) castigated him for regarding infinite set the same way as finite sets.

## Downloaded from https:// www.studiestoday.com

ગુણ

Another German mathematician Gottlob Frege, at the turn of the century, presented the set theory as principles of logic. Till then the entire set theory was based on the assumption of the existence of the set of all sets. It was the famous Englih Philosopher Bertand Russell (1872-1970) who showed in 1902 that the assumption of existence of a set of all sets leads to a contradiction. This led to the famous Russell's Paradox. Paul R.Halmos writes about it in his book 'Naïve Set Theory' that "nothing contains everything".

The Russell's Paradox was not the only one which arose in set theory. Many paradoxes were produced later by several mathematicians and logicians. As a consequence of all these paradoxes, the first axiomatisation of set theory was published in 1908 by Ernst Zermelo. Another one was proposed by Abraham Fraenkel in 1922. John Von Neumann in 1925 introduced explicitly the axiom of regularity. Later in 1937 Paul Bernays gave a set of more satisfactory axiomatisation. A modification of these axioms was done by Kurt Gödel in his monograph in 1940. This was known as Von Neumann-Bernays (VNB) or Gödel-Bernays (GB) set theory.

Despite all these difficulties, Cantor's set theory is used in present day mathematics. In fact, these days most of the concepts and results in mathematics are expressed in the set theoretic language.



# સંબંધ અને વિધેયો

**❖** Mathematics is the indispensable instrument of all physical research. – BERTHELOT ❖

### 2.1 પ્રાસ્તાવિક

ગણિતશાસ્ત્રમાં મોટેભાગે બદલાતી રાશિઓ વચ્ચેનો સંબંધ એટલે કે ભાત શોધવામાં આવે છે. આપણા રોજિંદા જીવનમાં આપણે પિતા-પુત્ર, ભાઈ-બહેન, શિક્ષક-વિદ્યાર્થી જેવા સંબંધોનું અવલોકન કરીએ છીએ. ગણિતશાસ્ત્રમાં પણ આપણે સંખ્યાબંધ સંબંધો જેવા કે, 'સંખ્યા m, સંખ્યા n કરતા નાની છે', 'રેખા l એ રેખા m ને સમાંતર છે', 'ગણ A એ ગણ B નો ઉપગણ છે' જોવા મળે છે. આ બધામાં આપણે જોઈ શકીએ છીએ કે સંબંધ ચોક્કસ ક્રમમાં વસ્તુઓની ક્રમયુક્ત જોડનો સમાવેશ કરે છે. આ પ્રકરણમાં આપણે બે ગણના ઘટકોને કેવી રીતે સાંકળવા એ જોઈશું અને ક્રમયુક્ત જોડના બે ઘટકો વચ્ચે સંબંધ પ્રસ્થાપિત કરીશું.



G. W. Leibnitz (1646–1716)

અંતમાં આપણે વિધેય તરીકે ઓળખાતા અમુક સંબંધોનો અભ્યાસ કરીશું. વિધેયનો ખ્યાલ એ ગણિતમાં બહુ મહત્ત્વનો ખ્યાલ છે,કારણ કે તે એક ચલ રાશિની બીજી ચલ રાશિ સાથે ગાણિતિક દેષ્ટિએ ચોક્કસ સંગતતા આપે છે.

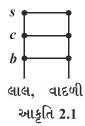
### 2.2 ગણોનો કાર્તેઝિય ગુણાકાર (Cartesian Product of Sets)

ધારો કે A બે રંગોનો ગણ છે અને B ત્રણ વસ્તુઓનો ગણ છે. ધારો કે  $A = \{$ લાલ, વાદળી $\}$  અને

# Downloaded from https:// www.studiestoday.com

સંબંધ અને વિધેયો

 $\mathbf{B} = \{b, c, s\}$  અહીં b, c અને s અનુક્રમે બેગ, કોટ અને શર્ટ દર્શાવે છે. આ બંને ગણોમાંથી રંગ અને વસ્તુની કેટલી ક્રમયુક્ત જોડ બનાવી શકાય ? એક ચોક્કસ ભાતમાં આગળ વધીએ તો જોઈ શકાય છે કે 6 અલગ અલગ ક્રમયુક્ત જોડ નીચે પ્રમાણે બનશે :



(લાલ, b), (લાલ, c), (લાલ, s), (વાદળી, b), (વાદળી, c), (વાદળી, s).

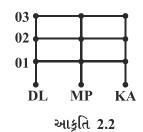
આમ, આપણને 6 ભિન્ન ક્રમયુક્ત જોડ મળશે. (આકૃતિ 2.1).

આગળના ધોરણમાં આપણે ક્રમયુક્ત જોડ વિશેનો અભ્યાસ કર્યો તે યાદ કરીએ. કોઈ ગણ P અને ગણ Q ના ઘટકોની કોઈપણ ક્રમયુક્ત જોડને નાના કૌંસમાં દર્શાવાય છે અને તે ક્રમયુક્ત જોડમાં ચોક્કસ ક્રમ અગત્યનો છે. ઉદાહરણ તરીકે (p,q) માટે  $p\in P$  અને  $q\in Q$ . આ અવલોકન આપણને નીચેની વ્યાખ્યા તરફ દોરી જાય છે :

<mark>વ્યાખ્યા 1</mark> આપેલ અરિક્ત ગણો P અને Q નો કાર્તેઝિય ગુણાકાર P imes Q એ P અને Q ની તમામ ક્રમયુક્ત જોડનો ગણ છે. આમ,

$$P \times Q = \{ (p, q) : p \in P, q \in Q \}$$

જો P અને Q પૈકી કોઈપણ ગણ ખાલીગણ હોય, તો  $P \times Q$  પણ ખાલીગણ થાય,  $P \times Q = \phi$  ઉપર દર્શાવેલ ઉદાહરણ માટે,



 $\mathbf{A} \times \mathbf{B} = \{(\mathbf{a} | \mathbf{a}, b), (\mathbf{a} | \mathbf{a}, c), (\mathbf{a} | \mathbf{a}, s), (\mathbf{a} | \mathbf{s} | \mathbf{b}), (\mathbf{a} | \mathbf{s} | \mathbf{a}, c), (\mathbf{a} | \mathbf{s} | \mathbf{b}, s)\}.$ 

હવે નીચે દર્શાવેલ ગણો વિશે વિચારતાં,

 $A = \{DL, MP, KA\}$ , જ્યાં DL, MP, KA અનુક્રમે દિલ્લી, મધ્યપ્રદેશ અને કર્ણાટક દર્શાવે છે અને  $B = \{01, 02, 03\}$  અનુક્રમે દિલ્લી, મધ્યપ્રદેશ અને કર્ણાટક દ્વારા ગાડીઓ માટે આપેલ લાઇસન્સ નંબર પ્લેટના સાંકેતિક અંકો દર્શાવે છે. હવે, ત્રણે રાજ્યો દિલ્લી, મધ્યપ્રદેશ અને કર્ણાટક લાઇસન્સ નંબર-પ્લેટના સંકેતો માટે એવું નક્કી થાય કે પ્રથમ ઘટક ગણ A માંથી આવે અને દ્વિતીય ઘટક B માંથી લેવાય તો આપેલ ગણમાંથી આવી કેટલી ક્રમયુક્ત જોડ બનશે? (આકૃતિ 2.2)

પ્રાપ્ત ક્રમયુક્ત જોડો : (DL,01), (DL,02), (DL,03), (MP,01), (MP,02), (MP,03), (KA,01), (KA,02), (KA,03) છે. હવે ગણ A અને ગણ B નો કાર્તેઝિય ગુણાકાર આ પ્રમાણે થશે.

 $A\times B=\{(DL,01),(DL,02),(DL,03),(MP,01),(MP,02),(MP,03),(KA,01),(KA,02),(KA,03)\}.$ 

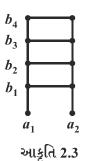
અહીં, સરળતાથી જોઈ શકાય છે કે, આ કાર્તેઝિય ગુણાકારમાં 9 ક્રમયુક્ત જોડ છે, કેમ કે ગણ A અને ગણ B બંનેમાં ત્રણ-ત્રણ ઘટકો છે. તેથી આપણને 9 શક્ય જોડ મળે છે. અહીં આપણે નોંધીશું કે જે ક્રમમાં ક્રમયુક્ત જોડ બને છે તે અગત્યનો છે.

ઉદાહરણ તરીકે ક્રમયુક્ત જોડ (DL, 01) અને ક્રમયુક્ત જોડ (01, DL) સમાન નથી.

અંતમાં સમજૂતી માટે ગણ  $\mathbf{A} = \{a_1, \, a_2\}$  અને ગણ  $\mathbf{B} = \{b_1, \, b_2, \, b_3, \, b_4\}$  લઈએ.(આકૃતિ 2.3)

$$\mathbf{A}\times\mathbf{B} = \{(\ a_{_{1}},\ b_{_{1}}),\ (a_{_{1}},\ b_{_{2}}),\ (a_{_{1}},\ b_{_{3}}),\ (a_{_{1}},\ b_{_{4}}),\ (a_{_{2}},\ b_{_{1}}),\ (a_{_{2}},\ b_{_{2}}),\ (a_{_{2}},\ b_{_{3}}),\ (a_{_{2}},\ b_{_{4}})\}.$$

જો ગણ A અને ગણ B એ વાસ્તિવિક સંખ્યાગણના ઉપગણો હોય, તો આ 8 ક્રમયુક્ત જોડો સમતલમાં બિંદુઓનાં ભિન્ન સ્થાન દર્શાવશે અને તે પરથી સ્પષ્ટ થશે કે  $(a_1,b_2)$  દ્વારા દર્શાવાતું બિંદુ એ  $(b_2,a_1)$  દ્વારા દર્શાવાતા બિંદુથી ભિન્ન છે.



ગાંધત : ધોરણ 11

નોંધ: (i) કોઈ બે ક્રમયુક્ત જોડના પ્રથમ ઘટક સમાન હોય અને બીજા ઘટક પણ સમાન હોય, તો અને તો જ તે બે ક્રમયુક્ત જોડ સમાન થાય.

- (ii) જો ગણ A ના ઘટકોની સંખ્યા p અને ગણ B ના ઘટકોની સંખ્યા q હોય, તો  $A \times B$  ના ઘટકોની સંખ્યા pq થાય. જો n(A) = p અને n(B) = q હોય તો  $n(A \times B) = pq$ .
- (iii) જો A અને B અરિક્ત ગણો હોય અને A અને B પૈકી કોઈ ગણ અનંત ગણ હોય, તો A × B પણ અનંત ગણ થાય.
- (iv)  $A \times A \times A = \{(a, b, c) : a, b, c \in A\}$ . અહીં, (a, b, c) ને *કમયુક્ત ત્રય* અથવા ત્રિ*પુટી (triplet)* અથવા ત્રેલું કહે છે.

ઉદાહરણ 1: જો (x+1, y-2) = (3,1), તો x અને y ની કિંમત શોધો.

ઉકેલ : અહીં ક્રમયુક્ત જોડ સમાન છે, તેથી ક્રમવાર ઘટકો સમાન થાય.

$$x + 1 = 3 \text{ wh } y - 2 = 1.$$
Ghani,  $x = 2 \text{ wh } y = 3.$ 

ઉદાહરણ 2 : જો  $P = \{a, b, c\}$  અને  $Q = \{r\}$ , તો  $P \times Q$  અને  $Q \times P$  શોધો.

શું આ બે કાર્તેઝિય ગુણાકાર સમાન છે ?

ઉકેલ : કાર્તેઝિય ગુણાકારની વ્યાખ્યા પ્રમાણે,

$$P \times Q = \{(a, r), (b, r), (c, r)\}$$
 અને  $Q \times P = \{(r, a), (r, b), (r, c)\}$ 

હવે, ક્રમિક જોડની સમાનતાની વ્યાખ્યા પ્રમાણે ક્રમયુક્ત જોડ (a,r) અને ક્રમયુક્ત જોડ (r,a) સમાન નથી. આથી આ પરથી કહી શકાય કે,  $P \times Q \neq Q \times P$ .

તેમ છતાં બંને ગણમાં ઘટકોની સંખ્યા સમાન થશે.

ઉદાહરણ 3: જો  $A = \{1, 2, 3\}, B = \{3, 4\}$  અને  $C = \{4, 5, 6\},$  તો નીચેના ગણ શોધો.

- (i)  $A \times (B \cap C)$
- (ii)  $(A \times B) \cap (A \times C)$
- (iii)  $A \times (B \cup C)$
- (iv)  $(A \times B) \cup (A \times C)$

ઉકેલ : (i) બે ગણોના છેદગણની વ્યાખ્યા પ્રમાણે  $(B \cap C) = \{4\}$ .

તેથી, 
$$A \times (B \cap C) = \{(1,4), (2,4), (3,4)\}.$$

આથી, 
$$(A \times B) \cap (A \times C) = \{(1, 4), (2, 4), (3, 4)\}.$$

(iii) અહીં,  $(B \cup C) = \{3, 4, 5, 6\}$ . આથી,

# Downloaded from https:// www.studiestoday.com

સંબંધ અને વિધેયો 35

 $A \times (B \cup C) = \{(1,3), (1,4), (1,5), (1,6), (2,3), (2,4), (2,5), (2,6), (3,3), (3,4), (3,5), (3,6)\}.$ 

(iv) ગણો  $A \times B$  અને  $A \times C$  માટે ઉપરના ભાગ (ii) માંથી પરિણામોનો ઉપયોગ કરતાં,

$$(A \times B) \cup (A \times C) = \{(1,3), (1,4), (1,5), (1,6), (2,3), (2,4), (2,5), (2,6), (3,3), (3,4), (3,5), (3,6)\}.$$

ઉદાહરણ 4 : જો  $P = \{1, 2\}$ , તો  $P \times P \times P$  શોધો.

ઉકેલ : અહીં,  $P \times P \times P = \{(1,1,1), (1,1,2), (1,2,1), (1,2,2), (2,1,1), (2,1,2), (2,2,1), (2,2,2)\}.$ 

ઉદાહરણ 5: જો  $\mathbf{R}$  વાસ્તવિક સંખ્યાઓનો ગણ હોય, તો  $\mathbf{R} \times \mathbf{R}$  અને  $\mathbf{R} \times \mathbf{R} \times \mathbf{R}$  શું દર્શાવશે ?

ઉકેલ :કાર્તેઝિય ગુણાકાર  $\mathbf{R} \times \mathbf{R}$  એ ગણ  $\mathbf{R} \times \mathbf{R} = \{(x,y): x, y \in \mathbf{R}\}$  દર્શાવે છે. તે દ્વિપરિમાણીય યામ-સમતલના પ્રત્યેક બિંદુનું નિરૂપણ દર્શાવે છે અને કાર્તેઝિય ગુણાકાર  $\mathbf{R} \times \mathbf{R} \times \mathbf{R} = \{(x,y,z): x,y,z \in \mathbf{R}\}$  દર્શાવે છે. તે ત્રિપરિમાણીય અવકાશના પ્રત્યેક બિંદુનું નિરૂપણ દર્શાવે છે.

ઉદાહરણ 6: જો  $A \times B = \{(p, q), (p, r), (m, q), (m, r)\}$ , તો A અને B શોધો.

ઉકેલ : A =પ્રથમ ઘટકોનો ગણ  $= \{p, m\}$ 

 $\mathbf{B} = \mathbf{\Theta}$ જા ઘટકોનો ગણ =  $\{q, r\}$ .

### સ્વાધ્યાય 2.1

- 1. જો  $\left(\frac{x}{3} + 1, y \frac{2}{3}\right) = \left(\frac{5}{3}, \frac{1}{3}\right)$ , તો x અને y શોધો.
- 2. જો ગણ A માં 3 ઘટકો હોય અને ગણ  $B = \{3, 4, 5\}$ , તો  $(A \times B)$  ના ઘટકોની સંખ્યા શોધો.
- 3. જો  $G = \{7, 8\}$  અને  $H = \{5, 4, 2\}$ , તો  $G \times H$  અને  $H \times G$  શોધો.
- 4. નીચે આપેલાં વિધાનોમાંથી કયું વિધાન સત્ય છે અને કયું વિધાન અસત્ય છે તે જણાવો તથા અસત્ય વિધાન સત્ય બને તે રીતે ફરી લખો :
  - (i)  $\Re P = \{m, n\} \ \text{and} \ Q = \{n, m\}, \ \text{cli} \ P \times Q = \{(m, n), (n, m)\}.$
  - (ii) જો A અને B અરિક્ત ગણો હોય, તો જ્યાં  $x \in A$  તથા  $y \in B$  હોય તેવી તમામ ક્રમયુક્ત જોડો (x, y) થી બનતો અરિક્ત ગણ  $A \times B$  છે.
  - (iii)  $\Re A = \{1, 2\}, B = \{3, 4\}, \operatorname{di} A \times (B \cap \phi) = \phi.$
- 6. જો  $A \times B = \{(a, x), (a, y), (b, x), (b, y)\}$ , તો A અને B શોધો.

ગિશત : ધોરણ 11

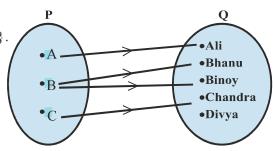
- 7. ધારો કે  $A = \{1, 2\}, B = \{1, 2, 3, 4\}, C = \{5, 6\}$  અને  $D = \{5, 6, 7, 8\},$  તો નીચેનાં પરિણામો ચકાસો : (i)  $A \times (B \cap C) = (A \times B) \cap (A \times C)$  (ii)  $A \times C$  એ  $B \times D$  નો ઉપગણ છે.
- 8. જો  $A = \{1, 2\}$  અને  $B = \{3, 4\}$  તો  $A \times B$  લખો.  $A \times B$  ને કેટલા ઉપગણો હશે ? તે તમામ ઉપગણોની યાદી બનાવો.
- 9. જો n(A) = 3 અને n(B) = 2 હોય તેવા બે ગણો A અને B હોય અને ભિન્ન ઘટકો x, y અને z માટે (x, 1), (y, 2), (z, 1) એ  $A \times B$  ના ઘટકો હોય તો A અને B શોધો.
- 10. જો કાર્તેઝિય ગુણાકાર  $A \times A$  ના ઘટકોની સંખ્યા 9 હોય અને તેમાંના બે ઘટકો (-1,0) અને (0,1) હોય, તો A શોધો તથા  $A \times A$  ના બાકીના ઘટકો લખો.

### 2.3 સંબંધ (Relation)

બે ગણો  $P = \{A, B, C\}$  અને  $Q = \{Ali, Bhanu, Binoy, Chandra, Divya\}$ નો વિચાર કરીએ.  $P \times Q$  ના કાર્તેઝિય ગુણાકારમાં 15 ક્રમયુક્ત જોડ હશે. તેની યાદી આ પ્રમાણે થશે.  $P \times Q = \{(A, Ali), (A, Bhanu), (A, Binoy), ..., (C, Divya)\}$ .

હવે આપણે  $P \times Q$  ના એક ઉપગણ R ને P થી Q ના એક સંબંધ તરીકે દર્શાવીએ. કોઈપણ ક્રમયુક્ત જોડ (x, y) નો પ્રથમ ઘટક x એ R દ્વારા બીજા ઘટક y સાથે સંબંધ ધરાવે છે.

ધારો કે  $R = \{(x, y) : x એ નામ y નો પ્રથમ અક્ષર છે, <math>x \in P, y \in Q\}$ . આમ,  $R = \{(A, Ali), (B, Bhanu), (B, Binoy), (C, Chandra)\}$  આ સંબંધને વેન-આકૃતિ દ્વારા દર્શાવીએ.



(કિરણ આકૃતિ - arrow diagram) આકૃતિ 2.4.

વ્યાખ્યા 2 અરિક્ત ગણો A અને B માટે  $A \times B$  ના કોઈપણ ઉપગણને A થી B નો **સંબંધ** કહે છે.  $A \times B$  નો ઉપગણ B કમયુક્ત જોડના પ્રથમ ઘટક B અને બીજા ઘટક B વચ્ચે કોઈ સંબંધ પ્રસ્થાપિત કરવાથી મળે છે. બીજા ઘટકને પ્રથમ ઘટકનું પ્રતિબિંબ કહે છે.

વ્યાખ્યા 3 જો R એ A થી B નો સંબંધ હોય, તો R ની પ્રત્યેક ક્રમયુક્ત જોડના પ્રથમ ઘટકથી બનતા ગણને R નો પ્રદેશ (Domain) કહે છે.

<mark>વ્યાખ્યા 4</mark> જો R એ A થી B નો સંબંધ હોય તો, R ની પ્રત્યેક ક્રમયુક્ત જોડના બીજા ઘટકથી બનતા ગણને R નો **વિસ્તાર** (Range) કહે છે. ગણ B ને R નો **સહપ્રદેશ** (Codomain) કહે છે. અહીં, જોઈ શકાય છે કે વિસ્તાર ⊆ સહપ્રદેશ.

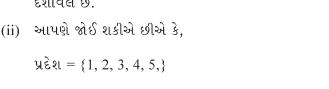
- નોંધ : (i) સંબંધને યાદીના સ્વરૂપમાં કે ગુણધર્મના સ્વરૂપમાં દર્શાવી શકાય છે.
  - (ii) કિરણ આકૃતિ એ સંબંધનું દશ્ય નિરૂપણ છે.

ઉદાહરણ 7: જો  $A = \{1, 2, 3, 4, 5, 6\}, R = \{(x, y): y = x + 1\}$  થાય તે રીતે સંબંધ R, A થી A પર વ્યાખ્યાયિત છે, તો

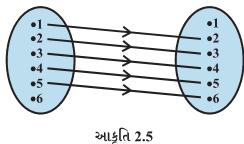
## Downloaded from https://www.studiestoday.com

સંબંધ અને વિધેયો 37

- આ સંબંધને કિરણ આકૃતિ દ્વારા દર્શાવો. (i)
- (ii) R નો પ્રદેશ, સહપ્રદેશ તેમજ વિસ્તાર મેળવો.
- ઉકેલ : (i) સંબંધની વ્યાખ્યા અનુસાર,  $R = \{(1,2), (2,3), (3,4), (4,5), (5,6)\}.$ આ સંબંધને કિરણ આકૃતિ દ્વારા આકૃતિ 2.5 માં દર્શાવેલ છે.



વિસ્તાર =  $\{2, 3, 4, 5, 6\}$ , સહપ્રદેશ =  $\{1, 2, 3, 4, 5, 6\}$ .

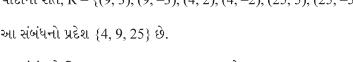


આકૃતિ 2.6

<mark>ઉદાહરણ 8 :</mark> આકૃતિ 2.6 માં P થી Q નો સંબંધ દશાવેલ છે. આ સંબંધને (i) ગુણધર્મની રીતે (ii) યાદીની રીતે લખો. તેનો પ્રદેશ અને વિસ્તાર શું થશે ? P

6કેલઃ અહીં સ્પષ્ટપણે જોઈ શકાય છે કે, સંબંધ R "x એ y નો વર્ગ છે".

- (i) ગુણધર્મની રીતે,  $R = \{(x, y) : x એ y નો વર્ગ છે, x \in P, y \in Q\}$
- (ii) યાદીની રીતે,  $R = \{(9, 3), (9, -3), (4, 2), (4, -2), (25, 5), (25, -5)\}$ આ સંબંધનો પ્રદેશ {4, 9, 25} છે.



આ સંબંધનો વિસ્તાર {-2, 2, -3, 3, -5, 5} છે.

અહી, જોઈ શકાય છે Q નો ઘટક 1 ગણ P ના કોઈપણ ઘટક સાથે સંકળાયો નથી.

ગણ Q એ સંબંધનો સહપ્રદેશ છે.

ullet નોંધullet ગણ  $oldsymbol{\mathsf{A}}$  પાસના કુલ સંબંધોની સંખ્યા એ  $oldsymbol{\mathsf{A}} imesoldsymbol{\mathsf{B}}$  ના ઉપગણોની સંખ્યા બરાબર થાય. જો n(A) = p અને n(B) = q હોય, તો  $n(A \times B) = pq$  અને તેના સંબધોની સંખ્યા  $2^{pq}$  થાય.

ઉદાહરણ 9 : જો  $A = \{1, 2\}$  અને  $B = \{3, 4\}$  તો A થી B ના સંબંધની સંખ્યા શોધો.

ઉકેલ: અહીં,  $A \times B = \{(1,3), (1,4), (2,3), (2,4)\}.$ 

 $n (A \times B) = 4$ ,  $A \times B$  ના ઉપગણોની સંખ્યા  $2^4$  થાય.

આમ, A થી B ના સંબંધોની સંખ્યા  $2^4$  થાય.

<del>નોંધ</del>ઃ જો R એ A થી A નો સંબંધ હોય, તો સંબંધ R ને A પરનો સંબંધ પણ કહેવાય છે.

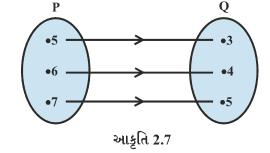
स्वाध्याय 2.2

 $A = \{1, 2, 3, ..., 14\}$ .  $R = \{(x, y) : 3x - y = 0, \text{ જયાં } x, y \in A\}$ . જો R એ A થી A નો સંબંધ હોય, તો R નો પ્રદેશ, સહપ્રદેશ અને વિસ્તાર મેળવો.

ગાંધત : ધોરણ 11

2.  $R = \{(x, y) : y = x + 5, x એ 4 થી નાની પ્રાકૃતિક સંખ્યા છે, <math>x, y \in \mathbb{N}\}$  થાય તે રીતે એક સંબંધ  $\mathbb{N}$  પર વ્યાખ્યાયિત છે. R ને યાદીની રીતે લખો. R નો પ્રદેશ તેમજ વિસ્તાર મેળવો.

- **3.**  $A = \{1, 2, 3, 5\}$  અને  $B = \{4, 6, 9\}$ .  $R = \{(x, y): x$  અને y નો તફાવત અયુગ્મ સંખ્યા છે;  $x \in A, y \in B\}$  થાય તે રીતે સંબંધ A થી B પર વ્યાખ્યાયિત છે. R ને યાદીની રીતે લખો.
- 4. આકૃતિ 2.7 માં P થી Q નો સંબંધ દર્શાવેલ છે. આ સંબંધને (i) ગુષ્ધર્મની રીતે (ii) યાદીની રીતે લખો. તેનો પ્રદેશ અને વિસ્તાર શું થશે ?



- 5. જો  $A = \{1, 2, 3, 4, 6\}$ .  $R = \{(a, b): a, b \in A, b એ a વડે વિભાજય છે.\} થાય તે રીતે સંબંધ <math>R$  એ A પર વ્યાખ્યાયિત છે,
  - (i) R ને યાદીની રીતે લખો.
  - (ii) R નો પ્રદેશ મેળવો.
  - (iii) R નો વિસ્તાર મેળવો.
- **6.**  $R = \{(x, x + 5) : x \in \{0, 1, 2, 3, 4, 5\}\}$  થાય તે રીતે વ્યાખ્યાયિત સંબંધનો પ્રદેશ તેમજ વિસ્તાર મેળવો.
- 7. સંબંધ  $R = \{(x, x^3) : x એ 10$ કરતાં નાની અવિભાજય સંખ્યા છે $\}$  ને યાદીના સ્વરૂપમાં લખો.
- 8. જો  $A = \{x, y, z\}$  અને  $B = \{1, 2\}$  તો A થી B ના સંબંધોની સંખ્યા શોધો.
- 9. R એ Z પર R =  $\{(a,b): a, b \in \mathbb{Z}, a-b \}$  એ પૂર્ણાંક છે. $\}$  દ્વારા વ્યાખ્યાયિત છે. R નો પ્રદેશ અને વિસ્તાર મેળવો.

### 2.4 વિધેયો (Functions)

હવે આ પરિચ્છેદમાં આપણે *વિધેય (function)* તરીકે પ્રચલિત એક વિશિષ્ટ સંબંધનો અભ્યાસ કરીશું. વિધેયની સંકલ્પના ગણિતશાસ્ત્રના પાયાની વિષયવસ્તુમાંની એક સંકલ્પના છે. આપણે વિધેયને નિયમ તરીકે વિચારી શકીએ. આ નિયમની મદદથી આપણે આપેલા ઘટકોમાંથી નવા ઘટકો શોધી શકીએ. વિધેયને દર્શાવવા માટે સંગતતા જેવો શબ્દ પણ વપરાય છે.

<mark>વ્યાખ્યા 5</mark> અરિક્ત ગણ A અને ગણ B માટે, સંબંધ f દ્વારા ગણ A ના પ્રત્યેક ઘટકને સંગત ગણ B માં અનન્ય પ્રતિબિંબ મળે તો આ સંબંધ f ને A થી B નું વિધેય કહે છે.

બીજા શબ્દોમાં કહીએ તો જેનો પ્રદેશ અરિક્ત ગણ A હોય અને જે સંબંધની કોઈ પણ બે ભિન્ન ક્રમયુક્ત જોડના પ્રથમ ઘટક સમાન ન હોય તેવા અરિક્ત ગણ A થી અરિક્ત ગણ B ના સંબંધને વિધેય કહે છે.

જો f એ A થી B નું વિધેય હોય અને,  $(a, b) \in f$ , તો f(a) = b. અહીં b એ f દ્વારા મળતું a નું પ્રતિબિંબ કહેવાય છે અને a ને f દ્વારા b નું પૂર્વ પ્રતિબિંબ કહેવાય છે.

A થી B પરના વિધેયને  $f: A \rightarrow B$  લખાય છે. અગાઉ જોયેલાં ઉદાહરણો પર ધ્યાન કેન્દ્રિત કરીએ તો, સરળતાથી જોઈ શકાય છે કે ઉદાહરણ 7 માં આપેલ સંબંધ એ વિધેય નથી. કારણ કે, ઘટક 6 ને કોઈ પ્રતિબિંબ નથી.

# Downloaded from https://www.studiestoday.com

સંબંધ અને વિધેયો

ફરી, ઉદાહરણ 8 માં દર્શાવેલ સંબંધ પણ વિધેય નથી. કારણ કે, પ્રદેશના અમુક ઘટકોને એક કરતાં વધુ પ્રતિબિંબ છે. તે જ પ્રમાણે ઉદાહરણ 9 નો સંબંધ પણ વિધેય નથી (કેમ ?). નીચેનાં ઉદાહરણોમાં આપણે બીજા ઘણા સંબંધ જોઈશું. તે પૈકી કેટલાક વિધેય છે અને કેટલાક વિધેય નથી.

ઉદાહરણ  $10: \mathbb{N}$  એ પ્રાકૃતિક સંખ્યાઓનો ગણ છે અને તેની પર વ્યાખ્યાયિત કોઈ સંબંધ  $\mathbb{R}$  એવો છે કે  $\mathbb{R} = \{(x,y): y = 2x, \, x, \, y \in \mathbb{N}\} \text{ તો } \mathbb{R} \text{ નો પ્રદેશ, સહપ્રદેશ અને વિસ્તાર શોધો. શું આ સંબંધ વિધેય છે ?}$ 

ઉકેલ : અહીં, સંબંધ R નો પ્રદેશ ગણ પ્રાકૃતિક સંખ્યા ગણ N છે, સહપ્રદેશ પણ N છે અને વિસ્તાર એ યુગ્મ પ્રાકૃતિક સંખ્યાઓનો ગણ છે.

અહીં, પ્રત્યેક પ્રાકૃતિક સંખ્યા n ને એક અને માત્ર એક પ્રતિબિંબ છે. આમ, આ સંબંધ વિધેય છે.

ઉદાહરણ 11 : નીચેનાં ઉદાહરણોમાં આપેલ સંબંધ ચકાસો અને પ્રત્યેક સંબંધ વિધેય છે કે નહિ તે કારણ આપી જણાવો.

- (i)  $R = \{(2, 1), (3, 1), (4, 2)\},\$
- (ii)  $R = \{(2, 2), (2, 4), (3, 3), (4, 4)\}$
- (iii)  $R = \{(1, 2), (2, 3), (3, 4), (4, 5), (5, 6), (6, 7)\}$
- ઉકેલ: (i) અહીં 2, 3 અને 4 એ R ના પ્રદેશના ઘટકો છે અને તે દરેક ઘટકને અનુરૂપ અનન્ય પ્રતિબિંબ મળે છે. તેથી આ સંબંધ R એ વિધેય છે.
  - (ii) અહીં, R ના પ્રદેશના એક ઘટક 2 ને બે પ્રતિબિંબ 2 અને 4 મળે છે. તેથી આ સંબંધ વિધેય નથી.
  - (iii) અહીં, પ્રદેશના પ્રત્યેક ઘટકને અનુરૂપ એક અને માત્ર એક પ્રતિબિંબ છે તેથી આ સંબંધ વિધેય છે.

વ્યાખ્યા 6 : જો કોઈ વિધેયનો વિસ્તાર R કે R નો કોઈ ઉપગણ હોય તો તે વિધેયને વાસ્તવિક કિંમતોનું વિધેય કહે છે અને જો તેનો પ્રદેશ પણ R અથવા R નો કોઈ ઉપગણ હોય, તો તેને વાસ્તવિક વિધેય કહે છે.

ઉદાહરણ 12 :  $\mathbf{N}$  એ પ્રાકૃતિક સંખ્યાઓનો ગણ છે.  $f: \mathbf{N} \to \mathbf{N}$ . f(x) = 2x + 1 દ્વારા વ્યાખ્યાયિત વાસ્તવિક વિધેય છે. આ વ્યાખ્યાની મદદથી નીચેનું કોષ્ટક પૂર્ણ કરો :

| x | 1      | 2      | 3      | 4      | 5      | 6      | 7      |
|---|--------|--------|--------|--------|--------|--------|--------|
| у | f(1) = | f(2) = | f(3) = | f(4) = | f(5) = | f(6) = | f(7) = |

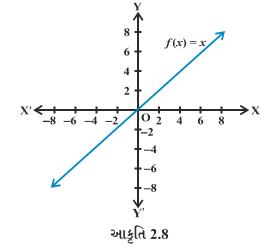
ઉકેલ: પૂર્ણ કરેલ કોષ્ટક નીચે મુજબ છે:

| x | 1        | 2        | 3        | 4        | 5         | 6         | 7        |
|---|----------|----------|----------|----------|-----------|-----------|----------|
| у | f(1) = 3 | f(2) = 5 | f(3) = 7 | f(4) = 9 | f(5) = 11 | f(6) = 13 | f(7) =15 |

40 ગાંધાત : ધોરણ 11

### 2.4.1 કેટલાંક વિધેયો અને તેમના આલેખો :

(i) તદેવ વિધેય (Identity Function): જો  $\mathbf{R}$  એ વાસ્તવિક સંખ્યાનો ગણ હોય, તો પ્રત્યેક  $x \in \mathbf{R}$  માટે  $f: \mathbf{R} \to \mathbf{R}, \ y = f(x) = x$  દ્વારા વ્યાખ્યાયિત વાસ્તવિક વિધેયને તદેવ વિધેય કહેવાય. આ વિધેય f નો પ્રદેશ અને વિસ્તાર  $\mathbf{R}$  છે. આ વિધેયનો આલેખ આકૃતિ 2.8 માં દર્શાવેલ ઊગમબિંદુમાંથી પસાર થતી રેખા થશે.



f(x) = 3

(ii) અચળ વિધેય (Constant Function) : c કોઈ અચળ હોય તથા પ્રત્યેક  $x \in \mathbf{R}$  માટે y = f(x) = c દ્વારા વ્યાખ્યાયિત વિધેય  $f : \mathbf{R} \to \mathbf{R}$  ને અચળ વિધેય કહે છે. અહીં, f નો પ્રદેશ  $\mathbf{R}$  અને વિસ્તાર  $\{c\}$  છે.

અચળ વિધેયનો આલેખ X-અક્ષને સમાંતર રેખા થાય. ઉદાહરણ તરીકે જો પ્રત્યેક  $x\in\mathbf{R}$  માટે f(x)=3 તો આ આલેખ આકૃતિ 2.9 માં દર્શાવેલ રેખા થશે.

(iii) બહુપદી વિધેય (Polynomial Function): જો પ્રત્યેક  $x \in \mathbf{R}$  માટે વિધેય  $f: \mathbf{R} \to \mathbf{R}, \ y = f(x) = a_0 + a_1 x \ + a_2 x^2 + ... + a_n x^n$ , ને n ઘાતનું બહુપદી વિધેય કહે છે. અહીં, n એ અનૃષ્ણ પૂર્ણાંક છે અને  $a_0, a_1, a_2 ..., a_n \in \mathbf{R}$  તથા  $a_n \neq 0$ .  $f(x) = x^3 - x^2 + 2$ , અને  $g(x) = x^4 + \sqrt{2}x$  દ્વારા વ્યાખ્યાયિત વિધેયો બહુપદી વિધેયનાં ઉદાહરણો છે, જ્યારે  $h(x) = x^{\frac{2}{3}} + 2x$ 

\_\_\_6 \_\_\_8 V Y′ આકૃતિ 2.9

દ્વારા વ્યાખ્યાયિત વિધેય બહુપદી વિધેય નથી. (કેમ ?)

ઉદાહરણ 13 :  $f: \mathbf{R} \to \mathbf{R}, \ y = f(x) = x^2, x \in \mathbf{R}$  થી વ્યાખ્યાયિત એક વિધેય છે. આ વ્યાખ્યાના આધારે નીચેનું કોષ્ટક પૂર્ણ કરો. આ વિધેયનો પ્રદેશ અને વિસ્તાર શું થશે ? fનો આલેખ દોરો.

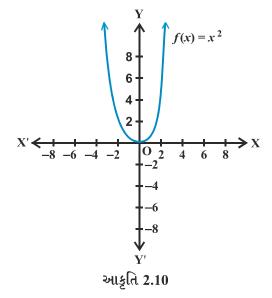
| x                | -4 | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 |
|------------------|----|----|----|----|---|---|---|---|---|
| $y = f(x) = x^2$ |    |    |    |    |   |   |   |   |   |

ઉકેલ : પૂર્ણ કરેલ કોષ્ટક નીચે આપેલ છે :

| х                | - 4 | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4  |
|------------------|-----|----|----|----|---|---|---|---|----|
| $y = f(x) = x^2$ | 16  | 9  | 4  | 1  | 0 | 1 | 4 | 9 | 16 |

સંબંધ અને વિધેયો 41

fનો પ્રદેશ =  $\{x: x \in \mathbf{R}\}$ . fનો વિસ્તાર =  $\{x^2: x \in \mathbf{R}\}$ . આ વિધેય fનો આલેખ આકૃતિ 2.10 પ્રમાણેનો મળે.



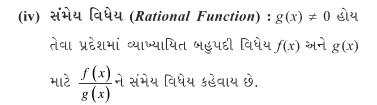
ઉદાહરણ 14:  $f: \mathbf{R} \to \mathbf{R}$ ,  $f(x) = x^3$ ,  $x \in \mathbf{R}$  થી વ્યાખ્યાયિત વિધેયનો આલેખ દોરો.

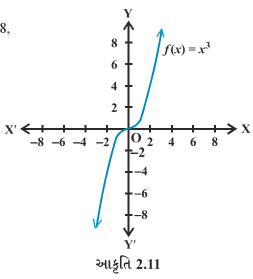
ઉકેલ : અહીં, 
$$f(0) = 0, f(1) = 1, f(-1) = -1, f(2) = 8, f(-2) = -8,$$

$$f(3) = 27; f(-3) = -27, \text{ api}$$
.

અહીં, 
$$f = \{(x, x^3): x \in \mathbb{R}\}.$$

આ વિધેયનો આલેખ આકૃતિ 2.11 માં દર્શાવેલ છે.





ઉદાહરણ 15:  $f: \mathbf{R} - \{0\} \to \mathbf{R}, f(x) = \frac{1}{x}, x \in \mathbf{R} - \{0\}$  થી વ્યાખ્યાયિત એક વિધેય આપેલ છે. આ વ્યાખ્યાના આધારે નીચેનું કોષ્ટક પૂર્ણ કરો. આ વિધેયનો પ્રદેશ અને વિસ્તાર શું થશે ?

| x                 | -2 | -1.5 | -1 | -0.5 | 0.25 | 0.5 | 1  | 1.5 | 2 |
|-------------------|----|------|----|------|------|-----|----|-----|---|
| $y = \frac{1}{x}$ |    | :    |    | :    |      |     | :: | :   |   |

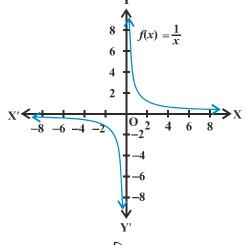
ઉકેલ: પૂર્ણ કરેલ કોષ્ટક નીચે પ્રમાણે છે:

| x                 | -2    | -1.5   | -1 | -0.5 | 0.25 | 0.5 | 1 | 1.5  | 2   |
|-------------------|-------|--------|----|------|------|-----|---|------|-----|
| $y = \frac{1}{x}$ | - 0.5 | - 0.67 | -1 | -2   | 4    | 2   | 1 | 0.67 | 0.5 |

# Downloaded from https://www.studiestoday.com

42 ગણિત : ધોરણ 11

વિધેયનો પ્રદેશ પ્રત્યેક શૂન્યેતર વાસ્તવિક સંખ્યાનો ગણ થશે અને તેનો વિસ્તાર પણ પ્રત્યેક શૂન્યેતર વાસ્તવિક સંખ્યાનો ગણ થશે. આ વિધેયનો આલેખ આકૃતિ 2.12 માં દર્શાવેલ છે.

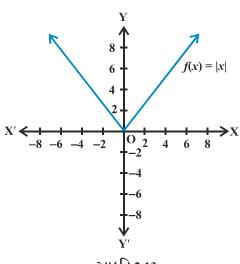


આકૃતિ 2.12

(v) માનાંક વિધેય(Modulus Function): પ્રત્યેક  $x \in \mathbb{R}$  માટે વિધેય  $f: \mathbb{R} \to \mathbb{R}, f(x) = |x|$  થી વ્યાખ્યાયિત થતું વિધેય માનાંક વિધેય કહેવાય છે. પ્રત્યેક અનૃષ્ણ x માટે f(x) નું મૂલ્ય x બરાબર હોય અને પ્રત્યેક ઋણ x માટે f(x) નું મૂલ્ય -x બરોબર હોય છે.

$$f(x) = \begin{cases} x, & x \ge 0 \\ -x, & x < 0 \end{cases}$$

માનાંક વિધેયનો આલેખ આકૃતિ 2.13 માં દર્શાવ્યા પ્રમાણે થાય.

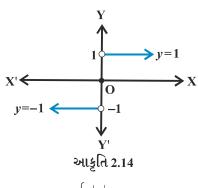


આકૃતિ 2.13

(vi) ચિક્ષ વિધેય (Signum Function) : વિધેય  $f: \mathbf{R} \rightarrow \mathbf{R}$ ,

$$f(x) = \begin{cases} 1, & x > 0 \\ 0, & x = 0 \\ -1, & x < 0 \end{cases}$$

થી વ્યાખ્યાયિત થતા વિધેયને ચિક્ષ વિધેય કહેવાય છે. આ વિધેયનો પ્રદેશ  ${f R}$  છે અને વિસ્તાર  $\{-1,\ 0,\ 1\}$  છે. આ વિધેયનો આલેખ આકૃતિ 2.14 માં દર્શાવ્યા પ્રમાણેનો થાય.



$$f(x) = \begin{cases} \frac{|x|}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$

(vii) મહત્તમ પૂર્ણાંક વિધેય (Greatest integer Function): વિધેય  $f: \mathbf{R} \to \mathbf{R}, f(x) = [x], x \in \mathbf{R}$  એ x થી નાના હોય અથવા x ને સમાન હોય તેવા તમામ પૂર્ણાંકોમાં સૌથી મોટો પૂર્ણાંક દર્શાવે, તો આ વિધેયને મહત્તમ પૂર્ણાંક વિધેય કહે છે. [x] ની વ્યાખ્યા પરથી સ્પષ્ટ થાય છે કે,

સંબંધ અને વિધેયો 43

$$[x] = -1, -1 \le x < 0$$

$$[x] = 0, 0 \le x < 1$$

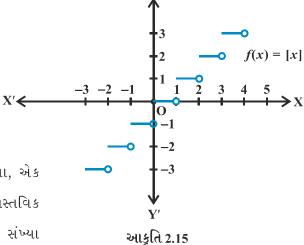
$$[x] = 1, 1 \le x < 2$$

$$[x] = 2, 2 \le x < 3$$
 વગેરે.

આ વિધેયનો આલેખ આકૃતિ 2.15 માં દર્શાવ્યા મુજબ થશે.

### 2.4.2 વાસ્તવિક વિધેયો પરની બૈજિક ક્રિયાઓ :

આ વિભાગમાં આપશે બે વાસ્તવિક વિધેયના સરવાળા, એક વાસ્તવિક વિધેયની બીજા વાસ્તવિક વિધેયમાંથી બાદબાકી, વાસ્તવિક વિધેયનો અદિશ સાથે ગુણાકાર(અહીં અદિશ એટલે વાસ્તવિક સંખ્યા એમ સમજીશું), બે વાસ્તવિક વિધેયોનો ગુણાકાર અને એક વાસ્તવિક વિધેયનો બીજા વાસ્તવિક વિધેય સાથે ભાગાકાર વિશે અભ્યાસ કરીશું:



- (i) બે વિધેયોનો સરવાળો :  $X \subset \mathbf{R}$  માટે  $f: X \to \mathbf{R}$  અને  $g: X \to \mathbf{R}$  બે વાસ્તવિક વિધેયો હોય, તો તેમનો સરવાળો  $f+g: X \to \mathbf{R}$ , પ્રત્યેક  $x \in X$  માટે (f+g)(x) = f(x) + g(x) દ્વારા વ્યાખ્યાયિત કરવામાં આવે છે.
- (ii) બે વિધેયોની બાદબાકી : X $\subset$ R માટે  $f: X \to R$  અને  $g: X \to R$  બે વાસ્તવિક વિધેયો હોય, તો તેમની બાદબાકી પ્રત્યેક  $x \in X$  માટે  $(f-g): X \to R$  (f-g)(x) = f(x) g(x) દ્વારા વ્યાખ્યાયિત કરવામાં આવે છે.
- (iii) અદિશ વડે વિધેયનો ગુણાકાર : ધારો કે,  $f: X \to \mathbf{R}$  એ વાસ્તિવિક વિધેય છે અને  $\alpha$  એ કોઈ અદિશ છે. અહીં, અદિશ એટલે કોઈ વાસ્તિવિક સંખ્યા. તેમનો ગુણાકાર  $\alpha f$  એ  $\mathbf{X}$  થી  $\mathbf{R}$  નું વિધેય છે અને તે પ્રત્યેક  $x \in \mathbf{X}$  માટે  $(\alpha f)(x) = \alpha f(x)$  દ્વારા વ્યાખ્યાયિત કરવામાં આવે છે.
- (iv) બે વાસ્તવિક વિધેયોનો ગુણાકાર :  $X \subset \mathbb{R}$  માટે બે વાસ્તવિક વિધેયો  $f: X \to \mathbb{R}$  અને  $g: X \to \mathbb{R}$  નો ગુણાકાર  $fg: X \to \mathbb{R}$ , પ્રત્યેક  $x \in X$  માટે (fg)(x) = f(x)g(x) દ્વારા વ્યાખ્યાયિત કરવામાં આવે છે.
- (v) બે વાસ્તવિક વિધેયોનો ભાગાકાર : ધારો કે X $\subset$ R માટે બે વાસ્તવિક વિધેયો f અને g, X થી R પર વ્યાખ્યાયિત છે, બે વિધેયો f અને g નો ભાગાકાર  $\frac{f}{g}$  દ્વારા દર્શાવાય છે અને  $g(x) \neq 0$  હોય તેવા પ્રત્યેક  $x \in X$  માટે  $\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}$  દ્વારા વ્યાખ્યાયિત કરવામાં આવે છે.

**ઉદાહરણ 16 :**  $f(x) = x^2$  અને g(x) = 2x + 1 બે વાસ્તવિક વિધેયો હોય, તો

$$(f+g)(x), (f-g)(x), (fg)(x), \left(\frac{f}{g}\right)(x)$$
 શોધો.

ઉકેલ : અહીં,

$$(f+g)(x) = x^2 + 2x + 1$$
,  $(f-g)(x) = x^2 - 2x - 1$ ,

$$(fg)(x) = x^2(2x+1) = 2x^3 + x^2, \ \left(\frac{f}{g}\right)(x) = \frac{x^2}{2x+1}, x \neq -\frac{1}{2}$$

44 ગણિત : ધોરણ 11

ઉદાહરણ  $17: f(x) = \sqrt{x}$  અને g(x) = x એ બે અનૃણ વાસ્તવિક સંખ્યાના ગણ પર વ્યાખ્યાયિત વિધેય હોય, તો (f+g)(x), (f-g)(x), (fg)(x) અને  $\left(\frac{f}{\varrho}\right)(x)$  શોધો.

ઉકેલ : અહીં,  $(f+g)(x) = \sqrt{x} + x$ ,  $(f-g)(x) = \sqrt{x} - x$ ,

$$(fg) x = \sqrt{x}(x) = x^{\frac{3}{2}}$$
 असे  $\left(\frac{f}{g}\right)(x) = \frac{\sqrt{x}}{x} = x^{-\frac{1}{2}}, x \neq 0$ 

### સ્વાધ્યાય 2.3

- 1. નીચેના પૈકી કયો સંબંધ વિધેય છે ? કારણ આપો. જો તે વિધેય હોય, તો તેનો પ્રદેશ અને વિસ્તાર શોધો.
  - (i)  $\{(2,1), (5,1), (8,1), (11,1), (14,1), (17,1)\}$
  - (ii)  $\{(2,1), (4,2), (6,3), (8,4), (10,5), (12,6), (14,7)\}$
  - (iii)  $\{(1,3), (1,5), (2,5)\}$
- નીચેના વાસ્તવિક વિધેયના પ્રદેશ અને વિસ્તાર શોધો : 2.
  - (i) f(x) = -|x|
- (ii)  $f(x) = \sqrt{9 x^2}$
- f(x) = 2x 5 થી વ્યાખ્યાયિત વિધેય માટે નીચેની કિંમતો શોધો :
- (ii) f(7)
- (iii) f(-3)
- વિધેય 't' એ સેલ્સિયસમાં ઉષ્ણતામાન અને ફેરનહીટમાં ઉષ્ણતામાન વચ્ચે રૂપાંતર કરતું સૂત્ર  $t(C) = \frac{9C}{5} + 32$  દ્વારા વ્યાખ્યાયિત હોય, તો નીચેનાં મૂલ્યો શોધો :
  - (i) t(0)
- (ii) t(28)
- (iii) t(-10) (iv)  $\Re t(C) = 212 \text{ elu}$ ,  $\Re C \Re \text{ elu}$ .
- નીચેનાં વિધેયોના વિસ્તાર શોધો :
  - (i)  $f(x) = 2 3x, x \in \mathbf{R}, x > 0$
  - (ii)  $f(x) = x^2 + 2$ , x વાસ્તવિક સંખ્યા છે.
  - (iii) f(x) = x, x વાસ્તવિક સંખ્યા છે.

### પ્રકીર્ણ ઉદાહરણો

ઉદાહરણ 18 : વાસ્તવિક સંખ્યા ગણ  $\mathbf{R}$  પર વ્યાખ્યાયિત વાસ્તવિક વિધેય  $f: \mathbf{R} \rightarrow \mathbf{R}, \ f(x) = x + 10$  હોય, તો વિધેય f નો આલેખ દોરો.

ઉકેલ : અહીં, f(0) = 10, f(1) = 11, f(2) = 12, ..., f(10) = 20 વગેરે અને f(-1) = 9, f(-2) = 8, ..., f(-10) = 0 વગેરે.

# Downloaded from https://www.studiestoday.com

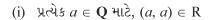
સંબંધ અને વિધેયો 45

માટે આ વિધેયનો આલેખનો આકૃતિ 2.16 માં દર્શાવ્યા પ્રમાણે મળશે.

**નોંધ** : f(x) = mx + c,  $x \in \mathbf{R}$  દ્વારા વ્યાખ્યાયિત વિધેયને સુરેખ વિધેય કહે છે. અહીં, m અને c અચળ છે. ઉપરનું વિધેય એ સુરેખ વિધેયનું ઉદાહરણ છે.



 $\mathbf{R} = \{(a,b): a,b \in \mathbf{Q}$  અને  $a-b \in \mathbf{Z}\}$  થાય તે રીતે વ્યાખ્યાયિત સંબંધ છે. તો બતાવો કે,



(ii) 
$$\Re(a, b) \in R \operatorname{di}(b, a) \in R$$

(iii) જો 
$$(a, b) \in \mathbb{R}$$
 અને  $(b, c) \in \mathbb{R}$  તો  $(a, c) \in \mathbb{R}$ 

ઉકેલ: (i) અહીં,  $a - a = 0 \in \mathbb{Z}$ . તેથી  $(a, a) \in \mathbb{R}$ .

(ii) જો 
$$(a,b) \in \mathbb{R}$$
 તો  $a-b \in \mathbb{Z}$ . તેથી,  $b-a \in \mathbb{Z}$ . તેથી,  $(b,a) \in \mathbb{R}$ 

(iii) જો 
$$(a, b) \in \mathbb{R}$$
 અને  $(b, c) \in \mathbb{R}$  તો  $a - b \in \mathbb{Z}$ .  $b - c \in \mathbb{Z}$ . તેથી,

$$a-c = (a-b) + (b-c) \in \mathbf{Z}$$
. તેથી,  $(a, c) \in \mathbf{R}$ 

ઉદાહરણ 20 :  $f = \{(1,1), (2,3), (0,-1), (-1,-3)\}$  થાય તે રીતે  $\mathbb Z$  પર વ્યાખ્યાયિત સુરેખ વિધેય હોય, તો f(x) શોધો.

ઉકેલ: અહીં, f સુરેખ વિધેય હોવાથી f(x) = mx + c લો. વળી, (1, 1),  $(0, -1) \in f$ ,

$$f(1) = m + c = 1$$
 અને  $f(0) = c = -1$ . આ પરથી  $m = 2$  અને  $f(x) = 2x - 1$ .

ઉદાહરણ 21 :  $f(x) = \frac{x^2 + 3x + 5}{x^2 - 5x + 4}$  હોય, તો વિધેયનો પ્રદેશ શોધો.

ઉકેલ: અહીં,  $x^2-5x+4=(x-4)(x-1)$ , અહીં વિધેય f એ x=4 અને x=1 સિવાયની તમામ વાસ્તવિક સંખ્યા પર વ્યાખ્યાયિત છે. આથી વિધેય f નો પ્રદેશ  $\mathbf{R}-\{1,4\}$ .

ઉદાહરણ 22 :  $f(x) = \begin{cases} 1-x, & x < 0 \\ 1, & x = 0 \end{cases}$  થી વ્યાખ્યાયિત વિધેયનો આલેખ દોરો.  $x+1, \quad x>0$ 

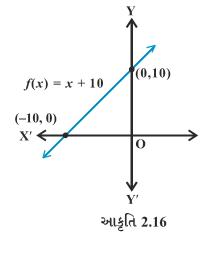
ઉકેલ : અહીં, 
$$f(x) = 1 - x, x < 0$$
,

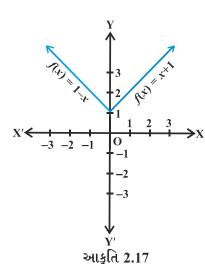
આથી, 
$$f(-4) = 1 - (-4) = 5;$$

$$f(-3) = 1 - (-3) = 4,$$

$$f(-2) = 1 - (-2) = 3$$

$$f(-1) = 1 - (-1) = 2$$
; વગેરે





46 ગાંધાત : ધોરણ 11

વળી, 
$$f(x) = x + 1, x > 0.$$

અાથી, 
$$f(1) = 2$$
,  $f(2) = 3$ ,  $f(3) = 4$   
 $f(4) = 5$ ; વગેરે.

આ વિધેયનો આલેખ આકૃતિ 2.17 માં દર્શાવ્યા પ્રમાણે મળે.

### પ્રકીર્ણ સ્વાધ્યાય 2

- **1.** સંબંધ f એ  $f(x) = \begin{cases} x^2, & 0 \le x \le 3 \\ 3x, & 3 \le x \le 10 \end{cases}$  થી વ્યાખ્યાયિત છે અને
  - સંબંધ g એ  $g(x) = \begin{cases} x^2, & 0 \le x \le 2 \\ 3x, & 2 \le x \le 10 \end{cases}$  થી વ્યાખ્યાયિત છે, તો સાબિત કરો કે f એ વિધેય છે અને g વિધેય નથી.
- 2.  $\Re f(x) = x^2$ , તો  $\frac{f(1.1) f(1)}{(1.1-1)}$  શોધો.
- 3. વિધેય  $f(x) = \frac{x^2 + 2x + 1}{x^2 8x + 12}$  નો પ્રદેશ શોધો.
- **4.**  $f(x) = \sqrt{(x-1)}$  થી વ્યાખ્યાયિત વાસ્તવિક વિધેય f નો પ્રદેશ અને વિસ્તાર શોધો.
- 5. f(x) = |x-1| થી વ્યાખ્યાયિત વાસ્તવિક વિધેય f નો પ્રદેશ અને વિસ્તાર શોધો.
- 6. જો  $f = \left\{ \left( x, \frac{x^2}{1 + x^2} \right) : x \in \mathbf{R} \right\}$  એ  $\mathbf{R}$  થી  $\mathbf{R}$  નું વિધેય હોય, તો તે વિધેય f નો વિસ્તાર શોધો.
- 7.  $f, g : \mathbf{R} \to \mathbf{R}, f(x) = x + 1, g(x) = 2x 3$  થી વ્યાખ્યાયિત વિધેય છે, તો f + g, f g અને  $\frac{f}{g}$  શોધો.
- 8. જો  $f = \{(1, 1), (2, 3), (0, -1), (-1, -3)\}$  એ  $\mathbb{Z}$  થી  $\mathbb{Z}, f(x) = ax + b$ , થી વ્યાખ્યાયિત વિધેય હોય, તો a અને b શોધો.
- 9.  $\mathbf{R}$  એ  $\mathbf{N}$  થી  $\mathbf{N}$  નો સંબંધ છે.  $\mathbf{R} = \{(a,\,b): a,\,b \in \mathbf{N}$  અને  $a=b^2\}$  થાય તે રીતે વ્યાખ્યાયિત છે, તો શું નીચેનાં વિધાનો સત્ય છે ?
  - (i) પ્રત્યેક  $a \in \mathbb{N}$  માટે  $(a, a) \in \mathbb{R}$
  - (ii)  $\Re(a, b) \in \mathbb{R}$ ,  $\Re(b, a) \in \mathbb{R}$
  - (iii)  $\Re(a, b) \in \mathbb{R}, (b, c) \in \mathbb{R} \text{ div}(a, c) \in \mathbb{R}$

પ્રત્યેક વિધાનમાં તમારા જવાબની સત્યાર્થતા ચકાસો.

સંબંધ અને વિધેયો 47

- 10.  $A = \{1,2,3,4\}, B = \{1,5,9,11,15,16\}$  અને  $f = \{(1,5),(2,9),(3,1),(4,5),(2,11)\}$ , તો શું નીચેનાં વિધાનો સત્ય છે?
  - (i) f એ A થી B નો સંબંધ છે.
  - (ii) f એ A થી B પરનું વિધેય છે. પ્રત્યેક વિકલ્પમાં તમારા જવાબની સત્યાર્થતા ચકાસો.
- 11. f એ  $\mathbb{Z} \times \mathbb{Z}$  નો ઉપગણ છે. જો  $f = \{(ab, a+b) : a, b \in \mathbb{Z}\}$  થી વ્યાખ્યાયિત છે, તો શું f એ  $\mathbb{Z}$  થી  $\mathbb{Z}$  નું વિધેય છે ? તમારા જવાબની સત્યાર્થતા ચકાસો.
- **12.** A = {9,10,11,12,13} અને f: A→N, f(n) = n નો મહત્તમ અવિભાજય અવયવ છે. f નો વિસ્તાર મેળવો.

### સારાંશ

આ પ્રકરણમાં આપણે સંબંધ અને વિધેયનો અભ્યાસ કર્યો. આ પ્રકરણની મુખ્ય વિશેષતાઓ નીચે મુજબ છે :

- ◆ **ક્રમયુક્ત જોડઃ** કોઈ ચોક્કસ ક્રમમાં બનાવેલ જોડને ક્રમયુક્ત જોડ કહે છે.
- lacktriangle કાર્તેઝિય ગુણાકાર: બે ગણ A અને B નો કાર્તેઝિય ગુણાકાર,  $A \times B = \{(a,b): a \in A, b \in B\}$

વિશિષ્ટ કિસ્સામાં  $\mathbf{R} \times \mathbf{R} = \{(x, y) : x, y \in \mathbf{R}\}$ 

અને 
$$\mathbf{R} \times \mathbf{R} \times \mathbf{R} = (x, y, z) : x, y, z \in \mathbf{R}$$

- જો (a, b) = (x, y), તો a = x અને b = y.
- જો n(A) = p અને n(B) = q, તો  $n(A \times B) = pq$ .
- $\bullet$  A  $\times$   $\phi = \phi$
- ♦ સામાન્ય રીતે,  $A \times B \neq B \times A$ .
- ◆ **સંબંધઃ** ગણ A અને B માટે A × B ના કોઈ ઉપગણને A થી B નો સંબંધ R કહે છે. આ A × B નો ઉપગણ ક્રમયુક્ત જોડના પ્રથમ ઘટક x અને બીજા ઘટક y વચ્ચે કોઈ સંબંધ પ્રસ્થાપિત કરવાથી મળે છે.
- જો  $(x,y)\in \mathbb{R}$ , તો ઘટક x નું સંબંધ  $\mathbb{R}$  ને અંતર્ગતનું પ્રતિબિંબ બિંદુ y હોય છે.
- ♦ સંબંધ R ની પ્રત્યેક ક્રમયુક્ત જોડના પ્રથમ ઘટકથી બનતા ગણને સંબંધ R નો પ્રદેશ કહે છે.
- ♦ સંબંધ R ની પ્રત્યેક ક્રમયુક્ત જોડના બીજા ઘટકથી બનતા ગણને સંબંધ R નો વિસ્તાર કહે છે.
- વિધેયએ ગણ A થી ગણ B પરનો એક વિશિષ્ટ પ્રકારનો સંબંધ છે. તેમાં ગણ A ના પ્રત્યેક ઘટક x ને સંગત ગણ B માં અનન્ય પ્રતિબિંબ y મળે છે. આને આપણે y = f(x) માટે  $f: A \rightarrow B$  દ્વારા દર્શાવીશું.
- lacktriangle ગણ  ${f A}$  ને વિધેય f નો પ્રદેશ અને ગણ  ${f B}$  ને વિધેય f નો સહપ્રદેશ કહેવાય.
- ♦ વિધેય ƒ ના પ્રતિબિંબના ગણને વિધેયનો વિસ્તાર કહે છે.
- ♦ કોઈ પણ વાસ્તવિક વિધેયનો પ્રદેશ અને વિસ્તાર બંને વાસ્તવિક સંખ્યાનો ગણ કે તેનો ઉપગણ હોય છે.

48 ગાંધાત : ધોરણ 11

♦ વિધેય પરની બૈજિક ક્રિયાઓ :

$$f: X \to \mathbf{R}$$
 અને  $g: X \to \mathbf{R}$ , વિધેય હોય, તો 
$$(f+g)(x) = f(x) + g(x), x \in X$$
 
$$(f-g)(x) = f(x) - g(x), x \in X$$
 
$$(f \cdot g)(x) = f(x) \cdot g(x), x \in X$$
 
$$(kf)(x) = k(f(x)), x \in X, \text{ જયાં } k \text{ કોઈ વાસ્તવિક સંખ્યા છે. }$$
 
$$\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}, x \in X, g(x) \neq 0$$

#### Historical Note

The word FUNCTION first appears in a Latin manuscript "Methodus tangentium inversa, *seu de fuctionibus*" written by Gottfried Wilhelm Leibnitz (1646-1716) in 1673; Leibnitz used the word in the non-analytical sense. He considered a function in terms of "mathematical job" – the "employee" being just a curve.

On July 5, 1698, Johan Bernoulli, in a letter to Leibnitz, for the first time deliberately assigned a specialised use of the term *function* in the analytical sense. At the end of that month, Leibnitz replied showing his approval.

Function is found in English in 1779 in Chambers' Cyclopaedia: "The term function is used in algebra, for an analytical expression any way compounded of a variable quantity, and of numbers, or constant quantities".



# ત્રિકોણમિતિય વિધેયો

\*A mathematician knows how to solve a problem, he can not solve it. – MILNE ❖

### 3.1 પ્રાસ્તાવિક

ત્રિકોણમિતિ(Trigonometry) શબ્દ બે ગ્રીક શબ્દો 'trigon' અને 'metron'ના સમન્વયથી બનેલ છે અને તેનો અર્થ 'ત્રિકોણની બાજઓનાં માપ' એવો થાય છે. મૂળભૂત રીતે આ વિષય ત્રિકોણને સાંકળતા ભૌમિતિક પ્રશ્નોના ઉકેલ મેળવવા માટે વિકસ્યો હતો. તેનો અભ્યાસ સમુદ્રી કપ્તાનો દિશા જાણવા માટે, નવી જમીનના માપન માટે મોજણીદાર, ઇજનેરો અને અન્ય લોકો કરતાં હતા. હાલમાં, ત્રિકોશમિતિનો ઉપયોગ ભૂકંપ વિજ્ઞાનમાં, ઇલેક્ટ્રિક સર્કિટની ડિઝાઇનમાં, અણ્ની સ્થિતિ જાણવા માટે, દરિયામાં આવતાં મોજાંની ઊંચાઇનું અનુમાન કરવા માટે, સંગીતના સૂરનું વિષ્લેષણ કરવા માટે જેવાં ઘણાં ક્ષેત્રોમાં અને અન્ય પ્રદેશોમાં થાય છે.

આપણે અગાઉનાં ધોરણોમાં લઘુકોણ માટે કાટકોણ ત્રિકોણની બાજુઓના ગુણોત્તર સ્વરૂપે ત્રિકોણમિતિય ગુણોત્તરોનો અભ્યાસ કર્યો. વળી, આપણે ત્રિકોશમિતિય એકરૂપતા અને ત્રિકોશમિતિય ગુશોત્તરનો ઉપયોગ ઊંચાઈ અને



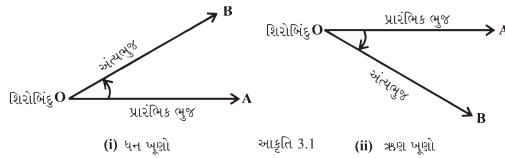
Arya Bhatt (476-550)

અંતરને લગતા પ્રશ્નોના ઉકેલ મેળવવા માટે કરેલ છે. આ પ્રકરણમાં, આપણે ત્રિકોણમિતિય ગુણોત્તરની સંકલ્પનાનો અભ્યાસ વ્યાપક સ્વરૂપે ત્રિકોણમિતિય વિધેયો તરીકે કરીશું અને તેના ગુણધર્મોનો અભ્યાસ કરીશું.

# Downloaded from https:// www.studiestoday.com

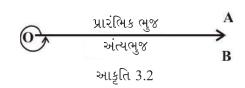
50 ગણિત : ધોરણ 11

### 3.2 ખૂશા



આરંભબિંદુથી શરૂ થતા કિરણના પરિભ્રમણના માપને ખૂણાનું માપ કહેવાય. મૂળ કિરણને ખૂણાની *પ્રારંભિક બાજુ* કહેવાય અને પરિભ્રમણ થયા પછીની કિરણની અંતિમ સ્થિતિને ખૂણાની અંત્યબાજુ કહેવાય. જે બિંદુથી પરિભ્રમણ કરાય છે તેને ખૂણાનું *શિરોબિંદુ* કહેવાય. જો પરિભ્રમણની દિશા ઘડિયાળના કાંટાની વિરુધ્ધ દિશા હોય, તો ખૂણાનું માપ ધન કહેવાય અને જો પરિભ્રમણની દિશા એ ઘડિયાળના કાંટાની દિશામાં હોય તો ખૂણાનું માપ ઋણ કહેવાય. (આકૃતિ 3.1)

ખૂશાનું માપ એટલે પ્રારંભિક બાજુથી અંત્યબાજુ સુધી થયેલા પરિભ્રમણનું માપ. ખૂશાનું માપ મેળવવા માટે અલગ અલગ એકમો છે. ખૂશાની વ્યાખ્યા પરથી એકમનું સૂચન મળે છે. ઉદાહરણ તરીકે આકૃતિ 3.2 માં દર્શાવ્યા પ્રમાશે પ્રારંભિક બાજુથી એક પૂર્ણ પરિભ્રમણ.

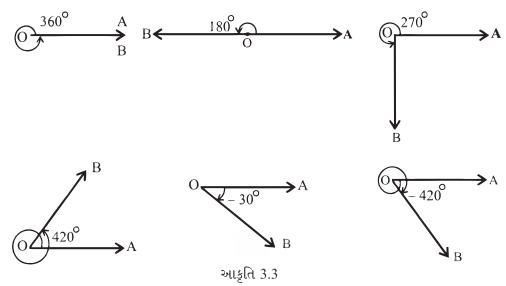


આ માપ મોટા ખૂશા માટે વધુ અનુકૂળ રહે. ઉદાહરણ તરીકે, ઝડપથી ફરતું પૈડું એક સેકન્ડમાં 15 પરિભ્રમણ કરે છે. ખૂશા માપવા માટે આપણે બીજા બે વ્યાપક રીતે વપરાતા એકમો વિચારીશું, જેમકે અંશ માપ અને રેડિયન માપ.

### 3.2.1 અંશ માપ

જો પ્રારંભિક બાજુથી અંત્યબાજુ સુધીનું પરિભ્રમણ એક પૂર્ણ પરિભ્રમણના  $\left(\frac{1}{360}\right)$ મા ભાગનું હોય, તો બનતા ખૂણાનું માપ 1 અંશ માપ કહેવાય તથા  $1^\circ$  એમ લખાય. એક અંશના 60 મા ભાગને એક મિનિટ કહેવાય અને તેને 1' લખાય અને એક મિનિટના 60 મા ભાગને એક સેકંડ કહેવાય અને તેને 1'' લખાય.

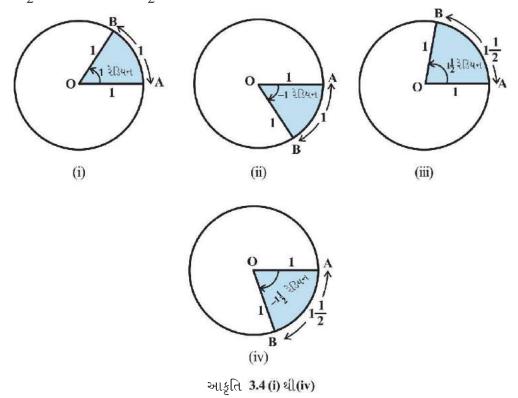
જેમનાં માપ 360°, 180°, 270°, 420°, - 30°, - 420° છે તેવા કેટલાક ખૂશા આકૃતિ 3.3 માં દર્શાવેલ છે.



ત્રિકોણમિતિય વિધેયો 51

### 3.2.2 રેડિયન માપ

ખૂણાના માપ માટે જેને *રેડિયન માપ* (radian measure) કહેવાય છે તેવો બીજો એકમ પણ છે. આપણે એકમ વર્તુળ (1 એકમ ત્રિજયાવાળું વર્તુળ)ના કેન્દ્ર આગળ 1 એકમ વૃત્તિય લંબાઈવાળા ચાપથી બનતા ખૂણાને 1 રેડિયન કહીશું. આકૃતિઓ <math>3.4 (i) થી (iv) માં OA એ પ્રારંભિક બાજુ છે અને OB અંત્યબાજુ છે. આ આકૃતિઓ 1 રેડિયન, -1 રેડિયન,  $1\frac{1}{2}$  રેડિયન અને  $-1\frac{1}{2}$  રેડિયન માપવાળા ખૂણા દર્શાવે છે.



આપણે જાણીએ છીએ કે એક એકમ ત્રિજ્યાવાળા વર્તુળનો પરિઘ  $2\pi$  હોય છે. આમ, પ્રારંભિક બાજુથી એક પૂર્ણ પરિભ્રમણ  $2\pi$  રેડિયન માપનો ખૂણો બનાવે.

વ્યાપક રીતે, r એકમ ત્રિજયાવાળા વર્તુળમાં r લંબાઈના ચાપ દ્વારા કેન્દ્ર આગળ બનતા ખૂણાનું માપ 1 રેડિયન છે. એ તો આપણે જાણીએ જ છીએ કે, સમાન લંબાઈના ચાપ દ્વારા બનતા ખૂણાનું માપ સમાન હોય. હવે, r ત્રિજયાવાળા વર્તુળમાં r લંબાઈના ચાપ દ્વારા કેન્દ્ર આગળ બનતા ખૂણાનું માપ 1 રેડિયન છે. આથી આ વર્તુળમાં l લંબાઈના ચાપ દ્વારા બનતા ખૂણાનું માપ  $\frac{l}{r}$  રેડિયન થાય. તેથી, r ત્રિજયાવાળા વર્તુળમાં l લંબાઈનો ચાપ કેન્દ્ર આગળ l રેડિયનનો ખૂણો બનાવે તો,

$$\theta = \frac{l}{r}$$
 અથવા  $l = r\theta$ .

### 3.2.3 વાસ્તવિક સંખ્યાઓ અને રેડિયન માપ વચ્ચેનો સંબંધ

O કેન્દ્ર ધરાવતું એકમ વર્તુળ લો. વર્તુળ પરનું કોઈ બિંદુ A લો. ખૂશા માટે OA ને પ્રારંભિક બાજુ લો. વર્તુળના કોઈપશ ચાપની લંબાઈ ચાપે કેન્દ્ર આગળ આંતરેલા ખૂશાનું રેડિયન માપ આપશે. ધારો કે રેખા PAQ એ વર્તુળનો Aઆગળનો

52 ગણિત : ધોરણ 11

સ્પર્શક છે. ધારો કે, બિંદુ A એ વાસ્તિવિક સંખ્યા શૂન્ય બતાવે છે. AP ધન વાસ્તિવિક સંખ્યાઓ અને AQ ઋષ વાસ્તિવિક સંખ્યાઓ દર્શાવે છે. (આકૃતિ 3.5) જો એક દોરડાથી રેખા AP ને ઘડિયાળના કાંટાની વિરુધ્ધ દિશામાં અને AQને ઘડિયાળના કાંટાની દિશામાં વર્તુળ પર વીંટાળવામાં આવે, તો પ્રત્યેક વાસ્તિવિક સંખ્યાને અનુરૂપ રેડિયન માપ મળે અને તેનાથી ઊલ્ટું પણ બને. આમ, વાસ્તિવિક સંખ્યાઓ અને રેડિયન માપ એ બંનેને એકના એક જ લઈ શકાય.

# 3.2.4 અંશ માપ અને રેડિયન માપ વચ્ચેનો સંબંધ

વર્તુળ દ્વારા કેન્દ્ર આગળ બનતા ખૂણાનું રેડિયન માપ  $2\pi$  અને અંશ માપ  $360^\circ$  છે. આથી, કહી શકાય કે,  $2\pi$  રેડિયન=  $360^\circ$  અથવા  $\pi$  રેડિયન=  $180^\circ$ .

ઉપરના સંબંધનો ઉપયોગ કરી રેડિયન માપના ખૂશાને અંશ માપમાં અને અંશ માપને

રેડિયન માપમાં દર્શાવી શકાય.  $\pi$  ની લગભગ કિંમત  $\frac{22}{7}$  લેતાં,

1 રેડિયન = 
$$\frac{180^{\circ}}{\pi}$$
 = 57° 16' (લગભગ)

તથા 
$$1^{\circ} = \frac{\pi}{180}$$
 રેડિયન  $= 0.01746$  રેડિયન (લગભગ)

સામાન્ય રીતે વપરાતા કેટલાક ખૂણાના અંશ માપ અને રેડિયન માપ વચ્ચે સંબંધ નીચેના કોષ્ટકમાં આપેલ છે :

| અંશ    | 30°             | 45°             | 60°             | 90°             | 180° | 270°             | 360° |
|--------|-----------------|-----------------|-----------------|-----------------|------|------------------|------|
| રેડિયન | $\frac{\pi}{6}$ | $\frac{\pi}{4}$ | $\frac{\pi}{3}$ | $\frac{\pi}{2}$ | π    | $\frac{3\pi}{2}$ | 2π   |

### રૂઢિગત સાંકેતો

આપણે રૂઢિગત રીતે સ્વીકારીશું કે ખૂણાઓને અંશ કે રેડિયનમાં મપાતા હોવાથી, જો θ° લખીએ, તો θ ખૂણાનું અંશ માપ અને જો ખૂણો β લખીએ, તો β ખૂણાનું રેડિયન માપ દર્શાવે છે. આપણે નોંધીએ કે જ્યારે ખૂણાને રેડિયન માપમાં લખાય, ત્યારે રેડિયન શબ્દ દર વખતે લખીશું નહિ.

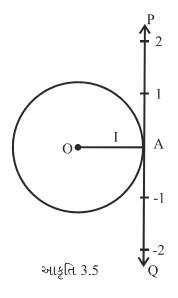
આમ, 
$$\pi=180^\circ$$
 અને  $\frac{\pi}{4}=45^\circ$ લખીએ ત્યારે સમજીશું કે  $\pi$  અને  $\frac{\pi}{4}$  રેડિયન માપ છે. આમ કહી શકાય કે,

રેડિયન માપ = 
$$\frac{\pi}{180}$$
 × અંશ માપ

અંશ માપ = 
$$\frac{180^{\circ}}{\pi}$$
  $\times$  રેડિયન માપ

ઉદાહરણ 1 : 40° 20' નું રેડિયન માપમાં રૂપાંતર કરો.

ઉંકેલ : આપણે જાણીએ છીએ કે  $180^\circ = \pi$  રેડિયન



ત્રિકોણમિતિય વિધેયો 53

આથી, 
$$40^{\circ} \ 20' = 40\frac{1^{\circ}}{3}$$
$$= \frac{\pi}{180} \times \frac{121}{3} \ \text{રેડિયન}$$
$$= \frac{121\pi}{540} \ \text{રેડિયન}$$

આમ, 
$$40^{\circ} 20' = \frac{121\pi}{540}$$
 રેડિયન

ઉદાહરણ 2: 6 રેડિયનને અંશ માપમાં ફેરવો.

ઉકેલ : આપણે જાણીએ છીએ કે  $\pi$  રેડિયન  $=180^\circ$ 

આથી, 
$$6$$
 રેડિયન =  $\frac{180}{\pi}$  × 6 અંશ 
$$= \frac{1080 \times 7}{22}$$
 અંશ 
$$= 343 \frac{7}{11}$$
 અંશ 
$$= 343^{\circ} + \frac{7 \times 60}{11}$$
 મિનિટ 
$$= 343^{\circ} + 38' + \frac{2}{11}$$
 મિનિટ 
$$= 343^{\circ} + 38' + 10.9"$$
 (1'= 60") 
$$= 343^{\circ} 38' \cdot 11" \quad (લગભગ)$$

ઉદાહરણ 3: 37.4 સેમી ચાપની લંબાઈ ધરાવતા તથા કેન્દ્ર આગળ 60° માપનો ખૂરો બનાવતા વર્તુળની ત્રિજ્યા શોધો.

(લગભગ)

$$(\pi = \frac{22}{7} \text{ ei}).$$

ઉકેલઃ અહીં, l = 37.4 સેમી અને

$$\theta = 60^{\circ} = \frac{60\pi}{180}$$
 રેડિયન  $= \frac{\pi}{3}$  હવે,  $r = \frac{l}{\theta}$  પરથી, 
$$r = \frac{37.4 \times 3}{\pi} = \frac{37.4 \times 3 \times 7}{22}$$
$$= 35.7 સેમી$$

આમ, 6 રેડિયન = 343° 38' 11"

ઉદાહરણ 4 : ઘડિયાળનો મિનિટકાંટો 1.5 સેમી લાંબો છે, તો 40 મિનિટમાં કાંટાએ કાપેલ અંતર શોધો. ( $\pi = 3.14$  લો.) ઉકેલઃ ઘડિયાળનો મિનિટકાંટો, 60 મિનિટમાં એક પૂર્ણ પરિભ્રમણ કરે છે.

આથી, 40 મિનિટમાં, મિનિટકાંટો  $\frac{2}{3}$  પૂર્ણ પરિભ્રમણ કરશે.

$$\therefore \theta = \frac{2}{3} \times 360^{\circ}$$
અથવા  $\frac{4\pi}{3}$  રેડિયન

આથી, કપાયેલ અંતર

$$l = r\theta = 1.5 \times \frac{4\pi}{3}$$
 સેમી

 $=2\pi$  સેમી

 $=2\times3.14$  સેમી

= 6.28 સેમી

ઉદાહરણ 5 : બે વર્તુળમાં સમાન લંબાઈનાં ચાપ તેમનાં કેન્દ્રો આગળ અનુક્રમે 65° અને 110°ના ખૂશા બનાવે, તો તેમની ત્રિજ્યાઓનો ગુશોત્તર શોધો.

 $\mathbf{G}$ કેલ: ધારો કે વર્તુળોની ત્રિજયાઓ અનુક્રમે  $r_{_{1}}$  અને  $r_{_{2}}$  છે.

આપેલ છે કે,

$$\theta_1 = 65^\circ = \frac{\pi}{180} \times 65 = \frac{13\pi}{36}$$
 રેડિયન

$$\theta_2 = 110^\circ = \frac{\pi}{180} \times 110 = \frac{22\pi}{36}$$
 ફેડિયન

ધારો કે ચાપની લંબાઈ *į* છે.

આથી, 
$$l=\,r_{\!\!1}\,\,\theta_1^{\phantom{\dagger}}=r_{\!\!2}^{\phantom{\dagger}}\,\theta_2^{\phantom{\dagger}}\,\,\,\mathrm{પરથી},$$

$$\frac{13\pi}{36} \times r_1 = \frac{22\pi}{36} \times r_2$$

$$\therefore \frac{r_1}{r_2} = \frac{22}{13}$$

આથી,  $r_1: r_2 = 22:13$ 

### સ્વાધ્યાય 3.1

- 1. નીચેના અંશ માપને સંગત રેડિયન માપ શોધો :
  - (i) 25°
- (ii)  $-47^{\circ} 30'$
- (iii) 240°
- $(iv) 520^{\circ}$
- **2.** નીચેના રેડિયન માપને સંગત અંશ માપ શોધો. ( $\pi = \frac{22}{7}$  લો.)
  - (i)  $\frac{11}{16}$
- (ii) -4
- (iii)  $\frac{5\pi}{3}$
- (iv)  $\frac{7\pi}{6}$

ત્રિકોણમિતિય વિધેયો 55

- 3. એક ચક્ર એક મિનિટમાં 360° પરિભ્રમણ કરે છે, તો તે એક સેકન્ડમાં કેટલા રેડિયન માપ જેટલું ફરશે ?
- 4. 100 સેમી ત્રિજ્યાવાળા વર્તુળના ચાપની લંબાઈ 22 સેમી હોય, તો તેણે કેન્દ્ર આગળ બનાવેલ ખૂણાનું અંશ માપ શોધો. ( $\pi = \frac{22}{7}$  લો.)
- 5. 40 સેમી વ્યાસવાળા વર્તુળમાં જીવાની લંબાઈ 20 સેમી છે. જીવાને સંગત લઘુચાપનું માપ શોધો.
- 6. જો બે વર્તુળોમાં સમાન લંબાઈનાં ચાપ કેન્દ્ર આગળ 60° અને 75° ના ખૂણા આંતરે, તો તેમની ત્રિજયાઓનો ગુણોત્તર શોધો.
- 7. જો 75 સેમી લંબાઈવાળા લોલકનું અંત્યબિંદુ (i) 10 સેમી (ii) 15 સેમી (iii) 21 સેમીનાં ચાપ બનાવે, તો તેણે કેન્દ્ર આગળ બનાવેલ ખૂણાનાં રેડિયન માપ શોધો.

### 3.3 ત્રિકોણમિતિય વિધેયો

આગળના ધોરણમાં, આપણે કાટકોણ ત્રિકોણના લઘુકોણોના ત્રિકોણમિતિય ગુણોત્તરોનો અભ્યાસ કાટકોણ ત્રિકોણની બાજુઓના ગુણોત્તરો તરીકે કર્યો. હવે આપણે રેડિયન માપના કોઇપણ ખૂણા માટે આ વ્યાખ્યાને વિસ્તૃત કરીશું અને ત્રિકોણમિતિય વિધેયોનો અભ્યાસ કરીશં.

યામ-સમતલમાં ઊગમબિંદુ કેન્દ્રવાળું એકમ વર્તુળ લો. જેથી ખૂણો  $AOP = x રેડિયન અર્થાત્ યાપ AP ની લંબાઈ = x થાય તે રીતે વર્તુળ પરનું કોઈ બિંદુ <math>P(a,\ b)$  લો. (આકૃતિ 3.6.)

આપણે  $\cos x=a$  અને  $\sin x=b$  વ્યાખ્યાયિત કરીશું.  $\Delta \text{ OMP}$  કાટકોણ ત્રિકોણ હોવાથી,  $\text{OM}^2+\text{MP}^2=\text{OP}^2$  અથવા  $a^2+b^2=1$ .

આમ, એકમ વર્તુળ પરના પ્રત્યેક બિંદુ માટે  $a^2+b^2=1$  અથવા  $\cos^2x+\sin^2x=1$ .

નોંધ : 
$$\cos^2 x = (\cos x)^2$$
,  $\sin^2 x = (\sin x)^2$ 

એક પૂર્ણ પરિભ્રમણ દ્વારા વર્તુળના કેન્દ્ર આગળ બનતો ખૂણો  $2\pi$  રેડિયન હોવાથી,  $\angle AOB = \frac{\pi}{2}$ , અને  $\angle AOC = \pi$ 

અને  $\angle AOD = \frac{3\pi}{2}$ . આ  $\frac{\pi}{2}$  ના પૂર્શાંક ગુણિત માપવાળા ખૂણાઓને *પાદકોણ* કહેવાય.

A, B, C, D ના યામ અનુક્રમે (1, 0), (0, 1), (-1, 0) અને (0, -1) છે. આથી પાદકોણ માટે,

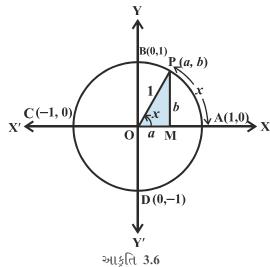
$$\cos 0 = 1 \qquad \sin 0 = 0$$

$$\cos \frac{\pi}{2} = 0 \qquad \sin \frac{\pi}{2} = 1$$

$$\cos \pi = -1 \qquad \sin \pi = 0$$

$$\cos \frac{3\pi}{2} = 0 \qquad \sin \frac{3\pi}{2} = -1$$

$$\cos 2\pi = 1 \qquad \sin 2\pi = 0$$



# Downloaded from https://www.studiestoday.com

56 ગણિત : ધોરણ 11

હવે, જો P બિંદુથી એક પૂર્ણ પરિભ્રમણ કરીએ, તો આપણે પાછા એ જ બિંદુ P પર પહોંચીએ. આમ, આપણે જોઈ શકીએ કે, જો x,  $2\pi$  ના પૂર્ણાંક ગુણાંકમાં વધે કે ઘટે તો, sine કે cosine વિધેયોનાં મૂલ્યો બદલાતાં નથી. આથી,

$$sin (2n\pi + x) = sin x,$$
  $n \in \mathbb{Z},$   
 $cos (2n\pi + x) = cos x,$   $n \in \mathbb{Z}$ 

વળી, જો  $x = 0, \pm \pi, \pm 2\pi, \pm 3\pi, \dots$  વગેરે તો  $\sin x = 0$ , એટલે કે x એ  $\pi$  નો ગુણતિ હોય.

અને જયારે x એ  $\frac{\pi}{2}$  નો અયુગ્મ ગુણિત હોય એટલે કે x,  $\pm \frac{\pi}{2}$ ,  $\pm \frac{3\pi}{2}$ ,  $\pm \frac{5\pi}{2}$ ,... હોય ત્યારે  $\cos x$  શૂન્ય બને. આમ,

જયારે  $\sin x = 0$  ત્યારે  $x = n\pi$  અને આનું પ્રતીપ પણ સત્ય છે,  $n \in \mathbb{Z}$ 

જયારે  $\cos x=0$  ત્યારે  $x=(2n+1)\,rac{\pi}{2}$  અને આનું પ્રતીપ પણ સત્ય છે,  $n\in {\bf Z}$ 

હવે, આપણે બાકીનાં ત્રિકોણમિતિય વિધેયો sine અને cosine વિધેયોના સંદર્ભમાં વ્યાખ્યાયિત કરીશું.

$$cosec \ x = \frac{1}{sin \ x}, \quad x \neq n\pi, \qquad n \in \mathbb{Z}$$

$$sec x = \frac{1}{cos x}, \quad x \neq (2n+1)\frac{\pi}{2}, \qquad n \in \mathbb{Z}$$

$$tan x = \frac{\sin x}{\cos x}, \quad x \neq (2n+1)\frac{\pi}{2}, \qquad n \in \mathbb{Z}$$

$$\cot x = \frac{\cos x}{\sin x}, \quad x \neq n\pi, \qquad n \in \mathbb{Z}$$

આપણે સાબિત કર્યું છે કે, પ્રત્યેક વાસ્તવિક x માટે

$$sin^2 x + cos^2 x = 1$$
 આથી, 
$$1 + tan^2 x = sec^2 x$$
 (કેમ ?)

$$1 + \cot^2 x = \csc^2 x \tag{34}$$

અગાઉના ધોરણમાં આપણે ત્રિકોણમિતિય ગુણોત્તરનાં મૂલ્યોની 0°, 30°, 45°, 60° અને 90° માટે ચર્ચા કરેલ છે. ત્રિકોણમિતિય વિધેયોની કિંમત પણ અગાઉ શીખેલ ત્રિકોણમિતિય ગુણોત્તર જેટલી થાય. આથી, આપણને નીચે આપેલ કોષ્ટક મળેઃ

|     | 0 | $\frac{\pi}{6}$      | $\frac{\pi}{4}$      | $\frac{\pi}{3}$      | $\frac{\pi}{2}$ | π          | $\frac{3\pi}{2}$ | 2π |
|-----|---|----------------------|----------------------|----------------------|-----------------|------------|------------------|----|
| sin | 0 | $\frac{1}{2}$        | $\frac{1}{\sqrt{2}}$ | $\frac{\sqrt{3}}{2}$ | 1               | 0          | <b>–</b> 1       | 0  |
| cos | 1 | $\frac{\sqrt{3}}{2}$ | $\frac{1}{\sqrt{2}}$ | $\frac{1}{2}$        | 0               | <b>–</b> 1 | 0                | 1  |
| tan | 0 | $\frac{1}{\sqrt{3}}$ | 1                    | $\sqrt{3}$           | અવ્યાખ્યાયિત    | 0          | અવ્યાખ્યાયિત     | 0  |

ત્રિકોણમિતિય વિધેયો 57

 $cosec\ x$ ,  $sec\ x$  અને  $cot\ x$  નાં મૂલ્યો અનુક્રમે  $sin\ x$ ,  $cos\ x$  અને  $tan\ x$  નાં મૂલ્યોના વ્યસ્ત છે.

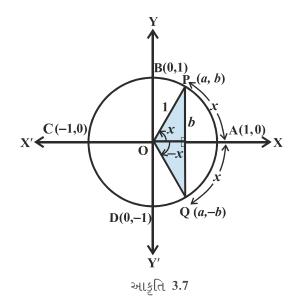
### 3.3.1 ત્રિકોણમિતિય વિધેયનાં ચિક્ષો :

ધારો કે  $\angle AOP = x$  થાય તે રીતે P(a, b) એ ઊગમબિંદુ કેન્દ્રવાળા એકમ વર્તુળ પરનું કોઈ એક બિંદુ છે. જો  $\angle AOQ = -x$ , તો બિંદુ Q ના યામ (a, -b) થાય. (આકૃતિ 3.7.)

આથી, 
$$cos(-x) = cos x$$

અને 
$$sin(-x) = -sin x$$

એકમ વર્તુળ પરના પ્રત્યેક બિંદુ P (a, b) માટે,  $-1 \le a \le 1$  અને  $-1 \le b \le 1$ . આથી, આપણને પ્રત્યેક x માટે  $-1 \le \cos x \le 1$  અને  $-1 \le \sin x \le 1$  મળે. અગાઉના ધોરણમાં આપણે શીખ્યાં હતાં



કે પ્રથમ ચરણમાં  $\left(0 < x < \frac{\pi}{2}\right)$  a અને b બંને ધન હોય, બીજા ચરણમાં  $\left(\frac{\pi}{2} < x < \pi\right)$  a ઋણ અને b ધન હોય, ત્રીજા ચરણમાં  $\left(\pi < x < \frac{3\pi}{2}\right)$  a અને b બંને ઋણ હોય અને ચોથા ચરણમાં  $\left(\frac{3\pi}{2} < x < 2\pi\right)$  a ધન અને b ઋણ હોય. આથી,  $(0 < x < \pi)$  માટે  $\sin x$  ધન અને  $\pi < x < 2\pi$  માટે તે ઋણ હોય. આ જ રીતે,  $0 < x < \frac{\pi}{2}$  માટે  $\cos x$  ધન,  $\frac{\pi}{2} < x < \frac{3\pi}{2}$  માટે ઋણ અને  $\frac{3\pi}{2} < x < 2\pi$  માટે ધન હોય. આ જ રીતે, બાકીનાં ત્રિકોણમિતિય વિધેયોનાં ચિક્ષો ભિન્ન ચરણ માટે શોધી શકાય. તે નીચેના કોષ્ટકમાં દર્શાવેલ છે :

|         | I | II | III | IV |
|---------|---|----|-----|----|
| sin x   | + | +  | -   | -  |
| cos x   | + | _  | _   | +  |
| tan x   | + | _  | +   | -  |
| cosec x | + | +  | П   | -  |
| sec x   | + | -  | _   | +  |
| cot x   | + | -  | +   | -  |

58 ગણિત : ધોરણ 11

### 3.3.2 ત્રિકોણમિતિય વિધેયોના પ્રદેશ અને વિસ્તાર

sine અને cosine વિધયોની વ્યાખ્યા પરથી કહી શકાય કે તે પ્રત્યેક વાસ્તવિક સંખ્યા માટે વ્યાખ્યાયિત છે. વળી, પ્રત્યેક વાસ્તવિક સંખ્યા માટે જોઈ શકાય કે,  $-1 \le \sin x \le 1$  અને  $-1 \le \cos x \le 1$ .

આથી,  $y = \sin x$  અને  $y = \cos x$ નો પ્રદેશ પ્રત્યેક વાસ્તિવિક સંખ્યાઓનો ગણ અને વિસ્તાર [-1, 1] અર્થાત્  $-1 \le y \le 1$  છે.

વળી,  $cosec\ x=\frac{1}{sin\ x}$ , હોવાથી  $y=cosec\ x$  નો પ્રદેશ  $\{\ x:x\in\mathbf{R}\ \text{અને}\ x\neq n\pi,\ n\in\mathbf{Z}\ \}$  અને વિસ્તાર  $\{y:y\in\mathbf{R},\ y\geq 1\ \text{અથવા}\ y\leq -1\ \}$ . આ જ રીતે,  $y=sec\ x$  નો પ્રદેશ  $\{x:x\in\mathbf{R}\ \text{અને}\ x\neq (2n+1)\frac{\pi}{2},\ n\in\mathbf{Z}\}$  અને વિસ્તાર  $\{y:y\in\mathbf{R},\ y\geq 1\ \text{અથવા}\ y\leq -1\ \}$  છે.  $y=tan\ x$  નો પ્રદેશ  $\{x:x\in\mathbf{R}\ \text{અને}\ x\neq (2n+1)\frac{\pi}{2},\ n\in\mathbf{Z}\}$  અને વિસ્તાર વાસ્તવિક સંખ્યાઓનો ગણ છે.  $y=cot\ x$  નો પ્રદેશ  $\{x:x\in\mathbf{R}\ \text{અને}\ x\neq n\pi,\ n\in\mathbf{Z}\ \}$  અને વિસ્તાર વાસ્તવિક સંખ્યાઓનો ગણ છે.  $y=cot\ x$  નો પ્રદેશ  $\{x:x\in\mathbf{R}\ \text{અને}\ x\neq n\pi,\ n\in\mathbf{Z}\ \}$  અને વિસ્તાર વાસ્તવિક સંખ્યાઓનો ગણ છે. (ખરેખર આ તમામ 'વિસ્તાર' એ વિસ્તાર સાબિત નથી થયા પરતુ તે આપેલ 'વિસ્તાર'ના ઉપગણ સાબિત થયા છે.) વળી, આપણે જોઈ શકીએ કે, પ્રથમ ચરણમાં જેમ x, 0 થી  $\frac{\pi}{2}$  માં વધે તેમ  $sin\ x$ , 0 થી 1 માં વધે, બીજા ચરણમાં જેમ x,  $\frac{\pi}{2}$  થી  $\pi$  માં વધે તેમ  $sin\ x$ , 1 થી 0 માં ઘટે. ત્રીજા ચરણમાં જેમ x,  $\pi$  થી  $\frac{3\pi}{2}$  માં વધે, તેમ  $sin\ x$ , 0 થી -1 માં ઘટે અને છેલ્લે, ચોથા ચરણમાં જેમ x,  $\frac{3\pi}{2}$  થી  $2\pi$  માં વધે તેમ  $sin\ x$ , -1 થી 0 માં વધે છે. આ જ રીતે, આપણે બાકીનાં ત્રિકોણમિતિય વિધેયો માટે પણ ચર્ચા કરી શકીએ. અલબત્ત, આપણે પાસે નીચેનું કોષ્ટક છે :

|       | પ્રથમ ચરણ      | દ્વિતીય ચરણ            | તૃતીય ચરણ         | ચતુર્થ ચરણ        |
|-------|----------------|------------------------|-------------------|-------------------|
| sin   | 0 થી 1 વધે છે. | 1 થી 0 ઘટે છે <b>.</b> | 0 થી -1 ઘટે છે.   | _1 થી 0 વધે છે.   |
| cos   | 1 થી 0 ઘટે છે. | 0 થી -1 ઘટે છે.        | -1 થી 0 વધે છે.   | 0 થી 1 વધે છે.    |
| tan   | 0 થી ∞ વધે છે. | – ∞ થી 0 વધે છે.       | 0 થી ∞ વધે છે.    | – ∞ થી 0 વધે છે.  |
| cot   | ∞ થી 0 ઘટે છે. | 0 થી - ∞ ઘટે છે.       | ∞ થી 0 ઘટે છે.    | 0 થી – ∞ ઘટે છે.  |
| sec   | 1 થી ∞ વધે છે. | – ∞ થી –1 વધે છે.      | _1 થી _ ∞ ઘટે છે. | ∞ થી 1 ઘટે છે.    |
| cosec | ∞ થી 1 ઘટે છે. | 1થી ∞ વધે છે.          | – ∞ થી –1 વધે છે. | _1 થી _ ∞ ઘટે છે. |

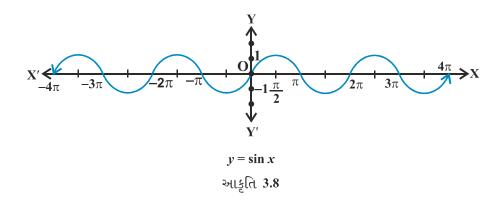
<u>નોંધ</u> : ઉપરના કોષ્ટકમાં  $0 < x < \frac{\pi}{2}$  માટે  $tan \ x, \ 0$  થી ∞ (અનંત) સુધી વધે છે. અર્થાત્ જેમ  $0 < x < \frac{\pi}{2}$  માટે

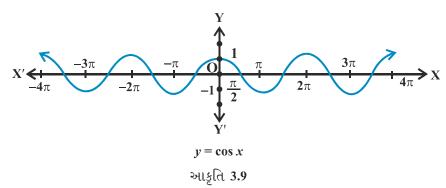
# Downloaded from https://www.studiestoday.com

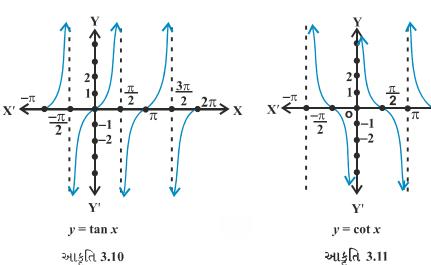
ત્રિકોણમિતિય વિધેયો 59

x વધે છે તેમ  $tan\ x$  નું મૂલ્ય વધે છે અને જેમ  $x,\ \frac{\pi}{2}$  ને અનુલક્ષે તેમ  $tan\ x$  નું મૂલ્ય કોઈક મોટી સ્વૈર સંખ્યા બને. આ જ રીતે, કહી શકાય કે  $cosec\ x$  નું મૂલ્ય ચોથા ચરણમાં-1 થી  $-\infty$  (ઋણ અનંત) સુધી ઘટે છે. અર્થાત્  $x\in\left(\frac{3\pi}{2},2\pi\right)$ માટે  $cosec\ x$  નું મૂલ્ય ઘટે છે અને જેમ  $x,\ 2\pi$  ને અનુલક્ષે તેમ  $cosec\ x$  નું મૂલ્ય મોટી સ્વૈર ઋણ સંખ્યા બને. સંકેત  $\infty$  અને  $-\infty$  એ માત્ર વિધેય અને ચલની ચોક્કસ પ્રકારની વર્તણુંક દર્શાવે છે.

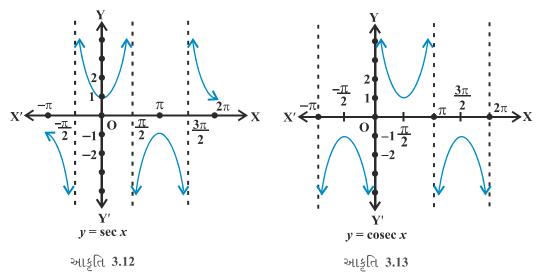
આપણે જોઈ ગયાં કે  $\sin x$  અને  $\cos x$  ની કિંમતોનું પુનરાવર્તન  $2\pi$  લંબાઈના અંતરાલમાં થાય છે. આથી,  $\csc x$  અને  $\sec x$  વિધેયોની કિંમતોનું પણ પુનરાવર્તન  $2\pi$  લંબાઈના અંતરાલમાં થાય.







60 ગણિત : ધોરણ 11



હવે, પછીના વિભાગમાં આપણે જોઈશું કે  $tan(\pi+x)=tan\ x$ . આથી,  $tan\ x$  માટે કિંમતોનું પુનરાવર્તન  $\pi$  લંબાઈના અંતરાલમાં થશે અને  $cot\ x$  એ  $tan\ x$ નું વ્યસ્ત હોવાથી તેની કિંમતોનું પુનરાવંતન પણ  $\pi$  લંબાઈના અંતરાલમાં થશે. આટલા જ્ઞાન અને ત્રિકોણમિતિય વિધેયોની વર્તણૂક પરથી આપણે આ વિધેયોના આલેખ દોરી શકીએ. આ વિધેયોના આલેખ ઉપર આપેલ છે.

ઉદાહરણ 6: જો x ત્રીજા ચરણમાં હોય અને  $\cos x = \frac{-3}{5}$ , તો બાકીનાં પાંચ ત્રિકોણમિતિય વિધેયોનાં મૂલ્યો શોધો.

ઉકેલ : અહીં, 
$$\cos x = \frac{-3}{5}$$
 . આથી  $\sec x = \frac{-5}{3}$ 

હવે, 
$$\sin^2 x + \cos^2 x = 1,$$

અર્થાત્ 
$$sin^2 x = 1 - cos^2 x$$

$$\therefore \qquad \sin^2 x = 1 - \frac{9}{25} = \frac{16}{25}$$

આથી, 
$$\sin x = \pm \frac{4}{5}$$

પરંતુ x ત્રીજા ચરણમાં છે. ત્યાં  $\sin x$  નું મૂલ્ય ૠણ હોય.

$$\tan x = \frac{\sin x}{\cos x} = \frac{4}{3} \text{ with } \cot x = \frac{\cos x}{\sin x} = \frac{3}{4}.$$

ઉદાહરણ 7: જો  $\cot x = \frac{-5}{12}$ , x બીજા ચરણમાં હોય, તો બાકીનાં પાંચ ત્રિકોણમિતિય વિધેયોનાં મૂલ્યો શોધો.

ઉકેલ: 
$$\cot x = \frac{-5}{12}$$
 હોવાથી,  $\tan x = -\frac{12}{5}$ 

# Downloaded from https://www.studiestoday.com

ત્રિકોણમિતિય વિધેયો 61

હવે, 
$$\sec^2 x = 1 + \tan^2 x$$
 
$$= 1 + \frac{144}{25} = \frac{169}{25}$$
 આથી,  $\sec x = \pm \frac{13}{5}$  પરંતુ  $x$  બીજા ચરણમાં છે. ત્યાં  $\sec x$  નું મૂલ્ય ઋણ હોય.

$$\sec x = -\frac{13}{5}$$
 અને તે પરથી,  $\cos x = -\frac{5}{13}$ 

$$\text{qol}, \quad \sin x = \tan x \cdot \cos x = \left(-\frac{12}{5}\right) \times \left(-\frac{5}{13}\right) = \frac{12}{13}$$

અને 
$$cosec \ x = \frac{1}{\sin x} = \frac{13}{12}$$

ઉદાહરણ  $8 : \sin \frac{31\pi}{3}$  નું મૂલ્ય શોધો.

ઉંકેલઃ આપણે જાણીએ છીએ કે  $\sin x$  ની કિંમતનું પુનરાવર્તન  $2\pi$  લંબાઈના અંતરાલ પછી થાય છે. આથી,

$$\sin \frac{31\pi}{3} = \sin \left(10\pi + \frac{\pi}{3}\right)$$
$$= \sin \frac{\pi}{3}$$
$$= \frac{\sqrt{3}}{2}$$

ઉદાહરણ 9 : cos (-1710°) નું મૂલ્ય શોધો.

**ઉકેલ** : આપણે જાણીએ છીએ કે  $\cos x$  ની કિંમતનું પુનરાવર્તન  $2\pi$  અથવા  $360^\circ$  લંબાઈના અંતરાલ પછી થાય છે. આથી,

$$cos (-1710^{\circ}) = cos (-1710^{\circ} + 5 \times 360^{\circ})$$
  
=  $cos (-1710^{\circ} + 1800^{\circ}) = cos (90^{\circ}) = 0$ 

સ્વાધ્યાય 3.2

પ્રશ્ન 1 થી 5 માં અન્ય પાંચ ત્રિકોણમિતિય વિધેયોનાં મૂલ્યો શોધો.

**1.** 
$$\cos x = -\frac{1}{2}$$
,  $x$  ત્રીજા ચરણમાં છે.

2. 
$$\sin x = \frac{3}{5}$$
,  $x$  બીજા ચરણમાં છે.

**3.** 
$$\cot x = \frac{3}{4}$$
,  $x$  ત્રીજા ચરણમાં છે.

**4.** 
$$\sec x = \frac{13}{5}$$
,  $x$  ચોથા ચરણમાં છે.

5. 
$$tan x = -\frac{5}{12}$$
,  $x$  બીજા ચરણમાં છે.

62 ગાણત : ધોરણ 11

પ્રશ્ન 6 થી 10 માં ત્રિકોણમિતિય વિધેયોનાં મૂલ્યો શોધો.

**6.** sin 765°

7. cosec (-1410°)

8.  $\tan \frac{19\pi}{3}$ 

9.  $sin\left(-\frac{11\pi}{3}\right)$ 

10. 
$$cot\left(-\frac{15\pi}{4}\right)$$

### 3.4 બે ખૂણાના સરવાળા અને બાદબાકી સ્વરૂપે ત્રિકોણમિતિય વિધેયો

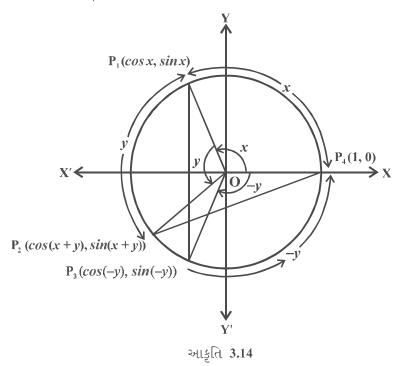
આ વિભાગમાં આપણે બે અંક(ખૂશા)ના સરવાળા કે બાદબાકી સ્વરૂપે ત્રિકોશમિતિય વિધેયોનાં સ્વરૂપો અને તેમના સંબંધી અભિવ્યક્તિઓ મેળવીશું. આ પ્રકારના પાયાનાં પરિશામોને ત્રિકોશમિતિય નિત્યસમ કહેવાય. આપશે જોયું કે,

- 1. sin(-x) = -sin x
- $2. \cos(-x) = \cos x$

આપણે હવે કેટલાંક વધુ પરિણામો સાબિત કરીએ.

3. cos(x + y) = cos x cos y - sin x sin y

ઊગમબિંદુ કેન્દ્ર હોય તેવું એકમ વર્તુળ લો. ધારો કે ખૂણો  $P_4OP_1=x$  અને ખૂણો  $P_1OP_2=y$  છે. આથી, ખૂણો  $P_4OP_2=x+y$  છે. અને ખૂણો  $P_4OP_3=-y$  છે. આથી,  $P_1$ ,  $P_2$ ,  $P_3$  અને  $P_4$  ના યામ  $P_1$   $(\cos x, \sin x)$ ,  $P_2$   $(\cos (x+y), \sin (x+y))$ ,  $P_3$   $(\cos (-y), \sin (-y))$  અને  $P_4$  (1,0) થાય. (આકૃતિ 3.14)



ત્રિકોણ  $P_1OP_3$  અને  $P_2OP_4$  નો વિચાર કરો, તે એકરૂપ છે.

(કેમ ?)

આથી,  $P_1P_3$  અને  $P_2P_4$  સમાન બને.

અંતર સૂત્ર પરથી, 
$$P_1P_3^2 = [\cos x - \cos (-y)]^2 + [\sin x - \sin (-y)]^2$$

$$= (\cos x - \cos y)^2 + (\sin x + \sin y)^2$$

$$= \cos^2 x + \cos^2 y - 2\cos x\cos y + \sin^2 x + \sin^2 y + 2\sin x\sin y$$

$$= 2 - 2(\cos x\cos y - \sin x\sin y)$$
(કેમ ?)
$$P_2P_4^2 = [1 - \cos (x + y)]^2 + [0 - \sin (x + y)]^2$$

$$= 1 - 2\cos (x + y) + \cos^2 (x + y) + \sin^2 (x + y)$$

$$= 2 - 2\cos (x + y)$$
હવે, 
$$P_1P_3 = P_2P_4$$
 હોવાથી, 
$$P_1P_3^2 = P_2P_4$$

4. cos(x-y) = cos x cos y + sin x sin y

નિત્યસમ 3 માં 
$$y$$
 ને બદલે  $-y$  લેતાં, 
$$\cos(x + (-y)) = \cos x \cos(-y) - \sin x \sin(-y)$$

$$\cos(x - y) = \cos x \cos y + \sin x \sin y.$$

$$5. \quad \cos\left(\frac{\pi}{2} - x\right) = \sin x$$

નિત્યસમ 4 માં, 
$$x$$
 ને બદલે  $\frac{\pi}{2}$  અને  $y$  ને બદલે  $x$  લેતાં, 
$$\cos\left(\frac{\pi}{2} - x\right) = \cos\frac{\pi}{2}\cos x + \sin\frac{\pi}{2}\sin x$$

6. 
$$\sin\left(\frac{\pi}{2} - x\right) = \cos x$$

નિત્યસમ 5 પરથી,

$$\sin\left(\frac{\pi}{2} - x\right) = \cos\left(\frac{\pi}{2} - \left(\frac{\pi}{2} - x\right)\right) = \cos x$$

7.  $\sin(x + y) = \sin x \cos y + \cos x \sin y$ 

આપણે જાણીએ છીએ કે,

$$sin (x + y) = cos \left(\frac{\pi}{2} - (x + y)\right) = cos \left(\left(\frac{\pi}{2} - x\right) - y\right)$$
$$= cos \left(\frac{\pi}{2} - x\right) cos y + sin \left(\frac{\pi}{2} - x\right) sin y$$
$$= sin x cos y + cos x sin y$$

of the original of the origin

8.  $\sin(x-y) = \sin x \cos y - \cos x \sin y$ 

નિત્યસમ 7 માં y ને બદલે -y મૂકતાં, આપણને આ પરિશામ મળે.

 $oldsymbol{9}$ . નિત્યસમ 3,4,7 અને 8 માં x અને y ની અનુકૂળ કિંમતો મૂકતાં, આપણને નીચેનાં પરિણામો મળે :

$$\cos\left(\frac{\pi}{2} + x\right) = -\sin x \qquad \qquad \sin\left(\frac{\pi}{2} + x\right) = \cos x$$

$$\cos(\pi - x) = -\cos x \qquad \qquad \sin(\pi - x) = \sin x$$

$$\cos(\pi + x) = -\cos x \qquad \qquad \sin(\pi + x) = -\sin x$$

$$\cos(2\pi - x) = \cos x \qquad \qquad \sin(2\pi - x) = -\sin x$$

 $\sin x$  અને  $\cos x$  નાં પરિશામોનો ઉપયોગ કરીને  $\tan x$ ,  $\cot x$ ,  $\sec x$  અને  $\csc x$  માટે પશ આ જ પ્રકારનાં પરિશામો મેળવી શકાય.

10. જો x, y અને (x + y) માંથી કોઈપણ  $\frac{\pi}{2}$  ના અયુગ્મ ગુણિત ના હોય, તો

$$tan (x + y) = \frac{tan x + tan y}{1 - tan x tan y}$$

x,y અને (x+y) માંથી કોઇપણ  $\frac{\pi}{2}$  ના અયુગ્મ ગુષ્ટિત ન હોવાથી  $\cos x,\cos y$  અને  $\cos (x+y)$  શૂન્યેતર હશે.

હવે, 
$$tan (x + y) = \frac{sin(x + y)}{cos(x + y)}$$
$$= \frac{sin x cos y + cos x sin y}{cos x cos y - sin x sin y}$$

અંશ તથા છેદને cos x cos y વડે ભાગતાં,

$$tan (x + y) = \frac{\frac{sin x cos y}{cos x cos y} + \frac{cos x sin y}{cos x cos y}}{\frac{cos x cos y}{cos x cos y} - \frac{sin x sin y}{cos x cos y}}$$
$$= \frac{tan x + tan y}{1 - tan x tan y}$$

11. 
$$tan(x-y) = \frac{tan x - tan y}{1 + tan x tan y}$$

નિત્યસમ 10 માં y ના બદલે -y લેતાં,

$$tan (x - y) = tan [x + (-y)]$$

$$= \frac{tan x + tan (-y)}{1 - tan x tan (-y)} = \frac{tan x - tan y}{1 + tan x tan y} + \hat{\theta}.$$

12. જો x,y અને (x+y) માંથી કોઇપણ  $\pi$  ના ગુણિત ના હોય, તો

$$cot(x+y) = \frac{\cot x \cot y - 1}{\cot y + \cot x}$$

x, y અને (x + y) માંથી કોઈપણ  $\pi$  ના ગુણિત ના હોવાથી,  $\sin x \sin y$  અને  $\sin (x + y)$  શૂન્યેતર છે.

eq, 
$$\cot(x+y) = \frac{\cos(x+y)}{\sin(x+y)} = \frac{\cos x \cos y - \sin x \sin y}{\sin x \cos y + \cos x \sin y}$$

અંશ તથા છેદને sin x sin y વડે ભાગતાં,

$$cot (x + y) = \frac{cot x cot y - 1}{cot y + cot x}$$

13. x, y અને (x - y) માંથી કોઇપણ  $\pi$  ના ગુણિત ના હોય, તો

$$cot (x - y) = \frac{cot x cot y + 1}{cot y - cot x}$$

નિત્યસમ 12 માં y બદલે -y લેતાં, આપણને આ પરિણામ મળે.

14. 
$$\cos 2x = \cos^2 x - \sin^2 x = 2 \cos^2 x - 1 = 1 - 2 \sin^2 x = \frac{1 - \tan^2 x}{1 + \tan^2 x}$$

આપણે જાણીએ છીએ કે,

$$cos(x + y) = cos x cos y - sin x sin y$$

y ને બદલે x મૂકતાં,

$$cos 2x = cos^2x - sin^2x$$
$$= cos^2x - (1 - cos^2x)$$
$$= 2 cos^2x - 1$$

અને, 
$$\cos 2x = \cos^2 x - \sin^2 x$$
$$= 1 - \sin^2 x - \sin^2 x$$
$$= 1 - 2\sin^2 x.$$

તથા, 
$$\cos 2x = \cos^2 x - \sin^2 x = \frac{\cos^2 x - \sin^2 x}{\cos^2 x + \sin^2 x}$$
 મળે.

અંશ તથા છેદને  $\cos^2 x$  વડે ભાગતાં,

આપણને, 
$$\cos 2x = \frac{1-\tan^2 x}{1+\tan^2 x}$$
 મળે.

15. 
$$\sin 2x = 2 \sin x \cos x = \frac{2 \tan x}{1 + \tan^2 x}$$
  $+ \hat{\theta}$ .

આપણે જાણીએ છીએ કે,

$$sin(x + y) = sin x cos y + cos x sin y$$

of માણત : ધોરણ 11

y ને બદલે x લેતાં આપણને,  $\sin 2x = 2 \sin x \cos x$  મળે.

$$\text{quil}, \qquad \sin 2x = \frac{2\sin x \cos x}{\cos^2 x + \sin^2 x}$$

અંશ તથા છેદને  $\cos^2 x$  વડે ભાગતાં,

$$\sin 2x = \frac{2\tan x}{1 + \tan^2 x}$$

16. 
$$\tan 2x = \frac{2\tan x}{1 - \tan^2 x}$$

આપણે જાણીએ છીએ કે,

$$tan (x + y) = \frac{tan x + tan y}{1 - tan x tan y}$$

$$y$$
 ને બદલે  $x$  મૂકતાં,  $tan 2x = \frac{2 tan x}{1 - tan^2 x}$  મળે.

### 17. $\sin 3x = 3 \sin x - 4 \sin^3 x$

અહી, 
$$\sin 3x = \sin (2x + x)$$
  
 $= \sin 2x \cos x + \cos 2x \sin x$   
 $= 2 \sin x \cos x \cos x + (1 - 2 \sin^2 x) \sin x$   
 $= 2 \sin x (1 - \sin^2 x) + \sin x - 2 \sin^3 x$   
 $= 2 \sin x - 2 \sin^3 x + \sin x - 2 \sin^3 x$   
 $= 3 \sin x - 4 \sin^3 x$ 

18. 
$$\cos 3x = 4 \cos^3 x - 3 \cos x$$

અહીં, 
$$\cos 3x = \cos (2x + x)$$
  

$$= \cos 2x \cos x - \sin 2x \sin x$$

$$= (2\cos^2 x - 1)\cos x - 2\sin x \cos x \sin x$$

$$= (2\cos^2 x - 1)\cos x - 2\cos x (1 - \cos^2 x)$$

$$= 2\cos^3 x - \cos x - 2\cos x + 2\cos^3 x$$

$$= 4\cos^3 x - 3\cos x.$$

19. 
$$\tan 3x = \frac{3\tan x - \tan^3 x}{1 - 3\tan^2 x}$$
.

અહીં, 
$$tan 3x = tan (2x + x)$$

$$= \frac{tan 2x + tan x}{1 - tan 2x tan x}$$

$$= \frac{\frac{2\tan x}{1 - \tan^2 x} + \tan x}{1 - \frac{2\tan x \cdot \tan x}{1 - \tan^2 x}}$$

$$=\frac{2\tan x + \tan x - \tan^3 x}{1 - \tan^2 x - 2\tan^2 x}$$

$$=\frac{3\tan x - \tan^3 x}{1 - 3\tan^2 x}$$

**20.** (i) 
$$\cos x + \cos y = 2\cos \frac{x+y}{2}\cos \frac{x-y}{2}$$

(ii) 
$$\cos x - \cos y = -2 \sin \frac{x+y}{2} \sin \frac{x-y}{2}$$

(iii) 
$$\sin x + \sin y = 2\sin \frac{x+y}{2}\cos \frac{x-y}{2}$$

(iv) 
$$\sin x - \sin y = 2\cos \frac{x+y}{2}\sin \frac{x-y}{2}$$

આપણે જાણીએ છીએ કે,

$$\cos(x+y) = \cos x \cos y - \sin x \sin y \qquad \dots (1)$$

અને 
$$cos(x-y) = cos x cos y + sin x sin y$$
 ... (2)

(1) અને (2) નો સરવાળો અને બાદબાકી કરતાં,

$$\cos(x+y) + \cos(x-y) = 2\cos x \cos y \qquad ... (3)$$

અને 
$$\cos(x+y) - \cos(x-y) = -2 \sin x \sin y$$
 ... (4) મળે.

$$qv(1), sin(x+y) = sin x cos y + cos x sin y ... (5)$$

અને 
$$\sin(x-y) = \sin x \cos y - \cos x \sin y \qquad ... (6)$$

(5) અને (6) નો સરવાળો અને બાદબાકી કરતાં,

$$\sin(x+y) + \sin(x-y) = 2\sin x \cos y \qquad \dots (7)$$

અને 
$$\sin(x+y) - \sin(x-y) = 2\cos x \sin y \qquad ... (8) મળે.$$

ધારો કે,  $x + y = \theta$  અને  $x - y = \phi$ . આથી,

$$x = \left(\frac{\theta + \phi}{2}\right)$$
 અને  $y = \left(\frac{\theta - \phi}{2}\right)$ 

x અને y નાં મૂલ્યો (3), (4), (7) અને (8) માં મૂકતાં,

$$\cos \theta + \cos \phi = 2 \cos \left(\frac{\theta + \phi}{2}\right) \cos \left(\frac{\theta - \phi}{2}\right)$$

$$\cos \theta - \cos \phi = -2 \sin \left(\frac{\theta + \phi}{2}\right) \sin \left(\frac{\theta - \phi}{2}\right)$$

$$\sin \theta + \sin \phi = 2 \sin \left(\frac{\theta + \phi}{2}\right) \cos \left(\frac{\theta - \phi}{2}\right)$$

$$\sin \theta - \sin \phi = 2 \cos \left(\frac{\theta + \phi}{2}\right) \sin \left(\frac{\theta - \phi}{2}\right)$$

વળી,  $\theta$  અને  $\phi$  કોઈ પણ વાસ્તવિક સંખ્યાઓ હોવાથી, આપણે  $\theta$  ના બદલે x અને  $\phi$  ના બદલે y મૂકી શકીએ. આથી,

$$\cos x + \cos y = 2 \cos \frac{x+y}{2} \cos \frac{x-y}{2}; \cos x - \cos y = -2 \sin \frac{x+y}{2} \sin \frac{x-y}{2},$$

$$\sin x + \sin y = 2 \sin \frac{x+y}{2} \cos \frac{x-y}{2}; \sin x - \sin y = 2 \cos \frac{x+y}{2} \sin \frac{x-y}{2}.$$

<del>નોંધ</del>ઃ 20 માં આપેલ નિત્યસમોના ભાગ સ્વરૂપે, આપણે નીચેનાં પરિણામો સાબિત કરી શકીએ ઃ

21. (i) 
$$2 \cos x \cos y = \cos (x + y) + \cos (x - y)$$

(ii) 
$$-2 \sin x \sin y = \cos (x + y) - \cos (x - y)$$

(iii) 
$$2 \sin x \cos y = \sin (x + y) + \sin (x - y)$$

(iv) 
$$2 \cos x \sin y = \sin (x + y) - \sin (x - y)$$
.

ઉદાહરણ 10: સાબિત કરો કે,

$$3\sin\frac{\pi}{6}\sec\frac{\pi}{3} - 4\sin\frac{5\pi}{6}\cot\frac{\pi}{4} = 1$$

ઉકેલ : અહીં,

St. Get. = 
$$3\sin\frac{\pi}{6}\sec\frac{\pi}{3} - 4\sin\frac{5\pi}{6}\cot\frac{\pi}{4}$$
  
=  $3 \times \frac{1}{2} \times 2 - 4\sin\left(\pi - \frac{\pi}{6}\right) \times 1$   
=  $3 - 4\sin\frac{\pi}{6}$   
=  $3 - 4 \times \frac{1}{2} = 1 = \%$ . Get.

ઉદાહરણ 11 : sin 15° નું મૂલ્ય શોધો.

$$=\frac{1}{\sqrt{2}} \times \frac{\sqrt{3}}{2} - \frac{1}{\sqrt{2}} \times \frac{1}{2} = \frac{\sqrt{3}-1}{2\sqrt{2}}.$$

ઉદાહરણ 12 :  $tan \frac{13\pi}{12}$  નું મૂલ્ય શોધો.

ઉકેલ : અહીં, 
$$\tan \frac{13\pi}{12} = \tan \left(\pi + \frac{\pi}{12}\right)$$

$$= \tan \frac{\pi}{12}$$

$$= \tan \left(\frac{\pi}{4} - \frac{\pi}{6}\right)$$

$$= \frac{\tan \frac{\pi}{4} - \tan \frac{\pi}{6}}{1 + \tan \frac{\pi}{4} \tan \frac{\pi}{6}}$$

$$= \frac{1 - \frac{1}{\sqrt{3}}}{1 + \frac{1}{\sqrt{5}}} = \frac{\sqrt{3} - 1}{\sqrt{3} + 1} = 2 - \sqrt{3}$$

ઉદાહરણ 13 : સાબિત કરો કે,

$$\frac{\sin(x+y)}{\sin(x-y)} = \frac{\tan x + \tan y}{\tan x - \tan y}.$$

ઉકેલ : અહીં, ડા. બા. 
$$=\frac{\sin(x+y)}{\sin(x-y)} = \frac{\sin x \cos y + \cos x \sin y}{\sin x \cos y - \cos x \sin y}$$

અંશ તથા છેદને  $\cos x \cos y$  વડે ભાગતાં,

$$\frac{\sin(x+y)}{\sin(x-y)} = \frac{\tan x + \tan y}{\tan x - \tan y}.$$

ઉદાહરણ 14: સાબિત કરો કે,

$$tan 3x tan 2x tan x = tan 3x - tan 2x - tan x$$

ઉકેલ : આપણે જાણીએ છીએ કે, 
$$3x = 2x + x$$

આથી, 
$$tan 3x = tan (2x + x)$$

$$\therefore \tan 3x = \frac{\tan 2x + \tan x}{1 - \tan 2x \tan x}$$

$$\therefore$$
 tan  $3x - \tan 3x \tan 2x \tan x = \tan 2x + \tan x$ 

$$\therefore$$
 tan  $3x - \tan 2x - \tan x = \tan 3x \tan 2x \tan x$ 

$$\therefore$$
 tan 3x tan 2x tan x = tan 3x - tan 2x - tan x.

ઉદાહરણ 15: સાબિત કરો કે,

$$cos\left(\frac{\pi}{4} + x\right) + cos\left(\frac{\pi}{4} - x\right) = \sqrt{2} cos x$$

ઉકેલ : નિત્યસમ 20(i)નો ઉપયોગ કરતાં,

$$gl. \ Gl. = cos\left(\frac{\pi}{4} + x\right) + cos\left(\frac{\pi}{4} - x\right)$$

$$=2\cos\left(\frac{\frac{\pi}{4}+x+\frac{\pi}{4}-x}{2}\right)\cos\left(\frac{\frac{\pi}{4}+x-\left(\frac{\pi}{4}-x\right)}{2}\right)$$

= 
$$2 \cos \frac{\pi}{4} \cos x = 2 \times \frac{1}{\sqrt{2}} \cos x = \sqrt{2} \cos x = \%$$
. બા.

ઉદાહરણ 16 : સાબિત કરો કે, 
$$\frac{\cos 7x + \cos 5x}{\sin 7x - \sin 5x} = \cot x$$

ઉકેલ: નિત્યસમ 20 (i) અને 20 (iv) નો ઉપયોગ કરતાં,

$$\text{st. GH.} = \frac{2\cos\frac{7x+5x}{2}\cos\frac{7x-5x}{2}}{2\cos\frac{7x+5x}{2}\sin\frac{7x-5x}{2}} = \frac{\cos x}{\sin x} = \cot x = \%. \text{ GH.}$$

ઉદાહરણ 17 : સાબિત કરો કે, 
$$\frac{\sin 5x - 2\sin 3x + \sin x}{\cos 5x - \cos x} = \tan x$$

ઉદ્દેવ: અહીં, ડા. બા. 
$$= \frac{\sin 5x - 2\sin 3x + \sin x}{\cos 5x - \cos x}$$
$$= \frac{\sin 5x + \sin x - 2\sin 3x}{\cos 5x - \cos x}$$
$$= \frac{2\sin 3x \cos 2x - 2\sin 3x}{-2\sin 3x \sin 2x}$$
$$= -\frac{\sin 3x (\cos 2x - 1)}{\sin 3x \sin 2x}$$
$$= \frac{1 - \cos 2x}{\sin 2x}$$
$$= \frac{2\sin^2 x}{2\sin x \cos x}$$

= tan x = %. બા.

### સ્વાધ્યાય 3.3

સાબિત કરો કે : (પ્રશ્ન 1 થી 4)

1. 
$$\sin^2 \frac{\pi}{6} + \cos^2 \frac{\pi}{3} - \tan^2 \frac{\pi}{4} = -\frac{1}{2}$$

2. 
$$2\sin^2\frac{\pi}{6} + \csc^2\frac{7\pi}{6}\cos^2\frac{\pi}{3} = \frac{3}{2}$$

3. 
$$\cot^2 \frac{\pi}{6} + \csc \frac{5\pi}{6} + 3\tan^2 \frac{\pi}{6} = 6$$

4. 
$$2\sin^2\frac{3\pi}{4} + 2\cos^2\frac{\pi}{4} + 2\sec^2\frac{\pi}{3} = 10$$

5. કિંમત શોધો :

સાબિત કરો કે :

6. 
$$cos\left(\frac{\pi}{4} - x\right)cos\left(\frac{\pi}{4} - y\right) - sin\left(\frac{\pi}{4} - x\right)sin\left(\frac{\pi}{4} - y\right) = sin(x + y)$$

7. 
$$\frac{\tan\left(\frac{\pi}{4} + x\right)}{\tan\left(\frac{\pi}{4} - x\right)} = \left(\frac{1 + \tan x}{1 - \tan x}\right)^2$$

8. 
$$\frac{\cos(\pi+x)\cos(-x)}{\sin(\pi-x)\cos\left(\frac{\pi}{2}+x\right)} = \cot^2 x$$

9. 
$$\cos\left(\frac{3\pi}{2} + x\right)\cos\left(2\pi + x\right)\left[\cot\left(\frac{3\pi}{2} - x\right) + \cot\left(2\pi + x\right)\right] = 1$$

10. 
$$\sin (n + 1)x \sin (n + 2)x + \cos (n + 1)x \cos (n + 2)x = \cos x$$

11. 
$$\cos\left(\frac{3\pi}{4} + x\right) - \cos\left(\frac{3\pi}{4} - x\right) = -\sqrt{2}\sin x$$

12. 
$$\sin^2 6x - \sin^2 4x = \sin 2x \sin 10x$$

13. 
$$\cos^2 2x - \cos^2 6x = \sin 4x \sin 8x$$

**14.** 
$$\sin 2x + 2\sin 4x + \sin 6x = 4\cos^2 x\sin 4x$$

**15.** 
$$\cot 4x (\sin 5x + \sin 3x) = \cot x (\sin 5x - \sin 3x)$$

$$16. \quad \frac{\cos 9x - \cos 5x}{\sin 17x - \sin 3x} = -\frac{\sin 2x}{\cos 10x}$$

17. 
$$\frac{\sin 5x + \sin 3x}{\cos 5x + \cos 3x} = \tan 4x$$

ગાંધાત : ધોરણ 11

18. 
$$\frac{\sin x - \sin y}{\cos x + \cos y} = \tan \frac{x - y}{2}$$

$$19. \quad \frac{\sin x + \sin 3x}{\cos x + \cos 3x} = \tan 2x$$

$$20. \quad \frac{\sin x - \sin 3x}{\sin^2 x - \cos^2 x} = 2\sin x$$

21. 
$$\frac{\cos 4x + \cos 3x + \cos 2x}{\sin 4x + \sin 3x + \sin 2x} = \cot 3x$$

**22.** 
$$\cot x \cot 2x - \cot 2x \cot 3x - \cot 3x \cot x = 1$$

23. 
$$\tan 4x = \frac{4\tan x (1 - \tan^2 x)}{1 - 6\tan^2 x + \tan^4 x}$$

**24.** 
$$\cos 4x = 1 - 8 \sin^2 x \cos^2 x$$

**25.** 
$$\cos 6x = 32 \cos^6 x - 48 \cos^4 x + 18 \cos^2 x - 1$$

#### 3.5 ત્રિકોણમિતિય સમીકરણો

ત્રિકોણમિતિય વિધેયોને સાંકળતી સમતાને ત્રિકોણમિતિય સમીકરણ કહેવાય. આ વિભાગમાં આવા સમીકરણના ઉકેલ શોધીશું. આપણે શીખી ગયાં છીએ કે,  $\sin x$  અને  $\cos x$  ની કિંમતોનું પુનરાવર્તન  $2\pi$  લંબાઈના અંતરાલમાં થાય છે અને  $\tan x$  ની કિંમતોનું પુનરાવર્તન  $\pi$  લંબાઈના અંતરાલમાં થાય છે. જો ત્રિકોણમિતિય સમીકરણનો ઉકેલ  $0 \le x < 2\pi$  માં હોય તો તેને મુખ્ય ઉકેલ (principal solution) કહેવાય છે. ત્રિકોણમિતિય સમીકરણોના તમામ ઉકેલને સમાવતી પૂર્ણાં  $\pi$  વાળી અભિવ્યક્તિને ત્રિકોણમિતિય સમીકરણનો વ્યાપક ઉકેલ કહેવાય. પૂર્ણાં કસંખ્યાઓના ગણને ' $\mathbf{Z}$ ' વડે દર્શાવીશું.

ત્રિકોણમિતિય સમીકરણનો ઉકેલ મેળવવા નીચેનાં ઉદાહરણો મદદરૂપ થશે :

**ઉદાહરણ 18** : સમીકરણ  $\sin x = \frac{\sqrt{3}}{2}$  ના મુખ્ય ઉકેલ શોધો.

ઉકેલ : આપણે જાણીએ છીએ કે, 
$$\sin\frac{\pi}{3} = \frac{\sqrt{3}}{2}$$
 અને  $\sin\frac{2\pi}{3} = \sin\left(\pi - \frac{\pi}{3}\right) = \sin\frac{\pi}{3} = \frac{\sqrt{3}}{2}$ .

આથી, મુખ્ય ઉકેલ, 
$$x = \frac{\pi}{3}$$
 અને  $\frac{2\pi}{3}$  છે.

**ઉદાહરણ** 19 : સમીકરણ  $tan x = -\frac{1}{\sqrt{3}}$  ના મુખ્ય ઉકેલ શોધો.

ઉકેલ : આપણે જાણીએ છીએ કે, 
$$tan\frac{\pi}{6} = \frac{1}{\sqrt{3}}$$
. આથી,  $tan\left(\pi - \frac{\pi}{6}\right) = -tan\frac{\pi}{6} = -\frac{1}{\sqrt{3}}$ 

અને, 
$$tan\left(2\pi - \frac{\pi}{6}\right) = -tan\frac{\pi}{6} = -\frac{1}{\sqrt{3}}$$

આમ, 
$$\tan \frac{5\pi}{6} = \tan \frac{11\pi}{6} = -\frac{1}{\sqrt{3}}$$
.

આથી, મુખ્ય ઉકેલ, 
$$\frac{5\pi}{6}$$
 અને  $\frac{11\pi}{6}$  છે.

હવે આપશે ત્રિકોણમિતિય સમીકરણોના વ્યાપક ઉકેલ શોધીશું.

આપણે આગળ જોઈ ગયા કે,

જો 
$$sin x = 0$$
, તો  $x = n\pi$ ,  $n \in \mathbb{Z}$  અને જો  $cos x = 0$ , તો  $x = (2n+1)\frac{\pi}{2}$ ,  $n \in \mathbb{Z}$  મળે છે.

હવે આપશે નીચેનાં પરિશામો સાબિત કરીશું :

પ્રમેય 1 કોઈ પણ વાસ્તવિક સંખ્યાઓ x અને y માટે,

$$\sin x = \sin y$$
 dì  $n \in \mathbb{Z}$  માટે  $x = n\pi + (-1)^n y$ .

સાબિતી : જો,  $\sin x = \sin y$ , તો

$$\sin x - \sin y = 0$$
 અથવા  $2\cos \frac{x+y}{2}\sin \frac{x-y}{2} = 0$ 

આથી, 
$$\cos \frac{x+y}{2} = 0$$
 અથવા  $\sin \frac{x-y}{2} = 0$ 

માટે, 
$$\frac{x+y}{2} = (2n+1)\frac{\pi}{2}$$
 અથવા  $\frac{x-y}{2} = n\pi, \ n \in \mathbb{Z}$ 

$$\therefore x = (2n+1) \pi - y$$
 અથવા  $x = 2n\pi + y$ ,  $n \in \mathbb{Z}$ 

$$x = (2n+1)\pi + (-1)^{2n+1} y$$
 અથવા  $x = 2n\pi + (-1)^{2n}y, n \in \mathbb{Z}$ .

આ બંને પરિણામો સંયુકત રીતે એકત્રિત કરતાં,

$$n \in \mathbb{Z}$$
 માટે  $x = n\pi + (-1)^n y$  તરીકે લખી શકાય.

પ્રમેય 2 : કોઈ પણ વાસ્તિવિક સંખ્યાઓ x અને y માટે, જો  $\cos x = \cos y$  તો  $x = 2n\pi \pm y, \ n \in {\bf Z}$ .

સાબિતી: જો  $\cos x = \cos y$ , તો  $\cos x - \cos y = 0$ ,

$$\therefore -2 \sin \frac{x+y}{2} \sin \frac{x-y}{2} = 0$$

આમ, 
$$\sin \frac{x+y}{2} = 0$$
 અથવા  $\sin \frac{x-y}{2} = 0$ 

માટે 
$$\frac{x+y}{2}=n\pi$$
 અથવા  $\frac{x-y}{2}=n\pi,\ n\in {\bf Z}$ 

$$x = 2n\pi - y$$
 અથવા  $x = 2n\pi + y$ ,  $n \in \mathbb{Z}$ 

આમ, 
$$x = 2n\pi \pm y, n \in \mathbb{Z}$$

**પ્રમેય 3** : સાબિત કરો કે જો 
$$x$$
 અને  $y$ ,  $\frac{\pi}{2}$  ના અયુગ્મ ગુણિત ના હોય,તો

$$tan x = tan y$$
 હોય, તો  $x = n\pi + y$ ,  $n \in \mathbb{Z}$ 

સાબિતી: જો 
$$tan x = tan y$$
 હોય, તો  $tan x - tan y = 0$ 

અથવા 
$$\frac{\sin x \cos y - \cos x \sin y}{\cos x \cos y} = 0$$

$$\therefore \sin(x-y)=0$$
 (sh ?)

$$\therefore x - y = n\pi$$
, અર્થાત્  $x = n\pi + y, n \in \mathbb{Z}$ .

ઉદાહરણ 20 : 
$$\sin x = -\frac{\sqrt{3}}{2}$$
 નો ઉકેલ મેળવો.

ઉકેલ : અહીં, 
$$\sin x = -\frac{\sqrt{3}}{2} = -\sin\frac{\pi}{3} = \sin\left(\pi + \frac{\pi}{3}\right) = \sin\frac{4\pi}{3}$$

આથી, 
$$\sin x = \sin \frac{4\pi}{3}$$
 પરથી,

$$x = n\pi + (-1)^n \frac{4\pi}{3}, \ n \in \mathbb{Z}.$$

ાંધ 
$$\sin x = -\frac{\sqrt{3}}{2}$$
 માટે  $\frac{4\pi}{3}$  એ  $x$  ની એક કિંમત છે.  $\sin x = -\frac{\sqrt{3}}{2}$  થાય તેવી બીજી કોઇક કિંમત પણ લઈ શકાય. આથી, મળતા ઉકેલ એક જ હશે પરંતુ દેખીતી રીતે ભિન્ન લાગી શકે.

ઉદાહરણ 21 : 
$$\cos x = \frac{1}{2}$$
 ઉકેલો.

ઉકેલ : અહીં, 
$$\cos x = \frac{1}{2} = \cos \frac{\pi}{3}$$

$$\therefore x = 2n\pi \pm \frac{\pi}{3}, n \in \mathbf{Z}.$$

ઉદાહરણ 22 : 
$$tan 2x = -cot\left(x + \frac{\pi}{3}\right)$$
 ઉકેલો.

ઉકેલ: અહીં, 
$$tan 2x = -cot\left(x + \frac{\pi}{3}\right) = tan\left(\frac{\pi}{2} + x + \frac{\pi}{3}\right)$$

અથવા 
$$\tan 2x = \tan\left(x + \frac{5\pi}{6}\right)$$

$$\therefore 2x = n\pi + x + \frac{5\pi}{6}, \ n \in \mathbf{Z}.$$

$$x = n\pi + \frac{5\pi}{6} , \ n \in \mathbf{Z}.$$

# Downloaded from https:// www.studiestoday.com

ત્રિકોણમિતિય વિધેયો 75

ઉદાહરણ 23 :  $\sin 2x - \sin 4x + \sin 6x = 0$  ઉકેલો.

ઉકેલ : આપેલ સમીકરણ  $\sin 6x + \sin 2x - \sin 4x = 0$  તરીકે પણ લખી શકાય.

અથવા  $2\sin 4x \cos 2x - \sin 4x = 0$ 

અર્થાત્  $\sin 4x(2\cos 2x - 1) = 0$ 

$$\therefore \quad \sin 4x = 0 \quad \text{we all} \quad \cos 2x = \frac{1}{2}$$

$$\therefore$$
 4  $x = n \pi$  અથવા  $2x = 2n\pi \pm \frac{\pi}{3}, n \in \mathbb{Z}$ 

$$x = \frac{n\pi}{4}$$
 અથવા  $x = n\pi \pm \frac{\pi}{6}, n \in \mathbb{Z}.$ 

ઉદાહરણ 24 :  $2 \cos^2 x + 3 \sin x = 0$  ઉકેલો.

ઉકેલ : આપેલ સમીકરણ  $2(1-\sin^2 x) + 3\sin x = 0$  તરીકે પણ લખી શકાય.

$$\therefore \qquad 2\sin^2 x - 3\sin x - 2 = 0$$

એટલે કે 
$$(2\sin x + 1)(\sin x - 2) = 0$$

આમ, 
$$\sin x = -\frac{1}{2} \quad \text{અથવા} \quad \sin x = 2$$

પરંતુ, 
$$\sin x = 2$$
 શક્ય નથી.

$$\sin x = -\frac{1}{2} = \sin \frac{7\pi}{6} \, .$$

આથી, ઉકેલ 
$$x = n\pi + (-1)^n \frac{7\pi}{6}, n \in \mathbb{Z}.$$

સ્વાધ્યાય 3.4

આપેલ સમીકરણના મુખ્ય અને વ્યાપક ઉકેલ શોધો : (પ્રશ્ન 1 થી 4)

$$1. tanx = \sqrt{3}$$

2. 
$$sec x = 2$$

3. 
$$\cot x = -\sqrt{3}$$

**4.** 
$$cosec \ x = -2$$

આપેલ સમીકરણના વ્યાપક ઉકેલ શોધો :

5. 
$$\cos 4 x = \cos 2x$$

**6.** 
$$\cos 3x + \cos x - \cos 2x = 0$$

(કેમ ?)

7. 
$$\sin 2x + \cos x = 0$$

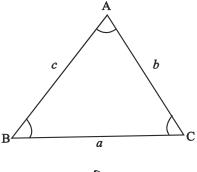
8. 
$$sec^2 2x = 1 - tan 2x$$

9. 
$$\sin x + \sin 3x + \sin 5x = 0$$

ગિષ્ટાત : ધોરણ 11

### 3.6 Sine અને Cosine સૂત્રોની સાબિતી અને સરળ ઉપયોગ

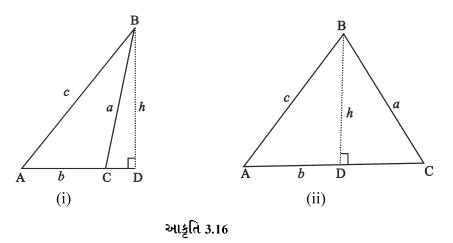
ધારો કે ABC એક ત્રિકોણ છે. ખૂશો A, એટલે કે બાજુઓ AB અને AC વચ્ચેનો ખૂશો  $0^\circ$  અને  $180^\circ$  વચ્ચે આવેલો છે એમ આપણે માનીશું. ખૂશાઓ B અને C આ જ પ્રમાણે વ્યાખ્યાયિત છે. શિરોબિંદુઓ C, A અને B ની સામેની બાજુએ આવેલી બાજુઓ AB, BC અને CA ને અનુક્રમે c, a અને b વડે દર્શાવીશું. (જુઓ આકૃતિ 3.15.) પ્રમેય 4: (Sine સૂત્ર) કોઈ પણ ત્રિકોણની બાજુઓ, તેમની સામે આવેલ ખૂશાના Sine ના પ્રમાણમાં છે, એટલે કે ત્રિકોણ ABC માં



આકૃતિ 3.15

$$\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$$

સાબિતી : ધારો કે 3.16 (i) અને (ii) માં દર્શાવેલ ત્રિકોણમાંથી કોઈ એક ત્રિકોણ ABC લો.



શિરોબિંદુ B થી બાજુ AC ને D માં મળે તેવી રીતે વેધ h દોર્યો છે. [(i) માં વેધ D માં મળે તે રીતે AC ને લંબાવી છે.] આકૃતિ 3.16(i) ના કાટકોણ ત્રિકોણ ABD પરથી,

$$\sin A = \frac{h}{c}$$
 એટલે કે  $h = c \sin A$  (1)

અને 
$$sin(180^{\circ} - C) = \frac{h}{a}$$
 એટલે કે  $h = a sin C$  (2)

(1) અને (2) પરથી,

$$c \sin A = a \sin C$$
, i.e.,  $\frac{\sin A}{a} = \frac{\sin C}{c}$  (3)

તે જ પ્રમાશે

$$\frac{\sin A}{a} = \frac{\sin B}{b} \tag{4}$$

(3) અને (4) પરથી

$$\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$$

# Downloaded from https:// www.studiestoday.com

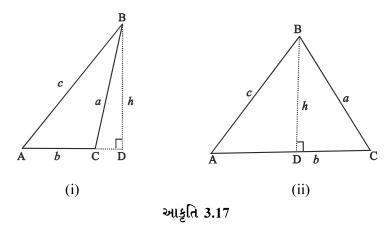
ત્રિકોણમિતિય વિધેયો

આકૃતિ 3.16 (ii) ના ત્રિકોણ ABC માટે તે જ પ્રમાણે સમીકરણ (3) અને (4) મળે.

પ્રમેય 5: (Cosine સૂત્ર) જો A, B અને C ત્રિકોશના ખૂશાઓ હોય અને a,b અને c એ અનુક્રમે ખૂશાઓ A, B અને C ની સામેની બાજુઓની લંબાઈ હોય, તો

$$a^{2} = b^{2} + c^{2} - 2bc \ cosA$$
  
 $b^{2} = c^{2} + a^{2} - 2ca \ cosB$   
 $c^{2} = a^{2} + b^{2} - 2ab \ cosC$ 

સાબિતી : ધારો કે ત્રિકોણ ABC આકૃતિ 3.17 (i) અથવા (ii) માં આપ્યા પ્રમાણે છે.



આકૃતિ 3.17 (ii) ના સંદર્ભમાં,

BC<sup>2</sup> = BD<sup>2</sup> + DC<sup>2</sup> = BD<sup>2</sup> + (AC – AD)<sup>2</sup>   
= BD<sup>2</sup> + AD<sup>2</sup> + AC<sup>2</sup> – 2AC·AD   
= AB<sup>2</sup> + AC<sup>2</sup> – 2AC·AB 
$$cos$$
 A   
અથવા  $a^2 = b^2 + c^2 - 2bc cos$  A

તે જ પ્રમાશે આપશે,

$$b^2 = c^2 + a^2 - 2 ca cosB$$
  
અને  $c^2 = a^2 + b^2 - 2 ab cosC$  મેળવી શકીએ.

આ સમીકરણો આકૃતિ 3.17 (i) માટે પણ મેળવી શકાય. ત્યાં, C ગુરુકોણ છે.

જ્યારે ખૂણાઓ શોધવાના હોય ત્યારે cosine સૂત્રનું નીચે પ્રમાણેનું અનુકૂળ સ્વરૂપ લઈ શકાય :

$$cos A = \frac{b^{2} + c^{2} - a^{2}}{2bc}$$
 $cos B = \frac{c^{2} + a^{2} - b^{2}}{2ac}$ 
 $cos C = \frac{a^{2} + b^{2} - c^{2}}{2ab}$ 

ઉદાહરણ 25 : ત્રિકોણ ABC માં સાબિત કરો કે,

$$tan \frac{B-C}{2} = \frac{b-c}{b+c}cot \frac{A}{2}$$

$$tan \frac{C-A}{2} = \frac{c-a}{c+a}cot \frac{B}{2}$$

$$tan \frac{A-B}{2} = \frac{a-b}{a+b}cot \frac{C}{2}$$

સાબિતી: sine સૂત્ર,

આથી, 
$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = k \quad \text{(ધારો)}$$
 આથી, 
$$\frac{b-c}{b+c} = \frac{k \left(\sin B - \sin C\right)}{k \left(\sin B + \sin C\right)}$$
 
$$= \frac{2\cos \frac{B+C}{2}\sin \frac{B-C}{2}}{2\sin \frac{B+C}{2}\cos \frac{B-C}{2}}$$
 
$$= \cot \frac{\left(B+C\right)}{2}\tan \frac{\left(B-C\right)}{2}$$
 
$$= \cot \left(\frac{\pi}{2} - \frac{A}{2}\right)\tan \left(\frac{B-C}{2}\right)$$
 
$$= \frac{\tan \frac{B-C}{2}}{\cot \frac{A}{2}}$$
 માટે 
$$\tan \frac{B-C}{2} = \frac{b-c}{b+c}\cot \frac{A}{2}$$

તે જ પ્રમાણે બીજાં પરિણામો સાબિત કરી શકાય. આ પરિણામો *Napier* ની સમતા તરીકે પ્રખ્યાત છે.

ઉદાહરણ 26 : કોઈપણ ત્રિકોણ ABC માટે સાબિત કરો કે,

$$a \sin (B-C) + b \sin (C-A) + c \sin (A-B) = 0$$

ઉકેલ: અહીં,

$$a \sin (B - C) = a [\sin B \cos C - \cos B \sin C]$$
 (1)

હવે, 
$$\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c} = k \text{ (ધારો કે)}$$

માટે, 
$$\sin A = ak$$
,  $\sin B = bk$ ,  $\sin C = ck$ 

sin B અને sin C નું મૂલ્ય (1) માં મૂકતાં અને cosine સૂત્રનો ઉપયોગ કરતાં,

$$asin (B - C) = a \left[ bk \left( \frac{a^2 + b^2 - c^2}{2ab} \right) - ck \left( \frac{c^2 + a^2 - b^2}{2ac} \right) \right]$$
$$= \frac{k}{2} \left( a^2 + b^2 - c^2 - c^2 - a^2 + b^2 \right)$$
$$= k \left( b^2 - c^2 \right)$$

તે જ પ્રમાણે  $b \sin (C - A) = k (c^2 - a^2)$ 

અને 
$$c \sin (A - B) = k (a^2 - b^2)$$

આથી ડા.બા. = 
$$k(b^2 - c^2 + c^2 - a^2 + a^2 - b^2) = 0$$
 = જ.બા.

ઉદાહરણ 27: h ઊંચાઇના શિરોલંબ ટાવર PQ ની ટોચના બિંદુ P નો A બિંદુએથી ઉત્સેધકોણ 45° અને B બિંદુથી ઉત્સેધકોણ 60° છે. જ્યાં B નું A થી અંતર AB=d છે. AB એ AQ સાથે 30° નો ખૂણો બનાવે છે. સાબિત કરો કે  $d=h(\sqrt{3}-1)$ .

ઉંકેલ : આકૃતા 3.18 પરથી,  $\angle PAQ = 45^{\circ}$ ,  $\angle BAQ = 30^{\circ}$ ,  $\angle PBH = 60^{\circ}$ 

સ્પષ્ટ છે કે 
$$\angle APQ = 45^{\circ}, \angle BPH = 30^{\circ}$$
 આથી,  $\angle APB = 15^{\circ}$ 

વળી, 
$$\angle PAB = 15^{\circ}$$
 પરથી  $\angle ABP = 150^{\circ}$ 

ત્રિકોણ APQ પરથી, AP<sup>2</sup> = 
$$h^2 + h^2 = 2h^2$$

અથવા  $AP = \sqrt{2}h$ 

 $\Delta$  ABP માં sine સૂત્રનો ઉપયોગ કરતાં,

$$\frac{AB}{\sin 15^{\circ}} = \frac{AP}{\sin 150^{\circ}}$$

$$\therefore \frac{d}{\sin 15^{\circ}} = \frac{\sqrt{2}h}{\sin 150^{\circ}}$$

એટલે કે, 
$$d = \frac{\sqrt{2}h\sin 15^{\circ}}{\sin 30^{\circ}}$$
$$= h(\sqrt{3} - 1) \tag{કેમ ?}$$

તું કુમ ?)

ઉદાહરણ 28 : ત્રિકોણીય પ્લોટ ABC ની બાજુ AC ના મધ્યબિંદુ M પર દીવાનો થાંભલો આવેલ છે. પ્લોટની બાજુઓ BC=7 મીટર, CA=8 મીટર અને AB=9 મીટર છે. આ થાંભલો બિંદુ B આગળ  $15^\circ$  નો ખૂણો આંતરે છે. દીવાના થાંભલાની ઊંચાઈ નક્કી કરો.

# Downloaded from https:// www.studiestoday.com

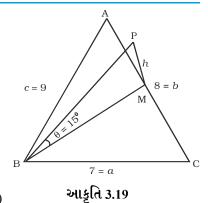
રાશિત : ધોરણ 11

ઉકેલ : આકૃતિ 3.19 પરથી AB = 9 મી = c, BC = 7 મી = a અને AC = 8 મી = b.

AC નું મધ્યબિંદુ M છે ત્યાં h (ધારો કે) ઊંચાઈનો દિવાનો થાંભલો MP આવેલો છે. ફરી, ધારો કે દીવાનો થાંભલો B બિંદુએ  $15^\circ$  નો ખૂણો આંતરે છે.

ΔABC માં cosine સૂત્રનો ઉપયોગ કરતાં,

$$cosC = \frac{a^2 + b^2 - c^2}{2ab} = \frac{49 + 64 - 81}{2 \times 7 \times 8} = \frac{2}{7}$$
 (1)



તે જ પ્રમાણે  $\Delta$  BMC માટે cosine સૂત્રનો ઉપયોગ કરતાં,

$$BM^2 = BC^2 + CM^2 - 2 BC \times CM \cos C.$$

અહીં AC નું મધ્યબિંદુ M હોવાથી  $CM = \frac{1}{2}CA = 4$ 

માટે (1) નો ઉપયોગ કરતાં,

$$BM^2 = 49 + 16 - 2 \times 7 \times 4 \times \frac{2}{7} = 49$$

$$\therefore$$
 BM = 7

આમ, M બિંદુએ કાટખૂશાવાળા  $\Delta BMP$  પરથી,

$$tan \ \theta = \frac{PM}{BM} = \frac{h}{7}$$

અથવા 
$$\frac{h}{7} = tan \, 15^\circ = 2 - \sqrt{3}$$
 (કેમ ?)

અથવા  $h = 7(2 - \sqrt{3})m$ .

### સ્વાધ્યાય 3.5

કોઈપણ ત્રિકોણ ABC માટે જો  $a=18,\,b=24,\,c=30,\,$  તો નીચેનાં મૂલ્ય શોધો : (પ્રશ્ન 1 તથા 2)

- 1. cos A, cos B, cos C
- 2. sin A, sin B, sin C

કોઈપણ ત્રિકોણ ABC માટે સાબિત કરો, (પ્રશ્ન 3 થી 13)

3. 
$$\frac{a+b}{c} = \frac{\cos\left(\frac{A-B}{2}\right)}{\sin\frac{C}{2}}$$

# Downloaded from https:// www.studiestoday.com

ત્રિકોણમિતિય વિધેયો 81

4. 
$$\frac{a-b}{c} = \frac{\sin\left(\frac{A-B}{2}\right)}{\cos\frac{C}{2}}$$

5. 
$$sin \frac{B-C}{2} = \frac{b-c}{a} cos \frac{A}{2}$$

- **6.**  $a (b \cos C c \cos B) = b^2 c^2$
- 7.  $a (\cos C \cos B) = 2 (b c) \cos^2 \frac{A}{2}$

8. 
$$\frac{\sin (B-C)}{\sin (B+C)} = \frac{b^2 - c^2}{a^2}$$

9. 
$$(b+c)\cos\frac{B+C}{2} = a\cos\frac{B-C}{2}$$

10.  $a \cos A + b \cos B + c \cos C = 2a \sin B \sin C$ 

11. 
$$\frac{\cos A}{a} + \frac{\cos B}{b} + \frac{\cos C}{c} = \frac{a^2 + b^2 + c^2}{2abc}$$

12. 
$$(b^2-c^2) \cot A + (c^2-a^2) \cot B + (a^2-b^2) \cot C = 0$$

13. 
$$\frac{b^2 - c^2}{a^2} \sin 2A + \frac{c^2 - a^2}{b^2} \sin 2B + \frac{a^2 - b^2}{c^2} \sin 2C = 0$$

- 14. એક ટેકરી પર શિરોલંબ દિશામાં એક વૃક્ષ ઊભું છે. તે ક્ષિતિજ સાથે 15° નો ખૂર્ણો બનાવે છે. ટેકરી પરના વૃક્ષના તળિયેથી 35 મી નીચે આવેલા મેદાનના એક બિંદુએથી જોતાં વૃક્ષની ટોચનો ઉત્સેધકોણ 60° માલૂમ પડે છે. વૃક્ષની ઊંચાઈ શોધો.
- 15. બે જહાજ એક સાથે બંદર છોડે છે. એક જહાજ 24 કિમી/કલાકની ઝડપે ઈશાન દિશામાં અને બીજું 32 કિમી/કલાકની ઝડપે દક્ષિણથી પૂર્વ દિશા સાથે 75° ના ખૂણે જાય છે. ત્રણ કલાક પછી બંને જહાજ વચ્ચેનું અંતર શોધો.
- 16. નદીની એક જ બાજુએ બે વૃક્ષ A અને B આવેલાં છે. નદીમાંના બિંદુ C થી વૃક્ષ A અને વૃક્ષ Bનાં અંતર અનુક્રમે  $250 \text{ મીટર અને } 300 \text{ મીટર છે. જો ખૂણો C એ } 45^\circ નો હોય તો તે બે વૃક્ષ વચ્ચેનું અંતર શોધો. (<math>\sqrt{2}=1.44$ )

### પ્રકીર્ણ ઉદાહરણો

ઉદાહરણ 29 : જો x અને y બંને બીજા ચરણમાં હોય અને  $\sin x = \frac{3}{5}$ ,  $\cos y = -\frac{12}{13}$ , તો  $\sin (x+y)$  નું મૂલ્ય શોધો.

ઉકેલ : આપણે જાણીએ છીએ કે,

$$\sin(x+y) = \sin x \cos y + \cos x \sin y \qquad \dots (1)$$
eq., 
$$\cos^2 x = 1 - \sin^2 x = 1 - \frac{9}{25} = \frac{16}{25}$$

$$\therefore \cos x = \pm \frac{4}{5}.$$

વળી, x બીજા ચરણમાં હોવાથી,  $\cos x$  ઋણ થશે.

આથી, 
$$\cos x = -\frac{4}{5}$$

$$\dot{\text{eq}}, \qquad \sin^2 y = 1 - \cos^2 y = 1 - \frac{144}{169} = \frac{25}{169}$$

તેથી, 
$$\sin y = \pm \frac{5}{13}.$$

પરંતુ y બીજા ચરણમાં હોવાથી  $\sin y$  ધન હશે. આથી  $\sin y = \frac{5}{13}$  .

(1) માં  $\sin x$ ,  $\sin y$ ,  $\cos x$  અને  $\cos y$  નાં મૂલ્યો મૂકતાં,

$$sin(x+y) = \frac{3}{5} \times \left(-\frac{12}{13}\right) + \left(-\frac{4}{5}\right) \times \frac{5}{13} = -\frac{36}{65} - \frac{20}{65} = -\frac{56}{65}.$$

<mark>ઉદાહરણ 30</mark> : સાબિત કરો કે,

$$\cos 2x \cos \frac{x}{2} - \cos 3x \cos \frac{9x}{2} = \sin 5x \sin \frac{5x}{2}.$$

Geq: Set. Set. 
$$= \frac{1}{2} \left[ 2\cos 2x \cos \frac{x}{2} - 2\cos \frac{9x}{2} \cos 3x \right]$$

$$= \frac{1}{2} \left[ \cos \left( 2x + \frac{x}{2} \right) + \cos \left( 2x - \frac{x}{2} \right) - \cos \left( \frac{9x}{2} + 3x \right) - \cos \left( \frac{9x}{2} - 3x \right) \right]$$

$$= \frac{1}{2} \left[ \cos \frac{5x}{2} + \cos \frac{3x}{2} - \cos \frac{15x}{2} - \cos \frac{3x}{2} \right]$$

$$= \frac{1}{2} \left[ \cos \frac{5x}{2} - \cos \frac{15x}{2} \right]$$

$$= \frac{1}{2} \left[ -2\sin\left\{\frac{\frac{5x}{2} + \frac{15x}{2}}{2}\right\} \sin\left\{\frac{\frac{5x}{2} - \frac{15x}{2}}{2}\right\} \right]$$

$$= -\sin 5x \sin\left(-\frac{5x}{2}\right)$$

$$= \sin 5x \sin\frac{5x}{2} = \%. \text{ GeV.}$$

ઉદાહરણ 31 :  $tan \frac{\pi}{8}$  ની કિંમત શોધો.

ઉકેલ : ધારો કે, 
$$x = \frac{\pi}{8}$$
 . આથી  $2x = \frac{\pi}{4}$  .

હવે, 
$$\tan 2x = \frac{2\tan x}{1 - \tan^2 x}$$

$$\therefore \tan \frac{\pi}{4} = \frac{2\tan \frac{\pi}{8}}{1 - \tan^2 \frac{\pi}{8}}$$

ધારો કે, 
$$y = tan \frac{\pi}{8}$$
. તેથી  $1 = \frac{2y}{1 - y^2}$ 

અથવા 
$$y^2 + 2y - 1 = 0$$

$$\text{will, } y = \frac{-2 \pm 2\sqrt{2}}{2} = -1 \pm \sqrt{2}$$

પરંતુ  $\frac{\pi}{8}$  પ્રથમ ચરણમાં હોવાથી  $y = tan \ \frac{\pi}{8}$  ધન થાય.

આથી, 
$$tan\frac{\pi}{8} = \sqrt{2} - 1$$
.

ઉદાહરણ 32 : જો 
$$\tan x = \frac{3}{4}$$
,  $\pi < x < \frac{3\pi}{2}$ , તો  $\sin \frac{x}{2}$ ,  $\cos \frac{x}{2}$  અને  $\tan \frac{x}{2}$  નાં મૂલ્ય શોધો.

ઉકેલ: 
$$\pi < x < \frac{3\pi}{2}$$
 હોવાથી  $\cos x$  ઋણ થશે.

$$q$$
  $\eta$ ,  $\frac{\pi}{2} < \frac{x}{2} < \frac{3\pi}{4}$ .

$$\therefore$$
  $\sin\frac{x}{2}$  ધન છે અને  $\cos\frac{x}{2}$  ઋણ થાય.

$$\dot{\text{eq}}, \qquad sec^2x = 1 + tan^2x = 1 + \frac{9}{16} = \frac{25}{16}$$

$$cos^2x = \frac{16}{25} \text{ wad } cos x = -\frac{4}{5}$$
 (34 ?)

$$ea, \ 2\sin^2\frac{x}{2} = 1 - \cos x = 1 + \frac{4}{5} = \frac{9}{5}.$$

$$\therefore \sin^2 \frac{x}{2} = \frac{9}{10}$$

અથવા 
$$\sin\frac{x}{2} = \frac{3}{\sqrt{10}}$$
 (કેમ ?)

$$2\cos^2\frac{x}{2} = 1 + \cos x = 1 - \frac{4}{5} = \frac{1}{5}$$

$$\therefore \qquad \cos^2 \frac{x}{2} = \frac{1}{10}$$

અથવા 
$$\cos\frac{x}{2} = -\frac{1}{\sqrt{10}}$$
 (કેમ ?)

આથી, 
$$\tan \frac{x}{2} = \frac{\sin \frac{x}{2}}{\cos \frac{x}{2}} = \frac{3}{\sqrt{10}} \times \left(\frac{-\sqrt{10}}{1}\right) = -3.$$

ઉદાહરણ 33 : સાબિત કરો કે, 
$$\cos^2 x + \cos^2 \left(x + \frac{\pi}{3}\right) + \cos^2 \left(x - \frac{\pi}{3}\right) = \frac{3}{2}$$

Given: St. Get. 
$$= \frac{1 + \cos 2x}{2} + \frac{1 + \cos \left(2x + \frac{2\pi}{3}\right)}{2} + \frac{1 + \cos \left(2x - \frac{2\pi}{3}\right)}{2}.$$

$$= \frac{1}{2} \left[ 3 + \cos 2x + \cos \left(2x + \frac{2\pi}{3}\right) + \cos \left(2x - \frac{2\pi}{3}\right) \right]$$

$$= \frac{1}{2} \left[ 3 + \cos 2x + 2\cos 2x \cos \frac{2\pi}{3} \right]$$

$$= \frac{1}{2} \left[ 3 + \cos 2x + 2\cos 2x \cos \left(\pi - \frac{\pi}{3}\right) \right]$$

$$= \frac{1}{2} \left[ 3 + \cos 2x - 2\cos 2x \cos \frac{\pi}{3} \right]$$

$$= \frac{1}{2} [3 + \cos 2x - \cos 2x] = \frac{3}{2} = \%. \text{ od.}$$

### પ્રકીર્ણ સ્વાધ્યાય 3

સાબિત કરો :

1. 
$$2\cos\frac{\pi}{13}\cos\frac{9\pi}{13}+\cos\frac{3\pi}{13}+\cos\frac{5\pi}{13}=0$$

 $(\sin 3x + \sin x) \sin x + (\cos 3x - \cos x) \cos x = 0$ 

3. 
$$(\cos x + \cos y)^2 + (\sin x - \sin y)^2 = 4 \cos^2 \frac{x+y}{2}$$

4. 
$$(\cos x - \cos y)^2 + (\sin x - \sin y)^2 = 4 \sin^2 \frac{x - y}{2}$$

 $\sin x + \sin 3x + \sin 5x + \sin 7x = 4 \cos x \cos 2x \sin 4x$ 

6. 
$$\frac{(\sin 7x + \sin 5x) + (\sin 9x + \sin 3x)}{(\cos 7x + \cos 5x) + (\cos 9x + \cos 3x)} = \tan 6x$$

7. 
$$\sin 3x + \sin 2x - \sin x = 4\sin x \cos \frac{x}{2} \cos \frac{3x}{2}$$

નીચેના પ્રત્યેક પ્રશ્ન માટે  $\sin\frac{x}{2},\cos\frac{x}{2}$  અને  $\tan\frac{x}{2}$  ની કિંમતો શોધો.

**8.** 
$$tan x = -\frac{4}{3}$$
,  $x$  એ બીજા ચરણમાં છે. **9.**  $cos x = -\frac{1}{3}$ ,  $x$  એ ત્રીજા ચરણમાં છે.

9. 
$$\cos x = -\frac{1}{3}$$
,  $x$  એ ત્રીજા ચરણમાં છે.

**10.** 
$$sin x = \frac{1}{4}$$
,  $x$  એ બીજા ચરણમાં છે.

#### સારાંશ

- lacktriangleright r ત્રિજ્યાવાળા વર્તુળમાં, I લંબાઈનું ચાપ કેન્દ્ર આગળ heta રેડિયન માપનો ખૂણો આંતરે તો, I=r heta
- ightharpoonup રેડિયન માપ =  $\frac{\pi}{180}$  × અંશ માપ
- $\bullet$  અંશ માપ =  $\frac{180}{\pi}$  × રેડિયન માપ
- $\diamond \cos^2 x + \sin^2 x = 1$
- $1 + tan^2x = sec^2x$
- $1 + \cot^2 x = \csc^2 x$
- $\diamond \cos (2n\pi + x) = \cos x$
- $\Rightarrow$  sin  $(2n\pi + x) = \sin x$
- $\diamond$  sin  $(-x) = -\sin x$
- $\diamond cos(-x) = cos x$
- $\diamond \cos(x + y) = \cos x \cos y \sin x \sin y$
- $\diamond \cos(x-y) = \cos x \cos y + \sin x \sin y$

# Downloaded from https://www.studiestoday.com

રાશિત : ધોરણ 11

 $sin (2\pi - x) = -sin x$ 

$$\diamond \cos\left(\frac{\pi}{2} - x\right) = \sin x$$

$$\sin\left(\frac{\pi}{2} - x\right) = \cos x$$

$$\diamond$$
 sin  $(x + y) = \sin x \cos y + \cos x \sin y$ 

$$\diamond$$
 sin  $(x - y) = \sin x \cos y - \cos x \sin y$ 

$$\cos\left(\frac{\pi}{2} + x\right) = -\sin x \qquad \sin\left(\frac{\pi}{2} + x\right) = \cos x$$

$$\cos(\pi - x) = -\cos x \qquad \sin(\pi - x) = \sin x$$

$$\cos(\pi + x) = -\cos x \qquad \sin(\pi + x) = -\sin x$$

$$lack$$
 જો  $x,y$  અને  $(x\pm y)$  એ  $\frac{\pi}{2}$  ના અયુગ્મ ગુણિત ના હોય, તો

$$tan (x + y) = \frac{tan x + tan y}{1 - tan x tan y}$$
$$tan (x - y) = \frac{tan x - tan y}{1 + tan x tan y}$$

 $cos(2\pi - x) = cos x$ 

lackજો x,y અને  $(x\pm y)$  એ  $\pi$  ના ગુણિત ના હોય, તો

$$\cot(x+y) = \frac{\cot x \cot y - 1}{\cot y + \cot x}$$
$$\cot(x-y) = \frac{\cot x \cot y + 1}{\cot y - \cot x}$$

$$\bullet \cos 2x = \cos^2 x - \sin^2 x = 2\cos^2 x - 1 = 1 - 2\sin^2 x = \frac{1 - \tan^2 x}{1 + \tan^2 x}$$

$$\Rightarrow \sin 2x = 2 \sin x \cos x = \frac{2 \tan x}{1 + \tan^2 x}$$

$$tan 2x = \frac{2tan x}{1 - tan^2 x}$$

$$\Rightarrow \sin 3x = 3\sin x - 4\sin^3 x$$

$$\diamond \cos 3x = 4\cos^3 x - 3\cos x$$

$$4 \tan 3x = \frac{3\tan x - \tan^3 x}{1 - 3\tan^2 x}$$

(ii) 
$$\cos x - \cos y = -2\sin \frac{x+y}{2} \sin \frac{x-y}{2}$$

### Downloaded from https://www.studiestoday.com

ત્રિકોણમિતિય વિધેયો

- (iii)  $\sin x + \sin y = 2 \sin \frac{x+y}{2} \cos \frac{x-y}{2}$
- (iv)  $\sin x \sin y = 2\cos \frac{x+y}{2} \sin \frac{x-y}{2}$
- $\bullet \quad \text{(i)} \quad 2\cos x \cos y = \cos (x + y) + \cos (x y)$ 
  - (ii)  $-2\sin x \sin y = \cos (x + y) \cos (x y)$
  - (iii)  $2\sin x \cos y = \sin (x + y) + \sin (x y)$
  - (iv)  $2 \cos x \sin y = \sin (x + y) \sin (x y)$ .
- sin = 0 પરથી  $x = n\pi$ , જ્યાં  $n \in \mathbb{Z}$ .
- જો  $\cos x = 0$  હોય, તો  $x = (2n+1) \frac{\pi}{2}$ ,  $n \in \mathbb{Z}$  અને પ્રતીપ પણ સત્ય છે.
- જો  $\sin x = \sin y$  હોય, તો  $x = n\pi + (-1)^n y$ ,  $n \in \mathbb{Z}$  અને પ્રતીપ પણ સત્ય છે.
- જો  $\cos x = \cos y$  હોય, તો  $x = 2n\pi \pm y, n \in \mathbb{Z}$  અને પ્રતીપ પણ સત્ય છે.
- lacktriangle જો  $tan\ x=tan\ y$  હોય, તો  $x=n\pi+y,\ n\in{f Z}$  અને પ્રતીપ પણ સત્ય છે.

#### Historical Note

The study of trigonometry was first started in India. The ancient Indian Mathematicians, Aryabhatta (476), Brahmagupta (598), Bhaskara I (600) and Bhaskara II (1114) got important results. All this knowledge first went from India to middle-east and from there to Europe. The Greeks had also started the study of trigonometry but their approach was so clumsy that when the Indian approach became known, it was immediately adopted throughout the world.

In India, the predecessor of the modern trigonometric functions, known as the sine of an angle, and the introduction of the sine function represents the main contribution of the *siddhantas* (Sanskrit astronomical works) to the history of mathematics.

Bhaskara I (about 600) gave formulae to find the values of sine functions for angles more than 90°. A sixteenth century Malayalam work *Yuktibhasa* (period) contains a proof for the expansion of sin (A + B). Exact expression for sines or cosines of 18°, 36°, 54°, 72°, etc., are given by Bhaskara II.

The symbols  $sin^{-1} x$ ,  $cos^{-1} x$ , etc., for arc sin x, arc cos x, etc., were suggested by the astronomer Sir John F.W. Hersehel (1813) The names of Thales (about 600 B.C.) is invariably associated with height and distance problems. He is credited with the determination of the height of a great pyramid in Egypt by measuring shadows of the pyramid and an auxiliary staff (or gnomon) of known height, and comparing the ratios:

$$\frac{H}{S} = \frac{h}{s} = tan \text{ (sun's altitude)}$$

Thales is also said to have calculated the distance of a ship at sea through the proportionality of sides of similar triangles. Problems on height and distance using the similarity property are also found in ancient Indian works.



# ગાણિતિક અનુમાનનો સિદ્ધાંત

\*Analysis and natural philosophy owe their most important discoveries to this fruitful means, which is called induction. Newton was indebted to it for his theorem of the binomial and the principle of universal gravity. — LAPLACE \*

### 4.1 પ્રાસ્તાવિક

ગણિતની સંકલ્પનામાં આનુમાનિક વિચારશક્તિ એ એક પાયાની ચાવી છે. નીચેનાં ત્રણ વિધાનોમાં દર્શાવેલ દલીલ એ ઉપાર્જિત, અવિધિસરનું અને આનુમાનિક વિચારશક્તિનું ઉદાહરણ છેઃ

- (a) સોક્રેટિસ એ પુરુષ છે.
- (b) બધા જ પુરુષો મર્ત્ય છે.
- તેથી (c) સોક્રેટિસ મર્ત્ય છે.

જો વિધાન (a) અને (b) સત્ય હોય, તો (c)ની સત્યાર્થતા સ્થાપિત થાય છે. ગણિતની દેષ્ટિએ આ દલીલ સરળ બનાવવા માટે આપણે લખીશું કે,

- (i) આઠએ બે વડે વિભાજય છે.
- (ii) બેથી વિભાજ્ય કોઈ પણ સંખ્યા યુગ્મ સંખ્યા છે.
- માટે (iii) આઠ યુગ્મ સંખ્યા છે.

ટૂંકમાં તારણ એ સામાન્ય રીતે ગણિતમાં અનુમાન અથવા પ્રમેય કહેવાતું સાબિત કરવાનું વિધાન છે. પ્રમાણિત તારવણીનાં પગલાં મળે અને તેની સાબિતી સ્થાપિત થઈ શકે, અથવા ન પણ થઈ શકે, એટલે કે, તારવણી એ વ્યાપક વિકલ્પ પરથી વિશિષ્ટ વિકલ્પ માટે ઉપયોગી છે.



G. Peano (1858-1932)

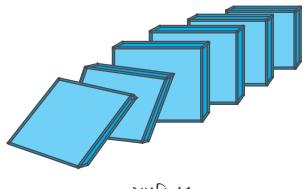
તારવણીના પ્રતિપક્ષે અનુમાનજન્ય દલીલો તમામ વિકલ્પોની ગણતરી પર આધારિત હોય છે અને આપણે દરેક વિકલ્પોના નિરીક્ષણ પરથી એક અનુમાન વિકસાવીએ છીએ. માહિતીના સંચય અને વિશ્લેષણના ઉદ્દેશ માટે ગણિતમાં તેનો વારંવાર ઉપયોગ થાય છે અને તે વૈજ્ઞાનિક દલીલ માટે ચાવીરૂપ ખ્યાલ છે.

આમ, સરળ ભાષામાં કહીએ, તો વિશિષ્ટ સત્યો અથવા વિકલ્પો પરથી વ્યાપક પરિણામની પ્રાપ્તિ એ અનુમાન શબ્દનો અર્થ છે.

બીજગણિત અથવા ગણિતની અન્ય શાખાઓનાં કેટલાંક પરિણામો; અથવા વિધાનો ધનપૂર્ણાંક n ના સ્વરૂપમાં રચવામાં આવે છે. આવાં વિધાનોની સાબિતી માટે વિશિષ્ટ તકનિક આધારિત સુનિયોજિત સિદ્ધાંત વપરાય છે અને તેને  $\frac{1}{2}$  ગાણિતિક અનુમાનનો સિદ્ધાંત કહે છે.

### 4.2 વિષયાભિમુખ

ગણિતમાં આપણે પૂર્ણ અનુમાનના રૂપના ઉપયોગને ગાણિતિક અનુમાન કહીશું. ગાણિતિક અનુમાનના પાયાના સિદ્ધાંતને સમજવા માટે, ધારો કે પાતળી તક્તીઓને આકૃતિ 4.1 માં દર્શાવ્યા પ્રમાણે ગોઠવી છે :



આકૃતિ 4.1

જયારે પ્રથમ તક્તીને સૂચિત દિશામાં ધક્કો મારવામાં આવે, ત્યારે તમામ તક્તીઓ પડી જશે. બધી જ તક્તીઓ નિશ્ચિત રૂપે પડી જ જશે એમ નક્કી કરવા માટે, આપણે

- (a) પ્રથમ તક્તી પડશે, અને
- (b) પ્રથમ તક્તી પડવાની ઘટના બને તો તેની તરત પછીની તક્તી જરૂર પડશે, તેમ જાણવું પર્યાપ્ત છે. આ ગાણિતિક અનુમાનનો પાયાનો સિદ્ધાંત છે.

આપણે જાણીએ છીએ કે, પ્રાકૃતિક સંખ્યાઓનો ગણ એ વાસ્તવિક સંખ્યાઓના ગણનો વિશિષ્ટ ક્રમિત ઉપગણ છે. વાસ્તવમાં N એ નીચેના ગુણધર્મવાળો R નો નાનામાં નાનો ઉપગણ છે.

ગણ S માટે  $1 \in S$  અને  $x \in S$  હોય તો  $x + 1 \in S$  થાય તે પ્રમાણેના ગુણધર્મ ધરાવતા ગણ S ને અનુમાનિત ગણ કહીશું. N એ R નો નાનામાં નાનો અનુમાનિત ઉપગણ છે. તે પરથી ફલિત થાય છે કે R ના કોઈ પણ અનુમાનિત ઉપગણમાં N સમાવિષ્ટ હોય જ.

#### દ્રષ્ટાંત :

ધારો કે આપણે ધનપૂર્ણાંક સંખ્યાઓ 1, 2, 3.....n ના સરવાળા માટેનું સૂત્ર શોધવું છે, એટલે કે જ્યારે n=3 હોય, ત્યારે 1+2+3 નું મૂલ્ય, n=4 હોય, ત્યારે 1+2+3+4 નું મૂલ્ય મેળવવાનું સૂત્ર અને આ

જ પ્રમાણે આગળ વધીએ તથા ધારો કે કોઈક રીતે આપણે સૂત્ર  $1+2+3+...+n=\frac{n(n+1)}{2}$  સત્ય છે તેમ સ્વીકારીએ છીએ. ખરેખર, આ સૂત્ર કેવી રીતે સાબિત થશે ? આમ તો, આપણે n ની યથેચ્છ ધન પૂર્ણાંક કિંમતો માટે તેની ચકાસણી કરીશું. પરંતુ આ પ્રક્રિયાથી n ની તમામ કિંમતો માટે આ સૂત્ર સાબિત થશે નહિ. આ માટે એ જરૂરી છે કે કોઈક પ્રકારની પ્રક્રિયાઓની એક એવી શ્રૃંખલા મળે કે જેની અસરથી એક વખત વિશિષ્ટ ધન પૂર્ણાંક માટે સૂત્ર સાબિત કર્યું હોય તો એ સૂત્ર તે પછીના ધન પૂર્ણાંક માટે અને પછી અનિર્શિત સુધી સ્વયં સત્ય ઠરે. આવી પ્રક્રિયા ગાણિતિક અનુમાનની રીતથી મળશે એમ માની શકીએ.

### 4.3 ગાણિતિક અનુમાનનો સિદ્ધાંત

ધારો કે પ્રાકૃતિક સંખ્યાઓ n સંબંધી એક વિધાન  $\mathbf{P}(n)$  આપેલું છે.

- (i) વિધાન n = 1 માટે સત્ય હોય એટલે કે P(1) સત્ય હોય અને
- (ii) જો વિધાન n = k માટે સત્ય હોય (જયાં k કોઈ ધન પૂર્ણાંક છે), તો વિધાન n = k + 1 માટે પણ સત્ય હોય, એટલે  $\hat{s}$ , P(k)ની સત્યાર્થતા પરથી P(k + 1)ની સત્યાર્થતા ફલિત થાય, તો P(n) એ તમામ પ્રાકૃતિક સંખ્યાઓ n માટે સત્ય છે.

ગુણધર્મ (i) સામાન્ય રીતે વિધાનની સત્યાર્થતા બતાવે છે. એવી પણ પરિસ્થિતિનું નિર્માણ થાય કે વિધાન તમામ  $n \geq 4$  માટે સત્ય હોય. આ પરિસ્થિતિમાં, પગલું (i), n=4 થી શરૂ થશે અને આપણે n=4 માટે પરિણામની સત્યાર્થતા ચકાસીશું, એટલે કે P(4) ની સત્યાર્થતા.

ગુણધર્મ (ii) એ શરતી ગુણધર્મ છે. આપેલ વિધાન n=k માટે સત્ય છે તેમ સ્પષ્ટ થતું નથી. પરંતુ તે એટલું કહે છે કે, જો વિધાન n=k માટે સત્ય હોય, તો તે n=k+1 માટે પણ સત્ય છે. આથી, વિધાન આ ગુણધર્મ ધરાવે છે તેમ સાબિત કરવા માટે, માત્ર નીચેનો શરતી પ્રસ્તાવ જ સાબિત કરવો પડે.

'જો વિધાન n=k માટે સત્ય હોય, તો તે n=k+1 માટે પણ સત્ય છે.' કેટલીક વખત આ પગલાને અનુમાનિત પગલા તરીકે ગણાય છે. વિધાન n=k માટે સત્ય છે એવી ધારણાના આ અનુમાનિત પગલાને અનુમાનિત કલ્પના કહે છે.

ઉદાહરણ તરીકે, એક સૂત્રની કલ્પના કરી હોય અને ગણિતમાં તેના વારંવાર ઉપયોગથી તે કોઈ નમૂના પ્રમાણે બંધબેસતી હોય, જેમકે,

$$1 = 1^2 = 1$$
 $4 = 2^2 = 1 + 3$ 
 $9 = 3^2 = 1 + 3 + 5$ 
 $16 = 4^2 = 1 + 3 + 5 + 7$ , વગેરે.

તેના પરથી નોંધીશું કે પ્રથમ બે અયુગ્મ પ્રાકૃતિક સંખ્યાઓનો સરવાળો એ બીજી પ્રાકૃતિક સંખ્યાનો વર્ગ છે, પ્રથમ ત્રણ અયુગ્મ પ્રાકૃતિક સંખ્યાઓનો સરવાળો એ ત્રીજી પ્રાકૃતિક સંખ્યાનો વર્ગ છે. આ પ્રમાણે આગળ મળે. આ ઉપરના નિયમ પરથી  $1+3+5+7+...+(2n-1)=n^2$  દેખાય છે, એટલે કે પ્રથમ n અયુગ્મ પ્રાકૃતિક સંખ્યાઓનો સરવાળો n નો વર્ગ છે.

ગાણિતિક અનુમાનનો સિદ્ધાંત

91

આપણે, P(n):  $1+3+5+7+...+(2n-1)=n^2$ લખી શકીએ.

પ્રત્યેક n માટે આપણે P(n) સત્ય છે તેમ સાબિત કરીશું.

સાબિતીના પ્રથમ સોપાન માટે ગાણિતિક અનુમાનના ઉપયોગ માટે  $\mathbf{P}(1)$  સત્ય છે તેમ સાબિત કરીશું.

આ પગથિયાને પાયાનું પગથિયું કહે છે.

 $1 = 1^2$  દેખીતું જ છે, એટલે કે, P(1) સત્ય છે.

બીજા પગલાને અનુમાનિત સોપાન કહીશું. અહીં, આપણે ધારીશું કે કોઈક ધન પૂર્ણાંક k માટે P(k) સત્ય છે અને P(k+1) સત્ય સાબિત કરવાની જરૂરિયાત ઊભી થશે. P(k) સત્ય છે, માટે

$$1+3+5+7+...+(2k-1)=k^2$$
 ... (1)

હવે, 
$$1+3+5+7+...+(2k-1)+\{2(k+1)-1\}$$
 ... (2) 
$$=k^2+(2k+1)=(k+1)^2$$
 [(1) પરથી]

માટે P(k+1) સત્ય છે અને અનુમાનિત સાબિતી હવે પૂરી થઈ.

આથી P(n) એ તમામ પ્રાકૃતિક સંખ્યાઓ n માટે સત્ય છે.

ઉદાહરણ  $1: n \ge 1$  માટે; સાબિત કરો કે,

$$1^2 + 2^2 + 3^2 + 4^2 + ... + n^2 = \frac{n(n+1)(2n+1)}{6}$$
.

6કેલ : ધારો કે આપેલ વિધાનને P(n) દ્વારા દર્શાવીએ, એટલે કે,

$$P(n): 1^2 + 2^2 + 3^2 + 4^2 + ... + n^2 = \frac{n(n+1)(2n+1)}{6}$$

$$n=1$$
 લેતાં,  $P(1):1=rac{1(1+1)(2 imes 1+1)}{6}=rac{1 imes 2 imes 3}{6}=1$  સત્ય છે.

ધારો કે, કોઈક ધન પૂર્ણાંક k માટે P(k) સત્ય છે, એટલે કે,

$$1^{2} + 2^{2} + 3^{2} + 4^{2} + \dots + k^{2} = \frac{k(k+1)(2k+1)}{6}$$
 ... (1)

હવે આપણે P(k+1) પણ સત્ય છે તેમ સાબિત કરીશું. હવે આપણી પાસે,

$$(1^{2} +2^{2} +3^{2} +4^{2} +...+k^{2}) + (k+1)^{2}$$

$$= \frac{k(k+1)(2k+1)}{6} + (k+1)^{2}$$

$$= \frac{k(k+1)(2k+1) + 6(k+1)^{2}}{6}$$

$$= \frac{(k+1)(2k^{2} +7k +6)}{6}$$

92 ગાંધાત : ધોરણ 11

$$=\frac{(k+1)(k+1+1)\{2(k+1)+1\}}{6}$$

આમ P(k) સત્ય હોય ત્યારે P(k+1) સત્ય છે.

આથી ગાણિતિક અનુમાનના સિદ્ધાંતથી, તમામ પ્રાકૃતિક સંખ્યાઓ n માટે વિધાન P(n) સત્ય છે.

ઉદાહરણ  $\mathbf{2}$  : તમામ ધન પૂર્ણાંક n માટે સાબિત કરો કે  $2^n > n$ 

ઉકેલ : ધારો કે P(n):  $2^n > n$ 

જો n = 1, તો  $2^1 > 1$ . આથી P(1) સત્ય છે.

$$k = 2 \text{ Hi } \hat{z}^2 = 4 > 2.$$
 ... (1)

આથી P(2) = P(1+1) સત્ય છે.

ધારો કે 1 થી મોટા કોઇક ધન પૂર્ણાંક k માટે P(k) સત્ય છે, એટલે કે,  $2^k > k$ 

હવે આપણે સાબિત કરીશું કે જો P(k) સત્ય હોય, તો P(k+1) સત્ય છે.

k > 1 માટે (1) ની બંને બાજુએ 2 વડે ગુણતાં,

$$2 \cdot 2^k > 2k$$

એટલે કે, 
$$2^{k+1} > 2k = k + k > k + 1$$
  $(k > 1)$ 

આથી જો P(k) સત્ય હોય, તો P(k+1) સત્ય છે. આથી ગાણિતિક અનુમાનના સિદ્ધાંતથી, દરેક ધન પૂર્ણાંક n માટે P(n) સત્ય છે.

ઉદાહરણ 3: પ્રત્યેક  $n \ge 1$  માટે સાબિત કરો કે,

$$\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \frac{1}{3 \cdot 4} + \dots + \frac{1}{n(n+1)} = \frac{n}{n+1}$$

ઉકેલ : આપણે 
$$P(n): \frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \frac{1}{3\cdot 4} + \dots + \frac{1}{n(n+1)} = \frac{n}{n+1}$$
 લઈશું.

આપણે નોંધીએ કે  $P(1): \frac{1}{1\cdot 2} = \frac{1}{2} = \frac{1}{1+1}$  સત્ય છે. આમ n=1 માટે P(n) સત્ય છે.

ધારો કે પ્રાકૃતિક સંખ્યા k માટે P(k) સત્ય છે,

એટલે કે 
$$\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \frac{1}{3\cdot 4} + \dots + \frac{1}{k(k+1)} = \frac{k}{k+1}$$
 ....(1)

જો P(k) સત્ય હોય, તો P(k+1) સત્ય છે, તેમ આપણે સાબિત કરીશું.

હવે, 
$$\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \frac{1}{3\cdot 4} + \dots + \frac{1}{k(k+1)} + \frac{1}{(k+1)(k+2)}$$

$$= \left[ \frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \frac{1}{3\cdot 4} + \dots + \frac{1}{k(k+1)} \right] + \frac{1}{(k+1)(k+2)}$$

$$= \frac{k}{k+1} + \frac{1}{(k+1)(k+2)}$$
[(1) પરથી ]

ગાણિતિક અનુમાનનો સિદ્ધાંત

$$= \frac{k^2 + 2k + 1}{(k+1)(k+2)}$$

$$= \frac{(k+1)^2}{(k+1)(k+2)}$$

$$= \frac{k+1}{k+2}$$

$$= \frac{k+1}{(k+1)+1}$$

આમ જો P(k) સત્ય હોય, તો P(k+1) સત્ય હોય. આથી ગાણિતિક અનુમાનના સિદ્ધાંત પરથી, તમામ પ્રાકૃતિક સંખ્યાઓ n માટે P(n) સત્ય છે.

**ઉદાહરણ 4**: પ્રત્યેક ધન પૂર્ણાંક n માટે સાબિત કરો કે  $7^n - 3^n$  એ 4 વડે વિભાજ્ય છે.

ઉકેલ : આપણે લખીશું કે, P(n):  $7^n - 3^n$  એ 4 વડે વિભાજ્ય છે.

આપણે નોંધીશું કે,

P(1):  $7^1 - 3^1 = 4$  એ 4 વડે વિભાજય છે. આમ n = 1 માટે P(n) સત્ય છે.

ધારો કે, પ્રાકૃતિક સંખ્યા k માટે P(k) સત્ય છે,

એટલે કે, P(k) :  $7^k - 3^k$  એ 4 વડે વિભાજય છે તે સત્ય છે.

આપણે  $d \in \mathbb{N}$  માટે,  $7^k - 3^k = 4d$  લખીશું.

હવે, આપણે જો P(k) સત્ય હોય, તો P(k+1) સત્ય છે સાબિત કરીશું.

છેલ્લા સોપાન પરથી આપણે કહી શકીએ કે,  $7^{(k+1)} - 3^{(k+1)}$  એ 4 વડે વિભાજ્ય છે.

આમ, જો P(k) સત્ય હોય, તો P(k+1) સત્ય છે.

આથી ગાણિતિક અનુમાનના સિદ્ધાંત પ્રમાણે આપેલ વિધાન પ્રત્યેક ધન પૂર્ણાંક n માટે સત્ય છે.

ઉદાહરણ 5: તમામ પ્રાકૃતિક સંખ્યાઓ n માટે સાબિત કરો કે  $(1+x)^n \geq (1+nx)$ , જ્યાં x>-1.

6કેલ : ધારો કે આપેલું વિધાન P(n) છે,

એટલે કે, 
$$P(n)$$
:  $(1 + x)^n \ge (1 + nx)$ ,  $x > -1$ 

આપણે નોંધીશું કે n=1 માટે  $\mathrm{P}(n)$  સત્ય છે, કારણ કે x>-1 માટે  $(1+x)^1\geq (1+1\cdot x)$ 

ધારો કે 
$$P(k)$$
:  $(1+x)^k \ge (1+kx)$ ,  $x > -1$  સત્ય છે. ... (1)

જો 
$$P(k)$$
 સત્ય હોય, તો  $P(k+1)$  એ  $x>-1$  માટે સત્ય છે તેમ સાબિત કરીએ. ... (2)

નિત્યસમ,  $(1+x)^{k+1} = (1+x)^k (1+x)$  લઈએ.

x > -1 આપેલું હોવાથી, (1 + x) > 0.

માટે  $(1 + x)^k \ge (1 + kx)$  નો ઉપયોગ કરતાં,

 $(1 + x)^{k+1} \ge (1 + kx)(1 + x) + \hat{\theta}$ .

એટલે કે, 
$$(1+x)^{k+1} \ge (1+x+kx+kx^2)$$
 ....(3)

અહીં k પ્રાકૃતિક સંખ્યા છે અને  $x^2 \ge 0$ . આથી  $kx^2 \ge 0$ .

માટે 
$$(1 + x + kx + kx^2) \ge (1 + x + kx)$$
. અર્થાત્  $(1 + x)^{k+1} \ge (1 + (1 + k)x)$ 

આમ, વિધાન (2) સત્ય થશે. આથી ગાિષાતિક અનુમાનના સિદ્ધાંતથી તમામ પ્રાકૃતિક સંખ્યાઓ માટે P(n) સત્ય છે.

ઉદાહરણ 6: સાબિત કરો કે,

પ્રત્યેક  $n \in \mathbb{N}$  માટે  $2 \cdot 7^n + 3 \cdot 5^n - 5$  એ 24 વડે વિભાજય છે.

6કેલ : વિધાન P(n) નીચે પ્રમાણે વ્યાખ્યાયિત કરીએ :

 $P(n): 2 \cdot 7^n + 3 \cdot 5^n - 5$  એ 24 વડે વિભાજય છે.

 $2 \cdot 7 + 3 \cdot 5 - 5 = 24$  એ 24 વડે વિભાજય છે. આથી n = 1 માટે P(n) સત્ય છે.

ધારો કે P(k) સત્ય છે.

એટલે કે, 
$$2 \cdot 7^k + 3 \cdot 5^k - 5 = 24q$$
, જ્યાં  $q \in \mathbb{N}$  ....(1)

હવે, જો આપણે P(k) સત્ય હોય, તો P(k+1) સત્ય છે તેમ સાબિત કરીશું.

$$2 \cdot 7^{k+1} + 3 \cdot 5^{k+1} - 5 = 2 \cdot 7^k \cdot 7^1 + 3 \cdot 5^k \cdot 5^1 - 5$$
 ......(2)
$$= 7 \left[ 2 \cdot 7^k + 3 \cdot 5^k - 5 - 3 \cdot 5^k + 5 \right] + 3 \cdot 5^k \cdot 5 - 5$$

$$= 7 \left[ 24q - 3 \cdot 5^k + 5 \right] + 15 \cdot 5^k - 5$$

$$= 7 \times 24q - 21 \cdot 5^k + 35 + 15 \cdot 5^k - 5$$

$$= 7 \times 24q - 6 \cdot 5^k + 30$$

$$= 7 \times 24q - 6 \cdot 5^k + 30$$

$$= 7 \times 24q - 6 \cdot 5^k - 5$$

$$= 7 \times 24q - 6 \cdot 4p$$

$$= 7 \times 24q - 6 \cdot 4p$$

$$= 7 \times 24q - 24p$$

$$= 24 \cdot 7q - p$$

$$= 24 \times 7; 7 = 7q - p \text{ પ્રાકૃતિક સંખ્યા છે.} \qquad .....(3)$$

આથી (3) ની ડા.બા.ની અભિવ્યક્તિ 24 વડે વિભાજય છે. આમ જો P(k) સત્ય હોય, તો P(k+1) સત્ય છે. આથી, ગાણિતિક અનુમાનના સિદ્ધાંતથી, પ્રત્યેક  $n\in\mathbb{N}$  માટે P(n) સત્ય છે.

$$\begin{aligned}
\vec{\eta} & \text{i.s. } 5^k - 5 = 5(5 - 1)(5^{k-2} + 5^{k-3} + \dots + 1) \\
& = 5 \cdot 4(5^{k-2} + 5^{k-3} + \dots + 1)
\end{aligned}$$

ગાણિતિક અનુમાનનો સિદ્ધાંત 95

ઉદાહરણ 7: સાબિત કરો કે,

$$1^2 + 2^2 + \dots + n^2 > \frac{n^3}{3}, n \in \mathbb{N}$$

6કેલ : ધારો કે આપેલ વિધાન P(n) છે.

એટલે કે, 
$$P(n): 1^2 + 2^2 + ... + n^2 > \frac{n^3}{3}, n \in \mathbb{N}$$

$$1^2 > \frac{1^3}{3}$$
 હોવાથી,  $n = 1$  માટે  $P(n)$  સત્ય છે.

ધારો કે P(k) સત્ય છે.

એટલે કે, 
$$P(k): 1^2 + 2^2 + ... + k^2 > \frac{k^3}{3}$$
 સત્ય છે. ...(1)

જો P(k) સત્ય હોય, તો P(k+1) સત્ય છે એમ સાબિત કરીશું.

$$\begin{array}{l} \mathfrak{SQ}, \ 1^2 + 2^2 + 3^2 + \dots + k^2 + (k+1)^2 \\ &= \left(1^2 + 2^2 + \dots + k^2\right) + \left(k+1\right)^2 \\ &> \frac{k^3}{3} + \left(k+1\right)^2 \\ &= \frac{1}{3} \left[k^3 + 3k^2 + 6k + 3\right] \\ &= \frac{1}{3} \left[(k+1)^3 + 3k + 2\right] > \frac{1}{3} \left(k+1\right)^3 \end{array} \tag{$\cdot \cdot \cdot (1)$}$$

માટે, જો P(k) સત્ય હોય, તો P(k+1) પણ સત્ય છે. આથી ગાણિતિક અનુમાનના સિદ્ધાંત પરથી પ્રત્યેક  $n \in \mathbb{N}$  માટે P(n) સત્ય છે.

ઉદાહરણ 8 : પ્રત્યેક પ્રાકૃતિક સંખ્યા n માટે ગાણિતિક અનુમાનના સિદ્ધાંતથી ઘાતાંકનો નિયમ  $(ab)^n=a^nb^n$  સાબિત કરો. ઉકેલ : ધારો કે, આપેલ વિધાન P(n) છે.

એટલે કે, 
$$P(n): (ab)^n = a^n b^n$$

$$(ab)^1 = a^1b^1$$
 હોવાથી,  $n = 1$  માટે  $P(n)$  સત્ય છે.

ધારો કે, P(k) સત્ય છે, એટલે કે,

હવે આપણે જો P(k) સત્ય હોય, તો P(k+1) સત્ય છે તેમ સાબિત કરીશું.

હવે, 
$$(ab)^{k+1} = (ab)^k (ab)$$
  
=  $(a^k b^k) (ab)$   
=  $(a^k \cdot a^1) (b^k \cdot b^1)$   
=  $a^{k+1} \cdot b^{k+1}$ 

માટે જો P(k) સત્ય હોય, તો P(k+1) પણ સત્ય છે. આથી ગાણિતિક અનુમાનના સિદ્ધાંત અનુસાર પ્રત્યેક  $n \in \mathbb{N}$  માટે P(n) સત્ય છે.

### સ્વાધ્યાય 4.1

 $n \in \mathbf{N}$  માટે ગાણિતિક અનુમાનના સિદ્ધાંતનો ઉપયોગ કરી નીચેનાં વિધાનો સાબિત કરો :

1. 
$$1+3+3^2+...+3^{n-1}=\frac{(3^n-1)}{2}$$
.

2. 
$$1^3 + 2^3 + 3^3 + \dots + n^3 = \left(\frac{n(n+1)}{2}\right)^2$$

3. 
$$1+\frac{1}{(1+2)}+\frac{1}{(1+2+3)}+\dots+\frac{1}{(1+2+3+...n)}=\frac{2n}{(n+1)}$$

4. 
$$1 \cdot 2 \cdot 3 + 2 \cdot 3 \cdot 4 + ... + n(n+1)(n+2) = \frac{n(n+1)(n+2)(n+3)}{4}$$

5. 
$$1 \cdot 3 + 2 \cdot 3^2 + 3 \cdot 3^3 + \dots + n \cdot 3^n = \frac{(2n-1)3^{n+1} + 3}{4}$$

**6.** 
$$1 \cdot 2 + 2 \cdot 3 + 3 \cdot 4 + \dots + n \cdot (n+1) = \left\lceil \frac{n(n+1)(n+2)}{3} \right\rceil$$

7. 
$$1 \cdot 3 + 3 \cdot 5 + 5 \cdot 7 + ... + (2n-1)(2n+1) = \frac{n(4n^2 + 6n - 1)}{3}$$

8. 
$$1 \cdot 2 + 2 \cdot 2^2 + 3 \cdot 2^3 + \dots + n \cdot 2^n = (n-1) 2^{n+1} + 2$$

9. 
$$\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots + \frac{1}{2^n} = 1 - \frac{1}{2^n}$$

10. 
$$\frac{1}{2 \cdot 5} + \frac{1}{5 \cdot 8} + \frac{1}{8 \cdot 11} + \dots + \frac{1}{(3n-1)(3n+2)} = \frac{n}{(6n+4)}$$

11. 
$$\frac{1}{1 \cdot 2 \cdot 3} + \frac{1}{2 \cdot 3 \cdot 4} + \frac{1}{3 \cdot 4 \cdot 5} + \dots + \frac{1}{n(n+1)(n+2)} = \frac{n(n+3)}{4(n+1)(n+2)}$$

12. 
$$a + ar + ar^2 + ... + ar^{n-1} = \frac{a(r^n - 1)}{r - 1}$$

13. 
$$\left(1+\frac{3}{1}\right)\left(1+\frac{5}{4}\right)\left(1+\frac{7}{9}\right)...\left(1+\frac{(2n+1)}{n^2}\right)=(n+1)^2$$

ગાણિતિક અનુમાનનો સિદ્ધાંત

14. 
$$\left(1+\frac{1}{1}\right)\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right)...\left(1+\frac{1}{n}\right)=(n+1)$$

**15.** 
$$1^2 + 3^2 + 5^2 + ... + (2n-1)^2 = \frac{n(2n-1)(2n+1)}{3}$$

**16.** 
$$\frac{1}{1\cdot 4} + \frac{1}{4\cdot 7} + \frac{1}{7\cdot 10} + \dots + \frac{1}{(3n-2)(3n+1)} = \frac{n}{(3n+1)}$$

17. 
$$\frac{1}{3.5} + \frac{1}{5.7} + \frac{1}{7.9} + \dots + \frac{1}{(2n+1)(2n+3)} = \frac{n}{3(2n+3)}$$

**18.** 
$$1+2+3+...+n<\frac{1}{8}(2n+1)^2$$

- **19.** n(n+1)(n+5) એ 3 નો ગુણિત છે.
- **20.**  $10^{2n-1} + 1$  એ 11 વડે વિભાજ્ય છે.
- **21.**  $x^{2n} y^{2n}$  એ x + y વડે વિભાજ્ય છે.
- **22.**  $3^{2n+2} 8n 9$  એ 8 વડે વિભાજ્ય છે.
- **23.** 41<sup>n</sup> 14<sup>n</sup> એ 27નો ગુણિત છે.
- **24.**  $(2n+7) < (n+3)^2$

#### સારાંશ

- ગણિતની સંકલ્પનાઓમાં આનુમાનિક વિચારશક્તિ એ એક પાયાની ચાવી છે. આનુમાનિક તારવણીના પ્રતિપક્ષે, અનુમાનજન્ય વિચારશક્તિ તમામ વિકલ્પો પર આધારિત હોય છે અને આપણે દરેક વિકલ્પોના નિરીક્ષણ પછી એક અનુમાન વિકસાવીએ છીએ. આમ, સરળ ભાષામાં કહીએ તો, વિશિષ્ટ સત્યો અથવા વિકલ્પો પરથી વ્યાપક સ્વરૂપ એ 'અનુમાન' શબ્દનો અર્થ છે.
- વિવિધ અમર્યાદિત ગાણિતિક વિધાનો સાબિત કરવા માટે ગાણિતિક અનુમાનનો સિદ્ધાંત એક ઉપયોગી સાધન છે. ધન પૂર્ણાંક સાથે સંકળાયેલ પ્રત્યેક આવા વિધાનને આપણે P(n) ધારીશું તથા n=1 માટે વિધાનની સત્યાર્થતા ચકાસીશું. પછી ધન પૂર્ણાંક k માટે P(k) ની સત્યાર્થતા પરથી n=k+1 માટે P(k+1)ની સત્યાર્થતા સ્થાપિત કરીશું.

#### Historical Note

Unlike other concepts and methods, proof by mathematical induction is not the invention of a particular individual at a fixed moment. It is said that the principle of mathematical induction was known by the Pythagoreans.

The French mathematician Blaise Pascal is credited with the origin of the principle of mathematical induction.

The name induction was used by the English mathematician John Wallis.

Later the principle was employed to provide a proof of the binomial theorem.

De Morgan contributed many accomplishments in the field of mathematics on many different subjects. He was the first person to define and name "mathematical induction" and developed De Morgan's rule to determine the convergence of a mathematical series.

G. Peano undertook the task of deducing the properties of natural numbers from a set of explicitly stated assumptions, now known as Peano's axioms. The principle of mathematical induction is a restatement of one of the Peano's axioms.



# સંકર સંખ્યાઓ અને દ્વિઘાત સમીકરણો

**❖** Mathematics is the Queen of Sciences and Arithmetic is the Queen of Mathematics. − GAUSS **❖** 

#### 5.1 પ્રાસ્તાવિક

આપણે અગાઉનાં ધોરણોમાં એક ચલ અને દ્વિચલ સુરેખ સમીકરણોના તથા એક ચલ દ્વિઘાત સમીકરણોના ઉકેલનો અભ્યાસ કર્યો. આપણે જોયું કે સમીકરણ  $x^2+1=0$  ને વાસ્તવિક ઉકેલ નથી, કારણ કે  $x^2+1=0$  એટલે કે  $x^2=-1$  થાય છે અને કોઈ પણ વાસ્તવિક સંખ્યાનો વર્ગ ઋણ થાય નિષ્ઠ. આથી, આપણે  $x^2=-1$  સમીકરણનો ઉકેલ મેળવી શકીએ તેવા વિસ્તૃત ગણમાં વાસ્તવિક સંખ્યાગણનો વિસ્તાર કરવો પડે. આપણે જાણીએ છીએ કે જો  $D=b^2-4ac<0$  હોય, તો દ્વિઘાત સમીકરણ  $ax^2+bx+c=0$  ને વાસ્તવિક ઉકેલ નથી. ખરેખર આપણો મુખ્ય ઉદ્દેશ આવા પ્રકારનાં સમીકરણોના ઉકેલ મેળવવાનો છે.



W. R. Hamilton (1805-1865)

#### 5.2 સંકર સંખ્યાઓ

પ્રથમ આપણે  $\sqrt{-1}$  ને સંકેતમાં i વડે દર્શાવીએ. આમ,  $i^2=-1$  થાય. આનો અર્થ એ થાય કે સમીકરણ  $x^2+1=0$  નો એક ઉકેલ i થાય.

 $a, b \in \mathbb{R}$  હોય તેવી સંખ્યા a + ib ને સંકર સંખ્યા (complex number) તરીકે વ્યાખ્યાયિત કરવામાં આવે છે.

ઉદાહરણ તરીકે, 2+i3,  $(-1)+i\sqrt{3}$ ,  $4+i\left(\frac{-1}{11}\right)$  એ સંકર સંખ્યાઓ છે.

સંકર સંખ્યા z=a+ib માં a ને z નો **વાસ્તવિક ભાગ** (real part) કહે છે. તેને સંકેતમાં Re zવડે દર્શાવાય છે. b ને z નો **કાલ્પનિક ભાગ** (imaginary part) કહે છે. તેને સંકેતમાં Im zવડે દર્શાવાય છે. ઉદાહરણ તરીકે, જો z=2+i5, તો Re z=2 અને  $Im\ z=5$ .

જો બે સંકર સંખ્યાઓ  $Z_{\scriptscriptstyle l}=a+ib$  અને  $Z_{\scriptscriptstyle 2}=c+id$  સમાન હોય,તો a=c તથા b=d.

ઉદાહરણ 1: જો વાસ્તવિક સંખ્યાઓ x તથા y માટે 4x+i(3x-y)=3+i (-6), તો x અને y ની કિંમત શોધો.

**ઉકેલ:** અહીં, 
$$4x + i(3x - y) = 3 + i(-6)$$
 ... (1)

સમીકરણ (1) ના વાસ્તવિક ભાગ તથા કાલ્પનિક ભાગને સરખાવતાં,

$$4x = 3$$
,  $3x - y = -6$ 

બંને સમીકરણોને ઉકેલતાં,  $x = \frac{3}{4}$  અને  $y = \frac{33}{4}$ .

#### 5.3 સંકર સંખ્યાઓનું બીજગણિત

આ વિભાગમાં આપણે સંકર સંખ્યાઓ પરની બૈજિક ક્રિયાઓની ચર્ચા કરીશું.

#### 5.3.1 બે સંકર સંખ્યાઓનો સરવાળો

ધારો કે  $Z_1 = a + ib$  અને  $Z_2 = c + id$  બે સંકર સંખ્યાઓ છે. તેમનો સરવાળો  $Z_1 + Z_2$  નીચે પ્રમાણે વ્યાખ્યાયિત થાય છે :

 $Z_{1}+Z_{2}=(a+c)+i\;(b+d)\;$  અને આ સરવાળાનું પરિણામ પણ એક સંકર સંખ્યા છે.

ઉદાહરણ તરીકે, (2+i3)+(-6+i5)=(2-6)+i(3+5)=-4+i 8.

સંકર સંખ્યાઓનો સરવાળો નીચે પ્રમાણેના ગુણધમોનું પાલન કરે છે :

- (i) સંવૃત્તતાઃ બે સંકર સંખ્યાઓનો સરવાળો સંકર સંખ્યા થશે, એટલે કે, જો  $Z_1$  અને  $Z_2$  કોઈ પણ બે સંકર સંખ્યાઓ હોય, તો  $Z_1+Z_2$ એ પણ સંકર સંખ્યા થશે.
- (ii) ક્રમનો નિયમ: કોઈ પણ બે સંકર સંખ્યાઓ  $Z_1$  અને  $Z_2$  માટે,  $Z_1+Z_2=Z_2+Z_1$ .
- (iii) જૂથનો નિયમ: કોઈ પણ ત્રણ સંકર સંખ્યાઓ  $z_1, z_2, z_3$  માટે,  $(z_1 + z_2) + z_3 = z_1 + (z_2 + z_3)$ .
- (iv) સરવાળા માટેના તટસ્થ ઘટકનું અસ્તિત્વઃ એક સંકર સંખ્યા  $0 + i \ 0$  (જેનો સંકેત  $0 \ છ$ ) એવી મળે છે કે જેની પ્રત્યેક સંકર સંખ્યા z + 0 = z. આ સંકર સંખ્યા  $0 + i \ 0$  ને સરવાળા માટેનો તટસ્થ ઘટક અથવા  $0 + i \ 0$  સંકર સંખ્યા કહે છે.
- (v) સરવાળા માટેના વ્યસ્ત ઘટકનું અસ્તિત્વઃ દરેક સંકર સંખ્યા z = a + ib માટે સંકર સંખ્યા -a + i(-b)  $(-z \ a \$  દર્શાવાય છે) ને સરવાળા માટેનો વ્યસ્ત ઘટક અથવા z નો વિરોધી ઘટક કહે છે. આપણે જોઈ શકીએ છીએ  $\hat{s} \ z + (-z) = 0$  (સરવાળા માટેનો તટસ્થ).

સંકર સંખ્યાઓ અને દ્વિઘાત સમીકરણો

10

**5.3.2 બે સંકર સંખ્યાઓનો તફાવત**ઃ ધારો કે  $z_1$  અને  $z_2$  બે સંકર સંખ્યાઓ છે. તેમનો તફાવત  $z_1-z_2$  નીચે પ્રમાણે વ્યાખ્યાયિત થાય છે:

$$Z_1 - Z_2 = Z_1 + (-Z_2).$$

ઉદાહરણ તરીકે, (6+3i)-(2-i)=(6+3i)+(-2+i)=4+4i.

અને 
$$(2-i)-(6+3i)=(2-i)+(-6-3i)=-4-4i.$$

5.3.3 બે સંકર સંખ્યાઓનો ગુણાકાર : ધારો કે  $z_1=a+ib$  અને  $z_2=c+id$  બે સંકર સંખ્યાઓ છે. તેમનો ગુણાકાર  $z_1$   $z_2$  નીચે પ્રમાણે વ્યાખ્યાયિત થાય છે:

$$Z_1 Z_2 = (ac - bd) + i(ad + bc)$$

ઉદાહરણ તરીકે,  $(3+i5)(2+i6) = (3 \times 2 - 5 \times 6) + i(3 \times 6 + 5 \times 2) = -24 + i28$ .

સંકર સંખ્યાઓનો ગુણાકાર નીચે પ્રમાણે ગુણધર્મો ધરાવે છે. તેમને આપણે સાબિતી આપ્યા વગર નોંધીશું.

- (i) સંવૃત્તતા : બે સંકર સંખ્યાઓનો ગુણાકાર સંકર સંખ્યા થશે, એટલે કે, જો  $z_1$  અને  $z_2$  કોઈ પણ સંકર સંખ્યાઓ હોય, તો  $z_1$   $z_2$  એ પણ સંકર સંખ્યા થશે.
- (ii) ક્રમનો નિયમ: કોઈપણ બે સંકર સંખ્યાઓ  $z_1$  અને  $z_2$ માટે,  $z_1 z_2 = z_2 z_1$ .
- (iii) જૂથનો નિયમ: કોઈપણ ત્રણ સંકર સંખ્યાઓ  $z_1, z_2, z_3$  માટે,  $(z_1 z_2) z_3 = z_1 (z_2 z_3)$ .
- (iv) ગુણાકાર માટેના તટસ્થ ઘટકનું અસ્તિત્વ :એક સંકર સંખ્યા 1 = 1 + i 0 (જેનો સંકેત 1 છે) અસ્તિત્વ ધરાવે છે. જેથી પ્રત્યેક સંકર સંખ્યા z માટે, z · 1 = z. આ સંકર સંખ્યા 1 ને ગુણાકાર માટેનો તટસ્થ ઘટક કહે છે.
- (v) ગુણાકાર માટેના વ્યસ્ત ઘટકનું અસ્તિત્વઃ દરેક શૂન્યેતર સંકર સંખ્યા z=a+ib કે  $a+bi(a\neq 0,\ b\neq 0)$  ને સંગત, સંકર સંખ્યા  $\frac{a}{a^2+b^2}+i\frac{-b}{a^2+b^2}$  (જેને  $\frac{1}{z}$  અથવા  $z^{-1}$  વડે દર્શાવાય છે ) મળે, જેથી  $z\cdot\frac{1}{z}=1$ . આ સંકર સંખ્યા  $\frac{1}{z}$  ને z નો ગુણાકાર માટેનો વ્યસ્ત ઘટક કહે છે.
- (vi) વિભાજનનો નિયમઃ કોઈ પણ ત્રણ સંકર સંખ્યાઓ  $z_{_{\! 1}},\,z_{_{\! 2}},\,z_{_{\! 3}}$ માટે,

(a) 
$$Z_1 (Z_2 + Z_3) = Z_1 Z_2 + Z_1 Z_3$$

(b) 
$$(z_1 + z_2) z_3 = z_1 z_3 + z_2 z_3$$

5.3.4 બે સંકર સંખ્યાઓનો ભાગાકારઃ ધારો કે  $z_2$  શૂન્યેતર હોય તેવી બે સંકર સંખ્યાઓ  $z_1$  અને  $z_2$  છે. તેમનો ભાગાકાર  $\frac{z_1}{z_2}$  નીચે પ્રમાણે વ્યાખ્યાયિત થાય છે :

$$\frac{Z_1}{Z_2} = Z_1 \frac{1}{Z_2}$$

ઉદાહરણ તરીકે,  $z_1 = 6 + 3i$  અને  $z_2 = 2 - i$  માટે,

$$\frac{Z_1}{Z_2} = \left( (6+3i) \times \frac{1}{2-i} \right) = \left( 6+3i \right) \left( \frac{2}{2^2 + \left( -1 \right)^2} + i \frac{-\left( -1 \right)}{2^2 + \left( -1 \right)^2} \right)$$

$$= (6+3i)\left(\frac{2+i}{5}\right) = \frac{1}{5}\left[12-3+i(6+6)\right] = \frac{1}{5}(9+12i).$$

#### 5.3.5 *i* ના ઘાત

આપણે જાણીએ છીએ કે,

$$i^{3} = i^{2}i = (-1)i = -i, \qquad i^{4} = (i^{2})^{2} = (-1)^{2} = 1,$$

$$i^{5} = (i^{2})^{2}i = (-1)^{2}i = i, \qquad i^{6} = (i^{2})^{3} = (-1)^{3} = -1 \text{ app}$$

$$i^{-1} = \frac{1}{i} \times \frac{i}{i} = \frac{i}{-1} = -i, \qquad i^{-2} = \frac{1}{i^{2}} = \frac{1}{-1} = -1,$$

$$i^{-3} = \frac{1}{i^{3}} = \frac{1}{-i} \times \frac{i}{i} = \frac{i}{1} = i, \quad i^{-4} = \frac{1}{i^{4}} = \frac{1}{1} = 1$$

વ્યાપક રીતે, કોઈ પણ પૂર્ણીક k માટે,  $i^{4k} = 1$ ,  $i^{4k+1} = i$ ,  $i^{4k+2} = -1$ ,  $i^{4k+3} = -i$ .

#### 5.3.6 ઋણ વાસ્તવિક સંખ્યાનાં વર્ગમૂળ

આપણે નોંધીએ કે  $i^2 = -1$  તથા  $(-i)^2 = i^2 = -1$ .

આથી, -1 નાં વર્ગમૂળ i તથા -i થાય. તેમ છતાં સંકેત  $\sqrt{-1}$  એ ફક્ત i સૂચવશે.

હવે, આપણે જોઈ શકીએ છીએ કે i અને -i બંને સમીકરણ  $x^2+1=0$  અથવા  $x^2=-1$  ના ઉકેલ થશે.

તે જ પ્રમાણે, 
$$\left(\sqrt{3}\,i\right)^2 = \left(\sqrt{3}\right)^2 \,i^2 = 3 \,(-1) = -3$$
 
$$\left(-\sqrt{3}\,i\right)^2 = \left(-\sqrt{3}\right)^2 \,i^2 = -3$$

 $\therefore$  -3 ના વર્ગમૂળ  $\sqrt{3}$  i તથા  $-\sqrt{3}i$  થશે.

વળી, સંકેત  $\sqrt{-3}$  એ  $\sqrt{3}i$  સૂચવશે.

એટલે કે,  $\sqrt{-3} = \sqrt{3}i$ .

વ્યાપક રીતે જો a એ કોઈ ધન વાસ્તવિક સંખ્યા હોય તો,  $\sqrt{-a} = \sqrt{a} \sqrt{-1} = \sqrt{a} i$  .

આપણે અગાઉથી જાણીએ છીએ કે, દરેક ધન વાસ્તવિક સંખ્યા a,b માટે  $\sqrt{a} \times \sqrt{b} = \sqrt{ab}$  થાય. જો  $a>0,\ b<0$  અથવા  $a<0,\ b>0$  હોય ત્યારે પણ આ પરિણામનું પાલન થાય છે. જો  $a<0,\ b<0$  હોય,તો શું થાય ?

આપણે નોંધીએ કે,

 $i^2 = \sqrt{-1} \sqrt{-1} = \sqrt{(-1)(-1)} = \sqrt{1} = 1$ . (કોઈ પણ વાસ્તવિક સંખ્યાઓ a અને b માટે  $\sqrt{a} \times \sqrt{b} = \sqrt{ab}$  છે તેમ ધારી લેતાં)

આ પરિણામ  $i^2 = -1$  ની સત્યાર્થતાની વિરુધ્ધ છે.

સંકર સંખ્યાઓ અને દ્વિઘાત સમીકરણો

103

જો સંખ્યાઓ a અને b બંને ઋણ વાસ્તવિક હોય તો,  $\sqrt{a} \times \sqrt{b} \neq \sqrt{ab}$  .

વળી, જો a અને b માંથી ગમે તે એક શૂન્ય હોય તો સ્પષ્ટ છે કે  $\sqrt{a} \times \sqrt{b} = \sqrt{ab} = 0$  થાય.

#### **5.3.7** નિત્યસમો

આપણે નીચેનું નિત્યસમ સાબિત કરીશું.

કોઈપણ સંકર સંખ્યા  $z_1$  અને  $z_2$  માટે,  $\left(z_1+z_2\right)^2=z_1^2+z_2^2+2z_1z_2$ .

તે જ રીતે આપણે નીચે પ્રમાણેના નિત્યસમ સાબિત કરી શકીએ :

(i) 
$$(z_1 - z_2)^2 = z_1^2 - 2z_1z_2 + z_2^2$$

(ii) 
$$(z_1 + z_2)^3 = z_1^3 + 3z_1^2z_2 + 3z_1z_2^2 + z_2^3$$

(iii) 
$$(z_1 - z_2)^3 = z_1^3 - 3z_1^2 z_2 + 3z_1 z_2^2 - z_2^3$$

(iv) 
$$z_1^2 - z_2^2 = (z_1 + z_2)(z_1 - z_2)$$

ખરેખર, જે વાસ્તવિક સંખ્યાઓ માટે સત્ય હોય તેવા ઘણાબધા નિત્યસમો સંકર સંખ્યાઓ માટે પણ સાબિત કરી શકાય.

ઉદાહરણ 2: નીચેની સંકર સંખ્યાઓને a+bi સ્વરૂપમાં દર્શાવો.

(i) 
$$\left(-5i\right)\left(\frac{1}{8}i\right)$$
 (ii)  $\left(-i\right)\left(2i\right)\left(-\frac{1}{8}i\right)^3$ 

**GSet:** (i) 
$$(-5i)\left(\frac{1}{8}i\right) = \frac{-5}{8}i^2 = \frac{-5}{8}(-1) = \frac{5}{8} = \frac{5}{8} + i0$$

(ii) 
$$(-i)(2i)\left(-\frac{1}{8}i\right)^3 = 2 \times \frac{1}{8 \times 8 \times 8} \times i^5 = \frac{1}{256}(i^2)^2 \quad i = \frac{1}{256}i$$
.

ઉદાહરણ  $3:(5-3i)^3$ ને a+ib સ્વરૂપમાં દર્શાવો.

ઉકેલ: અહીં, 
$$(5-3i)^3 = 5^3 - 3 \times 5^2 \times (3i) + 3 \times 5 (3i)^2 - (3i)^3$$
$$= 125 - 225i - 135 + 27i = -10 - 198i.$$

**ઉદાહરણ 4** :  $(-\sqrt{3} + \sqrt{-2})(2\sqrt{3} - i)$  ને a + ib સ્વરૂપમાં દર્શાવો.

ઉકેલ: અહીં, 
$$\left(-\sqrt{3}+\sqrt{-2}\right)\left(2\sqrt{3}-i\right) = \left(-\sqrt{3}+\sqrt{2}\,i\right)\left(2\sqrt{3}-i\right)$$
 
$$= -6+\sqrt{3}i+2\sqrt{6}i-\sqrt{2}\,i^2 = \left(-6+\sqrt{2}\right)+\sqrt{3}\left(1+2\sqrt{2}\right)i$$

#### 5.4 સંકર સંખ્યાનો માનાંક તથા અનુબદ્ધ સંકર સંખ્યા

ધારો કે z=a+ib એ સંકર સંખ્યા છે. અનૃણ વાસ્તવિક સંખ્યા  $\sqrt{a^2+b^2}$  ને z ના **માનાંક** (modulus) તરીકે વ્યાખ્યાયિત કરવામાં આવે છે. તેને સંકેતમાં |z| વડે દર્શાવવામાં આવે છે. આમ,  $|z|=\sqrt{a^2+b^2}$ . સંકર સંખ્યા a-ib એ z ની **અનુબદ્ધ સંકર સંખ્યા** (conjugate) છે. તેને સંકેતમાં  $\overline{z}$  વડે દર્શાવવામાં આવે છે. આમ,  $\overline{z}=a-ib$ .

ઉદાહરણ તરીકે, 
$$\begin{vmatrix} 3+i \end{vmatrix} = \sqrt{3^2 + 1^2} = \sqrt{10}$$
,  $\begin{vmatrix} 2-5i \end{vmatrix} = \sqrt{2^2 + (-5)^2} = \sqrt{29}$ , અને 
$$\overline{3+i} = 3-i, \quad \overline{2-5i} = 2+5i, \quad \overline{-3i-5} = 3i-5.$$

આપણે જોઈ શકીએ કે શૂન્યેતર સંકર સંખ્યા z નો ગુણાકાર માટેનો વ્યસ્ત

$$z^{-1} = \frac{1}{a+ib} = \frac{a}{a^2+b^2} + i\frac{-b}{a^2+b^2} = \frac{a-ib}{a^2+b^2} = \frac{\overline{z}}{\left|z\right|^2}$$

$$\therefore z \overline{z} = |z|^2$$

વધુમાં નીચેનાં પરિણામો સહેલાઈથી તારવી શકાય.

કોઈ પણ બે સંકર સંખ્યાઓ  $z_{\scriptscriptstyle 1}$  અને  $z_{\scriptscriptstyle 2}$  માટે,

(i) 
$$|z_1 z_2| = |z_1| |z_2|$$
 (ii)  $\left| \frac{z_1}{z_2} \right| = \frac{|z_1|}{|z_2|}$   $\left( |z_2| \neq 0 \right)$ 

(iii) 
$$\overline{z_1 z_2} = \overline{z_1} \overline{z_2}$$
 (iv)  $\overline{z_1 \pm z_2} = \overline{z_1} \pm \overline{z_2}$  (v)  $\overline{\left(\frac{z_1}{z_2}\right)} = \frac{\overline{z_1}}{\overline{z_2}}$   $(z_2 \neq 0)$ .

ઉદાહરણ 5: 2-3i નો ગુશાકાર માટેનો વ્યસ્ત શોધો.

**ઉકેલ :** ધારો કે 
$$z = 2 - 3i$$

તેથી 
$$\overline{z} = 2 + 3i$$
 અને  $|z|^2 = 2^2 + (-3)^2 = 13$ 

 $\therefore 2-3i$  નો ગુણાકાર માટેનો વ્યસ્ત

$$z^{-1} = \frac{\overline{z}}{|z|^2} = \frac{2+3i}{13} = \frac{2}{13} + \frac{3}{13}i$$
.

ઉપર પ્રમાણેની ગણતરી નીચેની રીતે પણ પુનઃ મેળવી શકાય:

$$z^{-1} = \frac{1}{2 - 3i} = \frac{2 + 3i}{(2 - 3i)(2 + 3i)}$$
$$= \frac{2 + 3i}{2^2 - (3i)^2} = \frac{2 + 3i}{13} = \frac{2}{13} + \frac{3}{13}i.$$

ઉદાહરણ 6: નીચેની સંકર સંખ્યાઓને a + ib સ્વરૂપમાં દર્શાવો:

$$(i) \frac{5 + \sqrt{2}i}{1 - \sqrt{2}i}$$

(ii)  $i^{-35}$ 

(i) અહીં, 
$$\frac{5+\sqrt{2}i}{1-\sqrt{2}i} = \frac{5+\sqrt{2}i}{1-\sqrt{2}i} \times \frac{1+\sqrt{2}i}{1+\sqrt{2}i}$$

$$= \frac{5+5\sqrt{2}i+\sqrt{2}i-2}{1-\left(\sqrt{2}i\right)^2}$$

$$= \frac{3+6\sqrt{2}i}{1+2}$$

$$= \frac{3(1+2\sqrt{2}i)}{3}$$

$$= 1+2\sqrt{2}i$$
(ii)  $i^{-35} = \frac{1}{i^{35}} = \frac{1}{\left(i^2\right)^{17}i} = \frac{1}{-i} \times \frac{i}{i} = \frac{i}{-i^2} = i$ 

#### स्वाध्याय 5.1

નીચે આપેલ પ્રશ્ન 1 થી 10 માં દરેક સંકર સંખ્યાને a + ib સ્વરૂપમાં દર્શાવો.

1. 
$$(5i)\left(-\frac{3}{5}i\right)$$

2. 
$$i^9 + i^{19}$$
 3.  $i^{-39}$ 

**4.** 
$$3(7+i7)+i(7+i7)$$
 **5.**  $(1-i)-(-1+i6)$ 

5. 
$$(1-i)-(-1+i6)$$

6. 
$$\left(\frac{1}{5} + i\frac{2}{5}\right) - \left(4 + i\frac{5}{2}\right)$$

6. 
$$\left(\frac{1}{5} + i\frac{2}{5}\right) - \left(4 + i\frac{5}{2}\right)$$
 7.  $\left[\left(\frac{1}{3} + i\frac{7}{3}\right) + \left(4 + i\frac{1}{3}\right)\right] - \left(-\frac{4}{3} + i\right)$ 

8. 
$$(1-i)^4$$

9. 
$$\left(\frac{1}{3}+3i\right)$$

9. 
$$\left(\frac{1}{3} + 3i\right)^3$$
 10.  $\left(-2 - \frac{1}{3}i\right)^3$ 

આપેલ પ્રશ્ન 11 થી 13 માં દરેક સંકર સંખ્યાનો ગુણાકાર માટેનો વ્યસ્ત શોધો.

12. 
$$\sqrt{5} + 3i$$

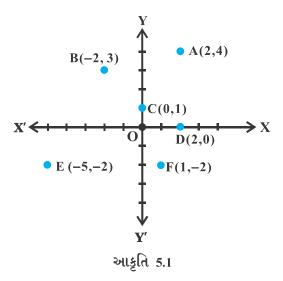
**14.** નીચેની પદાવલિને a + ib સ્વરૂપમાં દર્શાવો :

$$\frac{\left(3+i\sqrt{5}\right)\left(3-i\sqrt{5}\right)}{\left(\sqrt{3}+\sqrt{2}\,i\right)-\left(\sqrt{3}-i\sqrt{2}\right)}$$

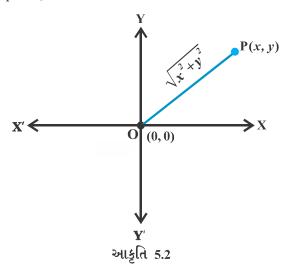
### 5.5 આર્ગન્ડ આકૃતિ અને ધ્રુવીય સ્વરૂપ

x-અક્ષ અને y-અક્ષ તરીકે ઓળખાતી પરસ્પર કાટખૂણે છેદતી રેખાઓના સંદર્ભમાં આપણે જાણીએ છીએ કે વાસ્તવિક સંખ્યાઓની દરેક ક્રમયુક્ત જોડ (x,y) ને સંગત XY—સમતલમાં અનન્ય બિંદુ મેળવી શકીએ અને તેનું પ્રતીપ પણ સત્ય છે. સંકર સંખ્યા x+iy ને સંગત ક્રમયુક્ત જોડ (x,y) ને XY—સમતલના અનન્ય બિંદુ P(x,y) તરીકે ભૌમિતિક રીતે દર્શાવી શકાય તેમજ XY—સમતલના બિંદુ P(x,y) ને સંગત અનન્ય સંકર સંખ્યા x+iy મળે.

સંકર સંખ્યાઓ જેવી કે 2+4i, -2+3i, 0+1i, 2+0i, -5-2i અને 1-2i ને સંગત ક્રમયુક્ત જોડ અનુક્રમે (2,4), (-2,3), (0,1), (2,0), (-5,-2), અને (1,-2) ને ભૌમિતિક રીતે સંગત બિંદુઓ અનુક્રમે A, B, C, D, E, અને F આકૃતિ 5.1 માં દર્શાવેલ છે.



જે યામ-સમતલના પ્રત્યેક બિંદુને અનન્ય સંકર સંખ્યા સાથે સંગત કરી શકાય તેને *સંકર સમતલ* (complex plane) અથવા *આર્ગન્ડ સમતલ* (Argand plane) કહેવાય છે.



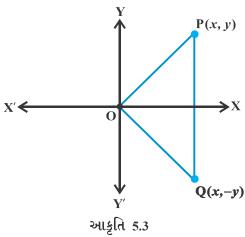
સ્પષ્ટ છે કે આર્ગન્ડ સમતલમાં સંકર સંખ્યા x+iy નો માનાંક  $|x+iy|=\sqrt{x^2+y^2}$  એ ઊગમબંદુ O  $(0,\,0)$  થી  $P(x,\,y)$  વચ્ચેનું અંતર છે (આકૃતિ 5.2).

x-અક્ષ પરનાં બિંદુઓને સંગત સંકર સંખ્યા  $a+i\,0$  સ્વરૂપમાં હોય છે અને y-અક્ષ પરનાં બિંદુઓને સંગત સંકર સંખ્યા

0 + ib સ્વરૂપમાં હોય છે. આર્ગન્ડ સમતલમાં x- અક્ષ અને y- અક્ષને અનુક્રમે **વાસ્તવિક અક્ષ** (real axis) તથા **કાલ્પનિક અક્ષ** (imaginary axis) કહેવાય છે.

સંકર સંખ્યા z=x+iy અને તેની અનુબદ્ધ સંકર સંખ્યા z=x-iy ને આર્ગન્ડ સમતલમાં અનુક્રમે બિંદુઓ  $P\left(x,y\right)$  અને  $Q\left(x,-y\right)$  વડે દર્શાવાય છે.

ભૌમિતિક રીતે બિંદુ (x, -y) ને બિંદુ (x, y) નું વાસ્તવિક અક્ષને સાપેક્ષ **આરસી પ્રતિબિંબ** (mirror image) કહેવાય છે.  $\mathbf{v}$ 



#### 5.5.1 સંકર સંખ્યાઓનું ધ્રુવીય સ્વરૂપ

ધારો કે સંકર સંખ્યા z=x+iy ને બિંદુ P વડે દર્શાવેલ છે. ધારો કે દિશાયુક્ત રેખાખંડ OP ની લંબાઈ r છે અને OP એ x-અક્ષની ધન દિશા સાથે  $\theta$  માપનો ખૂણો બનાવે છે (આકૃતિ 5.4).

આપણે નોંધીએ કે બિંદુ P એ વાસ્તવિક સંખ્યાઓની ક્રમયુક્ત જોડ  $(r,\theta)$  દ્વારા અનન્ય રીતે મેળવી શકાય.  $(r,\theta)$  ને બિંદુ P ના ધ્રુવીય યામ કહે છે. આપણે ઊગમબિંદુને **ધ્રુવ** (pole) અને x-અક્ષની ધન દિશાને **આદ્યરેખા** અથવા **મૂળરેખા**  $(initial\ line)$  કહીશું.

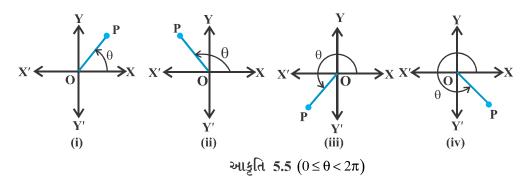
$$X' \leftarrow O \rightarrow X$$

$$Y \rightarrow X$$

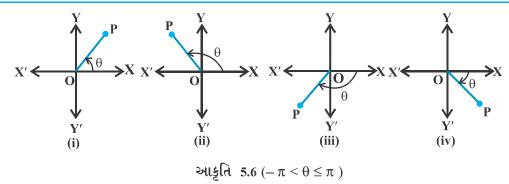
$$Y' \rightarrow X$$

અહીં, 
$$x = r \cos \theta$$
,  $y = r \sin \theta$ 

 $z = r (\cos \theta + i \sin \theta)$ . આને સંકર સંખ્યાનું **ધ્રુવીય સ્વરૂપ** (polar form) કહેવાય છે.  $r = \sqrt{x^2 + y^2} = |z|$  એ z નો માનાંક છે અને  $\theta$  એ z નો **કોણાંક** (argument અથવા amplitude) છે, તેને સંકેતમાં  $arg\ z$  વડે દર્શાવાય છે.



ગણિત : ધોરણ 11 108



કોઈપણ સંખ્યા  $z \neq 0$  ને સંગત  $\theta$  ની અનન્ય કિંમત  $0 \leq \theta < 2\pi$  માં મળે છે. તેમ છતાં  $2\pi$  લંબાઈનો કોઈ બીજો અંતરાલ  $-\pi < \theta \leq \pi$  જેવો પણ લઈ શકાય. આપણે  $\theta$  ની કિંમત  $-\pi < \theta \leq \pi$  માં લઈશું. તેને z નો  $extbf{ extit{ extit{\extit{ extit{ extit{\extit{\extit{\extit{ extit{ extit{ extit{\extit{\extit{ extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{ extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit$  $(principal\ argument)$  કહેવાય છે. જો અન્યથા દર્શાવેલ ન હોય તો તેને સંકેતમાં  $arg\ z$  વડે દર્શાવીશું.

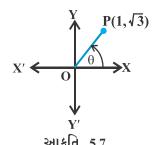
(આકૃતિ 5.5. અને 5.6.) ઉદાહરણ 7 : સંકર સંખ્યા  $z=1+i\sqrt{3}$  ને ધ્રુવીય સ્વરૂપમાં દર્શાવો.

ઉકેલ : ધારો કે  $1 = r \cos \theta$ ,  $\sqrt{3} = r \sin \theta$ 

વર્ગ કરીને સરવાળો કરતાં,

$$r^2(\cos^2\theta + \sin^2\theta) = 4$$
 એટલે કે,  $r = \sqrt{4} = 2$ 

(પરંપરાગત રીતે, r > 0)



$$\therefore \cos \theta = \frac{1}{2}, \sin \theta = \frac{\sqrt{3}}{2},$$

$$\therefore \qquad \theta = \frac{\pi}{3}$$

∴ માંગેલ ધ્રુવીય સ્વરૂપ 
$$z = 2\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right)$$

સંકર સંખ્યા  $z = 1 + i\sqrt{3}$  ને આકૃતિ 5.7 માં દર્શાવેલ છે.

ઉદાહરણ 8 : સંકર સંખ્યા  $\frac{-16}{1+i\sqrt{3}}$  ને ધ્રુવીય સ્વરૂપમાં ફેરવો.

ઉકેલ : આપેલ સંકર સંખ્યા 
$$\frac{-16}{1+i\sqrt{3}} = \frac{-16}{1+i\sqrt{3}} \times \frac{1-i\sqrt{3}}{1-i\sqrt{3}}$$

$$= \frac{-16\left(1-i\sqrt{3}\right)}{1-\left(i\sqrt{3}\right)^2}$$

$$= \frac{-16\left(1-i\sqrt{3}\right)}{1+3}$$

$$= -4\left(1-i\sqrt{3}\right) = -4+i4\sqrt{3} \text{ (આફિતિ 5.8.)}$$

આકૃતિ 5.8

ધારો કે  $-4 = r \cos \theta$ ,  $4\sqrt{3} = r \sin \theta$ 

સંકર સંખ્યાઓ અને દ્વિઘાત સમીકરણો

109

વર્ગ કરીને સરવાળો કરતાં 16 + 48 =  $r^2 \left( cos^2 \theta + sin^2 \theta \right)$ 

 $r^2 = 64$ , એટલે કે, r = 8.

તેથી

$$\cos \theta = -\frac{1}{2}, \sin \theta = \frac{\sqrt{3}}{2}$$

$$\theta = \pi - \frac{\pi}{3} = \frac{2\pi}{3}$$

આમ, માંગેલ ધ્રુવીય સ્વરૂપ  $8\left(\cos\frac{2\pi}{3}+i\sin\frac{2\pi}{3}\right)$ 

#### स्वाध्याय 5.2

પ્રશ્ન 1 થી 2 માં આવેલ દરેક સંકર સંખ્યાનો માનાંક અને કોણાંક શોધો.

1. 
$$z = -1 - i\sqrt{3}$$
 2.  $z = -\sqrt{3} + i$ 

2. 
$$z = -\sqrt{3} + i$$

પ્રશ્ન 3 થી 8 માં આવેલ દરેક સંકર સંખ્યાને ધ્રુવીય સ્વરૂપમાં ફેરવો.

3. 
$$1 - i$$

4. 
$$-1+i$$
 5.  $-1-i$ 

5. 
$$-1-i$$

7. 
$$\sqrt{3} + i$$
 8.  $i$ 

#### 5.6 દ્વિઘાત સમીકરણો

આપણે દ્વિઘાત સમીકરણો વિશે પરિચિત છીએ અને જ્યારે વિવેચક અનુણ હોય એટલે કે D≥ 0 હોય ત્યારે વાસ્તવિકસંખ્યા ગણ પર તેમના ઉકેલ પણ શોધ્યા.

હવે આપણે નીચે પ્રમાણેના દ્વિઘાત સમીકરણનો વિચાર કરીએ :

a, b, c વાસ્તવિક સહગુણકો છે અને  $a \neq 0$  છે અને  $ax^2 + bx + c = 0$  છે.

વળી, ધારો કે  $b^2 - 4ac < 0$ .

હવે આપણે સંકર સંખ્યાગણ પર ઋણ વાસ્તવિક સંખ્યાનું વર્ગમૂળ શોધી શકીએ છીએ. માટે ઉપર પ્રમાણેના સમીકરણનો ઉકેલ સંકર સંખ્યાગણ પર મળે છે.

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-b \pm \sqrt{4ac - b^2}}{2a}i$$

<del>– નોંધ</del> આ સમયે કેટલાકને જાણવાનો રસ હશે કે કોઈ પણ સમીકરણને કેટલાં બીજ મળે ? આ સંદર્ભે નીચેનો પ્રમેય જે *બીજગણિતના મૂળભૂત પ્રમેય* (Fundamental theorem of Algebra) તરીકે જાણીતો છે તેને (સાબિતી આપ્યા વગર) નોંધીશું.

"બહુપદીય સમીકરણને ઓછામાં ઓછું એક બીજ મળે."

આ પ્રમેયના પરિણામે ખૂબ જ ઉપયોગી એવું નીચે પ્રમાણેનું પરિણામ મળે છે :

``n ઘાતવાળા બહુપદીય સમીકરણને n બીજ મળે છે."

ઉદાહરણ 9: ઉકેલો:  $x^2+2=0$ 

ઉકેલ : અહીં,  $x^2 + 2 = 0$ 

અથવા 
$$x^2 = -2$$
 એટલે કે,  $x = \pm \sqrt{-2} = \pm \sqrt{2} i$ .

ઉદાહરણ 10: ઉકેલો :  $x^2 + x + 1 = 0$ 

ઉકેલ: અહીં,  $b^2 - 4ac = 1^2 - 4 \times 1 \times 1 = 1 - 4 = -3$ 

$$\therefore x = \frac{-1 \pm \sqrt{-3}}{2 \times 1} = \frac{-1 \pm \sqrt{3}i}{2}$$
 એ માંગેલ ઉકેલો થશે.

ઉદાહરણ 11 : ઉકેલો:  $\sqrt{5}x^2 + x + \sqrt{5} = 0$ 

ઉકેલ : અહીં, આપેલ સમીકરણનો વિવેચક

$$1^2 - 4 \times \sqrt{5} \times \sqrt{5} = 1 - 20 = -19$$

માંગેલ ઉકેલો 
$$\frac{-1\pm\sqrt{-19}}{2\sqrt{5}} = \frac{-1\pm\sqrt{19}i}{2\sqrt{5}}$$
 થશે.

#### સ્વાધ્યાય 5.3

નીચેનાં સમીકરણો ઉકેલો :

1. 
$$x^2 + 3 = 0$$

$$2x^2 + x + 1 = 0$$

3. 
$$x^2 + 3x + 9 = 0$$

**4.** 
$$-x^2 + x - 2 = 0$$
 **5.**  $x^2 + 3x + 5 = 0$ 

5. 
$$x^2 + 3x + 5 = 0$$

**6.** 
$$x^2 - x + 2 = 0$$

7. 
$$\sqrt{2}x^2 + x + \sqrt{2} = 0$$

7. 
$$\sqrt{2}x^2 + x + \sqrt{2} = 0$$
 8.  $\sqrt{3}x^2 - \sqrt{2}x + 3\sqrt{3} = 0$ 

9. 
$$x^2 + x + \frac{1}{\sqrt{2}} = 0$$
 10.  $x^2 + \frac{x}{\sqrt{2}} + 1 = 0$ 

10. 
$$x^2 + \frac{x}{\sqrt{2}} + 1 = 0$$

### 5.7 સંકર સંખ્યાનું વર્ગમૂળ

આગળના વિભાગમાં આપણે સંકર બીજને આવરી લેતા દ્વિઘાત સમીકરણના ઉકેલની ચર્ચા કરી. અહીં આપણે પ્રમાણિત સ્વરૂપમાં દર્શાવેલ સંકર સંખ્યાનું વર્ગમૂળ શોધવાની વિશિષ્ટ પ્રક્રિયા વર્શવીશું. આપણે તેને ઉદાહરણ દ્વારા સ્પષ્ટ કરીશું.

ઉદાહરણ 12: -7 - 24i નું વર્ગમૂળ શોધો.

ઉકેલ: ધારો કે 
$$x + iy = \sqrt{-7 - 24i}$$

$$\therefore (x+iy)^2 = -7-24i$$

અથવા 
$$x^2 - y^2 + 2xyi = -7 - 24i$$

વાસ્તવિક ભાગ અને કાલ્પનિક ભાગ સરખાવતાં,

સંકર સંખ્યાઓ અને દ્વિઘાત સમીકરણો

111

$$x^2 - y^2 = -7$$
 ...(1)

$$2xy = -24$$

નિત્યસમ
$$(x^2 + y^2)^2 = (x^2 - y^2)^2 + (2xy)^2$$
 નો ઉપયોગ કરતાં,

$$(x^2 + y^2)^2 = 49 + 576$$

$$(x^2 + y^2)^2 = 625$$

આમ, 
$$x^2 + y^2 = 25$$
 ...(2)

(1) અને (2) પરથી,  $x^2 = 9$  અને  $y^2 = 16$ 

અથવા 
$$x = \pm 3$$
 અને  $y = \pm 4$ 

ગુણાકાર xy ઋણ હોવાથી,

$$x = 3, y = -4$$
 અથવા,  $x = -3, y = 4$ 

આમ, -7 - 24i નાં વર્ગમૂળ 3 - 4i અને -3 + 4i.

#### સ્વાધ્યાય 5.4

વર્ગમૂળ શોધો :

- 1. -15 8i
- 2. -8 6i
- 3. 1 i
- **4.** -i

**5.** *i* 

6. 1 + i

### પ્રકીર્ણ ઉદાહરણો

ઉદાહરણ 13 : અનુબદ્ધ સંકર સંખ્યા શોધો :  $\frac{(3-2i)(2+3i)}{(1+2i)(2-i)}$  .

ઉંકેલ: અહીં, 
$$\frac{(3-2i)(2+3i)}{(1+2i)(2-i)}$$
$$=\frac{6+9i-4i+6}{2-i+4i+2}$$
$$=\frac{12+5i}{4+3i}\times\frac{4-3i}{4-3i}$$
$$=\frac{48-36i+20i+15}{16+9}$$

ગાંધાત : ધોરણ 11

$$=\frac{63-16i}{25}$$

$$=\frac{63}{25}-\frac{16}{25}i$$

$$\therefore \frac{(3-2i)(2+3i)}{(1+2i)(2-i)}$$
 ની અનુબદ્ધ સંકર સંખ્યા  $\frac{63}{25}+\frac{16}{25}i$  છે.

ઉદાહરણ 14: નીચેની સંકર સંખ્યાઓના માનાંક અને કોણાંક શોધો :

(i) 
$$\frac{1+i}{1-i}$$

(ii) 
$$\frac{1}{1+i}$$

ઉકેલ: (i) અહીં, 
$$\frac{1+i}{1-i} = \frac{1+i}{1-i} \times \frac{1+i}{1+i} = \frac{1-1+2i}{1+1} = i = 0+i$$

હવે, 
$$0 = r \cos \theta$$
,  $1 = r \sin \theta$ 

વર્ગ કરીને સરવાળો કરતાં, 
$$r^2 = 1$$
 એટલે કે  $r = 1$ 

$$\cos \theta = 0$$
,  $\sin \theta = 1$ 

$$\therefore \theta = \frac{\pi}{2}$$

માટે, 
$$\frac{1+i}{1-i}$$
 નો માનાંક 1 અને કોણાંક  $\frac{\pi}{2}$  છે.

(ii) અહીં, 
$$\frac{1}{1+i} = \frac{1-i}{(1+i)(1-i)} = \frac{1-i}{1+1} = \frac{1}{2} - \frac{i}{2}$$

ધારો કે, 
$$\frac{1}{2} = r \cos \theta$$
,  $-\frac{1}{2} = r \sin \theta$ 

ઉપર (i) પ્રમાણેની પ્રક્રિયા કરતાં, 
$$r=\frac{1}{\sqrt{2}};\;\cos\theta=\frac{1}{\sqrt{2}},\;\sin\theta=\frac{-1}{\sqrt{2}}$$

$$\therefore \theta = \frac{-\pi}{4}$$

આમ, 
$$\frac{1}{1+i}$$
 નો માનાંક  $\frac{1}{\sqrt{2}}$  અને કોણાંક  $\frac{-\pi}{4}$  છે.

ઉદાહરણ 15 : જો 
$$x + iy = \frac{a + ib}{a - ib}$$
, તો સાબિત કરો કે  $x^2 + y^2 = 1$ .

ઉકેલ: અહીં, 
$$x+iy=\dfrac{(a+ib)(a+ib)}{(a-ib)(a+ib)}=\dfrac{a^2-b^2+2abi}{a^2+b^2}=\dfrac{a^2-b^2}{a^2+b^2}+\dfrac{2ab}{a^2+b^2}i$$

$$\therefore x - iy = \frac{a^2 - b^2}{a^2 + b^2} - \frac{2ab}{a^2 + b^2}i$$

$$\therefore x^2 + y^2 = (x + iy)(x - iy) = \frac{(a^2 - b^2)^2}{(a^2 + b^2)^2} + \frac{4a^2b^2}{(a^2 + b^2)^2} = \frac{(a^2 + b^2)^2}{(a^2 + b^2)^2} = 1$$

ઉદાહરણ 16 : જો  $\frac{3+2i \sin \theta}{1-2i \sin \theta}$  શુદ્ધ વાસ્તવિક સંખ્યા હોય, તો વાસ્તવિક  $\theta$  શોધો.

ઉકેલ: અહીં,

$$\frac{3+2i\sin\theta}{1-2i\sin\theta} = \frac{(3+2i\sin\theta)(1+2i\sin\theta)}{(1-2i\sin\theta)(1+2i\sin\theta)}$$

$$= \frac{3+6i\sin\theta+2i\sin\theta-4\sin^2\theta}{1+4\sin^2\theta} = \frac{3-4\sin^2\theta}{1+4\sin^2\theta} + \frac{8i\sin\theta}{1+4\sin^2\theta}$$

આપેલ છે કે આ સંકર સંખ્યા વાસ્તવિક છે.

$$\therefore \frac{8\sin\theta}{1+4\sin^2\theta} = 0$$
, એટલે કે  $\sin\theta = 0$ 

તેથી,  $\theta = n\pi$ ,  $n \in \mathbb{Z}$ .

**ઉદાહરણ 17 :** સંકર સંખ્યા  $z = \frac{i-1}{\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}}$  ને ધ્રુવીય સ્વરૂપમાં ફેરવો.

ઉદ્દેલ: અહીં, 
$$z=\frac{i-1}{\dfrac{1}{2}+\dfrac{\sqrt{3}}{2}i}$$
 
$$=\dfrac{2(i-1)}{1+\sqrt{3}i}\times\dfrac{1-\sqrt{3}i}{1-\sqrt{3}i}$$
 
$$=\dfrac{2\left(i+\sqrt{3}-1+\sqrt{3}i\right)}{1+3}$$
 
$$=\dfrac{\sqrt{3}-1}{2}+\dfrac{\sqrt{3}+1}{2}i$$

હવે, 
$$\frac{\sqrt{3}-1}{2} = r \cos \theta, \ \frac{\sqrt{3}+1}{2} = r \sin \theta \, \text{el}.$$

વર્ગ કરીને સરવાળો કરતાં,

$$r^2 = \left(\frac{\sqrt{3} - 1}{2}\right)^2 + \left(\frac{\sqrt{3} + 1}{2}\right)^2 = \frac{2\left(\left(\sqrt{3}\right)^2 + 1\right)}{4} = \frac{2 \times 4}{4} = 2$$
 તેથી  $r = \sqrt{2}$  માટે,  $\cos\theta = \frac{\sqrt{3} - 1}{2\sqrt{2}}$ ,  $\sin\theta = \frac{\sqrt{3} + 1}{2\sqrt{2}}$ 

માટે, 
$$\theta = \frac{\pi}{4} + \frac{\pi}{6} = \frac{5\pi}{12}$$
 (શા માટે ?)

આમ, ધ્રુવીય સ્વરૂપ 
$$\sqrt{2}\left(\cos\frac{5\pi}{12}+i\sin\frac{5\pi}{12}\right)$$
 થશે.

#### પ્રકીર્ણ સ્વાધ્યાય 5

1. કિંમત શોધો : 
$$\left[i^{18} + \left(\frac{1}{i}\right)^{25}\right]^3$$

2. કોઈ પણ બે સંકર સંખ્યાઓ  $\boldsymbol{z}_1$  અને  $\boldsymbol{z}_2$ માટે સાબિત કરો કે,

$$Re(z_1 z_2) = Re z_1 Re z_2 - Imz_1 Imz_2$$

3. 
$$\left(\frac{1}{1-4i} - \frac{2}{1+i}\right) \left(\frac{3-4i}{5+i}\right)$$
 ને પ્રમાણિત સ્વરૂપમાં મૂકો.

4. જો 
$$x - iy = \sqrt{\frac{a - ib}{c - id}}$$
 હોય, તો સાબિત કરો કે  $(x^2 + y^2)^2 = \frac{a^2 + b^2}{c^2 + d^2}$ .

5. નીચેની સંખ્યાઓને ધ્રુવીય સ્વરૂપમાં ફેરવો :

(i) 
$$\frac{1+7i}{(2-i)^2}$$
 (ii)  $\frac{1+3i}{1-2i}$ 

(ii) 
$$\frac{1+3i}{1-2i}$$

પ્રશ્ન 6 થી 9 ના પ્રત્યેક સમીકરણને ઉકેલો :

6. 
$$3x^2 - 4x + \frac{20}{3} = 0$$

7. 
$$x^2 - 2x + \frac{3}{2} = 0$$

$$8. \quad 27x^2 - 10x + 1 = 0$$

9. 
$$21x^2 - 28x + 10 = 0$$

11. જો 
$$a+ib=\frac{(x+i)^2}{2x^2+1}$$
, તો  $a^2+b^2=\frac{(x^2+1)^2}{\left(2x^2+1\right)^2}$  સાબિત કરો.

**12.** ધારો કે, 
$$z_1 = 2 - i$$
,  $z_2 = -2 + i$ .

(i) 
$$Re\left(\frac{z_1z_2}{\overline{z}_1}\right)$$

(i) 
$$Re\left(\frac{z_1z_2}{\overline{z}_1}\right)$$
 (ii)  $Im\left(\frac{1}{z_1\overline{z}_1}\right)$  શોધો.

- **13.** સંકર સંખ્યા  $\frac{1+2i}{1-3i}$  નો માનાંક તથા કોણાંક શોધો.
- **14.** જો (x iy)(3 + 5i) એ -6 24i ની અનુબદ્ધ સંકર સંખ્યા હોય, તો વાસ્તવિક સંખ્યાઓ x અને y શોધો.
- 15.  $\frac{1+i}{1-i} \frac{1-i}{1+i}$  નો માનાંક શોધો.
- 17. જો  $\alpha$  અને  $\beta$  એ ભિન્ન સંકર સંખ્યાઓ હોય તથા  $\left|\beta\right|=1$ , તો  $\left|\frac{\beta-\alpha}{1-\overline{\alpha}\beta}\right|$  ની કિંમત શોધો.
- **18.** સમીકરણ  $\left|1-i\right|^{x} = 2^{x}$  ના શૂન્યેતર પૂર્ણાંક ઉકેલોની સંખ્યા શોધો.
- 19. જો (a+ib) (c+id) (e+if) (g+ih) = A+iB, હોય તો, બતાવો કે  $(a^2+b^2)(c^2+d^2)(e^2+f^2)(g^2+h^2) = A^2+B^2.$
- 20.  $\left(\frac{1+i}{1-i}\right)^m = 1$  થાય તેવી m ની ન્યૂનતમ પૂર્ણાંક કિંમત શોધો.

#### સારાંશ

- $\diamond$  જ્યાં a અને b વાસ્તવિક સંખ્યાઓ છે તેવી a+ib પ્રકારની સંખ્યાને સંકર સંખ્યા કહેવાય છે. a ને સંકર સંખ્યાનો વાસ્તવિક ભાગ તથા b ને તેનો કાલ્પનિક ભાગ કહેવાય છે.
- lacktriangle ધારો કે  $z_1=a+ib$  અને  $z_2=c+id$ , તો
  - (i)  $z_1 + z_2 = (a + c) + i(b + d)$
  - (ii)  $z_1 z_2 = (ac bd) + i (ad + bc)$
- ♦ દરેક શૂન્યેતર સંકર સંખ્યા a + ib ( $a \neq 0$ ,  $b \neq 0$ ) ને સંગત સંકર સંખ્યા  $\frac{a}{a^2 + b^2} + i \frac{-b}{a^2 + b^2}$ , અસ્તિત્વ ધરાવે છે કે, જેથી (a + ib)  $\left(\frac{a}{a^2 + b^2} + i \frac{-b}{a^2 + b^2}\right) = 1 + i0 = 1$ . તેને z = a + ib નો વ્યસ્ત કહે છે તથા તેને સંકેત  $\frac{1}{z}$  અથવા  $z^{-1}$ થી દર્શાવાય છે.
- કોઈ પણ પૂર્ણીક k માટે,  $i^{4k} = 1$ ,  $i^{4k+1} = i$ ,  $i^{4k+2} = -1$ ,  $i^{4k+3} = -i$
- lacktriangle સંકર સંખ્યા z=a+ib ની અનુબદ્ધ સંકર સંખ્યા (કે જેને  $\overline{z}$  વડે દર્શાવાય છે)  $\overline{z}=a-ib$ .
- ♦ સંકર સંખ્યા z=x+iy નું ધ્રુવીય સ્વરૂપ  $r(\cos\theta+i\sin\theta)$  છે, જયાં  $r=\sqrt{x^2+y^2}$  (z નો માનાંક) અને  $\cos\theta=\frac{x}{r}$ ,  $\sin\theta=\frac{y}{r}$  ( $\theta$  એ z નો કોણાંક). જો  $\theta$  ની કિંમત અંતરાલ  $-\pi<\theta\leq\pi$  માં હોય તો તેને z નો મુખ્ય કોણાંક કહે છે.

ાશિત : ધોરણ 11

- lack n ઘાતવાળા બહુપદીય સમીકરણને n બીજ મળે છે.
- જો  $b^2 4ac < 0$  હોય તો દ્વિઘાત સમીકરણ  $ax^2 + bx + c = 0$ ,  $a, b, c \in \mathbb{R}$ ,  $a \neq 0$  નાં બીજ

$$x = \frac{-b \pm \sqrt{4ac - b^2}i}{2a} \ \dot{\Theta}.$$

#### Historical Note

The fact that square root of a negative number does not exist in the real number system was recognised by the Greeks. But the credit goes to the Indian mathematician *Mahavira* (850) who first stated this difficulty clearly. "He mentions in his work '*Ganitasara Sangraha*' as in the nature of things a negative (quantity) is not a square (quantity)', it has, therefore, no square root". *Bhaskara*, another Indian mathematician, also writes in his work *Bijaganita*, written in 1150. "There is no square root of a negative quantity, for it is not a square." *Cardan* (1545) considered the problem of solving

$$x + y = 10, xy = 40.$$

He obtained  $x = 5 + \sqrt{-15}$  and  $y = 5 - \sqrt{-15}$  as the solution of it, which was discarded by him by saying that these numbers are 'useless'. *Albert Girard* (about 1625) accepted square root of negative numbers and said that this will enable us to get as many roots as the degree of the polynomial equation. *Euler* was the first to introduce the symbol *i* for  $\sqrt{-1}$  and *W.R. Hamilton* (about 1830) regarded the complex number a + ib as an ordered pair of real numbers (a, b) thus giving it a purely mathematical definition and avoiding use of the so called '*imaginary numbers*'.



# સુરેખ અસમતાઓ

**❖** Mathematics is the art of saying many things in many different ways. − MAXWELL ❖

#### 6.1 પ્રાસ્તાવિક

આગળનાં ધોરણોમાં આપણે એક ચલ સુરેખ સમીકરણો તથા બે ચલની સુરેખ સમીકરણ સંહિતનો ઉકેલ મેળવ્યો છે. વળી આપણે કેટલાંક વિધાનો દ્વારા વર્ણવેલા કૂટપ્રશ્નોને પણ આવાં સમીકરણોમાં પરિવર્તિત કર્યાં હતાં અને તેમના ઉકેલ મેળવ્યા હતા. હવે પછી સ્વભાવિક રીતે પ્રશ્ન ઉદ્ભવે કે વ્યવહારમાં હંમેશાં પ્રત્યેક કૂટપ્રશ્નનું પરિવર્તન સમીકરણમાં થાય તે જરૂરી છે ? ઉદાહરણ તરીકે, તમારા વર્ગમાં બધા જ વિદ્યાર્થીઓની ઊંચાઈ 160 સેમીથી ઓછી છે. તમારા વર્ગમાં વધુમાં વધુ 60 ટેબલ કે ખુરશીઓ કે બંને સમાઈ શકે છે. અહીં આપણને એવાં વિધાનો મળે છે કે જેમાં '<' (થી ઓછું), '>' (થી વધુ), '≤' (થી ઓછું કે બરાબર) અને ≥ (થી વધુ કે બરાબર) જેવા સંકેતો પણ ઉદ્ભવી શકે છે. આવી અભિવ્યક્તિને **સુરેખ અસમતા** (Linear Inequalities) કહે છે.

આ પ્રકરણમાં આપણે એક ચલમાં તથા બે ચલમાં સુરેખ અસમતાઓનો અભ્યાસ કરીશું. ગણિત, વિજ્ઞાન, આંકડાશાસ્ત્રમાં, મહત્તમ, ન્યૂનતમના પ્રશ્નો (ઇષ્ટ કિંમતના પ્રશ્નો) (optimisation problems), અર્થશાસ્ત્ર, મનોવિજ્ઞાન વગેરેનો અભ્યાસ કરવામાં અસમતાઓ ઉપયોગી છે.

#### 6.2 અસમતાઓ

હવે આપણે કેટલીક પરિસ્થિતિઓ વિચારીએ :

(i) રિવ ₹ 200 લઈને ચોખા ખરીદવા બજારમાં જાય છે. ચોખા એક કિલોના પૅકેટમાં ઉપલબ્ધ છે. 1 કિલો ચોખાના પૅકેટની કિંમત ₹ 30 છે. હવે જો x એ રિવએ ખરીદેલા ચોખાનાં પૅકેટોની સંખ્યા દર્શાવે તો, તેણે ખર્ચ કરેલી કુલ રકમ ₹ 30x થાય.

સુરેખ અસમતાઓ

અહીં તેને ચોખાનાં પૅકેટો જ ખરીદવાના હોવાથી તે પૂરા ₹ 200 નો ખર્ચ નહિ કરી શકે. (કેમ?)

આથી, 
$$30x < 200$$
 ... (1)

અહીં સ્પષ્ટ છે કે પરિણામ (I) સમીકરણ નથી, કારણ કે તેમાં સમતાનો સંકેત નથી.

(ii) રેશ્મા પાસે ₹ 120 છે. તેમાંથી તે કેટલાંક રજિસ્ટર અને પેન ખરીદવા માંગે છે. પ્રત્યેક રજિસ્ટરની કિંમત ₹ 40 અને પ્રત્યેક પેનની કિંમત ₹ 20 છે. આ પરિસ્થિતિમાં રેશ્માએ ખરીદેલ રજિસ્ટરની સંખ્યા x અને પેનની સંખ્યા y હોય તો તેના દ્વારા ખર્ચ થયેલ કુલ રકમ ₹ (40x + 20y) થાય.

આ પરિસ્થિતિમાં ખર્ચ થયેલી કુલ ૨કમ ₹ 120 હોઈ શકે છે. તો અહીં, આપણે જોઈ શકીએ છીએ કે વિધાન (2) બે ભાગમાં છે.

$$40x + 20y < 120$$
 ... (3)

અને 
$$40x + 20y = 120$$
 ... (4)

વિધાન (3) એ સમીકરણ નથી તે એક અસમતા છે, જ્યારે વિધાન (4) સમીકરણ છે.

<u>વ્યાખ્યા 1</u>: બે વાસ્તવિક સંખ્યાઓ કે બૈજિક પદાવલી વચ્ચે '<', '>', '≤' અને '≥' જેવા સંબંધો અસમતા રચે છે.

ઉપરનાં વિધાનો (1), (2) અને (3) અસમતાઓ છે. 3 < 5; 7 > 5 એ સંખ્યાત્મક અસમતાનાં ઉદાહરણો છે. x < 5; y > 2;  $x \ge 3$ ,  $y \le 4$  એ શાબ્દિક અસમતાનાં ઉદાહરણો છે.

3 < 5 < 7 (વાંચો : 5 એ 3 થી મોટો છે અને 7 થી નાનો છે),  $3 \le x < 5$  (વાંચો : x એ 3 ને સમાન અથવા 3 થી મોટો છે અને 5 થી નાનો છે),  $2 < y \le 4$  એ દ્વિ-અસમતાનાં ઉદાહરણો છે.

અસમતાઓનાં કેટલાંક ઉદાહરણો નીચે મુજબ છે :

$$ax + b < 0$$
 ... (5)

$$ax + b > 0$$
 ... (6)

$$ax + b \le 0 ... (7)$$

$$ax + b \ge 0 ... (8)$$

$$ax + by < c$$
 ... (9)

$$ax + by \le c \tag{11}$$

$$ax + by \ge c$$
 ... (12)

$$ax^2 + bx + c \le 0 \tag{13}$$

$$ax^2 + bx + c > 0$$
 ... (14)

અસમતાઓ (5), (6), (9), (10) અને (14) એ **યુસ્ત અસમતાઓ** (strict inequalities) છે. જયારે (7), (8), (11), (12), અને (13) ને **મિશ્ર અસમતા** (slack inequalities) કહે છે. અસમતાઓ (5) થી (8) એ એક ચલ x ની સુરેખ અસમતા છે. (જયાં  $a \neq 0$ ) અસમતાઓ (9) થી (12) એ શૂન્યેતર a તથા b માટે બે ચલ x અને y માં સુરેખ અસમતાઓ છે.

અસમતાઓ (13) અને (14) એ સુરેખ અસમતાઓ નથી. (હકીકતમાં તો  $a \neq 0$  માટે આ એક ચલની દ્વિઘાત અસમતા છે.) આ પ્રકરણમાં આપણે ફક્ત એક ચલ અને બે ચલની સુરેખ અસમતાનો જ અભ્યાસ કરીશું.

#### 6.3 એક ચલમાં સુરેખ અસમતાનો બૈજિક ઉકેલ અને તેનું આલેખ પર નિરૂપણ :

વિભાગ 6.2 ના વિધાન(1) માં આપણી પાસે અસમતા 30x < 200 હતી. અહીં x એ ચોખાનાં પૅકેટની સંખ્યા દર્શાવે છે. અહીં સ્પષ્ટ છે કે x એ ઋણ પૂર્ણાંક કે અપૂર્ણાંક સંખ્યા હોઈ શકે નહિ. આ અસમતામાં ડાબી બાજુ 30x અને જમણી બાજુ 200 છે. તેથી

જો x = 0, તો, ડાબી બાજુ = 30 (0) = 0 < 200 (જમણી બાજુ) સત્ય છે.

જો x = 1, તો, ડાબી બાજુ = 30(1) = 30 < 200 (જમણી બાજુ) સત્ય છે.

જો x = 2, તો, ડાબી બાજુ = 30(2) = 60 < 200, સત્ય છે.

જો x = 3, તો, ડાબી બાજુ = 30(3) = 90 < 200, સત્ય છે.

જો x = 4, તો, ડાબી બાજુ = 30 (4) = 120 < 200, સત્ય છે.

જો x = 5, તો, ડાબી બાજુ = 30 (5) = 150 < 200, સત્ય છે.

જો x = 6, તો, ડાબી બાજુ = 30 (6) = 180 < 200, સત્ય છે.

જો x = 7, તો, ડાબી બાજુ = 30(7) = 210 < 200, મિથ્યા છે.

ઉપરની પરિસ્થિતિમાં આપણે જોઈ શકીએ છીએ કે x ની જે કિંમતો માટે અસમતા સત્યવિધાન દર્શાવે તેવી કિંમતો 0,1,2,3,4,5,6 છે. x ની જે કિંમતો માટે અસમતા સત્યવિધાન દર્શાવે તેવી કિંમતોને અસમતાનો *ઉકેલ* કહે છે. આવા તમામ ઉકેલોથી બનતા ગણ  $\{0,1,2,3,4,5,6\}$  ને અસમતાનો *ઉકેલ ગણ* કહે છે.

આમ, ચલની જે કિંમતો માટે આપેલ એક ચલ અસમતા સત્ય વિધાન દર્શાવે તે કિંમતોને અસમતાનો ઉકેલ કહે છે.

આપણે ઉપરની અસમતાનો ઉકેલ પ્રયત્ન દ્વારા ક્ષતિ-નિવારણ પદ્ધતિથી મેળવ્યો. આ બહુ કાર્યક્ષમ પદ્ધતિ નથી. દેખીતી રીતે આ પદ્ધતિ ખૂબ સમય માગી લે તેવી અને ક્યારેક બિનઅસરકારક છે. આપણને અસમતાના ઉકેલ માટે વધુ સારી રીતે અને વ્યવસ્થિત રીતે ઉકેલ મળે તેવી પદ્ધતિની જરૂર છે. આ પહેલાં આપણે સંખ્યાત્મક અસમતાના કેટલાક વધુ ગુણધર્મો જોઈશું અને અસમતાનો ઉકેલ મેળવતી વખતે તેમનો નિયમ તરીકે ઉપયોગ કરીશું.

સુરેખ સમીકરણોનો ઉકેલ મેળવતી વખતે તમે નીચેના નિયમોને યાદ રાખજો:

નિયમ: 1 સમીકરણની બંને બાજુએ સમાન સંખ્યા ઉમેરી (કે તેમાંથી બાદ) કરી શકાય છે.

નિયમ : 2 સમીકરણની બંને બાજુને સમાન શૂન્યેતર સંખ્યા વડે ગુણી (કે ભાગી) શકાય છે.

અસમતાઓનો ઉકેલ મેળવતી વખતે પણ આપણે ફરી આ જ નિયમોનો ઉપયોગ કરીશું, પણ આપણે નિયમ 2 માં

સ્રેખ અસમતાઓ

થોડો સુધારો કરીશું, અસમતાની બંને બાજુએ સમાન ઋણ સંખ્યા વડે ગુણતાં (કે ભાગતાં) અસમતાની નિશાની ઊલટાઈ જાય છે. (જેમ કે, '<' ને બદલે '>', ≤' ને બદલે '≥' વગેરે) આ નીચેની હકીકત પરથી સ્પષ્ટ છે ઃ

$$3 > 2$$
 પરંતુ  $-3 < -2$ , 
$$-8 < -7$$
 પરંતુ  $(-8)(-2) > (-7)(-2)$ , એટલે કે,  $16 > 14$ .

આમ, અસમતાના ઉકેલ માટેના નિયમો નીચે પ્રમાણે છે :

નિયમ 1 : અસમતાની બંને બાજુએ સમાન સંખ્યા ઉમેરતા કે તેમાંથી બાદ કરતાં તેની નિશાની બદલાતી નથી.

નિયમ 2 : અસમતાની બંને બાજુએ સમાન ધન સંખ્યા વડે ગુણતા કે ભાગતાં અસમતાની નિશાની બદલાતી નથી, પણ અસમતાની બંને બાજુએ સમાન ઋણ સંખ્યા વડે ગુણતાં કે ભાગતાં અસમતાની નિશાની *ઊલટાઈ* જાય છે.

ચાલો હવે, આપણે કેટલાંક ઉદાહરણોનો વિચાર કરીએ.

ઉદાહરણ 1 : (i) પ્રાકૃતિક સંખ્યા x (ii) પૂર્ણાંક સંખ્યા x માટે 30 x < 200 ઉકેલો.

ઉકેલ : અહીં  $30 \times 200$  આપેલ છે.

અથવા 
$$\frac{30x}{30} < \frac{200}{30}$$
 (નિયમ-2) તેથી,  $x < \frac{20}{3}$ 

(i) x પ્રાકૃતિક સંખ્યા હોય તો નીચેની કિંમતો માટે અસમતા સત્યવિધાન દર્શાવે છે.

પ્રાકૃતિક સંખ્યા 1, 2, 3, 4, 5, 6.

અસમતાનો ઉકેલ ગણ :  $\{1, 2, 3, 4, 5, 6\}$  છે.

(ii) x પૂર્ણાંક સંખ્યા હોય તો આપેલ અસમતાનો ઉકેલ...,-3, -2,-1, 0, 1, 2, 3, 4, 5, 6 છે. અસમતાનો ઉકેલ ગણ  $\{..., -3, -2, -1, 0, 1, 2, 3, 4, 5, 6\}$  છે.

**ઉદાહરણ 2**: (i) પૂર્ણાંક સંખ્યા x (ii) વાસ્તવિક સંખ્યા x માટે 5x - 3 < 3x + 1 ઉકેલો.

ઉકેલ: અહીં, 5x-3 < 3x+1

$$5x - 3 + 3 < 3x + 1 + 3$$
 (નિયમ 1)

5x < 3x + 4

$$5x - 3x < 3x + 4 - 3x$$
 (નિયમ 1)

2x < 4

$$x < 2$$
 (नियभ 2)

- (i) x પૂર્ણાંક સંખ્યા હોય તો આપેલ અસમતાનો ઉકેલ ..., -4, -3, -2, -1, 0, 1 છે.
- (ii) જ્યારે x વાસ્તવિક સંખ્યા હોય ત્યારે આપેલ અસમતાનો ઉકેલ x < 2, એટલે, 2 થી ઓછી હોય એવી તમામ વાસ્તવિક સંખ્યાઓ છે. તેથી આ અસમતાનો ઉકેલ ગણ  $x \in (-\infty, 2)$  છે.

આપણે અસમતાઓનો ઉકેલ પ્રાકૃતિક સંખ્યા ગણ, પૂર્ણાંક સંખ્યાગણ અને વાસ્તવિક સંખ્યાગણમાં મેળવ્યો. હવેથી જ્યાં પણ નિર્દેશિત કરવામાં આવ્યું ન હોય, ત્યાં આ પ્રકરણમાં આપણે અસમતાનો ઉકેલ વાસ્તવિક સંખ્યાગણમાં મેળવીશું.

ઉદાહરણ 3: 4x + 3 < 6x + 7 ઉકેલો.

ઉકેલ : અહીં, 4x + 3 < 6x + 7

અથવા 4x - 6x < 6x + 4 - 6x

અથવા -2x < 4 અથવા x > -2

આથી, આપેલ અસમતાનો ઉકેલ – 2 થી મોટી પ્રત્યેક વાસ્તવિક સંખ્યાનો ગણ છે.

ઉકેલ ગણ (-2, ∞) છે.

ઉદાહરણ 4:  $\frac{5-2x}{3} \le \frac{x}{6} - 5$  ઉકેલો.

**Geometric**  $\frac{5-2x}{3} \le \frac{x}{6} - 5$ 

અથવા  $2(5-2x) \le x-30$ .

અથવા  $10 - 4x \le x - 30$ 

અથવા  $-5x \le -40$ , એટલે કે,  $x \ge 8$ 

આથી, આપેલ અસમાનતાનો ઉકેલ 8 થી મોટી કે 8 ને સમાન પ્રત્યેક વાસ્તવિક સંખ્યા x છે. ઉકેલ ગણ  $[8,\infty)$  છે.

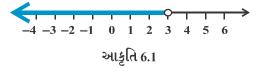
ઉદાહરણ 5: અસમતા 7x + 3 < 5x + 9 નો ઉકેલ શોધી તેનો આલેખ સંખ્યારેખા પર દર્શાવો.

**334:** 7x + 3 < 5x + 9

અથવા 2x < 6

અથવા x < 3

આપેલ અસમતાનો સંખ્યારેખા પર આકૃતિ 6.1 પ્રમાણે દર્શાવાય.



ઉદાહરણ 6: અસમતા  $\frac{3x-4}{2} \ge \frac{x+1}{4} - 1$  નો ઉકેલ શોધો અને તેને સંખ્યારેખા પર દર્શાવો.

ઉકેલ:

$$\frac{3x-4}{2} \ge \frac{x+1}{4} - 1$$

અથવા  $\frac{3x-4}{2} \ge \frac{x-3}{4}$ 

સુરેખ અસમતાઓ 122

- $\therefore 2(3x-4) \ge (x-3)$
- $\therefore$   $6x 8 \ge x 3$
- $\therefore$  5 $x \ge 5$  અથવા  $x \ge 1$

ઉકેલ સંખ્યારેખા પર આકૃતિ 6.2 માં દર્શાવેલ છે.



ઉદાહરણ 7: એક વિદ્યાર્થી ધોરણ 11ની પ્રથમ અને બીજા સત્રની પરીક્ષામાં અનુક્રમે 62 અને 48 ગુણ મેળવે છે. હવે તેણે વાર્ષિક પરીક્ષામાં કેટલા ન્યૂનતમ ગુણ મેળવવા જોઈએ કે જેથી તેના સરેરાશ ગુણ ઓછામાં ઓછા 60 થાય?

6કેલ : ધારો કે વિદ્યાર્થી વાર્ષિક પરીક્ષામાં x ગુણ પ્રાપ્ત કરે છે, તો

$$\frac{62+48+x}{3}$$
 ≥ 60 થવું જોઇએ.

અથવા  $110 + x \ge 180$  થવું જોઇએ.

અથવા  $x \ge 70$  થવું જોઇએ.

આથી, વિદ્યાર્થીએ સરેરાશ ન્યૂનતમ ગુણ 60 કરવા માટે વાર્ષિક પરીક્ષામાં ન્યૂનતમ 70 ગુણ લાવવા પડે.

<mark>ઉદાહરણ 8</mark> : બે પૈકીનો પ્રત્યેક 10 થી મોટો હોય અને જેમનો સરવાળો 40 થી ઓછો હોય તેવા ક્રમિક અયુગ્મ પૂર્ણાંકોની જોડ મેળવો.

 $\mathbf{6}$ કેલ ઃ ધારો કે, બે ક્રમિક અયુગ્મ પૂર્શાંકોમાં નાનો અયુગ્મ પૂર્શાંક x છે. તો બીજો અયુગ્મ પૂર્શાંક x +2 થશે. હવે પ્રશ્ન અનુસાર

$$x > 10$$
 ... (1)

અને 
$$x + (x + 2) < 40$$
 ... (2)

(2) પરથી, આપણને 2x + 2 < 40 મળે.

$$x < 19$$
 ... (3)

પરિશામો (1) અને (3), પરથી

10 < x < 19

x અયુગ્મ પૂર્શાંક હોવાથી x એ 11, 13, 15 અને 17 હોઈ શકે.

તેથી, શક્ય ક્રમયુક્ત યુગ્મ (11, 13), (13, 15), (15, 17), (17, 19) બને.

### સ્વાધ્યાય 6.1

- **1.** (i) પ્રાકૃતિક સંખ્યા x (ii) પૂર્ણાંક સંખ્યા x માટે 24x < 100 ઉકેલો.
- 2. (i) પ્રાકૃતિક સંખ્યા x (ii) પૂર્શાંક સંખ્યા x માટે -12x > 30 ઉકેલો.

- **3.** (i) પૂર્ણાંક સંખ્યા *x*
- (ii) વાસ્તવિક સંખ્યા x માટે 5x 3 < 7 ઉકેલો.
- **4.** (i) પૂર્ણાંક સંખ્યા *x*
- (ii) વાસ્તવિક સંખ્યા x માટે 3x + 8 > 2 ઉકેલો.

નીચેની 5 થી 16 ક્રમની અસમતાઓનો વાસ્તવિક સંખ્યા x માટે ઉકેલ મેળવો.

5. 
$$4x + 3 < 5x + 7$$

6. 
$$3x - 7 > 5x - 1$$

7. 
$$3(x-1) \le 2(x-3)$$

8. 
$$3(2-x) \ge 2(1-x)$$

9. 
$$x + \frac{x}{2} + \frac{x}{3} < 11$$

10. 
$$\frac{x}{3} > \frac{x}{2} + 1$$

11. 
$$\frac{3(x-2)}{5} \le \frac{5(2-x)}{3}$$

12. 
$$\frac{1}{2} \left( \frac{3x}{5} + 4 \right) \ge \frac{1}{3} (x - 6)$$

13. 
$$2(2x+3)-10 < 6(x-2)$$

**14.** 
$$37 - (3x + 5) \ge 9x - 8(x - 3)$$

15. 
$$\frac{x}{4} < \frac{(5x-2)}{3} - \frac{(7x-3)}{5}$$

**16.** 
$$\frac{(2x-1)}{3} \ge \frac{(3x-2)}{4} - \frac{(2-x)}{5}$$

નીચેની 17 થી 20 ક્રમની અસમતાઓનો ઉકેલ મેળવો અને તેમને સંખ્યારેખા પર દર્શાવો.

17. 
$$3x - 2 < 2x + 1$$

18. 
$$5x - 3 \ge 3x - 5$$

**19.** 
$$3(1-x) < 2(x+4)$$

**20.** 
$$\frac{x}{2} \ge \frac{(5x-2)}{3} - \frac{(7x-3)}{5}$$

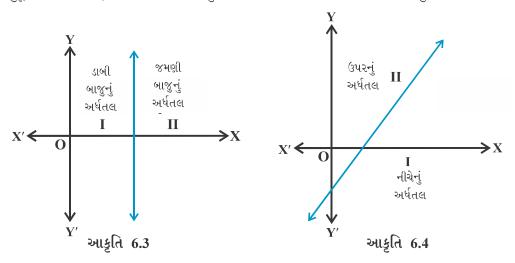
- 21. રવિએ પહેલી બે એકમ કસોટીમાં 70 અને 75 ગુણ મેળવેલ છે. હવે તેણે ત્રીજા કસોટીમાં કેટલા ન્યૂનતમ ગુણ મેળવવા જોઈએ કે જેથી તેના સરેરાશ ગુણ ઓછામાં ઓછા 60 થાય?
- 22. કોઈ એક અભ્યાસક્રમમાં ગ્રેડ 'A' મેળવવા માટે પાંચ પરીક્ષાની સરેરાશ 90 કે તેથી વધુ ગુણ હોવા જોઈએ. (દરેકના 100 ગુણ હોય તેવી પરીક્ષા). જો સુનીતાના પ્રથમ ચાર પરીક્ષાના ગુણ 87, 92, 94 અને 95 હોય, તો તેને તે અભ્યાસક્રમમાં 'A' ગ્રેડ મળે એ માટે તેણે પાંચમી પરીક્ષામાં ન્યૂનતમ કેટલા ગુણ મેળવવા જોઈએ?
- 23. બે પૈકી પ્રત્યેક 10 થી નાનો હોય અને જેમનો સરવાળો 11 થી વધુ હોય તેવા ક્રમિક અયુગ્મ ધન પૂર્ણાંકોની જોડ મેળવો.
- 24. બે પૈકી પ્રત્યેક 5 થી મોટો હોય અને જેમનો સરવાળો 23 થી ઓછો હોય તેવી ક્રમિક યુગ્મ ધન પૂર્ણાંકોની જોડ મેળવો.
- 25. ત્રિકોણની સૌથી મોટી બાજુની લંબાઈ તેની સૌથી નાની બાજુની લંબાઈ કરતા ત્રણ ગણી છે. આ સિવાયની ત્રીજી બાજુ સૌથી મોટી બાજુથી 2 સેમી નાની છે. ત્રિકોણની પરિમિત્તિ ઓછામાં ઓછી 61 સેમી હોય તો સૌથી નાની બાજુની ન્યૂનતમ લંબાઈ શોધો.
- 26. એક વ્યક્તિ 91 સેમી લાંબા એક પાટિયાના ત્રણ ટુકડા કરવા માગે છે. બીજા ટુકડાની લંબાઈ સૌથી નાના ટુકડાની લંબાઈ કરતા 3 સેમી વધુ છે અને ત્રીજા ટુકડાની લંબાઇ સૌથી નાના ટુકડાની લંબાઈથી બમણી છે. જો ત્રીજા ટુકડાની લંબાઈ બીજા ટુકડાની લંબાઈથી ઓછામાં ઓછી 5 સેમી વધુ હોય, તો સૌથી નાના ટુકડાની શક્ય લંબાઈ શોધો.

સુરેખ અસમતાઓ 124

[સ્ચન : જો સૌથી નાના ટૂકડાની લંબાઈ x હોય તો (x+3) અને 2x અનુક્રમે બીજા અને ત્રીજા ટૂકડાની લંબાઈ છે. આ રીતે  $x+(x+3)+2x \le 91$  અને  $2x \ge (x+3)+5$ ].

#### 6.4 બે ચલમાં સુરેખ અસમતાનો આલેખ પરથી ઉકેલ

અગાઉના વિભાગમાં આપણે એક ચલ અસમતાનો આલેખ જોયો. તે દેશ્યમાન રજૂઆત છે અને અસમતાના ઉકેલને રજૂ કરવાની એક અનુકૂળ રીત છે. હવે, આપણે બે ચલમાં સુરેખ અસમતાના આલેખ વિશે ચર્ચા કરીશું.



આપણે જાણીએ છીએ કે કાર્તેઝિય યામ પદ્ધતિમાં રેખા દ્વારા યામ-સમતલનું બે ભાગમાં વિભાજન છે. પ્રત્યેક ભાગને અર્ધતલ કહે છે. શિરોલંબ રેખા દ્વારા યામ-સમતલનું ડાબું અર્ધતલ અને જમણું અર્ધતલ એમ બે અર્ધતલોમાં વિભાજન થાય છે અને શિરોલંબ ન હોય તેની રેખા દ્વારા યામ-સમતલનું ઉપરના અને નીચેના અર્ધતલોમાં વિભાજન થાય છે. (આકૃતિ 6.3. અને 6.4.)

હવે યામ-સમતલમાં આવેલ કોઇપણ બિંદુ કાં તો રેખા પર હશે અથવા અર્ધતલ I અથવા II માં હશે. હવે, આપણે ચકાસીશું કે સમતલમાં આપેલ બિંદુને અસમતા ax + by < c અથવા ax + by > c સાથે કોઈ સંબંધ છે કે નહિ.

હવે ધારો કે 
$$ax + by = c$$
,  $a \neq 0$ ,  $b \neq 0$  એક રેખા છે. ... (1)

હવે અહીં કોઇપણ બિંદુ (x, y) માટે, ત્રણ શક્યતાઓ છે.

(i) 
$$ax + by = c$$
 (ii)  $ax + by > c$  (iii)  $ax + by < c$ .

અહીં સ્પષ્ટ છે કે વિકલ્પ (i)માં જે બિંદુઓ (x, y) વિકલ્પ (i) નું સમાધાન કરે તે પ્રત્યેક બિંદુ તે રેખા પરનું બિંદુ છે અને આનું પ્રતીપ પણ સત્ય છે.

હવે વિકલ્પ (ii) નો વિચાર કરીએ. સૌપ્રથમ ધારો કે b > 0 છે.

ધારો કે રેખા ax + by = c , b > 0 પર  $P(\alpha, \beta)$  કોઈ પણ બિંદુ છે.

$$\therefore a\alpha + b\beta = c$$

હવે, અર્ધતલ II માં કોઈ બિંદુ  $Q(\alpha, \gamma)$  લો. (આકૃતિ 6.5).

આકૃતિ પરથી દેખીતું જ છે કે,

125

 $\gamma > \beta$  (કેમ ?)

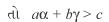
અથવા  $b \gamma > b \beta$  અથવા  $a\alpha + b \gamma > a\alpha + b \beta$  (કેમ ?)

અથવા  $a\alpha + b \gamma > c$ 

આમ,  $Q(\alpha, \gamma)$  અસમતા ax + by > c નું સમાધાન કરે છે.

આમ, ax + by = c ના ઉપરના અર્ધતલ II માં આવેલું પ્રત્યેક બિંદુ ax + by > c નું સમાધાન કરશે.

આથી ઊલટું, ધારો કે  $P(\alpha, \beta)$  એ રેખા ax + by = c પરનું કોઈ પણ બિંદુ છે અને  $Q(\alpha, \gamma)$  બિંદુ ax + by > c નું સમાધાન કરે છે.





$$\therefore \gamma > \beta$$
  $(\because b > 0)$ 

આમ, બિંદુ  $Q(\alpha, \gamma)$  અર્ધતલ II માં આવેલ છે.

આમ અર્ધતલ II ના પ્રત્યેક બિંદુ માટે ax + by > c, અને આથી ઊલટું ax + by > c નું સમાધાન કરતું પ્રત્યેક બિંદુ અર્ધતલ II માં આવેલ છે.

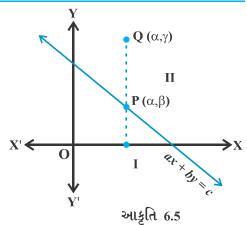
b < 0, માટે પણ ઉપર જેવી જ ચર્ચા થઈ શકે અને સાબિત કરી શકાય કે પ્રત્યેક બિંદુ કે જે ax + by > c નું સમાધાન કરે તે અર્ધતલ I માં આવેલ છે અને આથી ઊલટું પણ સત્ય છે.

આમ આ પરથી તારણ નીકળે છે કે ax + by > c નું સમાધાન કરે તેવું પ્રત્યેક બિંદુ b > 0 કે b < 0 અનુસાર અર્ધતલ II કે I માંથી કોઇ એક અર્ધતલમાં હોય છે અને ઊલટું પણ સત્ય છે.

અસમતા ax + by > c નો આલેખ બેમાંથી એક અર્ધતલ થશે. (તેને *ઉકેલ પ્રદેશ* કહેવાય) અને તેને સમતલમાં રંગીન પ્રદેશ તરીકે દર્શાવાય છે.

#### નોંધ : (1) જેમાં અસમતાનો સંપૂર્ણ ઉકેલ સમાયેલો હોય તેવા પ્રદેશને *અસમતાનો ઉકેલ પ્રદેશ* કહે છે.

- (2) કોઈ અસમતાનો ઉકેલ પ્રદેશ ઓળખવા માટે તે રેખાના કોઈપણ એક અર્ધતલનું બિંદુ (a, b) લો. (જે રેખા પર ન હોય) અને તે બિંદુ તે અસમતાનું સમાધાન કરે છે કે નહિ તે ચકાસો. હવે જો તે બિંદુ અસમતાનું સમાધાન કરે તો તે બિંદુ જે અર્ધતલમાં છે તે અર્ધતલ ઉકેલ પ્રદેશ છે અને તે અર્ધતલ રંગીન કરો. નહિ તો તે બિંદુને ન સમાવતો અર્ધતલ અસમતાનો ઉકેલ પ્રદેશ થાય. સુવિધા માટે બિંદુ (0,0) ને પ્રાથમિકતા આપવામાં આવે છે.
- (3) જો અસમતા  $ax + by \ge c$  અથવા  $ax + by \le c$  પ્રકારની હોય, તો ઉકેલમાં રેખા ax + by = c નાં બિંદુઓનો પણ સમાવેશ થાય છે અને તે દર્શાવવા માટે આપણે ઘાટી રેખા દોરીએ છીએ.
- (4) જો અસમતા ax + by > c અથવા ax + by < c, પ્રકારની હોય, તો ઉકેલમાં રેખા ax + by = c નાં બિંદુઓનો સમાવેશ થતો નથી અને આ દર્શાવવા માટે આપણે તૂટક રેખા દોરીએ છીએ.



સુરેખ અસમતાઓ 126

વિભાગ 6.2 માં આપણે બે ચલો x અને y માં નીચેની સુરેખ અસમતા મેળવી હતી.

$$40x + 20y \le 120$$
 ... (1)

આપણે રેશમા દ્વારા રજિસ્ટર અને પેનને ખરીદવા સંબંધી કૂટપ્રશ્નને ગાણિતિક સ્વરૂપમાં પરિવર્તિત કરી આ અસમતા પ્રાપ્ત કરી હતી.

હવે આ અસમતાનો ઉકેલ માત્ર પૂર્શ સંખ્યા જ હોય તે બાબત ધ્યાનમાં રાખી મેળવીશું, કારણ કે વસ્તુઓની સંખ્યા અપૂર્શાંક કે ઋણ ન હોઈ શકે આ કિસ્સામાં આપણે x અને y ની કિંમતો વિધાન (1) સત્ય બને તે રીતે મેળવીશું. વાસ્તવમાં આવી ક્રમયુક્ત જોડનો ગણ એ અસમતા (1)નો ઉકેલ ગણ છે.

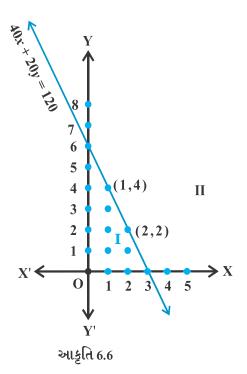
હવે, x=0 લઈ શરૂઆત કરીએ તો સમીકરણ (1)ની ડાબી બાજુ,

$$40x + 20y = 40(0) + 20y = 20y.$$

$$\therefore 20y \le 120$$
 અથવા  $y \le 6$  ... (2)

x=0, માટે y ને સંગત માત્ર 0, 1, 2, 3, 4, 5, 6 મળે. તો આ સ્થિતિમાં (1) ના ઉકેલો (0,0), (0,1), (0,2), (0,3), (0,4), (0,5) અને (0,6) છે.

તે જ રીતે, જ્યારે x = 1, 2 અને 3 હોય તો (1) ના



ઉકેલો (1, 0), (1, 1), (1, 2), (1, 3), (1, 4), (2, 0), (2, 1), (2, 2), (3, 0) છે. તે આકૃતિ 6.6 માં દર્શાવ્યા છે.

હવે આપણે x અને y ના પ્રદેશને પૂર્ણ સંખ્યાઓથી વિસ્તારી વાસ્તવિક સંખ્યાઓ કરીએ અને જોઈએ કે આ સ્થિતિમાં અસમતા (1) ના ઉકેલ શું થશે.

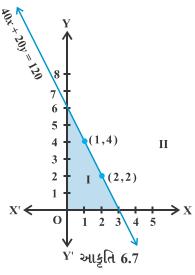
તમે જોશો કે ઉકેલ મેળવવાની આલેખની રીત આ પરિસ્થિતિમાં વધુ સુવિધાજનક છે. આ હેતુ માટે આપણે (1) ને સંગત સમીકરણ

લઈશું અને તેનો આલેખ દોરીશું.

આ આલેખ એક રેખા છે. તે યામ-સમતલનું અર્ધતલ I અને અર્ધતલ II માં વિભાજન કરે છે.

અસમતા I નો આલેખ દોરવા માટે આપણે અર્ધતલ I માં એક બિંદુ (0, 0), લઈએ અને ચકાસીએ કે x અને y ની કિંમતો અસમતાનું સમાધાન કરે છે કે નહિ.

આપણે જોઈ શકીએ છીએ કે  $x=0,\ y=0$  અસમતાનું સમાધાન કરે છે. આ પરથી આપણે કહી શકીએ કે અસમતાનો આલેખ અર્ધતલ I છે.(આકૃતિ 6.7) વળી, રેખા પરનું પ્રત્યેક બિંદુ પણ અસમતા (1) નું સમાધાન કરે છે. આથી રેખા પણ આલેખનો એક ભાગ છે.

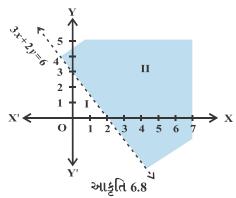


આમ, આપેલ અસમતાનો આલેખ રેખા સહિત અર્ધતલ I છે. અહીં સ્પષ્ટ છે કે અર્ધતલ II આલેખનો ભાગ નથી. આમ, અસમતા (I)નો *ઉકેલ* આ આલેખનાં તમામ બિંદુઓ છે. (રેખાના સમાવેશ સહિત અર્ધતલ I)

હવે, આપણે કેટલાંક ઉદાહરણોની મદદથી બે ચલની સુરેખ અસમતાનો ઉકેલ મેળવવાની ઉપર દર્શાવેલ રીત સમજીએ.

ઉદાહરણ 9: 3x + 2y > 6 નો ઉકેલ આલેખ દ્વારા દર્શાવો.

ઉકેલ : 3x + 2y = 6નો આલેખ તૂટક રેખા દ્વારા આકૃતિ 6.8 માં દર્શાવેલ છે. આ રેખા xy સમતલને બે અર્ધતલો I અને II માં વિભાજિત કરે છે. હવે આપણે એક બિંદુ (જે રેખા પર નથી) (0,0) પસંદ કરીએ. તે અર્ધતલ I માં X' આવેલ છે (આકૃતિ 6.8). હવે આપણે ચકાસીએ કે આ બિંદુ અસમતાનું સમાધાન કરે છે કે નહિ. (0,0) એ ઉકેલ નથી કારણ કે



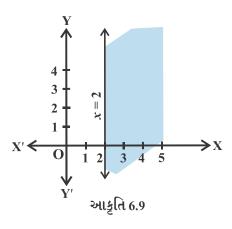
$$3(0) + 2(0) > 6$$

અથવા 0 > 6, સત્ય નથી. આથી, અર્ધતલ I આપેલ અસમતાનો ઉકેલ નથી. સ્પષ્ટ છે કે રેખા પર આપેલ કોઇ પણ બિંદુ યુસ્ત અસમતાનું સમાધાન કરતું નથી. બીજા શબ્દોમાં કહીએ તો રંગીન અર્ધતલ II ઉકેલ પ્રદેશ દર્શાવે છે. તેમાં રેખા પરનાં બિંદુઓનો સમાવેશ થતો નથી.

ઉદાહરણ 10 : દ્વિ-પરિમાણીય યામ-સમતલમાં  $3x-6\geq 0$  નો ઉકેલ આલેખ દ્વારા દર્શાવો.

ઉંકેલ : 3x - 6 = 0 નો આલેખ આકૃતિ 6.9 માં દર્શાવેલ છે.

હવે આપણે એક બિંદુ (0,0)ને પસંદ કરી તેને અસમતામાં મૂકતાં, આપણને  $3(0)-6\geq 0$  અથવા  $-6\geq 0$  મળશે, જે સત્ય નથી. આથી ઉકેલ પ્રદેશ રેખા x=2 ના(0,0)ને ન સમાવતો રેખાની જમણી બાજુનો રંગીન પ્રદેશ છે. આલેખ રેખાને સમાવે છે.

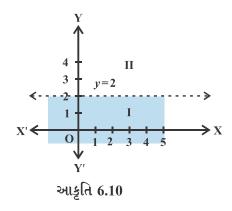


ઉદાહરણ 11:y < 2 નો ઉકેલ આલેખ દ્વારા મેળવો.

ઉકેલઃ રેખા y = 2 નો આલેખ આકૃતિ 6.10 માં દર્શાવેલ છે.

આપણે રેખાની નીચેના અર્ધતલ I માં એક બિંદુ (0,0) પસંદ કરીએ. y=0ને આપેલ અસમતામાં મૂકતાં, આપણને  $1\times 0<2$  અથવા 0<2 મળે, જે સત્ય છે.

આથી, ઉકેલ પ્રદેશ રેખા y=2 ની નીચેનો રંગીન પ્રદેશ છે, આમ રેખાની નીચેનું પ્રત્યેક બિંદુ (રેખા પરનાં બિંદુઓનો સમાવેશ થતો નથી.) આપેલ અસમતાનો ઉકેલ પ્રદેશ દર્શાવે છે.



સુરેખ અસમતાઓ

#### સ્વાધ્યાય 6.2

નીચેની અસમતાઓનો ઉકેલ ગણ આલેખ પર દ્વિ-પરિમાણીય યામ-સમતલમાં મેળવો :

1. 
$$x + y < 5$$

2. 
$$2x + y \ge 6$$

3. 
$$3x + 4y \le 12$$

4. 
$$y + 8 \ge 2x$$

5. 
$$x - y \le 2$$

6. 
$$2x - 3y > 6$$

7. 
$$-3x + 2y \ge -6$$

8. 
$$3y - 5x < 30$$

9. 
$$y < -2$$

10. 
$$x > -3$$
.

#### 6.5 બે ચલમાં સુરેખ અસમતાઓની સંહતિનો ઉકેલ

આગળના વિભાગમાં આપણે આલેખ દ્વારા બે ચલ રાશિઓની સુરેખ અસમતાઓનો ઉકેલ મેળવવાની રીત શીખી ગયા છીએ. હવે આપણે કેટલાંક ઉદાહરણો દ્વારા આલેખ દ્વારા બે ચલમાં સુરેખ અસમતાઓની સંહતિનો ઉકેલ કેવી રીતે મેળવવો તે સમજીએ.

ઉદાહરણ 12 : નીચેની સુરેખ અસમતાઓની સંહતિનો ઉકેલ આલેખ દ્વારા મેળવો.

$$x + y \ge 5 \qquad \dots (1)$$

$$x - y \le 3 \qquad \dots (2)$$

ઉકેલ: સુરેખ સમીકરણ x+y=5 નો આલેખ આકૃતિ 6.11 માં દર્શાવેલ છે. આપણે જોઈ શકીએ છીએ કે અસમતાનો ઉકેલ, રેખા x+y=5ની ઉપરનું અર્ધતલ છે. આ પ્રદેશને રંગીન કરીએ. તેમાં રેખા પરનાં બિંદુઓનો પણ સમાવેશ થાય છે. હવે આ જ અક્ષો માટે x-y=3 નો આલેખ દોરીએ. તે આકૃતિ 6.11 માં દર્શાવેલ છે. હવે અસમતા (2)નો ઉકેલ રેખા x-y=3 ની ઉપરનો રંગીન પ્રદેશ છે. તેમાં રેખા પરનાં બિંદુઓનો પણ સમાવેશ થાય છે.

અહીં સ્પષ્ટ છે કે બંને અસમતાઓના ઉકેલના રંગીન પ્રદેશથી બનતો હોય તેવા સામાન્ય રંગીન પ્રદેશને આપેલ અસમતા સંહતિનો ઉકેલ પ્રદેશ કહે છે.

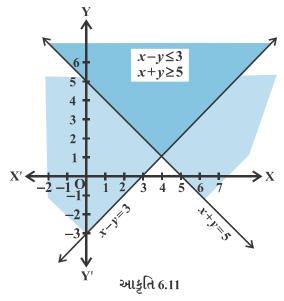
ઉદાહરણ 13 : નીચેની સુરેખ અસમતાઓની સંહતિનો ઉકેલ આલેખ દ્વારા મેળવો.

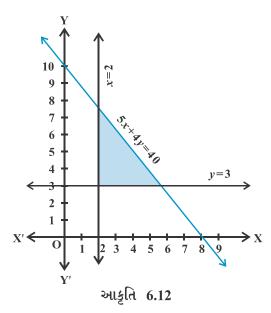
$$5x + 4y \le 40$$
 ... (1)

$$x \ge 2$$
 ... (2)

$$y \ge 3$$
 ... (3)

ઉંકેલ : સૌપ્રથમ સમીકરણો 5x + 4y = 40, x = 2 અને y = 3 દ્વારા દર્શાવતી રેખાઓના આલેખ દોરીએ. હવે આપણે જોઈ શકીએ છીએ કે અસમતા (1)નો ઉંકેલ પ્રદેશ રેખા 5x + 4y = 40 ની નીચેનો





129

રંગીન ભાગ છે. અસમતા (2)નો ઉકેલ રેખા x=2 ની જમણી બાજુનો રંગીન પ્રદેશ અને અસમતા (3) નો ઉકેલ રેખા y=3 ની ઉપરનો રંગીન ભાગ છે. આમ, આ રેખાઓ પરનાં બિંદુઓ અને રંગીન ભાગ આપણી અસમતાઓનો ઉકેલ દર્શાવે છે. (આકૃતિ 6.12)

ઘણીબધી વ્યવહારિક પરિસ્થિતિમાં આવતી અસમતાઓમાંના ચલ x અને y ની કિંમતો અનૃણ હોય છે. ઉદાહરણ તરીકે ઉત્પાદિત એકમો, ખરીદવામાં આવેલી વસ્તુઓ, કામના કલાકો વગેરે. દેખીતી રીતે આવા કિસ્સાઓમાં  $x \ge 0, y \ge 0$  હોય છે અને તેથી તેમનો ઉકેલ પ્રથમ ચરણમાં જ મળે છે.  $\mathbf{Y}$ 

ઉદાહરણ 14 : નીચેની અસમતા સંહતિનો ઉકેલ મેળવો.

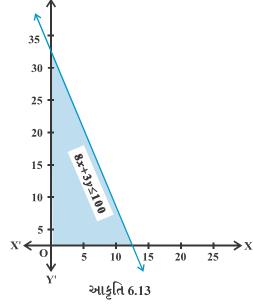
$$8x + 3y \le 100 \qquad ... (1)$$

$$x \ge 0$$
 ... (2)

$$y \ge 0 \qquad \qquad \dots (3)$$

ઉંકેલ : આપણે રેખા 8x + 3y = 100 નો આલેખ દોરીએ. અસમતા  $8x + 3y \le 100$  નો ઉંકેલ રેખાની નીચેનો રંગીન ભાગ છે, જેમાં, રેખા 8x + 3y = 100 પરનાં બિંદુઓનો પણ સમાવેશ થાય છે. (આકૃતિ 6.13).

વળી,  $x \ge 0, y \ge 0$ , છે. તેથી, રંગીન પ્રદેશનું પ્રથમ ચરણમાં આવેલ પ્રત્યેક બિંદુ તથા રેખા અને અક્ષો પરનાં તમામ બિંદુઓ આપેલ અસમતા સંહતિનો ઉકેલ દર્શાવે છે.



<mark>ઉદાહરણ 15</mark> : નીચેની અસમતા સંહતિનો ઉકેલ આલેખ દ્વારા મેળવો.

$$x + 2y \le 8 \tag{1}$$

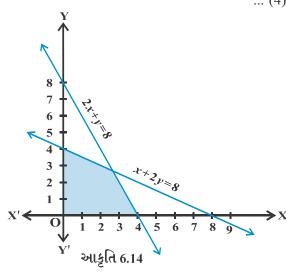
$$2x + y \le 8 \tag{2}$$

$$x \ge 0$$
 ... (3)

$$y \ge 0$$
 ... (4)

ઉંકેલ: આપણે રેખાઓ x + 2y = 8 અને 2x + y = 8 નો આલેખ દોરીએ. અસમતાઓ (1) અને (2)એ રેખાઓની નીચેનો રંગીન ભાગ દર્શાવે છે. તેમાં રેખાઓ પરનાં બંદુઓનો પણ સમાવેશ થાય છે.

વળી,  $x \geq 0$  અને  $y \geq 0$  છે. તેથી પ્રથમ ચરણમાં અને અક્ષો ઉપર રંગીન પ્રદેશમાં આવેલ પ્રત્યેક બિંદુ અસમતા સંહતિનો ઉકેલ દર્શાવશે. (આકૃતિ 6.14).



સુરેખ અસમતાઓ

#### સ્વાધ્યાય 6.3

2.  $3x + 2y \le 12, x \ge 1, y \ge 2$ 

**4.**  $x + y \ge 4$ , 2x - y > 0

**6.**  $x + y \le 6$ ,  $x + y \ge 4$ 

8.  $x + y \le 9$ , y > x,  $x \ge 0$ 

નીચેની અસમતા સંહતિનો ઉકેલ પ્રદેશ આલેખ પરથી મેળવો :

1.  $x \ge 3, y \ge 2$ 

3.  $2x + y \ge 6$ ,  $3x + 4y \le 12$ 

5. 2x - y > 1, x - 2y < -1

7.  $2x + y \ge 8$ ,  $x + 2y \ge 10$ 

9.  $5x + 4y \le 20$ ,  $x \ge 1$ ,  $y \ge 2$ 

**10.**  $3x + 4y \le 60, x + 3y \le 30, x \ge 0, y \ge 0$ 

11.  $2x + y \ge 4$ ,  $x + y \le 3$ ,  $2x - 3y \le 6$ 

**12.**  $x - 2y \le 3$ ,  $3x + 4y \ge 12$ ,  $x \ge 0$ ,  $y \ge 1$ 

**13.**  $4x + 3y \le 60, y \ge 2x, x \ge 3, x, y \ge 0$ 

**14.**  $3x + 2y \le 150, x + 4y \le 80, x \le 15, y \ge 0, x \ge 0$ 

**15.**  $x + 2y \le 10, x + y \ge 1, x - y \le 0, x \ge 0, y \ge 0$ 

#### પ્રકીર્ણ ઉદાહરણો

ઉદાહરણ 16 : ઉકેલો :  $-8 \le 5x - 3 < 7$ 

ઉંકેલ : અહીં, આપણી પાસે બે અસમતાઓ  $-8 \le 5x-3$  અને 5x-3 < 7, છે. તેમને આપણે એક સાથે ઉકેલવી છે.

$$-8 \le 5x -3 < 7$$

અથવા  $-5 \le 5x < 10$ 

અથવા  $-1 \le x < 2$ 

ઉદાહરણ 17 :  $-5 \le \frac{5-3x}{2} \le 8$ .

**Gha:**  $-5 \le \frac{5-3x}{2} \le 8$ 

∴  $-10 \le 5 - 3x \le 16$  અથવા  $-15 \le -3x \le 11$ 

 $\therefore \qquad 5 \ge x \ge -\frac{11}{3}$ 

આને  $\frac{-11}{3} \le x \le 5$  રીતે પણ લખી શકાય.

131 ગણિત : ધોરણ 11

ઉદાહરણ 18 : નીચેની અસમતાઓની સંહતિનો ઉકેલ મેળવો અને ઉકેલને સંખ્યારેખા પર દર્શાવો.

$$3x - 7 < 5 + x$$
 ... (1)

$$11 - 5 x \le 1$$
 ... (2)

ઉકેલ : અસમતા (1) પરથી

$$3x - 7 < 5 + x$$

અથવા x < 6 મળે. ...(3)

અસમતા (2) પરથી

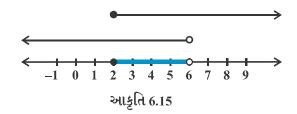
$$11 - 5 x \le 1$$

અથવા

$$-5 x \le -10$$

અથવા  $x \ge 2$  મળે. ... (4)

હવે સંખ્યારેખા પર અસમતા (3) અને (4) ના આલેખ દોરીએ. આપણે જોઈ શકીએ છીએ કે x ની જે કિંમતો બંને અસમતાઓમાં સમાન છે, તેને ઘટ્ટ રેખા દ્વારા આકૃતિ 6.15 માં દર્શાવેલ છે.



આમ, સંહતિનો ઉકેલ 2 અથવા 2 થી મોટી અને 6 થી નાની એવી તમામ વાસ્તવિક સંખ્યાઓ x નો ગણ છે.

આમ, 
$$2 \le x < 6.$$

ઉદાહરણ 19: એક પ્રયોગમાં હાઇડ્રોકલોરિક ઍસિડના દ્રાવણનું ઉષ્ણતામાન  $30^\circ$  અને  $35^\circ$  સેલ્સિયસ વચ્ચે રાખવાનું છે. જો સેલ્સિયસ તથા ફેરનહીટ વચ્ચે રૂપાંતર સૂત્ર  $C=\frac{5}{9}$  (F-32) હોય, તો ફેરનહીટમાં ઉષ્ણતામાનનો વિસ્તાર શું છે ? C અને F અનુક્રમે ઉષ્ણતામાન ડિગ્રી સેલ્સિયસ અને ડિગ્રી ફેરનહીટ દર્શાવે છે.

ઉકેલ : અહીં, 30 < C < 35 આપેલ છે.

જ્યાં 
$$C = \frac{5}{9} (F - 32)$$
, મૂકતાં

$$30 < \frac{5}{9} (F - 32) < 35,$$

અથવા 
$$\frac{9}{5} \times (30) < (F - 32) < \frac{9}{5} \times (35)$$

અથવા 54 < (F - 32) < 63

અથવા 86 < F < 95.

∴ દ્રાવણનું ઉષ્ણતામાન 86° F અને 95° F ની વચ્ચે રાખવું જોઈએ.

સુરેખ અસમતાઓ 132

ઉદાહરણ 20 : એક નિર્માતા પાસે 600 લિટર 12% ઍસિડનું દ્રાવણ છે, તો તેમાં કેટલાં લિટર 30% ઍસિડનું દ્રાવણ ઉમેરવાથી પરિણામી મિશ્રણમાં ઍસિડનું પ્રમાણ 15% થી વધારે પણ 18%થી ઓછું થાય ?

6કેલ : ધારો કે x લિટર 30% ઍસિડનું દ્રાવણ ઉમેરવામાં આવે છે.

આથી કુલ મિશ્રણ (x+600) લિટર

અથવા 
$$\frac{30x}{100} + \frac{12}{100} (600) > \frac{15}{100} (x + 600)$$

અને 
$$\frac{30x}{100} + \frac{12}{100} (600) < \frac{18}{100} (x + 600)$$

અથવા 
$$30x + 7200 > 15x + 9000$$

અને 
$$30x + 7200 < 18x + 10800$$

અથવા 
$$15x > 1800$$
 અને  $12x < 3600$ 

અથવા 
$$x > 120$$
 અને  $x < 300$ ,

આમ, 120 લિટરથી વધુ અને 300 લિટરથી ઓછું 30 % ઍસિડનું દ્વાવણ ઉમેરવું જોઈએ.

#### પ્રકીર્ણ સ્વાધ્યાય 6

નીચેની અસમતાઓનો ઉકેલ શોધો : (1 થી 6)

1. 
$$2 \le 3x - 4 \le 5$$

2. 
$$6 \le -3 (2x-4) < 12$$

3. 
$$-3 \le 4 - \frac{7x}{2} \le 18$$

4. 
$$-15 < \frac{3(x-2)}{5} \le 0$$

5. 
$$-12 < 4 - \frac{3x}{-5} \le 2$$

6. 
$$7 \le \frac{(3x+11)}{2} \le 11$$

નીચેની અસમતાઓનો ઉકેલ મેળવો અને તેને સંખ્યારેખા પર દર્શાવો (7 થી 10)

7. 
$$5x + 1 > -24$$
,  $5x - 1 < 24$ 

8. 
$$2(x-1) < x+5$$
,  $3(x+2) > 2-x$ 

9. 
$$3x-7 > 2(x-6)$$
,  $6-x > 11-2x$ 

**10.** 
$$5(2x-7) - 3(2x+3) \le 0$$
,  $2x+19 \le 6x+47$ 

133 ગણિત : ધોરણ 11

11. એક દ્રાવણનું તાપમાન  $68^\circ$  F અને  $77^\circ$  F વચ્ચે રાખવાનું છે. સેલ્સિયસ તથા ફેરનહીટ વચ્ચે રૂપાંતર સૂત્ર  $F=rac{9}{5}$  C + 32 છે. સેલ્સિયસમાં તાપમાનનો વિસ્તાર શું છે ?

- 12. 8 % બોરિક ઍસિડના દ્રાવણને મંદ કરવા તેમાં 2 % બોરીક ઍસિડનું દ્રાવણ ઉમેરવામાં આવે છે. પરિણામે બોરિક એસિડનું મિશ્રણ 4 % થી વધુ અને 6 % થી ઓછું મળે છે. તો આપણી પાસે 640 લિટર 8 % નું દ્રાવણ હોય, તો તેમાં કેટલાં લિટર 2 % ટકા સાંદ્રતા ધરાવતું દ્રાવણ ઉમેરવું પડે ?
- 13. 45 % એસિડનું 1125 લિટર દ્રાવણ છે, તો પરિણામી મિશ્રણમાં 25% થી વધારે પણ 30 % થી ઓછું ઍસિડ થાય તે માટે દ્રાવણમાં કેટલું પાણી ઉમેરવું જોઈએ ?
- 14. વ્યક્તિનો IQ દર્શાવતું સૂત્ર નીચે પ્રમાણે છે :

$$IQ = \frac{MA}{CA} \times 100$$

અહીં MA વ્યક્તિની માનસિક ઉંમર અને CA તેની સમયાનુક્રમિક ઉંમર છે. જો  $80 \le IQ \le 140$  હોય, તો 12 વર્ષની ઉંમરના બાળકોના સમૂહની માનસિક ઉંમરનો વિસ્તાર શોધો.

#### સારાંશ

- ♦ બે વાસ્તવિક સંખ્યાઓ કે બૈજિક પદાવલીઓ વચ્ચે <, >, ≤ અથવા ≥ મૂકતાં બનતા સંબંધને અસમતા કહે છે.
- ♦ એક અસમતાની બંને બાજુએ સમાન સંખ્યા ઉમેરી કે તેમાંથી બાદ કરી શકાય છે.
- ◆ અસમતાની બંને બાજુએ સમાન ધન સંખ્યા વડે ગુણી (કે ભાગી) શકાય છે. પણ જ્યારે અસમતાની બંને બાજુએ સમાન ઋણ સંખ્યા વડે ગુણતાં (કે ભાગતાં) અસમતાની નિશાની ઊલટાઈ જાય છે.
- ◆ ચલ x ની જે કિંમતો માટે અસમતા સત્યવિધાન દર્શાવે તે કિંમતોને અસમતાનો ઉકેલ કહે છે.
- $\star x < a$  (અથવા x > a) ને સંખ્યારેખા પર દર્શાવવા આપણે સંખ્યા a પર એક નાનું વર્તુળ કરી તેની ડાબી (કે જમણી) બાજુની રેખાને ઘાટી કરીશું.
- ♦  $x \le a$  (અથવા  $x \ge a$ ) ને સંખ્યારેખા પર દર્શાવવા આપણે સંખ્યા a પર એક ઘટ્ટ વર્તુળ કરી તેની ડાબી (કે જમણી) બાજુની રેખાને ઘાટી કરીશું.
- જો અસમતામાં ≤ અથવા ≥ સંકેત આવે તો અસમતાના ઉકેલમાં રેખા પરના બિંદુઓનો પણ સમાવેશ થાય છે. જે ભાગમાં આવેલા સ્વૈરબિંદુથી અસમતાનું સમાધાન થાય તેવી સમતા દ્વારા દર્શાવતી ઘટ્ટ રેખાના ડાબી(નીચે) અથવા જમણી(ઉપર) બાજુનો ભાગ અસમતાનો ઉકેલ છે.
- જો અસમતા < અથવા > સંકેત આવે તો અસમતાના ઉકેલમાં રેખા પરના બિંદુઓનો પણ સમાવેશ થતો નથી. જે ભાગમાં આવેલા સ્વૈરબિંદુથી અસમતાનું સમાધાન થાય તેવી સમતા દ્વારા દર્શાવતી તૂટક રેખાના ડાબી(નીચે) અથવા જમણી(ઉપર) બાજુનો ભાગ અસમતાનો ઉકેલ છે.
- ♦ અસમતાઓની સંહતિનો ઉકેલ પ્રદેશ એટલે તે સંહતિમાં આપેલ પ્રત્યેક અસમતાનું સમાધાન એકસાથે કરતો હોય એવો પ્રદેશ.

## ક્રમચય અને સંચય

**❖** Every body of discovery is mathematical in form because there is no other guidance we can have − DARWIN❖

#### 7.1 પ્રાસ્તાવિક

ધારો કે તમારી પાસે સંખ્યાત્મક તાળાવાળી એક પેટી છે. આ તાળાને ચાર ચક્રો લાગેલાં છે અને દરેક ચક્ર 0 થી 9 પૈકીના દસ અંકો વડે નિર્દેશિત છે. જ્યારે આ ચક્રો પુનરાવર્તન સિવાય અમુક ચોક્કસ 4 અંકોની ખાસ શ્રેશીમાં ગોઠવણી થાય ત્યારે તાળું ખૂલે છે. કોઈક કારણે તમે આ ચોક્કસ અંકોની શ્રેશી ભૂલી ગયા છો. તમને ફક્ત પ્રથમ અંક 7 છે તેટલું યાદ છે. તાળું ખોલવા બાકીના 3 અંકોની કેટલી શ્રેણી તમારે ચકાસવી પડશે ? આ પ્રશ્નનો જવાબ આપવા માટે તમે કદાચ તરત જ બાકીના 9 અંકોમાંથી 3 અંકો સાથે લઈ તમામ શક્ય ગોઠવણી તત્કાળ શરૂ કરી દેશો. પરંતુ આ રીત કંટાળાજનક હશે. કારણ કે આવી શક્ય શ્રેણીઓની સંખ્યા ઘણી મોટી હોઈ શકે. આ પ્રકરણમાં આપણે ગણતરીની કેટલીક પાયાની યુક્તિઓનો અભ્યાસ કરીશું. તેનાથી આપણે આ પ્રશ્નનો જવાબ



Jacob Bernoulli (1654-1705)

3 અંકોની ગોઠવણીની ખરેખર યાદી બનાવ્યા વગર આપી શકીએ. ખરું જોતાં આ યુક્તિઓ વસ્તુઓની ગોઠવણી અને પસંદગી જુદા જુદા કેટલા પ્રકારે કરી શકાય તે વાસ્તવમાં યાદી બનાવ્યા વગર નક્કી કરવામાં મદદરૂપ થાય છે. પ્રથમ પગલા તરીકે આપણે આ બધી યુક્તિઓનો અભ્યાસ કરવા માટે એક ખૂબ જ મૂળભૂત સિદ્ધાંતને ચકાસીશું.

### 7.2 ગણતરીનો મૂળભૂત સિદ્ધાંત

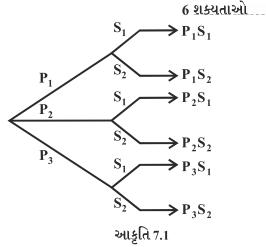
ચાલો આપણે અત્રે આપેલા પ્રશ્નનો વિચાર કરીએ. મોહન પાસે જુદી-જુદી ભાતના 3 પાટલૂન અને જુદી-જુદી ભાતના 2 ખમીસ છે. તે પાટલૂન અને ખમીસની કેટલી ભિન્ન જોડીઓ બનાવીને પોશાક પહેરી શકે ? પાટલૂનની પસંદગી 3 પ્રકારે કરી શકાય, કારણ કે 3 પાટલૂન આપેલ છે. તે જ પ્રમાણે ખમીસની પસંદગી 2 પ્રકારે કરી શકાય. દરેક પાટલૂનની પસંદગી પછી ખમીસ 2 પ્રકારે પસંદ કરી શકાય. માટે પાટલૂન અને ખમીસની  $3 \times 2 = 6$  જોડ થશે.

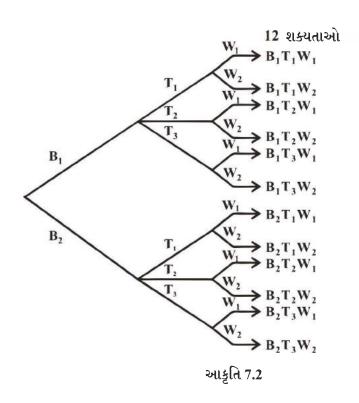
ચાલો આપણે ત્રણ પાટલૂનને  $P_1$ ,  $P_2$ ,  $P_3$  અને બે ખમીસને  $S_1$ ,  $S_2$ નામ આપીએ. આકૃતિ 7.1 માં શક્યતાઓ દર્શાવેલ છે.

ચાલો આપણે આવા જ પ્રકારના બીજા પ્રશ્નનો વિચાર કરીએ.

શબનમ પાસે 2 દફતર, 3 નાસ્તાના ડબ્બા અને 2 પાણીની બોટલ (દરેક વસ્તુ જુદી-જુદી ભાતની) છે. આ પ્રત્યેક પૈકી એક-એક તે કેટલા પ્રકારે શાળાએ લઈ જઈ શકે?

દફતર 2 પ્રકારે પસંદ કરી શકાય. દફતર પસંદ કર્યા પછી નાસ્તાનો ડબો 3 પ્રકારે પસંદ કરી શકાય. આમ, દફતર અને નાસ્તાના ડબ્બાની  $2\times 3=6$  જોડીઓ થશે. આ દરેક જોડી માટે પાણીની બોટલ 2 જુદા જુદા પ્રકારે પસંદ કરી શકાય છે. આમ, શબનમ  $6\times 2=12$  જુદા જુદા પ્રકારે આ બધી વસ્તુઓ શાળાએ લઈ જઈ શકે. જો આપણે 2 દફતરને  $\mathbf{B}_1$ ,  $\mathbf{B}_2$ , ત્રણ નાસ્તાના ડબાને  $\mathbf{T}_1$ ,  $\mathbf{T}_2$ ,  $\mathbf{T}_3$  અને બે પાણીની બોટલને  $\mathbf{W}_1$ ,  $\mathbf{W}_2$ , એવું નામ આપીએ તો આકૃતિ 7.2 માં આ બધી શક્યતાઓને દર્શાવી શકાય.





ક્રમચય અને સંચય 136

ખરેખર, જેને *ગણતરીનો મૂળભૂત સિદ્ધાંત કે ગુણાકારનો સિદ્ધાંત* તરીકે ઓળખાય છે, તેના વડે આ પ્રકારના પ્રશ્નોનો ઉકેલ મેળવવામાં આવે છે. તે દર્શાવે છે કે

"જો એક ઘટના m ભિન્ન પ્રકારે ઉદ્દભવે તથા તેને આનુષંગિક બીજી ઘટના n ભિન્ન પ્રકારે ઉદ્દભવે તો બંને ઘટનાઓ એક સાથે ઉદ્દભવે તેના પ્રકારોની કુલ સંખ્યા m×n છે."

ઉપરના સિદ્ધાંતને મર્યાદિત સંખ્યાની ઘટનાઓ માટે વિસ્તૃત કરી શકાય. ઉદાહરણ તરીકે 3 ઘટનાઓ માટેનો સિદ્ધાંત નીચે પ્રમાણે છે :

"જો એક ઘટના m ભિશ પ્રકારે ઉદ્ભવે, તેને આનુષંગિક બીજી ઘટના n ભિશ પ્રકારે ઉદ્ભવે તથા આ બંનેને અનુરૂપ આનુષંગિક ત્રીજી ઘટના p ભિશ પ્રકારે ઉદ્ભવે તો ત્રણેય ઘટનાઓ એક સાથે ઉદ્ભવે તેવા પ્રકારોની કુલ સંખ્યા  $m \times n \times p$  છે." પ્રથમ પ્રશ્નમાં પાટલૂન અને ખમીસ પહેરવાના માંગેલ પ્રકારો એ નીચે પ્રમાણેની ભિશ્ન ઘટનાઓ એક પછી એક ઉદ્ભવે એ હતી :

- (i) પાટલૂન પસંદ કરવાની ઘટના
- (ii) ખમીસ પસંદ કરવાની ઘટના

બીજા પ્રશ્નમાં માંગેલ પ્રકારો એ આ પ્રમાણેની ભિન્ન ઘટનાઓ એક પછી એક ઉદ્ભવે એ હતી.

- (i) દફતર પસંદ કરવાની ઘટના
- (ii) નાસ્તાનો ડબો પસંદ કરવાની ઘટના
- (iii) પાણીની બોટલ પસંદ કરવાની ઘટના

અહીં બંને વિકલ્પમાં દરેક પ્રશ્નમાં આપેલ ઘટનાઓ વિવિધ ક્રમમાં ઉદ્ભવે છે. પરંતુ આપણે ગમે તે એક શક્ય ક્રમ પસંદ કરવો જોઈએ અને આ ક્રમમાં ભિન્ન ઘટનાઓ કેટલા પ્રકારે ઉદ્ભવે તેની ગણતરી કરી શકાય.

ઉદાહરણ 1 : ROSE શબ્દના મૂળાક્ષરોનો ઉપયોગ કરી 4 મૂળાક્ષરોવાળા અર્થસભર અથવા અર્થરહિત, કેટલા શબ્દો બને તે શોધો. મૂળાક્ષરોનું પુનરાવર્તન કરવાની અનુમતિ નથી.

ઉકેલ: 4 મૂળાક્ષરો વડે ચાર ખાલી સ્થાનો  $\square$   $\square$   $\square$  જેટલા પ્રકારે ભરી શકાય તેટલા શબ્દો બને. આપણે ધ્યાન રાખીશું કે પુનરાવર્તન કરવાનું નથી. 4 મૂળાક્ષરો R, O, S, E માંથી ગમે તે એક મૂળાક્ષર દ્વારા પ્રથમ સ્થાન 4 ભિન્ન પ્રકારે ભરી શકાય. ત્યાર પછી દ્વિતીય સ્થાન બાકી રહેલ 3 મૂળાક્ષરોમાંથી ગમે તે એક દ્વારા 3 ભિન્ન પ્રકારે ભરી શકાય. ત્યાર પછી તૃતીય સ્થાન બાકી રહેલ 2 મૂળાક્ષરોમાંથી ગમે તે એક દ્વારા 2 ભિન્ન પ્રકારે ભરી શકાય. ત્યાર પછી ચતુર્થ સ્થાન 1 પ્રકારે ભરી શકાય. આમ, ગુણાકારના સિદ્ધાંત દ્વારા 4 સ્થાનોને  $4 \times 3 \times 2 \times 1 = 24$  પ્રકારે ભરી શકાય. તેથી માંગેલ શબ્દોની સંખ્યા 24 છે.

ightharpoonup 
i

ઉદાહરણ 2 : ભિન્ન રંગના 4 ધ્વજ આપેલા છે. જો એકની નીચે બીજો ધ્વજ રાખીને એક સંકેત મેળવી શકાય તો આવા કેટલા ભિન્ન સંકેતો બનાવી શકાય ?

ગણિત : ધોરણ 11 137 ઉકેલ : ભિશ રંગના 4 ધ્વજમાંથી એક પછી એક ધ્વજ વડે 2 ખાલી સ્થાનો જેટલા પ્રકારે ભરી શકાય તેટલા સંકેતો મળી શકે. ઉપરનું ખાલી સ્થાન 4 ભિશ ધ્વજ વડે 4 ભિશ પ્રકારે ભરી શકાય. ત્યાર પછી નીચેનું ખાલી સ્થાન બાકી રહેલા 3 ધ્વજમાંથી ગમે તે એક ધ્વજ વડે 3 ભિશ પ્રકારે ભરી શકાય. આમ, ગુણાકારના સિદ્ધાંતથી માંગેલ સંકેતોની સંખ્યા  $4 \times 3 = 12$  છે. ઉદાહરણ 3 : 1, 2, 3, 4, 5 અંકોનો ઉપયોગ કરીને 2 અંકોની કેટલી યુગ્મ સંખ્યાઓ બનાવી શકાય ? (અંકોનું પુનરાવર્તન કરી શકાય.) ઉકેલ : આપેલ પાંચ અંકોના ઉપયોગથી એક પછી એક અંક વડે 2 ખાલી સ્થાનો 📗 📗 જેટલા પ્રકારે ભરી શકાય તેટલી 2 અંકોની સંખ્યા મળે. અહીં આ પ્રશ્નમાં આપણે એકમનું સ્થાન પૂરવાથી શરૂઆત કરીશું, કારણ કે આ સ્થાન માટે ફક્ત અંકો 2 અને 4 જ વિકલ્પ તરીકે પ્રાપ્ય છે. તે સ્થાન 2 પ્રકારે ભરી શકાય. ત્યાર પછી દશકનું સ્થાન આપેલ 5 અંકોમાંથી 5 ભિન્ન પ્રકારે ભરી શકાય,કારણ કે અંકોનું પુનરાવર્તન કરી શકાય છે. આમ, ગુણાકારના સિદ્ધાંતથી માંગેલ બે અંકોની યુગ્મ સંખ્યાઓ  $2 \times 5$  એટલે કે 10 થશે. ઉદાહરણ 4 : એક હારમાં ઊભા કરેલા શિરોલંબ ધ્વજસ્તંભ પર ભિશ રંગના પાંચ ધ્વજ દ્વારા કેટલા સંકેત બનાવી શકાય ? દરેક સંકેતમાં ભિન્ન રંગના બે અથવા બેથી વધુ ધ્વજ (એકની નીચે બીજો) હોઈ શકે. ઉક્રેલ : કોઈ પણ સંકેત 2 ધ્વજ, 3 ધ્વજ, 4 ધ્વજ કે 5 ધ્વજનો હોઈ શકે. હવે આપણે 2 ધ્વજ, 3 ધ્વજ, 4 ધ્વજ કે 5 ધ્વજ ધરાવતા શક્ય તમામ સંકેતોની અલગથી ગણતરી કરીશું અને પછી દરેકનો સરવાળો કરીશું. આપેલ 5 ધ્વજમાંથી એક પછી એક 2 ખાલી સ્થાનો જેટલા પ્રકારે ભરી શકાય તેટલા બે ધ્વજ ધરાવતા સંકેતો મળે. ગુણાકારના સિદ્ધાંત વડે તે  $5 \times 4 = 20$  પ્રકારે મળે. જેટલા પ્રકારે ભરી શકાય તેટલા 3 ધ્વજ ધરાવતા સંકેતો મળે. તે તે જ રીતે 5 ધ્વજ વડે 3 ખાલી સ્થાનો  $5 \times 4 \times 3 = 60$  પ્રકારે મળે. એ જ રીતે આગળ વધતાં આપણે શોધી શકીએ કે, 4 ધ્વજ ધરાવતા સંકેતોની સંખ્યા  $5 \times 4 \times 3 \times 2 = 120$ અને 5 ધ્વજ ધરાવતા સંકેતોની સંખ્યા  $5 \times 4 \times 3 \times 2 \times 1 = 120$ માંગેલ સંકેતોની સંખ્યા 20 + 60 + 120 + 120 = 320.

### સ્વાધ્યાય 7.1

- નીચેની શરતો અનુસાર 1, 2, 3, 4 અને 5 અંકોનો ઉપયોગ કરી 3 અંકોની કેટલી સંખ્યા બનાવી શકાય?
  - (i) અંકોનું પુનરાવર્તન કરવાની અનુમતિ છે.
  - (ii) અંકોનું પુનરાવર્તન કરવાની અનુમતિ નથી.
- 2. જો અંકોનું પુનરાવર્તન કરી શકાય તો 1, 2, 3, 4, 5, 6 અંકો વડે 3 અંકોની કેટલી યુગ્મ સંખ્યાઓ બને ?

ક્રમચય અને સંચય 138

3. પુનરાવર્તન સિવાય અંગ્રેજી મૂળાક્ષરોના પ્રથમ 10 અક્ષરોના ઉપયોગથી 4 અક્ષરોવાળા કેટલા સંકેત બનાવી શકાય?

- 4. 0 થી 9 અંકોનો ઉપયોગ કરીને 5 અંકોવાળા કેટલા ટેલિફોન નંબર બનાવી શકાય ? દરેક નંબરની શરૂઆત સંખ્યા
   67 થી થાય છે તથા અંકોનું પુનરાવર્તન થતું નથી.
- 5. એક સિક્કો ત્રણ વખત ઉછાળવામાં આવે છે અને પરિણામ નોંધવામાં આવે છે. કેટલાં શક્ય પરિણામો હશે ?
- 6. ભિન્ન રંગોના 5 ધ્વજ આપેલ છે. એકની નીચે બીજો એવા 2 ધ્વજથી બનતા કેટલા સંકેત બનાવી શકાય ?

#### 7.3 કમચયો

અગાઉના વિભાગના ઉદાહરણ 1 માં આપણે ખરેખર શક્ય ભિન્ન ગોઠવણીઓની ગણતરી કરતા હતા. જેમકે ROSE, REOS, ..., વગેરે. અહીં, આ યાદીમાં દરેક ગોઠવણી બીજી ગોઠવણી કરતાં જુદી પડે છે. બીજા શબ્દોમાં કહીએ તો, અક્ષરોનો ક્રમ અગત્યનો છે. દરેક ગોઠવણીને ભિન્ન અક્ષરોને એક સાથે લેવાથી બનતો ક્રમચય કહે છે. હવે, જો આપણે NUMBER શબ્દના અક્ષરોથી પુનરાર્વતન કર્યા સિવાય ત્રણ અક્ષરોવાળા અર્થસભર કે અર્થરહિત શબ્દો નક્કી કરવા હોય, તો NUM,NMU, MUN, NUB, ..., વગેરે ગોઠવણીની ગણતરી આપણે કરવી પડે. અહીં, આપણે 6 ભિન્ન અક્ષરોમાંથી 3 અક્ષરો એક સાથે આવે તેવા ક્રમચયોની ગણતરી કરીએ છીએ.

માંગેલ શબ્દોની સંખ્યા  $= 6 \times 5 \times 4 = 120$ 

(ગુણાકારના સિદ્ધાંતના ઉપયોગથી)

જો અક્ષરોના પુનરાવર્તનની અનુમતિ હોય તો માંગેલ શબ્દોની સંખ્યા  $6 \times 6 \times 6 = 216$  થશે.

વ્યાખ્યા 1 : આપેલ વસ્તુઓમાંથી અમુક અથવા બધી જ વસ્તુઓની ચોક્કસ ગોઠવણી એ ક્રમચય છે.

નીચેના પેટા વિભાગમાં આપણે પ્રશ્નોના જવાબ ઝડપથી આપી શકીએ તે માટેનાં જરૂરી સૂત્રો મેળવીશું.

### 7.3.1 જયારે ભિન્ન વસ્તુ આપેલી હોય ત્યારે ક્રમચયો

પ્રમેય 1:n ભિન્ન વસ્તુઓમાંથી આપેલી r વસ્તુઓ,  $0< r \le n$  એક સાથે લેવાથી (વસ્તુઓનું પુનરાવર્તન નથી.) મળતાં કમચયોની સંખ્યા n(n-1)(n-2)...(n-r+1) થાય તથા તેને સંકેતમાં  $^n\!P_r$  થી દર્શાવાય છે.

સંખ્યા થશે. પ્રથમ સ્થાન n પ્રકારે ભરી શકાય, ત્યાર પછી દ્વિતીય સ્થાન (n-1) પ્રકારે ભરી શકાય, ત્યારે પછી તૃતીય સ્થાન (n-2) પ્રકારે ભરી શકાય ..., ત્યાર પછી r મું સ્થાન (n-(r-1)) પ્રકારે ભરી શકાય. આમ, r ખાલી સ્થાનો એક પછી એક ભરવાના પ્રકારની કુલ સંખ્યા

$$n(n-1)$$
  $(n-2)$  ...  $(n-(r-1))$  અથવા  $n$   $(n-1)$   $(n-2)$  ...  $(n-r+1)$  થાય.

પદાવલિ  $^n$ P, ની આ અભિવ્યક્તિ કષ્ટદાયક છે, માટે આપણે પદાવલિની લંબાઈ ઘટાડવામાં મદદરૂપ થઈ શકે એવા સંકેતની જરૂર છે. આ માટે સંકેત n! (ક્રમગુણિત n અથવા n ક્રમગુણિત વંચાય છે) આપણી મદદે આવે છે. આગળની સમજૂતીમાં આપણે n! ખરેખર શું છે તે સમજીશું.

### 7.3.2 ક્રમગુણિતનો સંકેત :

સંકેત n! એ પ્રથમ n પ્રાકૃતિક સંખ્યાઓનો ગુણાકાર દર્શાવે છે, એટલે કે

ગુણાકાર  $1 \times 2 \times 3 \times \ldots \times (n-1) \times n$  ને સંકેત n!. વડે દર્શાવાય છે. આપણે આ સંકેતને 'n factorial' તરીકે વાંચીશું.

આમ, 
$$1 \times 2 \times 3 \times 4 \dots \times (n-1) \times n = n!$$

1 = 1!

 $1 \times 2 = 2!$ 

 $1 \times 2 \times 3 = 3!$ 

 $1 \times 2 \times 3 \times 4 = 4!$ 

આ જ રીતે આગળ વધી શકાય.

આપણે  $5! = 5 \times 4! = 5 \times 4 \times 3! = 5 \times 4 \times 3 \times 2! = 5 \times 4 \times 3 \times 2 \times 1!$  લખી શકીએ.

સ્પષ્ટ રીતે કોઈ પણ પ્રાકૃતિક સંખ્યા n માટે

$$n! = n (n - 1)!$$

$$= n (n - 1) (n - 2)!$$

$$= n (n - 1) (n - 2) (n - 3)!$$
[(n > 2) હોય તો]

આ જ રીતે આગળ વધી શકાય.

આપણે 0!=1 વ્યાખ્યાયિત કરીએ છીએ.

ઉદાહરણ 5: કિંમત શોધો (i) 5!

(ii) 7!

(iii) 7! - 5!

ઉકેલ:

- (i)  $5! = 1 \times 2 \times 3 \times 4 \times 5 = 120$
- (ii)  $7! = 1 \times 2 \times 3 \times 4 \times 5 \times 6 \times 7 = 5040$
- (iii) 7! 5! = 5040 120 = 4920

ઉદાહરણ 6 : કિંમત શોધો : (i)  $\frac{7!}{5!}$  (ii)  $\frac{12!}{(10!)(2!)}$ 

ઉકેલ :

(i) અહીં, 
$$\frac{7!}{5!} = \frac{7 \times 6 \times 5!}{5!} = 7 \times 6 = 42$$

(ii) 
$$\frac{12!}{(10!)(2!)} = \frac{12 \times 11 \times (10!)}{(10!) \times (2)} = 6 \times 11 = 66$$

ક્રમચય અને સંચય 140

ઉદાહરણ 7: n=5 અને r=2 માટે  $\frac{n!}{r!(n-r)!}$  ની કિંમત શોધો.

ઉકેલ: આપણે 
$$\frac{5!}{2!(5-2)!}$$
 ની કિંમત શોધવી છે.  $(n=5, r=2)$ 

અહીં, 
$$\frac{5!}{2!(5-2)!} = \frac{5!}{2! \times 3!} = \frac{4 \times 5}{2} = 10$$

ઉદાહરણ 8: જો  $\frac{1}{8!} + \frac{1}{9!} = \frac{x}{10!}$  હોય, તો x ની કિંમત શોધો.

ઉકેલ : અહીં, 
$$\frac{1}{8!} + \frac{1}{9 \times 8!} = \frac{x}{10 \times 9 \times 8!}$$

$$\therefore 1 + \frac{1}{9} = \frac{x}{10 \times 9} \text{ equi } \frac{10}{9} = \frac{x}{10 \times 9}$$

$$x = 100$$

#### સ્વાધ્યાય 7.2

1. કિંમત શોધો :

(i) 
$$8!$$
 (ii)  $4! - 3!$ 

- 2. 3! + 4! = 7! થશે કે નહિ તે નક્કી કરો.
- 3. કિંમત શોધો  $\frac{8!}{6! \times 2!}$
- 4. જો  $\frac{1}{6!} + \frac{1}{7!} = \frac{x}{8!}$  હોય, તો x ની કિંમત શોધો.
- 5. જયારે (i) n = 6, r = 2 (ii) n = 9, r = 5 હોય ત્યારે  $\frac{n!}{(n-r)!}$  ની કિંમત શોધો.

### 7.3.3 ${}^{n}P_{r}$ ना सूत्रनी प्राप्ति :

$${}^{n}P_{r} = \frac{n!}{(n-r)!}, \ 0 \le r \le n, \ n \ne 0$$

ચાલો આપણે અગાઉના વિભાગમાં આ પ્રમાણેનું જે સૂત્ર નક્કી કર્યું હતું તે જોઈએ.

$${}^{n}P_{r}=n (n-1) (n-2) ... (n-r+1)$$

અંશ અને છેદનો (n-r) (n-r-1) ...  $3 \times 2 \times 1$ , વડે ગુણાકાર કરતાં,

$${}^{n}P_{r} = \frac{n(n-1)(n-2)...(n-r+1)(n-r)(n-r-1)...3\times 2\times 1}{(n-r)(n-r-1)...3\times 2\times 1} = \frac{n!}{(n-r)!},$$

આમ, 
$${}^{n}P_{r} = \frac{n!}{(n-r)!}, \quad \text{જ્યાં } 0 < r \le n$$

અગાઉ કરતાં  $^n\mathrm{P}_r$  માટેની આ અભિવ્યક્તિ વધુ અનુકૂળ છે. વિશેષમાં જ્યારે r=n હોય ત્યારે  $^n\mathrm{P}_n=rac{n!}{0!}=n!$ 

ક્રમચયોની ગણતરી કરવી એ અમૂક અથવા બધી જ વસ્તુઓને કેટલા પ્રકારે એકી સાથે ગોઠવી શકાય તે છે. કોઈ પણ વસ્તુની ગોઠવણી ન કરવી એ બધી જ વસ્તુઓને જેમ છે એમ રહેવા દેવી એ છે અને આપણે જાણીએ છીએ કે, તે માત્ર એક પ્રકારે જ કરી શકાય છે. આમ,

$${}^{n}P_{0} = 1 = \frac{n!}{n!} = \frac{n!}{(n-0)!}$$
 ... (1)

આમ, સૂત્ર (1) એ r = 0 માટે પણ ઉપયુક્ત છે.

તેથી, 
$${}^{n}P_{r} = \frac{n!}{(n-r)!}, \quad 0 \le r \le n, \quad n \ne 0$$

 $\mathbf{y}$ મે $\mathbf{u}$   $\mathbf{2}$  : n ભિન્ન વસ્તુઓમાંથી r વસ્તુઓ પુનરાવર્તન સહિત એકી સાથે લેવામાં આવે, તો મળતા ક્રમચયોની સંખ્યા  $n^r$  થશે.

આની સાબિતી પ્રમેય 1 પ્રમાણે છે અને તેને વાંચક પર છોડી દેવામાં આવે છે.

અહીં, આપણે આગળના વિભાગના અમુક પ્રશ્નો  $^n\mathrm{P}_r$  ના સૂત્રની મદદથી ઉકેલીશું કે જેથી તેની ઉપયોગિતા જોઈ શકાય.

ઉદાહરણ 1 માં માંગેલ શબ્દોની સંખ્યા =  ${}^4P_4$  = 4! = 24. અહીં, પુનરાવર્તનની અનુમતિ નથી. જો પુનરાવર્તનની અનુમતિ હોય, તો માંગેલ શબ્દોની સંખ્યા  $4^4$  = 256.

NUMBER શબ્દના મૂળાક્ષરોનો ઉપયોગ કરી બનતા ત્રણ અક્ષરોવાળા શબ્દોની સંખ્યા =  $^6P_3 = \frac{6!}{3!} = 4 \times 5 \times 6 = 120$ . અહીં, આ પ્રશ્નમાં પણ પુનરાવર્તનની અનુમતિ નથી. જો પુનરાવર્તનની અનુમતિ હોય, તો માંગેલ શબ્દોની સંખ્યા  $6^3 = 216$  થશે. જો આપણે ધારી લઈએ કે કોઈ એક વ્યક્તિ બે પદ ધરાવતા ન હોય તો 12 વ્યક્તિઓમાંથી એક અધ્યક્ષ અને ઉપાધ્યક્ષને  $^{12}P_2 = \frac{12!}{10!} = 11 \times 12 = 132$  પ્રકારે પસંદ કરી શકાય.

### 7.3.4 જ્યારે બધી વસ્તુઓ ભિન્ન ન હોય ત્યારે ક્રમચયોની સંખ્યા :

ધારો કે આપણે ROOT શબ્દના મૂળાક્ષરોની પુનઃગોઠવણી કેટલા પ્રકારે કરી શકાય તે શોધવું છે. આપેલ પ્રશ્નમાં શબ્દના બધા મૂળાક્ષરો ભિશ્ન નથી. અહીં O બે વખત આવે છે અને તે સમાન છે. ચાલો હંગામી રીતે બે O ને આપણે ભિશ્ન માનીએ અને  $O_1$  અને  $O_2$  વડે દર્શાવીએ. આ કિસ્સામાં બધા જ મૂળાક્ષરોને એક સાથે લેતાં 4 મૂળાક્ષરોથી બનતા ક્રમચયોની સંખ્યા 4! થશે. આ પૈકી એક ક્રમચય  $RO_1O_2T$  નો વિચાર કરીએ. જો આપણે  $O_1$  અને  $O_2$  ને ભિશ્ન ન માનીએ તો આ ક્રમચયને અનુરૂપ 2! ક્રમચયો  $RO_1O_2T$  અને  $RO_2O_1T$  એ સમાન ક્રમચયો થશે. એટલે કે  $O_1$  અને  $O_2$  બંને સ્થાન પર O હોય.

∴ માંગેલ ક્રમચયોની સંખ્યા = 
$$\frac{4!}{2!}$$
 =  $3\times4$  = 12

ક્રમચય અને સંચય 142

ચાલો આપણે INSTITUTE શબ્દના મૂળાક્ષરોની પુનઃગોઠવણી કેટલા પ્રકારે કરી શકાય તે શોધીએ. અહીં, 9 મૂળાક્ષરો છે તેમાં I બે વખત અને T ત્રણ વખત આવે છે.

હંગામી રીતે આપણે આ મૂળાક્ષરોને ભિન્ન છે તેમ માનીએ અને તેમને  $I_1, I_2, T_1, T_2, T_3$  વડે દર્શાવીએ. 9 ભિન્ન મૂળાક્ષરોને એકી સાથે લેતા મળતા ક્રમચયોની સંખ્યા 9! થાય. આ પૈકી એક ક્રમચય  $I_1$  NT $_1$  SI $_2$  T $_2$  U E T $_3$  નો વિચાર કરીએ. અહીં, જો  $I_1, I_2$  ને સમાન ન ગણીએ અને  $I_1, I_2, I_3$  ને સમાન ન ગણીએ તો  $I_1, I_2$  ની 2! પ્રકારે ગોઠવણી થઇ શકે તથા  $I_1, I_2, I_3$  ને 3! પ્રકારે ગોઠવી શકાય. માટે પસંદ કરેલા ક્રમચય  $I_1$ NT $_1$ SI $_2$ T $_2$ UET $_3$  ને સાપેક્ષ  $2! \times 3!$  ક્રમચયો સમાન થશે. આથી કુલ ભિન્ન ક્રમચયોની સંખ્યા  $\frac{9!}{2!3!}$  થશે.

નીચે પ્રમાણેના પ્રમેયો આપણે સાબિતી આપ્યા વગર સ્વીકારીશું :

 $\mathbf{y}$ મેય  $\mathbf{3}$ : આપેલ n વસ્તુઓમાંથી p સમસ્વરૂપ વસ્તુઓ હોય અને બાકીની ભિન્ન હોય, તો ક્રમચયોની સંખ્યા  $= \frac{n!}{p!}$ .

ખરેખર, વ્યાપક સ્વરૂપમાં આ પ્રમેય નીચે મુજબ છે :

 $\mathbf{y}$  મેપ  $\mathbf{4}$  : જો આપેલી n વસ્તુઓમાંથી  $p_1$ એક પ્રકારની સમસ્વરૂપ વસ્તુઓ છે,  $p_2$ બીજા પ્રકારની સમસ્વરૂપ વસ્તુઓ છે ...,  $p_k$  એ k માં પ્રકારની સમસ્વરૂપ વસ્તુઓ છે અને બાકીની વસ્તુઓ ભિન્ન છે (જો હોય તો). તો મળતા  $\mathbf{5}$  મચયોની સંખ્યા  $\frac{n!}{p_1! \; p_2! \ldots p_k!}.$ 

ઉદાહરણ 9 : ALLAHABAD શબ્દનાં મૂળાક્ષરોથી બનતા ક્રમચયોની સંખ્યા શોધો.

ઉકેલ : અહીં, 9 મૂળાક્ષરો છે, તેમાંથી A 4 વખત આવે છે L 2 વખત આવે છે અને બાકીના મૂળાક્ષર ભિન્ન છે.

માંગેલ ગોઠવણીની સંખ્યા = 
$$\frac{9!}{4!2!} = \frac{5 \times 6 \times 7 \times 8 \times 9}{2} = 7560$$

ઉદાહરણ 10:1 થી 9 અંકોનો ઉપયોગ કરી પુનરાવર્તન સિવાય 4 અંકોવાળી કેટલી સંખ્યાઓ બનાવી શકાય ?

ઉકેલ: અહીં, અંકોનો ક્રમ મહત્ત્વનો છે, જેમકે 1234 અને 1324 એ ભિશ્વ સંખ્યાઓ થશે. માટે 9 ભિશ્વ અંકોમાંથી 4 અંકો લઈને જેટલા ક્રમચયો મળે તેટલી 4 અંકોથી બનતી સંખ્યાઓ થશે.

∴ માંગેલ 4 અંકોની સંખ્યાઓ = 
$${}^{9}P_{4} = \frac{9!}{(9-4)!} = \frac{9!}{5!} = 9 \times 8 \times 7 \times 6 = 3024$$

ઉદાહરણ 11: પુનરાવર્તન વગર અંકો 0, 1, 2, 3, 4, 5 નો ઉપયોગ કરીને 100 થી 1000 ની વચ્ચે આવેલી કેટલી સંખ્યાઓ મળે?

ઉકેલ : 100 થી 1000 વચ્ચે આવેલ દરેક સંખ્યાઓ 3 અંકોવાળી હોય છે. પ્રથમ આપણે 6 અંકોમાંથી 3 અંકો એક સાથે લેવાથી મળતા ક્રમચયોની સંખ્યાની ગણતરી કરીશું. તે  $^6P_3$  થશે. પરંતુ આ ક્રમચયોમાં એવી સંખ્યાઓનો પણ સમાવેશ થશે જેના શતકના સ્થાને 0 હોય. જેમકે 092, 042, ... વગેરે. તે ખરેખર 2 અંકોવાળી સંખ્યા થાય અને તેથી આવી સંખ્યાઓને  $^6P_3$  સંખ્યાઓમાંથી બાદ કરવી જોઈએ. આવી સંખ્યાઓ મેળવવા માટે આપણે શતકના સ્થાને 0 સ્થિત કરી દઇએ અને બાકીના 5 અંકોમાંથી 2 અંકો એક સાથે લઈ પુનઃગોઠવણી કરીએ. આવી સંખ્યાઓની સંખ્યા  $^5P_2$ .

∴ માંગેલ સંખ્યાઓ = 
$${}^6P_3 - {}^5P_2$$
  
=  $\frac{6!}{3!} - \frac{5!}{2!}$   
=  $4 \times 5 \times 6 - 4 \times 5$   
=  $100$ 

ઉદાહરણ 12 : નીચેનામાં n ની કિંમત શોધો :

(i) 
$${}^{n}P_{5} = 42 {}^{n}P_{3}, n > 4$$
 (ii)  $\frac{{}^{n}P_{4}}{n-1} = \frac{5}{3}, n > 4$ 

ક્રમચય અને સંચય 144

ઉકેલ: (i) અંદી, 
$${}^{n}P_{5} = 42 {}^{n}P_{3}$$
  
અથવા  $n (n-1) (n-2) (n-3) (n-4) = 42 n(n-1) (n-2)$   
 $n > 4$  હોવાથી  $n(n-1) (n-2) \neq 0$ 

માટે, બંને બાજુ n(n-1)(n-2) વડે ભાગતાં,

$$(n-3)(n-4)=42$$

$$n^2 - 7n - 30 = 0$$

$$n^2 - 10n + 3n - 30 = 0$$

$$(n-10)(n+3)=0$$

$$\therefore \quad n - 10 = 0 \qquad \qquad \text{અથવા} \quad n + 3 = 0$$

$$\therefore$$
  $n=10$  અથવા  $n=-3$ 

n ની કિંમત ઋણ ન હોઈ શકે. આથી n=10.

(ii) અહીં, 
$$\frac{{}^{n}P_{4}}{{}^{n-1}P_{4}} = \frac{5}{3}$$

$$3n (n-1) (n-2) (n-3) = 5(n-1) (n-2) (n-3) (n-4)$$

$$\therefore 3n = 5 (n-4) \qquad [(n-1) (n-2) (n-3) \neq 0, n > 4]$$

$$\therefore n = 10$$

ઉદાહરણ 13 : જો  $5^{4}P_{r} = 6^{5}P_{r-1}$  હોય તો r શોધો.

ઉકેલ: અહીં, 
$$5^{4}P_{r} = 6^{5}P_{r-1}$$

$$\therefore 5 \times \frac{4!}{(4-r)!} = 6 \times \frac{5!}{(5-r+1)!}$$

$$\therefore \frac{5!}{(4-r)!} = \frac{6 \times 5!}{(5-r+1)(5-r)(5-r-1)!}$$

$$\therefore$$
 (6 - r) (5 - r) = 6

$$r^2 - 11r + 24 = 0$$

$$\therefore r^2 - 8r - 3r + 24 = 0$$

$$(r - 8)(r - 3) = 0$$

$$r=8$$
 અથવા  $r=3$ , પરંતુ  $r=8$  શક્ય નથી.  $(r\leq 4)$ 

r = 3.

<mark>ઉદાહરણ 14</mark> : જો (i) બધા જ સ્વર એક સાથે આવે (ii) બધા જ સ્વર એક સાથે ન આવે, તો DAUGHTER શબ્દના અક્ષરો વડે 8 અક્ષરોની ગોઠવણી કેટલા ભિન્ન પ્રકારે થઇ શકે ?

ઉકેલ : (i) DAUGHTER શબ્દમાં 8 મૂળાક્ષરો છે, જ્યાં A, U અને E એમ 3 સ્વરો છે. બધા જ સ્વર એક સાથે લેવા માટે આપણે AUE ને એક જ વસ્તુ છે તેમ ધારી લઈશું. આ એક વસ્તુ તથા બાકી રહેતા 5 બીજા અક્ષરો (વસ્તુઓ) ને 6 વસ્તુઓ છે તેમ ગણીશું. પછી આપણે 6 વસ્તુઓમાંથી બધી જ વસ્તુઓ એક સાથે લેવાથી મળતા પ્રત્યેક ક્રમચયને અનુરૂપ આપણને

A, U, E એક સાથે લેવાથી મળતા ક્રમચયોની સંખ્યા 3! થાય.

આથી, ગુણાકારના સિદ્ધાંતના ઉપયોગથી માંગેલ ક્રમચયોની સંખ્યા  $= 6 ! \times 3 ! = 4320.$ 

(ii) આપણે જો બધા જ સ્વર એક સાથે ન આવે એવા ક્રમચયની ગણતરી કરવાની હોય તો પ્રથમ આપણે 8 અક્ષરોને એક સાથે લેવાથી મળતી શક્ય ગોઠવણીના પ્રકાર શોધવા પડે. તે 8! પ્રકારે થઈ શકે. પછી આપણે જયાં સ્વર હમેશાં એક સાથે આવે એવા ક્રમચયોની સંખ્યાની બાદબાકી કરવી જોઇએ.

આમ, માંગેલ સંખ્યા 
$$8!-6!\times 3!=6! (7\times 8-6)$$
 
$$= 2\times 6! (28-3)$$
 
$$= 50\times 6!=50\times 720=36{,}000$$

ઉદાહરણ 15 : 4 લાલ, 3 પીળી અને 2 લીલી ગોળાકાર તકતીઓને કેટલા પ્રકારે હારમાં ગોઠવી શકાય ? (સરખા રંગની તકતી સ્પષ્ટપણે જુદી પાડી શકાતી નથી.)

ઉકેલ : ગોળાકાર તકતીઓની કુલ સંખ્યા 4 + 3 + 2 = 9. આ 9 તકતીમાંથી 4 એક પ્રકારની છે (લાલ), 3 બીજા પ્રકારની છે (પીળી) અને 2 ત્રીજા પ્રકારની છે (લીલી)

માંગેલ ગોઠવણીના પ્રકારની સંખ્યા = 
$$\frac{9!}{4!3!2!}$$
 = 1260

ઉદાહરણ 16: INDEPENDENCE શબ્દના મૂળાક્ષરોની કેટલા પ્રકારે ગોઠવણી કરી શકાય ? આ ગોઠવણીઓમાંથી કેટલા શબ્દો

- (i) P થી શરૂ થાય છે ?
- (ii) બધા સ્વરો એક સાથે આવે ?
- (iii) બધા સ્વરો એક સાથે ન આવે ?
- (iv) I થી શરૂ થાય અને P માં અંત પામે ?

ઉકેલ : આપેલ શબ્દમાં કુલ 12 મૂળાક્ષરો છે. તેમાં N એ 3 વખત આવે છે. E એ 4 વખત આવે છે અને D એ 2 વખત આવે છે તથા બાકીના મૂળાક્ષરો ભિન્ન છે.

∴ માંગેલ ગોઠવણીની સંખ્યા = 
$$\frac{12!}{3! \cdot 4! \cdot 2!}$$
 = 1663200

- (i) મૂળાક્ષર P ને ડાબી બાજુના પ્રથમ સ્થાને નિયત કરીએ. હવે આપણે બાકી રહેતા 11 અક્ષરોની ગોઠવણીની ગણતરી કરીએ.
  - ∴ P થી શરૂ થતા માંગેલ શબ્દોની સંખ્યા =  $\frac{11!}{3! \, 2! \, 4!}$  = 138600

આથી, ગુણાકારના સિદ્ધાંતનો ઉપયોગ કરીને માંગેલ ગોઠવણીના પ્રકાર  $=\frac{8!}{3!\,2!} \times \frac{5!}{4!} = 16800$ 

ક્રમચય અને સંચય 146

(iii) માંગેલ ગોઠવણીની સંખ્યા = ગોઠવણીની કુલ સંખ્યા (કોઈ શરત વગર) - બધા સ્વરો સાથે આવે તેવી ગોઠવણીની સંખ્યા = 1663200 - 16800 = 1646400

(iv) મૂળાક્ષરો I અને P બંનેને અંતિમ સ્થાનમાં સ્થિત કરીએ (I ને ડાબી બાજુ તથા P ને જમણી બાજુ) આપણી પાસે બાકી 10 અક્ષરો રહે છે.

∴ માંગેલ ગોઠવણીના પ્રકાર = 
$$\frac{10!}{3! \, 2! \, 4!}$$
 = 12600

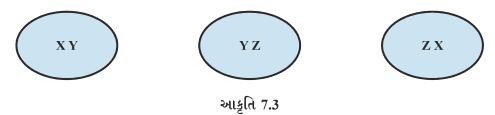
#### સ્વાધ્યાય 7.3

- 1. 1 થી 9 અંકોનો ઉપયોગ કરીને 3 અંકોની કેટલી સંખ્યાઓ બનાવી શકાય ? (અંકોના પુનરાવર્તન સિવાય)
- 2. અંકોના પુનરાવર્તન સિવાય 4 અંકોની કેટલી સંખ્યાઓ બને ?
- 3. 1, 2, 3, 4, 6, 7 અંકોનો ઉપયોગ કરીને 3 અંકોની કેટલી યુગ્મ સંખ્યાઓ બને ? (અંકોના પુનરાવર્તન સિવાય)
- 4. 1, 2, 3, 4, 5 અંકોનો ઉપયોગ કરીને 4 અંકોની કેટલી સંખ્યાઓ બને ? આમાંથી કેટલી સંખ્યાઓ યુગ્મ હોય ? (અંકોના પુનરાવર્તન સિવાય)
- 5. 8 વ્યક્તિઓની એક સમિતિમાંથી અધ્યક્ષ અને ઉપાધ્યક્ષ કેટલા પ્રકારે પસંદ કરી શકાય ? આપણે ધારી લઈશું કે કોઈ પણ વ્યક્તિ એક કરતાં વધુ પદ સંભાળતી ન હોય.
- **6.** જો  $^{n-1}P_3: {}^nP_4 = 1:9$  તો n શોધો.
- 7.  $\Re$  (i)  ${}^5P_r = 2\,{}^6P_{r-1}$  (ii)  ${}^5P_r = {}^6P_{r-1}$  dì r શોધો.
- 8. EQUATION શબ્દના દરેક મૂળાક્ષરનો ફક્ત એક વખત ઉપયોગ કરી અર્થસભર કે અર્થરહિત કેટલા શબ્દો બનાવી શકાય ?
- 9. MONDAY શબ્દના મૂળાક્ષરોનો ઉપયોગ કરી પુનરાવર્તન સિવાય અર્થસભર કે અર્થરહિત કેટલા શબ્દો નીચેના વિકલ્પો અનુસાર બનાવી શકાય ?
  - (i) કોઈ પણ 4 મૂળાક્ષરો એક સાથે લેતાં
  - (ii) બધા જ મૂળાક્ષરો એક સાથે લેતાં
  - (iii) પ્રથમ મૂળાક્ષર સ્વર હોય તે રીતે બધા જ મૂળાક્ષરોનો ઉપયોગ કરતા
- 10. MISSISSIPPI શબ્દના કેટલા ભિન્ન ક્રમચયોમાં ચાર I સાથે ન આવે ?
- 11. PERMUTATIONS શબ્દના મૂળાક્ષરોની ગોઠવણી કેટલા પ્રકારે નીચેના વિકલ્પોમાં કરી શકાય ?
  - (i) શબ્દો P થી શરૂ થાય અને S માં અંત પામે.
  - (ii) બધા સ્વરો સાથે હોય.
  - (iii) P અને S ની વચ્ચે હંમેશાં 4 મૂળાક્ષરો હોય.

#### **7.4** સંચય

ધારો કે X,Y,Z એ લોન ટેનિસ રમતના 3 ખેલાડીઓનું એક જૂથ છે, 2 ખેલાડીઓ ધરાવતી એક ટુકડી બનાવવી છે. આવું આપણે કેટલા પ્રકારે કરી શકીશું ? શું X અને Y દ્વારા બનતી ટૂકડીએ Y અને X દ્વારા બનતી ટુકડીથી ભિશ્વ છે ? અહીં, ક્રમનું

મહત્ત્વ નથી. ખરેખર, ફક્ત ત્રણ પ્રકારે આવી ટુકડી XY, YZ અને ZX (આકૃતિ7.3) બને. અહીં દરેક પસંદગીને 3 ભિન્ન વસ્તુઓમાંથી 2 વસ્તુઓ એક સાથે પસંદ કરવાનો *સંચય* કહે છે.



સંચયમાં ક્રમનું મહત્ત્વ નથી.

હવે આપણે કેટલાંક વધુ ઉદાહરણ જોઈએ.

12 વ્યક્તિઓ એક ઓરડામાં મળે છે અને દરેક વ્યક્તિ બાકીની તમામ વ્યક્તિઓ સાથે હસ્તધૂનન કરે છે. કુલ કેટલી વખત હસ્તધૂનન થયા હોય તે આપણે કેવી રીતે નક્કી કરીશું ? વ્યક્તિ X એ વ્યક્તિ Y અને વ્યક્તિ Y એ વ્યક્તિ X સાથે હાથ મિલાવે તે ભિન્ન હસ્તધૂનન ગણી શકાય નહિ. અહીં ક્રમ મહત્ત્વનો નથી. 12 ભિન્ન વસ્તુઓમાંથી એક સાથે 2 વસ્તુઓ પસંદ કરવાથી જેટલા સંચયો મળે તેટલા હસ્તધૂનન થયા હશે.

એક વર્તુળ ઉપર સાત બિંદુઓ આવેલા છે. કોઈ પણ બે બિંદુને જોડવાથી કેટલી જીવાઓ દોરી શકાય? 7 ભિન્ન વસ્તુઓમાંથી એક સાથે 2 વસ્તુઓ પસંદ કરવાથી જેટલા સંચયો મળે તેટલી જીવા મળે.

હવે આપણે n ભિન્ન વસ્તુઓ પૈકી r વસ્તુઓ એક સાથે પસંદ કરવાથી મળતા સંચયોનું સૂત્ર મેળવીશું. તેને  ${}^n\!C_r$  વડે દર્શાવાય છે.

ધારો કે આપણી પાસે 4 ભિન્ન વસ્તુઓ A, B, C અને D છે. જો આપણે 2 ભિન્ન વસ્તુઓ એકસાથે પસંદ કરવાના સંચયો મેળવવા હોય, તો AB, AC, AD, BC, BD, CD થશે. અહીં, AB અને BA એ સમાન સંચયો થશે કારણ કે ક્રમના ફેરફારથી સંચય બદલાતો નથી. આ કારણે આપણે BA, CA, DA, CB, DB અને DC નો આ યાદીમાં સમાવેશ કર્યો નથી. 4 ભિન્ન વસ્તુઓમાંથી 2 વસ્તુઓ એક સમયે લેતાં 6 સંચયો મળશે એટલે કે  $^4C_2 = 6$ .

આ યાદીના દરેક સંચયને અનુરૂપ આપણે 2! ક્રમચય મળે કારણ કે દરેક સંચયની 2 વસ્તુઓની 2! પ્રકારે પુનઃગોઠવણી કરી શકાય. તેથી ક્રમચયોની સંખ્યા =  ${}^4C_2 \times 2!$ .

બીજી રીતે કહીએ તો, 4 ભિન્ન વસ્તુઓમાંથી 2 વસ્તુઓ એક સાથે લઈએ તો, મળતા ક્રમચયોની સંખ્યા =  ${}^4P_2$ 

$$^{4}P_{2} = {}^{4}C_{2} \times 2!$$
 એટલે કે  $\frac{4!}{(4-2)! \, 2!} = {}^{4}C_{2}$ 

હવે, ધારો કે આપણી પાસે 5 ભિશ્ન વસ્તુઓ A, B, C, D, E છે. જો આપણે 3 વસ્તુઓ એકીસાથે પસંદ કરવાના સંચયો મેળવવા હોય, તો ABC, ABD, ABE, BCD, BCE, CDE, ACE, ACD, ADE, BDE થશે. આ  ${}^5\mathrm{C}_3$  સંચયોના દરેકને અનુરૂપ 3! ક્રમચયો મળે કારણ કે દરેક સંચયમાં રહેલ ત્રણ વસ્તુઓની પુનઃગોઠવણી 3! પ્રકારે કરી શકાય.

ક્રમચયોની કુલ સંખ્યા  ${}^5\mathrm{C}_3 \! imes \! 3!$ 

$$∴ {}^{5}P_{3} = {}^{5}C_{3} \times 3! \quad \text{એટલે કે } \frac{5!}{(5-3)! \ 3!} = {}^{5}C_{3}$$

આ ઉદાહરણો દ્વારા આપણને ક્રમચય અને સંચય વચ્ચેનો સંબંધ દર્શાવતો પૃષ્ઠ 148 પ્રમાણેનો પ્રમેય મળે છે :

ક્રમચય અને સંચય 148

પ્રમેય 5 : 
$${}^{n}P_{r} = {}^{n}C_{r} \times r!$$
 ,  $0 < r \le n$ .

સાબિતી :  ${}^n C_r$  સંચયો પૈકી દરેક સંચયને અનુરૂપ આપણને r! ક્રમચયો મળે, કારણ કે દરેક સંચયની r વસ્તુઓની r! પ્રકારે પુનઃગોઠવણી કરી શકાય.

આથી, n ભિશ વસ્તુઓ પૈકી એક સાથે r વસ્તુઓ લેતાં મળતાં કુલ ક્રમચયોની સંખ્યા  ${}^n\mathbf{C}_r \times r!$  થશે. બીજી રીતે વિચારતાં તે  ${}^n\mathbf{P}_r$  પણ થાય.

$$\therefore {}^{n} \mathbf{P}_{r} = {}^{n} \mathbf{C}_{r} \times r!, \qquad 0 < r \le n.$$

નોંધ 1. ઉપર મુજબ 
$$\frac{n!}{(n-r)!} = {}^{n}C_{r} \times r!$$
, એટલે કે  ${}^{n}C_{r} = \frac{n!}{r!(n-r)!}$ .

વિશેષ રીતે, જો 
$$r = n$$
 તો  ${}^{n}C_{n} = \frac{n!}{n!} = 1$ .

- 2. આપણે અહીં,  ${}^{n}C_{0} = 1$  વ્યાખ્યાયિત કરીએ છીએ. આપેલ n વસ્તુઓમાંથી એક પણ વસ્તુની પસંદગી નહિ તે સંચયોની સંખ્યા 1 છે તેમ ગણીશું. આ સંચયોની ગણતરી કરવી એ અમુક અથવા બધી વસ્તુઓને એક સાથે પસંદગી કરવાના પ્રકારની ગણતરી કરવી એ છે. કોઈપણ વસ્તુને પસંદ ન કરવી એ તમામ વસ્તુને નાપસંદ કરવા સમાન છે અને આપણે જાણીએ છીએ કે તે આપણે ફક્ત એક જ પ્રકારે કરી શકીએ. આ રીતે આપણે  ${}^{n}C_{0} = 1$  વ્યાખ્યાયિત કરીએ છીએ.
- 3.  $\frac{n!}{0!(n-0)!} = 1 = {}^n\mathbf{C}_0$  હોવાથી સૂત્ર  ${}^n\mathbf{C}_r = \frac{n!}{r!(n-r)!}$  એ સૂત્ર r=0 માટે પણ લાગુ પાડી શકાય.

$$^{n}$$
C<sub>r</sub> =  $\frac{n!}{r!(n-r)!}$ ,  $0 \le r \le n$ ,  $n \ne 0$ 

**4.** 
$${}^{n}C_{n-r} = \frac{n!}{(n-r)!(n-(n-r))!} = \frac{n!}{(n-r)!r!} = {}^{n}C_{r},$$

એટલે કે n વસ્તુઓમાંથી r વસ્તુઓને પસંદ કરવી એ (n-r) વસ્તુઓને નાપસંદ કરવા બરાબર છે.

**5.** 
$${}^{n}C_{a} = {}^{n}C_{b} \Rightarrow a = b$$
 અથવા  $a = n - b$ , એટલે કે,  $n = a + b$ 

પ્રમેય 6 : 
$${}^{n}C_{r} + {}^{n}C_{r-1} = {}^{n+1}C_{r}$$

ઉદાહરણ 17 : જો  ${}^{n}C_{9} = {}^{n}C_{8}$  તો  ${}^{n}C_{17}$  શોધો.

ઉકેલ: અહીં, 
$${}^{n}C_{9} = {}^{n}C_{8}$$

$$\frac{n!}{9!(n-9)!} = \frac{n!}{(n-8)! \, 8!}$$

$$\therefore \frac{1}{9} = \frac{1}{n-8}$$
 એટલે કે,  $n-8=9$ . આથી,  $n=17$ 

$$\therefore$$
  ${}^{n}C_{17} = {}^{17}C_{17} = 1$ 

<mark>ઉદાહરણ 18 ઃ</mark> બે પુરુષ અને ત્રણ સ્રીઓના એક જૂથમાંથી 3 વ્યક્તિઓની એક સમિતિ બનાવવી છે. આવું કેટલા પ્રકારે કરી શકાય ? આમાંથી કેટલી સમિતિઓમાં 1 પુરુષ અને 2 સ્રીઓ હશે ?

ઉકેલ: અહીં, ક્રમના ફેરફારથી કોઈ ફરક પડતો નથી. માટે આપણે સંચયોની ગણતરી કરવી પડશે. 5 ભિન્ન વ્યક્તિઓ પૈકી એક સાથે 3 વ્યક્તિઓ પસંદ કરવાથી જેટલા સંચયો મળે તેટલી સમિતિઓ બનશે.

આથી, માંગેલ પ્રકારની સંખ્યા = 
$${}^5C_3 = \frac{5!}{3! \, 2!} = \frac{4 \times 5}{2} = 10$$
.

હવે, 2 પુરુષમાંથી 1 પુરુષ  $^2\mathrm{C}_1$  પ્રકારે તથા 3 સ્ત્રીમાંથી 2 સ્ત્રી  $^3\mathrm{C}_2$  પ્રકારે પસંદ કરી શકાય.

આથી માંગેલ સમિતિની સંખ્યા = 
$${}^{2}C_{1} \times {}^{3}C_{2} = \frac{2!}{1!} \times \frac{3!}{2!} = 6$$
.

ઉદાહરણ 19 : 52 પત્તાંઓમાંથી 4 પત્તાં કેટલા પ્રકારે પસંદ કરી શકાય ? આમાંથી કેટલા પ્રકારની પસંદગીમાં,

- (i) ચાર પત્તાં એક જ ભાતનાં હોય ?
- (ii) ચાર પત્તાં ચાર જુદી જુદી ભાતનાં હોય ?
- (iii) ચિત્રવાળાં પત્તાં હોય ?
- (iv) બે લાલ રંગનાં અને બે કાળા રંગનાં હોય ?
- (v) પત્તાં સમાન રંગોવાળાં હોય?

ઉકેલ : 52 ભિન્ન વસ્તુઓમાંથી એક સમયે 4 વસ્તુઓ પસંદ કરવાના જેટલા સંચય મળે તેટલા જ સંચય 52 પત્તાંઓમાંથી 4 પત્તાં પસંદ કરવાનાં મળે.

∴ માંગેલ પ્રકારની સંખ્યા = 
$${}^{52}C_4 = \frac{52!}{4! \cdot 48!} = \frac{49 \times 50 \times 51 \times 52}{2 \times 3 \times 4} = 270725$$

(i) દરેક ભાતમાં 13 પત્તાં હોય છે અને ચાર ભાત હોય છેઃ ચોકટ, ફુલ્લી, કાળી, લાલ. માટે ચોકટનાં 4 પત્તાં  $^{13}C_4$  પ્રકારે પસંદ થશે, તે જ રીતે 4 ફુલ્લીનાં પત્તાં  $^{13}C_4$  પ્રકારે પસંદ થશે, 4 કાળીનાં પત્તાં  $^{13}C_4$  પ્રકારે પસંદ થશે ને 4 લાલના પત્તાં  $^{13}C_4$  પ્રકારે પસંદ થશે.

આમ, માંગેલ કુલ પ્રકારની સંખ્યા =  $^{13}\text{C}_4$  +  $^{13}\text{C}_4$  +  $^{13}\text{C}_4$  +  $^{13}\text{C}_4$ .

$$=4 \times \frac{13!}{4! \ 9!} = 2860$$

ક્રમચય અને સંચય

(ii) દરેક ભાતમાં 13 પત્તાં હોય છે.

ચોકટનાં 13 પત્તાંમાંથી 1 પત્તું  $^{13}$ C $_1$  પ્રકારે પસંદ કરી શકાય. લાલનાં 13 પત્તાંમાંથી 1 પત્તું  $^{13}$ C $_1$  પ્રકારે પસંદ કરી શકાય. ફુલ્લીનાં 13 પત્તાંમાંથી 1 પત્તું  $^{13}$ C $_1$  પ્રકારે પસંદ કરી શકાય. કાળીનાં 13 પત્તાંમાંથી 1 પત્તું  $^{13}$ C $_1$  પ્રકારે પસંદ કરી શકાય.

- (iii) અહીં, 12 ચિત્રોવાળાં પત્તાં છે અને આ 12 પત્તાંમાંથી 4 પત્તાં પસંદ કરવાનાં છે. આ  $^{12}\mathrm{C}_4$  પ્રકારે કરી શકાય.
  - ∴ માંગેલ પ્રકારની સંખ્યા =  $\frac{12!}{4! \ 8!}$  = 495
- (iv) અહીં, 26 પત્તાં લાલ રંગનાં તથા 26 પત્તાં કાળા રંગનાં હોય છે.
  - $\therefore$  માંગેલ પ્રકારની સંખ્યા =  $^{26}$  C  $_2 \times ^{26}$  C  $_2$

$$= \left(\frac{26!}{2! \ 24!}\right)^2 = \left(325\right)^2 = 105625$$

- (v) 26 લાલ રંગનાં પત્તાંમાંથી 4 લાલ રંગનાં પત્તાંની પસંદગી  $^{26}$   $C_4$  પ્રકારે કરી શકાય. 26 કાળા રંગનાં પત્તાંમાંથી 4 કાળા રંગનાં પત્તાંની પસંદગી  $^{26}$   $C_4$  પ્રકારે કરી શકાય.
  - $\therefore$  માંગેલ પ્રકારની સંખ્યા =  ${}^{26}\text{C}_{_4} + {}^{26}\text{C}_{_4}$

$$=2\times\frac{26!}{4!\ 22!}=29900$$

### સ્વાધ્યાય 7.4

- 1. જો  ${}^{n}C_{8} = {}^{n}C_{2}$  હોય, તો  ${}^{n}C_{2}$  શોધો.
- 2. *n* ની કિંમત શોધો :

(i) 
$${}^{2n}C_3 : {}^{n}C_3 = 12 : 1$$

(ii) 
$${}^{2n}C_3 : {}^{n}C_3 = 11 : 1$$

- 3. વર્તુળ પરનાં 21 બિંદુમાંથી કેટલી જીવા દોરી શકાય ?
- 4. 5 કુમાર અને 4 કુમારીમાંથી 3 કુમારો અને 3 કુમારીઓની કેટલી ટુકડી બનાવી શકાય ?
- 5. 6 લાલ દડા, 5 સફેદ દડા અને 5 વાદળી દડામાંથી દરેક રંગના 3 દડા એમ 9 દડાની પસંદગી કેટલા પ્રકારે કરી શકાય ?
- 6. 52 પત્તાંમાંથી 5 પત્તાંની પસંદગીમાં બરાબર એક જ એક્કો આવે તે કેટલા પ્રકારે બને ?
- 7. ક્રિકેટની રમતના 17 ખેલાડીઓ આવેલા છે. તે પૈકી 5 ખેલાડીઓ બોલીંગ કરી શકે છે. દરેક ટુકડીમાં 4 બોલર હોય એવી 11 ખેલાડીઓની ક્રિકેટની કેટલી ટુકડી બનાવી શકાય ?
- 8. એક થેલીમાં 5 કાળા અને 6 લાલ દડા છે. 2 કાળા તથા 3 લાલ દડાની પસંદગી કેટલા પ્રકારે થઇ શકે ?
- 9. જો વિઘાર્થીએ 2 ચોક્કસ વિષયો પસંદ કરવાના ફરજિયાત હોય, તો વિદ્યાર્થી ઉપલબ્ધ 9 વિષયોમાંથી 5 વિષયો કેટલા પ્રકારે પસંદ કરી શકે.

#### પ્રકીર્ણ ઉદાહરણો

ઉદાહરણ 20 : INVOLUTE શબ્દનો ઉપયોગ કરીને 3 સ્વરો અને 2 વ્યંજનો ધરાવતા અર્થસભર કે અર્થરહિત કેટલા શબ્દો બનાવી શકાય ?

ઉક્રેલ : INVOLUTE શબ્દમાં 4 સ્વરો I, O, E, U અને 4 વ્યંજનો N, V, L અને T આવેલા છે.

4 સ્વરોમાંથી 3 સ્વરો પસંદ કરવાના પ્રકારની સંખ્યા  $= {}^{4}C_{3} = 4$ 

4 વ્યંજનોમાંથી 2 વ્યંજનો પસંદ કરવાના પ્રકારની સંખ્યા =  ${}^4\mathrm{C}_2$  = 6

3 સ્વરો અને 2 વ્યંજનોના સંચયોની સંખ્યા  $4 \times 6 = 24$ 

હવે, આ દરેક 24 સંચયોના 5 મૂળાક્ષરોને 5! પ્રકારે ગોઠવી શકાય છે.

માંગેલ ભિન્ન શબ્દોની સંખ્યા =  $24 \times 5$ ! = 2880

ઉદાહરણ 21 : એક જૂથમાં 4 કુમારીઓ અને 7 કુમારો છે. જેમાં (i) કોઈ કુમારી ન હોય (ii) ઓછામાં ઓછો એક કુમાર અને એક કુમારી આવેલ હોય (iii) ઓછામાં ઓછી 3 કુમારી આવેલ હોય એવી 5 સભ્યોની કેટલી ટુકડીઓ બનાવી શકાય.

6કેલ : (i) ટુકડીમાં કોઈ કુમારી ન હોય તો બધા કુમારો પસંદ થાય. 7 કુમારોમાંથી 5 કુમારોની પસંદગી  $^7C_5$  પ્રકારે થાય.

∴ માંગેલ સંખ્યાના પ્રકાર = 
$${}^{7}C_{5} = \frac{7!}{5!} = \frac{6 \times 7}{2} = 21$$

- (ii) દરેક ટુકડીમાં ઓછામાં ઓછો એક કુમાર અને એક કુમારી આવેલ હોય, તો ટુકડી નીચે પ્રમાણે બનાવી શકાય.
  - (a) એક કુમાર અને ચાર કુમારીઓ
  - (b) બે કુમારો અને ત્રણ કુમારીઓ
  - (c) ત્રણ કુમારો અને બે કુમારીઓ
  - (d) ચાર કુમારો અને એક કુમારી

એક કુમાર અને ચાર કુમારીઓ  $^7\mathrm{C}_1 \times ^4\mathrm{C}_4$  પ્રકારે પસંદ કરી શકાય.

બે કુમારો અને ત્રણ કુમારીઓ  ${}^7\mathrm{C}_2 \times {}^4\mathrm{C}_3$  પ્રકારે પસંદ કરી શકાય.

ત્રણ કુમારો અને બે કુમારીઓ  ${}^7{
m C_3} \times {}^4{
m C_2}$  પ્રકારે પસંદ કરી શકાય.

ચાર કુમારો અને એક કુમારી  ${}^{7}\mathrm{C}_{4} \times {}^{4}\mathrm{C}_{1}$  પ્રકારે પસંદ કરી શકાય.

∴ માંગેલ પ્રકારની સંખ્યા = 
$${}^7C_1 \times {}^4C_4 + {}^7C_2 \times {}^4C_3 + {}^7C_3 \times {}^4C_2 + {}^7C_4 \times {}^4C_1$$

$$= 7 + 84 + 210 + 140 = 441$$

(iii) દરેક ટુકડીમાં ઓછામાં ઓછી 3 કુમારીઓ હોવાથી ટુકડી આ પ્રમાણે પસંદ કરી શકાય.

ક્રમચય અને સંચય 152

(a) 3 કુમારીઓ અને 2 કુમારો અથવા (b) 4 કુમારીઓ અને 1 કુમાર.

અહીં, આપણે નોંધીએ કે ટુકડીમાં 5 કુમારીઓ ન હોય કારણ કે જૂથમાં ફક્ત 4 કુમારીઓ જ આપેલ છે.

3 કુમારીઓ અને 2 કુમારો  ${}^4{
m C}_3 imes {}^7{
m C}_2$  પ્રકારે પસંદ કરી શકાય.

4 કુમારીઓ અને 1 કુમાર  ${}^4{
m C}_4 imes {}^7{
m C}_1$  પ્રકારે પસંદ કરી શકાય.

 $\therefore$  માંગેલ પ્રકારની કુલ સંખ્યા =  ${}^4{\rm C}_3 \times {}^7{\rm C}_2 + {}^4{\rm C}_4 \times {}^7{\rm C}_1 = 84 + 7 = 91$ 

ઉદાહરણ 22 : AGAIN શબ્દના બધા મૂળાક્ષરોનો ઉપયોગ કરીને અર્થસભર કે અર્થરહિત કેટલા શબ્દો બનાવી શકાય તે શોધો. જો આ શબ્દોને શબ્દકોષ પ્રમાણે લખ્યા હોય, તો 50 મા સ્થાને કયો શબ્દ આવે ?

ઉકેલ : AGAIN શબ્દમાં 5 મૂળાક્ષરો છે અને A એ બે વખત આવે છે.

માંગેલ શબ્દોની સંખ્યા 
$$=\frac{5!}{2!}=60$$

A થી શરૂ થતા શબ્દો મેળવવા માટે આપણે A ને ડાબી બાજુના પ્રથમ સ્થાને મૂકી બાકી રહેતા 4 મૂળાક્ષરોને એક સાથે લઈને પુનઃ ગોઠવણી કરીએ. જેટલા ક્રમચયો 4 ભિન્ન વસ્તુઓને એક સાથે લેવાથી મળે છે તેટલા જ શબ્દો 4 મૂળાક્ષરોને એક સાથે લેવાથી મળે. આથી, A થી શરૂ થતા શબ્દોની સંખ્યા = 4! = 24 થશે. ત્યાર બાદ G થી શરૂ થતાં શબ્દોની સંખ્યા =  $\frac{4!}{2!} = 12$  બને, કારણ કે G ને શબ્દની ડાબી બાજુના પ્રથમ સ્થાન પર સ્થિત કર્યા પછી આપણી પાસે મૂળાક્ષરો A, A, I અને N બાકી રહે છે. તે જ રીતે I થી શરૂ થતા શબ્દની સંખ્યા I2 થશે. અત્યાર સુધીમાં પ્રાપ્ત શબ્દોની સંખ્યા I2 = I8.

49 મા સ્થાન પરનો શબ્દ NAAGI થશે.

50મા સ્થાન પરનો શબ્દ NAAIG થશે.

<mark>ઉદાહરણ 23:</mark> 1, 2, 0, 2, 4, 2, 4 અંકોનો ઉપયોગ કરીને 1000000 થી મોટી કેટલી સંખ્યાઓ બનાવી શકાય ?

ઉક્રેલ : 1000000 એ 7 અંકની સંખ્યા છે અને ઉપયોગમાં લેવાતા અંકોની સંખ્યા 7 અંકની જ હશે. વળી, સંખ્યાઓ 1000000 થી મોટી હોવાથી તેમની શરૂઆતના અંકો 1, 2 અથવા 4 થશે.

જો અંક 1 ને ડાબી બાજુના પ્રથમ સ્થાનમાં નિશ્ચિત કરીએ તો બાકી રહેતા અંકો 0, 2, 2, 2, 4, 4 ની પુનઃગોઠવણી કરવી પડે. અહી, અંક 2 ત્રણ વખત આવે છે અને 4 એ બે વખત આવે છે.

1 થી શરૂ થતી સંખ્યાઓની સંખ્યા = 
$$\frac{6!}{3! \cdot 2!} = \frac{4 \times 5 \times 6}{2} = 60$$

તે જ રીતે 2 થી શરૂ થતી સંખ્યાઓની સંખ્યા 
$$=$$
  $\frac{6!}{2!}$   $=$   $\frac{3\times4\times5\times6}{2}$   $=$  180

અને 4 થી શરૂ થતી સંખ્યાઓની સંખ્યા = 
$$\frac{6!}{3!}$$
 =  $4 \times 5 \times 6 = 120$   
માંગેલ સંખ્યાઓની સંખ્યા =  $60 + 180 + 120 = 360$ 

#### બીજી રીત

7 અંકોની ગોઠવણી દ્વારા મળતી કુલ સંખ્યાઓ  $\frac{7!}{3! \ 2!} = 420$ 

જે સંખ્યાઓની ડાબી બાજુના પ્રથમ સ્થાન પર 0 હોય તેવી સંખ્યાઓનો સમાવેશ પણ આમાં થાય છે.

આવી ગોઠવણી દ્વારા મળતી સંખ્યાઓ  $\frac{6!}{3! \ 2!}$  (ડાબી બાજુના પ્રથમ સ્થાન પર 0 નિશ્ચિત કરતાં) = 60.

માંગેલ સંખ્યાઓની સંખ્યા = 420 - 60 = 360

ું નોંધ આપણી યાદીમાં એક અથવા એક કરતાં વધુ અંકો સંખ્યામાં જેટલી વખત આવે તેટલી વખત ઉપયોગમાં લઈ શકાય. ઉદાહરણ તરીકે ઉપરના ઉદાહરણમાં 1 અને 0 ફક્ત એક વખત ઉપયોગમાં લઈ શકાય જ્યારે 2 અને 4 એ અનુક્રમે 3 વખત અને 2 વખત ઉપયોગમાં લઈ શકાય.

ઉદાહરણ 24 : કોઈ બે કુમારો સાથે ન હોય, તો 5 કુમારીઓ અને 3 કુમારોને હારમાં કેટલા પ્રકારે બેસાડી શકાય ?

ઉકેલ : પ્રથમ આપણે 5 કુમારીઓને ગોઠવીએ. તે કાર્ય 5 ! પ્રકારે કરી શકાય છે. ત્રણ કુમારોને એ પ્રત્યેક ગોઠવણી સંગત ચોકડીની નિશાનીવાળી જગ્યાએ બેસાડી શકાય.

$$\times$$
 G  $\times$  G  $\times$  G  $\times$  G  $\times$  G  $\times$ 

અહીં, 6 ચોકડીની નિશાની છે એમાં ત્રણ કુમારોને જ્વપ્રકારે બેસાડી શકાય.

ગુણાકારના નિયમથી કુલ ગોઠવણીના પ્રકારની સંખ્યા =  $5! \times {}^6P_3$ 

= 
$$5! \times \frac{6!}{3!}$$
  
=  $4 \times 5 \times 2 \times 3 \times 4 \times 5 \times 6$   
=  $14400$ 

### પ્રકીર્ણ સ્વાધ્યાય 7

- 1. DAUGHTER શબ્દના મૂળાક્ષરોનો ઉપયોગ કરીને 2 સ્વરો અને 3 વ્યંજનો દ્વારા અર્થસભર કે અર્થરહિત કેટલા શબ્દો બનાવી શકાય ?
- 2. EQUATION શબ્દના બધા મૂળાક્ષરોનો એક સમયે ઉપયોગ કરીને સ્વરો અને વ્યંજનો એક જ સાથે આવે તે રીતે અર્થસભર કે અર્થરહિત કેટલા શબ્દો બનાવી શકાય ?
- 3. 9 કુમારો અને 4 કુમારીઓમાંથી 7 સભ્યોની સમિતિ બનાવવી છે. જેમાં (i) બરાબર 3 કુમારીઓ હોય (ii) ઓછામાં ઓછી 3 કુમારીઓ હોય (iii) વધુમાં વધુ 3 કુમારીઓ હોય એવી કેટલી સમિતિની રચના થઇ શકે ?
- 4. EXAMINATION શબ્દના તમામ ભિન્ન ક્રમચયોને જો શબ્દકોષ પ્રમાણે ગોઠવી યાદી બનાવવામાં આવે તો પ્રથમ શબ્દ E થી શરૂ થાય તે શબ્દ પહેલા કેટલા શબ્દો હશે ?
- 5. અંકો 0, 1, 3, 5, 7 અને 9 ના ઉપયોગથી પુનરાવર્તન વગર 6 અંકોની 10 વડે વિભાજ્ય હોય તેવી કેટલી સંખ્યાઓ બને ?
- 6. અંગ્રેજી વર્શમાળામાં 5 સ્વરો અને 21 વ્યંજનો છે. મૂળાક્ષરોમાંથી 2 ભિન્ન સ્વરો અને 2 ભિન્ન વ્યંજનો દ્વારા કેટલા શબ્દો બનાવી શકાય ?
- 7. એક પરીક્ષામાં 12 પ્રશ્નો ધરાવતું પ્રશ્નપત્ર બે ભાગમાં વહેંચાયેલું છે. ભાગ I માં 5 પ્રશ્નો અને ભાગ II માં 7 પ્રશ્નો

ક્રમચય અને સંચય 154

આવેલા છે. દરેક ભાગમાંથી ઓછામાં ઓછા 3 પ્રશ્નો પસંદ કરીને વિદ્યાર્થીએ કુલ 8 પ્રશ્નોના જવાબનો પ્રયત્ન કરવો જરૂરી છે. વિદ્યાર્થી કુલ કેટલા પ્રકારે પ્રશ્નો પસંદ કરી શકશે ?

- 8. 52 પત્તાંમાંથી 5 પત્તાંની પસંદગીમાં બરાબર એક બાદશાહ આવે તે કેટલા પ્રકારે નક્કી કરી શકાય ?
- 9. 5 પુરુષો અને 4 સ્ત્રીઓને હારમાં એવી રીતે ગોઠવવાં છે કે સ્ત્રીઓ યુગ્મ સ્થાન પર હોય. આવી કેટલી ગોઠવણી શક્ય બને ?
- 10. 25 વિદ્યાર્થીઓના વર્ગમાં 10 વિદ્યાર્થીઓને પર્યટન પર લઈ જવા માટે પસંદ કરવાના છે. ત્રણ વિદ્યાર્થીઓએ એવું નક્કી કર્યું કે કાં તો એ ત્રણેય પર્યટન પર જશે અથવા ત્રણેયમાંથી કોઈ નહિ જાય. પર્યટન પર લઈ જવા માટે વિદ્યાર્થીઓને કેટલા પ્રકારે પસંદ કરી શકાય ?
- 11. તમામ S સાથે આવે તે રીતે ASSASSINATION શબ્દના મૂળાક્ષરોની ગોઠવણી કેટલા પ્રકારે કરી શકાય ?

#### સારાંશ

- ◆ ગણતરીનો મૂળભૂત સિદ્ધાંત : જો કોઈ ઘટના *m* ભિન્ન પ્રકારે ઉદ્ભવે તથા તેને આનુષંગિક બીજી ઘટના *n* ભિન્ન પ્રકારે ઉદ્ભવે તો બંને ઘટનાઓ આપેલ ક્રમમાં ઉદ્ભવે તે પ્રકારોની સંખ્યા *m* × *n* છે.
- lack n ભિન્ન વસ્તુઓમાંથી r વસ્તુઓને એક સાથે પુનરાવર્તન વગર લેવાથી મળતા ક્રમચયોની સંખ્યાને  $^n P_p$  વડે દર્શાવવામાં આવે છે અને  $^n P_r = rac{n!}{(n-r)!}$  , જયાં  $0 \le r \le n, \qquad n \ne 0$
- $\bullet$   $n! = 1 \times 2 \times 3 \times ... \times n$
- $n! = n \times (n-1)!$
- lacktriangle n ભિન્ન વસ્તુઓમાંથી r વસ્તુઓને એક સાથે પુનરાવર્તન સહિત લેવાથી મળતા ક્રમચયોની સંખ્યાને  $n^r$ વડે દર્શાવવામાં આવે છે.
- જો આપેલી n વસ્તુઓમાંથી  $p_1$  એક પ્રકારની સમસ્વરૂપ વસ્તુઓ છે,  $p_2$  બીજા પ્રકારની સમસ્વરૂપ વસ્તુઓ છે, ...  $p_k$  એ k પ્રકારની સમસ્વરૂપ વસ્તુઓ છે અને બાકીની વસ્તુઓ ભિન્ન છે(જો હોય,તો)તો મળતા ક્રમચયોની સંખ્યા $=\frac{n!}{p_1!\;p_2!...\;p_k!}$

#### Historical Note

The concepts of permutations and combinations can be traced back to the advent of Jainism in India and perhaps even earlier. The credit, however, goes to the Jains who treated its subject matter as a self-contained topic in mathematics, under the name *Vikalpa*.

Among the Jains, *Mahavira*, (around 850) is perhaps the world's first mathematician credited with providing the general formulae for permutations and combinations.

In the 6th century B.C., Sushruta, in his medicinal work, Sushruta Samhita, asserts that 63 combinations can be made out of 6 different tastes, taken one at a time, two at a time, etc. Pingala, a

155 ગણિત : ધોરણ 11

Sanskrit scholar around third century B.C., gives the method of determining the number of combinations of a given number of letters, taken one at a time, two at a time, etc. in his work *Chhanda Sutra*. *Bhaskaracharya* (born 1114) treated the subject matter of permutations and combinations under the name *Anka Pasha* in his famous work *Lilavati*. In addition to the general formulae for  ${}^{n}C_{r}$  and  ${}^{n}P_{r}$  already provided by *Mahavira*, *Bhaskaracharya* gives several important theorems and results concerning the subject.

Outside India, the subject matter of permutations and combinations had its humble beginnings in China in the famous book I–King (Book of changes). It is difficult to give the approximate time of this work, since in 213 B.C., the emperor had ordered all books and manuscripts in the country to be burnt which fortunately was not completely carried out. Greeks and later Latin writers also did some scattered work on the theory of permutations and combinations.

Some Arabic and Hebrew writers used the concepts of permutations and combinations in studying astronomy. Rabbi ben Ezra, for instance, determined the number of combinations of known planets taken two at a time, three at a time and so on. This was around 1140. It appears that Rabbi ben Ezra did not know the formula for  ${}^{n}C_{r}$ . However, he was aware that  ${}^{n}C_{r} = {}^{n}C_{n-r}$  for specific values n and r. In 1321, Levi Ben Gerson, another Hebrew writer came up with the formulae for  ${}^{n}P_{r}$ ,  ${}^{n}P_{n}$  and the general formula for  ${}^{n}C_{r}$ .

The first book which gives a complete treatment of the subject matter of permutations and combinations is  $Ars\ Conjectandi$  written by a Swiss,  $Jacob\ Bernoulli\ (1654-1705)$ , posthumously published in 1713. This book contains essentially the theory of permutations and combinations as is known today.



# દ્વિપદી પ્રમેય

**★** Mathematics is a most exact science and its conclusions are capable of absolute proofs. — C. P. STEINMETZ **♦** 

#### 8.1 પ્રાસ્તાવિક

આગળના વર્ગોમાં, આપણે a+b અને a-b જેવી દ્વિપદીઓના વર્ગ અને ઘન કેવી રીતે શોધવા તે વિશે અભ્યાસ કર્યો. આપણે તેનો ઉપયોગ કરીને  $(98)^2=(100-2)^2$ ,  $(999)^3=(1000-1)^3$  વગેરે જેવી સંખ્યાઓની સંખ્યાત્મક કિંમતોનું મૂલ્યાંકન કરી શક્યા. જોકે,  $(98)^5$ ,  $(101)^6$  વગેરે જેવી ઊંચી ઘાતવાળી સંખ્યાઓની ગણતરી પુનરાવર્તિત ગુણાકાર કરી મેળવવી મુશ્કેલ છે. આ મુશ્કેલીનું નિવારણ દ્વિપદી પ્રમેય તરીકે ઓળખાતા પ્રમેયથી થઈ ગયું છે. જો n એ પૂર્ણાંક અથવા સંમેય સંખ્યા હોય તો તે  $(a+b)^n$ નું વિસ્તરણ કરવાનો સરળ માર્ગ આપે છે. આ પ્રકરણમાં, આપણે માત્ર ધન પૂર્ણાંક ઘાતાંક માટે જ દ્વિપદી પ્રમેયનો ઉપયોગ કરીશું.



Blaise Pascal (1623-1662)

### 8.2 ધન પૂર્શાંક ઘાતાંકો માટેનું દ્વિપદી પ્રમેય

પૃષ્ઠ 157 ઉપર આગળ આવી ગયેલા કેટલાક નિત્યસમો ઉપર આપણે એક નજર નાખીએ.

ગાંધત : ધોરણ 11

$$(a+b)^{0} = 1 a+b \neq 0$$

$$(a+b)^{1} = a+b$$

$$(a+b)^{2} = a^{2} + 2ab + b^{2}$$

$$(a+b)^{3} = a^{3} + 3a^{2}b + 3ab^{2} + b^{3}$$

$$(a+b)^{4} = (a+b)^{3} (a+b) = a^{4} + 4a^{3}b + 6a^{2}b^{2} + 4ab^{3} + b^{4}$$

આ વિસ્તરણોમાં, આપણે અવલોકન કરીએ કે,

- (i) વિસ્તરણનાં પદોની કુલ સંખ્યા (a+b)ના ઘાતાંક કરતા એક વધારે છે. ઉદાહરણ તરીકે  $(a+b)^2$ માં ઘાતાંક 2 હોવાથી પદોની સંખ્યા 3 છે.
- (ii) ક્રમાનુસાર પદોમાં પ્રથમ સંખ્યા 'a' નો ઘાતાંક ક્રમિક રીતે 1 ઘટે છે જ્યારે બીજી સંખ્યા 'b' નો ઘાતાંક ક્રમિક રીતે 1 વધે છે.
- (iii) વિસ્તરણના દરેક પદમાં a અને b ના ઘાતાંકનો સરવાળો સમાન થાય છે અને તે a+b ના ઘાતાંકને સમાન છે. હવે આપણે આ વિસ્તરણના સહગુણકોને નીચે પ્રમાણે ગોઠવીએ (આકૃતિ 8.1):

| ઘાતાંક |   |   |   | સહ   | દુગુણ | <b>કો</b> |   |   |   |
|--------|---|---|---|------|-------|-----------|---|---|---|
| 0      |   |   |   |      | 1     |           |   |   |   |
| 1      |   |   |   | 1    |       | 1         |   |   |   |
| 2      |   |   | 1 |      | 2     |           | 1 |   |   |
| 3      |   | 1 |   | 3    |       | 3         |   | 1 |   |
| 4      | 1 |   | 4 |      | 6     |           | 4 |   | 1 |
|        |   |   |   | આટ્ટ | તિ ક  | 8.1       |   |   |   |

ઉપરના ટેબલમાં આપણે એવી તરાહનું નિરીક્ષણ કરી શકીશું કે જે પછીની હાર લખવામાં આપણને મદદરૂપ થાય? હા, આપણે લખી શકીએ. એ જોવા મળે છે કે એક ઘાતાંકવાળી હારના બંને 1 નો સરવાળો, બે ઘાતાંકવાળી હાર માટે 2 આપે છે. બે ઘાતાંકવાળી હારના 1, 2 અને 2, 1 નો સરવાળો ત્રણ ઘાતાંકવાળી હાર માટે 3 અને 3 આપે છે અને આ પ્રમાણે આગળ વધીશું. દરેક હારની પ્રારંભમાં અને અંતમાં 1 ની હાજરી તો છે જ. આ ક્રિયાને આપણે ઇચ્છિત ઘાતાંક સુધી આગળ લઈ જઈ શકીએ.

આકૃતિ 8.2 માં આપેલી તરાહને આગળ વધારીને બીજી કેટલીક હાર લખીએ.

| ઘાતાંક |                        |     | સહગુણકો                  |          |   |   |
|--------|------------------------|-----|--------------------------|----------|---|---|
| 0      |                        |     | 1                        |          |   |   |
| 1      |                        |     | 1 🗸 :                    | 1        |   |   |
| 2      |                        | 1 \ | $7^{\frac{v}{2}} \nabla$ | 7 1      |   |   |
| 3      |                        | 1 🗸 | $\sqrt{3}$               | $\nabla$ | 1 |   |
| 4      | 1                      | 4   | 6                        | 4        |   | 1 |
|        | આકૃતિ <mark>8.2</mark> |     |                          |          |   |   |

#### પાસ્કલનો ત્રિકોણ

આકૃતિ 8.2 માં આપેલ ઢાંચો ત્રિકોણ સ્વરૂપમાં છે તેમ જોઈ શકાય છે. ત્યાં નીચેની તરફ આગળ વધતી બે તિર્યક

દ્વિપદી પ્રમેય 158

બાજુઓ પર અને ટોચનાં શિરોબિંદુઓ 1 છે. સંખ્યાઓની આ ગોઠવણીને ફ્રેન્ચ ગણતિશાસી *Blaise Pascal* ના નામ પરથી *Pascal નો ત્રિકોણ* કહે છે. તેને ગણતિશાસી *પિંગલા ''મેરુ પ્રાસ્ (Meru Prastara)''* તરીકે ઓળખાવે છે.

ઉચ્ચ કક્ષાવાળી ઘાતનું દ્વિપદી વિસ્તરણ પણ પાસ્કલના ત્રિકોણના ઉપયોગથી શક્ય છે. ચાલો, આપણે  $(2x+3y)^5$ નું પાસ્કલના ત્રિકોણના ઉપયોગથી વિસ્તરણ કરીએ. 5 ઘાતાંક માટેની હાર

આ હાર અને આપણાં અવલોકનો (i), (ii) અને (iii) ના ઉપયોગથી,

$$(2x + 3y)^5 = (2x)^5 + 5(2x)^4 (3y) + 10(2x)^3 (3y)^2 + 10 (2x)^2 (3y)^3 + 5(2x) (3y)^4 + (3y)^5$$
$$= 32x^5 + 240x^4y + 720x^3y^2 + 1080x^2y^3 + 810xy^4 + 243y^5.$$

હવે, જો આપણે  $(2x+3y)^{12}$ નું વિસ્તરણ શોધવું હોય, તો પ્રથમ 12 ઘાતવાળી હારની જરૂર પડશે. આ માટે 12 ઘાતાંક સુધીની પાસ્કલના ત્રિકોણની બધી જ હાર લખવી પડશે. આ થોડી લાંબી પ્રક્રિયા છે. આપણે હજુ વધારે મોટી ઘાતનો સમાવેશ કરીને વિસ્તરણ કરવા માટે નિરીક્ષણ કર્યા પ્રમાણે આ પ્રક્રિયા વધારે મુશ્કેલ બનશે.

હવે, પાસ્કલના ત્રિકોણની બધી જ હાર લખ્યા સિવાય કોઈપણ દ્વિપદીના ઘાતનું વિસ્તરણ કરવા માટે મદદરૂપ થાય અને જે આપણને જરૂરી ઘાતવાળી હારના પહેલાની બધી જ હાર લખ્યા સિવાય મળે તેવો નિયમ શોધવાનો પ્રયત્ન કરીએ. પાસ્કલના ત્રિકોણની સંખ્યાઓ ફરીથી લખવા માટે, આપણે આગળ શીખી ગયેલ સંચયની સંકલ્પનાનો ઉપયોગ કરીશું. આપણે જાણીએ છીએ કે  ${}^n\mathbf{C}_r = \frac{n!}{r!(n-r)!}$  ,  $0 \le r \le n$  અને n એ અનૃણ પૂર્ણાંક છે. વળી  ${}^n\mathbf{C}_0 = 1 = {}^n\mathbf{C}_n$  પાસ્કલના ત્રિકોણને પુનઃ નીચે પ્રમાણે લખીશું (આકૃતિ 8.3) :

| ઘાતાંક | સહગુણકો                                                                                                                 |
|--------|-------------------------------------------------------------------------------------------------------------------------|
| 0      | 1                                                                                                                       |
| 1      | $ \begin{array}{ccc}     & & {}^{1}\mathbf{C}_{0} \\     & & (=1) & (=1) \end{array} $                                  |
| 2      | $ \begin{array}{cccc} ^{2}\mathbf{C}_{0} & ^{2}\mathbf{C}_{1} & ^{2}\mathbf{C}_{2} \\ (=1) & (=2) & (=1) \end{array} $  |
| 3      | ${}^{3}\mathbf{C}_{0}$ ${}^{3}\mathbf{C}_{1}$ ${}^{3}\mathbf{C}_{2}$ ${}^{3}\mathbf{C}_{3}$ (=1)                        |
| 4      | ${}^{4}\mathbf{C}_{0}$ ${}^{4}\mathbf{C}_{1}$ ${}^{4}\mathbf{C}_{2}$ ${}^{4}\mathbf{C}_{3}$ ${}^{4}\mathbf{C}_{4}$ (=1) |
| 5      |                                                                                                                         |
|        | આકૃતિ <mark>8.3</mark> પાસ્કલનો ત્રિકોણ                                                                                 |

આપણે આ તરાહનું નિરીક્ષણ કરી પાસ્કલના ત્રિકોણની આગળની હારો લખ્યા સિવાય કોઈ પણ ઘાતાંક માટેની હારલખી શકીશું. ઉદાહરણ તરીકે,

ઘાતાંક 7 માટેની હાર

$${^{7}\!C_{0}} \ {^{7}\!C_{1}} \ {^{7}\!C_{2}} \ {^{7}\!C_{3}} \ {^{7}\!C_{4}} \ {^{7}\!C_{5}} \ {^{7}\!C_{6}} \ {^{7}\!C_{7}} \ \dot{\mathfrak{D}}.$$

આમ, આ હાર અને અવલોકનનો (i), (ii) અને (iii) પરથી આપણને,

$$(a+b)^7 = {^7}\mathbf{C_0}a^7 + {^7}\mathbf{C_1}a^6b + {^7}\mathbf{C_2}a^5b^2 + {^7}\mathbf{C_3}a^4b^3 + {^7}\mathbf{C_4}a^3b^4 + {^7}\mathbf{C_5}a^2b^5 + {^7}\mathbf{C_6}ab^6 + {^7}\mathbf{C_7}b^7 + \mathbf{\hat{w}}.$$

આ અવલોકનોનો ઉપયોગ કરીને કોઈ પણ ધન પૂર્ણાંક ઘાતાંક n માટે દ્વિપદી વિસ્તરણ કલ્પી શકાય.

હવે આપણે કોઇપણ ધન પૂર્ણાક ઘાતાંક માટે દ્રિપદીનું વિસ્તરણ કરવાની સ્થિતિમાં છીએ.

### 8.2.1 કોઈ પણ ધન પૂર્ણાંક n માટે દ્વિપદી પ્રમેય

$$(a + b)^n = {}^{n}C_0 a^n + {}^{n}C_1 a^{n-1}b + {}^{n}C_2 a^{n-2}b^2 + ... + {}^{n}C_{n-1}a b^{n-1} + {}^{n}C_n b^n$$

<mark>સાબિતી :</mark> આપણે ગાણિતિક અનુમાનના સિદ્ધાંતથી સાબિતી આપીશું.

ધારો કે આપેલું વિધાન

$$\begin{split} & \mathbf{P}(n): (a+b)^n = {^n\mathbf{C}_0}a^n + {^n\mathbf{C}_1}a^{n-1}b + {^n\mathbf{C}_2}a^{n-2}b^2 + ... + {^n\mathbf{C}_{n-1}}ab^{n-1} + {^n\mathbf{C}_n}b^n \ \ \dot{\mathfrak{G}}. \\ & n = 1 \ \text{HiZ}, \end{split}$$

P (1): 
$$(a + b)^1 = {}^{1}C_0a^1 + {}^{1}C_1b^1 = a + b$$
 મળશે.

આમ, P(1) સત્ય છે.

ધારો કે કોઈક ધન પૂર્ણાંક k માટે P(k) સત્ય છે, એટલે કે,

$$(a+b)^k = {}^k\mathbf{C}_0 a^k + {}^k\mathbf{C}_1 a^{k-1}b + {}^k\mathbf{C}_2 a^{k-2}b^2 + \dots + {}^k\mathbf{C}_{k-1} ab^{k-1} + {}^k\mathbf{C}_k b^k \qquad \dots (1)$$

આપણે P(k+1) પણ સત્ય છે તેમ સાબિત કરીશું, એટલે કે,

$$(a+b)^{k+1} = {}^{k+1}\mathbf{C}_{_0}a^{k+1} + {}^{k+1}\mathbf{C}_{_1}a^kb + {}^{k+1}\mathbf{C}_{_2}a^{k-1}b^2 + \ldots + {}^{k+1}\mathbf{C}_{_k}ab^k + {}^{k+1}\mathbf{C}_{_{k+1}}b^{k+1} \quad \text{ સાબિત કરીશું.}$$

હવે, 
$$(a+b)^{k+1} = (a+b) (a+b)^k$$

$$= (a+b) (^kC_0 a^k + ^kC_1 a^{k-1} b + ^kC_2 a^{k-2} b^2 + ... + ^kC_{k-1} ab^{k-1} + ^kC_k b^k) \qquad [(1) પરથી]$$

$$= ^kC_0 a^{k+1} + ^kC_1 a^k b + ^kC_2 a^{k-1} b^2 + ... + ^kC_{k-1} a^2 b^{k-1} + ^kC_k ab^k$$

$$+ ^kC_0 a^k b + ^kC_1 a^{k-1} b^2 + ^kC_2 a^{k-2} b^3 + ... + ^kC_{k-1} ab^k + ^kC_k b^{k+1} \qquad [ ગુણાકાર કરતાં ]$$

$$= ^kC_0 a^{k+1} + (^kC_1 + ^kC_0) a^k b + (^kC_2 + ^kC_1) a^{k-1} b^2 + ...$$

$$+ (^kC_k + ^kC_{k-1}) ab^k + ^kC_k b^{k+1} \qquad [ સમાન પદોનું જૂરા ]$$

$$= ^{k+1}C_0 a^{k+1} + ^{k+1}C_1 a^k b + ^{k+1}C_2 a^{k-1} b^2 + ... + ^{k+1}C_1 ab^k + ^{k+1}C_{k-1} b^{k+1}$$

Downloaded from https://www.studiestoday.com

 $({}^{k}C_{0} = {}^{k+1}C_{0} = 1, {}^{k}C_{r} + {}^{k}C_{r} = {}^{k+1}C_{r}$  અને  ${}^{k}C_{t} = 1 = {}^{k+1}C_{t+1}$  ના ઉપયોગથી)

દ્વિપદી પ્રમેય 160

આમ, જો P(k) સત્ય હોય, તો P(k+1) પણ સત્ય છે.

આથી ગાણિતિક અનુમાનના સિદ્ધાંતથી, પ્રત્યેક ધન પૂર્ણાંક n માટે  $\mathrm{P}(n)$  સત્ય છે.

આપણે  $(x+2)^6$  ના વિસ્તરણ વડે આ પ્રમેય સમજીએ.

$$(x+2)^6 = {}^{6}C_0x^6 + {}^{6}C_1x^5 \cdot 2 + {}^{6}C_2x^42^2 + {}^{6}C_3x^3 \cdot 2^3 + {}^{6}C_4x^2 \cdot 2^4 + {}^{6}C_5x \cdot 2^5 + {}^{6}C_6 \cdot 2^6$$
$$= x^6 + 12x^5 + 60x^4 + 160x^3 + 240x^2 + 192x + 64$$

આમ, 
$$(x+2)^6 = x^6 + 12x^5 + 60x^4 + 160x^3 + 240x^2 + 192x + 64$$

#### અવલોકનો :

1. સંકેત  $\sum_{k=0}^{n} {}^{n}\mathbf{C}_{k} a^{n-k} b^{k}$  એ

 ${}^{n}\mathrm{C}_{0}a^{n}b^{0}+{}^{n}\mathrm{C}_{1}a^{n-1}b^{1}+...+{}^{n}\mathrm{C}_{r}a^{n-r}b^{r}+...+{}^{n}\mathrm{C}_{n}a^{n-n}b^{n}$  માટે વપરાય છે, જ્યાં  $b^{0}=1=a^{n-n}$  આથી આ પ્રમેયને નીચે પ્રમાણે લખી શકાય :

$$(a+b)^n = \sum_{k=0}^n {^n} C_k a^{n-k} b^k$$

- $oldsymbol{2}$ . દ્વિપદી પ્રમેયમાં આવતા સહગુણકો  ${}^n\!\mathrm{C}_p$ દ્વિપદી સહગુણકો તરીકે જાણીતા છે.
- **3.**  $(a+b)^n$ ના વિસ્તરણમાં (n+1) પદો છે, એટલે કે ઘાતાંક કરતાં એક પદ વધારે છે.
- 4. વિસ્તરણમાં ક્રમાનુસાર આવતાં પદોમાં a નો ઘાતાંક એક જેટલો ઘટે છે. પ્રથમ પદમાં n, બીજા પદમાં (n-1) અને આ જ પ્રમાણે આગળ જતાં અંતે છેલ્લા પદમાં શૂન્ય થાય છે. સાથે સાથે b નો ઘાતાંક એક જેટલો વધે છે, શરૂઆતના પ્રથમ પદમાં શૂન્ય, બીજામાં 1 અને આ જ પ્રમાણે આગળ વધતાં છેલ્લા પદમાં ઘાતાંકનો n થી અંત થાય છે.
- 5.  $(a+b)^n$ ના વિસ્તરણમાં પ્રથમ પદમાં a અને b ના ઘાતાંકનો સરવાળો n+0=n છે, બીજા પદમાં આ સરવાળો (n-1)+1=n અને આ જ પ્રમાણે આગળ વધતાં અંતિમ પદમાં તે સરવાળો 0+n=n છે. આમ, વિસ્તરણના દરેક પદમાં a અને b ના ઘાતાંકનો સરવાળો n છે.

### $8.2.2 (a + b)^n$ ના વિસ્તરણના કેટલાક વિશિષ્ટ વિકલ્પો :

(i) 
$$a = x$$
 અને  $b = -y$  લેતાં, આપણને

$$\begin{split} (x-y)^n &= [x+(-y)]^n \\ &= {}^n\mathbf{C}_0x^n + {}^n\mathbf{C}_1x^{n-1}(-y) + {}^n\mathbf{C}_2x^{n-2}(-y)^2 + {}^n\mathbf{C}_3x^{n-3}(-y)^3 + \dots + {}^n\mathbf{C}_n(-y)^n \\ &= {}^n\mathbf{C}_0x^n - {}^n\mathbf{C}_1x^{n-1}y + {}^n\mathbf{C}_2x^{n-2}y^2 - {}^n\mathbf{C}_3x^{n-3}y^3 + \dots + (-1)^n {}^n\mathbf{C}_ny^n \text{ with.} \\ \mathbf{H}, \quad (x-y)^n &= {}^n\mathbf{C}_0x^n - {}^n\mathbf{C}_1x^{n-1}y + {}^n\mathbf{C}_2x^{n-2}y^2 - {}^n\mathbf{C}_3x^{n-3}y^3 + \dots + (-1)^n {}^n\mathbf{C}_ny^n \end{split}$$

ાશિત : ધોરણ 11

આ પરિણામનો ઉપયોગ કરતાં,

$$(x-2y)^5 = {}^5C_0x^5 - {}^5C_1x^4 (2y) + {}^5C_2x^3 (2y)^2 - {}^5C_3x^2 (2y)^3 + {}^5C_4x(2y)^4 - {}^5C_5(2y)^5$$
  
=  $x^5 - 10x^4y + 40x^3y^2 - 80x^2y^3 + 80xy^4 - 32y^5$ .

(ii) 
$$a = 1$$
 અને  $b = x$  લેતાં,

$$(1 + x)^n = {}^{n}C_0(1)^n + {}^{n}C_1(1)^{n-1}x + {}^{n}C_2(1)^{n-2}x^2 + \dots + {}^{n}C_nx^n$$
$$= {}^{n}C_0 + {}^{n}C_1x + {}^{n}C_2x^2 + {}^{n}C_3x^3 + \dots + {}^{n}C_nx^n$$

આમ, 
$$(1+x)^n = {}^nC_0 + {}^nC_1x + {}^nC_2x^2 + {}^nC_3x^3 + \dots + {}^nC_nx^n$$

વિશિષ્ટ રૂપે, x = 1 લેતાં,

$$2^{n} = {^{n}C_{0}} + {^{n}C_{1}} + {^{n}C_{2}} + \dots + {^{n}C_{n}}.$$

(iii) 
$$a = 1$$
 અને  $b = -x$  લેતાં,

$$(1-x)^n = {}^nC_0 - {}^nC_1x + {}^nC_2x^2 - \dots + (-1)^n {}^nC_nx^n$$

વિશિષ્ટ રૂપે, x = 1 લેતાં,

$$0 = {}^{n}C_{0} - {}^{n}C_{1} + {}^{n}C_{2} - \dots + (-1)^{n} {}^{n}C_{n}$$

ઉદાહરણ 1: 
$$\left(x^2 + \frac{3}{x}\right)^4$$
,  $x \neq 0$  નું વિસ્તરણ કરો.

ઉકેલ: દ્વિપદી પ્રમેયનો ઉપયોગ કરતાં, આપણને

$$\left(x^{2} + \frac{3}{x}\right)^{4} = {}^{4}C_{0}(x^{2})^{4} + {}^{4}C_{1}(x^{2})^{3} \left(\frac{3}{x}\right) + {}^{4}C_{2}(x^{2})^{2} \left(\frac{3}{x}\right)^{2} + {}^{4}C_{3}(x^{2}) \left(\frac{3}{x}\right)^{3} + {}^{4}C_{4} \left(\frac{3}{x}\right)^{4}$$

$$= x^{8} + 4 \cdot x^{6} \cdot \frac{3}{x} + 6 \cdot x^{4} \cdot \frac{9}{x^{2}} + 4 \cdot x^{2} \cdot \frac{27}{x^{3}} + \frac{81}{x^{4}}$$

$$= x^{8} + 12x^{5} + 54x^{2} + \frac{108}{x} + \frac{81}{x^{4}}.$$

ઉદાહરણ  $2: (98)^5$  ની ગણતરી કરો.

ઉકેલ: જે બે સંખ્યાઓના ઘાતની ગણતરી સરળ હોય, તેવી બે સંખ્યાઓના સરવાળા અથવા તફાવત સ્વરૂપે 98 ને લઈને દ્વિપદી પ્રમેયનો ઉપયોગ કરીએ.

અાથી, 
$$(98)^5 = (100 - 2)^5$$
  
=  ${}^5C_0 (100)^5 - {}^5C_1 (100)^4 2 + {}^5C_2 (100)^3 2^2 - {}^5C_3 (100)^2 (2)^3 + {}^5C_4 (100) (2)^4 - {}^5C_5 (2)^5$ 

દ્વિપદી પ્રમેય 162

 $= 100000000000 - 5 \times 1000000000 \times 2 + 10 \times 10000000 \times 4 - 10 \times 100000 \times 8 + 5 \times 100 \times 16 - 32$ = 10040008000 - 1000800032 = 9039207968.

ઉદાહરણ  $3:(1.01)^{1000000}$  અથવા 10,000 માંથી કોણ વધારે છે?

ઉક્રેલ ઃ 1.01 ના બે ભાગ કરી દ્વિપદી પ્રમેયનો ઉપયોગ કરી શરૂઆતનાં કેટલાંક પદો લખીશું.

$$(1.01)^{1000000} = (1 + 0.01)^{1000000}$$

$$= {}^{1000000}C_0 + {}^{1000000}C_1(0.01) + અન્ય ધન પદો$$

$$= 1 + 10000000 \times 0.01 + અન્ય ધન પદો$$

$$= 1 + 100000 + અન્ય ધન પદો$$
> 100000

આથી (1.01)1000000 > 10000

ઉદાહરણ 4: દિપદી પ્રમેયનો ઉપયોગ કરી, સાબિત કરો કે  $6^n-5n$  ને 25 વડે ભાગતાં શેષ હંમેશાં 1 રહે છે.  $n \in N$  ઉકેલ: જો પૂર્ણાક a અને શૂન્યેતર પૂર્ણાક b માટે પૂર્ણાકો q તથા r મળે, જેથી a=bq+r જયાં,  $0 \le r < |b|$  તો q ને ભાગફળ તથા r ને શેષ કહે છે. આમ,  $6^n-5n$  ને 25 વડે ભાગતાં શેષ 1 રહે તેમ બતાવવા માટે, આપણે સાબિત કરીશું કે  $6^n-5n=25k+1$ , જયાં k કોઈક અનૂણ પૂર્ણાંક છે.

n=1 માટે  $6^n-5n=6-5=1=(25)\cdot 0+1$ . આથી n=1 માટે પરિણામ સત્ય છે. હવે,  $n\geq 2$  લઇએ.

હવે, 
$$(1+a)^n = {}^n\mathbf{C}_0 + {}^n\mathbf{C}_1 a + {}^n\mathbf{C}_2 a^2 + \dots + {}^n\mathbf{C}_n a^n \text{ માં } a = 5 \text{ each},$$
 
$$(1+5)^n = {}^n\mathbf{C}_0 + {}^n\mathbf{C}_1 5 + {}^n\mathbf{C}_2 5^2 + \dots + {}^n\mathbf{C}_n 5^n$$
 એટલે કે, 
$$6^n = 1 + 5n + 5^2 \cdot {}^n\mathbf{C}_2 + 5^3 \cdot {}^n\mathbf{C}_3 + \dots + 5^n$$
 એટલે કે, 
$$6^n - 5n = 1 + 5^2 \left({}^n\mathbf{C}_2 + {}^n\mathbf{C}_3 5 + \dots + 5^{n-2}\right)$$
 
$$\mathbf{a}$$
 અથવા 
$$6^n - 5n = 1 + 25 \left({}^n\mathbf{C}_2 + 5 \cdot {}^n\mathbf{C}_3 + \dots + 5^{n-2}\right)$$
 અથવા 
$$6^n - 5n = 25k + 1 \quad \text{wei} \ k = {}^n\mathbf{C}_2 + 5 \cdot {}^n\mathbf{C}_3 + \dots + 5^{n-2}.$$

સ્વાધ્યાય 8.1

પ્રશ્ન 1 થી 5 ની અભિવ્યક્તિઓનું વિસ્તરણ કરો.

આ દર્શાવે છે કે જો  $6^n - 5n$  ને 25 વડે ભાગીએ તો શેષ 1 રહે છે.

1. 
$$(1-2x)^5$$
  
2.  $\left(\frac{2}{x} - \frac{x}{2}\right)^5$   
3.  $(2x-3)^6$   
4.  $\left(\frac{x}{3} + \frac{1}{x}\right)^5$   
5.  $\left(x + \frac{1}{x}\right)^6$ 

દ્વિપદી પ્રમેયનો ઉપયોગ કરી, નીચેનાની કિંમત શોધો : (પ્રશ્ન 6 થી 9)

6.  $(96)^3$ 

- 7.  $(102)^5$
- **8.** (101)<sup>4</sup>
- **9.** (99)<sup>5</sup>
- 10. દ્વિપદી પ્રમેયનો ઉપયોગ કરી,  $(1.1)^{10000}$  અથવા 1000 પૈકી કઈ સંખ્યા મોટી છે તે નક્કી કરો.
- 11.  $(a+b)^4 (a-b)^4$  શોધો. તે પરથી  $(\sqrt{3} + \sqrt{2})^4 (\sqrt{3} \sqrt{2})^4$ નું મૂલ્ય શોધો.
- 12.  $(x+1)^6 + (x-1)^6$  શોધો. તે પરથી અથવા અન્ય રીતે $(\sqrt{2} + 1)^6 + (\sqrt{2} 1)^6$  મેળવો.
- **13.** બતાવો કે, ધન પૂર્ણાંક n માટે  $9^{n+1} 8n 9$  એ 64 વડે વિભાજ્ય છે.
- 14. સાબિત કરો :  $\sum_{r=0}^{n} 3^{r} \times {}^{n}C_{r} = 4^{n}$

#### 8.3 વ્યાપક અને મધ્યમ પદો

1. અવલોકન કરતાં દ્વિપદી પ્રમેયમાં  $(a+b)^n$ ના વિસ્તરણમાં, પ્રથમ પદ  ${}^n\!\mathrm{C}_0 a^n$ , બીજું પદ  ${}^n\!\mathrm{C}_1 a^{n-1}b$ , ત્રીજું પદ  ${}^n\!\mathrm{C}_2 a^{n-2}b^2$  અને આ જ પ્રમાણે આગળ મળે. ક્રમિક પદોની તરાહ જોતાં (r+1)મું પદ  ${}^n\!\mathrm{C}_r a^{n-r}b^r$  છે એમ કહી શકાય. (r+1)મા પદને આપણે $(a+b)^n$ ના વિસ્તરણનું વ્યાપક પદ કહીએ છીએ. તેને  $\mathrm{T}_{r+1}$  વડે દર્શાવીશું.

આમ 
$$T_{r+1} = {}^{n}C_{r}a^{n-r}b^{r}$$
.

- 2.  $(a + b)^n$  ના વિસ્તરણમાં મધ્યમ પદના સંદર્ભમાં,
  - (i) જો n યુગ્મ હોય તો વિસ્તરણમાં (n+1) પદો મળે. n યુગ્મ હોવાથી n+1 અયુગ્મ છે. આથી  $\left(\frac{n+1+1}{2}\right)$ મું, એટલે કે,  $\left(\frac{n}{2}+1\right)$  મું પદ મધ્યમ પદ થશે.

ઉદાહરણ તરીકે,  $(x+2y)^8$  ના વિસ્તરણનું મધ્યમ પદ  $\left(\dfrac{8}{2}+1\right)$ મું એટલે કે 5મું પદ

- (ii) જો n અયુગ્મ હોય, તો n+1 યુગ્મ થશે, માટે વિસ્તરણને બે મધ્યમપદ મળશે. અર્થાત્  $\left(\frac{n+1}{2}\right)$ મું અને  $\left(\frac{n+1}{2}+1\right)$ મું પદ. તેથી  $(2x-y)^7$  ના વિસ્તરણમાં  $\left(\frac{7+1}{2}\right)$ મું, એટલે કે ચોથું અને  $\left(\frac{7+1}{2}+1\right)$ મું એટલે કે 5મું પદ મધ્યમ પદ છે.

દ્વિપદી પ્રમેય 164

ઉદાહરણ 5: જો  $(2+a)^{50}$  નું 17મું અને 18મું પદ સમાન હોય, તો a શોધો.

ઉકેલ: 
$$(x+y)^n$$
 ના વિસ્તરણાનું  $(r+1)$ મું પદ  $T_{r+1} = {}^n C_r x^{n-r} y^r$  છે.

આથી, 17મા પદ માટે 
$$r+1=17$$
 એટલે કે  $r=16$  થશે.

આથી, 
$$T_{17} = T_{16+1} = {}^{50}C_{16} (2)^{50-16} a^{16}$$
$$= {}^{50}C_{16} 2^{34} a^{16}.$$

તે જ પ્રમાણે, 
$$T_{18} = {}^{50}C_{17} 2^{33} a^{17}$$

હવે 
$$T_{17} = T_{18}$$
 આપેલું છે.

तेथी 
$${}^{50}\text{C}_{16}(2)^{34} \ a^{16} = {}^{50}\text{C}_{17}(2)^{33} \ a^{17}$$

$$\therefore \frac{{}^{50}\text{C}_{16} \cdot 2^{34}}{{}^{50}\text{C}_{17} \cdot 2^{33}} = \frac{a^{17}}{a^{16}}$$

એટલે કે 
$$a = \frac{{}^{50}\text{C}_{16} \times 2}{{}^{50}\text{C}_{17}} = \frac{50!}{16!34!} \times \frac{17! \ 33!}{50!} \times 2 = 1$$

ઉદાહરણ 6 : સાબિત કરો કે  $(1+x)^{2n}$ ના વિસ્તરણનું મધ્યમ પદ  $\frac{1.3.5...(2n-1)}{n!}$   $2^n x^n$  છે, જ્યાં n ધન પૂર્ણાંક છે.

ઉકેલ : 
$$2n$$
 યુગ્મ હોવાથી,  $(1+x)^{2n}$ ના વિસ્તરણનું મધ્યમ પદ  $\left(\frac{2n}{2}+1\right)$ મું, એટલે કે  $(n+1)$  મું પદ થશે. 
$$T_{n+1}={}^{2n}C_n(1)^{2n-n}(x)^n={}^{2n}C_nx^n$$

$$= \frac{(2n)!}{n!} x^n$$

$$= \frac{2n(2n-1)(2n-2)...4.3.2.1}{n! n!} x^n$$

$$= \frac{1 \cdot 2 \cdot 3 \cdot 4 ... (2n-2) (2n-1) (2n)}{n! n!} x^n$$

$$= \frac{[1 \cdot 3 \cdot 5 \dots (2n-1)][2 \cdot 4 \cdot 6 \dots (2n)]}{n! n!} x^n$$

$$= \frac{[1 \cdot 3 \cdot 5...(2n-1)]2^{n}[1 \cdot 2 \cdot 3...n]}{n!n!} x^{n}$$

$$= \frac{[1 \cdot 3 \cdot 5...(2n-1)] n!}{n! n!} 2^{n} \cdot x^{n}$$

165 ગાિકાત : ધોરણ 11

$$=\frac{1\cdot 3\cdot 5...(2n-1)}{n!}2^nx^n$$

**ઉદાહરણ 7** :  $(x + 2y)^9$ ના વિસ્તરણમાં  $x^6y^3$  નો સહગુણક શોધો.

**ઉકેલ** : ધારો કે  $(x+2y)^9$  ના વિસ્તરણમાં (r+1) મું પદ  $x^6y^3$  વાળું પદ છે.

હવે, 
$$T_{r+1} = {}^{9}C_{r}x^{9-r}(2y)^{r} = {}^{9}C_{r}2^{r} \cdot x^{9-r} \cdot y^{r}$$
.

 $x^6y^3$ માં x ની ઘાત તથા y ની ઘાતની સરખામણી  $\mathbf{T}_{r+1}$ માં તેમની ઘાત સાથે કરતાં r=3 મળે.

આમ,  $x^6y^3$  નો સહગુણક

$${}^{9}C_{3}2^{3} = \frac{9!}{3!6!} \cdot 2^{3} = \frac{9.8.7}{3.2} \cdot 2^{3} = 672.$$

ઉદાહરણ  $8:(x+a)^n$  ના વિસ્તરણમાં બીજું, ત્રીજું અને ચોથું પદ અનુક્રમે 240, 720 અને 1080 છે. x,a અને n શોધો.

**ઉકેલ :** બીજું પદ T<sub>2</sub>= 240 છે.

$$T_2 = {}^{n}C_1 x^{n-1}$$
.  $a$  હોવાથી,

$${}^{n}C_{1}x^{n-1}$$
.  $a = 240$  ... (1)

તે જ પ્રમાણે 
$${}^{n}C_{2}x^{n-2}a^{2}=720$$
 ... (2)

અને 
$${}^{n}C_{3}\chi^{n-3}a^{3} = 1080 \qquad ... (3)$$

(2) ને (1) વડે ભાગતાં,

$$\frac{{}^{n}C_{2}x^{n-2}a^{2}}{{}^{n}C_{1}x^{n-1}a} = \frac{720}{240} \text{ which is, } \frac{(n-1)!}{(n-2)!} \cdot \frac{a}{x} = 6$$

$$\therefore \frac{a}{x} = \frac{6}{(n-1)} \tag{4}$$

(3)ને (2) વડે ભાગતાં,

$$\frac{a}{x} = \frac{9}{2(n-2)}$$
 ... (5)

(4) અને (5) પરથી,

$$\frac{6}{n-1} = \frac{9}{2(n-2)}$$
. with,  $n=5$ 

આથી (1) પરથી  $5x^4a = 240$  અને (4) પરથી,  $\frac{a}{x} = \frac{3}{2}$ 

આ સમીકરણનું a અને x માટે સમાધાન કરતાં, x=2 અને a=3 મળે.

ઉદાહરણ  $9: (1+a)^n$  ના વિસ્તરણનાં ત્રણ ક્રમિક પદોના સહગુણકોનો ગુણોત્તર 1:7:42 છે. n શોધો.

ઉકેલ : ધારો કે  $(1+a)^n$  ના વિસ્તરણનાં ત્રણ ક્રમિક પદો (r-1)મું, rમું અને (r+1)મું પદ છે.

દ્વિપદી પ્રમેય 166

(r-1) મું પદ  ${}^n\mathbf{C}_{r-2}a^{r-2}$  છે અને તેનો સહગુણક  ${}^n\mathbf{C}_{r-2}$  છે. આ જ પ્રમાણે, r અને (r+1)મા પદના સહગુણકો અનુક્રમે  ${}^n\mathbf{C}_{r-1}$  અને  ${}^n\mathbf{C}_r$  છે.

સહગુણકોનો ગુણોત્તર 1:7:42 હોવાથી,

$$\frac{{}^{n}\mathbf{C}_{r-2}}{{}^{n}\mathbf{C}_{r-1}} = \frac{1}{7}, એટલે કે, n - 8r + 9 = 0 \qquad ... (1)$$

અને

$$\frac{{}^{n}\mathrm{C}_{r-1}}{{}^{n}\mathrm{C}_{r}}=\frac{7}{42}$$
 , એટલે કે,  $n-7r+1=0$  મળે. ... (2)

સમીકરણો (1) અને (2) ઉકેલતાં n = 55 મળશે.

### સ્વાધ્યાય 8.2

સહગુણકો શોધો : (પ્રશ્ન 1 તથા 2)

1.  $(x+3)^8$  માં  $x^5$  નો

2.  $(a-2b)^{12}$  માં  $a^5b^7$  નો

નીચેના વિસ્તરણનું વ્યાપક પદ લખો : (પ્રશ્ન 3 તથા 4)

3.  $(x^2-y)^6$ 

4.  $(x^2 - vx)^{12}$ ,  $x \neq 0$ 

**5.**  $(x-2y)^{12}$  ના વિસ્તરણનું ચોથું પદ શોધો.

6.  $\left(9x - \frac{1}{3\sqrt{x}}\right)^{18}$ ,  $x \neq 0$  ના વિસ્તરણનું 13મું પદ શોધો.

નીચેના વિસ્તરણનું મધ્યમ પદ શોધો :

7.  $\left(3 - \frac{x^3}{6}\right)^7$ 

8. 
$$\left(\frac{x}{3} + 9y\right)^{10}$$

9.  $(1+a)^{m+n}$  ના વિસ્તરણમાં  $a^m$  અને  $a^n$  ના સહગુણકો સમાન છે તેમ સાબિત કરો.

**10.**  $(x+1)^n$ ના વિસ્તરણમાં (r-1)મા, r મા અને (r+1) મા પદોના સહગુણકોનો ગુણોત્તર 1:3:5 હોય, તો n અને r શોધો.

11. સાબિત કરો કે  $(1+x)^{2n}$ ના વિસ્તરણમાં  $x^n$  નો સહગુણક,  $(1+x)^{2n-1}$  ના વિસ્તરણના  $x^n$  ના સહગુણક કરતાં બે ગણો છે.

**12.** જો $(1+x)^m$ ના વિસ્તરણમાં  $x^2$  નો સહગુણક 6 હોય, તો m નું ધન મૂલ્ય શોધો.

### પ્રકીર્ણ ઉદાહરણો

ઉદાહરણ 10 :  $\left(\frac{3}{2}x^2 - \frac{1}{3x}\right)^6$  ના વિસ્તરણનું અચળ પદ શોધો.

ઉકેલ: 
$$T_{r+1} = {}^{6}C_{r} \left(\frac{3}{2}x^{2}\right)^{6-r} \left(-\frac{1}{3x}\right)^{r}$$

ાશિત : ધોરણ 11

$$= {}^{6}C_{r} \left(\frac{3}{2}\right)^{6-r} \left(x^{2}\right)^{6-r} \left(-1\right)^{r} \left(\frac{1}{x}\right)^{r} \left(\frac{1}{3^{r}}\right)^{r}$$
$$= (-1)^{r} {}^{6}C_{r} \frac{(3)^{6-2r}}{(2)^{6-r}} x^{12-3r}$$

જો x નો ઘાતાંક શૂન્ય હોય, તો તે અચળ પદ થાય, એટલે કે, 12-3r=0. આમ, r=4

આથી 5 મું પદ અચળ પદ થશે અને તે  $(-1)^4$   ${}^6C_4 \frac{(3)^{6-8}}{(2)^{6-4}} = \frac{5}{12}$ .

ઉદાહરણ 11: જો  $(1+a)^n$  ના વિસ્તરણમાં  $a^{r-1}$ ,  $a^r$  અને  $a^{r+1}$  ના સહગુણકો સમાંતર શ્રેણીમાં હોય, તો સાબિત કરો કે  $n^2-n(4r+1)+4r^2-2=0$ .

ઉંકેલ: આપેલ વિસ્તરણનું (r+1) મું પદ  ${}^n\mathbf{C}_r a^r$ . આમ  $a^r$  એ (r+1)મા પદમાં મળે છે અને તેનો સહગુણક  ${}^n\mathbf{C}_r$  છે. આથી,  $a^{r-1}$ ,  $a^r$  અને  $a^{r+1}$  ના સહગુણકો અનુક્રમે  ${}^n\mathbf{C}_{r-1}$ ,  ${}^n\mathbf{C}_r$  અને  ${}^n\mathbf{C}_{r+1}$  છે. આ સહગુણકો સમાંતર શ્રેણીમાં હોવાથી,  ${}^n\mathbf{C}_{r-1}$ +  ${}^n\mathbf{C}_{r+1}$  =  $2 \cdot {}^n\mathbf{C}_r$  થાય.

તે પરથી, 
$$\frac{n!}{(r-1)!(n-r+1)!} + \frac{n!}{(r+1)!(n-r-1)!} = 2 \times \frac{n!}{r!(n-r)!}$$
 મળે.

એટલે કે, 
$$\frac{1}{(r-1)!(n-r+1)(n-r)(n-r-1)!} + \frac{1}{(r+1)(r)(r-1)!(n-r-1)!}$$

$$=2 \times \frac{1}{r(r-1)!(n-r)(n-r-1)!}$$

$$\therefore \frac{1}{(r-1)! (n-r-1)!} \left[ \frac{1}{(n-r)(n-r+1)} + \frac{1}{(r+1)(r)} \right]$$

$$= 2 \times \frac{1}{(r-1)! \ (n-r-1)! [r(n-r)]}$$

$$\therefore \frac{1}{(n-r+1)(n-r)} + \frac{1}{r(r+1)} = \frac{2}{r(n-r)},$$

$$\therefore \frac{r(r+1)+(n-r)(n-r+1)}{(n-r)(n-r+1)r(r+1)} = \frac{2}{r(n-r)}$$

$$\therefore r(r+1) + (n-r)(n-r+1) = 2(r+1)(n-r+1)$$

$$\therefore r^2 + r + n^2 - nr + n - nr + r^2 - r = 2(nr - r^2 + r + n - r + 1)$$

$$n^2 - 4nr - n + 4r^2 - 2 = 0$$

$$\therefore n^2 - n(4r+1) + 4r^2 - 2 = 0$$

દ્વિપદી પ્રમેય 168

ઉદાહરણ 12 : બતાવો કે  $(1+x)^{2n}$ ના વિસ્તરણના મધ્યમ પદનો સહગુણક એ  $(1+x)^{2n-1}$ ના વિસ્તરણનાં મધ્યમ પદોના સહગુણકોના સરવાળા જેટલો છે.

ઉકેલ : 2n યુગ્મ હોવાથી  $(1+x)^{2n}$ ના વિસ્તરણમાં માત્ર એક જ મધ્યમ પદ છે અને તે  $\left(\frac{2n}{2}+1\right)$ મું, એટલે કે (n+1)મું પદ. (n+1) મું પદ  $^{2n}$ C $_n$  $x^n$ છે.  $x^n$ નો સહગુણક  $^{2n}$ C $_n$  છે.

તે જ પ્રમાણે, (2n-1) અયુગ્મ છે, આથી બીજા વિસ્તરણમાં બે મધ્યમ પદ મળશે.

 $\left(\frac{2n-1+1}{2}\right) મું અને \left(\frac{2n-1+1}{2}+1\right) મું પદ એટલે કે <math>n$ મું અને (n+1)મું પદ. આ પદના સહગુણકો અનુક્રમે  $^{2n-1}C_{n-1}$  અને  $^{2n-1}C_n$  થશે.

હવે, 
$${}^{2n-1}C_{n-1} + {}^{2n-1}C_n = {}^{2n}C_n$$
 છે જ. 
$$[{}^{n}C_{r-1} + {}^{n}C_r = {}^{n+1}C_r$$
 તા ઉપયોગથી]

ઉદાહરણ 13 : દ્વિપદી પ્રમેયનો ઉપયોગ કરી  $(1+2a)^4(2-a)^5$  ના ગુણાકારમાં  $a^4$ નો સહગુણક શોધો.

ઉકેલ : આપણે આપેલ ગુણાકારના દરેક અવયવનું દ્વિપદી પ્રમેયનો ઉપયોગ કરી વિસ્તરણ કરીએ.

$$(1 + 2a)^4 = {}^4C_0 + {}^4C_1 (2a) + {}^4C_2 (2a)^2 + {}^4C_3 (2a)^3 + {}^4C_4 (2a)^4$$
$$= 1 + 4 (2a) + 6(4a^2) + 4 (8a^3) + 16a^4$$
$$= 1 + 8a + 24a^2 + 32a^3 + 16a^4$$

અને 
$$(2-a)^5 = {}^5\text{C}_0 (2)^5 - {}^5\text{C}_1 (2)^4 (a) + {}^5\text{C}_2 (2)^3 (a)^2 - {}^5\text{C}_3 (2)^2 (a)^3 + {}^5\text{C}_4 (2) (a)^4 - {}^5\text{C}_5 (a)^5$$
  
=  $32 - 80a + 80a^2 - 40a^3 + 10a^4 - a^5$ 

આમ 
$$(1+2a)^4(2-a)^5$$

= 
$$(1 + 8a + 24a^2 + 32a^3 + 16a^4)$$
  $(32 - 80a + 80a^2 - 40a^3 + 10a^4 - a^5)$ 

બંને કૌંસનો પૂરેપૂરો ગુણાકાર કરીશું નહિ. આપણે  $a^4$  આવે તેવાં જ પદો લખીશું. આમ કરવા માટે આપણે નોંધીશું કે  $a^r$ .  $a^{4-r}=a^4$ .

જેમાંથી  $a^4$ મળે તેવાં પદો  $1(10a^4) + (8a)(-40a^3) + (24a^2)(80a^2) + (32a^3)(-80a) + (16a^4)(32) = -438a^4$  આમ, આપેલા ગુણાકારમાં  $a^4$ નો સહગુણક -438 છે.

ઉદાહરણ  $14: (x+a)^n$ ના વિસ્તરણમાં છેલ્લેથી r મું પદ શોધો.

ઉંકેલ :  $(x+a)^n$ ના વિસ્તરણમાં (n+1) પદો છે. પદોનું અવલોકન કરતાં અંતિમ પદથી પ્રથમ પદ એ છેલ્લું પદ થશે, એટલે કે, વિસ્તરણનું (n+1) મું પદ થશે તેમ લાગે છે અને n+1=(n+1)-(1-1). વિસ્તરણનું અંતિમ પદથી બીજું પદ એ n મું પદ થશે અને n=(n+1)-(2-1). અંતિમ પદથી ત્રીજું પદ એ વિસ્તરણનું (n-1)મું પદ થશે અને n-1=(n+1)-(3-1) અને આ જ પ્રમાણે આગળ, આમ છેલ્લેથી r માં પદનો ક્રમ એ (n+1)-(r-1)=(n-r+2) થશે અને (n-r+2)મું પદ  $^n$ C $_{n-r+1}$   $x^{r-1}$   $a^{n-r+1}$  છે.

ઉદાહરણ 15 : 
$$\left(\sqrt[3]{x} + \frac{1}{2\sqrt[3]{x}}\right)^{18}$$
 ના વિસ્તરણનું  $x$  થી સ્વતંત્ર પદ(અચળ પદ) શોધો.  $x > 0$ 

Geq: 
$$T_{r+1} = {}^{18}C_r \left(\sqrt[3]{x}\right)^{18-r} \left(\frac{1}{2\sqrt[3]{x}}\right)^r$$

$$= {}^{18}C_r x^{\frac{18-r}{3}} \cdot \frac{1}{2^r \cdot x^{\frac{r}{3}}}$$

$$= {}^{18}C_r \frac{1}{2^r} \cdot x^{\frac{18-2r}{3}}$$

આપણે x થી સ્વતંત્ર પદ એટલે કે જે પદમાં x ન હોય એવું પદ મેળવવું છે.

આથી 
$$\frac{18-2r}{3} = 0$$
 લઈશું. આથી  $r = 9$  મળશે.

$$\therefore$$
 જરૂરી પદ  ${}^{18}\mathrm{C_9}~\frac{1}{2^9}$ 

ઉદાહરણ  $16:\left(x-\frac{3}{x^2}\right)^m$ ના વિસ્તરણમાં પ્રથમ ત્રણ પદોના સહગુણકોનો સરવાળો 559 છે. વિસ્તરણમાં  $x^3$  હોય તેવું પદ શોધો. m એ પ્રાકૃતિક સંખ્યા છે.

ઉકેલ :  $\left(x-\frac{3}{x^2}\right)^m$  ના વિસ્તરણનાં પ્રથમ ત્રણ પદોના સહગુણકો અનુક્રમે  ${}^m\!\mathrm{C}_0$ , (-3)  ${}^m\!\mathrm{C}_1$  અને 9  ${}^m\!\mathrm{C}_2$  છે.

આથી આપેલ શરત પ્રમાણે,

$${}^{m}C_{0} - 3 {}^{m}C_{1} + 9 {}^{m}C_{2} = 559$$
, એટલે કે  $1 - 3m + \frac{9m(m-1)}{2} = 559$ 

તે પરથી m = 12 મળશે.

(*m* એ પ્રાકૃતિક સંખ્યા છે)

હવે 
$$T_{r+1} = {}^{12}C_r x^{12-r} \left(-\frac{3}{x^2}\right)^r = {}^{12}C_r (-3)^r \cdot x^{12-3r}$$

આપણને  $x^3$  વાળું પદ જોઈએ છે. આથી 12 - 3r = 3 મૂકતાં, r = 3 મળશે.

આમ, માગેલું પદ  ${}^{12}\text{C}_3(-3)^3 \ x^3$ , એટલે કે,  $-5940 \ x^3$  છે.

ઉદાહરણ 17 : જો $(1+x)^{34}$  ના વિસ્તરણના (r-5)માં પદ અને (2r-1)માં પદના સહગુણકો સમાન હોય, તો r શોધો.

ઉકેલ :  $(1+x)^{34}$  ના વિસ્તરણના (r-5)માં પદ અને (2r-1)માં પદના સહગુણકો અનુક્રમે  $^{34}\mathrm{C}_{r-6}$  અને  $^{34}\mathrm{C}_{2r-2}$  છે.

તેઓ સમાન હોવાથી  $^{34}\mathrm{C}_{r-6} = ^{34}\mathrm{C}_{2r-2}$ 

આથી r-6=2r-2 અથવા r-6=34-(2r-2) થશે.

[ જો  ${}^n\!\mathbf{C}_r = {}^n\!\mathbf{C}_p$  તો r = p અથવા r = n - p એ સત્યનો ઉપયોગ કરતાં]

આથી, r=-4 અથવા r=14 મળશે. r એ પ્રાકૃતિક સંખ્યા હોવાથી r=-4 શકય નથી, આથી, r=14.

દ્વિપદી પ્રમેય 170

#### પ્રકીર્ણ સ્વાધ્યાય 8

- 1. જો  $(a+b)^n$  ના વિસ્તરણનાં પ્રથમ ત્રણ પદો અનુક્રમે 729, 7290 અને 30375 હોય, તો a,b અને n શોધો.
- **2.** જો  $(3 + ax)^9$ ના વિસ્તરણમાં  $x^2$  અને  $x^3$  ના સહગુણકો સમાન હોય, તો a શોધો.
- **3.** દ્વિપદી પ્રમેયનો ઉપયોગ કરી,  $(1+2x)^6(1-x)^7$  ના ગુણાકારમાં  $x^5$  નો સહગુણક શોધો.
- 4. જો a અને b ભિન્ન પૂર્ણાંક હોય, તો સાબિત કરો કે  $a^n-b^n$ નો એક અવયવ a-b છે, જ્યાં n એ ધન પૂર્ણાંક છે.  $[ મૂચન: \ a^n=(a-b+b)^n$ લઈ વિસ્તરણ કરો.]
- 5.  $(\sqrt{3} + \sqrt{2})^6 (\sqrt{3} \sqrt{2})^6$  ની કિંમત શોધો.
- 6.  $\left(a^2 + \sqrt{a^2 1}\right)^4 + \left(a^2 \sqrt{a^2 1}\right)^4$  ની કિંમત શોધો.
- 7. વિસ્તરણનાં પ્રથમ ત્રણ પદોનો ઉપયોગ કરી  $(0.99)^5$ ની આશરે કિંમત શોધો.
- 8. જો  $\left(\sqrt[4]{2} + \frac{1}{\sqrt[4]{3}}\right)^n$ ના વિસ્તરણના શરૂઆતથી પાંચમા પદ અને છેલ્લેથી પાંચમા પદનો ગુણોત્તર  $\sqrt{6}:1$  હોય, તો n શોધો.
- 9. દ્વિપદી પ્રમેયનો ઉપયોગ કરી  $\left(1+\frac{x}{2}-\frac{2}{x}\right)^4$ ,  $x \neq 0$  નું વિસ્તરણ કરો.
- **10.** દ્વિપદી પ્રમેયનો ઉપયોગ કરી  $(3x^2 2ax + 3a^2)^3$  નું વિસ્તરણ શોધો.

#### સારાંશ

- ♦ કોઈ પણ ધન પૂર્ણાંક n માટે દ્વિપદીનું વિસ્તરણ દ્વિપદી પ્રમેયથી કરી શકાય છે, તે  $(a+b)^n = {}^n C_0 a^n + {}^n C_1 a^{n-1} b + {}^n C_2 a^{n-2} b^2 + ... + {}^n C_{n-1} a b^{n-1} + {}^n C_n b^n$  છે.
- ♦ વિસ્તરણનાં સહગુણકો નિશ્ચિત ગોઠવણીમાં ગોઠવાય, તો આ ગોઠવણને પાસ્કલનો ત્રિકોણ કહે છે.
- $lack (a+b)^n$ ના વિસ્તરણનું વ્યાપક પદ  $\mathbf{T}_{r+1} = {}^n\mathbf{C}_r a^{n-r} b^r$ છે.
- $(a+b)^n$  ના વિસ્તરણમાં, જો n યુગ્મ હોય, તો મધ્યમ પદ  $\left(\frac{n}{2}+1\right)$  મું પદ થશે. જો n અયુગ્મ હોય, તો મધ્યમ પદો

$$\left(\frac{n+1}{2}\right)$$
 મું અને  $\left(\frac{n+1}{2}+1\right)$ મું થશે.

#### Historical Note

The ancient Indian mathematicians knew about the coefficients in the expansions of  $(x + y)^n$ ,  $0 \le n \le 7$ . The arrangement of these coefficients was in the form of a diagram called *Meru-Prastara*, provided by Pingla in his book *Chhanda shastra* (200B.C.). This triangular arrangement is also found in the work of Chinese mathematician Chu-shi-kie in 1303. The term binomial coefficients was first introduced by the German mathematician, Michael Stipel (1486-1567) in approximately 1544. Bombelli (1572) also gave the coefficients in the expansion of  $(a + b)^n$ , for n = 1, 2, ..., 7 and Oughtred (1631) gave them for n = 1, 2, ..., 10. The arithmetic triangle, popularly known as *Pascal's triangle* and similar to the *Meru-Prastara* of Pingla was constructed by the French mathematician Blaise Pascal (1623-1662) in 1665.

The present form of the binomial theorem for integral values of *n* appeared in *Trate du triange arithmetic*, written by Pascal and published posthumously in 1665.



# 9

# શ્રેણી અને શ્રેઢી

❖ Natural numbers are the product of human spirit. – DEDEKIND ❖

### 9.1 પ્રાસ્તાવિક

સાહિત્યમાં અને ગિષાતિશાસ્ત્રમાં શ્રેષ્ઠી શબ્દ એક જ અર્થમાં વાપરવામાં આવે છે. જ્યારે આપણે કહીએ છીએ કે વસ્તુનો જથ્થો શ્રેષ્ઠીમાં રહેલ છે, ત્યારે સામાન્ય રીતે એવું માનીએ છીએ કે જથ્થામાં રહેલ વસ્તુઓ પ્રથમ સભ્ય, દ્વિતીય સભ્ય, તૃતીય સભ્ય સ્વરૂપે છે, વગેરે. ઉદાહરણ તરીકે, જુદા જુદા સમયે માનવ વસતી કે બૅક્ટેરિયાની સંખ્યા શ્રેષ્ઠી રચે છે. બૅકમાં જમા કરાવેલા પૈસા દ્વારા દરેક વર્ષ પછીની મળતી રકમ શ્રેષ્ઠી બનાવે છે. વસ્તુના ઘસારાની કિંમત શ્રેષ્ઠી બનાવે છે. શ્રેષ્ઠી એ માનવ પ્રવૃત્તિનાં વિવિધ ક્ષેત્રમાં મહત્ત્વપૂર્ણ મનાય છે.



Fibonacci (1175-1250)

નિશ્ચિત પદ્ધતિને અનુસરતા અનુક્રમને શ્રે શી કહે છે. અગાઉના ધોરણમાં આપણે સમાંતર શ્રેશી વિશે શીખી ગયાં છીએ. આ પ્રકરણમાં હવે પછી સમાંતર શ્રેણી વિશે વધુ શીખીશું તથા સમાંતર મધ્યક (arithmetic mean) સમગુણોત્તર મધ્યક (geometric mean), સમાંતર અને સમગુણોત્તર મધ્યક વચ્ચેનો સંબંધ, n પ્રાકૃતિક સંખ્યાઓનો સરવાળો, n ક્રમિક પ્રાકૃતિક સંખ્યાના વર્ગોનો સરવાળો અને n ક્રમિક પ્રાકૃતિક સંખ્યાના વનના સરવાળા વિશે શીખીશું.

#### 9.2 શ્રેણીઓ

નીચેનાં ઉદાહરણો જોઈએ :

માની લઇએ કે બે પેઢી વચ્ચેનું અંતર 30 વર્ષનું છે, તો છેલ્લાં 300 વર્ષમાં કેટલા પૂર્વજો અર્થાત્ માતા-પિતા, દાદા-દાદી, વડદાદા-વડદાદી વગેરે મળે?

અહીં, પેઢીની કુલ સંખ્યા = 
$$\frac{300}{30}$$
 = 10

માણસના પૂર્વજોની સંખ્યા પ્રથમ, દ્વિતીય, તૃતીય,.... દસમી પેઢીએ 2, 4, 8, 16, 32, ..., 1024 જેટલી હશે. આ સંખ્યા દ્વારા શ્રેણી બને છે તેમ આપણે કહીશું.

10 ને 3 વડે ભાગતાં ક્રમિક સોપાનથી મળતા ભાગફળ  $3,3.3,3.33,3.333,\ldots$  વગેરે છે. આ ભાગફળ પણ શ્રેણી રચે છે. શ્રેણીમાં આવતી જુદી જુદી સંખ્યાને **પદ** કહીશું. આપણે શ્રેણીનાં પદોને  $a_1, a_2, a_3,\ldots, a_n,\ldots$ , વગેરે દ્વારા દર્શાવીશું, તેમાં અનુગ (Suffix) પદનો ક્રમાંક દર્શાવે છે. શ્રેણીમાં n મું પદ એ n મા સ્થાને રહેલી સંખ્યા છે અને તેને  $a_n$ વડે દર્શાવાય. શ્રેણીના n મા પદને વ્યાપક પદ તરીકે ઓળખાય છે.

આમ, ઉપર દર્શાવેલ વ્યક્તિના પૂર્વજોથી બનતી શ્રેણીનાં પદ :

$$a_1 = 2$$
,  $a_2 = 4$ ,  $a_3 = 8$ , ...,  $a_{10} = 1024$   $\dot{\Theta}$ .

આ જ રીતે ભાગફળના ઉદાહરણમાં,

$$a_1$$
 = 3,  $a_2$  = 3.3,  $a_3$  = 3.33, ...,  $a_6$  = 3.33333, વગેરે.

જે શ્રેણીમાં પદોની સંખ્યા નિશ્ચિત ધન પૂર્ણાંક જેટલી હોય તેને *સાન્ત શ્રેણી* કહેવાય. ઉદાહરણ તરીકે, પૂર્વજોથી બનતી શ્રેણી સાન્ત છે. કેમ કે તેમાં 10 પદ (નિશ્ચિત સંખ્યા) રહેલ છે.

જે શ્રેણી સાન્ત નથી, તેને *અનંત શ્રેણી* કહેવાય છે. ઉદાહરણ તરીકે, ઉપર દર્શાવેલ ક્રમિક ભાગફળવાળા દાખલામાં *અનંત શ્રેણી* મળે છે. અનંતનો અર્થ 'ક્યારેય અંત ના હોય' તેવો થાય.

ઘણી વખત એવું શક્ય બને કે, શ્રેણીના અલગ અલગ પદથી શ્રેણીનું બૈજિક સૂત્ર શક્ય બને. ઉદાહરણ તરીકે, યુગ્મ પ્રાકૃતિક સંખ્યા દ્વારા બનતી શ્રેણી 2, 4, 6, ...લઈએ.

અહીં, 
$$a_1=2=2\times 1,\ a_2=4=2\times 2$$
 
$$a_3=6=2\times 3,\ a_4=8=2\times 4$$
 .... .... .... .... .... .... 
$$a_{23}=46=2\times 23,\ a_{24}=48=2\times 24$$
 વગેરે.

અલબત્ત આપણે જોઈ શકીએ કે આ શ્રેણીનું n મું પદ પ્રાકૃતિક સંખ્યા n માટે  $a_n=2n$  એમ લખી શકાય. આ જ રીતે, અયુગ્મ પ્રાકૃતિક સંખ્યાઓ 1, 3, 5, ..., નું n મું પદ  $a_n=2n-1$ , સૂત્રથી દર્શાવી શકાય. n એ પ્રાકૃતિક સંખ્યા છે.

ઘણા કિસ્સાઓમાં આંકડાની ગોઠવણી દ્વારા કોઈ તરાહ જોઈ શકાતી નથી. ઉદાહરણ તરીકે, 1, 1, 2, 3, 5, 8,... પરંતુ આ શ્રેણી આવૃત્ત સંબંધ દ્વારા સર્જાય છે.

$$a_1 = a_2 = 1$$
 $a_3 = a_1 + a_2$ 

$$a_n = a_{n-2} + a_{n-1}, n > 2$$

આ શ્રેણીને *ફિબોનાકી શ્રેણી* (Fibonacci Sequence) કહેવાય છે.

અવિભાજય સંખ્યાઓની શ્રેણી 2, 3, 5, 7,...માં આપણે n મું અવિભાજય પદ મેળવવાનું સૂત્ર શોધી શકતા નથી. આવી શ્રેણીની સમજ શાબ્દિક રીતે જ આપી શકાય.

આપણે, દરેક શ્રેણીમાં તેનાં તમામ પદોનો સમાવેશ કરે તેવા કોઇ ચોક્કસ સૂત્રની અપેક્ષા રાખતા નથી.

આમ છતાં આપણે  $a_1, a_2, a_3,...,a_n$ ... નું ક્રમમાં સર્જન કરી શકાય તેવા કોઈ સૈદ્ધાંતિક નિયમ કે સૈદ્ધાંતિક તારણની અપેક્ષા રાખીએ છીએ.

ઉપરની માહિતી પરથી કહી શકાય કે, જેનો પ્રદેશ પ્રાકૃતિક સંખ્યાનો ગણ અથવા તેનો કોઈ ઉપગણ  $\{1,2,3...k\}$  જેવો હોય તેને શ્રેણી કહેવાય. કેટલીક વખત  $a_n$ માટે વિધેયનો સંકેત a(n) ઉપયોગમાં લેવાય છે.

#### 9.3 શ્રેઢી

ધારો કે  $a_1,\,a_2,\,a_3,...,a_n$ ... આપેલ શ્રેણી છે. તો પદાવિલ

$$a_1 + a_2 + a_3 + \dots + a_n + \dots$$

ને આપેલ શ્રેશીને *સંગત શ્રેઢી* કહેવાય. જો શ્રેશી સાન્ત કે અનંત હોય તો અનુરૂપ શ્રેઢી પણ સાન્ત કે અનંત થાય. શ્રેઢીને ટૂંકમાં ગ્રીક મૂળાક્ષર  $\sum$  (સિગ્મા) સંકેત દ્વારા દર્શાવવામાં આવે છે. તેનો અર્થ સરવાળો થાય છે. આમ, શ્રેઢી  $a_1+a_2+a_3+...+a_n$  ને ટૂંકમાં  $\sum_{k=1}^n a_k$  એમ લખાય.

નોંધ : જ્યારે શ્રેઢી શબ્દનો ઉપયોગ કરવામાં આવે ત્યારે તે રજૂઆત સરવાળો જ દર્શાવે છે. ઉદાહરણ તરીકે 1 + 3 + 5 + 7 એ એક ચાર પદોવાળી સાન્ત શ્રેઢી છે. જ્યારે આપણે ''શ્રેઢીનો સરવાળો'' એવો શબ્દસમૂહ વાપરીએ ત્યારે તેનાં પદોનો સરવાળો કરવો એટલે કે સરવાળાનું મૂલ્ય મેળવવું તેવો અર્થ કરીશું. આમ, આપેલ શ્રેઢીનો સરવાળો 16 છે. હવે, આપણે કેટલાંક ઉદાહરણો જોઈએ.

ઉદાહરણ 1 : નીચે વ્યાખ્યાયિત શ્રેણીઓનાં પ્રથમ ત્રણ પદો લખો.

(i) 
$$a_n = 2n + 5$$
 (ii)  $a_n = \frac{n-3}{4}$ .

ઉકેલ : (i) અહીં 
$$a_n=2n+5$$
 
$$n=1,2,3, \text{લેતાં},$$
 
$$a_1=2(1)+5=7, a_2=9, a_3=11$$

આથી, માંગેલ પદો 7, 9, 11 છે.

(ii) અહીં 
$$a_n = \frac{n-3}{4}$$
. આથી,

## Downloaded from https://www.studiestoday.com

શ્રેણી અને શ્રેઢી 174

$$a_1 = \frac{1-3}{4} = -\frac{1}{2}, a_2 = -\frac{1}{4}, a_3 = 0$$

આમ, માંગેલ પ્રથમ ત્રણ પદ  $-\frac{1}{2}$ ,  $-\frac{1}{4}$  અને 0 છે.

**ઉદાહરણ 2** : શ્રેણી  $a_n = (n-1)(2-n)(3+n)$  નું 20 મું પદ કયું હશે ?

ઉકેલ : n = 20 મૂકતાં,

$$a_{20}$$
 = (20 – 1) (2 – 20) (3 + 20)  
= 19 × (– 18) × (23)  
= – 7866

**ઉદાહરણ 3** : શ્રેણી  $a_n$  નીચે પ્રમાણે વ્યાખ્યાયિત છે :

$$a_1 = 1, \ n \ge 2 \text{ Hi} \hat{c} \ a_n = a_{n-1} + 2.$$

આ શ્રેણીનાં પ્રથમ પાંચ પદ લખો અને સંબંધિત શ્રેઢી લખો :

ઉકેલ : અહીં,

$$a_1 = 1$$
,  $a_2 = a_1 + 2 = 1 + 2 = 3$ ,  
 $a_3 = a_2 + 2 = 3 + 2 = 5$ ,  
 $a_4 = a_3 + 2 = 5 + 2 = 7$ ,  
 $a_5 = a_4 + 2 = 7 + 2 = 9$ .

આમ, શ્રેણીનાં પ્રથમ પાંચ પદ 1,3,5,7 અને 9 છે અને સંબંધિત શ્રેઢી 1+3+5+7+9+... છે.

### સ્વાધ્યાય 9.1

પ્રશ્ન 1 થી 6 માં જેનું n મું પદ આપેલ છે તે શ્રેણીનાં પ્રથમ પાંચ પદ લખો :

1. 
$$a_n = n (n + 2)$$

1. 
$$a_n = n (n + 2)$$
 2.  $a_n = \frac{n}{n+1}$  3.  $a_n = 2^n$ 

3. 
$$a_n = 2^n$$

4. 
$$a_n = \frac{2n-3}{6}$$

5. 
$$a_n = (-1)^{n-1} 5^{n+1}$$

4. 
$$a_n = \frac{2n-3}{6}$$
 5.  $a_n = (-1)^{n-1} 5^{n+1}$  6.  $a_n = \frac{n(n^2+5)}{4}$ 

પ્રશ્ન 7 થી 10 માં જેનું n મું પદ આપેલ છે તે શ્રેણીનાં નિર્દેશિત પદ શોધો :

7. 
$$a_n = 4n - 3$$
;  $a_{17}$ ,  $a_{24}$  8.  $a_n = \frac{n^2}{2^n}$ ;  $a_7$ 

8. 
$$a_n = \frac{n^2}{2^n}$$
;  $a_n$ 

9. 
$$a_n = (-1)^{n-1} n^3$$
;  $a$ 

9. 
$$a_n = (-1)^{n-1} n^3$$
;  $a_9$  10.  $a_n = \frac{n(n-2)}{n+3}$ ;  $a_{20}$ 

પ્રશ્ન 11 થી 13 માં આપેલ શ્રેણીઓનાં પ્રથમ પાંચ પદ શોધો અને સંબંધિત શ્રેઢી મેળવો :

**11.** 
$$a_1 = 3$$
,  $n > 1$  માટે  $a_n = 3a_{n-1} + 2$ 

12. 
$$a_1 = -1, n \ge 2$$
 માટે  $a_n = \frac{a_{n-1}}{n}$ 

**13.** 
$$a_1 = a_2 = 2, n > 2$$
 માટે  $a_n = a_{n-1} - 1$ 

14. ફિબોનાકી શ્રેણી,

$$1=a_1=a_2$$
 અને  $n>2$  માટે  $a_n=a_{n-1}+a_{n-2}$  દ્વારા વ્યાખ્યાયિત થાય છે.

$$n=1,\,2,\,3,\,4,\,5$$
 માટે  $\dfrac{a_{n+1}}{a_n}$  મેળવો.

### 9.4 સમાંતર શ્રેણી (A.P.)

આપણે અગાઉ અભ્યાસ કર્યો હોય તેવાં કેટલાંક સૂત્રો અને ગુણધર્મો યાદ કરીએ.

જો શ્રેણી  $a_1,\ a_2,\ a_3,\dots,a_n\dots$  માટે  $a_{n+1}=a_n+d, n\in {\bf N},$  હોય તો તેને  $\mbox{\it auia}\ \mbox{\it auia}\ \mbox{\it sell}$  કહીશું. અત્રે  $a_1$  ને આ સમાંતર શ્રેણીનું **પ્રથમ પદ** અને *d* ને *સામાન્ય તફાવત* કહીશું.

પ્રથમ પદ a હોય અને સામાન્ય તફાવત d હોય તેવી સમાંતર શ્રેણી a, a+d, a+2d, ... લો.

આ સમાંતર શ્રેણીનું nમું (વ્યાપક) પદ  $a_n = a + (n-1) d$  છે.

સમાંતર શ્રેણીના કેટલાક સરળ ગુણધર્મો નીચે આપેલ છે તે આપણે ચકાસીએ :

- (i) જો સમાંતર શ્રેણીનાં બધાં જ પદમાં કોઈ અચળ ઉમેરવામાં આવે તો બનતી નવી શ્રેણી પણ સમાંતર શ્રેણી જ હોય.
- (ii) જો સમાંતર શ્રેણીનાં બધાં જ પદમાંથી કોઈ અચળ બાદ કરવામાં તો બનતી નવી શ્રેણી પણ સમાંતર શ્રેણી જ હોય.
- (iii) જો સમાંતર શ્રેણીનાં બધાં જ પદને કોઈ અચળ વડે ગુણવામાં આવે તો બનતી નવી શ્રેણી પણ સમાંતર શ્રેણી જ હોય.
- (iv) જો સમાંતર શ્રેણીનાં બધાં જ પદને કોઈ શૂન્યેતર અચળથી ભાગવામાં આવે તો પણ બનતી નવી શ્રેણી પણ સમાંતર શ્રેણી જ હોય.

અહીં સમાંતર શ્રેણી માટે આપણે નીચેના સંકેતો ઉપયોગમાં લઈશું :

$$a =$$
પ્રથમ પદ,  $l = છેલ્લું પદ,  $d =$ સામાન્ય તફાવત,$ 

n = પદની સંખ્યા

 $\mathbf{S}_{n}^{=}$  સમાંતર શ્રેણીનાં પ્રથમ n પદોનો સરવાળો

ધારો કે, a, a + d, a + 2d, ..., a + (n - 1) d સમાંતર શ્રેણી છે. તો

$$l = a + (n-1) d$$

$$S_n = \frac{n}{2} \left[ 2a + (n-1)d \right]$$

તેને આપણે.

$$\mathbf{S}_n = \frac{n}{2} [a+l]$$
 તરીકે પણ લખી શકીએ.

નીચેનાં ઉદાહરણો સમજીએ :

ઉદાહરણ  $4: m \neq n$  માટે કોઈક સમાંતર શ્રેણીનું mમું પદ n અને n મું પદ m હોય, તો તેનું p મું પદ શોધો.

ઉકેલ : અહીં, 
$$a_m = a + (m-1) d = n,$$
 ... (1)  $a_n = a + (n-1) d = m$  ... (2)

$$a_n = a + (n-1) d = m$$
 ... (2)

(1) અને (2) ને ઉકેલતાં,

$$(m-n) d = n - m$$
, એટલે કે  $d = -1$  અને ... (3)

$$a = n + m - 1$$
 ... (4)

આથી,  $a_p = a + (p-1)d$ 

$$a_p = n + m - 1 + (p - 1)(-1) = n + m - p$$

આમ, p મું પદ n+m-p થાય.

ઉદાહરણ 5: અચળ P અને Q માટે સમાંતર શ્રેણીનાં પ્રથમ n પદોનો સરવાળો  $nP + \frac{1}{2}n(n-1)Q$  છે. તો સામાન્ય તફાવત શોધો.

ઉકેલ : ધારો કે  $a_1, a_2, \dots a_n$  આપેલ સમાંતર શ્રેણી છે.

 $S_n = a_1 + a_2 + a_3 + ... + a_{n-1} + a_n$ આથી,  $= nP + \frac{1}{2}n(n-1)Q$ 

$$S_1 = a_1 = P$$

$$S_2 = a_1 + a_2 = 2P + Q$$

આથી,

$$a_2 = S_2 - S_1 = P + Q$$

આથી, સામાન્ય તફાવત  $d = a_2 - a_1 = (P + Q) - P = Q$ .

ઉદાહરણ 6: પ્રત્યેક પ્રાકૃતિક સંખ્યા n માટે બે સમાંતર શ્રેણીઓનાં પ્રથમ n પદોના સરવાળાનો ગુણોત્તર (3n+8): (7n+15)હોય, તો તેમનાં 12 માં પદનો ગુણોત્તર શોધો.

**ઉંકેલ** : ધારો કે પ્રથમ અને દ્વિતીય સમાંતર શ્રેણીનાં પ્રથમ પદ અનુક્રમે  $a_1$  અને  $a_2$  તથા સામાન્ય તફાવત  $d_1$  અને  $d_2$  છે. આપેલ શરત પ્રમાણે,

$$\therefore \quad \frac{\text{પ્રથમ શ્રેણીનાં પ્રથમ } n \text{ પદોનો સરવાળો}}{\text{દ્વિતીય શ્રેણીનાં પ્રથમ } n \text{ પદોનો સરવાળો}} = \frac{3n+8}{7n+15}$$

$$\therefore \frac{\frac{n}{2}[2a_1+(n-1)d_1]}{\frac{n}{2}[2a_2+(n-1)d_2]} = \frac{3n+8}{7n+15}$$

$$\therefore \frac{2a_1 + (n-1)d_1}{2a_2 + (n-1)d_2} = \frac{3n+8}{7n+15}$$
 ... (1)

હવે, 
$$\frac{\text{પ્રથમ શ્રેણીનું 12 મું પદ}}{\text{દ્વિતય શ્રેણીનું 12 મું પદ}} = \frac{a_1 + 11d_1}{a_2 + 11d_2}$$
 
$$\frac{2a_1 + 22d_1}{2a_2 + 22d_2} = \frac{3 \times 23 + 8}{7 \times 23 + 15}$$
 [(1)માં  $n = 23$  મૂકતાં] આમ, 
$$\frac{a_1 + 11d_1}{a_2 + 11d_2} = \frac{\text{પ્રથમ શ્રેણીનું 12 મું પદ}}{\text{દ્વિતીય શ્રેણીનું 12 મું પદ}}$$
 
$$= \frac{7}{16}$$

આથી, માંગેલ ગુણોત્તર 7 : 16 છે.

ઉદાહરણ 7 : એક વ્યક્તિના પ્રથમ વર્ષની આવક ₹ 3,00,000 છે. તેની આવકમાં પછીનાં 19 વર્ષ સુધી પ્રતિ વર્ષ ₹ 10,000 નો વધારો થાય છે. તો તે 20 વર્ષમાં કુલ કેટલી રકમ મેળવશે ?

ઉકેલ : અહીં, આપણી પાસે સમાંતર શ્રેણી છે.

a = 3,00,000, d = 10,000 અને n = 20.

સૂત્રનો ઉપયોગ કરતાં,

$$S_{20} = \frac{20}{2} [600000 + 19 \times 10000]$$

$$= 10 (790000) = 79,00,000$$

આમ, 20 વર્ષના અંતે તે વ્યક્તિ કુલ ₹ 79,00,000 મેળવશે.

#### 9.4.1 સમાંતર મધ્યક

a અને b આપેલ સંખ્યાઓ છે. આપણે આ સંખ્યાઓ વચ્ચે સંખ્યા A ઉમેરી શકીએ કે જેથી a, A, b સમાંતર શ્રેણીમાં હોય, તો આવી સંખ્યા Aને આપેલ સંખ્યાઓ a અને b નો a માંતર મધ્યક કહેવાય. આપણે નોંધીએ કે,

$$A - a = b - A$$
, એટલે કે,  $A = \frac{a + b}{2}$ 

આમ, બે સંખ્યાઓ a અને b ના સમાંતર મધ્યકનું અર્થઘટન એટલે કે તેની સરેરાશ  $\frac{a+b}{2}$  છે એમ પણ કહી શકાય. દાખલા તરીકે, બે સંખ્યાઓ 4 અને 16 નો સમાંતર મધ્યક 10 છે. આમ, આપણે 4 અને 16 ની વચ્ચે 10 મૂકી, 4, 10 અને 16 ને સમાંતર શ્રેણીનાં પદ રચ્યાં. હવે આ સ્વાભાવિક પ્રશ્ન ઉદ્ભવશે. આપણે બે સંખ્યાઓ વચ્ચે બે કે તેથી વધુ સંખ્યાઓ ઉમેરી શકીએ કે જેથી બનતી શ્રેણી સમાંતર શ્રેણી હોય ? જુઓ કે આપેલ સંખ્યાઓ 4 અને 16 વચ્ચે 8 અને 12 ઉમેરતાં બનતી શ્રેણી 4, 8, 12, 16 પણ સમાંતર શ્રેણી છે.

વ્યાપક રીતે આપેલ બે સંખ્યાઓ a અને b વચ્ચે આપણે ઇચ્છીએ તેટલી સંખ્યાઓ ઉમેરી શકીએ જેથી બનતી શ્રેણી સમાંતર શ્રેણી હોય.

ધારો કે a અને b વચ્ચે  $A_1, A_2, A_3, ..., A_n$  એવી n સંખ્યાઓ છે કે જેથી  $a, A_1, A_2, A_3, ..., A_n, b$  સમાંતર શ્રેણી બને. અહીં, b એ (n+2) મું પદ છે. આથી, b=a+[(n+2)-1]d=a+(n+1) d.

આથી,

$$d = \frac{b-a}{n+1}.$$

આમ, a અને b વચ્ચેની n સંખ્યાઓ નીચે પ્રમાણે હશે :

$$A_{1} = a + d = a + \frac{b-a}{n+1}$$

$$A_{2} = a + 2d = a + \frac{2(b-a)}{n+1}$$

$$A_{3} = a + 3d = a + \frac{3(b-a)}{n+1}$$
.....
....
....
$$A_{n} = a + nd = a + \frac{n(b-a)}{n+1}$$

ઉદાહરણ 8: જેથી બનતી શ્રેણી સમાંતર શ્રેણી બને તે રીતે 3 અને 24 વચ્ચે 6 સંખ્યાઓ ઉમેરો.

ઉકેલ : ધારો કે આપણે 3 અને 24 વચ્ચે  $A_1$ ,  $A_2$ ,  $A_3$ ,  $A_4$ ,  $A_5$  અને  $A_6$  એ 6 સંખ્યાઓ એ રીતે ઉમેરીએ છીએ કે જેથી,  $3, A_1, A_2, A_3, A_4, A_5, A_6, 24$  સમાંતર શ્રેણીમાં હોય.

અહી a = 3, b = 24, n = 8.

આથી, 24 = 3 + (8 - 1) d,

 $\therefore d=3.$ 

અપ્રમ, 
$$\begin{aligned} \mathbf{A}_1 &= a+d=3+3=6; & \mathbf{A}_2 &= a+2d=3+2\times 3=9; \\ \mathbf{A}_3 &= a+3d=3+3\times 3=12; & \mathbf{A}_4 &= a+4d=3+4\times 3=15; \\ \mathbf{A}_5 &= a+5d=3+5\times 3=18; & \mathbf{A}_6 &= a+6d=3+6\times 3=21. \end{aligned}$$

આથી 3 અને 24 વચ્ચેની માંગેલ પ્રમાણેની 6 સંખ્યાઓ 6, 9, 12, 15, 18 અને 21 છે.

### સ્વાધ્યાય 9.2

- 1. 1 થી 2001 સુધીના અયુગ્મ પૂર્ણાંકોનો સરવાળો શોધો.
- 2. 100 અને 1000 વચ્ચેની 5 ની ગુષ્ટિત પ્રાકૃતિક સંખ્યાઓનો સરવાળો શોધો.
- 3. એક સમાંતર શ્રેણીનું પ્રથમ પદ 2 છે અને પ્રથમ પાંચ પદોનો સરવાળો પછીનાં પાંચ પદના સરવાળાના એક ચતુર્થાંશ ભાગનો છે, તો સાબિત કરો કે 20 મું પદ –112 છે.
- **4.** -6,  $-\frac{11}{2}$ , -5, ... સમાંતર શ્રેણીનાં કેટલાં પ્રથમ પદનો સરવાળો -25 થાય ?

- 5. એક સમાંતર શ્રેણીનું p મું પદ  $\frac{1}{q}$  અને q મું પદ  $\frac{1}{p}$  છે.  $p \neq q$  માટે સાબિત કરો કે પ્રથમ pq પદનો સરવાળો  $\frac{1}{2}$  (pq+1) થાય.
- 6. સમાંતર શ્રેણી 25, 22, 19, ... નાં નિશ્ચિત સંખ્યાના શરૂઆતના પદનો સરવાળો 116 હોય તો છેલ્લું પદ શોધો.
- 7. જે સમાંતર શ્રેણીનું k મું પદ 5k+1 હોય તેનાં પ્રથમ n પદનો સરવાળો શોધો.
- 8. અચળ p, q માટે જે સમાંતર શ્રેણીનાં પ્રથમ n પદોનો સરવાળો  $(pn + qn^2)$  હોય, તેનો સામાન્ય તફાવત શોધો.
- 9. પ્રત્યેક પ્રાકૃતિક સંખ્યા n માટે બે સમાંતર શ્રેણીનાં પ્રથમ n પદોના સરવાળાનો ગુણોત્તર(5n+4):(9n+6) છે.તેમનાં 18 માં પદનો ગુણોત્તર મેળવો.
- 10. સમાંતર શ્રેણીના પ્રથમ p પદોનો સરવાળો, પ્રથમ q પદોના સરવાળા જેટલો થાય છે, તો પ્રથમ (p+q) પદોનો સરવાળો શોધો.
- 11. એક સમાંતર શ્રેણીનાં પ્રથમ  $p,\ q$  અને r પદોના સરવાળા અનુક્રમે  $a,\ b$  અને c છે. સાબિત કરો કે  $\frac{a}{p}(q-r) + \frac{b}{q}(r-p) + \frac{c}{r}(p-q) = 0 \, .$
- 12. એક સમાંતર શ્રેણીનાં પ્રથમ m અને n પદોના સરવાળાના ગુણોત્તર  $m^2:n^2$  છે. સાબિત કરો કે m માં તથા n માં પદોનો ગુણોત્તર (2m-1):(2n-1) થાય.
- **13.** એક સમાંતર શ્રેણીનાં n પદોનો સરવાળો  $3n^2 + 5n$  અને m મું પદ 164 છે, તો m નું મૂલ્ય શોધો.
- 14. જેથી બનતી શ્રેણી સમાંતર શ્રેણી હોય તે રીતે 8 અને 26 વચ્ચે 5 સંખ્યાઓ ઉમેરો.
- **15.** જો a અને b વચ્ચેનો સમાંતર મધ્યક  $\frac{a^n + b^n}{a^{n-1} + b^{n-1}}$  હોય, તો n નું મૂલ્ય શોધો.
- 16. 1 અને 31 વચ્ચે m સંખ્યાઓ એવી રીતે મૂકવામાં આવે છે કે જેથી બનતી શ્રેણી સમાંતર શ્રેણી હોય અને 7મી અને (m-1)મી સંખ્યાનો ગુણોત્તર 5:9 હોય, તો m નું મૂલ્ય શોધો.
- 17. એક વ્યક્તિ તેની લોનની ચુકવણી માટે પ્રથમ હપતામાં ₹ 100 ભરે છે. જો તે દર મહિને હપતાની રકમમાં ₹ 5 વધારે ભરે, તો તેના 30 માં હપતામાં કેટલી રકમ ચૂકવશે ?
- 18. એક બહુકોણમાં બે ક્રમિક અંતઃકોણોનો તફાવત 5° છે. જો સૌથી નાનો ખૂણો 120° નો હોય, તો તે બહુકોણની બાજુઓની સંખ્યા શોધો.

### 9.5 સમગુણોત્તર શ્રેણી

આપણે નીચેની શ્રેણીઓ વિચારીએ :

(i) 2,4,8,16,..., (ii) 
$$\frac{1}{9}$$
,  $\frac{-1}{27}$ ,  $\frac{1}{81}$ ,  $\frac{-1}{243}$  ... (iii) 0.01,0.0001,0.00001,...

આ બધી જ શ્રેણીઓમાં દરેક પદ કેવી રીતે વધે છે ? આપણે નોંધીએ કે પ્રથમ પદ સિવાયનું દરેક પદ કોઈક ચોક્કસ ભાતમાં આગળ વધે છે.

(i) માં આપણી પાસે 
$$a_1 = 2, \frac{a_2}{a_1} = 2, \frac{a_3}{a_2} = 2, \frac{a_4}{a_3} = 2$$
 એમ ચાલ્યા કરે છે.

(ii) માં જોઈ શકાય છે કે 
$$a_1 = \frac{1}{9}$$
,  $\frac{a_2}{a_1} = \frac{-1}{3}$ ,  $\frac{a_3}{a_2} = \frac{-1}{3}$ ,  $\frac{a_4}{a_3} = \frac{-1}{3}$  એમ ચાલ્યા કરે છે.

## Downloaded from https:// www.studiestoday.com

શ્રેણી અને શ્રેઢી

આ જ રીતે (iii) માં પદ કેવી રીતે વધે છે તે કહો.

આમ, જોઈ શકાય છે કે પ્રથમ પદ સિવાયના દરેક પદનો તેની આગળના પદ સાથેનો ગુણોત્તર અચળ છે. (i)માં અચળ ગુણોત્તર 2 છે; (ii)માં  $-\frac{1}{3}$  અને (iii) માં અચળ ગુણોત્તર 0.01 છે. આવી શ્રેણીને  $\mathbf{\mathcal{A}HJgM}$  કહેવાય અને તેને ટૂંકમાં G. P. (Geometric Progression) લખાય.

જો શ્રેણી  $a_1,\ a_2,\ a_3,\ \dots,\ a_n$ ,  $\dots$  માં પ્રત્યેક પદ શૂન્યેતર હોય અને  $k\geq 1$  માટે,  $\frac{a_{k+1}}{a_k}=r$  (અચળ) હોય તો તે શ્રેણીને સમગુણોત્તર શ્રેણી કહેવાય.

 $a_1=a$  લેતાં, સમગુણોત્તર શ્રેણી  $a, ar, ar^2, ar^3, \ldots$ , મળે. a ને **પ્રથમ પદ** અને r ને સમગુણોત્તર શ્રેણીનો **સામાન્ય ગુણોત્તર** કહેવાય. સમગુણોત્તર શ્રેણીઓ (i), (ii) અને (iii) માટે સામાન્ય ગુણોત્તર અનુક્રમે 2,  $-\frac{1}{3}$  અને 0.01 છે.

સમાંતર શ્રેણીની જેમ સમગુણોત્તર શ્રેણીમાં પણ પદોની સંખ્યા ખૂબ વધારે હોય ત્યારે n મું પદ અથવા n પદોનો સરવાળો, સૂત્રના ઉપયોગ વગર મુશ્કેલ બને. આથી તે આપણે આ પછીના વિભાગમાં તારવીશું. આ સૂત્રો માટે આપણે નીચેના સંકેતો ઉપયોગમાં લઈશું :

a= પ્રથમ પદ, r= સામાન્ય ગુણોત્તર, l= છેલ્લું પદ, n= પદની સંખ્યા,

 $S_n =$ પ્રથમ n પદોનો સરવાળો.

### 9.5.1 સમગુણોત્તર શ્રેણીનું વ્યાપક પદ:

પ્રથમ પદ શૂન્યેતર સંખ્યા 'a' હોય અને સામાન્ય ગુણોત્તર 'r' હોય તેવી સમગુણોત્તર શ્રેણી વિશે વિચારીએ. તેનાં કેટલાંક પદ લખીએ. દ્વિતીય પદ મેળવવા પ્રથમ પદ a ને r વડે ગુણો આથી  $a_2=ar$ . આ જ રીતે ત્રીજું પદ મેળવવા  $a_2$  ને r વડે ગુણો. આથી  $a_3=a_2r=ar^2$  અને એ જ રીતે.

નીચે આપણે આ અને કેટલાંક બીજાં વધારે પદ લખીએ :

પ્રથમ પદ 
$$= a_1 = a = ar^{1-1}$$
, દ્વિતીય પદ  $= a_2 = ar = ar^{2-1}$ , ત્તીય પદ  $= a_3 = ar^2 = ar^{3-1}$  ચોથું પદ  $= a_4 = ar^3 = ar^{4-1}$ , પાંચમું પદ  $= a_5 = ar^4 = ar^{5-1}$ 

શું તમને કોઈ તરાહ દેખાય છે ? 16 મું પદ શું હશે ?

$$a_{16} = ar^{16-1} = ar^{15}$$

આમ, આ તરાહ દર્શાવે છે કે સમગુણોત્તર શ્રેણીનું n મું પદ  $a_n = ar^{n-1}$  થાય.

જેના પદની સંખ્યા નિશ્ચિત ધન પૂર્ણાંક જેટલી કે અનંત હોય તે સમગુણોત્તર શ્રેણીને અનુક્રમે  $a, ar, ar^2, ar^3, \dots ar^{n-1}$ ;  $a, ar, ar^2, \dots, ar^{n-1}$  ... એમ લખી શકાય.

સંગત શ્રેઢી  $a+ar+ar^2+...+ar^{n-1}$  અથવા  $a+ar+ar^2+...+ar^{n-1}+...$  સાંત અથવા અનંત સમગુણોત્તર શ્રેઢી કહેવાય.

### 9.5.2 સમગુણોત્તર શ્રેણીનાં પ્રથમ n પદોનો સરવાળો :

ધારો કે સમગુણોત્તર શ્રેણીનું પ્રથમ પદ a અને સામાન્ય ગુણોત્તર r છે. ધારો કે  $\mathbf{S}_n$  આ સમગુણોત્તર શ્રેણીનાં પ્રથમ n પદોનો સરવાળો દર્શાવે છે.

$$S_n = a + ar + ar^2 + ... + ar^{n-1}$$
 ... (1)

વિકલ્પ 1 જો r = 1, તો  $S_n = a + a + a + ... + a (n વખત) = na$ 

વિકલ્પ 2 જો  $r \neq 1$ , તો (1) ને r વડે ગુણતાં,

$$rS_n = ar + ar^2 + ar^3 + ... + ar^n$$
 ... (2)

(1) માંથી (2) બાદ કરતાં,

$$(1-r) S_n = a - ar^n = a(1-r^n)$$

આથી,

$$S_n = \frac{a(1-r^n)}{1-r}$$
 અથવા  $S_n = \frac{a(r^n-1)}{r-1}$ 

ઉદાહરણ 9: સમગુણોત્તર શ્રેણી  $5, 25, 125, \ldots$  માટે 10 મું પદ અને n મું પદ શોધો.

ઉકેલ: અહીં, a = 5 અને r = 5.

આથી, 
$$a_{10} = 5(5)^{10-1} = 5(5)^9 = 5^{10}$$

અને 
$$a_n = ar^{n-1} = 5(5)^{n-1} = 5^n$$
.

ઉદાહરણ  $\mathbf{10}$  : સમગુણોત્તર શ્રેણી  $2,8,32,\dots n$  પદ સુધી, માટે કયું પદ 131072 હશે ?

**ઉકેલ :** ધારો કે સમગુશોત્તર શ્રેશીનું n મું પદ 131072 છે.

અહીં, 
$$a=2$$
 અને  $r=4$ .

આથી, 
$$131072 = a_n = 2(4)^{n-1}$$

$$\therefore 65536 = 4^{n-1}$$

$$48 = 4^{n-1}$$

આથી, n - 1 = 8, અર્થાત્ n = 9.

આમ, સમગુણોત્તર શ્રેણીનું 9 મું પદ 131072 થાય.

ઉદાહરણ 11 : એક સમગુણોત્તર શ્રેણીનું ત્રીજું પદ 24 અને છક્કું પદ 192 છે તો તેનું 10 મું પદ શોધો.

ઉકેલ: અહીં, 
$$a_3 = ar^2 = 24$$
 અને ... (1)

$$a_6 = ar^5 = 192$$
 ... (2)

(2) અને (1) નો ગુણોત્તર લેતાં, r = 2 મળે.

(1) માં 
$$r = 2$$
 મૂકતાં  $a = 6$  મળે.

આમ, 
$$a_{10} = 6 (2)^9 = 3072$$
.

ઉદાહરણ 12 : સમગુણોત્તર શ્રેણી  $1+\frac{2}{3}+\frac{4}{9}+...$  નાં પ્રથમ n પદોનો અને પ્રથમ 5 પદોનો સરવાળો શોધો.

ઉકેલ: અહીં, 
$$a = 1$$
 અને  $r = \frac{2}{3}$  . આથી,

$$S_n = \frac{a(1-r^n)}{1-r} = \frac{\left[1 - \left(\frac{2}{3}\right)^n\right]}{1 - \frac{2}{3}} = 3\left[1 - \left(\frac{2}{3}\right)^n\right]$$

તથા 
$$S_5 = 3\left[1 - \left(\frac{2}{3}\right)^5\right] = 3 \times \frac{211}{243} = \frac{211}{81}.$$

**ઉદાહરણ 13** : સમગુણોત્તર શ્રેણી  $3, \frac{3}{2}, \frac{3}{4}, \dots$  ના પ્રથમ કેટલાં પદોનો સરવાળો  $\frac{3069}{512}$  થાય ?

6કેલ : ધારો કે જરૂરી પદોની સંખ્યા n છે.

આપેલ છે કે, 
$$a=3, r=\frac{1}{2}$$
 અને  $S_n=\frac{3069}{512}$ 

$$\text{qui}, \qquad \mathbf{S}_n = \frac{a(1-r^n)}{1-r}$$

આથી, 
$$\frac{3069}{512} = \frac{3\left(1 - \frac{1}{2^n}\right)}{1 - \frac{1}{2}} = 6\left(1 - \frac{1}{2^n}\right)$$

$$\therefore \frac{3069}{3072} = 1 - \frac{1}{2^n}$$

$$\therefore \frac{1}{2^n} = 1 - \frac{3069}{3072} = \frac{3}{3072} = \frac{1}{1024}$$

$$\therefore$$
  $2^n = 1024 = 2^{10}$ . આથી  $n = 10$ 

ઉદાહરણ 14 : સમગુણોત્તર શ્રેણીનાં પ્રથમ ત્રણ પદોનો સરવાળો  $\frac{13}{12}$  છે અને તેમનો ગુણાકાર -1 છે તો સામાન્ય ગુણોત્તર અને તે પદો શોધો.

**ઉકેલ** : ધારો કે સમગુણોત્તર શ્રેણીનાં પ્રથમ ત્રણ પદ  $\frac{a}{r}$ , a, ar છે.

આથી, 
$$\frac{a}{r} + ar + a = \frac{13}{12}$$
 ... (1)

અને 
$$\left(\frac{a}{r}\right)(a)(ar) = -1$$
 ... (2)

(2) પરથી આપણને 
$$a^3 = -1$$
 અર્થાત્  $a = -1$  મળે. (માત્ર વાસ્તવિક બીજ લેતાં)

(1) 
$$\mu i \ a = -1 \ \mu s \pi i$$
,

$$-\frac{1}{r}-1-r=\frac{13}{12}$$
 અથવા  $12r^2+25r+12=0$ .

આ r નું દ્વિઘાત સમીકરણ છે. તેને ઉકેલતાં  $r=-\frac{3}{4}$  અથવા  $-\frac{4}{3}$  મળે.

$$r=rac{-3}{4}$$
 માટે પદો  $rac{4}{3},-1,rac{3}{4}$  અને  $r=rac{-4}{3}$  માટે પદો  $rac{3}{4},-1,\,rac{4}{3}$  મળે.

ઉદાહરણ 15: 7, 77, 777, 7777, ... નાં n પદોનો સરવાળો શોધો.

ઉકેલ: આ એક સમગુણોત્તર શ્રેણી નથી, પરંતુ તેનાં પદો નીચે પ્રમાણે લખી સમગુણોત્તર શ્રેણી મેળવી શકાય :

$$\mathbf{S}_n = 7 + 77 + 777 + 7777 + \dots$$
  $n$  પદ સુધી

$$=\frac{7}{9}[9+99+999+9999+...$$
  $n$  પદ સુધી]

$$= \frac{7}{9}[(10-1)+(10^2-1)+(10^3-1)+(10^4-1)+\dots n \ \text{UE}]$$

$$=\frac{7}{9}[(10+10^2+10^3+... n પદ સુધી)-(1+1+1+... n પદ)]$$

$$= \frac{7}{9} \left\lceil \frac{10(10^n - 1)}{10 - 1} - n \right\rceil = \frac{7}{9} \left\lceil \frac{10(10^n - 1)}{9} - n \right\rceil.$$

ઉદાહરણ 16: એક માણસને 2 માતા-પિતા, 4 દાદા-દાદી, 8 વડદાદા-વડદાદી વગેરે છે તો તેની 10 મી પેઢીએ રહેલ પૂર્વજોની સંખ્યા શોધો.

ઉકેલ: અહીં, a = 2, r = 2 અને n = 10

સરવાળાના સૂત્રનો ઉપયોગ કરતાં,

$$S_n = \frac{a (r^n - 1)}{r - 1}$$

આથી, 
$$S_{10} = 2(2^{10} - 1) = 2046$$

આમ, એ માણસના 10 મી પેઢીએ રહેલ પૂર્વજોની સંખ્યા 2046 હશે.

### 9.5.3 સમગુશોત્તર મધ્યક :

બે ધન સંખ્યાઓ a અને b નો સમગુણોત્તર મધ્યક $\sqrt{ab}$  છે. આથી 2 અને 8 નો સમગુણોત્તર મધ્યક 4 થાય. આપણે જોઈ શકીએ કે 2,4,8 સમગુણોત્તર શ્રેણીનાં ક્રમિક પદ છે. આ રીતે આગળ વધીએ તો વ્યાપક રીતે બે સંખ્યાઓના સમગુણોત્તર મધ્યકની સંકલ્પના મળે છે.

જેથી બનતી શ્રેણી સમગુણોત્તર હોય એ રીતે આપેલ બે ધન સંખ્યાઓ a અને b વચ્ચે આપણી ઇચ્છાનુસાર સંખ્યાઓ ઉમેરી શકીએ.

ધારો કે એવી ધન સંખ્યાઓ  $G_1, G_2, ..., G_n$  એ a અને b વચ્ચે છે જેથી  $a, G_1, G_2, G_3, ..., G_n$  b એ સમગુણોત્તર શ્રેણીમાં હોય. આમ, (n+2)મું પદ b હોવાથી,

$$b=ar^{n+1}$$
 અથવા  $r=\left(rac{b}{a}
ight)^{n+1}$ .  
આથી,  $G_1=ar=a\left(rac{b}{a}
ight)^{n+1}$ ,

$$G_2 = ar^2 = a\left(\frac{b}{a}\right)^{\frac{2}{n+1}},$$

$$G_3 = ar^3 = a\left(\frac{b}{a}\right)^{\overline{n+1}},$$

$$G_n = ar^n = a\left(\frac{b}{a}\right)^{\frac{n}{n+1}}$$

ઉદાહરણ 17 : સમગુણોત્તર શ્રેણી બને તે રીતે 1 અને 256 વચ્ચે ત્રણ સંખ્યાઓ ઉમેરો.

ઉકેલ : ધારો કે  $1, G_1, G_2, G_3, 256$  સમગુણોત્તર શ્રેણીમાં હોય તે રીતે  $G_1, G_2, G_3$  એ 1 અને 256 વચ્ચે છે.

 $256 = r^4$ આથી,  $r = \pm 4$ આથી, (માત્ર વાસ્તવિક બીજ લેતાં,)

$$r = 4$$
 માટે  $G_1 = ar = 4$ ,  $G_2 = ar^2 = 16$ ,  $G_3 = ar^3 = 64$ 

આ જ રીતે, r = -4, માટે સંખ્યાઓ -4, 16 અને -64 મળે.

આમ, 1 અને 256 વચ્ચે 4, 16, 64 મૂકતાં મળતી શ્રેણી સમગુણોત્તર શ્રેણી બને.

### 9.6 સમાંતર મધ્યક અને ગુણોત્તર મધ્યક વચ્ચેનો સંબંધ

ધારો કે A અને G બે ધન વાસ્તવિક સંખ્યાઓ અનુક્રમે a અને b ના સમાંતર અને સમગુણોત્તર મધ્યકો છે.

$$A = \frac{a+b}{2}$$
 અને  $G = \sqrt{ab}$ 

આમ,

$$A - G = \frac{a+b}{2} - \sqrt{ab} = \frac{a+b-2\sqrt{ab}}{2} = \frac{\left(\sqrt{a} - \sqrt{b}\right)^2}{2} \ge 0 \qquad ... (1)$$

(1), પરથી તારવી શકાય કે  $A \ge G$ .

6દાહરણ 18: બે ધન સંખ્યાઓ a અને b ના સમાંતર અને સમગુણોત્તર મધ્યક અનુક્રમે 10 અને 8 હોય, તો તે સંખ્યાઓ શોધો.

ઉકેલ : આપેલ છે કે સમાંતર મધ્યક 
$$\frac{a+b}{2}$$
=10 ... (1)

## Downloaded from https:// www.studiestoday.com

185

અને સમગુશોત્તર મધ્યક 
$$\sqrt{ab} = 8$$
 ... (2)

(1) અને (2) પરથી,

$$a + b = 20$$
 ... (3)

$$ab = 64$$
 ... (4)

(3) અને (4) ની કિંમતો, નિત્યસમ  $(a - b)^2 = (a + b)^2 - 4ab$  માં મૂકતાં,

$$(a-b)^2 = 400 - 256 = 144$$

અથવા 
$$a-b=\pm 12$$
 ...(5)

(3) અને (5) ને ઉકેલતાં,

$$a = 4, b = 16$$
 અથવા  $a = 16, b = 4$ 

આમ, સંખ્યાઓ a અને b એ 4, 16 અથવા 16, 4 છે.

#### સ્વાધ્યાય 9.3

- 1. સમગુણોત્તર શ્રેણી  $\frac{5}{2}$ ,  $\frac{5}{4}$ ,  $\frac{5}{8}$ , ... નું 20 મું પદ તથા n મું પદ શોધો.
- 2. એક સમગુણોત્તર શ્રેણીનું 8 મું પદ 192 છે અને સામાન્ય ગુણોત્તર 2 છે, તો તેનું 12 મું પદ શોધો.
- **3.** સમગુણોત્તર શ્રેણીના પાંચમાં, આઠમાં અને અગિયારમાં પદ અનુક્રમે p, q અને s હોય, તો બતાવો કે  $q^2 = ps$ .
- 4. એક સમગુણોત્તર શ્રેણીનું ચોથું પદ બીજા પદના વર્ગ જેટલું છે અને પ્રથમ પદ -3 છે, તો તેનું 7 મું પદ શોધો.
- 5. (a) શ્રેણી 2,2√2,4,... નું કેટલામું પદ 128 થાય ?
  - (b) શ્રેણી  $\sqrt{3},3,3\sqrt{3},...$ નું કેટલામું પદ 729 થાય ?
  - (c) શ્રેણી  $\frac{1}{3}$ ,  $\frac{1}{9}$ ,  $\frac{1}{27}$ ,... નું કેટલામું પદ  $\frac{1}{19683}$  થાય ?
- **6.** x ની કઈ કિંમત માટે  $-\frac{2}{7}$ , x,  $-\frac{7}{2}$  સમગુણોત્તર શ્રેણીમાં થાય ?

નીચેની સમગુણોત્તર શ્રેણીઓમાં નિર્દેશિત પદોનો સરવાળો શોધો : પ્રશ્ન નંબર 7 થી 10 :

- 7. 0.15, 0.015, 0.0015, ... นุขน 20 นะ
- 8.  $\sqrt{7}$ ,  $\sqrt{21}$ ,  $3\sqrt{7}$ , ... પ્રથમ n પદ
- 9.  $1, -a, a^2, -a^3, ...$  પ્રથમ n પદ (જ્યાં  $a \neq -1$ ).
- 10.  $x^3, x^5, x^7, ...$  પ્રથમ n પદ (જ્યાં  $x \neq \pm 1$ ).
- 11.  $\sum_{k=1}^{11} (2+3^k)$  ની કિંમત શોધો.

12. સમગુણોત્તર શ્રેણીનાં પ્રથમ 3 પદોનો સરવાળો  $\frac{39}{10}$  છે અને તેમનો ગુણાકાર 1 છે, તો સામાન્ય ગુણોત્તર અને તે પદો શોધો.

- 13. સમગુણોત્તર શ્રેણી  $3, 3^2, 3^3, \dots$  નાં પ્રથમ કેટલાં પદોનો સરવાળો 120 થાય ?
- 14. સમગુણોત્તર શ્રેણીનાં પ્રથમ 3 પદોનો સરવાળો 16 છે અને પછીનાં ત્રણ પદોનો સરવાળો 128 છે, તો આ શ્રેણીનું પ્રથમ પદ, સામાન્ય ગુણોત્તર અને n પદોનો સરવાળો શોધો.
- **15.** આપેલ સમગુણોત્તર શ્રેણી માટે a = 729 અને 7 મું પદ 64 હોય તો  $S_7$  શોધો.
- 16. જેનાં પ્રથમ બે પદોનો સરવાળો 4 હોય અને પાંચમું પદ ત્રીજા પદથી ચાર ગણુ હોય એવી સમગુણોત્તર શ્રેણી શોધો.
- 17. જો સમગુણોત્તર શ્રેણીનાં ચોથા, દસમાં અને સોળમાં પદ અનુક્રમે x, y અને z હોય, તો સાબિત કરો કે x, y, z સમગુણોત્તર શ્રેણીમાં છે.
- **18.** 8, 88, 888, 8888... શ્રેણીનાં પ્રથમ n પદોનો સરવાળો શોધો.
- **19.** શ્રેણીઓ 2, 4, 8, 16, 32 અને  $128, 32, 8, 2, \frac{1}{2}$  નાં સંગત પદોના ગુણાકારનો સરવાળો શોધો.
- **20.** શ્રેણીઓ a, ar,  $ar^2$ ,... $ar^{n-1}$ અને A, AR,  $AR^2$ ,... $AR^{n-1}$ નાં સંગત પદોના ગુણાકાર દ્વારા મળતાં પદો સમગુણોત્તર શ્રેણી બનાવે છે તેમ સાબિત કરો અને તેનો સામાન્ય ગુણોત્તર શોધો.
- 21. જેમાં ત્રીજું પદ, પ્રથમ પદથી 9 જેટલું વધારે હોય અને બીજું પદ ચોથા પદથી 18 જેટલું વધારે હોય તેવી સમગુણોત્તર શ્રેણીનાં પ્રથમ ચાર પદ શોધો.
- 22. સમગુણોત્તર શ્રેણીનાં p,q,r માં પદો અનુક્રમે a,b,c હોય તો સાબિત કરો કે,

$$a^{q-r}b^{r-p}c^{p-q}=1.$$

- 23. સમગુણોત્તર શ્રેણીનું પ્રથમ પદ a અને n મું પદ b છે. જો n પદોનો ગુણાકાર P હોય, તો સાબિત કરો કે  $P^2 = (ab)^n$ .
- **24.** સાબિત કરો કે સમગુણોત્તર શ્રેણીનાં પ્રથમ n પદોના સરવાળાનો (n+1) પદથી (2n)માં પદ સુધીના સરવાળા સાથેનો ગુણોત્તર

$$\frac{1}{r^n}$$
 થાય.

**25.** જો a, b, c, d સમગુશોત્તર શ્રેશીમાં હોય, તો બતાવો કે

$$(a^2 + b^2 + c^2) (b^2 + c^2 + d^2) = (ab + bc + cd)^2.$$

- 26. 3 અને 81 વચ્ચે બે સંખ્યાઓ ઉમેરો કે જેથી બનતી શ્રેણી સમગુણોત્તર હોય.
- **27.** જો a અને b નો સમગુણોત્તર મધ્યક  $\frac{a^{n+1} + b^{n+1}}{a^n + b^n}$  હોય, તો n નું મૂલ્ય શોધો.
- **28.** બે સંખ્યાઓનો સરવાળો તેમના સમગુણોત્તર મધ્યક કરતાં છ ગણો હોય, તો બતાવો કે સંખ્યાઓનો ગુણોત્તર  $(3+2\sqrt{2})$ : $(3-2\sqrt{2})$  થાય.
- 29. બે ધન સંખ્યાઓના સમાંતર અને સમગુણોત્તર મધ્યકો અનુક્રમે A અને G હોય, તો સાબિત કરો કે તે સંખ્યાઓ  $A\pm\sqrt{(A+G)(A-G)}$  છે.

**30.** બૅક્ટેરિયાના ઉછેરમાં તેની સંખ્યા દર કલાકે બમણી થાય છે. જો શરૂઆતમાં બૅક્ટેરિયાની સંખ્યા 30 હોય, તો 2 કલાક, 4 કલાક, અને n માં કલાકે બૅક્ટેરિયાની સંખ્યા શોધો.

- 31. બેંકમાં ₹ 500, 10% ના વાર્ષિક ચક્રવૃદ્ધિ વ્યાજે મૂકીએ, તો 10 વર્ષને અંતે કેટલી ૨કમ મળે ?
- 32. જો દ્વિઘાત સમીકરણનાં બીજોના સમાંતર અને સમગુણોત્તર મધ્યક અનુક્રમે 8 અને 5 હોય, તો તે દ્વિઘાત સમીકરણ મેળવો.

### 9.7 વિશિષ્ટ શ્રેણીઓનાં n પદોના સરવાળા

આપણે કેટલીક વિશિષ્ટ શ્રેણીઓનાં પ્રથમ n પદોના સરવાળા શોધીશું, જેમ કે ;

(i) 1+2+3+...+n

(પ્રથમ *n* પ્રાકૃતિક સંખ્યાઓનો સરવાળો)

(ii)  $1^2 + 2^2 + 3^2 + \dots + n^2$ 

(પ્રથમ *n* પ્રાકૃતિક સંખ્યાના વર્ગોનો સરવાળો)

(iii)  $1^3 + 2^3 + 3^3 + \dots + n^3$ 

(પ્રથમ <math>n પ્રાકૃતિક સંખ્યાના ઘનનો સરવાળો)

આપણે તેને એક પછી એક વિચારીએ.

(i) 
$$S_n=1+2+3+...+n$$
, तेथी  $S_n=\frac{n(n+1)}{2}$ 

(વિભાગ 9.4 જુઓ.)

આપણે નિત્યસમ,  $k^3 - (k-1)^3 = 3k^2 - 3k + 1$  લઈએ.

k = 1, 2..., n કમાનુસાર મૂકતાં,

$$1^3 - 0^3 = 3(1)^2 - 3(1) + 1$$

$$2^3 - 1^3 = 3(2)^2 - 3(2) + 1$$

$$3^3 - 2^3 = 3(3)^2 - 3(3) + 1$$

.....

.....

.....

$$n^3 - (n-1)^3 = 3 (n)^2 - 3 (n) + 1$$

બંને બાજુનાં પદોનો સરવાળો કરતાં,

$$n^3 - 0^3 = 3 (1^2 + 2^2 + 3^2 + \dots + n^2) - 3 (1 + 2 + 3 + \dots + n) + n$$

$$n^3 = 3\sum_{k=1}^{n} k^2 - 3\sum_{k=1}^{n} k + n$$

(i) પરથી કહી શકાય કે 
$$\sum_{k=1}^{n} k = 1 + 2 + 3 + ... + n = \frac{n(n+1)}{2}$$

અાધી, 
$$S_n = \sum_{k=1}^n k^2 = \frac{1}{3} \left[ n^3 + \frac{3n(n+1)}{2} - n \right]$$

$$= \frac{1}{6} (2n^3 + 3n^2 + n)$$
$$= \frac{n(n+1)(2n+1)}{6}$$

(iii) અહીં, 
$$S_n = 1^3 + 2^3 + ... + n^3$$

આપણે નિત્યસમ  $(k+1)^4 - k^4 = 4k^3 + 6k^2 + 4k + 1$  લઈએ.

k = 1, 2, 3... n, eadi,

$$2^{4} - 1^{4} = 4(1)^{3} + 6(1)^{2} + 4(1) + 1$$
$$3^{4} - 2^{4} = 4(2)^{3} + 6(2)^{2} + 4(2) + 1$$
$$4^{4} - 3^{4} = 4(3)^{3} + 6(3)^{2} + 4(3) + 1$$

.....

.....

$$(n-1)^4 - (n-2)^4 = 4(n-2)^3 + 6(n-2)^2 + 4(n-2) + 1$$

$$n^4 - (n-1)^4 = 4(n-1)^3 + 6(n-1)^2 + 4(n-1) + 1$$

$$(n+1)^4 - n^4 = 4n^3 + 6n^2 + 4n + 1$$

બંને બાજુનાં પદોનો સરવાળો કરતાં,

$$(n+1)^4 - 1^4 = 4(1^3 + 2^3 + 3^3 + \dots + n^3) + 6(1^2 + 2^2 + 3^2 + \dots + n^2) + 4(1+2+3+\dots + n) + n$$

$$= 4\sum_{k=1}^{n} k^3 + 6\sum_{k=1}^{n} k^2 + 4\sum_{k=1}^{n} k + n \qquad \dots (1)$$

(i) અને (ii) પરથી આપણે જાણીએ છીએ કે,

$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2} \text{ and } \sum_{k=1}^{n} k^{2} = \frac{n(n+1)(2n+1)}{6}$$

આ કિંમતો (1) માં મૂકતાં,

$$4\sum_{k=1}^{n}k^{3} = n^{4} + 4n^{3} + 6n^{2} + 4n - \frac{6n(n+1)(2n+1)}{6} - \frac{4n(n+1)}{2} - n$$

189

ઉદાહરણ 19: 
$$5+11+19+29+41...$$
 નાં પ્રથમ  $n$  પદોનો સરવાળો શોધો.

ઉકેલ: ધારો કે, 
$$S_n = 5 + 11 + 19 + 29 + \dots + a_{n-1} + a_n$$
 અથવા 
$$S_n = 5 + 11 + 19 + \dots + a_{n-2} + a_{n-1} + a_n$$
 
$$S_n = 5 + 11 + 19 + \dots + a_{n-1} + a_n$$
 
$$S_n = 5 + 11 + \dots + a_{n-2} + a_{n-1} + a_n$$

બાદબાકી કરતાં, 
$$0 = 5 + [6 + 8 + 10 + 12 + ...(n-1) પદો] - a_n મળે.$$
 
$$\therefore \qquad a_n = 5 + \frac{(n-1)[12 + (n-2) \times 2]}{2}$$

$$= 5 + (n-1)(n+4) = n^2 + 3n + 1$$

આથી, 
$$S_n = \sum_{k=1}^n a_k$$

$$= \sum_{k=1}^n (k^2 + 3k + 1)$$

$$= \sum_{k=1}^n k^2 + 3\sum_1^n k + n$$

$$= \frac{n(n+1)(2n+1)}{6} + \frac{3n(n+1)}{2} + n$$

$$= \frac{n(n+2)(n+4)}{2}.$$

નોંધ : અત્રે આપણે  $\sum_{k=1}^n (a_k + b_k) = \sum_{k=1}^n a_k + \sum_{k=1}^n b_k$  નો ઉપયોગ કર્યો છે.

ઉદાહરણ 20: જે શ્રેણીનું n મું પદ n (n+3) હોય તેનાં પ્રથમ n પદોનો સરવાળો શોધો.

ઉકેલ: આપેલ છે કે 
$$a_n = n(n+3) = n^2 + 3n$$

આથી, n પદોનો સરવાળો,

$$S_n = \sum_{k=1}^n a_k$$

$$= \sum_{k=1}^n k^2 + 3 \sum_{k=1}^n k$$

$$= \frac{n(n+1)(2n+1)}{6} + \frac{3n(n+1)}{2}$$

$$= \frac{n(n+1)(n+5)}{3}.$$

#### સ્વાધ્યાય 9.4

પ્રશ્ન 1 થી 7 માં આપેલ શ્રેઢીનાં પ્રથમ n પદોનો સરવાળો શોધો :

- 1.  $1 \times 2 + 2 \times 3 + 3 \times 4 + 4 \times 5 + \dots$
- **2.**  $1 \times 2 \times 3 + 2 \times 3 \times 4 + 3 \times 4 \times 5 + \dots$
- 3.  $3 \times 1^2 + 5 \times 2^2 + 7 \times 3^2 + \dots$
- 4.  $\frac{1}{1\times 2} + \frac{1}{2\times 3} + \frac{1}{3\times 4} + \dots$
- 5.  $5^2 + 6^2 + 7^2 + ... + 20^2$
- **6.**  $3 \times 8 + 6 \times 11 + 9 \times 14 + \dots$
- 7.  $1^2 + (1^2 + 2^2) + (1^2 + 2^2 + 3^2) + \dots$

પ્રશ્ન નંબર 8 થી 10 માં જે શ્રેઢીનું n મું પદ આપેલ હોય, તેનાં પ્રથમ n પદોનો સરવાળો શોધો :

8. n(n+1)(n+4).

9.  $n^2 + 2^n$ 

10.  $(2n-1)^2$ 

#### 9.8 અનંત સમગુણોત્તર શ્રેણી અને તેનો સરવાળો

a, ar, ar², ar³, ... પ્રકારની સમગુણોત્તર શ્રેણીને અનંત સમગુણોત્તર શ્રેણી કહે છે. હવે અનંત સમગુણોત્તર શ્રેણીના સરવાળાનું સૂત્ર શોધવા આપણે એક ઉદાહરણથી શરૂઆત કરીશું.

સમગુશોત્તર શ્રેશી, 
$$1, \frac{2}{3}, \frac{4}{9}, \dots$$
 લો.

અહી, 
$$a = 1, r = \frac{2}{3}$$
.

આથી, 
$$S_n = \frac{1 - \left(\frac{2}{3}\right)^n}{1 - \frac{2}{3}} = 3 \left[1 - \left(\frac{2}{3}\right)^n\right]$$

n ની કિંમત મોટી અને વધુ મોટી લઈને આપણે  $\left(\frac{2}{3}\right)^n$  ની વર્તણૂંકનો અભ્યાસ કરીએ.

| n                            | 1      | 5            | 10            | 20            |
|------------------------------|--------|--------------|---------------|---------------|
| $\left(\frac{2}{3}\right)^n$ | 0.6667 | 0.1316872428 | 0.01734152992 | 0.00030072866 |

આપણે અનુભવીશું કે જેમ n ની કિંમતો મોટી અને મોટી થતી જાય છે તેમ  $\left(\frac{2}{3}\right)^n$  ની કિંમત શૂન્યની નજીક અને નજીક જાય છે. ગાણિતિક રીતે આપણે કહીશું કે n ની કિંમત ખૂબ જ મોટી હોય ત્યારે  $\left(\frac{2}{3}\right)^n$  નું મૂલ્ય ખૂબ જ નાનું થતું જાય છે. બીજા શબ્દોમાં કહીએ તો, જેમ  $n \to \infty$ , તેમ  $\left(\frac{2}{3}\right)^n \to 0$ . એટલા માટે આપણને, અનંત પદોનો સરવાળો  $S_\infty = 3$  મળે છે.

હવે, જો સમગુશોત્તર શ્રેશી  $a, ar, ar^2, ...$ ,ના સામાન્ય ગુશોત્તર r નું નિરપેક્ષ મૂલ્ય 1 કરતાં ઓછું હોય તો,

$$S_n = \frac{a(1-r^n)}{(1-r)} = \frac{a}{1-r} - \frac{ar^n}{1-r}$$

આ વિકલ્પમાં, |r| < 1 હોવાથી જેમ,  $n \to \infty$ , તેમ  $r^n \to 0$ 

માટે

$$S_n \rightarrow \frac{a}{1-r}$$

સમગુશોત્તર શ્રેશીનાં અનંત પદોનો સરવાળાને  $\mathbf{S}_{\infty}$  અથવા  $\mathbf{S}$  વડે દર્શાવાય છે.

આમ, આપણે  $S = \frac{a}{1-r}$  મેળવીએ છીએ.

ઉદાહરણ તરીકે,

(i) 
$$1 + \frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \dots = \frac{1}{1 - \frac{1}{2}} = 2$$
.

(ii) 
$$1 - \frac{1}{2} + \frac{1}{2^2} - \frac{1}{2^3} + \dots = \frac{1}{1 - \left(\frac{-1}{2}\right)} = \frac{1}{1 + \frac{1}{2}} = \frac{2}{3}$$

#### સ્વાધ્યાય 9.5

નીચેની દરેક સમગુણોત્તર શ્રેણીનાં અનંત પદોનો સરવાળો શોધો : (પ્રશ્ન 1 થી 4)

1. 
$$1, \frac{1}{3}, \frac{1}{9}, \dots$$

3. 
$$5, \frac{20}{7}, \frac{80}{49}, \dots$$

4. 
$$\frac{-3}{4}, \frac{3}{16}, \frac{-3}{64}, \dots$$

**5.** સાબિત કરો કે : 
$$3^{\frac{1}{2}} \times 3^{\frac{1}{4}} \times 3^{\frac{1}{8}} \dots = 3$$

**6.** |a| < 1 તથા |b| < 1 માટે  $x = 1 + a + a^2 + ...$  અને  $y = 1 + b + b^2 + ...$ , સાબિત કરો કે

$$1 + ab + a^2b^2 + \dots = \frac{xy}{x + y - 1}$$

#### પ્રકીર્ણ ઉદાહરણો

ઉદાહરણ 21 : જો કોઈ સમાંતર શ્રેણીનાં  $p,\ q,\ r$  અને s માં પદો સમગુણોત્તર શ્રેણીમાં હોય, તો બતાવો કે (p-q), (q-r) અને (r-s) એ સમગુણોત્તર શ્રેણીમાં છે.

ઉકેલ : અહીં,

$$a_p = a + (p-1) d$$
 ... (1)

$$a_q = a + (q - 1) d$$
 ... (2)

$$a_r = a + (r - 1) d$$
 ... (3)

$$a_s = a + (s - 1) d$$
 ... (4)

આપેલ છે કે,  $a_p$   $a_q$   $a_r$  અને  $a_s$  સમગુણોત્તર શ્રેણીમાં છે.

આથી, 
$$\frac{a_q}{a_p} = \frac{a_r}{a_q} = \frac{a_q - a_r}{a_p - a_q} = \frac{q - r}{p - q}$$
 (કેમ ?) ... (5)

આ જ રીતે, 
$$\frac{a_r}{a_q} = \frac{a_s}{a_r} = \frac{a_r - a_s}{a_q - a_r} = \frac{r - s}{q - r}$$
 (કેમ ?) ... (6)

આમ, (5) અને (6) પરથી,

$$\frac{q-r}{p-q} = \frac{r-s}{q-r}$$
, અર્થાત્,  $p-q$ ,  $q-r$  અને  $r-s$  સમગુણોત્તર શ્રેણીમાં છે.

**ઉદાહરણ 22 :** જો a, b, c સમગુશોત્તર શ્રેશીમાં હોય અને  $a^{\frac{1}{x}} = b^{\frac{1}{y}} = c^{\frac{1}{z}}$  તો સાબિત કરો કે x, y, z સમાંતર શ્રેશીમાં છે.

ઉકેલ: ધારો કે 
$$a^{\frac{1}{x}} = b^{\frac{1}{y}} = c^{\frac{1}{z}} = k$$
  
આથી,  $a = k^x$ ,  $b = k^y$  અને  $c = k^z$ . ... (1)

$$a, b, c$$
 સમગુણોત્તર શ્રેણીમાં હોવાથી,  $b^2 = ac$  ... (2)

(1) અને (2) પરથી, 
$$k^{2y} = k^{x+z}$$

$$\therefore 2y = x + z.$$

આથી x, y અને z એ સમાંતર શ્રેણીમાં છે.

ઉદાહરણ 23 : જો a, b, c, d અને p ભિન્ન વાસ્તવિક સંખ્યાઓ હોય અને

 $(a^2+b^2+c^2)p^2-2(ab+bc+cd)\;p+(b^2+c^2+d^2)\leq 0,$  તો બતાવો કે  $a,\ b,\ c$  અને d સમગુણોત્તર શ્રેણીમાં છે.

ઉકેલ : આપેલ છે કે,

$$(a^2 + b^2 + c^2) p^2 - 2 (ab + bc + cd) p + (b^2 + c^2 + d^2) \le 0$$
 ... (1)

પરંતુ ડા.બા. =  $(a^2p^2 - 2abp + b^2) + (b^2p^2 - 2bcp + c^2) + (c^2p^2 - 2cdp + d^2)$ ,

આથી, 
$$(ap-b)^2 + (bp-c)^2 + (cp-d)^2 \le 0$$
 ... (2)

પરંતુ વાસ્તવિક સંખ્યાના વર્ગોનો સરવાળો અનુણ હોય. આથી (1) અને (2) પરથી,

$$(ap - b)^2 + (bp - c)^2 + (cp - d)^2 = 0$$

અર્થાત્ 
$$ap - b = 0$$
,  $bp - c = 0$ ,  $cp - d = 0$ 

$$\therefore \qquad \frac{b}{a} = \frac{c}{b} = \frac{d}{c} = p$$

આથી, a, b, c અને d સમગુણોત્તર શ્રેણીમાં છે.

ઉદાહરણ 24 : જો p, q, r સમગુણોત્તર શ્રેણીમાં હોય અને સમીકરણો  $px^2 + 2qx + r = 0$  અને  $dx^2 + 2ex + f = 0$  નું એક બીજ સમાન હોય, તો સાબિત કરો કે  $\frac{d}{p}, \frac{e}{q}, \frac{f}{r}$  એ સમાંતર શ્રેણીમાં છે.

ઉકેલ : સમીકરણ  $px^2 + 2qx + r = 0$  નાં બીજ

$$x = \frac{-2q \pm \sqrt{4q^2 - 4rp}}{2p}$$

p ,q, r સમગુણોત્તર શ્રેણીમાં હોવાથી  $q^2 = pr$ .

આમ, 
$$x = \frac{-q}{p}$$
. પરંતુ  $\frac{-q}{p}$  એ  $dx^2 + 2ex + f = 0$  નું પણ બીજ છે. (કેમ ?)

$$d\left(\frac{-q}{p}\right)^{2} + 2e\left(\frac{-q}{p}\right) + f = 0,$$

$$dq^{2} - 2eqp + fp^{2} = 0 \qquad \dots (1)$$

(1) ને  $pq^2$  વડે ભાગતાં અને  $q^2 = pr$  નો ઉપયોગ કરતાં,

$$\frac{d}{p} - \frac{2e}{q} + \frac{fp}{pr} = 0,$$

$$\therefore \frac{2e}{q} = \frac{d}{p} + \frac{f}{r}$$

આથી,

$$\frac{d}{p}, \frac{e}{q}, \frac{f}{r}$$
 સમાંતર શ્રેણીમાં છે.

#### પ્રકીર્ણ સ્વાધ્યાય 9

- 1. સાબિત કરો કે સમાંતર શ્રેણીમાં (m+n) માં તથા (m-n)માં પદોનો સરવાળો m માં પદ કરતાં બમણો થાય છે.
- 2. જો સમાંતર શ્રેણીમાં આવેલી ત્રણ સંખ્યાઓનો સરવાળો 24 અને તેમનો ગુણાકાર 440 હોય તો આ સંખ્યાઓ શોધો.
- 3. જો સમાંતર શ્રેણીમાં આવેલાં પ્રથમ  $n,\ 2n,\ 3n$  પદોનાં સરવાળા અનુક્રમે  $S_1,S_2$  અને  $S_3$ હોય, તો બતાવો કે  $S_3=3(S_2-S_1).$
- 4. 200 અને 400 વચ્ચેની 7 વડે વિભાજ્ય સંખ્યાઓનો સરવાળો શોધો.
- 5. 1 થી 100 વચ્ચેની 2 અથવા 5 વડે વિભાજ્ય સંખ્યાઓનો સરવાળો શોધો.
- 6. જેને 4 વડે ભાગતાં શેષ 1 વધે તેવી બે આંકડાની સંખ્યાઓનો સરવાળો શોધો.
- 7. જો વિધેય f(x + y) = f(x) f(y) ( $\forall x, y \in \mathbb{N}$ ) એવી રીતે વ્યાખ્યાયિત હોય કે જેથી, f(1) = 3 અને  $\sum_{x=1}^{n} f(x) = 120$ , તો n + j મૂલ્ય શોધો.
- 8. સમગુણોત્તર શ્રેણીનાં કેટલાંક પદોનો સરવાળો 315 છે. તેનું પ્રથમ પદ અને સામાન્ય ગુણોત્તર અનુક્રમે 5 અને 2 છે. તેનું છેલ્લું પદ અને પદોની સંખ્યા શોધો.

9. સમગુશોત્તર શ્રેશીનું પ્રથમ પદ 1 છે. તેના ત્રીજા અને પાંચમાં પદોનો સરવાળો 90 છે. આ સમગુશોત્તર શ્રેશીનો સામાન્ય ગુશોત્તર શોધો.

- 10. સમગુણોત્તર શ્રેણીમાં આવેલી ત્રણ સંખ્યાઓનો સરવાળો 56 છે. જો આ સંખ્યાઓમાંથી અનુક્રમે 1,7 અને 21 બાદ કરવામાં આવે, તો આપણને સમાંતર શ્રેણી મળે છે. આ સંખ્યાઓ શોધો.
- એક સમગુણોત્તર શ્રેણીનાં પદોની સંખ્યા યુગ્મ છે. જો બધાં જ પદોનો સરવાળો, અયુગ્મ સ્થાને રહેલ પદોના સરવાળા કરતાં
   ગણો હોય, તો સામાન્ય ગુણોત્તર શોધો.
- 12. સમાંતર શ્રેણીનાં પ્રથમ ચાર પદોનો સરવાળો 56 છે. તેનાં છેલ્લાં ચાર પદોનો સરવાળો 112 છે. તેનું પ્રથમ પદ 11 છે, તો પદોની સંખ્યા શોધો.
- 13. જો  $\frac{a+bx}{a-bx} = \frac{b+cx}{b-cx} = \frac{c+dx}{c-dx} (x \neq 0)$ , તો સાબિત કરો કે a, b, c અને d સમગુણોત્તર શ્રેણીમાં છે.
- 14. જો સમગુણોત્તર શ્રેણીનાં પ્રથમ n પદોનો સરવાળો S, ગુણાકાર P અને પ્રથમ n પદોનાં વ્યસ્ત પદોનો સરવાળો R હોય, તો સાબિત કરો કે  $P^2R^n=S^n$ .
- 15. જો સમાંતર શ્રેણીનાં p, q અને r માં પદો અનુક્રમે a, b, c હોય તો બતાવો કે,

$$(q-r)a + (r-p)b + (p-q)c = 0$$

- **16.** જો  $a\left(\frac{1}{b} + \frac{1}{c}\right), b\left(\frac{1}{c} + \frac{1}{a}\right), c\left(\frac{1}{a} + \frac{1}{b}\right)$  સમાંતર શ્રેણીમાં હોય તો સાબિત કરો કે a, b, c સમાંતર શ્રેણીમાં છે.
- 17. જો a, b, c, d સમગુણોત્તર શ્રેણીમાં હોય, તો સાબિત કરો કે  $(a^n + b^n)$ ,  $(b^n + c^n)$ ,  $(c^n + d^n)$  સમગુણોત્તર શ્રેણીમાં છે.
- **18**. જો a, b, c, d સમગુણોત્તર શ્રેણીમાં હોય અને જો a અને b,  $x^2 3x + p = 0$  નાં બીજ હોય અને c, d,  $x^2 12x + q = 0$  નાં બીજ હોય તો સાબિત કરો કે (q+p): (q-p) = 17:15.
- 19. બે સંખ્યાઓ a અને b ના સમાંતર અને સમગુણોત્તર મધ્યકોનો ગુણોત્તર m:n છે. બતાવો કે,

$$a:b = (m + \sqrt{m^2 - n^2}):(m - \sqrt{m^2 - n^2})$$
.

- **20.** જો a, b, c સમાંતર શ્રેણીમાં; b, c, d એ સમગુણોત્તર શ્રેણીમાં અને  $\frac{1}{c}$ ,  $\frac{1}{d}$ ,  $\frac{1}{e}$  એ સમાંતર શ્રેણીમાં હોય તો સાબિત કરો કે, a, c, e સમગુણોત્તર શ્રેણીમાં છે.
- **21.** નીચેની શ્રેણીનાં પ્રથમ n પદોનો સરવાળો શોધો :

(i) 
$$5 + 55 + 555 + \dots$$
 (ii)  $0.6 + 0.66 + 0.666 + \dots$ 

- 22. શ્રેઢી  $2 \times 4 + 4 \times 6 + 6 \times 8 + ...$  (n પદો)નું 20 મું પદ શોધો.
- 23. શ્રેઢી 3+ 7 +13 +21 +31 +... નાં પ્રથમ *n* પદોનો સરવાળો શોધો.
- 24. જો  $S_1$ ,  $S_2$ ,  $S_3$  અનુક્રમે પ્રથમ n પ્રાકૃતિક સંખ્યાઓ સરવાળો, તેમના વર્ગોનો સરવાળો અને તેમના ઘનનો સરવાળો દર્શાવે, તો સાબિત કરો કે,  $9\,S_2^2=S_3\,(1+8S_1)$ .

195

**25.** નીચેની શ્રેણીનાં પ્રથમ *n* પદોનો સરવાળો શોધો.

$$\frac{1^3}{1} + \frac{1^3 + 2^3}{1 + 3} + \frac{1^3 + 2^3 + 3^3}{1 + 3 + 5} + \dots$$

- **26.** Rulling sail is  $\frac{1 \times 2^2 + 2 \times 3^2 + ... + n \times (n+1)^2}{1^2 \times 2 + 2^2 \times 3 + ... + n^2 \times (n+1)} = \frac{3n+5}{3n+1}.$
- 27. એક ખેડૂત પુનઃવેચાણનું ટ્રેક્ટર ₹ 12,000 માં ખરીદે છે. તે ₹ 6000 રોકડા ચૂકવે છે અને બાકીની રકમ ₹ 500 ના વાર્ષિક હપતામાં અને 12 % વ્યાજે ચૂકવે છે, તો તેણે ટ્રેક્ટરની શું કિંમત ચૂકવી હશે ?
- 28. શમશાદ અલી એક સ્કૂટર ₹ 22,000 માં ખરીદે છે. તે ₹ 4000 રોકડા ચૂકવે છે અને બાકીની રકમ ₹ 1000 ના વાર્ષિક હપતાથી અને 10 % વ્યાજે ચૂકવે છે, તો તેણે સ્કૂટરની શું કિંમત ચૂકવી હશે ?
- 29. એક માણસ તેના ચાર મિત્રોને પત્ર લખે છે. તે દરેકને સૂચના આપે છે કે આ પત્ર તેમના અન્ય ચાર મિત્રોને મોકલે અને તેમને પણ આ જ પ્રમાણેની સાંકળ આગળ વધારવાની છે. માની લઈએ કે આ સાંકળ તૂટતી નથી અને દરેક પત્ર મોકલવાનો ખર્ચ 50 પૈસા આવે છે, તો 8 મી વખત પત્ર મોકલવાનો ખર્ચ શોધો.
- 30. એક માણસ વાર્ષિક 5% ના સાદા વ્યાજે બેંકમાં ₹ 10,000 જમા કરાવે છે, તો તેણે જમા કરાવેલ રકમથી 15માં વર્ષમાં જમા રકમ અને 20 વર્ષ પછીની કુલ રકમ શોધો.
- 31. એક વેપારી ગણતરી કરે છે કે એક મશીન તેને ₹ 15,625 માં મળે છે અને દર વર્ષે તેનો ઘસારો 20 % છે, તો પાંચ વર્ષ પછી આ મશીનની અંદાજિત કિંમત કેટલી હશે ?
- 32. એક કામ અમુક દિવસમાં પૂરું કરવા 150 માણસો રોકાયેલા હતા. બીજા દિવસે 4 માણસ કામ છોડી દે છે, ત્રીજા દિવસે બીજા 4 માણસો કામ છોડી દે છે અને આમ ચાલ્યા કરે છે. આવું થવાથી કામ પૂરું થવામાં 8 દિવસ વધુ લાગે છે તો કામ કેટલા દિવસમાં પૂરું થાય તે શોધો.

#### સારાંશ

- ♦ શ્રેણીનો અર્થ કોઈક નિયમને અનુસરતાં નિશ્ચિત ક્રમમાં ગોઠવાતી સંખ્યાઓ. વળી, આપણે શ્રેણીને એક વિધેય તરીકે લઈશું. તેનો પ્રદેશ પ્રાકૃતિક સંખ્યાઓનો ગણ અથવા {1, 2, 3, ....k} પ્રકારનો ઉપગણ હોય. જે શ્રેણીમાં પદોની સંખ્યા નિશ્ચિત ધન પૂર્ણાંક જેટલી હોય તેને સાન્ત શ્રેણી કહેવાય. પદોની સંખ્યા સાન્ત ના હોય તેવી શ્રેણી અનંત શ્રેણી કહેવાય.
- ધારો કે  $a_1,\ a_2,\ a_3,\ \dots$  શ્રેણી છે, તો તેના સરવાળા  $a_1+a_2+a_3+\dots$  ને શ્રેઢી કહેવાય. જે શ્રેઢીમાં પદની સંખ્યા નિશ્ચિત ધન પૂર્ણાંક જેટલી હોય તેને સાન્ત શ્રેઢી કહેવાય.
- જ્યાં, પદો એક નિશ્ચિત અચળ જેટલાં વધે અથવા ઘટે એ સમાંતર શ્રેણી (A.P.) કહેવાય છે. આ અચળને સમાંતર શ્રેણીનો સામાન્ય તફાવત કહે છે. સામાન્ય રીતે, સમાંતર શ્રેણીનું પ્રથમ પદ a, સામાન્ય તફાવત d અને છેલ્લું પદ l દ્વારા દર્શાવાય છે. સમાંતર શ્રેણીનું વ્યાપક પદ અથવા n મું પદ  $a_n = a + (n-1) d$  છે. સમાંતર શ્રેણીનાં પ્રથમ n પદોનો સરવાળો  $S_n$  છે. તે  $S_n = \frac{n}{2} \Big[ 2a + (n-1)d \Big] = \frac{n}{2} (a+l)$  દ્વારા મેળવાય.
- બે સંખ્યાઓ a અને b નો સમાંતર મધ્યક  $\frac{a+b}{2}$  છે. અર્થાત્, a, A, b સમાંતર શ્રેણીમાં છે.

• જો આપેલ શ્રેણીમાં કોઈપણ પદનો તેની આગળના શૂન્યેતર પદ સાથેનો ગુણોત્તર સમાન હોય તો તે શ્રેણી સમગુણોત્તર શ્રેણી કહેવાય. આ અચળ કિંમતને સામાન્ય ગુણોત્તર કહેવાય. સામાન્ય રીતે સમગુણોત્તર શ્રેણીનું પ્રથમ પદ a અને સામાન્ય ગુણોત્તર r વડે દર્શાવાય. સમગુણોત્તર શ્રેણીનું વ્યાપક પદ અથવા n મું પદ  $a_n = ar^{n-1}$  છે. સમગુણોત્તર શ્રેણીનાં પ્રથમ n પદોનો સરવાળો,

જો 
$$r \neq 1$$
 હોય એ માટે  $\mathbf{S}_n = \frac{a \left( r^n - 1 \right)}{r - 1}$  અથવા  $\frac{a \left( 1 - r^n \right)}{1 - r}$ 

lacktriangle બે ધન સંખ્યાઓ a અને b નો સમગુણોત્તર મધ્યક  $\sqrt{ab}$  છે. અર્થાત્ a, G, b સમગુણોત્તર શ્રેણીમાં છે.

#### Historical Note

Evidence is found that Babylonians, some 4000 years ago, knew of arithmetic and geometric sequences. According to Boethius (510), arithmetic and geometric sequences were known to early Greek writers. Among the Indian mathematician, Aryabhatta (476) was the first to give the formula for the sum of squares and cubes of natural numbers in his famous work *Aryabhatiyam*, written around 499. He also gave the formula for finding the sum to *n* terms of an arithmetic sequence starting with *p*<sup>th</sup> term. Noted Indian mathematicians Brahmgupta (598), Mahavira (850) and Bhaskara (1114-1185) also considered the sum of squares and cubes. Another specific type of sequence having important applications in mathematics, called *Fibonacci sequence*, was discovered by Italian mathematician Leonardo Fibonacci (1170-1250). Seventeenth century witnessed the classification of series into specific forms. In 1671 James Gregory used the term infinite series in connection with infinite sequence. It was only through the rigorous development of algebraic and set theoretic tools that the concepts related to sequence and series could be formulated suitably.



પ્રકરણ 10

# રેખાઓ

❖ Geometry, as a logical system, is a means and even the most powerful means to make children feel the strength of the human spirit that is of their own spirit. – H. FREUDENTHAL❖

#### 10.1 પ્રાસ્તાવિક

આપણે આગળના વર્ગોમાં દ્વિ-પરિમાણ યામભૂમિતિથી પરિચિત થયાં છીએ. મુખ્યત્વે તે બીજગણિત અને ભૂમિતિનો સમન્વય છે. બીજગણિતના ઉપયોગથી ભૂમિતિનો વ્યવસ્થિત અભ્યાસ પ્રતિષ્ઠિત તત્ત્વચિંતક અને ગણિતશાસ્ત્રી René Descartes એ પોતાના ઈ.સ.1637 માં પ્રકાશિત પુસ્તક 'La Géométry'માં સૌપ્રથમ વખત કર્યો હતો. આ પુસ્તકમાં વક્રના સમીકરણની સંકલ્પના રજૂ થઈ અને આ રીતે ભૂમિતિના અભ્યાસમાં વિશ્લેષણ-પદ્ધતિ દાખલ થઈ. વિશ્લેષણ અને ભૂમિતિના સમન્વયથી વિશ્લેષણાત્મક ભૂમિતિ બને છે. આગળના વર્ગોમાં આપણે યામાક્ષો, યામ-સમતલ, યામ-સમતલમાં બિંદુનું નિરૂપણ, બે બિંદુઓ વચ્ચેનું અંતર, વિભાજન-સૂત્ર વગેરેનો અભ્યાસ કર્યો તે યામ-ભૂમિતિનો અભ્યાસ છે. આ બધી યામ-ભૂમિતિની પાયાની સંકલ્પનાઓ છે.

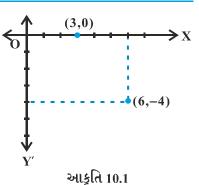


René Descartés (1596 -1650)

ચાલો હવે આપણે આગળના વર્ગોમાં અભ્યાસ કરેલ યામ-ભૂમિતિનું ટૂંકમાં પુનરાવર્તન કરીએ. આકૃતિ 10.1 એ બિંદુઓ (6,-4) અને (3,0) નું XY-સમતલમાં નિરૂપણ દર્શાવે છે.

198

અહીં આપણે નોંધીએ કે બિંદુ (6, -4) એ x-અક્ષની ધન દિશામાં y-અક્ષથી 6 એકમ અંતરે અને y-અક્ષની ઋણ દિશામાં x-અક્ષથી 4 એકમ અંતરે છે. તે જ રીતે (3, 0) એ x-અક્ષની ધન દિશામાં y-અક્ષથી 3 એકમ અંતરે અને x-અક્ષથી શૂન્ય અંતરે છે.



આ ઉપરાંત આપણે નીચે દર્શાવેલ કેટલાંક અગત્યનાં સૂત્રો પણ શીખી ગયાં :

**I.** બિંદુઓ  $P(x_1, y_1)$  અને  $Q(x_2, y_2)$  વચ્ચેનું અંતર

$$PQ = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

ઉદાહરણ તરીકે, (6, -4) અને (3, 0) વચ્ચેનું અંતર

$$\sqrt{(3-6)^2 + (0+4)^2} = \sqrt{9+16} = 5 \text{ wish.}$$

II. બિંદુઓ  $(x_{_1},\ y_{_1})$  અને  $(x_{_2},\ y_{_2})$ ને જોડતા રેખાખંડનું m:n ગુણોત્તરમાં અંતઃવિભાજન કરતા બિંદુના યામ  $\left(\frac{m\,x_{_2}+n\,x_{_1}}{m+n},\frac{m\,y_{_2}+n\,y_{_1}}{m+n}\right).$ 

ઉદાહરણ તરીકે, A(1, -3) અને B(-3, 9) બિંદુઓને જોડતા રેખાખંડનું 1:3 ગુણોત્તરમાં અંતઃવિભાજન કરતાં બિંદુના યામ

$$x = \frac{1 \cdot (-3) + 3 \cdot 1}{1 + 3} = 0 \text{ and } y = \frac{1 \cdot 9 + 3 \cdot (-3)}{1 + 3} = 0.$$

III. વિશિષ્ટ કિસ્સા તરીકે જો m=n હોય, તો બિંદુઓ  $(x_{_1},\,y_{_1})$  અને  $(x_{_2},\,y_{_2})$  ને જોડતા રેખાખંડના મધ્યબિંદુના યામ  $\left(\frac{x_{_1}+x_{_2}}{2},\frac{y_{_1}+y_{_2}}{2}\right)$ મળે.

IV.  $(x_1,y_1),(x_2,y_2)$  અને  $(x_3,y_3)$  શિરોબિંદુઓવાળા ત્રિકોણનું ક્ષેત્રફળ,

$$\frac{1}{2} \left| x_1 (y_2 - y_3) + x_2 (y_3 - y_1) + x_3 (y_1 - y_2) \right|$$

ઉદાહરણ તરીકે, (4,4), (3,-2) અને (-3,16) શિરોબિંદુઓવાળા ત્રિકોણનું ક્ષેત્રફળ,

$$\frac{1}{2} \left| 4(-2-16) + 3(16-4) + (-3)(4+2) \right| = \frac{\left| -54 \right|}{2} = 27.$$

### નોંધ : જો ત્રિકોણ ABC નું ક્ષેત્રફળ શૂન્ય થાય, તો ત્રણ બિંદુઓ A, B, C એક જ રેખા પર હોય. આમ તે સમરેખ થાય.

આ પ્રકરણમાં આપણે યામ-ભૂમિતિનો વધુ અભ્યાસ કરીશું. તેમાં યામ-ભૂમિતિની સૌથી સરળ આકૃતિ રેખાના ગુણધર્મોનો અભ્યાસ કરીશું. રેખા સાદામાં સાદી આકૃતિ હોવા છતાં ભૂમિતિમાં તેની સંકલ્પના ઘણી મહત્ત્વની છે. તેના રોજિંદા અનુભવો તો ઘણા રસપ્રદ અને ઉપયોગી રીતે દશ્યમાન થતા હોય છે. આપણે રેખાને બૈજિક રીતે દર્શાવવા પર અને તેના ઢાળ પર ધ્યાન કેન્દ્રિત કરીશું.

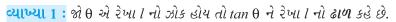
રેખાઓ 199

#### 10.2 રેખાનો ઢાળ

યામ સમતલમાં કોઇપણ રેખા x-અક્ષ સાથે એકબીજાના પૂરકકોણ હોય તેવા બે ખૂશા બનાવે.

યામ-સમતલમાં આપેલી એક રેખા x-અક્ષની ધન દિશા સાથે ઘડિયાળના કાંટાની વિરુધ્ધ દિશામાં જે ખૂણો બનાવે તેનું માપ  $\theta$  હોય, તો તેને રેખા I નો ઝોક કહે છે. સ્પષ્ટ છે કે  $0^{\circ} \le \theta \le 180^{\circ}$  (આકૃતિ 10.2).

આપણે જોઈ શકીએ છીએ કે, જો રેખા x-અક્ષને સમાંતર કે તેની સાથે સંપાતી હોય તો તેનો ઝોક  $0^\circ$  છે અને જો તે શિરોલંબ રેખા હોય (y-અક્ષને સમાંતર કે સંપાતી)નો તેનો ઝોક  $90^\circ$  છે.



જો રેખાનો ઝોક  $90^\circ$  હોય તો તેનો ઢાળ વ્યાખ્યાયિત ન બને. રેખાના ઢાળને સંકેતમાં m વડે દર્શાવાય છે.

આમ,  $m = tan \theta$ ,  $\theta \neq 90^{\circ}$ 

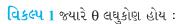
સ્પષ્ટ છે કે x-અક્ષનો ઢાળ શૂન્ય છે અને y-અક્ષનો ઢાળ અવ્યાખ્યાયિત છે.

### 10.2.1 જો રેખા પર કોઈ પણ બે બિંદુઓ આપ્યાં હોય, તો તે રેખાનો ઢાળ.

આપણે જાણીએ છીએ કે બે બિંદુઓ એક રેખા સુનિશ્ચિત કરે છે. તેથી આપણે રેખાના ઢાળને તેની પર આવેલાં બે બિંદુને જોડતા રેખાખંડના ઢાળનો ઉપયોગ કરી મેળવીશું.

ધારો કે  $P(x_1, y_1)$  અને  $Q(x_2, y_2)$  શિરોલંબ ન હોય તેવી રેખા I પરનાં બે બિંદુઓ છે. તેનો ઝોક  $\theta$  છે. સ્પષ્ટ છે કે  $x_1 \neq x_2$ , નહિ તો રેખા x-અક્ષને લંબ થશે અને તેનો ઢાળ વ્યાખ્યાયિત નથી. રેખા I નો ઝોક લઘુકોણ કે ગુરુકોણ હોઈ શકે. આપણે બંને વિકલ્પોનો વિચાર કરીશું.

આકૃતિ 10.3 (i) અને (ii) માં દર્શાવ્યા પ્રમાણે x-અક્ષને લંબ QR અને RQ ને લંબ PM દોરો.



આકૃતિ 10.3 (i) માં ∠MPQ = θ.

$$\therefore$$
 રેખા  $l$  નો ઢાળ =  $m = tan \theta$ . ... (1)

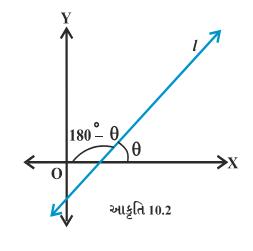
પરંતુ 
$$\Delta$$
MPQ માં,  $tan \theta = \frac{MQ}{MP} = \frac{y_2 - y_1}{x_2 - x_1}$ . ... (2)

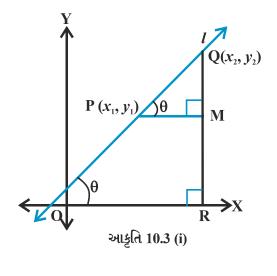
સમીકરણ (1) અને (2) પરથી,

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$
 મળશે.

વિકલ્પ Ⅲ જ્યારે θ ગુરૂકોણ હોય :

આકૃતિ 10.3 (ii) માં





## Downloaded from https://www.studiestoday.com

200 ગણિત : ધોરણ 11

$$\angle MPQ = 180^{\circ} - \theta$$

$$\theta = 180^{\circ} - \angle MPQ$$

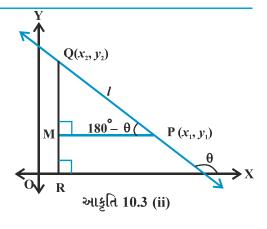
હવે, રેખા *l* નો ઢાળ

$$m = tan \theta$$

$$= tan (180^{\circ} - \angle MPQ)$$

$$=-tan \angle MPQ$$

$$= -\frac{MQ}{MP} = -\frac{y_2 - y_1}{x_1 - x_2} = \frac{y_2 - y_1}{x_2 - x_1}.$$



આમ, બંને વિકલ્પમાં જોઈ શકાય છે કે બિંદુઓ A  $(x_1, y_1)$  અને B  $(x_2, y_2)$ માંથી પસાર થતી રેખાનો ઢાળ

$$m = \frac{y_2 - y_1}{x_2 - x_1} \ .$$

### 10.2.2 બે રેખાઓ પરસ્પર સમાંતર કે લંબ હોય તે માટેની ઢાળના સંદર્ભમાં શરત

ધારો કે યામ-સમતલમાં શિરોલંબ ન હોય તેવી બે રેખાઓ  $l_1$  અને  $l_2$  છે. રેખાઓ  $l_1$  અને  $l_2$  ના ઢાળ અનુક્રમે  $m_1$  અને  $m_2$  છે. ધારો કે તેમના ઝોક અનુક્રમે  $\alpha$  અને  $\beta$  છે.

**હવે, જો રેખા l\_1 એ રેખા l\_2ને સમાંતર હોય,** તો તેમના ઝોક સમાન થશે (આકૃતિ 10.4.)

આમ, 
$$\alpha = \beta$$
. તેથી  $tan \alpha = tan \beta$ .

$$\therefore m_1 = m_2$$
 એટલે કે તેમના ઢાળ સમાન છે.

એથી, ઊલટું, ધારો કે બે રેખાઓ  $l_1$  અને  $l_2$  ના ઢાળ સરખા છે. એટલે કે  $m_1=m_2$ 

$$\therefore$$
 tan  $\alpha = tan \beta$ 

$$tan$$
 વિધેયના ગુણધર્મ પ્રમાણે  $\alpha = \beta$  ( $\alpha$  તથા  $\beta$  એ  $0^\circ$  થી  $180^\circ$  વચ્ચે).

 $l_2$   $\beta$   $\alpha$   $\chi$  આકૃતિ 10.4

આમ, શિરોલંબ ના હોય તેવી બે રેખાઓ સમાંતર હોવાની આવશ્યક અને પર્યાપ્ત શરત એ છે કે તેમના ઢાળ સમાન થાય. હવે જો રેખાઓ  $l_1$  અને  $l_2$  પરસ્પર લંબ હોય (આકૃતિ 10.5), તો  $\beta=\alpha+90^\circ$ .

$$\therefore \tan \beta = \tan (\alpha + 90^{\circ}) = -\cot \alpha = -\frac{1}{\tan \alpha}$$

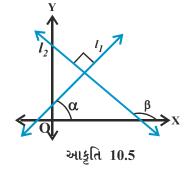
એટલે કે 
$$m_2 = -\frac{1}{m_1}$$
 અથવા  $m_1$   $m_2 = -1$ 

આથી, ઊલટું જો 
$$m_1^{}$$
  $m_2^{}$  =  $-1$ , તો  $tan \alpha tan \beta$  =  $-1$ .

$$\therefore$$
 tan  $\alpha = -\cot \beta = \tan (\beta + 90^\circ)$  અથવા  $\tan (\beta - 90^\circ)$ 

$$\therefore$$
  $\alpha$  અને  $\beta$  નો તફાવત 90° છે.

આથી, રેખાઓ 
$$l_1$$
 અને  $l_2$  પરસ્પર લંબ છે.



આમ, શિરોલંબ ન હોય તેવી બે રેખાઓ પરસ્પર લંબ હોવાની આવશ્યક અને પર્યાપ્ત શરત એ છે કે તેમના ઢાળ

રેખાઓ

એકબીજાના ઋણ વ્યસ્ત હોય.

આમ, 
$$m_2^{}=-\frac{1}{m_1}$$
 અથવા,  $m_1^{}m_2^{}=-1$ .

હવે, નીચેનાં ઉદાહરણોને સમજીએ.

ઉદાહરણ 1 : રેખાઓના ઢાળ શોધો.

- (a) (3, -2) અને (-1, 4) માંથી પસાર થતી,
- (b) (3,-2) અને (7,-2) માંથી પસાર થતી,
- (c) (3, -2) અને (3, 4) માંથી પસાર થતી,
- (d) x-અક્ષની ધન દિશા સામે  $60^{\circ}$ નો ખૂણો બનાવતી.

ઉંકેલ : (a) (3, -2) અને (-1, 4) માંથી પસાર થતી રેખાનો ઢાળ

$$m = \frac{4 - (-2)}{-1 - 3} = \frac{6}{-4} = -\frac{3}{2}$$
.

(b) (3, -2) અને (7, -2) માંથી પસાર થતી રેખાનો ઢાળ

$$m = \frac{-2 - (-2)}{7 - 3} = \frac{0}{4} = 0$$
.

- (c) (3,-2) અને (3,4) માંથી પસાર થતી રેખાનો ઢાળ  $m=\frac{4-(-2)}{3-3}=\frac{6}{0}$  વ્યાખ્યાયિત નથી.
- (d) અહીં, રેખાનો ઝોક  $\alpha=60^\circ$ .

તેથી, રેખાનો ઢાળ  $m=tan~60^\circ=\sqrt{3}$  .

### 10.2.3 બે રેખાઓ વચ્ચેનો ખૂશો

જયારે એક સમતલમાં આવેલી એક કરતાં વધુ રેખાઓનો વિચાર કરીએ ત્યારે તે પરસ્પર સમાંતર હોય અથવા પરસ્પર છેદતી રેખાઓ હોઈ શકે. અહીં, આપણે બે રેખાઓ વચ્ચેના ખૂણાનો તેમના ઢાળ સંદર્ભે વિચાર કરીશું.

ધારો કે  $\mathbf{L}_{_1}$  અને  $\mathbf{L}_{_2}$  શિરોલંબ રેખાઓ નથી. તેમના ઢાળ અનુક્રમે  $m_{_1}$  અને  $m_{_2}$  છે.

ધારો કે રેખાઓ પરસ્પર લંબ નથી. આથી  $m_1m_2\neq -1$ . જો તે પરસ્પર લંબ હોય તો તેમની વચ્ચેનો ખૂણો  $90^\circ$ નો હોય. હવે, જો  $L_1$  અને  $L_2$  ના ઝોક અનુક્રમે  $\alpha_1$  અને  $\alpha_2$  હોય, તો

$$m_1 = tan \alpha_1$$
 અને  $m_2 = tan \alpha_2$ .

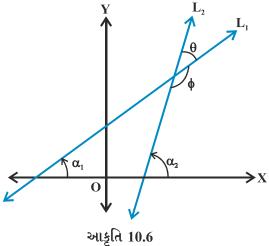
આપણે જાણીએ છીએ કે જ્યારે બે રેખાઓ એકબીજીને છેદે ત્યારે છેદબિંદુ આગળ એકરૂપ અભિકોણની બે જોડ રચાય છે. તેમાં બે પાસપાસેના ખૂણાનાં માપનો સરવાળો  $180^\circ$  છે. ધારો કે રેખાઓ  $\mathbf{L_1}$  અને  $\mathbf{L_2}$ માં છેદબિંદુ આગળ બનતા પાસપાસેના ખૂણાઓ  $\mathbf{\theta}$  અને  $\mathbf{\phi}$  છે. (આકૃતિ 10.6).

$$\theta = \alpha_2 - \alpha_1$$
 અને  $\alpha_1, \alpha_2 \neq 90^{\circ}$ .

$$\therefore \tan \theta = \tan (\alpha_2 - \alpha_1) = \frac{\tan \alpha_2 - \tan \alpha_1}{1 + \tan \alpha_1 \tan \alpha_2} = \frac{m_2 - m_1}{1 + m_1 m_2}$$
 (size § 1 +  $m_1 m_2 \neq 0$ )

અને 
$$\phi = 180^{\circ} - \theta$$

આથી 
$$tan \ \phi = tan \ (180^\circ - \theta \ ) = - \ tan \ \theta = - \frac{m_2 - m_1}{1 + m_1 m_2} \ ,$$
 કારણ કે  $1 + m_1 m_2 \neq 0$ 



હવે, બે વિકલ્પોનું નિર્માણ થાય છે.

વિકલ્પ  $\mathbf{I}$  જો  $\frac{m_2-m_1}{1+m_1m_2}$  ધન હોય, તો  $\tan\theta$  ધન અને  $\tan\phi$  ઋણ થશે. તેનો અર્થ એ કે  $\theta$  લઘુકોણ અને  $\phi$  ગુરુકોણ હશે.

વિકલ્પ  $\Pi$  જો  $\frac{m_2-m_1}{1+m_1m_2}$  ઋણ હોય, તો  $\tan\theta$  ઋણ અને  $\tan\phi$  ધન થશે, તેનો અર્થ  $\theta$  ગુરુકોણ અને  $\phi$  લઘુકોણ હશે. આમ, બે રેખાઓ  $L_1$  અને  $L_2$  ના ઢાળ અનુક્રમે  $m_1$  અને  $m_2$  હોય અને તેમની વચ્ચેના લઘુકોણનું માપ  $\theta$  હોય તો,

$$\tan \theta = \left| \frac{m_2 - m_1}{1 + m_1 m_2} \right|,$$
 (SIREL §  $1 + m_1 m_2 \neq 0$ ) ...(1)

ગુરુકોણ  $\phi$  નું માપ  $\phi$  =180 $^{\circ}$  –  $\theta$  નો ઉપયોગ કરી મેળવી શકાય.

ઉદાહરણ 2: બે રેખાઓ વચ્ચેના ખૂણાનું માપ  $\frac{\pi}{4}$  હોય અને તે પૈકીની એક રેખાનો ઢાળ  $\frac{1}{2}$  હોય, તો બીજી રેખાનો ઢાળ શોધો. ઉકેલ : બે રેખાઓ વચ્ચેના લઘુકોણનું માપ  $\theta$  હોય અને તેમના ઢાળ  $m_1$  અને  $m_2$  હોય, તો

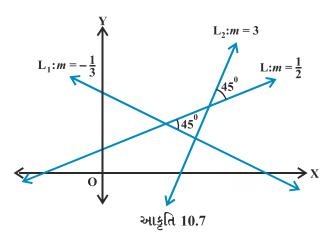
$$\tan \theta = \left| \begin{array}{c} \frac{m_2 - m_1}{1 + m_1 m_2} \end{array} \right| \qquad \dots (1)$$

હવે, 
$$m_{_{1}}=\frac{1}{2}$$
,  $m_{_{2}}=m$  અને  $\theta=\frac{\pi}{4}$ .

હવે, આ કિંમતોને (1) માં મૂકતાં,

$$\tan \frac{\pi}{4} = \left| \begin{array}{c} \frac{m - \frac{1}{2}}{1 + \frac{1}{2}m} \end{array} \right| \quad \text{with } 3 = \left| \begin{array}{c} \frac{m - \frac{1}{2}}{1 + \frac{1}{2}m} \end{array} \right|$$

આ પરથી, 
$$\frac{m-\frac{1}{2}}{1+\frac{1}{2}m}=1 \qquad \text{અથવા } \frac{m-\frac{1}{2}}{1+\frac{1}{2}m}=-1.$$



રેખાઓ 203

$$m=3$$
 અથવા  $m=-\frac{1}{3}$ 

આમ, બીજી રેખાનો ઢાળ 3 અથવા  $-\frac{1}{3}$  થશે. આકૃતિ 10.7 બે જવાબનું કારણ દર્શાવે છે.

ઉદાહરણ 3:(-2,6) અને (4,8) બિંદુઓમાંથી પસાર થતી રેખા અને (8,12) અને (x,24) બિંદુઓમાંથી પસાર થતી રેખા પરસ્પર લંબ હોય, તો x ની કિંમત શોધો.

ઉકેલ : (– 2, 6) અને (4, 8) માંથી પસાર થતી રેખાનો ઢાળ

$$m_1 = \frac{8-6}{4-(-2)} = \frac{2}{6} = \frac{1}{3}$$

(8, 12) અને (x, 24) માંથી પસાર થતી રેખાનો ઢાળ

$$m_2 = \frac{24-12}{x-8} = \frac{12}{x-8}$$

આ બે રેખાઓ પરસ્પર લંબ છે.

$$m_1 m_2 = -1$$

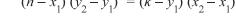
$$\therefore \frac{1}{3} \times \frac{12}{x-8} = -1 \text{ which is } x = 4.$$

### 10.2.4 ત્રણ બિંદુઓની સમરેખતા

આપણે જાણીએ છીએ કે બે સમાંતર રેખાઓના ઢાળ સમાન હોય છે. હવે જો સમાન ઢાળવાળી બે રેખાઓ એક જ બિંદુમાંથી પસાર થતી હોય તો અવશ્ય જ તે રેખાઓ સંપાતી હોય. આથી સમતલ XYમાં આપેલ ત્રણ બિંદુઓ A, B અને C માટે જો રેખા AB નો ઢાળ = રેખા BC નો ઢાળ થાય તો અને તો જ આ બિંદુઓ સમરેખ થાય.

ઉદાહરણ 4 : જો P(h, k),  $Q(x_1, y_1)$  અને  $R(x_2, y_2)$  ત્રણ સમરેખ બિંદુઓ હોય, તો સાબિત કરો કે

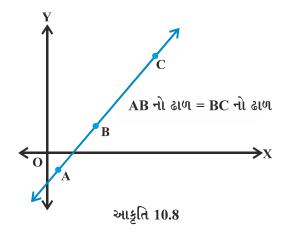
$$(h-x_1)(y_2-y_1) = (k-y_1)(x_2-x_1).$$



ઉકેલ : અહીં, P, Q અને R સમરેખ બિંદુઓ છે. તેથી,

PQ નો ઢાળ = QR નો ઢાળ, આથી 
$$\frac{y_1 - k}{x_1 - h} = \frac{y_2 - y_1}{x_2 - x_1}$$

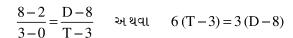
અથવા 
$$\frac{k-y_1}{h-x_1} = \frac{y_2 - y_1}{x_2 - x_1},$$



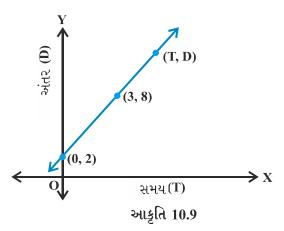
અથવા 
$$(h-x_1)(y_2-y_1) = (k-y_1)(x_2-x_1).$$

ઉદાહરણ 5: આકૃતિ 10.9 માં રેખીય ગતિનો સમય અને અંતરનો આલેખ આપેલ છે. સમય અને અંતરનાં બે સ્થાન, જ્યારે T=0 ત્યારે D=2 અને જ્યારે T=3 ત્યારે D=8 આપેલ છે. તો ઢાળનો ઉપયોગ કરી ગતિનો નિયમ મેળવો. એટલે કે અંતર એ સમય પર કઈ રીતે આધારિત છે તે બતાવો.

**ઉંકેલ** : ધારો કે (T, D) એ રેખા પરનું કોઈ બિંદુ છે. T સમયે અંતર D છે. આમ, બિંદુઓ (0, 2), (3, 8) અને (T, D) સમરેખ થશે.



અથવા D = 2(T + 1), માંગેલ સંબંધ છે.



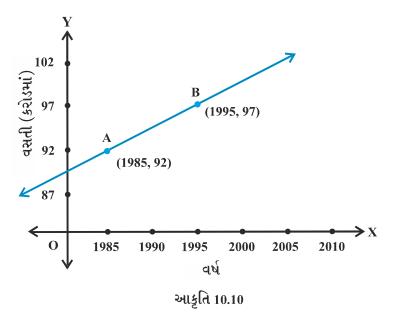
#### સ્વાધ્યાય 10.1

- 1. યામ-સમતલમાં (-4, 5), (0, 7), (5, -5) અને (-4, -2) શિરોબિંદુઓવાળો ચતુષ્કોણ દોરો અને તેનું ક્ષેત્રફળ શોધો.
- 2. એક સમબાજુ ત્રિકોણનો પાયો y-અક્ષ પર એવી રીતે આવેલો છે કે તેનું મધ્યબિંદુ ઊગમબિંદુ છે. આ સમબાજુ ત્રિકોણની બાજુ 2a હોય, તો તેનાં શિરોબિંદુઓ શોધો.
- **3.** જયારે (i) PQ, y-અક્ષને સમાંતર હોય (ii) PQ, x-અક્ષને સમાંતર હોય ત્યારે બિંદુઓ P  $(x_1, y_1)$  અને Q  $(x_2, y_2)$  વચ્ચેનું અંતર શોધો.
- **4.** (7, 6) અને (3, 4) થી સમાન અંતરે હોય એવું x-અક્ષ પરનું બિંદુ શોધો.
- 5. P(0, -4) અને B(8, 0) ને જોડતાં રેખાખંડના મધ્યબિંદુ અને ઊગમબિંદુમાંથી પસાર થતી રેખાનો ઢાળ શોધો.
- 6. પાયથાગોરસના પ્રમેયનો ઉપયોગ કર્યા વગર બતાવો કે (4, 4), (3, 5) અને (-1, -1) કાટકોણ ત્રિકોણનાં શિરોબિંદુઓ છે.
- 7. એક રેખા y-અક્ષની ધન દિશા સાથે ઘડિયાળના કાંટાથી વિરુધ્ધ દિશામાં  $30^\circ$  નો ખૂણો બનાવે, તો તે રેખાનો ઢાળ શોધો.
- 8. જો બિંદુઓ (x, -1), (2, 1) અને (4, 5) સમરેખ હોય, તો x ની કિંમત શોધો.
- 9. અંતર સૂત્રનો ઉપયોગ કર્યા વગર બતાવો કે (-2, -1), (4, 0), (3, 3) અને (-3, 2) સમાંતરબાજુ ચતુષ્કોણનાં શિરોબિંદુઓ છે.
- **10.** (3,-1) અને (4,-2) ને જોડતી રેખા અને x-અક્ષ વચ્ચેના ખૂણાનું માપ શોધો.
- 11. જો બે રેખાઓ વચ્ચેના ખૂણાનું માપ  $\alpha$  હોય અને  $\tan \alpha = \frac{1}{3}$  હોય અને બે રેખાઓ પૈકીની એક રેખાનો ઢાળ બીજી રેખાના ઢાળ કરતાં બે ગણો હોય તો તે બે રેખાઓના ઢાળ શોધો.

રેખાઓ 205

12. એક રેખા  $(x_1,\ y_1)$  અને  $(h,\ k)$ માંથી પસાર થાય છે. જો આ રેખાનો ઢાળ m હોય તો, સાબિત કરો કે  $k-y_1=m\ (h-x_1).$ 

- 13. જો ત્રણ બિંદુઓ (h, 0), (a, b) અને (0, k) એક રેખા પર આપેલાં હોય, તો સાબિત કરો કે  $\frac{a}{h} + \frac{b}{k} = 1$ .
- 14. વસતી અને સંગત વર્ષનો એક આલેખ નીચે (આકૃતિ 10.10)માં આપેલ છે. રેખા AB નો ઢાળ શોધો અને તેનો ઉપયોગ કરી વર્ષ 2010માં વસતી કેટલી હશે તે શોધો.



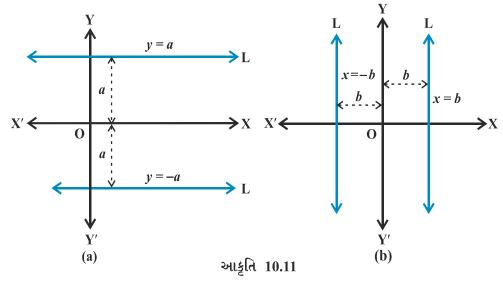
### 10.3 રેખાના સમીકરણનાં વિવિધ સ્વરૂપ

આપણે જાણીએ છીએ કે સમતલમાં આવેલી દરેક રેખા પર અસંખ્ય બિંદુઓ હોય છે. રેખા અને બિંદુ વચ્ચેનો સંબંધ આપણને નીચેની સમસ્યાનો ઉકેલ મેળવવામાં મદદરૂપ થશે.

આપણે એવું કઈ રીતે કહી શકીએ કે આપેલ બિંદુ એ આપેલ રેખા પર છે ? આ પ્રશ્નનો ઉત્તર એ હોઈ શકે કે આપણને બિંદુનો રેખા પર હોવા અંગેનો નિશ્ચિત સંબંધ જ્ઞાત હોય તો કહી શકાય. ધારો કે P(x, y) એ XY-સમતલમાં આવેલું એક બિંદુ છે અને L એ કોઈ આપેલી રેખા છે. હવે L ના સમીકરણ માટે આપણે એક એવું વિધાન કે શરતની રચના કરીએ કે જે બિંદુ P, રેખા L પર હોય તો જ સત્ય થાય, નિહ તો અસત્ય થાય. ખરેખર આ વિધાન ચલx અને y માં એક બૈજિક સમીકરણ છે. હવે, આપણે રેખાના સમીકરણનાં વિવિધ સ્વરૂપોની ચર્ચા કરીશું.

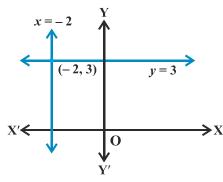
#### 10.3.1 સમક્ષિતિજ અને શિરોલંબ રેખાઓ

જો સમક્ષિતિજ રેખા L એ x-અક્ષથી a એકમ અંતરે આવેલી હોય તો તેના પરનાં તમામ બિંદુઓનો y -યામ a અથવા -a છે. [આકૃતિ 10.11 (a)]. તેથી રેખા L નું સમીકરણ y=a અથવા y=-a. ચિક્ષ ધન કે ઋણ હશે તે રેખાની સ્થિતિ ઉપર એટલે કે તે x-અક્ષની ઉપર છે કે નીચે તે પર નિર્ભર કરે છે. તે જ પ્રમાણે શિરોલંબ રેખા L એ y-અક્ષથી b એકમ અંતરે આવેલ હોય તો તેનું સમીકરણ x=b અથવા x=-b થાય. [આકૃતિ 10.11(b)].



ઉદાહરણ 6: (-2, 3)માંથી પસાર થતી અને અક્ષોને સમાંતર રેખાઓનાં સમીકરણ મેળવો.

ઉકેલ: આકૃતિ 10.12 માં રેખાઓની સ્થિતિ બતાવેલ છે. x-અક્ષને સમાંતર રેખા પરનાં તમામ બિંદુઓનો y-યામ 3 છે. આમ, x-અક્ષને સમાંતર અને (-2,3)માંથી પસાર થતી રેખાનું સમીકરણ y=3 છે. તે જ રીતે y-અક્ષને સમાંતર અને (-2,3) માંથી પસાર થતી રેખાનું સમીકરણ x=-2 છે.



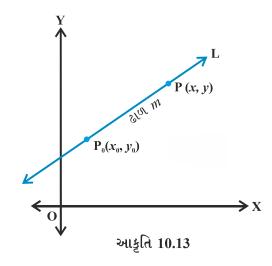
આકૃતિ 10.12

### 10.3.2 બિંદુ-ઢાળ સ્વરૂપ (Point-slope form)

ધારો કે  $P_o\left(x_o,y_o\right)$  એ શિરોલંબ ન હોય તેવી રેખા L પરનું એક બિંદુ છે. તે રેખાનો ઢાળ m છે. ધારો કે  $P\left(x,y\right)$  એ રેખા પરનું કોઈપણ બિંદુ છે (આકૃતિ 10.13). આથી ઢાળની વ્યાખ્યા પ્રમાણે રેખા L નો ઢાળ,

$$m = \frac{y - y_0}{x - x_0}$$
, એટલે કે  $y - y_0 = m(x - x_0)$  ...(1)

વળી, બિંદુ  $P_0$   $(x_0, y_0)$  પણ રેખાના પ્રત્યેક બિંદુ (x, y) ની સાથે સમીકરણ (1)નું સમાધાન કરે છે અને સમતલનું અન્ય કોઇ બિંદુ (1) નું સમાધાન કરતું નથી. તેથી સમીકરણ (1) વાસ્તવમાં આપેલી રેખા L નું સમીકરણ છે.



આમ, જો P(x, y) એ  $y-y_0=m(x-x_0)$  નું સમાધાન કરે તો ને તો જ બિંદુ (x, y) એ નિશ્ચિત બિંદુ  $(x_0, y_0)$  માંથી પસાર થતી અને m ઢાળવાળી રેખા પર હોય.

ઉદાહરણ 7: બિંદુ (-2,3) માંથી પસાર થતી અને જેનો ઢાળ -4 હોય તેવી રેખાનું સમીકરણ શોધો.

ઉકેલ : અહીં, m = -4 અને આપેલ બિંદુ  $(x_0, y_0) = (-2, 3)$ .

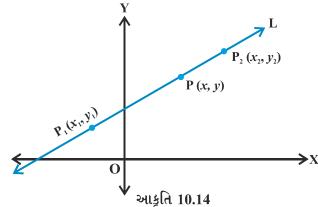
આમ, બિંદુ-ઢાળ સ્વરૂપથી ઉપરના રેખાના સમીકરણ (1) પરથી માંગેલ રેખાનું સમીકરણ

$$y-3=-4 (x+2)$$
 અથવા  $4x+y+5=0$ , માંગેલ રેખાનું સમીકરણ છે.

### 10.3.3 બે બિંદુ-સ્વરૂપ (Two Point form)

ધારો કે રેખા L એ બિંદુઓ  $P_1(x_1,\ y_1)$  અને  $P_2(x_2,\ y_2)$  માંથી પસાર થાય છે. ધારો કે P(x,y) એ રેખા L પરનું કોઈ પણ બિંદુ છે (આકૃતિ 10.14).

ત્રણે બિંદુઓ  $P_1, P_2$ અને P સમરેખ છે. તેથી,  $P_1P$ નો ઢાળ =  $P_1P_2$ નો ઢાળ



$$\therefore \frac{y - y_1}{x - x_1} = \frac{y_2 - y_1}{x_2 - x_1}, \quad \text{at al} \quad y - y_1 = \frac{y_2 - y_1}{x_2 - x_1}(x - x_1). \tag{2}$$

વળી  $(x_1, y_1)$  પણ સમીકરણ (2) નું સમાધાન કરે છે. સમતલનું કોઇપણ બિંદુ સમીકરણ (2) નું સમાધાન કરે તો તે રેખા L પર હોય. આમ,  $(x_1, y_1)$  અને  $(x_2, y_2)$  બિંદુઓમાંથી પસાર થતી રેખાનું સમીકરણ

$$y - y_1 = \frac{y_2 - y_1}{x_2 - x_1} (x - x_1)$$

ઉદાહરણ 8: બિંદુઓ (1,-1) અને (3,5) માંથી પસાર થતી રેખાનું સમીકરણ મેળવો.

ઉકેલ : અહીં 
$$x_1 = 1, y_1 = -1, x_2 = 3$$
 અને  $y_2 = 5$ 

રેખાના ઉપરના બે બિંદુ સ્વરૂપના સમીકરણ (2) પરથી,

$$y-(-1)=\frac{5-(-1)}{3-1}(x-1)$$

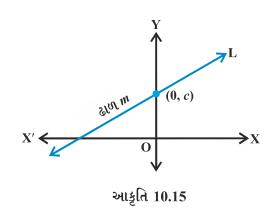
 $\therefore -3x + y + 4 = 0$  માંગેલ સમીકરણ છે.

### 10.3.4 ઢાળ-અંતઃખંડ સ્વરૂપ (Slope-intercept Form)

કોઈ વખત આપણને રેખાની માહિતી ઢાળ અને તેના કોઇ એક અક્ષ પરના અંતઃખંડ દ્વારા આપેલી હોય, તો આ સ્વરૂપમાં આપેલી રેખાનું સમીકરણ આપણે શોધીએ.

**વિકલ્પ I** : ધારો કે રેખા L નો ઢાળ m છે અને તે y-અક્ષને (0,c) માં છેદે છે (આકૃતિ 10.15). c ને રેખા Lનો y-અંતઃખંડ કહે છે.

આમ, રેખા Lનો ઢાળ m છે અને તે (0,c) માંથી પસાર થાય છે. તેથી રેખા L નું



208

ઢાળબિંદુ સ્વરૂપનું સમીકરણ

$$y-c=m(x-0)$$
 અથવા  $y=mx+c$  ...(3)

બિંદુ (x, y) એ y = mx + c નું સમાધાન કરે તો તે જેનો y-અંતઃખંડ c હોય અને ઢાળ m હોય તેવી રેખા પર હોય. આપણે નોંધીશું કે c નું મૂલ્ય ધન કે ઋણ હોય તે પ્રમાણે y-અંતઃખંડ અનુક્રમે y-અક્ષની ધન કે ઋણ બાજુ સાથે બને તે પરથી નક્કી થાય છે.

વિકલ્પ  $\Pi$  ધારો કે રેખા L નો ઢાળ m અને x-અંતઃખંડ d છે, તો રેખા L નું સમીકરણ,

$$y = m(x-d)$$
 થાય. ...(4)

વિદ્યાર્થીઓ વિકલ્પ (I)માં દર્શાવેલ રીતનો ઉપયોગ કરી સ્વપ્રયત્ને આ સમીકરણ મેળવી શકે છે.

ઉદાહરણ  $9:\theta$  ઝોક વાળી રેખા માટે  $\tan\theta=\frac{1}{2}$  હોય તથા જેનો (i) y - અંતઃખંડ =  $-\frac{3}{2}$  (ii) x - અંતઃખંડ = 4 હોય તેવી રેખાઓનાં સમીકરણ મેળવો.

ઉકેલ : (i) અહીં રેખાનો ઢાળ  $m=\tan\theta=\frac{1}{2}$  છે અને y - અંતઃખંડ  $c=-\frac{3}{2}$  છે.

તેથી, રેખાના ઢાળ-અંતઃખંડ સ્વરૂપના સમીકરણ (3) પરથી રેખાનું સમીકરણ

$$y = \frac{1}{2}x - \frac{3}{2} \text{ when } 2y - x + 3 = 0$$

આ માંગેલ સમીકરણ છે.

(ii) અહીં, 
$$m = tan \theta = \frac{1}{2}$$
 અને  $d = 4$  આપેલ છે.

તેથી, રેખાના ઢાળ-અંતઃખંડ સ્વરૂપ સમીકરણ (4) પરથી રેખાનું સમીકરણ

$$y = \frac{1}{2}(x-4)$$
 અથવા  $2y-x+4=0$  મળે.

આ માંગેલ સમીકરણ છે.

## 10.3.5 રેખાનું અંતઃખંડ સ્વરૂપ (Intercept Form of the Equation of a Line)

ધારો કે રેખા L એ x-અક્ષ પર a અને y-અક્ષ પર b અંતઃખંડ કાપે છે.

$$(a \neq 0, b \neq 0)$$

 $\therefore$  રેખા L એ બિંદુ (a, 0) અને (0, b)માંથી પસાર થાય છે. (આકૃતિ 10.16). રેખાના બે બિંદુ સ્વરૂપ સમીકરણ પરથી,

$$y-0 = \frac{b-0}{0-a}(x-a)$$
 અથવા  $ay = -bx + ab$ ,

અથવા

$$\frac{x}{a} + \frac{y}{b} = 1$$
.

અક્ષો પર a અને b અંતઃખંડો કાપતી રેખાનું સમીકરણ

$$\frac{x}{a} + \frac{y}{b} = 1 \quad \text{if} \quad$$

(a,0) X આકૃતિ 10.16

... (5)

ઉદાહરણ 10:x-અક્ષ અને y-અક્ષ પર અનુક્રમે -3 અને 2 અંતઃખંડો બનાવતી રેખાનું સમીકરણ મેળવો.

ઉકેલ : અહીં, a = -3 અને b = 2.

ઉપરના અંતઃખંડ સ્વરૂપ સમીકરણ (5) પરથી,

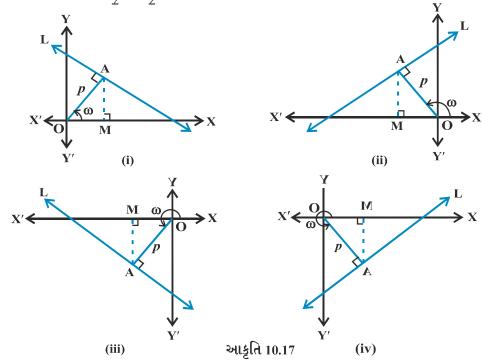
$$\frac{x}{-3} + \frac{y}{2} = 1$$
 અથવા  $2x - 3y + 6 = 0$ .

### 10.3.6 અભિલંબ સ્વરૂપ (Normal Form)

શિરોલંબ ન હોય તેવી રેખા માટે નીચેની માહિતી પ્રાપ્ત છે:

- (i) ઊગમબિંદુમાંથી રેખા પર દોરેલા લંબની લંબાઈ.
- (ii) લંબ દ્વારા x-અક્ષની ધન દિશામાં બનાવેલા ખૂણાનું માપ.

ધારો કે રેખા L પર ઊગમબિંદુમાંથી દોરેલા લંબની લંબાઈ OA = p અને OA x-અક્ષની ધન દિશા સાથે  $\angle XOA = \omega$  માપનો ખૂણો બનાવે છે. રેખા L ના યામ-સમતલમાં બધા જ શક્ય સ્થાન આકૃતિ 10.17માં દર્શાવ્યા છે. હવે, આપણો ઉદ્દેશ રેખા L નો ઢાળ અને તેના પર એક બિંદુ શોધવાનો છે. હવે દરેક સ્થિતિમાં x-અક્ષ પર લંબ AM દોરો. ધારો કે  $\omega \neq 0$ ,  $\frac{\pi}{2}$ ,  $\pi$ ,  $\frac{3\pi}{2}$ 



પ્રત્યેક સ્થિતિમાં  $OM = p \cos \omega$  અને  $AM = p \sin \omega$ . આમ બિંદુ A ના યામ  $(p \cos \omega, p \sin \omega)$  થશે.

અહીં, રેખા L એ OA ને લંબ છે.

$$\therefore$$
 રેખા Lનો ઢાળ =  $-\frac{1}{\text{OA}} = -\frac{1}{\tan \omega} = -\frac{\cos \omega}{\sin \omega}$ .

આમ, રેખા  $\mathrm{L}$  નો ઢાળ  $-\frac{\cos\omega}{\sin\omega}$  અને એ બિંદુ  $\mathrm{A}(p\cos\omega,p\sin\omega)$  માંથી પસાર થાય છે. આથી બિંદુ ઢાળ સ્વરૂપ પરથી રેખા

L નું સમીકરણ

$$y - p \sin \omega = -\frac{\cos \omega}{\sin \omega} (x - p \cos \omega)$$
 એ ટલે કે  $x \cos \omega + y \sin \omega = p(\sin^2 \omega + \cos^2 \omega)$ 

 $\therefore x \cos \omega + y \sin \omega = p.$ 

આમ, ઊગમબિંદુમાંથી રેખા પર દોરેલા લંબની લંબાઈ p હોય અને લંબ એ x-અક્ષની ધન દિશા સાથે  $\omega$  માપનો ખૂણો બનાવે તો રેખાનું સમીકરણ

$$x\cos\omega + y\sin\omega = p \qquad ... (6)$$
 આ સમીકરણને રેખાનું અભિલંબ સ્વરૂપે સમીકરણ કહે છે.

15°

આકૃતિ 10.18

નોંધ :  $x=0,\frac{\pi}{2},\pi,\frac{3\pi}{2}$  હોય તો રેખાનાં સમીકરણ અનુક્રમે x=p,y=p,x=-p,y=-p થાય તે આકૃતિ દોરીને જોઈ શકાય. ઉદાહરણ 11 : ઊગમબિંદુમાંથી રેખા પર દોરેલા લંબનું માપ 4 હોય તથા લંબરેખાખંડ x-અક્ષની ધન દિશા સાથે 15° માપનો ખૂણો બનાવે તો રેખાનું સમીકરણ શોધો.

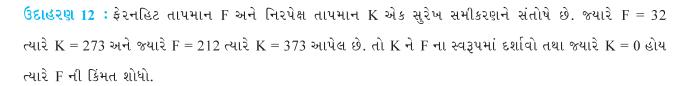
ઉંકેલ : અહીં, p = 4 અને  $\omega = 15^{\circ}$  આપેલ છે. (આકૃતિ 10.18)

હવે, 
$$\cos 15^{\circ} = \frac{\sqrt{3}+1}{2\sqrt{2}}$$
 અને  $\sin 15^{\circ} = \frac{\sqrt{3}-1}{2\sqrt{2}}$  (કેમ ?)

હવે, રેખાના અભિલંબ સ્વરૂપ (6) પરથી, રેખાનું સમીકરણ

$$x \cos 15^{\circ} + y \sin 15^{\circ} = 4$$
 અથવા  $\frac{\sqrt{3} + 1}{2\sqrt{2}}x + \frac{\sqrt{3} - 1}{2\sqrt{2}}y = 4$  અથવા

$$(\sqrt{3}+1)x+(\sqrt{3}-1)y=8\sqrt{2} \quad \text{માંગેલ સમીકરણ છે.}$$



ઉકેલ : ધારો કે F એ x-અક્ષ પર અને K એ y-અક્ષ પર દર્શાવેલ છે. આપણી પાસે બે બિંદુઓ (32, 273) અને (212, 373) એ XY-સમતલમાં છે. તો બિંદુ (F,K) બે બિંદુ સ્વરૂપ સમીકરણનું સમાધાન કરશે.

$$K-273 = \frac{373-273}{212-32} (F-32)$$

$$\therefore K - 273 = \frac{100}{180} (F - 32)$$

$$\therefore K = \frac{5}{9}(F - 32) + 273 \qquad ... (1)$$

આ માંગેલ સંબંધ છે.

હવે, સમીકરણમાં K = 0 લેતાં,

$$0 = \frac{5}{9}(F - 32) + 273$$
 અથવા  $F - 32 = -\frac{273 \times 9}{5} = -491.4$  અથવા  $F = -459.4$ .

બીજી રીત : આપણે જાણીએ છીએ કે રેખાના સમીકરણનું સરળતમ સ્વરૂપ y=mx+c છે. ફરી ધારો કે F, x-અક્ષ

પર અને  $\mathbf{K},\; y$ -અક્ષ પર દર્શાવેલ છે. તો સમીકરણ નીચે દર્શાવેલ સ્વરૂપમાં મળશે :

$$K = mF + c \qquad ... (1)$$

હવે, (32, 273) અને (212, 373) સમીકરણ (1) નું સમાધાન કરશે. તેથી,

$$273 = 32m + c$$
 ... (2)

અને 
$$373 = 212m + c$$
 ... (3)

સમીકરણો (2) અને (3), ઉકેલતાં,

$$m = \frac{5}{9}$$
 અને  $c = \frac{2297}{9}$  મળશે.

(1) માં m અને c ની કિંમતો મૂકતાં,

$$K = \frac{5}{9} F + \frac{2297}{9} \qquad \dots (4)$$

માંગેલ સંબંધ છે. (4) માં K = 0 લેતાં, F = -459.4 મળશે.

આપણે જાણીએ છીએ કે સમીકરણ y=mx+c માં અચળો m અને c આવેલા છે. આ બે અચળો શોધવા આ રેખાના સમીકરણ દ્વારા જેનું સમાધાન થતું હોય તેવી બે શરતોની જરૂર પડે. ઉપરનાં બધાં જ ઉદાહરણોમાં રેખાનું સમીકરણ શોધવા બે શરતો આપેલી છે.

#### સ્વાધ્યાય 10.2

પ્રશ્નો 1 થી 8 માં આપેલી શરતોનું સમાધાન કરે તેવી રેખાનું સમીકરણ મેળવો :

- 1. x-અક્ષ અને y-અક્ષનાં સમીકરણો મેળવો.
- 2. (-4, 3) બિંદુમાંથી પસાર થતી અને જેનો ઢાળ  $\frac{1}{2}$  હોય.
- **3.** (0,0) માંથી પસાર થતી અને m ઢાળવાળી.
- 4.  $(2, 2\sqrt{3})$  માંથી પસાર થતી અને જેનો x-અક્ષ સાથે ઝોક  $75^{\circ}$  હોય.
- 5. x-અક્ષને ઊગમબિંદુથી 3 એકમના અંતરે ડાબી બાજુએ છેદતી અને જેનો ઢાળ -2 હોય.
- 6. y-અક્ષને ઊગમબિંદુની ઉપર 2 એકમ અંતરે છેદતી અને x-અક્ષની ધન દિશા સાથે  $30^\circ$ ના માપનો ખૂણો બનાવતી.
- 7. (-1, 1) અને (2, -4) બિંદુઓમાંથી પસાર થતી.
- 8. ઊગમબિંદુમાંથી રેખા પર દોરેલા લંબનું માપ 5 હોય તથા લંબરેખાખંડ x-અક્ષની ધન દિશા સાથે  $30^\circ$  માપનો ખૂણો બનાવે.
- 9.  $\Delta$  PQR નાં શિરોબિંદુઓ P (2, 1), Q (-2, 3) અને R (4, 5) હોય, તો શિરોબિંદુ R માંથી દોરેલ મધ્યગાનું સમીકરણ મેળવો.
- 10. (2, 5) અને (-3, 6) બિંદુઓમાંથી પસાર થતી રેખાને લંબ અને (-3, 5) બિંદુમાંથી પસાર થતી રેખાનું સમીકરણ મેળવો.

- 11. (1,0) અને (2,3) ને જોડતા રેખાખંડને લંબ અને તેનું 1:n ગુણોત્તરમાં વિભાજન કરતી રેખાનું સમીકરણ શોધો.
- 12. (2, 3) બિંદુમાંથી પસાર થતી અને યામાક્ષો પર સમાન અંતઃખંડો કાપતી રેખાનું સમીકરણ શોધો.
- 13. જેના અક્ષો પરના અંતઃખંડોનો સરવાળો 9 હોય અને જે બિંદુ (2, 2)માંથી પસાર થતી હોય તેવી રેખાનું સમીકરણ શોધો.
- 14. (0, 2) માંથી પસાર થતી અને x-અક્ષની ધન દિશા સાથે  $\frac{2\pi}{3}$  માપનો ખૂણો બનાવતી રેખાનું સમીકરણ મેળવો તથા તે રેખાને સમાંતર હોય અને y-અક્ષને ઊગમબિંદુથી નીચે 2 એકમ અંતરે છેદતી હોય તેવી રેખાનું સમીકરણ પણ મેળવો.
- 15. ઊગમબિંદુમાંથી રેખા પર દોરેલા લંબનો લંબપાદ (–2, 9) હોય, તો તે રેખાનું સમીકરણ મેળવો.
- 16. તાંબાના તારની લંબાઈ L (સેમીમાં) અને તેના સેલ્સિયસ તાપમાન C વચ્ચે સુરેખ સંબંધ છે. એક પ્રયોગમાં જ્યારે L=124.942 હોય ત્યારે C=20 અને જ્યારે L=125.134 હોય ત્યારે C=110, છે. તો L અને C વચ્ચેનો સુરેખ સંબંધ મેળવો.
- 17. એક દૂધના વેચાણકેન્દ્રનો માલિક પ્રત્યેક અઠવાડિયે 980 લિટર દૂધ ₹ 14 પ્રતિ લિટર અને 1220 લિટર દૂધ ₹ 16 પ્રતિ લિટર વેચે છે. હવે દૂધની વેચાણકિંમત અને માંગ વચ્ચે સુરેખ સંબંધ છે તેમ માની લઈએ તો તે પ્રત્યેક અઠવાડિયે
  ₹ 17 પ્રતિ લિટરના ભાવે કેટલા લિટર દૂધ વેચી શકે ?
- **18.** અક્ષો વચ્ચે બનતા રેખાખંડનું મધ્યબિંદુ P (a, b) હોય, તો તે રેખાનું સમીકરણ  $\frac{x}{a} + \frac{y}{b} = 2$  છે તેમ બતાવો.
- 19. બિંદુ R(h,k), જે રેખાના અક્ષો વચ્ચે બનતા રેખાખંડનું બિંદુ 1:2 ના ગુણોત્તરમાં વિભાજન કરે તે રેખાનું સમીકરણ શોધો.
- **20.** રેખાના સમીકરણની સંકલ્પનાનો ઉપયોગ કરી સાબિત કરો કે  $(3,0),\ (-2,-2)$  અને (8,2) સમરેખ છે.

## 10.4 રેખાનું વ્યાપક સમીકરણ (General Equation of a Line)

આગળના વર્ગોમાં આપણે બે ચલવાળા એકઘાતી સમીકરણ Ax + By + C = 0 નો અભ્યાસ કર્યો છે. જ્યાં A, B અને C એવા વાસ્તવિક અચળ છે કે જેથી A અને B એકીસાથે શૂન્ય ન થાય તેવા સમીકરણ Ax + By + C = 0 નો આલેખ હંમેશાં રેખા દર્શાવે છે. તેથી જ્યારે A અને B એક સાથે શૂન્ય ન હોય ત્યારે Ax + By + C = 0 પ્રકારના કોઈ પણ સમીકરણને વ્યાપક સુરેખ સમીકરણ કે રેખાનું વ્યાપક સમીકરણ કહે છે.

## 10.4.1 Ax + By + C = 0 નાં વિવિધ સ્વરૂપ

રેખાના વ્યાપક સમીકરણને નીચે દર્શાવેલી પ્રક્રિયાઓ દ્વારા વિવિધ સ્વરૂપમાં ફેરવી શકાય છે :

(a) ઢાળ-અંત:ખંડ સ્વરૂપ : જો  $B \neq 0$ , હોય તો Ax + By + C = 0 ને નીચે પ્રમાણે લખી શકાય.

$$y = -\frac{A}{B}x - \frac{C}{B}$$
 અથવા  $y = mx + c$  ... (1)

અહી,

$$m = -\frac{A}{B}$$
 ਅਜੇ  $c = -\frac{C}{B}$ .

આપણે જાણીએ છીએ કે સમીકરણ (1) રેખાનું ઢાળ-અંતઃખંડ સ્વરૂપનું સમીકરણ છે. તેમાં ઢાળ  $-\frac{A}{B}$  અને y-અંતઃખંડ  $-\frac{C}{B}$  છે.

જો 
$$\mathbf{B}=0$$
, તો  $x=-\frac{\mathbf{C}}{\mathbf{A}}$ . આ શિરોલંબ રેખા છે અને તેને ઢાળ નથી અને  $x$  - અંત:ખંડ  $-\frac{\mathbf{C}}{\mathbf{A}}$  છે.

(b) અંતઃખંડ સ્વરૂપ : જો  $\mathbf{A} \neq \mathbf{0}$ ,  $\mathbf{B} \neq \mathbf{0}$  અને  $\mathbf{C} \neq \mathbf{0}$ , હોય તો  $\mathbf{A}x + \mathbf{B}y + \mathbf{C} = \mathbf{0}$  ને નીચે પ્રમાણે લખી શકાય :

$$\frac{x}{-\frac{C}{A}} + \frac{y}{-\frac{C}{B}} = 1 \quad \text{અથવા} \quad \frac{x}{a} + \frac{y}{b} = 1 \qquad \dots (2)$$

અહી, 
$$a = -\frac{C}{A}$$
 અને  $b = -\frac{C}{B}$ .

આપણે જાણીએ છીએ કે સમીકરણ (2) રેખાનું અંતઃખંડ સ્વરૂપનું રેખાનું સમીકરણ છે.

અહીં, 
$$x$$
-અંતઃખંડ =  $-\frac{C}{A}$  અને  $y$ -અંતઃખંડ =  $-\frac{C}{B}$  .

હવે, જો C = 0, હોય તો Ax + By + C = 0 ને નીચે પ્રમાણે લખી શકાય :

Ax + By = 0. આ ઊગમબિંદુમાંથી પસાર થતી રેખા દર્શાવે છે. તેના અક્ષો પરના અંત:ખંડો શૂન્ય છે.

જો  $\mathbf{B} = \mathbf{0}$  તો  $\mathbf{A} \neq \mathbf{0}$ .  $\mathbf{A} x + \mathbf{C} = \mathbf{0}$  એ  $\mathbf{C} \neq \mathbf{0}$  માટે શિરોલંબ રેખા દર્શાવે છે તથા તેનો x - અંતઃખંડ  $\underline{\mathbf{C}}$ . જો  $\mathbf{C} = \mathbf{0}$  તો તે ઊગમબિંદુમાંથી પસાર થાય છે.

જો A=0 તો  $B \neq 0$ , By+C=0 સમક્ષિતિજ રેખા છે.

 $C \neq 0$  માટે તેનો v – અંતઃખંડ  $-\frac{C}{B}$  છે તથા C = 0 હોય, તો તે ઊગમબિંદુમાંથી પસાર થાય છે.

### (c) અભિલંબ સ્વરૂપ:

ધારો કે Ax + By + C = 0 અથવા Ax + By = -C દ્વારા દર્શાવાતી રેખાનું લંબ સ્વરૂપ  $x \cos \omega + y \sin \omega = p$  છે. આમ, બંને એક જ રેખાનાં સમીકરણો છે અને તે સમાન છે.

$$\therefore \frac{A}{\cos \omega} = \frac{B}{\sin \omega} = -\frac{C}{p}$$

$$\therefore \cos \omega = -\frac{Ap}{C} \approx 4\hat{A} \sin \omega = -\frac{Bp}{C}$$

હવે, 
$$\sin^2 \omega + \cos^2 \omega = \left(-\frac{Ap}{C}\right)^2 + \left(-\frac{Bp}{C}\right)^2 = 1$$

અથવા 
$$p^2 = \frac{C^2}{A^2 + B^2}$$
 અથવા  $p = \pm \frac{C}{\sqrt{A^2 + B^2}}$ 

$$\therefore \cos\omega = \mp \frac{A}{\sqrt{A^2 + B^2}} \text{ with } \sin\omega = \mp \frac{B}{\sqrt{A^2 + B^2}}$$

આમ, સમીકરણ Ax + By + C = 0 નું લંબ સ્વરૂપ,

$$x \cos \omega + y \sin \omega = p$$

$$\text{Fig.} \cos \omega = \mp \frac{A}{\sqrt{A^2 + B^2}}, \quad \sin \omega = \mp \frac{B}{\sqrt{A^2 + B^2}} \quad \text{Fig.} \quad p = \pm \frac{C}{\sqrt{A^2 + B^2}}.$$

p ની કિંમત ધન રહે તે રીતે ચિક્ષની પસંદગી કરવી.

ઉદાહરણ 13 : જો રેખાનું સમીકરણ 3x - 4y + 10 = 0 હોય તો તેનો (i) ઢાળ અને (ii) x-અંતઃખંડ અને y-અંતઃખંડ શોધો.

ઉકેલ : (i)અહીં આપેલ સમીકરણ 3x - 4y + 10 = 0 ને

$$y = \frac{3}{4}x + \frac{5}{2} \tag{1}$$

સ્વરૂપમાં લખી શકાય. હવે સમીકરણ (1) ને y = mx + c, સાથે સરખાવતાં ઢાળ  $m = \frac{3}{4}$  મળે.

(ii) સમીકરણ 3x - 4y + 10 = 0 ને

$$3x-4y=-10$$
 અથવા  $\frac{x}{-\frac{10}{3}} + \frac{y}{\frac{5}{2}} = 1$  ... (2)

સ્વરૂપે લખી શકાય. હવે સમીકરણ (2) ને  $\frac{x}{a} + \frac{y}{b} = 1$  સાથે સરખાવતાં x-અંતઃખંડ  $a = -\frac{10}{3}$  અને y-અંતઃખંડ  $b = \frac{5}{2}$  મળે.

**ઉદાહરણ 14** : રેખા  $\sqrt{3}x+y-8=0$  સમીકરણનું અભિલંબ સ્વરૂપમાં રૂપાંતર કરો. તે પરથી p અને  $\omega$  ની કિંમત શોધો.

ઉકેલ: આપેલ રેખાનું સમીકરણ છે,

$$\sqrt{3}x + y - 8 = 0$$
 ... (1)

(1) ને 
$$\sqrt{(\sqrt{3})^2 + (1)^2} = 2$$
 વડે ભાગતાં, આપણને

$$\frac{\sqrt{3}}{2}x + \frac{1}{2}y = 4 \quad \text{અથવા } x \cos 30^\circ + y \sin 30^\circ = 4 \quad \text{મળે}. \tag{2}$$

સમીકરણ (2) ને  $x\cos\omega+y\sin\omega=p$  સાથે સરખાવતાં p=4 અને  $\omega=30^\circ$  મળે.

**ઉદાહરણ 15** : રેખાઓ  $y-\sqrt{3}x-5=0$  અને  $\sqrt{3}y-x+6=0$  વચ્ચેના ખૂણાનું માપ શોધો.

ઉકેલ: 
$$y - \sqrt{3}x - 5 = 0$$
 અથવા  $y = \sqrt{3}x + 5$  ... (1)

અને 
$$\sqrt{3}y - x + 6 = 0$$
 અથવા  $y = \frac{1}{\sqrt{3}}x - 2\sqrt{3}$  ... (2) આપેલી રેખાઓ છે.

રેખા (1) નો ઢાળ  $m_1 = \sqrt{3}$  અને રેખા (2) નો ઢાળ  $m_2 = \frac{1}{\sqrt{3}}$  .

જો બે રેખાઓ વચ્ચેના લઘુકોણનું માપ  $\theta$  હોય, તો

$$tan \theta = \left| \frac{m_2 - m_1}{1 + m_1 m_2} \right| \qquad ... (3)$$

 $m_{1}$ અને  $m_{2}$  ની કિંમતો (3) માં મૂકતાં,

$$\tan \theta = \left| \begin{array}{c} \frac{1}{\sqrt{3}} - \sqrt{3} \\ 1 + \sqrt{3} \times \frac{1}{\sqrt{3}} \end{array} \right| = \left| \begin{array}{c} 1 - 3 \\ 2\sqrt{3} \end{array} \right| = \frac{1}{\sqrt{3}} \text{ qv}.$$

તેથી,  $\theta = 30^\circ$ .

આમ, બે રેખાઓ વચ્ચેના ખૂશાનું માપ  $30^\circ$  અથવા  $180^\circ - 30^\circ = 150^\circ$ .

ઉદાહરણ 16 : સાબિત કરો કે  $b_1,b_2\neq 0$  માટે રેખાઓ  $a_1x+b_1y+c_1=0$  અને  $a_2x+b_2y+c_2=0$  દ્વારા દર્શાવેલ હોય અને (i) રેખાઓ સમાંતર હોય તો  $\frac{a_1}{b_1}=\frac{a_2}{b_2}$  અને (ii) રેખાઓ પરસ્પર લંબ હોય તો  $a_1a_2+b_1b_2=0$ .

ઉકેલ: આપેલી રેખાઓ,

$$y = -\frac{a_1}{b_1}x - \frac{c_1}{b_1}$$
 ... (1)

અને

$$y = -\frac{a_2}{b_2}x - \frac{c_2}{b_2}$$
 ... (2)

રેખાઓ (1) અને (2) ના ઢાળ અનુક્રમે  $m_1^{}=-\frac{a_1}{b_1}$  અને  $m_2^{}=-\frac{a_2}{b_2}$  છે. હવે

(i) રેખાઓ સમાંતર હોય તો  $m_1 = m_2$ ,

$$\therefore \ -\frac{a_1}{b_1} = -\frac{a_2}{b_2} \ \text{અથવા} \ \frac{a_1}{b_1} = \frac{a_2}{b_2}.$$

(ii) રેખાઓ પરસ્પર લંબ હોય તો  $m_1 \cdot m_2 = -1$ 

$$\therefore \frac{a_1}{b_1} \cdot \frac{a_2}{b_2} = -1 \text{ we all } a_1 a_2 + b_1 b_2 = 0$$

ઉદાહરણ 17: રેખા x-2y+3=0 ને લંબ અને (1,-2) બિંદુમાંથી પસાર થતી રેખાનું સમીકરણ શોધો.

ઉંકેલ : x - 2y + 3 = 0 આપેલ રેખા છે. તેને નીચે પ્રમાણે લખી શકાય :

$$y = \frac{1}{2}x + \frac{3}{2}$$
 ...(1)

રેખા (1) નો ઢાળ  $m_1=\frac{1}{2}$  છે. તેથી રેખા (1) ને લંબરેખાનો ઢાળ  $m_2=-\frac{1}{m_1}=-2$  થાય.

જેનો ઢાળ -2 હોય અને જે (1,-2) માંથી પસાર થતી હોય તેવી રેખાનું સમીકરણ

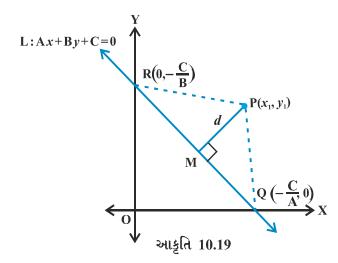
$$y - (-2) = -2(x-1)$$
 એટલે કે  $y = -2x$  માંગેલ સમીકરણ છે.

## 10.5 બિંદુથી રેખાનું લંબઅંતર

બિંદુથી રેખાનું અંતર એટલે બિંદુમાંથી રેખા પર દોરેલા લંબની લંબાઈ. ધારો કે L:Ax+By+C=0 એક રેખા છે. તેનું બિંદુ  $P\left(x_1,y_1\right)$  થી અંતર d છે. બિંદુ P માંથી રેખા L પર લંબ રેખાખંડ PM દોરો. (આકૃતિ 10.19)

રેખા x -અક્ષ અને y -અક્ષ ને અનુક્રમે  $\mathbf Q$  અને  $\mathbf R$  માં છેદે

છે. તે બિંદુઓના યામ 
$$Q\left(-\frac{C}{A},\ 0\right)$$
અને  $R\left(0,\ -\frac{C}{B}\right)$  થશે. હવે ત્રિકોણ PQR નું ક્ષેત્રફળ બે રીતે મેળવી શકાય :



# Downloaded from https://www.studiestoday.com

216 ગણિત : ધોરણ 11

$$\Delta PQR + \frac{1}{2} \hat{R} \hat{R} + \frac{1}{2} PM \cdot QR, \quad \hat{R} = \frac{2 \left( \Delta PQR + \frac{1}{2} \hat{R} + \frac{1}{2} \hat$$

તથા 
$$\Delta PQR$$
નું ક્ષેત્રફળ  $=\frac{1}{2}\left|x_1\left(0+\frac{C}{B}\right)+\left(-\frac{C}{A}\right)\left(-\frac{C}{B}-y_1\right)+0\left(y_1-0\right)\right|$  
$$=\frac{1}{2}\left|x_1\frac{C}{B}+y_1\frac{C}{A}+\frac{C^2}{AB}\right|$$

$$\therefore 2(\Delta PQR - ig) \hat{a}$$
 સંત્રફળ) =  $\left| \frac{C}{AB} \right|$ .  $\left| Ax_1 + By_1 + C \right|$ , અને

$$QR = \sqrt{\left(0 + \frac{C}{A}\right)^2 + \left(\frac{C}{B} - 0\right)^2} = \left|\frac{C}{AB}\right| \sqrt{A^2 + B^2}$$

 $\Delta PQR$ નું ક્ષેત્રફળ અને QRની કિંમત (1) માં મૂકતાં,

$$PM = \frac{\left| Ax_1 + By_1 + C \right|}{\sqrt{A^2 + B^2}}$$

અથવા 
$$d = \frac{\left| Ax_1 + By_1 + C \right|}{\sqrt{A^2 + B^2}}$$
.

આમ, રેખા  $\mathbf{A}x+\mathbf{B}y+\mathbf{C}=\mathbf{0}$  નું બિંદુ  $(x_{_{\! 1}},y_{_{\! 1}})$  થી લંબઅંતર

$$d = \frac{\left| Ax_1 + By_1 + C \right|}{\sqrt{A^2 + B^2}}.$$

## 10.5.1 બે સમાંતર રેખાઓ વચ્ચેનું લંબઅંતર

આપણે જાણીએ છીએ કે બે સમાંતર રેખાઓના ઢાળ સમાન હોય છે. તેથી બે સમાંતર રેખાઓ આ પ્રકારે લખી શકાય છે.

$$y = mx + c_1 \qquad \dots (1)$$

અને 
$$y = mx + c_2 \tag{2}$$

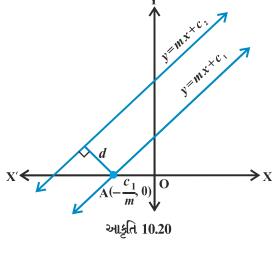
રેખા (1) x-અક્ષને બિંદુ  $A\left(-\frac{c_1}{m}, 0\right)$ માં છેદે છે. આકૃતિ 10.20 માં

બે રેખાઓ વચ્ચેનું અંતર એટલે બિંદુ A માંથી રેખા (2) પર દોરેલા લંબની લંબાઈ. આમ, રેખા (1) અને (2) વચ્ચેનું લંબઅંતર

$$\frac{\left| \left(-m\right)\left(-\frac{c_1}{m}\right) + \left(-c_2\right) \right|}{\sqrt{1+m^2}} \quad \text{અથવા} \quad d = \frac{\left| c_1 - c_2 \right|}{\sqrt{1+m^2}} \text{ છે.}$$

આમ, બે સમાંતર રેખાઓ  $y=mx+c_1$ અને  $y=mx+c_2$  વચ્ચેનું અંતર

$$d = \frac{\left| c_1 - c_2 \right|}{\sqrt{1 + m^2}} \ .$$



હવે જો રેખાઓ વ્યાપક સ્વરૂપમાં અર્થાત્  $Ax + By + C_1 = 0$  અને  $Ax + By + C_2 = 0$  તરીકે આપેલ હોય, તો ઉપર દર્શાવેલ

સૂત્ર 
$$d = \frac{\left| \begin{array}{c} \mathbf{C}_1 - \mathbf{C}_2 \end{array} \right|}{\sqrt{\mathbf{A}^2 + \mathbf{B}^2}}$$
 રૂપ લે છે.

વિદ્યાર્થીઓ સ્વપ્રયત્ને આ મેળવી શકે છે.

નોંધ : રેખાઓ શિરોલંબ હોય તો ?

ઉદાહરણ 18 : બિંદુ (3, -5) થી રેખા 3x - 4y - 26 = 0 નું લંબઅંતર શોધો.

ઉકેલ : 3x - 4y - 26 = 0 આપેલ રેખા છે.

... (1)

(1) ને રેખાના વ્યાપક સમીકરણ Ax + By + C = 0 સાથે સરખાવતાં,

$$A = 3$$
,  $B = -4$  અને  $C = -26$  મળે.

આપેલ બિંદુ  $(x_1, y_1) = (3, -5)$  છે. આમ, આપેલ બિંદુથી રેખાનું અંતર

$$d = \frac{\left| Ax_1 + By_1 + C \right|}{\sqrt{A^2 + B^2}} = \frac{\left| 3 \cdot 3 + (-4)(-5) - 26 \right|}{\sqrt{3^2 + (-4)^2}} = \frac{3}{5}.$$

ઉદાહરણ 19: સમાંતર રેખાઓ 3x - 4y + 7 = 0 અને 3x - 4y + 5 = 0 વચ્ચેનું અંતર મેળવો.

ઉંકેલ : અહીં A = 3, B = -4,  $C_1 = 7$  અને  $C_2 = 5$ . તેથી માંગેલ અંતર

$$d = \frac{|7-5|}{\sqrt{3^2 + (-4)^2}} = \frac{2}{5}.$$

#### स्वाध्याय 10.3

- **1**. નીચે આપેલ સમીકરણોને ઢાળ- અંતઃખંડ સ્વરૂપમાં દર્શાવો અને તેમના ઢાળ અને y અંતઃખંડ શોધો.
  - (i) x + 7y = 0
- (ii) 6x + 3y 5 = 0
- (iii) y = 0
- 2. નીચે આપેલ સમીકરણોને અંતઃખંડ સ્વરૂપમાં દર્શાવો અને તેમના દ્વારા અક્ષો પર કપાતા અંતઃખંડો શોધો.
  - (i) 3x + 2y 12 = 0 (ii) 4x 3y = 6
- (iii) 3y + 2 = 0
- 3. નીચે આપેલાં સમીકરણોને અભિલંબ સ્વરૂપમાં દર્શાવો અને ઊગમબિંદુમાંથી દોરેલા લંબની લંબાઈ અને લંબ દ્વારા x-અક્ષની ધન દિશા સાથે બનતા ખૂણાનું માપ શોધો :
  - (i)  $x \sqrt{3}y + 8 = 0$  (ii) y 2 = 0
- (iii) x y = 4
- 4. બિંદુ (-1, 1) નું રેખા 12(x+6) = 5(y-2) થી અંતર શોધો.
- **5.** x-અક્ષ પરનું કયું બિંદુ  $\frac{x}{3} + \frac{y}{4} = 1$  રેખાથી 4 એકમ અંતરે આવેલ છે ?
- નીચેની સમાંતર રેખાઓ વચ્ચેનું અંતર શોધો :
  - (i) 15x + 8y 34 = 0 અને 15x + 8y + 31 = 0 (ii) l(x+y) + p = 0 અને l(x+y) r = 0
- 7. બિંદુ (-2, 3)માંથી પસાર થતી અને 3x-4y+2=0 ને સમાંતર રેખાનું સમીકરણ શોધો.
- 8. રેખા x 7y + 5 = 0 ને લંબ અને જેનો x-અંતઃખંડ 3 હોય તેવી રેખાનું સમીકરણ શોધો.

- 9. રેખાઓ  $\sqrt{3}x + y = 1$  અને  $x + \sqrt{3}y = 1$  વચ્ચેના ખૂશાનું માપ શોધો.
- 10. બિંદુઓ (h,3) અને (4,1) માંથી પસાર થતી રેખા અને રેખા 7x-9y-19=0 એકબીજાને કાટખૂણે છેદે, તો h શોધો.
- 11. સાબતિ કરો કે બંદુ  $(x_1, y_1)$  માંથી પસાર થતી અને Ax + By + C = 0 ને સમાંતર રેખાનું સમીકરણ  $A(x x_1) + B(y y_1) = 0 \ \Theta.$
- 12. બે રેખાઓ (2, 3) બિંદુમાંથી પસાર થતી હોય અને તેમની વચ્ચેના ખૂશાનું માપ 60° હોય તથા તે પૈકીની એક રેખાનો ઢાળ 2 હોય, તો બીજી રેખાનું સમીકરણ શોધો.
- 13. જેનાં અંત્યબિંદુઓ (3, 4) અને (–1, 2) હોય તેવા રેખાખંડના લંબદ્ધિભાજકનું સમીકરણ શોધો.
- **14.** બિંદુ (-1, 3)માંથી રેખા 3x 4y 16 = 0 પર દોરેલા લંબનો લંબપાદ શોધો.
- **15.** ઊગમબિંદુમાંથી રેખા y = mx + c પર દોરેલા લંબનો લંબપાદ (-1, 2) હોય, તો m અને c શોધો.
- 16. રેખાઓ  $x\cos\theta y\sin\theta = k\cos 2\theta$  અને  $x\sec\theta + y\csc\theta = k$  નાં ઊગમબિંદુથી લંબઅંતર અનુક્રમે p અને q હોય, તો સાબિત કરો કે  $p^2 + 4q^2 = k^2$ .
- 17. A (2, 3), B (4, -1) અને C (1, 2) એ  $\Delta$  ABCનાં શિરોબિંદુઓ છે.  $\Delta$  ABCના શિરોબિંદુ Aમાંથી દોરેલા વેધની લંબાઈ અને તેનું સમીકરણ શોધો.
- 18. જે રેખાના અક્ષો પરના અંતઃખંડો a અને b હોય તેવી રેખા પર ઊગમબિંદુમાંથી દોરેલા લંબની લંબાઈ p હોય, તો સાબિત કરો કે  $\dfrac{1}{p^2}=\dfrac{1}{a^2}+\dfrac{1}{b^2}.$

## 10.6 બે રેખાઓના છેદબિંદુમાંથી પસાર થતી રેખા-સંહતિનું સમીકરણ

બે છેદતી રેખાઓ  $l_{\scriptscriptstyle 1}$  અને  $l_{\scriptscriptstyle 2}$ 

$$A_1 x + B_1 y + C_1 = 0 ag{1}$$

અને 
$$A_2 x + B_2 y + C_2 = 0$$
 (2) આપેલ છે.

સમીકરણ (1) અને (2) પરથી આપણે એક સમીકરણ,

$$A_1 x + B_1 y + C_1 + k (A_2 x + B_2 y + C_2) = 0$$
 (3) મેળવીએ.

અહીં k સ્વૈર અચળ છે અને તેને પ્રચલ કહીશું. k ની કોઈ પણ કિંમત માટે સમીકરણ (3) એ x અને y માં એક ઘાતવાળું સમીકરણ મળશે. તેથી તે એક રેખા-સંહતિ રજૂ કરે છે. આ સમીકરણ આપેલ બે રેખાઓના છેદબિંદુમાંથી પસાર થતી રેખાસંહતિ દર્શાવે છે તેમ આપણે સ્વીકારી લઇશું. વળી બે રેખાઓના છેદબિંદુમાંથી પસાર થતી કોઇપણ રેખા આ સંહતિનો સભ્ય છે જ તે પણ સ્વીકારી લઇશું. k ની કોઈક કિંમત પરથી આ સંહતિનો ચોક્કસ સભ્ય મળે છે. k ની આ કિંમત બીજી શરતો પરથી મેળવી શકાય છે.

ઉદાહરણ 20: રેખાઓ x-7y+5=0 અને 3x+y-7=0 ના છેદબિંદુમાંથી પસાર થતી અને y-અક્ષને સમાંતર રેખાનું સમીકરણ શોધો.

ઉકેલ : આપેલી રેખાઓના છેદબિંદુમાંથી પસાર થતી કોઈ પણ રેખાનું સમીકરણ

$$x-7y+5+k(3x+y-7)=0$$

એટલે કે 
$$(1+3k) x + (k-7) y + 5 - 7k = 0$$
 (1)

જો આ રેખા y-અક્ષને સમાંતર હોય, તો y નો સહગુણક શૂન્ય થશે. એટલે કે,

$$k - 7 = 0$$
 આથી,  $k = 7$ .

સમીકરણ (1) માં k નું મૂલ્ય મૂકતાં,

22x - 44 = 0, એટલે કે x - 2 = 0 માંગેલું સમીકરણ મળે છે.

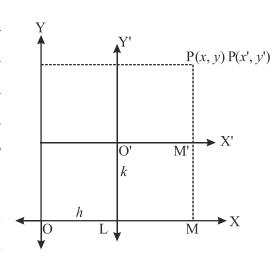
#### સ્વાધ્યાય 10.4

- 1. રેખાઓ 3x + 4y = 7 અને x y + 2 = 0 ના છેદબિંદુમાંથી પસાર થતી અને 5 ઢાળવાળી રેખાનું સમીકરણ મેળવો.
- 2. રેખા 5x + 4y 20 = 0 ને સમાંતર અને રેખાઓ x + 2y 3 = 0 અને 4x y + 7 = 0 ના છેદબિંદુમાંથી પસાર થતી રેખાનું સમીકરણ મેળવો.
- 3. રેખાઓ 2x + 3y 4 = 0 અને x 5y = 7 ના છેદબિંદુમાંથી પસાર થતી તથા જેનો x-અંતઃખંડ -4 હોય તેવી રેખાનું સમીકરણ શોધો.
- 4. રેખાઓ 5x 3y = 1 અને 2x + 3y 23 = 0 ના છેદબિંદુમાંથી પસાર થતી તથા 5x 3y 1 = 0 ને લંબરેખાનું સમીકરણ મેળવો.

### 10.7 ઊગમબિંદુનું સ્થાનાંતર

પ્રચલિત યામાક્ષ-પદ્ધતિના સંદર્ભમાં બિંદુઓના ગણને અનુરૂપ સમીકરણને કોઈ જ ભૌમિતિક ગુણધર્મ બદલાય નહિ તે રીતે બીજી કોઈ યામ-પદ્ધતિના બિંદુઓનો ગણ લઈ સરળ બનાવી શકાય. ઊગમબિંદુનું નવા બિંદુએ સ્થાનાંતર કરી મૂળ અક્ષોને સમાંતર નવા અક્ષોમાં તેમને પરિવર્તિત કરવા તે એક આવું પરિવર્તન છે. આ પદ્ધતિના પરિવર્તનને અક્ષોનું સ્થાનાંતર (translation of axes) કહે છે.

અક્ષોના સ્થાનાંતરથી સમતલના દરેક બિંદુના યામ બદલાય છે. બિંદુઓના જૂના અને નવા યામ વચ્ચેનો સંબંધ જાણીને આપણે વિશ્લેષણાત્મક પ્રશ્નોના સંબંધ વિશેની પદ્ધતિના સંદર્ભમાં અભ્યાસ કરી શકીએ.



આકૃતિ 10.21

પરિવર્તિત અક્ષોને લીધે સમતલના બિંદુના યામ કેવી રીતે બદલાય

છે તે જાણવા માટે આપણે અક્ષો OX અને OY ના સંદર્ભમાં એક બિંદુ P(x,y) લઈએ. ધારો કે OX અને OY ને સમાંતર નવા અક્ષો અનુક્રમે O'X' અને O'Y' છે. O' એ નવું ઊગમબિંદુ છે. જૂના અક્ષોના સંદર્ભમાં O' ના યામ (h,k) છે, એટલે કે OL=h અને LO'=k. વળી, OM=x અને MP=y (જુઓ આકૃતિ 10.21.)

ધારો કે નવા અક્ષો O' X' અને O' Y' ના સંદર્ભમાં બિંદુ P ના x-યામ(કોટિ)(abscissa) અને y-યામ(ભુજ) (ordinates)અનુક્રમે આકૃતિ 10.21 માં O' M' = x' અને M'P = y' છે.

$$OM = OL + LM$$
, એટલે કે,  $x = h + x'$ 

અને 
$$MP = MM' + M'P$$
, એટલે કે,  $y = k + y'$ 

આથી, 
$$x = x' + h, y = y' + k$$

આ સૂત્રો જૂના અને નવા યામ વચ્ચેનો સંબંધ આપે છે.

ઉદાહરણ 21 : જો ઊગમબિંદુનું (1, 2) બિંદુએ સ્થાનાંતર કરવામાં આવે, તો બિંદુ (3, -4) ના નવા યામ શોધો.

ઉકેલ : નવા ઊગમબિંદુના યામ h=1, k=2, અને આપેલા બિંદુના મૂળ યામ x=3, y=-4.

જૂના યામ (x, y) અને નવા યામ (x', y') વચ્ચેનો પરિવર્તન સંબંધ,

$$x = x' + h$$
 એટલે કે,  $x' = x - h$ 

અને 
$$y = y' + k$$
 એટલે કે,  $y' = y - k$ 

આપેલ કિંમતો મૂકતાં,

$$x' = 3 - 1 = 2$$
 અને  $y' = -4 - 2 = -6$ 

આથી નવી પદ્ધતિમાં બિંદુ (3, -4) ના યામ (2, -6) થાય.

ઉદાહરણ 22 : ઊગમબિંદુનું (3,-1) બિંદુએ સ્થાનાંતર કરી તે પ્રમાણે અક્ષોનું સ્થાનાંતર કરતાં રેખા 2x-3y+5=0 નું પરિવર્તિત સમીકરણ શોધો.

ઉકેલ : ધારો કે P ના યામ (x, y) બદલાઈને નવા અક્ષોમાં (x', y') થાય છે. ઊગમબિંદુના જૂના યામ h=3 અને k=-1 છે. આથી, આપણે પરિવર્તન સૂત્રો x = x' + 3 અને y = y' - 1 લખીશું. રેખાના આપેલા સમીકરણમાં આ મૂલ્યો મૂકતાં,

$$2(x'+3)-3(y'-1)+5=0$$

2x' - 3y' + 14 = 0 મળે. અથવા

આથી, નવી પદ્ધતિમાં રેખાનું સમીકરણ 2x - 3y + 14 = 0 થશે.

### સ્વાધ્યાય 10.5

- જો ઊગમબિંદુનું (–3, –2) પર સ્થાનાંતર કરવામાં આવે, તો અક્ષોના સ્થાનાંતરના કારણે નીચે આપેલાં બિંદુઓના નવા 1. યામ શોધો ઃ
  - (i) (1, 1)
- (ii) (0, 1)
- (iii) (5, 0)
- (iv) (-1, -2)
- (v)(3,-5)
- ઊગમબિંદુનું સ્થાનાંતર (1, 1) બિંદુએ કરતાં નીચેના સમીકરણનું પરિવર્તિત સ્વરૂપ શું થશે તે શોધો :
  - (i)  $x^2 + xy 3y^2 y + 2 = 0$  (ii)  $xy y^2 x + y = 0$
  - (iii) xy x y + 1 = 0

#### પ્રકીર્ણ ઉદાહરણો

ઉદાહરણ 23 : જો રેખાઓ 2x+y-3=0, 5x+ky-3=0 અને 3x-y-2=0 સંગામી હોય, તો k ની કિંમત શોધો.

ઉક્રેલ ઃ ત્રણ રેખાઓ અનન્ય બિંદુમાં છેદે, તો તેમને સંગામી રેખાઓ કહે છે. એટલે કે બે રેખાઓનું છેદબિંદુ ત્રીજી રેખા પર હોવું જોઈએ. અહીં, આપેલી રેખાઓ

$$5x + ky - 3 = 0$$
 ... (2)

$$3x - y - 2 = 0$$
 ... (3)

સમીકરણ (1) અને (3) ને ચોકડી ગુણાકારની રીતે ઉકેલતાં

$$\frac{x}{-2-3} = \frac{y}{-9+4} = \frac{1}{-2-3}$$
 અથવા  $x = 1, y = 1$ 

આમ, બે રેખાઓનું છેદબિંદુ (1,1) છે. અહીં ત્રણ રેખાઓ સંગામી હોવાથી બિંદુ (1,1) એ સમીકરણ (2)નું સમાધાન કરશે. તેથી  $5\cdot 1 + k\cdot 1 - 3 = 0$  એટલે કે k = -2.

ઉદાહરણ 24:x-અક્ષની ધન દિશા સાથે  $135^\circ$ ના માપનો ખૂણો બનાવતી રેખાને સાપેક્ષે બિંદુ P(4,1) નું રેખા 4x-y=0 થી અંતર શોધો.

ઉકેલ : 
$$4x - y = 0$$
 આપેલ રેખા છે. ... (1)

રેખા (1) નું બિંદુ P (4, 1) થી અંતર બીજી રેખાને સાપેક્ષ શોધવા પ્રથમ આપશે બે રેખાનું છેદબિંદુ શોધવું પડશે. તે માટે આપશે પહેલાં બીજી રેખાનું સમીકરણ શોધવું પડશે. (આકૃતિ 10.22) બીજી રેખાનો ઢાળ  $tan\ 135^\circ = -1$ . હવે -1 ઢાળવાળી અને P(4, 1) માંથી પસાર થતી રેખાનું સમીકરણ

$$y-1=-1$$
  $(x-4)$  એટલે કે  $x+y-5=0$  ... (2)

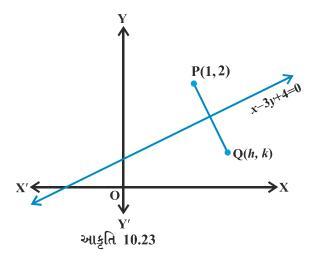
સમીકરણ (1) અને (2) ને ઉકેલતાં, x=1 અને y=4 મળે. આમ, બે રેખાઓનું છેદબિંદુ Q (1, 4) થશે. હવે, રેખા (1)નું બિંદુ P (4, 1)થી રેખા (2)ને સાપેક્ષ અંતર = બિંદુઓ P(4, 1) અને Q(1, 4) વચ્ચેનું અંતર

$$=\sqrt{(1-4)^2+(4-1)^2}=3\sqrt{2} \text{ wish}$$

<mark>ઉદાહરણ 25</mark> : આપણે એવી કલ્પના કરીએ કે એક રેખા એક સાદા અરીસાની જેમ કામ કરતી હોય, તો બિંદુ (1, 2) નું રેખા x-3y+4=0 ને સાપેક્ષ પ્રતિબિંબ શોધો.

222

ઉકેલ : ધારો કે x-3y+4=0 ને સાપેક્ષ બિંદુ P (1,2) નું પ્રતિબિંબ Q (h,k) છે. માટે રેખા x-3y+4=0 એ રેખાખંડ PQ નો લંબદ્વિભાજક છે. (આકૃતિ 10.23 )



આમ, રેખા PQ નો ઢાળ =  $\frac{-1}{$ રેખા x-3y+4=0 નો ઢાળ

$$\frac{k-2}{h-1} = \frac{-1}{\frac{1}{3}} \quad \text{અથવા } 3h+k=5$$
 ... (2)

અને PQ નું મધ્યબિંદુ 
$$\left(\frac{h+1}{2},\frac{k+2}{2}\right)$$
 રેખા (1) પર છે. તેથી, 
$$\frac{h+1}{2}-3\left(\frac{k+2}{2}\right)+4=0 \quad \text{એટલે કે, } h-3k=-3 \qquad \dots (3)$$

(2) અને (3) ને ઉકેલતાં,  $h = \frac{6}{5}$  અને  $k = \frac{7}{5}$ .

આમ, બિંદુ (1,2) નું રેખા (1) ને સાપેક્ષ પ્રતિબિંબ  $\left(\frac{6}{5}, \frac{7}{5}\right)$  છે.

ઉદાહરણ  $\mathbf{26}$  : સાબિત કરો કે રેખાઓ  $y=m_1x+c_1, y=m_2x+c_2$  અને x=0 વડે રચાતા ત્રિકોણનું ક્ષેત્રફળ

$$\frac{\left(c_1-c_2\right)^2}{2|m_1-m_2|} \,\,\dot{\Theta}.$$

ઉકેલ: આપેલ રેખાઓ

$$y = m_1 x + c_1$$
 ... (1)

$$y = m_2 x + c_2$$
 ... (2)

$$x = 0$$
 ... (3)

# Downloaded from https://www.studiestoday.com

રેખાઓ 223

 $(0, c_2)$ 

 $(0, c_1)$ 

R

આકૃતિ 10.24

આપણે જાણીએ છીએ કે રેખા y=mx+c એ રેખા x=0 (y-અક્ષ) ને (0,c) બિંદુમાં મળે છે. આમ, રેખાઓ (1) અને (3) દ્વારા બનતા ત્રિકોણનાં બે શિરોબિંદુઓ  $P(0,c_1)$  અને  $Q(0,c_2)$  છે. (આકૃતિ 10.24) ત્રીજું શિરોબિંદુ સમીકરણ (1) અને (2) ઉકેલવાથી મળશે.

સમીકરણ (1) અને (2) ને ઉકેલતાં,

$$x = \frac{(c_2 - c_1)}{(m_1 - m_2)}$$
 અને  $y = \frac{(m_1 c_2 - m_2 c_1)}{(m_1 - m_2)}$ 

આથી ત્રિકોણનું ત્રીજું શિરોબિંદુ

$$R\left(\frac{\left(c_{2}-c_{1}\right)}{\left(m_{1}-m_{2}\right)}, \frac{\left(m_{1}c_{2}-m_{2}c_{1}\right)}{\left(m_{1}-m_{2}\right)}\right).$$

હવે, ત્રિકોણનું ક્ષેત્રફળ

$$= \frac{1}{2} \left| 0 \left( \frac{m_1 c_2 - m_2 c_1}{m_1 - m_2} - c_2 \right) + \frac{c_2 - c_1}{m_1 - m_2} (c_2 - c_1) + 0 \left( c_1 - \frac{m_1 c_2 - m_2 c_1}{m_1 - m_2} \right) \right| = \frac{\left( c_2 - c_1 \right)^2}{2 |m_1 - m_2|}$$

ઉદાહરણ 27 : જે રેખા દ્વારા રેખાઓ 5x - y + 4 = 0 તથા 3x + 4y - 4 = 0 ની વચ્ચે બનતા રેખાખંડનું મધ્યબિંદુ (1, 5) હોય, તે રેખાનું સમીકરણ મેળવો.

ઉકેલ: આપેલ રેખાઓ

$$5x - y + 4 = 0$$
 ... (1)

$$3x + 4y - 4 = 0$$
  $\dot{\Theta}$ . ... (2)

ધારો કે માંગેલી રેખા, રેખાઓ (1) અને (2) ને બિંદુઓ અનુક્રમે  $(\alpha_{_1},\,\beta_{_1})$  અને  $(\alpha_{_2},\,\beta_{_2})$  માં છેદે છે. (આકૃતિ 10.25). તેથી

$$5\alpha_1 - \beta_1 + 4 = 0$$
 અને 
$$3 \alpha_2 + 4 \beta_2 - 4 = 0$$

અથવા

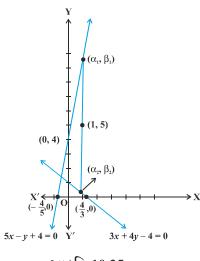
$$\beta_1 = 5\alpha_1 + 4$$
 અને  $\beta_2 = \frac{4 - 3\alpha_2}{4}$ 

અહીં આપેલ છે કે માંગેલ રેખાના  $(\alpha_1,\ \beta_1)$  અને  $(\alpha_2,\ \beta_2)$  ની વચ્ચેના રેખાખંડનું મધ્યબિંદુ (1,5) છે. આથી,

$$\frac{\alpha_1 + \alpha_2}{2} = 1$$
 અને  $\frac{\beta_1 + \beta_2}{2} = 5$ ,

અથવા

$$\alpha_1 + \alpha_2 = 2$$
 અને  $\frac{5\alpha_1 + 4 + \frac{4 - 3\alpha_2}{4}}{2} = 5$ ,



આકૃતિ 10.25

224 ગાંધાત : ધોરણ 11

અથવા 
$$\alpha_1 + \alpha_2 = 2$$
 અને  $20\alpha_1 - 3\alpha_2 = 20$  ... (3)

 $\alpha_1$  અને  $\alpha_2$  માટે (3)નાં સમીકરણો ઉકેલતાં,

$$\alpha_1 = \frac{26}{23}$$
 અને  $\alpha_2 = \frac{20}{23}$  મળશે.

આથી, 
$$\beta_I = 5 \cdot \frac{26}{23} + 4 = \frac{222}{23}$$
.

(1,5) અને  $(\alpha_{_{1}},\beta_{_{1}})$  માંથી પસાર થતી રેખા એ માંગેલી રેખાનું સમીકરણ છે.

$$y-5 = \frac{\beta_1 - 5}{\alpha_1 - 1}(x-1)$$
 where  $y-5 = \frac{\frac{222}{23} - 5}{\frac{26}{23} - 1}(x-1)$ 

અથવા

$$107x - 3y - 92 = 0$$
 માંગેલ રેખા છે.

ઉદાહરણ 28 : રેખાઓ 3x - 2y = 5 અને 3x + 2y = 5 થી સમાન અંતરે આવેલ તમામ બિંદુઓનો પથ એક રેખા છે તેમ બતાવો.

ઉકેલ: 
$$3x - 2y = 5$$
 ... (1)

અને 
$$3x + 2y = 5 \tag{2}$$

આપેલ રેખાઓ છે. ધારો કે (h, k) રેખાઓ (1) અને (2) થી સમાન અંતરે આવેલ બિંદુ છે.

$$\therefore \frac{|3h-2k-5|}{\sqrt{9+4}} = \frac{|3h+2k-5|}{\sqrt{9+4}} \text{ and } |3h-2k-5| = |3h+2k-5|,$$

તેથી 3h-2k-5=3h+2k-5 અથવા -(3h-2k-5)=3h+2k-5.

આ બે સંબંધોને સરળરૂપ આપતાં k=0 અને  $h=\frac{5}{3}$  મળશે. આમ, બિંદુ (h,k) એ સમીકરણો y=0 અથવા  $x=\frac{5}{3}$  ને સંતોષે છે. આ સમીકરણો રેખા દર્શાવે છે. આમ, (1) અને (2) થી સમાન અંતરે આવેલાં બિંદુઓનો પથ રેખા છે.

#### પ્રકીર્ણ સ્વાધ્યાય 10

- 1. k ની કઈ કિંમત માટે રેખા  $(k-3) x (4 k^2) y + k^2 7k + 6 = 0$ 
  - (a) x-અક્ષને સમાંતર થાય.
  - (b) *y*-અક્ષને સમાંતર થાય.
  - (c) ઊગમબિંદુમાંથી પસાર થાય.
  - 2. રેખા  $\sqrt{3} x + y + 2 = 0$  નું અભિલંબ સ્વરૂપ  $x \cos \theta + y \sin \theta = p$  હોય, તો  $\theta$  અને p ની કિંમત શોધો.
- 3. જેના અક્ષો પર રચાતાં અંતઃખંડોનો સરવાળો અને ગુણાકાર અનુક્રમે 1 અને 6 હોય તેવી રેખાનું સમીકરણ શોધો.
- **4.** y-અક્ષ પરનું કયું બિંદુ  $\frac{x}{3} + \frac{y}{4} = 1$  રેખાથી 4 એકમ અંતરે આવેલ છે ?
- 5. બિંદુઓ  $(\cos \theta, \sin \theta)$  અને  $(\cos \phi, \sin \phi)$  માંથી પસાર થતી રેખા પર ઊગમબિંદુમાંથી દોરેલા લંબનું લંબઅંતર શોધો.

6. રેખાઓ x - 7y + 5 = 0 અને 3x + y = 0 ના છેદબિંદુમાંથી પસાર થતી અને y-અક્ષને સમાંતર રેખાનું સમીકરણ મેળવો.

- 7. રેખા  $\frac{x}{4} + \frac{y}{6} = 1$  અને y-અક્ષના છેદબિંદુએ આપેલ રેખાને લંબ તેવી રેખાનું સમીકરણ મેળવો.
- **8.** રેખાઓ y x = 0, x + y = 0 અને x k = 0 થી બનતા ત્રિકોણનું ક્ષેત્રફળ શોધો.
- 9. જો રેખાઓ 3x + y 2 = 0, px + 2y 3 = 0 અને 2x y 3 = 0 એક બંદુમાંથી પસાર થતી હોય તો p શોધો.
- 10. જો રેખાઓ  $y=m_1x+c_1$ ,  $y=m_2x+c_2$  અને  $y=m_3x+c_3$  સંગામી હોય તો સાબિત કરો કે,  $m_1(c_2-c_3)+m_2(c_3-c_1)+m_3(c_1-c_2)=0.$
- 11. બિંદુ (3, 2)માંથી પસાર થતી અને રેખા x 2y = 3 સાથે  $45^{\circ}$  નો ખૂણો બનાવતી રેખાનાં સમીકરણો મેળવો.
- 12. રેખાઓ 4x + 7y 3 = 0 અને 2x 3y + 1 = 0 નાં છેદબિંદુમાંથી પસાર થતી અને અક્ષો પર સમાન અંતઃખંડ બનાવતી રેખાનું સમીકરણ શોધો.
- 13. ઊગમબિંદુમાંથી પસાર થતી અને y=mx+c સાથે  $\theta$  માપનો ખૂશો બનાવતી રેખાનું સમીકરણ  $\frac{y}{x}=\frac{m\pm tan\theta}{1\mp m\ tan\theta}$  છે.
- **14.** (-1, 1) અને (5, 7) ને જોડતી રેખાનું આપેલ રેખા x + y = 4 કયા ગુણોત્તરમાં વિભાજન કરશે ?
- **15.** બિંદુ (1, 2)નું રેખા 4x + 7y + 5 = 0 થી રેખા 2x y = 0 ની દિશામાં અંતર શોધો.
- 16. બિંદુ (-1, 2)માંથી પસાર થતી રેખાની દિશા શોધો કે જેથી તેનું રેખા x + y = 4 સાથેનું છેદબિંદુ (-1, 2)થી 3 એકમ અંતર હોય.
- 17. કાટકોણ ત્રિકોણના કર્ણનાં અત્યંબિંદુઓ (1, 3) અને (– 4, 1) હોય, તો કાટકોણ બનાવતી બાજુઓને સમાવતી રેખાનાં સમીકરણો મેળવો.
- **18.** બિંદુ (3, 8) નું રેખા x + 3y = 7 ને સાપેક્ષ પ્રતિબિંબ મેળવો. અહીં રેખાનો સાદા અરીસા તરીકે વિચાર કરો.
- 19. જો રેખાઓ y = 3x + 1 અને 2y = x + 3, રેખા y = mx + 4 સાથે સમાન માપનો ખૂણો બનાવતી હોય, તો m નું મૂલ્ય શોધો.
- **20.** જો એક ચલ બિંદુ P(x, y) ના રેખાઓ x + y 5 = 0 અને 3x 2y + 7 = 0 થી લંબઅંતરોનો સરવાળો હંમેશાં 10 રહે તો સાબિત કરો કે બિંદુ P નો પથ એક રેખા છે.
- **21.** સમાંતર રેખાઓ 9x + 6y 7 = 0 અને 3x + 2y + 6 = 0 થી સમાન અંતરે આવેલી રેખાનું સમીકરણ મેળવો.
- 22. બિંદુ (1,2) માંથી પસાર થતું પ્રકાશનું એક કિરણ બિંદુ A થી x-અક્ષ પર પરિવર્તિત થાય છે અને પરિવર્તિત કિરણ બિંદુ (5,3) માંથી પસાર થાય છે, તો બિંદુ A ના યામ શોધો.
- 23. સાબતિ કરો કે બંદુઓ  $\left(\sqrt{a^2-b^2},0\right)$  અને  $\left(-\sqrt{a^2-b^2},0\right)$ થી રેખા  $\frac{x}{a}\cos\theta+\frac{y}{b}\sin\theta=1$  નાં લંબઅંતરોનો ગુણાકાર  $b^2$  છે.

24. એક વ્યક્તિ સમીકરણો 2x - 3y + 4 = 0 અને 3x + 4y - 5 = 0 દ્વારા દર્શાવતા સીધા રસ્તાઓના સંગમબિંદુ પર ઊભો છે અને તે સમીકરણ 6x - 7y + 8 = 0 દ્વારા દર્શાવતા સીધા રસ્તા પર ન્યૂનતમ સમયમાં પહોંચવા માંગે છે, તો તે જે માર્ગને અનુસરે તેનું સમીકરણ મેળવો.

#### સારાંશ

- lackજો રેખા x-અક્ષની ધન દિશા સાથે lpha માપનો ખૂણો બનાવે તો તેનો ઢાળ m=tan  $lpha, \ lpha 
  eq 90^\circ.$
- ♦ સમક્ષિતિજ રેખાનો ઢાળ શુન્ય છે અને શિરોલંબ રેખાનો ઢાળ અવ્યાખ્યાયિત નથી.
- lacktriangle રેખાઓ  ${\bf L}_1$  અને  ${\bf L}_2$ ના ઢાળ અનુક્રમે  $m_1$  અને  $m_2$  હોય અને તેમની વચ્ચેના લઘુકોણનું માપ  $m{ heta}$  હોય, તો  $tan \; \theta = \left| \; \frac{m_2 m_1}{1 + m_1 \; m_2} \; \right|, 1 + m_1 \; m_2 \neq 0 \; .$
- ♦ જો બે રેખાઓના ઢાળ સમાન હોય તો અને તો જ તે રેખાઓ પરસ્પર સમાંતર હોય.
- ♦ જો બે રેખાઓના ઢાળનો ગુણાકાર –1 હોય તો અને તો જ તે રેખાઓ પરસ્પર લંબ હોય.
- ♦ બિંદુઓ A, B અને C સમરેખ હોય તો અને તો જ ABનો ઢાળ = BC નો ઢાળ.
- $\diamond$  x-અક્ષથી a એકમ અંતરે આવેલી સમક્ષિતિજ રેખાનાં સમીકરણ y=a અથવા y=-a છે.
- $\diamond$  y-અક્ષથી b એકમ અંતરે આવેલી શિરોલંબ રેખાનાં સમીકરણ x=b અથવા x=-b છે.
- બિંદુ (x, y) એ m ઢાળવાળી અને  $(x_0, y_0)$  બિંદુમાંથી પસાર થતી રેખા પર હોય, તો  $y y_0 = m (x x_0)$ .
- $(x_1, y_1)$  અને  $(x_2, y_2)$  બિંદુમાંથી પસાર થતી રેખાનું સમીકરણ  $y y_1 = \frac{y_2 y_1}{x_2 x_1}(x x_1)$  છે.
- $\bigstar m$  ઢાળવાળી અને જેનો y-અંતઃખંડ c હોય તેવી રેખા પર બિંદુ (x,y) હોય, તો અને તો જ y=mx+c .
- lacktriangle m ઢાળવાળી અને જેનો x-અંતઃખંડ d હોય તેવી રેખાનું સમીકરણ y=m (x-d).
- x-અક્ષ પર a અને y-અક્ષ પર b અંતઃખંડ કાપતી રેખાનું સમીકરણ  $\frac{x}{a} + \frac{y}{b} = 1$  છે.
- lacktriangle ઊગમબિંદુમાંથી રેખા પર દોરેલા લંબની લંબાઈ p હોય અને લંબ એ x-અક્ષની ધન દિશા સાથે lacktriangle માપનો ખૂશો બનાવે તે અભિલંબ સ્વરૂપમાં રેખાનું સમીકરણ  $x cos \omega + y sin \omega = p$  .
- બિંદુ A અને B જયારે એક સાથે શૂન્ય ન હોય ત્યારે Ax + By + C = 0 પ્રકારના કોઈ પણ સમીકરણને વ્યાપક સુરેખ સમીકરણ કે રેખાનું વ્યાપક સમીકરણ કહે છે.
- બિંદુ  $(x_1, y_1)$  થી રેખા Ax + By + C = 0 નું લંબઅંતર  $d = \frac{|Ax_1 + By_1 + C|}{\sqrt{A^2 + B^2}}$ .
- સમાંતર રેખાઓ  $Ax + By + C_1 = 0$  અને  $Ax + By + C_2 = 0$  વચ્ચેનું લંબઅંતર  $d = \frac{\left| C_1 C_2 \right|}{\sqrt{A^2 + B^2}}$ .

# શાંકવો

**❖**Let the relation of knowledge to real life be very visible to your pupils and let them understand how by knowledge the world could be transformed. – BERTRAND RUSSELL ❖

### 11.1 પ્રાસ્તાવિક

આગળના પ્રકરણ 10 માં આપણે રેખાનાં સમીકરણોનાં વિવિધ સ્વરૂપો વિશે અભ્યાસ કર્યો. આ પ્રકરણમાં આપણે કેટલાક વિશેષ વક્કો જેવા કે વર્તુળ, ઉપવલય, પરવલય, અતિવલયનો અભ્યાસ કરીશું. પરવલય અને અતિવલય નામ એપોલોનિયસે આપ્યાં હતાં. આ વક્કો લંબ દ્વિશંકુના સમતલ સાથેના છેદ તરીકે મેળવાતા હોવાથી તે શંકુ પરિચ્છેદ કે શાંકવો તરીકે ઓળખાય છે. આ વક્કોનો ગ્રહોની ગતિ, ટેલિસ્કોપ અને ડિશ એન્ટેનાની રચના, ફ્લેશ લાઇટમાં પરાવર્તક અને વાહનોમાં હેડલાઇટ વગેરે ઘણાં ક્ષેત્રોમાં બહોળો ઉપયોગ થાય છે. હવે આપણે આ પ્રકરણમાં આગળ જોઈશું કે કેવી રીતે લંબ દ્વિશંકુના સમતલ સાથેના છેદથી જુદા જુદા વક્કો મળે છે.



Apollonius (262 B.C. -190 B.C.)

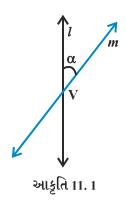
## 11.2 શંકુનો પરિચ્છેદ

ધારો કે એક નિશ્ચિત શિરોલંબ રેખા l છે અને m એ કોઈ અન્ય રેખા છે. તે l ને નિશ્ચિત બિંદુ V માં છેદે છે અને તેમની વચ્ચેના ખૂણાનું માપ  $\alpha$  છે. (આકૃતિ11.1.)

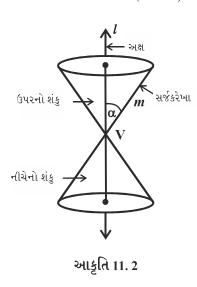
228 ગાંધાત : ધોરણ 11

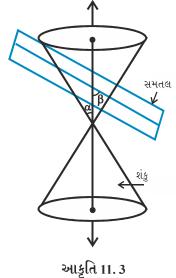
ધારો કે રેખા m ને ખૂશો  $\alpha$  અચળ રહે તે રીતે I આસપાસ પરિભ્રમણ આપવામાં આવે છે. આ રીતે સર્જાતી સપાટીને દ્વિફ્લકી લંબવૃત્તીય પોલો શંકુ કહેવાય છે અને આપણે તેનો સંદર્ભ શંકુ તરીકે લઇશું. આથી,આવા શંકુનો વ્યાપ બંને દિશામાં અનંત હોય છે. (આકૃતિ11.2.)

બિંદુ V ને શંકુનું *શિરોબિંદુ* (vertex) કહે છે. રેખા I ને શંકુનો અક્ષ (axis) કહે છે અને રેખા m ને તેની કોઈ પણ સ્થિતિમાં શંકુની સર્જક રેખા (generator) કહે છે. શિરોબિંદુ શંકુને બે ભાગમાં વિભાજીત કરે અને તે પ્રત્યેક ભાગને  $\mathbf{$}$ ક્લક (nappes) કહે છે.



હવે આપણે શંકુનો કોઈ સમતલ સાથે છેદ લઈએ તો, આવા છેદને શંકુનો *પરિચ્છેદ* (section) કહે છે. આમ, લંબશંકુના સમતલ સાથેના છેદથી મળતા વક્રોને *શાંકવો* (conics) કહે છે.





જ્યારે શંકુનો સમતલ સાથે છેદ લઈએ ત્યારે, સમતલે શંકુના અક્ષ સાથે બનાવેલ ખૂણાના આધારે આપણને જુદા જુદા શાંકવો મળશે. ધારો કે, સમતલ શંકુના શિરોલંબ અક્ષ સાથે β માપનો ખૂણો રચે છે. (આકૃતિ 11.3.)

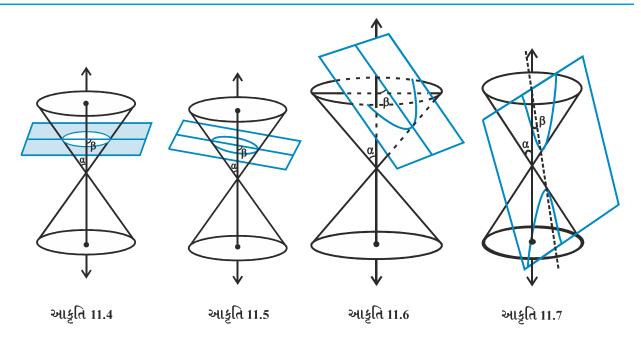
આમ શંકુનો સમતલ સાથેનો છેદ કાં તો શિરોબિંદુ બને અથવા શંકુના શિરોબિંદુથી ઉપરના અથવા નીચેના ફ્લકમાં મળેઃ

## 11.2.1 વર્તુળ, ઉપવલય, પરવલય અને અતિવલય (Circle, Ellipse, Parabola and Hyperbola)

જ્યારે સમતલ શંકુના ફલકને (શિરોબિંદુ સિવાય) છેદે છે, ત્યારે નીચેની સ્થિતિઓ થશેઃ

- (a) જયારે  $\beta = 90^{\circ}$ , ત્યારે તેમનો છેદ વર્તુળ થશે. (આકૃતિ 11.4.)
- (b) જ્યારે  $\alpha < \beta < 90^\circ$ , ત્યારે તેમનો છેદ ઉપવલય થશે. (આકૃતિ 11.5.)
- (c) જ્યારે  $\beta = \alpha$ ; ત્યારે તેમનો છેદ પરવલય થશે. (આકૃતિ 11.6.)

શાંકવો 229



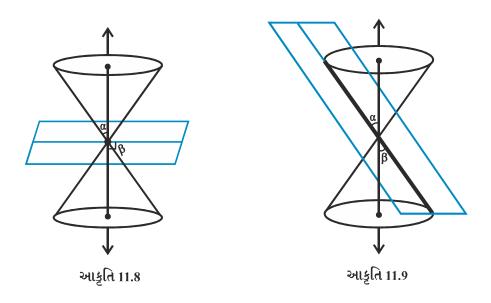
ઉપરની ત્રણે સ્થિતિઓમાં સમતલ શંકુના એક ફલકને પૂર્ણ રીતે આરપાર કાપે છે.

(d) જ્યારે  $0 \le \beta < \alpha$  ત્યારે સમતલ શંકુના બંને ફલકને છેદે છે અને તેમનો છેદ અતિવલય છે. (આકૃતિ 11.7)

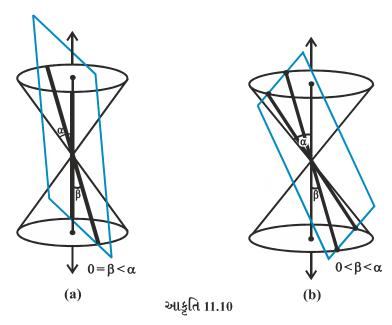
### 11.2.2 વિસર્જિત શંકુ પરિચ્છેદ (Degenerated conic section)

જ્યારે સમતલ શંકુને શિરોબિંદુએ છેદે ત્યારે નીચેની સ્થિતિઓ થશેઃ

- (a) જ્યારે  $\alpha < \beta \le 90^\circ$ , ત્યારે તેમનો છેદ એ બિંદુ થશે. (આકૃતિ11.8.)
- (b) જ્યારે  $\beta = \alpha$ , ત્યારે સમતલ શાંકુની સર્જકરેખાને સમાવશે અને તેમનો છેદ એ રેખા થશે. (આકૃતિ 11.9.) તે પરવલયનું વિસર્જિત રૂપ છે.
- (c) જ્યારે  $0 \le \beta < \alpha$ , ત્યારે તેમનો છેદ પરસ્પર છેદતી રેખાઓ થશે. (આકૃતિ11.10.) તે અતિવલયનું વિસર્જિત રૂપ છે.



230 ગાંધાત : ધોરણ 11



હવે, આપણે આગળના વિભાગોમાં ભૌતિક ગુણધર્મોને આધારે બધા જ શાંકવોનાં પ્રમાણિત સમીકરણો મેળવીશું.

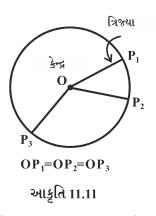
## 11.3 વર્તુળ

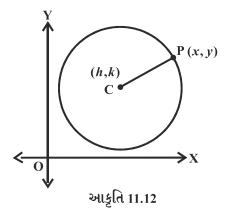
<u>વ્યાખ્યા 1 ઃ</u> સમતલના ચોક્કસ બિંદુથી સમાન અંતરે આવેલાં તમામ બિંદુઓના ગણને વર્તુળ કહેવાય છે.

ચોક્કસ બિંદુને તે વર્તુળનું *કેન્દ્ર (centre)* અને કેન્દ્રથી વર્તુળ પર આવેલા કોઈપણ બિંદુના અંતરને *વર્તુળની ત્રિજ્યા* (radius) કહેવાય છે. (આકૃતિ 11.11)

હવે જો વર્તુળનું કેન્દ્ર ઊગમબિંદુ હોય, તો આપણને વર્તુળનું સમીકરણ સરળતમ સ્વરૂપમાં મળે. કેન્દ્ર અને ત્રિજ્યા આપેલ હોય તેવા વર્તુળનું સમીકરણ નીચે પ્રમાણે મેળવીએ. (આકૃતિ 11.12.)

ધારો કે બિંદુ  $C\left(h,k\right)$  વર્તુળનું કેન્દ્ર અને r ત્રિજ્યા છે. P(x,y) વર્તુળ પરનું કોઈપણ બિંદુ છે. (આકૃતિ 11.12)





હવે, વ્યાખ્યા પ્રમાણે CP = r. અંતરસૂત્ર પ્રમાણે,

$$\sqrt{(x-h)^2 + (y-k)^2} = r$$
 તેથી 
$$(x-h)^2 + (y-k)^2 = r^2$$

આથી ઉલટું પણ સત્ય છે.

આ (h,k) કેન્દ્ર અને r ત્રિજ્યાવાળા વર્તુળનું સમીકરણ છે.

# Downloaded from https://www.studiestoday.com

શાંકવો 231

 $\mathfrak{G}$ દાહરણ  $\mathbf{1}$ : કેન્દ્ર (0,0) અને r ત્રિજ્યાવાળા વર્તુળનું સમીકરણ મેળવો.

ઉકેલ : અહીં h = k = 0 લેતાં વર્તુળનું સમીકરણ  $x^2 + y^2 = r^2$  મળે છે.

ઉદાહરણ 2 : કેન્દ્ર (–3, 2) અને 4 ત્રિજ્યાવાળા વર્તુળનું સમીકરણ શોધો.

ઉકેલ : અહીં h=-3, k=2 અને r=4. તેથી માંગેલ વર્ત્તળનું સમીકરણ

$$(x + 3)^2 + (y - 2)^2 = 16$$

ઉદાહરણ 3: વર્તુળ  $x^2 + y^2 + 8x + 10y - 8 = 0$  નું કેન્દ્ર અને ત્રિજ્યા શોધો.

ઉકેલ : અહીં આપેલ સમીકરણ

$$(x^2 + 8x) + (y^2 + 10y) = 8 \ \Theta.$$

હવે, પૂર્ણવર્ગ તરીકે દર્શાવવા પદોનું પુનર્ગઠન કરતાં,

$$(x^2 + 8x + 16) + (y^2 + 10y + 25) = 8 + 16 + 25$$

$$\therefore (x+4)^2 + (y+5)^2 = 49$$

$$\therefore (x - (-4))^2 + (y - (-5))^2 = 7^2$$

આથી, આપેલ વર્તુળનું કેન્દ્ર (– 4, –5) અને ત્રિજ્યા 7 થશે.

ઉદાહરણ 4: જેનું કેન્દ્ર રેખા x+y=2 ઉપર હોય અને જે (2,-2) અને (3,4) માંથી પસાર થતું હોય તેવા વર્તુળનું સમીકરણ શોધો.

ઉકેલ : ધારો કે  $(x-h)^2 + (y-k)^2 = r^2$  માંગેલ વર્તુળનું સમીકરણ છે.

હવે, વર્તુળ (2, -2) અને (3,4) માંથી પસાર થાય છે.

$$\text{di}, \quad (2-h)^2 + (-2-k)^2 = r^2$$
 ... (1)

અને 
$$(3-h)^2 + (4-k)^2 = r^2$$
 ... (2)

વળી, વર્ત્ળનું કેન્દ્ર રેખા x + y = 2 ઉપર આવેલું છે.

$$h + k = 2$$
 ... (3)

સમીકરણો (1), (2) અને (3) ને ઉકેલતાં, h = 0.7, k = 1.3 અને  $r^2 = 12.58$ 

તેથી, માંગેલ સમીકરણ  $(x - 0.7)^2 + (y - 1.3)^2 = 12.58$ .

### સ્વાધ્યાય 11.1

નીચેના પ્રશ્નો 1 થી 5 પૈકી પ્રત્યેકમાં વર્તુળનું સમીકરણ મેળવોઃ

- 1. કેન્દ્ર (0,2) અને 2 ત્રિજ્યાવાળા
- **2.** કેન્દ્ર (–2,3) અને 4 ત્રિજ્યાવાળા
- 3. કેન્દ્ર  $\left(\frac{1}{2}, \frac{1}{4}\right)$  અને  $\frac{1}{12}$ ત્રિજયાવાળા 4. કેન્દ્ર (1,1) અને  $\sqrt{2}$  ત્રિજયાવાળા
- **5.** કેન્દ્ર (-a, -b) અને  $\sqrt{a^2 b^2}$  ત્રિજ્યાવાળા

નીચેના પ્રશ્નો 6 થી 9 પૈકી પ્રત્યેકમાં વર્તુળનું કેન્દ્ર અને ત્રિજ્યા શોધોઃ

- **6.**  $(x+5)^2 + (y-3)^2 = 36$
- 7.  $x^2 + y^2 4x 8y 45 = 0$
- 8.  $x^2 + y^2 8x + 10y 12 = 0$
- 9.  $2x^2 + 2y^2 x = 0$
- 10. જેનું કેન્દ્ર રેખા 4x + y = 16 ઉપર હોય તથા જે (4,1) અને (6,5) માંથી પસાર થતું હોય તેવા વર્તુળનું સમીકરણ મેળવો.
- 11. જેનું કેન્દ્ર રેખા x 3y 11 = 0 ઉપર હોય તથા જે (2,3) અને (-1,1) માંથી પસાર થતું હોય તેવા વર્તુળનું સમીકરણ મેળવો.
- 12. જેનું કેન્દ્ર x-અક્ષ પર હોય અને જે (2,3) માંથી પસાર થતું હોય અને જેની ત્રિજ્યા 5 હોય એવા વર્તુળનું સમીકરણ શોધો.
- **13.** ઊગમબિંદુમાંથી પસાર થતાં અને અક્ષો પર અંતઃખંડ a અને b બનાવતા વર્તુળનું સમીકરણ મેળવો.
- 14. કેન્દ્ર(2, 2) વાળા અને બિંદુ (4, 5)માંથી પસાર થતા વર્તુળનું સમીકરણ મેળવો.
- 15. બિંદુ (-2.5, 3.5) એ વર્તુળ  $x^2 + y^2 = 25$  ની અંદર, બહાર કે ઉપર છે તે નક્કી કરો.

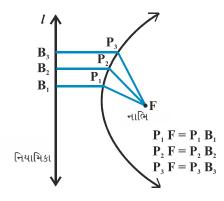
#### 11.4 પરવલય

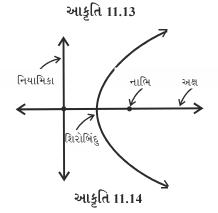
<mark>વ્યાખ્યા 2 :</mark> કોઈ નિશ્ચિત રેખા અને નિશ્ચિત બિંદુથી (રેખા પર ન હોય તેવા) સમાન અંતરે આવેલાં સમતલનાં તમામ બિંદુઓના ગણને **પરવલય** (parabola) કહે છે.

નિશ્ચિત રેખા I ને પરવલયની *નિયામિકા* (directrix) અને નિશ્ચિત બિંદુ F ને પરવલયનું **નાભિ** (Focus) કહે છે (આકૃતિ 11.13). (અહીં 'Para' નો અર્થ **માટે** (For) અને 'bola' નો અર્થ *ફેકવું* (throwing) એવો થાય છે. એટલે કે દડાને હવામાં ફેંકવામાં આવે ત્યારે તેનો ગતિમાર્ગ).

ુનોંધ જો નિશ્ચિત બિંદુ એ નિશ્ચિત રેખા પર હોય તો, કોઈ નિશ્ચિત રેખા અને નિશ્ચિત બિંદુથી સમાન અંતરે આવેલાં સમતલનાં તમામ બિંદુઓનો ગણ નિશ્ચિત બિંદુમાંથી પસાર થતી રેખા થશે અને તે નિશ્ચિત રેખાને લંબ હશે. આ રેખા પરવલયનું વિસર્જિત રૂપ છે

નાભિમાંથી પસાર થતી અને નિયામિકાને **લંબ રેખાને પરવલયનો અક્ષ** કહેવાય છે. પરવલય અને તેના અક્ષનું છેદબિંદુ પરવલયનું *શિરોબિંદુ (vertex)* કહેવાય છે. (આકૃતિ 11.14)

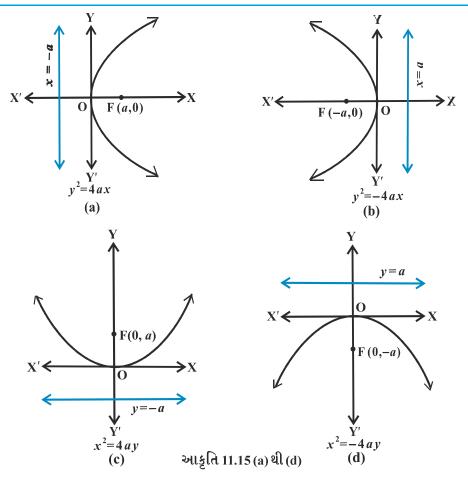




## 11.4.1 પરવલયનું પ્રમાણિત સમીકરણ

જો પરવલયનું શિરોબિંદુ ઊગમબિંદુ હોય અને તે x-અક્ષ કે y-અક્ષ પ્રત્યે સંમિત હોય તો આપણને પરવલયનું સરળતમ સમીકરણ મળે છે. પરવલયોની આવી ચાર શક્ય સ્થાન આકૃતિઓ આકૃતિ 11.15 (a) થી (d)માં દર્શાવેલ છે.

શાંકવો 233



હવે, આપણે આકૃતિ 11.15 (a) માં દર્શાવેલ પરવલયનું સમીકરણ નીચે દર્શાવેલી રીતે મેળવીશું: અહીં નાભિ  $(a,\ 0)$  a>0; અને નિયામિકા x=-a છે.

ધારો કે F નાભિ અને I નિયામિકા છે. નિયામિકા પર લંબ FM દોરો અને FM ના મધ્યબિંદુને O લો. OM ને X સુધી લંબાવો. પરવલયની વ્યાખ્યા પ્રમાણે મધ્યબિંદુ O પરવલય પર થશે અને તેને પરવલયનું શિરોબિંદુ કહેવાય છે. O ને ઊગમબિંદુ તરીકે લઈ OX ને x-અક્ષ અને તેને લંબરેખા OY ને y-અક્ષ તરીકે લઈએ. નાભિથી નિયામિકા સુધીનું અંતર 2a લેતાં, નાભિના યામ (a,0) અને નિયામિકાનું સમીકરણ x+a=0 થશે. આ માહિતી આકૃતિ 11.16 માં દર્શાવેલ છે.

ધારો કે, P(x, y) પરવલય પરનું કોઈ બિંદુ છે. તેથી PF = PB થાય. PB એ રેખા I પર લંબ છે. B ના યામ (-a, y) થશે. અંતરસૂત્ર પ્રમાણે,

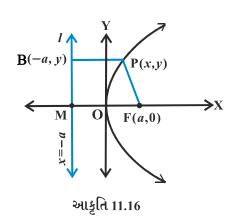
$$PF = \sqrt{(x-a)^2 + y^2}$$
 અને  $PB = \sqrt{(x+a)^2}$ 

હવે આપણે જાણીએ છીએ કે PF = PB

$$\therefore \sqrt{(x-a)^2 + y^2} = \sqrt{(x+a)^2}$$

$$(x-a)^2 + y^2 = (x+a)^2$$

અથવા 
$$x^2 - 2ax + a^2 + y^2 = x^2 + 2ax + a^2$$



અથવા  $y^2 = 4ax$  (a > 0) ...(2)

આમ, પરવલય પરનું કોઇપણ બિંદુ  $y^2 = 4ax$  નું સમાધાન કરે.

આથી ઊલટું, ધારો કે P(x, y) સમીકરણ (2) નું સમાધાન કરે છે.

PF = 
$$\sqrt{(x-a)^2 + y^2}$$
 =  $\sqrt{(x-a)^2 + 4ax}$  =  $\sqrt{(x+a)^2}$  = PB ...(3)

એટલે કે બિંદુ P(x,y) પરવલય પર હોય.

આમ, સમીકરણ (2) અને (3) પરથી સાબિત થાય છે કે જે પરવલયનું શિરોબિંદુ ઊગમબિંદુ હોય, નાભિ (a,0) હોય અને નિયામિકાનું સમીકરણ x=-a હોય તે પરવલયનું સમીકરણ  $y^2=4ax$  છે.

ચર્ચા : સમીકરણ (2) માં a > 0 હોવાથી, x નું મૂલ્ય કોઈ પણ ધન સંખ્યા કે શૂન્ય હોઈ શકે, પરંતુ ઋણ ન હોઈ શકે. આ પરિસ્થિતિમાં પરવલયનો વ્યાપ પ્રથમ અને ચતુર્થ ચરણમાં અનંત સુધી લંબાવી શકાય. પરવલયનો અક્ષ ધન x-અક્ષ થાય.

આ જ પ્રમાણે આપણે અન્ય પરવલયોનાં સમીકરણો મેળવી શકીએ.

આકૃતિ 11.15 (b) માં  $y^2 = -4ax$ ,

આકૃતિ 11.15 (c) માં  $x^2 = 4ay$ ,

આકૃતિ 11.15 (d) માં  $x^2 = -4ay$ ,

આ ચારેય સમીકરણોને પરવલયનાં પ્રમાણિત સમીકરણો કહે છે.

⇒નોંધ પરવલયના પ્રમાણિત સમીકરણમાં, પરવલયનું નાભિ કોઈ એક અક્ષ પર હોય છે, શિરોબિંદુ ઊગમબિંદુ હોય છે અને નિયામિકા બીજા અક્ષને સમાંતર હોય છે. અહીં, એવા પરવલય કે જેમાં નાભિ કોઈપણ બિંદુ હોય અને નિયામિકા કોઈ પણ રેખા હોય તેમનો અભ્યાસ આ પુસ્તકના વિષયવસ્તુની બહાર છે.

આકૃતિ 11.15 માં દર્શાવેલ પરવલયના પ્રમાણિત સમીકરણ ઉપરથી નીચેનાં તારણો મેળવી શકાયઃ

- 1. પરવલય, તેના અક્ષ પ્રત્યે સંમિત હોય છે. જો સમીકરણમાં  $y^2$  વાળું પદ હોય તો, તે x-અક્ષ પ્રત્યે સંમિત હોય છે અને જો સમીકરણમાં  $x^2$  વાળું પદ હોય તો તે y-અક્ષ પ્રત્યે સંમિત હોય છે.
- 2. જો પરવલયનો અક્ષ x-અક્ષ પ્રત્યે સંમિત હોય, તો
  - (a) જો x નો સહગુણક ધન હોય, તો પરવલય જમણી બાજુ ખુલ્લો વક છે.
  - (b) જો x નો સહગુણક ઋણ હોય, તો પરવલય ડાબી બાજુ ખુલ્લો વક્ક છે.
- 3. જો પરવલયનો અક્ષ, y-અક્ષ પ્રત્યે સંમિત હોય, તો
  - (c) જો y નો સહગુણક ધન હોય, તો પરવલય ઉપરની બાજુ ખુલ્લો વક્ક છે.
  - (d) જો y નો સહગુણક ઋણ હોય, તો પરવલય નીચેની બાજુ ખુલ્લો વક છે.

### 11.4.2 પરવલયનો નાભિલંબ :

**વ્યાખ્યા 3** : પરવલયના નાભિમાંથી પસાર થતો અને પરવલયના અક્ષને લંબ હોય તથા જેનાં અંત્યબિંદુઓ પરવલય પર હોય તેવા રેખાખંડને પરવલયનો **નાભિલંબ** કહે છે.(આકૃતિ 11.17.)

# Downloaded from https:// www.studiestoday.com

શાંકવો 235

પરવલય  $y^2 = 4ax$  ના નાભિલંબની લંબાઇ શોધવી છે. (આકૃતિ 11.18)

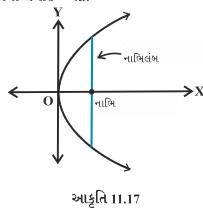
પરવલયની વ્યાખ્યા પ્રમાણે, AF = AC.

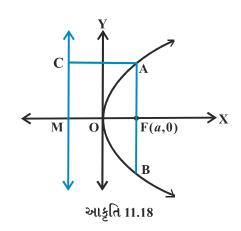
પરંતુ 
$$AC = FM = 2a$$

તેથી 
$$AF = 2a$$
.

અને પરવલય x-અક્ષ પ્રત્યે સંમિત હોવાથી AF = FB અને તેથી

AB = +ાભિલંબની લંબાઈ = 4a.

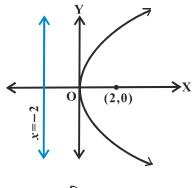




ઉદાહરણ 5: પરવલય  $y^2 = 8x$  ના નાભિના યામ, અક્ષ, નિયામિકાનું સમીકરણ અને નાભિલંબની લંબાઈ શોધો.

ઉકેલ : આપેલ સમીકરણમાં  $y^2$  વાળું પદ હોવાથી આ પરવલય x-અક્ષ પ્રત્યે સંમિત થશે. વળી, સમીકરણમાં x નો સહગુણક ધન હોવાથી પરવલય જમણી બાજુ ખૂલશે. આપેલ સમીકરણને  $y^2=4ax$ , સાથે સરખાવતાં a=2 મળે. તેનો અક્ષ x-અક્ષ છે.

આથી પરવલયના નાભિના યામ (2, 0) થશે. નિયામિકાનું સમીકરણ x = -2 થશે. (આકૃતિ 11.19)



આકૃતિ 11.19

નાભિલંબની લંબાઈ  $4a = 4 \times 2 = 8$ .

ઉદાહરણ 6: જેનું નાભિ (2,0) હોય તથા નિયામિકા x=-2 હોય તેવા પરવલયનું સમીકરણ મેળવો.

ઉકેલ : નાભિ (2,0) x-અક્ષ પર આવેલ છે. તેથી પરવલયનો અક્ષ એ x-અક્ષ છે. આથી, પરવલયનું પ્રમાણિત સમીકરણ  $y^2=4ax$  અથવા  $y^2=-4ax$  થશે. અહીં, નિયામિકાનું સમીકરણ x=-2 અને નાભિ (2,0) હોવાથી, પરવલય a=2 માટે  $y^2=4ax$  પ્રકારનો થશે અને આથી માંગેલ પરવલયનું સમીકરણ  $y^2=4(2)x=8x$ .

ઉદાહરણ 7: જેનું શિરોબિંદુ ઊગમબિંદુ (0, 0) હોય અને નાભિના યામ (0, 2) હોય તેવા પરવલયનું સમીકરણ મેળવો.

ઉકેલ : અહીં, શિરોબિંદુ (0,0) છે અને નાભિના યામ (0,2) છે. નાભિ y-અક્ષ પર છે. તેથી y-અક્ષ એ પરવલયનો અક્ષ થશે. આથી નાભિ ધન y-અક્ષ પર હોવાથી પરવલયનું સમીકરણ  $x^2=4ay$  સ્વરૂપનું હોય. આમ, માંગેલ સમીકરણ

$$x^2 = 4(2)y$$
, એટલે કે,  $x^2 = 8y$  છે.

# Downloaded from https://www.studiestoday.com

ગણિત : ધોરણ 11

ઉદાહરણ 8:y-અક્ષ પ્રત્યે સંમિત અને શિરોબિંદુ ઊગમબિંદુ હોય તેવા અને બિંદુ (2,-3) માંથી પસારથતા પરવલયનું સમીકરણ મેળવો. ઉકેલ: પરવલય y-અક્ષ પ્રત્યે સંમિત છે તેમજ શિરોબિંદુ ઊગમબિંદુ છે. આથી આપેલ પરવલયનું સમીકરણ  $x^2=4ay$  અથવા  $x^2=-4ay$  થાય. અહીં ચિક્ષ પરવલય ઉપર કે નીચે ખૂલશે તેના પર આધાર રાખે છે. પરંતુ પરવલય ચોથા ચરણમાં આવેલ બિંદુ (2,-3)માંથી પસાર થાય છે. તેથી પરવલય નીચેની તરફ ખૂલશે. આમ, પરવલયનું સમીકરણ  $x^2=-4ay$  પ્રકારનું હોય.

વળી, પરવલય (2,-3) માંથી પસાર થાય છે.

તેથી 
$$2^2 = -4a$$
 (-3), એટલે કે,  $a = \frac{1}{3}$ 

આથી પરવલયનું સમીકરણ

$$x^2 = -4\left(\frac{1}{3}\right)y$$
, એટલે કે,  $3x^2 = -4y$ 

#### સ્વાધ્યાય 11.2

નીચેના પ્રશ્ન-ક્રમાંક 1 થી 6 માટે નાભિના યામ, પરવલયના અક્ષનું સમીકરણ, નિયામિકાનું સમીકરણ અને નાભિલંબની લંબાઈ શોધોઃ

- 1.  $y^2 = 12x$
- 2.  $x^2 = 6y$
- 3.  $y^2 = -8x$
- 4.  $x^2 = -16y$

- 5.  $v^2 = 10x$
- 6.  $x^2 = -9y$

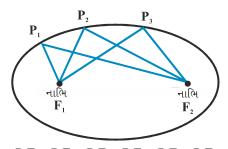
નીચેના પ્રશ્ન-ક્રમાંક 7 થી 12 માં આપેલી શરતો પ્રમાણે પરવલયનું સમીકરણ મેળવો.

- 7. નાભિ (6, 0); નિયામિકા x = -6
- 8. નાભિ (0, -3); નિયામિકા y = 3
- 9. શિરોબિંદુ (0,0); નાભિ (3,0)
- 10. શિરોબિંદુ (0, 0); નાભિ (-2, 0)
- **11.** શિરોબિંદુ (0,0), (2,3)માંથી પસાર થતા અને x-અક્ષ જેનો અક્ષ હોય.
- 12. શિરોબિંદુ (0,0), (5,2)માંથી પસાર થતા અને y-અક્ષ પ્રત્યે સંમિત.

#### 11. 5 ઉપવલય

વ્યાખ્યા 4: ઉપવલય એટલે જેનાં સમતલમાંના કોઈ બે નિશ્ચિત બિંદુઓથી અંતરનો સરવાળો અચળ હોય એવાં બિંદુઓનો ગણ છે. આ બે નિશ્ચિત બિંદુઓને **ઉપવલયનાં** નાભિઓ કહે છે. (આકૃતિ 11.20.)

- નોંધ : ઉપવલય પરના કોઇપણ બિંદુનો સમતલનાં બે નિશ્ચિત બિંદુઓથી અંતરનો સરવાળો અચળ હોય છે અને તે બે નિશ્ચિત બિંદુઓ વચ્ચેના અંતર કરતા વધુ હોય તે જરૂરી છે.

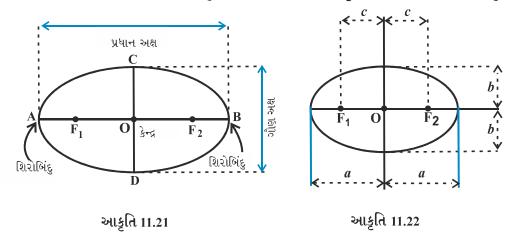


P<sub>1</sub>F<sub>1</sub>+ P<sub>1</sub>F<sub>2</sub>= P<sub>2</sub>F<sub>1</sub>+ P<sub>2</sub>F<sub>2</sub>= P<sub>3</sub>F<sub>1</sub>+ P<sub>3</sub>F<sub>2</sub> આકૃતિ 11.20

નાભિઓને જોડતા રેખાખંડના મધ્યબિંદુને ઉપવલયનું *કેન્દ્ર (centre)* કહે છે. ઉપવલયનાં **નાભિઓમાંથી** પસાર થતા રેખાખંડને ઉપવલયનો *પ્રધાન અક્ષ (major axis*) અને કેન્દ્રમાંથી પસાર થતો અને પ્રધાન અક્ષને લંબરેખાખંડને ઉપવલયનો

શાંકવો 237

**ગૌણ અક્ષ** (minor axis) કહે છે. પ્રધાન અક્ષનાં અંત્યબિંદુઓને ઉપવલયનાં **શિરોબિંદુઓ** (vertices) કહે છે. (આકૃતિ 11.21)



આપણે પ્રધાન અક્ષની લંબાઈ 2a, ગૌણ અક્ષની લંબાઈ 2b અને બે નાભિઓ વચ્ચેના અંતરને 2c લઈશું. તેથી અર્ધ પ્રધાન અક્ષની લંબાઈ a થશે અને અર્ધ ગૌણ અક્ષની લંબાઈ b થશે. (આકૃતિ 11.22)

11.5.1 ઉપવલયના અર્ધ પ્રધાન અક્ષ, અર્ધ ગૌણ અક્ષ તથા કેન્દ્રથી નાભિ સુધીના અંતર વચ્ચેનો સંબંધ. (આકૃતિ 11.23.)

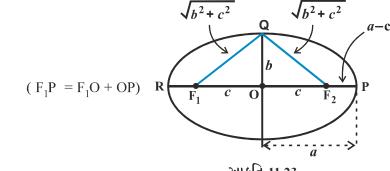
પ્રધાન અક્ષનું એક અંત્યબિંદુ P લો.

બિંદુ P ના નાભિઓથી અંતરનો સરવાળો

$$F_1P + F_2P = F_1O + OP + F_2P$$
  
=  $c + a + a - c = 2a$ 

ગૌણ અક્ષનું એક અંત્યબિંદુ Q લો.

બિંદુ Q માટે નાભિઓથી અંતરનો સરવાળો



આકૃતિ 11.23

$$F_1Q + F_2Q = \sqrt{b^2 + c^2} + \sqrt{b^2 + c^2} = 2\sqrt{b^2 + c^2}$$

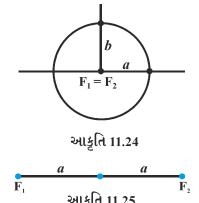
બિંદુઓ P અને Q બંને ઉપવલય પર આવેલાં હોવાથી, ઉપવલયની વ્યાખ્યા અનુસાર,

$$2\sqrt{b^2 + c^2} = 2a$$
, એટલે,  $a = \sqrt{b^2 + c^2}$   
 $a^2 = b^2 + c^2$ , એટલે,  $c = \sqrt{a^2 - b^2}$ .

અથવા

11.5.2 : ઉપવલયના એક વિશિષ્ટ પ્રકાર અનુસાર ઉપર મેળવેલા સમીકરણ  $c^2 = a^2 - b^2$ માં જો આપણે a ના મૂલ્યને અચળ રાખી અને c નાં મૂલ્યને 0 થી a, સુધી બદલીએ તો ઉપવલયના આકાર બદલાશે.

વિકલ્પ (i) : જો c = 0, લઈએ તો, બંને નાભિઓ કેન્દ્રમાં મળી જાય અને  $a^2 = b^2$ , એટલે, a = b અને ઉપવલય વર્તુળ બની જશે (આકૃતિ 11.24). આમ વર્તુળ એ ઉપવલયનો એક વિશિષ્ટ પ્રકાર છે. તેનું અનુચ્છેદ 11.3 માં વર્ણન કરેલ છે.



વિકલ્પ (ii) : જો c=a તો b=0 થાય અને ઉપવલય બે નાભિઓને જોડતો રેખાખંડ  $F_1F_2$ બની જશે. (આકૃતિ 11.25)

# Downloaded from https:// www.studiestoday.com

238 ગાંધાત : ધોરણ 11

### 11.5.3 ઉત્કેન્દ્રતા (Eccentricity)

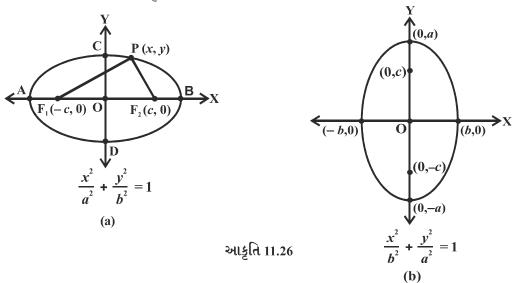
<mark>વ્યાખ્યા 5</mark> : ઉપવલયના કેન્દ્રનું એક નાભિથી અંતર અને કેન્દ્રથી એક શિરોબિંદુના અંતરના ગુણોત્તરને ઉપવલયની **ઉત્કેન્દ્રતા** કહે છે.

ઉત્કેન્દ્રતાને e દ્વારા દર્શાવાય છે. આમ,  $e=\frac{c}{a}$ .  $a^2=b^2+c^2$  હોવાથી c < a તથા તેથી 0 < e < 1

કેન્દ્રથી નાભિનું અંતર c છે. તેથી ઉત્કેન્દ્રતાના સંદર્ભમાં કેન્દ્રથી નાભિનું અંતર ae થશે.

#### 11.5.4 ઉપવલયનું પ્રમાણિત સમીકરણ

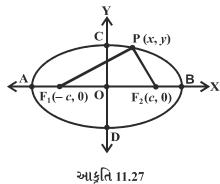
જો ઉપવલયનું કેન્દ્ર ઊગમબિંદુ હોય અને તેનાં નાભિઓ x-અક્ષ પર કે y-અક્ષ પર હોય ત્યારે ઉપવલયનું સમીકરણ સરળતમ સ્વરૂપમાં મળે છે. આવી બે શક્ય ગોઠવણી આકૃતિ 11.26 માં દર્શાવેલ છે.



હવે, આપણે આકૃતિ 11.26 (a) માં દર્શાવેલ જેનાં નાભિઓ x-અક્ષ પર હોય તેવા ઉપવલયનું પ્રમાણિત સમીકરણ મેળવીશું. ધારો કે  $F_1$  અને  $F_2$  બે નાભિઓ છે અને રેખાખંડ  $F_1F_2$  નું મધ્યબિંદુ O છે. ધારો કે O ઊગમબિંદુ અને O થી  $F_2$  તરફ x-અક્ષની ધન દિશા અને Oથી  $F_1$ તરફ x-અક્ષની ઋણ દિશા છે. ધારો કે O માંથી પસાર થતી અને x-અક્ષને લંબ રેખા y-અક્ષ છે. ધારો કે  $F_1$ ના યામ (-c, 0) અને તેથી  $F_2$ (c, 0) મળે. (આકૃતિ 11.27).

ધારો કે P(x, y) એ ઉપવલય પર આવેલું એવું બિંદુ છે. તેથી P નાં બંને નાભિઓથી અંતરનો સરવાળો 2a થાય.

આમ, 
$$\operatorname{PF}_1 + \operatorname{PF}_2 = 2a$$
. ... (1) અંતર સૂત્રનો ઉપયોગ કરતાં, 
$$\sqrt{(x+c)^2 + y^2} + \sqrt{(x-c)^2 + y^2} = 2a$$
 આથી,  $\sqrt{(x+c)^2 + y^2} = 2a - \sqrt{(x-c)^2 + y^2}$  બંને બાજુએ વર્ગ કરતાં, 
$$(x+c)^2 + y^2 = 4a^2 - 4a \sqrt{(x-c)^2 + y^2} + (x-c)^2 + y^2$$
 મળે. સાદું રૂપ આપતાં,  $\sqrt{(x-c)^2 + y^2} = a - \frac{c}{a}x$ 



Downloaded from https://www.studiestoday.com

શાંકવો 239

બંને બાજુ વર્ગ કરી, સાદું રૂપ આપતાં,

$$\frac{x^2}{a^2} + \frac{y^2}{a^2 - c^2} = 1$$

$$\therefore \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
(84  $c^2 = a^2 - b^2$ )

આમ, ઉપવલય પરનું કોઈપણ બિંદુ

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 નું સમાધાન કરશે. ... (2)$$

આથી, ઊલટું 0 < c < a માટે P(x, y) સમીકરણ (2) નું સમાધાન કરતું હોય, તો

$$y^2 = b^2 \left( 1 - \frac{x^2}{a^2} \right)$$

$$PF_{1} = \sqrt{(x+c)^{2} + y^{2}}$$

$$= \sqrt{(x+c)^{2} + b^{2} \left(\frac{a^{2} - x^{2}}{a^{2}}\right)}$$

$$= \sqrt{(x+c)^{2} + (a^{2} - c^{2}) \left(\frac{a^{2} - x^{2}}{a^{2}}\right)}$$

$$(b^{2} = a^{2} - c^{2})$$

$$= \sqrt{\left(a + \frac{cx}{a}\right)^2} = a + \frac{c}{a}x \qquad (|\mathbf{x}| \le a$$
 તથા  $0 < c < a$  હોવાથી)

તે જ રીતે, 
$$\operatorname{PF}_{2} = a - \frac{c}{a} x$$
 ( $|x| \le a$  તથા  $0 < c < a$  હોવાથી)

તેથી 
$$PF_1 + PF_2 = a + \frac{c}{a}x + a - \frac{c}{a}x = 2a$$
 ... (3)

આથી, જો ઉપવલયનું કોઈપણ બિંદુ  $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$  ને સંતોષે તો તે ભૌમિતિક ગુણધર્મને પણ સંતોષે છે અને તેથી P(x, y) ઉપવલય પર છે.

આમ, આપણે (2) અને (3)પરથી સાબિત કર્યું કે જે ઉપવલયનું કેન્દ્ર ઊગમબિંદુ હોય અને પ્રધાન અક્ષ x-અક્ષ પર હોય તેવા ઉપવલયનું પ્રમાણિત સમીકરણ  $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$  છે.

<mark>ચર્ચા :</mark> ઉપર મેળવેલ ઉપવલયના સમીકરણ પરથી એ તારણ મળે છે કે ઉપવલય પરના કોઈ પણ બિંદુ  $\mathbf{P}\left(x,y
ight)$  માટે,

$$\frac{x^2}{a^2} = 1 - \frac{y^2}{b^2} \le 1$$
, એટલે,  $x^2 \le a^2$ , તેથી  $-a \le x \le a$ .

આથી ઉપવલય રેખાઓ x = -a અને x = a ની વચ્ચે આવેલ છે અને તે રેખાઓને સ્પર્શ પણ છે. તે જ રીતે ઉપવલય રેખાઓ y = -b અને y = b ની વચ્ચે છે અને તે રેખાઓને સ્પર્શ છે.

# Downloaded from https:// www.studiestoday.com

240 ગાંધાત : ધોરણ 11

આ જ રીતે, આપણે આકૃતિ 11.26 (b) માં દર્શાવેલ ઉપવલયનું સમીકરણ  $\frac{x^2}{b^2} + \frac{y^2}{a^2} = 1$  પણ મેળવી શકીએ. આ બે સમીકરણોને ઉપવલયનાં પ્રમાણિત સમીકરણો કહે છે.

ા ઉપવલયના પ્રમાણિત સમીકરણમાં ઉપવલયનું કેન્દ્ર ઊગમબિંદુ અને પ્રધાન અક્ષ અને ગૌણ અક્ષયામાક્ષો પર છે. અહીં, જેનું કેન્દ્ર ઊગમબિંદુ સિવાયનું કોઈ બિંદુ હોય અને કેન્દ્રમાંથી પસાર થતી રેખાઓ પ્રધાન અક્ષ અને ગૌણ અક્ષ હોય અને ગૌણ અક્ષ પ્રધાન અક્ષને લંબ હોય એવા ઉપવલયનો અભ્યાસ તે આ પુસ્તકના વિષયવસ્તુની બહાર છે.

આકૃતિ 11.26 માં દર્શાવેલ ઉપવલયના પ્રમાણિત સમીકરણના અવલોકન પરથી આપણને નીચે દર્શાવેલ કેટલાંક તારણો મળશેઃ

- 1. ઉપવલય બંને અક્ષો પ્રત્યે સંમિત છે, કારણ કે જો કોઈ બિંદુ (x, y) ઉપવલય પર હોય, તો બિંદુઓ (-x, y), (x,-y) અને (-x, -y) પણ ઉપવલય પર છે.
- 2. ઉપવલયનાં નાભિઓ હંમેશાં પ્રધાન અક્ષ પર હોય છે. અક્ષ પરનાં અંતઃખંડો પરથી પ્રધાન અક્ષ નક્કી થઈ શકે છે. એટલે કે જો  $x^2$  ના સહગુણકમાં છેદની સંખ્યા મોટી હોય, તો પ્રધાન અક્ષ x અક્ષ પર છે અને જો  $y^2$  ના સહગુણકમાં છેદની સંખ્યા મોટી હોય તો પ્રધાન અક્ષ y અક્ષ પર છે.

#### 11.5.5 નાભિલંબ

વ્યાખ્યા **6** : ઉપવલયના કોઈપણ નાભિમાંથી પસાર થતા જેનાં અંત્યબિંદુઓ ઉપવલય પર હોય તેવા પ્રધાન અક્ષને લંબ રેખાખંડને ઉપવલયનો **નાભિલંબ** કહે છે. (આકૃતિ 11.28.)

ઉપવલય 
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
 ના નાભિલંબની લંબાઇ શોધીએ.

ધારો કે  $AF_2$  ની લંબાઈ l છે.

તો A ના યામ (c, l),એટલે કે (ae, l) થશે.

બિંદુ A ઉપવલય 
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
 પર હોવાથી,

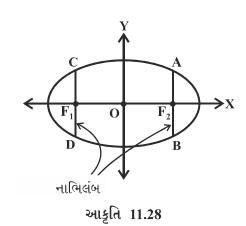
$$\frac{(ae)^2}{a^2} + \frac{l^2}{b^2} = 1$$
મળે.

$$\therefore l^2 = b^2 (1 - e^2)$$

$$\text{vict} \qquad e^2 = \frac{c^2}{a^2} = \frac{a^2 - b^2}{a^2} = 1 - \frac{b^2}{a^2}$$

$$\therefore l^2 = \frac{b^4}{a^2}, એટલે કે, l = \frac{b^2}{a}$$

હવે, ઉપવલય y-અક્ષ પ્રત્યે સંમિત છે. (ખરેખર તો તે બંને અક્ષો પ્રત્યે સંમિત છે.)



# Downloaded from https://www.studiestoday.com

શાંકવો 241

તેથી,  $AF_2 = F_2B$  અને તેથી નાભિલંબની લંબાઈ  $\frac{2b^2}{a}$  થશે.

ઉદાહરણ 9: ઉપવલય  $\frac{x^2}{25} + \frac{y^2}{9} = 1$  માટે નાભિના યામ, શિરોબિંદુઓ, પ્રધાન અક્ષની લંબાઈ, ગૌણ અક્ષની લંબાઈ, ઉત્કેન્દ્રતા અને નામિલંબની લંબાઈ મેળવો.

ઉકેલ: અહીં,  $\frac{x^2}{25}$  માં છેદ એ  $\frac{y^2}{9}$  માં છેદ કરતાં મોટો હોવાથી પ્રધાન અક્ષ x-અક્ષ ઉપર છે. હવે, આપેલ સમીકરણને  $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$  સાથે સરખાવતાં, a = 5 અને b = 3 મળશે.

$$\text{quil}, c = \sqrt{a^2 - b^2} = \sqrt{25 - 9} = 4$$

તેથી, નાભિના યામ(-4,0) અને (4,0) થશે. શિરોબિંદુઓ(-5,0) અને (5,0) થશે. પ્રધાન અક્ષની લંબાઈ 10 એકમ અને ગૌણ અક્ષની લંબાઈ 2b એટલે 6 એકમ થશે, ઉત્કેન્દ્રતા  $\frac{4}{5}$  થશે અને નાભિલંબની લંબાઈ  $\frac{2b^2}{a} = \frac{18}{5}$ .

ઉદાહરણ 10 : ઉપવલય  $9x^2 + 4y^2 = 36$  માટે નાભિના યામ, શિરોબિંદુઓ, પ્રધાન અક્ષની લંબાઈ, ગૌણ અક્ષની લંબાઈ અને ઉત્કેન્દ્રતા શોધો.

ઉકેલ : આપેલ ઉપવલયના સમીકરણને પ્રમાણિત સમીકરણના રૂપમાં લખતાં,

$$\frac{x^2}{4} + \frac{y^2}{9} = 1$$

અહીં,  $\frac{y^2}{9}$  માં છેદ  $\frac{x^2}{4}$  માં છેદ કરતાં મોટો હોવાથી પ્રધાન અક્ષ y-અક્ષ ઉપર છે. આપેલ સમીકરણને

$$\frac{x^2}{b^2} + \frac{y^2}{a^2} = 1$$
, સાથે સરખાવતાં  $b = 2$  અને  $a = 3$ .

$$q = \sqrt{a^2 - b^2} = \sqrt{9 - 4} = \sqrt{5}$$

અને 
$$e = \frac{c}{a} = \frac{\sqrt{5}}{3}$$

આથી, નાભિઓ  $(0,\sqrt{5}\,)$  અને  $(0,-\sqrt{5}\,)$  થશે, શિરોબિંદુઓ (0,3) અને (0,-3) થશે, પ્રધાન અક્ષની લંબાઈ 6 એકમ, ગૌણ અક્ષની લંબાઈ 4 એકમ અને ઉપવલયની ઉત્કેન્દ્રતા  $\frac{\sqrt{5}}{3}$  થશે.

ઉદાહરણ 11 : જેનાં નાભિઓ  $(\pm 5, 0)$  હોય અને શિરોબિંદુઓ  $(\pm 13, 0)$  હોય તેવા ઉપવલયનું સમીકરણ મેળવો. ઉકેલ : અહીં, શિરોબિંદુઓ x-અક્ષ પર હોવાથી ઉપવલયનું સમીકરણ  $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$  થશે. અહીં અર્ધ પ્રધાન અક્ષની લંબાઈ a થશે. અહીં a = 13, c = 5 આપેલ છે.

તેથી, 
$$c^2 = a^2 - b^2$$
 સંબંધ પરથી, 25 = 169  $-b^2$  મળશે.

$$\therefore b = 12$$

આમ, માંગેલ ઉપવલયનું સમીકરણ  $\frac{x^2}{169} + \frac{y^2}{144} = 1$ .

242 ગાંધાત : ધોરણ 11

ઉદાહરણ 12: જેના પ્રધાન અક્ષની લંબાઈ 20 હોય અને નાભિઓ  $(0,\pm 5)$  હોય તેવા ઉપવલયનું સમીકરણ મેળવો.

**ઉકેલ :** અહીં, નાભિઓ y-અક્ષ પર હોવાથી પ્રધાન અક્ષ y-અક્ષ ઉપર છે. આથી, ઉપવલયનું સમીકરણ  $\frac{x^2}{b^2} + \frac{y^2}{a^2} = 1$  થશે.

$$a =$$
 અર્ધ પ્રધાન અક્ષની લંબાઈ =  $\frac{20}{2}$  = 10

અને

$$c^2 = a^2 - b^2$$
 સંબંધ પરથી,  $5^2 = 10^2 - b^2$  મળે.

$$b^2 = 75$$

આમ, માંગેલ ઉપવલયનું સમીકરણ  $\frac{x^2}{75} + \frac{y^2}{100} = 1$ 

ઉદાહરણ 13: બિંદુઓ (4,3) અને (-1,4) માંથી પસાર થતા હોય તથા જેનો પ્રધાન અક્ષ x-અક્ષ હોય તેવા ઉપવલયનું સમીકરણ મેળવો.

**ઉકેલ :** ઉપવલયનું પ્રમાશિત સમીકરણ  $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$  છે. અહીં, બિંદુઓ (4, 3) અને (–1, 4) ઉપવલય પર આવેલા છે.

તેથી, 
$$\frac{16}{a^2} + \frac{9}{b^2} = 1 \qquad ... (1)$$

અને  $\frac{1}{a^2} + \frac{16}{b^2} = 1 \qquad ....(2)$ 

સમીકરણ (1) અને (2) ઉકેલતાં,  $a^2 = \frac{247}{7}$  અને  $b^2 = \frac{247}{15}$  મળે.

તેથી માંગેલ ઉપવલયનું સમીકરણ,

$$\frac{x^2}{\frac{247}{7}} + \frac{y^2}{\frac{247}{15}} = 1, \text{ એટલે } 7x^2 + 15y^2 = 247.$$

નોંધ : બિંદુઓના યામ પરથી પ્રધાન અક્ષ નક્કી થઇ જાય છે, તે આપવાની જરૂર નથી. જો પ્રધાન અક્ષ y-અક્ષ છે તેમ કહૃાું હોય તો  $\frac{x^2}{b^2} + \frac{y^2}{a^2} = 1$  પરથી  $b^2 = \frac{247}{7}$  મળે, જે ખોટું પરિણામ છે.

### સ્વાધ્યાય 11.3

પ્રશ્ન 1 થી 9 માં આપેલ ઉપવલય માટે નાભિના યામ, શિરોબિંદુઓ તથા પ્રધાન અક્ષ તથા ગૌણ અક્ષની લંબાઈ, ઉત્કેન્દ્રતા અને નામિલંબની લંબાઈ શોધોઃ

1. 
$$\frac{x^2}{36} + \frac{y^2}{16} = 1$$

2. 
$$\frac{x^2}{4} + \frac{y^2}{25} = 1$$

3. 
$$\frac{x^2}{16} + \frac{y^2}{9} = 1$$

4. 
$$\frac{x^2}{25} + \frac{y^2}{100} = 1$$

5. 
$$\frac{x^2}{49} + \frac{y^2}{36} = 1$$

$$6. \quad \frac{x^2}{100} + \frac{y^2}{400} = 1$$

7. 
$$36x^2 + 4y^2 = 144$$

$$8. \quad 16x^2 + y^2 = 16$$

9. 
$$4x^2 + 9y^2 = 36$$

શાંકવો 243

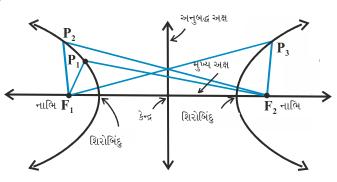
નીચેના પ્રશ્ન 10 થી 20 માં આપેલ શરતોનું સમાધાન કરતા પ્રત્યેક ઉપવલયનું સમીકરણ શોધોઃ

- **10.** શિરોબિંદુઓ  $(\pm 5, 0)$ , નાભિઓ  $(\pm 4, 0)$
- 11. શિરોબિંદુઓ  $(0, \pm 13)$ , નાભિઓ  $(0, \pm 5)$
- 12. શિરોબિંદુઓ  $(\pm 6, 0)$ , નાભિઓ  $(\pm 4, 0)$
- **13.** પ્રધાન અક્ષનાં અંત્યબિંદુઓ  $(\pm 3, 0)$ , ગૌણ અક્ષનાં અંત્યબિંદુઓ  $(0, \pm 2)$
- **14.** પ્રધાન અક્ષનાં અંત્યબિંદુઓ  $(0, \pm \sqrt{5})$ , ગૌણ અક્ષનાં અંત્યબિંદુઓ  $(\pm 1, 0)$
- **15.** પ્રધાન અક્ષની લંબાઈ 26, નાભિઓ ( $\pm 5$ , 0)
- **16.** ગૌણ અક્ષની લંબાઈ 16, નાભિઓ  $(0, \pm 6)$ .
- **17.** નાભિઓ (± 3, 0), a = 4
- **18.** b = 3, c = 4, કેન્દ્ર ઊગમબિંદુ તથા નાભિઓ x-અક્ષ પર હોય.
- **19.** કેન્દ્ર ઊગમબિંદુ, પ્રધાન અક્ષ y-અક્ષ પર હોય અને બિંદુઓ (3,2) અને (1,6) માંથી પસાર થાય.
- **20.** પ્રધાન અક્ષ x-અક્ષ પર હોય અને બિંદુઓ (4, 3) અને (6, 2) માંથી પસાર થાય.

#### 11.6 અતિવલય

વ્યાખ્યા 7: અતિવલય એટલે સમતલમાં જેનાં બે નિશ્ચિત બિંદુથી અંતરનો નિરપેક્ષ તફાવત અચળ હોય એવાં તમામ બિંદુઓનો ગણ.

વ્યાખ્યામાં વપરાયેલ તફાવત પદનો અર્થ દૂરના બિંદુથી અંતર - નજીકના બિંદુથી અંતર . આ બે નિશ્ચિત બિંદુઓને અતિવલયનાં નાભિઓ કહે છે. નાભિઓને જોડતા રેખાખંડના મધ્યબિંદુને અતિવલયનું કેન્દ્ર કહેવાય. નાભિઓમાંથી પસાર થતી રેખાને મુખ્ય અક્ષ અને કેન્દ્રમાંથી પસાર થતી મુખ્ય અક્ષને લંબરેખાને અનુબદ્ધ અક્ષ કહેવાય. અતિવલય મુખ્ય અક્ષને જે બિંદુઓમાં છેદે તેને અતિવલયનાં શિરોબિંદુ કહેવાય. (જુઓ આકૃતિ 11.29)



$$\begin{split} \mathbf{P}_1\mathbf{F}_2 - \mathbf{P}_1\mathbf{F}_1 &= \mathbf{P}_2\mathbf{F}_2 - \mathbf{P}_2\mathbf{F}_1 = \mathbf{P}_3\mathbf{F}_1 - \mathbf{P}_3\mathbf{F}_2 \\ \end{aligned}$$
 આકૃતિ 11.29

આપણે બે નાભિઓ વચ્ચેના અંતરને 2c વડે, બે શિરોબિંદુઓને વચ્ચેનાં અંતરને (મુખ્ય અક્ષની લંબાઈ) 2a વડે અને b ને  $b=\sqrt{c^2-a^2}$  વડે વ્યાખ્યાયિત કરીએ. વળી, 2b અનુબદ્ધ અક્ષની લંબાઈ છે.(આકૃતિ 11.30.)

### અચળ $P_1F_2 - P_1F_1$ શોધવા :

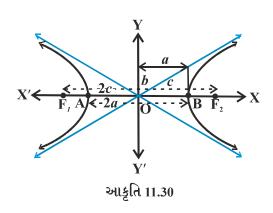
આકૃતિ 11.30 માં બિંદુ P ને અનુક્રમે A અને B આગળ લેતાં, આપણને અતિવલયની વ્યાખ્યા પરથી,

$$BF_1 - BF_2 = AF_2 - AF_1$$
 મળે. (અતિવલયની વ્યાખ્યા પરથી)

$$BA + AF_1 - BF_2 = AB + BF_2 - AF_1$$

અર્થાત, 
$$AF_1 = BF_2$$

આથી, 
$$BF_1 - BF_2 = BA + AF_1 - BF_2 = BA = 2a$$



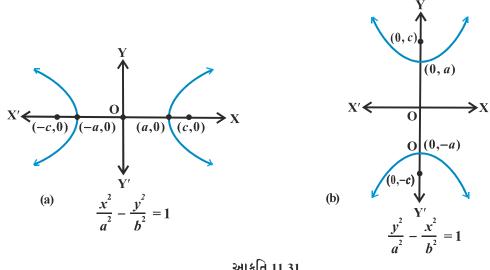
244 ગણિત : ધોરણ 11

#### 11.6.1 ઉત્કેન્દ્રતા

વ્યાખ્યા  $m{8}$  : ઉપવલયની જેમ જ ગુણોત્તર  $e=rac{c}{a}$  ને **અતિવલયની ઉત્કેન્દ્રતા** કહે છે.  $c\geq a$  હોવાથી, અતિવલયની ઉત્કેન્દ્રતા 1 થી નાની ના થાય. ઉત્કેન્દ્રતાના સંદર્ભમાં, નાભિઓનું કેન્દ્રથી અંત૨ ae જેટલું હોય.

### 11.6.2 અતિવલયનુ પ્રમાણિત સમીકરણઃ

અતિવલયનું સૌથી સરળ સમીકરણ જયારે કેન્દ્ર ઊગમબિંદુ અને નાભિઓ x - અક્ષ અથવા y - અક્ષ પર હોય ત્યારે મળે. બે શક્ય આકૃતિઓ આકૃતિ 11.31 માં દર્શાવેલ છે.



આકૃતિ 11.31

આપણે આકૃતિ 11.31(a) કે જેમાં નાભિઓ x-અક્ષ પર છે, તેવા અતિવલયનું સમીકરણ મેળવીશું.

ધારો કે નાભિઓ  $F_1$  અને  $F_2$  છે તથા  $F_1F_2$ ને જોડતા રેખાખંડનું મધ્યબિંદુ O છે તથા ઊગમબિંદુ O અને  $F_2$ માંથી પસાર થતી રેખા x-અક્ષની ધનદિશા  $\mathrm O$  અને  $\mathrm F_1$  માંથી પસાર થતી રેખા, x-અક્ષની ઋણ દિશા છે.  $\mathrm O$  માંથી પસાર થતી x-અક્ષને લંબરેખા y-અક્ષ છે. ધારો કે  $F_1$  ના યામ (-c,0) અને  $F_2$  ના યામ (c,0) છે. (આકૃતિ 11.32.)

ધારો કે P(x, y) અતિવલય પરનું કોઈ પણ બિંદુ છે, કે જેથી P થી નાભિનાં દૂરના અને નજીકના અંતરનો તફાવત 2a જેટલો થાય. આથી, આપેલ છે કે  $PF_1 - PF_2 = 2a$ .

અંતર સૂત્રનો ઉપયોગ કરતાં,

$$\sqrt{(x+c)^2 + y^2} - \sqrt{(x-c)^2 + y^2} = 2a$$

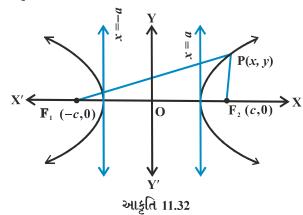
અર્થાત્ 
$$\sqrt{(x+c)^2 + y^2} = 2a + \sqrt{(x-c)^2 + y^2}$$

બંને બાજુ વર્ગ કરતાં,

$$(x + c)^2 + y^2 = 4a^2 + 4a \sqrt{(x - c)^2 + y^2} + (x - c)^2 + y^2$$

સાદુંરૂપ આપતાં, આપણને

$$\frac{cx}{a} - a = \sqrt{(x-c)^2 + y^2}$$
મળે.



શાંકવો 245

ફરીથી વર્ગ કરી સાદું રૂપ આપતાં,

$$\frac{x^2}{a^2} - \frac{y^2}{c^2 - a^2} = 1 \quad \text{મળે}.$$
 અર્થાત્ 
$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \qquad (c^2 - a^2 = b^2)$$

આથી, અતિવલય પરનું કોઈપણ બિંદુ  $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$  નું સમાધાન કરે છે.

આથી, ઊલટું, ધારો કે 0 < a < c માટે P(x, y) ઉપરના સમીકરણનું સમાધાન કરે છે.

આથી, 
$$y^2 = b^2 \left(\frac{x^2 - a^2}{a^2}\right)$$
  

$$\therefore \qquad \text{PF}_1 = \sqrt{(x+c)^2 + y^2}$$

$$= \sqrt{(x+c)^2 + b^2 \left(\frac{x^2 - a^2}{a^2}\right)} = \left|a + \frac{c}{a} x\right| = a + \frac{c}{a} x \text{ કારણ કે } x > a, \ 0 < a < c$$
આ જ રીતે,  $\text{PF}_2 = \left|a - \frac{c}{a} x\right|$ 

અતિવલયમાં c>a; અને P એ x=a, રેખાની જમણી બાજુ પર હોવાથી x>a. આથી  $\frac{c}{a}$  x>a.

$$\therefore a - \frac{c}{a} x$$
 ઋશ બને. આમ  $PF_2 = \frac{c}{a}x - a$ 

$$PF_1 - PF_2 = a + \frac{c}{a}x - \frac{cx}{a} + a = 2a$$

વળી, નોંધો કે, જો  $\mathbf{P}$  એ રેખા x=-a ની ડાબી બાજુ પર હોય તો,

$$PF_1 = -\left(a + \frac{c}{a}x\right), PF_2 = a - \frac{c}{a}x.$$

આ વિકલ્પમાં  $PF_2 - PF_1 = 2a$ . આથી  $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$  નું સમાધાન કરતું કોઈપણ બિંદુ અતિવલય પર હોય.

આમ, આપણે સાબિત કર્યું કે જેનું કેન્દ્ર (0,0) અને જેનો મુખ્ય અક્ષ x-અક્ષ પર હોય તેવા અતિવલયનું સમીકરણ  $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$  થાય.

 $\longrightarrow$  નોંધઃ જે અતિવલયમાં a=b હોય, તે અતિવલયને *લંબાતિવલય* કહેવાય.

ચર્ચાઃ અતિવલયના મેળવેલ સમીકરણ પરથી કહી શકાય કે, અતિવલય પરના પ્રત્યેક બિંદુ (x,y) માટે,  $\frac{x^2}{a^2} = 1 + \frac{y^2}{b^2} \ge 1$ .

$$\therefore \ \left| \frac{x}{a} \right| \ge 1,$$

 $\therefore x \le -a$  અથવા  $x \ge a$ .

આથી, વક્રનો કોઈ ભાગ રેખાઓ x=+a અને x=-a વચ્ચે નથી. (અર્થાત્ અનુબદ્ધ અક્ષ પર કોઈ વાસ્તવિક અંતઃખંડ નથી.)

આ જ રીતે, આપણે આકૃતિ 11.31 (b) પરથી  $\frac{y^2}{a^2} - \frac{x^2}{b^2} = 1$  મેળવી શકીએ.

246 ગાંધાત : ધોરણ 11

આ બંને સમીકરણો અતિવલયનાં પ્રમાણિત સમીકરણો કહેવાય.

⇒નોંધ અતિવલયોનાં પ્રમાણિત સમીકરણોમાં ઊગમબિંદુ કેન્દ્ર અને મુખ્ય અક્ષ તથા અનુબદ્ધ અક્ષ, યામાક્ષો પર હોય છે. જો કે કોઈપણ બે પરસ્પર લંબરેખાઓ મુખ્ય અક્ષ અને અનુબદ્ધ અક્ષો હોય તેવા પણ અતિવલયો શક્ય છે. તેનો અભ્યાસ ઉચ્ચ ધોરણોમાં કરીશું.

અતિવલયનાં પ્રમાણિત સમીકરણો (આકૃતિ 11.29) પરથી, આપણને નીચેનાં અવલોકનો મળે છે:

- 1. અતિવલય એ યામાક્ષો પ્રત્યે સંમિત છે, કારણ કે જો બિંદુ (x, y) અતિવલય પર હોય તો, બિંદુઓ (-x, y), (x, -y) અને (-x, -y) પણ અતિવલય પર હોય છે.
- 2. નાભિઓ હંમેશાં મુખ્ય અક્ષ પર હોય. છેદનાં ધન પદોથી મુખ્ય અક્ષ વિશે જાણી શકાય છે. ઉદાહરણ તરીકે,  $\frac{x^2}{9} \frac{y^2}{16} = 1$  માં મુખ્ય અક્ષ x-અક્ષ પર હોય અને તેની લંબાઈ 6 છે, જ્યારે  $\frac{y^2}{25} \frac{x^2}{16} = 1$  માં મુખ્ય અક્ષ y-અક્ષ પર હોય અને તેની લંબાઈ 10 છે.  $x^2$ નો સહગુણક ધન હોય કે  $y^2$ નો સહગુણક ધન હોય તે અનુસાર x-અક્ષ મુખ્ય અક્ષ અથવા y-અક્ષ મુખ્ય અક્ષ છે.

#### 11.6.3 નાભિલંબ

વ્યાખ્યા 9: નાભિમાંથી પસાર થતો મુખ્ય અક્ષને લંબ અને જેનાં અંત્યબિંદુઓ અતિવલય પર હોય તેવો રેખાખંડ નાભિલંબ છે, (3) ઉપવલયની જેમ એ બતાવવું સરળ છે કે નાભિલંબની લંબાઈ  $\frac{2b^2}{a}$  છે.

ઉદાહરણ 14 : નીચેનાં અતિવલયો માટે નાભિઓ, શિરોબિંદુઓ, ઉત્કેન્દ્રતા અને નાભિલંબની લંબાઈ મેળવો.

(i) 
$$\frac{x^2}{9} - \frac{y^2}{16} = 1$$
 (ii)  $y^2 - 16x^2 = 16$ 

ઉકેલ : (i) 
$$\frac{x^2}{9} - \frac{y^2}{16} = 1$$
 ને પ્રમાણિત સમીકરણ  $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$  સાથે સરખાવતાં,

$$a = 3, b = 4$$
 અને  $c = \sqrt{a^2 + b^2} = \sqrt{9 + 16} = 5$ 

આથી, નાભિઓના યામ  $(\pm 5, 0)$  અને શિરોબિંદુઓ  $(\pm 3, 0)$  છે.

વળી, ઉત્કેન્દ્રતા 
$$e = \frac{c}{a} = \frac{5}{3}$$
. નાભિલંબની લંબાઈ  $= \frac{2b^2}{a} = \frac{32}{3}$ 

(ii) સમીકરણને 16 વડે ભાગતાં, આપણને 
$$\frac{y^2}{16} - \frac{x^2}{1} = 1$$
 મળે.

તેને પ્રમાણિત સમીકરણ 
$$\frac{y^2}{a^2} - \frac{x^2}{h^2} = 1$$
 સાથે સરખાવતાં,

આપણને, 
$$a=4$$
,  $b=1$  અને  $c=\sqrt{a^2+b^2}=\sqrt{16+1}=\sqrt{17}$  .

આથી, નાભિઓના યામ  $(0, \pm \sqrt{17}\,)$  અને શિરોબિંદુઓ  $(0, \pm 4)$  છે.

વળી, ઉત્કેન્દ્રતા 
$$e = \frac{c}{a} = \frac{\sqrt{17}}{4}$$
 . નાભિલંબની લંબાઈ  $= \frac{2b^2}{a} = \frac{1}{2}$  .

શાંકવો 247

ઉદાહરણ 15 : જેનાં નાભિઓ  $(0,\pm3)$  અને શિરોબિંદુઓ  $(0,\pm\frac{\sqrt{11}}{2})$  હોય તેવા અતિવલયનું સમીકરણ મેળવો.

ઉકેલ : નાભિઓ y-અક્ષ પર હોવાથી, અતિવલયનું સમીકરણ  $\frac{y^2}{a^2} - \frac{x^2}{k^2} = 1$  થાય.

શિરોબિંદુઓ 
$$\left(0,\pm\frac{\sqrt{11}}{2}\right)$$
 હોવાથી,  $a=\frac{\sqrt{11}}{2}$ 

વળી, નાભિઓ  $(0,\pm 3)$  હોવાથી c=3 અને  $b^2=c^2-a^2=\frac{25}{4}$ . આથી, અતિવલયનું સમીકરણ

$$\frac{y^2}{\left(\frac{11}{4}\right)} - \frac{x^2}{\left(\frac{25}{4}\right)} = 1, \text{ અર્થાત, } 100 \text{ } y^2 - 44 \text{ } x^2 = 275.$$

<mark>ઉદાહરણ 16 :</mark> જેનાં નાભિઓ (0, ±12) અને નાભિલંબની લંબાઈ 36 હોય તેવા અતિવલયનું સમીકરણ મેળવો. ઉકેલ : નાભિઓ  $(0,\pm 12)$  હોવાથી c=12 મળે.

નાભિલંબની લંબાઈ = 
$$\frac{2b^2}{a}$$
 = 36 પરથી  $b^2$  = 18 $a$  આથી,  $c^2 = a^2 + b^2$  પરથી,  $144 = a^2 + 18a$   $\therefore a^2 + 18a - 144 = 0$ ,  $\therefore a = -24$ , 6.

પરંતુ a ઋણ ના હોઈ શકે. આથી આપણે a=6 લઈશું અને આથી  $b^2=108$ .

આથી, અતિવલયનું જરૂરી સમીકરણ 
$$\frac{y^2}{36} - \frac{x^2}{108} = 1$$
, અર્થાત્,  $3y^2 - x^2 = 108$ 

#### સ્વાધ્યાય 11.4

પ્રશ્ન 1 થી 6 માં આપેલ અતિવલયો માટે નાભિઓ અને શિરોબિંદુઓના યામ, ઉત્કેન્દ્રતા અને નાભિલંબની લંબાઈ મેળવોઃ

1. 
$$\frac{x^2}{16} - \frac{y^2}{9} = 1$$
 2.  $\frac{y^2}{9} - \frac{x^2}{27} = 1$ 

2. 
$$\frac{y^2}{9} - \frac{x^2}{27} =$$

$$3. \quad 9y^2 - 4x^2 = 36$$

$$4. \quad 16x^2 - 9y^2 = 576$$

$$5. \quad 5y^2 - 9x^2 = 36$$

**4.** 
$$16x^2 - 9y^2 = 576$$
 **5.**  $5y^2 - 9x^2 = 36$  **6.**  $49y^2 - 16x^2 = 784$ 

પ્રશ્ન 7 થી 15 માં આપેલ શરતોનું પાલન કરતાં અતિવલયોનાં સમીકરણ મેળવોઃ

- 7. શિરોબિંદુઓ  $(\pm 2, 0)$ , નાભિઓ  $(\pm 3, 0)$
- **8.** શિરોબિંદુઓ  $(0, \pm 5)$ , નાભિઓ  $(0, \pm 8)$
- 9. શિરોબિંદુઓ  $(0, \pm 3)$ , નાભિઓ  $(0, \pm 5)$
- **10.** નાભિઓ (± 5, 0), મુખ્ય અક્ષની લંબાઈ 8
- 11. નાભિઓ (0, ±13), અનુબદ્ધ અક્ષની લંબાઈ 24

248 ગણિત : ધોરણ 11

- 12. નાભિઓ ( $\pm 3\sqrt{5}$  , 0), નાભિલંબની લંબાઈ 8
- **13.** નાભિઓ (± 4, 0), નાભિલંબની લંબાઈ 12
- **14.** શિરોબિંદુઓ ( $\pm 7,0$ ),  $e = \frac{4}{3}$
- **15.** નાભિઓ  $(0, \pm \sqrt{10})$ , (2,3) માંથી પસાર થતાં

#### પ્રકીર્ણ ઉદાહરણો

ઉદાહરણ 17 : આકૃતિ 11.33 માં દર્શાવ્યા મુજબ પરવલયાકાર પરાવર્તકની નાભિ શિરોબિંદુથી 5 સેમી દૂર છે. જો તેની

ઊંડાઇ 45 સેમી હોય તો અંતર AB શોધો. (આકૃતિ 11.33.)

6કેલ : શિરોબિંદુથી નાભિનું અંતર 5 સેમી હોવાથી, a=5. જો ઊગમબિંદુ શિરોબિંદુ લઈએ અને પરાવર્તકને x-અક્ષની ધન દિશા પર લઈએ તો પરવલયાકાર ભાગનું સમીકરણ

$$y^2 = 4 (5) x = 20 x$$
 થાય.

નોંધો કે

$$x = 45$$

આથી, 
$$v^2 = 900$$

$$\therefore y = \pm 30$$

આથી, 
$$AB = 2y = 2 \times 30 = 60$$
 સેમી

**>**X 0

આકૃતિ 11.33

ઉદાહરણ 18 : પુલના અંત્ય ભાગે આવેલ આધારસ્તંભો વચ્ચેનું અંતર 12 મીટર છે.

પુલના મધ્ય ભાગમાં વજન કેન્દ્રિત થવાથી, 3 સેમી જેટલા નીચે તરફ વળી ગયેલ પુલનો આકાર પરવલયનો છે, તો પુલ કેન્દ્રથી કેટલા અંતરે 1 સેમી જેટલો વળેલ હશે?

<mark>ઉકેલ</mark> ઃ ધારો કે શિરોબિંદુ એ સૌથી નીચેનું બિંદુ અને અક્ષ શિરોલંબ રેખા છે. ધારો કે યામાક્ષો આકૃતિ 11.34 માં દર્શાવ્યા પ્રમાણેના છે.

પરવલયનું સમીકરણ  $x^2 = 4ay$  પ્રકારનું હશે. તે  $\left(6, \frac{3}{100}\right)$ , માંથી પસાર થાય છે.

$$\text{will, } (6)^2 = 4a \left( \frac{3}{100} \right),$$

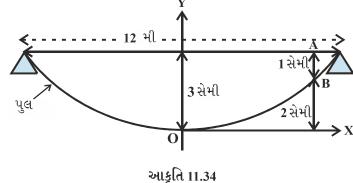
અર્થાત્, 
$$a = \frac{36 \times 100}{12} = 300$$
 મી

ધારો કે પુલનો વળેલ ભાગ AB એ  $\frac{1}{100}$  મી નો છે.

B ના યામ 
$$\left(x, \frac{2}{100}\right)$$
 છે.

$$\therefore x^2 = 4 \times 300 \times \frac{2}{100} = 24$$

અર્થાત્ 
$$x = \sqrt{24} = 2\sqrt{6}$$
 મી



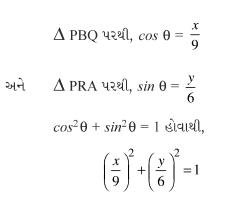
 $rac{\mathsf{GE} \mathsf{IS} \mathsf{SP}}{\mathsf{GE}} \mathsf{IS} \mathsf{GE} \mathsf{IS} \mathsf{GE} \mathsf{IS}$  તેમાં  $\mathsf{GE} \mathsf{IS} \mathsf{IS}$ સળિયા પર P(x, y) બિંદુ એ રીતે લીધેલ છે કે AP = 6 સેમી હોય. સાબિત કરો કે P નો બિંદુગણ ઉપવલય છે.

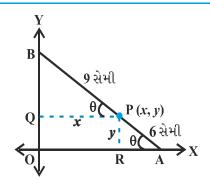
શાંકવો 249

ઉંકેલ : ધારો કે આકૃતિ 11.35માં દર્શાવ્યા પ્રમાણે સળિયો AB, OX સાથે  $\theta$  ખૂણો બનાવે છે અને બિંદુ P(x,y) તેના પર એવું છે કે જેથી AP=6 સેમી થાય.

AB = 15 સેમી હોવાથી, PB = 9 સેમી. Pમાંથી લંબ PQ અને PR અનુક્રમે y-અક્ષ અને x-અક્ષ પર દોરો.

$$\therefore \frac{x^2}{81} + \frac{y^2}{36} = 1$$





આકૃતિ 11.35

આથી, P નો બિંદુગણ ઉપવલય છે.

#### પ્રકીર્ણ સ્વાધ્યાય 11

- 1. એક પરવલયાકાર પરાવર્તકનો વ્યાસ 20 સેમીનો છે અને ઊંડાઈ 5 સેમી છે.તેના નાભિના યામ શોધો.
- 2. એક કમાન પરવલયાકાર છે. તેનો અક્ષ શિરોલંબ છે. કમાન 10 મી ઊંચી અને પાયામાં 5 મી પહોળી છે. તે પરવલયના શિરોબિંદુથી 2 મી દૂર કેટલી પહોળી હશે?
- 3. તાર પર લટકતો એક સમાન ભારવાળો ઝૂલતો પુલ પરવલયાકારનો છે. શિરોલંબ તારથી પુલને ટકાવેલ સમિક્ષિતિજ રસ્તો 100 મી લાંબો છે. સૌથી મોટો તાર 30 મી અને સૌથી નાનો તાર 6 મી નો છે. પુલના કેન્દ્રથી 18 મી દૂર આપેલ આધાર આપતા તારની લંબાઈ શોધો.
- 4. એક કમાન અર્ધઉપવલયાકારની છે તે 8મી પહોળી અને કેન્દ્ર આગળ 2 મી ઊંચી છે, તો તેના એક છેડેથી 1.5 મી અંતરે આવેલા બિંદુ આગળ કમાનની ઊંચાઈ શોધો.
- 12 મી લંબાઈનો સળિયો એવી રીતે ખસે છે કે જેથી તેનાં અંત્યબિંદુઓ યામાક્ષો પર રહે. x-અક્ષ પરના અંત્યબિંદુથી
   3 મી દૂર આવેલ સળિયા પરના બિંદુ P નો બિંદુગણ શોધો.
- **6.** પરવલય  $x^2 = 12y$  ના શિરોબિંદુ અને નાભિલંબના અંત્યબિંદુથી બનતા ત્રિકોણનું ક્ષેત્રફળ શોધો.
- એક માણસ રમતના મેદાનમાં અંકિત કેડી પર એવી રીતે દોડે છે કે જેથી બે ધજાના દંડાના અંતરનો સરવાળો અચળ
   10 મી રહે છે. જો બંને ધજાના દંડા વચ્ચેનું અંતર 8 મી હોય, તો માણસના ગતિમાર્ગનું સમીકરણ શોધો.
- 8. એક સમબાજુ ત્રિકોણ પરવલય  $y^2 = 4 \ ax$  માં અંતર્ગત છે, તેનું એક શિરોબિંદુ પરવલયનું શીર્ષ છે. તો ત્રિકોણની બાજુઓનાં માપ શોધો.

250 ગાંધાત : ધોરણ 11

#### સારાંશ

આ પ્રકરણમાં નીચેની સંકલ્પનાઓ અને તેનાં વ્યાપક સ્વરૂપોનો અભ્યાસ કર્યોઃ

- 🔷 સમતલમાં નિશ્ચિત બિંદુથી અચળ અંતરે આવેલાં બિંદુઓનો ગણ એટલે વર્તુળ.
- lacktriangle (h,k) કેન્દ્ર અને r ત્રિજ્યાવાળા વર્તુળનું સમીકરણ

$$(x-h)^2 + (y-k)^2 = r^2 \, \hat{\Theta}.$$

- ♦ સમતલમાં નિશ્ચિત બિંદુ અને નિશ્ચિત રેખાથી સમાન અંતરે આપેલ બિંદુઓનો ગણ એટલે પરવલય.
- જેની નાભિ (a, 0) (a > 0) અને નિયામિકા x = -a હોય તેવા પરવલયનું સમીકરણ  $y^2 = 4ax$  છે.
- ♦ નાભિમાંથી પસાર થતાં અને જેનાં અંત્યબિંદુઓ પરવલય પર હોય તેવા અક્ષને લંબ રેખાખંડને નાભિલંબ કહેવાય.
- $\checkmark$   $y^2 = 4ax$  પરવલયના નાભિલંબની લંબાઈ 4a છે
- ♦ સમતલમાં બે નિશ્ચિત બિંદુથી જેમનાં અંતરનો સરવાળો અચળ હોય તેવા બિંદુના ગણને ઉપવલય કહેવાય.
- જે ઉપવલયનાં નાભિઓ x-અક્ષ પર હોય તેનું સમીકરણ:  $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$
- ♦ પ્રધાન અક્ષને લંબ હોય તેવા ઉપવલયના નાભિમાંથી પસાર થતા અને જેનાં અંત્યબિંદુઓ ઉપવલય પર હોય તેવા રેખાખંડને નાભિલંબ કહેવાય.
- •ઉપવલય  $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$  ના નાભિલંબની લંબાઈ  $\frac{2b^2}{a}$  છે, જ્યાં a > b.
- 🔷 ઉપવલયમાં તેના કેન્દ્રથી કોઈ પણ એક નાભિ અને ઉપવલયના એક શિરોબિંદુ વચ્ચેના અંતરના ગુણોત્તરને ઉત્કેન્દ્રતા કહેવાય.
- 🔷 સમતલમાં બે નિશ્ચિત બિંદુથી જેમના અંતરનો નિરપેક્ષ તફાવત અચળ હોય તેવા બિંદુગણને અતિવલય કહેવાય.
- $\diamond$  જે અતિવલયનાં નાભિઓ x-અક્ષ પર હોય તેનું સમીકરણ :  $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$  છે.
- ♦ અતિવલયના નાભિમાંથી પસાર થતા અને જેનાં અંત્યબિંદુઓ અતિવલય પર મુખ્ય અક્ષને લંબ રેખાખંડ ઉપર હોય તેવા રેખાખંડને નાભિલંબ કહેવાય.
- અતિવલય :  $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$  ના નાભિલંબની લંબાઈ :  $\frac{2b^2}{a}$  છે.
- ♦ અતિવલયમાં તેના કેન્દ્રથી કોઈ એક નાભિ અને અતિવલયના એક શિરોબિંદુ વચ્ચેના અંતરના ગુષ્રોત્તરને ઉત્કેન્દ્રતા કહેવાય.

#### **Historical Note**

Geometry is one of the most ancient branches of mathematics. The Greek geometers investigated the properties of many curves that have theoretical and practical importance. Euclid wrote his treatise on geometry around 300 B.C. He was the first who organised the geometric figures based on certain axioms suggested by physical considerations. Geometry as initially studied by the ancient Indians and Greeks, who made essentially no use of the process of algebra. The synthetic approach to the subject of geometry as given by Euclid and in *Sulbasutras*, etc., was continued for some 1300 years. In the 200 B.C., Apollonius wrote a book called '*The Conic*' which was all about conic sections with many important discoveries that

શાંકવો 251

have remained unsurpassed for eighteen centuries.

Modern analytic geometry is called 'Cartesian' after the name of Rene Descartes (1596-1650) whose relevant 'La Geometrie' was published in 1637. But the fundamental principle and method of analytical geometry were already discovered by Pierre de Fermat (1601-1665). Unfortunately, Fermat's treatise on the subject, entitled Ad Locus Planos et So LIDOS Isagoge (Introduction to Plane and Solid Loci) was published only posthumously in 1679. So, Descartes came to be regarded as the unique inventor of the analytical geometry.

Isaac Barrow avoided using cartesian method. Newton used method of undetermined coefficients to find equations of curves. He used several types of coordinates including polar and bipolar. Leibnitz used the terms 'abscissa', 'ordinate' and 'coordinate'. L' Hospital (about 1700) wrote an important textbook on analytical geometry.

Clairaut (1729) was the first to give the distance formula although in clumsy form. He also gave the intercept form of the linear equation. Cramer (1750) made formal use of the two axes and gave the equation of a circle as

$$(y-a)^2 + (b-x)^2 = r$$

He gave the best exposition of the analytical geometry of his time. Monge (1781) gave the modern 'point-slope' form of equation of a line as

$$y - y' = a (x - x')$$

and the condition of perpendicularity of two lines as aa' + 1 = 0.

S.F. Lacroix (1765–1843) was a prolific textbook writer, but his contributions to analytical geometry are found scattered. He gave the 'two-point' form of equation of a line as

$$y - \beta = \frac{\beta' - \beta}{\alpha' - \alpha} (x - \alpha)$$

and the length of the perpendicular from  $(\alpha, \beta)$  on y = ax + b as  $\frac{\beta - a\alpha - b}{\sqrt{1 + a^2}}$ . His formula for finding

angle between two lines was  $\tan \theta = \left(\frac{a'-a}{1+aa'}\right)$ . It is, of course, surprising that one had to wait for more than 150 years after the invention of analytical geometry before finding such essential basic formula. In 1818, C. Lame, a civil engineer, gave mE + m'E' = 0 as the curve passing through the points of intersection of two loci E = 0 and E' = 0.

Many important discoveries, both in Mathematics and Science, have been linked to the conic sections. The Greeks particularly Archimedes (287–212 B.C.) and Apollonius (200 B.C.) studied conic sections for their own beauty. These curves are important tools for present day exploration of outer space and also for research into behaviour of atomic particles.



# ત્રિપરિમાણીય ભૂમિતિનો પરિચય

**❖** Mathematics is both the queen and the hand-maiden of all sciences − E.T. BELL ❖

#### 12.1 પ્રાસ્તાવિક

તમને યાદ હશે કે સમતલમાં બિંદુનું સ્થાન દર્શાવવા માટે આપણને સમતલમાં બે પરસ્પર લંબ રેખાઓની જરૂર પડે છે. આ રેખાઓને યામાક્ષો કહે છે અને બે સંખ્યાઓને અક્ષોને સાપેક્ષ તે બિંદુના યામ કહે છે. વાસ્તવિક જીવનમાં આપણને કેવળ સમતલમાં રહેલાં બિંદુઓ સાથે જ વ્યવહાર કરવાનો હોય છે તેમનથી; ઉદાહરણ તરીકે, અવકાશમાં ઉછાળેલા દડાનું વિવિધ સમયબિંદુએ સ્થાન અથવા એક સ્થળેથી બીજા સ્થળે ઊડતા વિમાનનું ઉડ્ડયન દરમિયાન જુદાં જુદાં સમયબિંદુએ સ્થાન.

આ જ રીતે જો રૂમની છતથી લટકી રહેલા વીજળીના ગોળાના સૌથી નીચેના બિંદુને અથવા રૂમની છત સાથે લાગેલા પંખાના મધ્યબિંદુને નક્કી કરવું હોય, તો આપણને માત્ર જે બિંદુ નક્કી કરવું છે તેના બે લંબ દીવાલોથી લંબઅંતરો જ



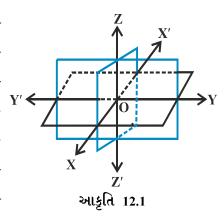
Leonhard Euler (1707-1783)

નહિ, પરંતુ તે બિંદુની રૂમના તળયેથી ઊંચાઈની પણ જરૂર પડશે. પરસ્પર ત્રણ લંબ સમતલોથી બિંદુનાં લંબઅંતરો એટલે કે રૂમનું ભોયતળિયું અને રૂમની બે પાસપાસેની દીવાલોથી લંબઅંતરો એવી ત્રણ સંખ્યાઓની આપણને જરૂર પડશે. અહીં, આ ત્રણ સંખ્યાઓ ત્રણ અંતરો દર્શાવે છે તેમને માત્ર બે જ નહિં ત્રણ યામ-સમતલોને સાપેક્ષ બિંદુના યામ

કહે છે. આથી અવકાશમાં બિંદુને ત્રણ યામ હોય છે. આ પ્રકરણમાં આપણે ત્રિપરિમાણીય અવકાશમાં ભૂમિતિના પાયાના સિદ્ધાંતોનો અભ્યાસ કરીશું.

#### 12.2 ત્રિપરિમાણીય અવકાશમાં યામાક્ષો અને યામ સમતલો

બિંદુ O આગળ છેદતાં એકબીજાને પરસ્પર લંબ હોય એવા ત્રણ સમતલો લો. (આકૃતિ 12.1) આ ત્રણ સમતલો અનુરૂપ રેખાઓ X'OX, Y'OY અને Z'OZ માં છેદે છે. તેમને અનુક્રમે x-અક્ષ,y-અક્ષ અને z-અક્ષ કહેવાય છે. આપણે એ પણ નોંધીશું કે, આ રેખાઓ એકબીજીને પરસ્પર લંબ છે. આ રેખાઓ લંબાક્ષ યામ-પદ્ધતિનું નિર્માણ કરે છે. સમતલો XOY, YOZ અને ZOX ને અનુક્રમે XY-સમતલ, YZ-સમતલ અને ZX-સમતલ કહે છે. તે ત્રણ યામ-સમતલો તરીકે ઓળખાય છે. આપણે XOY સમતલને કાગળનું સમતલ અને રેખા Z'OZ ને સમતલ XOY ને લંબરેખા તરીકે લઈએ. જો કાગળના સમતલને સમક્ષિતિજ સમતલ લઈએ તો રેખા Z'OZ શિરોલંબ થશે.

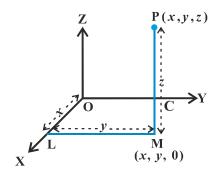


XY- સમતલથી ઊર્ધ્વ તરફ OZ ની દિશામાં અંતર ધન લેવામાં આવે છે તથા અધઃ તરફ OZ' ની દિશામાં અંતર ઋશ લેવામાં આવે છે. આ જ રીતે, ZX-સમતલની જમશી તરફ OY ની દિશામાં અંતર ધન અને ZX-સમતલની ડાબી તરફ OY' ની દિશામાં અંતર ઋશ, YZ-સમતલની સામેની તરફ OX ની દિશામાં અંતર ધન અને પાછળની તરફ OX' ની દિશામાં અંતર ઋશ લેવામાં આવે છે. બિંદુ O ને યામ-પદ્ધતિમાં ઊગમબિંદુ કહે છે. ત્રશેય યામ-સમતલો અવકાશનું અષ્ટાંશો (એકનો આઠમો ભાગ) તરીકે ઓળખાતા આઠ ભાગોમાં વિભાજન કરે છે. આ અષ્ટાંશોનાં નામ અનુક્રમે XOYZ, X'OYZ, X'OY'Z, XOY'Z, XOYZ', X'OYZ', X'OY'Z' અને XOY'Z' છે અને તેઓ અનુક્રમે અષ્ટાંશો I, II, III, ..., VIII સંકેતોથી દર્શાવાય છે.

#### 12.3 અવકાશમાં બિંદુના યામ

યામાક્ષો, યામ-સમતલો અને ઊગમબિંદુ ધરાવતી નિયત યામ-પદ્ધતિની પસંદગી કર્યા પછી, હવે આપણે એ વર્ણવીશું કે અવકાશમાં આપેલ બિંદુ સાથે કેવી રીતે ત્રણ યામ  $(x,\ y,\ z)$  સાંકળી શકાય અને એથી ઊલટું આપેલ સંખ્યાઓના ત્રય  $(x,\ y,\ z)$  કેવી રીતે અવકાશમાં બિંદુ દર્શાવે છે.

અવકાશમાં બિંદુ P આપેલ છે. આપણે XY- સમતલ પર લંબ PM દોરીશું. M એ લંબનો લંબપાદ છે.(આકૃતિ 12.2.) હવે આપણે બિંદુ M થી x-અક્ષને L માં મળે એવો લંબ ML દોરીશું. તે x-અક્ષને L આગળ મળે છે. OL ને x, LM ને y અને MP ને z લો. અહીં x, y અને z ને અવકાશમાં બિંદુ P ના અનુક્રમે x, y અને z-યામ કહેવાય છે. આકૃતિ 12.2 પરથી આપણે નોંધી શકીએ કે, બિંદુ P (x,y,z) એ અષ્ટાંશ XOYZ માં આવેલ છે અને તેથી બધા x, y, z ધન છે. જો બિંદુ P અન્ય કોઈ અષ્ટાંશમાં હોત તો, x, y અને z ની સંજ્ઞા તેને અનુરૂપ બદલાઈ હોત. આમ, અવકાશના પ્રત્યેક બિંદુ P ને અનુરૂપ વાસ્તિવિક સંખ્યાઓના ક્રમિક ત્રય (x,y,z) સંકળાયેલાં છે.



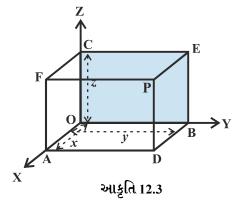
આકૃતિ 12.2

આનાથી ઊલટી રીતે, આપેલ કોઈપણ ત્રય (x, y, z) ને સંગત સૌપ્રથમ આપણે x-અક્ષ પર બિંદુ L એ x ને અનુરૂપ નિયત કરીશું, ત્યાર બાદ XY-સમતલમાં એવું બિંદુ M નિવિષ્ટ કરીશું કે જેથી (x, y) એ બિંદુ XY-સમતલમાં M ના યામ હોય. અહીં એ નોંધીશું કે,

LM એ x-અક્ષને લંબ અથવા y-અક્ષને સમાંતર છે. બિંદુ M સુધી પહોંચીને XY-સમતલ પર લંબ MP દોરીશું અને z ને અનુરૂપ બિંદુ P દર્શાવીશું. આ રીતે મેળવેલા બિંદુ P ના યામ ત્યાર બાદ (x, y, z) થશે. આમ, અવકાશનાં બિંદુઓ અને વાસ્તવિક સંખ્યાઓનાં ક્રમિક ત્રય વચ્ચે એક-એક સંગતતા અસ્તિત્વ ધરાવે છે.

અન્યથા, અવકાશના બિંદુ  ${f P}$  માંથી યામ-સમતલોને સમાંતર ત્રણ સમતલો એવા મળે કે જે x- અક્ષ, y-અક્ષ

અને z-અક્ષને અનુક્રમે બિંદુઓ A, B અને C માં છેદે. (આકૃતિ 12.3.) હવે, OA = x, OB = y અને OC = z લો. તેથી બિંદુ P ના યામ x, y અને z થશે અને આપણે P(x, y, z) લખીશું. એથી ઊલટી રીતે, આપણે આપેલ x, y અને z ને સંગત ત્રણ બિંદુઓ A, B અને C ને ત્રણેય યામાક્ષો પર દર્શાવીશું. આપણે બિંદુઓ A, B અને C માંથી અનુક્રમે YZ-સમતલ, ZX-સમતલ અને XY-સમતલને સમાંતર સમતલો દોરીશું. આ ત્રણેય સમતલો ADPF, BDPE અને CEPF નું છેદબિંદુ એ સ્પષ્ટપણે બિંદુ P છે, જે ક્રમિક ત્રય (x, y, z) ને અનુરૂપ છે. આપણે અત્રે એ નિરીક્ષણ કરીએ કે જો P(x, y, z) એ અવકાશનું



કોઈ બિંદુ હોય તો x,y અને z એ અનુક્રમે YZ, ZX અને XY સમતલોથી લંબઅંતરો છે.

ightharpoonup 
i

નોંધ : બિંદુના યામોની સંજ્ઞા નિર્દેશ કરે છે કે બિંદુ કયા અપ્ટાંશમાં છે. નીચેનું કોષ્ટક આઠ અપ્ટાંશમાં યામોની સંજ્ઞા દર્શાવે છેઃ

કોષ્ટક 12.1

ઉદાહરણ 1 : આકૃતિ 12.3 માં જો P (2, 4, 5) હોય તો F ના યામ શોધો.

ઉકેલ ઃ બિંદુ F માટે, OY ની દિશામાં અંતરનું માપ શૂન્ય છે. તેથી બિંદુ F ના યામ (2, 0, 5) થશે.

ઉદાહરણ 2 : બિંદુઓ (-3, 1, 2) અને (-3, 1, -2) કયા અષ્ટાંશમાં આવેલ છે, તે શોધો.

ઉકેલ : કોષ્ટક 12.1 પરથી, બિંદુઓ (–3, 1, 2) દ્વિતીય અષ્ટાંશમાં અને બિંદુ (–3, 1, –2) છકા અષ્ટાંશમાં આવેલા છે.

#### स्वाध्याय 12.1

- 1. એક બિંદુ x-અક્ષ પર આવેલ છે. તે બિંદુના y-યામ અને z-યામ શું થશે ?
- 2. એક બિંદુ XZ- સમતલમાં છે. તે બિંદુના y-યામ અંગે શું કહેશો ?
- નીચે આપેલાં બિંદુઓ કયા અષ્ટાંશમાં છે તે જણાવો :
   (1, 2, 3), (4, -2, 3), (4, -2, -5), (4, 2, -5), (-4, 2, -5), (-4, 2, 5), (-3, -1, 6), (2, -4, -7)

#### 4. ખાલી જગ્યા પૂરો :

- (i) x-અક્ષ અને y-અક્ષ બંને સાથે મળીને જે સમતલનું નિર્માણ કરે છે તે.....થી ઓળખાય છે.
- (ii) XY-સમતલમાં બિંદુઓના યામ.....સ્વરૂપે હોય છે.
- (iii) યામ-સમતલો અવકાશનું.....અષ્ટાંશોમાં વિભાજન કરે છે.

#### 12.4 બે બિંદુઓ વચ્ચેનું અંતર

દ્વિપરિમાણીય યામ-પદ્ધતિમાં આપણે બે બિંદુઓ વચ્ચેના અંતર વિશે અભ્યાસ કર્યો છે. ચાલો, હવે આપણે આ અભ્યાસને ત્રિપરિમાણીય પદ્ધતિમાં વિસ્તૃત કરીએ.

ધારો કે  $P(x_1,y_1,z_1)$  અને Q (  $x_2,y_2,z_2$ ) એ લંબાક્ષ પદ્ધતિના અક્ષો OX, OY અને OZ ને સાપેક્ષ બે બિંદુઓ છે. જેનો એક વિકર્ણ PQ હોય તેવો લંબઘન રચવા માટે યામ-સમતલોને સમાંતર હોય એવા સમતલો બિંદુઓ P અને Q માંથી દોરો. (આકૃતિ 12.4) હવે,  $\angle PAQ$  કાટખૂણો હોવાથી ત્રિકોણ PAQ પરથી,

$$PQ^2 = PA^2 + AQ^2$$
 ...(1)

વળી, ત્રિકોણ ANQ એ કાટકોણ ત્રિકોણ છે તથા ∠ANQ એ કાટખૂણો છે.

માટે 
$$AQ^2 = AN^2 + NQ^2 \qquad ...(2)$$

$$(1) અને (2) પરથી,$$

$$PQ^2 = PA^2 + AN^2 + NQ^2 મળે છે.$$
હવે, 
$$PA = y_2 - y_1, AN = x_2 - x_1 અને NQ = z_2 - z_1$$
તેથી, 
$$PQ^2 = (x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2$$

$$\therefore PQ = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

Q 90 P 90 N N V

આ સૂત્ર આપણને બે બિંદુઓ  $(x_1,\,y_1,\,z_1)$  અને  $(x_2,\,y_2,\,z_2)$  વચ્ચેનું અંતર આપે છે.

વિશિષ્ટ વિકલ્પમાં  $x_1 = y_1 = z_1 = 0$  હોય, તો એટલે કે બિંદુ P ઊગમબિંદુ O હોય, તો  $OQ = \sqrt{{x_2}^2 + {y_2}^2 + {z_2}^2}$ . આ સૂત્ર ઊગમબિંદુ O અને કોઈ પણ બિંદુ Q  $(x_2, y_2, z_2)$  વચ્ચેનું અંતર આપે છે.

ઉદાહરણ 3 : બિંદુઓ P(1, -3, 4) અને Q (-4, 1, 2) વચ્ચેનું અંતર શોધો.

ઉંકેલ : બિંદુઓ P (1,-3, 4) અને Q (-4, 1, 2) વચ્ચેનું અંતર PQ હોય, તો

PQ = 
$$\sqrt{(-4-1)^2 + (1+3)^2 + (2-4)^2}$$
  
=  $\sqrt{25+16+4}$   
=  $\sqrt{45} = 3\sqrt{5}$  એકમ

<mark>ઉદાહરણ 4</mark> : સાબિત કરો કે બિંદુઓ P (−2, 3, 5), Q (1, 2, 3) અને R (7, 0, −1) સમરેખ છે.

ઉકેલ : આપણે જાણીએ છીએ કે જો બિંદુઓ એક રેખા પર આવેલાં હોય તો તેમને સમરેખ બિંદુઓ કહે છે.

eq, 
$$PQ = \sqrt{(1+2)^2 + (2-3)^2 + (3-5)^2} = \sqrt{9+1+4} = \sqrt{14}$$

$$QR = \sqrt{(7-1)^2 + (0-2)^2 + (-1-3)^2} = \sqrt{36+4+16} = \sqrt{56} = 2\sqrt{14}$$

અને 
$$PR = \sqrt{(7+2)^2 + (0-3)^2 + (-1-5)^2} = \sqrt{81+9+36} = \sqrt{126} = 3\sqrt{14}$$

આમ, PQ + QR = PR.

તેથી P, Q અને R સમરેખ છે.

ઉદાહરણ 5 : શું બિંદુઓ A (3, 6, 9), B (10, 20, 30) અને C (25, – 41, 5) એ કાટકોણ ત્રિકોણનાં શિરોબિંદુઓ છે ?

ઉકેલ : અંતરસૂત્ર પ્રમાણે આપણી પાસે,

$$AB^2 = (10-3)^2 + (20-6)^2 + (30-9)^2$$

$$=49+196+441=686$$

$$BC^2 = (25-10)^2 + (-41-20)^2 + (5-30)^2$$

$$=225+3721+625=4571$$

$$CA^2 = (3-25)^2 + (6+41)^2 + (9-5)^2$$

$$=484 + 2209 + 16 = 2709$$

સ્પષ્ટ છે કે,  $CA^2 + AB^2 \neq BC^2$ . સૌથી મોટી બાજુ BC છે.

આથી  $\triangle$  ABC કાટકોણ ત્રિકોણ નથી.

ઉદાહરણ 6: જો A અને B અનુક્રમે બિંદુઓ (3, 4, 5) અને (-1, 3, -7) હોય, તો  $PA^2 + PB^2 = 2k^2$  થાય એવા બિંદુ P ના બિંદુગણનું સમીકરણ મેળવો.

ઉકેલ : ધારો કે બિંદુ P ના યામ (x, y, z) છે.

અહીં, PA<sup>2</sup> = 
$$(x-3)^2 + (y-4)^2 + (z-5)^2$$

$$PB^2 = (x + 1)^2 + (y - 3)^2 + (z + 7)^2$$

આપેલ શરત પ્રમાણે  $PA^2 + PB^2 = 2k^2$ 

$$\therefore (x-3)^2 + (y-4)^2 + (z-5)^2 + (x+1)^2 + (y-3)^2 + (z+7)^2 = 2k^2$$

એટલે કે, 
$$2x^2 + 2y^2 + 2z^2 - 4x - 14y + 4z = 2k^2 - 109$$
.

#### સ્વાધ્યાય 12.2

- 1. આપેલ બિંદુઓની જોડ વચ્ચેનું અંતર શોધો :
  - (i) (2,3,5) અને (4,3,1)

(ii) (-3, 7, 2) અને (2, 4, -1)

(iii) (-1, 3, -4) અને (1, -3, 4)

(iv)(2,-1,3) અને (-2,1,3)

- **2.** સાબિત કરો કે બિંદુઓ (−2, 3, 5), (1, 2, 3) અને (7, 0, −1) સમરેખ છે.
- 3. નીચે આપેલાં વિધાનો ચકાસો :
  - (i) (0, 7, -10), (1, 6, -6) અને (4, 9, -6) એ સમિદ્ધિભૂજ ત્રિકોણનાં શિરોબિંદુઓ છે.
  - (ii) (0, 7, 10), (-1, 6, 6) અને (-4, 9, 6) એ કાટકોણ ત્રિકોણનાં શિરોબિંદુઓ છે.
  - (iii) (-1, 2, 1), (1, -2, 5), (4, -7, 8) અને (2, -3, 4) એ સમાંતરબાજુ ચતુષ્કોણનાં શિરોબિંદુઓ છે.
- **4.** બિંદુઓ (1, 2, 3) અને (3, 2, -1) થી સમાન અંતરે આવેલાં બિંદુઓના ગણનું સમીકરણ મેળવો.
- 5. બિંદુ A(4,0,0) અને B(-4,0,0) થી જેમનાં અંતરોનો સરવાળો 10 થતો હોય તેવા બિંદુગણ P નું સમીકરણ મેળવો.

#### 12.5 विभाषन सूत्र

દ્વિપરિમાણીય ભૂમિતિમાં રેખાખંડનું આપેલ ગુણોત્તરમાં અંતઃવિભાજન કરતાં બિંદુના યામ કેવી રીતે શોધવા તેનો અભ્યાસ આપણે કર્યો છે. હવે, નીચે દર્શાવ્યા પ્રમાણે આપણે આ ક્રિયાને ત્રિપરિમાણીય ભૂમિતિમાં વિસ્તૃત કરીશું.

ધારો કે બે બિંદુઓ  $P(x_1, y_1, z_1)$  અને  $Q(x_2, y_2, z_2)$  આપેલ છે અને બિંદુ R(x, y, z) એ PQ નું આપેલ ગુણોત્તર m:n માં અંતઃવિભાજન કરે છે. XY-સમતલ પર PL, QM અને RN લંબ દોરો. સ્પષ્ટપણે  $PL \parallel RN \parallel QM$  અને આ લંબોના લંબપાદ XY-સમતલ પર છે. PL, RN અને QM ને સમાવતા સમતલ અને XY-સમતલનો છેદ એ L, M અને N ને સમાવતી રેખા છે. R માંથી રેખા LM ને સમાંતર રેખા ST દોરો. રેખા ST એ રેખા LP નું બિંદુ S માં બહારથી વિભાજન કરે છે અને રેખા MQ ને T આગળ છેદે છે. આકૃતિ 12.5 માં દર્શાવ્યા પ્રમાણે,

એ પણ જુઓ કે બંને ચતુર્ભુજ LNRS અને NMTR સમાંતરબાજુ ચતુષ્કોણ છે. ત્રિકોણો PSR અને QTR સમરૂપ છે. માટે,

$$\frac{m}{n} = \frac{PR}{QR} = \frac{SP}{QT} = \frac{SL - PL}{QM - TM} = \frac{NR - PL}{QM - NR} = \frac{z - z_1}{z_2 - z}$$

આ દર્શાવે છે કે, 
$$z = \frac{mz_2 + nz_1}{m+n}$$

આ જ પ્રમાણે, XZ અને YZ-સમતલો પર લંબ દોરીને,

$$y = \frac{my_2 + ny_1}{m+n}$$
 અને  $x = \frac{mx_2 + nx_1}{m+n}$  મેળવી શકાય.

આમ, બે બિંદુઓ P  $(x_1,\,y_1,\,z_1)$  અને Q  $(x_2,\,y_2,\,z_2)$  ને જોડતાં રેખાખંડનું ગુણોત્તર m:n માં અંતઃવિભાજન કરતા બિંદુ R ના યામ



આકૃતિ 12.5

$$\left(\frac{mx_2+nx_1}{m+n},\frac{my_2+ny_1}{m+n},\frac{mz_2+nz_1}{m+n}\right) \ \ \text{મળે છે}.$$

જો બિંદુ  $\mathbf{R}$  એ રેખાખંડ  $\mathbf{PQ}$  નું m:n ગુણોત્તરમાં બહિર્વિભાજન કરે તો તેના યામ n ને બદલે -n લખીને મેળવી શકાય છે. તેથી બિંદુ  $\mathbf{R}$  ના યામ

$$\left(\frac{mx_2 - nx_1}{m - n}, \frac{my_2 - ny_1}{m - n}, \frac{mz_2 - nz_1}{m - n}\right)$$

વિશિષ્ટ વિકલ્પ 1 મધ્યબિંદુના યામ : જો R એ PQ નું મધ્યબિંદુ હોય, તો

$$m: n=1:1$$
 માટે  $x=\frac{x_1+x_2}{2}, \quad y=\frac{y_1+y_2}{2}$  અને  $z=\frac{z_1+z_2}{2}$ .

આ બિંદુઓ  $P(x_1, y_1, z_1)$  અને  $Q(x_2, y_2, z_2)$  ને જોડતાં રેખાખંડના મધ્યબિંદુના યામ છે.

**વિશિષ્ટ વિકલ્પ 2 :** જો બિંદુ R એ રેખાખંડ PQ નું k : 1 ગુણોત્તરમાં વિભાજન કરે તો,  $k = \frac{m}{n}$  લેતાં બિંદુ R ના યામ

$$\left(\frac{kx_2+x_1}{1+k}, \frac{ky_2+y_1}{1+k}, \frac{kz_2+z_1}{1+k}\right) મળે છે.$$

સામાન્ય રીતે, આપેલ બે બિંદુઓમાંથી પસાર થતી રેખા પર કોઈ પણ બિંદુ શોધો એવા પ્રકારના પ્રશ્નોના ઉકેલ મેળવવા માટે આ પરિણામનો ઉપયોગ થાય છે.

ઉદાહરણ 7 : બિંદુઓ (1, -2, 3) અને (3, 4, -5) ને જોડતાં રેખાખંડનું 2 : 3 ગુણોત્તરમાં (i) અંતઃવિભાજન અને (ii) બહિર્વિભાજન કરતાં બિંદુના યામ મેળવો.

ઉકેલ : (i) ધારો કે બિંદુ P(x, y, z) એ A(1, -2, 3) અને B(3, 4, -5) ને જોડતાં રેખાખંડનું 2:3 ગુણોત્તરમાં અંતઃવિભાજન કરે છે.

માટે, 
$$x = \frac{2(3) + 3(1)}{2 + 3} = \frac{9}{5}, \ y = \frac{2(4) + 3(-2)}{2 + 3} = \frac{2}{5}, \ z = \frac{2(-5) + 3(3)}{2 + 3} = \frac{-1}{5}$$

આમ, માંગેલ બિંદુ 
$$\left(\frac{9}{5}, \frac{2}{5}, \frac{-1}{5}\right)$$
 છે.

(ii) ધારો કે બિંદુ P(x, y, z) એ A(1, -2, 3) અને B(3, 4, -5) ને જોડતાં રેખાખંડનું ગુણોત્તર 2:3 માં બહિર્વિભાજન કરે છે.

$$x = \frac{2(3) + (-3)(1)}{2 + (-3)} = -3$$
,  $y = \frac{2(4) + (-3)(-2)}{2 + (-3)} = -14$ ,  $z = \frac{2(-5) + (-3)(3)}{2 + (-3)} = 19$ 

આમ, માંગેલ બિંદુ (-3, -14, 19) છે.

ઉદાહરણ 8: વિભાજન સૂત્રનો ઉપયોગ કરીને સાબિત કરો કે બિંદુઓ (-4,6,10),(2,4,6) અને (14,0,-2) સમરેખ છે.

ઉકેલ: અહીં, A (-4, 6, 10), B (2, 4, 6) અને C(14, 0, -2) એ આપેલ બિંદુઓ છે.

ધારો કે બિંદુ  $\mathbf{P}$  એ  $\mathbf{A}\mathbf{B}$  નું k:1 ગુણોત્તરમાં વિભાજન કરે છે. આથી બિંદુ  $\mathbf{P}$  ના યામ,

$$\left(\frac{2k-4}{k+1}, \quad \frac{4k+6}{k+1}, \quad \frac{6k+10}{k+1}\right)$$

હવે આપણે એ ચકાસીએ કે k ની કોઈ કિંમત માટે બિંદુઓ  ${
m P}$  અને  ${
m C}$  સમાન છે કે નહિં.

$$\frac{2k-4}{k+1} = 14$$
 મૂકતાં,  $k = -\frac{3}{2}$  મળે છે.

જયારે 
$$k = -\frac{3}{2}$$
, ત્યારે  $\frac{4k+6}{k+1} = \frac{4\left(-\frac{3}{2}\right)+6}{-\frac{3}{2}+1} = 0$ 

ત્રિપરિમાણીય ભૂમિતિનો પરિચય

259

અને

$$\frac{6k+10}{k+1} = \frac{6\left(-\frac{3}{2}\right)+10}{-\frac{3}{2}+1} = -2$$

માટે, C(14,0,-2) બિંદુ પોતે જ AB નું ગુણોત્તર 3:2 માં બહિર્વિભાજન કરે છે અને એ જ બિંદુ P છે. આમ, A,B,C સમરેખ બિંદુઓ છે.

ઉદાહરણ 9 : જો ત્રિકોણનાં શિરોબિંદુઓના યામ  $(x_1,y_1,z_1)$ ,  $(x_2,y_2,z_2)$  અને  $(x_3,y_3,z_3)$  હોય તો તે ત્રિકોણનું મધ્યકેન્દ્ર શોધો. ઉકેલ : ધારો કે ત્રિકોણ ABC નાં શિરોબિંદુઓ A, B, C ના યામ અનુક્રમે  $(x_1,y_1,z_1)$ ,  $(x_2,y_2,z_2)$  અને  $(x_3,y_3,z_3)$  છે. જો D એ BC નું મધ્યબિંદુ હોય તો, D ના યામ

$$\left(\frac{x_2+x_3}{2}, \frac{y_2+y_3}{2}, \frac{z_2+z_3}{2}\right)$$
 છે.

ધારો કે G એ ત્રિકોણનું મધ્યકેન્દ્ર છે. માટે, તે મધ્યગા AD નું 2 : 1 ગુણોત્તરમાં વિભાજન કરે છે. તેથી G ના યામ,

$$\left(\frac{2\left(\frac{x_2+x_3}{2}\right)+x_1}{2+1}, \frac{2\left(\frac{y_2+y_3}{2}\right)+y_1}{2+1}, \frac{2\left(\frac{z_2+z_3}{2}\right)+z_1}{2+1}\right)$$

અથવા

$$\left(\frac{x_1+x_2+x_3}{3}, \frac{y_1+y_2+y_3}{3}, \frac{z_1+z_2+z_3}{3}\right)$$

ઉદાહરણ 10: બિંદુઓ (4, 8, 10) અને (6, 10, -8) ને જોડતાં રેખાખંડનું YZ-સમતલ કયાં ગુણોત્તરમાં વિભાજન કરે છે તે શોધો.

ઉકેલ : ધારો કે YZ-સમતલ બિંદુઓ A(4,8,10) અને B(6,10,-8) ને જોડતાં રેખાખંડનું P(x,y,z) બિંદુએ k:1 ગુણોત્તરમાં વિભાજન કરે છે. તેથી બિંદુ P ના યામ

$$\left(\frac{4+6k}{k+1}, \frac{8+10k}{k+1}, \frac{10-8k}{k+1}\right)$$
 થશે.

બિંદુ P એ YZ-સમતલમાં છે. તેથી તેનો x-યામ શૂન્ય છે એટલે કે  $\frac{4+6k}{k+1}=0.$ 

અથવા 
$$k = -\frac{2}{3}$$

આમ, YZ-સમતલ AB નું 2 : 3 ગુણોત્તરમાં બહિર્વિભાજન કરે છે.

#### સ્વાધ્યાય 12.3

- 1. બિંદુઓ (-2, 3, 5) અને (1,-4, 6) ને જોડતા રેખાખંડનું (i) 2 : 3 ગુણોત્તરમાં અંતઃવિભાજન (ii) 2 : 3 ગુણોત્તરમાં બહિર્વિભાજન વિભાજન કરતાં બિંદુઓના યામ શોધો.
- 2. સમરેખ બિંદુઓ P(3, 2, -4), Q(5, 4, -6) અને R(9, 8, -10) આપેલ છે. બિંદુ Q એ PR નું કયા ગુણોત્તરમાં વિભાજન કરે છે તે શોધો.

- 3. બિંદુઓ (–2, 4, 7) અને (3, –5, 8) ને જોડતા રેખાખંડનું YZ-સમતલ કયા ગુણોત્તરમાં વિભાજન કરે છે તે શોધો.
- 4. વિભાજન-સૂત્રનો ઉપયોગ કરીને સાબિત કરો કે બિંદુઓ A (2, -3, 4), B (-1, 2, 1) અને  $C\left(0, \frac{1}{3}, 2\right)$  સમરેખ છે.
- 5. બિંદુઓ P(4, 2, -6) અને Q(10, -16, 6) ને જોડતા રેખાખંડનું ત્રિભાજન કરતા બિંદુઓના યામ શોધો.

#### પ્રકીર્ણ ઉદાહરણો

ઉદાહરણ 11 : સાબિત કરો કે બિંદુઓ A (1, 2, 3), B (-1, -2, -1), C (2, 3, 2) અને D (4, 7, 6) એ સમાંતરબાજુ ચતુષ્કોણ ABCDનાં શિરોબિંદુઓ છે પરંતુ લંબચોરસનાં શિરોબિંદુઓ નથી.

ઉકેલ : ABCD ને સમાંતરબાજુ ચતુષ્કોણ બતાવવા માટે સામસામેની બાજુઓના માપ સમાન છે તે બતાવવું જરૂરી છે. અહીં,

AB = 
$$\sqrt{(-1-1)^2 + (-2-2)^2 + (-1-3)^2}$$
 =  $\sqrt{4+16+16}$  = 6  
BC =  $\sqrt{(2+1)^2 + (3+2)^2 + (2+1)^2}$  =  $\sqrt{9+25+9}$  =  $\sqrt{43}$   
CD =  $\sqrt{(4-2)^2 + (7-3)^2 + (6-2)^2}$  =  $\sqrt{4+16+16}$  = 6  
DA =  $\sqrt{(1-4)^2 + (2-7)^2 + (3-6)^2}$  =  $\sqrt{9+25+9}$  =  $\sqrt{43}$ 

સ્પષ્ટ છે કે, AB = CD અને BC = DA હોવાથી, ABCD એ સમાંતરબાજુ ચતુષ્કોણ છે.

હવે, ABCD લંબચોરસ નથી તે સાબિત કરીશું. તેના માટે વિકર્જ્યો AC અને BD સમાન નથી તે સાબિત કરીશું.

eq. AC = 
$$\sqrt{(2-1)^2 + (3-2)^2 + (2-3)^2} = \sqrt{1+1+1} = \sqrt{3}$$
  
BD =  $\sqrt{(4+1)^2 + (7+2)^2 + (6+1)^2} = \sqrt{25+81+49} = \sqrt{155}$ 

અહીં, AC ≠ BD હોવાથી ABCD લંબચોરસ નથી.

<del>િ નોંધ</del> વિકર્શો AC અને BD એકબીજાને દુભાગે છે. તે ગુણધર્મનો ઉપયોગ કરીને પણ ABCD સમાંતરબાજુ ચતુષ્કોણ છે એમ બતાવી શકાય.

ઉદાહરણ 12 ઃ બિંદુઓ A (3, 4, –5) અને B (– 2, 1, 4) થી સમાન અંતરે હોય તેવાં બિંદુઓ P ના ગણનું સમીકરણ શોધો.

ઉકેલ : ધારો કે, PA = PB થાય તેવું કોઈ બિંદુ P (x, y, z) છે.

હવે, 
$$\sqrt{(x-3)^2 + (y-4)^2 + (z+5)^2} = \sqrt{(x+2)^2 + (y-1)^2 + (z-4)^2}$$
  
અથવા  $(x-3)^2 + (y-4)^2 + (z+5)^2 = (x+2)^2 + (y-1)^2 + (z-4)^2$   
અથવા  $10x + 6y - 18z - 29 = 0$ .

ઉદાહરણ 13: બિંદુ (1, 1, 1) એ ત્રિકોણ ABC નું મધ્યકેન્દ્ર છે. જો A અને B ના યામ અનુક્રમે (3, -5, 7) અને (-1, 7, -6), હોય તો બિંદુ C ના યામ શોધો.

261

 $\mathbf{6}$ કેલ : ધારો કે બિંદુ C ના યામ (x,y,z) છે અને ત્રિકોણ ABCના મધ્યકેન્દ્રના યામ (1,1,1) છે.

માટે 
$$\frac{x+3-1}{3}=1, \text{ એટલે } \hat{\textbf{s}}, \ x=1; \qquad \frac{y-5+7}{3}=1, \text{ એટલે } \hat{\textbf{s}}, \ y=1; \qquad \frac{z+7-6}{3}=1, \text{ એટલે } \hat{\textbf{s}}, \ z=2.$$
 આમ, બિંદુ C ના યામ  $(1,1,2)$  છે.

#### પ્રકીર્ણ સ્વાધ્યાય 12

- 1. A(3, -1, 2), B(1, 2, -4) અને C(-1, 1, 2) એ સમાંતરબાજુ ચતુષ્કોણ ABCD નાં શિરોબિંદુઓ હોય, તો ચોથા શિરોબિંદુના યામ શોધો.
- 2. A(0, 0, 6), B(0,4,0) અને C(6, 0, 0) શિરોબિંદુઓવાળા ત્રિકોશની મધ્યગાઓની લંબાઈ શોધો.
- 3.  $\Delta$  PQR નાં શિરોબિંદુઓ P (2a, 2, 6), Q (-4, 3b, -10) અને R(8, 14, 2c) હોય તથા મધ્યકેન્દ્ર ઊગમબિંદુ હોય, તો a, b અને c નાં મૂલ્યો શોધો.
- **4.** બિંદુ P(3, -2, 5) થી  $5\sqrt{2}$  અંતરે આવેલા y-અક્ષ પરના બિંદુના યામ શોધો.
- 5. P(2, -3, 4) અને Q(8, 0, 10) ને જોડતાં રેખાખંડ પર આવેલાં બિંદુ R નો x-યામ 4 હોય, તો બિંદુ R ના યામ શોધો.

[સૂચનઃ ધારો કે R એ PQ નું ગુણોત્તર 
$$k$$
 : 1 માં વિભાજન કરે છે, તેથી બિંદુ R ના યામ  $\left(\frac{8k+2}{k+1},\frac{-3}{k+1},\frac{10k+4}{k+1}\right)$ ].

6. જો A (3, 4, 5) અને B (-1, 3, -7) આપેલ બિંદુઓ હોય. તો એવા બિંદુઓ P ના બિંદુ ગણનું સમીકરણ મેળવો કે જેથી  $PA^2 + PB^2 = k^2$  થાય. જ્યાં k અચળ છે.

#### સારાંશ

- ♦ ત્રિપરિમાણમાં, યામાક્ષો એ લંબાક્ષ યામ-પદ્ધતિમાં પરસ્પર લંબરેખાઓ છે. અક્ષોને x,y અને z-અક્ષો કહે છે.
- ♦ અક્ષોની જોડ દ્વારા નિર્મિત થયેલાં ત્રણ સમતલોને યામ-સમતલો કહે છે. તે XY, YZ અને ZX-સમતલો છે.
- ♦ ત્રણ યામ સમતલો અવકાશને આઠ ભાગોમાં વિભાજિત કરે છે. પ્રત્યેક ભાગ *અષ્ટાંશ* તરીકે ઓળખાય છે.
- ♦િત્રપરિમાણીય ભૂમિતિમાં બિંદુ P ના યામ હંમેશાં ત્રય સ્વરૂપે (x, y, z) તરીકે લખાય છે. અહીં, x, y અને z એ અનુક્રમે P નાં YZ, ZX અને XY-સમતલોથી અંતર દર્શાવે છે.
- (i) x-અક્ષ પરના કોઈ પણ બિંદુનું સ્વરૂપ (x, 0, 0) છે.
  - (ii) y-અક્ષ પરના કોઈ પણ બિંદુનું સ્વરૂપ (0, y, 0) છે.
  - (iii) z-અક્ષ પરના કોઈ પણ બિંદુનું સ્વરૂપ (0, 0, z) છે.
- બિંદુઓ  $P(x_1, y_1, z_1)$  અને  $Q(x_2, y_2, z_2)$  વચ્ચેનું અંતર  $PQ = \sqrt{(x_2 x_1)^2 + (y_2 y_1)^2 + (z_2 z_1)^2}$
- બિંદુઓ  $P(x_1,y_1,z_1)$  અને  $Q(x_2,y_2,z_2)$  ને જોડતાં રેખાખંડનું અંતઃ(અંદરથી) અને બાલ્ય(બહારથી) ગુણોત્તર m:n માં વિભાજન કરતાં બિંદુ R ના યામ અનુક્રમે નીચે પ્રમાણે દર્શાવાય છેઃ

$$\left(\frac{mx_2 + nx_1}{m + n}, \frac{my_2 + ny_1}{m + n}, \frac{mz_2 + nz_1}{m + n}\right) અને \left(\frac{mx_2 - nx_1}{m - n}, \frac{my_2 - ny_1}{m - n}, \frac{mz_2 - nz_1}{m - n}\right).$$

- ♦ બિંદુઓ  $P(x_1, y_1, z_1)$  અને  $Q(x_2, y_2, z_2)$  ને જોડતા રેખાખંડના મધ્યબિંદુના યામ  $\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}, \frac{z_1 + z_2}{2}\right)$  છે.
- ♦ ત્રિકોશનાં શિરોબિંદુઓ  $(x_1,\ y_1,\ z_1),\ (x_2,\ y_2,\ z_2)$  અને  $(x_3,\ y_3,\ z_3)$  હોય તે ત્રિકોશના મધ્યકેન્દ્રના યામ  $\left(\frac{x_1+x_2+x_3}{3},\frac{y_1+y_2+y_3}{3},\frac{z_1+z_2+z_3}{3}\right)$  છે.

#### Historical Note

Rene' Descartes (1596–1650), the father of analytical geometry, essentially dealt with plane geometry only in 1637. The same is true of his co-inventor Pierre Fermat (1601–1665) and La Hire (1640–1718). Although suggestions for the three dimensional coordinate geometry can be found in their works but no details. Descartes had the idea of coordinates in three dimensions but did not develop it.

J.Bernoulli (1667-1748) in a letter of 1715 to Leibnitz introduced the three coordinate planes which we use today. It was Antoinne Parent (1666-1716), who gave a systematic development of analytical solid geometry for the first time in a paper presented to the French Academy in 1700.

L.Euler (1707-1783) took up systematically the three dimensional coordinate geometry, in Chapter 5 of the appendix to the second volume of his "Introduction to Geometry" in 1748.

It was not until the middle of the nineteenth century that geometry was extended to more than three dimensions, the well-known application of which is in the Space-Time Continuum of Einstein's Theory of Relativity.



# લક્ષ અને વિકલન

**❖** With the Calculus as a key, Mathematics can be successfully applied to the explanation of the course of Nature − WHITEHEAD ❖

#### 13.1 પ્રાસ્તાવિક

આ પ્રકરણ કલનશાસ્ત્રનું પ્રવેશક છે. જેમાં મુખ્યત્વે વિધેયના પ્રદેશનાં મૂલ્યોને થતાં ફેરફારને અનુરૂપ વિધેયનાં મૂલ્યોમાં થતાં ફેરફાર વિશે વિચારવામાં આવે છે ગણિતની એવી શાખા કલનશાસ્ત્ર છે. આપણે વિકલનનો ત્વરિત ખ્યાલ (તેની વ્યાખ્યા આપ્યા વગર)આપીશું. ત્યાર બાદ આપણે લક્ષની સરળ વ્યાખ્યા આપીશું અને લક્ષના બીજગણિતનો અભ્યાસ કરીશું. ત્યાર બાદ આપણે વિકલનની વ્યાખ્યા પર પાછા ફરીશું અને વિકલનના બીજગણિતનો અભ્યાસ કરીશું. આપણે કેટલાંક પ્રમાણિત વિધેયોના વિકલિત મેળવીશું.

#### 13.2 વિકલનનો સાહજિક ખ્યાલ:

ભૌતિકવિજ્ઞાનના પ્રયોગો દ્વારા એ પ્રમાણિત થયું છે કે ભેખડ પરથી પડતો પદાર્થ t સેકન્ડમાં  $4.9\ t^2$  મીટર જેટલું અંતર કાપે છે અર્થાત્ પદાર્થ કાપેલ અંતર s (મીટરમાં) એ સમય t (સેકન્ડમાં)નું વિધેય છે. તેને  $s=4.9t^2$  વડે દર્શાવી શકાય.



Sir Issac Newton (1642-1727)

પૃષ્ઠ 264 માં આપેલ કોષ્ટક 13.1 ભેખડ પરથી પડતા પદાર્થે જુદી જુદી સેકન્ડના સમયગાળામાં મીટરમાં કાપેલ અંતર દર્શાવે છે. તેનો હેતુ આ માહિતી પરથી t=2 સેકન્ડના સમયે પદાર્થનો વેગ શોધવાનો છે. આ પ્રશ્નનો ઉકેલ મેળવવાની એક રીત t=2 સેકન્ડના સમયના અંતે જુદા જુદા સમયગાળામાં સરેરાશ વેગ પ્રાપ્ત કરવાથી મળે છે અને આશા રાખીએ કે તે t=2 સેકન્ડે મળતા વેગની માહિતી આપશે.

 $t=t_1$  અને  $t=t_2$ વચ્ચેનો સરેરાશ વેગ એ  $t=t_1$  અને  $t=t_2$ સેકન્ડમાં કપાયેલ અંતર અને  $(t_2-t_1)$  નો ગુણોત્તર છે. આથી, પ્રથમ બે સેકન્ડનો સરેરાશ વેગ

$$=rac{t_2=2}{}$$
 અને  $t_1=0$  વચ્ચે કપાયેલ અંતર સમય અંતરાલ  $(t_2-t_1)$ 

$$=\frac{(19.6-0)\text{Hl}}{(2-0)\text{H}}=9.8 \text{ H}/\text{H}$$

આ જ રીતે, t=1 અને t=2 વચ્ચેનો સરેરાશ વેગ

$$\frac{(19.6-4.9) મી}{(2-1) સે} = 14.7 \text{ મી/સ}$$

આ જ રીતે, અલગ અલગ  $t_1$ માટે,  $t=t_1$  અને t=2 વચ્ચેનો સરેરાશ વેગ શોધી શકાય. નીચેનું કોષ્ટક 13.2,  $t=t_1$  સેકન્ડ અને t=2 સેકન્ડ વચ્ચેનો સરેરાશ વેગ (v) આપે છે.

કોષ્ટક 13.1

| t    | S        |
|------|----------|
| 0    | 0        |
| 1    | 4.9      |
| 1.5  | 11.025   |
| 1.8  | 15.876   |
| 1.9  | 17.689   |
| 1.95 | 18.63225 |
| 2    | 19.6     |
| 2.05 | 20.59225 |
| 2.1  | 21.609   |
| 2.2  | 23.716   |
| 2.5  | 30.625   |
| 3    | 44.1     |
| 4    | 78.4     |

#### કોષ્ટક 13.2

| $t_1$ | 0   | 1    | 1.5   | 1.8   | 1.9   | 1.95   | 1.99   |
|-------|-----|------|-------|-------|-------|--------|--------|
| v     | 9.8 | 14.7 | 17.15 | 18.62 | 19.11 | 19.355 | 19.551 |

આપણે કોપ્ટક 13.2 પરથી જોઈ શકીએ કે સરેરાશ વેગ ક્રમશઃ વધતો જાય છે. જો આપણે t=2 આગળ અંત પામતો નાનો સમયગાળો લઈએ તો આપણને t=2 આગળના વેગનો વધુ સારો ખ્યાલ આવે. ધારો કે 1.99 સેકન્ડ અને 2 સેકન્ડ વચ્ચેના સમયગાળામાં કશું જ અનપેક્ષિત (નાટકીય) બનતું નથી. આપણે તારવી શકીએ કે t=2 સેકન્ડે વેગ 19.551 મી/સે થી થોડો વધારે છે.

નીચેની ગણતરીથી આ તારણ થોડું વધુ મજબૂત થશે. t=2 સેકન્ડથી શરૂ થતા જુદા જુદા સમયગાળામાં સરેરાશ વેગની ગણતરી કરીશું. આગળ પ્રમાણે t=2 સેકન્ડ અને  $t=t_2$  સેકન્ડ માટે સરેરાશ વેગ

$$=\frac{t_2 \text{સેકન્ડ અને 2 સેકન્ડ વચ્ચે કાપેલ અંતર}}{t_2-2}$$
 
$$=\frac{t_2 \text{સેકન્ડમાં કાપેલ અંતર} -2 સેકન્ડમાં કાપેલ અંતર}{t_2-2}$$
 
$$=\frac{t_2 \text{સેકન્ડમાં કાપેલ અંતર} -19.6}{t_2-2}$$

નીચેનું કોષ્ટક 13.3,  $t=t_2$  સેકન્ડ અને t=2 સેકન્ડ વચ્ચેનો સરેરાશ વેગ v મી/સે માં દર્શાવે છે.

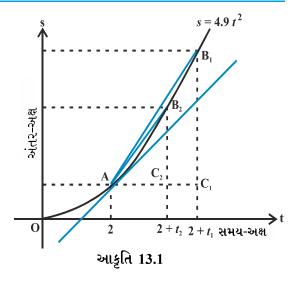
કોષ્ટક 13.3

| $t_2$ | 4    | 3    | 2.5   | 2.2   | 2.1   | 2.05   | 2.01   |
|-------|------|------|-------|-------|-------|--------|--------|
| v     | 29.4 | 24.5 | 22.05 | 20.58 | 20.09 | 19.845 | 19.649 |

અહીં, ફરીથી આપણે નોંધીશું કે t=2 થી શરૂ થતા નાના સમય અંતરાલ માટે, t=2 આગળના વેગનો વધુ સારો ખ્યાલ મળે છે.

લક્ષ અને વિકલન 265

પ્રથમ ગણતરીમાં આપણે t=2 સુધીના વધતા સમયગાળાના અંતરાલમાં સરેરાશ વેગ શોધ્યો અને t=2 પહેલા કાંઈ જ અચાનક અને અનપેક્ષિત ફેરફાર થતો નથી તેમ ધાર્યું હતું. બીજી ગણતરીમાં t=2 પછી t=2 સુધી થતા સમયગાળામાં પણ કાંઈ જ અચાનક અને અનપેક્ષિત ફેરફાર થતો નથી તેમ ધાર્યું હતું. માત્ર ભૌતિકવિજ્ઞાનની રીતે વિચારતાં આ બંને સરેરાશ વેગની શ્રેણીઓ એક જ લક્ષને અનુલક્ષે છે. આપણે સલામત રીતે તારવી શકીએ કે, t=2 આગળનો સરેરાશ વેગ 19.551 મી/સે અને 19.649 મી/સે વચ્ચે હશે. તકનીકી રીતે કહી શકાય કે, t=2 આગળનો વેગ 19.551 મી/સે અને 19.649 મી/સે વચ્ચે હશે. એ તો જાણીતું છે કે વેગ એ સ્થાનાંતરનો દર છે. આથી, આપણે નીચે પ્રમાણેની તારવણી કરી.



વેગ એ જુદા જુદા સમયે કપાતા તાત્ક્ષણિક અંતરના તાત્ક્ષણિક સમય સાથેના ફેરફારનો દર છે. આપણે કહી શકીએ કે અંતર વિધેય  $s=4.9t^2$ ના t=2 આગળના 'વિકલિત' નું મૂલ્ય 19.551 અને 19.649 વચ્ચે હશે.

આકૃતિ 13.1 માં લક્ષનો વિધિ નિહાળવાનો આ એક વૈકલ્પિક માર્ગ છે. આ આલેખ ભેખડની ટોચ પરથી પડતા પદાર્થ જુદા જુદા સમય t વખતે કાપેલ અંતર s નો છે. સમયના અંતરાલની શ્રેણી  $h_1, h_2, \ldots,$  જેમ શૂન્યને અનુલક્ષે તેમ સરેરાશ વેગની શ્રેણી પણ આ જ ગુણોત્તરો દ્વારા બનતી શ્રેણી

$$\frac{C_1B_1}{AC_1}$$
,  $\frac{C_2B_2}{AC_2}$ ,  $\frac{C_3B_3}{AC_3}$ ,...ને અનુલક્ષે.

અહીં  $C_1B_1=s_1-s_0$  એ  $h_1=AC_1$ , સમયગાળામાં પદાર્થે કાપેલ અંતર છે વગેરે. આકૃતિ 13.1 થી નિશ્ચિત રીતે તારવી શકાય કે આ રીતે બનતી શ્રેણી વક્ક પરના બિંદુ A આગળના સ્પર્શકના ઢાળને અનુલક્ષે છે. બીજા શબ્દોમાં કહીએ તો t=2 સમયે પદાર્થનો તાત્ક્ષણિક વેગ v(t) એ  $s=4.9t^2$  વક્કના t=2 આગળના સ્પર્શકના ઢાળ જેટલો છે.

#### 13.3 લક્ષ

લક્ષના વિધિને વધારે સ્પષ્ટતાપૂર્વક સમજવાની જરૂર છે, એવું આપણને આગળની ચર્ચા પરથી સ્પષ્ટ જણાય છે. આપણે કેટલાંક ઉદાહરણો પરથી લક્ષનો સાહજિક ખ્યાલ મેળવીશું.

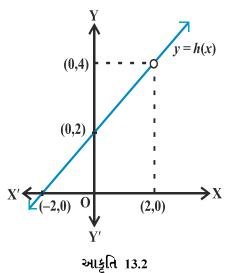
વિધેય  $f(x)=x^2$  લો. જુઓ કે જેમ x નું મૂલ્ય 0 ની નજીક હોય તેમ f(x) પણ 0 ની નજીક જાય છે. (જુઓ આકૃતિ 2.10 પ્રકરણ 2) આપણે કહી શકીએ કે,

$$\lim_{x\to 0} f(x) = 0$$

(જેમ x શૂન્યને અનુલક્ષે તેમ f(x) નું લક્ષ 0 બને તેમ વંચાય). આમ, જેમ x, 0 ને અનુલક્ષે તેમ વિધેય f(x) નું મૂલ્ય 0 છે તેવું અનુમાન કરી શકાય.

વ્યાપક રીતે, જેમ  $x \to a$  તેમ  $f(x) \to l$ , તો l ને *વિધેય* f(x) નું *લક્ષ* કહેવાય છે. આ માહિતીને સંકેતમાં  $\lim_{x \to a} f\left(x\right) = l$  એમ લખાય.

વિધેય  $g(x)=|x|,\ x\neq 0$  નો વિચાર કરો. જુઓ કે g(0) વ્યાખ્યાયિત નથી. x ની કિંમત 0 ની ઘણી નજીક લઈએ તો g(x) નાં મૂલ્યની ગણતરી કરતાં આપણે જોઈ શકીએ તે 0 ની નજીક જતી જાય છે. આથી,  $\lim_{x\to 0}g(x)=0$ .



આ વસ્તુ y = |x| ,  $x \neq 0$  ના આલેખ પરથી ત્વરિત સ્પષ્ટ થાય છે (જુઓ આકૃતિ 2.13, પ્રકરણ 2).

હવે, 
$$h(x) = \frac{x^2 - 4}{x - 2}$$
,  $x \neq 2$  નો વિચાર કરો.

2 ની ઘણી નજીક (પરંતુ 2 નહિ) હોય તેવી x ની કિંમતો લઈને h(x) ની ગણતરી કરીએ. તમે માની શકો કે બધી જ કિંમતો 4 ની નજીક હશે. અહીં, આપેલ વિધેય y = h(x) ના આલેખ પરથી તે વધુ સ્પષ્ટ થાય છે. (આકૃતિ 13.2)

આ બધાં જ ઉદાહરણોમાં વિધેયનું x=a આગળનું મૂલ્ય, x એ a ને કઈ રીતે અનુલક્ષે છે તેના પર આધારિત નથી. નોંધો કે x એ a ને ડાબી અથવા જમણી બાજુથી એમ બે રીતે અનુલક્ષે છે. અર્થાત્ x નાં તમામ મૂલ્યો કે જે a થી નજીક છે તે a થી મોટાં અથવા a થી નાનાં હોઈ શકે. સ્વાભાવિક રીતે તે બે લક્ષ તરફ દોરે છે, જમણી બાજુનું લક્ષ અને ડાબી બાજુનું લક્ષ. વિધેય f(x) ના જમણી બાજુના લક્ષ દ્વારા મળતાં મૂલ્યો એ x, a ને જમણી બાજુથી અનુલક્ષે ત્યારે મળતા f(x) નાં મૂલ્યો જેટલાં છે. આ જ રીતે, ડાબી બાજુના લક્ષનું ઉદાહરણ આપવા, વિધેય

$$f(x) = \begin{cases} 1, & x \le 0 \\ 2, & x > 0 \text{ નો વિચાર કરીએ.} \end{cases}$$

તેનો આલેખ આકૃતિ 13.3 માં દર્શાવેલ છે. વિધેય f ના  $x \le 0$  દ્વારા મળતા f(x)નાં મૂલ્યો લખતાં એ સ્પષ્ટ છે કે f(x) નું 0 આગળનું મૂલ્ય 1 થાય અર્થાત્ વિધેય f(x)નું 0 આગળનું ડાબી બાજુનું લક્ષ  $\lim_{x\to 0} f(x) = 1$  તેમ લખાય.

 $(0,2) \qquad y = f(x)$  (0,1)  $X' \longleftrightarrow X$  Y'

આ જ રીતે, વિધેય f ના x>0 દ્વારા મળતાં f(x) નાં મૂલ્યો લખતાં તે 2 છે. અર્થાત્ વિધેય f(x) નું 0 આગળનું જમણી બાજુનું લક્ષ  $\lim_{x\to 0^+} f(x)=2$  તેમ લખાય.

આ કિસ્સામાં ડાબી તથા જમણી બાજુનાં લક્ષનાં મૂલ્યો અલગ છે અને આથી આપણે કહી

આકૃતિ 13.3

શકીએ કે વિધેય f(x) નું લક્ષ x,0 ને અનુલક્ષે ત્યારે શક્ય નથી. (જો કે અહીં વિધેય x=0 આગળ વ્યાખ્યાયિત છે.)

#### સારાંશ

f ની a થી ડાબી બાજુની x ની કિંમતો માટે  $\lim_{x \to a^-} f(x)$  એ વિધેય f ની x = a આગળ અપેક્ષિત કિંમત છે. x ની a થી જમણી બાજુની કિંમતો માટે x ની a આગળ અપેક્ષિત કિંમત  $\lim_{x \to a^+} f(x)$  છે.

જો ડાબી અને જમણી બાજુના લક્ષનાં મૂલ્યો સમાન હોય, તો આ સામાન્ય કિંમતને f(x) નું x=a આગળનું લક્ષ કહે છે તથા તેનો સંકેત  $\lim_{x\to a}f(x)$  છે.

**દ્રષ્ટાંત** 1: વિધેય f(x) = x + 10 નો વિચાર કરો. આપણે આ વિધેયનું x = 5 આગળનું લક્ષ શોધીશું. આપણે જયારે x ની કિંમત 5 ની ઘણી જ નજીક હોય ત્યારે વિધેય f(x) નાં મૂલ્યો શોધીશું. 5 થી ડાબી તરફની કેટલીક કિંમતો 4.9, 4.95, 4.99, 4.995. . ., વગેરે છે. આ બિંદુઓ આગળના વિધેયનાં મૂલ્યો નીચેના કોષ્ટકમાં દર્શાવેલ છે. આ જ રીતે વાસ્તવિક સંખ્યાઓ 5.001, 5.01, 5.1 5 થી જમણી તરફના નજીકનાં બિંદુઓ છે. વિધેયમાં આ બિંદુઓ આગળનાં મૂલ્યો પણ કોષ્ટક 13.4 માં દર્શાવેલ છે.

કોષ્ટક 13.4

| х    | 4.9  | 4.95  | 4.99  | 4.995  | 5.1  | 5.01  | 5.001  |
|------|------|-------|-------|--------|------|-------|--------|
| f(x) | 14.9 | 14.95 | 14.99 | 14.995 | 15.1 | 15.01 | 15.001 |

લક્ષ અને વિકલન 267

કોષ્ટક 13.4 પરથી, આપણે x=4.995 અને 5.001 વચ્ચેની કિંમત પરથી તારવી શકીએ કે x=5 આગળ f(x) નું મૂલ્ય 14.995 કરતાં મોટું અને 15.001 કરતાં નાનું હશે. એ માનવું યોગ્ય રહેશે કે વિધેય f(x) નું x=5 આગળનું મૂલ્ય 5 ની ડાબી બાજુની સંખ્યાઓ માટે 15 છે અર્થાત્,  $\lim_{x\to 5^-} f(x) = 15$ .

આ જ રીતે જેમ x, 5 ને જમણી તરફથી અનુલક્ષે તેમ f(x) નું મૂલ્ય 15 લઈ શકાય અર્થાત્,  $\lim_{x\to 5^+}f(x)=15$  . આથી, વિધેય f ના ડાબી તથા જમણી બાજુના લક્ષનાં મૂલ્યો 15 હોય તે સંભવિત છે.

આમ, 
$$\lim_{x\to 5^{-}} f(x) = \lim_{x\to 5^{+}} f(x) = \lim_{x\to 5} f(x) = 15$$
.

આ અનુમાન કે, લક્ષનું મૂલ્ય 15 છે તે આકૃતિ 2.16, પ્રકરણ 2 ના આલેખ પરથી થોડું વધુ સારી રીતે સમજી શકાય. આ આકૃતિ પરથી, આપણે નોંધીએ કે જેમ x, 5 ને ડાબી અથવા જમણી બાજુથી અનુલક્ષે તેમ f(x) = x + 10 નો આલેખ બિંદુ (5, 15) ને અનુલક્ષે. આપણે જોઈ શકીએ કે વિધેયનું x = 5 આગળનું મૂલ્ય પણ 15 છે.

**દ્રષ્ટાંત 2:** વિધેય  $f(x) = x^3$  લો. આપણે x = 1 આગળ લક્ષ મેળવવાનો પ્રયત્ન કરીએ. આગળ પ્રમાણે આપણે x ની 1 થી નજીકની કિંમતો માટે f(x) નાં મૂલ્યોનું કોષ્ટક બનાવીએ. (જુઓ કોષ્ટક 13.5)

કોષ્ટક 13.5

| x    | 0.9   | 0.99     | 0.999       | 1.1   | 1.01     | 1.001       |
|------|-------|----------|-------------|-------|----------|-------------|
| f(x) | 0.729 | 0.970299 | 0.997002999 | 1.331 | 1.030301 | 1.003003001 |

કોષ્ટક પરથી આપણે તારવી શકીએ કે f નું x=1 આગળનું મૂલ્ય 0.997002999 થી વધુ અને 1.003003001 થી નાનું છે. એવું માની લઈએ કે x=0.999 અને x=1.001 વચ્ચે કશું જ અનપેક્ષિત બનતું નથી. આથી, એવું અનુમાન કરવું વ્યાજબી છે કે વિધેય f(x) નું x=1 આગળનું ડાબી બાજુનું લક્ષ 1 છે. અર્થાત્

$$\lim_{x\to 1^{-}} f(x) = 1.$$

આ જ રીતે, જેમ x, 1ને જમણી બાજુથી અનુલક્ષે તેમ પણ f(x)નું મૂલ્ય 1 બને. અર્થાત્

$$\lim_{x\to 1^+} f(x) = 1.$$

આથી કહી શકાય કે f(x) નું ડાબી બાજુનું લક્ષ અને જમણી બાજુનું લક્ષ સમાન છે અને તે 1 જેટલું છે. આમ,

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{+}} f(x) = \lim_{x \to 1} f(x) = 1.$$

વિધેયનો આલેખ (આકૃતિ 2.11, પ્રકરણ 2) જોતાં લક્ષનું મૂલ્ય 1 છે તે તારણને સમર્થન મળે છે. આ આકૃતિમાં આપણે નોંધીએ કે જેમ x ડાબી કે જમણી બાજુથી 1 ને અનુલક્ષે તેમ  $f(x)=x^3$  વિધેયનો આલેખ બિંદુ  $(1,\ 1)$ ને અનુલક્ષે છે. આપણે પુનઃ જોઈ શકીએ કે વિધેયનું x=1 આગળનું લક્ષ 1 છે.

**દ્રષ્ટાંત 3**: વિધેય f(x) = 3x લો. આપણે આ વિધેયનું x = 2 આગળ લક્ષ શોધવાનો પ્રયત્ન કરીએ. નીચેનું કોષ્ટક 13.6 હવે સ્વયં સ્પષ્ટ છે.

કોષ્ટક 13.6

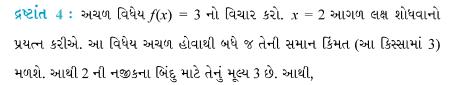
| x    | 1.9 | 1.95 | 1.99 | 1.999 | 2.1 | 2.01 | 2.001 |
|------|-----|------|------|-------|-----|------|-------|
| f(x) | 5.7 | 5.85 | 5.97 | 5.997 | 6.3 | 6.03 | 6.003 |

268 ગણિત : ધોરણ 11

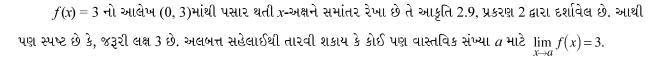
આગળ જોઈ ગયાં તેમ x ડાબી કે જમણી બાજુથી 2 ને અનુલક્ષે તેમ વિધેય f(x), 6 ને અનુલક્ષે તેમ લાગે છે.

 $\lim_{x\to 2^-} f(x) = \lim_{x\to 2^+} f(x) = \lim_{x\to 2} f(x) = 6 \, \Theta \, \text{એમ નોંધીએ. આકૃતિ 13.4 દ્વારા}$  આ વાતને સમર્થન મળે છે.

અહીં, ફરીથી આપણે નોંધીએ કે વિધેયનું x=2 આગળનું મૂલ્ય એ જ x=2 આગળનું લક્ષ છે.



$$\lim_{x \to 2^{-}} f(x) = \lim_{x \to 2^{+}} f(x) = \lim_{x \to 2} f(x) = 3$$



દ્રષ્ટાંત 5 : વિધેય  $f(x) = x^2 + x$  નો વિચાર કરો. આપણે  $\lim_{x \to 1} f(x)$  મેળવવું છે. આપણે કોષ્ટક 13.7 પ્રમાણે x = 1 ની નજીકની કિંમતો માટે f(x)નાં મૂલ્યોનો વિચાર કરીશું.

| _ | કોપ્ટક 13.7 |      |        |          |      |      |        |  |  |  |
|---|-------------|------|--------|----------|------|------|--------|--|--|--|
|   | x           | 0.9  | 0.99   | 0.999    | 1.2  | 1.1  | 1.01   |  |  |  |
|   | f(x)        | 1.71 | 1.9701 | 1.997001 | 2.64 | 2.31 | 2.0301 |  |  |  |

આ પરથી તારવવું યોગ્ય છે કે,

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{+}} f(x) = \lim_{x \to 1} f(x) = 2.$$

 $f(x) = x^2 + x$  ના આકૃતિ 13.5 માં દર્શાવેલ આલેખ પરથી સ્પષ્ટ છે કે જેમ x, 1 ને અનુલક્ષે તેમ આલેખ (1,2) ને અનુલક્ષે.

અહીં, એ પણ જોઈ શકાય કે,

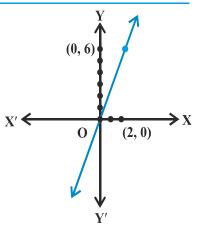
$$\lim_{x \to 1} f(x) = f(1)$$

હવે, નીચેની ત્રણ બાબતોનો સ્વીકાર કરો :

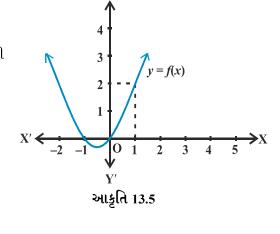
$$\lim_{x \to 1} x^2 = 1, \quad \lim_{x \to 1} x = 1 \quad \text{with} \quad \lim_{x \to 1} (x+1) = 2$$

અને 
$$\lim_{x \to 1} x^2 + \lim_{x \to 1} x = 1 + 1 = 2 = \lim_{x \to 1} \left( x^2 + x \right)$$

$$\lim_{x \to 1} x. \lim_{x \to 1} (x+1) = 1 \cdot 2 = 2 = \lim_{x \to 1} \left[ x(x+1) \right] = \lim_{x \to 1} \left[ x^2 + x \right].$$



આકૃતિ 13.4



લક્ષ અને વિકલન 269

**દ્રષ્ટાંત** 
$$6$$
: વિધેય  $f(x) = \sin x$  લો. આપણને  $\lim_{x \to \frac{\pi}{2}} \sin x$ , શોધવામાં રસ છે, અહીં ખૂણાનું માપ રેડિયનમાં છે.

અહીં, આપણે  $\frac{\pi}{2}$  ની નજીકની f(x)ની કિંમતો (અંદાજિત) માટેનું કોપ્ટક બનાવીશું (કોપ્ટક 13.8). આ પરથી, આપણે

તારવી શકીએ કે 
$$\lim_{x \to \frac{\pi}{2}} f(x) = \lim_{x \to \frac{\pi}{2}^+} f(x) = \lim_{x \to \frac{\pi}{2}} f(x) = 1$$
.

વળી, આકૃતિ 3.8 (પ્રકરણ 3) માં દોરેલ  $f(x)=\sin x$  ના આલેખ પરથી આ બાબતને સમર્થન મળે છે. આ કિસ્સામાં પણ આપણે જોઈ શકીએ કે,  $\lim_{x\to \frac{\pi}{2}}\sin x=1$ .

કોષ્ટક 13.8

| x    | $\frac{\pi}{2}$ - 0.1 | $\frac{\pi}{2}$ - 0.01 | $\frac{\pi}{2} + 0.1$ | $\frac{\pi}{2} + 0.01$ |
|------|-----------------------|------------------------|-----------------------|------------------------|
| f(x) | 0.9950                | 0.9999                 | 0.9950                | 0.9999                 |

દ્રષ્ટાંત 7 : વિધેય  $f(x) = x + \cos x$  નો વિચાર કરો. આપણે  $\lim_{x \to 0} f(x)$  શોધીશું.

અહીં, આપણે f(x) ની 0 ની નજીકની કિંમતો (અંદાજિત) માટેનું કોપ્ટક બનાવીશું (કોપ્ટક 13.9).

કોષ્ટક 13.9

| х    | - 0.1  | - 0.01  | -0.001    | 0.1    | 0.01    | 0.001     |
|------|--------|---------|-----------|--------|---------|-----------|
| f(x) | 0.9850 | 0.98995 | 0.9989995 | 1.0950 | 1.00995 | 1.0009995 |

કોષ્ટક 13.9 પરથી, આપણે તારવી શકીએ કે,

$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{+}} f(x) = \lim_{x \to 0} f(x) = 1$$

અહીં પણ તારવી શકાય કે  $\lim_{x\to 0} f(x) = f(0) = 1$ .

હવે, તમે નીચેના નિર્ણય પર આવવા માટે માનસિક રીતે તૈયાર છો કે,

$$\lim_{x\to 0} (x + \cos x) = \lim_{x\to 0} x + \lim_{x\to 0} \cos x \text{ એ ખરેખર સત્ય છે?}$$

**દ્રષ્ટાંત 8** : x > 0 માટે વિધેય  $f(x) = \frac{1}{x^2}$  નો વિચાર કરો. આપણે  $\lim_{x \to 0} f(x)$  શોધીશું.

અહીં, અવલોકન કરો કે વિધેયનો પ્રદેશ તમામ ધન વાસ્તિવિક સંખ્યાઓ છે. આથી, આપણે જ્યારે f(x)નું કોપ્ટક તૈયાર કરીએ ત્યારે x એ 0 ને ડાબી બાજુથી અનુલક્ષે છે તેમ કહેવાનો અર્થ નથી. આપણે નીચે x ની 0 થી નજીકની ધન કિંમતો માટેની f(x)ની કિંમતો માટેનું કોપ્ટક તૈયાર કરીએ. (આ કોપ્ટકમાં n કોઈ ધન પૂર્ણાંક દર્શાવે છે.)

નીચે આપેલ કોષ્ટક 13.10 પરથી, આપણે જોઈ શકીએ કે જેમ x, 0ને અનુલક્ષે તેમ f(x)ની કિંમત મોટી અને મોટી બનતી જાય છે. આપણો કહેવાનો અર્થ એ કે f(x) ની કિંમત કોઈ પણ આપેલ સંખ્યા કરતાં મોટી બનાવી શકાય.

કોષ્ટક 13.10

| х    | 1 | 0.1 | 0.01  | 10 <sup>-n</sup> |
|------|---|-----|-------|------------------|
| f(x) | 1 | 100 | 10000 | $10^{2n}$        |

270 ગાંધાત : ધોરણ 11

ગાણિતિક રીતે,

$$\lim_{x\to 0} f(x) = +\infty \text{ sol}_{\underline{y}}.$$

ખરેખર તો જેમ  $x \rightarrow 0^+$  તેમ  $f(x) \rightarrow \infty$  કહેવાય

આપણે એ નોંધીશું કે આ પ્રકારના લક્ષનો આપણા અભ્યાસક્રમમાં સમાવેશ નહિ કરીએ.

દ્રષ્ટાંત 9 : આપણે  $\lim_{x\to 0} f(x)$  શોધીશું.

$$f(x) = \begin{cases} x-2, & x < 0 \\ 0, & x = 0 \\ x+2, & x > 0 \end{cases}$$

દર વખતની જેમ આપણે x ની 0 ની નજીકની કિંમતો માટે f(x) નું કોષ્ટક તૈયાર કરીશું. નોંધીએ કે x ની ઋણ કિંમતો માટે આપણે x-2 ની અને x ની ધન કિંમતો માટે આપણે x+2 ની કિંમતો શોધવી પડે.

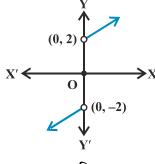
કોષ્ટક 13.11

| x    | - 0.1 | - 0.01 | - 0.001 | 0.1 | 0.01 | 0.001 |
|------|-------|--------|---------|-----|------|-------|
| f(x) | - 2.1 | - 2.01 | -2.001  | 2.1 | 2.01 | 2.001 |

કોષ્ટક 13.11 ની શરૂઆતની ઋણ કિંમતો માટે આપણે તારવીએ કે વિધેયની કિંમતો –2 તરફ વધતી જાય છે. અને આથી,

$$\lim_{x \to 0^{-}} f\left(x\right) = -2$$

કોષ્ટકની છેલ્લી ત્રણ કિંમતો પરથી આપણે તારવીએ કે, વિધેયની કિંમતો 2 થી વધુ રહીને 2 તરફ ઘટતી જાય છે.



આમ 
$$\lim_{x\to 0^+} f(x) = 2$$

ડાબી તથા જમણી બાજુના લક્ષનાં મૂલ્યો સમાન ન હોવાથી, આપણે કહી શકીએ વિધેયનું 0 આગળનું લક્ષ શક્ચ નથી.

આ વિધેયનો આલેખ આકૃતિ 13.6 માં આપેલ છે. અહીં, આપણે નોંધીએ કે x=0 આગળ વિધેયની કિંમત વ્યાખ્યાયિત છે અને તે 0 છે. પરંતુ x=0 આગળ વિધેયનું લક્ષ વ્યાખ્યાયિત નથી.

દ્રષ્ટાંત 10 : છેલ્લા ઉદાહરણ તરીકે આપણે  $\lim_{x\to a} f(x)$  શોધીએ, જ્યાં

$$f(x) = \begin{cases} x+2 & x \neq 1 \\ 0 & x = 1 \end{cases}$$

કોષ્ટક 13.12

| x    | 0.9 | 0.99 | 0.999 | 1.1 | 1.01 | 1.001 |
|------|-----|------|-------|-----|------|-------|
| f(x) | 2.9 | 2.99 | 2.999 | 3.1 | 3.01 | 3.001 |

દર વખતની જેમ x ની 1 ની નજીકની કિંમતો માટે f(x) નું કોષ્ટક તૈયાર કરીએ. x ની 1 થી નાની કિંમતો માટે f(x)ની કિંમતો જોતાં એવું લાગે છે કે x=1 આગળ તેનું મૂલ્ય 3 થવું જોઈએ અર્થાત્

$$\lim_{x \to -\infty} f(x) = 3$$

આ જ રીતે, ચર્ચા કર્યા પ્રમાણે x ની 1 થી મોટી કિંમતો માટે પણ f(x) નું મૂલ્ય 3 બનવું જોઈએ અર્થાત્

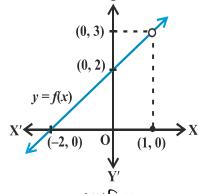
લક્ષ અને વિકલન 271

$$\lim_{x\to 1^+} f(x) = 3.$$

આથી ડાબી અને જમણી બાજુનાં લક્ષ સમાન છે અને આથી,

$$\lim_{x \to \Gamma} f(x) = \lim_{x \to 1^{+}} f(x) = \lim_{x \to 1} f(x) = 3.$$

વિધેયના આકૃતિ 13.7 માં દર્શાવેલ આલેખ પરથી લક્ષના આ તારણને સમર્થન મળે છે. અહીં, આપણે નોંધીએ કે વ્યાપક રીતે, આપેલ વિધેયનું મૂલ્ય અને તેનું લક્ષ અલગ હોઈ શકે. (જ્યારે બંને વ્યાખ્યાયિત હોય, ત્યારે પણ)



#### આકૃતિ 13.7

#### 13.3.1 લક્ષનું બીજગણિત

ઉપરનાં ઉદાહરણોમાં આપણે જોયું કે જો વિચારણા હેઠળના લક્ષ અને વિધેય સુવ્યાખ્યાયિત હોય તો લક્ષની પ્રક્રિયા સરવાળા, બાદબાકી, ગુણાકાર અને ભાગાકારની પ્રક્રિયાને અનુસરે છે. આ યોગાનુયોગ નથી. અલબત, આપણે સાબિતી આપ્યા વગર નીચેનાં સૂત્રો પ્રમેય તરીકે લઈશું:

પ્રમેય 1: જો f અને g એ બે વિધેયો માટે  $\lim_{x \to a} f(x)$  અને  $\lim_{x \to a} g(x)$  નાં અસ્તિત્વ હોય, તો

(i) બે વિધેયોના સરવાળાનું લક્ષ, વિધેયના લક્ષના સરવાળા જેટલું હોય છે, અર્થાત્

$$\lim_{x \to a} [f(x) + g(x)] = \lim_{x \to a} f(x) + \lim_{x \to a} g(x).$$

(ii) બે વિધેયોની બાદબાકીનું લક્ષ, વિધેયના લક્ષની બાદબાકી જેટલું હોય છે, અર્થાત્

$$\lim_{x \to a} [f(x) - g(x)] = \lim_{x \to a} f(x) - \lim_{x \to a} g(x).$$

(iii) બે વિધેયોના ગુણાકારનું લક્ષ, વિધેયના લક્ષના ગુણાકાર જેટલું હોય છે, અર્થાત્

$$\lim_{x \to a} [f(x) \cdot g(x)] = \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x).$$

(iv) જ્યારે છેદ શૂન્યેતર હોય ત્યારે બે વિધેયોના ભાગાકારનું લક્ષ, વિધેયના લક્ષના ભાગાકાર જેટલું હોય છે અર્થાત્

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}$$

નોંધ ખાસ કરીને ઉપરોક્ત વિકલ્પ (iii) માં જો g અચળ વિધેય હોય કે જેથી  $g(x)=\lambda$ ,  $\lambda$ , કોઈ પણ વાસ્તવિક સંખ્યા હોય, તો

$$\lim_{x \to a} \left[ \left( \lambda \cdot f \right) (x) \right] = \lambda \cdot \lim_{x \to a} f(x).$$

નીચેના બે ઉપવિભાગોમાં આ પ્રમેયોનો ઉપયોગ ખાસ પ્રકારનાં વિધેયોનાં લક્ષ શોધવા કેવી રીતે કરીશું તે જોઈશું.

13.3.2 બહુપદી વિધેયનું તથા સંમેય વિધેયનું લક્ષ : વિધેય f માટે જો f(x) એ શૂન્ય વિધેય હોય અથવા પ્રાકૃતિક સંખ્યા n માટે  $f(x) = a_0 + a_1 x + a_2 x^2 + \ldots + a_n x^n$ , જ્યાં  $a_i$  વાસ્તવિક સંખ્યાઓ છે અને  $a_n \neq 0$  તો વિધેય f ને બહુપદી વિધેય કહેવાય.

આપણે જાણીએ છીએ કે  $\lim_{x\to a} x = a$ .

$$\text{Hell, } \lim_{x \to a} x^2 = \lim_{x \to a} (x \cdot x) = \lim_{x \to a} x \cdot \lim_{x \to a} x = a \cdot a = a^2$$

ગાણિતિક અનુમાનના n પરના સરળ ઉપયોગથી કહી શકાય કે  $\lim_{x \to a} x^n = a^n$ 

હવે, ધારો કે  $f(x) = a_0 + a_1 x + a_2 x^2 + ... + a_n x^n$  એ બહુપદી વિધેય છે. પ્રત્યેક  $a_0, a_1 x, a_2 x^2, ..., a_n x^n$  ને વિધેય

તરીકે વિચારતાં,

$$\lim_{x \to a} f(x) = \lim_{x \to a} \left[ a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n \right]$$

$$= \lim_{x \to a} a_0 + \lim_{x \to a} a_1 x + \lim_{x \to a} a_2 x^2 + \dots + \lim_{x \to a} a_n x^n$$

$$= a_0 + a_1 \lim_{x \to a} x + a_2 \lim_{x \to a} x^2 + \dots + a_n \lim_{x \to a} x^n$$

$$= a_0 + a_1 a + a_2 a^2 + \dots + a_n a^n$$

$$= f(a)$$

(ખાતરી કરો કે ઉપરના દરેક પદને તમે યોગ્ય રીતે સમજી શકો છો.)

જો g(x) અને h(x) એ બહુપદી વિધેયો હોય અને  $h(x) \neq 0$  તો, વિધેય  $f(x) = \frac{g(x)}{h(x)}$  ને સંમેય વિધેય કહેવાય. આથી,

$$\lim_{x \to a} f(x) = \lim_{x \to a} \frac{g(x)}{h(x)} = \frac{\lim_{x \to a} g(x)}{\lim_{x \to a} h(x)} = \frac{g(a)}{h(a)}$$

અલબત, જો h(a)=0 તો બે પરિસ્થિતિ સર્જાય (i)  $g(a)\neq 0$  અને (ii) g(a)=0. પ્રથમ વિકલ્પમાં લક્ષનું અસ્તિત્વ નથી. બીજા કિસ્સામાં  $g(x)=(x-a)^kg_1(x)$ , જયાં k, g(x) માં(x-a) નો મહત્તમ ઘાતાંક છે.

આ જ રીતે,  $h(x) = (x - a)^l h_1(x)$  કારણ કે h(a) = 0. અહીં l એ h(x) માં x - a નો મહત્તમ ઘાતાંક છે. અહીં પણ  $g_1(a) \neq 0$ ,  $h_1(a) \neq 0$ . હવે, જો k > l, તો

$$\lim_{x \to a} f(x) = \frac{\lim_{x \to a} g(x)}{\lim_{x \to a} h(x)} = \frac{\lim_{x \to a} (x - a)^k g_1(x)}{\lim_{x \to a} (x - a)^l h_1(x)}$$

$$= \frac{\lim_{x \to a} (x - a)^{(k-l)} g_1(x)}{\lim_{x \to a} h_1(x)} = \frac{0 \cdot g_1(a)}{h_1(a)} = 0$$

જો k < l તો, લક્ષ વ્યાખ્યાયિત નથી. જો k = l તો  $\lim_{x \to a} f(x) = \frac{g_1(a)}{h_1(a)}$ 

ઉદાહરણ 1: લક્ષ શોધો : (i) 
$$\lim_{x\to 1} \left[ x^3 - x^2 + 1 \right]$$
 (ii)  $\lim_{x\to 3} \left[ x(x+1) \right]$ 

(iii) 
$$\lim_{x \to -1} \left[ 1 + x + x^2 + ... + x^{10} \right]$$

<mark>ઉકેલ :</mark> આવશ્યક લક્ષ એ બહુપદી વિધેયનાં લક્ષ છે. આથી, લક્ષનાં મૂલ્ય એ વિધેયની તે આગળની કિંમત બને.

(i) 
$$\lim_{x \to 1} [x^3 - x^2 + 1] = 1^3 - 1^2 + 1 = 1$$

(ii) 
$$\lim_{x\to 3} [x(x+1)] = 3(3+1) = 3(4) = 12$$

(iii) 
$$\lim_{x \to -1} \left[ 1 + x + x^2 + \dots + x^{10} \right] = 1 + (-1) + (-1)^2 + \dots + (-1)^{10} = 1 - 1 + 1 - \dots + 1 = 1$$

ઉદાહરણ 2 : લક્ષ શોધો :

(i) 
$$\lim_{x \to 1} \left[ \frac{x^2 + 1}{x + 100} \right]$$
 (ii)  $\lim_{x \to 2} \left[ \frac{x^3 - 4x^2 + 4x}{x^2 - 4} \right]$ 

લક્ષ અને વિકલન

(iii) 
$$\lim_{x \to 2} \left[ \frac{x^2 - 4}{x^3 - 4x^2 + 4x} \right]$$

(iv) 
$$\lim_{x \to 2} \left[ \frac{x^3 - 2x^2}{x^2 - 5x + 6} \right]$$

(v) 
$$\lim_{x \to 1} \left[ \frac{x-2}{x^2 - x} - \frac{1}{x^3 - 3x^2 + 2x} \right]$$

ઉકેલ : અહીં, તમામ વિધેયો સંમેય વિધેય છે. આથી, આપણે પહેલાં આપેલ બિંદુ આગળ વિધેયનું મૂલ્ય શોધીશું. જો તે  $\frac{0}{0}$  સ્વરૂપનું હોય, તો તે  $\frac{0}{0}$  બનાવતા અવયવને દૂર કરી અને ફરી લખવાનો પ્રયત્ન કરીશું.

(i) એહીં, 
$$\lim_{x\to 1} \frac{x^2+1}{x+100} = \frac{1^2+1}{1+100} = \frac{2}{101}$$

(ii) વિધેયનું  $\, 2 \,$ આગળ મૂલ્ય શોધતાં તે  $\, \frac{0}{0} \,$  સ્વરૂપનું છે.

આથી, 
$$\lim_{x \to 2} \frac{x^3 - 4x^2 + 4x}{x^2 - 4} = \lim_{x \to 2} \frac{x(x-2)^2}{(x+2)(x-2)}$$
$$= \lim_{x \to 2} \frac{x(x-2)}{(x+2)}, \text{ કારણ કે } x \neq 2$$
$$= \frac{2(2-2)}{2+2} = \frac{0}{4} = 0$$

(iii) વિધેયનું 2 આગળ મૂલ્ય શોધતાં, તે  $\frac{0}{0}$  સ્વરૂપનું છે.

આથી, 
$$\lim_{x \to 2} \frac{x^2 - 4}{x^3 - 4x^2 + 4x} = \lim_{x \to 2} \frac{(x+2)(x-2)}{x(x-2)^2}$$
$$= \lim_{x \to 2} \frac{(x+2)}{x(x-2)} = \frac{2+2}{2(2-2)} = \frac{4}{0}$$
 અલ્યાખ્યાયિત છે.

(iv) વિધેયનું 2 આગળ મૂલ્ય શોધતાં આપણને  $\frac{0}{0}$  સ્વરૂપ મળે છે.

આવી, 
$$\lim_{x \to 2} \frac{x^3 - 2x^2}{x^2 - 5x + 6} = \lim_{x \to 2} \frac{x^2 (x - 2)}{(x - 2)(x - 3)}$$
$$= \lim_{x \to 2} \frac{x^2}{(x - 3)} = \frac{(2)^2}{2 - 3} = \frac{4}{-1} = -4$$

274 ગાંધાત : ધોરણ 11

(v) પ્રથમ આપણે વિધેયને સંમેય વિધેય સ્વરૂપે લખીએ.

$$\left[\frac{x-2}{x^2-x} - \frac{1}{x^3 - 3x^2 + 2x}\right] = \left[\frac{x-2}{x(x-1)} - \frac{1}{x(x^2 - 3x + 2)}\right]$$

$$= \left[\frac{x-2}{x(x-1)} - \frac{1}{x(x-1)(x-2)}\right]$$

$$= \left[\frac{x^2 - 4x + 4 - 1}{x(x-1)(x-2)}\right]$$

$$= \frac{x^2 - 4x + 3}{x(x-1)(x-2)}$$

વિધેયનું 1 આગળ મૂલ્ય શોધતાં આપણને  $\frac{0}{0}$  સ્વરૂપ મળે છે.

આથી 
$$\lim_{x \to 1} \left[ \frac{x-2}{x^2 - x} - \frac{1}{x^3 - 3x^2 + 2x} \right] = \lim_{x \to 1} \frac{x^2 - 4x + 3}{x(x-1)(x-2)}$$
$$= \lim_{x \to 1} \frac{(x-3)(x-1)}{x(x-1)(x-2)}$$
$$= \lim_{x \to 1} \frac{x-3}{x(x-2)} = \frac{1-3}{1(1-2)} = 2$$

આપણે નોંધીએ કે આપણે (x-1) પદ ગણતરીમાંથી દૂર કરી શકીએ છીએ, કારણ કે  $x \neq 1$ .

જેનો ઉપયોગ આગળની ચર્ચામાં કરીશું, તેવા એક અગત્યના લક્ષની ગણતરી નીચે આપેલ છેઃ

પ્ર<del>મેય 2</del> : કોઈ પણ ધન પૂર્ણાંક *n* માટે

$$\lim_{x \to a} \frac{x^n - a^n}{x - a} = na^{n-1}$$

 $\frac{1}{1}$  ઉપરના પ્રમેયમાં આપેલ લક્ષ કોઈ પણ સંમેય સંખ્યા n તથા ધન a માટે પણ સત્ય છે.

સાબિતી : 
$$(x^n - a^n)$$
 ને  $(x - a)$  વડે ભાગતાં, જોઈ શકાય કે 
$$x^n - a^n = (x - a) (x^{n-1} + x^{n-2} a + x^{n-3} a^2 + ... + x a^{n-2} + a^{n-1})$$

આથી, 
$$\lim_{x \to a} \frac{x^n - a^n}{x - a} = \lim_{x \to a} (x^{n-1} + x^{n-2} a + x^{n-3} a^2 + \dots + x a^{n-2} + a^{n-1})$$

$$= a^{n-1} + a \cdot a^{n-2} + \dots + a^{n-2} \cdot (a) + a^{n-1}$$

$$= a^{n-1} + a^{n-1} + \dots + a^{n-1} + a^{n-1}$$

$$= na^{n-1}$$

$$(n \text{ પદ})$$

ઉદાહરણ 3 : ગણતરી કરો :

(i) 
$$\lim_{x \to 1} \frac{x^{15} - 1}{x^{10} - 1}$$
 (ii)  $\lim_{x \to 0} \frac{\sqrt{1 + x} - 1}{x}$ 

લક્ષ અને વિકલન 275

ઉકેલ : (i) અહીં

$$\lim_{x \to 1} \frac{x^{15} - 1}{x^{10} - 1} = \lim_{x \to 1} \left[ \frac{x^{15} - 1}{x - 1} \div \frac{x^{10} - 1}{x - 1} \right]$$

$$= \lim_{x \to 1} \left[ \frac{x^{15} - 1}{x - 1} \right] \div \lim_{x \to 1} \left[ \frac{x^{10} - 1}{x - 1} \right]$$

$$= 15 (1)^{14} \div 10(1)^{9}$$

$$= 15 \div 10 = \frac{3}{2}$$
(આગળના પ્રમેય પરથી)

(ii) y = 1 + x, eadi,  $\vartheta + x \rightarrow 0$  and  $y \rightarrow 1$ 

આથી, 
$$\lim_{x\to 0} \frac{\sqrt{1+x}-1}{x} = \lim_{y\to 1} \frac{\sqrt{y}-1}{y-1}$$

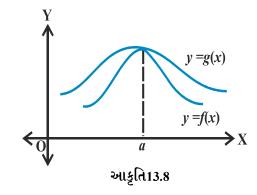
$$= \lim_{y\to 1} \frac{y^{\frac{1}{2}}-1^{\frac{1}{2}}}{y-1}$$

$$= \frac{1}{2}(1)^{\frac{1}{2}-1}$$
(આગળની નોંધ પરથી)
$$= \frac{1}{2}$$

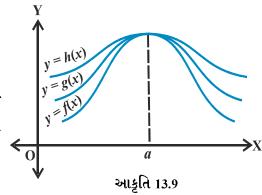
#### 13.4 ત્રિકોણમિતિય વિધેયનાં લક્ષ

નીચે આપેલ વિધેયની માહિતી (જેનો પ્રમેય તરીકે ઉપયોગ કરેલ છે) ત્રિકોણિમિતિય વિધેયોનાં લક્ષ શોધવા ઉપયોગી થશે.

પ્રમેય 3: ધારો કે f અને g વાસ્તિવિક સંખ્યા પરના સમાન પ્રદેશવાળાં વિધેય છે અને વ્યાખ્યામાં આવતા પ્રદેશના પ્રત્યેક x માટે f(x) < g(x) છે. કોઈ a માટે જો  $\lim_{x \to a} f(x)$  અને  $\lim_{x \to a} g(x)$ નું અસ્તિત્વ હોય, તો  $\lim_{x \to a} f(x) \le \lim_{x \to a} g(x)$ . આ હકીકત આકૃતિ 13.8 માં દર્શાવેલ છે.



પ્રમેય 4: (સેન્ડિવિચ પ્રમેય) ધારો કે f, g અને h વાસ્તિવિક વિધેયો છે, અને વ્યાખ્યામાં આવતા પ્રદેશના પ્રત્યેક x માટે f(x) < g(x) < h(x). કોઈક વાસ્તિવિક સંખ્યા a માટે, જો  $\lim_{x\to a} f(x) = l = \lim_{x\to a} h(x)$ , તો  $\lim_{x\to a} g(x) = l$ . આ આકૃતિ 13.9માં દર્શાવેલ છે.



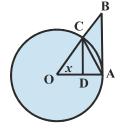
276 ગાંધાત : ધોરણ 11

ત્રિકોણમિતિય વિધેયની એક અગત્યની અસમતા માટે નીચે સુંદર ભૌમિતિક સાબિતી આપેલ છે:

$$0 < |x| < \frac{\pi}{2} \text{ wide } \cos x < \frac{\sin x}{x} < 1 \tag{*}$$

સાબિતી : આપણે જાણીએ છીએ કે sin(-x) = -sin x અને cos(-x) = cos x.

આથી, આ સાબિતી અસમતા  $0 < x < \frac{\pi}{2}$  માટે આપવી પૂરતી છે. આકૃતિ 13.10 માં,  $\angle AOC$ ,



આકૃતિ 13.10

x રેડિયન માપનો છે અને  $0 < x < \frac{\pi}{2}$  થાય તે રીતે O કેન્દ્રવાળું એકમ વર્તુળ છે. રેખાખંડ BA અને CD OAને લંબ છે. હવે, AC જોડો.

આથી,  $\Delta \mathrm{OAC}$  નું ક્ષેત્રફળ < વૃત્તાંશ  $\mathrm{OAC}$  નું ક્ષેત્રફળ <  $\Delta \mathrm{OAB}$  નું ક્ષેત્રફળ.

અર્થાત્ 
$$\frac{1}{2}$$
OA·CD  $<\frac{x}{2\pi}\cdot\pi\cdot(\text{OA})^2<\frac{1}{2}$ OA·AB.

અર્થાત્  $CD < x \cdot OA < AB$ .

$$\Delta ext{ OCD માં, } sin \ x = rac{ ext{CD}}{ ext{OA}}$$
 (કેમ કે  $ext{OC} = ext{OA}$ ). તેથી  $ext{CD} = ext{OA}$  sin  $x$ . વળી,  $tan \ x = rac{ ext{AB}}{ ext{OA}}$ . તેથી  $ext{AB} = ext{OA}$  tan  $x$ .

આમ,  $OA \cdot sin x < OA \cdot x < OA tan x$ 

લંબાઈ OA ધન હોવાથી, આપણને  $\sin x < x < \tan x$  મળે.

વળી,  $0 < x < \frac{\pi}{2}$  હોવાથી  $\sin x$  ધન છે. આથી  $\sin x$  વડે ભાગતાં,

$$1 < \frac{x}{\sin x} < \frac{1}{\cos x}$$
,

બધાં જ પદનાં વ્યસ્ત લેતાં,  $cosx < \frac{sinx}{x} < 1$ 

આમ, સાબિતી પૂર્ણ થઈ.

<mark>પ્રમેય 5</mark> : નીચેનાં બે લક્ષ મહત્ત્વપૂર્ણ છે.

(i) 
$$\lim_{x\to 0} \frac{\sin x}{x} = 1$$

(ii) 
$$\lim_{x\to 0} \frac{1-\cos x}{x} = 0$$

સાબિતી : (i) ઉપરોક્ત અસમતા (\*) પરથી કહેવાય કે  $\frac{\sin x}{x}$  વિધેયનાં મૂલ્ય એ વિધેય  $\cos x$  અને જેની કિંમત 1 હોય તેવા અચળ વિધેયની વચ્ચે આવેલાં છે.

વળી,  $\lim_{x\to 0}\cos x=1$ , હોવાથી આપણે જોઈ શકીએ કે સેન્ડવિચ પ્રમેયની મદદથી (i) સાબિતી થાય.

(ii) સાબિત કરવા, ત્રિકોણિમિતિય નિત્યસમ  $1-\cos x=2\sin^2\left(\frac{x}{2}\right)$ યાદ કરીએ.

આથી, 
$$\lim_{x\to 0}\frac{1-\cos x}{x}=\lim_{x\to 0}\frac{2\sin^2\left(\frac{x}{2}\right)}{x}=\lim_{x\to 0}\frac{\sin\left(\frac{x}{2}\right)}{\frac{x}{2}}\cdot\sin\left(\frac{x}{2}\right)$$

લક્ષ અને વિકલન 277

$$= \lim_{x \to 0} \frac{\sin\left(\frac{x}{2}\right)}{\frac{x}{2}} \cdot \lim_{x \to 0} \sin\left(\frac{x}{2}\right) = 1 \cdot 0 = 0$$

આપણે જોયું કે માહિતી  $x \to 0$  તે  $\frac{x}{2} \to 0$  તરીકે લીધેલ છે. આ હકીકત  $y = \frac{x}{2}$  લઈને સાર્થક સિદ્ધ કરી શકાય.

ઉદાહરણ 4 : ગણતરી કરો : (i) 
$$\lim_{x\to 0} \frac{\sin 4x}{\sin 2x}$$
 (ii)  $\lim_{x\to 0} \frac{\tan x}{x}$ 

ઉકેલ : (i) 
$$\lim_{x \to 0} \frac{\sin 4x}{\sin 2x} = \lim_{x \to 0} \left[ \frac{\sin 4x}{4x} \cdot \frac{2x}{\sin 2x} \cdot 2 \right]$$

$$= 2 \cdot \lim_{x \to 0} \left[ \frac{\sin 4x}{4x} \right] \div \left[ \frac{\sin 2x}{2x} \right]$$

$$= 2 \cdot \lim_{4x \to 0} \left[ \frac{\sin 4x}{4x} \right] \div \lim_{2x \to 0} \left[ \frac{\sin 2x}{2x} \right] \qquad (x \to 0, \text{ હોવાથી } 4x \to 0 \text{ અને } 2x \to 0)$$

$$= 2 \cdot 1 \cdot 1 = 2$$

(ii) 
$$\lim_{x \to 0} \frac{tanx}{x} = \lim_{x \to 0} \frac{sin x}{x cos x} = \lim_{x \to 0} \frac{sinx}{x} \cdot \lim_{x \to 0} \frac{1}{cosx} = 1 \cdot 1 = 1$$

આ લક્ષની ગણતરી કરતી વખતે જે સામાન્ય ખ્યાલ મનમાં રાખવો જોઈએ તે નીચે પ્રમાણેનો છેઃ

ધારો કે  $\lim_{x \to a} \frac{f(x)}{g(x)}$  નું અસ્તિત્વ છે અને આપણે આ લક્ષ શોધવું છે. પ્રથમ આપણે f(a) અને g(a) ની કિંમતો ચકાસીશું. જો બંને 0 હોય તો, આપણે જોઇ શકીએ કે આપણને એવો અવયવ મળે, જેને કારણે પદો 0 બને. અર્થાત્ આપણે  $f(x) = f_1(x) f_2(x)$  લખી શકીએ કે જેથી  $f_1(a) = 0$  અને  $f_2(a) \neq 0$ . આ જ રીતે, આપણે  $g(x) = g_1(x) g_2(x)$  લખી શકીએ કે જેથી  $g_1(a) = 0$  અને  $g_2(a) \neq 0$ . f(x) અને g(x) નો સામાન્ય અવયવ શક્ય હોય, તો દૂર કરી  $\frac{f(x)}{g(x)} = \frac{p(x)}{g(x)}$ લખો, જ્યાં  $q(a) \neq 0$ .

આમ, 
$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{p(a)}{q(a)}.$$

#### સ્વાધ્યાય 13.1

નીચેના લક્ષની ગણતરી કરોઃ (ક્રમાંક 1 to 22)

1. 
$$\lim_{x \to 3} (x+3)$$

2. 
$$\lim_{x \to \pi} \left( x - \frac{22}{7} \right)$$
 3.  $\lim_{r \to 1} \pi r^2$ 

3. 
$$\lim_{r\to 1} \pi r^2$$

4. 
$$\lim_{x \to 4} \frac{4x+3}{x-2}$$

4. 
$$\lim_{x \to 4} \frac{4x+3}{x-2}$$
 5.  $\lim_{x \to -1} \frac{x^{10} + x^5 + 1}{x-1}$  6.  $\lim_{x \to 0} \frac{(x+1)^5 - 1}{x}$ 

6. 
$$\lim_{x \to 0} \frac{(x+1)^5 - 1}{x}$$

7. 
$$\lim_{x \to 2} \frac{3x^2 - x - 10}{x^2 - 4}$$
 8.  $\lim_{x \to 3} \frac{x^4 - 81}{2x^2 - 5x - 3}$  9.  $\lim_{x \to 0} \frac{ax + b}{cx + 1}$ 

8. 
$$\lim_{x \to 3} \frac{x^4 - 81}{2x^2 - 5x - 3}$$

9. 
$$\lim_{x\to 0} \frac{ax+b}{cx+1}$$

10. 
$$\lim_{z \to 1} \frac{z^{\frac{1}{3}} - 1}{z^{\frac{1}{6}} - 1}$$

11. 
$$\lim_{x \to 1} \frac{ax^2 + bx + c}{cx^2 + bx + a}, a + b + c \neq 0$$

12. 
$$\lim_{x \to -2} \frac{\frac{1}{x} + \frac{1}{2}}{x + 2}$$

13. 
$$\lim_{x \to 0} \frac{\sin ax}{bx}$$

**14.** 
$$\lim_{x\to 0} \frac{\sin ax}{\sin bx}, \ a,b\neq 0$$

15. 
$$\lim_{x\to\pi}\frac{\sin(\pi-x)}{\pi(\pi-x)}$$

$$16. \lim_{x\to 0} \frac{\cos x}{\pi - x}$$

17. 
$$\lim_{x\to 0} \frac{\cos 2x-1}{\cos x-1}$$

$$18. \lim_{x \to 0} \frac{ax + x\cos x}{b\sin x}$$

19. 
$$\lim_{x\to 0} x \sec x$$

**20.** 
$$\lim_{x\to 0} \frac{\sin ax + bx}{ax + \sin bx}$$
 a, b,  $a + b \neq 0$ , **21.**  $\lim_{x\to 0} (\cos c x - \cot x)$ 

21. 
$$\lim_{x\to 0} (cosec\ x-cot\ x)$$

$$22. \quad \lim_{x \to \frac{\pi}{2}} \frac{tan2x}{x - \frac{\pi}{2}}$$

**24.** 
$$\Re f(x) = \begin{cases} x^2 - 1, & x \le 1 \\ -x^2 - 1, & x > 1 \end{cases} \text{ diag} \lim_{x \to 1} f(x) \text{ which.}$$

**26.** 
$$\Re f(x) = \begin{cases} \frac{x}{|x|}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$
  $\dim_{x \to 0} f(x)$   $\Re f(x)$ 

27. જો 
$$f(x) = |x| - 5$$
 તો  $\lim_{x \to 5} f(x)$  શોધો.

**28.** ધારો કે 
$$f(x) = \begin{cases} a+bx, & x < 1 \\ 4, & x = 1 \\ b-ax, & x > 1 \end{cases}$$

અને જો,  $\lim_{x\to 1} f(x) = f(1)$  તો a અને b ની શક્ય કિંમતો કઈ છે?

**29.** ધારો કે  $a_1, a_2, \ldots, a_n$  એ નિશ્ચિત વાસ્તવિક સંખ્યાઓ છે અને  $f(x) = (x - a_1)(x - a_2)...(x - a_n)$  વ્યાખ્યાયિત કરો,

તો  $\lim_{x\to a_1}f(x)$  શું થાય? કોઈક  $a\neq a_1,\ a_2,\ ...,\ a_n$  હોય તો  $\lim_{x\to a}f(x)$  ગણો.

લક્ષ અને વિકલન 279

30. 
$$\hat{\mathcal{M}}$$
  $f(x) = \begin{cases} |x|+1, & x < 0 \\ 0, & x = 0 \\ |x|-1, & x > 0 \end{cases}$ 

a ની કઈ કિંમત (કે કિંમતો) માટે  $\lim_{x\to a} f(x)$  નું અસ્તિત્વ છે?

31. જો વિધેય 
$$f(x)$$
,  $\lim_{x \to 1} \frac{f(x) - 2}{x^2 - 1} = \pi$  ને સંતોષે, તો  $\lim_{x \to 1} f(x)$  શોધો.

32. જો 
$$f(x) = \begin{cases} mx^2 + n, & x < 0 \\ nx + m, & 0 \le x \le 1 \end{cases}$$
 તો કયા પૂર્ણાંકો  $m$  અને  $n$  માટે  $\lim_{x \to 0} f(x)$  અને  $\lim_{x \to 1} f(x)$  એ બંને લક્ષનાં  $nx^3 + m, \quad x > 1$ 

અસ્તિત્વ હોય?

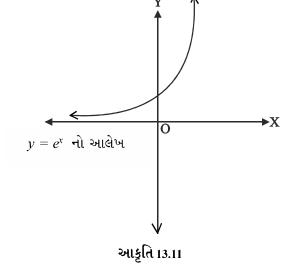
#### 13.5 ઘાતાંકીય અને લઘુગણકીય વિધેય

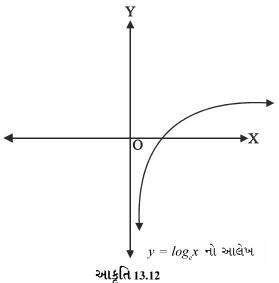
ઘાતાંકીય અને લઘુગણકીય વિધેયને આવરી લેતી અભિવ્યક્તિઓના લક્ષના મૂલ્યાંકનની ચર્ચા કરતાં પહેલાં આપણે બે વિધેયોના પ્રદેશ, વિસ્તાર અને તેમના કાચા આલેખોનું આલેખન કરી તેમનો પરિચય કરીએ.

જેનું મૂલ્ય 2 અને 3 ને વચ્ચે છે એવી સંખ્યા e નો પરિચય મહાન સ્વિસ ગણિતશાસ્ત્રી  $Leonhard\ Euler$  એ (1707-1783) કરાવ્યો. આ સંખ્યાનો ઘાતાંકીય વિધેયની વ્યાખ્યામાં ઉપયોગ થાય છે અને તેની વ્યાખ્યા  $f(x)=e^x$ ,  $x\in\mathbf{R}$  તરીકે કરવામાં આવી છે. તેનો પ્રદેશ  $\mathbf{R}$  અને વિસ્તાર ધન વાસ્તવિક સંખ્યાઓનો ગણ છે. આકૃતિ 13.11 માં ઘાતાંકીય વિધેય  $y=e^x$  નો આલેખ આપ્યો છે.

તે જ પ્રમાણે લઘુગણકીય વિધેય  $log_e: \mathbf{R}^+ \to \mathbf{R}$ . જો  $e^y = x$  તો અને તો જ  $log_e x = y$  વડે દર્શાવાય છે. તેનો પ્રદેશ ધન વાસ્તવિક સંખ્યાઓનો ગણ  $\mathbf{R}^+$  અને વિસ્તાર  $\mathbf{R}$  છે. લઘુગણકીય વિધેય  $y = log_e x$  નો આલેખ આકૃતિ 13.12 માં દર્શાવેલ છે.

પરિણામ  $\lim_{x\to 0}\frac{e^x-1}{x}=1$  સાબિત કરવા માટે આપણે અભિવ્યક્તિ  $\frac{e^x-1}{x}$  નો સમાવેશ કરતી એક અસમતાનો ઉપયોગ કરીશું. તે આગળ દર્શાવ્યા પ્રમાણે છે :





280 ગાંધાત : ધોરણ 11

$$\frac{1}{1+|x|} \le \frac{e^x-1}{x} \le 1+(e-2)|x|.$$
 આ અસમતા  $[-1,1]-\{0\}$  ના પ્રત્યેક  $x$  માટે સત્ય છે.

પ્રમેય 6 : સાબિત કરો કે 
$$\lim_{x\to 0} \frac{e^x - 1}{x} = 1$$

સાબિતી : ઉપરની અસમતાનો ઉપયોગ કરતાં,

$$\frac{1}{1+|x|} \le \frac{e^x - 1}{x} \le 1 + |x| (e - 2), x \in [-1, 1] - \{0\}$$

$$\text{QOD}, \qquad \lim_{x \to 0} \frac{1}{1 + |x|} = \frac{1}{1 + \lim_{x \to 0} |x|} = \frac{1}{1 + 0} = 1$$

અને 
$$\lim_{x \to 0} \left[ 1 + (e - 2) |x| \right] = 1 + (e - 2) \lim_{x \to 0} |x| = 1 + (e - 2)0 = 1$$

આથી, સેન્ડવિચ પ્રમેય પરથી,

$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1 \text{ and.}$$

પ્રમેય 7 : સાબિત કરો કે 
$$\lim_{x\to 0} \frac{\log_{\varrho}(1+x)}{x} = 1$$

સાબિતી : ધારો કે 
$$\frac{\log_e(1+x)}{x} = y$$

$$\operatorname{di}, \qquad \log_e (1+x) = xy$$

$$\therefore$$
 1 +  $x = e^{xy}$ 

$$\therefore \frac{e^{xy}-1}{x}=1$$

અથવા 
$$\frac{e^{xy}-1}{xy}.y=1$$

હવે 
$$\lim_{xy\to 0} \frac{e^{xy} - 1}{xy} \lim_{x\to 0} y = 1$$

$$\therefore \lim_{x\to 0} y = 1$$

$$\therefore \lim_{x \to 0} \frac{\log_e (1+x)}{x} = 1$$

ઉદાહરણ 5 : 
$$\lim_{x\to 0} \frac{e^{3x}-1}{x}$$
 શોધો.

Given:  

$$\lim_{x \to 0} \frac{e^{3x} - 1}{x} = \lim_{3x \to 0} \frac{e^{3x} - 1}{3x} \cdot 3$$

$$= 3 \left( \lim_{y \to 0} \frac{e^{y} - 1}{y} \right),$$

 $= 3 \cdot 1 = 3$ 

$$\operatorname{vui} \ y = 3x$$

(કારણ કે  $x \rightarrow 0$  પરથી  $xy \rightarrow 0$ )

 $\left(\text{sign } \hat{\mathbf{s}} \quad \lim_{x \to 0} \frac{e^{xy} - 1}{xy} = 1\right)$ 

લક્ષ અને વિકલન 281

ઉદાહરણ 6: ગણતરી કરો 
$$\lim_{x\to 0} \frac{e^x - \sin x - 1}{x}$$

$$\lim_{x \to 0} \frac{e^x - \sin x - 1}{x} = \lim_{x \to 0} \left[ \frac{e^x - 1}{x} - \frac{\sin x}{x} \right]$$

$$= \lim_{x \to 0} \frac{e^x - 1}{x} - \lim_{x \to 0} \frac{\sin x}{x} = 1 - 1 = 0$$

ઉદાહરણ 7 :  $\lim_{x\to 1} \frac{\log_e x}{x-1}$  મેળવો.

ઉકેલ: 
$$x = 1 + h$$
 લેતાં,  $x \rightarrow 1$  તો  $h \rightarrow 0$ 

$$\lim_{x \to 1} \frac{\log_e x}{x - 1} = \lim_{h \to 0} \frac{\log_e (1 + h)}{h}$$

$$= 1$$

$$\left(\text{ size } \hat{\mathbf{s}} \quad \lim_{x \to 0} \frac{\log_e(1+x)}{x} = 1\right)$$

#### સ્વાધ્યાય 13.2

નીચેનાં લક્ષ અસ્તિત્વ ધરાવે તો મેળવો :

1. 
$$\lim_{x\to 0} \frac{e^{4x}-1}{x}$$

2. 
$$\lim_{x\to 0} \frac{e^{2+x}-e^2}{x}$$

3. 
$$\lim_{x\to 5} \frac{e^x - e^5}{x-5}$$

4. 
$$\lim_{x\to 0} \frac{e^{\sin x} - 1}{x}$$

5. 
$$\lim_{x\to 3} \frac{e^x - e^3}{x-3}$$

6. 
$$\lim_{x \to 0} \frac{x(e^x - 1)}{1 - \cos x}$$

7. 
$$\lim_{x \to 0} \frac{\log_e(1+2x)}{x}$$

**8.** 
$$\lim_{x \to 0} \frac{\log (1 + x^3)}{\sin^3 x}$$

#### 13.6 વિકલન

આપણે વિભાગ 13.2માં જોઈ ગયાં કે પદાર્થના અલગ અલગ સમય અંતરાલના સ્થાન પરથી એ શોધવું શક્ય બને કે તેના સ્થાનનો બદલાવનો દર કેટલો છે. જીવનમાં બનતી એવી ઘણી ઘટનાઓ છે કે જ્યાં આ પ્રક્રિયા ઉપયોગી બને. દાખલા તરીકે, ડેમની ઊંડાઈ પરથી તે ક્યારે છલકાશે તે ડેમની સંભાળ રાખતા માણસે જાણવું જરૂરી બને છે. રૉકેટશાસ્ત્રમાં વૈજ્ઞાનિકોને રોકેટની ઊંચાઈની માહિતી પરથી ઉપગ્રહ છોડવાની ગતિની ગણતરી કરવાની હોય છે. કોઈ શૅરના વર્તમાનભાવ પરથી તેમાં થનારા ફેરફારની આગાહી નાણા સંસ્થાઓ કરતી હોય છે. આ બધામાં કોઈ રાશિ (સાપેક્ષ ચલ)માં અન્ય કોઈ રાશિ (નિરપેક્ષ ચલ)ને સાપેક્ષ થતાં ફેરફારની માહિતી જરૂરી છે. આ બધી જ માહિતીનું હાર્દ વિધેયના પ્રદેશમાં રહેલ નિશ્ચિત બિંદુએ તેનું વિકલન શોધવાનું છે.

વ્યાખ્યા 1 : ધારો કે f વાસ્તવિક વિધેય છે અને a તેની વ્યાખ્યાના પ્રદેશનું બિંદુ છે. જો  $\lim_{h\to 0} \frac{f(a+h)-f(a)}{h}$  નું અસ્તિત્વ હોય, તો  $d\hat{-}df(x)$  નું a આગળનું વિકલિત કહે છે અને તેને સંકેત f'(a) વડે દર્શાવાય છે.

282 ગાંધાત : ધોરણ 11

ઉદાહરણ 8 : વિધેય f(x) = 3x નું x = 2 આગળ વિકલિત શોધો.

ઉકેલ : અહીં, 
$$f'(2) = \lim_{h \to 0} \frac{f(2+h) - f(2)}{h}$$
$$= \lim_{h \to 0} \frac{3(2+h) - 3(2)}{h}$$
$$= \lim_{h \to 0} \frac{6+3h-6}{h}$$
$$= \lim_{h \to 0} \frac{3h}{h} = \lim_{h \to 0} 3 = 3$$

વિધેય 3x નું x = 2 આગળનું વિકલિત 3 છે.

ઉદાહરણ 9 : વિધેય  $f(x) = 2x^2 + 3x - 5$  નું x = -1આગળનું વિકલિત શોધો તથા સાબિત કરો કે f'(0) + 3f'(-1) = 0.

ઉકેલ : આપણે પ્રથમ વિધેય f(x) ના x = -1 અને x = 0 આગળના વિકલિત શોધીશું.

$$f'(-1) = \lim_{h \to 0} \frac{f(-1+h)-f(-1)}{h}$$

$$= \lim_{h \to 0} \frac{\left[2(-1+h)^2 + 3(-1+h) - 5\right] - \left[2(-1)^2 + 3(-1) - 5\right]}{h}$$

$$= \lim_{h \to 0} \frac{2h^2 - h}{h}$$

$$= \lim_{h \to 0} (2h-1) = 2(0) - 1 = -1$$

$$f'(0) = \lim_{h \to 0} \frac{f(0+h)-f(0)}{h}$$

$$= \lim_{h \to 0} \frac{\left[2(0+h)^2 + 3(0+h) - 5\right] - \left[2(0)^2 + 3(0) - 5\right]}{h}$$

$$= \lim_{h \to 0} \frac{2h^2 + 3h}{h}$$

$$= \lim_{h \to 0} (2h+3) = 2(0) + 3 = 3$$

સ્પષ્ટ છે કે, f'(0) + 3f'(-1) = 0

નોંધ: આ તબક્કે નોંધો કે કોઈ બિંદુ આગળ વિકલિત શોધવા લક્ષના ઘણાબધા નિયમોનો અસરકારક ઉપયોગ થાય છે. આગળનું ઉદાહરણ આ બતાવે છેઃ લક્ષ અને વિકલન 283

ઉદાહરણ  $10 : \sin x + \frac{1}{2}x = 0$  આગળ વિકલિત શોધો.

ઉકેલ : ધારો કે  $f(x) = \sin x$ .

આથી 
$$f'(0) = \lim_{h \to 0} \frac{f(0+h) - f(0)}{h}$$

$$= \lim_{h \to 0} \frac{\sin(0+h) - \sin(0)}{h}$$

$$= \lim_{h \to 0} \frac{\sin h}{h} = 1$$

ઉદાહરણ 11: વિધેયf(x) = 3 નું x = 0 અને x = 3 આગળ વિકલિત શોધો.

<mark>ઉક્રેલ</mark> : વિકલિત એ વિધેયમાં થતા ફેરફારનો દર છે. આથી, પ્રથમ દેષ્ટિએ રીતે સ્પષ્ટ છે કે અચળ વિધેયનું પ્રત્યેક બિંદુએ વિકલિત શ્ન્ય થાય. નીચેની ગણતરીથી આ ધારણાને સમર્થન મળે છેઃ

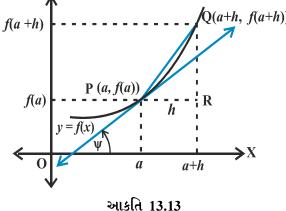
$$f'(0) = \lim_{h \to 0} \frac{f(0+h)-f(0)}{h} = \lim_{h \to 0} \frac{3-3}{h} = \lim_{h \to 0} \frac{0}{h} = 0.$$

આ જ રીતે, 
$$f'(3) = \lim_{h \to 0} \frac{f(3+h) - f(3)}{h} = \lim_{h \to 0} \frac{3-3}{h} = 0$$
.

હવે, આપણે કોઈ બિંદુએ વિકલિતની સંકલ્પનાનું ભૌમિતિક અર્થઘટન કરીશું. ધારો કે  $y=\mathit{f}(x)$  એક વિધેય છે અને P = (a, f(a)) અને Q = (a + h, f(a + h)) એ વિધેયના આલેખ પરનાં બે નજીકનાં બિંદુઓ છે. આ આકૃતિ 13.11 માં સ્વયંસ્પષ્ટ છે.

આપણે જાણીએ છીએ કે, 
$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

ત્રિકોણ PQR પરથી, એ સ્પષ્ટ છે કે આપણે જેનું લક્ષ શોધીએ છીએ તે ગુણોત્તર એ જીવા PQ ના ઢાળ tan ∠QPR જેટલો છે. લક્ષની પ્રક્રિયામાં જેમ h એ 0 ને અનુલક્ષે તેમ બિંદુ Q એ P ને અનુલક્ષે અને આથી,



$$\lim_{h \to 0} \frac{f(a+h) - f(a)}{h} = \lim_{Q \to P} \frac{QR}{PR}$$

આ હકીકત વક્ર y = f(x)માટે જીવા  $\operatorname{PQ}$  એ  $\operatorname{P}$  આગળના સ્પર્શકને અનુલક્ષે છે તે રીતે સમજી શકાય. આથી, લક્ષ સ્પર્શકના ઢાળ બરાબર છે. આથી,  $f'(a) = \tan \psi$ .

આપેલ વિધેય f નું આપણે તેના પ્રદેશના પ્રત્યેક બિંદુએ વિકલિત કરી શકીએ તો તે એક નવું વિધેય વ્યાખ્યાયિત કરે. તેને f નું વિકલિત કહેવાય. ઔપચારિક રીતે, આપશે વિકલિતની વ્યાખ્યા નીચે પ્રમાશે આપીશુંઃ

<mark>વ્યાખ્યા 2</mark> : ધારો કે વિધેય f વાસ્તવિક વિધેય છે. જો લક્ષનું અસ્તિત્વ હોય, તો

$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

284 ગણિત : ધોરણ 11

ને વિધેય ƒ નું x આગળનું વિકલિત કહીશું અને તેને ƒ'(x) વડે દર્શાવીશું. વ્યાખ્યાથી શોધાતા વિકલિતને પ્રથમ સિદ્ધાંતથી મેળવેલ વિકલિત કહીશું.

આમ, 
$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

જે પ્રદેશમાં ઉપરનું લક્ષ મળે તે f'(x) ની વ્યાખ્યાનો પ્રદેશ છે. વિધેયના વિકલિતને દર્શાવતાં અલગ અલગ સંકેતો છે. કેટલીક વખત f'(x) ને  $\frac{d}{dx} (f(x))$  અથવા જો y = f(x) તો તે  $\frac{dy}{dx}$  દ્વારા દર્શાવાય છે. તેનો અર્થ f(x) અથવા y નું x ને સાપેક્ષ વિકલિત, એમ થાય. તેને D(f(x)) વડે પણ દર્શાવાય. વળી, fનું x = a આગળનું વિકલિત  $\frac{d}{dx} f(x) \Big|_a$  અથવા  $\frac{df}{dx} \Big|_a$  અથવા  $\left(\frac{df}{dx}\right)_{x=a}$  પણ દર્શાવાય છે.

ઉદાહરણ 12: f(x) = 10x નું વિકલિત મેળવો.

334: 
$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
$$= \lim_{h \to 0} \frac{10(x+h) - 10(x)}{h}$$
$$= \lim_{h \to 0} \frac{10h}{h} = \lim_{h \to 0} (10) = 10$$

ઉદાહરણ  $13: f(x) = x^2$  નું વિકલિત મેળવો.

ઉકેલ: અહીં, 
$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{(x+h)^2 - (x)^2}{h}$$

$$= \lim_{h \to 0} (h+2x) = 2x$$

ઉદાહરણ 14 : અચળ વિધેય f(x) = a નું કોઈ નિશ્ચિત વાસ્તવિક અચળ કિંમત માટે વિકલિત શોધો.

ઉકેલ : અહીં, 
$$f'(x) = \lim_{h \to 0} \frac{f\left(x+h\right) - f\left(x\right)}{h}$$

$$= \lim_{h \to 0} \frac{a-a}{h}$$

$$= \lim_{h \to 0} \frac{0}{h} = 0, \text{ કારણ કે } h \neq 0$$

ઉદાહરણ 15 : 
$$f(x) = \frac{1}{x}$$
 નું વિકલિત મેળવો.

ઉકેલ : અહીં, 
$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
$$= \lim_{h \to 0} \frac{\frac{1}{(x+h)} - \frac{1}{x}}{h}$$

લક્ષ અને વિકલન 285

$$= \lim_{h \to 0} \frac{1}{h} \left[ \frac{x - (x+h)}{x(x+h)} \right]$$
$$= \lim_{h \to 0} \frac{1}{h} \left[ \frac{-h}{x(x+h)} \right]$$
$$= \lim_{h \to 0} \frac{-1}{x(x+h)} = -\frac{1}{x^2}$$

13.6.1 વિધેયના વિકલિતનું બીજગણિતઃ વિકલનની વ્યાખ્યામાં લક્ષના બધા જ નિયમો ઉપયોગમાં લેવાતાં હોવાથી આપણે અપેક્ષા રાખીએ કે વિકલનના નિયમો લક્ષના નિયમોને અનુસરશે. આપણે નીચેના પ્રમેય તરીકે તેમની ચર્ચા કરીશુંઃ  $\mathbf{y}$ મેય  $\mathbf{8}$ : ધારો કે વિધેયો  $\mathbf{f}$  અને  $\mathbf{g}$  સામાન્ય પ્રદેશમાં વિકલનીય હોય, તો

(i) બે વિધેયના સરવાળાનું વિકલિત એ તેમના વિકલિતના સરવાળા જેટલું હોય.

$$\frac{d}{dx} \left[ f(x) + g(x) \right] = \frac{d}{dx} f(x) + \frac{d}{dx} g(x).$$

(ii) બે વિધેયના તફાવતનું વિકલિત એ તેમના વિકલિતના તફાવત જેટલું હોય.

$$\frac{d}{dx} \left[ f(x) - g(x) \right] = \frac{d}{dx} f(x) - \frac{d}{dx} g(x).$$

(iii) બે વિધેયના ગુણાકારનું વિકલિત એ નીચેના ગુણાકારના વિકલિતના નિયમ દ્વારા દર્શાવી શકાય.

$$\frac{d}{dx} \Big[ f(x) \cdot g(x) \Big] = \frac{d}{dx} f(x) \cdot g(x) + f(x) \cdot \frac{d}{dx} g(x)$$

(iv) જ્યારે છેદ શૂન્યેતર હોય ત્યારે બે વિધેયના ભાગાકારના વિકલિતનો નિયમ નીચેના ભાગાકારના નિયમ દ્વારા દર્શાવી શકાયઃ

$$\frac{d}{dx}\left(\frac{f(x)}{g(x)}\right) = \frac{\frac{d}{dx}f(x)\cdot g(x) - f(x)}{\left(g(x)\right)^2} \frac{d}{dx}g(x)$$

આની સાબિતી લક્ષના પ્રમેયોની સાબિતીને જ અનુસરશે. આપણે આ સાબિતીઓ અહીં આપીશું નહિ. લક્ષની જેમ જ આ પ્રમેયોનો ઉપયોગ કેટલાંક વિશિષ્ટ વિધેયોના વિકલિત મેળવવા માટે કરી શકાય. છેલ્લા બે પ્રમેયોને ફરીથી યાદ ફરીથી યાદ રાખવાનું સરળ બને તે રીતે નીચે પ્રમાણે લખી શકાયઃ

ધારો કે 
$$u = f(x)$$
 અને  $v = g(x)$ , તો 
$$(uv)' = u'v + uv'$$

આને લિબનિટ્ઝનો વિકલિતના ગુણાકારનો નિયમ અથવા ગુણાકારનો નિયમ કહીશું. આ જ રીતે, ભાગાકારનો નિયમ

$$\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$$

હવે, કેટલાંક પ્રમાણિત વિધેયના વિકલનની ક્રિયા હાથ ધરીએ. એ જોવું સરળ છે કે વિધેય f(x) = x નું વિકલિત અચળ વિધેય 1 છે.

કારણ કે 
$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{x+h-x}{h} = \lim_{h \to 0} 1 = 1$$
.

286 ગાિષ્કાત : ધોરણ 11

આપણે આ અને ઉપરના પ્રમેયનો ઉપયોગ કરી.

f(x) = 10x = x + .... + x (10 વખત) નું વિકલિત શોધીએ. ઉપરના પ્રમેય (i) મુજબ,

$$\frac{df(x)}{dx} = \frac{d}{dx} (x + ... + x) \qquad (\text{EX UE})$$

$$= \frac{d}{dx} x + ... + \frac{d}{dx} x \qquad (\text{EX UE})$$

$$= 1 + ... + 1 \qquad (\text{EX UE})$$

$$= 10$$

આપણે નોંધીએ કે આ લક્ષ ગુણાકારના નિયમથી પણ શોધી શકાય. f(x) = 10x = uv લખો, જ્યાં u એ અચળ વિધેય છે અને તેનું મૂલ્ય 10 અને v(x) = x છે. અહીં, ગુણાકારના નિયમ મુજબ

$$f'(x) = (10x)' = (uv)' = u'v + uv' = 0 \cdot x + 10 \cdot 1 = 10$$

આ જ રીતે  $f(x) = x^2$  નું વિકલિત મેળવી શકાય. અહીં,  $f(x) = x^2 = x \cdot x$  અને આથી,

$$\frac{df}{dx} = \frac{d}{dx}(x \cdot x) = \frac{d}{dx}(x) \cdot x + x \cdot \frac{d}{dx}(x)$$
$$= 1 \cdot x + x \cdot 1 = 2x$$

વ્યાપક રીતે આપણે નીચેનું પ્રમેય લઈએ.

પ્રમેય 9: જો n એ ધન પૂર્ણીક હોય તો  $f(x) = x^n$  નું વિકલત  $nx^{n-1}$  છે.

સાબિતી : વિકલનની વ્યાખ્યાથી,

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{(x+h)^n - x^n}{h}$$
.

દિપદી પ્રમેયથી,  $(x+h)^n = \binom{n}{1}x^n + \binom{n}{1}x^{n-1}h + \binom{n}{2}x^{n-2}h^2 + \dots + \binom{n}{1}h^n$  અને

અાથી, 
$$(x+h)^n - x^n = h(nx^{n-1} + {}^nC_2x^{n-2}h + ... + h^{n-1}).$$

આમ, 
$$\frac{df(x)}{dx} = \lim_{h \to 0} \frac{(x+h)^n - x^n}{h}$$

$$= \lim_{h \to 0} \frac{h(nx^{n-1} + {}^nC_2x^{n-2}h + \dots + h^{n-1})}{h}$$

$$= \lim_{h \to 0} (nx^{n-1} + {}^nC_2x^{n-2}h + \dots + h^{n-1}) = nx^{n-1}$$

બીજી રીત : n પરના ગાણિતિક અનુમાનના સિદ્ધાંતથી પણ આ પ્રમેય સાબિત કરી શકાય.

આ પરિણામ n=1 માટે સત્ય છે, તે આગળ સાબિત કરેલ છે

હવે, 
$$\frac{d}{dx}(x^n) = \frac{d}{dx}(x \cdot x^{n-1})$$
$$= \frac{d}{dx}(x) \cdot (x^{n-1}) + x \cdot \frac{d}{dx}(x^{n-1})$$
(ગુણાકારના નિયમ પરથી)

લક્ષ અને વિકલન 287

$$=1\cdot x^{n-1}+x\cdot \left((n-1)x^{n-2}
ight)$$
 (અનુમાનની પૂર્વધારણા) 
$$=x^{n-1}+(n-1)x^{n-1}$$
 
$$=nx^{n-1}$$

નોંધ : ઉપરનું પ્રમેય x ના પ્રત્યેક ઘાતાંક માટે સત્ય છે. અર્થાત્ n કોઈ પણ વાસ્તવિક સંખ્યા હોઈ શકે. (પરંતુ આપણે અહીં તેની સાબિતી આપીશું નહિ.)

### 13.6.2 બહુપદી અને ત્રિકોણમિતિય વિધેયોનાં વિકલિત

આપણે નીચેના બહુપદી વિધેયના વિકલિતના પ્રમેયથી શરૂઆત કરીએઃ

પ્રમેય 10: જો પ્રત્યેક  $a_i$ વાસ્તવિક સંખ્યા હોય અને  $a_n \neq 0$  તો બહુપદી વિધેય  $f(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0$  નું વિકલિત  $\frac{df(x)}{dx} = n a_n x^{n-1} + (n-1) a_{n-1} x^{n-2} + \ldots + 2 a_2 x + a_1.$ 

આની સાબિતી પ્રમેય 8નો ભાગ (i) અને પ્રમેય 9 સાથે લેવાથી મળે.

ઉદાહરણ  $16:6x^{100}-x^{55}+x$  નું વિકલિત મેળવો.

ઉંકેલ : ઉપરના પ્રમેયનો પ્રત્યક્ષ ઉપયોગ કરતાં વિકલિત  $600x^{99} - 55x^{54} + 1$  મળે.

ઉદાહરણ 17:  $f(x) = 1 + x + x^2 + x^3 + ... + x^{50}$  નું x = 1 આગળ વિકલિત મેળવો.

ઉકેલ : ઉપરના પ્રમેય 9 નો ઉપયોગ કરતાં, વિકલિત  $1 + 2x + 3x^2 + \ldots + 50x^{49}$ મળે.

x=1 આગળ આ વિધેયનું મૂલ્ય  $1+2(1)+3(1)^2+\ldots+50(1)^{49}=1+2+3+\ldots+50=\frac{(50)(51)}{2}=1275.$  ઉદાહરણ  $\mathbf{18}: f(x)=\frac{x+1}{x}$  નું વિકલિત મેળવો.

ઉકેલ : સ્પષ્ટ છે કે વિધેય x=0 સિવાય વ્યાખ્યાયિત છે. u=x+1 અને v=x લઈ ભાગાકારનો નિયમ વાપરીએ. u'=1 અને v'=1.

$$\text{First.} \frac{df(x)}{dx} = \frac{d}{dx} \left( \frac{x+1}{x} \right) = \frac{d}{dx} \left( \frac{u}{v} \right) = \frac{u'v - uv'}{v^2} = \frac{1(x) - (x+1)1}{x^2} = -\frac{1}{x^2}$$

ઉદાહરણ 19: sin x નું વિકલિત મેળવો.

ઉકેલ : ધારો કે,  $f(x) = \sin x$ .

આથી, 
$$\frac{df(x)}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{\sin(x+h) - \sin(x)}{h}$$

$$= \lim_{h \to 0} \frac{2\cos\left(\frac{2x+h}{2}\right)\sin\left(\frac{h}{2}\right)}{h}$$
(  $\sin A - \sin B$ ના સૂત્રથી)

288 ગાંધાત : ધોરણ 11

$$= \lim_{h \to 0} \cos\left(x + \frac{h}{2}\right) \cdot \lim_{h \to 0} \frac{\sin\frac{h}{2}}{\frac{h}{2}}$$
$$= \cos x \cdot 1 = \cos x$$

ઉદાહરણ 20: tan x નું વિકલિત મેળવો.

ઉકેલ : ધારો કે f(x) = tan x

આથી, 
$$\frac{df(x)}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{tan(x+h) - tan(x)}{h}$$

$$= \lim_{h \to 0} \frac{1}{h} \left[ \frac{sin(x+h)}{cos(x+h)} - \frac{sin x}{cosx} \right]$$

$$= \lim_{h \to 0} \left[ \frac{sin(x+h)cos x - cos(x+h)sinx}{hcos(x+h)cos x} \right]$$

$$= \lim_{h \to 0} \frac{sin(x+h-x)}{hcos(x+h)cos x} \qquad (sin (A+B)$$
-મા સૂત્રનો ઉપયોગ કરતાં)
$$= \lim_{h \to 0} \frac{sin h}{h} \cdot \lim_{h \to 0} \frac{1}{cos(x+h)cos x}$$

 $=1.\frac{1}{\cos^2 x} = \sec^2 x$ 

ઉદાહરણ  $21: f(x) = sin^2 x$  નું વિકલિત મેળવો.

<mark>ઉકેલ :</mark> આપણે લિબનિટ્સના ગુણાકારના નિયમનો ઉપયોગ કરીએ.

$$\frac{df(x)}{dx} = \frac{d}{dx} (\sin x \sin x)$$

$$= (\sin x)' \sin x + \sin x (\sin x)'$$

$$= (\cos x) \sin x + \sin x (\cos x)$$

$$= 2\sin x \cos x = \sin 2x$$

લક્ષ અને વિકલન 289

#### સ્વાધ્યાય 13.3

- 1.  $x^2 2$  નું x = 10 આગળનું વિકલિત મેળવો.
- 2. 99x નું x = 100 આગળનું વિકલિત મેળવો.
- **3.** x + i = 1 આગળનું વિકલિત મેળવો.
- 4. નીચેનાં વિધેયોના વિકલિત પ્રથમ સિદ્ધાંતથી શોધો :

  - (i)  $x^3 27$  (ii) (x-1)(x-2) (iii)  $\frac{1}{x^2}$  (iv)  $\frac{x+1}{x-1}$
- 5. વિધેય  $f(x) = \frac{x^{100}}{100} + \frac{x^{99}}{00} + \ldots + \frac{x^2}{2} + x + 1$  માટે સાબિત કરો કે f'(1) = 100 f'(0).
- **6.** કોઈક નિશ્ચિત વાસ્તવિક સંખ્યા a માટે  $x^n + ax^{n-1} + a^2x^{n-2} + \ldots + a^{n-1}x + a^n$  નું વિકલિત શોધો.
- 7. કોઈ અચળ a અને b માટે વિકલિત શોધો :
  - (i) (x-a)(x-b) (ii)  $(ax^2+b)^2$
- (iii)  $\frac{x-a}{x-b}$

- 8. કોઈક અચળ a માટે  $\frac{x^n a^n}{x a}$  નું વિકલિત શોધો.
- 9. વિકલિત શોધોઃ
  - (i)  $2x \frac{3}{4}$
- (ii)  $(5x^3 + 3x 1)(x 1)$  (iii)  $x^{-3}(5 + 3x)$

- (iv)  $x^5 (3-6x^{-9})$
- (v)  $x^{-4}(3-4x^{-5})$
- (vi)  $\frac{2}{x+1} \frac{x^2}{3x-1}$

- 10. પ્રથમ સિદ્ધાંતથી  $\cos x$  નું વિકલિત શોધો :
- 11. નીચેનાં વિધેયોનાં વિકલિત શોધો :
  - (i) sin x cos x
- (ii) sec x

(iii)  $5 \sec x + 4 \cos x$ 

(iv) cosec x

- (v)  $3\cot x + 5\csc x$
- (vi)  $5\sin x 6\cos x + 7$

(vii)  $2\tan x - 7\sec x$ 

### પ્રકીર્ણ ઉદાહરણો

ઉદાહરણ 22:fનું પ્રથમ સિદ્ધાંતથી વિકલિત શોધો, જ્યાં

(i) 
$$f(x) = \frac{2x+3}{x-2}$$
 (ii)  $f(x) = x + \frac{1}{x}$ 

(ii) 
$$f(x) = x + \frac{1}{x}$$

ઉંકેલ : (i) આપણે નોંધીએ કે x = 2 આગળ વિધેય વ્યાખ્યાયિત નથી.

290 ગાંધાત : ધોરણ 11

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{\frac{2(x+h) + 3}{x+h-2} - \frac{2x+3}{x-2}}{h}$$

$$= \lim_{h \to 0} \frac{(2x+2h+3)(x-2) - (2x+3)(x+h-2)}{h(x-2)(x+h-2)}$$

$$= \lim_{h \to 0} \frac{(2x+3)(x-2) + 2h(x-2) - (2x+3)(x-2) - h(2x+3)}{h(x-2)(x+h-2)}$$

$$= \lim_{h \to 0} \frac{-7}{(x-2)(x+h-2)}$$

$$= -\frac{7}{(x-2)^2}$$

ફરી નોંધો કે વિધેય f' પણ x=2 આગળ વ્યાખ્યાયિત નથી, વિધેય પોતે જ f=2 આગળ વ્યાખ્યાયિત નથી. વિકલિતની વ્યાખ્યા અનુસાર f એ x=a આગળ વ્યાખ્યાયિત હોય તે જરૂરી છે.

(ii) વિધેય x = 0 આગળ વ્યાખ્યાયિત નથી.

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{\left(x+h + \frac{1}{x+h}\right) - \left(x + \frac{1}{x}\right)}{h}$$

$$= \lim_{h \to 0} \frac{1}{h} \left[h + \frac{1}{x+h} - \frac{1}{x}\right]$$

$$= \lim_{h \to 0} \frac{1}{h} \left[h + \frac{x - x - h}{x(x+h)}\right]$$

$$= \lim_{h \to 0} \frac{1}{h} \left[h \left(1 - \frac{1}{x(x+h)}\right)\right]$$

$$= \lim_{h \to 0} \left[1 - \frac{1}{x(x+h)}\right]$$

$$= 1 - \frac{1}{x^2}$$

ફરી નોંધો કે, વિધેય f' એ x = 0 આગળ વ્યાખ્યાયિત નથી.

(કેમ ?)

લક્ષ અને વિકલન 291

ઉદાહરણ 23 : 
$$f(x) = (i) \sin x + \cos x$$
 (ii)  $x \sin x + i$  પ્રથમ સિદ્ધાંતથી વિકલિત શોધો.

ઉકેલ : (i) અહીં, 
$$f'(x) = \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{\sin(x+h) + \cos(x+h) - \sin x - \cos x}{h}$$

$$= \lim_{h \to 0} \frac{\sin x \cos h + \cos x \sin h + \cos x \cos h - \sin x \sin h - \sin x - \cos x}{h}$$

$$= \lim_{h \to 0} \frac{\sin h(\cos x - \sin x) + \sin x(\cos h - 1) + \cos x(\cos h - 1)}{h}$$

$$= \lim_{h \to 0} \frac{\sinh h(\cos x - \sin x) + \lim_{h \to 0} \sin x \frac{(\cos h - 1)}{h} + \lim_{h \to 0} \cos x \frac{(\cos h - 1)}{h}$$

$$= \cos x - \sin x$$
(ii)  $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ 

$$= \lim_{h \to 0} \frac{(x+h)\sin(x+h) - x\sin x}{h}$$

$$(ii) \quad f(x) = \lim_{h \to 0} \frac{1}{h}$$

$$= \lim_{h \to 0} \frac{(x+h)\sin(x+h) - x\sin x}{h}$$

$$= \lim_{h \to 0} \frac{(x+h)(\sin x \cos h + \sin h \cos x) - x\sin x}{h}$$

$$= \lim_{h \to 0} \frac{x\sin x(\cos h - 1) + x\cos x \sin h + h(\sin x \cos h + \sin h \cos x)}{h}$$

$$= \lim_{h \to 0} \frac{x\sin x(\cos h - 1)}{h} + \lim_{h \to 0} x\cos x \frac{\sin h}{h} + \lim_{h \to 0} (\sin x \cos h + \sin h \cos x)$$

ઉદાહરણ 24: વિકલિત શોધો:

 $= x \cos x + \sin x$ 

(i) 
$$f(x) = \sin 2x$$
 (ii)  $g(x) = \cot x$ 

ઉકેલ : (i) ત્રિકોણમિતિના સૂત્ર  $\sin 2x = 2 \sin x \cos x$  ને યાદ કરીએ.

આથી, 
$$\frac{df(x)}{dx} = \frac{d}{dx} \left( 2 \sin x \cos x \right)$$
$$= 2 \frac{d}{dx} \left( \sin x \cos x \right)$$
$$= 2 \left[ \left( \sin x \right)' \cos x + \sin x \left( \cos x \right)' \right]$$
$$= 2 \left[ \left( \cos x \right) \cos x + \sin x \left( -\sin x \right) \right]$$
$$= 2 \left( \cos^2 x - \sin^2 x \right)$$

(ii) વ્યાખ્યા મુજબ,  $g(x) = \cot x = \frac{\cos x}{\sin x}$ . આપણે આ વિધેય પર, જ્યાં પણ વ્યાખ્યાયિત હોય ત્યાં, ભાગાકારનો નિયમ

292 ગાંધાત : ધોરણ 11

વાપરીએ. 
$$\frac{dg}{dx} = \frac{d}{dx}(\cot x) = \frac{d}{dx}\left(\frac{\cos x}{\sin x}\right)$$
$$= \frac{(\cos x)'(\sin x) - (\cos x)(\sin x)'}{(\sin x)^2}$$
$$= \frac{(-\sin x)(\sin x) - (\cos x)(\cos x)}{(\sin x)^2}$$
$$= -\frac{\sin^2 x + \cos^2 x}{\sin^2 x} = -\csc^2 x$$

બીજી રીતે, આની ગણતરી  $\cot x = \frac{1}{\tan x}$  લઈને પણ કરી શકાય. અહીં, આપણે એ માનીશું કે,  $\tan x$  નો વિકલિત  $\sec^2 x$  થાય. તે આપણે ઉદાહરણ 20 માં જોયું અને અચળ વિધેયનો વિકલત 0 થાય.

આધી, 
$$\frac{dg}{dx} = \frac{d}{dx}(\cot x) = \frac{d}{dx}\left(\frac{1}{\tan x}\right)$$
$$= \frac{(1)'(\tan x) - (1)(\tan x)'}{(\tan x)^2}$$
$$= \frac{(0)(\tan x) - (\sec x)^2}{(\tan x)^2}$$
$$= \frac{-\sec^2 x}{\tan^2 x} = -\csc^2 x$$

ઉદાહરણ 25 : વિકલિત શોધો :

(i) 
$$\frac{x^5 - \cos x}{\sin x}$$
 (ii) 
$$\frac{x + \cos x}{\tan x}$$

ઉકેલ : (i) ધારો કે જ્યાં પણ વ્યાખ્યાયિત હોય ત્યાં,  $h(x) = \frac{x^5 - \cos x}{\sin x}$  પર આપણે આ વિધેયના વિકલિત માટે ભાગાકારનો નિયમ વાપરીએ.

$$h'(x) = \frac{(x^5 - \cos x)' \sin x - (x^5 - \cos x)(\sin x)'}{(\sin x)^2}$$

$$= \frac{(5x^4 + \sin x)\sin x - (x^5 - \cos x)\cos x}{\sin^2 x}$$

$$= \frac{-x^5 \cos x + 5x^4 \sin x + 1}{(\sin x)^2}$$

(ii) વિધેય જ્યાં પણ વ્યાખ્યાયિત હોય ત્યાં,  $h(x) = \frac{x + \cos x}{\tan x}$  પર આપણે ભાગાકારનો નિયમ વાપરીએ.

આથી, 
$$h'(x) = \frac{(x + \cos x)' \tan x - (x + \cos x)(\tan x)'}{(\tan x)^2}$$
$$= \frac{(1 - \sin x) \tan x - (x + \cos x) \sec^2 x}{(\tan x)^2}$$

લક્ષ અને વિકલન 293

### પ્રકીર્ણ સ્વાધ્યાય 13

1. વ્યાખ્યાની મદદથી નીચેના વિકલિત મેળવો :

$$(i) -x$$

(ii) 
$$(-x)^{-1}$$

(iii) 
$$sin(x+1)$$

(iii) 
$$sin(x+1)$$
 (iv)  $cos\left(x-\frac{\pi}{8}\right)$ 

નીચેનાં વિધેયોના વિકલિત મેળવો :

(એ માની લો કે a, b, c, d, p, q, r અને s નિશ્ચિત શૂન્યેતર અચળ અને m તથા n પૂર્ણાંક છે.)

2. 
$$(x + a)$$

3. 
$$(px+q)\left(\frac{r}{x}+s\right)$$

4. 
$$(ax+b)(cx+d)^2$$

$$5. \ \frac{ax+b}{cx+d}$$

6. 
$$\frac{1+\frac{1}{x}}{1-\frac{1}{x}}$$

$$7. \ \frac{1}{ax^2 + bx + c}$$

8. 
$$\frac{ax+b}{px^2+qx+r}$$

9. 
$$\frac{px^2 + qx + r}{ax + b}$$

10. 
$$\frac{a}{x^4} - \frac{b}{x^2} + \cos x$$

11. 
$$4\sqrt{x}-2$$

12. 
$$(ax+b)^n$$

13. 
$$(ax+b)^n (cx+d)^m$$

**14.** 
$$sin(x + a)$$

15. 
$$cosec \ x \cot x$$

$$16. \ \frac{\cos x}{1+\sin x}$$

17. 
$$\frac{\sin x + \cos x}{\sin x - \cos x}$$

18. 
$$\frac{\sec x - 1}{\sec x + 1}$$

19. 
$$sin^n x$$

$$20. \ \frac{a+b\sin x}{c+d\cos x}$$

21. 
$$\frac{\sin(x+a)}{\cos x}$$

22. 
$$x^4 (5 \sin x - 3 \cos x)$$

**23.** 
$$(x^2+1)\cos x$$

$$24. \left(ax^2 + \sin x\right) \left(p + q\cos x\right)$$

$$25. (x+\cos x)(x-\tan x)$$

$$26. \ \frac{4x + 5\sin x}{3x + 7\cos x}$$

$$27. \ \frac{x^2 cos\left(\frac{\pi}{4}\right)}{sinx}$$

$$28. \ \frac{x}{1+tanx}$$

$$29. \ (x + secx)(x - tanx)$$

$$30. \ \frac{x}{\sin^n x}$$

#### સારાંશ

- ♦ આપેલ બિંદુની ડાબી બાજુનાં બિંદુઓ દ્વારા મળતા વિધેયના અપેક્ષિત મૂલ્યને ડાબી બાજુનું લક્ષ કહેવાય. આ જ રીતે જમણી બાજુનું લક્ષ વ્યાખ્યાયિત કરી શકાય.
- ♦ જો ડાબી તથા જમણી બાજુના લક્ષનાં મૂલ્યો સમાન હોય, તો તે મૂલ્ય આ બિંદુ આગળ વિધેયનું લક્ષ કહેવાય.
- lacktriangle વિધેય f અને વાસ્તવિક સંખ્યા a માટે  $\lim_{x \to a} f(x)$  અને f(a) સમાન ના પણ હોય. (અલબત, એક વ્યાખ્યાયિત હોય અને એક ના પણ હોય.)

294 ગાંધાત : ધોરણ 11

lacktriang વિધેયો fઅને g માટે નીચેનાં વિધાન સત્ય છેઃ

$$\lim_{x \to a} [f(x) \pm g(x)] = \lim_{x \to a} f(x) \pm \lim_{x \to a} g(x)$$

$$\lim_{x \to a} [f(x) \cdot g(x)] = \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x)$$

$$\lim_{x \to a} \left[ \frac{f(x)}{g(x)} \right] = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}$$

♦ નીચે કેટલાંક પ્રમાણિત લક્ષ આપેલ છેઃ

$$\lim_{x \to a} \frac{x^n - a^n}{x - a} = na^{n-1}$$

$$\lim_{x\to 0}\frac{\sin x}{x}=1$$

$$\lim_{x\to 0}\frac{1-\cos x}{x}=0$$

♦ વિધેય *f* નું *a* આગળનું વિકલિત

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

lack વિધેયfનું કોઈ બિંદુ x આગળનું વિકલિત

$$f'(x) = \frac{df(x)}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

 $\diamond$  વિધેયો u અને v માટે

$$(u \pm v)' = u' \pm v'$$

$$(uv)' = u'v + uv'$$

$$\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$$
. શરત માત્ર એટલી કે તમામ વિકલિત વ્યાખ્યાયિત હોય.

♦ નીચે કેટલાંક પ્રમાણિત વિકલન આપેલ છેઃ

$$\frac{d}{dx}(x^n) = nx^{n-1}$$

$$\frac{d}{dx}(\sin x) = \cos x$$

$$\frac{d}{dx}(\cos x) = -\sin x$$

#### Historical Note

In the history of mathematics two names are prominent to share the credit for inventing calculus, Issac Newton (1642 – 1727) and G.W. Leibnitz (1646 – 1717). Both of them independently invented calculus around the seventeenth century. After the advent of calculus many mathematicians contributed for further development of calculus. The rigorous concept is mainly attributed to the great mathematicians, A.L. Cauchy, J.L.Lagrange and Karl Weierstrass. Cauchy gave the foundation of calculus as we have now generally accepted in our textbooks. Cauchy used D' Alembert's limit concept to define the derivative of a function. Starting with definition of a limit, Cauchy gave examples such as the limit of

લક્ષ અને વિકલન 295

$$\frac{\sin \alpha}{\alpha}$$
 for  $\alpha = 0$ . He wrote  $\frac{\Delta y}{\Delta x} = \frac{f(x+i) - f(x)}{i}$ , and called the limit for  $i \to 0$ , the "function derive'e,  $y'$  for  $f'(x)$ ".

Before 1900, it was thought that calculus is quite difficult to teach. So calculus became beyond the reach of youngsters. But just in 1900, John Perry and others in England started propagating the view that essential ideas and methods of calculus were simple and could be taught even in schools. F.L. Griffin, pioneered the teaching of calculus to first year students. This was regarded as one of the most daring act in those days.

Today not only the mathematics but many other subjects such as Physics, Chemistry, Economics and Biological Sciences are enjoying the fruits of calculus.



# ગાણિતિક તર્ક

\*There are few things which we know which are not capable of mathematical reasoning and when these can not, it is a sign that our knowledge of them is very small and confused and where a mathematical reasoning can be had, it is as great a folly to make use of another, as to grope for a thing in the dark when you have a candle stick

standing by you. – ARTHENBOT ❖

#### 14.1 પ્રાસ્તાવિક

આ પ્રકરણમાં આપણે ગાણિતિક તર્કના કેટલાક મૂળભૂત વિચારો વિશે ચર્ચા કરીશું. આપણે બધાં જાણીએ છીએ કે, ઘણાં વર્ષોથી મનુષ્યો નીચલી પ્રજાતિમાંથી વિકાસ પામ્યા છે. તેઓ અન્ય પ્રજાતિઓ કરતાં શ્રેષ્ઠ છે, કારણ કે મનુષ્યની તર્ક કરવાની ક્ષમતા એ તેની મુખ્ય સંપત્તિ છે. આ ક્ષમતાનો કેટલી સારી રીતે ઉપયોગ કરી શકાય તે દરેક વ્યક્તિની તર્ક કરવાની શક્તિ પર આધાર રાખે છે. આ શક્તિનો કેવી રીતે વિકાસ કરવો ? અહીં આપણે ખાસ કરીને ગણિતના સંદર્ભમાં તર્કની પ્રક્રિયા અંગે ચર્ચા કરીશું.



George Boole (1815 - 1864)

ગણિતમાં મુખ્યત્વે બે પ્રકારની દલીલો છે: અનુમાનિત દલીલો અને તર્કસંગત (1815 - 1864) તારણ મેળવવાની દલીલો. આપણે ગાણિતિક અનુમાનના સંદર્ભમાં અનુમાનિત દલીલોની ચર્ચા કરી લીધી છે. આ પ્રકરણમાં આપણે તર્કસંગત તારણોના કેટલાક મૂળભૂત વિચારોની ચર્ચા કરીશું.

297 ગણિત : ધોરણ 11

#### 14.2 વિધાન

ગાણિતિક વિધાન એ ગાણિતિક તર્કનો મૂળભૂત એકમ છે.

ચાલો આપણે બે વાક્ચોથી શરૂઆત કરીએ.

2003માં ભારતના રાષ્ટ્રપતિ એક સ્રી હતાં.

હાથીનું વજન મનુષ્યના વજન કરતાં વધુ હોય છે.

જયારે આપણે આ વાક્યો વાંચીએ છીએ ત્યારે આપણે તરત જ નક્કી કરી શકીએ છીએ કે પ્રથમ વાક્ય અસત્ય છે, જયારે બીજું વાક્ય સત્ય છે. આ અંગે કોઇ મૂંઝવણ નથી. ગણિતમાં આવાં વાક્યોને *વિધાન (Statement) ક*હે છે.

હવે નીચેના વાક્યનો વિચાર કરો :

સીઓ પુરૂષો કરતાં વધુ બુદ્ધિશાળી છે.

કેટલાક લોકો આ સત્ય છે તેમ માને છે તથા કેટલાક લોકો આ સાથે અસંમત થઈ શકે છે. આ વાક્ચ અંગે આપણે કહી શકીએ નહિ કે તે હંમેશાં સત્ય છે કે અસત્ય છે. આનો અર્થ કે આ વાક્ચ સંદિગ્ધ છે. ગણિતમાં આવાં વાક્ચોનો વિધાન તરીકે સ્વીકાર થતો નથી.

જો આપેલ વાક્ય સત્ય કે અસત્ય હોય પરંતુ બંને ન હોય, તો તેને ગાણિતિક રીતે સ્વીકાર્ય વિધાન કહે છે. જ્યારે આપણે અહીં 'વિધાન'નો ઉલ્લેખ કરીએ ત્યારે તે ગાણિતિક રીતે સ્વીકાર્ય વિધાન હોવું જોઈએ.

ગણિતનો અભ્યાસ કરતી વખતે આપણને આવાં ઘણાં વાક્ચો જોવા મળે છે. જેમકે,

બે વત્તા બે બરાબર ચાર. બે ધન સંખ્યાઓનો સરવાળો ધન મળે. બધી અવિભાજ્ય સંખ્યાઓ અયુગ્મ છે.

આ વાક્ચોમાં પ્રથમ બે સત્ય છે અને ત્રીજું વાક્ય અસત્ય છે.

આ વાક્યો વિષે કોઈ સંદિગ્ધતા નથી. આથી તેઓ વિધાન છે. શું તમે કોઈ એવા વાક્યનું ઉદાહરણ આપી શકો કે જે અસ્પષ્ટ અથવા સંદિગ્ધ હોય ? આ વાક્યનો વિચાર કરો :

x અને y નો સરવાળો શૂન્ય કરતાં વધુ છે.

અહીં જયાં સુધી આપણે x અને y ની કિંમતો જાણતા ન હોઈએ ત્યાં સુધી આપણે આ વાક્ય સત્ય છે કે અસત્ય છે તે નક્કી કરવાની સ્થિતિમાં નથી. ઉદાહરણ તરીકે જયારે x=1,y=-3 હોય ત્યારે તે અસત્ય છે અને જો x=1 અને y=0 હોય ત્યારે તે સત્ય છે. આથી આ વાક્ય વિધાન નથી. પરંતુ વાક્ય,

''કોઈ પણ બે પ્રાકૃતિક સંખ્યાઓ x અને y માટે, x અને y નો સરવાળો 0 થી વધુ છે'' એ વિધાન છે. હવે નીચેનાં વાક્યોનો વિચાર કરો :

કેટલું સુંદર!

દરવાજો ખોલો.

તમે ક્યાં જઈ રહ્યા છો ?

ગાણિતિક તર્ક

આ વાક્યો વિધાન છે ? ના, કારણ કે પ્રથમ વાક્ય ઉદ્ગાર છે, બીજું આજ્ઞાર્થ છે અને ત્રીજું પ્રશ્નાર્થ છે. ગાણિતીય રીતે આ બધામાંથી કોઈને પણ વિધાન છે તેમ કહી શકાય નહિ. જો વાક્યમાં 'સમય' ચલ સ્વરૂપે હોય જેમકે, 'આજે', 'આવતી કાલે', 'ગઈ કાલે' તો તે વિધાન નથી. કારણ કે કયા સમયની વાત કરવામાં આવે છે તે આપણે જાણતા નથી. ઉદાહરણ તરીકે વાક્ય

'આવતીકાલે શુક્રવાર છે.'

એ વિધાન નથી. આ વાક્ય ગુરુવારે સત્ય છે પરંતુ બીજા કોઈ દિવસે સત્ય નથી.

આ પ્રકારની સમાન દલીલો એવાં પ્રકારનાં વાક્યો માટે પણ સાચી હોય છે કે જેમાં કોઈ ચોક્કસ વ્યક્તિની ઓળખ આપ્યા વગર સર્વનામ સ્વરૂપે હોય અને તે જ રીતે વાક્યમાં સ્થળો ચલ સ્વરૂપે હોય જેમ કે 'અહીં', 'ત્યાં' વગેરે. ઉદાહરણ તરીકે વાક્યો

તે ગણિતની સ્નાતક છે.

કાશ્મીર અહીંથી દૂર છે.

એ વિધાન નથી.

વધુ એક વાક્ય

એક મહિનામાં 40 દિવસો હોય છે.

આને તમે વિધાન કહેશો ? આપણે નોંધીએ કે વાક્યમાં જે સમય દર્શાવ્યો છે તે ચલ સ્વરૂપે છે કારણ કે તે 12 મહિનાઓમાંથી ગમે તે મહિનો હોઈ શકે. પરંતુ આપણે જાણીએ છીએ કે, આ વાક્ય હંમેશાં અસત્ય છે.(ગમે તે મહિનો હોય તો પણ) કારણ કે કોઈ પણ મહિનામાં દિવસોની મહત્તમ સંખ્યા 31 થી વધુ ન હોય. માટે આ વાક્ય વિધાન છે. જો વાક્ય સત્ય કે અસત્ય હોય પરંતુ બંને ન હોય તો તે વાક્ય વિધાન બને છે.

સામાન્ય રીતે વિધાનોને  $p,\,q,\,r,...$  વગેરે નાના મૂળાક્ષરોથી દર્શાવવામાં આવે છે.

ઉદાહરણ તરીકે આપણે આપેલ વિધાનને નીચે પ્રમાણે પણ લખી શકીએ.

વિધાન 'આગ હંમેશાં ગરમ હોય છે' ને p વડે દર્શાવીએ.

p : આગ હંમેશાં ગરમ હોય છે.

ઉદાહરણ 1 : નીચેનાં વાક્યો વિધાન છે કે નહિ તે કારણ સહિત દર્શાવો:

(i) 8 એ 6 કરતાં નાનો છે.

(ii) દરેક ગણ એ સાન્ત ગણ છે.

(iii) સૂર્ય એક તારો છે.

(iv) ગણિત એક ૨મત છે.

(v) વાદળો વગર વરસાદ નથી.

(vi) ચેન્નઇ અહીંથી કેટલું દૂર છે ?

ઉકેલ ઃ (i) આ વાક્ચ અસત્ય છે કારણ કે 8 એ 6 કરતાં મોટો છે. તેથી આ વિધાન છે.

- (ii) આ વાક્ચ પણ અસત્ય છે, કારણ કે સાન્ત ન હોય તેવા ગણનું અસ્તિત્વ છે. તેથી આ વિધાન છે.
- (iii) વૈજ્ઞાનિક રીતે સ્થાપિત થયેલ છે કે સૂર્ય એક તારો છે. આથી આ વાક્ચ હંમેશાં સત્ય છે. તેથી આ વિધાન છે.
- (iv) આ વાક્ચ વ્યક્તિલક્ષી છે કારણ કે જેમને ગણિત ગમતું હોય તેમના માટે રમત હોઈ શકે, પરંતુ બીજા માટે એવું ન હોઈ શકે. આનો અર્થ એ કે આ વાક્ચ હંમેશાં સત્ય નથી. તેથી આ વિધાન નથી.
- (v) વરસાદ પહેલાં વાદળ બંધાય છે તે એક વૈજ્ઞાનિક રીતે સ્થાપિત કુદરતી ઘટના છે. આથી આ વાક્ચ હંમેશાં સત્ય છે. તેથી આ વિધાન છે.

299 ગણિત : ધોરણ 11

(vi) આ પ્રશ્નાર્થ વાક્ચ છે. વળી, આ વાક્ચમાં 'અહીં' (ચલસ્વરૂપે) નો ઉપયોગ થયેલ છે. તેથી આ વિધાન નથી.

ઉપરનાં ઉદાહરણો પરથી જોઈ શકાય છે કે જ્યારે આપણે કોઈ વાક્ચને વિધાન છે તેવું કહીએ ત્યારે આપણે હંમેશાં કહેવું જોઇએ તે શા માટે વિધાન છે ? પ્રશ્નના જવાબ કરતાં "તે શા માટે વિધાન છે ?" એ વધારે મહત્ત્વપૂર્ણ છે.

#### સ્વાધ્યાય 14.1

- નીચેનામાંથી કયાં વાક્ચો વિધાન છે ? તમારા જવાબ માટેના કારણ દર્શાવો.
  - (i) એક મહિનામાં 35 દિવસો હોય છે.
  - (ii) ગણિત અઘરું છે.
  - (iii) 5 અને 7 નો સરવાળો 10 કરતાં વધુ છે.
  - (iv) કોઈ પણ સંખ્યાનો વર્ગ એ યુગ્મ સંખ્યા હોય છે.
  - (v) કોઈ પણ ચત્ષ્કોણની બાજુઓ સમાન લંબાઈ ધરાવે છે.
  - (vi) આ પ્રશ્નનો ઉત્તર આપો.
  - (vii) (-1) અને 8 નો ગુણાકાર 8 થાય છે.
  - (viii) ત્રિકોણના બધા અંતઃકોણનો સરવાળો 180° થાય છે.
  - (ix) આજે તોફાની દિવસ છે.
  - (x) બધી વાસ્તવિક સંખ્યાઓ સંકર સંખ્યાઓ છે.
- 2. વિધાન ન હોય તેવાં ત્રણ વાક્યોનાં ઉદાહરણો આપો. તમારા જવાબનાં કારણો આપો.

### 14.3 જૂનાં વિધાનોમાંથી નવાં વિધાનો

આપણી પાસે પહેલેથી જ હોય તેવાં વિધાનોમાંથી નવાં વિધાનોની રચના કરવાની રીત હવે આપણે જોઈશું. અંગ્રેજ ગણિતશાસ્ત્ર George Boole એ 1854 માં તેના પુસ્તક "The laws of Thought"માં આ રીતોની ચર્ચા કરી હતી. અહીં આપણે બે રીતોની ચર્ચા કરીશું.

વિધાનોના અભ્યાસના પ્રથમ પગલા તરીકે આપણે એક મહત્ત્વની યુક્તિનો વિચાર કરીશું. ગાણિતિક વિધાનોના ઊંડાણપૂર્વકની સમજણ માટે આપણે તેનો ઉપયોગ કરીશું. આ યુક્તિ માત્ર આપેલ વિધાન સત્ય છે તે કહેવા માટે જ નહીં પરંતુ આપેલ વિધાન અસત્ય છે તે કહેવાનો અર્થ જાણવા પણ ઉપયોગી છે.

14.3.1 વિધાનનું નિષેધ : વિધાનનો ઈન્કાર એ વિધાનનું નિષેધ છે.

ચાલો આપણે એક વિધાનનો વિચાર કરીએ.

p: નવી દિલ્લી એક શહેર છે.

આ વિધાનનું નિષેધ

એ સાચું નથી કે નવી દિલ્લી એક શહેર છે.

આ રીતે પણ લખી શકાય.

નવી દિલ્લી એક શહેર છે તે. અસત્ય છે.

આને સાદી રીતે આમ દર્શાવી શકાય.

નવી દિલ્લી એક શહેર નથી.

<u>વ્યાખ્યા 1</u>: જો p વિધાન હોય તો p નું નિષેધ પણ વિધાન છે. તેને સંકેતમાં  $\sim p$  વડે દર્શાવાય છે તથા 'not p' તરીકે વંચાય છે.

ગાણિતિક તર્ક

σ નોંધ વિધાનનું નિષેધ બનાવતી વખતે 'એ સત્ય નથી કે,' અથવા 'તે અસત્ય છે.' એવા શબ્દસમૂહો વાપરી શકાય.

અહીં એક ઉદાહરણ દર્શાવે છે કે આપણે એક વિધાનના નિષેધનું અવલોકન કરીને કેવી રીતે તેની સમજણને સુધારી શકીએ છીએ.

ચાલો આપણે એક વિધાનનો વિચાર કરીએ.

p: જર્મનીમાં દરેક વ્યક્તિ જર્મન ભાષા બોલે છે.

આપણે આ વિધાનનો ઇન્કાર આ રીતે કરીએ: જર્મનીમાં દરેક વ્યક્તિ જર્મન ભાષા બોલતી નથી. આનો અર્થ એ નથી કે જર્મનીમાં કોઈ પણ વ્યક્તિ જર્મન ભાષા બોલતી નથી. આ ફ્રક્ત એટલું જ કહે છે કે જર્મનીમાં ઓછામાં ઓછી એક વ્યક્તિ જર્મન ભાષા બોલતી નથી.

આપણે વધુ ઉદાહરણોનો વિચાર કરીશું.

#### ઉદાહરણ 2: નીચેનાં વિધાનોનાં નિષેધ લખો:

- (i) લંબચોરસના બંને વિકર્ણની લંબાઈ સમાન હોય છે.
- (ii)  $\sqrt{7}$  એ સંમેય છે.

ઉ<mark>કેલ : (i)</mark> આપેલ વિધાન એવું જણાવે છે કે લંબચોરસમાં બંને વિકર્ણોની લંબાઈ સમાન હોય છે. આનો અર્થ એ થાય કે જો તમે કોઈ પણ લંબચોરસ લો તો તેના બંને વિકર્ણોની લંબાઈ સમાન હશે. આપેલા વિધાનનું નિષેધ *'લંબચોરસના બંને વિકર્ણોની* લંબાઈ સમાન હોય એ અસત્ય છે.'

જેના બંને વિકર્શોની લંબાઈ સમાન ન હોય એવો ઓછામાં ઓછો એક લંબચોરસ મળશે.

વિધાન (ii) ના નિષેધને પણ નીચે પ્રમાણે લખી શકાશે :

એ સત્ય નથી કે  $\sqrt{7}$  સંમેય છે.

આને આ રીતે પણ લખી શકાય :

$$\sqrt{7}$$
 સંમેય નથી.

ઉદાહરણ 3 : નીચેનાં વિધાનોનાં નિષેધ લખો તથા પરિણામી વિધાનની સત્યાર્થતા ચકાસોઃ

- (i) ઑસ્ટ્રેલિયા એ ખંડ છે.
- (ii) બધી બાજુઓ સમાન હોય તેવા ચતુષ્કોણનું અસ્તિત્વ નથી.
- (iii) દરેક પ્રાકૃતિક સંખ્યા 0 થી મોટી હોય છે.
- (iv) 3 અને 4 નો સરવાળો 9 છે.
- ઉકેલ ઃ (i) આપેલા વિધાનનું નિષેધ *'ઑસ્ટ્રેલિયા ખંડ છે તે અસત્ય છે.'*

આમ પણ લખી શકાય, 'ઑસ્ટ્રેલિયા એ ખંડ નથી.'

આપણે જાણીએ છીએ કે આ વિધાન મિથ્યા છે.

(ii) આપેલ વિધાનનું નિષેધ : *'એ સત્ય નથી કે બધી બાજુઓ સમાન હોય તેવા ચતુષ્કોણનું અસ્તિત્વ નથી.'* 

301 ગણિત : ધોરણ 11

આનો અર્થ નીચે પ્રમાણે પણ થાય :

બધી બાજુઓ સમાન હોય તેવા ચતુષ્કોણનું અસ્તિત્વ છે.

આ વિધાન સત્ય છે કારણ કે આપણે જાણીએ છીએ કે, જેની ચારેય બાજુઓ સમાન હોય તેવો એક ચતુષ્કોણ ચોરસ છે.

(iii) આપેલ વિધાનનું નિષેધ : *'દરેક પ્રાકૃતિક સંખ્યા એ શૂન્યથી મોટી છે તે અસત્ય છે.'* 

આને આમ પણ લખી શકાય; 'જે 0 કરતાં મોટી ન હોય એવી પ્રાકૃતિક સંખ્યાનું અસ્તિત્વ છે.'

આ મિથ્યા વિધાન છે.

(iv) આપેલ વાક્યનું નિષેધ : '3 અને 4 નો સરવાળો 9 થાય તે અસત્ય છે.'

આને આમ પણ લખી શકાય; '3 અને 4 નો સરવાળો 9 બરાબર નથી.'

આ વિધાન સત્ય છે.

## 14.3.2 સંયુક્ત વિધાનો

એક અથવા વધુ વિધાનોને અમુક કારક જેમકે "અને", "અથવા", વગેરે દ્વારા જોડવાથી ઘણાં ગાણિતિક વિધાનો મેળવી શકાય છે. આગળ આપેલ વિધાનનો વિચાર કરીએ.

p : વીજગોળા અથવા વાયરિંગમાં કંઈક ખોટું છે.

આ વિધાન આપણને એવું જણાવે છે કે *વીજગોળા* માં કંઈક ખોટું છે અથવા વાયરિંગમાં કંઈક ખોટું છે. આનો અર્થ એમ થાય કે આપેલ વિધાન બે સાદાં વિધાનો

q : વીજગોળામાં કંઈક ખોટું છે.

r : વાયરિંગમાં કંઈક ખોટું છે.

ને ''અથવા'' દ્વારા જોડવાથી બનાવવામાં આવ્યું છે. હવે, ધારો કે બે વિધાન નીચે પ્રમાણે આપેલ છે :

p:7 એ અયુગ્મ સંખ્યા છે.

q:7 એ વિભાજય સંખ્યા છે.

આ બંને વિધાનોને "અને" દ્વારા ભેગા કરી શકાય.

r: 7 એ અયુગ્મ અને અવિભાજ્ય સંખ્યા બંને છે.

આ સંયુક્ત વિધાન છે. તે નીચેની વ્યાખ્યા તરફ દોરી જાય છે :

<mark>વ્યાખ્યા 2</mark> જે બે અથવા વધુ વિધાનો દ્વારા બનેલું વિધાન હોય તેને **સંયુક્ત વિધાન** (compound statement) કહે છે. આ પ્રકારના વિધાનમા દરેક વિધાનને **ઘટક વિધાન** (component statement) કહે છે.

ચાલો આપણે કેટલાંક ઉદાહરણોનો વિચાર કરીએ.

ઉદાહરણ 4 : નીચેનાં સંયુક્ત વિધાનોનાં ઘટક વિધાનો શોધો :

- (i) આકાશ વાદળી છે અને ઘાસ લીલું છે.
- (ii) વરસાદ પડે છે અને ઠંડી પડે છે.

ગાણિતિક તર્ક

(iii) બધી સંમેય સંખ્યાઓ એ વાસ્તવિક સંખ્યા છે અને બધી વાસ્તવિક સંખ્યાઓ એ સંકર સંખ્યાઓ છે.

(iv) 0 એ ધન સંખ્યા છે અથવા ઋણ સંખ્યા છે.

ઉકેલ : ચાલો એક પછી એક વિચાર કરીએ.

(i) ઘટક વિધાનો આ પ્રમાણે છે:

p : આકાશ વાદળી છે.

q : ઘાસ લીલું છે.

અહીં સંયોજક 'અને' દ્વારા વિધાનોને જોડવામાં આવેલ છે.

(ii) ઘટક વિધાનો આ પ્રમાણે છે.

p : વરસાદ પડે છે.

q : ઠંડી પડે છે.

અહીં સંયોજક 'અને' દ્વારા વિધાનોને જોડવામાં આવેલ છે.

(iii) ઘટક વિધાનો આ પ્રમાણે છે:

p : બધી સંમેય સંખ્યાઓ એ વાસ્તવિક સંખ્યાઓ છે.

q : બધી વાસ્તવિક સંખ્યાઓ એ સંકર સંખ્યાઓ છે.

અહીં સંયોજક 'અને' દ્વારા વિધાનોને જોડવામાં આવેલ છે.

(iv) ઘટક વિધાનો આ પ્રમાણે છે :

p: 0 એ ધન સંખ્યા છે.

q : 0 એ ઋણ સંખ્યા છે.

અહીં સંયોજક 'અથવા' દ્વારા વિધાનોને જોડવામાં આવેલ છે.

ઉદાહરણ 5 : નીચેનાં સંયુક્ત વિધાનોમાં ઘટક વિધાનો શોધો અને તે સત્ય છે કે અસત્ય તે ચકાસો :

- (i) ચોરસ એ ચતુષ્કોણ છે અને તેની ચારેય બાજુઓ સમાન છે.
- (ii) બધી અવિભાજ્ય સંખ્યાઓ યુગ્મ અથવા અયુગ્મ હોય છે.
- (iii) જે વ્યક્તિએ ગણિતશાસ્ત્ર અથવા કમ્પ્યૂટરવિજ્ઞાન વિષય લીધો હોય તે MCA માં જઈ શકે છે.
- (iv) ચંદીગઢ એ હરિયાણા અને ઉત્તરપ્રદેશનું પાટનગર છે.
- (v)  $\sqrt{2}$  એ સંમેય સંખ્યા છે અથવા અસંમેય સંખ્યા છે.
- (vi) 24 એ 2, 4 અને 8 નો ગુણિત છે.

ઉકેલ : (i) ઘટક વિધાનો આ પ્રમાણે છે :

p : ચોરસ એ ચતુષ્કોણ છે.

q : ચોરસની બધી બાજુઓ સમાન છે.

આપણે જાણીએ છીએ કે બંને વિધાન સત્ય છે. અહીં સંયોજક 'અને' દ્વારા વિધાનોને જોડવામાં આવેલ છે.

303 ગણિત : ધોરણ 11

(ii) ઘટક વિધાનો આ પ્રમાણે છે :

p : બધી અવિભાજય સંખ્યાઓ અયુગ્મ સંખ્યાઓ છે.

q : બધી અવિભાજય સંખ્યાઓ યુગ્મ સંખ્યાઓ છે.

બંને વિધાનો મિથ્યા છે અને સંયોજક 'અથવા' દ્વારા વિધાનોને જોડવામાં આવેલ છે.

(iii) ઘટક વિધાનો આ પ્રમાણે છે :

p : જે વ્યક્તિએ ગણિતશાસ્ત્ર વિષય લીધો હોય તે MCA માં જઈ શકે છે.

q : જે વ્યક્તિએ કમ્પ્યુટરવિજ્ઞાન વિષય લીધો હોય તે MCA માં જઈ શકે છે.

બંને વિધાનો સત્ય છે. અહીં સંયોજક 'અથવા' દ્વારા વિધાનોને જોડવામાં આવેલ છે.

(iv) ઘટક વિધાન આ પ્રમાણે છે:

p : ચંદીગઢ એ હરિયાણાનું પાટનગર છે.

q : ચંદીગઢ એ ઉત્તરપ્રદેશનું પાટનગર છે.

પ્રથમ વિધાન સત્ય છે, પરંતુ બીજું વિધાન મિથ્યા છે. અહીં સંયોજક 'અને' દ્વારા વિધાનોને જોડવામાં આવેલ છે.

(v) ઘટક વિધાનો આ પ્રમાણે છે:

 $p:\sqrt{2}$  એ સંમેય સંખ્યા છે.

 $q:\sqrt{2}$  એ અસંમેય સંખ્યા છે.

પ્રથમ વિધાન અસત્ય છે, પરંતુ બીજું વિધાન સત્ય છે. અહીં સંયોજક 'અથવા' દ્વારા વિધાનોને જોડવામાં આવેલ છે.

(vi) ઘટક વિધાનો આ પ્રમાણે છે :

p : 24 એ 2 નો ગુણિત છે

q: 24 એ 4 નો ગુણિત છે.

r: 24 એ 8 નો ગુણિત છે.

ત્રણે વિધાનો સત્ય છે. અહીં સંયોજક 'અને' દ્વારા વિધાનોને જોડવામાં આવેલ છે.

આમ, આપણે અવલોકન કર્યું કે સંયુક્ત વિધાનો એ ખરેખર બે અથવા વધુ વિધાનોને સંયોજક 'અને', 'અથવા' વગેરે દ્વારા જોડવાથી બને છે. આ શબ્દોનો ગણિતમાં વિશેષ અર્થ છે. આપણે આ બાબતની ચર્ચા હવે પછીના વિભાગમાં કરીશું.

### સ્વાધ્યાય 14.2

- 1. નીચેનાં વિધાનોનાં નિષેધ લખો :
  - (i) ચેન્નઇ તમિલનાડુનું પાટનગર છે.
  - (ii)  $\sqrt{2}$  સંકર સંખ્યા નથી.
  - (iii) બધા ત્રિકોણો એ સમબાજુ ત્રિકોણ નથી.

ગાણિતિક તર્ક

- (iv) 2 એ 7 કરતાં મોટી સંખ્યા છે.
- (v) દરેક પ્રાકૃતિક સંખ્યા એ પૂર્શાંક સંખ્યા છે.
- 2. નીચેનાં વિધાનોની જોડ પરસ્પર નિષેધ દર્શાવે છે ?
  - (i) સંખ્યા x એ સંમેય સંખ્યા નથી. સંખ્યા x એ અસંમેય સંખ્યા નથી.
  - (ii) સંખ્યા x એ સંમેય સંખ્યા છે. સંખ્યા x એ અસંમેય સંખ્યા છે.
- 3. નીચેનાં સંયુક્ત વિધાનોનાં ઘટક વિધાનો શોધો અને તે સત્ય છે કે અસત્ય તે ચકાસો :
  - (i) 3 એ અવિભાજય સંખ્યા છે અથવા અયુગ્મ છે.
  - (ii) બધા પૂર્ણાંકો ધન અથવા ઋશ છે.
  - (iii) 100 એ 3, 11 અને 5 થી વિભાજય છે.

### 14.4 વિશિષ્ટ શબ્દો/ શબ્દસમૂહો

સંયુક્ત વિધાનોમાં અમુક શબ્દો જેવા કે "અને", "અથવા" વગેરે જોવા મળે છે. તેમનો ગાણિતિક વિધાનોમાં વારંવાર ઉપયોગ થાય છે. આને સંયોજકો કહેવામાં આવે છે. જયારે આપણે આ સંયુક્ત વિધાનોનો ઉપયોગ કરીએ છીએ ત્યારે આ શબ્દોની ભૂમિકાની સમજણ હોવી જરૂરી છે. આની ચર્ચા આપણે નીચે કરીશું :

14.4.1 શબ્દ "અને" : ચાલો આપણે "અને" દ્વારા બનતા સંયુક્ત વિધાનો જોઈએ.

p : બિંદુને સ્થાન હોય છે અને તે સ્થાન નક્કી કરી શકાય છે.

આ વિધાનને આ પ્રમાણે બે ઘટક વિધાનોમાં વિભાજિત કરી શકાય છે :

q : બિંદુને સ્થાન હોય છે.

r: તે સ્થાન નક્કી કરી શકાય છે.

અહીં આપણે અવલોકન કરી શકીએ કે બંને વિધાનો સત્ય છે.

ચાલો આપણે બીજું વિધાન જોઈએ.

p: 42 એ 5, 6 અને 7 થી વિભાજ્ય છે.

આ વિધાનનાં ઘટક વિધાનો નીચે પ્રમાણે મળશે.

q: 42 એ 5 થી વિભાજ્ય છે.

r: 42 એ 6 થી વિભાજ્ય છે.

s : 42 એ 7 થી વભાજય છે.

અહીં આપણે જાણીએ છીએ કે પ્રથમ વિધાન મિથ્યા છે, જ્યારે બાકીનાં બે સત્ય છે.

305 ગણિત : ધોરણ 11

આપણે સંયોજક ''અને'' સંબંધિત નીચે પ્રમાણેના નિયમો નોંધીશું :

1. જો બધાં ઘટક વિધાનો સત્ય હોય તો કારક ''અને'' દ્વારા બનેલું સંયુક્ત વિધાન સત્ય હોય છે.

જો કોઈપણ એક ઘટક વિધાન મિથ્યા હોય તો કારક ''અને" દ્વારા બનેલું ઘટક વિધાન મિથ્યા હોય છે.
 (અમુક ઘટક વિધાનો મિથ્યાં હોય અથવા બધાં ઘટક વિધાનો મિથ્યાં હોય તેવા પ્રકારનો પણ આમાં સમાવેશ થાય છે.)

ઉદાહરણ 6 : નીચેના સંયુક્ત વિધાનનાં ઘટક વિધાનો લખો અને સંયુક્ત વિધાન સત્ય છે કે મિથ્યા તે ચકાસો :

- (i) રેખા સીધી લીટીમાં છે અને બંને દિશામાં અનંત સુધી વિસ્તરેલી છે.
- (ii) 0 એ દરેક ધન પૂર્ણાંક અને ઋણ પૂર્ણાંક કરતાં નાનો છે.
- (iii) બધી જીવંત વસ્તુઓને બે પગ અને બે આંખો હોય છે.

ઉકેલ : (i) ઘટક વિધાનો આ પ્રમાણે છે :

p : રેખા સીધી લીટીમાં છે.

q : રેખા બંને દિશામાં અનંત સુધી વિસ્તરેલી છે.

બંને વિધાનો સત્ય છે. તેથી સંયુક્ત વિધાન સત્ય થશે.

(ii) ઘટક વિધાનો આ પ્રમાણે છે :

p: 0 એ દરેક ધન પૂર્ણાંક કરતાં નાનો છે.

q : 0 એ દરેક ઋણ પૂર્ણાંક કરતાં નાનો છે.

બીજું વિધાન મિથ્યા છે. તેથી સંયુક્ત વિધાન મિથ્યા થશે.

(iii) ઘટક વિધાનો આ પ્રમાણે છે :

p : બધી જીવંત વસ્તુઓને બે પગ હોય છે.

q : બધી જીવંત વસ્તુઓને બે આંખો હોય છે.

બંને વિધાનો મિથ્યા છે. તેથી સંયુક્ત વિધાન મિથ્યા થશે.

હવે નીચેના વિધાનનો વિચાર કરો :

p : આલ્કોહોલ અને પાણીનું મિશ્રણ રાસાયણિક પદ્ધતિઓ દ્વારા અલગ કરી શકાય છે.

આ વિધાનને સંયોજક "અને"દ્વારા મળતું સંયુક્ત વિધાન ગણી શકાય નહિ. અહીં શબ્દ "અને" એ આલ્કોહૉલ અને પાણી બે વસ્તુઓના સંદર્ભે છે. આ આપણને અગત્યની નોંધ તરફ દોરી જાય છે.

—નોંધઃ ઉપરના ઉદાહરણ પરથી જોઈ શકાય છે કે "અને" શબ્દ ધરાવતું વિધાન હંમેશાં સંયુક્ત વિધાન હોય તેવું વિચારી શકાય નહિ. તેથી શબ્દ "અને" હંમેશાં સંયોજક તરીકે વપરાતો નથી.

14.4.2 શબ્દ "અથવા": ચાલો નીચેના વિધાનનો વિચાર કરીએ :

p : સમતલમાં બે રેખાઓ એક બિંદુમાં છેદે અથવા સમાંતર હોય.

આપણે જાણીએ છીએ કે આ વિધાન સત્ય છે. આનો અર્થ શું થાય ? આનો અર્થ એમ થાય કે જો સમતલમાં બે રેખાઓ એકબીજીને

ગાણિતિક તર્ક 306

છેદે તો તેઓ સમાંતર ન હોય. બીજી રીતે જો બે રેખાઓ સમાંતર ન હોય, તો તેઓ એક બિંદુમાં છેદશે. એટલે કે આ વિધાન બંને પરિસ્થિતિમાં સત્ય છે.

"અથવા" સાથેનાં વિધાનોને સમજવા માટે આપણે પ્રથમ નોંધીશું કે અંગ્રેજી ભાષામાં "અથવા" નો ઉપયોગ બે પ્રકારે થાય છે. ચાલો આપણે પ્રથમ નીચેનું વિધાન જોઈએ.

p : ભોજનાલયમાં થાળી સાથે આઈસક્રીમ અથવા ઠંડું પીશું ઉપલબ્ધ છે.

આનો અર્થ એમ થાય કે જો કોઈ વ્યક્તિને થાળી સાથે આઈસ્ક્રીમની ઈચ્છા ન હોય તો તેને ઠંડા પીણા મળી શકે છે અથવા જો ઠંડા પીણાની ઇચ્છા ન હોય તો થાળી સાથે આઈસ્ક્રીમ મળી શકે છે. એટલે કે કોઇને ઠંડા પીણાની ઇચ્છા ન હોય તો તે આઈસ્ક્રીમ લઈ શકે છે. કોઈ પણ વ્યક્તિ આઈસ્ક્રીમ અને ઠંડુ પીણું બંને ન લઈ શકે. આને 'નિવારક વિકલ્પ' (Exclusive or) કહેવાય છે. બીજું વિધાન જોઈએ.

જે વિદ્યાર્થીએ જીવવિજ્ઞાન અથવા રસાયણ વિજ્ઞાન વિષય લીધા હોય તે M.Sc. માટે સૂક્ષ્મજીવવિજ્ઞાન (microbiology) વિષય માટે અરજી કરી શકે છે.

અહીં આપણે એવું સમજીશું કે જે વિદ્યાર્થીએ જીવવિજ્ઞાન અને રસાયણ વિજ્ઞાન બંને વિષયો લીધા હોય તેમજ જે વિદ્યાર્થીઓએ ફક્ત આ પૈકીએક જ વિષય લીધો હોય તે પણ સૂક્ષ્મજીવવિજ્ઞાનના અભ્યાસ માટે અરજી કરે શકે છે. અહીં આપણે "સમાવેશ વિકલ્પ" (Inclusive or) નો ઉપયોગ કરીએ છીએ.

બંને પ્રકાર વચ્ચેનો તફાવત નોંધવો અગત્યનો છે. જયારે આપણું વિધાન સત્ય છે કે નહિ તે ચકાસવાનું હોય ત્યારે તેની જરૂર પડશે. ચાલો આપણે એક ઉદાહરણ જોઈએ.

ઉદાહરણ 7 : નીચેનાં વિધાનોમાં "અથવા" નો ઉપયોગ સમાવેશ વિકલ્પ તરીકે કે નિવારક વિકલ્પ તરીકે થયો છે તે નક્કી કરો. તમારા જવાબનાં કારણો આપો :

- (i) દેશમાં દાખલ થવા માટે તમારે પાસપૉર્ટ અથવા મતદાર કાર્ડની જરૂર પડશે.
- (ii) જો કોઈ દિવસે તહેવાર અથવા રવિવાર હોય તો શાળામાં રજા હોય છે.
- (iii) બે રેખાઓ એક બિંદુમાં છેદે અથવા સમાંતર હોય.
- (iv) વિદ્યાર્થીઓ ત્રીજી ભાષા તરીકે, ફ્રેન્ચ અથવા સંસ્કૃત વિષય લઈ શકે છે.

ઉકેલ : (i) અહીં "અથવા" સમાવેશ વિકલ્પના અર્થમાં છે. દેશમાં દાખલ થવા માટે કોઈ વ્યક્તિ પાસે પાસપોર્ટ અને મતદાર કાર્ડ બંને હોઈ શકે.

- (ii) અહીં "અથવા" સમાવેશ વિકલ્પના અર્થમાં છે. રવિવાર અને તહેવાર બંને એક સાથે હોય ત્યારે પણ શાળામાં રજા હોય છે.
- (iii) અહીં "અથવા" નિવારક વિકલ્પ છે. બે રેખાઓ એક બિંદુમાં છેદે તથા સમાંતર પણ હોય તે શક્ય નથી.
- (iv) અહીં "અથવા" નિવારક વિકલ્પ છે. વિદ્યાર્થી ફ્રેન્ચ અને સંસ્કૃત બંને ભાષા પસંદ કરી શકે નહિ.

#### "અથવા"વડે બનતા **સંયુક્ત** વિધાન માટેનો નિયમ :

 જો સંયોજક "અથવા" વડે બનતા સંયુક્ત વિધાનમાં એક ઘટક વિધાન સત્ય હોય અથવા બંને ઘટક વિધાનો સત્ય હો,ય તો સંયુક્ત વિધાન સત્ય બને છે.

307 ગણિત : ધોરણ 11

2. જો સંયોજક "અથવા" વડે બનતા સંયુક્ત વિધાનમાં બંને ઘટક વિધાનો મિથ્યા હોય, તો સંયુક્ત વિધાન મિથ્યા બને છે. ઉદાહરણ તરીકે નીચેનું વિધાન વિચારો :

p : બે રેખા એક બિંદુમાં છેદે અથવા સમાંતર હોય.

ઘટક વિધાનો આ પ્રમાણે છે.

q : બે રેખાઓ એક બિંદુમાં છેદે.

r: બે રેખાઓ સમાંતર હોય.

જયારે q સત્ય હોય ત્યારે r મિથ્યા હોય અને જયારે r સત્ય હોય ત્યારે q મિથ્યા હોય. આથી સંયુક્ત વિધાન p સત્ય થશે. બીજું વિધાન વિચારો :

p : 125 એ 7 અથવા 8 નો ગુણિત છે.

ઘટક વિધાનો આ પ્રમાણે છે.

q : 125 એ 7 નો ગુણિત છે.

r : 125 એ 8 નો ગુણિત છે.

q અને r બંને મિથ્યા છે. આથી સંયુક્ત વિધાન p મિથ્યા હશે.

ફરીથી નીચેના વિધાનનો વિચાર કરીએ :

p : જો કોઈ દિવસે તહેવાર અથવા રવિવાર હોય તો શાળામાં ૨જા હોય છે.

ઘટક વિધાનો આ પ્રમાણે છે :

q: જો કોઈ દિવસે તહેવાર હોય તો શાળામાં ૨જા હોય છે.

r : જો કોઈ દિવસે રવિવાર હોય તો શાળામાં રજા હોય છે.

q અને r બંને સત્ય છે. તેથી સંયુક્ત વિધાન સત્ય થશે.

બીજું વિધાન વિચારો :

p : મુંબઈ એ કોલકતા અને કર્જાટકનું પાટનગર છે.

ઘટક વિધાનો આ પ્રમાણે છે :

q : મુંબઈ એ કોલકતાનું પાટનગર છે.

r : મુંબઈ એ કર્ણાટકનું પાટનગર છે.

બંને ઘટક વિધાનો મિથ્યા છે. તેથી સંયુક્ત વિધાન મિથ્યા હશે.

ચાલો કેટલાંક ઉદાહરણોનો વિચાર કરીએ :

ઉદાહરણ 8 ઃ નીચેનાં વિધાનોમાં "અથવા" નો ઉપયોગ કયા પ્રકારે થયો છે તે નક્કી કરો તથા વિધાન સત્ય છે કે મિથ્યા તે ચકાસો ઃ

- (i)  $\sqrt{2}$  એ સંમેય અથવા અસંમેય સંખ્યા છે.
- (ii) જાહેર પુસ્તકાલયમાં દાખલ થવા માટે બાળકો પાસે શાળામાંથી આપેલ ઓળખપત્ર અથવા શાળાના અધિકારીનો પત્ર હોવો જરૂરી છે.
- (iii) લંબચોરસ એ ચતુષ્કોણ છે અથવા 5 બાજુવાળો બહુકોણ છે.

ગાણિતિક તર્ક

### ઉકેલ : (i) ઘટક વિધાનો આ પ્રમાણે છે :

 $p:\sqrt{2}$  એ સંમેય સંખ્યા છે.

 $q:\sqrt{2}$  એ અસંમેય સંખ્યા છે.

અહીં પ્રથમ વિધાન મિથ્યા છે, જ્યારે બીજું વિધાન સત્ય છે તથા "અથવા" એ નિવારક વિકલ્પ છે. તેથી સંયુક્ત વિધાન સત્ય છે.

#### (ii) ઘટક વિધાનો આ પ્રમાણે છે:

p : જાહેર પુસ્તકાલયમાં દાખલ થવા માટે બાળકો પાસે ઓળખપત્ર હોવું જરૂરી છે.

q : જાહેર પુસ્તકાલયમાં દાખલ થવા માટે બાળકો પાસે શાળાના અધિકારીએ આપેલ પત્ર હોવો જરૂરી છે.

જો બાળકો પાસે ઓળખપત્ર અથવા પત્ર બંનેમાંથી ગમે તે એક હોય અથવા બંને હોય તો પુસ્તકાલયમાં દાખલ થઈ શકે છે. તેથી "અથવા" એ સમાવેશ વિકલ્પ છે. જ્યારે બાળકો પાસે ઓળખપત્ર અને પત્ર બંને હોય ત્યારે પણ સંયુક્ત વિધાન સત્ય છે. (iii) અહીં "અથવા" એ નિવારક વિકલ્પના સંદર્ભમાં છે. આપણે જોઈ શકીએ છીએ કે સંયુક્ત વિધાન સત્ય છે.

#### 14.4.3 કારકો :

"કોઈક અસ્તિત્વ ધરાવે છે." કે "પ્રત્યેક માટે" વગેરે જેવા શબ્દસમૂહો એ કારકો (*Quantifiers*) છે.

ગાણિતિક વિધાનોમાં "કોઈક અસ્તિત્વ ધરાવે છે" તેવો શબ્દસમૂહ જોઈ શકાય છે. ઉદાહરણ તરીકે આ વિધાનનો વિચાર કરીએ.

p : બધી બાજુઓ સરખી હોય તેવો કોઇક લંબચોરસ અસ્તિત્વ ધરાવે છે.

આનો અર્થ એ થાય કે જેની બધી બાજુઓ સરખી હોય તેવો ઓછામાં ઓછો એક લંબચોરસ મળે છે.

"કોઈક અસ્તિત્વ ધરાવે છે" ની નજીક સંકળાયેલો શબ્દ "પ્રત્યેક માટે" કે "બધા માટે" છે. નીચેના વિધાનનો વિચાર કરીએ :

$$p$$
 : દરેક અવિભાજય સંખ્યા  $p$  માટે $\sqrt{p}$  એ અસંમેય સંખ્યા છે.

આનો અર્થ એમ થાય કે જો S એ બધી અવિભાજ્ય સંખ્યાઓનો ગણ દર્શાવે તો S ના પ્રત્યેક સભ્ય p માટે  $\sqrt{p}$  એ અસંમેય સંખ્યા છે.

સામાન્ય રીતે ગાણિતિક વિધાનમાં કારક "પ્રત્યેક માટે"એવું કહેવામાં આવે ત્યારે તેનું અર્થઘટન આ રીતે કરી શકાય. આપેલ ગણને જે ગુણધર્મ લાગુ પડે છે તે ગુણધર્મનું પાલન ગણના પ્રત્યેક સભ્યએ કરવું જ જોઈએ.

કોઈ પણ વાક્યમાં આપેલ કારક કયા ચોક્કસ સ્થાને રજૂ કરવામાં આવે છે તે જાણવું આપણા માટે અગત્યનું છે. ઉદાહરણ તરીકે નીચેનાં બે વાક્યોની સરખામણી કરો :

- 1. પ્રત્યેક ધન સંખ્યા x માટે એવી ધન સંખ્યા y મળે કે જેથી y < x થાય.
- 2. કોઈક એવી ધન સંખ્યા y મળે કે જેથી બધી જ ધન સંખ્યા x માટે y < x થાય.

આ વિધાનો દેખાવમાં સમાન લાગે છે તેમ છતાં તેઓ સમાન અર્થ ધરાવતાં નથી. ખરું જોતાં વિધાન (1) સત્ય છે અને વિધાન(2) મિથ્યા છે. આમ, ગાષ્ટ્રિતિક લેખન અર્થસભર બનાવવા માટે બધા જ સંકેતોનો કાળજીપૂર્વક પરિચય કરાવવો જોઈએ અને દરેક સંકેતને ખૂબ વહેલા નહિ અને ખૂબ મોડા નહિ તે રીતે ચોક્કસપણે યોગ્ય જગ્યાએ રજૂ કરવો જોઈએ.

"અને"તથા"અથવા"શબ્દોને સંયોજકો અને "કોઈક અસ્તિત્વ ધરાવે છે" તથા "પ્રત્યેક માટે" ને કારકો કહે છે.

આમ, આપણે જોયું કે ગાણિતિક વિધાનો અમુક વિશિષ્ટ શબ્દો ધરાવે છે અને જ્યારે આપણે ભિન્ન વિધાનોની સત્યાર્થતા ચકાસવી હોય ત્યારે તેમની સાથે જોડાયેલો અર્થ જાણવો જરૂરી છે.

ગણિત : ધોરણ 11

#### સ્વાધ્યાય 14.3

- 1. નીચેનાં પૈકી દરેક સંયુક્ત વિધાનમાં પ્રથમ સંયોજકો ઓળખો અને પછી તેને ઘટક વિધાનોમાં છૂટું પાડો :
  - (i) બધી સંમેય સંખ્યાઓ વાસ્તવિક છે અને બધી વાસ્તવિક સંખ્યાઓ સંકર સંખ્યાઓ નથી.
  - (ii) પૂર્ણાંકનો વર્ગ ધન અથવા ઋણ છે.
  - (iii) રેતી સૂર્યના પ્રકાશમાં ઝડપથી ગરમ થાય છે અને રાત્રિના સમયે ઝડપથી ઠંડી થતી નથી.
  - (iv) x = 2 અને x = 3 એ સમીકરણ  $3x^2 x 10 = 0$  નાં બીજ છે.
- 2. નીચેનાં વિધાનોમાં કારક ઓળખો અને વિધાનોનાં નિષેધ લખો :
  - (i) કોઈક સંખ્યાનો વર્ગ તે સંખ્યા જેટલો જ હોય તેવી સંખ્યા અસ્તિત્વ ધરાવે છે.
  - (ii) પ્રત્યેક વાસ્તિવિક સંખ્યા x માટે x એ x + 1 કરતાં નાની સંખ્યા છે.
  - (iii) ભારતમાં દરેક રાજ્યને એક રાજધાની હોય છે.
- 3. નીચેનાં વિધાનયુગ્મ એકબીજાનાં નિષેધ છે કે નહિ તે ચકાસો. તમારા જવાબ માટેનાં કારણો આપો :
  - (i) બધી જ વાસ્તવિક સંખ્યાઓ x અને y માટે x + y = y + x એ સત્ય છે.
  - (ii) x + y = y + x થાય તેવી વાસ્તવિક સંખ્યાઓ x અને y અસ્તિત્વ ધરાવે છે.
- 4. નીચેનાં વિધાનોમાં "અથવા"નો ઉપયોગ સમાવેશ વિકલ્પ તરીકે થયો છે કે નિવારક વિકલ્પ તરીકે તે જણાવો. તમારા જવાબ માટેનાં કારણો આપો :
  - (i) સૂર્ય ઊગે છે અથવા ચંદ્ર આથમે છે.
  - (ii) ડ્રાઇવિંગ લાયસન્સ મેળવવા માટેની અરજી કરવા માટે તમારી પાસે રેશનકાર્ડ અથવા પાસપૉર્ટ હોવા જોઈએ.
  - (iii) બધી જ પૂર્ણાંક સંખ્યાઓ ધન અથવા ઋણ છે.

#### 14.5 પ્રેરણ

આ વિભાગમાં આપશે ''જો....તો....'', ''....તો જ....'' અને ''...તો અને તો જ....'' પ્રકારના પ્રેરશની ચર્ચા કરીશું. ગણિતમાં ''જો...તો....'' વાળા વિધાનો ખૂબ જ સામાન્ય છે. ઉદાહરણ તરીકે નીચેનું વિધાન જોઈએ :

$$r: \Re x$$
ધન હોય તો  $2x > x$ 

જ્યારે આપણે આ વિધાન જોઈએ છીએ ત્યારે આપણે અવલોકન કરી શકીએ કે તે આ પ્રમાણેનાં બે વિધાનો p અને q ને અનુરૂપ છે.

$$q: 2x > x \ \vartheta$$
.

"જો p તો q" વાક્ય એવું કહેવા માંગે છે કે કોઈ ઘટના માટે જો p સત્ય હોય તો q હંમેશાં સત્ય થાય.

"જો p તો q" પ્રકારના વાક્યની સૌથી મહત્ત્વપૂર્ણ હકીકત એ છે કે જ્યારે p અસત્ય હોય ત્યારે q માટે કશું કહી ન શકાય. ઉદાહરણ તરીકે, જો x ધન ના હોય તો q વિશે કશું કહી ન શકાય. બીજા શબ્દોમાં કહીએ તો p ન ઉદ્ભવે તેની કોઈ અસર q ના ઉદ્ભવ પર થતી નથી.

વિધાન "જો p તો q" માટે બીજો મુદ્દો નોંધવા જેવો એ છે કે p ઉદ્ભવે છે એવું આ વિધાન સૂચિત કરતું નથી.

ગાણિતિક તર્ક

વિધાન "જો p તો q" સમજવા માટે અનેક રીતો છે. આપણે આ રીતોને નીચેના વિધાનના સંદર્ભમાં દર્શાવીશું :

r : જો કોઈ સંખ્યા 9 ની ગુિણત હોય તો તે 3 ની ગુિણત હોય.

ધારો કે p અને q નીચે દર્શાવેલ વિધાનો છે :

p : સંખ્યા 9 ની ગુણિત હોય.

q : સંખ્યા 3 ની ગુણિત હોય.

જો p તો q એ નીચે પ્રમાણે સમકક્ષ હશે :

1. જો p તો q પ્રકારના વિધાનને પ્રેરણ કહે છે. આ વિધાન આમ કહે છે : કોઈક સંખ્યા 9 ની ગુણિત હોય, તો તે 3ની ગુણિત હોય એમ સૂચિત થાય છે.

 $2. \quad p$  એ q માટેની પર્યાપ્ત શરત છે.

આ વિધાન આમ કહે છે : કોઈક સંખ્યા 3 ની ગુણિત હોય તે નક્કી કરવા માટે એ સંખ્યા 9 ની ગુણિત છે એમ જાણવું પર્યાપ્ત છે.

3. *q* તો જ *p*.

આ વિધાન આમ કહે છે : કોઈક સંખ્યા 3 ની ગુણિત હોય તો જ તે સંખ્યા 9 ની ગુણિત કહેવાય.

 $4. \quad q$  એ p માટેની આવશ્યક શરત છે.

આ વિધાન આમ કહે છે : સંખ્યા 3 ની ગુણિત હોય એ સંખ્યા 9 ની ગુણિત હોય તે માટેની આવશ્યક શરત છે.

5. જો  $\sim q$  તો  $\sim p$ .

આ વિધાન આમ કહે છે : જો સંખ્યા 3 ની ગુષ્ટ્રિત ન હોય, તો તે 9 ની ગુષ્ટ્રિત ન હોય.

પ્રેરણને સંકેતમાં  $p \Rightarrow q$  વડે દર્શાવાય છે. પ્રેરણ માટેનો સંકેત  $\Rightarrow$  છે.

#### 14.5.1 સમાનાર્થી પ્રેરણ અને પ્રતીપ :

સમાનાર્થી પ્રેરણ અને પ્રતીપ એ ''જો....તો'' પ્રકારના વિધાનો વડે રચના કરી શકાતાં ચોક્કસ પ્રકારનાં બીજાં વિધાનો છે.

ઉદાહરણ તરીકે નીચેના ''જો....તો'' પ્રકારના વિધાનનો વિચાર કરીએ.

જો ભૌતિક પર્યાવરણમાં ફેરફાર થાય તો જૈવિક વાતાવરણ બદલાય છે.

આ વિધાનનું સમાનાર્થી પ્રેરણ : જો જૈવિક વાતાવરણ ન બદલાય તો ભૌતિક પર્યાવરણમાં ફેરફાર થતો નથી.

અહીં નોંધીશું કે આ વિધાનો સમાનાર્થી અભિવ્યક્તિ ધરાવે છે.

ચાલો આ સમજવા માટે આપણે વધુ ઉદાહરણો જોઈએ.

#### ઉદાહરણ 9: નીચેનાં વિધાનોનાં સમાનાર્થી પ્રેરણ લખો:

- (i) જો કોઈ સંખ્યા 9 વડે વિભાજ્ય હોય તો તે 3 વડે વિભાજ્ય હોય.
- (ii) જો તમે ભારતમાં જન્મ્યા હોવ તો તમે ભારતના નાગરિક છો.
- (iii) જો ત્રિકોણ સમબાજુ હોય તો તે સમદ્વિબાજુ હોય છે.

#### ઉકેલ : આ વિધાનોના સમાનાર્થી પ્રેરણ આ પ્રમાણે છે :

- (i) જો કોઈ સંખ્યા 3 વડે વિભાજય ન હોય તો તે 9 વડે વિભાજય ન હોય.
- (ii) જો તમે ભારતના નાગરિક ન હો તો તમે ભારતમાં જન્મ્યા નથી.
- (iii) જો ત્રિકોણ સમદ્ધિબાજુ ન હોય તો તે સમબાજુ ન હોય.

311 ગણિત : ધોરણ 11

ઉપરનાં ઉદાહરણો દર્શાવે છે કે જો p તો q પ્રકારના વિધાનનું સમાનાર્થી પ્રેરણ એ જો  $\sim q$  તો  $\sim p$  થાય.

હવે આપણે બીજા શબ્દ "પ્રતીપ"નો વિચાર કરીશું.

'જો p તો q' પ્રકારના વિધાનનું પ્રતીપ 'જો q તો p' છે.

ઉદાહરણ તરીકે, વિધાન

p: જો સંખ્યા 10 વડે વિભાજય હોય તો તે 5 વડે વિભાજય હોય

તો પ્રતીપ એ

q : જો સંખ્યા 5 વડે વિભાજય હોય તો તે 10 વડે વિભાજય હોય છે.

#### ઉદાહરણ 10: નીચેનાં વિધાનોનાં પ્રતીપ લખો:

- (i) જો n યુગ્મ સંખ્યા હોય, તો  $n^2$  યુગ્મ છે.
- (ii) જો તમે પુસ્તકના બધા સ્વાધ્યાયો કરશો તો વર્ગમાં તમને A ગ્રેડ મળશે.
- (iii) જો બે પૂર્ણાંકો a અને b માટે a > b હોય, તો a b એ હંમેશાં ધન પૂર્ણાંક છે.

#### ઉકેલ : આ વિધાનોનાં પ્રતીપ :

- (i) જો  $n^2$  યુગ્મ સંખ્યા હોય તો n યુગ્મ છે.
- (ii) જો તમને વર્ગમાં A ગ્રેડ મળ્યો હોય તો તમે પુસ્તકના બધા સ્વાધ્યાય કર્યા હશે.
- (iii) જો બે પૂર્શાંકો a અને b માટે a-b હંમેશાં ધન પૂર્શાંક હોય, તો a>b. ચાલો કેટલાંક વધુ ઉદાહરણ જોઈએ.

ઉદાહરણ 11 : નીચેનાં દરેક સંયુક્ત વિધાનોમાં પહેલા ઘટક વિધાનો ઓળખો. પછી વિધાન સત્ય છે કે નહિ તે ચકાસો.

- (i) જો ત્રિકોણ ABC એ સમબાજુ હોય તો તે સમદ્વિબાજુ છે.
- (ii) જો a અને b પૂર્ણાંક સંખ્યાઓ હોય તો ab સંમેય સંખ્યા છે.

### ઉકેલ : (i) ઘટક વિધાનો આ પ્રમાણે છે :

p : ત્રિકોણ ABC સમબાજુ છે.

q : ત્રિકોણ ABC સમદ્ધિબાજુ છે.

સમબાજુ ત્રિકોણ એ સમદ્ધિબાજુ ત્રિકોણ હોવાથી આપણે તારવી શકીએ કે આપેલ સંયુક્ત વિધાન સત્ય છે.

(ii) ઘટક વિધાનો આ પ્રમાણે છે :

p : a અને b પૂર્શાંકો છે.

q : ab એ સંમેય સંખ્યા છે.

બે પૂર્ણાંક સંખ્યાનો ગુણાકાર પૂર્ણાંક હોય અને તેથી તે સંમેય સંખ્યા પણ છે. તેથી આપેલ સંયુક્ત વિધાન સત્ય છે.

'તો અને તો જ', પ્રકારના વિધાનને સંકેતમાં '⇔' વડે દર્શાવાય છે ઃ

આપેલ વિધાનો p અને q માટે નીચેનાં વિધાનો સમકક્ષ સ્વરૂપમાં થશે.

- (i) જો p તો અને તો જ q
- (ii) જો q તો અને તો જ p
- (iii) p એ q માટેની આવશ્યક અને પર્યાપ્ત શરત છે અને તે જ રીતે ઊલટું પણ કહેવાય.
- (iv)  $p \Leftrightarrow q$

ગાણિતિક તર્ક

એક ઉદાહરણનો વિચાર કરીએ.

ઉદાહરણ 12: નીચે બે વિધાનની જોડ આપેલ છે. બંને વિધાનોને "તો અને તો જ" વડે જોડો.

- (i) p: જો લંબચોરસ એ ચોરસ હોય તો તેની ચારેય બાજુઓ એકરૂપ હોય.
  - q : જો લંબચોરસત્તી ચારેય બાજુઓ એકરૂપ હોય તો લંબચોરસ એ ચોરસ છે.
- (ii) p : જો કોઇ સંખ્યા 3 વડે વિભાજય હોય, તો તેના અંકોનો સરવાળો 3 વડે વિભાજય છે.
  - q : જો કોઈ સંખ્યાના અંકોનો સરવાળો 3 વડે વિભાજય હોય તો સંખ્યા 3 વડે વિભાજય છે.
- ઉકેલ : (i) લંબચોરસ એ ચોરસ હોય તો અને તો જ તેની ચારેય બાજુઓ એકરૂપ હોય.
  - (ii) કોઈ સંખ્યા 3 વડે વિભાજય હોય તો અને તો જ તેના અંકોનો સરવાળો 3 વડે વિભાજય હોય.

#### સ્વાધ્યાય 14.4

- 1. નીચેના વિધાનને પાંચ જુદી જુદી રીતે સમાન અર્થમાં "જો...તો..."નો ઉપયોગ કરીને ફરીથી લખો ઃ
  - જો કોઈક પ્રાકૃતિક સંખ્યા અયુગ્મ હોય તો તેનો વર્ગ પણ અયુગ્મ છે.
- 2. નીચેનાં વિધાનોનાં સમાનાર્થી પ્રેરણ અને પ્રતીપ લખો :
  - (i) જો x અવિભાજ્ય સંખ્યા હોય તો x અયુગ્મ હોય.
  - (ii) \_ જો બે રેખાઓ સમાંતર હોય તો તે સમતલમાં છેદશે નહિ.
  - (iii) કંઇક ઠંડું છે તે સૂચવે છે કે તેનું તાપમાન નીચું છે.
  - (iv) જો તમે ભૂમિતિ સમજી શકો નહિ તો તમે તાર્કિક સાબિતી આપવાનું જાણતા ન હો.
  - (v)  $x \rightarrow 4$  પુગ્મ સંખ્યા છે તે સૂચવે છે કે  $x \rightarrow 4$  થી વિભાજ્ય છે.
- 3. નીચેનાં દરેક વિધાનોને "જો...તો..." સ્વરૂપમાં લખો :
  - (i) તમને નોકરી મળી એ સૂચવે છે કે તમારાં પ્રમાણપત્રો સારાં છે.
  - (ii) એક મહિના માટે હૂંફવાળા રહે તો કેળાનાં ઝાડ ખીલે છે.
  - (iii) ચતુષ્કોણના વિકર્ણા પરસ્પર દુભાગે તો તે સમાંતરબાજુ ચત્ષ્કોણ છે.
  - (iv)  $\,$  વર્ગમાં  $\,{
    m A}^+$  મેળવવા માટે તમારે પુસ્તકના બધા જ સ્વાધ્યાય કરવા જરૂરી છે.
- 4. નીચે વિધાનો (a) અને (b) આપેલ છે. જે વિધાનો એકબીજાના સમાનાર્થી પ્રેરણ અને પ્રતીપ હોય તે ઓળખો :
  - (a) જો તમે દિલ્લીમાં રહેતા હોય તો તમારી પાસે શિયાળુ કપડાં છે.
    - (i) જો તમારી પાસે શિયાળુ કપડાં ન હોય, તો તમે દિલ્લીમાં રહેતા નથી.
    - (ii) જો તમારી પાસે શિયાળુ કપડાં હોય, તો તમે દિલ્લીમાં રહો છો.

ગાંધાત : ધોરણ 11

- (b) જો ચતુષ્કોણ સમાંતરબાજુ ચતુષ્કોણ હોય, તો તેના વિકર્ણો પરસ્પર દુભાગે છે.
- (i) જો ચતુષ્કોણના વિકર્ણા પરસ્પર ન દુભાગે, તો તે ચતુષ્કોણ સમાંતરબાજુ ચતુષ્કોણ નથી.
- (ii) જો ચતુષ્કોણના વિકર્ણો પરસ્પર દુભાગે, તો તે સમાંતરબાજુ ચતુષ્કોણ છે.

#### 14.6 વિધાનોની યથાર્થતા

આ વિભાગમાં આપણે વિધાન ક્યારે સત્ય હોય છે તેની ચર્ચા કરીશું. આ પ્રશ્નનો ઉત્તર આપવા માટે નીચેના બધા જ પ્રશ્નના ઉત્તર આપવા જ જોઈએ.

વિધાનનો અર્થ શું છે ?

આ વિધાન સત્ય છે અને આ વિધાન મિથ્યા છે તેવું કહેવું તેનો અર્થ શું થાય ?

આ પ્રશ્નના જવાબનો આધાર કયા વિશિષ્ટ શબ્દો અને શબ્દસમૂહો ''અને'', 'અથવા' અને કયા પ્રેરણ ''જો...તો'',

''જો તો અને તો જ'' અને કયા કારકો ''પ્રત્યેક માટે'', ''કોઈક અસ્તિત્વ ધરાવે છે'' વિધાનમાં દેખાય છે તેના ઉપર છે.

અહીં આપણે ક્યારે વિધાન યથાર્થ છે તે શોધવા માટેની કેટલીક રીતોની ચર્ચા કરીશું.

વિધાન સત્ય છે કે નહિ તે ચકાસવા માટે આપણે કેટલાક સામાન્ય નિયમોની યાદી બનાવીશું.

### નિયમ 1: જો p અને q એ ગાણિતિક વિધાનો હોય તો વિધાન "p અને q" સત્ય બને તે માટે નીચેનાં પદનું પાલન કરવું જોઈએ.

પદ 1 : વિધાન p સત્ય છે તેમ બતાવો.

પદ 2 : વિધાન q સત્ય છે તેમ બતાવો.

### નિયમ 2 : ''અથવા'' વાળું વિધાન

જો p અને q એ ગાણિતિક વિધાનો હોય તો વિધાન "p અથવા q" સત્ય બને તે માટે નીચે પ્રમાણે વિચારો  $\colon$ 

પદ  $\mathbf{1}$  : વિધાન p મિથ્યા છે તેમ ધારીને q સત્ય છે તેમ બતાવો.

**પદ 2** : વિધાન q મિથ્યા છે તેમ ધારીને p સત્ય છે તેમ બતાવો.

**પદ 3** : વિધાન p અને q બંનેની સત્યાર્થતાની ચકાસણી કરો.

## નિયમ 3 : "જો... તો..." વાળું વિધાન

વિધાન "જો p તો q" માટે નીચેના વિકલ્પમાંથી ગમે તે એક સત્ય હોય.

પદ  $\mathbf{1}$  : વિધાન p સત્ય છે તેમ ધારીને સાબિત કરો કે q સત્ય હોય. (પ્રત્યક્ષ પદ્ધતિ)

**પદ 2** : વિધાન q મિથ્યા છે તેમ ધારીને સાબિત કરો કે p મિથ્યા હોય. (સમાનાર્થી પ્રેરણ પદ્ધતિ)

### નિયમ 4 : "તો અને તો જ" વાળા વિધાન

વિધાન "જો p તો અને તો જ q", માટે આપણે

(i) જો p સત્ય હોય તો q સત્ય અને (ii) જો q સત્ય હોય, તો p સત્ય છે તેમ બતાવવું જોઈએ.

હવે આપણે કેટલાંક ઉદાહરણોનો વિચાર કરીશું.

ગાણિતિક તર્ક

ઉદાહરણ 13 : નીચેનું વિધાન સત્ય છે કે નહિ તે ચકાસો :

જો  $x,y \in \mathbb{Z}$  તથા x અને y અયુગ્મ હોય તો xy અયુગ્મ છે.

ઉકેલ : ધારો કે  $p: x, y \in \mathbf{Z}$  તથા x અને y અયુગ્મ છે. q: xy અયુગ્મ છે.

આપેલા વિધાનની યથાર્થતા ચકાસવા માટે આપણે નિયમ 3 નો વિકલ્પ 1 વાપરીશું. તે આ પ્રમાણે છે. જો વિધાન  $\,p$  સત્ય છે એમ સ્વીકારીએ તો  $\,q$  સત્ય સાબિત કરવું.

વિધાન p સત્ય છે એટલે કે x અને y અયુગ્મ પૂર્ણાંકો છે.

આથી કોઈક પૂર્ણાંક m માટે, x=2m+1 તથા કોઈક પૂર્ણાંક n માટે, y=2n+1

$$xy = (2m+1)(2n+1)$$

= 2(2mn + m + n) + 1

આ દર્શાવે છે *xy* અયુગ્મ છે.

આમ, આપેલ વિધાન સત્ય છે. જો આપણે નિયમ 3 ના વિકલ્પ-2 નો ઉપયોગ કરીને ચકાસવું હોય, તો નીચે પ્રમાણે આગળ વધવું પડશે :

આપણે ધારી લઈશું કે q સત્ય નથી. તે એમ સૂચિત કરે છે કે આપણે વિધાન q ના નિષેધનો વિચાર કરવો. તે વિધાન આ પ્રમાણે છે.

$$\sim q : xy$$
 યુગ્મ છે.

જો x અથવા y યુગ્મ હોય ત્યારે તે શક્ય છે. આ દર્શાવે છે કે વિધાન p સત્ય નથી. આમ આપણે બતાવ્યું કે,

$$\sim q \Rightarrow \sim p$$

-નોંધ ઉપરનું ઉદાહરણ દર્શાવે છે કે  $p \Rightarrow q$ , સાબિત કરવા માટે તેનું સમાનાર્થી પ્રેરણ  $\sim q \Rightarrow \sim p$  સાબિત કરવું પૂરતું છે.

ઉદાહરણ 14 : સમાનાર્થી પ્રેરણની રીતે નીચેનું વિધાન સત્ય છે કે મિથ્યા તે ચકાસો :

જો  $xy \in \mathbf{Z}$  અયુગ્મ હોય તો  $x \in \mathbf{Z}$   $y \in \mathbf{Z}$  માટે x અને y અયુગ્મ છે.

ઉકેલ : વિધાનોને નીચે પ્રમાણે દર્શાવીએ :

q : x અને y બંને અયુગ્મ પૂર્ણાંકો છે.

આપણે વિધાન  $p\Rightarrow q$  સત્ય છે કે નહિ તે ચકાસવું છે. આપણે સમાનાર્થી પ્રેરણની રીતે ચકાસવું છે એટલે કે  $\sim q \Rightarrow \sim p$ .

હવે,  $\sim q: x$  અને y બંને અયુગ્મ છે તે અસત્ય છે એટલે x (અથવા y) એ યુગ્મ છે.

- $\therefore$  આથી કોઈક પૂર્ણાંક n માટે x=2n
- $\therefore$  કોઈક પૂર્ણાંક n માટે xy = 2ny છે.
- *∴ xy* એ યુગ્મ છે.

 $\therefore \neg p$  એ સત્ય છે.

આમ, આપણે બતાવ્યું કે  $\sim q \Rightarrow \sim p$  અને તેથી આપેલ વિધાન સત્ય છે.

જ્યારે આપણે પ્રેરણ અને પ્રતીપ ભેગા કરીએ ત્યારે શું થાય ? હવે આપણે આ ચર્ચા કરીશું.

ચાલો આપણે નીચેનાં વિધાનોનો વિચાર કરીએ :

p : લોટો અડધો ખાલી છે.

q : લોટો અડધો ભરેલો છે.

આપણે જાણીએ છીએ કે જો પ્રથમ વિધાન સત્ય થાય ત્યારે બીજું વિધાન પણ સત્ય થાય છે અને જો બીજું વિધાન સત્ય થાય ત્યારે પ્રથમ વિધાન પણ સત્ય થાય છે. આપણે આ હકીકતને આ પ્રમાણે દર્શાવીએ.

જો લોટો અડધો ખાલી હોય તો તે અડધો ભરેલો છે.

જો લોટો અડધો ભરેલો હોય તો તે અડધો ખાલી છે.

આપણે બંને વિધાનોને ભેગા કરીને નીચે પ્રમાણે મેળવી શકીએ :

લોટો અડધો ખાલી હોય તો અને તો જ તે અડધો ભરેલો છે.

હવે આપણે બીજી રીતની ચર્ચા કરીશું.

#### 14.6.1 અનિષ્ટાપત્તિની રીત

અહીં વિધાન p સત્ય છે કે નહિ તે ચકાસવા માટે આપણે ધારી લઈએ છીએ કે p સત્ય નથી. એટલે કે  $\sim p$  સત્ય છે. પછી આપણે કોઈ એવા પરિણામ પર આવીએ છીએ જે આપણી ધારણાથી વિરુદ્ધ હોય. તેથી આપણે એવા નિષ્કર્ષ પર આવીએ કે છીએ વિધાન p સત્ય છે.

ઉદાહરણ 15 : અનિષ્ટાપત્તિની રીતથી ચકાસો કે,

$$p:\sqrt{7}$$
 એ અસંમેય છે.

ઉંકેલ : આ રીતમાં આપણે ધારીશું કે આપેલ વિધાન મિથ્યા છે. એટલે કે આપણે ધારીશું કે  $\sqrt{7}$  એ સંમેય છે. આનો અર્થ એમ થાય કે એવાં ધન પૂર્ણાંકો a અને b મળે જેથી  $\sqrt{7} = \frac{a}{b}$  થાય. અત્રે a અને b ને કોઈ સામાન્ય અવયવ નથી. વર્ગ લેતાં  $7 = \frac{a^2}{b^2}$ .

$$a^2 = 7b^2$$

 $\therefore$  7 એ a નો અવયવ છે. માટે કોઈ પૂર્ણાંક c એવો મળે કે જેથી a=7c થાય.

માટે 
$$a^2 = 49c^2$$
 અને  $a^2 = 7b^2$ 

તેથી, 
$$7b^2 = 49c^2$$
.

આમ  $b^2 = 7c^2$  માટે 7 એ b નો અવયવ છે.

પરંતુ આપણે એવું બતાવ્યું કે 7 એ a નો અવયવ છે.

ગાણિતિક તર્ક

એનાથી સૂચિત થાય છે કે 7 એ a અને b બંનેનો અવયવ છે. આ આપણી અગાઉની ધારણા 'a અને b ને કોઇ સામાન્ય અવયવ નથી.' થી વિપરીત છે. આ દર્શાવે છે કે આપણી ધારણા  $\sqrt{7}$  સંમેય છે તે અસત્ય છે. તેથી વિધાન  $\sqrt{7}$  અસંમેય છે તે સત્ય છે.

હવે આપણે એવી એક રીતની ચર્ચા કરીશું જેના દ્વારા આપણે બતાવી શકીએ કે વિધાન અસત્ય છે. આ રીતમાં એક એવી પરિસ્થિતિનું ઉદાહરણ આપો જ્યાં, વિધાન યથાર્થ નથી. આવા ઉદાહરણને પ્રતિઉદાહરણ કહે છે. પ્રતિઉદાહરણના નામ પરથી જ એવું સૂચન મળે છે કે તે વિધાનનો પ્રતિકાર કરે તેવું ઉદાહરણ છે.

ઉદાહરણ 16: પ્રતિઉદાહરણ આપી દર્શાવો કે "જો પૂર્ણાંક n અયુગ્મ હોય તો તે અવિભાજ્ય છે" વિધાન અસત્ય છે.

ઉકેલ: આપેલ વિધાન "જો p તો q" પ્રકારનું છે. આપણે બતાવવું છે કે આ અસત્ય છે. આ હેતુ માટે આપણે બતાવવું પડશે p અને  $\sim q$ . આ બતાવવા માટે આપણે જે અવિભાજય સંખ્યા ન હોય એવા અયુગ્મ પૂર્ણાંક n શોધીશું. એક એવી સંખ્યા 9 છે. આથી n=9 એ પ્રતિઉદાહરણ છે. આમ, આપણે તારણ કાઢ્યું કે આપેલ વિધાન અસત્ય છે.

ઉપર આપણે વિધાન સત્ય છે કે નહિ તે ચકાસવા માટેની અમુક રીતોની ચર્ચા કરી.

➡નોંધ : ગિયાનમાં કોઇક વિધાનને અસત્ય સાબિત કરવા માટે પ્રતિઉદાહરણનો ઉપયોગ કરવામાં આવે છે. જો કે વિધાનની તરફેણમાં ઉદાહરણો રજૂ કરવાથી વિધાનની યથાર્થતા પુરવાર થતી નથી.

## સ્વાધ્યાય 14.5

- 1. નીચેનું વિધાન સત્ય છે તેમ (i) પ્રત્યક્ષ પદ્ધતિ, (ii) અનિષ્ટાપત્તિની રીત અને (iii) સમાનાર્થી પ્રેરણની રીતથી બતાવો : p: જો કોઈ વાસ્તવિક સંખ્યા x માટે  $x^3 + 4x = 0$ , તો x = 0
- 2. પ્રતિઉદાહરણની રીતે બતાવો કે નીચેનું વિધાન અસત્ય છે : "કોઈપણ વાસ્તવિક સંખ્યાઓ a અને b માટે  $a^2=b^2$  સૂચિત કરે છે કે a=b"
- સમાનાર્થી પ્રેરણની રીતથી નીચેનું વિધાન સત્ય છે તેમ સાબિત કરો :

 $p: \mathop{\it xi}\nolimits x$  પૂર્ણાંક હોય તથા  $x^2$  યુગ્મ હોય તો x પણ યુગ્મ છે.

- 4. પ્રતિઉદાહરણની રીતથી બતાવો કે નીચેનાં વિધાન અસત્ય છે :
  - (i) p : જો ત્રિકોશના બધા જ ખૂશાનાં માપ સમાન હોય તો તે ગુરૂકોશ ત્રિકોશ છે.
  - (ii) q: સમીકરણ  $x^2 1 = 0$  ને 0 અને 2 ની વચ્ચે કોઈ બીજ નથી.
- 5. નીચેનાં પૈકી કયાં વિધાન સત્ય છે અને કયા અસત્ય છે ? દરેકના જવાબ માટે યોગ્ય કારણ આપો.
  - (i) p: વર્ત્ળની દરેક ત્રિજ્યા એ વર્ત્ળની જીવા છે.
  - (ii) q: વર્તુળનું કેન્દ્ર એ વર્તુળની દરેક જીવાને દુભાગે છે.
  - (iii) r : વર્તુળ એ ઉપવલયનું એક ખાસ ઉદાહરણ છે.
  - (iv)  $s: \Re x \ \text{w-h} \ y \ \text{પૂર્ગાંકો હોય તથા } x > y, \ \text{તો } -x < -y.$
  - (v)  $t: \sqrt{11}$  એ સંમેય સંખ્યા છે.

ગણિત : ધોરણ 11

## પ્રકીર્ણ ઉદાહરણો

<mark>ઉદાહરણ 17 :</mark> નીચેના વિધાનમાં "અથવા"નો ઉપયોગ સમાવેશ વિકલ્પ તરીકે કે નિવારક વિકલ્પ તરીકે થયો છે તે ચકાસો. સંયુક્ત વિધાનનાં ઘટક વિધાનો લખો અને તેમનો ઉપયોગ કરીને ચકાસો કે સંયુક્ત વિધાન સત્ય છે કે નહિ. તમારા જવાબને સમર્થન આપો. *t : જ્યારે વરસાદ પડે ત્યારે તમે ભીના થાવ છો અથવા તમે નદીમાં છો.* 

<mark>ઉકેલ</mark> ઃ આપેલ વિધાનમાં "અથવા"નો ઉપયોગ સમાવેશ વિકલ્પ તરીકે થયો છે. કારણ કે એવું શક્ય છે કે વરસાદ પડતો હોય ત્યારે તમે નદીમાં હો.

આપેલ વિધાનનાં ઘટક વિધાનો આ પ્રમાણે છે:

p : જ્યારે વરસાદ પડે ત્યારે તમે ભીના થાવ છો.

q : જ્યારે તમે નદીમાં હોય ત્યારે તમે ભીના થાવ છો.

અહીં બંને ઘટક વિધાનો સત્ય છે અને તેથી સંયુક્ત વિધાન સત્ય છે.

ઉદાહરણ 18: નીચેનાં વિધાનોનાં નિષેધ લખો:

- (i) p: દરેક વાસ્તવિક સંખ્યા x માટે  $x^2 > x$ .
- (ii)  $q: x^2 = 2$  હોય તેવી એક સંમેય સંખ્યા x અસ્તિત્વ ધરાવે છે.
- (iii) r: બધાં પક્ષીઓને પાંખો હોય છે.
- (iv) s : બધા વિદ્યાર્થીઓ પ્રાથમિક કક્ષાએ ગણિતનો અભ્યાસ કરે છે.

ઉકેલ : (i) વિધાન p નો નિષેધ "તે અસત્ય છે કે p". આનો અર્થ એમ થાય કે પ્રત્યેક વાસ્તવિક સંખ્યા માટે  $x^2 > x$  શરતનું પાલન થતું નથી. આ નીચે પ્રમાણે દર્શાવી શકાય છે :

 $\sim p: x^2 \le x$  હોય એવી કોઇક વાસ્તવિક સંખ્યા x અસ્તિત્વ ધરાવે છે.

(ii) વિધાન q નો નિષેધ "એ અસત્ય છે કે q", આમ, વિધાન  $\sim q$  આ પ્રમાણે થશે.

 $\sim q$ : એવી કોઈ સંમેય સંખ્યા x અસ્તિત્વ  $\dashv$  ધરાવે કે જેથી  $x^2=2$  થાય.

આ વિધાન આ રીતે લખી શકાય.

 $\sim q: y$ ત્યેક સંમેય સંખ્યા x માટે  $x^2 \neq 2$ 

(iii) આપેલ વિધાનનું નિષેધ

🚁 : જેને પાંખો ન હોય તેવું પક્ષી અસ્તિત્વ ધરાવે છે.

(iv) આપેલ વિધાનનું નિષેધ

ૂs : જેશે પ્રાથમિક કક્ષાએ ગણિતનો અભ્યાસ ન કર્યો હોય, એવો વિદ્યાર્થી અસ્તિત્વ ધરાવે છે.

ઉદાહરણ 19: "આવશ્યક" અને "પર્યાપ્ત" શબ્દનો ઉપયોગ કરીને વિધાન ફરીથી લખો :

"પૂર્ણાંક n અયુગ્મ હોય તો અને તો જ  $n^2$  અયુગ્મ છે." વિધાનની સત્યાર્થતા ચકાસો.

 $\mathsf{G}$ કેલ: પૂર્ણાંક n અયુગ્મ હોય તેની આવશ્યક અને પર્યાપ્ત શરત  $n^2$  અયુગ્મ હોય તે છે. ધારો કે p તથા q નીચે પ્રમાણે વિધાનો છે :

p : પૂર્શાંક n અયુગ્મ છે.

 $q:n^2$  અયુગ્મ છે.

# Downloaded from https:// www.studiestoday.com

ગાણિતિક તર્ક

"p તો અને તો જ q" ની સત્યાર્થતા ચકાસવા માટે આપણે " જો p તો q" અને "જો q તો p" ની સત્યાર્થતા ચકાસવી પડશે.

વિકલ્પ 1 : જો p તો q

જો "p તો q" વિધાન આ પ્રમાણે છે.

'જો પૂર્ણાંક n અયુગ્મ હોય તો  $n^2$  અયુગ્મ છે.' આપણે આ વિધાન સત્ય છે કે નહિ તે ચકાસવું પડશે. ધારો કે n અયુગ્મ છે. આથી કોઇક પૂર્ણાંક k માટે n=2k+1

$$n^2 = (2k+1)^2$$

$$= 4k^2 + 4k + 1$$

 $\therefore n^2$  એ યુગ્મ સંખ્યા કરતા એક વધુ છે. તેથી તે અયુગ્મ છે.

વિકલ્પ 2 : જો q તો p

જો "q તો p" વિધાન આ પ્રમાણે છે.

'જો n પૂર્ણાંક સંખ્યા હોય તથા  $n^2$  અયુગ્મ હોય તો n અયુગ્મ છે.'

આપણે ચકાસવું પડશે કે આ વિધાન સત્ય છે કે નહિ. આપણે તે સમાનાર્થી પ્રેરણની રીતે ચકાસીશું. આપેલ વિધાનનું સમાનાર્થી પ્રેરણ આ પ્રમાણે છે.

જો n યુગ્મ પૂર્શાંક હોય તો  $n^2$  યુગ્મ પૂર્શાંક છે.

n યુગ્મ હોય તો કોઈ પૂર્ણાંક k માટે n=2k ધારો.

 $n^2 = 4k^2.$ 

આથી  $n^2$  યુગ્મ છે.

ઉદાહરણ 20: આપેલ વિધાનમાં આવશ્યક અને પર્યાપ્ત શરતો ઓળખો.

જો તમે 80 કિમી/કલાકથી વધુ ઝડપ સાથે વાહન હંકારશો તો તમને દંડ થશે.

6કેલ : ધારો કે વિધાન p અને q નીચે પ્રમાણે દર્શાવેલ છે :

p : તમે 80 કિમી/કલાકથી વધુ ઝડપ સાથે વાહન હંકારો છો.

q : તમને દંડ થશે.

પ્રેરણ "જો p તો q" એવું દર્શાવે છે કે p એ q માટે પર્યાપ્ત છે. એટલે કે દંડ થવા માટે 80 કિમી/કલાકથી વધુ ઝડપ સાથે વાહન હંકારવું પર્યાપ્ત છે. તે જ રીતે "જો p તો q" એવું પણ દર્શાવે છે કે q એ p માટે આવશ્યક છે. એટલે કે જ્યારે તમે 80 કિમી/કલાક થી વધુ ઝડપ સાથે વાહન હંકારશો ત્યારે તમને દંડ થવો જરૂરી છે. આથી આવશ્યક શરત ''દંડ થવો'' એ છે.

### પ્રકીર્ણ સ્વાધ્યાય 14

- 1. નીચેનાં વિધાનનાં નિષેધ લખો :
  - (i) p : પ્રત્યેક ધન વાસ્તવિક સંખ્યા x માટે સંખ્યા x-1 પણ ધન થશે.
  - (ii) q : બધી બિલાડીઓ ચટાપટાવાળી છે.

ગણિત : ધોરણ 11

- (iii) r: પ્રત્યેક વાસ્તવિક સંખ્યા x માટે x > 1 અથવા x < 1.
- (iv) s: 0 < x < 1 થાય તેવી એક એવી સંખ્યા x અસ્તિત્વ ધરાવે છે.
- નીચેનાં દરેક વિધાનોનાં પ્રતીપ તથા સમાનાર્થી પ્રેરણ દર્શાવો :
  - (i) p : જો ધનપૂર્શાંકને 1 અને તે સંખ્યા સિવાય બીજા કોઈ અવયવો ન હોય તો જ તે અવિભાજય હોય.
  - (ii) q : સૂર્ય પ્રકાશિત દિવસ હોય તો હું દરિયાકિનારે જઇશ.
  - (iii) r: જો બહાર ગરમી હોય તો તમને તરસ લાગશે.
- $oldsymbol{3}$ . નીચેના દરેક વિધાનને "જો p તો q" સ્વરૂપમાં લખો :
  - (i) p: સર્વર પર પ્રવેશ કરવા માટે પાસવર્ડ જરૂરી છે.
  - (ii) q : જ્યારે પણ વરસાદ પડે ત્યારે ટ્રાફિક જામ હોય છે.
  - (iii) r : જો તમે વેબસાઇટમાં લવાજમ ફ્રી ચૂકવી હોય તો જ પ્રવેશ કરી શકો.
- 4. નીચેના દરેક વિધાનને "જો p તો અને તો જ q" સ્વરૂપમાં ફરીથી લખો :
  - (i) p: તમે જ્યારે ટેલિવિઝન નિહાળો ત્યારે તમારું મન મુક્ત હોય છે અને જ્યારે તમારું મન મુક્ત હોય ત્યારે તમે ટેલિવિઝન નિહાળો છો.
  - (ii) q: તમારે A ગ્રેડ મેળવવા માટે તમારું બધું ગૃહકાર્ય નિયમિત કરવું પડે એ જરૂરી આયોજન છે.
  - (iii) r: જો ચતુષ્કોણના બધા જ ખૂણાઓ સમાન હોય તો તે લંબચોરસ છે.
- 5. નીચે બે વિધાન આપેલ છે :

p : 25 એ 5 નો ગુણિત છે.

q : 25 એ 8 નો ગુણિત છે.

આ બંને વિધાનોને "અને" તથા "અથવા" વડે જોડીને સંયુક્ત વિધાન લખો. આ બંને પ્રકારનાં સંયુક્ત વિધાનોની સત્યાર્થતા ચકાસો.

- 6. પ્રશ્નમાં જણાવેલ રીતની મદદથી નીચે આપેલ વિધાનોની સત્યાર્થતા ચકાસો :
  - (i) p: અસંમેય સંખ્યા અને સંમેય સંખ્યાનો સરવાળો અસંમેય છે.(અનિષ્ટાપત્તિની રીત)
  - (ii) q : જો કોઇ વાસ્તવિક સંખ્યા n માટે n > 3, તો  $n^2 > 9$  (અનિષ્ટાપત્તિની રીત)
- 7. નીચેના વિધાનને એક સમાન અર્થ ધરાવતા પાંચ ભિન્ન પ્રકારે લખો ઃ

p : જો કોઈ ત્રિકોશના બધા ખૂશાઓ સમાન હોય તો તે ગુરૂકોશ ત્રિકોશ છે.

#### સારાંશ

- ♦ એવું વાક્ય જે કાં તો સત્ય હોય અથવા અસત્ય તે ગાણિતિક રીતે સ્વીકાર્ય વિધાન છે.
- સમજાવેલાં પદો :

વિધાન p નું નિષેધ : જો p એ એક વિધાન દર્શાવે તો p ના નિષેધને  $\sim p$  વડે દર્શાવાય છે.

## Downloaded from https://www.studiestoday.com

ગાણિતિક તર્ક

- સંયુક્ત વિધાનો અને તેના સંબંધી ઘટક વિધાનો. બે અથવા વધુ સાદાં વિધાનોને જોડવાથી જે વિધાન મળે છે તે સંયુક્ત વિધાન છે. સાદાં વિધાનોને સંયુક્ત વિધાનનાં ઘટક વિધાનો કહેવામાં આવે છે.
- \_ સંયુક્ત વિધાનમાં ''અને'' ''અથવા'' ''અસ્તિત્વ ધરાવે છે'' તથા ''પ્રત્યેક માટે'' ની ભૂમિકા
- પ્રેરણ ''જો'' ''તો જ'' ''તો અને તો જ'' ની સમજૂતી. જો p તો q વાળું વાક્ય ભિન્ન પ્રકારે નીચે દર્શાવ્યા પ્રમાણે લખી શકાય :
- જો p તો q ( p  $\Rightarrow$  q વડે દર્શાવવામાં આવે છે.)
- -p એ q માટેની પર્યાપ્ત શરત છે.
- -q એ p માટેની આવશ્યક શરત છે.
- q તો જ p
- \_ જો ~*q* તો ~*p*
- વિધાન  $p\Rightarrow q$  નું સમાનાર્થી પ્રેરણ  $\sim q\Rightarrow \sim p$ . વિધાન  $p\Rightarrow q$  નું પ્રતીપ  $q\Rightarrow p$  છે.  $p\Rightarrow q$  અને પ્રતીપને ભેગા કરવાથી p તો અને તો જ q મળે છે.
- ♦ વિધાનની યર્થાથતા ચકાસવા માટે નીચેની રીતનો ઉપયોગ કરવામાં આવ્યો છે :
  - (i) પ્રત્યક્ષ પદ્ધતિ
  - (ii) સમાનાર્થી પ્રેરણની રીત
  - (iii) અનિષ્ટાપત્તિની રીત
  - (iv) પ્રતિ ઉદાહરણની રીત

#### Historical Note

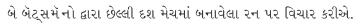
The first treatise on logic was written by *Aristotle* (384 B.C.-322 B.C.). It was a collection of rules for deductive reasoning which would serve as a basis for the study of every branch of knowledge. Later, in the seventeenth century, German mathematician G. W. Leibnitz (1646 – 1716) conceived the idea of using symbols in logic to mechanise the process of deductive reasoning. His idea was realised in the nineteenth century by the English mathematician *George Boole* (1815–1864) and *Augustus De Morgan* (1806–1871), who founded the modern subject of symbolic logic.



**❖** "Statistics may be rightly called the science of averages and their estimates." – A. L. BOWLEY and A. L. BODDINGTON ❖

### 15.1 પ્રાસ્તાવિક

આપણે જાણીએ છીએ કે આંકડાશાસ્ત્રનો વ્યવહાર કોઈ વિશેષ હેતુને લઈને એકત્રિત કરેલી માહિતી સાથે છે. આપણે માહિતીનું વિશ્લેષણ અને અર્થઘટન કરીને તેમના વિશે નિર્ણય લઈએ છીએ. આપણે આગળનાં ધોરણોમાં માહિતીને આલેખ અને કોષ્ટક સ્વરૂપમાં દર્શાવવાની રીતોનો અભ્યાસ કર્યો છે. આ નિરૂપણ માહિતીનાં મહત્ત્વપૂર્ણ લક્ષણો અથવા વિશેષતાઓને દર્શાવે છે. આપણે આપેલ માહિતીનું પ્રતિનિધિત્વ રજૂ કરતાં મૂલ્યો શોધવાની રીતો વિશે અભ્યાસ કર્યો છે. આ મૂલ્યોને મધ્યવર્તી સ્થિતિમાનનાં માપ કહે છે. યાદ કરો કે મધ્યક (સમાંતર મધ્યક), મધ્યસ્થ અને બહુલક (mean, median and mode) એ મધ્યવર્તી સ્થિતિમાનનાં ત્રણ માપ છે. મધ્યવર્તી સ્થિતિમાનનું માપ આપણને એ વાતનો આભાસી ખ્યાલ આપે છે કે માહિતી ક્યાં કેન્દ્રિત થઈ છે. પરંતુ માહિતી પરથી વધુ સચોટ અર્થઘટન કરવા માટે, આપણને એ ખ્યાલ પણ હોવો જોઈએ કે પ્રાપ્તાંકો(માહિતી) કેટલા વિખેરાયેલા છે અથવા તો મધ્યવર્તી સ્થિતિમાનનાં માપની ચારે તરફ કઈ રીતે એકત્રિત થયેલા છે.



બૅટ્સમૅન A: 30, 91, 0, 64, 42, 80, 30, 5, 117, 71

બૅટ્સમૅન B: 53, 46, 48, 50, 53, 53, 58, 60, 57, 52

સ્પષ્ટપણે માહિતીનો મધ્યક અને મધ્યસ્થ દર્શાવેલ છે:



Karl Pearson (1857-1936)

# Downloaded from https://www.studiestoday.com

આંકડાશાસ્ત્ર 322

|         | બૅટ્સમૅન $oldsymbol{A}$ | બૅટ્સમૅન B |
|---------|-------------------------|------------|
| મધ્યક   | 53                      | 53         |
| મધ્યસ્થ | 53                      | 53         |

યાદ કરો કે આપણે માહિતીનો મધ્યક ( $\bar{x}$  વડે દર્શાવીએ છીએ) અવલોકનોના સરવાળાને અવલોકનોની કુલ સંખ્યા વડે ભાગીને મેળવીએ છીએ. એટલે કે,

 $\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$ 

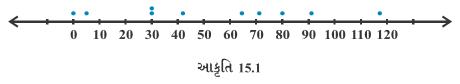
મધ્યસ્થની ગણતરી માટે પ્રાપ્તાંકો પહેલાં ચઢતા કે ઊતરતા ક્રમમાં ગોઠવવામાં આવે છે અને પછી નીચે દર્શાવેલ નિયમનો ઉપયોગ કરવામાં આવે છે.

જો આપેલાં અવલોકનોની સંખ્યા અયુગ્મ હોય, તો મધ્યસ્થ એ  $\left(\frac{n+1}{2}\right)$  મું અવલોકન છે.

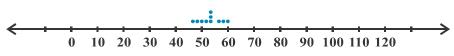
જો અવલોકનોની સંખ્યા યુગ્મ હોય તો મધ્યસ્થ  $\left(\frac{n}{2}\right)$ માં અને  $\left(\frac{n}{2}+1\right)$ માં અવલોકનોની સરેરાશ છે.

આપણે જોઈ શકીએ છીએ કે બંને ખેલાડી A અને B દ્વારા બનાવેલા રનનો મધ્યક અને મધ્યસ્થ સરખા છે અને તે 53 છે. શું આપણે કહી શકીએ કે બન્ને ખેલાડીઓનું પ્રદર્શન સમાન છે ? સ્પષ્ટ છે કે નથી જ. કારણ કે A ના રનમાં ચલન 0 (ન્યૂનતમ) થી 117 (મહત્તમ) સુધી છે, જ્યારે B ના રનનો વિસ્તાર 46 થી 60 સુધી છે.

ચાલો, હવે ઉપર્યુક્ત રનની સંખ્યાઓને એક સંખ્યારેખા પર દર્શાવીએ. આપણને નીચે દર્શાવેલ આકૃતિઓ મળે છે : બૅટ્સમૅન A માટે



બૅટ્સમૅન B માટે



આકૃતિ 15.2

આપણે જોઈ શકીએ છીએ કે બૅટ્સમૅન B ને અનુરૂપ બિંદુઓ એકબીજાની નજીક નજીક છે અને મધ્યવર્તી સ્થિતિમાનનાં માપ (મધ્યક અને મધ્યસ્થ) ની આસપાસ એકત્રિત થાય છે, જ્યારે બૅટ્સમૅન A ને અનુરૂપ બિંદુઓ ફેલાયેલાં છે અથવા વધુ વિખેરાયેલાં છે.

આમ આપેલ માહિતી વિશે સંપૂર્ણ જાણકારી આપવા માટે મધ્યવર્તી સ્થિતિમાનનાં માપ એકલાં પર્યાપ્ત નથી. જેનો અભ્યાસ આંકડાશાસ્ત્રના અંતર્ગત કરવો જોઈએ તેવું એક અન્ય પરિબળ પરિવર્તનશીલતા છે.

મધ્યવર્તી સ્થિતિમાનના માપની જેમ જ પરિવર્તનશીલતાના વર્શન માટે પણ એક સંખ્યા જરૂરી છે. તે સંખ્યાને **પ્રસારનું** માપ (measure of dispersion) કહે છે. આ પ્રકરણમાં આપણે પ્રસારનાં માપનું મહત્ત્વ અને તેમની વર્ગીકૃત અને અવર્ગીકૃત માહિતી માટે ગણતરીની રીતો વિશે અભ્યાસ કરીશું.

### 15.2 પ્રસારનાં માપ

સંખ્યાઓમાં પ્રસારનું માપ અવલોકનો અને ત્યાં ઉપયોગમાં લેવાયેલ મધ્યવર્તી સ્થિતિમાનનાં માપના આધારે કરવામાં આવે છે. પ્રસારનાં માપ નીચે દર્શાવ્યા છે :

(i) વિસ્તાર (Range) (ii) યતુર્થક વિચલન (Quartile deviation) (iii) સરેરાશ વિચલન (Mean deviation) (iv) પ્રમાણિત વિચલન (Standard deviation).

આ પ્રકરણમાં આપણે ચતુર્થક વિચલન સિવાયના અન્ય તમામ માપોનો અભ્યાસ કરીશું.

### 15.3 વિસ્તાર (Range)

યાદ કરો કે બે બૅટ્સમૅન A અને B દ્વારા બનાવેલા રનના ઉદાહરણમાં આપણને પ્રત્યેક શ્રેણીના મહત્તમ અને ન્યૂનતમ રનના આધાર પરથી રનની સંખ્યાઓમાં પરિવર્તનશીલતાનો ખ્યાલ આવે છે. આમાં એકલ સંખ્યા જાણવા માટે આપણે શ્રેણીની મહત્તમ અને ન્યૂનતમ સંખ્યાઓ વચ્ચેનો તફાવત(અંતર) મેળવીએ છીએ. આ તફાવતને *વિસ્તાર* કહેવામાં આવે છે.

બૅટ્સમૅન A નો વિસ્તાર = 117 - 0 = 117 અને બૅટ્સમૅન B નો વિસ્તાર=60 - 46 = 14.

સ્પષ્ટ છે કે A નો વિસ્તાર > B નો વિસ્તાર. તેથી A ના રનની સંખ્યાઓમાં વિચલન અથવા પ્રસાર વધુ છે, પરંતુ B ના રનની સંખ્યાઓ એકબીજાની વધુ નજીક છે.

આમ, એક શ્રેણીનો વિસ્તાર =પ્રાપ્તાંકોનું મહત્તમ મૂલ્ય – પ્રાપ્તાંકોનું ન્યૂનતમ મૂલ્ય

માહિતીનો વિસ્તાર આપણને વિખેરાવ અથવા ચલનીયતાનો સ્થૂળ ખ્યાલ આપે છે, પરંતુ મધ્યવર્તી સ્થિતિનું માપ *માહિતીના પ્રસાર* (dispersion) વિશે કશું જ જણાવતું નથી. આ હેતુ માટે આપણને પરિવર્તનશીલતાનાં બીજાં કેટલાંક માપોની પણ જરૂર પડે છે. સ્પષ્ટ છે કે આ પ્રકારનાં માપ અવલોકનોના મધ્યવર્તી સ્થિતિમાનથી અંતર (અથવા વિચલન) પર આધારિત હોવા જોઇએ.

મધ્યવર્તી સ્થિતિમાનથી અવલોકનોના અંતરના આધાર પર શોધવામાં આવેલ પ્રસારનાં મહત્ત્વપૂર્ણ માપ એ સરેરાશ વિચલન અને પ્રમાણિત વિચલન છે. ચાલો આના ઉપર વિસ્તૃત ચર્ચા કરીએ.

## 15.4 સરેરાશ વિચલન (Mean Deviation)

યાદ કરો કે અવલોકન x નું અચળ મૂલ્ય 'a' થી અંતર (x-a) એ અવલોકન x નું a થી વિચલન કહેવાય છે. 'x' ની કિંમતોનો મધ્યવર્તી કિંમત 'a' થી yસાર શોધવા માટે આપણે 'a' થી વિચલનો શોધીએ છીએ. આ વિચલનોનો મધ્યક એ yસારનું નિરપેક્ષ માપ હોય છે. મધ્યક શોધવા માટે આપણે વિચલનોનો સરવાળો મેળવીએ છીએ, પરંતુ આપણે જાણીએ છીએ કે, મધ્યવર્તી સ્થિતિમાનનું માપ એ અવલોકનોના ગણની મહત્તમ અને ન્યૂનતમ કિંમતોની મધ્યમાં હોય છે. તેથી કેટલાંક વિચલન ઋણ તથા કેટલાંક ધન હશે. આમ, વિચલનોનો સરવાળો શૂન્ય હોઈ શકે છે. આ ઉપરાંત મધ્યક ( $\overline{x}$ ) થી વિચલનોનો સરવાળો શૂન્ય હોય છે જ. આ સાથે જ

વિચલનોનો મધ્યક = 
$$\frac{$$
મધ્યકથી વિચલનોનો સરવાળો  $}{$ અવલોકનોની સંખ્યા  $}=rac{0}{n}=0$ 

આમ, જ્યાં સુધી પ્રસારના માપને લાગેવળગે છે, મધ્યકની સાપેક્ષ વિચલનોનો મધ્યક શોધવાનું કોઈ ઔચિત્ય રહેતું નથી.

યાદ કરો કે પ્રસારનું યોગ્ય માપ શોધવા માટે આપણને પ્રત્યેક મૂલ્યના મધ્યવર્તી સ્થિતિમાનનું માપ અથવા કોઇ અચલ સંખ્યા 'a' થી અંતર મેળવવાનું હોય છે. યાદ કરો કે કોઈ બે સંખ્યાઓના તફાવતના માનાંકનું માપ, એ બે સંખ્યાઓ દ્વારા સંખ્યારેખા પર રજુ થતા બિંદુઓ વચ્ચેનું અંતર દર્શાવે છે. આમ, અચળ સંખ્યા 'a' થી પ્રસારનું માપ શોધવા માટે આપણે મધ્યવર્તી માપથી વિચલનોનાં નિરપેક્ષ મૂલ્યોનો મધ્યક લઈ શકીએ. આ મધ્યકને સરેરાશ વિચલન કહે છે. આમ, મધ્યવર્તી માપ 'a' ને સાપેક્ષ સરેરાશ વિચલન એ 'a' થી અવલોકનોનાં વિચલનોના નિરપેક્ષ મૂલ્યોનો મધ્યક છે. 'a' થી સરેરાશ વિચલનને M.D.(a) વડે દર્શાવવામાં આવે છે. આથી,

$$ext{M.D.}(a) = rac{ `a` થી વિચલનોનાં નિરપેક્ષ મૂલ્યોનો સરવાળો}$$
અવલોકનની સંખ્યા

<mark>ટિપ્પણી :</mark> સરેરાશ વિચલન મધ્યવર્તી સ્થિતિમાનના કોઈપણ માપથી શોધી શકાય છે. પરંતુ આંકડાશાસ્ત્રના અભ્યાસમાં સામાન્ય રીતે મધ્યક અને મધ્યસ્થને સાપેક્ષ સરેરાશ વિચલનનો ઉપયોગ થાય છે.

ચાલો, આપણે મધ્યકને સાપેક્ષ સરેરાશ વિચલન અને મધ્યસ્થને સાપેક્ષ સરેરાશ વિચલનની ગણતરી કઈ રીતે કરવી તેનો અભ્યાસ કરીએ.

## 15.4.1 અવગીકૃત માહિતી માટે સરેરાશ વિચલન (Mean deviation for ungrouped data)

ધારો કે n અવલોકનોના પ્રાપ્તાંકો  $x_1, x_2, x_3, ...., x_n$ છે. મધ્યક અથવા મધ્યસ્થની સાપેક્ષે સરેરાશ વિચલનની ગણતરી નીચે દર્શાવ્યા પ્રમાણે થાય છે :

પગલું 1: જેની સાપેક્ષે સરેરાશ વિચલન શોધવાનું છે એ મધ્યવર્તી સ્થિતિમાનના માપની ગણતરી કરો. ધારો કે તે 'a' છે.

**પગલું 2 :** પ્રત્યેક અવલોકન  $x_i$  થી a નું વિચલન શોધો, એટલે કે,  $x_1-a, x_2-a, x_3-a, \ldots, x_n-a$ 

પગલું 3 : વિચલનોનાં નિરપેક્ષ મૂલ્યો શોધો, અર્થાત્ જો ઋણ સંજ્ઞા હોય તો, (–) દૂર કરો એટલે કે,

$$|x_1-a|, |x_2-a|, |x_3-a|, ...., |x_n-a|$$
 મેળવો.

**પગલું 4** : વિચલનોનાં નિરપેક્ષ મૃલ્યોનો મધ્યક શોધો. આ મધ્યક એ a ને સાપેક્ષ સરેરાશ વિચલન છે. એટલે કે,

$$M.D.(a) = \frac{\sum_{i=1}^{n} |x_i - a|}{n}$$

આમ,

M.D. 
$$(\overline{x}) = \frac{1}{n} \sum_{i=1}^{n} |x_i - \overline{x}|$$
, sai  $\overline{x} = \text{Heas}$ 

અને

M.D. (M) = 
$$\frac{1}{n} \sum_{i=1}^{n} |x_i - \mathbf{M}|$$
, જયાં  $\mathbf{M} =$ મધ્યસ્થ

<del>ુનોંધ</del> આ પ્રકરણમાં જ્યાં સુધી અન્ય સૂચન ન હોય ત્યાં સુધી સંકેત M એ મધ્યસ્થ દર્શાવે છે . ચાલો હવે ઉપર વર્શવેલ પદો સમજવા માટે નીચે આપેલ ઉદાહરણો જોઈએ.

ઉદાહરણ 1: નીચે આપેલ માહિતી માટે મધ્યકને સાપેક્ષ સરેરાશ વિચલન શોધો :

ઉકેલ: આપણે પદવાર આગળ વધીએ અને નીચે દર્શાવેલ વિગતો મેળવીએ :

પગલું 1 : આપેલ સંખ્યાઓનો મધ્યક

$$\overline{x} = \frac{6+7+10+12+13+4+8+12}{8} = \frac{72}{8} = 9$$

**પગલું 2** : ક્રમશઃ અવલોકનોનું મધ્યક  $\overline{x}$  થી વિચલન  $x_i - \overline{x}$  અર્થાત્

$$6-9$$
,  $7-9$ ,  $10-9$ ,  $12-9$ ,  $13-9$ ,  $4-9$ ,  $8-9$ ,  $12-9$ 

અથવા 
$$-3, -2, 1, 3, 4, -5, -1, 3$$
 છે.

**પગલું 3** : વિચલનોનાં માનાંકનાં મૂલ્યો, એટલે કે  $\left|x_{i}-\overline{x}\right|$  , 3, 2, 1, 3, 4, 5, 1, 3 છે.

પગલું 4 : મધ્યકને સાપેક્ષ માંગેલ સરેરાશ વિચલન

M.D. 
$$(\overline{x}) = \frac{\sum_{i=1}^{8} |x_i - \overline{x}|}{8} = \frac{3 + 2 + 1 + 3 + 4 + 5 + 1 + 3}{8} = \frac{22}{8} = 2.75$$

325 ગણિત ધોરણ 11

🗲 નોંધ દરેક વખતે બધાં જ પદોની ગણતરી કરવાને બદલે, આપણે પદોને અવગણીને પદવાર ગણતરી કરી શકીશું.

ઉદાહરણ 2: નીચે આપેલ માહિતી માટે મધ્યકને સાપેક્ષ સરેરાશ વિચલન શોધો :

6કેલ : સૌપ્રથમ આપણે આપેલ માહિતીનો મધ્યક ( $\overline{x}$  ) શોધીશું.

$$\overline{x} = \frac{1}{20} \sum_{i=1}^{20} x_i = \frac{200}{20} = 10$$

ક્રમશઃ અવલોકનોના મધ્યક  $(\overline{x}_i)$  થી વિચલનનો માનાંક  $\left|x_i-\overline{x}
ight|$  ; એટલે કે,

2, 7, 8, 7, 6, 1, 7, 9, 10, 5, 2, 7, 8, 7, 6, 1, 7, 9, 10, 5

તેથી 
$$\sum_{i=1}^{20} \left| x_i - \overline{x} \right| = 124$$

અને M.D. 
$$(\bar{x}) = \frac{124}{20} = 6.2$$

ઉદાહરણ 3: આપેલ માહિતી માટે મધ્યસ્થને સાપેક્ષ સરેરાશ વિચલન શોધો :

ઉકેલ : અહીં, અવલોકનોની સંખ્યા 11 અયુગ્મ છે. આપેલ સંખ્યાઓને ચઢતા ક્રમમાં ગોઠવતાં,

હવે મધ્યસ્થ 
$$=\left(\frac{11+1}{2}\right)$$
મું અથવા  $6$  કું અવલોકન  $=9$ 

મધ્યસ્થ M થી અવલોકનોનાં વિચલનોનાં નિરપેક્ષ મૂલ્યો, એટલે કે,  $\left|x_{i}-\mathbf{M}\right|$  એ

6, 6, 5, 4, 2, 0, 1, 3, 9, 10, 12 
$$\dot{\Theta}$$
.

તેથી 
$$\sum_{i=1}^{11} |x_i - \mathbf{M}| = 58$$

અને M.D. (M) = 
$$\frac{1}{11} \sum_{i=1}^{11} |x_i - \mathbf{M}| = \frac{1}{11} \times 58 = 5.27$$

15.4.2 વગીકૃત માહિતી માટે સરેરાશ વિચલન (Mean deviation for grouped data)

આપણે જાણીએ છીએ કે માહિતીનું બે પ્રકારે વર્ગીકરણ કરવામાં આવે છે :

- (a) અસતત આવૃત્તિ-વિતરણ (Discrete frequency distribution)
- (b) सतत आवृत्ति-वितर्ष (Continuous frequency distribution)

ચાલો, આ બંને પ્રકારની માહિતી માટે સરેરાશ વિચલન શોધવાની રીતો વિશે ચર્ચા કરીએ.

# Downloaded from https:// www.studiestoday.com

આંકડાશાસ્ત્ર 326

(a) અસતત આવૃત્તિ-વિતરણ : ધારો કે આપેલ માહિતીનાં n ભિન્ન અવલોકનો  $x_1, x_2, ..., x_n$  છે અને તેમની આવૃત્તિઓ અનુક્રમે  $f_1, f_2, ..., f_n$  છે. આ માહિતીને કોષ્ટક સ્વરૂપે નીચે પ્રમાણે દર્શાવી શકાય છે. તેને અસતત આવૃત્તિ-વિતરણ કહે છે.

$$x: x_1 \qquad x_2 \qquad x_3 \quad \dots \quad x_n$$

$$f: f_1 \qquad f_2 \qquad f_3 \quad \dots \dots \quad f_n$$

## (i) મધ્યકની સાપેક્ષ સરેરાશ વિચલન :

સૌપ્રથમ આપણે આપેલ માહિતીનો મધ્યક $\overline{x}$  શોધીશું

અહીં,

$$\overline{x} = \frac{\sum_{i=1}^{n} x_i f_i}{\sum_{i=1}^{n} f_i} = \frac{1}{N} \sum_{i=1}^{n} x_i f_i$$

સૂત્રનો ઉપયોગ કરીશું.

 $\sum_{i=1}^n x_i f_i$  એ અવલોકનો  $x_i$  ના તેમને અનુરૂપ આવૃત્તિઓ  $f_i$  સાથેના ગુણાકારોનો સરવાળો દર્શાવે છે અને  $\mathbf{N} = \sum_{i=1}^n f_i$  એ આવૃત્તિઓનો સરવાળો છે.

પછી, આપણે અવલોકનો  $x_i$ ના મધ્યક  $\overline{x}$  પરથી વિચલન શોધીએ છીએ અને તેમનાં નિરપેક્ષ મૂલ્ય મેળવીએ છીએ, એટલે કે પ્રત્યેક  $i=1,\,2,...,\,n$  માટે  $\left|x_i-\overline{x}\right|$  શોધવામાં આવે છે.

તેનાં પછી વિચલનોનાં મધ્યકની સાપેક્ષ અપેક્ષિત સરેરાશ વિચલનની ગણતરી કરવામાં આવે છે.

આમ, 
$$\text{M.D.}(\overline{x}) = \frac{\sum_{i=1}^{n} f_i |x_i - \overline{x}|}{\sum_{i=1}^{n} f_i} = \frac{1}{N} \sum_{i=1}^{n} f_i |x_i - \overline{x}|$$

## (ii) મધ્યસ્થની સાપેક્ષ સરેરાશ વિચલન :

મધ્યસ્થની સાપેક્ષ સરેરાશ વિચલન શોધવા માટે આપેલ અસતત આવૃત્તિ-વિતરણનો મધ્યસ્થ શોધીશું. આના માટે અવલોકનોને ચઢતાં ક્રમમાં ગોઠવીશું. તેના પછી સંચયી આવૃત્તિ મેળવીશું. અહીં, આવૃત્તિઓનો સરવાળો N વડે દર્શાવ્યો છે. જેની સંચયી આવૃત્તિ  $\frac{N}{2}$  ને સમાન અથવા એના કરતાં તરત જ વધારે હોય એ અવલોકન હવે નિર્ધારિત કરીશું. અવલોકનોનું આ મૂલ્ય સંખ્યાઓની મધ્યમાં સ્થાયી હોય છે, તેથી આ જરૂરી મધ્યસ્થ છે. મધ્યસ્થ શોધી લીધા પછી, આપણે મધ્યસ્થથી વિચલનોનાં નિરપેક્ષ મૂલ્યોનો મધ્યક શોધીએ છીએ. આ રીતે,

$$M.D.(M) = \frac{1}{N} \sum_{i=1}^{n} f_i |x_i - M|$$

ઉદાહરણ 4 : નીચે આપેલ માહિતી પરથી મધ્યકને સાપેક્ષ સરેરાશ વિચલન શોધો :

$$x_i$$
 2 5 6 8 10 12  $f_i$  2 8 10 7 8 5

ગણિત ધોરણ 11

<del>ઉક્રેલ</del>ઃ ચાલો, આપેલ માહિતીને કોષ્ટક 15.1 માં વધારાના સ્તંભો ગણતરી કરીને આગળ દર્શાવ્યા પ્રમાણે તૈયાર કરીએ.

કોષ્ટક 15.1

| $x_{i}$ | $f_i$ | $f_i x_i$ | $ x_i - \overline{x} $ | $f_i  x_i - \overline{x} $ |
|---------|-------|-----------|------------------------|----------------------------|
| 2       | 2     | 4         | 5.5                    | 11                         |
| 5       | 8     | 40        | 2.5                    | 20                         |
| 6       | 10    | 60        | 1.5                    | 15                         |
| 8       | 7     | 56        | 0.5                    | 3.5                        |
| 10      | 8     | 80        | 2.5                    | 20                         |
| 12      | 5     | 60        | 4.5                    | 22.5                       |
|         | 40    | 300       |                        | 92                         |

અહીં 
$$N = \sum_{i=1}^{6} f_i = 40$$
,  $\sum_{i=1}^{6} f_i x_i = 300$ ,

તેથી, 
$$\overline{x} = \frac{1}{N} \sum_{i=1}^{6} f_i x_i = \frac{1}{40} \times 300 = 7.5$$

$$\sum_{i=1}^{6} f_i |x_i - \overline{x}| = 92$$

M.D. 
$$(\overline{x}) = \frac{1}{N} \sum_{i=1}^{6} f_i |x_i - \overline{x}| = \frac{1}{40} \times 92 = 2.3$$

ઉદાહરણ 5 : આપેલ માહિતી માટે મધ્યસ્થને સાપેક્ષ સરેરાશ વિચલન શોધો :

| $x_i$ | 3 | 6 | 9 | 12 | 13 | 15 | 21 | 22 |
|-------|---|---|---|----|----|----|----|----|
| $f_i$ | 3 | 4 | 5 | 2  | 4  | 5  | 4  | 3  |

ઉકેલ : આપેલ અવલોકનો ચઢતા ક્રમમાં જ છે. આ માહિતીમાં સંચયી આવૃત્તિની એક હાર ઉમેરતાં આપણને (કોષ્ટક 15.2) મળે.

કોષ્ટક 15.2

| $x_{i}$       | 3 | 6 | 9  | 12 | 13 | 15 | 21 | 22 |
|---------------|---|---|----|----|----|----|----|----|
| $f_i$         | 3 | 4 | 5  | 2  | 4  | 5  | 4  | 3  |
| સંચયી આવૃત્તિ | 3 | 7 | 12 | 14 | 18 | 23 | 27 | 30 |

હવે, N = 30 યુગ્મ સંખ્યા છે.

મધ્યસ્થ એ 15 માં અને 16 માં અવલોકનોની સરેરાશ છે. આ બંને અવલોકનો સંચયી આવૃત્તિ 18 ને સંગત છે. તેને અનુરૂપ અવલોકન 13 છે.

માટે, મધ્યસ્થ M = 
$$\frac{15 મું અવલોકન + 16 મું અવલોકન}{2} = \frac{13+13}{2} = 13$$

હવે, મધ્યસ્થથી વિચલનોનાં નિરપેક્ષ મૂલ્યો એટલે કે,  $\left|x_{i}-\mathbf{M}\right|$  કોષ્ટક 15.3 માં દર્શાવ્યાં છે.

| ~      |     |   |   |
|--------|-----|---|---|
| 2 C/12 | 1   | = | 2 |
| 514.5  | - 1 |   | 7 |

| $ x_i - \mathbf{M} $       | 10 | 7  | 4  | 1 | 0 | 2  | 8  | 9  |
|----------------------------|----|----|----|---|---|----|----|----|
| $f_i$                      | 3  | 4  | 5  | 2 | 4 | 5  | 4  | 3  |
| $f_i   x_i - \mathbf{M}  $ | 30 | 28 | 20 | 2 | 0 | 10 | 32 | 27 |

આપણને 
$$\sum_{i=1}^{8} f_i = 30$$
 અને  $\sum_{i=1}^{8} f_i \left| x_i - \mathbf{M} \right| = 149$  મળે છે.

તેથી 
$$\mathbf{M.D.(M)} = \frac{1}{\mathbf{N}} \sum_{i=1}^{8} f_i \left| x_i - \mathbf{M} \right|$$

$$=\frac{1}{30}\times149=4.97$$

(b) સતત આવૃત્તિ-વિતરણ : સતત આવૃત્તિ-વિતરણમાં માહિતીનું, વચ્ચે અંતર ન હોય એવા વર્ગોમાં વર્ગીકરણ કરવામાં આવે છે. એવા પ્રકારની શ્રેણી અને તેમની આવૃત્તિ ક્રમાનુસાર લખવામાં આવે છે.

ઉદાહરણ તરીકે 100 વિદ્યાર્થીઓ દ્વારા પ્રાપ્ત કરેલા ગુણોને સતત આવૃત્તિ-વિતરણમાં નીચે પ્રમાણે દર્શાવી શકાય :

| મેળવેલા ગુણ          | 0-10 | 10-20 | 20-30 | 30-40 | 40-50 | 50-60 |
|----------------------|------|-------|-------|-------|-------|-------|
| વિદ્યાર્થીઓની સંખ્યા | 12   | 18    | 27    | 20    | 17    | 6     |

(i) મધ્યકને સાપેક્ષ સરેરાશ વિચલન : એક સતત આવૃત્તિ-વિતરણના મધ્યકની ગણતરી કરતાં સમયે આપણે એ ધારી લીધું હતું કે, પ્રત્યેક વર્ગની આવૃત્તિ વર્ગની મધ્યકિંમત પર કેન્દ્રિત હોય છે. અહીં આપણે દરેક વર્ગની મધ્યકિંમત લખીએ છીએ અને અસતત આવૃત્તિ વિતરણની માફક સરેરાશ વિચલન શોધીએ છીએ. ચાલો નીચે આપેલ ઉદાહરણ જોઈએ.

ઉદાહરણ 6: આપેલ માહિતી માટે મધ્યકને સાપેક્ષ સરેરાશ વિચલન શોધો:

| મેળવેલા ગુણ          | 10-20 | 20-30 | 30-40 | 40-50 | 50-60 | 60-70 | 70-80 |
|----------------------|-------|-------|-------|-------|-------|-------|-------|
| વિદ્યાર્થીઓની સંખ્યા | 2     | 3     | 8     | 14    | 8     | 3     | 2     |

ઉકેલ : આપેલ માહિતી પરથી કોષ્ટક 15.4 તૈયાર કરીશું :

કોષ્ટક 15.4

| મેળવેલા | વિદ્યાર્થીઓની | મધ્યકિંમત |           |                        |                            |
|---------|---------------|-----------|-----------|------------------------|----------------------------|
| ગુણ     | સંખ્યા        |           |           |                        |                            |
|         | $f_{i}$       | $x_{i}$   | $f_i x_i$ | $ x_i - \overline{x} $ | $f_i  x_i - \overline{x} $ |
| 10-20   | 2             | 15        | 30        | 30                     | 60                         |
| 20-30   | 3             | 25        | 75        | 20                     | 60                         |
| 30-40   | 8             | 35        | 280       | 10                     | 80                         |
| 40-50   | 14            | 45        | 630       | 0                      | 0                          |
| 50-60   | 8             | 55        | 440       | 10                     | 80                         |
| 60-70   | 3             | 65        | 195       | 20                     | 60                         |
| 70-80   | 2             | 75        | 150       | 30                     | 60                         |
|         | 40            |           | 1800      |                        | 400                        |

અહીં, 
$$N = \sum_{i=1}^{7} f_i = 40, \ \sum_{i=1}^{7} f_i x_i = 1800$$
 તેથી, 
$$\overline{x} = \frac{1}{N} \sum_{i=1}^{7} f_i x_i = \frac{1800}{40} = 45, \quad \sum_{i=1}^{7} f_i \left| x_i - \overline{x} \right| = 400$$
 અને 
$$M.D.(\overline{x}) = \frac{1}{N} \sum_{i=1}^{7} f_i \left| x_i - \overline{x} \right| = \frac{1}{40} \times 400 = 10$$

## મધ્યકની સાપેક્ષ સરેરાશ વિચલન શોધવાની ટૂંકી રીત :

આપણે સોપાન *વિચલન રીત* (step-deviation method) નો ઉપયોગ કરીને  $\bar{\chi}$  શોધવાની ગણતરીની કઠિનતા દૂર કરી શકીએ. યાદ કરો કે, આ રીતમાં આપણે માહિતીની મધ્યે અથવા તેની તદ્દન નજીક કોઈ અવલોકનને મધ્યક તરીકે કલ્પી લઈએ છીએ. પછી અવલોકનો (અથવા જુદા જુદા વર્ગની મધ્યકિંમતો) નું આ ધારેલ મધ્યકથી વિચલન મેળવીએ છીએ. આ વિચલન સંખ્યારેખા પર ઊગમબિંદુને શૂન્યથી પ્રતિસ્થાપિત કરીને ધારેલાં મધ્યક સુધી લઈ જવું એ જ છે આકૃતિ 15.3 માં આ દર્શાવ્યું છે.

જો બધાં વિચલનોનો કોઈ સામાન્ય અવયવ હોય તો વિચલનોને સરળ બનાવવા માટે આપણે તેમને આ સામાન્ય અવયવ વડે ભાગીએ છીએ. આ નવાં વિચલનોને *સોપાન-વિચલન (step-deviation)* તરીકે ઓળખવામાં આવે છે. સોપાન વિચલન લેવાની

પ્રક્રિયા એ સંખ્યારેખા પર માપ-પદ્ધતિ બદલવાની ક્રિયા છે.તે આકૃતિ 15.4 માં દર્શાવેલ છે.

વિચલનો અને સોપાન-વિચલનો અવલોકનોનાં કદ નાના કરે છે, તેથી ગુણાકાર જેવી ગણતરીઓ સરળ થઈ જાય છે. ધારો કે  $+ \frac{1}{2} + \frac$ 

$$\overline{x} = a + \frac{\sum_{i=1}^{n} f_i d_i}{N} \cdot h$$

ચાલો ઉદાહરણ 6 ની માહિતી લઈએ અને સોપાન-વિચલન રીતનો ઉપયોગ કરીએ. આપણે ધારેલ મધ્યક a=45 અને h=10 લઈએ અને નીચે આપેલ કોપ્ટક 15.5 તૈયાર કરીએ :

કોષ્ટક 15.5

| મેળવેલા<br>ગુણ | વિદ્યાર્થીઓની<br>સંખ્યા<br>$f_i$ | મધ્યબિંદુઓ<br><i>x<sub>i</sub></i> | $d_i = \frac{x_i - 45}{10}$ | $f_i d_i$  | $ x_i - \overline{x} $ | $f_i  x_i - \overline{x} $ |  |  |
|----------------|----------------------------------|------------------------------------|-----------------------------|------------|------------------------|----------------------------|--|--|
| 10-20          | 2                                | 15                                 | - 3                         | - 6        | 30                     | 60                         |  |  |
| 20-30          | 3                                | 25                                 | <b>-</b> 2                  | <b>-</b> 6 | 20                     | 60                         |  |  |
| 30-40          | 8                                | 35                                 | <b>–</b> 1                  | - 8        | 10                     | 80                         |  |  |
| 40-50          | 14                               | 45 = a                             | 0                           | 0          | 0                      | 0                          |  |  |
| 50-60          | 8                                | 55                                 | 1                           | 8          | 10                     | 80                         |  |  |
| 60-70          | 3                                | 65                                 | 2                           | 6          | 20                     | 60                         |  |  |
| 70-80          | 2                                | 75                                 | 3                           | 6          | 30                     | 60                         |  |  |
|                | 40                               |                                    |                             | 0          |                        | 400                        |  |  |

તેથી 
$$\overline{x} = a + \frac{\sum\limits_{i=1}^{7} f_i \ d_i}{N} \times h$$
 
$$= 45 + \frac{0}{40} \times 10 = 45$$
 અને 
$$\mathbf{M.D.} \quad (\overline{x}) \ = \frac{1}{N} \ \sum_{i=1}^{7} f_i \left| x_i - \overline{x} \right| = \frac{400}{40} = 10$$

331 ગણિત ધોરણ 11

ullet સોપાનવિચલન રીતનો ઉપયોગ  $\overline{x}$  મેળવવા માટે કરવામાં આવે છે. બાકીની પ્રક્રિયા એ જ પ્રમાણે છે.

## (ii) મધ્યસ્થને સાપેક્ષ સરેરાશ વિચલન:

આપણે સતત આવૃત્તિ-વિતરણ માટે મધ્યસ્થને સાપેક્ષ સરેરાશ વિચલન શોધીશું. જે રીત આપણે મધ્યકને સાપેક્ષ સરેરાશ વિચલન મેળવવા માટે ઉપયોગમાં લીધી હતી એવી જ રીતે આ કાર્ય સંપન્ન કરીશું. કેવળ તફાવત એટલો જ છે કે અહીં જ્યારે વિચલનો લઈએ છીએ ત્યારે મધ્યકને બદલે મધ્યસ્થનો ઉપયોગ કરીએ છીએ.

ચાલો સતત આવૃત્તિ-વિતરણ માટે મધ્યસ્થ શોધવાની પ્રક્રિયાને યાદ કરીએ. સૌપ્રથમ સંખ્યાઓને ચઢતાં ક્રમમાં ગોઠવીએ છીએ. પછી સતત આવૃત્તિ-વિતરણનો મધ્યસ્થ શોધવા માટે પહેલાં જેમાં મધ્યસ્થ સ્થિત હોય છે એ વર્ગ નક્કી કરીએ છીએ. (આ વર્ગને મધ્યસ્થ વર્ગ કહે છે) પછી નીચે દર્શાવેલાં સૂત્રનો ઉપયોગ કરીએ છીએ :

મધ્યસ્થ 
$$= l + \frac{\frac{N}{2} - C}{f} \cdot h$$

અહીં, મધ્યસ્થ વર્ગ એ એવો વર્ગ છે કે જેની સંચયી આવૃત્તિ  $\frac{N}{2}$  ને બરાબર અથવા તેનાથી તરત જ વધારે હોય. N એ આવૃત્તિઓનો સરવાળો, l, f, h અને C એ અનુક્રમે મધ્યસ્થ વર્ગની અધઃસીમા, આવૃત્તિ, વર્ગલંબાઈ, મધ્યસ્થ વર્ગની તરત આગળના વર્ગની સંચયી આવૃત્તિ છે. મધ્યસ્થ શોધ્યા પછી આપણે મધ્યસ્થથી પ્રત્યેક વર્ગની મધ્યકિંમત સાથેનાં વિચલનોનાં નિરપેક્ષ મૂલ્ય મેળવીએ છીએ. એટલે કે પ્રત્યેક  $x_i$  માટે  $|x_i-M|$  પ્રાપ્ત કરીએ છીએ.

પછી M.D. (M) = 
$$\frac{1}{N} \sum_{i=1}^{n} f_i |x_i - M|$$

આ પ્રક્રિયાને નીચે આપેલાં ઉદાહરણથી સ્પષ્ટ કરેલ છે :

ઉદાહરણ 7: નીચે આપેલ માહિતી માટે મધ્યસ્થને સાપેક્ષ સરેરાશ વિચલન શોધો :

| વર્ગ    | 0-10 | 10-20 | 20-30 | 30-40 | 40-50 | 50-60 |
|---------|------|-------|-------|-------|-------|-------|
| આવૃત્તિ | 6    | 7     | 15    | 16    | 4     | 2     |

ઉકેલ: આપેલ માહિતી માટે નીચે દર્શાવેલ કોષ્ટક 15.6 તૈયાર કરો :

કોષ્ટક 15.6

| વર્ગ  | આવૃત્તિ $f_i$ | સંચયી આવૃત્તિ .<br>( <i>cf</i> .) | મધ્યકિંમત $x_i$ | $\left x_{i} - $ મધ્યસ્થ $\right $ | $f_i ig  x_i$ — મધ્યસ્થ $ig $ |
|-------|---------------|-----------------------------------|-----------------|------------------------------------|-------------------------------|
| 0-10  | 6             | 6                                 | 5               | 23                                 | 138                           |
| 10-20 | 7             | 13                                | 15              | 13                                 | 91                            |
| 20-30 | 15            | 28                                | 25              | 3                                  | 45                            |
| 30-40 | 16            | 44                                | 35              | 7                                  | 112                           |
| 40-50 | 4             | 48                                | 45              | 17                                 | 68                            |
| 50-60 | 2             | 50                                | 55              | 27                                 | 54                            |
|       | 50            |                                   |                 |                                    | 508                           |

# Downloaded from https://www.studiestoday.com

આંકડાશાસ્ત્ર 332

અહીં, N=50 છે. તેથી  $\frac{N}{2}$  મું એટલે કે 25 મું અવલોકન એ વર્ગ 20-30 માં આવશે. તેથી, 20-30 એ મધ્યસ્થ વર્ગ છે. આપણે જાણીએ છીએ કે,

મધ્યસ્થ = 
$$l + \frac{\frac{N}{2} - C}{f} \cdot h$$

અહીં 
$$l = 20$$
,  $C = 13$ ,  $f = 15$ ,  $h = 10$  અને  $N = 50$  છે.

માટે, મધ્યસ્થ = 
$$20 + \frac{25 - 13}{15} \times 10 = 20 + 8 = 28$$

આમ, મધ્યસ્થને સાપેક્ષ સરેરાશ વિચલન,

M.D. (M) = 
$$\frac{1}{N} \sum_{i=1}^{6} f_i |x_i - M| = \frac{1}{50} \times 508 = 10.16$$

### સ્વાધ્યાય 15.1

પ્રશ્ન 1 અને 2 માં આપેલ માહિતી માટે મધ્યકને સાપેક્ષ સરેરાશ વિચલન શોધો :

- **1.** 4, 7, 8, 9, 10, 12, 13, 17
- **2.** 38, 70, 48, 40, 42, 55, 63, 46, 54, 44

પ્રશ્ન 3 અને 4 માં આપેલ માહિતી માટે મધ્યસ્થને સાપેક્ષ સરેરાશ વિચલન શોધો :

- **3.** 13, 17, 16, 14, 11, 13, 10, 16, 11, 18, 12, 17
- **4.** 36, 72, 46, 42, 60, 45, 53, 46, 51, 49

પ્રશ્ન 5 અને 6 માં આપેલ માહિતી માટે મધ્યકને સાપેક્ષ સરેરાશ વિચલન શોધો :

| <b>5.</b> | $x_{i}$ | 5  | 10 | 15 | 20 | 25 |
|-----------|---------|----|----|----|----|----|
|           | $f_{i}$ | 7  | 4  | 6  | 3  | 5  |
| 6.        | $X_i$   | 10 | 30 | 50 | 70 | 90 |
|           | $f_i$   | 4  | 24 | 28 | 16 | 8  |

પ્રશ્ન 7 અને 8 માં આપેલ માહિતી માટે મધ્યસ્થને સાપેક્ષ સરેરાશ વિચલન શોધો :

| 7. | $x_{i}$ | 5 | 7 | 9 | 10 | 12 | 15 |
|----|---------|---|---|---|----|----|----|
|    | $f_{i}$ | 8 | 6 | 2 | 2  | 2  | 6  |

| 8. | $x_{i}$ | 15 | 21 | 27 | 30 | 35 |
|----|---------|----|----|----|----|----|
|    | $f_i$   | 3  | 5  | 6  | 7  | 8  |

પ્રશ્ન 9 અને 10 માં આપેલ માહિતી માટે મધ્યકને સાપેક્ષ સરેરાશ વિચલન શોધો :

| 9. | એક દિવસની આવક     | 0-100 | 100-200 | 200-300 | 300-400 | 400-500 | 500-600 | 600-700 | 700-800 |
|----|-------------------|-------|---------|---------|---------|---------|---------|---------|---------|
|    | વ્યક્તિઓની સંખ્યા | 4     | 8       | 9       | 10      | 7       | 5       | 4       | 3       |

**333** ગણિત ધોરણ 11

| 10. | ઊંચાઇ સેમીમાં   | 95-105 | 105-115 | 115-125 | 125-135 | 135-145 | 145-155 |
|-----|-----------------|--------|---------|---------|---------|---------|---------|
| ·   | કુમારોની સંખ્યા | 9      | 13      | 26      | 30      | 12      | 10      |

11. આપેલ માહિતી માટે મધ્યસ્થને સાપેક્ષ સરેરાશ વિચલન શોધો :

| ગુણ              | 0-10 | 10-20 | 20-30 | 30-40 | 40-50 | 50-60 |
|------------------|------|-------|-------|-------|-------|-------|
| કુમારીઓની સંખ્યા | 6    | 8     | 14    | 16    | 4     | 2     |

12. 100 વ્યક્તિઓનું વય વિતરણ નીચે આપેલ છે. મધ્યસ્થ વયની સાપેક્ષે સરેરાશ વિચલનની ગણતરી કરો.

| વય(વર્ષમાં) | 16-20 | 21-25 | 26-30 | 31-35 | 36-40 | 41-45 | 46-50 | 51-55 |
|-------------|-------|-------|-------|-------|-------|-------|-------|-------|
| સંખ્યા      | 5     | 6     | 12    | 14    | 26    | 12    | 16    | 9     |

[સૂચન: પ્રત્યેક વર્ગની અધઃસીમામાંથી 0.5 ઘટાડીને તેની ઊર્ધ્વસીમામાં 0.5 ઉમેરો અને આપેલ માહિતીને સતત આવૃત્તિ-વિતરણમાં ફેરવો.]

#### 15.4.3 સરેરાશ વિચલનની મર્યાદાઓ :

જે શ્રેણીમાં ચલનની કક્ષા ખૂબ જ ઊંચી હોય, તેમાં મધ્યસ્થ એ મધ્યવર્તા સ્થિતિમાનનું ઉપયોગી માપ નથી હોતું. આમ, આ પરિસ્થિતિમાં મધ્યસ્થને સાપેક્ષ સરેરાશ વિચલન ઉપર સંપૂર્ણ વિશ્વાસ કરી શકાય નહિ.

મધ્યકથી વિચલનોનો સરવાળો (ઋણ સંજ્ઞાને અવગણીને) એ મધ્યસ્થથી વિચલનોનાં સરવાળા કરતાં વધારે હોય છે. માટે, મધ્યકને સાપેક્ષ સરેરાશ વિચલન અધિક વૈજ્ઞાનિક નથી. આમ, ઘણી પરિસ્થિતિઓમાં સરેરાશ વિચલન સંતોષકારક પરિણામ નથી આપતું. સાથે જ સરેરાશ વિચલનને વિચલનોનાં નિરપેક્ષ મૂલ્યોને આધારે મેળવવામાં આવે છે અને તેથી તે વધુ બૈજિક ગણતરીઓ માટે યોગ્ય નથી હતું. આ સૂચવે છે કે આપણને પ્રસારના અન્ય માપની આવશ્યકતા છે. પ્રમાણિત વિચલન એ પ્રસારનું એવું જ એક માપ છે.

#### 15.5 વિચરણ અને પ્રમાણિત વિચલન

યાદ કરો કે જ્યારે આપણે મધ્યક અથવા મધ્યસ્થને સાપેક્ષ સરેરાશ વિચલનની ગણતરી કરતા હતા ત્યારે આપણે વિચલનોના નિરપેક્ષ મૂલ્યો લીધા હતા. આ કરવા પાછળનું કારણ સરેરાશ વિચલનને સાર્થક બનાવવા માટેનું હતું, નહિ તો વિચલનોનો સરવાળો શૂન્ય થઈ જાત(ધન અને ઋણ સંજ્ઞાઓવાળા વિચલનોનો સરવાળો શૂન્ય થાય).

વિચલનોની સંજ્ઞાને કારણે ઊભી થયેલી આ સમસ્યાને વિચલનોનો વર્ગ લઈને પણ દૂર કરી શકાય છે. સ્પષ્ટ છે કે વિચલનોના વર્ગ હંમેશાં અનૃણ હોય છે.

ધારો કે  $x_{\scriptscriptstyle 1}, x_{\scriptscriptstyle 2}, x_{\scriptscriptstyle 3}, \, ..., \, x_{\scriptscriptstyle n}$  એ n અવલોકનો છે તથા તેમનો મધ્યક  $\overline{x}$  છે.

$$(x_1 - \overline{x})^2 + (x_2 - \overline{x})^2 + \dots + (x_n - \overline{x})^2 = \sum_{i=1}^n (x_i - \overline{x})^2$$

જો આ સરવાળો શૂન્ય હોય તો પ્રત્યેક  $(x_i - \overline{x})$  પણ શૂન્ય જ થશે. આનો અર્થ એ થયો કે કોઈ પણ માત્રામાં પ્રસાર નથી કારણ કે બધાં જ અવલોકનો  $\overline{x}$  ની બરાબર થાય છે.

જો 
$$\sum_{i=1}^n (x_i - \overline{x})^2$$
 નાની સંખ્યા હોય તો એ નિર્દેશ કરે છે કે અવલોકનો  $x_1, x_2, x_3, ..., x_n$  એ મધ્યક  $\overline{x}$  ની નજીક છે અને તેથી

અવલોકનોનો મધ્યક  $\overline{x}$  ની સાપેક્ષ પ્રસાર નિમ્ન કક્ષાનો છે. આનાથી વિપરીત જો આ સરવાળો મોટો હોય, તો અવલોકનોનો પ્રસાર મધ્યક  $\overline{x}$  થી ઉચ્ચ કક્ષાનો છે. આમ, શું આપણે કહી શકીએ કે સરવાળો  $\sum_{i=1}^n (x_i - \overline{x})^2$  એ તમામ અવલોકનોના મધ્યક  $\overline{x}$  ને સાપેક્ષ પ્રસાર અથવા ફેલાવાનાં માપનું એક સંતોષકારક પ્રતિક છે ?

ચાલો આના માટે આપણે છ અવલોકનો 5, 15, 25, 35, 45, 55 નો એક સમૂહ  $\Lambda$  લઈએ. આ અવલોકનોનો મધ્યક 30 છે. આ ગણમાં  $\overline{\chi}$  થી વિચલનોના વર્ગોનો સરવાળો નીચે દર્શાવેલ છે :

$$\sum_{i=1}^{6} (x_i - \overline{x})^2 = (5-30)^2 + (15-30)^2 + (25-30)^2 + (35-30)^2 + (45-30)^2 + (55-30)^2$$

$$= 625 + 225 + 25 + 25 + 225 + 625 = 1750$$

એક બીજો સમૂહ B લઈએ. તેનાં 31 અવલોકનો નીચે આપેલ છે :

15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45.

આ અવલોકનોનો મધ્યક  $\overline{y} = 30$  છે.

બંને સમૃહ A તથા B નો મધ્યક 30 છે.

હવે, સમૂહ  ${f B}$  નાં અવલોકનોના મધ્યક  $\overline{y}$  થી વિચલનોના વર્ગોનો સરવાળો નીચે આપેલ છે :

$$\sum_{i=1}^{31} (y_i - \overline{y})^2 = (15-30)^2 + (16-30)^2 + (17-30)^2 + \dots + (44-30)^2 + (45-30)^2$$

$$= (-15)^2 + (-14)^2 + \dots + (-1)^2 + 0^2 + 1^2 + 2^2 + 3^2 + \dots + 14^2 + 15^2$$

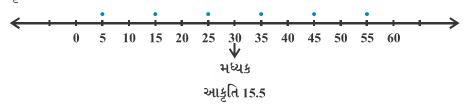
$$= 2 [15^2 + 14^2 + \dots + 1^2]$$

$$= 2 \times \frac{15 \times (15+1)(30+1)}{6} = 5 \times 16 \times 31 = 2480$$

(કારણ કે પ્રથમ n પ્રાકૃતિક સંખ્યાઓના વર્ગોનો સરવાળો =  $\frac{n\left(n+1\right)\left(2n+1\right)}{6}$ . અહીં, n=15)

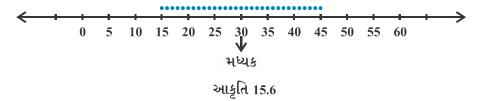
જો  $\sum_{i=1}^{n} (x_i - \overline{x})^2$  જ મધ્યકને સાપેક્ષ પ્રસાર માપ હોય, તો આપણે એ કહેવા માટે પ્રેરિત થઈશું કે 31 અવલોકનો ધરાવતાં ગણ B નો a અવલોકનોવાળા ગણ a ની તુલનાએ મધ્યકની સાપેક્ષ પ્રસાર વધારે છે. ભલે ને a માં a અવલોકનોના મધ્યક  $\overline{x}$  ને સાપેક્ષ પ્રસાર (વિચલનોનો વિસ્તાર a0 થી 25 ) ગણ a1 સરખામણીએ (જ્યાં, વિચલનોનો વિસ્તાર a1 થી 15) વધારે છે. આ હકીકત નીચે આપેલ આકૃતિ પરથી સ્પષ્ટ થાય છે :

ગણ A માટે આકૃતિ 15.5 છે.



ગુણત ધોરણ 11

ગણ B માટે આકૃતિ 15.6 છે.



આમ, આપણે કહી શકીએ કે મધ્યકથી વિચલનોના વર્ગોનો સરવાળો, એ પ્રસારનું ઉપયોગી માપ નથી. આ મુશ્કેલીને દૂર કરવા

માટે આપણે વિચલનોના વર્ગોનો મધ્યક લઈએ, એટલે કે આપણે  $\frac{1}{n}\sum_{i=1}^n(x_i-\overline{x})^2$  લઈએ. ગણ A માટે આપણને મળે છે.

મધ્યક = 
$$\frac{1}{6} \times 1750 = 291.67$$
 અને ગણ B માટે મધ્યક  $\frac{1}{31} \times 2480 = 80$ .

આ દર્શાવે છે કે ગણ A માં પ્રસાર ગણ B ની સરખામણીએ વધારે છે. તે બંને ગણોના અપેક્ષાનુસાર પરિણામ અને ભૌમિતિક નિરૂપણ સાથે સુસંગત છે.

આમ, આપણે  $\frac{1}{n}\sum (x_i-\overline{x})^2$  સૂત્રને પ્રસારનાં યોગ્ય માપ તરીકે લઈ શકીએ. આ સંખ્યા એટલે કે મધ્યકથી વિચલનોના વર્ગીના મધ્યકને *વિચરણ* (variance) કહે છે અને તેને  $\sigma^2$  (સિગ્માનો વર્ગ એમ વંચાય છે) વડે દર્શાવાય છે.

આમ, n અવલોકનો  $x_1, x_2, ..., x_n$ નું વિચરણ

$$\sigma^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^2 \, \hat{\omega}.$$

### 15.5.1 પ્રમાણિત વિચલન (Standard Deviation)

વિચરણ (variance)ની ગણતરીમાં આપણે જોયું કે સ્વતંત્ર અવલોકનો  $x_i$  તથા તેમના મધ્યક  $\overline{x}$  ના ચલનમાં ( $x_i$ – $\overline{x}$ ) ના વર્ગોનો સમાવેશ થાય છે. આ કારણે વિચરણના ધન વર્ગમૂળને અવલોકનોના મધ્યકને સાપેક્ષ ચલનના પ્રમાણિત માપના સ્વરૂપે દર્શાવવામાં આવે છે અને તેને પ્રમાણિત વિચલન (standard deviation) કહે છે. પ્રમાણિત વિચલનને સામાન્ય રીતે  $\sigma$  વડે દર્શાવવામાં આવે છે અને નીચે પ્રમાણે સૂત્ર સ્વરૂપે લખાય છે :

$$\sigma = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2}$$
 ... (1)

ચાલો, અવર્ગીકૃત માહિતીનાં ચલન અને પ્રમાણિત વિચલન શોધવાની ગણતરી દર્શાવતાં કેટલાંક ઉદાહરણો જોઈએઃ ઉદાહરણ 8 : નીચે આપેલ માહિતી માટે વિચરણ શોધો.

6કેલ : આપેલ માહિતી પરથી આપણે નીચેનું કોષ્ટક 15.7 તૈયાર કરીએ. મધ્યકની ગણતરી સોપાન-વિચલન પદ્ધતિ અનુસાર કરી છે અને 14 ને મધ્યક તરીકે ધારી લીધો છે. અવલોકનોની સંખ્યા n=10 છે.

કોષ્ટક 15.7

| $x_i$  | $d_i = \frac{x_i - 14}{2}$ | મધ્યકથી વિચલનો $(x_i \! - \overline{x}^{})$ | $(x_i - \overline{x})^2$ |
|--------|----------------------------|---------------------------------------------|--------------------------|
| 6      | -4                         | <b>_</b> 9                                  | 81                       |
| 8      | -3                         | <b>–</b> 7                                  | 49                       |
| 10     | -2                         | <b>–</b> 5                                  | 25                       |
| 12     | -1                         | -3                                          | 9                        |
| 14 = a | 0                          | <b>-</b> 1                                  | 1                        |
| 16     | 1                          | 1                                           | 1                        |
| 18     | 2                          | 3                                           | 9                        |
| 20     | 3                          | 5                                           | 25                       |
| 22     | 4                          | 7                                           | 49                       |
| 24     | 5                          | 9                                           | 81                       |
|        | 5                          |                                             | 330                      |

તેથી, મધ્યક 
$$\overline{x}=$$
 ધારેલો મધ્યક  $+\frac{\displaystyle\sum_{i=1}^{n}d_{i}}{n} \times h=14+\frac{5}{10} \times 2=15$ 

અને વિચરણ 
$$\sigma^2 = \frac{1}{n} \sum_{i=1}^{10} (x_i - \overline{x})^2 = \frac{1}{10} \times 330 = 33$$

આમ, પ્રમાણિત વિચલન  $\sigma = \sqrt{33} = 5.74$ 

## 15.5.2 અસતત આવૃત્તિ-વિતરણનું પ્રમાણિત વિચલન

આપેલ અસતત આવૃત્તિ-વિતરણ નીચે મુજબ છે:

$$x: \quad x_1, \quad x_2, \quad x_3, \ldots, x_n$$

$$f: f_1, f_2, f_3, \ldots, f_n$$

આ સંજોગોમાં પ્રમાણિત વિચલન 
$$\sigma = \sqrt{\frac{1}{N}\sum_{i=1}^n f_i(x_i-\overline{x})^2}$$
 જ્યાં,  $N = \sum_{i=1}^n f_i$  ... (2)

ચાલો, નીચે આપેલ ઉદાહરણ લઈએ.

ઉદાહરણ 9 : નીચે આપેલ માહિતી માટે વિચરણ અને પ્રમાણિત વિચલન શોધો :

| $x_{i}$ | 4 | 8 | 11 | 17 | 20 | 24 | 32 |
|---------|---|---|----|----|----|----|----|
| $f_{i}$ | 3 | 5 | 9  | 5  | 4  | 3  | 1  |

ગાંધાત ધોરણ 11

<del>ઉકેલ</del>: આપેલ માહિતીને કોષ્ટક 15.8 માં દર્શાવેલ છે અને આ કોષ્ટકની રચના કરેલ છે.

કોષ્ટક 15.8

| $X_{i}$ | $f_{i}$ | $f_i x_i$ | $x_i - \overline{x}$ | $(x_i - \overline{x})^2$ | $f_i(x_i - \overline{x})^2$ |
|---------|---------|-----------|----------------------|--------------------------|-----------------------------|
| 4       | 3       | 12        | -10                  | 100                      | 300                         |
| 8       | 5       | 40        | <b>-</b> 6           | 36                       | 180                         |
| 11      | 9       | 99        | -3                   | 9                        | 81                          |
| 17      | 5       | 85        | 3                    | 9                        | 45                          |
| 20      | 4       | 80        | 6                    | 36                       | 144                         |
| 24      | 3       | 72        | 10                   | 100                      | 300                         |
| 32      | 1       | 32        | 18                   | 324                      | 324                         |
|         | 30      | 420       |                      |                          | 1374                        |

અહીં N = 30, 
$$\sum_{i=1}^{7} f_i x_i = 420.$$
 તેથી  $\overline{x} = \frac{\sum_{i=1}^{7} f_i x_i}{N} = \frac{1}{30} \times 420 = 14$ 

$$\sum_{i=1}^{7} f_i \left( x_i - \overline{x} \right)^2 = 1374$$

અને તે પરથી વિચરણ  $\sigma^2 = \frac{1}{N} \sum_{i=1}^7 f_i (x_i - \overline{x})^2$ 

$$=\frac{1}{30}\times 1374=45.8$$

અને પ્રમાણિત વિચલન  $\sigma = \sqrt{45.8} = 6.77$ 

## 15.5.3 सतत आवृत्ति-वितरशनुं प्रभाशित वियसन :

આપેલ સતત આવૃત્તિ-વિતરણના બધા વર્ગોની મધ્યકિંમતો લઈને તેને અસતત આવૃત્તિ-વિતરણમાં રૂપાંતરિત કરી શકાય છે. તે પછી અસતત આવૃત્તિ-વિતરણ માટે પ્રમાણિત વિચલન શોધવાની રીતનો ઉપયોગ કરીશું.

જેનો પ્રત્યેક વર્ગ તેની મધ્યકિંમત  $x_i$  તથા આવૃત્તિ  $f_i$  દ્વારા વ્યાખ્યાયિત હોય તેવું n વર્ગોવાળું આવૃત્તિ-વિતરણ આપેલ હોય તો તેનું પ્રમાણિત વિચલન નીચે દર્શાવેલ સૂત્ર દ્વારા મેળવી શકાય :

$$\sigma = \sqrt{\frac{1}{N}} \sum_{i=1}^{n} f_i (x_i - \overline{x})^2$$

અહીં  $\overline{\chi}$  એ આવૃત્તિ-વિતરણનો મધ્યક છે અને  $N=\sum_{i=1}^n f_i$  .

## પ્રમાણિત વિચલન માટેનું બીજું સૂત્ર :

આપણે જાણીએ છીએ કે,

િવયરણ 
$$\sigma^2 = \frac{1}{N} \sum_{i=1}^n f_i (x_i - \overline{x})^2 = \frac{1}{N} \sum_{i=1}^n f_i (x_i^2 + \overline{x}^2 - 2\overline{x} x_i)$$

$$= \frac{1}{N} \left[ \sum_{i=1}^{n} f_{i} x_{i}^{2} + \sum_{i=1}^{n} \overline{x}^{2} f_{i} - \sum_{i=1}^{n} 2 \overline{x} f_{i} x_{i} \right]$$

$$= \frac{1}{N} \left[ \sum_{i=1}^{n} f_{i} x_{i}^{2} + \overline{x}^{2} \sum_{i=1}^{n} f_{i} - 2 \overline{x} \sum_{i=1}^{n} x_{i} f_{i} \right]$$

$$= \frac{1}{N} \left[ \sum_{i=1}^{n} f_{i} x_{i}^{2} + \overline{x}^{2} N - 2 \overline{x} \cdot N \overline{x} \right]$$

$$= \frac{1}{N} \sum_{i=1}^{n} f_{i} x_{i}^{2} + \overline{x}^{2} - 2 \overline{x}^{2}$$

$$= \frac{1}{N} \sum_{i=1}^{n} f_{i} x_{i}^{2} - \overline{x}^{2}$$

$$= \frac{1}{N} \sum_{i=1}^{n} f_{i} x_{i}^{2} - \overline{x}^{2}$$

$$\Rightarrow \text{Were } \sigma^{2} = \frac{1}{N} \sum_{i=1}^{n} f_{i} x_{i}^{2} - \left( \sum_{i=1}^{n} f_{i} x_{i} \right)^{2} \right]$$

$$\Rightarrow \text{Were } \sigma^{2} = \frac{1}{N} \sum_{i=1}^{n} f_{i} x_{i}^{2} - \left( \sum_{i=1}^{n} f_{i} x_{i} \right)^{2}$$

$$\Rightarrow \text{Were } \sigma^{2} = \frac{1}{N} \sum_{i=1}^{n} f_{i} x_{i}^{2} - \left( \sum_{i=1}^{n} f_{i} x_{i} \right)^{2} \right]$$

$$\Rightarrow \text{Were } \sigma^{2} = \frac{1}{N} \sum_{i=1}^{n} f_{i} x_{i}^{2} - \left( \sum_{i=1}^{n} f_{i} x_{i} \right)^{2}$$

$$\Rightarrow \text{Were } \sigma^{2} = \frac{1}{N} \sum_{i=1}^{n} f_{i} x_{i}^{2} - \left( \sum_{i=1}^{n} f_{i} x_{i} \right)^{2} \right]$$

$$\Rightarrow \text{Were } \sigma^{2} = \frac{1}{N} \sum_{i=1}^{n} f_{i} x_{i}^{2} - \left( \sum_{i=1}^{n} f_{i} x_{i} \right)^{2}$$

$$\Rightarrow \text{Were } \sigma^{2} = \frac{1}{N} \sum_{i=1}^{n} f_{i} x_{i}^{2} - \left( \sum_{i=1}^{n} f_{i} x_{i} \right)^{2}$$

$$\Rightarrow \text{Were } \sigma^{2} = \frac{1}{N} \sum_{i=1}^{n} f_{i} x_{i}^{2} - \left( \sum_{i=1}^{n} f_{i} x_{i} \right)^{2}$$

$$\Rightarrow \text{Were } \sigma^{2} = \frac{1}{N} \sum_{i=1}^{n} f_{i} x_{i}^{2} - \left( \sum_{i=1}^{n} f_{i} x_{i} \right)^{2}$$

$$\Rightarrow \text{Were } \sigma^{2} = \frac{1}{N} \sum_{i=1}^{n} f_{i} x_{i}^{2} - \left( \sum_{i=1}^{n} f_{i} x_{i} \right)^{2}$$

$$\Rightarrow \text{Were } \sigma^{2} = \frac{1}{N} \sum_{i=1}^{n} f_{i} x_{i}^{2} - \left( \sum_{i=1}^{n} f_{i} x_{i} \right)^{2}$$

$$\Rightarrow \text{Were } \sigma^{2} = \frac{1}{N} \sum_{i=1}^{n} f_{i} x_{i}^{2} - \left( \sum_{i=1}^{n} f_{i} x_{i} \right)^{2}$$

$$\Rightarrow \text{Were } \sigma^{2} = \frac{1}{N} \sum_{i=1}^{n} f_{i} x_{i}^{2} - \left( \sum_{i=1}^{n} f_{i} x_{i} \right)^{2}$$

$$\Rightarrow \text{Were } \sigma^{2} = \frac{1}{N} \sum_{i=1}^{n} f_{i} x_{i}^{2} + \left( \sum_{i=1}^{n} f_{i} x_{i} \right)^{2}$$

... (3)

| વર્ગ    | 30-40 | 40-50 | 50-60 | 60-70 | 70-80 | 80-90 | 90-100 |
|---------|-------|-------|-------|-------|-------|-------|--------|
| આવૃત્તિ | 3     | 7     | 12    | 15    | 8     | 3     | 2      |

ઉદાહરણ 10 : નીચે આપેલ વિતરણ માટે મધ્યક, વિચરણ અને પ્રમાણિત વિચલનની ગણતરી કરો :

<del>ઉક્રેલ</del>ઃ આપેલ માહિતી પરથી આપણે નીચે દર્શાવેલ કોષ્ટક 15.9 તૈયાર કરીએ.

કોષ્ટક 15.9

| વર્ગ   | આવૃત્તિ<br>( <i>f<sub>i</sub></i> ) | મધ્ય-કિંમત $(x_i)$ | $f_i x_i$ | $(x_i - \overline{x})^2$ | $f_i(x_i - \overline{x})^2$ |
|--------|-------------------------------------|--------------------|-----------|--------------------------|-----------------------------|
| 30-40  | 3                                   | 35                 | 105       | 729                      | 2187                        |
| 40-50  | 7                                   | 45                 | 315       | 289                      | 2023                        |
| 50-60  | 12                                  | 55                 | 660       | 49                       | 588                         |
| 60-70  | 15                                  | 65                 | 975       | 9                        | 135                         |
| 70-80  | 8                                   | 75                 | 600       | 169                      | 1352                        |
| 80-90  | 3                                   | 85                 | 255       | 529                      | 1587                        |
| 90-100 | 2                                   | 95                 | 190       | 1089                     | 2178                        |
|        | 50                                  |                    | 3100      |                          | 10,050                      |

ગણિત ધોરણ 11

આમ, મધ્યક 
$$\overline{x} = \frac{1}{N} \sum_{i}$$

મુધ્યુક 
$$\overline{x} = \frac{1}{N} \sum_{i=1}^{7} f_i x_i = \frac{3100}{50} = 62$$

વિચરણ 
$$\sigma^2 = rac{1}{\mathrm{N}} \sum_{i=1}^7 f_i (x_i - \overline{x})^2$$

$$=\frac{1}{50}\times10050=201$$

અને પ્રમાણિત વિચલન  $\sigma = \sqrt{201} = 14.18$ 

ઉદાહરણ 11: નીચે આપેલ માહિતી માટે પ્રમાણિત વિચલન શોધો:

| $x_{i}$ | 3 | 8  | 13 | 18 | 23 |
|---------|---|----|----|----|----|
| $f_{i}$ | 7 | 10 | 15 | 10 | 6  |

ઉકેલ: ચાલો નીચેનું કોષ્ટક 15.10 તૈયાર કરીએ:

કોષ્ટક 15.10

| $x_i$ | $f_{i}$ | $f_i x_i$ | $x_i^2$ | $f_i x_i^2$ |
|-------|---------|-----------|---------|-------------|
| 3     | 7       | 21        | 9       | 63          |
| 8     | 10      | 80        | 64      | 640         |
| 13    | 15      | 195       | 169     | 2535        |
| 18    | 10      | 180       | 324     | 3240        |
| 23    | 6       | 138       | 529     | 3174        |
|       | 48      | 614       |         | 9652        |

હવે સૂત્ર (3) નો ઉપયોગ કરતાં,

$$\sigma = \frac{1}{N} \sqrt{N \sum_{i} f_{i} x_{i}^{2} - \left(\sum_{i} f_{i} x_{i}\right)^{2}}$$

$$= \frac{1}{48} \sqrt{48 \times 9652 - (614)^{2}}$$

$$= \frac{1}{48} \sqrt{463296 - 376996}$$

$$= \frac{1}{48} \times 293.77 = 6.12$$

માટે, પ્રમાણિત વિચલન $\sigma=6.12$ 

## 15.5.4 વિચરણ અને પ્રમાણિત વિચલન શોધવાની ટૂંકી રીત:

કેટલીક વાર અસતત વિતરણમાં  $x_i$  ની કિંમતો અથવા સતત વિતરણના જુદા જુદા વર્ગોની મધ્યકિંમતો  $x_i$  ની કિંમતો ઘણી મોટી હોય છે. તેથી મધ્યક અને ચલનની ગણતરી કંટાળાજનક હોય છે અને વધારે સમય લે છે. આવા આવૃત્તિ-વિતરણ કે

## Downloaded from https://www.studiestoday.com

આંકડાશાસ્ત્ર 340

જેમાં વર્ગની લંબાઈ સમાન હોય તેમાં સોપાન-વિચલન રીત દ્વારા આ પ્રક્રિયાને સરળ બનાવી શકાય છે.

માની લો કે ધારેલ મધ્યક 'A' છે અને માપ પદ્ધતિને (scale)  $\frac{1}{h}$  ગણી કરી છે. (h એ વર્ગ અંતરાલની લંબાઈ છે) ધારો કે પદ-વિચલનો અથવા નવી કિંમતો *y*, છે.

એટલે કે 
$$y_i = \frac{x_i - A}{h}$$
 અથવા  $x_i = A + hy_i$  ... (1)

આપણે જાણીએ છીએ કે

$$\overline{x} = \frac{\sum_{i=1}^{N} f_i x_i}{N} \qquad \dots (2)$$

(1) માંથી  $x_i$  ની કિંમત (2) માં મૂકતાં, આપણી પાસે,

$$\overline{x} = \frac{\sum_{i=1}^{n} f_i (A + h y_i)}{N}$$

$$= \frac{1}{N} \left( \sum_{i=1}^{n} f_i A + \sum_{i=1}^{n} h f_i y_i \right)$$

$$= \frac{1}{N} \left( A \sum_{i=1}^{n} f_i + h \sum_{i=1}^{n} f_i y_i \right)$$

$$= A \cdot \frac{N}{N} + h \frac{\sum_{i=1}^{n} f_i y_i}{N}$$

$$\left( \text{Stegt } \hat{\mathbf{s}}, \sum_{i=1}^{n} f_i = N \right)$$

આમ,

$$\overline{x} = A + h \ \overline{y} \qquad \dots (3)$$

હવે, ચલ 
$$x$$
 નું વિચરણ  $\sigma_x^2 = \frac{1}{N} \sum_{i=1}^n f_i (x_i - \overline{x})^2$  
$$= \frac{1}{N} \sum_{i=1}^n f_i (A + hy_i - A - h \overline{y})^2 \qquad ((1) અને (3) નો ઉપયોગ કરતાં)$$
 
$$= \frac{1}{N} \sum_{i=1}^n f_i h^2 (y_i - \overline{y})^2$$
 
$$= \frac{h^2}{N} \sum_{i=1}^n f_i (y_i - \overline{y})^2 = h^2 \times \text{ચલ } y_i$$
નું વિચરણ

એટલે કે  $\sigma_{x}^{2} = h^{2}\sigma_{y}^{2}$ 

અથવા 
$$\sigma_{_{\scriptscriptstyle X}}=h\sigma_{_{\scriptscriptstyle Y}}$$
 ... (4)

(3) અને (4) પરથી આપણી પાસે,

$$\sigma_{\chi} = \frac{h}{N} \sqrt{N \sum_{i=1}^{n} f_{i} y_{i}^{2} - \left(\sum_{i=1}^{n} f_{i} y_{i}\right)^{2}} \qquad ... (5)$$

ચાલો, ઉદાહરણ 11 ને સમીકરણ (5) નો ઉપયોગ કરીને ટૂંકી રીત દ્વારા ઉકેલીએ.

# Downloaded from https:// www.studiestoday.com

341 ગણિત ધોરણ 11

ઉદાહરણ 12 : નીચે આપેલ આવૃત્તિ-વિતરણ માટે મધ્યક, વિચરણ અને પ્રમાણિત વિચલન શોધો.

| વર્ગ    | 30-40 | 40-50 | 50-60 | 60-70 | 70-80 | 80-90 | 90-100 |
|---------|-------|-------|-------|-------|-------|-------|--------|
| આવૃત્તિ | 3     | 7     | 12    | 15    | 8     | 3     | 2      |

**ઉકેલ** : ધારો કે ધારેલ મધ્યક A = 65 છે. અહીં h = 10 આપેલ માહિતી પરથી નીચે દર્શાવેલ કોષ્ટક 15.11 તૈયાર કરવામાં આવ્યુ છે.

કોષ્ટક 15.11

| વર્ગ    | આવૃત્તિ | મધ્યકિંમત | $y_i = \frac{x_i - 65}{10}$ | $y_i^2$ | $f_i y_i$   | $f_i y_i^2$ |
|---------|---------|-----------|-----------------------------|---------|-------------|-------------|
|         | $f_{i}$ | $x_i$     |                             |         |             |             |
| 30-40   | 3       | 35        | -3                          | 9       | <b>–</b> 9  | 27          |
| 40-50   | 7       | 45        | -2                          | 4       | <b>-</b> 14 | 28          |
| 50-60   | 12      | 55        | <b>–</b> 1                  | 1       | - 12        | 12          |
| 60-70   | 15      | 65= A     | 0                           | 0       | 0           | 0           |
| 70-80   | 8       | 75        | 1                           | 1       | 8           | 8           |
| 80-90   | 3       | 85        | 2                           | 4       | 6           | 12          |
| 9 0-100 | 2       | 95        | 3                           | 9       | 6           | 18          |
|         | N=50    |           |                             |         | <b>–</b> 15 | 105         |

તેથી 
$$\overline{x} = A + \frac{\sum f_i y_i}{50} \times h = 65 - \frac{15}{50} \times 10 = 62$$
 વિચરણ 
$$\sigma^2 = \frac{h^2}{N^2} \left[ N \sum f_i y_i^2 - \left( \sum f_i y_i \right)^2 \right]$$
$$= \frac{(10)^2}{(50)^2} \left[ 50 \times 105 - (-15)^2 \right]$$
$$= \frac{1}{25} [5250 - 225] = 201$$

અને પ્રમાણિત વિચલન  $\sigma=\sqrt{201}$  = 14.18

#### સ્વાધ્યાય 15.2

પ્રશ્ન 1 થી 5 માં આપેલ પ્રત્યેક માહિતી માટે મધ્યક અને વિચરણ શોધો :

- **1.** 6, 7, 10, 12, 13, 4, 8, 12
- 2. પ્રથમ *n*-પ્રાકૃતિક સંખ્યાઓ

# Downloaded from https:// www.studiestoday.com

આંકડાશાસ્ત્ર 342

## 3. ત્રણના પ્રથમ 10 ગુણિત

| 4. | $x_i$ | 6 | 10 | 14 | 18 | 24 | 28 | 30 |
|----|-------|---|----|----|----|----|----|----|
|    | $f_i$ | 2 | 4  | 7  | 12 | 8  | 4  | 3  |

| 5. | $x_i$ | 92 | 93 | 97 | 98 | 102 | 104 | 109 |
|----|-------|----|----|----|----|-----|-----|-----|
|    | $f_i$ | 3  | 2  | 3  | 2  | 6   | 3   | 3   |

6. ટૂંકી રીતનો ઉપયોગ કરીને મધ્યક અને પ્રમાણિત વિચલન શોધો.

| $x_i$ | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 |
|-------|----|----|----|----|----|----|----|----|----|
| $f_i$ | 2  | 1  | 12 | 29 | 25 | 12 | 10 | 4  | 5  |

પ્રશ્ન 7 અને 8 માં આપેલ આવૃત્તિ વિતરણ માટે મધ્યક અને વિચરણ શોધો.

| 7. | વર્ગ    | 0-30 | 30-60 | 60-90 | 90-120 | 120-150 | 150-180 | 180-210 |
|----|---------|------|-------|-------|--------|---------|---------|---------|
|    | આવૃત્તિ | 2    | 3     | 5     | 10     | 3       | 5       | 2       |

| 8. | વર્ગ    | 0-10 | 10-20 | 20-30 | 30-40 | 40-50 |
|----|---------|------|-------|-------|-------|-------|
| ·  | આવૃત્તિ | 5    | 8     | 15    | 16    | 6     |

9. ટૂંકી રીતનો ઉપયોગ કરીને મધ્યક, વિચરણ અને પ્રમાણિત વિચલન શોધો.

| ઊંચાઇ   | 70-75 | 75-80 | 80-85 | 85-90 | 90-95 | 95-100 | 100-105 | 105-110 | 110-115 |
|---------|-------|-------|-------|-------|-------|--------|---------|---------|---------|
| સેમીમાં |       |       |       |       |       |        |         |         |         |
| બાળકોની | 3     | 4     | 7     | 7     | 15    | 9      | 6       | 6       | 3       |
| સંખ્યા  |       |       |       |       |       |        |         |         |         |

10. એક ડિઝાઇનમાં બનાવેલ વર્તુળોના વ્યાસ (મિમીમાં) નીચે આપ્યા છે :

| વ્યાસ            | 33-36 | 37-40 | 41-44 | 45-48 | 49-52 |
|------------------|-------|-------|-------|-------|-------|
| વર્તુળોની સંખ્યા | 15    | 17    | 21    | 22    | 25    |

વર્તુળોના વ્યાસનું પ્રમાણિત વિચલન અને મધ્યક વ્યાસ શોધો.

[ **સૂચન :** પ્રથમ આપેલ માહિતીને સતત બનાવો. તે માટે વર્ગીને 32.5-36.5, 36.5-40.5, 40.5-44.5, 44.5 - 48.5, 48.5 - 52.5 માં પરિવર્તિત કરો અને પછી આગળ વધો.]

## 15.6 આવૃત્તિ-વિતરણનું વિશ્લેષણ

આ પ્રકરણના આગળના ભાગોમાં આપણે પ્રસારનાં કેટલાંક માપ વિશે અભ્યાસ કર્યો છે. જે એકમોમાં માહિતી આપેલ હોય છે એ જ એકમો સરેરાશ વિચલન અને પ્રમાણિત વિચલનના પણ હોય છે. જયારે આપણે ભિન્ન એકમોનો ઉપયોગ કરી સમાન મધ્યકવાળી બે

શ્રેશીની તુલના, તેનાં માટે કરવા માંગીએ છીએ, ત્યારે કેવળ પ્રસારના માપની ગણતરી જ નથી કરતાં, પરંતુ આપણને એવાં માપની જરૂરત હોય છે કે જે એકમોથી સ્વતંત્ર હોય. એકમથી સ્વતંત્ર, ચલનના માપને *ચલનાંક* (coefficient of variation) કહે છે. તેને C.V. વડે દર્શાવવામાં આવે છે.

ચલનાંકને નીચે પ્રમાણે વ્યાખ્યાયિત કરવામાં આવે છે :

$$C.V. = \frac{\sigma}{\overline{x}} \times 100, \ \overline{x} \neq 0,$$

જ્યાં  $\sigma$  અને  $\overline{x}$  અનુક્રમે આપેલ માહિતીના પ્રમાણિત વિચલન અને મધ્યક છે.

બે શ્રેણીઓમાં ચલન અથવા પ્રસારની સરખામણી કરવા માટે આપણે દરેક શ્રેણીનો ચલનાંક (C.V.) મેળવીએ છીએ. જે શ્રેણીનો ચલનાંક મોટો હોય તેને બીજી શ્રેણી કરતાં વધારે *ચલનશીલ શ્રેણી* કહે છે. નાના (C.V.) વાળી શ્રેણીને બીજી કરતાં વધારે સ્થિર કહે છે.

## 15.6.1 બે સમાન મધ્યકવાળા આવૃત્તિ-વિતરણોની સરખામણી

ધારો કે  $\overline{x}_1$  અને  $\sigma_1$  એ પ્રથમ આવૃત્તિ-વિતરણનાં મધ્યક અને પ્રમાણિત વિચલન છે તથા  $\overline{x}_2$  અને  $\sigma_2$  એ દ્વિતીય વિતરણના મધ્યક અને પ્રમાણિત વિચલન છે.

તેથી 
$$\text{C.V. (પ્રથમ આવૃત્તિ-વિતરણ)} = \frac{\sigma_1}{\overline{x}_l} \times 100$$
 અને 
$$\text{C.V. (દ્વિતિય આવૃત્તિ-વિતરણ)} = \frac{\sigma_2}{\overline{x}_2} \times 100$$
 જો 
$$\overline{x}_l = \overline{x}_2 = \overline{x} \quad \text{આપેલ હોય, તો}$$
 
$$\text{C.V. (પ્રથમ આવૃત્તિ-વિતરણ)} = \frac{\sigma_1}{\overline{x}} \times 100 \qquad \dots (1)$$

અને C.V. (દ્વિતિય આવૃત્તિ-વિતરણ) = 
$$\frac{\sigma_2}{\overline{x}} \times 100$$
 ... (2)

(1) અને (2) પરથી સ્પષ્ટ છે કે બંને C.V. ની સરખામણી  $\sigma_1$  અને  $\sigma_2$  ના આધારે જ કરી શકાય છે.

આમ, આપણે કહી શકીએ કે સમાન મધ્યકવાળી બે શ્રેણીઓ પૈકી જે શ્રેણીમાં વધારે પ્રમાણિત વિચલન હોય તેને વધારે ચલિત અથવા ફેલાયેલી શ્રેણી કહે છે. તદ્ઉપરાંત પ્રમાણિત વિચલનનાં નાના(ઓછા) મૂલ્યવાળી શ્રેણીને પ્રમાણમાં બીજી શ્રેણી કરતાં વિશેષ સ્થિર શ્રેણી કહેવાય છે.

ચાલો આપણે નીચે આપેલાં ઉદાહરણો જોઈએ.

ઉદાહરણ 13 : એક કારખાનામાં બે એકમો A અને B માં કર્મીઓની સંખ્યા અને તેમને ચૂકવવામાં આવતાં વેતન નીચે આપ્યા છે :

|                          | A     | В      |
|--------------------------|-------|--------|
| કર્મીઓની સંખ્યા          | 5000  | 6000   |
| સરેરાશ માસિક વેતન        | ₹2500 | ₹ 2500 |
| વેતનોની આવૃત્તિનું વિચરણ | 81    | 100    |

વ્યક્તિગત વેતનોમાં A અથવા B એકમમાંથી કયા કારખાનામાં વધારે ચલનીયતા છે ?

ઉંકેલ : એકમ A માં વેતનોના વિતરણનું વિચરણ  $\sigma_1^2=81$ 

# Downloaded from https://www.studiestoday.com

આંકડાશાસ્ત્ર 344

તેથી, એકમ A માં વેતનોના આવૃત્તિ-વિતરણનું પ્રમાણિત વિચલન  $\sigma_1$  = 9 સાથે જ એકમ B માં વેતનોના આવૃત્તિ-વિતરણનું વિચરણ  ${\sigma_2}^2$  = 100 તેથી, એકમ B માં વેતનોના આવૃત્તિ-વિતરણનું પ્રમાણિત વિચલન  $\sigma_2$  = 10બે એકમોમાં સરેરાશ વેતન સમાન એટલે ₹ 2500 છે. તેથી મોટા પ્રમાણિત વિચલનવાળા એકમમાં વધારે ચલન હશે. આમ, એકમ B માં વ્યક્તિગત વેતનમાં વધારે ચલન છે.

<mark>ઉદાહરણ 14</mark> : બે વિતરણોના ચલનાંક (C.V.) અનુક્રમે 60 અને 70 છે તથા એમનાં પ્રમાણિત વિચલનો અનુક્રમે 21 અને 16 છે. તેમના મધ્યક શું થશે ?

ઉકેલ : અહીં,

C.V. (પ્રથમ આવૃત્તિ-વિતરણ) = 60,  $\sigma_1$  = 21

C.V. (દ્વિતીય આવૃત્તિ-વિતરણ) = 70,  $\sigma_2$  = 16 આપેલ છે.

ધારો કે  $\overline{x}_1$  અને  $\overline{x}_2$  એ અનુક્રમે પ્રથમ અને દ્વિતીય વિતરણનાં મધ્યકો છે.

હવે

C.V. (પ્રથમ આવૃત્તિ-વિતરણ) 
$$= rac{oldsymbol{\sigma}_1}{\overline{x}_1} imes 100$$

માટે

$$60=rac{21}{\overline{x_1}}$$
  $imes 100$  અથવા  $\overline{x}_1=rac{21}{60} imes 100=35$ 

અને

C.V. (દ્વિતીય આવૃત્તિ-વિતરણ) 
$$=rac{oldsymbol{\sigma}_2}{oldsymbol{ar{x}}_2} imes 100$$

એટલે કે

$$70 = \frac{16}{\overline{x}_2} \times 100$$
 અથવા  $\overline{x}_2 = \frac{16}{70} \times 100 = 22.85$ 

ઉદાહરણ 15 : ધોરણ 11 ના એક સેક્શનમાં વિદ્યાર્થીઓની ઊંચાઈ અને વજન માટે નીચે પ્રમાણે માહિતી મળી છે :

ઊંચાઇ

વજન

મધ્યક

162.6 સેમી

52.36 કિગ્રા

127.69 સેમી<sup>2</sup>

23.1361 કિગ્રા<sup>2</sup>

શું આપશે કહી શકીએ કે વજનમાં ઊંચાઈની સરખામશીએ વધારે ચલન છે ?

ઉકેલ : આપણે ચલનની સરખામણી માટે તેમના ચલનાંક (C.V.) ની ગણતરી કરીશું.

ઊંચાઈમાં વિચરણ

 $= 127.69 સેમી^2$ 

તેથી ઊંચાઈનું પ્રમાણિત વિચલન  $=\sqrt{127.69}$  સેમી=11.3 સેમી

હવે, વજનમાં વિચરણ

= 23.1361 કિગ્રા<sup>2</sup>

તેથી વજનનું પ્રમાણિત વિચલન  $=\sqrt{23.1361}$  કિગ્રા =4.81 કિગ્રા

હવે, ચલનાંક (C.V.) નીચે પ્રમાણે મેળવવામાં આવે છે :

$$= \frac{11.3}{162.6} \times 100 = 6.95$$

અને વજનનો ચલનાંક (C.V.) =  $\frac{4.81}{52.36}$  ×100 = 9.18

સ્પષ્ટ છે કે વજનનો C.V. એ ઊંચાઈના C.V. કરતાં મોટો છે.

તેથી આપણે કહી શકીએ કે વજનમાં ઊંચાઈ કરતાં વધારે ચલન છે.

## સ્વાધ્યાય 15.3

1. નીચે આપેલ માહિતી પરથી બતાવો કે A અને B માંથી કયા સમૂહમાં વધારે ચલન છે ?

| ગૌઠી   | 10-20 | 20-30 | 30-40 | 40-50 | 50-60 | 60-70 | 70-80 |
|--------|-------|-------|-------|-------|-------|-------|-------|
| સમૂહ A | 9     | 17    | 32    | 33    | 40    | 10    | 9     |
| સમૂહ B | 10    | 20    | 30    | 25    | 43    | 15    | 7     |

2. X અને Y નાં નીચે આપેલાં શૅરનાં મૂલ્યો પરથી બતાવો કે ક્યા શેરનાં મૂલ્યોમાં વધારે સ્થિરતા છે ?

| X | 35  | 54  | 52  | 53  | 56  | 58  | 52  | 50  | 51  | 49  |
|---|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Y | 108 | 107 | 105 | 105 | 106 | 107 | 104 | 103 | 104 | 101 |

3. એક કારખાનાની બે શાખાઓ A અને B ના કર્મીઓના આપેલાં માસિક વેતન નું વિશ્લેષણ નીચે પ્રમાણે છે :

|                               | શાખા A | શાખા B |
|-------------------------------|--------|--------|
| વેતન મેળવનારા કર્મીઓની સંખ્યા | 586    | 648    |
| માસિક વેતનોનો મધ્યક           | ₹ 5253 | ₹ 5253 |
| વિતરણનું વિચરણ                | 100    | 121    |

- (i) A અને B માંથી કઈ શાખા પોતાના કર્મીઓને વધારે રકમ માસિક વેતનના રૂપમાં ચૂકવે છે ?
- (ii) વ્યક્તિગત વેતનોમાં કઈ શાખા A અથવા B માં વધારે ચલનીયતા છે ?
- 4. ટીમ A દ્વારા એક સત્રમાં રમેલી ફૂટબૉલ મેચના આંકડા નીચે આપ્યા છે :

|   | નોંધાવેલ ગૉલની સંખ્યા | 0 | 1 | 2 | 3 | 4 |
|---|-----------------------|---|---|---|---|---|
| _ | મૅચની સંખ્યા          | 1 | 9 | 7 | 5 | 3 |

ટીમ B દ્વારા રમવામાં આવેલી મૅચમાં બનાવેલ ગૉલની સંખ્યાનો મધ્યક પ્રતિ મૅચ 2 અને ગૉલની સંખ્યાનું પ્રમાણિત વિચલન 1.25 હતાં. કઈ ટીમને વધારે સુસંગત માની શકાય ?

5. 50 વનસ્પતિ ઉત્પાદનોની લંબાઈ x (સેમીમાં) અને વજન y (ગ્રામમાં) નો સરવાળો અને વર્ગોનો સરવાળો નીચે આપેલો છે :

$$\sum_{i=1}^{50} x_i = 212 \; , \quad \sum_{i=1}^{50} x_i^2 = 902.8 \; , \quad \sum_{i=1}^{50} y_i = 261 \; \text{ and } \; \sum_{i=1}^{50} y_i^2 = 1457.6$$

શેમાં વધારે ચલન છે, લંબાઈ કે વજન?

## પ્રકીર્ણ ઉદાહરણો

ઉદાહરણ 16: 20 અવલોકનોનું વિચરણ 5 છે. જો પ્રત્યેક અવલોકનને 2 વડે ગુણવામાં આવે, તો પ્રાપ્ત થયેલ અવલોકનો માટે નવું વિચરણ શોધો.

ઉકેલ : ધારો કે અવલોકનો  $x_1, x_2, ..., x_{20}$  છે અને તેમનો મધ્યક  $\overline{x}$  છે. વિચરણ = 5 અને n = 20 આપેલ છે. આપણે જાણીએ છીએ કે,

વિચરણ 
$$\sigma^2 = \frac{1}{n} \sum_{i=1}^{20} (x_i - \overline{x})^2$$
 એટલે કે,  $5 = \frac{1}{20} \sum_{i=1}^{20} (x_i - \overline{x})^2$  
$$\sum_{i=1}^{20} (x_i - \overline{x})^2 = 100 \qquad \dots (1)$$

અથવા

જો પ્રત્યેક અવલોકનોને 2 વડે ગુણવામાં આવે અને પરિણામે મળતા નવાં અવલોકનો  $y_i$  હોય, તો

$$y_i = 2x_i$$
 એટલે કે,  $x_i = \frac{1}{2}y_i$ 

માટે  $\overline{y} = \frac{1}{n} \sum_{i=1}^{20} y_i = \frac{1}{20} \sum_{i=1}^{20} 2x_i = 2 \cdot \frac{1}{20} \sum_{i=1}^{20} x_i$ 

એટલે કે  $\overline{y} = 2\,\overline{x}$  અથવા  $\overline{x} = \frac{1}{2}\,\overline{y}$ 

હવે  $x_i$  અને  $\overline{x}$  ની કિંમતો (1) માં મૂકતાં, આપણને મળે છે.

$$\sum_{i=1}^{20} \left( \frac{1}{2} y_i - \frac{1}{2} \overline{y} \right)^2 = 100, \text{ એટલે કે, } \sum_{i=1}^{20} (y_i - \overline{y})^2 = 400$$

આમ, નવાં અવલોકનોનું વિચરણ =  $\frac{1}{20} \times 400 = 20 = 2^2 \times 5$ 

-નોંધ અહીં વાંચકે નોંધ કરવી જોઈએ કે જો પ્રત્યેક અવલોકનને અચળ સંખ્યા k વડે ગુણવામાં આવે તો પરિણામે મળતાં નવાં અવલોકનોનું વિચરણ એ મૂળ વિચરણના  $k^2$  ગણું થાય છે.

ઉદાહરણ 17 : પાંચ અવલોકનોનો મધ્યક 4.4 છે તથા તેમનું વિચરણ 8.24 છે. જો ત્રણ અવલોકનો 1, 2 અને 6 હોય, તો બાકીનાં બે અવલોકનો શોધો.

ઉકેલ : ધારો કે અન્ય બે અવલોકનો x અને y છે.

માટે તે શ્રેણી 1, 2, 6, x, y છે.

હવે, મધ્યક 
$$\overline{x}=4.4=\frac{1+2+6+x+y}{5}$$
  
અથવા  $22=9+x+y$   
માટે,  $x+y=13$  ... (1)

વળી, વિચરણ = 
$$8.24 = \frac{1}{n} \sum_{i=1}^{5} (x_i - \overline{x})^2$$

એટલે કે 
$$8.24 = \frac{1}{5} \left[ (3.4)^2 + (2.4)^2 + (1.6)^2 + x^2 + y^2 - 2 \times 4.4(x+y) + 2 \times (4.4)^2 \right]$$

અથવા 
$$41.20 = 11.56 + 5.76 + 2.56 + x^2 + y^2 - 8.8 \times 13 + 38.72$$

## Downloaded from https://www.studiestoday.com

ગણિત ધોરણ 11

$$\frac{347}{\text{માટે},} \qquad x^2 + y^2 = 97 \qquad ... (2)$$

પરંતુ (1) પરથી, આપણી પાસે,

$$x^2 + y^2 + 2xy = 169$$
 ... (3)

તથા (2) અને (3) પરથી, આપણી પાસે,

$$2xy = 72$$
 ... (4)

હવે (4) ને (2) માંથી બાદ કરતાં આપણને મળે છે

$$x^2 + y^2 - 2xy = 97 - 72$$
 i.e.  $(x - y)^2 = 25$ 

અથવા x - y = +5... (5)

તેથી, (1) અને (5) પરથી આપણને મળે છે

જયારે 
$$x-y=5$$
 ત્યારે  $x=9$ ,  $y=4$ 

જયારે x-y=-5 ત્યારે x=4, y=9

આમ, બાકીનાં બે અવલોકનો 4 અને 9 છે.

ઉદાહરણ 18 : જો પ્રત્યેક અવલોકન  $x_1, x_2, ..., x_n$ માં કોઈ ધન કે ઋણ સંખ્યા 'a' ઉમેરવામાં આવે, તો સાબિત કરો કે વિચરણ બદલાતું નથી.

 $\mathbf{6}$ કેલ : ધારો કે  $\overline{x}$  એ અવલોકનો  $x_1, x_2, ..., x_n$ નો મધ્યક છે, તો વિચરણ નીચેના સૂત્રથી દર્શાવાય છે :

$$\sigma_1^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \overline{x})^2$$

જો પ્રત્યેક અવલોકનોમાં 'a' ઉમેરવામાં આવે તો નવાં અવલોકનો  $y_i$  થશે,

$$y_i = x_i + a \qquad \dots (1)$$

ધારો કે નવાં અવલોકનોનો મધ્યક  $\overline{y}$  છે અને

$$\overline{y} = \frac{1}{n} \sum_{i=1}^{n} y_i = \frac{1}{n} \sum_{i=1}^{n} (x_i + a) = \frac{1}{n} \left[ \sum_{i=1}^{n} x_i + \sum_{i=1}^{n} a \right] = \frac{1}{n} \sum_{i=1}^{n} x_i + \frac{na}{n} = \overline{x} + a$$

એટલે કે

$$\overline{y} = \overline{x} + a$$
 ... (2)

આમ, નવાં અવલોકનોનું વિચરણ,

$$\sigma_2^2 = \frac{1}{n} \sum_{i=1}^n (y_i - \overline{y})^2$$

$$= \frac{1}{n} \sum_{i=1}^n (x_i + a - \overline{x} - a)^2$$

$$= \frac{1}{n} \sum_{i=1}^n (x_i - \overline{x})^2 = \sigma_1^2$$
[(1) અને (2) નો ઉપયોગ કરતાં]

તેથી

$$\sigma_1 = \sigma_2$$

આમ, નવાં અવલોકનોનું વિચરણ મૂળ અવલોકનોનું હતું તે જ છે.

# Downloaded from https:// www.studiestoday.com

આંકડાશાસ્ત્ર 348

<mark>⇒નોંધ</mark> ધ્યાન રાખો કે અવલોકનોના કોઈ પણ સમૂહમાં પ્રત્યેક અવલોકનમાં કોઈ એક સંખ્યા ઉમેરવાથી કે બાદ કરવાથી વિચરણમાં કોઈ જ ફેરફાર થતો નથી.

ઉદાહરણ 19 : એક વિદ્યાર્થીએ 100 અવલોકનોનો મધ્યક 40 અને પ્રમાશિત વિચલન 5.1 મેળવ્યા છે, પરંતુ એશે ભૂલથી એક અવલોકન 40 ને બદલે 50 લઈ લીધું હતું, તો સાચો મધ્યક અને પ્રમાશિત વિચલન શું છે ?

ઉકેલ : આપેલ અવલોકનોની સંખ્યા n=100 તથા ખોટો મધ્યક  $\overline{\chi}=40$ ,

અને ખોટું પ્રમાણિત વિચલન 
$$\sigma=5.1$$

આપણે જાણીએ છીએ કે, 
$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

એટલે કે, 
$$40 = \frac{1}{100} \sum_{i=1}^{100} x_i \quad \text{અથવા} \quad \sum_{i=1}^{100} x_i = 4000$$

આનો અર્થ એ છે કે ખોટાં અવલોકનોનો સરવાળો =4000

આમ, સાચાં અવલોકનોનો સરવાળો = ખોટો સરવાળો -50 + 40

$$=4000-50+40=3990$$

તેથી સાચો મધ્યક = 
$$\frac{\text{સાચો સરવાળો}}{100} = \frac{3990}{100} = 39.9$$

પ્રમાણિત વિચલન 
$$\sigma = \sqrt{\frac{1}{n}\sum_{i=1}^{n}{x_{i}^{2}} - \frac{1}{n^{2}}{\left(\sum_{i=1}^{n}x_{i}\right)^{2}}}$$

$$= \sqrt{\frac{1}{n} \sum_{i=1}^{n} x_i^2 - (\bar{x})^2}$$

એટલે કે, 
$$5.1 = \sqrt{\frac{1}{100} \times \text{ખોટો} \sum_{i=1}^{n} x_i^2 - (40)^2}$$

અથવા 
$$26.01 = \frac{1}{100} \times$$
 ખોટો  $\sum_{i=1}^{n} x_i^2 - 1600$ 

માટે ખોટો 
$$\sum_{i=1}^{n} x_i^2 = 100 (26.01 + 1600) = 162601$$

હવે સાચો 
$$\sum_{i=1}^{n} {x_i}^2 =$$
 ખોટો  $\sum_{i=1}^{n} {x_i}^2 - (50)^2 + (40)^2$  
$$= 162601 - 2500 + 1600 = 161701$$

માટે સાચું પ્રમાણિત વિચલન = 
$$\sqrt{\frac{સાચો \sum x_i^2}{n} - ($$
સાચો મધ્ય $\mathbf{s})^2$ 

349 ગણિત ધોરણ 11

$$= \sqrt{\frac{161701}{100} - (39.9)^2}$$
$$= \sqrt{1617.01 - 1592.01} = \sqrt{25} = 5$$

## પ્રકીર્ણ સ્વાધ્યાય 15

- 1. આઠ અવલોકનોના મધ્યક અને વિચરણ અનુક્રમે 9 અને 9.25 છે, જો આમાંથી છ અવલોકનો 6, 7, 10, 12, 12 અને 13 હોય, તો બાકીનાં બે અવલોકનો શોધો.
- સાત અવલોકનોના મધ્યક તથા વિચરણ અનુક્રમે 8 અને 16 છે. જો આમાંથી પાંચ અવલોકનો 2, 4, 10, 12, 14 હોય, તો બાકીનાં બે અવલોકનો શોધો.
- 6 અવલોકનોના મધ્યક અને પ્રમાણિત વિચલન અનુક્રમે 8 અને 4 છે. જો પ્રત્યેક અવલોકનને 3 વડે ગુણવામાં આવે, તો પરિણામી અવલોકનોના મધ્યક અને પ્રમાણિત વિચલન શોધો.
- 4. જો n અવલોકનો  $x_1, x_2, ..., x_n$ ના મધ્યક  $\overline{x}$  અને વિચરણ  $\sigma^2$  હોય, તો સાબિત કરો કે અવલોકનો  $ax_1, ax_2, ax_3, ...., ax_n$ ના મધ્યક અને વિચરણ અનુક્રમે  $a\,\overline{x}$  અને  $a^2\sigma^2$  છે,  $(a \neq 0)$ .
- વીસ અવલોકનોના મધ્યક અને પ્રમાણિત વિચલન અનુક્રમે 10 અને 2 છે. પુનઃતપાસ કરતાં માલૂમ પડ્યું કે અવલોકન 8 ખોટું છે. નીચે આપેલ પ્રત્યેક કિસ્સામાં સાચો મધ્યક અને સાચું પ્રમાણિત વિચલન શોધો.
  - (i) ખોટા અવલોકનને દૂર કરવામાં આવે.
  - (ii) તેને બદલે 12 મૂકવામાં આવે.
- એક ધોરણના 50 વિદ્યાર્થીઓ દ્વારા ત્રણ વિષયો ગણિત, ભૌતિકશાસ્ત્ર અને રસાયણશાસ્ત્રમાં મેળવેલા ગુણનો મધ્યક અને પ્રમાણિત વિચલન નીચે પ્રમાણે છે :

| વિષય           | ગણિત | ભૌતિકશાસ્ત્ર | રસાયણશાસ્ત્ર |  |  |
|----------------|------|--------------|--------------|--|--|
| મધ્યક          | 42   | 32           | 40.9         |  |  |
| પ્રમાણિત વિચલન | 12   | 15           | 20           |  |  |

કયા વિષયમાં સૌથી વધુ ચલન અને કયા વિષયમાં સૌથી ઓછું ચલન છે ?

100 અવલોકનોના સમૂહનો મધ્યક અને પ્રમાણિત વિચલન અનુક્રમે 20 અને 3 છે. પછીથી જાણ થાય છે કે ત્રણ અવલોકનો
 21, 21 અને 18 ખોટાં હતાં. આ ખોટાં અવલોકનોને દૂર કરવામાં આવે તો મધ્યક અને પ્રમાણિત વિચલન શોધો.

#### સારાંશ

- ♦ પ્રસારનાં માપ : વિસ્તાર, ચતુર્થક વિચલન, સરેરાશ વિચલન, વિચરણ, પ્રમાણિત વિચલન એ પ્રસારનાં માપ છે.
   વિસ્તાર = મહત્તમ મૃલ્ય ન્યૂનતમ મૂલ્ય
- ♦ અવર્ગીકૃત માહિતી માટે સરેરાશ વિચલન

$$\text{M.D.}(\overline{x}) = \frac{\sum \left|x_i - \overline{x}\right|}{n}, \quad \text{M.D.}(M) = \frac{\sum \left|x_i - M\right|}{n}$$

♦ વર્ગીકૃત માહિતી માટે સરેરાશ વિચલન

♦ અવર્ગીકૃત માહિતી માટે વિચરણ અને પ્રમાણિત વિચલન

$$\sigma^2 = \frac{1}{n} \sum (x_i - \overline{x})^2, \qquad \sigma = \sqrt{\frac{1}{n} \sum (x_i - \overline{x})^2}$$

🔷 અસતત આવૃત્તિ-વિતરણ માટે વિચરણ અને પ્રમાણિત વિચલન

$$\sigma^2 = \frac{1}{N} \sum f_i (x_i - \overline{x})^2, \qquad \sigma = \sqrt{\frac{1}{N} \sum f_i (x_i - \overline{x})^2}$$

◆ સતત આવૃત્તિ-વિતરણ માટે વિચરણ અને પ્રમાણિત વિચલન

$$\sigma^2 = \frac{1}{N} \sum f_i \left( x_i - \overline{x} \right)^2, \qquad \sigma = \frac{1}{N} \sqrt{N \sum f_i x_i^2 - \left( \sum f_i x_i \right)^2}$$

♦ વિચરણ અને પ્રમાણિત વિચલન શોધવા માટેની ટૂંકી રીત

$$\begin{split} \sigma^2 &= \frac{h^2}{N^2} \left[ N \sum f_i y_i^2 - \left( \sum f_i y_i \right)^2 \right], \ \sigma &= \frac{h}{N} \ \sqrt{N \sum f_i y_i^2 - \left( \sum f_i y_i \right)^2} \ , \\ \text{wei, } y_i &= \frac{x_i - A}{h} \end{split}$$

• ચલનાંક (C.V.) =  $\frac{\sigma}{\overline{x}} \times 100$ ,  $\overline{x} \neq 0$ . સમાન મધ્યકોવાળી શ્રેણીઓમાંથી જે શ્રેણીનું પ્રમાણિત વિચલન ઓછું હોય, તે વધારે સુસંગત અથવા ઓછી ફેલાયેલી હોય છે.

### Historical Note

'Statistics' is derived from the Latin word 'status' which means a political state. This suggests that statistics is as old as human civilisation. In the year 3050 B.C., perhaps the first census was held in Egypt. In India also, about 2000 years ago, we had an efficient system of collecting administrative statistics, particularly, during the regime of Chandra Gupta Maurya (324-300 B.C.). The system of collecting data related to births and deaths is mentioned in Kautilya's *Arthshastra* (around 300 B.C.) A detailed account of administrative surveys conducted during Akbar's regime is given in *Ain-I-Akbari* written by Abul Fazl.

Captain John Graunt of London (1620-1674) is known as father of vital statistics due to his studies on statistics of births and deaths. Jacob Bernoulli (1654-1705) stated the Law of Large numbers in his book "Ars Conjectandi", published in 1713.

The theoretical development of statistics came during the mid seventeenth century and continued after that with the introduction of theory of games and chance (i.e., probability). Francis Galton (1822-1921), an Englishman, pioneered the use of statistical methods, in the field of Biometry. Karl Pearson (1857-1936) contributed a lot to the development of statistical studies with his discovery of *Chi square test* and foundation of *statistical laboratory* in England (1911). Sir Ronald A. Fisher (1890-1962), known as the Father of modern statistics, applied it to various diversified fields such as Genetics, Biometry, Education, Agriculture, etc.



## સંભાવના

❖ Where a mathematical reasoning can be had, it is as great a folly to make use of any other, as to grope for a thing in the dark, when you have a candle in your hand. – JOHN ARBUTHNOT ❖

#### 16.1 પ્રાસ્તાવિક

આપણે આગળના વર્ગોમાં વિવિધ ઘટનાઓમાં રહેલી અનિશ્ચિતતાના ગાણિતિક માપ શોધવાના સ્વરૂપે સંભાવનાના મૂળભૂત ખ્યાલનો અભ્યાસ કર્યો છે. આપણે પાસો ફેંકીને યુગ્મ સંખ્યા મેળવવાની સંભાવના  $\frac{3}{6}$  એટલે કે  $\frac{1}{2}$  સ્વરૂપે મેળવી છે. અહીં, કુલ શક્ય પરિણામો 1,2,3,4,5 અને 6 છે અને યુગ્મ સંખ્યા મેળવવી એ ઘટનાનાં પરિણામો 2,4,6 છે (કુલ ત્રણ). વ્યાપક રીતે આ ઘટનાની સંભાવના મેળવવા માટે ઘટનામાં મળતાં પરિણામોની સંખ્યા અને સમાનપણે સંભવી શકે તેવાં કુલ પરિણામોની સંખ્યાનો ગુણોત્તર શોધવામાં આવે છે. સંભાવનાના આ અભ્યાસને સંભાવનાના પ્રશિષ્ટ અભ્યાસ તરીકે ઓળખવામાં આવે છે.

ધોરણ IX માં આપણે સંભાવના શોધવાનો જે અભ્યાસ કર્યો છે, તે નિરીક્ષણ અને એકત્રિત માહિતી પર આધારિત છે. તેને સંભાવનાનો આંકડાશાસ્ત્રીય અભિગમ કહે છે.



Kolmogorov (1903-1987)

બંને પ્રકારનાં અભ્યાસની કેટલીક ગંભીર મુશ્કેલીઓ છે. ઉદાહરણ તરીકે, જે પ્રયોગોનાં પરિણામોની સંખ્યા અનંત હોય તેમાં આ અભ્યાસનો ઉપયોગ કરી શકાતો નથી. પ્રશિષ્ટ અભ્યાસમાં આપણે ધારીએ છીએ કે બધાં જ પરિણામો સમસંભાવી છે. યાદ

સંભાવના 352

કરો કેજ્યારે આપણી પાસે એવું માનવાનું કોઈ જ કારણ નથી હોતું કે એક પરિણામની બીજા પરિણામ કરતાં વધુ શક્યતા છે ત્યારે પરિણામો સમસંભાવી કહેવાય છે. વધુ સારા શબ્દોમાં, આપણે દઢપણે માનીએ છીએ કે બધાં જ પરિણામ ઉદ્દભવવાની સમસંભાવિતતા અથવા સંભાવના સમાન છે. આમ, સંભાવનાને વ્યાખ્યાયિત કરવા માટે આપણે સમસંભાવી પરિણામોનો ઉપયોગ કર્યો છે. તાર્કિક રીતે આ સાચી વ્યાખ્યા નથી. આમ, સંભાવનાના અન્ય એક અભ્યાસનો વિકાસ રશિયન ગણિતશાસ્ત્રી A. N. Kolmogorov દ્વારા 1933 માં થયો. તેમણે 1933 માં પોતાનું પુસ્તક Foundations of Probability પ્રકાશિત કર્યું. તેમાં એમણે સંભાવનાનો અર્થ કરતી કેટલીક પૂર્વધારણાઓ આપી. પ્રસ્તુત પ્રકરણમાં આપણે આ અભિગમ વિશે અભ્યાસ કરીશું. તેને સંભાવનાનો પૂર્વધારણાયુક્ત અભિગમ કહેવાય છે. આ અભિગમને સમજવા માટે આપણે યાદચ્છિક પ્રયોગ, નિદશોવકાશ, ઘટનાઓ વગેરે જેવી કેટલીક મૂળભૂત વ્યાખ્યાઓથી આવશ્યકપણે પરિચિત હોવું જોઈએ. ચાલો આપણે આ બધી બાબતો વિશે હવે પછીના વિભાગમાં અભ્યાસ કરીએ.

#### 16.2 યાદચ્છિક પ્રયોગો

આપણા રોજિંદા જીવનમાં આપણે જેનાં પરિણામો ચોક્કસપણે નક્કી હોય તેવી ઘણીબધી પ્રવૃત્તિઓ કરીએ છીએ, પછી ભલેને ગમે તેટલી વાર તેનું પુનરાવર્તન કરવામાં આવે. ઉદાહરણ તરીકે આપેલ કોઈપણ ત્રિકોણના ખૂણાનાં માપ ના જાણતા હોઈએ તો પણ ચોક્કસપણે આપણે કહી શકીએ કે ત્રણે ખૂણાનાં માપનો સરવાળો 180° છે.

જ્યારે આદર્શ પરિસ્થિતિઓમાં પુનરાવર્તન કરવામાં આવે ત્યારે જેનાં પરિણામો અસમાન આવી શકે તેવી ઘણી પ્રાયોગિક પ્રવૃત્તિઓ પણ આપણે કરીએ છીએ. ઉદાહરણ તરીકે, જ્યારે સિક્કો ઉછાળવામાં આવે ત્યારે છાપ આવશે કે કાંટો તે નક્કી છે, પરંતુ હકીકતમાં આ પરિણામો પૈકી કયું પરિણામ આવશે તે નિશ્ચિતપણે કહી શકાતું નથી. આવા પ્રયોગોને *યાદેચ્છિક પ્રયોગો* કહે છે.

જે નીચે આપેલી બે શરતોનું પાલન કરે એવા પ્રયોગને *યાદચ્છિક પ્રયોગ* કહે છે :

- (i) જેનાં એક કરતાં વધારે શક્ય પરિણામ મળે છે.
- (ii) કયું ચોક્કસ પરિણામ આવશે તેનું અગાઉથી પૂર્વાનુમાન ન થઈ શકે.

પાસાઓ ફેંકવાનો પ્રયોગ યાદચ્છિક પ્રયોગ છે કે નહિ તે ચકાસો.

આ પ્રકરણમાં આપણે જ્યાં સુધી અન્ય કોઈ સૂચન ન હોય ત્યાં સુધી 'પ્રયોગ' નો સંદર્ભ યાદચ્છિક પ્રયોગ તરીકે જ કરીશું.

#### 16.2.1 પરિણામો અને નિદર્શાવકાશ

યાદચ્છિક પ્રયોગના નિષ્કર્ષને તેનું *પરિણામ (outcome*) કહે છે.

પાસાને ફેંકવાના પ્રયોગનો વિચાર કરીએ. આ પ્રયોગનાં પરિશામો 1, 2, 3, 4, 5 અથવા 6 છે, જો આપશો રસ પાસાની ઉપરથી બાજુ પરનાં ટપકાંની સંખ્યામાં હોય તો તમામ પરિશામોનો ગણ {1, 2, 3, 4, 5, 6} છે. તેને આ પ્રયોગનો નિદર્શાવકાશ કહે છે.

આમ,યાદચ્છિક પ્રયોગનાં તમામ શક્ય પરિણામોના ગણને આપેલ પ્રયોગ સાથે જોડાયેલ નિદર્શાવકાશ (sample space) કહે છે, નિદર્શાવકાશને સંકેતમાં S વડે દર્શાવાય છે. નિદર્શાવકાશના પ્રત્યેક ઘટકને નિદર્શ બિંદુ (sample point) કહે છે. અન્ય શબ્દોમાં, યાદચ્છિક પ્રયોગના પ્રત્યેક પરિણામને નિદર્શ બિંદુ કહે છે.

ચાલો હવે આપણે કેટલાંક ઉદાહરણ જોઈએ.

353 ગણિત : ધોરણ-11

ઉદાહરણ 1 : બે સિક્કાઓ, એક રૂપિયાનો સિક્કો અને બીજો બે રૂપિયાનો સિક્કો એકવાર ઉછાળો અને નિદર્શાવકાશ શોધો.

ઉંકેલ : પહેલો સિક્કો અને બીજો સિક્કો એવા નામથી બે સિક્કાઓને એકબીજાથી જુદા દર્શાવી શકાય. બંને સિક્કાઓ ઉપર છાપ (H) અથવા કાંટો (T) હોઈ શકે છે, આથી શક્ય પરિણામો

બંને સિક્કાઓ ઉપર છાપ H=(H,H)=HHપહેલા સિક્કા ઉપર છાપ H અને બીજા સિક્કા ઉપર કાંટો T=(H,T)=HTપહેલા સિક્કા ઉપર છાપ T અને બીજા સિક્કા ઉપર કાંટો H=(T,H)=TH

બંને સિક્કા ઉપર કાંટો T = (T, T) = TT

આમ, નિદર્શાવકાશ  $S = \{HH, HT, TH, TT\}$ 

<u> નોંધ</u> આ પ્રયોગનાં પરિણામો H અને T ની ક્રમયુક્ત જોડ છે. સરળ અભિવ્યક્તિને ધ્યાનમાં રાખીને ક્રમિક જોડમાંથી અલ્પવિરામને દૂર કરેલ છે.

<mark>ઉદાહરણ 2</mark>ઃબે પાસાઓ (એક વાદળી અને બીજો લાલ)ને ફેંકવાના પ્રયોગ સાથે સંકળાયેલ નિદર્શાવકાશ શોધો. વળી, આ નિદર્શાવકાશના ઘટકોની સંખ્યા શોધો.

ઉકેલ : ધારો કે વાદળી પાસા ઉપર 1 અને લાલ પાસા ઉપર 2 દેખાય છે. આ પરિણામને આપણે ક્રમયુક્ત જોડ (1, 2) વડે દર્શાવીશું. આ જ રીતે જો વાદળી પાસા ઉપર '3' અને લાલ પાસા ઉપર '5' દેખાય તો પરિણામને ક્રમયુક્ત જોડ (3,5) તરીકે દર્શાવાય છે.

વ્યાપક રીતે પ્રત્યેક પરિણામ x એ વાદળી પાસા પરની સંખ્યા અને y એ લાલ પાસા પરની સંખ્યા હોય છે તેવી ક્રમયુક્ત જોડ (x,y) છે. આ નિદર્શાવકાશને  $S=\{(x,y):x$  એ વાદળી પાસા પરની સંખ્યા અને y એ લાલ પાસા પરની સંખ્યાy વડે દર્શાવાય છે. આ નિદર્શાવકાશનાં ઘટકોની સંખ્યા y0 લખી શકાય :

 $\{(1,1), (1,2), (1,3), (1,4), (1,5), (1,6), (2,1), (2,2), (2,3), (2,4), (2,5), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6), (2,6),$ 

(3,1), (3,2), (3,3), (3,4), (3,5), (3,6), (4,1), (4,2), (4,3), (4,4), (4,5), (4,6),

(5,1), (5,2), (5,3), (5,4), (5,5), (5,6), (6,1), (6,2), (6,3), (6,4), (6,5), (6,6)

ઉદાહરણ 3: નીચેના પ્રત્યેક પ્રયોગ માટે યોગ્ય નિદર્શાવકાશ દર્શાવો:

- (i) એક છોકરાના ખિસ્સામાં ₹ 1 નો સિક્કો, ₹ 2 નો સિક્કો અને ₹ 5 નો સિક્કો છે. તે એક પછી એક બે સિક્કા ખિસ્સામાંથી બહાર કાઢે છે.
- (ii) એક વ્યક્તિ, એક વર્ષમાં, વ્યસ્ત ધોરી માર્ગ પર થયેલા અકસ્માતોની સંખ્યાની નોંધ રાખે છે.

ઉકેલ : (i) ધારો કે Q એ ₹ 1 નો સિક્કો છે, H એ ₹ 2 નો સિક્કો છે અને R એ ₹ 5 નો સિક્કો છે. છોકરો પહેલો સિક્કો તેના ખિસ્સામાંથી બહાર કાઢે છે તે Q, H અથવા R માંથી ગમે તે એક છે. હવે Q ને અનુરૂપ, બીજો સિક્કો H અથવા R હોઈ શકે. તેથી આ બંને પરિસ્થિતિનાં પરિણામ QH અથવા QR મળી શકે. આ જ રીતે, H ને અનુરૂપ બીજી શક્ચતા માટે Q અથવા R મળે.

તેથી પરિણામો HQ અથવા HR હોઈ શકે છે અને છેલ્લે, R ને અનુરૂપ, બીજી શક્ચતામાં H અથવા Q મળે, આથી પરિણામો RH અથવા RQ મળશે.

સંભાવના 354

આમ, નિદર્શાવકાશ S={QH, QR, HQ, HR, RH, RQ}

(ii) એક વર્ષમાં વ્યસ્ત ધોરીમાર્ગ પર થયેલા અકસ્માતોની સંખ્યા જાણવા માટે થયેલ નિરીક્ષણ 0 (કોઈ અકસ્માત નહી) અથવા 1 અથવા 2, અથવા કોઈક ધન પૂર્ણાંક સંખ્યા.

આમ, આ પ્રયોગ સાથે જોડાયેલ નિદર્શાવકાશ  $S = \{0,1,2,...\}$  છે.

ઉદાહરણ 4 : એક સિક્કો ઉછાળો. જો તે છાપ બતાવે તો આપણે થેલામાંથી એક દડો કાઢીશું. તે થેલામાં 3 વાદળી અને 4 સફેદ દડા છે. જો તે કાંટો બતાવે તો આપણે પાસો ઉછાળીશું. આ પ્રયોગનો નિદર્શાવકાશ વર્શવો.

ઉકેલ : આપણે વાદળી દડાઓને  $B_1$ ,  $B_2$ ,  $B_3$  અને સફેદ દડાઓને  $W_1$ ,  $W_2$ ,  $W_3$ ,  $W_4$  વડે દર્શાવીએ. હવે આ પ્રયોગનો નિદર્શાવકાશ  $S = \{ HB_1, HB_2, HB_3, HW_1, HW_2, HW_3, HW_4, T1, T2, T3, T4, T5, T6 \}$  થશે.

અહીં,  $HB_i$  નો અર્થ સિક્કા ઉપર છાપ H અને દડો  $B_i$  મળેલ છે.  $HW_i$  નો અર્થ સિક્કા ઉપર છાપ અને દડો  $W_i$  મળેલ છે. આ જ રીતે, Ti નો અર્થ સિક્કા ઉપર કાંટો અને પાસા ઉપર i મળેલ છે.

ઉદાહરણ 5 : પ્રથમ વખત છાપ મળે ત્યાં સુધી એક સિક્કાને ઉછાળવાના પ્રયોગનો નિદર્શાવકાશ દર્શાવો.

ઉકેલ: આ પ્રયોગમાં એક સિક્કાને ઉછાળતાં શક્ય છે કે પ્રથમ વખતનું પરિણામ છાપ મળે. પરંતુ, જો પ્રથમ વખતે કાંટો મળે તો બીજી વાર સિક્કો ઉછાળવો પડે. જો બીજા પ્રયત્ને છાપ મળે તો પ્રયોગનું પરિણામ TH બને. જો બીજા પ્રયત્ને પણ T મળે તો ત્રીજી વાર પ્રયોગનું પુનરાવર્તન કરવું પડશે અને ત્યારે જો H મળે તો પરિણામ TTH બને. આમ, જ્યાં સુધી H મળે ત્યાં સુધી પુનરાવર્તન કરતા રહીએ તો નિદર્શાવકાશ,

S= {H, TH, TTH, TTTH, ...}

#### સ્વાધ્યાય 16.1

નીચે આપેલા પ્રશ્નો 1 થી 7 માં દર્શાવેલ પ્રયોગો માટે પ્રત્યેક પ્રયોગનો નિદર્શાવકાશ દર્શાવો :

- 1. એક સિક્કાને ત્રણ વાર ઉછાળવામાં આવે છે.
- 2. એક પાસાને બે વાર ફેંકવામાં આવે છે.
- 3. એક સિક્કાને ચાર વાર ઉછાળવામાં આવે છે.
- 4. એક સિક્કાને ઉછાળ્યો છે અને એક પાસાને ફેંક્યો છે.
- 5. એક સિક્કાને ઉછાળવામાં આવ્યો છે અને સિક્કા પર છાપ મળે ત્યારે પાસાને ફેંકવામાં આવે છે.
- 6. ઓરડા X માં 2 છોકરા અને 2 છોકરીઓ છે તથા ઓરડા Y માં 1 છોકરો અને 3 છોકરીઓ છે. પહેલા ઓરડા પસંદ કરવામાં આવે છે અને પછી એક વ્યક્તિ પસંદ કરવામાં આવે છે તેવા પ્રયોગનો નિદર્શાવકાશ દર્શાવો.
- 7. એક કોથળામાં એક પાસો લાલ રંગનો, એક સફેદ રંગનો અને અન્ય એક પાસો ભૂરા રંગનો રાખ્યો છે. એક પાસો યાદચ્છિક રીતે પસંદ કર્યો છે અને તેને ફેંકવામાં આવે છે પાસાનો રંગ અને તેની ઉપરની બાજુ પરની સંખ્યા નોંધવામાં આવે છે. આ પ્રયોગનો નિદર્શાવકાશ વર્શવો.
- 8. એક પરીક્ષણમાં બે બાળકોવાળાં કુટુંબો પૈકી પ્રત્યેકમાં છોકરા-છોકરીઓની સંખ્યા નોંધવામાં આવે છે.

355 ગણિત : ધોરણ-11

- (i) જો જન્મેલ બાળક છોકરો છે કે છોકરી તે ક્રમમાં જાણવામાં આપણી રુચિ હોય તો તેનો નિદર્શાવકાશ શું થશે ?
- (ii) જો આપણી રુચિ કુટુંબમાં છોકરીઓની સંખ્યા જાણવાની હોય તો નિદર્શાવકાશ શું થશે ?
- 9. એક ડબામાં 1 લાલ અને 3 સમાન સફેદ દડા રાખ્યા છે. બે દડા એક પછી એક પાછા મૂક્યા વગર ડબામાંથી યાદચ્છિક રીતે કાઢવામાં આવે છે. આ પ્રયોગનો નિદર્શાવકાશ લખો.
- 10. એક ઘટનામાં એક સિક્કાને ઉછાળવામાં આવે છે. જો તેના પર છાપ આવે તો તે સિક્કાને ફરીથી ઉછાળવામાં આવે છે. જો પ્રથમ વખત ઉછાળવાથી તેના પર કાંટો મળે તો એક પાસો ફેંકવામાં આવે છે. આ પ્રયોગનો નિદર્શાવકાશ શોધો.
- 11. ધારો કે ગોળાઓના એક ઢગલામાંથી 3 ગોળા યાદચ્છિક રીતે કાઢવામાં આવે છે. પ્રત્યેક ગોળાની ચકાસણી કરીને તેને ખરાબ (D) અથવા સારો (N) માં વર્ગીકરણ કરાય છે. આ ઘટનાનો નિદર્શાવકાશ જણાવો.
- 12. એક સિક્કો ઉછાળવામાં આવે છે. જો પરિણામ છાપ મળે તો પાસો ફેંકવામાં આવે છે. જો પાસા પર યુગ્મ સંખ્યા દેખાય તો પાસાને ફરીથી ફેંકવામાં આવે છે. આ પ્રયોગનો નિદર્શાવકાશ શું છે ?
- 13. કાગળની ચાર ચબરખી પર 1, 2, 3 અને 4 સંખ્યાઓ લખી છે. આ ચબરખીને એક ડબામાં મૂકીને સારી રીતે મિશ્ર કરી દીધી છે. એક વ્યક્તિ ડબામાંથી પાછી મૂક્યા વગર એક પછી એક બે ચબરખીઓ કાઢે છે. આ પ્રયોગનો નિદર્શાવકાશ વર્શવો.
- 14. એક પ્રયોગમાં એક પાસો ફેંકવામાં આવે છે અને જો પાસા ઉપર યુગ્મ સંખ્યા મળે તો એક સિક્કો એક વાર ઉછાળવામાં આવે છે. જો પાસા ઉપર અયુગ્મ સંખ્યા મળે તો સિક્કાને બે વાર ઉછાળે છે. આ પ્રયોગનો નિદર્શાવકાશ લખો.
- 15. એક સિક્કાને ઉછાળ્યો છે. જો તેના પર કાંટો દેખાય તો 2 લાલ અને 3 કાળા દડા સમાવતા એક ડબામાંથી એક દડો કાઢવામાં આવે છે. જો તે છાપ બતાવે તો આપણે એક પાસો ફેંકીએ છીએ. આ પ્રયોગનો નિદર્શાવકાશ શોધો.
- 16. એક પાસાને વારંવાર જ્યાં સુધી તેના પર 6 ન દેખાય ત્યાં સુધી ફેંકવામાં આવે છે. આ પ્રયોગનો નિદર્શાવકાશ શું છે ?

#### 16.3 ઘટના

આપણે યાદચ્છિક પ્રયોગ અને તે પ્રયોગના નિદર્શાવકાશ વિશે અભ્યાસ કર્યો છે. કોઈ પ્રયોગનો નિદર્શાવકાશ એ પ્રયોગ સાથે સંકળાયેલ બધા જ પ્રશ્નો માટે સાર્વત્રિક ગણ હોય છે.

એક સિક્કાને બે વાર ઉછાળવાના પ્રયોગનો વિચાર કરો. આ પ્રયોગ સાથે સંકળાયેલ નિદર્શાવકાશ  $S = \{HH, HT, TH, TT\}$  છે. હવે ધારી લો કે આપણો રસ માત્ર એક છાપ ધરાવતાં પરિણામોમાં છે. આ ઘટના ઘટે તેને અનુ કૂળ S નાં ઘટકો માત્ર HT અને TH છે તે આપણને જ્ઞાત છે. આ બે ઘટકો ગણ  $E = \{HT, TH\}$  રચે છે.

આપણે જાણીએ છીએ કે E એ નિદર્શાવકાશ S નો ઉપગણ છે. આ જ રીતે આપણને જુદી જુદી ઘટનાઓ અને S ના ઉપગણો વચ્ચે નીચે દર્શાવેલ સંગતતા મળે છે :

ઘટનાનું વર્શન  $^{\circ}$ S' નો અનુરૂપ ઉપગણ  $A = \{TT\}$ 

કાંટાની સંખ્યા ઓછામાં ઓછી એક છે.  $B = \{HT, TH, TT\}$ છાપની સંખ્યા વધુમાં વધુ એક છે.  $C = \{HT, TH, TT\}$ બીજી વાર ઉછાળતાં છાપ નથી મળતી.  $D = \{HT, TT\}$ 

છાપની સંખ્યા મહત્તમ બે છે.  $S = \{HH, HT, TH, TT\}$ 

છાપની સંખ્યા બે કરતાં વધારે છે.

સંભાવના 356

ઉપર્યુક્ત ચર્ચા પરથી એ વાત સ્પષ્ટ છે કે નિદર્શાવકાશના કોઈપણ ઉપગણને અનુરૂપ એક ઘટના ઉદ્ભવે છે અને કોઈપણ ઘટનાને અનુરૂપ નિદર્શાવકાશનો એક ઉપગણ હોય છે. આ સંદર્ભમાં એક ઘટનાને નીચે દર્શાવ્યા પ્રમાણે વ્યાખ્યાયિત કરવામાં આવે છે :

<mark>વ્યાખ્યા</mark> : નિદર્શાવકાશ S ના કોઈ પણ ઉપગણ E ને ઘટના કહે છે.

#### 16.3.1 ઘટનાનો ઉદ્ભવ

એક પાસો ફ્રેંકવાના પ્રયોગનો વિચાર કરો. ધારો કે ઘટના પાસા પરની સંખ્યા ચારથી નાની હોય તેને E દ્વારા દર્શાવવામાં આવે છે. જો પાસા પર હકીકતમાં 1 દેખાય તો આપણે કહીશું કે ઘટના E ઉદ્ભવી છે. ખરેખર તો જો પરિણામ 2 અથવા 3 હોય, તો પણ આપણે કહીશું કે ઘટના E ઉદ્ભવી છે.

આમ, જ્યારે પ્રયોગનું પરિશામ  $\omega$  એ પ્રકારનું હોય કે  $\omega \in E$  તો પ્રયોગના નિદર્શાવકાશ S ની ઘટના E ઉદ્ભવી છે એ કહી શકાય અને જો પરિશામ  $\omega$  એવું હોય કે  $\omega \notin E$ , તો આપશે કહીશું કે ઘટના E ઉદ્ભવી નથી.

#### 16.3.2 ઘટનાઓના પ્રકાર

ઘટનાઓનું તેમના ઘટકોના આધારે જુદા જુદા પ્રકારોમાં વર્ગીકરણ કરી શકાય છે.

#### 1. અશક્ય અને ચોક્કસ ઘટનાઓ

ખાલી (રિક્ત) ગણ  $\phi$  અને નિદર્શાવકાશ S પણ ઘટનાઓ દર્શાવે છે. વાસ્તવમાં  $\phi$  ને *અશક્ય ઘટના (impossible event)* અને S એટલે કે પૂર્ણ નિદર્શાવકાશને *ચોક્કસ ઘટના (certain event)* કહે છે.

આ સમજવા માટે ચાલો પાસાને ફેંકવાના પ્રયોગનો વિચાર કરીએ. આ પ્રયોગનો નિદર્શાવકાશ

 $S = \{1, 2, 3, 4, 5, 6\} \hat{\vartheta}.$ 

ધારો કે ઘટના E એ "પાસા પર દેખાતી સંખ્યા 7 નો ગુણિત છે." શું આપ ઘટના E ના ઉપગણ લખી શકો છો ?

સ્પષ્ટપણે આ પ્રયોગનું કોઈ પણ પરિણામ ઘટના E ની શરતને સંતોષી શકે તેમ નથી, એટલે કે નિદર્શાવકાશનો કોઈ પણ ઘટક ઘટના E ના ઉદ્ભવને નક્કી નથી કરતો. આમ, આપણે કહી શકીએ કે ખાલીગણ જ ઘટના E ને અનુરૂપ ગણ છે. બીજા શબ્દોમાં, આપણે કહી શકીએ કે પાસાની ઉપરની બાજુએ 7 નો ગુણિત દેખાય એ અશક્ય ઘટના છે.

આ રીતે ઘટના  $E = \phi$  એક અશક્ય ઘટના છે.

હવે ચાલો આપણે એક અન્ય ઘટના F "પાસા ઉપર મળતી સંખ્યા યુગ્મ છે અથવા અયુગ્મ". વિશે વિચાર કરીએ. સ્પષ્ટપણે  $F = \{1, 2, 3, 4, 5, 6,\} = S$  એટલે કે બધાં જ પરિણામ ઘટના F ઉદ્ભવે તે ચોક્કસપણે દર્શાવે છે. આમ, F = S એ ચોક્કસ ઘટના છે.

#### 2. પ્રાથમિક અથવા મૂળભૂત ઘટના

જો ઘટના E માં નિદર્શાવકાશનું એક જ નિદર્શ બિંદુ, ઘટક તરીકે હોય (એટલે કે E એ એકાકી હોય) તો ઘટના E ને *પ્રાથમિક* અથવા  $\mu$ ળભૂત ઘટના કહે છે. જે પ્રયોગનાં નિદર્શાવકાશમાં n ભિન્ન ઘટકો હોય, તેમાં ચોક્કસપણે n મૂળભૂત ઘટનાઓ હોય છે.

ગણિત : ધોરણ-11

ઉદાહરણ તરીકે, એક સિક્કાને બેવાર ઉછાળવાના પ્રયોગનો નિદર્શાવકાશ

અહીં, આપણે નિદર્શાવકાશની ચાર પ્રાથમિક ઘટનાઓ નીચે દર્શાવેલ છે :

$$E_1 = \{HH\}, E_2 = \{HT\}, E_3 = \{TH\} \text{ and } E_4 = \{TT\}.$$

#### 3. સંયુક્ત ઘટના

જો કોઈ ઘટનામાં એક કરતાં વધારે નિદર્શ બિંદુ હોય, તો તેને સંયુક્ત ઘટના કહે છે. ઉદાહરણ તરીકે એક સિક્કાને ત્રણવાર ઉછાળવાના પ્રયોગ માટે નીચે દર્શાવેલ ઘટનાઓ સંયુક્ત ઘટનાઓ છે :

E: 'બરાબર એક છાપ દર્શાવે'

F: 'ઓછામાં ઓછી એક છાપ દર્શાવે'

G: 'વધુમાં વધુ એક છાપ દર્શાવે' વગેરે.

આ ઘટનાઓને અનુરૂપ S ના ઉપગણ નીચે દર્શાવેલ છે :

 $E=\{HTT, THT, TTH\}$ 

F={HTT, THT, TTH, HHT, HTH, THH, HHH}

 $G = \{TTT, THT, HTT, TTH\}$ 

ઉપરના પ્રત્યેક ઉપગણમાં એક કરતાં વધારે નિદર્શ બિંદુ છે તેથી આ બધી સંયુક્ત ઘટનાઓ છે.

#### 16.3.3 ઘટનાઓનું બીજગણિત

ગણસિદ્ધાંતના પ્રકરણમાં આપણે બે કે તેથી વધુ ગણોની યોગ, છેદ, તફાવત, ગણનો પૂરકગણ જેવી ગણક્રિયાઓ વિશે અભ્યાસ કર્યો. આ જ રીતે બે કે તેથી વધુ ઘટનાઓનું સંયોજન ગણ સંકેતના સમાન ઉપયોગ દ્વારા કરી શકાય.

ધારો કે એક પ્રયોગ સાથે સંકળાયેલ નિદર્શાવકાશ S ની ઘટનાઓ A, B, C છે.

#### 1. પૂરક ઘટના

પ્રત્યેક ઘટના A ની સાપેક્ષે એક ઘટના A' ઉદ્ભવે છે. તેને ઘટના A ની પૂરક ઘટના કહે છે. A' ને ઘટના 'A-નહિ' પણ કહેવામાં આવે છે.

ઉદાહરણ તરીકે ત્રણ સિક્કાને એકવાર ઉછાળવાનો પ્રયોગ લઈએ. ઘટનાની સાથે સંકળાયેલ નિદર્શાવકાશ  $S = \{HHH, HHT, HTH, THH, HTT, THT, TTH, TTT\}$  છે. ધારો કે  $A = \{HTH, HHT, THH\}$  એ ઘટના માત્ર એકવાર કાંટો આવે તે દર્શાવે છે. પરિણામ HTT હોય તો ઘટના A ઉદ્ભવી નથી. પરંતુ આપણે કહી શકીએ કે ઘટના 'A-નહિ' ઉદ્ભવી છે. આમ, દરેક પરિણામ કે જે A માં નથી તે દર્શાવવા માટે આપણે કહીએ છીએ કે ઘટના 'A-નહિ' ઉદ્ભવી છે. આમ, ઘટના A ની પૂરક ઘટના એટલે કે 'A-નહિ' અથવા

ઘટના  $A' = \{HHH, HTT, THT, TTH, TTT\}$ 

અથવા  $A' = \{\omega : \omega \in S \ \text{અને} \ \omega \notin A\} = S - A.$ 

2. ઘટના 'A અથવા B': યાદ કરો કે બે ગણ A અને B નો યોગ સંકેતમાં  $A \cup B$  દ્વારા દર્શાવવામાં આવે છે. જેઓ A માં હોય અથવા

સંભાવના 358

B માં હોય અથવા બંનેમાં હોય તેવા અને માત્ર તેવા જ ઘટકોથી બનતો ગણ  ${
m A} \cup {
m B}$  છે.

જ્યારે ગણ A અને ગણ B કોઈ નિદર્શાવકાશ સાથે સંકળાયેલ બે ઘટનાઓ હોય ત્યારે ઘટના  $A \cup B$  એ A અથવા B અથવા બંનેનું નિરૂપણ કરે છે. ઘટના  $A \cup B$  ને A અથવા B પણ કહેવામાં આવે છે. તેથી,

ઘટના 
$$A$$
 અથવા  $B=A\cup B=\{\omega:\omega\in A$  અથવા  $\omega\in B\}$  વ્યાપક રીતે  $\bigcup_{i=1}^n \mathbf{A}_i=\{\omega_i:\omega_i$  એ ઓછામાં ઓછા એક ગણ  $A_i$  માં છે. $\}$ 

**3. ઘટના A અને B :** આપણે જાણીએ છીએ બે ગણોનો છેદ  $A \cap B$  છે. જે A અને B બંનેમાં સામાન્ય હોય એવા ઘટકોનો ગણ એટલે કે જે A અને B બંનેના સભ્યો હોય તેવા ઘટકોથી  $A \cap B$  બને છે.

જો A અને B બે ઘટનાઓ હોય, તો ગણ  $A \cap B$  એ ઘટના A અને B દર્શાવે છે.

ઉદાહરણ તરીકે એક પાસાને બે વાર ફેંકવાના પ્રયોગમાં ધારો કે ઘટના A 'પહેલી વાર પાસાને ફેંકતા સંખ્યા 6' મળે છે અને ઘટના B બે વાર પાસાને ફેંકતાં 'મળતી સંખ્યાઓનો સરવાળો ઓછામાં ઓછો 11' મળે છે તે દર્શાવે છે.

$$A = \{(6,1), (6,2), (6,3), (6,4), (6,5), (6,6)\}, \text{ with}$$
$$B = \{(5,6), (6,5), (6,6)\}$$

તેથી 
$$A \cap B = \{(6,5), (6,6)\}$$

નોંધ કરો કે ગણ  $A \cap B = \{(6,5), (6,6)\}$  પહેલીવાર પાસાને ફેંકતા 6 મળે છે અને બે વાર ફેંકતા મળતી સંખ્યાઓનો સરવાળો ન્યૂનતમ 11 થાય છે' ને વ્યક્ત કરે છે.

4. ઘટના 'A પણ B-નહિ': આપણે જાણીએ છીએ કે A-B જે A માં હોય પરંતુ B માં ન હોય એવા બધા ઘટકોનો ગણ છે. એટલા માટે ગણ A-B એ ઘટના A પરંતુ B-નહિ ને વ્યક્ત કરે છે. આપણે જાણીએ છીએ કે  $A-B=A\cap B'$ . ઉદાહરણ 6: એક પાસાને ફેંકવાના પ્રયોગનો વિચાર કરીએ. એક અવિભાજય પૂર્ણાંક મળે તેને ઘટના A અને એક અયુગ્મ પૂર્ણાંક પ્રાપ્ત થાય તેને ઘટના B તરીકે દર્શાવવામાં આવેલ છે. આપેલ ઘટનાઓ (i) A અથવા B (ii) A અને B (iii) A પરંતુ B નહિ (iv) 'A-નહિ' મેળવો.

ઉકેલ : અહીં, 
$$S = \{1, 2, 3, 4, 5, 6\}$$
,  $A = \{2, 3, 5\}$  અને  $B = \{1, 3, 5\}$  છે. સ્પષ્ટપણે

- (i) A અથવા  $B = A \cup B = \{1, 2, 3, 5\}$
- (ii) A અને B =  $A \cap B = \{3, 5\}$
- (iii) A પરંતુ B નહિ = A B = {2}
- (iv) A નહિ = A' = {1, 4, 6}

#### 16.3.4 પરસ્પર નિવારક ઘટનાઓ :

પાસાને ફેંકવાના પ્રયોગનો નિદર્શાવકાશ  $S = \{1, 2, 3, 4, 5, 6\}$  છે. ધારો કે ઘટના A 'એક અયુગ્મ સંખ્યા દર્શાવે છે' અને ઘટના B 'એક યુગ્મ સંખ્યા દર્શાવે છે' ને રજૂ કરે છે.

સ્પષ્ટપણે ઘટના A એ ઘટના B થી તદન જુદી છે અને એથી ઊલટું પણ સત્ય છે. બીજા શબ્દોમાં, ઘટના A અને ઘટના B એકસાથે ઉદ્ભવે છે તેને સુનિશ્ચિત કરે તેવું કોઈ પણ પરિણામ ઉદ્ભવતું નથી.

સ્પષ્ટ છે કે  $A \cap B = \emptyset$ , એટલે કે A અને B પરસ્પર અલગ ગણ છે.

વ્યાપક રીતે જો બેમાંથી કોઈ પણ એક ઘટનાનો ઉદ્ભવ એ બીજી ઘટનાના ઉદ્ભવને નિવારે છે, એટલે કે જે એકસાથે ઉદ્ભવી શકતી નથી, તેવી બે ઘટનાઓ A અને B ને પરસ્પર નિવારક ઘટનાઓ કહે છે. આ સંજોગોમાં ગણ A અને B પરસ્પર અલગ ગણ હોય છે.

ફરીથી એક પાસાને ફેંકવાના પ્રયોગમાં, ઘટના A એક અયુગ્મ સંખ્યા મળે તે અને ઘટના B 4 થી નાની સંખ્યા મળે તે લઈએ.

દેખીતું જ 
$$A = \{1, 3, 5\}$$
 અને  $B = \{1, 2, 3\}$ 

હવે,  $3 \in A$  અને  $3 \in B$ 

તેથી, A અને B પરસ્પર નિવારક ઘટનાઓ નથી.

<del>નોંધ :</del> નિદર્શાવકાશની પ્રાથમિક ઘટનાઓ હંમેશાં પરસ્પર નિવારક હોય છે.

#### 16.3.5 નિઃશેષ ઘટનાઓ :

એક પાસાને ફેંકવાના પ્રયોગનો વિચાર કરીએ. આપણી પાસે  $\mathbf{S}=\{1,\,2,\,3,\,4,\,5,\,6\}$  છે. ચાલો નીચે આપેલ ઘટનાઓને વ્યાખ્યાયિત કરીએ :

A : '4 થી નાની સંખ્યા દેખાય છે',

B: '2 થી મોટી પરંતુ 5 થી નાની સંખ્યા દેખાય છે',

અને C: '4 કરતાં મોટી સંખ્યા દેખાય છે'.

ત્યારે  $A = \{1, 2, 3\}, B = \{3,4\}$  અને  $C = \{5, 6\}$ . આપણે જોઈએ છીએ કે

$$A \cup B \cup C = \{1, 2, 3\} \cup \{3, 4\} \cup \{5, 6\} = S.$$

આવી ઘટનાઓ A, B અને C ને  $\mathbf{h}$  *સોષ ઘટનાઓ* કહે છે. વ્યાપક રીતે, જો  $\mathbf{E}_1,\,\mathbf{E}_2,\,...,\,\mathbf{E}_n$  એ નિદર્શાવકાશ S ની n ઘટનાઓ હોય અને જો

$$E_1 \cup E_2 \cup E_3 \cup ... \cup E_n = \bigcup_{i=1}^n E_i = S$$

તો  $E_1, E_2, ...., E_n$ ને નિઃશેષ ઘટનાઓ કહે છે. બીજા શબ્દોમાં, જો પ્રયોગને કરવા પર આમાંની ઓછામાં ઓછી એક ઘટના ચોક્કસપણે ઉદ્ભવે છે, તો ઘટનાઓ  $E_1, E_2, ...., E_n$ નિઃશેષ કહેવાય છે.

એથી વિશેષ, જો બધા  $i\neq j$  માટે  $\mathbf{E}_i\cap\mathbf{E}_j=\emptyset$  એટલે કે ઘટનાઓ  $\mathbf{E}_i$  અને  $\mathbf{E}_j$  પરસ્પર નિવારક હોય અને  $\bigcup_{i=1}^n\mathbf{E}_i=\mathbf{S}$  હોય, તો ઘટનાઓ  $\mathbf{E}_1,\,\mathbf{E}_2,\,...,\,\mathbf{E}_n$ પરસ્પર નિવારક અને નિઃશેષ ઘટનાઓ કહેવાય છે.

ચાલો હવે કેટલાંક ઉદાહરણોનો વિચાર કરીએ.

સંભાવના 360

ઉદાહરણ 7 : બે પાસાઓ ફ્રેંકવામાં આવે છે અને પાસાઓ પર મળતી સંખ્યાઓનો સરવાળો લખવામાં આવે છે. ચાલો હવે આપણે આ પ્રયોગ સાથે સંબંધિત નીચે આપેલ ઘટનાઓ વિશે વિચાર કરીએ :

A : 'પ્રાપ્ત સરવાળો યુગ્મ સંખ્યા છે'

B : 'પ્રાપ્ત સરવાળો 3 નો ગુણક છે'

C: 'પ્રાપ્ત સરવાળો 4 કરતાં નાનો છે'

D : 'પ્રાપ્ત સરવાળો 11 કરતાં મોટો છે'

આ ઘટનાઓમાંથી કઈ જોડની ઘટનાઓ પરસ્પર નિવારક છે ?

ઉકેલ : અહીં, નિદર્શાવકાશ  $S = \{(x, y): x, y = 1, 2, 3, 4, 5, 6\}$  માં 36 ઘટકો છે અને ઘટનાઓ

$$A = \{(1, 1), (1, 3), (1, 5), (2, 2), (2, 4), (2, 6), (3, 1), (3, 3), (3, 5), (4, 2), (4, 4), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6),$$

(5, 1), (5, 3), (5, 5), (6, 2), (6, 4), (6, 6)

$$B = \{(1, 2), (2, 1), (1, 5), (5, 1), (3, 3), (2, 4), (4, 2), (3, 6), (6, 3), (4, 5), (5, 4), (6, 6)\}$$

$$C = \{(1, 1), (2, 1), (1, 2)\}$$
 અને  $D = \{(6, 6)\}$  મળે છે.

$$A \cap B = \{(1, 5), (2, 4), (3, 3), (4, 2), (5, 1), (6, 6)\} \neq \emptyset$$

તેથી, A અને B પરસ્પર નિવારક નથી.

આ જ પ્રમાણે,  $A \cap C \neq \phi$ ,  $A \cap D \neq \phi$ ,  $B \cap C \neq \phi$  અને  $B \cap D \neq \phi$ .

આમ, જોડ (A, B), (A, C), (A, D), (B, C), (B, D) ની ઘટનાઓ પરસ્પર નિવારક નથી.

વળી,  $C \cap D = \emptyset$  અને તેથી C અને D એ પરસ્પર નિવારક ઘટનાઓ છે.

ઉદાહરણ 8 : એક સિક્કાને ત્રણવાર ઉછાળવામાં આવે છે. નીચે આપેલ ઘટનાઓનો વિચાર કરો :

A : 'કોઈ છાપ મળતી નથી',

B : 'એક જ છાપ મળે છે' અને

C: 'ઓછામાં ઓછી બે છાપ મળે છે'.

શું આ પરસ્પર નિવારક અને નિ:શેષ ઘટનાઓનો ગણ છે?

ઉકેલ: પરિણામનો નિદર્શાવકાશ

 $S = \{HHH, HHT, HTH, THH, HTT, THT, TTH, TTT\}$  અને  $A = \{TTT\}, B = \{HTT, THT, TTH\},$ 

 $C = \{HHT, HTH, THH, HHH\}$ 

હવે,  $A \cup B \cup C = \{TTT, HTT, THT, TTH, HHT, HTH, THH, HHH\} = S$ 

તેથી A, B અને C નિ:શેષ ઘટનાઓ છે.

વળી, 
$$A \cap B = \emptyset$$
,  $A \cap C = \emptyset$  અને  $B \cap C = \emptyset$ 

આથી, ગણ પરસ્પર અલગ છે, એટલે કે ઘટનાનો પરસ્પર નિવારક છે.

361 ગણિત : ધોરણ-11

આમ A, B અને C પરસ્પર નિવારક અને નિ:શેષ ઘટનાઓ છે.

#### સ્વાધ્યાય **16.2**

- એક પાસો ફેંકવામાં આવે છે. ધારો કે ઘટના E 'પાસા પર સંખ્યા 4 દર્શાવે છે' અને ઘટના F 'પાસા પર યુગ્મ સંખ્યા દર્શાવે છે'
   શું E અને F પરસ્પર નિવારક છે ?
- 2. એક પાસો ફેંકવામાં આવે છે. નીચે આપેલ ઘટનાઓનું વર્શન કરો :
  - (i) A : સંખ્યા 7 કરતાં નાની છે.
- (ii) B : સંખ્યા 7 કરતાં મોટી છે.
- (iii) C : સંખ્યા 3 નો ગુણક છે.
- (iv) D : સંખ્યા 4 કરતાં નાની છે.
- (v) E: 4 થી મોટી યુગ્મ સંખ્યા છે.
- (vi) F : સંખ્યા 3 કરતાં નાની નથી.

તથા  $A \cup B$ ,  $A \cap B$ ,  $B \cup C$ ,  $E \cap F$ ,  $D \cap E$ , A - C, D - E,  $E \cap F'$ , F' શોધો.

- એક પ્રયોગમાં પાસાની એક જોડને ફેંકવામાં આવે છે અને તેમના ઉપર દેખાતી સંખ્યાઓની નોંધ કરવામાં આવે છે. નીચે આપેલ ઘટનાઓનું વર્શન કરો :
  - A : સંખ્યાઓનો સરવાળો 8 કરતાં વધુ છે.
  - B : બંને પાસાઓ ઉપર સંખ્યા 2 દેખાય છે.
  - C : બંને સંખ્યાઓનો સરવાળો ઓછામાં ઓછો 7 છે અને 3 નો ગુણિત છે.
  - આ ઘટનાઓની કઇ જોડની ઘટનાઓ પરસ્પર નિવારક છે ?
- 4. ત્રણ સિક્કાઓને એકવાર ઉછાળવામાં આવે છે. જો ત્રણ છાપ દેખાય તેને ઘટના A, બે છાપ અને એક કાંટો દેખાય તેને ઘટના B, ત્રણ કાંટા દેખાય તેને ઘટના C અને પહેલા સિક્કા ઉપર છાપ દેખાય તેને ઘટના D દ્વારા દર્શાવવામાં આવે છે. કઈ ઘટનાઓ
  - (i) પરસ્પર નિવારક છે ? (ii) પ્રાથમિક છે ? (iii) સંયુક્ત છે ?
- 5. ત્રણ સિક્કા એકવાર ઉછાળવામાં આવે છે. નીચેની ઘટનાઓનું વર્ણન કરો :
  - (i) પરસ્પર નિવારક બે ઘટનાઓ
  - (ii) પરસ્પર નિવારક અને નિ:શેષ ત્રણ ઘટનાઓ
  - (iii) પરસ્પર નિવારક ન હોય તેવી બે ઘટનાઓ
  - (iv) પરસ્પર નિવારક છે, પરંતુ નિઃશેષ ન હોય તેવી બે ઘટનાઓ
  - (v) પરસ્પર નિવારક હોય પણ નિ:શેષ ન હોય તેવી ત્રણ ઘટનાઓ
- 6. બે પાસાઓ ફેંકવામાં આવે છે. ઘટનાઓ A, B અને C નીચે આપેલ છે.

A : પહેલા પાસા ઉપર યુગ્મ સંખ્યા મળે છે.

B : પહેલા પાસા ઉપર અયુગ્મ સંખ્યા મળે છે.

C : પાસાઓ ઉપર મળતી સંખ્યાઓનો સરવાળો 5 કે 5 થી ઓછો છે.

નીચે આપેલ ઘટનાઓ વર્ણવો :

- (i) A'
- (ii) B નહિ
- (iii) A અથવા B

સંભાવના 362

- (iv) A અને B
- (v) A પરંતુ C નહીં
- (vi) B અથવા C

- (vii) B અને C
- (viii)  $A' \cap B' \cap C'$
- 7. ઉપર્યુક્ત પ્રશ્ન 6 પરથી નીચે આપેલાં વિધાનો સત્ય છે કે અસત્ય તે જણાવો (તમારા જવાબનું કારણ આપો) :
  - (i) A અને B પરસ્પર નિવારક છે.
  - (ii) A અને B પરસ્પર નિવારક અને નિ:શેષ છે.
  - (iii) A = B'
  - (iv) A અને C પરસ્પર નિવારક છે.
  - (v) A અને B' પરસ્પર નિવારક છે.
  - (vi) A', B' અને C પરસ્પર નિવારક અને નિ:શેષ છે.

#### 16.4 સંભાવનાનો પૂર્વધારણાયુક્ત અભિગમ

આ પ્રકરણના આગળના વિભાગોમાં આપણે યાદચ્છિક પ્રયોગ, નિદર્શાવકાશ અને આ પ્રયોગોને સંબંધિત ઘટનાઓ વિશે વિચાર કર્યો છે. આપણે આપણા રોજિંદા જીવનમાં કોઈ ઘટના ઉદ્ભવે તેની સંભાવના માટે અનેક શબ્દોનો ઉપયોગ કરીએ છીએ. સંભાવનાનો સિદ્ધાંત કોઈ ઘટના ઉદ્ભવશે કે નહિ તેની સંભાવનાનું માપ આપવાનો પ્રયાસ છે.

આગળના વર્ગોમાં આપણે કોઈ પ્રયોગના કુલ શક્ય પરિણામોની સંખ્યા જાણતા હોઈએ તો કોઈ ઘટનાની સંભાવના જાણી શકાય તેવી કેટલીક રીતો વિશે અભ્યાસ કર્યો.

કોઈ ઘટનાની સંભાવના જાણવા માટે બીજી એક રીત, પૂર્વધારણાયુક્ત અભિગમ છે. આ અભિગમ અનુસાર સંભાવના નક્કી કરવા માટે, પૂર્વધારણાઓ અથવા નિયમો નક્કી કરવામાં આવ્યા છે.

ધારો કે કોઈ યાદચ્છિક પ્રયોગનો નિદર્શાવકાશ S છે. જેનો પ્રદેશ એ S નો ઘાતગણ અને સહપ્રદેશ [0,1] છે અને જે નીચેની પૂર્વધારણાઓનું સમાધાન કરે છે એવું વિધેય તે સંભાવના વિધેય P છે.

- (i) કોઈ પણ ઘટના E માટે,  $P(E) \ge 0$
- (ii) P(S) = 1
- (iii) જો E અને F પરસ્પર નિવારક ઘટનાઓ હોય તો  $P(E \cup F) = P(E) + P(F)$ .

પૂર્વધારણા (iii) પરથી ફલિત થાય છે કે P(φ) = 0. તેને સાબિત કરવા માટે F = φ લેતાં E અને φ પરસ્પર નિવારક ઘટનાઓ છે, તેથી પૂર્વધારણા (iii) પરથી આપણને

 $P(E \cup \phi) = P(E) + P(\phi)$  અથવા  $P(E) = P(E) + P(\phi)$  એટલે કે  $P(\phi) = 0$  મળે છે.

ધારો કે  $\omega_1,\omega_2,...,\omega_n$  નિદર્શાવકાશ S નાં પરિણામ છે એટલે કે  $S=\{\;\omega_1,\,\omega_2,\,...,\,\omega_n\}$  છે.

સંભાવનાની પૂર્વધારણાયુક્ત વ્યાખ્યા પરથી એવું તારણ નીકળે છે કે,

- (i) પ્રત્યેક  $\omega_i \in S$  માટે  $0 \le P(\omega_i) \le 1$
- (ii)  $P(\omega_1) + P(\omega_2) + ... + P(\omega_n) = 1$
- (iii) કોઈ પણ ઘટના A માટે,  $P(A) = \sum P(\omega_i)$ ,  $\omega_i \in A$ .

 $\longrightarrow$ નોંધ અત્રે એ નોંધનીય છે કે એકાકી  $\{\omega_i\}$  ને પ્રાથમિક ઘટના કહે છે અને સંકેતની સુવિધાને માટે  $\mathrm{P}(\{\omega_i\})$  ના સ્થાને  $\mathrm{P}(\omega_i)$  લખાય છે.

ઉદાહરણ તરીકે, એક સિક્કાને ઉછાળવાના પ્રયોગના પ્રત્યેક પરિણામ H અને T ની સંભાવના  $\frac{1}{2}$  નિર્ધારિત કરી શકીએ.

એટલે કે 
$$P(H) = \frac{1}{2}$$
 અને  $P(T) = \frac{1}{2}$  (1)

સ્પષ્ટપણે આ નિર્ધારણ બંને શરતોને સંતોષે છે, એટલે કે પ્રત્યેક સંખ્યા ન તો શૂન્યથી નાની છે અને ન તો એકથી મોટી છે અને

$$P(H) + P(T) = \frac{1}{2} + \frac{1}{2} = 1$$

આમ, આ પરિસ્થિતિમાં આપણે કહી શકીએ કે H ની સંભાવના  $=\frac{1}{2}$  અને T ની સંભાવના  $=\frac{1}{2}$ 

ચાલો, આપણે  $P(H) = \frac{1}{4}$  અને  $P(T) = \frac{3}{4}$  લઇએ.

શું આ નિર્ધારણ પૂર્વધારણાની રીતની શરતોનું સમાધાન કરશે ?

હા, આ પરિસ્થિતિમાં H ની સંભાવના  $=\frac{1}{4}$  અને અને T ની સંભાવના  $=\frac{3}{4}$  છે.

સંભાવનાની બંને પૂર્વધારણાઓ (1) અને (2), H અને T ની સંભાવના માટે સ્વીકાર્ય છે.

હકીકતમાં બંને પરિણામોની સંભાવનાઓ માટે સંખ્યાઓ ક્રમશઃ p અને (1-p) નક્કી કરી શકીએ, જેથી  $0 \le p \le 1$  અને  $\mathrm{P}(\mathrm{H}) + \mathrm{P}(\mathrm{T}) = p + (1-p) = 1.$ 

આ સંભાવના-નિર્ધારણ પણ સંભાવનાના પૂર્વધારણાયુક્ત અભિગમનું સમાધાન કરે છે. આમ, આપણે કહી શકીએ કે કોઈ પ્રયોગનાં પરિણામોની સાથે સંભાવના વિતરણ અનેક (વધુ ઉચિતપણે, અનંત) રીતે કરી શકાય છે.

ઉદાહરણ  $\mathbf{9}$  : ધારો કે એક નિદર્શાવકાશ  $\mathbf{S} = \{ \boldsymbol{\omega}_1, \ \boldsymbol{\omega}_2, ..., \ \boldsymbol{\omega}_6 \}$  છે. નીચે દર્શાવેલમાંથી દરેક પરિણામ માટે કઈ કઈ સંભાવના નિર્ધારણ સ્વીકાર્ય છે ?

ઉક્રેલ ઃ (a) શરત (i) : પ્રત્યેક સંખ્યા  $P(\omega_i)$  ધન છે અને એક કરતાં નાની છે.

શરત (ii) : સંભાવનાઓનો સરવાળો  $=\frac{1}{6}+\frac{1}{6}+\frac{1}{6}+\frac{1}{6}+\frac{1}{6}+\frac{1}{6}=1$ 

સંભાવના 364

તેથી, આ નિર્ધારણ માન્ય છે.

- (b) શરત (i): પ્રત્યેક સંખ્યા  $P(\omega_j)$  એ 0 અથવા 1 છે. શરત (ii) સંભાવનાઓનો સરવાળો = 1+0+0+0+0+0=1 તેથી આ નિર્ધારણ માન્ય છે.
- (c) શરત (i) બે સંભાવનાઓ  $P(\omega_\varsigma)$  અને  $P(\omega_\varsigma)$  ઋણ છે. તેથી આ નિર્ધારણ માન્ય નથી.
- (d)  $P(\omega_6) = \frac{3}{2} > 1$  છે. તેથી આ નિર્ધારણ માન્ય નથી.
- (e) સંભાવનાનો સરવાળો = 0.1 + 0.2 + 0.3 + 0.4 + 0.5 + 0.6 = 2.1 છે. તેથી આ નિર્ધારણ માન્ય નથી.

#### 16.4.1 ઘટનાની સંભાવના

એક યંત્ર દ્વારા નિર્મિત પેન પૈકી ત્રણ પેનના પરીક્ષણમાં એમને સારી (ખામીરહિત) અને ખરાબ (ખામીયુક્ત) માં વર્ગીકરણ કરવા માટે લેવામાં આવી. ધારો કે આ પ્રયોગનો નિદર્શાવકાશ S છે. આ પ્રયોગના ફળસ્વરૂપ આપણને 0, 1, 2 કે 3 ખરાબ પેન મળી શકે છે.

આ પ્રયોગને સંગત નિદર્શાવકાશ  $S = \{BBB, BBG, BGB, GBB, BGG, GBG, GGB, GGG\},$ 

જયાં, B એ ખામીયુક્ત પેન અને G એ ખામીરહિત પેન દર્શાવે છે.

ધારો કે પરિજ્ઞામો માટે નીચે દર્શાવ્યા પ્રમાણે સંભાવના લેવામાં આવી છે :

નિદર્શ બિંદુ : BBB BBG BGB GBB BGG GBG GGB

સંભાવના :  $\frac{1}{8}$   $\frac{1}{8}$   $\frac{1}{8}$   $\frac{1}{8}$   $\frac{1}{8}$   $\frac{1}{8}$   $\frac{1}{8}$   $\frac{1}{8}$ 

ધારો કે ઘટના A : માત્ર એક જ ખામીયુક્ત પેન છે અને ઘટના B : ઓછામાં ઓછી બે પેન ખામીયુક્ત છે. આમ,  $A = \{BGG, GBG, GGB\}$  અને  $B = \{BBG, BGB, GBB, BBB\}$ 

હવે 
$$\begin{split} \text{P(A)} &= \sum P(\omega_i), \ \forall \omega_i \in A \\ &= P(BGG) + P(GBG) + P(GGB) = \frac{1}{8} + \frac{1}{8} + \frac{1}{8} = \frac{3}{8} \end{split}$$

આપણે એક નોંધ કરીએ કે 🗸 🐠 સંકેત 'પ્રત્યેક 🐠 માટે' એમ દર્શાવે છે. 😾 તર્કનો સંકેત છે.

અને 
$$\begin{split} P(B) &= \sum P(\omega_i), \forall \, \omega_i \in B \\ &= P(BBG) + P(BGB) + P(GBB) + P(BBB) = \frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} = \frac{4}{8} = \frac{1}{2} \end{split}$$

ચાલો એક અન્ય પ્રયોગ 'એક સિક્કાને બે વાર ઉછાળવો' વિશે વિચાર કરીએ.

આ પ્રયોગનો નિદર્શાવકાશ  $S = \{HH, HT, TH, TT\}$  છે.

ધારો કે જુદાં જુદાં પરિણામો માટે નીચે દર્શાવ્યા પ્રમાણે સંભાવના નક્કી કરવામાં આવી છે :

$$P(HH) = \frac{1}{4}, P(HT) = \frac{1}{7}, P(TH) = \frac{2}{7}, P(TT) = \frac{9}{28}$$

સ્પષ્ટ છે કે આ સંભાવનાની પસંદગી તેની પૂર્વધારણાયુક્ત ધારણાની શરતોનું પાલન કરે છે. ચાલો હવે આપણે ઘટના E : 'સિક્કાને બે વાર ઉછાળતા એક સમાન પરિણામ મળે છે' ની સંભાવના જાણીએ. અહીં,  $E = \{HH, TT\}$  હવે, પ્રત્યેક  $w_i \in E$  માટે,  $P(E) = \sum P(w_i)$ 

$$= P(HH) + P(TT) = \frac{1}{4} + \frac{9}{28} = \frac{4}{7}$$

ઘટના F : 'ફક્ત બે છાપ હોય', તેના માટે આપણી પાસે  $F = \{HH\}$  અને  $P(F) = P(HH) = \frac{1}{4}$ 

#### 16.4.2 સમસંભાવી પરિણામોની સંભાવના :

ધારો કે એક પ્રયોગનો નિદર્શાવકાશ  $S = \{\omega_1, \omega_2, ..., \omega_n\}$  છે.

ધારો કે બધાં જ પરિણામ સમસંભાવી છે, એટલે કે પ્રત્યેક મૂળભૂત ઘટનાના ઉદ્ભવની સંભાવના સમાન છે. આથી પ્રત્યેક  $\omega_i \in S$  માટે,  $P(\omega_i) = p$ , જયાં  $0 \le p \le 1$ 

હવે, 
$$\sum_{i=1}^{n} P(\omega_i) = 1. \ \, \text{તેથી} \quad p+p+...+p \; (n \; \text{વખત}) = 1$$

એટલે કે 
$$np=1$$
 અથવા  $p=\frac{1}{n}$ 

ધારો કે નિદર્શાવકાશ S ની કોઈ એક ઘટના E, એવી છે કે n(S) = n અને n(E) = m, જો પ્રત્યેક પરિણામ સમસંભાવી હોય, તો એવું ફલિત થાય છે છે કે

$$P(E) = \frac{m}{n} = \frac{E + \frac{1}{2} + \frac{1}{2}}{\frac{1}{2}} \frac{E + \frac{1}{2} + \frac{1}{2}}{\frac{1}{2}} \frac{1}{2} \frac{1}{2$$

#### 16.4.3 ઘટના 'A અથવા B' ની સંભાવના :

ચાલો આપણે ઘટના 'A અથવા B' ની સંભાવના એટલે કે  $P(A \cup B)$  જાણીએ.

ધારો કે  $A = \{HHT, HTH, THH\}$  અને  $B = \{HTH, THH, HHH\}$  એ એક સિક્કાને ત્રણવાર ઉછાળવો એ પ્રયોગની બે ઘટનાઓ છે.

સ્પષ્ટ છે કે 
$$A \cup B = \{HHT, HTH, THH, HHH\}$$

હવે, 
$$P(A \cup B) = P(HHT) + P(HTH) + P(THH) + P(HHH)$$

જો બધાં જ પરિશામો સમસંભાવી હોય તો,

અને

તેથી,

$$P(A \cup B) = \frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} = \frac{4}{8} = \frac{1}{2}$$

$$P(A) = P(HHT) + P(HTH) + P(THH) = \frac{3}{8}$$

$$P(B) = P(HTH) + P(THH) + P(HHH) = \frac{3}{8}$$

$$P(A) + P(B) = \frac{3}{8} + \frac{3}{8} = \frac{6}{8}$$

અહીં, સ્પષ્ટ છે કે  $P(A \cup B) \neq P(A) + P(B)$ 

બિંદુઓ HTH અને THH, એ A અને B માં સામાન્ય ઘટકો છે. P(A) + P(B) ની ગણતરીમાં બિંદુઓ HTH અને THH ની

સંભાવના 366

સંભાવનાઓ, એટલે કે  $A \cap B$  નાં ઘટકો બે વાર સમાવ્યાં છે. આમ,  $P(A \cup B)$  ની સંભાવના મેળવવા માટે આપણે  $A \cap B$  માં આવેલા નિદર્શ બિંદુઓની સંભાવનાને P(A) + P(B) માંથી બાદ કરીશું.

એટલે કે 
$$P(A \cup B) = P(A) + P(B) - \sum P(\omega_i), \forall \omega_i \in A \cap B$$
$$= P(A) + P(B) - P(A \cap B)$$

આમ, આપણે જોયું કે  $P(A \cup B) = P(A) + P(B) - P(A \cap B)$ 

વ્યાપક રીતે જો, A અને B એ કોઈ યાદચ્છિક પ્રયોગ સાથે સંકળાયેલ ઘટનાઓ હોય, તો ઘટનાની સંભાવનાની વ્યાખ્યાને આધારે, આપણી પાસે

$$P(A \cup B) = \sum P(\omega_i), \forall \omega_i \in A \cup B.$$

$$A \cup B = (A-B) \cup (A \cap B) \cup (B-A),$$

આપણી પાસે

$$\begin{split} \mathbf{P}(\mathbf{A} \cup \mathbf{B}) &= \left[ \sum \mathbf{P}(\omega_i), \, \forall \, \omega_i \in (\mathbf{A} - \mathbf{B}) \right] + \left[ \sum \mathbf{P}(\omega_i), \, \forall \, \omega_i \in \mathbf{A} \cap \mathbf{B} \right] + \left[ \sum \mathbf{P}(\omega_i), \, \forall \, \omega_i \in \mathbf{B} - \mathbf{A} \right] \\ &\text{(કારણ કે A} - \mathbf{B}, \, \mathbf{A} \cap \mathbf{B} \, \text{ અને } \mathbf{B} - \mathbf{A} \, \text{ પરસ્પર નિવારક છે.) વળી,} \end{split} \qquad ...(1)$$

$$\begin{split} \mathbf{P}(\mathbf{A}) + \mathbf{P}(\mathbf{B}) &= \left[ \sum \mathbf{P}(\omega_{i}), \ \forall \omega_{i} \in \mathbf{A} \right] + \left[ \sum \mathbf{P}(\omega_{i}), \ \forall \omega_{i} \in \mathbf{B} \right] \\ &= \left[ \sum \mathbf{P}(\omega_{i}), \ \forall \omega_{i} \in (\mathbf{A} - \mathbf{B}) \cup (\mathbf{A} \cap \mathbf{B}) \right] + \left[ \sum \mathbf{P}(\omega_{i}), \ \forall \omega_{i} \in (\mathbf{B} - \mathbf{A}) \cup (\mathbf{A} \cap \mathbf{B}) \right] \\ &= \left[ \sum \mathbf{P}(\omega_{i}), \ \forall \omega_{i} \in (\mathbf{A} - \mathbf{B}) \right] + \left[ \sum \mathbf{P}(\omega_{i}), \ \forall \omega_{i} \in (\mathbf{A} \cap \mathbf{B}) \right] + \left[ \sum \mathbf{P}(\omega_{i}), \ \forall \omega_{i} \in (\mathbf{A} \cap \mathbf{B}) \right] + \left[ \sum \mathbf{P}(\omega_{i}), \ \forall \omega_{i} \in (\mathbf{A} \cap \mathbf{B}) \right] \end{split}$$

$$= P(A \cup B) + [\sum P(\omega_i), \forall \omega_i \in A \cap B]$$
 [  $\cdot \cdot \cdot$  (1) પરથી]

 $= P(A \cup B) + P(A \cap B).$ 

આમ,  $P(A \cup B)=P(A)+P(B)-P(A \cap B)$ .

આ સૂત્રની વૈકલ્પિક સાબિતી નીચે દર્શાવ્યા પ્રમાણે પણ આપી શકાય છે :

$$A \cup B = A \cup (B - A)$$
 અહીં  $A$  અને  $B - A$  પરસ્પર નિવારક ઘટનાઓ છે.

અને  $B = (A \cap B) \cup (B - A)$  અહીં  $A \cap B$  અને B - A પરસ્પર નિવારક ઘટનાઓ છે.

સંભાવનાની પૂર્વધારણા (iii) દ્વારા આપણને પ્રાપ્ત થાય છે કે,

$$P(A \cup B) = P(A) + P(B - A)$$
 ...(2)

અને 
$$P(B) = P(A \cap B) + P(B - A) \qquad ... (3)$$

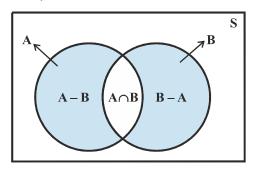
(2) માંથી (3) ને બાદ કરતાં

$$P(A \cup B) - P(B) = P(A) - P(A \cap B)$$

અથવા 
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

ગિષ્ટિત : ધોરણ-11

આ પરિજ્ઞામને વેન-આકૃતિ (આકૃતિ 16.1) નાં અવલોકન દ્વારા પણ પ્રસ્થાપિત કરી શકાય.



આકૃતિ 16.1

જો A અને B અલગ ગણો હોય, એટલે કે તે પરસ્પર નિવારક ઘટનાઓ હોય, તો  $A \cap B = \emptyset$ 

તેથી, 
$$P(A \cap B) = P(\phi) = 0$$

આમ, પરસ્પર નિવારક ઘટનાઓ A અને B માટે આપણને

$$P(A \cup B) = P(A) + P(B)$$
 મળે છે.

આ સંભાવનાની પૂર્વધારણા (iii) છે.

નોંધ : ખરેખર આ 'સાબિતી' અસત્ય છે. પૂર્વધારણા સાબિત ન થાય. વળી તેના પરથી જ સૂત્ર

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$
 μοί છે.

#### 16.4.4 ઘટના 'A-નહિ' ની સંભાવના

1 થી 10 સુધી અંકિત પૂર્ણાંકોવાળા દસ પત્તાંની થોકડીમાંથી એક પત્તું કાઢવાના પ્રયોગની ઘટના  $A = \{2, 4, 6, 8\}$  વિશે વિચાર કરીએ.

સ્પષ્ટ છે કે અહીં નિદર્શાવકાશ  $S = \{1, 2, 3, ..., 10\}$  છે.

હવે જો બધાં જ પરિણામો 1, 2, ..., 10 ને સમસંભાવી ધારી લઈએ તો દરેક પરિણામની સંભાવના  $\frac{1}{10}$  થશે. હવે P(A) = P(2) + P(4) + P(6) + P(8)

$$=\frac{1}{10}+\frac{1}{10}+\frac{1}{10}+\frac{1}{10}=\frac{4}{10}=\frac{2}{5}$$

સાથે જ ઘટના 'A-નહિ' =  $A' = \{1, 3, 5, 7, 9, 10\}$ 

હવે 
$$P(A') = P(1) + P(3) + P(5) + P(7) + P(9) + P(10)$$
$$= \frac{6}{10} = \frac{3}{5}$$

આ પ્રકારે, 
$$P(A') = \frac{3}{5} = 1 - \frac{2}{5} = 1 - P(A)$$

સાથે જ આપણને એ પણ ખબર છે કે A' અને A પરસ્પર નિવારક અને નિઃશેષ ઘટનાઓ છે. એટલે કે

$$A \cap A' = \phi$$
 અને  $A \cup A' = S$ 

અથવા 
$$P(A \cup A') = P(S)$$

હવે, 
$$P(A) + P(A') = 1$$
, પૂર્વધારણા (ii) અને (iii) ના ઉપયોગ દ્વારા

સંભાવના 368

અથવા P(A') = P(A + k) = 1 - P(A)

હવે જ્યાં સુધી અન્ય કોઈ સૂચના ન હોય ત્યાં સુધી આપણે સમસંભાવી પરિણામોવાળા પ્રયોગો માટે કેટલાંક ઉદાહરણો અને પ્રશ્નો વિશે વિચાર કરીશું.

ઉદાહરણ 10 : સરખી રીતે ચીપેલાં 52 પત્તાંની એક થોકડીમાંથી યાદચ્છિક રીતે એક પત્તું ખેંચવામાં આવે છે.

- (i) પત્તું ચોકટનું હોય.
- (ii) પત્તું એક્કો ન હોય.
- (iii) પત્તું કાળા રંગનું હોય. (એટલે કે કાળીનું અથવા ફુલ્લીનું )
- (iv) પત્તું ચોકટનું ન હોય.
- (v) પત્તું કાળા રંગનું ન હોય.તો ખેંચવામાં આવેલાં પત્તાંની સંભાવના શોધો.

ઉકેલ : જ્યારે સરખી રીતે ચીપેલાં 52 પત્તાંની એક થોકડીમાંથી એક પત્તું ખેંચવામાં આવે છે ત્યારે સંભવિત પરિણામોની સંખ્યા 52 હોય છે.

(i) ધારો કે ઘટના A ખેંચવામાં આવેલું પત્તું ચોકટનું છે એ દર્શાવે છે. સ્પષ્ટ છે કે A ના ઘટકોની સંખ્યા 13 છે.

તેથી,
$$P(A) = \frac{13}{52} = \frac{1}{4}$$

એટલે કે ચોકટનું પત્તું ખેંચવાની સંભાવના =  $\frac{1}{4}$  છે.

(ii) ધારો કે ઘટના B ખેંચવામાં આવેલું પત્તું એક્કો છે.

તેથી 'ખેંચવામાં આવેલું પત્તું એક્કો ન હોય' તેને B' વડે દર્શાવાય.

હવે 
$$P(B') = 1 - P(B) = 1 - \frac{4}{52} = 1 - \frac{1}{13} = \frac{12}{13}$$

(iii) ધારો કે 'ખેંચવામાં આવેલું પત્તું કાળા રંગનું છે' એ ઘટના C દ્વારા દર્શાવાય છે.

તેથી ઘટના C ના ઘટકોની સંખ્યા = 26 છે.

એટલે કે 
$$P(C) = \frac{26}{52} = \frac{1}{2}$$

આમ, કાળા રંગનું પત્તું ખેંચવામાં આવે તેની સંભાવના  $=\frac{1}{2}$ .

(iv) આપણે ઉપરના (i) માં જોયું ઘટના A, 'ખેંચવામાં આવેલ પત્તું ચોકટનું હોય' તે દર્શાવે છે. તેથી ઘટના A' અથવા 'A-નહિ' એમ દર્શાવે છે કે ખેંચવામાં આવેલું પત્તું ચોકટનું નથી.

હવે 
$$P(A-+1) = 1 - P(A) = 1 - \frac{1}{4} = \frac{3}{4}$$

(v) 'ખેંચવામાં આવેલ પત્તું કાળા રંગનું ન હોય' એટલે કે ઘટના C-નહિ અથવા C' દર્શાવે છે.

હવે 
$$P(C- + 1e) = 1 - P(C) = 1 - \frac{1}{2} = \frac{1}{2}$$

આમ, પત્તું કાળા રંગનું ન હોય તેની સંભાવના  $=\frac{1}{2}$  છે.

ઉદાહરણ 11:એક થેલામાં 9 તકતી છે. તે પૈકી 4 લાલ રંગની, 3 ભૂરા રંગની અને 2 પીળા રંગની છે. પ્રત્યેક તકતી આકાર અને માપમાં સમરૂપ છે. થેલામાંથી એક તકતી યાદચ્છિક રીતે કાઢવામાં આવે છે. જો તે (i) લાલ રંગની હોય, (ii) પીળા રંગની હોય, (iii) ભૂરા રંગની હોય, (iv) ભૂરા રંગની ન હોય, (v) લાલ રંગની અથવા ભૂરા રંગની હોય તે અનુસાર કાઢવામાં આવેલ તકતીની સંભાવના શોધો.

ઉ<mark>કેલ ઃ</mark> તકતીની કુલ સંખ્યા 9 છે, તેથી સંભવિત પરિણામોની કુલ સંખ્યા 9 થશે. ધારો કે ઘટનાઓ A, B, C એવી રીતે વ્યાખ્યાયિત કરવામાં આવી છે કે,

A : કાઢવામાં આવેલ તકતી લાલ રંગની છે.

B : કાઢવામાં આવેલ તકતી પીળા રંગની છે.

C : કાઢવામાં આવેલ તકતી ભૂરા રંગની છે.

- (i) લાલ રંગની તકતીની સંખ્યા = 4, એટલે કે n(A) = 4 તેથી,  $P(A) = \frac{4}{9}$
- (ii) પીળા રંગની તકતીની સંખ્યા = 2, એટલે કે n(B) = 2

તેથી, 
$$P(B) = \frac{2}{9}$$

(iii) ભૂરા રંગની તકતીની સંખ્યા = 3, એટલે કે n(C) = 3

તેથી, 
$$P(C) = \frac{3}{9} = \frac{1}{3}$$

(iv) સ્પષ્ટપણે ઘટના 'તકતી ભૂરા રંગની નથી' એ 'C-નહિ' જ છે, આપણે જાણીએ છીએ કે,

$$P(C$$
-નહિ) = 1 -  $P(C)$ 

$$= 1 - \frac{1}{3} = \frac{2}{3}$$

(v) ઘટના 'લાલ રંગની તકતી અથવા ભૂરા રંગની તકતી' ને ગણ ' $A \cup C$ ' દ્વારા દર્શાવી શકાય. હવે 'A અને C' પરસ્પર નિવારક ઘટનાઓ છે, તેથી,

$$P(A \text{ equ } C) = P(A \cup C) = P(A) + P(C) = \frac{4}{9} + \frac{1}{3} = \frac{7}{9}$$

ઉદાહરણ 12 : બે વિદ્યાર્થીઓ અનિલ અને આશિમા એક પરીક્ષામાં હાજર રહે છે. અનિલની પરીક્ષામાં પાસ થવાની સંભાવના 0.05 અને આશિમાની પરીક્ષામાં પાસ થવાની સંભાવના 0.10 છે. બંનેની પરીક્ષામાં પાસ થવાની સંભાવના 0.02 છે. નીચેની ઘટનાની સંભાવના શોધો :

- (a) અનિલ અને આશિમા બંને પૈકી કોઈ પણ પરીક્ષામાં પાસ નહિ થઈ શકે.
- (b) બંનેમાંથી ઓછામાં ઓછી એક વ્યક્તિ પરીક્ષામાં પાસ નહિ થાય.
- (c) બંનેમાંથી માત્ર એક પરીક્ષામાં પાસ થશે.

સંભાવના 370

ઉકેલ : ધારો કે ઘટનાઓ E તથા F 'અનિલ પરીક્ષામાં પાસ થઈ જશે' અને 'આશિમા પરીક્ષામાં પાસ થઈ જશે' તે ક્રમમાં દર્શાવે છે. .

તેથી 
$$P(E) = 0.05$$
,  $P(F) = 0.10$  અને  $P(E \cap F) = 0.02$ .

હવે (a) ઘટના 'બંનેમાંથી કોઈ પણ પરીક્ષામાં પાસ નહિ થઈ શકે' ને  $E' \cap F'$  વડે દર્શાવી શકાય, કારણ કે

E'ઘટના 'E-નહિ' એટલે કે 'અનિલ પરીક્ષામાં પાસ નહિ થાય' તથા F'ઘટના 'F-નહિ', એટલે કે 'આશિમા પરીક્ષામાં પાસ નહિ થાય' તે દર્શાવે છે.

વળી, 
$$E' \cap F' = (E \cup F)'$$
 (દૅ માર્ગનનો નિયમ)

હવે, 
$$P(E \cup F) = P(E) + P(F) - P(E \cap F)$$

$$\therefore$$
 P(E  $\cup$  F) = 0.05 + 0.10 - 0.02 = 0.13

તેથી 
$$P(E' \cap F') = P((E \cup F)') = 1 - P(E \cup F) = 1 - 0.13 = 0.87$$

(b) P (બંનેમાંથી ઓછામાં ઓછી એક વ્યક્તિ પરીક્ષામાં પાસ નહિ થાય.)

$$= 1 - 0.02 = 0.98$$

(c) ઘટના 'બંનેમાંથી માત્ર એક જ પાસ થશે' એ નીચે દર્શાવેલ ઘટનાને સમાન છે : અનિલ પાસ થશે અને આશિમા પાસ નહિ થાય અથવા અનિલ પાસ નહિ થાય અને આશિમા પાસ થશે એટલે કે E ∩ F' અથવા E' ∩ F. અહીં, E ∩ F' અને E' ∩ F પરસ્પર નિવારક ઘટનાઓ છે.

તેથી P (બંનેમાંથી માત્ર એક જ પાસ થશે.)

$$= P (E \cap F')$$
 અથવા  $E' \cap F$ 

$$= P(E \cap F') + P(E' \cap F)$$

$$= P(E) - P(E \cap F) + P(F) - P(E \cap F)$$

$$= 0.05 - 0.02 + 0.10 - 0.02 = 0.11$$

<mark>ઉદાહરણ 13</mark> ઃ બે પુરુષો અને બે સ્રીઓના સમૂહમાંથી બે વ્યક્તિઓની એક સમિતિની રચના કરવાની છે. જ્યારે સમિતિમાં (a) કોઈ પુરુષ ન હોય ?(b) એક પુરુષ હોય?(c) બંનેય પુરુષ હોય, તે ઘટનાની સંભાવના શું થશે ?

**ઉકેલ** : સમૂહમાં વ્યક્તિઓની કુલ સંખ્યા = 2 + 2 = 4. આ ચાર વ્યક્તિઓમાંથી બે વ્યક્તિઓને  ${}^4\mathbf{C}_2$  પ્રકારે પસંદ કરી શકાય છે.

(a) સિમિતિમાં કોઈ પુરુષ ન હોવાનો અર્થ એ છે કે સિમિતિમાં બે સ્ત્રીઓ છે. બે સ્ત્રીઓમાંથી બે ને પસંદ  $^2\mathrm{C}_2$  =1 પ્રકારે કરી શકાય.

તેથી P (કોઈ પુરુષ નહિ.) = 
$$\frac{{}^{2}C_{2}}{{}^{4}C_{2}} = \frac{1 \times 2 \times 1}{4 \times 3} = \frac{1}{6}$$

(b) સિમિતિમાં એક પુરુષ હોવાનું તાત્પર્ય છે કે તેનામાં એક સ્ત્રી છે. 2 પુરુષોમાંથી 1 પુરુષની પસંદગીના પ્રકારની સંખ્યા  $^2C_1$  તથા 2 સ્ત્રીઓમાંથી 1 સ્ત્રીની પસંદગીના પ્રકારની સંખ્યા  $^2C_1$  છે. બંને પસંદગીઓ એક સાથે કરવાના પ્રકારની સંખ્યા  $^2C_1 imes ^2C_1$  છે.

તેથી P (એક પુરુષ) = 
$$\frac{{}^2C_1 \times {}^2C_1}{{}^4C_2} = \frac{2 \times 2}{2 \times 3} = \frac{2}{3}$$

371 ગાંધાત : ધોરણ-11

(c) બે પુરુષોની પસંદગી  $^2\mathrm{C}_2$ પ્રકારે થઈ શકે છે.

$$P(\hat{\omega}, \hat{u}_{2}) = \frac{{}^{2}C_{2}}{{}^{4}C_{2}} = \frac{1}{{}^{4}C_{2}} = \frac{1}{6}$$

#### સ્વાધ્યાય 16.3

1. નિદર્શાવકાશ  $S = \{\omega_1, \omega_2, \omega_3, \omega_4, \omega_5, \omega_6, \omega_7\}$  નાં પરિણામો માટે નીચે દર્શાવેલમાંથી કયું સંભાવનાં નિર્ધારણ માન્ય નથી :

| પરિણામ | $\omega_1$     | $\omega_2$     | $\omega_3$     | $\omega_4$     | $\omega_{5}$   | $\omega_6$     | $\omega_7$      |
|--------|----------------|----------------|----------------|----------------|----------------|----------------|-----------------|
| (a)    | 0.1            | 0.01           | 0.05           | 0.03           | 0.01           | 0.2            | 0.6             |
| (b)    | $\frac{1}{7}$   |
| (c)    | 0.1            | 0.2            | 0.3            | 0.4            | 0.5            | 0.6            | 0.7             |
| (d)    | - 0.1          | 0.2            | 0.3            | 0.4            | - 0.2          | 0.1            | 0.3             |
| (e)    | $\frac{1}{14}$ | $\frac{2}{14}$ | $\frac{3}{14}$ | $\frac{4}{14}$ | $\frac{5}{14}$ | $\frac{6}{14}$ | $\frac{15}{14}$ |

- 2. એક સિક્કાને બે વાર ઉછાળતાં, ઓછામાં ઓછી એક વાર કાંટો મળે તેની સંભાવના શું થશે?
- 3. એક પાસાને ફેંકવામાં આવ્યો છે. નીચે આપેલ ઘટનાઓની સંભાવના શોધો :
  - (i) એક અવિભાજ્ય સંખ્યા આવે.
  - (ii) 3 કે 3 થી મોટી સંખ્યા આવે.
  - (iii) 1 કે 1 થી નાની સંખ્યા આવે.
  - (iv) 6 થી મોટી સંખ્યા આવે.
  - (v) 6 થી નાની સંખ્યા આવે.
- 4. તાસની 52 પત્તાંની થોકડીમાંથી એક પત્તું યાદેચ્છિક રીતે ખેંચવામાં આવે છે.
  - (a) નિદર્શાવકાશમાં કેટલાં બિંદુ છે?
  - (b) પત્તું કાળીનો એક્કો હોય તેની સંભાવના શું છે?
  - (c) પત્તું (i) એક્કો હોય (ii) કાળા રંગનું હોય તેની સંભાવના શોધો.
- 5. એક સમતોલ સિક્કો જેની એક બાજુ પર 1 અને બીજી બાજુ પર 6 અંકિત કરેલ છે. આ સિક્કો તથા એક સમતોલ પાસો બંનેને ઉછાળવામાં આવે છે. મળતી સંખ્યાઓનો સરવાળો (i) 3 હોય (ii) 12 હોય, તેની સંભાવના શોધો.
- 6. શહેર પરિષદમાં ચાર પુરુષો અને છ સ્રીઓ છે. જો એક સિમિતિ માટે યાદ્દચ્છિક રીતે એક પરિષદ-સભ્ય પસંદ કરવામાં આવ્યા છે, તો એક સ્રી-સભ્યની પસંદ થવાની સંભાવના કેટલી?
- 7. એક સમતોલ સિક્કાને ચાર-વાર ઉછાળવામાં આવે છે અને એક વ્યક્તિ પ્રત્યેક છાપ (H) પર ₹ 1 જીતે છે અને પ્રત્યેક કાંટા (T) પર ₹ 1.50 હારે છે. આ પ્રયોગનાં નિદર્શાવકાશ પરથી શોધો કે ચાર વાર સિક્કાને ઉછાળ્યા પછી તે કેટલી રકમ પ્રાપ્ત કરી શકે છે તથા આ પ્રત્યેક રકમની સંભાવના શોધો.

સંભાવના 372

- 8. ત્રણ સિક્કા એક વાર ઉછાળવામાં આવે છે. નીચે આપેલ ઘટનાની સંભાવના શોધો.
  - (i) 3 છાપ મળે.
- (ii) 2 છાપ મળે.
- (iii) ઓછામાં ઓછી 2 છાપ મળે.

- (iv) વધુમાં વધુ 2 છાપ મળે.
- (v) એક પણ છાપ નહિ. (vi) 3 કાંટા મળે.

- (vii) માત્ર બે જ કાંટા મળે.
- (viii) એક પણ કાંટો નહિ. (ix) વધુમાં વધુ બે કાંટા મળે.
- 9. જો કોઈ ઘટના A ની સંભાવના  $\frac{2}{11}$  હોય, તો ઘટના 'A-નહિ' ની સંભાવના શોધો.
- શબ્દ 'ASSASSINATION' માંથી એક અક્ષર યાદેચ્છિક રીતે પસંદ કરવામાં આવે છે. (i) તે એક સ્વર હોય (ii) એક વ્યંજન હોય તો પસંદ કરેલા અક્ષરની સંભાવના શોધો.
- 11. એક લોટરીમાં એક વ્યક્તિ1 થી 20 સુધીની સંખ્યાઓમાંથી છ જુદી જુદી સંખ્યાઓ યાદચ્છિક રીતે પસંદ કરે છે અને જો એ પસંદ કરેલી છ સંખ્યાઓ લોટરી સમિતિએ પૂર્વનિર્ધારિત કરેલ છ સંખ્યાઓ સાથે મેળ ખાતી હોય તો એ વ્યક્તિ ઇનામ જીતી જાય છે. આ લોટરીની રમતમાં ઇનામ જીતવાની સંભાવના શું છે?

[સ્ચન:સંખ્યાઓ પ્રાપ્ત થવાનો ક્રમ મહત્ત્વપૂર્ણ નથી.]

- 12. ચકાસો કે નીચેની સંભાવનાઓ P(A) અને P(B) સુસંગત રીતે વ્યાખ્યાયિત છે.
  - (i) P(A) = 0.5, P(B) = 0.7,  $P(A \cap B) = 0.6$
  - (ii) P(A) = 0.5, P(B) = 0.4,  $P(A \cup B) = 0.8$
- 13. નીચે આપેલા કોષ્ટકમાં ખાલી જગ્યા ભરો :

|       | P(A)          | P(B)          | $P(A \cap B)$  | $P(A \cup B)$ |
|-------|---------------|---------------|----------------|---------------|
| (i)   | $\frac{1}{3}$ | $\frac{1}{5}$ | $\frac{1}{15}$ |               |
| (ii)  | 0.35          |               | 0.25           | 0.6           |
| (iii) | 0.5           | 0.35          |                | 0.7           |

- 14.  $P(A) = \frac{3}{5}$  અને  $P(B) = \frac{1}{5}$  આપેલ છે. જો A અને B પરસ્પર નિવારક ઘટનાઓ હોય તો P(A) અથવા B) શોધો.
- 15. ઘટનાઓ E અને F એવા પ્રકારની છે કે  $P(E) = \frac{1}{4}$ ,  $P(F) = \frac{1}{2}$  અને P(E) અને  $P(E) = \frac{1}{8}$ , તો (i) P(E) અથવા F), (ii) P( E-નહિ અને F-નહિ) શોધો.
- 16. ઘટનાઓ E અને F એવા પ્રકારની છે કે P( E-નહિ અથવા F-નહિ) = 0.25, ચકાસો કે E અને F પરસ્પર નિવારક છે કે નહિ?
- 17. ઘટનાઓ A અને B એવા પ્રકારની છે કે P(A) = 0.42, P(B) = 0.48 અને P(A) = 0.16. (i) P(A-નહિ), (ii) P(B-નહિ) અને (iii) P(A અથવા B) શોધો.
- $oxed{18.}$  એક શાળાના ધોરણ XI નાં  $oxed{40}$  % વિદ્યાર્થી ગણિત ભણે છે અને  $oxed{30}$  જીવવિજ્ઞાન ભણે છે. વર્ગના  $oxed{10}$  % વિદ્યાર્થી ગણિત અને જીવવિજ્ઞાન બંને ભણે છે. આ ધોરણનો એક વિદ્યાર્થી યાદચ્છિક રીતે પસંદ કરવામાં આવે છે, તો આ વિદ્યાર્થી ગણિત અથવા જીવવિજ્ઞાન ભણતો હોય તેની સંભાવના શોધો.
- 19. એક પ્રવેશ કસોટીને બે પરીક્ષાના આધાર પર શ્રેણીબદ્ધ કરવામાં આવે છે. યાદેચ્છિક રીતે પસંદ કરેલા વિદ્યાર્થીની

ગાંધાત : ધોરણ-11

પહેલી પરીક્ષામાં પાસ થવાની સંભાવના 0.8 છે અને બીજી પરીક્ષામાં પાસ થવાની સંભાવના 0.7 છે. બંનેમાંથી ઓછામાં ઓછી એક પરીક્ષામાં પાસ થવાની સંભાવના 0.95 છે. બંને પરીક્ષામાં પાસ થવાની સંભાવના શું છે?

- 20. એક વિદ્યાર્થીની અંતિમ પરીક્ષાના અંગ્રેજી અને હિંદી બન્ને વિષયો પાસ કરવાની સંભાવના 0.5 છે અને બંનેમાંથી કોઈ પણ વિષય પાસ ન કરવાની સંભાવના 0.1 છે. જો અંગ્રેજીની પરીક્ષા પાસ કરવાની સંભાવના 0.75 હોય, તો હિંદીની પરીક્ષા પાસ કરવાની સંભાવના શું છે?
- 21. એક ધોરણના 60 વિદ્યાર્થીઓમાંથી NCC ને 30, NSS ને 32 અને બંનેને 24 વિદ્યાર્થીઓએ પસંદ કર્યા છે. જો આ બધામાંથી એક વિદ્યાર્થી યાદેચ્છિક રીતે પસંદ કરવામાં આવે, તો આપેલ ઘટનાઓની સંભાવના શોધો.
  - (i) વિદ્યાર્થીએ NCC અથવા NSS ને પસંદ કર્યા છે.
  - (ii) વિદ્યાર્થીએ NCC અને NSS માંથી એક પણ પસંદ કર્યા નથી.
  - (iii) વિદ્યાર્થીએ NSS ને પસંદ કર્યું છે. પરંતુ NCC ને પસંદ કર્યું નથી.

#### પ્રકીર્ણ ઉદાહરણો

ઉદાહરણ 14 : રજાઓમાં વીશાએ ચાર શહેરો A, B, C અને D ની યાદચ્છિક ક્રમમાં યાત્રા કરી છે. શું સંભાવના છે કે એશે

- (i) A ની યાત્રા B ના પહેલાં કરી ?
- (ii) A ની યાત્રા B ના પહેલાં અને B ની યાત્રા C ના પહેલાં કરી ?
- (iii) A ની યાત્રા પહેલાં અને B ની છેલ્લે યાત્રા કરી ?
- (iv) A ની યાત્રા સૌથી પહેલાં અથવા બીજા ક્રમે કરી ?
- (v) A ની યાત્રા B ના તરત પહેલાં જ કરી ?

ઉકેલ : વીણા દ્વારા ચાર શહેરો A, B, C અને D ની યાત્રાના જુદા જુદા પ્રકારોની સંખ્યા 4! એટલે કે 24 છે. તેથી n (S) = 24. આમ, આ પ્રયોગના નિદર્શાવકાશમાં 24 ઘટકો છે. એ બધા પરિણામ સમસંભાવી ધારી લઈએ તો આ પ્રયોગનો નિદર્શાવકાશ

- S = {ABCD, ABDC, ACBD, ACDB, ADBC, ADCB, BACD, BADC, BDAC, BDCA, BCAD, BCDA, CABD, CADB, CBDA, CBAD, CDAB, CDBA, DABC, DACB, DBCA, DBAC, DCAB, DCBA}
- (i) ધારો કે ઘટના E : વીજ્ઞા A ની યાત્રા B ના પહેલાં કરે છે, તે દર્શાવે છે. તેથી E = {ABCD, CABD, DABC, ABDC, CADB, DACB, ACBD, ACDB, ADBC, CDAB, DCAB, ADCB}

આમ, આ પ્રકારે 
$$P(E) = \frac{n(E)}{n(S)} = \frac{12}{24} = \frac{1}{2}$$

(ii) ધારો કે ઘટના F : વીણા A ની યાત્રા B પહેલાં અને B ની યાત્રા C ના પહેલાં કરે છે. તે દર્શાવે છે. અહીં  $F = \{ABCD, DABC, ADBC\}$ 

તેથી, 
$$P(F) = \frac{n(F)}{n(S)} = \frac{4}{24} = \frac{1}{6}$$

સંભાવના 374

વિદ્યાર્થીઓને સૂચના આપવામાં આવે છે કે (iii), (iv) અને (v) ની સંભાવના સ્વ-પ્રયત્ને શોધે.

<mark>ઉદાહરણ 15</mark> ઃ જ્યારે તાસનાં 52 પત્તાંની થોકડીમાંથી 7 પત્તાનો એક સમૂહ બનાવવામાં આવે તો જેમાં (i) બધા બાદશાહનો સમાવેશ હોય (ii) 3 બાદશાહ હોય (iii) ઓછામાં ઓછા 3 બાદશાહ હોય એ ઘટનાની સંભાવના શોધો.

ઉકેલ : 7 પત્તાંના સમૂહોની કુલ શક્ય સંખ્યા =  $^{52}$ C<sub>7</sub>

(i) 4 બાદશાહો સહિત સમૂહોની સંખ્યા =  ${}^4{
m C_4} imes {}^{48}{
m C_3}$  (બાકીનાં 48 પત્તાંમાંથી અન્ય 3 પત્તાંની પસંદગી થશે.)

(ii) 3 બાદશાહ અને 4 બાદશાહ સિવાયનાં પત્તાંવાળા સમૂહોની સંખ્યા =  ${}^4C_3 \times {}^{48}C_4$ 

તેથી 
$$P(\text{સમૂહમાં 3 બાદશાહ}) = \frac{{}^4\text{C}_3 \times {}^{48}\text{C}_4}{{}^{52}\text{C}_7} = \frac{9}{1547}$$

(iii) P(ઓછામાં ઓછા 3 બાદશાહ) = P(3 બાદશાહ અથવા 4 બાદશાહ)

$$= P(3$$
 બાદશાહ)  $+ P(4$  બાદશાહ)

$$=\frac{9}{1547}+\frac{1}{7735}=\frac{46}{7735}$$

ઉદાહરણ 16 : જો A, B, C એ કોઈ યાદચ્છિક પ્રયોગ સાથે સંકળાયેલ ત્રણ ઘટનાઓ હોય, તો સાબિત કરો કે

$$P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(A \cap B) - P(A \cap C) - P(B \cap C) + P(A \cap B \cap C)$$

ઉકેલ : જ્યારે  $E = B \cup C$  હોય, ત્યારે

$$P(A \cup B \cup C) = P(A \cup E)$$

$$= P(A) + P(E) - P(A \cap E) \qquad \dots (1)$$

હવે,

$$P(E) = P(B \cup C)$$

$$= P(B) + P(C) - P(B \cap C) \qquad \dots (2)$$

 $\mathsf{qul}, \qquad \mathsf{A} \cap \mathsf{E} = \mathsf{A} \cap (\mathsf{B} \cup \mathsf{C}) = (\mathsf{A} \cap \mathsf{B}) \cup (\mathsf{A} \cap \mathsf{C})$ 

[ગણોના યોગ પર છેદનો વિભાજનનો નિયમ]

આથી,  $P(A \cap E) = P(A \cap B) + P(A \cap C) - P[(A \cap B) \cap (A \cap C)]$ 

$$= P(A \cap B) + P(A \cap C) - P[A \cap B \cap C] \qquad \dots (3)$$

(2) અને (3) નો (1) માં ઉપયોગ કરતાં

$$P[A \cup B \cup C] = P(A) + P(B) + P(C) - P(B \cap C) - P(A \cap B) - P(A \cap C) + P(A \cap B \cap C)$$

<mark>ઉદાહરણ 17 ઃ</mark> એક રિલે દોડમાં પાંચ ટુકડીઓ A, B, C, D અને E એ ભાગ લીધો છે.

- (a) A, B અને C ક્રમમાં પહેલા, બીજા અને ત્રીજા સ્થાને આવે તેની સંભાવના શું છે?
- (b) A, B અને C પ્રથમ ત્રણ સ્થાને (કોઈ પણ ક્રમમાં) રહે તેની સંભાવના શું છે?

375 ગણિત : ધોરણ-11

(ધારી લો કે બધા જ અંતિમ ક્રમ સમસંભાવી છે.)

ઉકેલ : જો આપણે પ્રથમ ત્રણ સ્થાનો માટે અંતિમ સ્થિતિનાં નિદર્શાવકાશ વિશે વિચાર કરીએ તો જાણીશું કે આમાં  ${}^5P_3$ , એટલે કે  $\frac{5!}{(5-3)!}=5\times4\times3=60$  નિદર્શ બિંદુ છે અને પ્રત્યેકની સંભાવના  $\frac{1}{60}$  છે.

- (a) A, B અને C ક્રમશઃ પહેલાં, બીજા અને ત્રીજા સ્થાન પર રહે છે. એના માટે એક જ અંતિમ ક્રમ ABC છે.
- તેથી P(A, B) અને C ક્રમશઃ પહેલા, બીજા અને ત્રીજા સ્થાન પર રહે છે.) =  $\frac{1}{60}$
- (b) A, B અને C પહેલાં ત્રણ સ્થાનો પર છે. એના માટે A, B અને C માટે 3! પ્રકાર છે. તેથી આ ઘટનાને સંગત 3! નિદર્શ બિંદુ મળશે.
- તેથી, P(A, B) અને C પહેલા ત્રણ સ્થાનો પર રહે.)  $=\frac{3!}{60}=\frac{6}{60}=\frac{1}{10}$

#### પ્રકીર્ણ સ્વાધ્યાય 16

- 1. એક પેટીમાં 10 લાલ, 20 ભૂરી અને 30 લીલી લખોટીઓ છે. તે પેટીમાંથી 5 લખોટીઓ યાદચ્છિક રીતે કાઢવામાં આવે છે. તો
  - (i) બધી લખોટીઓ ભૂરી હોય. (ii) ઓછામાં ઓછી એક લખોટી લીલી હોય તેની સંભાવના કેટલી ?
- સરખી રીતે ચીપેલાં 52 પત્તાંની થોકડીમાંથી યાદચ્છિક રીતે 4 પત્તાં ખેંચવામાં આવે છે. ખેંચવામાં આવેલાં પત્તાંમાં 3
   ચોકટના અને એક કાળીનું પત્તું હોય એ ઘટનાની સંભાવના કેટલી ?
- એક પાસાની બે બાજુઓમાંથી પ્રત્યેક પર સંખ્યા '1' દર્શાવેલ છે, ત્રણ બાજુઓમાં પ્રત્યેક પર સંખ્યા '2' દર્શાવેલ છે અને એક બાજુ પર સંખ્યા'3' છે. જો આ પાસાને એકવાર ફેંકવામાં આવે તો નીચે આપેલ શોધો :
  - (i) P(2)
- (ii) P(1 અથવા 3)
- (iii) P(3 નહિ)
- એક લોટરીની દસ સમાન ઇનામવાળી 10,000 ટિકિટ વેચવામાં આવી છે. જો તમે (a) એક ટિકિટ (b) બે ટિકિટ
   (c) 10 ટિકિટ ખરીદો છો તો કોઈ પણ ઇનામ ન મળે તેની સંભાવના શોધો.
- 5. 100 વિદ્યાર્થીઓમાંથી 40 અને 60 વિદ્યાર્થીઓના બે વર્ગ બનાવ્યા છે. જો તમે અને તમારો એક મિત્ર 100 વિદ્યાર્થીઓમાં છો તો
  - (a) તમે બંને એક જ વર્ગમાં છો તેની સંભાવના શું છે ?
  - (b) તમે બંને અલગ અલગ વર્ગોમાં છો તેની સંભાવના શું છે ?
- 6. ત્રણ વ્યક્તિઓને માટે ત્રણ પત્ર લખાઈ ગયા છે અને દરેક માટે સરનામું લખેલ એક પરબીડિયાં છે. પત્રોને યાદચ્છિક રીતે પરબીડિયામાં મૂક્યા છે. પ્રત્યેક પરબીડિયામાં એક જ પત્ર છે. ઓછામાં ઓછો એક પત્ર પોતાના સાચા પરબીડિયામાં મૂકાયો છે તેની સંભાવના શોધો.
- 7. A અને B બે ઘટનાઓ એવા પ્રકારની છે કે P(A) = 0.54, P(B) = 0.69 અને  $P(A \cap B) = 0.35$ 
  - (i)  $P(A \cup B)$  (ii)  $P(A' \cap B')$  (iii)  $P(A \cap B')$  (iv)  $P(B \cap A')$  શોધો.

સંભાવના 376

3. એક સંસ્થાનાં કર્મીઓમાંથી 5 કર્મીઓને વ્યવસ્થા સમિતિ માટે પસંદ કરવામાં આવ્યા છે. આ પાંચ કર્મીઓની વિગતો નીચે દર્શાવેલ છે :

| ક્રમ | નામ  | જાતિ | ઉંમર (વર્ષમાં) |  |
|------|------|------|----------------|--|
| 1.   | હરીશ | પુ   | 30             |  |
| 2.   | રોહન | પુ   | 33             |  |
| 3.   | શીતલ | સ્રી | 46             |  |
| 4.   | એલિસ | સ્રી | 28             |  |
| 5.   | સલીમ | પુ   | 41             |  |

આ સમૂહમાંથી પ્રવકતાનાં પદ માટે યાદેચ્છિક રીતે એક વ્યક્તિને પસંદ કરવામાં આવી છે. પ્રવક્તા પુરુષ હોય અથવા 35 વર્ષથી વધારે ઉંમરના હોય તેની સંભાવના શું થશે?

- 9. 0, 1, 3, 5 અને 7 અંકોના ઉપયોગથી (i) પુનરાવર્તન સિવાય (ii) પુનરાવર્તન સહિત ગોઠવણી કરતાં 5 વડે વિભાજય હોય એવી 4 અંકોની સંખ્યા બને તેની સંભાવના શોધો.
- 10. કોઈ પેટીના તાળામાં ચાર આંટા લાગે છે. તેનામાં પ્રત્યેક પર 0 થી 9 સુધી 10 અંક છાપેલા છે. તાળું ચાર આંકડાઓના એક વિશેષ ક્રમ (આંકડાઓના પુનરાવર્તન સિવાય) અનુસાર જ ખૂલે છે. એ વાતની શું સંભાવના છે કે કોઈ વ્યક્તિ પેટી ખોલવા માટે સાચા ક્રમની જાણ મેળવી લે?

#### સારાંશ

આ પ્રકરણમાં આપણે સંભાવનાના પૂર્વધારણાયુક્ત અભિગમ વિશે અભ્યાસ કર્યો. આ પ્રકરણની મુખ્ય વિશેષતાઓ નીચે દર્શાવેલ છે:

- ♦ નિદર્શાવકાશ : તમામ શક્ય પરિણામોનો ગણ
- 🔷 નિદર્શ બિંદુ : નિદર્શાવકાશનો ઘટક
- ♦ ઘટના : નિદર્શાવકાશનો એક ઉપગણ
- ♦ અશક્ય ઘટના : ખાલીગણ
- 🔷 ચોક્કસ ઘટના : પૂર્ણ નિદર્શાવકાશ
- lack પૂરક ઘટના અથવા નહિ-ઘટના : <math>A' અથવા S-A
- lackઘટના  ${f A}$  અથવા  ${f B}$  : ગણ  ${f A} \cup {f B}$
- lacktriangle ઘટના  ${f A}$  અને  ${f B}$  : ગણ  ${f A}\cap {f B}$
- lacktriangle ઘટના  ${f A}$ , પરંતુ  ${f B}$  નહિ : ગણ  ${f A}-{f B}$
- ♦ પરસ્પર નિવારક ઘટનાઓ : જો  $A \cap B = \emptyset$  તો A અને B પરસ્પર નિવારક ઘટનાઓ છે.
- ♦ નિઃશેષ અને પરસ્પર નિવારક ઘટનાઓ ઃ જો  $E_1 \cup E_2 \cup ... \cup E_n = S$  અને  $E_i \cap E_j = \emptyset$ ,  $\forall i \neq j$  તો ઘટનાઓ  $E_1, E_2, ..., E_n$ પરસ્પર નિવારક અને નિઃશેષ છે.

377 ગણિત : ધોરણ-11

- ♦ સંભાવના : પ્રત્યેક નિદર્શ બિંદુ ω, ને સંગત સંખ્યા P (ω,) એવી મળે કે જેથી
  - (i)  $0 \le P(\omega_i) \le 1$
- (ii) બધા જ  $\omega_i \in S$  માટે  $\sum P(\omega_i) = 1$
- (iii) બધા જ  $\omega_i \in A$  , માટે  $P(A) = \sum P(\omega_i)$  જયાં  $P(\omega_i)$  એ પરિણામ  $\omega_i$  ની સંભાવના કહેવાય છે.
- ♦ સમસંભાવી પરિણામ : સમાન સંભાવનાવાળા બધાં પરિણામ
- ◆ ઘટનાની સંભાવના : એક સમસંભાવી પરિણામોવાળા સાન્ત નિદર્શાવકાશ માટે ઘટના A ની સંભાવના

$$P(A) = \frac{n(A)}{n(S)}$$
, જ્યાં  $n(A) =$  ગણ  $A$  ના ઘટકોની સંખ્યા અને  $n(S) =$  ગણ  $S$  ના ઘટકોની સંખ્યા

♦ જો A અને B કોઈ બે ઘટનાઓ હોય તો

$$P(A \text{ અથવા } B) = P(A) + P(B) - P(A \text{ અને } B)$$
  
અથવા  $P(A \cup B) = P(A) + P(B) - P(A \cap B)$ 

- જો A અને B પરસ્પર નિવારક ઘટનાઓ હોય, તો P(A) અથવા B = P(A) + P(B)
- ♦ કોઈ ઘટના A માટે P( A-નહિ) = 1 – P(A)

#### Historical Note

Probability theory like many other branches of mathematics, evolved out of practical consideration. It had its origin in the 16th century when an Italian physician and mathematician Jerome Cardan (1501–1576) wrote the first book on the subject "Book on Games of Chance" (*Biber de Ludo Aleae*). It was published in 1663 after his death.

In 1654, a gambler Chevalier de Metre approached the well known French Philosopher and Mathematician Blaise Pascal (1623–1662) for certain dice problem. Pascal became interested in these problems and discussed with famous French Mathematician Pierre de Fermat (1601–1665). Both Pascal and Fermat solved the problem independently. Besides, Pascal and Fermat, outstanding contributions to probability theory were also made by Christian Huygenes (1629–1665), a Dutchman, J. Bernoulli (1654–1705), De Moivre (1667–1754), a Frenchman Pierre Laplace (1749–1827), the Russian P.L Chebyshev (1821–1897), A. A Markov (1856–1922) and A. N Kolmogorove (1903–1987). Kolmogorov is credited with the axiomatic theory of probability. His book 'Foundations of Probability' published in 1933, introduces probability as a set function and is considered a classic.





# અનંત શ્રેઢી

#### A.1.1 પ્રાસ્તાવિક

શ્રેણી  $a_1$ ,  $a_2$ , ...,  $a_n$ , ... ને અનંત પદો છે. આ શ્રેણીને અનંત શ્રેણી કહે છે અને તેનો સરવાળો એટલે કે  $a_1+a_2+a_3+...+a_n+...$  ને આ અનંત શ્રેણીના સંદર્ભમાં અનંત શ્રેઢી કહે છે. આપણે શ્રેણી અને શ્રેઢી શીર્ષકવાળા પ્રકરણ 9 માં આ ચર્ચા કરી. આ શ્રેઢીને સરવાળાના સંકેત (sigma)નો ઉપયોગ કરી સંક્ષિપ્તરૂપે પણ દર્શાવી શકાય એટલે કે,

$$a_1 + a_2 + a_3 + \dots + a_n + \dots = \sum_{k=1}^{\infty} a_k$$

આ પ્રકરણમાં આપણે જુદી જુદી સમસ્યાની પરિસ્થિતિમાં ઉપયોગી થઈ શકે તેવી કેટલીક વિશેષ પ્રકારની શ્રેણીઓનો અભ્યાસ કરીશું.

#### A.1.2 કોઈપણ ઘાતાંક માટે દ્વિપદી પ્રમેય :

પ્રકરણ 8 માં આપણે ઘાતાંક ધન પૂર્ણાંક હોય તેવા દ્વિપદી પ્રમેયની ચર્ચા કરી. આપણે આ વિભાગમાં આ પ્રમેયમાં જેમાં ઘાતાંક પૂર્ણ સંખ્યા હોય તેવું જરૂરી નથી તેવા વ્યાપક સ્વરૂપને વ્યક્ત કરીશું. તે આપણને એક વિશિષ્ટ પ્રકારની અનંત શ્રેઢી આપે છે. તેને *દ્વિપદી શ્રેઢી* કહે છે. ઉદાહરણો દ્વારા કેટલાંક ઉપયોગી પરિણામો પર આપણે પ્રકાશ ફેંકીશું.

આપણે જાણીએ છીએ કે,

$$(1+x)^n = {}^nC_0 + {}^nC_1 x + \dots + {}^nC_n x^n$$

**379** ગણિત : ધોરણ 11

અહીં, n એ અનૃણ પૂર્ણાંક છે. જો આપણે ઘાતાંક n ને ઋણ પૂર્ણાંક અથવા અપૂર્ણાંક લઈએ, તો આપણે નિરીક્ષણ કરી શકીએ કે સંચય  $^n\mathbf{C}_r$  નો કોઈ અર્થ રહેતો નથી.

હવે જો ઘાતાંક ઋણ પૂર્ણાંક અથવા અપૂર્ણાંક હોય અને પૂર્ણ સંખ્યા ન હોય, તો અનંત શ્રેઢી મળે તેવું દ્વિપદી પ્રમેય આપણે વ્યક્ત (સાબિતી સિવાય) કરીશું.

પ્રમેય : જો |x| < 1 હોય, તો

$$(1+x)^{m} = 1 + mx + \frac{m(m-1)}{1\cdot 2}x^{2} + \frac{m(m-1)(m-2)}{1\cdot 2\cdot 3}x^{3} + \dots$$

નોંધ : 1. જ્યારે m ઋણ પૂર્ણાંક અથવા અપૂર્ણાંક હોય ત્યારે  $\mid x \mid < 1$ , એટલે કે -1 < x < 1 શરત હોવી જરૂરી છે એમ આપણે કાળજીપૂર્વક નોંધીશું. ઉદાહરણ તરીકે, જો આપણે x = -2 અને m = -2, લઈએ, તો આપણને

$$(1-2)^{-2} = 1 + (-2)(-2) + \frac{(-2)(-3)}{1 \cdot 2}(-2)^2 + \dots + \hat{\psi}$$

અથવા

$$1 = 1 + 4 + 12 + \dots$$
 મળે.

આ અશક્ય છે.

2. જ્યારે m ઋશ પૂર્ણાંક અથવા અપૂર્ણાંક હોય ત્યારે આપણે નોંધીશું કે  $(1+x)^m$  ના વિસ્તરણમાં અનંત સંખ્યામાં પદો મળે છે.

હવે, 
$$(a+b)^m = \left[ a \left( 1 + \frac{b}{a} \right) \right]^m = a^m \left( 1 + \frac{b}{a} \right)^m$$
 
$$= a^m \left[ 1 + m \frac{b}{a} + \frac{m(m-1)}{1 \cdot 2} \left( \frac{b}{a} \right)^2 + \dots \right]$$
 
$$= a^m + m a^{m-1} b + \frac{m(m-1)}{1 \cdot 2} a^{m-2} b^2 + \dots$$
 તો વિચાર કરીએ.

આ વિસ્તરણ જ્યારે  $\left|\frac{b}{a}\right|<1$  અથવા તેને સમકક્ષ  $\mid b\mid<\mid a\mid$  હોય ત્યારે પ્રમાણભૂત છે.

 $(a+b)^m$ ના વિસ્તરણનું વ્યાપક પદ

$$\frac{m(m-1)(m-2)...(m-r+1)a^{m-r}b^r}{1\cdot 2\cdot 3..\cdot r} \,\, \hat{\Theta}.$$

આપણે નીચે પ્રમાણે દ્વિપદી પ્રમેયનાં અમુક ચોક્કસ ઉદાહરણો આપીશું. આપણે |x|<1 ધારીશું. આ વિસ્તરણોને આપણે વિદ્યાર્થીઓ માટે સ્વાધ્યાય તરીકે રાખીશું.

1. 
$$(1+x)^{-1} = 1 - x + x^2 - x^3 + ...$$

2. 
$$(1-x)^{-1} = 1 + x + x^2 + x^3 + ...$$

3. 
$$(1+x)^{-2} = 1 - 2x + 3x^2 - 4x^3 + \dots$$

4. 
$$(1 - x)^{-2} = 1 + 2x + 3x^2 + 4x^3 + ...$$

અનંત શ્રેઢી

ઉદાહરણ 1 : 
$$\left(1-\frac{x}{2}\right)^{-\frac{1}{2}}$$
,  $|x| < 2$  માટેનું વિસ્તરણ કરો.

ઉકેલ: 
$$\left(1 - \frac{x}{2}\right)^{-\frac{1}{2}} = 1 + \frac{\left(-\frac{1}{2}\right)\left(-\frac{x}{2}\right) + \frac{\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)}{1 \cdot 2} \left(-\frac{x}{2}\right)^2 + \dots$$
$$= 1 + \frac{x}{4} + \frac{3x^2}{32} + \dots$$
 મળશે.

#### A.1.3 અનંત સમગુણોત્તર શ્રેઢી :

પ્રકરણ 9, વિભાગ 9.5 માં કલ્યું છે કે જો  $\frac{a_{k+1}}{a_k}=r$  (અચળ)  $k=1,\,2,\,3,\,...,\,n-1$ , હોય, તો શ્રેણી  $a_1,\,a_2,\,a_3,\,...,\,a_n$  સમગુણોત્તર શ્રેણી કહેવાય છે. વિશેષતઃ જો  $a_1=a$  લઈએ તો શ્રેણીના સ્વરૂપમાં  $a,\,ar,\,ar^2,\,...,\,ar^{n-1}$ ને સમગુણોત્તર શ્રેણીનાં પ્રમાણિત સ્વરૂપ તરીકે લેવામાં આવે છે. અહીં a પ્રથમ પદ અને r સમગુણોત્તર શ્રેણીનો સામાન્ય ગુણોત્તર છે.

અગાઉ આપણે સાન્ત શ્રેઢી  $a+ar+ar^2+\ldots+ar^{n-1}$ નો સરવાળો શોધવાના સૂત્રની ચર્ચા કરી છે. તે નીચે આપેલ છે.

$$S_n = \frac{a\left(1 - r^n\right)}{1 - r} \,.$$

આ વિભાગમાં, આપણે અનંત સમગુણોત્તર શ્રેઢી  $a + ar + ar^2 + ... + ar^{n-1} + ...$ નો સરવાળો શોધવાનું સૂત્ર વ્યક્ત કરીએ અને તેને ઉદાહરણ દ્વારા સમજીએ.

આપણે સમગુણોત્તર શ્રેણી  $1, \frac{2}{3}, \frac{4}{9}, \dots$  લઇએ.

અહીં, 
$$a = 1, r = \frac{2}{3}$$
.

$$S_n = \frac{1 - \left(\frac{2}{3}\right)^n}{1 - \frac{2}{3}} = 3 \left[1 - \left(\frac{2}{3}\right)^n\right] \qquad \dots (1)$$

ચાલો આપણે હવે, n નું મૂલ્ય મોટું અને મોટું થાય ત્યારે  $\left(\frac{2}{3}\right)^n$  ની વર્તણૂકનો અભ્યાસ કરીએ.

| n                            | 1      | 5            | 10            | 20            |
|------------------------------|--------|--------------|---------------|---------------|
| $\left(\frac{2}{3}\right)^n$ | 0.6667 | 0.1316872428 | 0.01734152992 | 0.00030072866 |

આપણે નિરીક્ષણ કરીશું કે જેમ n નું મૂલ્ય મોટું અને મોટું થતું જાય તેમ  $\left(\frac{2}{3}\right)^n$  નું મૂલ્ય શૂન્યની નજીક જાય છે. ગાણિતિક રીતે,

381 ગણિત : ધોરણ 11

આપણે કહીશું કે જેમ n ખૂબ જ મોટો થાય તેમ  $\left(\frac{2}{3}\right)^n$ નું મૂલ્ય ખૂબ જ નાનું થતું જાય છે. બીજા શબ્દોમાં જેમ  $n \to \infty$ , તેમ  $\left(\frac{2}{3}\right)^n \to 0$ . પરિણામ સ્વરૂપે આપણને અનંત પદોનો સરવાળો S=3 મળે છે.

આમ, અનંત સમગુણોત્તર શ્રેણી  $a, ar, ar^2, ...,$  ના સામાન્ય ગુણોત્તર r નું નિરપેક્ષ મૂલ્ય 1 કરતાં ઓછું હોય, તો

$$S_n = \frac{a(1-r^n)}{1-r} = \frac{a}{1-r} - \frac{ar^n}{1-r}$$

આ વિકલ્પમાં, |r|<1 હોવાથી જેમ  $n o\infty$  તેમ  $r^n o 0$ . તેથી  $\dfrac{ar^n}{1-r} o 0$  .

$$n \to \infty$$
 ત્યારે  $S_n \to \frac{a}{1-r}$ .

અનંત સમગુણોત્તર શ્રેણીનાં અનંત પદોનો સરવાળો સંકેતમાં S વડે દર્શાવાય છે. આમ, આપણને,  $S = \frac{a}{1-r}$  મળે. ઉદાહરણ તરીકે,

(i) 
$$1 + \frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \dots = \frac{1}{1 - \frac{1}{2}} = 2$$

(ii) 
$$1 - \frac{1}{2} + \frac{1}{2^2} - \frac{1}{2^3} + \dots = \frac{1}{1 - \left(-\frac{1}{2}\right)} = \frac{1}{1 + \frac{1}{2}} = \frac{2}{3}$$

ઉદાહરણ 2 : સમગુણોત્તર શ્રેણી  $\frac{-5}{4}$ ,  $\frac{5}{16}$ ,  $\frac{-5}{64}$ ,.... નાં અનંત પદ સુધીનો સરવાળો શોધો.

ઉકેલ: અહીં 
$$a = \frac{-5}{4}$$
 અને  $r = -\frac{1}{4}$ . આથી  $|r| < 1$ .

આથી અનંત પદ સુધીનો સરવાળો  $\frac{-5}{4} = \frac{-5}{4} = -1$  થાય.  $1 + \frac{1}{4} = \frac{5}{4} = -1$ 

#### A.1.4 ઘાતાંકીય શ્રેઢી

સ્વિસના મહાન ગણિતશાસ્ત્રી Leonhard Euler એ (1707 - 1783), તેમના કલનના પુસ્તકમાં 1748 માં એક સંખ્યા e ની રજૂઆત કરી. જેવી રીતે વર્તુળના અભ્યાસમાં  $\pi$  ઉપયોગી છે, તેવી જ રીતે કલન ગણિતમાં e ઉપયોગી છે.

નીચે આપેલી સંખ્યાઓની અનંત શ્રેઢી

$$1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \dots$$
 નો વિચાર કરીએ. ... (1)

(1) માં આપેલી શ્રેઢીના સરવાળાને e દ્વારા દર્શાવાય છે.

સંખ્યા e નું આપણે આકલન કરીએ.

અનંત શ્રેઢી

(1) ની શ્રેઢીનાં તમામ પદો ધન હોવાથી સ્પષ્ટ છે કે તેમનો સરવાળો પણ ધન છે.

બે સરવાળાનો વિચાર કરીએ.

$$\frac{1}{3!} + \frac{1}{4!} + \frac{1}{5!} + \dots + \frac{1}{n!} + \dots$$
 ... (2)

અને

$$\frac{1}{2^2} + \frac{1}{2^3} + \frac{1}{2^4} + \dots + \frac{1}{2^{n-1}} + \dots$$
 ... (3)

નિરીક્ષણ કરો.

$$\frac{1}{3!} = \frac{1}{6} \text{ અને } \frac{1}{2^2} = \frac{1}{4}. \qquad આથી, \frac{1}{3!} < \frac{1}{2^2}$$

$$\frac{1}{4!} = \frac{1}{24} \text{ અને } \frac{1}{2^3} = \frac{1}{8}. \quad \text{આથી, } \frac{1}{4!} < \frac{1}{2^3}$$

$$\frac{1}{5!} = \frac{1}{120}$$
 અને  $\frac{1}{2^4} = \frac{1}{16}$ . આથી,  $\frac{1}{5!} < \frac{1}{2^4}$ .

માટે, સમાનતાના આધારે, આપણે કહી શકીએ કે,

$$n > 2$$
 માટે  $\frac{1}{n!} < \frac{1}{2^{n-1}}$ 

આપણે જોઈ શકીએ છીએ કે (2) નું દરેક પદ તેને અનુરૂપ (3) ના પદ કરતાં નાનું છે,

$$\operatorname{HL}\hat{\mathbf{z}} \quad \left(\frac{1}{3!} + \frac{1}{4!} + \frac{1}{5!} + \dots + \frac{1}{n!} + \dots\right) < \left(\frac{1}{2^2} + \frac{1}{2^3} + \frac{1}{2^4} + \dots + \frac{1}{2^{n-1}} + \dots\right) \qquad \dots (4)$$

(4) ની બંને બાજુએ  $\left(1 + \frac{1}{1!} + \frac{1}{2!}\right)$  ઉમેરતાં,

$$\left(1 + \frac{1}{1!} + \frac{1}{2!}\right) + \left(\frac{1}{3!} + \frac{1}{4!} + \frac{1}{5!} + \dots + \frac{1}{n!} + \dots\right) 
< \left\{ \left(1 + \frac{1}{1!} + \frac{1}{2!}\right) + \left(\frac{1}{2^2} + \frac{1}{2^3} + \frac{1}{2^4} + \dots + \frac{1}{2^{n-1}} + \dots\right) \right\} 
= \left\{ 1 + \left(1 + \frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \frac{1}{2^4} + \dots + \frac{1}{2^{n-1}} + \dots\right) \right\} 
\dots (5)$$

$$= 1 + \frac{1}{1 - \frac{1}{2}} = 1 + 2 = 3$$

(5) ની ડાબી બાજુ શ્રેઢી (1) દર્શાવે છે. માટે e < 3 અને e > 2 પણ છે. આથી, 2 < e < 3.

-ાંધ ઃ ચલ x ને સમાવિષ્ટ કરતી ઘાતાંકીય શ્રેઢી

$$e^{x} = 1 + \frac{x}{1!} + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots + \frac{x^{n}}{n!} + \dots$$

383 ગણિત : ધોરણ 11

ઉદાહરણ 3:x ના ઘાતવાળી શ્રેઢી  $e^{2x+3}$  ના વિસ્તરણમાં  $x^2$  નો સહગુણક શોધો.

ઉકેલ : ઘાતાંકીય શ્રેઢી,

$$e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots$$

માં x ના સ્થાને (2x + 3) લેતાં,

$$e^{2x+3} = 1 + \frac{(2x+3)}{1!} + \frac{(2x+3)^2}{2!} + \dots$$

અહીં, વ્યાપક પદ  $\frac{\left(2x+3\right)^n}{n!} = \frac{\left(3+2x\right)^n}{n!}$  થશે. દ્વિપદી પ્રમેયથી તેનું વિસ્તરણ

$$\frac{1}{n!} \left[ 3^n + {^n}C_1 3^{n-1} (2x) + {^n}C_2 3^{n-2} (2x)^2 + ... + (2x)^n \right].$$

અહીં  $x^2$  નો સહગુણક  $\frac{{}^n\mathbf{C}_2 3^{n-2} 2^2}{n!}$  છે. આથી આવી શ્રેઢીમાં  $x^2$  નો સહગુણક

$$\sum_{n=2}^{\infty} \frac{{}^{n}C_{2}3^{n-2}2^{2}}{n!} = 2\sum_{n=2}^{\infty} \frac{n(n-1)3^{n-2}}{n!}$$

$$= 2\sum_{n=2}^{\infty} \frac{3^{n-2}}{(n-2)!}$$

$$= 2\left[1 + \frac{3}{1!} + \frac{3^{2}}{2!} + \frac{3^{3}}{3!} + \dots\right]$$

$$= 2e^{3}$$

[n! = n (n-1) (n-2)! નો ઉપયોગ કરતાં]

આમ,  $e^{2x+3}$  ના વિસ્તરણમાં  $x^2$  નો સહગુણક  $2e^3$  છે.

વૈકલ્પિક રીતે,  $e^{2x+3} = e^3 \cdot e^{2x}$ 

$$= e^{3} \left[ 1 + \frac{2x}{1!} + \frac{(2x)^{2}}{2!} + \frac{(2x)^{3}}{3!} + \dots \right]$$

આમ,  $e^{2x+3}$  ના વિસ્તરણમાં  $x^2$  નો સહગુણક  $e^3.\frac{2^2}{2!} = 2e^3$ 

ઉદાહરણ 4: દશાંશના એક સ્થાન સુધી  $e^2$  નું આસન્ન મૂલ્ય શોધો.

6કેલ : x નો સમાવેશ કરતી ઘાતાંકીય શ્રેઢીના સૂત્ર,

$$e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^n}{n!} + \dots$$
 Hi  $x = 2$  eadi,

$$e^2 = 1 + \frac{2}{1!} + \frac{2^2}{2!} + \frac{2^3}{3!} + \frac{2^4}{4!} + \frac{2^5}{5!} + \frac{2^6}{6!} + \dots$$

અનંત શ્રેઢી

$$= 1 + 2 + 2 + \frac{4}{3} + \frac{2}{3} + \frac{4}{15} + \frac{4}{45} + \dots$$

≥ પ્રથમ સાત પદોનો સરવાળો ≥ 7.355.

બીજી રીતે જોઈએ તો,

$$e^{2} < \left(1 + \frac{2}{1!} + \frac{2^{2}}{2!} + \frac{2^{3}}{3!} + \frac{2^{4}}{4!}\right) + \frac{2^{5}}{5!} \left(1 + \frac{2}{6} + \frac{2^{2}}{6^{2}} + \frac{2^{3}}{6^{3}} + \dots\right)$$

$$= 7 + \frac{4}{15} \left(1 + \frac{1}{3} + \left(\frac{1}{3}\right)^{2} + \dots\right) = 7 + \frac{4}{15} \left(\frac{1}{1 - \frac{1}{3}}\right) = 7 + \frac{2}{5} = 7.4.$$

આમ,  $e^2$  એ 7.355 અને 7.4 ની વચ્ચે આવેલી છે. આથી  $e^2$  નું દશાંશના એક સ્થળ સુધીની આસન્ન કિંમત 7.4 છે.

#### A.1.5 લઘુગણકીય શ્રેઢી

લઘુગણકીય શ્રેઢી એ પણ બીજી ઘણી અગત્યની શ્રેઢી છે. તે પણ અનંત શ્રેઢીના સ્વરૂપમાં છે. આપણે આગળનું પરિણામ સાબિતી આપ્યા સિવાય વ્યક્ત કરીશું અને ઉદાહરણ દ્વારા તેની ઉપયોગિતા સ્પષ્ટ કરીશું.

પ્રમેયઃ જો |x| < 1 હોય, તો

$$\log_e (1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots$$

ઉપરની જમણી બાજુની શ્રેઢીને લઘુગણકીય શ્રેઢી કહે છે.

ાં  $\log_e{(1+x)}$  નું વિસ્તરણ x=1 માટે સત્ય છે.  $\log_e{(1+x)}$  ના વિસ્તરણમાં x=1 લેતાં, આપણને  $\log_e{2} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots + 0$ 

ઉદાહરણ 5: જો  $\alpha$ ,  $\beta$  એ સમીકરણ  $x^2 - px + q = 0$  નાં બીજ હોય તો સાબિત કરો કે,

$$\log_e (1 + px + qx^2) = (\alpha + \beta)x - \frac{\alpha^2 + \beta^2}{2}x^2 + \frac{\alpha^3 + \beta^3}{3}x^3 - \dots$$

ઉદ્દેલ: જમણી બાજુ 
$$= \left[\alpha x - \frac{\alpha^2 x^2}{2} + \frac{\alpha^3 x^3}{3} - \dots\right] + \left[\beta x - \frac{\beta^2 x^2}{2} + \frac{\beta^3 x^3}{3} - \dots\right]$$
$$= \log_e \left(1 + \alpha x\right) + \log\left(1 + \beta x\right)$$
$$= \log_e \left(1 + (\alpha + \beta)x + \alpha \beta x^2\right)$$
$$= \log_e \left(1 + px + qx^2\right) = \text{sign only }$$

અહીં, આપણે  $\alpha+\beta=p$  અને  $\alpha\beta=q$  હકીકતનો ઉપયોગ કર્યો છે. આ હકીકત આપણે, દ્વિઘાત સમીકરણનાં આપેલ બીજ પરથી જાણીએ છીએ. આપણે  $|\alpha x|<1$  અને  $|\beta x|<1$  છે તેમ પણ ધારી લીધું છે.



# ગાણિતિક નમૂના

#### A.2.1 પ્રાસ્તાવિક

છેલ્લી કેટલીક સદીઓથી વિવિધ ક્ષેત્રો જેમકે વિજ્ઞાન, નાણાવ્યવસ્થા, સંચાલન વગેરેની મોટા ભાગની ગતિમાં ઉદ્ભવતી વાસ્તવિક જીવનની સમસ્યાઓના ઉકેલ માટે ગાણિતિક પદ્ધતિઓનો ઉપયોગ કરવો આવશ્યક બને છે. ડિજિટલ કમ્પ્યૂટર અને ગણતરીની પદ્ધતિઓની વધતી જતી શક્તિના લીધે જીવનની વાસ્તવિક સમસ્યાઓના ઉકેલ માટે ગણિતના ઉપયોગનો બહોળો પ્રસાર થયો તેમજ આ બંનેના કારણે સરળતાથી ખૂબ જ લાંબી અને જટિલ સમસ્યાઓનો ઉકેલ હાથવગો થયો.

વાસ્તવિક જીવનની અમુક સમસ્યાઓનું ગાણિતિક સ્વરૂપમાં રૂપાંતર કરી તેના ઉકેલને સારી રીતે રજૂ કરી શકાય છે. આ રૂપાંતરણની ક્રિયાને ગાણિતિક નમૂના મેળવવાની પદ્ધતિ કહે છે.

અહીં અમે તમને ઉદાહરણો દ્વારા આ વિધિમાં ઉપયોગમાં લેવાતા સોપાનોથી પરિચિત કરીશું. સૌ પ્રથમ આપણે ગાણિતિક નમૂનો શું છે તેની વાત કરીશું અને પછી ગાણિતિક નમૂના બનાવવાની પ્રક્રિયામાં આવતાં સોપાનોની ચર્ચા કરીશું.

#### A.2.2 પ્રાથમિકતાઓ

વિશ્વને સમજવા માટે ગાણિતિક નમૂના એ આવશ્યક સાધન છે. જૂના જમાનામાં ચાઇનિઝ, ઇજિપ્શ્યન, ભારતીય, બેબીલોનીઅન અને ગ્રીક પ્રજા ગણિતના જ્ઞાન દ્વારા કુદરતી ઘટનાઓની આગાહી કરતાં હતાં. શિલ્પી, કસબી અને હસ્તકલાના મોટા ભાગની કલાકારીગરી ભૂમિતિના સિદ્ધાંત પર આધારિત હતી.

ધારો કે એક સર્વેયરને ટાવરની ઊંચાઈ માપવી છે. માપપટ્ટીથી આ ઊંચાઈ માપવી મુશ્કેલ છે. આ ઊંચાઈ માપવા માટેનાં કયાં પરિબળો છે તે શોધવું એ બીજો વિકલ્પ છે. જો સર્વેયર ઉત્સેધકોણ અને જ્યાં તે ઊભો છે ત્યાંથી ટાવરના જમીન પરના બિંદુનું અંતર જાણતા હોય, તો ત્રિકોણમિતિના જ્ઞાનથી ટાવરની ઊંચાઈની ગણતરી કરી શકે.

આથી તેનું કામ હવે ટાવરના ટોચનો ઉત્સેધકોણ અને તે જ્યાં ઊભો છે ત્યાંથી ટાવરના જમીન પરના બિંદુનું અંતર શોધવાનું

ગાણિતિક નમૂના 386

રહે છે. તે બંને સરળતાથી માપી શકાય છે. આમ, જો ઉત્સેધકોણ 40° હોય અને અંતર 450 મી હોય, તો આ પ્રશ્નનો ઉકેલ ઉદાહરણ 1માં આપેલ છે.

<mark>ઉદાહરણ 1</mark> : જમીન પરના બિંદુ O થી ટાવરની ટોચનો ઉત્સેધકોણ 40° છે તથા ટાવરના જમીન પરના બિંદુથી O નું અંતર 450 મી છે. ટાવરની ઊંચાઈ શોધો.

ઉકેલ : આપણે આ પ્રશ્નને જુદાં જુદાં સોપાનોથી ઉકેલીશું.

<del>સોપાન 1</del> : પ્રથમ આપણે વાસ્તવિક સમસ્યાને સમજીશું. પ્રશ્નમાં ટાવર આપેલ છે અને તેની ઊંચાઈ માપવાની છે. ધારો કે તેની ઊંચાઈ h છે. જમીન પરના કોઈક બિંદુ O થી ટાવરના જમીન પરના બિંદુનું અંતર 450 મી આપેલ છે. ધારો કે આ અંતર d છે. તેથી d=450 મી. આપણે એ પણ જાણીએ છીએ કે,  $\theta$  વડે દર્શાવેલ ઉત્સેધકોણ  $40^\circ$  છે.

અંતર d અને ઉત્સેધકોણ  $\theta$  આપેલ હોય ત્યારે ઊંચાઈ h શોધવી તે વાસ્તવિક સમસ્યા છે.

<del>સોપાન 2</del> : પ્રશ્નમાં ત્રણ વસ્તુઓ દર્શાવેલ છે; ઊંચાઈ, અંતર અને ઉત્સેધકોણ છે. તો આપણે આ ત્રણેને સાંકળતો સંબંધ મેળવીશું. પ્રશ્નને ભૌમિતિક રીતે દર્શાવીને આ સંબંધ મેળવી શકાય. (આકૃતિ 1)

h

450 મીટર

આકૃતિ 1

AB ટાવર દર્શાવે છે. OA એ બિંદુ O થી ટાવરના જમીન પરના બિંદુ વચ્ચેનું સમક્ષિતિજ અંતર છે. ∠AOB એ ઉત્સેધકોણ છે.

આમ, 
$$\tan\theta = \frac{h}{d} \text{ અથવા } h = d \tan\theta \qquad ... (1)$$
 આ  $\theta$ ,  $h$  અને  $d$  ને સાંકળતું સમીકરણ છે.

સોપાન 3: આપણે h શોધવા માટે સમીકરણ (1)નો ઉપયોગ કરીશું. આપણી પાસે  $\theta=40^\circ$ અને d = 450 મી છે.

$$d = 450$$
 મી છે.

સોપાન 4 : આમ આપણે ટાવરની ઊંચાઈ આશરે 378 મી મેળવી.

 $\therefore h = tan 40^{\circ} \times 450 = 450 \times 0.839 = 377.6$  મી

ચાલો આપણે આ પ્રશ્નને ઉકેલવા માટે જે જુદાં જુદાં સોપાનોનો ઉપયોગ કર્યો છે તેના વિશે વિચારીએ. સોપાન 1 માં આપણે વાસ્તવિક સમસ્યાનો અભ્યાસ કર્યો અને તેમાં ત્રણ પ્રચલ, ઊંચાઈ, અંતર અને ઉત્સેધકોણ આવેલ છે તેમ નક્કી કર્યું. એટલે કે આ સોપાનમાં આપણે વાસ્તવિક જીવનની સમસ્યાનો અભ્યાસ કર્યો અને પ્રચલને ઓળખ્યા.

સોપાન 2 માં આપણે ભૂમિતિનો ઉપયોગ કર્યો અને આકૃતિ 1 માં દર્શાવ્યા પ્રમાણે આપણે શોધ્યું કે આપેલ સમસ્યાનું ભૌમિતિક નિરૂપણ કરી શકાય છે. પછી "tangent" વિધેયના ત્રિકોણમિતિય ગુણોત્તરનો ઉપયોગ કરી

$$h = d \tan \theta$$
 સંબંધ સ્થાપિત કર્યો.

આમ, આ સોપાનમાં આપણે સમસ્યાનું ગાણિતિક સ્વરૂપમાં રૂપાંતર કર્યું. એટલે કે આપણે આ વાસ્તવિક સમસ્યાને દર્શાવતું સમીકરણ શોધ્યું.

સોપાન 3 માં આપણે ગાણિતિક પ્રશ્નનો ઉકેલ શોધ્યો અને h = 377.6 મી પ્રાપ્ત કર્યા. એટલે કે આપણે સમસ્યાનો ઉકેલ શોધ્યો. છેલ્લા સોપાનમાં આપણે પ્રશ્નના ઉકેલનું અર્થઘટન કર્યું અને દર્શાવ્યું કે ટાવરની ઊંચાઈ આશરે 378 મી છે. આપણે આને

વાસ્તવિક સમસ્યાના ગાણિતિક ઉકેલનું અર્થઘટન કરવું એમ કહીએ છીએ.

ખરેખર ગણિતશાસ્ત્રીઓ અને બીજા બધા જયારે વાસ્તવિક જીવનની જુદી જુદી સમસ્યાઓનો અભ્યાસ કરે છે ત્યારે આ સોપાનો હોય છે.

જયાં જુદી જુદી પરિસ્થિતિનો અભ્યાસ કરવા માટે ગણિતનો ઉપયોગ અસરકારક રીતે થાય છે એવાં અમુક ઉદાહરણો નીચે આપ્યાં છે :

- 1. માનવ અને અન્ય તમામ પ્રાણીઓમાં શરીરના વિવિધ ભાગોમાં ઑક્સિજન અને અન્ય પોષક તત્ત્વોને પ્રવાહિત કરવા માટે રક્તનો યોગ્ય પ્રવાહ આવશ્યક છે. રક્તવાહિનીમાં કોઈ પણ પ્રકારનું સંકોચન અથવા રક્તવાહિનીઓની લાક્ષણિકતાઓમાં કોઈ ફેરફાર પ્રવાહને બદલી શકે છે અને તેનાથી અસુવિધાથી માંડીને અચાનક મૃત્યુ સુધીની ક્ષતિ થઈ શકે છે. રક્તપ્રવાહ અને રક્તવાહિનીની શારીરિક લાક્ષણિકતાઓ વચ્ચેનો સંબંધ શોધવો એ સમસ્યા હોય છે.
- 2. ક્રિકેટમાં ત્રીજા અમ્પાયર બૅટ્સમૅન ત્યાં નથી એવું ધારીને દડાના પથનું અનુકરણ કરીને પ્રથમ LBW નો નિર્ણય કરે છે. બૅટ્સમૅનના પગને દડો વાગે તે પહેલાંના તેના જાણીતા પથના ગાણિતિક સમીકરણ પર આવી શકાય છે. આ અનુકરણ નમૂનાની મદદથી LBWનો નિર્ણય લઈ શકાય છે.
- 3. હવામાનશાસ્ત્રના વિભાગ હવામાનની આગાહી ગાણિતિક નમૂનાઓના આધારે કરે છે. હવામાનની પરિસ્થિતિમાં ફેરફારને અસર કરતાં અમુક પરિબળો તાપમાન, હવાનું દબાણ, ભેજ, પવનની ઝડપ વગેરે છે. આ પરિબળો માપવા માટે તાપમાન માપવા માટે થરમૉમિટર, હવાનું દબાણ માપવા માટે બેરોમિટર, ભેજ માપવા માટે ભેજમાપક (hygrometer), પવનની ઝડપ માપવા માટે એનેમોમિટર જેવાં સાધનો વપરાય છે. એકવાર દેશભરનાં વિવિધ કેન્દ્રો પાસેથી માહિતી પ્રાપ્ત થાય પછી કમ્પ્યૂટરની મદદથી તેનું વધુ વિશ્લેષણ અને અર્થઘટન કરવામાં આવે છે.
- 4. કૃષિવિભાગ ભારતમાં ઉત્પાદિત થતા પાકમાંથી ચોખાની ઊપજનો અંદાજ કાઢવા માંગે છે. વૈજ્ઞાનિકો ચોખાની ખેતીના વિસ્તારોને ઓળખી કાઢે છે અને કેટલાંક પ્રતિનિધિ ક્ષેત્રોમાંથી પાકની લણણી અને વજનના આધારે એકર દીઠ સરેરાશ ઊપજ શોધી કાઢે છે. આંકડાશાસ્ત્રીય તકનિકોના આધારે ચોખાની સરેરાશ ઊપજનો નિર્ણય કરવામાં આવે છે.

ગણિતશાસ્ત્રીઓ આવી સમસ્યાઓના ઉકેલ માટે કેવી રીતે મદદ કરે છે ? તે જે-તે ક્ષેત્રના નિષ્ણાતો સાથે બેસે છે. ઉદાહરણ તરીકે પ્રથમ પ્રશ્નમાં શરીરવિજ્ઞાની સાથે કામ કરીને સમસ્યાને ગાણિતિક સ્વરૂપમાં તૈયાર કરે છે. આ ગાણિતિક સ્વરૂપ એક અથવા વધુ સમીકરણો અથવા અસમતાઓ ધરાવે છે. તેમને આપણે ગાણિતિક નમૂના કહીએ છીએ. ત્યાર બાદ આ નમૂનાનો ઉકેલ મેળવવામાં આવે છે અને તે ઉકેલનું મૂળ સમસ્યાના સંદર્ભમાં અર્થઘટન કરવામાં આવે છે.

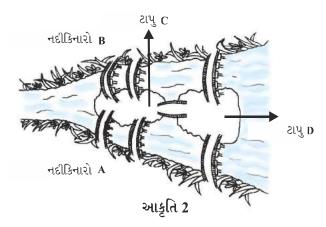
આ પ્રક્રિયા સમજાવતા પહેલાં આપણે ગાણિતિક નમૂના શું છે તેની ચર્ચા કરીશું.

ગાણિતિક નમૂનો એ પરિસ્થિતિના આકલનની રજૂઆત છે. એક રસપ્રદ ભૌમિતિક નમૂનો પૃષ્ઠ 388 પરના ઉદાહરણમાં દર્શાવેલ છે :

ગાણિતિક નમૂના 388

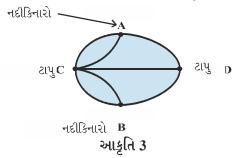
ઉદાહરણ 2 : (સેતુ સમસ્યા) કોનિગ્સબર્ગ એ પ્રીગલ નદી પર આવેલું શહેર છે. તે 18મી સદીમાં જર્મન શહેર હતું, પરંતુ હવે તે રશિયામાં છે. શહેરની અંદર નદીના બે ટાપુઓ અને નદીના બે કિનારા આકૃતિ 2માં દર્શાવ્યા પ્રમાણે સાત પુલ દ્વારા જોડાયેલા છે.

લોકો શહેરની આસપાસ ફક્ત એકવાર દરેક પુલનો ઉપયોગ કરીને ચાલવાનો પ્રયાસ કરતા હતા,પરંતુ તે મુશ્કેલ સમસ્યા સાબિત થઈ હતી. રશિયન સામ્રાજ્ય કેથેરિન ધી ગ્રેટમાં નોકરી કરતા સ્વિસ ગણિતશાસ્ત્રી *Leonhard Euler* એ આ સમસ્યા વિશે સાંભળ્યું.



ઈ. સ. 1736 માં ઑઇલરે સાબિત કર્યું કે ઉપરની શરત પ્રમાણે ચાલી શકાય નહિ. તેણે જેને જાળગૂંથણી કહે છે તે રેખાકૃતિ શોધી અને તેણે પરિણામ સાબિત કર્યું. આ જાળગૂંથણી જ્યાં રેખાઓ મળે તે બિંદુઓ અને જીવાઓ (રેખાઓ)થી બનેલી હોય છે. (આકૃતિ 3).

તેણે નદીના બે કિનારા તથા બે ટાપુઓ માટે ચાર બિંદુઓ (શિરોબિંદુઓ)નો ઉપયોગ કર્યો. તે આકૃતિમાં A, B, C, D વડે દર્શાવેલ છે. સાત પુલ માટે સાત રેખાઓ છે. તમે જોઈ શકો છો કે 3 પુલ નદીના કિનારા A સાથે જોડાયેલ છે અને 3 પુલ નદીના કિનારા B સાથે જોડાયેલ છે. 5 પુલ ટાપુ C સાથે તથા 3 પુલ ટાપુ D સાથે જોડાયેલ છે. આનો અર્થ એમ

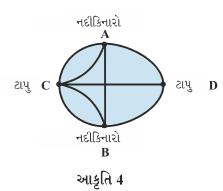


થાય કે જીવાઓ બધાં શિરોબિંદુઓને અયુગ્મ સંખ્યામાં મળે છે. તેથી તેને અયુગ્મ શિરોબિંદુ કહે છે. (જીવાઓ યુગ્મ શિરોબિંદુને યુગ્મ સંખ્યામાં મળે.) યાદ રાખો કે શહેરની આસપાસ દરેક પુલનો ફક્ત એક જ વખત ઉપયોગ કરવાનો છે. આનો અર્થ એમ થાય કે ઑઇલરની જાળગૂંથણીમાં દરેક જીવાનો ફક્ત એક વખત ઉપયોગ કરીને દરેક શિરોબિંદુ પર જઈ શકાતું હોવું જોઈએ. ઑઇલરે સાબિત કર્યું કે, આ થઈ શકે નહિ. કારણ કે તેણે બતાવ્યું કે અયુગ્મ શિરોબિંદુ હોય ત્યારે તમારે સફરની શરૂઆત અથવા અંત તે જ શિરોબિંદુથી કરવો પડે. (આના વિશે વિચારો.)

અહીં ફક્ત એક જ શરૂઆત અને એક અંત છે તથા જો તમારે દરેક જીવાનો ફક્ત એક જ વાર ઉપયોગ કરવાનો હોય તો ફક્ત બે જ અયુગ્મ શિરોબિંદુ હોય. પરંતુ આ પ્રશ્નમાં 4 અયુગ્મ શિરોબિંદુ છે તેથી આમ કરવું શક્ય નથી.

ઑઇલરે તેનો પ્રમેય સાબિત કર્યા પછી કોનિગ્સબર્ગના પુલ હેઠળ ઘણું પાણી વહી ગયું છે. ઈ. સ. 1875માં કોનિગ્સબર્ગમાં ટાપુઓ અને નદીના કિનારા A તથા B ને જોડતો એક વધારાનો પુલ બાંધવામાં આવેલ છે. (આકૃતિ 4) હવે કોનિગ્સબર્ગના લોકો માટે દરેક પુલનો ફક્ત એક જ વખત ઉપયોગ કરીને શહેરની આસપાસ ફરી શકાય ?

અહીં પરિસ્થિતિ આકૃતિ 4 પ્રમાશે છે. નવી ધાર ઉમેરવાથી બંને શિરોબિંદુઓ A અને B યુગ્મ શિરોબિંદુઓ થશે. પરંતુ D અને C અયુગ્મ શિરોબિંદુઓ છે. આમ, કોનિગ્સબર્ગના લોકો શહેરની આસપાસ દરેક પુલનો ફક્ત એક જ વખત ઉપયોગ કરીને જઈ શકે છે.



જાળગૂંથણીની શોધના કારણે એક નવા સિદ્ધાંત ''*ગ્રાફ થિઅરી'' (Graph Theory)*ની શરૂઆત થઈ. આ સિદ્ધાંતનો ઉપયોગ રેલવેના નેટવર્કનું આયોજન અને નકશો બનાવવા તેમજ બીજા ઘણા પ્રકારે થાય છે. (આકૃતિ 4)

### A.2.3 ગાણિતિક નમૂના શું છે ?

અહીં આપણે ગાણિતિક નમૂના શું છે તે વ્યાખ્યાયિત કરીશું અને તેમાં આવતી ભિન્ન પ્રક્રિયાઓ ઉદાહરણ દ્વારા દર્શાવીશું.

<mark>વ્યાખ્યા</mark> : ગાણિતિક નમૂના એ વાસ્તવિક જીવનની સમસ્યાના અમુક ભાગનો ગાણિતિક શબ્દોમાં અભ્યાસ કરવાનો એક પ્રયત્ન છે.

ભૌતિક પરિસ્થિતિના યોગ્ય શરતો દ્વારા ગણિતમાં રૂપાંતરણને ગાણિતિક નમૂના તરીકે ઓળખવામાં આવે છે. ગાણિતિક નમૂના એ બીજું કંઈ જ નથી પરંતુ જે મૂળભૂત હોય તેવું *પ્રવિધિ* અને *અધ્યાયન શાસ્ત્ર* છે. તે વિજ્ઞાનમાંથી નહિ પરંતુ કલા-ક્ષેત્રમાંથી લેવામાં આવેલ છે.

ચાલો આપણે ગાણિતિક નમૂનામાં આવતી ભિન્ન પ્રક્રિયાઓને સમજીએ. આ પ્રક્રિયામાં ચાર સોપાન આવેલ છે. ઉદાહરણ તરીકે, આપણે નમૂના તરીકે સરળ લોલકની ગતિના અભ્યાસનો વિચાર કરીએ.

#### સમસ્યાની સમજ

ઉદાહરણ તરીકે સાદા લોલકની ગતિની પ્રક્રિયાની સમજ મેળવીએ. આપણે સાદા લોલકથી પરિચિત છીએ. આ લોલકમાં એક દોરીના છેડે વજન લગાવેલું હોય છે. (જે લોલક તરીકે ઓળખાય છે.) તેનો બીજો છેડો એક બિંદુએ નિશ્ચિત હોય છે. આપણે અભ્યાસ કર્યો છે કે સાદા લોલકની ગતિ આવર્તી હોય છે. આ આવર્તમાન દોરીની લંબાઈ અને ગુરુત્વાકર્ષણને કારણે ઉત્પન્ન થતા પ્રવેગ પર આધાર રાખે છે. એટલે કે આપણે આવર્તમાન જાણવું જરૂરી છે. આના આધારે આપણે સમસ્યાને ચોક્કસ વિધાનમાં નીચે પ્રમાણે લખી શકીએ :

વિધાન : આપણે સાદા લોલકનું આવર્તમાન કેવી રીતે શોધી શકીએ ?

હવે પછીનું સોપાન એ સૂત્રો ઘડવાનું છે. સૂત્રો ઘડવાની પ્રક્રિયા બે મુખ્ય સોપાન ધરાવે છે.

#### 1. સંબંધિત પરિબળો ઓળખવા

આમાં આપણે સમસ્યામાં કયાં પરિબળો/પરિમાણોનો સમાવેશ થાય છે તે શોધીએ છીએ. ઉદાહરણ તરીકે લોલકના કિસ્સામાં આંદોલનોનું આવર્તમાન (T), લોલકનું વજન (m), આલંબન બિંદુથી લોલકના ગુરુત્વકેન્દ્ર વચ્ચેના અંતર જેટલી લોલકની અસરકારક લંબાઈ (l) છે. અહીં કોઈ સ્થળે આપણે દોરીની લંબાઈ એટલે કે લોલકની અસરકારક લંબાઈ છે અને ગુરુત્વાકર્ષણને કારણે પ્રવેગ (g) અચળ છે તેમ ધારીશું.

આથી આપણે આ સમસ્યાનો અભ્યાસ કરવા માટે ચાર પરિબળો ઓળખ્યાં. હવે આપણો ઉદ્દેશ T શોધવાનો છે. આના માટે આપણે સમજવું જરૂરી છે કે, આવર્તમાન પર કયાં પરિબળો અસર કરે છે તે એક સરળ પ્રયોગ કરીને જોઈ શકાશે.

આપણે બે ભિન્ન દળવાળા ધાતુના દડા લઈશું અને દરેકને બે સરખી લંબાઈની દોરીની સાથે લટકાવીને પ્રયોગ કરીશું. આપણે આંદોલનકાળ માપીશું. આપણે નોંધીશું કે દળથી આંદોલનકાળમાં કોઈ નોંધપાત્ર ફેરફાર થતો નથી. હવે, આપણે સરખા દળવાળા દડા અને ભિન્ન લંબાઈની દોરી લઈને પ્રયોગ કરીશું. આપણે અવલોકન કરીશું કે આવર્તનકાળ એ લોલકની લંબાઈ પર આધાર રાખે છે. આ દર્શાવે છે કે આવર્તનકાળ શોધવા માટે દળ m એ આવશ્યક પરિબળ નથી, જ્યારે l એ આવશ્યક પરિબળ છે.

હવે પછીના સોપાન પર જતાં પહેલાં આવશ્યક પરિબળ શોધવાની પ્રક્રિયા જરૂરી છે.

ગાણિતિક નમૂના

#### 2. ગાણિતિક વર્ણન

આમાં જાણીતાં પરિબળોનો ઉપયોગ કરીને સમીકરણ શોધવું, અસમતા શોધવી અથવા ભૌમિતિક આકૃતિ દોરવાની કિયાઓનો સમાવેશ થાય છે. સાદા લોલકના કિસ્સામાં / ની ભિન્ન કિંમતો માટે આવર્તનકાળ T માપવા માટે પ્રયોગ કર્યો. આ કિંમતો પરથી આલેખ દોરવામાં આવ્યો અને પરિણામે તે પરવલય વક્ર જેવો દેખાય તેવું જાણવા મળ્યું. આના પરથી T અને / વચ્ચેનો સંબંધ નીચે પ્રમાણે દર્શાવી શકાય:

અગાઉથી જ્ઞાત છે કે  $k = \frac{4\pi^2}{g}$ .

$$T = 2\pi \sqrt{\frac{l}{g}} \qquad \dots (2)$$

સમીકરણ (2) એ સમસ્યાનું ગાણિતિક સૂત્રો ઘડવાની પ્રક્રિયા છે.

<mark>ઉકેલ શોધવા :</mark> ગાણિતિક સૂત્રો ક્થારેક જ સીધો જવાબ આપે છે. સામાન્ય રીતે આપણે સમીકરણનો ઉકેલ, ગણતરી અથવા પ્રમેયનો ઉપયોગ કરવો વગેરે કામગીરી કરવાનો સમાવેશ થાય છે. સાદા લોલકના કિસ્સામાં તેનો ઉકેલ સૂત્ર (2)નો ઉપયોગ કરી મેળવી શકાય છે.

ભિન્ન લંબાઈ ધરાવતા બે ભિન્ન લોલકના આવર્તનકાળની ગણતરી કોષ્ટક 1માં આપેલ છે.

કોષ્ટક 1

| l | 225 સેમી | 275 સેમી |
|---|----------|----------|
| Т | 3.04 સે  | 3.36 સે  |

કોષ્ટક l બતાવે છે કે l=225 સેમી માટે T=3.04 સેકન્ડ અને l=275 સેમી માટે T=3.36 સેકન્ડ

### અર્થઘટન/યથાર્થતા

ગાણિતિક નમૂના એ વાસ્તવિક જીવનની સમસ્યાની આવશ્યક લાક્ષણિકતાનો અભ્યાસ કરવાનો એક પ્રયત્ન છે. ઘણી વખત ગાણિતિક નમૂનામાં આદર્શ પરિસ્થિતિના સંદર્ભમાં સમીકરણ મેળવાય છે. જો ગાણિતિક નમૂના આપણે સમજવા ઇચ્છતા હોઈએ તે તમામ હકીકતો સમજાવે તો તે નમૂના ઉપયોગી થશે. અન્યથા આપણે તેને નકારી કાઢીશું, અથવા સુધારો કરીશું પછી ફરીથી પરીક્ષણ કરીશું. બીજા શબ્દોમાં કહીએ તો, વાસ્તવિક સમસ્યાની જાણીતી હકીકતો સાથે આપણે ગાણિતિક નમૂનાથી મેળવેલાં પરિણામોની સરખામણી કરીને તેની અસરકારકતા માપીશું. આ ક્રિયાને નમૂનાની યથાર્થતા કહે છે. સાદા લોલકના કિસ્સામાં આપણે અમુક પ્રયોગો કરીને લોલકનો આવર્તનકાળ શોધીશું. પ્રયોગોના પરિણામ કોષ્ટક 2 માં આપેલ છે.

કોષ્ટક 2 પ્રયોગો દ્વારા ચાર ભિન્ન લોલકના આવર્તનકાળ

| દળ (ગ્રામ) | લંબાઈ (સેમી) | સમય (સેકન્ડ) |
|------------|--------------|--------------|
| 385        | 275          | 3.371        |
|            | 225          | 3.056        |
| 230        | 275          | 3.352        |
|            | 225          | 3.042        |

હવે, આપશે કોષ્ટક 2ની માપેલી કિંમતોની કોષ્ટક 1માં ગણતરી કરીને મેળવેલી કિંમતો સાથે સરખામણી કરીશું.

પ્રયોગો દ્વારા મેળવેલ કિંમત અને ગણતરી કરીને મેળવેલી કિંમતના તફાવતને ત્રુટિ કહે છે. ઉદાહરણ તરીકે, l=275 સેમી અને દળ m=385 ગ્રામ માટે,

એક વખત આપણે નમૂનાને સ્વીકારીએ પછી આપણે તેનું અર્થઘટન કરવું પડે. *વાસ્તવિક પરિસ્થિતિના સંદર્ભમાં ઉકેલનું વર્ણન* કરવાની ક્રિયાને ગાણિતિક નમૂનાનું અર્થઘટન કહેવામાં આવે છે. આ કિસ્સામાં આપણે ઉકેલનું નીચે પ્રમાણે અર્થઘટન કરીશું :

- (a) આવર્તમાન લોલકની લંબાઈના વર્ગમૂળના સમચલનમાં છે.
- (b) તે ગુરુત્વપ્રવેગના વર્ગમૂળના વ્યસ્ત ચલનમાં છે.

આ નમૂનાની આપણી માન્યતા અને અર્થઘટન દર્શાવે છે કે, ગાણિતિક નમૂનાથી મળેલ કિંમતો પ્રયોગ દ્વારા મેળવેલ કિંમતો સાથે સુસંગત થાય છે. પરંતુ આપણે એવું શોધ્યું કે ગણતરીથી મેળવેલ કિંમતો અને પ્રયોગોથી મેળવેલ કિંમતોમાં થોડીક ત્રુટિ હોય છે. આ એટલા કારણે થાય છે કે આપણે દોરીનું વજન તથા માધ્યમના અવરોધને અવગણ્યો છે. આવી પરિસ્થિતિમાં આપણે આ પ્રક્રિયાને ચાલુ રાખીને વધુ સારા નમૂનાનો વિચાર કરીએ. આ આપણને એક અગત્યના નિરીક્ષણ તરફ દોરી જાય છે. વાસ્તવિક દુનિયા સમજવી અને તેનું સંપૂર્ણપણે વર્ણન કરવું ખૂબ જ જટિલ છે. આપણે પરિસ્થિતિને પ્રભાવિત કરતા હોય તેવા સંપૂર્ણપણે સચોટ ફક્ત એક કે બે મુખ્ય પરિબળોને પસંદ કરીએ છીએ. પછી જે પરિસ્થિતિ વિશે કંઈક માહિતી આપતા હોય તેવો સરળ નમૂનો મેળવવાનો પ્રયત્ન કરીએ છીએ. આ સ્થિતિમાં વધુ સારો નમૂનો મળશે તેવી અપેક્ષા રાખીને આપણે આ નમૂના દ્વારા સરળ પરિસ્થિતિનો અભ્યાસ કરીએ છીએ. ગાણિતિક નમૂના મેળવવા માટેની મુખ્ય પ્રક્રિયાનો સારાંશ આ મુજબ થશે :

(a) સૂત્રો ઘડવા

(b) ઉકેલ

(c) અર્થઘટન/યથાર્થતા

હવે પછીના ઉદાહરણમાં આપણે ગાણિતિક નમૂના દ્વારા અસમતાઓનો ઉકેલ આલેખની મદદથી મેળવી શકાય છે તે જોઈશું.

ઉદાહરણ 3 : એક ખેત-ઘર દરરોજ ઓછામાં ઓછો 800 કિગ્રા વિશિષ્ટ ખોરાકનો ઉપયોગ કરે છે. આ વિશિષ્ટ ખોરાક મકાઈ અને સોયાબીનના મિશ્રણથી નીચે પ્રમાણે બનાવવામાં આવે છે :

કોષ્ટક 3

| સામગ્રી | કિગ્રા દીઠ પોષક તત્ત્વો<br>પ્રોટીન | ક્રિગ્રા દીઠ પોષક તત્ત્વો<br>રેષા | કિગ્રા દીઠ કિંમત |
|---------|------------------------------------|-----------------------------------|------------------|
| મકાઈ    | 0.09                               | 0.02                              | ₹ 10             |
| સોયાબીન | 0.60                               | 0.06                              | ₹ 20             |

વિશિષ્ટ ખોરાકની આહારની જરૂરિયાતમાં ઓછામાં ઓછું 30 % પ્રોટીન અને વધુમાં વધુ 5 % રેષા હોવા જોઈએ. આ ખોરાકના મિશ્રણની દૈનિક ન્યૂનતમ કિંમત શોધો.

ઉ<mark>કેલ ઃ પગલું 1 :</mark> અહીં આપણો હેતુ મકાઈ અને સોયાબીનમાંથી બનાવેલ ખોરાકની દૈનિક કિંમત ન્યૂનતમ હોય તે છે. આથી પૃષ્ઠ 392 પરના ચલોનો વિચાર કરીએ.

ગાણિતિક નમૂના 392

x = મકાઈનું વજન

y = સોયાબીનનું વજન

 $z = \S H$ ત

**પગલું 2 :** કોષ્ટક 3 નો છેલ્લો સ્તંભ z એ x, y વચ્ચેના સંબંધનું સમીકરણ સૂચવે છે.

$$z = 10x + 20y$$
 ... (1)

નીચે પ્રમાણેની શરતોને અધિન z ની ન્યૂનતમ કિંમત શોધવાની સમસ્યા છે :

(a) ખેત-ઘર ઓછામાં ઓછો 800 કિગ્રા મકાઈ અને સોયાબીન મિશ્રિત ખોરાકનો ઉપયોગ કરે છે. એટલે કે,

$$x + y \ge 800$$
 ... (2)

(b) ખોરાકની આહારની જરૂરિયાતમાં ઓછામાં ઓછું 30 % પ્રોટીન જરૂરી છે. કોષ્ટક 3 ના પહેલા સ્તંભ પરથી,

$$0.09x + 0.6y \ge 0.3 (x + y)$$
 ... (3)

(c) તે જ પ્રમાણે ખોરાકની આહારની જરૂરિયાતમાં વધુમાં વધુ 5 % રેષા જરૂરી છે. કોષ્ટક 3ના બીજા સ્તંભ પરથી

$$0.02x + 0.06 y \le 0.05 (x + y) \qquad \dots (4)$$

સમીકરણ (2), (3) અને (4) માં x, y ના સહગુણકોને એક સાથે ફરીથી નીચે પ્રમાણે રાખીને આપેલ સમસ્યાને ગાણિતિક સ્વરૂપમાં લખી શકાય.

વિધાન : z ની ન્યૂનતમ કિંમત નીચેની શરતોને અધિન શોધો :

$$x + y \ge 800$$

$$0 \cdot 21x - 0 \cdot 30y \le 0$$

$$0 \cdot 03x - 0 \cdot 01y \ge 0$$

તે ગાણિતિક નમૂનાનાં સૂત્રો છે.

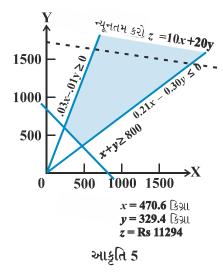
પગલું 3 : આ પ્રશ્નનો આલેખની મદદથી ઉકેલ મેળવી શકાય. આકૃતિ 5 માં સમીકરણના શક્ય ઉકેલને રંગીન કરેલ છે.

આલેખ પરથી સ્પષ્ટ છે કે (470.6, 329.4) આગળ એટલે કે x=470.6 અને y=329.4 આગળ ન્યૂનતમ કિંમત મળે છે.

$$\therefore$$
 z = 10 × 470.6 + 20 × 329.4 = 11294

આ ગાણિતિક ઉકેલ છે.

પગલું 4 : ઉકેલનું આ રીતે અર્થઘટન કરી શકાય. ''470.6'' કિગ્રા મકાઈ અને સોયાબીન મિશ્રિત જરૂરી પ્રોટીન અને રેષાયુક્ત પોષક તત્ત્વો ધરાવતા વિશિષ્ટ ખોરાકની ન્યૂનતમ કિંમત ₹11,294 થાય.''



હવે પછીના ઉદાહરણમાં આપણે એક ચોક્કસ સમયે દેશની વસતીના અભ્યાસના ગાણિતિક નમૂનાની ચર્ચા કરીશું.

ઉદાહરણ 4 : ધારો કે વસતી-નિયંત્રણ વિભાગ ''કોઈ દેશમાં 10 વર્ષ પછી કેટલા માણસો હશે.'' એવું શોધવા માંગે છે.

<mark>પગલું 1 : સુત્રો ઘડવા</mark> : આપણે જાણીએ છીએ કે સમયની સાથે વસતીમાં ફેરફાર થાય છે. તે જન્મ સાથે વધે છે અને મૃત્યુ સાથે ઘટે છે.

આપણે કોઈ ચોક્કસ સમયે વસતી શોધવી છે. ધારો કે t એ સમય (વર્ષમાં) દર્શાવે છે. તેથી t ની કિંમત 0, 1, 2,..., t=0 એ વર્તમાન સમય, t=1 એ એક વર્ષ વગેરે દર્શાવે છે. ધારો કે P(t) એ કોઈ ચોક્કસ વર્ષે t ની વસતી દર્શાવે છે.

ધારો કે આપણે ચોક્કસ વર્ષ  $t_0 = 2006$  ની વસતી શોધવી છે. આપણે તે કેવી રીતે કરીશું ? આપણે પહેલી જાન્યુઆરી 2005 સુધીની વસતી શોધીશું. એ વર્ષમાં જેટલા વ્યક્તિનો જન્મ થયો હોય તેટલાને ઉમેરો અને જેટલી વ્યક્તિ મૃત્યુ પામી હોય તેટલીને બાદ કરો. ધારો કે  $\mathbf{B}(t)$  એ t થી t+1 વર્ષમાં જેટલી વ્યક્તિનો જન્મ થયો હોય તે દર્શાવે છે. જ્યારે  $\mathbf{D}(t)$  એ t થી t+1 વર્ષમાં જેટલી વ્યક્તિ મૃત્યુ પામી હોય તે દર્શાવે છે.

આથી આપણે નીચે પ્રમાણેનો સંબંધ લખી શકીએ :

$$P(t + 1) = P(t) + B(t) - D(t)$$

હવે આપણે કેટલીક ધારણાઓ અને વ્યાખ્યાઓ આપીશું.

- 1.  $\frac{\mathbf{B}(t)}{\mathbf{P}(t)}$  ને સમય અંતરાલ t થી t+1 માટેનો જન્મદર કહે છે.
- 2.  $\frac{\mathrm{D}(t)}{\mathrm{P}(t)}$  ને સમય અંતરાલ t થી t+1 માટેનો મૃત્યુદર કહે છે.

#### ધારણાઓ

1. બધા જ અંતરાલ માટે જન્મદર સરખો હોય છે. તે જ રીતે બધા જ અંતરાલ માટે મૃત્યુદર સરખો હોય છે. આનો અર્થ એ કે જન્મદર તરીકે ઓળખાતો દર  $\mathbf{B}(t)$  અને મૃત્યુદર તરીકે ઓળખાતો દર  $\mathbf{D}(t)$  એવા મળે છે કે જેથી પ્રત્યેક  $t \geq 0$  માટે

$$b = \frac{\mathbf{B}(t)}{\mathbf{P}(t)}$$
 અને  $d = \frac{\mathbf{D}(t)}{\mathbf{P}(t)}$  ... (1)

2. વસતીમાંથી સ્થળાંતર કરીને કોઈ બહાર જતા નથી કે બહારથી કોઈ અંદર આવતા નથી. એટલે કે વસતીના ફેરફારનો સ્રોત ફક્ત જન્મ અને મૃત્યુ છે.

ધારણા 1 અને 2 પરથી આપણે નીચે મુજબ તારવી શકીએ :

સમીકરણ (2)માં t = 0 મૂકતાં

સમીકરણ (2)માં t = 1 મૂકતાં

$$P(2) = (1 + b - d) P (1)$$
  
=  $(1 + b - d) (1 + b - d) P (0)$  (સમીકરણ (3) પરથી)  
=  $(1 + b - d)^2 P(0)$ 

આ રીતે આગળ વધતાં,

ગાણિતિક નમૂના 394

$$P(t) = (1 + b - d)^t P(0), \quad t = 0, 1, 2, ...$$
 ... (4)

અચળ 1+b-d ને સંક્ષિપ્તમાં r લખાય છે અને તેને વૃદ્ધિદર અથવા આ નમૂના વિશે ધ્યાનાકર્ષણ કરવા બદલ Robert Malthus ના માનમાં તેને Malthusian અચળાંક કહે છે. r ના સંદર્ભમાં સમીકરણ (4) લખતાં,

$$P(t) = P(0)r^{t}, \quad t = 0, 1, 2, ...$$
 ... (5)

P(t) એ ઘાતાંકીય વિધેયનું ઉદાહરણ છે. કોઈ પણ વિધેય  $cr^t$  જયાં c અને r અચળ હોય તે પ્રકારનું હોય તે ઘાતાંકીય વિધેય છે. સમીકરણ (5) એ આપેલી સમસ્યાનું ગાણિતિક સૂત્ર છે.

### પગલું 2 : ઉકેલ

ધારો કે હાલની વસતી 250,000,000 છે અને જન્મદર b=0.02 તથા મૃત્યુદર d=0.01 છે. 10 વર્ષ પછી કેટલી વસતી હશે ? સૂત્રનો ઉપયોગ કરીને આપણે P(10) ની ગણતરી કરીશું.

$$P(10) = (1.01)^{10} (250,000,000)$$
$$= (1.104622125) (250,000,000)$$
$$= 276,155,531.25$$

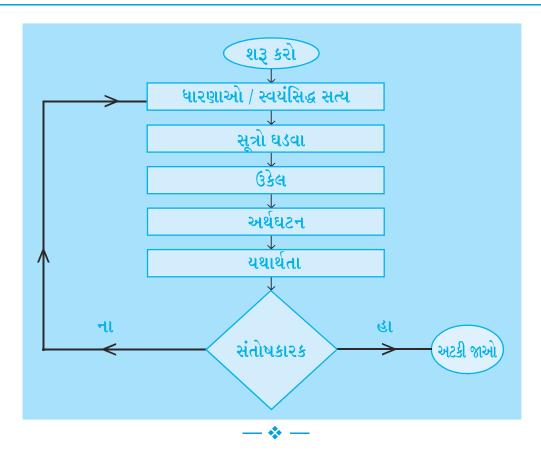
### પગલું 3 : અર્થઘટન અને યથાર્થતા

સ્વાભાવિક રીતે આ પરિણામ અર્થહીન છે કારણ કે 0.25 માણસ ન હોઈ શકે. તેથી આપણે સ્થૂળ કિંમત લઈશું અને એવા નિષ્કર્ષ પર આવીશું કે વસતી 276,155,531 (આશરે) છે. આપણા ગાણિતિક નમૂનામાં ધારણાઓ રાખવાથી આપણને ચોક્કસ જવાબ મળતો નથી.

ઉપરનાં ઉદાહરણો દર્શાવે છે કે, ભિન્ન ગાણિતિક રીતોના ઉપયોગથી ભિન્ન પરિસ્થિતિઓ માટે ગાણિતિક નમૂના કેવી રીતે મેળવી શકાય છે.

ગાણિતિક નમૂના એ વ્યાવહારિક પ્રશ્નનું સરળ સ્વરૂપ હોવાથી તે પાયાની રીતે અંતર્ગત ધારણાઓ અને આસન્ન મૂલ્યો ધરાવે છે. દેખીતી રીતે અગત્યનો પ્રશ્ન ગાણિતિક નમૂનો સારો છે કે નહિ તે નક્કી કરવાનો હોય છે. એટલે કે જયારે મેળવેલાં પરિણામોનું અર્થઘટન કરીએ ત્યારે જોઈએ છીએ કે ગાણિતિક નમૂનાથી યોગ્ય જવાબ આવે છે કે નહિ. જો ગાણિતિક નમૂનાથી સંતોષકારક પરિણામ ન મળતું હોય તો આપણે તેમાં રહેલી ખામીઓ શોધવાનો પ્રયત્ન કરીએ છીએ. એવું બની શકે કે આપણે નવાં સૂત્રો, નવી ગાણિતિક સમજૂતી અને તેથી નવા મૂલ્યાંકનની જરૂર પડે.

આમ, ગાણિતિક નમૂના એ નમૂનાકરણની પ્રક્રિયા છે, તો પૃષ્ઠ 395 પર ફ્લોચાર્ટમાં આપેલ છે.



# જવાબો

#### સ્વાધ્યાય 1.1

```
1. (i), (iv), (v), (vi), (vii) અને (viii) ગણ છે.
```

- 2. (i)  $\in$  (ii)  $\notin$  (iii)  $\notin$  (iv)  $\in$  (v)  $\in$  (vi)  $\notin$
- 3. (i)  $A = \{-2, -1, 0, 1, 2, 3, 4, 5, 6\}$  (ii)  $B = \{1, 2, 3, 4, 5\}$ 
  - (iii)  $C = \{17, 26, 35, 44, 53, 62, 71, 80\}$  (iv)  $D = \{2, 3, 5\}$
  - (v)  $E = \{T, R, I, G, O, N, M, E, Y\}$  (vi)  $F = \{B, E, T, R\}$
- 4. (i)  $\{x: x = 3n, n \in \mathbb{N} \text{ અને } 1 \le n \le 4\}$  (ii)  $\{x: x = 2^n, n \in \mathbb{N} \text{ અને } 1 \le n \le 5\}$ 
  - (iii)  $\{x: x = 5^n, n \in \mathbb{N} \text{ અને } 1 \le n \le 4 \}$  (iv)  $\{x: x \text{ એ યુગ્મ પ્રાકૃતિક સંખ્યા છે.}$
  - (v) {  $x : x = n^2, n \in \mathbb{N}$  અને  $1 \le n \le 10$  }
- 5. (i)  $A = \{1, 3, 5, \dots\}$
- (ii)  $B = \{0, 1, 2, 3, 4\}$
- (iii)  $C = \{-2, -1, 0, 1, 2\}$
- (iv)  $D = \{ L, O, Y, A \}$
- (v) E = { ફેબ્રુઆરી, એપ્રિલ, જૂન, સપ્ટેમ્બર, નવેમ્બર}
- (vi)  $F = \{b, c, d, f, g, h, j\}$
- **6.** (i)  $\leftrightarrow$  (c) (ii)  $\leftrightarrow$  (a) (iii)  $\leftrightarrow$  (d) (iv)  $\leftrightarrow$  (b)

#### સ્વાધ્યાય 1.2

- 1. (i), (iii), (iv)
- 2. (i) સાન્ત (ii) અનંત (iii) સાન્ત (iv) અનંત (v) સાન્ત
- 3. (i) અનંત (ii) સાન્ત (iii) અનંત (iv) સાન્ત (v) અનંત
- 4. (i) હા (ii) ના (iii) હા (iv) ના
- 5. (i) ના (ii) હા 6. B= D, E = G

#### સ્વાધ્યાય 1.3

```
(iii) ⊂
                                                  (iv) ⊄
1.
     (i) ⊂
                   (ii) ⊄
                                                                     (v) ⊄
                                                                                         (vi) \subset
                                                                                                         (vii)
                                                                                                                   \subset
```

3. (i), (v), (vii), (viii), (ix), (xi)

(iii) 
$$\phi$$
, {1}, {2}, {3}, {1,2}, {1,3}, {2,3}, {1,2,3}

**5.** 1

7. (i) 
$$\{x: x \in \mathbb{R}, -3 \le x \le 0\}$$
 (ii)  $\{x: x \in \mathbb{R}, 6 \le x \le 12\}$ 

(iii) 
$$\{x : x \in \mathbb{R}, 6 < x \le 12\}$$
 (iv)  $\{x : x \in \mathbb{R}, -23 \le x < 5\}$  9. (iii)

### સ્વાધ્યાય 1.4

1. (i) 
$$X \cup Y = \{1, 2, 3, 5\}$$
 (ii)  $A \cup B = \{a, b, c, e, i, o, u\}$ 

(iv) 
$$A \cup B = \{x : 1 < x < 10, x \in N\}$$
 (v)  $A \cup B = \{1, 2, 3\}$ 

(iv) 
$$\{3, 4, 5, 6, 7, 8, 9, 10\}$$
 (v)  $\{1, 2, 3, 4, 5, 6, 7, 8\}$ 

(vi) 
$$\{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$$
 (vii)  $\{3, 4, 5, 6, 7, 8, 9, 10\}$ 

5. (i) 
$$X \cap Y = \{1, 3\}$$
 (ii)  $A \cap B = \{a\}$  (iii)  $\{3\}$  (iv)  $\phi$  (v)  $\phi$ 

(v) 
$$\phi$$
 (vi)  $\{7, 9, 11\}$  (vii)  $\phi$ 

(viii) 
$$\{7, 9, 11\}$$
 (ix)  $\{7, 9, 11\}$  (x)  $\{7, 9, 11, 15\}$ 

(v) 
$$\{2\}$$
 (vi)  $\{x : x એ અયુગ્મ અવિભાજય સંખ્યા છે.\$ 

**8.** (iii)

(iv) 
$$\{4, 8, 16, 20\}$$
 (v)  $\{2, 4, 8, 10, 14, 16\}$  (vi)  $\{5, 10, 20\}$ 

(vii) 
$$\{20\}$$
 (viii)  $\{4, 8, 12, 16\}$  (ix)  $\{2, 6, 10, 14\}$ 

(x) 
$$\{5, 10, 15\}$$
 (xi)  $\{2, 4, 6, 8, 12, 14, 16\}$  (xii)  $\{5, 15, 20\}$ 

**10.** (i) 
$$\{a, c\}$$
 (ii)  $\{f, g\}$  (iii)  $\{b, d\}$ 

જવાબો 398

### સ્વાધ્યાય 1.5

- 1. (i) {5, 6, 7, 8, 9}
- (ii)  $\{1, 3, 5, 7, 9\}$
- (iii) {7, 8, 9}

- (iv)  $\{5, 7, 9\}$
- (v)  $\{1, 2, 3, 4\}$
- (vi)  $\{1, 3, 4, 5, 6, 7, 9\}$

- 2. (i)  $\{d, e, f, g, h\}$
- (ii)  $\{a, b, c, h\}$
- (iii)  $\{b, d, f, h\}$

- (iv)  $\{b, c, d, e\}$
- **3.** (i)  $\{x: x \ \text{એ અયુગ્મ પ્રાકૃતિક સંખ્યા છે.\}$ 
  - (ii)  $\{x: x$ એ યુગ્મ પ્રાકૃતિક સંખ્યા છે. $\}$
  - (iii)  $\{x:x\in\mathbb{N} \text{ અને } x\text{ એ 3 નો ગુણિત નથી.}\}$
  - (iv)  $\{x: x$ એ ધન વિભાજય સંખ્યા અથવા x = 1]
  - (v)  $\{x: x એ ધન પૂર્ણાંક જે 3 થી અથવા 5 થી વિભાજય નથી.<math>\}$
  - (vi)  $\{x: x \in \mathbb{N} \text{ અને } x \text{ એ પૂર્ણવર્ગ નથી.}\}$
  - (vii)  $\{x: x \in \mathbb{N} \text{ અને } x \text{ એ પૂર્ણઘન નથી.}\}$
  - (viii)  $\{x : x \in \mathbb{N} \text{ et } x \neq 3\}$

(ix)  $\{x: x \in \mathbb{N} \ \text{અને} \ x \neq 2\}$ 

(xi)  $\{x : x \in \mathbb{N} \text{ અને } x \le \frac{9}{2}\}$ 

- A' એ સમભૂજ ત્રિકોણનો ગણ છે.
- 7. (i) U
- (ii) A
- (iii)  $\phi$

#### સ્વાધ્યાય 1.6

- 1. 2
- **2.** 5
- **3.** 50
- **4.** 42

- **5.** 30
- **6.** 19
- **7.** 25, 35
- **8.** 60

#### પ્રકીર્ણ સ્વાધ્યાય 1

- 1.  $A \subset B$ ,  $A \subset C$ ,  $B \subset C$ ,  $D \subset A$ ,  $D \subset B$ ,  $D \subset C$
- 2. (i) અસત્ય
- (ii) અસત્ય (iii) સત્ય
- (iv) અસત્ય
- (v) અસત્ય
- (vi) સત્ય

- 7. અસત્ય
- 1) 0400 0 (111) 400
- (11)
- 12. આપણે A = { 1, 2 }, B = { 1, 3 }, C = { 2, 3 } લઇ શકીએ.
- **13.** 325
- **14.** 125
- **15.** (i) 52, (ii) 30
- **16.** 11

### સ્વાધ્યાય 2.1

- **1.** x = 2 અને y = 1 **2.**  $A \times B$  ના ઘટકોની સંખ્યા 9 છે.
- 3.  $G \times H = \{(7, 5), (7, 4), (7, 2), (8, 5), (8, 4), (8, 2)\}$ 
  - $H \times G = \{(5, 7), (5, 8), (4, 7), (4, 8), (2, 7), (2, 8)\}$
- 4. (i) અસત્ય

$$P \times Q = \{(m, n), (m, m), (n, n), (n, m)\}\$$

- (ii) સત્ય
- (iii) સત્ય
- 5.  $A \times A = \{(-1, -1), (-1, 1), (1, -1), (1, 1)\}$

 $A \times A \times A = \{(-1, -1, -1), (-1, -1, 1), (-1, 1, -1), (-1, 1, 1), (1, -1, -1), (1, -1, 1), (1, 1, -1), (1, 1, 1)\}$ 

ગણિત : ધોરણ 11

```
6. A = \{a, b\}, B = \{x, y\}
```

- 8. A × B = {(1, 3), (1, 4), (2, 3), (2, 4)} A × B ને 2<sup>4</sup> = 16 ઉપગણો છે.
- 9.  $A = \{x, y, z\}$  અને  $B = \{1, 2\}$
- **10.**  $A = \{-1, 0, 1\},\$

 $A \times A$  ના બાકીના ઘટકો (-1, -1), (-1, 1), (0, -1), (0, 0), (1, -1), (1, 0), (1, 1) છે.

#### સ્વાધ્યાય 2.2

- 1.  $R = \{(1, 3), (2, 6), (3, 9), (4, 12)\}$ 
  - R નો પ્રદેશ =  $\{1, 2, 3, 4\}$
  - R  $\rightarrow$  1 a  $\rightarrow$  1 a  $\rightarrow$  2 a  $\rightarrow$  3 a  $\rightarrow$  3 a  $\rightarrow$  4 a  $\rightarrow$  5 a  $\rightarrow$  6 a  $\rightarrow$  7 a  $\rightarrow$  8 a  $\rightarrow$  9 a  $\rightarrow$
  - R નો સહપ્રદેશ =  $\{1, 2, ..., 14\}$
- **2.**  $R = \{(1, 6), (2, 7), (3, 8)\}$ 
  - R નો પ્રદેશ =  $\{1, 2, 3\}$
- 3.  $R = \{(1, 4), (1, 6), (2, 9), (3, 4), (3, 6), (5, 4), (5, 6)\}$
- 4. (i)  $R = \{(x, y) : y = x 2, \text{ sui } x = 5, 6, 7\}$ 
  - (ii) R = {(5,3), (6,4), (7,5)}. R નો પ્રદેશ = {5, 6, 7}, R નો વિસ્તાર = {3, 4, 5}
- 5. (i)  $R = \{(1, 1), (1,2), (1, 3), (1, 4), (1, 6), (2, 4), (2, 6), (2, 2), (4, 4), (6, 6), (3, 3), (3, 6)\}$ 
  - (ii) R નો પ્રદેશ = {1, 2, 3, 4, 6}
  - (iii) R નો વિસ્તાર = {1, 2, 3, 4, 6}
- **6.** R નો પ્રદેશ =  $\{0, 1, 2, 3, 4, 5,\}$ , R નો વિસ્તાર =  $\{5, 6, 7, 8, 9, 10\}$
- 7.  $R = \{(2, 8), (3, 27), (5, 125), (7, 343)\}$
- **8.** A થી B ના સંબંધોની સંખ્યા =  $2^6$
- 9. R નો પ્રદેશ =  $\mathbb{Z}$ , R નો વિસ્તાર =  $\mathbb{Z}$

#### स्वाध्याय 2.3

- 1. (i) હા, પ્રદેશ = {2, 5, 8, 11, 14, 17}, વિસ્તાર = {1}
  - (ii)  $\text{ el, } \text{yi} \in \{2, 4, 6, 8, 10, 12, 14\}, \text{ faraiz} = \{1, 2, 3, 4, 5, 6, 7\}$
  - (iii) ના
- 2. (i) પ્રદેશ = **R**, વિસ્તાર = (-∞, 0]
  - (ii) વિધેયનો પ્રદેશ =  $\{x: -3 \le x \le 3\}$ વિધેયનો વિસ્તાર=  $\{x: 0 \le x \le 3\}$
- 3. (i) f(0) = -5 (ii) f(7) = 9 (iii) f(-3) = -11

જવાબો 400

- (i) t(0) = 32 (ii)  $t(28) = \frac{412}{5}$
- (iii) t(-10) = 14
- (iv) 100
- (i) વિસ્તાર =  $(-\infty, 2)$  (ii) વિસ્તાર =  $[2, \infty)$  (iii) વિસ્તાર =  $\mathbb{R}$

### પ્રકીર્ણ સ્વાધ્યાય 2

- 3. વિધેયનો પ્રદેશ 2 અને 6 સિવાયની વાસ્તવિક સંખ્યાઓનો ગણ
- 4. પ્રદેશ = [1, ∞), વિસ્તાર = [0, ∞)
- 5. પ્રદેશ =  $\mathbf{R}$ , વિસ્તાર = અનૃણ વાસ્તવિક સંખ્યાઓ
- **6.**  $0 \le x < 1$  થાય તેવી કોઈપણ વાસ્તવિક સંખ્યા
- 7. (f+g)(x) = 3x-2, (f-g)(x) = -x+4,  $\left(\frac{f}{g}\right)(x) = \frac{x+1}{2x-3}$ ,  $x \neq \frac{3}{2}$
- 8. a = 2, b = -1
- 9. (i) ના
- (ii) ના
- (iii) ના

- (i) હા, (ii) ના
- 11. ના
- **12.** *f* નો વિસ્તાર = {3, 5, 11, 13 }

#### સ્વાધ્યાય 3.1

- 1. (i)  $\frac{5\pi}{36}$  (ii)  $-\frac{19\pi}{72}$
- (iii)  $\frac{4\pi}{3}$
- (iv)  $\frac{26\pi}{9}$
- **2.** (i) 39° 22′ 30″ (ii) –229° 5′ 29″
- (iii) 300°
- $(iv) 210^{\circ}$

- 3.  $12\pi$
- **4.** 12° 36′
- 5.  $\frac{20\pi}{3}$  6. 5:4

- 7. (i)  $\frac{2}{15}$  (ii)  $\frac{1}{5}$
- (iii)  $\frac{7}{25}$

### સ્વાધ્યાય 3.2

- 1.  $\sin x = -\frac{\sqrt{3}}{2}$ ,  $\cos ec \ x = -\frac{2}{\sqrt{3}}$ ,  $\sec x = -2$ ,  $\tan x = \sqrt{3}$ ,  $\cot x = \frac{1}{\sqrt{3}}$
- 2.  $\cos c x = \frac{5}{2}$ ,  $\cos x = -\frac{4}{5}$ ,  $\sec x = -\frac{5}{4}$ ,  $\tan x = -\frac{3}{4}$ ,  $\cot x = -\frac{4}{2}$
- 3.  $\sin x = -\frac{4}{5}$ ,  $\csc x = -\frac{5}{4}$ ,  $\cos x = -\frac{3}{5}$ ,  $\sec x = -\frac{5}{2}$ ,  $\tan x = \frac{4}{3}$
- 4.  $\sin x = -\frac{12}{13}$ ,  $\csc x = -\frac{13}{12}$ ,  $\cos x = \frac{5}{13}$ ,  $\tan x = -\frac{12}{5}$ ,  $\cot x = -\frac{5}{12}$
- 5.  $\sin x = \frac{5}{13}$ ,  $\csc x = \frac{13}{5}$ ,  $\cos x = -\frac{12}{13}$ ,  $\sec x = -\frac{13}{12}$ ,  $\cot x = -\frac{12}{5}$
- 6.  $\frac{1}{\sqrt{2}}$
- 7. 2 8.  $\sqrt{3}$
- 9.  $\frac{\sqrt{3}}{2}$
- **10.** 1

### સ્વાધ્યાય 3.3

5. (i) 
$$\frac{\sqrt{3}+1}{2\sqrt{2}}$$
 (ii)  $2-\sqrt{3}$ 

### સ્વાધ્યાય 3.4

1. 
$$\frac{\pi}{3}, \frac{4\pi}{3}; n\pi + \frac{\pi}{3}, n \in \mathbb{Z}$$

2. 
$$\frac{\pi}{3}, \frac{5\pi}{3}; 2n\pi \pm \frac{\pi}{3}, n \in \mathbb{Z}$$

3. 
$$\frac{5\pi}{6}, \frac{11\pi}{6}; n\pi + \frac{5\pi}{6}, n \in \mathbb{Z}$$

3. 
$$\frac{5\pi}{6}, \frac{11\pi}{6}; n\pi + \frac{5\pi}{6}, n \in \mathbb{Z}$$
 4.  $\frac{7\pi}{6}, \frac{11\pi}{6}; n\pi + (-1)^n \frac{7\pi}{6}, n \in \mathbb{Z}$ 

$$5. \quad x = \frac{n\pi}{3} \text{ eval } x = n\pi, n \in \mathbb{Z}$$

5. 
$$x = \frac{n\pi}{3}$$
 અથવા  $x = n\pi, n \in \mathbb{Z}$  6.  $x = (2n+1)\frac{\pi}{4}$ , અથવા  $2n\pi \pm \frac{\pi}{3}$ ,  $n \in \mathbb{Z}$ 

7. 
$$x = n\pi + (-1)^n \frac{7\pi}{6}$$
 અથવા  $(2n+1) \frac{\pi}{2}, n \in \mathbb{Z}$ 

**8.** 
$$x = \frac{n\pi}{2}$$
, અથવા  $\frac{n\pi}{2} + \frac{3\pi}{8}$ ,  $n \in \mathbb{Z}$  **9.**  $x = \frac{n\pi}{3}$ , અથવા  $n \pi \pm \frac{\pi}{3}$ ,  $n \in \mathbb{Z}$ 

9. 
$$x = \frac{n\pi}{3}$$
, અથવા  $n \pi \pm \frac{\pi}{3}$ ,  $n \in \mathbb{Z}$ 

### સ્વાધ્યાય 3.5

1. 
$$\frac{4}{5}, \frac{3}{5}, 0$$

2. 
$$\frac{3}{5}$$
,  $\frac{4}{5}$ , 1 14.  $35\sqrt{2}m$ 

14. 
$$35\sqrt{2}m$$

16. 215.5 મીટર

### પ્રકીર્ણ સ્વાધ્યાય 3

8. 
$$\frac{2\sqrt{5}}{5}$$
,  $\frac{\sqrt{5}}{5}$ , 2

9. 
$$\frac{\sqrt{6}}{3}$$
,  $-\frac{\sqrt{3}}{3}$ ,  $-\sqrt{2}$ 

10. 
$$\frac{\sqrt{8+2\sqrt{15}}}{4}$$
,  $\frac{\sqrt{8-2\sqrt{15}}}{4}$ ,  $4+\sqrt{15}$ 

### સ્વાધ્યાય 5.1

3. 
$$i$$
 4.  $14 + 28i$  5.  $2 - 7i$ 

$$2 - 7$$

6. 
$$-\frac{19}{5} - \frac{21i}{10}$$

7. 
$$\frac{17}{3} + i \frac{5}{3}$$

9. 
$$-\frac{242}{27}$$
 - 26*i*

**6.** 
$$-\frac{19}{5} - \frac{21i}{10}$$
 **7.**  $\frac{17}{3} + i\frac{5}{3}$  **8.** -4 **9.**  $-\frac{242}{27} - 26i$  **10.**  $\frac{-22}{3} - i\frac{107}{27}$ 

11. 
$$\frac{4}{25} + i \frac{3}{25}$$

2. 
$$\frac{\sqrt{5}}{14} - i\frac{3}{14}$$

11. 
$$\frac{4}{25} + i\frac{3}{25}$$
 12.  $\frac{\sqrt{5}}{14} - i\frac{3}{14}$  13.  $i$  14.  $\frac{-7\sqrt{2}}{2}i$ 

જવાબો 402

#### સ્વાધ્યાય 5.2

1. 
$$2, \frac{-2\pi}{3}$$

$$\frac{2}{6}$$
.  $2, \frac{5\pi}{6}$ 

1. 
$$2, \frac{-2\pi}{3}$$
 2.  $2, \frac{5\pi}{6}$  3.  $\sqrt{2} \left( \cos \left( \frac{-\pi}{4} \right) + i \sin \left( \frac{-\pi}{4} \right) \right)$ 

4. 
$$\sqrt{2}\left(\cos\frac{3\pi}{4}+i\sin\frac{3\pi}{4}\right)$$

4. 
$$\sqrt{2}\left(\cos\frac{3\pi}{4}+i\sin\frac{3\pi}{4}\right)$$
 5.  $\sqrt{2}\left(\cos\frac{-3\pi}{4}+i\sin\frac{-3\pi}{4}\right)$ 

6. 
$$3(\cos \pi + i \sin \pi)$$

6. 
$$3 (\cos \pi + i \sin \pi)$$
 7.  $2 \left(\cos \frac{\pi}{6} + i \sin \frac{\pi}{6}\right)$  8.  $\cos \frac{\pi}{2} + i \sin \frac{\pi}{2}$ 

### સ્વાધ્યાય 5.3

1. 
$$\pm\sqrt{3}i$$

2. 
$$\frac{-1 \pm \sqrt{7} i}{4}$$

1. 
$$\pm \sqrt{3}i$$
 2.  $\frac{-1 \pm \sqrt{7}i}{4}$  3.  $\frac{-3 \pm 3\sqrt{3}i}{2}$  4.  $\frac{-1 \pm \sqrt{7}i}{-2}$ 

4. 
$$\frac{-1 \pm \sqrt{7}i}{-2}$$

5. 
$$\frac{-3 \pm \sqrt{11} i}{2}$$

6. 
$$\frac{1 \pm \sqrt{7} i}{2}$$

7. 
$$\frac{-1 \pm \sqrt{7}}{2\sqrt{2}}$$

5. 
$$\frac{-3 \pm \sqrt{11} i}{2}$$
 6.  $\frac{1 \pm \sqrt{7} i}{2}$  7.  $\frac{-1 \pm \sqrt{7} i}{2\sqrt{2}}$  8.  $\frac{\sqrt{2} \pm \sqrt{34} i}{2\sqrt{3}}$ 

9. 
$$\frac{-1\pm\sqrt{(2\sqrt{2}-1)}i}{2}$$
 10.  $\frac{-1\pm\sqrt{7}i}{2\sqrt{2}}$ 

### સ્વાધ્યાય 5.4

1. 
$$1-4i, -1+4i$$

2. 
$$1-3i, -1+3i$$

3. 
$$\left(\pm\sqrt{\frac{\sqrt{2}+1}{2}}\mp\sqrt{\frac{\sqrt{2}-1}{2}}i\right)$$

$$4. \quad \left(\pm \frac{1}{\sqrt{2}} \mp \frac{1}{\sqrt{2}} i\right)$$

$$5. \quad \left(\pm \frac{1}{\sqrt{2}} \pm \frac{1}{\sqrt{2}} i\right)$$

$$6. \left(\pm\sqrt{\frac{\sqrt{2}+1}{2}}\pm\sqrt{\frac{\sqrt{2}-1}{2}}i\right)$$

# પ્રકીર્ણ સ્વાધ્યાય 5

1. 
$$2-2i$$

1. 
$$2-2i$$
 3.  $\frac{307+599i}{442}$ 

5. (i) 
$$\sqrt{2} \left( \cos \frac{3\pi}{4} + i \sin \frac{3\pi}{4} \right)$$
, (ii)  $\sqrt{2} \left( \cos \frac{3\pi}{4} + i \sin \frac{3\pi}{4} \right)$ 

6. 
$$\frac{2}{3} \pm \frac{4}{3}i$$

7. 
$$1 \pm \frac{\sqrt{2}}{2}$$

8. 
$$\frac{5}{27} \pm \frac{\sqrt{2}}{27}$$

6. 
$$\frac{2}{3} \pm \frac{4}{3}i$$
 7.  $1 \pm \frac{\sqrt{2}}{2}i$  8.  $\frac{5}{27} \pm \frac{\sqrt{2}}{27}i$  9.  $\frac{2}{3} \pm \frac{\sqrt{14}}{21}i$ 

10. 
$$\sqrt{2}$$

10. 
$$\sqrt{2}$$
 12. (i)  $\frac{-2}{5}$ , (ii) 0 13.  $\frac{1}{\sqrt{2}}$ ,  $\frac{3\pi}{4}$  14.  $x = 3$ ,  $y = -3$  15. 2

13. 
$$\frac{1}{\sqrt{2}}, \frac{3\pi}{4}$$

**14.** 
$$x = 3, y = -3$$

### સ્વાધ્યાય 6.1

(i)  $\{1, 2, 3, 4\}$ 

(ii)  $\{...-3,-2,-1,0,1,2,3,4,\}$ 

2. (i) ઉકેલ નથી.

(ii)  $\{...-4, -3\}$ 

3. (i)  $\{...-2, -1, 0, 1\}$ 

(ii)  $(-\infty, 2)$ 

**4.** (i)  $\{-1, 0, 1, 2, 3, ...\}$  (ii)  $(-2, \infty)$ 

5.  $(-4, \infty)$  6.  $(-\infty, -3)$  7.  $(-\infty, -3]$  8.  $(-\infty, 4]$  9.  $(-\infty, 6)$  10.  $(-\infty, -6)$  11.  $(-\infty, 2]$  12.  $(-\infty, 120]$ 

**13.**  $(4, \infty)$  **14.**  $(-\infty, 2]$  **15.**  $(4, \infty)$  **16.**  $(-\infty, 2]$ 

17. x < 3, x < 318.  $x \ge -1$ ,  $x \ge -1$ 

19. 
$$x > -1$$
,  $\xrightarrow{x > -1}$  20.  $x \ge -\frac{2}{7}$ ,  $\xrightarrow{-1}$  0 1

**21.** 35 અથવા તેથી વધુ

22. 82 અથવા તેથી વધુ

**23.** (5,7), (7,9)

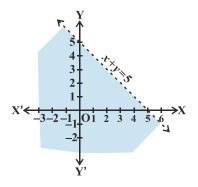
**24.** (6,8), (8,10), (10,12)

**25.** 9 સેમી

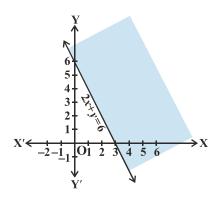
26. 8 અથવા તેથી વધુ પરંતુ 22 અથવા તેનાથી ઓછું

### સ્વાધ્યાય 6.2

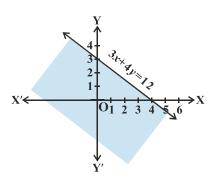
1.

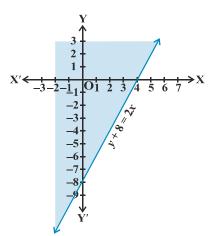


2.



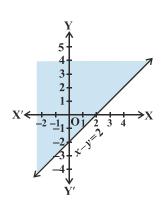
**3**.



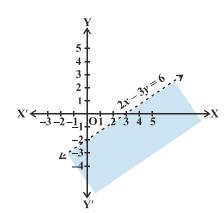


જવાબો 404

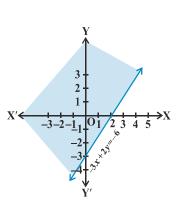
**5.** 



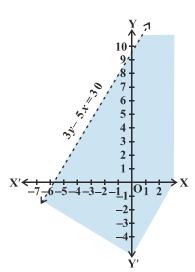
6.



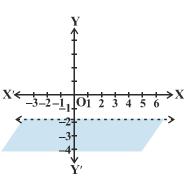
**7.** 



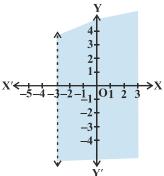
8.



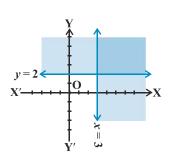
9.



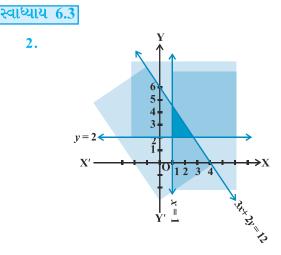
10.



1.



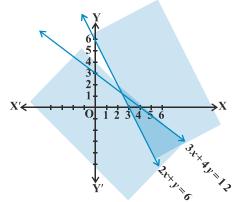
2.

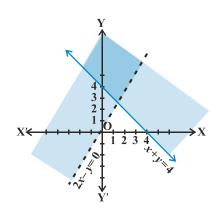


405

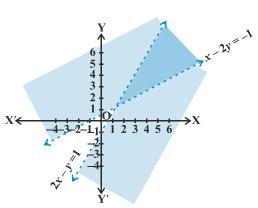
4.

3.

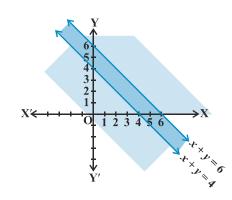




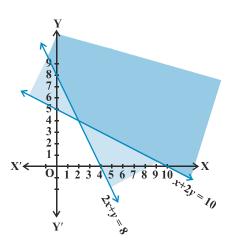
**5.** 



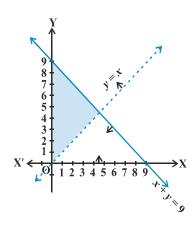




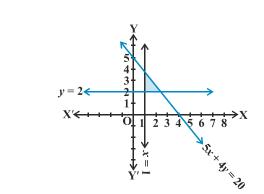
**7.** 



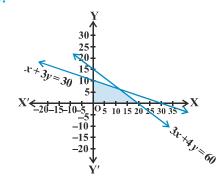
8.



9.

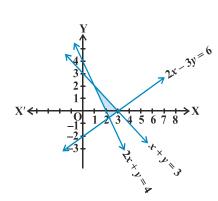


10.

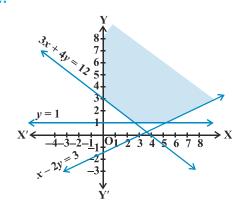


જવાબો 406

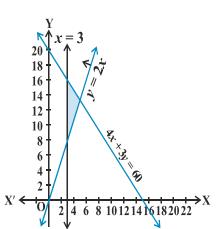
11.



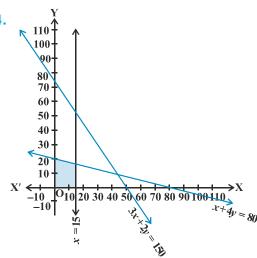
**12.** 



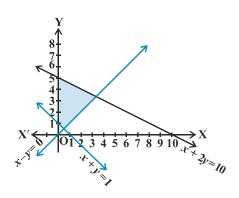
13.



14.



15.



# પ્રકીર્ણ સ્વાધ્યાય 6

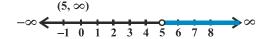
5. 
$$\left(\frac{-80}{3}, \frac{-10}{3}\right)$$

6. 
$$\left[1, \frac{11}{3}\right]$$





**9.** (5, ∞)



**10.** [-7, 11]



- 11. 20°C અને 25° ની વચ્ચે
- 12. 320 લિટરથી વધુ પરંતુ 1280 લિટરથી ઓછું
- 13. 562.5 લિટરથી વધુ, પરંતુ 900 લિટરથી ઓછું
- **14.**  $9.6 \le MA \le 16.8$

### સ્વાધ્યાય 7.1

- 1. (i) 125, (ii) 60. 2. 108
- **3.** 5040
- **4.** 336
- **5.** 8
- **6.** 20

સ્વાધ્યાય 7.2

- **1.** (i) 40320,
- (ii) 18
- 2. 30, ના
- **3.** 28
- **4.** 64

**5.** (i) 30, (ii) 15120

# સ્વાધ્યાય 7.3

- 1. 504
- **2.** 4536
- **3.** 60
- **4.** 120, 48
- **5.** 56

- **6.** 9
- **7.** (i) 3, (ii) 4 **8.** 40320
- **9.** (i) 360, (ii) 720, (iii) 240

**10.** 33810

- **11.** (i) 1814400,
- (ii) 2419200, (iii) 25401600

### સ્વાધ્યાય 7.4

- 1. 45
- **2.** (i) 5, (ii) 6
- **3.** 210
- **4.** 40
- **5.** 2000

- **6.** 778320
- **7.** 3960
- **8.** 200
- **9.** 35

# પ્રકરણ 7 નું પ્રકીર્ણ સ્વાધ્યાય

- 1. 3600
- **2.** 1440
- **3.** (i) 504, (ii) 588, (iii) 1632
- **4.** 907200

- **5.** 120
- **6.** 50400
- **7.** 420 **8.**  ${}^{4}C_{1} \times {}^{48}C_{4}$
- **9.** 2880

- **10.**  $^{22}\text{C}_7 + ^{22}\text{C}_{10}$
- **11.** 151200

જવાબો 408

### સ્વાધ્યાય 8.1

1. 
$$1-10x + 40x^2 - 80x^3 + 80x^4 - 32x^5$$

2. 
$$\frac{32}{x^5} - \frac{40}{x^3} + \frac{20}{x} - 5x + \frac{5}{8}x^3 - \frac{x^5}{32}$$

3. 
$$64 x^6 - 576 x^5 + 2160 x^4 - 4320 x^3 + 4860 x^2 - 2916 x + 729$$

4. 
$$\frac{x^5}{243} + \frac{5x^3}{81} + \frac{10}{27}x + \frac{10}{9x} + \frac{5}{3x^3} + \frac{1}{x^5}$$

5. 
$$x^6 + 6x^4 + 15x^2 + 20 + \frac{15}{x^2} + \frac{6}{x^4} + \frac{1}{x^6}$$

- **6.** 884736
- 7. 11040808032
- **8.** 104060401

- 9. 9509900499
- **10.**  $(1.1)^{10000} > 1000$  **11.**  $8(a^3b + ab^3)$ ;  $40\sqrt{6}$
- 12.  $2(x^6 + 15x^4 + 15x^2 + 1)$ , 198

### સ્વાધ્યાય 8.2

- **1.** 1512
- **2.** −101376
- 3.  $(-1)^r {}^6C_r . x^{12-2r} . y^r$
- **4.**  $(-1)^{r} {}^{12}\mathbf{C}_r \cdot x^{24-r} \cdot y^r$  **5.**  $-1760 \ x^9 y^3$  **6.** 18564
- 7.  $\frac{-105}{8}x^9; \frac{35}{48}x^{12}$  8.  $61236 x^5y^5$  10. n = 7; r = 3

12. m = 4

# પ્રકીર્ણ સ્વાધ્યાય 8

- 1. a = 3; b = 5; n = 6 2.  $a = \frac{9}{7}$

- 3. 171 5.  $396\sqrt{6}$ 7. 0.9510 8. n = 10
- 6.  $2a^8 + 12a^6 10a^4 4a^2 + 2$

9. 
$$\frac{16}{x} + \frac{8}{x^2} - \frac{32}{x^3} + \frac{16}{x^4} - 4x + \frac{x^2}{2} + \frac{x^3}{2} + \frac{x^4}{16} - 5$$

**10.** 
$$27x^6 - 54ax^5 + 117a^2x^4 - 116a^3x^3 + 117a^4x^2 - 54a^5x + 27a^6$$

### સ્વાધ્યાય 9.1

- 1. 3, 8, 15, 24, 35 2.  $\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \frac{5}{6}$  3. 2, 4, 8, 16 અને 32

- 4.  $-\frac{1}{6}, \frac{1}{6}, \frac{1}{2}, \frac{5}{6}$  અને  $\frac{7}{6}$  5. 25, -125, 625, -3125, 15625
- **6.**  $\frac{3}{2}, \frac{9}{2}, \frac{21}{2}, 21$  અને  $\frac{75}{2}$  **7.** 65, 93
- 8.  $\frac{49}{128}$

409 ગણિત : ધોરણ 11

- **11.** 3, 11, 35, 107, 323; 3 + 11 + 35 + 107 + 323 + ...
- 12.  $-1, \frac{-1}{2}, \frac{-1}{6}, \frac{-1}{24}, \frac{-1}{120}; -1 + \left(\frac{-1}{2}\right) + \left(\frac{-1}{6}\right) + \left(\frac{-1}{24}\right) + \left(\frac{-1}{120}\right) + \dots$

- **13.** 2, 2, 1, 0, -1; 2+2+1+0+(-1)+... **14.** 1, 2,  $\frac{3}{2}$ ,  $\frac{5}{3}$  wh  $\frac{8}{5}$

### સ્વાધ્યાય 9.2

- 1. 1002001
- **2.** 98450

- **4.** 5 અથવા 20 **6.** 4 **7.**  $\frac{n}{2}(5n+7)$

- **8.** 2q **9.**  $\frac{179}{321}$
- **10.** 0
- **13.** 27 **14.** 11, 14, 17, 20 અને 23

- **15.** 1
- **16.** 14
- **17.** ₹245 **18.** 9

### સ્વાધ્યાય 9.3

- 1.  $\frac{5}{2^{20}}, \frac{5}{2^n}$  2. 3072 4. -2187
- 5. (a) 13 મું, (b) 12 મું, (c) 9 મું 6. ± 1

- 7.  $\frac{1}{6} \left[ 1 (0.1)^{20} \right]$
- 8.  $\frac{\sqrt{7}}{2} (\sqrt{3} + 1) \left( 3^{\frac{n}{2}} 1 \right)$  9.  $\frac{\left[ 1 (-a)^n \right]}{1 + a}$  10.  $\frac{x^3 (1 x^{2n})}{1 x^2}$

- 11.  $22 + \frac{3}{2}(3^{11} 1)$
- 12.  $r = \frac{5}{2}$  અથવા  $\frac{2}{5}$ ; પદો  $\frac{2}{5}$ ,  $1, \frac{5}{2}$  અથવા  $\frac{5}{2}$ ,  $1, \frac{2}{5}$
- **13.** 4

- 14.  $\frac{16}{7}$ ; 2;  $\frac{16}{7}$ (2<sup>n</sup>-1)
- **15.** 2059
- **16.**  $\frac{-4}{3}, \frac{-8}{3}, \frac{-16}{3}, \dots$  અથવા 4,-8,16,-32,64,..

18.  $\frac{80}{81} (10^n - 1) - \frac{8}{9} n$ 

- **19.** 496
- **20.** rR
- **21.** 3, –6, 12, –24 **26.** 9 અને 27

- **27.**  $n = \frac{-1}{2}$  **30.** 120, 480, 30 (2<sup>n</sup>) **31.** ₹ 500 (1.1)<sup>10</sup> **32.**  $x^2 16x + 25 = 0$

### સ્વાધ્યાય 9.4

- 1.  $\frac{n}{3}(n+1)(n+2)$
- 2.  $\frac{n(n+1)(n+2)(n+3)}{4}$ 
  - 3.  $\frac{n}{6}(n+1)(3n^2+5n+1)$

4.  $\frac{n}{n+1}$ 

**5.** 2840

6. 3n(n+1)(n+3)

જવાબો 410

7. 
$$\frac{n(n+1)^2(n+2)}{12}$$

8. 
$$\frac{n(n+1)}{12}(3n^2+23n+34)$$
 9.  $\frac{n}{6}(n+1)(2n+1)+2(2^n-1)$ 

9. 
$$\frac{n}{6}(n+1)(2n+1)+2(2^n-1)$$

10. 
$$\frac{n}{3}(2n+1)(2n-1)$$

### સ્વાધ્યાય 9.5

3. 
$$\frac{35}{3}$$

4. 
$$\frac{-3}{5}$$

**7.** 4

### પ્રકીર્ણ સ્વાધ્યાય 9

**21.** (i) 
$$\frac{50}{81} (10^n - 1) - \frac{5n}{9}$$
, (ii)  $\frac{2n}{3} - \frac{2}{27} (1 - 10^{-n})$ 

**23.** 
$$\frac{n}{3}(n^2+3n+5)$$

**25.** 
$$\frac{n}{24}$$
 (2 $n^2$  + 9 $n$  + 13) **27.** ₹ 16680 **28.** ₹ 39100

**32.** 25 દિવસ

### સ્વાધ્યાય 10.1

1. 
$$\frac{121}{2}$$
 ચોરસ એકમ

2. 
$$(0, a), (0, -a)$$
 અને  $(-\sqrt{3}a, 0)$  અથવા  $(0, a), (0, -a)$  અને  $(\sqrt{3}a, 0)$ 

3. (i) 
$$|y_2 - y_1|$$
, (ii)  $|x_2 - x_1|$  4.  $\left(\frac{15}{2}, 0\right)$  5.  $-\frac{1}{2}$ 

4. 
$$\left(\frac{15}{2}, 0\right)$$

5. 
$$-\frac{1}{2}$$

7. 
$$-\sqrt{3}$$

8. 
$$x = 1$$

11. 1 અને 2, અથવા 
$$\frac{1}{2}$$
 અને 1, અથવા  $-1$  અને  $-2$ , અથવા  $-\frac{1}{2}$  અને  $-1$  14.  $\frac{1}{2}$ , 104.5 કરોડ

14. 
$$\frac{1}{2}$$
, 104.5 કરોડ

### સ્વાધ્યાય 10.2

1. 
$$y = 0$$
 અને  $x = 0$  2.  $x - 2y + 10 = 0$ 

3. 
$$y = mx$$

4. 
$$(\sqrt{3}+1)x-(\sqrt{3}-1)y=4(\sqrt{3}-1)$$

5. 
$$2x + y + 6 = 0$$

6. 
$$x - \sqrt{3}y + 2\sqrt{3} = 0$$

7. 
$$5x + 3y + 2 = 0$$

8. 
$$\sqrt{3}x + y = 10$$
 9.  $3x - 4y + 8 = 0$ 

$$10. \quad 5x - y + 20 = 0$$

11. 
$$(1+n)x + 3(1+n)y = n+11$$

12. 
$$x + y = 5$$

**13.** 
$$x + 2y - 6 = 0$$
,  $2x + y - 6 = 0$ 

**14.** 
$$\sqrt{3}x + y - 2 = 0$$
 અને  $\sqrt{3}x + y + 2 = 0$ 

15. 2x - 9y + 85 = 0

16.  $L = \frac{192}{90}(C-20)+124.942$ 

17. 1340 લિટર

19. 2kx + hy = 3kh.

### સ્વાધ્યાય 10.3

1. (i) 
$$y = -\frac{1}{7}x + 0, -\frac{1}{7}$$
, 0; (ii)  $y = -2x + \frac{5}{3}$ , -2,  $\frac{5}{3}$ ; (iii)  $y = 0x + 0$ , 0, 0

2. (i) 
$$\frac{x}{4} + \frac{y}{6} = 1,4,6;$$
 (ii)  $\frac{x}{\frac{3}{2}} + \frac{y}{-2} = 1,\frac{3}{2},-2;$ 

(iii) 
$$y = -\frac{2}{3}$$
, y-અક્ષ પરનો અંત:ખંડ =  $-\frac{2}{3}$  અને x-અક્ષ પરનો અંત:ખંડ ન મળે.

3. (i) 
$$x \cos 120^\circ + y \sin 120^\circ = 4$$
, 4,  $120^\circ$  (ii)  $x \cos 90^\circ + y \sin 90^\circ = 2$ , 2,  $90^\circ$ ;

(iii) 
$$x \cos 315^{\circ} + y \sin 315^{\circ} = 2\sqrt{2}, 2\sqrt{2}, 315^{\circ}$$

**5.** 
$$(-2,0)$$
 અને  $(8,0)$  **6.**  $(i)\frac{65}{17}$  એકમ,  $(ii)\frac{1}{\sqrt{2}}\left|\frac{p+r}{l}\right|$  એકમ **7.**  $3x-4y+18=0$ 

7. 
$$3x - 4y + 18 = 0$$

8. 
$$y + 7x = 21$$

10. 
$$\frac{22}{9}$$

12. 
$$(\sqrt{3}+2)x+(2\sqrt{3}-1)y=8\sqrt{3}+1$$
 અથવા  $(\sqrt{3}-2)x+(1+2\sqrt{3})y=-1+8\sqrt{3}$ 

13. 
$$2x + y = 5$$

**14.** 
$$\left(\frac{68}{25}, -\frac{49}{25}\right)$$
 **15.**  $m = \frac{1}{2}, c = \frac{5}{2}$ 

15. 
$$m = \frac{1}{2}, c = \frac{5}{2}$$

17. 
$$y-x=1, \sqrt{2}$$

# સ્વાધ્યાય 10.4

1. 
$$35x - 7y + 18 = 0$$

2. 
$$15x + 12y - 7 = 0$$

$$3. \quad 10x + 93y + 40 = 0$$

$$4. 63x + 105y - 781 = 0$$

### સ્વાધ્યાય 10.5

$$(v)(6,-3)$$

2. (i) 
$$x^2 - 3y^2 + xy + 3x - 6y + 1 = 0$$

(ii) 
$$xy - y^2 = 0$$
 (iii)  $xy = 0$ 

(iii) 
$$xy = 0$$

પ્રકીર્ણ સ્વાધ્યાય 10

2. 
$$\frac{7\pi}{6}$$
, 1

3. 
$$2x-3y=6, -3x+2y=6$$

**4.** 
$$\left(0, -\frac{8}{3}\right), \left(0, \frac{32}{3}\right)$$

જવાબો 412

5. 
$$\frac{\left|\sin(\phi-\theta)\right|}{2\left|\sin\frac{\phi-\theta}{2}\right|}$$

6. 
$$x = -\frac{5}{22}$$

7. 
$$2x - 3y + 18 = 0$$

8. 
$$k^2$$
 ચોરસ એકમ

11. 
$$3x - y = 7$$
,  $x + 3y = 9$ 

12. 
$$13x + 13y = 6$$

15. 
$$\frac{23\sqrt{5}}{18}$$
 એકમ

**16.** રેખા 
$$x$$
 - અક્ષ અથવા  $y$  - અક્ષને સમાંતર છે.

17. 
$$x = 1, y = 1.$$

**18.** 
$$(-1, -4)$$
. **19.**  $\frac{1 \pm 5\sqrt{2}}{7}$ 

**21.** 
$$18x + 12y + 11 = 0$$
 **22.**  $\left(\frac{13}{5}, 0\right)$ 

**22.** 
$$\left(\frac{13}{5}, 0\right)$$

**24.** 
$$119x + 102y = 125$$

### સ્વાધ્યાય 11.1

1. 
$$x^2 + y^2 - 4y = 0$$

3. 
$$36x^2 + 36y^2 - 36x - 18y + 11 = 0$$

5. 
$$x^2 + y^2 + 2ax + 2by + 2b^2 = 0$$

7. 
$$C(2, 4), r = \sqrt{65}$$

9. 
$$C\left(\frac{1}{4},0\right); r=\frac{1}{4}$$

11. 
$$x^2 + y^2 - 7x + 5y - 14 = 0$$

13. 
$$x^2 + y^2 - ax - by = 0$$

2. 
$$x^2 + y^2 + 4x - 6y - 3 = 0$$

4. 
$$x^2 + y^2 - 2x - 2y = 0$$

6. 
$$C(-5, 3), r = 6$$

8. 
$$C(4, -5), r = \sqrt{53}$$

**10.** 
$$x^2 + y^2 - 6x - 8y + 15 = 0$$

**12.** 
$$x^2 + v^2 + 4x - 21 = 0$$
 અને  $x^2 + v^2 - 12x + 11 = 0$ 

14. 
$$x^2 + y^2 - 4x - 4y = 5$$

### સ્વાધ્યાય 11.2

- **1.** F(3, 0), અક્ષ x અક્ષ, નિયામિકા x = -3, નાભિલંબની લંબાઈ = 12
- 2.  $F\left(0,\frac{3}{2}\right)$ , અક્ષ y અક્ષ, નિયામિકા  $y=-\frac{3}{2}$ , નાભિલંબની લંબાઈ = 6
- **3.** F(-2, 0), અક્ષ x અક્ષ, નિયામિકા x = 2, નાભિલંબની લંબાઈ = 8
- **4.** F (0, -4), અક્ષ y અક્ષ, નિયામિકા y = 4, નાભિલંબની લંબાઈ = 16
- **5.**  $F\left(\frac{5}{2}, 0\right)$ , અક્ષ x અક્ષ, નિયામિકા  $x = -\frac{5}{2}$ , નાભિલંબની લંબાઈ = 10
- **6.**  $F\left(0, \frac{-9}{4}\right)$ , અક્ષ y અક્ષ, નિયામિકા  $y = \frac{9}{4}$ , નાભિલંબની લંબાઈ = 9

7. 
$$v^2 = 24x$$

**8.** 
$$x^2 = -12y$$
 **9.**  $y^2 = 12x$ 

9. 
$$v^2 = 12x$$

10. 
$$y^2 = -8x$$

11. 
$$2v^2 = 9x$$

11. 
$$2y^2 = 9x$$
 12.  $2x^2 = 25y$ 

1.  $F(\pm\sqrt{20},0); V(\pm6,0);$  પ્રધાન અક્ષ = 12; ગૌણ અક્ષ =  $8, e = \frac{\sqrt{20}}{6},$  નાભિલંબ =  $\frac{16}{3}$ 

2.  $F(0, \pm \sqrt{21}); V(0, \pm 5);$  પ્રધાન અક્ષ = 10; ગૌણ અક્ષ = 4,  $e = \frac{\sqrt{21}}{5};$  નામિલંબ =  $\frac{8}{5}$ 

3.  $F(\pm\sqrt{7}, 0)$ ;  $V(\pm 4, 0)$ ; પ્રધાન અક્ષ = 8; ગૌણ અક્ષ = 6,  $e = \frac{\sqrt{7}}{4}$ ; નાભિલંબ =  $\frac{9}{2}$ 

**4.** F  $(0,\pm\sqrt{75})$ ; V  $(0,\pm10)$ ; પ્રધાન અક્ષ = 20; ગૌણ અક્ષ = 10 ,  $e=\frac{\sqrt{3}}{2}$  ; નાભિલંબ = 5

5.  $F(\pm\sqrt{13},0); V(\pm7,0);$  પ્રધાન અક્ષ =14 ; ગૌણ અક્ષ = 12 ,  $e=\frac{\sqrt{13}}{7};$  નાભિલંબ =  $\frac{72}{7}$ 

**6.** F  $(0, \pm 10\sqrt{3})$ ; V  $(0,\pm 20)$ ; પ્રધાન અક્ષ =40 ; ગૌણ અક્ષ = 20 ,  $e=\frac{\sqrt{3}}{2}$  ; નાભિલંબ = 10

7.  $F(0, \pm 4\sqrt{2})$ ;  $V(0, \pm 6)$ ; પ્રધાન અક્ષ =12 ; ગૌણ અક્ષ = 4 ,  $e=\frac{2\sqrt{2}}{3}$ ; નાભિલંબ =  $\frac{4}{3}$ 

8.  $F\left(0,\pm\sqrt{15}\right); V\left(0,\pm4\right);$  પ્રધાન અક્ષ = 8; ગૌણ અક્ષ = 2,  $e=\frac{\sqrt{15}}{4}$ ; નાભિલંબ =  $\frac{1}{2}$ 

9.  $F(\pm\sqrt{5},0); V(\pm3,0);$  પ્રધાન અક્ષ = 6; ગૌણ અક્ષ = 4,  $e=\frac{\sqrt{5}}{3};$  નાભિલંબ =  $\frac{8}{3}$ 

10.  $\frac{x^2}{25} + \frac{y^2}{9} = 1$ 

11.  $\frac{x^2}{144} + \frac{y^2}{169} = 1$  12.  $\frac{x^2}{36} + \frac{y^2}{20} = 1$ 

13.  $\frac{x^2}{9} + \frac{y^2}{4} = 1$  14.  $\frac{x^2}{1} + \frac{y^2}{5} = 1$  15.  $\frac{x^2}{169} + \frac{y^2}{144} = 1$ 

**16.**  $\frac{x^2}{64} + \frac{y^2}{100} = 1$  **17.**  $\frac{x^2}{16} + \frac{y^2}{7} = 1$  **18.**  $\frac{x^2}{25} + \frac{y^2}{9} = 1$ 

19.  $\frac{x^2}{10} + \frac{y^2}{40} = 1$ 

**20.**  $x^2 + 4y^2 = 52$  અથવા  $\frac{x^2}{52} + \frac{y^2}{13} = 1$ 

### સ્વાધ્યાય 11.4

1. નાભિઓ (± 5, 0), શિરોબિંદુઓ (± 4, 0);  $e = \frac{5}{4}$ ; નાભિલંબ  $= \frac{9}{2}$ 

**2.** નાભિઓ  $(0 \pm 6)$ , શિરોબિંદુઓ  $(0, \pm 3)$ ; e = 2; નાભિલંબ = 18

**3.** નાભિઓ  $(0, \pm \sqrt{13})$ , શિરોબિંદુઓ  $(0, \pm 2)$ ;  $e = \frac{\sqrt{13}}{2}$ ; નાભિલંબ = 9

**4.** નાભિઓ (± 10, 0), શિરોબિંદુઓ (± 6, 0);  $e = \frac{5}{3}$ ; નાભિલંબ  $= \frac{64}{3}$ 

જવાબો 414

**5.** નાભિઓ 
$$(0,\pm \frac{2\sqrt{14}}{\sqrt{5}})$$
, શિરોબિંદુઓ  $(0,\pm \frac{6}{\sqrt{5}})$ ;  $e=\frac{\sqrt{14}}{3}$ ; નાભિલંબ  $=\frac{4\sqrt{5}}{3}$ 

**6.** નાભિઓ 
$$(0,\pm\sqrt{65})$$
, શિરોબિંદુઓ  $(0,\pm4)$ ;  $e=\frac{\sqrt{65}}{4}$ ; નાભિલંબ  $=\frac{49}{2}$ 

7. 
$$\frac{x^2}{4} - \frac{y^2}{5} = 1$$

8. 
$$\frac{y^2}{25} - \frac{x^2}{39} = 1$$

9. 
$$\frac{y^2}{9} - \frac{x^2}{16} = 1$$

10. 
$$\frac{x^2}{16} - \frac{y^2}{9} = 1$$

11. 
$$\frac{y^2}{25} - \frac{x^2}{144} = 1$$
 12.  $\frac{x^2}{25} - \frac{y^2}{20} = 1$ 

12. 
$$\frac{x^2}{25} - \frac{y^2}{20} = \frac{1}{20}$$

13. 
$$\frac{x^2}{4} - \frac{y^2}{12} = 1$$

**14.** 
$$\frac{x^2}{49} - \frac{9y^2}{343} = 1$$
 **15.**  $\frac{y^2}{5} - \frac{x^2}{5} = 1$ 

15. 
$$\frac{y^2}{5} - \frac{x^2}{5} =$$

### પ્રકીર્ણ સ્વાધ્યાય 11

- 1. નાભિ એ આપેલ વ્યાસનું મધ્યબિંદુ છે.
- 2. 2.23 મી (આશરે)
- **3.** 9.11 મી (આશરે)
- **4.** 1.56 મી (આશરે)

$$5. \quad \frac{x^2}{81} + \frac{y^2}{9} = 1$$

7. 
$$\frac{x^2}{25} + \frac{y^2}{9} = 1$$

8. 
$$8\sqrt{3}a$$

### સ્વાધ્યાય 12.1

- **1.** y અને z યામ શૂન્ય છે. **2.** y યામ શૂન્ય છે.
- **3.** I, IV, VIII, V, VI, II, III, VIII
- 4. (i) XY સમતલ
- (ii) (x, y, 0)

### સ્વાધ્યાય 12.2

- 1. (i)  $2\sqrt{5}$  (ii)  $\sqrt{43}$  (iii)  $2\sqrt{26}$  (iv)  $2\sqrt{5}$
- **4.** x 2z = 0 **5.**  $9x^2 + 25y^2 + 25z^2 225 = 0$

### સ્વાધ્યાય 12.3

- 1. (i)  $\left(\frac{-4}{5}, \frac{1}{5}, \frac{27}{5}\right)$  (ii)  $\left(-8,17,3\right)$
- **2.** 1:2

**3.** 2:3

5. (6, -4, -2), (8, -10, 2)

### પ્રકીર્ણ સ્વાધ્યાય 12

1. (1, -2, 8)

**2.**  $7, \sqrt{34}, 7$  **3.**  $a = -2, b = -\frac{16}{3}, c = 2$ 

**4.** (0, 2, 0) અને (0, – 6, 0)

5. (4, -2, 6)

**6.**  $x^2 + y^2 + z^2 - 2x - 7y + 2z = \frac{k^2 - 109}{2}$ 

### સ્વાધ્યાય 13.1

1. 6

2.  $\left(\pi - \frac{22}{7}\right)$  3.  $\pi$ 

4.  $\frac{19}{2}$ 

5.  $-\frac{1}{2}$ 

**6.** 5

7.  $\frac{11}{4}$ 

**9.** *b* 

**10.** 2

**11.** 1

12.  $-\frac{1}{4}$ 

13.  $\frac{a}{b}$ 

14.  $\frac{a}{b}$ 

15.  $\frac{1}{\pi}$ 

16.  $\frac{1}{\pi}$ 

**17.** 4

18.  $\frac{a+1}{b}$ 

**19.** 0

**20.** 1

**21.** 0

**22.** 2

**23.** 3, 6

**24.** x = 1 આગળ લક્ષનું અસ્તિત્વ નથી.

**25.** x = 0 આગળ લક્ષનું અસ્તિત્વ નથી.

**26.** x=0 આગળ લક્ષનું અસ્તિત્વ નથી.

**27.** 0

**28.** a=0, b=4

 $\lim_{x \to a_1} f(x) = 0$  અને  $\lim_{x \to a} f(x) = (a - a_1) (a - a_2) \dots (a - a_n)$ 

**30.** પ્રત્યેક  $a \neq 0$  માટે  $\lim_{x \to a} f(x)$  નું અસ્તિત્વ છે. **31.** 2

**32.**  $\lim_{r\to 0}f(x)$  ના અસ્તિત્વ માટે m=n થાય તે જરૂરી છે; કોઈપણ પૂર્ણાંક m અને n માટે  $\lim_{x\to 1}f(x)$  નું અસ્તિત્વ છે :

જવાબો 416

### સ્વાધ્યાય 13.2

- 1. 4
- 2.  $e^2$  3.  $e^5$
- **4.** 1
- 5.  $e^3$

- **6.** 2
- **7.** 2
- **8.** 1

### સ્વાધ્યાય 13.3

- 1. 20
- **2.** 99
- **3.** 1

- 4. (i)  $3x^2$  (ii) 2x-3 (iii)  $\frac{-2}{x^3}$  (iv)  $\frac{-2}{(x-1)^2}$
- **6.**  $nx^{n-1} + a(n-1)x^{n-2} + a^2(n-2)x^{n-3} + ... + a^{n-1}$

- 7. (i) 2x-a-b (ii)  $4ax(ax^2+b)$  (iii)  $\frac{a-b}{(x-b)^2}$
- 8.  $\frac{nx^n anx^{n-1} x^n + a^n}{(x-a)^2}$
- 9. (i) 2 (ii)  $20x^3 15x^2 + 6x 4$  (iii)  $\frac{-3}{x^4}(5+2x)$  (iv)  $15x^4 + \frac{24}{x^5}$

$$(v)\frac{-12}{x^5} + \frac{36}{x^{10}} \quad (vi) \quad \frac{-2}{(x+1)^2} - \frac{x(3x-2)}{(3x-1)^2}$$
 **10.**  $-\sin x$ 

11. (i)  $\cos 2x$ 

- (ii) sec x tan x
- (iii)  $5 \sec x \tan x 4 \sin x$
- (iv)  $-\cos c x \cot x$
- (v)  $-3 \csc^2 x 5 \csc x \cot x$  (vi)  $5 \cos x + 6 \sin x$
- (vii)  $2 \sec^2 x 7 \sec x \tan x$

### પ્રકીર્ણ સ્વાધ્યાય 13

- 1. (i) -1 (ii)  $\frac{1}{x^2}$  (iii)  $\cos(x+1)$  (iv)  $-\sin(x-\frac{\pi}{8})$

- 3.  $\frac{-qr}{r^2} + ps$
- 4.  $2c (ax+b) (cx + d) + a (cx + d)^2$

$$5. \quad \frac{ad-bc}{\left(cx+d\right)^2}$$

6. 
$$\frac{-2}{(x-1)^2}$$
,  $x \neq 0,1$ 

$$7. \quad \frac{-(2ax+b)}{\left(ax^2+bx+c\right)^2}$$

8. 
$$\frac{-apx^2 - 2bpx + ar - bq}{\left(px^2 + qx + r\right)^2}$$
 9.  $\frac{apx^2 + 2bpx + bq - ar}{\left(ax + b\right)^2}$  10.  $\frac{-4a}{x^5} + \frac{2b}{x^3} - \sin x$ 

9. 
$$\frac{apx^2 + 2bpx + bq - ar}{\left(ax + b\right)^2}$$

10. 
$$\frac{-4a}{x^5} + \frac{2b}{x^3} - \sin x$$

11. 
$$\frac{2}{\sqrt{x}}$$

12. 
$$na(ax+b)^{n-1}$$

13. 
$$(ax+b)^{n-1}(cx+d)^{m-1}[mc(ax+b)+na(cx+d)]$$

**14.** 
$$\cos(x+a)$$

15. 
$$-\csc^3 x - \csc x \cot^2 x$$

16. 
$$\frac{-1}{1+\sin x}$$

17. 
$$\frac{-2}{(\sin x - \cos x)^2}$$

18. 
$$\frac{2\sec x \tan x}{(\sec x + 1)^2}$$

$$19. \quad n \sin^{n-1} x \cos x$$

20. 
$$\frac{bc \cos x + ad \sin x + bd}{\left(c + d \cos x\right)^2}$$

21. 
$$\frac{\cos a}{\cos^2 x}$$

22. 
$$x^3(5x\cos x + 3x\sin x + 20\sin x - 12\cos x)$$

$$23. \quad -x^2 \sin x - \sin x + 2x \cos x$$

**24.** 
$$-q \sin x (ax^2 + \sin x) + (p + q \cos x)(2a x + \cos x)$$

**25.** 
$$-tan^2x(x+cos x)+(x-tan x)(1-sin x)$$

26. 
$$\frac{35 + 15x\cos x + 28\cos x + 28x\sin x - 15\sin x}{\left(3x + 7\cos x\right)^2}$$

$$\frac{x\cos\frac{\pi}{4}(2\sin x - x\cos x)}{\sin^2 x}$$

$$28. \quad \frac{1+tanx-x \sec^2 x}{\left(1+tanx\right)^2}$$

**29.** 
$$(x + sec x)(1 - sec^2 x) + (x - tan x).(1 + sec x tan x)$$

$$30. \quad \frac{\sin x - n x \cos x}{\sin^{n+1} x}$$

જવાબો 418

### સ્વાધ્યાય 14.1

1. (i) આ વાક્ય હંમેશાં અસત્ય છે, કારણ કે કોઈ પણ મહિનામાં દિવસોની મહત્તમ સંખ્યા 31 છે. આથી આ વિધાન છે.

- (ii) આ વિધાન નથી, કારણ કે કેટલાંક માણસો માટે ગણિત સહેલું હોઈ શકે અને બીજા કેટલાંક માણસો માટે તે અઘરું પણ હોય.
- (iii) આ વાક્ય હંમેશાં સત્ય છે, કારણ કે સરવાળો 12 છે અને તે 10 થી વધુ છે. આથી આ વિધાન છે.
- (iv) આ વાક્ય ક્યારેક સત્ય છે અને ક્યારેક સત્ય નથી. ઉદાહરણ તરીકે 2 નો વર્ગ યુગ્મ સંખ્યા છે અને 3 નો વર્ગ અયુગ્મ સંખ્યા છે. આથી આ વિધાન નથી.
- (v) આ વાક્ય ક્યારેક સત્ય છે અને ક્યારેક અસત્ય છે. ઉદાહરણ તરીકે ચોરસ અને સમભુજની બાજુને સમાન લંબાઈ હોય છે અને લંબચોરસ તથા સમલંબની બાજુને અસમાન લંબાઈ હોય છે. આથી આ વિધાન નથી.
- (vi) આ આજ્ઞાર્થ છે અને તેથી વિધાન નથી.
- (vii) આ વાક્ય અસત્ય છે,કારણ કે ગુણાકાર (–8) થાય છે. આથી આ વિધાન છે.
- (viii) આ વાક્ય હંમેશાં સત્ય છે અને તેથી તે વિધાન છે.
- (ix) કયા દિવસનો ઉલ્લેખ કરવામાં આવ્યો છે તે સંદર્ભ પરથી સ્પષ્ટ થતું નથી. આથી આ વિધાન નથી.
- (x) આ વાક્ય સત્ય છે, કારણ કે કોઈ પણ વાસ્તવિક સંખ્યાને  $a + i \times 0$  સ્વરૂપમાં લખી શકાય.

#### 2. ત્રણ ઉદાહરણ આ પ્રમાણે હોઇ શકે :

- (i) આ ઓરડામાં બધાં બહાદુર છે. આ વિધાન નથી,કારણ કે કયા ઓરડાનો ઉલ્લેખ કરવામાં આવ્યો છે તે સંદર્ભ પરથી સ્પષ્ટ થતુ નથી તથા બહાદુર એ સ્પષ્ટપણે વ્યાખ્યાયિત નથી.
- (ii) તે ઈજનેરી શાખાની વિદ્યાર્થી છે. આ પણ વિધાન નથી કારણ કે 'તે' એટલે કોણ ?
- (iii) " $cos^2$   $\theta$  એ હંમેશા  $\frac{1}{2}$  કરતાં મોટો છે.''  $\theta$  ની કિંમત જાણ્યા વગર આપણે આ વાક્ય સત્ય છે કે નહિ તે કહી શકીએ નહિ.

### સ્વાધ્યાય 14.2

- 1. (i) ચેન્નાઈ તમિલનાડુનું પાટનગર નથી.
  - (ii)  $\sqrt{2}$  સંકર સંખ્યા છે.
  - (iii) બધા ત્રિકોણો સમબાજુ ત્રિકોણ છે.
  - (iv) 2 એ 7 કરતાં મોટી સંખ્યા નથી.
  - (v) દરેક પ્રાકૃતિક સંખ્યા એ પૂર્શાંક સંખ્યા નથી.
- (i) પ્રથમ વિધાનનું નિષેધ : "સંખ્યા x એ સંમેય સંખ્યા છે." આ બીજું વિધાન જ છે, કારણ કે જો સંખ્યા અસંમેય ન હોય તો તે સંમેય હોય. આથી આપેલ વિધાનની જોડ પરસ્પર નિષેધ છે.

(ii) પ્રથમ વિધાનનું નિષેધ : ''સંખ્યા x એ અસંમેય સંખ્યા છે.'' આ બીજું વિધાન જ છે. આથી આપેલ વિધાનની જોડ પરસ્પર નિષેધ છે.

- 3. (i) 3 એ અવિભાજય સંખ્યા છે; 3 એ અયુગ્મ સંખ્યા છે. (સત્ય)
  - (ii) બધા પૂર્ણાંકો ધન છે; બધા પૂર્ણાંકો ઋણ છે. (અસત્ય)
  - (iii) 100 એ 3 વડે વિભાજય છે; 100 એ 11 વડે વિભાજય છે અને 100 એ 5 વડે વિભાજય છે. (અસત્ય)

#### સ્વાધ્યાય 14.3

- (i) "અને". ઘટક વિધાનો આ પ્રમાણે છે :
  બધી સંમેય સંખ્યાઓ વાસ્તવિક છે.
  બધી વાસ્તવિક સંખ્યાઓ સંકર સંખ્યાઓ નથી.
  - (ii) "અથવા". ઘટક વિધાનો આ પ્રમાણે છે : કોઈપણ પૂર્ણાંકનો વર્ગ ધન છે. કોઈપણ પૂર્ણાંકનો વર્ગ ઋણ છે.
  - (iii) "અને". ઘટક વિધાનો આ પ્રમાણે છે :રેતી સૂર્યના પ્રકાશમાં ઝડપથી ગરમ થાય છે.રેતી રાત્રીના સમયે ઝડપથી ઠંડી થતી નથી.
  - (iv) "અને". ઘટક વિધાનો આ પ્રમાણે છે :  $x=2 \text{ એ સમીકરણ } 3x^2-x-10=0 \text{ dg બીજ છે.}$   $x=3 \text{ એ સમીકરણ } 3x^2-x-10=0 \text{ dg બીજ છે.}$
- 2. (i) "કોઇક અસ્તિત્વ ધરાવે છે".

નિષેધ : કોઈક સંખ્યાઓનો વર્ગ તે સંખ્યા જેટલો જ હોય તેવી કોઈ સંખ્યા અસ્તિત્વ ધરાવતી નથી.

(ii) "પ્રત્યેક માટે".

નિષેધ : કોઇક વાસ્તવિક સંખ્યા x એવી અસ્તિત્વ ધરાવે છે જેથી x એ x+1 કરતાં નાની ન હોય.

(iii) "કોઈક અસ્તિત્વ ધરાવે છે".

નિષેધ : ભારતમાં એક એવું રાજ્ય અસ્તિત્વ ધરાવે છે જેને રાજધાની નથી.

- 3. ના. વિધાન (i) નું નિષેધ : "એવી વાસ્તવિક સંખ્યાઓ x અને y અસ્તિત્વ ધરાવે છે જેથી  $x+y\neq y+x$ ". આ વિધાન (ii) થી ભિન્ન છે.
- 4. (i) નિવારક વિકલ્પ (ii) સમાવેશ વિકલ્પ (iii) નિવારક વિકલ્પ

### સ્વાધ્યાય 14.4

- 1. (i) કોઈક પ્રાકૃતિક સંખ્યા અયુગ્મ હોય તો તેનો વર્ગ પણ અયુગ્મ હોય.
  - (ii) કોઈક પ્રાકૃતિક સંખ્યા અયુગ્મ હોય તો જ તેનો વર્ગ અયુગ્મ હોય.
  - (iii) કોઇપણ પ્રાકૃતિક સંખ્યા અયુગ્મ હોય તેની આવશ્યક શરત તેનો વર્ગ અયુગ્મ હોય તે છે.

જવાબો 420

- (iv) કોઈક પ્રાકૃતિક સંખ્યાનો વર્ગ અયુગ્મ હોય એ માટે પર્યાપ્ત છે કે તે સંખ્યા અયુગ્મ હોય.
- (v) જો કોઈક પ્રાકૃતિક સંખ્યાનો વર્ગ અયુગ્મ ન હોય તો તે પ્રાકૃતિક સંખ્યા અયુગ્મ ન હોય.
- 2. (i) સમાનાર્થી પ્રેરણ : જો સંખ્યા x અયુગ્મ ન હોય તો x એ અવિભાજય સંખ્યા ન હોય. y તીપ : જો x અયુગ્મ હોય તો તે અવિભાજય સંખ્યા હોય.
  - (ii) સમાનાર્થી પ્રેરણ : જો એક જ સમતલની બે રેખાઓ છેદે તો તે સમાંતર ન હોય.પ્રતીપ : જો એક જ સમતલની બે રેખાઓ ન છેદે તો તે સમાંતર હોય.
  - (iii) સમાનાર્થી પ્રેરણ : જો કંઈક નીચા તાપમાને ન હોય તો તે ઠંડુ ન હોય.
    પ્રતીપ : જો કંઈક નીચા તાપમાને હોય તો તે ઠંડુ હોય.
  - (iv) સમાનાર્થી પ્રેરણ : જો તમે તાર્કિક સાબિતી આપવાનું જાણતા હોય તો તમે ભૂમિતિ સમજી શકો.પ્રતીપ : જો તમે તાર્કિક સાબિતી આપવાનું ન જાણતા હો તો તમે ભૂમિતિ ન સમજી શકો.
  - (v) આ વિધાન આ પ્રમાણે લખી શકાય : "જો x યુગ્મ સંખ્યા હોય તો તે 4 થી વિભાજય છે." સમાનાર્થી પ્રેરણ : જો x એ 4 થી વિભાજય ન હોય તો તે x યુગ્મ સંખ્યા થશે. પ્રતીપ: જો x એ 4 થી વિભાજય હોય તો તે x યુગ્મ સંખ્યા હોય.
- 3. (i) જો તમને નોકરી મળે તો તમારાં પ્રમાણપત્રો સારા છે.
  - (ii) જો કેળાના ઝાડ એક મહિના માટે હૂંફવાળા રહે તો તે ખીલે છે.
  - (iii) જો ચત્ષ્કોણના વિકર્શો પરસ્પર દુભાગે તો તે સમાંતરબાજુ ચત્ષ્કોણ છે.
  - (iv) જો તમે વર્ગમાં A+ મેળવ્યો હોય તો તમે પુસ્તકના બધા જ સ્વાધ્યાય કર્યા હોય.
- 4. a (i) સમાનાર્થી પ્રેરણ
- (ii) પ્રતીપ
- b (i) સમાનાર્થી પ્રેરણ
- (ii) પ્રતીપ

#### સ્વાધ્યાય 14.5

- 5. (i) અસત્ય ઃ જીવાની વ્યાખ્યા પરથી તે વર્તુળને બે બિંદુઓમાં છેદે છે.
  - (ii) અસત્ય : પ્રતિઉદાહરણ આપીને આ બતાવી શકાય. વ્યાસ સિવાયની જીવા એ પ્રતિઉદાહરણ થશે.
  - (iii) સત્ય, ઉપવલયના સમીકરણમાં જો a = b લઈએ તો તે વર્ત્0 બને. (પ્રત્યક્ષ પદ્ધતિ)
  - (iv) સત્ય, અસમતાના નિયમ પરથી
  - (v) અસત્ય, 11 અવિભાજ્ય સંખ્યા હોવાથી  $\sqrt{11}$  અસંમેય થશે.

#### પ્રકીર્ણ સ્વાધ્યાય 14

- 1. (i) જેથી x–1 ધન સંખ્યા ન હોય તેવી કોઈક વાસ્તવિક ધન સંખ્યા x અસ્તિત્વ ધરાવે છે.
  - (ii) ચટાપટાવાળી ન હોય તેવી બિલાડી અસ્તિત્વ ધરાવે છે.
  - (iii) x > 1 કે x < 1 ન હોય તેવી વાસ્તવિક સંખ્યા x અસ્તિત્વ ધરાવે છે.

421 ગણિત : ધોરણ 11

- (iv) 0 < x < 1 હોય તેવી કોઈ સંખ્યા x અસ્તિત્વ ધરાવતી નથી.
- 2. (i) વિધાન આ રીતે લખી શકાય : ''જો ધન પૂર્ણાંક અવિભાજ્ય હોય તો તેને 1 અને તે સંખ્યા સિવાય બીજા કોઈ અવયવો ન હોય.'' પ્રતીપ : જો કોઈક ધન પૂર્ણાંકને 1 અને તે સંખ્યા સિવાય બીજો કોઈ ન અવયવ હોય તો તે અવિભાજ્ય હોય. સમાનાર્થી પ્રેરણ : જો કોઈક ધન પૂર્ણાંકને 1 અને તે સંખ્યા સિવાય બીજા કોઈ અવયવ હોય તો તે અવિભાજ્ય ન હોય.
  - (ii) વિધાન આ રીતે લખી શકાય : ''જો દિવસ સૂર્ય પ્રકાશિત હોય તો હું દરિયા કિનારે જઈશ.'' પ્રતીપ : જો હું દરિયા કિનારે જઈશ તો દિવસ સૂર્ય પ્રકાશિત હશે. સમાનાર્થી પ્રેરણ : જો હું દરિયા કિનારે નહીં જઉ તો દિવસ સૂર્ય પ્રકાશિત નહીં હોય.
  - (iii) પ્રતીપ : જો તમને તરસ હોય તો બહાર ગરમી હોય.સમાનાર્થી પ્રેરણ : જો તમને તરસ ન લાગે તો બહાર ગરમી ન હોય.
- 3. (i) જો તમે સર્વર પર પ્રવેશ કરો તો તમારી પાસે પાસવર્ડ છે.
  - (ii) જો વરસાદ પડે તો ટ્રાફિક જામ થાય.
  - (iii) જો તમે વેબસાઈટમાં પ્રવેશ કરી શકો તો તમે લવાજમની રકમ ચૂકવી હોય.
- 4. (i) તમે ટેલિવિઝન નિહાળો તો અને તો જ તમારૂ મન મુક્ત હોય.
  - (ii) તમે A ગ્રેડ મેળવ્યો હોય તો અને તો જ બધુ ગૃહકાર્ય નિયમિત કર્યુ હોય.
  - (iii) ચતુષ્કોણના બધા ખૂણાઓ સમાન હોય તો અને તો જ તે લંબચોરસ હોય.
- 5. "અને" વડે જોડીને સંયુકત

વિધાન : 25 એ 5 અને 8 નો ગુણિત છે. આ અસત્ય વિધાન છે.

''અથવા'' વડે જોડીને સંયુકત

વિધાન : 25 એ 5 અથવા 8 નો ગુણિત છે. આ સત્ય વિધાન છે.

7. સ્વાધ્યાય 14.4 ના પ્રશ્ન.1 પ્રમાણે

### સ્વાધ્યાય 15.1

- **1.** 3
- **2.** 8.4
- **3.** 2.33
- 4. 7
- **5.** 6.32

- **6.** 16
- **7.** 3.23
- **8.** 5.1
- **9.** 157.92
- **10.** 11.28

- **11.** 10.34
- **12.** 7.35

# સ્વાધ્યાય 15.2

- 1. 9, 9.25
- 2.  $\frac{n+1}{2}$ ,  $\frac{n^2-1}{12}$
- **3.** 16.5, 74.25
- **4.** 19, 43.4
- **5.** 100, 29.09

- **6.** 64, 1.69
- **7.** 107, 2276
- **8.** 27, 132
- **9.** 93, 105.52, 10.27

10. 5.55, 43.5

જવાબો 422

#### स्वाध्याय 15.3

- **1.** B
- 2. Y
- **3.** (i) B, (ii) B
- **4.** A
- 5. વજન

#### પ્રકીર્ણ સ્વાધ્યાય 15

- 1. 4,8
- 2. 6, 8
- **3.** 24, 12
- **5.** (i) 10.1, 1.99 (ii) 10.2, 1.98
- 6. રસાયણ શાસ્ત્રમાં સૌથી વધુ અને ગણિતમાં સૌથી ઓછું.
- 7. 20, 3.036

### સ્વાધ્યાય 16.1

- 1. {HHH, HHT, HTH, THH, TTH, HTT, THT, TTT}
- **2.**  $\{(x, y): x, y = 1, 2, 3, 4, 5, 6\}$ અથવા {(1,1), (1,2), (1,3), ..., (1,6), (2,1), (2,2), ..., (2,6), ..., (6,1), (6,2), ..., (6,6)}
- 3. {HHHH, HHHT, HHTH, HTHH, THHH, HHTT, HTHT, HTTH, THHT, THTH, TTHH, HTTT, THTT, TTHT, TTTH, TTTT}
- **4.** {H1, H2, H3, H4, H5, H6, T1, T2, T3, T4, T5, T6}
- **5.** {H1, H2, H3, H4, H5, H6, T}
- **6.**  $\{XB_1, XB_2, XG_1, XG_2, YB_3, YG_3, YG_4, YG_5\}$
- 7. {R1, R2, R3, R4, R5, R6, W1, W2, W3, W4, W5, W6, B1, B2, B3, B4, B5, B6}
- **8.** (i) {BB, BG, GB, GG} (ii) {0, 1, 2}
- **9.** {RW, WR, WW}
- **10.** [HH, HT, T1, T2, T3, T4, T5, T6]
- 11. {DDD, DDN, DND, NDD, DNN, NDN, NND, NNN}
- 12. {T, H1, H3, H5, H21, H22, H23, H24, H25, H26, H41, H42, H43, H44, H45, H46, H61, H62, H63, H64, H65, H66}
- **13.** {(1,2), (1,3), (1,4), (2,1), (2,3), (2,4), (3,1), (3,2), (3,4), (4,1), (4,2), (4,3)}
- **14.** {1HH, 1HT, 1TH, 1TT, 2H, 2T, 3HH, 3HT, 3TH, 3TT, 4H, 4T, 5HH, 5HT, 5TH, 5TT, 6H, 6T}
- **15.** {TR<sub>1</sub>, TR<sub>2</sub>, TB<sub>1</sub>, TB<sub>2</sub>, TB<sub>3</sub>, H1, H2, H3, H4, H5, H6}
- **16.** {6, (1,6), (2,6), (3,6), (4,6), (5,6), (1,1,6), (1,2,6), ..., (1,5,6), (2,1,6). (2,2,6), ..., (2,5,6), ..., (5,1,6), (5,2,6), ...}

#### સ્વાધ્યાય 16.2

- 1. ના
- **2.** (i)  $\{1, 2, 3, 4, 5, 6\}$  (ii)  $\emptyset$  (iii)  $\{3, 6\}$  (iv)  $\{1, 2, 3\}$  (v)  $\{6\}$
- (vi)  $\{3, 4, 5, 6\}, A \cup B = \{1, 2, 3, 4, 5, 6\}, A \cap B = \emptyset, B \cup C = \{3, 6\}, E \cap F = \{6\}, D \cap E = \emptyset,$
- $A-C = \{1, 2, 4, 5\}, D-E = \{1, 2, 3\}, E \cap F' = \emptyset, F' = \{1, 2\}$

- 3.  $A = \{(3,6), (4,5), (5,4), (6,3), (4,6), (5,5), (6,4), (5,6), (6,5), (6,6)\}$   $B = \{(1,2), (2,2), (3,2), (4,2), (5,2), (6,2), (2,1), (2,3), (2,4), (2,5), (2,6)\}$   $C = \{(3,6), (6,3), (5,4), (4,5), (6,6)\}$ A with B, B with C useus fracts  $\dot{\mathfrak{G}}$ .
- 4. (i) A અને B; A અને C; B અને C; C અને D (ii) A અને C (iii) B અને D
- 5. (i) "ઓછામાં ઓછી બે છાપ મળે", અને "ઓછામાં ઓછા બે કાંટા મળે"
  - (ii) "એક પણ છાપ ન મળે", "બરાબર એક છાપ મળે" અને "ઓછામાં ઓછી બે છાપ મળે."
  - (iii) "વધુમાં વધુ બે કાંટા મળે", અને "બરાબર બે કાંટા મળે"
  - (iv) "બરાબર એક છાપ મળે" અને "બરાબર બે છાપ મળે"
  - (v) "બરાબર એક કાંટો મળે", "બરાબર બે કાંટા મળે", અને "બરાબર ત્રણ કાંટા મળે"

### 👉 નોંધ : ઉપરના પ્રશ્નનો જવાબ આપવા માટે બીજી ઘટનાઓ પણ હોઇ શકે.

- **6.**  $A = \{(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)\}$ 
  - $B = \{(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6), (5, 1), (5, 2), (5, 3), (5, 4), (5, 5), (5, 6)\}$
  - $C = \{(1,1), (1,2), (1,3), (1,4), (2,1), (2,2), (2,3), (3,1), (3,2), (4,1)\}$ 
    - (i)  $A' = \{(1,1), (1,2), (1,3), (1,4), (1,5), (1,6), (3,1), (3,2), (3,3), (3,4), (3,5), (3,6), (5,1), (5,2), (5,3), (5,4), (5,5), (5,6)\} = B$
  - (ii)  $B' = \{(2,1), (2,2), (2,3), (2,4), (2,5), (2,6), (4,1), (4,2), (4,3), (4,4), (4,5), (4,6), (6,1), (6,2), (6,3), (6,4), (6,5), (6,6)\} = A$
  - (iii)  $A \cup B = \{(1,1), (1,2), (1,3), (1,4), (1,5), (1,6), (3,1), (3,2), (3,3), (3,4), (3,5), (3,6), (5,1), (5,2), (5,3), (5,4), (5,5), (5,6), (2,1), (2,2), (2,3), (2,5), (2,6), (4,1), (4,2), (4,3), (4,4), (4,5), (4,6), (6,1), (6,2), (6,3), (6,4), (6,5), (6,6)\} = S$
  - (iv)  $A \cap B = \phi$
  - (v)  $A-C = \{(2,4), (2,5), (2,6), (4,2), (4,3), (4,4), (4,5), (4,6), (6,1), (6,2), (6,3), (6,4), (6,5), (6,6)\}$
  - (vi)  $B \cup C = \{(1,1), (1,2), (1,3), (1,4), (1,5), (1,6), (2,1), (2,2), (2,3), (3,1), (3,2), (3,3), (3,4), (3,5), (3,6), (4,1), (5,1), (5,2), (5,3), (5,4), (5,5), (5,6)\}$
  - (vii)  $B \cap C = \{(1,1), (1,2), (1,3), (1,4), (3,1), (3,2)\}$
  - (viii)  $A \cap B' \cap C' = \{(2,4), (2,5), (2,6), (4,2), (4,3), (4,4), (4,5), (4,6), (6,1), (6,2), (6,3), (6,4), (6,5), (6,6)\}$
- 7. (i) સત્ય (ii) સત્ય (iii) સત્ય (iv) અસત્ય (v) અસત્ય (vi) અસત્ય

જવાબો 424

### સ્વાધ્યાય 16.3

2. 
$$\frac{3}{4}$$

3. (i) 
$$\frac{1}{2}$$
 (ii)  $\frac{2}{3}$  (iii)  $\frac{1}{6}$  (iv) 0 (v)  $\frac{5}{6}$ 

4. (a) 52 (b) 
$$\frac{1}{52}$$
 (c) (i)  $\frac{1}{13}$  (ii)  $\frac{1}{2}$ 

5. (i) 
$$\frac{1}{12}$$
 (ii)  $\frac{1}{12}$  6.  $\frac{3}{5}$ 

6. 
$$\frac{3}{5}$$

P (₹ 4.00 મળે) = 
$$\frac{1}{16}$$
, P(₹ 1.50 મળે) =  $\frac{1}{4}$ , P (₹ 1.00 ગુમાવે) =  $\frac{3}{8}$ 

P (₹ 3.50 ગુમાવે) = 
$$\frac{1}{4}$$
, P (₹ 6.00 ગુમાવે) =  $\frac{1}{16}$ .

**8.** (i) 
$$\frac{1}{8}$$
 (ii)  $\frac{3}{8}$  (iii)  $\frac{1}{2}$  (iv)  $\frac{7}{8}$  (v)  $\frac{1}{8}$  (vi)  $\frac{1}{8}$  (vii)  $\frac{3}{8}$  (viii)  $\frac{1}{8}$  (ix)  $\frac{7}{8}$ 

9. 
$$\frac{9}{11}$$

**10.** (i) 
$$\frac{6}{13}$$
 (ii)  $\frac{7}{13}$ 

11. 
$$\frac{1}{38760}$$

- 12. (i) ના, કારણ કે  $P(A \cap B)$  એ હંમેશા P(A) તથા P(B) થી નાની અથવા તેના જેટલી હોય. (ii) હા
- 13. (i)  $\frac{7}{15}$  (ii) 0.5 (iii) 0.15

14.  $\frac{4}{5}$ 

15. (i)  $\frac{5}{8}$  (ii)  $\frac{3}{8}$ 

16. ના

- **17.** (i) 0.58 (ii) 0.52 (iii) 0.74
- **18.** 0.6

- **19.** 0.55
- **20.** 0.65

21. (i)  $\frac{19}{30}$  (ii)  $\frac{11}{30}$  (iii)  $\frac{2}{15}$ 

### પ્રકીર્ણ સ્વાધ્યાય 16

1. (i) 
$$\frac{^{20}\text{C}_5}{^{60}\text{C}_5}$$
 (ii)  $1 - \frac{^{30}\text{C}_5}{^{60}\text{C}_5}$  2.  $\frac{^{13}\text{C}_3.^{13}\text{C}_1}{^{52}\text{C}_4}$ 

- 3. (i)  $\frac{1}{2}$  (ii)  $\frac{1}{2}$  (iii)  $\frac{5}{6}$  4. (a)  $\frac{999}{1000}$  (b)  $\frac{9990}{10000} \frac{C_2}{C_2}$  (c)  $\frac{9990}{10000} \frac{C_{10}}{C_{10}}$

- 5. (a)  $\frac{17}{33}$  (b)  $\frac{16}{33}$  6.  $\frac{2}{3}$
- 7. (i) 0.88 (ii) 0.12 (iii) 0.19 (iv) 0.34 8.  $\frac{4}{5}$
- 9. (i)  $\frac{33}{83}$  (ii)  $\frac{3}{8}$  10.  $\frac{1}{5040}$





#### BE A STUDENT OF STUDENTS

A teacher who establishes rapport with the taught, becomes one with them, learns more from them than he teaches them. He who learns nothing from his disciples is, in my opinion, worthless. Whenever I talk with someone I learn from him. I take from him more than I give him. In this way, a true teacher regards himself as a student of his students. If you will teach your pupils with this attitude, you will benefit much from them.

> Talk to Khadi Vidyalaya Students, Sevagram Harijan Seva, 15 February 1942 (CW 75, p. 269)

#### USE ALL RESOURCES TO BE CONSTRUCTIVE AND CREATIVE

What we need is educationists with originality, fired with true zeal, who will think out from day to day what they are going to teach their pupils. The teacher cannot get this knowledge through musty volumes. He has to use his own faculties of observation and thinking and impart his knowledge to the children through his lips, with the help of a craft. This means a revolution in the method of teaching, a revolution in the teachers' outlook. Up till now you have been guided by inspector's reports. You wanted to do what the inspector might like, so that you might get more money yet for your institutions or higher salaries for yourselves. But the new teacher will not care for all that. He will say, '1 have done my duty to my pupil if I have made him a better man and in doing so I have used all my resources. That is enough for me'.

Harijan, 18 February 1939 (CW 68, pp. 374-75)