Downloaded from https://www.studiestoday.com

ગુજરાત રાજ્યના શિક્ષણવિભાગના પત્ર–ક્રમાંક ઉમશ/1211/414/ છ, તા. 11-4-2011−થી મંજૂર

ધોરણ 11

(સિમેસ્ટર I)

ભારત મારો દેશ છે. બધાં ભારતીયો મારાં ભાઈબહેન છે. હું મારા દેશને ચાહું છું અને તેના સમૃદ્ધ અને વૈવિધ્યપૂર્ણ વારસાનો મને ગર્વ છે. હું સદાય તેને લાયક બનવા પ્રયત્ન કરીશ. હું મારાં માતાપિતા, શિક્ષકો અને વડીલો પ્રત્યે આદર રાખીશ અને દરેક જણ સાથે સભ્યતાથી વર્તીશ. હું મારા દેશ અને દેશબાંધવોને મારી નિષ્ઠા અર્પું છું. તેમનાં કલ્યાણ અને સમૃદ્ધિમાં જ મારું સુખ રહ્યું છે.

કિંમત ∶₹ 47.00

ગુજરાત રાજ્ય શાળા પાઠ્યપુસ્તક મંડળ 'વિદ્યાયન', સેક્ટર 10-એ, ગાંધીનગર – 382010

Downloaded from https:// www.studiestoday.com

© ગુજરાત રાજ્ય શાળા પાઠ્યપુસ્તક મંડળ, ગાંધીનગર આ પાઠ્યપુસ્તકના સર્વ હક ગુજરાત રાજ્ય શાળા પાઠ્યપુસ્તક મંડળને હસ્તક છે. આ પાઠ્યપુસ્તકનો કોઈ પણ ભાગ કોઈ પણ રૂપમાં ગુજરાત રાજ્ય શાળા પાઠ્યપુસ્તક મંડળના નિયામકની લેખિત પરવાનગી વગર પ્રકાશિત કરી શકાશે નહિ.

લેખન

ડૉ. એમ. આઇ. પટેલ (કન્વીનર) ડૉ. વાય. એમ. દલાલ ડૉ. બી. કે. જૈન ડૉ. યોગેશ ડબગર ડૉ. ચિરાગ આચાર્ય ડૉ. નરસિંહ પટેલ

અનુવાદ

સમીક્ષા

શ્રી સી. આર. પટેલ શ્રી વશરામભાઈ જી. કોટડિયા શ્રી પ્રદીપ કે. ગગલાણી શ્રી વિક્રમ આર. દવે શ્રી નીતિન ડી. દવે શ્રી જે. પી. પટેલ શ્રી અશ્વિન મહેતા

ભાષાશુદ્ધિ

ડૉ. સુશીલાબહેન એમ. પટેલ

ચિત્રાંકન

શિલ્પ ગ્રાફિક્સ

સંયોજન

શ્રી ચિરાગ એચ. પટેલ (વિષય-સંયોજક : ભૌતિકવિજ્ઞાન)

નિર્માણ-આયોજન

શ્રી સી. ડી. પંડ્યા (નાયબ નિયામક : શૈક્ષણિક)

મુદ્રણ-આયોજન

શ્રી હરેશ એસ. લીમ્બાચીયા (નાયબ નિયામક : ઉત્પાદન)

પ્રસ્તાવના

કોર-કરિક્યુલમ અને એન.સી.ઈ.આર.ટી. દ્વારા NCF- 2005 મુજબ તૈયાર કરવામાં આવેલા નવા રાષ્ટ્રીય અભ્યાસક્રમોના અનુસંધાનમાં ગુજરાત રાજ્ય માધ્યમિક અને ઉચ્ચતર માધ્યમિક શિક્ષણ બોર્ડ નવા અભ્યાસક્રમો તૈયાર કર્યા છે. આ અભ્યાસક્રમો ગુજરાત સરકાર દ્વારા મંજૂર કરવામાં આવે છે.

ગુજરાત સરકાર દ્વારા મંજૂર થયેલા ધોરણ 11 જીવવિજ્ઞાનના (સિમેસ્ટર I) વિષયના નવા અભ્યાસક્રમ અનુસાર તૈયાર કરવામાં આવેલું આ પાઠ્યપુસ્તક વિદ્યાર્થીઓ સમક્ષ મૂકતાં મંડળ આનંદ અનુભવે છે.

આ પાઠ્યપુસ્તક પ્રસિદ્ધ કરતાં પહેલાં એની હસ્તપ્રતની આ સ્તરે શિક્ષણકાર્ય કરતા શિક્ષકો અને તજ્જ્ઞો દ્વારા સર્વાંગી સમીક્ષા કરાવવામાં આવી છે. શિક્ષકો તથા તજ્જ્ઞોનાં સૂચનો અનુસાર હસ્તપ્રતમાં યોગ્ય સુધારાવધારા કર્યા પછી આ પાઠ્યપુસ્તક પ્રસિદ્ધ કરવામાં આવ્યું છે.

આ મૂળ અંગ્રેજીમાં લખાયેલ પાઠ્યપુસ્તકનો ગુજરાતી અનુવાદ છે. ગુજરાતી અનુવાદની વિષય અને ભાષાનાં નિષ્ણાતો દ્વારા સમીક્ષા કરાવવામાં આવી છે.

પ્રસ્તુત પાઠ્યપુસ્તકને વિષયવસ્તુલક્ષી રસપ્રદ, ઉપયોગી અને ક્ષતિરહિત બનાવવા માટે મંડળે પૂરતી કાળજી લીધી છે, તેમ છતાં શિક્ષણમાં રસ ધરાવનાર વ્યક્તિઓ પાસેથી પુસ્તકની ગુણવત્તા વધારે તેવાં સૂચનો આવકાર્ય છે.

ડૉ. ભરત પંડિત **ડૉ. નીતિન પેથાણી** નિયામક કાર્યવાહક પ્રમુખ તા.17-10-2014 ગાંધીનગર

પ્રથમ આવૃત્તિ : 2011, પુન:મુદ્રશ : 2011, 2013, 2013, 2014

પ્રકાશક ઃ ગુજરાત રાજ્ય શાળા પાઠેંચપુસ્તક મંડળ, 'વિદ્યાયન', સેક્ટર 10—એ, ગાંધીનગર વતી ભરત પંડિત, નિયામક

भुद्र :

Downloaded from https://www.studiestoday.com

મૂળભૂત ફરજો

ભારતના દરેક નાગરિકની ફરજ નીચે મુજબ રહેશે :*

- (ક) સંવિધાનને વફાદાર રહેવાની અને તેના આદર્શો અને સંસ્થાઓનો, રાષ્ટ્રધ્વજનો અને રાષ્ટ્રગીતનો આદર કરવાની;
- (ખ) આઝાદી માટેની આપશી રાષ્ટ્રીય લડતને પ્રેરશા આપનારા ઉમદા આદર્શોને હૃદયમાં પ્રતિષ્ઠિત કરવાની અને અનુસરવાની;
- (ગ) ભારતનાં સાર્વભૌમત્વ, એકતા અને અખંડિતતાનું સમર્થન કરવાની અને તેમનું રક્ષણ કરવાની;
- (ઘ) દેશનું રક્ષણ કરવાની અને રાષ્ટ્રીય સેવા બજાવવાની હાકલ થતાં, તેમ કરવાની;
- (ચ) ધાર્મિક, ભાષાકીય, પ્રાદેશિક અથવા સાંપ્રદાયિક ભેદોથી પર રહીને, ભારતના તમામ લોકોમાં સુમેળ અને સમાન બંધુત્વની ભાવનાની વૃદ્ધિ કરવાની, ઋાીઓના ગૌરવને અપમાનિત કરે, તેવા વ્યવહારો ત્યજી દેવાની;
- (છ) આપણી સમન્વિત સંસ્કૃતિના સમૃદ્ધ વારસાનું મૂલ્ય સમજી તે જાળવી રાખવાની;
- (જ) જંગલો, તળાવો, નદીઓ અને વન્ય પશુપક્ષીઓ સહિત કુદરતી પર્યાવરણનું જતન કરવાની અને તેની સુધારણા કરવાની અને જીવો પ્રત્યે અનુકંપા રાખવાની;
- (ઝ) વૈજ્ઞાનિક માનસ, માનવતાવાદ અને જિજ્ઞાસા તથા સુધારણાની ભાવના કેળવવાની;
- (ટ) જાહેર મિલકતનું રક્ષણ કરવાની અને હિંસાનો ત્યાગ કરવાની;
- (ઠ) રાષ્ટ્ર પુરુષાર્થ અને સિદ્ધિનાં વધુ ને વધુ ઉન્નત સોપાનો ભણી સતત પ્રગતિ કરતું રહે એ માટે, વૈયક્તિક અને સામૂહિક પ્રવૃત્તિનાં તમામ ક્ષેત્રે શ્રેષ્ઠતા હાંસલ કરવાનો પ્રયત્ન કરવાની;
- (ડ) માતા-પિતાએ અથવા વાલીએ દ વર્ષથી ૧૪ વર્ષ સુધીની વયના પોતાના બાળક અથવા પાલ્યને શિક્ષણની તકો પૂરી પાડવાની.

^{*} ભારતનું સંવિધાન : કલમ 51-क

Downloaded from https:// www.studiestoday.com

અનુક્રમણિકા

1.	સજીવોનું વર્ગીકરશ	1-9
2.	વર્ગીકરણનાં ક્ષેત્રો	10 - 15
3.	વનસ્પતિસૃષ્ટિનું વર્ગીકરણ	16 - 29
4.	પ્રાણીસૃષ્ટિનું વર્ગીકરણ	30 - 52
5.	કોષરચના	53 - 66
6.	જૈવિક અશુઓ-1 (કાર્બોદિત અને ચરબી)	67 - 78
7.	જૈવિક અશુઓ-2 પ્રોટીન, ન્યુક્લિકઍસિડ અને ઉત્સેચકો	79 - 89
8.	કોષચક્ર અને કોષવિભાજન	90 - 97
9.	પશુપાલન અને વનસ્પતિ-સંવર્ધન	98 - 102
10.	માનવ-સ્વાસ્થ્ય અને રોગો (રોગ-પ્રતિકારકતા, રસીકરણ, કૅન્સર, એઇડ્સ)	103 - 117
11.	સૂક્ષ્મ સજીવો અને માનવકલ્યાશ	118 - 124

•

1

સજીવોનું વર્ગીકરણ

अस्तावना

આપણી આસપાસ જોવા મળતી પ્રાકૃતિક રચના કેટલી અદ્ભુત છે. આ સમગ્ર રચના મુખ્ય બે ઘટકોની બનેલી છે : નિર્જીવ ઘટકો અને સજીવો. આપણે નિર્જીવ ઘટકોની રચના અને ગુણધર્મો ભૌતિકવિજ્ઞાન અને રસાયણવિજ્ઞાન દ્વારા સમજીએ છીએ. નિર્જીવના ગુણધર્મો નિશ્ચિત છે તેમ સજીવનાં લક્ષણો પણ નિશ્ચિત છે. જીવ હોવો એ સજીવનો ગુણધર્મ છે. જીવની વ્યાખ્યા આપવી સરળ નથી. જીવવિજ્ઞાનીઓએ અને બીજા અનેક વૈજ્ઞાનિકોએ જીવની ઉત્પત્તિ વિશે પ્રયોગો પણ કર્યા છે અને પોતાનાં મંતવ્યો અને સિદ્ધાંતો પણ આપ્યા છે. જીવ ધરાવે તે સજીવ. પરંતુ તેની ઓળખ શું ? જીવવિજ્ઞાનીઓ સજીવની ઓળખ માટે તે કેવી રીતે કાર્યો કરે છે તેના પર ધ્યાન કેન્દ્રિત કરે છે. આવાં કાર્યો સંબંધિત લક્ષણોને આધારે જીવ અને સજીવને સ્પષ્ટ સમજી શકાય છે. તેના આધારે વ્યાખ્યા પણ તારવી શકાય છે.

સજીવ એટલે શું ?

જયારે આપણે સજીવની વ્યાખ્યા કરી રહ્યા છીએ ત્યારે આપણે આપણી રૂઢિ અનુસાર સજીવો જે વિશિષ્ટ લક્ષણો ધરાવે છે તે તરફ ધ્યાન કેન્દ્રિત કરીએ છીએ. સજીવોમાં જોવા મળતાં લક્ષણો જેવાં કે પ્રજનન, વૃદ્ધિ, વિકાસ, પર્યાવરણ પ્રત્યે તેમની સભાનતા અને અંતે સાધવામાં આવતું અનુકૂલન, તેમ છતાં અંતે મૃત્યુ જોતાં આપણને વિચાર આવી જાય છે કે સજીવોમાં કેવાં અદિતીય લક્ષણો છે. જેમ જેમ સજીવોનાં લક્ષણો સમજવા ઊંડા પ્રયત્નો કરીએ તેમ તેમ તેમાં વધુ ઉમેરો પણ કરી શકીએ. જેમકે તેઓમાં જોવા મળતી ચયાપચય ક્રિયાઓ, વારસો સાચવવાની ક્ષમતા, અનુકૂલન બતાવવું, એન્દ્રોપી (અવ્યવસ્થાનું પરિમાણ)નું નિયંત્રણ, મૃત્યુ, ભિન્નતા વગેરે. આ લક્ષણોને વિગતે જોઈએ.

अथनन :

સજીવ પુખ્ત વયે પોતાના જેવા જ નવા સજીવનું સર્જન કરે છે. આ પ્રક્રિયાને પ્રજનન કહે છે. સૃષ્ટિ પર વસતા બધા જ સજીવોમાં આ લક્ષણ હોય જ એવું નથી. દા.ત., વંધ્ય સજીવો. પ્રજનન દ્વારા સજીવોની સંખ્યામાં વધારો થાય છે અને પેઢી દર પેઢી જીવસાતત્ય જળવાઈ રહે છે. આ પ્રકારે ઉમેરાતા નવા સજીવો મૃત્યુ પામેલા સજીવોનું સ્થાન લે છે. પ્રજનનની વિવિધ પદ્ધતિઓ છે, જેમકે લિંગી પ્રજનન, અલિંગી પ્રજનન, સંજીવનશક્તિ વગેરે.

રાયાયરા :

સજીવના દરેક કોષોમાં પણ વિવિધ પ્રકારની જૈવરાસાયણિક ક્રિયાઓ સતત ચાલતી જ હોય છે. આવી ક્રિયાઓને સંયુક્ત રીતે ચયાપચય કહે છે. (ચયાપચય આવી જ એક જટિલ જૈવરાસાયણિક પ્રક્રિયા છે.) આ ક્રિયા ચય અને અપચયની ક્રિયાઓ દ્વારા ચાલતી હોય છે. બંને ક્રિયાઓ સાથે સાથે થતી જ હોય છે. જેમાં જો અપચય ક્રિયા કરતાં ચય ક્રિયાઓનું પ્રમાણ વધુ હોય ત્યારે વૃદ્ધિ થાય છે. આમ, વૃદ્ધિ ચયાપચયની ફ્રળશ્રુતિ છે. તેવી જ રીતે અપચયની ક્રિયા ચય ક્રિયા કરતાં વધુ હોય તો સજીવમાં ઘસારો અનુભવાય છે.

સજીવોમાં થતા ચયાપચયમાં ઊર્જાનું રૂપાંતરણ થતું જ હોય છે. તે જટિલ પ્રક્રિયાઓ છે. તેમ છતાં સજીવ માટે અનિવાર્ય છે, કારણ કે સજીવને અનેક જૈવિક કાર્યો કરવાનાં હોય છે. આ જૈવિક કાર્યો કરવા માટે ઊર્જાનાં રૂપાંતરણો જરૂરી છે. મૂળભૂત રીતે સજીવો તેમના ખોરાકમાંથી ઊર્જા પ્રાપ્ત કરે છે.

वृद्धि :

જથ્થામાં અને સંખ્યામાં વધવું એ સજીવનું લક્ષણ છે. સજીવો તેમના જન્મ પછી દેહના કદમાં વધારો કરતાં જ રહે છે. બહુકોષીય સજીવો કોષવિભાજન દ્વારા વધે છે. વૃદ્ધિ દરમિયાન કોષોની સંખ્યામાં વધારો થાય છે, પરિણામે દેહની પેશી, અંગ કે દેહમાં વૃદ્ધિ થાય છે. વનસ્પતિઓમાં વૃદ્ધિ જીવનપર્યંત થતી રહે છે જ્યારે પ્રાણીઓમાં તે કેટલીક ઉંમર સુધી જ જોવા મળે છે.

विकास :

એક જ જાતિના સજીવો પરસ્પર સમાગમ કરી શકે છે, જેને લીધે ફલનની ઘટના થઈ ફલિતાંડ બને છે. ફિલિતાંડના વિભાજનથી ઉત્પન્ન થયેલા ગર્ભીય કોષોમાં તેમનાં વિશિષ્ટ કાર્યોને અનુલક્ષીને પરિવર્તનો થાય છે જેને વિભેદન કહે છે. પરિશામે પેશીઓ બને છે. વિભેદન પણ સજીવનો ગુણ બને છે. વિકાસની પ્રક્રિયા દરમિયાન અંગજનન થાય છે. અંગજનનને પરિશામે સજીવગર્ભમાં પેશી, અંગો અને અંગતંત્રો રચાય છે.

પર્ચાવરણ સાથે પ્રતિક્રિયા :

દરેક સજીવમાં જો જટિલ લક્ષણ હોય તો તેની આજુબાજુને કે પર્યાવરણ પ્રત્યેની અનુભૂતિના આવિષ્કારની ક્ષમતાનો છે. આવિષ્કાર દૈહિક, રાસાયણિક કે જૈવિક સ્વરૂપે હોઈ શકે. પ્રાથમિક કોષકેન્દ્રિય સજીવોમાંથી માંડી ઉચ્ચ કક્ષાના જટિલ સુકોષકેન્દ્રિય બધા જ સજીવો પર્યાવરણના ઇશારા પ્રત્યે અનુભૂતિ અને પ્રતિક્રિયા દર્શાવતાં હોય છે. દા.ત., વનસ્પતિઓ બાહ્ય પરિબળો જેવાં કે પ્રકાશ, પાણી, તાપમાન, અન્ય જીવો, પ્રદૂષકો વગેરે સામે પ્રતિક્રિયા દર્શાવી શકે છે. પ્રાણીઓમાં પણ આ ગુણ છે. પર્યાવરણનાં પરિબળોને કેન્દ્રમાં રાખી સજીવો પ્રજનન કરતાં માલૂમ પડ્યાં છે. દરેક સજીવ તેના આજુબાજુના રહેઠાણથી જાગૃત જ હોય છે.

अनुरूषन :

સજીવો ઓછાવત્તા પ્રમાણમાં તેમની શરીરરચના, કાર્યપદ્ધતિ કે વર્તનો બદલી પર્યાવરણ સાથે તાદાત્મ્ય સાથે છે. આવા સજીવો જ પોતાના પર્યાવરણમાં ટકી રહે છે. જે સજીવો તેમના પર્યાવરણમાં પોતાનું અસ્તિત્વ ટકાવી રાખવા અને તેમની પ્રજનન-ક્ષમતાને પ્રોત્સાહિત કરતાં લક્ષણો ધરાવતા હોય, તેઓ તે પર્યાવરણને સૌથી વધુ અનુકૂલિત ગણાય છે. વિવિધ વસવાટોમાં જોવા મળતાં સજીવો ત્યાં એટલા માટે જ વસે છે, કારણ કે તેઓ ત્યાંના વસવાટને અનુકૂલિત હોય છે. દા.ત., માછલી જલવિસ્તારને, પક્ષી હવાઈજીવનને અને ઘોડો સ્થળજીવનને અનુકૂલિત છે.

મૃત્યુ :

સજીવ અમર નથી. મૃત્યુ એક રહસ્યમય ઘટના છે. આપણને પ્રશ્ન થાય છે કે મૃત્યુ શા માટે ? વૈજ્ઞાનિકોએ આ રહસ્ય પણ જાણ્યું છે. આપણે આગળ જોયું કે સજીવ ચયાપચયની ક્રિયામાં શક્તિ (ઊર્જા) વાપરે છે. સજીવના કોઈ તંત્રના કાર્ય માટે પ્રાપ્ત શક્તિને મુક્ત ઊર્જા (free energy) કહે છે. શક્તિના કોઈ પણ રૂપાંતરણ દરમિયાન કેટલોક શક્તિજથ્થો ઉષ્મા સ્વરૂપે વ્યય પામે છે. આથી સજીવના દેહનાં તંત્રોમાં અવ્યવસ્થાની માત્રા વધતી જાય

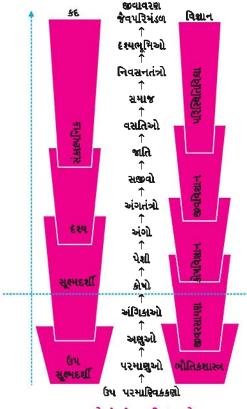
સજીવોનું વર્ગીકરણ

છે. આ અવ્યવસ્થાના પરિમાણને એન્ટ્રોપી (entropy) કહે છે. આમ, ક્રમશઃ મુક્ત શક્તિનું પ્રમાણ ઘટતું જાય છે. આથી કાર્ય-ક્ષમતામાં ઘટાડો થાય છે.

સજીવનાં બધાં જ તંત્રોમાં જ્યારે આવી અવ્યવસ્થા થતાં મહત્તમ એન્ટ્રોપીથી શિથિલ થતાં અંગો કામ કરતાં બંધ પડે જેને મૃત્યુ કહે છે. કાળક્રમે દરેક સજીવ મૃત્યુ પામે છે. મૃત્યુ અર્થપૂર્શ પણ છે. જો પૃથ્વી ઉપર સજીવો અમર હોત તો સંખ્યા અમર્યાદિત હોત. નવા સજીવને અવતરવાનો અવકાશ જ ના રહે. આમ, મૃત્યુ લારા દરેક જાતિના સજીવોની સંખ્યા મર્યાદિત રહે છે. મૃત્યુને લીધે જીવન-તત્ત્વોથી રચાયેલા દેહનાં આ દ્રવ્યો કરી પાછાં પર્યાવરણમાં પાછાં કરે છે. વર્ષોથી આ ઘટનાક્રમ ચાલુ જ છે અને રહેવાનો. આટલું જાણ્યા પછી સજીવની વ્યાખ્યા કરવી હોય તો એમ કહી શકાય કે, જીવ ધરાવનાર અને વિવિધ જૈવિકક્રિયાઓ કરી પર્યાવરણ સાથે તાદાત્મ્ય ધરાવનારને સજીવ કહે છે.

वारसो साथववानी क्षभवा :

ઉચ્ચ સજીવ વર્ગોમાં જીવનની વિલક્ષણ ઘટનાઓ તેમના દેહની આંતરિક પ્રક્રિયાઓને લીધે શક્ય છે. પેશીના ગુણ્યધર્મો એ તેના કોયોના બંધારણને લીધે નથી પરંતુ કોયોમાં થતી આંતરિકયાઓનું પરિણામ છે. તેવી જ રીતે કોયનાં લક્ષણો તે તેની અંગિકાઓના બંધારણને લીધે નથી પરંતુ અંગિકાઓમાં રહેલા અશુઓની પ્રક્રિયાઓનું પરિણામ છે. આવા અશુઓ પૈકી ન્યુક્લિક ઍસિડનો બનેલો DNA અશુ પિતૃઓ લારા પેદા થયેલા સજીવમાં વારસામાં ઊતરે છે. તેમાં પિતૃપક્ષની જેમ ક્રિયાઓ કરવા જરૂરી રસાયણો પેદા કરવાની ગૂઢ સાંકેતિક લિપિ હોય છે. આ રચના જનીન તરીકે જાણીતી છે. જે આનુવંશિકતાનો એકમ છે. આ લક્ષણ નિર્જીવમાં હોતું નથી. DNA દ્વારા વારસો સચવાય છે જે સજીવનો રહસ્યમય ગુણ છે.


Montell:

આપશી આસપાસ જોઈએ છીએ તો ભિન્ન ભિન્ન પ્રકારના સજીવો નજરે પડે છે. આવું શા માટે બનવા પામ્યું હશે ? આવો પ્રશ્ન થાય તે સ્વાભાવિક છે. આવા જુદાપશાના ગુક્ષને ભિન્નતા કહે છે. ટૂંકમાં,

કોઈ એક જાતિના સભ્યો વચ્ચેનાં લક્ષણોના વૈવિધ્યને ભિન્નતા કહે છે. આપશે જોયું કે પ્રકૃતિનો મહત્તમ ઉપયોગ કરવા સજીવ અનુ ફૂલનો સાધવા પ્રયત્ન કરે છે. તે સારુ તે ભિન્નતાઓ પણ દર્શાવે છે. જે ભિન્નતાઓ પર્યાવરણના ઉપયોગ માટે કાર્યક્ષમ હોય તે ભિન્નતા ધરાવતા સજીવો સફળ થાય છે. કાળક્રમે આ વૈવિધ્યની માત્રા એટલી થઈ જાય છે કે તેથી નવો સજીવ મૂળ પિતૃઓનાં લક્ષણોથી અલગ પડી જાય છે અને નવી જાતિ સર્જ છે.

ः किकाटांड

સજવોમાં વિવિધ સ્તરનું સંગઠન જોવા મળે છે. પરમાશુઓના સંગઠનથી અશુઓ અને અશુઓ વડે મહાઅશુઓ બને છે. મહાઅશુઓ વડે પટલો અને પટલમય અંગિકાઓનું આયોજન થાય છે. અંગિકાઓના સંકલન વડે કોય અને કોયોના સમૂહ વડે પેશી રચાય છે. પેશીઓ દ્વારા અંગો અને અંગતંત્રો રચાય છે. તેના દ્વારા દેહનું આયોજન થાય છે. આવો દેહ ધરાવતાં સજીવ જાતિ (species) તરીકે ઓળખાય છે. આવા વ્યક્તિગત સજીવો મળી વસતિ રચે છે. એક સામાન્ય વસવાટમાં જીવન ગાળતી વસતિઓ મળી જીવસમાજની રચના કરે છે. જીવસમાજો અને તેના પર્યાવરક્ષ વચ્ચેની આંતરક્રિયાઓ વડે વિવિધ નિવસનતંત્રો રચાય છે. પ્રકૃતિમાં સૌ નિવસનતંત્રો સંયુક્ત રીતે જીવાવરક્ષ રચે છે. સંગઠનની આ ઘટનાઓ ક્રમશઃ બને છે. જુઓ આકૃતિ.

સજાવોમાં સંગઠનની ક્યાઓ

अविज्ञान

4

સજીવોમાં વિવિધતા

જીવાવરણમાં અસંખ્ય પ્રકારના સૂક્ષ્મ જીવો, વનસ્પતિ અને પ્રાણીઓ વસે છે. આપણે તેમને વિભિન્ન પ્રદેશોમાં જોઈએ છીએ. કદ, આકાર, રચના, જીવનશૈલી અને અન્ય ઘણી બાબતે તેઓ વૈવિધ્ય ધરાવે છે. જેને જૈવવિવિધતા (biodiversity) કહે છે.

વૈજ્ઞાનિકો સજીવોનો ચોક્કસ અભ્યાસ થઈ શકે તે સારુ તેમની ઓળખ પ્રસ્થાપિત કરી તેઓનું વર્ગીકરણ કરે છે. જો તમે ગાઢ જંગલની મુલાકાત લો તો તમને અનેકવિધ પ્રકારના અસંખ્ય સજીવો જોવા મળે. આ દરેક સજીવો જાતિ સ્વરૂપે રજૂ થતાં હોય છે. હાલના તબક્કે વિશ્વમાં લગભગ 17 થી 18 લાખ આવી જાતિઓ ઓળખાયેલી છે. હજુ પણ આપણી જાણકારી મર્યાદિત છે. લગભગ 50 લાખથી 5 કરોડ જાતિઓ હોવાનો અંદાજ છે. આપણે આપણા ક્ષેત્ર-અવલોકનોનો વિસ્તાર જેટલો વધારીએ અને સતત નિરીક્ષણ કરતા રહીએ તેટલા સજીવોમાં અનેકવિધ વિવિધતા વધુ ને વધુ પ્રમાણમાં દેખાશે.

नाभाधिङरण :

આપણે ક્ષેત્ર-અભ્યાસ કરીએ ત્યારે રોજબરોજનાં અવલોકનો દરમિયાન ઓળખી શકાતા સજીવોને સ્થાનિક નામથી ઓળખીએ છીએ. દા.ત., લીમડો, આંબો, કાગડો, ઉંદર, વંદો વગેરે. આ સ્થાનિક નામ એક જ દેશમાં પણ જુદા જુદા રાજ્યમાં જુદા જુદા નામથી ઓળખાતાં હોય છે. જેથી ચોક્કસ સજીવ વિશે ચોક્કસ વર્ણન કરવું હોય કે જેના વિશે સૌ કોઈ સરળતાથી જાણકારી પણ મેળવે તે સારુ આવા દરેક સજીવનું વિશ્વમાન્ય ચોક્કસ નામ હોવું જરૂરી છે. નિયમોને અનુસરીને નામ આપવાની આવી પદ્ધતિને નામાધિકરણ (nomenclature) કહે છે. જે નામ સાથે તે સજીવ સંકળાયેલો હોય તેમજ તેનું વર્ણન સચોટ હોય તો તેને તેની ઓળખવિધિ (identification) કહે છે. નામકરણ અને ઓળખવિધિના અભ્યાસને સરળ અને ચોક્કસ બનાવવા ઘણા વૈજ્ઞાનિકોએ વિવિધ પદ્ધતિઓ પ્રસ્થાપિત કરેલી છે, જે સૌને સ્વીકૃત હોય છે.

કોઈ પણ સજીવનું વૈજ્ઞાનિક નામ વૈશ્વિકસ્તરે માત્ર એક જ હોય છે. તેમજ આવું નામ અન્ય કોઈ પણ સજીવ માટે વપરાતું નથી. બધા જ સજીવોનું નામાધિકરણ કરવા સુધીનો અભ્યાસ શક્ય ના પણ હોય. જેથી પ્રથમ કક્ષાએ સજીવોની ચોક્કસ અર્થકારક જૂથ-વહેંચણી કરવામાં આવે છે. આ કાર્યપદ્ધતિને વર્ગીકરણ (classification) કહે છે. આમ, વર્ગીકરણ એ એક એવી કાર્યપદ્ધતિ છે કે જેમાં કોઈ પણ સજીવને વર્ગીકૃત કરવાની સગવડ ભરેલી વર્ગક વ્યવસ્થા હોય. તેમજ કેટલાંક સરળતાથી નિરીક્ષણ કરી શકાય તેવાં લક્ષણો ઉપર આધારિત હોય જેમકે કેટલાંક જૂથથી આપણે અનુભવે પરિચિત છીએ. દા.ત., વનસ્પતિઓ, પ્રાણીઓ, કીટકો, માછલીઓ વગેરે. આવા જૂથ શબ્દ-પ્રયોગ કરતાંની સાથે જ આપણે તે જૂથનાં ચોક્કસ લક્ષણો સાથે જોડાઈ જઈએ છીએ. દા.ત., માછલીના જૂથ માટે તેનાં લક્ષણો ચોક્કસ છે જેવાં કે જલજીવન, ઝાલરો, મીનપક્ષ અને ભીંગડાં. કોઈ સસ્તન પ્રાણી જૂથની વાત કરીએ તો તેવા પ્રાણીની સંકલ્પના કરશો કે જેને બાહ્યકર્ણપલ્લવ અને શરીર પર વાળ હોય. આવા સજીવોના અભ્યાસ માટેનાં સાનુકૂળ જૂથ માટે વૈજ્ઞાનિક શબ્દપ્રયોગ વર્ગક (taxa) વપરાય છે. આમ વર્ગક જુદી જુદી કક્ષાએ જૂથ-નિર્દેશન કરે છે. વનસ્પતિઓનું પણ વર્ગક બને. મકાઈ પણ વર્ગક છે. મનુષ્ય, કીટકો, માછલીઓ સૌ વર્ગકનાં સ્વરૂપો છે. આ રીતે લક્ષણો આધારિત બધા જ સજીવોને જુદા જુદા વર્ગકોમાં વહેંચવાની કાર્યપદ્ધતિના વિજ્ઞાનને વર્ગીકરણ વિદ્યા (taxonomy) કહે છે.

વર્ગીકરણ પદ્ધતિનો ઇતિહાસ

પ્રકૃતિવિજ્ઞાનમાં પ્રકૃતિવિદો અને વૈજ્ઞાનિકોએ વર્ષોથી વર્ગીકરણ પદ્ધતિઓનો ઉલ્લેખ કર્યો છે. તે જોતાં વર્ગીકરણ કંઈ નવી બાબત નથી. કોઈ પણ વસ્તુસમૂહનું વર્ગીકરણ કરવું એ આપણા જીવનવ્યવહારનું એક પાસું છે. દા.ત., રસોડાનાં વાસણને વર્ગીકૃત કરી તેમને અલગ અલગ જગ્યાએ ગોઠવીએ છીએ. તેવું જ સજીવો માટે શક્ય છે. શરૂઆતના વિકાસના દિવસોમાં માનવી તેની પાયાની જરૂરિયાતો જેવી કે ખોરાક, પહેરવા ઓઢવા અને આશ્રયના સ્રોત શોધતો હતો. જેથી તેનું શરૂઆતનું વર્ગીકરણ આવા ઉપયોગી સજીવો આધારિત હતું. ત્યાર પછી માનવ આવા સજીવોના સંબંધો જાણવા મથવા માંડ્યો, જેને પરિણામે એક નવી શાખાનો જન્મ થયો, જેને વર્ગીકરણ વિજ્ઞાન (systemetics) કહે છે. જેનો અર્થ સજીવોની પદ્ધતિયુક્ત ગોઠવણી એવો થાય છે. ''સુશ્રુતસંહિતા''માં પણ વર્ગીકરણનો ઉલ્લેખ છે. એરિસ્ટોટલ જેવા ગ્રીક તત્ત્વચિંતકોએ પણ સજીવોનું વર્ગીકરણ સૂચવ્યું છે. કેરોલસ લિનિયસ નામના વૈજ્ઞાનિકે આ ક્ષેત્રમાં ખૂબ જ ઊંડો અભ્યાસ કર્યો છે. આ વૈજ્ઞાનિકે સજીવોનાં વૈજ્ઞાનિક નામ માટે જે પદ્ધતિ વિકસાવી હતી તે દિનામી નામકરણ પદ્ધતિ તરીકે ખૂબ

સજીવોનું વર્ગીકરણ

જાણીતી થઈ. અથી લિનિયસને વર્ગીકરણવિદ્યાના પિતા તરીકે ઓળખવામાં આવે છે. બેન્થમ અને હૂકર નામના વૈજ્ઞાનિકોએ વનસ્પતિઓના વર્ગીકરણક્ષેત્રે ઊંડાણપૂર્વકનાં સંશોધનો કર્યાં છે. તેમના ગ્રંથો વનસ્પતિઓની ઓળખ કરવામાં, વનસ્પતિ સંગ્રહાલયોમાં ગોઠવણી કરવામાં અને પ્રાદેશિક વનસ્પતિ સમૂહો તૈયાર કરવામાં માર્ગદર્શકરૂપ બન્યા છે. સર જુલિયન હકસલીએ જીવવિજ્ઞાનના અભ્યાસની વિવિધ શાખાઓના સંકલન દ્વારા નૂતન વર્ગીકરણ પદ્ધતિ વિકસાવી. વ્હીટેકરે સજીવોની પાંચ સૃષ્ટિ આધારિત વર્ગીકરણ પદ્ધતિ આપી છે. જેમ જેમ ઊંડાણથી અભ્યાસ થતા ગયા, અભ્યાસ કરવા માટેનાં જરૂરી ઉપકરણો પર્યાપ્ત થતાં ગયાં, તેમ તેમ અન્ય વિદ્યાશાખાઓને સંકલિત કરી નવી નવી વર્ગીકરણ પદ્ધતિઓ વિકસી છે. દા.ત., જૈવરાસાયણિક વર્ગીકરણવિદ્યા (Chemotaxonomy), કોષવિદ્યાકીય વર્ગીકરણવિદ્યા (Cytotaxonomy) તથા આંકડાકીય વર્ગીકરણવિદ્યા (Numerical taxonomy).

वर्गीङरशविद्याना अભ्यास-स्रोत :

સૌપ્રથમ વર્ગીકરણવિદ્યાના અભ્યાસાર્થી પાસે સજીવોનાં લક્ષણો, તેનાં જૂથ અને વર્ગકનાં વિશિષ્ટ લક્ષણોનું જ્ઞાન હોવું એ અનિવાર્ય શરત છે. આવા અભ્યાસાર્થીએ ક્ષેત્ર-અભ્યાસની તાલીમ લેવી પડે. તે દરમિયાન તેનામાં કુતૂહલદેષ્ટિ, એકાગ્રતા, ધીરજ, વિષયવસ્તુનું જ્ઞાન, ચપળતા, જરૂરી સાધનો કે ઉપકરણો વાપરવાનું કૌશલ્ય હોવું જરૂરી છે. ક્ષેત્ર-અભ્યાસના નિયમોનું પણ પાલન કરવું ફરજિયાત છે. આવા અભ્યાસ દરમિયાન બાયનોક્યુલર, કૅમેરા, કટર, ફોરસેપ (નાના-મોટા), જરૂરી થેલી-થેલા પાસે રાખવા પડે છે. કેટલીક વખત પ્રિઝર્વેટિવ્સ પણ આપણી સાથે રાખવાં પડે છે. જે ક્ષેત્રનો અભ્યાસ કરવાનો હોય તે ક્ષેત્રનો પૂર્વઅભ્યાસ પણ જરૂરી છે. તમે આજુબાજુના વિસ્તારનાં જંગલો, પર્વતો, મેદાનો, તૃણપ્રદેશો, ઝરણાં, તળાવ, દરિયો જેવાં ક્ષેત્ર-અભ્યાસ માટે પસંદ કરી શકો છો. આ ક્ષેત્રો આપણી ખુલ્લી કિતાબો છે. વનસ્પતિ ઉદ્યાનો, વનસ્પતિ સંગ્રહાલયો, પ્રાણી-સંગ્રહાલયો, મ્યુઝિયમ વગેરેની મુલાકાતો કરીને પણ વર્ગીકરણવિદ્યાનો અભ્યાસ કરી શકાય. વનસ્પતિ ઉદ્યાનોમાં ઔષધીય વનસ્પતિઓ, આકર્ષક ઉપયોગી વનસ્પતિઓ તેમજ વિશિષ્ટ અપ્રાપ્ય વનસ્પતિઓ ઉછેરવામાં આવતી હોય છે. જેના માટે હવે અનેક ગ્રીન હાઉસ વિકસ્યાં છે. જનીન બૅન્કો પણ અસ્તિત્વમાં આવી છે. વનસ્પતિ સંગ્રહાલયો વિકસાવવામાં આવ્યાં છે જ્યાં એકઠી કરેલી વનસ્પતિઓના નમૂનાઓના સંગ્રહ અને તેની જાળવણીની વ્યવસ્થા હોય છે. ઉપરાંત આવી વનસ્પતિઓનાં રેખાચિત્રો, ફોટોગ્રાક્સ, સ્લાઇડો, નકશાઓ અને આ વિદ્યાના ગ્રંથો સંગૃહીત હોય છે. પ્રાણી-સંગ્રહાલયોમાં વિવિધ પ્રકારનાં પ્રાણીઓને વસાવવામાં આવે છે. મ્યુઝિયમમાં પ્રાણીઓના મૃતદેહો, તેનાં કંકાલ, અશ્મિઓ વગેરેનો સંગ્રહ કરવામાં આવે છે. આવા સ્રોત વિશે વધુ જાણકારી પ્રકરણ 2માં આપેલ છે.

वर्गीङरधना नियभो :

સજીવોનું નામકરણ અને વર્ગીકરણ ચોક્કસ નિયમોને આધારિત હોય છે. વનસ્પતિઓના વૈજ્ઞાનિક નામ ઇન્ટરનેશનલ કોડ ફૉર બોટનિકલ નોમેનક્લેચર (ICBN) દ્વારા આપેલા સિદ્ધાંતો અને માપદંડ આધારિત હોય છે. પ્રાણીવર્ગીકરણકર્તાઓએ ઇન્ટરનેશનલ કોડ ફૉર ઝૂલોજિકલ નોમેનક્લેચર (ICZN)ના નિયમો પાળવા પડે છે. વર્ગીકરણના મુખ્ય નિયમો નીચે મુજબ છે.

- જૈવિક નામો સામાન્ય રીતે લૅટિન છે એટલે કે તે ભાષામાંથી મેળવેલા શબ્દો છે. આથી સજીવનું નામકરણ લૅટિન ભાષામાં થાય છે.
- સજીવનું નામકરણ બે નામ દ્વારા કરવામાં આવે છે : પ્રથમ પ્રજાતિનું નામ અને બીજું નામ જાતિનું અપાય છે. પ્રજાતિના નામનો પ્રથમ મૂળાક્ષર મોટી લિપિમાં લખવાનો હોય છે. જાતિનું નામ નાની લિપિમાં લખાય છે. જાતિ નામ પછી સંશોધકનું નામ સંક્ષિપ્તમાં લખવામાં આવે છે અને છેલ્લે સજીવનું પ્રચલિત નામ લખવાનું હોય છે.
- જ્યારે વૈજ્ઞાનિક નામ હસ્તલેખિત લખતા હોઈએ તો દરેક શબ્દ નીચે આડી લીટી કરવાની હોય છે. તેનું મૂળ ઉદ્દ્ભવ લૅટિન બતાવવા ઇટાલિકમાં છાપવાનું હોય છે.
- કોઈ એક સજીવના નામકરણમાં ઉપયોગમાં લેવાયેલ પ્રજાતિ નામનો ઉપયોગ અન્ય પ્રકારના સજીવના નામકરણ માટે કરવામાં આવતો નથી.

દા.ત., મકાઈનું વૈ. નામ : Zea mays : L (Maize)

 કેટલાક કિસ્સાઓમાં જરૂર પડે અપવાદરૂપ દાખલાઓમાં જાતિ પછી ઉપજાતિનું નામ પણ લખવામાં આવે છે. દા.ત., આધુનિક માનવનું વૈજ્ઞાનિક નામ Homo sapiens sapiens છે.

વર્ગીકરછની કસાઓ

વર્ગીકરણ એ માત્ર એકાકીચરણ (step)ની પદ્ધતિ નથી પરંતુ ક્રમશઃ શ્રેશીબદ્ધ ચરણો દર્શાવતી પદ્ધતિ છે. જેમાં દરેક ચરણ કક્ષા દર્શાવે છે. જો કક્ષા બધી જ દષ્ટિએ વર્ગીકૃત વ્યવસ્થાનો ભાગ હોય તો તેને વર્ગીકરણની કક્ષા (taxonomic category) કહે છે. આવી બધી કક્ષાઓ ભેગી મળીને વર્ગીકૃત શ્રેણી (taxonomic hierarchy) રચે છે. જુઓ આકૃતિ.

જેમાં દરેક કક્ષા વર્ગીકરશના એક એકમ તરીકેના સંદર્ભમાં લેવામાં આવે છે, પરંતુ વાસ્તવમાં તે જે-તે હરોળ નિર્દેશિત કરે છે. સજીવોને આવી જુદી જુદી કક્ષાઓમાં મૂકવા માટે વ્યક્તિગત કે સજીવ જૂથનાં લક્ષશોનું જ્ઞાન હોવું જરૂરી છે. આવાં લક્ષશો દ્વારા સજીવો વચ્ચેની સામ્યતા અને અસમાનતા જાણી, તેની કક્ષા નક્કી કરી શકાય છે. આવા જ્ઞાન દ્વારા વર્ગીકરણના જુદા જુદા સ્તરે ગોઠવાયેલા સજીવોનાં જૂથોને જે દરજ્જો આપવામાં આવે છે તેને વર્ગક કહે છે. આવાં બધાં જૂથોનો સમાવેશ કરતા મુખ્ય જૂથને સૃષ્ટિ (kingdom) કહે છે. ત્યાર બાદ ક્રમશઃ ઉપસૃષ્ટિ, સમુદાય, વર્ગ, ઉપવર્ગ, ગોત્ર, કુળ, પ્રજાતિ અને જાતિ જેવા વર્ગક ગોઠવાય છે. સૃષ્ટિથી શરૂ કરી છેક જાતિ સુધીના સજીવોનાં તબક્કાવાર લક્ષણો જોતા જઈએ તો સ્પષ્ટપણે તેમાં ભિન્નતાઓ ઘટતી માલૂમ પડે છે. દા.ત., પ્રાણીસૃષ્ટિના બધા જ સભ્યોમાં અતિશય ભિન્નતા (variation) હોય તે તેના સમુદાયના સભ્યોમાં ઓછી હોય. તેવી જ રીતે સમુદાયના સભ્યોમાં જેટલું અસમાનતાપણું હોય તેટલું તે સમુદાયના વર્ગમાં ના હોય, વર્ગમાં હોય તેટલું ઉપવર્ગમાં ના હોય. આગળ જેમ જેમ જાતિ તરફ જતા જઈએ તેમ તેમ એકબીજાની સામ્યતા વધુ નજરે પડે છે. આવા દરેક વર્ગક વિશેની સ્પષ્ટતાઓ સમજીએ.

श्रवि :

વધુમાં વધુ લક્ષણોમાં, વધુમાં વધુ સામ્ય ધરાવવા અને આંતરપ્રજનન કરી પ્રજનનક્ષમ સંતતિ સર્જવાની ક્ષમતા ધરાવતી વ્યક્તિઓના સજીવ સમૂહને જાતિ કહે છે. વૈજ્ઞાનિક નામ પાછળ લખાતો લૅટિન શબ્દ આ પ્રકારની જાતિનું સૂચન કરે છે.

માના મંખામાં વધારો - જાતિની સંખ્યામાં વધારો વર્ણ ગોત્ર પ્રજાતિ

अश्वति :

સામાન્ય (common) પૂર્વજ ધરાવતી જાતિઓના સમૂહને પ્રજાતિ કહે છે. એટલે કે એક પ્રજાતિમાં એક કે તેથી વધુ જાતિઓ સમાવિષ્ટ હોઈ શકે. દા.ત., લુપ્ત થયેલ માનવજાતિ Homo erractus થી ઓળખાય છે જ્યારે આધુનિક માનવજાતિ Homo sapiens sapiens ના નામથી ઓળખાય છે. આમ Homo પ્રજાતિને બે જાતિ છે.

301 :

ગાઢ સંબંધ ધરાવતી પ્રજાતિઓના સમૂહથી રચાતા વર્ગકને કુળ કહે છે. પ્રત્યેક કુળ કેટલાંક નિશ્ચિત સામાન્ય લક્ષણો ધરાવે છે. દા.ત., પક્ષીઓના અભ્યાસમાં કોલુમ્બિડી (columbidae) કુળ છે જેમાં વિવિધ પ્રજાતિ-જાતિ ધરાવતાં કબૂતર અને હોલાનો સમાવેશ થાય છે. પરંતુ આ પક્ષીઓમાં તેમનાં કુળનાં લક્ષણો એક્સરખા હોય છે. જ્યારે વ્યક્તિગત લક્ષણો અલગ હોય છે.

પારસ્પરિક સંબંધો ધરાવતાં કુળો ઢારા ગોત્ર રચાય છે. આ રીતે ગોત્ર સમૂહથી શ્રેશી અને શ્રેશીઓના સમૂહથી ઉપવર્ગ રચાય છે. એમ ક્રમશઃ આગળ વધતાં સૃષ્ટિ સુધીનો વર્ગક દર્શાવવામાં આવે છે.

સજીવોનું વર્ગીકરણ 7

આપણે જોયું કે જાતિઓ, પ્રજાતિઓ અને કુળની કક્ષાઓ સરખા લક્ષણો ઉપર આધારિત હોય છે, પરંતુ ત્યાર પછી શ્રેણી અને તે પછીની ઉપરની ક્રમશઃ કક્ષાઓની ઓળખ તેમનાં એકત્રિત લક્ષણો પર આધારિત હોય છે. કેટલાંક ઉદાહરણ દ્વારા જોઈએ.

કોઠો 1.1 : સજીવોનું વર્ગીકૃત કક્ષાઓમાં સ્થાન

નામ સામાન્થ	देज्ञा निङ नाभ	ਮ જાતિ	કુળ	શ્રેણી/ગોત્ર	ပော်	સમૂદાય કે વિભાગ
દેડકો	રાના ટાઈગ્રીના	રાના	રાનીડી	એન્યુરા	ઊભયજીવી	પૃષ્ઠવંશી
વંદો	પેરિપ્લેનેટા અમેરિકાના	પેરિપ્લેનેટા	બ્લાટીડી	ઓર્થોપ્ટેરો	કીટક	સંધિપાદ
અળસિયું	ફેરીથિમા પોસ્થુમા	ફેરીથિમા	મેગાસ્કોલે સીડી	ઓપિસ્થો પોરા	અલ્પલોમી	વલયકૃમિ
સૂર્યમુખી	હેલિએન્થસ અનેસ	હેલિએન્થસ	એસ્ટરેસી	ઇ ન્ફ ીરી	હિદળી	વાહક પેશીધારી
મકાઈ	ઝીઆ મેઈઝ	ઝીઆ	પોએસી	ગ્લુમીફલોર <u>ી</u>	એકદળી	વાહક પેશીધારી

સમાજમાં જેમ અન્ય વિદ્યાશાખાઓનું જ્ઞાન કે આર્થિક ઉપાર્જનમાં મહત્ત્વ છે તેટલું જ વર્ગીકરણ વિદ્યા (taxonomy)નું પણ મહત્ત્વ છે. આ ક્ષેત્રમાં અભ્યાસ કરનાર ભવિષ્યમાં સંશોધક કે વૈજ્ઞાનિક બને છે અને સમાજને ઉપયોગી થાય છે.

સારાંશ

નિર્જીવ ઘટકો અને સજીવોથી પ્રકૃતિ રચાયેલી છે. જીવ ધરાવનાર અને વિવિધ જૈવિક ક્રિયાઓ કરી પર્યાવરણ સાથે તાદાત્મ્ય ધરાવનારને સજીવ કહે છે. સજીવ પ્રજનન, વૃદ્ધિ, વિકાસ, પર્યાવરણ પ્રત્યે પ્રતિક્રિયા, અનુકૂલન, મૃત્યુ જેવાં લક્ષણો ધરાવે છે. તે ઉપરાંત તેનામાં ચયાપચય, એન્ટ્રોપી, વારસો સાચવવાની ક્ષમતા જેવા પણ લક્ષણો છે. પ્રજનન દ્વારા નવી સંતતિ પેદા કરે છે. ચયાપચયમાં ઊર્જાની જરૂર પડે છે. વૃદ્ધિ એ ચયાપચયની ફળશ્રુતિ છે. વૃદ્ધિથી જથ્થો વધે છે. વિકાસ દરમિયાન વિભેદન અને અંગજનન દ્વારા પેશીઓ અને અંગો બને છે. સજીવ પર્યાવરણ પ્રત્યે અનુભૂતિના આવિષ્કારની ક્ષમતા પણ ધરાવે છે. પર્યાવરણમાં ટકી રહેવા અનુકૂલનો સાધે છે. અનુકૂલનો માટે ભિન્નતાઓ સર્જે છે. ભિન્નતાઓને લીધે નવી જાતિઓનું નિર્માણ થાય છે જેથી જીવ-વિવિધતા સર્જાય છે. તેનું મૃત્યુ થાય તે પહેલાં તેનામાં વારસો સાચવવાની ક્ષમતા પણ છે.

સજીવોમાં વિવિધ સ્તરનું સંગઠન જોવા મળે છે. પરમાશુઓથી અશુ, તેનાથી મહાઅશુ અને તેના દ્વારા પટલો રચાય છે. પટલધારી અંગિકાઓથી કોષ બને છે. કોષસમૂહથી પેશી રચાય છે જે અંગો અને અંગતંત્રોમાં હોય છે. આવાં તંત્રો ધરાવતો દેહ બને છે. આવો સજીવ જાતિ તરીકે ઓળખાય છે. જાતિ સમૂહથી વસતિ રચાય છે. એક જ નિવાસસ્થાનમાં આવી વસતિ ભેગી મળીને જીવસમાજ રચે છે. જીવસમાજો અને તેના પર્યાવરણ વચ્ચેની આંતરક્રિયાઓ વડે નિવસનતંત્રો રચાય છે. જે સંયુક્ત રીતે જીવાવરણ રચે છે.

अपिज्ञान

8

અનેક સજીવોના ચોક્કસ અભ્યાસ માટે નામાધિકરણ અને ઓળખવિધિ હોય છે. સજીવોની ચોક્કસ અર્થકારક જૂથ-વહેંચણી કરવામાં આવે છે જેને વર્ગીકરણ કહે છે. જેમાં વર્ગકો હોય છે. દા.ત., જાતિ, પ્રજાતિ, ગોત્ર, કુળ, વર્ગ, સમૂદાય વગેરે. વર્ગીકરણના ચોક્કસ નિયમો અને માપદંડો છે. અનેક વિજ્ઞાનીઓનો આ ક્ષેત્રે ફાળો છે. અભ્યાસ માટેના વિવિધ સ્રોત પણ છે.

સ્વાધ્યાય

1.		<mark>ઝાપેલા પ્રશ્નોના ઉત્તરો પૈકી સાચા</mark> પાંચ સૃષ્ટિ વર્ગીકરણ પદ્ધતિ આપ	_		તમાં પેન્સિલથી રંગ પૂરો :	
	(1)	(અ) લિનિયસ (ક) વ્હીટેકર	નાર વશાાન () ()	.ક (બ) (ડ)	એરિસ્ટોટલ સુશ્રુત	00
	(2)	સામાન્ય પૂર્વજ ધરાવતી જાતિઓને) ો સમૂહ			O
		(અ) શ્રેણી	0	(બ)	જાતિ	0
		(ક) કુળ	0	(১)	પ્રજાતિ	00
	(3)	સજીવનું વૈજ્ઞાનિક નામ લખવામાં	કયા વર્ગક•	ો શબ્દ	. પ્રથમ લખવામાં આવે છે.	
		(અ) જાતિ	0	(બ)	-	00
		(ક) પ્રજાતિ	0	(3)	ઉપસૃષ્ટિ	0
	(4)	આધુનિક માનવનું વૈજ્ઞાનિક નામ				
		(અ) હોમો	Ō	(બ)	હોમો ઇરેક્ટસ	Ō
		(ક) હોમો સેપિયન્સ સેપિયન્સ	0	(८)	હોમો સેપિયન્સ	0
	(5)	વ્યક્તિગત જાતિઓ ભેગી મળવાથી	ી શું રચાય -			_
		(અ) જીવસમાજ	0	(બ)	નિવસનતંત્ર	00
		(ક) વસતિ	O	(3)	જીવાવરણ	O
	(6)	સામાન્ય વસવાટમાં સાથે મળી જીવન	ન ગાળતી વ			
		(અ) નિવસનતંત્ર	\circ	(બ)	જીવસમાજ	00
		(ક) વસતિ		(3)	જીવાવરણ	O
	(7)	સજીવોમાં એન્ટ્રોપીમાં મુક્ત શક્તિ	.નુ પ્રમાણ			
		(અ) ઘટે	\circ		સમતુલિત રહે વધે કે ઘટે	\circ
	(0)	(ક) વધે	Ó	(3)		\circ
	(8)	સજીવોમાં પેઢી દર પેઢી સાતત્યતા	કાના દ્વારા			\sim
		(৬) DNA (১) RNA	\mathcal{O}	(બ) (ડ)	આગકા કોષો	\circ
	(0)		· · · · · · · · ·			O
	(9)	નીચે પૈકી સજીવોમાં દૈહિક આયો		ક્રમ સ	ાયા છ !	
		(અ) કોષ \rightarrow પેશી \rightarrow અંગ \rightarrow કે (બ) કોષ \rightarrow પેશી \rightarrow અંગ \rightarrow ર		5*4		\mathcal{O}
		(ક) દેહ → અંગતંત્ર → પેશી <i>→</i>		66		\sim
		(ડ) પેશી → અંગ → અંગતંત્રો	_			\sim
	(10)	જાતિ પછી છેક જીવાવરણની ક્રમ ્		स्या ४२	ામાં શાય છે ?	
	(10)	(અ) જાતિ → વસતિ → જીવસમ				\bigcirc
		(બ) વસતિ → જીવસમાજ → નિ				\tilde{c}
		(ક) જીવસમાજ → અનેક સમાજ	→ નિવસ	નતંત્ર	→ જીવાવરણ	0000
		(८) वसति - निवसनतंत्री -	യവവാല			Õ

સજીવોનું વર્ગીકરણ

	(11) સજીવા માટ નિયમાન અનુ	્સરોન નામ આપ	યવાની ૧	ા દ્ધાત	
	(અ) વર્ગીકરણ	0	(બ)	વર્ગીકરણવિદ્યા	0
	(ક) ઓળખવિધિ	0	(১)	નામાધિકરણ	0
	(12) ભીંગડાં, મીનપક્ષ, જલજીવન	. ધરાવતા સજીવે	ો કયું જૂ	્થ સૂચવે છે ?	
	(અ) સસ્તન	0	(બ)	પ્રાણી	0
	(ક) કીટક	0	(3)	મત્સ્ય	0
2.	નીચેના પ્રશ્નોના ટૂંકમાં જવાબ અ	ાપો :			
	(1) આપેલા સજીવોનું વર્ગક મુજ	બ વર્ગીકરણ આ	પો : દે ડ	કો, મકાઈ, વંદો	
	(2) સમજૂતી આપો : ભિન્નતા,	નામાધિકરણ, વૈજ્	ાાનિક ન	ામ, જીવવિવિધતા, એન્ટ્રોપી	
	(3) વ્યાખ્યાઓ આપો : જાતિ, પ્ર	જાતિ, કુળ, વર્ગ,	સૃષ્ટિ		
3.	ટૂંક નોંધ લખો :				
	વર્ગીકરણના અભ્યાસસ્રોત, વર્ગીકરણ	ાનો ઇતિહાસ			
4.	નીચેના પ્રશ્નોના જવાબ આપો :				
	(1) સજીવ એટલે શું ? તેનાં મુખ	•ય લક્ષણો સમજ	ાવો.		
	(2) સજીવોમાં વિવિધ સ્તરનું સંગ	ાઠન સમજાવો.			
	(3) વર્ગીકરણના નિયમો લખો.				
	(4) વર્ગીકરણની કક્ષાઓ સ્પષ્ટ ક	રો.			
	(5) વર્ગીકરણવિદ્યામાં વૈજ્ઞાનિકોનું	પ્રદાન લખો.			
	·				

2

વર્ગીકરણનાં ક્ષેત્રો

જીવાવરણમાં વનસ્પતિઓ, પ્રાણીઓ અને અન્ય સજીવો વસે છે. સજીવો વચ્ચે પ્રત્યક્ષ કે પરોક્ષ આંતર સંબંધો હોય છે. તેઓમાં રચના, કાર્ય અને વર્તનની દૃષ્ટિએ ઘણી વિવિધતા હોય છે. આવા સજીવોનો અભ્યાસ અને ઓળખ માટે વર્ગીકરણનો અભ્યાસ જરૂરી છે. તેનાથી સજીવો વચ્ચેના પારસ્પરિક સંબંધો તારવી શકાય છે. સજીવનું વર્ગીકરણ અને ઓળખ, પ્રયોગશાળા અને ક્ષેત્ર-અભ્યાસ (field study) માટે જરૂરી છે. વળી ખેતીવાડી, વનવિદ્યા, ઉદ્યોગો, જૈવસંપત્તિની જાણકારી અને તેની વિવિધતા માટે પણ વર્ગીકરણનો અભ્યાસ જરૂરી છે. વનસ્પતિ અને પ્રાણી જાતિના નમૂનાઓનો સંગ્રહ વર્ગીકરણના અભ્યાસ માટે મુખ્ય સ્રોત છે. વર્ગીકરણથી વિવિધ ભૌગોલિક વિસ્તારોના, વનસ્પતિસમૂહ (flora) અને પ્રાણીસમૂહ (fauna) તૈયાર કરી શકાય છે. તેના આધારે તેમનું ભૌગોલિક વિતરણ સમજી શકાય છે. નાશપ્રાયઃ અને લુપ્ત થતા જતાં સજીવોના સંરક્ષણ માટે ઉપાયો યોજી શકાય છે. વર્ગીકરણથી સજીવોના સંગ્રહ માટે માહિતી એકઠી કરી શકાય છે. કેટલાક કિસ્સામાં ભવિષ્યમાં અભ્યાસ માટે તેનો સંગ્રહ કરી શકાય છે.

સજીવોના નમૂનાઓનો સંગ્રહ અને તેની માહિતી સાચવવાની ઘણી ક્રિયાવિધિ તથા પદ્ધતિઓ સ્થપાઈ છે. આ પૈકીની કેટલીક પદ્ધતિઓ અને ક્રિયાવિધિ નીચે પ્રમાણે છે :

वनस्पति संग्रहावय (Herbarium) :

વનસ્પતિ સંગ્રહાલય (herbarium) વિવિધ સ્થળોએથી એકત્રિત કરેલા વનસ્પતિ નમૂનાઓનું સંગ્રહસ્થાન છે. આ નમૂનાઓને દાબીને અને સૂકવીને નિશ્ચિત કદના પૂંઠા ઉપર ચોંટાડીને જાણીતી વર્ગીકરણ પદ્ધતિ મુજબ ગોઠવણી કરીને સ્ટીલના ખાનાવાળા કે લાકડાના કબાટમાં રાખવામાં આવે છે.

વનસ્પતિ સંગ્રહાલયો સામાન્ય રીતે વનસ્પતિ ઉદ્યાનો અને શૈક્ષણિક અથવા સંશોધન સંસ્થાઓ સાથે સંકળાયેલા હોય છે. વનસ્પતિ સંગ્રહાલયોમાં વનસ્પતિ નમૂનાઓનો સંગ્રહ ચોક્કસ પદ્ધતિથી થાય છે. જેમાં વનસ્પતિઓના નમૂનાઓનું એકત્રીકરણ (collection), દાબન (pressing), શુષ્કન (drying), વિષાક્તન (poisoning), આરોપણ (mounting), નામ-નિદર્શન (labelling) અને નિશ્ચિત વર્ગીકરણ પદ્ધતિ મુજબ નમૂનાઓની અનુક્રમિક ગોઠવણીનો સમાવેશ થાય છે.

સૌપ્રથમ ક્ષેત્રના અભ્યાસ દરમિયાન એકઠી કરેલી વનસ્પતિને બ્લોટિંગ પેપરમાં મૂકી, દબાણ આપી Downloaded from https:// www.studiestoday.com

वर्गीङ्खां क्षेत्रो

સૂકવવામાં આવે છે. ત્યાર બાદ તેની જાળવણી માટે તેમના પર વિશિષ્ટ રસાયણનો છંટકાવ કરવામાં આવે છે. આ પ્રક્રિયા વિષાક્તન (poisoning) કહેવાય છે. ત્યાર પછી હર્બેરિયમ પત્ર તરીકે ઓળખાતા નિશ્ચિત કદના જાડા પૂંઠા પર તેમનું આરોપણ કરવામાં આવે છે. સ્થાન-જાળવણી માટે દોરાના ટાંકા લેવાય છે અથવા સેલોટેપ વપરાય છે. પત્રકની જમણી બાજુએ નામ-નિદર્શન માટે લખાણ આપેલું હોય છે. તેમાં વનસ્પતિના વૈજ્ઞાનિક નામ, કુળ, પ્રચલિત નામ, પ્રાપ્તિસ્થાન, મેળવ્યા તારીખ અને અન્ય આવશ્યક માહિતી નોંધવામાં આવે છે. તેને ક્રમાંક આપવામાં આવે છે. અંતે તેના સંગ્રહ માટે ફાળવેલા કબાટમાં યોગ્ય સ્થાને, યોગ્ય ક્રમાંકમાં તેને મૂકવામાં આવે છે. વખતોવખત ફૂગ, કીટકો અને ભેજની સામે રક્ષણ માટે નેપ્યેલિનની ગોળીઓ મૂકવી, ફ્યુમિગેશન વગેરે પ્રક્રિયાઓ કરીને તેનું પરિરક્ષણ કરવામાં આવે છે.

વનસ્પતિ સંગ્રહાલયોમાં વનસ્પતિના નમૂનાઓ ઉપરાંત રેખાચિત્રો, ફોટોગ્રાક્સ, સ્લાઇડો, નકશાઓ તથા વનસ્પતિસંબંધી પુસ્તકોનો સંગ્રહ જાળવવામાં આવે છે.

वनस्पति संग्रहालयनां आर्थी

- (1) તે એકત્રિત કરેલ, પ્રમાશિત અને નવા શોધાયેલા વનસ્પતિ નમૂનાઓની ઓળખવિધિ અંગે જરૂરી માહિતી પૂરી પાડે છે.
- (2) તે વિદ્યાર્થીઓને વર્ગીકરણીય સંશોધન કરવા માટે સંશોધન સુવિધા પૂરી પાડે છે.
- (3) તે વનસ્પતિઓના ઉદ્દ્ભવસ્થાન તેમજ વનસ્પતિસમૂહનો સંપૂર્ણ હેતુ પૂરો પાડે છે.
- (4) તેનાથી પરિસ્થિતિવિદ્યાકીય, આર્થિક અને લોક-વનસ્પતિશાસ્ત્રીય (ethno-botanical) માહિતી પ્રાપ્ત કરવામાં આવે છે.
- (5) તે આધુનિક વર્ગીકરણ પદ્ધતિ તૈયાર કરવાની ચાવી (key) પૂરી પાડે છે.

વિશ્વનાં અને ભારતનાં કેટવાંક પ્રસિદ્ધ સંગ્રહાવથો

용허	વનસ્પતિ સંગ્રહ્મલયનું નામ	san
1.	મ્યુઝિયમ ઑફ નેચરલ હિસ્ટ્રી	પૅરિસ (ફ્રાન્સ)
2.	બ્રિટિશ મ્યુઝિયમ ઑફ રોયલ <mark>બોટાનિકલ</mark> ગાર્ડન	ક્યૂ (ઇંગ્લૅન્ડ)
3.	સેન્ટ્રલ નૅશનલ હર્બેરિયમ	કોલકાતા
4.	હર્બેરિયમ ઑફ ફોરેસ્ટ રિસર્ચ	દહેરાદૂન
5.	હર્બેરિયમ ડિપાર્ટમેન્ટ ઑફ બોટની, એમ. એસ. યુનિવર્સિટી	વડોદરા

यनस्पतिष्ठधानो (Botanical Gardens)

"વનસ્પતિઉદ્યાન એટલે વિશ્વના જુદા જુદા ભાગોમાંથી લાવેલ વૃક્ષ, ક્ષુપ, છોડ, આરોહી વનસ્પતિઓ અને બીજી જીવંત વનસ્પતિઓનો વૈજ્ઞાનિક ઢબે યોજનાબદ્ધ સંગ્રહ."

વનસ્પતિઉદ્યાન એ સાર્વજનિક વિહાર સ્થાન અને જાહેર બગીચાથી જુદો પડે છે. આ પ્રકારના ઉદ્યાનમાં વનસ્પતિની વિવિધ જાતિઓ ઓળખવિધિના હેતુ માટે ઉછેરવામાં આવે છે. આ ઉપરાંત દરેક વનસ્પતિનું વૈજ્ઞાનિક નામ અને કુળ (family)નું નિદર્શન કરવામાં આવે છે. આ ઉદ્યાનોમાં વિવિધ પ્રકારની ઔષધીય વનસ્પતિ, આર્થિક અગત્ય ધરાવતી વનસ્પતિ અને વિશિષ્ટ અપ્રાપ્ય વનસ્પતિઓને ઉછેરવામાં અને જાળવવામાં આવે છે. અન્ય પ્રદેશોમાં થતી વનસ્પતિને પણ જરૂરી વિશિષ્ટ પર્યાવરણ સર્જી આવા ઉદ્યાનોમાં ઉછેરાય છે. આ માટે ગ્રીનહાઉસ, કેક્ટ્સહાઉસ, ફર્નરી, ઑકીડિયમ, ગ્લાસહાઉસ, કન્ઝર્વેટરી તથા કૃત્રિમ જળાશયો વિકસાવાય છે.

वनस्पतिष्ठधानोनुं भक्ष्त्व ः

- (1) ક્લાત્મક આકર્ષણ: વનસ્પતિઉદ્યાનો આકર્ષક સૌંદર્ય ધરાવે છે અને તેથી મોટી સંખ્યામાં મુલાકાતીઓ વનસ્પતિની વિવિધતા અને અનોખી વનસ્પતિઓનું નિરીક્ષણ કરવા માટે આવે છે. દા.ત., મહાકાય વડ (Great Banyan Tree) ઇન્ડિયન બોટાનિકલ ગાર્ડન, શિબપુર (કોલકતા)માં આવેલો છે.
- (2) વનસ્પતિકીચ સંશોધન માટેની સામગ્રી: વનસ્પતિઉદ્યાનમાં જુદી જુદી અનેક વનસ્પતિ જાતિઓને ઉગાડવામાં આવે છે. જેથી તે વનસ્પતિને લગતાં સંશોધન માટે તૈયાર સામગ્રી પૂરી પાડે છે. જે વર્ગીકરણીય આંતર સંબંધો પૂરા પાડી શકે છે.
- (3) સ્થળ-શિક્ષણ : સંગ્રહ કરેલી વનસ્પતિઓને કુળ, પ્રજાતિ કે તેના નિવાસસ્થાન પ્રમાણે પ્રદર્શિત કરેલી હોય છે. જેથી તેનો ઉપયોગ સ્વયં-સૂચિત કે નિદર્શન હેતુ માટે થઈ શકે છે.
- (4) સંકલિત સંશોધન ચોજના: વનસ્પતિઉદ્યાનોમાં રહેલી વિપુલ જીવંત વનસ્પતિઓનો ઉપયોગ મોટા પાયે સંશોધન યોજનાઓ માટે વિવિધ ક્ષેત્રો જેવા કે અંતઃસ્થવિદ્યા, ભ્રૂણવિદ્યા, વનસ્પતિરસાયણ, કોષવિદ્યા, દેહધર્મવિદ્યા અને પરિસ્થિતિવિદ્યાની સંકલિત માહિતી મેળવવા માટે થાય છે.
- (5) સંરક્ષણ : વનસ્પતિઉદ્યાનનું મહત્ત્વ તેમની જનીન વિવિધતાની જાળવણી તેમજ અતિ અલ્પ કે જૂજ પ્રમાણમાં (rare) મળી આવતી અને નાશપ્રાયઃ (endangered) વનસ્પતિઓના સંરક્ષણને લીધે વધતું જાય છે.
- (6) **લગરપતિ સંગ્રહાલય અને પુસ્તકાલય :** વિશ્વનાં મુખ્ય વનસ્પતિઉદ્યાનોમાં તેના મુખ્ય ભાગ તરીકે સંગ્રહાલય અને પુસ્તકાલય આવેલાં હોય છે. જેથી ઉદ્યાનો એક જ જગ્યાએ સંશોધન માટે વર્ગીકરણીય માહિતી પૂરી પાડે છે.
- (7) લોકરોવા: વનસ્પતિઉદ્યાનો સામાન્ય લોકોને સ્થાનિક અને વિદેશી વનસ્પતિઓની ઓળખ પૂરી પાડે છે તેમજ વનસ્પતિઉદ્યાનના સભ્યો દ્વારા લેન્ડસ્કેપ ગાર્ડનિંગ (landscape gardening), ફલોધાન (Horticulture)ની પદ્ધતિઓ અને અન્ય સંલગ્ન શાખાઓની સમજ પૂરી પાડવામાં આવે છે.
- (8) **નવી જાતિઓનું ઉત્પાદન :** વનસ્પતિઉદ્યાનોમાં કલમ કરવી, પેશીસંવર્ધન અને ક્લોનિંગ તથા સંકરણ જેવી પ્રક્રિયાઓ દ્વારા નવી જાતિઓ વિકસાવાય છે.
- (9) જર્મપ્લાઝમ બેન્ક: વનસ્પતિઉદ્યાન દ્વારા બીજનિધિ ઊભા કરી શકાય છે તેમજ અલભ્ય જનીનોની જાળવણી માટે જનીનબૅન્ક વિકસાવાય છે. ઉપરાંત વનસ્પતિઉદ્યાનથી જુદી જુદી જાતિનાં ફળો, શાકભાજી અને પુષ્પોની ઘણી નવી જાતિઓ અને સુધારેલી જાતિઓ સંશોધન થકી મેળવી શકાય છે.

આ બધી બાબતો ઉપરાંત આવાં ઉદ્યાનો જે-તે વિસ્તારની નયનરમ્યતામાં ઉમેરો કરે છે. વળી, વનસ્પતિશાસ્ત્રના અભ્યાસ માટે, રાષ્ટ્રની નૈસર્ગિક સંપત્તિની જાળવણી માટે અને પર્યાવરણની જાળવણીમાં મહત્ત્વનો ફાળો આપે છે.

સમગ્ર વિશ્વમાં હજારો વનસ્પતિઉદ્યાનો આવેલાં છે. જેમાંથી લગભગ 800 જેટલાં મહત્ત્વનાં વનસ્પતિઉદ્યાનો ''ઇન્ટરનૅશનલ ઍસોસિયેશન ઑફ બોટાનિકલ ગાર્ડન (IABG)''માં નોંધાયેલ છે. આ પૈકીના કેટલાંક મહત્ત્વનાં ઉદ્યાનો નીચે પ્રમાણે છે:

용위	वनस्पतिઉद्याननुं नाम	સ્થળ
1.	રૉયલ બોટાનિકલ ગાર્ડન	ક્યૂ (બ્રિટન)
2.	ન્યુયોર્ક બોટાનિકલ ગાર્ડન	ન્યુયૉર્ક (યુ.એસ.એ.)
3.	ઇન્ડિયન બોટાનિકલ ગાર્ડન	શિબપુર (કોલકાતા)
4.	નૅશનલ બોટાનિકલ ગાર્ડન	લખનૌ (ઉત્તરપ્રદેશ)
5.	લૉઇડ બોટાનિકલ ગાર્ડન	દાર્જિલિંગ (પશ્ચિમ બંગાળ)
6.	બોટાનિકલ ગાર્ડન, વઘઈ	વઘઈ (ડાંગ જિલ્લો, ગુજરાત)

વર્ગીકરણનાં ક્ષેત્રો

મ્યુઝિચમ

બાયોલોજિકલ મ્યુઝિયમ સામાન્ય રીતે શૈક્ષણિક સંસ્થાઓ, કૉલેજો અને યુનિવર્સિટીઓમાં સ્થાપવામાં આવે છે. શાળા અને કૉલેજોમાં આવેલા મ્યુઝિયમ પ્રાથમિક કક્ષાના હોય છે, પરંતુ યુનિવર્સિટીના મ્યુઝિયમ વધુ સમૃદ્ધ અને માહિતી સભર હોય છે.

મ્યુઝિયમમાં વનસ્પતિ, પ્રાશી અને અશ્મિઓના નમૂનાઓ ભેગા કરીને અભ્યાસ અને સંદર્ભ માટે સંગ્રહ કરવામાં આવે છે. મ્યુઝિયમમાં ક્યારેક માનવ તેમજ પ્રાશીઓના કંકાલનો પણ સંગ્રહ કરવામાં આવે છે.

પ્રાશી-મ્યુઝિયમમાં સસ્તન પ્રાશીઓ, પક્ષીઓ, અન્ય સમુદાયના પૃષ્ઠવંશીઓ, અપૃષ્ઠવંશીઓ માટે અલગ ગૅલેરી જેવી કે, કંકાલ ગૅલેરી, લોકપ્રાયોજિત ગૅલેરી (ઈથનોગૅલેરી) ઉપરાંત પુસ્તકાલય, પ્રયોગશાળા અને પદાધિકારીના આવાસગૃહ હોય છે.

મ્યુઝિયમમાં નમૂનાઓને શીશી કે બરણીમાં યથાવત્ સ્થિતિમાં જાળવવા માટે સંગ્રાહક (preservative) દ્રાવણનો ઉપયોગ કરવામાં આવે છે. વનસ્પતિ અને પ્રાણીઓના સૂકવેલા નમૂનાઓને સ્વીકૃત પદ્ધિત મુજબ ગોઠવીને સંગ્રહ કરવામાં આવે છે. મોટાં પ્રાણીઓ જેવા કે પક્ષીઓ અને સસ્તન વર્ગનાં પ્રાણીઓના મૃતદેહોને સ્ટિફિંગ પદ્ધિત દ્વારા એટલે કે મોટા કદના પ્રાણીઓને શરીરના વિવિધ દેહકોષ્ઠીય અંગોને દૂર કરી તેમાં રૂ, વનસ્પતિજન્ય સૂકો ભૂકો, સંગ્રાહકો વગેરેનું મિશ્રણ ભરી લાંબા સમય સુધી જાળવી રાખવામાં આવે છે. કીટકોને પકડી બેભાન કરી પ્લેટ ઉપર કીટકબૉક્સમાં સંગ્રહવામાં આવે છે.

મુંબઈનું નૅચરલ હિસ્ટ્રી મ્યુઝિયમ, જોધપુર અને કોલકતાનું ઝૂલૉજિકલ સર્વે ઑફ ઇન્ડિયા તથા ચેન્નાઈનું સરકારી મ્યુઝિયમ ખૂબ પ્રખ્યાત છે. વડોદરાનું મ્યુઝિયમ પણ ખૂબ સમૃદ્ધ છે. ત્યાં મ્યુઝિયમ વિજ્ઞાનના અભ્યાસની પણ વ્યવસ્થા છે.

મ્યુઝિયમનો હેતુ જૈવિક વિવિધતાને સાચવવાનો અને તેના સાંસ્કૃતિક વારસાને જાળવવાનો છે.

प्राशिद्धान (Zoological Park)

પ્રાણીઉદ્યાન એટલે એવી સંસ્થા કે જેમાં જુદા જુદા પ્રકારનાં જીવંત પ્રાણીઓને સુરક્ષિત રાખીને બંધનાવસ્થામાં પ્રદર્શિત કરવામાં આવે છે. ભારતમાં પ્રાણીઉદ્યાનને કેટલીક વાર પ્રાણીબાગ (Zoological garden) તરીકે પણ ઓળખવામાં આવે છે. પ્રાણીઉદ્યાનના મુખ્ય હેતુઓ નીચે પ્રમાણે છે:

- (1) નવ-સ્થાન (Ex-situ) સંરક્ષણ અને પ્રાણી સમૂહોમાં પ્રજનન કરાવવું.
- (2) નાશપ્રાયઃ જાતિઓને પકડીને શરૂઆતમાં તેનું સંવર્ધન કરવું અને ત્યાર બાદ આચારસંહિતા મુજબ તે જાતિઓનું જંગલમાં જરૂરિયાત પ્રમાણે ફરીથી પુનર્વસન કરવું.
- (3) પ્રાણીઉદ્યાન વન્યજીવોનું સંરક્ષણ કરવાની જાણકારી માટેનું કેન્દ્ર ચલાવે છે તેમજ જુદી જુદી સંસ્થાના વિભાગો દ્વારા લોકોની મદદ વડે વન્યજીવોની જાણકારી અંગે લોકજાગૃતિ વધારે છે.
- (4) પ્રાણીસમૂહોનો વૈજ્ઞાનિક ઢબે અભ્યાસ કરવાની તકો પૂરી પાડે છે. જેમાં પ્રાણીવર્તણૂક, અનુકૂલન, પોષણ, ઉદ્વિકાસ અને પરિસ્થિતિવિજ્ઞાન અંગેનું જ્ઞાન તેમજ સંચાલન કરવાની જાણકારી આપવામાં આવે છે.
- (5) બચાવેલાં પ્રાણીઓના પુનર્વસન તેમજ સારસંભાળ અંગે માહિતી પૂરી પાડે છે.
- (6) વન્યજીવો પ્રત્યે લોકોના મનમાં પ્રેમ, સ્નેહ જગાડવો અને સંરક્ષણ અંગે જાગૃતિ કેળવવી.
- (7) જીવનનિર્વાહ માટે તેમજ રોજગારી માટે પર્યાવરશીય પ્રવાસ (eco-tourism)ને પ્રોત્સાહન આપવું.

ઉપરના હેતુઓ સિદ્ધ કરવા માટે પ્રાણીઉદ્યાનમાં નીચેની સુવિધાઓ પૂરી પાડવામાં આવે છે :

પ્રાણીઉદ્યાનમાં વિવિધ પ્રકારનાં પ્રાણીઓને વસાવવામાં આવે છે. તેમના કુદરતી વસવાટની શક્ય હોય તેટલા પ્રમાણમાં ત્યાં ગોઠવણ કરવામાં આવે છે. તેમના વર્ગીકરણ મુજબ વિસ્તારો પાડવામાં આવે છે. દા.ત., પક્ષીઘર, વન્યપ્રાણીઘર, સરિસ્પઘર, સાપઘર અને નિશાચરઘરની સ્થાપના કરવી. મગરપાર્ક, કીટકઘર, માછલીઘર, પ્રાણી-પ્યુઝિયમ અને પ્રાણી-પુસ્તકાલયની સ્થાપના જેના લીધે મુલાકાતીઓ પ્રાણીઉદ્યાન તરફ આકર્ષાય છે. તેઓની જીવન પદ્ધતિઓ વગેરેની વ્યવસ્થા માટે ખાસ કાળજી લેવાય છે. તેમના પ્રજનન તથા સંકરણ પ્રેરી શકાય તેવી વ્યવસ્થા કરવામાં આવે છે. ઘાયલ થયેલાં તેમજ ખૂબ જ જોખમી બીમાર પ્રાણીઓને પ્રાણીઉદ્યાનમાં સુરિક્ષિત આશ્રય આપવામાં આવે છે. પ્રાણીઉદ્યાન દ્વારા શાળા અને મહાવિદ્યાલય કક્ષાએ જુદા જુદા પ્રકારની તાલીમ આપીને લોકોને જૈવવિવિધતાનું સંરક્ષણ કરવાનું શિક્ષણ આપવામાં આવે છે. પ્રાણીઉદ્યાનમાં વનસ્પતિસમૂહો અને પ્રાણીસમૂહોની દુર્લભ જાતિઓ માટે જાતિબેન્ક અને જનીનબેન્કની સ્થાપના કરવામાં આવે છે. દરેક પ્રાણીઉદ્યાનમાં જુદા જુદા વિભાગો જેવા કે વહીવટી વિભાગ, પ્રાણીવિભાગ, પશુચિકિત્સા વિભાગ, સ્વાસ્થ્યરક્ષા વિભાગ, સ્ટોર વિભાગ, શૈક્ષણિક વિભાગ, સંશોધન વિભાગ, બગીચા વિભાગ, સુરક્ષા વિભાગ, નિભાવ વિભાગ વગેરે બનાવીને તેનું સંચાલન પદાધિકારી કે નિયામક દ્વારા કરવામાં આવે છે.

પ્રાણીઉદ્યાન 'સેન્ટ્રલ ઝૂ ઑથોરિટી'(CZA)ના નિરીક્ષણ હેઠળ કામ કરે છે. જેનું સંચાલન ખાનગી અને સરકારી એમ બંને સંસ્થાઓ કરે છે. ગુજરાતનાં પ્રાણીઉદ્યાનોમાં સફારીપાર્ક (સાસણગીર), સક્કરબાગ (જૂનાગઢ), પ્રાણીઉદ્યાન (અમદાવાદ), પ્રાણીઉદ્યાન (વડોદરા) અને ઇન્દ્રોડા પાર્ક (ગાંધીનગર)નો સમાવેશ થાય છે. રાષ્ટ્રીય પ્રાણીઉદ્યાન (ન્યુ દિલ્લી), રાણી જીજામાતા ઉદયનઉદ્યાન (મુંબઈ), નહેરુ પ્રાણીઉદ્યાન (હૈદરાબાદ), હિમાલયન પ્રાણીઉદ્યાન (ગંગટોક), ત્રિવેન્દ્રમ પ્રાણીઉદ્યાન (ત્રિવેન્દ્રમ) અને એરીગનાર અન્ના પ્રાણીઉદ્યાન (ચેન્નાઈ) ભારતનાં મુખ્ય સુપ્રસિદ્ધ પ્રાણીઉદ્યાનો છે.

સારાંશ

સજીવોની ઓળખ, એમના નામકરણ અને વર્ગીકરણ માટે અનેક વર્ગીકરણીય ક્રિયાવિધિઓ વિકસેલી છે. સાચા પ્રાકૃતિક નમૂનાને વિવિધ સ્થળેથી એકત્રિત કરીને તેને સંગ્રહાલય અને મ્યુઝિયમમાં સંગ્રહવામાં આવે છે. વનસ્પતિઓ અને પ્રાણીઓના જીવંત નમૂનાઓ વનસ્પતિઉદ્યાનો અને પ્રાણી-સંગ્રહાલયોમાં જોવા મળે છે. વનસ્પતિ સંગ્રહાલયમાં વનસ્પતિ નમૂનાઓના સંગ્રહ માટે ચોક્કસ પદ્ધતિઓ હોય છે. આવાં સંગ્રહાલયો નમૂનાઓની ઓળખવિધિ, સંશોધન સુવિધા પૂરી પાડે છે. વનસ્પતિઉદ્યાનોનો માનવજીવનમાં વિવિધલક્ષી ફાળો હોય છે. પ્રાણીઉદ્યાનો વૈજ્ઞાનિક, સામાજિક અને પ્રાકૃતિક ક્ષેત્રે અગત્ય ધરાવે છે. ભારત અને ગુજરાતમાં વિવિધ સ્થળોએ પ્રાણીઉદ્યાનો અને બોટાનિકલ ગાર્ડન આવેલાં છે.

સ્વાદચાય

1. નીચે આપેલા પ્રશ્નોના ઉત્તરો પૈકી સાચા ઉત્તર સામે સર્કલમાં પેન્સિલથી રંગ પ્	ાૂરા	ų	ų	ų	ų	ų	į	į	ļ	ļ	ļ	ļ	ļ			į	å	į	ď		ď	4	1	1	1			4	1	•	1														l	1	0		5	•			l	ι	8	ľ	Ę	C	4	₹	•	•	l	1	L			L	l	+	3	ŀ	4	6	5	ś	L	H	₹				ł	4	ľ	u	H	₹			2	ર	ŀ	πl	7	3	G	(l	u	4	2	u	H	₹		ı	l	ક	L	Ч	١		ļ	2	₹	l	•	}7	3	C			L	u	t	7	•	ľ	l	U	4	H	ş	Ų	ŀ	y	3						L	u
---	------	---	---	---	---	---	---	---	---	---	---	---	---	--	--	---	---	---	---	--	---	---	---	---	---	--	--	---	---	---	---	--	--	--	--	--	--	--	--	--	--	--	--	--	---	---	---	--	---	---	--	--	---	---	---	---	---	---	---	---	---	---	---	---	---	--	--	---	---	---	---	---	---	---	---	---	---	---	---	--	--	--	---	---	---	---	---	---	--	--	---	---	---	----	---	---	---	---	--	---	---	---	---	---	---	---	--	---	---	---	---	---	---	--	---	---	---	---	---	----	---	---	--	--	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	--	--	--	--	--	---	---

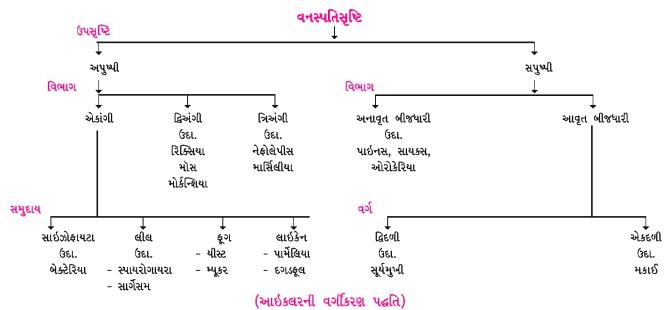
(1)	વિવિધ સ્થળોએથી એકત્રિત કરેલા વનસ્પતિ નમૂનાઓનું સંગ્રહસ્થાન એટલે	
	(અ) પ્રાણી–સંગ્રહાલય 🔵 (બ) વનસ્પતિ સંગ્રહાલય	0
	(ક) મ્યુઝિયમ 🔵 (ડ) વનસ્પતિઉદ્યાનો	0
(2)	વનસ્પતિ નમૂનાઓનો સંગ્રહ કરવા માટેનો ચોક્કસ ક્રમ	
	(અ) એકત્રીકરણ, દાબન, વિષાક્તન, શુષ્કન	0
	(બ) એક્ત્રીકરણ, આરોપણ, દાબન, વિષાક્તન	0
	(ક) એકત્રીકરણ, દાબન, શુષ્કન, વિષાક્તન	0
	(ડ) એકત્રીકરણ, શુષ્કન, વિષાક્તન, દાબન	0

વર્ગીકરણનાં ક્ષેત્રો

(3)	'મ્યુઝિયમ ઑફ નૅચરલ હિસ્ટ્રી'	કયા સ્થળે	આવેલું છે ?	
	(અ) કોલકતા	0	(બ) વડોદરા	0
	(ક) પૅરિસ	Ō	(ડ) બ્રિટન	Ō
(4)	હર્બેરિયાના પરિરક્ષણ માટે			
	(અ) ક્યુમિગેશન પ્રક્રિયા	0	(બ) દોરાના ટાંકા લેવા	0
	(ક) સેલોટેપ ચોંટાડવી	0	(ડ) સૂકવવું	0
(5)	મહાકાય વડ ક્યાં આવેલો છે ?			
	(અ) ન્યુયૉર્ક બોટાનિકલ ગાર્ડન,	ન્યુયૉર્ક		0
	(બ) રૉયલ બોટાનિકલ ગાર્ડન,	બ્રિટન		0
	(ક) ઇન્ડિયન બોટાનિકલ ગાર્ડન	, શિબપુર		000
	(ડ) નૅશનલ બોટાનિકલ ગાર્ડન,	લખનૌ		0
(6)	નવી જાતિના ઉત્પાદનમાં નીચેની	. પૈકી કઈ	પ્રક્રિયાનો સમાવેશ થતો નથી ?	
	(અ) પેશીસંવર્ધન	0	(બ) ક્લોનિંગ	0
	(ક) સંકરણ	0	(ડ) ફ્લોધાન	0
(7)	જૂનાગઢમાં આવેલા પ્રાણીઉદ્યાનનું	, નામ શું	છે ?	
	(અ) ઇન્દ્રોડા પાર્ક	0	(બ) સક્કરબાગ	0
	(ક) સફારીપાર્ક	0	(ડ) નહેરુ પ્રાણીઉદ્યાન	0
નીચેના	પ્રશ્નોના ટૂંકમાં જવાબ આપો :			
(1)	વર્ગીકરણના અભ્યાસનું કોઈ એ	ક મહત્ત્વ	જણાવો.	
(2)	વ્યાખ્યા આપો : હર્બેરિયમ			
(3)	વિષાક્તન એટલે શું ?			
(4)	વનસ્પતિઉદ્યાન એટલે શું ?			
(5)	અલભ્ય જનીનોની જાળવણી મ	ાટે શું વિક	સાવાય છે ?	
(6)	IABG નું પૂર્ણ નામ આપો.			
(7)	દાર્જિલિંગમાં આવેલા વનસ્પતિઉ	8ઘાનનું ના	મ જણાવો.	
(8)	મ્યુઝિયમમાં નમૂનાઓને યથાવત	ા્ જાળવવા	માટે શું કરવામાં આવે છે ?	
(9)	હિમાલયન પ્રાણીઉદ્યાન ક્યાં અ	ાવેલો છે	?	
નીચે	ના પ્રશ્નોના જવાબ આપો :			
(1)	વનસ્પતિ નમૂનાઓ સંગ્રહ કરવ	ા માટેની	પદ્ધતિઓનાં નામ આપો.	
(2)	વનસ્પતિ સંગ્રહાલયનાં કાર્યો જ	ણાવો.		
(3)	વનસ્પતિઉદ્યાનોનો ફાળો જણાવં	ì.		
(4)	પ્રાણીઉદ્યાનના હેતુઓ જણાવો.			
(5)	ગુજરાતમાં આવેલાં વનસ્પતિઉદ	ાનો અને	પ્રાણી-સંગ્રહાલયોનાં નામ લખો.	
(6)	ટૂંકમાં વર્શવો : મ્યુઝિયમ			
(7)	ું હર્બેરિયમ બનાવવાની પદ્ધતિ ટૂં	કમાં વર્શવે	l.	

2.

3.


3

વનસ્પતિસૃષ્ટિનું વર્ગીકરણ

विज्ञान એटले हरेङ वस्तुओनुं सुव्यवस्थित ज्ञान

જીવંત સજીવોના અભ્યાસને જીવિવજ્ઞાન કહે છે. તે બે શાખાઓમાં વિભાજિત છે : વનસ્પતિશાસ્ત્ર અને પ્રાણીશાસ્ત્ર. વનસ્પતિઓના વિવિધ દષ્ટિકોણથી અભ્યાસ સંલગ્ન વિજ્ઞાનને વનસ્પતિશાસ્ત્ર કહે છે. આ વિજ્ઞાન ઉદ્દ્વિકાસ અને જાતિવિકાસની દષ્ટિએ વનસ્પતિઓની અંતઃસ્થ અને બાહ્ય રચનાના ફેરફારો રજૂ કરે છે. વનસ્પતિઓની કોષીય રચના, વસવાટ, અનુકૂલનો, પોષણ, આંતરસંબંધો, પ્રજનન, જીવનચક્ર, મહત્તા અને વર્ગીકરણથી તેમનાં કાર્યો અને લાક્ષણિકતાની સ્પષ્ટતા થાય છે. સૌપ્રથમ જીવંત સ્વરૂપો પ્રોટીસ્ટા તરીકે જાણીતા છે અને તેઓ નિર્માણાધીન જીવનનાં બે અલગ સ્વરૂપોમાં દશ્યમાન થાય છે : મુખ્યત્વે અચલિત વનસ્પતિઓ અને ચલિત પ્રાણીઓ.

જયારે વનસ્પતિજાતિઓ પાણીમાંથી જમીન પર સ્થળાંતરિત થઈ ત્યારે તેઓ અનુક્રમણની વિવિધ શ્રેણીઓમાંથી પસાર થઈ. તેની રચનાઓમાં અનુક્રમિત અને વિકાસાત્મક ફેરફારો થયા. ઉદ્વિકાસને પરિણામે નિમ્ન અને સરળ સ્વરૂપોમાંથી ઉચ્ચ અને વધુ જટિલ સ્વરૂપો વિકાસ પામ્યા.

વિવિધ સંશોધકો અને વૈજ્ઞાનિકો દ્વારા સમયે સમયે વનસ્પતિસૃષ્ટિના વર્ગીકરણ માટે ઘણી પદ્ધતિઓ ઘડવામાં આવી. જેમાં આઇકલર નામના વૈજ્ઞાનિકે વનસ્પતિસૃષ્ટિને બે મુખ્ય જૂથોમાં વર્ગીકૃત કરી : પુષ્પવિહીન અથવા બીજવિહીન વનસ્પતિઓને અપુષ્પી વનસ્પતિઓ કહે છે અને પુષ્પ ધરાવતી અથવા બીજ ધરાવતી વનસ્પતિઓને સપુષ્પી વનસ્પતિઓ કે બીજધારી વનસ્પતિઓ કહે છે. અપુષ્પી વનસ્પતિઓને કરીથી ત્રણ જૂથોમાં વિભાજિત કરી : એકાંગી, દિઅંગી અને ત્રિઅંગી, જ્યારે સપુષ્પી વનસ્પતિઓને બે જૂથોમાં વર્ગીકૃત કરી : અનાવૃત બીજધારી અને આવૃત બીજધારી વનસ્પતિઓ. પછી આવૃત બીજધારી વનસ્પતિઓને બે વર્ગીમાં વર્ગીકૃત કરી : દિદળી અને એકદળી. દિઅંગી, ત્રિઅંગી અને સપુષ્પી વનસ્પતિઓ ભૃશધારી વનસ્પતિઓમાં સમાવિષ્ટ છે.

પાંચ સૃષ્ટિનું વર્ગીકરણ :

વિવિધ પ્રકૃતિવિદો અને વનસ્પતિશાસ્ત્રીઓ દ્વારા વિવિધ ધોરણોને આધારિત વનસ્પતિઓની ઘલી વર્ગીકરશ પદ્ધતિઓ સૂચિત કરવામાં આવી. શ્રીક પ્રકૃતિવિદ્ થીઓફ્રેસ્ટસે વનસ્પતિઓને તેમના વસવાટના આધારે ચાર જૂથોમાં વર્ગીકૃત કરી. થીઓફ્રેસ્ટસને વનસ્પતિશાસ્ત્રના પિતા કહેવામાં આવે છે (370 - 285 બી. સી.). સ્વીડિશ વનસ્પતિશાસ્ત્રી લિનિયસે વનસ્પતિઓને જાતિલક્ષણોને આધારે 24 જૂથોમાં વર્ગીકૃત કરી. લિનિયસને વર્ગીકરણવિદ્યાના પિતા કહે છે (1707-1778).

નવી પાંચ સૃષ્ટિ વર્ગીકરણ પદ્ધતિ આર. એચ. વ્હિટેકર (1969) દ્વારા નીચેનાં ચાર ધોરણોને આધારે આપવામાં આવી :

- (1) કોષ રચનાની જટિલતા (આદિકોષકેન્દ્રિય કે સૂકોષકેન્દ્રિય)
- (2) દૈષ્કિક રચનાની જટિલતા (એક્કોષી કે બહુકોષી)
- (3) પોષણ પ્રકાર : સ્વયંપોથી (પ્રકાશસંશ્લેષણ) અને વિષમપોષી (અવચુષણ અને અંતઃગ્રહણ)
- (4) મુખ્ય પરિસ્થિતિકીય ભૂમિકા (ઉત્પાદકો, વિઘટકો અને ઉપભોક્તાઓ)

पांच सृष्टिओ :

- (1) મોનેરા
- (2) પ્રોટિસ્ટા
- (3) ફ્રગ
- (4) વનસ્પતિસૃષ્ટિ
- (5) પ્રાશીસૃષ્ટિ છે.

(1) सुष्टि भोजेश (आहिकोषकेन्द्रिय सुष्टि) :

સૂક્ષ્મ જીવો કે જે સુયોજિત કોષકેન્દ્ર વગરના (પરંતુ ન્યુક્લિઓઇડ ધરાવતા) અને પટલમય અંગિકાઓ વિહીન છે. તે આ સૃષ્ટિમાં સમાવેશિત છે. સખત કોષદીવાલની હાજરી અને જનીનદ્રવ્ય તરીકે ન્યુક્લિઓપ્રોટીન છે. પોષણનો પ્રકાર સ્વયંપોષી કે પરપોષી છે. ઉદાહરણ : બેક્ટેરિયા અને એનાબિના નીલહરિત લીલ (સાયનોબેક્ટેરિયા)

એનાબિના

(2) सृष्टि प्रोडिस्टा (એક્કोपीय प्रश्नदो અने प्राथमिङ ४व४ सुङोपङेन्द्रिय सृष्टि) :

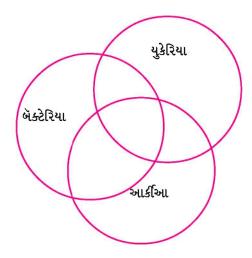
આ સૃષ્ટિ સુયોજિત કોષકેન્દ્ર અને પટલમય અંગિકાઓ ધરાવતા સજીવોને સમાવે છે. સ્વયંપોષીથી પરપોષી પોષણ વિવિધતા છે. ઉદાહરણ : યુગ્લીના, ડાયનોફ્લેજેલેટ્સ, અમીબા અને પેરામેશિયમ

(3) सृष्टि ङ्ग (બહુકોષીય વિઘટક સૃષ्टि) :

એકકોષી કે બહુકોષી સુકોષકેન્દ્રિય સજીવો આ સૃષ્ટિમાં સમાવિષ્ટ છે. કોષદીવાલ ફંગસ-સેલ્યુલોઝ (કાઈટીન)ની બનેલી છે. પોષણ પરોપજીવી અથવા મૃતોપજીવી પ્રકારે છે. લિંગીપ્રજનનના પરિણામ સ્વરૂપ ભ્રૂણનિર્માણ થતું નથી. ઉદાહરણ : સ્લાઇમ મોલ્ડ, યીસ્ટ (એકકોષીય), મ્યુકર (બ્રેડ મોલ્ડ) અને મશરૂમ

(4) सृष्टि वनस्पति (अढुङोषीय ઉत्पादङ सृष्टि) :

આ સૃષ્ટિમાં બધા જ બહુકોષી, જલજ કે સ્થળજ પ્રકાશસંશ્લેષી સુકોષકેન્દ્રિય સજીવો સમાવિષ્ટ છે. પોષણનો પ્રકાર સ્વયંપોષી છે. વનસ્પતિ દેહ સરળ સુકાયક કે મૂળ પ્રકાંડ અને પર્ણમાં વિભેદિત છે. કોષદીવાલ સેલ્યુલોઝની બનેલી છે. લીલને બાદ કરતાં લીંગીપ્રજનનના પરિણામે ભ્રૂણનિર્માણ થાય છે. ઉદાહરણ : દ્વિઅંગી, ત્રિઅંગી, અનાવૃતબીજધારી અને આવૃતબીજધારી.


(5) સૃષ્ટિ પ્રાણી (બહુકોષીય ઉપભોક્તા સૃષ્ટિ) :

આ સૃષ્ટિના સભ્યો બહુકોષી, જલજ કે સ્થળજ પરપોષી, સુકોષકેન્દ્રિય સજીવો છે. તેઓ સ્વરૂપ, બંધારણ અને પ્રજનનમાં ખૂબ જ વિવિધતા દર્શાવે છે. કોષદીવાલનો અભાવ છે. પ્રજનન મુખ્યત્વે લિંગી પદ્ધતિથી થાય છે. ઉદાહરણ : કોષ્ઠાંત્રી, પૃથુકૃષિ, સૂત્રકૃષિ, નુપૂરક, સંધિપાદ, મૃદુકાય, શૂળત્વચી અને મેરુદંડી સમુદાયના સભ્યો.

ત્રિક્ષેત્રીય વર્ગીકરણ :

ત્રિક્ષેત્રીય વર્ગીકરણ પદ્ધતિ વ્હૂઝ (1978) વૈજ્ઞાનિકે આપી. તે વર્ગીકરણની ઉદ્ધિકાસકીય પ્રતિકૃતિ છે. તે કોષના રીબોઝોમલ આર. એન. એ. માં ન્યુક્લિઓટાઇડના અનુક્રમમાં તફાવત એ જ રીતે રસઃસ્તરનું લિપિડ બંધારણ તથા પ્રતિજૈવિક દ્રવ્યો સામે સંવેદિતા પર આધારિત છે. આ પદ્ધતિમાં આદિકોષકેન્દ્રિય અને સુકોષકેન્દ્રિય સજીવોને નીચેનાં ત્રણ ક્ષેત્રોમાં વિભાજિત કરેલ છે :

(1) આર્કીઆ ડોમેઇન (2) બૅક્ટેરિયા ડોમેઇન (3) યુકેરિયા ડોમેઇન

ત્રિક્ષેત્રિય વર્ગીકરણ પદ્ધતિ (Three Domain Classification system)

1. આર્કીઆ ડોમેઇન :

- તેઓ કોષકેન્દ્રપટલિવહીન આદિકોષકેન્દ્રિય કોષો છે.
- કોષદીવાલ પેપ્ટીડોગ્લાયકેનની બનેલી નથી.
- 💿 આર્કીઆ વિપરિત સ્થિતિમાં પણ જીવે છે.

ઉદાહરણ : આર્કબિક્ટેરિયા

મીથેનોઝેન્સ - બાયોગૅસ (મિથેન)ના ઉત્પાદન માટે જવાબદાર

હેલોફ્લિસ - અતિશય ક્ષારયુક્ત વિસ્તારમાં વસવાટ

થરમાં એસિડોફિલસ - એસિડિક અને ઊંચા તાપમાને પણ જીવંત (ગરમ પાણીના ઝરામાં)

2. બૅક્ટેરિયા ડોમેઇન :

- તેઓ પણ કોષકેન્દ્રપટલવિહીન આદિકોષકેન્દ્રિય કોષો છે.
- કોષદીવાલ પેપ્ટીડોગ્લાયકેનની બનેલી છે.
- આ સૃષ્ટિ ખૂબ જાણીતા રોગકારક સજીવો સમાવે છે.

ઉદાહરણ : યુબૅક્ટેરિયા

સાઇનોબૅક્ટેરિયા - પ્રકાશસંશ્લેષી બૅક્ટેરિયા

સ્પાઇરોકીટ - ગ્રામ નૅગેટિવ બૅક્ટેરિયા

ફર્મીક્યુટસ - ગ્રામ પોઝિટિવ બૅક્ટેરિયા

3. યુકેરિયા ડોમેઇન :

- તેઓ સુકોષકેન્દ્રિય સજીવો છે.
- કોષદીવાલનો અભાવ, જો હોય તો સેલ્યુલોઝ કે ફંગસ-સેલ્યુલોઝની બનેલી છે.
- યુકેરિયા ડોમેઇનને ફરીથી ચાર સૃષ્ટિઓમાં વિભાજિત કરેલ છે. પ્રોટિસ્ટા, ફૂગ, વનસ્પતિસૃષ્ટિ અને પ્રાણીસૃષ્ટિ
- (અ) પ્રોટિસ્ટા સૃષ્ટિ : પ્રોટિસ્ટા સાદા, પૂર્વપ્રભાવી, એકકોષીય, સુકોષકેન્દ્રિય સજીવો છે.

ઉદાહરણ : સ્લાઇમ મોલ્ડ, યુગ્લીનોઇડ્સ, લીલ અને પ્રજીવો.

(બ) ફૂગ સૃષ્ટિ : ફૂગ એ એકકોષી કે બહુકોષી સુકોષકેન્દ્રિય સજીવો છે. કોષદીવાલ ફંગસ-સેલ્યુલોઝની બનેલી છે અને કોષો પેશીઓમાં આયોજિત નથી. તેઓ પ્રકાશસંશ્લેષણ કરતા નથી અને અવશોષણથી પોષણ મેળવે છે.

ઉદાહરણ : કોથળીમય ફૂગ, ગુચ્છી ફૂગ, યીસ્ટ અને મોલ્ડ

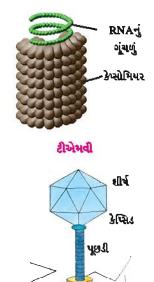
(ક) વનસ્પતિસૃષ્ટિ : વનસ્પતિઓ સુકોષકેન્દ્રિય કોષોથી સંઘટિત બહુકોષીય સજીવો છે. કોષદીવાલ સેલ્યુલોઝની બનેલી છે અને કોષો પેશીઓમાં આયોજિત છે. તેઓ પ્રકાશસંશ્લેષણ અને અવચુષણથી પોષણ મેળવે છે.

ઉદાહરણ : મોસ, દ્વિઅંગી, ત્રિઅંગી, કોનીફર (અનાવૃત બીજધારી) અને આવૃત બીજધારી.

(ડ) પ્રાણી સૃષ્ટિ : પ્રાણીઓ પણ સુકોષકેન્દ્રિય કોષોથી સંઘટિત બહુકોષીય સજીવો છે. કોષદીવાલનો અભાવ છે અને કોષો પેશીઓમાં આયોજિત છે. તેઓ પ્રકાશસંશ્લેષણ કરતા નથી અને પ્રાથમિક રીતે અંતઃગ્રહણથી પોષણ મેળવે છે.

ઉદાહરણ : વાદળી, કૃમિ, કીટકો અને પૃષ્ઠવંશીઓ.

વિરોઇડ્સ અને વિષાશુ


વિરોઇડ્સ :

ડાયેનરે ચેપી વિરોઇડની શોધ કરી કે જે વાઇરસ કરતાં પણ નાના છે તેને વિરોઇડ કહે છે. તે ખૂબ સાદી રચના અને ટૂંકો આર. એન. એ. તંતુ ધરાવે છે. કેપ્સિડ તરીકે ઓળખાતું રક્ષણાત્મક પ્રોટીન

20 जुवविज्ञान

આવરણનો અભાવ છે. ઘણા વનસ્પતિ રોગો અને થોડાક પ્રાણી રોગો વિરોઇડ્સના કારણે થાય છે. બટાટામાં તંતુમય ગ્રંથીલ રોગ અને માનવમાં અલ્ઝાઈમર રોગ આનાં ઉદાહરણો છે.

વાઇરસ (વિષાશુ) :

કેજ વાઇરસ

પૂછડીનાં તંત્રઓ

પાશ્વર : 'વાઇરસ એટલે ઝેર' અને ચેપી રોગોના રોગકારક સજીવ તરીકે પાશ્વરે સૌપ્રથમ વાઇરસ નામ આપ્યું. ઈવાનોવ્સકી : સૌપ્રથમ ટોબેકો મોઝેઈક વાઇરસ (ટીએમવી)ની શોધ કરી અને તમાકુમાં ક્રિમિર રોગ માટેના રોગકારક સજીવ તરીકે ઓળખાવ્યા.

વાઇરસ સર્વવ્યાપી અને કદમાં અતિશય નાના છે. તેઓ એટલા નાના છે કે બૅક્ટેરિયાપૂક ફિલ્ટરમાંથી પણ પસાર થઈ શકે છે. તેઓ અતિશય સૂક્ષ્મ, સ્ફ્રેટિક સ્વરૂપે, સ્વયંપ્રજનનીત અને જીવંત કોષોમાં સદા પરોપજીવી છે. તેઓ જીવંત કોષની બહાર રહે છે ત્યારે નિષ્ક્રિય અને નિર્જીવ વસ્તુ તરીકે વર્તે છે (મુક્ત અવસ્થામાં), પરંતુ જ્યારે તેઓ જીવંત કોષની અંદર રહે છે ત્યારે સિક્રય અને જીવંત વર્તશૂક્ષ દાખવે છે (યજમાન કોષમાં). તેથી તેઓ સજીવ અને નિર્જીવ વસ્તુઓના મધ્યસ્થી છે. તેઓને જીવંત રસાયશ પણ કહેવાય છે. મુખ્ય બંધારણીય ઘટક ન્યુક્લિઓપ્રોટીન (ન્યૂક્લિકઍસિડ અને પ્રોટીન) છે. વાઇરસ ડી. એન. એ. કે આર. એન. એ. પૈકી કોઈ એક જ ન્યૂક્લિકઍસિડ ધરાવે છે, જે કેપ્સીડ તરીકે ઓળખાતા રક્ષણાત્મક પ્રોટીન આવરણથી આવરિત છે. કેપ્સિડ એ કેપ્સોમિયરના ઘણા નાના પેટા એકમોનું બનેલું છે કે જે પોલિપેપ્ટાઇડ શૂંખલાનું બનેલું છે.

ટોબેકો મોઝેઇક વાઇરસ વનસ્પતિજન્ય વાઇરસ જ્યારે પોલિયો વાઇરસ પ્રાણીજન્ય વાઇરસ છે. બેક્ટેરિયા પર જીવતા વાઇરસને બેક્ટેરિયોફેજ કે બેક્ટેરિયલ વાઇરસ તરીકે ઓળખાય છે.

લીલ અને ફૂગ લીલ :


પૃથ્વી પર સૌપ્રથમ અસ્તિત્વમાં આવનાર વનસ્પતિજૂથ લીલ છે. તેની દેહરયના સાદી હોવાથી તેઓ આદ્ય વનસ્પતિઓ તરીકે જાણીતા છે. લીલના અભ્યાસને લીલવિદ્યા કહે છે. પ્રોફેસર આયંગરને ભારતમાં આધુનિક લીલવિદ્યાના પિતા કહેવામાં આવે છે.

લીલ સામાન્ય રીતે મીઠા પાશીમાં, સમુદ્રમાં કે ભેજયુક્ત વસવાટમાં જોવા મળે છે. મૂળ, પ્રકાંડ અને પર્શ જેવાં અંગો હોતા નથી આવા વનસ્પતિ દેહને સુકાય કહે છે કે જે એકકોષી કે બહુકોષી, આદિકોયકેન્દ્રિય કે સુકોયકેન્દ્રિય, તંતુમય કે વસાહતી સ્વરૂપ છે. કોયદીવાલ સેલ્યુલોઝની બનેલી છે. લીલ એ નિલરસ અને અન્ય પ્રકાશસંશ્લેષી રંજકદ્રવ્યો (ઝેન્થોફિલ, ફાયકોસાયનીન, ફાયકોઈરીથ્રીન અને ફ્યુકોઝેન્થીન) ધરાવતી હોવાથી પોષણની દષ્ટિએ તે સ્વયંપોષી છે. લીલનો અલગ રંગ વિવિધ પ્રકારનાં રંજકદ્રવ્યોની હાજરીને આભારી છે – બદામી લીલ, રાતી લીલ, નિલહરિત લીલ અને હરિત લીલ. સંચિત ખોરાક દ્રવ્ય તરીકે સ્ટાર્ચ છે. લીલ વનસ્પતિક પ્રજનન (અવખંડન દ્વારા), અલિંગી પ્રજનન (બીજાશુઓ દ્વારા) અને લિંગી પ્રજનન (સંયુગ્યન દ્વારા)થી પ્રજનન કરે છે. લિંગી અંગો ખુલ્લા છે. ફલન બાદ ફલિતાંડમાંથી બ્રુશ નિર્માણ પાયતો નથી.

<mark>ઉદાહરણ</mark> ઃ નોસ્ટોક (નિલહરિત), ક્લેમિડોમોનાસ (એકકો**ષી**), સ્પાયરોગાયરા (તંતુમય) અને વોલ્વોક્સ (વસાહતી)

સ્પાયરોગાયરા

વોલ્વો

Downloaded from https://www.studiestoday.com

ફુગ :

કૂગ સર્વત્ર સ્થાનોમાં વિતરણ દર્શાવે છે. તે હરિતક્શ વગરના વનસ્પતિ કોષો છે. ફૂગના અભ્યાસને ફૂગવિદ્યા કહે છે.

કૂગ પાશીમાં, હવામાં, જમીન, ખોરાક, ચામડા, કપડાં વગેરે પર વિકસે છે. વનસ્પતિ દેહ (સુકાય)ને કવક્જાળ કહે છે કે જે કવકસૂત્ર તરીકે જાણીતા દોરી જેવા તાંતણાઓની બનેલી છે. કવકસૂત્રો પડદાયુક્ત કે પડદાવિહીન છે. કોમદીવાલ ફંગસ - સેલ્યુલોઝ (કાઈટીન)ની બનેલી છે. હરિતદ્રવ્યનો અભાવ હોવાથી પોતાનો ખોરાક જાતે તૈયાર કરતા નથી તેથી તેઓ પરપોષી છે. કેટલીક ફૂગ પરોપજીવી (જીવંત સજીવોમાંથી પોષણ) અને મૃતોપજીવી (સડતા કાર્બનિક પદાર્થોમાંથી પોષણ) છે. સંચિત ખોરાક દ્રવ્ય મુખ્યત્વે ગ્લાયકોજન અને તૈલી બિંદુઓ છે. વનસ્પતિક પ્રજનન (અવખંડન કલિકાસર્જન), અલિંગી પ્રજનન (ચલબીજાણુઓ કે અચલબીજાણુઓ દ્વારા) અને લિંગી પ્રજનન (સંયુગ્યન કે અન્ય પ્રકારે)થી ફૂગ પ્રજનન કરે છે. લિંગી પ્રજનન સમજન્યુક, વિષમજન્યુક કે અંડજન્યુક પ્રકારનું હોઈ શકે છે. લિંગી પ્રજનન ત્રણ તબક્કામાં થાય છે : (1) જીવરસ સંયુગ્યન (2) કોષકેન્દ્ર સંયુગ્યન (3) અર્ધીકરણ.

ઉદાહરણ : યીસ્ટ (એક્કોષી), મ્યુકર (મોલ્ડ), બિલાડીનો ટોપ (મશરૂમ) અને પેનિસિલિયમ.

મ્યુકર

બિલાડીનો ટોપ

લાઇકેન :

લાઇકેન એ લીલ અને ફૂગનાં ઘટકો વચ્ચેના સહજીવી સંબંધ દર્શાવે છે. લાઇકેનના અભ્યાસને લાઇકેનવિદ્યા કહે છે. તલસાજ્ઞેએ સૌપ્રથમ લાઇકેનની શોધ કરી.

લાઇકેન ભીના અને ભેજયુક્ત વસવાટમાં જીવે છે કે જે લીલ અને ફૂગનું સંઘટિત સુકાયકીય બંધારજ્ઞ ધરાવે છે. લીલનાં ઘટકો ફાયકોબાયોન્ટ તરીકે જાણીતા છે જે સ્વયંપોષી છે અને ફૂગનાં ઘટકોને

માયકોબાયોન્ટ કહે છે જે પરપોષી છે. ફૂગ વાતાવરસમાંથી પાણી અને પોષકતત્ત્વો શોષીને લીલને આપે છે જ્યારે લીલ પ્રકાશસંશ્લેષણથી ઉત્પન્ન થયેલ તૈયાર ખોરાક ફૂગને આપે છે. લાઇકેન કણ્યબીજાણુ કે પલિધબીજાણુ દ્વારા અલિંગી પ્રજનન અને ફળકાય કહેવાતી વિશિષ્ટ રચનાથી લિંગી અંગો (નરધાની અને માદાધાની) ઉત્પન્ન કરી લિંગીપ્રજનન કરે છે. લાઇકેનના ફળકાયને એપોથેસિયમ (કપ આકાર) કે પેરિથેસિયમ (ચંબુ આકાર) કહે છે. બાહ્ય સ્વરૂપને આધારે લાઇકેનના ત્રણ પ્રકારો છે: (1) પર્પટાભ લાઇકેન (2) પત્રમય લાઇકેન અને (3) સૂપિલ લાઇકેન.

દગડફૂલ (ઉસ્નીયા)

હિઅંગી :

આ વનસ્પતિઓ એકાંગી અને ત્રિઅંગી વચ્ચેનું સ્થાન ધરાવે છે. જન્યુજનક વનસ્પતિ દેહ સુકાયકીય (પ્રહરિતા) અથવા સીધા કે ઊભા (મુસાઈ) છે. તેઓ અત્યંત સાદી અને આદિ ગર્ભધારી વનસ્પતિઓ છે. પ્રોફેસર શિવરામ કશ્યપને ભારતીય દિઅંગી શાસ્ત્રના પિતા કહેવામાં આવે છે. વનસ્પતિશાસ્ત્રી રોથમેલરે બધી દિઅંગી વનસ્પતિઓને ત્રદ્મ વર્ગોમાં વિભાજિત કરી : (1) હીપેટીકોપ્સીડા (2) એન્થોસિરોટોપ્સીડા અને (3) બ્રાયોપ્સીડા.

દિઅંગીઓ ભેજયુક્ત અને છાયાવાળી જગ્યાએ જેમકે ભીની જમીન કે ભીની દીવાલો અને ભેજયુક્ત ખડકો પર જોવા મળે છે. તે હરિતદ્રવ્ય ધરાવતી હોવાથી સ્વયંપોષી છે. વાહકપેશીઓ ગેરહાજર છે. પાણીની હાજરીમાં જ કલન થાય છે. ફલન બાદ ફલિતાંડ વિભાજનથી ભૂજ્ઞ નિર્માણ થાય છે. દિઅંગીઓનું જીવનચક બે અલગ તબક્કાઓ ધરાવે છે : (1) જન્યુજનક અને (2) બીજાજ્ઞુજનક કે જે એકબીજાને એકાંતરે છે. આ ઘટનાને એકાંતરજનન કહે છે.

- (1) જન્યુજનક તબક્કો : તે મુખ્ય અવસ્થા જે એકકીય, સ્વયંપોષી, જન્યુઓ (નર અને માદા) નિર્માણ કરતી અને લિંગીપ્રજનન માટે જવાબદાર છે.
- (2) બીજાણુજનક તબક્કો : તે ગૌશ, અવસ્થા જે દ્વિકીય, પરપોષી બીજાશુઓ નિર્માશ કરતી અને અલિંગીપ્રજનન માટે જવાબદાર છે. વાનસ્પતિક પ્રજનન અવખંડન કંદ, આગંતુક શાખાઓ અને કુડમલી દ્વારા થાય છે. લિંગીપ્રજનન પુજન્યુધાની (નર પ્રજનન અંગ) અને સ્ત્રીજન્યુધાની (માદા પ્રજનન અંગ) જેવા લિંગી અંગો દ્વારા કરે છે.

ઉદાહરણ : રિક્સિયા, એન્થોસિરોસ અને ફ્યુનારિયા (મોસ).

રિક્સિયા

ફ્યુનારિયા (મોસ)

ત્રિઅંગી :

તેઓ સૌપ્રથમ ભૂમિનિવાસી વનસ્પતિઓ છે.

ત્રિઅંગીઓ હંમેશાં સ્થળજ અને ભેજયુક્ત વસવાટ તેમજ છાયાપ્રિય વસવાટમાં વિકસે છે. તેઓ મૂળ પ્રકાંડ અને પર્શ્ન ધરાવે છે જે સુવિકસિત વાહકપેશીઓયુક્ત છે (જલવાહક અને અન્નવાહક). ફલિતાંડ વિભાજનથી ભ્રૂશ નિર્માણ થાય છે. બીજાશુઓ બીજાશુધાનીમાં ઉત્પન્ન થાય છે. બીજાશુધાનીઓ બીજાશુપર્શો પર ઉદ્ભવે છે. બીજાશુપર્શો ચોક્કસ શંકુ સ્વરૂપમાં ગોઠવાય છે. બીજાશુપર્શો બે પ્રકારના હોય છે :

- (1) સમપર્થી : સરખા પ્રકારના બીજાશુઓ (સમબીજાશુક) ઉત્પન્ન કરે છે.
- (2) વિષમપર્શી : (લલુબીજાણપર્શ અને મહાબીજાણપર્શ) વિષમ પ્રકારના બીજાણઓ (વિષમબીજાણુક) લઘુબીજાણુ અને મહાબીજાણુ ઉત્પન્ન કરે છે.

દ્વિઅંગીઓની જેમ ત્રિઅંગીઓનું જીવનચક્ર એકાંતરજનન દર્શાવે છે. બે અલગ તબક્કાઓ ધરાવે છે : Downloaded from https:// www.studiestoday.com

- (1) જન્યુજનક તબક્કો : તે ગૌણ અવસ્થા છે જે એકકીય, સુકાયક તરીકે, ટૂંકજીવી, જન્યુઓ નિર્માણ કરતી અને લિંગીપ્રજનન માટે જવાબદાર છે.
- (2) બીજાશુજનક તબક્કો : તે મુખ્ય અવસ્થા છે જે દ્વિકીય, છોડ તરીકે, દીર્ઘજીવી, બીજાશુઓ નિર્માણ કરતી અને અલિંગી પ્રજનન માટે જવાબદાર છે. અલિંગી પ્રજનન બીજાશુઓ દ્વારા કે જે બીજાશુધાનીમાં ઉદ્ભવે છે અને લિંગી પ્રજનન પુજન્યુધાની અને સ્ત્રીજન્યુધાની જેવા લિંગી અંગો દ્વારા થાય છે.

ઉંદાહરણ ઃ હંસરાજ (સામાન્ય), ઈક્વીસેટમ (સમબીજાશુક), સેલાજીનેલા (વિષમબીજાશુક) અને ર્હાનિયા (અશ્મિ).

સેલાજીનેલા

ઈક્વીસેટમ

અનાવૃતબીજધારી :

આ જૂથની વનસ્પતિઓ ખુલ્લા કે નગ્ન બીજ ધરાવે છે.

અનાવૃતબીજધારીઓ નાની વનસ્પતિઓથી લઈ ખૂબ મોટી રાક્ષસી કદની વનસ્પતિઓ છે. સીકોઈયા સીમ્પરવીરેન્સ વિશ્વનું ઊંચામાં ઊંચું વૃક્ષ છે જેની ઊંચાઈ આશરે 150 મીટર છે, જ્યારે ઝામિયા પીગ્મીયા નાનામાં નાની અનાવૃતબીજધારી છે જે ભૂમિગત ગાંઠામૂળી પ્રકાંડ ધરાવે છે.

વનસ્પતિદેહ બીજાસુજનક છે જે તે મૂળ પ્રકાંડ અને પર્જામાં વિભેદિત છે. પર્શો બે પ્રકારના છે: (1) પલ્લવ પર્શો (મોટા અને લીલા) અને (2) શલ્કિ પર્શો (સૂક્ષ્મ અને બદામી). તેઓ સદાહરિત, બહુવર્ષાયુ વૃક્ષો કે ક્ષુપો છે જે શુષ્કોદભિદ્ લક્ષણો દર્શાવે છે. અંડકો ખુલ્લા અને બીજાશયથી આવરિત ન હોવાથી અનાવૃતબીજધારી તરીકે ઓળખવામાં આવે છે. વાહકપેશીઓ હાજર છે. દિઅંગી અને ત્રિઅંગીઓની જેમ વનસ્પતિઓ એકાંતરજનન દર્શાવે છે. જીવનચક પૂર્ણ કરવા જન્યુજનક અને બીજાશુજનક તબક્કાઓ એકબીજાને એકાંતરે છે. (1) જન્યુજનક તબક્કો - તે ગૌણ અવસ્થા છે જે એકકીય અને ટૂંકજીવી છે અને (2) બીજાશુજનક તબક્કો - તે મુખ્ય અવસ્થા છે જે દિકીય, દીર્ઘજીવી અને સંપૂર્ણ દેહ તરીકે છે. બીજાશુપર્શો મધ્યઅક્ષ પર શંકુ સ્વરૂપે ગોઠવાય છે. શંકુ એકલિંગી છે અને અનાવૃતબીજધારીઓ વિષમબીજાશુક છે.

સીકોઇયા

ઝામિયા

નરશંકુમાં લવુબીજાશુપર્શો સંલગ્ન લઘુબીજાશુધાની ઘણી સંખ્યામાં લઘુબીજાશુઓ ઉત્પન્ન કરે છે અને માદાશંકુમાં મહાબીજાશુપર્શો સંલગ્ન મહાબીજાશુધાની ચાર મહાબીજાશુઓ ઉત્પન્ન કરે છે.

નોંધ: આ તબક્કે લઘુબીજાશુપર્શ, લઘુબીજાશુધાની અને લઘુબીજાશુઓને અનુક્રમે આવૃત્ત બીજધારીઓના પુંકેસર, પરાગાશય અને પરાગરજ તેમજ મહાબીજાશુપર્શ અને મહાબીજાશુધાનીને અનુક્રમે સ્ત્રક્રિસર અને અંડક સાથે સરખાવી શકાય.

જીવવિજ્ઞાન

24

પરાગનયન પવન દ્વારા અને ભ્રૂજ્ઞપોષનું નિર્માજ્ઞ ફલન પહેલાં થાય છે (પૂર્વ-ફલિત). અનાવૃતબીજધારીઓ એકવડું ફલન દર્શાવે છે. અંડક ઊર્ધ્વમુખી છે. બીજાશય ગેરહાજર હોવાથી સત્ય ફળનો અભાવ છે.

ઉદાહરણ : શંકુદ્ધુમ જંગલોની જાતિઓ જેવી કે સાયક્સ, પાઈનસ, ઓરોકેરિયા (નાતાલ વૃક્ષ), બેનીટાઈટિસ (અશ્મિભૂત વનસ્પતિ) અને થુજા (બગીચામાં સુશોભન માટેની વનસ્પતિ – મોરપીંછ કે વિદ્યા).

^{ાયકસ} આવૃતબીજધારી ઃ

પાઈનસ

આવૃતબીજધારી એટલે કે આવરિત બીજ ધરાવતી વનસ્પતિઓ. આ બીજધારી વનસ્પતિ સમૂહ ખૂબ જ ઉદ્વિકસિત, તાજેતરના, પ્રભાવી અને વિશ્વમાં મોટામાં મોટો વનસ્પતિ સમૂહ છે. આવૃતબીજધારી વનસ્પતિઓ સર્વત્ર વિતરક્ષ દર્શાવે છે. વનસ્પતિ જાતિઓ : જલોદભિદ્, શુષ્કોદભિદ્, મધ્યોદભિદ્ અથવા લવશોદભિદ્ હોઈ શકે છે. અત્યારે આ વનસ્પતિ સમૂહ મહત્તમ જાતિઓને સાંકળતો હોવાથી પૃથ્વી પર પ્રથમ સ્થાને છે. આવૃતબીજધારીની જાતિઓ વિવિધ કદની હોય છે. દા.ત., નાનામાં નાની વનસ્પતિ વૃલ્ફિયા ગ્લોબોઝા જે 2-5 મિમી કદ દર્શાવે છે જ્યારે ઑસ્ટ્રેલિયામાં મોટામાં મોટી વનસ્પતિ નિલગીરીની જાતિ આશરે 90-100 મીટર

रेक्बेसिया

વુલ્ફિયા

ઊંચાઈ દર્શાવે છે. રેફ્લેસિયા આર્નોલ્ડી આશરે 8 કિગ્રા વજનનું અને આશરે 1 મીટર વ્યાસનું મોટામાં મોટું પુષ્પ ધરાવે છે. રામબાણ આશરે 6 મીટર ઊંચાઈનો મોટો પુષ્પવિન્યાસ ધરાવે છે.

બીજાશુજનક વનસ્પતિદેહ છોડ, શુપ, વૃક્ષ, વેલા તથા મહાકાયલતા સ્વરૂપમાં છે. વનસ્પતિ મૂળ પ્રકાંડ અને પર્જા જેવાં વાનસ્પતિક અંગો ધરાવે છે. વાહકપેશીઓ સુવિકસિત છે (જલવાહક અને અન્નવાહક). અંડકો ઢંકાયેલા અને બીજાશયથી આવરિત હોવાથી આવૃતબીજધારી તરીકે ઓળખવામાં આવે છે. પુખ્ત અવસ્થાએ વનસ્પતિ દેહ લિંગી પ્રજનન માટે પુષ્પો ઉત્પન્ન કરે છે. પુષ્પો એકલિંગી કે દ્વિલિંગી છે. તે બે સહાયક ચક્કો (વજચક અને દલચક) અને બે આવશ્યકચક્કો (પુંકેસરચક અને સ્ત્રીકેસરચક) ધરાવે છે. પુંકેસરચક એ પુંકેસરોનો સમૂહ છે અને પૂંકેસર એ પરાગાશય, યોજી અને તંતુમાં વિભેદિત છે. સ્ત્રીકેસરચક એ સ્ત્રીકેસરોનું ગુજ્છ છે અને સ્ત્રીકેસર એ પરાગાસન, પરાગવાહિની અને બીજાશયમાં વિભેદિત છે. પરાગનયન હવા, કીટકો અને પક્ષીઓ દ્વારા થાય છે.

ભૂજ્ઞપોષનું નિર્માણ ફલન પછી થાય છે (પછીથી-ફલિત). આવૃતબીજધારીઓમાં બેવડું ફલન જોવા મળે છે. ફલન બાદ અંડકો બીજમાં અને બીજાશય ફળમાં પરિશમે છે. વનસ્પતિ જીવનચક્ર એકાંતરજનન દર્શાવે છે.

બેન્થામ અને હૂકરની વર્ગીકરણ પદ્ધતિ વિશ્વના મોટા ભાગના પ્રચલિત વનસ્પતિ સંગ્રહાલયો દ્વારા ઉપયોગમાં લેવાય છે. બેન્થામ અને હૂકરે આવૃતબીજધારીઓને બે વર્ગીમાં વર્ગીકૃત કરી : (1) દિદળી અને (2) એક્દળી. વિવિધ એકમોના મહત્ત્વનાં લક્ષણો સાથે વર્ગીકરણની રૂપરેખા નીચે મુજબ આપેલ છે :

(1) **હિંદળી ઃ ભ્રૂ**શ બે બીજપત્રો ધરાવે છે. પુષ્પો પંચાવયવી છે અને પર્શી જાલાકાર શિરાવિન્યાસ દર્શાવે છે. ઉદાહરણ ઃ સૂર્યમુખી.

વર્ગ દ્વિદળી ત્રણ ઉપવર્ગોમાં ઉપવિભાજિત છે.

મુક્તદલા : પુષ્પમાં દલપત્રો મુક્ત છે. આ ઉપવર્ગ ત્રણ શ્રેણી ધરાવે છે :

- (અ) <u>થેલેમિફ્લોરી</u> : પુષ્પાસન ઘુમ્મટ આકારનું છે. આ શ્રેશી 6 ગોત્રો અને ઘશા કુળ સમાવે છે. ઉદાહરણ : હીબીસ્ક્સ રોઝા સાઈનેન્સિસ - સ્થાનિક નામ : જાસૂદ
- (બ) ડિસ્કીક્લોરી : પુષ્પાસન બીબ આકારનું છે. આ શ્રેણી 4 ગોત્રો અને ઘણા કુળ સમાવે છે. ઉદાહરણ : સાઈટ્સ લિમોન – સ્થાનિક નામ : લીંબુ
- (ક) કેલિસિક્લોરી : પુષ્પાસન કપ આકારનું છે. આ શ્રેણી 5 ગોત્રો અને ઘણા કુળ સમાવે છે. ઉદાહરણ : રોઝા ઇન્ડિકા – સ્થાનિક નામ : ગુલાબ

યુક્તદલા : પુષ્પમાં દલપત્રો યુક્ત છે. આ ઉપવર્ગ ત્રણ શ્રેણી સમાવે છે :

- (અ) ઈન્ફીરી : બીજાશય અધઃસ્થ છે. આ શ્રેણી 3 ગોત્રો અને ઘણા કુળ સમાવે છે. ઉદાહરણ : હેલીએન્થસ એનસ – સ્થાનિક નામ : સૂર્યમુખી
- (બ) હીટરોમેરિ (સુપીરી) : બીજાશય ઉચ્ચસ્થ છે. આ શ્રેશી પણ 3 ગોત્રો અને ઘણા કુળ સમાવે છે. ઉદાહરણ : મધુકા ઇન્ડિકા – સ્થાનિક નામ : મહુડો
- (ક) બાયકાર્પેલિટી : સ્રીકેસર હંમેશા બેની સંખ્યામાં છે. આ શ્રેજ્ઞી 4 ગોત્રો અને ઘણા કુળ સમાવે છે. ઉદાહરણ : કેથેરેન્થસ રોઝિયસ – સ્થાનિક નામ : બારમાસી

અદલા : પુષ્પો હંમેશા પરિપુષ્પના એકચક્રમાં છે.

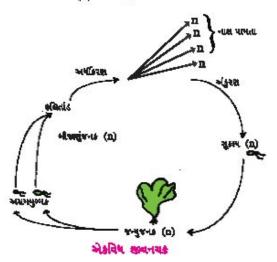
તે કોઈ પણ ગોત્ર ધરાવતી નથી પરંતુ ફક્ત 8 શ્રેણીઓ અને ઘણા કુળ ધરાવે છે. ઉદાહરણ : બોગનવીલિયા સ્પેક્ટાબિલીસ – સ્થાનિક નામ : બોગનવેલ

(2) એકંદળી : ભ્રૂલ એક બીજપત્ર ધરાવે છે. પુષ્પો ત્રિઅવયવી છે અને પર્જ્ઞો સમાંતર શિરાવિન્પાસ દર્શાવે છે. ઉદાહરણ : મકાઈ

આ વર્ગ પણ કોઈ ગોત્ર ધરાવતો નથી પરંતુ તે ઘણા કુળ સમાવતી 7 શ્રેણીઓમાં વિભાજિત છે. ઉદાહરણ : એલિયમ સેપા – સ્થાનિક નામ : ડુંગળી

વનસ્પતિ જીવનચક્ર અને એકાંતર જનન

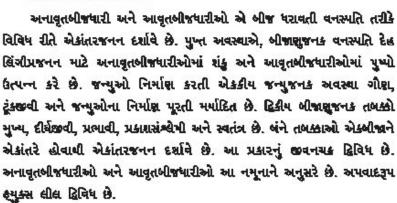
વનસ્પતિઓનું જીવનચક્ક બે અલગ તબક્કાઓ દર્શાવે છે: (1) જન્યુજનક અને (2) બીજાશુજનક કે જે એકબીજાને એકાંતરે છે. આ ઘટનાને એકાંતરજનન કહે છે. એકકીય વનસ્પતિ દેહ સમવિભાજનથી જન્યુઓ ઉત્પન્ન કરે છે. આ વનસ્પતિ દેહ જન્યુજનક અવસ્થાનું પ્રતિનિધિત્વ કરે છે. દ્વિકીય કોષો પણ સમવિભાજનથી વિભાજિત થઈ અને તે દ્વિકીય વનસ્પતિ દેહના નિર્માણને અનુસરી અર્ધીકરણથી એકકીય બીજાશુઓ ઉત્પન્ન કરે છે, જે બીજાશુજનક તબક્કાનું સૂચન છે.



પકાઈ

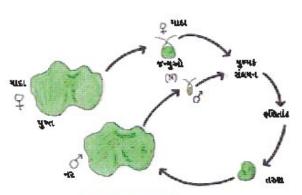
સૂર્યમુખી

આ રીતે એક્કીય જન્યુજનક (જન્યુઓ નિર્માણ કરતા) અને દિકીય બીજાણુજનક (બીજાણુ નિર્માણ કરતા) તબક્કાઓ કોઈ પણ લિંગીપ્રજનન કરતી વનસ્પતિઓના જીવનચક્રમાં એકાંતરે છે. વિવિધ વનસ્પતિ સમૂહો તેમનું એકાંતરજનન ચોક્કસ નમૂનાઓમાં દર્શાવે છે : (1) એકવિધ જીવનચક્ર (2) દિવિધ જીવનચક્ર અને (3) એક-દિવિધ જીવનચક્ર.



(1) એકવિષ જીવનચક :

કેટલીક લીલના કોપો એક્કીય જન્યુઓ ઉત્પન્ન કરે છે જે મુખ્ય અને સક્રિય અવસ્થા છે જેને જન્યુજનક તબક્કો કહે છે. ત્યાર પછી જન્યુઓ એકબીજા સાથે જોડાઈ અને દ્વિકીય યુગ્યનજ કે જે ગૌણ અને વિરાય અવસ્થા છે, જેને બીજાણજનક તબક્કો કહે છે. તે યુગ્યનજ પૂરતી યર્યાદિત છે. યુગ્યનજ અર્ધીકરણથી વિભાજિત થઈ તરત જ અંકુરણ પહેલાં ચાર એક્કીય કોપકેન્દ્રો બનાવે છે. તેમાંથી ત્રણ નાશ પામે છે અને બાકીનું એક નવા વનસ્પતિ દેહ તરીકે મોટું થાય છે. વનસ્પતિ દેહ પ્રભાવી, પ્રકાશસંભ્લેષી અને એક્કીય છે. આથી કેટલીક લીલમાં એક્કીય અને દ્વિકીય અવસ્થાઓ એકબીજાને એકાંતરે આવે છે, જેને એકાંતરજનન કહે છે અને જીવનચક એકવિષ છે.


ઉદાહરણ : વોલ્વોક્સ અને સ્પાયરોગાયરા.

(2) दिविध कावनथङ :

(3) એક-દિવિધ જીવનચક : દિઅંગીઓ અને ત્રિઅંગી વનસ્પતિઓ મધ્યસ્થી જીવનચક ભાત દર્શાવે છે. દિઅંગીઓ તેના જીવનચક્રમાં નિયમિત એકાંતરજનન દર્શાવે છે. એકકીય જન્યુજનક એ દિકીય બીજાશુજનક સાથે એકાંતરે છે. મુખ્ય વનસ્પતિ દેહ જન્યુજનક છે, જે એકકીય, બહુકોથી, ટૂંકજીવી, પ્રકાશસંશ્લેથી, સ્વતંત્ર

એક दिविष क्षवनथ

અને જન્યુઓ નિર્માણ કરતી છે. જન્યુઓના સંયોગથી દિકીય યુગ્યનજ બને છે. યુગ્યનજ દિકીય બીજાશુજનકમાં વિકાસ પાયે છે. તે જન્યુજનક પર પરોપજીવી છે. યુગ્યનજ અર્ધીકરણથી વિભાજિત થઈ એક્કીય બીજાશુઓનું નિર્માણ કરે છે. બીજાશુઓ એ જન્યુજનક પેઢીની શરૂઆતનું સૂચન છે કે જે નવા વનસ્પતિ દેહમાં વિકાસ પાયે છે. અહીં જન્યુજનક એ બીજાશુજનક સાથે એકાંતરે છે. જેને એકાંતરજનન કહે છે અને જીવનચક એક-દિવિધ છે.

બીજી બાજુ, ત્રિઅંગીઓમાં મુખ્ય વનસ્પતિ દેહ બીજાભુજનક છે, જે મૂળ, પ્રકાંડ અને પર્શમાં વિલેદિત છે.

તે દ્વિકીય, બહુકોષી, દીર્ઘજીવી, પ્રકાશસંશ્લેષી, સ્વતંત્ર અને બીજાણુ ઉત્પન્ન કરતી છે. દ્વિકીય બીજાણુજનક એ ટૂંકજીવી એકકીય જન્યુજનક સાથે એકાંતરે છે. જીવનચક્ર પૂર્ણ કરવા બીજાણુજનક અને જન્યુજનક એકાંતરે છે. એકાંતરજનનની આવી ભાતને એક-દ્વિવિધ કહે છે. રસપ્રદ રીતે, કેટલીક લીલ એક-દ્વિવિધ જીવનચક્ર દર્શાવે છે. દા.ત., એક્ટોકાપૅસ અને બીજી દરિયાઈ વનસ્પતિઓ.

સારાંશ

પાંચ સૃષ્ટિ વર્ગીકરણ પદ્ધતિ : નીચેનાં ચાર ધોરણોને આધારે આપવામાં આવી : (1) કોષ રચનાની જટિલતા (2) દૈહિક રચનાની જટિલતા (3) પોષણ પ્રકાર - સ્વયંપોષી અને વિષમપોષી (4) મુખ્ય પરિસ્થિતિકીય ભૂમિકા. પાંચ સૃષ્ટિઓ : (1) મોનેરા (2) પ્રોટિસ્ટા (3) ફૂગ (4) વનસ્પતિસૃષ્ટિ (5) પ્રાણીસૃષ્ટિ છે.

ત્રિક્ષેત્રીય વર્ગીકરણ પદ્ધતિ સામાન્યપણે પાંચ સૃષ્ટિ પદ્ધતિ આધારિત છે પરંતુ સૃષ્ટિ મોનેરાને બે ક્ષેત્રો (ડોમેઇન)માં - આર્કીઆ ડોમેઇન અને બૅક્ટેરિયા ડોમેઇન, જ્યારે સુકોષકેન્દ્રિય સૃષ્ટિને ત્રીજી યુકેરિયા ડોમેઇનમાં વિભાજિત કરી. યુકેરિયા ડોમેઇનને ફરીથી ચાર સૃષ્ટિઓમાં વિભાજિત કરેલ છે. (1) પ્રોટિસ્ટા (2) ફૂગ (3) વનસ્પતિસૃષ્ટિ (4) પ્રાષ્ટ્રીસૃષ્ટિ છે.

ડાયેવરે ચેપી સભ્યની શોધ કરી કે જે વાઇરસ કરતાં પણ નાના છે તેને વિરોઇડ કહે છે. તે ખૂબ સાદી રચના અને ટૂંકો આર. એન. એ. તંતુ ધરાવે છે. કેપ્સીડ તરીકે જાણીતા રક્ષણાત્મક પ્રોટીન આવરણનો અભાવ હોય છે.

વાઇરસ સ્વયંપ્રજનનીત અને જીવંત કોષોમાં સદા પરોપજીવી છે. તેઓ જીવંત કોષની બહાર રહે છે ત્યારે નિષ્ક્રિય અને નિર્જીવ વસ્તુ તરીકે વર્તે છે (મુક્ત અવસ્થામાં). જ્યારે તેઓ જીવંત કોષની અંદર રહે છે ત્યારે સિક્રિય અને જીવંત વર્તશૂક દાખવે છે (યજમાન કોષમાં). તેથી તેઓ સજીવ અને નિર્જીવ વસ્તુઓના મધ્યસ્થી છે. તેઓને જીવંત રસાયશ પશ કહેવાય છે.

લીલ, ફૂગ અને લાઇકેન થેલોફાયટા (સુકાયક વનસ્પતિ)માં સમાવિષ્ટ છે. જન્યુજનક વનસ્પતિ દેહ સુકાયક, મૂળ પ્રકાંડ અને પર્શમાં વિભેદન વિહીન છે. યુગ્મનજ બહુકોષીય ભ્રૂણમાં વિકસિત નથી. લીલ એ નિલરસ ધરાવે છે અને પોતાનો ખોરાક જાતે સંશ્લેષિત કરતી હોવાથી સ્વયંપોષી છે, જ્યારે ફૂગ નિલરસ ધરાવતી નથી અને પોતાનો ખોરાક જાતે સંશ્લેષિત ન કરતી હોવાથી તેને પરપોષી કહે છે. લાઇકેન એ લીલ અને ફૂગનાં ઘટકો વચ્ચેનો સહજીવી સંબંધ છે.

દ્વિઅંગીઓ વાહકપેશીઓ વિહીન છે. ફલન બાદ, ફલિતાંડ વિભાજનથી ભ્રૂશ નિર્માણ થાય છે. દ્વિઅંગીઓનું જીવનચક્ક બે અલગ તબક્કાઓ ધરાવે છે: (1) જન્યુજનક તબક્કો: એક્કીય, મુખ્ય, સ્વયંપોષી, જન્યુઓ નિર્માણ કરતી અને (2) બીજાણુજનક તબક્કો: દ્વિકીય, ગૌણ, પરપોષી, બીજાણુઓ નિર્માણ કરતી અવસ્થા છે.

ત્રિઅંગીઓ વાહકપેશીઓ યુક્ત અને ભ્રૂણ વિકાસ ધરાવે છે. ત્રિઅંગીઓનું જીવનચક્ર એકાંતરજનન દર્શાવે છે. (1) જન્યુજનક તબક્કો : તે એકકીય, ગૌણ, સુકાયક તરીકે, ટૂંકજવી અને જન્યુઓ નિર્માણ કરતી (2) બીજાણુજનક તબક્કો : તે દ્વિકીય, મુખ્ય છોડ તરીકે, દીર્ઘજીવી અને બીજાણુઓ નિર્માણ કરતી અવસ્થા છે.

અનાવૃતબીજધારીઓમાં વનસ્પતિદેહ બીજાશુજનક છે. તે મૂળ પ્રકાંડ અને પર્ણમાં વિભેદિત છે. અંડકો ખુલ્લા અને બીજાશયથી આવરિત ન હોવાથી અનાવૃતબીજધારી તરીકે ઓળખવામાં આવે છે. જીવનચક્ર પૂર્ણ કરવા જન્યુજનક અને બીજાશુજનક તબક્કાઓ એકાંતરે છે. (1) જન્યુજનક તબક્કો - તે એકકીય, ગૌણ, ટૂંકજીવી અને ભૂમિગત છે અને (2) બીજાશુજનક તબક્કો - તે દિકીય, મુખ્ય, દીર્ઘજીવી અને સંપૂર્ણ છોડ તરીકે છે. ભ્રૂણપોષ્ઠ વિકાસ ફલન પહેલાં છે અને એકવડું ફલન દર્શાવે છે. અંડક ઊર્ધ્વમુખી છે. બીજાશય ગેરહાજર હોવાથી સત્યફળનો અભાવ છે.

28

આવૃતબીજધારીઓમાં, બીજાણુજનક વનસ્પતિદેહ છોડ, ક્ષુપ, વૃક્ષ, વેલા તથા મહાકાય વિશાળ કદની કાષ્ઠીયલતા સ્વરૂપમાં હોય છે. અંડકો ઢંકાયેલા અને બીજાશયથી આવરિત હોવાથી આવૃતબીજધારી તરીકે ઓળખવામાં આવે છે. ભ્રૂણપોષ પછીથી-ફલિત છે. આ સમૂહના સભ્યો બેવડું ફલન દર્શાવે છે. ફલન બાદ અંડકો બીજમાં અને બીજાશય ફળમાં પરિણમે છે. વનસ્પતિ જીવનચક્ર એકાંતરજનન દર્શાવે છે.

બેન્થામ અને હૂકરે આવૃતબીજધારીઓને બે વર્ગોમાં વર્ગીકૃત કરી : (1) દ્વિદળી અને (2) એકદળી.

વનસ્પતિઓનું જીવનચક્ર બે અલગ તબક્કાઓ દર્શાવે છે : (1) એકકીય જન્યુજનક અને (2) દ્વિકીય બીજાશુજનક તબક્કો. તેઓ એકબીજાને એકાંતરે છે. વિવિધ વનસ્પતિ સમૂહો તેમનું એકાંતરજનન નીચેના ચોક્કસ નમૂનાઓમાં દર્શાવે છે : (1) એકવિધ જીવનચક્ર (2) દ્વિવિધ જીવનચક્ર અને (3) એક-દ્વિવિધ જીવનચક્ર.

		સ્વાધ્યાર	4	
નીચે	આપેલા પ્રશ્નોના ઉત્તરો પૈકી	સાચા ઉ	તર સામે સર્કલમાં પેન્સિલથી રંગ પૂરો	:
(1)	વ્હિટેકર દ્વારા કઈ વર્ગીકરણ	પદ્ધતિ આ	પવામાં આવી ?	
	(અ) ત્રિક્ષેત્રીય વર્ગીકરણ	0	(બ) દ્વિનામી વર્ગીકરણ	0
	(ક) પાંચ સૃષ્ટિ વર્ગીકરણ	0	(ડ) કૃત્રિમ વર્ગીકરણ	0
(2)	હરિતકણો વગરના વનસ્પતિ	કોષ લક્ષણ	ા છે	
	(અ) ફૂગ	0	(બ) દ્વિઅંગી	0
	(ક) લીલ	0	(ડ) ત્રિઅંગી	0
(3)	અત્યારે કયો વનસ્પતિ સમૂહ	મોટામાં મો	ટો અને પ્રભાવી વનસ્પતિ સમૂહ તરીકે જ	ાશીતો છે ?
	(અ) દ્વિઅંગી	0	(બ) ત્રિઅંગી	0
	(ક) અનાવૃતબીજધારી	0	(ડ) આવૃતબીજધારી	0
(4)	જ્યારે બીજ લઘુબીજાણુપર્શ પ	ાર ઉદ્ભવે	છે અને ફળથી આવરિત નથી તેવી વન	ાસ્પતિઓનો
	સમાવેશ			
	(અ) આવૃતબીજધારી	0	(બ) દ્વિઅંગી	0
	(ક) ત્રિઅંગી	0	(ડ) અનાવૃતબીજધારી	0
(5)	•	વૃક્ષ છે		
	(અ) વુલ્ફિયા	0	(બ) ઝામિયા	0
	(ક) સીકોઇયા	0	(ડ) નિલગીરી	0
(6)	સખત કોષદીવાલની હાજરી	અને ભ્રૂશિ	નેર્માણ લાક્ષણિકતા ધરાવતી સૃષ્ટિ છે	
	(અ) પ્રોટિસ્ટા	0	(બ) વનસ્પતિસૃષ્ટિ	0
	(ક) મોનેરા	0	(ડ) પ્રાણીસૃષ્ટિ	0
(7)	ભ્રૂણનિર્માણ જોવા મળતો નઘ	યી		
	(અ) અનાવૃતબીજધારી	0	(બ) દ્વિઅંગી	0
	(ક) લીલ	0	(ડ) ત્રિઅંગી	0
(8)	વર્ગીકરણવિદ્યાના પિતા કોણ	છે ?		
	(અ) થીઓફ્રેસ્ટસ	0	(બ) લિનિયસ	0
	(ક) એરિસ્ટોટલ	0	(ડ) બેન્થામ અને હૂકર	0
	(1)(2)(3)(4)(5)(6)(7)	(1) વ્હિટેકર દ્વારા કઈ વર્ગીકરણ (અ) ત્રિક્ષેત્રીય વર્ગીકરણ (ક) પાંચ સૃષ્ટિ વર્ગીકરણ (2) હરિતકણો વગરના વનસ્પતિ (અ) ફૂગ (ક) લીલ (3) અત્યારે કયો વનસ્પતિ સમૂહ (અ) દ્વિઅંગી (ક) અનાવૃતબીજધારી (4) જયારે બીજ લઘુબીજાણુપર્ણ પ્રસાવેશ (અ) આવૃતબીજધારી (ક) ત્રિઅંગી (5) વિશ્વમાં ઊંચામાં ઊંચું જીવંત (અ) વુલ્ફિયા (ક) સીકોઇયા (6) સખત કોષદીવાલની હાજરી (અ) પ્રોટિસ્ટા (ક) મોનેરા (7) ભ્રૂણનિર્માણ જોવા મળતો નહ્ય (અ) અનાવૃતબીજધારી (ક) લીલ (8) વર્ગીકરણવિદ્યાના પિતા કોણ (અ) થીઓફ્રેસ્ટસ	નીચે આપેલા પ્રશ્નોના ઉત્તરો પૈકી સાચા ઉત્તર (ગ) વિલ્ટેકર દ્વારા કઈ વર્ગીકરણ પદ્ધતિ આપ્ત (અ) ત્રિક્ષેત્રીય વર્ગીકરણ (ક) પાંચ સૃષ્ટિ વર્ગીકરણ (ક) પાંચ સૃષ્ટિ વર્ગીકરણ (અ) ફૂંગ (ક) લીલ (અ) દ્વિઅંગી (અ) દ્વિઅંગી (ક) અનાવૃતબીજધારી (અ) આવૃતબીજધારી (ક) ત્રિઅંગી (ક) ત્રિચમાં ઊંચામાં ઊંચું જીવંત વૃક્ષ છે (અ) વૃદ્ધિયા (ક) સીકોઇયા (અ) પ્રોટિસ્ટા (ક) મોનેરા (અ) પ્રોટિસ્ટા (ક) મોનેરા (અ) અનાવૃતબીજધારી (અ) પ્રોટિસ્ટા (ક) મોનેરા (અ) અનાવૃતબીજધારી (ક) લીલ (ઠ) લીલ (ઠ) થીઓફ્રેસ્ટસ (ઠે) થીઓફ્રેસ્ટસ	(ક) પાંચ સૃષ્ટિ વર્ગીકરણ

वनस्पतिसृष्टिनुं वर्गीङस्थ

29

2. એક શબ્દમાં જવાબ આપો :

- (1) ફૂગની કોષદીવાલનો મુખ્ય ઘટક કયો છે ?
- (2) બૅક્ટેરિયાની કોષદીવાલની બનેલી છે.
- (3) વાઇરસના જનીન દ્રવ્ય તરીકે શું છે ?
- (4) ન્યૂક્લિઓઇડનું લક્ષણ છે.

3. વ્યાખ્યા આપો :

- (1) સ્વયંપોષી પોષણ (2) પરપોષી પોષણ (3) એકાંતરજનન
- 4. વિસ્તૃતમાં વર્ણવો :
 - (1) બેન્થામ અને હૂકરની વર્ગીકરણ પદ્ધતિની રૂપરેખા
 - (2) પાંચ સૃષ્ટિ વર્ગીકરણ પદ્ધતિ
 - (3) ત્રિક્ષેત્રીય વર્ગીકરણ પદ્ધતિ
- 5. તુલનાત્મક અહેવાલ :
 - (1) જન્યુજનક અવસ્થા અને બીજાશુજનક અવસ્થા
 - (2) અનાવૃતબીજધારી વનસ્પતિઓ અને આવૃતબીજધારી વનસ્પતિઓ
- 6. સામાન્ય લક્ષણો જણાવો :
 - (1) લીલ

(2) ફ્રગ

(3) દ્ધિઅંગી

- (4) ત્રિઅંગી
- (5) અનાવૃતબીજધારી વનસ્પતિઓ (6) આવૃતબીજધારી વનસ્પતિઓ
- 7. ટૂંક નોંધ લખો :
 - (1) વિરોઇડ (2) વાઇરસ અને (3) એકાંતરજનન
- 8. ટૂંકમાં લખો :

પાંચ સૃષ્ટિ વર્ગીકરણ પદ્ધતિનાં આધારભૂત ધોરણો

4

પ્રાણીસૃષ્ટિનું વર્ગીકરણ

પૃથ્વી ઉપર મોટી સંખ્યામાં સજીવો જોવા મળે છે તેમજ ભૂતકાળમાં જોવા મળતા હતા. સજીવો આકાર, સ્વરૂપ, કદ, આદતો અને વર્તણૂક બાબતે વિવિધ હોય છે. તેમાંના કેટલાકને ઓળખી શકાયા છે જ્યારે કેટલાકને ઓળખવાના બાકી છે. આ વશુઓળખાયેલા સજીવોને ઓળખવા માટે વર્ગીકરણનું જ્ઞાન અગત્યનું છે. આપણે પ્રકરશ 1માં જોયું કે વર્ગીકરણ એટલે સજીવોને તેની સામ્યતા અને ભિષ્નતાને આધારે જુદા જુદા કે એક જ વર્ગકમાં મૂકવાની વૈજ્ઞાનિક પદ્ધતિ.

પ્રાણીઓના વર્ગીકરણનો આધાર તેના આકાર, સ્વરૂપ, કદ વગેરે ઉપરાંત તેના સ્તરીય આયોજન, સમિતિ, ગર્ભીયસ્તરો, દેહકોષ્ઠ, ખંડન વગેરે પાયાનાં લક્ષણોમાં પ્રાણીઓમાં સમાનતા તેમજ અસમાનતા જોવા મળે છે. આ લક્ષણોને ધ્યાનમાં લઈ પ્રાણીસૃષ્ટિનું વર્ગીકરણ કરવામાં આવે છે. આવાં કેટલાંક અગત્યનાં લક્ષણોની ચર્ચા અહીં કરીશું.

આયોજનના સ્તરો

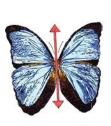
ખૂલ્લુ તંત્ર (તીડ)

પ્રાણીસૃષ્ટિના સભ્યો વિવિધ સ્તરનું આયોજન ધરાવે છે. પ્રજીવ સમુદાયનાં પ્રાણીઓ રચના અને કાર્યની દેષ્ટિએ એકકોષી છે. જ્યારે સછિદ્ર સમુદાયના પ્રાણીઓમાં કાર્યની દેષ્ટિએ કોષો એકબીજા સાથે જોડાયેલ હોતા નથી તેથી તેઓ બહુકોષીય હોવા છતાં કોષસ્તરીય આયોજન ધરાવે છે. કોષ્ઠાંત્રિ સમુદાયનાં પ્રાણીઓમાં સમાન કાર્ય ધરાવતા કોષો ભેગા મળી પેશીની રચના કરે છે તેથી તેમાં પેશીસ્તરીય આયોજન છે. પેશીઓ ભેગી મળી અંગોની રચના કરે છે તેને અંગસ્તરીય આયોજન કહે છે દા.ત., પૃથુકૃષ્ઠિ. અંગો ભેગા મળી ચોક્કસ કાર્ય સાથે

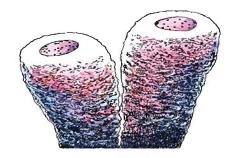
સંકળાયેલ અંગતંત્ર રચે છે. નુપૂરક, સંધિપાદ, મૃદુકાય, શૂળચર્મી અને મેરુદંડી સમુદાયનાં ધ્રમની પ્રાણીઓમાં અંગતંત્રો જોવા મળે છે. આવા સ્તરીય આયોજનને અંગતંત્ર સ્તરીય આયોજન કહે છે. પ્રાણીસૃષ્ટિના દરેક બહુકોષીય પ્રાણી સમુદાયોમાં અંગતંત્રોની રચના જુદી જુદી હોય છે. જેમકે પાચનમાર્ગ જો એક જ છેડે ખુલ્લો હોય તો તેને અપૂર્ણ પાચનમાર્ગ કહે છે દા.ત., પૃથુકૃષ્મિ અને જો પાચનમાર્ગ બંને છેડે ખુલ્લો હોય એટલે કે અગ્રબાજુએ મુખ અને પશ્વબાજુએ મળદ્વાર હોય, તો તેને સંપૂર્ણ પાચનમાર્ગ કહે છે દા.ત., સૂત્રકૃષ્મિથી મેરુદંડી. આ જ રીતે પરિવહનતંત્ર પણ બે પ્રકારનાં જોવા મળે છે.

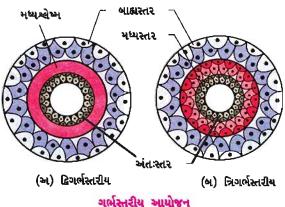
(1) ખુલ્લુ તંત્ર : રુષિરવાહિનીઓ શરીરમાં આવેલા રુષિર કોટરોમાં ખૂલે છે અને આ કોટરો રુષિરથી ભરેલા હોય છે. આમાં રુષિરનો જથ્થો વધુ હોય છે. રુષિરનું દબાશ ઓછું અને અનિયમિત હોય છે. દા.ત., સંષિપાદ અને મૃદુકાય (શીર્ષપાદીઓ સિવાય).

પ્રાણીસુષ્ટિનું વર્ગીકરણ 31


(2) બંઘતંત્ર : નુપૂરકો, શીર્ષપાદીઓ અને પૃષ્ઠવંશીઓમાં રુષિર ધમનીઓ, શિરાઓ અને વાહિકાઓ મારફતે પરિવહન પામે છે. તેમાં રૂવિરનો જથ્થો મર્યાદિત હોય છે. રૂધિરનું દબાશ ઊંચું અને નિયમિત હોય છે. આ ઉપરાંત શ્વસનતંત્ર, ઉત્સર્જનતંત્ર વગેરે બાબતે પ્રાણીસમુદાયોમાં વિવિધતા જોવા મળે છે.

सममिति (Symmetry)

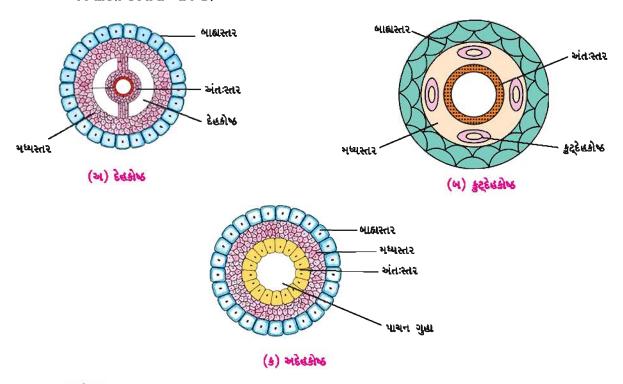

અપૃષ્ઠવંશી પ્રાણીઓમાં બધા જ પ્રકારની સમમિતિ જોવા મળે છે. પ્રજીવોમાં કોષીય બંધતંત્ર (અળસિયું) રચનામાં પશ દ્વિપાર્શ્વ, અરીય અને કેટલાકમાં અસમમિતિ જોવા મળે છે. જો પ્રાછ્રીના શરીરને કોઈ એક ધરી બે સરખા ડાબા અને જમજાા ભાગમાં વિભાજિત કરે તો તેવી સમમિતિને દ્વિપાર્શ્વ સમમિતિ કહે છે. દા.ત., નુપૂરક, સંધિપાદ વગેરે. જો મધ્યઅક્ષમાંથી પસાર થતી ધરી પ્રાણીના શરીરને ત્રિજ્યાવર્તી દિશાઓમાં એક કરતાં વધારે સરખા ભાગોમાં વિભાજિત કરે તો તેને અરીય સમમિતિ કહે છે દા.ત., કોષ્ઠાંત્રિ અને શૂળચર્મિ. જો મધ્યઅક્ષમાંથી પસાર થતી ધરી પ્રાણીના શરીરને સરખા ભાગોમાં વિભાજિત ન કરે તો તેને અસમમિતિ કહે છે દા.ત.. સછિદ્ર.


દ્રિપાશ્વ સમમિતિ

અસમમિતિ

द्धिगर्भस्तरीय अने त्रिअर्भस्तरीय आयोधन

કોષ્ઠાંત્રિ સમુદાયનાં પ્રાણીઓમાં કોષો બે સ્તરોમાં [બાહ્યસ્તર (બહારનું) અને અંતઃસ્તર (અંદરનું)] ગોઠવાયેલા હોય છે. આ બંને સ્તરોની વચ્ચે અકોષીય મધ્યશ્લેષ્મ આવેલું હોય છે તેને દ્વિગર્ભસ્તરીય આયોજન કહે છે અને જો કોષો ત્રણ સ્તરોમાં ગોઠવાયેલા હોય એટલે કે બાહ્યસ્તર, અંતઃસ્તર અને આ બંનેની વચ્ચેનું મધ્યસ્તર તો તેને ત્રિગર્ભસ્તરીય આયોજન કહે છે. દા.ત., પૃથુકૃમિથી મેરુદંડી.



દેકકોષ્ઠ અથવા શરીર ગુઢા

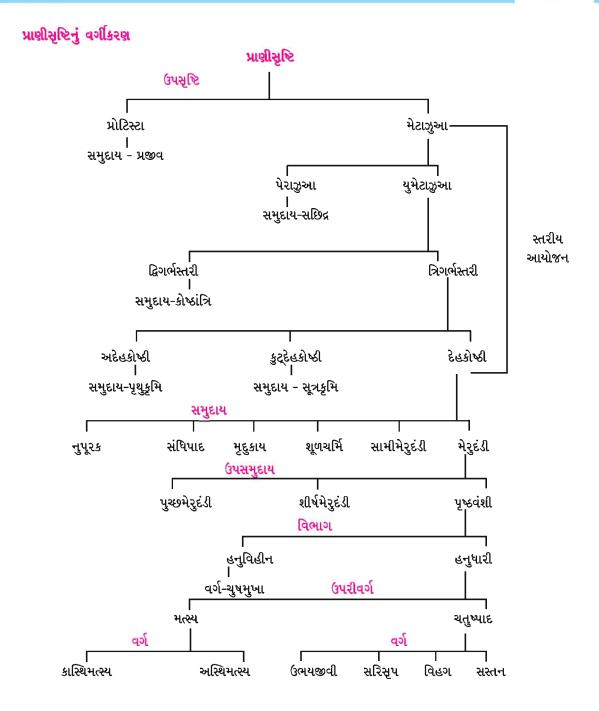
દેહકોષ્ઠ, પ્રાણીઓના પાચનમાર્ગની દીવાલ અને શરીરદીવાલ વચ્ચે જોવા મળતો અવકાશ છે. આ અવકાશ કે જેનું અસ્તર મધ્યસ્તરનું હોય છે. આવાં પ્રાણીઓને દેહકોષ્ઠી કહે છે દા.ત., નુપૂરકથી મેરૂદંડી

32

પ્રાણીઓ. સૂત્રકૃષિ સમુદાયનાં પ્રાણીઓમાં મધ્યસ્તરની હાજરી છૂટીછવાઈ કોથળીઓ સ્વરૂપે હોય છે, તેને કુટ્દેહકોષ્ઠ અને પ્રાણીઓને કુટ્દેહકોષ્ઠી કહે છે. કેટલાંક પ્રાણીઓમાં દેહકોષ્ઠ ગેરહાજર હોય છે તેને અદેહકોષ્ઠી કહે છે. દા.ત., પૃથુકૃષિ. આમ, દેહકોષ્ઠને આધારે પ્રાણીસૃષ્ટિને અદેહકોષ્ઠી, કુટ્દેહકોષ્ઠી અને દેહકોષ્ઠીમાં વિભાજિત કરવામાં આવે છે.

ખંડતા

અળસિયા જેવા કેટલાંક પ્રાષ્ટ્રીઓનું શરીર બહારથી અને અંદરથી સરખા ખંડોમાં વિભાજિત હોય છે તેને સમખંડતા કહે છે. આ ઉપરાંત નુપૂરક સમુદાયના અને સંધિપાદ સમુદાયનાં પ્રાષ્ટ્રીઓમાં આ પ્રકારની સમખંડીય ખંડતા જોવા મળે છે.



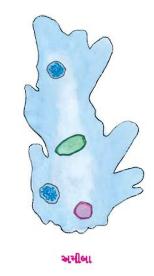
મેરુદંડ

મેરુદંડ દંડ જેવી રચના ધરાવતું, શરીરની પૃષ્ઠબાજુએ આવેલું અને મધ્યસ્તરમાંથી ઉત્પન્ન થતું અંગ છે. તેની હાજરી અને ગેરહાજરીને આધારે પ્રાણીઓનું વર્ગીકરણ કરવામાં આવે છે. જો મેરુદંડ હાજર હોય તો તેવાં પ્રાણીઓને મેરુદંડી (દા.ત., પૂચ્છમેરૂદંડીથી સસ્તન પ્રાણીઓ) અને જો મેરુદંડ ગેરહાજર હોય તો તેને અમેરુદંડી પ્રાણીઓ કહે છે (દા.ત., પ્રજીવથી શૂળચર્યી પ્રાણીઓ).

પ્રાણીસૃષ્ટિતું વર્ગીકરણ

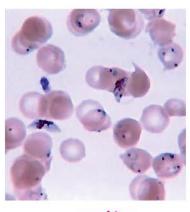
33

પ્રાણીઓનું વર્ગીકરણ અને તેનાં વિશિષ્ટ લક્ષણો


समुद्दाय - प्रश्रुव :

પ્રજીવ પ્રાણીસૃષ્ટિનો પ્રથમ સમુદાય છે. પ્રજીવનો અર્થ પ્રથમ પ્રાણીઓ થાય છે. તેઓ પેશીઓ અને અંગોની ગેરહાજરી ધરાવતા સૂક્ષ્મ અને એકકોષીય પ્રાણીઓ છે.

- 🏮 પ્રજીવો નાના કદના અને સામાન્ય રીતે સૂક્ષ્મદર્શકની મદદથી જ જોઈ શકાય તેવાં પ્રાણીઓ છે.
- શરીર એકકોષીય, એક અથવા વધુ કોષકેન્દ્રો ધરાવે છે.
- 🔹 આ પ્રાણીઓનો કોષદેહ અસમમિતિ, દ્વિપાશ્વ, અરીય અથવા ગોળાકાર સમમિતિ ધરાવે છે.
- પોષણની બાબતમાં પ્રાણીઓ પ્રાણીસમ, વનસ્પતિસમ જ્યારે કેટલાક પરોપજીવી પદ્ધતિ ધરાવે છે.


अयिज्ञान 34

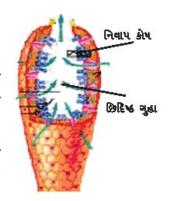
- પ્રચલન, અંગિકાઓ જેવી કે ખોટાપગ, પક્ષ્મ અથવા કશાઓ દ્વારા થાય છે.
- આ સમુદાયનાં પ્રાશીઓ દિભાજન, બહુભાજન અને કલિકાસર્જન દ્વારા અલિંગીપ્રજનન અને સંયુગ્મન દ્વારા લિંગીપ્રજનન દર્શાવે છે.

પ્લાસ્મોડિયમ

प्रक्रव समुहायनी विविधता

ઉદાહરણો : અમીબા, યુગ્લીના, ઓપેલિના, પ્લાસ્મોડિયમ વગેરે

समुद्दाय - सिक्ट्र


સછિદ્ર સમુદાયનાં પ્રાણીઓ બહુકોષીય, છિદ્રિષ્ઠ શરીર ધરાવતા, એકાકી કે વસાહતી જીવન જીવતા સ્થાયી પ્રાણીઓ છે.

- પ્રાણીઓ કોષસ્તરીય શરીર-આયોજન ધરાવે છે.
- બધાં જ પ્રાશીઓ જલીય છે જેમાંના મોટા ભાગે દરિયાઈ અને કેટલાંક મીઠાપાણીમાં જોવા મળે છે.
- આ પ્રાજ્ઞીઓનું શરીર અસમમિતિ અથવા અરીય સમમિતિ ધરાવે છે.
- પ્રાશીઓનું શરીર ધર્શા છિદ્રો (ઓસ્ટીઆ), નલિકાઓ અને ગુહાઓ ધરાવે છે. જેના દ્વારા પાણીનો પ્રવાહ પસાર થાય છે અને વધારાનું પાણી છિદ્રિષ્ઠ ગુહા મારફતે આશ્પકમાં થઈ બહાર નીકળે છે.

પ્રાણીસૃષ્ટિનું વર્ગીક્સ્ણ

- છિદ્રિષ્ઠ ગુહા અને તેને કરતે આવેલ નિવાયકોયોનું સ્તર પ્રાણીઓની વિશિષ્ટતા છે.
- વિવિધ પ્રકારની દ્રઢાઓ અને સ્પોન્જીનના રેશાઓનું બનેલું અંતઃકંકાલ જોવા મળે છે.
- બધી જ વાદળીઓ ઉભયલિંગી છે. અલિંગીપ્રજનન કલિકાસર્જન અને અંતઃકલિકા દ્વારા જ્યારે લિંગીપ્રજનન અંડકોષ અને શુક્કોષના નિર્માણ દ્વારા કરે છે અને અંતઃફલન જોવા મળે છે. બધી જ વાદળીઓ પુનઃસર્જન શક્તિ ધરાવે છે.
- વિકાસ પરોક્ષ પ્રકારનો છે એટલે કે તેના વિકાસ દરમિયાન ડિમ્ભ જોવા મળે છે. વાદળીઓમાં એમ્ફિલ્લાસ્ટ્રલા (amphiblastula) અથવા પેરેનકાયમ્યુલા (parenchymula) ડિમ્ભ જોવા મળે છે.

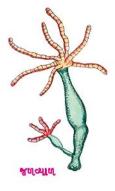
ઉદાહરકો : લ્યુકોસોલેનીઆ, હાયલોનેમા, સ્પોન્જલા (મીઠા પાણીની)

હાયથોનેમા

લ્યુકોસોલેનીઆ

સછિક સમુદાયની વિવિધતા

સમુદાય - કોપ્હાંત્રિ


ક્રોપ્કાંત્રિ પ્રાથમિક પેશીસ્તરીય આયોજન અને સૂત્રાંગો ધરાવતાં જલીય પ્રાણીઓ છે જેમાં કોષ્ઠઆંત્ર જોવા મળે છે.

- તેઓ બધાં જ જલીય, જેમાંનાં કેટલાંક દરિયાઈ તો કેટલાંક મીઠા પાજ્ઞીમાં વસતાં સ્થિર અથવા મુક્ત તરતાં, એકાકી અથવા વસાહતી પ્રાજ્ઞીઓ છે.
- ક્રોપ્ઠાંત્રિઓ પેશીસ્તરીય આયોજન, દ્વિગર્ભસ્તરીય અને અરીય અથવા દ્વિપાસ સમયિતિ ધરાવતાં પ્રાણીઓ છે.
- ડંખાંગીકાની હાજરી કોષ્ઠાંત્રિઓની વિશિષ્ટતા છે જે ખોરાકને પકડવામાં, પ્રતિકાર (offence) અને પ્રતિચાર (defense)નાં કાર્યો સાથે સંકળાયેલાં છે.
- મધ્યમાં ક્રોષ્ઠાંત્ર ગુહા ધરાવે છે જે અધોમુખ (hypostome) દ્વારા એક છેડે ખૂલે છે.
- કોષ્ઠાંત્રિઓમાં બે પ્રકારનાં સ્વરૂપો જોવા મળે છે જેમાં જોડાયેલા પુષ્પકો (polyps) અને મુક્ત તરતા
 છત્રક (medusa). કેટલીક જાતિઓ બહુરૂપકતા (polymorphism) ધરાવે છે.
- તેમાં સૌપ્રથમ ચેતાતંત્ર ચેતાજાળ સ્વરૂપે જોવા મળે છે.
- તેઓ અલિંગી પ્રજનન કલિકાસર્જન અને ભાજન દ્વારા જ્યારે લિંગી પ્રજનન અંડકોષ અને શુક્રકોષ દ્વારા કરે છે. વિકાસ પરોક્ષ જે દરમિયાન મુક્ત તરતા પ્લેનુલા ડિમ્ભ જોવા મળે છે.
- કોમ્ઠાંત્રિઓ એકાંતરજનન દર્શાવે છે. જેમાં ક્રમિક અલિંગી પુષ્પક અને લિંગી છત્રક સ્વરૂપ જોવા મળે છે.

अविज्ञान

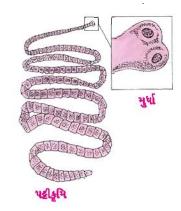
36

ઉદાહરણો : જળવ્યાળ (હાઇડ્રા), સમુદ્રફૂલ, જેલીફિશ, પરવાળા (કોરલ) વગેરે.

સમુદ્રકૃલ

કોષ્ઠાંત્રિ સમુદાયની વિવિધતા

समुद्दाय - पृथुरुमि


પૃથુકુમિઓ પ્રથમ ત્રિગર્ભસ્તરી, દ્વિપાસ સમમિતિ ધરાવતા, પૃષ્ઠ-વક્ષ બાજુએથી ચપટાં અદેહકોષ્ઠી પ્રાણ્રીઓ છે.

- તેઓ ચપટી પટ્ટી જેવું શરીર ધરાવે છે.
- તેઓ અંગસ્તરીય આયોજન ધરાવતાં પ્રાણીઓ છે.
- માનવ સહિતનાં પ્રાથ્રીઓમાં અંતઃપરોપજીવન ગુજારે છે.
- પરોપજીવી સ્વરૂપ તરીકે યજમાન સાથે ચોંટવા તેઓમાં બાહ્ય હુક (અંકુશ) અથવા શોષક અથવા બંને જોવા મળે છે.
- પાયનતંત્ર અપૂર્સ, શાખીત અને મળદાર વગરનો હોય છે અથવા પાચનતંત્રનો અભાવ.
- ઉત્સર્જનતંત્ર જ્યોતકોથો અને નલિકાઓનું બનેલું હોય છે.
- લિંગભેદ જોવા મળતો નથી, ફલન અંતઃ પ્રકારનું અને વિકાસ પરોક્ષ જોવા મળે છે.

ઉદાહરણો ઃ પ્લેનેરિયા, યકૃતકૃમિ, પદ્રીકૃમિ વગેરે.

પૃષ્કુમિ સમુદાયની વિવિધતા

અમેદાત્ર - મેંગર્સ્કા

સૂત્રકૃષિઓ મોટે ભાગે કુટ્દેહકોષ્ઠી, ત્રિગર્ભસ્તરીય, દ્વિપાશ્વ સમમિતિ શરીર ધરાવતા કૃષ્મિ જેવાં પ્રાથીઓ છે.

- તેઓ મોટે ભાગે જલીય, કેટલાંક સ્થળીય અને કેટલાંક પરોપજીવી છે.
- 💿 તે ગોળાકાર કે સામાન્ય ચપટા અને અંગતંત્ર સ્તરીય આયોજન ધરાવતાં પ્રાણીઓ છે.
- પાચનતંત્ર સંપૂર્ણ એટલે કે મુખ અને મળદાર જોવા મળે છે.
- 🎳 ઉત્સર્જન શાખીત ઉત્સર્ગનિલિકાઓ દ્વારા
- 🧧 લિંગભેદ જોવા મળે છે જેમાં નર કદમાં માદા કરતાં નાનો હોય છે.
- અંતઃફ્લન, વિકાસ મોટે ભાગે સીધો એટલે કે જેમાં બાળસ્વરૂપ પુખ્ત પ્રાશી જેવું જ હોય છે.

ઉદાલરાકો : કરમિયું, વાઉચેરિયા (ફાયલેરિયા કૃમિ) વગેરે.

સૂત્રકૃમિ સમુદાયની વિવિધતા

रामुहाय - जुपुरक

નુપૂરકો સમખંડીય ખંડતા ધરાવતા, ત્રિગર્ભસ્તરીય, દ્વિપાશ્વ સમમિતિય, દેહકોષ્ઠી પ્રાથ્રીઓ છે

- મોટા ભાગનાં પ્રાણીઓ જલીય, કેટલાંક સ્થલીય, દરવાસી અથવા ટ્યૂબમાં રહેનારાં, મુક્તજીવી તથા ક્યારેક પરોપજીવી હોય છે.
- નળાકાર શરીર અને અંગતંત્ર સ્તરીય આયોજન ધરાવતાં પ્રાણીઓ છે.
- પ્રચલન અંગો તરીકે વજકેશો (અળસિયું) અભિચરણપાદ (રેતીકીડો) અને શરીરદીવાલમાં જોવા મળતા આયામ અને વર્તુળી સ્નાયુઓ આવેલા હોય છે.
- પાચનતંત્ર સંપૂર્શ અને બર્હિકોષીય પાચન જોવા મળે છે.
- પરિવહનતંત્ર બંધ પ્રકારનું અને શ્વસનરંજક તરીકે હિમોગ્લોબીન જે રુષિરરસમાં આવેલું હોય છે.

38

 ચેતાતંત્ર જોડમાં મસ્તિષ્ક ચેતાકંદો અને બેવડા વક્ષચેતારજ્જુથી રચાય છે. તેની ઉપર દરેક ખંડમાં આવેલ ચેતાકંદ અને પાશ્વીય ચેતાઓ હોય છે.

 પ્રાથ્તીઓ એકલિંગી (રેતીકીડો) અથવા ઉભયલિંગી (અળસિયું, જળો) જ્યારે પ્રજનન લિંગી પદ્ધતિ દ્વારા કરે છે.

હિંહરણો : અળસિયું, રેતીકીડો (નેરીસ), જળો વગેરે.

અળસિયું

રેતીકીડો

श्रणो

નુપુરક સમુદાયની વિવિધતા

सभूहाय - संधिपाह


તેઓ સાંધાવાળાં ઉપાંગો ધરાવતાં પ્રા**ણી**ઓ છે જેમાં ખંડો વિવિધ રીતે જોડાઈ શીર્ષ, ઉરસ અને ઉદર બનાવે છે. પ્રાણીઓની જાતિઓમાં $\frac{2}{3}$ સંધિપાદી છે.

- પ્રાણીઓ અંગતંત્ર સ્તરીય આયોજન ધરાવતા, દ્વિપાર્શ્વ સમિપ્તિય, ત્રિગર્ભસ્તરીય, દેહકોષ્ઠી અને સમખંડીય ખંડતા ધરાવે છે.
- કાઈટીનનું બનેલું બર્હિકંકાલ જોવા મળે છે જેનો વૃદ્ધિ અને વિકાસ દરમિયાન ચોક્કસ સમયાંતરે ત્યાગ થાય છે જે ક્રિયાને નિર્મોચન કહે છે.
- શરીર શીર્ષ, ઉરસ અને ઉદરમાં વિભાજિત થયેલ હોય છે. શીર્ષ અને ઉરસ ક્યારેક જોડાઈને શિરોરસ બનાવે છે.
- 🏮 રુવિરાભિષરક્ષતંત્ર ખુલ્લા પ્રકારનું જોવા મળે છે.
- 🏮 શ્વસન મોટે ભાગે શરીર સપાટી, ઝાલરો, શ્વાસનળી અને ફેફસાપોથી દ્વારા કરે છે.
- ઉત્સર્જન અંગો તરીકે હરિતપિંડ (greengland) અથવા માલ્યીધિયન નલિકાઓ જોવા મળે છે.
- સંવેદી અંગો જેવા કે સાદી કે સંયુક્ત આંખો, રસાયશ અને સ્પર્શગ્રાહી, સ્થિતકોષ્ઠ (સમતોલન અંગ)
 અને શ્રવજ્ઞ અંગો જોવા મળે છે.
- લિંગભેદ મોટે ભાગે સ્પષ્ટ અને અંતઃફલન દર્શાવતા અંડપ્રસવી અથવા અપત્યઅંડપ્રસવી પ્રાણીઓ છે.
- 🧧 વિકાસ સીધો અથવા પરોક્ષ કેટલાકમાં અસંયોગીજનન પણ જોવા મળે છે.

પ્રાણીસૃષ્ટિનું વર્ગીકરણ

39

ઉદાહરણે : પેરિપેટસ, ક્રેબ, વીંછી, ઝીંગા, ભરવાડ, વંદો વગેરે.

સંવિપાદ સમુદાયની વિવિધતા

अमेराज - मेर्टेशज

મૃદ્દુ શરીર ધરાવતાં પ્રા**ણી**ઓ કે જે દ્વિપાર્શ્વ સમમિતિય, ત્રિગર્ભસ્તરીય અને અખંડીય છે. મોટે ભાગે તેનું મૃદ્દુ શરીર કેલ્શિયમ કાર્બોનેટના બનેલ કવચ દ્વારા રક્ષાયેલું હોય છે.

- 🔹 મોટા ભાગના મૃદુકાય સમુદાયનાં પ્રાક્ષીઓ જલીય છે, કેટલાંક સ્થલીય છે.
- તેઓ અંગતંત્ર સ્તરીય આયોજન ધરાવતાં અને અખંડીય પ્રાણીઓ છે.
- કવચ જો હાજર હોય તો મોટે ભાગે બાહ્ય અથવા કેટલાકમાં અંતઃકંકાલ તરીકે જોવા મળે
 છે, જે કેલ્શિયમ કાર્બોનેટનું બનેલ હોય છે.
- શરીરદીવાલ અને પ્રાવર વચ્ચે પ્રાવારગુહા ધરાવે છે, જેમાં પીંછાકાર ઝાલર જોવા મળે છે
 જે શ્વસનાંગ તરીકે વર્તે છે.
- પાચનતંત્ર સંપૂર્ણ અને પાચક ગ્રંથિઓયુક્ત હોય છે. મોટા ભાગનાં પ્રાક્ષીઓના મુખમાં રેત્રિકા
 જોવા મળે છે જે ખોરાકને દળવા માટે ઉપયોગી છે.
- ખુલ્લા પ્રકારનું રુષિરાભિસરણ તંત્ર અને મૂત્રપિંડ જેવા વિશિષ્ટ અંગથી ઉત્સર્જન કરે છે.
- તેઓ એકલિંગી અથવા દિલિંગી પ્રાજ્ઞીઓ છે. ફલન બાહ્ય અથવા અંતઃ અને વિકાસ સીધો
 કે પરોક્ષ જોવા મળે છે.

હિલ્લા અષ્ટકવચ (કાઇટોન), પાયલા, ડેન્ટેલિયમ (દંતકવચી), મોતીક્રીપ, સેપિયા, ઓક્ટોપસ વગેરે.

Downloaded from https:// www.studiestoday.com

Downloaded from https://www.studiestoday.com

अवविज्ञान 40

પાયલા

ડેન્ટેલિયમ

મોતીછીપ

ઓક્ટોપસ

સેપિયા

મૃદુકાય સમુદાયની વિવિધતા

समुद्दाय - शूणव्ययी (Echinodermata)

શૂળત્વચીઓ અરીય સમમિતિ ધરાવતા, શરીરદીવાલ કેલ્શિયમ કાર્બોનેટની તક્તી અને કાંટાની બનેલી અને જલવાહકતંત્ર ધરાવતાં પ્રાણીઓ છે.

- આ સમુદાયનાં બધાં જ પ્રાથ્રીઓ દરિયાવાસી છે.
- તેઓ અંગતંત્ર સ્તરીય આયોજન ધરાવતાં, ત્રિગર્ભસ્તરીય અને દેહકોષ્ઠી પ્રાણીઓ છે.
- શરીર મોટે ભાગે પાંચ હસ્તોમાં વિભાજિત હોય છે.
- જલવાહકતંત્ર કે જે દેહકોષ્ઠની ઉત્પત્તિ છે જે નાલીપગ (tubefeet) ધરાવે છે જે પ્રચલનનાં કાર્ય સાથે સંકળાયેલ છે. જલવાહકતંત્ર, શ્વસન અને ઉત્સર્જનના કાર્ય સાથે પણ સંકળાયેલ છે.
- પાચનતંત્ર સંપૂર્લ અને પાચનનળી સીધી કે ગૂંચળામય હોય છે.
- પ્રાણીઓ એકલિંગી, ફલન બાહ્ય અને પરોક્ષ વિકાસ મુક્ત-તરતા ડિભો સ્વરૂપો દ્વારા કરે છે.
- ગુમાવેલ ભાગોનું પુનઃસર્જન તેની વિશિષ્ટતા છે.

ઉદાહરાલો : તારામાછલી, સાગરગોટા, સમુદ્રક્રમળ, સમુદ્રકાકડી, બરડતારા વગેરે.

તારામાછલી

સાગરગોટા

પ્રાણીસૃષ્ટિતું વર્ગીકરણ

સમુદ્રકાકડી

બરડતારા

સગુદાય શુળત્વચીની વિવિધતા

સમુદાય-સામી મેરૂદંડી

સામી મેરુદંડીઓને સામાન્ય રીતે 'આદી મેરુદંડી' તરીકે વર્શવામાં આવે છે. આ સમુદાયનાં પ્રાણીઓ કૃષ્મિ જેવા, એકાકી અથવા વસાહતી જીવન જીવે છે.

- સંપૂર્ણ દરિયાવાસી, એકાકી અથવા વસાહતી અને સામાન્ય રીતે ટ્યૂબવાસી પ્રાણીઓ છે.
- પ્રાજ્ઞીઓ કૃષ્મિ જેવા, અખંડિત, દિપાશ્વ સમિષિતિય, ત્રિગર્ભસ્તરીય, દેહકોષ્ઠી અને અંગતંત્ર સ્તરીય આયોજન ધરાવે છે.
- 💌 નળાકાર શરીર સૂંઢ, ગ્રીવા અને ધડમાં વિભાજિત
- પાચનમાર્ગ સંપૂર્ણ સીધો અથવા U આકારનો
- 🏮 પરિવહનતંત્ર સરળ અને બંધ પ્રકારનું
- ઉત્સર્જન એક સૂંઢપ્રંથિ કે જે રુષિરવાહિની સાથે જોડાયેલ હોય છે તેના દ્વારા અને શ્વસન ઝાલરો દ્વારા કરે છે.
- પ્રાજ્ઞીઓ સામાન્ય રીતે એકલિંગી, ફલન બાહ્ય, વિકાસ સીધો અથવા પરોક્ષ કે જેમાં મુક્ત-તરતા ટોર્નેરિયા ડિમ્ભ જોવા મળે છે.

ઉદાતુરણો : બાલાનોગ્લોસસ વગેરે.

समुद्दाय - भेट्रहंडी (Chordata)

આ સમુદાયનાં પ્રાજ્ઞીઓમાં ગર્ભવિકાસ દરમિયાન મેરુદંડ વિકાસ પામે છે. આવું મેરુદંડ અપૃષ્ઠવંશી (અમેરુદંડી) પ્રાજ્ઞીઓમાં જોવા મળતું નથી.

- આ સમુદાયનાં પ્રાણીઓ ત્રિગર્ભસ્તરીય, દેહકોષ્ઠી, દ્વિપાર્શ્વ સમિતિય, સમખંડીય ખંડતા અને અંગતંત્ર સ્તરીય આયોજન ધરાવે છે.
- 🏮 તેઓમાં પશ્ચગુદાપૂચ્છ જીવનભર કે જીવનના કેટલાક તબક્કામાં જોવા મળે છે.
- મોટા ભાગના સભ્યોમાં સાંધાવાળું અંતઃકંકાલ હાજર હોય છે જે કાસ્થી અથવા અસ્થીનું હોય છે.
- 🏮 કંઠનાલીય ઝાલરફાટો કેટલાક તબક્કામાં હાજર.
- પાચનતંત્ર સંપૂર્ણ અને રુષિરાભિષરણતંત્ર બંધ પ્રકારનું જોવા મળે છે.

42

- પૃષ્ઠ ચેતારજ્જુ જેનો અગ્ર છેડો સામાન્ય રીતે મોટો થઈ મગજ બનાવે છે.
- 🏮 એકલિંગી પ્રાણીઓ છે.

નીચેના કોષ્ટકમાં મેરુદંડી અને અમેરુદંડીનાં વિશિષ્ટ લક્ષણોની તુલના દર્શાવેલી છે.

shes 4.1

भेरूहंडी खने अभेरूहंडीनी तुसना

ভাবু.	લક્ષણો	મેટુદંડી	थाने टुर्हडी
1.	મેરુદંડ	<i>લા</i> ક્ડ	ગેડલાશ્વ
2.	પાચનમાર્ગની સ્થિતિ	ચેતારજજુની વક્ષબાજુએ	ચેતારજ્જુની
			<i>પૃષ્ઠ</i> બાજુએ
3.	કંઠનાલીય ઝાલરફાટો	જીવનના કેટલાક તબક્કામાં હાજર	ગુડલાશ્વર
4.	રુ ધિરાભિષરણતંત્ર	બંધ	ખુલ્લું, બંધ અથવા
			ગેરહાજર
5.	હૃદય	વલભાજુએ	પૃષ્ઠ, પાર્શ્વ અથવા
			ગેરહાજર
6.	ચેતાતંત્ર	પોલું	नक्षर
7.	ચેતા રજજુ	એકાકી, પૃષ્ઠ અને ચેતાકંદવિહીન	બેવડો, વક્ષ અને
			સામાન્ય રીતે
			ચેતાકં દોયુક્ત
8.	પ્રજનન	િલંગીપ્રજનન પ્રભાવ <u>ી</u>	અલિંગીપ્રજનન પ્રભાવી
9.	શરીર તાપમાન	શીત અથવા ઉષ્શ રુધિરવાળા	શીત રુવિરવાળા
10.	પશ્ચગુદાપૂચ્છ	સામાન્ય રીતે હાજર	ગેરહાજર

એસિડિયા

મેરુદંડી સમુદાય ત્રણ ઉપસમુદાયોમાં વિભાજિત થાય છે :

- (1) પુચ્છમેરુદંડી (2) શીર્ષમેરુદંડી અને (3) પૃષ્ઠવંશી.
- (1) પુષ્ટામેટુદંડી : આમાં મેરુદંડ ડિભીય અવસ્થામાં જોવા મળે છે અને સંપૂર્સ દરિયાઈ પ્રાશીઓ છે.

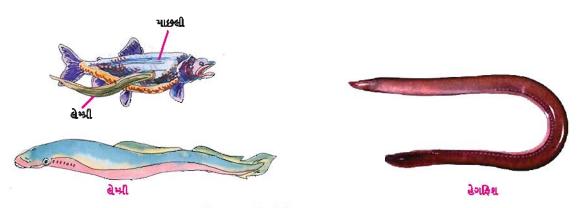
ઉદાહરણો : એસિડિયા, સાલ્પા વગેરે .

(2) **શોષ્મિરૂદંકી** : આમાં મેરુદંડ સમગ્ર જીવનકાળ દરમિયાન શીર્ષથી પૂછડી સુધી વિસ્તરેલો હોય છે.

ઉદાહરથા : એમ્કિઓક્સસ

પ્રાણીસૃષ્ટિનું વર્ગીકરણ

43


- (3) પૃષ્કવંશી : આમાં મેરુદંડનું પુખ્ત અવસ્થામાં કરોડસ્તંભમાં રૂપાંતર થાય છે. તેનું શરીર શીર્ષ, ગરદન, ધડ અને પૂચ્છમાં વિભાજિત હોય છે. મેરુદંડી સમુદાયનાં પ્રાણીઓમાં જોવા મળતાં મુખ્ય લક્ષણો ઉપરાંત અન્ય લક્ષણો નીચે મુજબ છે :
- તેમની ત્વચા રક્ષણાત્મક બાહ્યકંકાલ જેવા કે ભીંગડા, પીંછા, વાળ, ખરી, નખ, શીંગડા વગેરેથી આવરિત હોય છે.
- 🎍 સ્નાયુઓની હાજરી જે અંતઃકંકાલ સાથે જોડાયેલ હોય છે જે હલનચલનમાં મદદ કરે છે.
- ટુિધરાભિષરણતંત્ર બંધ પ્રકારનું, હૃદય વક્ષ બાજુએ, સ્નાયુમય અને બે-ત્રણ અથવા ચાર ખંડનું બનેલું હોય છે.
- 🧧 ઉત્સર્જન જોડમાં આવેલ મૂત્રપિંડ દ્વારા
- એકલિંગી પ્રાણીઓ છે.

પૃષ્ઠવંશી ઉપસમુદાય આગળ જડબાંની હાજરી અને ગેરહાજરીને આધારે અનુસમુદાય હનુવિહીન (લેમ્પ્રી અને હેગફિશ) અને હનુધારીમાં વિભાજિત થાય છે. અનુસમુદાય હનુધારી પ્રચલન અંગોને આધારે ઉપરીવર્ગ મત્સ્ય (મીનપક્ષની હાજરી) અને ચતુષ્પાદ (બે જોડ ઉપાંગોની હાજરી)માં વિભાજિત થાય છે. ઉપરીવર્ગ મત્સ્ય અંતઃકંકાલને આધારે કાસ્થિમત્સ્ય (કાસ્થિનું કંકાલ) અને અસ્થિમત્સ્ય (અસ્થિનું કંકાલ) વર્ગો અને ઉપરીવર્ગ ચતુષ્પાદ તેની વિશિષ્ટતાઓને આધારે ઉભયજીવી, સરિસૃપ, વિહગ અને સસ્તન વર્ગોમાં વિભાજિત થાય છે.

વર્ગ - સૂષ્મુખા

- ચૂષમુખા વર્ગનાં પ્રાશીઓ પુષ્ત અવસ્થામાં માછલીઓ ઉપર બાહ્ય પરોપજીવી છે.
- અંતઃકંકાલ તંતુમય અને કાસ્થિમય અને ત્વચા ભીંગડાવિહીન છે તેમાં એકકોષીય શ્લેષ્મ ગ્રંથિઓ જોવા મળે છે.
- 🧿 જડબાંનો અભાવ હોય છે.
- મુખ અગ્ર-વક્ષ બાજુ, ગોળાકાર અને ચૂષક પ્રકારનું તેથી આ વર્ગને ચૂષમુખા કહે છે.
- 🏮 રુષિરાભિષરશતંત્ર બંધ પ્રકારનું, હૃદય દ્વિખંડી અને શ્વસન માટે ઝાલરફાટ હોય છે.
- ઉત્સર્ગઅંગ તરીકે એક જોડ મૂત્રપિંડ હોય છે.
- તેઓ દરિયાઈ છે પરંતુ પ્રજનન મીઠા પાણીમાં કરે છે.
 ડિભો રૂપાંતરણ પછી દરિયામાં પાછા ફરે છે.

ઉદાહરા : લેમ્પ્રી, હેગફિશ વગેરે.

વર્ગ યુષમુખાની વિવિધતા

वर्ग - डास्थिभरस्थ

- સામાન્ય રીતે દરિયાઈ છે.
- બોટ જેવા આકારનું શરીર અને ત્વચા પ્લેકોઇડ ભીંગડાથી આવરિત
- 💿 પૂચ્છ મીનપક્ષ અસમાન હોય છે.
- 🥌 અંતઃકંકાલ કાસ્થિનું બનેલ.
- 💿 મુખ અગ્ર–વક્ષ બાજુએ અને જડબાંની હાજરી
- , શ્વસન 5 થી 7 જોડ ઝાલરો દ્વારા , ઝાલરફાટો ખુલ્લી અને ઝાલરઢાંક્શ્વનો અભાવ
- ફ્રદય દ્વિખંડી અને અસમતાપી પ્રાણીઓ છે.
- પ્રાષ્ટ્રીઓ એકલિંગી, ફ્લન અંતઃ અને અંડપ્રસવી અથવા અપત્ય અંડપ્રસવી છે.

ઉદાહરા ઃ શાર્ક, રે-ફિશ વગેરે.

शाह

રે-ફિશ

વર્ગ-કાસ્થિમત્સ્થની વિવિધતા

वर्ग - अस्थिभदस्थ

- 💿 આ પ્રાક્ષીઓ જલીય (દરિયાઈ અને મીઠાપાણી) છે.
- બોટ જેવા આકારનું શરીર અને ત્વચા સાયક્લોઇડ અથવા ટીનોઇડ ભીંગડાથી આવરિત.
- પુચ્છમીનપક્ષ સામાન્ય રીતે સમાન હોય છે.
- 💿 અંતઃકંકાલ અસ્થિનું બનેલું.
- 🕨 મુખ સામાન્ય રીતે અગ્ર બાજુએ જડબા સામાન્ય રીતે દાંતયુક્ત.
- શ્વસન ચાર જોડ ઝાલરો દ્વારા કે જે ઝાલરઢાંક્લથી આવરિત હોય છે.
- હૃદય દ્વિખંડી અને અસમતાપી પ્રાથીઓ છે.
- પ્રાષ્ટ્રીઓ એકલિંગી, ફ્લન સામાન્ય રીતે બાહ્ય અને સામાન્ય રીતે અંડપ્રસવી છે.
- વાતાશયની હાજરી જે તરવામાં મદદ કરે છે.

ઉદાહરણ ઃ સમુદ્રઘોડો, લેબીયો, કટલા વગેરે.

લેબીયો

કરવા

વર્ગ - ઉભયજીવી

- આ વર્ગનાં પ્રાણીઓ બે નિવાસસ્થાન (જલીય અને સ્થલીય)માં જીવી શકે છે તેથી તેને ઉભયજીવી
- ઉભયજીવીઓ ઉપરી વર્ગ ચતુષ્પાદમાં સમાવિષ્ટ હોવાને કારણે તેનું મુખ્ય લક્ષણ બે જોડ ઉપાંગોની હાજરી ધરાવે છે.
- બાહ્યકંકાલનો અભાવ, ત્વચા ચીકશી અને શ્વસનાંગ તરીકે વર્તે છે.
- શરીર શીર્ષ અને ધડમાં વિભાજિત
- અંતઃકર્શ અને મધ્યકર્શ હોય છે. બાહ્યકર્શનો અભાવ હોય છે.
- મુખ મોટં, ઉપરના અથવા બંને જડબાંમાં નાના અને સરખા દાંત જોવા મળે છે. અન્નમાર્ગ અંતે 'અવસારશી'માં ખૂલે છે. અવસારશીમાં આ ઉપરાંત ઉત્સર્ગમાર્ગ અને પ્રજનનમાર્ગ પણ ખૂલે છે.
- ત્રિખંડી હૃદય જેમાં બેક્બ્રેક અને એક ક્ષેપક હોય છે.
- શીતરૂપિરવાળાં એટલે કે અસમતાપી પ્રાણીઓ છે.
- એકલિંગી પ્રાણીઓ છે. કલન બાહ્ય અને વિકાસ પરોક્ષ (રૂપાંતરણ દ્વારા) કરે છે.

ઉદાહરણઃ દેડકો, સાલામાન્ડર, ઇકથીઓફ્રિશ (ઉપાંગવિહીન) વગેરે.

દિરફો

ઇકથીઓફિશ

વર્ગ ઉભયજીવીની વિવિધતા

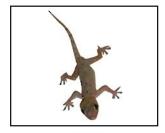
리하 - 원운광ਪ

- સરિસુયો, પૃષ્ઠવંશીઓનો પ્રથમ વર્ગ છે જેનાં પ્રાણીઓ સંપૂર્શ રીતે સ્થલીય જીવન જીવવા અનુકુળ છે.
- સરિસ્પ નામ પેટે ઘસડાઈને ચાલવાની ટેવને કારણે પડેલ છે.
- સામાન્ય રીતે સ્થલીય, માંસાહારી, શીતરૂપિરવાળાં અને અંડપ્રસવી પ્રાણીઓ છે.
- શરીર દ્વિમાર્શ્વ સમમિતિ ધરાવતા અને શીર્ષ, ગરદન, ધડ અને પૂંછડીમાં વિભાજિત
- બાહ્યકંકાલ અધિયર્મીય ભીંગડાનું અને ત્વચા સૂકી હોય છે.
- ઉપાંગો સરખાં, ટૂંકા અને નહોરયુક્ત હોય છે. સાપમાં ઉપાંગોનો અભાવ છે.
- પાચનમાર્ગ અંતે અવસારણીમાં ખુલે છે.
- કર્શપલ્લવનો અભાવ, આંખની પાછળના ભાગે ચામડીની સપાટી પર કર્શનું છેદ્ર હોય છે. છિદ્રના તલ ભાગે કર્જાપટલ હોય છે. વચ્ચેની નળી બાહ્યકર્શનો વિકાસ સૂચવે છે.
- સામાન્ય રીતે હૃદય ત્રિખંડી (બે કર્શક અને એક અપૂર્ણ વિભાજિત ક્ષેપક.) અપવાદરૂપે મગરમાં હૃદય ચાર ખંડી.
- ફેફસાં દ્વારા શ્વસન.

वर्ष

- 🧧 ઉત્સર્ગ અંગ તરીકે મૂત્રર્પિડની હાજરી હોય છે. ઉત્સર્ગ ઘટક તરીકે યુરિક એસિડનો ત્યાગ કરે છે.
- 🎍 એકલિંગી, અંતઃફલન અને સીધો વિકાસ ધરાવતાં પ્રાણીઓ છે.

GEIG28 : કાચબો, કેમેલિયોન, કાચિંડો, મગર, ગરોળી વગેરે.


કાચલો

કેમેલિયોન

કાચિંડો

મગર

ગરોળી

વર્ગ સરિસૃપની વિવિધતા

ସର୍ଭ - ସିଶ୍ରେଖ

- સામાન્ય રીતે આ વર્ગનાં પ્રાણીઓ પક્ષી તરીકે ઓળખાય છે.
- આ વર્ગનાં પ્રાણીઓમાં પાંખોની હાજરી (જે અગ્રઉપાંગનું રૂપાંતર) જે તેને ઊડવા માટે ઉપયોગી છે. કેટલાંક પક્ષીઓ ઊડી શકતાં નથી.
- શરીર બોટ જેવા આકારનું અને શીર્ષ, ગરદન, ધડ અને પૂંછડીમાં વિભાજિત હોય છે.
- 🏮 જડબાનું ચાંચમાં રૂપાંતર થયું હોય છે. દાંતનો અભાવ હોય છે.
- બાહ્યકંકાલ તરીકે પીંછા (શરીર ઉપર આવરિત), ભીંગડાં (ઉપાંગો ઉપર) ચાંચ, નહોર વગેરે હોય છે.
- 💿 અંતઃકંકાલનાં અસ્થિ છિદ્રલ અને પોલાં છે જે ઊડવામાં મદદરૂપ છે.
- પાચનમાર્ગમાં ખોરાકના સંગ્રહ માટે અશ્ર-સંગ્રહાશય તથા તેને દળવા અને ભરડવા માટે પેષણી હોય છે.
- હૃદય ચાર ખંડોનું અને મહાધમની કમાન જમણી બાજુ વળે છે.
- ફેફસાં દ્વારા શ્વસન અને તેમની સાથે વાતાશયો સંકળાયેલાં હોય છે જે તેને ઉડ્ડયનમાં મદદ કરે છે.
- 💿 આ એવાં પ્રથમ પૃષ્ઠવંશીઓ છે જે ઉષ્ણરુષિરવાળાં (સમતાપી) છે.
- એકલિંગી, અંતઃફલન અને સીધો ગર્ભવિકાસ દર્શાવતાં અંડપ્રસવી પ્રાણીઓ છે.

ઉદાહરા કબૂતર, કાગડો, મોર, શાહ્યમૃગ, પેઞ્વિન વગેરે.

પ્રાણીસૃષ્ટિનું વર્ગીકરણ

કાગડો

કબૂતર

મોર

શાહમૃગ

પેગ્વિન

વર્ગ વિહગની વિવિધતા

ual - alaciel

- આ પ્રાણીઓમાં સ્તનગ્રંથિની હાજરી જોવા મળે છે. તેમાંથી શિશુના પોષણ માટે દૂધનો સ્ત્રાવ થાય છે તેથી તેને સસ્તન કહે છે.
- 🧿 બધા જ પ્રકારના નિવાસસ્થાનમાં જોવા મળે છે.
- 💿 શરીર ઉપર વાળનું બર્હિકંકાલ હોય છે. આ ઉપરાંત શિંગડાં, ખરી અને નખ પણ જોવા મળે છે.
- બે જોડ ઉપાંગોની હાજરી જે પ્રચલનમાં ઉપયોગી છે.
- બાહ્યકર્જ્ય તરીકે કર્જ્યપલ્લવનો વિકાસ થયો છે.
- પેઢાની બખોલોમાં ગોઠવાયેલા દાંત હોય છે. તે છેદક, રાક્ષી, અગ્રદાઢ અને દાઢ જેવા પ્રકારોમાં ભિત્રતા પામેલા છે. કેટલાંક સસ્તન પ્રાણીઓમાં હંગામી દૂધિયા દાંત પડી જાય પછી કાયમી દાંત વિક્સે છે.
- 🔹 પાચનમાર્ગ સંપૂર્ધ અને પાચકગ્રંથિઓયુક્ત હોય છે.
- 💿 દ્રદય ચાર ખંડોનું અને મહાધમની કમાન ડાબી બાજુ વળે છે.
- 🎳 ફેફસાં દ્વારા શ્વસન કરે છે.
- 🏮 ઉપસુર્વિરવાળાં (સમતાપી) પ્રાજ્ઞીઓ છે.
- એકલિંગી, અંતઃફ્લન અને સીધો ગર્ભવિકાસ દર્શાવતા સામાન્ય રીતે અપત્યપ્રસવી (શિશુને જન્મ આપનાર) પ્રાથ્નીઓ છે.

ઉદાહરણ : બતકયાંચ (અંડપ્રસવી), કાંગારૂ, સસલું, ઉદર, હાથી, ડોલ્ફિન, વહેલ, યામાચીડિયું (હવાઈ જીવનને અનુકૂલિત) વગેરે.

48

કાંગાર

સસલું

ઉંકર

હાવી

ડોલ્ફિન

વહેલ

ચામાચીડિયું

વર્ગ સસ્તનની વિવિધતા

स्बरांश

પૃથ્વી ઉપર મોટી સંખ્યામાં સજીવો જોવા મળે છે. એમાંના કેટલાક ઓળખી શકાયા છે અને કેટલાક બાકી છે. વસઓળખાયેલા સજીવોને ઓળખવા વર્ગીકરણનું જ્ઞાન અગત્યનું છે. વર્ગીકરણનો આધાર તેનાં લક્ષણો જેવા કે આકાર, સ્વરૂપ, કદ, આયોજનના સ્તરો, સમસિતિ, દેહકોષ્ઠ, ખંડતા વગેરે ઉપર રહેલો છે.

પ્રાણીસૃષ્ટિના સભ્યો વિવિધ સ્તરીય આયોજન દર્શાવે છે. પ્રજીવ અને સછિદ્ર સમુદાયોમાં કોષસ્તરીય આયોજન. કોષ્ઠાંત્રિ સમુદાયમાં પેશીસ્તરીય આયોજન, પૃથુકૃષિઓમાં અંગસ્તરીય આયોજન જોવા મળે છે. અંગો ભેગા મળી અંગતંત્રની રચના કરે છે, સમુદાય જેવા કે નુપૂરક, સંધિપાદ, મૃદુકાય, શૂળચર્મિ અને મેરુદંડીઓ અંગતંત્ર સ્તરીય આયોજન ધરાવે છે. પ્રાણીઓમાં બે પ્રકારનો પાચનમાર્ગ જોવા મળે છે : (1) અપૂર્ણ પાચનમાર્ગ - ઉદાહરણ : પૃથુકૃષિ અને (2) સંપૂર્ણ પાચનમાર્ગ - ઉદાહરણ : સૂત્રકૃષિથી મેરુદંડી. આ જ રીતે પરિવહનતંત્રના બે પ્રકાર છે : (1) ખુલ્લું અને (2) બંધ. અપૃષ્ઠવંશી પ્રાણીઓમાં બધા જ પ્રકારની સમમિતિ જોવા મળે છે. કોષ્ઠાંત્રિઓમાં ફક્ત બે સ્તરો બાહ્યસ્તર અને અંતઃસ્તર હાજર હોય છે, તેથી તેને દ્વિગર્ભસ્તરીય આયોજન કહે છે અને જો કોષો ત્રણ સ્તરોમાં ગોઠવાયેલા હોય એટલે કે બાહ્યસ્તર, અંતઃસ્તર અને મધ્યસ્તર તો તેવા આયોજનને ત્રિગર્ભસ્તરીય કહે છે. ઉદાહરણ : પૃથુકૃષિથી મેરુદંડી. દેહકોષ્ઠને આધારે પ્રાણીસૃષ્ટિ; અદેહકોષ્ઠી, કુટ્દેહકોષ્ઠી અને દેહકોષ્ઠીમાં વિભાજિત થાય છે. અળસિયાં જેવા પ્રાણીઓનું શરીર બહારથી અને અંદરથી સરખા ખંડોમાં વિભાજિત હોય છે તેને સમખંડીય ખંડતા કહે છે. મેરુદંડની હાજરી અને ગેરહાજરીને આધારે પ્રાણીઓનું વર્ગીકરણ શેય છે. જો મેરુદંડ હાજર હોય તો તેવાં પ્રાણીઓને મેરુદંડી ઉદા. મત્સ્યથી સસ્તન અને જો મેરુદંડ ગેરહાજર હોય તો તેવાં પ્રાણીઓને અમેરુદંડી કહે છે. ઉદાહરણ : પ્રજીવથી શૂળત્વથી.

	_	
	200	
	3	•
	Ę	7
•	Ī	
	אהנולה	
	ä	í
	v	•
		•
	v	
	v	
	4: 4.2 Glau	

સમેદાત વિશ્વિક્ષ	b@x	सिछिद्र	કોષ્ઠાંત્ર	सुङ्कर्ति स	सुर्द्रभ	નુપૂર્ક	સંધિપાદ	મૃદુકાય	श्रुणयमि	સામી મેર્કુદંડી	મેરુદંડી
સ્તરીય આયોજન	કોષીય	કોષીય	નેશીય	કેંગ	અંગતંત્ર	અંગતંત્ર	અંગતંત્ર	અંગતંત્ર	અંગતંત્ર	અંગતંત્ર	અંગતંત્ર
अभिति	દ્વિપાર્શ અરીય, ગોળાકાર	અસમમિતિ, અરીય	અરીય, દ્વિપાર્શ્વ	દિયાર્થ	દ્વિપાર્શ્વ	દ્વિપાર્શ્વ	દ્વિપાર્શ્વ	દ્વિપાર્શ્વ	અરીય	દ્વિપાર્શ્વ	દ્વિપાર્શ
ગર્ભસ્તરો	ગેરહાજર	ગેરહાજર	ন্ত	ત્રશ	ત્રણ ખોટો	%	기입	ઋ	ત્રુણ	상임	ત્રણ
ક્ષકોષ્ઠ	ગેરહાજર	ગુક્લાશ્વર	ગેરહાજર	ગુકલાશ્વર	(આબાસી)	દક્ષાજ	દક્ષાજ	લાજર	ર&ાજ	ક્ષીશ્વર	કાજર
ખંડતા.	ગેરહાજર	ગેરહાજર	ગેરહાજર	ગેરહાજર	ગેરહાજર	લાજર	કાજર	ગેરહાજર	ગેરહાજર	ગેરહાજર	કાશ્વર
મેરુદંડ	ગેરહાજર	ગેરહાજર	ગેરહાજર	ગુકલાશ્વર	ગેરહાજર	ગુકલાજક	ગુરહાજર	ગેરહાજર	ગેરહાજર	ગેરહાજર	કાજર
પાચનતંત્ર	ગેરહાજર	ુકલાશ્વર	<u> </u> ોઢાઁમાન્	અપૂર્શ	પૂર્ણ	[]] હેં	તુર્થ	પૂર્ણ	ૢૢૢૺ૾ૢૼૼ૾ૣ	પૂર્શ	ો લ્યું
પરિવહનતંત્ર	ગુરલાજર	ગુરલાજર	ગેરહાજર	રશ્રાક્ષર	ગેરહાજર	રશ્રીક	કાજર	લાજર	કાશ્રક	કાશ્વર	રશ્રાક
श्वसनतंत्र	ગુરલાજર	ગુરલાશ્વર	ગેરહાજર	ગુરલાશ્વર	ગેરહાજર	ક્ષાજ	લાજર	લાજર	લાજર	ક્ષાજ	કાશ્વર
પ્રજનન	અલિંગી, ત્યેંગી	અલિંગી, તિંગી	અલિંગી, હિંગી	લિંગી	લિંગી	લિંગી	લિંગી	<u>સિં</u> ગી	લિંગી	િલંગી	હિંગી
ईखन	ĸ	અંત:	અંત:	અંત:	શંત:	અંત:	અંત:	અંત: અથવા	બાહ્ય	બાહ્ય	અંત: અથવા
	કિસ્સામાં							બાહ્ય			બાહ્ય
વિકાસ	I	પરોક્ષ	પરોક્ષ	પરોક્ષ	સીધો	સીધો	સીધો અથવા	સીધો અથવા ે	પરોક્ષ	સીધો અથવા	સીધો
							પરાક્ષ	પરાક્ષ		પરાક્ષ	
વિશેષ	પ્રચલન અંગિકા	નલિકાતંત્રની	કોષ્કાંત્ર	થપટાં	માદા નર	કારીર	સાંધાવાળા	સામાન્ય	જલવાહક	નળાકાડ	પોલો પૃષ્ઠ ચેતારજ્જુ,
લક્ષણ	જેમકે ખોટાપગ,	કાજરી	ગુહા ધરાવતાં	પ્રાક્ષીઓ,	કરતાં કદમાં	સરખા	ઉપાંગોની	રીતે શરીર	તંત્રની	શરીર સૂંઢ,	ઝાલરછિદ્રો અને
-1	પક્ષ્મ અને કશા		กูยูเห	પરોપજીવી	મોટી, પરોપજીવ <mark>ી ખંડોમાં</mark>	ખંડોમાં	લાજરી	ઉપર કવચની	હાજરી	ગ્રીવા અને	ઉપાંગો અથવા
				ō	જીવન	વિભાજિત		હાજરી		ધડમાં વિભાજિત	પાંખની હાજરી

५० श्रुपिद्मान

સ્વાધ્યાય

			स्पाटवा	4	
1.	નીચે આપેલ	લા પ્રશ્નોના ઉત્તરો પૈકી સાચા	ઉત્તર સામે	. સર્કલમાં પેન્સિલથી રંગ પૂરો :	
	(1)	છિદ્રિષ્ઠ ગુહા ધરાવતો સમુદ	દાય છે		
		(અ) કોષ્ઠાંત્રિ	0	(৸) মগুব	0
		(ક) સછિદ્ર	0	(ડ) સંધિપાદ	0
	(2)	ચતુષ્ક ખંડી હૃદય ધરાવતું	પ્રાશી છે '	?	
		(અ) વહેલ	0	(બ) અળસિયું	0
		(ક) શાર્ક	0	(ડ) સાલામાન્ડર	0
	(3)	ચામાચીડિયું કયા વર્ગનું પ્રા	શી છે ?		
		(અ) સરિસૃપ	0	(બ) ઉભયજીવી	0
		(ક) વિહગ	0	(ડ) સસ્તન	0
	(4)	પાણી અને જમીન બંને મા	.ધ્યમમાં રહે	<u>ક</u> ેતાં પ્રાણીઓનો વર્ગ	
		(અ) સરિસૃપ	0	(બ) ઉભયજીવી	0
		(ક) વિહગ	0	(ડ) મત્સ્ય	0
	(5)	અરીય સમમિતિ દેહ ધરાવ	તાં પ્રાણીચ	મોનો સમુદાય	
		(અ) કોષ્ઠાંત્રિ	0	(બ) નુપૂરક	0
		(ક) સંધિપાદ	0	(ડ) મૃદુકાય	0
	(6)	પ્રાણીસૃષ્ટિનો પ્રથમ સમુદાય	l		
		(અ) સછિદ્ર	0	(બ) પ્રજીવ	0
		(ક) મેરુદંડી	0	(ડ) સંધિપાદ	0
	(7)	નિવાપકોષો ધરાવતું પ્રાણી.	·•		
		(અ) વાદળી	0	(બ) પરવાળા	0
		(ક) કરમિયું	0	(ડ) અમીબા	0
	(8)	Ğ			
		(અ) વજકેશ	0	(બ) અભિચરણપાદ	0
		(ક) શોષક	0	(ડ) ખોટા પગ	0
	(9)	9	:il		
		(અ) વંદો	0	(બ) કેમિલિયોન	0
		(ક) પાયલા	0	(ડ) ઓક્ટોપસ	0
	(10)) રેત્રિકાનું કાર્ય	_		_
		(અ) ખોરાક પચાવવાનું	0	(બ) ખોરાક દળવાનું	0
		(ક) ખોરાક પકડવાનં	\cap	(ડ) ઉત્સર્જનનં	\cap

પ્રાણીસૃષ્ટિનું વર્ગીકરણ **51**

		(11) બધાં જ પ્રાણીઓ દરિયાઈ છે	છે તેવો સ ન્	<u>ુ</u> દાય	
		(અ) પ્રજીવ	0	(બ) શૂળચર્મિ	0
		(ક) પૃથુકૃમિ	0	(ડ) મૃદુકાય	0
		(12) U આકારનો પાચનમાર્ગ ધર	ાવતાં પ્રાર્શ	ોઓનો સમુદાય	
		(અ) મૃદુકાય	0	(બ) સામીમેરુદંડી	0
		(ક) નુપૂરક	0	(ડ) મેરુદંડી	0
		(13) વર્ગ ચૂષમુખાનાં પ્રાણીઓ છે.			
		(અ) હેગફિશ, જેલીફિશ	0	(બ) વહેલ, શાર્ક	0
		(ક) લેમ્પ્રી, હેગફ્રિશ	0	(ડ) લેમ્પ્રી, કટલા	0
		(14) કીટકો કયા સમુદાયનાં પ્રાણી	ઓ છે ?		
		(અ) સંધિપાદ	0	(બ) મૃદુકાય	0
		(ક) સામીમેરુદંડી	0	(ડ) નુપૂરક	0
		(15) કલિકાસર્જનથી પ્રજનન કરતાં	પ્રાણીઓ	છે	
		(અ) વાદળી, પક્રીકીડો	0	(બ) જળવ્યાળ, કરમિયું	0
		(ક) વાદળી, જળવ્યાળ	0	(ડ) જળવ્યાળ, જેલીફિશ	0
2.	નીચેના	પ્રશ્નોના ટૂંકમાં જવાબ આપો :			
	(1)	દ્વિગર્ભસ્તરીય દેહ કયા પ્રાણીમાં હો	ય છે ?		
	(2)	કયા પ્રાણી-સમુદાયોમાં ખુલ્લા પ્રકા	રનું રુધિરા	ભેષણતંત્ર હોય છે ?	
	(3)	ડંખકોષ અને જ્યોતકોષનાં કાર્યો લ	ાખો.		
	(4)	કયા પ્રાણી-સમુદાયથી સાચી શરીર	ગુહાની શરૂ	આત થાય છે ?	
	(5)	સમખંડીય દેહ ધરાવતાં ત્રણ પ્રાણી	નાં નામ 🤄	ાખો.	
	(6)	ઉપરી-વર્ગ મત્સ્યનાં મુખ્ય બે વર્ગ	કયા છે ?		
	(7)	ઉપરી-વર્ગ ચતુષ્પાદનાં વર્ગો કયા દં	9 ?		
	(8)	પ્રજીવ પ્રાણીઓ કઈ અંગિકાઓની	મદદથી પ્ર	યલન કરે છે ?	
	(9)	વાદળીઓમાં કઈ પદ્ધતિઓથી પ્રજન	ાન થાય છે	?	
	(10)	છિદ્રિષ્ઠગુહા ધરાવતો સમુદાય કયો	છે ?		
	(11)	કોષ્ઠાંત્રિ પ્રાણીઓનાં જીવનચક્રમાં ક	ક્યાં સ્વરૂપો	જોવા મળે છે ?	
	(12)	યકૃતકૃમિ અને પ્લેનેરિયા કયાં સમુ	દાયનાં પ્રાષ્	ાીઓ છે ?	
	(13)	મુખ્યતઃ પરોપજીવી પ્રાણીઓ ધરાવ	તા સમુદાય	ો કયા છે ?	
	(14)	અળસિયા અને ઉંદરમાં હિમોગ્લોબી	ાન ક્યાં અ	ાવેલું હોય છે ?	
	(15)	વજકેશ અને અભિચરણપાદનાં કાય	ર્યા ઉદાહરક	ા સાથે લખો.	
	(16)	સંધિપાદી પ્રાણીઓનાં શ્વસનાંગોનાં	નામ લખો	•	
	(17)	પ્રાવરગુહા ધરાવતાં કોઈ પણ બે :	પ્રાશીનાં ન	ામ લખો.	

(18) નાલીપગનું કાર્ય લખો.

52

- (19) હૃદયની દેષ્ટિએ મેરુદંડી અને અમેરુદંડી પ્રાણીઓ કઈ રીતે જુદાં પડે છે ?
- (20) મેરુદંડી સમુદાયના ઉપસમુદાય કયા છે ?
- (21) લેમ્પ્રી મત્સ્યવર્ગનું પ્રાણી છે ? શા માટે ?

3. નીચેના પ્રશ્નોના જવાબ આપો :

- (1) પ્રાણીસૃષ્ટિનું વર્ગીકરણ શા માટે જરૂરી છે ?
- (2) પ્રાણીસૃષ્ટિનું વર્ગીકરણ કયા આધારો ઉપર આધારિત છે ?
- (3) પ્રાણીઓમાં આયોજન સ્તર સમજાવો.
- (4) ખુલ્લું અને બંધ પ્રકારનું રુધિરાભિષરણતંત્ર એટલે શું ?
- (5) સમમિતિ એટલે શું ? તેના પ્રકારો ઉદાહરણો સહિત સમજાવો.
- (6) સછિદ્રથી સસ્તન સુધીનાં પ્રાણીઓમાં ગર્ભસ્તરીય આયોજન કેવા પ્રકારનું છે ?
- (7) દેહકોષ્ઠ એટલે શું ? તેના આધારે પ્રાણીનો પ્રકાર લખો.
- (8) પ્રાણીસૃષ્ટિના વર્ગીકરણનો માત્ર ચાર્ટ આપો.
- (9) પ્રજીવ સમુદાયનાં મુખ્ય લક્ષણો લખો.
- (10) નીચેનાં પ્રાણીઓના સંબંધિત સામુદાયિક લક્ષણો (માત્ર ત્રણ) આપો : વંદો, દેડકો, કરમિયું, સસલું.
- (11) વિવિધ અમેરુદંડી પ્રાણીઓના ઉદાહરણ સહિત ઉત્સર્ગ અંગોનાં નામ લખો.
- (12) પ્રજનન, ફલન અને વિકાસની દષ્ટિએ દેહકોષ્ઠી પ્રાણીઓનાં લક્ષણો ટૂંકમાં લખો.
- (13) ટૂંક નોંધ લખો : દેહકોષ્ઠ, સમમિતિ, ખંડતા, ઉત્સર્ગ અંગો

5

કોષરચના

કોષ એ સજીવનો રચનાત્મક અને ક્રિયાત્મક એકમ છે. બધા સજીવ કોષોના બનેલા છે. જે સજીવો ફક્ત એક જ કોષના બનેલા હોય છે તેઓને એકકોષીય સજીવો (unicellular organisms) કહે છે. અમીબા, પેરામિશિયમ, જીવાશુ (બૅક્ટેરિયા), યીસ્ટ અને ક્લેમીડોમોનાસ તેના ઉદાહરણ છે. જ્યારે બીજા સજીવો અનેક કોષોના બનેલા છે તેમને બહુકોષીય સજીવો (multicellular organisms) કહે છે. આ સજીવોના જીવનની શરૂઆત યુગ્મનજ (zygote) તરીકે ઓળખાતા એક જ કોષથી થાય છે. તેના વારંવાર વિભાજનથી નવા કોષો સર્જાય છે. આ પ્રમાણે સર્જાયેલા કોષો વિભેદન પામી પેશીઓ, અંગો અને અંગતંત્રો રચે છે. આ રીતે બધા કોષો એક જ કોષમાંથી ઉત્પન્ન થાય છે. દા.ત., યુગ્મનજ જેમાં સમભાજન કે સમસૂત્રીભાજન (mitosis) વડે વિભાજન થતું હોવાથી દેહના દરેક કોષમાં જનીનદ્રવ્ય એકસરખું હોય છે. આ રીતે શરીરનો કોઈ પણ કોષ સમગ્ર દેહનું સર્જન કરવાની ક્ષમતા ધરાવે છે. કોષનું આ લક્ષણ સંપૂર્ણ ક્ષમતા (totipotency) કહેવાય છે.

કોષ એટલે શું ?

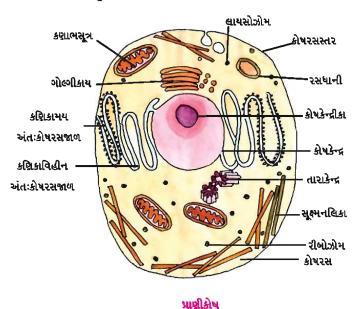
રોબર્ટ હૂક નામના અંગ્રેજ વૈજ્ઞાનિકે ઑક (cork)ની છાલની પાતળી ચીરીનો 1665માં પ્રાકૃતિક માઇક્રોસ્કૉપમાં અભ્યાસ કર્યો. તેણે ઑકમાં નક્કર દીવાલો ધરાવતી નાના ખાનાઓ જેવી રચનાઓ વર્ણવી, જેને કોષો (cells) તરીકે નામ આપ્યું. ત્યાર પછી રોબર્ટ બ્રાઉને (1831) કોષમાં કોષકેન્દ્રની શોધ કરી. પરિણામે બધા જ સજીવોમાં કોષ એ રચનાત્મક અને ક્રિયાત્મક એકમ હોવાનું નક્કી કરવામાં આવ્યું. દરેક કોષ પોતે વિશ્વની એક અદ્ભુત અજાયબી હોવાનું માનવામાં આવ્યું. તે પોતે પોષણ લઈ તેનું શક્તિમાં રૂપાંતર કરે છે અને તેને લીધે વિશિષ્ટ કાર્યો કરી શકે છે. આવશ્યકતા પ્રમાણે પ્રજનન કરે છે. આથી વધારે અજાયબી એ છે કે, દરેક કોષ જનીનદ્રવ્ય સ્વરૂપે પોતાની માહિતીનો જથ્થો ધરાવે છે, જે આનુવંશિકતા માટે જવાબદાર ઘટક છે.

sोषपाह (Cell Theory)

કોષવાદ બે વૈજ્ઞાનિકો દ્વારા 1838ના ગાળામાં રજૂ કરવામાં આવ્યો હતો. આ બે વૈજ્ઞાનિકો માથીસ સ્લીડન-જર્મન વનસ્પતિશાસ્ત્રી અને થીઓડોર શ્વૉન - બ્રિટિશ પ્રાણીશાસ્ત્રી હતા. સ્લીડને જોયું કે, વનસ્પતિઓ જુદા જુદા પ્રકારના કોષોની બનેલી છે, જે વનસ્પતિઓની પેશીઓનું નિર્માણ કરે છે. શ્વૉને

ज्यविज्ञात

જુદા જુદા પ્રકારના પ્રાણીકોષોનો અભ્યાસ કર્યો હતો અને નોંધ્યું હતું કે, કોષો તેની કરતે પાતળું સ્તર ધરાવે છે. જે આજે કોષરસસ્તર તરીકે ઓળખાય છે. તેણે અનુમાન કર્યું હતું કે, વનસ્પતિકોષમાં કોષદીવાલની હાજરી એ અજોડ લક્ષણ છે. ત્યાર પછી, સ્લીડન અને શ્વોને સંયુક્ત રીતે કોષવાદ રજૂ કર્યો હતો. આ વાદ પ્રમાણે —


- 💿 બધા જ જીવંત સજીવો કોષ અને કોષની નીપજોના બનેલા છે.
- 🥃 કોષ સજીવનો રચનાત્મક અને ક્રિયાત્મક એકમ છે.

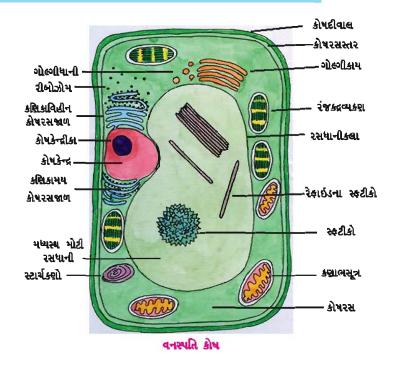
આ સિદ્ધાંત નવા કોષો કેવી રીતે ઉત્પન્ન થાય છે તે સમજાવી શક્યો ન હતો. 1855માં રુડોલ્ફ વિર્શોવએ સૌપ્રથમ સમજાવ્યું કે નવા કોષો, પૂર્વ અસ્તિત્વ ધરાવતા કોષોના કોષ-વિભાજનથી અસ્તિત્વમાં આવે છે. ત્યાર બાદ સ્લીડન અને શ્વૉનના કોષવાદમાં વિર્શોએ સુધારો કર્યો અને કોષવાદનું અંતિમ સ્વરૂપ આપ્યું. કોષવાદ ઉપરથી આજે અનુમાન કરવામાં આવે છે કે —

- (1) બધા જ સજીવો કોષ અને કોષની નીપજોના બનેલા છે.
- (2) કોષ સજીવનો રચનાત્મક અને ક્રિયાત્મક એકમ છે.
- (3) નવા કોષનું સર્જન, પૂર્વ અસ્તિત્વ ધરાવતા કોષોના વિભાજનથી થાય છે.

भ्रेषनुं विह्नंगावसोङ्ग

કોષ એ જીવંત વસ્તુનો નાનામાં નાનો એકમ છે. વનસ્પતિઓ અને પ્રાણીઓ સહિતની બધી જ જીવંત વસ્તુઓ કોષોની બનેલી છે. લાક્ષણિક વનસ્પતિકોષનો અભ્યાસ ડુંગળીની છાલ જ્યારે પ્રાણીકોષનો અભ્યાસ

માનવ ગાલના કોષો લઈને કરવામાં આવે છે. વનસ્પતિકોષ બહારની સીમા તરીકે વિશિષ્ટ કોષદીવાલ (cell wall) અને અંદરની સીમા તરીકે કોષરસસ્તર (Plasma membrane) ધરાવે છે. કોષરસસ્તર કોષને આવરે છે અને કોષના બહારના ભાગોને તેમની જગ્યાએ જકડી રાખે છે અને કોષને રક્ષણ આપે છે. કોષરસસ્તરની અંદર, જીવાણુ કોષ સિવાયના બધા જ કોષો કોષકેન્દ્ર અને કોષરસ ધરાવે છે. કોષકેન્દ્ર ઘટ્ટપટલમય આવરણથી ઘેરાયેલ રચના છે. આ કોષકેન્દ્ર રંગસૂત્રો ધરાવે છે જે જનીનદ્રવ્ય – DNAના બનેલા છે તેથી તે કોષની ક્રિયાઓનું નિયંત્રણ કરે છે. જે કોષમાં કોષકેન્દ્ર તેની ફરતે ઘટ્ટપટલથી રક્ષાયેલો હોય તેને સુકોષકેન્દ્રી કોષ (eukaryotic cell), જ્યારે કોષકેન્દ્રની ફરતે


પટલના આવરણની ગેરહાજરી હોય તે કોષને આદિકોષકેન્દ્રી (prokaryotic cell) કોષ કહે છે. કોષરસ એ જેલી જેવું ઘટક છે જે કોષની અંદર આવેલો હોય છે, જ્યાં કોષની મોટા ભાગની ક્રિયાઓ થાય છે. કોષરસ પાણી અને બીજાં રસાયણોનું બનેલું છે.

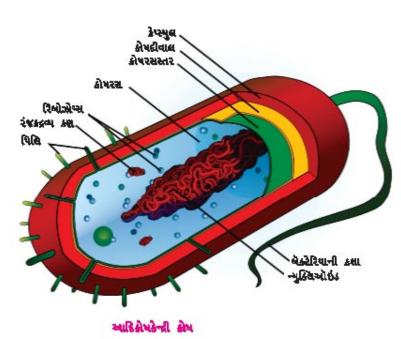
સુકોષકેન્દ્રી કોષો કોષકેન્દ્ર ઉપરાંત પટલમય સ્તરોથી રક્ષાયેલ રચનાઓ જેવી કે, અંતઃકોષરસ જાળ (endoplasmic reticulum), ગોલ્ગીકાય, ક્ષાભસૂત્ર, લાયસોઝોમ્સ, સૂક્ષ્મનલિકાઓ (microtubules) અને રસધાની ધરાવે છે. પટલથી ઘેરાયેલ આ રચનાઓને અંગિકાઓ (organelles) કહે છે. પટલથી ઘેરાયેલ આ રચનાઓનો આદિકોષકેન્દ્રી કોષોમાં અભાવ હોય છે. પટલવિહીન અંગિકા જેવી કે, રિબોઝોમ્સ સુકોષકેન્દ્રી અને આદિકોષકેન્દ્રી બંને કોષોમાં જોવા મળે છે. રિબોઝોમ્સ કોષરસમાં મુક્ત રીતે તરતી કે

કોષસ્યના 55

અન્ય અંગિકાઓ જેવી કે, અંતઃકોષરસ જાળની સપાટી ઉપર આવેલી હોય છે. આ અંગિકા કણાભસૂત્ર અને નીલકણમાં પણ નોંધાયેલી છે. અન્ય પટલવિહીન અંગિકા – તારાકેન્દ્ર માત્ર પ્રાણીકોષમાં જ જોવા મળે છે. આ રચના કોષવિભાજનમાં મદદરૂપ થાય છે. કોષો જુદા જુદા કદ અને આકારો ધરાવે છે તેમજ જુદાં જુદાં કાર્યો કરે છે.

તમે જાણો છો કે શાહમૃગનું ઈંડું સૌથી મોટો કોષ છે. જ્યારે માઇકોપ્લાઝમા કોષ એ સૌથી નાનો કોષ છે. એક જ સજીવમાં આવેલા

કોષો પણ તેમનાં આકારો, કદ અને કાર્યોમાં વિવિધતા ધરાવે છે. કોષો પણ ખૂબ જ જુદા જુદા આકારો ધરાવે છે. તેઓ સ્તંભાકાર, ઘનાકાર, બહુકોશ્રીય, બિંબ (રકાબી જેવો) કે તાંતણા જેવા કે કેટલીક વાર અનિયમિત આકારોના હોય છે.


કોષનાં જુદાં જુદાં ઘટકોની ચર્ચા કરીએ તે પહેલાં એ જાણવું અગત્યનું છે કે, સજીવોમાં કોષો કેટલા પ્રકારના હોય છે. કોષોને સામાન્ય રીતે બે કક્ષામાં વહેંચવામાં આવે છે : આદિકોષકેન્દ્રી અને સૂકોષકેન્દ્રી.

आहिओधडेन्द्री ओष :

આદિકોષકેન્દ્રી એકકોષી સજીવો છે જેમાં કોષકેન્દ્રપટલની ગેરહાજરી હોય છે અને તે બહુકોષીય સ્વરૂપમાં વિકાસ કે વિભેદન પામતા નથી. કેટલાક સજીવોનો વિકાસ તંતુ સ્વરૂપે અથવા કોષોના સમૂહ સ્વરૂપે થાય છે, પરંતુ વસાહતના દરેક કોષ સમાન અને સ્વતંત્ર અસ્તિત્વ ધરાવે છે. કોષો બીજા કોષો સાથે અડોઅડ રહેલા હોય છે કારણ કે તેઓ કોષવિભાજન પછી એકબીજાથી છૂટા પડતાં નથી અથવા તે સામાન્ય આવરણથી કે કોષ દ્વારા સ્ત્રવિત ચીક્સા પદાર્થથી ઘેરાયેલા હોય છે. આદિકોષકેન્દ્રી કોષ તરીકે જીવાશુ, નીલરહિત લીલ, માઇકોપ્લાઝમા અને PPLO (પ્લુરો ન્યુમોનિયા લાઇક ઓર્ગેનિઝમ) વગેરે પ્રતિનિધિત્વ ધરાવે છે. આદિકોષકેન્દ્રી કોષ સુકોષકેન્દ્રી કરતાં નાનો હોય છે તેમ છતાં તેઓમાં કોષવિભાજન ખૂબ જ ઝડપી હોય છે. તેઓના આકાર અને કદમાં વિવિધતા હોય છે. જીવાશુના મુખ્ય યાર આકારો છે જેવા કે બેસિલસ (દંડાશુ), કોક્સ (ગોળાકાર), વિબ્રિયો (વકાશુ), સ્પીરીલિયમ (કુંતલાકાર).

આદિકોમકેન્દ્રીએ સુકોમકેન્દ્રી સજીવો કરતાં કોમકેન્દ્રીય આયોજન ખાસ કરીને કોમકેન્દ્રપટલની ગેરહાજરીની બાબતમાં વિશિષ્ટતા ધરાવે છે. ઘણા જીવાશુ કોમોમાં જીનોમિક DNAની બહારની બાજુ નાનું ગોળાકાર DNA આવેલા હોય છે. આ નાના DNAને પ્લાસ્મીડ કહે છે. પ્લાસ્મીડ DNA એ જીવાશુમાં અજોડ સ્વરૂપલક્ષી લક્ષણો માટે જવાબદાર છે. આદિકોમકેન્દ્રીમાં આંતરકોષીય અંગિકાઓ જેવી કે કશાભસૂત્ર, નીલક્સ, અંતઃકોમરસ જાળ, ગોલ્ગીકાય અને તારાકેન્દ્રની ગેરહાજરી હોય છે.

આદિકોમકેન્દ્રી કોષો ત્રજ્ઞ શિલ્પ પ્રદેશો ધરાવે છે : ઉપાંગો (appendages) - જેને કશા (flagellum) કહેવામાં આવે છે. કશાની રચનામાં તલસ્થકાય (basal body) જે કોષરસ સુધી લંબાયેલ Downloaded from https:// www.studiestoday.com ५६ श्रुपिञ्चान

હોય છે અને પિલિ (pilli) જે જીવાશુની સપાટી પર જોડાયેલ હોય છે. કોમઆવરણ (cell envelope) પ્રાવર ધરાવે છે જે કોમસીવાલ અને રસસ્તરની બનેલી હોય છે. કોમસીય પ્રદેશ (cytoplasmic region) - તે કોપીય જનીન (DNA), રીબોઝોમ્સ અને વિવિધ સમાવિષ્ટ રચનાઓ ધરાવે છે. કોમરસપટલની વિબેદિત વિશિષ્ટ સ્વરૂપની રચના જે પેસોઝોમ કહેવાય છે, તે આદિકોષકેન્દ્રી કોમનું લક્ષણ છે.

क्षेत्रसावश्य काने दोनां इपांतरो :

આદિકોમકેન્દ્રી કોય, ખાસ કરીને જવાસુ કોયો, જટિલ કોય આવરણથી વેરાયેલા હોય છે. આ આવરણમાં ત્રણ સ્પષ્ટ સ્તરો તારવી શકાય છે. સૌથી બહારનું સ્તર ગ્લાયકોકેલિક્સનું બનેલું, દ્વિતીય સ્તર કોયદીવાલ તરીકે અને

અંદરનું તૃતીય સાર કોયરસસ્તર (plasma memissane) કહેવાય છે. કેટલાક જીવાશુમાં સૌથી બહારનું સ્તર શિષિલ આવરણ સ્વરૂપે હોય છે જેને શ્લેષ્મી સાર કહે છે. જ્યારે અન્ય જીવાશુમાં તે જાડું અને સખત સ્વરૂપે હોય જેને પ્રાવર કહે છે. તે ફેંગોસાઇટ્સ અને વાઇરસના આક્રમણ સામે રક્ષણાત્મક કાર્ય કરે છે.

ક્રોષદીવાલ ઘટ્ટસ્તર તરીકે કોષરસસ્તરની કરતે આવેલી છે. કોષદીવાલ અક્ષુકીય ચાળશી તરીકે મોટા અક્ષુઓને પસાર થવા પર નિયંબક તરીકે કાર્ય કરે છે. કોષરસસ્તર એ અર્થપ્રવેશશીલ પ્રકૃતિ ધરાવે છે અને બહારના વાતાવરક્ષ સાથે આંતરક્રિયા કરે છે. આદિકોષકેન્દ્રી કોષરસસ્તર નીચે જસાવેલ કાર્યોને લીધે કોષનો મુખ્ય રચનાકીય ઘટક છે:

- (1) પરાંદગીમાન પ્રવેશાવીલપટલ : તે કેટલાક અશુઓને અંદર આવવા દે અને બહાર નીકવવા દે છે, પરંતુ બીજા અશુઓને નહિ.
- (2) **વાલ્સિનું ઉત્પાદન : ય**સન અને પ્રકાશસંશ્લેપક્ષનાં કોટોફોસ્ફોરાયલેશન દરમિયાન વિજાણવહન માટે સ્થળ પૂર્વ પાડે છે. દા.ત., ADPનું ATPમાં રૂપાંતર કરવા માટે.
- (3) **બાહ્મકોપીય પોલીમર ઉત્પાદન** : કોપદીવાલ, પ્રાવર અને બાહ્મકોપીય પ્રવાહીમાં કેટલાંક પોલીમરનાં સંશ્લેષણ પટલના ઉત્સેચકોના ઉદીપન હારા થતું હોય છે.
- (4) રંગસૂગોના એકાણ સ્થળ વરીકે : જ્યારે પ્રતિકૃતિની શરૂઆત થાય છે ત્યારે એકાકી રંગસૂત પટલની ચોક્કસ જગ્યાએ જોડાય છે.
- (5) કોપરસાટલરનું પરવીય રચનામાં વિસ્તરના : મેસોઝોમ્સ, રસધાની, નલિકાઓ અને પટલીકાઓનું નિર્માણ રસસ્તરના વિસ્તરણને કારણે થાય છે. તે કોપદીવાલના નિર્માણમાં DNA રેપ્લિકેશન અને બાળ કોપોના વિસ્તરણમાં મદદરૂપ થાય છે.

ગ્રામ (Gram) દારા વિકસાવવામાં આવેલ અભિરંજન પદ્ધતિને આધારે જીવાશુને બે સમૂહોમાં વહેંચવામાં આવે છે. જેમકે, જે ગ્રામ અભિરંજકને શોષી શે તે ગ્રામ પોઝિટિવ અને બીજા જે ગ્રામ અભિરંજકને શોષી શકતા ન હોય તે ગ્રામ નેબેટિવ જીવાશુ કહેવાય છે. કેટલાક જીવાશુ ચલિત હોય છે અને કશા ધરાવે છે. કશામાં તલસ્થકાય અને તેમાંથી લંબાયેલો તંતુ જોવા મળે છે. તંતુ પોલો નળાકાર છે અને ક્લેજેલીન નામના

કોષરયના 57

પ્રોટીનનો બનેલો છે. કેટલાક જીવાશુની સપાટી પરથી નળાકાર પ્રવર્ધી ઉપસેલા હોય છે. તેમને પિલિ (pilli) અથવા ફિમ્બ્રી (fimbriae) કહે છે. તે સયુગ્મનમાં મહત્ત્વના છે.

રિબોઝોમ્સ અને સમાવિષ્ટ કાર્યો :

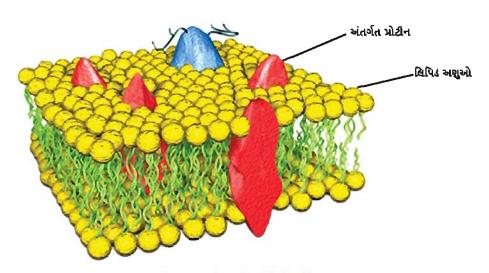
રિબોઝોમ્સ 20 nm વ્યાસ ધરાવતા ઘટ્ટ ક્શો સ્વરૂપે અને કોષના રસસ્તર સાથે સંકળાયેલ હોય છે. તેઓ બે પેટા એકમોના બનેલા છે : 50 S અને 30 S. તે બંને ભેગા મળીને 70 S આદિકોષકેન્દ્રી રિબોઝોમ્સ બનાવે છે. રિબોઝોમ્સ સ્થળે પ્રોટીનનું સંશ્લેષણ થાય છે. કોઈ એક m-RNA સાથે એક કરતાં વધુ રિબોઝોમ્સ સંકળાય છે. આવા સંકુલને પોલીઝોમ્સ અથવા પોલીરિબોઝોમ કહે છે.

સમાવિષ્ટ સૂક્ષ્મકાય રચનાઓ :

કોષરસમાં ઘણી સંખ્યામાં સમાવિષ્ટ સૂક્ષ્મકાય રચના હોય છે, જેને સંગ્રાહક કિલ્લકાઓ પણ કહે છે. આ કાય કોઈ પણ પટલથી ઘેરાયેલાં હોતાં નથી અને કોષરસમાં મુક્ત રીતે હોય છે. દા.ત., ફૉસ્ફેટ કિલ્લકાઓ, સિયાનોફાયસિયન કિલ્લકાઓ અને ગ્લાયકોજન કિલ્લકાઓ. નીલહરિતલીલ અને પ્રકાશસંશ્લેષી જીવાસુમાં વાયુયુક્ત રસધાનીઓ પણ જોવા મળે છે.

सुकोषकेन्द्री क्षेपो :

સુકોષકેન્દ્રીમાં ફૂગ, પ્રાશીઓ અને વનસ્પતિઓ તેમજ એકકોષી સજીવોનો સમાવેશ થાય છે. તેઓ સુયોજિત કોષકેન્દ્ર અને કોષકેન્દ્રપટલ ધરાવે છે. સુકોષકેન્દ્રી કોષોના પટલ અંગિકાઓમાં ચોક્કસ ચયાપચિક ક્રિયાઓ થાય છે. તેઓ કોષરસકંકાલ (cytoskeleton) પશ ધરાવે છે. તેમાં જનીનિક પદાર્થો રંગસૂત્રોમાં આયોજિત હોય છે.


બધા જ સુકોષકેન્દ્રી કોષો એકસરખા હોતા નથી. પ્રાણીકોષો અને વનસ્પતિકોષો એકબીજાથી જુદાપશું દર્શાવે છે. પ્રાણીકોષમાં તારાકેન્દ્ર હાજર હોય છે, જ્યારે વનસ્પતિકોષમાં તેનો અભાવ હોય છે. જ્યારે વનસ્પતિકોષો કોષદીવાલ, રંજકદ્રવ્યક્શો અને મોટી રસધાનીઓ ધરાવે છે, પરંતુ પ્રાણીકોષમાં તેની ગેરહાજરી હોય છે.

होषीय अंभिक्षाओनी स्थना अने कार्यो

હવે આપણે દરેક અંગિકાની રચના અને તેનાં કાર્યો વિશે સમજીશું.

કોષસ્થરતર

કોષપટલ અથવા કોષરસસ્તર એ કોષરસને સૌથી બહારની તરફ આવરતું સ્તર છે. તે લિપિડ અને પ્રોટીનનો બનેલો છે. લિપિડ અશુઓ દિસ્તરીય ગોઠવશ ધરાવે છે. દરેક લિપીડ અશુનું ધ્રુવીય

કોષરસસ્તરનું ફ્લુઇડ મોઝેઇક મોડેલ

જલાનુરાગી (hydrophilic) માથું બહારની તરફ અને અધ્રુવીય જલ વિતરાગી (hydrophobic) પૂંછડી અંદરની સપાટી તરફ હોય છે. આથી ખાતરી થાય છે કે સંતૃપ્ત હાઇડ્રોકાર્બનથી બનેલી અધ્રુવીય પૂંછડી જલીય પર્યાવરણથી રક્ષિત હોય છે. પ્રોટીન પરિઘીય (peripheral) કે અંતર્ગત હોય છે. પરિઘીય પ્રોટીન સપાટી સાથે સંબંધિત હોય છે. જયારે જે પ્રોટીન પટલમાં અંશતઃ કે સંપૂર્ણ રીતે પ્રક્ષેપિત હોય છે તે અંતર્ગત (integral) પ્રોટીન કહેવાય છે.

રોબર્ટસને એકમ પટલ સંકલ્પના (unit membrane concept) રજૂ કર્યો. તેમના મતાનુસાર લિપિડના દિસ્તરના બંને તરફ પ્રોટીનનો અસમ સ્તર આવેલો હોય છે. રસસ્તર અંગેનું સૌથી સર્વસ્વીકૃત મોડેલ સિંગર અને નિકોલ્સને 1972માં સૂચવ્યું હતું. તેને ફ્લુઇડ-માઝેઇક-મોડેલ કહે છે. ફ્લુઇડ-માઝેઇક-મોડેલ પ્રમાણે કોષરસપટલ લિપિડનું દિસ્તરીય સળંગ પડ અને તેમાં સમાવિષ્ટ પ્રોટીન ધરાવે છે. આ પટલ અર્ધતરલ (semifluid) અને ક્રિયાત્મક રીતે ગતિશીલ (dynamic) હોય છે. લિપિડના અને પ્રોટીનના અશુઓ દ્રવ્યોના વહનમાં મહત્ત્વનો ભાગ ભજવે છે. પરિઘીય પ્રોટીન શિથિલ અને ઉપરછલ્લી ગોઠવણી ધરાવે છે. તેથી તેને સરળતાથી દૂર કરી શકાય છે. આ પ્રોટીન બહિંગત પ્રોટીન છે. બાકીના પ્રોટીન પટલમાં અંગભૂત ગોઠવણી ધરાવે છે. તેને સરળતાથી દૂર કરી શકાતા નથી. આ પ્રોટીન અંતર્ગત પ્રોટીન છે. આમાંના કેટલાક પ્રોટીન પટલની બહાર સુધી પ્રક્ષેપિત હોય છે. તેમાં પાણીમાં દ્રાવ્ય પદાર્થો માટે માર્ગ બને છે. કેટલાક પ્રોટીન લિપિડ સ્તરમાં અડધે સુધી ખૂંપેલા હોય છે. તેઓ બહારની સપાટી તરફ પ્રક્ષેપિત છે. પ્રોટીન અને લિપિડનું જોડાણ જલવિતરાગી (hydrophobic) પ્રકારનું છે. પટલની અર્ધતરલતા તેને આભારી છે.

કોષરસસ્તરનું સૌથી મહત્ત્વનું કાર્ય અશુઓનું તેની આરપાર વહનનું છે. કોષરસસ્તર અર્ધપ્રવેશશીલ તેમજ પસંદગીમાન પ્રવેશશીલ એમ બે પ્રકારે વર્તે છે. કોષરસસ્તર દ્વારા વહન મુખ્ય બે પ્રકારે થાય છે : મંદવહન અને સક્રિય વહન.

મંદવહનની ક્રિયા દ્રવ્યોની સાંદ્રતા ઢોળાશને અનુસરીને થાય છે. જેમકે, વધુ સાંદ્રતા તરફથી ઓછી સાંદ્રતા તરફ જેમાં શક્તિની આવશ્યકતા રહેતી નથી. પાણી પણ કોષરસસ્તરમાંથી વધુ સાંદ્રતાથી ઓછી સાંદ્રતા તરફ આરપાર વહન પામે છે. મંદવહનના બે પ્રકાર છે : સાદું પ્રસરણ અને અનુકૂલિત પ્રસરણ.

પાણી, વાયુ ઇત્યાદિનું પ્રસરણ સાદું પ્રસરણ છે. કોષરસસ્તરની બંને બાજુની સાંદ્રતા સંતુલિત થાય છે ત્યારે તે અટકે છે. પ્રસરણથી થતા પાણીના વહનને આસૃતિ કહેવાય છે. અનુકૂલિત પ્રસરણ પણ ઢોળાંશની દિશામાં જ થાય છે, પરંતુ તેમાં વાહક અણુઓની મધ્યસ્થી જરૂરી હોય છે.

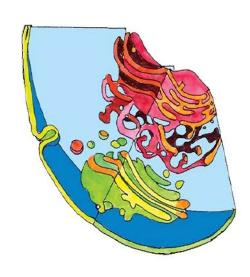
સર્ક્રિય વહન ઢોળાંશની વિરુદ્ધ દિશામાં થતું હોય છે. વહનની આ ક્રિયા શક્તિ આધારિત છે. જેમાં શક્તિ વપરાય છે. દા.ત., Na+ અને K+ પંપ.

કોષદીવાલ

કોષદીવાલ એ નિર્જીવ કઠિન રચના છે, જે બાહ્ય આવરણ સ્વરૂપે કોષરસસ્તરની ફરતે આવેલી હોય છે. તે માત્ર કોષને આકાર આપે છે એટલું જ નહિ, પરંતુ કોષને યાંત્રિક નુકસાન અને ચેપ સામે રક્ષણ આપે છે. લીલની કોષદીવાલ સેલ્યુલોઝ, ગેલેકટન્સ, મેનોસ અને ખનીજ તત્ત્વો જેવા કે કૅલ્શિયમ કાર્બોનેટની બનેલી હોય છે. જયારે બીજી વનસ્પતિઓમાં તે સેલ્યુલોઝ, હેમીસેલ્યુલોઝ, પેકટીન અને પ્રોટીનની બનેલી છે. અપવાદરૂપે ફૂગની કોષદીવાલ તેમની રચનામાં કાઈટીન ધરાવે છે. તરુણ વનસ્પતિકોષમાં આવેલી કોષદીવાલ પ્રાથમિક કોષદીવાલ કહેવાય છે. તે સેલ્યુલોઝની બનેલી છે. બે નજીકના કોષોને સાંકળતી પ્રાથમિક દીવાલો વચ્ચે પેકટીનનો બનેલો મધ્યપટલ (middle lamella) હોય છે, જે બે કોષો વચ્ચે સેતુ રચે છે.

પ્રાથમિક કોષદીવાલ પર હેમીસેલ્યુલોઝ, લિગ્નીન અને સુબેરિનની જમાવટ થવાથી દ્વિતીય કોષદીવાલનું નિર્માણ થાય છે.

બે નજીકના કોષોનો કોષરસ એકબીજા સાથે કોષરસતંતુઓ (plasmodesmata) વડે જોડાયેલો હોય છે, જે કોષદીવાલ અને મધ્યપટલમાં આવેલા હોય છે.

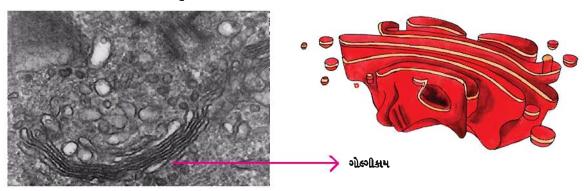

કોષરયના 59

र्थात:परसतंत्र

કોષોમાંની બધી જ પટલમય અંગિકાઓ તેઓની રચના અને કાર્યોની દષ્ટિએ અલગ હોય છે. આમ છતાં તેઓ ભેગા મળીને અંત:પટલમયતંત્ર રચે છે, કારણ કે તેઓનાં કાર્યો એકબીજાના સંકલનથી થતાં હોય છે. અંત:કોષરસજાળ, ગોલ્ગીકાય, લાયસોઝોમ્સ અને રસધાનીઓને પટલતંત્રનાં ઘટકો માનવામાં આવે છે. કજ્ઞાભસૂત્ર, હરિતક્સ અને પેરોક્સિઝોમ્સનું સંકલન ઉપરના પટલતંત્ર સાથે હોતું નથી તેથી તેઓને અંત:પટલતંત્રનો ભાગ માનવામાં આવતો નથી.

र्शतः डोयरसभाग (Endoplasmic Reticulum)

સમગ્ર કોષરસના વિસ્તારમાં પથરાયેલ નલિકામય રચનાઓના જાળાને અંત:કોષરસજાળ કહે છે. નલિકાની રચના બેવડા પડની કોથળી જેવી હોય છે, જે સિસ્ટર્ની (cisternae) કહેવાય છે. તે કોષરસપટલ તેમજ કોષકેન્દ્રપટલ સાથે સંપર્ક ધરાવે છે. જે કોષો સિક્રિય રીતે સ્ત્રાવી હોય તેમની અંત:કોષરસજાળની બહારની સપાટી પર ઘણા રિબોઝોમ્સ ગોઠવાયેલા હોય છે. તેને કિશકામય અંત:કોષરસજાળ (RER = Rough Endoplasmic reticulum) કહે છે. મોટા પ્રમાણમાં લિપીડ ઉત્પન્ન કરતાં કોષોમાંની અંત:કોષરસજાળ પર રિબોઝોમ્સ હોતા નથી. તેને કિશકાયિહીન અંત:કોષરસજાળ (SER = Smooth Endoplasmic recticulum) કહે છે. પ્રાણીકોષોમાં સ્ટિરોઇડ અતં:સ્ત્રાવો જેવા લિપિડનું સંશ્લેષણ (SER) કિશકાવિહિન અંત:કોષરસજાળમાં થાય છે.



કશિકામય અને કશિકાવિહીન અંતઃકોષરસજાળ

ગોલ્ગીકાય

ગોલ્ગીકાયને કોષકેન્દ્રની નજીક સૌપ્રથમ 1898માં ઇટાલિયન અંતઃસ્થવિદ્યાશાસ્ત્રી કેમિલો ગોલ્ગીએ નિહાળ્યું. ચપટી, પટલમય કોથળીઓ કે સિસ્ટર્ની જેવી રચનાઓની થપ્પીમય ગોઠવણીથી ગોલ્ગીકાય કે ગોલ્ગીપ્રસાધનની રચના થાય છે. સિસ્ટર્ની 0.5 μ m થી 1.0 μ m વ્યાસ ધરાવે છે. દરેક થપ્પીમાં 4 થી 8 નલિકાઓ હોય છે. નલિકાઓની બહારની કિનારી તરફ લંબગોળ અથવા ગોળ પૂટિકાઓ જોવા મળે છે.

અંતઃકોષરસજાળનાં સંશ્લેષિત દ્રવ્યો, ગોલ્ગીકાયની નલિકાઓમાં થઈને પુટિકાઓ દ્વારા કોષરસમાં મુક્ત થાય છે. ઘણી સંખ્યામાં પ્રોટીનનું નિર્માણ રિબોઝોમ્સ દ્વારા અંતઃકોષરસજાળની સપાટી ઉપર થાય છે અને ગોલ્ગીકાયની બહારની સપાટીમાંથી મુક્ત થતા પહેલાં તેમાં ફેરફારો થાય છે. ગોલ્ગીકાય એ ગ્લાયકોસિપિડ અને ગ્લાયકોપ્રોટીન્સનું સંશ્લેષણ સ્થાન છે.

ગોલ્ગીકાય (માઇક્રોસ્કોપમાં જોતાં)

જીવવિજ્ઞાન 60

वायक्रेक्रेक्स (Lysosomes)

લાયસોઝોમ્સ

रसंधानीको

પણ કહે છે.

રસધાનીઓ

ક્ષાભયુત્ર

ક્રીષરસમાં રહેલા ક્રોષરસવિહીન વિસ્તારોને રસધાની કહે છે. વનસ્પતિકોષમાં આવેલી મોટી રસધાનીની આસપાસ અર્ધપ્રવેશશીલ પટલનો બનેલો રસધાનીપટલ (tonoplast) હોય છે. રસધાનીપટલ ઘણી સંખ્યામાં આયનો અને બીજાં દ્રવ્યોનું સંકેન્દ્રસ ઢોળાશથી વિરુદ્ધ દિશામાં રસધાનીમાં વહન કરે છે. સામાન્ય રીતે ત્રાણીકોષમાં રસધાની હોતી નથી. પેરામેશિયમમાં રસધાની આકુંચક (contractile) પ્રકારની છે. તે ક્રેપોમાં આસૃતિદાળ સર્જ છે. વિવિધ દ્રવ્યો તેમાં સંચિત તથા ઉત્સર્જિત થાય છે.

શાયસોઝોમ્સ, ગોલ્ગીકાયમાંથી મુક્ત થતી પુટિકાઓ તરીકે

ઉત્પન્ન થાય છે. તેઓની કરતે એકસ્તરીય પટલ હોય છે. તેઓ કોર્પાતરીય પાચન (intracellular digestion) સાથે સંકળાયેલા હોય છે. તેમાં લગભગ બધા મહાઅભુઓને પચાવી શકે તેવા ઉત્સેવકો હોય છે. આ ઉત્લેચક હાઇડ્રોલેઝ પ્રકારના હોય છે. (લાઇપેઝ, પ્રોટીએઝ, કાર્બોહાઈડ્રેઝ) તેઓ યનભવશ (phagocytosis) અને પ્રવાહીભવસ (pinocytosis)ની ક્રિયામાં મહત્ત્વના છે. જીઈ ક્રોયોના વિઘટન માટે પણ તે જવાબદાર હોવાથી તેને આત્મવાતી કોવળી (suicidal bag)

ક્શાભસૂત્ર એ સ્વર્ય બેવડાતી અંગિકા છે. સૂકોમકેન્દ્રી કોયોના કોષરસમાં તેની સંખ્યા, આકારો અને કદ જુદા જુદા હોય છે. દરેક કોષોમાં કશાલસૂત્રની સંખ્યા તે કોમની દેહધાર્મિક ક્રિયાઓ ઉપર આધારિત છે. વિશિષ્ટ રીતે તેઓ તંતુમય, નવાકાર કે કક્ષિકામય હોય છે. તે 0.2 - 1.0 μm વ્યાસ અને 1.0 - 4.1 µm લંબાઈ ધરાવે છે. દરેક ક્શાભસૂત્રની આસપાસ બેવડા

પડનું આવરણ હોય છે. બહારનું પડ સર્વગ હોય છે. અંદરનું પડ અનેક પ્રવર્ષો ધરાવે છે. આ પ્રવર્ષોને ક્રિસ્ટી (cristae) કહે છે, જે નળાકાર કે ચપટા હોય છે. ક્રિસ્ટી 'F, ક્શો' તરીકે ઓળખાતી રચનાઓ ધરાવે છે. ક્રિસ્ટી સિવાયના બાકીના અંદરના વિસ્તારને આધારક (matrix) કહે છે. આધારકમાં રિબોઝોમ્સ તથા વલયાકાર - DNA હોય છે.

કશાભસૂત્રના આધારકમાં ક્રેમ્સચકમાં જરૂરી એવા ઉત્સેચકો આવેલા છે. F, કલો ઑક્સિડેટિવ ફૉસ્ફોરાયલેશન માટે જરૂરી ઘટકો ધરાવે છે. અહીં ATPનું સંશ્લેષણ થાય છે માટે તેને કોમના 'શક્તિઘર' (power house) કહે છે.

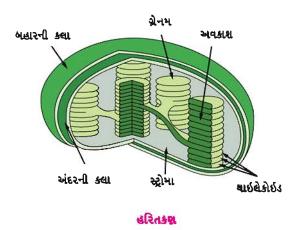
કોષરયના 61

2428B

વનસ્પતિકોષોમાં રંજકક્શ જોવા મળે છે. તેઓ ચોક્કસ રંજકદ્રવ્ય (pigments) ધરાવે છે. રંજકદ્રવ્યોને આધારે રંજકક્શના ત્રજ્ઞ પ્રકારો પાડી શકાય : રંગક્શ, હરિતક્શ, રંગહીનક્શ.

संभादं

હરિતદ્રવ્ય સિવાયના રંજકદ્રવ્ય ધરાવતાં કક્ષો છે. કેરોટિન, ઝેન્થોફિલ, એન્થ્રોસાયેનીન જેવા રંજકદ્રવ્યો તેમાં હોય છે. પુષ્પ, ફળ તથા બીજના વિવિધ રંગ તેને આભારી છે.


बरितश्च

હરિતક્રવ્ય અથવા નીલરસ (chlorophyll) ધરાવતા રંજકકશોને હરિતક્શ કહે છે. તેના દ્વારા પ્રકાશસંશ્લેષજ્ઞની ક્રિયા થાય છે.

મોટા ભાગના હરિતક્જ્ઞો પર્જાની મધ્યપર્જાપેશીમાં હોય છે. તેઓ લેન્સ (lens) આકારના, અંડાકાર,

િલાકાર (discoid) અથવા ક્યારેક પટ્ટી આકારના હોય છે. તેઓ વિભિન્ન લંબાઈ ધરાવે છે. જેમકે 5 - 10 μm અને 2 - 4 μm પહોળાઈ ધરાવે છે. દર એક કોષમાં તેની સંખ્યા પણ જુદી જુદી હોય છે. કેલમિડોમોનાસમાં એક કોષ, મધ્યપર્જ્સમાં 20 થી 40 જેટલી સંખ્યામાં હોય છે.

હરિતક્ક્ષની દીવાલ બેવડાં પડની હોય છે. બહારનું પડ સળંગ હોય છે. અંદરનું પડ અનેક ગડીઓયુક્ત પટલમય તંત્ર રચે છે. પટલમય તંત્ર પ્રેના (grana)ની રચના કરે છે. પ્રેનાને સાંકળતાં પટલ આંતરપ્રેનમ પટલ કહેવાય છે. પ્રેના સિવાયના ભાગને સ્ટ્રોમા (stroma) કહે છે. દરેક પ્રેનમ (granum)ની રચનામાં સિક્કાની થપ્પીની માફક ગોઠવાયેલી ચપટી કોથળીઓ જેવી રચનાઓ હોય છે, જેને થાઇલેકોઇડ (thylakoid) કહે છે. સામાન્ય રીતે એક હરિતક્શમાં 40 થી 60 પ્રેના હોય છે. દરેક પ્રેનમ 02 થી 100 થાઇલેકોઇડ ધરાવે છે. હરિતદ્રવ્ય

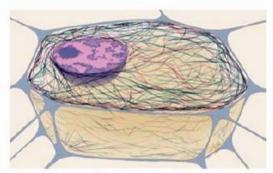
અથવા નીલરસ (chlorophyll) રંજકદ્રવ્ય થાઇલેકોઇડમાં આવેલું હોય છે. આ ઉપરાંત ફોટો ફૉસ્ફોરીકરણ દ્વારા ATP બનાવવા માટેના જરૂરી દ્રવ્યો થાઇલેકોઇડમાં હોય છે. સ્ટ્રોમામાં પ્રોટીન, રિબોઝોમ્સ (70S), વલયાકાર – DNA તેમજ અંધકાર પ્રક્રિયા માટે જરૂરી ઉત્સેચકો હોય છે.

इंअकीलक्ष

તેમાં કોઈ રંજક્દ્રવ્ય હોતું નથી. તે ખોરાકસંગ્રહી ક્લ તરીકે વર્તે છે. સ્ટાર્ચ સંગ્રહ કરતા ક્શ સ્ટાર્ચક્લ (amyloplast), ચરબી કે તેલ સંચય કરતા ક્લ તૈલક્શ (elaioplasts) અને પ્રોટીન સંચય કરતા ક્લ સમિતાયા ક્શ (aleuroplasts) કહેવાય છે.

ક્લિઝોમ્સ

રિબોઝોમ્સ ક્શિકામય રચના ધરાવે છે અને કોષરસમાં મુક્ત તેમજ અંતઃકોષરસજાળ સાથે સંકળાયેલ હોય છે. રિબોઝોમ્સ 80 S પ્રકારના હોય છે. તેના બે પેટા એકમો 60 S અને 40 S હોય છે. રિબોઝોમના બંધારણમાં રિબોઝોમલ RNA અને પ્રોટીન આવેલાં છે.


અંતઃકોષરસજાળ સાથે સંકળાયેલા રિબોઝોમ્સ લાયસોઝોમ્સના તથા રસસ્તરની રચનામાં ભાગ લેતા પ્રોટીનનું સંશ્લેષણ કરે છે. મુક્ત રિબોઝોમ્સ અન્ય પ્રોટીનનું સંશ્લેષણ કરે છે. કોઈ એક m-RNA સાથે એક કરતાં વધુ રિબોઝોમ સંકળાય છે. આવા સંકુલને પોલીઝોમ અથવા પોલી રિબોઝોમ કહે છે.

अवविज्ञान

62

कोभरशक्तंकाव

કોષરસકંકાલની રચના ત્રણ પ્રકારના તંતુઓ વડે થાય છે : સૂક્ષ્ય તંતુઓ (microfilaments),

કોષરસકંકાલ

સૂક્ષ્મ નલિકાઓ (microtubules) અને મધ્યવર્તી તંતુઓ (intermediate filaments). સૂક્ષ્મ તંતુઓ એક્ટિન જેવા પ્રોટીનના બનેલા છે. તેઓ છૂટાછવાયા કે જાવા રૂપે કે સમાંતર ગોઠવાયેલા હોય છે. કોપીય ગતિ કે કોપના સ્વરૂપકેર સાથે તેઓ સંકળાયેલા છે. અમીબીય ગતિ, જીવરસનું ભ્યાસ કે દ્રવ્યક્ક્યોનું સ્થળાંતરસ તેઓને આભારી છે.


સૂશ્ય નહિકાઓ, ગોળાકાર મોટીન ટ્યુબ્યુલીનની બનેલી પોલી નહિકાઓ છે. તેઓ કોયનો પણ આકાર જાળવવામાં મદદરૂપ છે. કોયીય ગતિ અને દ્રવ્યોના કોયીય વહનમાં તે ભાગ ભજવે છે. રંગસૂત્રોના સ્થળાંતરણ માટે પણ જવાબદાર છે.

મધ્યવર્તીતંતુઓ મજબૂત અને ટકાઉ પ્રોટીનતંતુ છે. તે તંતુઓની છાબ (basket) રચે છે અને અન્ય તંતુઓ અને નિલકાઓને આધાર આપે છે.

ક્રેષરસકંકાલના ત્રણ તંતુઓ–સૂક્ષ્યનલિકાઓ વાદળી રંગનાં, લીલા રંગનાં મધ્યવર્તી તંતુઓ અને એક્ટિન તંતુઓ ક્રોષમાં અગણ્ય ભૂમિકા ભજવે છે.

पदम अने क्शा

બંને રચનાઓ પ્રચલન અને હલનચલન સાથે સંકળાયેલી છે. તે કોયની મુક્ત સપાટી પર આવેલા હોય છે. પક્ષ્મ પ્રમાણમાં ઓછી લંબાઈ ધરાવે છે. કશા વધુ લાંબી હોય છે. કશા એક કે બે હોય છે. પક્ષ્મ અનેક હોય છે. બંને દ્વારા પ્રેરાતી ગતિ પણ ભિન્ન પ્રકારની હોય છે.

પશ્ય અને કશાની અતિ સુશ્ય રચના

પત્મ અને કશાના સૂત્ય લંધારણમાં થણી સમાનતા છે. લંનેનો ઉદ્ભવ તલકાય (basal body)માંથી થાય છે. તલકાય, તારાકેન્દ્રના તલકાય જેવી જ રચના ધરાવે છે. પત્મના તથા કશાના અત્રને અત્રસૂત્ર (axoneme) કહે છે. તે લે કેન્દ્રસ્થ સૂત્ય નલિકા અને પરિષ તરફ નવ જોડીઓ સૂત્ય નલિકાના જૂથો વડે બને છે (9 + 2 ગોઠવણી). પાસે પાસેની જોડીઓ બે તંતુકો વડે જોડાયેલી હોય છે. મધ્યસ્થ કે કેન્દ્રસ્થ સૂત્ય નલિકા પણ આ તંતુકો વડે જોડાય છે. પત્મ તથા કશા એ પટલો વડે ઘેરાયેલી નલિકામય રચનાઓ છે. પેરામિશિયમમાં પત્મ જોવા મળે છે. યુગ્લીનામાં કશા જોવા મળે છે. જીવાશુમાં પશ પત્મધારી અને કશાધારી પ્રકારો છે.

તારાકાય એક એવી અંગિકા છે જે બે નળાકાર રચનાઓ ધરાવે છે, જે એકબીજાની કાટખૂશે ગોઠવાયેલી હોય ત્યારે તેને તારાકેન્દ્ર કહે છે. બધા જ પ્રાણીકોષમાં તારાકેન્દ્ર જોવા મળે છે. કેટલીક લીલ અને ફૂગમાં પદ્મ તે હોય છે. દરેક તારાકેન્દ્રનું આયોજન ગાડાના પૈડા જેવું જણાય છે. પરિષના વિસ્તારમાં નવ ત્રેખડ (triplet), લગભગ 40° ના કોશ રચીને ગોઠવાઈ હોય છે. દરેક ત્રેખડમાં ટ્યુબ્યુલીનની બનેલી ત્રણ સૂક્ષ્મ નલિકા હોય છે.

Downloaded from https:// www.studiestoday.com

કોષરચના 63

પાસે પાસેની ત્રેખડ પ્રોટીનના તંતુઓ વડે જોડાયેલી હોય છે. કેન્દ્રભાગે પ્રોટીનનો બનેલો મધ્યદંડ (hub) હોય છે. ત્રેખડની સૂક્ષ્મ નલિકાઓ તંતુ વડે મધ્યદંડ સાથે જોડાયેલી રહે છે. તારાકેન્દ્રની આસપાસ આવેલો જીવરસ તારાવર્તુળ (centrosphere) કહેવાય છે. તારાકેન્દ્ર કોષ વિભાજન દરમિયાન દિધુવીય ત્રાકની રચનાનું સંચાલન કરે છે. તે આધારકશિકાઓ, પક્ષ્મો અને કશાના નિર્માણમાં સંકળાય છે.

कोषकेन्द्र (Nucleus)

કોષમાં થતી વિવિધ ક્રિયાઓનું નિયામકી કેન્દ્ર કોષકેન્દ્ર છે. સામાન્ય રીતે કોષમાં એક કોષકેન્દ્ર હોય છે. કેટલાક કોષમાં બે કોષકેન્દ્ર હોય છે. માનવ RBCs (રકતકશો) અને ચાલની નલિકામાં કોષકેન્દ્રનો અભાવ છે. કોષકેન્દ્રની રચનામાં કોષકેન્દ્રપટલ (nuclear membrane), કોષકેન્દ્રરસ (nucleoplasm) અને રંગસૂત્રદ્રવ્ય (chromatin) હોય છે.

કોષકેન્દ્ર

કોષકેન્દ્રપટલ બેવડા પડવાળી નલિકામય રચના છે. બે પડ વચ્ચે પરિકોષકેન્દ્રીય અવકાશ (perinuclear space) હોય છે. બાહ્યપડ અંતઃકોષરસજાળ સાથે સંકળાયેલું રહે છે. તે બાહ્ય સપાટી પર રિબોઝોમ્સ ધરાવે છે. કેટલાંક સ્થળે કોષકેન્દ્ર છિદ્રો (nuclear pore) આવેલા છે. આ છિદ્રો દ્વારા કોષકેન્દ્રસ્સ અને કોષરસ વચ્ચે RNA અને પ્રોટીન અશુઓની હેરફેર થાય છે.

કોષકેન્દ્ર કોષકેન્દ્રીકાઓ અને રંગસૂત્રદ્રવ્ય ધરાવે છે. કોષકેન્દ્રીકા ગોળાકાર અંગિકા છે. તેની આસપાસ પટલ હોતું નથી. કેટલાક નિશ્ચિત રંગસૂત્રના કોષકેન્દ્રીકા આયોજન-વિસ્તાર (nucleolar organiser region) પર તેનું નિર્માણ થાય છે. રિબોઝોમલ - RNAનું સંશ્લેષણ સક્રિય રીતે અહીં થાય છે.

रंभराभ (Chromosomes)

રંગસૂત્રદ્રવ્ય DNA, RNA અને હિસ્ટોન અને બિનહિસ્ટોન પ્રકારના પ્રોટીનનું બનેલું છે. આંતરાવસ્થાના કોષમાં રંગસૂત્રો અસ્પષ્ટ જાળ સ્વરૂપે પથરાયેલા હોય છે, જેને રંગસૂત્રદ્રવ્ય કહે છે. કોષવિભાજનની પ્રક્રિયા દરમિયાન રંગસૂત્રો સૂત્રીય રચનાઓ તરીકે દેખાય છે. સુકોષકેન્દ્રી કોષના કોષકેન્દ્રમાં રંગસૂત્રો દેખાય છે. તેમના આકાર કોષવિભાજનની ભાજનાવસ્થા સમયે સ્પષ્ટ થાય છે. દરેક રંગસૂત્રમાં પ્રાથમિક રચના કે રકાબી જેવી રચના ધરાવતું સેન્ટ્રોમિયર આવેલું હોય છે, જેને કાઇનેટોકોર કહે છે. સેન્ટ્રોમિયરના સ્થાનને આધારે રંગસૂત્રોના નીચે મુજબ ચાર પ્રકારો પડે છે:

- (1) મેટાસેન્ટ્રિક : આ પ્રકારના રંગસૂત્રમાં સેન્ટ્રોમિયર મધ્યમાં હોવાથી રંગસૂત્રિકાની બંને ભુજાઓ સરખી લંબાઈની હોય છે.
- (2) સબમેટાસેન્ટ્રિક : આ પ્રકારના રંગસૂત્રમાં સેન્ટ્રોમિયર રંગસૂત્રના મધ્ય ભાગેથી સહેજ દૂર હોય છે. તેથી એક બાજુની ભુજાઓ ટૂંકી હોય છે.
- (3) એકોસેન્ટ્રિક : આ પ્રકારના રંગસૂત્રમાં સેન્ટ્રોમિયર રંગસૂત્રના અંત ભાગ નજીક હોય છે, જેથી એક ભુજા ખૂબ જ ટૂંકી અને બીજી ભુજા ખૂબ જ લાંબી હોય છે.
- (4) <mark>ટિલોસેન્ટ્રિક :</mark> આ પ્રકારના રંગસૂત્રમાં સેન્ટ્રોમિયર રંગસૂત્રના છેડે હોય છે.

કેટલાંક રંગસૂત્રો ચોક્કસ જગ્યાએ અરંજિત દ્વિતીયક રચનાઓ ધરાવે છે. નાના ટુકડા જેવી દેખાતી આ રચનાઓ સેટેલાઇટ કહેવાય છે.

રંગસૂત્રોના પ્રકારો

્રુવવિજ્ઞાન

64

સૂક્ષ્મકાય

પટલ ધરાવતી ઘણી સૂક્ષ્મ રસધાનીઓને સૂક્ષ્મકાય (microbodies) કહે છે. તેઓ વનસ્પતિ અને પ્રાણીકોષો બંનેમાં જુદા જુદા ઉત્સેચકો ધરાવે છે.

સારાંશ

બધા જ જીવંત સજીવો કોષોના બનેલા છે. કોષ સજીવનો રચનાત્મક અને ક્રિયાત્મક એકમ છે. કોષો તેઓના આકાર, કદ અને કાર્યોમાં ફેરફાર દર્શાવે છે. કેટલાક સજીવો એકકોષી જ્યારે બાકીના બહુકોષી હોય છે. દરેક કોષ નવો સ્વતંત્ર સજીવ ઉત્પન્ન કરવાની ક્ષમતા ધરાવે છે અને તેને કોષની સંપૂર્ણ ક્ષમતા (totipotency) કહે છે. કોષકેન્દ્રની આસપાસ પટલની હાજરી કે ગેરહાજરીને આધારે સજીવોને આદિકોષકેન્દ્રી (ખૂબ જ આદિકોષકેન્દ્ર) અને સુકોષકેન્દ્રી (ખૂબ જ વિકસિત કોષકેન્દ્ર) એવા પ્રકારોમાં વિભાજિત કરવામાં આવે છે. વનસ્પતિકોષ અને પ્રાણીકોષમાં મુખ્ય તફાવત તરીકે વનસ્પતિ કોષમાં કોષદીવાલ, રંજકક્શો અને રસધાનીઓની હાજરી હોય છે. કોષપટલને રસસ્તર કહે છે. વનસ્પતિકોષમાં તે કોષદીવાલની અંદરની બાજુએ આવેલું હોય છે. તે પસંદગીમાન પ્રવેશશીલ પટલ છે, જે ઘણા અણુઓના વહનની સુવિધા પૂરી પાડે છે. સુકોષકેન્દ્રી કોષો પટલયુક્ત અંગિકાઓ જેવી કે અંતઃકોષરસજાળ, ગોલ્ગીપ્રસાધન, લાયસોઝોમ્સ અને રસધાનીઓ ધરાવે છે.

અંતઃકોષરસ જાળ એ સિસ્ટર્નીની બનેલી છે. અંતઃકોષરસજાળ તેની બાહ્ય સપાટી ઉપર રિબોઝોમ્સ ધરાવે તો તેને કિષ્કાિકામય અંતઃકોષરસજાળ કહે છે. તે પ્રોટીનસંશ્લેષણ સાથે સંકળાયેલી છે. રિબોઝોમ્સની ગેરહાજરી ધરાવતી અંતઃકોષરસજાળ સરળ અંતઃકોષરસજાળ કહેવાય છે. તે લિપિડના સંશ્લેષણ માટે અગત્યની છે. ગોલ્ગીપ્રસાધન એ ચપટી કોથળીઓની બનેલી છે. તે કોષકેન્દ્રની નજીક આવેલી છે. ક્યારેક તેને ગોલ્ગીકાય કે ગોલ્ગીસંકુલ પણ કહેવામાં આવે છે. અંતઃકોષરસજાળમાં સંશ્લેષણ પામેલાં ઘટકો ગોલ્ગીકાયની કોથળીઓમાં પંક થઈને કોષરસમાં મુક્ત થાય છે. લાયસોઝોમ્સ એ એક જ દીવાલ સ્તરથી આવરિત હોય છે. તેઓ ઉત્સેચકો ધરાવે છે અને બધા જ મહાઅણુઓનું પાચન કરે છે. વનસ્પતિકોષોમાં મોટી રસધાનીઓની હાજરી હોય છે. તે પટલ દર્શાવે છે. જેને ટોનોપ્લાસ્ટ કહે છે. જુદાં જુદાં ઘટકોનો સાવ કે સંગ્રહ તેમાં થાય છે.

કણાભસૂત્ર એ ATP ના નિર્માણ સાથે સંકળાયેલ હોવાથી તેને કોષનું પાવરહાઉસ કહે છે. દરેક કણાભસૂત્ર દિસ્તરીય આવરણ ધરાવે છે. અંદરનું આવરણ અંદરની તરફ અનેક ગડીયુક્ત પ્રવર્ધો ધરાવે છે. જેને કિસ્ટી કહે છે. અંદરથી અંદરના પડ તરફનો પ્રદેશ આધારક (metrix) કહેવાય છે. કેબ્સચક્ર અને ઑક્સિડેટિવ ફૉસ્ફોરાયલેશન જેવી કિયાઓ કણાભસૂત્રમાં થાય છે. દિસ્તરીય હરિતકણનું અંદરનું સ્તર અનેક ગડીઓયુક્ત પટલમયતંત્ર રચે છે, જેને ગ્રાના કહે છે. દરેક ગ્રેનમ થાઇલેકોઇડનું બનેલું છે. જે પ્રકાશસંશ્લેષી રંજકકણો ધરાવે છે. પ્રકાશસંશ્લેષણની પ્રકાશપ્રક્રિયા ગ્રાનામાં થાય છે. જયારે અંધકારપ્રક્રિયા સ્ટ્રોમામાં થાય છે. 70 S પ્રકારના રિબોઝોમ્સની હાજરી આદિકોષકેન્દ્રી કોષોમાં હોય છે. જયારે 80 S પ્રકારના રિબોઝોમ્સની હાજરી સુકોષકેન્દ્રી કોષોમાં હોય છે. કોષરસ કંકાલને આધારે રચાય છે. જે સૂક્ષ્મ તંતુઓ, સૂક્ષ્મ નલિકાઓ અને મધ્યવર્તી તંતુઓના બનેલા છે. સુકોષકેન્દ્રી કોષો કોષકેન્દ્ર, કોષકેન્દ્ર, કોષકેન્દ્રરસ અને કોમેટીન દ્રવ્ય ધરાવે છે. કોષકેન્દ્રપટલ એ દિસ્તરીય રચના છે. જેનું બહારનું સ્તર અંતઃકોષરસજાળ સાથે સળંગ હોય છે.

સ્વાદશાય

1.	નીચે	આપેલા	પ્રશ્નોના	ઉત્તરો	પૈકી	સાચા	ઉત્તર	સામે	સર્કલમાં	પેન્સિલથી	રંગ	પૂરો	
----	------	-------	-----------	--------	------	------	-------	------	----------	-----------	-----	------	--

(1)	કોષકેન્દ્રની શોધ કોણે	કરી ?		
	(અ) રોબર્ટ હૂક	0	(બ) રોબર્ટ બ્રાઉન	0
	(ક) પરકિન્જે	. 0	(ડ) રોબર્ટ કૂક	0

કોષરચના 65

(2)	નીચે પૈકીની કઈ અંગિકા પટ	લવિહીન ર	ત્રંગિકા છે ?	
	(અ) અંતઃકોષરસજાળ	0	(બ) રિબોઝોમ્સ	0
	(ક) લાયસોઝોમ્સ	0	(ડ) ગોલ્ગીસંકુલ	$\overline{\bigcirc}$
(3)	નીચે પૈકી કોણ સૌથી નાનો	ું કોષ ધરાવે	. છે ?	
	(અ) યુગ્લીના	0	(બ) યીસ્ટ	0
	(ક) માયક્રોપ્લાઝમા	$\hat{\bigcirc}$	(ડ) જીવાશુ	\hat{O}
(4)	• •	ઉપરાંત અ	્રે ાાવેલ નાના ગોળાકાર DNAને શું કહે	_
. ,	(અ) કોસ્મીડ	0	(બ) પ્લાસ્મીડ	\circ
	(ક) એપીઝોમ્સ	$\hat{\circ}$	(ડ) હાઇબ્રિડ	$\hat{\circ}$
(5)	પિલિ અથવા ફીમ્બ્રી કઈ પ્રક્ <u>રિ</u>	ું ત્યા સાથે ર		
` /	(અ) પ્રચલન	\bigcirc	(બ) હલનચલન	\bigcirc
	(ક) સંયુગ્મન	\tilde{O}	(ડ) ખોરાક લેવો	\tilde{O}
(6)	આદિકોષકેન્દ્રમાં કયા પ્રકારના	ે રિબોઝોમ્સ		
	(અ) 80 S	0	(બ) 90 S	0
	(§) 70 S	0	(3) 60 S	Ō
(7)	કોષવાદ મુજબ			_
` _	(અ) બધા જ કોષ જીવંત હો	.ય છે.		\bigcirc
	(બ) કોષનું નિર્માણ કોષવિભા	.જન દ્વારા	થાય છે.	Ŏ
	(ક) બધા જ કોષો સમભાજન	ા દર્શાવે છે		0000
	(ડ) કોષો સજીવોના રચનાકી	ય એકમ ઇ) .	Ô
(8)	વનસ્પતિમાં કોષવાદનો અમલ	. કોણે કર્યો	?	
	(અ) સ્લીડન	0	(બ) સ્વૉન	00
	(ક) વિર્શો	0	(ડ) જેનસન	0
(9)	ન્યુક્લિઓઇડ હાજરી :			
	(અ) વનસ્પતિકોષ	0	(બ) પ્રાણીકોષ	0
	(ક) જીવાશુકોષ	0	(ડ) વિષાશુ	0
(10)	વનસ્પતિકોષનું મધ્યપટલ નીચે		· · ·	
	(અ) સેલ્યુલોઝ	$\mathbf{\circ}$	(બ) કૅલ્શિયમ પેકટેટ	0
	(ક) સુબેરિન	_	(ડ) લિગ્નીન	0
(11)	નીચે પૈકીની કયા કોષની કો	ષદીવાલમાં	કાઈટીન આવેલું હોય છે ?	
	(અ) લીલ	0	(બ) ફૂગ	00
	(ક) પ્રાણીકોષ	0	(ડ) જીવાશુ	0
(12)	નીચે પૈકીની કઈ અંગિકા અં			
	(અ) હરિતક્શ	0	(બ) અંતઃકોષરસજાળ	00
	(ક) લાયસોઝોમ્સ	0	(ડ) રસધાની	0
(13)		માન્યપણે ર	ત્રાત્મઘાતી કોથળી તરીકે ઓળખાય છે ' -	?
	(અ) રસધાની	0	(બ) હરિતક્શ	0
	(ક) લાયસોઝોમ્સ	0	(ડ) ગોલ્ગીકાય	0

જીવવિજ્ઞાન 66 (14) આદિકોષકેન્દ્રી કોષનું લક્ષણ : (અ) કોષકેન્દ્રવિહીન (બ) કોષકેન્દ્રપટલવિહીન 0 (ક) હિસ્ટોન સિવાયનું DNA \bigcirc (ડ) ઉપરના બધા જ (15) કયા પ્રકારના રંગસૂત્રમાં સેન્ટ્રોમિયર છેડા ઉપર આવેલું હોય છે ? (અ) એક્રોસેન્ટ્રિક (બ) મેટાસેન્ટ્રિક 0 (ક) ટિલોસેન્ટ્રિક (ડ) સબ-મેટાસેન્ટ્રિક O 2. નીચેના પ્રશ્નોના ટૂંકમાં જવાબ આપો : (1) કોષવાદ એટલે શું ? (2) રૂડોલ્ફ વિર્શાનો ફાળો જણાવો. (3) પ્લાસ્મીડ શું છે? (4) PPLOનું પૂર્શ નામ લખો. (5) જીવાશુકોષમાં પ્રાવરનું કાર્ય જણાવો. આસૃતિની વ્યાખ્યા આપો. (7) કિશકામય અંતઃકોષરસજાળ વિશે તમે શું જાણો છો ? ગોલ્ગીસંકુલનું કાર્ય જણાવો. (9) ટોનોપ્લાસ્ટની વ્યાખ્યા જણાવો. (10) ગ્રેનમ એટલે શું ? 3. માગ્યા પ્રમાણે જવાબ આપો : (1) રિબોઝોમ્સની રચના વર્ણવો. (2) પક્ષ્મ અને કશા વચ્ચે તફાવત જણાવો. (3) અંતઃકોષરસજાળનાં કાર્યો જણાવો. (4) વનસ્પતિકોષ અને પ્રાણીકોષ વચ્ચે તફાવત જણાવો. (5) સુકોષકેન્દ્રી અને આદિકોષકેન્દ્રી વચ્ચે તફાવત જણાવો. નીચેના પ્રશ્નોના જવાબ આપો : (1) કોષરસપટલની અતિસૂક્ષ્મ રચના વર્ણવો. (2) કોષરસકંકાલ વિશે વર્ણવો. (3) હરિતકણની અતિસૂક્ષ્મ રચના અને કાર્યો વર્ણવો. (4) સેન્ટ્રોમિયરના સ્થાનને આધારે રંગસૂત્રના પ્રકારો સમજાવો.

(5) આદિકોષકેન્દ્રી કોષની રચના વર્શવો.

6

१ विड अधुओ - 1 (डार्जोहित अने यरजी)

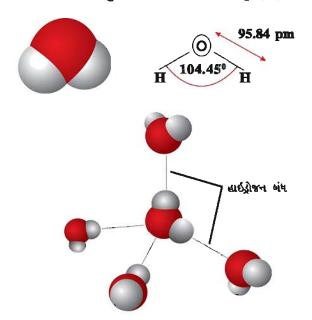
આપણે અગાઉ શીખ્યાં છીએ કે બધા સજીવોનો રચનાત્મક અને ક્રિયાત્મક એકમ કોષ છે. કોષની રચનામાં વિવિધ અંગિકાઓ તથા વિવિધ પ્રકારના અશુઓ સંકળાયેલા છે. જીવંત પેશીઓમાંથી આપણને બધા જ કાર્બન સંયોજનો મળે છે જેને જૈવિક અશુઓ કહી શકાય. આ રીતે જીવંત સજીવો પણ તેમનામાં અકાર્બનિક તત્ત્વો અને ઘટકો ધરાવે છે. જો આપણે વનસ્પતિપેશી, પ્રાણીપેશી કે અતિસૂક્ષ્મ સજીવોનું તત્ત્વીય પૃથક્કરણ કરીએ તો, કાર્બન, હાઇડ્રોજન, ઑક્સિજન અને ઘણાં બીજાં તત્ત્વોની યાદી આપણને મળશે. કોષ દ્વારા થતી ચયાપચયની ક્રિયાઓ વિવિધ રાસાયણિક પ્રક્રિયાઓનું જ પરિણામ છે, જેને જૈવરાસાયણિક ક્રિયાઓ કહેવાય છે. જૈવરાસાયણિક ક્રિયાઓમાં ઘણાં અશુઓ અને તત્ત્વો ભાગ લે છે. જીવંત સજીવો પોતાના પર્યાવરણમાંથી વિવિધ અશુઓ અને તત્ત્વો પ્રાપ્ત કરે છે અને તેઓનો ઉપયોગ કરીને શરીર માટે આવશ્યક ઘટકોનું સંશ્લેષણ કરે છે.

સજીવોના કોષોમાં જોવા મળતાં દ્રવ્યોને મુખ્ય બે જૂથોમાં વહેંચાય છે : (1) અકાર્બનિક અને (2) કાર્બનિક.

અકાર્બનિક દ્રવ્યોમાં પાણી, ખનિજ તત્ત્વો અને ખનિજ ક્ષારો સમાવિષ્ટ છે, જ્યારે કાર્બનિક તત્ત્વો કે ઘટકોમાં કાર્બોદિતો, ચરબી, પ્રોટીન, ન્યુક્લિઇક ઍસિડ, ઉત્સેચકો, અંતઃસાવો વગેરે સમાવિષ્ટ છે. કાર્બનિક સંયોજનો મુખ્યત્વે C, H અને O ના પરમાશુઓ ધરાવે છે. કાર્બન-કાર્બન, કાર્બન-હાઇડ્રોજન કે કાર્બન-ઑક્સિજન વચ્ચે બંધ રચાતાં આ પરમાશુઓ સરળ કે જટિલ સંયોજનો બનાવે છે, જે કાર્બનિક સંયોજનો તરીકે ઓળખાય છે.

અકાર્બનિક દ્રવ્યો (પદાર્થો)

પાણી અને ખનિજ તત્ત્વો અકાર્બનિક દ્રવ્યોમાં સમાવિષ્ટ છે.


પાણી : પાણી બધાં જીવંત સ્વરૂપો માટે મુખ્ય (માત્) પ્રવાહી છે. જીવંત તંત્રો માટે પાણીની આવશ્યકતાથી તદ્દન સ્પષ્ટ છે કે પાણી વિના જીવન શક્ય નથી. કોઈ પણ સજીવના બંધારણમાં પાણીનું પ્રમાણ 65% કે તેથી વધુ હોય છે. જીવંત કોષોમાં તેનું પ્રમાણ 70 થી 90% હોય છે. માનવશરીરમાં સામાન્ય રીતે 55 થી 78% પાણી છે. કુદરતમાં તે પ્રવાહી, ઘન અને વાયુ સ્વરૂપે હોય છે. પાણી એ H_2O રાસાયણિક બંધારણ ધરાવતો રાસાયણિક પદાર્થ છે. પાણીના એક અણુમાં બે હાઇડ્રોજન પરમાણુઓ એક ઑક્સિજન પરમાણુ સાથે સહસંયોજક બંધથી જોડાય છે.

સામાન્ય તાપમાને (ઓરડાના તાપમાને) તે રંગહીન, સ્વાદહીન અને ગંધહીન પ્રવાહી છે. ચાલો, આપશે પાણીના મહત્ત્વના ગુણધર્મો અને તેમનો જીવન સાથેનો અભ્યાસ કરીએ.

અન્ય કોઈ પણ દ્રાવકની સરખામશીમાં પાશી વધુ સક્ષમ દ્રાવક છે. સજીવોમાં મળી આવતા મોટા ભાગનાં રસાયશો પાણીમાં દ્રાવ્ય છે. આ પ્રકારે કોષરસની એકરસતા જળવાય છે. આ ઉપરાંત વિવિધ રસાયશોના વહન માટે પાણી ઉત્તમ માધ્યમ પૂર્વું પાડે છે. આ રીતે જૈવરાસાયશિક ક્રિયાઓ માટે જરૂરી દ્રવ્યો સમગ્ર દેહમાં પહોંચાડે છે.

ઑક્સિજન અને કાર્બન ડાયૉક્સાઇડ જેવા શ્વસન વાયુઓના વહન પણ પાણી દ્વારા થાય છે.

ધ્રુવીય પ્રકૃતિ એ પાષ્ટ્રીનો મહત્ત્વનો ગુરા છે. તેની રચનામાં આવેલા હાઇડ્રોજન અને ઑક્સિજનના એકમો પર અનુક્રમે આંશિક ધન અને આંશિક ૠશ વીજભાર હોય છે. આ કારશે પાશ્રીના અશુઓ એકબીજા સાથે જોડાયેલા રહે છે. આવા અશુઓ વચ્ચેના બંધ હાઇડ્રોજન બંધ તરીકે ઓળખાય છે. આ ગુશધર્મને કારશે પાશ્રી સામાન્ય રીતે પ્રવાહી સ્વરૂપમાં મળે છે. ધ્રુવીયતાના ગુજ઼ધર્મને કારશે પાશ્રી કાર્યક્ષમ દ્રાવક તરીકે વર્તે છે અને ધન તેમજ ૠશ આયનની ફરતે પાશ્રીના અશુઓ ગોઠવાઈ આયનોને તેમાં સમાવી લે છે. H-O-H 104.45°ના ખૂશે જોડાયેલ છે : H અને O વચ્ચેનું અંતર 95.84 પીકોમીટર (pm) (1 પીકોમીટર = 10⁻¹² મીટર) છે.

પાશી ખૂબ ઊંચી વિશિષ્ટ ઉષ્મા અને ગુપ્ત ઉષ્મા ધરાવે છે. આ ગુશને લીધે તેની સપાટી દ્વારા આસપાસના પર્યાવરણમાં ઉષ્મા ગુમાવાય કે શોષાય તોપણ પાણીના ઉષ્યતામાનમાં ફેર પડતો નથી. પાણીની ગુપ્ત ઉષ્મા વધુ છે તેથી સરોવરોનું કે દરિયાનું પાણી બરફમાં ફેરવાઈ જતું નથી.

પાશ્નીના અશુઓ વચ્ચેનું સંલગ્નબળ ઘશું વધારે છે. આ બળ અશુઓને સંકળાયેલા રાખે છે. આ ગુશધર્મ ખાસ કરીને વનસ્પતિમાં રસારોહણની ક્રિયામાં ખૂબ અગત્યનો ભાગ ભજવે છે.

પાણીની ધનતાનો આધાર દ્રાવ્યક્ષારો અને પાણીના ઉષ્ણતામાન પર છે. 4° સે ઉષ્ણતામાને પાણીની ધનતા સૌથી વધુ હોય છે. તેવી જ રીતે સ્નિગ્ધતા પણ વધુ હોય છે. પાણીના આ ગુણધર્મથી પ્લવકો પાણીની સપાટી પર મુક્ત રીતે તરી કે હલનચલન કરી શકે છે. તેઓને પાણીમાં કોઈ પણ યાંત્રિક આંચકા લાગતા નથી.

પાશ્રીની ઉષ્ણતાવહન શક્તિ વધુ છે, તેથી સજીવ શરીરના દરેક ભાગમાં સમપ્રમાણમાં ઉષ્ણતાનું વહન થાય છે.

કોષમાંના મહાઅક્ષુઓ જેવા કે પ્રોટીન, ન્યુક્લિઇક ઍસિડ વગેરેનાં ત્રિપરિમાણ સ્વરૂપોની જાળવણીમાં પાણી મહત્ત્વનો ભાગ ભજવે છે.

જૈવિક અણુઓ - 1

પાણી પોતે પ્રક્રિયક તરીકે પણ વર્તે છે અને ઘણી પ્રક્રિયાઓ માટે H+ અને OH- આયનો પૂરાં પાડે છે.

तत्त्वो (भनिक्र)

વિવિધ ખનિજો અકાર્બનિક અને કાર્બનિક ઘટકો સાથે સંકલિત હોય છે.

19મી સદીના પ્રારંભથી એ પ્રસ્થાપિત થઈ શક્યું છે કે વનસ્પતિ અકાર્બનિક ખનિજ તત્ત્વો જમીનમાંથી શોષે છે. કાર્બન, હાઇડ્રોજન, નાઇટ્રોજન, ઑક્સિજન, ફૉસ્ફરસ, કૅલ્શિયમ, સલ્ફર, મૅગ્નેશિયમ, લોહ, મૅગેનિઝ, ઝિંક, બોરોન, મોલિબ્ડેનમ અને પોટૅશિયમ વનસ્પતિઓ માટે મહત્ત્વનાં ખનિજ તત્ત્વો છે. આ ઉપરાંત ઍલ્યુમિનિયમ, સોડિયમ, સિલિકોન, ક્લોરિન અને કોબાલ્ટની કેટલીક વનસ્પતિઓના તંદુરસ્ત ઉછેર માટે આવશ્યક છે, પરંતુ બધી વનસ્પતિમાં તેમનું મહત્ત્વ જણાયું નથી.

નાઇટ્રોજન : વનસ્પતિ નાઇટ્રોજનને ક્ષાર સ્વરૂપે જમીનમાંથી શોષે છે. નાઇટ્રોજન એ પ્રોટીન અને ન્યુક્લિઇક ઍસિડના સંશ્લેષણ માટે અનિવાર્ય છે. વિટામિનો, ઉત્સેચકો અને ઘણા બીજા પદાર્થોનો તે એક ભાગ બનાવે છે.

ફોસ્કરસ : ફૉસ્કરસ એ જમીનમાંથી ફૉસ્કેટ આયનો તરીકે વનસ્પતિઓ દ્વારા શોષાય છે. તે ન્યુક્લિઇક ઍસિડ, કોષરસપટલ, ATP અને વિવિધ ઉત્સેચકોના બંધારણમાં મહત્ત્વનું છે. શક્તિ વિનિમયની ક્રિયામાં તે ખૂબ મહત્ત્વનો ભાગ ભજવે છે. પૃષ્ઠવંશી પ્રાણીઓમાં કુલ ફૉસ્કરસના 80 % જેટલો ભાગ દાંત અને હાડકાં સાથે સંકલિત છે.

કેલ્શિયમ : કેલ્શિયમ એ હાડકાં અને દાંતની મજબૂતાઈ માટે આવશ્યક છે. તે રુધિર જામવાની ક્રિયામાં અને રનાયુઓના સંકોચનમાં જરૂરી છે. વનસ્પતિકોષો વચ્ચેનું મધ્યપટલ કેલ્શિયમ પેકટેટનું બનેલું છે. કોષરસપટલની પ્રવેશશીલતા પણ કેલ્શિયમ જ નક્કી કરે છે.

સલ્ફર : વનસ્પતિઓ સલ્ફેટ આયન સ્વરૂપે જમીનમાંથી સલ્ફર મેળવે છે. સલ્ફર કેટલાક એમિનોએસિડના બંધારણીય ઘટક તરીકે સંકલિત છે. સિસ્ટિન અને મીથિયોનીન સલ્ફર ધરાવતા એમિનોએસિડ છે. તે બાયોટિન અને થાયેમીન જેવા વિટામિનોનો પણ બંધારણીય ઘટક છે. સજીવોમાં મુખ્યત્વે સલ્ફેટ સ્વરૂપે, કાચવત્કસ્થિ, અસ્થિબંધ અને અસ્થિદ્રવ્યમાં સલ્ફરની હાજરી છે.

મૅગ્નેશિયમ : વનસ્પતિમાં ક્લોરોફિલની રચનામાં મૅગ્નેશિયમ અનિવાર્ય છે. ATP અને કાર્બોદિતોના સંશ્લેષણમાં પણ તે મહત્ત્વનો ભાગ ભજવે છે. કાર્બોદિતો, ચરબી અને પ્રોટીન ચયાપચય સાથે સંકળાયેલ ઉત્સેચકો મૅગ્નેશિયમયુક્ત છે.

લોહ : હિમોગ્લોબિન, માયોગ્લોબિન અને સાયટોક્રોમ સંયોજન લોહતત્ત્વયુક્ત છે. શ્વસન સાથે સંકળાયેલા ઘણા ઉત્સેચકો તેમના બંધારણમાં લોહતત્ત્વ ધરાવે છે.

મેંગેનિઝ : વનસ્પતિમાં શ્વસન અને નાઇટ્રોજન ચયાપચયની ક્રિયામાં મૅગેનિઝ મહત્ત્વનો ભાગ ભજવે છે, જ્યારે પ્રાણીઓમાં હાડકાની વૃદ્ધિ અને પ્રજનનક્રિયામાં તે ઉપયોગી છે. ફૉસ્ફેટેઝ જેવા ઉત્સેચકોની ક્રિયાશીલતા માટે તે સહ-કારક છે.

િંક : આપણા શરીરમાં સામાન્ય વૃદ્ધિ અને પ્રજનન માટે ઝિંક આવશ્યક છે. તે ઘસારો પામતા કોષોના સમારકામમાં જરૂરી છે. પ્રાણીપેશીઓમાં ઘણા ઉત્સેચકો ઝિંકની હાજરીમાં ક્રિયાશીલ થાય છે.

બોરોન : વનસ્પતિમાં શર્કરાના વહન સાથે બોરોન સંકળાયેલ છે. પુષ્પ અને કળ સર્જન, કોષવિભાજન અને બીજી કેટલીક ક્રિયાઓમાં પણ તે મહત્ત્વનો ભાગ ભજવે છે.

કોપર : પ્રાણીઓમાં હિમોગ્લોબીનના અને વનસ્પતિમાં ક્લોરોફ્લિના સંશ્લેષણમાં કૉપર અગત્યનું છે.

७४ वर्षान

કેટલાક સ્તરકવચી પ્રાણીઓમાં શ્વસનરંજક તરીકે હિમોસાયેનીનમાં કૉપરની હાજરી છે. ટાયરોસીનેઝ ઉત્સેચકના બંધારણીય ઘટક તરીકે કૉપર છે.

મોલિબ્ડેનમ : વનસ્પતિમાં નાઇટ્રોજનના સ્થાપનમાં મોલિબ્ડેનમ મદદરૂપ છે. પ્રાણીઓમાં તે આંતરડાના (આંત્રિય) ઉત્સેચકોનો પણ ઘટક છે.

સોડિયમ અને પોટેશિયમ : pH અને આંતરકોષીય પ્રવાહીઓના આસૃતિદાબની જાળવણીમાં સોડિયમ અને પોટેશિયમ મહત્ત્વનો ભાગ ભજવે છે.

ક્લોરિન : રુધિરમાં મુખ્ય આયનો ક્લોરિનના બનેલા છે. કાર્બન ડાયૉક્સાઇડના વહનમાં તે મહત્ત્વનો ભાગ ભજવે છે. ખોરાકની પાચનક્રિયાઓમાં, રુધિરમાં જલનિયમન અને pH ની જાળવણીમાં પણ તે જરૂરી છે.

કાર્બનિક દ્રવ્યો (પદાર્થો)

કાર્બનિક અશુઓ પ્રાથમિક રીતે કાર્બન, હાઇડ્રોજન, નાઇટ્રોજન, ઑક્સિજન અને થોડા પ્રમાણમાં ફૉસ્ફરસ અને સલ્ફર ધરાવે છે. ક્યારેક બીજાં તત્ત્વો પણ જોડાયેલાં હોય છે. પરંતુ ખૂબ જ ઓછા પ્રમાણમાં સામાન્ય હોય છે. જીવરસના મોટા ભાગના પદાર્થોમાં મુખ્ય ઘટક તરીકે કાર્બન હોય છે. કાર્બનની સંયોજકતા ચાર હોવાથી તે તેના જ અન્ય અણુ તેમજ અન્ય ક્રિયાશીલ સમૂહ સાથે સંયોજાઈ વિવિધ પ્રકારનાં દ્રવ્યો બનાવે છે. આવાં રસાયણો જેમાં મુખ્ય રસાયણિક બંધ C અને C વચ્ચે તથા C અને H વચ્ચે રચાયેલા હોય તેમને કાર્બનિક દ્રવ્યો કહે છે. જીવત સજીવો દ્વારા ઉદ્ભવેલ કોઈ પણ કાર્બનિક અણુ જેમાં મોટા બહુશૃંખલિત અણુઓ જેવા કે પ્રોટીન, પોલિસેકેરાઇડ, ન્યુક્લિઇક ઍસિડ અને ચરબીનો પણ સમાવેશ થાય છે, જૈવિક અણુ છે.

આ સંયોજનો ચરબીના અપવાદ સાથે દસ હજાર ડાલ્ટન અને તેથી વધુ મર્યાદામાં અશુભાર ધરાવે છે. પ્રાથમિક ચયાપચયિક, દ્વિતીયક ચયાપચયિક અને પ્રાકૃતિક નીપજો જેવા નાના અશુઓ પણ જૈવિક અશુઓમાં સમાવિષ્ટ છે. આ કારણથી જ જૈવિક અશુઓ બે પ્રકારના છે : (1) જેઓ એક હજાર ડાલ્ટન કરતાં ઓછો અશુભાર ધરાવે છે તેવા સૂક્ષ્મ અશુઓ કે સરળ જૈવિક અશુઓ જયારે (2) એક હજાર ડાલ્ટન કરતાં વધારે અશુભાર ધરાવે છે તેવા મહાઅશુઓ કે જૈવિક મહાઅશુઓ.

કાર્બોદિત : કાર્બોદિત અશુઓના બંધારણમાં C, H અને O પરમાણુઓની ગોઠવણી છે. H અને Oનું પ્રમાણ સામાન્ય રીતે 2:1 હોય કે ન પણ હોય. કાર્બોદિતનું સામાન્ય સૂત્ર $C_n(H_2O)_m$ છે, જેમાં n અને mનું મૂલ્ય સમાન અથવા ભિન્ન હોઈ શકે. કાર્બોદિતના મુખ્ય ત્રણ પ્રકારો છે : મોનોસેકેરાઇડ, ડાયસેકેરાઇડ અને પોલિસેકેરાઇડ.

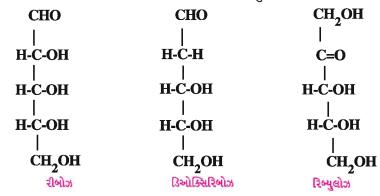
મોનોસેકેરાઇડ :

મોનોસેકેરાઇડ એ ફક્ત એક અશુયુક્ત સરળ શર્કરા છે અને કાર્બોદિતનું સૌથી સરળ સ્વરૂપ છે. તેમની રચનામાં n અને m નું મૂલ્ય સમાન છે. તેમના બંધારણમાં આવશ્યક રીતે આલ્ડિહાઇડ (—CHO) અથવા કીટોન (>C = O) સમૂહ છે, તે પ્રમાણે તેમને આલ્ડોઝ શર્કરા કે કીટોઝ શર્કરા કહે છે. મોનોસેકેરાઇડ સ્વાદે ગળ્યા, પાણીમાં દ્રાવ્ય અને કોષરસસ્તરમાંથી પસાર થઈ શકે છે. આ કાર્બોદિત અશુઓનું સરળ સ્વરૂપમાં જળવિભાજન થઈ શકતું નથી. મોનોસેકેરાઇડને કાર્બનનાં પરમાશુઓની સંખ્યાને આધારે વર્ગીકૃત કરવામાં આવે છે.

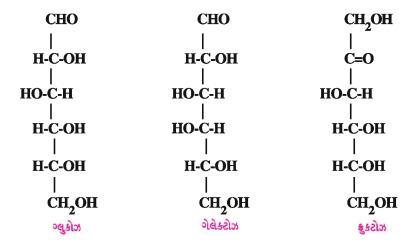
ટ્રાયોઝ, પેન્ટોઝ અને હેક્સોઝ શર્કરા જૈવિક રીતે મહત્ત્વના મોનોસેકેરાઇડ છે.

ટ્રાયોઝ શર્કરા (C3H6O3)

િલસરાલ્ડિહાઇડ અને ડાયહાઇડ્રોક્સિએસિટોન એ ટ્રાયોઝ શર્કરાનાં ઉદાહરણો છે.


જૈવિક અણુઓ - 1

પ્રકાશસંશ્લેષણની ક્રિયામાં અંધકાર પ્રક્રિયા દરમિયાન સંશ્લેષિત ફૉસ્ફોગ્લિસરાલ્ડિહાઇડ (PGAL), ફૉસ્ફેટયુક્ત આલ્ડોટ્રાયોઝ શર્કરાનું ઉદાહરણ છે.


શ્વસનક્રિયા દરમિયાન બનતું ડાયહાઇડ્રોક્સિએસિટોન ફૉસ્ફેટ (DHAP), ફૉસ્ફેટયુક્ત કીટોટ્રાયોઝ શર્કરાનું ઉદાહરણ છે.

પેન્ટોઝ શર્કરા $(C_5H_{10}O_5)$: DNAના બંધારણમાં આવતી ડિઓક્સિરિબોઝ શર્કરા અને RNA તેમજ ATPના બંધારણમાં આવતી રિબોઝ શર્કરા આલ્ડોપેન્ટોઝ શર્કરાનું ઉદાહરણ છે.

હેકઝોઝ શર્કરા (C₆H₁₂O₆) : હેક્ઝોઝ શર્કરામાં મુખ્યત્વે વ્લુકોઝ, ફ્રુક્ટોઝ અને ગેલેક્ટોઝનો સમાવેશ થાય છે. ફ્રુક્ટોઝ કિટોહેક્સોઝ શર્કરા છે. તે ફળોના રસમાં જોવા મળે છે. વ્લુકોઝ અને ગેલેક્ટોઝ આલ્ડોહેક્ઝોઝ શર્કરા છે. સ્ટાર્ચનું પાચન થતાં વ્લુકોઝ બને છે. દૂધના પાચનની ફ્લશ્રુતિ વ્લુકોઝ અને ગેલક્ટોઝ છે. આ શર્કરાઓ શરીરને શક્તિ પૂરી પાડે છે.

3ાયસેકેરાઇડ્ઝ: જ્યારે બે મોનોસેકેરાઇડના અશુઓ, ખાસ કરીને બે હેક્સોઝ શર્કરા, એકબીજા સાથે જોડાઈ ડાયસેકેરાઇડનો અશુ બનાવે છે ત્યારે પાણીનો એક અશુ છૂટો પડે છે. આ બંધ ગ્લાયકોસિડિક બંધ કહે છે. ડાયસેકેરાઇડનું સામાન્ય સૂત્ર C_n (H_2O) $_{n-1}$ અને તે પ્રમાણે રાસાયણિક

સૂત્ર $\mathbf{C}_{12}\mathbf{H}_{22}\mathbf{O}_{11}$ છે. તેઓ સ્વાદે ગળ્યા અને પાણીમાં દ્રાવ્ય હોય છે. સામાન્ય રીતે તેઓ કોમ રસસ્તરમાંથી પસાર થઈ શકતા નથી.

મંદ એસિડ સાથે ઉકાળવાથી કે યોગ્ય ઉત્સેચકો સાથે પ્રક્રિયા કરાવવાથી તેઓનું જળવિભાજન થઈ શકે છે. તેની ફ્લશ્રુતિથી તેમના શર્કરાના એકમો છૂટા પડે છે. ટૂંકમાં, ડાયસેકેરાઇડનું જળવિભાજન થવાથી બે મોનોસેકેરાઇડના અસુ બને છે. માલ્ટોઝ, સુક્રોઝ અને લેક્ટોઝ ડાયસેકેરાઇડ્ઝનાં ઉદાહરણો છે.

માલ્ટોઝના અજ્ઞુના જળવિભાજનને પરિશામે ગ્લુકોઝ + ગ્લુકોઝ, તે જ રીતે સુક્રોઝના અજ્ઞુના જળવિભાજનથી ગ્લુકોઝ + ફ્રુક્ટોઝ અને લેક્ટોઝના અજ્ઞુના જળવિભાજનને પરિશામે ગ્લુકોઝ + ગેલેક્ટોઝ ઉત્પન્ન થાય છે.

 CH,OH
 CH,OH

 H C OH H C OH C OH

 OH C OH H C OH

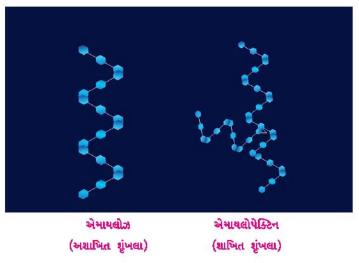
 H OH OH

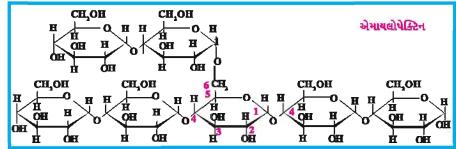
 OH OH OH

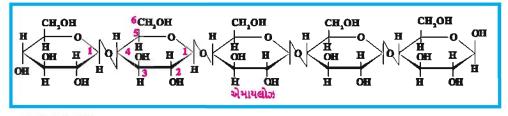
 OH OH OH

મોનોસેકેરાઇડ

પોલિસેકેરાઇડ્ઝ : જ્યારે મોટી સંખ્યામાં મોનોસેકેરાઇડના એકમો એકબીજા સાથે ગ્લાયકોસિડિક બંધ વડે જોડાઈ લાંબી શૃંખલા બનાવે ત્યારે તે શૃંખલાને પોલિસેકેરાઇડ કહે છે. તેનું બંધારશ્રીય સૂત્ર – $(C_6H_{10}O_5)$ n છે. પોલિસેકેરાઇડ સ્વાદે ગળ્યા નથી અને પાજ્ઞીમાં દ્રાવ્ય નથી.


સ્ટાર્ચ, ગ્લાયકોજન, સેલ્યુલોઝ, કાઈટીન અને લિગ્નીન પોલિસેકેરાઇડના ખૂબ જાણીતા સ્વરૂપ છે.


સ્ટાર્ચ ઃ ગ્લુકોઝના એકમોની બનેલી અશાખિત પોલિસેકેરાઇડ શૃંખલાથી સ્ટાર્ચ બને છે, તેને એમાયલોઝ કહે છે. થોડા પ્રમાણમાં ગ્લુકોઝની શાખિત પોલીસેકેરાઇડ શૃંખલાઓ પણ આવેલી હોય છે, તેઓને એમાયલોપેક્ટિન કહે છે. વનસ્પતિમાં ખોરાક સ્ટાર્ચ તરીકે સંગૃહીત છે.


જૈવિક અણુઓ - 1 73

ુલોયકોજન : ગ્લાયકોજનની રચનામાં ગ્લુકોઝની બનેલી, શાખિત પોલિસેકેરાઇડ શૃંખલાઓ હોય છે. તેમને એમાયલોપેક્ટિન શૃંખલાઓ કહે છે. પ્રાશીઓમાં ખોરાક ગ્લાયકોજન તરીકે સંગૃહીત છે.

સેલ્યુલોઝ : સેલ્યુલોઝ પશ ગ્લુકોઝની પોલિસેકેરાઇડ શૃંખલાઓથી બનેલ છે અને તે વનસ્પતિ કોષદીવાલનો બંધારણીય ઘટક છે.

કાર્બોદિતોનું જૈવિક મહત્ત્વ

કાર્બીદિતો કોષના ચયાપચયમાં અને પેશીઓના બંધારણમાં મહત્ત્વનો ભાગ ભજવે છે.

રીબોઝ અને ડીઓક્સિરીબોઝ પેન્ટોઝ શર્કરા અનુક્રમે RNA અને DNAનાં બંધારણીય ઘટકો છે.

કાર્બોદિત જીવંત સજીવોમાં શક્તિનો મુખ્ય સ્રોત છે.

ગ્લુકોઝ શ્વસન પ્રક્રિયામાં ઉપયોગી સામાન્ય દ્રવ્ય છે. તેના ઑક્સિડેશનથી મુક્ત થતી શક્તિ સજીવોમાં શક્તિની જરૂરિયાત પૂરી પાડે છે.

સેલ્યુલોઝ જેવા કાર્બોદિતો કોષદીવાલ ૨ચે છે. સ્ટાર્ચ એ વનસ્પતિઓમાં સંગૃહીત ખોરાક તરીકે જ્યારે ગ્લાયકોજન એ પ્રાણીઓમાં સંગૃહીત ખોરાક તરીકે છે.

લિપિડ (ચરબી) : તેના ઊંચા શક્તિ મૂલ્યના કારણે લિપિડ ખોરાકનું મહત્ત્વનું ઘટક છે. ચરબી એ ફેટીઍસિડ સંબંધિત સંયોજનોનું વિષમજાતીય જૂથ છે. જેમાં મેદ, તેલ, મીણ અને અન્ય સંબંધિત પદાર્થીનો સમાવેશ થાય છે.

७४ अविज्ञान

ચરબી પાસીમાં અદ્રાવ્ય અને ઈથર, ક્લોરોફોર્મ અને બેન્ઝિન જેવા કાર્બનિક દ્રાવકોમાં દ્રાવ્ય ચિકાશયુક્ત (તૈલી) કાર્બનિક પદાર્થ છે.

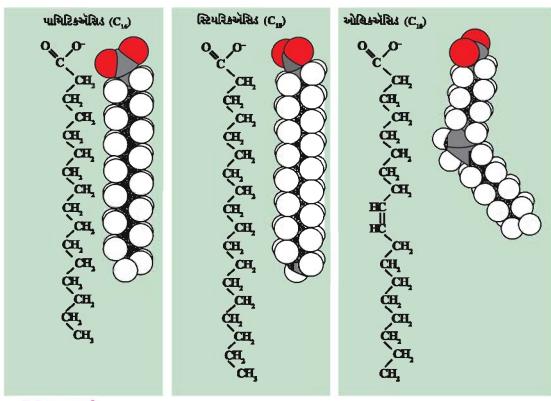
તેમની રચનામાં C, H અને O છે અને H અશુઓની સંખ્યા O કરતાં ઘણી વધારે છે.

લિપિડની રચના

આલ્કોહોલના એક અશુ સાથે ફેટીએસિડના એકથી ત્રણ અશુઓ જોડાઈને લિપિડનો અશુ બને છે.

આલ્કોહોલ : આલ્કોહોલ એ ટ્રાયહાઇડ્રોક્સિ આલ્કોહોલ (ગ્લિસરોલ) તરીકે અથવા મોનોહાઇડ્રોક્સિ આલ્કોહોલ તરીકે છે.

ટ્રાયકાઇડ્રોક્સિ આલ્કૉહૉલ ત્રજ્ઞ કાર્બન અને ત્રજ્ઞ-OH સમૂહ ધરાવે છે.


ફેટીએસિડ : બે પ્રકારના ફેટીએસિડ છે : (1) સંતૃપ્ત ફેટીએસિડ (2) અસંતૃપ્ત ફેટીએસિડ.

(1) સંતુપ્ત ફેટીએસિડ : તેઓ હાઇડ્રોજન કે હેલોજન પરમાણુઓ ગ્રહશ કરવાની ક્ષમતા ધરાવતા નથી. તેમાં બે ક્રમિક કાર્બન પરમાણુઓ એકબંધથી જોડાયેલા છે.

કાર્બન પરમાણુઓની સંખ્યાને આધારે સંતૃપ્ત ફેટીઍસિડના બે પ્રકારો છે : (1) ટૂંકી શૃંખલાયુક્ત ફેટી ઍસિડ. દા.ત., બ્યુટિરિક ઍસિડ અને (2) લાંબી શૃંખલાયુક્ત ફેટીઍસિડ. દા.ત., પામિટિક ઍસિડ, સ્ટિયરિક ઍસિડ.

(2) અસંતૃપ્ત ફેટીએસિડ : તેઓ હાઇડ્રોજન કે હેલોજન પરમાશુઓ ગ્રહજ્ઞ કરવાની ક્ષમતા ધરાવે છે. તેમાં કેટલાક સ્થાને બે ક્રમિક કાર્બન પરમાશુઓ દ્વિબંધથી જોડાયેલા છે.

કાર્બન પરમાશુઓની સંખ્યાને આધારે અસંતૃપ્ત ફેટીએસિડના પણ બે પ્રકારો છે : (1) ટૂંકી શૃંખલાયુક્ત ફેટીએસિડ. દા.ત., ક્રોટોનિક એસિડ અને (2) લાંબી શૃંખલાયુક્ત ફેટીએસિડ. દા.ત., ઓલિક ઍસિડ.

લિપિડના પ્રકારો

લિપિડ ત્રણ પ્રકારના છે : (1) સાદા લિપિડ (2) જટિલ લિપિડ અને (3) સ્ટેરોઇડ.

(1) સાદા લિપિડ : બંધારશ્રીય રીતે તેઓ આલ્કૉહૉલનો એક અશુ અને ફેટીઍસિડના ત્રણ અશુઓના બનેલા છે. સાદા લિપિડના બે પ્રકાર છે : (a) ટ્રાયગ્લિસરાઇડ અને (b) મીશ.

જૈવિક અણુઓ - 1

(a) ટ્રાયગ્લિસરાઇડ : ટ્રાયગ્લિસરાઇડની રચનામાં ગ્લિસરોલનો એક અશુ ફેટીઍસિડના કોઈ પણ ત્રણ અશુઓ સાથે એસ્ટર બંધ (-C-O-O-C-)થી જોડાતાં નિર્જલીકરણની ક્રિયા દ્વારા પાણીના ત્રણ અશુઓ છૂટા પડે છે.

ટ્રાયગ્લિસરાઇડની રચનામાં દરેક ફેટીઍસિડ -COOH જૂથ વડે, ટ્રાયહાઇડ્રોક્સિ આલ્કૉહૉલના H જૂથ સાથે જોડાઈ એસ્ટર બંધ રચે છે. આ દરમિયાન H_,Oનો અણુ દૂર થાય છે.

ટ્રાયગ્લિસરાઇડના બે પ્રકાર છે : (1) ચરબી અને (2) તેલ.

- (1) <mark>ચરબી :</mark> ચરબી સામાન્ય તાપમાને ઘન સ્વરૂપે હોય છે. જેના બંધારણમાં બધા જ ફેટીઍસિડ સંતૃપ્ત અને મોટે ભાગે લાંબી શ્રંખલાયુક્ત છે. દા.ત., માખણ, ઘી, પ્રાણીજ ચરબી અને વનસ્પતિ ઘી વગેરે.
- (2) તેલ : તેલ સામાન્ય તાપમાને પ્રવાહી સ્વરૂપે હોય છે. જેના બંધારણમાં એક, બે કે બધા જ ફેટીએસિડ અસંતૃપ્ત પ્રકારના અને ટૂંકી કે લાંબી શૃંખલાયુક્ત છે. દા.ત., સિંગતેલ, તલનું તેલ, કોપરેલ, ફિશ લિવરઑઇલ વગેરે.
- (b) મીણ : મીણના બંધારણમાં આલ્કૉહૉલનો અણુ ગ્લિસરોલ નહિ, પરંતુ મોનોહાઇડ્રોક્સિ આલ્કૉહૉલનો એક અણુ હોય છે. મોનોહાઇડ્રોક્સિ આલ્કૉહૉલના અણુની સાથે લાંબી શૃંખલાયુક્ત ફેટીઍસિડનો એક અણુ જોડાયેલ છે.
- (2) જટિલ લિપિડ : જે લિપિડની રચનામાં આલ્કૉહૉલ અને ફેટીઍસિડ ઉપરાંત બિનલિપિડ ઘટક સંકળાયેલ હોય તેને જટિલ લિપિડ કહે છે. તેનું નામકરણ બિનલિપિડ ઘટકના પ્રકાર મુજબ થાય છે. ગ્લાયકોલિપિડ (કાર્બોદિત), ફોસ્ફોલિપિડ (ફૉસ્ફેટ) અને લીપોપ્રોટીન (પ્રોટીન) ઉદાહરણો છે.
- (3) સ્ટેરોઇડ : સ્ટેરોઇડ એ લિપિડનો મહત્ત્વનો પ્રકાર છે. તેઓ કોઈ ફેટીઍસિડ સમાવતા નથી. જે સ્ટેરોઇડના અશુમાં હાઇડ્રોક્સિલ (-OH) સમૂહ હોય પરંતુ કાર્બોક્સિલ (-COOH) સમૂહ કે કીટો (> C = O) સમૂહ ન હોય તો તેને સ્ટેરોલ કહે છે. જેવા કે કોલેસ્ટેરોલ, અર્ગોસ્ટેરોલ વગેરે. જો તેઓ તેના બંધારણમાં કાર્બોક્સિલ (-COOH) સમૂહ કે કીટો (> C = O) સમૂહ ધરાવતા હોય તો તેને સ્ટેરોન કહે છે જેવા કે કોર્ટિઝોન, પ્રોજેસ્ટેરોન વગેરે પ્રાણી અંતઃસાવો.

લિપિડનું જૈવિક મહત્ત્વ

લિપિડ ખૂબ વધુ પ્રમાણમાં શક્તિ મુક્ત કરે છે. કાર્બોદિતના શ્વસન દરમિયાન મુક્ત થતી શક્તિ કરતાં તે બમણાથી પણ વધારે પ્રમાણમાં હોય છે. તે પાણીમાં અદ્રાવ્ય હોવાથી ખોરાકના અનામત જથ્થા તરીકે શરીરમાં તેનો સંગ્રહ થાય છે (તેલ અને ચરબી સ્વરૂપે), અને જરૂર પડે ત્યારે ચયાપચયની ક્રિયાઓ દ્વારા તેને વાપરી શકાય છે.

તે અવાહક પડ રચે છે. ચેતાતંતુની આસપાસનું મજ્જાપડ લિપિડ ધરાવે છે, જે ઊર્મિવેગને બાજુના ચેતાતંતુમાં પસાર થઈ જતો રોકે છે. અધોત્વચીય મેદપડ પણ આવી રચના છે જે શરીરનું તાપમાન જાળવી રાખે છે. મીણ જેવા લિપિડ વનસ્પતિના હવાઈ અંગોની બાહ્ય સપાટી પર રક્ષણાત્મક પડ બનાવે છે.

તે ચરબી દ્રાવ્ય વિટામિનો માટે દ્રાવકનું કામ કરે છે. વિટામિન A, D અને E ચરબી દ્રાવ્ય છે. તે કોષીય અંગિકાઓનો પણ બંધારણીય ઘટક છે. રસસ્તર અને અંગિકાઓના પટલો ફૉસ્ફોલિપિડના બનેલા છે.

જીવવિજ્ઞાન

76

કેટલાક ઉત્સેચકોની સક્રિયતા માટે લિપિડની હાજરી અનિવાર્ય છે. દા.ત., ગ્લુકોઝફ્રોસ્ફેટેઝ. સ્ટેરોઇડ અંતઃસ્ત્રાવો અને વિટામિન D તેમજ E નું સંશ્લેષણ લિપિડના વ્યુત્પન્નોમાંથી થાય છે.

સારાંશ

જીવંત સજીવો ખૂબ જ વિવિધતા દર્શાવતા હોવા છતાં તેઓમાં તેમનું રાસાયણિક સંયોજન અને ચયાપચિધક પ્રતિક્રિયાઓમાં સમાનતા જોવા મળે છે. જીવંત સજીવોના શરીરમાં રહેલા પદાર્થોને (1) અકાર્બનિક પદાર્થો અને (2) કાર્બનિક પદાર્થોમાં વર્ગીકૃત કરી શકાય છે. અકાર્બનિક પદાર્થોમાં પાણી અને ખનીજ તત્ત્વો સમાવિષ્ટ છે. પાણી એ બધાં જ જૈવ સ્વરૂપોનું માતૃ (જરૂરી) પ્રવાહી છે. સજીવોમાં જોવા મળતા મોટા ભાગનાં રસાયણો પાણીમાં દ્રાવ્ય છે, તે સાર્વત્રિક દ્રાવક તરીકે પણ ઓળખાય છે. જીવંત તંત્ર માટે પાણીની અગત્ય બિલકુલ સ્પષ્ટ છે કે પાણી વિના જીવન શક્ય નથી. અકાર્બનિક અને કાર્બનિક ઘટકોના બંધારણમાં વિવિધ ખનિજ તત્ત્વો સંકળાયેલાં હોય છે. સજીવોના શરીરમાં જોવા મળતા મુખ્ય ખનિજમાં નાઇટ્રોજન, કેલ્શિયમ, ફૉસ્ફરસ, સોડિયમ, મૅગ્નેશિયમ, કલોરિન અને સલ્ફર છે. કૉપર, લોહ, મૅગેનિઝ, ઝિંક અને બોરોન પણ ખૂબ જ અલ્પ માત્રામાં હોય છે. જે પદાર્થો C અને H વચ્ચે બંધ રચાવાથી બને છે, તેને કાર્બનિક પદાર્થો કહે છે. કાર્બીદિત અશુમાં કાર્બન, હાઇડ્રોજન અને ઓક્સિજન સમાવિષ્ટ છે. હાઇડ્રોજનના પરમાશુઓની સંખ્યા ઑક્સિજનના પરમાશુઓ કરતાં બમણી હોય છે. કાર્બીદિતનું સામાન્ય સૂત્ર C,(H2O), છે. કાર્બીદિતને ત્રણ મુખ્ય પ્રકારોમાં વિભાજિત કરવામાં આવે છે. મોનોસેકેરાઇડ (એક અશુ), ડાયસેકેરાઇડ (બે અશુ) અને પોલિસેકેરાઇડ (ઘણા અશુઓ). જુદા જુદા મોનોસેકેરાઇડમાં કાર્બન પરમાશુઓની સંખ્યા અલગ અલગ હોય છે. ટ્રાયોઝમાં ત્રણ, પેન્ટોઝમાં પાંચ અને હેક્સોઝમાં છ છે. કાર્બીદિતો ઘણી જુદી કાર્યકી અને ઘણાં જુદાં સ્વરૂપો ધરાવે છે. રીબોઝ અને ડીઓક્સિરીબોઝ બંને પેન્ટોઝમોનોસેકેરાઇડ છે તથા તે અનુક્રમે RNA અને DNAમાં હોય છે.

જટિલલિપિડ એ આલ્કૉહૉલ અને ફેટીએસિડ ઉપરાંત બિનલિપિડ ધરાવે છે. સૌથી વધુ કેલરી મૂલ્ય આપતો ખોરાક લિપિડ છે અને અનામત જથ્થા તરીકે શરીરમાં તેનો સંગ્રહ થાય છે.

સ્વાદયાય

 નીચે આપેલા પ્રશ્નોના ઉત્તરો પૈકી સાચા ઉત્તર સામે સર્કલમાં પેન્સિલથી રંગ પૂરો : 				
	(1)	બધા જ મોનોસેકેરાઇડ		
		(અ) સ્ફટિક સ્વરૂપે હોય છે. 💮 (બ) પાણીમાં દ્રાવ્ય હોય છે.	0	
		(ક) જલવિભાજન થઈ શકતું નથી. 🔘 (ડ) ઉપરના બધા જ	0	
	(2)	લિપિડ કાર્બોહાઇડ્રેટ્સથી કઈ બાબતે જુદા પડે છે ?		
		(અ) કાર્બન કરતાં ઑક્સિજન વધુ પ્રમાણમાં હોય છે.	0	
		(બ) કાર્બન વધુ અને ઑક્સિજન ઓછા પ્રમાણમાં હોય છે.	0	
		(ક) કાર્બન અને હાઇડ્રોજનનું પ્રમાણ ઑક્સિજન કરતાં ઓછું હોય છે.	0	
		(ડ) કાર્બન હાઇડ્રોજન અને ઑક્સિજન વચ્ચે કોઈ સંબંધ જ નથી.	0	
	(3)	લેક્ટોઝ શાનાથી બનેલો છે ?		
		(અ) ગ્લુકોઝ + ગેલેક્ટોઝ 🥒 (બ) ગ્લુકોઝ + ગ્લુકોઝ	0	
		(ક) ગ્લુકોઝ + ફ્રુક્ટોઝ 🔘 (ડ) ફ્રુક્ટોઝ + ગેલેક્ટોઝ	0	
	(4)	દરેક મેદનો અશુ શાનો બનેલો છે ?		
		(અ) 1 ગ્લિસરોલ અને 1 ફેટીઍસિડના અણુઓ	0	
		(બ) 1 ગ્લિસરોલ અને 3 ફેટીઍસિડના અશુઓ	0	
		(ક) 3 ગ્લિસરોલ અને 1 ફેટીઍસિડનાં અશુઓ	0	

Downloaded from https://www.studiestoday.com

(ડ) 3 ગ્લિસરોલ અને 3 ફેટીઍસિડનાં અશુઓ

જૈવિક અણુઓ - 1

	(5)	નીચે પૈકીનો કયો મહાઅશુ પ્રોટીન	છે ?			
	,	(અ) ગ્લાયકોજન	\bigcirc	(બ)	ઇન્સ્યુલિન	\bigcirc
		(ક) કેરેટીન	$\hat{\Box}$	(3)	કોલેસ્ટેરોલ	$\tilde{\Box}$
	(6)	પાણીના અણુઓ વચ્ચે કયા પ્રકારન	ં ૫ બંધ આ	• •		
	(-)	(અ) હાઇડ્રોજન બંધ	\bigcirc		પેપ્ટાઇડ બંધ	\bigcirc
		(ક) ગ્લાયકોસિડિક બંધ	$\hat{\Box}$	(3)	આયોનિક બંધ	0
	(7)	નીચે પૈકીનો કયો ખનીજ તત્ત્વ કો	\circ			0
	(-)	(અ) નાઇટ્રોજન	\bigcirc	(બ)	ફૉસ્ફરસ	0
		(ક) કેલ્શિયમ	$\hat{\Box}$	(3)	મૅ ગ્ને શિયમ	0
	(8)	સિસ્ટીન અને મિથિયોનીન એમિનો	ઁ ઍસિડના			?
	(-)	(અ) કૅલ્શિયમ	\bigcirc	(બ)	મૅગ્નેશિયમ	\bigcirc
		(ક) સલ્ફર	$\hat{\Box}$	(3)	બૉરોન	$\tilde{\Box}$
	(9)	નાઇટ્રોજનના ચયાપચયની ક્રિયામાં	ુ કયં ખનીજ			
	(")	(અ) બોરોન	Ô	(બ)	િઝંક	\bigcirc
		(ક) મૅગેનીઝ	$\hat{\Box}$	(3)	ક્લોરિન	$\tilde{\Box}$
	(10)	કયું ખનીજ તત્ત્વ વનસ્પતિમાં શર્કર	ા ાના વહન			
	(- /	(અ) બૉરોન	\bigcirc	(બ)	સોડિયમ	\bigcirc
		(s) (5)s	$\hat{\Box}$		ક્લોરિન	$\tilde{\Box}$
	(11)	ે. ગ્લિસરાલ્ડિહાઇડ કયા પ્રકારની શર્ક	ે રા છે ?	()		
	` /	(અ) પેન્ટોઝ	\bigcirc	(બ)	હેક્ઝોઝ	\bigcirc
		(ક) ટ્રાયોઝ	$\hat{\Box}$	(3)	ઓક્ટોઝ	\tilde{C}
	(12)	માલ્ટોઝના જલવિભાજનથી શું પ્રાપ્ત	ા થાય છે	?		
	` ,	(અ) ગ્લુકોઝ + ગેલેક્ટોઝ	\bigcirc	(બ)	ગ્લુકોઝ + ફ્રક્ટોઝ	\bigcirc
		(ક) ગ્લુકોઝ + ગ્લુકોઝ	$\hat{\bigcirc}$	(3)	ગેલેક્ટોઝ + ફ્રક્ટોઝ	\tilde{O}
	(13)	ડાયસેકેરાઇડ શર્કરાનું નિર્માણ કરતા	. એકમો વ		ŭ	0
	, ,	(અ) હાઇડ્રોજન બંધ	0	(બ)	પેપ્ટાઇડ બંધ	\bigcirc
		(ક) ગ્લાયકોસિડિક બંધ	\hat{O}	(3)	એસ્ટર બંધ	Ö
	(14)	કાઇટીન શાનું ઉદાહરણ છે ?		. ,		•
		(અ) મોનોસેકેરાઇડ	0	(બ)	ડાયસેકેરાઇડ	0
		(ક) પોલીસેકેરાઇડ	Õ	(3)	ઓલીગોસેકેરાઇડ	Ö
	(15)	અસંતૃપ્ત ફેટીઍસિડનું ઉદાહરણ છે				
		(અ) ક્રોટોનિક ઍસિડ	0	(બ) ¹	પામેટીક ઍસિડ	0
		(ક) સ્ટિયરીક ઍસિડ	\hat{O}	(3) 6	યુટારીક ઍસિડ	\tilde{O}
2.	નીચેના	પ્રશ્નોના ટૂંકમાં જવાબ આપો :	_	•	-	
		કાર્બનિક સંયોજનોની વ્યાખ્યા આપે	ւ .			
	(2)	પાણીનો અણુ ધ્રુવતા દર્શાવે છે -	સમજાવો.			

(3) પાણી એ ઉત્તમ દ્રાવક છે - સમજાવો.

- (4) કયા પ્રકારનો દાબ પાણીના અશુ વચ્ચે આવેલો છે જે રસારોહણની ક્રિયામાં ભાગ લે છે ?
- (5) પ્રજનન અને સામાન્ય વૃદ્ધિ માટે કયું ખનીજ તત્ત્વ આવશ્યક છે ?
- (6) કાર્બનિક સંયોજનો (compounds)માં મુખ્યત્વે કયા અશુઓ આવેલા હોય છે ?
- (7) માનવશરીરમાં પાણીનું પ્રમાણ કેટલા ટકા હોય છે ?
- (8) જીવંત કોષોમાં પાણીનું પ્રમાણ કેટલા ટકા હોય છે ?
- (9) વનસ્પતિઓ જમીનમાંથી નાઇટ્રોજન કયા સ્વરૂપે મેળવે છે ?
- (10) ક્લોરોફિલના બંધારણમાં કયું ખનીજ તત્ત્વ આવેલું છે ?
- (11) કાચવત્ કાસ્થિમાં કયું ખનીજ તત્ત્વ આવેલું છે ?
- (12) પ્રાણીઓમાં હિમોગ્લોબીનના સંશ્લેષણમાં કયું ખનીજ તત્ત્વ ભાગ ભજવે છે ?
- (13) આંતરકોષીય દ્રવ્યના pH અને આસૃતિદાબની જાળવણી (maintenance) માટે કયા ખનીજ તત્ત્વનો મહત્ત્વનો ફાળો છે ?
- (14) કાર્બોહાઇડ્રેટ્સના બંધારણમાં H અને O નું પ્રમાણ કેટલું હોય છે ?
- (15) ફ્રુક્ટોઝ કઈ શર્કરાનું ઉદાહરણ છે ?
- (16) ગ્લાયકોજનની શાખિત શુંખલાનો બંધારણીય એકમ શું છે ?
- (17) કાર્બન અદ્યુઓને આધારે અસંતૃપ્ત ફેટીઍસિડના પ્રકારો જણાવો.
- (18) COOH ગ્રૂપ ધરાવતા લિપિડનું ઉદાહરણ આપો.

3. તફાવત જણાવો :

- (1) સંતૃપ્ત અને અસંતૃપ્ત ફેટીઍસિડ્સ
- (2) મોનોસેકેરાઇડ અને પોલીસેકેરાઇડ
- (3) એમાઇલોઝ અને એમાઇલોપેક્ટિન
- (4) સાદા અને જટિલ લિપિડ

4. માગ્યા પ્રમાણે જવાબ આપો :

- (1) લિપિડના વિવિધ પ્રકારો વર્શવો.
- (2) લિપિડની જૈવિક અગત્ય વર્શવો.
- (3) તમે અભ્યાસ કરેલ ફેટીઍસિડનાં બંધારણીય સૂત્રો આપો.
- (4) ડાયસેકેરાઇડ એટલે શું ? ટૂંકમાં વર્ણવો.
- (5) કાર્બોદિતના વિવિધ પ્રકારો ઉદાહરણો સહિત વર્ણવો.
- (6) તમે અભ્યાસ કરેલ કોઈ પણ પાંચ ખનીજ તત્ત્વોની અગત્ય વર્ણવો.
- (7) પ્રોટીન અને ન્યુક્લિઇક ઍસિડના બંધારણ માટે જવાબદાર એવાં ખનીજ તત્ત્વો વિશે વર્ણવો.
- (8) પાશીના અશુનું બંધારણ સમજાવો.
- (9) પાશીનું મહત્ત્વ જશાવો.
- (10) તમે અભ્યાસ કરેલ કોઈ પણ એક અકાર્બનિક સંયોજન સવિસ્તાર વર્શવો.

જૈવિક અણુઓ - 2

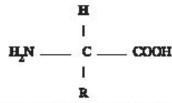
(પ્રોટીન, ન્યુક્લિઇક એસિડ અને ઉત્સેચકો)

જીવંત સજીવોની વિવિધ જાતિઓમાં રહેલી ભિન્નતાઓ તેમનામાં રહેલા જૈવિક અશુઓની ભિન્નતાને કારણે છે. આ ભિન્નતાઓ પ્રોટીનનું નિર્માણ કરતા એમિનો ઍસિડની સંખ્યા, પ્રકાર, રેખીય ક્રમિકતા અને બંધારણીય માળખાને લીધે હોય છે.

આપણે જાણીએ છીએ કે જીવંત સજીવો જટિલ તંત્રો છે. દેહમાં અસ્તિત્વ ધરાવતા હજારો પ્રોટીન આપણને દૈનિક ક્રિયાઓમાં મદદરૂપ થાય છે. આ પ્રોટીન કોષોમાં ઉદભવે છે. પ્રોટીનસંશ્લેષણ માટે મોટી સંખ્યામાં વિશિષ્ટ માહિતીની જરૂરિયાત છે આ માહિતી કોષકેન્દ્રમાં રહેલા ન્યુક્લિઇક ઍસિડમાં સંગૃહીત છે. ઉત્સેચકો, ન્યુક્લિઇક ઍસિડ અને પ્રોટીનની રચનામાં ભાગ લેતા અશુઓની આ પ્રકરણમાં ચર્ચા કરીશું. પ્રોટીન

પ્રોટીન કોષરસના મહત્ત્વનાં ઘટકો છે. તેઓ C, H, N, O અને Sના બનેલા હોય છે. પ્રોટીનના બંધારણના મૂળ એકમો એમિનો ઍસિડ છે. એટલે કે દરેક પ્રોટીન અશુ એમિનો ઍસિડનું પોલિમર છે. એમિનો ઍસિડ 20 પ્રકારના છે અને પ્રોટીન સંશ્લેષણમાં ભાગ લે છે, પ્રોટીન વિવિધ પ્રકારના એમિનો ઍસિડના બનેલા હોવાથી તે વિષમપોલિમર છે જીવંત સજીવોમાં પ્રોટીન ઘણાં કાર્યોમાં ભાગ લે છે. કેટલાક પ્રોટીન કોષરસપટલ દ્વારા પોષક પદાર્થીનું વહન કરે છે, કેટલાક પ્રોટીન ચેપી જીવાશુઓ સામે લડે છે, કેટલાક અંતઃસાવો છે, તો કેટલાક ઉત્સેચકો છે. પ્રાણીસૃષ્ટિમાં કૉલેજન એ મુખ્ય પ્રભાવી પ્રોટીન છે અને સમગ્ર જીવાવરણમાં રીબ્યુલોઝ બાયફૉસ્ફેટ કાર્બોક્ઝાયલેઝ-એક્સિજીનેઝ (RUBISCO) એ મુખ્ય પ્રભાવી પ્રોટીન છે.

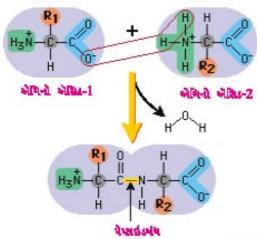
કેટલાક પ્રોટીન પાણીમાં, કેટલાક એસિડિક કે બેઝિક મંદ દ્રાવણમાં અને કેટલાક મંદ આલ્કૉહૉલમાં દ્રાવ્ય છે. જયારે વાળ, પીંછા, ભીંગડાં, શિંગડા, નખ, નહોર વગેરેમાં જોવા મળતું કેરેટિન (સ્ક્લેરોપ્રોટીન) કોઈ પણ દ્રાવકમાં દ્રાવ્ય નથી. પ્રોટીન ઊંચા તાપમાને, એ જ રીતે જલદ (સાંદ્ર) ઍસિડ, બેઇઝ અને આલ્કૉહૉલમાં નાશ પામે છે કે વિનૈસર્ગીકૃત બને છે. X-કિરણો, UV-કિરણો જેવા વિકિરણોથી પણ તે નાશ પામે છે.


એમિનો ઍસિડ

દરેક એમિનો ઍસિડમાં એક એમિનોજૂથ (-NH₂), એક કાર્બોક્સિલજૂથ (-COOH), એક H અને બાકીના ભાગમાં 'R' સમૂહ ધરાવતા હોય છે. એમિનો ઍસિડ અશુમાં કાર્બોક્સિલ સમૂહ એસિડિક અને એમિનો સમૂહ બેઝિક છે. આથી દ્રાવણમાં તે ઇલેક્ટ્રૉલાઇટ તરીકે વર્તે છે એટલે કે તે ઍસિડ તેમજ બેઈઝ બંનેના ગુણધર્મો દર્શાવે છે. આથી તે ઉભયગુણધર્મી છે.

अवविज्ञान

80


એમિનો એસિડનું સામાન્ય રાસાયશિક લેધારસ જોતા લધા એમિનો એસિડમાં 'R' સમૃદ સિવાયનો ભાગ સરખો હોય છે, પરંતુ 'R' સમૃદ (કાર્યકારીજૂપ)નું રાસાયશિક લેધારસ જુતું જુદું હોવાથી એમિનો એસિડના મુસપર્મો અને પ્રકારો જુદા પડે છે એમિનો એસિડની જૈવિક અગત્ય એ તેમના કિયાશીલ સમૃદના લીધે છે.

તેની રથનામાં રહેશા 'R' સમૃદને લીધે તેનું વર્ગીકરકા થાય છે. તેના વર્ગીકરકા માટે વિવિધ પદ્ધતિઓ ઉપયોગમાં લેવાય છે. કાલમાં સૌથી વધુ પ્રચલિત પદ્ધતિ લેહનીંજરની પદ્ધતિ છે. R સમૃદની ધુવીયતાના આધારે વર્ગીકરકા કરાય છે. R સમૃદ પર ધન કે કહા વીજભાર હોય તો એપિનો એસિડ ચોક્કસ પ્રકારના ધુવીય લાયપ્રિકતાઓ દર્શાવે છે. જેના આધારે એપિનો એસિડનું વર્ગીકરફા નીધે દર્શાવેલ છે :

841	એમિનો એસિડના પ્રકાર	ઉદાહરથો
1.	અધુવીય R જૂ ય ધરાવતા એમિનો એસિડ	એલેનીન, લ્યુસિન, વેલાઇન, આઇસોલ્યુસિન, વિયોઓનીન, કિનાઈલએલેનીન, ટ્રિપ્ટોફેન, પોલીન
2.	કુવીય અને વીજવારવિક્ષીન 'R' જુલ ધરાવતા એમિનો એશિડ	એસ્પરજિન, સિસ્ટિન, સેરિન, બ્લુટેપીન, બ્લાયસિન, ક્રિયોનિન, ટાયરોસીન
3.	ધુવીય અને ઋસ વીજભારયુક્ત 'R' જૂવ ધરાવતા એમિનો એસિક	એસ્પાર્ટિક એસિડ, અફ્રેશિક એસિડ
4.	ધુવીય અને ધન વીજભારમુક્ત 'R' જૂલ ધરાવતા એમિનો એશિડ	માર્જિનીન, હિસ્ટીડિન, લાયસિન

હાયપેપ્ટાઈડ : સમાન કે અસમાન પ્રકારના, લે એમિનો એસિડના એકમો જોડાઈને ડાયપેપ્ટાઇડ લને છે. એક એમિનો એસિડના - COOH સમૂહ અને બીજા એમિનો એસિડના -NH, વચ્ચે 'બંધ' રચાય છે. આ દરમિયાન પાશીનો અસુ ફુટ થાય છે. આ પ્રકારના બંધને 'પેપ્ટાઇડ' બંધ (paptide bond) કહેવાય છે.

પોલિવેપ્ટાઇડ : ઉપર જણાવ્યા પ્રમાણે અનેક એમિનો એસિકના અસુઓ વેપ્ટાઇડ બંધલી જોડાતાં પોલિવેપ્ટાઇડ શુંખલા સ્થાય છે. એક કે વધુ પોલિવેપ્ટાઇડ શુંખલાઓ વડે પ્રોટીનની સ્થના થાય છે.

દરેક પોલિપેપ્ટાઇડ શુંખલામાં મુક્ત એમિનો (-NH₂) સમૃદ્ધ ધરાવતા એક છેડાને એમિનો ટર્મિનલ કે N - ટર્મિનલ કહે છે જ્યારે

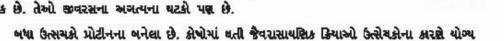
वैविङ सशुस्रो - 2

બીજી બાજુ મુક્ત કાર્બોક્સિલ (-COOH) સમૂહ ધરાવતા બીજા છેડાને કાર્બોક્સિલ ટર્મિનલ કે C - ટર્મિનલ કહે છે.

પ્રોટીનની રચના

પોલિપેપ્ટાઇડ શૂંખલામાં કુલ કેટલા એમિનો ઍસિડ એકમો છે, તે કયા પ્રકારના છે અને કયા ક્રમમાં ગોઠવાયા છે તેના આધારે પ્રોટીનનું 'પ્રાથમિક' (primary) બંધારણ નક્કી થાય છે. આ બાબત જનીન-નિયંત્રિત છે.

પોલિપેપ્ટાઇડ શુંખલા કુંતલાકાર ગુંચળાયય બને છે અથવા ચપટી તકતીયય બને છે. દ્વિતીયક બંધારકામાં મુખ્યત્વે શુંખલાની ગડીઓ હાઇડ્રોજન બંધની હાજરીના કારણે હોય છે. આથી પાસ પાસેના એપિનો એસિડની વચ્ચે રહેલી ગડીઓ અને હાઇડ્રોજન બંધના પરિશાયે સખત અને નશિકાયય રચનાનું નિર્માણ થાય છે તેને કુંતલ કહે છે.


એક પોલિયેપ્ટાઇડ શુંખલાની ત્રિપરિમાશ ચોકવશીથી પોલિયેપ્ટાઇડ કે પ્રોટીનની તૃતીયક (testiary) રચના બને છે.

ચતુર્થક બંધારક્ષ (quarternary) આખા પ્રોટીનનું ત્રિપરિમાશ સ્વરૂપ રજૂ કરે છે. તે ગોળાકાર (globular) અથવા રેસામય (fibrous) સ્વરૂપ હોઈ શકે છે. વિવિધ પોલિપેપ્ટાઇડ શૃંખલાઓ વચ્ચે આંતરક્રિયાઓ થવાથી ચતુર્લક બંધારશ બને છે. ડાયસલ્ફાઇડ, હાઇડ્રોજન, હાઇડ્રોકોબીક અને આયોનિક બંધો ચતુર્વક પ્રોટીનના નિર્માણમાં ભાગ લે છે. ઉદાહરણ : હિમોગ્લોબીનની રચનામાં ચાર પોલિપેપ્ટાઇડ શૃંખલાઓનું સંગઠન છે, જેમાં બે આલ્ફા શૃંખલાઓ અને બે બીટા શૃંખલાઓ છે. જે ચાર હિમ (આયર્ન) સમૂહો ધરાવતા અશુઓ છે.

પ્રોટીનનું મહત્ત્વ

દરે થાય છે.

પ્રોટીન વિવિધ કોષીય અંત્રિકાઓના રસસ્તરનો મુખ્ય બંધારક્ષીય ઘટક છે. તેઓ જીવરસના અગત્યના ઘટકો પણ છે.

ત્રિમો**ગ્લોમીન અજીની ચ**તુર્લક રથના

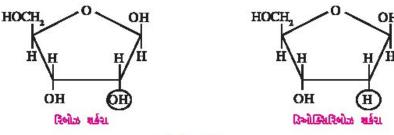
સ્વાદુર્પિડ, પિટ્યુટરીગ્રંથિ અને પેરાથાઇરોઇડ ગ્રંથિના મોટા ભાગના અંતઃસાવો પેપ્ટાઇડ પ્રકૃતિ ધરાવે છે.

સ્નાયુઓમાં આવેલું એક્ટિન અને મામોસીન તથા પક્ષ્મ તેમજ કશામાં રહેલું ગ્લોબ્યુલર પ્રોટીન એ સંક્રેયનશીલ પ્રોટીન છે જે હલનચલન માટે જવાબદાર છે.

રૂપિરરસમાં રહેલ ઇમ્યુનોગ્લોબ્યુલિન રોગપ્રતિકારક શક્તિનો ગુજ્ઞધર્મ ધરાવે છે.

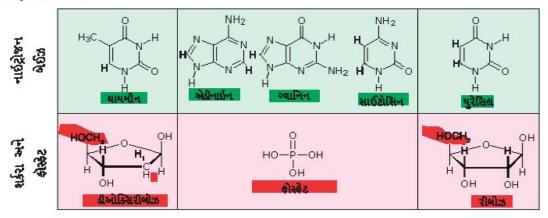
મેલેનીન પ્રોટીન છે જે શરીરને રંગ આપે છે.

પ્રોટીન જ્યારે એચિનો એસિડ ઉપરાંત કોઈ અન્ય દ્રવ્યો સાથે સંકળાય ત્યારે તેને સંયુગ્યી પ્રોટીન (Conjugated protein) કહે છે. કેટલાક આ પ્રકારના પ્રોટીન ખૂબ મહત્ત્વના છે. સસનવાયુઓના વહન માટે અનિવાર્ય હિમોગ્શોબીન અને પ્રકાશસંશ્લેષણ માટે આવશ્યક ક્લોરોક્લિ તેનાં ઉદાહરણો છે.


ન્યુક્સિઇક એસિડ

ડિઓક્સિરિબોઝ ન્યુક્સિઇક ઍસિડ (DNA)નું સૌપ્રથમ અલગીકરક્ષ જોહાનસેન ક્રિડેરીક મીશર નામના વૈજ્ઞાનિકે કર્યું. તેશે માનવના સેતક્સોના ક્રેમકેન્દ્રોમાં અજ્ઞાત કાર્ય ધરાવતો નિર્બલ ઍસિડિક પદાર્થ જોયો, જેનું નામ તેશે ન્યુક્સેઇન આપ્યું. લોડો વર્ષો પછી મીશરે ન્યુક્સેઇનમાંથી પ્રોટીન અને ન્યુક્સિઇક ઍસિડનું Downloaded from https:// www.studiestoday.com અલગીકરણ કર્યું. 1920માં ન્યુક્લિઇક એસિડને રંગસૂત્રના મુખ્ય ઘટક તરીકે ઓળખવામાં આવ્યો. રંગસૂત્ર એટલે જટિલ કોષોનાં કોષકેન્દ્રોમાં આવેલ જનીનો ધરાવતી સૂક્ષ્ય સ્થના.

બધા સજીવોમાં રંગસૂત્રો વારસાગત લક્ષણો માટે જવાબદાર છે. ત્યાર બાદ જીવાશુ તેમજ વિષાણુમાં પણ તે શોધાયા. ન્યુક્લિઇક એસિડનું તિવિય વિશ્લેષણ કરતા તે C, H, N અને O ઉપરાંત ક્ષેસ્કરસની હાજરી દર્શાવે છે. ન્યુક્લિઇક એસિડ બે પ્રકારના હોય છે : DNA અને RNA. બંને પ્રકારના ન્યુક્લિઇક એસિડના બંધારભ્રમાં કેટલીક સાગ્યતા છે, પરંતુ બંનેનાં કાર્યો ભિન્ન છે. મૂળભૂત રીતે બંને પ્રકારના ન્યુક્લિઇક એસિડ, ન્યુક્લિઓટાઇડ તરીકે ઓળખાતા બંધારશીય એકમોના પોલિન્યુક્લિઓટાઇડઝ છે.

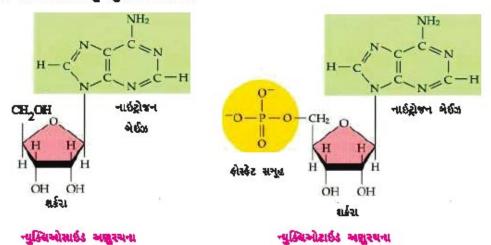

દરેક ન્યુક્લિઓટાઇડ ત્રણ પેટા એકમોનો બનેલો છે : પેન્ટોઝ શર્કરા, પ્યુરિન અથવા પિરિમિડીન નાઇટ્રોજન બેઈઝ અને કૉસ્કોરિક એસિડ.

RNAના બંધારભ્રમાં રિબોઝ પ્રકારની પેન્ટોઝ શર્કરા હોય છે, જ્યારે DNAના બંધારભ્રમાં ડિઓક્સિ રિબોઝ શર્કરા હોય છે.

યેન્ટોઝ શકેશ

નાઇટ્રોજન બેઈઝ ચક્રીય રચના (cyclic compound) છે જે પ્યુરિન કે પિરિપિડીન સ્વરૂપના હોય છે. પ્યુરિનના બંધારણમાં બે રિંગ હોય છે. એડીનાઇન (adenine) અને ગ્વાનિન (guanine) પ્યુરિન બેઈઝ છે. પિરિપિડીનના બંધારણમાં એક રિંગ હોય છે. સાઈટોસિન (cytosine), થાયમિન (thymine) અને યુરેસિલ (uracil) પિરિપિડીન બેઈઝનાં ઉદાહરણો છે. DNAની રચનામાં યુરેસિલ હોતો નથી જ્યારે RNAની રચનામાં થાયમિન હોતો નથી. અન્ય નાઇટ્રોજન બેઈઝ બંનેની રચનામાં સામાન્ય હોય છે. ફૉસ્ફોરિક એસિડ એ ફૉસ્ફેટ સ્વરૂપે સંકળાયેલ છે.

પ્યાક્લઇક ચાલડવા વટકા


ન્યુક્લિઓસાઇડ અને ન્યુક્લિઓટાઇડ

ન્યુક્લિઓસાઇડ : પ્યુરિન કે પિરિમિડીન પ્રકારના નાઇટ્રોજન લેઈઝ અને પેન્ટોઝ શર્કરાના જોડાણથી બનતી રચનાને ન્યુક્લિઓસાઇડ કહે છે. રિબોઝ શર્કરા સાથે નાઇટ્રોજન લેઈઝ જોડાતાં રિબોન્યુક્લિઓસાઇડ (રિબોસાઇડ) બને છે, જ્યારે ડિઓક્સિરિબોઝ સાથે નાઇટ્રોજન લેઈઝ સંયોજાતાં ડિઓક્સિરિબોન્યુક્લિઓસાઇડ (ડિઓક્સિરિબોસાઇડ)ની રચના બને છે.

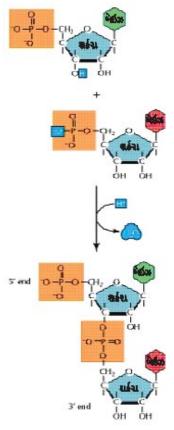
ન્યુક્ચિઓટાઇડ : ન્યુક્સિઓસાઇડ જ્યારે ફ્રોસ્કેટ સાથે સંયોજાય ત્યારે તે ફ્રોસ્કેટયુક્ત બને છે. આવા અક્ષુને Downloaded from https:// www.studiestoday.com वैविङ सशुस्रो - 2

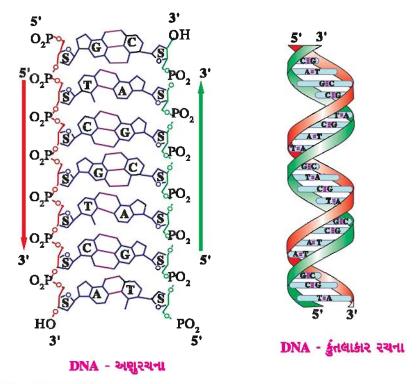
ન્યુક્લિઓટાઇડ કહે છે. રિબોન્યુક્લિઓસાઇડ ફૉસ્ફેટયુક્ત બને તો તેને રિબોન્યુક્લિઓટાઇડ કહે છે. એ જ રીતે જ્યારે ડિઓક્સિરિબોન્યુક્લિઓસાઇડ ફૉસ્ફેટયુક્ત થતાં એ જ રીતે ડિઓક્સિરિબોન્યુક્લિઓટાઇડ બને છે.

ન્યુક્સિઓટાઇડ RNA અને DNAની રચનામાં ભાગ લે છે. ક્રેષમાં શક્તિના ચલશ તરીકે ઉપયોગી ATP પણ એક પ્રકારનું ન્યુક્સિઓટાઇડ છે.

ડાયન્યુક્સિઓટાઇડનું નિર્માણ

બે ક્રમિક ન્યુક્સિઓટાઇડ ફ્રોસ્ફોન્ડાય-ઈસ્ટર (phosphodiester) બંધ વડે જોડાઈને ડાયન્યુક્સિઓટાઇડ રચે છે. આવું જોડાણ એક ન્યુક્સિઓટાઇડની શર્કરાના ત્રીજા કાર્બન અને બીજા ડાયન્યુક્સિઓટાઇડની શર્કરાના પાંચમાં કાર્બન સાથે થાય છે.


પોલિન્યુક્સિઓટાઇડનું નિર્માણ


પોલિન્યુક્લિઓટાઇડ : જ્યારે અનેક ન્યુક્લિઓટાઇડ્સ એકમો જોડાઈને પોલિન્યુક્લિઓટાઇડ શુંખલા બનાવે છે. RNAની રચનામાં આવી એક શુંખલા હોય છે જ્યારે DNAમાં આવી બે શૂંખલા હોય છે, જે એકબીજા સાથે જોડાઈને બેવડી કુંતલમય રચના બનાવે છે.

DNA અને RNA પ્રકારો

રિઓક્સિરિઓન્યુક્સિઇક ઍસિડ (DNA): DNAની સૌપ્રથમ શોધ ઓબશીસમા સૈક્ષના ઉત્તરાર્ધમાં થઈ હતી. તેની સંપૂર્શ અને વ્યવસ્થિત રચના દર્શાવતું મોડેલ રજૂ કરવાનું માન વોટ્સન અને કિક (1953) નામના બે વૈજ્ઞાનિકોને ફાળે જાય છે. DNAની અજૂરચનામાં આ મોડેલ પ્રમાશે પોલિન્યુક્સિઓટાઇડની બે શૂંખલાઓ પરસ્પર વિટુદ્ધ દિશામાં સમાંતરે ગોઠવાય છે. આ બે શૂંખલાઓ એકબીજા સાથે ચોક્કસ રીતે સંકળાઈને અમળાય છે, જેને પરિક્ષામે તેની રચના કુંતલાકાર નિસરક્ષી જેવી દેખાય છે. પોલિન્યુક્સિઓટાઇડની બે શૂંખલાઓ વચ્ચે આવેલા જોડાશમાં એક ન્યુક્સિઓટાઇડનો પ્યુરિન પ્રકારનો બેઈઝ સામેના ન્યુક્સિઓટાઇડના પિરિમિડીન પ્રકારના બેઈઝ સાથે નબળા હાઇડ્રોજન બંધથી જોડાય છે. આમાં એક નાઇટ્રોજન બેઈઝ એડેનીન (A) હોય તો તેની સાથે જોડાતા નાઇટ્રોજન બેઈઝ હંમેશાં શાધમિન (T) જ હોય છે. એ જ રીતે નાઇટ્રોજન બેઈઝ વ્યાનીન (G) હોય તો તેની સાથે જોડાતા નાઇટ્રોજન બેઈઝ હંમેશાં સાઇટીસિન (C) જ હોય છે. A અને T બે નબળા હાઇડ્રોજન બંધથી તેમજ C અને G ત્રક્ષ નબળા હાઇડ્રોજન બંધથી જોડાય છે. આય, DNAના પ્રત્યેક અશુમાં પ્યુરિન અને પિરિમિડીન બેઈઝનું પ્રમાશ સરખું હોય છે.

DNAનો એક સંપૂર્શ કુંતલ 34 Å લંબાઈ ધરાવે છે, જ્યારે બે શુંખલાઓ વચ્ચેનું અંતર (પહોળાઈ) 20 Å હોય છે.

રિબોન્યુક્લિઇક એસિડ (RNA): આ પોલિન્યુક્લિઓટાઇડ શૃંખલા રિબોઝ શર્કરા તેમજ યુરેસિલ નાઇટ્રોજન બેઈઝ ધરાવે છે પરંતુ થાયમિન હોતો નથી જેને રિબોન્યુક્લિઇક એસિડ કહે છે. RNA મુખ્ય ત્રશ પ્રકારના છે: (1) સંદેશક RNA (mRNA) (2) વાહક RNA (tRNA) અને (3) રિબોઝોમલ RNA (tRNA)

- (1) સંદેશક RNA : સંદેશક RNA (mRNA)નું સંશ્લેષણ જનીનોના DNA ખંડમાંથી થાય છે. જનીનોની બે પોલિન્યુક્લિઓટાઇડ શૃંખલા પૈકી કોઈ એક ટેમ્પ્લેટ (બીબાં કે કરમા) તરીકે વર્તે છે જે mRNAનું સંશ્લેષણ કરે છે. અથી mRNA જનીનિક માહિતીના સંકેતને DNAમાંથી ચોક્કસ પ્રકારના પ્રોટીનના સંશ્લેષણ માટે લઈ જાય છે. mRNA સંકેતને કોષરસમાં લઈ જાય છે કે જ્યાં પ્રોટીનનું સંશ્લેષણ થાય છે. mRNA તેમનું કાર્ય પૂર્ણ થતા વિઘટન પામે છે.
- (2) વાર્લક RNA (tRNA) : વાલક RNA (tRNA) 75 ન્યુક્લિઓટાઇડ ધરાવે છે, તેમાંના ત્રણ પ્રતિસંકેતો કહેવાય છે અને એક એમિનોએસિડ છે. કોષરસમાં તેમના 61 પ્રકાર છે. tRNA નું સર્જન DNA દ્વારા થાય છે. પ્રોટીનસંશ્લેષણ દરમિયાન પ્રત્યેક tRNA કોષરસમાંથી ચોક્ક્સ પ્રકારના એમિનોએસિડને ગ્રહણ કરીને રિબોઝોમ પર લાવે છે. ત્યાં mRNA પર આવેલા જનીન સંકેતોને અનુલક્ષીને tRNA દ્વારા ગ્રહણ કરાયેલા અને mRNA ઉપર ક્રમમાં ગોઠવાતા એમિનો એસિડ પેપ્ટાઇડ બંધથી જોડાય છે. આ રીતે પ્રાથમિક પ્રોટીનઅણઓનું સર્જન થાય છે.
- (3) રિબોઝોમલ RNA (rRNA): આ RNA રિબોઝોમ નામની અંગિકાઓમાં જોવા મળે છે, તેથી તેને રિબોઝોમલ RNA કહે છે. કોષરસમાં રિબોઝોમલ RNA (rRNA) અને પ્રોટીન એ ન્યુક્લિઓપ્રોટીનના સ્વરૂપમાં જોડાય છે તેને રિબોઝોમ કહે છે. કોષમાં કુલ RNAના 80 થી 85% જેટલા ભાગમાં rRNAની હાજરી છે. રિબોઝોમ પ્રોટીનસંશ્લેષણ માટે જગ્યા પૂરી પાડે છે અને તે માટે આવશ્યક ઉત્સેચકો ધરાવે છે. ઉત્સેચકો

જીવન એક જટિલ તંત્ર છે જેમાં મોટા ભાગની રાસાયષ્ટ્રિક ક્રિયાઓના ચોક્કસ સહનિયમનનો સમાવેશ થાય છે. આમાંની ઘણી ક્રિયાઓ દરમિયાન મોટા કદના અદ્યુઓનું સંશ્લેષણ થાય છે જ્યારે અમુક ક્રિયાઓ દરમિયાન મોટા અદ્યુઓનું વિખંડન થાય છે. નીચા તાપમાને અને વાતાવરણના દબાશે જીવંત કોષો પોતાની જૈવિક પ્રક્રિયાઓ કરે છે. આ બધી જ ક્રિયાઓ ખૂબ જ ધીમી ગતિથી થાય છે, છતાં જીવંત કોષોમાં આ બધી જ ક્રિયાઓ અતિશય ઊંચા દરે થતી હોય છે. આ બધું શરીરમાં આવેલા જૈવિક ઉદ્ઘીપકોની હાજરીના લીધે શક્ય બને છે. ઉપર્યુક્ત વિશિષ્ટ રસાયણો કે જે જૈવિક ઉદ્ઘીપકો તરીકે કાર્ય કરે છે તેને ઉત્સેચકો કહે છે. ઉત્સેચકો જૈવિક અણુઓ - 2

પ્રોટીનના બનેલા પાણીમાં દ્રાવ્ય અને કલિલ સ્વરૂપના ઉદ્ઘીપકો છે, જે ખૂબ જ અલ્પ માત્રામાં જીવંત કોષો દ્વારા ઋવિત થાય છે. તે કોષની બહાર કે કોષની અંદર શરીરના તાપમાને થતી જૈવરાસાયણિક પ્રક્રિયાઓમાં ભાગ લે છે અને ક્રિયાઓના દરને બદલે છે, પરંતુ તે ક્રિયામાં વપરાતા નથી અને મૂળ સ્વરૂપમાં પાછા મળે છે. કેટલાક ન્યુક્લિઇક ઍસિડ ઉત્સેચકો તરીકે વર્તે છે તેને રિબોઝાઇમ કહે છે. ઉત્સેચક જે પદાર્થ પર પ્રક્રિયા કરે તેને પ્રક્રિયાર્થી કહે છે. જ્યારે નવો ઉત્પન્ન થતો ઘટક કે ઘટકો નીપજ તરીકે ઓળખાય છે. દા.ત. લેક્ટોઝ પ્રક્રિયાર્થી હોય તો લેક્ટેઝ ઉત્સેચકની હાજરીમાં જળવિભાજન થતાં નીપજ સ્વરૂપ ગ્લુકોઝ તેમજ ગેલેક્ટોઝ પ્રાપ્ત થાય છે.

ઉત્સેચકોની રચના

રાસાયિશક રીતે બધા ઉત્સેચકો પ્રોટીનના બનેલા છે. કેટલીક વાર પ્રોટીન સાથે બિનપ્રોટીન ભાગ પણ જોડાયેલો હોય છે. આવા પ્રકારના ઉત્સેચકમાં પ્રોટીન ભાગને એપોએન્ઝાઇમ અને બિનપ્રોટીન ભાગને પ્રોસ્થેટિક સમૂહ કહે છે. આવા પ્રોસ્થેટિક સમૂહમાં ઝિંક, આયર્ન, મૅગ્નેશિયમ, સોડિયમ, કોબાલ્ટ વગેરે પૈકી કોઈ પણ ધાતુના આયનો કે કોઈ પણ કાર્બનિક પદાર્થો પણ હોય છે. આ ભાગ ઉત્સેચકને ક્રિયાશીલ બનાવે છે. આ સમૂહ ઉત્સેચકની અસરકારકતા માટે અનુકૂળતા પૂરી પાડે છે. પ્રોસ્થેટિક સમૂહ સહઉત્સેચકો કે સહકારકો તરીકે ઓળખાય છે. નિકોટિનેમાઇડ એડેનાઇન ડાયન્યુક્લિઓટાઇડ (NAD), નિકોટિનેમાઇડ એડેનાઇન ડાયન્યુક્લિઓટાઇડ (FMN) અને ફ્લેવિન એડેનાઇન ડાયન્યુક્લિઓટાઇડ (FAD) વગેરે સહઉત્સેચકો છે. કેટલીક રાસાયિશક ક્રિયાઓમાં સહઉત્સેચકની હાજરી જરૂરી હોય છે.

ઉત્સેચકોના ગુણધર્મો

દરેક ઉત્સેચક પ્રોટીન સંબંધિત બધા જ પ્રકારના ગુણધર્મો ધરાવે છે. દરેક ઉત્સેચક અનેક એમિનો ઍસિડોથી બનેલી ક્રમબદ્ધ શૃંખલાવાળો મહાઅણુ છે. આ શૃંખલામાં રહેલા દરેક એમિનોઍસિડ એકબીજા સાથે પેપ્ટાઇડ બંધથી જોડાયેલ છે.

ઉત્સેચકો તેમનાં કાર્યોમાં ચોક્કસ છે. દરેક ઉત્સેચક કોઈ નિશ્ચિત પ્રક્રિયા પર જ અસર ધરાવે છે. એક પ્રક્રિયા માટેનો ઉત્સેચક અન્ય પ્રક્રિયામાં ઉપયોગી ન બને. દા.ત., લાઈપેઝ ફક્ત લિપિડનું જ પાચન કરી શકે જ્યારે સુક્રેઝ ફક્ત સુક્રોઝનું જ પાચન કરી શકે.

ઉત્સેચકો પણ ઉભયગુણધર્મી છે કારણ કે તેના બંધારણમાં એક છેડે આલ્કલીય ક્રિયાશીલ એમિનો સમૂહ $(-NH_2)$ અને બીજા છેડે અમ્લીય ક્રિયાશીલ કાર્બોક્સિલ સમૂહ (-COOH) હોય છે.

મોટા ભાગના ઉત્સેચકોની અસર એકમાર્ગી (unidirectional) છે. તેઓ પ્રક્રિયાર્થીને નીપજમાં રૂપાંતરિત કરી શકે છે. પરંતુ નીપજને પાછી પ્રક્રિયાર્થીમાં રૂપાંતરિત કરી શકતા નથી. જોકે કેટલાક ઉત્સેચકની અસર દ્વિમાર્ગી (bidirectional) છે.

દરેક ઉત્સેચક ચોક્કસ તાપમાન મર્યાદા વચ્ચે કાર્યરત થાય છે. ઊંચા તાપમાને તેઓ તેમનું નૈસર્ગિક સ્વરૂપ ગુમાવે છે, જ્યારે વધુ નીચા તાપમાને તે નિષ્ક્રિય બને છે, પરંતુ નાશ પામતા નથી.

દરેક ઉત્સેચક નિશ્ચિત pH પર જ સક્રિય હોય છે. કેટલાક ઉત્સેચક ઍસિડિક માધ્યમમાં અને કેટલાક આલ્કલી માધ્યમમાં સક્રિય બને છે.

ઉત્સેચકોની કાર્યપદ્વતિ

દરેક ઉત્સેચક તેનું વિશિષ્ટ ત્રિપરિમાણ સ્વરૂપ ધરાવે છે. આ સ્વરૂપને આધારે તે વિશિષ્ટ ક્રિયાશીલ સ્થાન (active site) કેળવે છે. આ એ સ્થાન છે કે જ્યાં પ્રક્રિયાર્થી ઉત્સેચક પર જોડાણ સાધે છે. આ સ્થાન અને પ્રક્રિયાર્થી એકમનું સ્વરૂપ 'તાળા અને કૂંચી'ની માફક એકમેકને પૂરક હોય છે. આવા જોડાણને ઉત્સેચક-પ્રક્રિયાર્થી સંકુલ (enzyme-substrate-complex) કહે છે,

દરેક રાસાયણિક પ્રક્રિયા થવા માટે તેને આવશ્યક એવો શક્તિસ્તર અનિવાર્ય છે. આ શક્તિસ્તર 'સિક્રિય શક્તિસ્તર' (activation energy level) છે. પ્રક્રિયાર્થી ઉત્સેચક સાથે જોડાતો ઉત્સેચક-પ્રક્રિયાર્થી સંકુલ રચે છે. આ શક્તિસ્તર ખૂબ નીચો હોય છે. આ કારણે પ્રક્રિયાનો વેગ અકલ્પ્ય ઝડપે વધે છે. એક વાર પ્રક્રિયા પૂરી થાય એટલે ઉત્સેચકના ક્રિયાશીલ સ્થાન પરથી નીપજ મુક્ત થાય છે. ઉત્સેચક મૂળ સ્વરૂપે પ્રાપ્ત રહે છે. સમગ્ર પ્રક્રિયા ટૂંકમાં નીચેના સમીકરણથી દર્શાવી શકાય :

श्रुविध्रात

ઉત્સેચકનું નામકરણ અને વર્ગીકરણ

દરેક ઉત્સેચકને નામ આપવામાં આવે છે. આ નામ બે પ્રકારે આપી શકાય છે. જે પ્રક્રિયાર્થી પર તે અસર કરતો હોય તેના નામની પાછળ – ase લગાવીને નામ અપાય. દા.ત., સુક્રોઝ પર અસર કરે તેને સુક્રેઝ અને લિપિડ પર અસર કરે તેને લાઈપેઝ કહેવાય. અન્ય રીતે તે જે પ્રકારની પ્રક્રિયા પર અસર કરતો હોય તેના આધારે નામકરણ થાય છે. દા.ત., જલવિચ્છેદન પ્રેરતા ઉત્સેચકને હાઇડ્રોલેઝ અને ઑક્સિડેશન કરતા ઉત્સેચકને ઑક્સિડેઝ કહેવાય છે.

ઉત્સેચકોને તેમની ઉદ્દ્પિકીય જૈવરાસાયશિક પ્રક્રિયાના આધારે વર્ગીકૃત કરવામાં આવે છે. ઉત્સેચકો નીચે મુજબ છ કક્ષામાં વિભાજિત છે :

- (1) ઑક્સિડો-રિડક્ટેઝિસ: આ પ્રકારના ઉત્સેચકો કોષમાં થતી ઑક્સિડેશન અને રિડક્શનની ક્રિયાઓ સાથે સંકળાયેલા છે. એમાં પદાર્થમાંથી હાઇડ્રોજનનો ત્યાગ કરાવનાર ઉત્સેચક ડિહાઇડ્રોજિનેઝ કહેવાય છે. ઑક્સિજનનો અજ્ઞુ ઉમેરાવનાર ઉત્સેચક ઑક્સિડેઝ તરીકે ઓળખાય છે. ક્રેબ્સ ચક્ર દરમિયાન થતી ઑક્સિડેટિવફૉસ્ફોરાયલેશનની ક્રિયામાં આ પ્રકારના ઉત્સેચકો મહત્ત્વનો ભાગ ભજવે છે. દા.ત., સક્સિનીક, ડિહાઇડ્રોજિનેઝ અને સાયટોક્રોમ ઑક્સિડેઝ.
- (2) ટ્રાન્સફરેઝિસ : ઉત્સેચકો કે જે હાઇડ્રોજન સિવાય કોઈ પણ એક સમૂહને એક પ્રક્રિયાર્થીમાંથી બીજા પ્રક્રિયાર્થી સાથે જોડાણ કરી આપે તેને ટ્રાન્સફરેઝ તરીકે ઓળખવામાં આવે છે. દા.ત., હેક્સોકાઇનેઝ ATPમાંથી એક ફોસ્ફેટને દૂર કરી હેક્સોઝ શર્કરા સાથે જોડે છે ત્યારે ગ્લુકોઝ સાથે ATPનો એક ફૉસ્ફેટ જોડાતા ગ્લુકોઝ- 6 ફૉસ્ફેટ બને છે.
- (3) હાઇડ્રોલેઝિસ : કોઈ પણ જટિલ સકાર્બનિક પદાર્થમાં પાણીનો અશુ ઉમેરી તેનું વિઘટન સરળ પદાર્થમાં કરનાર ઉત્સેચકને હાઇડ્રોલેઝ કહેવાય છે. દા.ત. માલ્ટેઝ.

- (4) લાયેઝિસ : આ પ્રકારના ઉત્સેચકો મોટા અશુઓનું વિખંડન નાના એકમોમાં કરે છે. અહીં પાશ્રી (H,O)ના અશુઓ ઉમેરવા પડતા નથી. દા.ત., ગ્લાયકોલિસિસ પ્રક્રિયા દરમિયાન આલ્ડોલેઝ ઉત્સેચકની હાજરીમાં ફ્રુક્ટોઝ 1, 6-બાયકોસ્કેટ (છ કાર્બનયુક્ત) એ ત્રશ કાર્બનયુક્ત ટ્રાયોઝ ફૉસ્ફેટના બે અશુઓમાં રૂપાંતર પામે છે.
- (5) આઇસોમરેઝિસ: આ સમૂહના ઉત્સેચકોની હાજરીથી પ્રક્રિયાર્થીના અશુઓની ગોઠવણી કે રચનામાં જ માત્ર ફેરફાર થાય છે દા.ત., ગ્લુકોઝ અશુનું તેના સમઘટક ફ્રુક્ટોઝમાં રૂપાંતર કરે છે. પરમાશુઓના સ્થળાંતરથી અશુનું નવું સ્વરૂપ બને છે.- ફ્રુક્ટોઝ આઇસોમરેઝ.

(6) લિગેઝિસ અથવા સિન્થેટેઝિસ : આ પ્રકારના ઉત્સેચકો ATPના પાયરોફ્રૉસ્ફેટ બંધમાંથી પ્રાપ્ત થતી શક્તિની મદદથી બે અશુઓને પરસ્પર જોડે છે. દા.ત., એસેટાઇલ કો - A સિન્થેટેઝ.

આ દરેક પ્રકારો ઘણા પેટા પ્રકારો ધરાવે છે. આ વર્ગીકરણને ઉપયોગમાં લેવા માટેની ચાવીના ભાગ રૂપે ઉત્સેચકીય ઉદિપન પ્રક્રિયાને ધ્યાનમાં લઈ નક્કી કરવું કે આ ક્યા પ્રકારની પ્રતિક્રિયા છે અને ત્યાર બાદ ઉત્સેચકને યોગ્ય નામ આપવું.

જૈવિક અણુઓ - 2

સહઘટકો

ઉત્સેચકના બંધારણમાં આવેલ બિનપ્રોટીન ઘટકને સહઘટકો કહે છે તે એપોએન્ઝાઈમ કરતાં નાના કદના અણુઓ છે. સહઘટકો અકાર્બનિક કે કાર્બનિક બંધારણ ધરાવે છે. અકાર્બનિક ઘટકો સામાન્ય રીતે ધાત્વિક આયનો સ્વરૂપે હોય છે. દા.ત., Fe⁺⁺, Cu⁺⁺, Na⁺⁻ Zn⁺⁺ વગેરે.

કાર્બનિક એન્હાઈડ્રેઝની ક્રિયાશીલતા માટે Znની હાજરી જરૂરી છે. એઝેટોબેક્ટર બેક્ટેરિયામાં નાઇટ્રોજનનું સ્થાપન કરતો નાઇટ્રોજિનેઝ ઉત્સેચકની ક્રિયાશીલતા માટે વેનેડિયમની હાજરી જરૂરી છે. કેટલીકવાર એક ઉત્સેચકની ક્રિયાશીલતા માટે એક કરતાં વધુ ધાત્વિક આયનોની જરૂર હોય છે. દા.ત., ઇનોલેઝ ઉત્સેચક મૅગ્નેશિયમ, મૅગેનીઝ અને ઝિંકની હાજરીમાં જ ક્રિયાશીલ બને છે. માનવીમાં આયર્ન, મૅગેનીઝ, કૉપર, કોબાલ્ટ, ઝિંક, સેલેનિયમ અને મોલિબ્ડેનમ સામાન્ય રીતે જોવા મળતાં સહઘટકો છે. માનવીના ખોરાકમાં કેલ્શિયમ હોય છે જે નાઇટ્રિક ઓક્સાઇડ સિન્થેટેઝ, પ્રોટીન ફોસ્ફેટેઝ અને એડિનાઈલ કાઇનેઝની ક્રિયાશીલતા માટે જરૂરી છે. કેટલીકવાર એક સહઘટક એક કરતાં વધુ ઉત્સેચકોની ક્રિયાશીલતા માટે જરૂરી છે.

કાર્બનિક ઘટકો તરીકે NAD (નિકોટિનેમાઇડ એડેનાઇનડાયન્યુક્લિઓટાઇડ), FAD (ફલેવિન એડેનાઇન ડાયન્યુક્લિઓટાઇડ), NADP(નિકોટિનેમાઇડ એડેનાઇનડાયન્યુક્લિઓટાઇડ ફૉસ્ફેટ) અને FMN (ફલેવિન મોનોન્યુક્લિઓટાઇડ) વગેરે હોય છે. જો કાર્બનિક ઘટકો એપોએન્ઝાઇમ સાથે નિર્બળ રીતે જોડાયેલા હોય તો તેને સહઉત્સેચક કહે છે. અને જો તે સબળ રીતે જોડાયેલા હોય તો તેને પ્રોસ્થેટિક જૂથ કહે છે. ઘણા સહઉત્સેચકો વિટામિન્સના વ્યુત્પન્નો છે.

સારાંશ

વિવિધ જાતિના જીવંત સજીવોની લાક્ષણિકતાઓમાં રહેલી ભિન્નતાઓ પ્રોટીનનું નિર્માણ કરતા એમિનો ઍસિડની સંખ્યા, પ્રકાર, રેખીય ક્રમિકતા અને બંધારણીય માળખાને લીધે છે. પ્રોટીન કોષરસના મહત્ત્વનાં ઘટકો છે. તેઓ C, H, N, O અને S ના બનેલા હોય છે. પ્રોટીન પાણીમાં દ્રાવ્ય છે પરંતુ કેરોટિન (સ્કલેરોપ્રોટીન) કોઈ પણ દ્રાવકમાં દ્રાવ્ય નથી. એમિનો ઍસિડ એ પ્રોટીનનો બંધારણીય એકમ છે, પોલિપેપ્ટાઇડ શુંખલામાં એમિનો ઍસિડ પરસ્પર પેપ્ટાઇડ બંધ વડે જોડાયેલા છે. સજીવોમાં 20 પ્રકારના એમિનો ઍસિડ જોવા મળે છે. દરેક એમિનો ઍસિડમાં એક એમિનો સમૂહ (-NH₂) એક કાર્બોક્સિલ સમૂહ (-COOH), એક H અને બાકીના ભાગ તરીકે 'R' સમૂહ આવેલાં હોય છે. દરેક એમનાેઍસિડ તેના 'R' જૂથના બંધારણથી એકબીજાથી અલગ પડે છે. એમિનો ઍસિડના એક છેડે એમિનો સમૂહ અને બીજા છેડે કાર્બોક્સિલ સમૂહ આવેલો હોવાથી તે ઉભયગુણધર્મી પ્રકૃતિ ધરાવે છે. એ જ રીતે પ્રોટીનની રચનામાં પોલિપેપ્ટાઇડ શૃંખલાના એક છેડે એમિનો સમૂહ અને બીજા છેડે કાર્બોક્સિલ સમૂહ આવેલો હોવાથી તે પણ ઉભયગુણધર્મી પ્રકૃતિ ધરાવે છે. રચનાકીય રીતે પ્રોટીનને પ્રાથમિક (Primary), દ્વિતીયક (Secondary), તૃતીયક (Tertiary) અને ચતુર્થકી (Quarternary) પ્રોટીન પ્રકારોમાં વર્ગીકૃત કરવામાં આવે છે. બધા ઉત્સેચકો અને મોટા ભાગના અંતઃસ્રાવો પ્રોટીનના બનેલા છે. પ્રોટીન જ્યારે એમિનો ઍસિડ ઉપરાંત કોઈ અન્ય દ્રવ્યો સાથે સંકળાય ત્યારે તે સંયુગ્મી પ્રોટીન (Conjugated proetin) કહેવાય છે. ન્યુક્લિઇક એસિડનું તત્વિય વિશ્લેષણ કરતા C, H, N અને O ઉપરાંત ફૉસ્ફરસની હાજરી દર્શાવે છે. બે પ્રકારના ન્યુક્લિઇક ઍસિડ હોય છે : RNA અને DNA. તેઓ ન્યુક્લિઓટાઇડ તરીકે જાણીતા રચનાકીય એકમોના બનેલા પોલિન્યુક્લિઓટાઇડ્ઝ છે. દરેક ન્યુક્લિઓટાઇડ એક પેન્ટોઝ શર્કરા, એક પ્યુરિન અથવા પિરિમિડીન નાઇટ્રોજન બેઈઝ અને ફૉસ્ફોરિકઍસિડનો બનેલો છે. RNA રિબોઝ પ્રકારની પેન્ટોઝ શર્કરા ધરાવે છે. જ્યારે DNA ડિઓક્સિરિબોઝ પેન્ટોઝ શર્કરા ધરાવે છે. નાઇટ્રોજન બેઈઝ બે પ્રકારના હોય છે : પ્યુરિન (એડીનાઇન અને ગ્વાનિન) અને પિરિમિડીન (થાયમિન, સાઇટોસિન અને યુરેસિલ.) DNAની રચનામાં યુરેસિલ હોતો નથી તેમજ RNAની રચનામાં થાયમિન હોતો નથી. જ્યારે બાકીના બધા જ નાઇટ્રોજન બેઈઝ RNA તેમજ DNAની રચનામાં સરખા છે. અનેક ન્યુક્લિઓટાઇડ્સ એકમો જોડાઈ પોલિન્યુક્લિઓટાઇડ શુંખલા બનાવે છે. RNAની રચનામાં આવી એક પોલિન્યુક્લિઓટાઇડ શુંખલા હોય છે. જ્યારે DNAમાં

આવી બે પોલિન્યુક્લિશૃંખલા હોય છે. DNAની રચનામાં આવી બે પોલિન્યુક્લિઓટાઇડ શૃંખલાઓ કુંતલાકાર રીતે એકબીજા સાથે અમળાય છે. RNA ત્રણ પ્રકારના હોય છે : (1) મેસેન્જર RNA (mRNA) (2) ટ્રાન્સફર RNA (tRNA) અને (3) રિબોઝોમલ RNA (rRNA).

વિશિષ્ટ રસાયણો કે જે જૈવિક ઉદ્ધિપકો તરીકે કાર્ય કરે છે તેને ઉત્સેચકો કહે છે. રાસાયણિક રીતે બધા ઉત્સેચકો પ્રોટીનના બનેલા છે. કેટલીક વાર પ્રોટીન સાથે બિનપ્રોટીન ભાગ પણ જોડાયેલો હોય છે. આવા પ્રકારના ઉત્સેચકમાં પ્રોટીન ભાગને એપોએન્ઝાઇમ અને બિનપ્રોટીન ભાગને પ્રોસ્થેટિક સમૂહ કહે છે. સહઉત્સેચક અને સહઘટક પ્રોસ્થેટિક જૂથ સબળ રીતે જોડાયેલ છે. સહઉત્સેચક નિર્બળ રીતે જોડાયેલાં છે અને સહઘટકોમાં ધાત્વિય આયનોનો સમાવેશ થાય છે.ઉત્સેચકોને જૈવરાસાયણિક પ્રક્રિયાના આધારે છ પ્રકારોમાં વર્ગીકૃત કરાય છે : (1) ઑક્સિડો-રિડક્ટેઝિસ (2) ટ્રાન્સફરેઝિસ (3) હાઇડ્રોલેઝિસ (4) લાયેઝિસ (5) આઇસોમરેઝિસ (6) લિગેઝિસ અથવા સિન્થેટેઝિસ.

સાક્સાર

1

		Kdie	વાય			
•)	નીચે	આપેલા પ્રશ્નોના ઉત્તરો પૈકી સાચા ઉત્તર સા	મે સર્કલમાં પેન્સિલથી રંગ પૂરો ઃ			
	(1)	l) પ્રોટીનસંશ્લેષ્ણમાં કેટલા પ્રકારના એમિનો એસિડ ભાગ લે છે ?				
		(અ) 18	(બ) 20	0		
		(5) 22	O (3) 24	Ö		
	(2)	નીચે પૈકીનો કયો પ્રોટીન કોઈ પણ દ્રાવક	માં દ્રાવ્ય નથી ?			
		(અ) હિમોગ્લોબીન	🔘 (બ) માયોગ્લોબિન	00		
		(ક) સ્ક્લેરોપ્રોટીન	🔾 (ડ) એક્ટિન	Ō		
	(3)	એમિનો ઍસિડને કોણે વર્ગીકૃત કર્યા ?	_			
		(અ) જૉહાનસેન	🔾 (બ) લેહનિંજર	00		
		(ક) વિર્શીવ	🔾 (ડ) પરકિંજે	Ó		
	(4)	ધ્રુવીય અને તટસ્થ – સમૂહ ધરાવતો એગ્	મેનો ઍસિડ કયો છે ?			
		(અ) એલેનીન	🔾 (બ) સેરિન	0		
		(ક) વેલાઇન	🔘 (ડ) પ્રોલિન	00		
	(5)	બે એમિનો ઍસિડને જોડતો બંધ કયો છે	?			
		(અ) હાઇડ્રોજન	🔘 (બ) એસ્ટર	00		
		(ક) પેપ્ટાઇડ	🔾 (ડ) ગ્લાયકોસિડિક	0		
	(6)	ન્યુક્લિઓસાઇડના બંધારણમાં હોય છે :				
		(અ) નાઇટ્રોજન બેઈઝ + શર્કરા	🔘 (બ) નાઇટ્રોજન બેઈઝ + ફૉસ્ફેટ	0		
		(ક) શર્કરા + ફૉસ્ફેટ	🔘 (ડ) નાઇટ્રોજન બેઈઝ + શર્કરા + ફૉસ્ફેટ	00		
	(7)					
		(અ) વોટ્સન	(બ) ક્રિક	00		
		(ક) ફ્રિડરિક મીશર	🔾 (ડ) જૉહાનસેન	0		
	(8)					
		_	🔘 (બ) માત્ર પ્યુરિનની પ્રકૃતિને આધારે	00		
		(ક) શર્કરા અને પિરિમિડીનની પ્રકૃતિને આધારે	🔾 (ડ) ઉપરમાંથી એક પણ નહિ.	0		
	(9)	ડી.એન.એ. અને આર.એન.એ. બંનેમાં એ	સમાનતા છે કે			
		(અ) બંને બે કુંતલો ધરાવે છે.		0		
		(બ) બંનેમાં સમાન પ્રકારની શર્કરા હોય	છે.	0		
		(ક) બંને ન્યુક્લિઓટાઇડ્સના પોલિમર છે).	0000		
		(ડ) બંનેમાં સમાન પિરિમિડીન હોય છે.		\bigcirc		

જૈવિક અણુઓ - 2

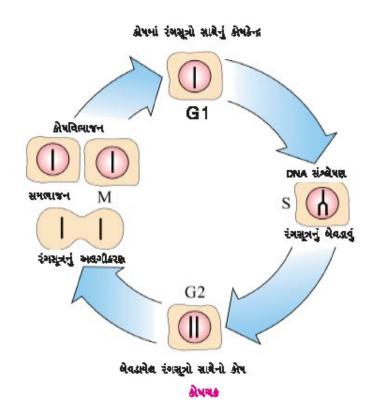
	(10)	10) ડી.એન.એ.ના એક સંપૂર્ણ કુંતલની લંબાઈ કેટલી છે ?						
		(અ) 10 Å	\circ	(બ)	20 Å		\circ	
		(§) 32 Å	Õ	(১)	34 Å		Ŏ	
	(11)	ઉત્સેચકો શાના બનેલા છે ?						
		(અ) કાર્બોહાઇડ્રેટ્સ	\circ	(બ)	પ્રોટ ીન્ સ		\circ	
		(ક) અંતઃસ્રાવો	Õ	(3)	વિટામિન્સ		00	
	(12)	એપૉએન્ઝાઇમ શું છે ?	•				•	
		(અ) વિટામિન	\circ	(બ)	લિપિડ		\circ	
		(ક) કાર્બોહાઇડ્રેટ	Ŏ	(১)	પ્રોટીન		00	
	(13)	હેક્ઝોકાઇનેઝ કયા પ્રકારનો ઉત્સેચક	છે ?					
		(અ) ઑક્સિડોરીડ્ક્ટેઝ	0	(બ)	ટ્રાન્સફરેઝ		00	
		(ક) હાઇડ્રોલેઝ	Õ	(3)	આઇસોમરેઝ		Õ	
	(14)	નીચેનામાંથી કયો એક કો-એન્ઝાઇમ ક	· ?					
		(원) Fe ⁺²	0	(બ)	NAD		00	
		(ક) લાયેઝિસ	Ō	(3)	ATP		Ō	
	(15)	કયું તત્ત્વ નાઇટ્રોજીનેઝની સક્રિયતા મ	ાટે જવ	ાબદાર	છે ?			
		(અ) કૉપર	0	(બ)	ઝિંક		00	
		(ક) વેનેડિયમ	Ō	(3)	આયર્ન		Ō	
2.	નીચેના	પ્રશ્નોના ટૂંકમાં જવાબ આપો :						
	(1)	RUBISCOનું પૂર્શ નામ આપો.						
	(2)	પ્રોટીનની રચનામાં કયાં તત્ત્વો આવેલ	ાં છે '	?				
	(3)	ન્યુક્લિઓટાઇડનાં ઘટકો જણાવો.						
		ન્યુક્લિઓસાઇડની વ્યાખ્યા આપો.						
	(5)	કેરેટીન ક્યાં ક્યાં જોવા મળે છે ?						
	(6)	એમિનો ઍસિડના કયા સમૂહો વચ્ચે ાં	પેપ્ટાઇડ	ં બંધ	બને છે ?			
	(7)	પ્રોસ્થેટિક સમૂહની વ્યાખ્યા આપો.						
	(8)	સિન્થેટેઝિસ ઉત્સેચકનાં કાર્યો જણાવો.						
	(9)	વાહક આર.એન.એ.નાં કાર્યો જણાવો.						
		પિરિમિડીન પ્રકારના નાઇટ્રોજન બેઈ	ર જણા	ાવો.				
3.		ા પ્રમાણે જવાબ આપો :						
	` '	ડાયપેપ્ટાઇડ નિર્માણ વર્ણવો.						
	` '	એમિનો ઍસિડની રચના સમજાવો.						
	` '	પ્રોટીનનું જૈવિક મહત્ત્વ આપો.						
		હિમોગ્લોબીન અશુની રચના વર્ણવો.						
		ડાયન્યુક્લિઓટાઇડ નિર્માણ સમજાવો. સંદેશક આર.એન.એ. પર નોંધ લખો.						
	` '							
		ઉત્સેચકોના ગુણધર્મો જણાવો. ઉત્સેચકની કાર્ય પદ્ધતિ વર્ણવો.						
	` '		ຕວງ	1 5 101-1	oxiona)			
		ન્યુક્લિઓસાઇડ અને ન્યુક્લિઓટાઇડ વચ્ચે તફાવત જણાવો. સહઘટકો પર નોંધ લખો.						
1	ù		JI (2)	\ \(\begin{array}{c} \delta \d	ചെല്പ് പടിദ്രേത	(3) 1) 1	மல்ல	
4.	ાનસ્તૃ	<mark>તમાં વર્ણવો :</mark> (1) ડી.એન.એ.ની ૨ચ	·u (2) उत्सः	યગાંગુ પંપાકરાષ્ટ્ર	(૩) ત્રાઠાગગા	とりてい	

•

अवविद्यान

90

8


કોષચક્ક અને કોષવિભાજન

વૃદ્ધિ એ લધા જ સજીવોનો પાયાનો ગુશધર્મ છે. તેના માટે કોયોના જથ્થામાં વધારો થવો, જનીનદ્રવ્યોનું પ્રસ્થાપન અને વિભાજન દ્વારા સમાન જથ્થામાં જનીનદ્રવ્યો ધરાવતાં ભાળકોયોનું નિર્માણ થવું જરૂરી છે. પ્રત્યેક પુખ્ત વ્યક્તિના શરીરમાં કોયોની સંખ્યા 10¹⁴ જેટલી હોય છે. આવા દરેક કોયનું નિર્માણ નર અને માદા જનનકોયો વચ્ચે થયેલા ક્લનથી ઉદ્ભવેલા ક્લિતાંડમાં સતત સફળ કોયવિભાજનના ક્રમને પરિણામે જ થયેલું

હોય છે. તેથી જ આપણે કહી શકીએ કે, કો ખવિભાજન દ્વારા કોપીયગુલનની પ્રક્રિયા એ સજીવની વૃદ્ધિ માટે અનિવાર્ય બાબત છે.

કોષચક

નવો પેદા થતો દરેક કોષ કોષચકને અનુસરે છે. કોષચક એ વાસ્તવમાં કોષની અંદર થતાં શેશીબદ્ધ કેરકારોથી કોષવિભાજન અને કોષના દિગુસનને પ્રેરે છે. લે સકળ કોષવિભાજનો વચ્ચેના ગાળાને કોષનાક કહે છે. કોષચક; કોષસર્જન (કોષનિર્માણ) અને કોષવિભાજન વચ્ચેનો સમયગાળો છે. માનવીમાં મોટે ભાગે દર 24 કલાકે એક સંપૂર્ણ કોષવિભાજન પૂર્ણ થાય છે. જોકે જુદા જુદા પ્રકારના સલ્લવો અને વિવિધ પ્રકારના કોષોમાં કોષવિભાજનનો સમયગાળો જુદો

જુદો હોય છે. દા.ત., યીસ્ટ કોષમાં એક કોષચક માત્ર 90 મિનિટમાં પૂર્ણ વાય છે.

5ोषयङ सने डोषिपभारन 91

કોષચક્રને મુખ્યત્વે બે તબક્કામાં વર્હેચી શકાય : (1) આંતરાવસ્થા (2) M - તબક્કો (સમભાજન તબક્કો)
(1) આંતરાવસ્થા : આંતરાવસ્થા દરમિયાન કોષમાંના દ્રવ્ય લગભગ બેવડા પ્રમાણમાં વધે છે અને કોષનું કદ પણ મોટું થાય છે. આ તબક્કા દરમિયાન DNAનું સ્વયંજનન થાય છે. આ અવસ્થામાં રંગસૂત્ર ખૂબ જ વિસ્તરેલી ગોઠવણી ધરાવતાં હોવાથી ફક્ત રંગસૂત્રદ્રવ્ય તરીકે ઓળખી શકાય છે. આ ગાળામાં તારાકેન્દ્ર પણ બેવડાય છે. આમ, બેવડાયેલા તારાકેન્દ્રના બે એકમો એકમેકને કાટખૂણે ગોઠવાતાં હોય છે. આંતરાવસ્થાને ત્રણ પેટા તબક્કામાં વહેંચી શકાય : (1) G₁ તબક્કો (Gap₁ phase) (2) S તબક્કો (Synthesis phase)

કોષવિભાજન M ચક્રની શરૂઆત લિભાજન માટે કોષ તૈયાર G2 G1 પામે છે. સ્વયંજનન DNA કે મેચક્રના તબક્કાઓ

(3) G₂ તબક્કો (Gap₂ phase)

(1) G_1 તબક્કો : તે આંતરાવસ્થાનો પ્રારંભિક તબક્કો છે. આ તબક્કો અગાઉનો સમભાજન (M તબક્કો) અને વર્તમાન DNA સંશ્લેષણ વચ્ચેનો ગાળો હોઈ તેને G_1 તરીકે ઓળખવામાં આવે છે. આ તબક્કાને વૃદ્ધિ તબક્કો કહે છે. આ તબક્કા દરમિયાન ઘણી જૈવસંશ્લેષણની પ્રક્રિયાઓ થાય છે. S તબક્કામાં બનનાર DNA સંશ્લેષણ માટે જરૂરી ઉત્સેચકો, RNA તથા પ્રોટીન વગેરેનું સંશ્લેષણ અહીં થાય છે.

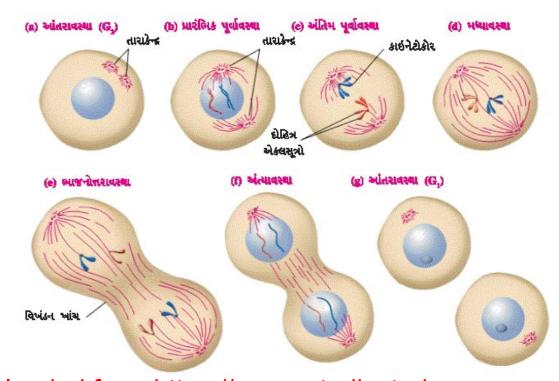
(2) S તબક્કો : આ તબક્કા દરમિયાન DNAનું સંશ્લેષણ થાય છે. S તબક્કાને અંતે બધાં રંગસૂત્રો

બેવડાય છે અને તે દરેકમાંથી બબ્બે દોહિત્ર રંગસૂત્રિકાઓ છૂટી પડે છે. વળી, આનુવંશિક દ્રવ્યનો જથ્થો પણ બમણો થાય છે. એટલે કે DNAને જો 2C તરીકે નોંધ્યું હોય તો તેનું પ્રમાણ અંતમાં 4C જેટલું માલૂમ પડે છે.

- (3) G₂ તબક્કો : આંતરાવસ્થાનો અંતિમ તબક્કો કે, જ્યાંથી છેવટે કોષ સમભાજનમાં પ્રવેશે છે. આ દરમિયાન મુખ્યત્વે પ્રોટીનનું નિર્માણ તથા સમભાજન માટે જરૂરી સૂક્ષ્મ નલિકાઓનું સર્જન થાય છે.
- (2) M તબક્કો (સમભાજન તબક્કો) : જેમાં કોષવિભાજનમાં બે સ્પષ્ટ પરંતુ અખંડ ઘટનાઓ થાય છે, જેમકે, કોષકેન્દ્ર વિભાજન અને કોષરસ વિભાજન. વળી, કોષકેન્દ્ર વિભાજન પણ બે રીતે થાય છે. જેમાં એક ઘટના દરમિયાન રંગસૂત્રોની સંખ્યા જળવાઈ રહે છે જેને સમભાજન કે સમવિભાજન કહે છે. જ્યારે અન્ય ઘટનામાં રંગસૂત્રોની સંખ્યા અડધી થઈ જાય છે જેને અર્ધિકરણ કે અર્ધસૂત્રણ કહે છે.

સમભાજન (Mitosis) : આ પ્રકારના કોષવિભાજનને મુખ્ય ચાર અવસ્થામાં વર્જ્સવવામાં આવે છે. એ યાદ રાખવું જરૂરી છે કે વિભાજનની પ્રક્રિયા સળંગ છે. અભ્યાસની સરળતા ખાતર તેના તબક્કા પાડવામાં આવે છે, જે પૂર્વાવસ્થા, ભાજનાવસ્થા, ભાજનોત્તરાવસ્થા તથા અંત્યાવસ્થા તરીકે જાણીતા છે.

પૂર્વાવસ્થા (Prophase) : રંગસૂત્રો પોતાની લંબધરીને અનુસરીને સંકોચન સાથે આ અવસ્થાનો આરંભ થાય છે. જેમ જેમ પૂર્વાવસ્થા આગળ વધે છે, તેમ તેમ સંકોચન પામેલા રંગસૂત્ર જોઈ શકાય છે. આ અવસ્થાના અંતના ભાગમાં દરેક રંગસૂત્ર બે એકલસૂત્રો (chromatids) અને તેમને સાંકળતા એક સેન્ટ્રોમિયર (centromere)નું બનેલું દેખાય છે. આંતરાવસ્થાના S તબક્કામાં તારાકેન્દ્ર બેવડાતા તેઓ એકબીજાથી છૂટા પડી કોષના વિરુદ્ધ ધ્રુવો તરફ ગતિ કરે છે અને દરેક એકમમાંથી ત્રિજયાવર્તી ત્રાકનું નિર્માણ થાય છે. તારાકેન્દ્ર નિર્મિત દિધ્રુવીય ત્રાક એ પ્રોટીનના કોષરસીય તંતુઓ છે. વનસ્પતિકોષમાં તારાકેન્દ્રનો અભાવ છે. આમ છતાં દિધ્રુવીય ત્રાકનું નિર્માણ થાય છે. પૂર્વાવસ્થાને અંતે કોષકેન્દ્રપટલ તથા કોષકેન્દ્રિકાનો લોપ થાય છે અને રંગસૂત્રો સમગ્ર કોષ વિસ્તારમાં પ્રસરે છે.


ભાજનાવસ્થા (Metaphase) : કોષકેન્દ્રપટલ તથા કોષકેન્દ્રિકાના સંપૂર્ણ અદશ્ય થવા સાથે સમવિભાજનનો બીજો તબક્કો શરૂ થાય છે. આ અવસ્થા દરમિયાન રંગસૂત્રોનું પૂર્ણ સંકોચન થવાથી

તેનું સૂશ્યદર્શક વડે સ્પષ્ટ અવલોકન થઈ શકે છે. આ તબક્કે દરેક રંગસૂત્ર સેન્ટ્રોમિયર વડે જોડાયેલ બે રંગસૂત્રિકાઓનું (એક્લસૂત્રોનું) બનેલું જોઈ શકાય છે. વળી, સેન્ટ્રોમિયરની સપાટી પર કાઈનેટોકોર્સ (kinetochores) તરીકે ઓળખાતી નાની તક્તી જેવી રચનાઓ પણ જોઈ શકાય છે કે જે ત્રાકતંતુઓના જોડાશ સ્થાન તરીકે વર્તે છે. ત્રાકતંતુઓ રંગસૂત્રોના સેન્ટ્રોમિયર સાથે જોડાઈ રંગસૂત્રોને કોષના મધ્ય વિસ્તારમાં ગોઠવે છે જે વિસ્તાર કોષનો વિષ્વવૃતીય તલ કે ભાજનતલ તરીકે ઓળખાય છે.

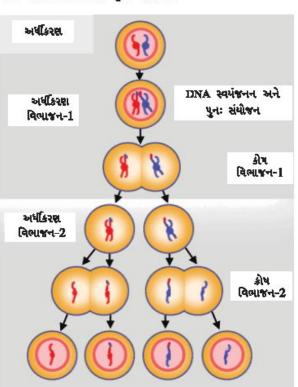
ભાજનોત્તરાવસ્થા (Anaphase) : આ અવસ્થામાં ત્રાકતંતુઓ ટૂંકા થતાં તેમજ સેન્ટ્રોમિયર વિભાજિત થતાં જોડમાં આવેલા રંગસૂત્રિકાએ છૂટી પડે છે અને ધ્રુવ તરફ ગતિ કરે છે. આ અવસ્થાને અંતે દરેક ધ્રુવ પર એકત્ર થતી રંગસૂત્રિકાઓની સંખ્યા મૂળ કોમમાં રહેલ રંગસૂત્રો જેટલી જ હોય છે. સ્વતંત્ર સેન્ટ્રોમિયર ધરાવતી દરેક રંગસૂત્રિકા હવે રંગસૂત્ર તરીકે ઓળખાય છે.

અંત્યાવસ્થા (Telophase) : આ અવસ્થા દરમિયાન દરેક રંગસૂત્ર વિસ્તરભ પાયે છે. દરેક રંગસૂત્ર સ્પષ્ટ જોઈ શકાતું નથી. શરૂઆતમાં રંગસૂત્રજાળ જોવા મળે છે અને અંતે રંગસૂત્ર દ્રવ્યમાં કેરવાય છે. વળી, આ દરમિયાન વિશિષ્ટ રંગસૂત્રના કોષકેન્દ્રિકાઆયોજકપ્રદેશ પર કોષકેન્દ્રિકાનું સર્જન પણ થાય છે. આ અવસ્થાના અંતમાં કોષકેન્દ્રપટલ, ગોલ્ગીપ્રસાધન અને અંતઃકોષરસજાળ પુનઃપ્રસ્થાપિત થાય છે. આમ, બંને ધ્રુવીય વિસ્તારોમાં બે નવાં કોષકેન્દ્રો અસ્તિત્વમાં આવે છે. દરેક કોષકેન્દ્ર પિતૃકોષમાં હોય તેટલાં જ રંગસૂત્રો ધરાવે છે.

ક્રેપરસવિભાજન (Cytokinesis) : ક્રેપરસવિભાજન એ સમભાજનનો ભાગ નથી, પરંતુ ક્રેપવિભાજનને પૂર્ણ બનાવતી એક સ્વતંત્ર ઘટના છે. પ્રાણીક્રેપમાં ક્રેપના પરિષ્યવિસ્તારમાંથી ઉપસંક્ષેપનની ક્રિયા શરૂ થાય છે અને તે સામાન્ય રીતે ક્રેપના કેન્દ્રસ્થ પ્રદેશ તરફ આગળ વધે છે. છેવટે એક ક્રેપમાંથી બે ક્રેપોનું નિર્માણ થાય છે. વનસ્પતિક્રેપમાં ક્રેપરસવિભાજન ક્રેપના કેન્દ્રવિસ્તારથી થાય છે. અહીં મધ્યપટલ તરીકે ઓળખાતી પેક્ટિનની બનેલી તકતી જેવી રચના ક્રમશ: કેન્દ્રથી પરિષની દિશામાં સર્જાય છે. ત્યાર બાદ મધ્યપટલની બંને બાજુઓ તરફ ક્રેપદીવાલ સર્જાય છે. ક્રેપરસવિભાજન દરમિયાન ક્શાભસૂત્રો તથા રંજકક્શો જેવી અંગિકાઓની બંને બાળકોપોમાં સમાન વહેંચલી થાય છે. કેટલાક સજ્યવોમાં ક્રેપકેન્દ્રવિભાજન પછી ક્રેપરસવિભાજન થતું નથી. જેને લીધે બહુકોપકેન્દ્રય સ્થિતિનું નિર્માણ થાય છે તેને બહુકોપકેન્દ્રકી (syncytium) કહે છે.

Downloaded from https://www.studiestoday.com

કોષ્ટ્રાક અને કોષ્ટ્રિભાજન


93

સમભાજનનું મહત્ત્વ :

- સમભાજન વડે એક કોમથી જીવન શરૂ કરતાં બહુકોમીય સજીવનો બહુકોમી દેહ અસ્તિત્વમાં આવે છે અને એક્કોપી સજીવોમાં અલિગીંપ્રજનન (દ્વિભાજન) થતા બે બાળ સજીવો અસ્તિત્વમાં આવે છે.
- બધા કોષોમાં રંગસૂત્રોની સંખ્યા જળવાઈ રહે છે.
- વિભાજન દ્વારા કોષ તેનું કાર્યક્ષમ કદ જાળવી શકે છે.
- સજીવની વૃદ્ધિ અને વિકાસ માટે નવા કોષોનો પુરવઠો મળી રહે છે તથા આવા કોષો વિભેદન પામી પેશી તથા અંગનિર્માણમાં ભાગ લે છે.
- સમવિભાજનનો સૌથી મહત્ત્વનો કાળો કોષના સમારકામનો છે, કારણ કે અવિચ્છદનું સૌથી બહારનું પડ, અન્નમાર્ગનું અસ્તર રચતા ક્રોષો અને રૂધિરકોયો સતત બદલાતા રહેવા જરૂરી છે. તેથી ત્યાં નવા કોમો ઉમેરાતાં રહેવા જરૂરી છે.
- અગ્રસ્થ અને પાર્શ્વસ્થ વર્ધનશીલ પેશીમાં સમભાજનથી વનસ્પતિની સતત વૃદ્ધિ થાય છે.

અર્ધીકરણ કે અર્ધસૂત્રણ

પ્રજનનકોષોના નિર્માણ સમયે અર્ધીકરણ પ્રકારે કોષવિભાજન થાય છે. અર્ધીકરણની ક્રિયા દરમિયાન જનીનદ્રવ્ય એકવાર બેવડાય છે, જ્યારે કોમ બેવાર વિભાજન પામે છે. પ્રથમ વિભાજનને અર્ધસૃત્રિભાજન-I કહે છે. તે દરમિયાન રંગસૂત્રો બે કોષોમાં મૂળ સંખ્યા કરતા અર્ધી સંખ્યામાં વહેંચાય છે. તેથી તેને અર્ધસૂત્રણ (reductional division) અથવા વિષમવિભાજન કહેવાય છે. બીજા વિભાજનને જે અર્ધસૃત્રિભાજન-II કહે છે. તે દરમિયાન નવા સર્જાતા દરેક કોષમાં રંગસૂત્ર સંખ્યા પિતૃકોષમાં જોવા મળતી સંખ્યા જેટલી જ રહે છે તેથી તેને સમસ્ત્રક્ષ (equational division) કહે છે. આપશે વનસ્પતિઓ તથા પ્રાણીઓમાં જનનકોષ નિર્માણ દરમિયાન અર્ધકિરણ જોઈ શકીએ છીએ. તેનાથી એકકીય પ્રકારના જન્યુઓનું નિર્માક્ષ થાય છે. આંતરાવસ્થા પછી અર્ધસૂત્રણ થાય છે. અહીં આંતરાવસ્થા અગાઉ સમજાવ્યા પ્રમાણે જ થાય છે. આંતરાવસ્થાની ઘટનાઓ આ પ્રકરણની શરૂઆતમાં દર્શાવેલ છે તેમ હોય છે.

અધીકરણ-I

અર્ધીકરણ-I ની મુખ્ય ચાર અવસ્થા છે : જેમકે પૂર્વાવસ્થા-I, ભાજનાવસ્થા-I, ભાજનોત્તરાવસ્થા-I અને અંત્યાવસ્થા-I.

<u>પૂર્વાવસ્થા-I</u> : આ અવસ્થા લાંબા સમય સુધી ચાલે છે અને નીચે મુજબ તેને પાંચ પેટા અવસ્થામાં વિભાજિત કરવામાં આવે છે:

લેપ્ટોટીન : લેપ્ટોટીન, અર્ધકિરણનો પ્રારંભિક તબક્કો છે. આ અવસ્થા દરમિયાન રંગસૂત્રોનું સંકોચન થાય છે અને દરેક રંગસૂત્ર પાતળાતંતુ જેવું દેખાય છે. દરેક રંગસૂત્ર બે એકલ સૂત્રો (રંગસૂત્રિકા) અને તેને સાંકળતા સેન્ટ્રોમિયરનું બનેલું હોય છે. જોકે તેનું બેવડું સ્વરૂપ જોઈ શકાતું નથી.

Downloaded from https://www.studiestoday.com

જીવવિજ્ઞાન

94

ઝાયગોટીન

પૈકિટિન

ડિપ્લોટીન

અયગોટીન : આ અવસ્થા દરમિયાન રંગસૂત્રોની લંભાઈને અનુરૂપ જોડીઓ બનવા માંડે છે જેને સાયનેપ્સિસ (synapsis) પણ કહે છે. આ ક્રિયા ઝિપર (zipper)ની મારૂક આગળ વધે છે. જોડ રચતાં રંગસૂત્રોને સમજાત રંગસૂત્ર કહે છે. આ અવસ્થાનો વિજાણસૂલ્યાલેખ દર્શાવે છે કે સમજાત રંગસૂત્રોની જોડમાં ગોઠવણી સૂત્રયુગ્મન જેવી જટિલ રચનાના નિર્માણ સાથે સંકળાયેલ છે. સમજાત રંગસૂત્રોની દરેક જોડને દ્વિસૂત્રી (bivalent) કહે છે. જોકે ખરેખર તો તે ચતુઃસૂત્રી (tetravalent) હોય છે.

પોંકિટન : દ્વિસૂત્રી રંગસૂત્ર આ અવસ્થા દરમિયાન સ્પષ્ટ ચતુઃસૂત્રી દેખાય છે. રંગસૂત્રોની રંગસૂત્રિકાઓ એકબીજાની કરતે વિંટળાયેલી હોય છે. પુનઃસંયોજિત ઘંઠિકાઓનું દેશ્યમાન થવું આ અવસ્થાની લાક્ષણિકતા છે. સમજાત રંગસૂત્રોની અંદરની બે રંગસૂત્રિકાઓ વચ્ચે વ્યતીકરણ સ્થાનને પુનઃસંયોજિત ઘંઠિકા કે સ્વસ્તિક ચોકડીઓ (chiasmata) કહે છે. વ્યતીકરણથી જનીનોની અદલાબદલી આ સ્થાનોએ થાય છે.

ડિપ્લોટીન : સમજાત રંગસૂત્રોની જોડીમાંના બે રંગસૂત્રોની એકમેકથી દૂર ખસવાની શરૂઆત થાય છે. જોકે જે-જે સ્થળે વ્યતીકરણ (crossing over) થયું હોય, તે-તે સ્થળે જોડાણ જળવાઈ રહે છે. સ્વસ્તિક ચોકડીઓની સંખ્યા રંગસૂત્રોની લંબાઈ પર આધાર રાખે છે. લાંબાં રંગસૂત્રોમાં તેમની સંખ્યા વધુ હોય છે. સ્વસ્તિક ચોકડીઓના નિર્માણના સ્થાને જનીનોની અદલાબદલી થાય છે.

ડાયકાઇનેસિસ: આ તબક્કામાં રંગસૂત્રોનું સંકોચન પૂર્ણ કક્ષાએ પહોંચે છે અને સમજાત રંગસૂત્રોને અલગ પાડતા દિધુવીયત્રાકનું નિર્માણ થાય છે. સ્વસ્તિક ચોકડીઓના નિર્માણ સ્થાનોએ પણ એક્લસૂત્રો છૂટા પડે છે. ડાયકાઇનેસિસના અંતમાં કોષકેન્દ્રિકા લુપ્ત થાય છે અને કોષકેન્દ્રપટલનું પણ વિઘટન થાય છે.

ભાજનાવસ્થા-I : આ તબક્કા દરમિયાન સમજાત રંગસૂત્રો કોષના વિષુવવૃત્તીય તલમાં જોડીઓ સ્વરૂપે ગોઠવાય છે. જોડમાંના દરેક સેન્ટ્રોમિયર જે-તે તરફના કોષીય ધ્રુવની દિશામાં રહે છે.

ભાજનોત્તરાવસ્થા-I : સમજાત રંગસૂત્રની જોડમાંનું પ્રત્યેક રંગસૂત્ર જે-તે તરફના ધ્રુવ પ્રદેશ તરફ ખસે છે અને આ તબક્કાને અંતે જે–તે ધ્રુવ પ્રદેશમાં એક્ત્ર થતાં રંગસૂત્રોની મૂળકોયના રંગસૂત્ર કરતા સંખ્યા અર્ધી થાય છે.

અંત્યાવસ્થા-I : આ તબક્કા દરમિયાન કોષકેન્દ્રિકા અને કોષકેન્દ્રપટલ પુનઃનિર્માણ પામે છે. દિધુવીયત્રાક અદેશ્ય થાય છે અને બે કોષકેન્દ્રની રચના થાય છે. અહીં રચાતા દરેક કોષકેન્દ્રમાં રંગસૂત્રોની સંખ્યા પિતૃકોષ કરતાં અધીં હોય છે. જેમાંનું દરેક રંગસૂત્ર, બે એકલસૂત્રો અને તેને સાંકળતા એક સેન્ટ્રોમિયરનું બનેલું હોય છે.

બે અર્ધીકરણની અવસ્થા વચ્ચેના તબક્કાને ઇન્ટરકાઇનેસિસ કે આંતરકોષવિભાજન (interkinesis) કહે છે, જે ખૂબ જ ટૂંકા ગાળાની હોય છે.

અર્ધીકરણ-II :

અર્ધીકરશના બે વિભાજનો વચ્ચેના ગાળામાં જનીનદ્રવ્યનું સ્વયંજનન થતું નથી. સૈદ્ધાંતિક રીતે દ્વિતીય અર્ધીકરશ, અગાઉ વર્શવેલા સમભાજન જેવું જ છે. અર્ધીકરશ-II નીચે મુજબ ચાર તબક્કામાં સમજાવી શકાય:

પૂર્વાવરથા-Ⅱ : આ તબક્કામાં દિધુવીયત્રાકનું પુનઃનિર્માજ્ઞ થાય છે. કોષકેન્દ્રિકા તથા કોષકેન્દ્રપટલ દૂર થાય છે. વળી, રંગસૂત્રો વધુ ઘટ્ટ બને છે.

ભાજનાવસ્થા-II : આ તબક્કામાં રંગસૂત્રો વિષુવવૃત્ત પર ગોઠવાય છે. દરેક રંગસૂત્રનું સેન્ટ્રોમિયર દ્વિધુવીયત્રાક દ્વારા જોડાય છે અને બધાં જ રંગસૂત્રોના સેન્ટ્રોમિયર એક સપાટીમાં ગોઠવાય છે.

ભાજનોત્તરાવસ્થા-II : અહીં દરેક રંગસૂત્રનું સેન્ટ્રોમિયર વિભાજિત થાય છે અને દરેક રંગસૂત્રિકા (એકલસૂત્ર) સ્વતંત્ર સેન્ટ્રોમિયર ધરાવે છે. રંગસૂત્રના છૂટા પડેલ બે એકલસૂત્રો કે જે સેન્ટ્રોમિયરયુક્ત હોય છે તે પરસ્પર વિરુદ્ધ ધ્રુવો તરફ ખસે છે. આ દરમિયાન દરેક ધ્રુવ પર એકઠા થતાં એકલસૂત્રોની સંખ્યા પિતૃકોષમાં આવેલાં રંગસૂત્રો જેટલી જ હોય છે. હવે, સેન્ટ્રોમિયરયુક્ત દરેક એકલસૂત્ર રંગસૂત્ર તરીકે ઓળખાય છે.

અંત્યાવસ્થા-∏ઃ હવે દરેક ધ્રુવ પર રંગસૂત્રો વિસ્તરવા માંડે છે. તેમની કરતે કોષકેન્દ્રપટલ દેશ્યમાન થાય છે. આ તબક્કે રંગસૂત્રો સ્પષ્ટ જોઈ શકાતા નથી. કોષકેન્દ્રિકાનું પજ્ઞ પુનઃસ્થાપન થાય છે. કોષરસનું વિભાજન દરેક કોષકેન્દ્રને એકબીજાથી જુદા પાડે છે.

અર્ધીકરણનું મહત્ત્વ : (1) અર્ધીકરણ દ્વારા સજીવોમાં પેઢી દર પેઢી ચોક્કસ પ્રકારના અને નિશ્ચિત

डोषयङ सने डोषिवलाइन

સંખ્યામાં રંગસૂત્રો જળવાય છે. (II) વ્યતીકરણને લીધે જનીનોની અદલાબદલી શક્ય બને છે જે છેવટે જાતિમાં જનીનિક ભિન્નતા પ્રેરે છે. (III) તે ઉત્ક્રાંતિ માટે અગત્યની પ્રક્રિયા છે.

તકાવત : સમવિભાજન અને અર્ધીકરણ

સમવિભાજન અને અર્ધીકરણ વચ્ચે નીચે મુજબના તફાવત જોવા મળે છે :

ક્રમ	સમભાજન		અર્ધીકરણ
1.	સમભાજન દૈહિક કોષોમાં જોવા મળે છે.	1.	અર્ધીકરણ જનનસર્જક કોષોમાં જોવા મળે છે.
2.	માતૃકોષમાં એક પૂર્શ વિભાજનથી બે બાળકોષો નિર્માણ પામે છે.	2.	માતુકોષનું બેવાર વિભાજન થતાં ચાર એકકીય બાળકોષો સર્જાય છે.
3.	સમભાજન પામતો માતૃકોષ એકકીય કે દ્વિકીય હોય છે.	3.	અર્ધીકરણ પામતો માતૃકોષ હંમેશાં દ્વિકીય હોય છે.
4.	રંગસૂત્રની સંખ્યા દરેક કોષકેન્દ્રમાં અગાઉ જેટલી જ હોય છે.	4.	અર્ધીકરણને અંતે પેદા થતા કોષમાં રંગસૂત્રોની સંખ્યા એકકીય હોય છે, જ્યારે તેના માતૃકોષમાં દ્વિકીય હોય છે.
5.	સંશ્લેષણ તબક્કામાં થતાં DNAના દ્વિગુણનને લીધે તે આગળ વધે છે.	5.	અહીં પ્રથમ અર્ધીકરણ દરમિયાન જ DNAનું સંશ્લેષણ જોવા મળે છે.
6.	સમભાજન દરમિયાન સમજાત રંગસૂત્રોની જોડીઓ બનતી નથી.	6.	તેની પૂર્વાવસ્થા-I દરમિયાન બધા જ સમજાત રંગસૂત્રો પૂર્ણ જોડીઓમાં ગોઠવાય છે.
7.	અહીં રંગસૂત્રો વચ્ચે વ્યતીકરણ થતું નથી.	7.	ઓછામાં ઓછું એક વ્યતીકરણ કે જનીનદ્રવ્યની અદલા-બદલી સમજાત રંગસૂત્ર દ્વારા થાય છે.
8.	ભાજનોત્તરાવસ્થા દરમિયાન સેન્ટ્રોમિયર વિભાજિત થાય છે.	8.	ભાજનોત્તરાવસ્થા - II દરમિયાન સેન્ટ્રોમિયર અલગ થાય છે, પરંતુ ભાજનોત્તરાવસ્થા-Iમાં આવું થતું નથી.
9.	બાળકોષનું જનીન-બંધારણ માતૃકોષ જેવું જ હોય છે.	9.	ઉત્પન્ન થતાં નવા કોષમાં માતૃકોષ કરતાં જનીન-બંધારણ ભિન્ન હોય છે.
10.	સમભાજન પછી દરેક બાળકોષના DNA તંતુ સરખા જ રહે છે.	10.	અર્ધીકરણ બાદ સર્જાતા દરેક બાળકોષમાં DNAના તંતુ અડધા થઈ જાય છે.

સારાંશ

કોષચક્ર એટલે કોષમાં થતી શ્રેણીબદ્ધ ઘટનાઓ કે જે કોષવિભાજન અને કોષગુણનને પ્રેરે છે. કોષચક્રને મુખ્યત્વે બે સોપાનમાં વહેંચી શકાય : (અ) આંતરાવસ્થા : આ અવસ્થા દરમ્યાન કોષ સમભાજન માટે વૃદ્ધિ અને જરૂરી દ્રવ્યોનો સંચય અને DNAના દ્વિગુણનને પ્રેરે છે. જેને વિસ્તૃત રીતે G_1 S અને G_2 તબક્કામાં વહેંચવામાં આવે છે. (બ) સમભાજન : દરેક કોષવિભાજન દરમિયાન માતૃકોષ બે બાળકોષોમાં વહેંચાય છે. સમભાજનને પણ ચાર તબક્કામાં વહેંચવામાં આવે છે. જેમકે, પૂર્વાવસ્થા, ભાજનાવસ્થા, ભાજનોત્તરાવસ્થા અને અંત્યાવસ્થા. પૂર્વાવસ્થા દરમિયાન રંગસૂત્રો ઘટ્ટ બને છે. ભાજનાવસ્થા દરમિયાન રંગસૂત્રો વિષુવવૃત્ત પટ્ટિકા ઉપર ગોઠવાઈ જાય છે. ભાજનોત્તરાવસ્થા દરમિયાન સેન્ટ્રોમિયરના વિભાજનથી એકલસૂત્રો છૂટાં પડે છે, જે પરસ્પર વિરુદ્ધ ધ્રુવો તરફ ખસે છે. અંત્યાવસ્થામાં દરેક એકલસૂત્ર સ્વતંત્ર રંગસૂત્ર તરીકે વર્ત છે. વળી, કોષકેન્દ્રિકા અને કોષકેન્દ્રપટલ દશ્યમાન થાય છે. કોષકેન્દ્રનું વિભાજન કોષરસના વિભાજનને દોરવે છે, જેને કોષરસ વિભાજન કહે છે.

અર્ધીકરણને બે તબક્કામાં વહેંચવામાં આવે છે. જેમકે, પ્રથમ અર્ધીકરણ અને દ્વિતીય અર્ધીકરણ. પ્રથમ અર્ધીકરણને વિષમવિભાજન જ્યારે દ્વિતીય અર્ધીકરણને સમભાજન કહે છે. અર્ધીકરણના-π તબક્કામાં પ્રવેશતા

Downloaded from https://www.studiestoday.com

95

પહેલાં પિતૃકોષ કે વિભાજન પામનાર કોષ આંતરાવસ્થા તરીકે ઓળખાતા સંશ્લેષણાત્મક તબક્કામાં પ્રવેશે છે. પ્રથમ અર્ધીકરણ અને દ્વિતીય અર્ધીકરણમાં ચાર તબક્કા સામાન્ય છે. જેવા કે, પૂર્વાવસ્થા, ભાજનાવસ્થા, ભાજનોત્તરાવસ્થા અને અંત્યાવસ્થા. પ્રથમ અર્ધીકરણની પૂર્વાવસ્થા ખૂબ લાંબી છે, જેને વધુ પાંચ તબક્કામાં વહેંચવામાં આવી છે. જેમાં લેપ્ટોટીન, ઝાયગોટીન, પેકિટિન, ડિપ્લોટીન અને ડાયકાઈનેસીસનો સમાવેશ થાય છે. ભાજનાવસ્થામાં વિષુવવૃત્ત વિસ્તારમાં ગોઠવાતા દ્વિસૂત્રી રંગસૂત્રો ભાજનોત્તરાવસ્થામાં ત્રાકતંતુઓ દ્વારા પરસ્પર વિરુદ્ધ ધ્રુવો તરફ ખેંચાય છે જેથી અંત્યાવસ્થા દરમિયાન દરેક ધ્રુવ પર માતૃકોષ કરતાં અડધી સંખ્યામાં રંગસૂત્રો જમા થાય છે. અંત્યાવસ્થાના અંતમાં કોષકેન્દ્રિકા તથા કોષકેન્દ્રપટલ પુનઃસ્થાપિત થાય છે. દ્વિતીય અર્ધીકરણ એ સમભાજન જેવી જ ઘટના છે. પ્રથમ અર્ધીકરણ દ્વારા સર્જાતા બંને બાળકોષો દ્વિતીય અર્ધીકરણ પામીને ચાર એકકીય બાળકોષો પેદા કરે છે.

			સ્વાદયા	ચ	
1.	નીચે	આપેલા પ્રશ્નોના ઉત્તરો પૈકી સાચા	ઉત્તર સામે	સર્કલમાં પેન્સિલથી રંગ પૂરો :	
	(1)	માનવકોષનો સરેરાશ કોષવિભાજ	નનો સમય	કેટલો ?	
		(અ) 17 કલાક	0	(બ) 20 કલાક	0
		(ક) 24 કલાક	Ō	(ડ) 30 કલાક	Ö
	(2)	પુખ્ત વ્યક્તિના શરીરમાં લગભગ	કેટલા કોષ્	મો જોવા મળે છે ?	_
		(અ) 10 ¹⁴	0	(બ) 10^{16}	0
		(§) 10^{21}	0	(4) 10 ¹⁵	0
	(3)	કોષચક્ર દરમિયાન થતાં DNA	ના સ્વયંજન	ાનનો સમાવેશ છે	
		(અ) G_1 તબક્કો	0	(બ) G_2 તબક્કો	0
		(ક) આંતરાવસ્થા	0	(ડ) વિભાજન તબક્કો	0
	(4)	તારાકેન્દ્રની ફરતે ત્રાકતંતુઓનું નિ	ાર્માણ નીચે	પૈકી કયા તબક્કામાં થાય છે ?	
		(અ) પૂર્વાવસ્થા	0	(બ) ભાજનાવસ્થા	0
		(ક) ભાજનોત્તરાવસ્થા	0	(ડ) અંત્યાવસ્થા	0
	(5)	અધીકરણની કઈ ઘટના દરમિયાન	ા વ્યતીકરણ	ા જોવા મળે છે ?	
		(અ) લેપ્ટોટીન	0	(બ) ઝાયગોટીન	0
		(ક) પૅકિટિન	0	(ડ) ડિપ્લોટીન	0
	(6)	નીચે પૈકી વિભાજનના કયા તબક	કામાં કોષ ે	કેન્દ્રપટલ અને કોષકેન્દ્રિકાનું પુનઃસ્થાપન	થાય છે ?
		(અ) પૂર્વાવસ્થા	0	(બ) ભાજનાવસ્થા	0
		(ક) ભાજનોત્તરાવસ્થા	0	(ડ) અંત્યાવસ્થા	0
	(7)	યીસ્ટ કોષમાં સામાન્ય કોષચક્ર ગ	ાળો શું છે	?	
		(અ) 70 મિનિટ	0	(બ) 85 મિનિટ	0
		(ક) 90 મિનિટ	0	(ડ) 120 મિનિટ	0
	(8)	આંતરાવસ્થાને કેટલા પેટા તબક્કા	માં વહેંચી	શકાય ?	
		(અ) 2	0	(બ) 4	0
		(3)	0	(3) 5	0
	(9)	સમવિભાજનને કેટલા તબક્કામાં વ	વહેંચેલ છે	?	
		(અ) 6	0	(બ) 4	0
		(3) 3	\cap	(3) 2	\bigcirc

डोषयङ अने डोषिपभावन 97

	(10)	અકકાષમાં અવાકરણ થવું અટલ .	••••••	નુ સજન.	
		(અ) 4 કોષો	0	(બ) 2 કોષો	0
		(ક) 8 કોષો	0	(ડ) 6 કોષો	0
	(11)	એ સ્થાન કે જ્યાં વ્યતીકરણ થાય	છે.		
		(અ) સેન્ટ્રોમિયર	0	(બ) કાઇનેટોકોર	0
		(ક) સ્વસ્તિક	0	(ડ) તારાકેન્દ્ર	0
	(12)	નીચે પૈકી કોષચક્રના કયા તબક્ક	ા દરમિયા	ન સમવિભાજન માટે જરૂરી એવા પ્રે	ાટીન અને
		સૂક્ષ્મ નલિકાતંત્રનું સંશ્લેષણ થાય દ) ?		
		(અ) G ₁ તબક્કો	0	(બ) G ₂ તબક્કો	0
		(ક) આંતરાવસ્થા	0	(ડ) વિભાજન તબક્કો	0
	(13)	સમવિભાજનના કયા તબક્કા દરમિય	ાન કોષકેન	દ્રપટલ અને કોષકેન્દ્રિકા સંપૂર્શપણે લુપ્ત	થાય છે ?
		(અ) પૂર્વાવસ્થા	0	(બ) ભાજનાવસ્થા	0
		(ક) ભાજનોત્તરાવસ્થા	0	(ડ) અંત્યાવસ્થા	0
	(14)	સ્વસ્તિક રચનાની સંખ્યાનો આધાર		. પર રહેલો છે.	
		(અ) રંગસૂત્રની લંબાઈ	0	(બ) રંગસૂત્રની પહોળાઈ	0
		(ક) રંગસૂત્રનો વ્યાસ	0	(ડ) જોડીઓ	0
2.	નીચેના	પ્રશ્નોના ટૂંકમાં જવાબ આપો :			
	(1)	સમભાજનને શા માટે સમવિભાજન	કહે છે ?		
	(2)	સમજાવો : કાઇનેટોકોર			
	(3)	સમજાવો : કોષચક્ર			
	(4)	અર્ધીકરણને શા માટે અર્ધસૂત્રણ વિલ	ભાજન કહે	છે ?	
	(5)	સમજાવો : સાયનેપ્સિસ			
	(6)	સ્વસ્તિક ચોકડી એટલે શું ?			
	(7)	સીનસીટિયમ (Syncytium)નો અધ	ર્ય શું થાય	?	
	(8)	દ્વિસૂત્રી એટલે શું ?			
	(9)	આંતરકોષવિભાજન (ઇન્ટરકાઇનેસીસ	ા) એટલે :	શું ?	
3.	નીચેન	ા પ્રશ્નોના જવાબ આપો :			
	(1)	અર્ધીકરણનું મહત્ત્વ શું છે ?			
	(2)	તફાવત : સમભાજન અને અર્ધીકરા	રા		
	(3)	અર્ધીકરણની પૂર્વાવસ્થા, સમભાજનન	ી પૂર્વાવસ્થ	ા કરતાં કઈ રીતે જુદી પડે છે ?	
	(4)	સમભાજનનું મહત્ત્વ શું છે ?			
	(5)	આંતરાવસ્થા દરમિયાન બનતી ઘટન	નાઓ સમવ	જા વો.	
	(6)	'ઝાયગોટીન' ઉપઅવસ્થા દરમિયાન	કયા ફેરફ	ારો થાય છે ?	
	(7)	કોષચક્રના G ₂ તબક્કા દરમિયાન ધ	યતાં ફેરફા	રો સમજાવો.	
	(8)	જનનકોષના સર્જન દરમિયાન શાર્થ	ો અર્ધીકર ્	ા જરૂરી છે ?	
	(9)	દ્ધિધ્રુવીય ત્રાકનું મહત્ત્વ સમજાવો.			
	(10)	વ્યતીકરણનું મહત્ત્વ શું છે ?			
	(11)	સેન્ટ્રોમિયરનું મહત્ત્વ સમજાવો.			

પશુપાલન અને વનસ્પતિસંવર્ધન

માનવની પાયાની ત્રણ જરૂરિયાતો ખોરાક, આશ્રય અને વંશ ટકાવી રાખવાની છે. ખોરાક માટે તે પ્રથમથી સક્રિય છે. ખોરાક તરીકે પ્રાણીઓ અને વનસ્પતિઓનો ઉપયોગ માનવઉત્ક્રાંતિ જેટલો પ્રાચીન છે. શરૂઆતમાં તેની પ્રવૃત્તિઓ પ્રાણીઓનો શિકાર કરવો અને વન્યવનસ્પતિઓનાં ફળો એકઠાં કરવા પૂરતી મર્યાદિત હતી. હજારો વર્ષો પૂર્વે કૃષિની શરૂઆત થઈ અને તે જ સમયે પશુપાલન પણ શરૂ થયું, જે ખોરાકના વધુ ઉત્પાદનમાં ઉપયોગી થયું. આ પદ્ધતિમાં સમયે સમયે બદલાવ અને પ્રગતિ થતી રહી છે. હાલમાં પશુપાલનમાં ડેરીવ્યવસાય, મરઘાપાલન, મધમાખીઉછેર, મત્સ્યઉદ્યોગ; વનસ્પતિસંવર્ધનમાં સંવર્ધનની વિવિધ પદ્ધતિઓ અને પેશીસંવર્ધનના અમલ દ્વારા વધતી માનવવસ્તીની જરૂરિયાતને પહોંચી વળે તેટલો ખોરાક મેળવી શકાય છે. આધુનિક પદ્ધતિના ઉપયોગ દ્વારા ઉચ્ચ ગુણવત્તાવાળી રોગમુક્ત વનસ્પતિઓ અને પ્રાણીઓ પેદા કરી શકાય છે.

पशुपालन

માનવ સંસ્કૃતિના વિકાસમાં પ્રથમથી જ પશુપાલન વિકાસના ભાગરૂપ ઘટક બન્યું છે. આજે પણ તે એક અનિવાર્ય ઘટક છે. તે માનવજાત માટે ખોરાક પેદા કરવા અગત્યનું છે. હાલના સંજોગોમાં અર્થઉપાર્જન માટેના ઉદ્યોગ તરીકે વિકસેલ છે. અહીં આપણે તે સંબંધિત ચર્ચા કરીશું.

ડેરીવ્યવસાય અને તેનું વ્યવસ્થાપન : ડેરીઉદ્યોગ દૂધના ઉત્પાદન, પ્રક્રિયા અને વિતરણને આવરે છે. તે માનવના મૂલ્યવાન ખોરાક તરીકે દુનિયાભરમાં વપરાતું એક મહત્ત્વનું ઉત્પાદન છે. દૂધ પ્રાણીઓનો તાજો ક્ષીર સ્નાવ છે, જે કુદરતી રીતે તેના બચ્ચાંના પોષણ માટે હોય છે પણ માનવ તેનું શોષણ ખોરાકની એક વસ્તુ તરીકે કરે છે. તેઓ સસ્તનના દૂધનો ઉપયોગ વિવિધ બનાવટો જેવી કે દહીં, માખણ, ચીઝ, મીઠાઈ વગેરે બનાવવા કરે છે. યોગ્ય અને નિયમિત દૂધના વિતરણ માટે માનવ સંખ્યાબંધ સસ્તનોને પાળે છે. તેમાંના ધ્યાન ખેંચે તેવા પશુ ગાય, બકરી અને ભેંસ છે. છેલ્લાં સો વર્ષમાં દૂધ અને દૂધનું ઉત્પાદન એક અગત્યના વેપાર તરીકે વિકસ્યું છે:

- (1) ઔદ્યોગિક તંત્રો દ્વારા દૂધની પ્રક્રિયા 19મી સદીના મધ્યમાં થઈ.
- (2) જંતુમુક્ત વાસણમાં વેચાણ, પેસ્યુરાઇઝેશન જેવી આધુનિક પદ્ધતિઓનો વિકાસ થયો.
- (3) આધુનિક ડેરીઉધોગને કારણે દૂધ અને તેની બનાવટો દેશના દરેક ભાગ સુધી પહોંચાડી શકાઈ છે.

ગુજરાતમાં આ ઉદ્યોગ ખૂબ જ વિકાસ પામ્યો છે. ગુજરાતની મુખ્ય ડેરીઓમાં અમૂલ ડેરી, આણંદ; દૂધ સાગર ડેરી, મહેસાણા; બનાસ ડેરી, પાલનપુર વગેરેનો સમાવેશ થાય છે.

ડેરીઉદ્યોગનું વ્યવસ્થાપન ઃ ડેરીઉદ્યોગ પશુપાલકો, ખેડૂતો, કામદારો, વેપારી, અધિકારીઓના સર્વગ્રાહી સહકારનું સફળ પરિજ્ઞામ છે. પશુપાલકો પશુઓની સારી ઓલાદો રાખતા થયા છે. તેઓ દુવમાંથી વર-વપરાશની જરૂરિયાતો સ્વયં તૈયાર કરે છે. વધારાના દૂધનું ડેરીઓમાં વેચાશ કરે છે. ગ્રામ્ય ડેરીઓએ એકઠું કરેલ દૂધ મુખ્ય ડેરીઓમાં જાય છે, જ્યાં દૂધની વિવિધ પ્રોડ્ક્ટસ તૈયાર કરવામાં આવે છે. દેશ-પરદેશમાં જેનું વેચાણ થાય છે. આ ઉદ્યોગથી દેશ હુંડિયામણ કમાય છે. આ ઉદ્યોગથી શ્વેતકાંતિ આવી છે. તેના પ્રશ્નેતા ડૉ. વર્ગીસ કુરિયનને ગણાવી શકાય.

મરઘાંપાલન

પક્ષીઓ પાલતુ પ્રાણીઓ તરીકે અસ્મરણીય સમયથી સાર્વત્રિક વિસ્તરેલ છે. 20મી સદીમાં મરઘાંપાલન એક લક્ષુઉદ્યોગ તરીકે આધુનિક જરૂરિયાતો જેવી કે સ્વાદિષ્ટ અને પૌષ્ટિક ખોરાક, ઈડા અને પુખ્ત પ્રાણી સ્વરૂપો મેળવવા વિકસ્યો છે. તે સંગ્રહ**ણ** અને વાહનવ્યવહારની સગવડને લીધે પ્રચલિત વ્યાપાર બનેલ છે. ભારત એ વન્ય જંગલમરથીનું ઘર છે પણ બીજા દેશોની સાપેક્ષમાં ભારતમાં મરઘાંપાલનના ઉદ્યોગના વિકાસમાં ઓછું ધ્યાન અપાય છે. ભારત જેવા દેશમાં માનવના યોગ્ય પોષણ માટે ઈડા પણ વાપરી શકાય. ઇમ્પેરિયલ વેટેનરી રિસર્ચ ઇન્સ્ટિટ્યૂટ (IVRI) ઇજ્જતનગરે કરેલા સંશોધનને આધારે દર્શાવ્યું છે કે, ઇડામાં ઉચ્ચ જૈવિક મૂલ્ય છે તેના માટે તેના વપરાશની ભલામણ પણ કરેલ છે. ભારતમાં ઘણાં સ્થળોએ સરકારી મરઘાંપાલન કેન્દ્રો છે.

મધમાખી ઉછેર

માનવે અસ્મરજ્ઞીય સમયથી પ્રાણી-ઉત્પાદનોનો ઉપયોગ પ્રાણીજીવનના ભોગે શરૂ કરેલ છે. પ્રાચીન સમયથી મધમાખીનો માનવસંસ્કૃતિમાં ઉપયોગ આપશા પ્રાચીનગ્રંથો જેવા કે વેદો, પુરાજ્ઞો, રામાયજ્ઞ, મહાભારત અને ચરકસંહિતામાં દર્શાવેલો છે. કેટલાક પરદેશી મુસાફરો જેવા કે ફાહિયાન અને વેનસને મધના દવા તરીકેના ઉપયોગની ચર્ચા કરી છે. લોકો દવા તરીકે મધ ઉપર મહદંશે આધારિત છે. મધમાખી ઉછેર એટલે માનવ દ્વારા મધમાખીના મધપુડાની વસાહતની માવજત. ભારતમાં લોકો મધમાખી ઉછેરમાં વ્યાપારિક દષ્ટિકોશ્વથી રસ દાખવતા નથી. જ્યાં મધમાખીને રાખવામાં આવે છે તેને એપિઅરી (apiary) કહે છે. આધુનિક મધમાખી-વિજ્ઞાનના પિતા તરીકે હુબેર (Huber) જાણીતા છે.

મધમાખીનું સામાજિક વ્યવસ્થાપન : મધમાખીઓની વસાહતમાં ઉચ્ચ વ્યવસ્થાપિત કાર્યની વહેંચશી જોવા મળે છે. સારી અને વ્યવસ્થિત વિકસિત વસાહતમાં ત્રશ જાતિની 40,000 થી 50,000 માખીઓ જોવા મળે છે; (i) રાષ્ટ્રી (queen), જે સામાન્ય રીતે વસાહતમાંની એક્લી પ્રજનનશ્વમ માદા છે; (ii) કામદાર (worker), મોટી સંખ્યામાં જોવા મળતી વેધ્ય માદા માખીઓ છે, તેની સંખ્યા 30,000-50,000 હોય છે. (iii) નરમાખી (drone), મોટી સંખ્યામાં જોવા મળતા અને ફક્ત પ્રજનનનું કાર્ય કરતા નર છે.

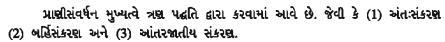
મધમાખી ઉછેરની પેદાશો : મધમાખી ઉછેરની મુખ્ય પેદાશોમાં મધ અને માખીનું મીશ છે.

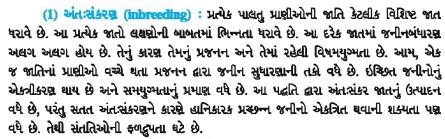
🔫 ઃ મધ એ ચીકાશ પડતું, શર્કરાયુક્ત મધુરસ દ્વારા મધમાખીના જઠરમાંથી ઉત્પન્ન થતું ઘઢ પ્રવાહી છે. માખી ફૂલોની મુલાકાત લે તે વખતે ફૂલોનો રસ ચૂસે છે જેને જઠરમાં સંગ્રહે છે અને મધપૂડામાં પાછો ઠાલવે છે. તેનો ઉપયોગ ઔષધ તરીકે જાણીતો છે.

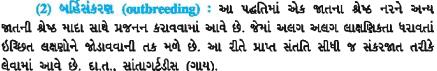
માખીનું મીલઃ માખીનું મી**લ એ મધમાખી ઉછેરની અત્યંત અગત્યની ઉપપેદાશ છે.** જે પીળાશપડતા બદામી રંગના અને પાશીમાં અદ્રાવ્ય પશ ઇથરમાં સંપૂર્શ દ્રાવ્ય છે. મીજ્ઞનો સ્નાવ માખીની ઉદરીય ગ્રંથિમાંથી થાય છે. તેનો ઉપયોગ સૌંદર્ય પ્રસાધનો, રંગો, પોલિશ, કાર્બન પેપર વગેરેની બનાવટમાં થાય છે.

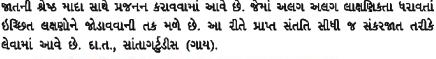
મત્સ્ય ઉદ્યોગ

મત્સ્ય ઉદ્યોગ મત્સ્યો અને અન્ય જલીય સજીવોને પક્ડવા, પ્રક્રિયા કરવા અથવા વેચાણ કરવા સાથે સંકળાયેલ છે. દરિયાઈ વિસ્તારની નજીક રહેતા લોકો ખોરાક માટે મત્સ્યપેદાશો ઉપર આધાર રાખે છે. કટલા, રોલુ અને મ્રિગલ (સામાન્ય રીતે મેજર કાર્પ તરીકે ઓળખાતી) મીઠા પાણીની સામાન્ય મત્સ્યો છે. હિલ્સા, સારડિન, મેક્રેરેલ, પોમ્કેટ વગેરે ખાદ્ય દરિયાઈ મત્સ્યો છે. મત્સ્યઉદ્યોગ મત્સ્ય અને માછીમારોનું જે-તે વિસ્તારનું સંગઠન છે. વિકાસશીલ દેશોના 500 મિલિયન લોકો સીધી અથવા આડક્તરી રીતે મત્સ્યઉદ્યોગ ઉપર આધારિત છે. મત્સ્યઉદ્યોગ ભારતનો અગત્યનો ધંધો છે. દરિયાકિનારાનાં રાજ્યોના માછીમારો અને ખેડૂતોની આવકનો આધાર મત્સ્યઉદ્યોગ છે. ગુજરાત પાસે 1640 કિમીનો દરિયાકિનારો છે જ્યાં આ ઉદ્યોગો છે. જરૂરિયાતોને પહોંચી વળે


જીવવિજ્ઞાન 100


તેટલી મત્સ્યપેદાશો મેળવવા, મીઠા પાણી અને દરિયાઈ નિવાસસ્થાનોની વનસ્પતિ અને પ્રાણીઓનાં ઉત્પાદનોમાં વધારો કરવા આધુનિક પદ્ધતિઓનો અમલ કરવામાં આવે છે. મત્સ્યઉદ્યોગ ખારા પાણીનો અથવા મીઠા પાણીનો હોય છે. દુનિયાનું લગભગ 90 % મત્સ્ય ઉત્પાદન દરિયામાંથી આવે છે.


પ્રાણીસંવર્ધન


પ્રાજ્ઞીસંવર્ધનની વિવિધ પદ્ધતિઓ દ્વારા સુધારેલી જાતો મેળવી શકાય છે. પ્રાથ્રીસંવર્ધનના મુખ્ય હેતુઓમાં (1) વૃદ્ધિદરમાં વધારો કરવો. (2) દૂધ આપવાની ક્ષમતામાં વધારો કરવો. (3) ગુણવત્તાસભર પેદાશો જેવી કે

દૂધ, માંસ, ઇડા, ઊન પ્રાપ્ત કરવાં. (4) રોગપ્રતિકારક શક્તિ વધારવી. (5) પ્રજનનઅવિધમાં વધારો. (6) પ્રજનનનો દર ઊંચો કરવો વગેરે.

(3) આંતરજાતિય સંકરણ (interspecific hybridization) : પ્રાણીસવર્ધનની આ પદ્ધતિમાં બે ભિન્ન જાતિના નર અને માદા વચ્ચે પ્રજનન કરાવવામાં આવે છે, જેને પરિશામે

ઉદ્ભવતી સંતતિમાં તદન જુદાં લક્ષણો જોવા મળે છે. કેટલાક સંજોગોમાં સંતતિમાં બધાં જ ઇચ્છિત લક્ષણો પણ જોવા મળે છે. દા.ત., ખચ્ચર (માદા ઘોડો અને નર ગધેડાનું સંકરણ).

વનસ્પતિસંવર્ધનની વિવિધ પદ્ધતિઓ દ્વારા સુધારેલી જાતો મેળવી શકાય છે. આ સંવર્ધનના મુખ્ય હેતુઓ પ્રાશીસંવર્ધન મુજબના જ છે. વનસ્પતિસંવર્ધન દ્વારા નવી જનીનિક ભિન્નતા ધરાવતી જાતિ પ્રાપ્ત કરવા નીચેના યુદા ધ્યાનમાં લેવા જોઈએ : (1) ભિન્નતાનું એક્ત્રીકરણ (2) પિતૃઓની પસંદગી અને મૂલ્યાંકન (3) પસંદ કરેલ પિતુઓ વચ્ચે સંકરણ (4) પુનઃસંયોજિતોની પસંદગી અને પરીક્ષણ (5) નવી જાતિનું પરીક્ષણ, મુક્તિ અને વેચાણ

એકકોષજન્ય પ્રોટીન

માનવના પોષણ માટેનો એક પ્રોટીનનો સ્રોત એક્કોષજન્ય પ્રોટીન છે. એક્કોષજન્ય પ્રોટીનના ઉત્પાદનમાં સૂક્ષ્મ જીવોને જનીન ઇજનેરીવિદ્યાની મદદથી મોટી સંખ્યામાં ઉછેરીને તેમાંથી પ્રોટીન ઘટક જુદો તારવીને તેનો ઉપયોગ માનવ અને પ્રાથ્રીજ પ્રોટીનમાં કરવામાં આવે છે. એક્કોષજન્યપ્રોટીન આથવણની ક્રિયા દ્વારા મેળવવામાં આવે છે. એકકોષજન્યપ્રોટીનના ઉત્પાદનમાં લીલ, જીવાશુ, યીસ્ટ અને ફૂગના તંતુઓનો ઉપયોગ કરવામાં આવે છે. આ પ્રકારનો ઉત્પાદિત ખોરાક અન્ય ખોરાક કે જે પ્રાટીન, ખનીજતત્વો, ક્ષિપિડ, કાર્બોદીત અને વિટામિન સભર ખોરાકની ગરજ સારે છે. તેનો ઉપયોગ પર્યાવરશીય પ્રદૂષક્ષમાં ઘટાડો કરે છે.

વિષમપોષી મશરૂમનો ઉછેર વિશ્વસ્તરે થાય છે. એક અંદાજ પ્રમાણે 250 કિગ્રા વજન ધરાવતી ગાય 200 ગ્રામ પ્રોટીન દરરોજ ઉત્પન્ન કરે છે. જ્યારે મેથીલોફિલ્સ મેથીલોટ્રોક્સ જાતના 250 ગ્રામ સૂશ્મ જીવો આટલું જ પ્રોટીન એક જ દિવસમાં ઉત્પન્ન કરે છે. આથી આજે મશરૂમનો ખોરાક તરીકે ઉપયોગ ઘણા લોકો કરે છે. જે એકકોષજન્યપ્રોટીનને આભારી છે.

બાયોફોર્ટીફિકેશન : લોક તંદુરસ્તીમાં સુધારો કરવા માટે સંવર્ધિત પાકોમાં વિપુલ જથ્થામાં વિટામિન્સ અને ખનીજ તત્ત્વો અને સ્વાસ્થ્યવર્ધક પ્રોટીન હોવા જરૂરી છે. આ માટે સુધારેલી જાતિઓમાં સંવર્ધન કરીને પ્રોટીન

સાંતાગર્ટડીસ

ખરચર

અને તૈલનું પ્રમાણ અને તેની ગુણવત્તા તેમજ વિટામિન અને સૂશ્મપોષક તત્ત્વોની માત્રામાં વધારો કરી શકાય છે. મકાઈની સંકરિત જાતિમાં હાલની મકાઈની જાતિ કરતાં લાઈસીન અને ટ્રીપ્ટોકેનનું પ્રમાણ બમણું નોંધાયું છે. આ ક્ષેત્રે IARI (Indian Agriculture Research Institute) ન્યુ દિલ્લી કાર્યરત છે.

વનસ્પતિ પેશીસંવર્ધન

વનસ્પતિ પેશીસંવર્ધન એટલે કે વનસ્પતિના કોષ, પેશી કે અંગોને ચોક્કસ સંવર્ધન માધ્યમમાં ઉછેરી તેની જાળવણી અને વૃદ્ધિ કરવી. આ પ્રક્રિયા પ્રયોગશાળામાં નિયંત્રિત પરિબળો હેઠળ કરવામાં આવે છે. જે બે રીતે થાય છે : (1) કેલસસંવર્ધન અને સસ્પેન્શન સંવર્ધન (2) ભ્રુણ સંવર્ધન.

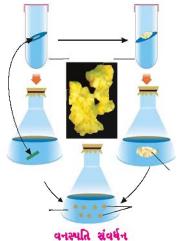
પેશીસંવર્ધનની પ્રક્રિયા દરમિયાન નીચે મુજબની કાળજી લેવી ખૂબ જ જરૂરી છે :

- (1) પ્રયોગશાળામાં જંતુમુક્ત વાતાવરણ જાળવવું. (2) પસંદ કરેલ નિવેશ્ય (explant)ને યોગ્ય સંવર્ધન માધ્યમમાં રાખવા. (3) પ્રક્રિયામાં વપરાતાં સાધનો પારજાંબલી પ્રકાશ (UV Light) દ્વારા જંતુમુક્ત કરવા. (4) નિવેશ્ય (expaint)ને એકધારું તાપમાન (24°C) મળતું રહે તેવી વ્યવસ્થા કરવી વગેરે.
- (1) કેલસસંવર્ષન : કોષોના અવિભેદિત સમૂહને કેલસ કહે છે. આ કેલસ પસંદ કરેલ વનસ્પતિમાંથી અંગ, પેશી કે કોષોને અલગ કર્રી અને તેમનો કોષવિભાજન દ્વારા સંખ્યામાં વધારો કરવાથી બને છે. કેલસની જાળવણી અગર-અગર જેલ ઉપર થાય છે. માધ્યમમાં વૃદ્ધિપ્રેરકો તરીકે ઓક્ઝિન અને સાયટોકાઇનિન ઉમેરેલા હોય છે. આ સ્થિતિમાં કોષો વિભાજનની શરૂઆત કરે છે અને 2 થી 3 અઠવાડિયાંમાં કેલસ પ્રાપ્ત થાય છે.

સસ્પેન્શન સંવર્ધન

આ પદ્ધતિમાં કોષોના સમૂહને પ્રવાહી માધ્યમમાં નિલંબિત કરવામાં આવે છે. તેને ઓક્ઝિન (2,4-D)ના માધ્યમમાં કલ્ચરને રોટરી શેકરમાં 100 થી 250 rpm ની ગતિએ સતત હલાવવાથી કોષોની વાતવિનિમયની પ્રક્રિયા સરળતાથી થઈ શકે છે. આ ઉપરાંત માધ્યમમાં રહેલ દ્રવ્યોનું સંમિશ્રણ થાય છે અને કોષસમૂહો વિભેદિત થઈ નાના નાના વિશિષ્ટ કોષસમૂહો રચે છે. કેલસ સંવર્ધનની સાપેક્ષમાં આ પદ્ધતિમાં વૃદ્ધિ ઝડપી થાય છે.

વનસ્પતિ પેશીયસંવર્ધન પદ્ધતિમાં નીચેની ઘટનાઓ આવશ્યક છે :


(1) કોષો કે પેશીઓના જૈવભારમાં વધારો. (2) માધ્યમના પોષક દ્રવ્યોમાં ઘટાડો. (3) બાષ્યીભવનને પરિશામે માધ્યમના કદમાં ઘટાડો.

ત્યાર બાદ નવા કાચનાં સાધનોમાં સંવર્ધનનું સ્થાનાંતર કરવામાં આવે છે, જેને ઉપસંવર્ધન (subculturing) કહે છે.

કેલસ અને સસ્પેન્શન સંવર્ધનનું પ્રયોજન : (1) કોષોના જૈવભારનું નિર્માશ (2) પ્રાંકૂરોનું પુનઃજનન (3) જનીન પરિવર્તિત વનસ્પતિનું નિર્માશ (4) જીવરસનું અલગીકરણ

(2) ભૂણસંવર્ધન ઃ આ પદ્ધતિમાં વિકાસ પામતા બીજમાં રહેલા નાના ભ્રૂણને બહાર કાઢી સંવર્ધન માધ્યમ પર ઉછેર કરવામાં આવે છે.

આ સંવર્ધન પદ્ધતિનું પ્રયોજન નીચે પ્રમાણે છે : (1) આંતરજાતિય વનસ્પતિઓના સંકર પ્રાંકૂર મેળવી શકાય છે. (2) ઓર્કિડ જેવી કેટલીક વનસ્પતિઓના બીજમાં સંચિત ખોરાક હોતો નથી. તેથી આવી પદ્ધતિ દ્વારા તેમનો ઝડપી ઉછેર કરી શકાય છે. (3) લાંબા સમય માટે સુષુપ્ત રહેતા બીજમાં આ પદ્ધતિથી પ્રાંકૂરો વિકસાવી શકાય છે.

મોટે ભાગે આ પદ્ધતિ દ્વારા વિકસાવેલા છોડ જનીન-પરિવર્તિત જાતિ સ્વરૂપે હોય છે, જે નીચેના હેતુ માટે ઉપયોગમાં લેવાય છે.

(1) ઝડપી ક્લોન વિસ્તરણ (2) જનીન-પરિવર્તિત છોડનું નિર્માણ (3) ઉપયોગી જાતિનું નિર્માણ.

સારાંશ

પ્રાણીઓ અને વનસ્પતિઓનો ખોરાક તરીકે ઉપયોગ માનવ ઉત્ક્રાંતિ જેટલો પ્રાચીન છે. હજારો વર્ષો પૂર્વે કૃષિની શરૂઆત થઈ અને તે જ સમયે પશુપાલન પણ શરૂ થયું, જે ખોરાકના વધુ ઉત્પાદનમાં ઉપયોગી થયું. આ પ્રકારની જીવનશૈલીઓમાં સમયે સમયે વિવિધતા અને પ્રગતિ થઈ છે. હાલમાં પશુપાલનમાં ડેરીવ્યવસાય,

१०२ श्रुविद्मान

મરઘાપાલન, મધમાખીઉછેર, મત્સ્યઉદ્યોગ વગેરે અને વનસ્પતિસંવર્ધનમાં સંવર્ધનની વિવિધ પદ્ધતિઓ જેવી કે બાયોફોર્ટિફિકેશન અને પેશીસંવર્ધન અગત્યનાં છે. આ આધુનિક પદ્ધતિના ઉપયોગ દ્વારા ઉચ્ચ ગુણવત્તાવાળી, રોગમુક્ત વનસ્પતિઓ અને પ્રાણીઓ પેદા કરી શકાય છે.

પશુપાલન હાલના સંજોગોમાં એક અગત્યના વ્યવસાય તરીકે વિકસેલ છે. જેમાં ડેરીવ્યવસાય ગુજરાતમાં પણ ખૂબ વિકસ્યો છે. જયારે મરઘાપાલન અને મધમાખીઉછેર આપણા વિસ્તારમાં બહુ પ્રચલિત નથી. પરંતુ મત્સ્યઉદ્યોગ દરિયાઈ વિસ્તારોમાં સારી રીતે વિકસેલ છે જેના પાયામાં આપણો 1640 કિમીનો દરિયાકિનારો છે. પ્રાણી અને વનસ્પતિસંવર્ધનની વિવિધ પદ્ધતિઓ દ્વારા સુધારેલી જાતો મેળવી શકાય છે.

SIRSIDS

			स्वाध्या	a			
1.	નીચે આપે	લા પ્રશ્નોના ઉત્તરો પૈકી સાચા	. ઉત્તર સા	મે સર્કલમાં પેન્સિલથી રંગ પૂરો :			
	(1)	મધમાખીના કુટુંબમાં કામદાર	માખી કઇ	ે છે ?			
		(અ) વંધ્ય નર માખી	0	(બ) વંધ્ય માદા માખી	0		
		(ક) રાણી	0	(ડ) નર માખી	00		
	(2)	હિલ્સા કર્યું પ્રાણી છે ?					
		(અ) માછલી	00	(બ) માદા માખીની જાત	00		
		(ક) ગાયની ઓલાદ	\sim	્(ડ) વન્ય જંગલ મરઘી	0		
	(3)	શ્વેતકાંતિ કયા ઉદ્યોગ સાથે ર	સકળાયેલી <i>:</i>		_		
		(અ) કૃષિઉદ્યોગ	O	(બ) માદા માખી ઉછેર	00		
	4 0	(ક) ડેરીઉદ્યોગ	O	(ડ) મત્સ્યઉધોગ	\circ		
	(4)	મત્સ્યપેદાશોનો મુખ્ય સ્રોત		(a) unia)			
		(અ) નદીઓ (ક) દરિયો	0	(બ) તળાવો (ડ) ખેતતલાવડીઓ	00		
	(5)	સાંતાગર્ટુડીસ (ગાય) કયા પ્રકા	ာမ် သုံးသစ		\cup		
	(3)	(અ) બર્હિસંકરશ		. ં . (બ) આંતરજાતિય સંકરણ	\bigcirc		
		(ક) અંતઃસંકરશ	$\tilde{\mathcal{C}}$	(ડ) અંતઃસંકરણ તેમજ બર્હિસંકરણ	00		
	(6)	સંવર્ધન પદ્ધતિમાં કોષોના અધિ	ુ વેભેદિત સગ				
		(અ) પેશી	0	્(બ) કેલસ	0		
		(ક) સસ્પેન્સન	Ŏ	(ડ) નિર્જીવપેશી સમૂહ	00		
	(7)	ગુજરાતનો દરિયાકિનારો કેટલ	ા કિમી લાં	બો છે ?			
		(અ) 1600 કિમી	0	(બ) 1640 કિમી	0		
		(ક) 1500 કિમી	0	(ડ) 1460 કિમી	0		
2.	નીચેના પ્રશ	થ્રોના જવાબ આપો :					
	(1) માનવીના ખોરાક-પ્રાપ્તિના આધુનિક સ્રોત કયા છે ?						
	(2) ડેરીઉ	દ્યોગનું વ્યવસ્થાપન સમજાવો.					
	(3) મરઘ	(3) મરઘાઉદ્યોગનું મહત્ત્વ લખો.					
	(4) મધમ	નાખીનું સામાજિક જીવન વર્ <u>ણ</u> વં	ù.				
	(5) મધનું ઉત્પાદન કઈ રીતે થાય છે ?						
	(6) મત્સ્યઉદ્યોગની અગત્યની માછલીઓનાં નામ લખો.						
	(7) પ્રાણીસંવર્ધનના મુખ્ય હેતુઓ લખો.						
	(8) સમ	જાવો ઃ અંતઃસંકરણ, આંત <mark>રજ</mark> ાહિ	તેય સંકરણ	, કેલસ સંવર્ધન			
	(9) પેશી	સંવર્ધન દરમિયાન કઈ બાબતો	ની કાળજી	લેવી પડે છે ?			
	(10) વનર	પતિ પેશીયસંવર્ધન પદ્ધતિમાં ક	ઈ ઘટનાએ	ા આવશ્યક છે ?			

માતવ-સ્વાસ્થ્ય અને રોગો

(રોગપ્રતિકારકતા, રસીકરણ, કેન્સર, એઇડ્સ)

તંદુરસ્તી પ્રત્યેક વ્યક્તિ દ્વારા વારંવાર વપરાતો શબ્દ છે. આપણે તેની વ્યાખ્યા શું કરીશું ? તેને સંપૂર્ણ રીતે શારીરિક, માનસિક અને સામાજિક હિત વ્યક્ત કરવું તેવી રીતે પણ વ્યાખ્યાયિત કરી શકાય. જો જનસમુદાય તંદુરસ્ત હોય તો સર્વે કામ પ્રત્યે વધુ કાર્યક્ષમ બને. પરિણામે ઉત્પાદકતા વધે જેથી આર્થિક આબાદી સર્જાય. તંદુરસ્તી લોકોનું આયુષ્ય વધારે છે તેમજ બાળ તથા પ્રસૂતાનું મૃત્યુ ઘટાડે છે. સારી તંદુરસ્તીની જાળવણી માટે સંતુલિત આહાર, વ્યક્તિગત સ્વચ્છતા અને નિયમિત કસરત ખૂબ જ અગત્યના છે. શારીરિક અને માનસિક તંદુરસ્તી પ્રાપ્ત કરવા વર્ષોથી યોગ કરાય છે. સારા સ્વાસ્થ્ય (તંદુરસ્તી)ની પ્રાપ્તિ માટે રોગો વિશેની સભાનતા અને શરીરનાં વિવિધ કાર્યો પર તેની અસરના નિરૂપણની, જાગૃતિ, ચેપી રોગો સામે રસીકરણ, કચરાનો યોગ્ય નિકાલ, રોગવાહકોનું નિયંત્રણ અને સ્વાસ્થ્યપ્રદ ખોરાકનું નિરૂપણ અને પાણીના સ્રોતોની વ્યવસ્થા જરૂરી છે. જ્યારે આપણા શરીરનાં વિવિધ અંગો કે તંત્રના કાર્ય પર ખરાબ અસર થાય છે ત્યારે વિવિધ રોગોનાં લક્ષણો અને ચિદ્ધો શરીરમાં દેખાય છે તેથી આપણે તંદુરસ્ત નથી તેનો ખ્યાલ આવે છે એટલે કે આપણને રોગ થયો છે.

રોગ શું છે ?

સામાન્ય સ્થિતિમાં થતો કોઈ પણ ભૌતિક કે ક્રિયાત્મક ફેરફાર કે જે અસ્વસ્થતા કે અશક્તતા પેદા કરે અથવા જીવંત સજીવના સ્વાસ્થ્યને બગાડે તેને રોગ કહેવાય છે. વૈકલ્પિક રીતે શરીર કે શરીરના ભાગોનું ચોક્કસ નિશાનીઓ સાથેની ખરાબ ક્રિયાશીલતાને રોગ કહેવાય છે. (ફ્રેન્ચમાં des = away = દૂર aise = ease = આરામ)

ઑક્સફર્ડ અંગ્રેજી ડિક્ષનરી અનુસાર રોગ એટલે શરીરનાં કેટલાક ભાગોની એવી સ્થિતિ કે જે તેઓનાં કાર્યોમાં ખલેલ પહોંચાડે અથવા તેમને અવ્યવસ્થિત કરે છે.

રોગોને મુખ્યત્વે બે પ્રકારમાં વર્ગીકૃત કરાય છે : (1) ચેપી અને (2) બિનચેપી

- (1) ચેપી રોગો : ચેપી રોગો સહેલાઈથી એક વ્યક્તિમાંથી બીજી વ્યક્તિમાં ફેલાય છે. આ રોગો વિવિધ પ્રકારના રોગકારકો દ્વારા થાય છે, જેવા કે વાઇરસ, બૅક્ટેરિયા, ફૂગ, પ્રજીવો અને કૃમિઓ એઇડ્સ જેવા ચેપી રોગ જીવલેશ હોય છે.
- (2) બિનચેપી રોગો : આ રોગો જે વ્યક્તિઓમાં વિક્સે છે. તેઓ પૂરતા મર્યાદિત રહે છે અને અન્ય વ્યક્તિમાં ફેલાતા નથી. કૅન્સર શરીરની નિશ્ચિત પેશીની અનિયંત્રિત વૃદ્ધિને કારણે થતો બિનચેપી રોગ છે જેને લીધે વ્યક્તિનું મૃત્યુ પણ થઈ શકે છે.

જીવવિજ્ઞાન

104

મહત્ત્વના કેટલાક સામાન્ય રોગો

ટાઇકોઇડ :

ટાઇફોઇડ સામાન્ય બૅક્ટેરિયાજન્ય રોગ છે. જે સળી જેવા બૅક્ટેરિયા સાલ્મોનેલા ટાઈફી (Salmonella typhi) દ્વારા થાય છે. આ બૅક્ટેરિયા રોગગ્રસ્ત સ્થિતિમાં મનુષ્યના આંત્રમાર્ગમાં જોવા મળે છે. આ રોગ 1-15 વર્ષના વયજૂથનાં બાળકોમાં સામાન્ય છે. દર વર્ષે લગભગ 2.5 મિલિયન લોકો ટાઇફોઇડથી પીડાય છે.

ફેલાવો : દર્દીઓના મળથી પ્રદૂષિત થયેલા પાણી અને ખોરાક દ્વારા આ રોગ ફેલાય છે. આ રોગકારકોનું મળ પરથી, ખોરાક, દૂધ અને પાણીમાંથી ઘરમાખી દ્વારા વહન કરે છે. રોગકારક સજીવો મુખ દ્વારા શરીરમાં પ્રવેશે છે અને આંતરડામાં પહોંચે છે. જ્યાંથી રુધિર દ્વારા બીજાં અંગોમાં પહોંચે છે. આંતરડાની દીવાલમાં જખમ (Lesione) પેદા કરે છે. બેક્ટેરિયાના સેવનકાળનો સમયગાળો 1-3 અઠવાડિયાંનો છે. સરેરાશ - 2 અઠવાડિયાં.

ચિત્તો : સામાન્ય લક્ષણોમાં પહેલા અને બીજા અઠવાડિયામાં તીવ્ર તાવ આવે છે અને તેને અનુસરીને ત્રીજા અને ચોથા અઠવાડિયે તાવ ક્રમિક ઘટે છે. માથાનો દુઃખાવો, અત્યંત નબળાઈ, જઠરમાં દુઃખાવો, કબજિયાત રહે તેમજ મળાશય અને આંતરડામાં બળતરા થાય છે. યકૃત અને બરોળ મોટાં થાય છે. ટાઇફોઇડ વિડાલ કસોટી (widal test) દ્વારા નક્કી થાય છે. એન્ટીબાયોટિકની સારવાર લઈ શકાય છે.

ન્યુમોનિયા :

મનુષ્યમાં સ્ટ્રેપ્ટોકોક્સ ન્યુમોનીએઇ અને હિમોફીલસ ઇન્ફ્લુએન્ઝી જેવા બૅક્ટેરિયા દ્વારા થાય છે. સ્ટ્રેપ્ટોકોક્સ ન્યુમોનીએઈ સામાન્ય રીતે ન્યુમોકોક્સ કહેવાય છે. ન્યુમોનિયા શ્વસનમાર્ગની ગંભીર બીમારી છે. વાયુકોષ્ઠ અને શ્વાસવાહિકાઓમાં પ્રવાહી એકઠું થાય છે. જેના પરિણામે ફેફ્સાંને જીવવા માટે પૂરતો ઑક્સિજન મળતો નથી.

ફેલાવો : આ રોગ દર્દીના ગળફા (sputum)થી થાય છે. ન્યુમોકોકાઈ શ્વાસમાં લેવાય છે અને શ્વાસવાહિનીઓમાં અવરોધાય છે. વાયુકોષ્ઠીય દીવાલમાં બળતરા થાય છે, જે પ્રોટીન સભર પ્રવાહીનો સ્ત્રાવ કરે છે ત્યાર પછી બૅક્ટેરિયા માટે તે સંવર્ધન માધ્યમ તરીકે વર્તે છે અને શ્વાસવાહિકાઓને રુંધે છે. સેવનકાળ ફક્ત 1-3 દિવસનો છે. ન્યુમોનિયા સામાન્ય રીતે વૃદ્ધોમાં જોવા મળે છે.

ચિત્તો : રોગને અનુસરીને તાવ આવે છે, શ્વાસોશ્વાસમાં દર્દ, કરુ અને માથાનો દુઃખાવો, કેટલાક કિસ્સામાં હોઠ અને આંગળીના નખ ભૂખરાથી વાદળી રંગમાં ફેરવાય છે. ન્યુમોનિયામાં ઘણી વાર અપૂરતા પોષણ, આલ્કોહૉલ અથવા દવાની વિષારીતા અથવા ઇન્ફ્લુએન્ઝા જેવા અન્ય રોગોના ચેપના કારણે શરીરની પ્રતિકારકતા ઘટે છે. ગળફા લોહીયુક્ત હોય છે.

શરદી :

મનુષ્યના ચેપી રોગો પૈકીનો એક અગત્યનો રોગ છે. તે રીહનોવાઇરસથી થાય છે. આ વાઇરસ નાક અને શ્વસનમાર્ગને ચેપ લગાડે છે. પણ ફેફસાંને નથી લગાડતા.

ફેલાવો : ચેપગ્રસ્તની છીંક, ખાંસી દ્વારા અથવા ચેપગ્રસ્તની પેન, ચોપડીઓ, કપ, કમ્પ્યૂટરનું કી-બોર્ડ, માઉસ વગેરે વાપરવાથી તંદુરસ્તને ચેપ લાગે છે.

ચિત્તે : શરદીના સામાન્ય લક્ષણોમાં નાસિકા કોટરનો સ્ત્રાવથી ભરાવો, ગળાની બળતરા, ઓછી ધ્રાણસંવેદના, કરૂ, માથાનો દુ:ખાવો, થાક વગેરે. તે ઓછામાં ઓછા 3-7 દિવસ રહે.

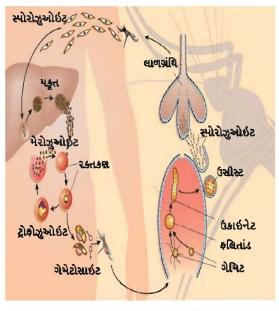
મૅલેરિયા : માનવમાં કેટલાક રોગો પ્રજીવો દ્વારા થાય છે. દા.ત., મૅલેરિયા. પ્લાઝમોડિયમ નામનું સૂક્ષ્મ પ્રજીવ આ રોગ માટે જવાબદાર છે.

પ્લાઝમોડિયમ (વાયવેક્સ અને ફેલસીપેરમ) વિવિધ પ્રકારના મૅલેરિયા માટે જવાબદાર છે. પ્લાઝમોડિયમ ફેલસીપેરમ ગંભીર પ્રકારના મૅલેરિયા માટે જવાબદાર છે અને તે ઘણી વાર જીવલેણ સાબિત થાય છે.

આપણે પ્લાઝમોડિયમનું જીવનચક્ર જોઈએ. તેના જીવનચક્ર બે યજમાન અનુક્રમે માનવ અને માદા એનાફ્લિસ મચ્છર છે.

मानव-स्वास्थ्य सने रोगो

માનવમાં તેના જીવનચક્ર ત્રણ તબક્કામાં જોવા મળે છે :


(1) પ્રી-ઈરીર્થોસાઇટીકચક : માદા એનેફિલિસ મચ્છર કરડવાથી થોડીક માત્રામાં લાળ માનવશરીરમાં દાખલ થાય છે. લાળમાં રહેલા સ્પોરોઝુઓઇટ સાનવરુધિરમાં દાખલ થાય છે. ત્રાક આકારના સ્પોરોઝુઓઇટ રુધિરમાંથી યકૃતકોષમાં દાખલ થાય છે. યકૃતકોષમાં ખોરાક ગ્રહણ કરી ગોળાકાર બને છે, જેને ક્રિપ્ટોસાઇઝોન્ટ કહે છે. ક્રિપ્ટોસાઇઝોન્ટમાં વિશિષ્ટ પ્રકારનું અલિંગીપ્રજનન જોવા મળે છે. જેને સાઇઝોગોની કહે છે. ક્રિપ્ટોસાઇઝોન્ટ હવે ક્રિપ્ટોમેરોઝુઆઇટમાં ફેરવાય છે.

(2) એકસોઇરીથ્રોસાઇટીકચર્ક : ક્રિપ્ટોમેરોઝુસાઇટ નવા યકૃતકોષમાં દાખલ થઈ વૃદ્ધિ પામી ગોળાકાર બને છે. આ અવસ્થાને મેટાક્રિપ્ટોસાઇઝોન્ટ કહે છે. જે અલિંગીપ્રજનન દ્વારા મેટાક્રિપ્ટોમેરોઝુઆઇટમાં ફેરવાય છે, જે યકૃતકોષને તોડી રુપિરમાં દાખલ થાય છે.

(3) એન્ડો-ઇરીથ્રોસાઇટીકચર્ક: આ ચર્ક રક્તક્શમાં જોવા મળે છે. મેટાક્રિપ્ટોમેરાઝુઓઇટ રક્તક્શમાં દાખલ થઈ ગોળાકાર બને છે. જે એક ટ્રોક્રોઝુઓઇટ તરીકે ઓળખાય છે. ટ્રોક્રોઝુઓઇટમાં ખોટા પગ ઉદ્ભવે છે. આ અવસ્થા એમીબોઇડ અવસ્થા તરીકે ઓળખાય છે. પરોપજીવી ઉત્સેચકનો સ્ત્રાવ કરી રક્તક્શમાં રહેલા હિમોગલોબીનનું હીમ અને ગ્લોબિનમાં વિઘટન કરે છે. ગ્લોબિન એ પરોપજીવીનો ખોરાક બને છે જ્યારે હીમ ઝેરી પદાર્થ હિમોઝોઇનમાં ફેરવાય છે. પરોપજીવી હવે ગોળાકાર બને છે, જેને સાઇઝોન્ટ કહે છે. સાઇઝોન્ટ અલિંગીપ્રજનન દ્વારા મેરોઝુઓઇટમાં ફેરવાય છે. મેરોઝુઓઇટ ત્યાર બાદ ગેમેટોસાઇટમાં ફેરવાય છે. જે ગેમેટોસાઇટ કદમાં નાના અને તેનું કોષકેન્દ્ર મોટું તેને નર ગેમેટોસાઇટ કહે છે. જ્યારે માદા ગેમેટોસાઇટનું કદ મોટું અને કોષકેન્દ્ર નાનું હોય છે.

મચ્છરમાં જીવનચક્ર

માદા એનાફિલિસ મચ્છર ગેમેટોસાઇટ ધરાવતા માનવનું ટુધિર યૂસે ત્યારે તે પાચનમાર્ગમાં દાખલ થાય છે. નર ગેમેટોસાઇટને હવે માઇક્રોગેમીટ અને માદા ગેમેટોસાઇટને મેગાગેમીટ તરીકે ઓળખાય છે. બંને ગેમીટનું જોડાલ થઈ કલન બાદ તે ફલિતાંડમાં ફેરવાય છે. ફલિતાંડ ત્રાક્રાકાર બને છે જેને ઉક્રાઈનેટ તરીકે ઓળખાય છે. ઉક્રાઈનેટ ઉસીસ્ટમાં ફેરવાય છે, જે લિંગીપ્રજનન દ્વારા સ્પોરોઝોઇટમાં ફેરવાય છે. આ સ્પોરોઝોઇટ લાળગ્રંથિમાં દાખલ થાય છે. આ સ્પોરોઝોઇટને વધુ વિકાસ માટે માનવરૃધિરમાં દાખલ થવું પડે છે. જ્યારે આ મચ્છર માનવને કરડે ત્યારે તેના લોહીમાં લાળની સાથે સ્પોરોઝુઓઇટ દાખલ થાય છે. આમ, માનવમાં ફરીથી જીવનચક્રની શરૂઆત થાય છે.

હાથીપગો

માનવમાં જીવનચક

મચ્છરમાં જીવનચક્ર

હાથીપગો ફીલારીઅલ કૃષ્િ દ્વારા થાય છે. આ કૃષ્િ લાંબી દોરી જેવું સફેદ શરીરવાળું અને બંને છેડે અજ્ઞીદાર છે. પુખ્ત નર અને માદા અનુક્રમે 40 મિમી અને 80 મિમી લાંબા હોય છે. તેઓ મનુષ્યની લસિકાવાહિની અને લસિકાગાંઠમાં રહે છે, મનુષ્ય તેનો પ્રથમ યજમાન છે. કૃષ્િ અપત્યપ્રસવી છે. માદા બાળકૃષ્િને જન્મ આપે છે, જેને સૂજ્ય ફીલારીઆ કહે છે. પછી તે ઊંડી રુષ્ટિરવાહિનીઓમાં સ્થળાંતર કરે છે. જે ક્યુલેક્સ ફેટિઝન (culex fatigen) મચ્છર દારા યુસાય છે. જે મધ્યસ્થ યજમાન અને વાહક છે. અહીં તેઓ

१०६

લગભગ 10 દિવસમાં ચેપી ઈયળમાં વિક્સે છે અને મચ્છરનાં મુખાગોમાં સ્થળાંતરણ પામે છે. જ્યારે ચેપી મચ્છર મનુષ્ય યજમાનને કરડે છે ત્યારે ઈયળ તેની ત્વચામાં પ્રવેશે છે. તેઓ મચ્છરે કરેલા ચામડીમાં છિદ્ર દ્વારા નવા યજમાનમાં પ્રવેશે છે. રૂપિરમાંથી તેઓ લસિકાવાહિનીઓ અને લસિકાગ્રંથિઓમાં વહન પામે છે. અહીં તે એક વર્ષમાં પુખ્ત થાય છે. પુખ્ત કૃષ્મિ 5થી 8 વર્ષ જીવે છે.

યજમાન પર અસર: પ્રચંડ સ્થિતિમાં ફિલારીઅલ ચેપથી તાવ આવે છે. દીર્ધકાલીન સ્થિતિમાં કૃષ્મિ લિસિકાવાહિનીઓને બંધ કરે છે, જેના કારણે હાથ, પગ, પગના તળિયા, સ્તન અને વૃષણકોથળી જેવા અસરકારક ભાગો સૂજી જાય છે. આમ ત્વચા અને અધિચ્છદીય પેશીના જાડા થવાના કારણે થાય છે. પગ વિસ્તૃત થવાના કારણે તેને હાથીપગો નામ આપેલ છે. જોકે આ રોગ જીવલેણ નથી. રોગથી બચવા મચ્છરોનો નાશ કરવો.

દરાજ, ધાધર (રિંગવર્મ)

દરાજ, ધાધર (રિંગવર્મ) મનુષ્યમાં થતો ઘશો સામાન્ય ચેપી રોગ છે તે માટે કૂગ જવાબદાર છે. જેવી કે, માઇક્રોસ્પોરમ, ટ્રાઇક્રોકાઇટોન અને એપિડર્મોકાઇટોન.

દરાજની અસરગ્રસ્ત ચામડીનો ભાગ

વિતો : સામાન્ય લક્ષણોમાં ત્વચા, નખ અને શીર્ષના જેવા શરીરના વિવિધ ભાગો પર ચકામા થઈ સૂજી જાય છે. સતત ખંજવાળથી ચકામા વિસ્તરે છે. ગરમી અને ભેજને લીધે જાંઘની ખાંચ, ચામડીની ગડીઓ અને પગની આંગળીઓ વચ્ચેની ત્વચામાં ફ્રગની વૃદ્ધિમાં મદદ કરે છે.

ફેલાવો : દરાજના ચેપી વ્યક્તિના વાપરેલા ટુવાલ, કપડાં અથવા કાંસકાથી આ રોગ લાગે છે.

વ્યક્તિગત અને જાહેર આરોગ્યની સ્થિતિ ટકાવી રાખવા ઘણા ચેપી રોગોને ફેલાતા અટકાવવા અને નિયંત્રણમાં રાખવા ખૂબ અગત્યનું છે. વ્યક્તિગત આરોગ્યની જાળવણી માટે શરીરને સ્વચ્છ રાખવું, સ્વચ્છ પાણી, ખોરાક, શાકભાજી

અને ફળ વાપરવા જોઈએ. જાહેર આરોગ્યની જાળવણી માટે યોગ્ય રીતે ગંદા પાણીનો નિકાલ, ડેમ અને પાણીની ટાંકીના પાણીનો ચોક્કસ સમયના અંતરે સ્વચ્છ અને બિનચેપી કરવા. પાણી અને ખોરાક દ્વારા ફેલાતા રોગો માટે આ ઉપાય ખૂબ જરૂરી છે. ન્યુમોનિયા અને સામાન્ય શરદીમાં ઉપર્યુક્ત ઉપાય કરવા ઉપરાંત ચેપી વ્યક્તિના સંપર્કમાં આવવું નહિ. મેંલેરિયા અને હાથીપગો જેવા રોગો મચ્છર દ્વારા ફેલાતા હોવાથી તેમના ઈંડા મૂકવાના સ્થળ દૂર કરવા જોઈએ, જેમાં રહેઠાણની આસપાસ બંધિયાર પાણીના ખાબોચિયા દૂર કરવા, ફૂલરના પાણીને નિયમિત રીતે બદલાવવું, નેટલોન જાળી અને ગેમ્બ્યુસિયા (Gambusia) જેવી માછલીઓ મચ્છરની ઈયળો ખાઈ જતી હોવાથી તે તળાવમાં ઉછેરવી. જંતુનાશક દવાઓને ખાડાઓમાં તથા ગટર વિસ્તારમાં છંટકાવ કરવો જરૂરી છે. ડેન્ગ્યુ અને ચીકનગુનીઆ જેવા રોગ મચ્છર (એડીસ)થી ફેલાતા હોવાથી મચ્છરનો ઘરમાં પ્રવેશ ન થાય તે માટે બારી અને બારણામાં તારની જાળીઓ ફિટ કરવી. પોલીઓ, ડિક્શેરિયા, ટીટેનશ અને ન્યુમોનિયા રોગથી બચવા રસીઓને ઉપયોગ કરવો જેથી તેનું નિયંત્રણ થઈ શકે.

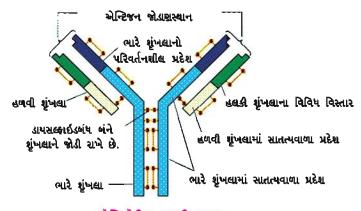
રોગપ્રતિકારકતા

આપણે રોજ મોટી સંખ્યામાં (રોગકારક) ચેપીદ્રવ્યોનો સામનો કરીએ છીએ. તેમ છતાં થોડાક જ રોગોમાં પરિશામે છે, શા માટે ? એનું કારણ એ છે કે આપણું શરીર આવા પરજાત ઘટકોથી પોતાનું રક્ષણ કરવા સક્ષમ છે. યજમાનમાં રહેલી રોગકારક સજીવો સામે લડવાની આ ક્ષમતાને પ્રતિકારકતંત્ર દ્વારા નિર્ધારિત થાય છે, જેને પ્રતિકારકતા કહે છે.

પ્રતિકારકતા બે પ્રકારની છે : (1) જન્મજાત પ્રતિકારકતા (2) ઉપાર્જિત પ્રતિકારકતા.

જન્મજાત પ્રતિકારકતા : જન્મતાની સાથે પ્રાણીને વારસામાં મળતી રોગપ્રતિકારકતાને જન્મજાત પ્રતિકારકતા કહે છે. આ પ્રકારની પ્રતિકારકતામાં પરજાત દ્રવ્યોને શરીરમાં પ્રવેશતા અટકાવવા માટે વિવિધ

भानप-स्पास्थ्य सने रोगो 107


અંતરાયો પેદા કરે છે, તેમ છતાં જો રોગજન્ય સૂક્ષ્માણુ શરીરમાં પ્રવેશે તો તરત જ આ તંત્રના અન્ય ઘટકો દ્વારા તેનો નાશ કરવામાં આવે છે. જન્મજાત પ્રતિકારકતા માટે નીચેના ચાર અંતરાયોનો સમાવેશ થાય છે :

- (1) ભૌતિક અંતરાય : આપજ્ઞાં શરીર પરની ત્વચા મુખ્ય ભૌતિક અંતરાય છે, જે સૂક્ષ્મ જીવાશુઓનો પ્રવેશ અટકાવે છે. શ્વસનમાર્ગ, જઠર આંત્રીયમાર્ગ અને મૂત્રજનનમાર્ગના અસ્તરમાં રહેલા શ્લેષ્મપડ પણ આપજ્ઞાં શરીરમાં પ્રવેશતા સૂક્ષ્મ જીવોને અટકાવે છે.
- (2) દેહધાર્મિક અંતરાય : જઠરમાં ઍસિડ, મુખગુહામાં લાળ અને આંખમાંથી નીકળતા અશ્રુ આ બધા સૂક્ષ્મ જીવની વૃદ્ધિ અટકાવે છે.
- (3) ક્રેપોય અંતરાય : આપણા શરીરમાંના કેટલાક શ્વેતક્જ્ષો જેવા કે પોલીમોર્ક્સ ન્યુક્લિઅર લ્યુકોસાઇટ્સ (PMNL તટસ્થક્જ્રો) અને એકકેન્દ્રિય ક્જ્ર અને રૃષ્ટિરમાં રહેલા નૈસર્ગિક મારકકોષો તેમજ પેશીમાં રહેલા મેક્રોફેઝ ભક્ષકકોષ તરીકે વર્તે છે, જે સૂક્ષ્મ જીવોનો નાશ કરે છે.
- (4) કોષરસીય અંતરાય : વાઇરસગ્રસ્ત કોષ ઇન્ટરફેરોન્સ નામના પ્રોટીનનો સ્ત્રાવ કરે છે. જે બિનચેપીગ્રસ્ત કોષોને વાઇરસના ચેપની સામે ૨ક્ષણ આપે છે.

ઉપાર્જિત પ્રતિકારકતા (pathogen specific) : ઉપાર્જિત પ્રતિકારકતા રોગકારકતા આધારિત છે, જે સ્મૃતિની લાક્ષણિકતા ધરાવે છે.

પ્રાશ્નીઓ જન્મ બાદ પોતાના જીવન દરમિયાન રોગોનો સામનો કરવા શરીરમાં પ્રતિકારકતા વિકસાવે છે. તેને ઉપાર્જિત પ્રતિકારકતા કહે છે. જ્યારે આપશું શરીર કોઈ રોગકારકના પ્રથમ વખત સંપર્કમાં આવે છે ત્યારે જે પ્રતિકાર આપે છે તેને પ્રાથમિક પ્રતિકાર કહે છે જેની તીવ્રતા ઓછી છે. હવે જ્યારે આ જ રોગકારક બીજીવાર સંપર્કમાં આવે છે ત્યારે સર્જાતો દ્વિતય પ્રતિકાર એ ખૂબ જ તીવ્ર હોય છે, જે શરીરમાં પ્રથમ રોગકારક હુમલાની સ્મૃતિ હોય છે. આપશા રુષિરમાં રહેલા બે વિશિષ્ટ પ્રકારના લસિકાકોષો દ્વારા પ્રાથમિક અને દ્વિતીયક પ્રતિકારકતા પ્રતિચાર દર્શાવાય છે. જેવા કે B લસિકા કોષો અને T લસિકા કોષો. B લસિકા કોષો આપશાં શરીરમાં પ્રવેશેલાં રોગકારકો સામે લડવા માટે પ્રોટીનનું લડાયક સૈન્ય બનાવે છે. આ પ્રોટીનને એન્ટિબોડી કહેવાય છે. T કોષો એન્ટિબોડીનું સર્જન કરતાં નથી પરંતુ B કોષોને એન્ટિબોડી દ્વારા થતા સર્જનમાં મદદ કરે છે. પ્રત્યેક એન્ટિબોડીના અશ્રુમાં ચાર પેપ્ટાઈડશુંખલા હોય છે. બે નાની શૃંખલાને હળવી શૃંખલા (light chain) અને બે લાંબી શૃંખલાને ભારે શૃંખલા (heavy chain) કહે છે. જેથી કરીને એન્ટિબોડીને H,L, તરીકે દર્શાવાય છે.

આપશાં શરીરમાં જુદા જુદા પ્રકારના એન્ટિબોડી સર્જાય છે. જેમાં IgA, IgM, IgE, IgD, IgGનો સમાવેશ થાય છે. આ એન્ટિબોડી રુથિરમાં જોવા મળે છે, તેથી આ પ્રતિચારને કોષરસીય પ્રતિકારકતા (humoral immune response) કહે છે.

એન્ટિબોડીના અશુની રચના

બીજા પ્રકારને કોષીય પ્રતિકારકતા (cell mediated immunity – CMI) કહે છે, કેટલીક વખત જ્યારે મનુષ્યના હૃદય, આંખ, મૂત્રપિંડ જેવા કેટલાંક અંગો પોતાની ક્રિયાશીલતા ગુમાવે છે ત્યારે પ્રત્યારોપણ માટે યોગ્ય દાતા શોધવા પડે છે. શા માટે કોઈ પણ વ્યક્તિનું અંગ નથી લઈ લેવાતું ? ડૉક્ટરો શું પરીક્ષણ કરે છે ? કોઈ પણ અન્ય પ્રાણી, અન્ય પ્રાયમેટ્સ કે બીજા વ્યક્તિનું અંગ લેવાતું નથી, જો લેવાય તો તે તરત જ કે પછીથી અસ્વીકાર્ય બને છે. અંગપ્રત્યારોપણ પહેલાં અને પછી પેશીની સરખામણી અને રુવિર-જૂથની સરખામણી કરવી

१०८ भूविद्धान

જરૂરી છે. શરીર 'સ્વજાત' અને 'પરજાત' ભેદ પારખવાની ક્ષમતા ધરાવે છે. કોષીય પ્રતિકારકતા અંગનું પ્રત્યારોપણ અસ્વીકાર માટે જવાબદાર છે.

સક્રિય ઉપાર્જિત અને નિષ્ક્રિય ઉપાર્જિત પ્રતિકારકતા

યજમાન જ્યારે એન્ટિજનના સંપર્કમાં આવે છે ત્યારે યજમાનના શરીરમાં એન્ટિબોડી સર્જાય છે. એન્ટિજન મૃત કે જીવંત સૂક્ષ્મ જીવો કે અન્ય પ્રોટીનના સ્વરૂપમાં હોય છે. આ પ્રકારની પ્રતિકારકતાને સક્રિય પ્રતિકારકતા કહે છે. સક્રિય પ્રતિકારકતા ધીમી છે તેમજ પોતાનો સંપૂર્ણ અસરકારક પ્રતિચાર આપવામાં સમય લે છે. આ પ્રતિકારકતામાં ઇરાદાપૂર્વક સૂક્ષ્મ જીવોને દાખલ કરવામાં આવે છે અથવા તો ચેપી સજીવોને શરીરમાં વધુ પ્રમાણમાં દાખલ કરાય છે જેથી તે શરીરમાં એન્ટિબોડીનું સર્જન કરાવે છે તેને સક્રિય ઉપાર્જિત પ્રતિકારકતા કહે છે.

જયારે શરીર પરજાત દ્રવ્યોથી બચાવવા માટે તૈયાર એન્ટિબોડીનો સીધેસીધો પ્રવેશ શરીરમાં કરાવાય છે ત્યારે તેને નિષ્ક્રિય પ્રતિકારકતા કહે છે. તમે જાણો છો શા માટે નવજાત શિશુ માટે માતાનું દૂધ ખૂબ આવશ્યક છે. શરૂઆતના લેક્ટેશનના દિવસોમાં માતાના દૂધમાંથી પીળાશ પડતા કોલોસ્ટ્રમનો સ્નાવ થાય છે, જેમાં પુષ્કળ એન્ટિબોડી (IgA) હોય છે. જે નવજાત શિશુને રક્ષણ આપે છે. ગર્ભાવસ્થા દરમિયાન ભ્રૂણ પણ પોતાના માતાના જરાયુમાંથી કેટલાંક એન્ટિબોડી મેળવે છે. આ પણ નિષ્ક્રિય પ્રતિકારકતાના જ ઉદાહરણ છે.

રસીકરણ અને રોગપ્રતિકારકતા

રોગપ્રતિકારકતા અથવા રસીકરણનો સિદ્ધાંત પ્રતિકારકતા તંત્રના સ્મૃતિના ગુણધર્મ પર આધારિત છે. રસીકરણમાં રોગકારકના એન્ટિજન પ્રોટીન અથવા નિષ્ક્રિય અથવા નબળા કરેલા રોગકારકોને શરીરમાં દાખલ કરાય છે. આ એન્ટિજનની સામે શરીરમાં એન્ટિબોડી સર્જાય છે. રસીકરણમાં B અને T સ્મૃતિકોષો પણ સર્જાય છે. જે ઝડપથી રોગકારકોને ઓળખીને આગળ જથ્થામાં એન્ટિબોડીનું સર્જન કરી હુમલો કરનારને દબાવી દે છે. જે વ્યક્તિને કેટલાક મૃત સૂક્ષ્મ જીવોનો ચેપ લગાડવામાં આવે તો ઝડપથી પ્રતિકાર પ્રતિચારની જરૂર પડે છે, જેવી કે આપણને ટીટાનસમાં સીધાં તૈયાર કરેલા એન્ટિબોડી અથવા એન્ટીટોકસીન દાખલ કરાય છે. સર્પદંશના કિસ્સામાં પણ દર્દીને સાપના વિષ વિરુદ્ધ તૈયાર કરેલ એન્ટિબોડીનું ઇન્જેક્શન અપાય છે. આ પ્રકારના પ્રતિકારને સિક્રય પ્રતિકારક કહેવાય છે. રિકોમ્બીનન્ટ DNA ટેક્નોલોજી દ્વારા બેક્ટેરિયા અથવા યીસ્ટમાં રોગકારકોમાંથી એન્ટિજન પ્રોટીન પોલીપેપ્ટાઇડ બનાવી શકાય છે અને તેના દ્વારા રસી બનાવી શકાય છે. આ પદ્ધિત દ્વારા મોટા પ્રમાણમાં રસી બનાવી શકાય છે. ઉદાહરણ : યીસ્ટમાંથી હિપેટાઇટિસ B રસી બનાવવામાં આવે છે. એલર્જી

તમારી સાથે ક્યારેય એવું બન્યું છે કે જ્યારે તમે કોઈ નવી જગ્યાએ જાવ ત્યારે કોઈ પણ કારણ વગર છીંક આવવાનું, કફ નીકળવાનું (ઉધરસ આવવાનું) ચાલુ થઈ જાય ? આપણામાંના કેટલાક કણો પ્રત્યે સંવેદી હોય છે. ઉપર દર્શાવેલ પ્રક્રિયાનું મુખ્ય કારણ પરાગરજની રજકણ વગેરેની એલર્જી છે, જે જુદાં જુદાં સ્થળે જુદી જુદી હોય છે. પર્યાવરણમાં રહેલ કેટલાક ચોક્કસ એન્ટિજન પ્રત્યે પ્રતિકારકતંત્રમાં વધુ પડતા પ્રતિચારને એલર્જી કહે છે.

પ્રતિકારકતંત્રમાં આવો પ્રતિચાર પ્રેરતાં દ્રવ્યોને એલર્જન્સ કહે છે. આ દ્રવ્યો સામે IgE પ્રકારની એન્ટિબોડી સર્જાય છે. એલર્જન્સનાં સામાન્ય ઉદાહરણોમાં ધૂળના રજકણ. છીંકો આવવી, આંખમાંથી પાણી વહેવું, નાક વહેવું અને શ્વાસ લેવામાં તકલીફ થવી વગેરે. તે એલર્જીનાં સામાન્ય લક્ષણો છે. માસ્ટકોષમાંથી સ્નાવ પામતા હિસ્ટેમાઇન અને સેરોટોનીન જેવા રસાયણોના સ્નાવના કારણે એલર્જી થાય છે. એલર્જીનું કારણ શોધવા માટે દર્દીને શક્ય તેવાં એલર્જન્સ દ્રવ્યોની સૂક્ષ્મ માત્રા આપવામાં આવે છે અને તેના દ્વારા થતી પ્રક્રિયાઓનો અભ્યાસ કરાય છે. એન્ટિહિસ્ટેમાઇન, એડ્રિનાલીન અને સ્ટીરોઇડ જેવી દવાઓ દ્વારા એલર્જીનાં ચિક્નો તાત્કાલિક દૂર કરી શકાય છે. કોઈ કારણસર અત્યાધુનિક જીવન પદ્ધતિના કારણે પ્રતિકારકતામાં ઘટાડો થાય છે અને એલર્જન્સ પ્રત્યેની સંવેદના વધે છે. ભારતના મોટા ભાગનાં વિકસિત શહેરોમાં વધુમાં વધુ બાળકો એલર્જી અને અસ્થમાથી પીડાય છે.

સ્વપ્રતિરક્ષા (સ્વપ્રતિકારકતા)

ઉચ્ચ કક્ષાના પૃષ્ઠવંશીઓમાં સ્મૃતિ આધારિત ઉપાર્જિત પ્રતિકારક્તાથી ઉદ્ધિકાસ થાય છે. આ પ્રતિકારક્તા સ્વજાત અને પરજાતનો ભેદ પારખવા માટે સક્ષમ છે. જોકે હજી સુધી આપણે તેના આધાર સમજી શક્યા નથી. આ ક્ષમતા બે આખરી પરિણામથી (corollaries) સમજાય છે.

भानप-स्पास्थ्य साने रोगो 109

એક ઉચ્ચ કક્ષાના પૃષ્ઠવંશીઓ પરજાત અશુઓ તેમજ પરજાત સજીવોને અલગ પાડી શકે છે. મોટા ભાગનું પ્રાયોગિક પ્રતિરક્ષાવિજ્ઞાન આ નિરીક્ષણ સાથે ચાલે છે. બીજું, કેટલીક વખત જનીનીક કે બીજાં અજ્ઞાત કારણોસર શરીર પોતાનાં કોષો પર હુમલો કરે છે જેના પરિણામે શરીરને નુકસાન થાય છે, તેને સ્વપ્રતિકારકતા રોગ કહે છે. સંધિવા એ આપણા સમાજમાં થતો સ્વપ્રતિરક્ષાનો રોગ છે. અન્ય ઉદાહરજ્ઞમાં ઇન્સ્યુલીન આધારિત હાયાબિટીસ, સંધિવા, મલ્ટિપલ સ્કલેરોસિસ વગેરે.

દેહમાં રોગપ્રતિકારકતા

મનુષ્યમાં પ્રતિકારકતંત્રમાં લિસકાઅંગો, પેશીઓ, કોષો અને એન્ટિબોડી જેવા દ્રાવ્ય અલુઓનો સમાવેશ થાય છે. પ્રતિકારતંત્ર એક એવું તંત્ર છે કે જે બાહ્ય એન્ટિજનોને ઓળખે છે, તેનો પ્રતિચાર આપે છે તેમજ તેને યાદ રાખે છે. પ્રતિકારતંત્રમાં એલર્જીની પ્રક્રિયા, સ્વરોગ પ્રતિકારકતા અને અંગ પ્રત્યારોપજ્ઞમાં પજ્ઞ અગત્યનો ભાગ ભજવે છે.

લસિકાઅંગો

આ એવાં અંગો છે જેમાં લિસિકાકશો ઉદ્દ્ભવ પામે કે પરિપક્વ બને અને વિલેદીકરણ પશ પામે છે. પ્રાથમિક લિસિકાઅંગોમાં અસ્થિમજ્જા અને થાયમસનો સમાવેશ થાય છે. જેમાં અપરિપક્વ લિસિકાક્શો, એન્ટિજન સંવેદી લિસિકાક્શોમાં વિલેદિત થાય છે. પરિપક્વ બન્યા પછી લિસિકાકશો દિતીય લિસિકાઅંગોમાં સ્થાનાંતરિત થાય છે. જેવા કે બરોળ, લિસિકા ગાંઠ, કાકડા અને નાના આંતરડામાં, દિતીય લિસિકાઅંગો લિસિકાકશોને એન્ટિજન સાથે પ્રક્રિયા કરવા માટેનું સ્થાન પૂર્વ પાડે છે અને પ્રક્રિયા પછી અસરકારક રીતે કોષમાં ઉત્પાદન કરે છે.

અસ્થિમજજ મુખ્ય લસિકાઅંગ છે. જેમાં લસિકાકણ સહિત બધા રુધિરકોષો સર્જાય છે. થાયમસ એ પિંડ જેવું અંગ છે અને હૃદયની નજીક અને છાતીના અસ્થિની નીચે ગોઠવાયેલ છે. થાયમસ ગ્રંથિ જન્મ સમયે મોટા કદની હોય છે. ઉંમર વધવાની સાથે તે નાની થતી જાય છે. પુખ્તાવસ્થાએ તે ખૂબ જ નાની બને છે. થાયમસ અને અસ્થિમજજા બંને T, લસિકાકોષોને પરિપક્વ થવા સૂજ્ય પર્યાવરણ પૂર્વુ પાડે છે. બરોળ મોટા વટાણાના દાણા જેવું અંગ છે. તે મુખ્યત્વે લસિકાકણો અને ભક્ષકકોષો ધરાવે છે. તે રુધિરમાં સર્જાયેલ સૂજ્યજીવોને જકડીને રુધિરના ગાળણ તરીકે વર્તે છે. બરોળ ઈરીથ્રોસાઇટ્સનું મોટું સંગ્રહસ્થાન છે. લસિકાગાંઠ લસિકાતંત્રમાં વિવિધ સ્થાને આવેલ નાની સખત રચના છે. લસિકાગાંઠ લસિકા અને પેશીયજાળમાં રહેલા સૂજ્ય જીવોને જકડી રાખે છે. લસિકાગાંઠમાં પકડાયેલ એન્ટિજનમાં રહેલા લીક્કોસાઇટને સિક્ય કરે છે. આ લીક્કોસાઇટ પ્રતિકારના પ્રતિચાર આપે છે. શ્વસનમાર્ગ, પાચનમાર્ગ અને યોનીમાર્ગ જેવા અગત્યના માર્ગોની અંદરની કિનારીએ લસિકાપેશી આવેલ છે. જેને શ્લેષ્ય સાથે સંકળાયેલ લસિકાપેશી નું 50 % જેટલું પ્રમાણ છે.

એઇડ્સ (AIDS)

એઇડ્સ (AIDS) એ ગંભીર, અસાધ્ય, ચેપી અને જીવલેલ રોગ છે. એઇડ્સનું પૂરું નામ એક્વાયર્ડ ઇમ્યુનોડેફિસિયન્સી સિન્ડ્રોમ છે. મતલબ કે તે પ્રતિકારકતંત્રની ઊદ્યપથી થતો રોગ છે. એઇડ્સ સૌપ્રથમ વખત USAમાં 1981માં નોંધાયો હતો અને છેલ્લાં 21 વર્ષોમાં તે આખા વિશ્વમાં ફેલાયો છે. તેનાથી 25 મિલિયનથી પણ વધારે લોકો મૃત્યુ પામ્યા છે. ભારતમાં સૌપ્રથમ 1986માં તમિલનાડુમાં એઇડ્સનો ચેપ જોવા મળ્યો.

એઇડ્સ દ્યુમન ઇમ્યુનોડેફિસિયન્સી વાઇરસ (Human Immnodeficency-Virus-HIV)થી થાય છે. તે રીટ્રોવાઇરસ સમૂહનો વાઇરસ છે. HIVમાં RNAનો અશુ જનીનદ્રવ્ય તરીકે હોય છે. વ્યક્તિના શરીરમાં પ્રવેશ્યા પછી આ વાઇરસ મેકોફેઝમાં પ્રવેશે છે. મેકોફેઝમાં વાઇરસનું RNA જનીનદ્રવ્ય રિવર્સ ટ્રાન્સિકિપ્ટેઝ ઉત્સેચકની મદદથી વાઇરલ DNAમાં સ્વયંજનન પામે છે. આ વાયરલ DNA યજમાનકોષના DNAમાં દાખલ થાય છે અને યજમાનકોષમાંથી સીધા જ વાઇરસના અશુઓ પેદા કરે છે, મેકોફેઝ સતત વાઇરસ પેદા કર્યા કરે છે. આ રીતે તે HIVના કારખાના તરીકે વર્ત છે. એ જ વખતે HIV મદદકર્તા

હિપિડ-આવરણ — ત્રાહી બાન્ડિંગ પ્રોટીન — વાઇરહ્ય પ્રોટીન આર.એન.એ.(કોર)

રીટ્રોવાઇરસ

११० भूपिज्ञान

T-લિસિકાઓ (T_H)માં પ્રવેશે છે અને સ્વયંજનન પામી વાઇરસની સંતતિઓ સર્જે છે. નવા સર્જાયેલા વાઇરસ રુધિરમાં મુક્ત થાય છે જે અન્ય મદદકર્તા T લિસિકાકોષ પર હુમલો કરે છે. આવું વારંવાર થવાથી ચેપી વ્યક્તિના શરીરમાં મદદકર્તા T લિસિકાકોષની સંખ્યા ઘટે છે. આ સમય દરિમયાન વ્યક્તિને લાંબા સમય સુધી તાવ આવે છે અને વજન ઘટે છે. દર્દીના પ્રતિકારકતાની ઊણપના કારણે પોતાની જાતને જુદા જુદા રોગના ચેપથી બચાવવા અસહ્ય બને છે.

એઇડ્સનો ફેલાવો

- એઇડ્સના રોગી સાથે વિજાતીય કે સજાતીય સમાગમ દ્વારા
- HIVયુક્ત રુધિરાધાન દ્વારા
- 💿 રોગયુક્ત અંગ પ્રત્યારોપણથી
- એઇડ્સના દર્દી કે HIV વાઇરસ ધરાવતા વ્યક્તિ દ્વારા ઉપયોગમાં લેવાયેલ સીરિંજ કે સોયના વપરાશથી
- એઇડ્સની રોગિષ્ટ માતાના ગર્ભસ્થ શિશુને તથા સ્તનપાન દ્વારા બાળકને ચેપ લાગી શકે છે. એઇડ્સ અન્ય રીતે ચેપી નથી. દર્દીના સંસર્ગમાં આવવાથી કે તેનાં વસ્ત્રો, વાસણો, ઇત્યાદિ વાપરવાથી આ રોગ પ્રસરતો નથી.

એઇડ્સનાં લક્ષણો :

HIVનો ચેપ લાગેલ વ્યક્તિઓને ત્રણ કક્ષામાં વહેંચી શકાય છે :

- (1) શરીરમાં HIV હોય પણ રોગનાં લક્ષણો ન જોવા મળે. વ્યક્તિ તંદુરસ્ત જ દેખાય છે, પરંતુ આ વ્યક્તિ HIV ના વાહક તરીકે કાર્ય કરે છે.
- (2) અમુક વ્યક્તિના શરીરમાં એઇડ્સના હળવા પ્રકારનાં ચિક્રો જોવા મળે છે. થાક લાગે, લગભગ ચાર અઠવાડિયા સુધી કળતર જોવા મળે, તાવ આવે, લોહીના ઝાડા થાય, ભૂખ મરી જાય અને વજનમાં ઘટાડો નોંધાય. આ સ્થિતિને એઇડ્સ રિલેટેડ કૉમ્પલેક્સ (ARC) કહે છે. તેમાંથી એઇડ્સનો પૂર્ણ કક્ષાનો રોગ થાય છે.
 - (3) પૂર્શ કક્ષાનો એઇડ્સ : આ રોગનો અંતિમ તબક્કો છે. જેનાં લક્ષણો :
 - કોઈ પણ કારણ વગર વજનમાં દસેક ટકા ઘટાડો થાય છે.
 - એક માસથી વધુ તાવ આવે જેનું નિદાન ન થઈ શકે.
 - 💌 ઝાડા થાય.
 - 💿 શરદી, ખાંસી, ન્યુમોનિયા વગેરે રોગો થાય.
 - 💿 ચામડીની રુધિરવાહિનીનું કૅન્સર થાય. લસિકાગ્રંથિમાં સોજો આવે.

એઇડ્સના નિદાન માટે એલીઝા ટેસ્ટ (ELISA) એન્ઝાઇમ લીંક્ડ ઇમ્યુનોએબ્સોબ્ટ એસે અને વેસ્ટર્ન બ્લોટ ટેસ્ટ (WB Test) કરવામાં આવે છે.

એઇડ્સના અટકાવ

એઇડ્સની કોઈ સચોટ પદ્ધતિ શોધી શકાઈ નથી. તેના માટેની રસી પણ નથી. એઇડ્સ તદન અસાધ્ય રોગ છે.

આપણા દેશમાં નેશનલ એઇડ્સ કંટ્રોલ ઓર્ગેનાઇઝેશન (NACO) અને અન્ય બિનસરકારી સંસ્થાઓ પણ લોકોને એઇડ્સની જાગૃતિ આપવા કાર્યરત છે. WHO પણ HIVના ચેપનો ફ્રેલાવો અટકાવવા માટે પણ સંખ્યાબંધ ક્રાર્યક્રમ યોજે છે.

અટકાવવાના ઉપાયો

- (1) જાતીય સંબંધની બાબત લગ્નજીવનના એક જ જીવનસાથીની મર્યાદા ન ઓળંગો.
- (2) જાતીય સમાગમ વખતે નિરોધનો ઉપયોગ કરવાથી જાતીય રોગો સાથે એઇડ્સનું જોખમ પણ ટાળી શકાય છે.
- (3) લોહીની જરૂર પડે ત્યારે ધંધાદારી રક્તદાતાનું લોહી ન લેવું. દરેક લોહી તેમજ લોહીની બનાવટોની

मानव-स्वास्थ्य सने रोगो 111

યોગ્ય ચકાસણી બાદ જ ઉપયોગ કરવો.

- (4) ઉકાળેલી જંતુરહિત અથવા ડિસ્પોઝેબલ સોય અને સીરિંજથી જ ઇન્જેક્શન મુકાવવું. લોહીના સંપર્કમાં આવી શકે તેવી વસ્તુઓ જેવી કે ટૂથબ્રશ, રેઝર, બ્લેડ વગેરે બીજાએ ઉપયોગમાં લીધેલ હોય તો ઉપયોગમાં ન લેવાં.
- (5) એઇડ્સના દર્દી કે એચ.આઈ.વી.નો ચેપ ધરાવતાં વ્યક્તિ સાથે દૂર વ્યવહાર કે સામાજિક બહિષ્કાર ન કરવો.

કેન્સર

કેન્સર ખૂબ જ ભયંકર રોગ છે. તેનાથી વિશ્વમાં મોટે ભાગે મૃત્યુ થાય છે. ભારતમાં મિલિયનથી પણ વધારે લોકો કેન્સરથી પીડાય છે અને વર્ષે સંખ્યાબંધ લોકો તેનાથી મૃત્યુ પામે છે.

આપણા શરીરમાં કોષીય વૃદ્ધિઓ અને વિભેદીકરણની પ્રક્રિયા નિયમિત અને નિયંત્રિત રીતે થાય છે. કેન્સરકોષોમાં આ નિયંત્રણની પ્રક્રિયા તૂટી જાય છે અને કોષવિભાજનની ક્રિયા નિરંકુશ થાય છે. તેથી કેન્સરકોષમાં સતત કોષવિભાજન થાય છે પરિણામે કોષોનો જથ્થો સર્જાય છે. તેને ગાંઠ કહે છે. આવી ગાંઠ સંયોજકપેશીથી ઘેરાયેલી અને કોઈ એક જ સ્થાને હોય છે. તેમાં કોષો રુધિર કે વાહિકા દ્વારા શરીરનાં અંગોમાં પ્રસરે છે કે જે ત્યાં અસાધ્ય ગાંઠ ઉત્પન્ન કરે છે. કેન્સરગ્રસ્ત કોષોની શરીરમાં પ્રસરવાની ક્રિયાને રોગવ્યાપ્તિ કહે છે.

કૅન્સર થવાનાં કારણો

સાદા કોષોને કૅન્સરના કોષમાં (રૂપાંતરણ કરવાની) ફેરવવાની પ્રક્રિયા ભૌતિક, રાસાયણિક અથવા જૈવિક કારકો દ્વારા થાય છે. કૅન્સર ફેલાવતા કારકોને કૅન્સરજન કહે છે. X-કિરણો અને ગામા-કિરણો જેવા આયનીક કિરણો DNAને ઈજા કરે છે તેમજ નીયોપ્લાસ્ટિક (neoplastic)માં રૂપાંતરણ કરે છે. તમાકુના ધુમાડામાં રાસાયણિક કૅન્સરજન આવેલા છે જે ફેફસાંનું કૅન્સર પ્રેરે છે. કૅન્સર પેદા કરતા વાઇરસને ઓન્કોજેનિક વાઇરસ કહેવાય છે. તેમના જનીનને વાયરલ ઓન્કોજિન કહે છે. આ ઉપરાંત સામાન્ય કોષમાં કોષીયઓન્કોજિન અથવા પ્રોટોઓન્કોજિન આવેલા છે. તે જ્યારે કોઈ ચોક્કસ પરિસ્થિતિમાં સક્રિય થાય છે ત્યારે કોષોને કૅન્સરપ્રસ્ત કોષોમાં ફેરવે છે.

કેન્સરના પ્રકારો

કેન્સરના મુખ્ય ત્રણ પ્રકાર છે : (1) કાર્સિનોમા (2) સારકોમા (3) લ્યુકેમિયા.

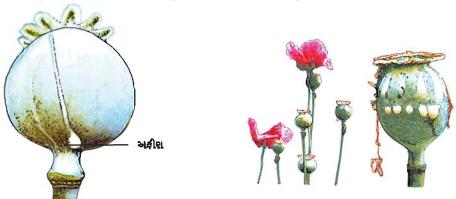
- (1) કાર્સિનોમા : શરીરમાં અધિચ્છદીયપેશીના કોષોની અસામાન્ય વૃદ્ધિથી થતાં કૅન્સરને કાર્સિનોમા કહે છે. સ્તનનું કૅન્સર, ફેફસાંનું કૅન્સર, સ્વાદુપિંડ અને જઠરનું કૅન્સર આ પ્રકારના છે. ત્વચામાં થતો મેલોનોમા કૅન્સર પણ આ પ્રકારનું છે.
- (2) સારકોમા : શરીરમાં મધ્યગર્ભસ્તરમાંથી ઉત્પન્ન થયેલી પેશીઓમાં અસાધ્ય વૃદ્ધિ થાય ત્યારે થતાં કેન્સરને સારકોમા પ્રકારનું કેન્સર કહે છે. હાડકાંના, કાસ્થિના, સ્નાયુઓના અને લસિકાગ્રંથિના કેન્સર આ પ્રકારના છે.
- (3) <mark>લ્યુકેમિયા :</mark> લ્યુકેમિયા રુધિરનું કૅન્સર છે. જે લોહીમાંના શ્વેતક્શોમાં જોવા મળે છે. તેનો ઉદ્ભવ અસ્થિમજજામાં થાય છે. આ પ્રકારના કૅન્સરમાં શ્વેતક્શોની સંખ્યા ઘણી વધી જાય છે તેમજ અપરિપક્વ શ્વેતક્શોની સંખ્યા પણ ઘણી મોટી જોવા મળે છે.

કૅન્સરના નિદાનની પદ્ધતિઓ

- (1) દાક્તરી તપાસ : કેન્સરના નિષ્ણાત ડૉક્ટર કેન્સરનાં સ્થાન અને પ્રકારને અનુલક્ષીને વિવિધ સાધનોની મદદથી તપાસ કરી નિદાન કરે છે. જરૂર જણાય તો એન્ડોસ્કોપી પણ કરે છે.
- (2) પેશીવિધાકીય કસોટી : કૅન્સરગ્રસ્ત અંગમાંથી પેશીઓનો થોડો ભાગ લઈને તેની સૂક્ષ્મ તપાસ કરવામાં આવે છે. ગર્ભાશય કે ગર્ભાશયના મુખના કૅન્સર માટે તે ભાગમાંથી કોષો લઈને તપાસ કરવામાં આવે છે, તેને 'પેપસ્મિયર' કહે છે.
- (3) વિકિરણ પદ્ધતિઓ : X-કિરણો દ્વારા તપાસ કરાય છે. શરીરના આંતરિક ભાગોના કૅન્સરની તપાસ માટે CT અને MRI નો પણ ઉપયોગ થાય છે. કોમ્પુટેડ ટોમોગ્રાફીમાં-γ કિરણોનો ઉપયોગ કરી કોઈ એક

१११२

અવયવની આંતરિક રચનાનું ત્રિપરિમાણ ચિત્ર પ્રાપ્ત થાય છે. MRIમાં તીવ્ર ચુંબકીયક્ષેત્ર અને બિનઆયોનીક કિરણો વપરાય છે, જેનાથી જીવંત પેશીમાં થતા દેહધાર્મિક ફેરફાર જાણી શકાય છે.


(4) લેબોરેટરી કસોટીઓ : કેન્સરના નિદાન માટે લેબોરેટરીમાં લોહી અને પેશાબની ચકાસણી કરવામાં આવે છે.

કેટલાક નિશ્ચિત કેન્સરના પરીક્ષણ માટે કેન્સર સ્પેસિફિક એન્ટિજિન સામે એન્ટિબોડી પણ વપરાય છે. કેન્સરની સારવાર

કેન્સરની સારવાર શઋકિયા, વિકિરણ સારવાર અને પ્રતિકારકતા સારવાર સામાન્ય રીતે કેન્સરની સારવારમાં વપરાય છે. વિકિરણ સારવારમાં ગાંઠને વિકિરણની સારવાર આપવામાં આવે છે. પરંતુ તેની આસપાસના સામાન્ય કોષોને ઈજા ન થાય તેની કાળજી લેવાય છે. કેટલીક એન્ટિકેન્સર ડ્રગ્સ પણ કેન્સરગ્રસ્ત કોષોના નાશ માટે વપરાય છે. આમાંની કેટલીક ચોક્કસ ગાંઠ માટે નિશ્ચિત હોય છે. મોટા ભાગની દવાઓની આડ અસર થાય છે, જેવી કે વાળ ઊતરવા, એનિમિયા વગેરે. મોટે ભાગે કેન્સરમાં શઋકિયા, વિકિરણ અને રસાયણની સંયુક્ત સારવાર આપવામાં આવે છે. પ્રતિકારકતા પણ ગાંઠનો નાશ કરવામાં ઉપયોગી છે. ઉદાહરણ ઇન્ટરફેરોન.

નશાકારક પદાર્થી અને આલ્કૉહૉલની ટેવ :

આંકડાકીય સર્વેક્ષણ પરથી અવલોકન કરી શકાય છે કે, કેફી પદાર્થ અને દારૂનું સેવન યુવાનોમાં વધુ જોવા મળે છે, જેના પરિણામે ઘણી નુકસાનકારક અસરો ઉદ્દ્ભવે છે. યુવાનોને આવી ખતરનાક વર્તશૂક્થી સુરક્ષિત કરવા તેમને યોગ્ય શિક્ષણ અને સલાહ અપાય એ જરૂરી છે. સામાન્ય રીતે અફીણ, ચરસ, કોકેન, હેરોઈન, મારીજુઆના જેવા કેફી પદાર્થી ફૂલોવાળી વનસ્પતિ અને ફૂગમાંથી મળી આવે છે.

અપરિપક્વ ફળ

અફીણ એ ઔષધ છે, જે મધ્યસ્થ ચેતાતંત્ર અને જઠરઆંત્રીય નલિકામાં હાજર રહેલા વિશિષ્ટ સંવેદના પ્રાહકો સાથે બંધાય છે. અફીણ એ સુકું દુષ્ધ (ક્ષીર-Latex) છે, જે અફીણના અપરિપક્વ ફળ ડોડામાં ચીરો પાડી મેળવાય છે. આ સફેદ પ્રવાહી સૂકવી અને કડક થવા દેવાય છે, જે બીજા દિવસે કથ્થાઈ રંગમાં ફેરવાય છે, જે ચીકણા ગુંદર જેવા ગોળાકાર અફીણ છે. અફીણમાંથી મોરફીન અને કોડીન (codeine) દર્દશાયક ઔષધ મેળવાય છે.

મોરફીન એ ખૂબ જાણીતું પીડાનાશક ઔષધ છે, જે મુખ્યત્વે નાના મગજના ચેતાકોષો પર કાર્ય કરી પીડાને અવરોધી શરીરને પીડાથી મુક્ત કરે છે. તે એક ઉત્તેજક તરીકે કાર્ય કરે છે. ઑપીયમ ઉલ્લાસની અનુભૂતિને પ્રેરે છે. ચિંતા, ભય, તનાવ વગેરે દૂર કરે છે અને તે વ્યસનની ખરાબ આદત છે. કોડીન એ અફીણમાંથી મળી આવતું બીજું આલ્કલોઇડ છે, તે પીડાહારક દવા છે. ઘણી વાર તે કફશીરપમાં પણ વપરાય છે. કારણ કે તે કફની પ્રક્રિયાને શાંત પાડી દે છે. જઠર અને આંતરડામાં આવતી તાણને રોકવામાં વપરાય છે. અફીણના ડોડાના અપરિપક્વ બીજનો ઉપયોગ ઔષધ તરીકે થાય છે, પણ જ્યારે બીજ પરિપક્વ થાય તો ઔષધી ગુણ અદશ્ય થાય છે અને તેનો ઉપયોગ ખોરાક તરીકે થાય છે.

भानप-स्वास्थ्य सने रोगो

હેરોઈન (સ્મેક, બ્રાઉનસુગર) અથવા હાઈએસીટાઇલ મોરફીન છે, તે સફેદ સ્કટિકમય છે. જે પીડાહારક અને આનંદપ્રમોદ સંબંધિત ઔષધ છે. વારંવાર અને નિયમિત સેવન કરવાથી તે વ્યસન બને છે. સ્મેક (બ્રાઉનસુગર) એ હેરોઇનની અશુદ્ધ ઉપપેદાશો છે.

કેનાબિનોઇડ (cannabinoids) એ રસાયશનો સમૂહ, જે મગજમાં સંવેદના ગ્રાહકો સાથે પરસ્પર જોડાય છે. ભાંગ, ગાંજા અને ચરસ ત્રશ ઔષધો કેનાબિસ ઇન્ડિકા (canabis indica)નાં સૂકાં પર્શો અને ફૂલમાંથી મળે છે. જ્યારે બીજી ઔષધ મેરિજયુએના (marijuana) કેનાબિસ સેટાઇવા (canabis sativa)માંથી મળી છે. મેરિજયુએના વનસ્પતિના ટોચનાં સૂકાં ફૂલોમાંથી મળી આવે છે. તેમનો મુખ્ય સક્રિય તત્ત્વ એ ડેલ્ટા-9-ટેટ્રાહાઇડ્રોકેનાબિનોલ છે. (Delta-9- Tetrahydrocanabinol or THC) આ ઔષધ લેવામાં આવે છે ત્યારે આંખની કીકી પહોળી થાય છે. મૂત્રનું નિર્માણ વધુ થાય છે અને રૂપિરમાં શર્કરાનું પ્રમાણ વધે છે. મેરિજયુએના તમાકુ સાથે ભેળવી સિગારેટમાં પીવાય છે. મેરિજયુએના ઉપયોગથી શું અસર થાય છે તેનો સ્પષ્ટ નિર્દેશ કરી શકાતો નથી, કારણ કે તેની અસર દરેક વ્યક્તિમાં જુદી જુદી હોય છે. તેનો ઉપયોગ

કેનાબિસ ઇન્ડિકા

કરનાર કેટલીક વાર હિંસક કે કેર વર્તાવનારા પોતાના માટે તેમજ બીજા માટે ભયજનક બને છે. કોકેન અથવા કેક અથવા ક્રેક (crack) આલ્કાલોઇડ જે દક્ષિણ અમેરિકાના એરિયોઝાયલમ કોકા (erythroxylum coca) વનસ્પતિનાં સૂકાં પર્શો અને ડાળીઓમાંથી મળે છે. તે મધ્યસ્થ ચેતાતંત્રને માટે ઉત્તેજક છે. ભૂખને અવરોધે છે. અનિદ્રા, માયાજાળ કે ભ્રમ પેદા કરે છે, જે આગળ જતા માનસિક કાર્યોને નુકસાન કરે છે. વ્યક્તિમાં પાગલપશું

જોવા મળે છે. કોકનનો દૂરુપયોગ કરવાથી માથાનો સખત દુઃખાવો, શારીરિક તાશ કે આંચકી આવવી અથવા દૃદય બંધ થવાથી કે શ્વસનતંત્ર નિષ્ફળ જતા મૃત્યુ થાય છે. લમ પેદા કરતા ગુશધર્મો ધરાવતી બીજી જાશીતી વનસ્પતિઓમાં એટ્રોપા બેલાડોના અને ધતૂરો છે. રમતવીરો પણ કેનાબિનોઇડનો ઉપયોગ કરતા થયા છે. હસીસ એ સાંદ્ર રેસીન છે, જે કેનાબિસ વનસ્પતિના માદા ફૂલમાંથી મેળવાય છે. LSD એ મૂળ સામાન્ય માયાજાળ કે ભ્રમ રચનાર અને ખૂબ જ શક્તિશાળી મનની સ્થિતિને બદલનાર રસાયશ છે. તે લાયર્સજીક એસિડમાંથી ઉત્પાદન થાય છે, જે રાયમાં થતી ફૂગ ઇર્ગોટ (irgot)માંથી મળી આવે છે. LSDની અસર વિશે કોઈ નિર્દેશ થઈ શક્તો નથી. એમ્કિટેમાઇન્સ એ ઉત્સાહવર્ષક ગોળી છે. મોટા ભાગે રાત્રે જાગરણ કરવા વ્યક્તિઓ તેનો ઉપયોગ કરે છે. તેની અસર કોકેનને મળતી આવે છે. બારબીટ્યુરેટ શાંતિ બક્ષનાર સંશ્લેષિત ઔષધ છે. જે ઊંઘવાની ગોળીઓ તરીકે સામાન્ય રીતે ઓળખાય છે. ઉપર જણાવેલ ઔષધનો સતત ઉપયોગ કરવાથી શરીર ઔષધ વગર કાર્ય કરી શક્તું નથી. તેથી લાંબા ગાળે અંગોને નુકસાન કરે છે.

એરિર્થોઝ્પ્રયલમ કોકા

ધૂમ્રપાનનો વધુ ઉપયોગ પણ ઔષધના રસ્તે લઈ જાય છે. તમાકુનો ઉપયોગ ધૂમ્રપાન, ચાવવામાં અથવા છીંકણી તરીકે થાય છે. તમાકુમાં નિકોટીન, આલ્કોલોઇડ જેવાં ઘણાં રસાયણો આવેલાં છે. નિકોટીન એડ્રિનલ ગ્રંથિને ઉત્તેજે છે, જેના લીધે એડ્રિનાલીન

અને નોરએડ્રિનાલીન મુક્ત થઈ રુધિરમાં ભળે છે. જે રુધિરના દબાણ અને હૃદયના સ્પંદનમાં વધારો કરે છે. ધ્રૂમપાન કરવાથી ઝડપથી ફેક્સાંનું, મૂત્રાશય, ગળાનું, શ્વાસનળીનો સોજો અને જઠરીય ચાંદાના કેન્સર થાય છે, કોરોનરી હૃદયનો રોગ અને શ્વાસને અવરોધતો રોગ પર અસર થાય છે. તમાકુ ખાવાથી મોઢાનું કેન્સર થાય છે. વધારે પડતું ધ્રૂમપાન કરવાથી રુધિરમાં COનું પ્રમાણ વધે છે અને હિમોગ્લોબીનમાં ઑક્સિજનનું પ્રમાણ ઘટે છે, જેના કારશે શરીરમાં પદ્મ ઑક્સિજનની ઊશપ જોવા મળે છે. ધ્રૂમપાન કરનાર જ્યારે સિગારેટનું પેકેટ ખરીદે છે ત્યારે તેના ઉપર લખેલી કાનૂની ચેતવણી જેવી કે ધ્રૂમપાન કરવું આરોગ્ય માટે હાનિકારક છે, તેનો કડકપણે અમલ કરવો જોઈએ. છતાં પણ માનવસમાજમાં ધ્રૂમપાન એટલું જ વ્યાપક છે. ધ્રૂમપાન અને તમાકુનું સેવન એ જોખમી અને તેની પ્રકૃતિ વ્યસની કરનાર છે. તેથી યુવાનો અને ઘરડાઓએ આ આદતથી દૂર રહેવું જોઈએ. દરેક બંધાણીને સલાહ અને ચિક્તિસાસંબંધી માર્ગદર્શન આપી આ આદતમાંથી છૂટકારો આપવો જોઈએ.

११४

વનસ્પતિ જેમાંથી ઔષધ મેળવાય છે.

વનસ્પતિનું નામ		ઔષધ મેળવતા વનસ્પતિનો ભાગ	ઔષધનું નામ અને તેનો પ્રકાર	
(1)	ઓપીયમ પોપી પાયાવર સોમેનીફેરમ	અપરિપક્વ ફળના ક્ષીર (દુગ્ધ)	અફીશ અને તેના વ્યુત્પન્તા મોરફીન, કોકીન, હેરોઇન (માદક ઔષધ પીડાહારક)	
(2)	હેમ વનસ્પતિનો છોડ કેનાબિસ ઇન્ડિકા કેનાબિસ સેટાઇવા	(i) વનસ્પતિનાં પર્શ અને ફૂલો (ii) સૂકા વનસ્પતિનાં ટોચનાં અફ્લિત પુષ્પો (iii) પર્શો અને વનસ્પતિ (iv) વનસ્પતિનાં ટોચનાં સૂકાં પુષ્પો	(i) ભાંગ (ભ્રમ કે માયાજાળ) (ii) ગાંજો (ભ્રમ કે માયાજાળ) (iii)ચરસ (ભ્રમ કે માયાજાળ) (iv)મેરીજ્યુએના (ભ્રમ કે માયાજાળ)	
(3)	કોકા વનસ્પતિનો છોડ ઈરિથ્રોઝાયલમ કોકા	સૂકાં પર્શો અને નાજુક ડાળીઓ	કોકેન (ઉત્તેજક) ક્રેક (તીવ્ર ઉત્તેજક)	
(4)	ઈરગોટ ક્ ગ ક્લેવીસેપ્સ પુરપુરીઆ	ફળ	લાયસરજીક ઍસિડ ડાયઇથેલેમાઇડ (LSD) (ભ્રમ કે માયાજાળ)	

તરુણાવસ્થા અને ટેવો

વ્યક્તિની ઉંમરના 12 થી 18 વર્ષ વચ્ચેના સમયને તરુણાવસ્થા કહે છે. તરુણાવસ્થા એ બાળપણ અને પુખ્તાવસ્થાને જોડનાર સેતુ છે. તરુણાવસ્થાની સાથે ઘણી જૈવિક અને વર્તણૂકીય ફેરફાર જોવા મળે છે. વાસ્તવમાં તરુણાવસ્થા એ વ્યક્તિને માનસિક અને માનસશાસ્ત્રોસંબંધી વિકાસનો ઘણો સંવેદનશીલ તબક્કો છે. તરુણાવસ્થા ઉત્તેજના અને સાહસ માટે કુતૂહલતા જરૂરી બને છે. જેમ પ્રયોગથી સામાન્ય હેતુની સિદ્ધિ થાય છે તેમ કેફી પદાર્થો અને દારૂનું સેવન કરવા તરુણોને પ્રેરે છે. આમ, તરુણો કુતૂહલતા અને પ્રયોગથી પ્રેરાઈને પ્રથમ વખત દારૂ અને કેફી પદાર્થનું સેવન કરે છે પણ પછીથી તરુણો સમસ્યાનો સામનો કરવાને બદલે નાસીછૂટી બંધાણી બને છે. કેટલાક તરુણો ભણતરમાં અને પરીક્ષામાં ઉત્કૃષ્ટતા ન બતાવી શકતા તનાવ અને દબાણ હેઠળ કેફી પદાર્થ અને દારૂ પીવાનું શરૂ કરે છે. આ પણ શરૂઆતનું મુખ્ય કારણ બને છે. સમાચારપત્રો, ચલચિત્રો, ઇન્ટરનેટ અને દૂરદર્શન દ્વારા પ્રચાર અને પૂરતી સમજ આપીને આ આદતો દૂર કરવામાં મહત્ત્વનો ભાગ ભજવી શકે છે. કેફી પદાર્થ અને દારૂની આદતો માટે બીજાં કારણો પણ સંકળાયેલાં છે, જેવા કે કુટુંબની રચનામાં અસ્થિરતા અથવા આર્થિક સ્થિતિને લીધે ભરણપોષણ ન થવું તેમજ કુટુંબનાં દબાણો વગેરેનો સમાવેશ થઈ શકે છે.

બંધાણી અને પરાધીનતા

યુવાનો કાલ્યનિક લાભોને કારણે કેફી પદાર્થીનો ટૂંકા સમયાંતરે વારંવાર ઉપયોગ કરે છે. બંધાણીના મનની વૃત્તિઓનું જોડાણ થવાના કારણે નિશ્ચિત અસરો જેવી કે, ઉલ્લાસની અનુભૂતિ અને ક્ષણિક લાગણીઓ સાથે કેફી પદાર્થ અને દારૂ પણ જોડાય છે. તેના કારણે તેને તેની જરૂર ન હોવા છતાં તેમજ કેટલીક વાર તેનો ઉપયોગ નુકસાનકારક હોવાનું જાણવા છતાં તેનો ઉપયોગ કરે છે. કેફી પદાર્થનો વારંવાર ઉપયોગ કરવાથી આપણા શરીરમાં રહેલા સંવેદના ગ્રાહકની સહનશીલતાનો આંક ઊંચો જાય છે, જેને લીધે ત્યારે ફક્ત નિરંતર સંવેદના ગ્રાહકો પ્રતિભાવ આપે છે. જયારે કેફી પદાર્થ કે દારૂ વધારે માત્રામાં લેવામાં આવે. તો આને બંધાણીની પરાધીનતા પણ કહી શકાય છે. આમ, એકવાર પણ કેફી પદાર્થ લેવાથી બંધાણી થવાના પૂર્વ સંકેત આપે છે. કેફી પદાર્થ અને દારૂમાં રહેલી વ્યસનની છૂપી શક્તિ તે બંધાણીને દુષ્કાર્યમાં ખેંચી જઈ તેનો ઉપયોગ નિયમિત કરવા લાગે છે જે બંધાણીની પરાધીનતામાં પરિણમે છે. આવા કિસ્સામાં કોઈ પણ પ્રકારના માર્ગદર્શન કે પરામર્શના અભાવથી વ્યક્તિ બંધાણી બને છે અને તેના ઉપયોગ પર જ આધારિત બને છે.

પરાધીનતાને લીધે શરીરનું અમુક દિશામાં માનસિક વલણ સ્પષ્ટ થાય છે. જો નિયમિત કેફી પદાર્થ કે દારૂનો એકાએક ત્યાગ કરવાને લીધે વિશિષ્ટ અપ્રિય વિડ્રોઅલ સિન્ડ્રોમ (withdrawal syndrome) થાય છે. જેના લીધે બેચેની, ઉબકા, પરસેવો અને ચક્કર આવવા વગેરે હોય છે. આનાથી રાહત મેળવવા બંધાણીને ફરીથી કેફી પદાર્થ અને દારૂનો ઉપયોગ કરવો પડે છે. કેટલાક કિસ્સામાં આ વિડ્રોઅલ રોગનું લક્ષણ એટલું ભયંકર હોય છે જેથી તેની દાક્તરી સારવાર જરૂરી બને છે.

मानप-स्वास्थ्य सने रोगो

નશાકારક પદાર્થોની અસર

કેફી પદાર્થના અને દારૂના દૂર્પયોગથી તરત જ અસર થતા વ્યક્તિ અવિચારી વર્તુ લૂક, આક્રમક અને તોડફોડ કરે છે. વધુ પડતા કેફી પદાર્થના સેવનથી હૃદયના સ્પંદન બંધ થઈ જાય છે અને શ્વસનતંત્રની નિષ્ફળતાથી મૃત્યુ થાય છે. કેફી પદાર્થ સાથે દારૂનું વધુ પડતું સેવન થવાથી મૃત્યુ થાય છે. યુવાનોમાં કેફી પદાર્થ અને દારૂના સેવનથી તેમની શાળા અથવા કૉલેજમાં લાંબી ગેરહાજરી થવાથી શૈક્ષણિક કાર્યની સિદ્ધિ પર માઠી અસર થાય છે અને વ્યક્તિગત આરોગ્ય બાબતે તનાવ, આક્રમકતા અને બંડખોર વર્તણૂક જોવા મળે છે. મિત્રો અને કુટુંબ સાથે સંબંધો વણસે છે. વિવિધ શોખમાં રસ પડતો નથી. સૂવા તથા ખાવાની આદતોમાં ફેરફાર થાય છે. વજન તથા ખાવાની રૂચિમાં અનિયમિતતા જોવા મળે છે. જો બંધાણીને કેફી પદાર્થ કે દારૂ ખરીદવા પૈસા ન મળે તો ચોરી કરવા પ્રેરાય છે. દારૂ અને કેફી પદાર્થના બંધાણીની માનસિક સ્થિતિ અને કુટુંબની આર્થિક પાયમાલી થાય છે. બંધાણી જો કેફી પદાર્થને શિરાઓમાં (લોહીમાં) ઇન્જેક્શન દ્વારા લે તો સોય અને પિચકારીને લીધે એઇડ્સ અને ઝેરી કમળો થવાની શક્યતા જોવા મળે છે. તરુણ અવસ્થામાં દારૂના સેવનની લાંબા ગાળાની અસર જોવા મળે છે. દારૂ અને કેફી પદાર્થના દીર્ઘકાલીન સેવનથી સિરોસિસ જેવા યકૃતના ગંભીર રોગ થતા ચેતાતંત્રને નુકસાન થાય છે. સગર્ભાવસ્થા દરમિયાન કેફી પદાર્થ અને દારૂના સેવનથી ગર્ભને પણ અસર થાય છે.

ખેલાડીઓ પોતાની કાર્યસિદ્ધિમાં અતિરેક કરવા કેફી પદાર્થનો ખૂબ દૂરુપયોગ થતો જોવા મળે છે. રમતવીરો માદક, પીડાહારક સ્ટીરોઇડ અને કેટલાક અંતઃસ્રાવોનો ઉપયોગ કરી માંસલ શક્તિનું પ્રમાણ વધારવા ગેરઉપયોગ કરે છે. સ્ત્રીઓમાં સ્ટીરોઇડના ઉપયોગથી નીચે મુજબની આડ અસરો જોવા મળે છે. જેમાં નરજાતિનાં લક્ષણો, આક્રમકતામાં વધારો, ખિન્નતા, માસિકચક્રમાં અનિયમિતતા, ચહેરા અને શરીર પર વધારાના વાળ ઊગવા વગેરે છે.

જ્યારે પુરુષમાં ખીલ વધવા, આક્રમકતામાં વધારો, ખિન્નતા, શુક્રપિંડના કદમાં ઘટાડો થતા શુક્રકોષ ઉત્પાદનમાં ઘટાડો, યકૃતની કાર્યદક્ષતામાં ઘટાડો, ટાલ પડવી વગેરે આડ અસરો જોવા મળે છે. જ્યારે તરુણાવસ્થાથી છોકરા અને છોકરીમાં ચહેરા પર વધુ ખીલ અને વૃદ્ધિનાં કેન્દ્રો બંધ થતા વિકાસ અટકે છે.

અટકાવ અને નિયંત્રણ

યુવાનીમાં સીગારેટ પીવી, દારૂ અને કેફી પદાર્થના સેવનની આદતો જોવા મળે છે. આથી પરિસ્થિતિને પારખીને કેફી પદાર્થો અને દારૂનું સેવન કરતા તરુણાવસ્થાવાળાને સમયસર દૂર રાખવા એ જ સાચો ઉપાય છે. શિક્ષકો અને વાલીઓએ આ સ્થિતિમાં ખૂબ જ કાળજીપૂર્વક જવાબદારી નીભાવવી જોઈએ. તરુણાવસ્થા દરમિયાન કેફી પદાર્થ અને દારૂનું સેવન કરનારને અહીં જણાવેલ અટકાવ અને નિયંત્રણોનો અમલ કરવો જોઈએ.

બિનજરૂરી ચોરીછૂપીના દબાણથી દૂર રહેવું

દરેક છોકરા કે છોકરીને તેની પસંદગી અને વ્યક્તિત્વ મુજબ આદરપૂર્વક વિકાસ કરવા દેવા જોઈએ. છોકરા કે છોકરી તેમની ઇચ્છાની વિરુદ્ધ અઘટિત પાલન કરવા કોઈ સીમા બાંધવી જોઈએ નહિ અને તેમને ભણવું, ખેલકૂદ અને બીજી પ્રવૃત્તિમાં પ્રવૃત્ત કરવા.

શિક્ષણ અને પરાર્મશ : છોકરા કે છોકરીને તેની સમસ્યા અને તનાવનો સામનો કરવા તેમજ નિષ્ફળતા એ જીવનનો ભાગ છે એવું શિક્ષણવાળું માર્ગદર્શન આપવું જોઈએ. છોકરાઓની શક્તિનો ઉપયોગ રમતગમત, વાચન, સંગીત, યોગ અને ઇતર અભ્યાસ ઉપરાંત પ્રવૃત્તિ કરવા પ્રેરણા આપવી જોઈએ.

માતા-પિતાએ સંતાનોને તરત જ મદદરૂપ તેમને યોગ્ય માર્ગદર્શન આપવું જોઈએ. આવી મદદ તેમણે ગાઢ અને વિશ્વાસુ મિત્ર પાસેથી મેળવવી જોઈએ.

ભયજનક સંકેતો તરફ દેષ્ટિ

સજાગ માતા-પિતા અને શિક્ષકોએ ભયજનક પરિસ્થિતિ ઓળખી તેની ચર્ચા કરવી જોઈએ. મિત્રોએ પણ કોઈ વ્યક્તિ કેફી પદાર્થ કે દારૂનું સેવન કરતા માલૂમ પડે તો કોઈ પણ ખચકાટ વિના તેનાં માતા-પિતા અને શિક્ષકના ધ્યાન પર આ બાબત લાવવી જોઈએ. આનાથી શરૂઆતમાં જ યોગ્ય સારવાર કે ઈલાજ થઈ શકે.

વ્યવસાયિકીકરણ સલાહ અને આરોગ્યવિષયક ઈલાજ

ઉપર્યુક્ત બાબતે ઉચ્ચ લાયકાત ધરાવતા માનસશાસ્ત્રી અને માનસિક રોગના ચિકિત્સિક પાસેથી સલાહ મેળવી શકાય છે. બંધાણીમાંથી મુક્ત થવા અને પુનરુત્થાન કાર્યક્રમો દ્વારા જે વ્યક્તિઓ દુર્ભાગ્યે બંધાણી અને નશાખોર થતા હોય તેને મદદ મળી શકે છે. આવી મદદથી અસરગ્રસ્ત વ્યક્તિ તેના પૂરતા પ્રયત્નો અને દઢ મનોબળથી જટિલ સમસ્યાઓમાંથી સંપૂર્ણપણે મુક્ત થઈ સામાન્ય અને તંદુરસ્ત જીવન જીવે છે.

્રજીવવિજ્ઞાન

116

1.

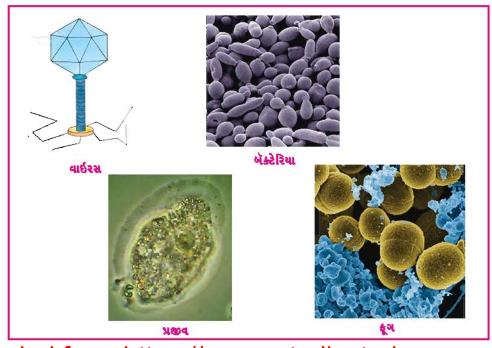
સારાંશ

તંદુરસ્તી એટલે રોગની ગેરહાજરી એટલું જ નહિ પરંતુ ભૌતિક, માનસિક, સામાજિક અને મનોવૈજ્ઞાનિક રીતે સંપૂર્શ સ્વસ્થતા. ટાઇફૉઇડ, કૉલેરા, ન્યુમોનિયા, ત્વચાના રોગનો ચેપ, મૅલેરિયા અને અન્ય ઘણા રોગો મનુષ્યમાં તણાવ સર્જે છે. પ્લાઝમોડિયમ ફેલસીપેરમ દ્વારા થતા મૅલેરિયા જેવા રોગોની સારવાર ન થાય તો ઘાતક સાબિત થાય છે. વ્યક્તિગત સ્વચ્છતા, કચરાનો યોગ્ય નિકાલ, પાશીની સ્વચ્છતા, મચ્છર જેવા વાહકોનું નિયંત્રણ અને પ્રતિકારકતા આ રોગોને અટકાવવા માટે ઉપયોગી છે. જ્યારે આપણે આવા રોગકારકોનો સામનો કરીએ છીએ ત્યારે આપણું પ્રતિકારકતંત્ર મુખ્ય ભાગ ભજવે છે. જન્મજાત પ્રતિકારકતા આપણા શરીરની ત્વચા, શ્લેષ્મપટલ, આંસુ અને લાળમાં રહેલા સૂક્ષ્મ જીવો પ્રતિરોધક દ્રવ્યો આપણા શરીરમાં રોગકારકોના પ્રવેશને અટકાવે છે અને ભક્ષકકોષો સુક્ષ્મ જીવોને શરીરમાં પ્રવેશતા અટકાવે છે. જે રોગકારકો આપણા શરીરમાં પ્રવેશવા સફળ થઈ જાય તો ચોક્કસ એન્ટિબોડી અને કોષો આ રોગકારકોને મારી નાખે છે. પ્રતિકારકતંત્રમાં સ્મૃતિ હોય છે. હવે જ્યારે આ જ રોગકારકો ફરીથી પ્રવેશે છે ત્યારે પ્રતિકારક પ્રતિચાર વધુ ઝડપી અને તીવ્ર બને છે. રોગ સામેના સંરક્ષણની આ પ્રકારની ગોઠવણીનો આધાર લઈ રસીકરણ કરી અને ભયમુક્ત સ્થિતિ પેદા કરવી. આ બધા રોગોમાં એઇડ્સ અને કેન્સર વિશ્વમાં ઘણા બધા લોકોનું મૃત્યુ નિપજાવે છે. એઇડ્સ HIV દ્વારા ફેલાય છે અને જીવલેશ છે. પરંતુ ચોક્કસ સાવધાની રાખવામાં આવે તો તેને અટકાવી શકાય છે. કેટલાક કેન્સર પણ વહેલી અને યોગ્ય પદ્ધતિ દ્વારા સારવાર આપવામાં આવે તો મટાડી શકાય છે. યુવાનો અને તરુણોમાં કેફ્રી પદાર્થ અને દારૂનું સેવન મોટા પ્રમાણમાં થાય છે. દારૂ અને કેફ્રી પદાર્થો નશાકારક હોવાથી કાલ્પનિક લાભો મેળવી તનાવ, કૌટુંબિક દબાણ, પરીક્ષાલક્ષી પ્રશ્નો, સ્પર્ધાત્મક સંબંધિત તનાવોમાંથી મુક્તિ મેળવે છે. આ બધું કરતા તે નશાખોર બની જાય છે. આ બધી નુકસાનકારક અસરથી બચવા શિક્ષણ, ચર્ચા, વૈદકીય મદદ લઈ વ્યક્તિને સંપૂર્શપણે આ દૂષણમાંથી મુક્ત કરી શકાય છે.

સ્વાધ્યાય

નીચે	આપેલા પ્રશ્નોના	ઉત્તરો	પૈકી સાચા ઉત્તર	સામે સર્કલમાં પેન્સિ	લથી :	રંગ પૂરો :	
(1)	કેનાબિસ ઇન્ડિકા	માંથી શું	, મેળવાય છે ?				
	(અ) ગાંજો	0	(બ) કોકેન	(§) LSD	0	(ડ) બારબીટ્યુરેટ	0
(2)	ફૂગ અર્ગોટમાંથી	નીચે પૈ	કી કયું દ્રવ્ય મેળવાય	ા છે ?			
	(અ) ચરસ	0	(બ) કોકેન	🔘 (ક) મેરિજ્યુએના	0	(3) LSD	0
(3)	કયું ઔષધ અફી	શમાં જો	વા મળે છે ?				
	(અ) મેરીજ્યુએન	u 🔿	(બ) કોકેન	🔾 (ક) ગાંજો	0	(ડ) મોરફ્રીન	0
(4)	યકૃત સીરોસીસ ધ	થવા મારે	રે જવાબદાર				
	(અ) ભાંગ	0	(બ) કોકેન	🔾 (ક) ચરસ	0	(ડ) દારૂ	0
(5)	નીચેનામાંથી કયો	ા રોગ ધૃ	્રમ્રપાનથી થતો નર્થ	l ?			
	(અ) મૅલેરિયા	0	(બ) ગળાનો સોજો	(ક) ફેફસાંનું કૅન્સર	20	(ડ) જઠરનાં ચાંદાં	0
(6)	ઇન્ટરફેરોન્સનો ર	ક્ષાવ કો ^{હ્}	શ કરે છે ?				
	(અ) બૅક્ટેરિયા	0	(બ) વાઇરસ	🔾 (ક) પ્રજીવ	0	(ડ) કણાભસૂત્ર	0
(7)	જે બ્રાઉન સુગર ધ	છે.					
	(અ) હસીસ	0	(બ) LSD	🔾 (ક) બારબીટ્યુરેટ	0	(ડ) હેરોઇન	0
(8)	કોકેન કઈ વનસ્પ	તિમાંથી	મેળવાય છે ?				
	(અ) કેનાબિસ ઇ	ન્ડિકા		🔾 (બ) એરિર્થોઝાલ્ય	મ કોકા	•	0
	(ક) કેનાબિસ સેટ	ટીવા		🔾 (ડ) કોફ્રી એરબીક	:L		0
(9)	મુખ્ય ભક્ષકકોષો	છે.					
	(અ) લ્મિકોસાઇટ	2		🔾 (બ) માસ્ટ કોષ			0
	(ક) મેક્રોફ્રેઝઇસ			🔾 (ડ) પ્લાઝમા કોષ			0
	at Caracas	1.11	//	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	- 1		

मानव-स्वास्थ्य सने रोगो 117


	(10) એઇડ્સ થવાનુ કારણ	
	(અ) મદદકર્તા T લસિકાકોષોનું નાશ થવું. 🛮 🔘 (બ) સ્વપ્રતિરક્ષા	0
	(ક) કીલર T કોષોનું નાશ થવું. 💮 (ડ) ઇન્ટરફ્રેરોન્સનો ઘટાડો	0 0000
	(11) હાથીપગો કોના દ્વારા થાય છે.	
	(અ) ફીલારીઅલ કૃમિની દીવાલ પરના વાઇરસની હાજરી	0
	(બ) ફીલારીઅલ કૃમિના કરડવાથી	0
	(ક) સૂક્ષ્મ ફીલારીઆ	0
	(ડ) મૃત પુખ્ત ફીલારીઅલ	0
2.	નીચેના પ્રશ્નોના ટૂંકમાં જવાબ આપો ઃ	
	(1) રોગ એટલે શું ?	
	(2) રોગના પ્રકાર જણાવો.	
	(3) ટાઇફૉઇડ રોગ કોના દ્વારા થાય છે, તેનો ફેલાવો જણાવો.	
	(4) ન્યુમોનિયા રોગનો ફેલાવો અને નિયંત્રણ વર્શવો.	
	(5) નીચેના શબ્દોના પૂર્શ નામ આપો : (1) AIDS (2) HIV (3) NACO	O (4) ARC
	(6) દરાજ કયા ફૂગ દ્વારા થાય છે અને લક્ષણો જણાવો.	
3.	તફાવત આપો :	
	(1) ચેપી રોગ અને બિનચેપી રોગ	
	(2) જન્મજાત પ્રતિકારકતા અને ઉપાર્જિત પ્રતિકારકતા	
	(3) સક્રિય ઉપાર્જિત અને નિષ્ક્રિય ઉપાર્જિત પ્રતિકારકતા	
4.	નીચેના પ્રશ્નોના જવાબ લખો :	
55	(1) એન્ટિબોડીનાં નામ નિર્દેશવાળી આકૃતિ દોરો.	
	(2) એઇડ્સ કઈ રીતે ફેલાય છે.	
	(3) કેન્સર થવાનાં જવાબદાર કારણો જણાવો.	
	(4) તરુણાવસ્થાની ટેવો વર્ણવો.	
	(5) નશાકારક પદાર્થોની અસર જણાવો.	
5.	નીચે પ્રશ્નોના ટૂંકમાં જવાબ આપો :	
	(1) અફીણ શેમાંથી મળે ?	
	(2) સ્મેક શું છે ?	
	(3) કોકેન શેમાંથી મળે ?	
	(4) શું આલ્કૉહૉલ ખોરાક છે ?	
	(5) દારૂ એકાએક ત્યાગ કરવાથી કઈ તકલીફ થાય છે ?	
	(6) ધૂમ્રપાન કરવાથી કયા રોગ થાય છે ?	
	(7) આલ્કૉહૉલ વધુ પીવાથી યકૂતનો કયો રોગ થાય છે ?	
	(8) LSD કઈ ફૂગમાંથી થાય છે ?	
	(9) કફ્રશીરપમાં ઘણી વાર કયું આલ્કલોઇડ વપરાય છે ?	
6.	માત્ર બે લીટીમાં જવાબ લખો :	
	(1) મોરફીન શું છે ? તેનો ઉપયોગ અને દૂરુપયોગ જણાવો.	
	(2) તમાકુ કયા જુદા સ્વરૂપે વપરાય છે ?	
	(3) ધૂમ્રપાન કરવાથી કયાં અંગોને નુકસાન થાય છે ?	
	(4) LSD શેમાંથી મેળવાય છે ? તેની અસર જણાવો.	
	(5) કોકેન શેમાંશી મળે છે જે અને તેની અગ્રગ જણાવો	

સૂક્ષ્મસજીવો અને માનવકલ્યાણ

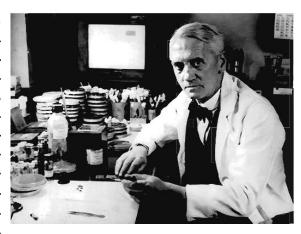
પ્રકૃતિમાં સજીવોની વિવિધતા છે તેટલી જ તેઓની ઉપયોગિતા પણ છે. વિવિધતા માત્ર ઉચ્ચ કક્ષાનાં પ્રાણીઓ કે વનસ્પતિઓમાં જ છે તેવું નથી. નરી આંખે ના દેખાતા સજીવો કે જે સૂક્ષ્મસજીવો તરીકે ઓળખાય છે. દા.ત., પ્રજીવો, બેક્ટેરિયા (જીવાણ), ફૂગ, વાઇરસ (વિષાણ) તેઓમાં પણ વિવિધતાઓ છે. કેટલાક સજીવોને બાદ કરતાં મોટા ભાગના સજીવો માનવજાતને ઉપયોગી છે. બધા સૂક્ષ્મસજીવો પણ રોગજન્ય નથી. ઉપયોગી પણ છે. તેઓ હવા, પાણી, માટી, જમીન, શરીરની અંદર એમ બધે જ વસે છે. વિપરીત પરિસ્થિતિમાં પણ તેઓમાં જીવવાની ક્ષમતા હોય છે. આધુનિક બાયોટેકનોલોજી અને જેનેટિક એન્જિનિયરિંગના વ્યાપક જ્ઞાન દ્વારા આવા સૂક્ષ્મસજીવો (microbs)નો ઉપયોગ વિવિધ રીતે માનવકલ્યાણ અર્થ કરવામાં આવે છે. સૈકાથી તેનો ઉપયોગ થતો આવ્યો છે. પોષણ માધ્યમોમાં આવા સજીવોનો ઉછેર કરવાની વિવિધ પદ્ધતિઓ છે.

કેટલાંક જાણીતા સૂક્ષ્મસજીવો આકૃતિમાં દર્શાવ્યા છે :

આ પ્રકરણમાં માનવોપયોગી સૂક્ષ્મસજીવોની ચર્ચા કરીશું.

ઘરગથ્યુ ઉત્પાદનોમાં સૂક્ષ્મસજીવો

આપશા રોજબરોજના આહારમાં લેવામાં આવતા કેટલાક ખાદ્યપદાર્થો આવા મૂક્ષ્મસજીવો દ્વારા થયેલી પ્રક્રિયાને લીધે પ્રાપ્ય છે. દૂધમાંથી દહીં બનાવવાની આપણી વર્ષો જુની પદ્ધતિ તેનું સામાન્ય ઉદાહરણ છે. આ પ્રક્રિયામાં લેક્ટોબેસિલસ બેક્ટેરિયા અને તેની સાથે અન્ય બેંક્ટેરિયાનો ઉપયોગ થાય છે. તેઓ લેક્ટિક એસિડ બેંક્ટેરિયા (LAB) તરીકે ઓળખાય છે. દહીં કે છાશનો થોડોક જથ્થો જરૂરી દૂધના જથ્થામાં ઉમેરી યોગ્ય તાપમાને આવો જથ્થો રાખવાથી દહીં બનાવી શકાય છે. પ્રક્રિયા દરમિયાન દૂધમાં LAB દ્વારા ઉત્પન્ન થયેલા અમ્લો (acids) કેટલાક દૂધને જમાવે છે અને દૂધના કેટલાંક પ્રોટીનને અંશતઃ પચાવે છે. ઉપરાંત LAB વિટામિન B₁₂ની ગુણવત્તામાં પણ વધારો કરે છે. આવા LAB આપણી હોજરીના નુકસાનકારક બેંક્ટેરિયાથી આપણને બચાવે છે. ઢોંસા, ઇડલી જેવા ખાદ્ય પદાર્થો બનાવવામાં પણ આવા સૂક્ષ્મસજીવોનો ફાળો છે. તેના માટે બનાવેલી કણકમાં આથો લાવવાનું કાર્ય બેક્ટેરિયા દ્વારા થાય છે. બ્રેડ બનાવવામાં બેકર્સ યીસ્ટ (સેકેરોમાયસીસ સેરિવિસી) ઉપયોગમાં લેવાય છે. કેટલાંક પ્રણાલીગત પીશાં અને ખાઘ પણ આ રીતે સુશ્યસજીવોની પ્રક્રિયાથી મેળવાય છે. આવા સૂશ્મસજીવોની આથવણની પ્રક્રિયાથી પીણાં કે ખાદ્ય બને છે. દક્ષિણ ભારતમાં પ્રણાલિગત બનાવવામાં આવતું ટોડ્ડી પીશું પણ પામના રસમાં આથવણ લાવી બનાવાય છે. માછલી, સોયાબીન, વાંસને પણ આ રીતે આથવણ– પ્રક્રિયામાં પસાર કરી, તેમાંથી ખાદ્યસામગ્રી બનાવાય છે. ચીઝ પણ આ રીતે જ બનાવવામાં આવતું હતું. તેમાં આધુનિકીકરણ કરી ચીકાશ, સુગંધ, સ્વાદ બદલવામાં આવે છે. દા.ત., રોકવી ફોર્ટ ચીઝ માટે તેના પર ફુગનું સંવર્ધન કરવામાં આવે છે. સ્વીસ ચીઝ પ્રોપિયોનીબેક્ટેરિયમ શર્માનીની મદદથી તૈયાર કરવામાં આવે છે, ઈન્સીલેજ ઢોરનો ખોરાક છે જે લીલી વનસ્પતિ પેશીઓમાં રહેલા કાર્બોદિતોમાં આથવણ લાવી બનાવવામાં આવે છે. અથાણું એ ખાટાં ફળ અને શાકભાજીના લેક્ટિક એસિડની આથવશ ક્રિયાનું જ પરિણામ છે.


ઔદ્યોગિક ઉત્પાદનોમાં સૂક્ષ્મસજીવો

માનવજાતને ઉપયોગી એવાં ઘણાં ઉત્પાદનો ઔદ્યોગિકક્ષેત્રે સૂક્ષ્મસજીવો દ્વારા સંશ્લેષિત કરવામાં આવે છે. દા.ત., પીણાં, એન્ટિબાયોટિક્સ, કાર્બનિક ઍસિડ્સ, આલ્કોહૉલ, ઉત્સેચકો, પ્રોટીન, ઔદ્યોગિક રસાયણો, સ્ટીરોઇડ્ઝ, રસીઓ, એમિનોઍસિડ્સ, ઊર્જાઇંયણ વગેરે. ઔદ્યોગિકક્ષેત્રે ઉપયોગી સૂક્ષ્મસજીવોને મોટાં વાસણો (vessels)માં ઉછેરવા પડે છે. સૈકાઓથી આ પદ્ધતિથી દારૂ, બીયર, વ્હીસ્કી, બ્રાન્ડી કે રમ જેવાં પીણાં અને બ્રેડ સેકેરોમાયસીસ સેરિવિસી નામની યીસ્ટની મદદથી મોટા પાયે ઉત્પાદનો મેળવાય છે. આ પ્રકારની યીસ્ટ બ્રેવર્સ યીસ્ટ તરીકે ઓળખાય છે. તેની મદદથી અનાજ અને ફળોના રસમાંથી ઈથેનોલનું ઉત્પાદન થાય છે. બ્રાઝિલમાં ઇથેનોલનો ઉપયોગ બળતણ તરીકે વાહનોમાં થાય છે. મિથેનોજેનિક બેક્ટેરિયા દ્વારા મિથેનનું ઉત્પાદન પણ ઊર્જાસોતનો પર્યાય છે. હાઇડ્રોજન પણ ઊર્જા બળતણ છે. ભવિષ્યમાં સૂક્ષ્મસજીવોની મદદથી ઊર્જા ઉત્પાદિત કરી શકાશે. પ્રકાશસંશ્લેષિત સૂક્ષ્મસજીવો H₂ પેદા કરે છે જેઓ સૌરઊર્જાનું રાસાયણિક ઊર્જામાં રૂપાંતરિત કરવા શક્તિમાન હોય છે. આ ઊર્જાને સંગ્રહી શકાશે.

બજારમાં પ્રાપ્ય એન્ટિબાયોટિક્સ દવાઓ એક પ્રકારનાં રસાયશો છે. આ પ્રકારની શોધને વીસમી સદીની વિશિષ્ટ શોધ ગણવામાં આવે છે. આ દવાઓનો માનવ સમાજકલ્યાણમાં નોંધપાત્ર ફાળો છે.

એન્ટિબાયોટિકના પ્રથમ શોધક એલેક્ઝાંડર ફ્લેમિંગ હતા.

પેનિસિલિયમ નોટેટમ દ્વારા પેનિસિલિન મેળવવામાં આવેલું. ત્યાર બાદ અર્નેસ્ટ ચૈન અને હાવર્ડ ફ્લોરેયને તેના ઉત્પાદનમાં સુધારા કરી તેની તીવ્ર ઉપયોગિતા પ્રસ્થાપિત કરેલ. આ શોધ બદલ આ ત્રણેય વૈજ્ઞાનિકોને 1945માં નોંબેલ પ્રાઇઝથી સન્માનિત કરવામાં આવેલ. તે પછી પ્લેગ, કાળી ખાંસી (whooping cough), ડિપ્પેરિયા, કુષ્ટરોગ (leprosy) જેવા જીવલેશ રોગોની અન્ય એન્ટિબાયોટિક્સ શોધાઈ. આજે એન્ટિબાયોટિક્સ વગરના વિશ્વની કલ્પના પણ ના થઈ શકે! કાર્બામાયસીન, બેસીટ્રેસીન, ફુમેજીલીન, ટેટ્રાસાયડીન વગેરે આવી એન્ટિબાયોટિક્સ છે. ઉપરાંત મહત્ત્વના કાર્બનિક ઍસિડ્સ પણ આવા અન્ય સૂક્ષ્મસજીવો દ્વારા જ મેળવાય છે. દા.ત., એસ્પરજીલસ નાઇઝર નામની ફૂગ દ્વારા સાઇટ્રિક ઍસિડ, એઝેટોબેક્ટર એસેટી બેક્ટેરિયા દ્વારા એસેટિક ઍસિડ, ક્લોસ્ટ્રીડિયમ બ્યુટીલિકમ બેક્ટેરિયા

१२० भुविद्धान

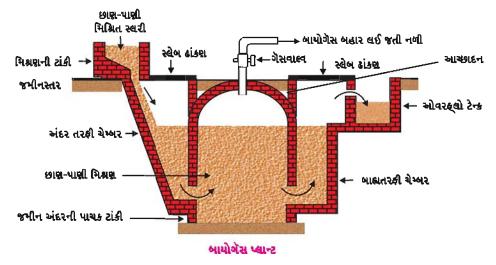
દ્વારા બ્યુટેરિક ઍસિડ અને લેક્ટોબેસિલસ દ્વારા લેક્ટિક ઍસિડનું ઉત્પાદન મોટા પાયે થાય છે. તેવી જ રીતે અન્ય ઍસિડ જેવા કે ગ્લુકોનિક ઍસિડ, L-મેલિક ઍસિડ (લીવોરોટેટરી મેલિક ઍસિડ), ઈટેકોમિક ઍસિડ વગેરે. કેટલાક એમિનો ઍસિડનું ઉત્પાદન પણ આ રીતે જ થાય છે. દા.ત., L-લાયસીન (લીવોરોટેટરી લાયસીન).

ઔદ્યોગિકક્ષેત્રે ઉત્સેચકો સૂક્ષ્મસજીવો દ્વારા ઉત્પાદિત કરવામાં આવે છે. મોટે ભાગે ફૂગ દ્વારા દા.ત., ગ્લુકોઝ ઓક્સિડેઝ, એમાયલેઝ, પ્રોટીએઝ, ગ્લુકામાયલેઝ, રેનીન, લાયપેઝ, સેલ્યુલેઝ વગેરે. લાયપેઝનો ઉપયોગ લોંડ્રીમાં તૈલી ડાઘા દૂર કરવામાં થાય છે. સૂક્ષ્મસજીવોની આ આથવણ-પ્રક્રિયાનો ઉપયોગ કેટલાંક વિટામિન્સ બનાવવામાં પણ થાય છે. દા.ત., એરેબિયા ગોસીપી દ્વારા રીબોફ્લેવીન બનાવાય છે. તેવી જ રીતે રાઇઝોપસ નિગ્નીકેન્સ દ્વારા હાઇડ્રોક્સી પ્રોજેસ્ટેરોન જેવાં સ્ટીરોઇડ ઉત્પાદિત કરાય છે. જેનેટિક એન્જિનિયરિંગથી સુધારેલ સ્ટ્રેપ્ટોકોક્સ બૅક્ટેરિયાની જાત દ્વારા સ્ટ્રેપ્ટોકાયનેસનો ઉપયોગ લોહીની નળીઓમાં ગંઠાતા રુધિરને અટકાવવામાં થાય છે. દ્રાયકોડમાં પોલિસ્પોરમ યીસ્ટ દ્વારા મેળવાતું સાયકલોસ્પોરીન A દરદીઓના અંગપ્રત્યારોપણમાં પ્રતિકારકતા ઘટાડનાર ઘટક તરીકે વપરાય છે. રુધિરમાં કોલેસ્ટેરોલનું પ્રમાણ ઘટાડવા સ્ટેટિન્સ વપરાય છે, જેનું ઉત્પાદન મોનોસ્ક્સ પુર્પુરિયસ નામની યીસ્ટમાંથી થાય છે.

સિવેઝ ટ્રીટમેન્ટ અને સૂક્ષ્મસજીવો

શહેરોમાં મ્યુનિસિપાલિટીઓ દ્વારા ગંદા પાણીને શુદ્ધ કરવાની પદ્ધતિ સિવેઝ ટ્રીટમેન્ટ તરીકે ઓળખાય છે. જેમાં માનવમળ સહિતનો વાહિતમલ હોય છે. આ પ્રકારના પાણીમાં કાર્બનિક દ્રવ્યો અને સૂક્ષ્મસજીવો મોટા પ્રમાણમાં હોય છે. જે પૈકી કેટલાક સજીવો રોગજન્ય હોય છે. આવા પાણીનું વિષમપોષી બૅક્ટેરિયા દ્વારા શુદ્ધિકરણની પ્રક્રિયા કર્યા બાદ તેને નદીઓમાં છોડવામાં આવે છે. આ પ્રકારના શુદ્ધિકરણ પ્લાન્ટ્સ સિવેઝ ટ્રીટમેન્ટ પ્લાન્ટ્સ (STPs) તરીકે ઓળખાય છે. આ પદ્ધતિઓ દ્વારા પાણીનું પ્રદૂષણ અટકાવી શકાય છે. સમગ્ર પ્રક્રિયા બે તબક્કા દ્વારા કરવામાં આવે છે.

પ્રાથમિક શુદ્ધિકરણ પ્રક્રિયા :


પ્રથમ તબક્કામાં ગાળણ અને અવસાદન (sedimentation) દ્વારા પાણીમાં રહેલાં ભૌતિક કણ-દ્રવ્યોનો નિકાલ કરાય છે. તેમાં પણ ક્રમશઃ આવતી તબક્કાવાર પ્રક્રિયા હોય છે. વારંવાર ગાળણ કરી તરતો કચરો દૂર કરાય છે. ત્યાર બાદ અવસાદન દ્વારા માટી કે ગોળાશ્મોની કાંકરીઓ દૂર કરવામાં આવે છે. આવાં ઘન દ્રવ્યો એકઠાં થઈ પ્રાથમિક સ્લઝ (કાદવ કે રગડો) રચે છે. જ્યારે તેની ઉપરનું મુક્ત પાણી બહિઃસ્ત્રાવી નિસ્યંદિત પાણી અથવા ઇફ્લુઅન્ટ (effluent) કહેવાય છે. તેને પ્રાથમિક ટાંકીમાંથી દ્વિતીયક પ્રક્રિયા કરાવવા માટે લેવામાં આવે છે. આ પ્રક્રિયા જૈવિક પ્રક્રિયા છે. પ્રાથમિક ઇફ્લુઅન્ટને મોટાં જારક પ્રક્રિયા ટાંકામાં પસાર કરી, તેમાં સતત આંદોલિત થતાં યંત્રો દ્વારા હવા પસાર કરવામાં આવે છે. પરિશામે તેમાં જારકજીવી બેક્ટેરિયાની મોટા જથ્થામાં વૃદ્ધિ થાય છે. આ બેક્ટેરિયા પાણીમાં રહેલી ફ્રગની કવકજાળ સાથે જોડાઈ ફ્લોક્સ (flocs) બનાવે છે. બૅક્ટેરિયા સહિતના સૂક્ષ્મસજીવો પાણીમાં રહેલ કાર્બનિક દ્રવ્યો વાપરે છે જેથી રાસાયણિક પ્રક્રિયા થતાં પાણીમાં રહેલ કાર્બનિક દ્રવ્યોનો મોટા ભાગનો જથ્થો વપરાય છે, પરિણામે ઇફ્લુઅન્ટમાં બાયોકેમિકલ ઑક્સિજન ડીમાન્ડ (BOD)માં ઘટ થાય છે. આમ, BOD એટલે એક લિટર પાણીમાં રહેલાં બધાં જ કાર્બનિક દ્રવ્યોનું ઑક્સિડેશન કરવા માટે બૅક્ટેરિયા દ્વારા વપરાતો ઑક્સિજનનો જથ્થો અથવા પરોક્ષ રીતે તે પાણીમાં કેટલાં કાર્બનિક દ્રવ્યો છે તેનું માપન. નકામા પાણીમાં BOD જેટલો વધારે તેટલી તે પાણીની પ્રદૂષણ માત્રા વધારે. સિવેઝ પ્રક્રિયામાં એક વખત જરૂરી માત્રામાં BOD ઘટાડી ઇફ્લુઅન્ટને સેટલિંગ ટાંકામાં પસાર કરવામાં આવે છે જ્યાં ફ્લોક્સનું અવસાદન થાય છે. આવું અવસાદિત દ્રવ્ય ક્રિયાશીલ સ્લઝ તરીકે ઓળખાય છે. ફરીથી પમ્પિંગ કરી તેમાંથી થોડાક દ્રવ્યો જારક પ્રક્રિયક ટાંકામાં લઈ જવાય છે. આ દ્રવ્ય નિવેશદ્રવ્ય (inoculum)ની ગરજ સારે છે. બાકીના મોટા ભાગના સ્લઝના જથ્થાને ટાંકીઓમાં પમ્પિંગ કરી ઠાલવવામાં આવે છે. આવા ટાંકાં (vessels) એનોરોબિક સ્લઝ ડાયજેસ્ટર્સ (રગડો કે કાદવને અજારક શ્વસનથી પચાવનાર હજમ ટાંકો) તરીકે ઓળખાય છે. તેમાં ઉછરેલ એનેરોબિક બૅક્ટેરિયા સ્લઝના બૅક્ટેરિયા અને ફૂગનું પાચન કરી જાય છે. આ ક્રિયામાં મિશ્રિત વાયુઓ પેદા થાય છે. જેમાં મિથેન, હાઇડ્રોજન સલ્ફાઇડ અને કાર્બન ડાયૉક્સાઇડ હોય છે, જેનાથી બાયોગૅસ બને છે જે બળતણઊર્જા તરીકે વપરાય છે. આમ, આવા પ્લાન્ટ્સ અને તેમાં રહેલા સક્રિય બૅક્ટેરિયા માનવકલ્યાશનું કામ કરે છે. પરંતુ વસતિના પ્રમાશમાં હજુ તેટલા પ્લાન્ટ્સ નથી તેથી પ્રદૂષણ-ઉકેલ સિદ્ધ થતો નથી. વન અને પર્યાવરણ મંત્રાલયે ગંગા એક્શન પ્લાન અને યમુના એક્શન પ્લાન નદીઓને પ્રદૂષિત થતી અટકાવવા માટે જ કર્યા છે. આપણી પણ નૈતિક ફરજ છે કે આપણે લોકમાતા નદીઓને પ્રદૂષિત ના કરીએ.

બાયોગૅસ ઉત્પાદન અને સૂક્ષ્મસજીવો

ત્રામ્ય વિસ્તારોમાં બાયોગૅસ પ્લાન્ટ્સ આર્થિક અને સ્વચ્છતાની દેશિએ અગત્યનો છે. આપશે આગળ જોયું તેમ બાયોગૅસ વાયુઓનું મિશ્રણ છે, જે બળતણ ઊર્જામાં વાપરી શકાય છે. આવા પ્લાન્ટ્સમાં મળ કે કહોવાટવાળા દ્રવ્ય માધ્યમમાં બૅક્ટેરિયા વૃદ્ધિ પામે છે. તેઓની અજારકમ્યસન જેવી ચયાપચયની ક્રિયાઓને લીધે બાયોગૅસના મિશ્રિત વાયુ પેદા થાય છે. વાયુઓના પ્રકારનો આધાર બૅક્ટેરિયા અને એકત્રિત દ્રવ્યના પ્રકાર પર આધારિત હોય છે. જો બૅક્ટેરિયા સેલ્યુલોઝવાળા દ્રવ્ય ઉપર પ્રક્રિયા કરે તો મોટા જથ્થામાં મિથેન વાયુ પેદા થાય છે. સાથે CO, અને H, વાયુ પણ હોય છે. આ પ્રકારના બૅક્ટેરિયા સમૂહને મિથેનોજિન્સ કહે છે.

આ પ્રકારના બેક્ટેરિયા ઢોરના પાચનમાર્ગના જઠરના પ્રથમ આમાશય (rumen)માં પણ હોય છે. તૃજ્ઞાહારી પ્રાણીઓ સેલ્યુલોઝયુક્ત ખોરાક લે છે. આ પ્રકારના બેક્ટેરિયાની મદદથી તેનું પાચન થાય છે. જેથી ઢોરના છાશમાં આવા બેક્ટેરિયા અધિક પ્રમાણમાં હોય છે તેથી છાલનો બાયોગૅસમાં ઉપયોગ થાય છે. જેને ગોબર ગૅસથી પણ લોકો ઓળખે છે.

બાયોગેસ પ્લાન્ટમાં 3 થી 5 મીટર ઊંડો કૉક્રિટનો ખાડો બનાવેલ હોય છે, જેમાં જૈવિક કચરો અને છાલનો કાદવ મિશ્ર કરી ભરવામાં આવે છે. તેની ઉપર તરતું આચ્છાદન રાખવામાં આવે છે. જ્યારે બૅક્ટેરિયા દ્વારા વાયુ પેદા થાય છે ત્યારે આ આચ્છાદન ઉચકાય છે. પ્લાન્ટ સાથે વાયુને બહાર લઈ જતી પાઇપ ગોઠવેલી હોય છે જેનો બીજો છેડો ઘરમાં વપરાશી સાધન સાથે જોડવામાં આવે છે. જેથી તે દ્વારા વાયુ, રાંધવા અને પ્રકાશ-ઊર્જા તરીકે ઉપયોગમાં લેવાય છે. ટાંકામાં વધેલા કાદવનો નળી દ્વારા નિકાલ કરવામાં આવે છે. જેનો ખાતર તરીકે ઉપયોગ થાય છે. ગ્રામ્ય વિસ્તારોમાં આવા પ્લાન્ટ્સ સફળતાપૂર્વક ચલાવી શકાય છે, કારણ કે ત્યાં ઢોરઉછેરને લીધે છાણ વધુ પ્રાપ્ય હોય છે.

ભારતમાં ઇન્ડિયન એપ્રિકલ્ચરલ રિસર્ચ ઇન્સ્ટિટ્યૂટ (IARI) અને ખાદી અને ગ્રાપ્યઉદ્યોગ કમિશન (KVIC)ના પ્રયાસોથી બાયોગૅસ ટેક્નોલૉજી વિકસાવવામાં આવી છે. આવા પ્લાન્ટ્સની મુલાકાત અને તેનું વ્યવસ્થાપનકર્તાઓ સાથે વાતચીત કરી પ્રત્યક્ષ રીતે બાયોગૅસ ટેક્નોલૉજી વિશે વધુ જાણકારી અને જ્ઞાન મેળવી શકાય છે.

જૈવિક નિયંત્રણમાં સૂશ્મસજીવો

ખેતઉદ્યોગક્ષેત્રે પાકને નુકસાનકારક ઘટકોને સામાન્ય રીતે ઉપદ્રવકારકો કે પેસ્ટ (pest) તરીકે ઓળખવામાં આવે છે. જેમાં કીટકો, ફૂગ, બેક્ટેરિયા મુખ્ય હોય છે. તેની અસરોથી પાક-ઉત્પાદન ઘટે છે. તેના નિયંત્રણ માટે બજારમાં અનેક પ્રકારની રાસાયણિક સંશ્લેષિત ઇન્સેક્ટિસાઇડ્સ (જંતુનાશક), પેસ્ટિસાઇડ્સ, ફન્જસાઇડ્સ (ફૂગનાશક) ઉપલબ્ધ છે. વધારાના નિંદામણને દૂર કરવા વેડીસાઇડ્સ (નિંદામણનાશક) ઉપલબ્ધ છે, પરંતુ તેનાથી જમીન, પાણી અને હવાનું તેમજ ખોરાકનું પ્રદૂષણ પણ થાય છે. તેના વિકલ્પે હવે સૂશ્મસજીવો દ્વારા તૈયાર કરેલ નિયંત્રક દવાઓ ઉત્પાદિત કરવામાં આવે છે. આ પ્રકારની દવાઓ વાપરવાથી નિવસનતંત્રની સમતુલા જળવાય છે. કપાસ અને ફળાઉ વૃક્ષોને નુકસાનકારક જીવાતનું નિયંત્રણ કરવા માટે બેસિલસ થૃરિન્જીએન્સીસ (Bacillus thuringiensis) બેક્ટેરિયાનો ઉપયોગ ઉપયોગી નિવડ્યો છે. જેનેટિક એન્જિનિયરિંગ દ્વારા આ પ્રકારના બેક્ટેરિયાનું ઝેરી દ્રવ્ય

જીવવિજ્ઞાન

122

ઉત્પન્ન કરતું જનીન પાકમાં દાખલ કરવામાં આવે છે. પાક દ્વારા આ જનીનોની મદદથી પેદા થતું દ્રવ્ય પાકને યૂસતી જીવાતના અત્રમાર્ગમાં જાય છે જ્યાં ટોક્સિનની ઘાતક અસરથી જીવાત મૃત્યુ પામે છે. અન્ય કીટકોને આ ટોક્સિન નુકસાન કરતું નથી. પાકમાં રોગપ્રતિકારક શક્તિ વધે છે. આ રીતે ઉછેરવામાં આવતો કપાસ બીટી-કોટન (BT-Cotton) તરીકે પ્રચલિત છે. તેવી જ રીતે ફૂગની કેટલીક જાતિનો ઉપયોગ પણ પાક રોગનિયંત્રણમાં થાય છે. દા.ત., ટ્રાયકોડમાં. તે મુક્તજીવી ફૂગ છે. તે જૈવનિયંત્રક તરીકે અકસીર પુરવાર થઈ છે. બકુલો વાઇરસ કીટકો અને કેટલાંક સંધિપાદીઓમાં રોગ પેદા કરે છે તે જાણ્યા પછી તેનો ઉપયોગ જૈવિકનિયંત્રક તરીકે થાય છે. અન્ય ઉપયોગી પ્રાણીઓમાં તે નુકસાનકારક નથી. ઇન્ટિપ્રેટેડ પેસ્ટ કંટ્રોલ પ્રોપ્રામ જેવા કાર્યક્રમોમાં તેનો ઉપયોગ થાય છે. શાકભાજી, ફળ અને ધાન્યપાકોમાં સૂત્રકૃષ્મિઓ દ્વારા રોગ પેદા થાય છે. તેના નિયંત્રણ માટે પણ વાઇરસ, ફૂગ, બૅક્ટેરિયા દ્વારા તૈયાર કરેલી બાયોનેમેટીસાઇડ્સ ઉપયોગી પુરવાર થઈ છે. દા.ત., સુડોમોનાસ (Pseudomonas sps) દ્વારા તૈયાર કરેલ દવા ક્વોન્ટમ-4000નો ઉપયોગ ધાન્યપાક અને શાકભાજીના રોગમાં અસરકારક છે. ફૂગીય નિંદામણનાશકો ફૂગ દ્વારા ઉત્પાદિત કરાય છે.

જૈવિક ખાતરોમાં સૂક્ષ્મસજીવો

રાસાયિશક ખાતરોના પ્રદૂષે થયા જૈવિક ખાતરો તૈયાર કરાયાં છે જે અસરકારક સાબિત થયાં છે. ખેડૂતો સેન્દ્રિય ખેતી તરફ વળ્યા છે. જેમાં જૈવિક ખાતર વપરાય છે. બૅક્ટેરિયા, ફૂગ, સાયનોબૅક્ટેરિયા જેવા સૂક્ષ્મસજીવો મદદગાર છે. શિમ્બીકૃળની વનસ્પતિના મૂળ તંત્ર ઉપર રાયઝોબિયમ (Rhizobium) બૅક્ટેરિયા વનસ્પતિ સાથે સહજીવન જીવે છે. આ બૅક્ટેરિયા વાતાવરશીય નાઇટ્રોજનનું કાર્બનિક સ્વરૂપમાં જમીનમાં સ્થાપન કરે છે જે વનસ્પતિ માટે પોષકદ્રવ્ય બને છે. અન્ય બૅક્ટેરિયા જેવા કે એઝોસ્પાયરિલમ અને એઝેટોબેક્ટર પણ તેમની મુક્તાવસ્થામાં પર્યાવરશીય નાઇટ્રોજનનું સ્થાપન કરે છે. ગ્લોમસ જાતિની ફૂગના ઘણાં સભ્યો અને છોડ સાથેના સહજીવનથી માઇકોરાયઝા રચાય છે. આ માઇકોરાયઝા માટીમાં રહેલા ફૉસ્ફરસ તત્ત્વનું શોષણ કરી વનસ્પતિને પહોંચાડે છે. જેથી વનસ્પતિના મૂળ ઉપર થતી જીવાત સામે રોગપ્રતિકારક શક્તિ વધે છે તેમ જ ક્ષાર અને શુષ્કતા સામે વનસ્પતિ ટકે છે. એનાબિના, નોસ્ટોક, ઓસિલેટોરિયા જેવા સ્વયંપોષી પણ મદદરૂપ થાય છે. ડાંગરનાં ખેતરોમાં સાયનોબૅક્ટેરિયા જૈવિક ખાતર ઉત્પાદકો તરીકે જાણીતા છે. બ્લ્યુપ્રીન આલ્ગી પણ જમીનમાં કાર્બનિક દ્રવ્યોનો વધારો કરી આપે છે, જેથી જમીનની ફળદ્રુપતા વધે છે. બજારમાં આવાં જૈવિક ખાતરો ઉપલબ્ધ છે.

આમ, વિવિધ ક્ષેત્રોમાં સૂક્ષ્મસજીવો માનવકલ્યાણમાં ઉપયોગી છે. તેઓમાં પણ ખૂબ જ જૈવવિવિધતા છે. વિવિધ જાતિઓ વિવિધ ક્ષેત્રોમાં ઉપયોગી છે. આ બાબતે જાણકારી હોવી ખૂબ જરૂરી છે તેમજ પ્રદૂષણ દ્વારા આવા સજીવોનો નાશ ના કરીએ.

સારાંશ

વાઇરસ, બૅક્ટેરિયા, ફૂગ, લીલ, પ્રજીવો કે જેઓ ખૂબ જ નાનાં કદનાં હોઈ સૂક્ષ્મસજીવો (microbs) તરીકે ઓળખાય છે. તેઓ નુકસાનકારક છે તેટલા જ માનવકલ્યાણમાં ઉપયોગી છે. તેઓનો દરેક જગ્યાએ વસવાટ છે. આધુનિક ટેક્નોલોજી દ્વારા તેઓનો વિવિધ ક્ષેત્રોમાં ઉપયોગ થાય છે. ઘરગથ્થુ ઉત્પાદનો જેવાં કે દહીંનું ઉત્પાદન, ઢોંસા, ઈડલી બનાવવાં, બ્રેડ-ઉત્પાદન, પીણાં વગેરેમાં બૅક્ટેરિયા અને ફૂગનો ઉપયોગ થાય છે. વિવિધ પ્રકારની ફાર્માસ્યુટિકલ્સ ઉત્પાદનો જેવાં કે એન્ટિબાયોટિક્સ, કાર્બનિકઍસિડ્સ, આલ્કૉહૉલ, ઉત્સેચકો, પ્રોટીન, સ્ટીરોઇડ્ઝ સૂક્ષ્મસજીવોની પ્રક્રિયાનું પરિણામ છે. ઊર્જા ઇંધણમાં પણ તે મહત્ત્વના છે. સિવેઝ ટ્રીટમેન્ટ અને બાયોગૅસ જેવા ઉપયોગી પ્લાન્ટ્સ પણ આવા સૂક્ષ્મ જીવોને આભારી છે. બાયોગૅસ મિથેન, CO_2 અને H_2 વાયુનું મિશ્રણ છે જે ઊર્જા ઇંધણમાં વપરાય છે. જૈવિક નિયંત્રણ અને જૈવિક ખાતરો કૃષિક્ષેત્રે મહત્ત્વનાં છે જેમાં બૅક્ટેરિયા, ફૂગ, લીલ, વાઇરસનો ઉપયોગ છે. સંશ્લેષિત કૃત્રિમ રસાયણો પ્રદૂષકો છે તેના બદલે આ પ્રકારનાં રસાયણો જીવનવ્યવહારમાં વાપરીએ.

2011521121

- નીચે આપેલા પ્રશ્નોના ઉત્તરો પૈકી સાચા ઉત્તર સામે સર્કલમાં પેન્સિલથી રંગ પૂરો :
 - (1) દૂધમાંથી દહીં બનાવનાર સૂક્ષ્મ સજીવ....

(અ) યીસ્ટ

🔵 (બ) પ્રજીવ

सूक्ष्मसञ्जयो अने मानवङ्याण

123

(2)	બેકર્સ યીસ્ટનો ઉપયોગ શા	માં છે ?		
	(અ) બ્રેડ બનાવવામાં	0	(બ) નાઇટ્રોજન સ્થાપન	0
	(ક) બાયોગૅસ ઉત્પાદન	0	(ડ) સિવેઝ ટ્રીટમેન્ટ	0
(3)	દક્ષિણ ભારતમાં વપરાતું ટ	ોડ્ડી પીશું ક	યા વૃક્ષની ઉપપેદાશ છે ?	
	(અ) નાળિયેર	0	(બ) તાડ	0
	(ક) સાગ	0	(ડ) પામ	0
(4)	પેનિસિલિન એન્ટિબાયોટિક	સના પ્રથમ	શોધક	
	(અ) લૂઈ પાશ્ચર	0	(બ) એલેક્ઝાંડર ફ્લેમિંગ	0
	(ક) અર્નેસ્ટ ચૈન	0	(ડ) હાવર્ડ ફ્લોરેય	0
(5)	એસ્પરજીલસ નાઇઝર ફૂગ	દ્વારા મેળવ	યામાં આવતો ઍસિડ.	
	(અ) સાઇટ્રિક ઍસિડ	0	(બ) એસેટિક ઍસિડ	0
	(ક) બ્યુટેરિક ઍસિડ	0	(ડ) લેક્ટિક ઍસિડ	0
(6)	એસેટિક ઍસિડનું ઉત્પાદન	કયા સૂક્ષ્મ	સજીવ દ્વારા મેળવાય છે ?	
	(અ) લેક્ટોબેસિલસ	0	(બ) એઝેટોબેક્ટર એસેટી	0
	(ક) એસ્પરજીલસ નાઇઝર	0	(ડ) ક્લોસ્ટ્રીડિયમ બુટીલિકમ	0
(7)	રીબોફ્લેવીન શું છે ?			
	(અ) ઉત્સેચક	0	(બ) એન્ટિબાયોટિક	0
	(ક) વિટામિન	0	(ડ) જંતુનાશક દવા	0
(8)	લોહીની નળીઓમાં લોહી	ગંઠાવવાને ઃ	ખટકાવતું રસાયણ	
	(અ) સ્ટ્રેપ્ટોકાયનેસ	0	(બ) સાયકલો સ્પોરિન	0
	(ક) સ્ટેરિન્સ	0	(ડ) ઇન્સ્યુલિન	0
(9)	ફ્લોક્સ કઈ પ્રક્રિયા દરમિ	યાન રચાય	છે ?	
	(અ) સિવેઝ ટ્રીટમેન્ટ	0	(બ) બાયોગૅસ પ્રક્રિયા	0
	(ક) BT-કપાસનું ઉત્પાદન	0	(ડ) દારૂઉદ્યોગ	0
(10)	તૃણાહારી પ્રાણી ખોરાકમાં	મુખ્ય ઘટક	કયું છે ?	
	(અ) નત્રલપદાર્થ	0	(બ) લિપિડ	0
	(ક) ક્ષાર	0	(ડ) સેલ્યુલોઝ	0
(11)	IARI સંસ્થા કયા દેશમાં	આવેલી છે	?	
	(અ) ચીન	0	(બ) બ્રાઝિલ	0
	(ક) ભારત	0	(ડ) જર્મની	00
(12)	કીટકો અને સંધિપાદીઓમાં	રોગ પેદા	કરતો સજીવ	
	(અ) લેક્ટો બેસિલસ	0	(બ) પેનિસિલિયમ	0
	(ક) બકુલો વાઇરસ	0	(ડ) બેસિલસ થુરિન્જિએસિસ	0
(13)	બાયોનેમેટીસાઇડ્ઝ દવાઓ	કોનું નિયંત્ર	શ કરે છે ?	-
	(અ) સંધિપાદીઓ	0	(બ) સૂત્રકૃમિઓ	0
	(ક) કીટકો	\bigcirc	(ડ) ગેગજન્ય કગ	

જીવવિજ્ઞાન

124 (14) શિમ્બીકૂળની વનસ્પતિ ઉપર સહજીવન જીવતા સૂક્ષ્મસજીવો... (અ) રાયઝોબિયમ (બ) પ્રજીવો \bigcirc (ક) બેકર્સ ફ્રગ (ડ) વાઇરસ \bigcirc (15) ડાંગરનાં ખેતરોમાં જૈવિક ખાતર બનાવતા બૅક્ટેરિયા... (અ) બૅક્ટેરિયમ શર્માની (બ) મિથિયોજેનિક બૅક્ટેરિયા \bigcirc 0 (ક) સ્ટ્રેપ્ટો કૉક્સ (ડ) સાયનો બૅક્ટેરિયા \bigcirc \bigcirc (16) ઓસિલેટોરિયા કેવા પ્રકારના સૂક્ષ્મ સજીવ છે ? (અ) વિષમપોષી (બ) સ્વયંપોષી \circ 0 (ક) સહજીવી O (ડ) પરોપજીવી (17) પેનિસિલિયનનું ઉત્પાદન કયા સજીવ દ્વારા કરવામાં આવે છે ? (અ) ફૂગ 0 (બ) બૅક્ટેરિયા (ક) વાઇરસ (ડ) લીલ નીચેના પ્રશ્નોના ટૂંકમાં જવાબ આપો : (1) માનવકલ્યાણકારી સૂક્ષ્મસજીવોની યાદી બનાવો અને દરેકનું મહત્ત્વ લખો. (2) બૅક્ટેરિયા માનવકલ્યાણ અર્થે કયાં ક્ષેત્રોમાં ઉપયોગી છે ? યાદી આપો. (3) ઘરગથ્થું ઉત્પાદનોમાં કયા સૂક્ષ્મસજીવો કઈ રીતે ઉપયોગી છે ? (4) ઔદ્યોગિકક્ષેત્રે કયા પ્રકારનાં રસાયણો સૂક્ષ્મસજીવો દ્વારા મેળવાય છે ? યાદી આપો. (5) સિવેઝ ટ્રીટમેન્ટ પ્લાન્ટ્સ શું છે ? તેનો હેતુ સમજાવો. (6) ટૂંક નોધ લખો : બાયોગૅસ, જૈવિક ખાતર (7) જૈવિક નિયંત્રણ એટલે શું ? BT કપાસ અને અન્ય ઉદાહરણો દ્વારા સમજાવો. (8) સમજૂતી આપો : એન્ટિબાયોટિક્સ, સિવેઝ, સ્લઝ, ઇફ્લુઅન્ટ, BOD, સહજીવન (9) પૂર્ણ નામ લખો : LAB, BOD, STPs, IARI, KVIC 3. માત્ર એક-બે લીટીમાં ઉત્તર લખો : (1) સૂક્ષ્મ સજીવ એટલે શું ? ઉદાહરણ લખો. (2) લેક્ટોબેસિલસ બૅક્ટેરિયાનો ઉપયોગ લખો. (3) બેકર્સ યીસ્ટ શું છે ? (4) ટોડ્રી પીણું કઈ રીતે બનાવાય છે ? (5) સૂક્ષ્મસજીવો દ્વારા કયા કાર્બનિકઍસિડ્સ બનાવાય છે ? (6) નાઇટ્રોજનનું સ્થાપન કરતા બૅક્ટેરિયા કયા છે ? (7) BOD શાનું માપન છે ? (8) બાયોગૅસમાં કયા વાયુ હોય છે ? (9) પાક ઉપર કયા કયા પ્રકારની પેસ્ટ હોય છે ? (10) કયા પ્રકારના બૅક્ટેરિયાનો ઉપયોગ BT-કપાસમાં થયો છે ? (11) વનસ્પતિને ફૉસ્ફરસ પૂરી પાડતી ફૂગ કઈ છે ? (12) સન 1945માં કયા વૈજ્ઞાનિકોને દવા ઉદ્યોગક્ષેત્ર માટે નૉબેલ પ્રાઇઝ મળેલું ?

ગુજરાત રાજ્યના શિક્ષણિવભાગના પત્ર–ક્રમાં ક મશબ/1211/414/છ, તા. 15-9-2011–થી મંજૂર

ધોરણ 11 (સિમેસ્ટર II)

પ્રતિજ્ઞાપત્ર

ભારત મારો દેશ છે. બધાં ભારતીયો મારાં ભાઈબહેન છે. હું મારા દેશને ચાહું છું અને તેના સમૃદ્ધ અને વૈવિધ્યપૂર્શ વારસાનો મને ગર્વ છે. હું સદાય તેને લાયક બનવા પ્રયત્ન કરીશ. હું મારાં માતાપિતા, શિક્ષકો અને વડીલો પ્રત્યે આદર રાખીશ અને દરેક જણ સાથે સભ્યતાથી વર્તીશ. હું મારા દેશ અને દેશબાંધવોને મારી નિષ્ઠા અર્પું છું. તેમનાં કલ્યાણ અને સમૃદ્ધિમાં જ મારું સુખ રહ્યું છે.

રાજ્ય સરકારની વિનામૂલ્યે યોજના હેઠળનું પુસ્તક

ગુજરાત રાજ્ય શાળા પાઠચપુસ્તક મંડળ 'વિદ્યાયન', સેક્ટર 10-એ, ગાંધીનગર - 382010

© ગુજરાત રાજ્ય શાળા પાઠ્યપુસ્તક મંડળ, ગાંધીનગર આ પાઠ્યપુસ્તકના સર્વ હક ગુજરાત રાજ્ય શાળા પાઠ્યપુસ્તક મંડળને હસ્તક છે. આ પાઠ્યપુસ્તકનો કોઈ પણ ભાગ કોઈ પણ રૂપમાં ગુજરાત રાજ્ય શાળા પાઠ્યપુસ્તક મંડળના નિયામકની લેખિત પરવાનગી વગર પ્રકાશિત કરી શકાશે નહિ.

લેખન

ડૉ. એમ. આઇ. પટેલ (કન્વીનર)

ડૉ. વાય. એમ. દલાલ

ડૉ. બી. કે. જૈન

ડૉ. યોગેશ ડબગર

ડૉ. ચિરાગ આચાર્ય

ડૉ. નરસિંહ પટેલ

અનુવાદ

ડૉ. એમ. આઇ. પટેલ

ડૉ. વાય. એમ. દલાલ

ડૉ. બી. કે. જૈન

ડૉ. યોગેશ ડબગર

ડૉ. ચિરાગ આચાર્ય

ડૉ. નરસિંહ પટેલ

સમીક્ષા

શ્રી જયસુખ બી. હરમાણી

ડૉ. ભરત એમ. વ્યાસ

શ્રી નીતિન ડી. દવે

શ્રી જયંતી પી. પટેલ

શ્રીમતી સોનલ ટી. ભાટિયા

શ્રી વશરામભાઈ કોટડિયા

ભાષાશૃદ્ધિ

શ્રી બંસીભાઈ પટેલ

ચિત્રાંકન

શિલ્પ ગ્રાફિક્સ

સંયોજન

શ્રી ચિરાગ એચ. પટેલ

(વિષય-સંયોજક: ભૌતિકવિજ્ઞાન)

નિર્માણ-આયોજન

શ્રી હરેશ એસ. લીમ્બાચીયા

(નાયબ નિયામક : શૈક્ષણિક)

મુદ્રણ-આયોજન

શ્રી હરેશ એસ. લીમ્બાચીયા (નાયબ નિયામક : ઉત્પાદન)

પ્રસ્તાવના

કોર-કરિક્યુલમ અને એન.સી.ઈ.આર.ટી. દ્વારા NCF- 2005 મુજબ તૈયાર કરવામાં આવેલા નવા રાષ્ટ્રીય અભ્યાસક્રમોના અનુસંધાનમાં ગુજરાત રાજ્ય માધ્યમિક અને ઉચ્ચતર માધ્યમિક શિક્ષણ બોર્ડ નવા અભ્યાસક્રમો તૈયાર કર્યા છે. આ અભ્યાસક્રમો ગુજરાત સરકાર દ્વારા મંજૂર કરવામાં આવે છે.

ગુજરાત સરકાર દ્વારા મંજૂર થયેલા ધોરણ 11 જીવવિજ્ઞાન (સિમેસ્ટર II) વિષયના નવા અભ્યાસક્રમ અનુસાર તૈયાર કરવામાં આવેલું આ પાઠ્યપુસ્તક વિદ્યાર્થીઓ સમક્ષ મૂકતાં મંડળ આનંદ અનુભવે છે.

આ પાઠ્યપુસ્તક પ્રસિદ્ધ કરતાં પહેલાં એની હસ્તપ્રતની આ સ્તરે શિક્ષણકાર્ય કરતા શિક્ષકો અને તજ્જ્ઞો દ્વારા સર્વાંગી સમીક્ષા કરાવવામાં આવી છે. શિક્ષકો તથા તજ્જ્ઞોનાં સૂચનો અનુસાર હસ્તપ્રતમાં યોગ્ય સુધારાવધારા કર્યા પછી આ પાઠ્યપુસ્તક પ્રસિદ્ધ કરવામાં આવ્યું છે.

આ મૂળ અંગ્રેજીમાં લખાયેલ પાઠ્યપુસ્તકનો ગુજરાતી અનુવાદ છે. ગુજરાતી અનુવાદની વિષય અને ભાષાના નિષ્ણાતો દ્વારા સમીક્ષા કરાવવામાં આવી છે.

પ્રસ્તુત પાઠ્યપુસ્તકને વિષયવસ્તુલક્ષી, રસપ્રદ, ઉપયોગી અને ક્ષતિરહિત બનાવવા માટે મંડળે પૂરતી કાળજી લીધી છે, તેમ છતાં શિક્ષણમાં રસ ધરાવનાર વ્યક્તિઓ પાસેથી પુસ્તકની ગુણવત્તા વધારે તેવાં સૂચનો આવકાર્ય છે.

ડૉ. ભરત પંડિત

સુજીત ગુલાટી IAS

નિયામક તા.05-08-2015 કાર્યવાહક પ્રમુખ ગાંધીનગર

પ્રથમ આવૃત્તિ : 2011, પુનર્મુદ્રણ : 2012, 2013, 2014, 2015

પ્રકાશક : ગુજરાત રાજ્ય શાળા પાઠ્યપુસ્તક મંડળ, 'વિદ્યાયન', સેક્ટર 10–એ, ગાંધીનગર વતી ભરત પંડિત, નિયામક

મુદ્રક

મૂળભૂત ફરજો

ભારતના દરેક નાગરિકની ફરજ નીચે મુજબ રહેશે :*

- (ક) સંવિધાનને વફાદાર રહેવાની અને તેના આદર્શો અને સંસ્થાઓનો, રાષ્ટ્રધ્વજનો અને રાષ્ટ્રગીતનો આદર કરવાની;
- (ખ) આઝાદી માટેની આપણી રાષ્ટ્રીય લડતને પ્રેરણા આપનારા ઉમદા આદર્શોને હૃદયમાં પ્રતિષ્ઠિત કરવાની અને અનુસરવાની;
- (ગ) ભારતનાં સાર્વભૌમત્વ, એકતા અને અખંડિતતાનું સમર્થન કરવાની અને તેમનું રક્ષણ કરવાની;
- (ઘ) દેશનું રક્ષણ કરવાની અને રાષ્ટ્રીય સેવા બજાવવાની હાકલ થતાં, તેમ કરવાની;
- (ચ) ધાર્મિક, ભાષાકીય, પ્રાદેશિક અથવા સાંપ્રદાયિક ભેદોથી પર રહીને, ભારતના તમામ લોકોમાં સુમેળ અને સમાન બંધુત્વની ભાવનાની વૃદ્ધિ કરવાની, સ્ત્રીઓના ગૌરવને અપમાનિત કરે તેવા વ્યવહારો ત્યજી દેવાની;
- (છ) આપણી સમન્વિત સંસ્કૃતિના સમૃદ્ધ વારસાનું મૃલ્ય સમજી તે જાળવી રાખવાની;
- (જ) જંગલો, તળાવો, નદીઓ અને વન્ય પશુપક્ષીઓ સહિત કુદરતી પર્યાવરણનું જતન કરવાની અને સુધારણા કરવાની અને જીવો પ્રત્યે અનુકંપા રાખવાની;
- (ઝ) વૈજ્ઞાનિક માનસ, માનવતાવાદ અને જિજ્ઞાસા તથા સુધારણાની ભાવના કેળવવાની;
- (ટ) જાહેર મિલકતનું રક્ષણ કરવાની અને હિંસાનો ત્યાગ કરવાની;
- (ઠ) રાષ્ટ્ર પુરુષાર્થ અને સિદ્ધિનાં વધુ ને વધુ ઉન્નત સોપાનો ભણી સતત પ્રગતિ કરતું રહે એ માટે, વૈયક્તિક અને સામૃહિક પ્રવૃત્તિનાં તમામ ક્ષેત્રે શ્રેષ્ઠતા હાંસલ કરવાનો પ્રયત્ન કરવાની;
- (ડ) માતા-પિતાએ અથવા વાલીએ 6 વર્ષથી 14 વર્ષ સુધીની વયના પોતાના બાળક અથવા પાલ્યને શિક્ષણની તકો પૂરી પાડવી.

^{*} ભારતનું સંવિધાન : કલમ 51-क

અનુક્રમણિકા				
1.	વનસ્પતિ બાહ્માકારવિદ્યા-1 (મૂળ, પ્રકાંડ, પર્શ)	1		
2.	વનસ્પતિ બાહ્યાકારવિદ્યા-2 (પુષ્પ, ફળ, બીજ અને કુળ)	18		
3.	સપુષ્પી વનસ્પતિઓની અંતઃસ્થ રચના	39		
4.	પ્રાણીપેશી	52		
5.	પ્રાણી બાહ્યાકારવિદ્યા અને અંતઃસ્થ રચના-1 (અળસિયું અને વંદો)	67		
6.	પ્રાણી બાહ્યાકારવિદ્યા અને અંતઃસ્થ રચના-2 (દેડકો)	79		

•

આ પાઠ્યપુસ્તક વિશે...

જ્ઞાનિષિપાસુએ કોઈ પણ પુસ્તકને માણવું, વાગોળવું અને સમજવું એ અલગ બાબત છે અને પરીક્ષાર્થીએ પુસ્તકને વાંચી, ગોખી રેન્ક પ્રાપ્ત કરવી તે બીજી બાબત છે. પુસ્તકને આત્મસાત્ કરી તેમાં આવતી થિય્રીને પ્રેક્ટિક્લ સ્વરૂપે નિરખવામાં આવે તો પુસ્તક વાંચવાનો કંટાળો કે તે પ્રત્યેની સૂગ ના આવે. આવું જ કંઈક આ પુસ્તકમાં છે.

'જીવિજ્ઞાન' વિષયનો ઉચ્ચતર માધ્યમિક શિક્ષણમાં ધોરણ 11 અને ધોરણ 12ના સંદર્ભે સળંગ અભ્યાસક્રમ ક્રમબદ્ધ રચવામાં આવ્યો છે. પરીક્ષાનો દષ્ટિકોણ એ લેખન અને શિક્ષણકાર્યની મર્યાદાને ધ્યાને લેવી જ રહી.

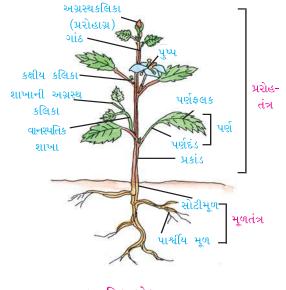
જીવિજ્ઞાન (સિમેસ્ટર 1) અને (સિમેસ્ટર 2)નાં બે પુસ્તકોનો ગહન સમજણપૂર્વકનો અભ્યાસ એ બાબતોનું સ્પષ્ટીકરણ કરે છે કે જીવસૃષ્ટિનો સમગ્ર વિકાસ ક્રમમાં આયોજિત થયો છે. તેનાં આવશ્યક રસાયણોને સમજવા બાયોકેમેસ્ટ્રી ભણ્યા. કોષની સૂક્ષ્મ રચના સિમેસ્ટર 1માં શીખ્યા. કાર્યની વહેંચણી માટે કોષ સમૂહોએ પેશીઓ રચી. વનસ્પતિમાં તેની રચના અલગ હોઈ, એક અલગ પ્રકરણ લખ્યું છે. તેના દ્વારા પેશીતંત્ર રચાય. તે સમજવા વનસ્પતિની અંતઃસ્થવિદ્યા છે, ત્રીજુ પ્રકરણ તેનું માર્ગદર્શન આપે છે. તેવું જ પ્રાણીપેશીનું પ્રકરણ પ્રાણીપેશી રચના, તેના ઘટકોનાં કાર્યો સમજાવે છે. આવી પેશીઓ મળીને અંગો રચે છે. તે નિવાસસ્થાનો અને ઉત્ક્રાંતિ અનુસાર વિકાસ પામ્યાં છે. તેનો તલસ્પર્શી અભ્યાસ જરૂરી બને તેથી વનસ્પતિનાં અંગોને સમજવા પ્રથમ મૂળ, પ્રકાંડ, પર્ણ, પુષ્પ, ફળ, બીજ વિશે પ્રાથમિક છતાં વૈજ્ઞાનિક પદ્ધતિને કેન્દ્રમાં રાખીને એક-બે પ્રકરણ લખ્યાં છે. આમ, વનસ્પતિની અંતઃસ્થ રચના તેમજ બાહ્યાકારવિદ્યા સમજવાથી જ તેના 'કુળ' (Family)નો અભ્યાસ શક્ય બને, જેનો ઉલ્લેખ ત્રણ કુળ નમૂના તરીકે પસંદ કરી લખ્યા છે.

તેવી જ રીતે પ્રાણીકોષને પ્રથમ સિમેસ્ટરમાં સમજયા. કોષો દ્વારા પેશી રચના આ પુસ્તકમાં આપી છે. હવે વાચકમિત્ર (વિદ્યાર્થી)ને ઉત્કંઠા જાગે કે આ પેશી દ્વારા બનેલાં અંગોથી અંગતંત્ર કેવાં હોય. નીચલી કક્ષાના પ્રાણીમાં અને ઉચ્ચ કક્ષાના પ્રાણીમાં એક જ ઢબ (Pattern) હોય કે અલગ. તેના સંતોષજનક ઉત્તર માટે જ ત્રણ પ્રાણીઓની બાહ્યાકાર અને અંતઃસ્થ રચના સમજવા પસંદગી કરી છે. જેમાં અળસિયું દેહકોષ્ઠધારી છતાં વિશિષ્ટ શરીરભાગ કે ઉપાંગ રહિત પ્રાણી તરીકે અંગતંત્રોની મદદથી કઈ રીતે જીવે છે તેનો ખ્યાલ આપે છે. વંદો એ અળસિયાથી સહેજ વિકસિત ઉપાંગધારી પ્રાણી હોઈ તેનાં અંગો અને અંગતંત્રોનું અલગ વર્શન છે. આ બંને પ્રાણીઓ અપૃષ્ઠવંશીઓનું પ્રતિનિધિત્વ કરે છે. જ્યારે દેડકો પૃષ્ઠવંશી પ્રાણીનું એક વિશિષ્ટ ઉદાહરણ હોઈ તેનું એક અલગ પ્રકરણ છે. જે વિવિધ અંગતંત્રો વિશે સમજ આપે છે.

વાસ્તવમાં સૌપ્રથમ આ પુસ્તકને સમજયા પછી કોઈ નવલકથા વાંચતા હોઈએ તે રીતે (આગળના પુસ્તકને જોડે રાખી) વાંચશો તો તમને કુદરતી વ્યવસ્થા અને સજીવોની દેહરચનાનું જ્ઞાન મળશે. તમે આ જ્ઞાન કેટલું સમજયા, પચાવ્યું તે તો જાણવું પડે. પરિણામે 'પરીક્ષા' એ માત્ર મૂલ્યાંકન માપદંડ છે. પુસ્તકને સમજવા તેના એકેએક વાક્યને સમજો. ફકરા સમજો. આપોઆપ પ્રકરણો સ્વયં સમજાશે. વનસ્પતિ વિભાગ સમજવા શક્ય તેટલા કુદરતી પ્રાપ્ય નમૂનાઓ સાથે રાખી શિક્ષકમિત્રો મૂળ, પ્રકાંડ, પર્ણ, તેના પ્રકાર, વિવિધ વિન્યાસો વ્યાખ્યાન દરમિયાન પ્રત્યક્ષ જ્ઞાન આપવાની પદ્ધતિ રાખશે તો સોનામાં સુગંધ ભળશે. અંતે વિશ્વાસ છે કે તમે સાચા અર્થમાં ગુજરાતી વનસ્પતિશાસ્ત્રી જયકૃષ્ણ ઇન્દ્રજી બનો. ન हિ ज्ञानेન सदृशं पवित्रमिह विद्यते સૂત્રને કેન્દ્રમાં રાખી અભ્યાસુ બનીએ.

•

1

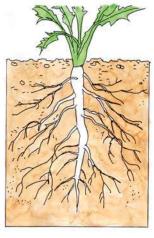

વનસ્પતિ બાહ્યાકારવિધા-1

(મૂળ, પ્રકાંડ, પર્ણ)

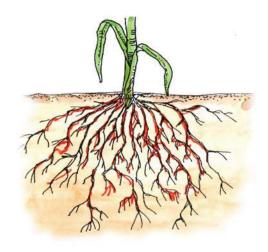
આધુનિક સમયમાં સૌથી પ્રભાવી વનસ્પતિ જૂથ સપુષ્પ વનસ્પતિઓનું છે. આવી વનસ્પતિની લગભગ 3 લાખ જાતિઓ અસ્તિત્વમાં છે. તેનાં કદ, સ્વરૂપ, રચના વગેરેમાં ઘણું વૈવિધ્ય છે. લેમ્ના જેવી ખૂબ નાની જલજ વનસ્પતિ છે, તો સિકોયા અને યુકેલિપ્ટસ જેવી ખૂબ ઊંચી વનસ્પતિઓ પણ છે. કેટલાક છોડ છે, કેટલીક ક્ષુપ છે, કેટલીક આરોહી છે તો કેટલાંક વૃક્ષ છે. કેટલીક એકવર્ષાયુ જ્યારે કેટલીક બહુવર્ષાયુ હોય છે. જીવનપ્રકારમાં પણ ભિન્ન હોય છે, જેમકે મરુનિવાસી, જલજ, પરરોહી અને પરોપજીવી વનસ્પતિઓ.

વનસ્પતિનો અભ્યાસ તેના બાહ્યાકાર અને આંતરિક રચના દ્વારા થઈ શકે છે.

લાક્ષણિક સપુષ્પ વનસ્પતિ શાખિત કે અશાખિત મુખ્ય અક્ષ ધરાવે છે. આ અક્ષ પરથી પાર્શ્વીય ઉપાંગો સર્જાય છે. મુખ્ય અક્ષને સામાન્ય રીતે બે ભાગમાં વહેંચાય છે : ભૂમિગત ભાગ–મૂળ અને


લાક્ષણિક છોડ

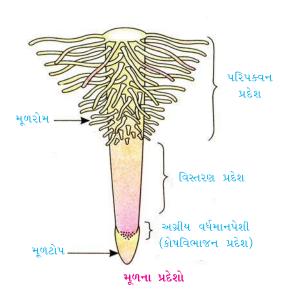
હવાઈ ભાગ–પ્રરોહ. તેને અનુક્રમે મૂળતંત્ર અને પ્રરોહતંત્ર પણ કહે છે. મૂળતંત્ર આદિમૂળમાંથી અને પ્રરોહતંત્ર આદિસ્કંધમાંથી વિકસે છે. પ્રરોહતંત્રમાં પ્રકાંડ, પર્શો, પુષ્પો ઇત્યાદિ હોય છે. પુષ્પ બીજ અને ફળ સર્જે છે. બીજ નવી સંતતિ સર્જે છે.


(I) મૂળ (Root): મૂળ વનસ્પતિ અક્ષનો ભૂમિગત ભાગ છે. તે આદિમૂળ (ભ્રૂણમૂળ)માંથી વિકસે છે. તે ધનભૂવર્તી, ૠણ પ્રકાશાનુવર્તી અને ધન જલાનુવર્તી છે. તે નીલરસવિહીન છે.

ભ્રૃણમૂળના વિકાસથી સર્જાતી પ્રાથમિક રચના પ્રાથમિક મૂળ (primary root) કહેવાય છે. તેમાંથી દ્વિતીયક અને તૃતીયક શાખાઓ ઉત્પન્ન થાય છે. પ્રાથમિક મૂળ વધુ લાંબુ થાય અને તેની શાખાઓ કરતાં વધુ મજબૂતપણે વિકસે ત્યારે તેને સોટીમૂળ (tap-root) કહે છે. તેના દ્વારા રચાતા મૂળતંત્રને સોટીમૂળતંત્ર કહે છે. દ્વિદળી વનસ્પતિમાં સોટીમૂળતંત્ર હોય છે.

ભ્રૂણમૂળમાંથી ઉદ્ભવતા મૂળને સ્થાનિક મૂળ (normal root) કહે છે. જ્યારે ભ્રૂણમૂળ સિવાયના

સોટીમય મૂળતંત્ર



તંતુમય મૂળતંત્ર

અન્ય કોઈ પણ ભાગમાંથી ઉદ્ભવતા મૂળને અસ્થાનિક મૂળ (adventitious root) કહે છે. આવાં મૂળ અધરાક્ષ, પ્રકાંડ કે પર્ણના ભાગોમાંથી સર્જાઈ શકે. એકદળી વનસ્પતિમાં પ્રાથમિક મૂળ અલ્પજીવી છે તેથી અધરાક્ષ અને પ્રકાંડના તલભાગમાંથી, પાતળા તંતુઓ જેવાં મૂળ ઉત્પન્ન થાય છે. આવાં મૂળને તંતુમૂળ અને તેના દ્વારા સર્જાતા મૂળતંત્રને તંતુમૂળતંત્ર (fibrous rootsystem) કહે છે.

મૂળના પ્રદેશો

મૂળના વિવિધ પ્રદેશો તરીકે તેની ટોચના મૂલાગ્રનો વર્ધીપ્રદેશ, તેની આસપાસ રક્ષણાત્મક આવરણરૂપે ગોઠવાયેલી ટોપી જેવી મૂળટોપની રચના, વિસ્તરણ પ્રદેશ અને પરિપક્વન પ્રદેશ ગણાવાય છે.

- મૂળટોપી (Root cap) : મૂળના ટોચના વર્ધમાનકોષોના બનેલા વર્ધીપ્રદેશની આસપાસ ગોઠવાઈને, રક્ષણ આપતી રચના છે. દા.ત., કેવડો. જલશૃંખલા જેવી જલજ વનસ્પતિમાં તે શિથિલ આવરણ તરીકે હોય છે, તેને મૂળગોહ (root pocket) કહેવાય છે.
- વધીપ્રદેશ (Meristematic region) : આ વિસ્તારના વર્ધમાનકોષો સતત કોષવિભાજન પામી નવા કોષો ઉમેરે છે. કોષો નાના, જીવરસથી ભરેલા અને પાતળી દીવાલવાળા હોય છે.
- વિસ્તરણ પ્રદેશ (Region of elongation) : આ વિસ્તારના કોષો કદ અને લંબાઈમાં ઝડપથી વધે છે તેમજ લંબાઈ તથા ઘેરાવામાં વૃદ્ધિ પ્રેરે છે.
- પરિપક્વન પ્રદેશ (Region of maturation): આ વિસ્તારના કોષો વિભેદન પામી પેશીરચના કરે છે. આ વિસ્તારમાંથી પાતળા, નાજુક, તંતુમય મૂળરોમ (root hairs) ઉત્પન્ન થાય છે. આ પ્રદેશને મૂળરોમ પ્રદેશ પણ કહે છે. પછીના મૂળના સ્થાયી પ્રદેશમાંથી નવી શાખાઓ ઉત્પન્ન થાય છે.

મૂળનાં સામાન્ય કાર્યો

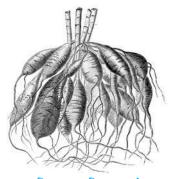
- (1) સ્થાપન (Fixation) : વનસ્પતિને જમીનમાં યોગ્ય રીતે પ્રસ્થાપિત કરવી અને જમીન સાથે મજબૂત પકડ કેળવવી.
- (2) શોષણ (Absorption) : ભૂમિમાંથી પાણી અને વિવિધ ક્ષારોનું શોષણ કરવું અને પ્રકાંડ અક્ષના તલ ભાગ સુધી પહોંચાડવું.

મુળનાં વિશિષ્ટ કાર્યો

વિશિષ્ટ કાર્યો કરવા માટે મૂળમાં વિશિષ્ટ અનુકૂલનો હોવાં જરૂરી છે. આવાં અનુકૂલનો જે–તે અંગમાં રૂપાંતર પ્રેરે છે.

વિશિષ્ટ કાર્યો માટે મૂળનાં રૂપાંતર

- (1) ખોરાકસંગ્રહ : પર્શો દ્વારા તૈયાર થતા ખોરાકના વધારાના જથ્થાનો સંગ્રહ ઘણી વાર મૂળમાં થાય છે. આવાં મૂળ ભૂગર્ભીય, માંસલ અને વિવિધ આકારનાં હોય છે. સંગૃહિત ખોરાક છોડને સુષુપ્તાવસ્થા ગાળવામાં સહાયક બને છે.
- (A) સોટીમૂળનાં રૂપાંતર : ગાજર, મૂળા અને બીટમાં સોટીમૂળ ખોરાકનો સંગ્રહ કરી માંસલ બને છે. ગાજરમાં ખોરાકસંગ્રહી સોટીમૂળ શંકુઆકાર બને છે. તેને શંકુઆકાર સોટીમૂળ (conical taproot) કહે છે. મૂળામાં તે ત્રાકાકાર બને છે તેથી તેને ત્રાકાકાર સોટીમૂળ (fusiform) કહે છે. બીટમાં બધો ખોરાકસંગ્રહ મૂળના પાયાના ભાગમાં જ થાય છે અને પછીનો ભાગ એકાએક દોરી જેવો થાય છે. આ મૂળને ભ્રમરાકાર સોટીમૂળ (napiform) કહે છે.


મૂળ – ખોરાકસંગ્રહ માટે સોટીમૂળનાં રૂપાંતર

(B) અસ્થાનિક તંતુમૂળનાં રૂપાંતર : તંતુમૂળમાં ખોરાકનો સંગ્રહ થાય ત્યારે તેમને સાકંદમૂળ (tuberous root) કહે છે.

શક્કરિયાના વેલામાંથી ઉદ્ભવતા અસ્થાનિક તંત્,મૂળમાંથી એકલદોકલ સાકંદમૂળ સર્જાતાં હોય છે. આ સાકંદમૂળ અનિયમિત આકારનાં હોય છે. તેને સરળ સાકંદમૂળ (simple tuberous root) કહેવાય છે.

શતાવરી તથા ડહાલિયા વનસ્પતિમાં આવાં ખોરાકસંગ્રહી સાકંદમૂળ ગુચ્છાઓમાં સર્જાય છે. તેમને ગુચ્છાદાર સાકંદમૂળ (fasciculated tuberous root) કહે છે.

ડહાલિયા - ગુચ્છિત સાકંદ મૂળ

મૂળ - ખોરાક સંગ્રહ માટે અસ્થાનિક તંતુમૂળનાં રૂપાંતર

(2) યાંત્રિક આધાર (Mechanical support) :

(A) અવલંબન મૂળ (Stilt roots): મકાઈ જેવી વનસ્પતિમાં તેમજ કેવડામાં પ્રકાંડના જમીનની નજીકના ભાગની ગાંઠોમાંથી, અસ્થાનિક મૂળ ઉદ્ભવી જમીન તરફ ત્રાંસાં આગળ વધી, જમીનમાં પ્રવેશી, યાંત્રિક આધાર પૂરો પાડે છે. ભૂગર્ભીય મૂળતંત્ર છીછરું હોવાથી આવા વધારાના આધારની જરૂર રહે છે. આ મૂળ અવલંબન મૂળ કહેવાય છે.

મકાઈ કેવડો અવલંબન મૂળ

(B) સ્તંભમૂળ (Prop roots) : વડનું મૂળતંત્ર ખૂબ જ સજ્જડ પકડ ધરાવે છે. તેની સમક્ષિતિજ વિકાસ પામતી મજબૂત, લાંબી શાખાઓ પોતાના જ ભાર હેઠળ તૂટી ન પડે તે હેતુથી સ્તંભમૂળ સર્જાયેલાં છે. શાખાઓ પરથી સમૂહમાં ઉત્પન્ન થતાં, દોરડા જેવાં સ્તંભમૂળ ભૂમિમાં પ્રવેશી ટેકાઓ બનાવે છે. જે લાંબા સમયે જાડાં અને થાંભલા જેવાં બને છે.

વડ - સ્તંભમળ

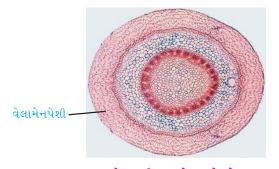
- (3) આરોહણ (Climbing) : નબળા પ્રકાંડ ધરાવતી અને આરોહી લતાઓ તરીકે વિકસતી વનસ્પતિમાં આરોહણ માટે રૂપાંતરિત રચનાઓ હોય છે. અડુની વેલમાં પ્રકાંડની ગાંઠ તેમજ આંતરગાંઠમાંથી લાંબા, શાખિત કે અશાખિત, બદામી રંગનાં મૂળ ઉત્પન્ન થાય છે. તેમને આરોહીમૂળ કે શ્લેષીમૂળ કહે છે. તે ચીકણા સ્રાવ દ્વારા આધાર સાથે ચોંટી જાય છે અને આરોહણમાં મદદ કરે છે.
- (4) પ્રકાશસંશ્લેષણ (Photosynthesis): ગળો ઝડપથી વૃદ્ધિ પામતી વળવેલ વનસ્પતિ છે. પ્રકાંડ પર આવેલાં નાનાં અને ઓછાં પર્ણ છોડની ખોરાકની જરૂરિયાતને પહોંચી વળતાં નથી. તેના પ્રકાંડ પરથી હવામાં લટકતાં, લાંબી લીલી દોરીઓ જેવાં પાતળાં, લીસાં મૂળ (ઉદ્ભવે છે. તે હરિતદ્રવ્ય ધરાવે છે. તેને પરિપાચી મૂળ (assimilatory root) કહે છે. તેઓ પ્રકાશસંશ્લેષણ કરે છે.

અડુની વેલ : મૂળનું આરોહણ માટે રૂપાંતર

ગળોનું મૂળ : પ્રકાશસંશ્લેષણ માટે રૂપાંતર

(5) શ્વસન (Breathing) : દરિયા પાસેના ખાડીપ્રદેશમાં જળતરબોળ અને ખારા પાણીવાળા પ્રદેશમાં વસતી વિશિષ્ટ વનસ્પતિને 'મેન્પ્રોવ્ઝ' (mangroves) કહે છે. તિવાર અને રાઇઝોફોરા નામની આવી

મેન્ગ્રોવ


શ્વસનમૃળ

વનસ્પતિમાં ભૂગર્ભીય મૂળમાંથી ૠાણભૂવર્તી, ધન પ્રકાશાનુવર્તી એવાં હવાઈમૂળ ઉત્પન્ન થાય છે. તે પોચાં, લાંબા, અસંખ્ય હવાદાર છિદ્રોવાળાં (lenticels) તથા શાખિત કે અશાખિત હોય છે. તેનાં છિદ્રોમાંથી મૂળતંત્રને પૂરતો ઑક્સિજન મળી રહે છે. વાયુવિનિમય સરળ થાય છે. આ મૂળ શ્વસનમૂળ (pneumatophore) કહેવાય છે.

(6) ભેજશોષણ (Absorption of moisture) : કેટલાંક ઑર્કિડ જંગલોમાં વૃક્ષોની ડાળીઓ પર પરરોહી (epiphyte) તરીકે વસે છે. તે યજમાન પર ફક્ત વસવાટ કરે છે. પાણી, ક્ષાર કે તૈયાર ખોરાક મેળવતા નથી. તેનો ભૂમિ સંપર્ક હોતો નથી. તે કેટલાંક એવાં મૂળ વિકસાવે છે જે હવામાં લટકતાં રહે છે. આ મૂળ છિદ્રલ, જાડા, લાંબા અને લીલાશપડતાં હોય છે. તેની બાહ્યસપાટી પર વિશિષ્ટ પ્રકારની વેલામેનપેશી આવેલી હોય છે. અનેક સ્તરોમાં ગોઠવાયેલા આ કોષો બહુકોણીય અને જાડી દીવાલવાળા હોય છે. તે વાતાવરણમાંથી ભેજનું શોષણ કરે છે. તેને ભેજગ્રાહી અથવા પરરોહીમૂળ કહે છે.

ઑર્કિડ

ભેજગ્રાહી મૂળનો આડો છેદ

(7) પરોપજીવન (Parasitism) : કેટલીક વનસ્પતિ અન્ય વનસ્પતિ પર પોષણ માટે આધાર રાખે છે. તેને પરોપજીવી વનસ્પતિ કહે છે.

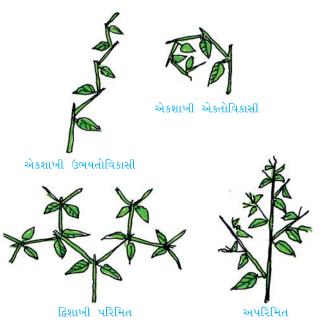
અમરવેલ

પરોપજીવન

વાંદો

Downloaded from https://www.studiestoday.com

સંપૂર્ણ પરોપજીવી અમરવેલ હરિતદ્રવ્યરહિત, પર્ણવિહીન, પીળાં સૂત્રો જેવા પ્રકાંડવાળી પૂર્ણ પરોપજીવી વનસ્પતિ છે. તે યજમાન વનસ્પતિ સાથેના ગાઢ સંપર્કવાળાં સ્થાનો પર 'ચૂષકમૂળ' (sucker or haustorium) વિકસાવે છે. આ ચૂષકો દ્વારા અમરવેલ પોતાના વાહક ઘટકો અને યજમાનના વાહક ઘટકો વચ્ચે સીધો સંપર્ક સ્થાપે છે. ચૂષકો દ્વારા તે યજમાનમાંથી પાણી, ક્ષાર તથા તૈયાર ખોરાક ચૂસે છે. આમ, 'ચૂષકો' પરોપજીવી મૂળ તરીકે વર્તે છે.


વાંદો આંબા જેવાં વૃક્ષો પર વસે છે. તે લીલાં પર્જા ધરાવે છે. તે યજમાનમાંથી ચૂષકો દ્વારા ફક્ત પાણી અને દ્રાવ્ય ક્ષાર શોષે છે. જેનો ઉપયોગ કરી તે પોતાનો ખોરાક જાતે બનાવી લે છે. આમ, વાંદો અપૂર્ણ પરોપજીવી છે.

મુળગંડિકા : સહજીવન

- (8) સહજીવન (Symbiosis) : વાલ, મગફળી અને અન્ય કઠોળવર્ગની વનસ્પતિનાં મૂળતંત્રો પર નાની મોટી ગાંઠો જેવી રચનાઓ જોવા મળે છે. તેને 'મૂળગંડિકા' (root nodules) કહે છે. મૂળગંડિકામાં N_2 સ્થાપક રાઇઝોબિયમ બેક્ટેરિયા વસે છે. આ બેક્ટેરિયા હવામાંના મુક્ત નાઇટ્રોજનનું શોષી શકાય તેવા ક્ષારોમાં રૂપાંતર કરે છે. આ ક્ષાર વનસ્પતિને પ્રાપ્ય બને છે. બદલામાં બેક્ટેરિયાને વસવાટ અને પોષણ મળે છે. આવા પરસ્પર લાભદાયી જીવનપ્રકારને સહજીવન કહે છે. આવા મૂળને સહજીવી મૂળ કહે છે.
- (9) વાનસ્પતિક પ્રજનન (Vegetative propagation) : શક્કરિયાં જેવાં સાકંદમૂળ પર અસ્થાનિક કલિકાઓ આવેલી હોવાથી તેના દ્વારા પ્રજનન થઈ શકે છે.
- (II) પ્રકાંડ (Stem) : વનસ્પતિ અક્ષનો હવાઈ ભાગ છે. તે આદિસ્કંધ (ભ્રૂણાગ્ર)માંથી વિકસે છે. તે ૠણભૂવર્તી, ધન પ્રકાશાભિવર્તી અને ૠણજલાનુવર્તી છે. તેના પર ગાંઠ અને આંતરગાંઠ જેવા વિસ્તારો આવેલા છે. ગાંઠ પરથી પર્ણ ઉદ્ભવે છે. બે ક્રમિક ગાંઠ વચ્ચેના વિસ્તારને આંતરગાંઠ કહે છે. પ્રકાંડની ટોચના ભાગે

અગ્રકલિકા હોય છે. તે મુખ્ય ધરીની લંબાઈમાં વૃદ્ધિ પ્રેરે છે. પ્રકાંડ અને પર્ણ વચ્ચે ગાંઠના ભાગે રચાતા કોણને કક્ષ કહે છે. કક્ષમાં કક્ષકલિકા હોય છે. કક્ષકલિકા નવી શાખાઓ સર્જે છે. શરૂઆતમાં પ્રકાંડ ઘણું ખરું લીલો હોય છે. પછી તે કાષ્ઠ્રમય બને છે.

પરિમિત/અપરિમિત શાખાવિન્યાસ

શાખાવિન્યાસ (Branching)

પ્રકાંડ પરથી શાખાઓના ઉદ્ભવ અને શાખાઓની ગોઠવણીને શાખાવિન્યાસ કહે છે. શાખાવિન્યાસના બે મુખ્ય પ્રકાર છે:

- (1) યુગ્મશાખી (Dichotomous) : અગ્રકલિકા સતત વિભાજિત થઈ બે શાખા સર્જે છે. તે પણ તે જ પ્રકારે શાખાઓ સર્જ્યા કરે છે. દા.ત., રાવણતાડ
- (2) પાર્શ્વીય શાખી (Laterally) : શાખાઓ પાર્શ્વ બાજુએ સર્જાય છે. તેના બે પ્રકાર છે : અપરિમિત અને પરિમિત.

અપરિમિત શાખાવિન્યાસમાં મુખ્ય ધરી પરનાં પર્શોની કક્ષકલિકાઓ, અગ્રાભિવર્ધીક્રમમાં સતત નવી શાખાઓ ઉત્પન્ન કરે છે. આ શાખાઓ પણ વિકાસ પામી નવી શાખાઓ રચે છે. પરિણામે વનસ્પતિ

रावणताउ

આસોપાલવ

હાડસાંકળ (Vitis)

શંકુઆકાર કે પિરામિડ જેવો આકાર ધરાવે છે. દા.ત., આસોપાલવ, સરુ વગેરે. શાખાઓ એક જ મુખ્ય ધરી પરથી સર્જાય તેથી આવી ધરી એકાક્ષજન્ય (monopodial) કહેવાય છે. પરિમિત શાખાવિન્યાસમાં મુખ્ય ધરીની અગ્રકલિકા અમુક સમય બાદ નિષ્ક્રિય બને છે. તેની નીચે આવેલાં પર્જાની કક્ષકલિકામાંથી શાખા વિકસે છે. આવી રીતે જો એક જ નવી શાખા વિકસે તો તેને એકશાખી, પરિમિત શાખાવિન્યાસ કહે છે. આવી શાખા જો ફક્ત એક જ બાજુ, જમણી અથવા ડાબી બાજુએ સર્જાયા કરે તો તેને એકતોવિકાસી (દા.ત., અશોક) અને એકાંતરે બંને બાજુ સર્જાયા કરે તો તેને ઉભયતોવિકાસી શાખાવિન્યાસ કહે છે. (દા.ત., હાડસાંકળ). જો બે નવી શાખાઓ વિકસે તો તેને હિશાખી શાખાવિન્યાસ કહે છે દા.ત., ગુલબાસ, કરમદી. જો બે કરતાં વધુ નવી શાખાઓ વિકસે તો તેને બહુશાખી શાખાવિન્યાસ કહે છે દા.ત., લાલકરેણ, ક્રોટોન. અનેક પાર્શ્વય શાખાઓ મળીને જે પ્રકાંડની ધરી રચાય તેને અનેકાક્ષજન્ય (sympodial) કહે છે દા.ત., હાડસાંકળ.

પ્રકાંડ હવાઈ તથા ભૂમિગત એમ બે પ્રકારના છે. હવાઈ પ્રકાંડ મોટા ભાગની વનસ્પતિમાં ટટ્ટાર, મજબૂત અને કાષ્ઠ્રમય હોય છે. અન્ય કેટલાક કિસ્સાઓમાં તે પાતળા, નાજુક, દોરડી જેવા અને નબળા હોય છે. આવી વનસ્પતિ કાં તો ભૂમિ પર પથરાઈને વસે છે (ભૂપ્રસારી), કોઈ આધાર આસપાસ વીંટાઈને વસે છે (વળવેલ) અથવા વિશિષ્ટ રચનાઓ કેળવી આરોહણ કરે છે (આરોહી).

ભૂમિગત પ્રકાંડ જમીનની અંદર હોય છે. તે હરિતદ્રવ્યવિહીન, સામાન્ય રીતે નાના, શલ્કીપર્શ ધરાવતા અને ક્યારેક ખોરાકસંગ્રહી હોય છે. તે અનુકૂળ ૠતુમાં હવાઈ પર્શો ઉત્પન્ન કરે છે. તે વાનસ્પતિક પ્રજનન પણ કરે છે. સંચિત ખોરાક સુષુપ્ત જીવન દરમિયાન પોષણ પૂરું પાડે છે.

પ્રકાંડનાં સામાન્ય કાર્યો

- (1) વનસ્પતિનાં પર્શોને યોગ્ય પ્રમાણમાં પ્રકાશ મળી રહે તે મુજબ ગોઠવવાં.
- (2) વનસ્પતિનાં પ્રજનનાંગો, પુષ્પ, ફળ અને બીજને યોગ્ય રીતે ગોઠવવાં જેથી પરાગનયન, ફલન અને બીજવિકિરણ સારી રીતે થઈ શકે.
- (3) મૂળ દ્વારા શોષાયેલા પાણી અને ક્ષારનું પર્ણો સુધી વહન કરવું અને પર્ણ દ્વારા તૈયાર કરાયેલા ખોરાકનું વનસ્પતિનાં અન્ય અંગો તરફ વહન કરવું.

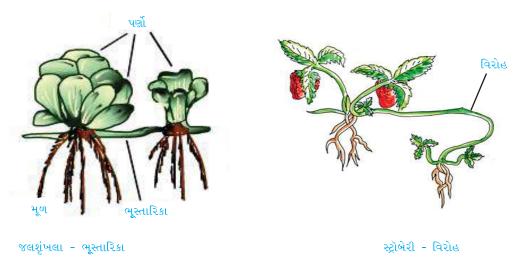
પ્રકાંડનાં વિશિષ્ટ કાર્યો

સામાન્ય કાર્યો ઉપરાંત વિશિષ્ટ સંજોગોમાં પ્રકાંડ વિશિષ્ટ કાર્યો કરે છે. તે માટે તેઓ વિશિષ્ટ રીતે રૂપાંતરિત હોય છે.

(1) ખોરાકસંગ્રહ : આ રૂપાંતરો ભૂમિગત પ્રકાંડનાં છે. આદુમાં ભૂમિગત પ્રકાંડ જમીનની અંદર, સપાટીને સમાંતર વૃદ્ધિ પામે છે. તે ખોરાકનો સંગ્રહ કરી માંસલ બને છે. તેની ઉપર ગાંઠો, આંતરગાંઠો, શલ્કીપર્ણો અને અસ્થાનિક મૂળ જોવા મળે છે. આવા રૂપાંતરને રાઈઝોમ અથવા ગાંઠામૂળી કહે છે. તેનું અન્ય દેષ્ટાંત હળદર છે. બટાટામાં ભૂમિગત પ્રકાંડ પર આવેલાં શલ્કીપર્ણોની કક્ષમાંથી ઉદ્ભવતી શાખાઓના ટોચના

8

ભાગ ખોરાકનો સંગ્રહ કરી ગોળ કે અંડાકાર રચના કરે છે. તેને ગ્રંથિલ (tuber) કહે છે. બટાટાની સપાટી પર ખાડાઓ હોય છે, તેને 'આંખ' કહે છે. તેમાં કલિકા હોય છે. આંખ વડે વાનસ્પતિક પ્રજનન થાય છે. સૂરણમાં વજકંદ (corm) જોવા મળે છે. તે ગાંઠામૂળીનું સંઘનિત સ્વરૂપ છે. તે એક જ આંતરગાંઠની બનેલી ખોરાકસંગ્રહી રચના છે.



ખોરાકસંગ્રહી પ્રકાંડ

(2) વાનસ્પતિક પ્રજનન : આ રૂપાંતરો ઉપહવાઈ પ્રકાંડનાં છે. પ્રકાંડનો થોડો ભાગ જમીનની નીચે અને થોડો ભાગ જમીનની ઉપર હોય છે. ઘાસ, અબૂટી અને બ્રાહ્મીમાં કક્ષકલિકામાંથી પાતળી, લાંબી, આંતરગાંઠો ધરાવતી અને જમીનને સમાંતર વિકસતી શાખાઓ ઉત્પન્ન થાય છે. તેને ભૂસ્તારી કહે છે. તેની જમીનના સંપર્કમાં રહેલી ગાંઠ પરથી નવા છોડ ઉત્પન્ન થાય છે. જલશૃંખલા અને જળકુંભી (આઇકોર્નિયા) જેવી જલજ વનસ્પતિમાં કક્ષકલિકામાંથી ટૂંકી, જાડી, સમિક્ષિતિજ શાખાઓ વિકસે છે, તેની ગાંઠ પરથી પણ નવા છોડ ઉત્પન્ન થાય છે. આવી શાખા ભૂસ્તારિકા કહેવાય છે. ફૂદીનામાં વાનસ્પતિક પ્રજનન અધોભૂસ્તારી પ્રકારે થાય છે. હંસરાજ અને સ્ટ્રૉબેરીમાં તલપ્રદેશમાંથી વિકસતી શાખાઓ ત્રાંસી કમાનાકારે વિકસી જમીનના સંપર્કમાં આવી નવા છોડનું સર્જન કરે છે. આ શાખાઓને વિરોહ કહે છે.

વાનસ્પતિક પ્રજનન

(3) રક્ષણ : કેટલીક વનસ્પતિમાં પ્રકાંડની અગ્રકલિકા કે કક્ષકલિકા તીક્ષ્ણ, સખત રચનામાં વિકસે છે. તેને પ્રકાંડકંટક કહે છે. તે રક્ષણ કરવાનું કામ કરે છે. કરમદીમાં અગ્રકલિકા દ્વિશાખી, પર્ણવિહીન પ્રકાંડકંટકમાં રૂપાંતરિત થાય છે. મેંદી અને દાડમમાં કક્ષકલિકા પ્રકાંડકંટકમાં રૂપાંતર પામે છે. તેના પર ક્યારેક પર્ણ અને

વનસ્પતિ બાહ્યાકારવિદ્યા-1

9

પુષ્પ પણ ઉત્પન્ન થાય છે. ગુલાબ જેવી વનસ્પતિના પ્રકાંડની સપાટી પર તીક્ષ્ણ રચનાઓ સર્જાય છે. તેને છાલશૂળ કહે છે. તે પ્રકાંડનું રૂપાંતર નથી; પરંતુ સપાટી પરના બહિરુદ્ભેદ છે.

મેંદી - કંટક પ્રકાંડ

ગુલાબ - છાલશૂળ

રક્ષણ માટેનાં રૂપાંતર

(4) આરોહણ : કૃષ્ણકમળ, કોળું, કારેલાં વગેરેમાં કક્ષકલિકા પાતળાં લાંબાં સૂત્રો જેવી રચનાઓમાં રૂપાંતરિત વિકાસ પામે છે. તેમને પ્રકાંડસૂત્ર કહે છે. તે આધારની આસપાસ વીંટળાઈને વનસ્પતિને આરોહણમાં સહાયક બને છે.

કૃષ્ણકમળ - આરોહણ માટે રૂપાંતરણ

(5) પ્રકાશસંશ્લેષણ : કલક, ફાફડોથોર વગેરે વનસ્પતિ શુષ્કપ્રદેશમાં થતી હોય છે. તે બાષ્પોત્સર્જનના નિયંત્રણ માટે પર્ણો ખેરવે છે. પ્રકાંડ હરિતકણયુક્ત લીલું અને ઘણું ખરું ચપટું બને છે. પ્રકાશસંશ્લેષણ કરતા આવા પ્રકાંડ પર્શસદેશપ્રકાંડ કહેવાય છે.

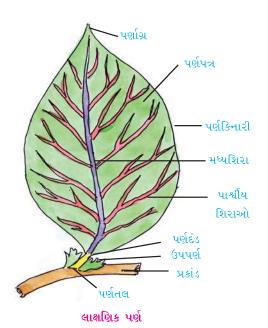
કલક - પ્રકાંડનું રૂપાતર

ફાફડાથોર - પ્રકાંડનું રૂપાંતર

પ્રકાંડ - પ્રકાશસંશ્લેષણ માટે રૂપાંતર

१० श्रुविद्धान

(6) ખોરાકસંગ્રહ અને પ્રજનન : કનક અને રામબાણમાં અનુક્રમે કક્ષકલિકા અને પુષ્પકલિકા સૌપ્રથમ ખોરાકસંગ્રહ કરી માંસલ બને છે. ત્યાર બાદ તે પિતૃછોડથી અલગ પડી નવી વનસ્પતિનું સર્જન કરે છે. આવી રૂપાંતરિત કલિકાને પ્રકલિકા (bulbil) કહે છે.



કનક - પ્રકલિકા

રામબાણ - પુષ્પીયપ્રકલિકા

(III) પર્શ (Leaf) : પ્રકાંડ કે તેની શાખા પરથી ગાંઠના ભાગ પરથી ઉદ્ભવતા લીલા, પહોળા, ચપટા બહિરુદ્ભેદને પર્શ કહે છે. તેના કક્ષમાં કક્ષકલિકા હોય છે. તેની વૃદ્ધિ પરિમિત હોય છે

લાક્ષણિક પર્શમાં ત્રણ ભાગ હોય છે: પર્શાતલ, પર્શદંડ અને પર્શાપત્ર. પર્શાતલ વડે પર્શ પ્રકાંડ પર ગાંઠના ભાગે જોડાયેલું રહે છે. ઘણી વાર પર્શાતલમાંથી પાર્શ્વ, જોડિયા બહિરુદ્ભેદ વિકસે છે. તે નાના અને પર્શ જેવા જ હોય છે. તેમને ઉપપર્શ (stipules) કહે છે. મકાઈ જેવી વનસ્પતિમાં પર્શાતલ પહોળું બની આંતરગાંઠના ભાગને આવરી લે છે તેને આવરક પર્શાતલ (sheathing leafbase) કહે છે. પર્શાતલ અને પર્શાપત્રને સાંકળતા દાંડી જેવા ભાગને પર્શદંડ કહે છે. તે પર્શાપત્રને આધાર આપે છે તેમજ તેને પ્રકાશપ્રાપ્તિ માટે યોગ્ય રીતે ગોઠવે છે. પર્શાદંડયુક્ત પર્શાને સદંડી અને પર્શાદંડવિહીન પર્શાને અદંડી કહે છે. સામાન્ય રીતે પર્શાદંડ ગોળ અને નળાકાર હોય છે. પર્શાપત્ર પર્શાનો મુખ્ય ભાગ છે. તે પહોળો, ચપટો, લીલો ભાગ છે. તેના પટમાં શિરાઓ પથરાયેલી હોય છે. પર્શાપત્રનાં કદ, આકાર, કિનારી, છેદન ઇત્યાદિ બાબતમાં ઘણી વિવિધતા હોય છે. પર્શાપત્રમાં શિરાઓ અને શિરિકાઓની ગોઠવણીને શિરાવિન્યાસ કહે છે.

જાલાકાર શિરાવિન્યાસ

સમાંતર શિરાવિન્યાસ

શિરાવિન્યાસના મુખ્ય બે પ્રકાર છે : જાલાકાર શિરાવિન્યાસ અને સમાંતર શિરાવિન્યાસ. દ્વિદળી વનસ્પતિનાં પર્શ જાલાકાર શિરાવિન્યાસ દર્શાવે છે. એકદળી વનસ્પતિનાં પર્શ સમાંતર શિરાવિન્યાસ દર્શાવે છે. બંને પ્રકારના

શિરાવિન્યાસના પેટા પ્રકારોમાં એકશિરી તથા બહુશિરી પ્રકારો હોય છે. બહુશિરી શિરાવિન્યાસો અપસારી અથવા અભિસારી પ્રકારના હોય છે. શિરાઓમાં વાહકપેશીઓ આવેલી હોય છે. શિરાવિન્યાસમાંની શિરાઓ પાણી, દ્રાવ્ય ક્ષાર તથા તૈયાર કરેલા ખોરાકના વહનનું કાર્ય કરે છે. તે પર્ણપત્રનું માળખું પણ રચે છે.

સાદાં પર્ણ અને સંયુક્તપર્ણ :

જે પર્ણમાં એક જ પર્ણપત્ર હોય તેને સાદું પર્શ કહે છે. તેના કક્ષમાં કક્ષકલિકા હોય છે. કેટલીક વાર પર્શપત્ર કિનારીએથી છેદિત હોય છે. આવું છેદન પર્શપત્રને ઓછાવત્તા પ્રમાણમાં ખંડિત કરે છે; પરંતુ છેદન પૂર્શ નથી હોતું. જો આ છેદન છેક મધ્યશિરા સુધી કે પર્શદંડની ટોચ સુધી પહોંચી જાય, તો પર્શપત્ર સ્વતંત્ર પર્શિકાઓમાં વહેંચાઈ જાય છે. આવાં પર્શ સંયુક્તપર્શ કહેવાય છે. પર્શિકાઓના કક્ષમાં કક્ષકલિકા હોતી નથી.

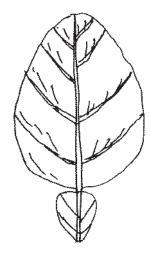
સંયુક્તપર્ણ પીંછાકાર અથવા પંજાકાર હોય છે. પીંછાકાર સંયુક્ત પર્ણમાં મધ્યશિરાની બંને પાર્શ્વબાજુઓ પર પર્શિકાઓ ગોઠવાયેલી હોય છે. પંજાકાર સંયુક્ત પર્શમાં પર્શિકાઓ પર્શદંડની ટોચ પર ગોઠવાય છે. પર્શિકાની સંખ્યા એક હોય તો પર્શ એકપર્શી પંજાકાર સંયુક્ત પર્શ કહેવાય છે (દા.ત., લીંબુ). બે પર્શિકા હોય તો દ્વિપર્શી પંજાકાર સંયુક્ત પર્શ (દા.ત., ઇંગારિયો) અને બેથી વધુ પર્શિકા હોય તો બહુપર્શી પંજાકાર સંયુક્ત પર્શ (દા.ત., બીલી, શીમળો) કહેવાય છે. પીંછાકાર સંયુક્ત પર્શમાં જો પર્શિકાઓ સીધી મુખ્ય પત્રાક્ષ પર ગોઠવાઈ હોય તો તેને એકપીંછાકાર સંયુક્ત પર્શ કહે છે (દા.ત., આવળ). જો પત્રાક્ષ શાખિત થાય અને દ્વિતીય ક્રમની શાખાઓ પર પર્શિકાઓ ગોઠવાય તો તેવા પર્શન દ્વિપીંછાકાર સંયુક્ત પર્શ કહેવાય (દા.ત., ગલતોરો, બાવળ) અને જો તૃતીય કે વધુ ક્રમની શાખાઓ પર પર્શિકાઓ ગોઠવાય તો બહુપીંછાકાર સંયુક્ત પર્શ કહેવાય (દા.ત., સરગવો).

પર્શના અન્ય પ્રકારો પણ છે. બીજમાં સમાવિષ્ટ પર્શને બીજપત્ર કહે છે. ખૂબ નાના, અલ્પિત, ફોતરા જેવા પર્શને શલ્કીપર્શ, પુષ્પ જેના કક્ષમાંથી સર્જાય તે પર્શને નિપત્ર, પુંકેસર અને સ્ત્રીકેસરને બીજાણુપર્શ કહે છે.

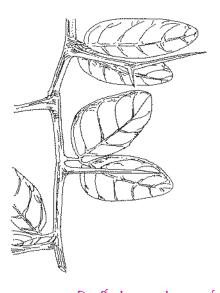
પીંછાકાર સંયુક્ત પર્ણ

પંજાકાર સંયુક્ત પર્ણ

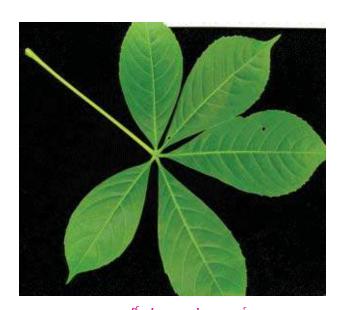
એકપીંછાકાર સંયુક્ત પર્ણ


દ્વિપીંછાકાર સંયુક્ત પર્ણ

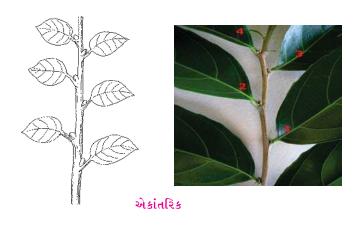
अवविज्ञान

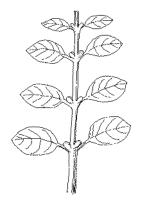


12


બહુપીંછાકાર સંયુક્ત પર્ણ

એકપર્શી પંજાકાર સંયુક્ત પર્શ

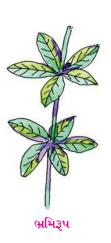

દ્વિપર્શી પંજાકાર સંયુક્ત પર્શ



બહુપર્શી પંજાકાર સંયુક્ત પર્શ

પર્ણવિન્યાસ (Phyllotaxy)


પ્રકાંડ કે તેની શાખાઓ પર પર્શોની ગોઠવણીને પર્શવિન્યાસ કહે છે. જો દરેક ગાંઠ પરથી એક જ પર્શ ઉદ્ભવે તો પર્શવિન્યાસ એકાંતરિક (alternate) કહેવાય દા.ત., રાઈ, સૂર્યમુખી, જાસૂદ. કેટલીક વનસ્પિતમાં દરેક ગાંઠ પરથી સામસામે બે પર્શ ઉદ્ભવે છે. આવો પર્શવિન્યાસ સંમુખ (opposite) કહેવાય છે. બે કમિક ગાંઠ પરનાં સંમુખ પર્શ એકમેકને કાટખૂશે ગોઠવાય તો પર્શવિન્યાસ સંમુખ ચતુષ્ક (opposite decussate) કહેવાય છે. દા.ત., આકડો. જો કમિક ગાંઠ પરનાં સંમુખ પર્શ એક પર એક આચ્છાદી ગોઠવાય તો પર્શવિન્યાસ સંમુખ આચ્છાદી (opposite superimposed) કહેવાય દા.ત., મધુમાલતી, જામફળ. બે કરતાં વધુ પર્શો ગાંઠ પર ગોઠવાય તો ભ્રમિરૂપ (whorled) પર્શવિન્યાસ રચાય છે દા.ત. લાલ કરેણ, સપ્તપર્શી.

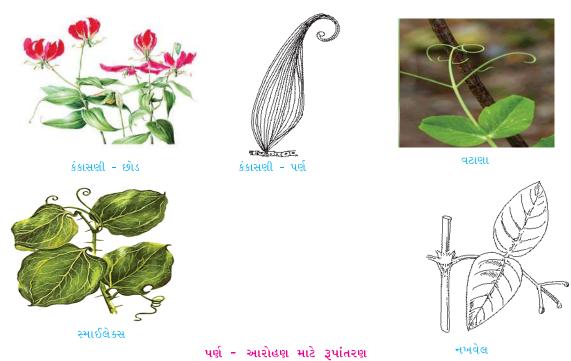


સંમુખ આચ્છાદી

પર્શનાં સામાન્ય કાર્યો

- (1) પ્રકાશસંશ્લેષણ કરી ખોરાક તૈયાર કરવો.
- (2) શ્વસન માટે વાયુઓની આપ-લે કરવી.
- (3) બાષ્પોત્સર્જન દ્વારા પાણીને વરાળ સ્વરૂપે ગુમાવવાની ક્રિયા.

પર્શનાં વિશિષ્ટ કાર્યો


સામાન્ય કાર્ય ઉપરાંત કેટલીક વનસ્પતિમાં પર્જા વિશિષ્ટ કાર્યો પજ્ઞ કરે છે. આ માટેની અનુકૂળ રચનાઓ પર્જા ધરાવે છે.

- (1) ખોરાકસંગ્રહ : ડુંગળીમાં પ્રકાંડ ભૂગર્ભીય, સંકુચિત અને બિંબ આકારનો છે. પર્શો સમકેન્દ્રિતપણે ગોઠવાય છે. પર્શપત્રનો મુખ્ય ભાગ હવાઈ અને લીલો છે. તે ખોરાક બનાવે છે. ખોરાકનો સંગ્રહ પર્શતલમાં થાય છે. અંદર તરફનાં પર્શતલો માંસલ બને છે. બહાર તરફનાં પર્શતલો શુષ્ક અને ફોતરાં જેવાં રહે છે. આવી ખોરાકસંગ્રહી રચના આવરિત કંદ (tunicated bulb) કહેવાય છે.
- (2) આધાર અને આરોહણ : કેટલીક નબળા પ્રકાંડ ધરાવતી વનસ્પતિ આધાર અને આરોહણ માટે પર્ણ કે તેના કોઈ ભાગના રૂપાંતરનો ઉપયોગ કરે છે.

ડુંગળી-આવરિત કંદ

કંકાસણીમાં પર્ણાગ્ર સૂત્રમય બને છે. સ્માઈલેક્સમાં ઉપપર્ણો સૂત્રમય બને છે. વટાણામાં સંયુક્ત પર્ણની ટોચની કેટલીક પર્ણિકાઓ સૂત્રમય બને છે. નખવેલમાં ટોચની ત્રણ પર્ણિકાઓ નહોર કે અંકુશ જેવી રચનામાં ફેરવાય છે. સૂત્રમય રચનાઓ જે-તે આધારને વીંટાઈ વનસ્પતિને આધાર આપી આરોહણ શક્ય બનાવે છે.

(3) રક્ષણ : પર્શ કે તેના કોઈ ભાગના તીક્ષ્ણ અણીદાર રૂપાંતર વડે ચરતાં પ્રાણીઓ સામે રક્ષણ પ્રાપ્ત થાય છે. બાવળ અને બોરડીમાં ઉપપર્શો કંટમય બને છે. રામબાણમાં પર્શાપ્ર કંટમય છે. ફાફડાથોરમાં સમગ્ર પર્શકંટમાં ફેરવાય છે.

પર્શ- રક્ષણ માટે રૂપાંતરણ

(4) પ્રકાશસંશ્લેષણ : આમ તો પ્રકાશસંશ્લેષણ પર્શનું જ કાર્ય છે; પરંતુ તે મુખ્યત્વે પર્શપત્ર દ્વારા થાય છે. વટાણામાં ઉપપર્શો પર્શપત્ર જેવાં થઈ ખોરાક બનાવે છે. તેને પર્શસદ્દેશ ઉપપર્શ કહે છે. ઑસ્ટ્રેલિયન બાવળમાં પર્શદંડ લીલો, પહોળો, ચપટો બની ખોરાક બનાવે છે. તેને દાંડીપત્ર (phyllode) કહે છે.

દાંડીપત્ર

વટાણા - પર્ણસદશ ઉપપર્ણ

(5) કીટભક્ષણ : કળશપર્ણ (Nepenthes) કીટાહારી વનસ્પતિમાં પર્ણ કળશમાં રૂપાંતર પામે છે. અર્કઝવર (Utricularia)માં પર્ણ ફુગ્ગા (bladder)માં ફેરવાય છે. આ રચનાઓ કીટભક્ષણ માટે ઉપયોગી છે.

કળશપર્ણ

સારાંશ

પ્રકૃતિમાં સપુષ્પી વનસ્પતિઓ ખૂબ જ પ્રભાવી છે. તે બાહ્યાકારવિદ્યામાં ખૂબ જ વિવિધતા દર્શાવે છે અને ખૂબ જ વિકસિત મૂળ તથા પ્રરોહતંત્ર ધરાવે છે.

મૂળતંત્ર ધનભૂવર્તી, ૠુશ પ્રકાશાભિવર્તી અને ધન જલાનુવર્તી છે. તે ભ્રૂશમૂળમાંથી વિકાસ પામે છે. મૂળતંત્ર સોટીમય અને તંતુમય હોય છે. સામાન્યપણે દ્વિદળી વનસ્પતિઓ સોટીમય મૂળતંત્ર અને એકદળી વનસ્પતિઓ તંતુમય મૂળતંત્ર ધરાવે છે. મૂળ એ મૂળટોપ, વર્ધનશીલપ્રદેશ, વિસ્તરણપ્રદેશ તથા પરિપક્વન પ્રદેશ ધરાવે છે. મૂળતંત્રનાં મુખ્ય કાર્યો તરીકે વનસ્પતિને જમીન સાથે પકડી રાખવાનું અને પાણી તેમજ ખનીજનું શોષણ કરવાનું છે.

મૂળ વિવિધ કાર્યો જેવાં કે ખોરાકનો સંગ્રહ, યાંત્રિક આધાર, આરોહણ, પ્રકાશસંશ્લેષણ, શ્વસન, ભેજશોષણ, પરોપજીવિતા, સહજીવન અને વાનસ્પતિક પ્રજનન માટે રૂપાંતરિત થાય છે.

પ્રરોહતંત્ર ભ્રૂણાગ્રમાંથી વિકાસ પામે છે. તે ૠણભૂવર્તી, ધન પ્રકાશાભિવર્તી અને ૠણ જલાનુવર્તી છે. પ્રરોહતંત્ર પ્રકાંડ, પર્ણ, પુષ્પ અને ફળમાં વિભેદિત થાય છે. પ્રકાંડ ગાંઠ, આંતરગાંઠ, પર્ણ, રોમ, કક્ષીય અને અગ્રીય કલિકાઓ ધરાવે છે. વિશિષ્ટ પરિસ્થિતિમાં પ્રકાંડ વિવિધ કાર્યો માટે જેવાં કે ખોરાકનો સંગ્રહ, વાનસ્પતિક પ્રજનન, રક્ષણ, આરોહણ અને પ્રકાશસંશ્લેષણ માટે રૂપાંતરિત થાય છે.

પર્શ એ ચપટું, લીલા રંગનું, પહોળું, પાર્શ્વીય અંગ છે. જે પ્રકાંડના અથવા શાખાના ગાંઠ પ્રદેશમાંથી

વિકાસ પામે છે. લાક્ષણિક પર્શ ત્રણ ભાગો ધરાવે છે : પર્શતલ, પર્શદંડ અને પર્શપત્ર. શિરા અને શિરીકાઓની પર્શફલકમાં ગોઠવણીને શિરાવિન્યાસ કહે છે. શિરાવિન્યાસ મુખ્યત્વે બે પ્રકારના હોય છે. જાલાકાર અને સમાંતર. પર્શ પણ બે પ્રકારમાં વિભાજિત થાય છે. સાદું પર્શ અને સંયુક્ત પર્શ કે જે બે પ્રકારનું હોઈ શકે છે : પીંછાકાર અને પંજાકાર. પર્શોની પ્રકાંડ પર ગોઠવણીને પર્શવિન્યાસ કહે છે. તે સામાન્ય રીતે ત્રણ પ્રકારના હોય છે : એકાંતરિક, સંમુખ અને ભ્રમિરૂપ. પર્શ સામાન્યપણે વિવિધ કાર્યો જેવાં કે ખોરાકસંગ્રહ, આધાર, આરોહણ અને રક્ષણ માટે રૂપાંતરિત થાય છે.

સ્વાદયાય

1. નીચે આપેલા પ્રશ્નોના ઉત્તરો પૈકી સાચા ઉત્તર સામે સર્કલમાં પેન્સિલથી રંગ પૂરો :						
	(1)	મૂળ કયા ગુણધર્મવાળું છે ?				
		(અ) ધન પ્રકાશાભિવર્તી	\bigcirc	(બ) ધનભૂવર્તી	\bigcirc	
		(ક) ૠણ જલાનુવર્તી	\bigcirc	(ડ) એક પણ નહિ	\bigcirc	
	(2)	મૂળગોહ નીચેની પૈકી કઈ વનસ્પતિ	માં જોવ	ા મળે છે ?		
		(અ) કેવડો	\bigcirc	(બ) જળશૃંખલા	\bigcirc	
		(ક) મકાઈ	\bigcirc	(ડ) મૂળો	\bigcirc	
	(3)	ત્રાકાકાર સોટીમૂળનું ઉદાહરણ છે.				
		(અ) મૂળો	\bigcirc	(બ) બીટ	\bigcirc	
		(ક) ગાજર	\bigcirc	(ડ) શક્કરિયું	\bigcirc	
	(4)	ગુચ્છાદાર સાકંદ મૂળ કઈ વનસ્પતિમાં જોવા મળે છે ?				
		(અ) ડહાલિયા	\bigcirc	(બ) બીટ	\bigcirc	
		(ક) શક્કરિયું	\bigcirc	(ડ) મકાઈ	\bigcirc	
	(5)	અવલંબન મૂળનું કાર્ય છે.				
		(અ) પ્રજનન	\bigcirc	(બ) આરોહણ	\bigcirc	
		(ક) આધાર	\bigcirc	(ડ) ખોરાકસંગ્રહ	\bigcirc	
	(6)	નીચેની પૈકી કઈ વનસ્પતિ અપૂર્શ પરોપજીવી છે ?				
		(અ) રાઇઝોફ્રોરા	\bigcirc	(બ) ગળો	\bigcirc	
		(ક) વાંદો	\bigcirc	(ડ) અમરવેલ	\bigcirc	
	(7)	કયા પ્રકારની શાખાઓમાં થોડા સમ	ય પછી	અગ્રકલિકા નિષ્ક્રિય બને છે ?		
		(અ) અપરિમિત	\bigcirc	(બ) પરિમિત	\bigcirc	
		(ક) એકાક્ષજન્ય	\bigcirc	(ડ) અનેકાક્ષજન્ય	\bigcirc	
	(8)	હળદરનું કાર્ય શાને સંલગ્ન છે ?				
		(અ) રક્ષણ	\bigcirc	(બ) પ્રજનન	\bigcirc	

Downloaded from https:// www.studiestoday.com

વનસ્પતિ બાહ્યાકારવિદ્યા—1

		(ક) આરોહણ	\bigcirc	(ડ) ખોરાકસંગ્રહ	\bigcirc
	(9)	નીચેની પૈકી કઈ વનસ્પતિ રાઈઝોબી	ાયમ બે	ોક્ટેરિયા ધરાવે છે ?	
		(અ) ઓર્કિડ	\bigcirc	(બ) વાલ	\bigcirc
		(ક) ગળો	$\tilde{\bigcirc}$	(ડ) અમરવેલ	\bigcirc
	(10)	નીચેની પૈકી કઈ વનસ્પતિ પ્રકાશસંશ્	ે લેષી મ	નૂળ ધરાવે છે ?	
		(અ) રાઇઝોફોરા	\bigcirc	(બ) ગળો	\bigcirc
		(ક) કેવડો	\bigcirc	(ડ) વડ	
2.	નીચેના	પ્રશ્નોના ટૂંકમાં જવાબ આપો :			
	(1)	મૂળતંત્ર અને પ્રરોહતંત્ર શામાંથી વિક	ાસ પા	મે છે ?	
	(2)	મૂળના વિવિધ પ્રદેશો જણાવો.			
	(3)	મેન્ગ્રોવ્ઝ કોને કહે છે ? ઉદાહરણ ચ	ત્રાપો.		
	(4)	કીટભક્ષી વનસ્પતિઓનાં ઉદાહરણો ર	ખાપો.		
3.	ઉદાહ	રણ સહિત વ્યાખ્યાયિત કરો :			
		ાૂળ, અસ્થાનિકમૂળ, પરરોહીમૂળ, ગાંઠ તા, ઉપપર્શ	ામૂળી,	ગ્રંથિલ, ભૂસ્તારી, ભૂસ્તારિક	ા, વિરોહ, પ્રકાંડસૂત્ર
4.	નીચે ઃ	આપેલાં વિશિષ્ટ કાર્યો માટે મૂળ, પ્ર ક	કાંડ અ	ાને પર્જાનું યોગ્ય ઉદાહરણ	આપી વર્શન કરો
	(1) Ն	પ્રોરાકસંગ્રહ (2) આરોહણ (3) પ્રકાશ	સંશ્લેષ	ક્રા	
5.	નીચેન	ા શબ્દોની સમજૂતી આપો :			
		હ, પરરોહી વનસ્પતિ, સહજીવન, શાખા મર્શવિન્યાસ, દાંડીપત્ર, પર્શકંટ, વિરોહ,		=-	ાકાંડ, ઉપપર્શ, સંયુક્ત
6.	ટૂંક નોં	ધ લખો ઃ			
	મૂળ,	સામાન્ય કાર્ય, અવલંબન મૂળ, શ્લેષીમૃ સહજીવી મૂળ, પ્રકાંડનાં સામાન્ય કાય ાણ, લાક્ષણિક પર્ણ.		C(<u> </u>
7.	નીચેન	ાની નામનિર્દેશનવાળી આકૃતિ દોરો	:		
	(1) ਮ੍	્ળના વિવિધ પ્રદેશો (2) લાક્ષણિક પ	.ર્શ (3) લાક્ષણિક આવૃત બીજધાર્ર	l વનસ્પતિ
8.	તફાવત	ા જણાવો :			
	(1)	સોટીમૂળતંત્ર અને તંતુમય મૂળતંત્ર			
	(2)	અમરવેલ અને ઑર્કિડનાં મૂળ અથવા	ા ચૂષક	મૂળ અને ભેજગ્રાહીમૂળ	
	(3)	સાદું પર્શ અને સંયુક્ત પર્શ			
	(4)	પીંદળકાર અને પંજાકાર સંયક્ત પાર્શ			

•

વનસ્પતિ બાહ્યાકારવિદ્યા-2 (પુષ્પ, ફળ, બીજ અને કુળ)

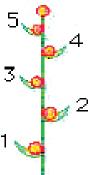
આપણે પ્રકરણ 1માં વનસ્પતિનાં વાનસ્પતિક અંગોની વિસ્તૃત ચર્ચા કરી. આ પ્રકરણમાં તેના પ્રજનન ભાગો અથવા પુષ્પ વિશે માહિતી મેળવીશું.

જયારે તરુણ ભાગો વિકસે અને વાનસ્પતિક ભાગો પુખ્ત થાય ત્યારે પુષ્પો તેઓનો દેખાવ પ્રદર્શિત કરે છે. તેમાં તેનાં બીજ ઉત્પન્ન થાય છે. તે તેની આવનારી પેઢી માટે માર્ગ મોકળો કરી આપે છે. વાનસ્પતિક વૃદ્ધિને કારણે શાખાઓ અને પર્ણોનો વિકાસ થાય છે. તે પૈકીની કેટલીક પુખ્ત શાખાઓમાં પુષ્પનો વિકાસ શરૂ થાય છે. તે પ્રજનન શાખાઓ તરીકે ઓળખાય છે.

પુષ્પવિન્યાસ (Inflorescence)

પુષ્પો ધારણ કરતી ધરી અથવા અક્ષને પુષ્પવિન્યાસ અક્ષ (peduncle) કહે છે. અક્ષ પર પુષ્પોની ગોઠવણીને પુષ્પવિન્યાસ કહે છે. તેને એન્થોટેક્સી (anthotaxy) પણ કહે છે. પુષ્પવિન્યાસ શાખાની ટોચ પર કે કક્ષમાં ઉદ્ભવે છે. મુખ્ય બે પ્રકારના પુષ્પવિન્યાસ છે : (A) અપરિમિત (racemose) પુષ્પવિન્યાસ અને (B) પરિમિત (cymose) પુષ્પવિન્યાસ.

(A) અપરિમિત પુષ્પવિન્યાસ (Racemose Inflorescence) : આ પ્રકારના પુષ્પવિન્યાસમાં અગ્રકલિકા પુષ્પમાં ફેરવાતી નથી. અક્ષ પર અગ્રાભિવર્ધી ક્રમમાં નવાં પુષ્પો સર્જાયા કરે છે. ધરીના પાયા તરફનાં પુષ્પો



કલગી - ગલતોરો

પહેલાં ખીલે છે. પછી આ ઘટના ક્રમશઃ ટોચની દિશા તરફ આગળ વધે છે.

અપરિમિત પુષ્પવિન્યાસના વિવિધ પ્રકારો છે. તે પૈકીના સામાન્ય પ્રકારો નીચે જણાવેલા છે.

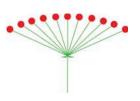
(1) કલગી (Receme) : પુષ્પવિન્યાસ અક્ષ સામાન્ય રીતે લંબાયેલો હોય અને અક્ષ ઉપર સદંડી પુષ્પો ગોઠવાયેલાં હોય તો તે પુષ્પવિન્યાસ કલગી કહેવાય છે. દા.ત., રાઈ, ગલતોરો

શુકી - અંઘેડી

(2) શૂકી (Spike) : પુષ્પવિન્યાસ અક્ષ સામાન્ય રીતે લંબાયેલો હોય છે; પરંતુ અક્ષ ઉપર અદંડી પુષ્પો ગોઠવાયેલાં હોય તો તે પુષ્પવિન્યાસ શૂકી કહેવાય છે. દા.ત., અંઘેડી.

(3) માંસલ શૂકી (Spadix) : પુષ્પવિન્યાસ અક્ષ દળદાર અને માંસલ હોય છે. તેના તલ ભાગે એકલિંગી અદંડી પુષ્પો ગોઠવાયેલાં હોય છે. નર પુષ્પો માદા પુષ્પોની ઉપર તરફ ઉત્પન્ન થાય છે. નર અને માદા પુષ્પોની વચ્ચે ક્યારેક વંધ્ય પુષ્પોની હાજરી હોય છે. પુષ્પવિન્યાસ અક્ષ વિશાળ પર્ણસદૃશ નિપત્રથી (Spathe) રક્ષાયેલો હોય છે. દા.ત., અળવી, કેળ

માંસલ શૂકી - અળવી



નિલમ્બ શૂકી - બીલાડ ગુચ્છ

(4) નિલમ્બ શૂકી (Catkin) : જો શૂકીની ધરી નબળી અને ટટ્ટાર ન રહી શકે તેવી પરંતુ લટકતી હોય, જેની ઉપર આવેલાં બધાં જ પૃષ્પો એકલિંગી હોય તો તેને નિલમ્બ શૂકી કહે છે. દા.ત., શેતૂર, બીલાડ ગુચ્છ

(5) <mark>છત્રક (Umbel)</mark> : છત્રક પ્રકારના પુષ્પવિન્યાસમાં પુષ્પવિન્યાસ અક્ષ સંક્રુચિત

બને છે. તેની ટોચ પર, છત્રીના સળિયાની જેમ સદંડી પુષ્પો ગોઠવાયેલાં હોય છે. પુષ્પો સામાન્ય રીતે નિપત્ર યુક્ત હોય છે. આ નિપત્રો પુષ્પોના તલ ભાગે એક ચક્ર કે સમૂહ સ્વરૂપે ગોઠવાયેલાં હોય છે. નિપત્રોના આ સમૂહને નિચક્ર (involucre) કહે છે. દા.ત., ડુંગળી.

છત્રક - ડુંગળી

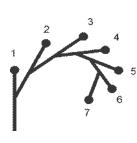
(6) સ્તબક (Capitulum) : સ્તબક પ્રકારના પુષ્પવિન્યાસમાં પુષ્પવિન્યાસ અક્ષ ચપટો અને બિંબ જેવો

સ્તબક સૂર્યમુખી

હોય છે. તેને પુષ્પાધાર (receptacle) કહે છે. નાનાં અદંડી પુષ્પો કેન્દ્રાભિસારી પ્રકારે ગોઠવાયેલાં હોય છે. કિનારી તરફનાં પુષ્પો કિરણ પુષ્પક (ray floret) અને કેન્દ્રમાં ગોઠવાયેલાં પુષ્પો બિંબ પુષ્પક (disc floret) કહેવાય છે. પુષ્પાધાર નિપત્રોથી બનેલા ચક્રથી આવરિત હોય છે. તેને નિચક્ર (involucre) કહે છે. દા.ત., સૂર્યમુખી, હજારીગોટા.

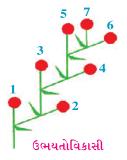
(B) પરિમિત પુષ્પવિન્યાસ (Cymose Inflorescence) : આ પ્રકારના પુષ્પવિન્યાસમાં અગ્રકલિકાના પુષ્પમાં રૂપાંતરને કારણે પુષ્પવિન્યાસ ધરીનો વિકાસ અવરોધાય છે. તેને નીચે મુજબના પ્રકારોમાં વિભાજિત કરવામાં આવે છે :

(1) પરિમિત એકાકી (Solitary cyme) : આ પ્રકારના પુષ્પવિન્યાસ અક્ષની ટોચ પર ફક્ત એક જ પુષ્પ સર્જાય છે. અહીં, પુષ્પવિન્યાસ અક્ષ અને પુષ્પદંડને જોડતો સાંધો સ્પષ્ટ દેખાય છે. દા.ત., જાસૂદ, દારૂડી.


જાસૂદ

(2) એ કશાખી (Uniparous) : મુખ્ય

અક્ષને છેડે પુષ્પ હોય છે. અને એકાકી પાર્શ્વીય શાખા દ્વારા તેની વૃદ્ધિ ચાલુ રહે છે. તેના બે પેટા પ્રકારો છે.

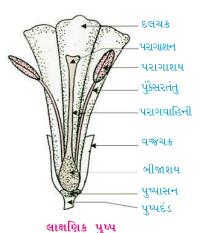

(A) એકતોવિકાસી (Helicoid): એકશાખી પરિમિત પુષ્પવિન્યાસમાં અગ્રકલિકા પુષ્પમાં પરિણમતાં પહેલાં નીચેની તરફ એક પાર્શીય શાખા સર્જાય છે. આ શાખાની

હેમેલીયા

એકતોવિકાસી

હાથીસૂંઢી

અગ્રકલિકા પણ તેમજ કરે છે. આ ક્રમ ચાલુ રહે છે. જો નવી સર્જાતી શાખાઓ સતત એક જ પાર્શ્વ બાજુ સર્જાયા કરે તો તેવા પુષ્પવિન્યાસને એકતોવિકાસી, એકશાખી પરિમિત પુષ્પવિન્યાસ કહે છે. દા.ત., હેમેલીયા


(B) ઉભયતોવિકાસી (Scorpioid) : આ પ્રકારમાં પાર્શીય શાખાઓ એકાંતરે ડાબી અને જમણી એમ બંને બાજુ સર્જાય છે. દા.ત., હાથીસૂંઢી.

(3) દિશાખી પરિમિત (Biparous Dischasial) : આ પ્રકારના પરિમિત પુષ્પવિન્યાસમાં મુખ્ય અક્ષના છેડે પુષ્પ ઉત્પન્ન થયા બાદ નીચેથી બે દોહિત્ર શાખાઓ ઉત્પન્ન થાય છે. તે પુષ્પ ધારણ કરે છે. દા.ત., જૂઈ, પારિજાતક.

(4) બહુશાખી પરિમિત (Multiparous Polychasialcyme) : આ પ્રકારના પરિમિત પુષ્પવિન્યાસમાં મુખ્ય અક્ષના છેડે

પુષ્પ ઉત્પન્ન થયા બાદ ઉપર વર્ણવ્યા મુજબ બેથી વધારે શાખાઓ સર્જાય છે. દા.ત., આકડો, લાલકરેણ

પુષ્પ : પુષ્પ એ આવૃત બીજધારી વનસ્પતિઓમાં પ્રજનન એકમ છે. તે લિંગી પ્રજનન સાથે સંકળાયેલું છે. તે મધ્યઅક્ષ ધરાવે છે જેને પુષ્પાક્ષ કહે છે. પુષ્પાક્ષના ટોચના ફ્લેલા અને ફેલાયેલા ભાગને

આકડો

પુષ્પાસન કહે છે. જ્યારે નીચેનો દંડ જેવો ભાગ પુષ્પદંડ કહેવાય છે. લાક્ષણિક પુષ્પમાં વજચક, દલચક, પુંકેસરચક અને સ્ત્રીકેસરચક એમ ચાર ચક્રો આવેલાં હોય છે. આ ચારેય ચક્રના ઘટકો પુષ્પાસન (thalamus) પર ચક્રીય રીતે ગોઠવાયા હોય છે. પુષ્પદંડનો ટોચનો ફૂલેલો અને વિસ્તરેલો આગળનો ભાગ પુષ્પાસન તરીકે ઓળખાય છે. વજચક્ર અને દલચક્ર સહાયકચક્રો તેમજ પુંકેસરચક્ર અને સ્ત્રીકેસરચક્ર પ્રજનનચક્રો છે.

(1) વજચક (Calyx) : પુષ્પનું સૌથી બહારની તરફ ગોઠવાયેલું આ ચક્ર છે. તે વજપત્રો (sepals)નું બનેલું છે. વજપત્રો લીલા, પર્ણસદેશ અને કલિકાઅવસ્થામાં પુષ્પનું રક્ષણ કરે છે. જો વજપત્રો એકમેકથી છૂટાં હોય તો વજચક્રને મુક્ત વજપત્રી (polysepalous) અને જો પોતાની કિનારીઓ વડે જોડાઈ નળી જેવી રચના કરે તો યુક્ત વજપત્રી (gamosepalous) કહેવાય છે.

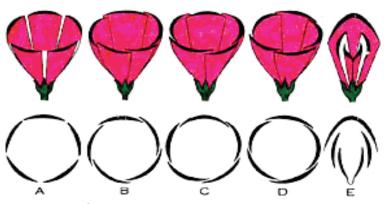
મુક્તવજપત્રી

યુક્તવજપત્રી

મુક્તદલપત્રી

યુક્તદલપત્રી

(2) દલચક (Corolla) : દલચક વજચકની અંદરની તરફ ગોઠવાય છે. તે દલપત્ર અથવા પાંખડીઓ (petals)નું બનેલું છે. દલપત્રો વિવિધ આકારનાં અને વિવિધરંગી હોય છે. દલચક નલિકાકાર, ઘંટાકાર, ગળણી આકારનાં, ચકાકાર અને પતંગિયાકાર હોય છે. દલપત્રો હંમેશાં આકર્ષક રંગનાં હોવાથી પરાગનયન માટે કીટકોને આકર્ષ છે. તે તેની અંદર તરફ ગોઠવાયેલાં પુષ્પચક્રોનું રક્ષણ કરે છે. તેના પણ મુક્તદલપત્રી (polypetalous)


અને યુક્તદલપત્રી (gamopetalous) એવા પ્રકાર તારવી શકાય.

કેટલીક વાર આ બંને ચક્રો દેખાવમાં એક સરખાં હોય છે, ત્યારે બંને ચક્રોને સંયુક્ત રીતે પરિપુષ્પ (perianth) કહેવાય છે. દા.ત., ક્રાઈનમ, બોગનવેલ, પેન્ક્રેશિયમ.

કલિકાન્તરવિન્યાસ (Aestivation)

પુષ્પની કલિકા અવસ્થા દરમિયાન પુષ્પીયપત્રો (વજપત્રો કે દલપત્રો)ની ગોઠવણીને કલિકાન્તરવિન્યાસ કહે છે. તેના નીચે મુજબ પ્રકારો પાડી શકાય :

- (A) ધારાસ્પશી (Valvate) : જો વજપત્રો કે દલપત્રોની કિનારીઓ એકમેકને ઢાંક્યા વિના અડકીને ગોઠવાય તો તેને ધારાસ્પર્શી કહે છે. દા.ત., આકડો, રાઈ.
- (B) વ્યાવૃત (Twisted) : જો કોઈ ચક્રના ઘટકોની એક કિનારી પછીના ઘટક પર આચ્છાદિત હોય અને બીજી કિનારી અન્ય ઘટક વડે આચ્છાદિત હોય તો તેને વ્યાવૃત કહે છે. દા.ત., જાસૂદ, કપાસ.

A - ધારાસ્પર્શી B - વ્યાવૃત C - આચ્છાદિત D - કવીનકુંશિયલ E - પતંગિયાકાર

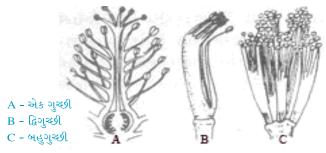
કલિકાન્તરવિન્યાસના વિવિધ પ્રકારો

- (C) આચ્છાદિત (Imbricate) : પુષ્પીયપત્ર (વજપત્ર કે દલપત્ર)નું એક ઘટક સંપૂર્શપણે બહાર હોય, એક ઘટક સંપૂર્શપણે આચ્છાદિત હોય અને અન્ય ઘટકોની એક કિનારી પછીના ઘટક પર આચ્છાદિત અને બીજી કિનારી અન્ય ઘટક વડે આચ્છાદિત હોય તો તેને આચ્છાદિત કલિકાન્તરવિન્યાસ કહે છે. દા.ત., ગરમાળો, ગુલમહોર (ડેલોનીક્સ).
- (D) કવીનકુંશિયલ (Quincuncial) : આ આચ્છાદિત કલિકાન્તરવિન્યાસનો વિશિષ્ટ પ્રકાર છે. તેમાં પાંચ પુષ્પીયપત્રો હોય છે. જેમાં બે ઘટકો બહાર, બે ઘટકો અંદર અને એક ઘટકની એક કિનારીએ અંદરની તરફ આચ્છાદિત થયેલી અને બીજી કિનારીએ બહારની તરફ આચ્છાદિત થયેલી હોય છે. દા.ત., કોળું, બકાનલીમડો.
- (E) પતંગિયાકાર (Vexillary): આ પ્રકારના કલિકાન્તરવિન્યાસ પતંગિયાકાર દલપુંજ ધરાવતાં પુષ્પોમાં જોવા મળે છે. પાંચ દલપત્રોમાંથી પશ્ચ છેડે આવેલું સૌથી મોટું ધ્વજક (standard) દલપત્ર બે પાર્શ્વીય દલપત્રો પક્ષક (alae)ને આચ્છાદિત કરે છે. તે બીજા બે અગ્ર છેડે આવેલા સૌથી નાનાં દલપત્રો નૌતલ (keel)ને આચ્છાદિત કરે છે. આ પ્રકારનો કલિકાન્તરવિન્યાસ પતંગિયાકાર (vexillary) કહેવાય છે. દા.ત., વટાણા, વાલ.

પુંકેસરચક્ર (Androecium) : દલચક્રની અંદર ગોઠવાયેલું આ ચક્ર પુંકેસર (stamen)નું બનેલું છે. પ્રત્યેક પુંકેસર તંતુ, પરાગાશય અને યોજીનું બનેલું છે. પરાગરજ પરાગાશય (anther)માં ઉત્પન્ન થાય છે. પરાગરજ વિવિધ આકારની લીસી કે કંટકમય રચનાઓ છે. વંધ્ય પરાગાશય ધરાવતા પુંકેસરને વંધ્યપુંકેસર (staminode) કહે છે. પુખ્ત પરાગાશય દ્વિખંડી, પોલી કોથળીમય રચના છે. પરાગાશય વિવિધ રીતે સ્ફ્રોટન પામી પરાગરજને મુક્ત કરે છે. તંતુ અને પરાગાશયનું જોડાણ યોજી (connective) વડે થાય છે. યોજી વડે થતું જોડાણ વિવિધ પ્રકારનું હોય છે.

પુંકેસરોની સંખ્યામાં વિવિધતા હોય છે. જો બધા જ પુંકેસર એકમેકથી મુક્ત હોય તો મુક્ત પુંકેસર કહે છે. જો બધા જ પુંકેસર

પરાગાશય પરાગાશય A - વક્ષ દેખાવ B - પૃષ્ઠ દેખાવ


C - પરાગાશયનો આડોછંદ પુંકેસરના વિવિધ ભાગો

તેમના તંત્ઓ વડે જોડાય તો તેને એકગ્ચ્છી (monoadelphous) કહેવાય છે દા.ત., જાસૂદ. ક્યારેક બે સમૂહ રચાય છે જે દ્વિગ્રચ્છી (diadelphous) કહેવાય છે દા.ત., વટાણા અથવા જ્યારે બે કરતા વધારે સમૂહ રચાય છે ત્યારે તેને

બહુગુચ્છી (polydelphous) કહે છે દા.ત., લીંબુ.

પુષ્પમાં પુંકેસર તંતુની લંબાઈમાં પણ વિવિધતા હોય છે દા.ત., રાઈ. ક્યારેક પુંકેસર દલપત્ર સાથે જોડાયેલું હોય છે. તેને દલલગ્ન પુંકેસર કહે છે.

સ્ત્રીકેસરચક્ર (Gynoecium) : સૌથી અંદરની તરફ ગોઠવાયેલું આ ચક્ર સ્ત્રીકેસરો (carpel)નું બનેલું હોય છે. પ્રત્યેક સ્ત્રીકેસરના પાયાના ભાગે પોલી કોથળી જેવું બીજાશય (ovary) હોય છે. તેમાંથી ટોચના ભાગે

પુંકેસર સંલગ્ન

લંબાયેલી નલિકાકાર પરાગવાહિની (style) હોય છે. પરાગવાહિનીના ટોચના ભાગને પરાગાસન (stigma) કહે છે. તેની સપાટી પરાગરજ માટે ગ્રહણશીલ હોય છે. દરેક બીજાશયમાં ચપટા જરાયુ સાથે જોડાયેલા એક કે વધુ બીજાંડ અથવા અંડક (ovule) ધરાવે છે.

સ્ત્રીકેસરચક્રમાં એક જ સ્ત્રીકેસર હોય તો તેને એકસ્ત્રીકેસરી (monocarpellary) કહે છે દા.ત., વટાણા. જો વધુ સ્ત્રીકેસર હોય તો તેને બહુસ્ત્રીકેસરી (polycarpellary) કહે છે. બહુસ્ત્રીકેસરી સ્ત્રીકેસરચક્રમાં જો બધા સ્ત્રીકેસર એકબીજાથી મુક્ત રહે તો તેને મુક્ત સ્ત્રીકેસરી (apocarpous) કહે છે દા.ત., ગુલાબ, કમળ. જો બધા સ્ત્રીકેસર એકબીજા સાથે જોડાયેલા હોય તો તેને યુક્ત બહુસ્રીકેસરી (syncarpous) કહે છે. આવા કિસ્સામાં બીજાશય એક જ હોય છે દા.ત., ધતૂરો, જાસુદ.

મુક્ત સ્ત્રીકેસર



યુક્ત સ્ત્રીકેસર

જરાયુવિન્યાસ :

બીજાશયના પોલાણમાં જે સ્થાનેથી બીજાંડ કે અંડકો ઉદ્દભવે છે તેને જરાયુ કહે છે. બીજાશયમાં અંડકોની ગોઠવણીને જરાયુવિન્યાસ કહે છે. જરાયુવિન્યાસના પ્રકારો નીચે મુજબ છે :

- (A) ધારાવર્તી (Marginal) : ધારાવર્તી જરાયુવિન્યાસમાં બીજાશય એકકોટરીય હોય છે અને બીજાશયની દીવાલની અંદરની ગડીઓ પર બીજાંડ ગોઠવાય છે દા.ત., વાલ, વટાણા.
- (B) ચર્મવર્તી (Parietal) : ચર્મવર્તી જરાયુવિન્યાસમાં બીજાંડ બીજાશયની અંદરની દીવાલમાં અથવા પરિઘવર્તી ભાગમાં વિકસે છે. બીજાશયમાં કૂટપટનું નિર્માણ થાય છે દા.ત., રાઈ, દારૂડી.
- (C) અક્ષવર્તી (Axile) : અક્ષવર્તી જરાયુવિન્યાસમાં બીજાશયના કેન્દ્રમાં વિકસેલી ધરી પર બીજાંડો ગોઠવાય છે. બીજાશય કોટરોમાં વિભાજિત થયેલાં હોય છે. આ કોટરોની સંખ્યા સ્ત્રીકેસરની સંખ્યા પર આધારિત હોય છે દા.ત., ટામેટું, જાસૂદ
- (D) મુક્ત કેન્દ્રસ્થ (Free Central) : અંડકો મુખ્ય અક્ષ ઉપર ઉત્પન્ન થાય છે, જે બીજાશયના તલભાગેથી ઉત્પન્ન થાય છે. તે બીજાશયની દીવાલના પડદાથી મુક્ત હોવાથી મુક્તકેન્દ્રસ્થ તરીકે ઓળખાય છે દા.ત., ડાયાન્થસ.
- (E) તલસ્થ (Basal) : બીજાશયમાં તલભાગે આવેલાં જરાયુ પર એક જ બીજાંડ ગોઠવાય તેને તલસ્થ (basal) જરાયુવિન્યાસ કહે છે દા.ત., સૂર્યમુખી.

જરાયુવિન્યાસના વિવિધ પ્રકારો

(A) ધારાવર્તી (B) ચર્મવર્તી (C) અક્ષવર્તી (D) મુક્ત કેન્દ્રસ્થ (E) તલસ્થ

अवविज्ञान 24

પૂર્ણ પુષ્પ

અપૂર્ણ પુષ્પ

એકલિંગી પુષ્પ

नियमित पुष्प

પુષ્પના પ્રકારો

પુષ્પના પ્રકારો (Types of flowers) : વિવિધ દેષ્ટિથી પુષ્પના વિવિધ પ્રકારો વર્ણવી શકાય.

જે પુષ્પમાં ચારેય પુષ્પચક્રો હોય તેને પૂર્ણ પુષ્પ (complete flower) કહેવાય. એકાદ પુષ્પચક્ર ન હોય તો અપૂર્ણ પુષ્પ (incomplete flower) કહેવાય.

જે પુષ્પમાં પુંકેસરચક્ર અને સ્ત્રીકેસરચક્ર એમ બંને ચક્રો આવેલા હોય તે પુષ્પને ઉભયલિંગી (bisexual) કહે છે. જે પુષ્પમાં માત્ર પુંકેસર (નર પુષ્પ) અથવા માત્ર સ્ત્રીકેસર (માદા પુષ્પ) આવેલું હોય તો તેને એકલિંગી પુષ્પ (unisexual) કહે છે.

સમમિતિના આધારે, જે પુષ્પને તેની આયામ ધરીએ એટલે કે લંબ અક્ષે, મધ્યમાંથી ગમે તે તલે કાપતાં બે સરખા અર્ધભાગમાં વહેંચી શકાય તેવા પુષ્પને નિયમિત (actinomorphic) (અરીય સમમિતિ) પુષ્પ કહે છે દા.ત., જાસૂદ, ધતૂરો. જો આવું ફક્ત એક જ ધરીએ થઈ શકે તો પુષ્પને અનિયમિત પુષ્પ (zygomorphic) (દ્વિઅરીય સમમિતિ) કહેવાય દા.ત., વાલ, ગલતોરો.

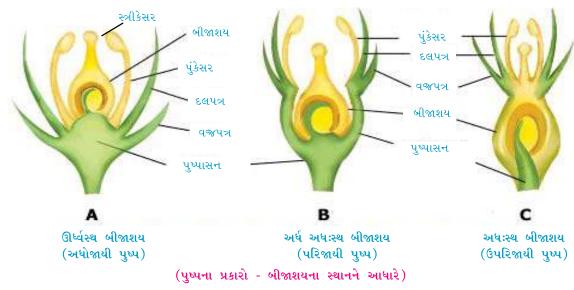
પુષ્પનાં બધાં ચક્રોના ઘટક એકમો એકસરખી સંખ્યામાં હોય તો તેવા પુષ્પને સમાવયવી (isomer-

ous) કહે છે. સમાવયવી પુષ્પ પુષ્પીય ઘટકોની સંખ્યાનુસાર ત્રિઅવયવી, ચતુઅવયવી અથવા પંચાવયવી પ્રકારના હોય છે. પુષ્પનો વિષમાવયવી (heteromerous) પ્રકાર પણ હોય છે.

ચતુઅવયવી પુષ્પ

પંચાવયવી પુષ્પ

જે પર્શના કક્ષમાંથી પુષ્પ ઉદ્ભવે છે તે પર્શને નિપત્ર (bract) કહે છે. નિપત્ર યુક્ત પુષ્પને નિપત્રી પુષ્પ (bracteate flower) કહે છે દા.ત., બોગનવેલ. અનિપત્રી પુષ્પ (ebracteate) નિપત્રવિહીન હોય છે દા.ત., ગલતોરો.


નિપત્રી પુષ્પો

અનિપત્રી પુષ્પો

વનસ્પતિ બાહ્માકારવિધા-2

બીજાશયના સ્થાનના આધારે પુષ્પો ત્રણ પ્રકારનાં હોય છે. અધોજાયી (hypogynous) પુષ્પમાં પુષ્પાસન શંકુ આકારનું બને છે. તેથી બીજાશય સૌથી ઉપર ગોઠવાય છે. આવું બીજાશય ઊર્ધ્વસ્થ (superior) કહેવાય છે દા.ત., રાઈ, જાસૂદ, ધતૂરો. પરિજાયી (Perigynous) પુષ્પમાં પુષ્પાસન બિંબ જેવું ચપટું બને છે. કેન્દ્રમાં ગોઠવાયેલું બીજાશય અર્ધ અધઃસ્થ (Semi - Inferior)ગોઠવાય છે. પુષ્પાસનની ધરી પરથી અન્ય ચક્રો ગોઠવાય છે દા.ત., ગુલાબ, ગલતોરો. ઉપરિજાયી પુષ્પ (Epigynous)માં પુષ્પાસન બીજાશયને ઘેરી લે છે. અહીં, બીજાશય અધઃસ્થ (interior) છે. અન્ય ચક્રો બીજાશયની ઉપરની બાજુએ ગોઠવાય છે દા.ત., સૂર્યમુખી, કાકડી.

ફળ (Fruit): પરિપક્વ અને ફલિત બીજાશયને ફળ (fruit) કહે છે. ફલન વગર બીજાશયનું રૂપાંતરણ ફળમાં થાય તો તે અફલિત (parthenocarpic) ફળ કહેવાય. સામાન્ય રીતે ફળમાં તેની દીવાલ જેને ફલાવરણ (pericarp) કહેવાય છે. બીજ ફળમાં તેના ફલાવરણ વડે ઢંકાયેલા હોય છે. જે ફળનો વિકાસ ફક્ત બીજાશયમાંથી થતો હોય તે ફળને સત્યફળ (true fruit) કહે છે. જો બીજાશય ઉપરાંત પુષ્પાસન કે અન્ય ભાગ પણ ફળની રચનામાં સંકળાય તો તેવા ફળને કૂટફળ (false fruit) કહે છે. સફરજનમાં પુષ્પાસન અને કાજુમાં પુષ્પાક્ષ ફળની રચનામાં સંકળાય છે.

ફળોના પ્રકારો (Kinds of fruits) : ઉદ્ભવ અને વિકાસને આધારે ફળોના મુખ્ય ત્રણ પ્રકારો છે : સરળ ફળ (simple fruit), સમૂહ ફળ (aggregate fruit) અને સંયુક્ત ફળ (composite fruit).

(A) સરળ ફળ (Simple fruit) : આવા ફળનો વિકાસ એકસ્ત્રીકેસરી બીજાશય અથવા બહુસ્ત્રીકેસરી યુક્ત બીજાશયમાંથી થાય છે. આવાં ફળો શુષ્ક (dry) કે રસાળ (fleshy) હોય છે. શુષ્ક સાદાં ફળોમાં ફળનાં ફલાવરણ સૂકાં હોય છે. તેના બે પ્રકાર છે : સ્ફોટનશીલ (dehiscent) અને અસ્ફોટનશીલ (indehiscent).

શુષ્ક સ્ફોટનશીલ ફળો : આવા ફળની ફળ દીવાલ જ્યારે ફળ પરિપક્વ થાય ત્યારે, વિવિધ પ્રકારે સ્ફોટન પામી બીજ મુક્ત કરે છે. સ્ફોટનના પ્રકારને આધારે તેને જુદા-જુદા પ્રકારોમાં વર્ગીકૃત કરી શકાય છે. જેવા કે, એકસ્ફોટી ફળ (follicle), શિમ્બ ફળ (legumes) અને પ્રાવર ફળ (capsule). એકસ્ફોટી ફળનું સ્ફોટન માત્ર એક જ ધારથી થાય છે દા.ત., આકડો, બારમાસી. શિમ્બ ફળનું સ્ફોટન બે ધારથી થાય છે દા.ત., વટાણા, વાલ. પ્રાવર ફળનું સ્ફોટન બે કરતાં વધુ ધાર વડે થાય છે દા.ત., કપાસ, ધતૂરો. ફટપટીકા (Siliqua) ફળમાં સ્ફોટન તલ પ્રદેશથી ઉપર તરફ એમ, બે સેવનીથી થાય છે. દા.ત., રાઈ.

અસ્કોટનશીલ શુષ્ક કળ : આ પરિપક્વ કળની દીવાલનું સ્કોટન થતું નથી. કલાવરણ કુદરતી રીતે જ વિઘટન પામીને બીજ મુક્ત કરે છે. તેઓનો વિકાસ એકસ્ત્રીકેસરી કે યુક્ત બહુસ્ત્રીકેસરી સ્ત્રીકેસર જે એક કોટરીય અને એક અંડકીય હોય તેમાંથી થતો હોય છે. ધાન્યકળ (caryopsis), ચર્મકળ (achene), રોમવલય કળ (cypsela), કાષ્કરળ (nut) અને સપક્ષ (samara) એ અસ્કોટક કળના પ્રકારો છે. ધાન્યકળમાં કલાવરણ અને બીજાવરણ એકબીજાથી જોડાઈને સંયુક્ત કવચ અથવા તુષ (hull) રચે છે. કળમાં એક જ બીજ હોય છે દા.ત., મકાઈ, ઘઉં. ચર્મકળમાં કલાવરણ અને બીજાવરણ એકબીજાથી મુક્ત રહેતાં હોય છે દા.ત., ગુલબાસ, તુલસી, નારવેલીયા. કાષ્ટકળમાં કલાવરણ સખત અને મજબૂત હોય છે દા.ત., કાજુ, શીંગોડા. રોમવલય કળમાં કલાવરણ અને બીજાવરણ છૂટાં પાડી શકાય તેવાં હોય છે દા.ત., પરદેશી ભાંગરો (Tridax), સહદેવી (Varnonia). કળોમાં તેમની ટોચ પર રોમમય સ્થાયી વજ હોય છે. સપક્ષ (Samara) કળમાં કલાવરણ પક્ષ્મ જેવું ચપટું હોય છે દા.ત., કણજો, માધવીલતા.

રસાળ ફળ (Fleshy fruit) : રસાળ ફળમાં ફલાવરણ રસાળ હોય છે. તેના ત્રણ પ્રકારો પડે છે : અષ્ટિલા ફળ (drupe), અનષ્ટિલા કે બેરી (berry) અને સેબિયા (pome).

(1) અષ્ટિલા ફળ (Drupe) : અષ્ટિલા ફળમાં ફલાવરણ ત્રણ ભાગમાં વહેંચાય છે. બહારનું ત્વચીય બાહ્ય ફલાવરણ, મધ્યમાં માંસલ કે રસદાર મધ્ય ફલાવરણ અને અંદરનું સખત અને કઠણ અંતઃફલાવરણ હોય છે દા.ત., કેરી, નાળિયેર.

કેરી

નાળિયેર

(2) અનષ્ટિલા કે બેરી (Berry) : બેરી ફળમાં બાહ્ય અને મધ્ય ફલાવરણ અષ્ટિલા ફળ જેવું જોવા મળે છે; પરંતુ અંતઃફલાવરણ માંસલ હોય છે દા.ત., ટામેટું, નારંગી.

- (3) સેબિયા (Pome) : આ કૂટફળ માંસલ પુષ્પાસનથી આવરિત હોય છે. જે ખાવાલાયક છે. સત્ય ફળ ફૂલેલા પુષ્પાસનની અંદરની બાજુએ આવેલું હોય છે. બીજને આવરતું બીજાશય કેન્દ્રમાં ફળ બનાવે છે દા.ત., સફરજન, નાસપતી.
- (B) સમૂહફળ (Aggregate fruit) : આવાં ફળોનો વિકાસ મુક્ત બહુસ્ત્રીકેસરી બીજાશયમાંથી થાય છે. દરેક સ્ત્રીકેસર સ્વતંત્ર ફ્લિકા તરીકે વર્તે છે. તેથી ફ્લિકાઓના સમૂહને સમૂહફળ કહે છે. તે એક જ પુષ્પમાંથી વિકાસ પામે છે. ફ્લિકાના પ્રકારને આધારે સમૂહફળનું નામ અપાય છે. ફલિકાઓના આધારે ફળના મુખ્ય પ્રકારો નીચે મુજબ છે :

સફરજન

- 1. અનષ્ટિલ સમૂહફળ દા.ત., સીતાફળ.
- 2. એકસ્ફોટી સમૂહફળ દા.ત., આકડો.
- 3. અષ્ટિલ સમૂહફળ દા.ત., રાસબેરી.

સીતાફળ રાસબેરી

(C) સંયુક્ત ફળ (Composite fruit) : સંયુક્ત ફળનો વિકાસ સમગ્ર પુષ્પવિન્યાસનાં બધાં જ પુષ્પોમાંથી થાય છે. તે પુષ્તતાએ એક ફળનું નિર્માણ કરે છે. સંયુક્ત ફળના બે પ્રકાર છે. જેમકે સરસાક્ષ

અને ઉદુમ્બરક.

સરસાક્ષ (Sorosis) : અનાનસમાં ફળનું નિર્માણ શૂકી પુષ્પવિન્યાસથી થાય છે પુષ્પ સાથેના નિપત્રો અને પત્રાક્ષ સાથે જોડાઈ દળદાર સંયુક્ત ફળનું નિર્માણ કરે છે. પુષ્પો સામાન્યપણે વંધ્ય હોય છે અને બીજ ક્યારેક જ નિર્માણ પામે છે.

ઉદુમ્બરક (Syconus) : એક વિશિષ્ટ પ્રકારના દળદાર પુષ્પાધાર ધરાવતા ઉદ્દમ્બર પુષ્પવિન્યાસથી ઉત્પન્ન થાય છે. તે અસંખ્ય એકલિંગી પુષ્પો ધરાવે છે. પરિપક્વ થતો પુષ્પાધાર દળદાર અને રસાળ બને છે અને ખાદ્ય ભાગનું નિર્માણ કરે છે દા.ત., વડનું કે અંજીરનું ફળ.

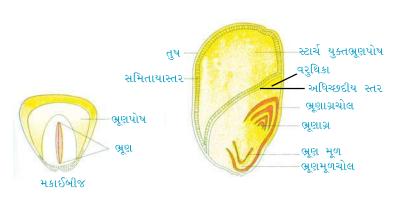
બીજ (Seed) : ફલિત અંડકને બીજ કહે છે. બીજ બીજાવરણ અને તેના વડે આવરિત રચનાઓ જેવી કે ભ્રુણાગ્ર (plumule), ભ્રુણમૂળ (radicle) અને બીજપત્ર (cotyledons) ધરાવે છે. ભ્રુણાગ્ર પ્રરોહતંત્રની રચના માટે અને ભ્રૂણમૂળ મૂળતંત્રની રચના માટે જવાબદાર છે. ખોરાક બીજપત્રમાં સંચિત રહે અથવા અલગ વિશિષ્ટ વિસ્તારમાં સંગ્રહીત થાય. આ વિસ્તાર ભ્રૂણપોષ (endosperm) કહેવાય છે. તેનું નિર્માણ બેવડા ફલનને લીધે થાય છે.

ભ્રુણપોષી બીજ - એરંડા

એરંડાબીજની રચના (ઊભો છેદ)

બીજપત્રોની સંખ્યાને આધારે બીજના બે પ્રકારો પડે છે. દ્વિદળી (dicotyledonous) અને એકદળી (monocotyledo-nous). જે બીજમાં બે બીજપત્રો (cotyledon) આવેલાં હોય તેને દ્વિદળી બીજ કહે છે. દા.ત., વાલ, ચણા. જે બીજમાં એક બીજપત્ર આવેલું હોય તેને એકદળી બીજ કહે છે દા.ત., મકાઈ, ઘઉં. જો ભ્રષ્ટાપોષ અલાયદા વિસ્તારમાં હોય તો તેવા બીજને

ભ્રૂણપોષી (endospermic) બીજ કહે છે દા.ત., મકાઈ, એરંડો. જો ખોરાકનો સંચય બીજપત્રોમાં થયો હોય અને ભ્રૂણપોષ જેવી અલાયદી વ્યવસ્થા ન હોય તો તેવા બીજને અભ્રૂણપોષી (non endospermic) બીજ કહે છે દા.ત., વાલ, વટાણા, ચણા.


દ્વિદળી બીજની રચના (Structure of dicotyledonous seed): વાલ એ દ્વિદળી બીજનું લાક્ષણિક ઉદાહરણ છે. વાલનું બીજ ચપટું, વૃક્કાકાર અને પીળાશ પડતું સફેદ હોય છે. બીજાવરણ બહારની બાજુએ હોય છે. બીજાવરણને બે પડ હોય છે. જેમાં બહારનું મજબૂત અને પીળાશ પડતું પડ બાહ્ય બીજાવરણ (testa)

કહેવાય છે અને અંદરનું પાતળું અને પારદર્શક પડ અંત: બીજાવરણ (tegmen) કહેવાય છે. બીજકેન્દ્ર (hilum) એ બીજાવરણ ઉપર એક ડાઘ-ચાઠા (scar) સ્વરૂપે આવેલું હોય છે. જે વિકસતા બીજનું ફળ સાથેનું જોડાણ દર્શાવે છે. બીજકેન્દ્રની ઉપરની બાજુએ નાના છિદ્ર જેવી રચના આવેલી હોય છે. તેને બીજછિદ્ર (micropyle) કહે છે.

વાલ બીજનો ઊભોછેદ (અભ્રુણપોષી બીજ)

ભ્રૂણની રચનામાં, બે મોટાં માંસલ અને સફેદ બીજપત્રો ગર્ભધરી સાથે જોડાઈને ગોઠવાયેલાં જણાય છે. આ બીજપત્રો માંસલ અને સંગ્રહીત ખોરાક દ્રવ્યોથી ભરેલાં હોય છે. ગર્ભધરીના એક છેડે ભ્રૂણાગ્ર (plumule) અને બીજે છેડે ભ્રૂણમૂળ (radicle) હોય છે. ભ્રૂણાગ્ર બે સૂક્ષ્મપર્ણ વડે સુરક્ષિત છે. અંકુરણ દરમિયાન તેમાંથી પ્રરોહતંત્રનું નિર્માણ થાય છે, જ્યારે વૃદ્ધિ અને વિકાસ થવાથી ભ્રૂણમૂળમાંથી પ્રાથમિક સ્થાનિક મૂળતંત્રનું નિર્માણ થાય છે. ગર્ભધરીના ભ્રૂણાગ્ર અને બીજપત્રોના જોડાણ વચ્ચેના ભાગને ઉપરાક્ષ (epicotyl) અને બીજપત્રોના જોડાણ અને ભ્રૂણમૂળ વચ્ચેના ભાગને અધરાક્ષ (hypocotyl) કહે છે. આમ, વાલનું બીજ દિદળ, અભ્રૂણપોષી બીજ છે.

મકાઈબીજનો ઊભો છેદ (ભ્રૃણપોષી બીજ)

એકદળી બીજની રચના : મકાઈ એ એકદળી બીજનું લાક્ષણિક ઉદાહરણ છે. મકાઈનો દાણો ચપટો, પીળો, એક છેડેથી સાંકડો અને બીજા છેડે પહોળો હોય છે. જો બીજનો ઊભો છેદ લઈ કાપેલા ભાગને આયોડિનથી અભિરંજિત કરવામાં આવે તો ભ્રૂણપોષપ્રદેશ (સ્ટાર્ચની હાજરીને કારણે ઘેરા જાંબલી રંગનો) અને ભ્રૂણપ્રદેશ (પીળાશ પડતો) સરળતાથી જોઈ શકાય છે. સામાન્ય રીતે ચપટા સાંકડા છેડે ભ્રૂણપ્રદેશ છે. બાકીનો ભ્રૂણપોષ પ્રદેશ છે. મકાઈના દાણાના આયામ છેદમાં તેની રચના જોઈ શકાય છે.

સૌથી બહારની બાજુ સંયુક્ત કવચ કે તુષ (hull) આવેલું છે. તે ફ્લાવરણ અને બીજાવરણના જોડાવાથી બનેલું કઠણ આવરણ છે. તુષની અંદરની બાજુએ સમિતાયાસ્તર (aleurone layer) આવેલું હોય છે. તે મોટા ચોરસ કે લંબચોરસ કોષોનું બનેલું છે. આ કોષોમાં પ્રોટીનના કણ ખોરાક સંગ્રહ સ્વરૂપે આવેલા છે.

ભ્રૂણપ્રદેશમાં એક પાતળું ઢાલ આકારનું બીજપત્ર છે. જેને વરૂથિકા (scutellum) કહે છે. વરૂથિકાનો પહોળો ઢાલ આકારનો ભાગ ભ્રૂણપોષપ્રદેશના સંપર્કમાં છે. આ સ્તરને અધિચ્છદીય સ્તર (epithelial layer) કહે છે. ભ્રૂણપોષપ્રદેશ વિશાળ છે અને મુખ્યત્વે સ્ટાર્ચ સ્વરૂપે ખોરાક સંગ્રહ કરે છે.

વરૂથિકાનો બીજો સાંકડો ભાગ ભ્રૂણધરી સાથે જોડાય છે. ભ્રૂણધરીના એક છેડે ભ્રૂણાગ્ર તથા તેને સુરક્ષિત રાખતું ભ્રૂણાગ્રચોલ (coleoptile) હોય છે. બીજા છેડે ભ્રૂણમૂળ અને તેને સુરક્ષિત રાખતું ભ્રૂણમૂળચોલ (coleorrhiza) હોય છે.

આમ મકાઈનો દાણો એકદળી, ભ્રૂણપોષી બીજનું પ્રતિનિધિત્વ કરે છે.

પુષ્પસૂત્ર : પુષ્પસૂત્ર અને પુષ્પાકૃતિની રચના કરતાં પહેલાં પુષ્પધારી વનસ્પતિઓનું વર્શન, બાહ્યાકારવિદ્યાનાં લક્ષણોને આધારે કરવામાં આવે છે. આવું વર્શન મુદ્દાસરનું, સરળ અને વૈજ્ઞાનિક ભાષામાં તેમજ ચોક્કસ ક્રમમાં હોવું જોઈએ.

સૌપ્રથમ, તેના નિવાસસ્થાન (habitat)નો ઉલ્લેખ કરવો જોઈએ. ત્યારબાદ તેના વર્શનની શરૂઆતમાં સ્વરૂપ, વાનસ્પતિક લક્ષણો - પ્રકાંડ, પર્ણો અને ત્યાર પછી પુષ્પવિન્યાસ, પુષ્પીય લક્ષણો અને પુષ્પીય ભાગોનું વર્શન કરવામાં આવે છે. વનસ્પતિના જુદા જુદા ભાગોનું વર્શન કર્યા બાદ પુષ્પસૂત્ર અને પુષ્પાકૃતિ રચી શકાય.

પુષ્પસૂત્રની રચનામાં, પુષ્પનાં વિવિધ ચક્રોમાં તેના એકમોની સંખ્યા, એકબીજા સાથેનાં જોડાણ, પુષ્પાસન પર સ્થાન, અન્ય પુષ્પચક્રો સાથે જોડાણ વગેરે બાબતો ધ્યાનમાં લેવાય છે. આવાં પુષ્પસૂત્રોની રચનામાં વપરાતી સંજ્ઞાઓ અને કેટલાકમાં તેના અર્થ નીચે મુજબ સમજાવી શકાય :

1. નિપત્ર

Br = નિપત્ર

Ebr = અનિપત્રી

Brl = નિપત્રિકાઓ

2. સમમિતિ

⊕ = નિયમિત પુષ્પ

⊕ or % = અનિયમિત પુષ્પ

3. જાતિ

🧹 = પુંકેસરીય પુષ્પ અથવા નર પુષ્પ

🔾 = સ્ત્રીકેસરીય પુષ્પ અથવા માદા પુષ્પ

🧹 = દ્વિલિંગી પુષ્પ અથવા ઉભયલિંગી પુષ્પ

5. દલચક

C = દલપત્ર

 $\mathbf{C}_{_{4}}$ = ચાર મુક્ત દલપત્રો

 $C_{(4)}$ = ચાર યુક્ત દલપત્રો

4. এ% থ ৬

K = 9 १४ ४ ४

 $\mathbf{K}_{_{4}}$ = ચાર મુક્ત વજપત્રો

 $K_{(4)} =$ ચાર યુક્ત વજપત્રો

6. પરિપુષ્પચક્ર

P = પરિપુષ્પ

P₆ = છ મુક્ત પરિપુષ્પપત્રો

P₍₆₎ = છ યુક્ત પરિપુષ્પપત્રો

P 3+3 = છ પરિપુષ્પો, દરેક ચક્રમાં ત્રણ

7. પુંકેસર ચક્ર

A = પુંકેસરચક્ર

 $A_5 = uia y + 3c y +$

 $A_{(5)} = uiu uysa uysa i$

 $A_{5+5} = \epsilon સ પુંકેસરો, દરેક ચક્રમાં પાંચ$

 $A_0 = \dot{y}$ કેસરો ગેરહાજર

 A_{α} = અસંખ્ય પુંકેસરો

C A = પુંકેસરો દલલગ્ન

P A = પુંકેસરો પરિપુષ્પલગ્ન

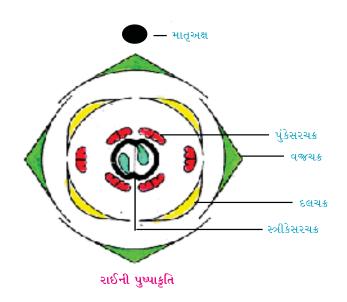
8. સ્ત્રીકેસર ચક્ર

G = સ્ત્રીકેસર ચક્ર

G₂ = બે મુક્ત સ્ત્રીકેસરો

G₍₂₎ = બે યુક્ત સ્ત્રીકેસરો

 $G_0 = \Re$ ીકેસર ગેરહાજર


 $\underline{G}_{(2)}$ = ઊર્ધ્વસ્થ યુક્ત દ્વિસ્ત્રીકેસરી સ્ત્રીકેસર

 $G_{(2)-} =$ યુક્ત અર્ધઅધઃસ્થ દ્વિસ્ત્રીકેસરી સ્ત્રીકેસર

 $\overline{\mathrm{G}}_{(2)}$ = યુક્ત અધઃસ્થ દ્વિસ્ત્રીકેસરી સ્ત્રીકેસર

આમ, પુષ્પસૂત્રની રચનામાં જે-તે પુષ્પચક્રની સંજ્ઞા બાદ તે ચક્રના ઘટક એકમોની સંખ્યા દર્શાવાય છે. તેમાં પુષ્પીયચક્રોના એકમોની સંખ્યા પુષ્પ પ્રમાણે બદલાતી રહે છે. આકૃતિમાં દર્શાવેલ પુષ્પસૂત્ર અને પુષ્પાકૃતિ રાઈ વનસ્પતિના પુષ્પનું નિર્દેશન કરે છે.

રાઈનું પુષ્પસૂત્ર : \oplus , \bigcirc , $K_{2+2} C_4 A_{2+4} \underline{G}_{(2)}$

પુષ્પીય આકૃતિ : પુષ્પીય આકૃતિ પુષ્પના વિવિધ ઘટક એકમોની સંખ્યા, તેની સંલગ્નતા કે અન્ય ચક્રના એકમોની અભિલગ્નતા અને તેઓના માતૃઅક્ષના સંદર્ભમાં સ્થાન વગેરે માહિતી આપે છે. પુષ્પાકૃતિ ઉપર આવેલું ટપકું (dot) માતૃઅક્ષની સ્થિતિ પુષ્પના સંબંધમાં દર્શાવે છે. સૌથી બહારના ભાગે વજ્રચક્ર દર્શાવાય છે. ત્યારબાદ ક્રમશઃ અંદર તરફ દલચક્ર \rightarrow પુંકેસરચક્ર \rightarrow સ્ત્રીકેસરચક્ર દર્શાવાય છે. શક્ય હોય તો જરાયુવિન્યાસ પણ દર્શાવાય છે. બહિર્ભૂત પુંકેસરોનું મુખ દલપત્રો તરફ અને અંતર્ભૂત પુંકેસરોનું મુખ સ્ત્રીકેસર તરફ દર્શાવાય છે. વંધ્ય પુંકેસરો કાં તો ક્રોસ (X) અથવા તારાંક (*) ની નિશાનીથી નિર્દેશિત કરવામાં આવે છે.

કુળનું વર્શન

સપુષ્પ વનસ્પતિના વર્શનની પદ્ધતિ સમજવા માટે આપશે વનસ્પતિના કુળનું વર્શન કરીશું. દેષ્ટાંતરૂપ ત્રણ કુળનાં વર્શન આપ્યા છે.

ફેબેસી (Fabaceae)

વર્ગીકરણ : વર્ગ – દ્વિદળી ઉપવર્ગ – મુક્તદલા શ્રેણી – કેલેસીફ્લોરી ગોત્ર – રોઝેલ્સ કુળ – ફેબેસી

આ કુળ શરૂઆતમાં પેપીલીઓનોઇડી તરીકે ઓળખાતું હતું. તે લેગ્યુમીનોઝી કુળનું ઉપકુળ છે.

વાનસ્પતિક લક્ષણો

નિવાસસ્થાન : આ કુળની વનસ્પતિઓ સમગ્ર વિશ્વમાં પથરાયેલ છે.

સ્વરૂપ : મુખ્યત્વે વૃક્ષ, ક્ષૂપ અને છોડ સ્વરૂપે. તેમાંની કેટલીક આરોહી લતાઓના મૂળમાં મૂળગંડિકાઓ (rootnodules)ની હાજરી, ક્યારેક પ્રકાંડ ઉપર કંટકીય બહિરુદ્ભેદો હોય છે.

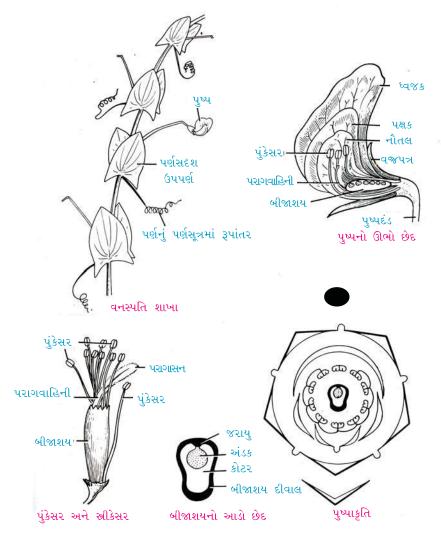
પર્જા : પીંછાકાર સંયુક્ત અથવા સાદા, એકાંતરિક, પર્જાતલ પીનાધાર, કંટકીય ઉપપર્જા, જાલાકાર શિરાવિન્યાસ

પુષ્પીય લક્ષણો :

પુષ્પવિન્યાસ : અપરિમિત પુષ્પવિન્યાસ

પુષ્પ : સંપૂર્ણ અનિયમિત, ઉભયલિંગી, સદંડી, નિપત્રી, અધોજાયી

વજચક્ર : વજપત્રો પાંચ, યુક્ત વજપત્રી, આચ્છાદિત - કલિકાન્તરવિન્યાસ


દલચક્ર : દલપત્રો પાંચ, વિવિધરંગી, મુક્ત દલપત્રી, પતંગિયાકાર. તેમાં પર્શ્વ તરફનું એક ધ્વજક (standard), પાર્શ્વીય બે પક્ષક (wing) તરીકે અને અગ્રીય બે જોડાઈને નૌતલ (keel) બનાવે છે. તે પુંકેસર અને સ્ત્રીકેસરને ઢાંકે છે

પુંકેસરચક્ર : દસ, દ્વિદીર્ધક ((9) +1) , પરાગાશય દ્વિશાખી

સ્ત્ર<mark>ીકેસરચક્ર :</mark> એક સ્ત્રીકેસરી, બીજાશય ઉચ્ચસ્થ, એક કોટરીય જેમાં અનેક અંડકો, પરાગવાહિની એક જે કેપીટેટ (મુંડક) પરાગાસન ધરાવે, ધારાવર્તી જરાયુવિન્યાસ

ફળ : શિમ્બ, બીજ એકથી અસંખ્ય, અભ્રૂણપોષી

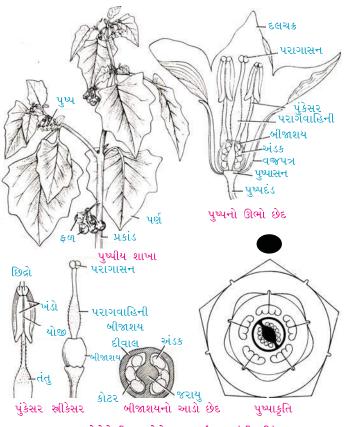
પુષ્પસૂત્ર : Br, \bigoplus , otin, $K_{(5)}$ $C_{1+2+(2)}$ $A_{1+(9)}$ \underline{G}_1

ફેબેસી : લેથાઇરસ અફેકા (વટાણા)

ક્રમ વૈજ્ઞાનિક નામ

- (1) ફેસિઓલસ મુન્ગો (મગ)
- (2) કેજેનસ કજેન (ત્વેર)
- (3) સીસર એરીટીનમ (ચણા)
- (4) ડેરીસ ઇન્ડિકા (કરંજ)

આર્થિક ઉપયોગિતા


આ કુળની ઘણી વનસ્પતિઓ કઠોળના સ્રોત તરીકે (અડદ, મગ, વાલ, વટાણા, મસૂર), ખાદ્યતેલ માટે (મગફળી, સોયાબિન), રંગક તરીકે (ઇન્ડિગોફેરા), રેસાઓ માટે (શણ), ઘાસચારા તરીકે (ક્રોટોલેરિયા, સસબેનિયા), ઔષધ તરીકે (જેઠીમધ) તરીકે ઉપયોગી છે.

સોલેનેસી (Solanaceae)

વર્ગીકરણ :

વર્ગ - દ્વિદળી ઉપવર્ગ - યુક્તદલા શ્રેણી - બાયકાર્પેલેટી ગોત્ર - પોલિમોનીએલ્સ કુળ - સોલેનેસી

આ એક વિશાળ કુળ છે જે સામાન્ય રીતે બટાટાના કુળ તરીકે ઓળખાય છે.

સોલેનેસી : સોલેનમ નાઇગ્રમ (પીલુડી)

વાનસ્પતિક લક્ષણો

નિવાસસ્થાન : તે ઉષ્ણ અને સમશીતોષ્ણ પ્રદેશોમાં ખૂબ જ વિસ્તૃત રીતે ફેલાયેલ છે.

સ્વરૂપ : વનસ્પતિઓ મુખ્યત્વે શાકીય, ક્યારેક જ આરોહી, ક્ષુપ કે નાના વૃક્ષ સ્વરૂપ, પ્રકાંડ શાખીય, હવાઈ, નળાકાર, રોમમય હોય છે. બટાટા ભૂમિગત પ્રકાંડ છે.

પર્જા : સાદાં, એકાંતરિક, રોમમય, અનુપપર્શીય, પક્ષવત્ છેદિત, જાલાકાર શિરાવિન્યાસ -

પુષ્પીય લક્ષણો

પુષ્પવિન્યાસ : એકાકી પરિમિત અથવા એકતોવિકાસી એકશાખી પરિમિત, અગ્રીય કે કક્ષીય

પુષ્પ : સંપૂર્ણ, નિયમિત, દ્વિલિંગી, અધોજાયી, પંચાવયવી (pentamerous)

વજચક્ર : વજપત્રો પાંચ, યુક્ત વજપત્રી, નલિકાકાર, ધારાસ્પર્શી, ચિરલગ્ન

દલચક્ર : દલપત્રો પાંચ, યુક્ત દલપત્રી, વ્યાવૃત, વિવિધ આકારનાં

પુંકેસરચક્રઃ પુંકેસરો પાંચ, દલલગ્ન, અંતર્ભૂત

સ્ત્રીકેસરચક્ર : દ્વિસ્ત્રીકેસરી યુક્ત સ્ત્રીકેસરચક્ર, બીજાશય ઉચ્ચસ્થ, દરેક કોટરમાં ઘણા અંડકો, જરાયુવિન્યાસ

અક્ષવર્તા

ફળ : પ્રાવર કે અનષ્ટિલ, બીજ ભ્રૂણપોષી

પુષ્પસૂત્ર : Ebr, \bigoplus , \circlearrowleft , $K_{(5)}$ $\overset{}{C}_{(5)}$ $\overset{}{A}_5$ $\underline{G}_{(2)}$

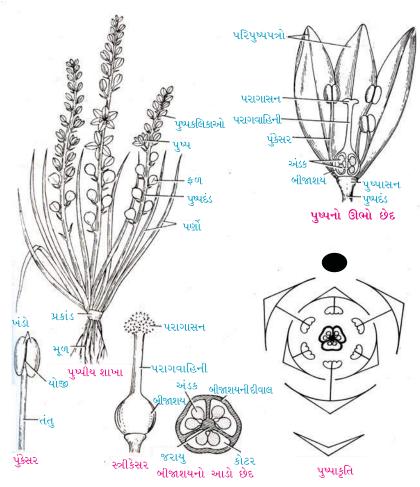
ક્રમ વૈજ્ઞાનિક નામ

- (1) દતૂરા ફેસ્ટુઓસા (ધતૂરો)
- (2) સોલેનમ મેલોન્જેના (રીંગણ)
- (3) સોલેનમ ટયુબરોઝમ (બટાટા)
- (4) સોલેનમ નાયગ્રમ (પીલુડી)

આર્થિક ઉપયોગિતા

આ કુળની ઘણી વનસ્પતિઓ ખોરાક (બટાટા, ટામેટાં, રીંગણ), ઔષધ (અશ્વગંધા), મસાલા (મરચાં), અને શોભા (પેટુનીઆ) માટે ઉત્તમ સ્રોત છે.

લિલિએસી (Liliaceac)


વર્ગીકરણ :

વર્ગ- એકદળી

શ્રેણી - કોરોનેરી

કુળ -- લિલિએસી

સામાન્ય રીતે, લિલિ કુળ તરીકે ઓળખાય છે.

લિલિએસી : એસ્ફોડેલસ ટેન્યુફોલિયસ (ડુંગળો)

વાનસ્પતિક લક્ષણો : સમગ્ર વિશ્વના મોટા ભાગમાં પથરાયેલ છે.

સ્વરૂપ : મોટેભાગે શાકીય, કેટલીક આરોહી (શતાવરી), કેટલાક મરુદ્ભિદ (રામબાણ), મુખ્યત્વે કંદ, ગાંઠામૂળી વગેરે વડે વાનસ્પતિક પ્રજનન

પર્ણ ઃ સાદાં, એકાંતરિક, સંમુખ કે ભ્રમિરૂપ, અનુપપર્ણીય, સ્તંભીય કે મૂલપર્ણ ક્યારેક શલ્કી, સમાંતર શિરાવિન્યાસ

પુષ્પવિન્યાસ : એકાકી, કક્ષીય, કલગી, છત્રક કે શૂકી પ્રકારે

પુષ્પ : સંપૂર્ણ, નિયમિત, દ્વિલિંગી, ત્રિઅવયવી, નિપત્રયુક્ત, અધોજાયી

પરિપુષ્પ : પરિપુષ્પ વજસદેશ અથવા દલાભ, છ અને 3 + 3 એમ બે ચક્રમાં, મુક્ત, ધારાસ્પર્શી કે આચ્છાદિત

પુંકેસરચક્ર : પુંકેસર છ, 3 + 3 એમ બે ચક્રમાં, મુક્ત અથવા પરિપુષ્પ પત્ર અભિલગ્ન, તંતુઓ લાંબા, અંતર્ભૂત કે બહિર્ભૂત

સ્ત્રીકેસર ચર્ક : ત્રિસ્ત્રીકેસરચર્ક, યુક્ત સ્ત્રીકેસરચર્ક, બીજાશય ઉચ્ચસ્થ, ત્રિકોટરી, અક્ષવર્તી જરાયુવિન્યાસ પુષ્પસૂત્ર - Br , \bigoplus , \bigcap , P_{3+3} A_{3+3} $G_{(3)}$

ક્રમ વૈજ્ઞાનિક નામ

- (1) એલિયમ સેપા (ડુંગળી)
- (2) એલો વેરા (કુંવરપાઠું)
- (3) એસ્પેરેગસ રેસિમોસસ (શતાવરી)
- (4) ગ્લોરીઓસા સુપર્બા (વછનાગ)

આર્થિક ઉપયોગિતા

આ કુળની ઘણી વનસ્પતિઓ ઔષધ માટે (એલો, શતાવરી) અને શોભા માટે (ટયુલીપ) ઉત્તમ સ્રોત છે.

સારાંશ

જયારે તરુણ ભાગો વિકસે અને વાનસ્પતિક ભાગો પુખ્ત થાય ત્યારે પુષ્પો તેઓનો દેખાવ પ્રદર્શિત કરે છે. અક્ષ પર પુષ્પોની ગોઠવણીને પુષ્પવિન્યાસ કહે છે. પુષ્પવિન્યાસના મુખ્ય બે પ્રકાર છે. અપરિમિત અને પરિમિત. પુષ્પો વિવિધ પ્રકારના પુષ્પવિન્યાસમાં ગોઠવાયેલાં હોય છે. લાક્ષણિક પુષ્પ ચાર ચક્રો - વજચક, દલચક, પુંકેસરચક અને સ્ત્રીકેસરચક ધરાવે છે. પુષ્પની કલિકા અવસ્થામાં વજપત્રો કે દલપત્રોની ગોઠવણીને કલિકાન્તરવિન્યાસ કહે છે. મુખ્ય પ્રકારના કલિકાન્તરવિન્યાસ ધારાસ્પર્શી, વ્યાવૃત્ત, આચ્છાદિત, કવીનકુંશિયલ અને પતંિગયાકાર હોય છે. પુંકેસરચક પુંકેસરોનું બનેલું છે. પુષ્પમાં પુંકેસરો દલપત્રો અથવા અન્ય ઘટકો સાથે જોડાયેલા હોય છે. સ્ત્રીકેસરચક એ પુષ્પનું સૌથી અંદરનું માદા પ્રજનન અંગ છે. તે એક અથવા વધારે સ્ત્રીકેસરનું બનેલું છે. દરેક સ્ત્રીકેસર ત્રણ ભાગો જેવા કે પરાગાસન, પરાગવાહિની અને બીજાશય ધરાવે છે. જયારે એક કરતાં વધારે સ્ત્રીકેસરોની હાજરી હોય ત્યારે કાં તો મુક્ત હોય અથવા જોડાયેલા હોય. બીજાશયમાં અંડકોની ગોઠવણીને જરાયુ વિન્યાસ કહે છે. જરાયુવિન્યાસના વિવિધ પ્રકારો જેવા કે ધારાવર્તી, અક્ષવર્તી, વર્મવર્તી, તલસ્થ અને મુક્ત કેન્દ્રસ્થ જોવા મળે છે. વિવિધ દષ્ટિકોણથી પુષ્પના વિવિધ પ્રકારો તારવી શકાય, જેમ કે ચારેય ચક્રોની હાજરી, સમમિતિ, બધાં ચક્રોમાં કેટલી સંખ્યામાં વિવિધ ઘટકોની હાજરી છે, નિપત્રની હાજરી, બીજા ઘટકોના સંદર્ભે બીજાશયના સ્થાનને આધારે ફલન પછી બીજાશય ફળમાં અને અંડકો બીજમાં રૂપાંતર પામે છે. ઉદ્ભવ અને વિકાસના આધારે ત્રણ પ્રકારનાં ફળો - સરળ,

अवविज्ञान

36

સમૂહ અને સંયુક્ત ફળ. સરળ ફળ કાં તો શુષ્ક અથવા રસાળ હોય છે. શુષ્ક સરળ ફળ સ્ફોટનશીલ અથવા અસ્ફોટનશીલ હોય છે. માંસલ ફળના ત્રણ પ્રકાર - અષ્ટિલફળ, અનષ્ટિલ ફળ અને સેબિયા હોય છે. ફિલિકાઓના પ્રકારના આધારે સમૂહ ફળનું નામ આપવામાં આવે છે. સંયુક્ત ફળનો વિકાસ સમગ્ર પુષ્પવિન્યાસનાં બધાં પુષ્પોમાંથી થાય છે. બીજ કાં તો એકદળ અથવા દ્વિદળ અને ભ્રૂણપોષી અથવા અભ્રૂણપોષી હોય છે. પુષ્પીય લક્ષણોના આધારે પુષ્પધારી વનસ્પતિનું વર્ગીકરણ અને ઓળખ કરી શકાય છે, જેનાથી વનસ્પતિ કુળનું વર્ણન કરી શકાય છે. તેથી પુષ્પીય વનસ્પતિનું વર્ણન ચોક્કસ ક્રમમાં વૈજ્ઞાનિક સંજ્ઞાઓથી કરી શકાય છે. પુષ્પીય લક્ષણોને સંક્ષેપમાં પુષ્પીય આકૃતિ અને પુષ્પસૂત્ર દ્વારા દર્શાવી શકાય છે.

સ્વાધ્યાય

		The state of the s		•		
1.	નીચે ર	બાપેલા પ્રશ્નોના ઉત્તરો પૈકી સાચા ઉત્ <mark>ત</mark> ર	ર સામે	સર્કલમાં પેન્સિલથી રંગ પૂરો ઃ		
	(1)	નીચેની પૈકી કઈ વનસ્પતિ શૂકી પુષ્પવિન્યાસ ધરાવે છે ?				
		(અ) રાઈ	\bigcirc	(બ) ગુલમહોર	\bigcirc	
		(ક) અંધેડી	\bigcirc	(ડ) ગુલાબ	\bigcirc	
	(2)	ડુંગળી એ કયા પ્રકારના પુષ્પવિન્યાસ	નું ઉદા	હરણ છે ?		
		(અ) સ્તબક	\bigcirc	(બ) નિલમ્બ શૂકી	\bigcirc	
		(ક) માંસલ શૂકી	\bigcirc	(૪) કત્ર	\bigcirc	
	(3)	ઉભયતોવિકાસી પુષ્પવિન્યાસનું ઉદાહરણ છે.				
		(અ) હેમેલીઆ	\bigcirc	(બ) હાથીસૂંઢી	\bigcirc	
		(ક) જાસુદ	\bigcirc	(ડ) દારૂડી	\bigcirc	
	(4)	પુષ્પદંડના ફેલાયેલા અને ફૂલેલા અગ્ર ભાગને કહે છે.				
		(અ) પત્રાક્ષ	\bigcirc	(બ) પુષ્પાસન	\bigcirc	
		(ક) પુષ્પદંડ	\bigcirc	(ડ) પુષ્પાધાર	\bigcirc	
	(5)	નીચેના પૈકી કયા સહાયક પુષ્પીય અવયવો છે ?				
		(અ) વજઅયક અને સ્ત્રીકેસર	\bigcirc	(બ) પુંકેસરચક્ર અને દલપુંજચક્ર	\bigcirc	
		(ક) વજચક અને દલપુંજચક	\bigcirc	(ડ) સ્ત્રીકેસરચક્ર અને દલપુંજચક્ર	\bigcirc	
	(6)	નીચેના પૈકી કયું પરિપુષ્પનું ઉદાહરણ છે ?				
		(અ) જાસૂદ	\bigcirc	(બ) સૂર્યમુખી	\bigcirc	
		(ક) ક્રાઈનમ (નાગદમન)	\bigcirc	(ડ) ધતૂરો	\bigcirc	
	(7)	નીચેના પૈકી કયું પતંગિયાકાર કલિકાન્તરવિન્યાસનું ઉદાહરણ છે ?				
		(અ) કેસીઆ	\bigcirc	(બ) કપાસ	\bigcirc	
		(ક) વટાણા	\bigcirc	(ડ) જાસૂદ	\bigcirc	
	(8)	નીચેના પૈકી કયું આચ્છાદિત કલિકાન્તરવિન્યાસનું ઉદાહરણ છે ?				
		(અ) ગુલમહોર	\bigcirc	(બ) ક્યુકરબીટા	\bigcirc	
		(ક) ચાઈના ગુલાબ	\bigcirc	(ડ) વાલ	\bigcirc	
	(9)	સૂર્યમુખી માટે કયું સાચું છે ?	-		_	
		(અ) ઉચ્ચસ્થ બીજાશય	\bigcirc	(બ) ઉપરિજાયી પુષ્પ	\bigcirc	
		(ક) અક્ષવર્તી જરાયુવિન્યાસ	\bigcirc	(ડ) છત્રક પુષ્પવિન્યાસ	\bigcirc	

વનસ્પતિ બાહ્યાકારવિધા-2

(10) અર્ધ-અદ્યસ્થ બીજાશય પુષ્	માં જોવા મળે છે.			
(અ) ઉપરિજાયી	🔵 (બ) પરિજાયી	\bigcirc		
(ક) અધોજાયી) (ડ) ત્રણેયમાંથી એ	ોકેય નહિ		
(11) ફલિત અને પરિપક્વ બીજાશયને શું ક	<u>.</u> કે છે ?	<u> </u>		
(અ) બીજ) (બ) અંડક	\bigcirc		
(ક) ફળ	ે (ડ) જરાયુ	$\tilde{\bigcirc}$		
(12) મકાઈ એ પ્રકારના ફળનું	ઉદાહરણ છે.	O		
(અ) રોમવલય) (બ) ચર્મફળ	\bigcirc		
(ક) ધાન્યફળ) (ડ) કાષ્કફળ	0		
(13) નીચેના પૈકી કયું એકસેવની કે એકસ્ફ્રે	ે ટી ફળનું ઉદાહરણ છે 🤅	_		
(અ) આકડો	🔵 (બ) કપાસ	\bigcirc		
(ક) મકાઈ) (ડ) સફરજન	0		
(14) પાઈનેપલ એ કયા પ્રકારનું ફળ છે ?		•		
(અ) પ્રાવર) (બ) એકસ્ફ્રોટી સ	મૂહફળ		
(ક) સંયુક્ત ફળ	🔵 (ડ) સ્ફ્રોટી માંસલ	મૂહફળ <u> </u>		
(15) ભ્રૂણપોષી બીજનું ઉદાહરણ	છે.	O		
(અ) ચણા	🔵 (બ) વટાણા	\bigcirc		
(ક) વાલ	ે (ડ) મકાઈ	Ŏ		
(16) દ્વિલિંગી પુષ્પ માટે નીચેની પૈકી કઈ	ું iજ્ઞા છે ?	C		
(અ) 🗸	(બ) 🖵	\bigcirc		
(§)	(3) %	Ŏ		
(17) એ સોલેનેસી કુળનું ઉદાહર	રા છે.			
(અ) કરંજ	🔵 (બ) બટાટા	\bigcirc		
(ક) ચણા	ે (ડ) મગ	Ŏ		
નીચેના શબ્દો સમજાવો/વ્યાખ્યાયિત કરો :				
એન્થોટેક્ષી, નિલંબશૂકી, શૂકી, નિચક્ર, કલિકાન્ત	.વિન્યાસ, યુક્તદલપત્રી, વ	૪૨ાયુવિન્યાસ, નિયમિત પુષ્પ,		
પરિપુષ્પ, અધોજાયી પુષ્પ, ફળ, બીજ, ધાન્ય ક				
નીચેનાનાં ઉદાહરણો આપો :				
છત્રક પુષ્પવિન્યાસ, એકતોવિકાસી, એકશાખી		•		
પુંકેસર, મુક્તદલા, અધોજાયી પુષ્પ, નિયમિત				
વિન્યાસ, સત્ય ફળ, ધાન્ય ફળ, અપરાગફળ,	-	ષ્ટલ સમૂહ ફળ, સમૂહ ફળ,		
અભ્રૂણપોષી બીજ, લિલિએસી કુળ, સોલેનેસી	iof			
ટૂંક નોંધ લખો :	/ -> >			
(1) સ્તબક પુષ્પવિન્યાસ	(7) અસ્ફોટક શુષ્	ક ફળ		
(2) એકશાખી પરિમિત પુષ્પવિન્યાસ	(8) માંસલ ફળ			
(3) દલપુંજ	(9) સમૂહ ફળ	_		
(4) કલિકાન્તરવિન્યાસ	(10) દ્વિદળી બીજ	(10) દ્વિદળી બીજમાં ભ્રૂણપ્રદેશ		
(5) સ્ત્રીકેસર	(11) પુષ્પાકૃતિ			
(6) બીજાશયના સ્થાનને આધારે પષ્પના પ્રક	રો (12) જરાયવિન્યા	સ		

2.

3.

4.

5. તફાવત આપો :

- (1) અપરિમિત પુષ્પવિન્યાસ પરિમિત પુષ્પવિન્યાસ
- (2) એકશાખી પુષ્પવિન્યાસ દ્વિશાખી પુષ્પવિન્યાસ
- (3) અધોજાયી પુષ્પ ઉપરિજાયી પુષ્પ
- (4) નિયમિત પુષ્પ અનિયમિત પુષ્પ
- (5) પુંકેસરચક્ર સ્ત્રીકેસરચક્ર
- (6) અક્ષવર્તી જરાયુવિન્યાસ ચર્મવર્તી જરાયુવિન્યાસ
- (7) સાદું ફળ માંસલ ફળ
- (8) સાદું ફળ સમૂહ ફળ
- (9) વાલનું બીજ મકાઈનું બીજ
- (10) ફેબેસી લિલિએસી

6. નામનિર્દેર્શિત આકૃતિ દોરો.

- (1) લાક્ષણિક પુષ્પનો ઊભો છેદ
- (2) માંસલ શુકી પુષ્પવિન્યાસ
- (3) પતંગિયાકાર કલિકાન્તરવિન્યાસ
- (4) દ્વિદળી બીજનો ઊભો છેદ
- (5) એકદળી બીજનો ઊભો છેદ
- 7. પુષ્પવિન્યાસ એટલે શું ? અપરિમિત પુષ્પવિન્યાસના પ્રકારો આકૃતિ સહિત વર્ણવો.
- 8. પુષ્પના જુદા જુદા પ્રકારો વર્ણવો.
- 9. કલિકાન્તરવિન્યાસ એટલે શું ? કલિકાન્તરવિન્યાસના પ્રકારો વર્ણવો.
- 10. જરાયુવિન્યાસ એટલે શું ? જરાયુવિન્યાસના વિવિધ પ્રકારો આકૃતિ સહિત વર્ણવો.
- 11. માંસલ ફળના વિવિધ પ્રકારો વર્ણવો.
- 12. દ્વિદળી બીજની રચના વર્ણવો.
- 13. મકાઈ બીજની રચના વર્ણવો.
- 14. ફેબેસી કુળનાં સામાન્ય લક્ષણો આપો. આ કુળની કોઈ પણ બે વનસ્પતિઓનાં વૈજ્ઞાનિક નામ આપો.
- 15. સોલેનેસી કુળનું વર્ગીકરણ આપો. તેનાં પુષ્પીય લક્ષણો આકૃતિ સહિત વર્ણવો.
- 16. લિલિએસી કુળની પુષ્પાકૃતિ કેવી રીતે તૈયાર કરવામાં આવે છે ?

•

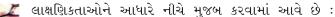
સપુષ્પી વનસ્પતિઓની અંતઃસ્થ રચના

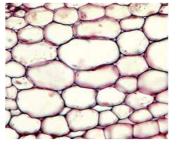
વનસ્પતિદેહ કોષોનો બનેલો છે. કોષો એકત્રિત થઈ પેશીની રચના કરે છે. વિવિધ પેશીઓનું આયોજન ગોઠવાતાં પેશીતંત્રનું નિર્માણ થાય છે. પેશીતંત્રોયુક્ત અંગો રચાય છે. વનસ્પતિનાં વિવિધ અંગો તેઓની આંતરિક રચનામાં તફાવત દર્શાવે છે. વનસ્પતિની આંતરિક રચનાના અભ્યાસને અંતઃસ્થ રચનાશાસ્ત્ર કહે છે. આવૃત્ત બીજધારી વનસ્પતિઓમાં એકદળી અને દ્વિદળી અંતઃસ્થ રચનાની દૃષ્ટિએ જુદી દેખાય છે. આગળના પ્રકરણમાં આપણે વનસ્પતિઓની બાહ્ય રચનાનો અભ્યાસ કર્યો. આ પ્રકરણમાં આપણે વનસ્પતિઓની અંતઃસ્થ રચનાનો અભ્યાસ કરીશું.

પેશી (Tissue)

સમાન ઉત્પત્તિ ધરાવતા અને નિશ્ચિત કાર્યો કરતા કોષોનો સમૂહ એટલે પેશી. વનસ્પતિ વિભિન્ન પ્રકારની પેશીઓથી બનેલી હોય છે. વનસ્પતિપેશીઓને મુખ્ય બે ભાગમાં વિભાજિત કરી શકાય છે :

- (1) વર્ધનશીલ પેશીઓ (Meristematic tissues) (2) સ્થાયી પેશીઓ (Permanent tissues)
- (1) વર્ધનશીલ પેશીઓ : વર્ધનશીલ પેશી એટલે સક્રિય રીતે વિભાજન પામતા કોષોનો સમૂહ. વનસ્પતિઓ વિવિધ પ્રકારની વર્ધનશીલ પેશીઓ ધરાવે છે.


પ્રકાંડ અને મૂળના અગ્રસ્થ ભાગમાં આવેલી અને પ્રાથમિક પેશીનું નિર્માણ કરતી પેશીને અગ્રસ્થ વર્ધનશીલ પેશી કહે છે. આ વર્ધનશીલ પેશી વનસ્પતિની લંબ અક્ષની વૃદ્ધિ માટે જવાબદાર હોય છે. પ્રકાંડની લંબાઈમાં વૃદ્ધિ દરમિયાન પ્રકાંડ અગ્રમાં આવેલી વર્ધનશીલ પેશીના અમુક કોષો નીચેની તરફ ગોઠવાઈ કક્ષીયકલિકાના નિર્માણ માટે જવાબદાર હોય છે. આવી કલિકાઓ પર્ણની કક્ષમાં આવેલી હોય છે જે પુષ્પ કે શાખાના નિર્માણ માટે જવાબદાર છે.


સ્થાયી પેશીઓની વચ્ચે આવેલી વર્ધનશીલ પેશીને આંતરવિષ્ટ વર્ધનશીલ પેશી કહે છે. આ પેશી ઘાસમાં તેમજ શાકાહારી પ્રાણીઓ દ્વારા ખવાઈ ગયેલા વનસ્પતિ ભાગોની જગ્યાએ પુનર્નિર્માણ પામતા ભાગોમાં જોવા મળે છે. અગ્રસ્થ અને આંતરવિષ્ટ વર્ધનશીલ પેશીઓ પ્રાથમિક વર્ધનશીલ પેશીઓ છે. કારણ કે તે વનસ્પતિ જીવનની શરૂઆતમાં વિકસી પ્રાથમિક વનસ્પતિદેહના નિર્માણમાં ભાગ લે છે. ઘણી વાર વનસ્પતિઓના પ્રકાંડ અને મૂળના પરિપક્વ ભાગોમાં આવેલી વર્ધનશીલ પેશી કે જે પ્રાથમિક વર્ધનશીલ પેશીના નિર્માણ પછી દેખાય છે. તેને દ્વિતીય અથવા પાર્શ્વીય વર્ધનશીલ પેશી કહેવાય છે. પાર્શ્વીય વર્ધનશીલ પેશી હંમેશાં વૃક્ષની છાલની નીચે ત્વક્ષૈધા સ્વરૂપે આવેલી હોય છે. આ વર્ધનશીલ પેશીની સક્રિયતા દ્વિતીય વૃદ્ધિ માટે જવાબદાર છે.

(2) સ્થાયી પેશીઓ : પ્રાથમિક અને દ્વિતીય વર્ધનશીલ પેશીના કોષોમાં વિભાજન થવાથી ઉત્પન્ન થતા નવા કોષો રચના અને કાર્યની દેષ્ટિએ વિશિષ્ટીકરણ પામી વિભાજન ક્ષમતા ગુમાવે છે. આવા કોષો સ્થાયી કોષો તરીકે ઓળખાય છે કે જે સ્થાયીપેશી રચે છે. સ્થાયીપેશીના મુખ્ય બે પ્રકાર છે : (1) સરળ સ્થાયીપેશી અને (2) જટિલ સ્થાયીપેશી.

સરળ પેશી એક જ પ્રકારના કોષોથી બનેલી હોય છે. જ્યારે જટિલ સ્થાયીપેશી રચનાત્મક અને કાર્યાત્મક લાક્ષણિકતાઓ ધરાવતા વિવિધ પ્રકારના કોષોની બનેલી હોય છે, છતાં આ વિવિધ પ્રકારના કોષો ભેગા મળી એક જટિલ પેશી તરીકેના કાર્યમાં પોતાનો ફાળો આપે છે.

સરળ પેશી (Simpe tissue) : આ પ્રકારની પેશીઓ એક જ પ્રકારના કોષોની બનેલી સરળ પેશીઓ કહેવાય છે. તે સમાન ઉત્પત્તિ અને કાર્યો ધરાવે છે. તેઓનું નામકરણ અને વર્ગીકરણ તેઓની રચના અને કાર્યોની

મૃદુતક પેશી

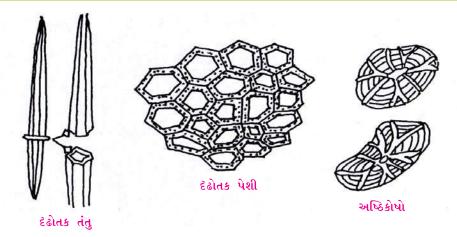
મૃદુતક (Parenchyma): આ સરળ સ્થાયીપેશી સામાન્યપણે પાતળી દીવાલ ધરાવતા કોષોની બનેલી હોય છે. કોષો ગાઢ રીતે ગોઠવાયેલા હોય છે અથવા આંતરકોષીય અવકાશો ધરાવે છે. કોષદીવાલ સેલ્યુલોઝની બનેલી છે. દરેક મૃદુતક કોષ સમવ્યાસી, ગોળ કે અંડાકાર હોય છે. આ પેશી મોટા ભાગે વનસ્પતિનાં વિવિધ અંગો જેવાં કે મૂળ, પ્રકાંડ, પર્ણ, પુષ્પ અને ફળમાં જોવા મળે છે. મૃદુતક પેશી પ્રકાશસંશ્લેષણ, સંગ્રહ અને સ્રાવ જેવાં કાર્યો કરે છે.

^{&ત્રા}માં તે સ્થૂલકોણક પેશી

200+10/ - (2)

સ્થૂલકોણક (Collenchyama): આ સ્થાયી સરળ પેશીના કોષો જીવંત હોય છે. તેઓની કોષદીવાલ સેલ્યુલોઝની બનેલી હોય છે. અંદરની દીવાલ પેક્ટિનનું સ્થૂલન દર્શાવે છે. આ પ્રકારનું સ્થૂલન જ્યાં પેશીકોષો એકબીજાના સંપર્કમાં આવતા હોય છે ત્યાં વધુ પ્રમાણમાં હોય છે. આ પેશી વનસ્પતિઅંગોને સ્થિતિસ્થાપકતા અને નમ્યતા બક્ષે છે. તેથી તે ખાસ કરીને કુમળા પ્રકાંડ અને પર્શદંડમાં આવેલી હોય છે. આ પેશી મુખ્યત્વે પ્રકાંડ અને પર્શના અધઃસ્તરમાં

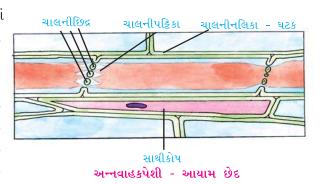
હોય છે; પરંતુ એકદળી તેમજ વનસ્પતિના ભૂમિગત ભાગોમાં તેનો અભાવ હોય છે. કોષો જીવંત હોવાથી જે અંગોમાં તેઓ આવેલી હોય છે તે અંગોની વૃદ્ધિ અટકાવતી નથી; પરંતુ અંગોને નમ્યતા અને સ્થિતિસ્થાપકતા બક્ષી રક્ષણ પણ આપે છે.


દેઢોતક (Sclernchyma): આ પેશીના કોષો જાડી દીવાલ ધરાવતા મૃત હોય છે. લિગ્નિનનુ એક સરખું સ્થૂલન થવાથી કોષો કઠણ અને ખૂબ જ જાડી દીવાલ ધરાવતા હોય છે. લિગ્નિનનું સ્થૂલન ખૂબ જ જાડું હોવાથી કોષદીવાલ મજબૂત, સ્થિતિસ્થાપક અને પાણી માટે અપ્રવેશશીલ બને છે. કોષો વચ્ચે આંતરકોષીય અવકાશ હોતા

નથી. આ પેશી સામાન્યપણે અધઃસ્તર, પરિચક્ર, દ્વિતીય જલવાહક અને અન્નવાહકમાં આવેલી હોય છે. તે અંગોને યાંત્રિક મજબૂતાઈ આપે છે. આકાર, રચના, ઉત્પત્તિ અને વિકાસના આધારે દઢોતક પેશી બે પ્રકારની હોય છે :

- (1) તંતુઓ : જાડી દીવાલના, લાંબા, પાતળા છેડાયુક્ત કોષો કે જે વનસ્પતિના વિવિધ ભાગોમાં આવેલા છે.
- (2) અષ્ઠિકોષો (કઠકો) : સમવ્યાસી, અંડાકાર કે ટૂંકા નળાકાર અને સ્થુલિત મૃત કોષો છે જે સાંકડું પોલાશ ધરાવે છે. તે કાચલના ફ્લાવરશમાં, જામફળ, નાસપતી અને ચીકુ જેવાં ફળોના ગર પ્રદેશમાં, વાલના બીજાવરશમાં તેમજ ચાનાં પર્શ(tea leaves)માં આવેલા હોય છે.

દઢોતક પેશી



જટિલ પેશી (Complex tissue): જટિલ પેશી એક કરતાં વધુ પેશીઓનો સમૂહ છે જે સમાન ઉત્પત્તિ ધરાવે છે. તેઓ ભેગા મળી એક એકમ તરીકે કાર્ય કરે છે. આ પેશીઓ પાણી, ખનિજ તત્ત્વો, પોષકદ્રવ્યો અને કાર્બનિક પદાર્થોના વહન સાથે સંકળાયેલી હોવાથી વાહકપેશીઓ તરીકે પણ ઓળખાય છે. જલવાહક અને અન્નવાહક જટિલ સ્થાયી પેશીઓનાં ઉદાહરણો છે.

જલવાહક પેશી (Xylem) : જલવાહક પેશી પાણી અને ખિનજ દ્રવ્યોનું વહન મૂળથી વનસ્પતિના બાકીના ભાગો તરફ કરે છે. જલવાહક પેશીના બંધારણમાં જલવાહિનીની દ્વિતીય દીવાલ પર સ્થૂલન થતું હોવાથી પરિપક્વતા દરિમયાન તેઓ કોષરસ ગુમાવી મૃત બને છે. જલવાહિનિકીના છેડા અણીદાર અને એકબીજા પર આચ્છાદિત હોય છે, જયારે જલવાહિનીના એકમના છેડાઓ ખુલ્લા હોય છે અને અક્ષમાં પારસ્પરિક ગોઠવાઈ લાંબી રચના બનાવે છે. જલવાહિનિકીઓ ત્રિઅંગી અને અનાવૃત્ત બીજધારીમાં હોય છે જયારે જલવાહિની આવૃત્ત બીજધારીમાં જોવા મળે છે.

જલવાહિનિકીઓ અને જલવાહિનીઓ પાણીની મુખ્ય વાહક રચનાઓ છે. જલવાહક મૃદુતક જીવંત કોષો છે. તે સ્ટાર્ચ, લિપિડ, ટેનિન અને સ્ફ્રિટિક પદાર્થોનો સંગ્રહ કરે છે. જલવાહકતંતુઓ વધુ સ્થૂલિત દીવાલ ધરાવે છે, જે યાંત્રિક મજબૂતાઈ પૂરી પડે છે.

અન્નવાહક પેશી (Phloem) : અન્નવાહક પેશી વનસ્પતિનાં બધાંજ અંગોમાં પ્રકાશસંશ્લેષણ દ્વારા તૈયાર કરેલા ખોરાકનું વહન કરે છે. આવૃત્ત બીજધારી વનસ્પતિઓમાં અન્નવાહક ચાલનીનલિકાઓ, સાથીકોષો, અન્નવાહક મૃદુતક અને અન્નવાહક તંતુઓ ધરાવે છે. અનાવૃત બીજધારી વનસ્પતિઓમાં ચાલની- નલિકા અને સાથીકોષોનો અભાવ હોય છે; પરંતુ તે આલ્બ્યૂમીનકોષો અને ચાલનીકોષો ધરાવે છે. ચાલનીનલિકાઓ લાંબી નળાકાર રચનાઓ છે. તેઓ એકબીજા પર લંબ અક્ષે ગોઠવાયેલા અસંખ્ય કોષોની બનેલી હોય છે. કોષોને છૂટી પાડતી અનુપ્રસ્થ દીવાલ છિદ્રાળુ બની ચાલનીપટ્ટિકાનું નિર્માણ કરે છે. ચાલનીનલિકાઓ સાથીકોષો સાથે સંકળાયેલી હોય છે.

અન્નવાહક મૃદુતક લાંબા અણીદાર નલિકા જેવા કોષોની બનેલી રચનાઓ છે. તે ઘટ્ટ કોષરસ અને કોષકેન્દ્ર ધરાવે છે. મૃદુતક કોષો પોષક પદાર્થો તેમજ શ્લેષ્મ, રાળ, ક્ષીર જેવા પદાર્થોનો સંગ્રહ કરે છે. અન્નવાહક તંતુઓ દઢોતક કોષો છે. તેઓ ખૂબ જ લાંબા, અશાખિત અને અણીદાર ટોચ ધરાવે છે. તેઓ યાંત્રિક મજબૂતાઈ બક્ષે છે.

પેશીતંત્ર (Tissue System)

પેશીઓના આયોજન વડે પેશીતંત્ર રચાય છે. પેશીતંત્રોના આયોજનથી અંગ રચાય છે. વનસ્પતિનાં અંગો જેવાં કે મૂળ, પ્રકાંડ અને પર્શમાં પેશીતંત્રો હોય છે.

42 श्रुविद्यान

(1) અધિસ્તરીય પેશીતંત્ર (2) આધારોતક પેશીતંત્ર (3) સંવહન / વાહક પેશીતંત્ર

અધિસ્તરીય પેશીતંત્ર: આ પેશીતંત્ર અધિસ્તર અને સંબંધિત રચનાઓ દ્વારા દર્શાવાય છે. અધિસ્તર વનસ્પતિ અંગોનું સૌથી બહારનું સ્તર છે. તે સામાન્યપણે પીપ જેવા આકારના ઘટ્ટ રીતે ગોઠવાયેલા મૃદુતક કોષોનું બનેલું હોય છે. પ્રકાંડ અને પર્ણમાં અધિસ્તરીય કોષો જાડી દીવાલના અને રક્ષણ માટે બનેલા હોય છે. પ્રકાંડ અને પર્ણનું અધિસ્તર સામાન્યપણે ક્યુટિનના આવરણથી આવરિત હોય છે, જે પાણીના વ્યયને અટકાવે છે. મૂળમાં અધિસ્તરના કોષો મુખ્યત્વે પાણી અને ખનિજક્ષારોના શોષણ સાથે સંકળાયેલા હોવાથી તેઓની દીવાલ પાતળી હોય છે તેથી મૂળના અધિસ્તરને મૂલાધિસ્તર અથવા રોમસ્તર પણ કહે છે. ઑર્કિડના ભેજગ્રાહી મૂળમાં અધિસ્તર બહુસ્તરીય હોય છે. તેમાં ક્યુટિકલનો અભાવ હોય છે.

અધિસ્તર સામાન્યપણે બહિરુદ્ભેદ ઉત્પન્ન કરે છે. જેને અધિસ્તરીય રોમ કહે છે. મૂળમાં અધિસ્તરીય રોમ એકકોષીય હોય છે, જે મૂળરોમ તરીકે ઓળખાય છે. મૂળરોમ માટીના કણો વચ્ચે પ્રવેશી પાણીનું શોષણ કરે છે. પ્રકાંડ અને પર્ણમાં અધિસ્તરીય રોમ બહુકોષીય હોય છે. પ્રકાંડરોમ બાષ્પોત્સર્જન દ્વારા થતા પાણીના વ્યયને અટકાવવામાં મદદરૂપ થાય છે, જે સ્નાવી પણ હોય છે.

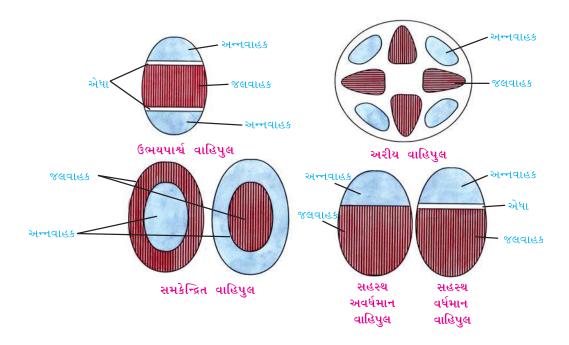
પર્જા અને તરુણ પ્રકાંડનું અધિસ્તર અસંખ્ય છિદ્રો ધરાવે છે, જેને વાયુરંધ્રો કહે છે. દરેક વાયુરંધ્ર વાલ આકારના બે રક્ષકકોષો દ્વારા ઘેરાયેલ હોય છે. તૃણ વનસ્પતિઓમાં રક્ષકકોષો ડમ્બેલ આકારના હોય છે. રક્ષકકોષો હરિતકણ ધરાવે છે. તેઓ વાયુરંધ્રોના બંધ અને ખુલ્લા થવાની ક્રિયાનું નિયમન કરે છે. ઘણીવાર રક્ષકકોષો સાથે સહાયક કોષો પણ જોડાયેલા હોય છે. વાયુરંધ્ર છિદ્ર, રક્ષકકોષો અને સહાયકકોષો ભેગા મળી વાયુરંધ્ર પ્રસાધનનું નિર્માણ કરે છે.

આધારોતક પેશીતંત્ર : અધિસ્તર અને વાહકપેશીઓ સિવાય તમામ રચનાઓનો સમાવેશ આધારોતક પેશીતંત્રમાં થાય છે. આ પેશીતંત્ર સરળપેશી જેવી કે મૃદુતક, સ્થૂલકોણક અને દઢોતકનું બનેલું હોય છે. લાક્ષણિક સ્થિતિમાં નીચે મુજબની રચનાઓ આધારોતક પેશીતંત્રમાં જોઈ શકાય છે.

અધઃસ્તર અધિસ્તરની નીચે આવેલું હોય છે. તે સ્થૂલકોણક અથવા દઢોતકના કેટલાક સ્તરોનું બનેલું હોય છે. તે રક્ષણ પૂરું પાડે છે તેમજ યાંત્રિક મજબૂતાઈ બક્ષે છે. બાહ્યક આધારોતક પેશીનું મુખ્ય ઘટક છે. તે શિથિલ રીતે ગોઠવાયેલા મૃદુતકના કોષોના અસંખ્ય સ્તરોનું બનેલું હોય છે. અંતઃસ્તર બાહ્યકનો સૌથી અંદરનો વિસ્તાર છે, જે પીપ આકારના ગાઢ રીતે ગોઠવાયેલા મૃદુતક કોષોનુ બનેલું છે. અંતઃસ્તરની અંદરની તરફ આવેલો વિસ્તાર પરિચક્રનો હોય છે. પ્રકાંડમાં તે દઢોતક કોષોના અમુક સ્તરોનું, જ્યારે મૂળમાં તે મૃદુતકના કોષોના એક સ્તરનું બનેલું હોય છે.

મજ્જા પ્રકાંડ અને મૂળનો સૌથી અંદરનો ભાગ છે. તે કેન્દ્રસ્થ ભાગનું નિર્માણ કરે છે. તે શિથિલ રીતે ગોઠવાયેલા મૃદુતકકોષોનું બનેલું હોય છે.

પર્શની આધારોતક પેશી પાતળી દીવાલવાળા હરિતકણો ધરાવતા કોષોની બનેલી હોય છે. તેને મધ્યપર્શ પેશી કહે છે.


વાહકપેશીતંત્ર (Vascular tissue System) : વાહકપેશીઓના આયોજન વડે વાહકપેશીતંત્ર રચાય છે. સામાન્ય રીતે જલવાહક અને અન્નવાહક પેશીના એકમો એકઠા થઈ વાહિપુલની રચના કરે છે. આમ, વાહિપુલને વાહકપેશીતંત્ર એકમ ગણી શકાય.

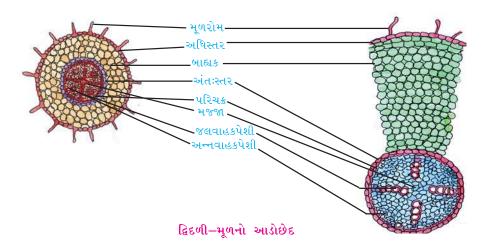
વાહિપુલ કેટલીક વાર જલવાહક અને અન્નવાહકની વચ્ચે એધા (વર્ધનશીલ પેશી) ધરાવે છે. જ્યારે એધા હાજર હોય તો તેને વર્ધમાન વાહિપુલ તરીકે વર્શવવામાં આવે છે અને જો એધા ગેરહાજર હોય, તો તેને અવર્ધમાન વાહિપુલ તરીકે વર્શવવામાં આવે છે.

વાહિપુલ ફક્ત અન્નવાહક અથવા ફક્ત જલવાહક અથવા બંને ધરાવે છે. જલવાહક અને અન્નવાહક સાપેક્ષ સ્થાનને આધારે વાહિપુલને નીચેના પ્રકારોમાં વહેંચી શકાય છે :

- (1) અરીય વાહિપુલ : આ વાહિપુલ ફક્ત જલવાહક પેશી કે ફક્ત અન્નવાહક પેશીથી રચાય છે. તેઓ એકાંતરે અલગ-અલગ ત્રિજ્યાઓ પર ગોઠવાયેલ હોય છે. મૂળમાં આ પ્રકારના વાહિપુલ હોય છે.
- (2) સહસ્થ વાહિપુલ : જે વાહિપુલોમાં જલવાહકપેશી અને અન્નવાહકપેશી સાથે સાથે ગોઠવાયેલી હોય છે તેવા વાહિપુલોને સહસ્થ વાહિપુલો કહે છે. તે ત્રણ પ્રકારના હોય છે :

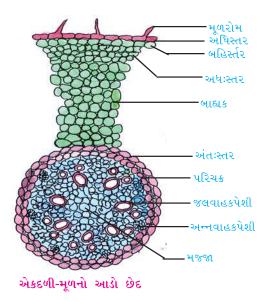
- (અ) સમકેન્દ્રિત : આવા વાહિપુલમાં એક વાહકપેશી બીજી વાહકપેશીને સંપૂર્ણ રીતે ઘેરીને ગોઠવાય છે.
- (બ) એકપાર્શ્વસ્થ : જલવાહકની બહારની બાજુ તે જ ત્રિજ્યા પર અન્નવાહકપેશી ગોઠવાય તો તેવા વાહિપુલને એકપાર્શ્વસ્થ વાહિપુલ કહેવાય છે.
- (ક) ઉભયપાર્શ્વ : આ પ્રકારમાં જલવાહક પેશીની બંને પાર્શ્વ બાજુએ તે જ ત્રિજ્યા પર અન્નવાહક પેશી હોય છે.

એકદળી અને દ્વિદળી વનસ્પતિઓની અંતઃસ્થ રચના


ઉચ્ચ કક્ષાના સજીવોમાં વિવિધ અંગો જુદી જુદી પેશીઓથી બનેલાં હોય છે. વનસ્પતિનાં વિવિધ અંગો જેવાં કે મૂળ, પ્રકાંડ અને પર્ણ તેઓની અંતઃસ્થ રચનામાં જુદું જુદું પેશીઆયોજન ધરાવે છે. તે અભિરંજિત કરી અનુપ્રસ્થ અથવા ઊભા છેદમાં જોઈ શકાય છે. હવે આપણે કેટલાંક ઉદાહરણ જોઈએ.

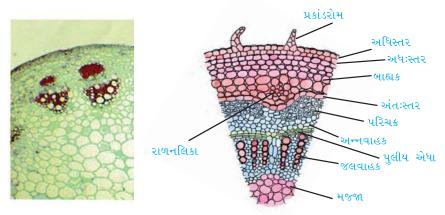
દિદળી મૂળ (Dicotyledonous root) : સેફ્રેનીનના મંદ દ્રાવણમાં સૂર્યમુખીના તરુણ મૂળનો પાતળો અનુપ્રસ્થ છેદ લઈ અભિરંજિત કરી સૂક્ષ્મદર્શક યંત્ર વડે જોવાથી નીચે મુજબની રચનાઓ જોઈ શકાય છે.

અધિસ્તર કે જેને મૂલાધિસ્તર પણ કહેવાય છે, તે મૃદુતક કોષોનું એકસ્તરીય બાહ્યસ્તર બનાવે છે. અધિસ્તરના કેટલાક કોષો બહિરુદ્ભેદ સ્વરૂપે એકકોષીય મૂળરોમ સર્જે છે. મૂળરોમ પાણી અને દ્રાવ્ય ખિનજ ક્ષારોના શોષણ માટે અધિસ્તરની શોષણ સપાટી વધારે છે. અધિસ્તરની નીચે આવેલું બાહ્યક આંતરકોષીય અવકાશો ધરાવતા અને પાતળી દીવાલવાળા બહુસ્તરીય મૃદુતક કોષોનું બનેલું હોય છે. અંતઃસ્તર બાહ્યકનું સૌથી અંદરનું સ્તર છે, જે ગાઢ રીતે ગોઠવાયેલા પીપ જેવા કોષોનું બનેલું છે.


પીપ આકારના અંતઃસ્તરના કોષોની અરીય દીવાલો ઉપર મીણ જેવા સુબેરીન તેમજ લિગ્નિન પદાર્થોનું સ્થૂલન પટ્ટિકાઓ સ્વરૂપે હોય છે જે પાણી માટે અપ્રવેશશીલ છે. તેને કાસ્પેરિયન પટ્ટિકા કહે છે. અંતઃસ્તર પછી મૃદુતક કોષોના કેટલાક સ્તરો આવેલા હોય છે જે પરિચક્ર બનાવે છે. પાર્શ્વીય અથવા દ્વિતીય મૂળની ઉત્પત્તિ પરિચક્રમાંથી થાય છે.

મૂળનો ગર અથવા મજ્જા મૃદુતકીય કેન્દ્ર ભાગ રચે છે. જલવાહકપેશી અને અન્નવાહકપેશી વચ્ચે આવેલા મૃદુતકીય કોષોને સંયોગીપેશી કહે છે. સામાન્યતઃ બે કે ચાર જલવાહક અને અન્નવાહક સમૂહો હોય છે. અંતઃસ્તરની અંદરની તરફ આવેલી બધી જ પેશીઓ જેવી કે પરિચક્ર, વાહિપુલો અને મજ્જાઓ મધ્યરંભનું નિર્માણ કરે છે. આમ, સૂર્યમુખીના મૂળનુ મધ્યરંભ અરીય, એકાંતરિત અને ચતુઃસૂત્રી હોય છે.

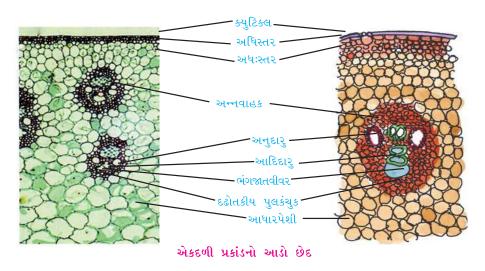
એકદળી મૂળ : એકદળી મૂળની અંતઃસ્થ રચના કેટલેક અંશે દ્વિદળી અંતઃસ્થ રચના સાથે સમાનતા દર્શાવે છે. એકદળી મૂળ પણ અધિસ્તર, બાહ્યક, અંતઃસ્તર, પરિચક્ર, વાહિપુલો અને મજ્જા ધરાવે છે.


મકાઈના મૂળમાં મૂલાધિસ્તરની નીચે જાડી દીવાલ ધરાવતા મૃદુતકીય કોષોનો એક સ્તર આવેલો છે. જેને બહિર્સ્તર કહે છે જયારે અધિસ્તર નાશ પામે ત્યારે બહિર્સ્તર રક્ષણાત્મક કાર્ય કરે છે. બહિર્સ્તરની નીચે બહુસ્તરીય દઢોતક પેશી અધઃસ્તર સ્વરૂપે હોય છે. તે યાંત્રિક મજબૂતાઈ આપે છે.

જલવાહક પેશીના થોડાક સમૂહો ધરાવતા દ્વિદળી મૂળની સરખામણીમાં એકદળી મૂળમાં જલવાહકપેશીના બહિરારંભી સમૂહોની સંખ્યા સામાન્યતઃ છથી વધારે (બહુસૂત્રી) હોય છે. આદિદારૂ પરિધ તરફ અને અનુદારૂ મજ્જા તરફ હોય તે સ્થિતિને બહિરારંભી કહે છે.

મજ્જાપ્રદેશ મોટા અને સ્વિકસિત હોય છે. મધ્યરંભ અરીય, એકાંતરિત અને બહુસૂત્રી હોય છે.

દિદળી પ્રકાંડ : પ્રકાંડનું અધિસ્તર મૃદુતકકોષોના એકસ્તરનું બનેલું છે. કોષોની બહારની સપાટી ક્યુટિકલથી આવરિત હોય છે. અધિસ્તર કેટલાક ઠેકાણે બહુકોષી રોમ ધરાવે છે, જેને પ્રકાંડરોમ કહે છે. અધિસ્તરના કોષો વચ્ચે છૂટાંછવાયાં વાયુરંધ્ર પણ જોઈ શકાય છે.

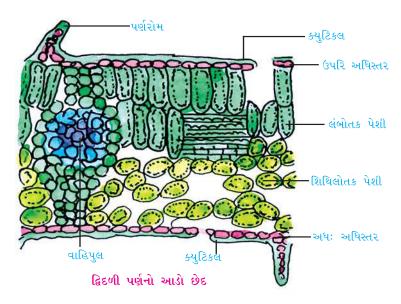

દ્વિદળી પ્રકાંડનો આડો છેદ

અધિસ્તર અને પરિચક્ર વચ્ચેના પ્રદેશના બહુસ્તરોમાં ગોઠવાયેલા કોષો બાહ્યકનું નિર્માણ કરે છે. તે ત્રણ પેટા સ્તરો ધરાવે છે. અધિસ્તરની નીચે સ્થૂલકોણક પેશીના, બહારની તરફ આવેલા કેટલાક સ્તરો અધઃસ્તરનું નિર્માણ કરે છે. અધઃસ્તર પછી બહુસ્તરીય મૃદુતક બાહ્યક આવેલું હોય છે, જે આંતરકોષીય અવકાશો ધરાવે છે. બાહ્યકનું સૌથી અંદરનું સ્તર અંતઃસ્તર કહેવાય છે. અંતઃમૃદુતકીય કોષો સ્ટાર્ચકણો (કાંજીકણો) ધરાવતા હોવાથી તેને કાંજીસ્તર પણ કહે છે.

પરિચક્ર અંતઃસ્તરની નીચે અને અન્નવાહક પેશીની ઉપર દઢોતક પેશીના અર્ધચંદ્રાકાર સમૂહો સ્વરૂપે આવેલું હોય છે.

વાહિપુલો મોટી સંખ્યામાં એક જ વલયમાં ગોઠવાયેલા હોય છે. વાહિપુલની વલયમાં ગોઠવણી એ દ્વિદળી પ્રકાંડનું લક્ષણ છે. વાહિપુલોની વચ્ચે અરીય રીતે ગોઠવાયેલા મૃદુતક કોષોના કેટલાક સ્તરો આવેલા હોય છે. જે મજ્જાકિરણો રચે છે. દરેક વાહિપુલ સહસ્થ, એકપાર્શ્વસ્થ અને વર્ધમાન છે. આદિદારુ કેન્દ્રમાં મજ્જા તરફ અને અનુદારુ પરિઘ તરફ ગોઠવાયેલાં હોવાથી જલવાહકપેશી અંતરારંભી કહેવાય છે. મોટા કદના મૃદુતકકોષો કેન્દ્રમાં ગોઠવાઈ મજ્જાનું નિર્માણ કરે છે.

એકદળી પ્રકાંડ : એકદળી પ્રકાંડમાં અધિસ્તરની નીચે દઢોતકીય અધઃસ્તરના 2થી 4 સ્તરો આવેલા હોય છે.

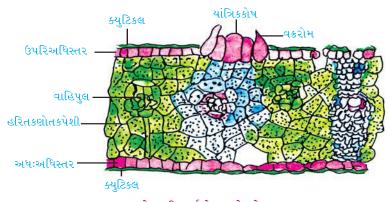

Downloaded from https://www.studiestoday.com

थ्रियिज्ञान

આધારોતક પેશી બાહ્યક, અંતઃસ્તર, પરિચક્ર, મજ્જા અને મજ્જાકિરણો જેવા વિવિધ ભાગોમાં જુદી પાડી શકાતી નથી. તે ગોળ અને અંડાકાર પાતળી દીવાલ અને આંતરકોષીય અવકાશ ધરાવતા મૃદુતકીય કોષોની બનેલી છે.

દઢોતકીય પુલકંચુક ધરાવતા અસંખ્ય વાહિપુલો આધારોત્તકમાં વીખરાયેલાં હોય છે. સામાન્ય રીતે પરિઘ તરફ આવેલા વાહિપુલો કેન્દ્ર તરફ આવેલા વાહિપુલોની સરખામણીમાં નાના હોય છે. વાહિપુલો સહસ્થ અને અવર્ધમાન હોય છે. અન્નવાહક મૃદુતકનો અભાવ હોય છે. પાણી ધરાવતાં ભંગજાત વિવરો વાહિપુલોમાં જોવા મળે છે.

પૃષ્ઠવક્ષીય પર્ણ (દ્વિદળી પર્ણ) : આડા છેદમાં પૃષ્ઠવક્ષીય પર્ણ મુખ્યત્વે અધિસ્તર, મધ્યપર્ણ પેશી અને વાહકપેશીતંત્ર જેવા ત્રણ ભાગો દર્શાવે છે.



મૃદુતકીય ઉપરિઅધિસ્તર અને અધઃસ્તર ક્યુટિકલથી આવરિત હોય છે. તે બહુકોષીય પર્ણરોમ તેમજ વાયુરંધ્રો ધરાવે છે. વાયુરંધ્રોની સંખ્યા ઉપરિઅધિસ્તરની સરખામણીમાં અધઃસ્તરમાં વધારે હોય છે.

આધારોત્તક પેશીતંત્ર હરિતકણોતકનું બનેલું હોય છે. તે બે ભાગ ધરાવે છે. ઉપરિ- અધિસ્તરની નીચેનો ભાગ લાંબા ગાઢ રીતે ગોઠવાયેલા કોષોનો બનેલો હોય છે. તેને લંબોત્તક કહે છે. શિથિલોતક પ્રકારની હરિતકણોતક પેશી શિથિલ રીતે ગોઠવાયેલા કોષોની બનેલી હોય છે. તે અધઃસ્તર તરફના ભાગનું નિર્માણ કરે છે. આ ભાગમાં મોટા વાતાવકાશો આવેલા હોય છે.

બે અધિસ્તર તરફ અલગ પ્રકારની મધ્યપર્શ પેશી હોવાથી દ્વિદળીનું પર્શ દ્વિપાર્શ્વપર્શ (પૃષ્ઠવક્ષીય) કહેવાય છે. વાહકપેશીતંત્રમાં વાહિપુલોનો સમાવેશ થાય છે. તે શિરાઓ તેમજ મધ્યશિરાઓમાં જોવા મળે છે. વાહિપુલો સહસ્થ, એકપાર્શ્વસ્થ અને અવર્ધમાન હોય છે. જલવાહકપેશી ઉપરિઅધિસ્તર તરફ જયારે અન્નવાહકપેશી અધઃઅધિસ્તર તરફ આવેલી હોય છે. વાહિપુલો મૃદ્દતકીય પુલકંચુકથી ઘેરાયેલા હોય છે.

સમદ્વિપાર્શ્વ પર્ણ (એકદળી પર્ણ) : સમદ્વિપાર્શ્વ પર્ણની અંતઃસ્થ રચના પૃષ્ઠવક્ષીય પર્ણની અંતઃસ્થ રચનાથી મહદંશે સામ્ય ધરાવે છે. છતાં તે નીચે મુજબનાં લાક્ષણિક તફાવતો દર્શાવે છે.

એકદળી પર્ણનો આડો છેદ

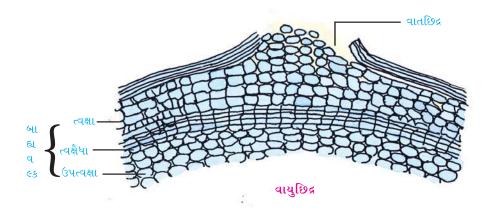
એકદળી પર્શમાં વાયુરંધ્રો અધિસ્તરની બંને સપાટી પર આવેલાં હોય છે. મધ્યપર્શ લંબોત્તક અને શિથિલોત્તક પેશીમાં વિભાજિત હોતું નથી. તૃષ્ણ વનસ્પતિઓના પર્શના ઉપરિઅધિસ્તરમાં નિયત અંતરે ભેજગ્રાહીકોષો આવેલા હોય છે. તે પાંચથી સાત કોષોના સમૂહોમાં હોય છે. તે ક્યુટિકલ કે હરિતક્ષ્ણવિહીન હોય છે. તેમની બંને પાર્શ્વ બાજુએ વકરોમ આવેલા હોય છે. સૂકા વાતાવરષ્ણમાં તેઓ પાણી ગુમાવી સંકોચાય છે. આમ, તે પર્શપત્રને

વીંટાળવામાં સહાયક બને છે. આમ થતાં બાષ્પોત્સર્જન ઘટે છે, ભેજયુક્ત વાતાવરણમાં તે પાણી શોષી ફૂલીને પર્ણપત્રને ખુલ્લું કરે છે. આમ, આ કોષો પર્ણનું હલનચલન પ્રેરતા હોવાથી તેમને યાંત્રિકકોષો પણ કહે છે. આખું મધ્યપર્ણ શિથિલોત્તક પ્રકારના હરિતક્શોત્તકથી બનેલું હોવાથી પર્ણને સમદ્વિપાર્શ્વ પર્ણ કહે છે. મોટા વાહિપુલો દઢોતકીય અને નાના વાહિપુલો મૃદુતકીય પુલકંચુક આવરિત હોય છે.

દ્વિતીયવૃદ્ધિ :

મૂળ અને પ્રકાંડની લંબાઈમાં થતો વધારો અગ્રીય વર્ધનશીલ પેશીને આભારી છે. આવા પ્રકારની વૃદ્ધિ પ્રાથમિક વૃદ્ધિ તરીકે જાણીતી છે. મુખ્યત્વે દ્વિદળી વનસ્પતિઓમાં, પ્રાથમિક વૃદ્ધિ પૂર્ણ થયા બાદ દ્વિતીય પેશીઓના નિર્માણને લીધે જાડાઈમાં વધારો થાય છે. જાડાઈમાં થતા આવા વધારાને દ્વિતીયવૃદ્ધિ કહે છે. દ્વિતીયવૃદ્ધિમાં વાહિએધા અને ત્વક્ષૈધા જેવી પાર્શ્વીય વર્ધનશીલપેશીઓ ભાગ લે છે.

(1) વાહિએધા : વર્ધનશીલપેશીઓ દ્વિતીય જલવાહક અને દ્વિતીય અન્નવાહકનું નિર્માણ કરે છે, જેને વાહિએધા કહે છે. તરુણ પ્રકાંડમાં જલવાહક અને અન્નવાહકની વચ્ચે એક સ્તર સ્વરૂપે ટુકડાઓ (Patches)માં તેની હાજરી હોય છે. ત્યાર બાદ તે સંપૂર્ણ વલયમાં પરિણમે છે.


એધાવલયની રચના : પ્રાથમિક જલવાહક અને પ્રાથમિક અન્નવાહકની વચ્ચે આવેલી એધા પુલીયએધા તરીકે જાણીતી છે. દ્વિતીય વૃદ્ધિની શરૂઆતમાં મજ્જાંશું કે મજ્જાકિરણોના કોષો પુલીય એધા સંપર્કમાં રહીને વર્ધમાન બને છે અને આંતરપુલીય એધાનું નિર્માણ કરે છે. પુલીય એધા અને આંતરપુલીય એધાના જોડાવાથી સળંગ વલય બને છે. તે એધાવલય તરીકે ઓળખાય છે.

હિતીય પેશીઓનું નિર્માણ : એધાવલય કિયાશીલ બનતાં અંદરની અને બહારની એમ બંને બાજુએ થતા વિભાજનથી નવા કોષો ઉત્પન્ન થવાની શરૂઆત થાય છે. અંદરની બાજુએ ઉત્પન્ન થયેલા કોષો દ્વિતીય જલવાહકમાં જ્યારે તેની બહારની બાજુએ ઉત્પન્ન થયેલા કોષો દ્વિતીય અન્નવાહકમાં વિભેદન પામે છે. મજ્જા તરફ એધા વધુ ક્રિયાશીલ બને છે. તેથી દ્વિતીય અન્નવાહકની સાપેક્ષે વધુ પ્રમાણમાં દ્વિતીય જલવાહક ઉત્પન્ન કરે છે. પુખ્ત સ્થિતિએ દ્વિતીય જલવાહક પ્રકાંડનો મુખ્ય ભાગ બને છે. તેના દબાણને લીધે પ્રાથમિક અને દ્વિતીય અન્નવાહક કચડાઈ જાય છે. આથી પ્રાથમિક જલવાહક ઘણા સમય સુધી પોતાનો ગુણધર્મ ગુમાવતી નથી. તેથી એધા કેટલીક જગાએ અન્નવાહક અને જલવાહકને બદલે બહારની અને અંદરની એમ બન્ને તરફ અરીય રીતે લંબાયેલા મૃદુતકકોષોની સાંકડી પટ્ટીઓ સ્વરૂપે હોય છે. આ પટ્ટીઓ દ્વિતીયક મજ્જાંશુઓ કે મજ્જાકિરણોની બનેલી હોય છે. શીતોખ્ય પ્રદેશમાં વર્ષ દરમિયાન આબોહવાકીય પરિસ્થિતિ એકસરખી હોતી નથી. વસંતૠતુમાં એધા ખૂબજ સિક્ય હોવાથી ઘણી સંખ્યામાં કાષ્ઠતત્ત્વો ઉત્પન્ન કરે છે. આ કાષ્કને વસંતકાષ્ઠ કે પૂર્વકાષ્ઠ કહે છે. શિયાળામાં એધા ઓછી ક્રિયાશીલ હોવાથી થોડાક પ્રમાણમાં કાષ્ઠ તત્ત્વો ઉત્પન્ન કરે છે. તે શરદકાષ્ઠ કે માજકાષ્ઠ તરીકે જાણીતું છે.

મધ્યકાષ્ઠ અને રસકાષ્ઠ : ઘરડા પ્રકાંડમાં જયાં પૂરતા પ્રમાણમાં દ્વિતીય વૃદ્ધિ થાય છે, જે જગ્યાએ, દ્વિતીય કાષ્ઠ જલવાહક શક્તિ ગુમાવે છે અને તેના કોષો ટેનિન અને અન્ય પદાર્થોથી ભરેલા હોય છે. તે સખત અને ટકાઉ બનતાં રંગે કાળાશ પડતું હોય છે. આ પ્રદેશ સખત કાષ્ઠ કે મધ્યકાષ્ઠ તરીકે જાણીતો છે. તેનું કાર્ય વનસ્પતિને યાંત્રિક મજબૂતાઈ આપવાનું છે. દ્વિતીય કાષ્ઠનો બહારનો પ્રદેશ કે જે તરુણ જલવાહક કોષો ધરાવતો રંગે પીળાશ પડતો છે, જે રસકાષ્ઠ કે રસદારુ તરીકે જાણીતો છે. તેનું કાર્ય જલવાહકતાનું છે.

(2) ત્વક્ષેધા : વાહિએધાની ક્રિયાશીલતાને કારણે પ્રકાંડની જાડાઈમાં વધારો થાય છે. આથી બાહ્યક અને અધિસ્તરીય પડ પર દબાણ વધે છે. પરિણામે આ સ્તરો તૂટી જાય છે. તેથી જલદીથી કે પછીથી હંમેશાં બાહ્યક પ્રદેશમાં બીજી વર્ધનશીલ પેશીઓ બને છે. તેને ત્વક્ષેધા વિકાસ કહે છે. ત્વક્ષેધા બંને બાજુએ કોષો ઉમેરે છે. બહારના કોષો ત્વક્ષામાં વિભેદિત થાય છે, જ્યારે અંદર તરફના કોષો દ્વિતીય બાહ્યક કે ઉપત્વક્ષામાં વિભેદન પામે છે. ત્વક્ષેધા, ત્વક્ષા અને ઉપત્વક્ષા એકત્રિત થઈ જે રચના બનાવે છે તેને બાહ્યવલ્ક કહે છે. ત્વક્ષેધાની બહારની બાજુ પર નવા કોષો બનતાં તેમનું દ્રવ્ય ગુમાવતાં અને હવાથી ભરાઈ જતાં સપાટીને અરીય રીતે બહુકોણીય હરોળમાં ગોઠવાતાં તે નિર્જીવ કે મૃત અપ્રવેશશીલ સ્તર બનાવે છે. આ સ્તરને છાલ કહે છે. ત્વક્ષાના કોષો સ્યુબેરિનયુક્ત થતાં પાણી માટે અપ્રવેશશીલ બને છે. બહારની પેશીઓ નિર્જીવ થતાં છાલમાં પરિણમે છે. આથી ત્વક્ષેધાની બહારની તરફ ફરતે બધી બાજુએ મૃત પેશીઓ સમાવિષ્ટ છાલ હોય છે. છાલ પૂર્વછાલ કે નરમ છાલ સ્વરૂપે અને અંતે પાછળથી પુરાણી છાલ કે સખત છાલમાં પરિણમે છે.

બાહ્યવલ્કનું નિર્માણ થતાં વાયુરંધ્રો બંધ થાય છે. તેથી ત્વચીય (અધિસ્તરીય) શ્વસન અવરોધાય છે. તેને સ્થાને છાલમાં હવાદાર છિદ્રો બને છે, જેને વાયુછિદ્રો કહે છે. આ છિદ્રો દ્વારા વાયુઓની આપ-લે અને પાણીનું બાષ્પીભવન થાય છે.

મૂળમાં દિતીય વૃદ્ધિ : દિદળી વનસ્પતિઓના મૂળમાં અન્નવાહક સમૂહોની લગોલગ નીચે રહેલી પેશીઓમાંથી પટ્ટીઓ સ્વરૂપે વાહિએધા ઉદ્ભવે છે. પટ્ટીઓની સંખ્યા અન્નવાહક સમૂહોની સંખ્યા પર આધારિત છે. આ પટ્ટીઓ જલવાહક અને અન્નવાહકની વચ્ચે તરફ લંબાય છે અને છેવટે એકબીજા સાથે જોડાઈ સળંગ વલય બનાવે છે. ત્યાર બાદની હકીકત ઉપર વર્શવ્યા પ્રમાણે દ્વિદળી વનસ્પતિઓના પ્રકાંડની જેમજ સરખી છે.

સારાંશ

સમાન ઉત્પત્તિ ધરાવતા અને નિશ્ચિત કાર્યો કરતા કોષોના સમૂહને પેશી કહે છે. વનસ્પતિમાં બે પ્રકારની પેશીઓ હોય છે : (1) વર્ધનશીલ પેશી અને (2) સ્થાયી પેશી.

વર્ધનશીલ પેશી વિભાજન પામતા કોષોની બનેલી હોય છે. તેઓના સ્થાનને આધારે તે ત્રણ પ્રકારમાં વર્ગીકૃત કરવામાં આવે છે : (1) અગ્રીય વર્ધનશીલ પેશી, (2)આંતર્વિષ્ટ વર્ધનશીલ પેશી અને (3) પાર્શ્વીય વર્ધનશીલ પેશી. અગ્રસ્થ અને આંતર્વિષ્ટ વર્ધનશીલ પેશી પ્રાથમિક વનસ્પતિ દેહના નિર્માણમાં ભાગ લે છે. પાર્શ્વીય વર્ધનશીલ પેશી, પ્રાથમિક વર્ધનશીલ પેશીના નિર્માણ પછી દેખાતી હોવાથી દ્વિતીય વર્ધનશીલ પેશી તરીકે ઓળખાય છે.

સ્થાયી પેશીના કોષો કોષવિભાજનનો ગુણધર્મ ધરાવતા નથી. આ પેશી રચના અને કાર્યની દેષ્ટિએ વિશિષ્ટ બને છે. સ્થાયી પેશીઓ સરળ કે જટિલ હોય છે. સરળ સ્થાયી એક જ પ્રકારના કોષોથી બનેલી હોય છે. તેઓ મૃદુતક, સ્થૂલકોણક અને દઢોતક પેશીઓમાં વર્ગીકૃત કરવામાં આવે છે. જટિલ સ્થાયી પેશી એક કરતાં વધુ પેશીઓનો સમૂહ છે, તે સમાન ઉત્પત્તિ ધરાવે છે અને ભેગી મળી એક એકમ તરીકે કાર્ય કરે છે. આ પેશીઓ પાણી, ખનિજ તત્ત્વો અને પોષકદ્રવ્યોના વહન સાથે સંકળાયેલી હોય છે. જલવાહક પેશી અને અન્નવાહક પેશી જટિલ સ્થાયી પેશીઓ છે.

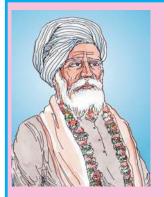
વનસ્પતિનાં અંગો જેવાં કે મૂળ, પ્રકાંડ અને પર્શમાં ત્રણ પ્રકારનાં પેશીતંત્રો હોય છે. અધિસ્તરપેશી તંત્ર કે જે અધિસ્તર અને સંબંધિત રચનાઓ જેવી કે ક્યુટિકલ, રોમ, વાયુરંધ્રો વગેરે દ્વારા દર્શાવાય છે. આધારપેશી તંત્ર જે અધઃસ્તર, બાહ્યક, અંતઃસ્તર, પરિચક્ર અને મજ્જાનું બનેલું હોય છે. સંવહનવાહક પેશીતંત્ર એ જલવાહક પેશી અને અન્નવાહક પેશીનું બનેલું હોય છે.

મોટાભાગની દ્વિદળી વનસ્પતિઓમાં પ્રાથમિક વૃદ્ધિ પછી પહોળાઈમાં થતો વધારો દ્વિતીય પેશીના નિર્માણના લીધે થાય છે. દ્વિતીયવૃદ્ધિ પુલીય એધા અને ત્વક્ષેધા જેવી પાર્શ્વીય વર્ધનશીલ પેશીઓ દ્વારા થાય છે.

મૂળ અને પ્રકાંડની લંબાઈમાં થતો વધારો અગ્રીય વર્ધનશીલ પેશીને આભારી છે. આવા પ્રકારની વૃદ્ધિ પ્રાથમિક વૃદ્ધિ તરીકે જાણીતી છે. દ્વિતીય વૃદ્ધિમાં વાહિએધા અને ત્વક્ષૈધા જેવી પાર્શ્વીય વર્ધનશીલ પેશીઓ ભાગ લે છે. આ દ્વિતીય પેશીઓ છે, જે જાડાઈ/પહોળાઈમાં વધારા માટે જવાબદાર છે.

સ્વાધ્યાય

1.	નીચે		સામે	સર્કલ	માં પેન્સિલથી રંગ પૂરો :	
	(1)	જે પેશીકોષો વિભેદનનો ગુણધર્મ ધરાવે	વે તે	પેશીને	શું કહે છે ?	
		(અ) સ્થાયી પેશી	\bigcirc	(어)	વર્ધનશીલ પેશી	\bigcirc
		(ક) જલવાહક પેશી	$\tilde{\bigcirc}$	(3)	અન્નવાહક પેશી	$\tilde{\bigcirc}$
	(2)	વર્ધનશીલ પેશી કે જે વનસ્પતિની લંબ	ં મ અક્ષે	ા વૃદ્ધિ	માટે જવાબદાર છે.	Ŭ
		(અ) પાર્શ્વીય વર્ધનશીલ પેશી	\bigcirc	(બ)	અગ્રીય વર્ધનશીલ પેશી	\bigcirc
		(ક) એધા	$\tilde{\bigcirc}$	(3)	ત્વક્ષૈધા	\bigcirc
	(3)	નીચેની પૈકી કઈ પ્રાથમિક વર્ધનશીલ	ુ પેશી	છે ?		Ŭ
		(અ) આંતર્વિષ્ટ વર્ધનશીલ પેશી	\bigcirc	(બ)	પાર્શ્વીય વર્ધનશીલ પેશી	\bigcirc
		(ક) એધા	$\tilde{\bigcirc}$	(3)	ત્વક્ષૈધા	Ŏ
	(4)	નીચેની પૈકી કઈ પેશી મૃત જાડી કોષ્	્ યદીવાલ	લ ધરા	વે છે ?	Ŭ
		(અ) મૃદુતક પેશી	\bigcirc	(બ)	સ્થૂલકોણક પેશી	\bigcirc
		(ક) દઢોતક પેશી	$\tilde{\bigcirc}$	(3)	વર્ધનશીલ પેશી	Ŏ
	(5)	કયા પ્રકારની પેશીમાં કોષની અંદરની	. દીવા	.લ પેિ	ક્ટેનનું સ્થૂલન દર્શાવે છે ?	Ü
		(અ) મૃદુતક પેશી	\bigcirc	(બ)	સ્થૂલકોણક પેશી	\bigcirc
		(ક) દઢોતક પેશી	$\widetilde{\bigcirc}$	(3)	વર્ધનશીલ પેશી	Ŏ
	(6)	નીચેની પૈકી કઈ પેશી અંગોને સ્થિતિ	્ સ્થાપક	તા અ	ને નમ્યતા બક્ષે છે ?	Ŭ
		(અ) મૃદુતક પેશી	\bigcirc	(બ)	સ્થૂલકોણક પેશી	\bigcirc
		(ક) દઢોતક પેશી	$\tilde{\bigcirc}$	(3)	વર્ધનશીલ પેશી	$\widetilde{\bigcirc}$
	(7)	જલવાહક પેશીનો જીવંત ઘટક કયો છે	9 ?			Ů
		(અ) જલવાહિનિકી	\bigcirc	(બ)	જલવાહિની	\bigcirc
		(ક) જલવાહક મૃદુતક	$\widetilde{\bigcirc}$	(3)	જલવાહક તંતુઓ	$\tilde{\bigcirc}$


(8)	અન્નવાહક પેશીનો મૃત ઘટક કયો છે ?		
	(અ) ચાલનીકોષ (બ) સાથી:	કોષ	\bigcirc
	(ક) અન્નવાહક મૃદુતક (ડ) અન્નવ	ગ્રાહક તંતુ	Ŏ
(9)	કાસ્પેરિયન પટ્ટિકા કોના અંતઃસ્તરમાં જોવા મળે છે ?		
	(અ) દ્વિદળી મૂળના (બ) એકદળ	ગી પ્રકાંડ ન ા	\bigcirc
	(ક) એકદળી પર્શના (ડ) દ્વિદળી	l પ્રકાંડના	\bigcirc
(10)	કયા અંગમાં સ્થૂલકોણીય અધઃસ્તર જોઈ શકાય છે ?		
	(અ) દ્વિદળી પ્રકાંડમાં 🥥 (બ) એકદળ	ળી પ્રકાંડમા ં	\bigcirc
	(ક) એકદળી પર્શમાં 🥥 (ડ) દ્વિદળી	ા પર્શમાં	\bigcirc
(11)	કયા અંગમાં દઢોતક અધઃસ્તર જોઈ શકાય છે ?		
	(અ) દ્વિદળી પ્રકાંડમાં 🥥 (બ) એકદળ		\bigcirc
	(ક) દ્વિદળી મૂળમાં (ડ) દ્વિદળી	ા પર્શમાં	\bigcirc
(12)	વનસ્પતિના કયા અંગમાં મધ્યરંભ અરીય એકાંતરિત અને	0 %	
	(અ) એકદળી પ્રકાંડમાં 🔘 (બ) એકદ	σ,	\bigcirc
	(ક) દ્વિદળી પ્રકાંડમાં 🥥 (ડ) દ્વિદળી	C.	\bigcirc
(13)	વનસ્પતિના કયા અંગમાં મધ્યરંભ અરીય એકાંતરિત અને	·	_
		ળી મૂળ	\bigcirc
24.45	(ક) દ્વિદળી પ્રકાંડ (ડ) દ્વિદળી	્યૂળ	\bigcirc
(14)	ભેજગ્રાહી કોષો કયા અંગમાં હોય છે ?	.a	
	(અ) દ્વિદળી પર્ણમાં (બ) એકદળ (ક) દ્વિદળી પ્રકાંડમાં (ડ) એકદળ	ગા પક્ષમા ગી પ્રકાંડમાં	\bigcirc
ىرور	(ક) દ્વિદળી પ્રકાંડમાં (ડ) એકદળ પ્રશ્નોના ટૂંકમાં જવાબ આપો :	યા પ્રકાડ ન ા	\cup
નાચના (1)	ત્રશ્રાના ટૂંકના જવાબ આવા વર્ધનશીલ પેશીની વ્યાખ્યા આપો.		
	જટિલ સ્થાયીપેશીની વ્યાખ્યા આપો.		
(3)	વસંતકાષ્ઠ કે પૂર્વકાષ્ઠ એટલે શું ?		
(4)	- દ્વિદળી પર્શ શા માટે પૃષ્ઠવક્ષીય પર્શ તરીકે ઓળખાય છે	o ?	
(5)	વ્યાખ્યા આપો : અરીય અને એકપાર્શ્વસ્થ વાહિપુલ	•	
. ,	ા પ્રમાણે જવાબ આપો :		
(1)	સ્થૂલકોણક અને દઢોતક વચ્ચે તફાવત જણાવો.		
(2)	મધ્યકાષ્ઠ અને રસકાષ્ઠ વચ્ચે તફાવત જણાવો.		
(3)	કારણ આપો : ભેજગ્રાહી કોષો મકાઈના પર્ણમાં આવેલા	. હોય છે.	
(4)	કારણ આપો : સ્થૂલકોણક પેશી જીવંત યાંત્રિક પેશી તર્ર	ીકે ઓળખાય છે.	
(5)	્ર સમદ્વિપાર્શ્વ પર્ણ અને પૃષ્ઠવક્ષીય પર્ણ વચ્ચે તફાવત આપ્		
(6)	વર્ધમાન પેશીના ગુણધર્મો લખો.		
(7)	અાધારપેશી તંત્રનું નિર્માણ કરતા ભાગોનાં નામ આપો.		
(8)	કાસ્પેરિયન પટ્ટિકાનું સ્થાન અને કાર્યો જણાવો.		
(9)	પુલીય એધાનું સ્થાન અને કાર્ય જણાવો.		
	પાર્શીય વર્ધનશીલ પેશીનં સ્થાન અને કાર્ય જણાવો.		
(10)	- पाळाच प्रपच्चाल प्रभाग स्थान स्थान स्थ %शापा		

2.

3.

4. વિસ્તૃત જવાબ આપો:

- (1) જલવાહકપેશીના વિવિધ ઘટકોની રચના અને કાર્યો સમજાવો.
- (2) સરળ સ્થાયી પેશીના પ્રકારો વર્ણવો.
- (3) અન્નવાહકપેશીના વિવિધ ઘટકોની રચના અને કાર્ય સમજાવો.
- (4) વનસ્પતિનાં વિવિધ અંગોમાં આવેલાં વિવિધ પ્રકારનાં પેશીતંત્રો સમજાવો.
- (5) પુલીય એધા કેવી રીતે દ્વિતીય વૃદ્ધિ માટે જવાબદાર છે તે સમજાવો.
- (6) એકદળી મૂળની અંતઃસ્થ રચના સમજાવો.
- (7) દ્વિદળી પ્રકાંડની અંતઃસ્થ રચના, નામ-નિર્દેશનવાળી આકૃતિ સાથે વર્ણવો.
- (8) એકદળી પર્ણની અંતઃસ્થ રચના સમજાવો.
- (9) દ્વિદળી પર્ણની અંતઃસ્થ રચના વર્ણવો.
- (10) દ્વિદળી મૂળનું મધ્યરંભ આકૃતિ સહિત સમજાવો.

प्रकृतिविद् श्री જચકૃष्ण छन्द्रशु

પ્રકૃતિવિદ્ શ્રી જયકૃષ્ણનો જન્મ કચ્છમાં લખપત નામના ગામમાં સંવત ૧૯૦૫ના આસો સુદ ૧૦ (વિજયાદશમી)ના દિવસે, ગિરનારા બ્રાહ્મણ જ્ઞાતિમાં થયો હતો. તેમના પિતાનું નામ ઇન્દ્રજી ઠાકર હતું. જયકૃષ્ણમાં કસરતનો શોખ બાલ્યાવસ્થાથી અસાધારણ હતો, જે જંગલોના ભ્રમણમાં કારગત નીવડ્યો. યુવાવસ્થા મથુરામાં વીતી.

પૂ. ગાંધીજી તેમના 'નવજીવન' અંક ડિસેમ્બર ૨૨, ૧૯૨૯માં જયકૃષ્ણ ઇન્દ્રજી વિશે લખે છે કે વનસ્પતિની શોધખોળ અર્થે તેઓ બરડાના ડુંગરમાં અનેકવાર ભટક્યા હતા. પોતાના ઘરમાં જ તેમણે અનેક પ્રકારની વનસ્પતિઓનું સંગ્રહસ્થાન બનાવ્યું હતું. તેમનામાં વનસ્પતિઓ ઓળખવાની એક ધૂન હતી તેથી

હું એમને હંમેશાં 'આદર્શ વિદ્યાર્થી' ગણતો.

શ્રી જયકૃષ્ણે કોઈ પણ યુનિવર્સિટીમાં વૈજ્ઞાનિક પદવી નહોતી મેળવી, પણ તેઓએ વિજ્ઞાનની ઉપાસના કરી હતી.

વિજ્ઞાનમાર્ગના કોઈ પણ પ્રવાસીને પ્રેરણા આપે એવી વિજ્ઞાનભક્તિ એમનામાં હતી. તેઓ દિવસ-રાત વનસ્પતિશાસ્ત્રની ઝંખના કર્યા કરતા. સાચે જ તેઓ ગુજરાતના લીનીયસ હતા.

કુદરતના ખડતલ ભક્ત હતા અને પુસ્તકોના પરમ ભક્ત.

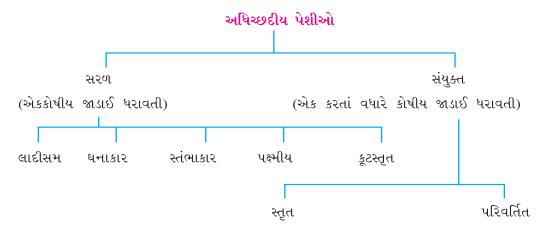
પં. ભગવાનલાલભાઈના માર્ગદર્શન તળે પ્રથમ ફૂલછોડ ઓળખવા માંડ્યા. તેમની પ્રેરણાથી તેઓએ હૂકરનું વનસ્પતિવિદ્યાનું પુસ્તક વાંચેલું અને વનસ્પતિઓનાં અંગ્રેજી નામો જાણતા થયેલા. ત્યાર બાદ તેઓ ડૉ. સખારામ અર્જુન (વનસ્પતિશાસ્ત્રી)ના પરિચયમાં આવ્યા. તેમના દ્વારા જયકૃષ્ણનો પરિચય ડૉ. મેકડૉનાલ્ડ (વનસ્પતિશાસ્ત્રના અધ્યાપક) સાથે થયો. અન્ય ઘણા યુરોપિયન મિત્રોએ તેમના જ્ઞાનની કદર કરી મદદ પણ કરી હતી. આ મિત્રો પાસેથી તેઓએ ઉદ્યમીપણા અને નિયમિતતાના ગુણ કેળવ્યા. શરૂઆતમાં તે 'વૈદ્ય કલ્પતરુ' માસિકમાં વનસ્પતિઓ વિશે લખતા. ત્યાર બાદ તેમણે 'વનસ્પતિશાસ્ત્ર' અને 'કચ્છ જડીબુટ્ટી' જેવાં પુસ્તકો લખ્યાં.

અંગ્રેજી સાહિત્યના તે જમાનાનાં બધાં જ જાણીતાં પુસ્તકો તેમની હોમ લાઇબ્રેરીમાં હતાં. અંગ્રેજોએ તેમને કેટલાંક પુસ્તકો ભેટ આપ્યાં હતાં.

હૂકરનાં વૉલ્યુમ તેમને ખૂબ પ્રિય હતાં.

જયકૃષ્ણનું જીવન લોકોત્તર હતું. તેમના જીવનનો પૂર્વાર્ધ કેવળ વનસ્પતિશાસ્ત્રના અભ્યાસ-મનનમાં વ્યતીત થયો હતો, જીવનનો ઉત્તરાર્ધ એમણે ઈશ્વરભક્તિમાં અને અખંડ કર્તવ્યશીલતામાં વ્યતીત કર્યો. કમળ એ તેમનું પ્રિય ફૂલ હતું. સંવત ૧૯૮૬ના માગસર સુદ ૨ના રોજ ભૂજમાં આ મહાન આત્મા અદેશ્ય થયો.

તમે અભ્યાસ કરી ગયાં કે શરીરની આયોજન-પ્રક્રિયા ક્રમબદ્ધ રહી છે જેમાં બહુકોષીય રચના જટિલ બની છે. કાર્યની વહેંચણી અને પારસ્પરિક સંકલનની જરૂરિયાત જણાઈ તેના પરિણામસ્વરૂપે એક જ સમાન રચના અને કાર્ય ધરાવતા કોષસમૂહો દ્વારા પેશીની રચના થઈ. તેની ક્રમાનુસાર ગોઠવણી નીચે મુજબ છે :

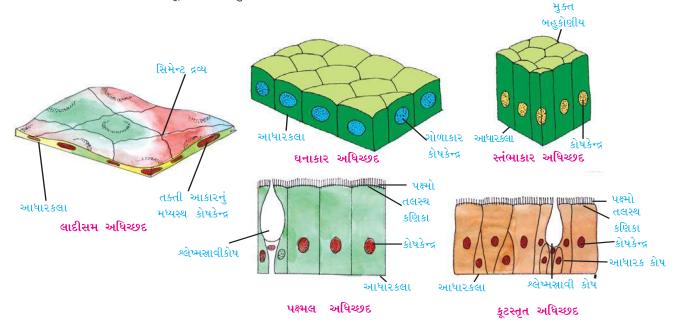


આ પ્રકરણનો હેતુ પ્રાણીઓમાં જોવા મળતી વિવિધ પ્રકારની પેશીઓને સમજવાનો છે. પ્રાણીઓ મુખ્યત્વે ચાર પ્રકારની પેશીઓ ધરાવે છે. દરેક પેશીને તેનાં લક્ષણો અને વિશિષ્ટ દેખાવ હોય છે. આ પેશીઓ નીચે મુજબ છે :

- (1) અધિચ્છદીય પેશી (2) સંયોજક પેશી (3) સ્નાયુપેશી (4) ચેતાપેશી
- (1) અધિચ્છદીય પેશી: અધિચ્છદીય પેશી રક્ષણ, શોષણ અને સાવ જેવાં કાર્યો માટે ખૂબ જ વિશિષ્ટ સ્વરૂપની બનેલી છે. તે શરીરની બાહ્ય સપાટી તેમજ ઘણાં અંતઃસ્થ અંગોની અંદરની મુક્ત સપાટીનું આવરણ કરે છે. કાર્યને અનુરૂપ તેના કોષોની ગોઠવણીમાં વૈવિધ્ય જોવા મળે છે. દા.ત., ચામડી તથા મોટા ભાગનાં અંગોની સપાટી અધિચ્છદીય કલાથી રક્ષણ માટે આવરિત હોય છે, જ્યારે કેટલીક અધિચ્છદીય સપાટીઓ શોષણ કરનારી અને સાવી પણ હોય છે.

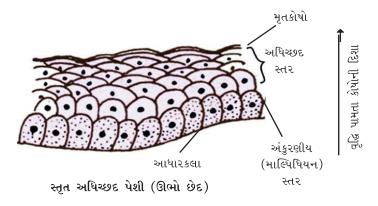
અધિચ્છદીય પેશીના કોષો તેમના ખૂબ જ ઓછા બાહ્યકોષીય દ્રવ્ય અથવા આધારક વડે એકબીજા સાથે ગાઢ રીતે જોડાયેલા રહે છે. આ દ્રવ્ય આ કોષોની નીપજ છે. અધિચ્છદ કોષો અકોષીય આધારકલા ઉપર ગોઠવાયેલા હોય છે. ચામડી, પાચનમાર્ગ, રુધિરવાહિનીઓ, પાચકગ્રંથિઓ, શ્વસનાંગોની સપાટીઓ વગેરે અધિચ્છદીય પેશીથી આચ્છાદિત હોય છે. રચના અને કાર્યને આધારે અધિચ્છદીય પેશીઓ મુખ્ય બે જૂથમાં વહેંચાયેલી છે : આચ્છાદિત અધિચ્છદીય પેશી અને ગ્રંથીય અધિચ્છદીય પેશી.

અધિચ્છદીય પેશીના વિવિધ પ્રકાર નીચે મુજબ છે :



- (A) સરળ અધિચ્છદીય પેશી : સરળ અધિચ્છદીય પેશીના કોષો એકસ્તરીય ગોઠવણી ધરાવે છે. આંતરકોષીય દ્રવ્ય જોવા મળતું નથી. સરળ અધિચ્છદીય પેશીઓને તેમના કોષોના સ્વરૂપને અનુલક્ષીને વર્ણવી શકાય.
- (i) લાદીસમ અધિચ્છદ : આ પ્રકારની પેશીના કોષો ખૂબ જ પાતળા અને વધુ પડતા સપાટ હોય છે. બધા જ કોષો એકબીજાની કિનારીઓને અડકે તે રીતે ગોઠવાઈને પાતળું આચ્છાદન રચે છે. તેના કોષો સિમેન્ટ દ્રવ્યથી જોડાયેલા હોય છે. સપાટીથી જોતાં આ પેશી લાદીની જેમ ગોઠવાયેલી માલૂમ પડતી હોવાથી તેને મોટેભાગે લાદીસમ અધિચ્છદપેશી કહે છે. તેના કોષો પાતળા, સપાટ અને બહુકોણીય હોય છે જે મધ્યમાં ગોળાકારકે અંડાકાર જેવાં વિશિષ્ટ કોષકેન્દ્ર ધરાવે છે (આકૃતિ મુજબ). તેનું મુખ્ય કાર્ય અંદર રહેલી પેશીનું રક્ષણ કરવાનું હોય છે. દેડકાની ચામડીનું સૌથી બહારનું સ્તર લાદીસમ અધિચ્છદ પેશીનું બનેલું હોય છે. તે ફેફસાંમાં વાયુકોષ્ઠોની અંતઃસપાટીનું, રુધિરવાહિનીઓની અંતઃસપાટી, મૂત્રપિંડની બાઉમેનની કોથળી અને દેહગુહાનું પરિસ્તર રચે છે.
- (ii) ઘનાકાર અધિચ્છદ : ઘનાકાર કોષો પેશીના ઊભા છેદમાં ચોરસ અને આડા છેદમાં બહુકોણીય દેખાતા હોય છે. રક્ષણ ઉપરાંત આ કોષો સ્નાવ (જઠરરસ, અંતઃસ્નાવ વગેરે), ઉત્સર્જન અને અભિશોષણ જેવી ક્રિયાઓમાં ભાગ લે છે. કોષો અવશોષી સપાટીઓ પર તેમના મુક્ત છેડે કેટલીક વખત સૂક્ષ્મરસાંકુર ધરાવે છે. દા.ત., મૂત્રપિંડની અગ્રસ્થ નલિકાઓ, લાળગ્રંથિઓ, સ્વાદુપિંડનળીઓ, થાઇરોઇડગ્રંથિ અને અંડપિંડ.
- (iii) સ્તંભાકાર અધિચ્છદ : આ પેશીના કોષો લંબિત અને સ્તંભ સ્વરૂપે એકબીજાને અડકીને ગોઠવાયેલા હોય છે (આકૃતિ મુજબ). સામાન્યતઃ તેઓના અંદર તરફના છેડા સાંકડા; પરંતુ મુક્ત છેડા પહોળા અને બહુકોણીય હોય છે. સ્તંભાકાર અધિચ્છદનું કાર્ય સ્નાવ અથવા અભિશોષણનું હોય છે. સાદી સ્તંભાકાર અધિચ્છદ જઠર, આંતર્ડું, પિત્તાશય અને મૂત્રજનન-અંગો અને તેમની નળીઓમાં શ્લેષ્મકલાનું આચ્છાદન રચે છે.
- (iv) પક્ષ્મલ અધિચ્છદ : આ પેશી સ્તંભીય અધિચ્છદનું જ રૂપાંતરણ છે. તેના કોષો તેમની મુક્ત સપાટી પર પાતળા પ્રાથમિક જીવરસીય પ્રવર્ધો ધરાવે છે, જેને પક્ષ્મો કહે છે (આકૃતિ મુજબ). તેથી આ પેશી પક્ષ્મલ

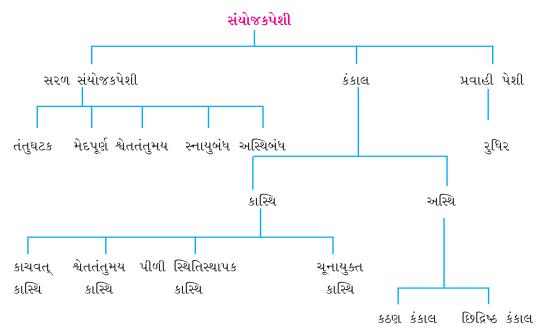
ज्यविज्ञान


અધિચ્છદ તરીકે ઓળખાય છે. પક્ષ્મો અતિ કોમળ અને સતત હલતા હોય એવા પ્રાથમિક જીવરસીય વાળ જેવા પ્રવર્ધમય રચનામાંથી બનેલા હોય છે. પક્ષ્મોનું કાર્ય સૂક્ષ્મકશો, મુક્ત કોષો અને શ્લેષ્મને કોઈ ચોક્કસ દિશા તરફ્ર ધકેલવાનું હોય છે. તેઓ કર્શનલિકા, મૂત્રપિંડનલિકા અને શ્વસનમાર્ગ જેવાં અંગોમાં હોય છે.

(v) ફૂટસ્તૃત અધિચ્છદ : આ પેશી સાદી સ્તંભીય અધિચ્છદ જ છે; પરંતુ તેની કોષની થવી જોઈતી નિયમિત ગોઠવણી વિક્ષેપ પામેલી હોય છે. આ પ્રકારની અધિચ્છદીય પેશીમાં કોષો એકબીજાને વીંટાઈને આભાસી (ફૂટ) રચના ઊભી કરે છે. વાસ્તવમાં કોષોની ગોઠવણી એકસ્તરીય હોય છે; પરંતુ દેખાવ બહુસ્તરીય લાગે છે. આ પ્રકારની અધિચ્છદીય પેશી શ્વાસનળીમાં અને મોટી શ્વસનનલિકાઓની અંતઃસપાટી પર હોય છે જે શ્લેષ્મ દૂર ખસેડવાનું કાર્ય કરે છે.

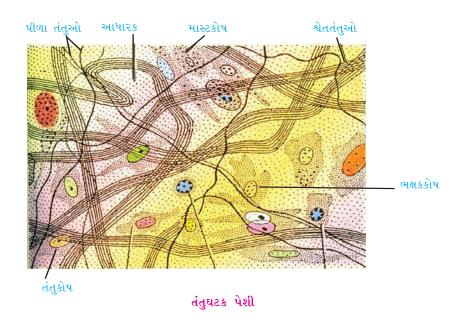
(B) સંયુક્ત અધિચ્છદ : સંયુક્ત અધિચ્છદ બે પ્રકારની હોય છે કે જે અનેકસ્તરીય કોપોયુક્ત હોય છે : (1) સ્તૃત અને (2) પરિવર્તિત. શરીરમાં સ્તૃત અધિચ્છદીય પેશી જે ભાગોમાં ઘસારો વધુ હોય ત્યાં જોવા મળે છે. જેમ કે ચામડીનું અધિચર્મ, મુખગુહાની સપાટી, જિહ્વા, અન્નનળી અને સસ્તનોમાં યોનિમાર્ગ. આવાં અંગોને તે ટકાઉ આચ્છાદન પૂરું પાડે છે. આ અધિચ્છદમાં જુદા જુદા સ્તરો રચતા કોષો એક જ આકારના હોતા નથી. તે એક કરતાં વધુ સ્તરીય ગોઠવણી ધરાવતું હોવાને કારણે બહુસ્તરીય સ્વરૂપે જોવા મળે છે. સૌથી નીચેના સ્તરના કોષો આધારકલા ઉપર ગોઠવાયેલા હોય છે. તેને અંકુરણીય સ્તર અથવા માલ્પિધિયન સ્તર કહે છે. ઘસારાને કારણે મુક્ત સપાટીના કોષો ચપટા બનતા જાય છે અને દૂર થતા જાય છે. જ્યારે નીચે તરફના કોષો વિભાજન દ્વારા નવા કોષો ઉપર તરફ ઉમેરાતા જાય છે. આ પ્રકારની અધિચ્છદીય પેશીનું મુખ્ય કાર્ય તેની નીચે આવેલી પેશીઓનું રક્ષણ કરવાનું હોય છે. ઘનાકાર સ્તૃત અધિચ્છદમાં છીછરી સપાટી પરના કોષો ઘનાકાર હોય છે. આવી પેશી લાળગ્રંથિ અને સ્વાદુપિંડની મોટી નલિકાઓમાં હોય છે. ફરીથી લાદીસમ સ્તૃત અધિચ્છદના બે પ્રકાર પડે છે : (1) કેરાટીનવિહીન સ્તૃત લાદીસમ અને (2) કેરાટીનયુક્ત સ્તૃત લાદીસમ. જયારે કોષીય સપાટી અદ્રાવ્ય પ્રોટીન (કેરાટીન) ધરાવતી હોય ત્યારે તેને કેરાટીનયુક્ત અધિચ્છદ કહે છે.

બીજા વિશિષ્ટ પ્રકારના સંયુક્ત અધિચ્છદને પરિવર્તિત અધિચ્છદ કહે છે. તે ઉત્સર્ગ અંગોના માર્ગમાં હોય છે.



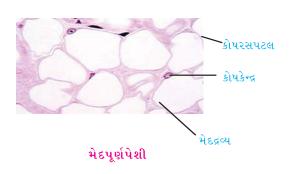
(2) સંયોજકપેશી : સંયોજક પેશી એ તેના જ કોષો દ્વારા જ સ્રાવિત આંતરકોષીય દ્રવ્ય કે આધારક તથા કોષોનો સમૂહ છે. તેના કોષો વચ્ચે જગ્યા વધુ હોય છે. તેનું નામ સંયોજક પેશી એટલા માટે છે કે તે શરીરની બીજી પેશીઓને એક બીજી સાથે જોડવાનું કાર્ય કરે છે.

પેશીનાં કાર્યો :

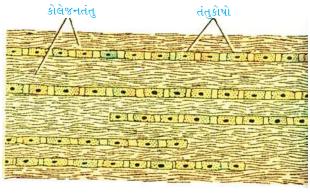

- (i) રચનાઓનું જોડાણ કરવાનું
- (ii) અંગો ફરતે ચુસ્ત બંધન કરવું.
- (iii) ઈજાથી નુકસાન પામેલી પેશીઓ દૂર કરવી.
- (iv) બાહ્ય વિષદ્રવ્યો સાથે સંઘર્ષ કરવો.
- (v) આધાર આપતું ચોકઠું રચવું. (કંકાલનું કાર્ય)

સંયોજકપેશીઓ નીચે મુજબ ત્રણ મુખ્ય જૂથમાં મુકાય છે :

(A) સરળ સંયોજકપેશી : સંયોજકપેશીનું અર્થઘટન જ એવું થાય છે કે જે શરીરનાં અંગોને જોડવાનું કાર્ય કરે છે. જે પાંચ પ્રકાર ધરાવે છે : (i) તંતુઘટક, (ii) મેદપૂર્ણ, (iii) શ્વેતતંતુમય, (iv) સ્નાયુબંધ, (v) અસ્થિબંધ.


५६० श्रुविद्मान

તંતુઘટક પેશી


આ પેશી સૌથી સરળ અને સારા પ્રમાણમાં વિસ્તરણ પામેલી છે. તેને શિથિલ સંયોજકપેશી પણ કહે છે. તે તંતુઓ અને કોષોની બનેલી છે. તેમાં બે પ્રકારના તંતુઓ હોય છે. સફેદ તંતુઓ જે તરંગીય અને અશાખિત તેમજ સમૂહમાં ગોઠવાયેલા હોય છે. પીળા તંતુઓ ઓછી સંખ્યામાં, વધુ પાતળા હોય છે. તેઓ સમૂહમાં ગોઠવાયેલા હોતા નથી; પરંતુ દરેક તંતુ શાખિત બની એકબીજાને જોડાઈને એક પ્રકારનું પાતળું જાળું રચે છે. સફેદ તંતુઓ કોલેજન પ્રોટીન ઘટકના બનેલા છે. પીળા તંતુ ઇલાસ્ટિનના બનેલા છે.

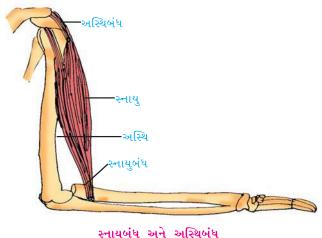
પેશીના આધારક દ્રવ્યમાં મુખ્યત્વે તંતુકોષો (fibroblast), બૃહત્કોષો (macrophases) અને માસ્ટકોષો જોવા મળે છે. તે પૈકી તંતુકોષો આ પેશીના મુખ્ય કોષો છે. તેઓ બે પ્રકારના પ્રોટીનનું સંશ્લેષણ કરે છે. કોલેજન અને ઇલાસ્ટિન. બીજા મુખ્ય કોષો તરીકે ભક્ષકકોષો કે હીસ્ટોસાઇટ છે. તેઓ હલનચલન કરવા શક્તિમાન હોઈ તેમજ બાહ્યદ્રવ્યનું ભક્ષણ કરે છે. આથી તેઓને બૃહત્કોષો પણ કહે છે. આ રીતે આ કોષો શરીરનું રક્ષણ કરે છે. માસ્ટકોષો પણ અનિયમિત આકારના અને મોટા કદના હોય છે. તેઓ ત્રણ પ્રકારના સક્રિય દ્રવ્યો ધરાવે છે : હીપેરીન, હીસ્ટેમાઈન અને સિરોટોનીન.

મેદપૂર્શપેશી

આ પેશી તંતુઘટક પેશીથી થોડીક જ જુદી પડે છે. તે અપવાદ રૂપે વધુ ટકાવારીમાં મેદકોષો (મેદપૂર્ણ કોષો) ધરાવે છે જે આ પેશીરચનાના મુખ્ય ઘટક છે. મેદપૂર્ણ કોષો સિવાય પણ તે તંતુકોષો, બૃહત્કોષો, કોલેજન તંતુઓ અને સ્થિતિસ્થાપક તંતુઓ ધરાવે છે. તે મોટા પ્રમાણમાં અધોત્વચીય સ્થાને હોય છે. જે શરીરની ઉષ્મા જાળવવામાં મદદ કરે છે. આ પેશી મુખ્યતઃ ત્વચા નીચે, મૂત્રપિંડોની ફરતે, આંત્રબંધમાં અને અસ્થિમજ્જામાં હોય છે.

શ્વેતતંતુમય પેશી

તે સ્નાયુબંધમાં હોય છે, કે જે સ્થિતિસ્થાપક બંધ છે તે હાડકાં ફરતે આવેલ સંયોજકપેશીને સ્નાયુ સાથે જોડે છે. સફેદ તંતુઓ સઘન રીતે અને સમાંતર જૂથમાં ગોઠવાયેલા હોય છે. આ પ્રકારની પેશી ખાસ એવી જગ્યાએ હોય છે કે જ્યાં મર્યાદિત સ્થિતિસ્થાપકતા અને વધુ મજબૂતાઈ જરૂરી હોય. આ પ્રકારની પેશી હાડકાંના અસ્થિબાહ્યાવરણ અને કાસ્થિના બાહ્યાવરણમાં હોય છે. તે મસ્તકનાં હાડકાંના સાંધાઓમાં પણ જોવા મળે છે, જેથી સાંધાઓ અચલિત રહે છે.


શ્વેતતંતુમય પેશી

સ્નાયુબંધ :

તે મજબૂત તંતુમય સંયોજકપેશી છે. તે કોલેજન તંત્ઓના આધારદ્રવ્યથી રચાયેલી છે. તંત્સમૂહોની વચ્ચે વચ્ચે થોડાક ચપટા અને લાંબા લાંબા તંતુકોષો આવેલા હોય છે.

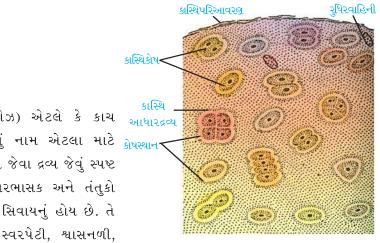
અસ્થિબંધ :

તે હાડકાંને સાંધાઓથી જોડે છે અને તે રીતે તેઓને યોગ્ય સ્થિતિમાં રાખે છે. તે સઘન સંયોજકપેશી છે. તે આધારક તરીકે આધાર દ્રવ્ય ધરાવે છે. આધાર દ્રવ્યમાં પીળા સ્થિતિસ્થાપક તંતુઓ હોય છે, જે શાખિત તંતુઓ છે. તંતુકોષો (fibroblasts) તંતુઓની વચ્ચે વચ્ચે વેરવિખેર અવસ્થામાં પડ્યા હોય છે.

સ્નાયુબંધ અને અસ્થિબંધ

(B) કંકાલપેશીઃ આ પેશીમાં કાસ્થિ અને અસ્થિઓનો સમાવેશ થાય છે જે પૃષ્ઠવંશી દેહમાં અંતઃકંકાલ રચે છે. આ બંને પેશીઓ સ્નાયુજોડાણ માટેનાં દ્રવ્ય પૂરાં પાડે છે.

કાસ્થિ:


તે વિશિષ્ટ પ્રકારની સંયોજકપેશી છે. તે સરળ સામાન્ય સંયોજક પેશીથી જુદી પડે છે, કારણ કે તેમાં આધારદ્રવ્ય (matrix) ઘટ્ટ સ્વરૂપે હોય છે. કાસ્થિ તેની રચનામાં, ભૌતિક ગુણધર્મોમાં, સંવહનાત્મક બાબતે અને વૃદ્ધિ તેમજ નવસર્જન બાબતે તદ્દન ભિન્ન પ્રકારની છે. કાસ્થિનું નીચે મુજબ ચાર પ્રકારોમાં વિભાજન છે :

- (i) કાચવત્ કાસ્થિ
- (ii) શ્વેતતંત્મય કાસ્થિ
- પીળી સ્થિતિસ્થાપક કાસ્થિ (iii)
- કૅલ્શિયમયુક્ત કાસ્થિ (કોષીય કાસ્થિ)

કાચવત્ કાસ્થિ

કાચવત્ શબ્દ ગ્રીક શબ્દ hyalos (હાયલોઝ) એટલે કે કાચ આધારદ્રવ્ય (glass)માંથી ઉદ્ભવેલો છે. કાચવત્ કાસ્થિ એવું નામ એટલા માટે _{કોપસ્થાન}-આપવામાં આવ્યું છે કે, તે દેખાવે વાદળી રંગના કાચ જેવા દ્રવ્ય જેવું સ્પષ્ટ દેખાય છે. તેનું આધારક દ્રવ્ય સ્પષ્ટ, એકરૂપ, પારભાસક અને તંતુકો

શ્વેત સ્થિતિસ્થાપક કોષો

કાચવત્ કાસ્થિ

સ્થિતિસ્થાપક તંતુઓ કોષસ્થાન કોલેજન તંતુઓ કાસ્થિકોષો

પીળા સ્થિતિસ્થાપક કોષો

અને પાંસળીઓ વગેરેમાં હોય છે. કાસ્થિ કોષો અથવા કોન્ડ્રોબ્લાસ્ટ્સ (condroblasts) કાસ્થિ દ્રવ્યનો સ્રાવ કરે છે. તે બે, ચાર અથવા આઠના સમૂહમાં પ્રવાહી ભરેલી કોષસ્થાનોમાં હોય છે. તેઓ હંમેશાં મજબૂત તંત્મય કાસ્થિ પરિઆવરણથી આવરિત હોય છે. તે રુધિરવાહિનીઓ ધરાવે છે, જેના દ્વારા પોષક દ્રવ્યો કાસ્થિમાં પ્રસરે છે.

Downloaded from https://www.studiestoday.com

ઉરોસ્થિ. દ્વિતપ્રસાધન

શ્વેતતંતુમય કાસ્થિ

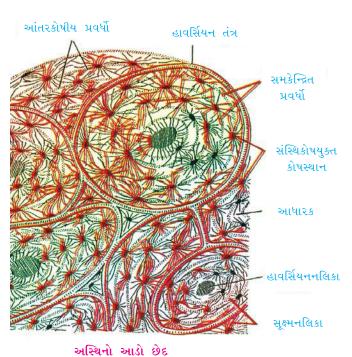
તે ઘટ્ટ સમૂહમાં ગોઠવાયેલા શ્વેતતંતુ સમૂહ (કોલેજન તંતુસમૂહો) તથા વચ્ચે આવેલ કાસ્થિકોષો ધરાવતા સફેદ તંતુઓ ધરાવે છે. સામાન્ય રીતે કાસ્થિકોષો અંડાકાર અને આધારક દ્રવ્યથી ઘેરાયેલા હોય છે. તેઓ લાક્ષણિક રીતે આંતર કશેરુકા તકતીઓ (Inter vertebraldiscs)માં જોવા મળે છે, જે સસ્તનોમાં કશેરુકાઓને જોડે છે.

શ્વેતતંતુમય કાસ્થિ

પીળી સ્થિતિસ્થાપક કાસ્થિ

આ પેશી તેના પીળા સ્થિતિસ્થાપક તંતુઓ સિવાય તંતુઘટક કાસ્થિ જેવી જ છે. તેનામાં ઈલાસ્ટિન દ્રવ્ય હોય છે. આ પ્રકારનું કાસ્થિ કર્ણપલ્લવ, નાકનો ટોચનો ભાગ, ઘાટીઢાંકણ (epiglottis) અને કેટલાક અન્ય ભાગોમાં જોવા મળે છે.

પીળી સ્થિતિસ્થાપક કાસ્થિ


ચૂનાયુક્ત કાસ્થિ (કૅલ્શિફાઇડ કાસ્થિ)

તેમાં ચૂનાના ક્ષારોનું આધારક દ્રવ્ય પ્રસ્થાપિત હોવાથી તે કાચવત્ કાસ્થિથી જુદું પડે છે. ગર્ભની શરૂઆતમાં જોવા મળતા કાસ્થિ વિકાસ

દરમિયાન સામાન્યતઃ કાસ્થિ સ્વરૂપે હોય છે; પરંતુ તે કેટલાંક સસ્તનોના બાહ્યકર્શપલ્લવોમાં કાયમી પેશીઓમાં પણ જોવા મળે છે. તે દેડકાના નિતંબાસ્થિ (Pubis), ઉપરી સ્કંધાસ્થિ (Supra scapula) તથા ભુજાસ્થિ (Humerus) અને ઉર્વસ્થિ (Femur)ના અસ્થિશિરમાં જોવા મળે છે.

અસ્થિ

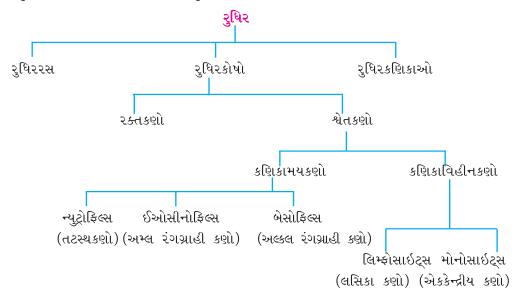
હાડકાં એ વિશિષ્ટ પ્રકારની સંયોજકપેશી છે. આ પેશીનાં કેટલાંક લક્ષણો નીચે મુજબ છે :

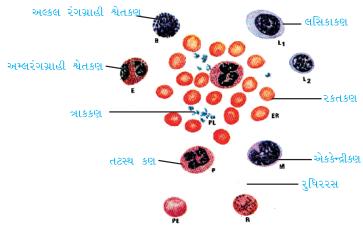
- તે ખુબ જ સંવાહક છે.
- તે ક્ષારયુક્ત છે.
- તે સતત બદલાતું હોય છે.
- તે સખત અને બરડ હોય છે.
- તે પ્રતિરોધક હોય છે.
- તેનામાં નવસર્જન શક્તિ છે.
- તે નલિકાયુક્ત તંત્ર ધરાવે છે.

પુખ્ત હાડકું બે પ્રકારની પેશીથી સંયોજિત છે: (a) ઘનીકૃત હાડકાં અને (b) વાદળીસદદશ અસ્થિ.

તેનું આધારક દ્રવ્ય (matrix) ઓસિન (ossein) તરીકે ઓળખાતા પ્રોટીન સાથે જોડાયેલું હોય છે જે વિવિધ પ્રકારના અકાર્બનિક ચૂનાના ક્ષારો જેવા કે કૅલ્શિયમ ફૉસ્ફેટ, કૅલ્શિયમ કાર્બોનેટ, મૅગ્નેશિયમ ફૉસ્ફેટ અને કૅલ્શિયમ ફ્લોરાઇડ સાથે પ્રસ્થાપિત હોય છે.

પુખ્ત હાડકાંમાં સઘન આધારોતકમાં ચપટા અનિયમિત ખાલી જગ્યાઓ સ્વરૂપે કોષસ્થાન આવેલ હોય છે. દરેક કોષસ્થાન ચપટા અસ્થિકોષ અથવા ઓસ્ટિઓસાઇટ (osteocyte) ધરાવે છે. અસ્થિકોષને અનિયમિત આકારના અને લાંબા કોષરસીય પ્રવર્ષો હોય છે. દરેક કોષાસ્થિમાંથી આ પ્રવર્ષો સૂક્ષ્મ નલિકાઓમાં ત્રિજયાવર્તિત (radiating) રીતે પ્રસરે છે. આ કોષસ્થાનો (lacunae) એકબીજાની સાથે સૂક્ષ્મ નલિકાતંત્ર દ્વારા સંપર્કમાં હોય છે.


દેડકાના લાંબા સૂકા અસ્થિમાં, તેના આધારક દ્રવ્યમાં મોટી સંખ્યામાં પ્રવર્ધો (lamellae) હાજર હોય છે. અસ્થિના કેન્દ્રમાં સાંકડું હાડકાનું પોલાણ હોય છે. તે પેશી ધરાવે છે જે અસ્થિમજજા તરીકે ઓળખાય છે. તે પીળા રંગની હોય છે, જે મેદપૂર્ણપેશી અને રુધિરવાહિનીઓ વગેરેની બનેલી હોય છે. અસ્થિ તેની બહાર તેમજ અંદર ક્રમશઃ આવરણો ઉમેરતા જઈ તેની જાડાઈમાં વધતું રહે છે.


સસ્તનના અસ્થિમાં સ્તંભ જેવી ઘણી રચનાઓ જોવા મળે છે. જેને હાવર્સિયન તંત્ર કહે છે. દરેક હાવર્સિયન તંત્ર (haversian system)માં અસ્થિદ્રવ્યનાં અનેક કેન્દ્રગામી કોટરો (lamellae) વર્તુળાકારે ગોઠવાયેલ અક્ષીય કેન્દ્રવર્તી નલિકા (haversian canal હાવર્સિયનનલિકા) રચે છે. આ નલિકા રુધિરવાહિનીઓ અને ચેતાઓ ધરાવે છે.

છિદ્રિષ્ઠ અસ્થિ કશેરુકાઓ, પાંસળીઓ, ખોપરી વગેરેમાં જોવા મળે છે. તે લાલ અસ્થિમજ્જા ધરાવે છે. તે રક્તકણો (erythrocytes) અને કિશકામયકણો (granuloaytes)ના નિર્માણનું સ્થાન છે.

(C) પ્રવાહીપેશી : રુધિર : તે અપારદર્શક ડહોળું (turbid) પ્રવાહી છે. તે પ્રવાહી સંયોજક પેશી છે. તે તેનું આંતરકોષીય દ્રવ્ય કે આધારદ્રવ્ય (matrix) જ છે. રુધિરનો પ્રવાહીયુક્ત ભાગ રુધિરસસ (plasma) તરીકે ઓળખાય છે. રુધિરકોષો બે પ્રકારના હોય છે. લાલ અને શ્વેત. કોષરસની કણિકાઓ રુધિરમાં હોય છે તેને ત્રાકકણો (platelets) કહે છે. તેઓ રુધિરના અન્ય સંયોજક પેશીકોષો કરતાં રચના અને કાર્યમાં ભિન્ન હોય છે. રુધિર અન્ય સંયોજક પેશીથી એ રીતે જુદું પડે છે કે રુધિરનું આધારકદ્રવ્ય (matrix) પૂરેપૂરું રુધિરકોષો દ્વારા સ્રવિત નથી. આ ઉપરાંત અન્ય પેશીની જેમ રુધિરકોષો તેના પુરોગામી કોષોમાંથી કોષવિભાજન પામી પેદા થતા નથી.

રુધિરનું બંધારણ નીચેના ચાર્ટમાં દર્શાવ્યું છે :

રુધિર સંયોજક પેશી

वर्ष श्रुविद्यान

રુધિરરસ (Plasma)

તે રુધિરનું ઘટક અથવા આંતરકોષીય દ્રવ્ય છે. તે લગભગ રંગવિહીન છે; પરંતુ તે આછા પીળા રંગનું ભાસે છે. તે જરૂરી એવાં સાત જૂથમાં વહેંચાયેલાં દ્રવ્યો ધરાવે છે.

રુધિર સોડિયમ અને ક્લોરાઇડ આયનો (ions)થી સમૃદ્ધ હોય છે. તે સિવાય તે પોટૅશિયમ, કૅલ્શિયમ, મૅગ્નેશિયમ, ફૉસ્ફેટ, બાયકાર્બોનેટ અને બીજા ઘણા આયનો ધરાવે છે. તે અનેક સ્ફટિકાભાસી અને કલિલયુક્ત દ્રવ્યો પણ ધરાવે છે. રુધિરકલિલમાં રુધિરનત્રલો (પ્રોથોમ્બીન અને ઇમ્યુનોગ્લોબિન)નો પણ સમાવેશ થાય છે. તે લગભગ 80 % પાણી ધરાવે છે. આ ઉપરાંત તેમાં ચયાપચય દરમિયાન પેદા થયેલ નકામા ઘટકો જેવા કે યુરિયા, યુરિક ઍસિડ, એમોનિયા, કાર્બન ડાયૉક્સાઇડ, પાણી અને વિવિધ અંતઃસ્રાવો પણ હોય છે. રુધિરરસ કેટલાંક પ્રતિવિષકારી રક્ષણપ્રેરક દ્રવ્યો પણ ધરાવે છે, જેવાં કે એગ્લુટીનીન્સ, લાયસીન વગેરે અને રુધિરપ્રોટીન (નત્રલો) જેવાં કે ફાઇબ્રીનોજન, પ્રોથોમ્બીન, આલ્બ્યુમીન્સ અને ગ્લોબ્યુલીન્સ.

સામાન્ય વ્યક્તિઓમાં જમ્યા પછી 2 કલાકે લોહીમાં સામાન્ય રુધિર શર્કરાનું સ્તર 90-120 મિગ્રા / 100 મિલિ હોય છે. રુધિરરસ (serum)માં કોલેસ્ટેરોલ 140 થી 260 મિગ્રા / 100 મિલિની હોય છે. રુધિર ગંઠાવા માટે જરૂરી ઘટકો સિવાયના રુધિરરસને સીરમ કહે છે.

રક્તકણો

તેઓને લાલ રુધિરક્શો (Red Blood Corpuscles-RBCs) પણ કહે છે. સામાન્ય સ્થિતિએ પુખ્ત પુરુષમાં એક ઘનમિલિ લોહીમાં 41,00,000થી 60,00,000 રક્તક્શો અને પુખ્ત સ્ત્રીમાં 39,00,000થી 55,00,000 રક્તક્શો હોય છે.

તંદુરસ્ત મનુષ્યમાં રક્તકશો દ્વિઅંતર્ગોળ તકતી આકારના હોય છે. રક્તકશનો લાલ રંગ હીમોગ્લોબિનને આભારી છે. તે સંયુગ્મી પ્રોટીન ગ્લોબીન અને Fe⁺² (લોહતત્ત્વ) યુક્ત હીમ ધરાવે છે જે ઑક્સિજન જોડાશની ઊંચી ક્ષમતા ધરાવે છે. જુદાં જુદાં પ્રાણીઓમાં તેના આકાર અને કદ જુદાં જુદાં હોય છે. સસ્તનો સિવાય અન્ય પૃષ્ઠવંશીઓમાં તેઓ કોષકેન્દ્રિય હોય છે. રક્તકશો પેશીથી ફેફસાં સુધી કાર્બન ડાયૉક્સાઇડના વહનમાં ભાગ લે છે. તેનો સરેરાશ જીવન અવધિકાળ આશરે 120 દિવસનો હોય છે.

શ્વેતકણો

તેઓ સફેદ રુધિરક્શો (White Blood Corpuscles - WBCs) તરીકે ઓળખાય છે. તેઓ નાના, કોષકેન્દ્રિય અર્ધપારદર્શક કોષો અને હીમોગ્લોબીન વગરના હોય છે. શ્વેતક્શો પેશીઓના આંતરકોષીય અવકાશોમાં તેમનો આકાર બદલી સ્વતંત્ર રીતે ફરી શકે છે. પુખ્ત મનુષ્યના એક ઘનમિલી. રુધિરમાં તેની સંખ્યા 7.5 ± 3.5 × 10³ હોય છે. આ કોષોની સંખ્યાનો આધાર શરીરની સ્થિતિ પર હોય છે. શરીરને ચેપ લાગે ત્યારે સામાન્યતઃ તેમની સંખ્યા વધે છે. તેઓ ભક્ષકકોષો તરીકે ઓળખાય છે. કારણ કે તેઓ બૅક્ટેરિયા અને તૂટેલા પેશીકોષોના ભાગોને ગળી જાય છે. શ્વેતક્શો બે પ્રકારના હોય છે : કણિકામયકણો (કોષરસમાં કણિકા ધરાવતા) અને કણિકાવિહીનક્શો (કોષરસ કણિકાવિહીન હોવાથી). કણિકામયક્શો કોષરસીય કણિકાઓના અભિરંજનના ગુણને અને કોષકેન્દ્રના આકારને આધારે ત્રણ પ્રકારના હોય છે તે નીચે મુજબ છે :

- (1) તટસ્થકણો (ન્યુટ્રોફિલ્સ) : તેની કણિકાઓ એસિડિક તથા બેઇઝિક એમ બંને પ્રકારના અભિરંજકોથી અંશતઃ અભિરંજિત થાય છે. તેનું કોષકેન્દ્ર વધુ ખંડીય હોય છે
- (2) અમ્લરંગગ્રાહીકણો (ઇઓસિનોફિલ્સ) : તેની કણિકાઓ ઇઓસિન જેવા એસિડિક અભિરંજકથી અભિરંજિત થાય છે. તે રંગગ્રાહીકણો મોટા કદના હોય છે અને દ્વિખંડીય કોષકેન્દ્રવાળા હોય છે.
- (3) અલ્કરંગગ્રાહી કણો (બેઇઝોફિલ્સ) : તેની કણિકાઓ મિથિલિન બ્લ્યુ જેવા અભિરંજકથી અભિરંજિત થાય છે. બેઇઝોફિલ્સ 'S' આકારનું કોષકેન્દ્ર ધરાવે છે.

કણિકાવિહીન કણોનું બે જૂથમાં વર્ગીકરણ કરવામાં આવે છે : એકકેન્દ્રિયકણો (મોનોસાઇટ્સ) અને લિસકાકણો (lymphocytes).

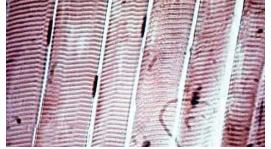
મોનોસાઇટ્સ સૌથી મોટા કદના શ્વેતકણો છે. તેમનું કોષકેન્દ્ર મૂત્રપિંડ આકારનું હોય છે. લસિકાકણો મોટું અને ગોળ કોષકેન્દ્ર ધરાવે છે.

રુધિરકણિકાઓ (Thrombocytes or Blood Platelets)

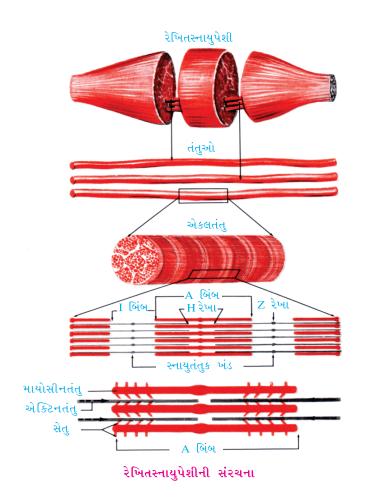

રુષિરકશિકાઓ પ્રમાશમાં નાની, કોષકેન્દ્રવિહીન અને અંડાકાર તકતીઓ સ્વરૂપે હોય છે. તેઓ થ્રોમ્બોસાઇટ્સ તરીકે પણ ઓળખાય છે કારણ કે તેઓ થ્રોમ્બોપ્લાસ્ટિનનો સ્નાવ કરે છે. તેઓ ખાસ કરીને રુષિર ગંઠાવવાની ક્રિયા સાથે સંકળાયેલ છે. તેઓ હાડકાંના અસ્થિમજ્જામાં બને છે.

રુધિરનાં સામાન્ય કાર્યો

રુધિરનાં સામાન્ય કાર્યોને અહીં સારાંશ સ્વરૂપે નીચે રજૂ કર્યાં છે :


- (1) ઑક્સિજનનું વહન
- (2) કાર્બન ડાયૉક્સાઇડનું વહન અને નિકાલ
- (3) ખોરાકના ઘટકોનું વહન
- (4) નકામા કચરાનું વહન
- (5) રુધિર જમાવટ
- (6) અંતઃસ્રાવો અને રોગપ્રતિરોધકોનું વહન
- (7) ઝેરી દ્રવ્યોનું શમન
- (8) શરીર તાપમાનનું સમતોલન
- (9) કોષભંગાર (મૃતકોષો)ને દૂર કરવા

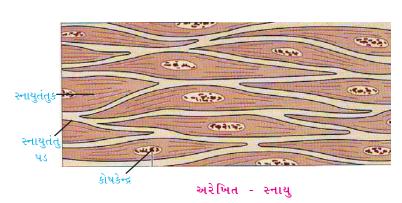
સ્નાયુપેશી : તે કોષીય દ્રવ્ય યુક્ત વિવિધ લંબાઈવાળા તંતુઓ ધરાવે છે. તેમાં લગભગ આંતરકોષીય પદાર્થો હોતા નથી. દરેક સ્નાયુપેશીમાં સંકોચનની જબરદસ્ત શક્તિ હોય છે. ત્રણ પ્રકારની સ્નાયુપેશી હોય છે :


કંકાલસ્નાયુ પેશી

સ્નાયુતંતુઓ કંકાલસ્નાયુના એકમો છે. દરેક સ્નાયુતંતુ એકાકી, પાતળો અને લાંબો કોષ છે. તે ઘણાં કોષકેન્દ્ર (coenocytic) ધરાવે છે. સ્નાયુતંતુઓ જૂથમાં ગોઠવાયેલા હોય છે. ઉચ્ચકક્ષાનાં પ્રાણીઓમાં તે સ્નાયુબંધથી હાડકાં સાથે જોડાયેલા હોય છે. આ સ્નાયુતંતુઓ ઇચ્છા

કંકાલસ્નાયુપેશી

gaिद्धान अविद्यान



અનુસાર સંકોચન પામી શકે છે. તેથી તેઓને ઇચ્છાવર્તી સ્નાયુ કહે છે. તેના દેખાવ પ્રમાણે જોતાં તેને રેખિત સ્નાયુ કહે છે.

દરેક તંત્નો કોષરસ અથવા સ્નાયુરસ અનેક સ્નાયુતંત્કો (myofibrrils) ધરાવે છે. દરેક તંતુને લાંબું આવરણ હોય છે. તેને સ્નાયુરસ આવરણ (sarcolemma) કહે છે. સ્નાયુતંત્ઓ એકાંતરે ગોઠવાતા ઝાંખા અને ઘટ્ટ આડા કે ત્રાંસા પટ્ટા દર્શાવે છે. ઘટ્ટ બિંબને A બિંબ (A band) કહે છે. ઝાંખા બિંબને I બિંબ (I band) કહે છે. ઘટ્ટ કે A બિંબ એકબીજાથી ઝાંખા પટ્ટા કે I બિંબથી અલગ પડે છે. દરેકમાં Z- બિંબ અથવા ક્રાઉઝકલા લંબ અક્ષે ગોઠવાયેલા પટ્ટામાં હોય છે. આવી ક્રમશઃ આવતી બે Z-બિંબ વચ્ચેના ખંડને સ્નાયુતંતુકખંડ (sarcomere) કહે છે. તેમાં બે પ્રકારના સૂક્ષ્મતંતુકો હોય છે. જાડા સૂક્ષ્મતંતુકો અને પાતળા સ્નાયુતંત્કો. જાડા સૂક્ષ્મતંત્કો સ્નાયુતંત્ક ખંડના મધ્યભાગ A- બિંબમાં હોય છે. A- બિંબમાં કેટલાક ભાગમાં જાડા અને પાતળા સૂક્ષ્મ તંતુકો એકબીજાને અંશતઃ ઢાંકે છે. પાતળા સૂક્ષ્મતંત્કો જાડા સૂક્ષ્મતંત્કો તરફ તેમને સમાંતર અને તેમની વચ્ચે હોય છે કે જેનો એક છેડો Z- રેખાને અડકતો હોય છે. A બિંબના મધ્ય ભાગમાં પાતળા તંતુકોની ગેરહાજરીને કારણે આ ભાગ ઝાંખો અથવા આછો ઘેરો

દેખાય છે. તેને H-બિંબ (Hensen's zone) કહે છે. જાડા સૂક્ષ્મતંતુકો માયોસીન પ્રોટીનના બનેલા હોય છે. પાતળા સૂક્ષ્મતંતુકો એક્ટિન, ટ્રોપોમાયસીન અને ટ્રોપોનીનના બનેલા હોય છે.

સરળસ્નાયુ પેશી

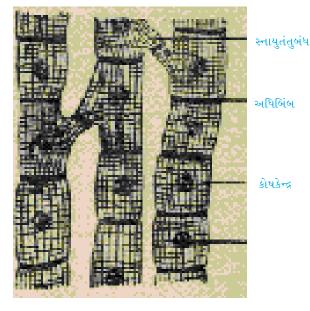
સરળ, અરેખિત કે અનૈચ્છિક સ્નાયુ નિશ્ચિતરૂપે કંકાલસ્નાયુ કે હૃદ્સ્નાયુથી તેમની રચના અને દૈહિકક્રિયા એમ બે બાબતે જુદા પડે છે. દરેક સરળસ્નાયુ એક કોષકેન્દ્ર ધરાવતા ત્રાકાકાર કોષથી બનેલ હોય છે. તેનામાં તેના કોષકેન્દ્ર ફરતે કણિકામય સ્નાયુરસ હોય છે. તે સિવાયના કોષરસમાં મોટા પ્રમાણમાં અતિસૂક્ષ્મ તંતુકો હોય છે. તેઓમાં સંકોચનનો ગુણ હોય છે. આ સ્નાયુઓ તેમના ઊર્મિવેગ સ્વયંવર્તી ચેતાતંત્ર દ્વારા મેળવે છે. આ

પ્રકારના સ્નાયુઓ પાચનમાર્ગ, કીકી વગેરે સ્થાને હોય છે.

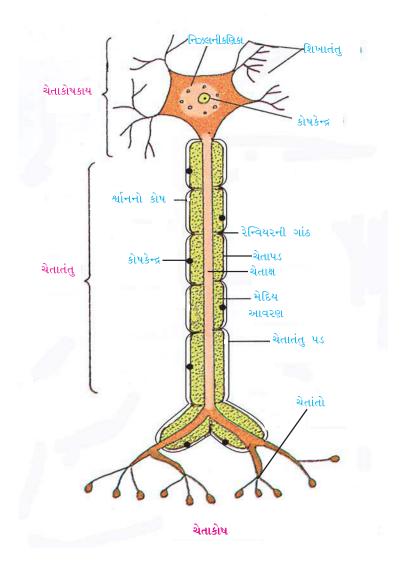
હૃદ્સ્નાયુ પેશી

સાદા સૂક્ષ્મદર્શક યંત્ર દ્વારા હૃદ્સ્નાયુને જોતાં તે શાખાયુક્ત અને એકબીજા ઉપર આચ્છાદિત નળાકાર જેવા દેખાય છે. હૃદ્દસ્નાયુ કોષો વચ્ચેનો અવકાશ એન્ડોમાયસિયમ (endomysiam) દ્વારા રોકાયેલ હોય છે. આ

એન્ડોમાયસિયમ તંતુકોષો, કોલેજનયુક્ત જાળી જેવી રચના ધરાવે છે. હૃદ્સ્નાયુના બધા કોષો સીધા અને A, I, Z અને H બિંબ ધરાવે છે. હૃદ્સ્નાયુ કોષોના અંતે પ્રભાવી ત્રાંસા પટ્ટા (તંતુઓ) જોવા મળે છે. તેને અધિબિંબ કહે છે. આ બિંબ Z- બિંબ કરતાં પ્રમાણમાં જાડા હોય છે. સ્નાયુતંતુકોની જાળાકાર ગોઠવણીને કારણે તેઓ કંકાલસ્નાયુઓથી જુદા પડે છે. તે સમગતિ સંકોચન દર્શાવે છે અને શ્રમિત થતા નથી. તે રુધિર પુરવઠાથી સભર હોય છે.


ચેતાપેશી

ચેતાપેશી બે પ્રકારના કોષોની બનેલી હોય છે :
(a) ચેતાકોષ અને (b) આધારકોષ. ચેતાકોષ એ ચેતાતંત્રનો ખૂબ અગત્યનો ઘટક છે. ચેતાકોષોને લાંબા પ્રવર્ધો હોય છે. તે ઊર્મિવેગનું વહન કરે છે. જ્યારે આધારકોષોને ટૂંકા પ્રવર્ધો હોય છે, જે ચેતાકોષોને આધાર અને રક્ષણ આપે છે.


ચેતાકોષો માહિતીનું ગ્રહણ, એકીકરણ, વહન અને લાંબે

સુધી પ્રસારણ કરતા વિશિષ્ટ કોષો છે. લાક્ષણિક ચેતાકોષ, કોષકાય અને તેનાથી ઉદ્ભવતા શાખિત તંત્ઓથી બનેલ છે. તંતુઓ પૈકી અક્ષતંતુ તરીકે ઓળખાતા લાંબા તંતુ કે જે ઊર્મિવેગનું વહન કોષકાયથી દૂરની દિશામાં કરે છે (બહિર્વાહી). તે સ્નાયુતંત્ઓ ઉપર, ગ્રંથિકોષો અથવા અન્ય ચેતાકોષો ઉપર અને અનેક નાની-નાની શાખાઓ ઉપર અંત પામે છે. બાકીના પ્રવર્ધો કોષકાય તરફ ઊર્મિવેગોનું વહન કરે છે (અંતર્વાહી). તે શિખાતં તુઓ (dendrities or dentrons) तरीडे ઓળખાય છે.

કોષકાયમાંથી ઉદ્દભવતા પ્રવર્ધોની સંખ્યા તેના બાહ્ય વર્ગીકરણનો મુખ્ય પાયો છે. તેના આધારે કોષો ત્રણ પ્રકારના હોય છે : એક્ધ્રુવીય, દ્વિધ્રુવીય અને બહુધ્રુવીય. એક્ધ્રુવીય ચેતાકોષના ચેતાકાયને એક જ બાજુએ પ્રવર્ધ હોય છે જેમાંથી શિખાતંતુ અને અક્ષતંતુ એક સાથે ઉદ્દભવે છે. દ્વિધ્રુવીય ચેતાકોષોમાં દરેક કોષકાયના બંને છેડે પ્રવર્ધો હોય છે

હૃદ્સ્નાયુ

જેમાંનો એક અંતર્વાહી અને સામે છેડે આવેલ બીજો બહિર્વાહી હોય છે. બહુધ્રુવીય ચેતાકોષોમાં બે કરતાં વધુ પ્રવર્ષો હોય છે.

ચેતાકોષકાયનો કોષરસ મોટું અને ગોળાકાર કોષકેન્દ્ર ધરાવે છે. તેમાં કેટલીક ઘેરી કણિકાઓ હોય છે. જેને નિઝલની કણિકાઓ કહે છે.

ચેતાતંતુ બે સંકેન્દ્રીય આવરણથી આવરિત હોય છે. તંતુનું અંદરનું આવરણ મજ્જાપડ તરીકે ઓળખાય છે. તે પારદર્શક કોષીય બાહ્ય આવરણથી ઢંકાયેલું હોય છે, જેને ચેતાવરણ (neurolemma) કહે છે. આ આવરણ ચપટા, પ્રસરેલા, એકાકી ર્યાનના કોષોના આવરણનું બનેલું છે. દરેક મજ્જાતંતુ એકાંતરિત નિયમિત આવતી રેન્વિયરની ગાંઠો દર્શાવે છે. અક્ષતંતુના ચેતાન્તો અન્ય ચેતાકોષના શિખાતંતુના ચેતાન્તો સાથે સીધા ભૌતિક સંપર્કમાં નથી હોતા. તેમની વચ્ચેના અવકાશને 'ચેતોપાગમ' કહે છે. ઊર્મિવેગો બે ચેતાકોષોની વચ્ચે ચેતોપાગમ દ્વારા એસિટાઇલ કોલાઈન અંતઃસાવની મદદથી પસાર થાય છે. આ સ્નાવો ન્યુરોટ્રાન્સમીટર છે.

સારાંશ

પેશી એ સમાન રચના અને કાર્ય ધરાવતા કોષોનો સમૂહ છે. પ્રાણીઓ પાયાની ચાર પ્રકારની પેશીઓ ધરાવે છે. અધિચ્છદીય પેશી, સંયોજકપેશી, સ્નાયુપેશી અને ચેતાપેશી. રચના અને કાર્ય આધારિત અધિચ્છદીય પેશીઓ મુખ્ય બે જૂથમાં વિભાજિત થાય છે : આચ્છાદિત અધિચ્છદ અને ગ્રંથીય અધિચ્છદ. આચ્છાદિત અધિચ્છદ વિવિધ પ્રકારની છે, જેવી કે લાદીસમ, ઘનાકાર, સ્તંભિત, પક્ષ્મલ, કૂટસ્તૃત, સ્તૃત અને સંક્રમણ. તેઓ વિવિધ કાર્યો કરે છે જેવાં કે રક્ષણ, શોષણ અને સાવ.

સંયોજકપેશીઓ તેમના સ્વયં કોષો દ્વારા સ્રાવિત થયેલા આંતરકોષીય આધારક કે દ્રવ્યોનું જૂથ છે. તે ત્રણ પ્રકારમાં વહેંચાયેલી છે : સરળ સંયોજકપેશી, કંકાલપેશી અને પ્રવાહીપેશી (રુધિર). સરળ સંયોજકપેશીના પાંચ પ્રકાર છે : તંતુઘટકપેશી, મેદપૂર્ણપેશી, શ્વેતતંતુમયપેશી, સ્નાયુબંધ અને અસ્થિબંધ. કંકાલપેશી કાસ્થિ અને અસ્થિ ધરાવે છે, જે પૃષ્ઠવંશીના શરીરનું અંતઃકંકાલ રચે છે. કાસ્થિ ચાર પ્રકારમાં વહેંચાયેલી છે : કાચવત્ કાસ્થિ, શ્વેતતંતુમય કાસ્થિ, પીળીસ્થિતિસ્થાપક કાસ્થિ અને કેલ્શિયમયુક્ત કાસ્થિ (કોષીય કાસ્થિ).

રુધિર પ્રવાહી સંયોજકપેશી છે. તે અપારદર્શક ડહોળું પ્રવાહી છે. આ પ્રવાહી એ તેનું આંતરકોષીય દ્રવ્ય કે આધારદ્રવ્ય (રુધિરરસ) છે. તે રુધિરરસ, રુધિરકોષો અને રુધિરકિશકાઓનું બનેલું છે. રક્તકશો અને શ્વેતકશો રુધિરકોષો છે. શ્વેતકશો પાંચ પ્રકારના હોય છે : તટસ્થકશો,અમ્લરંગગ્રાહી, અલ્કરંગગ્રાહી, મોનોસાઇટ્સ (એકકેન્દ્રિય કશો) અને લસિકાકશો.

સ્નાયુપેશી વિવિધ લંબાઈના તંતુ સ્વરૂપનું કોષીય દ્રવ્ય ધરાવે છે. તેઓમાં ઉમદા સંકોચનશીલતા હોય છે : ત્રણ પ્રકારની સ્નાયુપેશી હોય છે : કંકાલસ્નાયુ, અરેખિત અથવા સરળસ્નાયુ અને હૃદ્સ્નાયુ.

ચેતાપેશી બે પ્રકારના કોષોની બનેલી હોય છે : (a) ચેતાકોષો અને (b) ચેતાઆધાર કોષો. ચેતાકોષો ચેતાતંત્રના સૌથી અગત્યના ઘટકો છે. તેઓ ઊર્મિવેગોનું વહન કરે છે. ચેતાકોષો ઊર્મિવેગોની ગ્રહણક્રિયા, એકીકરણ, વહન અને માહિતીનું આગળ તરફ પ્રસારણ કરવા માટે વિશિષ્ટ બનેલા હોય છે. ચેતાકોષોમાંથી નીકળતા એક અથવા ઘણા પ્રવર્ષો ધરાવે છે. તેમાં તે પૈકી જે પ્રવર્ધ કોષમાંથી ઊર્મિઓને દૂર લઈ જાય છે તેને અજ્ઞતંતુ કહે છે. જે પ્રવર્ષો ઊર્મિવેગોને કોષકાયમાં લાવે છે તેને શિખાતંતુ કહે છે. અક્ષતંતુ તથા શિખાતંતુના છેડાઓની વચ્ચે જોવા મળતી ભૌતિક ખાલી જગ્યાને ચેતોપાગમ કહે છે.

સ્વાધ્યાય

1.	નીચે ઃ	આપેલા પ્રશ્નોના ઉત્તરો પૈકી સાચા ઉત્તર	સામે સ	ર્કલમાં પેન્સિલથી રંગ પૂરો ઃ	
	(1)	રક્ષણ, શોષણ અને સ્રાવ કરતી વિશિ	.ષ્ટ પ્રકાર	રની પેશી.	
		(અ) ચેતાકોષ	\bigcirc	(બ) રેખિતસ્નાયુ	\bigcirc
		(ક) રુધિર	\bigcirc	(ડ) અધિચ્છદપેશી	\bigcirc
	(2)	બાઉમેનની કોથળીમાં કયા પ્રકારનું અ	ધિચ્છદ	હોય છે ?	
		(અ) ઘનાકાર	\bigcirc	(બ) લાદીસમ અધિચ્છદ	\bigcirc
		(ક) સ્તંભીય અધિચ્છદ	\bigcirc	(ડ) કૂટસ્તૃત અધિચ્છદ	\bigcirc
	(3)	કયો કોષ હિપેરીન અને હિસ્ટેમાઇન	સ્રાવ કરે	. છે ?	
		(અ) માસ્ટકોષ	\bigcirc	(બ) ચેતાકોષ	\bigcirc
		(ક) એકકેન્દ્રિય કોષ	\bigcirc	(ડ) લાદીસમ અધિચ્છદ પેશીકોષ	\bigcirc
	(4)	સસ્તનોની કશેરુકામાં લાક્ષણિક રીતે જ	<u>ત</u> ોવા મળ	ાતું કાસ્થિ ?	
		(અ) ચૂનાયુક્ત	\bigcirc	(બ) પીળું સ્થિતિસ્થાપક	\bigcirc
		(ક) શ્વેતતંતુ	\bigcirc	(ડ) કાચવત્	\bigcirc
	(5)	કઈ પેશીમાં હાવર્સિયનતંત્ર હોય છે ?			
		(અ) સંયોજકપેશી	\bigcirc	(બ) રુધિર	\bigcirc
		(ક) કાસ્થિ	\bigcirc	(ડ) અસ્થિ	\bigcirc
	(6)	પુખ્ત પુરુષમાં રક્તકશોની સંખ્યા કેટલ	ી હોય	છે ?	
		(અ) 39,00,000થી 55,00,000	\bigcirc	(4) $7.5 \pm 3.5 \times 10^3$	\bigcirc
		(ક) 41,00,000 થી 60,00,000	\bigcirc	(3) $3.5 \pm 7.5 \times 10^3$	\bigcirc
	(7)	રેખિતસ્નાયુ તંતુકો કયા પ્રોટીનના બને	ાલા હોય	. છે ?	
		(અ) એક્ટિન	\bigcirc	(બ) માયોસીન	\bigcirc
		(ક) એક્ટિન અને માયોસીન	\bigcirc	(ડ) ટ્રોપોમાયોસીન	\bigcirc
	(8)	બે Z- બિંબ વચ્ચેના અંતરને		કહે છે.	
		(અ) ચેતોપાગમ	\bigcirc	(બ) સ્નાયુકોષરસસ્તર	\bigcirc
		(ક) સ્નાયુતંતુકખંડ	\bigcirc	(ડ) સ્નાયુરસ	\bigcirc
	(9)	હૃદ્સ્નાયુની પેશીઓ વચ્ચેનો અવકાશ	શેનાથી	સમાયેલ હોય છે ?	
		(અ) એન્ડોમાયસિયમ	\bigcirc	(બ) સ્નાયુતંતુપડ	\bigcirc
		(ક) સ્નાયુરસ	\bigcirc	(ડ) કણિકાયમ સ્નાયુરસ	\bigcirc
	(10)	કઈ પેશીમાં મજ્જાવરણ આવેલું હોય	છે ?		
		(અ) અધિચ્છદ	\bigcirc	(બ) સંયોજક	\bigcirc
		(ક) સ્નાયુ	\bigcirc	(ડ) ચેતા	
2.	પેશી	એટલે શું ? વિવિધ પ્રકારની પેશીઓ :	અને તેન	ા ઉપપ્રકારોનો સામાન્ય ચાર્ટ આપો.	_
3.	વિવિધ	ા પેશીઓનાં કાર્યો લખો.			

% श्रुविद्यान

4. તફાવત આપો ઃ

- (1) સરળ અને સંયુક્ત અધિચ્છદીય પેશી
- (2) કાસ્થિ અને અસ્થિ
- (3) રક્તકણો અને શ્વેતકણો
- (4) અરેખિત અને રેખિત સ્નાયુ

5. (અ)ના શબ્દોને (બ)ના સંબંધિત શબ્દો સાથે જોડો :

અ

- (1) અજ્ઞતંતુ
- (2) Z-બિંબ
- (3) અમ્લરંગગ્રાહીકણો
- (4) એન્ડોમાયસિયમ
- (5) કૂટ સ્તૃત અધિચ્છદ
- (6) સંક્રમી અધિચ્છદ
- (7) રુધિરકણિકાઓ
- (8) એકકેન્દ્રિય ક્શ

- બ
- (1) હૃદ્સ્નાયુ
- (2) દિશાખી કોષકેન્દ્ર
- (3) શ્રોમ્બોપ્લાસ્ટિન
- (4) મૂત્રપિંડાકાર કોષકેન્દ્ર
- (5) રેખિત સ્નાયુ
- (6) સંયુક્ત અધિચ્છદ
- (7) ચેતાપેશી
- (8) સાદીસ્તંભીય અધિચ્છદ

6. નીચેનાં કાર્યો કઈ પેશી કરે છે ? તેમનાં નામ લખો :

- (1) શોષણ અને સ્નાવ
- (5) O₂ અને CO₂ નું વહન
- (2) શ્લેષ્મના નિકાલમાં મદદ
- (6) રુધિર જમાવટ
- (3) બાહ્યકશોને ગળી જવું
- (7) ઊર્મિવેગોનું વહન
- (4) શરીરનું તાપમાન સાચવવું
- 7. રુધિરના કોષીય ઘટકો કયા હોય છે ? સમજાવો.
- 8. રેખિત સ્નાયુતંતુની અતિસૂક્ષ્મ રચના વર્ણવો.
- 9. સરળ અધિચ્છદીય પેશીના પ્રકાર વર્ણવો.

10. ટૂંક નોંધ લખો :

(1) શ્વેતકણો

- (4) हृह्स्नायु
- (2) સ્તંભીય અધિચ્છદ
- (5) ચેતાકોષો

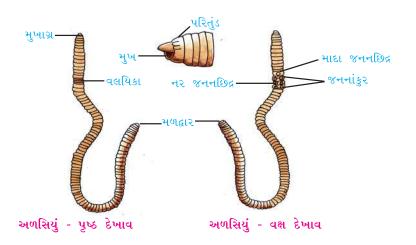
(3) મેદપૂર્શ પેશી

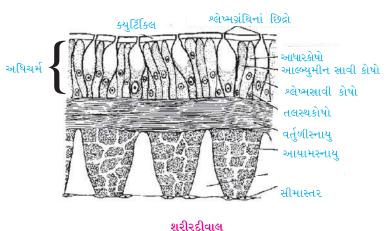
11. નામ-નિર્દેશનવાળી રેખાંકિત આકૃતિ દોરો :

- (1) વિવિધ પ્રકારના શ્વેતકણો
- (2) મજજાતંતુ સહિતનો ચેતાકોષ
- (3) તંતુઘટકપેશી
- (4) વિવિધ પ્રકારની સરળપેશી

પ્રાણી બાહ્યાકારવિદ્યા અને અંતઃસ્થ રચના-1 (અળસિચું અને વંદો)

આપણે અગાઉનાં પ્રકરણોમાં શરીરનું દૈહિક આયોજન જોયું, જેમાં કોષો ભેગા મળીને પેશી, પેશીઓ મળીને અંગ અને અંગો ભેગાં મળીને અંગતંત્ર રચે છે, ઉદાહરણ તરીકે પાચનતંત્ર, શ્વસનતંત્ર, રુધિરાભિસરણ તંત્ર, ઉત્સર્જનતંત્ર, પ્રજનનતંત્ર અને ચેતાતંત્ર. આ તંત્રો એકબીજાના સહયોગમાં રહીને જિટલ દેહની વિવિધ દેહધાર્મિક ક્રિયાઓ કરીને જિટલ દેહને જીવંત રાખે છે. આમ, અનેક કોષો ભેગા થઈ બહુકોષીય દેહની રચના કરે છે. આપણા શરીરમાં ઉદાહરણ તરીકે હૃદયને જોઈએ તો તે અંગ ચાર પ્રકારની પેશીનું બનેલું છે, જેવી કે અધિચ્છદીય પેશી, સંયોજક પેશી, સ્નાયુ અને ચેતાપેશી. જેમ પ્રાણીને અનુકૂળતા માટે જરૂરિયાત ઊભી થઈ, તેમ તેનો અંગ વિકાસ તેમજ અંગતંત્ર વિકાસ વધુ જિટલ બનતો ગયો. આમ, ઉદ્ધિકાસનો ક્રમ સમજવો હોય તો બે કે ત્રણ પ્રાણીઓ પસંદ કરી તેમનાં વિવિધ તંત્રોનો અભ્યાસ જરૂરી બને છે. આ લક્ષ્યમાં રાખીને આપણે પ્રકરણોમાં અળસિયું, વંદો અને દેડકાને અભ્યાસક્રમમાં લીધાં છે. આપણે આ પ્રાણીઓના શરીરની બાહ્યાકાર રચના, અંતઃસ્થ રચના તેમજ વિવિધ તંત્રો અને તેના દ્વારા થતી વિવિધ દેહધાર્મિક ક્રિયાઓનો અભ્યાસ કરીશું. જરૂર પડ્યે આ તંત્રો સંબંધિત જરૂરી આકૃતિઓ દ્વારા સમજીશું. પ્રથમ અળસિયાનો અભ્યાસ કરીશું.


અળસિયું (Earthworm)

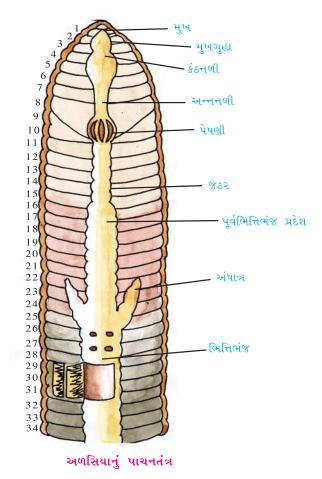

અળસિયું નુપૂરક સમુદાયનું દેહકોષ્ઠધારી એક લાક્ષણિક પ્રાણી છે. આપણા દેશમાં અળસિયું (earthworm) ફેરિટિમા પોસ્થુમા (Pheritima posthuma) સામાન્ય છે. અળસિયું રાતાશ પડતા કથ્થાઈ રંગનું, ભીનાશવાળી જમીનના ઉપલા સ્તરમાં રહે છે. દિવસ દરમિયાન દરમાં રહી માટીનું ભક્ષણ કરે છે. તેના દ્વારા ખોરાક સાથે જે માટી લેવામાં આવે છે તેનું ઉત્સર્જન નાના ગોળકોના રૂપમાં નાની નાની ઢગલીરૂપે થાય છે. આ ઢગલીઓ ઉપરથી અળસિયાનું પગેરું (trace) મળે છે.

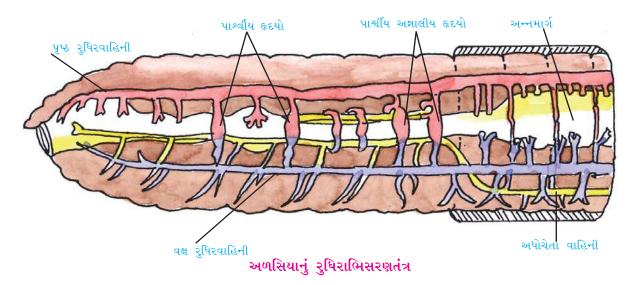
બાહ્યાકારવિદ્યા

અળસિયું નળાકાર, સહેજ લાંબું અને પાતળું હોય છે. શરીર નાના ખંડોમાં વિભાજિત થયેલું છે, જેની સંખ્યા 100થી 120 જેટલી હોય છે. અળસિયાના શરીરની પૃષ્ઠ બાજુએ એક છેડાથી બીજા છેડા સુધી વિસ્તરેલી એક લાંબી ગાઢ રેખા (પૃષ્ઠરુધિરવાહિની) આવેલી છે. વક્ષબાજુની ઓળખ તે બાજુએ આવેલાં જનનછિદ્રો દ્વારા થાય છે. અગ્ર છેડે મુખ અને મુખાગ્ર (prostomium) આવેલા છે. અળસિયું મુખદ્વારની ફરતે છાજલી બનાવે છે તેની મદદથી તે માટીને જોરથી છીણીને પાતળી તિરાડ પાડી અતિમંદ ગતિએ આગળ

ખસે છે. મુખાગ્ર સંવેદીઅંગ છે. પ્રથમ ખંડને પરિતુંડ (peristomium) કહે છે, જેમાં મુખ આવેલું છે. પરિપક્વ અળિસયામાં 14થી 16 ખંડમાં ધ્યાન ખેંચે તેવો ઘેરો ગ્રંથિમય પેશીનો પટ્ટો વલિયકા (clitellum) આવેલો છે. તેનું શરીર સ્પષ્ટ રીતે ત્રણ વિસ્તારમાં પૂર્વવલિયકા (preclitellur), વલિયકા (clitellar) અને પશ્ચ વલિયકા (postclitellar)માં વિભાજિત થયેલું છે. 5/6, 6/7, 7/8, 8/9 આંતરખંડીય ખાંચોમાં પ્રત્યેક પાર્શ્વ બાજુએ શુક્રસંગ્રહાશય છિદ્રો આવેલાં છે. 14મા ખંડની મધ્યવક્ષરેખાએ એક જ માદા જનનછિદ્ર આવેલું છે. એક જોડ નરજનનછિદ્ર 18મા ખંડની વક્ષપાર્શ્વ બાજુએ આવેલ છે. શરીર સપાટી પર અતિસૂક્ષ્મ અસંખ્ય ઉત્સર્ગિકા છિદ્રો ખૂલે છે, જે પ્રથમ, છેલ્લા અને વલિયકા સિવાય દરેક ખંડમાં આવેલાં છે. દરેક ખંડની મધ્યમાં સૂક્ષ્મ કંટક જેવા વજકેશો (setae)નું વર્તુળ આવેલું છે. આ વજકેશો કાઈટીન (chitin)ના બનેલા છે, જે પ્રથનમાં મદદરૂપ થાય છે.

શરીરદીવાલમાં ક્યુટિકલ, અધિચર્મ (epidermis), વર્તુ ળીસ્નાયુઓ, આયામસ્નાયુઓ અને સીમાસ્તર (parietal layer) આવેલાં છે. ક્યુટિકલ એ અધિચર્મના સાવથી બનેલું એક પાતળું સ્તર છે. અધિચર્મમાં લાંબા પાતળા આધારક કોષો (supporting cells), લંબગોળ ગ્રંથિકોષો હોય છે, જે શ્લેષ્મ અને આલ્બ્યુમીનનો સાવ કરે છે તેમજ સમૂહમાં આવેલા સંવેદીકોષો કેશતંતુ ધરાવે છે, જે બાહ્ય ઉત્તેજનાથી પ્રેરણા મેળવે છે.


પાચનતંત્ર

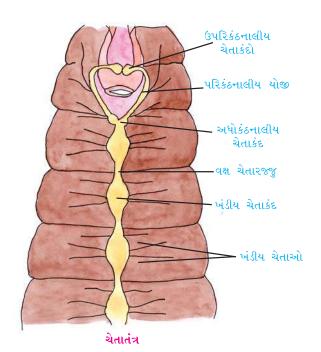

પાચનતંત્ર એ મુખથી ગુદાદ્વાર સુધી લંબાયેલી સરળ નલિકા છે. મધ્યસ્થ મુખ મુખગુહામાં ખૂલે છે. તે 1થી 3 ખંડ સુધી પ્રસરેલ છે. શરીરદીવાલને જોડતા સ્નાયુઓના સંકોચનને પરિણામે મુખગુહા ઊલટી થઈને શરીરની બહાર આવી ખોરાક ગ્રહણ કરે છે. મુખગુહા પછી આવેલી માંસલ કંઠનળી ચોથા ખંડ સુધી વિસ્તરેલી છે. નાની સાંકડી અન્નનળી 5થી 7 ખંડ સુધી લંબાયેલી હોય છે. તે 8મા ખંડની માંસલ પેષણીમાં ખૂલે છે. પેષણીની દીવાલ જાડી છે અને તેમાં વર્તુળીસ્નાયુઓના જાડા થર હોય છે. તેની અંદરની સપાટી ક્યુટિકલથી આવરિત સ્તંભાકાર કોષોની બનેલી છે. વર્તુળીસ્નાયુઓના સંકોચનને પરિણામે પેષણી ઘંટીની

જેમ માટીના કણો અને કોહવાયેલાં પર્ણો વગેરેને ભરડીને ભૂકો કરે છે. જઠર 9 થી 14 ખંડ સુધી વિસ્તરેલું છે. જઠરમાં આવેલી કેલ્સિફેરસ ગ્રંથિઓના સ્રાવથી માટીમાં આવેલા સેન્દ્રિય પદાર્થમાં રહેલા (હ્યુમસ) હ્યુમિક ઍસિડનું તે તટસ્થીકરણ કરે છે. આંતરડું 15મા ખંડથી શરૂ થાય છે, જે છેલ્લા ખંડ સુધી સળંગ હોય છે. 26મા ખંડમાં બંને બાજુએથી નીકળતા શંકુ આકારના બે અંધાત્રો આવેલા છે. તે કાર્બોદિત પદાર્થના પાચન માટેના ઉત્સેચકોનો સ્નાવ કરે છે. અંધાત્રના ઉદ્ગમસ્થાન સુધીના આંતરડાના ભાગને પૂર્વભિત્તિભંજ કહે છે. આંતરડાની પૃષ્ઠદીવાલમાં 26થી 95 ખંડો વચ્ચે લટકતી ભિત્તિભંજ નામની કરચલીઓ આવેલી છે, જેને ભિત્તિભંજ પ્રદેશ કહે છે. આ કરચલીને લીધે આંતરડાના શોષણ ક્ષેત્રમાં વધારો થાય છે. છેલ્લા 23થી 25 ખંડોનું આંતરડું ભિત્તિભંજ વગરનું હોવાથી તેને પશ્ચભિત્તિભંજ અથવા મળાશય કહે છે. પાચનનળી બહાર નાના છિદ્ર જેવા મળદ્વાર દ્વારા ખૂલે છે. ખોરાકમાં ગ્રહણ કરેલ કાર્બનિક તત્ત્વથી ભરપૂર માટી પાચનનળી દ્વારા પસાર થતાં તેના ઉપર પાચક ઉત્સેચકો જટિલ ખોરાકનું વિઘટન કરી શોષણ થઈ શકે તેવા નાના ઘટકોમાં ફેરવે છે.

રુધિરાભિસરણતંત્ર

અળસિયામાં બંધ પ્રકારનું રુધિરાભિસરણતંત્ર જોવા મળે છે. રુધિરાભિસરણતંત્રમાં રુધિરવાહિનીઓ, કેશિકાઓ અને હૃદયનો સમાવેશ થાય છે. બંધ રુધિરાભિસરણતંત્રને લીધે દેહમાં રુધિર, હૃદય અને રુધિરવાહિનીઓ જોવા મળે છે. સંકોચનને લીધે રુધિરવહન ફક્ત એક જ માર્ગમાં થાય છે. નાની રુધિરવાહિનીઓ શરીરદીવાલ,

ચેતારજ્જુ અને આંત્રને રુધિર પહોંચાડે છે. ચોથા, પાંચમા અને છક્ષા ખંડમાં રુધિરગ્રંથિઓ આવેલી છે. તેનું કાર્ય રુધિરકોષો અને હિમોગ્લોબીનનું ઉત્પાદન કરવાનું છે, જે રુધિરરસમાં દ્રાવ્ય થાય છે. રુધિરકોષો ભક્ષકકોષો (phagocytic) પ્રકારના છે.

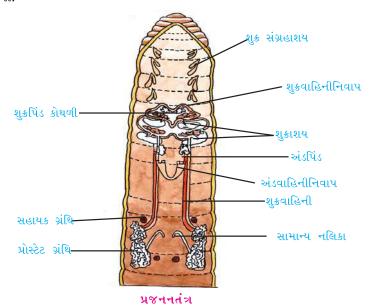

અળસિયામાં ચોક્કસ પ્રકારનાં શ્વસનાંગોનો અભાવ છે. વાયુવિનિમય ભીનાશવાળી શરીરદીવાલ દ્વારા થાય છે. ત્યાંથી રુધિર પ્રવાહમાં \mathbf{O}_2 ભળે છે.

ઉત્સર્જન

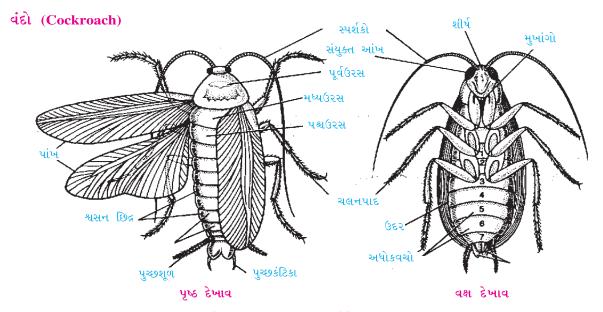
ઉત્સર્જન-અંગોમાં ઉત્સર્ગિકા (nephridium) નામની ગૂંચળાવાળી નલિકાઓની ગોઠવણી દરેક ખંડમાં જોવા મળે છે. તેના ત્રણ પ્રકાર છે : વિટપીય ઉત્સર્ગિકાઓ (septal nephridia) 15 ખંડ પછી છેલ્લા ખંડ સુધી, દરેક આંતરખંડીય પટલની બંને બાજુએ આવેલી છે, જે આંતરડામાં ખૂલે છે. ત્વચીય ઉત્સર્ગિકાઓ (integumentary nephridia) ત્રીજા ખંડ પછીની શરીરદીવાલની અંદરની સપાટી પર ચોંટેલી હોય છે. આ બધી ઉત્સર્ગિકાઓ સૂક્ષ્મ છિદ્ર દ્વારા શરીરદીવાલની બહારની સપાટી પર ખૂલે છે. કંઠનાલીય ઉત્સર્ગિકાઓ (Pharyngeal nephridia) ત્રણ જોડ ગુચ્છમાં ચોથા, પાંચમા અને છકા ખંડમાં આવેલી છે. આ ઉત્સર્ગિકાઓ નકામા ઘટકોનો નિકાલ પાચનનળીમાં કરે છે. આ ત્રણેય પ્રકારની ઉત્સર્ગિકાઓની મૂળભૂત રચના સરખી છે. આ ઉત્સર્ગિકા કોષ્ઠજળનું કદ અને બંધારણ જાળવી તેનું નિયંત્રણ કરે છે. ઉત્સર્ગિકાનિવાપની મદદ વડે શરીરગુહામાં આવેલ ઉત્સર્ગદ્રવ્યને શોષી છિદ્ર દ્વારા શરીરદીવાલની બહાર અને આંતરડામાં ઉત્સર્ગપદાર્થને ઠાલવે છે.

ચેતાતંત્ર

તેનું ચેતાતંત્ર ચેતાકંદમય (ganglionated) છે. ચેતાકોષો એકત્ર થઈ ચેતાકંદો બને છે. પાંચ પછીના દરેક ખંડમાં વક્ષ બાજુએ ચેતાકંદોની એક જોડ આવેલી છે. તે વક્ષચેતારજ્જુ તરીકે ઓળખાય છે. ચેતાકંદની એક જોડ વક્ષબાજુએ ત્રીજા ખંડના પશ્ચ ભાગમાં આવેલી છે. તેને અધોકંઠનાલીય ચેતાકંદ (subpharyngeal ganglion)


કહે છે. કંઠનળીની પૃષ્ઠબાજુએ ત્રીજા ખંડમાં ચેતાકંદની એક જોડ ઉપરિકંઠનાલીય ચેતાકંદ (Supra pharyngeal ganglion) આવેલા છે. આ ચેતાકંદો પરિકંઠનાલીય-યોજી (circumpharyngeal connective) દ્વારા અધોકંઠનાલીય ચેતાકંદ સાથે જોડાય છે. આ યોજીની જોડ અને તેની સાથે જોડાયેલ અધોકંઠનાલીય ચેતાકંદ અને ઉપરિકંઠનાલીયચેતાકંદ ચેતાકડી (nerve ring)ની રચના કરે છે. ઉપરિકંઠનાલીય ચેતાકંદ અને તેની સાથે ચેતાકડીની બીજી સંવેદી ચેતાઓ માહિતીનું સંકલન કરી તરત જ પ્રતિક્રિયા કરી શરીરના સ્નાયુઓને અમલ કરવા પ્રેરે છે. અળસિયામાં વિશેષ સંવેદક આંખો જેવા અવયવો આવેલા નથી. ફક્ત ત્વચાના સંવેદી કોષો જ સંવેદનગ્રાહક અવયવ તરીકે કાર્ય કરે છે. આ કોષો પ્રકાશની તીવ્રતા, જમીનમાં થતા કંપન વગેરેથી પ્રેરિત થાય છે. સંવેદી કોષોમાંના કેટલાક રાસાયણિક ઉત્તેજકોથી પણ પ્રેરિત થાય છે.

પ્રજનનતંત્ર

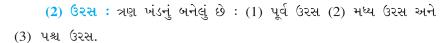

અળસિયું ઉભયલિંગી પ્રાણી છે એટલે કે એક જ પ્રાણીમાં શુક્રપિંડ અને અંડપિંડ આવેલા છે. બે જોડ શુક્રપિંડ અનુક્રમે 10મા

અને 11મા ખંડમાં આવેલા છે. તેમની શુક્રવાહિની 18 ખંડ સુધી લંબાયેલી હોય છે. ત્યાં તે પ્રોસ્ટેટનલિકા સાથે જોડાય છે. બે જોડ સહાયકગ્રંથિ (accessory gland) અનુક્રમે 17મા અને 19મા ખંડમાં આવેલી છે. સામાન્ય પ્રોસ્ટેટ અને શુક્રવાહિની બહારની તરફ 18મા ખંડમાં વક્ષપાર્શ્વ બાજુએ એક જોડ નરજનનછિદ્ર તરીકે ખૂલે છે. 6, 7, 8 અને 9 આ પ્રત્યેક ખંડ શુક્રસંગ્રહાશયોની એક જોડ ધરાવે છે. તે મૈથુનક્રિયા દરમિયાન મેળવેલા સાથી અળસિયાના શુક્કોષોનો સંગ્રહ કરે છે. 12/13 વિટપની પશ્ચ સપાટીએ વળગી રહેલ અંડપિંડની એક જોડ 13મા ખંડમાં આવેલી છે. અંડવાહિની તેનો અગ્ર છેડો અંડવાહિનીનિવાપ (oviducal funnel) બનાવે છે. બંને બાજુની અંડવાહિનીઓ જોડાઈ માદાજનનછિદ્ર સ્વરૂપે શરીરદીવાલની વક્ષ બાજુએ 14મા ખંડમાં ખૂલે છે. મૈથુનક્રિયા દરમિયાન બે અળસિયાં જોડાઈને વિરુદ્ધ દિશામાં ગોઠવાઈ એકબીજાના સંપર્કમાં આવે છે. તેથી એકનો મુખ તરફનો છેડો બીજાના મળદ્વારના છેડા તરફ આવે છે. એકનાં નરજનનછિદ્રો બીજા

અળિસયાના શુકસંગ્રહાશયનાં છિદ્રો સાથે સંપર્કમાં આવે છે. આ અવસ્થામાં શુક્રત્યાગ થવાથી શુક્રકોષો સાથી પ્રાણીના શુક્રસંગ્રહાશયમાં દાખલ થાય છે. આમ, શુક્રકોષોની આપ-લે કરીને સાથી પ્રાણીઓ એકબીજાથી છૂટાં પડે છે. થોડા સમય બાદ વલિયકાની ગ્રંથિઓ સ્તાવ કરી એક સફેદ ભૂંગળી બનાવે છે. આ ભૂંગળીમાં અંડત્યાગ કરવામાં આવે છે. શરીરદીવાલના આકુંચનને પરિણામે ધીમે ધીમે ભૂંગળી અગ્રછેડા તરફ સરકે છે. અગ્રછેડા તરફ સરકતી આ ભૂંગળી જયારે શુક્રસંગ્રહાશય પ્રદેશમાંથી પસાર થાય છે ત્યારે તેમાં શુક્રસંગ્રહાશયમાં સંગ્રહ થયેલા શુક્રકોષો પ્રવેશે છે. હવે આ ભૂંગળીમાં તે જ પ્રાણીના અંડકોષો અને સાથી પ્રાણીના શુક્રકોષો અને પોષક પ્રવાહી એકત્ર થાય છે. શરીરની બહાર નીકળી આવેલ ભૂંગળીના બંને છેડા બંધ થાય છે. આવી ભૂંગળીને અંડઘર (cocoon) કહે છે. તેમાં ફલન થઈ અંડકોષો ફિલતાંડોમાં પરિણમે છે. ત્રણ અઠવાડિયાં બાદ અંડઘરમાં બાળ અળિસયાં બહાર આવે છે. અળિસયાંનો વિકાસ સીધો થાય છે. એટલે કે વિકાસ દરિમયાન ર્ડિભ બનતાં નથી.

અળસિયાં ખેડૂતમિત્ર તરીકે ઓળખાય છે. કારણ કે તે માટીમાં દર બનાવે છે અને તેથી તે છિદ્રાળુ બનતા વિકાસ પામતી વનસ્પતિને શ્વસન માટે પ્રાણવાયુ પૂરો પાડે છે. જમીનની ફળદ્રુપતા વધારવા જમીનમાં અળસિયાંનો ઉછેર કરવામાં આવે છે. જેને વર્મીકમ્પોસ્ટિંગ કહે છે. આ ઉપરાંત માછલી પકડવાના ગલમાં ભક્ષ્ય ભેરવવા તરીકે અળસિયાનો ઉપયોગ થાય છે.

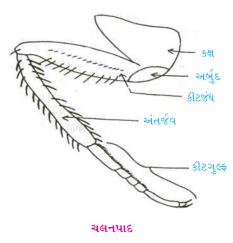
Downloaded from https://www.studiestoday.com


વંદો સંધિપાદ સમુદાયના કીટક વર્ગનું પ્રાણી છે. સામાન્ય રીતે વંદો બદામી અથવા કાળા રંગનું કીટક છે. તેમ છતાં ઉષ્ણકટિબંધના વિસ્તારમાં ચમકતા પીળા, લાલ અને લીલા રંગના વંદાઓ પણ નોંધાયા છે. તે નિશાચર મિશ્રાહારી પ્રાણી છે. વંદાની જાતિ એ સમગ્ર વિશ્વમાં હૂંફાળી અને ભેજયુક્ત જગ્યાઓમાં સામાન્ય રીતે વસે છે. રસોડું, બાથરૂમ, ગટર, હોટલનાં રસોડાં વગેરે જગ્યાઓમાં વંદાનો વસવાટ સામાન્ય છે.

બાહ્યરચના

વંદાની સામાન્ય જાતિ પેરિપ્લેનેટા અમેરિકાના (Periplaneta americana) છે. જેની લંબાઈ 25 મિમીથી 45 મિમી અને પહોળાઈ 8 મિમીથી 12 મિમી છે. નરનું કદ માદાના પ્રમાણમાં સહેજ મોટું હોય છે.

આ પ્રાણીનું શરીર કઠણ અને કાઈટીનના બનેલાં બાહ્યકંકાલ વડે સુરક્ષિત છે. શરીર બાહ્ય રીતે ખંડમય રચના દર્શાવે છે. આંતરિક ખંડન હોતું નથી. દરેક ખંડમાં બાહ્યકંકાલની તકતીઓ ઉપરિકવચ અને અધોકવચ તરીકે ગોઠવાયેલી હોય છે. તે પાતળા અને સ્થિતિસ્થાપક (articular membrane) પાર્શ્વપટલ દ્વારા એકબીજા સાથે જોડાયેલ હોય છે. વંદાનું શરીર ત્રણ ભાગમાં વહેંચાયેલ છે : (1) શીર્ષ (2) ઉરસ અને (3) ઉદર.


(1) શીર્ષ : વંદાનું શીર્ષ ત્રિકોણાકાર હોય છે. તે શરીરના અગ્ર છેડે અને બાકીના શરીરને લગભગ કાટખૂશે ગોઠવાયેલ છે. તે છ ખંડો ભળીને બને છે. તે ઉરસ સાથે પાતળી સ્થિતિસ્થાપક નાજુક ગ્રીવા વડે જોડાયેલું છે. જેથી શીર્ષ બધી દિશામાં સરળતાથી હલનચલન કરી શકે છે. શીર્ષ પર એક જોડ અદંડી સંયુક્ત વૃક્કાકાર આંખ આવેલી છે. શીર્ષના અગ્ર છેડે મુખ આવેલ છે. મુખની સાથે સંવેદનશીલ મુખાંગો આવેલાં હોય છે. તે ખોરાક પકડવાનું અને ચાવવાનું કાર્ય કરે છે. મુખાંગોમાં એક જોડ અધોજમ્ભ અને એક જોડ પ્રથમજમ્ભ આવેલા છે, જયારે દ્વિતીયજમ્ભ અને અધિજમ્ભનો પણ સમાવેશ થાય છે. મુખાંગો વડે ઘેરાયેલી ગુહામાં અધોજિહ્વા નામની માંસલ ગડીમય રચના હોય છે. તેના તલભાગમાં લાળગ્રંથિ ખૂલે છે.

ઉરસત્તા દરેક ખંડની વક્ષ બાજુથી એક જોડ ચલનપાદ ઉદ્ભવે છે. દરેક ચલનપાદમાં પાંચ ખંડ હોય છે. પ્રથમ ખંડને કક્ષ, બીજા ખંડને અર્બુદ, ત્રીજા ખંડને કીટજંઘ, ચોથા ખંડને અંતંજંઘ અને પાંચમા ખંડને કીટગુલ્ફ કહે છે. મધ્ય ઉરસમાંથી એક જોડ પાંખ પૃષ્ઠ બાજુએથી વિકસે છે, જે રક્ષણાત્મક અને શૃંગીય હોય છે. પશ્ચ ઉરસની પૃષ્ઠ બાજુથી દ્વિતીય જોડ પાંખ વિકસે છે. આ જોડ પારદર્શક અને દ્વિખંડી છે. તે ઊડવાના કામમાં આવે છે.

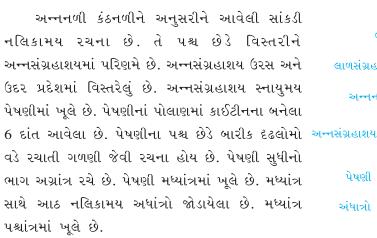
(3) ઉદર: નર અને માદા વંદા બંનેમાં ઉદર 10 ખંડોનું બનેલું હોય છે. દરેક ખંડમાં ઉપરિકવચ, અધોકવચ અને પાર્શ્વપટલ આવેલા છે. આઠમું અને નવમું ઉપરિકવચ સાતમા ઉપરિકવચ વડે ઢંકાયેલા હોય છે. દસમું ઉપરિકવચ મધ્યમાં

ખાંચવાળું છે. તેની નીચે મળદાર આવેલું છે. દસમા ઉપરિકવચ સાથે ખંડયુક્ત પુચ્છશૂળની એક જોડ સંકળાયેલી છે, જે ધ્વનિગ્રાહી અંગ છે. નર વંદામાં નવમા અધોકવચમાંથી એક જોડ પુચ્છકંટિકા નીકળે છે. માદા વંદામાં આઠમું અને નવમું અધોકવચ મળી જનન કોથળી રચે છે. સાતમું અધોકવચ નૌતલ આકારનું છે. નરજનનછિદ્ર નવમા ખંડમાં વક્ષ-મધ્ય ભાગે ખૂલે છે. માદા જનનછિદ્ર આઠમા ખંડમાં ખૂલે છે.

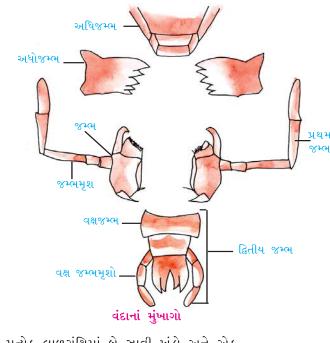
વંદાની અંતઃસ્થ રચના

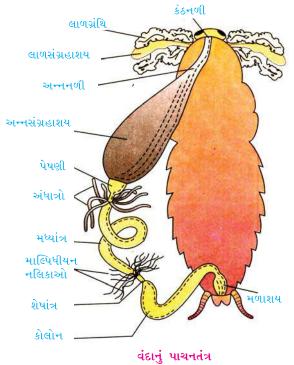
શરીરદીવાલ:

વંદાની શરીરદીવાલ ત્રણ મુખ્ય પડની બનેલી છે. સૌથી બહારનું પડ ક્યુટિકલનું બનેલું હોય છે. તે બાહ્યકંકાલ રચે છે. ત્યાર પછીનું પડ અધિચર્મ છે જે સ્તંભીય અધિચ્છદ પ્રકારના કોષોના એક સ્તર વડે રચાય છે. સૌથી અંદરના ભાગે આધારકલા હોય છે.


પાચનતંત્ર :

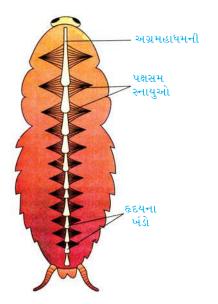
પાચનતંત્રમાં વંદાનો અન્નમાર્ગ સંપૂર્ણ છે.


શીર્ષના અગ્ર છેડે મુખદ્વાર આવેલાં છે. મુખદ્વારની આસપાસ ખોરાકના ગ્રહણ તથા તેને કાપવાના કાર્ય માટે અનુરૂપ એવાં મુખાંગો આવેલાં છે.


મુખદ્વાર પછીના નલિકાકાર ભાગને કંઠનળી કહે છે. ત્યાર પછીનો અન્નમાર્ગ અગ્રાંત્ર, મધ્યાંત્ર અને પશ્ચાંત્ર એમ ત્રણ ભાગમાં વહેંચાયેલો છે. અગ્રાંત્ર અને મધ્યાંત્રનાં પોલાણ ક્યુટિકલ વડે આવરિત હોય છે. વંદાના પાચનમાર્ગની પાર્શ્વ

બાજુએ ઉરસ પ્રદેશમાં એક જોડ લાળગ્રંથિઓ આવેલી હોય છે. પ્રત્યેક લાળગ્રંથિમાં બે સ્રાવી ખંડો અને એક લાળસંગ્રહાશય ધરાવે છે.

મધ્યાંત્ર અને પશ્ચાંત્રનાં જોડાણસ્થાને લગભગ 150 જેટલી પીળાશ પડતી પાતળી માલ્પિધીયન નલિકાઓ ખૂલે છે. તે ઉત્સર્ગ એકમો છે. પશ્ચાંત્રનો શરૂઆતનો ભાગ શેષાંત્ર છે. તે પ્રમાણમાં સાંકડો છે. ત્યાર પછીનો પશ્ચાંત્રનો ભાગ કંઈક અંશે ગૂંચળામય છે. પશ્ચાંત્રના મધ્ય ભાગને કોલોન કહે છે. પશ્ચાંત્રના પશ્ચ છેડાના કોથળીમય ભાગને મળાશય કહે છે. તે અંદરના ભાગે ગડીમય હોય



છે. મળાશય મળદ્વાર વડે 10મા ઉપરિકવચની હેઠળના ભાગે બહાર ખૂલે છે.

વંદો સર્વભક્ષી પ્રાણી છે. વંદો પોતાના સ્પર્શકોની મદદથી ખોરાક શોધે છે. લાળગ્રંથિના સ્રાવી ખંડો

દ્વારા લાળરસ તૈયાર થાય છે. લાળમાં રહેલું શ્લેષ્મ ખોરાકને ભીનો બનાવે છે. આ ઉપરાંત એમાઈલેઝ ઉત્સેચક ખોરાકમાંના સ્ટાર્ચ ઉપર અસર કરે છે અને તેનું પાચન શરૂ થાય છે. હવે ખોરાક અન્નસંગ્રહાશયમાં પહોંચે છે, જ્યાં સ્ટાર્ચનું પાચન આગળ વધે છે. ત્યાર બાદ ખોરાક પેષણીમાં જાય છે. ત્યાં કાઈટીનના સખત દાંતની મદદથી તેનો વધુ બારીક ભૂકો થાય છે અને તે મધ્યાંત્રમાં પ્રવેશે છે. મધ્યાંત્ર અને અધાંત્રના સ્તંભાકાર કોષો ઉત્સેચકોનો સ્તાવ કરે છે. વિવિધ પ્રોટીઓલાયટીક ઉત્સેચકો પ્રોટીનના ઘટકોનું એમિનોઍસિડોમાં રૂપાંતરણ કરે છે. લાયપેઝ દ્વારા લિપિડ પદાર્થોમાંથી ફેટી ઍસિડ અને ગ્લિસરોલમાં ફેરવે છે. એમાઈલેઝ દ્વારા સ્ટાર્ચમાંથી શર્કરાઓ મળે છે.

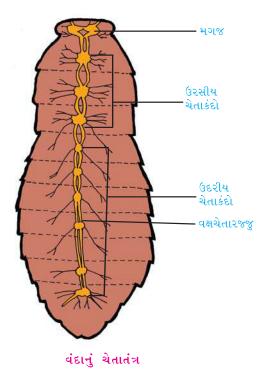
રુધિરાભિસરણતંત્ર

વંદાનું રુધિરભિસરણ તંત્ર **શ્વસનતં**ત્ર

વંદાનું રુધિરાભિસરણતંત્ર ખુલ્લા પ્રકારનું છે. એટલે કે રુધિર પરિવહન દરમિયાન માત્ર વાહિનીઓમાંથી પસાર થવાને બદલે શરીરગુહામાં પ્રવેશે છે. આમ, શરીરગુહા એ રુધિરગુહા તરીકે વર્તે છે જેથી શરીરના અવયવો અને પેશીઓ રુધિર સાથે સીધો સંપર્ક ધરાવે છે. રુધિર મુખ્યત્વે રુધિરસ અને અનિશ્ચિત આકારના કોષોનું બનેલું છે. હૃદય 13 ખંડોનું બનેલું છે. પહેલા ત્રણ ખંડો ઉરસ પ્રદેશ અને બાકીના ઉદર પ્રદેશમાં આવેલા છે. હૃદયનો આગળનો છેડો સહેજ સાંકડો છે. પાછળનો છેડો પહોળો છે. ત્યાં વાલ્વયુક્ત બે મુખિકાઓ (ostia) આવેલી છે. રુધિરના કોષો બે પ્રકારના છે. નાના કદના પ્રશ્વેતકોષો (proleucocytes) અને મોટા કદના ભક્ષકકોષો (phagocytes) રુધિર મહાકોટર (sinuses)માંથી હૃદયમાં મુખિકા દ્વારા દાખલ થાય છે અને રુધિરનું પર્મ્પિંગ થતા અગ્રભાગે ફરી પાછું મહાકોટરમાં જાય છે.

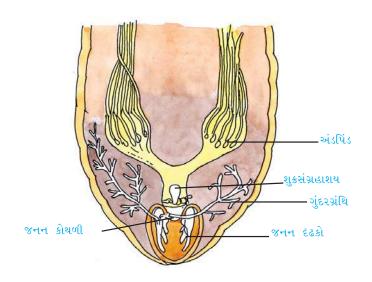
શ્વસનતંત્ર શ્વાસનળી (trachea) કહેવાતી શાખા પ્રબંધિત નલિકાઓ શ્વસનતંત્રના મુખ્ય ઘટકો છે. શ્વાસનળીની અનેક શાખાઓ દ્વારા તેઓ શરીરમાં સર્વત્ર પ્રસરેલી છે. તેની અંતિમ શાખાઓને સૂક્ષ્મશ્વાસનલિકા (tracheoles) કહે છે. તે શરીરના બધા જ ભાગોમાં O_2 નું વહન કરે છે. શ્વાસનળીઓ શ્વસનછિદ્રો (spiracles) કહેવાતાં છિદ્રો દ્વારા પરિઆવરણની હવા સાથે સીધો સંપર્ક ધરાવે છે. શ્વસનછિદ્રોની દસ જોડ આવેલી છે. તે પૈકી બે જોડ ઉરસપ્રદેશમાં અને આઠ જોડ ઉદર પ્રદેશમાં આવેલી છે. શ્વસનછિદ્રની દીવાલ દઢલોમથી સર્જાયેલી છે. દઢલોમો ગળણી તરીકે કાર્ય કરી પાણી, કચરા જેવા પદાર્થોને શ્વસનતંત્રમાં પ્રવેશતા અટકાવે છે. શ્વસનક્રિયા દરમિયાન શ્વસનછિદ્રો દ્વારા ઑક્સિજન શ્વાસનળીઓમાં પ્રવેશે છે અને ત્યાંથી સૂક્ષ્મવાહિકા દ્વારા પેશીજળના સંપર્કમાં આવી તેમાં દ્રાવ્ય થાય છે. આ દ્રાવ્ય ઑક્સિજનનો ઉપયોગ શરીરની પેશીઓ કાર્યશક્તિ મેળવવા કરે છે. તે દરમિયાન ઉદ્ભવેલો કાર્બન ડાયૉક્સાઇડ સામાન્યપણે પેશીજળમાં દ્રાવ્ય બને છે. તે ઉચ્છ્વાસ દરમિયાન બહાર નીકળે છે.

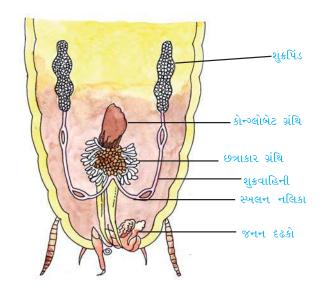
ઉત્સર્જન-અંગો અને ઉત્સર્જનક્રિયા


મધ્યાંત્ર અને પશ્ચાંત્રના જોડાણ આગળ પીળાશ પડતા રંગની લગભગ 150 જેટલી લાંબી, પાતળી, પોલી માલ્પિધિયન નલિકાઓ મુખ્ય ઉત્સર્ગઘટકો છે. આ નલિકાઓ મુક્ત છેડે બંધ હોય છે અને કાયમ રુધિરમાં

તરતી રહે છે. નલિકાની દીવાલ ગ્રંથિમય કોષોની અંદરની બાજુએથી એક સ્તરમાં ગોઠવાયેલ અને કેશતંતુયુક્ત હોય છે. તે નાઇટ્રોજનયુક્ત ઉત્સર્ગદ્રવ્યોનું શોષણ કરી તેને યુરિકઍસિડમાં રૂપાંતરિત કરે છે, જેનો નિકાલ પશ્ચાંત્ર દ્વારા થાય છે. માટે તેને યુરિકઍસિડ ત્યાગી પ્રાણી કહે છે. પશ્ચાંત્રમાં આવતા ઉત્સર્ગ પદાર્થમાં પાણીનું પ્રમાણ વધુ હોવાથી તેનું શોષણ પશ્ચાંત્ર દીવાલમાં થાય છે.

ચેતાતંત્ર


ચેતાતંત્ર ચેતાકંદો, ચેતાસૂત્રો અને ચેતાઓનું બનેલું છે. ઉપરિઅન્નાલીય ચેતાકંદ ત્રણ ચેતાકંદોના વિલીનીકરણથી બને છે, જેને મગજ કહે છે, જે અન્નનળીની ઉપર આવેલ છે. ઉપરીઅન્નાલીય ચેતાકંદો અન્નનળીની નીચે આવેલા અધોઅન્નનાલીય ચેતાકંદો સાથે પરિઅન્નનાલીયયોજી દ્વારા જોડાયેલા છે. ચેતાતંત્રનો આ ભાગ ચેતાકડીની રચના કરે છે. અધોઅન્નનાલીય ચેતાકંદો મુખાંગોનું ચેતાકરણ કરે છે. ઉરસ પ્રદેશમાં ત્રણ જોડ ચેતાકંદો અને ઉદરમાં 6 જોડ ચેતાકંદો આવેલા છે, જે દરેક ચેતાકંદ બે ચેતાકંદોના વિલીનીકરણથી બને છે. આમ, વંદામાં ચેતાતંત્ર આખા શરીરમાં ફેલાયેલ છે.


વંદાનાં સંવેદી અંગોમાં સ્પર્શકો, આંખ, જમ્ભમૃશો, વક્ષ જમ્ભમૃશો, પુચ્છશૂળો વગેરે આવેલાં છે. શીર્ષની પૃષ્ઠ બાજુએ સંયુક્ત આંખો આવેલી છે. આંખ લગભગ 2000 જેટલી ષટ્કોણાકાર નેત્રિકા (ommitidium)ની બનેલ છે. ઘણી નેત્રિકાની મદદથી વંદો પદાર્થનાં ઘણાં પ્રતિબિંબો મેળવે છે. આ પ્રકારની દષ્ટિને મોઝેક પ્રતિબિંબ કહે છે.

પ્રજનનતંત્ર

વંદો એકલિંગી પ્રાણી છે. બંને પુખ્તલિંગી પ્રાણીમાં પૂર્ણવિકસિત પ્રજનનઅંગો આવેલાં છે. નર પ્રજનનતંત્રમાં એક જોડ શુકપિંડ ઉદરના 4થી 6 ખંડોના પાશ્ચ બાજુએ આવેલા છે. દરેક શુકપિંડમાંથી પાતળી શુકવાહિની ઉદ્ભવે છે. તે સ્ખલનનલિકામાં ખૂલે છે. સ્ખલનનલિકા નરજનનછિદ્રમાં ખૂલે છે. તેનું સ્થાન મળદ્વારની વક્ષબાજુએ આવેલું છે. છત્રાકારગ્રંથિ ઉદરના 6થી 7 ખંડમાં આવેલી છે. તેનું કાર્ય વધારાની પ્રજનનગ્રંથિનું છે. વંદાના ઉદરને છેડે આવેલા કાઈટીનના જનનદઢકો બાહ્ય જનનાંગોની રચના કરે છે. શુકકોષોનો સંગ્રહ શુકાશયમાં થાય છે. સમાગમ પહેલાં બધા શુકકોષો ભેગા મળી શુકકોથળીની રચના કરે છે. તે સમાગમ દરમિયાન છૂટા પડે છે. માદા પ્રજનનતંત્રમાં બે અંડપિંડો ઉદરના 2થી 6 ખંડની પાર્ચ બાજુએ આવેલા છે. પ્રત્યેક અંડપિંડ આઠ નલિકામય અંડપુટિકાઓનો બનેલો છે. તે શ્રેણીબદ્ધ વિકસિત અંડકોષ ધરાવે છે. બંને બાજુની અંડવાહિનીઓ મધ્યમાં એકબીજા સાથે જોડાઈને સામાન્ય અંડવાહિની અથવા યોનિમાર્ગ બનાવે છે જે જનનકોથળીમાં ખુલે છે. મૈથુનક્રિયા દરમિયાન અંડકોષો જનનકોથળીમાં આવે છે ત્યાં શુકકોષો તેમને ફ્રિલિત કરે છે. ફ્રિલિત અંડકોષની ફરતે અંડઘર બને છે. તે ઘરા બદામી રંગના છે. દરેક અંડઘરમાં 14થી 16 ઈંડાં હોય છે. વંદાનો વિકાસ કીટશિશુ દ્વારા થાય છે. તે મુખ્ય પ્રાણી જેવું દેખાય છે. કીટશિશુ 6થી 7 વખત નિર્મોચન કરી પુખ્ત પ્રાણીમાં રૂપાંતરણ કરે છે.

માદા અને નર વંદાનું પ્રજનનતંત્ર

સારાંશ

અળસિયામાં અને વંદામાં સમખંડતા, દ્વિપાર્શ્વસમરચના અને શરીરનું દૈહિક આયોજન જેવાં લાક્ષણિક લક્ષણો દેખાય છે. અળસિયું જમીનમાં દર બનાવીને રહે છે. વંદો રસોડામાં, હોટલમાં અને સંડાસ જેવી જગ્યાએ રહે છે જ્યાં ખૂબ પ્રમાણમાં ખોરાક મળી રહેતા હોય. અળસિયામાં સમખંડતા જોવા મળે છે. વંદાનું શરીર ખંડીય છે અને તે શીર્ષ, ઉરસ અને ઉદરમાં વિભાજિત થયેલું છે. તેના શરીરના ખંડો સાંધાવાળાં ઉપાંગો ધરાવે છે. બંને પ્રાણીમાં પાચનમાર્ગ સંપૂર્ણ છે. અળસિયામાં રૃષિરાભિસરણતંત્ર બંધ પ્રકારનું છે, જયારે વંદામાં તે ખુલ્લા પ્રકારનું છે. અળસિયામાં વિશિષ્ટ પ્રકારનાં શ્વસનાંગોનો અભાવ છે. શરીરદીવાલ દ્વારા વાયુવિનિમય થાય છે. વંદાના શ્વસનતંત્રમાં શ્વાસનલિકાઓ આવેલી છે, જે બહારની બાજુએ શ્વસનછિદ્રો દ્વારા ખૂલે છે. અળસિયામાં ઉત્સર્જન અંગ તરીકે ઉત્સર્ગિકાઓ આવેલી છે, જયારે વંદો માલ્પિધીયન નલિકાઓ ધરાવે છે. અળસિયા અને વંદામાં પૂર્ણ વિકસિત ચેતાતંત્ર આવેલું છે. અળસિયું ઉભયલિંગી પ્રાણી છે. વંદો એકલિંગી પ્રાણી છે. અળસિયામાં પરફલન જોવા મળે છે. ફલન અને વિકાસ અંડઘરમાં થાય છે. અંડઘરનો સાવ વલયિકા દ્વારા થાય છે. વિકાસ સીધો છે અને વિકાસ દરમિયાન ડિમ્ભ જોવા મળતાં નથી. વંદામાં અંતઃફલન અને માદા વંદો અંડઘરનું નિર્માણ કરે છે. જેમાં વિકસિત ગર્ભ જોવા મળે છે. તરૂણ ગર્ભ કીટશિશુ તરીકે ઓળખાય છે.

સ્વાધ્યાય

1.	નીચે	આપેલા	પ્રશ્નોના	ઉત્તરો	પૈકી	સાચા	ઉત્તર	સામે	સર્કલમાં	પેન્સિલથી	રંગ	પુરો	
----	------	-------	-----------	--------	------	------	-------	------	----------	-----------	-----	------	--

(1)	અળસિયાનું શરીર આશરે	કેટલા ખંડોમાં વિભાજિત થયેલું છે ?	
	(અ) 100થી 120	(બ) 150થી 200	\subset
	(ક) 50થી 70	(ડ) 1000થી 2000	\subset

(2)	અળસિયાના અધિચર્મમાં કયા કોષો જોવા મ	ળે છે ?	
	(અ) ગ્રંથિકોષો અને સંવેદીકોષો	(બ) આધારકોષો અને ગ્રંથિકોષ	l .
	(ક) આધારકોષો, ગ્રંથિકોષો અને સંવેદીકોષો	. 🔾 (ડ) સંવેદીકોષો	\bigcirc
(3) વં	ાંદો સંધિપાદ સમુદાયના કયા વર્ગનું પ્રાણી છે	?	
	(અ) સ્તરકવચી	🤇 (બ) બહુપાદ	\bigcirc
	(ક) કીટક	(ડ) અષ્ટપાદ	\bigcirc
(4)	વંદાનું શરીર કેટલા ભાગમાં વિભાજિત થયેલું	ું છે ?	
	(અ) બે ભાગ	🤇 (બ) ચાર ભાગ	\bigcirc
	(ક) ત્રણ ભાગ	🤇 (ડ) પાંચ ભાગ	\bigcirc
(5)	ફેરેટીમા પોસ્થુમામાં વલયિકા કયા ખંડોમાં જે	ોવા મળે છે ?	
	(અ) 12, 13 અને 14	(બ) 13, 14 અને 15	\bigcirc
	(ક) 14, 15 અને 16	(ડ) 15, 16 અને 17	\bigcirc
(6)	અળસિયામાં એકજોડ નરજનન છિદ્રો કયા ખં	ડની વક્ષપાર્શ્વ બાજુએ જોવા મળે છે ?	•
	(અ) 19	(બ) 18	\bigcirc
	(3) 17	(4) 15	\bigcirc
(7)	વંદાનું ઉદર કેટલા ખંડનું બનેલું છે?		
	(અ) 10 ખંડ	(બ) 8 ખંડ	\bigcirc
	(ક) 9 ખંડ	(ડ) 7 ખંડ	\bigcirc
(8)	પેષણીના પોલાણમાં કાઈટીનના બનેલા કેટલ	ા દાંત આવેલા છે ?	
	(અ) 5	(બ) 6	\bigcirc
	(3)	(3) 4	\bigcirc
(9)	ભિત્તિભંજ પ્રદેશ કયા ખંડમાં જોવા મળે છે	?	
	(અ) 26થી 95 ખંડ	(બ) 15થી છેલ્લા 15 ખંડ	\bigcirc
	(ક) છેલ્લા 25 ખંડોમાં	🤇 (ડ) પહેલા 25 ખંડોમાં	\bigcirc
(10)	રુધિરગ્રંથિઓ કયા ખંડમાં જોવા મળે છે ?		
	(અ) 4, 5 અને 6 ખંડ	િ (બ) 7, 8 અને 9 ખંડ	\bigcirc
	(ક) 1, 2 અને 3 ખંડ	(ડ) 9, 10 અને 11 ખંડ	\bigcirc
(11)	વંદાનું હૃદય કેટલા ખંડોનું બનેલું છે ?		
	(અ) 12 ખંડ	(બ) 10 ખંડ	\bigcirc
	(ક) 11 ખંડ	(ડ) 13 ખંડ	\bigcirc
(12)	અળસિયામાં કેટલા પ્રકારની ઉત્સર્ગિકાઓ જો	વા મળે છે ?	
	(અ) 3	(બ) 2	\bigcirc
	(6) 1	\bigcirc (3) \downarrow	\bigcirc

(13)	વદામા શ્વસનાછંદ્રની સખ્યા કેટલી છે ?		
	(અ) 10 જોડ	(બ) 8 જોડ	\bigcirc
	(ક) 9 જોડ	(ડ) 6 જોડ	\bigcirc
(14)	અળસિયામાં શુક્રપિંડ કયા ખંડમાં જોવા મળે	છે ?	
	(અ) 10 અને 11મા ખંડમાં	🤾 (બ) 12 અને 13મા ખંડમાં	\bigcirc
	(ક) 13 અને 14મા ખંડમાં	🤇 (ડ) 16 અને 16મા ખંડમાં	\bigcirc

2. માગ્યા મુજબ જવાબ લખો.

- (1) અળસિયાની શરીરદીવાલની આંતરિક રચના વર્ણવો.
- (2) વંદાનું શીર્ષ (મુખાંગો સહિત) દર્શાવો.
- (3) 'અળસિયાનો પાચનમાર્ગ' આકૃતિસહ વર્ણવો.
- (4) 'વંદાના ચલનપાદ' આકૃતિસહ વર્શવો.
- (5) અળસિયાનાં બાહ્ય લક્ષણો
- (6) વંદાનું પાચનતંત્ર આકૃતિસહ વર્શવો.
- (7) અળસિયાની ઉત્સર્ગિકાઓ
- (8) વંદાનું શ્વસનતંત્ર
- (9) 'અળસિયાનું ચેતાતંત્ર' આકૃતિસહ વર્શવો.
- (10) વંદામાં ઉત્સર્જન અને ઉત્સર્ગક્રિયા
- (11) અળસિયાનાં નરપ્રજનનઅંગો
- (12) અળસિયાનાં માદા પ્રજનનઅંગો, મૈથુનક્રિયા અને અંડઘરનિર્માણ
- (13) नरवंद्यानुं प्रथननतंत्र
- (14) માદાવંદાનું પ્રજનનતંત્ર, ફલન અને અંડઘરનિર્માણની ક્રિયા

•

પ્રાણી બાહ્યાકારવિદ્યા અને અંતઃસ્થ રચના-2 (દેડકો)

દેડકો ઉભયજીવી વર્ગનું પ્રાણી છે. ઉભયજીવી વર્ગમાં એવાં પ્રાણીઓનો સમાવેશ થાય છે જે પોતાનું જીવન પાણી અને જમીન બંને નિવાસસ્થાનોમાં જીવી શકે છે. તેઓ મત્સ્ય જેવા પૂર્વજોમાંથી ઉદ્ભવેલાં સૌપ્રથમ ચતુષ્પાદો છે. તેઓ તેમનાં વિશિષ્ટ લક્ષણોને આધારે મત્સ્ય અને સરીસૃપ વચ્ચે સ્થાન પામેલ છે. વર્ગીકરણમાં દેડકાનું સ્થાન નીચે મુજબ છે :

વર્ગીકરણમાં સ્થાન

સમુદાય : મેરૂદંડી

ઉપ–સમુદાય : પૃષ્ઠવંશી

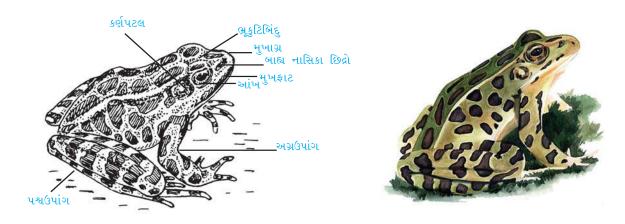
વિભાગ : હનુધારી

વર્ગ : ઉભયજીવી

શ્રેણી : એન્યુરા

પ્રજાતિ : રાના

જાતિ : ટાઈગ્રીના

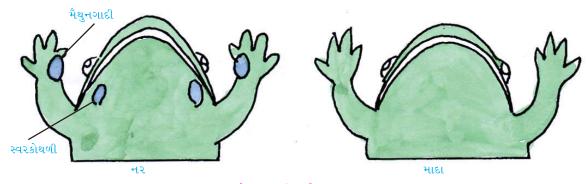

દ્વિનામી નામકરણ : રાના ટાઈગ્રીના L.

સામાન્ય ભારતીય બુલફ્રોગ (રાના ટાઈગ્રીના L.) મોટે ભાગે પાણીમાં અથવા તેની નજીકમાં જીવે છે. શિયાળા અને ઉનાળામાં તે સુષુપ્ત અવસ્થામાં જીવે છે જેને અનુક્રમે શીતિનિદ્રા અને ગ્રીષ્મિનિદ્રા તરીકે ઓળખવામાં આવે છે. દેડકો માંસાહારી પ્રાણી છે. તે ખોરાકનો આધાર નાનાં પ્રાણીઓ ઉપર રાખે છે. કેટલાંક પ્રાણીઓ જેવાં કે સાપ, કેટલાંક પક્ષીઓ, માનવ વગેરે દેડકાના કુદરતી દુશ્મનો છે. દેડકામાં કેટલેક અંશે પોતાની ત્વચાનો રંગ પર્યાવરણના સંદર્ભમાં બદલી શકવાની ક્ષમતા હોય છે. તે દ્વારા પણ તે પોતાની જાતને દુશ્મનોથી બચાવે છે.

श्रुविद्यान

બાહ્ય રચના

દેડકાનું કદ તેની એકજ જાતિમાં તેની ઉંમરને આધારે જુદું જુદું હોય છે. દેડકો તેનું શરીર સુવાહી (બોટ) આકારનું હોવાથી પાણીમાં તરી શકે છે. શરીરનો રંગ પૃષ્ઠ બાજુએ લીલો અને સાથે કાળાં ટપકાં, જ્યારે વક્ષ બાજુએ આછો (ઝાંખો) હોય છે. શરીર બે ભાગમાં વિભાજિત હોય છે. શીર્ષ અને ધડ. સાચી ગરદન અને પૂંછડી

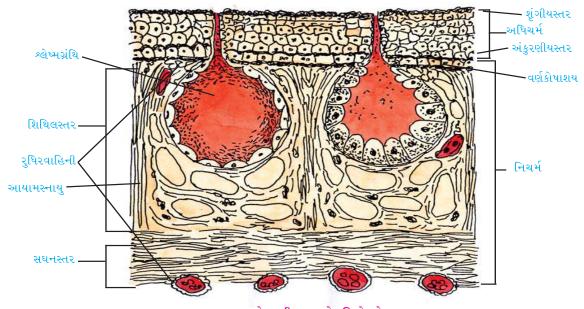


દેડકાનાં બાહ્ય લક્ષણો

ગેરહાજર હોય છે. શીર્ષનો અગ્રભાગ તુંડ તરીકે ઓળખાય છે. તે બે નાસિકાછિદ્રો તથા પાર્શ્વ તરફ ઊપસેલી બે આંખો ધરાવે છે. પૃષ્ઠ મધ્યરેખા ઉપર બે આંખો વચ્ચે ભ્રૂકુટિબિંદુ ધરાવે છે. મધ્યકર્ણ, કર્ણપટલ સ્વરૂપે જોવા મળે છે. શીર્ષથી વક્ષ તરફ પહોળું મુખ ધરાવે છે. ધડ બે જોડ ઉપાંગો ધરાવે છે, જેમાં અગ્ર ઉપાંગો ટૂંકાં અને ચાર આંગળી ધરાવતાં જયારે પશ્ચ ઉપાંગો લાંબાં અને પાંચ આંગળી ધરાવતા હોય છે. પશ્ચ ઉપાંગોની આંગળીઓ ત્વચાથી જોડાયેલી હોય છે, જે પ્રાણીને તરવામાં મદદ કરે છે.

રાના ટાઈગ્રીના બાહ્ય લિંગભેદ દર્શાવે છે. એટલે કે બે જાતિ (નર અને માદા)નાં બાહ્ય લક્ષણોમાં જુદાપણું હોય છે. સંવનનૠતુ દરમિયાન દેડકો નીચે મુજબના ફેરફારો દર્શાવે છે :

	9	
	નર	માદા
•	બે સ્વરકોથળી હાજર	• સ્વરકોથળી ગેરહાજર
•	આગલા ઉપાંગની પહેલી આંગળીના	• મૈથુન ગાદી ગેરહાજર
	છેડે મૈથુન ગાદી (naptial pad) હાજર	
•	પ્રજનનકાળ દરમિયાન ચામડી (ત્વચા)	• રંગ બદલાતો નથી.
	ઘેરો પીળો રંગ ધરાવે છે.	
•	ઉદરપ્રદેશ સાંકડો અને ચપટો	• ઉદરપ્રદેશ પહોળો અને ફૂલેલો



દેડકામાં લિંગભેદ

ત્વચા

દેડકાની ત્વચા ભેજયુક્ત, લીસી, ચીકણી અને બાહ્ય કંકાલ વગરની હોય છે. તે બે સ્તરો ધરાવે છે. બહારનું સ્તર અધિચર્મ અને અંદરનું સ્તર નિચર્મનું હોય છે. અધિચર્મ અધિચ્છદીય કોષોના ઘણા સ્તરોનું બનેલું હોય છે. તે આગળ બે સ્તરોમાં વિભાજિત થાય છે : બાહ્ય શૃંગીયસ્તર અને અંતઃઅંકુરણીયસ્તર. શૃંગીયસ્તર કોષોના એક સ્તરનું બનેલું છે. આ સ્તર નિર્જીવ થઈ સમયાંતરે દૂર થાય છે. અંકુરણીયસ્તર સ્તંભાકાર કોષોનું બનેલું હોય છે. નવા કોષો આ સ્તરમાંથી નિર્માણ પામે છે.

નિચર્મ ત્વચાનું અંદરનું સ્તર છે. તે બે સ્તરોમાં વિભેદન પામેલું હોય છે : જેમાં બહારનું શિથિલસ્તર અને અંદરનું સઘનસ્તર. શિથિલસ્તર સંયોજકપેશીનું શિથિલ જાળું, રુધિરવાહિનીઓ અને શ્લેષ્મગ્રંથિઓ ધરાવે છે. આ સ્તરમાં સૌથી ઉપરના ભાગે વર્ણકોષાશયો આવેલા છે. સઘનસ્તર ગીચ સંયોજકપેશી, સરળ સ્નાયુતંતુઓ, ચેતાઓ અને રુધિરવાહિનીઓનું બનેલું છે.

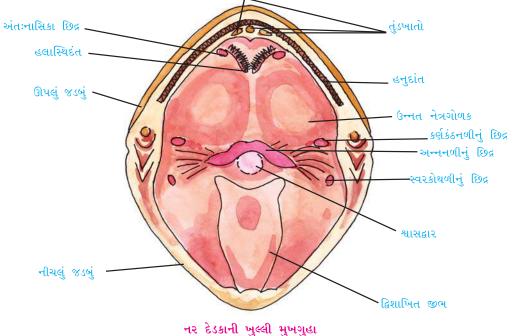
દેડકાની ત્વચાનો ઊભો છેદ

ત્વચાનાં કાર્યો

- (1) તે શરીરને ચોક્કસ આકાર અને પોત (taxture) આપે છે.
- (2) તે શરીરને બાહ્ય ઘટકો તેમજ ફૂગથી રક્ષણ આપે છે.

- (3) તે મુખ્ય શ્વસનઅંગ તરીકે વર્તે છે.
- (4) તે એક અગત્યના સંવેદાંગ તરીકે વર્તે છે.
- (5) દેડકો પાણી પીતો નથી, પણ તેનું શોષણ ત્વચા દ્વારા કરે છે.

અંતઃસ્થ રચના

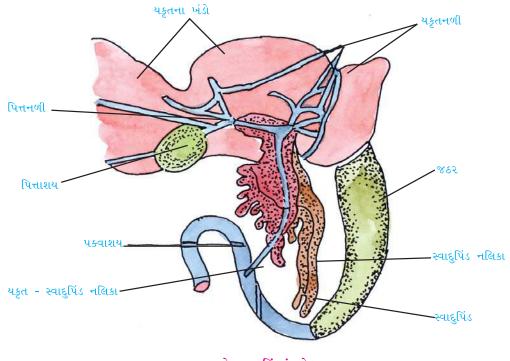

તે સ્પષ્ટ શરીરગુહા ધરાવે છે. વિવિધ પ્રકારનાં અંગતંત્રો જેવાં કે : પાચનતંત્ર, કંકાલતંત્ર, પરિવહનતંત્ર, શ્વસનતંત્ર, મૂત્રજનનતંત્ર અને ચેતાતંત્ર જોવા મળે છે.

પાચનતંત્ર

દેડકાના પાચનતંત્રમાં મુખ્યત્વે પાચનમાર્ગ અને પાચનગ્રંથિઓનો સમાવેશ થાય છે. પાચનમાર્ગની શરૂઆત મુખથી અને અંત અવસારશીમાં થાય છે. મુખગુહા, કંઠનળી, અન્તનળી, જઠર, આંતરડું, મળાશય અને અવસારશીનો સમાવેશ પાચનમાર્ગમાં થાય છે.

પાચનમાર્ગ

પહોળું ખૂલતું મુખ શીર્ષના અગ્રભાગે આવેલું છે. તે ઉપર અને નીચેનાં જડબાંથી ઘેરાયેલું હોય છે. ઉપલા જડબામાં દાંતની એક હરોળ જોવા મળે છે. મુખ બે જડબાંની વચ્ચે આવેલ ગુહામાં ખૂલે છે, તેને મુખગુહા કહે છે. મુખગુહામાં હનુદાંત, હલાસ્થિદંત, અંતઃનાસિકા છિદ્ર, ઊપસેલ (ઉન્નત) નેત્રગોળક, કર્શકંઠનળીનું છિદ્ર, સ્વરકોથળીનું છિદ્ર (ફક્ત નરમાં) અને દિશાખિત જીભ આવેલી હોય છે. અંતઃનાસિકાછિદ્ર હલાસ્થિદંતની નજીકમાં જોડમાં ખૂલે છે. તે શ્વસનનું કાર્ય કરે છે. મુખગુહામાં હલાસ્થિદંતની પાછળ બે મોટા ગોળાકાર ઉન્નત નેત્રગોળકો આવેલા હોય છે. મુખગુહાની છત ઉપર એક જોડ કર્શકંઠનળીનું છિદ્ર જડબાના જોડાણ સ્થાને આવેલ હોય છે. કર્શકંઠનળી છિદ્ર કંઠનળીને મધ્યકર્ણ સાથે જોડી બંને બાજુના કર્શપટલમાં હવાનું દબાણ જાળવે છે. બે સ્વરકોથળી ફક્ત નર દેડકામાં જ જોવા મળે છે. તે મુખગુહામાં નીચલા જડબાની પાર્શ્વ તરફ ખૂલે છે. તેની દિશાખિત જીભ નરમ, ચીકણી અને માંસલ હોય છે. તે તેના અગ્ર છેડે જોડાયેલી હોય છે અને પશ્ચ છેડે રહેતો છેડો મુક્ત હોય છે. જીભનો મુક્ત છેડો દિશાખી હોય છે.

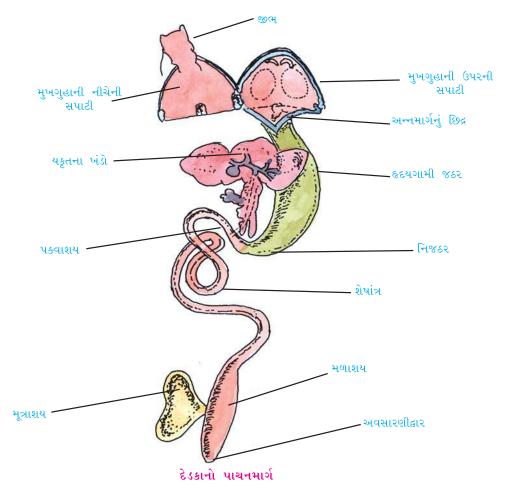


ત્તર ઠડકાના ખુલ્લા મુખગુહા

મુખગુહાનો પશ્ચભાગ કંઠનળી તરીકે ઓળખાય છે; પરંતુ ગરદનના અભાવે મુખગુહા અને કંઠનળી વચ્ચે જુદાપણું નથી. એટલે કેટલીક વાર આ બંનેને મુખ-કંઠનાલીય ગુહા પણ કહે છે.

અન્નનળી ટૂંકી, પહોળી, સ્નાયુલ અને ખૂબ વિશિષ્ટ પ્રકારની નળી છે. તે જઠરમાં ખૂલે છે. જઠર શરીરગુહામાં ડાબી બાજુ આવેલ હોય છે. તે લાંબુ, પહોળું અને સહેજ વળેલ ગુહા સ્વરૂપે છે. તે બે ભાગોનું બનેલું છે, મોટા અગ્ર ભાગને હૃદયગામી જઠર અને પાછલા સાંકડા ભાગને નિજઠર કહે છે. તેનું શ્લેષ્મીય અધિચ્છદ બહુસ્તરીય હોય છે. તેમાં રહેલ જઠરીય ગ્રંથિઓ પેપ્સિનોજન ઉત્સેચક, મંદ હાઇડ્રોક્લોરિક ઍસિડ (HCI) અને શ્લેષ્મનો સ્રાવ કરે છે. નિજઠરના પાછળના છેડે મુદ્રિકાસ્નાયુ ધરાવતો નિજઠર વાલ્વ જોવા મળે છે. જઠર એક અંગ છે કે જેમાં હંગામી ધોરણે ખોરાકનો સંગ્રહ, વલોવવાની ક્રિયા તથા પ્રોટીનનું અંશતઃ પાચન થાય છે. નિજઠર નાના આંતરડામાં ખૂલે છે.

નાનું આંતરડું, અગ્ર પક્વાશય અને પશ્ચ શેષાંત્રમાં વિભાજિત હોય છે. પકવાશય જઠરને સમાંતર આગળ વધી 'U' આકાર બનાવે છે. તે યકૃત અને સ્વાદુપિંડમાંની યકૃત—સ્વાદુપિંડ નલિકા દ્વારા પિત્તરસ અને સ્વાદુરસ પ્રાપ્ત કરે છે. શેષાંત્ર પાચનનળીનો સૌથી લાંબો અને ગૂંચળામય ભાગ છે. પાચન તેમજ પચેલા ખોરાકનું શોષણ નાના આંતરડામાં થાય છે.



યકૃત અને સ્વાદુપિંડનું જોડાણ

શેષાંત્ર, મોટા આંતરડામાં ખૂલે છે. અગ્ર મળાશય એ ટૂંકી, પહોળી નળી છે જે આગળ વધી સીધી અવસારશીમાં ખૂલે છે. તેનું કાર્ય પાણીનું પુનઃશોષણ અને મળનું નિર્માણ તેમજ તેનો સંગ્રહ કરવાનું છે.

અવસારણી એ નાનો, કોથળી જેવો અંત્ય ભાગ છે. અવસારણી એટલે મોટા આંતરડાનો અંત્ય ભાગ જેમાં મળાશય અને મૂત્રજનન ભાગો ખૂલે છે. અવસારણીદ્વાર દ્વારા અવસારણી શરીરના પશ્ચ ભાગે બહાર ખૂલે છે.

श्रुविद्यान

પાચકગ્રંથિઓ

જે પાચનાંગોમાં ખોરાક દાખલ થતો નથી પણ તેમાંથી ઉત્પન્ન થતા સાવો પાચનની દેહધાર્મિક ક્રિયામાં મદદ કરે છે તેને પાચનગ્રંથિ કહેવાય છે. તેમાં યકૃત અને સ્વાદુપિંડનો સમાવેશ થાય છે.

યકૃત

યકૃત દેડકામાં જોવા મળતી સૌથી મોટી ગ્રંથિ છે. તે ઘેરા બદામી રંગની હૃદય અને ફેફસાંની જોડે આવેલી છે. યકૃત બે ખંડોમાં વિભાજિત હોય છે અને તેનો ડાબો ખંડ ફરીથી બે ખંડોમાં વહેચાય છે, તેથી તે ત્રિખંડીય દેખાય છે. પિત્તાશય જમણા અને ડાબા (પાર્શીય) ખંડો વચ્ચે આવેલું છે. યકૃત લીલાશપડતા પિત્તનો સ્નાવ કરે છે. જેમાં બિલીરૂબિન અને બિલીવર્ડીન જેવા પિત્તરંજકો અને ક્ષારો હોય છે. તેનો પિત્તાશયમાં સંગ્રહ થાય છે. પિત્તાશયમાંથી પિત્ત યકૃતનલિકા દ્વારા વહન પામે છે. પિત્તાશયની પિત્તનળી (cystic duct) અને યકૃતની યકૃતનળી ભેગી મળી સામાન્ય પિત્તનળી બનાવે છે. આ પિત્તનળી સ્વાદુપિંડમાંથી પસાર થાય છે. તેની સાથે મોટી સંખ્યામાં સ્વાદુનલિકાઓ જોડાઈને તે આગળ વધે છે. તેથી હવે આ પિત્તનળી યકૃત-સ્વાદુપિંડનલિકા તરીકે ઓળખાય છે. તે પકવાશયમાં ખૂલે છે. પિત્ત પાચક ઉત્સેચકો ધરાવતું નથી. તે ફક્ત ચરબીનું તૈલોદીકરણ કરે છે. તેથી યકૃતને સાચી પાચકગ્રંથિ કહેવાય નહિ.

સ્વાદુપિંડ

તે આછા પીળા રંગની બાહ્યસ્તાવી અને અંતઃસ્તાવી ગ્રંથિ છે. સ્વાદુપિંડ જઠર અને પક્વાશયનાં જોડાણસ્થાને આવેલી છે. તે સ્વાદુરસ ઉત્પન્ન કરે છે. જે વિવિધ પ્રકારના ઉત્સેચકો ધરાવે છે કે જે ખોરાક સાથે સંકળાયેલ પ્રોટીન, કાર્બોદિત અને ચરબીને પાચનમાં મદદકર્તા છે. સ્વાદુપિંડમાં સ્વાદુપિંડ ખંડિકાઓની વચ્ચે ચુસ્ત રીતે

જોડાયેલો કોષોનો સમૂહ જોવા મળે છે. તેને લેંગરહાન્સના કોષપુંજ કહે છે. આ કોષો અંતઃસ્રાવી છે જેના ઇન્સ્યુલીન અને ગ્લુકેગોન અંતઃસ્રાવો સીધા રુધિરમાં ભળે છે. ઇન્સ્યુલીન અને ગ્લુકેગોન, ગ્લુકોઝનું પ્રમાણ રુધિરમાં જાળવે છે.

દેડકામાં પાચન

દેડકો માંસાહારી પ્રાણી છે. મોટે ભાગે તેનો ખોરાક કીટકો, કૃમિઓ, સ્તરકવચીઓ, મૃદુકાય પ્રાણીઓ વગેરે છે. તે તેનો શિકાર જીભની ઝડપી પ્રક્રિયાથી પકડે છે. જો શિકાર મોટો હોય તો તેને જડબાં વડે જકડી રાખી છટકી જતો અટકાવે છે. તે શિકારને ગળી જાય છે. તે વખતે ગળવામાં શ્લેષ્મ મદદરૂપ થાય છે. પકડેલ શિકારનું પાચન જઠર, પકવાશય અને આંતરડામાં થાય છે. વિવિધ અંગોમાં પાચનની દેહધાર્મિક ક્રિયા, તેની સાથે સંકળાયેલી ઉત્સેચકીય પ્રક્રિયાઓ અને અંતઃસ્તાવોના ફાળાનો સારાંશ નીચેના કોષ્ટકમાં દર્શાવેલ છે :

કોષ્ટક 1 પાચનની દેહધર્મવિદ્યા

પાચનમાં સમાવિષ્ટ અંગો	ઉત્સેચકો, અંતઃસ્ત્રાવો અને અન્ય દ્રવ્યો	કાર્યો	
	પાચન થતું નથી.	શિકારને છટકતો રોકે છે.	
મુખગુહા 	પાયન વતુ નવા.		
જીભ	-	શિકારને પકડી મુખગુહામાં મૂકે છે.	
અન્નનળીનું છિદ્ર	_	લીસી સપાટીને કારણે શિકારને ગળવામાં	
		મદદ કરે છે.	
અન્નનળી	શ્લેષ્મગ્રંથિમાંથી શ્લેષ્મનો સ્રાવ	સતત પરિસંકોચન દ્વારા શિકારના	
		ભૌતિક સ્વરૂપમાં ફેરફાર થાય છે.	
		તેના દ્વારા શિકાર સરળતાથી જઠરમાં	
		પ્રવેશ કરે છે.	
જકર	જઠરગ્રંથિ દ્વારા જઠરરસનો સ્રાવ થાય છે જેમાંઃ (1) ગૅસ્ટ્રીન (H) (2) મંદ HCI (0.4%)	ખોરાકના સૂક્ષ્મ જીવોનો નાશ કરે છે. જઠરગ્રંથિને ઉત્તેજે છે. પેપ્સિનોજન ઉત્સેચકને સક્રિય કરવા અમ્લીય માધ્યમ પૂરું પાડે છે.	
	(3) નિષ્ક્રિય પેપ્સિનોજન (E)	નિષ્ક્રિય પેપ્સિનોજન + HCI → સક્રિય પેપ્સિન પ્રોટીન + પેપ્સિન → પેપ્ટોન્સ અથવા પ્રોટીઓસીસ	
	(4) શ્લેષ્મ	દીવાલને સુંવાળી રાખે છે.	
	આ અર્ધપચિત પ્રવાહી અમ્લીય ખોરાકને જઠરપાક અથવા આમપાક કહે છે.		

श्रविद्यान

યકૃત	પિત્તરસનો સ્રાવ, જે પિત્તક્ષારો	લીલાશપડતું બેઝિક પ્રવાહી છે. તે
્ (પાચનગ્રંથિ તરીકે)	ધરાવે છે.	ુ જઠરપાકની અમ્લતા દૂર કરે છે.
		ચરબીનું તૈલોદીકરણ કરે છે.
		યકૃતના લાઇપેઝને સક્રિય કરે છે.
સ્વાદુપિંડ (પાચનગ્રંથિ તરીકે)	સ્વાદુરસનો સાવ કરે છે.	અલ્કલીય રસ છે.
	(1) નિષ્ક્રિય ટ્રિપ્સિનોજન (E),	નિષ્ક્રિય ટ્રિપ્સિનોજન + એન્ટેરોકાઇનેઝ →
	નિષ્ક્રિય કાયમોટ્રીપ્સિનોજન (E), પ્રોકાર્બોક્સીપેપ્ટિડેઝ (E)	સર્ક્રિય ટ્રિપ્સિન, જે નિષ્ક્રિય ઉત્સેચકોને
	(2) એન્ટેરોકાઇનેઝ (Co.E)	સક્રિય કરે છે.
		પેપ્ટોન અથવા પ્રોટીઓસીસ + ટ્રિપ્સિન $ ightarrow$
	(3) ટ્રિપ્સિન (E)	પેપ્ટાઇડ અને એમિનોઍસિડો
	(4) એમાયલેઝ (E)	પોલિસેકેરાઇડ $+$ એમાયલેઝ $ ightarrow$ માલ્ટોઝ
	(5) લાઇપેઝ (E)	તૈલોદીકરણ પામેલ ચરબી $+$ લાઇપેઝ $ ightarrow$
		ફેટીઍસિડો + ગ્લિસરોલ
પક્વાશય	(1) એન્ટેરોગૅસ્ટ્રીન (H)	જઠરમાં જઈ જઠરરસના સ્રાવને સ્રવિત
		થતો અટકાવે છે.
	(2) કોલીસીસ્ટોકાઇનીન (H)	પિત્તાશયનું સંકોચન પ્રેરી પિત્તરસનો
		પક્વાશયમાં સ્નાવ કરે છે.
	(3) સિક્રીટીન (H)	બંનેની સંયુક્ત અસરથી
	(4) પેન્ક્રિઓઝાયમીન (H)	સ્વાદુપિંડને ઉત્તેજિત કરી સ્વાદુરસનો
		પક્વાશયમાં સ્નાવ કરાવે છે.
	(5) એન્ટેરોકાઇનીન (H)	
	(6) ડ્યુઓકાઇનીન (H)	આંતરડાને ઉત્તેજિત કરી આંત્રરસનો સ્નાવ
		કરાવે છે.
આંતરડું	આંત્રરસનો સ્રાવ જેમાં	
	(1) ઇરેપ્સિન અથવા પેપ્ટીડેઝ (E)	પેપ્ટાઇડ $+$ ઇરેપ્સિન $ ightarrow$ એમિનોઍસિડો
	(2) માલ્ટેઝ (E)	માલ્ટોઝ $+$ માલ્ટેઝ $ ightarrow$ ગ્લુકોઝ $+$ ગ્લુકોઝ
	(3) સુક્રેઝ અથવા ઇન્વર્ટેઝ (E)	
		સુક્રોઝ + સુક્રેઝ → ગ્લુકોઝ + ફ્રુક્ટોઝ
	(4) લાઇપેઝ (E)	
		લિપિડ + લાઇપેઝ → ફેટીઍસિડો +
		િલસરોલ

નોધ : અહીં E = ઉત્સેચક અને H = અંતઃ સ્ત્રાવ.

શોષણ

શોષણની પ્રક્રિયામાં પચેલા ખોરાકને રુધિરમાં ભેળવવામાં આવે છે. મોટે ભાગે આ પ્રક્રિયા પક્વાશય અને શેષાંત્રમાં થાય છે. શેષાંત્રની દીવાલ રસાંકુરો ધરાવતી ગડીમય હોવાથી શોષણસપાટીના વિસ્તાર વધે છે. અધિચ્છદીયસ્તર દ્વારા પાણી, ક્ષારો અને અન્ય પોષકઘટકો સીધા શોષાઈને રુધિરવાહિનીઓમાં ભળે છે.

પચેલા ખોરાકનું અભિશોષણ અને મળોત્સર્જન

જેમ ખોરાક પાચનનળીમાં આગળ વધે છે તેમ પાણી અને પાચિત ખોરાકનું રસાંકુરણોની મદદથી અભિશોષણ થાય છે. જ્યારે અપચિત ખોરાક, મૃત અધિચ્છદીય કોષો, લ્યુકોસાઇટ, પિત્તકણો અને મોટા પ્રમાણમાં બૅક્ટેરિયા વગેરે મળ સ્વરૂપે અવસારણીના ખૂલવાથી સમયે-સમયે નિકાલ પામે છે.

શ્વસનતંત્ર

શ્વસનની પ્રક્રિયામાં સજીવો ઑક્સિડેશન માટે ઑક્સિજન મેળવે છે અને કાર્બન ડાયૉકસાઇડ નિયમિત રીતે શરીરમાંથી દૂર કરે છે. શ્વસનક્રિયા સાથે સંકળાયેલ અંગોને શ્વસનાંગો કહે છે. દેડકો ઉભયજીવી તરીકે ત્રણ પ્રકારે શ્વસન દર્શાવે છે જેવા કે: (1) ત્વચીય શ્વસન અથવા ત્વચા દ્વારા શ્વસન (2) મુખ-કંઠનાલીય શ્વસન અને (3) ફુપ્ફુસીય શ્વસન અથવા ફેફ્સાં દ્વારા શ્વસન. મોટે ભાગે દેડકો ત્વચીય શ્વસન કરે છે; પરંતુ વધુ ઑક્સિજનની જરૂરિયાત સમયે તે મુખ-કંઠનાલીય ગુહા અને ફેફ્સાં દ્વારા શ્વસન કરે છે.

(1) त्वशीय श्वसन :

આ પ્રકારનું શ્વસન ત્વચા દ્વારા થાય છે. તેથી તેને ત્વચીય શ્વસન કહે છે. દેડકાની ત્વચા તેનાં નીચેનાં વિશિષ્ટ લક્ષણોને કારણે શ્વસન માટે અનુકૂળ છે :

- ત્વચા શ્લેષ્મ ગ્રંથિઓમાંથી સ્રવતા શ્લેષ્મને કારણે ભીની રહે છે.
- ત્વચા વાયુ માટે પ્રવેશ્ય છે.
- ત્વચા અત્યંત પાતળી છે.

ઉપર્યુક્ત લક્ષણોને કારણે ત્વચા દ્વારા પાણી અથવા હવામાંનો ઑક્સિજન (O_2) રુધિરમાં પ્રસરે છે અને રુધિરમાંનો કાર્બન ડાયૉક્સાઇડ (CO_2) આસપાસનાં પાણી અને હવાના માધ્યમમાં પ્રસરે છે. આ પ્રકારનું શ્વસન પાણી તેમજ જમીન એમ બંને માધ્યમમાં થાય છે. માટે દેડકો પાણી કે જમીનના કોઈ પણ નિવાસસ્થાનમાં જીવે તો ત્વચા દ્વારા શ્વસન કરે છે.

(2) મુખ-કંઠનાલીય શ્વસન :

મુખગુહા અને કંઠનળી દ્વારા થતા શ્વસનને મુખ-કંઠનાલીય શ્વસન કહે છે. આ સ્થલીય શ્વસન છે. આ બંને અંગો શ્લેષ્મયુક્ત, વાયુ માટે પ્રવેશ્ય અને રુધિરવાહિનીથી સમૃદ્ધ હોય છે. મુખગુહાના તળિયાના ઉપરનીચે થવાથી મુખ-કંઠનાલીય શ્વસન થાય છે. આ પ્રક્રિયા દરમિયાન વાયુ સતત મુખગુહામાં શોષાય છે અને બાહ્ય અને અંતઃનાસિકા છિદ્રો મારફતે બહાર ધકેલાય છે. આ શ્વસન દરમિયાન અન્નનળીનું છિદ્ર બંધ રહે છે.

(3) કુષ્કુસીય શ્વસન :

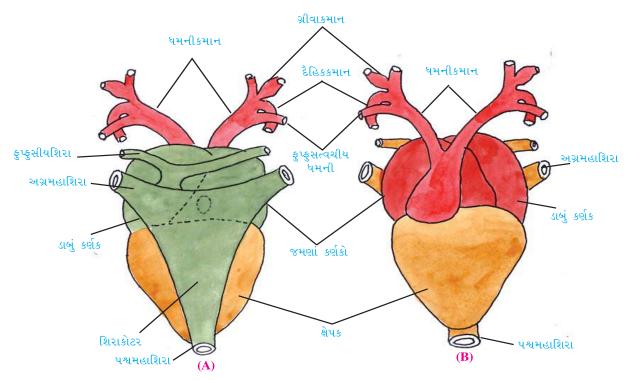
ફેકસાં દ્વારા સ્થલીય નિવાસસ્થાનમાં થતા શ્વસનને ફુપ્ફુસીય શ્વસન કહે છે. આ તંત્ર શ્વસનમાર્ગ અને ફેકસાં ધરાવે છે. તે બે શ્વસનમાર્ગો ધરાવે છે. આ બંને શ્વસનમાર્ગોની શરૂઆત બાહ્ય નાસિકાછિદ્રથી થાય છે. તે નાસિકાગુહામાં ખૂલે છે, જે મુખ-કંઠનાલીય ગુહામાં ખૂલે છે. મુખ-કંઠનાલીય ગુહા એ ઘાંટીઢાંકણ દ્વારા કોથળી જેવા સ્વરશ્વાસવિવરના સંપર્કમાં હોય છે. તે છેવટે ફેકસાંમાં ખૂલે છે.

ફુપ્ફુસીય શ્વસન ત્રણ તબક્કામાં પૂર્ણ થાય છે :

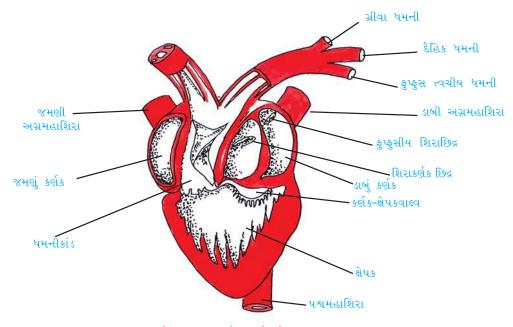
- (1) શ્વાસ (aspiration) (2) અંતઃશ્વાસ (inspiration) અને (3) બાહ્ય શ્વાસ અથવા ઉચ્છ્શ્વાસ (expiration)
- (1) થાસ : મુખ-કંઠનાલીય ગુહામાં વાયુઓના પ્રવેશને શ્વાસ કહે છે.
- (2) અંતઃશ્વાસ : મુખ-કંઠનાલીય ગુહા દ્વારા વાયુ ફેફસાંમાં પ્રવેશે તેને અંતઃશ્વાસ કહે છે. આ પ્રક્રિયા દરમિયાન ઑક્સિજનનું પ્રસરણ થાય છે.
- (3) બાહ્ય **થાસ** : ફેફસાંમાંથી અશુદ્ધ વાયુ બહાર કાઢવાની પ્રક્રિયાને બાહ્યશાસ કહે છે.

દેડકામાં કુપ્કુસીય શ્વસન

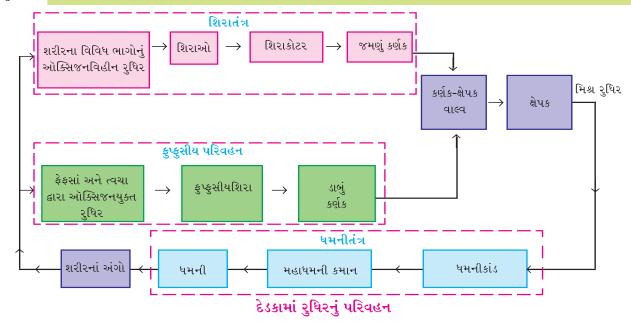
પરિવહનતંત્ર

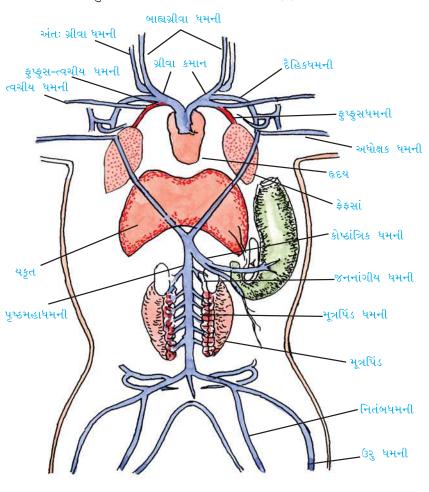

દેડકો એક પૃષ્ઠવંશી પ્રાણી તરીકે બંધ પ્રકારનું રુધિરપરિવહનતંત્ર ધરાવે છે. આ તંત્ર ચાર મુખ્ય ઘટકો ધરાવે છે, જેવાં કે રુધિર, હૃદય, ધમનીઓ અને શિરાઓ.

રુષિર લાલ રંગની પ્રવાહી સંયોજકપેશી છે. તે રુષિરકોષો અને રુષિરરસની બનેલ છે. રુષિરકોષો ત્રણ પ્રકારના છે :


(1) લાલ રુધિરકણ (RBCs), તે કોષકેન્દ્રયુક્ત અને હિમોગ્લોબીન ધરાવે છે. (2) શ્વેત રુધિરકણ (WBCs), તે રંગવિહીન અને કોષકેન્દ્રયુક્ત છે અને (3) ત્રાકકણ કોષકેન્દ્રયુક્ત. રુધિરરસ પ્રવાહી છે, તે મુખ્યત્વે પાણી અને ક્ષારો ધરાવે છે. (જુઓ રુધિરપેશી તરીકે પ્રકરણ 4)

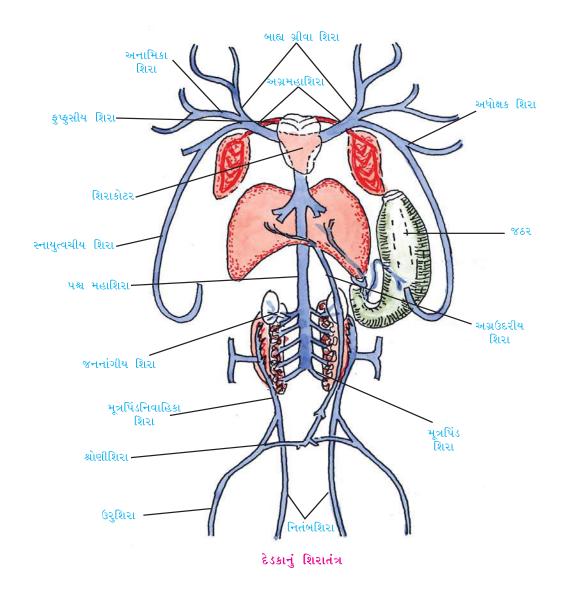
હૃદય બેવડી દીવાલ ધરાવતા પરિહૃદઆવરણ દ્વારા રક્ષાયેલ હોય છે. તેમની વચ્ચે પરિહૃદ પ્રવાહી ભરેલ હોય છે. હૃદય દેહકોષ્ઠના અગ્રસ્થ ભાગમાં ગોઠવાયેલ હોય છે. તે સ્નાયુલ, શંકુ આકારનું સ્પંદનશીલ અંગ છે, જે ત્રિખંડી (બે કર્ણક અને એક ક્ષેપક) ધરાવે છે. હૃદયની પૃષ્ઠ બાજુએ એક શિરાકોટર નામની ગુહા આવેલ હોય છે. તે શરીરના વિવિધ ભાગોમાંનું ઑક્સિજનવિહીન રુધિર એકઠું કરે છે અને શિરાકર્ણક છિદ્ર દ્વારા જમણા કર્ણકમાં ઠાલવે છે.


ડાબું કર્શક સામાન્ય ફુપ્ફુસ શિરા દ્વારા ફેફ્સાંમાંથી ઑક્સિજનયુક્ત રુધિર મેળવે છે. બંને કર્શકમાંનું રુધિર કર્શક-ક્ષેપક વાલ્વ દ્વારા ક્ષેપકમાં દાખલ થાય છે. આમ, ડાબા કર્શકનું ઑક્સિજનયુક્ત રુધિર અને જમણા કર્શકમાંનું ઑક્સિજનવિહીન રુધિર ક્ષેપકમાં મિશ્ર થાય છે. આને પરિણામે દેડકાનાં ધમનીતંત્રમાં મિશ્ર રુધિરનું પરિવહન થાય છે. ક્ષેપકના સંકોચન અને દબાણથી મિશ્ર રુધિર ધમનીકાંડ અને ત્યાંથી ધમનીતંત્રમાં દાખલ થાય છે. તેનું પરિવહન ચાર્ટમાં દર્શાવ્યા મુજબ રહે છે.


દેડકાના હૃદયનો બાહ્યદેખાવ : (A) પૃષ્ઠદેખાવ (B) વક્ષદેખાવ

દેડકાના હૃદયનો ઊભો છેદ

ધમનીતંત્ર હૃદય દ્વારા શરીરના વિવિધ ભાગોને રુધિર પહોંચાડે છે. ધમનીતંત્રની શરૂઆત ધમનીકાંડથી થાય છે. તે ક્ષેપકમાં રહેલ મિશ્ર રુધિરને ધમનીકમાનો દ્વારા (1) શ્રીવાકમાન : બાહ્યગ્રીવા ધમની અને અંતઃગ્રીવા ધમની દ્વારા રુધિરને શીર્ષ પ્રદેશમાં પહોંચાડે છે. (2) બંને દૈહિકકમાનો : બે દૈહિકકમાનો પાછળની તરફ લંબાઈ અને

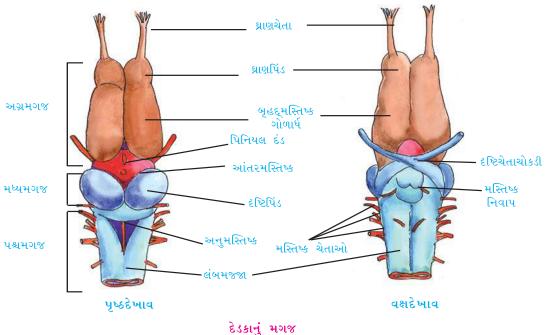

દેડકાનું ધમનીતંત્ર

જોડાઈને પૃષ્ઠમહાધમનીની રચના કરે છે. જે શરીરના પાછળના ભાગોમાં વિવિધ ધમનીઓ દ્વારા રુધિર પહોંચાડે છે, જેવી કે કોષ્ઠાંત્રીય ધમની (પાચનમાર્ગને રુધિર પૂરું પાડે છે), જનનાંગીય ધમની (જનનાંગોને), મૂત્રપિંડ ધમની (મૂત્રપિંડને) અને નિતંબ ધમની (પશ્ચઉપાંગને). (3) કૃષ્ફુસ ત્વચીય કમાન: ફેફસાં અને ત્વચાને રુધિર પહોંચાડવાનું કાર્ય કરે છે.

શિરાતંત્ર રુધિરને શરીરના વિવિધ ભાગોમાંથી હૃદય તરફ લાવે છે. સમગ્ર શરીરમાંનું અશુદ્ધ રુધિર ત્રણ મહાશિરાઓ (બે અગ્ર અને એક પશ્ચ મહાશિરા) મારફતે શિરાકોટરમાં ઠલવાય છે. દરેક અગ્રમહાશિરામાં રુધિર અનુક્રમે તે બાજુની બાહ્યગ્રીવા, અનામિકા અને અધોક્ષક શિરાઓ દ્વારા ભેગું થાય છે. આ શિરાઓ તેમની વિવિધ શાખાઓ દ્વારા રુધિર જીભ, નીચલું જડબું, મસ્તક, મગજ, અગ્રઉપાંગ વગેરે અંગોમાંથી એકઠું કરે છે. આ

ઉપરાંત અપવાદ રૂપે અધોક્ષકશિરાની શાખા, સ્નાયુ ત્વચીયશિરા ઑક્સિજનયુક્ત (શુદ્ધ) રુધિરનું વહન કરે છે. મૂત્રપિંડ શિરાઓ બે મૂત્રપિંડની વચ્ચેથી બહાર નીકળી પશ્ચ મહાશિરા દ્વારા યકૃતના જમણા ખંડમાં થઈ શિરાકોટરમાં ખૂલે છે. તે મૂત્રપિંડો, જનનાંગો અને યકૃતમાંનું રુધિર શિરાકોટરમાં લાવે છે.

સામાન્ય રીતે ધમનીઓ અને શિરાઓ વિભાજિત થઈ કેશિકાઓની રચના કરે છે. દેડકા જેવાં પૃષ્ઠવંશી પ્રાણીઓમાં શિરાઓથી રચાતી એક વિશિષ્ટ ગોઠવણી જોવા મળે છે જેને નિવાહિકાતંત્ર કહે છે. વિવિધ અંગોમાંથી ભેગું કરેલ રુધિર લઈ જતી શિરા હૃદયમાં દાખલ થતા પહેલાં કોઈ વિશિષ્ટ અંગમાં (યકૃત અને મૂત્રપિંડ) ફરી પાછી રુધિકેશિકામાં વિભાજિત થાય તેને નિવાહિકાશિરા કહે છે અને તેનાથી રચાતા તંત્રને નિવાહિકાશિરાતંત્ર કહે છે. દેડકામાં બે નિવાહિકાશિરાતંત્રો આવેલાં છે : (1) મૂત્રપિંડ નિવાહિકાશિરાતંત્ર : જે વાહિનીઓ દ્વારા પશ્ચ ઉપાંગોમાંથી રુધિરને મૂત્રપિંડમાં લઈ જાય છે અને (2) યકૃત નિવાહિકાશિરાતંત્ર : જે રુધિરને પાચનમાર્ગમાંથી એકઠું કરી યકૃતમાં મોકલે છે.


ચેતાતંત્ર

દેડકાનું ચેતાતંત્ર અન્ય પૃષ્ઠવંશી પ્રાણીઓની જેમ પૃષ્ઠબાજુએ આવેલું છે. તે મુખ્યત્વે બે વિભાગોમાં વહેંચાયેલું છે: (1) ઐચ્છિક ચેતાતંત્ર અને (2) અનૈચ્છિક ચેતાતંત્ર.

ઐચ્છિક ચેતાતંત્રનું નિયમન પ્રાણીની ઇચ્છાશક્તિને આધીન હોય છે. તે મધ્યસ્થ અને પરિઘવર્તીય ચેતાતંત્રમાં વહેંચાયેલું છે. મધ્યસ્થ ચેતાતંત્રમાં મગજ અને કરોડરજજુનો સમાવેશ થાય છે. મગજ શીર્ષમાં આવેલું હોય છે અને મસ્તકપેટીમાં રક્ષાયેલ હોય છે. તે ત્રણ ભાગમાં વહેંચાયેલ છે : અગ્રમગજ, મધ્યમગજ અને પશ્ચમગજ. અગ્રમગજમાં એક જોડ ઘ્રાણપિંડ, એક જોડ બૃહદ્દમસ્તિષ્ક ગોળાર્ધ અને આંતરમસ્તિષ્કનો સમાવેશ થાય છે. આંતરમસ્તિષ્કની વક્ષબાજુએ એક પોલો, દ્વિખંડીય અને કોથળી જેવો ભાગ આવેલ છે. તેને મસ્તિષ્કનિવાપ કહે છે. તેના પાછળના પહોળા છેડે પિચ્યુટરીગ્રંથિ અડકેલી હોય છે. તે એક પ્રમુખ અંતઃસ્ત્રાવી ગ્રંથિ છે. જે વિવિધ દેહધાર્મિક ક્રિયાઓ, વૃદ્ધિ અને વિકાસનું નિયંત્રણ કરે છે. મધ્યમગજમાં બે મોટા, અંડાકાર અને ત્રાંસા ગોઠવાયેલા દેષ્ટિપિંડનો સમાવેશ થાય છે. પશ્ચમગજ અનુમસ્તિષ્ક અને પશ્ચાનુંમસ્તિષ્ક અથવા લંબમજજાથી બનેલ છે. લંબમજજા કરોડરજ્જુ સ્વરૂપ કરોડસ્તંભમાં દાખલ થાય છે જેનો પશ્ચ છેડો અવસાનતંતુ તરીકે પુચ્છ કશેરફાદંડમાં અંત પામે છે.

મગજમાંથી અને કરોડરજ્જુમાંથી નીકળતી મસ્તિષ્કચેતાઓ અને કરોડરજ્જુચેતાઓ વડે પરિઘવર્તી ચેતાતંત્રની રચના થાય છે. દેડકામાં મગજમાંથી 10 જોડ મસ્તિષ્કચેતાઓ અને કરોડરજ્જુમાંથી 9 જોડ કરોડરજ્જુચેતાઓ ઉદ્ભવે છે.

અનિચ્છાવર્તી અથવા સ્વયંવર્તી ચેતાતંત્ર પ્રાણીશરીરની અનૈચ્છિક ક્રિયાઓના નિયમન સાથે સંકળાયેલ હોય છે, તેના બે પ્રકાર છે: અનુકંપી ચેતાતંત્ર અને પરાનુકંપી ચેતાતંત્ર. બંને એકબીજાનાં પૂરક કાર્યો કરે છે. ઉદાહરણ તરીકે અનુકંપી ચેતાતંત્ર હૃદયનાં સ્પંદનોને વેગીલાં બનાવે છે જ્યારે પરાનુકંપી ચેતાતંત્ર હૃદયનાં સ્પંદનોને ધીમાં પાડે છે.

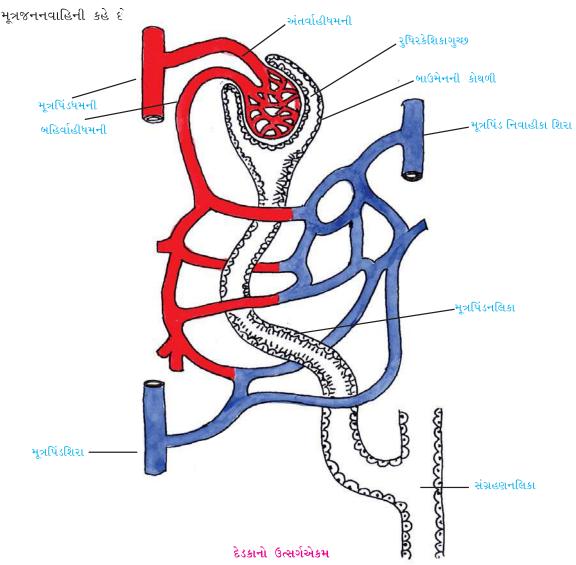


હડકાયું મગજ

દેડકાનાં સંવેદાંગો પાંચ પ્રકારનાં છે : સ્પર્શસંવેદી, સ્વાદસંવેદી, ઘ્રાણસંવેદી, દિષ્ટસંવેદી અને શ્રવણસંવેદી. આમાંનાં, આંખો (દિષ્ટિસંવેદનાંગ) અને કર્ણ (શ્રવણસંવેદનાંગ) સુઆયોજિત રચનાઓ છે. અન્ય પ્રકારનાં સંવેદનાંગો ચેતાતંતુના છેડે સંકળાયેલા વિશિષ્ટ કોષોના સમૂહો વડે રચાય છે. ત્વચામાં સ્પર્શસંવેદી રચનાઓ, જીભમાં સ્વાદસંવેદી રચનાઓ અને નસકોરાંના અસ્તરમાં ઘ્રાણસંવેદી રચનાઓ આવેલી છે.

આંખો નેત્રગુહામાં ગોઠવાયેલી હોય છે. આંખના ડોળાની દીવાલ ત્રિસ્તરીય છે. સૌથી બહારનું પડ શ્વેતપટલ, મધ્યમાં મધ્યપટલ અને સૌથી અંદરનું નેત્રપટલ, નેત્રગુહાની બહારની બાજુએ ડોળાના ભાગમાં પારદર્શકપટલ આવેલું છે. તેની અંદરની તરફ મધ્યપટલ, કનીનિકા નામનો પડદો બનાવે છે. કનીનિકાની મધ્યમાં કીકી તરીકે ઓળખાતું છિદ્ર આવેલ છે. કનીનિકાની પાછળ નેત્રમણિ ગોઠવાયેલ હોય છે.

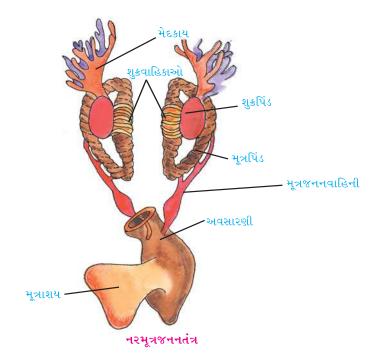
કર્શની રચનામાં અંતઃકર્શ અને મધ્યકર્શ હોય છે. બાહ્યકર્શનો અભાવ છે. અંતઃકર્શને કલાકુહર પશ કહે છે. તે પ્રવાહીથી ભરેલા કર્શસંપુટમાં ગોઠવાયેલ છે. મધ્યકર્શ હવાથી ભરેલું હોય છે. તે તેના બાહ્ય છેડે કર્શપટલ ધરાવે છે.


ચેતાતંત્ર ઉપરાંત દેડકામાં અંતઃસ્રાવી નિયમન પણ જોવા મળે છે. તે અંતઃસ્રાવી ગ્રંથિઓથી બનેલ છે. તેમાં મગજમાં આવેલી પિચ્યુટરી ગ્રંથિ, ગળાના ભાગમાં થાયરોઈડ ગ્રંથિ, મૂત્રપિંડમાં ખૂંપેલી એડ્રિનલ ગ્રંથિ તથા જનનપિંડો (શુક્રપિંડ અને અંડપિંડ)નો સમાવેશ થાય છે. સ્વાદુપિંડના લેન્ગરહાન્સના કોષપુંજો પણ અંતઃસ્રાવો સર્જે છે. અંતઃસ્રાવો રાસાયણિક નિયામકો છે.

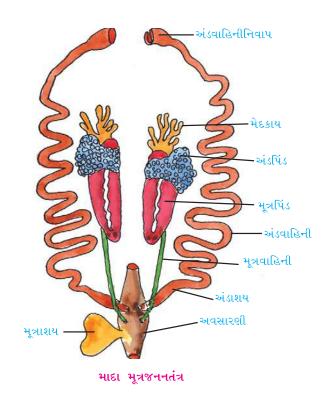
મૂત્રજનન તંત્ર

મૂત્રજનન તંત્રમાં ઉત્સર્જન તથા પ્રજનનતંત્રનો સમાવેશ થાય છે. નર દેડકામાં ઉત્સર્જનતંત્ર જનનતંત્ર સાથે સંકળાયેલ છે. માદામાં તે અલગ હોય છે. આથી બંને તંત્રોને અલગ-અલગ વર્શવી શકાય છે.

દેડકાના મુખ્ય ઉત્સર્જનાંગ તરીકે એક જોડ મૂત્રપિંડ આવેલાં છે. તે શરીરના પશ્ચ ભાગ તરફ કરોડરજ્જુની બે પાર્શ્વ બાજુઓ પર ગોઠવાયેલ હોય છે. મૂત્રપિંડ ઘેરા કથ્થાઈ રંગનાં, ચપટાં અને લંબગોળ હોય છે. દરેક મૂત્રપિંડની રચનામાં ઉત્સર્ગ એકમ તરીકે અસંખ્ય મૂત્રપિંડનલિકાઓ આવેલી હોય છે. તેને ઉત્સર્ગ એકમ કહે છે. દરેક મૂત્રપિંડનલિકા તેના શરૂઆતના ભાગે બેવડા પડની પ્યાલાકાર કોથળી જેવી રચના ધરાવે છે,


તેને બાઉમેનની કોથળી કહે છે. બાઉમેનની કોથળીના પોલાણમાં રુધિરકેશિકાગુચ્છ આવેલ હોય છે. આને સંયુક્ત રીતે માલ્પિધિયનકાય કહે છે. મૂત્રનિર્માણની ક્રિયાની શરૂઆત અહીં થાય છે. મૂત્રપિંડમાં તૈયાર થયેલા પ્રવાહી મૂત્રનું વહન મૂત્રવાહિની દ્વારા થાય છે. મૂત્રવાહિની મૂત્રપિંડના પશ્ચ-પાર્શ્વ છેડેથી બહાર નીકળે છે. તે મૂત્રનું વહન અવસારણી તરફ કરે છે. અવસારણી સાથે એક દ્વિખંડી પાતળી દીવાલવાળું મૂત્રાશય સંકળાયેલું છે. મૂત્રાશય મૂત્રનો સંગ્રહ કરે છે. તે ભરાઈ જાય ત્યારે સંકોચન પામી અવસારણી દ્વારા મૂત્રનો ત્યાગ કરે છે. મૂત્રમાં મુખ્ય ઉત્સર્ગ દ્રવ્ય યુરિયા છે. નર દેડકામાં શુક્રકોષોનું વહન પણ મૂત્રવાહિની દ્વારા થતું હોવાથી મૂત્રવાહિનીને

પ્રજનનતંત્ર


દેડકો એકલિંગી પ્રાણી છે. નર દેડકાનાં પ્રજનનાંગોમાં એક જોડ શુક્રપિંડો, શુક્રવાહિકાઓ, બીડરની નળી અને એક જોડ મૂત્રજનનવાહિનીઓનો સમાવેશ થાય છે. દરેક શુક્રપિંડ મૂત્રપિંડના અગ્ર-પાર્શ્વ ભાગે ગોઠવાયેલ છે. તે લંબગોળ, પીળા રંગનું અને નાનું અંગ છે. તે શુક્રપિંડબંધો વડે મૂત્રપિંડ સાથે જોડાયેલ છે. શુક્રપિંડમાં ઉત્પન્ન થયેલ શુક્રકોષો શુક્રવાહિકાઓ, બીડરની નળી અને છેવટે મૂત્રજનનવાહિની દ્વારા અવસારણીમાંથી બહાર ત્યજાય છે.

માદા દેડકાનાં પ્રજનનાંગોમાં એક જોડ અંડપિંડ, એક જોડ અંડવાહિની અને અંડાશયનો સમાવેશ થાય છે. અંડપિંડો પ્રજનન સમયે ખૂબ મોટા કદનાં બને છે. તેઓ અંડકોષોનું સર્જન કરે છે. તેનું સ્થાન પણ મૂત્રપિંડના

અગ્ન-પાર્શ્વ છેડે છે. તે અંડપિંડબંધ વડે જોડાયેલ છે. દરેક અંડવાહિની અંડવાહિનીનિવાપ તરીકે શરૂ થાય છે. તે ખૂબ ગૂંચળામય છે જે અંડાશયમાં ફેરવાઈ અવસારણીમાં ખૂલે છે. માદા મોટી સંખ્યામાં અંડકોષોનો પાણીમાં ત્યાગ કરે છે.

મૂત્રપિંડના અગ્ર છેડે આવેલ મેદકાય સહાયક પ્રજનન-અંગ તરીકે વર્તે છે. તે પ્રજનનકોષોના નિર્માણ સમયે શક્તિ પૂરી પાડે છે

Downloaded from https://www.studiestoday.com

દેડકાની સંવનન ૠતુ ચોમાસું છે. તે પરફલન તેમજ બાહ્યફલન દર્શાવે છે. ફલનનું માધ્યમ પાણી છે. ગર્ભવિકાસ અપૂર્ણ, બાહ્ય અને રૂપાંતરણ દ્વારા થાય છે. આમ, ઈંડામાંથી નવજાત પ્રાણીના સ્થાને ડિંભીય સ્વરૂપે ટેડપોલ (ઈંડામાંથી) બહાર આવે છે. આ ટેડપોલના વિવિધ સ્વરૂપો જેવાં કે બાહ્યઝાલરવાળી, અંતઃસ્થઝાલરવાળી, પશ્ચઉપાંગવાળી, ચતુષ્પાદવાળી ટેડપોલ અવસ્થાઓમાંથી પસાર થઈ બાળ દેડકામાં ફેરવાય છે.

સારાંશ

દેડકો એ ઉભયજીવી વર્ગનું પ્રાણી છે. ઉભયજીવી વર્ગમાં એવાં પ્રાણીઓનો સમાવેશ થાય છે જે પોતાનું જીવન પાણી અને જમીન બંને નિવાસસ્થાનોમાં જીવી શકે છે. સામાન્ય ભારતીય બુલફ્રોગ (રાના ટાઈગ્રીના) મોટે ભાગે પાણીમાં અથવા પાણીની નજીકમાં જીવે છે. દેડકામાં કેટલાક અંશે પોતાની ત્વચાનો રંગ પર્યાવરણના સંદર્ભમાં બદલી શકવાની ક્ષમતા હોય છે. તે દ્વારા પણ તે પોતાની જાતને દુશ્મનોથી બચાવે છે.

શરીર બે ભાગમાં વિભાજિત હોય છે. શીર્ષ અને ધડ. શીર્ષના અગ્રભાગે મુખાગ્ર, ભ્રૂકુટિબિંદુ, કર્ણપટલ અને બે નાસિકા છિદ્રો આવેલાં હોય છે. ધડ બે જોડ ઉપાંગો ધરાવે છે. રાના ટાઈગ્રીના લિંગભેદ દર્શાવે છે. દેડકાની ત્વચા ભેજયુક્ત, લીસી અને બાહ્યકંકાલ વગરની હોય છે. તે મુખ્ય શ્વસનઅંગ તરીકે વર્તે છે. તે સ્પષ્ટ શરીરગુહા ધરાવે છે. તેમાં વિવિધ પ્રકારનાં અંગતંત્રો ગોઠવાયેલાં હોય છે, જેવાં કે પાચનતંત્ર, પરિવહનતંત્ર, શ્વસનતંત્ર, મૂત્રજનનતંત્ર અને ચેતાતંત્ર. દેડકાના પાચનતંત્રમાં મુખ્યત્વે પાચનમાર્ગ અને પાચનગ્રંથિઓનો સમાવેશ થાય છે. પાચનનળીની શરૂઆત મુખથી અને અંત અવસારણીમાં થાય છે. તે બંનેની વચ્ચે મુખગુહા, કંઠનળી, અન્નનળી, જઠર અને આંતરડું આવેલું હોય છે.

જઠરગ્રંથિ (જઠર) અને આંત્રગ્રંથિ (નાનું આંતરડું)ને બાદ કરતાં બે ગ્રંથિઓ - યકૃત અને સ્વાદુપિંડ પાચનનળી સાથે જોડાયેલી હોય છે. દેડકો માંસાહારી પ્રાણી છે. શ્લેષ્મ શિકાર ગળવામાં મદદરૂપ થાય છે. પકડેલ શિકારનું પાચન જઠર, પક્વાશય અને આંતરડામાં થાય છે. શોષણની પ્રક્રિયામાં પચેલા ખોરાકને રુધિરમાં ભેળવવામાં આવે છે. મોટે ભાગે આ પ્રક્રિયા પક્વાશય અને શેષાંત્રમાં થાય છે. મળ અવસારણીના ખૂલવાથી સમયે-સમયે નિકાલ પામે છે.

શ્વસનની પ્રક્રિયામાં સજીવો ઑક્સિડેશન માટે ઑક્સિજન મેળવે છે અને આ જ પ્રક્રિયામાં તે કાર્બન ડાયૉકસાઇડ નિયમિત રીતે શરીરમાંથી દૂર કરે છે. દેડકો ઉભયજીવી તરીકે ત્રણ પ્રકારે શ્વસન દર્શાવે છે, જેવાં કે (1) ત્વચીય શ્વસન અથવા ત્વચા દ્વારા શ્વસન (2) મુખ-કંઠનાલીય શ્વસન અને (3) ફુપ્ફુસીય શ્વસન અથવા ફેફસાં દ્વારા શ્વસન.

દેડકો એક પૃષ્ઠવંશી પ્રાણી તરીકે બંધ પ્રકારનું રુધિર પરિવહનતંત્ર ધરાવે છે. આ તંત્ર ચાર મુખ્ય ઘટકો

ધરાવે છે, જેવાં કે રુધિર, હૃદય, ધમનીઓ અને શિરાઓ. રુધિર લાલ રંગની પ્રવાહી સંયોજકપેશી છે. તે રુધિરકોષો અને રુધિરરસની બનેલ છે. હૃદય સ્નાયુમય, શંકુઆકાર અને ત્રણ ખંડો (બે કર્ણક અને એક ક્ષેપક) ધરાવતું બેવડું સ્પંદનશીલ અંગ છે. ધમનીતંત્ર રુધિરને હૃદયમાંથી શરીરના વિવિધ ભાગો તરફ લઈ જાય છે. ધમનીતંત્રની શરૂઆત ધમનીકાંડથી થાય છે. તે મિશ્ર રુધિરને વિવિધ ધમનીઓમાં વહેવડાવે છે. શિરાતંત્ર રુધિરને શરીરના વિવિધ ભાગોમાંથી હૃદય તરફ લાવે છે. સમગ્ર શરીરમાંનું ઓક્સિજન વિહીન રુધિર શિરાકોટરમાં ભેગું કરાય છે. શિરાઓ કે જેઓ પોતે વહન કરેલું અશુદ્ધ રુધિર સીધું હૃદયમાં ઠાલવવાને બદલે બીજા કોઈ અંગો (મૂત્રપિંડ અને યકૃત)માં દાખલ થઈ ફરીથી રુધિર એકઠું કરી આગળ લઈ જાય છે. તેને નિવાહિકાશિરા કહે છે. દેડકામાં બે નિવાહિકાશિરાતંત્રો આવેલા છે : (1) મૂત્રપિંડ નિવાહિકાશિરાતંત્ર અને (2) યકૃત નિવાહિકાશિરાતંત્ર.

દેડકાનું ચેતાતંત્ર અન્ય પૃષ્ઠવંશી પ્રાણીઓની જેમ પૃષ્ઠબાજુએ આવેલું છે. તે મુખ્યત્વે બે વિભાગોમાં વહેંચાયેલું છે: (1) ઐચ્છિક ચેતાતંત્ર અને (2) અનૈચ્છિક ચેતાતંત્ર. ઐચ્છિક પ્રકારનું ચેતાતંત્ર મધ્યસ્થ ચેતાતંત્ર અને પરિઘવર્તી ચેતાતંત્રમાં વહેંચાયેલું છે. મધ્યસ્થ ચેતાતંત્રમાં મગજ અને કરોજરજજુ આવેલાં છે. મગજમાંથી અને કરોડરજજુમાંથી નીકળતી મસ્તિષ્કચેતાઓ અને કરોડરજજુચેતાઓ વડે પરિઘવર્તી ચેતાતંત્રની રચના થાય છે. અનિચ્છાવર્તી અથવા સ્વયંવર્તી ચેતાતંત્ર પ્રાણીશરીરનાં અનૈચ્છિક અંગોના નિયમન સાથે સંકળાયેલ હોય છે. દેડકામાં સંવેદી અંગો પાંચ પ્રકારનાં છે : સ્પર્શસંવેદી, સ્વાદસંવેદી, ઘ્રાણસંવેદી, દિષ્ટસંવેદી અને શ્રવણસંવેદી.

દેડકામાં ઉત્સર્ગ પદાર્થો અને જનનકોષોનો ત્યાગ કરતાં અંગો એકબીજા સાથે ગાઢ રીતે સંકળાયેલાં હોઈ આ તંત્રને મૂત્રજનનતંત્ર કહે છે. દેડકાનાં મુખ્ય ઉત્સર્ગ અંગો તરીકે એક જોડ મૂત્રપિંડ આવેલાં છે. દેડકો એકલિંગી પ્રાણી છે. નર દેડકાનાં પ્રજનનાંગોમાં એક જોડ શુક્રપિંડો, શુક્રવાહિકાઓ, બીડરની નળી અને એક જોડ મૂત્રજનનવાહિનીઓનો સમાવેશ થાય છે. માદા દેડકાનાં પ્રજનનાંગોમાં એક જોડ અંડપિંડ, એક જોડ અંડવાહિની અને અંડાશયનો સમાવેશ થાય છે. દેડકામાં પરફલન તેમજ બાહ્યફલન થાય છે. ફલનનું માધ્યમ પાણી છે.

સ્વાધ્યાય

1.	નીચે	આપેલા પ્રશ્નોના ઉત્તરો પૈકી સાચા	ઉત્તર સામે સર્કલમાં પેન્સિલથી રંગ પૂર	શે :
	(1)	ભારતીય બુલફ્રોગનું વૈજ્ઞાનિક નામ	કયું છે ?	
		(અ) રાના સિલ્વેટિકા	🔘 (બ) રાના ટાઈગ્રીના	\bigcirc
		(ક) રાના એસ્કુલેંટા	🔵 (ડ) રાના સાયનોફાયલેક્ટિસ	\bigcirc
	(2)	નીચેના પૈકી કયો ઉત્સેચક કાર્બોદિ	તોનું પાચન કરે છે ?	
		(અ) એમાઈલેઝ	🔘 (બ) લાઈપેઝ	\bigcirc
		(ક) ટીપ્સિન	🔾 (ડ) પેપ્સિન	
	(3)	બીડરની નલિકા કોના વહન માટે બનેલી છે ?		
		(અ) શુક્રકોષો	🤘 (બ) અંડકોષો	\bigcirc
		(ક) મત્ર	🔘 (ડ) શક્રકોષો અને મૃત્ર	\bigcirc

(4)	4) શિરાકોટર હૃદયના કયા ભાગમાં ખૂલે છે ?				
	(અ) જમશું કર્શક	(બ) ડાબું કર્ણક	\bigcirc		
	(ક) ક્ષેપક	🤇 (ડ) કર્ણક અને ક્ષેપક	\bigcirc		
(5)	દેડકામાં કેટલી સંખ્યામાં મસ્તિષ્કચેતાઅ	મોની જોડ આવેલ છે ?			
	(અ) 9 જોડ	(બ) 10 જોડ	\bigcirc		
	(ક) 12 જોડ	(ડ) 11 જોડ	\bigcirc		
(6)	દેડકાના પાચનમાર્ગના કયા ભાગમાં ગ	પોટીનનું પૂર્ <u>ષ</u> પાચન થાય છે?			
	(અ) મળાશય	(५) ४६२	\bigcirc		
	(ક) પક્વાશય	(ડ) મોટું આંતરડું	\bigcirc		
(7)	દેડકામાં કેવા પ્રકારનું ફલન જોવા મળ	તે છે?			
	(અ) સ્વફલન અને અંતઃફલન	(બ) પરફલન અને બાહ્યફલન	\bigcirc		
	(ક) સ્વફલન અને બાહ્યફલન	🔘 (ડ) પરફલન અને અંતઃફલન	\bigcirc		
(8)	દેડકામાં મળ, મૂત્ર અને જનનકોષો એ	નેકઠા કરતું અંગ કયું છે ?			
	(અ) મળાશય	(બ) મૂત્રજનન નલિકા	\bigcirc		
	(ક) મૂત્રાશય	(ડ) અવસારણી	\bigcirc		
(9)	પાચનમાર્ગના કયા ભાગમાં આમરસ	પેદા થાય છે ?			
	(અ) જઠર	(બ) પક્વાશય	\bigcirc		
	(ક) મળાશય	🔾 (ડ) મોટું આંતરડું	\bigcirc		
નીચેના	પ્રશ્નોના ટૂંકમાં જવાબ આપો :				
(1)	દેડકાનો સમુદાય, ઉપસમુદાય અને વિ	ભાગ લખો.			
(2)	દેડકાનું વૈજ્ઞાનિક નામ લખો.				
(3)	શીતનિદ્રા એટલે શું ?				
(4)	દેડકાની મુખગુહામાં કયા જડબા ઉપર હનુદાંત આવેલા હોય છે ?				
(5)	દેડકાના જઠરના મુખ્ય બે ભાગ કયા છે ?				
(6)	ભ્રૂકુટિ બિંદુનું સ્થાન લખો.				
(7)	સ્વરશ્વાસવિવર છિદ્ર શરીરના કયા ભાગમાં ખૂલે છે ?				
(8)	નિજઠર વાલ્વ કયા ભાગમાં આવેલો હોય છે ?				
(9)	યકૃત શાનો સ્નાવ કરે છે ?				
(10)	યકૃત–સ્વાદુપિંડનલિકા કઈ નળીઓના જોડાવાથી બને છે ?				
(11)	લૅન્ગરહાન્સના કોષપુંજોનું સ્થાન લખો.				
(12)	ક્યા અંતઃઆવની મુદ્દકથી રૂપિટના રુપકોઝને રૂપાયકોજનમાં આવે આય છે ?				

2.

- (13) પ્રોટીનનું પાચન કરતા ઉત્સેચકોનાં નામ લખો.
- (14) કોલીસીસ્ટોકાયનીનનું કાર્ય લખો.
- (15) ફુપ્ફુસીય શ્વસનના ત્રણ તબક્કા કયા છે ?
- (16) નિવાહિકાશિરા એટલે શું ?
- (17) પિચ્યુટરી ગ્રંથિનું સ્થાન લખો.
- (18) દેડકામાં કેટલી જોડ મસ્તિષ્કચેતાઓ ઉદ્ભવે છે ?
- (19) અવસારણીનાં કાર્યો લખો.
- (20) રાસાયણિક નિયમન એટલે શું ?
- (21) મસ્તિષ્ક નિવાપનું સ્થાન લખો.

3. ટૂંકમાં જવાબ આપો :

- (1) દેડકાનું સમુદાયથી જાતિ સુધીનું વર્ગીકરણ કરો.
- (2) બાહ્ય લિંગભેદ એટલે શું ? દેડકામાં તુલનાત્મક બાહ્ય લિંગભેદ આપો.
- (3) દેડકાના રહેઠાણ અને ખોરાકની ટૂંકમાં માહિતી આપો.
- (4) ત્વચાનાં કાર્યો લખો.
- (5) દેડકાના હૃદયમાં રુધિરનું પરિવહન માત્ર ચાર્ટ દ્વારા આપો.
- (6) તફાવત આપો : નર દેડકાનું મૂત્રજનનતંત્ર અને માદા દેડકાનું મૂત્રજનનતંત્ર

4. ટૂંક નોંધ લખો :

- (1) ત્વચાની અંતઃસ્થ રચના
- (2) દેડકાની મુખગુહા
- (3) દેડકાનો પાચનમાર્ગ
- (4) દેડકાની પાચનગ્રંથિઓ
- (5) પ્રોટીનનું પાચન
- (6) અંતઃ અને બાહ્ય શ્વસન
- (7) નિવાહિકાતંત્ર
- (8) સ્વયંવર્તી ચેતાતંત્ર
- (9) દેડકાનો મૂત્રમાર્ગ

5. સૂચના પ્રમાણે જવાબ આપો :

- (1) દેડકાનાં બાહ્ય લક્ષણો મુદ્દાસર લખો.
- (2) પાચન એટલે શું ? દેડકાના જઠરમાં થતી પાચનક્રિયા સમજાવો.
- (3) પક્વાશયમાં થતું પાચન સમજાવો.
- (4) દેડકામાં ત્વચીય અને મુખ-કંઠનાલીય શ્વસનક્રિયા સમજાવો.

१०० श्रुविद्धान

- (5) સમજાવો : દેડકામાં ફુપ્ફુસીય શ્વસન
- (6) આકૃતિ સહિત વર્ણવો : દેડકાનું હૃદય
- (7) દેડકાનું શિરાતંત્ર સમજાવો.
- (8) ટૂંકમાં સમજાવો : દેડકાનાં સંવેદી અંગો

6. માત્ર નામ-નિર્દેશનવાળી આકૃતિ દોરો :

- (1) દેડકાની ત્વચાનો ઊભો છેદ
- (2) દેડકાનો પાચનમાર્ગ
- (3) દેડકાની ખુલ્લી મુખગુહા
- (4) દેડકાના હૃદયનો ઊભો છેદ
- (5) દેડકાનું શિરાતંત્ર
- (6) દેડકાના મગજનો પૃષ્ઠ અને વક્ષ દેખાવ
- (7) नर देऽधानुं भूत्रथननतंत्र
- (8) भाधा देउडानुं भूत्र अननतंत्र

• • •

પારિભાષિક શબ્દો

(સિમેસ્ટર I)

પ્રકરણ 1 સજીવોનું વર્ગીકરણ

Non-living અજૈવિક ઘટકો - componants સજાવો - Organism ચયાપચય - Metabolism અનુકૂલન - Adaptation ભિન્નતા - Variation જૈવવિવિધતા - Biodiversity નામકરણ - Nomencluture પ્રજાતિ - Genus વસતિ - Population સમાજ - Community નિવસનતંત્ર - Ecosystem જૈવાવરણ (જૈવપરિસર) - Biosphere વર્ગીકરણવિદ્યા - Taxonomy

રાસાયણિક વર્ગીકરણિવદ્યા - Chemotaxonomy કોષવિદ્યાકીય - Cytotaxonomy વર્ગીકરણિવદ્યા

આંકડાકીય વર્ગીકરણ - Numerical taxonomy

જાતિ

સંકાલ્પનિક - Conceptual વર્ગીકૃત ક્રમબધ્ધ શ્રેણી - Taxonomic

hierarchy

- Species

પ્રકરણ 2

વર્ગીકરણનાં ક્ષેત્રો

નાશપ્રાય સજીવો - Endangered
Organisms
લુપ્ત થતા સજીવો - Extinction Prone
Organisms
સંરક્ષણ - Conservation
સંગ્રહસ્થાન - Store House
વનસ્પતિ સંગ્રહાલય - Herbarium
રેખાચિત્ર - Diagrammatic sketch

અંતઃસ્થવિદ્યા - Anatomy ભ્રૂણવિદ્યા - Embryology પરિસ્થિતિ વિદ્યા - Ecology પેશી સંવર્ધન - Tissue Culture સંકરણ - Hybridization

અશ્મિ - Fossil

સાંસ્કૃતિક વારસો - Cultural Heritage

વન્યજીવો - Wild life

લોકજાગૃતિ - Public Awarness પ્રાણીઉદ્યાન - Zoological Park નિશાચર - Nocturnal

માછલીઘર - Aquarium પશુચિકિત્સા વિભાગ - Veternary વિષાક્તન - Poisoning

પ્રકરણ 3

વનસ્પતિ સૃષ્ટિનું વર્ગીકરણ

ઉદ્વિકાસ - Evolution જાતિવિકાસ - Phyllogeny વસવાટ - Habitat આંતરસંબંધો - Interrelationship ચલિત - Motile અનુકૂલન - Adaptetation એકદળી - Monocotyledon દ્વિદળી - Dicotyledum પ્રકૃતિવિદ્ - Naturalist ઉત્પાદકો - Producers વિઘટકો. - Decomposer ઉપભોક્તા - Consumer મૃતોપજીવી - Saprophyte ભ્રુણ - Embryo

- Nutrition

- Diversity

- Domain

- Pathogenic

- Absorption

Downloaded from https://www.studiestoday.com

પોષણ

ક્ષેત્ર

વિવિધતા

રોગકારક

શોષણ

अवविज्ञान 102

અંતઃ ગ્રહણ - Ingestion કલન - Fertilization અપૃષ્પી - Cryptogams પરાગનયન - Pollination સપુષ્પી - Phanerogams સોટીમુળતંત્ર - Taproot system બીજધારી શિરાવિન્યાસ - Spermatophyta - Venation - Thallus જાલાકાર સુકાય - Reticulate સંયુગ્મન - Conjugation ચતુરાવયવી - Tetramerous પ્રકાશસંશ્લેષણ - Photosynthesis પંચાવયવી - Pentamerous વર્ધમાન વાહિપુલ સ્વોપજીવી - Autotrophic - Open vascular bundle અવખંડન અસ્થાનિક - Fragmentation - Adventitious કવકજાળ - Mycelium તંતુમય મૂળતંત્ર - Fibrous root system - Hypha (Pl. Hyphae) બીજપત્ર - Cotyledon કવકસૂત્ર ત્રિઅવયવી પરાવલંબી - Heterotrophic - Trimerous મુલાંગ અવર્ધમાન વાહિપુલ - Rhizoid - Closed વાહક પેશીધારી - Tracheophyta vascular bundle મુક્તદલા - Polypetalae જલવાહિનીકી - Tracheid યુક્તદલા - Gamopetalae જલવાહિની - Vessel / Trachea હિસ્ત્રીકેસર<u>ી</u> - Bicarpellatae જલવાહક પેશી - Xylem અદલા - Apetalae અન્નવાહક પેશી - Phloem પરિદલપુંજ - Perianth પૂર્વદેહ - Prothallus વજસદેશ - Sepaloid વાહિપુલ - Vasular Bundle લઘુબીજાણ્ - Microspore પ્રકરણ 4 લઘુબીજાણુધાની - Microsporangium પ્રાણીપેશી લઘુબીજાશુપર્શ - Microsporophyll સમમિતિ - Symmetry પરાગરજ - Pollen દેહકોષ્ઠ - Coelom મહાબીજાણ્ - Megaspore ખંડતા - Segmantation મહાબીજાણુધાની - Megasporangium મેરૂદંડ - Notocord મહાબીજાણુપર્શ - Megasporophyll પ્રજીવ - Protozoa નર શંકુ - Male Cone સછિદ્ર - Porifera માદા શંકુ - Female Cone કોષ્ઠાંત્રિ - Coelenterata કોષ્ઠાંત્ર અંડક/બીજાંડ - Ovule - Coelenteron અધોમુખ - Hypostome પુંકેસર - Stamen પુષ્પકો - Polyps સ્ત્રીકેસર - Carpel - Medusa છગક શંકુદ્રુમ - Conifer બહુરૂપકતા - Polymorphisum એકલિંગી - Unisexual પૃથુકૃમિ - Platyhelminthes દ્ધિલિંગી/ઉભયલિંગી - Bisexual સૂત્રકૃમિ Aschelminthes - Calyx વજચક નુપૂરક - Annelida દલચક્ર Corolla અભિચરણ પાદ - Parapodia બીજાશય - Ovary સંધિપાદ

Downloaded from https://www.studiestoday.com

- Arthropoda

Downloaded from https://www.studiestoday.com

પારિભાષિક શબ્દો 103

હરિતાપિંડ - Green gland ઝાલરો - Gills ફેફસાંપોથી - Booklungs અસંયોગી જનન - Parthenogenesis પ્રાવાર - Mantle રેત્રિકા - Radulla મુદકાય - Mollusca શુળત્વચી - Echinodermata નાલીપગો

- Tube feet હસ્તો - Arms સામીમેરૂદંડી - Hemichordata પુચ્છમેરૂદંડી - Urochordata શીર્ષમેરૂદંડી - Cephalochordata ચૂષમુખા - Cyclostomata કાસ્થિમત્સ્ય - Chondrithyes અસ્થિમત્સ્ય - Osteichthyes સરીસૃપ

અસમતાપી - Poikilothermic વિદ્યગ - Aves

સમતાપી - Homiothermic

પ્રકરણ 5

- Reptilia

કોષરચના

કોષરચના - Cell Structure કોષરસસ્તર - Cell Membrane કોષવાદ - Cell Theory નીપજ - Product જીવાણુ કોષ - Bacterial Cell કોષકેન્દ્ર - Nucleus કોષરસ - Cytoplasm અંગિકા - Organalle પ્રાણીકોષ - Animal Cell વનસ્પતિકોષ - Plant Cell અંતઃકોષરસજાળ - Endoplasmicraticulum

રંજક દ્રવ્યક્શ - Plastid રસધાની - Vacuole સૂક્ષ્મકાય - Microbody કોષદીવાલ - Cell Wall મધ્યપટલ - Middle lamella અંધકાર પ્રક્રિયા - Dark reaction

પરિધીય પ્રોટીન - Peripheral Protein

- Hormone

અંત:સ્રાવ

સાદું પ્રસરણ - Simple diffusion આસૃતિ - Osmosis સક્રિય વહન - Active Transport

મંદ વહન - Passive Transport

પ્રકરણ 6

જૈવિક અણુઓ-I (કાર્બોદિત અને ચરબી)

કાર્બનિક - Organic સંયોજન - Compound તત્ત્વો - Elements આવશ્યક - Essential ઉત્સેચકો - Enzymes અંતઃસ્રાવ - Hormone સહસંયોજક બંધ - Covalent bond

દ્રાવક - Solvant જૈવ રસાયણ - Biochemical વીજભાર - Electric Charge

ગુણધર્મ - Property ધ્રુવીયતા - Polarity વિશિષ્ટઉષ્મા - Specific heat ગુપ્તઉષ્મા - Latent heat પ્લવકો - Plankton પ્રક્રિયક - Reactant અસ્થિબંધ - Ligament શ્વસન - Respiration સહકારક - Cofactor

આસૃતિદાબ - Osmotic Potential

ચયાપચય - Metabolism સંતુપ્ત - Saturated

સંલગ્નબળ - Cohesive Force

પાંડુતા - Anaemia સંયુગ્મી - Conjugated પ્રક્રિયાર્થી - Substrate

પ્રકરણ 7

જૈવિક અણુઓ-2

(પ્રોટીન, ન્યુક્લિઇક ઍસિડ અને ઉત્સેચકો)

જીવાવરણ - Biosphere વિનૈસર્ગીકૃત - Denatural ઉભયગુણધર્મી - Amphoteric

કાર્યકારી જૂથ - Functional group ધ્રુવીયતા - Polarity કુંતલ - Halix

ત્રિપરિમાણ - Three dimentional

રંગસૂત્ર - Chromosome વારસાગત - Hereditary બીબા - Template સહનિયમન - Coregulation વિખંડન - Cleavage કલિલ - Colloidal જલવિચ્છેદન - Hydrolysis વ્યુત્પન્ન - Derivatives

પ્રકરણ 8

કોષચક્ર અને કોષવિભાજન

સમભાજન - Mitosis અર્ધીકરણ - Meiosis દ્રિકીય - Diploid આંતરાવસ્થા - Interphase પૂર્વાવસ્થા - Prophase એકલસૂત્ર - Chromatid હિધ્ર<u>વીયત્રાક</u> - Bipolar Spindle ભાજનાવસ્થા - Metaphase ભાજનોત્તરાવસ્થા - Anaphase અંત્યાવસ્થા - Telophase સ્વસ્તિક ચોકડી - Chiasmata રંગસૂત્ર - Chromosome સંશ્લેષણ - Synthesis તારાકેન્દ્ર - Centriole વિષ્વવૃત્તીય તલ - Equatorialplane મધ્યાપટલ - Middle lamella અલિંગી પ્રજનન - Asexual Reproduction પાર્શ્વસ્થ વર્ધનશીલપેશી - Lateral Meristematic Tissue વૃદ્ધિ - Growth કોષચક્ર - Cell Cycle પુન: સંયોજિત ગંઠિકા - Recombination Nod-

બાળકોષ

પ્રકરણ 9

પશુપાલન અને વનસ્પતિ સંવર્ધન

પશુપાલન - Animal Husbundary

વનસ્પતિ સંવર્ધન - Plant breeding

મરધીપાલન - Poultry મધમાખી ઉછેર - Apiculture મત્સ્ય ઉદ્યોગ - Fisheries

પ્રાણી સંવર્ધન - Animal breeding

અંતઃસંકરણ - Inbreeding બહિર્સંકરણ - Outbreeding

આંતરજાતીય સંકરણ - Interspecific hybridi-

zation

પેશીસંવર્ધન - Tissue calture ભ્રુશસંવર્ધન - Embryoculture

પ્રકરણ 10

માનવ-સ્વાસ્થ્ય અને રોગો

(રોગપ્રતિકારકતા, રસીકરણ, કૅન્સર, એઇડ્સ)

રોગપ્રતિકારકતા - Immunity
રસીકરણ - Vaccination
જન્મજાત પ્રતિકારક્તા - Innate immunity
ઉપાર્જિત પ્રતિકારક્તા - Aquired immunity
સ્વપ્રતિકારક્તા - Autoimmunity
સક્રિય પ્રતિકારક્તા - Active immunity
નિષ્ક્રિય પ્રતિકારક્તા - Passive immunity

પ્રકરણ 11

સુક્ષ્મ સજીવો અને માનવકલ્યાણ

સૂક્ષ્મ જીવો - Microbs અવસાદન - Sdimentation નિવેષ દ્રવ્ય - Inoculum

અજારક શ્વસન - Anaerobic respiration જારક શ્વસન - Aerobic respiration

આમાશય - Rumen જૈવખાતર - Biofertiliser નીંદામણ નાશકો - Weedicidies જંતુનાશકો - Insecticidies કુગનાશક - Fungicidies

•

- Daughter cell

પારિભાષિક શબ્દો

(સિમેસ્ટર II)

પ્રકરણ 1 વનસ્પતિ બાહ્યાકારવિદ્યા-1 (મૂળ, પ્રકાંડ, પર્ણ)

બાહ્યાકારવિદ્યા - Morphology જલજ - Aquatic જીવનપ્રકાર - Lifestyle પરરોહી - Epiphytic પરોપજીવી - Parasitic

આંતરિક રચના - Internal structure

અક્ષ - Axis

મૂળતંત્ર - Root system પ્રરોહતંત્ર - Shoot System

પાર્શ્વીય ઉપાંગ - Lateral appendages

આદિમૂળ - Radicle આદિસ્કંધ - Plumule

બીજ - Seed

ભૂમિગત - Underground ભૂવર્તી - Geotropic પ્રકાશાનુવર્તી - Phototropic જલાનુવર્તી - Hydrotropic

અગ્રકલિકા - Terminal bud /

Shoot apex

ગાંઠ - Node

આંતરગાંઠ - Internode કક્ષકલિકા - Axillary bud સ્થાનિકમૂળ - Normal root

અસ્થાનિકમૂળ - adventitious root

મૂળગોહ - Root pocket વર્ધીપ્રદેશ - Meritstematic

विस्तरण प्रदेश - Region

of elongation

જીવરસ - Protoplasm

પરિપક્વન પ્રદેશ - Region of maturation

મૂળરોમ - Root hair સ્થાપન - Fixation શોષણ - Absorption રૂપાંતર - Modification

શંકુઆકાર - Conical ત્રાકાકાર - Fasiform સાકંદમૂળ - Tuberous root ગુચ્છાદાર - Fasciculated

અવલંબન - Stilt સ્તંભમૂળ - Prop root

સમક્ષિતિજ - Horizontally આરોહણ - Climbing

પરિપાચીમૂળ - Assimilatory root જળતરબોળ - Arater logged

ખારા - Saline હવાછિદ્રો - Lenticels

થસત્તમૂળ - Pneumatophore ચૂષકમૂળ - Sucker / Haustorium

મૂળગંડિકા - Nodule કઠોળવર્ગની વનસ્પતિ - Leguminous સહજીવન - Symbiosis વનસ્પતિક - Vegetative દ્વિશાખી - Dichotomous પાર્શીય - Laterally

પાશ્વાય - Laterally અપરિમિત - Racemose પરિમિત - Cymose એકતોવિકાસી - Uniparous

ઉભયતો વિકાસી - Helicoid uniparous

દ્વિશાખી - Biparous - Propagation પ્રજનન ભૂસ્તારિકા - Offsets વિરોહ - Stolen ગ્રંથિલ - Tuber વજકંદ - Corm છાલશૂળ - Prickles પ્રકાંડસૂત્ર - Stem lendril બાષ્પોત્સર્જન - Transpiration પુષ્પકલિકા - Floral bud કક્ષકલિકા - Axilary bud પ્રકલિકા - Bulbil પર્શદંડ - Petiole પર્શપત્ર - Lamina

ઉપપર્ણ - Stipule
આવરક - Sheathing
સદંડી - Peteolate
અદંડી - Sessile
શિરા - Vein
શિરિકા - Veinlets

જાલાકાર શિરાવિન્યાસ -Reticulate Venation

સમાંતર શિરાવિન્યાસ - Parallel Venation

એકશિરી - Unicoslate બહુશિરી - Multicostate અપસારી - Converging અભિસારી - Diverging પીછાકાર - Pinnate પંજાકાર - Palmate બીજપત્ર - Cotyledon પર્શસદશ - Foliaceous અલ્પિત (નહિવત્) - Reduce એકાંતરિક - Alternate પર્શવિન્યાસ - Phyllotaxy સંમુખ - Opposite યતુષ્ક - Decussate આચ્છાદી - Superimposed

ભ્રમિરૂપ - Whorled આવરિત - Tunicaled કંદ - Bulb સૂત્રમય - Tendrillar દાંડીપત્ર - Plyllode કીટભક્ષણ - Insectivory ફુગ્ગા જેવી રચના - Bladder કળશપર્શ - Nepenthes

પ્રકરણ 2

વનસ્પતિ બાહ્યાકારવિદ્યા (પૃષ્પ, ફળ, બીજ અને કુળ)

અપરિમિત - Racemose પરિમિત - Cymose નિચર્ક - Involucre એકાકી - Solitary એકશાખી - Unilateral ઉભયતોવિકાસી - Bilateral વજપત્ર - Sepal પરિપુષ્પ - Perianth

સહાયક પુષ્પચક્રો - Accessory Whorls

પરાગાસન - Stigma પરાગવાહિની - Style પરાગાશય - Anther સ્ત્રીકેસરચર્ક - Gynoecium પુંકેસરચર્ક - Androecium આવશ્યક પુષ્પચક્રો - Essential Whorls

દિસદની - Dioecious નિપત્ર - Bract ધારાસ્પર્શી - Valvate વ્યાવૃત - Twisted આચ્છાદિત - Imbricate

સમૂહ ફળ - Aggregate Fruit સંયુક્તફળ - Composite Fruit

ધાન્યકળ - Caryopsis અહિક્ષ્ળ - Drupe અનિષ્ઠિલફળ - Berry જીવિતતા - Viability ભ્રૂણપોષ - Endosperm

બાહ્યબીજાવરણ - Testa અંતઃબીજાવરણ - Tegmen સંધિરેખા - Raphe બીજકેન્દ્ર - Hilum બીજછિદ્ર - Micropyle ઉપરાક્ષ - Epicotyle અધરાક્ષ - Hypocotyle સમિતાયાસ્તર - Aleurone layer અધિચ્છદસ્તર - Epithelial layer

વરુથિકા - Scutellum ભ્રૂષાત્રચોલ - Coleoptile ભ્રૂષામૂળચોલ - Coleorrhiza

પ્રકરણ 3

સપુષ્પી વનસ્પતિની અંતઃસ્થ રચના

પેશી - Tissue આવૃત બીજધારી - Angiosperm એકદળી - Monocot દ્વિદળી - Dicot

Downloaded from https:// www.studiestoday.com

પારિભાષિક શબ્દો

કક્ષકલિકા - Axillary bud ત્વક્ષેધા - Cork Cambium

પર્ણદંડ - Petiole અષ્ઠિકોષ - Sclereid

ભેજગ્રાહીમૂળ - Epiphytic Root બાષ્પોત્સર્જન - Transpiration

બાહ્યક - Cortex

મધ્યપર્જાપેશી - Mesophyll Tissue

અરીય - Radial સહસ્થ - Conjoint એકપાર્શ્વસ્થ - Collateral સમકેન્દ્રિત - Concentric

સંયોગીપેશી - Conjunctive Tissue

બહુસૂત્રી - Polyarch

ભંગજાતવિવર - Lysigenous cavity દ્વિપાર્શ્વપર્શ - Isobilateral leaf

પૃષ્ઠવક્ષીય પર્શ - Dorsiventral leaf વસંતકાષ્ઠ - Spring wood રસકાષ્ઠ - Sap Wood

હવાદારછિદ્ર - Lenticel cell શરદકાષ્ઠ - Autumn Wood

પ્રકરણ 4

પેશી Tissue

લાદિસમ્ અધિચ્છદ - Squamous epithelium ઘનાકાર અધિચ્છદ - Cuboidal epithelium સ્તંભાકાર અધિચ્છદ - Columnar epithelium

પક્ષ્મલ અધિચ્છદ - Ciliated epithelium

સ્તૃત અધિચ્છદ - Stratified eplthelium સંયોજક પેશી - Connective tissue

સંયોજક પેશી - Connective tissue તંત્ઘટક પેશી - Areolar tissue

મેદપૂર્ણ પેશી - Adipose tissue

સ્નાયુબંધ - Tendon અસ્થિબંધ - Ligament કાસ્થિ - Cartilage

કાચવત્કાસ્થિ - Hyaline Cartilage

અરેખિત - Unstriated રેખિત - Striated હદ્ - Cardiac ચેતાકોષ - Neuron

મજજાપડ - Myelin sheath શિખાતંતુઓ - Dendrities

અक्षतंतु - Axon

પ્રકરણ 5

પ્રાણી બાહ્યાકારવિદ્યા અને અંતઃસ્થ રચના-1 (અળસિયું અને વંદો)

મુખાગ્ર - Prostomium
પરિતુંડ - Peristomium
વલયિકા - Clitellum
ભિતીભંજ - Typhlosole
ઉર્ત્સગિકા - Nephridium
ચેતાકડી - Nervering
સહાયક ગ્રંથિ - Accessory gland

અંડઘર - Cocoon ઉરસ - Thorax ઉદર - Abdomen પેષણી - Gizzard

અંધાંત્રો - Hepatic caeca શ્વસનછિદ્રો - Spiracles શ્વાસનલિકા - Trachea મહાકોટર - Sinuses નેત્રિકા - Ommatida પુચ્છશૂળ - Anal Cercus પ્રચ્છકંટિકા - Anal Style

પ્રકરણ 6

પ્રાણી બાહ્યાકારવિદ્યા અને અંતઃસ્થ રચના-2

(દેડકો)

ઉભયજીવી - Amphibia ચતુષ્પાદ - Tetrapoda શીતનિદ્રા - Hibernation ગ્રીષ્મ<u>નિ</u>દ્રા - Aestivation ધડ - Trunk ભ્રકૃટિબિંદ - Brow-Spot મૈથુનગાદી - Nuptial Pad શંગીય સ્તર - Stratumcornium

Downloaded from https:// www.studiestoday.com

१०८ श्रुविद्धान

બૃહદ્મસ્તિષ્ક ગોળાર્ધ - Cerebral hemisphere અંકુરણીય સ્તર - Stratum germanativum નેત્રમણિ સ્વર કોથળી - Retina - Vocal sac કીકી હલાસ્થિ દાંત - Pupil - Vomerine teeth અન્નનળી પક્વાશય - Duodenum - Oesophagus કનીનિકા સ્વાદુપિંડ - Iris - Pancreas પારદર્શક પટલ - Cornea અવસારણી - Cloaca અંતર્વાહી - Afferent શ્વસન - Respiration બહિર્વાહી - Efferent અંતઃશ્વસન - Inspiration રુધિરકેશિકાગુચ્છ - Glomerulus બાહ્ય શ્વસન અથવા શુક્રપિંડ - Testis ઉચ્છશ્વસન - Expiration મૂત્રજનનવાહિની કર્ણક - Urinogenital Duct - Auricle અંડપિંડ ક્ષેપક - Ovary - Ventricle અંડાશય શિરાકોટર - Ovisac - Sinus Venosus અંડવાહિની - Oviduct મહાશિરા - Venacava શેષાંત્ર - Ileum નિવાહિકા શિરા - Portal vein ઘ્રાણપિંડ - Olfactory lobe