<mark>ગુજરાત રાજ્યના શિક્ષણવિભાગના પત્ર-ક્રમાંક</mark> મશબ/1213/01/છ, તા. 19-2-2013થી—મંજૂર

COMPUTER STUDIES

Standard 9

PLEDGE

India is my country.

All Indians are my brothers and sisters.

I love my country and I am proud of its rich and varied heritage.

I shall always strive to be worthy of it.

I shall respect my parents, teachers and all my elders and treat everyone with courtesy.

I pledge my devotion to my country and its people.

My happiness lies in their well-being and prosperity.

રાજ્ય સરકારની વિનામૂલ્યે યોજના હેઠળનું પુસ્તક

Gujarat State Board of School Textbooks

'Vidyayan', Sector 10-A, Gandhinagar-382010

Downloaded from https:// www.studiestoday.com

© Gujarat State Board of School Textbooks, Gandhinagar

Copyright of this book is reserved by Gujarat State Board of School Textbooks. No reproduction of this book in whole or in part, in any form is permitted without written permission of the Director, Gujarat State Board of School Textbooks.

Subject Adviser

Prof. R. P. Soni

Authors

Dr Harshal Arolkar (Convener)

Dr Sanjay M. Shah

Dr Priti S. Sajja

Dr Jignesh Smart

Reviewers

Dr Kuntal P. Patel

Shri Girish S. Brahmbhatt

Shri Saket A. Dave

Shri Ankita S. Dwivedi

Shri Bimal K. Raval

Shri Mayuri I. Shah

Shri R. L. Gilatar

Shri Rajanikant P. Pandya

Shri Pankaj R. Shukla

Shri Nishita N. Gandhi

Shri Rajshree N. Padia

Shri Dimple U. Shukla

Co-ordinator

Shri Ashish H. Borisagar

(Subject Co-ordinator: Mathematics)

Preparation and Planning

Shri Haresh S. Limbachiya

(Dy. Director : Academic)

Lay-out and Planning

Shri Haresh S. Limbachiya

(Dy. Director: Production)

PREFACE

The Gujarat State Secondary and Higher Secondary Education Board has prepared new syllabi based on the open source operating system and compitible open source software tools for various topics of Computer Studies. These syllabi are sanctioned by the Government of Gujarat.

It is a matter of pleasure for the Gujarat State Board of School Textbooks to place this textbook of Computer Studies before the students of Standard 9 prepared according to the new syllabus.

Before publishing the textbook, its manuscript has been fully reviewed by experts and teachers teaching at this level. Carrying out suggestions given by teachers and experts, we have made necessary changes in the manuscript and then have published the textbook.

The board has taken special care to ensure that this textbook is interesting, useful and free from errors. However, we welcome suggestions to enhance the quality of the textbook.

Dr. Bharat Pandit

Director

Date: 3-3-2015

Dr. Nitin Pethani

Executive President

Gandhinagar

First Edition: 2013, Reprint: 2015

Published by: Bharat Pandit, Director, on behalf of Gujarat State Board of School Textbooks,

'Vidyayan', Sector 10-A, Gandhinagar

Printed by

FUNDAMENTAL DUTIES

It shall be the duty of every citizen of India:

- (a) to abide by the Constitution and respect its ideals and institutions, the National Flag and the National Anthem;
- (b) to cherish and follow the noble ideals which inspired our national struggle for freedom;
- (c) to uphold and protect the sovereignty, unity and integrity of India;
- (d) to defend the country and render national service when called upon to do so;
- (e) to promote harmony and the spirit of common brotherhood amongst all the people of India transcending religious, linguistic and regional or sectional diversities; to renounce practices derogatory to the dignity of women;
- (f) to value and preserve the rich heritage of our composite culture;
- (g) to protect and improve the natural environment including forests, lakes, rivers and wild life, and to have compassion for living creatures;
- (h) to develop the scientific temper, humanism and the spirit of inquiry and reform;
- (i) to safeguard public property and to abjure violence;
- (j) to strive towards excellence in all spheres of individual and collective activity so that the nation constantly rises to higher levels of endeavour and achievement;
- (k) to provide opportunities for education by the parent or the guardian, to his child or a ward between the age of 6-14 years as the case may be.

CONTENTS

1.	Introduction to Computers	1
2.	History and Evolution of Computers	9
3.	Input and Output Devices	19
4.	Memory, Storage Devices and Data Representation	26
5.	Introduction to Operating System	43
6.	Introduction to Ubuntu Linux	59
7.	Introducation to Ubuntu Linux GUI	78
8.	Basic Utilities in Ubuntu Linux	99
9.	Introduction to Word Processing	133
L O.	Editing and Formatting Documents	151
11.	Tables and Mail Merge	167
12.	Introduction to Presentation	194
L 3.	Introduction to the Internet	216
L 4.	Email and Security in Internet	240
•	Appendix	265

About This Textbook...

Dear Teachers,

With a mission to spread computer literacy on a fast track, the Gujarat Government has provided latest computer equipment to more than 6000 aided schools under the ICT@School program. As a new policy initiative all the schools are given the Ubuntu (a variant of Linux) Operating System and other Open Source software packages so that schools can freely use and exchange the software without bothering about the licensing issues. Since earlier textbooks were largely based on proprietary software, there was a need to rewrite the textbooks based on new syllabus. This was also necessary in view of the fact that the 8th standard has been transferred to primary section. Therefore, new content has been provided for 9th to 12th standard in a phased manner based on the open source Operating System and compatible open source software tools for various topics of computer studies.

This textbook for 9th standard is the first in series for the subject of 'Computer Studies'. The aim has been to provide elementary knowledge of computers, introduction to Open Source Operating System-Ubuntu, Open Office Word Processor known as Writer, Presentation tool Impress and some concepts of Internet surfing, searching, email, file downloading etc. as well as security. An attempt has been made to create a good base for the students to learn other topics as well as open source software in later years. It is worth to mention that no assumption has been made about students having any prior knowledge of computers.

We hope the coverage will be useful to the students and you will enjoy teaching and conducting practicals using open source Ubuntu operating system.

Dear Students,

We assume that you are learning the subject of computer studies based on open source software for the first time. As a beginner, you will need to know various definitions around computers, hardware and software. This will be followed by introduction to open source operating systems as well as other operating systems available in public domain. You will also be learning Open Office components of

word processing and presentation tools. Finally, exposure to Internet and its uses will be covered so that you become quite comfortable in working with computers and Internet.

The chapters 1 to 4 cover introduction, history and evolution of computers, input output devices as well as memory and data representation techniques. In chapters 5 to 8 introductory details about functions and types of operating systems, Ubuntu Linux, graphical user interface GNOME and basic utilities such as command line interface (CLI), text and image editors, media players etc. are discussed. Chapters 9 to 11 introduce all the basic functionalities of word processor Writer. Another component of Open Office which is a presentation tool Impress is covered in chapter 12. Finally, basic terminologies of Internet, its applications, security threats and cryptography have been covered in chapters 13 and 14.

It is expected that if you study the text carefully and practice the laboratory exercises, you will develop reasonable confidence in working with quite user friendly Ubuntu Linux operating system and OpenOffice components for word processing and presentation.

Introduction to Computers

Computers are multi-purpose machines that can be used to solve variety of problems in different fields. Computers have changed the way we live, work and communicate. Computers are useful in industries, government, education, research as well as entertainment sectors. From routine business activities in a given area to a spectacular task, computers are applicable everywhere. That is why a computer is called multi-purpose machine.

Working of a Typical Computer

Just as a calculator calculates, a driver drives and a painter paints, computer computes. The computing here is not restricted to only mathematical computing but to a variety of logic based tasks. One only needs to systematically design step by step clear guidelines for the task to be solved. These guidelines generally written in simple English language are called **algorithm**. Computer once given proper set of instructions can perform operations like generating bills, reserving tickets, printing mark-sheets, printing business reports or communicating messages. Computer can also deal with audio, video, graphs and animations besides texts and numbers.

Once the computer is given data and step by step instructions, it then performs computations and generates result or performs an action as an output. The set of data and instructions provided by a user to the computer is called an **input**. Computer processes this input and presents results to the user. The result is called an **output**. Computer can remember these data, instructions and calculated results for future use by storing the details in memory. This simple flow of working of computer is shown in figure 1.1.

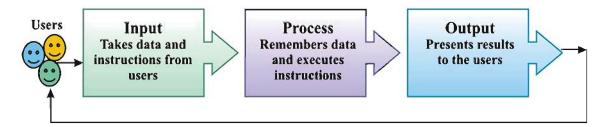


Figure 1.1: Working of a Typical Computer

Further, it is not compulsory to repeat the instructions and enter large amount of data every time we use the computer. We can store the data and instructions within the computer itself in such a way that it can be understood by machine; that is, in machine readable language. Storing such set of instructions is useful for repetitive performance of the tasks. Once the set of instructions in machine readable format called program is stored in the computer, it can be used many times with different sets of data. This concept is known as **stored program concept**.

Following sample list presents some sample applications to highlight use of computers in different areas:

- Ticket reservations
- Bank operations
- Inventory management and manufacturing support
- Entertainments such as playing games, composing music and editing movies
- Teaching
- Financial Accounting
- Correspondence and publishing (composing newspapers, writing letters, books etc.)
- Space applications
- Robotics
- Email and chatting
- Website development etc.

Simple Model of a Computer

The simple model of a typical computer is based on the working of computer shown in the figure 1.1. As we have discussed, instructions are needed to make computers perform some actions. To obey instructions provided by the user and perform computations, a computer needs to have a mechanism to input. The input mechanism helps in feeding data as well as instructions into the computers. This mechanism is called **input unit**. Devices used for the input purpose are known as input devices. Typically input devices such as mouse and keyboards are used for this purpose.

Input provided through the input mechanism is stored in memory of the computer and further processed by a mechanism called **processing unit** or processor. Results are presented to the user through output mechanism called **output unit**. Typical output devices are monitor and printer. In short the input, memory, processor and output are the basic components of a typical computer.

Input Unit

2

The **input unit** provides a facility to enter data and instructions into the computer. Input mechanism supports many devices such as keyboard, mouse, joystick, barcode reader, universal serial bus (USB) devices, hard disk and compact disks (CDs). Different input devices take data in different forms and send it to the computer memory. For example, use of keyboard to enter data and instructions is very much similar to the use of a typewriter. Another way to input data is reading through barcode reader. Barcode reader is normally seen at superstore. Remember when you purchase a pack of biscuits, the shopkeeper uses a small device and presses a button on the device. With sound of a beep, the barcode printed on a tag of the biscuit pack is read and copied to the computer in order to generate bill. Mouse is also used to input data into computer. Mouse is a device that

controls movement of the pointer (also known as cursor) on the display screen. It is a small object with a few buttons (keys) which you can roll on a hard surface. As mouse is moving on the surface, the pointer on the display screen is also moved. A mouse must have at least one button. Most of the input devices convert the data into machine readable form.

Memory and Control Unit

Once input is collected via input devices, the input is needed to be stored into the computer memory. Computer memory retains data, instructions and processed output for a while (short duration) or for a long time. There are different types of computer memories. Some computer memories are capable of remembering the content for very short duration; say till the work is in progress and continuous supply of power is ensured. Such memory is called volatile memory. Such memory forms primary storage of a computer, hence it is known as **primary memory**. It is also called as temporary memory or main memory. The input from different devices goes first to the main memory and will be retained into the memory electronically. The content will remain in the main memory till the computer is switched off. When computer is switched off or reset, the content will be lost. To preserve the content for a long, we need **secondary** or **auxiliary storage**. The secondary storage memory is not volatile and content can be preserved for long time. Devices that use secondary memory are called secondary storage devices. Hard disk and compact disks are the most popular secondary storage devices. Unlike the primary memory, the secondary storage is non-volatile, slow (in comparison with primary memory), less expensive, and large in capacity.

As mentioned, once the data and instructions are entered into the memory, instructions are executed and result is prepared. As per the requirement of the user, the result is preserved in the memory or sent to the output unit. To execute instructions, the computer needs to perform some arithmetic and logical computations. The arithmetic and logical computations are performed by a unit called **Arithmetic Logic Unit** (ALU). Besides the ALU, there is a **Control Unit**, which manages execution of instructions and control operations of other components of the computer. ALU and control units together form **Central Processing Unit** (CPU), which is also called the brain of a computer. Some high speed (cache) memory can also be a part of the CPU.

Output Unit

The **output unit** is normally a visual screen called monitor. The monitor actually refers to a whole box of the visual output mechanism of a computer. Display screen is part of the monitor. Many times we use monitor and display screen as synonyms. The older monitors used to provide black, white and grey-shade outputs, which usually was the text and numbers. Presently, colour monitors that are capable of presenting variety of information such as high quality graphics and animations are available. To output sound, special devices such as speakers and headphones are used. To print the output printers are used. Optionally, output is directly published on the website or sent as a file via Internet. Basic components are shown in figure 1.2.

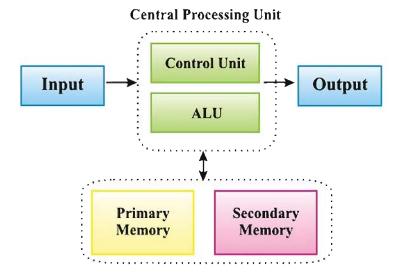


Figure 1.2: Basic Components of Computer

The input, output and processing mechanism are discussed in detail in later chapters.

Characteristics and Advantages of a Computer

Computers are very useful because of their characteristics like automation, accuracy, long term storage, consistency, and programmability. These characteristics describe the efficiency of the machine to execute the given task. Hence, these characteristics are also known as efficiency oriented characteristics. These characteristics are described below:

Automation: Computer can automatically perform a given task. Once data and necessary instructions are stored into the computer memory, human intervention is not required. Some jobs such as searching from a large repository of data (or from Internet) are nearly impossible without such automation.

Accuracy: Computers are able to perform complex arithmetic and logical computations with the highest accuracy. Properly designed computers provide highly accurate results. However, it is obvious that garbage (bad) results are produced by garbage (bad) input entered knowingly or unknowingly. This is called Garbage In Garbage Out (GIGO).

Long term storage: Computers can store large amount of data in its secondary storage for long time. The stored content can be recalled easily on request. Unless specifically asked, the content will be preserved in the memory.

Ability to perform mechanical and repetitive tasks: computers are able to perform mechanical tasks in consistent manner. They do not posses human oriented limitations such as loss of interest, likings, and physical capacity.

Programmability: Computers can be programmed to execute predefined set of instructions. Writing program once and executing it many times saves lot of time and cost. The program once written can be modified later for the revised task. Therefore, computers are versatile to perform any activity, provided a step by step program is given.

Figure 1.3 demonstrates prominent characteristics of a computer.

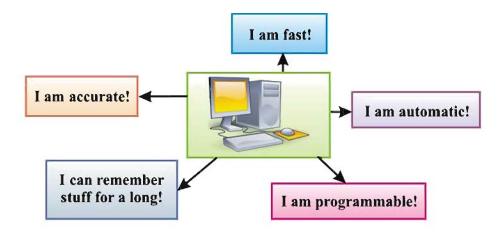


Figure 1.3: Characteristics of Computer

Software

So far, we have learnt that computer is a multi-purpose machine and cannot perform any task on its own. It needs data and step by step machine understandable instructions to perform the intended tasks. This set of instructions is called a program. Development of the program becomes easier if a step by step guideline to solve the given tasks called algorithm is designed. The logic prepared for getting the given task done using an algorithm is known as software. Software refers to organized collection of computer programs, data and related documentation (such as comments) about the computer programs. Figure 1.4 illustrates the components of software.

Hardware

Unlike software, the hard entities such as keyboard, mouse, central processing unit and other peripheral devices are considered as physical entities and hence called **hardware**. Hardware is a comprehensive term for all physical parts of a computer.

Documentation Data Instructions Software

Firmware

Software instructions many times come integrated along with hardware. Since such

Figure 1.4: Components of Software

software is closely coupled with hardware, it is known as firmware. The software embedded with the hardware usually facilitates use and application of the hardware. It also provides utility to work with other hardware and communicate data when needed. Usually such firmware are developed by the hardware manufacturing company and provided free when one purchases the hardware. For example, washing machine, traffic lights, digital camera and microwave oven have some software

programs inbuilt in the devices. Later you will learn what type of memory is used for firmware designing.

Summary

Computers are machines that take data and instructions, store them into its memory and execute them on demand. In this chapter we saw working of typical computers. We learnt about different input, output and processing units with examples. Because of the characteristics like speed, accuracy, and storage capacity, computers are used for many applications. In this chapter we saw highlights of the important characteristics of computers along with some applications. Finally we discussed the concepts of hardware, software and firmware.

EXERCISE

- 1. List the basic components of a computer. Describe each in brief.
- 2. Draw a block diagram of a computer containing basic components of a computer. Explain the diagram.
- 3. What are the popular input devices?
- 4. What are the popular output devices?
- 5. Differentiate primary and secondary memory.
- 6. What is ALU? Give full form and explain work of the ALU in one line.
- 7. What is CU? Give full form and explain work of the CU in one line.
- **8.** Which component is called brain of the computer? Why?
- **9.** What are the characteristics of computers?
- **10.** Define software. What are the main components of software?
- 11. Define hardware. Give two examples of hardware.
- 12. Choose the most appropriate option from those given below:
 - (1) Which of the following is the typical work flow of a computer?
 - (a) Input, output and process
- (b) Input, process and output
- (c) Output, process and input
- (d) Any of these
- (2) Which of the following identifies the concept of a computer itself remembering the set of data and instructions to be executed?
 - (a) Stored program concept
- (b) Fixed source concept
- (c) Automatic source concept
- (d) Variable source concept
- (3) Which of the following refers to a set of step by step instructions to perform a given task written in machine understandable format?
 - (a) Program

(b) Algorithm

(c) Instruction

(d) Data

(4)	which of the following devices converts the given data into machine readable form while entering data into the computer?			
	(a)	Output	(b)	Input
	(c)	Memory	(d)	All of these
(5)	Wh	ich of the following does a compu	ter n	nemory retains ?
	(a)	Data	(b)	Instructions
	(c)	Results	(d)	All of these
(6)	Wh	ich of the following memory types	is c	ostly, fast and limited in size?
	(a)	Primary	(b)	Secondary
	(c)	Temporary	(d)	All of these
(7)	Wh	at is the other name of primary m	emo	ry ?
	(a)	Non-volatile	(b)	Volatile
	(c)	Fragile	(d)	Non-Fragile
(8)	Wh	ich of the following are characteris	stics	of secondary memory?
	(a)	Cheaper and slower than the prin	nary	memory.
	(b)	Cheaper and faster than the prima	ary n	nemory.
	(c)	Volatile and slower than the prima	ary n	nemory.
	(d)	Volatile and slower than the prima	ary n	nemory.
(9)	Har type	*	are e	xamples of which of the following device
	(a)	Primary	(b)	Secondary
	(c)	Temporary	(d)	None of these
(10)	Wh	ich of the following unit performs t	he a	rithmetic and logical computations?
	(a)	Arithmetic logic unit	(b)	Advanced mathematical logic unit
	(c)	Alternative logic unit	(d)	Logic unit
(11)		nich of the following unit manages of the computer		ution of instructions and controls operations
	(a)	Memory	(b)	Input
	(c)	Control	(d)	Output
(12)	Wh	ich of the following does ALU and	d cor	ntrol units together form ?
	(a)	Central processing unit	(b)	Control processing unit
	(c)	Memory	(d)	Input/Output unit

(13) Which is an example of an output mechanism?						
	(a)	Keyboard	(b)	Barcode reader at superstore		
	(c)	Printer	(d)	Mouse		
(14)	Wh	ich component of a computer is k	now	n as the brain of a computer?		
	(a)	Input unit	(b)	Output unit		
	(c)	Central processing unit	(d)	Memory unit		
(15)	Wh	ich of the following is full form of	f GIO	GO ?		
	(a)	Garbage in garbage out	(b)	Global input in global output		
	(c)	Garbage out garbage in	(d)	Get Input Get Output		
(16)	Wh	ich of the following is a compone	nt of	Software?		
	(a)	Instructions	(b)	Data		
	(c)	Documentations	(d)	All of these		
(17)	Wh	ich of the following does the term	har	dware refers to?		
	(a)	Soft parts of computers.	(b)	Logical parts of computers.		
	(c)	Physical parts of computers.	(d)	Any of these		

•

History and Evolution of Computers

The earliest known device for calculation is Abacus. With 10 beads strung into the wires attached to a frame, the Abacus used to perform simple calculations. In 1642, Blaise Pascal developed the first basic calculator which would do only limited jobs. In 1690 Leibnitz developed a machine that could perform addition, subtraction, multiplication, division and calculate square roots. However, the instructions were hardcoded into the machine and could not be changed once written.

Charles Babbage in 1822 designed and built a model called difference engine. His invention could perform calculations without human intervention. After that, in 1833, Babbage designed a machine called analytic engine. Technology of the analytic engine provided base to the technology of modern computers. The analytic engine had an arithmetic unit to perform calculations and mechanism to store results and instructions. Because of such contributions Babbage is known as the father of the modern day computers. During late 1940's, Jon Von Neumann found a way to encode instructions in the language. He was the force behind the development of the first stored-program computer.

In 1946, J. Presper Eckert and John W. Mauchly invented giant ENIAC machine at the University of Pennsylvania. ENIAC (Electrical Numerical Integrator and Calculator) was the first machine to use large number of vacuum tubes. The machinery required a big space and lot of energy to keep it cool. Further, it had punched-card input and output. The instructions had to be fed into the machine by way of switches because there was no internal memory within the machine. Figure 2.1 shows the ENIAC machine.

Generations of Computers Based on Hardware

Computers may be classified into a number of generations. The classification may be based on the hardware technology used in building a computer or based on its application/software used. First, we will discuss about classification of computer considering various hardware technologies.

First Generation Computers (1945-55)

The first generation of computers started with ENIAC. It was then followed by the IBM UNIVAC I (Universal Automatic Computer) built by Mauchly and Eckert in 1951. This machine could perform business data processing. The first generation computers used vacuum tubes. Because of vacuum tubes, the first generation computers were very large, required lot of energy, slow in input/output, and suffered with heat and maintenance problems. Further, the vacuum tubes needed to be replaced often as they had short life span. Figure 2.2 shows the vacuum tubes.

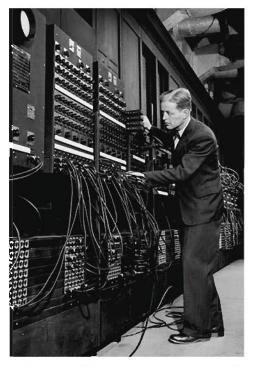


Figure 2.1: The ENIAC machine

Figure 2.2: Vacuum tubes

Second Generation Computers (1955-65)

To overcome difficulties faced in the first generation computers due to the use of vacuum tubes, transistors were used in the second generation computers. Transistor is a small component made of semiconductor material. With transistors, the problem of heat was minimized and computers size was reduced. The computers now could perform operations comparatively faster. The storage capacity was also improved. Instead of working with machine language now the machine could work with higher level languages such as ALGOL and FORTRAN. An example of a second generation computer is IBM 1620. Figure 2.3 shows the transistors.

Figure 2.3: Transistors

Third Generation Computers (1965-80)

Third generation computers used Integrated Circuits (ICs) instead of transistors. These circuits are fixed on silicon chip. A silicon chip consumes less than one-eighth of an inch square on which

10 Computer Studies: 9

many electronic components like diodes, transistors, capacitors etc. can be fixed. Figure 2.4 illustrates an integrated circuit on a chip. As the wired interconnections about the circuit components are minimised, these computers were smaller, faster, and more flexible in terms of input and output. Third generation computers satisfy need of a small business. These computers soon became popular as mini computers. Example of third generation computer is IBM 360, PDP 8 and PDP 11 machines.

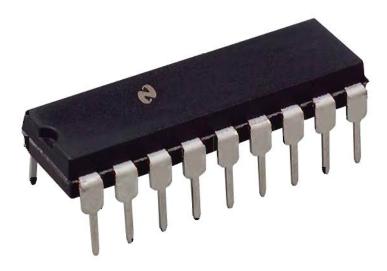


Figure 2.4: Integrated Circuit

Fourth Generation Computers (1980-89)

Fourth generation computers used large scale ICs called VLSI (Very Large Scale Integration). Because of this, these computers were faster, smaller, and reliable. The fourth generation computers soon evolved as interactive general purpose machines that allow rapid application development. These generation computers became more user-friendly (easier to use) and can be used widely for personal applications. Hence such machines were called Personal Computers (PCs). Examples are IBM PC and Apple II. The fourth generation computers also include super computers such as CRAY series computers. Super computers are the best in terms of processing capacity and cost. These computers can process billions of instructions per second. They are used for applications which require intensive numerical computations such as stock analysis, weather forecasting and other similar complex applications. The spread of computer network was also observed during this time period.

Fifth Generation Computers (1989-till date)

Fifth generation computers are further made smarter in terms of processing speed, user friendliness and connectivity to network. These computers are portable and sophisticated. Powerful desktops, notebooks, variety of storage mechanism such as optical disks, and advanced software technology such as distributed operating system and artificial intelligence are key features of the fifth generation computers. IBM notebooks, Pentium PCs and PARAM 10000 are example of the fifth generation computers.

Table 2.1 enlists important characteristics of different computer generations.

Generation	Characteristics	Examples
First	Used Vacuum tubes Bigger, slower and less efficient Used punch cards Not commercially used	IBM UNIVAC I
Second	Used Transistors Faster and smaller than previous generation Worked with higher level languages	IBM 1620
Third	Used Integrated circuits Flexible and smaller Well suited for commercial applications Known as mini computers	IBM 360 PDP 8 PDP 11
Fourth	Used Very Large Scale Integrated Circuits (VLSI) Interactive general purpose machines Allow rapid application development Easier to use for personal application Can be easily used in network	IBM PC Apple II Super computers such as CRAY series computers
Fifth	Portable and sophisticated Superior in processing speed, user friendliness and Connectivity to network Supports artificial intelligent techniques	IBM notebook Pentium PCs PARAM 10000

Table 2.1: Computer Generations and Their Characteristics

Generations of Computers Based on Software

Just like five hardware generations, there are software generations too! The very **first generation** is machine level language or machine language, which is a two state language having symbols 0 and 1. This is also called binary language. Computer being mainly an electronic device understands this language.

To avoid difficulties working with the machine level language, assembly language was introduced. Assembly Language uses 'mnemonic codes' or 'symbols'. The assembly language is considered as **second generation** computer language.

Whether it is a machine language or assembly language, it was still tedious to provide data and instructions. We are more comfortable with English like language. It would be much more comfortable if the data and instructions can be provided to computers in English like higher level language (or subset of English language) and computers can be trained to translate it into machine readable form. Taking this idea as an inspiration, the **third generation** languages as a subset of English language

were designed. These third generation languages are also known as higher level languages. To make machine automatically translate the content written in higher level language, special utility called **translator** (such as compiler and interpreter) is used. The translator written in machine understandable form converts data and instructions provided into the English like higher level language into machine understandable form. Examples of such higher level languages are C, COBOL, and Java programming languages.

After exploration of such third generation programming languages, more sophisticated programming environments called fourth generation languages are introduced. The **fourth generation** programming languages reduce programming effort by just specifying what to do instead of how to do. Structured Query Language (SQL) is an example of the fourth generation programming language.

While fourth generation programming languages are designed to quickly develop applications by specifying only what to do, **fifth generation** languages are designed to make the computer solve a given problem without the programmer. Some examples of applications that require such support is fault finding, voice recognition and intrusion detection. Such tasks are carried out in transparent fashion from users in order to avoid complexity and to facilitate user friendly interactions with the systems. Fifth generation programming languages use artificial intelligence techniques to meet their goal. The Artificial Intelligence (AI) techniques can handle imprecision and supports human like self learning and problem solving. These characteristics help putting the AI based applications a step ahead with added intelligence in comparison with the application developed in other programming languages or tools.

Types of Software

As we have seen, software plays a vital role in computer systems by creating a bridge between the computer hardware and computer users. Computer software can be considered as soul of computer, without which computer cannot work. Software is organized collection of data and instructions given to computers in order to perform a given task. We have seen some components of computer software in figure 1.4 of chapter 1. These components are data, instructions and documents about the software (written description of software functions) such as comments. The set of instruction is also called computer program. The process of writing (or coding) programs is called programming, and individuals who perform this task are called programmers.

There are two major types of software: systems software and application software. Systems software manages computer hardware and act as an interface between computer hardware and software developed for business application. Systems software provides important functionalities like booting computers properly, managing memory, channeling data from secondary memory to primary memory, managing printers and other resources. Example of system software is an operating system. The translator programs mentioned in this chapter are also examples of system software. Some translator programs transform whole source code written in a programming language (the source language) into another computer language (the target language, mainly machine/binary language) at once. The transformed (translated) code is later executed to obtain the desired results. These programs are called **compilers**. Some translator programs transform the source code into the target code in line by line fashion and produce the result simultaneously. These programs are called **interpreters**. Since

interpreters try to convert the source program line by line, they can concentrate on a single line, hence it is not possible to analyze the source code fully. Further, the interpreters are generally slow in comparison with the compilers.

Computer also support business applications such as printing reports from data stored, calculating bills, generating pay-slips, marking attendance, printing students' mark-sheets, etc. Special software need to be developed for this type of application specific support. Such software is known as application software. Application software is a set of computer instructions that provide application specific functionalities to a user. These functionalities may be general purpose such as word processing (that every business need) or may be very narrow, such as an organization's payroll program that generates pay-slips in company's format, on company's preprinted stationery.

The relationship among hardware, systems software, and application software is illustrated in figure 2.5.

Figure 2.5: Relationship Amongst Various Components

Popular Computers

So far we have discussed that the computers operate on binary digits 0 and 1. Even if the instructions are given in any generation programming language, ultimately they are to be represented into sequence of digits 0's and 1's. Hence, the computers are also known as **digital computers**. Analog computers use linear combinations of voltage amplitude (or currents or frequencies or phases) instead of digits. That is why they are called **analog computers**. Some computers use mixture of these technologies and hence known as hybrid computers.

Personal or Desktop Computers

These computers are the most popular computer systems. They are easier to use and more affordable. They are normally used by individuals for their routine business activities. Figure 2.6 shows a sample desktop computer. Desktop computer is used for regular computing operation from a specified place such as an office. Modern desktop are accompanied with monitor, key board and a mouse along with a system box.

Figure 2.6: Desktop Computer

14 Computer Studies : 9

Laptop Computers

Laptop computers are portable and lightweight computers with a thin screen. They are also called **notebook** computers because of their small size. They can operate on batteries and hence are very popular with travelers. Figure 2.7 shows a typical laptop computer. A laptop computer is actually a personal computer for mobile use. A laptop has most of the same components as a desktop computer, including a display, a keyboard, a pointing device such as a touchpad (also known as a trackpad) and/or a pointing stick, and speakers into a single unit. Now a day's thin version of laptop called ultrabook is becoming popular. The ultrabook size and weights are thinner in comparison with the typical laptops. Ultrabook computing technology use high-powered low-voltage processors with long battery life. Figure 2.8 shows a typical ultrabook.

Figure 2.7: Laptop

Figure 2.8: Ultrabook

Handheld Computers

Handheld computers are also known as Personal Digital Assistants (PDAs). They are small in comparison with laptop and can be carried anywhere. They use a pen like stylus and accept handwritten input directly on the screen. The screen is generally a touch screen. They are useful in applications like scheduling appointments, storing contacts and addresses and playing games. Figure 2.9 shows a typical handheld computer.

Figure 2.9: Handheld Computer

Tablet Computer

A tablet computer is a portable and mobile computing tool. It is a mobile computer like a bigger mobile phone with a touch screen facility. It generally uses onscreen virtual keyboard, a passive stylus pen, or a digital pen. Typically, such tablet computers do not require keyboard. There are two popular categories of the tablet PCs. These categories are (i) a slate tablet PC and (ii) a convertible tablet PC. The slate tablet is a type of tablet where keyboard is not attached. However, on demand, the keyboard can be added. A convertible tablet PC is basically a laptop computer with a screen that can swivel and fold onto the keyboard to create the tablet. Figure 2.10 shows a typical tablet computer.

Figure 2.10: Tablet Computer

Wearable Computers

Wearable computers are also known as body-borne computers. These are tiny computing devices that are worn by the bearer. The wearable computers are small and light weight as they need to be carried on human body. The wearable computers come in the form of bracelet, pendent, spectacles and rings. Wearing such devices enables constant interaction with the computing system. There is less need to turn the device on or off. Further, such devices are multi-tasking. You may do other routine job in parallel. Often such device is considered as an extension of the user's mind and/ or body. Variation of wearable computers such as a small programmed chip, is used for monitoring animal movement. A pre-programmed light weight micro-processor chip is stapled on animal's body part like ears. Such a chip monitors movement of animal in a given region.

Summary

In this chapter we have discussed the history and evolution of computers. We have considered two aspects namely hardware generations and software generations. We have provided brief discussion on their components and technologies. We further learnt about different types of software such as system software and application software. Finally we saw popular computing machines such as desktop, laptop and tablet computers along with wearable devices.

EXERCISE

- 1. Write a short note on history of computers. Also explain why Charles Babbage is known as the father of the modern day computers.
- 2. Discuss characteristics of the first generation computers. What are the major drawbacks of these computers?
- 3. Discuss characteristics of the second generation computers. What are the major drawbacks of these computers?
- 4. What is machine level language?
- 5. What is an assembly language?
- 6. What are the difficulties associated with the machine level and assembly languages?

Computer Studies: 9

7.	Define higher level languages. Also provide two examples of higher level languages.							
8.	What are translators? In which language the translators should be written?							
9.	What is fourth generation language? Give an example of it.							
10.	What is system software?							
11.	What is application software?							
12.	Distinguish system software and application software.							
13.	Write a short note on modern/popular computers.							
14.	Define the terms:							
	(a)	Digit	al computer	(d)	No	otebook computer		
	(b) .	Anal	og computer	(e)	Pe	ersonal digital assistants		
	(c)	Hybr	rid computer					
15.	Write	e a s	hort note on wearable computer	s.				
16.	Cho	ose	the most appropriate option fi	om	the	ose given below:		
	(1)	Wh	o of the following is known as	fath	er (of modern day computers ?		
		(a)	Charles Babbage	(b)	Blaise Pascal		
		(c)	Jon Von Neumann	(d)	Jon Von Pascal		
	(2) Which of the following is full form of ENIAC?							
		(a) Electrical Number Integrator and Converter						
		(b)	Electrical Numerical Integrator	and (Cal	culator		
		(c)	Electrical Numerical Inverter an	ıd Ca	ılcı	ılator		
		(d)	Electrical Number Inverter and	Con	vei	rter		
	(3)		ich of the following are bulky blems?	, slo	w	and suffered with heat and maintenance		
		(a)	Transistors	0	b)	Radios		
		` '	Vacuum tubes	`	d)	Integrated circuits		
	(4)	()	rd generation computers used wh	`		-		
		(a)	Transistors			Integrated circuits		
		(c)	Vacuum tubes		•	Very large Integrated circuits		
	(5)	Wh	ich of the following computers	•		tly and can process billions of instructions		
		per	second?			•		
		(a)	Super computers	(b)	Laptop computers		
		(c)	Hybrid computers	(d)	Any of these		
	(6)	In v	which of the programming langu	age	mn	emonic codes are used ?		
		(a)	Assembly	(b)	Higher level		
		(c)	Machine level	(d)	User level		

(7)	Java, C and COBOL are examples of which of the levels of languages?				
	(a)	Assembly	(b)	Higher level	
	(c)	Machine level	(d)	User level	
(8)	Wh	ich of the following generations o	f pro	ogramming languages reduce programming	
		ort by just specifying what to do i	nstea	ad of how to do?	
	(a)	First	(b)	Second	
	(c)	Third	(d)	Fourth	
(9)				ons use artificial intelligence techniques for	
	_	blem solving and meeting their goa			
	(a)	Second	(b)	Third	
	` '	Fourth	(d)	Fifth	
(10)	Ope	erating system is an example of wh	nich (of the following type of software.	
	(a)	Applications	(b)	System	
	(c)	Business	` ′	User created	
(11)	In v	which category of the software doe	s the	e payroll application fit ?	
	` ′	Applications	(b)	System	
	(c)	Control	(d)	Any of these	
(12)	Wh	ich of the following software man	age	computer hardware and act as an interface	
(12)		_	_	developed for business application?	
(12)	betv	_	_	-	
(12)	bety (a)	ween computer hardware and softw	vare (b)	developed for business application?	
District State of the Control of the	betv (a) (c)	ween computer hardware and softw Applications	vare (b) (d)	developed for business application? System Any of these	
District State of the Control of the	bety (a) (c) Wh	ween computer hardware and softw Applications Control	vare (b) (d) erate	developed for business application? System Any of these	
District State of the Control of the	betv (a) (c) Wh (a)	ween computer hardware and softw Applications Control at do you call a computer that op	(b) (d) erate (b)	developed for business application? System Any of these es on binary digits 0 and 1?	
(13)	(a) (c) Wh (a) (c) Wh	ween computer hardware and softw Applications Control at do you call a computer that op Digital Hybrid at do you call a computer that use	(b) (d) erate (b) (d) (d) es lin	System Any of these es on binary digits 0 and 1? Analog Any of these ear combinations of voltage amplitude (or	
(13)	(a) (c) Wh (a) (c) Wh	ween computer hardware and softw Applications Control at do you call a computer that op Digital Hybrid	(b) (d) erate (b) (d) (d) es lin	System Any of these es on binary digits 0 and 1? Analog Any of these ear combinations of voltage amplitude (or	
(13)	(a) (c) Wh (a) (c) Wh	ween computer hardware and softw Applications Control at do you call a computer that op Digital Hybrid at do you call a computer that use	(b) (d) erate (b) (d) (d) es lintead	System Any of these es on binary digits 0 and 1? Analog Any of these ear combinations of voltage amplitude (or	
(13)	(a) (c) Wh (a) (c) Wh curr	ween computer hardware and softw Applications Control at do you call a computer that op Digital Hybrid at do you call a computer that use rents or frequencies or phases) inst	(b) (d) (erate (b) (d) (es line tead (b)	System Any of these es on binary digits 0 and 1? Analog Any of these ear combinations of voltage amplitude (or of digits?	
(13)	(a) (c) Wh (a) (c) Wh curr (a) (c)	Applications Control at do you call a computer that op Digital Hybrid at do you call a computer that use rents or frequencies or phases) inst	(b) (d) (erate (b) (d) (es line (ead (b) (d)	System Any of these es on binary digits 0 and 1? Analog Any of these ear combinations of voltage amplitude (or of digits? Analog Any of these	
(13)	(a) (c) Wh (a) (c) Wh curr (a) (c)	Applications Control at do you call a computer that op Digital Hybrid at do you call a computer that use rents or frequencies or phases) inst Digital Hybrid	(b) (d) (erate (b) (d) (es line (ead (b) (d) (d) (d)	System Any of these es on binary digits 0 and 1? Analog Any of these ear combinations of voltage amplitude (or of digits? Analog Any of these	
(13)	bety (a) (c) Wh (a) (c) Wh curr (a) (c) Wh	Applications Control at do you call a computer that op Digital Hybrid at do you call a computer that use rents or frequencies or phases) inst Digital Hybrid ich of the following is also referre	(b) (d) erate (b) (d) es line tead (b) (d) ed to	System Any of these es on binary digits 0 and 1? Analog Any of these ear combinations of voltage amplitude (or of digits? Analog Any of these	
(13)	betv (a) (c) Wh (a) (c) Wh curr (a) (c) Wh (a)	Applications Control at do you call a computer that op Digital Hybrid at do you call a computer that use rents or frequencies or phases) inst Digital Hybrid ich of the following is also referre Portable Digital Assistants (PDAs)	(b) (d) (erate (b) (d) (es line (ead (b) (d) (ed to	System Any of these es on binary digits 0 and 1? Analog Any of these ear combinations of voltage amplitude (or of digits? Analog Any of these	
(13)	(a) (c) Wh (a) (c) Wh curr (a) (c) Wh (b)	Applications Control at do you call a computer that op Digital Hybrid at do you call a computer that use rents or frequencies or phases) inst Digital Hybrid ich of the following is also referre Portable Digital Assistants (PDAs) Personal Digital Assistants (PDAs)	(b) (d) (erate (b) (d) (es line (ead (b) (d) (ed to	System Any of these es on binary digits 0 and 1? Analog Any of these ear combinations of voltage amplitude (or of digits? Analog Any of these	

•

Input and Output Devices

To solve a given task, computer needs to interact with its user. Computer requires data and instructions to be provided by user. On the other hand, users also require results from the computer. When data and instructions are given to a computer, it is considered as input. When computer provides results, it is known as output. The devices that allow such input and output are known as input/output devices (in short I/O devices) or peripherals. Input/output devices are means of communication between the user and computer.

Input Devices

An input device is a device that provides input to the computer. The most common input devices are keyboard and mouse. Every key you press on the keyboard and every movement or click you make with the mouse sends a specific input signal to the computer. Besides keyboard and mouse, several input devices are available. Following is the list of different input devices used with computers:

- Keyboard
- Point and draw devices
- Scanning devices
- Electronic card based devices
- Speech recognition devices
- Vision based devices

Let us now discuss about each of these input devices in brief.

Keyboard

Keyboard is the most popular and commonly used input device. A keyboard allows entering alphabets, digits and symbols into the computer. Figure 3.1 shows a typical keyboard. Keyboard generally has more than 100 keys. Keyboard is also known as the text based input device. A Keyboard generally contains keys as follows:

- English alphabets (a...z)
- Digits (0...9), mathematical operators (+,-, *, etc), punctuation marks and signs
- Function keys (F1, F2...F12) for various functions
- Enter (or return) key used for execution of an instructions
- Spacebar (to enter a space)
- Backspace (to move cursor one position back)
- Delete (to delete a character or an object at the right side of cursor position)
- Shift (to type capital letters and the special characters located on the upper-side of a key)
- Caps Lock (to toggle between the capital lock features)
- Tab (to move the cursor to the next tab position for indentation)
- Control (to be used in conjunction with other keys to provide additional functionality)
- Alt (used in combination with other keys to perform specific tasks)
- Esc (to cancel or abort executing)

 Cursor Movement Keys (to move cursor in the direction indicated by the arrow - up, down, left, and right)

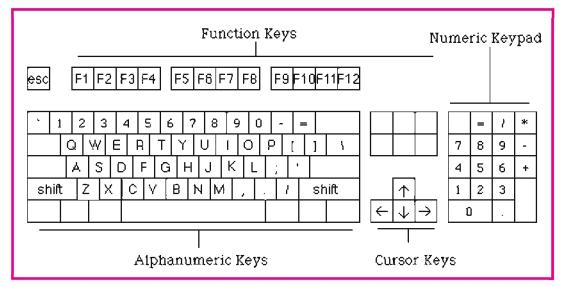


Figure 3.1: Keyboard

Point and Draw Devices

Instead of typing, directly some items can be selected from computer screen - for example "print" or "close" button. This can be done using point and draw devices such as mouse. This type of interface is called graphical user interface. Not only to select, but drawing of line, curve and shapes is also possible with such devices. Other example of point and draw devices are joystick, light pen, touch pad or track ball and touch screen.

Mouse

Mouse is a small device used to point a particular place on the screen and select in order to perform one or more actions. Figure 3.2 shows a typical mouse. It can be used to select menu commands, resize windows, selecting actions from screen icons, etc. The most conventional kind of mouse has two or three buttons on its top. These buttons are used for different actions.

Figure 3.2: Mouse

Typical mouse actions are as follows:

- Left Click: Used to select an item.
- Double Click: Used to start a program or open a file or trigger an action.
- Right Click: Usually used to display a set of commands and available options.
- Drag and Drop: It allows you to select and move an item from one location to another.
- Scroll: Many applications provide scrollbars on right side of screen if the page length is more than the monitor / screen length. Instead of using page down key or arrow keys, one can use scroll key of a mouse to scroll up or down. If the scroll key is not available, one can click on the scroll bar on the application screen with the left button of the mouse.

20 Computer Studies: 9

Joystick

The joystick is a vertical stick which moves the graphic cursor in a direction of the stick when the stick is moved. It has a button on top that is used to select the option pointed by the cursor. Joystick is used as an input device primarily used with video games, training simulators and controlling robots. Image of joystick is shown in figure 3.3.

Scanning Devices

Scanning devices directly "look" at the input and enters the collected data into the computers. There is no need to enter



Figure 3.4: Image Scanner

You might have seen scanner in shopkeeper's hand which reads barcode in a shop. This type of scanner is known as handheld scanner. See figure 3.5 for the image of barcode scanner. Barcode is made up of parallel strings of different thickness. There is a standard coding system called Universal Product Code (UPC). Scanners read this barcode printed in UPC format and convert it into appropriate values.

Figure 3.3: Joystick

anything from keyboard or select anything from the screen. Only "scan" command is to be given and the data entry is done directly. It saves time and reduces typing errors. Photos, maps and high quality documents can be directly scanned to the computer.

The image scanner shown in figure 3.4 is just like copier machine in which the document needs to be placed and photo of the document will be stored in a computer memory in digital form. The document is now converted into an electronic image. This image can be sent to other computer, copied, and printed.

Figure 3.5: Barcode Scanner

Some scanners have facility to recognize character from the image. That is, from the scanned image of a character, computer can identify the character. This is done by matching image of a scanned character with the stored image of the character. With this facility the document image can be converted into a document which can be further modified (editable document). This type of scanner is known as optical character reader.

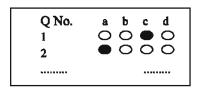


Figure 3.6: Sample OMR Sheet

Some scanners identify marks done by special type of pen or pencil. This type of scanner is known as optical mark reader. Figure 3.6 demonstrates an OMR sheet that consists of answers marked on the sheet for a multiple choice question paper.

Magnetic Ink Character Recognition (MICR)

Magnetic ink character recognition is a technology that is prevalent in banking industry. It is used for faster processing of cheques. This technology allows reading of information such as account numbers directly from the printed documents. MICR codes can be easily read and understood by humans, while barcodes though easily read cannot be easily understood by humans. Here, the content is written using special magnetic ink (prepared from iron oxide).

Electronic Card Reader

Electronic card reader reads content from small plastic cards called electronic card. The data is read from the card and transferred to the computer. Bank ATM (Automatic Teller Machine) cards and credit cards are such small plastic cards that contain information about the card holder. The information about the current transaction (say current bill/purchase) is added from the card reader device. Figure 3.7 shows an example of electronic card reader.

Figure 3.7: Electronic Card Reader

Speech and Vision Devices

Beside these popular input devices, speech and vision input devices system is also popular. Speech input is used for long dictation of text for correspondence as well as to develop fully automated system that operates on speech. Instead of entering commands by typing, selecting or scanning, direct voice commands can be given. Consider you have fully electronic house that opens doors for you when you say "khul ja sim sim"!

Vision input is used for robots performing risky tasks like driving plane and performing surgery. Such input mechanism is very useful for people who are differently abled and generally finds difficulties in operating typical computer systems. Camera is also used as input device, like in laptops for automatic authentication of user through facial recognition. It is also used for deciphering QR code or reading bar code.

Output Devices

22

Computer calculated results must be provided to its users. The devices that provide output to the users are called output devices. Commonly used output devices are monitor and printer. Following list presents different output devices:

Monitor
 Printer
 Projector
 Plotter
 Voice response

Computer Studies : 9

The output devices need to be connected with computer (with or without wires) in order to present the output to the users.

Monitor

Monitors are commonly used output devices. The output is presented on computer visual (television like) screen. This output is just for viewing purpose and hard copy (print on paper) cannot be taken. That is why it is called soft copy output. The Cathode Ray Tube (CRT) monitors and flat monitors are used to display information. Figure 3.8 shows typical monitors. At present, flat monitors are very popular because they are thinner in size and lighter in weight. Flat monitors use technology of Liquid Crystal Display (LCD) and Light Emitting Diodes (LED).

Figure 3.8: CRT and LCD Monitor

Printers

Printer provides hard copy output (output on paper). There are varieties of printers that print content in different way. Some printers print content character by character hence called character printer or dot matrix printer. These printers are cheaper and slow. Other printers print line by line and are called line printers. Another category of printers print content by spraying

Figure 3.9: Typical Laser Printer

small drops of ink; such printers are called inkjet printers. Inkjet printers are slower and costlier than the dot matrix printers. Similarly there are printers available that create the image of whole page and print the full page at a time using laser technology. This type of printers is called laser printer. Laser printers are fastest and costly in comparison with other printers. Figure 3.9 shows a typical laser printer.

Projector

You might have seen your teacher projecting teaching material on wall of your classroom or white board/curtain. Output of computer is projected on a bigger flat surface like wall or screen through an output device called projector. Teaching material with text, image, sound, graph and animation can be prepared and projected on the surface for better viewing. Such projectors are very useful for learning, demonstrating and presenting content. Software that helps in preparing such content for presentation are available.

Voice Response

Stored voice and converted voice (from given text) can be presented to users who do not want to see or read output on monitor, projector or printer. Video games, automatic answering machines, alarms and signals, etc. are the applications that need voice output.

Summary

In this chapter we learnt about different input and output devices. Beside the most popular input devices such as mouse and keyboard, some latest devices joy stick, card readers, scanners were also looked at. We also learnt about output devices like monitor, printer, projector and voice response systems.

EXERCISE

- 1. List popular input devices. Explain structure of a typical keyboard.
- 2. What is a point and draw device? Give an example of it.
- 3. What are the typical mouse actions? List and explain in brief.
- 4. List popular output device. Explain various types of printers.
- 5. Which different types of monitors do you know? List all with one line description of each.

6.	(1)		the most appropriate opt		instructions that are given to computer?
	(1)	(a)	Input	(b)	Output
		` ′	Both input and output	(d)	•
	(2)	Wh	ich of the following is the	e other name	of Input / Output devices ?
		(a)	Properties	(b)	Peripherals
		(c)	Parts	(d)	None of these
	(3)	A k	eyboard is considered as	which of the	following device ?
		(a)	An input	(b)	An output
		(c)	Both input and output	(d)	Processing
	(4)	A k	eyboard works on which	of the follow	ving concepts ?
		(a)	Point and draw	(b)	Text entry
		(c)	Visual	(d)	Virtual
	(5)	A n	nouse can also be used as	which of th	e following device ?

(c) Visual device (d) Virtual device

(6) Which of the following refers to the mouse?

(a) Point and draw device

(a) An input

(c) Processing

(b) An output

(d) Any of these

(b) Text based device

(7)	Which of the following is a standard coding system for product price and other information related to the product?				
	(a)	Universal product code	(b)	Uniform print code	
	(c)	Universal print code	(d)	Uniform product code	
(8)	Which of the following is the process of recognizing characters written with special magnetic ink?				
	(a) Multipurpose ink character recognition				
	(b)	Magnetic ink character recognition	1		
	(c)	Multifold character recognition			
	(d)	Multifold ink character recognition	ı		
(9)	Wh	ich of the following technologies o	lo fla	at monitors use ?	
	(a)	CRT	(h)	I CD	

(d) Both b and c

•

(c) LED

Memory, Storage Devices and Data Representation

Like human beings need to memorize things, which can be retained and recalled on need, computers also need to store data and instructions for future use. Memory is a part of computer where data and instructions are stored. A computer deals with different type of memories. Two major types of computer memories are (i) primary (main) memory and (ii) secondary (auxiliary) memory. Information in a memory of a digital computer is stored in form of binary digits (0 and 1). These binary digits in short are known as bits. A bit is a binary digit, which is either 1 or 0. A group of 8 bits is known as byte. Storage capacity of a computer memory is measured in terms of the bytes in form of kilo bytes (KB), mega bytes (MB) and giga bytes (GB). Consider Table 4.1 that shows the relationship between these terms.

```
1 bit = a single digit, either 1 or 0

8 bits = 1 byte, combination of 1's and 0's

2<sup>10</sup> Bytes = 1024 Bytes = 1 KB (kilobyte)

2<sup>20</sup> Bytes = 1024 Kilobytes = 1 MB (megabyte)

2<sup>30</sup> Bytes = 1024 Megabytes = 1 GB (gigabyte)

2<sup>40</sup> Bytes = 1024 Gigabytes = 1 TB (terabyte)
```

Table 4.1: Storage Capacity Measures of Computer Memory

Primary Memory

Primary memory, also known as main memory, is an important part of a computer in which data is stored for quick access by the computer's processor. It is made of larger number of cells. Each cell is identified by a number called an address of the cell. Each cell contains a piece of data. When there is a requirement of the data, the cell address is used to retrieve the data. The primary memory is organized in such a fashion that the time required to store or retrieve data from a cell is independent of the cell addresses. That is, any location of the memory can be chosen randomly for use. This is known as Random Access Memory (RAM). There are other access methods which are not random. For example sequential access, First In First Out (FIFO) access and Last In First Out access (LIFO). In sequential access memory, data is stored serially or sequentially in a long string. When you want to access some part of the string, you have to pass through the previous part of the string. Just like in an audio tape, if you want to hear the third song, first two songs must be fast forwarded. FIFO is just like queue, where first entry will be served first and last will be entertained at last. LIFO is like tray (or pile) of papers. The paper which you had put at last will come out first. Figure 4.1 shows FIFO and LIFO access mechanisms.

26 Computer Studies: 9

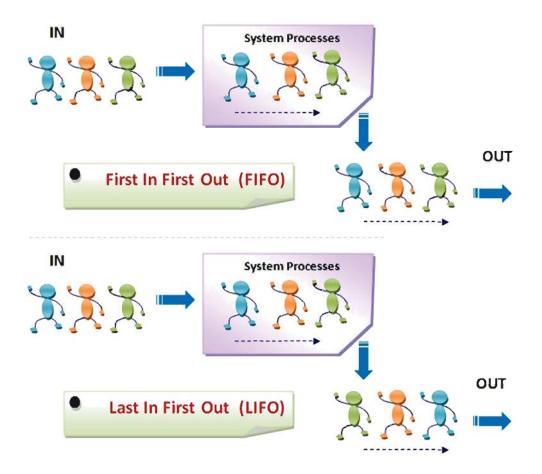


Figure 4.1: LIFO and FIFO Access Mechanism

RAM is volatile memory. The content written in RAM requires continuous power supply to retain it into the memory. On modern computers the term RAM - or just memory - is used instead of primary or main storage, and the hard disk, diskette, CD, and DVD collectively describe secondary storage or auxiliary storage. Figure 4.2 shows a RAM chip.

Figure 4.2: A RAM Chip

There are two basic types of the RAM. The first one is static and second is dynamic. Dynamic RAM (DRAM) needs to be refreshed thousands of times per second. Static RAM (SRAM) does not need to be refreshed, which makes it faster; but it is more expensive than dynamic RAM. Both types of RAM are volatile, meaning that they lose their contents when the power is turned off.

Computers also contain Read Only Memory (ROM) which are used to permanently record data and instructions. Content of ROM can only be read. Unlike RAM, ROM retains its content even

when the computer is turned off. ROM is an ideal memory to store critical instructions into the computers such as boot programs (programs that start up the computer system), printer driver files, and fonts. A variation of a ROM is a Programmable Read Only Memory (PROM). PROMs are manufactured as blank chips on which data/program can be written with a special device called a PROM programmer. There is a special type of PROM called Erasable PROM (EPROM). An EPROM allows the content of PROM erased by exposing it to ultraviolet light. Instead of ultraviolet lights, electric signals are used to erase content of PROM. Such memory is called Electrically Erasable PROM (EEPROM). EEPROMS are very useful in manufacturing USB pen drives, cellular phones (memory card in mobile phone), digital cameras, portable MP3 players and microSD cards. Figure 4.3 shows typical microSD (memory) card. Special readers are available that read directly from the card.

Figure 4.3: A MicroSD Card and Card Reader

The concept of the Read Only Memory (ROM) can be utilized to create a firmware-hardware utility with some software instructions in an integrated fashion. Firmware is to be stored on non-volatile memory devices such as ROM, EPROM, or flash memory. As mentioned in the previous chapter, such firmware are developed by the hardware manufacturing company and provided free while one purchases the hardware. Another alternative is to download such firmware from company's online store or website. Many times firmware needed to be updated as and when you change the hardware device. Many mobile phones use Firmware Over The Air (FOTA) to update the mobile firmware which makes the activity independent of cables, computers and third party software.

The firmware normally supports functions such as controlling the hardware and facilitating use of the hardware. Because of this reason users are not generally allowed to change the firmware. Most of the companies would like to store firmware in hidden fashion in order to make the system transparent from user and reduces complexity to work. For example, washing machine, traffic lights, digital camera and microwave oven have some utilities such as quick wash in washing machine and alarm in microwave oven. These basic utilities are not to be changed. However, users may add their contacts, messages, videos and pictures into the mobile phone memory. On the other hand, software programs written by users such as super store bills, pay-slip and mark-sheet printing can be changed by the users provided they have source code for the software.

There is a special high-speed storage mechanism called cache. Cache memory is small and high speed memory within the computer central processing unit for frequent access. The purpose of such memory is to increase speed of computer processor. When the processor needs to perform any read write operations, it first checks the cache memory. Table 4.2 shows differences between RAM and ROM.

28 Computer Studies : 9

RAM	ROM	
RAM is random access memory.	ROM stands for read only memory.	
RAM supports reading and writing operations into the computer.	ROM supports only read option.	
Data and instructions are stored into it during its operation.	Instructions are stored into it during its manufacturing.	
It is volatile memory.	It is non-volatile memory.	

Table 4.2: Differences Between RAM and ROM

Secondary Memory

Primary memory is generally costly and has capacity limitation, further it cannot retain data for longer period of time. However, we need to store data and instructions for long time so that they can be used later. For this purpose, secondary memory /secondary storage is used. The secondary storage stores large amounts of data, instructions, and information permanently. The popular secondary storage devices are hard disk, compact disks (CDs), digital versatile disks (DVDs), and pen drives.

Secondary memory is not directly accessible to processor of a computer but requires use of computer's input/output channels. Such memory is usually slower than primary memory but it always has higher storage capacity. Further, the secondary storage memory is non-volatile. Data remains unchanged even after switching off the computer. Secondary memory/storage is also known as auxiliary memory/storage. Figure 4.4 represents memory hierarchy.

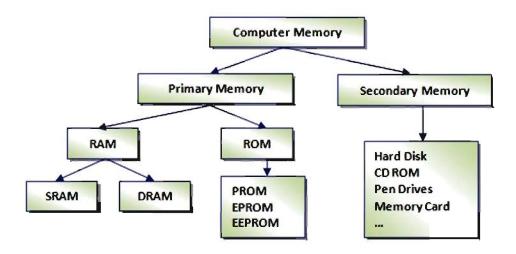


Figure 4.4: Memory Hierarchy

Let us now have a look at some of the secondary storages.

Hard Disk

A hard disk consists of one or more rigid metal (or glass) plates coated with a metal oxide material that allows data to be magnetically recorded on the surface of the platters. Figure 4.5 shows a typical hard disk. Data and instructions are recorded on the oxide based surface by magnetising selected particles of the surface. The particles retain their magnetic orientation until that orientation is changed. Thus, hard disk allows modification once the content is stored. A hard disk platters spin at a high rate of speed, typically 5400 to 7200 revolutions per minute (RPM). Along with one or more platters, a hard disk also contains some read-write heads which read and write data on the disk platters.

Figure 4.5: Hard Disk

Storage capacities of hard disks for personal computers range from 10 GB to 500 GB. The disk provides storage area within the computer itself. Hard disk is also known as a hard drive. Most of the hard disks are the part of computer. However, external hard disks of different sizes and capacities (such as 350 GB, 500 GB, and 1 TB) are also available. Figure 4.6 shows view of some such external drives.

Figure 4.6: External Hard Disks

Compact Disk (CD)

A compact disk (CD) is also called an optical disc. It is a flat, round, and portable storage medium that is usually 4.75 inches in diameter. You might have seen the audio CD for music. CD can contain other types of data such as text, graphics, and video. The typical capacity of a CD is 650 MB of data.

Unlike hard disk, CD supports optical storage. Here, data is burned into the storage medium using beams of laser light. The burns form patterns of small pits in the disk surface to represent data. The pits on optical media are permanent, so the data cannot be changed. Optical media are very

30 Computer Studies : 9

durable, but they do not provide the flexibility of magnetic media such as modification of data. Figure 4.7 shows typical compact disk.

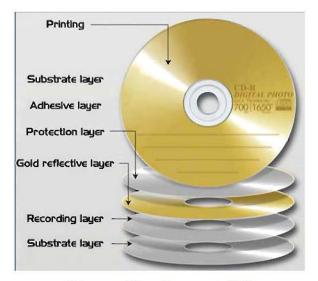


Figure 4.7: Compact Disk

There are three popular types of optical disks; namely CD ROM, CD R and CD RW. CD-ROM is the most popular type among them. CD-ROM stands for Compact Disc Read Only Memory. CD-ROMs usually come with data already written onto them.

It is possible for users to write data to an optical disk. Once data is written on it with a special utility, many times it can be read from the CD. Hence such CDs are known as 'Write Once Read Many' (WORM) disks. These CDs are known as CD re-recordable (CD-R).

There is a third type of optical disk which can be erased and used to rewrite new information. These are sometimes known as EO (erasable optical) disks or CD-RW (CD rewritable).

Digital Versatile Disks

Digital Versatile Discs are popularly known as DVDs. It is an optical disc storage media format that can be used for data storage, including movies with high video and sound quality. DVDs resemble Compact Discs (CDs) as their physical dimensions are the same but they are encoded in a different format at a much higher density. DVD generally offers more storage capacity (4 GB) as compared to CD.

USB Pen Drives

USB Flash drives are also known as pen drives or thumb drives. They are small, portable and rewritable. They are flash memory data storage devices integrated with a Universal Serial Bus (USB) interface. Figure 4.8 shows a typical USB. They come in different capacities like 2GB, 4GB, 8GB, 16GB, 32GB and 64GB.

Figure 4.8: USB Pen Drive

Pen drives are most popular as they are very portable, available in various sizes and capacities as well as very efficient for storing the important data. Many instruments like television and MP3 players have USB ports to allow direct use of pen drive. That is, if you have a movie clip or photos in your pen drive, it can be directly attached to the television to see the movies and photos.

Data Representations into Computer Memory

We are familiar with decimal number systems for our routine business. The decimal number system is a positional number system. For example, number 916 is alternatively represented as 900 + 10 + 6. We use ten symbols called digits in the decimal number system, which are 0 to 9. Further, we use alphabets in language such as A...Z. Beside numbers, alphabets and mixture of both of these (called as alphanumeric), special characters such as punctuation marks, operators (<, >, +, -, etc.) and currency symbols (\$, £, rupee symbol, etc.) are also used. All these digits, characters and symbols must be arranged in some meaningful way using laws of grammar. This is the main way how we communicate using languages. Besides these, we have sign languages, brail language, body language and facial expression for differently abled people.

Computer, being an electronic device, is not comfortable with these entities. Being mainly an electronic device, it operates on electricity which has only two states 'on' and 'off'. Hence, it requires a special bi-state language having only two symbols; one to represent 'off' and another to represent 'on'. The binary number system is such a bi-state number system that can represent the two states called 'on' and 'off' in an efficient way. Following section represents an introductory concept of a binary number system.

Binary Number System

The binary number system has two symbols 0 and 1. Single binary digit is called a bit. A valid binary number example is 101. Since the binary number system uses only two symbols, 102 is not a correct binary number. However, it is a correct decimal number. To quickly identify the given number as binary number, we use suffix B or b. Some representations use 2 as suffix. Hence the binary 101 number is represented as 101_B or 101_b . Alternative representation of the same number is 101_2 .

The number 101 represented in a decimal number system can be written as 101_D , 101_d or 101_{10} . This number has meaning 100+00+1. The binary number system also uses such positional notation like the decimal number system. That is, the position of a bit has some significance. The binary number 101_2 has meaning (in decimal) $1*2^2+0*2^1+1*2^0=4+0+1=5$. The binary number can be converted into decimal using this method.

A decimal number is converted into its equivalent binary by successively dividing it by the base 2. An alternative method is to first subtract the largest possible power of two, and keep subtracting the next largest possible power from the remainder, marking 1s in each column where this is possible and 0s where it is not. Here is the example.

Example: Convert 44 into the binary.

Here, the largest possible power of the base 2 is 5. 2⁵ is 32. Subtract 32 from the given number. It will leave remainder 12. The immediate power of 2 is 2⁴; which is 16. The remainder 12 is less than 16, hence it is not possible to go for subtraction that yields a positive number or zero (non-negative). We then choose power of 2³; which is 8. It is possible to subtract the number 8 from the last remainder and get a non-negative number. Figure 4.9 shows the complete calculation.

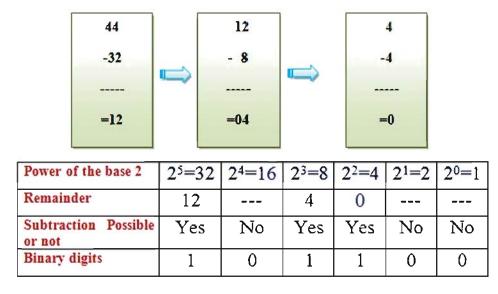


Figure 4.9: Decimal to Binary Conversion

The final answer is (101100),

Conversion of Decimal Number to Binary Number

Let us do the procedure again with another similar method. This time we consider conversion of a decimal 125 number into its equivalent binary number. See Figure 4.10.

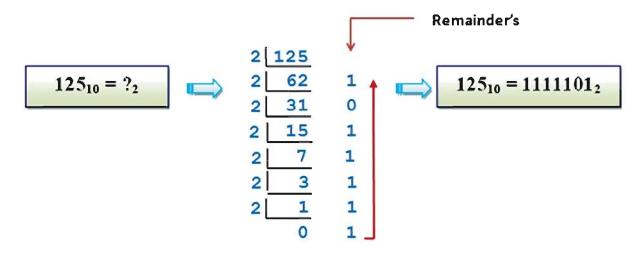


Figure 4.10: Conversion Example

Unsigned Integer Number Representation

Any unsigned integer number (that is 0 and positive integer number) can be represented into the computer by converting the number into its equivalent binary number. See Figure 4.11 for unsigned integer representation into the computer for the number 5_{10} , which is equivalent to 101_2 . This representation uses 8 bits.

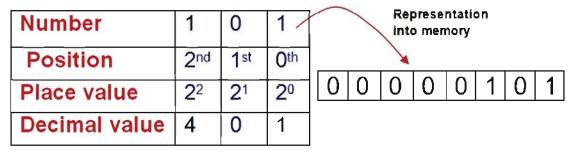


Figure 4.11: Unsigned Integer Representation

Figure 4.12 illustrates some more examples.

Number in Binary (to be represented into memory)	Sum of Digit *2Place Value	Decimal value
(0) 2	0*2°	$=(0)_{10}$
(1)2	1*20	$=(1)_{10}$
(11) 2	$1*2^1 + 1*2^0$	= 2 + 1 =(3) ₁₀
(110)2	$1*2^2 + 1*2^1 + 0*2^0$	= 4 + 2 + 0 =(6) ₁₀
(10110)2	$1^{24} + 0^{23} + 1^{22} + 1^{21} + 0^{20}$	$= 16 + 0 + 4 + 2 + 0$ $= (22)_{10}$
(11011)2	$1*2^{\frac{7}{4}} + 1*2^{\frac{7}{3}} + 0*2^{\frac{7}{2}} + 1*2^{\frac{1}{4}} + 1*2^{\frac{1}{6}}$	$=16+8+0+2+1 =(27)_{10}$

Figure 4.12: Examples of Unsigned Integer Representation

Arithmetic operation such as addition, subtraction, etc can be done on such numbers. Here, such simple representations cannot store negative numbers. To store positive as well as negative integer numbers in a computer memory 2's complement method is used.

Signed Integer Representation

To represent 0, positive and negative integers, three different representation schemes are used. These methods are

- (1) Sign magnitude method
- (2) 1's complement method and
- (3) 2's complement method

In a sign magnitude method, a prefix 0 for indicating positive number and a prefix 1 to indicate negative number is used. That is, if number (-5_{10}) is to be stored into memory, first it is converted into its equivalent binary number, which is 101_2 . The first bit is 1 and remaining bits are the binary digits representing the number. However, this method has some limitation. For example, the number 0 has two possible representations according to this method, a positive 0 and a negative 0!

1's complement refers to the presentation of a binary number by converting 1's into 0's and vice versa. Here also, one can get two representations of 0:00000000 (+0) and 11111111 (-0).

Among methods to represent numbers into computer memory, the 2's complement method is very popular. This system is similar to above mentioned unsigned integer representation except the most significant bit. The most significant bit has negative value. Figure 4.13 show some examples represented using the 2's complement method.

2's complement number	Conversion	Decimal number
(01000)2	$0*2^{4} + 1*2^{3} + 0*2^{2} + 0*2^{1} + 0*2^{9}$ $= 0+8 + 0 + 0 + 0$	(8)10
(11000)2	$-1*2^4 + 1*2^3 + 0*2^2 + 0*2^1 + 0*2^0$ $= -16*8 *0*0*0$	(- 8) ₁₀
(10000)2	$-1*2^{4} + 0*2^{3} + 0*2^{2} + 0*2^{1} + 0*2^{0}$ $= -16+0+0+0+0$	(-16)10
(10111)2	$-1*2^4 + 0*2^3 + 1*2^2 + 1*2^1 + 1*2^0$	(-9)10
	=-16+0+4+2+1	

Figure 4.13: Conversion of 2's Complement Number into Decimal

The above table shows conversion of a 2's complement number into decimal number. To find a two's complement number from a given decimal number do the following:

- (1) Consider the binary representation of a number
- (2) Invert the bit of the binary number (make 0 to 1 and vice versa). This is also known as 1's complement number of a given binary number.
- (3) Add 1 to it.

Consider the decimal number 9 represented as 9_D. This number can be represented in binary as 01001_B. Changing 0's to 1's and vice versa make the number as 10110_B. Adding 1 to it makes it 10111, which is -9.

It is to be noted that an *n*-bit 2's complement signed integer can represent integers from $-2^{(p-1)}$ to $+2^{(p-1)}-1$. See figure 4.14.

No of binary digits (bits)	Minimum number	Maximum number
8	= -(2 ⁷) =-128	= +(2 ⁷)-1 = +12 ⁷
16	$= -(2^{18})$ = -32,768	$= +(2^{18})-1$ =+32,767
32	= -(2 ³¹) = -2,147,483,648	= +(2 ³¹)-1 =+2,147,483,647

Figure 4.14: Range of Numbers

Floating Point Number Representation

To represent fractional number, floating point number representation is used. The IEEE 32 bit single precision method is commonly used to represent a real number. Here, IEEE represents Institute of Electrical and Electronics Engineers, which is the world's largest professional association dedicated to advancing technological innovation and excellence for the benefit of humanity (www.ieee.org).

According to the method, representation of a given number is divided into three parts as shown in figure 4.15.

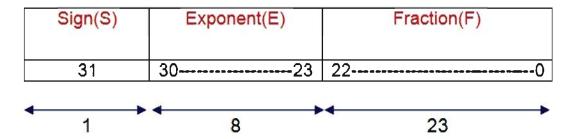


Figure 4.15: IEEE 32 bit Single Precision Floating Point Number

The three parts are given below:

36

- (a) The most significant bit is the sign bit (S), with 0 for negative numbers and 1 for positive numbers.
- (b) The following 8 bits represent exponent (E).
- (c) The remaining 23 bits represents fraction (F).

Consider the number shown in figure 4.16, the sign bit represents the sign of the number. If S=0 then the number is positive. If S=1 then the number is negative. In this example S=1, hence it is a negative number.

Figure 4.16: Example of a Number in IEEE Format

The exponent given here is $1000\ 0001_B$. The decimal equivalent of this number is $129\ \text{or}\ 129_D$. In a normalized form the actual exponent is E-127, where E is exponent given, hence it is also called excess 127 notation. This is required to represent positive and negative number as exponent. That is, here actual exponent is $129\text{-}127\text{=}2_D$.

Putting all these three components together, we have a number as $-1.375 \times 2^2 = -5.5$ _p.

Consider another example having representations:

Then the equivalent representation in decimal can be calculated as follows:

```
Sign bit S = 1 indicates negative number E = 0111 \ 1110_{B} = 126_{D} \text{ (in normalized form)} Fraction is 1.1_{B} (with an implicit leading 1) = 1 + 2^{\Lambda-1} = 1.5_{D} The number is -1.5 \times 2^{\Lambda(126-127)} = -0.75_{D}
```

Character Representation

In computer memory, characters are represented using bit patterns. Group of 7, 8, 16 or 32 bits can be used to represent each character. The rules that determine such bit patterns in a specific length are known as coding schemes. Historically 7 bit American Standard Code for Information Interchange (ASCII) code, 8 bit American National Standards Institute (ANSI) code and Extended Binary Coded Decimal Interchange Code (EBCDIC) were used. These coding schemes represent characters into 7 or 8 bit binary code. Table 4.3 illustrates ASCII representation of selected characters.

Symbol	Decimal	Binary
7	55	00110111
8	56	00111000
9	57	00111001
:	58	00111010
;	59	00111011
<	60	00111100
=	61	00111101
>	62	00111110
?	63	00111111
@	64	01000000
A	65	01000001
В	66	01000010
С	67	01000011

Table 4.3: Characters Represented into ASCII

One can represent maximum 256 possible patterns using the size of 8 bits, where each pattern represents a specific character. Hence, we may represent limited number of characters. Further, these character schemes do not represent all the characters in all the languages in uniform format. Presently, Unicode scheme is used to represent characters into the computer memory. Unicode provides universal and efficient character presentations and hence evolved as modern character representation scheme. Unicode scheme is developed and maintained by a non-profit organization called Unicode consortium (www.unicode.org). Unicode is also compatible with other coding schemes like ASCII. Unicode use either 16 or 32 bits to represent a character. Unicode has capability to represent characters from all the major languages across the world. The 16 bit Unicode scheme allows 65,536 (64K) unique patterns. That is, it can represent 65,536 characters uniquely. Further, 44,949 more characters were added into the scheme in May 2001. The added characters were from Chinese, Japanese, and Korean language and culture. Presently, the Unicode latest standard (32 bits) can represent more than 1 lakh characters in unique pattern. Table 4.4 illustrates some sample Unicode characters formation.

Unicode	Character	Description	
U+0030	0	Digit Zero	
U+0031	1	Digit One	
U+0032	2	Digit Two	
U+003A	:	Colon	
U+003B	;	Semicolon	
U+003C	<	Less-than sign	
U+003D	=	Equal sign	
U+003E	>	Greater-than sign	
U+003F	?	Question mark	
U+0040	@	At sign	
U+0041	A	Latin Capital letter A	
U+0042	В	Latin Capital letter B	

Table 4.4: Unicode Character Formation

Image Representation into Computer Memory

Image represented in a computer memory is called digital image. The reason behind this is that the image is ultimately converted into sequence of 0's and 1's for its possible representation into the computer memory.

One way to describe an image using digits is to describe its contents using position and size of geometric forms and shapes such as lines, curves, rectangles and circles. Such representation is called vector image representation. A vector image can be easily enlarged or shrunk without affecting the quality of the image. Vector images are the preferred way to represent fonts, logos and many illustrations.

Another way to represent an image into computer memory is dividing the image into fix number of rows and columns. Each cell (intersection of a row and a column) is known as pixel (picture cell). Each pixel represents a value that represents the brightness of a given color at any specific point. If you divide the image using more number of rows and columns, very fine information about the image can be stored and hence quality of the image increases. The set of pixels, normally in the form of two dimensional array, is stored in computer memory as a raster image or raster map. To improve quality of an image, we really need to store high amount of data into computer memory.

An image that is 2048 pixels in width and 1536 pixels in height has a total of $2048 \times 1536 = 3,145,728$ pixels or 3.1 megapixels. One could refer to it as 2048 by 1536 or a 3.1 megapixel image. You might have observed some mobile phones or digital cameras with specification such as 3.1 megapixel. That means, the image taken by the camera, has 2048×1536 resolution. The term resolution is often used for a pixel count in digital image.

Many times it is difficult to deal with such a bundle of data. An image takes a significant amount of memory to store all its pixels. And, we must remember that we may have to store number of images into computer memory. This problem becomes even harder to manage when we try to send the bunch of images via computer network. To avoid such memory management and image transferring problem, images are often stored and transferred in compressed forms.

For raster images following formats are popular:

- .bmp (Bit Map Image),
- jpg (Joint Photographic Experts Group),
- .png (Portable Network Graphics),
- .gif (Graphics Interchange Format), and
- .tiff (Tagged Image File Format).

Just like images, audio and video information is also represented as digital information into computer memory. Computer represents sound as binary numbers. For this, parameters such as frequency and resolution are considered. The sound/audio files have formats like .Wav (Waveform audio file format), .mp3 (moving picture experts group), and .WMA (Windows Media Audio). Digital video is a type of digital recording system that works by using a digital rather than an analog video signal. Digital video consists of sequence of digital images displayed in continuous fashion at a constant rate. These images are identified as frames. In a second, typically more than 45 frames must have to be passed to generate effect of continuous scene. However, early silent films had frames up to 25-30 per second. Popular video file formats are .flv (flash video format), .avi (audio video interleave), .wmv (windows media video) and .mp4 (moving picture experts group) format.

Summary

In this chapter, we have learnt about how computer can store data and instructions. Basic units of computer memory such as bit and bytes, categories of memory such as primary and secondary memories, hard disks, compact discs and digital versatile disks are also illustrated here. We also learnt how to represent information such as integers, real numbers, characters and other multi-media information into computer memory.

EXERCISE

1.	What is c	computer memory)					
2.	What is primary memory ?							
3.	What is secondary memory?							
4.	Define bi	t. What are the sy	mbo	ls used to rep	resen	t a bit ?		
5.	What are the measurement units for computer memory? What is the relationship between these units?				etween			
6.	Describe	the following term	s in	one or two se	ntenc	es:		
	(a) RAM	I	(b)	ROM		(c)	PROM	
	(d) EPR	OM	(e)	EEPROM		(f)	FIFO	
	(g) LIFO)						
7.	What is s	equential access?						
8.	What is I	RAM? How many	typ	es of RAM ex	kist?	Explain each	n in one line.	
9.	What is l	ROM? Where RO	M i	s useful?				
10.	Distingui	sh between RAM a	nd R	OM.				
11.	What is	eache? For what p	ourpo	ose is it usefu	1?			
12.	List any three secondary storage devices. Explain any one in brief.							
13.	Explain how numbers are represented into computer memory?							
14.	Write a short note on IEEE floating point number representation.							
15.	How images are represented into computer memory?							
16.	Choose the most appropriate option from those given below:							
	(1) What is an alternative name of a primary memory?							
	(a)	Volatile		(b)	Pen	manent		
	(c)	Auxiliary		(d)	Any	y of these		
	(2) For what amount of time does a secondary memory retain its content?							
	(a)	Short duration		(b)	Lon	ng time		
	(c)	Never		(d)	Any	y of these		
	(3) Which	ch of the following	is th	ne unit of com	puter	memory?		
	(a)	Bit		(b)	Pit			
	(c)	Chit		(d)	Kit			
	(4) How	many bits form a	byte	e ?				
	(a)	4		(b)	8			
	(c)	16		(d)	32			

(5)	Whi	ich of the following is a correct e	xamp	ole of a LIFO ?
	(a)	A queue of people	(b)	Cars waiting for service
	(c)	Pile (tray) of paper	(d)	Jobs waiting for services
(6)	Whi	ich of the following mechanism is	usec	to erase content of An EPROM?
	(a)	ultraviolet light	(b)	electric signal
	(c)	laser technology	(d)	magnetic field
(7)	Whi	ich of the following type of memo	ry is	used by pen drives ?
	(a)	RAM	(b)	PROM
	(c)	EEPROM	(d)	Any of these
(8)	Whi	ich of the following is a small and	high	speed memory within the computer central
	proc	cessing unit?		
	(a)	Secondary	(b)	Auxiliary
	(c)	Cache	(d)	ROM
(9)	Whi	ich of the following is not a secon	dary	storage device ?
	(a)	Cache memory	(b)	Compact disks
	(c)	DVDs	(d)	Pen drives
(10)		•		is most suitable for basic computer data
		esentation into machine readable for		
	(a)	Binary	` /	Octal
22.20	(c)	Ternary	•	Hexadecimal
(11)		ich of the following number system		•
	•	Decimal	` /	Binary
		Hexadecimal	` '	Octal
(12)		ich of the following method is use nory?	d to	represent an integer number into computer
	(a)	Sign magnitude method	(b)	1's complement method
	(c)	2's complement method	(d)	All of these
(13)		ich of the following method is nory?	use	d to represent characters into computer
	(a)	ASCII	(b)	Unicode
	(c)	EBCDIC	(d)	All of these

•

Introduction to Operating System

Even though the CPU is very fast, it can basically do simple operations like adding two numbers, multiplying two numbers, etc.; but not much more. Even simple operations like input of a number or output of a number or converting a string of characters to uppercase or displaying an image on the screen must be built on top of these basic capabilities by writing a series of basic instructions. Also, the computer has a large number of peripheral devices like keyboard, mouse, monitor, hard disk, optical disk, printers and other removable devices. Operating these devices require executing a long and complex series of basic instructions.

A modern computer system has a variety of resources like the CPU, memory, secondary storage, network, peripheral devices, etc. These are accessed by multiple programs running concurrently, sometimes on behalf of different users with different set of access rights. Clearly, there needs to be some "authority" that regulates and mediates access to these resources.

A computer without any kind of software for above operations is a practically unusable device, because it may not even have the basic user interface to interact with the user. In order to provide a consistent experience to the user, there needs to be a common framework for the common human-computer interactions. To make the computer easier to use, such framework should also provide several types of abstractions and metaphors. A file system metaphor is one such example that has been discussed in detail later in this chapter.

Thus an operating system exists to satisfy all these needs. Because it controls the whole system, it is always the first program to be started when the computer system is turned on.

What is an Operating System?

An operating system is the controller, resource allocator and common services provider for a computer system. Like the government, it performs these functions to ensure smooth and mostly trouble-free operation of the computer.

The Startup Process of a Computer

When the computer is supplied power and turned on, the CPU takes control of the whole system. It initializes itself by bringing all its subcomponents in a known and ready-to-use state. Now it is like a vehicle whose ignition has been turned on and is ready to be "driven". But where is the "driver" (the instructions to be executed by the CPU)? The computer has a type of permanent memory called ROM (on personal computers, this is often called ROM BIOS (Basic Input Output System or simply BIOS) that contains an initial program. This initial program, called POST (Power On Self Test), performs a basic check on all other components and peripheral devices in the computer and initializes them so they are ready for use. Hence the next step in this sequence is to locate

operating systems on the attached storage devices, select the one to be loaded in many memory, load it and start executing it. Once the operating system starts its execution, it takes control of the entire computer system. This entire process is called "booting" the computer to a particular operating system.

Functions of an Operating System

An operating system (OS) performs different set of basic functions as mentioned below:

- Providing hardware access as a common service.
- Controlling, Regulating and Supervising resources in the Computer
- Handling Multiprocessor Systems
- Starting and Stopping Program Execution
- Controlling Access to the Memory
- Serving Multiple Users at the Same Time
- Providing Security
- Providing Other Common Services

In this section we have described some common functions often performed by the operating systems.

Providing Hardware Access as a Common Service

In the earliest days of computing, each computer program would come with a set of instructions to handle a fixed set of devices like printers, etc. If a new kind of printer was added to a computer, it became necessary to add the necessary instructions to handle the new printer to each and every program to be executed on that computer. With the rapid increase in the number of devices and device manufacturers as well as the number of programs to be run, this approach soon became infeasible. Thus, the operating systems started providing a common service of handling the hardware devices. The code (instructions) to handle particular devices would be part of the operating system and the operating system would provide access to these devices to individual programs as a common service. When a new device came into use, the new instructions needed to operate it would only have to be added to the operating system and thousands of individual programs were spared of any modification.

Controlling, Regulating and Supervising Resources in the Computer

Modern computers are far more powerful than their humble predecessors and have access to far greater amounts of resources like processing power, main memory, storage, etc. As a result, they are now capable of running not just one program at a time, but many programs at a time. This ability is called multiprogramming. This creates new issues as well. When only one program is running at a time, it has full access to all the resources and there is no harm in it. But what happens when many programs are running at a time and two programs start printing to the same printer at the same time or start writing to the same location of the same storage medium at the same time? Obviously, access to common resources must be controlled in such an environment. The operating system plays the crucial role of resource controller, regulator and supervisor for all hardware resources.

Handling Multiprocessor Systems

A computer system may have more than one CPU (processor) as well. A computer system having more than one processor is known as a multiprocessor system. Operating systems for such multiprocessor systems are considerably more complex than those designed only for single processor systems. Managing which processor to be used for execution is also job of operating system.

Starting and Stopping Program Execution

When the computer starts, initially it runs only the operating system. The operating system takes complete control of the computer system. It also runs a special program called the shell. The shell provides the user a user interface (UI) to work with. The user interface allows the user to indicate what they want to do. It accepts requests for performing operations from the user (these requests may be in the form of typing a command or clicking with a mouse, or touching on a touch panel, etc.) and initiates actions to fulfill those requests. If it is required to start a program to fulfill a request, it requests the operating system to do so. As the operating system has full control over the system, only the operating system can start or stop programs.

Controlling Access to the Memory

The main memory is an important resource for the computer system, because it is the only large-scale form of memory that can match the speed of the CPU and can be directly accessed by the CPU. Any program to be run must be loaded into main memory and any non-trivial data set to be manipulated must also be in main memory for the manipulation to occur. Hence it is very important that this resource be used judiciously. As a result, access to the main memory is also under complete control of the operating system, just like access to other resources. A process needing to get or release some amount of main memory must request the operating system to do so and no process is permitted to access memory not allocated to it by the operating system. This is known as memory protection.

Serving Multiple Users at the Same Time

An operating system may be designed for use by only one user at a time (a single user system) or by several users simultaneously (a multiuser system). With a multiuser operating system, it is actually possible to run the programs of many users on a single computer usually called server, with each user performing input/output through their "terminal" that may have keyboard, mouse and monitor. This is useful when all users cannot be provided with the powerful computers they need (due to the cost factor) and a single powerful computer must be shared among many of them.

A multiuser system also provides additional benefits of centralized management and resource (e.g. file) sharing. Sometimes, a computer system in a faraway corner of the world can be accessed remotely by users over the Internet. This enables travelling employees of large organizations to access their computers from anywhere in the world for doing their work. It also enables the technical support staff of the organization to access computers in different offices and to diagnose and solve their problems without wasting time on physical travel. Some companies even provide their employees the option to work from their home.

Providing Security

When multiple users are accessing the same computer system, the operating system must provide some level of isolation between the users so that one user cannot disturb the work of another user. At the same time, where users are collaborating on a joint project, they must be able to share some resources. Hence the operating system must provide a security mechanism that ensures that all authorized uses of a resource are permitted, while all attempts at unauthorized use are strictly denied. Modern operating systems are designed to provide such security.

With the heavy use of computer networks and the Internet, it is also possible to access and use a computer system remotely, possibly from thousands of kilometers away. While this facility is a boon for organizations having multiple offices around the world or for employees like sales persons and managers who have to travel a lot and still need to access their office computer, it can also be misused for gaining unauthorized access to someone's computer. Modern operating systems provide some basic mechanisms to protect against such hazards, though they may not be sufficient by themselves.

Providing Other Common Services

Apart from these functionalities, operating systems also provide many common services to make the operation of the computer systems easier. Many of these services remain hidden from the user because they are used by the other programs in the computer and not by the human users directly. Operating systems also often come with some companion programs (utilities or accessories) that are small and simple and yet useful to most users of the computer.

These include a utility to explore the information stored on the computer (a file browser), a basic text editor, a calculator, programs to view and edit images, programs to play audio and video, a web browser for surfing the Internet, etc. All operating systems, except for the embedded systems, must also provide at least one shell program to allow the user to interact with the computer system. Though these are not essential parts of an operating system, most operating systems come with some such utilities as an added bonus. Some operating systems, especially the free ones, come with a comprehensive set of software ready for daily use in different usage scenarios like homes, educational institutes and offices.

Typical Components of an Operating System

In this section we briefly discuss the components typically associated with an operating system and the full environment surrounding the operating system. Keep visiting figure 5.1 while reading the description. This figure provides a simplified layered view of the operation of the computer system in the context of operating system study.

The Device Drivers

At the lowest level is the raw hardware of the computer. As we have seen earlier, this part, often called the "raw iron", is an immensely powerful machine, but has no clue as to what to do. This layer also consists of a diverse set of devices, each requiring potentially different set of instructions to operate. The device drivers are small programs that contain the instructions

necessary for using these devices. While many of them come bundled with the operating system, some may have to be installed separately from a disk or the Internet. They are loaded and unloaded as and when needed by the kernel. The kernel uses them for operating and controlling the hardware.

The Kernel

The kernel is the core component or the main program of the operating system. A traditional kernel performs all the key functions of an operating system including detecting new hardware when attached and loading appropriate device drivers to access it, accessing and controlling all hardware devices (through the device drivers), resource allocation and management, creating, stopping and controlling program execution, scheduling program execution, providing CPU, I/O and memory protection, I/O management, memory management, security, etc. By some definitions, the kernel IS the operating system.

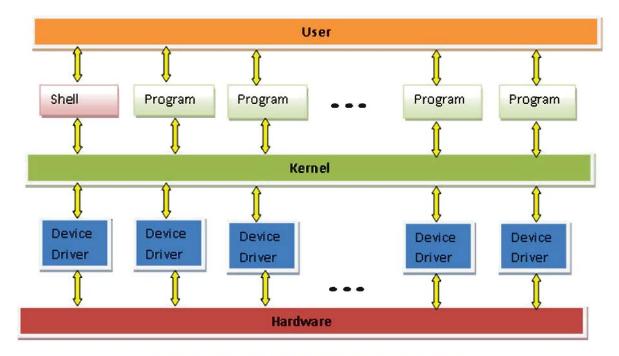


Figure 5.1: The Operating System Context

The Shell

The shell is the most visible component of an operating system bundle; so much so that most people identify the operating system by the looks of the shell. The shell allows the user to express their wishes (what they want the computer to do) to the computer system by providing a user interface (UI). There are two main categories of user interfaces - a Command Line Interface (CLI) and a Graphical User Interface (GUI). The CLI expects only a low-cost low-power text-based terminal. It works by repeatedly accepting textual commands from the user and executing them. One needs to remember the commands (though help may be available) and a certain level of typing skills are needed to operate such a system. In the early days of computing when technology was not as advanced, the CLI was the only option. Later on the Graphical User Interface was developed.

In the GUI environment, the screen contains pictorial elements like a desktop that acts as a background for everything else, windows (a rectangular portion of the screen dedicated to a particular program or interaction), icons (small pictures representative of programs and other elements), menus (a list of actions from which the user may select one), buttons (small rectangular areas that react to a mouse click), etc. The latter elements belong to a particular window. The windows may hide behind other windows and reappear and can often be moved around or resized, minimized to a small part at the bottom of the screen, maximized to occupy the whole screen, etc. Apart from the keyboard for input, there is a mouse pointer that can be moved around using a mouse or track pad. There are one to three buttons that can be clicked and a scroll wheel or scroll area too.

The File System

48

The operating system provides a file system interface to secondary storage. The concept of a file system is modeled after the filing cabinets commonly found in offices, but with new twists. A file system chiefly contains two types of objects – files and directories (also known as folders). A file is the basic unit of secondary data storage on computers. Any data that the user wants to store will go in some file in the file system. The files are identified by their names, which are much easier for humans to remember than absolute addresses known as block numbers. As a disk may have a large number of files, directories are used to organize them. A directory is nothing but a container that may contain files as well as other directories known as its subdirectories. In fact, there is no theoretical limit to such nesting (putting one container object inside another). However, every file system starts with what is called its root directory and then the root directory may contain files as well as subdirectories and it can go on and on like that. Figure 5.2 illustrates this concept. Here the green nodes represent directories (indicated by d), while the blue ones represent files (indicated by f).

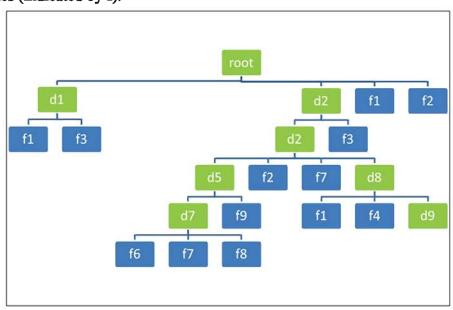


Figure 5.2: The File System Structure

The file systems follow certain basic rules. Each file system has a single root directory that is the starting point of the file system. Each directory in the file system contains a number of objects (files and directories), each of which must have a name unique within that directory. Thus, there can never be two objects with the same name in the same directory. However, two different directories can have two different objects with the same name. As long as you know the directory containing the object you want to use, knowing its name may be enough as it is guaranteed to be unique within its directory. Otherwise, you will have to specify the absolute (or full) path leading to the object. That is, you start with the root directory, then the subdirectory, and so on, until you reach to the directory that contains the object in question and finally the object itself. Each of these components is separated by a special character that is not permitted in file or directory names. This uniquely identifies an object in the entire file system.

A blank disk initially contains no file system. The initial blank file system structure is created by an operation known as formatting the disk. Formatting a disk that already contains a file system destroys the existing file system and replaces it with a new blank one. Certain types of disks such as the hard disks can contain multiple partitions. Each partition may be formatted to contain a separate and independent file system. Formatting one partition does not affect the others. The operating system provides utilities for viewing, modifying and formatting the disks and their partitions.

File System of Linux Operating System

Linux generally uses some version of the extended file system (ext2, ext3 or ext4), though several others are also available and in use. These are quite powerful and feature rich file systems. The extended file system is case sensitive, i.e. capital and small letters are treated as two different characters. So you may have two files with the names f1 and F1 in the same directory. It uses the / (slash) character as the path separator. The concept of using the extension part of the filename to signify its type is not mandatory and is weakly used. USB flash disks and memory cards used with mobile phones usually come formatted with the FAT file system, but the former can be reformatted as NTFS to obtain the benefits of performance and some security. CDs generally use the ISO9660 file system, while DVDs use the UDF file system. These different file systems have different characteristics.

GUI and Components of Operating System

Everything that comes with the operating system is theoretically changeable, except the kernel. The device drivers, the shells, the libraries and the utility programs can all be changed without changing the operating system. In fact, some free and open source operating systems like Linux provide a number of choices for each of these. And though some proprietary operating systems do not offer a choice in shells or utilities, such choices are available from third party vendors as well as the open source community. Hence identifying an operating system based on these components would be a fallacy. These considerations have given rise to a definition that the kernel, and only

the kernel, is THE operating system. All other things are changeable; and hence are just auxiliary accessories.

Users often mistakenly associate a particular user experience with a particular operating system. But they forget that the user experience is provided by the shell and the shell is changeable. To emphasize this fact, just look at the four screenshots in figure 5.3 and try to identify the operating system in each case. We will not be able to differentiate between these screens to a large extent. Here the upper two screenshots were taken on Windows systems, while the lower two were taken on Linux systems.

Different Categories of Computing Devices and Operating Systems for Them

There is a wide array of computing devices serving a variety of purposes. Here we present them in order from the largest to the smallest.

Supercomputers

The largest and the most powerful computers ever built are known as supercomputers. These are computers that can perform millions of billions of floating point (real number) operations per second. For example, in November 2011, the K supercomputer of Japan (see figure 5.4) became the first super computer in the world to be able to perform 10 Peta FLOPS, i.e. 10¹⁶ FLOPS (Floating Point Operations Per Second). India is one of the few countries in the world to have developed her own supercomputers. Such computers are used on some of the most complex and computation-intensive problems in the world like weather forecasting, nuclear test simulation, molecular modeling, etc. These computers are vastly different from the common variety personal computers. They utilize the power of thousands of processors connected using very high speed channels and working on a single problem in parallel to achieve very high speed. The most critical aspects for an operating system for a supercomputer are performance optimization as well as distribution and coordination of both data and computation among the thousands of processors. The operating systems typically used are variants of lightweight kernels like CNK or CNL at individual node level, while using a Linux variant for managing the overall operations.

Mainframe Computers

The next class of computers is called mainframe computers (see figure 5.5). These are used in government and corporate environments where, apart from high performance, a very high level of reliability and compatibility with existing mainframe-based software are key aspects. The very high levels of reliability and availability are achieved by providing multiple redundant components for almost every aspect of the machine, so that if one component fails; another identical component can take on its responsibility and the computer continues working without a hitch. The duplication goes from CPUs all the way down to power supplies and even cooling fans. This makes these machines run continuously for years and years without any problems. Example operating systems are IBM z/OS and Linux variants.

Figure 5.3: GUI of Some Operating Systems

Figure 5.4: The K Supercomputer of Japan

Figure 5.5: The IBM Z Mainframe

Server Computers

Server computers are powerful computers that provide some computing or storage service to a large number of client computers. The critical aspects for these computers are performance, reliability, compatibility with already existing software and scalability, the ability to incrementally increase performance as and when needed by adding components, rather than replacing the whole computer. These computers most commonly use Unix or Linux as their operating systems. Some also use a Microsoft Windows server operating system.

High-end Workstations

High-end workstations are computers used for demanding scientific computing as well as multimedia applications like special effects in movies, making animated movies, 3D modeling, Computer Aided Design (CAD), Computer Aided Manufacturing (CAM), etc. these require very high graphics performance and an effective management of the larger amount of resources available (processing power, memory, disk space, network bandwidth). Here also Unix, Linux or Microsoft Windows is used as operating system.

Personal Computers

The category of computers most familiar to us is that of personal computers. These computers provide a general platform that caters to the widest possible range of uses and also to users with vastly different skill sets. For a large number of users, user-friendliness is a very important aspect. Subsequently, the operating systems in use are Microsoft Windows family operating systems, the OS X operating system (on the Apple Mac series computers) and Linux. All three provide rich graphical user interfaces.

Smartphones and Tablets

52

Though you may not have realized it yet, a smartphone is also a computer in its own right. Tablet PCs are a hybrid between the smartphones and personal computers. These devices pose unique challenges for operating system designers because they have severe constraints on processing power, memory, energy usage (because higher energy usage would mean the battery would drain out faster) and screen real estate (the screen size is quite small compared to the PC, and yet, most facilities of a PC are expected). They also have quite different input methods (numeric keypad or small QWERTY keypad with navigation keys or touch gestures and an onscreen keyboard on a touch screen or even voice input).

These characteristics demanded completely different solutions. As a result, most mobiles few years back used operating systems specially designed for them. However, with increasing processing power and memory, specialized versions of PC operating systems have now become the most popular choices for smartphones and tablets. Examples include Google Android and Apple iOS (both based on Linux/Unix) and Microsoft Windows Phone OS. Variants of full scale Linux for use on such devices are currently under development. A convergence of operating systems for touch screen based smartphones, tablets and ultraportable devices and operating systems for mainstream personal

computers is widely anticipated and both Microsoft Windows 8 and Linux variants using the GNOME 3 or Unity interfaces have started the process by redesigning their interfaces for touch input.

Embedded Systems

Even phones are not the smallest computers on the planet. There are hundreds of millions of tiny computers embedded in places we cannot even imagine; from industrial machines to car engines, from TV set top boxes and DVD players to washing machines and microwave ovens they are hidden everywhere. These computers are programmed for special purpose tasks. They typically have little or no user interface. They get their input from a variety of sensors in the form of electrical signals, process the input and send output in the form of electrical signals to actuators that may activate some physical action in the machine. They have extremely severe constraints on all resources, including processing power, memory, and, most importantly, price.

Since there is hardly any scope for changing the programming once the tiny devices are manufactured and fitted in their respective machines, correctness of the software is really very important. But the software for these embedded systems is developed on the PC and it is very difficult to simulate the real time behavior of the environment on the PC; so testing the software for correctness is very difficult. Embedded systems professionals use specialized tools for their work. The usage of embedded systems is growing at a rapid pace. The operating systems used include QNX and RTLinux.

In the above description of different categories of devices and their operating systems, you must have noticed that in spite of widely different characteristics and demands of the environments, Unix/Linux variants is the only family of operating systems that is used on all these devices from the most powerful supercomputers to tiny embedded systems. In the next chapter we shall see the reasons for this as we explore the Linux operating system in more detail.

An Operating System for Smartphones: Android

We are going to discuss the Ubuntu Linux operating system in much more detail in the next chapter. In this chapter, we look at Android, a popular operating system for smartphones and tablet PCs.

Figure 5.6: The Android Icon and Logo

Categories of Mobile Phones

A mobile phone that is only a mobile phone, and not much more, is called a basic mobile phone. A mobile phone that provides some additional features over the basic phone, like a music player, video player, simple games, limited web browsing, basic support for third party applications, etc. is called a feature phone. Even though there are no standard definitions of these terms, the key features of a smartphone are touch screen operations, full web browsing capability, the availability of office productivity applications, a powerful programming system that enables development of a rich and diverse set of software applications that go much beyond the functions of a mobile phone, one or more application stores from where new applications (free as well as paid) may be downloaded, a range of sensor devices for input, etc.

A smartphone or a tablet (or phablet) is actually a small computer and functions as a combination of a phone, a Personal Digital Assistant (PDA) providing secretary-like functions (calendar with scheduling, memos and notes, to-do lists, meeting reminders, access to office documents, messaging service or instant email notifications, etc.) and a portable entertainment hub. However, with improvement in technology, each category is moving up the features ladder and release of intermediate models by companies blurs the lines between these categories. Often, the distinction is made based on price, with the three categories mentioned above sporting successively higher price tags.

What is Android?

Android is a free and open source operating system for smartphones that is being developed by the Open Handset Alliance, whose most prominent member is Google, Inc. Android uses a slightly modified version of the Linux kernel. It is designed to support a diverse set of devices. Even though the list of devices running Android include watches, phones with small screens and only numeric or qwerty keyboards, touch screen phones, mid-sized phablets (phone + tablet), larger sized tablet computers, TVs and even microwave ovens, the operating system is primarily designed to provide a rich and attractive user experience and a large number of small software applications ("apps") for smartphones and tablet computers. At the time of writing this, Android is world's No. 1 operating system for smartphones in terms of volume shipments (number of phones sold). Many leading mobile phone manufacturers make Android based smartphones.

Key Features of Android

54

Android provides several features and benefits as a smartphone or tablet operating system. It is free and open source and it is not tied to one particular device maker. Manufacturers also have the option of tweaking the operating system and making changes and/or improvements to distinguish their product from others because the source code is available. Because of competition among the manufacturers, prices are relatively lower and companies constantly try to add new features to their devices. It provides an attractive user interface and rich multimedia support. It has support for accessing and controlling almost all hardware features of the latest smartphones and tablets, like touch screen with multi-touch gestures, phone location information (positioning using satellite), motion sensors,

wireless networking (2G/3G/4G mobile network, Wi-Fi, Bluetooth, Near Field Communication or NFC), voice and video telephony, text messaging (SMS), Internet access, listening to podcasts (live audio on the Internet), watching webcasts (live video on the Internet) and Live TV programs, camera(s), microphones and speakers, etc. not only from the built-in applications but also from third party applications and our own applications. Clever use of inputs from these diverse set of sensors along with Android's built-in capabilities allows the development of innovative, highly interactive, very useful and visually stunning apps with creative modes of interacting with the device.

3G & 4G make it possible to make video calls where the two parties can see each other. The availability of positioning information (the mobile's current location) and information-rich worldwide maps makes it possible to create location aware applications that guide you with directions in an unknown city (both in the form of a map as well as voice guidance like "Now turn left..."), lead you to a restaurant when you are hungry, show you the nearest bank branch or ATM when you need some cash, then take you to the nearest shopping mall so you can use up that cash:-), tell you when one of your friends is by chance in the same area at that time so you may meet them and finally show you the bus/railway/metro routes on the map along with the schedule and guide you to the nearest station when you are ready to leave the city. The ability to access motion sensors is used by the operating system itself to switch between portrait and landscape modes when you rotate your phone. It is also used by games that are played by simply tilting and rotating the phone and applications that let you control the phone just by moving it. For example, if you are busy and your phone rings, you may simply turn it upside down to reject the call.

You may use your phone network or a public/home wireless network (Wi-Fi hotspot) to access the Internet. Using Bluetooth, you may exchange files with another phone or laptop, connect a headset, hands-free set or a keyboard with your phone, etc. Using NFC, you may exchange contacts, visiting cards or files or make payment by simply waving your phone at (or making it touch) another device. Access to the camera enables applications that allow you to take a picture and upload it to a social networking site instantly, or take the picture

Figure 5 7 : A QR Code

of a place or a product and obtaining more information about it (not very accurate yet), or scan bar codes or QR codes ("Quick Response" codes specially designed for mobile phones), etc. If your parents have a phone with a QR code reader (sometimes called barcode reader) application, scan the code in Figure 5.7 with it and uncover the message encoded in it!

Voice recognition technology, though in early stages, not only enables you to issue voice commands to your phone, it also allows the user to dictate notes and messages and search the web simply by speaking out what you are looking for. Android also has security features. It provides a well-known programming system for developing apps with a large set of built-in functions. The biggest advantage Android enjoys is that it is backed by the search giant Google, it already has a large number of programmers developing apps for the platform and hundreds of thousands of apps have already been developed for it, including apps for various phone related functions, Internet surfing, email, chat, social networking, photo editing, audio and video playing and editing, office productivity (like word processor, spreadsheet, presentation), simple and highly demanding 2D and 3D games, etc. Generally, Android phones have access to Google's Google Play app store, which, at the time of writing, had 6,00,000 apps. Some other companies have their own app stores for their Android phones.

Android as an Operating System

In spite of the seemingly large differences, operating systems for mobile phones follow the same general principles that we discussed above. They perform similar functions, have analogous components and fit in the same general definition of an operating system. The tablets presently have 7 inches or 10 inches touch screens and therefore are comfortable to work with. They provide almost all features for users (not developers) which are available on normal PC or laptop. However, the challenges faced by the mobile phone operating systems is a resource-constrained environment (smaller screens, less processing power, less memory and the need to conserve battery power), need to support different set(s) of input/output devices and far greater variation in the hardware. In recent times, the fast pace of technological advancement has also made the job more difficult. But it is the same development that has enabled us to do things that were not even conceivable in the not-so-distant past. We are living in an exciting era.

Summary

In this chapter we were introduced to an operating system. We learnt about different characteristics of an OS. We came to know that an operating system performs several functions including management of processes, input/output and memory and all other resources. It also provides protection of resources and enforces policies on computer system usage and responsiveness. An operating system typically comes with many utility programs, though whether they form part of the operating system or not is a matter of debate. Operating systems form an essential ingredient of computer systems of all shapes and sizes.

Operating systems based on Unix/Linux are used across the whole spectrum of computing devices. We also learnt that though smartphone operating systems like Android have radically different user and device interfaces and face a different set of challenges, at the core they are still the operating systems.

EXERCISE

1.	List the major functions of an operating system.				
2.	What is multiprogramming?				
3.	What is a multiprocessor system?				
4.	What is the role of the operating system with regard to resources in the system?				
5.	Hov	w does a multiuser system work?			
6.	Wh	y is security important in multiuser syst	ems?		
7.	List	t the typical components of an operating	g system.		
8.	Wh	nat is the kernel? What are its main jo	obs ?		
9.	Dif	ferentiate between CLI and GUI.			
10.	Wh	at is a file system?			
11.	Wh	y do we need a file system?			
12.	Wh	nat is QR code?			
13.	Wh	ich are the common features of tablets	?		
14.	Choose the most appropriate option from those given below:				
	(1)	What is the full form of BIOS ?			
		(a) Best Input Output Software	(b) Basic Input Output Software		
		(c) Best Input Output System	(d) Basic Input Output System		
	(2)	Which of the following component a system and the hardware?	acts as an intermediary between the opera	ıting	
		(a) kernel	(b) shell		
		(c) device drivers	(d) utility programs		
	(3)				
		(a) resource management	(b) Time management		
		(c) memory management	(d) All of these		
	(4)	.,	the operating system interacts with the use	r?	
		(a) shell	(b) kernel		
		(c) device drivers	(d) I/O devices		
	(5)	The hardware devices are directly acc	essed by which of the following entity?		
	97/35 J	(a) the operating system	(b) the kernel		
		(c) the device drivers	(d) the shell		

(6)	Which of the following is the core component of an operating system?				
	(a)	the shell	(b)	the kernel	
	(c)	the device drivers	(d)	the GUI	
(7)	Wha	at is the full form of CLI?			
	(a)	Command Line Interface	(b)	Command Line Interaction	
	(c)	Common Line Interaction	(d)	Common Line Interface	
(8)	Wha	at is the full form of GUI?			
	(a)	Graphical User Interaction	(b)	Graphical Understandable Interaction	
	(c)	Graphical User Interface	(d)	Graphical Useful Interaction	
(9)	Whi	ich of the following cannot be an	obje	ct in a file system?	
	(a)	directory	(b)	file	
	(c)	user data	(d)	folder	
(10)	Whi	ich of these sometimes come with	only	the kernel and not much more?	
	(a)	proprietary OS	(b)	free OS	
	(c)	embedded systems OS	(d)	super computer OS	
(11)	Whi	ich of the following is NOT a limi	itatio	on on a smart phone?	
	(a)	processing power	(b)	power consumption	
	(c)	memory	(d)	network	
(12)	Whi	ich are the smallest computers on	the p	planet ?	
	(a)	smartphones	(b)	tablet computers	
	(c)	embedded systems	(d)	PDAs	
(13)	Whi	ich operating system family is pres	ent i	n all categories of devices?	
	(a)	Microsoft Windows	(b)	Unix/Linux	
	(c)	i/OS	(d)	OS X	
(14)	And	lroid is developed by -			
	(a)	Microsoft	(b)	Google, Inc.	
	(c)	Open Handset Alliance	(d)	Samsung	
		_			

Introduction to Ubuntu Linux

The success of the UNIX system stems from its tasteful selection of a few key ideas and their elegant implementation. The model of the Unix system has led a generation of software designers to new ways of thinking about programming. In this chapter you will learn about the history of Unix, will be introduced to Ubuntu Linux and finally we will see some options of running Ubuntu Linux.

History of Unix

The Unix operating system developed at the AT&T Bell Laboratories in 1969 has become a turning point in the operating system development scenario. The key persons involved in this development were Ken Thompson, Dennis Ritchie, Brian Kernighan, Duglas McIlroy and Joe Ossanna. In the past three decades, the operating system has had tremendous influence on the way we think about and develop operating systems and computer programs in general. Unix as well as various Unix-like and Unix-derived operating systems continue to dominate the computer world even today. In the fast changing world of Information Technology, few computer programs have survived for such a long time while still retaining their essential characteristics.

The people who developed Unix were originally working on a joint project with General Electric (GE) and Massachusetts Institute of Technology (MIT) to develop a large ambitious multiuser operating system called Multics (Multiplexed Information and Computing Service). Though the project had many innovations to its credit, it was a large and unwieldy project that was not progressing as expected. When AT&T decided to pull out of the project, Thomson, Ritchie and others decided to develop a smaller operating system to keep alive some of the ideas of Multics. Ken Thomson had developed a game called Space Travel while still on the Multics project, but it was too expensive to run the game on a large machine in active use. He found a little used machine at Bell Labs and redeveloped Space Travel to run on it. He and his group gradually added the operating system ideas they had in mind and finally came out with a simple operating system that they initially called Unics, because it supported a single user; as opposed to Multics. When it was developed further and started supporting multiple users, the spelling of the name was changed to Unix. Figure 6.1 shows two of the main creators of the Unix OS.

Figure 6.1: Ken Thomson (left) and Dennis Ritchie

Key Success Factors

The Unix developers gave out copies of the Unix operating system with source code and online manuals to others for free. Soon many universities, government agencies and private companies started using Unix. Because, the source code was available, it was easy to make the small amount of changes needed to run Unix on a new platform. It also allowed the universities and organizations to study the source code and enhance it with new features. Unix became phenomenally successful in the subsequent years. Denis Ritchie and Ken Thompson were awarded the Turing Award, considered to be the Nobel Prize of computing, in 1983.

The success of Unix can be largely attributed to the revolutionary concepts it pioneered or popularized for the first time. It was the first successful operating system to have been developed in a high level language. It also popularized the tree-like file system structure discussed in the previous chapter. With some modifications, it is still in use by all major operating systems. It simplified device access by treating devices also as files. Unix stored all configuration information in plain text files, making them easily accessible and modifiable. Unix also provided a very powerful command line environment that supported combining the power of existing commands in flexible ways to get a new job done. This major innovation dramatically changed the way people worked, improved their efficiency and continues to be a major strength of the platform. Unix started a new trend by providing an online manual with the system itself, so there was no need to walk to the library to fetch a printed manual if one forgot some command or option.

Free Software Movement

Around early 1980s, Richard Stallman, working at MIT, got increasingly frustrated by the various restrictions placed by commercial software vendors on use and sharing of computer software. His vision for software was to provide all kinds of freedom to the users. He outlined four fundamental types of freedoms for users of software as mentioned in table 6.1.

Freedom	Description
Freedom 0	The freedom to run the program, for any purpose
Freedom 1	The freedom to study how the program works, and change it so it does your computing as you wish. Access to the source code is a precondition for this.
Freedom 2	The freedom to redistribute copies so you can help your neighbor
Freedom 3	The freedom to distribute copies of your modified versions to others

Table 6.1: Type of Freedom

To this end, he started the GNU project in 1983. He wanted GNU to be a Unix-like (in its working), but completely free operating system. To emphasize that GNU was not a *commercial* system like Unix, he chose the name GNU that stood for "GNU is *Not* Unix". By free, he meant all the freedoms mentioned above. He started a Free Software Foundation (FSF) for developing GNU and other entirely free software projects. By 1990, he and the volunteers of the FSF had created most of the major components of the proposed GNU operating system, including the compiler, the shell and the libraries. But the core component, the kernel, was unfinished. Work on the kernel was going on, but was slow.

Birth of Linux

In 1990, Linus Torvalds, a student from Finland, developed an experimental operating system kernel for the PC (personal computer) called the Linux kernel (Linux stood for "Linux is Not Unix"). After he opened communications with other programmers on the Internet, the project grew rapidly. With the help of these volunteers, finally the Linux kernel and the GNU components were combined to form the first completely free working Unix-like system. The combined system came to be known as GNU/Linux, or simply Linux and became widely popular after Linus granted all the freedoms to everyone (GNU had already done so) and a large community of volunteers, individuals, organizations and even commercial corporations, started supporting its development.

Freedom and Choice

Linux is a mass movement today. A large community spearheaded by Linus Torvalds himself looks after the development of the Linux kernel. Several other individuals and communities continually work towards providing better software solutions for all common requirements of users with liberal freedoms. In most cases, the freedom includes the rights to obtain the source code of the software, modifying it and contributing the changes back to the community or redistributing the modified software under a name of one's own choosing. As a result, there is a bewildering choice of software available for all the common requirements of computer users. Different people and organizations select bundles of software from this vast pool of software as per their own criteria and preferences and create a distribution of the Linux operating system that they distribute under their own name. Each distribution of Linux is a bundle of some version of the Linux kernel and a set of software applications selected with some goals in mind. Some of the more popular ones include Ubuntu Linux, Linux Mint, Fedora Linux, Debian GNU/Linux, Red Hat Enterprise Linux (this is a commercial, but open source, distribution), openSUSE Linux, Knoppix and many more. These distributions vary in their goals as well as contents.

Some Popular Operating Systems for Personal Computers

Microsoft Windows

Microsoft Windows is a proprietary OS and must be purchased for using it. When a new version comes out, one must again purchase an upgrade version to use it. It is easy to use OS. It also boasts of an excellent device driver support. Even though Microsoft has taken significant strides in improving its stability and security compared to early versions, lingering doubts about these issues still remain in users' mind. Being the early used OS on PCs has also made it the most popular target of attacks by crackers (highly skilled programmers with malicious intention). Microsoft Windows

also needs more hardware resources and higher-end configurations to run decently. As people run a mix of software from so many different sources on Microsoft Windows systems, the overall experience is somewhat varied and when there is a problem, it becomes difficult to pinpoint the exact source of the trouble.

Apple OS X

Apple OS X is also a proprietary operating system. It comes bundled with the machine manufactured by Apple and neither work without the other. The system is known for its high quality hardware and visual appeal and what ardent Apple fans believe to be *the best* user experience. The entire hardware, operating system and software environment is tightly controlled by Apple to provide a highly consistent and reliable user experience. Though the systems were considered quite secure earlier, a recent outbreak of malware has shown that it, too, is not immune from attacks. The major advantage of the system is its consistent, high-quality user experience. Against that, the user is confined to a narrow world controlled by Apple and third party application support is limited. Also, the product comes at a high premium.

Linux

Linux, just like its predecessor Unix, is known for its high performance, security, reliability and portability. No matter how old or low-end the hardware is, one can find a Linux distribution that would run on it. It is quite stable on most PC configurations. It combines the high-power CLI that has traditionally been Unix's strength with an impressive GUI that makes it almost as user-friendly as the other two OSs. Linux has a particularly strong presence in the Netbook (small notebook computer used primarily to access the Internet) category. Upgrades are as free as the base OS and it is just a matter of user's convenience when they want to upgrade their systems. Linux provide a number of choices for the CLI as well as GUI. The most common GUIs are KDE, GNOME and Unity. The newest versions of the GUIs provide a strong competition to the other two OSs as far as visual attractiveness is concerned, though they, too, require a bit higher configuration.

A major advantage of Linux is that not only is it free; it also provides us complete freedom in running the operating system. Linux provides excellent interoperability with Microsoft Windows and you can access the Windows partitions on your computer and the organization's Microsoft Windows servers as easily as from Windows. The office suite on Linux – openofficee.org or Libre Office provides good interoperability with the Microsoft Office suite. In essence, Linux meets all the basic needs of an average computer user and, once you settle down, can be as comfortable to use as it can get. And all this is yours, 100% free and 100% legal.

Introduction to Ubuntu Linux

Ubuntu Linux is a Linux distribution created by the UK based company Canonical Ltd., established by the South African entrepreneur Mark Shuttleworth. It is in turn based on the Debian GNU/Linux distribution. Ubuntu is an ancient African word meaning 'humanity to others'. It is a philosophy that emphasizes putting common goals and the community above individual interests and believes in helping

one another. As the open source software community also has similar philosophy, Ubuntu was chosen as the name of the distribution. Ubuntu is free and open source software. Canonical expects to earn money by providing paid support services. While Canonical is the main sponsor, Ubuntu is also supported by the Ubuntu Foundation and large developer and user communities. Ubuntu focuses on usability, security and stability. Its focus on

Figure 6.2: Ubuntu Linux Logo

usability (ease of use) and good device support has allowed it to gain and retain a place among the top Linux distributions. Figure 6.2 shows the Ubuntu logo.

Ubuntu Versions

Ubuntu has a fixed release cycle, with a new version being released in the April and October months of each year. The release numbers are denoted by two-digit year, followed by a dot, followed by two-digit month. Thus, Ubuntu 10.04 LTS was released in April 2010. The releases also have two-word names, with the first word being an adjective and the second the name of an animal. For example, Ubuntu 10.04 LTS was called Lucid Lynx, while Ubuntu 12.04 LTS is called Precise Pangolin. People often use only the first word to identify the release. The first words are chosen in alphabetic order, so one can know which version is newer just by looking at the first letter of the name. Each desktop edition release is officially supported for 18 months. Every two years, a Long Term Support (LTS) version is released. Earlier, the LTS versions for the desktop edition were supported for 3 years, but starting with Ubuntu 12.04 LTS, they are supported for 5 years.

The key strengths of Ubuntu are usability, good device support, support of large user and developer communities. It has been adopted by many manufacturers as well as some large organizations.

Basic Concepts of Ubuntu Linux

To use Ubuntu on a regular basis, one needs to install Ubuntu. Usually, installing a new operating system requires that a separate partition on the disk be made available for exclusive use by that OS. The installation procedure involves formatting the partition and creating a new file system on it. If we have a spare partition or want to use Ubuntu as our only OS, then we may install Ubuntu in a partition in this manner. However, sometimes users who already have Microsoft Windows OS on their computer do not have a spare partition or do not want to disturb their existing operating system setup. While it is certainly possible to have a multi-boot set up where the hard disk has different operating systems on different partitions and the user gets to select which OS they want to start at boot time, having such a set up requires some technical skills.

Ubuntu makes it very easy to install Linux on a Windows machine by providing a special installer called Wubi (Windows-based Ubuntu Installer). Wubi does not require a separate partition for Ubuntu and installs Ubuntu right inside the Windows partition by reserving a certain amount of disk space for it. Hence one may install and uninstall Ubuntu with minimum changes to one's Windows installation.

This is extremely convenient and useful for those Windows users who are not yet ready to take the plunge into Ubuntu. Ubuntu can also be installed to a USB flash disk (pen drive) or external hard disk and run straight from them, if the computer supports booting from USB (all newer computers do). In large organizations with a dedicated IT team, it is also possible to boot Ubuntu from the network without installing it on the local machine.

Figure 6.3: Ubuntu Splash Screen

If we have a multi-boot configuration, the boot manager may display a choice of operating systems. Once we select Ubuntu, Ubuntu starts its own boot loader. It is also possible to have multiple Linux versions as well as other non-Linux operating systems on a single computer. Hence, depending on the configuration, Ubuntu may display a list of choices to allow us to select the OS or the Linux kernel version we want to boot to. After that, it displays a splash screen as shown in figure 6.3 while doing various startup activities.

Figure 6.4: Ubuntu Login Screen

64

Once the OS is fully loaded and ready to use, it may present us with a login screen as shown in figure 6.4. As Linux supports multiple users and implements security to ensure that one user cannot disturb the other user, this authentication (verifying who you are) becomes necessary. You will be accepted as a particular user only if you provide the correct password for the username selected by you. If you are the only user of the system, you may setup automatic login (without asking for the password).

You may also select here your language and the desktop (shell) you want to use because Linux supports multiple languages and desktops. If you are physically challenged in some way (like you cannot see or have difficulty in typing or using the mouse), you may select assistive technologies like a high-contrast screen for those with limited vision or a screen reader (a software that speaks aloud the text on the screen) for those who cannot see at all. Once you login to the system successfully, you will be greeted with the desktop similar to the one shown in figure 6.5.

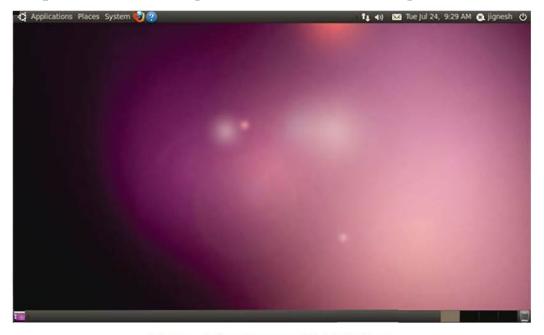


Figure 6.5: Ubuntu 10.04 Desktop

Please note that the screens shown in the figures pertain to the Ubuntu 10.04 LTS version. Screens for other versions may look somewhat different. The first skills to be learnt for using any operating system are how to start the operating system and how to shut it down properly. Following the "proper" shutdown procedure is important, because if we just switch off the computer or if it shuts down unexpectedly because of a sudden power failure, the file system may get damaged or we may lose even the data we had saved. As hard disks are much slower than main memory, often, when we (or programs) write data to disk; operating systems actually write the data to main memory. At a convenient later stage, the data is written to the disk. This is known as caching or buffering and is done to improve performance.

When we shut down the operating system properly, all running programs are terminated and any unsaved data still in main memory are written back to the disk before turning off the computer (the latter process is known as flushing). But if we abruptly switch off the computer, such data

may get lost because, unlike the hard disk, main memory is volatile and loses its contents when the supply of power to it is stopped. With Ubuntu, clicking on the icon in the upper right corner brings up a menu of choices that includes the "shutdown" option. After selecting this option, we should wait until Ubuntu finishes its shut down process before switching off power.

On a modern computer, it is also possible to configure the power button, such that when we press it the shutdown procedure is automatically initiated. The computer turns off the power when the procedure finishes. It is also possible to put the computer into a "sleep mode" or "hibernate" mode. These modes preserve the currently running applications (programs) and unsaved file data and either put the computer to a very low power usage state or shut it down completely. When you restart the computer, its state is restored, including the currently running programs and open windows exactly as you left them; as if you never put the computer to sleep or hibernate mode. This saves power when you plan to take a break from your work. This feature is especially useful for laptop computers. Usually, closing the lid of the laptop computer while the OS is still running automatically causes a switch to sleep mode.

Sometimes, you want to move away from your computer for a short period but do not want to turn it off or put it to sleep mode, because you expect to come back soon. In these cases you should "lock" your computer so that no one else can use it in your name (because you are currently logged in). This option is also available along with the shutdown option. You may also use the shortcut key CTRL+ALT+L to lock your computer quickly. While the computer is in a locked state, others cannot work on it, but may leave a message for you on the computer. When you come back, you have to enter your password to unlock the computer and resume work. If you do not operate the keyboard and mouse for a certain period of time, then also the computer automatically gets locked.

Sometimes a user may want to handover the system to another user for some time without logging out, because they do not want to close the programs. In such a case the "switch user" option is selected. This option locks the current user's session (but does not close the session or terminate the programs) and displays the login screen to permit another user to login too. We may switch to another user's session by selecting the switch user option and providing password of that user. On switching back, the user returns to exactly the same screen. This allows multiple users to work alternately on the system.

Accessing data on Ubuntu

A computer system may have many storage devices in it. Also, removable devices may be inserted or attached and removed at any time. Each device has its own file system on it. A device that can have multiple partitions, like the hard disk, has a separate file system on each partition. How does one access these file systems? Operating systems like Microsoft Windows assign a separate drive letter (like C:, D:, E:, etc.) to each file system. However, Linux and other Unix-like systems have a single file system tree starting with the root directory, denoted by / (the slash character). The file system contained on the partition from which Ubuntu boots is called the root file system. The root directory of this file system becomes / - the root of the entire file system tree. Initially this is the only file system available.

We may access any other file system by mounting it on any existing directory (this directory is called the mount point). Once mounted, the contents of that file system appear as the contents of the mount point directory. If the mount point previously contained some contents (files and subdirectories), they are masked (hidden) for the duration of the mount. Now we may access (and modify) the contents of that file system from the mount point directory. When we no longer need to use the file system, we may unmount it. At this point, the original contents of the mount point directory get unmasked (become visible again). This process is depicted in figures 6.6, 6.7, 6.8 and 6.9.

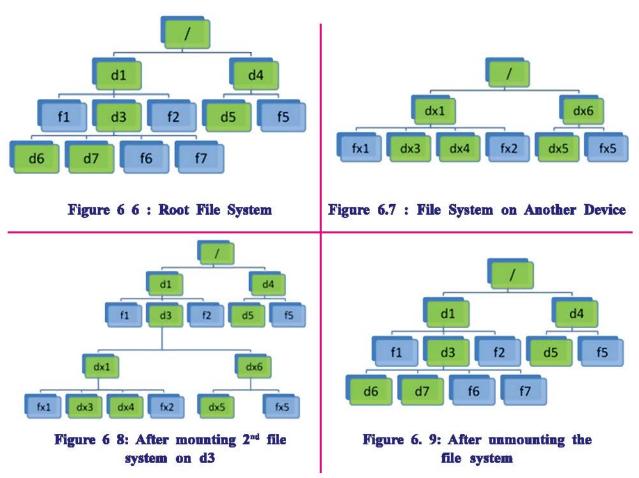


Figure 6.6 shows the root file system. Figure 6.7 shows the file system on another device. Figure 6.8 shows the situation after mounting the file system of figure 6.7 onto the directory d3 of Figure 6.6. The original contents of d3 are now masked and the contents of the file system mounted there appear as if they are the contents of d3. Figure 6.9 shows the situation after unmounting the second file system. The original contents of the directory d3 now become visible again.

However, the common practice is to mount file systems onto empty directories. In the default configuration, Ubuntu automatically detects other fixed devices in the system and shows them in the 'Places menu' and the left pane of the file browser. They are mounted when we first try to access them. The file browser shows a triangular icon alongside all mounted file systems other than the root file system (see figure 6.10).



Figure 6.10: GUI for Viewing File System

The file system can be unmounted by clicking on this icon. It may be mounted again when the user tries to access it again next time. The root file system cannot be unmounted. Removable devices are automatically mounted when they are inserted. Read-only media like optical disks can be unmounted by simply removing or ejecting them. Media on which writing is possible (like USB flash disks) must be unmounted by clicking the unmount icon in the file browser or by right clicking its icon on the desktop and selecting "safely remove device" option. This causes any data cached in main memory for improved performance to be flushed to the disk. A message at the end of this process announces that it is now safe to remove the device and the unmount icon disappears from besides the device's entry in the file browser's left pane. Only after this the device can be safely detached from the system. Failure to observe this procedure may result in loss of data or damage to the file system on the removable media. While this method of accessing the other storage devices in the system may sound unnecessarily complicated, it is more flexible and powerful and has several distinct advantages.

Of course, all these procedures can also be carried out using commands. It is also possible to configure the system to mount some file systems at particular mount points automatically every time the system boots. By default, the system mounts other fixed and removable devices in the system in directories under the /media directory.

X Windows System

Linux, like other Unix systems, uses the X Windows system for graphics. This system provides the basic graphics capabilities in a device independent way. It has two components. The X server provides graphical display facility as well as input facilities through keyboard, mouse, touch screen and other input media. The X client is any program that uses the capabilities of the X server for graphics. The client and server communicate through the networking system (even when both are on the same system). As a result, the X Windows environment is very flexible. Any client running on any computer can connect to any server running on any computer. This makes it very easy to provide the facility of accessing systems remotely, running graphical sessions on remote computers and even taking control of remote systems.

The X Windows system only provides the primitive graphics capabilities. The user interface elements like windows, buttons, menus, lists, text input boxes, panels, etc. are typically provided by a window manager component that uses the basic facilities provided by the X Windows system. Finally, a desktop manager (or simply desktop) built on top of the window manager acts as the graphical shell for the operating system.

Unlike most other operating systems, Linux provides us with multiple virtual screens to work with. In fact, we have access to 12 different virtual screens altogether. These can be accessed by pressing the shortcut keys CTRL+ALT+F1, CTRL+ALT+F2, CTRL+ALT+F3, etc. The first six of these screens are text mode screens, while the next six screens are graphics mode screens. By default, the login process is started on the first 6 text mode screens, so we may start working by providing out username and password. The default graphical session starts on the seventh screen. While no sessions are started by default on the other graphical screens, we are free to start graphical sessions on them. All text as well as graphical mode sessions are independent of one another – it is like having 12 computers in one!

Components of GUI Window

With most other operating systems, we are limited to using only one full screen window at a time. Thus, if your work calls for using multiple large windows at a time, you are forced to constantly juggle between the windows or to resize them to smaller sizes so as to be able to see multiple windows on the screen at a time. On the other hand, if you need to open a large number of windows, arranging these windows and switching between these windows becomes very tedious. Linux does not suffer from this problem. Apart from having multiple graphical screens, even a single graphical screen can have any number of workspaces. Each workspace is like a logical monitor on which to display our windows. Thus, we can have multiple full screen windows open in different workspaces at a time. If we open many windows, we may also group our windows according to type or use in different workspaces so that all the windows do not clutter a single workspace. Figure 6.11 shows various components of Ubuntu Window.

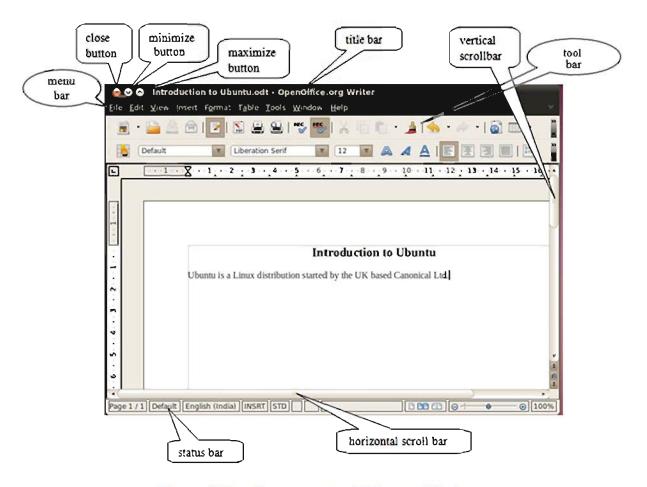


Figure 6.11: Components of Ubuntu Window

A window on the screen usually represents a running program, though it is possible to have running programs with no associated window as well as a single running program that has opened multiple windows. A window has a title bar at the top that contains its title and some buttons. It usually has borders. A window may also have a status bar at the bottom for displaying status messages. If the contents in the window are wide and cannot be displayed entirely in the current width of the window, it automatically acquires a horizontal scrollbar at the bottom for moving the content horizontally. Some laptops provide a horizontal scroll region on the trackpad to operate the horizontal scroll bar. Similarly, if the contents of the window are too long to be displayed entirely in the current height of the window, it automatically acquires a vertical scroll bar on the right side that can be used to move the contents up or down. When the scroll wheel on the mouse is rotated, it operates this scroll bar. The vertical scroll region on the trackpad of a laptop also operates this scroll bar.

Unix-like systems, including Linux, expect a three-button mouse, i.e. a mouse having a left mouse button, a right mouse button and a middle mouse button. Some mice do actually have three buttons, while many others allow us to press the scroll wheel as if it were the middle mouse button. If your mouse does not have either of these options, or if you use a laptop that generally does

not have a middle button or scroll wheel, you may simulate the middle-click by pressing both the left and the right buttons at the same time. While in most cases where Linux does not detect a three-button mouse it automatically enables this three-button mouse simulation, in some specific cases we may have to enable it. The middle-click has several uses in the Linux environment.

Some windows are not resizable, i.e. their size cannot be changed. Most windows, however, can be resized. One may move the mouse pointer to any border or corner of the window, press the left mouse button, when the shape of the mouse pointer changes, drag the mouse pointer (i.e. move the mouse while keeping the button pressed) to change the size of the window. Similarly, windows can be moved around on the screen by pressing the mouse button on the title bar, and dragging the window when the mouse pointer changes shape.

Although Linux supports the use of multiple monitors with a single system, most people have a single display. And most of the times users tend to open multiple windows. This calls for effective management of the screen space by optimal positioning of windows and switching between windows when needed. In Ubuntu, a window can be minimized (a state in which it occupies no space on the desktop), restored (its size changes to the size it had before the last minimize or maximize operation), maximized horizontally (it occupies the full width of the desktop, while its height remains same), maximized vertically (it occupies the full height of the desktop, while its width remains same) or maximized

Figure 6.12: System Menu

in both the direction, in which case it occupies the entire desktop region. All these options are available in the system menu. Three buttons are also provided for this purpose, a minimize button, a maximize/restore button (if the window is not maximized in both the directions, it maximizes it, otherwise it restores it to its previous size) and a close button that terminates the corresponding program. These buttons are the three rightmost buttons in the title bar of the window (in later versions, they have been repositioned to the leftmost position for faster access, but it is possible to change the arrangement). It is also possible to perform the operations mentioned using system menu. Figure 6.12 shows the system menu.

One can minimize all open windows (and hence show the desktop) by pressing SUPER+D (the key on the newer keyboards with the Windows logo on it is known as the Super key in Linux) and the windows can later be restored by pressing SUPER+D again. If your keyboard does not have the super key, you may try CTRL+ALT+D. Linux also allows us to view and modify these shortcut keys.

Ubuntu versions up to and including 10.10 used the GNOME2 desktop by default. Subsequent versions use the newer Unity desktop by default. We may switch to a particular program by clicking its representation in the lower panel (GNOME2 interface). Alternatively, we may press ALT+TAB, which displays smaller versions of all open windows. Keep pressing TAB without releasing ALT until the program that you want to switch to is highlighted, then release the ALT key.

If we have a machine with better hardware and graphics capability, It is possible to get very attractive 2D and 3D effects when performing these windows related operations by using the Compiz window manager and enabling the extra effects.

Linux Terminal

While working with the GUI, often we feel the need to use the CLI to type some command or to run some scripts. Of course, we have six text mode screens at our disposal, but they are plain. We can also get the CLI in the graphical mode using a program known as xterm. xterm (also known simply as Terminal) is a graphical emulator of the text mode terminal. It provides several enhancements over the standard text mode screen like multicolour display (many text mode terminals also have this facility), the ability to select the default foreground and background colours, font style, font size, etc. It also allows us to select and copy text in any program (not just terminal) and paste it in a terminal. So if we find some complex command on a web page or in a manual, we may simply copy it and paste it in our terminal — we don't have to go for tedious and error prone retyping. We may also have two terminal windows side-by-side on the screen for comparison, copy-paste, etc. While working in one terminal, if we forget some option of a command, we may open another terminal to look up that command in the online manual. The terminal also allows us to use the mouse in a limited way. Figure 6.13 shows a terminal window.

Figure 6.13: Terminal Window

Home Directory

Every interactive user in Ubuntu is expected to have a home directory, typically a directory with the same name as the username inside the /home directory. A user has full rights to perform any operation on any file or directory inside one's home directory. Also, one user's home directory is generally not accessible to another user. A user is expected to store all one's work in one's home directory. The user's home directory is also used to store the user's personal preferences and configuration choices that apply only to that user and not to the whole system. The GUI in figure 6.10 shows a look of typical home directory.

User Types in Ubuntu

As Linux is a security conscious operating system, different users are given the privileges (rights) to perform different operations. Users can perform only those operations that they are authorized to perform. While each user can potentially have different privileges, there are three broad categories of users as follows:

- The Super User: Every Linux system has a super user, traditionally called root, who has all the privileges and can do anything and everything in the system. However, logging in and working as the super user is extremely risky, because in that case you have the potential to accidently cause serious damage to the system. For example, you may permanently delete some important file or directory by mistake, and the whole system may become unusable. Because of such dangers associated with super user login, the super user account is locked by default on modern Linux systems (i.e., no one is allowed to login as superuser).
- The Normal Users: The second type of users is normal users. These users can run common software and have modification rights only to their home directory. They may personalize or customize certain aspects of the system, but these configuration settings will be stored in their home directories and will only apply to them, not to other users or the whole system. They cannot see other user's home directories or interfere with their work. They also cannot install any software at the global (system) level.
- The Administrative Users: The third category of users is administrative users. To prevent unintentional damage, these users also start out as normal users only. However, when they have to perform some administrative operation in the CLI, they execute the program with either of the commands sudo (for text mode commands) or gksudo (for graphical mode commands). These commands, when run for the first time, prompt the user for their password as an additional security measure and remember the same for about 15 minutes, after which they prompt again for the password. Then they check whether the user is indeed an administrator user or not. If the user is indeed an administrator user, the indicated program is run with superuser privileges; otherwise an error message is displayed. In essence, even an administrator user remains an ordinary user

except for those commands that are run with sudo or gksudo. Both successful and unsuccessful attempts to run sudo or gksudo are logged in a log file that the administrator can examine to know who tried or did what. Graphical administrative programs directly started from the GUI also prompt for the password and check for authorization to perform the operation in a similar way.

The ordinary or normal users do not have the permission to run sudo or gksudo. These users can only run regular applications. They cannot perform any system administration task.

Getting Help

Learning new software often requires some help. Ubuntu comes bundled with some basic documentation accessible from the GUI. For most of the command in the CLI mode, it provides online manuals accessible straight from the CLI. Apart from this, extensive support is available on the Web. Though the support provided by Canonical's support team is commercial, and their chief source of income; they do have substantial online documentation. The Ubuntu user community also contributes to help others. Some examples of official Ubuntu or community support sites are mentioned below:

- https://help.ubuntu.com
- http://www.ubuntu.com/support/community
- http://ubuntuforums.org
- http://askubuntu.com

Apart from these, a large number of discussion forums, web sites and blog sites provide comments, discussions, suggestions, solutions to problems, tutorials, introductory as well as reference material, etc. For most problems a search engine and a little patience can find the solution for us. If we post our problem in the right forum in an appropriate way, chances of some kind-hearted and knowledgeable person helping us out are high.

While continuing to strengthen its position in the segments where it is also present, Ubuntu is also planning to chart new territories. Recently Mark Shuttleworth announced that Ubuntu 14.04 will also run on (Internet) TVs, smartphones and tablets. Already Ubuntu TV and Ubuntu for Android (a smartphone Operating System) are in trial stage.

Summary

In this chapter we discussed how the Unix and Linux operating systems evolved and their key features. How the battle of proprietary software v/s free software is shaping the computing landscape. What does free software mean, how does free software work and why even commercial entities are interested in free software. We saw how to run Ubuntu Linux and some basic working of Ubuntu Linux.

EXERCISE

1.	Wh	ere was the Unix operating system developed?				
2.	List the innovative ideas popularized by Unix.					
3.	What are the four fundamental freedoms in Richard Stallman's vision for free software?					
4.	Wri	Write the advantages of the Linux operating system.				
5.	Wh	y is it important to shutdown one's computer properly?				
6.	Exp	xplain locking and unlocking of the computer.				
7.	Exp	Explain the use of the "switch user" option.				
8.	Hov	How can one move a window on the screen ?				
9.	Hov	v can one resize a window?				
10.	Exp	lain the minimizing, maximizing and restoring of windows.				
11.	Exp	plain the three major types of users in Linux with their powers and typical working.				
12.						
	(1)	The Unix system was developed at –				
	(-)	(a) AT&T, Bell Laboratories (b) Finland				
		(c) MIT (d) Free Software Foundation				
	(2)	What was the full form of Multics?				
	(-)	(a) Multiple User Information and Computing System				
(b) Multiple User Information and Computing Service						
	(c) Multiplexed Information and Computing System					
		(d) Multiplexed Information and Computing Service				
	(3) Which game was instrumental in the development of Unix?					
		(a) Space Wars (b) Space Travel				
		(c) Time Travel (d) War of the Worlds				
	(4)	What was the original name of Unix ?				
		(a) Unics (b) Uniks				
		(c) Uniques (d) It was Unix from the beginning				
	(5)	Who started the Free Software Foundation ?				
		(a) Ken Thompson (b) Richard Stallman				
		(c) Dennis Ritchie (d) Linus Torvalds				
	(6)	Which of the following is not a freedom sought by the Free Software Foundation?				
		(a) The freedom to delete the program				
	(b) The freedom to study the program					
		(c) The freedom to redistribute the program				
		(d) The freedom to modify the program				

(7)	Wh	at is the full form of GNU?					
	(a)	Great New Unix	(b)	Good New Unix			
	(c)	GNU is New Unix	(d)	GNU is Not Unix			
(8)	Wh	o developed the Linux kernel?					
	(a)	Linus Torvalds	(b)	Richard Stallman			
	(c)	Ken Thompson	(d)	Denis Ritchie			
(9)	Wh	at is the full form of Linux?					
	(a)	Linux is New Unix	(b)	Linus's New Unix			
	(c)	Linux is Not Unix	(d)	Linux is Next Unix			
(10)	Wh	ich of the following is not a major	r ope	erating system family for the PC?			
	(a)	Microsoft Windows	(b)	OS X			
	(c)	Apache	(d)	Linux			
(11)	On	which Linux distribution is Ubuntu	ı Lin	ux based?			
	(a)	Debian GNU/Linux	(b)	Fedora Linux			
	(c)	Red Hat Linux	(d)	Linux Mint			
(12)	Wh	at is the Windows-based Ubuntu ir	ıstall	er called?			
	(a)	Wubu	(b)	Wibu			
	(c)	Winubu	(d)	Wubi			
(13)	In (Jbuntu, additional storage devices	are	accessed by -			
	(a) mounting them on an existing directory						
	(b)	drive letters like D:, E:, F:, etc.					
	(c)	mounting them on a non-existent of	direc	tory			
	(d)	booting the system from that devi	ce				
(14)	In I	cinux, the key with the Windows	logo	on it is known as -			
	(a)	SUPER key	(b)	WINDOWS key			
	(c)	SHORTCUT key	(d)	SPECIAL key			
(15)	Wh	ich key is used to switch between	ope	n windows ?			
	(a)	CTRL+SPACE	(b)	ALT+SPACE			
	(c)	ALT+TAB	(d)	ALT+TAB			
(16)	The	graphical emulator of the text mo	de to	erminal is known as -			
	(a)	gterm	(b)	gedit			
	(c)	xterm	(d)	virtual terminal			

LABORATORY EXERCISE

Perform the following operations under Ubuntu and note down the steps used to perform them:

- 1. Learn to startup and shut down the computer properly.
- 2. Learn how to login to the system, switch to another user while keeping your session open and how to come back to your session.
- 3. Learn to lock and unlock your computer.
- 4. Learn to switch between and operate different virtual screens (text mode and graphical).
- 5. Draw a figure of a typical program window and marks its various components.
- 6. Learn to perform the operations of minimize, maximize horizontally, maximize vertically, maximize and restore actions on a window and note down their effects on the window.
- 7. Start multiple programs and practice switching between them using the keyboard and the mouse.

•

Introducation to Ubuntu Linux GUI

We have already learnt that Operating System allows user to use two modes of interaction command line interface and graphical user interface. In this chapter we will introduce you to the GNOME2 desktop and its different panels. We will also see how to customize the appearance of the GNOME desktop.

GNOME2 Desktop

Open source software is all about freedom and choices. Linux is no exception. It provides multiple choices for most components of the operating system. The desktop manager or simply the desktop is no exception. Linux provides several desktop managers, including GNOME, KDE, Unity, Xfce, LXDE, and many more. While the first three desktops require more powerful systems with better graphics capability, the last two desktops are light-weight and can run even on quite low-end machines. GNOME2 (GNOME version 2) was the default desktop for Ubuntu Linux until Ubuntu 10.10. Ubuntu 11.04 onwards use the Unity desktop. You can install different desktops as per your choice but GNOME2 provides a very good desktop environment for personal computer users.

When the GNOME2 desktop starts, we get a screen as shown in figure 7.1. There are three major components of the screen – the top panel (a horizontal bar at the top of the screen), the bottom panel (a horizontal bar at the bottom of the screen) and the desktop (the part of the screen between these panels). In general, left-clicking an item selects it. Active items in the panels (like menus, indicators and application launchers) execute the corresponding action on single-click, while desktop shortcuts and executable program files in the Nautilus file browser get executed only on double-click. Right-clicking on an item brings up a floating menu of options specific to that item. It is known as the context menu. Hovering over an item (keeping the mouse cursor over that item for a little longer period) often brings up a small window called "tool tip" explaining that item in brief.

The Top Panel

The top panel contains the menu bar with three menu items (Applications, Places and System), the application launchers, the notification area and some applets, including one for the system date and time, the "Me Menu" and the session menu. The desktop is initially empty, but the user can place frequently used files, folders and application launchers there for quick access. The bottom panel contains a "Show Desktop" icon, mini representations of applications that are running, the Desktop Switcher and the Trash icon. These elements are explained below.

The Applications Menu

This menu presents a category wise submenu of the applications installed in the system as shown in figure 7.2. One can run an application by selecting it from this menu hierarchy.

Figure 7.1: GNOME2 Desktop

Figure 7.2: Applications Menu

The categories and common preinstalled software are as mentioned:

- Accessories: Contains a calculator application for performing basic arithmetic as well as scientific calculations, CD/DVD Creator for writing to CD/DVD disks, Disk Usage Analyzer for analyzing the usage of disk space directory wise or file type wise, gedit text editor for creating and editing plain text files (without formatting), Manage Print Jobs to manage the jobs submitted for printing, Take Screenshot for capturing the current screen display in an image (picture) file, Terminal for using the CLI and Tomboy Notes for creating computer "notebooks" to note down your ideas and thoughts in an organized and searchable way.
- Games: Contains some computer games that you can play for relaxing.
- Graphics: Contains F-Spot Photo Manager for managing photographs taken using a digital camera or mobile phone camera, GIMP Image Editor for editing images (pictures), OpenOffice.org Draw for drawing and painting simple drawings and Simple Scan for scanning documents and pictures using a scanner.
- Internet: This category contains Empathy IM client for chatting with others on the Internet, Mozilla FireFox web browser for surfing the World Wide Web, Gwibber Social Client for social networking using sites like Facebook, Twitter and software to see and control another user's desktop screen from your machine and vice versa.
- Office: As the name suggests, this category gives access to the tools most commonly
 needed for office work. These include an online dictionary, an email client (Evolution) for
 accessing email and sharing your schedule (calendar) with your colleges, clients, etc., and
 the OpenOffice.org suit of free and open source office productivity applications that includes
 the Writer word processor, the Calc Spreadsheet program and the Impress presentation
 tool.
- Sound and Video: This category contains applications meant for entertainment. It also includes the Brasero Disk Burner for burning (writing) CD and DVD disks, Movie Player to play movies on the computer, Pitivi video editor for performing basic video editing tasks, Rhythmbox Music Player to play music and Sound Recorder to record your voice if you possess a microphone and, of course, a voice worth recording.
- **Ubuntu Software Center:** If you are not satisfied with the built-in applications provided, there are tens of thousands of applications (most of them free, but some paid as well) in the software repositories hosted and maintained by Canonical Ltd., its partners and affiliates, the Debian project (on which Ubuntu is based) and other communities and organizations. This option provides you access to host of application both for study and play.

The Places Menu

This menu as shown in figure 7.3, allows you to access various storage devices in your computer as well as on other connected computers.

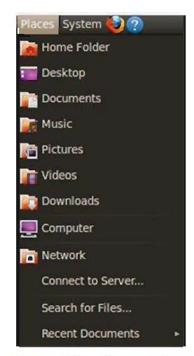


Figure 7.3: Places Menu

The submenus of Places menu are as mentioned:

- Home Folder: Opens the currently logged-in user's home directory in the Nautilus file browser. This browser has been described in detail in the next chapter.
- Desktop: Opens the user's "Desktop" folder in the Nautilus file browser. This is a folder inside the user's home directory. Any file placed here is displayed on the user's desktop and any file placed graphically on the user's desktop lands up here.
- **Documents:** This is again a folder inside the user's home directory meant for storing the user's personal documents.
- Music: This folder inside the user's home directory can be used to store music files.
- Pictures: This folder inside the user's home directory can be used to store pictures.
- Videos: This folder inside the user's home directory can be used to store video files.
- **Downloads**: Files downloaded from the Internet are saved in this folder by default, if required this setting can be changed easily.
- Computer: Shows all the fixed and removable storage devices present in the computer.
- Network: Shows all the other computers (running Ubuntu or Windows operating system)
 on the same network. If sharing is enabled on some of these computers, one can easily
 copy and transfer files to and from those computers.
- Connect to Server...: This option can be used to connect to a variety of powerful
 "server" computers running any Unix-like or Windows operating system. Large
 organizations use server computers to provide common services to all computers on the
 network.

- Search for Files...: This option can be used to search for a file by their name when a user forgets in which directory the file was saved.
- Recent Documents: Shows a list of files opened recently. From here one can reopen a recently used file quickly without having to navigate the directory structure. This facility is also useful in cases where one forgets where one saved a recent file or when one has multiple versions of the same file in different directories and wants to open the latest version.
- Bookmarks: The places menu also displays the bookmarks you have created in Nautilus. If there are only few of them, they are displayed directly in the Places menu; otherwise they are clubbed together in a Bookmarks menu. These bookmarks let you open frequently accessed directories quickly.
- Removable Devices and Discovered Partitions: If any hard disk partition apart from
 the one containing the Linux root file system is discovered during the boot process, the
 same is listed in the Places menu. Opening the partition automatically mounts it. Similarly,
 any removable device (CD/DVD/flash disk/external disk) we insert is mounted automatically
 and displayed in the Places menu.

The System Menu

This menu, shown in figure 7.4, allows the user to customize one's Ubuntu installation and carry out system administration. This menu has two submenus, namely Preferences and Administration; it also has three other options.

Figure 7.4: System Menu

Preferences Menu

82

The Preferences submenu as shown in figure 7.5, provides various ways of customizing our system. Some options of preferences menu are discussed herewith.

- About Me: allows the currently logged-in user to view and modify their profile (personal information).
- Appearance: allows the user to change the desktop background image (the picture displayed in the desktop area, also known as wallpaper), set the default font and font sizes for various categories and select a theme. Choosing and applying a theme applies a harmonious setting of desktop wallpaper, fonts, colors and appearances of different elements of windows, etc.

Apart from the built-in themes, more themes are available online. There is a tab for Visual Effects. here, three levels of visual effects are provided — none, normal and extra. The default is none. Depending on the graphics capability of your system, the other two options may or may not be permitted. Setting a higher level enables a wide range of 2D and 3D visual effects.

- Assistive Technologies: provides special programs and settings to help physically challenged people use the computer.
- Main Menu: option allows us to decide which items appear in the menus and which items do not.
 Users with little more knowledge can also add or modify the menu items.
- Monitors: option can be used to set monitor options, particularly the display resolution – number of pixels in a row and the number of such rows.
- Mouse Preferences: option can be used to fine tune mouse settings.
- Network Connections and Network Proxy: options allow us to set network settings.
- Power Management: is used to set options that conserve power (and help save environment). These options cause the computer to turn off display or go into hibernate/sleep mode when not used for
- About Me Appearance 🥋 Assistive Technologies Bluetooth Broadcast Preferences i IBus Preferences Keyboard Keyboard Shortcuts / Main Menu Messaging and VoIP Accounts Monitors | Mouse Network Connections Network Proxy Personal File Sharing 🤗 Power Management Preferred Applications Remote Desktop Screensaver Sound Startup Applications Muntu One Windows

Figure 7.5: Preferences Menu

- certain duration. You can also decide the action to be taken when a computer is running on battery backup (like a laptop computer running on battery or a desktop computer running on UPS) and the battery backup is critically low.
- Preferred Applications: lets you to choose your favorite applications for common
 Internet and multimedia tasks. Considering that there are many choices of applications for
 common tasks in Linux, this menu item allows you to specify your preferences.
- Remote Desktop: allows you to share your desktop with someone else. When you share your desktop with someone, both you and that user see your desktop on a continually updated basis. When anyone of you move the mouse or press a key, the effect will be seen by both. This facility has many uses like allowing a worker to work on office computer from home, allowing a technician to take control of a user's computer for troubleshooting and for solving problems and providing training through live demonstration of computer operation. Of course, appropriate security measures are present to prevent unauthorized access to your computer.

- Screensaver: is an application that springs into action when the user does not perform any action for certain duration. Generally it displays a constantly changing image on the screen. The original idea was to frequently change the display to prevent permanent damage to older monitors caused by the display of a bright pixel for an extended period of time. Even though modern monitors do not suffer from this problem, screensavers are still used for their visual appeal, to break the monotony and to draw the use's attention to the unused computer.
- Sound: allows the user to set volume level as well as other sound input/output related
 options.
- Startup Applications: controls which applications are automatically started when the computer starts. If you find that your computer takes too long to boot, you may check your startup applications and remove those that you can do without. But you need to be careful not to turn off some essential service.
- **Ubuntu One**: is Canonical's cloud (Internet) storage solution. It allows you to purchase music and store your files on Canonical's server computers. You may access them anywhere in the world from any Ubuntu computer, provided you have Internet connectivity.
- Windows: lets you set some basic options regarding the behavior of application windows. In particular, you may choose what action should be taken when you double-click the title bar of a window. The possibilities include maximizing the window, minimizing the window, maximizing the window vertically (so that it occupies the full screen height, but its width is not changed), maximizing the window horizontally (so that it occupies the full screen width, but its height is not changed), etc.

Administration Menu

The Administration submenu shown in figure 7.6 provides various tools for the control and management of the system. Important tools include disk utility (a graphical software that displays disks and disk partitions and allows the user to create, delete, edit and format disk partitions, mount and unmount file systems, etc.), Language Support (allows us to include support for various language, including Indian languages), Printing (to control print jobs), Software Sources (to set the repositories on the Internet from which to install software), Synaptic Package Manager (to install and uninstall software), Startup Disk Creator (to create a bootable flash disk/pen drive), Time and Date (to set the system date and time and time zone information), Update Manager (to get latest updated versions of the currently installed software) and Users and Groups (to manage the users and user groups on the computer).

Figure 7.6: Administration Menu

- Help and Support: provides some basic documentation on how to start using Ubuntu.
- About GNOME: displays version and other information about the GNOME desktop in use.
- About Ubuntu: displays the Ubuntu version in use and some introductory material on it.

The Application Launchers

If you run some application frequently, you may find it tedious to navigate the hierarchical menu structure to reach and start the application every time. The part of the top panel between the menu and the notification area can be used to house application launchers for applications frequently used by you. These launchers are represented by small icons in the panel. Two launchers are already there by default — one for Mozilla Firefox web browser and another for Ubuntu's built-in help tool. There are two ways to add application launchers to the top panel. One is to locate the application in the Applications menu hierarchy, then right-clicking on it and selecting the option "Add this launcher to panel". Another way is to right-click in an empty area in the top panel, select the option "Add to panel..." and then select one of the predefined launchers from the list. The option "Application Launcher..." lets one select an application from the menu hierarchy, while the option "Custom Application Launcher" allows you to create your own launcher.

When you select the option "Custom Application Launcher", you get the dialog box shown in figure 7.7. There are three options for the type of the launcher – Application (a GUI application), Application in Terminal (a CLI application or a GUI application that needs to start initially in a terminal) and Location. To create a launcher for an application, you need to provide the executable program file corresponding to the application you want to run.

Figure 7.7: Creating Custom Launcher

You may type it in the "Command" field or use the "Browse..." button to select the file. The browse button opens the standard file selection dialog box shown in figure 7.8, which can be operated in a manner analogous to using the Nautilus file browser described in the next chapter. To create a launcher for a location (a file) in the file system hierarchy, you select the file in the same way.

The "Name" and "Comment" fields are used to provide the name and description of for the launcher, with the latter being optional. The icon associated with the launcher can be changed by clicking

on the icon shown in the dialog box and selecting a new one. Most of the standard icons can be found in subdirectories of the directory /usr/share/icons. Alternatively, any small picture can be selected as the icon; we can even make our own icon using the GIMP image manipulation program discussed in the next chapter.

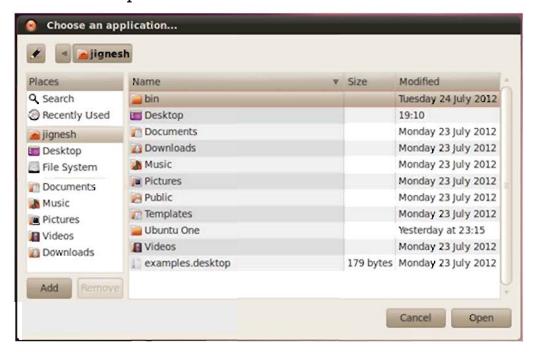


Figure 7.8: File Selection Dialog Box

If you have populated your top panel with a large number of launchers, you may add one or more "separator" items available in the "Add to panel..." list to group and visually separate different sets of launchers. These items appear as vertical bars in the panel. The launchers can be easily rearranged using an operation known as "drag and drop". This maneuver is executed by positioning the mouse cursor on the item in question, pressing the left mouse button, then moving the mouse to the destination while keeping the left mouse button pressed and finally releasing the mouse button. To prevent accidental drag and drop of a launcher, a launcher can be "locked" to its position using the "Lock To Panel" option in the context menu that opens when you right-click the launcher. A checkmark besides the option text means the launcher is currently in the locked state. The launcher can be unlocked simply by opening and clicking on the same option again. "Remove From Panel" option available in the same context menu allows one to remove the launcher from the panel. Figure 7.9 shows the top panel after addition of some application launchers and separators.

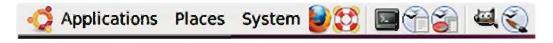


Figure 7.9: Left View of Top Panel with Some Application Launchers

Figure 7.10 shows the right side of the top panel containing the indicator applets, the "Me Menu" and the session menu.

Computer Studies: 9

86

Figure 7.10: Right View of Top Panel

Both these views may differ on your computers depending upon the settings of your machine. Let us discuss the components on the right view of top panel.

The Notification Area: This area has several indicator applets (small applications) by default. The sound applet with the speaker icon allows you to control the sound level from the system's speakers and also lets you quickly mute and unmute sound.

The envelop icon next to it represents the Evolution Personal Information Management (PIM) tool. Evolution provides an email client that downloads and stores one's emails on the local system so that they can be accessed even when not connected to the Internet. Among other things, it also provides Internet Messaging (IM or chat) facility and a facility to manage your calendar (schedule of activities to be performed).

The next indicator is the date/time applet that displays the current date and time. Clicking on it opens a calendar for the current month as shown in figure 7.11.

Figure 7.11: Calendar Applet

To see the day of the week from past or future, one may use the small triangles on the two sides of the month name and year name to change the month and year respectively. The map at the bottom indicates which parts of the planet are currently receiving day light and which ones are in the dark. Clicking for a second time on the date/time indicator closes the calendar.

The next applet shows the status of the network interface(s) in the computer and also allows one to connect or disconnect specific network interfaces (particularly useful for wireless networks). Selecting "Edit Connections..." from the context menu that opens when we right-click on the network indicator opens the same interface that is used to edit network connections from the preferences

menu. The icon of the network indicator itself indicates the current network state (not connected/ trying to connect/connected).

The "Me Menu": This menu, shown in figure 7.12, is identified by the currently logged in user's name. It is a quick access social networking and cloud access tool. The first few options (Available, Away, Busy, Invisible, and Offline) let you specify your status that will be shown to others on social networking platforms. Next two options allow you to set up access to your social networking accounts. Once these have been established, the indicator applet will notify you about new messages, chat requests, etc. that you receive on those sites. You can also send messages and chat requests.

The last option in the Me Menu allows you to register the computer that you use with Canonical's free cloud based service Ubuntu One. The meaning of "cloud based" here is that all the files and folders you store in

88

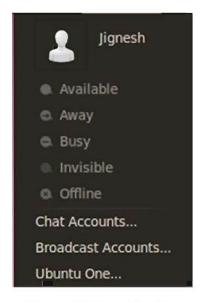


Figure 7.12: Me Menu

Ubuntu One are actually stored on Ubuntu's server computers, not on your computer; and can be accessed over the Internet from any computer anywhere in the world. These can also be shared with others. One must have an account with the Ubuntu One service to use it. If you do not have one, creating a free account is a simple process.

Ubuntu also allows you to "sync" (synchronize) your contacts, browser bookmarks and files and folders on the local (current) computer with the same information stored on the server. The synchronization process automatically compares each and every item on the local computer with the corresponding item on the server computer and whenever it finds an item that has been added/modified/deleted more recently on one computer, it automatically applies the same operation to the other computer. At the end of the process, both the computers have identical and the latest record of the information. This way, if you synchronize from time to time, you always get the latest information irrespective of your geographical location and the current computer in use.

You may also synchronize one computer having a lot of data with the server, and then synchronize another fresh computer with the server. That would effectively transfer the data from one computer to another. Similarly, you may upload a file on the server from one computer and download and use the file on another computer anywhere in the world. This facility is a boon for people who have to travel a lot as there is no danger of forgetting to carry some important file with oneself. A lot of people keep a copy of their latest files on the cloud so that the same can be accessed from anywhere in the world or can be shared with others.

Ubuntu One also provides an online music store (currently not available in India) and the facility of instantly uploading and sharing photographs taken using an Android phone with friends and

relatives. Ubuntu One can be accessed from computers running Ubuntu, some other Linux/Unix operating systems and Microsoft Windows as well as Android and iOS mobile phones. The free account provides 5GB of storage. Additional storage, if needed, can be purchased. Advertisements and sale of storage space and music on this cloud service is one of the sources of revenue for Canonical.

The Session Menu

The rightmost item on the top panel is the session menu (see figure 7.13). This menu provides options for managing the user session. These include options to lock the system, log out of the system, switch to another user, put the system into sleep mode or hibernate mode and shut down the system. The "Guest Session" option opens a session meant for temporary or casual users. The guest user cannot make any permanent change to the system and all the changes made by the user in the temporary home directory (the concept of home directory is discussed in the previous chapter) created for them are lost when the session ends.

Figure 7.13: Session Menu

The Bottom Panel

The bottom panel as shown figure 7.14 has the "Show Desktop" icon on the left side and the "Trash" icon on the right side. When the user clicks on the "Show Desktop" icon, all open windows are minimized, revealing the desktop. Clicking again on the same icon restores the windows to their previous state.

Figure 7.14: Bottom Panel

The Trash Can (Trash) is provided for the user's safety. Any file or folder deleted by the user using the file browser is not deleted immediately; it is moved into the Trash Can. In case the user deletes some file or folder accidently or by mistake; the Trash folder provides an opportunity to bring the same back. At any time, the user may open the Trash by clicking its icon and see the deleted files and folders (see figure 7.15).

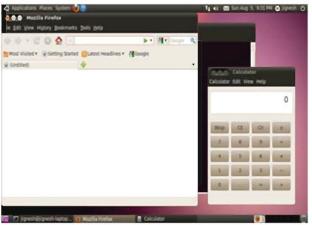
Right-clicking on any item in the Trash brings up a context menu that includes the options to open the item (to see what is there in it), cut or copy the item, copy or move the item to a selected directory, an option to delete the item permanently and a restore option that puts the item back in the directory from where it was deleted. There is also a button to empty the whole Trash near the top. Selecting this option deletes all items in the Trash permanently. Once an item is deleted permanently, it cannot be recovered. One important thing needs to be mentioned here though, only items deleted from the graphical file browser are moved to the Trash. Items deleted in other ways (from the terminal or some program, for example) are not moved to the Trash and are deleted permanently.

Figure 7.15: View of Trash Folder

On the left side of the Trash icon is the Workspace Switcher. It displays a mini representation of each workspace in the panel. By default there are four workspaces in Ubuntu. The four workspaces are arranged in a 1 x 4 grid. It even tries to show how many and which windows are open in which workspace in such a small area. We may switch to any of the workspaces by clicking on its mini representation in the workspace switcher. We may also use the shortcut keys CTRL-ALT-arrow keys to switch between the workspaces.

The area between the "Show Desktop" icon and the workspace switcher in the bottom panel is initially empty. This area is used to display mini representations of all running applications, consisting of their icons and titles. As we open more and more applications, these shrink in size. We may switch to any application by clicking on its mini representation in the bottom panel. We may also use the key combination ALT-TAB to switch between running applications.

The Desktop


The desktop is the entire area between the top and bottom panels. A background picture is displayed on it. Any other item the user puts on the desktop will be placed in front of the background, obscuring that much portion of the background. Initially the desktop is empty, but the user may place frequently used files, directories as well as application launchers on the desktop for quick access.

In reality, all the items the user places on the desktop are actually stored in the subdirectory named "Desktop" in the user's home directory. Right clicking on any empty area of the desktop brings up a context menu that allows us to create folders, files and application launchers on the desktop. The process of creating an application launcher is same as the one for creating a custom launcher in the top panel described above. Alternatively, we may drag and drop files and folders from the Nautilus file browser onto the desktop or application launchers from the "Applications" menu or the top panel onto the desktop. The context menu also has an option to change the desktop background picture.

Whenever we insert a removable device, an icon for the same is displayed on the desktop. We may open it by double-clicking on it. When we right-click on the icon, we get a context menu item to unmount the device/safely remove the device/eject the media depending on the type of the device.

Customizing the Appearance of the GNOME Desktop

GNOME supports themes. A theme is a harmonious combination or bundle of various display settings. By changing the theme, we may switch from one set of settings to another. Switching the theme and background may result in substantially different look and feel (See figure 7.16).

a. The Ambience Theme

b. The Clearlooks Theme

c. The Dust Sand Theme

d. The High Contrast Inverse Theme

Figure 7.16: Some Ubuntu GNOME Desktop Themes

The High Contrast Inverse theme is for the visually challenged having limited vision. The high contrast ratio and light-on-dark colour scheme make it easy to read text.

The Appearance option in the Preferences menu has four tabs — Theme, Background, Fonts and Visual Effects. The Theme tab allows us to choose a theme from a list of installed themes. More themes are available online. The Background tab lets us choose the background. We may choose a solid colour that fills the whole desktop area, or a gradual transition from one colour to another (horizontal gradient or vertical gradient) or a picture as the background (See figure 7.17).

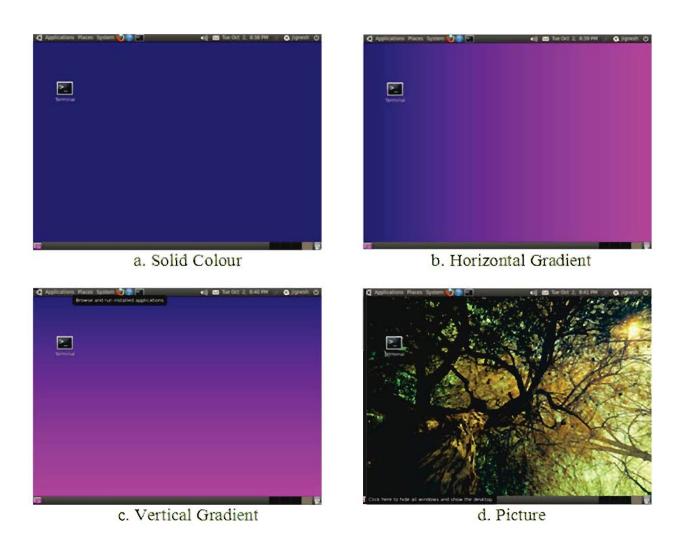


Figure 7.17: Different Background

The Fonts tab can be used to select the default fonts. To modify the fonts click on fonts tab as seen in figure 7.18.

The Visual Effects tab has three levels of special effects to choose from – None, Normal and Extra (in increasing order of visual eye-candy provided). The default is none. Setting a higher level enables a wide range of 2D and 3D visual effects. Depending on the graphics

Figure 7.18: Fonts Tab

capability of your system, the Normal and Extra options may or may not work. If some option cannot work on your system, trying to set that option will result in the message shown in figure 7.19.

Figure 7.19: Error Message

The list of some of the interesting special effects that you get is as mentioned below:

- Desktop Wall treats the workspaces as walls that the user can switch between
- Desktop Cube and Rotate Cube treat the workspaces as faces of a cube that the user can rotate, just like rolling a die
- Magnifier allows the user to magnify certain portion of the screen for better readeability, especially useful for demonstrations before a large audience using a multimedia projector
- Enhanced Zoom Desktop Allows the user to zoom in/out the desktop at the current location of the mouse pointer using the combination SUPER+mouse_scroll_wheel
- Opacity makes windows visible simply by hovering the mouse over (moving the mouse pointer over) any portion of the window

- Window Previews displays small preview window for an application when we hover the
 mouse over its mini representation in the bottom panel. The preview window shows the
 contents of the window
- Blur Windows makes windows translucent to show a light preview of what is behind them
- Fading Windows makes windows fade in (from an invisible state, become gradually more visible until fully visible) or fade out (from a fully visible state, become gradually less visible until invisible) when they are maximized or minimized respectively
- Minimize Windows makes windows decrease / increase their size in an animation when minimizing / unminimizing
- Water Effect displays effects as if the screen were a pond full of water and the mouse were a pebble thrown in
- Wobbly Windows makes the windows "wobble" (shake) when moved or maximized.
- Animation A combination of several window effects

Summary

In this chapter we discussed the GNOME2 desktop. We saw how to use the three major components of GNOME2 that is the top panel, the desktop and the bottom panel. We looked at the list of built-in software available under the Applications menu. We also learnt the use of the Places menu and the options available under the System menu. Finally we saw how to customize the appearance of the GNOME2 Desktop.

EXERCISE

- 1. What are the three major components of the GNOME2 desktop screen?
- 2. Discuss the main components of the top panel in GNOME2.
- 3. List and discuss the menu items under the Places menu in Ubuntu using GNOME2.
- 4. List the menu items under the Administration submenu in Ubuntu using GNOME2.
- 5. What are application launchers? Discuss the ways to put launchers in the top panel.
- 6. How can we create a custom application launcher?
- 7. List and discuss the indicator applets installed by default in Ubuntu using GNOME2.
- **8.** What is the "Me Menu"? What is its use?
- **9.** Describe Ubuntu One. Discuss why Canonical might have started this service.
- **10.** Explain the options in the session menu in detail.
- 11. What are the uses of the desktop?

12.	What are the contents of the bottom panel?						
13.	Wha	What is Trash? What benefit does it provide? What is its major limitation?					
14.	Wha	What is a theme ?					
15.	Choose the most appropriate option from those given below: (1) Which of the following is NOT a Linux desktop manager?						
		(a)	KDE	(b)	LXDE		
		(c)	Unity	(d)	Brasero		
	(2)	Wł	nich of the following is a light-weig	ht de	esktop manager?		
		(a)	KDE	(b)	LXDE		
		(c)	Unity	(d)	GNOME2		
	(3)	Rig	ght-clicking an item brings up -				
		(a)	context menu	(b)	global menu		
		(c)	tool tip	(d)	system menu		
	(4)	Wł	nich of the following is not a menu	in (GNOME2's top panel under Ubuntu?		
		(a)	Applications	(b)	Places		
		(c)	Preferences	(d)	System		
	(5)	Wł	nich of the following is not a part	of th	e top panel in Ubuntu with GNOME2?		
		(a)	mini-representations of windows	(b)	application launchers		
		(c)	session menu	(d)	notification area		
	(6)	Wł	nich of the following is not a GNOME2 ?	part	of the bottom panel in Ubuntu with		
		(a)	Show Desktop icon	(b)	Trash icon		
		(c)	desktop/workspace switcher	(d)	notification area		
	(7)	Wł	nich of the following is not an app menu?	licati	on category by default in the Applications		
		(a)	games	(b)	administration		
		(c)	graphics	(d)	office		
	(8)	Wł	nich of the following applications is	not	available in the office category?		
		(a)	OpenOffice.org Writer	(b)	OpenOffice.org Draw		
		(c)	OpenOffice.org calc	(d)	OpenOffice.org Impress		
	(9)	Wł	nich of the following is not a folder	r insi	de the user's home directory?		
		(a)	Desktop	(b)	Music		
		(c)	Documents	(d)	Computer		

(10) Which of the following is a built-in application launcher in the top panel '					
(a)	OpenOffice.org Writer	(b)	OpenOffice.org calc		
(c)	Help	(d)	All of these		
(11) Launchers in the top panel can be separated by -					
(a)	line	(b)	vertical bar		
(c)	horizontal bar	(d)	separator		
(12) Which menu is identified by the currently logged in user's name?					
(a)	the Me menu	(b)	the User menu		
(c)	the Personalize menu	(d)	the session menu		
(13) The cloud service from Ubuntu is known as -					
(a)	Ubuntu One	(b)	Ubuntu Music Store		
(c)	Ubuntu Cloud	(d)	Ubuntu Drive		
(14) Files deleted from the Nautilus file browser go into -					
(a)	Recycle Bin	(b)	Recycle Can		
(c)	Trash Can	(d)	Trash Bin		
(15) Which of the following is NOT a built-in theme for Ubuntu?					
(a)	Ambience	(b)	ClearType		
(c)	Dust Sand	(d)	High Contrast Inverse		

LABORATORY EXERCISE

Perform the following operations under Ubuntu and note down the steps used to perform them:

- 1. Create a launcher for the Terminal application in the top panel.
- 2. Create a launcher for the Calculator application on the Desktop.
- 3. Invoke the context menu on the desktop launcher created in step 2 above.
- 4. Start the Calculator application from the menu system.
- 5. Open your home directory from the menu system.
- 6. List the directories present by default under your home directory (excluding hidden directories explained in the next chapter).
- 7. List all storage devices currently available in your computer.
- 8. Open Network from the menu system and note if you can see other computers in your laboratory (the result depends on the laboratory setup).
- 9. Search for the file(s) containing the word "fstab" in its name in the file system. How many such files do you find?

- 10. View a list of recently opened documents.
- 11. * Insert a removable device in the system and explore its contents.
- 12. * Safely remove/eject the media from the context menu of its desktop icon.
- 13. Apply different themes and backgrounds to your system and observe the results.
- 14. Change the default font sizes for different categories and observe the result.
- 15. Try to set Visual Effects to Normal and High. Observe the result.
- 16. Look at previews of available screen savers. Try a few that you like.
- 17. Set the title bar double click preference of windows to different values and observe the results.
- 18. Read the topic "New to Ubuntu?" and its subtopics in the built-in help.
- 19. Note down the version of Ubuntu used on your system.
- **20.** Add a separator to the top panel.
- 21. Add a custom launcher to the top panel for the GUI file browser program nautilus available in the bin directory inside the usr directory in the file system. Do not provide an icon and see what icon you get.
- 22. Move the nautilus launcher you created earlier around in the top panel.
- 23. Lock the position of the nautilus launcher you created earlier. Now try to move it around.
- 24. Swap the positions of the default launchers in the top panel.
- 25. Remove the nautilus launcher you created earlier.
- **26.** Check the current system date, time and day of the week.
- 27. Find out the day of the week on 2nd October, 2012 and 15th August, 1947.
- 28. Find out the day of the week on the day you were born.
- **29.** * Experiment with the options in the session menu.
- 30. Start a guest session. Open the home folder. Notice the title bar of the window. Create a document (empty file) in the home folder using the context menu. Logout, start a guest session again and see whether you still have the file.
- 31. Place a launcher on the desktop. See if you see it in the Desktop folder in your home directory. Delete the file in that folder (by selecting it and pressing the Delete key). Look at the desktop again.
- 32. Create an empty file in your home folder. Delete it. Locate it in Trash and restore it. Again delete the file; then empty the Trash.
- **33.** Open different applications in different workspaces. Switch between the workspaces using the keyboard and the mouse.

- 34. Open different applications in the same workspace. Switch between the application using the keyboard and the mouse. If you have "Extra" effects enabled, find out the difference caused by them.
- 35. Cycle through the list of running applications in forward and reverse orders.
- **36.** Note the position and order of the window buttons on your system.

NOTES TO TEACHERS

- Students are expected to undo the changes in preferences made by them before leaving the laboratory to the extent possible.
- Exercises marked with a * in the beginning may be demonstrated by the tutor rather than being performed by the students.
- The list of special effects under the subsection "Customizing the Appearance of the GNOME Desktop" are provided only for students to appreciate the power and visual attractiveness of Linux GUIs. They are not to be covered in examinations.

•

Basic Utilities in Ubuntu Linux

In the previous chapter we looked at how to operate a computer with Ubuntu Linux OS. We will further expand that discussion by looking at some basic utilities that Ubuntu Linux provides. In this chapter we will introduce you to terminal, gedit text editor; we will see how to manipulate files and directories. We will have a look at the calculator application. As mentioned earlier Linux also provides some inbuilt applications for entertainment. We will have a look at GNOME image viewer, rhythmbox music player, totem movie player and gimp image editor.

An Introduction to the Terminal

If you want to use the CLI in Ubuntu, there are two choices. You may use one of the 6 text mode virtual terminals in Ubuntu by pressing CTRL+ALT+Fn key combination, where n is the terminal number (1-6). These virtual terminals provide you the original plain vanilla text mode experience, with the addition of a small number of colours for displaying the text. Here you cannot have your CLI session and the GUI programs side-by-side. Also the use of very convenient copy-paste functionality is not available here. It is generally used when for some reasons; you cannot start the graphical session. If we have already started a graphical session, we may also have a CLI session running as a GUI program using the GNOME Terminal (or the Terminal). It provides a CLI environment inside a GUI window. It provides much more attractive display and allows us to have multiple terminals. Other GUI programs on the screen can coexist at the same time. It allows us to resize and reposition the windows for simultaneous use. It also allows us to copy text from one program (GUI or Terminal) and paste in the other. In this section we discuss how to use this program.

Using the GNOME Terminal

The Terminal can be started by following the menu chain Applications → Accessories → Terminal or by pressing the shortcut key CTRL+ALT+T. The typical screen of the terminal will be somewhat similar to the one shown in figure 8.1.

As can be observed in figure 8.1 the appearance of the screen is not so attractive. We can tweak the appearance easily

```
Ø Ø Ø jignesh@jignesh-laptop: ~
File Edit View Terminal Help
bzgrep
                                     nisdomainname
                                                        touch
bzip2
                        gunzip
                                     ntfs-3q
                                    ntfs-3g.probe
ntfs-3g.secaudit
                                                        ulockmgr_server
bzip2recover
                        gzexe
bzless
                        gzip
                                                        uname
                        hostname
                                     ntfs-3g.usermap
bzmore
                       ip
kbd mode
                                                        uncompress
cat
                                     open
chgrp
                                     openyt
                                                        unicode_start
                        kill
                                     pidof
chmod
                                                        vdir
                        less
                                                        which
chown
                                      oing
                                                        ypdomainname
chvt
                        lessecho
                                     plymouth
ср
                        lessfile
                                                         zcat
                        lesskey
                                                        zcmp
cpio
                                     ps
dash
                                                        zdiff
                        lesspipe
                                     pwd
date
                        ln
                                     rbash
                                                         zegrep
dbus-cleanup-sockets
                        loadkeys
                                     readlink
dbus-daemon
                        login
                                     rm
                                                        zforce
dbus-uuidgen
                        ls
                                     rmdir
                                                         zgrep
dd
df
                        lsmod
                                     rnano
                                                         zless
                        mkdir
                                     run-parts
                                                         zmоге
dir
                        mknod
                                                        znew
                                     setfont
dmesg
                        mktemp
dnsdomainname
                                     setupcon
                        тоге
domainname
jignesh@jignesh-laptop:~$
```

Figure 8.1: The GNOME Terminal

to get different look as shown in figure 8.2. The Terminal, being a GUI window, can be moved, resized, minimized and maximized just like any other widow. When the entire contents of the CLI screen cannot be displayed in the window, it provides scrollbars; again, just like any other graphical program.

One major limitation of the text mode screens is that they can only display a fixed number of lines of text. If some command produces more output than can fit in the screen, the initial part of the output simply scrolls up and out of the screen and is lost (certainly, there are commands that display long output screen-by-screen, but using them means we have to type some extra characters. Also, the user has to anticipate that there will be more output than the screen can accommodate before running the commands and use this facility.). On the other hand, the Terminal stores the last several (512 by default) lines of output in memory and allows the user to scroll up and down through them.

```
ignesh@jignesh-laptop: ~

File Edit View Terminal Help

jignesh@jignesh-laptop:~$ ls

bin Documents examples.desktop Pictures Templates Videos

Desktop Downloads Music Public Ubuntu One

jignesh@jignesh-laptop:~$ ■
```

Figure 8.2: Terminal After Changing Properties

Sometimes, we may want to have more than one terminals open. For example, while we are working in a terminal, we may need to use some command, but we might have forgotten how to use it. Fortunately, Unix and Linux has had online manuals from the early days. You may read the manual without disturbing the current session in a second terminal window (see figure 8.3).

The Terminal even supports multiple tabs as shown in figure 8.4. Each tab holds a separate terminal. We may create a new tab using the File \rightarrow Open Tab option, or the SHIFT+CTRL+T shortcut key. We may switch between the tabs by clicking on the tab titles using the mouse or the CTRL+ALT+PgUp and CTRL+ALT+PgDn shortcut keys. We may also use the shortcut keys ALT+n to switch to the n^{th} terminal. A tab can be closed by clicking its close button using the mouse or the shortcut key SHIFT+CTRL+W.

We may copy text from one terminal and paste in another to save typing. We may even copy text from some other GUI program (like the OpenOffice.org Word Processor or the Firefox browser where you might have some valuable help document open) and paste in the Terminal. We may select these options from the Edit menu or use the Terminal's slightly-different-from-convention keyboard shortcuts SHIFT+CTRL+C and SHIFT+CTRL+V for copy and paste respectively.

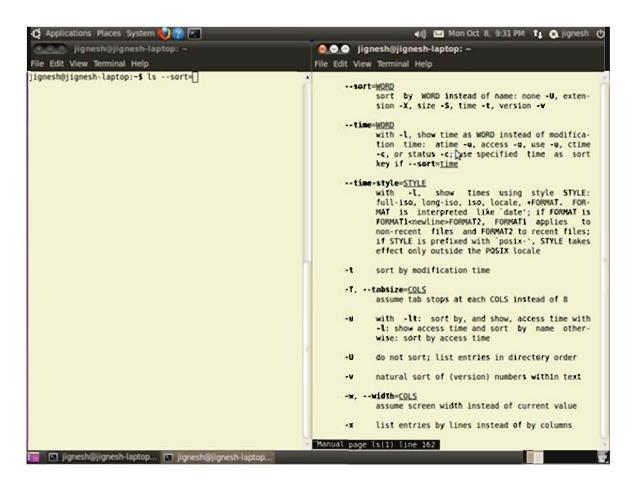


Figure 8.3: Opening Multiple Windows

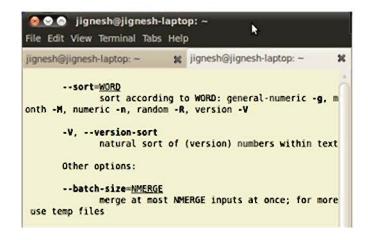


Figure 8.4: Multiple Tabs in Terminal

The Terminal has the options "Keyboard Shortcuts" and "Profile Preferences" in the Edit menu. While the first option allows us to change the keyboard shortcuts, the second one gives us control over the appearance of the Terminal as well as the some other options like scrolling (see figure 8.5).

Figure 8.5: Profile Preferences in Terminal

When we start the Terminal, a new Linux CLI session is started in it. Unlike the virtual text mode screens, you are automatically logged into the CLI session you open in a Terminal using the user name you used to log in to your GUI session. The CLI displays a short text known as the prompt. By default the prompt is username@systemname:current_directory\$, but it is highly customizable. Observe that in figure 8.2 you are able to see prompt as jignesh@jignesh-laptop:~\$. While it is beyond the scope of this book to go into the details, there are so many possibilities of having functional, colourful and fancy prompts that one may write a whole book on the topic!

After displaying the prompt, the CLI waits for you to type a command. When you type a command and press ENTER, the command is executed if there are no errors in the command. Figure 8.1 actually is showing the list of all files in current directory, the command used here is 'ls'. While the command executes, it may perform input/output. The CLI waits silently for the command to terminate. When the command terminates, it ones again springs into action and displays another prompt. This cycle goes on repeating until you exit the CLI by executing the "exit" command or by pressing CTRL+D (the Unix end-of-input marker) when you are at the prompt. If some command is running and you want to stop it for some reason, you have to press CTRL+C. You will learn more about the Linux commands later.

Manipulating Files and Directories

Ubuntu comes with file browser software called Nautilus. The name Nautilus here refers to the sea creature, the picture of which is the icon for the Nautilus software (you can see it in Nautilus by clicking Help → About). When you open any file system location (from the local computer or from the network) using the Places menu, it actually opens in the Nautilus file browser. It allows us to browse files as well as directories. Nautilus can be opened by selecting a local or remote (connected through network) file system from the Places menu. Figure 8.6 shows a sample Nautilus screen.

Figure 8.6: Nautilus File Browser

Like many other GUI programs under Linux, it has a menu bar and a toolbar (a series of icons representing actions) at the top and a status bar at the bottom. Between them, there is a content pane that displays files and folders. The menu bar and the toolbar provide the ability to take various actions, while the status bar shows some information pertinent to the current display (for example, in figure 8.6, it says there are 11 items in the current directory and free space on the current partition is 6.6 GB). There is also a side pane on the left side of the content pane that displays some standard locations and bookmarks. One may open any of these locations simply by clicking on it. The standard locations include the user's home directory (identified by the user's name), the Desktop directory, the root file system (identified simply as "File System"), Network, which displays a list of other computers connected with this computer through a network (if configured for such use) and Trash.

Opening Files and Directories

You may double-click a file or folder to open it. A folder opens in the same Nautilus window, replacing the current display of the content pane with the contents of that folder. When you double-click a file, Ubuntu tries to find out the most appropriate program for opening it, launches that program and tells it to open the file. If it cannot find a suitable program, it displays a dialog box as shown in figure 8.7.

Figure 8.7: Error Message

You may select the application to be used for opening the file or just click OK, in which case the attempt to open the file will be aborted. Right-clicking on a file gives us an option to open the file with the associated program (if there is any) as well as an option to open the file with an application of our choosing (See figure 8.8).

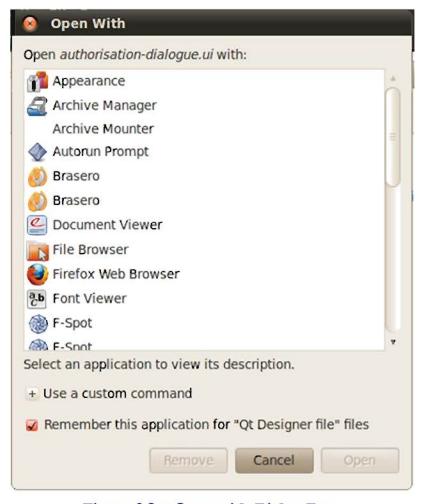


Figure 8.8: Open with Dialog Box

Among the common file types, text files open in the gedit text editor, OpenOffice.org files open in their respective OpenOffice.org application, image files (pictures) open in the Eye of Gnome application, music files open with Rhythmbox music player and video files open with the Totem Movie Player. We shall discuss these programs in coming sections.

Once we have opened multiple folders the back button in the Nautilus file browser becomes enabled. We may use this button to go back to the previous folder. Once we go back the forward button becomes enabled, this button can be used to return to the folder from where we "went back". We may also use the Up button to open the parent directory of the current directory. Just above the content pane, you can see a list of directories that need to be traversed to reach the current directory from the root directory. You may click on any of these directories to directly open it. Even after you open a parent directory, Nautilus tries to retain the child directories in this list in case you may want to visit them again.

Different Views in Nautilus

We shall use the term file system object (or just object) in this section to mean a file or a directory. Nautilus offers three different ways to look at the list of files and directories in the current directory. These are the icon view, the list view and the compact view. The view can be selected by using the view selection tool near the right hand side of the toolbar, or the shortcut keys CTRL+1, CTRL+2 and CTRL+3 can be used.

In the icon view, each object is represented by an icon (depending on its type) and its name. For many types of objects, the icons may even provide a thumbnail (a small preview of the object's contents) also. The icons are arranged in a grid form. In the compact view, the objects are represented by very small icons (no preview) and name and are arranged in a vertical list. In the list view also the objects are represented by a small icon and name and arranged in a vertical list. However, the list view also displays several other details about the objects like its size, type and the date when the object was last modified (date of last modification). In this view, we may sort (arrange) the objects in the ascending or descending order of any of the displayed columns by clicking once or twice on the column heading. This is very useful to find, say, the largest file or the latest file. In the List View, there is a "+" (expand) icon just before a folder. Clicking this icon displays the contents of the folder as well, at the same time turning the "+" (expand) icon into a "-" (collapse) icon. Clicking on the "-" (collapse) icon hides the contents of the folder.

Creating Files and Directories

A directory can be created inside the current directory by either selecting the option "Create Folder" from the File menu or by selecting the same option from the context menu (this applies only to the icon view and compact view). One may also use the keyboard shortcut SHIFT+CTRL+N. While a new file can also be created in a similar way using the "Create Document" option, that option is only useful for creating plain text file. The common way of creating a new file is to use the corresponding software application. E.g. a new OpenOffice.org text document can be created using the software's Writer program; a new image file can be created using the GIMP image editor.

Selecting Files and Directories

An object can be selected by single-clicking on it. Multiple objects can be selected by single-clicking them while holding down the CTRL key. A range of objects can be selected by selecting

one end of the range and single-clicking the other end while holding down the SHIFT key. Our selection may include only files, only directories or a mix of both as well. The context menu on a single selection can be invoked by right-clicking the selected object. In case of multi-selection, right-clicking on any one of the selected objects will invoke a context menu applicable to all selected objects.

Deleting Files and Directories

After selecting one or more files or directories, pressing the Delete key on the keyboard will delete the selected objects. Deleting a folder deletes its entire contents, including subfolders, if any, as well. Normally, a deleted object is not physically removed from the system; it is simply moved to Trash folder, thus giving the user one more chance to recover it if they deleted the object unintentionally. There is no easy way to recover an object once it has been removed from Trash folder also. One may also use the "Move to Trash" context menu option to delete and move object(s) to Trash.

Renaming Files and Directories

To change the name of an object, select the object and select Rename from the context menu, or use the shortcut key F2. Then type the new name, and press ENTER. In case you press ESC in place of ENTER, the rename operation will be cancelled. Only one object can be renamed at a time.

Copy-Paste Operation

The X Window system maintains a common clipboard. The clipboard is capable of holding one object at any given point in time, irrespective of its size. Any X Window software may "copy" or place an object on the clipboard. Since the clipboard can hold only one object at a time, when another object is copied to the clipboard, the previous object is automatically removed from there (though it will remain in its original location). Any X Window program (including the one that copied the object) can "paste" or pick up this object from the clipboard. When a program pastes an object, it receives a copy of the object, while the copy on the clipboard remains there and the original object remains in place. Thus, a copied object may be pasted multiple times, each time a new copy of the object gets created.

In Nautilus, after selecting one or more objects, we may copy them either from the context menu item Copy or by pressing the shortcut key CTRL+C. The objects can be pasted in any folder by right-clicking in an empty area and selecting the Paste option. In list view, one may right-click on the directory's name just above the content pane and select the option "Paste Into Folder". Alternatively CTRL+V can also be used to paste the contents.

Object(s) copied from a folder can be pasted in the same folder also. This will result in their copies being generated in the same folder, with names suffixed with the text "(copy)", because there cannot be two objects with the same name in the same directory. Repeating this operation multiple times results in names ending in "(another copy)", "(3rd copy)", "(4th copy)", and so on.

The Copy-Paste operation is used to keep one copy of the object(s) at their original location, while creating another copy of them at the paste site. When both locations are same, the object(s) get duplicated in the same directory. Copy-pasting a directory results in its entire contents (including any files and subdirectories) getting copied.

Cut-Paste Operation

While copy-paste operation is used to create copies of the object(s) while retaining the original object(s) at their original location, cut-paste operation is used to remove object(s) from their original location and place them in the new location. Any X Window software may "cut" an object to place it on the clipboard. At this point, the object is not removed from its original location. If the user does not paste the cut object anywhere and closes the session or places another object on the clipboard, thereby removing the first object; then the "cut" operation has no effect. However, if after the "cut" operation any X Window software performs a paste operation elsewhere, the object is removed from its original location and placed at the new location (location of paste). Thus, with cut-paste, there is always only one copy of the object. The cut-paste operation essentially moves objects around. Cutting and then pasting in the same location has no effect. Once the cut object is pasted, the clipboard becomes empty and the paste operation cannot be used again until some object is placed on the clipboard. Cut-pasting a directory moves the directory with all of its contents.

In Nautilus, after selecting one or more objects, we may cut them either from the context menu item Cut or by pressing shortcut key CTRL+X. The objects can be pasted in any folder as described earlier.

The Drag-and-Drop Operation

Like the terminal, we may open multiple Nautilus windows. When we want to move some file system object(s) from an open folder in one window to an open folder in another, we may arrange the windows so that both are visible at the same time and then drag the object(s) from the first window and drop them on the second. Holding the CTRL key while performing drag-and-drop will copy the object(s).

Bookmarks and Searching

If you use some folder frequently, you may find it cumbersome to reach the folder starting from one of the built-in places. In such situations, you may open the folder once and select the option Bookmarks \rightarrow Add Bookmark. This will add the folder permanently to the side pane as a bookmark. Now you can open the folder very easily, simply by clicking on the bookmark. The bookmark is added to the Places menu, too, so it can be selected from there also. And if you feel the side pane is occupying unnecessary space in the window, you may close it using its close button. The view menu has an option to show/hide the side pane. Nautilus also has an option to search for a file/directory in the currently open directory (including its subdirectory, sub subdirectory, and so on). Just click Go \rightarrow Search for Files and enter a part of the name of the file you are looking for.

The Calculator

OK, so you need to perform some calculations but after purchasing the latest computer you don't have a single Rupee left in your pocket to purchase a calculator. You need not worry. Just as you used the Terminal to use your graphical system like a CLI system, you can use the calculator program to temporarily convert your millions of calculations per second machine into its poor little sibling. You can start the calculator program as shown in figure 8.9 by clicking on Applications →

Accessories → Calculator.

As you can see in the calculator program looks strikingly similar to its hardware counterpart. As a result, it is probably the easiest program to learn even for computer novices – just use mouse in place of your fingers. If you are reasonably good at typing, you may use the number keys or the numeric keypad on the computer keyboard instead; because that will increase your speed dramatically. The operators (+, -, * for multiplication, / for division, C for \pm , =, etc.) can also be entered from the keyboard. The CE and CLR keys both clear the display and reset the current value to 0. Bksp works just like the Backspace key on the computer keyboard – it deletes one character to the left of the cursor every time it is pressed.

Figure 8.9: Calculator Program

Also, you may use the Undo facility in the Edit menu if you committed a mistake in entering the data or operation. Another nice touch, keeping in mind the needs of IT professionals, is the Insert ASCII Value option in Edit menu — it allows you to enter a character and inserts the ASCII code for that character in the display window. Thus, if you enter the character a (small a), you see 97 inserted in the display window.

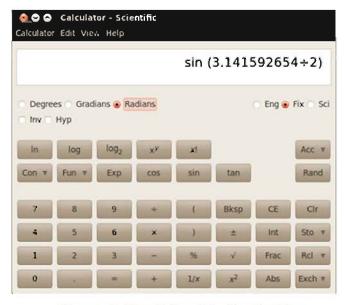


Figure 8.10: Scientific Mode View

Some of you might have an elder brother or sister studying science or engineering. In that case you might have seen the scientific calculator. It has a large number of additional operations useful in science, mathematics and engineering. Don't be disheartened. Just click View \rightarrow Scientific, and your calculator instantly morphs into a scientific calculator. (See figure 8.10) There are Advanced, Financial and Programming calculators as well (the last one provides conversions between different number systems, among other things).

The Gedit Text Editor

The gedit Text Editor (also known simply as Text Editor) is a graphical editor for plain (unformatted) text files and documents (see figure 8.11). As a plain text editor, it only saves the text in the file and never any formatting. The gedit program does allow us to change options like font, font size, colour scheme etc., but it is important to remember that these options are not saved in the file but they become the user's current gedit preferences for all files till they change these settings again.

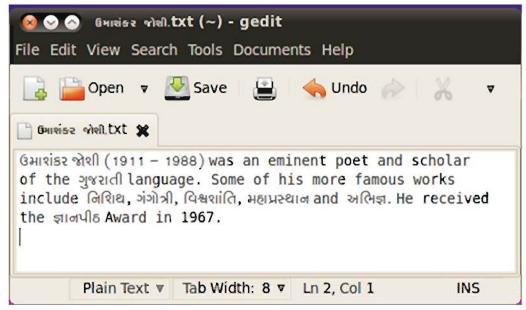


Figure 8.11: Gedit Text Editor

Like other key components of the Linux system, gedit supports major portions of the Unicode character set, including major Indian languages and even substantially different languages like Arabic (written right-to-left) and Chinese (written by combining a large number of pictograms). While Ubuntu comes with Unicode fonts to display text in all these languages, support for input in languages other than English is not included on the installation CD itself to save disk space. Support for additional languages needs to be downloaded and installed. This process is shown in Appendix 1.

Some of the more commonly used menu options along with the corresponding shortcut keys are as under:

File

- New (CTRL+N) Create a new file
- Open... (CTRL+O) Open an existing file
- Save (CTRL+S) Save the current file
- Save As... (SHIFT+CTRL+S) Save a copy the current file under a new name
- Print (CTRL+P) Print the current file
- Close (CTRL+W) Close the current file
- Quit (CTRL+Q) Quit (terminate) the gedit program

Edit

- Undo (CTRL+Z) If something goes wrong while working on a file, this option can be used to reverse the effect of the last operation; when used repeatedly, the option goes on undoing our operations in reverse order
- Redo (SHIFT+CTRL+Z) Reapply the most recently undone operation, this option can be repeated, too
- Cut (CTRL+X) to cut the text selected with the mouse to the clipboard
- Copy (CTRL+C) to copy the text selected with the mouse to the clipboard
- Paste (CTRL+V) to paste the text in the clipboard at the current cursor location
- Preferences In Ubuntu, the Preferences (options) menu is traditionally the last menu item in the Edit menu. It is this menu that provides options to change font, font size, colours, etc. for the gedit program

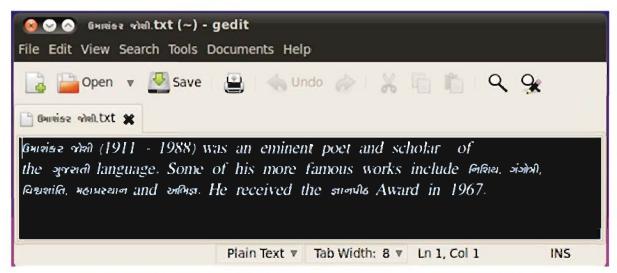


Figure 8.12: The Gedit Text Editor After Changing Preferences

Figure 8.12 shows a gedit screen after these options have been changed from their defaults. Some of the commonly used options are also available as tools (icons) in the toolbar. The gedit Text Editor supports editing of multiple files at a time. There are two ways of doing this — to open multiple separate gedit windows (see figure 8.13), or to open the two files in two tabs of the same editor window (because gedit supports tabbed interface), as shown in figure 8.14.

Figure 8.13: Multiple Gedit Windows

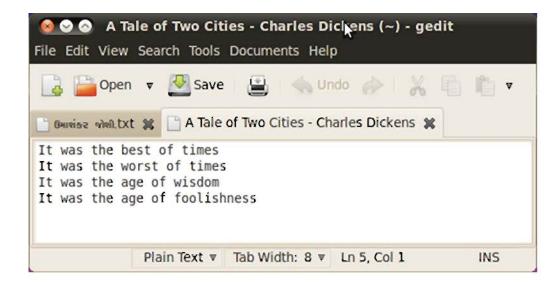


Figure 8.14: Multiple Files in Different Gedit Tabs

The benefit of the first approach is that we can see multiple files at the same time on the screen and compare them or easily use one file as a reference while editing another. The advantage of the second approach is that it requires less screen space. Also, switching between the tabs (files) is not difficult — we may click the tab heading with the mouse to switch to any tab or use the shortcut keys ALT+n to jump to the nth tab or CTRL+ALT+PgUp/CTRL+ALT+PgDn to move to the previous and next tabs respectively.

Another interesting feature is that dragging a tab title out of the window creates a new gedit window and moves the tab to it, while dragging a tab title into an existing gedit window moves the tab to that window.

If you are editing a large document and want to use the maximum screen space, you may select the "full screen" mode from the view menu. In this mode the entire screen will be occupied by the gedit window and only the content pane, where you type, will be visible hiding everything else including the title bar, the menu bar and the tool bar. The shortcut key for this is F11. You may return to the normal mode by pressing F11 again. Trying to move the mouse pointer slowly out of the screen from the top of the screen will make the toolbar visible as a floating window with one more option "Leave Full Screen" added to it. You may always switch to another program directly by pressing ALT+TAB.

The gedit Text Editor understands the syntax (grammar) of several computer languages and can highlight parts of the text using different colours depending on the grammatical roles they play. This makes reading and understanding easy and may help in identifying some common typing errors early. While no computer language is covered in your syllabus at this stage, figure 8.15 shows a demonstration of this capability. This option is provided in the View \rightarrow Highlight Mode option. Of course, the files are saved as plain text only and not as formatted (colour-coded) text.

Figure 8.15: Syntax Highlighting in Gedit

The Search menu provides options to find (search for) specific text in the (large) document. It allows us to find the occurrence repeatedly till we choose to exit the search. We may also search for occurrences of some text and replace them by another text. We may go for a one-by-one replacement of the occurrences, optionally skipping replacement of some occurrences; or we may replace all occurrences in the entire document if we are sure about doing it. The option "Incremental Search" continually goes on matching the text as soon as we type each character and highlights all occurrences of the current text (see figure 8.16). The shortcut keys for these operations are find (CTRL+F), replace (CTRL+H), find next (CTRL+G), find previous (SHIFT+CTRL+G) and incremental search (CTRL+K).

Figure 8.16: Incremental Search in Gedit

The gedit Text Editor even has support for checking the spelling of words in your document. It has built-in dictionaries for some languages. When we choose the option $Tools \rightarrow Check$ Spelling, it checks the spelling of every word in our document from the beginning. For every supposed error that it finds, it suggests a list of words with similar spelling as possible alternatives. It offers options to ignore the supposed misspelling (only for this occurrence of the word or for all occurrences of the word) and to change the word with the selected suggestion from the list (for this occurrence of the word or for all occurrences of the word). Sometimes, a correct word may be flagged as incorrect spelling by gedit because it may not be there in its built-in dictionary. In such cases, we may ignore the word or add the word to the user dictionary, so that it never again treats the word as error even in other documents for this user of the system. The option $Tools \rightarrow Document$ Statistics provides information like number of characters, words and line for the current document. Like most other graphical programs, the Help menu is the last one in the menu bar and provides basic help in using the software.

The Eye of GNOME Image Viewer

The Eye of GNOME (also known as Image Viewer) is used to view images and picture files. It opens automatically when we double-click on any image file in the Nautilus file browser. By the way, it is not displayed in the Applications menu by default, but may be made to appear in the menu if we wish. Figure 8.17 depicts a picture open in the Image Editor.

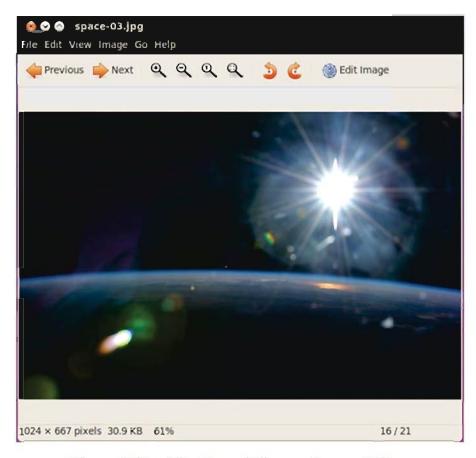


Figure 8.17: The Eye of Gnome Image Editor

The software provides all the common operations in the toolbar itself. If you have opened the image from a folder that contains other images as well, you may use the Previous and Next tools to view the previous and next images in the folder respectively. The Zoom In and Zoom Out tools can be used to enlarge and shrink the display of the image (not the original image itself) respectively. The Rotate Left and Rotate Right tools rotate the image counterclockwise and clockwise respectively, by 90° . This is especially useful for viewing photographs taken using a digital camera or mobile phone where we tend to take photographs in portrait mode or landscape mode depending on the scene/object. Again, the change is made to a copy of the image in main memory and is only temporary, but we get to save the changed image for permanent storage on the disk using the File \rightarrow Save menu option. If we modify some image(s), and then try to close the Image Viewer without saving them, then the software asks us whether we would like to save the changes. Figure 8.18 shows an image in its original form and after each step when the operations Rotate Left, Rotate Left, Rotate Right and Rotate Right are applied in that sequence.

Figure 8.18: Rotation of an Image

There is also a tool Edit that opens the image in an image editor program, F-Spot by default. However, we shall not discuss it here because we are going to cover the more powerful and better known GIMP image editor in a later section. Also, this tool is not visible by default in later versions of Ubuntu. Some of the more commonly used functionality provided in the menu and not covered by the default toolbar are as mentioned in table 8.1:

Functionality	Description
File → Print	To print the image.
View → Image Collection	Enables the display of a scrollable bar of thumbnails (small preview images) of the images in the current folder, we may click on a thumbnail to see its full view (see figure 8.19)
View → Slideshow	Starts showing images in the current folder one by one, changing images at a fixed interval (shortcut key: F5)
Edit → Undo	To undo the changes made by us (one by one)
Edit → Move to Trash	Delete the image and move it to trash, very useful when you have a large number of images and you want to decide which ones are to be deleted after looking at them.

Edit → Toolbar	Displays several tools, we may add or remove tools to the toolbar by drag and drop.
Edit → Preferences	Allows us to modify some options
Image → Flip Horizontal	Replaces the two halves of the image formed by an imaginary vertical line passing through the center of the image to their mirror images as seen in an imaginary mirror at the said line (see figure 8.20)
Image → Flip Vertical	Replaces the two halves of the image formed by an imaginary horizontal line passing through the center of the image to their mirror images as seen in an imaginary mirror at the said line (see figure 8.21)
Image → Set as Desktop Background	Sets the current image as the desktop background

Table 8.1: Functionalities of Eye of GNOME

Figure 8.19: Image Collection in Image Editor

Figure 8.20 shows a series of images in which the first image is in its original form while subsequent images are obtained by flipping the previous image horizontally.

Figure 8.20: Horizontal Flipping of Images

Figure 8.21 shows a series of images in which the first image is in its original form while subsequent images are obtained by flipping the previous image vertically.

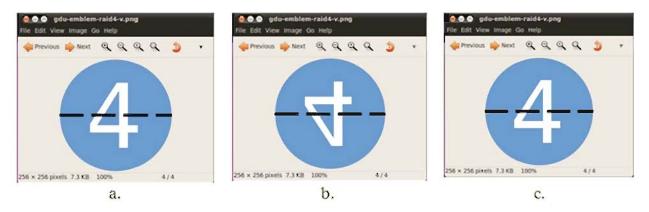


Figure 8.21: Vertical Flipping of Images

Flipping can also be interpreted as if the image were painted on one side of transparent glass. Such an image is visible from both sides. The horizontal flipping would rotate the image 180° around a vertical axis passing through the center of the image while vertical flipping would rotate the image 180° around a horizontal axis passing through the center of the image (both axes are shown in respective figures for reference). Please note that the images shown in this section are readily available in Ubuntu 10.04 and may be copied from the directories /usr/share/backgrounds and /usr/share/icons/hicolor/scalable/apps into the Pictures directory of your home directory for practice.

The Rhythmbox Music Player

Rhythmbox is the default music player in Ubuntu. It can be used to play music or audio files from the computer, podcasts (digital media, especially audio containing human voice(s) broadcast over the Internet), Internet radio, etc. Rhythmbox can be started from the Applications menu or by double-clicking any audio file. When started, Rhythmbox does not display any window – it simply adds a small music-player-like indicator to the indicator applet on the right hand side of the top panel. It almost seems like it didn't start (if we start it by double-clicking on a file, the file starts playing). However, on clicking on the said indicator we get the options to start

and pause the playback, changing to the next or previous track as well as a "Show Rhythmbox" option to show the actual Rhythmbox window as shown in figure 8.22.

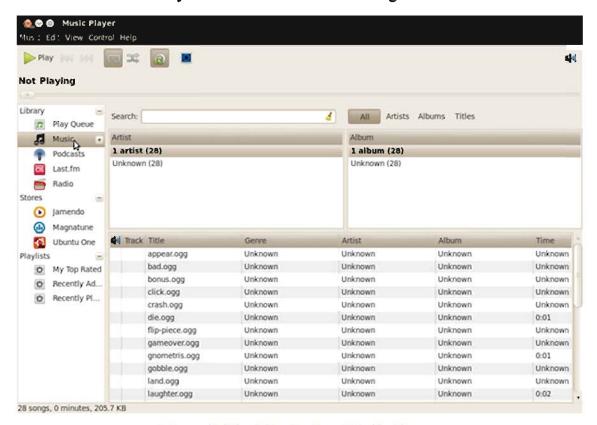


Figure 8.22: Rhythmbox Music Player

Selecting Quit from the same menu terminates Rhythmbox, while closing the window by clicking on the window close button merely hides it in the indicator applet and the playback of song, if running, continues.

Rhythmbox works just like so many other music player applications. It scans the entire computer or some directories on it as well as connected removable media for audio files and generates a "library" (catalog) of music. For each audio file, called "track", it also stores common information like the album name, artist (singer), genre (type of music), year of publication, etc. wherever available. It also allows the user to sort (arrange) and filter the music based on these attributes. At different times, the user may play music from different albums, by different artists or belonging to a particular genre, according to the mood. It allows the user to create different sets of songs, called playlists, to reflect their choices. Later, the user may instruct Rhythmbox to "play the playlist", Rhythmbox will automatically play songs from the playlist one after another, either in sequence or in random order if the user chooses the "shuffle" option.

Rhythmbox also has some "smart" playlists like "My Top Rated", "Recently Added" and "Recently Played" that are created and automatically updated by Rhythmbox. The user may also use recommendations from the popular Last.fin website, which provides automated or user created music recommendations to users based on the preferences they show or the kind of music they play more. Rhythmbox provides the usual controls like "Play", "Previous Track", "Next Track", "Loop" (start

the first song again after the last song in the playlist) and "Shuffle" (play songs in random order). The "Play" button transforms into "Pause" Once the music starts playing and again becomes "Play" when the music is paused. Even though Rhythmbox is the default music player that comes with Ubuntu, we also have the choice to install other free music player software. Rhythmbox does not support the popular MP3 format out of box because MP3 is a proprietary format covered by patents and creators of hardware or software MP3 players are often asked to pay royalty to the owners of the patents. Ubuntu, as a policy, includes only 100% free and open source software on the CD. But it does allow users to install plug-in software (additional part) that add support for MP3 to Rhythmbox. It also permits installation of other media players (including those supporting MP3). For example, VLC is a free multimedia player that supports several audio and video formats and is widely used.

The Totem Movie Player

Ubuntu bundles the Totem Movie Player for playing video (see figure 8.23). It is a simple video player with an easy to understand interface. You may run a video in it by double-clicking a video file. Alternately, you may click Applications \rightarrow Sound & Video \rightarrow Movie Player to open it. The Movie \rightarrow Open option may then be used to open a video file. The left-central part of the window is used to display the movie. Below the movie display, a slider marked "Time" has a small button on it. Dragging this button back and forth, allows us to watch the movie from a particular time point and to skip or repeat some parts.

Below the time slider are the buttons to move to the previous and next videos and a Play button that transforms into a Pause button when a video starts playing. A small icon besides that allows us to watch the movie in full screen mode.

Figure 8.23: Totem Movie Player

In full screen mode, the video is played over the whole screen, leaving only a small bar at the bottom for essential controls and a button at the top to close the full screen mode and return to normal mode. A speaker button to the right allows us to adjust the volume. The side bar has options to search the popular video-sharing site YouTube, to display the current playlist or to display the properties of the current video.

The Edit menu has the options Repeat (to play again the current movie or playlist when its end is reached, also known as "loop") and shuffle. It also allows us to capture screenshots (still pictures) from the movie currently playing.

Totem movie player comes with support for open video formats. Support for other free, but not open, formats needs to be downloaded in the form of plug-ins.

The GIMP Image Editor

GIMP (GNU Image Manipulation Program) is a powerful image editor. Even though it is free software, its image processing capabilities have started competing with costly professional image processing tools. It has so many features and capabilities that entire books have been written on it, still most not managing to cover everything that GIMP has to offer. As such, the explanation in this section has been highly simplified to mask the complexity and provide a quick overview of some basic concepts and features of this powerful program.

A computer image consists of a rectangular grid of dots called pixels (picture elements). Image processing generally comes down to manipulation of an image (picture) by performing a series of operations on it. Even creation of a new image is done by creating an empty image and then manipulating it. Dozens of image file formats have been developed over a period of decades with different characteristics and applications. Some of the very common image file formats are JPEG (JPG), GIF, BMP, PNG, SVG. While there are dedicated conversion tools, image processing software can also often be used as a format converter. GIMP's native file format is XCF, but it has input filters for importing images in most other common formats and output filters for exporting to a wide range of image formats. Hence a file in one format may be opened in GIMP and saved in another format to achieve conversion.

Since different image file formats have different characteristics, you may be warned that some features may be lost if you save the image in the new format. GIMP's own XCF format supports saving in the image file all the features that GIMP itself supports. You may also be prompted to specify various options for conversion. You may change the options, or accept the default values for them.

GIMP is not included on the Ubuntu CDs by default. Hence we need to install it first by going to Ubuntu Software Center. Once installed, we may start it by clicking Applications \rightarrow Graphics \rightarrow GIMP Image Editor or by right-clicking an image file and selecting Open With \rightarrow GIMP Image Editor. GIMP has a interface that consists of three independently positioned and sized windows by default (See figure 8.24).

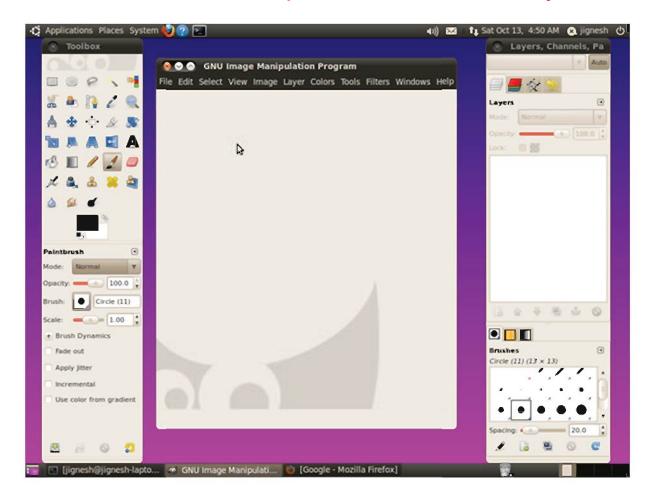


Figure 8.24: GIMP Image Editor

Later versions also provide the option of a simpler single window interface. We start working with GIMP by either opening an existing file or creating a new one from the File menu. There are three windows — the main window holds the image we are manipulating, the Toolbox and a window holding several additional tools. The Toolbox contains a large number of tools in the upper part. Hovering over a tool displays a tooltip identifying the tool. The lower part displays various options available for the currently selected tool. The general way of working is to select a tool from the upper part, change the options in the lower part if needed and then apply the tool using the mouse in some part of the image in the main window. The menu system also contains a large number of operations to choose from.

An image may also have some transparent areas. By default GIMP displays the transparent areas using a checkered pattern. However, we may change this behavior from the Edit \rightarrow Preferences menu item. The Display section has a Transparency subsection that allows us to set the check size as well as check colour. We may set the check style to "white only", if we wish. If an image having transparent areas is overlaid over another image, in the transparent portions we can see the image behind it. (See figure 8.25).

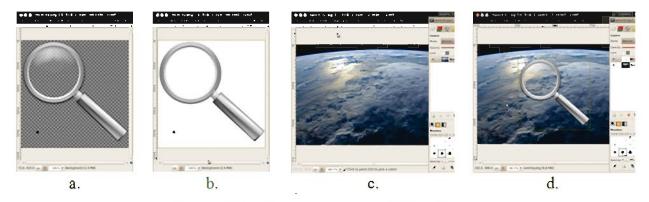


Figure 8.25: Transparency and Overlaying

Did you wonder how the first image was overlaid over the second? GIMP, like other sophisticated image editors, supports layers. Figure 8.24 shows the "Layers" tab in the right-hand side window. It allows us to create and manipulate layers. Each layer can hold one image, parts of which may be transparent. Each layer can be manipulated individually. The order of layers can also be changed. You may think of an image with multiple layers as consisting of multiple transparent sheets of glass stacked on top of one another, with images painted on them, leaving some parts transparent. When viewed from the top, we see the image on the top sheet, but through its transparent parts we can see the image on the second sheet, third sheet, and so on. Figure 8.26, taken straight from the GIMP manual, explains this concept.

Quite often, you may want to select a portion of the image and perform some operation(s) only on the selected area. GIMP provides various selection tools for this purpose. For example, the Rectangle Select tool allows us to select rectangular (including square) areas. By default, making a new selection removes the previous selection (though this behavior can be changed).

Figure 8.26: Concept of Layers

GIMP has a notion of the current foreground colour and the current background colour. These colours are used in various tools for drawing and filling. Hence, before using those tools, we should set

the foreground and background tools the way we want. The bottom-most tool in the upper part of the toolbox (one rectangle covering a major part of another rectangle) is used to set these options. In fact, the colour of the partially covered rectangle is the current background colour and the colour of the rectangle covering it is the current foreground colour. By default, these are white and black respectively. To change the foreground or background colour, click on the appropriate rectangle in the tool, which will open the colour selection dialog as shown in figure 8.27.

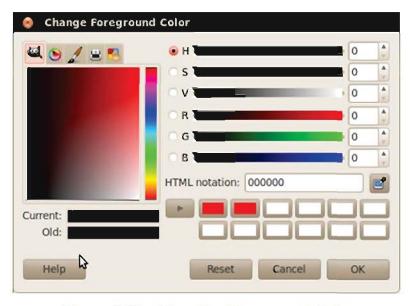


Figure 8.27: Changing Foreground Colour

The dialog box displays the old (original) colour and the current (new) colour. Initially both are same. While there are so many ways of selecting the colour we want, we shall use one of the two simple methods. First, if you know the exact English name for the colour (this should not be difficult for simple colours like red or orange), you may type the first letter of the colour name in the HTML notation field, which will open up a list of all colours starting with that letter along with previews. You may select the colour you want by clicking on the colour name. The other simple way is to select the colour you want from the vertical rainbow strip besides the large shaded rectangle (try to be as precise as possible). This will fill the large rectangle with shades of that colour. Now click at a point in the rectangle that has the exact shade you want. The current colour field will change to reflect your choice. If you like it, click OK to set the colour, otherwise continue to experiment.

Creating New Image

Now, we shall start by creating a blank image and perform a series of operations in sequence. Each stage of the operations is shown in figure 8.28. Continue to refer to it as each operation is described. First, create a new image by selecting File → New option from the menu. You need to specify the size of the image, which may be in terms of pixels, inches, millimeters, etc. The image is initially blank (see figure 8.28 a). Now, select a rectangular area in the image. First click on the Rectangle Select tool, move the mouse pointer to one corner of the rectangle you want to draw on the image, press the left mouse button and drag to the other corner. Finally, click inside the

rectangle to finalize the selection. (See figure 8.28 b). At this point, we have only selected an area in the image, but we have not changed anything in the image.

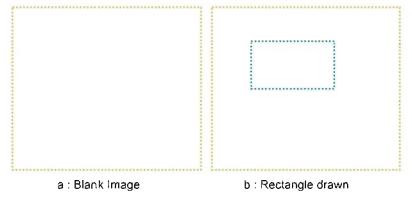


Figure 8.28: Processing Image in GIMP

Selections are transient in nature and a new selection removes the previous one by default. Now, let us draw a line along the border of the selection. Click the menu option Edit \rightarrow Stroke Selection, which opens a dialog box (see figure 8.28 c). We may select the thickness of the line and the dash pattern (whether to use a solid line or a dashed line) among a host of options. The line will be drawn using the current foreground colour (see figure 8.28 d).

While a square selection can be done in the same way, to get an exact square follow these steps. First select the same Rectangle Select tool and start dragging from one corner of the square you want to select. Without releasing the mouse button, press the SHIFT key, which will force the rectangle to be a square. When you get the right size, release the mouse button first, and then the SHIFT key. As GIMP is very powerful software with so many options, different combinations of mouse and keyboard actions and even the order in which these actions are taken result in different operation taking place. Figure 8.28 e shows a perfect rectangle drawn in this way.

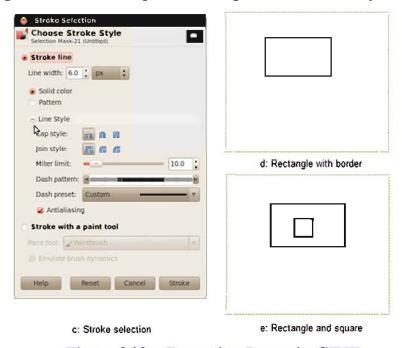


Figure 8.28: Processing Image in GIMP

We may use the Ellipse Select tool to select ellipses and, with SHIFT, perfect circles in the same way (figure 8.28 f and figure 8.28 g respectively).

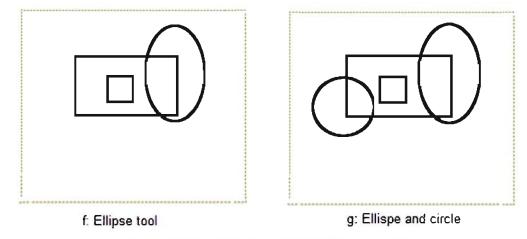


Figure 8.28: Processing Image in GIMP

The Free Selection tool allows us to select an area of arbitrary shape. Start at any one point of the shape you want to select and, holding down the mouse button, move the mouse cursor as if you were drawing with a pencil. If a part of the shape is a straight line, release the mouse button when drawing that part, which will draw a perfect straight line. You must close the shape by ultimately reaching back to your starting point before releasing the mouse button because all selections must be closed shapes (see figure 8.28 h). A polygon consisting of arbitrary shapes can be drawn using the Free Selection tool. To draw a polygon, just go on clicking on the points of the polygon in sequence (do not hold down the mouse button), clicking on the first point again at the end (See figure 8.28 i).

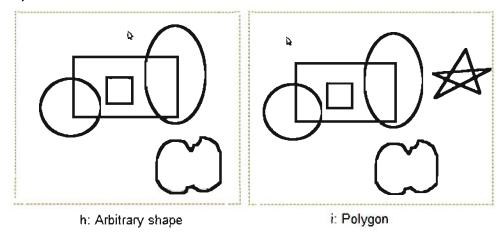


Figure 8.28: Processing Image in GIMP

If you want to fill a shape with some colour, there are two options. Immediately after selecting the shape; select Edit → Fill with FG Color menu option, which will fill the selection with the current foreground colour as shown in figure 8.28 j. After this, you may change the background colour and stroke the figure to get a border, if you want. The other alternative is to select the Bucket Fill tool and click on any point inside the shape we want to fill (See figure 8.28 k).

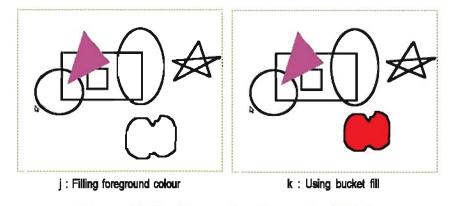


Figure 8.28: Processing Image in GIMP

It will only fill the innermost immediately enclosing shape (see figure 8.28 l). You may have to click repeatedly to fill different parts of a shape as shown in figure 8.28 m). This gives you an opportunity to fill different parts of a shape with different colours (by changing the foreground colour in between), if required. If you click in an open area or a shape that is not closed by solid colour from all sides, the fill colour will "spill over outside" and fill all open areas of the image.

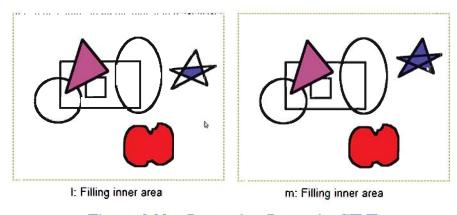


Figure 8.28: Processing Image in GIMP

For example, clicking on the point marked with green in figure 8.28 n, the colour will flow out and fill all open areas as shown in figure 8.28 o because the shape in question is open. Fortunately, if you commit any mistake and want to correct it, you can always undo your last actions in reverse order by selection $Edit \rightarrow Undo$ option or the shortcut key CTRL+Z. We undo the last fill before continuing.

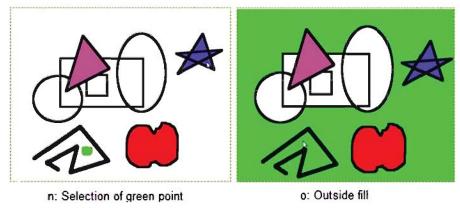


Figure 8.28: Processing Image in GIMP

But wait! Did you not read that all selections must be closed? Then how did we land with an open shape in the first place? Another question: how do you put a dot in the figure or draw a line? Well, the answer to these questions is — using the pencil tool. When you select the pencil tool and click anywhere in the image, a tiny circle (its size can be set) is drawn and filled with the foreground colour. You may go on clicking like this to create more circles at different locations in the image. If you hold down the shift key when clicking, a straight line is drawn in place of a circle, connecting the previous point to the current one. One may draw such lines anywhere one wishes and shapes created using such lines need not be closed.

What do you do if you are making a pencil drawing and want to correct something? You use an eraser. Indeed, GIMP also provides an eraser tool that can be used to erase parts of the drawing. Unlike a real world eraser, GIMP's eraser can change both the size and the shape as per your wish. Figure 8.28 p shows the image after we erase some portion with a large circular eraser. Using the Text tool one may write text in the image (see figure 8.28 q). One gets to choose the font, font size, colour, etc. Clicking anywhere in the image brings up a dialog in which you may type the text. The text appears at the location where you typed. It can be corrected or moved immediately after creation by clicking inside. You correct the text in the dialog that opens and move the text by dragging it (ignoring the dialog).

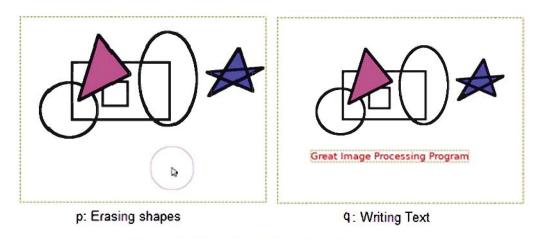


Figure 8.28: Processing Image in GIMP

The act of cutting certain parts of the image out is called cropping. The Crop tool is used to crop the image. After selecting it, we use drag and drop to draw a rectangle on the image (see figure 8.28 r). The rest of the image is darkened to highlight the rectangle. If we click inside the rectangle we have drawn, the image is cropped to that rectangle, i.e. everything outside that rectangle is "cut out" (removed) from the image (see figure 8.28 s). An image can be "scaled", i.e. its size changed (enlarged or reduced) by selecting the menu item Image \rightarrow Scale Image. In the dialog that appears, we change either the height or width and the other will automatically change correspondingly to maintain the "aspect ratio" (ratio of width to height). If we click on the little chain symbol between these two, it breaks the link and allows us to change both arbitrarily, not caring to maintain aspect ratio.

If you do this on a person's photograph, the person may look fatter or thinner in the scaled image. And yes, if you remember the facilities provided by the Eye of GNOME viewer, what that simple program can do, GIMP can do too. An image can be rotated or flipped by selecting the appropriate options from the Image \rightarrow Transform menu item. Figure 8.28 t shows the image after rotation by 90° clockwise.

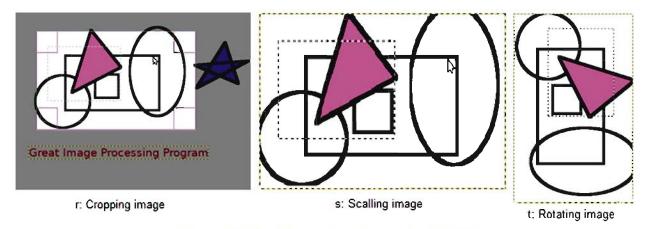
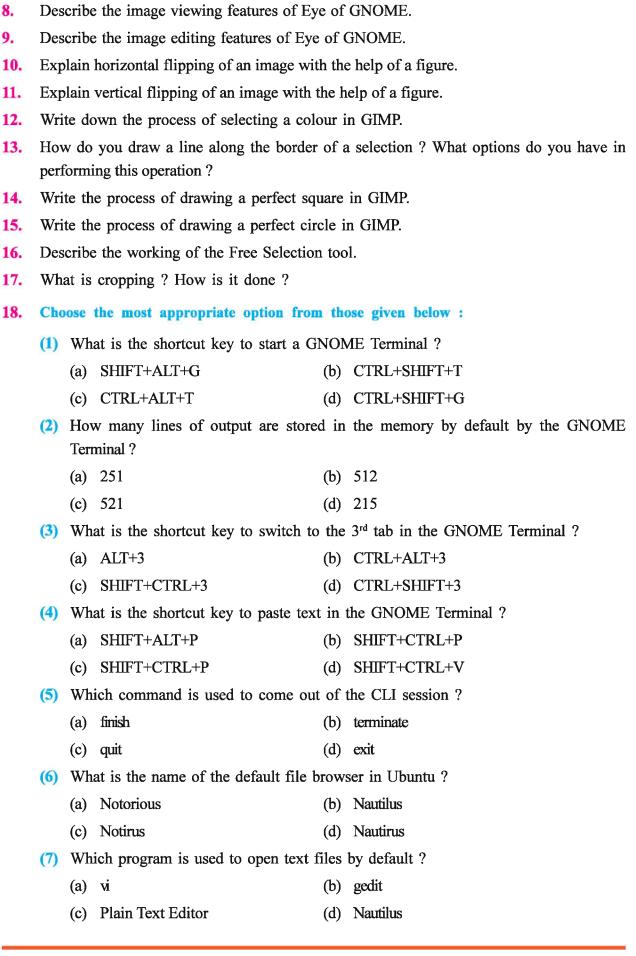


Figure 8.28: Processing Image in GIMP


Even though we have covered only basic features of GIMP in this text, it has probably become clear to you that GIMP is a very powerful and feature-rich image editor.

Summary

In this chapter we discussed some of the utility programs that are available under Ubuntu. The Nautilus file manager program allows us to manipulate files and directories with ease using a GUI. The calculator program lets us perform arithmetic and scientific calculations quickly, easily and accurately. The gedit Text Editor can be used to create and manipulate text files. There are built-in applications for viewing multimedia content like pictures, audio and video. GIMP is an extremely powerful image editor program that can be used for various types of image processing tasks.

EXERCISE

- 1. Write down the benefits of the GNOME Terminal over ordinary text terminal.
- 2. What are the preferences in Terminal?
- Explain how the CLI works.
- 4. What are the components of the Nautilus window? What is the function of each?
- 5. Explain different views in Nautilus and how to switch between them.
- 6. Explain the cut, copy and paste operations.
- Explain the checking of spelling in gedit.

Downloaded from https://www.studiestoday.com (8) Which program is used to open image files by default? (a) gedit (b) GIMP (c) GNOME (d) Eye of GNOME (9) Which program is used to open video files by default? (a) Totem Movie Player (b) Tutom Video Player (c) VLC Player (d) Eye of GNOME (10) Which of the following is not a view in Nautilus? (a) Icon View (b) List View (c) Files View (d) Compact View (11) Which of the following view in Nautilus allows sorting files by clicking the column heading? (a) Icon View (b) List View (c) Files View (d) Compact View (12) Which of the following view in Nautilus displays + or – against folders? (a) Icon View (b) Files View (c) Compact View (d) List View (13) An object that is copied is stored on -(a) the whiteboard (b) the blackboard (c) the chopboard (d) the clipboard (14) Which operation creates a new copy of the object? (a) copy followed by paste (b) cut followed by paste (c) paste followed by copy (d) paste followed by cut (15) Which operation moves the object? (a) copy followed by paste (b) cut followed by paste (c) paste followed by copy (d) paste followed by cut (16) Which of the following is not a type of calculator available in Ubuntu? (a) Advanced (b) Binary (d) Programming (c) Scientific (17) What is the shortcut key for undoing the last action in gedit? (a) CTRL+U (b) ALT+U (c) CTRL+Z (d) ALT+Z (18) The default image viewer in Ubuntu is known as -(a) See of GNOME (b) View of GNOME (c) Eye of GNOME (d) (D) Sea of GNOME (19) What is the name of the default music player in Ubuntu?

Basic Utilities in Ubuntu Linux

(c) VLC

(a) Rhythmbox

(b) Banshee

(d) Media Player

- (20) What is the full form of GIMP?
 - (a) Great Image modification Program
 - (b) General Image Modification Program
 - (c) GNU Image Modification Program
 - (d) GNU Image Manipulation Program
- (21) Which is GIMP's native file format?
 - (a) XPG

(b) XCF

(c) JPG

- (d) PNG
- (22) Which tool is used to fill a shape with colour in GIMP?
 - (a) Bucket Tool

(b) Fill Tool

(c) Bucket Fill Tool

- (d) Shape Fill Tool
- (23) Which tool can be used to draw open shapes?
 - (a) Line Tool

(b) Pen Tool

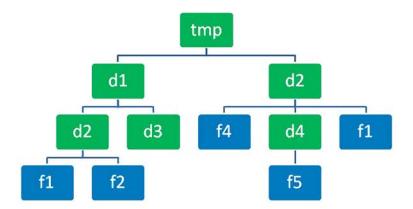
(c) Bucket Fill Tool

- (d) Pencil Tool
- (24) The act of cutting certain parts of the image out is called -
 - (a) deleting

(b) cropping

(c) scaling

- (d) crasing
- (25) The act of enlarging or shrinking an image is called -
 - (a) deleting


(b) cropping

(c) scaling

(d) erasing

LABORATORY EXERCISE

- 1. Start the Terminal. Close it using the appropriate command. Again start it and close it using a key combination.
- 2. Type the command *ls* in the Terminal and copy-paste its output into a file opened using gedit. Note down your observation.
- 3. Create a directory structure as shown in the following figure in your home directory (directories are marked in green colour, while files are marked in blue).

Now perform the following operations in sequence and draw a figure depicting the new structure after each operation. When you are presented with a dialog, try to understand the dialog and the implications of the various choices provided:

- (a) Copy the file f2 into the directory tmp \rightarrow d2.
- (b) Open the file f2 in gedit and type some more content.
- (c) Move the directory d3 to the directory d2 in d1.
- (d) Copy the file f1 in $tmp \rightarrow d1 \rightarrow d2$ to the same directory.
- (e) Copy the file f1 in $tmp \rightarrow d1 \rightarrow d2$ to $tmp \rightarrow d1$.
- (f) Copy the file f1 in $tmp \rightarrow d1 \rightarrow d2$ to $tmp \rightarrow d2$.
- (g) Copy the directory d4 to d3.
- (h) Copy the directory $tmp \rightarrow d1 \rightarrow d2$ to tmp.
- (i) Move the directory tmp \rightarrow d1 \rightarrow d2 to tmp.
- 4. Practise renaming and deleting files.
- 5. Open two different directories in two Nautilus windows, place them side-by-side and use drag-and-drop to move and copy some files from one directory to another.
- 6. Open gedit. Change the looks using the Preferences menu.
- 7. Type a note on gedit in gedit itself. Be sure to use the facilities described in the chapter to familiarize yourself with them.
- 8. Create a short summary of your gedit note in another file using copy-paste from the original note.
- 9. View some images from the directories mentioned in the text using Eye of GNOME.

 Apply the operations mentioned and observe their effect.
- **10.** Perform the operations in Figure 8.28 yourself.
- 11. For each tool of GIMP discussed in the text, show its effect by applying it to an image and drawing the "before" and "after" images. Also write down the steps of the operation alongside.
- 12. Create simple drawings of the following types:
 - (a) Landscape

(b) Object Drawing

(c) Cartoon

- (d) Free Hand Drawing
- **13.** Try to apply some effects to existing images.

NOTES TO TEACHERS

- Assignments for all tools may focus on "How to..." activities. The activities may be reverse engineered from the features discussed in the text or you may use your own creativity.
- Assignments for GNOME Terminal, Eye of GNOME, Rhythmbox music player and Totem Movie Player will have to be based on preferences and options.
- Assignment on calculator may ask students to perform some calculation that they have already learned in mathematics but is too cumbersome or time-consuming to perform by hand. Questions should not be asked on what they have not learnt.
- Assignment on gedit may concentrate on the windows, tabs, cut-copy-paste operations, etc.
- Assignment on GIMP may be graded
 - Simple assignment requiring the knowledge of only one procedure from the text
 - Operations that require the use of more than one tool
 - Complete tiny projects in image creation and manipulation
 - Assignments that require creativity on the student's part (should not be overemphasized)
- Assignments on GIMP need not have iron-cast requirements, this will permit students to use their creativity
- Provide some readymade images to be processed to the students.
- Be sure to perform the assignment yourself to ensure they do not use anything not covered in the text and are within the ability of students in the given timeframe before giving them to the students.

•

Introduction to Word Processing

Introduction

Friends, you learnt earlier that computers have been used to handle a variety of activities in diverse fields for the last two decades. One of the most common uses of computer is in handling office activities. It is observed that word processing, data processing, communication and presentation are the most common activities happening in the offices. Computers are used to handle these activities effectively. We know that different software is available in the market to perform such activities using computers. Since the start of computer usage, proprietary software is used, but in last few years, use of open source software has substantially increased due to obvious advantages. In previous chapters you have studied about proprietary and open source software. Since long back, software called Microsoft Office (MS-Office) is used to handle the office activities like word processing, presentation, spreadsheet and others. Similar software is available from open source community; some of these are Star Office, Libre Office and Open Office. In this chapter we shall learn about how word processing is done using software called 'Writer' which is a component of open office.

Word Processing and Word Processor

We are familiar with the word 'Document'. A document identifies contents written on a paper. In our day-to-day life we use documents for several purposes. The purpose of writing on papers may be to convey your thought to others, to preserve the content for longer period or it may be used as evidence. These documents can be letters, reports, thesis, manuscripts, legal documents, books etc. Suppose, you want to prepare a document but your handwriting is so bad that even a pharmacist couldn't read it or you are the kind of person who has to write, rewrite, and write again. Then what you need is word processing software.

The activity of word processing is the creation of documents using software (Collection of Programs) called word processor. The creation of documents means not only typing but also refers to composition, editing, viewing, formatting, storing, retrieving and printing. Thus a word processor is a computer application used for the production of any sort of printable material. In late 1960's the term word processing was invented by IBM. In the late 1970's Microsoft WordStar was the most widely used word processing software. Many other word processing applications also exist, including WordPerfect and open source applications OpenOffice.org Writer, LibreOffice Writer, AbiWord, KWord, etc. Web-based word processors, such as Office Web Apps or Google Docs, are relatively new software facilities.

Figure 9.1: A Typical Type Writer

Need of Word Processing

In 18th century a type writer as shown in figure 9.1 was invented to impress characters on paper. It is a mechanical or electromechanical device with keys that, when pressed, cause characters to be printed on a medium, usually paper. As days passed several limitations were noticed in using type writer:

- (1) When any typing error was noticed then to correct them the whole sheet was required to be typed again.
- (2) When we needed more copies, every time the same content needs to be typed again and again.
- (3) If one wants to reproduce the same document again with minor changes, the whole document was required to be typed again. For example, if we want to send same letter to two or more persons with different addresses, we had to type the letter multipletimes.
- (4) Sometimes it may not be possible to have all the required characters or symbols on the type writer we are using, and as a result we have to either type a similar character or symbol or sometimes we have to leave that space and have to write manually.
- (5) In case, if a document is to be produced in a particular format, either it may consume lots of time or it may not be possible to type the document in desired format using a type writer.

To solve the above mentioned problems with a type writer, in the year 1974 'Xerox' company introduced a new product called "electronic type writer". Changes in the content, once typed, are possible with this kind of type writer. Multiple copies can also be taken out even with minor changes. But the only problem with electronic type writer is that it has a very small sized screen and therefore it was possible to view only one or two or very few lines.

In late 1970s the limitations of electronic type writer were replaced by computers. Since then software are used for word processing. When we use word processor to create a document, the

contents of the document is displayed on the computer screen. On the screen we can navigate from one place to another and can make changes if required. After confirming that the content is error free, we can print it.

Early word processors used tag-based markup for document formatting. When a specific portion of the content needs some special effect, a particular tag is put on both the sides of the text. For example, if some portion of the content is required to be bold, a <bold> tag is put on both the sides of the portion that we want to have bold effects. From last two decades most modern word processors take advantage of a graphical user interface providing some form of what-you-see-is-what-you-get (WYSIWYG) editing. This means, the special effects on text are also visible on the screen.

Features of Word Processor

Word processing does not only provide basic ability to enter and modify the text but also provides efficient text manipulation functions that can be used for documentation. Modern word processors provide abundant attractive features. Some of the features provided by popular word processors are as listed:

- Move a selected text from one place to another place within the document.
- Copy a selected text for any number of times at any other places within the document.
- Open more than one document at a time and move or copy a selected text from one document to any other document.
- Change the font, font size and even font style of the selected portion of the document.
- Format paragraphs with word wrap, align the paragraph as left aligned, center aligned, right aligned or justified.
- Find a particular word within the document and replace the found word by other word.
- Check spelling and grammar.
- Create table, modify the size of the selected rows, columns or cells.
- Split a single cell into more than one or merge more than one selected cells into one.
- Combine one or more documents.
- Insert pictures or graphs within the document.
- Print the selected text or selected pages of the document.

Over and above the features listed, word processors also provide several advanced features like:

- Batch mailings, using a letter template and an address database (also called mail merging)
- Line and page numbering.
- Footnote numbering.
- Character count, word count, sentence count, line count, paragraph count, page count.
- Word, sentence and paragraph length.
- Editing time.

In short a word processor is powerful software that consists of one or more programs that can produce any arbitrary combination of images, graphics and text.

General Applications of a Word Processor

Word processors have a variety of uses and applications within the business world, home, and education i.e in schools and colleges. Word processors are widely used in most of the offices for preparing letters, letterheads, reports, memorandums, balance sheet report and many other different types of documents like legal copies and reference documents. Businesses tend to have their own format and style for these documents. Apart from business, word processors are useful at home. Many homes have word processors on their computers; students use it for preparing project reports and assignments. It is also used for letter writing, resume creation and card creation. Authors use word processing software for preparing articles and manuscripts of books. Researchers use word processors for preparing thesis and teachers use it for preparing question papers or study materials and notes. In short word processing is observed to be the most popular application of a computer, since preparation of varieties of documents is a common need for many people.

Office Suite

Friends, before we start the word processor – Writer, let us have a look at the Open Office suite.

Office suite is a collection of programs, which are useful for word processing, database management, presentation, spreadsheet preparation and many more such applications. There are several open source office suites like GNOME Office, NeoOffice, SoftMaker Office, Star office etc. In this book we shall learn about the components of Open Office 3.2. This suite is available in many languages and runs on many platforms. The application components of OpenOffice are Writer for word processing, Calc for spreadsheet preparation, Impress for presentation, Base for database management, Draw for drawing and others. OpenOffice.Org. is widely used Office suite. Files created in the components of this Office suite, can be read and edited in other office suites like MS-Office and vice versa. Hence we can easily share our documents with our friends who may use different office suites.

Writer - The Word Processor

As mentioned earlier Writer is part of the OpenOffice.org(OOo) – Open Office suite. It is a kind of word processor which provides almost all the features of word processing. In the previous chapter, you have learnt about an operating system. We assume that you already have Ubuntu 10.04 LTS operating system installed on your computers. You can open Writer in different ways. One of the most common ways to start Writer

Figure 9.2: Writer Icon

is to double click on Openoffice.org Word Processor Icon, if it is exist on the desktop (See figure 9.2). This action will open a window as shown in figure 9.3.

Alternatively you can choose Applications \rightarrow Office \rightarrow OpenOffice.org Word Processor (See figure 9.4).

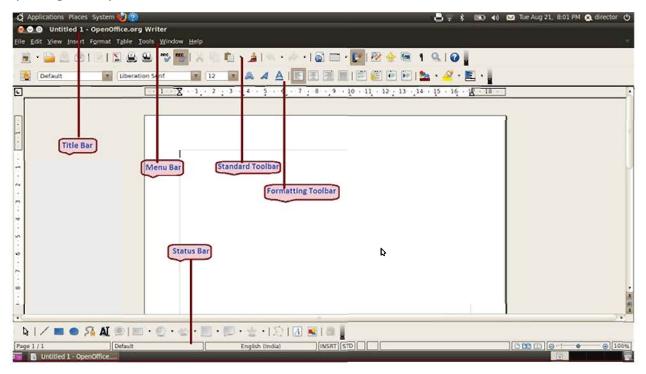


Figure 9.3: Writer Window

As shown in the figure 9.3, the top most line in the main window is Title Bar, where the current file name is displayed and when the file is newly created, Untitled 1, will appear as file name. Second line that is just below the Title Bar is the Menu Bar, from where we can access different menus like File, Edit, View, Insert, Format, Table, Tools, Windows and Help. If you have worked in MS-Word, you can notice that the menu bar contains almost similar options. If any of the menu items is selected, a submenu drop down becomes visible, below the selected item; it allows us to select different commands.

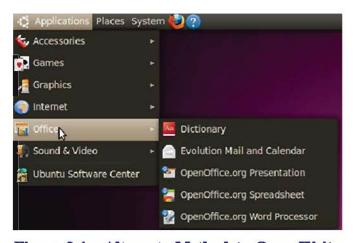


Figure 9.4: Alternate Method to Open Writer

File menu contains the options that apply to the entire document such as Open, Save as, Print and many more. Edit menu includes the commands for editing the document such as cut, copy, paste, undo, redo, find and replace. Commands that permit to manage the display of the document such as print layout, web layout, full screen, ruler are included in View menu. Commands for inserting any objects in the document like pictures, sounds, graphs, headers, footers are the part of Insert menu. Options required for formatting the layout of the current document are available in Format menu. Bullets and numbering, styles and formatting, change case are some of the options available in Format menu. Table creation, modification in it, adjustment of rows and columns, everything related to table is done through Table menu. Options like Checking of spelling and grammar, change of language, line numbering, and word count are available in Tools menu. Window menu is normally used when more than one document is opened. Switching from one document to other and to view all the documents on screen at the same time is possible through this menu. When you want any help regarding Writer such as to know about any option of the menu you may select the last menu option Help.

Figure 9.5 shows the options available under the Tools menu. The toolbar, just under the Menu bar is known as Standard toolbar. This toolbar contains short-cuts in the form of symbols called icons, to create a file, open existing file, save file, print file and allows us to perform various other operations on a document. This toolbar is same across all the applications (Writer, Calc, Draw, and Impress) of the OpenOffice.org. For example when you click on File menu, a drop down list will appear for various options. If you select New option then a sub menu will appear to its right as shown in figure 9.6.

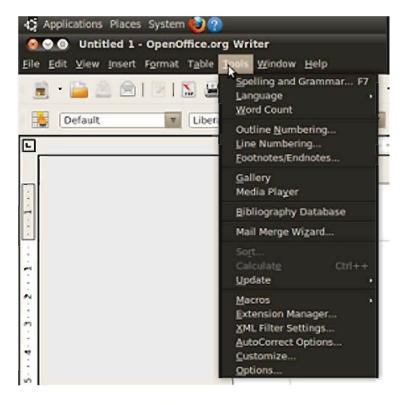


Figure 9.5: Tools Menu

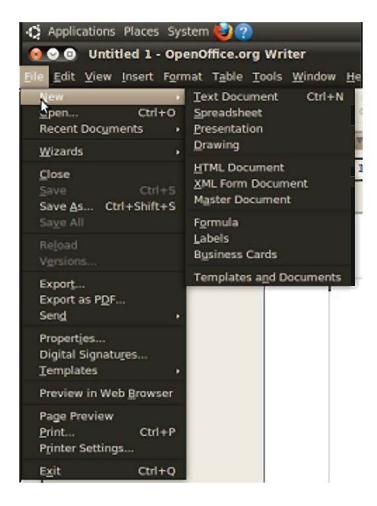


Figure 9.6: Sub Options of New

The sub menu shown in figure 9.6 contains options for opening the file in other components of the open office. Here if you select text document then the window for creating a writer document will open and if you select spreadsheet then the window of Calc Component will be loaded and displayed on the screen.

The other toolbar is the Formatting toolbar. It shows the short cuts to various options for formatting the selected portion of the document. This is context-sensitive that is the tools are relevant to cursor position or selection. When the cursor is on picture, the Formatting bar gives tools for formatting picture, if cursor is in a table, tools for formatting table is provided and when the cursor is in text, the tools are for formatting text.

There are other toolbars, which will be discussed as and when the relevant topic will be discussed. The other toolbars can be displayed and hide as and when we wish. Select View Menu and then Toolbar option as shown in figure 9.7, you can see different toolbars. From the list, click on the name of a toolbar, you want to display. An active toolbar shows a check mark \checkmark beside its name. To hide any of the active toolbar, click on the name of the toolbar you want to hide.

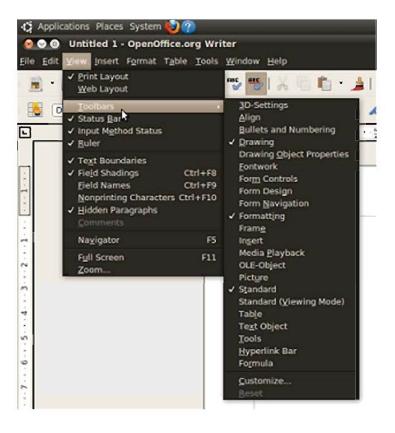


Figure 9.7: Choosing Toolbar from View Menu

Moving Toolbars

To move a toolbar, place the mouse pointer over the toolbar handle as seen in figure 9.8, hold down the left mouse button, drag the toolbar to the new location, and then release the mouse button.

Figure 9.8: Moving Toolbar

Creating a New Text Document

You can create a new document in many different ways in OpenOffice. One way to create a new document is to choose File \rightarrow New \rightarrow Text Document (see figure 9.6). Alternatively

we can press CTRL + N on the key board or clicking on New icon on the standard toolbar.

Creating a New Text Document From Template

You can use templates to create new documents in Writer. A template is a set of predefined styles and formatting. Templates can work as the basic unit of a set of documents. You can create new documents based on them by using File \rightarrow New \rightarrow Templates and Documents. This opens a dialog box as shown in figure 9.9, where you can choose the template you want to use for your document. Select the desired name and click on Open.

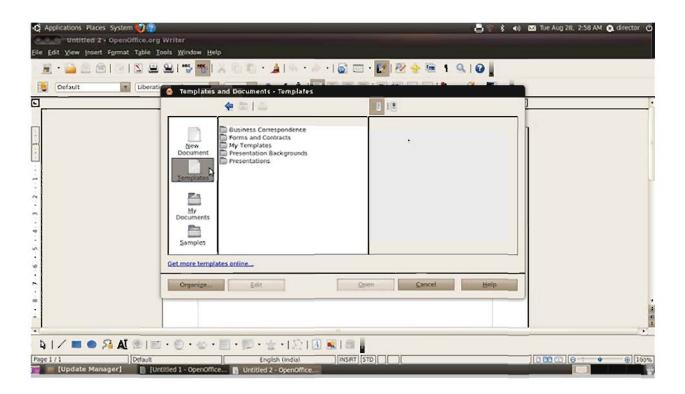


Figure 9.9: Creating a New Text Document from Template

Opening an Existing Document

A document can be opened from any component of the OpenOffice. Simply select File → Open or Double click on Open icon shown in figure 9.10 on Standard Toolbar or press

CTRL + O on the key board. This will take you to the open dialog box. Select the file you want and then click on open button. If you want to reduce the list of files on the screen, you can select the file type in the open dialog box. Writer will open only those types of file which you select as file type, if a document is already opened the second document opens in a new window.

Figure 9.10: Opening a Document

Saving a Document

We can save the documents created by performing any one of the actions mentioned herewith:

- Choose File Save
- Press CTRL + S
- Choose the save button on the standard toolbar.

If the said actions are performed for the first time, then a Save dialog box as shown in figure 9.11 will appear. Enter the file name and click Save. Here you can save the file with the same name or other name. Directly click on Save. This will overwrite the last saved file. If you give different name in File Name option then the file will be stored with the other name you have given. The file is saved with the latest changes you have made in the file and at the same time last saved file will remain with the original name. The extension of the file name will be .odt.

Figure 9.11: Save Dialog Box

Saving a Document Automatically

To make sure that the data we are writing in the document doesn't get lost in case of eventualities like power failure, Open office provides a feature of auto save. Setting this option forces the Writer software to save your document automatically at regular intervals. Automatic saving, like manual saving, overwrites the last saved file. To set up automatic file saving:

- Select Tools \rightarrow Options \rightarrow Load \rightarrow Save \rightarrow General.
- Click on Save Auto Recovery information and set the time interval.

This will allow us to set the time interval. The default time interval is 15 minutes. You can change the time value as per your requirement.

Saving as a Microsoft Word Document

It may happen that you have to share your documents with others and the person you are sharing with, not necessarily use the OpenOffice Writer. Sharing with other is only possible if other person install OpenOffice on his computer or you should be able to convert your *.odt file in MS-Word form before sharing it. Fortunately Writer provides the facilities that the document created in Writer can be saved in MS-Word form. To save document in MS-Word form

- Click File → Save As. The Save dialog box will appear as shown in figure 9.12.
 On the Save dialog box, in the File type drop-down menu, select the type of Word format you need.
- Click Save.



Figure 9.12: Dialog Box to Save File in Other Formats

You should note here that before you save the document in MS-Word format, you have to save your document in the file format used by OpenOffice Writer (i.e..odt), otherwise, any changes you

made since the last time you saved will only appear in the Microsoft Word version of the document. From this point on wards, all changes you make to the document will occur only in the MS-Word document. If you want to work with the .odt version of your document, you have to open it again.

Note:

To have Writer save documents by default in the Microsoft Word file format, Go to Tools \rightarrow Options \rightarrow Load \rightarrow Save \rightarrow General. In the section named Default file format, under Document type, select Text document, then under Always save as, select your desired file format.

Saving a File With Password

Writer provides document protection that is you can save your file with password. This document protection is compatible with Microsoft Word file protection. To protect the file with password perform the steps mentioned:

- Use File → Save As when saving the document. When you are saving a new document for the first time File → Save option can also be used.
- On the Save dialog box, select the Save with password option, and then click Save. (See figure 9.13)

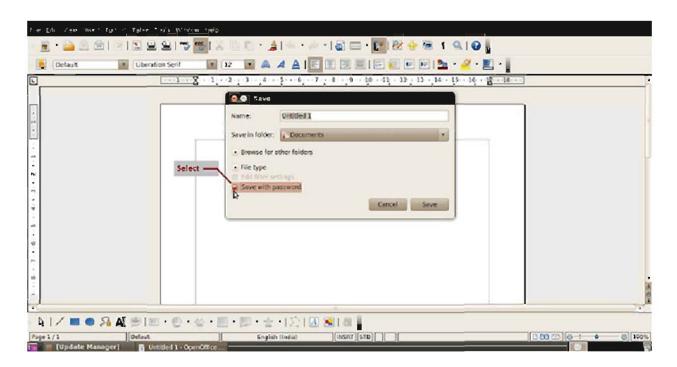


Figure 9.13: Save File With Password

Doing so, an Enter Password dialog box will appear as shown in figure 9.14. If you type the password in Enter Password text box and then by re-entering the same password again in Reenter password text box, your file will now be password protected.

Figure 9.14: Enter Password Dialog Box

Document View

Writer provides three different ways to view a document. They are Print Layout, Web Layout and Full Screen. Each of them is discussed in brief herewith.

Print Layout View

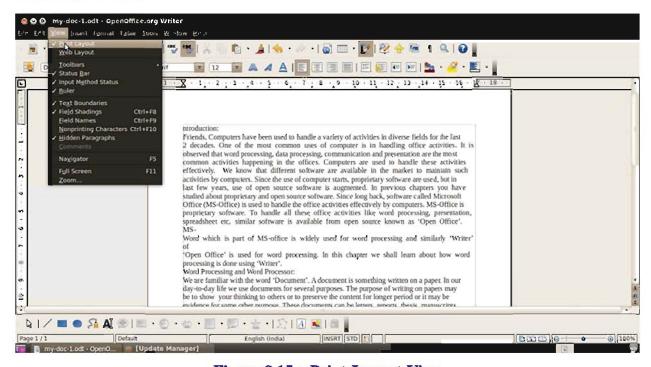


Figure 9.15: Print Layout View

The default view option in Writer is the Print Layout view. It will show you the document in the similar manner as it will be printed (see figure 9.15). Within the Print Layout, the document can be viewed in single page, side-by-side pages and book style.

To switch from one sub view to another sub-view, respective icon shown on Status Bar, are selected. Document can be edited in any of these three layouts. Within any layout view magnification can

also be changed using Zoom slider, shown on the Status Bar shown in figure 9.17. Magnification can be reduced or amplified by clicking on the - and + signs or by dragging the Zoom slider. Alternatively right click on the zoom level percentage and then choose the desired value.

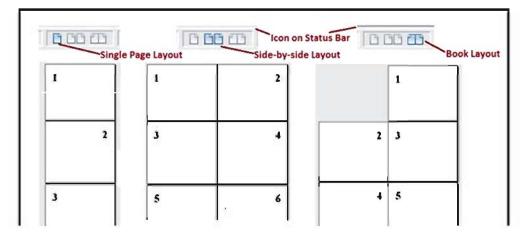


Figure 9.16: Sub View of Print Layout

Figure 9.17: Zoom Slider

Web Layout View

In Web Layout View, no margin, no bold or italic effect or no justification (unlike Print Layout View) is visible. Figure 9.18 shows a document opened in web layout view. The options of the Zoom & View Layout Dialog Box here are disabled. But we can use Zoom slider in Web Layout view.

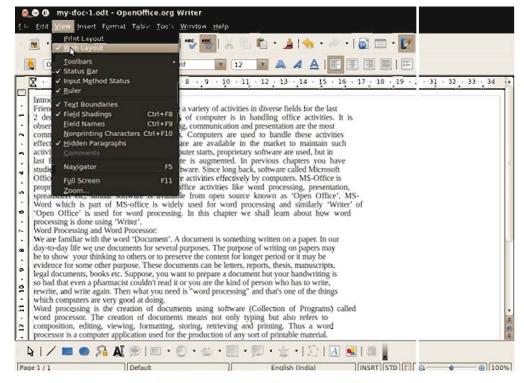


Figure 9.18: Web Layout View

Full Screen View

In Full Screen view, Title Bar, Menu Bar and status Bar are not visible. The content and the full screen icon is visible. Rulers are also visible if it is enabled (see figure 9.19). Esc key is pressed or Full Screen Icon is clicked to exit Full Screen view. Another way to come out from the Full Screen View is to press CTRL + SHIFT + J.

Figure 9.19: Full Screen View

You can also choose View \rightarrow Zoom from the menu bar to display the Zoom & View Layout dialog box (see figure 9.20), where you can set the same options as on the Status bar.



Figure 9.20: Zoom and View Layout Dialog Box

Closing a Document and Closing OOo Window

To close a document, select File \rightarrow Close or Click the Close icon on the left top of the document window (see figure 9.21) on the document window. By doing so, the document and the Writer

will be closed, if only one document is opened. If more than one window is open, then current window will be closed and the other OOo windows will remain open.

If the document has not been saved since the last change, a message box is displayed. You will have three options. Save,

Figure 9.21 : Close Button

Discard and Cancel. If you choose Save; The document is saved and then closed. In case when Discard is chosen all modifications since the last save are lost and the document is closed. If Cancel is chosen then nothing happens, and you return to the document. Writer can also be closed by selecting File \rightarrow Exit.

Getting Writer Help

Writer provides several forms of help. By pressing F1 a full Help can be attained or selecting $Help \rightarrow OpenOffice.org Help$ from the menu bar.

Summary

In this chapter we have learnt about word processor software, characteristics of word processing software. We also saw the working of open source word processor called Writer and how to create a document using it. We learnt how to save and protect your document with password.

EXERCISE

- 1. What do you understand by Word Processing?
- 2. Which are the components of Office suite?
- Write at least one advantage and one disadvantage of Electronic Type Writer.
- 4. Why word processing is required?
- 5. Write all the menu options of Writer.
- 6. Write the steps to move a selected block in the beginning of the document.
- 7. Can you save a Writer Document as a Microsoft Word Document? If yes, How?
- 8. Write steps to save a file with password.
- 9. What will you do to save your file automatically after every 30 seconds? Write all the steps clearly.
- 10. Which are the different views to display a document?
- 11. Choose the most appropriate option from those given below:
 - (1) Which of following is not the component of the Office Suite?
 - (a) Writer

(b) Impress

(c) Internet Explorer

(d) Base

Downloaded from https://www.studiestoday.com (2) The most widely used word processing software in late 1970's is: (b) Word (a) Word Perfect (c) Word Star (d) Writer (3) We can change the mistakes noticed in which of the following? (a) Electronic type writer (b) Word processor software (c) Simple type writer (a) and (d) Both (b) (4) To insert Header and Footer we have to go to which of the following menu? (a) File Menu (b) Insert Menu (c) View Menu (d) Edit Menu (5) To hide / view ruler we have to go to which of the following menu? (a) Tools Menu (b) Insert Menu (c) View Menu (d) Edit Menu (6) To check the grammar we have to go to which of the following menu? (a) Tools Menu (b) Insert Menu (c) View Menu (d) Language Menu To replace a word Bombay by Mumbai, we have to go to which of the following menu? (a) Tools Menu (b) Insert Menu (d) Edit Menu (c) View Menu (8) To close an opened document, we have to go to which of the following menu? (a) File Menu (b) Insert Menu (c) View Menu (d) Edit Menu (9) Which of the following is the default extension of the writer file? (a) .obt (b) .doc (c) .odt (d) .docx State whether the statements given below are True or False: To open word processor 'Window' menu option is selected. Current file name is shown in Status Bar. Open icon for opening a file is part of Standard Tool Bar. Format Menu contains the options that apply to whole document. It is possible to open a MS-Word file in Open office – Writer. We cannot open Open Office – Writer file in MS-Word.

Introduction to Word Processing

1.

2.

3.

4.

5.

6.

7.

8.

Templates are pre-defined and exist in the office suite, we cannot create our own.

A Tool Bar can also be moved like a selected block of a document.

- 9. If we close a document, Writer itself will be closed when only one document is opened.
- 10. To open a document from a pen drive, it is required to be copied on the desk top first.

PRACTICAL EXERCISE

Perform the following exercise on your computer and write all the steps:

- 1. Open Writer with the help of icon and Exit. Again open Writer from the Applications options available on the desktop.
- 2. Draw all the icons of Standard Toolbar and write its use in your practical note book.
- 3. Draw all the icons of Formatting Toolbar and write its use in your practical note book.
- 4. Create a new text document (using Menu bar) showing your name, address and the name of your school. Save this file with name mydocument1 at the desktop location.
- 5. Open the document **mydocument1**, modify it by adding your division and name of your class teacher. Save this file as **mydocument2** at any other location.
- 6. Open both the documents and switch from one to other. Close one of them and save other as mydocument3 with password.
- 7. Open the document mydocument3 and zoom it for 50%, 75%, 130% and 200%.

•

Editing and Formatting Documents

In the previous chapter, you have studied the features of word processor; how to create a document, how to save it and how to close the document. If you have tried to create a document on computer, I hope now you are familiar with the use of mouse and keyboard. This chapter covers the basics of working with text in Writer. Editing in existing documents and formatting as per our requirement will be covered in this chapter.

Selecting Text

One way to change the cursor position from one place to another with the help of keyboard is by using arrow keys. To reach to a particular position with the help of mouse is simply to take the mouse pointer at the desired place and click the left button of the mouse.

When we want to work with more than one character, we need to select them. The way of selecting the text in Writer is similar to the way we do it in any other applications. That is, using mouse, we start from the first character of the text to be selected and by dragging the mouse till the last character of the text to be selected. The same can be done with the help of keyboard; we take the cursor to the left of the first character and then hold down the shift key and using arrow keys taking the cursor to the last character of the desired text. The selected text (consecutive) is called block.

If you want to select only a word, take a cursor anywhere on that word and double click. By triple clicking on any part of the sentence, the current sentence will be selected. The whole document is selected by pressing CTRL + A.

If the text to be selected is not consecutive then to select the text, we follow the steps given below. The text to be selected is not consecutive and therefore there will be more than one blocks of text.

- (1) Select the first block of the text, as mentioned above.
- (2) To select the next block of text, hold down the CTRL key and drag the mouse from first to last character of that portion. (See figure 10.1)
- (3) Select as many blocks as you want using step-2.

It is also possible to select the non-consecutive text using the keyboard. Perform the steps mentioned to select the non-consecutive text using keyboard.

- (1) Select the first block of text, as mentioned before.
- (2) Press Shift + F8 key. This puts Writer in 'ADD' mode. The word 'ADD' appears on the status Bar.
- (3) With the help of arrow keys, move to the start of second portion of text to be selected. Select the next portion using step-1.
- (4) Repeat as many times as required using step 2 & 3.
- (5) Press Esc to exit from the ADD mode.

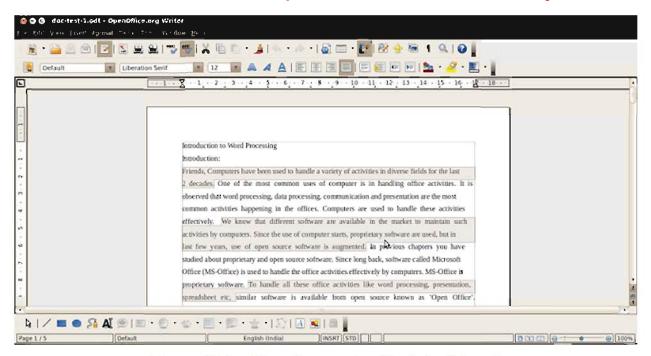


Figure 10.1: Non Consecutive Block is Selected

One of the unique features of the Writer is to select a vertical block. To select a vertical block perform the steps mentioned:

- (1) Click on Edit menu.
- (2) Choose Selection Mode option
- (3) Select Block Area.
- (4) Use mouse to select the desired block. (See figure 10.2)

To switch over to original selection mode, perform the same procedure except for the third step, where you select Standard option.

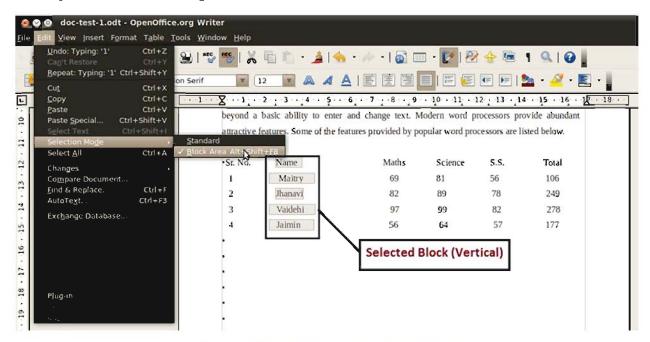


Figure 10.2: Selected Vertical Block

Alternatively you can select the Block Area by pressing ALT + SHIFT + F8 keys. The ALT + SHIFT + F8 will work as a toggle switch i.e. by pressing the same keys combination again; you can switch over to original mode of selection.

Undoing and Redoing Changes

When a document is open, you can undo the most recent change in three different ways.

- Press CTRL + Z
- Clicking the Undo icon on the Standard toolbar.
- Selecting Edit → Undo from the menu bar.

Figure 10.3: Undo and Redo in Edit Menu

The Edit menu seen in figure 10.3 shows the latest changes that we can undo in the document. Alternatively you can see the list of all the changes that can be undo, by clicking on a small triangle near the Undo icon. As seen in figure 10.4 you can select multiple changes and undo them at the same time.

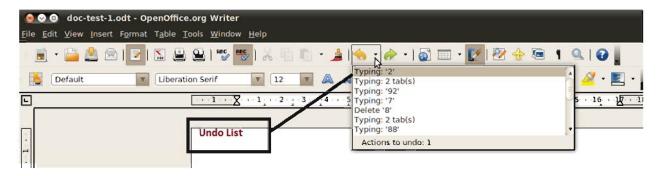


Figure 10.4: Undo List

Redo becomes active only after changes have been undone. Like Undo, Redo can also be done in three different ways.

- Press CTRL + Y
- Clicking the Redo icon on the Standard toolbar.
- Selecting Edit → Redo from the menu bar.

Click on the triangle to the right of the Redo icon to get a list of the changes that can be redone.

Cutting, Copying and Pasting Text

The process of cutting selected text from one place and pasting it to other place in the same document or in other document is known as moving. Copying on the other hand means that the selected text

will be replicated at some other places also. The original contents that are copied remains at the same place. Both moving and copying are done in four different ways:

- (1) Using Menu options: Follow the steps given for moving selected text.
 - (i) Select the text to be moved (Consecutive, Non-consecutive or Vertical).
 - (ii) From Menu, Choose Edit Cut
 - (iii) Move the cursor to the position where the selected text is to be moved.
 - (iv) From Menu, Choose Edit → Paste.

For copying the selected text, same steps are followed except for choosing copy instead of cut in step (ii).

- (2) Using Mouse: Perform the steps given below for moving text.
 - (i) Select the text to be moved (Consecutive, Non-consecutive or Vertical).
 - (ii) Take a mouse pointer to any point of the selected text and drag the mouse to take the mouse pointer to the desired position where the text is to be moved.
 - (iii) Release the mouse button.

For copying the selected text using mouse, simply hold down the CTRL key while dragging.

- (3) Using keyboard: The following steps are done for moving text.
 - (i) Select the text to be moved.
 - (ii) Press CTRL + X
 - (iii) Take the cursor to the position where you want the text to be moved.
 - (iv) Press CTRL + V

For copying the selected text, same steps are followed except for pressing CTRL + C instead of CTRL + X in step (ii).

(4) Using icon: Same steps are followed for moving and copying text as shown in method 3-above, except for clicking on cut icon instead of pressing CTRL + X and clicking on Paste icon instead of pressing CTRL + V. Copy icon is used instead of CTRL + C.

Finding and Replacing Text

All occurrences of a particular word or phrase can be found in Writer and the same can be replaced by another text. One way is to use the Find & Replace icon that exists on Standard Toolbar as shown in figure 10.5. The Find & Replace dialog box as shown in figure 10.6 will appear. Here you have to type the word or phrase to be found in 'Search For' text box. If you want only to search the desired text, select 'Find' every time for next search. To replace the found text with some other text, type the new text in 'Replace With' text box.

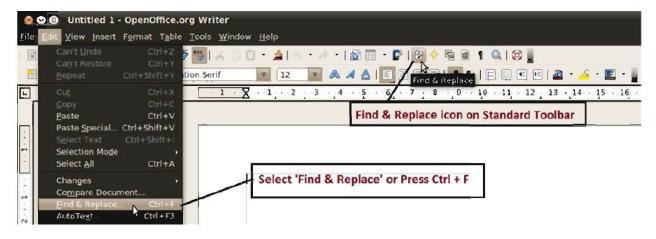


Figure 10.5: Find and Replace Option

Wildcard characters can be used to find words that have similar pattern. For any single character, '.' can be used. For example, by typing '.ut', you can find different words like cut, but, put and other such three letter words. Square brackets [] can be used to find text with any of the character that appear at the specified position. For example, [pb]ut will find only words put and but it will not find the word cut. We can use [a-z] to specify a character range. For example, [k-n]eet will find words like keet, leet, meet and neet if they occur in document. To omit a letter from a search we can use the carot (^) sign. For example, [^c]ut will find words like but, put, hut and not cut. \$ symbol can be used as a paragraph marker. If the wildcard character is part of your text to be searched, type a backslash (\) before the character. For example, to find the text \$25.00, you would conduct a search using \\$25\.00 (Recall that \$ and . are wildcard characters).

To use wildcards and regular expressions when searching and replacing perform the steps mentioned:

- On the Find & Replace dialog box, click More Options to see more choices (see figure 10.6). Select the Regular expressions option.
- Type the search text, including the wildcards, in the Search for box and the replacement text (if any) in the Replace with box.
- Click Find, Find All, Replace, or Replace All (not recommended), as per your requirement.

There are many such options but to discuss all the options is beyond the scope this book.

If the Standard toolbar is not visible, you can display it using View \rightarrow Toolbars \rightarrow Standard. To display the Find & Replace dialog box, choose Edit \rightarrow Find & Replace from the menu bar

or press CTRL + F on keyboard or click on Find & Replace icon

on Standard toolbar.

You can select various options, such as matching the case, matching whole words only, or doing a search for similar words as per your requirements.

Note that, if you click Find All, Writer will select all the occurrences matching with the search text in the document. Similarly if you select Replace All it will replace all matches, which may result in amusing mistakes and therefore Replace All should be used with extra care. For example, in a document you want to replace the word Bombay with Mumbai. Now if you click Replace All, all the occurrences of Bombay will be replaced with Mumbai. Suppose there is a statement like "Bombay was the name given by English people but now it is Mumbai". What happens if Bombay is replaced by Mumbai? It will be "Mumbai was the name given by English people but now it is Mumbai", so funny. Therefore it is advised to replace an occurrence matching with the search text one-by-one.

One of the unique features of the Writer is the use of Format option (see figure 10.6) in Find & Replace. For example, all the underlined words can be replaced by Italic style. You may explore this option and try to do some changes in the document.



Figure 10.6: Find and Replace Dialog Box

Inserting special characters

A character which is not found on a standard keyboard is called a 'Special' character. For example, Ψ , μ , \pm , $\frac{1}{2}$, $\frac{3}{4}$, \pm , etc. are all special characters. To insert a special character, follow the procedure given:

- (1) Place the cursor in your document where you want a special character to be inserted.
- (2) Go to insert menu and select Special Character. The Special Characters dialog box will be opened.
- (3) Select the characters to be inserted, in order; then click OK.

The selected characters will appear in the lower left side of the dialog box. At the same time for a selected character, the character will be displayed along with its code on the lower right corner of the special character dialog box.

Formatting Paragraphs

Formatting Paragraphs is the most common requirement in creation of any document and therefore it is most widely used feature of any word processor. Several options in the form of buttons are available for formatting paragraph in Writer. Figure 10.7shows some of these options.

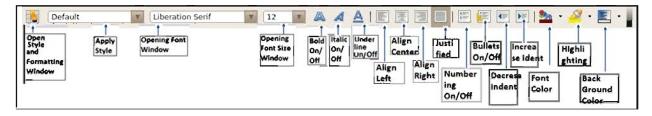


Figure 10.7: Formatting Toolbar

- (1) If you open style and Formatting Window, You will have different options like paragraph style, Text Body, etc... Paragraph Styles can be used for formatting paragraphs.
- (2) Opening Font window will give us different fonts for choice. We can select the desired.
- (3) Font size can be set from Font Size Window.
- (4) By clicking on the bold effect can be made On/Off for selected text. If the text is not selected the effect will be from the cursor position. Similarly is for italic style and is for having the underline effect for selected text.
- (5) For alignment you have four effects. See the figure 10.8 for this effect.

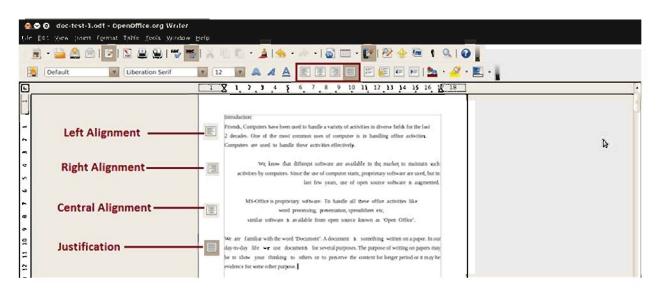


Figure 10.8: Alignments

- (6) Next two options are for Numbering and Bulleting. Numbers or bullets can be inserted in the beginning of each paragraph for the selected text. Numbering option also allows us to change the style of numbering (i.e. 1, 2, 3, ... or i, ii, iii, iv, ... or a, b, c, ...). Similarly using bullet option we can change the symbols for bulleting (♠, ♠, ■, ✓ etc).
- (7) Next two options are decreasing and increasing indents respectively for the current or selected paragraphs.
- (8) Font color is set using Font Color option.
- (9) The selected text can be highlighted with the help of next option called highlighting. The last option will allow us to change the Background color of the selected text.

When using justified text, the last line of the paragraph is aligned to the left.

Creating Numbered or Bulleted Lists

To create a numbered or bulleted list, select the paragraphs in the document and then choose either Numbering icon or Bulleting icon on the format toolbar shown in figure 10.7, as per your requirement. If you select Numbering or Bulleting icon before typing, it will apply automatically while typing. A nested list of numbering or bulleting can also be created. For this you have to choose appropriate option from Bullets and Numbering toolbar shown in figure 10.9. Alternatively if you press Tab key in the beginning of the line, the nested list is created.

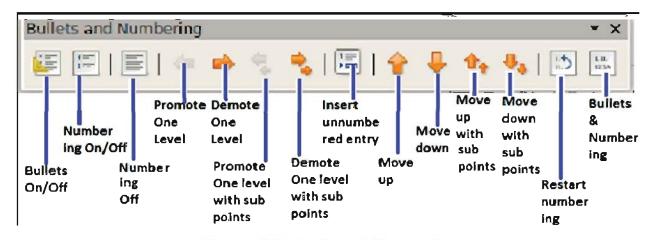


Figure 10.9: Bullets & Numbering

If you create a nested list using the predefined styles, all the levels of the list (up to 10) apply the same numbering (or bullet). However, in many circumstances you want to use a combination of numbering formats and bullets when creating nested lists. Such lists, with a mixture of numbering formats and bullets, are also possible. By pressing the Bullets & Numbering option (last option in figure 10.9), the Bullets and Numbering dialog box will be displayed. You can select the desired one as shown in figure 10.10.

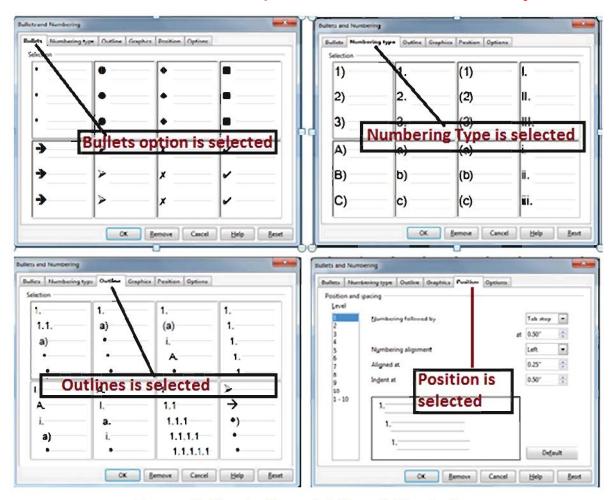


Figure 10.10: Options of Bullets & Numbering

Checking Spelling and Grammar

Spelling checker is available in Writer. AutoSpellcheck spelling checker checks each word, as we type it. Writer puts a red line under any misspelled words (A word is considered to be misspelled if it is not present in the stored dictionary of Writer). The red line will disappear if it is corrected or ignored by selecting ignore option, available on pressing right click. If you don't know the correct spelling, right-click on the word with a red underline, possible suggested words will appear with several menu options. If you select any word from the suggested words, the misspelled word in your text will be replaced by the word you have selected.

Writer at times will identify a correct spelling as a wrong word. This happens because of non-availability of the word in the Writer dictionary. You can add words in the Writer dictionary. For example it may happen that you need to type your company name frequently in a document. If you type your company name, obviously it will be shown as misspelled as it is not there in the Writer dictionary. When a red line is shown under the word (Company name), just right click and select 'Add' option. The name of your company will be added in the dictionary. Then onwards, the name of your company will be treated as a correct word.

To perform a separate spelling check on the document (or a text selection) click button. This checks the document or selection and opens the Spelling and Grammar dialog box as shown in

figure 10.11. If any misspelled words are found, choose the correct option from the dialog box. The misspelled word will automatically be replaced with the selected one.



Figure 10.11: Spelling Checking Dialog Box

Here you can change language, you can ignore the misspelled word once or every such occurrence in the document or you can change the misspelled word by a selected word from the suggestion. For example, in figure 10.11 Subhash is name of a person, but since it does not exist in Writer dictionary, it is considered as misspelled. We can select either ignore once or Ignore all. It is also possible to add this word in the dictionary if it will be reused, as mentioned above. Other options can also be used as per our requirement.

Using Synonyms and the Thesaurus

Right-click on a word or phrase, whose meaning you are looking for and select Synonyms from the pop-up menu. A submenu of alternative words and phrases is displayed. Click on a word or phrase by which you want the highlighted word or phrase to be replaced. If you select the thesaurus option, you will get a more extensive list of alternative words and phrases.

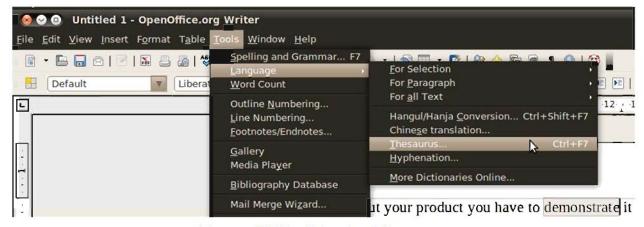


Figure 10.12: Selecting Thesaurus

The thesaurus can also be obtained from Menu. Select a word or phrase for which the thesaurus is to be obtained and then go to Tools menu and then select Language → Thesaurus as shown in figure 10.12, the 'Thesaurus' dialog box will be displayed as shown in figure 10.13. You can press CTRL + F7 instead of selecting menu options, to get the thesaurus.

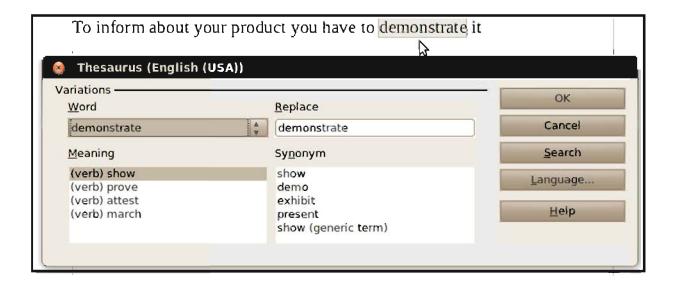


Figure 10.13: Thesaurus Dialog Box

In figure 10.13, you can see the Synonym of the word demonstrate. The same could be obtained with the right click on the word or phrase. Here the difference is: you can have Synonym depending on the meaning. That is if you select other meaning, the list of Synonym will be different. For example, if you select meaning of demonstrate as attest, the Synonym would be different. It should be noted that if the current language does not have a thesaurus installed, you won't be able to use this feature.

Using AutoCorrect

Writer's AutoCorrect function is used to correct the typing error up to some extent. There is a long list of common misspellings and typing errors is stored in the Writer's AutoCorrect function. When such misspelling is encountered, Writer corrects it automatically. For example, people used to write "aggressive" instead of "aggressive" or "suppossed" instead of "supposed" and when such misspelling are encountered it will be corrected automatically. From the Menu bar, choose Tools \rightarrow AutoCorrect options, the AutoCorrect dialog box will be opened, where you can see the table of incorrect and correct words. Here you can add new set of words. For example you have habit to type "sunami" instead of "tsunami", you can add the incorrect and correct words in the table. AutoCorrect is on, by default. If you don't want to use the AutoCorrect function of Writer you can turn it off, uncheck Format \rightarrow AutoCorrect \rightarrow While Typing. If you do not want Writer to replace a specific word, you can delete it from the table also.

Using word completion

The Word completion facility is little different than AutoCorrect facility. While typing as and when you type two-three characters, Writer tries to guess which word you are typing and offers to complete the word for you. To accept the suggestion, press Enter. Otherwise, continue typing. Note that this facility is available only for those words which are already typed in the same document that is the word completion facility is available for a word getting typed at least for second time. To make this facility Enable or disable select Tools \rightarrow AutoCorrect Options \rightarrow Word Completion and select or deselect Enable word completion.

Using AutoText

Like other word processor, Writer also provides AutoText facilities. Using AutoText we can store text, tables, fields, and other items for reuse and assign them to a key combination for easy retrieval. For example, suppose you have to write a letter to a particular person frequently, say to the Registrar of a University.

To
The Registrar
Gujarat Technological University
Ahmedabad

Figure 10.14: Entry for AutoText

Then you can create the contents shown in figure 10.14 as AutoText and can give a shortcut key, say R. Now whenever you want to use this text, simply type R and press F3. The content shown in the figure 10.14 will be typed automatically.

Creating AutoText

- (1) Type the text into your document. (In our example the content of figure 10.14)
- (2) Select the text to be stored in the Autotext.
- (3) Go to Edit \rightarrow AutoText (or press CTRL+F3).
- (4) In the AutoText dialog box as shown in figure 10.15, type a name for the AutoText in the *Name* box. (say rgtu)
- (5) Writer will suggest a one-letter shortcut, which you can change. (say R for example)
- (6) In the large box to the left, choose the category for the AutoText entry, for example *My AutoText*.
- (7) Click the AutoText button on the right of the dialog box and select New.
- (8) Click Close to return to your document.

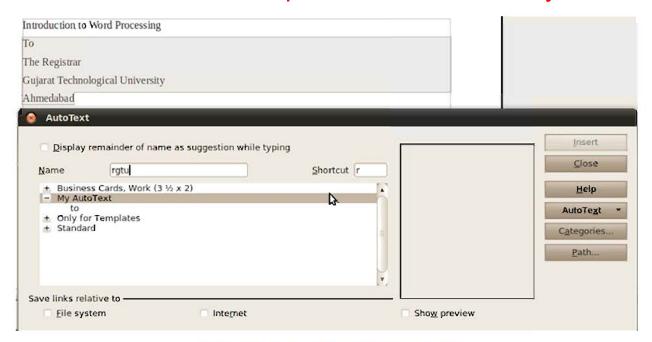


Figure 10.15: AutoText Dialog Box

Line Numbering

Line numbers can be inserted for the selected lines. Line numbers are placed in the margin. If you see the 'Print layout view' you can also see these line numbers on the screen. The line numbers can be printed also. To give line numbers, select the lines to which the numbers are to be assigned. Click Tool → Line Numbering and then select Show Numbering option in the Line Numbering dialog box. Then click OK. You can select the numbering type and whether numbers restart on each page. You can also set at what interval, you want the next number. See figure 10.16 for numbering the lines.

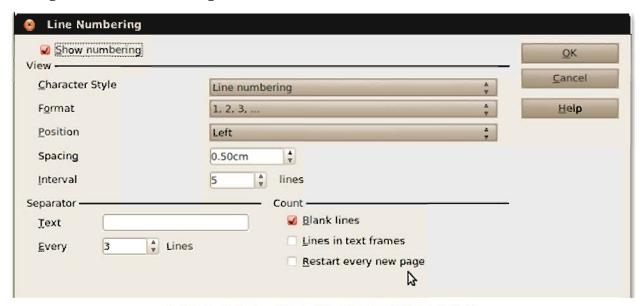


Figure 10.16: Line Numbering Dialog Box

Insert and Overwrite Mode

We know 'to insert' means whatever we are typing in insert mode, the text already typed after the cursor position shifts forward to make room for the text you are typing. In the 'Overwrite'

mode whatever we are typing will replace the text already typed on those positions. To switchover from 'Insert' mode to 'Overwrite' mode or vice versa, simply press *Insert key on the keyboard*. The current mode is displayed on the Status Bar. With the mouse, clicking in the area on the Status Bar we can also switch to the other mode.

Counting the Words in a Selection

Select a block of text and choose Tools \rightarrow Word Count. Writer displays the number of words and characters in the selection as well as the number of words in the document. You can also see the number of words and characters in the entire document in File \rightarrow Properties \rightarrow Statistics.

Changing the Case of Selected Text

Case of the text can be changed once it is typed. To change the case of text, select the text for which you want to change the case. Choose Format → Change Case from the menu bar, and then choose the desired option. Five options are available for changing the case. Sentence case: If you select this option the first character of the first word and the first character of any proper noun will be capitalized. '.' is considered as the end of the sentence. Lower case option is used if you do not want any character capital. With the help of UPPER CASE option you can convert all the characters in capital. tOGGLE cASE option is depending on the case in which you have typed. This option will simply change every letter to the opposite case.

Summary

In this chapter we learnt about how to edit and format a document. We saw how to select consecutive and non-consecutive texts, learnt how to perform operations of cut, copy and paste. Looked at mechanism available to find and replace a word or a phrase. We also learnt different formatting techniques that could be used to make our document more readable and presentable.

EXERCISE

- 1. Write all the steps to select a non-consecutive text in Writer.
- 2. How will you select the vertical block? List the steps in order.
- 3. How do you define the special characters? How will you insert it in a document?
- 4. Which are the steps to count the total words of a document?
- 5. Choose the most appropriate option from those given below:
 - (1) Which of the following technique selects a sentence in Writer?
 - (a) Single click (Pressing left button of mouse)
 - (b) Double Click
 - (c) Triple Click
 - (d) None of the above

(2)	Which of the following is the short cut key to Redo any operation?					
	(a) CTRL + R	(b)	CTRL + X			
	(c) CTRL + Y	(d)	CTRL + Z			
(3)	To find a word in a document we car	ı use	which of the following function key?			
	(a) F5 key	(b)	F8 key			
	(c) F1 key	(d)	All of these			
(4)						
	nested list.	(h)	4			
	(a) 5	(p)				
(5)	(c) 16	(d)	10			
(5)	feature?	Ш	Writer because of which of the following			
	(a) Auto Text	(b)	Auto Correct			
	(c) Auto Complete	` '	All of these			
(6)	Which of the following menu is to be	` '				
(0)	(a) Edit	(b)	Format			
	(c) Tools	(d)	English			
Stat	te whether the following statements	are	True or False :			
(1)	1) Writer does not permit to copy a selected text in to another document.					
(2)	2) It is possible to copy a selected text without using Menu options and key-board options.					
(3)						
(4)						
(5)						
(-)	Writer.		The man replace former of			
(6)	While typing if an incorrect spelling is detected a red line is marked under it. After correcting					
	it, a red line is converted into green line.					
	PRACTICAL EXERCISE					

1. Open the file mydocument1 and type the text given in the box below:

The Word completion facility is little different than AutoCorrect facility. While typing as and when you type two-three characters, Writer tries to guess which word you are typing and offers to complete the word for you. To accept the suggestion, press Enter. Otherwise, continue typing. Note that this facility is available only for those words which are already typed in the same document that is the word completion facility is available for a word getting typed at least for second time.

Close the document and save it.

6.

- 2. Open the mydocument2 and type at least 10 cities of Gujarat state. Use Cut and Paste to arrange them in dictionary order.
- 3. Open the document mydocument3 and copy the first three sentences from mydocument1 and close both the files.
- 4. Open mydocument2 and type the following at the end of the document:

Roll No.	Name	City	Total Marks (Out of 200)
01	Manushi	Gandhinagar	172
02	Shivam	Vadodara	154
03	Ayush	Surat	138
04	Yashri	Nadiad	169
05	John	Rajkot	145
06	Mohmad	Anand	151

Copy name of the cities from the above text and paste it in mydocument3. Close both the documents.

- 5. Open mydocument2 where you have stored 10 cities in dictionary order. Delete cities at position number 3 and 7. Undo your deletion and delete cities at position number 5 and 8.
- 6. Open mydocument1. Find all the occurrences of the word 'the' and replace it with 'a' if it is not in the beginning of the sentence.
- 7. Open mydocument3 and insert a character O in front of all the cities except 'Nadiad'.

 Insert the character in front of 'Nadiad'.
- 8. Find out the number of words for the third paragraph.
- 9. Type your own address and store it in the table of AutoText. Use it in any other document.

•

Tables and Mail Merge

In the earlier chapters, you have studied the features of word processor, creating, deleting, editing and formatting documents as per your requirement. In this chapter we will discuss very important and highly required part of a document that is tables. Tables are very useful to handle vast amount of information. Many times Tables can be used as an option to spreadsheets. A table, designed properly can help observers to understand better what you are saying. We can insert pictures or graphs or any such objects in addition to text and numbers in a cell of a table. We shall learn; creation of tables, modifications in them and formatting of tables. The chapter also explains how to use the facility of mail merge and at the end discusses how to print documents.

Creating Tables

Suppose you want to draw a table on a paper or in our notebook, you have to decide the required number of columns and rows before drawing it. Every parameter can be changed at a later stage; but with the planning of requirement of rows and columns, we can save time.

Figure 11.1 : Selecting Table Option

Inserting a New Table

There are three different ways to insert a table in a document; using menu, using icon and using keyboard. You can choose Table \rightarrow Insert \rightarrow Table from the menu (see figure 11.1). The same can be done simply by pressing CTRL + F12 keys. If you want to use icon, you have to click Table icon from standard toolbar as shown in figure 11.1. You should note that the cursor should be at the position where you want to insert a table in the document. In any case an 'Insert Table' dialog box will appear first. Figure 11.2 shows a table dialog box that you can use to set the properties of the table that is to be inserted.

Tables and Mail Merge 167



Figure 11.2: Insert Table Dialog Box

Let us now discuss the options seen in the table dialog box one by one:

- Name: Here you can enter a name of the table. Table 1 is a default table name. You can modify the table name as per your needs.
- Size: The required number of rows and columns can be set here. The size of the table, once set, can be changed later, if needed. The default Table size is 2 columns and 2 rows.
- Heading: One or more rows can be specified as a heading of the table. The desired number of rows can be specified in 'The first rows'. The default value is 1. The advantage of defining the row(s) as head row(s) is; when splitting a table into two tables, the Heading row(s) are copied in the second table automatically (see figure 11.3).
- Repeat Heading: This option is little different from the 'Heading'. If you check 'Repeat Heading' then the heading row(s) will be repeated on subsequent pages if the table spreads across more than one page. If you do not want the heading to be repeated on subsequent pages, uncheck this option.
- Don't Split Table: If you check this option, the Writer will not allow your table to be spread across more than one page. In case when the table starts near the end of a page, Writer will locate the complete table on the following page. If the table becomes longer than it would fit on one page, you need to either deselect this option or manually split the table.
- Border: On selection of this option, Writer surrounds each cell of the table with a border.

 The border can be changed or can be deleted later.

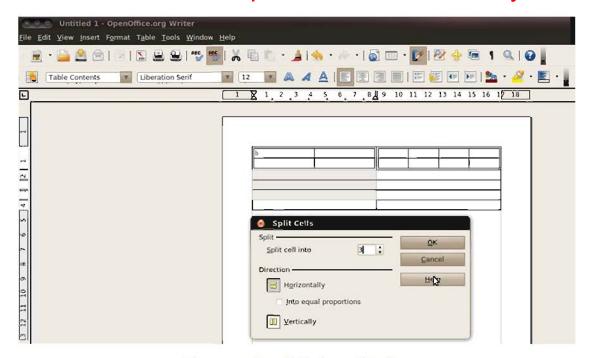


Figure 11.3: Splitting of Cells

• Auto Format of a Table: If the AutoFormat button is clicked, an AutoFormat dialog box will open. Several predefined options for table layouts with different colour and style are available for your choice. Choose the one you like and click OK. Writer creates a table as wide as the text area. You can then adjust the columns and rows as per your needs.

Creating Nested Tables

By nested tables we mean tables within tables. You can create tables within tables, nested to a depth limited to 10 levels. Figure 11.4 shows an example of nested table. To create a table within a table, simply click in a cell of an existing table and use any of the methods mentioned previously for inserting a new table.

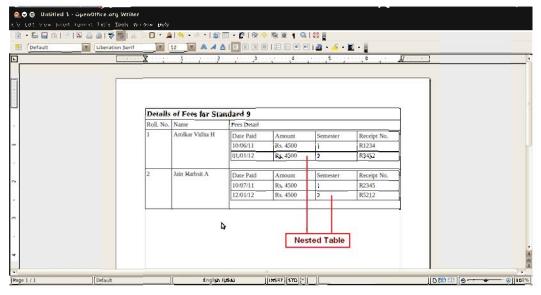


Figure 11.4: Nesting of Tables

Tables and Mail Merge 169

Moving Between Cells

Within a table, you can use the mouse, the cursor keys, or the Tab key to move across cells. The cursor moves to the next cell only if there is no text in the way. The Tab key moves directly to the next cell. If the cursor is in the last cell of the table, a new row is created by pressing Tab key. If the Tab key is pressed with Shift key the cursor moves back a cell.

Formatting the Table

When you are formatting a table, you can divide the formatting process into two parts; formatting the table itself, we call it as formatting of table layout or Formatting of the table text, as we are formatting paragraph.

Formatting of the table layout includes adjusting the size of the table and its position in the document, inserting or deleting rows or columns, merging and splitting cells, changing borders and background. The steps to perform these tasks are explained in next section. Formatting of Table text, on the other hand, affects individual cell or group of cells (if selected together). You can format the table text as you are formatting other paragraphs. You can define your own paragraph and character styles. Alignment, line spacing, bullets and numbering can also be set when needed. You can format each cell independently of other cells, or you can simultaneously format a group of cells by selecting them before applying the desired format.

Adjusting Size of a Table

Using the default settings, any newly created table will occupy the entire width of the text area. This is sometimes what you want or you may prefer a smaller table. To quickly resize a table, first move the mouse to either the left edge of first column or right edge of the last column. When the cursor changes shape into a double arrow, drag the border to the new position. This operation changes only the size of the first or last column; it does not change the alignment of the table on the page.

More accurate formatting over the size and position of the table can be done through Table Format Dialog box. The Table Format dialog box is opened by choosing Table \rightarrow Table Properties or by right-clicking anywhere in the table and choosing Table from the pop-up menu.

Figure 11.5 shows the table format dialog box, you can set the alignment of the table like Automatic, Left, Right and Center. The left option is used with spacing; it allows you to place your table exactly how far it is from the Left margin. Manual option lets you to place your table from both left and right margins. These margins can be set in Spacing. The Above and Below options are used to set the distance of the table from the text above and below the table.

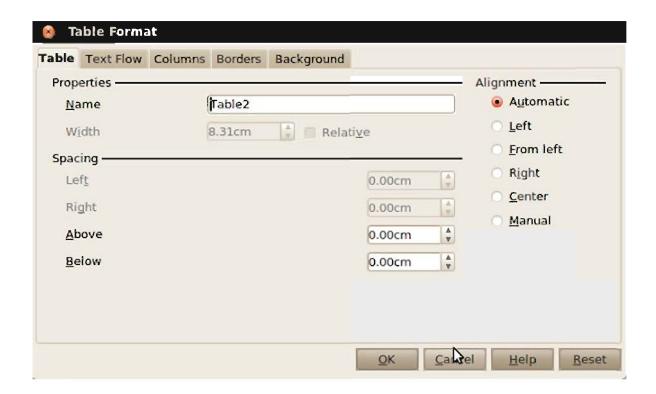


Figure 11.5: Table Format - Table Properties

Resizing Rows and Columns

You can adjust the Row height and Column width in a table in many different ways.

Move the cursor to the edge of the cell (vertical for column width and horizontal for row height) and when a double sided —— arrow appears, click and hold the left mouse button, drag the border to the desired position and release the mouse button. Both row height and column width are adjusted in this way.

- Other way to adjust the row height and column width is using vertical ruler and horizontal ruler respectively. On the vertical ruler there are row dividers and similarly on the horizontal ruler there are column dividers marked by a pair of thin grey lines. You can change the row height or column width by holding the mouse button down on the appropriate divider and dragging it to the desired location.
- From the Table menu, by selecting Autofit option, you can choose row height or column width which allows you to change the size of a row or a column. (see figure 11.6)

Figure 11.6: Table Autofit

- The other option Optimal Row Height or Optimal Column Width make the selected rows or columns as narrow as possible to fit their contents.
- If you select distribute rows evenly or distribute columns evenly, the height of selected rows or width of selected columns will be same.

The column width can also be set by selecting column option in the Table Format dialog box as shown in figure 11.7.

Figure 11.7: Table Format - Column Option

Inserting Rows and Columns

Rows and Columns can be inserted in many ways, as mentioned:

(1) Using Mouse: Place the cursor in the row or column where you want to add new rows or columns and right-click. Select the desired option.

- (2) Using Menu: Choose Table menu, then choose Insert and then row or Column. An Insert dialog box will be displayed as shown in figure 11.8. Here you can type the number of rows or columns to be inserted or using arrow you can set the number. After giving the number of rows or columns to be inserted, select Above or Below (or Before or After in case of rows) Click OK to get the effect of the action.
- (3) Using Toolbar: When your cursor is anywhere in the table, the Table toolbar is viewed on the screen as shown in figure 11.9. Here you can click on insert row or column icon. A row or a column will be inserted below the current row and after the current column.

Figure 11.8: Inserting Rows/Columns

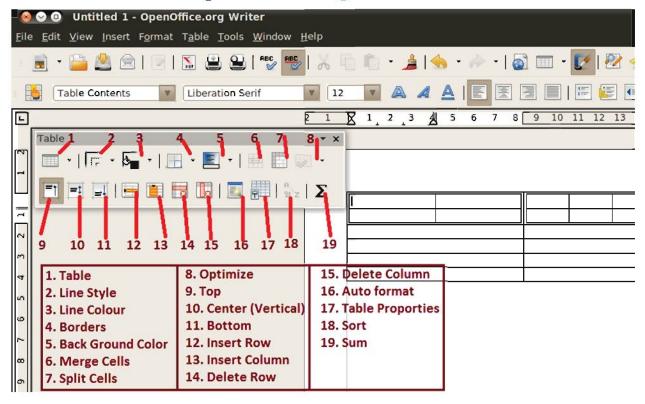


Figure 11.9: Table Toolbar

Tables and Mail Merge 173

To insert quickly a row or a column using only the keyboard, follow the steps given below:

- Place the cursor in the row or column where you want to insert it.
- Press ALT + Insert to activate keyboard handling.
- Press the arrow keys as per your requirement to insert a row or column:
 - Left arrow will be pressed to insert a column to the left of the current column.
 - Right arrow will be pressed to insert a column to the right of the current column.
 - Down arrow will be pressed to insert a row below the current row.
 - Up arrow will be pressed to insert a row above the current row.

Note that by using ALT + Delete instead of ALT + Insert, in above steps, we can delete row or column.

Merging and Splitting Cells

The selected cells can be merged into one cell through the steps given:

- (1) Select the cells to be merged.
- (2) Right Click and choose Cell → Merge or from menu bar Choose Table → Merge cells. A cell or some selected cells can be split into multiple cells. To split cell(s) follow the steps given:
- (1) Position the cursor inside the cell. (or select the cells to split)
- (2) Right click and choose Cell → Split or from menu bar choose Table → Split Cells.

A Split Cells dialog box will be displayed as shown in figure 11.10. Type the number in Split cell into textbox. Then select Horizontally or Vertically. The cell will be split either into specified number of rows (if Horizontally is selected) or into specified number of columns (if Vertically is selected).

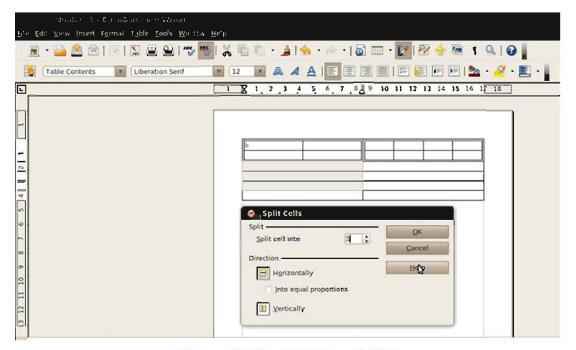


Figure 11.10: Splitting of Cells

Vertical Alignment of Text in a Table

By default, text entered into a table is aligned to the top-left of the cell. You can change the default for the entire table or for individually selected cells.

To vertically align the text place the cursor in the cell or select multiple cells you wish to change. Right-click keeping cursor anywhere in the selected area and choose Cell. Choose Center, Top, or Bottom as per your desire.

Automatic Formatting of Tables

Using AutoFormat, you can apply a format from the predefined collection of table formats. You can also create your own table formats and save them as another AutoFormat in the collection set. To apply an AutoFormat, place the cursor anywhere in the table and choose Table → AutoFormat. An AutoFormat dialog box will appear as shown in figure 11.11. Select the desired format from the list displayed on the left (you can see the actual look of the table as you move in the list) and click OK to apply it.

Figure 11.11: Table Auto Format

Deleting a Table

To delete a table, you can click anywhere in the table and choose Delete → Table from Table menu. Other way is similar to the one we use for deleting selected text. That is, start from the line above the table, drag the mouse till the line below the table to select the table and then simply press either Del key or Backspace key.

Copying a Table

Copying a table is as simple as copying a selected text. That is, we select the table to be copied first (By taking a cursor anywhere in the table and choose Table \rightarrow Select \rightarrow Table). Press CTRL + C or select copy option from the Edit menu or select the copy icon from the standard toolbar or select copy option after Right-click. Then take the cursor to the position where you want its copy and then select paste either using menu or icon or by pressing CTRL + V. Moving a table is similar to copying a table except selecting cut instead of selecting copy. Other procedure is similar.

Mail Merge

Often you need to send the same information to several persons. For example, you want to send a letter to several candidates to be called for interview. Obviously, the address and interview time will be different for different candidates at the same time the other content will be same. One way is, to create a letter in usual way, copy this letter in a new document, change the address and interview time of a particular candidate and save the document with different name. The procedure of copying and changing is repeated as many times as the number of candidates. This way of creating multiple documents is very time consuming and tedious. Writer has made this task easy through the feature called mail merge. In mail merge two documents are created. One which is the main document also called the form letter and other is called the data source. The form letter contains the actual information and variable names for the data which varies in different letters. Data source contains values of the corresponding variables of the main document. For the example mentioned above, the address of all the candidates with respective interview time would be stored in data source.

Creating the Data Source

A data source is a set of mailing addresses in the form of a rows and columns generally called database (Detailed study of database will be done in standard tenth). The content of the database is in the form of data records. OOo's Writer supports the database in many forms. They are spreadsheets, text files and databases such as MySQL, Adabas, and ODBC.

If the information to be used in the mail merge is currently in a format that OOo cannot access directly, you need to convert it, to a comma-separated values by exporting it. The extension of such files must be .csv. To create address book using spreadsheet or database is little easier, as they use the table format to store the data. We will make use of text files, as other formats are yet to be studied. The text file is saved with file extension .txt. It is also possible to create address book during the mail-merge process using mail merge wizard. Note that the comma separated file is also a text file but the only difference is that the comma separated file will be converted into the table format after registering it with form letter or main document.

Creating a Text File for the Data Source

Any editor can be used to create a text file. We will use **gedit** text editor available with our operating system. To open the **gedit** text editor, click on Applications \rightarrow Accessories \rightarrow gedit Text Editor (See figure 11.12).

Figure 11.12: Opening the Gedit Text Editor

Note that the comma separated file is created exactly the same way; the only difference is in the extension of the file. The file in figure 11.13 is named address.txt. Once the text file is created it should be registered first with the main document. The procedure for registering a data source is explained below:

Figure 11.13: Database for Mail Merge

Registering a Data Source

For a data source to be directly accessible within a Writer document, it must first be registered. This process is to be done only once; after that, the data source is available to all documents in OpenOffice.org. The step-by-step procedure for registering the data source is explained below:

- (1) From Writer, choose File \rightarrow Wizards \rightarrow Address Data Source.
- (2) The option in the first step of the wizard depends on the operating system loaded on the computer. Select the appropriate type of external address book. If the type of data source is not present in the list, select Other external data source because we have considered a text file to explain the procedure. Click Next. (See figure 11.14).

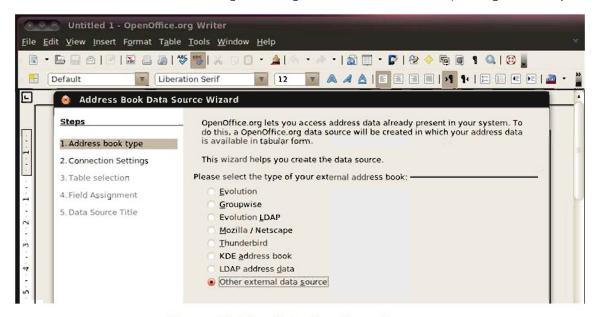


Figure 11.14: Selecting Data Source

(3) In the next step of wizard select the Settings button. (See figure 11.15).

Figure 11.15: Data Source Connection Setting

(4) In the Data Source Properties page, select the Database type. In our example, it is Text. Click Next. (See figure 11.16).

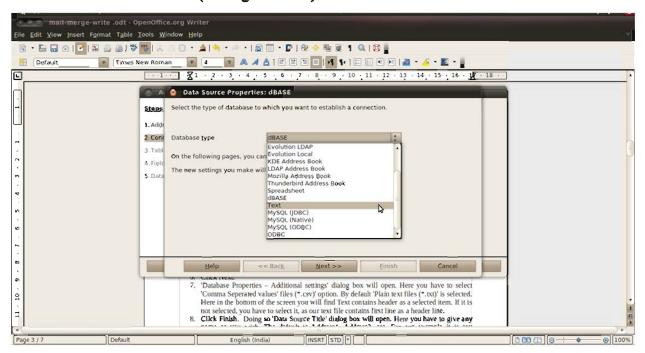


Figure 11.16: Data Source Properties

(5) In the next dialog box, you have to give the location where your text file is stored. If you know the exact path of text file, type it in the box otherwise click the Browse button and navigate to the directory that contains your file (See figure 11.17). Here choose Select option to return to the Database Properties - Connection settings dialog box. The Test Connection button will now be enabled and we would be able to check whether the connection has been correctly established or not.

Figure 11.17: Database Connection Settings

- (6) Click Next.
- (7) Database Properties Additional settings dialog box will now be opened. Here you have to select appropriate file type option that is text file option or 'Comma Separated values' files (*.csv)' option. By default 'Plain text files (*.txt)' is selected. Observe that at the bottom of the screen you have check box with label **Text contains headers.** This check box should be enabled. If it is not enabled then you will have to enable it, as our text file contains first line as a header line. (See figure 11.18)

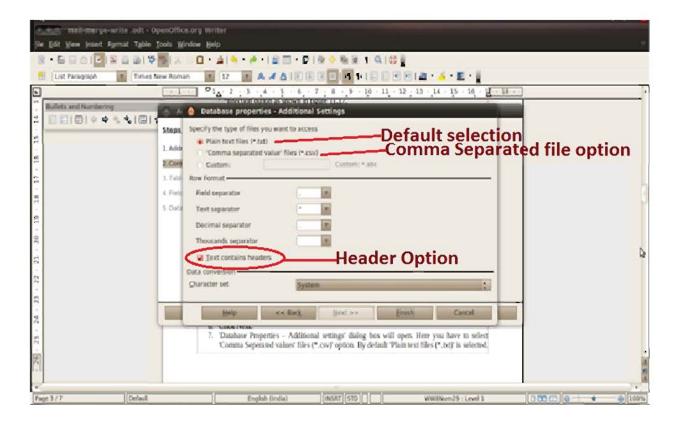


Figure 11.18: Database Properties: Additional Settings

- (8) Click Finish. Doing so 'Data Source Title' dialog box will open. Here you have to give any name of your choice. The default name is Addresses.odb. Click finish.
- (9) The data source is now registered.

Creating a Form Letter

Let us recall our example: we want to send a letter to several candidates to be called for interview. We can create the main document in usual way as we are creating a normal document:

(1) Create a new text document: File → New → Text Document, or open any document from already saved (form letter) with File → Open.

- (2) Display the registered data sources: View \rightarrow Data sources (or press F4).
- (3) Find the data source that you wish to use for the form letter, You will find the address selected because you have registered your data file with this name. The address data file will be displayed as shown in figure 11.19.

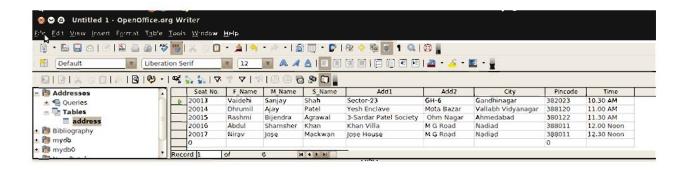


Figure 11.19: Opening Database

Now create or modify the form letter by typing in the text, punctuation, line breaks, and so on that will be present in all of the letters. To add the mail-merge fields at appropriate places (such as names, addresses, interview time etc.), click in the field heading and drag it to the appropriate position in the letter as shown in figure 11.20. Continue until you have composed the entire document. (See figure 11.21)

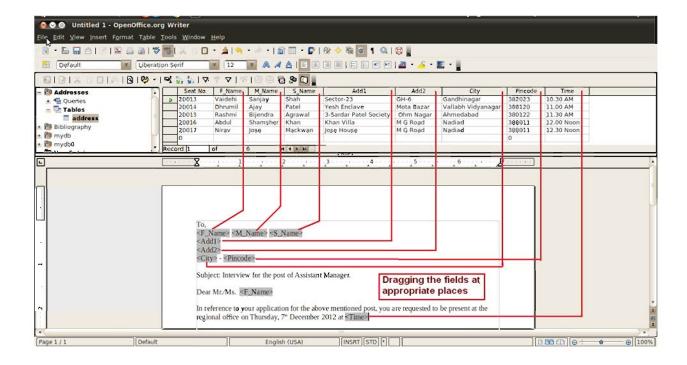


Figure 11.20: Dragging Fields in the Form Letter

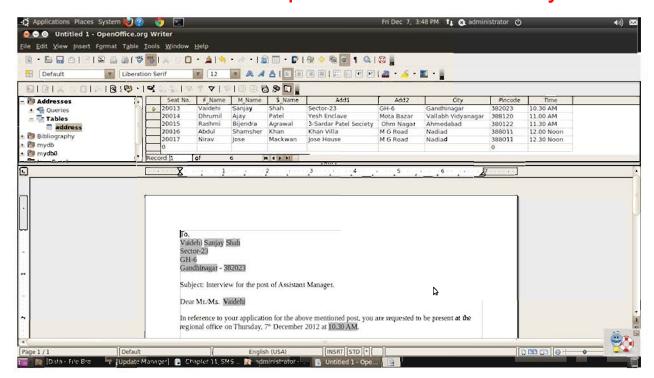


Figure 11.21: Document after Mail Merge Process

The document is now ready to be merged.

 Choose File → Print and click on Yes button as seen in the message box. (See figure 11.22)

Figure 11.22: Printing of Form Letter

(2) Doing so the Mail Merge dialog box shown in figure 11.23 will appear with records of database displayed. You can choose all the records or choose some as per your choice. To select individual records to be included in merging, every time while selecting a record, hold down the CTRL key and click a record to be selected. If the records to be selected are consecutive, select the first record in the range and scroll up to the last record and press Shift + click on the last record. Press OK. You can either print the merged file directly or save it in a file for printing it later or even for further modification. If you are storing the merged document as a file, you can store it as a single file or individual files. For printing the resulting document, you have to select the printer in the output section of the Mail Merge dialog box (See figure 11.23).

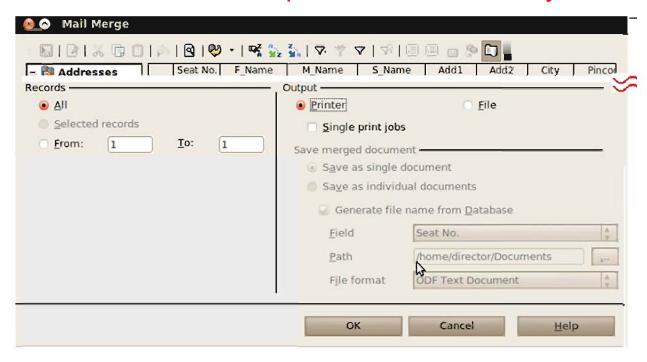


Figure 11.23: Mail Merge Dialog Box for Printing

Select File in the output section to redirect the resulting document to file. Doing so, the next Mail Merge dialog box will be displayed as shown in figure 11.24.

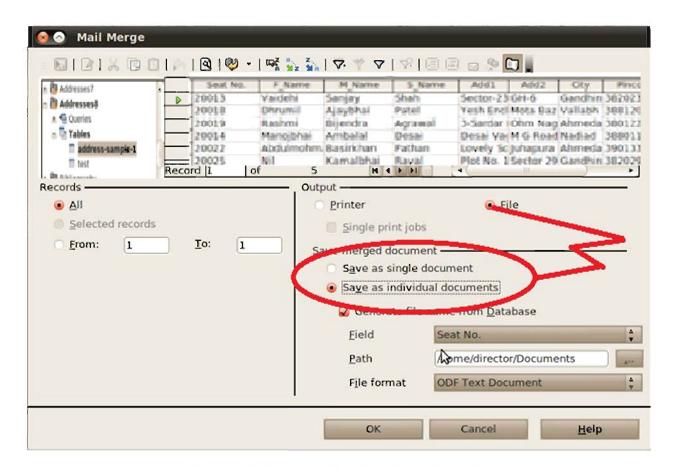


Figure 11.24: File is selected for Results

Here in Save merged document section you can choose Save as single document to get result in single file or you can choose save as individual document to store each letter as separate file. Default is Save as single document. The file so created can be edited, as we are editing other documents.

(3) If you have not saved the original form letter (template) previously, then you have to save it now.

Quick Printing

Generally documents are stored for the purpose of maintaining records. To print the document quickly click the Print File Directly icon to send the entire document to the default printer defined for your computer.

Controlling Printing

When you select print option from File menu or by pressing CTRL + P, Print dialog box will be displayed as shown in figure 11.25. You will find several options here, for having more control over printing.

The Print dialog box has five parts, from which you can choose options as per your requirement. They are Printer, Properties, Print Range, Copies and Options. We shall discuss all these options one by one. Note that the options selected on the print dialog box will be applied to the printing of current document only.

Printer

If you click on a small triangle (∇), a list of names of printers (only those which are installed on your computer) will appear in line with the Name. You can select the printer on which you want

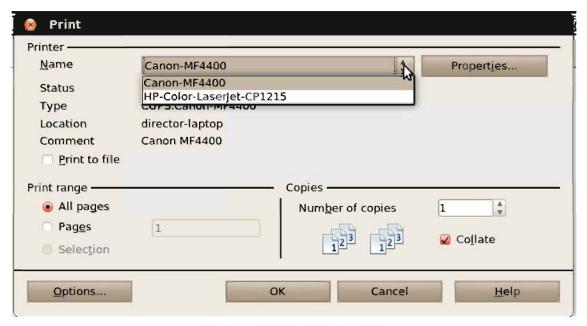


Figure 11.25: Printer List

to print your document. By clicking the desired printer, the name of that printer will be displayed in the Window of Name option as can be seen in figure 11.25. The printing of your document starts after pressing OK. If you want to convert your document into PDF format, you can select Adobe PDF option from the list of printers. In this case, you can give a file name and the place where you want to save it. Press OK.

Note:

The view of figure 11.25 may differ in your organization due to different printer configurations.

Properties

When we select Properties, the Property dialog box will appear and this dialog box varies depending on the printer. There are five options to set. They are Layout, Paper, Graphics, Extra and About. If you select Layout, you can choose potrait or landscape orientation. By clicking on the Paper we can set the number of copies, paper size and paper type that is whether the paper is thin or thick or printer default. Darkness (Normal, Light, Dark) or Resolution can be set by selecting Graphics option.

Print Range

If you want to print, all the pages or some selected pages, here is the place where you can set your requirement. By default, All the pages is the selected option. Pages option is selected, if you want to print some selected pages. '—' is used to set the range of pages (the pages to be printed are consecutive) and ', ' is used to separate pages (if pages to be printed are non-consecutive). For example, if you type '3, 8-12, 15', then page number 3, 8, 9, 10, 11, 12 and 15 will be printed. If you want to print some selected portion of the document, then select the desired portion to be printed and choose Selection option here.

Copies

The copies option is used if you need more than one copy of the document or page. Here you can select number of copies. If it is more than one, you have Collate option. If it is selected, the whole document (or Selected pages) will be printed and then next copy will be printed. If this option is deselected, the first page will be printed for as many number of times as you have given in number of copies. Then second page will be printed and so on. For example if you have 5 page document and need 3 copies of it to be printed. If the Collate option is selected, All 5 pages will be printed first and then second copy and then third copy. If the Collate option is deselected, then 3 copies of first page will be printed first then 3 copies of second page will be printed and so on.

Previewing Pages Before Printing

The normal page view in Writer shows you what each page will look like when printed. Writer provides mainly two different views; Editable and Read only view. There are three options for viewing the document. They are single page view, double page view and facing page view. The option can be selected on the status bar at the bottom of the writer screen as shown in figure 11.26.

Figure 11.26: Different Views

The Read-only-view can be selected by choosing File → Page Preview or Click the Page Preview button on the standard toolbar. Writer now displays the Page Preview toolbar instead of the Formatting toolbar as shown in figure 11.27 and the names of the icons of the tool bar is shown in figure 11.28.

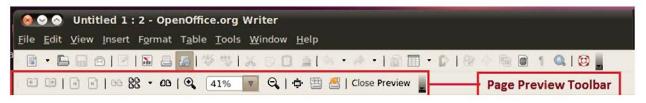


Figure 11.27: Page Preview Toolbar

Select the required preview icon: Two Pages On Multiple Pages or Book Preview On . To print the document from this view, click the Print document icon to open the Print dialog box. Choose the print options and click the Print button. By clicking the Close Preview option you can switch over to editable view.

Changing Page Format and Page Margins

To format a page, select Format \rightarrow Page. A Page Style dialog box will appear as shown in figure 11.29. You can change here Page Type that is Page format. By default the page format is letter. The size of letter format is: Width -8.50° and Height -11.00°. If you select the format as A4 the the size will be: Width -8.27° and Height -11.69°. If legal is selected the page

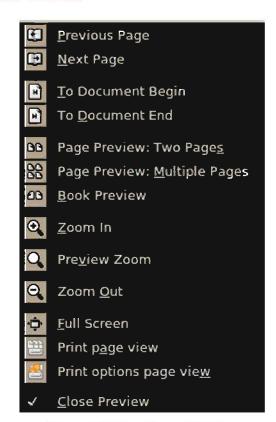


Figure 11.28 : Page Preview Toolbar-Icons' Name

size will be: Width -8.5" and Height -14". Other such options are: A5, A3, B6, B5, B4, different envelop sizes and others. Apart from the standard formats, you can set your own format called custom format. The custom size can be set by entering the desired Width and Height.

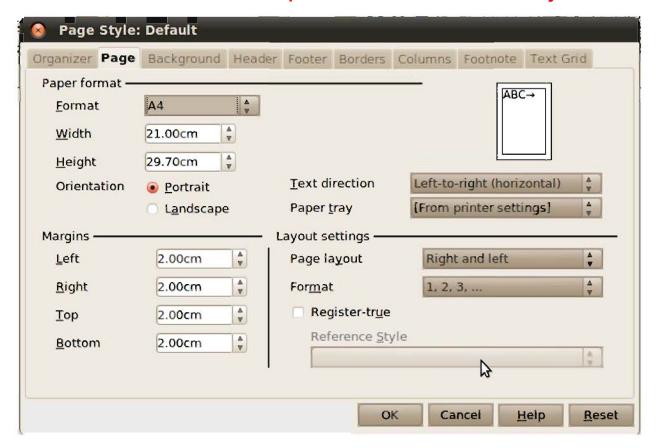


Figure 11.29: Page Style Dialog Box

If you select landscape option (by default it is Potrait) the Width and Height will be interchanged.

All the four types of margins can be set from Margin section. Normally the margins are set in inches. The left margin is 1" means printing will start 1 inch away from the left edge of the page. Similarly Top, Bottom and Right margins show the distance of printing from top edge, bottom edge and right edge of the paper.

- Background: By selecting this option, we can change the background colour. For no background color No Fill option is selected.
- Header and Footer: Header and Footer margins can be set by selecting Header and Footer option. Header we mean the text to be printed on each page on the top of the page. Footer, we mean, same as Header except it will be printed on the bottom of each page. Headers and Footers are printed in top and botom margins and so Header margin should be less than top margin and footer margin should be less than bottom margin.
- Columns: This option permits us to type in two or three columns. These columns can be set to have equal width or it can be set as per your requirement. The column width for each column seperately can be set and the spaces between columns can also be set as per your need. We can select some pre formatted style also as shown in figure 11.30.

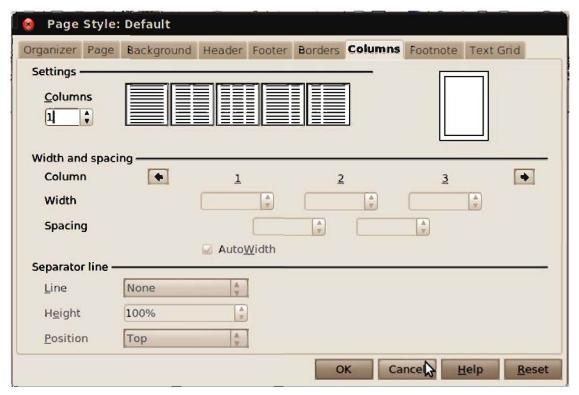


Figure 11.30 : Page Style-Column

Creating Headers and Footers

Choose Insert → Header or Footer (See figure 11.31). Selecting this we get the cursor on the top of the content of the page, where we can type the header text. Similarly if we select Footer, we get the cursor in the area on the bottom of the page just below the actual text of that page. The Default settings are same as we set by the Page Style.

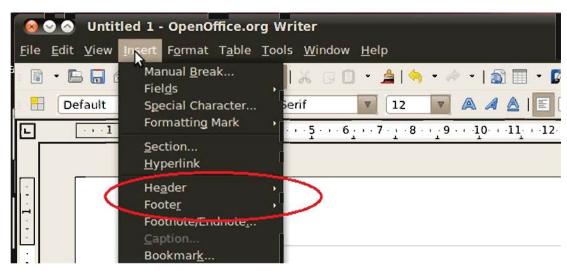


Figure 11.31: Inserting Header & Footer

Numbering Pages

OpenOffice.org allows us to use fields to manage page numbers. To insert a page number field, position the cursor where you want to insert the number and choose Insert \rightarrow Fields \rightarrow Page Number (See figure 11.32).

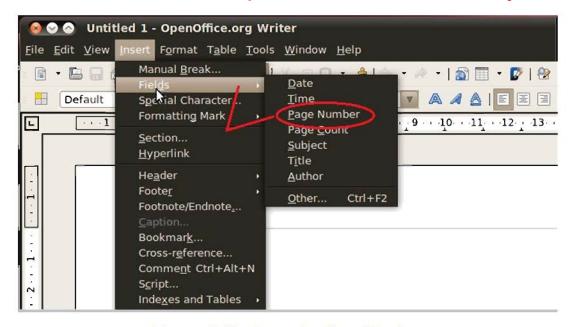


Figure 11.32: Inserting Page Number

The page number appears with a gray background. The gray background denotes a field and the background will not be printed. The system Date, Time, Page Count, etc. can aslo be printed at desired location same way as Page number.

Footnotes and Endnotes

While reading some books you must have observed that contents such as author name, name of scientist etc that require special treatment are shown with a symbol besides it. The additional comments for such word (name of author) are normally written at the end of the page. For example if the sample text is, "Sir Isaac Newton* is one of the greatest scientists." Then at the bottom of the page you may find that "* - (25 December, 1642 – 20 March, 1727)" is written. Here it is a reference given to the period for which Sir Issac Newton lived. It is possible to use any symbol in place of *.

In general, a note is additional information in reference to the main text or some comments in support of the main text. If the comment is written at the foot (bottom) of the page it is called **Footnote** and if it is written at the end of the text (either at the end of the chapter or at the end of the book), it is known as **Endnote**. Often numbers are used instead of symbols. Symbols or Numbers are normally written as superscript (like Computer¹ ...). Let us now see how to create Footnote and Endnote in Writer.

Creating Footnote / Endnote

To create a Footnote/Endnote, take the cursor where you want the Footnote / Endnote symbol to appear. Choose Insert → Footnote/Endnote..., A "Insert Footnote/Endnote" dialog box will appear. (See figure 11.33). There are basically two sections in the dialog box namely Numbering and Type.

Insert Footnote/Endnote

Numbering

Automatic

Character

Type

Footnote

Endnote

Figure 11.33 : Insert Footnote/Endnote
Dialog Box

Numbering: You can use either number or symbol for reference. You can select Automatic or Character from the available options. The default option selected is Automatic, in such a case numbers will be used for reference. If you select Character, you can use any symbol for reference. To insert a symbol, click on to display a set of symbols (see figure 11.34). Select a symbol of your choice, in the same way as you are inserting a symbol in a document.

Type: Footnote option is selected by default for inserting footnote. To have endnote, you have to select Endnote option. The same options as explained in Numbering applicable to endnote are also applicable to Footnote. The only difference is its position as mentioned above.

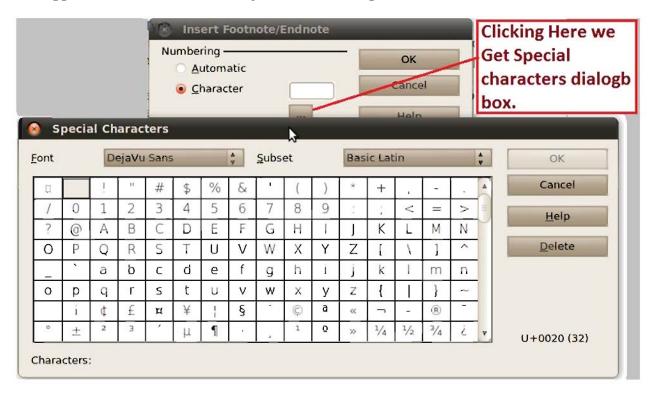


Figure 11.34: Footnote-Endnote Character Set

Summary

In this chapter we learnt about tables, how to create and insert table in Writer. We also saw that we can perform nesting of tables. This helps us representing complex data in an easy format. The operations on tables include splitting of cells, merging of cells, adjusting the cell size as well as resizing the rows and columns. This also include resizing of table, that is incresing or decreasing rows and columns height and width respectively. We saw that tables can be auto formatted to give better visual look.

The next topic discussed in the chapter was mail merge. Mail merge is a very usefull application to create multiple documents having similar contents with some minor changes. We learnt that different types of documents are required for performing mail merge. We saw how to create and register a data source if one does not exist. The final step here was merging the doucment using printing options. Finally at the end of the chapter we saw how to insert a Footnote or Endnote in a Writer document.

EXERCISE

1. Choose the most appropriate option from those given below: (1) Before creating table, deciding on number of rows and columns (a) is not a good idea (b) is a good idea because planning saves time and efforts (c) is really necessary because more rows and columns cannot be added later. (d) is really necessary because excess rows and columns cannot be deleted later. (2) Which short-cut key is used to insert table in a document? (a) TAB + F12(b) ALT + F12(c) SHIFT + F12(d) CTRL + F12(3) The default table size is (a) 1 column, 1 row (b) 2 columns, 1 row (c) 2 columns, 2 rows (d) 1 column, 2 rows (4) Which of the following moves the insertion point to the previous cell? (a) TAB (b) SHIFT + TAB (c) BACKSPACE + TAB (d) CTRL + TAB(5) What is the shape of the mouse pointer when drawing a table? (a) Pencil (b) White pointing arrow (c) Black pointing arrow (d) Black plus (6) Which short-cut key is used to insert row or column? (a) SHIFT + INSERT (b) ALT + INSERT (c) CTRL + INSERT (d) TAB + INSERT (7) Which short-cut key is used to delete row or column? (a) SHIFT + DELETE (b) ALT + DELETE (c) CTRL + DELETE (d) TAB + DELETE(8) How a table can be deleted? (a) Click anywhere in the table and choose Delete / Table from Table menu. (b) Select table and press Delete key. (c) Select table and press Backspace key. (d) All of the above. (9) Which of the following is valid type of data source in mail merge? (a) Spreadsheet (b) Text files (c) Databases such as MySQL, Adabas, ODBC (d) All of the above (10) The default file name of data source in mail merge is (a) ...\Datasource.odb (b) ...\test-main-document.odb (c) ...\Addresses.odb (d) ...\Recipient.odb (11) What is the short-cut key to print a document?

(a) CTRL + P(c) SHIFT + P (b) ALT + P

(d) TAB + P

- (12) What are the five options that appear on print dialog box?
 - (a) Printer, Page Set-up, Print Range, Copies, Options
 - (b) Printer, Page Set-up, Page Break, Size, Margins
 - (c) Printer, Properties, Print Range, Copies, Options
 - (d) Printer, Properties, Print Size, Color, Page Border
- (13) The default orientation of a page in Writer is
 - (a) Portrait

(b) Landscape

(c) Book

- (d) None
- (14) The size of a letter page is
 - (a) Width -8.50" and Height -11.00" (b) Width -11.50" and Height -8.00"
 - (c) Width 8.27" and Height 11.69" (d) Width 8.50" and Height 14.00"
- (15) Which four margins can be set from Margin section?
 - (a) Top, Bottom, Header, Footer
- (b) Top, Bottom, Left, Right
- (c) Header, Footer, Left, Right
- (d) Header, Footer, Row, Column
- 2. State whether the following statements are True or False?
 - (1) The text written in Header and Footer is printed on each page of the document.
 - (2) The page number appears with gray background and is printed with background.
 - (3) When splitting a table into two tables, the Heading row(s) are copied in the second table automatically if *repeat heading* option is checked.
 - (4) Writer creates a table as wide as the page area.
 - (5) A new column is created in table by pressing *tab* key.
 - (6) Only one row can be specified as a *heading* of a table.
 - (7) The default alignment of the text in the cell is top-center of the cell.
 - (8) Cells in a the same row or same column can be merged only
 - (9) Mail merge is used to prepare multiple copies of same document.
 - (10) The Form Letter contains the variable information in mail merge.
 - (11) The portrait and landscape orientations are set in Paper option under properties.
 - (12) In Print Range by default current page is selected for printing.
 - (13) The Collate option in Copies will print page wise specified number of copies of documents.
 - (14) By default the page size is A4.

PRACTICAL EXERCISE

1. Create a table showing results of randomly selected 5 students of standard 9 as shown in the following table :

Sr. No,	Roll. No.	Sub-1	Sub-2	Sub-3	Sub-4	Sub-5
1.	1	25	23	14	19	18
2.	5	16	13	17	21	22
3.	7	14	15	22	17	19
4.	10	20	12	18	16	15
5.	15	17	19	20	14	21

Perform the operations stated below:

- (i) Change the column width to best fit the content. (The maximum length text should fit exactly)
- (ii) Move the table in the center position.
- (iii) Increase the row height looks like double.
- (iv) Make the content of all the cells vertically center aligned.
- (v) Insert a column to the right of the last column and type the total of marks obtained by all the students.
- (vi) Split the second cell in to two cells horizontally and type Subject Name and Roll No. in upper and lower cells.
- (vii) Insert a column to the left of the last column inserted and move the content of the last column to the newly inserted column.
- (viii) Type the average marks in the last column.

2. Create a table given below. Use cell merge where required:

State : Gujarat								
Crop →	Wheat	Rice	Cotton	Average				
Region	Amoun	Average						
North	609	214	198	340.33				
East	467	580	79	375.33				
West	278	449	322	349.66				
South	105	529	521	385.00				

Create similar table for any three states of your choice. Show the information of all the four states in a single nested table.

3. Write a letter using Mail Merge, calling all the students who have secured 1st and 2nd rank in the final examination of each class of std. 8,9 and 10 to collect the prices in the annual day celebration of your school to be held on 25th January of the coming year.

•

Introduction to Presentation

The researchers have proved that the visual effect can create greater impact over other modes of communication. Today presentation ability is considered to be the most essential criteria in the recruitment of people almost at all the levels. Presentation skill matters a lot when we propose a new idea or an existing concept to others. Presentation skill not only includes the content of the presentation but it also includes flow of presentation as well as the way you present it. Quite often it happens that a person would like to share some good ideas or concept but due to poor presentation or its improper flow, the actual meaning gets lost. Today computers are highly used to prepare effective presentation. A presentation can contain number of slides or may be in the form of animation. In this chapter, we shall learn how to create an effective presentation using computers. You are now familiar with OpenOffice.org. Impress is a program, which is part of OpenOffice.org, it facilitates creation of presentation. It allows us to prepare a simple presentation or to add animation in it. It also facilitates in inserting different objects like graph, tables, pictures or movies in the slides to make the presentation more effective.

Advantages of Using a Presentation

There are number of advantages of using a presentation prepared with computer:

- In corporate, a person shows his ideas to a group of people using presentation.
- Today presentation is highly used in teaching. Several concepts, which may be difficult
 to explain, can easily be taught using presentation. For example, a teacher wants to explain
 digestive system of human being, a complete digestive system using pictures and animation
 can be shown very effectively using presentation.
- Models of an actual building or a machine or any complex system, can easily be created and explained. It may cost us very high, otherwise, if models are prepared using card boards and other materials.
- Printing of presentations, created using computer is also possible.

Modern computers allow many facilities in preparation of presentation. Apart from inserting graphs, pictures, or sounds in a presentation, we can insert word processor file or a spreadsheet or even a database.

Introduction of Impress

OpenOffice.org's presentation program is called Impress. In a presentation, slides are created and can have many different objects like bulleted and numbered lists, text, tables, pictures, charts and a wide range of graphic objects contained in it. Impress have features like a spelling checker, a thesaurus, prepackaged text styles, attractive background styles etc. similar to the features available in Writer.

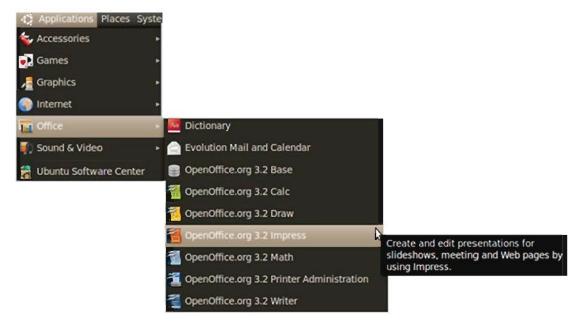


Figure 12.1: Starting Impress

Starting Impress and Creating a New Presentation

You can open Impress in different ways. If the shortcut is created, you will find icon for OpenOffice.org 3.2 Impress on your desktop. If the icon is present then double click on the icon. If no short cut is available; then choose Application \rightarrow Office \rightarrow OpenOffice.org 3.2 Impress (See figure 12.1). Doing so, you will get the screen of Presentation Wizard as shown in figure 12.2. There will be three options available as shown below:

- (1) © Empty presentation (This option is selected by default)
- (2) O Form template
- (3) Open existing presentation.

Select Empty presentation if not selected and then Click on Create button. A new blank presentation will open (A file created in Impress is called presentation).

Figure 12.2: Presentation Wizard

If you don't want this wizard screen again, you can select 'Do not show this wizard again' option and then click on create. The screen so opened is called the main Impress window (See figure 12.3).

The main Impress window has three parts: the Slides pane, the Workspace, and the Tasks pane. Several toolbars can be displayed on the screen during the creation of a presentation, same as you are doing in Writer. The toolbars on the screen can be hidden if they are no longer useful in the presentation. To maximize the Workspace area, you can remove the Slides pane or the Tasks pane from screen by clicking the X in the upper right corner of each pane. These panes can be viewed again on the screen by selecting View Slide Pane or View Task Pane from menu options. Hiding or displaying the panes can also be done by clicking the Hide/Show marker (See figure 12.3) in the middle of the vertical separator line.

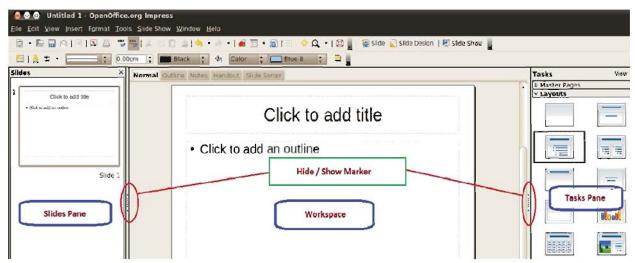


Figure 12.3: Main Impress Window

Slides Pane

One of the three parts of the main impress windows is 'Slides pane'. This part contains the smaller picture of the slides of your presentation. These smaller pictures of your actual slides are called thumbnails. The thumbnails are in the same order of the slides of your presentation. The order of the slides can be changed. Clicking a slide in this pane, the slide will be selected as current slide and will be placed in the Workspace. When a slide is in the Workspace, you can edit it as per your needs. Several additional operations can be carried out on current slide or on selected slides or on all slides simultaneously in the Slides pane. Some of the common operations are listed below.

- A slide can be moved (by using Cut & Paste operation or simply by dragging) to other position and thus order of the slides can be changed.
- One or more slides can be copied at one or several places (by Copy & Paste).
- New slides can be added to the presentation.
- Any slide can be deleted, if it is no longer needed.
- You can hide one or more slides, if you don't want them as a part of your presentation.

- Slide names, by default, slide1, slide2, and so on can be renamed.
- You can change the slide design or slide layout for the selected slides simultaneously.

Tasks Pane

The second part of the main impress window is known as Tasks pane. It has five sections. They are Master Pages, Layouts, Table Design, Custom Animation and Slide Transition. Anyone of these five sections can be seen in full view at a time. To view the tasks pane, click on the right-pointing triangle to the left of the section name.

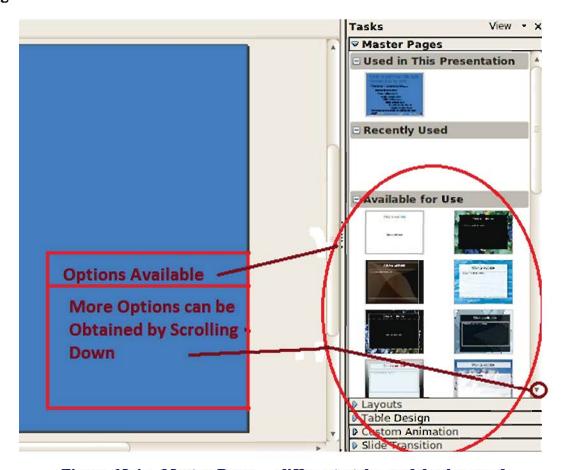


Figure 12.4: Master Pages - different styles and background

Master Pages

Every slide in a presentation has exactly one slide master. A slide master determines the text formatting style for the title and outline. It also defines the background design for all slides. If you select this option, you will find many predefined slides in Master Pages. Obviously all the predefined slides have different text style and background (See figure 12.4). One of them is blank and it is the default.

Layouts

If you choose this option, different preformatted layouts are displayed. As per your need, you can choose any one of the options available. It can be modified, if required but new layout cannot be created. (See figure 12.5)

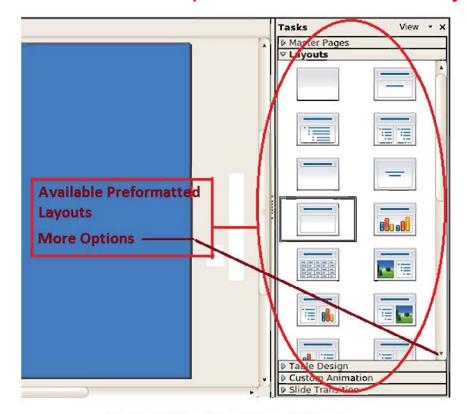


Figure 12.5: Preformatted Layouts

Table Design

If you choose option of Table Design, like Master Pages and Layouts, the standard table styles are offered (See figure 12.6). Options are available to show or hide specific rows and columns using which you can further modify the appearance of a table, as per your requirement.

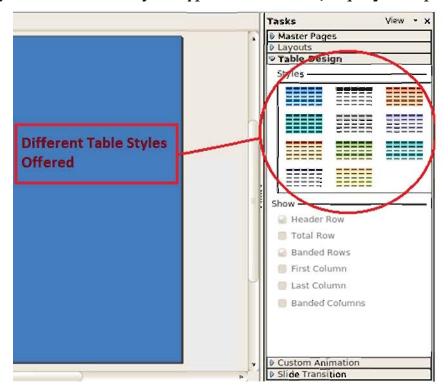


Figure 12.6: Table Designs

Custom Animation

A slide contains text, table, graph or any such objects. Using the options available in this section you can apply animation effect to any selected portion of the slide. You can also visualize the effect of the animation on the selected elements, immediately after the selection. By selecting OK you can finally apply the effect of the animation. A variety of animations are available here (See figure 12.7). Animation once applied to a slide can also be changed or removed later.

Slide Transition

The dictionary meaning of Transition is change. The meaning of slide transition in our case is the effect that is applied during the movement from one slide to another. Slide Transition can be applied to selected slides. Several transitions like Wipe Up, Wipe Down and others are available. No transition is also available which makes the next slide simply replace the existing one. Like custom animation, you can also preview the effect of your selection immediately on selection of a particular option. You can change the transition speed from the three options available; they are slow, medium or fast. The Slide transition can be set as automatic or manual. If you want that the transition is automatic at a certain interval, Select Automatic. Here you have to set the time interval at which the next slide is to be presented. The default time interval is 1 second. By selecting all slides, the slide transition set will be applied to all the slides of the presentation. (See figure 12.8)

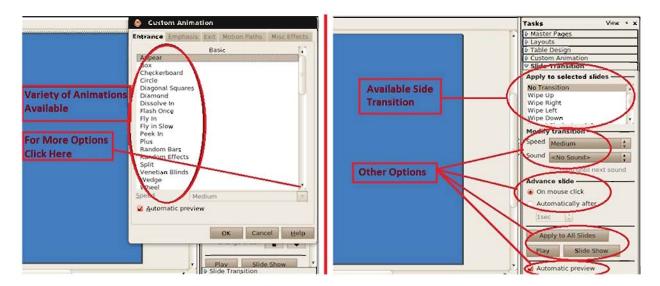


Figure 12.7: Custom Animation

Figure 12.8: Slide Transition

Workspace

The third and central part of the screen is called the Workspace. The content of the slide is displayed here. It has five tabs, also called View buttons. These tabs are 'Normal', 'Outline', 'Notes', 'Handout' and 'Slide Sorter' which are just above the Workspace. Depending on your selection of view buttons, the Workspace changes (See figure 12.9). The view buttons are described below.

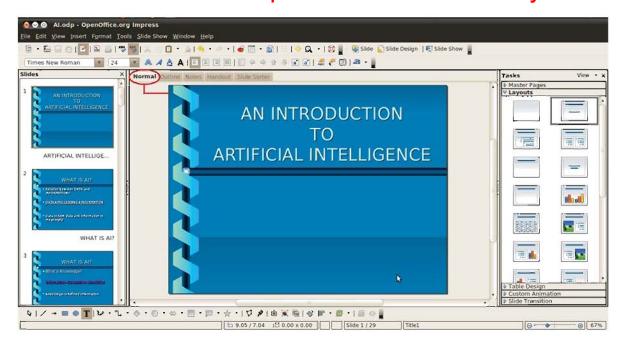


Figure 12.9: Work Space

Normal View

While creating, formatting and designing slides, Normal view is used. The same view is used to add text, graphics and animation effects. As mentioned in the 'Slides pane', by clicking thumbnail of a slide, we can lay the slide in the Workspace area of the Normal view (See figure 12.9).

Outline View

In Outline View all the slides of the presentation are shown in the sequence of their number. The content of a slide includes only topic titles, bulleted lists, and numbered lists in outline format that is left justified text. Drawing objects as well as the text within these objects are not shown. Slide names are also not included. (See figure 12.10).

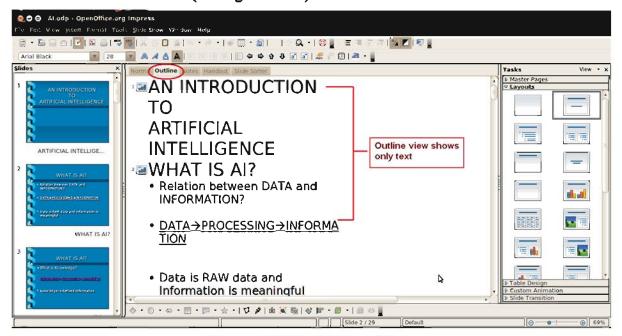


Figure 12.10 : Outline View

Outline view is used for quick modification of text in the slides including addition or deletion of text, moving and copying of text, changing the outline level for any of the paragraphs in a slide using the left and right arrow buttons. This view is also used for comparing the slides with outline of a slide created in advance. Slides can also be created directly in the Outline view.

Notes View

The Notes view is used to add notes to a slide. These notes are not seen when you are presenting slide show. Just by clicking on 'Click to add notes' in the upper — left corner of the text box below the slide, you can start typing for the notes you want to add (See figure 12.11). You can resize the 'Notes' text box in the way similar to the way you are resizing any other window. To resize the window, place the pointer on the border and move it to desired place by dragging. Usually notes are used to provide additional information to the person who has created the presentation.

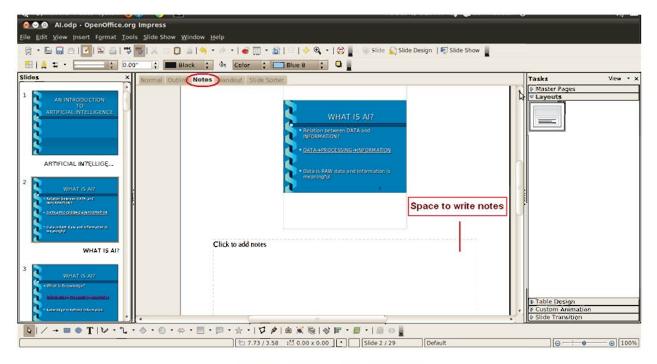


Figure 12.11: Notes View

Handout View

Handout generally is used to group multiple pages on a single page at the time of print. It is useful to the presenter, as it allows him/her to check the appearance of the slides. It is also used to give contents of the slides in the hardcopy to the viewers. To print the slides of the presentation, you have to decide that how many slides you want to print per page. Handout view is used for setting up the page layout in the form of number of slides to be printed per page. Different Layout options are available from which the desired Layout is selected. The options available are 1, 2, 3, 4, 6, or 9 slides per page (See figure 12.12).

Slide Sorter View

If you want to work with single slide or group of slides, slide sorter view is used. This view contains all of the slide thumbnails. The number of slides per row can be customized using

Slide Sorter View. You can display or hide Slide View by selecting View menu and then Toolbars and Slide View. The number of slides per row can maximum be set up to 15 (See figure 12.13).

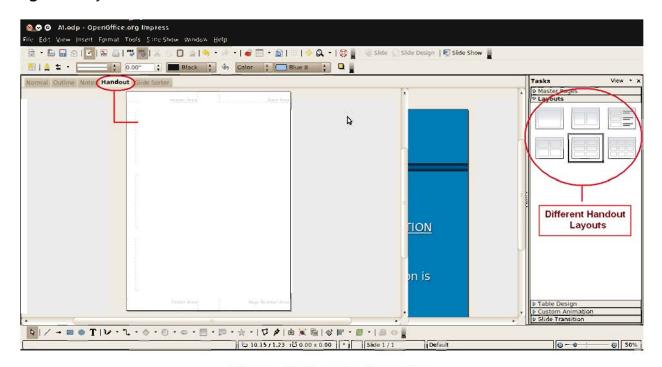


Figure 12.12: Handout View

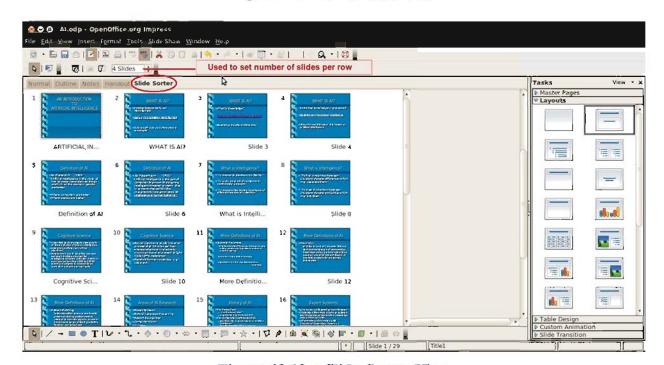


Figure 12.13 : Slide Sorter View

To perform any operation on group of slides they must be selected first. If the slides to be selected are in sequence, you have to select the first slide of the slides to be selected and then hold down the Shift key and select the last slide. If the slides to be selected are not consecutive, select any slide of the slides to be selected and then hold down the CTRL key

and select the next slide. Repeat the process till all the required slides are selected. You can perform all the operations as we can perform in Slides Pane. That is adding slides, moving slides, copying slides etc.

Status Bar

The status bar, located at the bottom of the main Impress window as shown in figure 12.14, contains information that you may find useful when working on a presentation. You can hide the information in the Status Bar by selecting View \rightarrow Status Bar from the main menu.

Figure 12.14 : Status Bar

Renaming Slides

Right-click on a thumbnail in the Slides pane or the Slide Sorter and choose Rename Slide from the pop-up menu. In the Name field, change the name of the slide. Click OK (See figure 12.15).

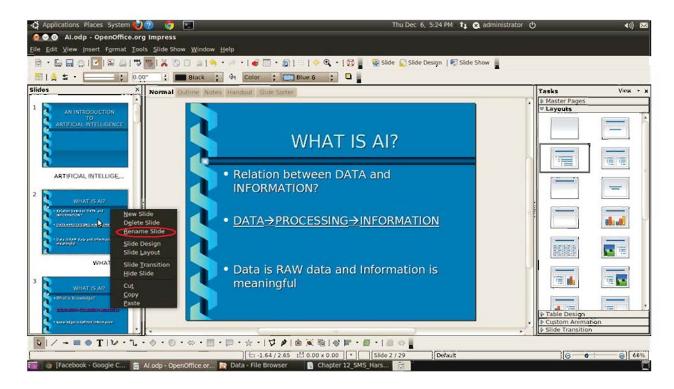


Figure 12.15: Renaming Slide

Formatting a Presentation

When you create a new presentation, generally it contains one empty slide. After that we have to add new slides and in that we have to add text and other objects. Now we will learn how to add new slides and the planned content there in.

Inserting Slides

Slide can be inserted in many different ways:

- Go to Insert menu and select Slide.
- Alternatively select Slide → New Slide from the pull down menu, obtained by Right clicking on the present slide.

Or click the Slide icon 🔊 in the Presentation toolbar.

 A duplicate slide can also be inserted. To insert a duplicate slide, select the slide you want to duplicate from the Slides Pane and then select Insert à Duplicate Slide.

Selecting and Moving a Block of Slides

One or More slides can be selected using one of following ways:

- Click on the first slide and while pressing CTRL key select the other desired slides.
- Another way is using shift key: Click on the first slide and while pressing the Shift key, select the final slide of the block of slides. This selects all of the other slides between the first and the last.
- With the help of mouse we can select a group of slides. For this, click slightly to the left of the first slide to be selected. Hold down the left mouse button and drag the mouse pointer to a spot slightly to the right of the last slide to be included. The same can be selected also by doing this right to left. A dashed outline of a rectangle forms as you drag the pointer through the slide thumbnails and a thick border is drawn around the selected slides. Make sure the rectangle includes all the slides you want to select.

The block of the selected slides can be moved in the same way as we are moving a block of text. That is by cut and paste options or by dragging the mouse. The cut and paste operations can be performed in usual way that is using keyboard, using icons and using menu options. If you want to use the mouse only, then simply drag and drop the selected block to their new location. A vertical black line appears to show you where the group of slides will be moved.

Selecting a Layout

The Layout is already discussed above in the section of Tasks pane. From the available layouts choose the desired layout. The Layouts differ in the number of elements a slide will contain, from a blank slide to a slide with six contents boxes and a title. You can select any one of these. You

can change the layout for each slide. To select or change the layout of any slide, place the slide in the Workspace and select the desired layout. The layout contains several boxes for Text, Media clip, Picture, Chart and Table in different look.

Slide Master

A slide master is a controller slide; it is similar to a page style in Writer. The basic formatting of all slides is controlled based on the specifications given in the slide master. A presentation can have multiple slide masters. There are 28 pre-defined slide masters in Impress. As we have discussed previously in the task pane section, you can apply the slide master settings to only one slide or all slides.

Though there are 28 pre-defined slide masters, you can create your own slide master. Creating slide master is very simple. Select Master → Slide Master in View menu, you will get Master View as shown in figure 12.16 on the Workspace. Alternatively you will get the Master View by Right Clicking on any slide master in the Master Pages and then selecting Edit Master. Start with any slide master and modify it as per you requirement. Select New Master icon in the Master View toolbar. The slide master so created will be shown in the Slide Pane. To return to normal slide editing, select Close Master View in the Master View toolbar.

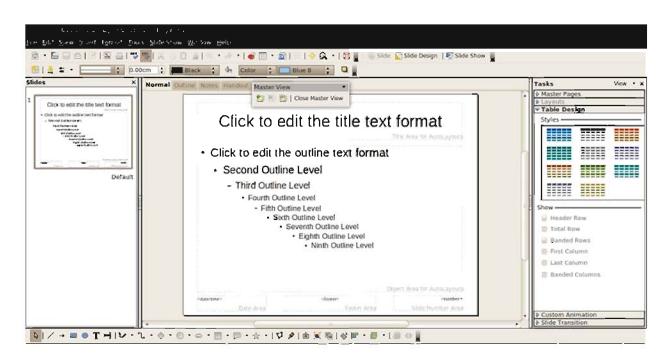


Figure 12.16: Creating New Slide Master

Modifying the Slide Elements

Once you select any slide master, the Workspace contains all the content of the selected slide master. You can now modify the selected slide master as per your requirement. Note that modification in the slide master can be done in Normal View only.

Adding Picture or Object to the Slide

- To add a picture from the clipart available in layout perform the steps mentioned:
 - (i) From the Layout select the slide format having the picture frame.
 - (ii) Double-click the picture within the frame (see figure 12.17). The Insert picture dialog box will open.
 - (iii) Select the picture you want to insert.
 - (iv) Click Open. The picture will be inserted in the Workspace.
 - (v) Resize the picture, if you want.
- To add pictures from graphic files perform the steps mentioned :
 - (i) Select Insert \rightarrow Picture \rightarrow From File. The Insert picture dialog box opens.
 - (ii) Select the file and then select the picture you want to insert and click Open.
 - (iii) Move the picture to the desired location.
 - (iv) Resize the picture, if necessary.

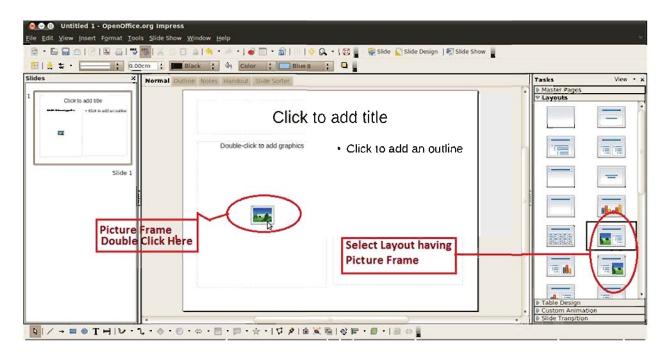


Figure 12.17: Inserting Picture

Note:

If you have a picture in the form of hard copy and if you have scanning facilities, you can insert picture by scanning it also. To do so, select Insert \rightarrow Picture \rightarrow Scan \rightarrow Select Source (See figure 12.18). You will get Scanner dialog box with list of scanners (Printers). Select the Scanner using which you are scanning the picture.

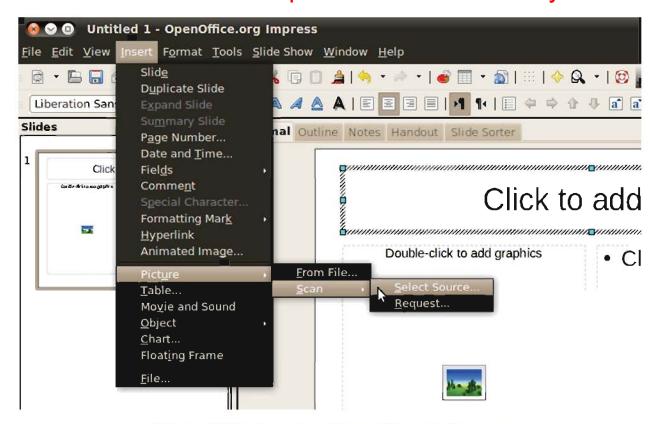


Figure 12.18: Inserting Picture Through Scanner

In the similar way, by double clicking the respective frames, the text or objects can be inserted. To remove any element from the slide that is not required, click the element to select it. The green handles show that it is selected; press the Delete key to remove it.

Modifying the Appearance of Slides

If you want different appearance of all the slides in your presentation, either you have to select another slide master from a range of pre-formatted Slide Masters, found in the Master Pages section of the Tasks pane or modify the selected Slide Master. You can also create and save additional slide masters or add more from other sources. Creation of slide master is already explained above.

To change the background, you can use menu options:

- (1) Select Format → Page and go to the Background tab.
- (2) Select the desired background and click OK to apply it.

A dialog box opens, asking if the background should be applied to all the slides. If you click Yes, Impress automatically modifies the slide master.

Slide Show

A presentation prepared, can be shown by running slide show. Slide Show gives you a Full Screen View. This can be done in one of the ways mentioned:

• Using Menu: Select Slide Show on the main menu and then Click on Slide Show.

- Using Toolbar: Click the Slide Show button on the Presentation toolbar or the Slide Sorter toolbar (See figure 12.19).
- Using Keyboard : Press F5.

Figure 12.19: Slide Show Button

During slide show (also called Presentation), If the slide transition is On Mouse Click, Press the down arrow $\text{key}(\downarrow)$ or spacebar on the keyboard to go to next slide or Click the mouse button to switch to the next slide. You can move back to the previous slide also by pressing up arrow $\text{key}(\uparrow)$ on the keyboard. If you have set 'Automatically after' 1 second in the slide transition, the slide show runs by itself after every 1 second. The default slide transition is On Mouse Click. You can exit from the slide show by pressing Esc key at any time during show.

Adding Text to All Slides

You may need to show some text like date, slide number or name of your company. in all the slides. We can include the required content in Header or Footer. Some of the supplied slide masters have such text objects in the footer (See figure 12.20). You can add other text objects to the master page for your slides to act as a header or footer.

- Click to edit the outline text format
 - Second Outline Level
 - Third Outline Level
 - Fourth Outline Level
 - Fifth Outline Level
 - Sixth Outline Level
 - Seventh Outline Level
 - Eighth Outline Level
 - Ninth Outline Level

Figure 12.20: Some Text Objects

- (1) Choose View \rightarrow Master \rightarrow Slide Master from the menu bar.
- (2) On the Drawing toolbar, select the Text icon, available at the bottom of the screen.

- (3) Click once and drag in the master page to draw a text object, and then type or paste your text into the object. You can also add the value of pre-defined fields if required. (See figure 12.21).
- (4) Choose View → Normal, on completion of the task.

To add a field, such as the date or page number, to a text object in the header or footer, choose Insert \rightarrow Fields and select the required field from the submenu. If you want to edit a field, select it and choose Edit \rightarrow Fields. The fields that you can use in Impress are as mentioned: (See figure 12.21)

- Date (fixed).
- Date (variable) —updates automatically when you reload the file.
- Time (fixed).
- Time (variable)—updates automatically when you reload the file
- Author—First and last names listed in the OpenOffice.org user data.
- Page number (slide number).
- File name.

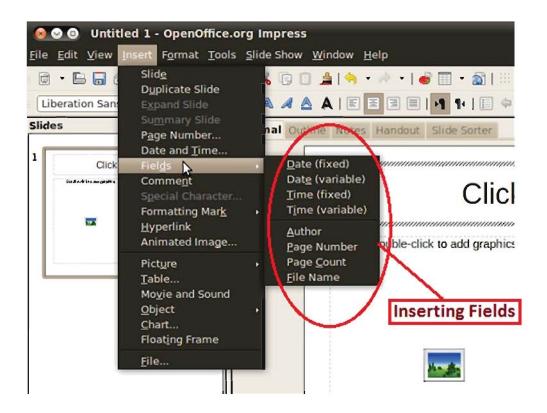


Figure 12.21: Inserting Fields

The default page number format can also be changed. To change the number format (1,2,3 or a,b,c or i,ii,iii, etc.) for the page number field, choose Format \rightarrow Page and then select a format from the list in the Layout settings area (see figure 12.22). To change the author information, go to, Tools \rightarrow Options \rightarrow OpenOffice.org \rightarrow User Data.

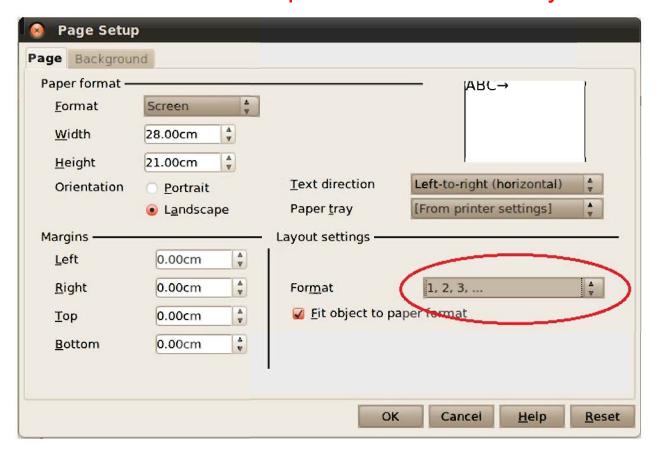


Figure 12.22: Changing Page Number Format

Templates and Its Usage

In OpenOffice.org, all documents are based on templates. Impress starts with the presentation wizard. When you create a new presentation using any of the way explained in the beginning of the chapter and if the Presentation Wizard is active, you will see several options available for a new presentation. One of them is 'From template'. If the Presentation Wizard is inactive (turned off), the OpenOffice.org uses the default presentation template. If you have not defined your own default template, a blank template is used available with Impress.

Using templates available with OpenOffice.org

Impress provides a set of prepackaged templates. The 'Presentations' folder contains two templates and the 'Presentation backgrounds' folder has some other templates. Templates available in Presentation templates include a set of slides with sample titles and topics. Templates available in Presentation background have only backgrounds and background objects. You can create a new presentation from the available templates. To do so, Select File \rightarrow New \rightarrow Templates and then Documents from the menu bar. The Templates and Documents – Templates window will be as shown in figure 12.23. Double-click the template's name, based on which you want to open a new presentation.

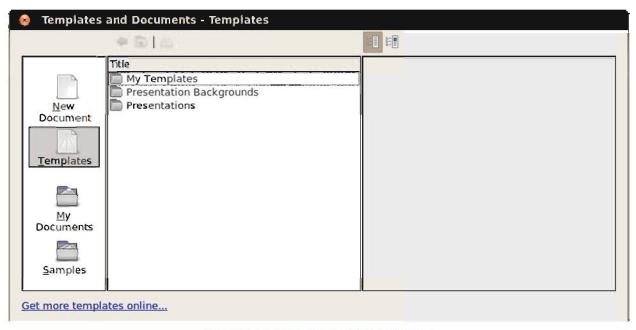


Figure 12.23: Template Window

How to Create Your Own Templates

Many a times you may need to design a format that you would like to showcase. To create a template from a presentation, perform the steps given As mentioned:

- (1) Open the presentation that you want to use for a template. Make the necessary changes, if required.
- (2) When it is finalized, select File → Templates → Save from the main menu. The Templates window will be opened (See figure 12.24).

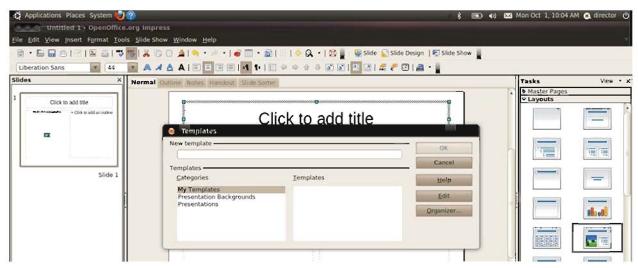


Figure 12.24: Template Creation

- (3) Type a name for the new template, in the New template field.
- (4) To select the location for your template, click the folder in which you want to store the template. Generally it is the My Templates folder, unless you have created other folders.
- (5) Click OK to save the new template and close the window.

Any presentation of your choice can be set as a default template. If you want, you can reset the default presentation template later. The procedure for setting a presentation as a default template is represented in figure 12.25.

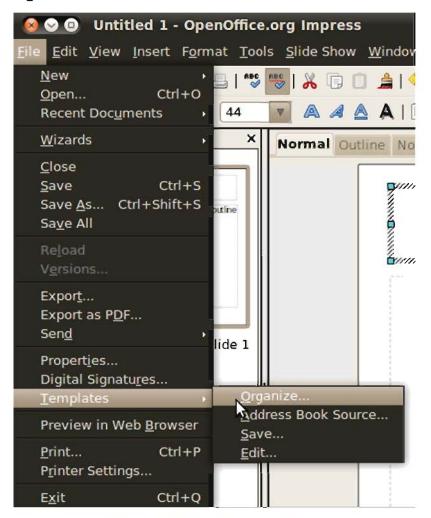


Figure 12.25 : Organize Menu

To open the template management dialog box, select File \rightarrow Templates \rightarrow Organize from the main menu as can be seen in figure 12.25.

In the box on the left, double-click the folder containing the template that you want to set as the default. Then select the template. Click the Commands button. From the drop-down menu, select Set As Default Template. The next time that you create a document by choosing File à New the document will be created from this template.

Summary

In this chapter we saw why presentation is required and how to create it using Impress. A presentation can have any combination of colours, objects like graph, table, picture, movie animations to make it attractive. We have discussed different views of the presentation where some additional information like notes can be inserted. We also had a look at how to use the preformatted slide designs and master slides.

EXERCISE

•			he advantages of using a presen		
•		-	ets can be inserted to slides in	-	
			he steps to add picture or obje can be added to header or foot		
			ne use of fields available in head		
			s to create your own template.		
	Cho	ose the	e most appropriate option from	tho	ose given below :
	(1)	Which	of the following option is not a	vaila	able on Presentation Wizard?
		(a) Er	mpty presentation	(b)	Form template
		(c) O ₁	pen new presentation	(d)	Open existing presentation
	(2)	Which	of the following is not a part of	of ma	ain Impress window ?
		(a) Th	ne slides pane	(b)	The workspace
		(c) Th	ne work pane	(d)	The task pane
	(3)	Smalle	er pictures of the slides displaye	d in	slides pane are called
		(a) Th	umbnail	(b)	Icon
		(c) Til	les	(d)	Content
	(4)	Which	of the following is not a section	on of	tasks pane?
		(a) M	aster pages	(b)	Layouts
		(c) Cu	ıstom View	(d)	Custom animation
	(5)	The th	ree speed options available for	slide	transition are:
		(a) Slo	ow, medium, fast	(b)	Very slow, medium, very fast
		(c) Sl	ow, medium, very fast	(d)	No effect, slow, fast
	(6)	The de	efault time interval for slide trans	ition	is
		(a) 1 1	minute	(b)	1 hour
		(c) 1	second	(d)	x second
	(7)	Which	of the following is not one of	the v	riew buttons available in workspace?
		(a) No	ormal view	(b)	Outline view
		(c) Th	numbnail view	(d)	Notes
	(8)	Which	view is generally used for creat	ing, i	formatting and designing slides?
		(a) No	ormal view	(b)	Outline view
		(c) No	otes	(d)	Slide Sorter view
	(9)	` '	view is generally used for quic	` '	
			ormal view	(b)	Outline view
		(c) No		(d)	Slide Sorter view
	(10)	` '		` '	
	(10)		I per page?	ւց ար	the page layout for number of slides to b
		-	ormal view	(b)	Outline view
		` '	andout view	` '	Slide Sorter view

(1		le in	options for number of slides to be printed
	per page ? (a) 1	(b)	2
	(a) 1 (c) 5	(d)	
(1	2) Which view is generally used to worl	` ′	
(1	(a) Normal view		Outline view
	(c) Handout view	` '	Slide Sorter view
(1	3) The maximum number of slides per r	` ′	
(-	(a) 10		12
	(c) 15	` '	16
(1	4) In how many different ways a new s	` ′	
	(a) 2	(b)	-
	(c) 4	(d)	
(1	5) There are pre-defined slide	` ′	
	(a) 12	(b)	
	(c) 28	(d)	15
(1	6) The slide show can be exited at any	time	during the show by pressing which of the
	following keys?		
	(a) Space bar	(b)	End Key
	(c) Break Key	(d)	Esc Key
S	ate whether the following statements	are	True or False:
(1	The order of the slides cannot be cha	ınged	l in slides pane
(2	Slide design or layout can be changed	for n	nultiple slides simultaneously.
(3	Every slide in a presentation has exac	tly o	ne slide master.
(4	Animations once applied can be chan	ged	but cannot be removed.
(5	Slide names are included in outline vio	ew.	
(6	The notes added to slides can be seen	n in	during presentation.
(7	A presentation can have multiple slide	mas	ters.
(8	A user can create his/her own slide n	naste	r.
(9	•	-	the background of slide cannot be changed.
(1	0) The text added to header is displayed	on	first slide only.
	1) The text added to footer is displayed		•
(1	2) User can create his/her own template	and	use it in Presentation Wizard.
	LABORATOR	ΥE	KERCISE
C	reate a presentation which gives an overv	iew (of science subject. This presentation should
cc	ntain the following slides:		
(a	Title of the subject (use Title only layer)	out)	
/h) Index		

8.

1.

214 Computer Studies : 9

(c) Introduction of each chapter. (Minimum one slide per chapter should be prepared.)

- 2. For the presentation created in exercise 1, do the following:
 - (a) Rename each slide with chapter name.
 - (b) Change the font for the slide title.
 - (c) Add a footer that contains the current date and your school name.
 - (d) Apply at least one master page to your presentation.
 - (e) Hide slide of even chapters and see the effect.
 - (f) Start the Slide show and set the option as **Change slides manually.** (Navigator should be visible during a presentation).
- 3. For the presentation created in exercise 1, do the following:
 - (a) Convert the presentation to a pdf file.
 - (b) Set the Handout view such that there are 4 slides per page.
- 4. Create a presentation which demonstrates details of a car launched by any company of your choice. Include following slides:
 - (a) Introduction of the company
 - (b) List of cars the company sells.
 - (c) Introduction of the new car launched.
- 5. For exercise 4, add following functionalities:
 - (a) All models of the car should be displayed in tabular format. (Model name, Basic Price, Average, Capacity)
 - (b) Modify the appearance of the table and set animation effect as **Box**.
 - (c) Add the image of the each model with its description.
 - (d) Change the background colour of each slides of your presentation.
- 6. Create a presentation about the picnic that you had in your school. Use appropriate template. Add appropriate note to each slide and take the print out of this presentation along with notes.
- 7. For exercise 6, add following functionalities:
 - (a) Set Slide Transition as Wipe Right and set speed slow.
 - (b) In a slide transition set advance slide option as automatically after 5 seconds.
- 8. Create a presentation which represents Gujarat Tourism or of any place where you have visited:
 - (a) Add appropriate images. (Select the layout having picture frame).
 - (b) Use custom animation
 - (c) Set up the slide show.

Introduction to the Internet

Computer is very efficient in performing many applications. However, computers may not have all the resources along with them. For example in an office, we may have more than one computer in every section of the office, but each section has only single printer to print documents. Some computers will not have regional language support to type Hindi and Gujarati fonts. Some computers will not have compact disc writing mechanism. Further, we may need some information from remote computers. Whenever we need such specific support regarding hardware or software, we need to go to the computer which provides the facility. If this happens frequently, then why should not we connect the computers with different capabilities? Once we connect computers, their facilities are linked and any facility can be accessed from any computer! This is the basic idea behind computer network. Figure 13.1 demonstrates the idea.



Figure 13.1: Computer Network

By connecting computers into a network, one can use resources of all connected computers from any point of the network. You might have heard about telephone network, electricity network, and railway line network. You might have observed that electricity is produced at a few locations, but transmitted through network of wires to entire state.

Basic Network Types

Different computer networks are categorized according to their scope or scale. Common examples of network types are mentioned below:

LAN - Local Area Network

A Local Area Network (LAN) connects computers and other devices over a relatively short distance. An office building, a school, a laboratory or a home usually contains a single LAN. In addition to operating in a limited space, LANs are also typically owned, controlled, and managed by a single person or organization. To connect computers and other devices LAN use wired media. However, it may use wireless connection. A LAN based on wireless technology is called a WLAN - Wireless Local Area Network.

WAN - Wide Area Network

As the term implies, a Wide Area Network (WAN) spans a large physical distance. The Internet is the largest WAN, spanning the Earth. WAN is a geographically-dispersed collection of LANs. A WAN differs from a LAN in several important ways. Most WANs (like the Internet) are not owned by any one organization but rather exist under collective or distributed ownership and management.

MAN - Metropolitan Area Network

Network spanning a physical area larger than a LAN but smaller than a WAN, such as a city is called Metropolitan Area Network (MAN). A MAN is typically owned and operated by a single entity such as a government body or large corporation (such as Municipal Corporation).

Some other network categories include:

- SAN Storage Area Network, System Area Network, Server Area Network, or sometimes Small Area Network
- CAN Campus Area Network, Controller Area Network, or sometimes Cluster Area Network
- PAN Personal Area Network
- DAN Desk Area Network

LAN and WAN were the original categories of area networks, while the others have gradually emerged over many years of technology evolution.

Internet

Internet is also a kind of network, which connects different computer networks. Internet is also called super-network or meta-network. This computer network is spread across different parts of the world. The internet combines two basic things, one is computers and another is connections. Together it is known as "INTERconnections and NETwork" that is INTERNET! Computers in the network can be connected with some wire or may be with a special type of connection facility called wireless connectivity. The popular connections use phone line cables, optical fibers and satellite links. See figure 13.2 that demonstrates a conceptual diagram of the Internet.

Computers (and other devices) connected in a network should behave in some particular manners and obey formal rules. Just like when guests come, we welcome them with 'Namaste' and offer them something! There is no fix formula or compulsion for such behavior, but we insist to follow such manners. Similarly, for smooth operations within the network, all the computers and other devices should behave in 'good manners'! These laws and rules are called protocols. Following the protocols guarantee smooth operations between the connected computers in the network. File Transfer Protocol (FTP), and Transmission Control Protocol (TCP) and Internet Protocol (IP) are the popular protocols to guide internetworking.

Introduction to the Internet

Once computers and other devices are connected within a network, we need to identify the computer for getting some resource. If we do not know computer's address within the network, how would we get help (in terms of resources) from it? To identify every machine in a unique fashion there is a requirement of an address or an identification number.

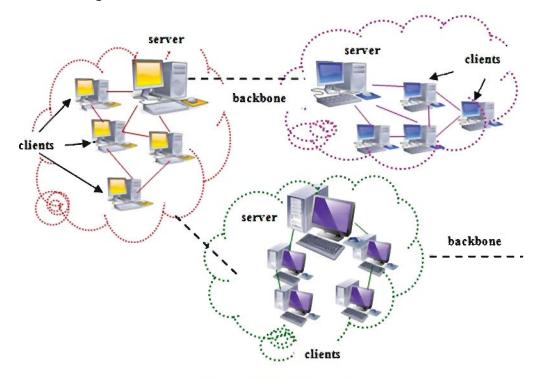


Figure 13.2: Internet

Just as we have unique telephone numbers in a telephone network, we must have unique identification for every computer in a network. This number is called an IP address. Here IP stands for Internet Protocol, which defines guidelines of such addressing. A typical IP address can be as shown here:

An example IP address \rightarrow 216.27.61.137

Computer communicates with the help of such IP addresses. This is just like students are given roll numbers in a school for attendance and examination purpose. If one computer knows an (IP) address of another one, they can talk with each other and share resources! (Just like if we know telephone number of one person we can talk) As computers use binary (machine) language to interact, the IP addresses are represented into binary language internally. Usually the IP address takes 32 or 128 bits (binary digits). There are two standards for IP addresses: IP Version 4 (IPv4) and IP Version 6 (IPv6). Majority of computers with IP addresses have an IPv4 address. Some computers have started the new extended version called IPv6 address system. IPv4 uses 32 binary bits to create a unique address on the network. An IPv4 address is expressed by four numbers separated by dots. Each number is the decimal representation for an eight-digit binary number. It is also known as dotted decimal notation. An example IP address and its decomposition are explained in the figure 13.3.

172.	16.	254.	1	Decimal
10101100	00010000	11111110	00000001	Binary
8 bits	8 bits	8 bits	8 bits	32 bits

Figure 13.3: Decomposition of an IP Address

Components of Internet

Internet connects millions of academic, business and government networks. Hence, Internet is not a proprietary network. Within the Internet there are some large and high speed computers that are used to store information. These computers are called servers. Many computers are connected with these servers. The connected computers with server to seek support are known as clients. Servers are connected, on land as well as across the oceans, through high capacity cables. These cables are known as backbones or information super-highway. Fiber optic cables are very useful for this purpose. Internet also uses routers that help in forwarding the content within the network. A router is a device that forwards data within computer networks.

Wired media such as telephone cables can transfer only analog signals while computer sends digital symbols. Hence, before transferring the data, conversion of the digital data into equivalent analog signal must be done. Similarly, at the receiving end, conversion of the analog data into equivalent digital symbols must be done. This process is known as modulation and demodulation. A device that performs modulation is known as a modulator and a device that performs the inverse operation of modulation (demodulation) is known as a demodulator (sometimes detector or demod). A device that can do both operations is a modem (from "modulator-demodulator"). Now a days, most of the computers have in-built modem. Figure 13.4 shows these components.

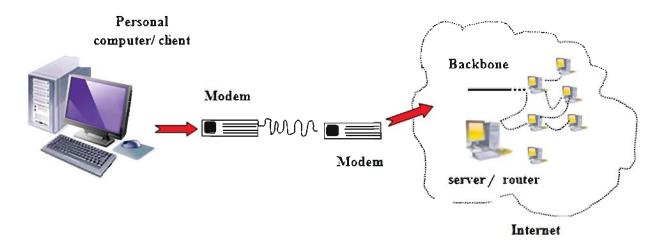


Figure 13.4: Components of Internet

History of Internet

During late 1960s the Defense Advanced Research Projects Agency (DARPA) started a project to develop a communication protocol for computer network. This project (ARPANET) was funded by US military. The ARPANET was set of US military computers to communicate defense and security related information. This network used to send the data by splitting it into small packets through routers. E-mails were first used on this network. In the middle of 1980's US National Science Foundation (NSF) developed NSFNET which provided the basic platform for communication service used for modern networking. Gradually, different protocols were invented and many organizations came into existence that dealt with internetworking. Some examples of other networks are 'Because Its Time NETwork' (BITNET) and 'Computer Science Network' (CSNET). Facilities called gateways were developed to connect BITNET with other networks, which allowed exchange of electronic mail, particularly for e-mail discussion lists. The ARPANET was dismantled in 1990.

Internet Connectivity

The ways to connect Internet include traditional dial-up access, leased lines and wireless. These methods are described in detail in this section.

Dial-up Connection

The most basic type of Internet connection available from an Internet Service Provider (ISP) is called dial-up connection. An Internet service provider (ISP) is an organization that provides access to the Internet. In India, BSNL (Bharat Sanchar Nigam Limited) is the largest service provider. The dial-up connection is made through a modem that uses a telephone line to connect the Internet. The modem must dial the telephone number provided by the ISP every time it wants to connect to the Internet, hence it is identified as the dial-up connection. When you start accessing the dial up connection, the modem converts the digital information onto the analog signals. These analog signals use the telephone lines to pass the converted signals. At receiving end, these signals are converted into digital information. Figure 13.5 represents a typical model of an inbuilt modem.

Figure 13.5: Modem

As dial-up connection uses ordinary telephone lines, the data rates are limited and the quality of the connection is not always good. Nowadays very few people use this type of connection. Further, it makes the telephone line busy till you use the internet. Since most of the computers have the facility of in-built modem (See figure 13.5), this solution is easy but not economical as it is slow and increases the telephone bill. Dial-up connections operate at speeds of 14.4Kbit, 28.8Kbit, or 56Kbit. Figure 13.6 demonstrates working of dial-up connection.

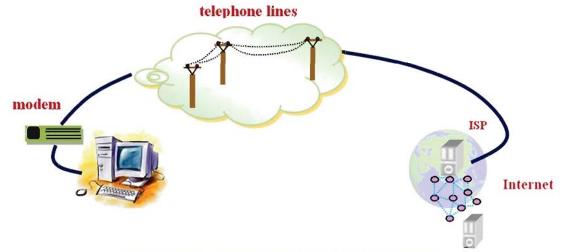


Figure 13.6: Working of Dialup Connection

ISDN - Dial-up Connection

This connection is also called dial-up connection. However, this is a high-speed connection that requires special (digital) type of dedicated telephone line. As the digital information to analog and vice-versa conversion is not necessary, the connection speed is improved. Since this connection type uses dedicated lines, it is costly. Further, a special ISDN line as well as ISDN modern must be installed at the customer's location. The ISDN dial-up connection operates at speeds of 128Kbit and 256Kbit. This connection can only be provided by landline phone companies and therefore is being phased out.

Direct Internet Access (Leased line) Connection

Leased line is a "permanent connection" generally used by larger institutions, corporate and government agencies. It involves establishing your own Internet connection and paying to have a direct full time line with the network, which makes such connection faster as well as costly. It is personalized and dedicated line of connection which is always on.

Broadband Connection

Broadband is a type of Internet access in which a single medium or wire can carry several channels or communication paths at once. It is also a high-speed Internet connection. Both these features make surfing the Web very efficient. Such connection can transmit both television signals and Internet data at the same time. Broadband telephone connections like Digital Subscriber Line (DSL) are able to transmit multi-media information (such as voice and data) over the same line at the same time. Further, the broadband connections are always on. You need not have to dial-up specifically. Generally a broadband connection accesses the Internet either by a cable modem

provided through their local cable company or a DSL modem and DSL telephone line provided by their local telephone service provider.

There are two popular types of cables; coaxial and fiber optic. The first one is commonly used by cable TV and that is common for data communications. Fiber optic cables are strands of a special optical material as thin as a human hair that carries multi-media information over long distances. In fiber optic cables data are carried as light signals. Figure 13.7 shows a cross section of the cable.

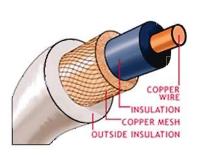


Figure 13.7: Co-axial Cable and Optical Fiber

Wireless Internet Connection

Wireless broadband or Wireless Internet Connections operates on radio frequency instead of cable networks. Wireless Internet can be accessed from anywhere as long as you are within a network coverage area. It also provides an always-on connection type. It is typically more expensive and mainly available in metropolitan areas or big institutes.

For mobile Internet connection to personal computers or laptops, 3G USB data cards are used. 3G USB Data cards are meant for accessing Internet at anytime and from anywhere. It provides simple and instant internet access at mega fast speeds up to 7 Mbps. 3G data cards make us free from messy

Figure 13.8: Data Card

wires and fixed line requirement. Among different types of the 3G data card (also referred as Dongle or connect cards), an USB data and is very popular. Companies such as BSNL, MTNL, Airtel, Vodaphone, Tata etc. offers this facility. Figure 13.8 illustrates a typical data card.

Such data cards are easy to set up and automatically detected by a personal computer or a laptop in which it is connected. Due to the support like roaming, easy set up, flexibility and attractive tariff plans, the data cards have become very popular.

Satellite Connection

Internet over Satellite (IoS) allows a user to access the Internet via a geostationary satellite that moves around the earth. Because of the large distances between home and satellite, signals must travel from the earth up to the satellite and back again, IoS is slightly slower than high-speed terrestrial connections over copper or fiber optic cables. Typical Internet over Satellite connection speeds (standard IP services) average around 492 to 512 Kbps.

Applications of Internet

Internet has changed the way people do their business and also the way in which they use computers and communicate. Internet allows high degree of flexibility in working hours and location. The Internet can be accessed from any location across the world using basic computer facilities. It can reach many people simultaneously and act as a basic platform for business operations and communications. People can operate their business, get some information, communicate with one or more persons and entertain themselves. The popular applications of Internet are e-mail (communication of digital multi-media messages), information sharing on the World Wide Web (WWW or Web), and searching for information. Following sections provide brief introduction to some of these applications.

Domain Name System

A domain name is an identification string that defines a territory of administrative autonomy, authority, or control on the Internet. Domain names are formed by the rules and procedures of the Domain Name System (DNS). Domain names are based on either type of organization or geographical area. The popular domains are listed in table 13.1.

Domain	Description
com	Commercial organizations, however can be used for any website
gov	Government organizations
org	Non commercial organizations
edu	Educational organizations
info	For information
mil	Military organizations
net	Large networks
coop	Co-operatives organizations
int	International organizations
aero	Air transport organizations
Domain based on ge	ographical region
in	India
au	Australia
us	United status
jp	Japan
pk	Pakistan
ca	Canada
hk	Hongkong
np	Nepal
cn	China
uk	United kingdom

Table 13.1: Popular Domain Names

World Wide Web

World Wide Web is an advanced information retrieval system on Internet platform. It is also known as WWW, W3 or Web in short. The Web was invented in 1991 by Tim Berners-Lee, while consulting at CERN (European Organization for Nuclear Research) in Switzerland. The Web contains multimedia as well as streaming (radio/television using internet) information on variety of topics. Web is therefore called a virtual store of information. A web page is a document on the Web. Web consists of such plenty of pages. A page on the Web can be read using a computer program called web browser. A web browser is a software application for retrieving, presenting, and traversing information resources on the Web. Mozilla Firefox, Internet explorer, Google chrome, Netscape navigator are some of the most popular browsers. There is a Uniform Resource Locator (URL) that references a web resource (page) uniquely. You can go directly to a web page if you know its URL. URL is occasionally referred as URI – Uniform Resource Identifier.

The web pages are stored on a special computer called, web servers. Any organization can set up a web server and have collection of related web pages. The collection of web pages is known as website. The starting point (generally the first page) is called a home page of the web site.

There are some websites that offer services to perform business transactions, money transactions, news services, etc. Such websites are known as portals. Portals are entry points to some resources or services. Generally portals are specific to a particular industry or institution. However, the portals can also be general like yahoo.

To jump from one page to another page, Web links called hyperlinks are given behind the text. That is, information on the web page is connected by hyperlinks. A reader sees on the screen a document with sensitive parts of text representing the links. These links are followed by clicking (or selecting) on them. The text behind which the link is hidden is called an anchor text. The Hyper Text Mark-up Language (HTML) is a language to create or edit the web pages and to manage links within the documents.

There are some predefined methods for computers to follow links and transfer documents. These methods are known as Hyper Text Transfer Protocol (HTTP) and File Transfer Protocol (FTP). Management of the Web becomes easy using these protocols. Figure 13.9 represents a conceptual view of the Web.

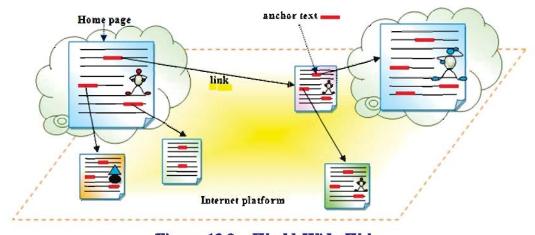


Figure 13.9: World Wide Web

Web Browser

To see content of the Web on the computer screen, we require an application that retrieves and presents the content on demand. As discussed earlier, we identify this application as a Web browser or simply a browser. Browsers generally work with Web; however, with private network one can use such applications. The first web browser was invented in 1990 by Sir Tim Berners-Lee. It was called 'WorldWideWeb' (without any spaces) and was later renamed Nexus.

The main objective of a browser is to retrieve and to present content of the Web to user. Browser identifies resources from URI (uniform resource identifier). The most commonly used kind of URI starts with http: and identifies a resource to be retrieved over the Hypertext Transfer Protocol (HTTP). Many times you may see https:. URL's beginning with HTTPS indicates that the connection between client and browser is encrypted for security purpose.

Some Preliminary Characteristics of Browsers

- A browser must be able to deal with multimedia information, as the Web content may include text, numbers, characters, symbols, audio, video and animation.
- A browser must be user friendly by providing good options on the screen. These options include space to provide URI/URL, file operations like save file, navigation operation such as back and forward, other buttons such as refresh, book mark, help etc. Later we will explore such operations.

About FireFox

Figure 13.10: Getting Firefox Browser

Firefox is an open source browser available for free from the Mozilla Foundation, http://www.mozilla.org/. The code of the FireFox is freely available to view and modify. While sharing such software, the major expectations are to wide spread the application as well as to invite comments/ modifications on the applications. Figure 13.10 shows the main (home) page of the Mozilla community where Firefox browser is available for free download.

As shown in the figure 13.10, you may download the appropriate Firefox Browser by clicking the link given on the page. This website also provides tutorials on the web browsing using Firefox, emailing using a tool called Thunderbird and Mozilla mail, and other Mozilla products.

Once you install the browser, you can use it. Your browser may be available under Application menu or placed as a shortcut icon at the top margin of the desktop screen. You may be lead to the start page if you are using the browser first time. See figure 13.11.

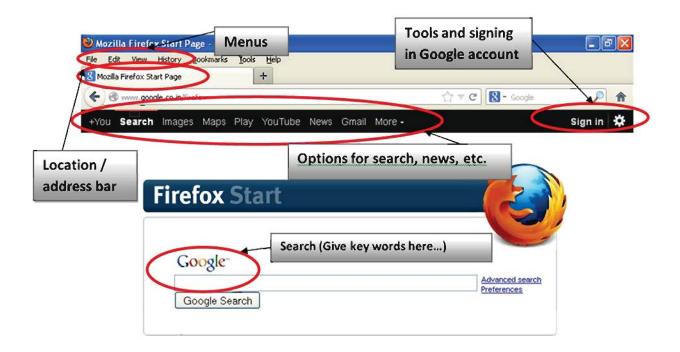


Figure 13.11: Firefox Browser Start Page on Windows OS

Every time you open the browser, you need to enter the address such as 'Google.com' or 'www.google.com'. You may set this page as a default page by doing the following:

- (1) Select Tools, Option and General.
- (2) Give home page address, which will become your default page. When you start browser, this page will come.

From the screen shown in figure 13.11, within the Google search option you may write keywords to search. For example, if you want to find out about Schools in Gujarat, type these words in the Google search bar, and you will see results as shown in figure 13.12. It is possible that when

you try this the output may be different from what is exactly visible in figure 13.12. The screen in figure 13.11 was taken on Windows OS while the screen in figure 13.12 is taken on Ubuntu 10.04. Observe that the look and feel of the browser on both the operating systems is exactly same.

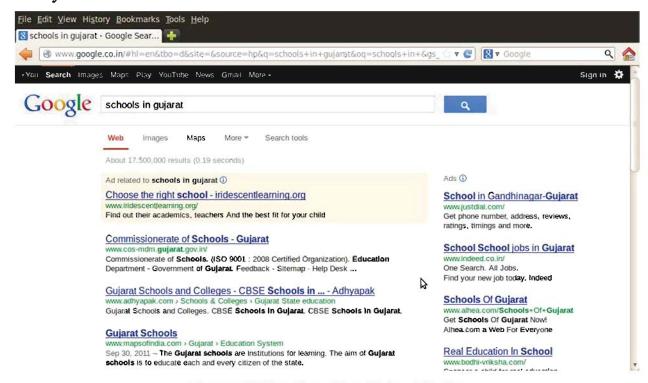


Figure 13.12: Searching Using Firefox

About Search Engine

The web provides mechanism to store and link different web pages connected with hyperlinks. Only providing connections between the documents through the hyperlinks and mechanism to follow the links cannot make the Web really useful. The actual power of the Web comes from ability to search the content automatically by following the links. It is really difficult to search particular information from the ocean of the Web. Just like you have content list (or index list) in your book to search for a topic from the book, the Web also prepares index lists which allow searching based on key words provided. The computer program that does this job is called a search engine. Google [www.google.co.in], Yahoo [www.yahoo.com], Ask [www.ask.com], Scirus [www.scirus.com] and AltaVista [www.altavista.com] are some such popular search engines.

Many search engines accept keywords from users and extend the keywords to many more search engines at back end. This type of search engine is called a meta-search engine. Some examples of meta-search engines are as follows:

- iBoogie [www.iboogie.tv/]
- InfoGrid [www.infogrid.com]
- Dogpile [www.dogpile.com
- Ithaki [www.ithaki.net/indexu.htm]

About Google

Google is an America (Mountain View, California) based multi-national corporation founded by Larry Page and Sergey Brin from the Stanford University. The objective of the corporation is to provide services and products related to the Internet.

The name 'Google' originated from the word "Googol". The word 'Googol' is used for the mathematician's term for the number one followed by one hundred zeros. To significantly represent the large pool of information on the Internet/Web platform this word was decided to be used. Gradually the word is evolved as 'Google'.

Google can also be used to search in Hindi and other regional language such as Gujarati. See the screens shown in figure 13.13, figure 13.14, and figure 13.15.

Figure 13.13: Multilingual Support From Google

If you select Hindi, you can see screen as shown in figure 13.14.

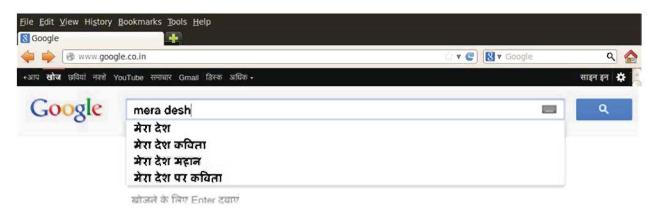


Figure 13.14: Searching in Hindi

Google can also translate from one language to another language[http://translate.google.com/] Figure 13.15 shows features like virtual keyboard as well as phonetic typing are provided for ease of using.

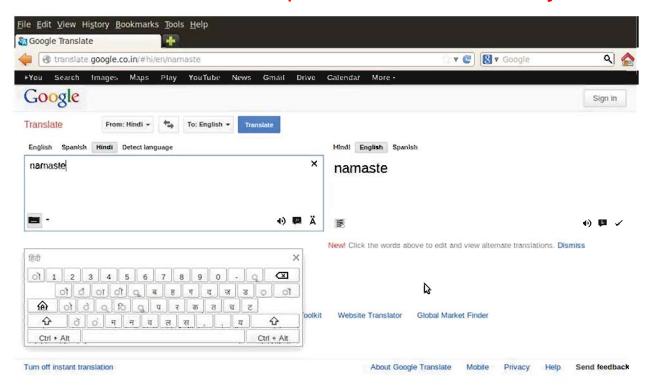


Figure 13.15: Google Translation

Google also provides advance search facility to provide specific query and narrow or filter the search results. The following screen shows how to use advance search facility step by step.

The screen presented in figure 13.16 shows a basic (initial) screen for searching using Google. The screen illustrates the initial process of searching of seven wonders of the world.

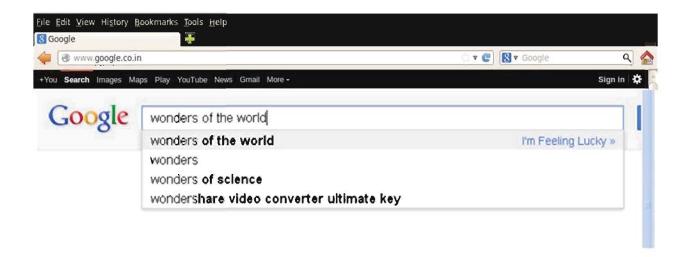


Figure 13.16: Initial screen of advanced search

When you click on Google search button after providing query, you will see the result as shown in figure 13.17. You may see world wide information on the seven wonders.

Introduction to the Internet 229

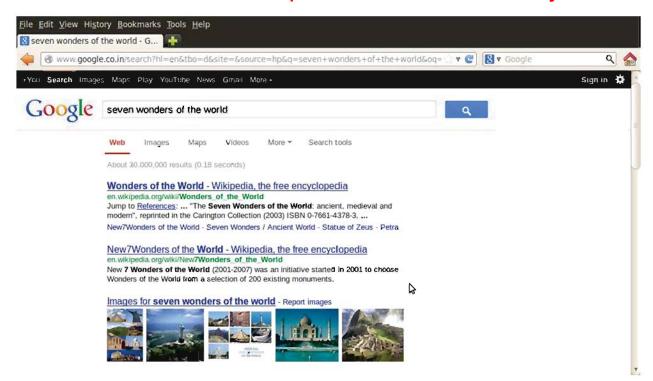


Figure 13.17: Basic Search Results Prior to Advanced Search

If we would like to revise the search in such a way that it presents wonders of the world only from India. We may refine our search using advanced search facility. The link for advanced search is provided at the end of searched result page as shown in figure 13.18.

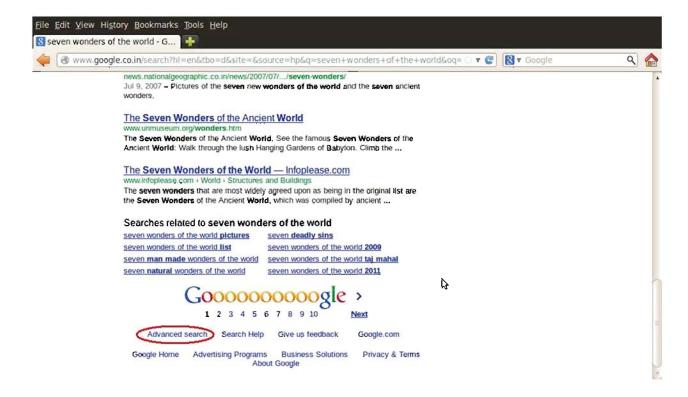


Figure 13.18: Link to Advanced Search

When you click on the advanced search facility (see the arrow in the figure 13.18 above), you will further see screens presented in figure 13.19 and figure 13.20. The first figure 13.19 shows options about which words you want exactly. Here we have restricted our search to provide results that contain the exact word 'India' only.

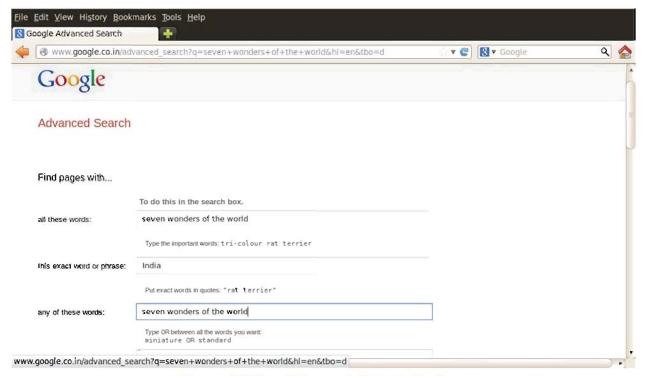


Figure 13.19: Advanced Search Options

The second part of the advanced search is shown in figure 13.20. Here you can narrow the search results by providing options of language (such as Hindi, English etc.) region, data of update, free to use material etc.

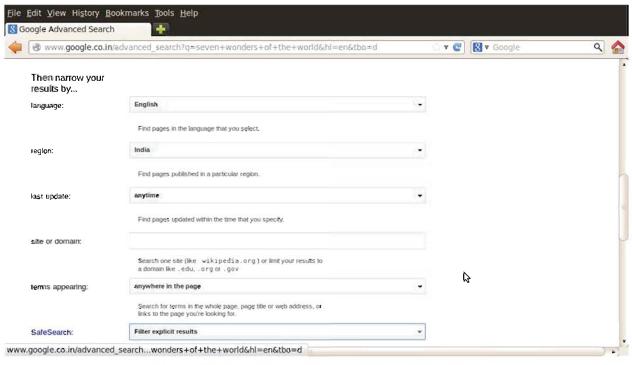


Figure 13.20: More Advanced Search Options

Introduction to the Internet

After providing required choices, when the advanced search button is clicked, the Google provides following results. See screen illustrated in figure 13.21. You may notice the appearance of the world India in the presented result.

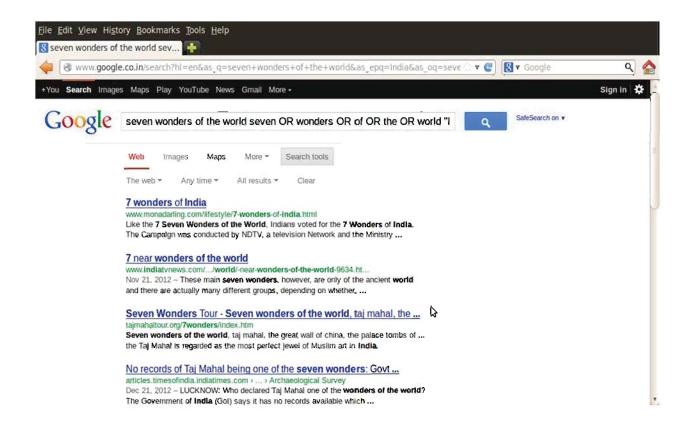


Figure 13.21: Advanced Search Result

The major facilities offered by the Google are search, e-mail, cloud computing, and advertising. The company's mission statement from the outset is "to organize the world's information and make it universally accessible and useful".

Google also offers virtual locations to store and access documents. Google docs and Google drives are the example of such utilities. Google drive is a place where one can create, share, collaborate, search and keep all the documents. These documents are accessed from any location through any valid devices. Google docs refer to the facility that enable editing for Google documents, spreadsheets, presentations, drawings, and forms. These are online documents that live in the cloud and provide real-time collaboration features. Google drive is a step ahead and offer accessing all the files, including both Google docs and local files from a web browser or any device where Google drive is installed. One can store and use

all type of files free with initial space of 5GB storage. You need to have connection with Google cloud. For this, you may download appropriate Google cloud connect software from Google's official site. Google has also extended its services for the services mentioned herewith:

- Android mobile operating system;
- Picasa photo organization;
- Google 'Earth' the 3D view of the earth technology;
- Google chrome OS browser-only operating system for specialized notebooks called Chromebooks
- Google Driverless car that uses Google Street View with artificial intelligence technology.

Try to explore Web for more interesting information on Google's driverless car! Besides searching and sharing information on the Web, people would like to carry out many jobs using the Web platform. Some of the examples are sharing personal ideas and information; making groups and interact. For this purpose, variety of other applications have been designed; such as blogs, collaborative media (such as wikis) and social network platform. The following section introduces these concepts.

Blogs

The name blog is derived from 'Web Log'. From 'Web Log' it became 'We Blog' and from that gradually it became 'Blog'. A blog is a type of website written usually by a single person on any topic. The structure and purpose of a blog is just like a personal diary, where a person can share his idea about current affairs and their experiences along with multimedia supportive information. A blog is frequent, chronological publications of personal thoughts. Blog content is normally written in the way that content about the latest activity remains on the top. The older entries may be available on the same page or may be stored in separate folders called archives. To interact with its reader, a blog may accept comments from the readers. You may read blog on the Web and pass comments to the author of the blog. There are free blog services that help to set up blogs in friendly manner.

To keep track of your favourite blog (or website) you may use a technique called RSS, which is an abbreviated form of Really Simple Syndication. This technique provides news to the user when the interested blog or website is updated. Many people call this facility as news feed. This is just like subscribing a magazine, whenever new issue comes, automatically the subscriber will be given information about it.

Collaborative Platforms

Whenever we read something on the Web on some topic, we would like to add something from our side. There are collaborative platforms / websites available that facilitate users to read,

add, modify, or delete its content via a web browser using a simplified mark-up language or a rich-text editor. You might have used wikis. Wikis are such collaborative media. Since such website content is created in collaborative fashion, it is known as the simplest online database for everybody. So far you have just read the content from wikis (or Wikipedia), now you can try to edit it by providing related content. Since it is not created by an authentic publishing agency or an author, but by plenty of people, wikis are not considered as trustworthy resources.

Besides blogs and collaborative platform, Internet can also be used as platform for social networking. These applications are not only used for fun and social interactions, but also for applications such as e-learning, marketing and product promotion.

Other Services

Internet can be used as platform for variety of services that may facilitate our industry and social applications. Some services like Internet Protocol Telephony may be used for business applications as well as personal communications. IP Telephony or Voice over IP (VoIP) is the technology that enables voice (telephone) calls to be carried over IP network (over LAN or Internet) instead of public switched telephone network (PSTN). Other examples of such generic common services that are supported by the Internet platform include remote access of computers, file transfers, chatting, video conferencing, and sending messages to mobile.

You might be interested in some frequently used terminology in this area. Table 13.2 gives a quick review of the terminology (sorted alphabetically).

Term	Description
Bandwidth	The amount of data that can be transmitted across a network or Cable. The bandwidth is usually measured in bits per second (bps) for Internet access.
Broad band	Broadband is a high-speed Internet access that offers an always-on connection, which is called in contrast to a dial-up connection using analog modem.
Browser	A browser or web browser is a software application for retrieving, presenting, and traversing information resources on the World Wide Web.
Client	The connected computers with large computers (in terms of memory and processing power) called server to seek support are known as clients.

	-
Data card	Data card is a card which contains data or which is used as plug and play instrument for data operations (transfer, transformation, input, and output). The popular use of data card is to get connectivity using 3G network.
Domain name	A domain name is an identification string that defines a realm of administrative autonomy, authority, or control on the Internet. Domain names are formed by the rules and procedures of the Domain Name System (DNS).
DSL	Digital subscriber line, which used to transmit digital data over wires of local telephone network.
E-mail	Electronic mail, commonly known as e-mail, is a method of exchanging digital messages from an author to one or more recipients using Internet.
FTP	File Transfer Protocol (FTP) is a standard network protocol used to transfer files from one point to another over Internet.
Home page	The starting point (generally the first page) of a website is called a home page of the web site.
HTML	The Hyper Text Mark-up Language (HTML) is a language to create and edit the web pages and to manage links within the documents.
НТТР	Hyper Text Transfer Protocol (HTTP) provides methods for computers to follow links on a web page.
IP address	An Internet Protocol address (IP address) is an identification number assigned to each computer participating in a computer network.
ISDN	Integrated Services Digital Network is a high speed Internet connection through special dedicated lines that transmit multi-media information simultaneously.
ISP	Internet Service Provider (ISP) is an organization that provides access to the Internet.
Modem	A device that can do modulation as well as demodulation is known as a modem ("modulator-demodulator").
Portal	Portals are some websites that offer services to perform business transactions, money transactions, news services, etc.

Protocol	Protocol defines formal rules and guidelines for smooth behaviors of commuters and other devices in a network.
Router	A router is a device that forwards data within computer networks.
Search engine	Search engine is a computer search program that allows searching information from the Web based on key words provided by users.
Server	Servers are large and high speed computers that are used to store information in a network.
URL/URI	A uniform resource locator (URL) is the key entity that references a resource (web page). It is also known as Uniform Resource Identifier (URI).
Web	World Wide Web is an advanced information retrieval system on Internet platform. It is also known as WWW, W3 or Web in short.
Web page	A web page is a document on the Web.
Website	Collection of web pages is known as website.

Table 13.2: Quick Teview of Some Internet Terminology

Technology like Internet has great impact on human lives. There are many advantages of the Internet. Use of the Internet increases degree of accessibility of resources. The resources can be accessed anytime, anywhere and by anybody. Use of the Internet makes the system transparent and efficient. Many areas such as business, research, learning, and entertainment are benefited by the Internet applications. However, the increasing use the Internet changes the social behavior, habits and abilities of people and making them more and more dependable on the machine.

Summary

In this chapter we learnt that to share resources such as hardware and software, computers need to interact with one another. We learnt introductory concepts of computer network along with their types such as Local Area Network (LAN) and Wide Area Network (WAN). We also learnt about the Internet, which is considered as the great pool of information. We discussed some components of Internet like server, client, router, modem, protocols and IP addresses. Further we learnt how to get connectivity through different mechanism such as dial up connections, ISDN connections, Satellite connections as well as wireless connections. Finally we learnt about searching mechanism that facilitates search based on users' information such as keywords provided by them.

EXERCISE

41	TT 71			
1.		at are the benefits of network?		
2.		at is Internet?	11.00	
3.		ine an IP address. What are the two	different v	versions of an IP address?
4.		ine the terms :		_
	(a)	Client	(b)	Server
	(c)	Information superhighway	(d)	Modem
	(e)	IP address	(f)	Web site
	(g)	Hyperlink	(h)	Search engine
5.	Def	ine the World Wide Web (Web). Als	o explain l	now Internet and Web are different.
6.	Wh	at is browser? Give an example.		
7.	Wh	at is search engine? Give two exam	ples of a ty	pical search engines.
8.	Wh	y wikis are known as collaborative p	latform?	
9.	Wh	at is blog?		
10.	Giv	e an example of each:		
	(a)	Collaborative platform	(b) Soci	al networking site
11.	Wri	te a short note on search engine. Als	o list some	popular search engines.
12.	Cho	oose the most appropriate option fr	om those g	given below:
	(1)	Which is the most suitable description	on of the I	nternet ?
		(a) Network of hardware	(b) Net	work of networks
		(c) Network of servers	(d) Net	work of software
	(2)	Which item among the followings of	an be shar	ed by a network?
		(a) Information	(b) Har	rdware
		(c) Software	(d) All	of these
	(3)	The computers connected with each	other shou	ald behave in some particular manners
		and rules. What these rules / manne	ers are call	ed ?
		(a) Programs	(b) Pro	tocols
		(c) Server	(d) Rou	uters
	(4)	Which of the following protocol gua	rantees sm	ooth operations between the connected
		computers in the network?		
		(a) FTP	(b) TC	P
		(c) IP	(d) All	of these
	(5)	Which of the following is required t	o identify a	a machine uniquely in a network?
		(a) A connection	(b) An	IP addresses
		(c) A Server	(d) All	of these

(6)	Wh	at are IPv4 and IPv6?		
	(a)	Protocol standards	(b)	Network address
	(c)	IP address	(d)	Servers
(7)	Wh	ich of the following entities help in	forwa	arding documents by suggesting right path to
	be i	followed within a computer network	rk ?	
	(a)	Router	(b)	Amplifiers
	(c)	Path finder	(d)	Any of these
(8)	Wh	ich of the following devices can pe	rforn	n modulation ?
	(a)	Calculator	(b)	Demodulator
	(c)	Modulator	(d)	Decalculator
(9)	Wh	ich of the following devices can pe	rforr	n de-modulation ?
	(a)	Calculator	(b)	Demodulator
	(c)	Modulator	(d)	Decalculator
(10)	Wh	ich of the following devices can pe	erfori	m modulation as well as de-modulation?
	(a)	Calculator	(b)	Demodulator
	(c)	Modem	(d)	Decalculator
(11)	Wh	ich facility is used to read a web	page	?
	(a)	Web browser	(b)	Web site
	(c)	Web page	(d)	Any of the above
(12)	Wh	ich of the following is an example	of a	a search engine?
	(a)	Mozilla Firefox	(b)	Google
	(c)	Internet explorer	(d)	All of the above
(13)	Wh	ich utility identifies a web page uni	iquel	y ?
	(a)	Unified Resource Licence	(b)	Uniform Resource Locator (URL)
	(c)	Unified Random Location	(d)	Any of these
(14)	Wh	at is the collective name of a set	of w	veb pages ?
	(a)	Website	(b)	Web pages
	(c)	Home page	(d)	Server page
(15)		ong the following which tool can lain the documents?	oe us	ed to edit the web pages and manage links
	(a)	Highly Transferable and Manageal	ole L	inks
	(b)	Hyper Text Mark-up Language		
	(c)	Highly Temporary and Manageabl	e Lir	nks
	(d)	Hyper Text Mark-up Link		

(16) Which of the following is a type of website written usually by a single person on any topic like personal diary?

(a) Website

(b) Homepage

(c) Blog

- (d) Index page
- (17) Which of the followings is name of the websites/platforms that allow users to contribute (to edit the content)?

(a) Collaborative

(b) Co-operative

(c) Contributed

(d) Distributed

PRACTICAL EXERCISE

- 1. Use search engine of your choice and explore information about the tourist places in India. Collect information such as history of the place, how to reach, pictures and weather information about the places.
- 2. Refine your search using suitable advanced search options.
- 3. Prepare a presentation about the places worth seeing in India from the information collected as directed in the previous question.
- 4. Use a meta search engine of your choice to search information about a topic of your choice.
- 5. Search in Gujarati language about Shri Mahatma Gandhi.
- **6.** Search and read a blog that discusses everyday science topics for students.
- 7. Go to a collaborative platform (such as Wikipedia) and verify different facilities it provides.

•

Email and Security in Internet

In the previous chapter we have discussed about what is Internet and how to utilize the web browser efficiently. Here we will discuss electronic mails. Electronic mail, more commonly known as E-mail, has become an essential mode of communication now a days. Initially the idea was to send text based messages from one computer to another. In its current form E-mail features have developed by leaps and bounds. The data that can be transferred now is not only limited to text. It is now possible to send pictures, voice, documents, programs and animated movies. In this chapter we will see how email works and what are its advantages and disadvantages. We will also have a look at the security aspects of Internet.

E-mail

E-mail refers to the transmission of messages across computer networks in an electronic form. That is why it is known as an electronic mail. It is a method of exchanging digital messages from sender to one or more recipients using Internet.

Parameter	Traditional mail	E-mail
Address	14, Star Colony Rampur	sweety@yahoo.com
Time	Two to three days	Instantly, within seconds/minutes
Content	Tailor made, any content including physical material in parcel.	Address book, templates and readymade draft messages are available. We can also use multimedia information along with the mail.
Cost	Cost for delivery, stamps, paper and cover as well as cost for shipping large parcels.	Free with internet facility and computer.
Access	Can be accessed through limited specific places	Can be accessed from anywhere.

Table 14.1: Traditional Mail v/s E-mail

E-mail is the most widely used service on the Internet. Earlier emails used to deliver only text messages. At present variety of information can be sent through mail such as audio, video, animation, graph and text. These types of information are collectively known as multimedia information. The main advantage of such electronic mail facility is a digital multimedia message can be transferred through computer network in faster way across the world. In comparison with the regular post mails, the e-mail facility is faster and cost effective. E-mail is so efficient in comparison with the regular mail; people identify the regular mail as 'snail' mail! This scenario demonstrated in table 14.1 that gives comparison of traditional (snail) mail with e-mail.

The email enables improvement of business communications, efficient access of information and cuts down costs and time. The benefits provided by the e-mail are described in table 14.2.

It is fast	Most messages are delivered within short time, say in seconds or minutes.
It is global	Messages are delivered across the whole world without any geographic limits. Further, you may use variety of devices that have Internet facility (say mobile and iPod) to use e-mail facility.
It is cost effective	There are many email service providers such as Gmail, hotmail and yahoo. They provide free services for e-mail. You need to have a computer with internet facility.
It is personal	Like telephone, informal messages can be shared through e-mails.
It is more productive	E-mail is packaged with facilities such as calendar, address book, and templates for instant messaging for convenience and productivity.
It provides	You may write message, check spelling/grammar and change
opportunity to think and edit your content	content of the message. You may think twice before you send the mail.
opportunity to think	content of the message. You may think twice before you send
opportunity to think and edit your content It provides documentation of	content of the message. You may think twice before you send the mail. Sent and received messages can be stored in computer for future use,

Table 14.2: Benefits of E-mail

There are some disadvantages and limitations of the e-mail facility. The first one is it requires computers and Internet facility in the computer. You may receive unnecessary mail called junk mail or spam mail (also referred as *spam*). The examples are unwanted advertisement, call for fake seminar, mail for asking favour from unknown person, or sometimes harmful programs (virus) that disturbs your computer programs and data.

There are some basic requirements that one must fulfil prior to utilising the email facility. As stated earlier, the basic requirements are both sender and receiver computers must have the internet facility and e-mail addresses. If the receiver is not working on computer at the right moment, when he opens computer and connects to the Internet, he can see the received mail in his 'mailbox'. A typical e-mail address sweety@yahoo.com is given below in figure 14.1.

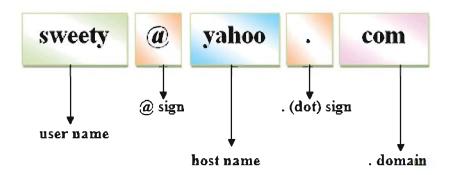


Figure 14.1: E-mail Address and its Components

An e-mail always begins with user name. A user name is to be chosen by the user. It can be any name that the user likes, provided that the same name is not registered with the email service provider. For example, sweety is very common name. If the name is already registered, you may choose another name like sweety_97. Then the e-mail address is sweety_97@yahoo.com. The user name is followed by '@' sign. It separates the user name from rest of the address. After the '@' sign, name of e-mail service provider (also called host name) appears. In the above mentioned e-mail address 'yahoo' is the host name. An email address can be up to 255 characters long and can include the characters such as lowercase letters from a to z; digits and the characters ".","_" and "-" (full stop, underscore, and hyphen). After the decimal point in an e-mail address, a domain name appears. As mentioned in previous chapter we have different type of domain names. This states that we may also have an email account with the name sweety@yahoo.co.in or sweety@glsict.org or sweety@glsict.ac.in and so on.

Structure of E-mail

Once you have the facility of internet you can opt for mail service provider (such as yahoo, hotmail, Gmail, indiatimes, rediffinail, etc.), select your username (with password) to register your mail address with the mail service provider. The process of registration is often called 'sign up'. The sign up

process needs to be carried out only once. Afterwards whenever you use e-mail, you may 'sign in'. Typical email has basic parts such as header that contains information regarding sender's address; recipient address; subject of the mail; attachments if any; and message body. The typical operations for an e-mail include Send, Compose, Reply, and Forward mail. Optionally one may attach one or more files with limited size along with the mail. These files can be any multimedia electronic file such as documents, music and image files.

Working of E-mail

Once an e-mail is sent from a computer, it goes to the sender's network and then to the Internet. From the Internet it reaches the receiver's network and server using the facility of routers (to find appropriate path). Further, it has to pass through security features like firewall, if any. An e-mail encountering a firewall may be tested for spam (unwanted mails) and virus filters before it is allowed to pass through the firewall. From receiver's network it is sent to the receiver's computer. Figure 14.2 represents the conceptual path that normally an e-mail can follow.

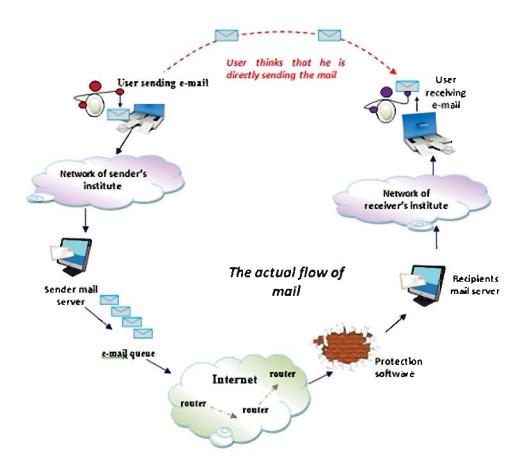


Figure 14.2: Working of E-mail

Creating an E-mail Account

Everybody today from a young person to an old person has an email account. Let us also try to create an email account on Gmail. To create a mail account in Google, you need to perform following steps. Go to Google and click on Gmail as shown in the figure 14.3.

Figure 14.3: Selecting Gmail to Create an Account

You will see screen as shown in the figure 14.4. Click on create new account.

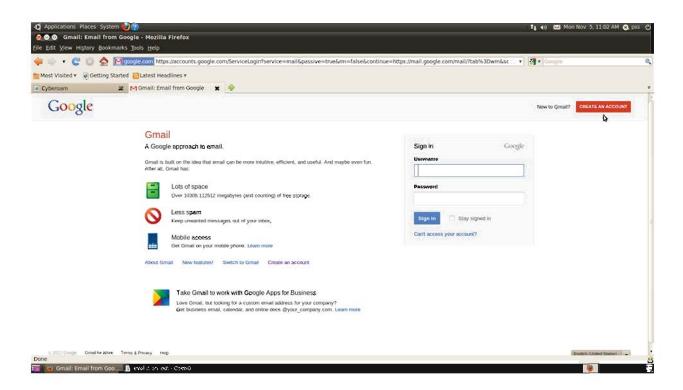


Figure 14.4: Create a New Account

Clicking on creating new account will show the following screen. See figure 14.5.

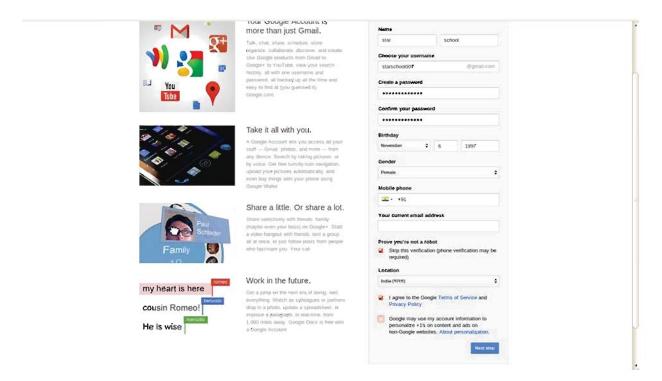


Figure 14.5: Providing Necessary Information For the Account

You need to provide necessary information as demonstrated in the above figure 14.5. Google confirms the information by sending you either voice mail or SMS on the mobile number provided. See screens shown in figure 14.6 an figure 14.7.

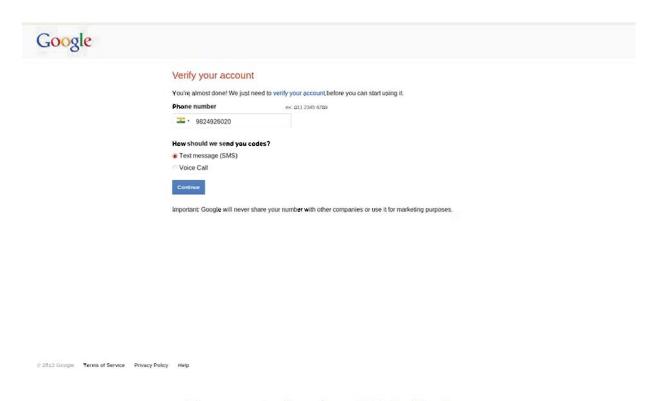


Figure 14.6: Providing Mobile Number

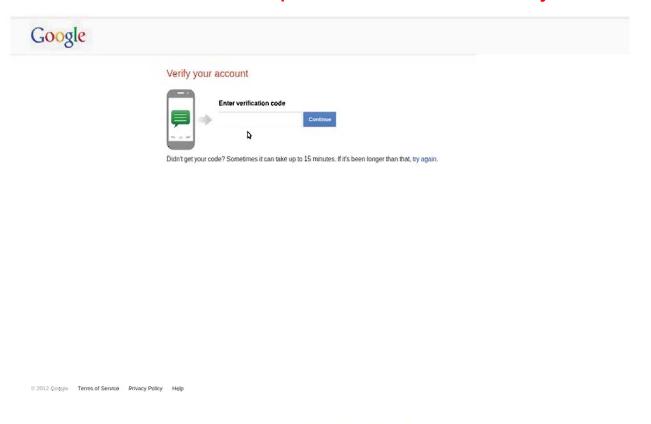


Figure 14.7: Providing Verification Code

You need to give verification code which is provided. After that you will receive a welcome message as shown in figure 14.8.

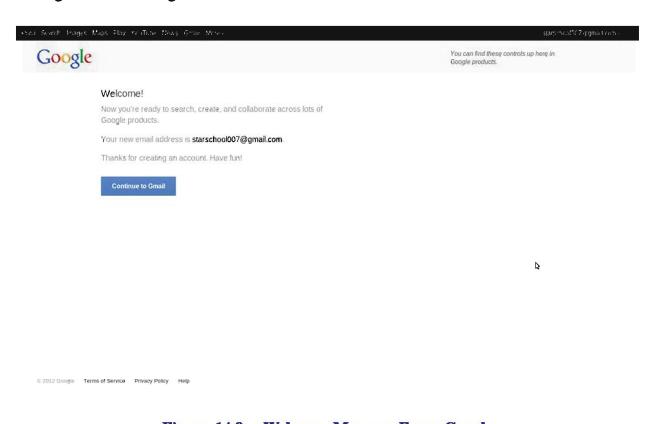


Figure 14.8: Welcome Message From Google

246

You may choose to continue. You will see screen as shown in figure 14.9.

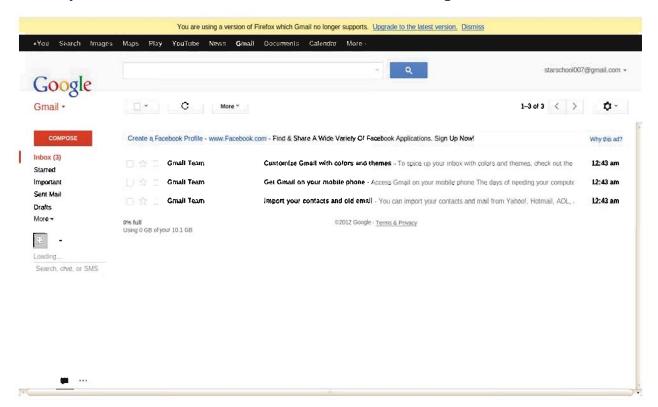


Figure 14.9: Gmail Account Created

Once you have created the account, you can share it with your friends and family. Similarly you may create an e-mail account on different email providers like yahoo, rediffinail or hotmail.

Evolution as Mail Client

An application that runs on a personal computer and capable of sending, receiving and organizing e-mail is called an e-mail client. There are many such e-mail clients available. Beside the basic facilities to manage e-mails, some e-mail clients also provide features like quick search, saved search folders, advanced message filtering, message grouping, and labels help manage and find messages. Some popular examples of e-mail clients are Thunderbird, Evolution, Claws Mail, Kmail, Balsa, Mutt, and Pine.

Evolution is one of the efficient information managers as an e-mail client that provides facility to manage e-mail, address book, calendar, and other tasks in one place. It can filter unwanted e-mails (such as spam and junk mails) in secured fashion. It can be considered as a kind of groupware application (term describing an application that helps groups of people work together).

There are many advantages to using a mail client. Some of them are as follows:

When using a mail client, you need not have to always be connected with the Internet. You may connect once, download all your e-mail, disconnect, and read the e-mails when you want. This is very convenient especially when connectivity to the Internet is poor or inconsistent.

- You may also compose number of e-mails anytime, save it, and send it later when you are connected to the Internet.
- Mail clients are generally much faster and provide variety of facilities such as address books, calendars etc. at one place.
- Not only multiple applications (facilities related to e-mailing) but multiple e-mail accounts
 can be managed by most of the e-mail clients from one place after configuring them
 once only.

However, you need to install software on your computer and configure it especially for one or more accounts. Further, such clients store messages and related information on your machine which can be used by people who have access to your computer.

The Evolution client can be chosen directly from the 'Applications' menu at the main Ubuntu screen. In case of its unavailability, you may get this software from Ubuntu software centre by performing the following steps:

Getting Evolution

- Go to Applications.
- Go to Ubuntu Software Centre and choose Internet client as shown in figure 14.10.

Figure 14.10: Getting Internet Related Software Such as Evolution

When we click on 'Internet' icon in figure 14.10, a screen as shown in figure 14.11 is visible.

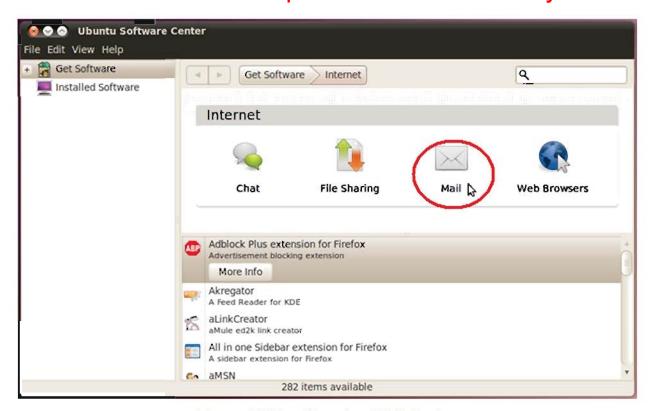


Figure 14.11: Choosing Mail Option

As shown in the figure 14.11, choose Mail option. This will lead you to a screen as shown in figure 14.12.

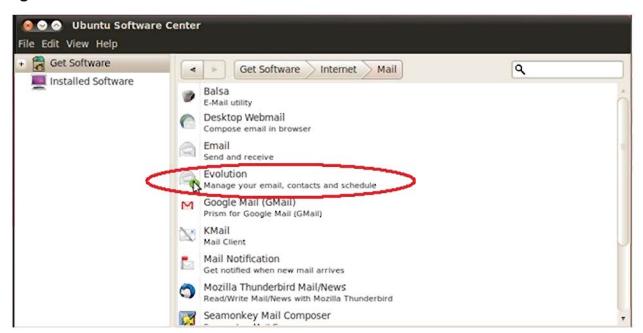


Figure 14.12: Choosing Evolution as Mail Client

Configuration of Evolution

Once you get the Evolution mail client, you need to configure the mail client first time as follows. To open the Evolution welcome screen select Applications \rightarrow Office \rightarrow Evolution Mail and Calendar. You will see a welcome message as shown in figure 14.13.

Figure 14.13: Welcome Message While Configuring Evolution

Once you click on 'Forward' button, you will be presented with a screen that ask you to restore your data from backup. This is helpful in cases where we already and backup and are reconfiguring Evolution due to some problems. If this is a fresh installation then click on Forward button screen as shown in figure 14.14 will appear.

Figure 14.14: Setting Identity for Evolution Mail Client

Here you are supposed to provide some necessary information that identifies the sender and his organisation. We have provided some sample information as can be seen in figure 14.15.

Figure 14.15: Setting Dummy Identity for Evolution Mail Client

By pressing 'Forward' button screen as shown in figure 14.16 will appear.

Figure 14.16: Providing Server Information for Evolution

As we are trying to configure a Gmail account, the server name has been chosen as imap.gmail.com. In case you want to map different account then you need to find out the server name from your Internet service provider for both sending as well as receiving. Once the details have been entered click Forward button, this will lead you to a screen that is used to set email receiving options. Fill the details such as what should be the refresh time of the email client and so on.

By clicking of Forward button on respective screens figure 14.17, figure 14.18, figure 14.19 and figure 14.20 will be visible. Observe that the last screen shows 'Done' message. Here you have to choose 'Apply' to actually apply the setting.

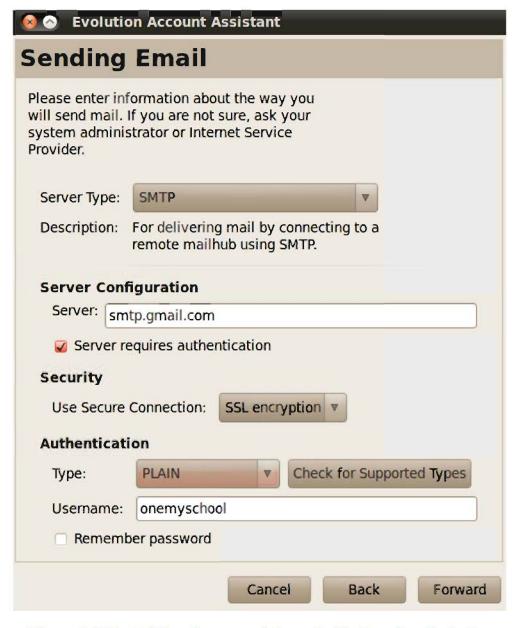


Figure 14.17: Setting Server and Security Options for Evolution

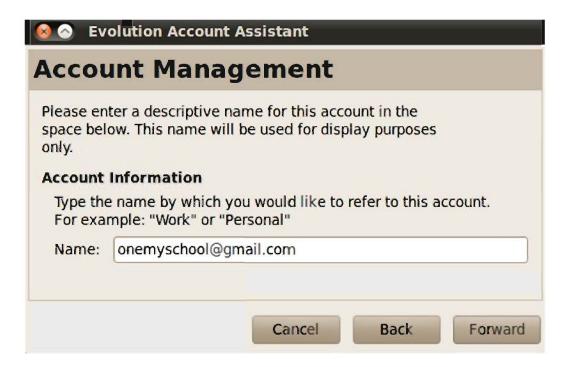


Figure 14.18: Managing Account Details for Evolution

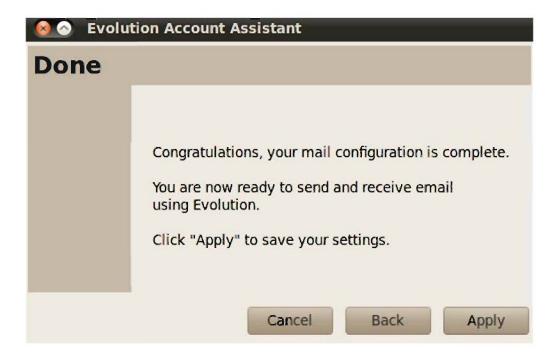


Figure 14.19: Applying Setting for Evolution

The above steps are systematic method to configure a mail account. Once you have configured the email client properly, you will be shown a welcome message. However, if you have missed to provide some information, you may always go to 'Edit' menu and select 'Preferences'. See the screen shown in figure 14.20.

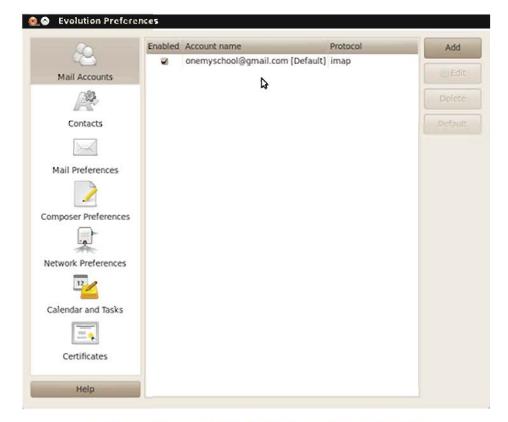


Figure 14.20: Editing Preferences for Evolution

This option allows you to set preferences for mail, contact, network, calendar and other tasks.

We used a dummy account for configuration purpose here, If you have a valid e-mail address, you may start working with the mail client. The interface of the email client will be somewhat similar to the one shown in figure 14.21.

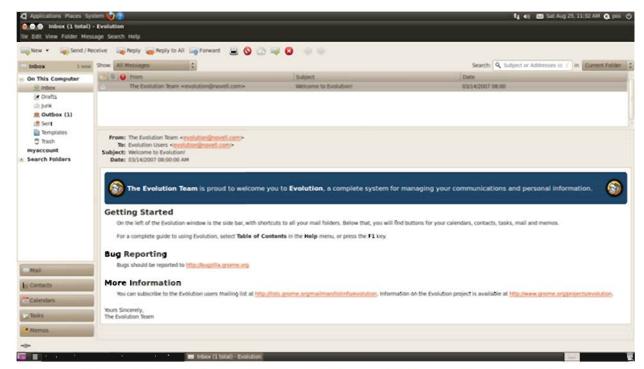


Figure 14.21: Getting the First Welcome Mail from Evolution Team

It may ask you for password, which you have set earlier. See the dialog box shown in figure 14.22. The system may remember this password. However, it is suggested that if you work on public infrastructure, you should disable the option of remembering the password.

Figure 14.22: Entering Password

You can compose a new message as can be seen in figure 14.23.

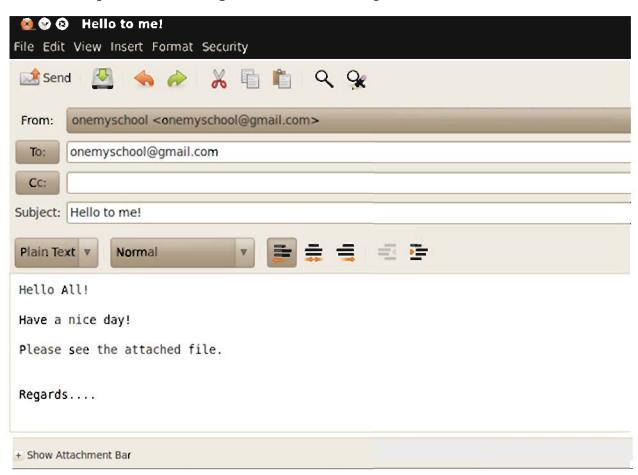


Figure 14.23: Composing Email

Click on show attachment bar to attach a file. You will find a button for 'Attachment'. Click on that, it will ask related information about the name and location of the file to be attached. See figure 14.24. Note that the view in your screens may differ based on the file that you select.

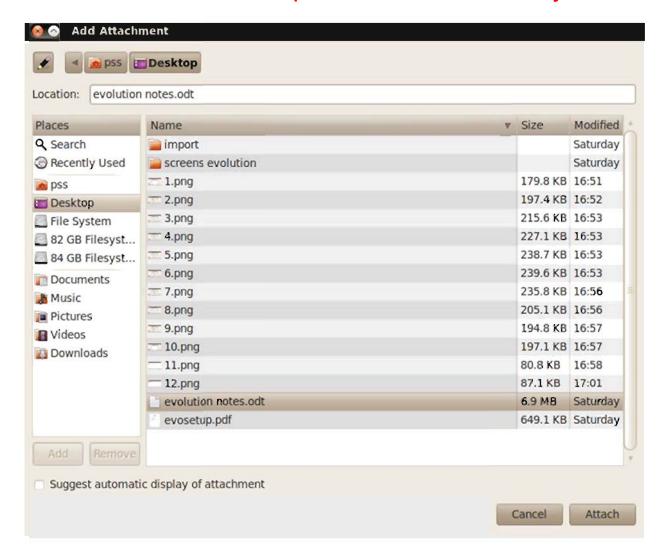


Figure 14.24: Attaching File in Email

Once you select the appropriate file (here evolution notes.odt of size 6.9 mb) will be attached with the message as shown in figure 14.25.

Figure 14.25 : Attachment Bar

To send the composed message, click on the send button as shown in figure 14.26.

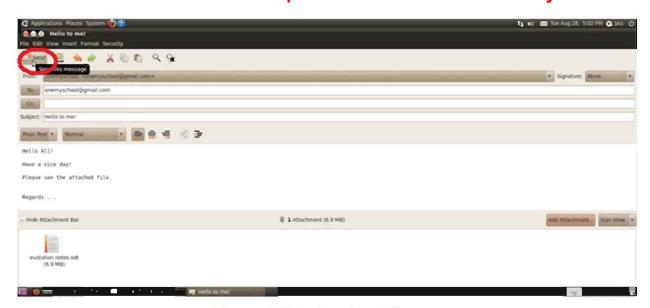


Figure 14.26: Sending Message

Evolution also helps in importing existing mail and contacts from other clients. If you wish to import contact from the existing mail account, execute *Evolution Import Assistance* as shown in figure 14.27 and provide necessary information.

Figure 14.27: Importing Information

The evolution import assistant will guide you through a series of steps. After completing these steps you will be able to import your contacts stored in different files.

Security and Cryptography

Whenever we share information and resources using a public domain, we need to assure that only authentic people would use the resource. Consider we have made banking system on-line

using a website on the Internet, it must be assured that only valid users can operate accounts within the bank. Otherwise, fraud may be committed and the bank no longer would be trusted. This is very fatal to the business. Students' marks, financial information, defence and other army operations, formulas and recipes for food items and drugs etc. must be shared within selected group of users. The Internet provides base to share information and services across the world without any geographical barriers, but also invites possibility of malfunctioning and frauds. You might have heard that some sites were hacked by some person. We must save our valuable resources from such hackers. To take advantages of the Internet platform for resource sharing and service providing, we must take care of security of the content from unwanted users such as hackers. The secured resource sharing helps in the ways as mentioned:

To Protect Assets: Once an organization's resources are kept in a shared environment, they must be secured against unauthenticated users. Here resources include not only hardware and software but information also. Consider on-line document management system for a military office. Some sensitive documents must be shared among selected senior officers. The information in form of documents must be protected and kept hidden from public.

To Survive in Competitive Scenario: By developing proper security measures the organization may improve its brand image and quality of the services. Good quality services improve degree of users' acceptance and earn competitive advantages over other organizations in the similar business. Network security counts much when it comes to financial and e-commerce applications. Online shopping sites, telephone bill payments and banking systems are the example systems where it is difficult to survive without proper security provisions.

To Provide Better Services to Users: Organizations must ensure safe and secure transactions to their users. Such transactions are always preferable to practice. Many software quality standards include security handling as their major quality control feature. Confinement to such quality standards improves organization reliability in users' minds and improves customer relationship with the organization. People would like to go for safe and reliable operations. If you know that the bank you are operating with right now was hacked last week; would you like to continue business transactions with it?

By managing proper security to the resources and service we ensure authentic use of the content. Further, we need to identify weakness of the existing system. The weakness of the existing system often called vulnerabilities. To provide sufficient level of security and to ensure smooth business, we need to learn about various types of risks, possible attacks and threats that cause harm to the computing system (hardware and software both) or users in different ways.

A threat is anything that can disrupt the operation, functioning, integrity, or availability of a shared environment such as network or system. This can take any form and can be malicious, accidental,

or simply an act of nature. Whereas the attack is a specific technique used to exploit a vulnerability of a system.

Here is the brief discussion about possible attacks and harms caused by them.

Virus

A virus is a parasite program that comes along with software. Many times when we use some fancy and attractive software from the Internet, virus may come. Just like a biological virus, it requires a host to hide it and to function. When the host program is executed, the virus is spread. When the infected program is shared through mail or other devices like pen drive, the receiving computer may be infected with virus. Once a virus reaches to a computer, it normally multiplies itself.

One can protect such virus attacks by implementing virus scanning programs available on the market. Clam Antivirus software (www.clamwin.com) is an example of free and open source antivirus software. It is to be noted that most of the virus scanning programs are effective against known viruses. Unfortunately, they are incapable of recognizing and adapting to new viruses.

Trojan Horses

A Trojan horse is a program or code segment that hides inside a program and performs a harmful function to computer resources. The name '*Trojan Horse*' is given from Greek mythology and the story of Troy. The story tells of how the Troy was conquered by hiding some soldiers within a giant wooden horse to get inside into the gates of the Troy. The Trojan program that contains harmful program within it generally claims some useful and fancy function such as mail with attachment, screensaver or free games. When user executes the program, the hidden program inside is also executed and performs in parallel with the main program.

Popular example of a Trojan horse program is password grabber. The login.exe file is replaced with new login.exe, which is a Trojan. When user gives the user name and password, the system stores the information and displays message that the password is incorrect. Meanwhile the system passes the control to actual login.exe, which asks you second time for user name and password. User innocently provides the user name and password again thinking that there may be mistake in giving password earlier. Here user never knows that his user name and password have been stolen.

Worms

A worm is an independent program containing harmful software that is usually propagates itself on networked systems connected with the infected system. It has capability to harm the systems it visits via network. The main difference between a virus and a worm is the ability to propagate itself independently. A virus is not an independent program; whereas a worm is an independent utility. However, there are viruses (like Mellissa) which hybridizes characteristic of viruses and worms.

Trap Doors

A trap door or back door is a way of accessing system or resources of the system using an undocumented way. When system is developed, this way is not mentioned and documented. Generally this is done by the developer of the system. When some dispute is there between the company and developer, or suppose the developer party wants an illegal access to the system, this way is used to gain privileged access to the system or a process of the system.

Logic Bombs

A logic bomb is a program that triggers when some logic conditions are met. Example of some logical conditions are matching particular dates, when there is a lot of amount in a bank account or when sensible information received in a company's database. When such situations are observed, the logic bomb performs some action such as stealing important information, changing balance of bank account and deleting important information from the system. It is easy for developer or a vendor to prepare and embed such logic bombs with the system at the time of development or delivery.

Besides these above mentioned techniques, unauthorised access to the system can be made possible through computers unique IP address scanning, listening to various ports and network resources (sniffing), redirecting, password cracking, session hijacking and spoofing (renaming) the infrastructure such as server (DNS spoofing), etc. Further, if the objective of possible hacker to the system is not the important resource, but to disturb the operation of the system, denial-of-service attacks are designed. These attacks are used to shut down or make the system inoperable. It is known as a denial-of-service attack as it is used to deny users access to the system. Many times spam (unwanted) emails are used as carriers of such attacks.

There are many ways to prevent the resources and systems from the aforementioned attacks. Firewall, antivirus software and authentication of valid users by different mechanisms (such as user name and password) are some popular measures that take care of security threats and virus attacks. Further, cryptography (encryption of the sensitive information) can also be used to handle such attacks, which is discussed in the following section.

Cryptography as a Security Tool

Cryptography is a method of secret (*crypto*) writing (*graphy*). Cryptography is application of various techniques and principles to transform simple message into unintelligible secret message and to retransform the message back to its original form.

Cryptography can be used as a tool to provide privacy, to authenticate the identities of communicating parties, and to ensure message integrity. The cryptography terminology is described herewith.

Basic Cryptography Terminology

- The original message is generally called plain text.
- The transformed secret message is called cipher-text.
- An algorithm for transforming the original message into unintelligible message by some logic is known as cipher.

- The process of converting plaintext to cipher-text is known as enciphering. It is also known as encoding or encryption.
- The process of converting cipher-text back into plaintext is known as deciphering. It is also known as decoding or decryption.
- Many times sender and receiver share some critical information that must be provided to the cipher (algorithm) to facilitate encoding and decoding of messages. This critical information is known as key. The key may be public (also known as asymmetric key) or private (symmetric key or secrete key). In absence of such keys, encrypted text can be retrieved but cannot be decoded into meaningful information.
- Frequently, in absence of keys to the cipher, people study the encrypted text in order to break it and to extract information. The study of principles and methods of transforming an encrypted message back into meaningful information without knowledge of the key is known as cryptanalysis. It is also called code breaking.
- Both cryptography and cryptanalysis together is known as cryptology.

Example

An example of a cipher to scramble a message is as mentioned. Consider the rules stated :

- (1) Check the first letter/character of the message given.
- (2) If it is a valid English alphabet, simply replace each letter with its next to next letter in standard English alphabets.
- (3) If it is not a valid English alphabet, leave it as it is.
- (4) Repeat this procedure for every alphabet in the message.

To unscramble this message, we need to follow the same procedure in reverse order. Consider text message is given:

My school name is New School

This message with the aforementioned cipher can be encrypted as shown in the table 14.3.

Letter	M	у	Blank	s	С	h	0	o	1	Blank
Converted letter	О	a	Blank	u	е	j	q	q	n	Blank
Letter	n	a	m	е	Blank	i	S	Blank	N	e
Converted letter	p	С	0	g	Blank	k	u.	Blank	P	g
Letter	w	Blank	S	С	h	0	0	1	Full stop	
Converted letter	у	Blank	U	е	j	q	q	n	Full stop	

Table 14.3: Encryption of a Message

If we apply the process of encryption mentioned, the encrypted text is "Oa uejqqn Pcog ku Pgy Uejqqn.". Try to decrypt the encrypted text into the original message.

Besides encryption, data & other objects are compressed in order to save memory and bandwidth (in case they need to be sent via network). Instead of storing or passing the original set of data, one may store or pass encrypted as well as compressed data. This extra effort saves time to pass data, space required by the data and bandwidth of network. Further, this strategy also secures the content from unauthorized access on the personal computer as well as on the network. On receiving end, this technique saves download time, cost and improves security. However, it will take little effort for encryption at sender side and description at receiver side.

Summary

We have learnt that Internet as well as other network can be used for variety of applications. In this chapter we learnt about one such major application e-mail. We saw benefits of e-mail, configuration of e-mail clients and how to send e-mail. As the Internet and Web provide mechanisms to share resources, we must take care of the security of the resources which are made available on such platforms. There may be attack of virus or other programs that causes threats and damage of the important information and resources. We also saw how to protect data by applying various techniques and principles of cryptography and prevent its misuse from invalid users.

EXERCISE

- 1. What are the benefits of email?
- 2. Explain the structure of e-mail.
- 3. How e-mail works?
- 4. What are the typical operations that can be performed on an e-mail? Explain each in one line.
- 5. What is a threat? How it can be avoided?
- **6.** Define the following terms :
 - (a) Vulnerabilities

(b) Virus

(c) Trojan horse

(d) Worm

(e) Logic bomb

(f) Trap door

- 7. Differentiate virus and worm.
- **8.** Explain the term cipher. How it is related with security and cryptography?

Downloaded from https://www.studiestoday.com Define the following terms: Cryptology (b) Cryptanalysis (c) Cryptography List any three popular mail clients of your choice. Choose the most appropriate option from those given below: (1) What type of information can be send through an E-mail? (a) Text and voice (b) Text and numbers (d) All of these (c) Multimedia (2) What is an alternative name of Junk mails? (a) Less important mails (b) Very important fast mails (c) Unwanted mails (d) All of these (3) Which of the followings is needed to send an e-mail besides computers and basic internet facilities? (a) E-mail id or e-mail addresses (b) Permanent address (d) All of these (c) Postal addresses (4) Which of the following is a parasite program that comes along with software that does some harm to the system? (b) Virus (a) Attack (c) Vulnerabilities (d) All of these (5) Which of the following is used to transform the original message into unintelligible message by some logic? (a) kaison (b) cipher (c) logic bomb (d) atom bomb (6) Which of the following is an application of various techniques and principles to transform simple message into unintelligible secret message and to retransform the message back to its original form? (a) Cryptography (b) Cryptanalysis (c) Cryptology (d) All of these (7) Which of the followings is known as the process of converting a cipher-text into original plain text? (a) Enciphering (b) Encryption

(a) code breaking

(8) Cryptanalysis is also called

(c) Ciphering

(b) logic breaking

(d) Decryption

(c) design breaking

(d) system breaking

9.

(9) What is the collective name of both cryptography and cryptanalysis?

(a) Cryptography

(b) Cryptanalysis

(c) Cryptology

(d) All of these

PRACTICAL EXERCISE

- 1. Create an e-mail account and send a mail to your friend. Ask your friend to reply to your mail.
- 2. Respond to your friend's message and send some attachment to the friend along with the responding mail.
- 3. Send a message to more than one friend.
- 4. Encrypt a message of your choice, type it and send it to your friend as an email. Ask your friend to decrypt it.
- 5. Run any antivirus program available at your place and check for virus.

•

Appendix

Adding Support for Indian Languages

Ubuntu comes with support for several Indian languages, including Gujarati and Hindi. The installation CD, however, contains support only for English. To add support for Gujarati, you need to take the following steps (You should be connected to the Internet).

Select the menu item System \rightarrow Administration \rightarrow Language Support.

Select "Install Languages", Choose Gujarati from the list of languages, and select the "Input methods" and "Extra Fonts" checkboxes.

Click on "Apply Changes".

After you get the message "Successfully applied all the changes...", select "ibus" for the keyboard input method system.

Close the window.

Select the menu item System \rightarrow Preferences \rightarrow iBus Preferences.

You will get a dialog with the message "iBus daemon not started. Start it now?". Select "Yes".

In the notification area in the top panel, you will see an additional icon for iBus.

A dialog box will open for setting iBus preferences (it can also be opened by clicking on the iBus icon and selecting "Preferences").

Switch to the input method tab, select Gujarati → itrans (m17n) from the list and click "Add".

Now you can type Gujarati text in any program. Support for Hindi can be added in a similar way.

To change the language while typing in any program, click on the iBus icon and select appropriate language (there are keyboard shortcuts as well). You can mix languages also.

Typing Gujarati using the itrans m17n input method is very intuitive for new users because it is phonetic, i.e. the keystrokes to be pressed follow the usual transliteration schemes between the Gujarati and Roman (English) scripts. In general, typing a simple Gujarati letter involves typing the letter for the consonant followed by the letter for the vovel as per the examples below:

Appendix 265

$k \rightarrow \xi$	ka → §	kaa or k $A o s$ l	$\mathbf{ki} \to \mathbb{G}$
kee or $kI \rightarrow \mathfrak{sl}$	$ku \rightarrow \S$	kuu or k $U \rightarrow \xi$	$ke \rightarrow \dot{s}$
kai → ³}	$\mathbf{ko} \rightarrow \hat{\mathfrak{sl}}$	kau $ ightarrow$ $\mathring{\mathfrak{sl}}$	$kM \rightarrow \dot{\mathfrak{s}}$
$kH \rightarrow s$:			

Table A.1 shows the full key map:

Keyboard	Keyboard			Keyboard		Keyboard	
Sequence	Character	15	Character	- 15 m	Character		Character
k	ક્	p	પ્	a	અ	.h	`
kh	ખ્	ph	\$	aa	આ	AUM	ॐ
g	ગ્	b	બ્	A	આ	OM	3ŏ
gh	ઘ્	bh	ભ્	i	ઇ	0	0
~N	\$ _	m	મ્	i	ઈ	1	૧
N ^	\$	у	ય્	I	ઈ	2	૨
ch	ચ્	r	ર્	u	ઉ	3	3
Ch	છ્	1	લ્	uu	ઊ	4	૪
chh	છ્	ld	ળ્	U	ઊ	5	પ
j	જ્	L	ળ્	RRi	ж	6	٤
jh	ઝ્	v	વ્	R^i	ж	7	9
~n	ઞ્	w	વ્	.c	ઍ	8	ረ
JN	ઞ્	sh	શ્	e.c	ઍ	9	૯
T	ઢ્	Sh	ષ્	e	એ	#	્રંટ
Th	δ્	shh	ષ્	ai	ઐ	\$	રૂ
D	<u>s</u>	s	સ્	o.c	ઑ	^	ત્ર
Dh	&	h	હ્ય્	o	ઓ	*	શ્ર
N	હો્	j~n	গ্ৰু	au	ઔ		
t	ત્	GY	গ্ৰু	RRI	ж		
th	થ્	dny	গ্ৰ্	R^I	ж		
d	દ્	x	ક્ષ્	.N	•		
dh	ધ્			.n	·		
n	ન્			M	·		
				Н	:		
				.a	:		

Table A.1: Key Map for the itrans (m17n) Keyboard

